gas/
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
29
30 #include "as.h"
31 #include "safe-ctype.h"
32 #include "subsegs.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "opcode/i386.h"
36 #include "elf/x86-64.h"
37
38 #ifndef REGISTER_WARNINGS
39 #define REGISTER_WARNINGS 1
40 #endif
41
42 #ifndef INFER_ADDR_PREFIX
43 #define INFER_ADDR_PREFIX 1
44 #endif
45
46 #ifndef SCALE1_WHEN_NO_INDEX
47 /* Specifying a scale factor besides 1 when there is no index is
48 futile. eg. `mov (%ebx,2),%al' does exactly the same as
49 `mov (%ebx),%al'. To slavishly follow what the programmer
50 specified, set SCALE1_WHEN_NO_INDEX to 0. */
51 #define SCALE1_WHEN_NO_INDEX 1
52 #endif
53
54 #ifndef DEFAULT_ARCH
55 #define DEFAULT_ARCH "i386"
56 #endif
57
58 #ifndef INLINE
59 #if __GNUC__ >= 2
60 #define INLINE __inline__
61 #else
62 #define INLINE
63 #endif
64 #endif
65
66 static INLINE unsigned int mode_from_disp_size PARAMS ((unsigned int));
67 static INLINE int fits_in_signed_byte PARAMS ((offsetT));
68 static INLINE int fits_in_unsigned_byte PARAMS ((offsetT));
69 static INLINE int fits_in_unsigned_word PARAMS ((offsetT));
70 static INLINE int fits_in_signed_word PARAMS ((offsetT));
71 static INLINE int fits_in_unsigned_long PARAMS ((offsetT));
72 static INLINE int fits_in_signed_long PARAMS ((offsetT));
73 static int smallest_imm_type PARAMS ((offsetT));
74 static offsetT offset_in_range PARAMS ((offsetT, int));
75 static int add_prefix PARAMS ((unsigned int));
76 static void set_code_flag PARAMS ((int));
77 static void set_16bit_gcc_code_flag PARAMS ((int));
78 static void set_intel_syntax PARAMS ((int));
79 static void set_cpu_arch PARAMS ((int));
80 #ifdef TE_PE
81 static void pe_directive_secrel PARAMS ((int));
82 #endif
83 static char *output_invalid PARAMS ((int c));
84 static int i386_operand PARAMS ((char *operand_string));
85 static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
86 static const reg_entry *parse_register PARAMS ((char *reg_string,
87 char **end_op));
88 static char *parse_insn PARAMS ((char *, char *));
89 static char *parse_operands PARAMS ((char *, const char *));
90 static void swap_operands PARAMS ((void));
91 static void optimize_imm PARAMS ((void));
92 static void optimize_disp PARAMS ((void));
93 static int match_template PARAMS ((void));
94 static int check_string PARAMS ((void));
95 static int process_suffix PARAMS ((void));
96 static int check_byte_reg PARAMS ((void));
97 static int check_long_reg PARAMS ((void));
98 static int check_qword_reg PARAMS ((void));
99 static int check_word_reg PARAMS ((void));
100 static int finalize_imm PARAMS ((void));
101 static int process_operands PARAMS ((void));
102 static const seg_entry *build_modrm_byte PARAMS ((void));
103 static void output_insn PARAMS ((void));
104 static void output_branch PARAMS ((void));
105 static void output_jump PARAMS ((void));
106 static void output_interseg_jump PARAMS ((void));
107 static void output_imm PARAMS ((fragS *insn_start_frag,
108 offsetT insn_start_off));
109 static void output_disp PARAMS ((fragS *insn_start_frag,
110 offsetT insn_start_off));
111 #ifndef I386COFF
112 static void s_bss PARAMS ((int));
113 #endif
114
115 static const char *default_arch = DEFAULT_ARCH;
116
117 /* 'md_assemble ()' gathers together information and puts it into a
118 i386_insn. */
119
120 union i386_op
121 {
122 expressionS *disps;
123 expressionS *imms;
124 const reg_entry *regs;
125 };
126
127 struct _i386_insn
128 {
129 /* TM holds the template for the insn were currently assembling. */
130 template tm;
131
132 /* SUFFIX holds the instruction mnemonic suffix if given.
133 (e.g. 'l' for 'movl') */
134 char suffix;
135
136 /* OPERANDS gives the number of given operands. */
137 unsigned int operands;
138
139 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
140 of given register, displacement, memory operands and immediate
141 operands. */
142 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
143
144 /* TYPES [i] is the type (see above #defines) which tells us how to
145 use OP[i] for the corresponding operand. */
146 unsigned int types[MAX_OPERANDS];
147
148 /* Displacement expression, immediate expression, or register for each
149 operand. */
150 union i386_op op[MAX_OPERANDS];
151
152 /* Flags for operands. */
153 unsigned int flags[MAX_OPERANDS];
154 #define Operand_PCrel 1
155
156 /* Relocation type for operand */
157 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
158
159 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
160 the base index byte below. */
161 const reg_entry *base_reg;
162 const reg_entry *index_reg;
163 unsigned int log2_scale_factor;
164
165 /* SEG gives the seg_entries of this insn. They are zero unless
166 explicit segment overrides are given. */
167 const seg_entry *seg[2];
168
169 /* PREFIX holds all the given prefix opcodes (usually null).
170 PREFIXES is the number of prefix opcodes. */
171 unsigned int prefixes;
172 unsigned char prefix[MAX_PREFIXES];
173
174 /* RM and SIB are the modrm byte and the sib byte where the
175 addressing modes of this insn are encoded. */
176
177 modrm_byte rm;
178 rex_byte rex;
179 sib_byte sib;
180 };
181
182 typedef struct _i386_insn i386_insn;
183
184 /* List of chars besides those in app.c:symbol_chars that can start an
185 operand. Used to prevent the scrubber eating vital white-space. */
186 const char extra_symbol_chars[] = "*%-(["
187 #ifdef LEX_AT
188 "@"
189 #endif
190 #ifdef LEX_QM
191 "?"
192 #endif
193 ;
194
195 #if (defined (TE_I386AIX) \
196 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
197 && !defined (TE_LINUX) \
198 && !defined (TE_NETWARE) \
199 && !defined (TE_FreeBSD) \
200 && !defined (TE_NetBSD)))
201 /* This array holds the chars that always start a comment. If the
202 pre-processor is disabled, these aren't very useful. */
203 const char comment_chars[] = "#/";
204 #define PREFIX_SEPARATOR '\\'
205
206 /* This array holds the chars that only start a comment at the beginning of
207 a line. If the line seems to have the form '# 123 filename'
208 .line and .file directives will appear in the pre-processed output.
209 Note that input_file.c hand checks for '#' at the beginning of the
210 first line of the input file. This is because the compiler outputs
211 #NO_APP at the beginning of its output.
212 Also note that comments started like this one will always work if
213 '/' isn't otherwise defined. */
214 const char line_comment_chars[] = "#";
215
216 #else
217 /* Putting '/' here makes it impossible to use the divide operator.
218 However, we need it for compatibility with SVR4 systems. */
219 const char comment_chars[] = "#";
220 #define PREFIX_SEPARATOR '/'
221
222 const char line_comment_chars[] = "/#";
223 #endif
224
225 const char line_separator_chars[] = ";";
226
227 /* Chars that can be used to separate mant from exp in floating point
228 nums. */
229 const char EXP_CHARS[] = "eE";
230
231 /* Chars that mean this number is a floating point constant
232 As in 0f12.456
233 or 0d1.2345e12. */
234 const char FLT_CHARS[] = "fFdDxX";
235
236 /* Tables for lexical analysis. */
237 static char mnemonic_chars[256];
238 static char register_chars[256];
239 static char operand_chars[256];
240 static char identifier_chars[256];
241 static char digit_chars[256];
242
243 /* Lexical macros. */
244 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
245 #define is_operand_char(x) (operand_chars[(unsigned char) x])
246 #define is_register_char(x) (register_chars[(unsigned char) x])
247 #define is_space_char(x) ((x) == ' ')
248 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
249 #define is_digit_char(x) (digit_chars[(unsigned char) x])
250
251 /* All non-digit non-letter characters that may occur in an operand. */
252 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
253
254 /* md_assemble() always leaves the strings it's passed unaltered. To
255 effect this we maintain a stack of saved characters that we've smashed
256 with '\0's (indicating end of strings for various sub-fields of the
257 assembler instruction). */
258 static char save_stack[32];
259 static char *save_stack_p;
260 #define END_STRING_AND_SAVE(s) \
261 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
262 #define RESTORE_END_STRING(s) \
263 do { *(s) = *--save_stack_p; } while (0)
264
265 /* The instruction we're assembling. */
266 static i386_insn i;
267
268 /* Possible templates for current insn. */
269 static const templates *current_templates;
270
271 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
272 static expressionS disp_expressions[2], im_expressions[2];
273
274 /* Current operand we are working on. */
275 static int this_operand;
276
277 /* We support four different modes. FLAG_CODE variable is used to distinguish
278 these. */
279
280 enum flag_code {
281 CODE_32BIT,
282 CODE_16BIT,
283 CODE_64BIT };
284 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
285
286 static enum flag_code flag_code;
287 static int use_rela_relocations = 0;
288
289 /* The names used to print error messages. */
290 static const char *flag_code_names[] =
291 {
292 "32",
293 "16",
294 "64"
295 };
296
297 /* 1 for intel syntax,
298 0 if att syntax. */
299 static int intel_syntax = 0;
300
301 /* 1 if register prefix % not required. */
302 static int allow_naked_reg = 0;
303
304 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
305 leave, push, and pop instructions so that gcc has the same stack
306 frame as in 32 bit mode. */
307 static char stackop_size = '\0';
308
309 /* Non-zero to optimize code alignment. */
310 int optimize_align_code = 1;
311
312 /* Non-zero to quieten some warnings. */
313 static int quiet_warnings = 0;
314
315 /* CPU name. */
316 static const char *cpu_arch_name = NULL;
317 static const char *cpu_sub_arch_name = NULL;
318
319 /* CPU feature flags. */
320 static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
321
322 /* If set, conditional jumps are not automatically promoted to handle
323 larger than a byte offset. */
324 static unsigned int no_cond_jump_promotion = 0;
325
326 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
327 static symbolS *GOT_symbol;
328
329 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
330 unsigned int x86_dwarf2_return_column;
331
332 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
333 int x86_cie_data_alignment;
334
335 /* Interface to relax_segment.
336 There are 3 major relax states for 386 jump insns because the
337 different types of jumps add different sizes to frags when we're
338 figuring out what sort of jump to choose to reach a given label. */
339
340 /* Types. */
341 #define UNCOND_JUMP 0
342 #define COND_JUMP 1
343 #define COND_JUMP86 2
344
345 /* Sizes. */
346 #define CODE16 1
347 #define SMALL 0
348 #define SMALL16 (SMALL | CODE16)
349 #define BIG 2
350 #define BIG16 (BIG | CODE16)
351
352 #ifndef INLINE
353 #ifdef __GNUC__
354 #define INLINE __inline__
355 #else
356 #define INLINE
357 #endif
358 #endif
359
360 #define ENCODE_RELAX_STATE(type, size) \
361 ((relax_substateT) (((type) << 2) | (size)))
362 #define TYPE_FROM_RELAX_STATE(s) \
363 ((s) >> 2)
364 #define DISP_SIZE_FROM_RELAX_STATE(s) \
365 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
366
367 /* This table is used by relax_frag to promote short jumps to long
368 ones where necessary. SMALL (short) jumps may be promoted to BIG
369 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
370 don't allow a short jump in a 32 bit code segment to be promoted to
371 a 16 bit offset jump because it's slower (requires data size
372 prefix), and doesn't work, unless the destination is in the bottom
373 64k of the code segment (The top 16 bits of eip are zeroed). */
374
375 const relax_typeS md_relax_table[] =
376 {
377 /* The fields are:
378 1) most positive reach of this state,
379 2) most negative reach of this state,
380 3) how many bytes this mode will have in the variable part of the frag
381 4) which index into the table to try if we can't fit into this one. */
382
383 /* UNCOND_JUMP states. */
384 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
385 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
386 /* dword jmp adds 4 bytes to frag:
387 0 extra opcode bytes, 4 displacement bytes. */
388 {0, 0, 4, 0},
389 /* word jmp adds 2 byte2 to frag:
390 0 extra opcode bytes, 2 displacement bytes. */
391 {0, 0, 2, 0},
392
393 /* COND_JUMP states. */
394 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
395 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
396 /* dword conditionals adds 5 bytes to frag:
397 1 extra opcode byte, 4 displacement bytes. */
398 {0, 0, 5, 0},
399 /* word conditionals add 3 bytes to frag:
400 1 extra opcode byte, 2 displacement bytes. */
401 {0, 0, 3, 0},
402
403 /* COND_JUMP86 states. */
404 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
405 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
406 /* dword conditionals adds 5 bytes to frag:
407 1 extra opcode byte, 4 displacement bytes. */
408 {0, 0, 5, 0},
409 /* word conditionals add 4 bytes to frag:
410 1 displacement byte and a 3 byte long branch insn. */
411 {0, 0, 4, 0}
412 };
413
414 static const arch_entry cpu_arch[] = {
415 {"i8086", Cpu086 },
416 {"i186", Cpu086|Cpu186 },
417 {"i286", Cpu086|Cpu186|Cpu286 },
418 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
419 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
420 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586 },
421 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686 },
422 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586 },
423 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686 },
424 {"pentiumii", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX },
425 {"pentiumiii",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuMMX2|CpuSSE },
426 {"pentium4", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2|CpuSSE|CpuSSE2 },
427 {"prescott", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuPNI },
428 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX },
429 {"k6_2", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow },
430 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA },
431 {"sledgehammer",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuAthlon|CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2 },
432 {".mmx", CpuMMX },
433 {".sse", CpuMMX|CpuMMX2|CpuSSE },
434 {".sse2", CpuMMX|CpuMMX2|CpuSSE|CpuSSE2 },
435 {".3dnow", CpuMMX|Cpu3dnow },
436 {".3dnowa", CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA },
437 {".padlock", CpuPadLock },
438 {NULL, 0 }
439 };
440
441 const pseudo_typeS md_pseudo_table[] =
442 {
443 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
444 {"align", s_align_bytes, 0},
445 #else
446 {"align", s_align_ptwo, 0},
447 #endif
448 {"arch", set_cpu_arch, 0},
449 #ifndef I386COFF
450 {"bss", s_bss, 0},
451 #endif
452 {"ffloat", float_cons, 'f'},
453 {"dfloat", float_cons, 'd'},
454 {"tfloat", float_cons, 'x'},
455 {"value", cons, 2},
456 {"noopt", s_ignore, 0},
457 {"optim", s_ignore, 0},
458 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
459 {"code16", set_code_flag, CODE_16BIT},
460 {"code32", set_code_flag, CODE_32BIT},
461 {"code64", set_code_flag, CODE_64BIT},
462 {"intel_syntax", set_intel_syntax, 1},
463 {"att_syntax", set_intel_syntax, 0},
464 {"file", (void (*) PARAMS ((int))) dwarf2_directive_file, 0},
465 {"loc", dwarf2_directive_loc, 0},
466 #ifdef TE_PE
467 {"secrel32", pe_directive_secrel, 0},
468 #endif
469 {0, 0, 0}
470 };
471
472 /* For interface with expression (). */
473 extern char *input_line_pointer;
474
475 /* Hash table for instruction mnemonic lookup. */
476 static struct hash_control *op_hash;
477
478 /* Hash table for register lookup. */
479 static struct hash_control *reg_hash;
480 \f
481 void
482 i386_align_code (fragP, count)
483 fragS *fragP;
484 int count;
485 {
486 /* Various efficient no-op patterns for aligning code labels.
487 Note: Don't try to assemble the instructions in the comments.
488 0L and 0w are not legal. */
489 static const char f32_1[] =
490 {0x90}; /* nop */
491 static const char f32_2[] =
492 {0x89,0xf6}; /* movl %esi,%esi */
493 static const char f32_3[] =
494 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
495 static const char f32_4[] =
496 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
497 static const char f32_5[] =
498 {0x90, /* nop */
499 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
500 static const char f32_6[] =
501 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
502 static const char f32_7[] =
503 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
504 static const char f32_8[] =
505 {0x90, /* nop */
506 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
507 static const char f32_9[] =
508 {0x89,0xf6, /* movl %esi,%esi */
509 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
510 static const char f32_10[] =
511 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
512 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
513 static const char f32_11[] =
514 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
515 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
516 static const char f32_12[] =
517 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
518 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
519 static const char f32_13[] =
520 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
521 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
522 static const char f32_14[] =
523 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
524 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
525 static const char f32_15[] =
526 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
527 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
528 static const char f16_3[] =
529 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
530 static const char f16_4[] =
531 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
532 static const char f16_5[] =
533 {0x90, /* nop */
534 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
535 static const char f16_6[] =
536 {0x89,0xf6, /* mov %si,%si */
537 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
538 static const char f16_7[] =
539 {0x8d,0x74,0x00, /* lea 0(%si),%si */
540 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
541 static const char f16_8[] =
542 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
543 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
544 static const char *const f32_patt[] = {
545 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
546 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
547 };
548 static const char *const f16_patt[] = {
549 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
550 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
551 };
552
553 if (count <= 0 || count > 15)
554 return;
555
556 /* The recommended way to pad 64bit code is to use NOPs preceded by
557 maximally four 0x66 prefixes. Balance the size of nops. */
558 if (flag_code == CODE_64BIT)
559 {
560 int i;
561 int nnops = (count + 3) / 4;
562 int len = count / nnops;
563 int remains = count - nnops * len;
564 int pos = 0;
565
566 for (i = 0; i < remains; i++)
567 {
568 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
569 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
570 pos += len + 1;
571 }
572 for (; i < nnops; i++)
573 {
574 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
575 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
576 pos += len;
577 }
578 }
579 else
580 if (flag_code == CODE_16BIT)
581 {
582 memcpy (fragP->fr_literal + fragP->fr_fix,
583 f16_patt[count - 1], count);
584 if (count > 8)
585 /* Adjust jump offset. */
586 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
587 }
588 else
589 memcpy (fragP->fr_literal + fragP->fr_fix,
590 f32_patt[count - 1], count);
591 fragP->fr_var = count;
592 }
593
594 static INLINE unsigned int
595 mode_from_disp_size (t)
596 unsigned int t;
597 {
598 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
599 }
600
601 static INLINE int
602 fits_in_signed_byte (num)
603 offsetT num;
604 {
605 return (num >= -128) && (num <= 127);
606 }
607
608 static INLINE int
609 fits_in_unsigned_byte (num)
610 offsetT num;
611 {
612 return (num & 0xff) == num;
613 }
614
615 static INLINE int
616 fits_in_unsigned_word (num)
617 offsetT num;
618 {
619 return (num & 0xffff) == num;
620 }
621
622 static INLINE int
623 fits_in_signed_word (num)
624 offsetT num;
625 {
626 return (-32768 <= num) && (num <= 32767);
627 }
628 static INLINE int
629 fits_in_signed_long (num)
630 offsetT num ATTRIBUTE_UNUSED;
631 {
632 #ifndef BFD64
633 return 1;
634 #else
635 return (!(((offsetT) -1 << 31) & num)
636 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
637 #endif
638 } /* fits_in_signed_long() */
639 static INLINE int
640 fits_in_unsigned_long (num)
641 offsetT num ATTRIBUTE_UNUSED;
642 {
643 #ifndef BFD64
644 return 1;
645 #else
646 return (num & (((offsetT) 2 << 31) - 1)) == num;
647 #endif
648 } /* fits_in_unsigned_long() */
649
650 static int
651 smallest_imm_type (num)
652 offsetT num;
653 {
654 if (cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
655 {
656 /* This code is disabled on the 486 because all the Imm1 forms
657 in the opcode table are slower on the i486. They're the
658 versions with the implicitly specified single-position
659 displacement, which has another syntax if you really want to
660 use that form. */
661 if (num == 1)
662 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
663 }
664 return (fits_in_signed_byte (num)
665 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
666 : fits_in_unsigned_byte (num)
667 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
668 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
669 ? (Imm16 | Imm32 | Imm32S | Imm64)
670 : fits_in_signed_long (num)
671 ? (Imm32 | Imm32S | Imm64)
672 : fits_in_unsigned_long (num)
673 ? (Imm32 | Imm64)
674 : Imm64);
675 }
676
677 static offsetT
678 offset_in_range (val, size)
679 offsetT val;
680 int size;
681 {
682 addressT mask;
683
684 switch (size)
685 {
686 case 1: mask = ((addressT) 1 << 8) - 1; break;
687 case 2: mask = ((addressT) 1 << 16) - 1; break;
688 case 4: mask = ((addressT) 2 << 31) - 1; break;
689 #ifdef BFD64
690 case 8: mask = ((addressT) 2 << 63) - 1; break;
691 #endif
692 default: abort ();
693 }
694
695 /* If BFD64, sign extend val. */
696 if (!use_rela_relocations)
697 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
698 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
699
700 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
701 {
702 char buf1[40], buf2[40];
703
704 sprint_value (buf1, val);
705 sprint_value (buf2, val & mask);
706 as_warn (_("%s shortened to %s"), buf1, buf2);
707 }
708 return val & mask;
709 }
710
711 /* Returns 0 if attempting to add a prefix where one from the same
712 class already exists, 1 if non rep/repne added, 2 if rep/repne
713 added. */
714 static int
715 add_prefix (prefix)
716 unsigned int prefix;
717 {
718 int ret = 1;
719 int q;
720
721 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
722 && flag_code == CODE_64BIT)
723 q = REX_PREFIX;
724 else
725 switch (prefix)
726 {
727 default:
728 abort ();
729
730 case CS_PREFIX_OPCODE:
731 case DS_PREFIX_OPCODE:
732 case ES_PREFIX_OPCODE:
733 case FS_PREFIX_OPCODE:
734 case GS_PREFIX_OPCODE:
735 case SS_PREFIX_OPCODE:
736 q = SEG_PREFIX;
737 break;
738
739 case REPNE_PREFIX_OPCODE:
740 case REPE_PREFIX_OPCODE:
741 ret = 2;
742 /* fall thru */
743 case LOCK_PREFIX_OPCODE:
744 q = LOCKREP_PREFIX;
745 break;
746
747 case FWAIT_OPCODE:
748 q = WAIT_PREFIX;
749 break;
750
751 case ADDR_PREFIX_OPCODE:
752 q = ADDR_PREFIX;
753 break;
754
755 case DATA_PREFIX_OPCODE:
756 q = DATA_PREFIX;
757 break;
758 }
759
760 if (i.prefix[q] != 0)
761 {
762 as_bad (_("same type of prefix used twice"));
763 return 0;
764 }
765
766 i.prefixes += 1;
767 i.prefix[q] = prefix;
768 return ret;
769 }
770
771 static void
772 set_code_flag (value)
773 int value;
774 {
775 flag_code = value;
776 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
777 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
778 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
779 {
780 as_bad (_("64bit mode not supported on this CPU."));
781 }
782 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
783 {
784 as_bad (_("32bit mode not supported on this CPU."));
785 }
786 stackop_size = '\0';
787 }
788
789 static void
790 set_16bit_gcc_code_flag (new_code_flag)
791 int new_code_flag;
792 {
793 flag_code = new_code_flag;
794 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
795 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
796 stackop_size = LONG_MNEM_SUFFIX;
797 }
798
799 static void
800 set_intel_syntax (syntax_flag)
801 int syntax_flag;
802 {
803 /* Find out if register prefixing is specified. */
804 int ask_naked_reg = 0;
805
806 SKIP_WHITESPACE ();
807 if (!is_end_of_line[(unsigned char) *input_line_pointer])
808 {
809 char *string = input_line_pointer;
810 int e = get_symbol_end ();
811
812 if (strcmp (string, "prefix") == 0)
813 ask_naked_reg = 1;
814 else if (strcmp (string, "noprefix") == 0)
815 ask_naked_reg = -1;
816 else
817 as_bad (_("bad argument to syntax directive."));
818 *input_line_pointer = e;
819 }
820 demand_empty_rest_of_line ();
821
822 intel_syntax = syntax_flag;
823
824 if (ask_naked_reg == 0)
825 allow_naked_reg = (intel_syntax
826 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
827 else
828 allow_naked_reg = (ask_naked_reg < 0);
829
830 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
831 identifier_chars['$'] = intel_syntax ? '$' : 0;
832 }
833
834 static void
835 set_cpu_arch (dummy)
836 int dummy ATTRIBUTE_UNUSED;
837 {
838 SKIP_WHITESPACE ();
839
840 if (!is_end_of_line[(unsigned char) *input_line_pointer])
841 {
842 char *string = input_line_pointer;
843 int e = get_symbol_end ();
844 int i;
845
846 for (i = 0; cpu_arch[i].name; i++)
847 {
848 if (strcmp (string, cpu_arch[i].name) == 0)
849 {
850 if (*string != '.')
851 {
852 cpu_arch_name = cpu_arch[i].name;
853 cpu_sub_arch_name = NULL;
854 cpu_arch_flags = (cpu_arch[i].flags
855 | (flag_code == CODE_64BIT ? Cpu64 : CpuNo64));
856 break;
857 }
858 if ((cpu_arch_flags | cpu_arch[i].flags) != cpu_arch_flags)
859 {
860 cpu_sub_arch_name = cpu_arch[i].name;
861 cpu_arch_flags |= cpu_arch[i].flags;
862 }
863 *input_line_pointer = e;
864 demand_empty_rest_of_line ();
865 return;
866 }
867 }
868 if (!cpu_arch[i].name)
869 as_bad (_("no such architecture: `%s'"), string);
870
871 *input_line_pointer = e;
872 }
873 else
874 as_bad (_("missing cpu architecture"));
875
876 no_cond_jump_promotion = 0;
877 if (*input_line_pointer == ','
878 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
879 {
880 char *string = ++input_line_pointer;
881 int e = get_symbol_end ();
882
883 if (strcmp (string, "nojumps") == 0)
884 no_cond_jump_promotion = 1;
885 else if (strcmp (string, "jumps") == 0)
886 ;
887 else
888 as_bad (_("no such architecture modifier: `%s'"), string);
889
890 *input_line_pointer = e;
891 }
892
893 demand_empty_rest_of_line ();
894 }
895
896 unsigned long
897 i386_mach ()
898 {
899 if (!strcmp (default_arch, "x86_64"))
900 return bfd_mach_x86_64;
901 else if (!strcmp (default_arch, "i386"))
902 return bfd_mach_i386_i386;
903 else
904 as_fatal (_("Unknown architecture"));
905 }
906 \f
907 void
908 md_begin ()
909 {
910 const char *hash_err;
911
912 /* Initialize op_hash hash table. */
913 op_hash = hash_new ();
914
915 {
916 const template *optab;
917 templates *core_optab;
918
919 /* Setup for loop. */
920 optab = i386_optab;
921 core_optab = (templates *) xmalloc (sizeof (templates));
922 core_optab->start = optab;
923
924 while (1)
925 {
926 ++optab;
927 if (optab->name == NULL
928 || strcmp (optab->name, (optab - 1)->name) != 0)
929 {
930 /* different name --> ship out current template list;
931 add to hash table; & begin anew. */
932 core_optab->end = optab;
933 hash_err = hash_insert (op_hash,
934 (optab - 1)->name,
935 (PTR) core_optab);
936 if (hash_err)
937 {
938 as_fatal (_("Internal Error: Can't hash %s: %s"),
939 (optab - 1)->name,
940 hash_err);
941 }
942 if (optab->name == NULL)
943 break;
944 core_optab = (templates *) xmalloc (sizeof (templates));
945 core_optab->start = optab;
946 }
947 }
948 }
949
950 /* Initialize reg_hash hash table. */
951 reg_hash = hash_new ();
952 {
953 const reg_entry *regtab;
954
955 for (regtab = i386_regtab;
956 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
957 regtab++)
958 {
959 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
960 if (hash_err)
961 as_fatal (_("Internal Error: Can't hash %s: %s"),
962 regtab->reg_name,
963 hash_err);
964 }
965 }
966
967 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
968 {
969 int c;
970 char *p;
971
972 for (c = 0; c < 256; c++)
973 {
974 if (ISDIGIT (c))
975 {
976 digit_chars[c] = c;
977 mnemonic_chars[c] = c;
978 register_chars[c] = c;
979 operand_chars[c] = c;
980 }
981 else if (ISLOWER (c))
982 {
983 mnemonic_chars[c] = c;
984 register_chars[c] = c;
985 operand_chars[c] = c;
986 }
987 else if (ISUPPER (c))
988 {
989 mnemonic_chars[c] = TOLOWER (c);
990 register_chars[c] = mnemonic_chars[c];
991 operand_chars[c] = c;
992 }
993
994 if (ISALPHA (c) || ISDIGIT (c))
995 identifier_chars[c] = c;
996 else if (c >= 128)
997 {
998 identifier_chars[c] = c;
999 operand_chars[c] = c;
1000 }
1001 }
1002
1003 #ifdef LEX_AT
1004 identifier_chars['@'] = '@';
1005 #endif
1006 #ifdef LEX_QM
1007 identifier_chars['?'] = '?';
1008 operand_chars['?'] = '?';
1009 #endif
1010 digit_chars['-'] = '-';
1011 mnemonic_chars['-'] = '-';
1012 identifier_chars['_'] = '_';
1013 identifier_chars['.'] = '.';
1014
1015 for (p = operand_special_chars; *p != '\0'; p++)
1016 operand_chars[(unsigned char) *p] = *p;
1017 }
1018
1019 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1020 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
1021 {
1022 record_alignment (text_section, 2);
1023 record_alignment (data_section, 2);
1024 record_alignment (bss_section, 2);
1025 }
1026 #endif
1027
1028 if (flag_code == CODE_64BIT)
1029 {
1030 x86_dwarf2_return_column = 16;
1031 x86_cie_data_alignment = -8;
1032 }
1033 else
1034 {
1035 x86_dwarf2_return_column = 8;
1036 x86_cie_data_alignment = -4;
1037 }
1038 }
1039
1040 void
1041 i386_print_statistics (file)
1042 FILE *file;
1043 {
1044 hash_print_statistics (file, "i386 opcode", op_hash);
1045 hash_print_statistics (file, "i386 register", reg_hash);
1046 }
1047 \f
1048 #ifdef DEBUG386
1049
1050 /* Debugging routines for md_assemble. */
1051 static void pi PARAMS ((char *, i386_insn *));
1052 static void pte PARAMS ((template *));
1053 static void pt PARAMS ((unsigned int));
1054 static void pe PARAMS ((expressionS *));
1055 static void ps PARAMS ((symbolS *));
1056
1057 static void
1058 pi (line, x)
1059 char *line;
1060 i386_insn *x;
1061 {
1062 unsigned int i;
1063
1064 fprintf (stdout, "%s: template ", line);
1065 pte (&x->tm);
1066 fprintf (stdout, " address: base %s index %s scale %x\n",
1067 x->base_reg ? x->base_reg->reg_name : "none",
1068 x->index_reg ? x->index_reg->reg_name : "none",
1069 x->log2_scale_factor);
1070 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
1071 x->rm.mode, x->rm.reg, x->rm.regmem);
1072 fprintf (stdout, " sib: base %x index %x scale %x\n",
1073 x->sib.base, x->sib.index, x->sib.scale);
1074 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
1075 (x->rex & REX_MODE64) != 0,
1076 (x->rex & REX_EXTX) != 0,
1077 (x->rex & REX_EXTY) != 0,
1078 (x->rex & REX_EXTZ) != 0);
1079 for (i = 0; i < x->operands; i++)
1080 {
1081 fprintf (stdout, " #%d: ", i + 1);
1082 pt (x->types[i]);
1083 fprintf (stdout, "\n");
1084 if (x->types[i]
1085 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
1086 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
1087 if (x->types[i] & Imm)
1088 pe (x->op[i].imms);
1089 if (x->types[i] & Disp)
1090 pe (x->op[i].disps);
1091 }
1092 }
1093
1094 static void
1095 pte (t)
1096 template *t;
1097 {
1098 unsigned int i;
1099 fprintf (stdout, " %d operands ", t->operands);
1100 fprintf (stdout, "opcode %x ", t->base_opcode);
1101 if (t->extension_opcode != None)
1102 fprintf (stdout, "ext %x ", t->extension_opcode);
1103 if (t->opcode_modifier & D)
1104 fprintf (stdout, "D");
1105 if (t->opcode_modifier & W)
1106 fprintf (stdout, "W");
1107 fprintf (stdout, "\n");
1108 for (i = 0; i < t->operands; i++)
1109 {
1110 fprintf (stdout, " #%d type ", i + 1);
1111 pt (t->operand_types[i]);
1112 fprintf (stdout, "\n");
1113 }
1114 }
1115
1116 static void
1117 pe (e)
1118 expressionS *e;
1119 {
1120 fprintf (stdout, " operation %d\n", e->X_op);
1121 fprintf (stdout, " add_number %ld (%lx)\n",
1122 (long) e->X_add_number, (long) e->X_add_number);
1123 if (e->X_add_symbol)
1124 {
1125 fprintf (stdout, " add_symbol ");
1126 ps (e->X_add_symbol);
1127 fprintf (stdout, "\n");
1128 }
1129 if (e->X_op_symbol)
1130 {
1131 fprintf (stdout, " op_symbol ");
1132 ps (e->X_op_symbol);
1133 fprintf (stdout, "\n");
1134 }
1135 }
1136
1137 static void
1138 ps (s)
1139 symbolS *s;
1140 {
1141 fprintf (stdout, "%s type %s%s",
1142 S_GET_NAME (s),
1143 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1144 segment_name (S_GET_SEGMENT (s)));
1145 }
1146
1147 struct type_name
1148 {
1149 unsigned int mask;
1150 char *tname;
1151 }
1152
1153 static const type_names[] =
1154 {
1155 { Reg8, "r8" },
1156 { Reg16, "r16" },
1157 { Reg32, "r32" },
1158 { Reg64, "r64" },
1159 { Imm8, "i8" },
1160 { Imm8S, "i8s" },
1161 { Imm16, "i16" },
1162 { Imm32, "i32" },
1163 { Imm32S, "i32s" },
1164 { Imm64, "i64" },
1165 { Imm1, "i1" },
1166 { BaseIndex, "BaseIndex" },
1167 { Disp8, "d8" },
1168 { Disp16, "d16" },
1169 { Disp32, "d32" },
1170 { Disp32S, "d32s" },
1171 { Disp64, "d64" },
1172 { InOutPortReg, "InOutPortReg" },
1173 { ShiftCount, "ShiftCount" },
1174 { Control, "control reg" },
1175 { Test, "test reg" },
1176 { Debug, "debug reg" },
1177 { FloatReg, "FReg" },
1178 { FloatAcc, "FAcc" },
1179 { SReg2, "SReg2" },
1180 { SReg3, "SReg3" },
1181 { Acc, "Acc" },
1182 { JumpAbsolute, "Jump Absolute" },
1183 { RegMMX, "rMMX" },
1184 { RegXMM, "rXMM" },
1185 { EsSeg, "es" },
1186 { 0, "" }
1187 };
1188
1189 static void
1190 pt (t)
1191 unsigned int t;
1192 {
1193 const struct type_name *ty;
1194
1195 for (ty = type_names; ty->mask; ty++)
1196 if (t & ty->mask)
1197 fprintf (stdout, "%s, ", ty->tname);
1198 fflush (stdout);
1199 }
1200
1201 #endif /* DEBUG386 */
1202 \f
1203 static bfd_reloc_code_real_type reloc
1204 PARAMS ((int, int, int, bfd_reloc_code_real_type));
1205
1206 static bfd_reloc_code_real_type
1207 reloc (size, pcrel, sign, other)
1208 int size;
1209 int pcrel;
1210 int sign;
1211 bfd_reloc_code_real_type other;
1212 {
1213 if (other != NO_RELOC)
1214 return other;
1215
1216 if (pcrel)
1217 {
1218 if (!sign)
1219 as_bad (_("There are no unsigned pc-relative relocations"));
1220 switch (size)
1221 {
1222 case 1: return BFD_RELOC_8_PCREL;
1223 case 2: return BFD_RELOC_16_PCREL;
1224 case 4: return BFD_RELOC_32_PCREL;
1225 case 8: return BFD_RELOC_64_PCREL;
1226 }
1227 as_bad (_("can not do %d byte pc-relative relocation"), size);
1228 }
1229 else
1230 {
1231 if (sign)
1232 switch (size)
1233 {
1234 case 4: return BFD_RELOC_X86_64_32S;
1235 }
1236 else
1237 switch (size)
1238 {
1239 case 1: return BFD_RELOC_8;
1240 case 2: return BFD_RELOC_16;
1241 case 4: return BFD_RELOC_32;
1242 case 8: return BFD_RELOC_64;
1243 }
1244 as_bad (_("can not do %s %d byte relocation"),
1245 sign ? "signed" : "unsigned", size);
1246 }
1247
1248 abort ();
1249 return BFD_RELOC_NONE;
1250 }
1251
1252 /* Here we decide which fixups can be adjusted to make them relative to
1253 the beginning of the section instead of the symbol. Basically we need
1254 to make sure that the dynamic relocations are done correctly, so in
1255 some cases we force the original symbol to be used. */
1256
1257 int
1258 tc_i386_fix_adjustable (fixP)
1259 fixS *fixP ATTRIBUTE_UNUSED;
1260 {
1261 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1262 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
1263 return 1;
1264
1265 /* Don't adjust pc-relative references to merge sections in 64-bit
1266 mode. */
1267 if (use_rela_relocations
1268 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1269 && fixP->fx_pcrel)
1270 return 0;
1271
1272 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1273 and changed later by validate_fix. */
1274 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
1275 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
1276 return 0;
1277
1278 /* adjust_reloc_syms doesn't know about the GOT. */
1279 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1280 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1281 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1282 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1283 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1284 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1285 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
1286 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1287 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
1288 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1289 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
1290 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1291 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1292 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1293 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1294 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1295 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1296 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
1297 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1298 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
1299 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
1300 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
1301 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1302 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1303 return 0;
1304 #endif
1305 return 1;
1306 }
1307
1308 static int intel_float_operand PARAMS ((const char *mnemonic));
1309
1310 static int
1311 intel_float_operand (mnemonic)
1312 const char *mnemonic;
1313 {
1314 /* Note that the value returned is meaningful only for opcodes with (memory)
1315 operands, hence the code here is free to improperly handle opcodes that
1316 have no operands (for better performance and smaller code). */
1317
1318 if (mnemonic[0] != 'f')
1319 return 0; /* non-math */
1320
1321 switch (mnemonic[1])
1322 {
1323 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
1324 the fs segment override prefix not currently handled because no
1325 call path can make opcodes without operands get here */
1326 case 'i':
1327 return 2 /* integer op */;
1328 case 'l':
1329 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
1330 return 3; /* fldcw/fldenv */
1331 break;
1332 case 'n':
1333 if (mnemonic[2] != 'o' /* fnop */)
1334 return 3; /* non-waiting control op */
1335 break;
1336 case 'r':
1337 if (mnemonic[2] == 's')
1338 return 3; /* frstor/frstpm */
1339 break;
1340 case 's':
1341 if (mnemonic[2] == 'a')
1342 return 3; /* fsave */
1343 if (mnemonic[2] == 't')
1344 {
1345 switch (mnemonic[3])
1346 {
1347 case 'c': /* fstcw */
1348 case 'd': /* fstdw */
1349 case 'e': /* fstenv */
1350 case 's': /* fsts[gw] */
1351 return 3;
1352 }
1353 }
1354 break;
1355 case 'x':
1356 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
1357 return 0; /* fxsave/fxrstor are not really math ops */
1358 break;
1359 }
1360
1361 return 1;
1362 }
1363
1364 /* This is the guts of the machine-dependent assembler. LINE points to a
1365 machine dependent instruction. This function is supposed to emit
1366 the frags/bytes it assembles to. */
1367
1368 void
1369 md_assemble (line)
1370 char *line;
1371 {
1372 int j;
1373 char mnemonic[MAX_MNEM_SIZE];
1374
1375 /* Initialize globals. */
1376 memset (&i, '\0', sizeof (i));
1377 for (j = 0; j < MAX_OPERANDS; j++)
1378 i.reloc[j] = NO_RELOC;
1379 memset (disp_expressions, '\0', sizeof (disp_expressions));
1380 memset (im_expressions, '\0', sizeof (im_expressions));
1381 save_stack_p = save_stack;
1382
1383 /* First parse an instruction mnemonic & call i386_operand for the operands.
1384 We assume that the scrubber has arranged it so that line[0] is the valid
1385 start of a (possibly prefixed) mnemonic. */
1386
1387 line = parse_insn (line, mnemonic);
1388 if (line == NULL)
1389 return;
1390
1391 line = parse_operands (line, mnemonic);
1392 if (line == NULL)
1393 return;
1394
1395 /* Now we've parsed the mnemonic into a set of templates, and have the
1396 operands at hand. */
1397
1398 /* All intel opcodes have reversed operands except for "bound" and
1399 "enter". We also don't reverse intersegment "jmp" and "call"
1400 instructions with 2 immediate operands so that the immediate segment
1401 precedes the offset, as it does when in AT&T mode. "enter" and the
1402 intersegment "jmp" and "call" instructions are the only ones that
1403 have two immediate operands. */
1404 if (intel_syntax && i.operands > 1
1405 && (strcmp (mnemonic, "bound") != 0)
1406 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1407 swap_operands ();
1408
1409 if (i.imm_operands)
1410 optimize_imm ();
1411
1412 /* Don't optimize displacement for movabs since it only takes 64bit
1413 displacement. */
1414 if (i.disp_operands
1415 && (flag_code != CODE_64BIT
1416 || strcmp (mnemonic, "movabs") != 0))
1417 optimize_disp ();
1418
1419 /* Next, we find a template that matches the given insn,
1420 making sure the overlap of the given operands types is consistent
1421 with the template operand types. */
1422
1423 if (!match_template ())
1424 return;
1425
1426 if (intel_syntax)
1427 {
1428 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1429 if (SYSV386_COMPAT
1430 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1431 i.tm.base_opcode ^= FloatR;
1432
1433 /* Zap movzx and movsx suffix. The suffix may have been set from
1434 "word ptr" or "byte ptr" on the source operand, but we'll use
1435 the suffix later to choose the destination register. */
1436 if ((i.tm.base_opcode & ~9) == 0x0fb6)
1437 {
1438 if (i.reg_operands < 2
1439 && !i.suffix
1440 && (~i.tm.opcode_modifier
1441 & (No_bSuf
1442 | No_wSuf
1443 | No_lSuf
1444 | No_sSuf
1445 | No_xSuf
1446 | No_qSuf)))
1447 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
1448
1449 i.suffix = 0;
1450 }
1451 }
1452
1453 if (i.tm.opcode_modifier & FWait)
1454 if (!add_prefix (FWAIT_OPCODE))
1455 return;
1456
1457 /* Check string instruction segment overrides. */
1458 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1459 {
1460 if (!check_string ())
1461 return;
1462 }
1463
1464 if (!process_suffix ())
1465 return;
1466
1467 /* Make still unresolved immediate matches conform to size of immediate
1468 given in i.suffix. */
1469 if (!finalize_imm ())
1470 return;
1471
1472 if (i.types[0] & Imm1)
1473 i.imm_operands = 0; /* kludge for shift insns. */
1474 if (i.types[0] & ImplicitRegister)
1475 i.reg_operands--;
1476 if (i.types[1] & ImplicitRegister)
1477 i.reg_operands--;
1478 if (i.types[2] & ImplicitRegister)
1479 i.reg_operands--;
1480
1481 if (i.tm.opcode_modifier & ImmExt)
1482 {
1483 expressionS *exp;
1484
1485 if ((i.tm.cpu_flags & CpuPNI) && i.operands > 0)
1486 {
1487 /* These Intel Prescott New Instructions have the fixed
1488 operands with an opcode suffix which is coded in the same
1489 place as an 8-bit immediate field would be. Here we check
1490 those operands and remove them afterwards. */
1491 unsigned int x;
1492
1493 for (x = 0; x < i.operands; x++)
1494 if (i.op[x].regs->reg_num != x)
1495 as_bad (_("can't use register '%%%s' as operand %d in '%s'."),
1496 i.op[x].regs->reg_name, x + 1, i.tm.name);
1497 i.operands = 0;
1498 }
1499
1500 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1501 opcode suffix which is coded in the same place as an 8-bit
1502 immediate field would be. Here we fake an 8-bit immediate
1503 operand from the opcode suffix stored in tm.extension_opcode. */
1504
1505 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
1506
1507 exp = &im_expressions[i.imm_operands++];
1508 i.op[i.operands].imms = exp;
1509 i.types[i.operands++] = Imm8;
1510 exp->X_op = O_constant;
1511 exp->X_add_number = i.tm.extension_opcode;
1512 i.tm.extension_opcode = None;
1513 }
1514
1515 /* For insns with operands there are more diddles to do to the opcode. */
1516 if (i.operands)
1517 {
1518 if (!process_operands ())
1519 return;
1520 }
1521 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1522 {
1523 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1524 as_warn (_("translating to `%sp'"), i.tm.name);
1525 }
1526
1527 /* Handle conversion of 'int $3' --> special int3 insn. */
1528 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1529 {
1530 i.tm.base_opcode = INT3_OPCODE;
1531 i.imm_operands = 0;
1532 }
1533
1534 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1535 && i.op[0].disps->X_op == O_constant)
1536 {
1537 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1538 the absolute address given by the constant. Since ix86 jumps and
1539 calls are pc relative, we need to generate a reloc. */
1540 i.op[0].disps->X_add_symbol = &abs_symbol;
1541 i.op[0].disps->X_op = O_symbol;
1542 }
1543
1544 if ((i.tm.opcode_modifier & Rex64) != 0)
1545 i.rex |= REX_MODE64;
1546
1547 /* For 8 bit registers we need an empty rex prefix. Also if the
1548 instruction already has a prefix, we need to convert old
1549 registers to new ones. */
1550
1551 if (((i.types[0] & Reg8) != 0
1552 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1553 || ((i.types[1] & Reg8) != 0
1554 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1555 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1556 && i.rex != 0))
1557 {
1558 int x;
1559
1560 i.rex |= REX_OPCODE;
1561 for (x = 0; x < 2; x++)
1562 {
1563 /* Look for 8 bit operand that uses old registers. */
1564 if ((i.types[x] & Reg8) != 0
1565 && (i.op[x].regs->reg_flags & RegRex64) == 0)
1566 {
1567 /* In case it is "hi" register, give up. */
1568 if (i.op[x].regs->reg_num > 3)
1569 as_bad (_("can't encode register '%%%s' in an instruction requiring REX prefix."),
1570 i.op[x].regs->reg_name);
1571
1572 /* Otherwise it is equivalent to the extended register.
1573 Since the encoding doesn't change this is merely
1574 cosmetic cleanup for debug output. */
1575
1576 i.op[x].regs = i.op[x].regs + 8;
1577 }
1578 }
1579 }
1580
1581 if (i.rex != 0)
1582 add_prefix (REX_OPCODE | i.rex);
1583
1584 /* We are ready to output the insn. */
1585 output_insn ();
1586 }
1587
1588 static char *
1589 parse_insn (line, mnemonic)
1590 char *line;
1591 char *mnemonic;
1592 {
1593 char *l = line;
1594 char *token_start = l;
1595 char *mnem_p;
1596 int supported;
1597 const template *t;
1598
1599 /* Non-zero if we found a prefix only acceptable with string insns. */
1600 const char *expecting_string_instruction = NULL;
1601
1602 while (1)
1603 {
1604 mnem_p = mnemonic;
1605 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1606 {
1607 mnem_p++;
1608 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
1609 {
1610 as_bad (_("no such instruction: `%s'"), token_start);
1611 return NULL;
1612 }
1613 l++;
1614 }
1615 if (!is_space_char (*l)
1616 && *l != END_OF_INSN
1617 && (intel_syntax
1618 || (*l != PREFIX_SEPARATOR
1619 && *l != ',')))
1620 {
1621 as_bad (_("invalid character %s in mnemonic"),
1622 output_invalid (*l));
1623 return NULL;
1624 }
1625 if (token_start == l)
1626 {
1627 if (!intel_syntax && *l == PREFIX_SEPARATOR)
1628 as_bad (_("expecting prefix; got nothing"));
1629 else
1630 as_bad (_("expecting mnemonic; got nothing"));
1631 return NULL;
1632 }
1633
1634 /* Look up instruction (or prefix) via hash table. */
1635 current_templates = hash_find (op_hash, mnemonic);
1636
1637 if (*l != END_OF_INSN
1638 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1639 && current_templates
1640 && (current_templates->start->opcode_modifier & IsPrefix))
1641 {
1642 /* If we are in 16-bit mode, do not allow addr16 or data16.
1643 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1644 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1645 && flag_code != CODE_64BIT
1646 && (((current_templates->start->opcode_modifier & Size32) != 0)
1647 ^ (flag_code == CODE_16BIT)))
1648 {
1649 as_bad (_("redundant %s prefix"),
1650 current_templates->start->name);
1651 return NULL;
1652 }
1653 /* Add prefix, checking for repeated prefixes. */
1654 switch (add_prefix (current_templates->start->base_opcode))
1655 {
1656 case 0:
1657 return NULL;
1658 case 2:
1659 expecting_string_instruction = current_templates->start->name;
1660 break;
1661 }
1662 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1663 token_start = ++l;
1664 }
1665 else
1666 break;
1667 }
1668
1669 if (!current_templates)
1670 {
1671 /* See if we can get a match by trimming off a suffix. */
1672 switch (mnem_p[-1])
1673 {
1674 case WORD_MNEM_SUFFIX:
1675 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
1676 i.suffix = SHORT_MNEM_SUFFIX;
1677 else
1678 case BYTE_MNEM_SUFFIX:
1679 case QWORD_MNEM_SUFFIX:
1680 i.suffix = mnem_p[-1];
1681 mnem_p[-1] = '\0';
1682 current_templates = hash_find (op_hash, mnemonic);
1683 break;
1684 case SHORT_MNEM_SUFFIX:
1685 case LONG_MNEM_SUFFIX:
1686 if (!intel_syntax)
1687 {
1688 i.suffix = mnem_p[-1];
1689 mnem_p[-1] = '\0';
1690 current_templates = hash_find (op_hash, mnemonic);
1691 }
1692 break;
1693
1694 /* Intel Syntax. */
1695 case 'd':
1696 if (intel_syntax)
1697 {
1698 if (intel_float_operand (mnemonic) == 1)
1699 i.suffix = SHORT_MNEM_SUFFIX;
1700 else
1701 i.suffix = LONG_MNEM_SUFFIX;
1702 mnem_p[-1] = '\0';
1703 current_templates = hash_find (op_hash, mnemonic);
1704 }
1705 break;
1706 }
1707 if (!current_templates)
1708 {
1709 as_bad (_("no such instruction: `%s'"), token_start);
1710 return NULL;
1711 }
1712 }
1713
1714 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
1715 {
1716 /* Check for a branch hint. We allow ",pt" and ",pn" for
1717 predict taken and predict not taken respectively.
1718 I'm not sure that branch hints actually do anything on loop
1719 and jcxz insns (JumpByte) for current Pentium4 chips. They
1720 may work in the future and it doesn't hurt to accept them
1721 now. */
1722 if (l[0] == ',' && l[1] == 'p')
1723 {
1724 if (l[2] == 't')
1725 {
1726 if (!add_prefix (DS_PREFIX_OPCODE))
1727 return NULL;
1728 l += 3;
1729 }
1730 else if (l[2] == 'n')
1731 {
1732 if (!add_prefix (CS_PREFIX_OPCODE))
1733 return NULL;
1734 l += 3;
1735 }
1736 }
1737 }
1738 /* Any other comma loses. */
1739 if (*l == ',')
1740 {
1741 as_bad (_("invalid character %s in mnemonic"),
1742 output_invalid (*l));
1743 return NULL;
1744 }
1745
1746 /* Check if instruction is supported on specified architecture. */
1747 supported = 0;
1748 for (t = current_templates->start; t < current_templates->end; ++t)
1749 {
1750 if (!((t->cpu_flags & ~(Cpu64 | CpuNo64))
1751 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64))))
1752 supported |= 1;
1753 if (!(t->cpu_flags & (flag_code == CODE_64BIT ? CpuNo64 : Cpu64)))
1754 supported |= 2;
1755 }
1756 if (!(supported & 2))
1757 {
1758 as_bad (flag_code == CODE_64BIT
1759 ? _("`%s' is not supported in 64-bit mode")
1760 : _("`%s' is only supported in 64-bit mode"),
1761 current_templates->start->name);
1762 return NULL;
1763 }
1764 if (!(supported & 1))
1765 {
1766 as_warn (_("`%s' is not supported on `%s%s'"),
1767 current_templates->start->name,
1768 cpu_arch_name,
1769 cpu_sub_arch_name ? cpu_sub_arch_name : "");
1770 }
1771 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
1772 {
1773 as_warn (_("use .code16 to ensure correct addressing mode"));
1774 }
1775
1776 /* Check for rep/repne without a string instruction. */
1777 if (expecting_string_instruction)
1778 {
1779 static templates override;
1780
1781 for (t = current_templates->start; t < current_templates->end; ++t)
1782 if (t->opcode_modifier & IsString)
1783 break;
1784 if (t >= current_templates->end)
1785 {
1786 as_bad (_("expecting string instruction after `%s'"),
1787 expecting_string_instruction);
1788 return NULL;
1789 }
1790 for (override.start = t; t < current_templates->end; ++t)
1791 if (!(t->opcode_modifier & IsString))
1792 break;
1793 override.end = t;
1794 current_templates = &override;
1795 }
1796
1797 return l;
1798 }
1799
1800 static char *
1801 parse_operands (l, mnemonic)
1802 char *l;
1803 const char *mnemonic;
1804 {
1805 char *token_start;
1806
1807 /* 1 if operand is pending after ','. */
1808 unsigned int expecting_operand = 0;
1809
1810 /* Non-zero if operand parens not balanced. */
1811 unsigned int paren_not_balanced;
1812
1813 while (*l != END_OF_INSN)
1814 {
1815 /* Skip optional white space before operand. */
1816 if (is_space_char (*l))
1817 ++l;
1818 if (!is_operand_char (*l) && *l != END_OF_INSN)
1819 {
1820 as_bad (_("invalid character %s before operand %d"),
1821 output_invalid (*l),
1822 i.operands + 1);
1823 return NULL;
1824 }
1825 token_start = l; /* after white space */
1826 paren_not_balanced = 0;
1827 while (paren_not_balanced || *l != ',')
1828 {
1829 if (*l == END_OF_INSN)
1830 {
1831 if (paren_not_balanced)
1832 {
1833 if (!intel_syntax)
1834 as_bad (_("unbalanced parenthesis in operand %d."),
1835 i.operands + 1);
1836 else
1837 as_bad (_("unbalanced brackets in operand %d."),
1838 i.operands + 1);
1839 return NULL;
1840 }
1841 else
1842 break; /* we are done */
1843 }
1844 else if (!is_operand_char (*l) && !is_space_char (*l))
1845 {
1846 as_bad (_("invalid character %s in operand %d"),
1847 output_invalid (*l),
1848 i.operands + 1);
1849 return NULL;
1850 }
1851 if (!intel_syntax)
1852 {
1853 if (*l == '(')
1854 ++paren_not_balanced;
1855 if (*l == ')')
1856 --paren_not_balanced;
1857 }
1858 else
1859 {
1860 if (*l == '[')
1861 ++paren_not_balanced;
1862 if (*l == ']')
1863 --paren_not_balanced;
1864 }
1865 l++;
1866 }
1867 if (l != token_start)
1868 { /* Yes, we've read in another operand. */
1869 unsigned int operand_ok;
1870 this_operand = i.operands++;
1871 if (i.operands > MAX_OPERANDS)
1872 {
1873 as_bad (_("spurious operands; (%d operands/instruction max)"),
1874 MAX_OPERANDS);
1875 return NULL;
1876 }
1877 /* Now parse operand adding info to 'i' as we go along. */
1878 END_STRING_AND_SAVE (l);
1879
1880 if (intel_syntax)
1881 operand_ok =
1882 i386_intel_operand (token_start,
1883 intel_float_operand (mnemonic));
1884 else
1885 operand_ok = i386_operand (token_start);
1886
1887 RESTORE_END_STRING (l);
1888 if (!operand_ok)
1889 return NULL;
1890 }
1891 else
1892 {
1893 if (expecting_operand)
1894 {
1895 expecting_operand_after_comma:
1896 as_bad (_("expecting operand after ','; got nothing"));
1897 return NULL;
1898 }
1899 if (*l == ',')
1900 {
1901 as_bad (_("expecting operand before ','; got nothing"));
1902 return NULL;
1903 }
1904 }
1905
1906 /* Now *l must be either ',' or END_OF_INSN. */
1907 if (*l == ',')
1908 {
1909 if (*++l == END_OF_INSN)
1910 {
1911 /* Just skip it, if it's \n complain. */
1912 goto expecting_operand_after_comma;
1913 }
1914 expecting_operand = 1;
1915 }
1916 }
1917 return l;
1918 }
1919
1920 static void
1921 swap_operands ()
1922 {
1923 union i386_op temp_op;
1924 unsigned int temp_type;
1925 enum bfd_reloc_code_real temp_reloc;
1926 int xchg1 = 0;
1927 int xchg2 = 0;
1928
1929 if (i.operands == 2)
1930 {
1931 xchg1 = 0;
1932 xchg2 = 1;
1933 }
1934 else if (i.operands == 3)
1935 {
1936 xchg1 = 0;
1937 xchg2 = 2;
1938 }
1939 temp_type = i.types[xchg2];
1940 i.types[xchg2] = i.types[xchg1];
1941 i.types[xchg1] = temp_type;
1942 temp_op = i.op[xchg2];
1943 i.op[xchg2] = i.op[xchg1];
1944 i.op[xchg1] = temp_op;
1945 temp_reloc = i.reloc[xchg2];
1946 i.reloc[xchg2] = i.reloc[xchg1];
1947 i.reloc[xchg1] = temp_reloc;
1948
1949 if (i.mem_operands == 2)
1950 {
1951 const seg_entry *temp_seg;
1952 temp_seg = i.seg[0];
1953 i.seg[0] = i.seg[1];
1954 i.seg[1] = temp_seg;
1955 }
1956 }
1957
1958 /* Try to ensure constant immediates are represented in the smallest
1959 opcode possible. */
1960 static void
1961 optimize_imm ()
1962 {
1963 char guess_suffix = 0;
1964 int op;
1965
1966 if (i.suffix)
1967 guess_suffix = i.suffix;
1968 else if (i.reg_operands)
1969 {
1970 /* Figure out a suffix from the last register operand specified.
1971 We can't do this properly yet, ie. excluding InOutPortReg,
1972 but the following works for instructions with immediates.
1973 In any case, we can't set i.suffix yet. */
1974 for (op = i.operands; --op >= 0;)
1975 if (i.types[op] & Reg)
1976 {
1977 if (i.types[op] & Reg8)
1978 guess_suffix = BYTE_MNEM_SUFFIX;
1979 else if (i.types[op] & Reg16)
1980 guess_suffix = WORD_MNEM_SUFFIX;
1981 else if (i.types[op] & Reg32)
1982 guess_suffix = LONG_MNEM_SUFFIX;
1983 else if (i.types[op] & Reg64)
1984 guess_suffix = QWORD_MNEM_SUFFIX;
1985 break;
1986 }
1987 }
1988 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
1989 guess_suffix = WORD_MNEM_SUFFIX;
1990
1991 for (op = i.operands; --op >= 0;)
1992 if (i.types[op] & Imm)
1993 {
1994 switch (i.op[op].imms->X_op)
1995 {
1996 case O_constant:
1997 /* If a suffix is given, this operand may be shortened. */
1998 switch (guess_suffix)
1999 {
2000 case LONG_MNEM_SUFFIX:
2001 i.types[op] |= Imm32 | Imm64;
2002 break;
2003 case WORD_MNEM_SUFFIX:
2004 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
2005 break;
2006 case BYTE_MNEM_SUFFIX:
2007 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
2008 break;
2009 }
2010
2011 /* If this operand is at most 16 bits, convert it
2012 to a signed 16 bit number before trying to see
2013 whether it will fit in an even smaller size.
2014 This allows a 16-bit operand such as $0xffe0 to
2015 be recognised as within Imm8S range. */
2016 if ((i.types[op] & Imm16)
2017 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
2018 {
2019 i.op[op].imms->X_add_number =
2020 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
2021 }
2022 if ((i.types[op] & Imm32)
2023 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
2024 == 0))
2025 {
2026 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
2027 ^ ((offsetT) 1 << 31))
2028 - ((offsetT) 1 << 31));
2029 }
2030 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
2031
2032 /* We must avoid matching of Imm32 templates when 64bit
2033 only immediate is available. */
2034 if (guess_suffix == QWORD_MNEM_SUFFIX)
2035 i.types[op] &= ~Imm32;
2036 break;
2037
2038 case O_absent:
2039 case O_register:
2040 abort ();
2041
2042 /* Symbols and expressions. */
2043 default:
2044 /* Convert symbolic operand to proper sizes for matching. */
2045 switch (guess_suffix)
2046 {
2047 case QWORD_MNEM_SUFFIX:
2048 i.types[op] = Imm64 | Imm32S;
2049 break;
2050 case LONG_MNEM_SUFFIX:
2051 i.types[op] = Imm32;
2052 break;
2053 case WORD_MNEM_SUFFIX:
2054 i.types[op] = Imm16;
2055 break;
2056 case BYTE_MNEM_SUFFIX:
2057 i.types[op] = Imm8 | Imm8S;
2058 break;
2059 }
2060 break;
2061 }
2062 }
2063 }
2064
2065 /* Try to use the smallest displacement type too. */
2066 static void
2067 optimize_disp ()
2068 {
2069 int op;
2070
2071 for (op = i.operands; --op >= 0;)
2072 if (i.types[op] & Disp)
2073 {
2074 if (i.op[op].disps->X_op == O_constant)
2075 {
2076 offsetT disp = i.op[op].disps->X_add_number;
2077
2078 if ((i.types[op] & Disp16)
2079 && (disp & ~(offsetT) 0xffff) == 0)
2080 {
2081 /* If this operand is at most 16 bits, convert
2082 to a signed 16 bit number and don't use 64bit
2083 displacement. */
2084 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
2085 i.types[op] &= ~Disp64;
2086 }
2087 if ((i.types[op] & Disp32)
2088 && (disp & ~(((offsetT) 2 << 31) - 1)) == 0)
2089 {
2090 /* If this operand is at most 32 bits, convert
2091 to a signed 32 bit number and don't use 64bit
2092 displacement. */
2093 disp &= (((offsetT) 2 << 31) - 1);
2094 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
2095 i.types[op] &= ~Disp64;
2096 }
2097 if (!disp && (i.types[op] & BaseIndex))
2098 {
2099 i.types[op] &= ~Disp;
2100 i.op[op].disps = 0;
2101 i.disp_operands--;
2102 }
2103 else if (flag_code == CODE_64BIT)
2104 {
2105 if (fits_in_signed_long (disp))
2106 i.types[op] |= Disp32S;
2107 if (fits_in_unsigned_long (disp))
2108 i.types[op] |= Disp32;
2109 }
2110 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
2111 && fits_in_signed_byte (disp))
2112 i.types[op] |= Disp8;
2113 }
2114 else
2115 /* We only support 64bit displacement on constants. */
2116 i.types[op] &= ~Disp64;
2117 }
2118 }
2119
2120 static int
2121 match_template ()
2122 {
2123 /* Points to template once we've found it. */
2124 const template *t;
2125 unsigned int overlap0, overlap1, overlap2;
2126 unsigned int found_reverse_match;
2127 int suffix_check;
2128
2129 #define MATCH(overlap, given, template) \
2130 ((overlap & ~JumpAbsolute) \
2131 && (((given) & (BaseIndex | JumpAbsolute)) \
2132 == ((overlap) & (BaseIndex | JumpAbsolute))))
2133
2134 /* If given types r0 and r1 are registers they must be of the same type
2135 unless the expected operand type register overlap is null.
2136 Note that Acc in a template matches every size of reg. */
2137 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2138 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2139 || ((g0) & Reg) == ((g1) & Reg) \
2140 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2141
2142 overlap0 = 0;
2143 overlap1 = 0;
2144 overlap2 = 0;
2145 found_reverse_match = 0;
2146 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2147 ? No_bSuf
2148 : (i.suffix == WORD_MNEM_SUFFIX
2149 ? No_wSuf
2150 : (i.suffix == SHORT_MNEM_SUFFIX
2151 ? No_sSuf
2152 : (i.suffix == LONG_MNEM_SUFFIX
2153 ? No_lSuf
2154 : (i.suffix == QWORD_MNEM_SUFFIX
2155 ? No_qSuf
2156 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2157 ? No_xSuf : 0))))));
2158
2159 t = current_templates->start;
2160 if (i.suffix == QWORD_MNEM_SUFFIX
2161 && flag_code != CODE_64BIT
2162 && (intel_syntax
2163 ? !(t->opcode_modifier & IgnoreSize)
2164 && !intel_float_operand (t->name)
2165 : intel_float_operand (t->name) != 2)
2166 && (!(t->operand_types[0] & (RegMMX | RegXMM))
2167 || !(t->operand_types[t->operands > 1] & (RegMMX | RegXMM)))
2168 && (t->base_opcode != 0x0fc7
2169 || t->extension_opcode != 1 /* cmpxchg8b */))
2170 t = current_templates->end;
2171 for (; t < current_templates->end; t++)
2172 {
2173 /* Must have right number of operands. */
2174 if (i.operands != t->operands)
2175 continue;
2176
2177 /* Check the suffix, except for some instructions in intel mode. */
2178 if ((t->opcode_modifier & suffix_check)
2179 && !(intel_syntax
2180 && (t->opcode_modifier & IgnoreSize)))
2181 continue;
2182
2183 /* Do not verify operands when there are none. */
2184 else if (!t->operands)
2185 {
2186 if (t->cpu_flags & ~cpu_arch_flags)
2187 continue;
2188 /* We've found a match; break out of loop. */
2189 break;
2190 }
2191
2192 overlap0 = i.types[0] & t->operand_types[0];
2193 switch (t->operands)
2194 {
2195 case 1:
2196 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
2197 continue;
2198 break;
2199 case 2:
2200 case 3:
2201 overlap1 = i.types[1] & t->operand_types[1];
2202 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
2203 || !MATCH (overlap1, i.types[1], t->operand_types[1])
2204 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2205 t->operand_types[0],
2206 overlap1, i.types[1],
2207 t->operand_types[1]))
2208 {
2209 /* Check if other direction is valid ... */
2210 if ((t->opcode_modifier & (D | FloatD)) == 0)
2211 continue;
2212
2213 /* Try reversing direction of operands. */
2214 overlap0 = i.types[0] & t->operand_types[1];
2215 overlap1 = i.types[1] & t->operand_types[0];
2216 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
2217 || !MATCH (overlap1, i.types[1], t->operand_types[0])
2218 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2219 t->operand_types[1],
2220 overlap1, i.types[1],
2221 t->operand_types[0]))
2222 {
2223 /* Does not match either direction. */
2224 continue;
2225 }
2226 /* found_reverse_match holds which of D or FloatDR
2227 we've found. */
2228 found_reverse_match = t->opcode_modifier & (D | FloatDR);
2229 }
2230 /* Found a forward 2 operand match here. */
2231 else if (t->operands == 3)
2232 {
2233 /* Here we make use of the fact that there are no
2234 reverse match 3 operand instructions, and all 3
2235 operand instructions only need to be checked for
2236 register consistency between operands 2 and 3. */
2237 overlap2 = i.types[2] & t->operand_types[2];
2238 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
2239 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
2240 t->operand_types[1],
2241 overlap2, i.types[2],
2242 t->operand_types[2]))
2243
2244 continue;
2245 }
2246 /* Found either forward/reverse 2 or 3 operand match here:
2247 slip through to break. */
2248 }
2249 if (t->cpu_flags & ~cpu_arch_flags)
2250 {
2251 found_reverse_match = 0;
2252 continue;
2253 }
2254 /* We've found a match; break out of loop. */
2255 break;
2256 }
2257
2258 if (t == current_templates->end)
2259 {
2260 /* We found no match. */
2261 as_bad (_("suffix or operands invalid for `%s'"),
2262 current_templates->start->name);
2263 return 0;
2264 }
2265
2266 if (!quiet_warnings)
2267 {
2268 if (!intel_syntax
2269 && ((i.types[0] & JumpAbsolute)
2270 != (t->operand_types[0] & JumpAbsolute)))
2271 {
2272 as_warn (_("indirect %s without `*'"), t->name);
2273 }
2274
2275 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2276 == (IsPrefix | IgnoreSize))
2277 {
2278 /* Warn them that a data or address size prefix doesn't
2279 affect assembly of the next line of code. */
2280 as_warn (_("stand-alone `%s' prefix"), t->name);
2281 }
2282 }
2283
2284 /* Copy the template we found. */
2285 i.tm = *t;
2286 if (found_reverse_match)
2287 {
2288 /* If we found a reverse match we must alter the opcode
2289 direction bit. found_reverse_match holds bits to change
2290 (different for int & float insns). */
2291
2292 i.tm.base_opcode ^= found_reverse_match;
2293
2294 i.tm.operand_types[0] = t->operand_types[1];
2295 i.tm.operand_types[1] = t->operand_types[0];
2296 }
2297
2298 return 1;
2299 }
2300
2301 static int
2302 check_string ()
2303 {
2304 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2305 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2306 {
2307 if (i.seg[0] != NULL && i.seg[0] != &es)
2308 {
2309 as_bad (_("`%s' operand %d must use `%%es' segment"),
2310 i.tm.name,
2311 mem_op + 1);
2312 return 0;
2313 }
2314 /* There's only ever one segment override allowed per instruction.
2315 This instruction possibly has a legal segment override on the
2316 second operand, so copy the segment to where non-string
2317 instructions store it, allowing common code. */
2318 i.seg[0] = i.seg[1];
2319 }
2320 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2321 {
2322 if (i.seg[1] != NULL && i.seg[1] != &es)
2323 {
2324 as_bad (_("`%s' operand %d must use `%%es' segment"),
2325 i.tm.name,
2326 mem_op + 2);
2327 return 0;
2328 }
2329 }
2330 return 1;
2331 }
2332
2333 static int
2334 process_suffix (void)
2335 {
2336 /* If matched instruction specifies an explicit instruction mnemonic
2337 suffix, use it. */
2338 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2339 {
2340 if (i.tm.opcode_modifier & Size16)
2341 i.suffix = WORD_MNEM_SUFFIX;
2342 else if (i.tm.opcode_modifier & Size64)
2343 i.suffix = QWORD_MNEM_SUFFIX;
2344 else
2345 i.suffix = LONG_MNEM_SUFFIX;
2346 }
2347 else if (i.reg_operands)
2348 {
2349 /* If there's no instruction mnemonic suffix we try to invent one
2350 based on register operands. */
2351 if (!i.suffix)
2352 {
2353 /* We take i.suffix from the last register operand specified,
2354 Destination register type is more significant than source
2355 register type. */
2356 int op;
2357
2358 for (op = i.operands; --op >= 0;)
2359 if ((i.types[op] & Reg)
2360 && !(i.tm.operand_types[op] & InOutPortReg))
2361 {
2362 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2363 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2364 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2365 LONG_MNEM_SUFFIX);
2366 break;
2367 }
2368 }
2369 else if (i.suffix == BYTE_MNEM_SUFFIX)
2370 {
2371 if (!check_byte_reg ())
2372 return 0;
2373 }
2374 else if (i.suffix == LONG_MNEM_SUFFIX)
2375 {
2376 if (!check_long_reg ())
2377 return 0;
2378 }
2379 else if (i.suffix == QWORD_MNEM_SUFFIX)
2380 {
2381 if (!check_qword_reg ())
2382 return 0;
2383 }
2384 else if (i.suffix == WORD_MNEM_SUFFIX)
2385 {
2386 if (!check_word_reg ())
2387 return 0;
2388 }
2389 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2390 /* Do nothing if the instruction is going to ignore the prefix. */
2391 ;
2392 else
2393 abort ();
2394 }
2395 else if ((i.tm.opcode_modifier & DefaultSize)
2396 && !i.suffix
2397 /* exclude fldenv/frstor/fsave/fstenv */
2398 && (i.tm.opcode_modifier & No_sSuf))
2399 {
2400 i.suffix = stackop_size;
2401 }
2402 else if (intel_syntax
2403 && !i.suffix
2404 && ((i.tm.operand_types[0] & JumpAbsolute)
2405 || (i.tm.opcode_modifier & (JumpByte|JumpInterSegment))
2406 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
2407 && i.tm.extension_opcode <= 3)))
2408 {
2409 switch (flag_code)
2410 {
2411 case CODE_64BIT:
2412 if (!(i.tm.opcode_modifier & No_qSuf))
2413 {
2414 i.suffix = QWORD_MNEM_SUFFIX;
2415 break;
2416 }
2417 case CODE_32BIT:
2418 if (!(i.tm.opcode_modifier & No_lSuf))
2419 i.suffix = LONG_MNEM_SUFFIX;
2420 break;
2421 case CODE_16BIT:
2422 if (!(i.tm.opcode_modifier & No_wSuf))
2423 i.suffix = WORD_MNEM_SUFFIX;
2424 break;
2425 }
2426 }
2427
2428 if (!i.suffix)
2429 {
2430 if (!intel_syntax)
2431 {
2432 if (i.tm.opcode_modifier & W)
2433 {
2434 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
2435 return 0;
2436 }
2437 }
2438 else
2439 {
2440 unsigned int suffixes = ~i.tm.opcode_modifier
2441 & (No_bSuf
2442 | No_wSuf
2443 | No_lSuf
2444 | No_sSuf
2445 | No_xSuf
2446 | No_qSuf);
2447
2448 if ((i.tm.opcode_modifier & W)
2449 || ((suffixes & (suffixes - 1))
2450 && !(i.tm.opcode_modifier & (DefaultSize | IgnoreSize))))
2451 {
2452 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2453 return 0;
2454 }
2455 }
2456 }
2457
2458 /* Change the opcode based on the operand size given by i.suffix;
2459 We don't need to change things for byte insns. */
2460
2461 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2462 {
2463 /* It's not a byte, select word/dword operation. */
2464 if (i.tm.opcode_modifier & W)
2465 {
2466 if (i.tm.opcode_modifier & ShortForm)
2467 i.tm.base_opcode |= 8;
2468 else
2469 i.tm.base_opcode |= 1;
2470 }
2471
2472 /* Now select between word & dword operations via the operand
2473 size prefix, except for instructions that will ignore this
2474 prefix anyway. */
2475 if (i.suffix != QWORD_MNEM_SUFFIX
2476 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
2477 && !(i.tm.opcode_modifier & (IgnoreSize | FloatMF))
2478 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2479 || (flag_code == CODE_64BIT
2480 && (i.tm.opcode_modifier & JumpByte))))
2481 {
2482 unsigned int prefix = DATA_PREFIX_OPCODE;
2483
2484 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2485 prefix = ADDR_PREFIX_OPCODE;
2486
2487 if (!add_prefix (prefix))
2488 return 0;
2489 }
2490
2491 /* Set mode64 for an operand. */
2492 if (i.suffix == QWORD_MNEM_SUFFIX
2493 && flag_code == CODE_64BIT
2494 && (i.tm.opcode_modifier & NoRex64) == 0)
2495 i.rex |= REX_MODE64;
2496
2497 /* Size floating point instruction. */
2498 if (i.suffix == LONG_MNEM_SUFFIX)
2499 if (i.tm.opcode_modifier & FloatMF)
2500 i.tm.base_opcode ^= 4;
2501 }
2502
2503 return 1;
2504 }
2505
2506 static int
2507 check_byte_reg (void)
2508 {
2509 int op;
2510
2511 for (op = i.operands; --op >= 0;)
2512 {
2513 /* If this is an eight bit register, it's OK. If it's the 16 or
2514 32 bit version of an eight bit register, we will just use the
2515 low portion, and that's OK too. */
2516 if (i.types[op] & Reg8)
2517 continue;
2518
2519 /* movzx and movsx should not generate this warning. */
2520 if (intel_syntax
2521 && (i.tm.base_opcode == 0xfb7
2522 || i.tm.base_opcode == 0xfb6
2523 || i.tm.base_opcode == 0x63
2524 || i.tm.base_opcode == 0xfbe
2525 || i.tm.base_opcode == 0xfbf))
2526 continue;
2527
2528 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4)
2529 {
2530 /* Prohibit these changes in the 64bit mode, since the
2531 lowering is more complicated. */
2532 if (flag_code == CODE_64BIT
2533 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2534 {
2535 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2536 i.op[op].regs->reg_name,
2537 i.suffix);
2538 return 0;
2539 }
2540 #if REGISTER_WARNINGS
2541 if (!quiet_warnings
2542 && (i.tm.operand_types[op] & InOutPortReg) == 0)
2543 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2544 (i.op[op].regs + (i.types[op] & Reg16
2545 ? REGNAM_AL - REGNAM_AX
2546 : REGNAM_AL - REGNAM_EAX))->reg_name,
2547 i.op[op].regs->reg_name,
2548 i.suffix);
2549 #endif
2550 continue;
2551 }
2552 /* Any other register is bad. */
2553 if (i.types[op] & (Reg | RegMMX | RegXMM
2554 | SReg2 | SReg3
2555 | Control | Debug | Test
2556 | FloatReg | FloatAcc))
2557 {
2558 as_bad (_("`%%%s' not allowed with `%s%c'"),
2559 i.op[op].regs->reg_name,
2560 i.tm.name,
2561 i.suffix);
2562 return 0;
2563 }
2564 }
2565 return 1;
2566 }
2567
2568 static int
2569 check_long_reg ()
2570 {
2571 int op;
2572
2573 for (op = i.operands; --op >= 0;)
2574 /* Reject eight bit registers, except where the template requires
2575 them. (eg. movzb) */
2576 if ((i.types[op] & Reg8) != 0
2577 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2578 {
2579 as_bad (_("`%%%s' not allowed with `%s%c'"),
2580 i.op[op].regs->reg_name,
2581 i.tm.name,
2582 i.suffix);
2583 return 0;
2584 }
2585 /* Warn if the e prefix on a general reg is missing. */
2586 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2587 && (i.types[op] & Reg16) != 0
2588 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2589 {
2590 /* Prohibit these changes in the 64bit mode, since the
2591 lowering is more complicated. */
2592 if (flag_code == CODE_64BIT)
2593 {
2594 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2595 i.op[op].regs->reg_name,
2596 i.suffix);
2597 return 0;
2598 }
2599 #if REGISTER_WARNINGS
2600 else
2601 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2602 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
2603 i.op[op].regs->reg_name,
2604 i.suffix);
2605 #endif
2606 }
2607 /* Warn if the r prefix on a general reg is missing. */
2608 else if ((i.types[op] & Reg64) != 0
2609 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2610 {
2611 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2612 i.op[op].regs->reg_name,
2613 i.suffix);
2614 return 0;
2615 }
2616 return 1;
2617 }
2618
2619 static int
2620 check_qword_reg ()
2621 {
2622 int op;
2623
2624 for (op = i.operands; --op >= 0; )
2625 /* Reject eight bit registers, except where the template requires
2626 them. (eg. movzb) */
2627 if ((i.types[op] & Reg8) != 0
2628 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2629 {
2630 as_bad (_("`%%%s' not allowed with `%s%c'"),
2631 i.op[op].regs->reg_name,
2632 i.tm.name,
2633 i.suffix);
2634 return 0;
2635 }
2636 /* Warn if the e prefix on a general reg is missing. */
2637 else if (((i.types[op] & Reg16) != 0
2638 || (i.types[op] & Reg32) != 0)
2639 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
2640 {
2641 /* Prohibit these changes in the 64bit mode, since the
2642 lowering is more complicated. */
2643 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2644 i.op[op].regs->reg_name,
2645 i.suffix);
2646 return 0;
2647 }
2648 return 1;
2649 }
2650
2651 static int
2652 check_word_reg ()
2653 {
2654 int op;
2655 for (op = i.operands; --op >= 0;)
2656 /* Reject eight bit registers, except where the template requires
2657 them. (eg. movzb) */
2658 if ((i.types[op] & Reg8) != 0
2659 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
2660 {
2661 as_bad (_("`%%%s' not allowed with `%s%c'"),
2662 i.op[op].regs->reg_name,
2663 i.tm.name,
2664 i.suffix);
2665 return 0;
2666 }
2667 /* Warn if the e prefix on a general reg is present. */
2668 else if ((!quiet_warnings || flag_code == CODE_64BIT)
2669 && (i.types[op] & Reg32) != 0
2670 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
2671 {
2672 /* Prohibit these changes in the 64bit mode, since the
2673 lowering is more complicated. */
2674 if (flag_code == CODE_64BIT)
2675 {
2676 as_bad (_("Incorrect register `%%%s' used with `%c' suffix"),
2677 i.op[op].regs->reg_name,
2678 i.suffix);
2679 return 0;
2680 }
2681 else
2682 #if REGISTER_WARNINGS
2683 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
2684 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
2685 i.op[op].regs->reg_name,
2686 i.suffix);
2687 #endif
2688 }
2689 return 1;
2690 }
2691
2692 static int
2693 finalize_imm ()
2694 {
2695 unsigned int overlap0, overlap1, overlap2;
2696
2697 overlap0 = i.types[0] & i.tm.operand_types[0];
2698 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64))
2699 && overlap0 != Imm8 && overlap0 != Imm8S
2700 && overlap0 != Imm16 && overlap0 != Imm32S
2701 && overlap0 != Imm32 && overlap0 != Imm64)
2702 {
2703 if (i.suffix)
2704 {
2705 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
2706 ? Imm8 | Imm8S
2707 : (i.suffix == WORD_MNEM_SUFFIX
2708 ? Imm16
2709 : (i.suffix == QWORD_MNEM_SUFFIX
2710 ? Imm64 | Imm32S
2711 : Imm32)));
2712 }
2713 else if (overlap0 == (Imm16 | Imm32S | Imm32)
2714 || overlap0 == (Imm16 | Imm32)
2715 || overlap0 == (Imm16 | Imm32S))
2716 {
2717 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2718 ? Imm16 : Imm32S);
2719 }
2720 if (overlap0 != Imm8 && overlap0 != Imm8S
2721 && overlap0 != Imm16 && overlap0 != Imm32S
2722 && overlap0 != Imm32 && overlap0 != Imm64)
2723 {
2724 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
2725 return 0;
2726 }
2727 }
2728 i.types[0] = overlap0;
2729
2730 overlap1 = i.types[1] & i.tm.operand_types[1];
2731 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32 | Imm64))
2732 && overlap1 != Imm8 && overlap1 != Imm8S
2733 && overlap1 != Imm16 && overlap1 != Imm32S
2734 && overlap1 != Imm32 && overlap1 != Imm64)
2735 {
2736 if (i.suffix)
2737 {
2738 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
2739 ? Imm8 | Imm8S
2740 : (i.suffix == WORD_MNEM_SUFFIX
2741 ? Imm16
2742 : (i.suffix == QWORD_MNEM_SUFFIX
2743 ? Imm64 | Imm32S
2744 : Imm32)));
2745 }
2746 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
2747 || overlap1 == (Imm16 | Imm32)
2748 || overlap1 == (Imm16 | Imm32S))
2749 {
2750 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
2751 ? Imm16 : Imm32S);
2752 }
2753 if (overlap1 != Imm8 && overlap1 != Imm8S
2754 && overlap1 != Imm16 && overlap1 != Imm32S
2755 && overlap1 != Imm32 && overlap1 != Imm64)
2756 {
2757 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size %x %c"),overlap1, i.suffix);
2758 return 0;
2759 }
2760 }
2761 i.types[1] = overlap1;
2762
2763 overlap2 = i.types[2] & i.tm.operand_types[2];
2764 assert ((overlap2 & Imm) == 0);
2765 i.types[2] = overlap2;
2766
2767 return 1;
2768 }
2769
2770 static int
2771 process_operands ()
2772 {
2773 /* Default segment register this instruction will use for memory
2774 accesses. 0 means unknown. This is only for optimizing out
2775 unnecessary segment overrides. */
2776 const seg_entry *default_seg = 0;
2777
2778 /* The imul $imm, %reg instruction is converted into
2779 imul $imm, %reg, %reg, and the clr %reg instruction
2780 is converted into xor %reg, %reg. */
2781 if (i.tm.opcode_modifier & regKludge)
2782 {
2783 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
2784 /* Pretend we saw the extra register operand. */
2785 assert (i.op[first_reg_op + 1].regs == 0);
2786 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
2787 i.types[first_reg_op + 1] = i.types[first_reg_op];
2788 i.reg_operands = 2;
2789 }
2790
2791 if (i.tm.opcode_modifier & ShortForm)
2792 {
2793 /* The register or float register operand is in operand 0 or 1. */
2794 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
2795 /* Register goes in low 3 bits of opcode. */
2796 i.tm.base_opcode |= i.op[op].regs->reg_num;
2797 if ((i.op[op].regs->reg_flags & RegRex) != 0)
2798 i.rex |= REX_EXTZ;
2799 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2800 {
2801 /* Warn about some common errors, but press on regardless.
2802 The first case can be generated by gcc (<= 2.8.1). */
2803 if (i.operands == 2)
2804 {
2805 /* Reversed arguments on faddp, fsubp, etc. */
2806 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
2807 i.op[1].regs->reg_name,
2808 i.op[0].regs->reg_name);
2809 }
2810 else
2811 {
2812 /* Extraneous `l' suffix on fp insn. */
2813 as_warn (_("translating to `%s %%%s'"), i.tm.name,
2814 i.op[0].regs->reg_name);
2815 }
2816 }
2817 }
2818 else if (i.tm.opcode_modifier & Modrm)
2819 {
2820 /* The opcode is completed (modulo i.tm.extension_opcode which
2821 must be put into the modrm byte). Now, we make the modrm and
2822 index base bytes based on all the info we've collected. */
2823
2824 default_seg = build_modrm_byte ();
2825 }
2826 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2827 {
2828 if (i.tm.base_opcode == POP_SEG_SHORT
2829 && i.op[0].regs->reg_num == 1)
2830 {
2831 as_bad (_("you can't `pop %%cs'"));
2832 return 0;
2833 }
2834 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2835 if ((i.op[0].regs->reg_flags & RegRex) != 0)
2836 i.rex |= REX_EXTZ;
2837 }
2838 else if ((i.tm.base_opcode & ~(D | W)) == MOV_AX_DISP32)
2839 {
2840 default_seg = &ds;
2841 }
2842 else if ((i.tm.opcode_modifier & IsString) != 0)
2843 {
2844 /* For the string instructions that allow a segment override
2845 on one of their operands, the default segment is ds. */
2846 default_seg = &ds;
2847 }
2848
2849 if (i.tm.base_opcode == 0x8d /* lea */ && i.seg[0] && !quiet_warnings)
2850 as_warn (_("segment override on `lea' is ineffectual"));
2851
2852 /* If a segment was explicitly specified, and the specified segment
2853 is not the default, use an opcode prefix to select it. If we
2854 never figured out what the default segment is, then default_seg
2855 will be zero at this point, and the specified segment prefix will
2856 always be used. */
2857 if ((i.seg[0]) && (i.seg[0] != default_seg))
2858 {
2859 if (!add_prefix (i.seg[0]->seg_prefix))
2860 return 0;
2861 }
2862 return 1;
2863 }
2864
2865 static const seg_entry *
2866 build_modrm_byte ()
2867 {
2868 const seg_entry *default_seg = 0;
2869
2870 /* i.reg_operands MUST be the number of real register operands;
2871 implicit registers do not count. */
2872 if (i.reg_operands == 2)
2873 {
2874 unsigned int source, dest;
2875 source = ((i.types[0]
2876 & (Reg | RegMMX | RegXMM
2877 | SReg2 | SReg3
2878 | Control | Debug | Test))
2879 ? 0 : 1);
2880 dest = source + 1;
2881
2882 i.rm.mode = 3;
2883 /* One of the register operands will be encoded in the i.tm.reg
2884 field, the other in the combined i.tm.mode and i.tm.regmem
2885 fields. If no form of this instruction supports a memory
2886 destination operand, then we assume the source operand may
2887 sometimes be a memory operand and so we need to store the
2888 destination in the i.rm.reg field. */
2889 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2890 {
2891 i.rm.reg = i.op[dest].regs->reg_num;
2892 i.rm.regmem = i.op[source].regs->reg_num;
2893 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2894 i.rex |= REX_EXTX;
2895 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2896 i.rex |= REX_EXTZ;
2897 }
2898 else
2899 {
2900 i.rm.reg = i.op[source].regs->reg_num;
2901 i.rm.regmem = i.op[dest].regs->reg_num;
2902 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
2903 i.rex |= REX_EXTZ;
2904 if ((i.op[source].regs->reg_flags & RegRex) != 0)
2905 i.rex |= REX_EXTX;
2906 }
2907 if (flag_code != CODE_64BIT && (i.rex & (REX_EXTX | REX_EXTZ)))
2908 {
2909 if (!((i.types[0] | i.types[1]) & Control))
2910 abort ();
2911 i.rex &= ~(REX_EXTX | REX_EXTZ);
2912 add_prefix (LOCK_PREFIX_OPCODE);
2913 }
2914 }
2915 else
2916 { /* If it's not 2 reg operands... */
2917 if (i.mem_operands)
2918 {
2919 unsigned int fake_zero_displacement = 0;
2920 unsigned int op = ((i.types[0] & AnyMem)
2921 ? 0
2922 : (i.types[1] & AnyMem) ? 1 : 2);
2923
2924 default_seg = &ds;
2925
2926 if (i.base_reg == 0)
2927 {
2928 i.rm.mode = 0;
2929 if (!i.disp_operands)
2930 fake_zero_displacement = 1;
2931 if (i.index_reg == 0)
2932 {
2933 /* Operand is just <disp> */
2934 if (flag_code == CODE_64BIT)
2935 {
2936 /* 64bit mode overwrites the 32bit absolute
2937 addressing by RIP relative addressing and
2938 absolute addressing is encoded by one of the
2939 redundant SIB forms. */
2940 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2941 i.sib.base = NO_BASE_REGISTER;
2942 i.sib.index = NO_INDEX_REGISTER;
2943 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0) ? Disp32S : Disp32);
2944 }
2945 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
2946 {
2947 i.rm.regmem = NO_BASE_REGISTER_16;
2948 i.types[op] = Disp16;
2949 }
2950 else
2951 {
2952 i.rm.regmem = NO_BASE_REGISTER;
2953 i.types[op] = Disp32;
2954 }
2955 }
2956 else /* !i.base_reg && i.index_reg */
2957 {
2958 i.sib.index = i.index_reg->reg_num;
2959 i.sib.base = NO_BASE_REGISTER;
2960 i.sib.scale = i.log2_scale_factor;
2961 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2962 i.types[op] &= ~Disp;
2963 if (flag_code != CODE_64BIT)
2964 i.types[op] |= Disp32; /* Must be 32 bit */
2965 else
2966 i.types[op] |= Disp32S;
2967 if ((i.index_reg->reg_flags & RegRex) != 0)
2968 i.rex |= REX_EXTY;
2969 }
2970 }
2971 /* RIP addressing for 64bit mode. */
2972 else if (i.base_reg->reg_type == BaseIndex)
2973 {
2974 i.rm.regmem = NO_BASE_REGISTER;
2975 i.types[op] &= ~ Disp;
2976 i.types[op] |= Disp32S;
2977 i.flags[op] = Operand_PCrel;
2978 if (! i.disp_operands)
2979 fake_zero_displacement = 1;
2980 }
2981 else if (i.base_reg->reg_type & Reg16)
2982 {
2983 switch (i.base_reg->reg_num)
2984 {
2985 case 3: /* (%bx) */
2986 if (i.index_reg == 0)
2987 i.rm.regmem = 7;
2988 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2989 i.rm.regmem = i.index_reg->reg_num - 6;
2990 break;
2991 case 5: /* (%bp) */
2992 default_seg = &ss;
2993 if (i.index_reg == 0)
2994 {
2995 i.rm.regmem = 6;
2996 if ((i.types[op] & Disp) == 0)
2997 {
2998 /* fake (%bp) into 0(%bp) */
2999 i.types[op] |= Disp8;
3000 fake_zero_displacement = 1;
3001 }
3002 }
3003 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
3004 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
3005 break;
3006 default: /* (%si) -> 4 or (%di) -> 5 */
3007 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
3008 }
3009 i.rm.mode = mode_from_disp_size (i.types[op]);
3010 }
3011 else /* i.base_reg and 32/64 bit mode */
3012 {
3013 if (flag_code == CODE_64BIT
3014 && (i.types[op] & Disp))
3015 i.types[op] = (i.types[op] & Disp8) | (i.prefix[ADDR_PREFIX] == 0 ? Disp32S : Disp32);
3016
3017 i.rm.regmem = i.base_reg->reg_num;
3018 if ((i.base_reg->reg_flags & RegRex) != 0)
3019 i.rex |= REX_EXTZ;
3020 i.sib.base = i.base_reg->reg_num;
3021 /* x86-64 ignores REX prefix bit here to avoid decoder
3022 complications. */
3023 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
3024 {
3025 default_seg = &ss;
3026 if (i.disp_operands == 0)
3027 {
3028 fake_zero_displacement = 1;
3029 i.types[op] |= Disp8;
3030 }
3031 }
3032 else if (i.base_reg->reg_num == ESP_REG_NUM)
3033 {
3034 default_seg = &ss;
3035 }
3036 i.sib.scale = i.log2_scale_factor;
3037 if (i.index_reg == 0)
3038 {
3039 /* <disp>(%esp) becomes two byte modrm with no index
3040 register. We've already stored the code for esp
3041 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
3042 Any base register besides %esp will not use the
3043 extra modrm byte. */
3044 i.sib.index = NO_INDEX_REGISTER;
3045 #if !SCALE1_WHEN_NO_INDEX
3046 /* Another case where we force the second modrm byte. */
3047 if (i.log2_scale_factor)
3048 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3049 #endif
3050 }
3051 else
3052 {
3053 i.sib.index = i.index_reg->reg_num;
3054 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3055 if ((i.index_reg->reg_flags & RegRex) != 0)
3056 i.rex |= REX_EXTY;
3057 }
3058 i.rm.mode = mode_from_disp_size (i.types[op]);
3059 }
3060
3061 if (fake_zero_displacement)
3062 {
3063 /* Fakes a zero displacement assuming that i.types[op]
3064 holds the correct displacement size. */
3065 expressionS *exp;
3066
3067 assert (i.op[op].disps == 0);
3068 exp = &disp_expressions[i.disp_operands++];
3069 i.op[op].disps = exp;
3070 exp->X_op = O_constant;
3071 exp->X_add_number = 0;
3072 exp->X_add_symbol = (symbolS *) 0;
3073 exp->X_op_symbol = (symbolS *) 0;
3074 }
3075 }
3076
3077 /* Fill in i.rm.reg or i.rm.regmem field with register operand
3078 (if any) based on i.tm.extension_opcode. Again, we must be
3079 careful to make sure that segment/control/debug/test/MMX
3080 registers are coded into the i.rm.reg field. */
3081 if (i.reg_operands)
3082 {
3083 unsigned int op =
3084 ((i.types[0]
3085 & (Reg | RegMMX | RegXMM
3086 | SReg2 | SReg3
3087 | Control | Debug | Test))
3088 ? 0
3089 : ((i.types[1]
3090 & (Reg | RegMMX | RegXMM
3091 | SReg2 | SReg3
3092 | Control | Debug | Test))
3093 ? 1
3094 : 2));
3095 /* If there is an extension opcode to put here, the register
3096 number must be put into the regmem field. */
3097 if (i.tm.extension_opcode != None)
3098 {
3099 i.rm.regmem = i.op[op].regs->reg_num;
3100 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3101 i.rex |= REX_EXTZ;
3102 }
3103 else
3104 {
3105 i.rm.reg = i.op[op].regs->reg_num;
3106 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3107 i.rex |= REX_EXTX;
3108 }
3109
3110 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
3111 must set it to 3 to indicate this is a register operand
3112 in the regmem field. */
3113 if (!i.mem_operands)
3114 i.rm.mode = 3;
3115 }
3116
3117 /* Fill in i.rm.reg field with extension opcode (if any). */
3118 if (i.tm.extension_opcode != None)
3119 i.rm.reg = i.tm.extension_opcode;
3120 }
3121 return default_seg;
3122 }
3123
3124 static void
3125 output_branch ()
3126 {
3127 char *p;
3128 int code16;
3129 int prefix;
3130 relax_substateT subtype;
3131 symbolS *sym;
3132 offsetT off;
3133
3134 code16 = 0;
3135 if (flag_code == CODE_16BIT)
3136 code16 = CODE16;
3137
3138 prefix = 0;
3139 if (i.prefix[DATA_PREFIX] != 0)
3140 {
3141 prefix = 1;
3142 i.prefixes -= 1;
3143 code16 ^= CODE16;
3144 }
3145 /* Pentium4 branch hints. */
3146 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3147 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3148 {
3149 prefix++;
3150 i.prefixes--;
3151 }
3152 if (i.prefix[REX_PREFIX] != 0)
3153 {
3154 prefix++;
3155 i.prefixes--;
3156 }
3157
3158 if (i.prefixes != 0 && !intel_syntax)
3159 as_warn (_("skipping prefixes on this instruction"));
3160
3161 /* It's always a symbol; End frag & setup for relax.
3162 Make sure there is enough room in this frag for the largest
3163 instruction we may generate in md_convert_frag. This is 2
3164 bytes for the opcode and room for the prefix and largest
3165 displacement. */
3166 frag_grow (prefix + 2 + 4);
3167 /* Prefix and 1 opcode byte go in fr_fix. */
3168 p = frag_more (prefix + 1);
3169 if (i.prefix[DATA_PREFIX] != 0)
3170 *p++ = DATA_PREFIX_OPCODE;
3171 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
3172 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
3173 *p++ = i.prefix[SEG_PREFIX];
3174 if (i.prefix[REX_PREFIX] != 0)
3175 *p++ = i.prefix[REX_PREFIX];
3176 *p = i.tm.base_opcode;
3177
3178 if ((unsigned char) *p == JUMP_PC_RELATIVE)
3179 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
3180 else if ((cpu_arch_flags & Cpu386) != 0)
3181 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3182 else
3183 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3184 subtype |= code16;
3185
3186 sym = i.op[0].disps->X_add_symbol;
3187 off = i.op[0].disps->X_add_number;
3188
3189 if (i.op[0].disps->X_op != O_constant
3190 && i.op[0].disps->X_op != O_symbol)
3191 {
3192 /* Handle complex expressions. */
3193 sym = make_expr_symbol (i.op[0].disps);
3194 off = 0;
3195 }
3196
3197 /* 1 possible extra opcode + 4 byte displacement go in var part.
3198 Pass reloc in fr_var. */
3199 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3200 }
3201
3202 static void
3203 output_jump ()
3204 {
3205 char *p;
3206 int size;
3207 fixS *fixP;
3208
3209 if (i.tm.opcode_modifier & JumpByte)
3210 {
3211 /* This is a loop or jecxz type instruction. */
3212 size = 1;
3213 if (i.prefix[ADDR_PREFIX] != 0)
3214 {
3215 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3216 i.prefixes -= 1;
3217 }
3218 /* Pentium4 branch hints. */
3219 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3220 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3221 {
3222 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3223 i.prefixes--;
3224 }
3225 }
3226 else
3227 {
3228 int code16;
3229
3230 code16 = 0;
3231 if (flag_code == CODE_16BIT)
3232 code16 = CODE16;
3233
3234 if (i.prefix[DATA_PREFIX] != 0)
3235 {
3236 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3237 i.prefixes -= 1;
3238 code16 ^= CODE16;
3239 }
3240
3241 size = 4;
3242 if (code16)
3243 size = 2;
3244 }
3245
3246 if (i.prefix[REX_PREFIX] != 0)
3247 {
3248 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3249 i.prefixes -= 1;
3250 }
3251
3252 if (i.prefixes != 0 && !intel_syntax)
3253 as_warn (_("skipping prefixes on this instruction"));
3254
3255 p = frag_more (1 + size);
3256 *p++ = i.tm.base_opcode;
3257
3258 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3259 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3260
3261 /* All jumps handled here are signed, but don't use a signed limit
3262 check for 32 and 16 bit jumps as we want to allow wrap around at
3263 4G and 64k respectively. */
3264 if (size == 1)
3265 fixP->fx_signed = 1;
3266 }
3267
3268 static void
3269 output_interseg_jump ()
3270 {
3271 char *p;
3272 int size;
3273 int prefix;
3274 int code16;
3275
3276 code16 = 0;
3277 if (flag_code == CODE_16BIT)
3278 code16 = CODE16;
3279
3280 prefix = 0;
3281 if (i.prefix[DATA_PREFIX] != 0)
3282 {
3283 prefix = 1;
3284 i.prefixes -= 1;
3285 code16 ^= CODE16;
3286 }
3287 if (i.prefix[REX_PREFIX] != 0)
3288 {
3289 prefix++;
3290 i.prefixes -= 1;
3291 }
3292
3293 size = 4;
3294 if (code16)
3295 size = 2;
3296
3297 if (i.prefixes != 0 && !intel_syntax)
3298 as_warn (_("skipping prefixes on this instruction"));
3299
3300 /* 1 opcode; 2 segment; offset */
3301 p = frag_more (prefix + 1 + 2 + size);
3302
3303 if (i.prefix[DATA_PREFIX] != 0)
3304 *p++ = DATA_PREFIX_OPCODE;
3305
3306 if (i.prefix[REX_PREFIX] != 0)
3307 *p++ = i.prefix[REX_PREFIX];
3308
3309 *p++ = i.tm.base_opcode;
3310 if (i.op[1].imms->X_op == O_constant)
3311 {
3312 offsetT n = i.op[1].imms->X_add_number;
3313
3314 if (size == 2
3315 && !fits_in_unsigned_word (n)
3316 && !fits_in_signed_word (n))
3317 {
3318 as_bad (_("16-bit jump out of range"));
3319 return;
3320 }
3321 md_number_to_chars (p, n, size);
3322 }
3323 else
3324 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3325 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3326 if (i.op[0].imms->X_op != O_constant)
3327 as_bad (_("can't handle non absolute segment in `%s'"),
3328 i.tm.name);
3329 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3330 }
3331
3332 static void
3333 output_insn ()
3334 {
3335 fragS *insn_start_frag;
3336 offsetT insn_start_off;
3337
3338 /* Tie dwarf2 debug info to the address at the start of the insn.
3339 We can't do this after the insn has been output as the current
3340 frag may have been closed off. eg. by frag_var. */
3341 dwarf2_emit_insn (0);
3342
3343 insn_start_frag = frag_now;
3344 insn_start_off = frag_now_fix ();
3345
3346 /* Output jumps. */
3347 if (i.tm.opcode_modifier & Jump)
3348 output_branch ();
3349 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3350 output_jump ();
3351 else if (i.tm.opcode_modifier & JumpInterSegment)
3352 output_interseg_jump ();
3353 else
3354 {
3355 /* Output normal instructions here. */
3356 char *p;
3357 unsigned char *q;
3358
3359 /* All opcodes on i386 have either 1 or 2 bytes. We may use one
3360 more higher byte to specify a prefix the instruction
3361 requires. */
3362 if ((i.tm.base_opcode & 0xff0000) != 0)
3363 {
3364 if ((i.tm.cpu_flags & CpuPadLock) != 0)
3365 {
3366 unsigned int prefix;
3367 prefix = (i.tm.base_opcode >> 16) & 0xff;
3368
3369 if (prefix != REPE_PREFIX_OPCODE
3370 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
3371 add_prefix (prefix);
3372 }
3373 else
3374 add_prefix ((i.tm.base_opcode >> 16) & 0xff);
3375 }
3376
3377 /* The prefix bytes. */
3378 for (q = i.prefix;
3379 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3380 q++)
3381 {
3382 if (*q)
3383 {
3384 p = frag_more (1);
3385 md_number_to_chars (p, (valueT) *q, 1);
3386 }
3387 }
3388
3389 /* Now the opcode; be careful about word order here! */
3390 if (fits_in_unsigned_byte (i.tm.base_opcode))
3391 {
3392 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3393 }
3394 else
3395 {
3396 p = frag_more (2);
3397
3398 /* Put out high byte first: can't use md_number_to_chars! */
3399 *p++ = (i.tm.base_opcode >> 8) & 0xff;
3400 *p = i.tm.base_opcode & 0xff;
3401 }
3402
3403 /* Now the modrm byte and sib byte (if present). */
3404 if (i.tm.opcode_modifier & Modrm)
3405 {
3406 p = frag_more (1);
3407 md_number_to_chars (p,
3408 (valueT) (i.rm.regmem << 0
3409 | i.rm.reg << 3
3410 | i.rm.mode << 6),
3411 1);
3412 /* If i.rm.regmem == ESP (4)
3413 && i.rm.mode != (Register mode)
3414 && not 16 bit
3415 ==> need second modrm byte. */
3416 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
3417 && i.rm.mode != 3
3418 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
3419 {
3420 p = frag_more (1);
3421 md_number_to_chars (p,
3422 (valueT) (i.sib.base << 0
3423 | i.sib.index << 3
3424 | i.sib.scale << 6),
3425 1);
3426 }
3427 }
3428
3429 if (i.disp_operands)
3430 output_disp (insn_start_frag, insn_start_off);
3431
3432 if (i.imm_operands)
3433 output_imm (insn_start_frag, insn_start_off);
3434 }
3435
3436 #ifdef DEBUG386
3437 if (flag_debug)
3438 {
3439 pi (line, &i);
3440 }
3441 #endif /* DEBUG386 */
3442 }
3443
3444 static void
3445 output_disp (insn_start_frag, insn_start_off)
3446 fragS *insn_start_frag;
3447 offsetT insn_start_off;
3448 {
3449 char *p;
3450 unsigned int n;
3451
3452 for (n = 0; n < i.operands; n++)
3453 {
3454 if (i.types[n] & Disp)
3455 {
3456 if (i.op[n].disps->X_op == O_constant)
3457 {
3458 int size;
3459 offsetT val;
3460
3461 size = 4;
3462 if (i.types[n] & (Disp8 | Disp16 | Disp64))
3463 {
3464 size = 2;
3465 if (i.types[n] & Disp8)
3466 size = 1;
3467 if (i.types[n] & Disp64)
3468 size = 8;
3469 }
3470 val = offset_in_range (i.op[n].disps->X_add_number,
3471 size);
3472 p = frag_more (size);
3473 md_number_to_chars (p, val, size);
3474 }
3475 else
3476 {
3477 enum bfd_reloc_code_real reloc_type;
3478 int size = 4;
3479 int sign = 0;
3480 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
3481
3482 /* The PC relative address is computed relative
3483 to the instruction boundary, so in case immediate
3484 fields follows, we need to adjust the value. */
3485 if (pcrel && i.imm_operands)
3486 {
3487 int imm_size = 4;
3488 unsigned int n1;
3489
3490 for (n1 = 0; n1 < i.operands; n1++)
3491 if (i.types[n1] & Imm)
3492 {
3493 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
3494 {
3495 imm_size = 2;
3496 if (i.types[n1] & (Imm8 | Imm8S))
3497 imm_size = 1;
3498 if (i.types[n1] & Imm64)
3499 imm_size = 8;
3500 }
3501 break;
3502 }
3503 /* We should find the immediate. */
3504 if (n1 == i.operands)
3505 abort ();
3506 i.op[n].disps->X_add_number -= imm_size;
3507 }
3508
3509 if (i.types[n] & Disp32S)
3510 sign = 1;
3511
3512 if (i.types[n] & (Disp16 | Disp64))
3513 {
3514 size = 2;
3515 if (i.types[n] & Disp64)
3516 size = 8;
3517 }
3518
3519 p = frag_more (size);
3520 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
3521 if (GOT_symbol
3522 && GOT_symbol == i.op[n].disps->X_add_symbol
3523 && (((reloc_type == BFD_RELOC_32
3524 || reloc_type == BFD_RELOC_X86_64_32S)
3525 && (i.op[n].disps->X_op == O_symbol
3526 || (i.op[n].disps->X_op == O_add
3527 && ((symbol_get_value_expression
3528 (i.op[n].disps->X_op_symbol)->X_op)
3529 == O_subtract))))
3530 || reloc_type == BFD_RELOC_32_PCREL))
3531 {
3532 offsetT add;
3533
3534 if (insn_start_frag == frag_now)
3535 add = (p - frag_now->fr_literal) - insn_start_off;
3536 else
3537 {
3538 fragS *fr;
3539
3540 add = insn_start_frag->fr_fix - insn_start_off;
3541 for (fr = insn_start_frag->fr_next;
3542 fr && fr != frag_now; fr = fr->fr_next)
3543 add += fr->fr_fix;
3544 add += p - frag_now->fr_literal;
3545 }
3546
3547 if (flag_code != CODE_64BIT)
3548 reloc_type = BFD_RELOC_386_GOTPC;
3549 else
3550 reloc_type = BFD_RELOC_X86_64_GOTPC32;
3551 i.op[n].disps->X_add_number += add;
3552 }
3553 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3554 i.op[n].disps, pcrel, reloc_type);
3555 }
3556 }
3557 }
3558 }
3559
3560 static void
3561 output_imm (insn_start_frag, insn_start_off)
3562 fragS *insn_start_frag;
3563 offsetT insn_start_off;
3564 {
3565 char *p;
3566 unsigned int n;
3567
3568 for (n = 0; n < i.operands; n++)
3569 {
3570 if (i.types[n] & Imm)
3571 {
3572 if (i.op[n].imms->X_op == O_constant)
3573 {
3574 int size;
3575 offsetT val;
3576
3577 size = 4;
3578 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3579 {
3580 size = 2;
3581 if (i.types[n] & (Imm8 | Imm8S))
3582 size = 1;
3583 else if (i.types[n] & Imm64)
3584 size = 8;
3585 }
3586 val = offset_in_range (i.op[n].imms->X_add_number,
3587 size);
3588 p = frag_more (size);
3589 md_number_to_chars (p, val, size);
3590 }
3591 else
3592 {
3593 /* Not absolute_section.
3594 Need a 32-bit fixup (don't support 8bit
3595 non-absolute imms). Try to support other
3596 sizes ... */
3597 enum bfd_reloc_code_real reloc_type;
3598 int size = 4;
3599 int sign = 0;
3600
3601 if ((i.types[n] & (Imm32S))
3602 && (i.suffix == QWORD_MNEM_SUFFIX
3603 || (!i.suffix && (i.tm.opcode_modifier & No_lSuf))))
3604 sign = 1;
3605 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
3606 {
3607 size = 2;
3608 if (i.types[n] & (Imm8 | Imm8S))
3609 size = 1;
3610 if (i.types[n] & Imm64)
3611 size = 8;
3612 }
3613
3614 p = frag_more (size);
3615 reloc_type = reloc (size, 0, sign, i.reloc[n]);
3616
3617 /* This is tough to explain. We end up with this one if we
3618 * have operands that look like
3619 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
3620 * obtain the absolute address of the GOT, and it is strongly
3621 * preferable from a performance point of view to avoid using
3622 * a runtime relocation for this. The actual sequence of
3623 * instructions often look something like:
3624 *
3625 * call .L66
3626 * .L66:
3627 * popl %ebx
3628 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
3629 *
3630 * The call and pop essentially return the absolute address
3631 * of the label .L66 and store it in %ebx. The linker itself
3632 * will ultimately change the first operand of the addl so
3633 * that %ebx points to the GOT, but to keep things simple, the
3634 * .o file must have this operand set so that it generates not
3635 * the absolute address of .L66, but the absolute address of
3636 * itself. This allows the linker itself simply treat a GOTPC
3637 * relocation as asking for a pcrel offset to the GOT to be
3638 * added in, and the addend of the relocation is stored in the
3639 * operand field for the instruction itself.
3640 *
3641 * Our job here is to fix the operand so that it would add
3642 * the correct offset so that %ebx would point to itself. The
3643 * thing that is tricky is that .-.L66 will point to the
3644 * beginning of the instruction, so we need to further modify
3645 * the operand so that it will point to itself. There are
3646 * other cases where you have something like:
3647 *
3648 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
3649 *
3650 * and here no correction would be required. Internally in
3651 * the assembler we treat operands of this form as not being
3652 * pcrel since the '.' is explicitly mentioned, and I wonder
3653 * whether it would simplify matters to do it this way. Who
3654 * knows. In earlier versions of the PIC patches, the
3655 * pcrel_adjust field was used to store the correction, but
3656 * since the expression is not pcrel, I felt it would be
3657 * confusing to do it this way. */
3658
3659 if ((reloc_type == BFD_RELOC_32
3660 || reloc_type == BFD_RELOC_X86_64_32S)
3661 && GOT_symbol
3662 && GOT_symbol == i.op[n].imms->X_add_symbol
3663 && (i.op[n].imms->X_op == O_symbol
3664 || (i.op[n].imms->X_op == O_add
3665 && ((symbol_get_value_expression
3666 (i.op[n].imms->X_op_symbol)->X_op)
3667 == O_subtract))))
3668 {
3669 offsetT add;
3670
3671 if (insn_start_frag == frag_now)
3672 add = (p - frag_now->fr_literal) - insn_start_off;
3673 else
3674 {
3675 fragS *fr;
3676
3677 add = insn_start_frag->fr_fix - insn_start_off;
3678 for (fr = insn_start_frag->fr_next;
3679 fr && fr != frag_now; fr = fr->fr_next)
3680 add += fr->fr_fix;
3681 add += p - frag_now->fr_literal;
3682 }
3683
3684 if (flag_code != CODE_64BIT)
3685 reloc_type = BFD_RELOC_386_GOTPC;
3686 else
3687 reloc_type = BFD_RELOC_X86_64_GOTPC32;
3688 i.op[n].imms->X_add_number += add;
3689 }
3690 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3691 i.op[n].imms, 0, reloc_type);
3692 }
3693 }
3694 }
3695 }
3696 \f
3697 #ifndef LEX_AT
3698 static char *lex_got PARAMS ((enum bfd_reloc_code_real *, int *));
3699
3700 /* Parse operands of the form
3701 <symbol>@GOTOFF+<nnn>
3702 and similar .plt or .got references.
3703
3704 If we find one, set up the correct relocation in RELOC and copy the
3705 input string, minus the `@GOTOFF' into a malloc'd buffer for
3706 parsing by the calling routine. Return this buffer, and if ADJUST
3707 is non-null set it to the length of the string we removed from the
3708 input line. Otherwise return NULL. */
3709 static char *
3710 lex_got (reloc, adjust)
3711 enum bfd_reloc_code_real *reloc;
3712 int *adjust;
3713 {
3714 static const char * const mode_name[NUM_FLAG_CODE] = { "32", "16", "64" };
3715 static const struct {
3716 const char *str;
3717 const enum bfd_reloc_code_real rel[NUM_FLAG_CODE];
3718 } gotrel[] = {
3719 { "PLT", { BFD_RELOC_386_PLT32, 0, BFD_RELOC_X86_64_PLT32 } },
3720 { "GOTOFF", { BFD_RELOC_386_GOTOFF, 0, BFD_RELOC_X86_64_GOTOFF64 } },
3721 { "GOTPCREL", { 0, 0, BFD_RELOC_X86_64_GOTPCREL } },
3722 { "TLSGD", { BFD_RELOC_386_TLS_GD, 0, BFD_RELOC_X86_64_TLSGD } },
3723 { "TLSLDM", { BFD_RELOC_386_TLS_LDM, 0, 0 } },
3724 { "TLSLD", { 0, 0, BFD_RELOC_X86_64_TLSLD } },
3725 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32, 0, BFD_RELOC_X86_64_GOTTPOFF } },
3726 { "TPOFF", { BFD_RELOC_386_TLS_LE_32, 0, BFD_RELOC_X86_64_TPOFF32 } },
3727 { "NTPOFF", { BFD_RELOC_386_TLS_LE, 0, 0 } },
3728 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32, 0, BFD_RELOC_X86_64_DTPOFF32 } },
3729 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE, 0, 0 } },
3730 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE, 0, 0 } },
3731 { "GOT", { BFD_RELOC_386_GOT32, 0, BFD_RELOC_X86_64_GOT32 } }
3732 };
3733 char *cp;
3734 unsigned int j;
3735
3736 for (cp = input_line_pointer; *cp != '@'; cp++)
3737 if (is_end_of_line[(unsigned char) *cp])
3738 return NULL;
3739
3740 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
3741 {
3742 int len;
3743
3744 len = strlen (gotrel[j].str);
3745 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
3746 {
3747 if (gotrel[j].rel[(unsigned int) flag_code] != 0)
3748 {
3749 int first, second;
3750 char *tmpbuf, *past_reloc;
3751
3752 *reloc = gotrel[j].rel[(unsigned int) flag_code];
3753 if (adjust)
3754 *adjust = len;
3755
3756 if (GOT_symbol == NULL)
3757 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
3758
3759 /* Replace the relocation token with ' ', so that
3760 errors like foo@GOTOFF1 will be detected. */
3761
3762 /* The length of the first part of our input line. */
3763 first = cp - input_line_pointer;
3764
3765 /* The second part goes from after the reloc token until
3766 (and including) an end_of_line char. Don't use strlen
3767 here as the end_of_line char may not be a NUL. */
3768 past_reloc = cp + 1 + len;
3769 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
3770 ;
3771 second = cp - past_reloc;
3772
3773 /* Allocate and copy string. The trailing NUL shouldn't
3774 be necessary, but be safe. */
3775 tmpbuf = xmalloc (first + second + 2);
3776 memcpy (tmpbuf, input_line_pointer, first);
3777 tmpbuf[first] = ' ';
3778 memcpy (tmpbuf + first + 1, past_reloc, second);
3779 tmpbuf[first + second + 1] = '\0';
3780 return tmpbuf;
3781 }
3782
3783 as_bad (_("@%s reloc is not supported in %s bit mode"),
3784 gotrel[j].str, mode_name[(unsigned int) flag_code]);
3785 return NULL;
3786 }
3787 }
3788
3789 /* Might be a symbol version string. Don't as_bad here. */
3790 return NULL;
3791 }
3792
3793 /* x86_cons_fix_new is called via the expression parsing code when a
3794 reloc is needed. We use this hook to get the correct .got reloc. */
3795 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
3796
3797 void
3798 x86_cons_fix_new (frag, off, len, exp)
3799 fragS *frag;
3800 unsigned int off;
3801 unsigned int len;
3802 expressionS *exp;
3803 {
3804 enum bfd_reloc_code_real r = reloc (len, 0, 0, got_reloc);
3805 got_reloc = NO_RELOC;
3806 fix_new_exp (frag, off, len, exp, 0, r);
3807 }
3808
3809 void
3810 x86_cons (exp, size)
3811 expressionS *exp;
3812 int size;
3813 {
3814 if (size == 4 || (flag_code == CODE_64BIT && size == 8))
3815 {
3816 /* Handle @GOTOFF and the like in an expression. */
3817 char *save;
3818 char *gotfree_input_line;
3819 int adjust;
3820
3821 save = input_line_pointer;
3822 gotfree_input_line = lex_got (&got_reloc, &adjust);
3823 if (gotfree_input_line)
3824 input_line_pointer = gotfree_input_line;
3825
3826 expression (exp);
3827
3828 if (gotfree_input_line)
3829 {
3830 /* expression () has merrily parsed up to the end of line,
3831 or a comma - in the wrong buffer. Transfer how far
3832 input_line_pointer has moved to the right buffer. */
3833 input_line_pointer = (save
3834 + (input_line_pointer - gotfree_input_line)
3835 + adjust);
3836 free (gotfree_input_line);
3837 }
3838 }
3839 else
3840 expression (exp);
3841 }
3842 #endif
3843
3844 #ifdef TE_PE
3845
3846 void
3847 x86_pe_cons_fix_new (frag, off, len, exp)
3848 fragS *frag;
3849 unsigned int off;
3850 unsigned int len;
3851 expressionS *exp;
3852 {
3853 enum bfd_reloc_code_real r = reloc (len, 0, 0, NO_RELOC);
3854
3855 if (exp->X_op == O_secrel)
3856 {
3857 exp->X_op = O_symbol;
3858 r = BFD_RELOC_32_SECREL;
3859 }
3860
3861 fix_new_exp (frag, off, len, exp, 0, r);
3862 }
3863
3864 static void
3865 pe_directive_secrel (dummy)
3866 int dummy ATTRIBUTE_UNUSED;
3867 {
3868 expressionS exp;
3869
3870 do
3871 {
3872 expression (&exp);
3873 if (exp.X_op == O_symbol)
3874 exp.X_op = O_secrel;
3875
3876 emit_expr (&exp, 4);
3877 }
3878 while (*input_line_pointer++ == ',');
3879
3880 input_line_pointer--;
3881 demand_empty_rest_of_line ();
3882 }
3883
3884 #endif
3885
3886 static int i386_immediate PARAMS ((char *));
3887
3888 static int
3889 i386_immediate (imm_start)
3890 char *imm_start;
3891 {
3892 char *save_input_line_pointer;
3893 #ifndef LEX_AT
3894 char *gotfree_input_line;
3895 #endif
3896 segT exp_seg = 0;
3897 expressionS *exp;
3898
3899 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
3900 {
3901 as_bad (_("only 1 or 2 immediate operands are allowed"));
3902 return 0;
3903 }
3904
3905 exp = &im_expressions[i.imm_operands++];
3906 i.op[this_operand].imms = exp;
3907
3908 if (is_space_char (*imm_start))
3909 ++imm_start;
3910
3911 save_input_line_pointer = input_line_pointer;
3912 input_line_pointer = imm_start;
3913
3914 #ifndef LEX_AT
3915 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
3916 if (gotfree_input_line)
3917 input_line_pointer = gotfree_input_line;
3918 #endif
3919
3920 exp_seg = expression (exp);
3921
3922 SKIP_WHITESPACE ();
3923 if (*input_line_pointer)
3924 as_bad (_("junk `%s' after expression"), input_line_pointer);
3925
3926 input_line_pointer = save_input_line_pointer;
3927 #ifndef LEX_AT
3928 if (gotfree_input_line)
3929 free (gotfree_input_line);
3930 #endif
3931
3932 if (exp->X_op == O_absent || exp->X_op == O_big)
3933 {
3934 /* Missing or bad expr becomes absolute 0. */
3935 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
3936 imm_start);
3937 exp->X_op = O_constant;
3938 exp->X_add_number = 0;
3939 exp->X_add_symbol = (symbolS *) 0;
3940 exp->X_op_symbol = (symbolS *) 0;
3941 }
3942 else if (exp->X_op == O_constant)
3943 {
3944 /* Size it properly later. */
3945 i.types[this_operand] |= Imm64;
3946 /* If BFD64, sign extend val. */
3947 if (!use_rela_relocations)
3948 if ((exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
3949 exp->X_add_number = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
3950 }
3951 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
3952 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
3953 && exp_seg != absolute_section
3954 && exp_seg != text_section
3955 && exp_seg != data_section
3956 && exp_seg != bss_section
3957 && exp_seg != undefined_section
3958 && !bfd_is_com_section (exp_seg))
3959 {
3960 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
3961 return 0;
3962 }
3963 #endif
3964 else
3965 {
3966 /* This is an address. The size of the address will be
3967 determined later, depending on destination register,
3968 suffix, or the default for the section. */
3969 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
3970 }
3971
3972 return 1;
3973 }
3974
3975 static char *i386_scale PARAMS ((char *));
3976
3977 static char *
3978 i386_scale (scale)
3979 char *scale;
3980 {
3981 offsetT val;
3982 char *save = input_line_pointer;
3983
3984 input_line_pointer = scale;
3985 val = get_absolute_expression ();
3986
3987 switch (val)
3988 {
3989 case 1:
3990 i.log2_scale_factor = 0;
3991 break;
3992 case 2:
3993 i.log2_scale_factor = 1;
3994 break;
3995 case 4:
3996 i.log2_scale_factor = 2;
3997 break;
3998 case 8:
3999 i.log2_scale_factor = 3;
4000 break;
4001 default:
4002 {
4003 char sep = *input_line_pointer;
4004
4005 *input_line_pointer = '\0';
4006 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
4007 scale);
4008 *input_line_pointer = sep;
4009 input_line_pointer = save;
4010 return NULL;
4011 }
4012 }
4013 if (i.log2_scale_factor != 0 && i.index_reg == 0)
4014 {
4015 as_warn (_("scale factor of %d without an index register"),
4016 1 << i.log2_scale_factor);
4017 #if SCALE1_WHEN_NO_INDEX
4018 i.log2_scale_factor = 0;
4019 #endif
4020 }
4021 scale = input_line_pointer;
4022 input_line_pointer = save;
4023 return scale;
4024 }
4025
4026 static int i386_displacement PARAMS ((char *, char *));
4027
4028 static int
4029 i386_displacement (disp_start, disp_end)
4030 char *disp_start;
4031 char *disp_end;
4032 {
4033 expressionS *exp;
4034 segT exp_seg = 0;
4035 char *save_input_line_pointer;
4036 #ifndef LEX_AT
4037 char *gotfree_input_line;
4038 #endif
4039 int bigdisp = Disp32;
4040
4041 if (flag_code == CODE_64BIT)
4042 {
4043 if (i.prefix[ADDR_PREFIX] == 0)
4044 bigdisp = Disp64;
4045 }
4046 else if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4047 bigdisp = Disp16;
4048 i.types[this_operand] |= bigdisp;
4049
4050 exp = &disp_expressions[i.disp_operands];
4051 i.op[this_operand].disps = exp;
4052 i.disp_operands++;
4053 save_input_line_pointer = input_line_pointer;
4054 input_line_pointer = disp_start;
4055 END_STRING_AND_SAVE (disp_end);
4056
4057 #ifndef GCC_ASM_O_HACK
4058 #define GCC_ASM_O_HACK 0
4059 #endif
4060 #if GCC_ASM_O_HACK
4061 END_STRING_AND_SAVE (disp_end + 1);
4062 if ((i.types[this_operand] & BaseIndex) != 0
4063 && displacement_string_end[-1] == '+')
4064 {
4065 /* This hack is to avoid a warning when using the "o"
4066 constraint within gcc asm statements.
4067 For instance:
4068
4069 #define _set_tssldt_desc(n,addr,limit,type) \
4070 __asm__ __volatile__ ( \
4071 "movw %w2,%0\n\t" \
4072 "movw %w1,2+%0\n\t" \
4073 "rorl $16,%1\n\t" \
4074 "movb %b1,4+%0\n\t" \
4075 "movb %4,5+%0\n\t" \
4076 "movb $0,6+%0\n\t" \
4077 "movb %h1,7+%0\n\t" \
4078 "rorl $16,%1" \
4079 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
4080
4081 This works great except that the output assembler ends
4082 up looking a bit weird if it turns out that there is
4083 no offset. You end up producing code that looks like:
4084
4085 #APP
4086 movw $235,(%eax)
4087 movw %dx,2+(%eax)
4088 rorl $16,%edx
4089 movb %dl,4+(%eax)
4090 movb $137,5+(%eax)
4091 movb $0,6+(%eax)
4092 movb %dh,7+(%eax)
4093 rorl $16,%edx
4094 #NO_APP
4095
4096 So here we provide the missing zero. */
4097
4098 *displacement_string_end = '0';
4099 }
4100 #endif
4101 #ifndef LEX_AT
4102 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL);
4103 if (gotfree_input_line)
4104 input_line_pointer = gotfree_input_line;
4105 #endif
4106
4107 exp_seg = expression (exp);
4108
4109 SKIP_WHITESPACE ();
4110 if (*input_line_pointer)
4111 as_bad (_("junk `%s' after expression"), input_line_pointer);
4112 #if GCC_ASM_O_HACK
4113 RESTORE_END_STRING (disp_end + 1);
4114 #endif
4115 RESTORE_END_STRING (disp_end);
4116 input_line_pointer = save_input_line_pointer;
4117 #ifndef LEX_AT
4118 if (gotfree_input_line)
4119 free (gotfree_input_line);
4120 #endif
4121
4122 /* We do this to make sure that the section symbol is in
4123 the symbol table. We will ultimately change the relocation
4124 to be relative to the beginning of the section. */
4125 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
4126 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4127 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
4128 {
4129 if (exp->X_op != O_symbol)
4130 {
4131 as_bad (_("bad expression used with @%s"),
4132 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4133 ? "GOTPCREL"
4134 : "GOTOFF"));
4135 return 0;
4136 }
4137
4138 if (S_IS_LOCAL (exp->X_add_symbol)
4139 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
4140 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
4141 exp->X_op = O_subtract;
4142 exp->X_op_symbol = GOT_symbol;
4143 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
4144 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
4145 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
4146 i.reloc[this_operand] = BFD_RELOC_64;
4147 else
4148 i.reloc[this_operand] = BFD_RELOC_32;
4149 }
4150
4151 if (exp->X_op == O_absent || exp->X_op == O_big)
4152 {
4153 /* Missing or bad expr becomes absolute 0. */
4154 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
4155 disp_start);
4156 exp->X_op = O_constant;
4157 exp->X_add_number = 0;
4158 exp->X_add_symbol = (symbolS *) 0;
4159 exp->X_op_symbol = (symbolS *) 0;
4160 }
4161
4162 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4163 if (exp->X_op != O_constant
4164 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4165 && exp_seg != absolute_section
4166 && exp_seg != text_section
4167 && exp_seg != data_section
4168 && exp_seg != bss_section
4169 && exp_seg != undefined_section
4170 && !bfd_is_com_section (exp_seg))
4171 {
4172 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4173 return 0;
4174 }
4175 #endif
4176 else if (flag_code == CODE_64BIT)
4177 i.types[this_operand] |= Disp32S | Disp32;
4178 return 1;
4179 }
4180
4181 static int i386_index_check PARAMS ((const char *));
4182
4183 /* Make sure the memory operand we've been dealt is valid.
4184 Return 1 on success, 0 on a failure. */
4185
4186 static int
4187 i386_index_check (operand_string)
4188 const char *operand_string;
4189 {
4190 int ok;
4191 #if INFER_ADDR_PREFIX
4192 int fudged = 0;
4193
4194 tryprefix:
4195 #endif
4196 ok = 1;
4197 if (flag_code == CODE_64BIT)
4198 {
4199 unsigned RegXX = (i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32);
4200
4201 if ((i.base_reg
4202 && ((i.base_reg->reg_type & RegXX) == 0)
4203 && (i.base_reg->reg_type != BaseIndex
4204 || i.index_reg))
4205 || (i.index_reg
4206 && ((i.index_reg->reg_type & (RegXX | BaseIndex))
4207 != (RegXX | BaseIndex))))
4208 ok = 0;
4209 }
4210 else
4211 {
4212 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4213 {
4214 /* 16bit checks. */
4215 if ((i.base_reg
4216 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4217 != (Reg16 | BaseIndex)))
4218 || (i.index_reg
4219 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4220 != (Reg16 | BaseIndex))
4221 || !(i.base_reg
4222 && i.base_reg->reg_num < 6
4223 && i.index_reg->reg_num >= 6
4224 && i.log2_scale_factor == 0))))
4225 ok = 0;
4226 }
4227 else
4228 {
4229 /* 32bit checks. */
4230 if ((i.base_reg
4231 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4232 || (i.index_reg
4233 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4234 != (Reg32 | BaseIndex))))
4235 ok = 0;
4236 }
4237 }
4238 if (!ok)
4239 {
4240 #if INFER_ADDR_PREFIX
4241 if (i.prefix[ADDR_PREFIX] == 0)
4242 {
4243 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4244 i.prefixes += 1;
4245 /* Change the size of any displacement too. At most one of
4246 Disp16 or Disp32 is set.
4247 FIXME. There doesn't seem to be any real need for separate
4248 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
4249 Removing them would probably clean up the code quite a lot. */
4250 if (flag_code != CODE_64BIT && (i.types[this_operand] & (Disp16 | Disp32)))
4251 i.types[this_operand] ^= (Disp16 | Disp32);
4252 fudged = 1;
4253 goto tryprefix;
4254 }
4255 if (fudged)
4256 as_bad (_("`%s' is not a valid base/index expression"),
4257 operand_string);
4258 else
4259 #endif
4260 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4261 operand_string,
4262 flag_code_names[flag_code]);
4263 }
4264 return ok;
4265 }
4266
4267 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
4268 on error. */
4269
4270 static int
4271 i386_operand (operand_string)
4272 char *operand_string;
4273 {
4274 const reg_entry *r;
4275 char *end_op;
4276 char *op_string = operand_string;
4277
4278 if (is_space_char (*op_string))
4279 ++op_string;
4280
4281 /* We check for an absolute prefix (differentiating,
4282 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
4283 if (*op_string == ABSOLUTE_PREFIX)
4284 {
4285 ++op_string;
4286 if (is_space_char (*op_string))
4287 ++op_string;
4288 i.types[this_operand] |= JumpAbsolute;
4289 }
4290
4291 /* Check if operand is a register. */
4292 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
4293 && (r = parse_register (op_string, &end_op)) != NULL)
4294 {
4295 /* Check for a segment override by searching for ':' after a
4296 segment register. */
4297 op_string = end_op;
4298 if (is_space_char (*op_string))
4299 ++op_string;
4300 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
4301 {
4302 switch (r->reg_num)
4303 {
4304 case 0:
4305 i.seg[i.mem_operands] = &es;
4306 break;
4307 case 1:
4308 i.seg[i.mem_operands] = &cs;
4309 break;
4310 case 2:
4311 i.seg[i.mem_operands] = &ss;
4312 break;
4313 case 3:
4314 i.seg[i.mem_operands] = &ds;
4315 break;
4316 case 4:
4317 i.seg[i.mem_operands] = &fs;
4318 break;
4319 case 5:
4320 i.seg[i.mem_operands] = &gs;
4321 break;
4322 }
4323
4324 /* Skip the ':' and whitespace. */
4325 ++op_string;
4326 if (is_space_char (*op_string))
4327 ++op_string;
4328
4329 if (!is_digit_char (*op_string)
4330 && !is_identifier_char (*op_string)
4331 && *op_string != '('
4332 && *op_string != ABSOLUTE_PREFIX)
4333 {
4334 as_bad (_("bad memory operand `%s'"), op_string);
4335 return 0;
4336 }
4337 /* Handle case of %es:*foo. */
4338 if (*op_string == ABSOLUTE_PREFIX)
4339 {
4340 ++op_string;
4341 if (is_space_char (*op_string))
4342 ++op_string;
4343 i.types[this_operand] |= JumpAbsolute;
4344 }
4345 goto do_memory_reference;
4346 }
4347 if (*op_string)
4348 {
4349 as_bad (_("junk `%s' after register"), op_string);
4350 return 0;
4351 }
4352 i.types[this_operand] |= r->reg_type & ~BaseIndex;
4353 i.op[this_operand].regs = r;
4354 i.reg_operands++;
4355 }
4356 else if (*op_string == REGISTER_PREFIX)
4357 {
4358 as_bad (_("bad register name `%s'"), op_string);
4359 return 0;
4360 }
4361 else if (*op_string == IMMEDIATE_PREFIX)
4362 {
4363 ++op_string;
4364 if (i.types[this_operand] & JumpAbsolute)
4365 {
4366 as_bad (_("immediate operand illegal with absolute jump"));
4367 return 0;
4368 }
4369 if (!i386_immediate (op_string))
4370 return 0;
4371 }
4372 else if (is_digit_char (*op_string)
4373 || is_identifier_char (*op_string)
4374 || *op_string == '(')
4375 {
4376 /* This is a memory reference of some sort. */
4377 char *base_string;
4378
4379 /* Start and end of displacement string expression (if found). */
4380 char *displacement_string_start;
4381 char *displacement_string_end;
4382
4383 do_memory_reference:
4384 if ((i.mem_operands == 1
4385 && (current_templates->start->opcode_modifier & IsString) == 0)
4386 || i.mem_operands == 2)
4387 {
4388 as_bad (_("too many memory references for `%s'"),
4389 current_templates->start->name);
4390 return 0;
4391 }
4392
4393 /* Check for base index form. We detect the base index form by
4394 looking for an ')' at the end of the operand, searching
4395 for the '(' matching it, and finding a REGISTER_PREFIX or ','
4396 after the '('. */
4397 base_string = op_string + strlen (op_string);
4398
4399 --base_string;
4400 if (is_space_char (*base_string))
4401 --base_string;
4402
4403 /* If we only have a displacement, set-up for it to be parsed later. */
4404 displacement_string_start = op_string;
4405 displacement_string_end = base_string + 1;
4406
4407 if (*base_string == ')')
4408 {
4409 char *temp_string;
4410 unsigned int parens_balanced = 1;
4411 /* We've already checked that the number of left & right ()'s are
4412 equal, so this loop will not be infinite. */
4413 do
4414 {
4415 base_string--;
4416 if (*base_string == ')')
4417 parens_balanced++;
4418 if (*base_string == '(')
4419 parens_balanced--;
4420 }
4421 while (parens_balanced);
4422
4423 temp_string = base_string;
4424
4425 /* Skip past '(' and whitespace. */
4426 ++base_string;
4427 if (is_space_char (*base_string))
4428 ++base_string;
4429
4430 if (*base_string == ','
4431 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4432 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
4433 {
4434 displacement_string_end = temp_string;
4435
4436 i.types[this_operand] |= BaseIndex;
4437
4438 if (i.base_reg)
4439 {
4440 base_string = end_op;
4441 if (is_space_char (*base_string))
4442 ++base_string;
4443 }
4444
4445 /* There may be an index reg or scale factor here. */
4446 if (*base_string == ',')
4447 {
4448 ++base_string;
4449 if (is_space_char (*base_string))
4450 ++base_string;
4451
4452 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
4453 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
4454 {
4455 base_string = end_op;
4456 if (is_space_char (*base_string))
4457 ++base_string;
4458 if (*base_string == ',')
4459 {
4460 ++base_string;
4461 if (is_space_char (*base_string))
4462 ++base_string;
4463 }
4464 else if (*base_string != ')')
4465 {
4466 as_bad (_("expecting `,' or `)' after index register in `%s'"),
4467 operand_string);
4468 return 0;
4469 }
4470 }
4471 else if (*base_string == REGISTER_PREFIX)
4472 {
4473 as_bad (_("bad register name `%s'"), base_string);
4474 return 0;
4475 }
4476
4477 /* Check for scale factor. */
4478 if (*base_string != ')')
4479 {
4480 char *end_scale = i386_scale (base_string);
4481
4482 if (!end_scale)
4483 return 0;
4484
4485 base_string = end_scale;
4486 if (is_space_char (*base_string))
4487 ++base_string;
4488 if (*base_string != ')')
4489 {
4490 as_bad (_("expecting `)' after scale factor in `%s'"),
4491 operand_string);
4492 return 0;
4493 }
4494 }
4495 else if (!i.index_reg)
4496 {
4497 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
4498 *base_string);
4499 return 0;
4500 }
4501 }
4502 else if (*base_string != ')')
4503 {
4504 as_bad (_("expecting `,' or `)' after base register in `%s'"),
4505 operand_string);
4506 return 0;
4507 }
4508 }
4509 else if (*base_string == REGISTER_PREFIX)
4510 {
4511 as_bad (_("bad register name `%s'"), base_string);
4512 return 0;
4513 }
4514 }
4515
4516 /* If there's an expression beginning the operand, parse it,
4517 assuming displacement_string_start and
4518 displacement_string_end are meaningful. */
4519 if (displacement_string_start != displacement_string_end)
4520 {
4521 if (!i386_displacement (displacement_string_start,
4522 displacement_string_end))
4523 return 0;
4524 }
4525
4526 /* Special case for (%dx) while doing input/output op. */
4527 if (i.base_reg
4528 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
4529 && i.index_reg == 0
4530 && i.log2_scale_factor == 0
4531 && i.seg[i.mem_operands] == 0
4532 && (i.types[this_operand] & Disp) == 0)
4533 {
4534 i.types[this_operand] = InOutPortReg;
4535 return 1;
4536 }
4537
4538 if (i386_index_check (operand_string) == 0)
4539 return 0;
4540 i.mem_operands++;
4541 }
4542 else
4543 {
4544 /* It's not a memory operand; argh! */
4545 as_bad (_("invalid char %s beginning operand %d `%s'"),
4546 output_invalid (*op_string),
4547 this_operand + 1,
4548 op_string);
4549 return 0;
4550 }
4551 return 1; /* Normal return. */
4552 }
4553 \f
4554 /* md_estimate_size_before_relax()
4555
4556 Called just before relax() for rs_machine_dependent frags. The x86
4557 assembler uses these frags to handle variable size jump
4558 instructions.
4559
4560 Any symbol that is now undefined will not become defined.
4561 Return the correct fr_subtype in the frag.
4562 Return the initial "guess for variable size of frag" to caller.
4563 The guess is actually the growth beyond the fixed part. Whatever
4564 we do to grow the fixed or variable part contributes to our
4565 returned value. */
4566
4567 int
4568 md_estimate_size_before_relax (fragP, segment)
4569 fragS *fragP;
4570 segT segment;
4571 {
4572 /* We've already got fragP->fr_subtype right; all we have to do is
4573 check for un-relaxable symbols. On an ELF system, we can't relax
4574 an externally visible symbol, because it may be overridden by a
4575 shared library. */
4576 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
4577 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4578 || (OUTPUT_FLAVOR == bfd_target_elf_flavour
4579 && (S_IS_EXTERNAL (fragP->fr_symbol)
4580 || S_IS_WEAK (fragP->fr_symbol)))
4581 #endif
4582 )
4583 {
4584 /* Symbol is undefined in this segment, or we need to keep a
4585 reloc so that weak symbols can be overridden. */
4586 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
4587 enum bfd_reloc_code_real reloc_type;
4588 unsigned char *opcode;
4589 int old_fr_fix;
4590
4591 if (fragP->fr_var != NO_RELOC)
4592 reloc_type = fragP->fr_var;
4593 else if (size == 2)
4594 reloc_type = BFD_RELOC_16_PCREL;
4595 else
4596 reloc_type = BFD_RELOC_32_PCREL;
4597
4598 old_fr_fix = fragP->fr_fix;
4599 opcode = (unsigned char *) fragP->fr_opcode;
4600
4601 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
4602 {
4603 case UNCOND_JUMP:
4604 /* Make jmp (0xeb) a (d)word displacement jump. */
4605 opcode[0] = 0xe9;
4606 fragP->fr_fix += size;
4607 fix_new (fragP, old_fr_fix, size,
4608 fragP->fr_symbol,
4609 fragP->fr_offset, 1,
4610 reloc_type);
4611 break;
4612
4613 case COND_JUMP86:
4614 if (size == 2
4615 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
4616 {
4617 /* Negate the condition, and branch past an
4618 unconditional jump. */
4619 opcode[0] ^= 1;
4620 opcode[1] = 3;
4621 /* Insert an unconditional jump. */
4622 opcode[2] = 0xe9;
4623 /* We added two extra opcode bytes, and have a two byte
4624 offset. */
4625 fragP->fr_fix += 2 + 2;
4626 fix_new (fragP, old_fr_fix + 2, 2,
4627 fragP->fr_symbol,
4628 fragP->fr_offset, 1,
4629 reloc_type);
4630 break;
4631 }
4632 /* Fall through. */
4633
4634 case COND_JUMP:
4635 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
4636 {
4637 fixS *fixP;
4638
4639 fragP->fr_fix += 1;
4640 fixP = fix_new (fragP, old_fr_fix, 1,
4641 fragP->fr_symbol,
4642 fragP->fr_offset, 1,
4643 BFD_RELOC_8_PCREL);
4644 fixP->fx_signed = 1;
4645 break;
4646 }
4647
4648 /* This changes the byte-displacement jump 0x7N
4649 to the (d)word-displacement jump 0x0f,0x8N. */
4650 opcode[1] = opcode[0] + 0x10;
4651 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4652 /* We've added an opcode byte. */
4653 fragP->fr_fix += 1 + size;
4654 fix_new (fragP, old_fr_fix + 1, size,
4655 fragP->fr_symbol,
4656 fragP->fr_offset, 1,
4657 reloc_type);
4658 break;
4659
4660 default:
4661 BAD_CASE (fragP->fr_subtype);
4662 break;
4663 }
4664 frag_wane (fragP);
4665 return fragP->fr_fix - old_fr_fix;
4666 }
4667
4668 /* Guess size depending on current relax state. Initially the relax
4669 state will correspond to a short jump and we return 1, because
4670 the variable part of the frag (the branch offset) is one byte
4671 long. However, we can relax a section more than once and in that
4672 case we must either set fr_subtype back to the unrelaxed state,
4673 or return the value for the appropriate branch. */
4674 return md_relax_table[fragP->fr_subtype].rlx_length;
4675 }
4676
4677 /* Called after relax() is finished.
4678
4679 In: Address of frag.
4680 fr_type == rs_machine_dependent.
4681 fr_subtype is what the address relaxed to.
4682
4683 Out: Any fixSs and constants are set up.
4684 Caller will turn frag into a ".space 0". */
4685
4686 void
4687 md_convert_frag (abfd, sec, fragP)
4688 bfd *abfd ATTRIBUTE_UNUSED;
4689 segT sec ATTRIBUTE_UNUSED;
4690 fragS *fragP;
4691 {
4692 unsigned char *opcode;
4693 unsigned char *where_to_put_displacement = NULL;
4694 offsetT target_address;
4695 offsetT opcode_address;
4696 unsigned int extension = 0;
4697 offsetT displacement_from_opcode_start;
4698
4699 opcode = (unsigned char *) fragP->fr_opcode;
4700
4701 /* Address we want to reach in file space. */
4702 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
4703
4704 /* Address opcode resides at in file space. */
4705 opcode_address = fragP->fr_address + fragP->fr_fix;
4706
4707 /* Displacement from opcode start to fill into instruction. */
4708 displacement_from_opcode_start = target_address - opcode_address;
4709
4710 if ((fragP->fr_subtype & BIG) == 0)
4711 {
4712 /* Don't have to change opcode. */
4713 extension = 1; /* 1 opcode + 1 displacement */
4714 where_to_put_displacement = &opcode[1];
4715 }
4716 else
4717 {
4718 if (no_cond_jump_promotion
4719 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
4720 as_warn_where (fragP->fr_file, fragP->fr_line, _("long jump required"));
4721
4722 switch (fragP->fr_subtype)
4723 {
4724 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
4725 extension = 4; /* 1 opcode + 4 displacement */
4726 opcode[0] = 0xe9;
4727 where_to_put_displacement = &opcode[1];
4728 break;
4729
4730 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
4731 extension = 2; /* 1 opcode + 2 displacement */
4732 opcode[0] = 0xe9;
4733 where_to_put_displacement = &opcode[1];
4734 break;
4735
4736 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
4737 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
4738 extension = 5; /* 2 opcode + 4 displacement */
4739 opcode[1] = opcode[0] + 0x10;
4740 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4741 where_to_put_displacement = &opcode[2];
4742 break;
4743
4744 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
4745 extension = 3; /* 2 opcode + 2 displacement */
4746 opcode[1] = opcode[0] + 0x10;
4747 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
4748 where_to_put_displacement = &opcode[2];
4749 break;
4750
4751 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
4752 extension = 4;
4753 opcode[0] ^= 1;
4754 opcode[1] = 3;
4755 opcode[2] = 0xe9;
4756 where_to_put_displacement = &opcode[3];
4757 break;
4758
4759 default:
4760 BAD_CASE (fragP->fr_subtype);
4761 break;
4762 }
4763 }
4764
4765 /* Now put displacement after opcode. */
4766 md_number_to_chars ((char *) where_to_put_displacement,
4767 (valueT) (displacement_from_opcode_start - extension),
4768 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
4769 fragP->fr_fix += extension;
4770 }
4771 \f
4772 /* Size of byte displacement jmp. */
4773 int md_short_jump_size = 2;
4774
4775 /* Size of dword displacement jmp. */
4776 int md_long_jump_size = 5;
4777
4778 /* Size of relocation record. */
4779 const int md_reloc_size = 8;
4780
4781 void
4782 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
4783 char *ptr;
4784 addressT from_addr, to_addr;
4785 fragS *frag ATTRIBUTE_UNUSED;
4786 symbolS *to_symbol ATTRIBUTE_UNUSED;
4787 {
4788 offsetT offset;
4789
4790 offset = to_addr - (from_addr + 2);
4791 /* Opcode for byte-disp jump. */
4792 md_number_to_chars (ptr, (valueT) 0xeb, 1);
4793 md_number_to_chars (ptr + 1, (valueT) offset, 1);
4794 }
4795
4796 void
4797 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
4798 char *ptr;
4799 addressT from_addr, to_addr;
4800 fragS *frag ATTRIBUTE_UNUSED;
4801 symbolS *to_symbol ATTRIBUTE_UNUSED;
4802 {
4803 offsetT offset;
4804
4805 offset = to_addr - (from_addr + 5);
4806 md_number_to_chars (ptr, (valueT) 0xe9, 1);
4807 md_number_to_chars (ptr + 1, (valueT) offset, 4);
4808 }
4809 \f
4810 /* Apply a fixup (fixS) to segment data, once it has been determined
4811 by our caller that we have all the info we need to fix it up.
4812
4813 On the 386, immediates, displacements, and data pointers are all in
4814 the same (little-endian) format, so we don't need to care about which
4815 we are handling. */
4816
4817 void
4818 md_apply_fix (fixP, valP, seg)
4819 /* The fix we're to put in. */
4820 fixS *fixP;
4821 /* Pointer to the value of the bits. */
4822 valueT *valP;
4823 /* Segment fix is from. */
4824 segT seg ATTRIBUTE_UNUSED;
4825 {
4826 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4827 valueT value = *valP;
4828
4829 #if !defined (TE_Mach)
4830 if (fixP->fx_pcrel)
4831 {
4832 switch (fixP->fx_r_type)
4833 {
4834 default:
4835 break;
4836
4837 case BFD_RELOC_64:
4838 fixP->fx_r_type = BFD_RELOC_64_PCREL;
4839 break;
4840 case BFD_RELOC_32:
4841 case BFD_RELOC_X86_64_32S:
4842 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4843 break;
4844 case BFD_RELOC_16:
4845 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4846 break;
4847 case BFD_RELOC_8:
4848 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4849 break;
4850 }
4851 }
4852
4853 if (fixP->fx_addsy != NULL
4854 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
4855 || fixP->fx_r_type == BFD_RELOC_64_PCREL
4856 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4857 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4858 && !use_rela_relocations)
4859 {
4860 /* This is a hack. There should be a better way to handle this.
4861 This covers for the fact that bfd_install_relocation will
4862 subtract the current location (for partial_inplace, PC relative
4863 relocations); see more below. */
4864 #ifndef OBJ_AOUT
4865 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4866 #ifdef TE_PE
4867 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4868 #endif
4869 )
4870 value += fixP->fx_where + fixP->fx_frag->fr_address;
4871 #endif
4872 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4873 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
4874 {
4875 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
4876
4877 if ((sym_seg == seg
4878 || (symbol_section_p (fixP->fx_addsy)
4879 && sym_seg != absolute_section))
4880 && !generic_force_reloc (fixP))
4881 {
4882 /* Yes, we add the values in twice. This is because
4883 bfd_install_relocation subtracts them out again. I think
4884 bfd_install_relocation is broken, but I don't dare change
4885 it. FIXME. */
4886 value += fixP->fx_where + fixP->fx_frag->fr_address;
4887 }
4888 }
4889 #endif
4890 #if defined (OBJ_COFF) && defined (TE_PE)
4891 /* For some reason, the PE format does not store a
4892 section address offset for a PC relative symbol. */
4893 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
4894 #if defined(BFD_ASSEMBLER) || defined(S_IS_WEAK)
4895 || S_IS_WEAK (fixP->fx_addsy)
4896 #endif
4897 )
4898 value += md_pcrel_from (fixP);
4899 #endif
4900 }
4901
4902 /* Fix a few things - the dynamic linker expects certain values here,
4903 and we must not disappoint it. */
4904 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4905 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4906 && fixP->fx_addsy)
4907 switch (fixP->fx_r_type)
4908 {
4909 case BFD_RELOC_386_PLT32:
4910 case BFD_RELOC_X86_64_PLT32:
4911 /* Make the jump instruction point to the address of the operand. At
4912 runtime we merely add the offset to the actual PLT entry. */
4913 value = -4;
4914 break;
4915
4916 case BFD_RELOC_386_TLS_GD:
4917 case BFD_RELOC_386_TLS_LDM:
4918 case BFD_RELOC_386_TLS_IE_32:
4919 case BFD_RELOC_386_TLS_IE:
4920 case BFD_RELOC_386_TLS_GOTIE:
4921 case BFD_RELOC_X86_64_TLSGD:
4922 case BFD_RELOC_X86_64_TLSLD:
4923 case BFD_RELOC_X86_64_GOTTPOFF:
4924 value = 0; /* Fully resolved at runtime. No addend. */
4925 /* Fallthrough */
4926 case BFD_RELOC_386_TLS_LE:
4927 case BFD_RELOC_386_TLS_LDO_32:
4928 case BFD_RELOC_386_TLS_LE_32:
4929 case BFD_RELOC_X86_64_DTPOFF32:
4930 case BFD_RELOC_X86_64_DTPOFF64:
4931 case BFD_RELOC_X86_64_TPOFF32:
4932 case BFD_RELOC_X86_64_TPOFF64:
4933 S_SET_THREAD_LOCAL (fixP->fx_addsy);
4934 break;
4935
4936 case BFD_RELOC_386_GOT32:
4937 case BFD_RELOC_X86_64_GOT32:
4938 value = 0; /* Fully resolved at runtime. No addend. */
4939 break;
4940
4941 case BFD_RELOC_VTABLE_INHERIT:
4942 case BFD_RELOC_VTABLE_ENTRY:
4943 fixP->fx_done = 0;
4944 return;
4945
4946 default:
4947 break;
4948 }
4949 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
4950 *valP = value;
4951 #endif /* !defined (TE_Mach) */
4952
4953 /* Are we finished with this relocation now? */
4954 if (fixP->fx_addsy == NULL)
4955 fixP->fx_done = 1;
4956 else if (use_rela_relocations)
4957 {
4958 fixP->fx_no_overflow = 1;
4959 /* Remember value for tc_gen_reloc. */
4960 fixP->fx_addnumber = value;
4961 value = 0;
4962 }
4963
4964 md_number_to_chars (p, value, fixP->fx_size);
4965 }
4966 \f
4967 #define MAX_LITTLENUMS 6
4968
4969 /* Turn the string pointed to by litP into a floating point constant
4970 of type TYPE, and emit the appropriate bytes. The number of
4971 LITTLENUMS emitted is stored in *SIZEP. An error message is
4972 returned, or NULL on OK. */
4973
4974 char *
4975 md_atof (type, litP, sizeP)
4976 int type;
4977 char *litP;
4978 int *sizeP;
4979 {
4980 int prec;
4981 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4982 LITTLENUM_TYPE *wordP;
4983 char *t;
4984
4985 switch (type)
4986 {
4987 case 'f':
4988 case 'F':
4989 prec = 2;
4990 break;
4991
4992 case 'd':
4993 case 'D':
4994 prec = 4;
4995 break;
4996
4997 case 'x':
4998 case 'X':
4999 prec = 5;
5000 break;
5001
5002 default:
5003 *sizeP = 0;
5004 return _("Bad call to md_atof ()");
5005 }
5006 t = atof_ieee (input_line_pointer, type, words);
5007 if (t)
5008 input_line_pointer = t;
5009
5010 *sizeP = prec * sizeof (LITTLENUM_TYPE);
5011 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
5012 the bigendian 386. */
5013 for (wordP = words + prec - 1; prec--;)
5014 {
5015 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
5016 litP += sizeof (LITTLENUM_TYPE);
5017 }
5018 return 0;
5019 }
5020 \f
5021 static char output_invalid_buf[8];
5022
5023 static char *
5024 output_invalid (c)
5025 int c;
5026 {
5027 if (ISPRINT (c))
5028 sprintf (output_invalid_buf, "'%c'", c);
5029 else
5030 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
5031 return output_invalid_buf;
5032 }
5033
5034 /* REG_STRING starts *before* REGISTER_PREFIX. */
5035
5036 static const reg_entry *
5037 parse_register (reg_string, end_op)
5038 char *reg_string;
5039 char **end_op;
5040 {
5041 char *s = reg_string;
5042 char *p;
5043 char reg_name_given[MAX_REG_NAME_SIZE + 1];
5044 const reg_entry *r;
5045
5046 /* Skip possible REGISTER_PREFIX and possible whitespace. */
5047 if (*s == REGISTER_PREFIX)
5048 ++s;
5049
5050 if (is_space_char (*s))
5051 ++s;
5052
5053 p = reg_name_given;
5054 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
5055 {
5056 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
5057 return (const reg_entry *) NULL;
5058 s++;
5059 }
5060
5061 /* For naked regs, make sure that we are not dealing with an identifier.
5062 This prevents confusing an identifier like `eax_var' with register
5063 `eax'. */
5064 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
5065 return (const reg_entry *) NULL;
5066
5067 *end_op = s;
5068
5069 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
5070
5071 /* Handle floating point regs, allowing spaces in the (i) part. */
5072 if (r == i386_regtab /* %st is first entry of table */)
5073 {
5074 if (is_space_char (*s))
5075 ++s;
5076 if (*s == '(')
5077 {
5078 ++s;
5079 if (is_space_char (*s))
5080 ++s;
5081 if (*s >= '0' && *s <= '7')
5082 {
5083 r = &i386_float_regtab[*s - '0'];
5084 ++s;
5085 if (is_space_char (*s))
5086 ++s;
5087 if (*s == ')')
5088 {
5089 *end_op = s + 1;
5090 return r;
5091 }
5092 }
5093 /* We have "%st(" then garbage. */
5094 return (const reg_entry *) NULL;
5095 }
5096 }
5097
5098 if (r != NULL
5099 && ((r->reg_flags & (RegRex64 | RegRex)) | (r->reg_type & Reg64)) != 0
5100 && (r->reg_type != Control || !(cpu_arch_flags & CpuSledgehammer))
5101 && flag_code != CODE_64BIT)
5102 return (const reg_entry *) NULL;
5103
5104 return r;
5105 }
5106 \f
5107 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5108 const char *md_shortopts = "kVQ:sqn";
5109 #else
5110 const char *md_shortopts = "qn";
5111 #endif
5112
5113 struct option md_longopts[] = {
5114 #define OPTION_32 (OPTION_MD_BASE + 0)
5115 {"32", no_argument, NULL, OPTION_32},
5116 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5117 #define OPTION_64 (OPTION_MD_BASE + 1)
5118 {"64", no_argument, NULL, OPTION_64},
5119 #endif
5120 {NULL, no_argument, NULL, 0}
5121 };
5122 size_t md_longopts_size = sizeof (md_longopts);
5123
5124 int
5125 md_parse_option (c, arg)
5126 int c;
5127 char *arg ATTRIBUTE_UNUSED;
5128 {
5129 switch (c)
5130 {
5131 case 'n':
5132 optimize_align_code = 0;
5133 break;
5134
5135 case 'q':
5136 quiet_warnings = 1;
5137 break;
5138
5139 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5140 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
5141 should be emitted or not. FIXME: Not implemented. */
5142 case 'Q':
5143 break;
5144
5145 /* -V: SVR4 argument to print version ID. */
5146 case 'V':
5147 print_version_id ();
5148 break;
5149
5150 /* -k: Ignore for FreeBSD compatibility. */
5151 case 'k':
5152 break;
5153
5154 case 's':
5155 /* -s: On i386 Solaris, this tells the native assembler to use
5156 .stab instead of .stab.excl. We always use .stab anyhow. */
5157 break;
5158
5159 case OPTION_64:
5160 {
5161 const char **list, **l;
5162
5163 list = bfd_target_list ();
5164 for (l = list; *l != NULL; l++)
5165 if (strcmp (*l, "elf64-x86-64") == 0)
5166 {
5167 default_arch = "x86_64";
5168 break;
5169 }
5170 if (*l == NULL)
5171 as_fatal (_("No compiled in support for x86_64"));
5172 free (list);
5173 }
5174 break;
5175 #endif
5176
5177 case OPTION_32:
5178 default_arch = "i386";
5179 break;
5180
5181 default:
5182 return 0;
5183 }
5184 return 1;
5185 }
5186
5187 void
5188 md_show_usage (stream)
5189 FILE *stream;
5190 {
5191 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5192 fprintf (stream, _("\
5193 -Q ignored\n\
5194 -V print assembler version number\n\
5195 -k ignored\n\
5196 -n Do not optimize code alignment\n\
5197 -q quieten some warnings\n\
5198 -s ignored\n"));
5199 #else
5200 fprintf (stream, _("\
5201 -n Do not optimize code alignment\n\
5202 -q quieten some warnings\n"));
5203 #endif
5204 }
5205
5206 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
5207 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5208
5209 /* Pick the target format to use. */
5210
5211 const char *
5212 i386_target_format ()
5213 {
5214 if (!strcmp (default_arch, "x86_64"))
5215 set_code_flag (CODE_64BIT);
5216 else if (!strcmp (default_arch, "i386"))
5217 set_code_flag (CODE_32BIT);
5218 else
5219 as_fatal (_("Unknown architecture"));
5220 switch (OUTPUT_FLAVOR)
5221 {
5222 #ifdef OBJ_MAYBE_AOUT
5223 case bfd_target_aout_flavour:
5224 return AOUT_TARGET_FORMAT;
5225 #endif
5226 #ifdef OBJ_MAYBE_COFF
5227 case bfd_target_coff_flavour:
5228 return "coff-i386";
5229 #endif
5230 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
5231 case bfd_target_elf_flavour:
5232 {
5233 if (flag_code == CODE_64BIT)
5234 use_rela_relocations = 1;
5235 return flag_code == CODE_64BIT ? "elf64-x86-64" : ELF_TARGET_FORMAT;
5236 }
5237 #endif
5238 default:
5239 abort ();
5240 return NULL;
5241 }
5242 }
5243
5244 #endif /* OBJ_MAYBE_ more than one */
5245
5246 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
5247 void i386_elf_emit_arch_note ()
5248 {
5249 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
5250 && cpu_arch_name != NULL)
5251 {
5252 char *p;
5253 asection *seg = now_seg;
5254 subsegT subseg = now_subseg;
5255 Elf_Internal_Note i_note;
5256 Elf_External_Note e_note;
5257 asection *note_secp;
5258 int len;
5259
5260 /* Create the .note section. */
5261 note_secp = subseg_new (".note", 0);
5262 bfd_set_section_flags (stdoutput,
5263 note_secp,
5264 SEC_HAS_CONTENTS | SEC_READONLY);
5265
5266 /* Process the arch string. */
5267 len = strlen (cpu_arch_name);
5268
5269 i_note.namesz = len + 1;
5270 i_note.descsz = 0;
5271 i_note.type = NT_ARCH;
5272 p = frag_more (sizeof (e_note.namesz));
5273 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
5274 p = frag_more (sizeof (e_note.descsz));
5275 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
5276 p = frag_more (sizeof (e_note.type));
5277 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
5278 p = frag_more (len + 1);
5279 strcpy (p, cpu_arch_name);
5280
5281 frag_align (2, 0, 0);
5282
5283 subseg_set (seg, subseg);
5284 }
5285 }
5286 #endif
5287 \f
5288 symbolS *
5289 md_undefined_symbol (name)
5290 char *name;
5291 {
5292 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
5293 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
5294 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
5295 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
5296 {
5297 if (!GOT_symbol)
5298 {
5299 if (symbol_find (name))
5300 as_bad (_("GOT already in symbol table"));
5301 GOT_symbol = symbol_new (name, undefined_section,
5302 (valueT) 0, &zero_address_frag);
5303 };
5304 return GOT_symbol;
5305 }
5306 return 0;
5307 }
5308
5309 /* Round up a section size to the appropriate boundary. */
5310
5311 valueT
5312 md_section_align (segment, size)
5313 segT segment ATTRIBUTE_UNUSED;
5314 valueT size;
5315 {
5316 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5317 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
5318 {
5319 /* For a.out, force the section size to be aligned. If we don't do
5320 this, BFD will align it for us, but it will not write out the
5321 final bytes of the section. This may be a bug in BFD, but it is
5322 easier to fix it here since that is how the other a.out targets
5323 work. */
5324 int align;
5325
5326 align = bfd_get_section_alignment (stdoutput, segment);
5327 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
5328 }
5329 #endif
5330
5331 return size;
5332 }
5333
5334 /* On the i386, PC-relative offsets are relative to the start of the
5335 next instruction. That is, the address of the offset, plus its
5336 size, since the offset is always the last part of the insn. */
5337
5338 long
5339 md_pcrel_from (fixP)
5340 fixS *fixP;
5341 {
5342 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
5343 }
5344
5345 #ifndef I386COFF
5346
5347 static void
5348 s_bss (ignore)
5349 int ignore ATTRIBUTE_UNUSED;
5350 {
5351 int temp;
5352
5353 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5354 if (IS_ELF)
5355 obj_elf_section_change_hook ();
5356 #endif
5357 temp = get_absolute_expression ();
5358 subseg_set (bss_section, (subsegT) temp);
5359 demand_empty_rest_of_line ();
5360 }
5361
5362 #endif
5363
5364 void
5365 i386_validate_fix (fixp)
5366 fixS *fixp;
5367 {
5368 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
5369 {
5370 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
5371 {
5372 if (flag_code != CODE_64BIT)
5373 abort ();
5374 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
5375 }
5376 else
5377 {
5378 if (flag_code != CODE_64BIT)
5379 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
5380 else
5381 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
5382 }
5383 fixp->fx_subsy = 0;
5384 }
5385 }
5386
5387 arelent *
5388 tc_gen_reloc (section, fixp)
5389 asection *section ATTRIBUTE_UNUSED;
5390 fixS *fixp;
5391 {
5392 arelent *rel;
5393 bfd_reloc_code_real_type code;
5394
5395 switch (fixp->fx_r_type)
5396 {
5397 case BFD_RELOC_X86_64_PLT32:
5398 case BFD_RELOC_X86_64_GOT32:
5399 case BFD_RELOC_X86_64_GOTPCREL:
5400 case BFD_RELOC_386_PLT32:
5401 case BFD_RELOC_386_GOT32:
5402 case BFD_RELOC_386_GOTOFF:
5403 case BFD_RELOC_386_GOTPC:
5404 case BFD_RELOC_386_TLS_GD:
5405 case BFD_RELOC_386_TLS_LDM:
5406 case BFD_RELOC_386_TLS_LDO_32:
5407 case BFD_RELOC_386_TLS_IE_32:
5408 case BFD_RELOC_386_TLS_IE:
5409 case BFD_RELOC_386_TLS_GOTIE:
5410 case BFD_RELOC_386_TLS_LE_32:
5411 case BFD_RELOC_386_TLS_LE:
5412 case BFD_RELOC_X86_64_TLSGD:
5413 case BFD_RELOC_X86_64_TLSLD:
5414 case BFD_RELOC_X86_64_DTPOFF32:
5415 case BFD_RELOC_X86_64_DTPOFF64:
5416 case BFD_RELOC_X86_64_GOTTPOFF:
5417 case BFD_RELOC_X86_64_TPOFF32:
5418 case BFD_RELOC_X86_64_TPOFF64:
5419 case BFD_RELOC_X86_64_GOTOFF64:
5420 case BFD_RELOC_X86_64_GOTPC32:
5421 case BFD_RELOC_RVA:
5422 case BFD_RELOC_VTABLE_ENTRY:
5423 case BFD_RELOC_VTABLE_INHERIT:
5424 #ifdef TE_PE
5425 case BFD_RELOC_32_SECREL:
5426 #endif
5427 code = fixp->fx_r_type;
5428 break;
5429 case BFD_RELOC_X86_64_32S:
5430 if (!fixp->fx_pcrel)
5431 {
5432 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
5433 code = fixp->fx_r_type;
5434 break;
5435 }
5436 default:
5437 if (fixp->fx_pcrel)
5438 {
5439 switch (fixp->fx_size)
5440 {
5441 default:
5442 as_bad_where (fixp->fx_file, fixp->fx_line,
5443 _("can not do %d byte pc-relative relocation"),
5444 fixp->fx_size);
5445 code = BFD_RELOC_32_PCREL;
5446 break;
5447 case 1: code = BFD_RELOC_8_PCREL; break;
5448 case 2: code = BFD_RELOC_16_PCREL; break;
5449 case 4: code = BFD_RELOC_32_PCREL; break;
5450 #ifdef BFD64
5451 case 8: code = BFD_RELOC_64_PCREL; break;
5452 #endif
5453 }
5454 }
5455 else
5456 {
5457 switch (fixp->fx_size)
5458 {
5459 default:
5460 as_bad_where (fixp->fx_file, fixp->fx_line,
5461 _("can not do %d byte relocation"),
5462 fixp->fx_size);
5463 code = BFD_RELOC_32;
5464 break;
5465 case 1: code = BFD_RELOC_8; break;
5466 case 2: code = BFD_RELOC_16; break;
5467 case 4: code = BFD_RELOC_32; break;
5468 #ifdef BFD64
5469 case 8: code = BFD_RELOC_64; break;
5470 #endif
5471 }
5472 }
5473 break;
5474 }
5475
5476 if ((code == BFD_RELOC_32 || code == BFD_RELOC_32_PCREL)
5477 && GOT_symbol
5478 && fixp->fx_addsy == GOT_symbol)
5479 {
5480 if (flag_code != CODE_64BIT)
5481 code = BFD_RELOC_386_GOTPC;
5482 else
5483 code = BFD_RELOC_X86_64_GOTPC32;
5484 }
5485
5486 rel = (arelent *) xmalloc (sizeof (arelent));
5487 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
5488 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
5489
5490 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
5491
5492 if (!use_rela_relocations)
5493 {
5494 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
5495 vtable entry to be used in the relocation's section offset. */
5496 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
5497 rel->address = fixp->fx_offset;
5498
5499 rel->addend = 0;
5500 }
5501 /* Use the rela in 64bit mode. */
5502 else
5503 {
5504 if (!fixp->fx_pcrel)
5505 rel->addend = fixp->fx_offset;
5506 else
5507 switch (code)
5508 {
5509 case BFD_RELOC_X86_64_PLT32:
5510 case BFD_RELOC_X86_64_GOT32:
5511 case BFD_RELOC_X86_64_GOTPCREL:
5512 case BFD_RELOC_X86_64_TLSGD:
5513 case BFD_RELOC_X86_64_TLSLD:
5514 case BFD_RELOC_X86_64_GOTTPOFF:
5515 rel->addend = fixp->fx_offset - fixp->fx_size;
5516 break;
5517 default:
5518 rel->addend = (section->vma
5519 - fixp->fx_size
5520 + fixp->fx_addnumber
5521 + md_pcrel_from (fixp));
5522 break;
5523 }
5524 }
5525
5526 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
5527 if (rel->howto == NULL)
5528 {
5529 as_bad_where (fixp->fx_file, fixp->fx_line,
5530 _("cannot represent relocation type %s"),
5531 bfd_get_reloc_code_name (code));
5532 /* Set howto to a garbage value so that we can keep going. */
5533 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
5534 assert (rel->howto != NULL);
5535 }
5536
5537 return rel;
5538 }
5539
5540 \f
5541 /* Parse operands using Intel syntax. This implements a recursive descent
5542 parser based on the BNF grammar published in Appendix B of the MASM 6.1
5543 Programmer's Guide.
5544
5545 FIXME: We do not recognize the full operand grammar defined in the MASM
5546 documentation. In particular, all the structure/union and
5547 high-level macro operands are missing.
5548
5549 Uppercase words are terminals, lower case words are non-terminals.
5550 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
5551 bars '|' denote choices. Most grammar productions are implemented in
5552 functions called 'intel_<production>'.
5553
5554 Initial production is 'expr'.
5555
5556 addOp + | -
5557
5558 alpha [a-zA-Z]
5559
5560 binOp & | AND | \| | OR | ^ | XOR
5561
5562 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
5563
5564 constant digits [[ radixOverride ]]
5565
5566 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
5567
5568 digits decdigit
5569 | digits decdigit
5570 | digits hexdigit
5571
5572 decdigit [0-9]
5573
5574 e04 e04 addOp e05
5575 | e05
5576
5577 e05 e05 binOp e06
5578 | e06
5579
5580 e06 e06 mulOp e09
5581 | e09
5582
5583 e09 OFFSET e10
5584 | SHORT e10
5585 | + e10
5586 | - e10
5587 | ~ e10
5588 | NOT e10
5589 | e09 PTR e10
5590 | e09 : e10
5591 | e10
5592
5593 e10 e10 [ expr ]
5594 | e11
5595
5596 e11 ( expr )
5597 | [ expr ]
5598 | constant
5599 | dataType
5600 | id
5601 | $
5602 | register
5603
5604 => expr expr cmpOp e04
5605 | e04
5606
5607 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
5608 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
5609
5610 hexdigit a | b | c | d | e | f
5611 | A | B | C | D | E | F
5612
5613 id alpha
5614 | id alpha
5615 | id decdigit
5616
5617 mulOp * | / | % | MOD | << | SHL | >> | SHR
5618
5619 quote " | '
5620
5621 register specialRegister
5622 | gpRegister
5623 | byteRegister
5624
5625 segmentRegister CS | DS | ES | FS | GS | SS
5626
5627 specialRegister CR0 | CR2 | CR3 | CR4
5628 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
5629 | TR3 | TR4 | TR5 | TR6 | TR7
5630
5631 We simplify the grammar in obvious places (e.g., register parsing is
5632 done by calling parse_register) and eliminate immediate left recursion
5633 to implement a recursive-descent parser.
5634
5635 expr e04 expr'
5636
5637 expr' cmpOp e04 expr'
5638 | Empty
5639
5640 e04 e05 e04'
5641
5642 e04' addOp e05 e04'
5643 | Empty
5644
5645 e05 e06 e05'
5646
5647 e05' binOp e06 e05'
5648 | Empty
5649
5650 e06 e09 e06'
5651
5652 e06' mulOp e09 e06'
5653 | Empty
5654
5655 e09 OFFSET e10 e09'
5656 | SHORT e10'
5657 | + e10'
5658 | - e10'
5659 | ~ e10'
5660 | NOT e10'
5661 | e10 e09'
5662
5663 e09' PTR e10 e09'
5664 | : e10 e09'
5665 | Empty
5666
5667 e10 e11 e10'
5668
5669 e10' [ expr ] e10'
5670 | Empty
5671
5672 e11 ( expr )
5673 | [ expr ]
5674 | BYTE
5675 | WORD
5676 | DWORD
5677 | FWORD
5678 | QWORD
5679 | TBYTE
5680 | OWORD
5681 | XMMWORD
5682 | .
5683 | $
5684 | register
5685 | id
5686 | constant */
5687
5688 /* Parsing structure for the intel syntax parser. Used to implement the
5689 semantic actions for the operand grammar. */
5690 struct intel_parser_s
5691 {
5692 char *op_string; /* The string being parsed. */
5693 int got_a_float; /* Whether the operand is a float. */
5694 int op_modifier; /* Operand modifier. */
5695 int is_mem; /* 1 if operand is memory reference. */
5696 int in_offset; /* >=1 if parsing operand of offset. */
5697 int in_bracket; /* >=1 if parsing operand in brackets. */
5698 const reg_entry *reg; /* Last register reference found. */
5699 char *disp; /* Displacement string being built. */
5700 char *next_operand; /* Resume point when splitting operands. */
5701 };
5702
5703 static struct intel_parser_s intel_parser;
5704
5705 /* Token structure for parsing intel syntax. */
5706 struct intel_token
5707 {
5708 int code; /* Token code. */
5709 const reg_entry *reg; /* Register entry for register tokens. */
5710 char *str; /* String representation. */
5711 };
5712
5713 static struct intel_token cur_token, prev_token;
5714
5715 /* Token codes for the intel parser. Since T_SHORT is already used
5716 by COFF, undefine it first to prevent a warning. */
5717 #define T_NIL -1
5718 #define T_CONST 1
5719 #define T_REG 2
5720 #define T_BYTE 3
5721 #define T_WORD 4
5722 #define T_DWORD 5
5723 #define T_FWORD 6
5724 #define T_QWORD 7
5725 #define T_TBYTE 8
5726 #define T_XMMWORD 9
5727 #undef T_SHORT
5728 #define T_SHORT 10
5729 #define T_OFFSET 11
5730 #define T_PTR 12
5731 #define T_ID 13
5732 #define T_SHL 14
5733 #define T_SHR 15
5734
5735 /* Prototypes for intel parser functions. */
5736 static int intel_match_token PARAMS ((int code));
5737 static void intel_get_token PARAMS ((void));
5738 static void intel_putback_token PARAMS ((void));
5739 static int intel_expr PARAMS ((void));
5740 static int intel_e04 PARAMS ((void));
5741 static int intel_e05 PARAMS ((void));
5742 static int intel_e06 PARAMS ((void));
5743 static int intel_e09 PARAMS ((void));
5744 static int intel_bracket_expr PARAMS ((void));
5745 static int intel_e10 PARAMS ((void));
5746 static int intel_e11 PARAMS ((void));
5747
5748 static int
5749 i386_intel_operand (operand_string, got_a_float)
5750 char *operand_string;
5751 int got_a_float;
5752 {
5753 int ret;
5754 char *p;
5755
5756 p = intel_parser.op_string = xstrdup (operand_string);
5757 intel_parser.disp = (char *) xmalloc (strlen (operand_string) + 1);
5758
5759 for (;;)
5760 {
5761 /* Initialize token holders. */
5762 cur_token.code = prev_token.code = T_NIL;
5763 cur_token.reg = prev_token.reg = NULL;
5764 cur_token.str = prev_token.str = NULL;
5765
5766 /* Initialize parser structure. */
5767 intel_parser.got_a_float = got_a_float;
5768 intel_parser.op_modifier = 0;
5769 intel_parser.is_mem = 0;
5770 intel_parser.in_offset = 0;
5771 intel_parser.in_bracket = 0;
5772 intel_parser.reg = NULL;
5773 intel_parser.disp[0] = '\0';
5774 intel_parser.next_operand = NULL;
5775
5776 /* Read the first token and start the parser. */
5777 intel_get_token ();
5778 ret = intel_expr ();
5779
5780 if (!ret)
5781 break;
5782
5783 if (cur_token.code != T_NIL)
5784 {
5785 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
5786 current_templates->start->name, cur_token.str);
5787 ret = 0;
5788 }
5789 /* If we found a memory reference, hand it over to i386_displacement
5790 to fill in the rest of the operand fields. */
5791 else if (intel_parser.is_mem)
5792 {
5793 if ((i.mem_operands == 1
5794 && (current_templates->start->opcode_modifier & IsString) == 0)
5795 || i.mem_operands == 2)
5796 {
5797 as_bad (_("too many memory references for '%s'"),
5798 current_templates->start->name);
5799 ret = 0;
5800 }
5801 else
5802 {
5803 char *s = intel_parser.disp;
5804 i.mem_operands++;
5805
5806 if (!quiet_warnings && intel_parser.is_mem < 0)
5807 /* See the comments in intel_bracket_expr. */
5808 as_warn (_("Treating `%s' as memory reference"), operand_string);
5809
5810 /* Add the displacement expression. */
5811 if (*s != '\0')
5812 ret = i386_displacement (s, s + strlen (s));
5813 if (ret)
5814 {
5815 /* Swap base and index in 16-bit memory operands like
5816 [si+bx]. Since i386_index_check is also used in AT&T
5817 mode we have to do that here. */
5818 if (i.base_reg
5819 && i.index_reg
5820 && (i.base_reg->reg_type & Reg16)
5821 && (i.index_reg->reg_type & Reg16)
5822 && i.base_reg->reg_num >= 6
5823 && i.index_reg->reg_num < 6)
5824 {
5825 const reg_entry *base = i.index_reg;
5826
5827 i.index_reg = i.base_reg;
5828 i.base_reg = base;
5829 }
5830 ret = i386_index_check (operand_string);
5831 }
5832 }
5833 }
5834
5835 /* Constant and OFFSET expressions are handled by i386_immediate. */
5836 else if ((intel_parser.op_modifier & (1 << T_OFFSET))
5837 || intel_parser.reg == NULL)
5838 ret = i386_immediate (intel_parser.disp);
5839
5840 if (intel_parser.next_operand && this_operand >= MAX_OPERANDS - 1)
5841 ret = 0;
5842 if (!ret || !intel_parser.next_operand)
5843 break;
5844 intel_parser.op_string = intel_parser.next_operand;
5845 this_operand = i.operands++;
5846 }
5847
5848 free (p);
5849 free (intel_parser.disp);
5850
5851 return ret;
5852 }
5853
5854 #define NUM_ADDRESS_REGS (!!i.base_reg + !!i.index_reg)
5855
5856 /* expr e04 expr'
5857
5858 expr' cmpOp e04 expr'
5859 | Empty */
5860 static int
5861 intel_expr ()
5862 {
5863 /* XXX Implement the comparison operators. */
5864 return intel_e04 ();
5865 }
5866
5867 /* e04 e05 e04'
5868
5869 e04' addOp e05 e04'
5870 | Empty */
5871 static int
5872 intel_e04 ()
5873 {
5874 int nregs = -1;
5875
5876 for (;;)
5877 {
5878 if (!intel_e05())
5879 return 0;
5880
5881 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
5882 i.base_reg = i386_regtab + REGNAM_AL; /* al is invalid as base */
5883
5884 if (cur_token.code == '+')
5885 nregs = -1;
5886 else if (cur_token.code == '-')
5887 nregs = NUM_ADDRESS_REGS;
5888 else
5889 return 1;
5890
5891 strcat (intel_parser.disp, cur_token.str);
5892 intel_match_token (cur_token.code);
5893 }
5894 }
5895
5896 /* e05 e06 e05'
5897
5898 e05' binOp e06 e05'
5899 | Empty */
5900 static int
5901 intel_e05 ()
5902 {
5903 int nregs = ~NUM_ADDRESS_REGS;
5904
5905 for (;;)
5906 {
5907 if (!intel_e06())
5908 return 0;
5909
5910 if (cur_token.code == '&' || cur_token.code == '|' || cur_token.code == '^')
5911 {
5912 char str[2];
5913
5914 str[0] = cur_token.code;
5915 str[1] = 0;
5916 strcat (intel_parser.disp, str);
5917 }
5918 else
5919 break;
5920
5921 intel_match_token (cur_token.code);
5922
5923 if (nregs < 0)
5924 nregs = ~nregs;
5925 }
5926 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
5927 i.base_reg = i386_regtab + REGNAM_AL + 1; /* cl is invalid as base */
5928 return 1;
5929 }
5930
5931 /* e06 e09 e06'
5932
5933 e06' mulOp e09 e06'
5934 | Empty */
5935 static int
5936 intel_e06 ()
5937 {
5938 int nregs = ~NUM_ADDRESS_REGS;
5939
5940 for (;;)
5941 {
5942 if (!intel_e09())
5943 return 0;
5944
5945 if (cur_token.code == '*' || cur_token.code == '/' || cur_token.code == '%')
5946 {
5947 char str[2];
5948
5949 str[0] = cur_token.code;
5950 str[1] = 0;
5951 strcat (intel_parser.disp, str);
5952 }
5953 else if (cur_token.code == T_SHL)
5954 strcat (intel_parser.disp, "<<");
5955 else if (cur_token.code == T_SHR)
5956 strcat (intel_parser.disp, ">>");
5957 else
5958 break;
5959
5960 intel_match_token (cur_token.code);
5961
5962 if (nregs < 0)
5963 nregs = ~nregs;
5964 }
5965 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
5966 i.base_reg = i386_regtab + REGNAM_AL + 2; /* dl is invalid as base */
5967 return 1;
5968 }
5969
5970 /* e09 OFFSET e09
5971 | SHORT e09
5972 | + e09
5973 | - e09
5974 | ~ e09
5975 | NOT e09
5976 | e10 e09'
5977
5978 e09' PTR e10 e09'
5979 | : e10 e09'
5980 | Empty */
5981 static int
5982 intel_e09 ()
5983 {
5984 int nregs = ~NUM_ADDRESS_REGS;
5985 int in_offset = 0;
5986
5987 for (;;)
5988 {
5989 /* Don't consume constants here. */
5990 if (cur_token.code == '+' || cur_token.code == '-')
5991 {
5992 /* Need to look one token ahead - if the next token
5993 is a constant, the current token is its sign. */
5994 int next_code;
5995
5996 intel_match_token (cur_token.code);
5997 next_code = cur_token.code;
5998 intel_putback_token ();
5999 if (next_code == T_CONST)
6000 break;
6001 }
6002
6003 /* e09 OFFSET e09 */
6004 if (cur_token.code == T_OFFSET)
6005 {
6006 if (!in_offset++)
6007 ++intel_parser.in_offset;
6008 }
6009
6010 /* e09 SHORT e09 */
6011 else if (cur_token.code == T_SHORT)
6012 intel_parser.op_modifier |= 1 << T_SHORT;
6013
6014 /* e09 + e09 */
6015 else if (cur_token.code == '+')
6016 strcat (intel_parser.disp, "+");
6017
6018 /* e09 - e09
6019 | ~ e09
6020 | NOT e09 */
6021 else if (cur_token.code == '-' || cur_token.code == '~')
6022 {
6023 char str[2];
6024
6025 if (nregs < 0)
6026 nregs = ~nregs;
6027 str[0] = cur_token.code;
6028 str[1] = 0;
6029 strcat (intel_parser.disp, str);
6030 }
6031
6032 /* e09 e10 e09' */
6033 else
6034 break;
6035
6036 intel_match_token (cur_token.code);
6037 }
6038
6039 for (;;)
6040 {
6041 if (!intel_e10 ())
6042 return 0;
6043
6044 /* e09' PTR e10 e09' */
6045 if (cur_token.code == T_PTR)
6046 {
6047 char suffix;
6048
6049 if (prev_token.code == T_BYTE)
6050 suffix = BYTE_MNEM_SUFFIX;
6051
6052 else if (prev_token.code == T_WORD)
6053 {
6054 if (current_templates->start->name[0] == 'l'
6055 && current_templates->start->name[2] == 's'
6056 && current_templates->start->name[3] == 0)
6057 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6058 else if (intel_parser.got_a_float == 2) /* "fi..." */
6059 suffix = SHORT_MNEM_SUFFIX;
6060 else
6061 suffix = WORD_MNEM_SUFFIX;
6062 }
6063
6064 else if (prev_token.code == T_DWORD)
6065 {
6066 if (current_templates->start->name[0] == 'l'
6067 && current_templates->start->name[2] == 's'
6068 && current_templates->start->name[3] == 0)
6069 suffix = WORD_MNEM_SUFFIX;
6070 else if (flag_code == CODE_16BIT
6071 && (current_templates->start->opcode_modifier
6072 & (Jump|JumpDword|JumpInterSegment)))
6073 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6074 else if (intel_parser.got_a_float == 1) /* "f..." */
6075 suffix = SHORT_MNEM_SUFFIX;
6076 else
6077 suffix = LONG_MNEM_SUFFIX;
6078 }
6079
6080 else if (prev_token.code == T_FWORD)
6081 {
6082 if (current_templates->start->name[0] == 'l'
6083 && current_templates->start->name[2] == 's'
6084 && current_templates->start->name[3] == 0)
6085 suffix = LONG_MNEM_SUFFIX;
6086 else if (!intel_parser.got_a_float)
6087 {
6088 if (flag_code == CODE_16BIT)
6089 add_prefix (DATA_PREFIX_OPCODE);
6090 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6091 }
6092 else
6093 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6094 }
6095
6096 else if (prev_token.code == T_QWORD)
6097 {
6098 if (intel_parser.got_a_float == 1) /* "f..." */
6099 suffix = LONG_MNEM_SUFFIX;
6100 else
6101 suffix = QWORD_MNEM_SUFFIX;
6102 }
6103
6104 else if (prev_token.code == T_TBYTE)
6105 {
6106 if (intel_parser.got_a_float == 1)
6107 suffix = LONG_DOUBLE_MNEM_SUFFIX;
6108 else
6109 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6110 }
6111
6112 else if (prev_token.code == T_XMMWORD)
6113 {
6114 /* XXX ignored for now, but accepted since gcc uses it */
6115 suffix = 0;
6116 }
6117
6118 else
6119 {
6120 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
6121 return 0;
6122 }
6123
6124 if (current_templates->start->base_opcode == 0x8d /* lea */)
6125 ;
6126 else if (!i.suffix)
6127 i.suffix = suffix;
6128 else if (i.suffix != suffix)
6129 {
6130 as_bad (_("Conflicting operand modifiers"));
6131 return 0;
6132 }
6133
6134 }
6135
6136 /* e09' : e10 e09' */
6137 else if (cur_token.code == ':')
6138 {
6139 if (prev_token.code != T_REG)
6140 {
6141 /* While {call,jmp} SSSS:OOOO is MASM syntax only when SSSS is a
6142 segment/group identifier (which we don't have), using comma
6143 as the operand separator there is even less consistent, since
6144 there all branches only have a single operand. */
6145 if (this_operand != 0
6146 || intel_parser.in_offset
6147 || intel_parser.in_bracket
6148 || (!(current_templates->start->opcode_modifier
6149 & (Jump|JumpDword|JumpInterSegment))
6150 && !(current_templates->start->operand_types[0]
6151 & JumpAbsolute)))
6152 return intel_match_token (T_NIL);
6153 /* Remember the start of the 2nd operand and terminate 1st
6154 operand here.
6155 XXX This isn't right, yet (when SSSS:OOOO is right operand of
6156 another expression), but it gets at least the simplest case
6157 (a plain number or symbol on the left side) right. */
6158 intel_parser.next_operand = intel_parser.op_string;
6159 *--intel_parser.op_string = '\0';
6160 return intel_match_token (':');
6161 }
6162 }
6163
6164 /* e09' Empty */
6165 else
6166 break;
6167
6168 intel_match_token (cur_token.code);
6169
6170 }
6171
6172 if (in_offset)
6173 {
6174 --intel_parser.in_offset;
6175 if (nregs < 0)
6176 nregs = ~nregs;
6177 if (NUM_ADDRESS_REGS > nregs)
6178 {
6179 as_bad (_("Invalid operand to `OFFSET'"));
6180 return 0;
6181 }
6182 intel_parser.op_modifier |= 1 << T_OFFSET;
6183 }
6184
6185 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6186 i.base_reg = i386_regtab + REGNAM_AL + 3; /* bl is invalid as base */
6187 return 1;
6188 }
6189
6190 static int
6191 intel_bracket_expr ()
6192 {
6193 int was_offset = intel_parser.op_modifier & (1 << T_OFFSET);
6194 const char *start = intel_parser.op_string;
6195 int len;
6196
6197 if (i.op[this_operand].regs)
6198 return intel_match_token (T_NIL);
6199
6200 intel_match_token ('[');
6201
6202 /* Mark as a memory operand only if it's not already known to be an
6203 offset expression. If it's an offset expression, we need to keep
6204 the brace in. */
6205 if (!intel_parser.in_offset)
6206 {
6207 ++intel_parser.in_bracket;
6208 /* Unfortunately gas always diverged from MASM in a respect that can't
6209 be easily fixed without risking to break code sequences likely to be
6210 encountered (the testsuite even check for this): MASM doesn't consider
6211 an expression inside brackets unconditionally as a memory reference.
6212 When that is e.g. a constant, an offset expression, or the sum of the
6213 two, this is still taken as a constant load. gas, however, always
6214 treated these as memory references. As a compromise, we'll try to make
6215 offset expressions inside brackets work the MASM way (since that's
6216 less likely to be found in real world code), but make constants alone
6217 continue to work the traditional gas way. In either case, issue a
6218 warning. */
6219 intel_parser.op_modifier &= ~was_offset;
6220 }
6221 else
6222 strcat (intel_parser.disp, "[");
6223
6224 /* Add a '+' to the displacement string if necessary. */
6225 if (*intel_parser.disp != '\0'
6226 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
6227 strcat (intel_parser.disp, "+");
6228
6229 if (intel_expr ()
6230 && (len = intel_parser.op_string - start - 1,
6231 intel_match_token (']')))
6232 {
6233 /* Preserve brackets when the operand is an offset expression. */
6234 if (intel_parser.in_offset)
6235 strcat (intel_parser.disp, "]");
6236 else
6237 {
6238 --intel_parser.in_bracket;
6239 if (i.base_reg || i.index_reg)
6240 intel_parser.is_mem = 1;
6241 if (!intel_parser.is_mem)
6242 {
6243 if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
6244 /* Defer the warning until all of the operand was parsed. */
6245 intel_parser.is_mem = -1;
6246 else if (!quiet_warnings)
6247 as_warn (_("`[%.*s]' taken to mean just `%.*s'"), len, start, len, start);
6248 }
6249 }
6250 intel_parser.op_modifier |= was_offset;
6251
6252 return 1;
6253 }
6254 return 0;
6255 }
6256
6257 /* e10 e11 e10'
6258
6259 e10' [ expr ] e10'
6260 | Empty */
6261 static int
6262 intel_e10 ()
6263 {
6264 if (!intel_e11 ())
6265 return 0;
6266
6267 while (cur_token.code == '[')
6268 {
6269 if (!intel_bracket_expr ())
6270 return 0;
6271 }
6272
6273 return 1;
6274 }
6275
6276 /* e11 ( expr )
6277 | [ expr ]
6278 | BYTE
6279 | WORD
6280 | DWORD
6281 | FWORD
6282 | QWORD
6283 | TBYTE
6284 | OWORD
6285 | XMMWORD
6286 | $
6287 | .
6288 | register
6289 | id
6290 | constant */
6291 static int
6292 intel_e11 ()
6293 {
6294 switch (cur_token.code)
6295 {
6296 /* e11 ( expr ) */
6297 case '(':
6298 intel_match_token ('(');
6299 strcat (intel_parser.disp, "(");
6300
6301 if (intel_expr () && intel_match_token (')'))
6302 {
6303 strcat (intel_parser.disp, ")");
6304 return 1;
6305 }
6306 return 0;
6307
6308 /* e11 [ expr ] */
6309 case '[':
6310 /* Operands for jump/call inside brackets denote absolute addresses.
6311 XXX This shouldn't be needed anymore (or if it should rather live
6312 in intel_bracket_expr). */
6313 if (current_templates->start->opcode_modifier
6314 & (Jump|JumpDword|JumpByte|JumpInterSegment))
6315 i.types[this_operand] |= JumpAbsolute;
6316
6317 return intel_bracket_expr ();
6318
6319 /* e11 $
6320 | . */
6321 case '.':
6322 strcat (intel_parser.disp, cur_token.str);
6323 intel_match_token (cur_token.code);
6324
6325 /* Mark as a memory operand only if it's not already known to be an
6326 offset expression. */
6327 if (!intel_parser.in_offset)
6328 intel_parser.is_mem = 1;
6329
6330 return 1;
6331
6332 /* e11 register */
6333 case T_REG:
6334 {
6335 const reg_entry *reg = intel_parser.reg = cur_token.reg;
6336
6337 intel_match_token (T_REG);
6338
6339 /* Check for segment change. */
6340 if (cur_token.code == ':')
6341 {
6342 if (!(reg->reg_type & (SReg2 | SReg3)))
6343 {
6344 as_bad (_("`%s' is not a valid segment register"), reg->reg_name);
6345 return 0;
6346 }
6347 else if (i.seg[i.mem_operands])
6348 as_warn (_("Extra segment override ignored"));
6349 else
6350 {
6351 if (!intel_parser.in_offset)
6352 intel_parser.is_mem = 1;
6353 switch (reg->reg_num)
6354 {
6355 case 0:
6356 i.seg[i.mem_operands] = &es;
6357 break;
6358 case 1:
6359 i.seg[i.mem_operands] = &cs;
6360 break;
6361 case 2:
6362 i.seg[i.mem_operands] = &ss;
6363 break;
6364 case 3:
6365 i.seg[i.mem_operands] = &ds;
6366 break;
6367 case 4:
6368 i.seg[i.mem_operands] = &fs;
6369 break;
6370 case 5:
6371 i.seg[i.mem_operands] = &gs;
6372 break;
6373 }
6374 }
6375 }
6376
6377 /* Not a segment register. Check for register scaling. */
6378 else if (cur_token.code == '*')
6379 {
6380 if (!intel_parser.in_bracket)
6381 {
6382 as_bad (_("Register scaling only allowed in memory operands"));
6383 return 0;
6384 }
6385
6386 if (reg->reg_type & Reg16) /* Disallow things like [si*1]. */
6387 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
6388 else if (i.index_reg)
6389 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
6390
6391 /* What follows must be a valid scale. */
6392 intel_match_token ('*');
6393 i.index_reg = reg;
6394 i.types[this_operand] |= BaseIndex;
6395
6396 /* Set the scale after setting the register (otherwise,
6397 i386_scale will complain) */
6398 if (cur_token.code == '+' || cur_token.code == '-')
6399 {
6400 char *str, sign = cur_token.code;
6401 intel_match_token (cur_token.code);
6402 if (cur_token.code != T_CONST)
6403 {
6404 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
6405 cur_token.str);
6406 return 0;
6407 }
6408 str = (char *) xmalloc (strlen (cur_token.str) + 2);
6409 strcpy (str + 1, cur_token.str);
6410 *str = sign;
6411 if (!i386_scale (str))
6412 return 0;
6413 free (str);
6414 }
6415 else if (!i386_scale (cur_token.str))
6416 return 0;
6417 intel_match_token (cur_token.code);
6418 }
6419
6420 /* No scaling. If this is a memory operand, the register is either a
6421 base register (first occurrence) or an index register (second
6422 occurrence). */
6423 else if (intel_parser.in_bracket && !(reg->reg_type & (SReg2 | SReg3)))
6424 {
6425
6426 if (!i.base_reg)
6427 i.base_reg = reg;
6428 else if (!i.index_reg)
6429 i.index_reg = reg;
6430 else
6431 {
6432 as_bad (_("Too many register references in memory operand"));
6433 return 0;
6434 }
6435
6436 i.types[this_operand] |= BaseIndex;
6437 }
6438
6439 /* Offset modifier. Add the register to the displacement string to be
6440 parsed as an immediate expression after we're done. */
6441 else if (intel_parser.in_offset)
6442 {
6443 as_warn (_("Using register names in OFFSET expressions is deprecated"));
6444 strcat (intel_parser.disp, reg->reg_name);
6445 }
6446
6447 /* It's neither base nor index nor offset. */
6448 else if (!intel_parser.is_mem)
6449 {
6450 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
6451 i.op[this_operand].regs = reg;
6452 i.reg_operands++;
6453 }
6454 else
6455 {
6456 as_bad (_("Invalid use of register"));
6457 return 0;
6458 }
6459
6460 /* Since registers are not part of the displacement string (except
6461 when we're parsing offset operands), we may need to remove any
6462 preceding '+' from the displacement string. */
6463 if (*intel_parser.disp != '\0'
6464 && !intel_parser.in_offset)
6465 {
6466 char *s = intel_parser.disp;
6467 s += strlen (s) - 1;
6468 if (*s == '+')
6469 *s = '\0';
6470 }
6471
6472 return 1;
6473 }
6474
6475 /* e11 BYTE
6476 | WORD
6477 | DWORD
6478 | FWORD
6479 | QWORD
6480 | TBYTE
6481 | OWORD
6482 | XMMWORD */
6483 case T_BYTE:
6484 case T_WORD:
6485 case T_DWORD:
6486 case T_FWORD:
6487 case T_QWORD:
6488 case T_TBYTE:
6489 case T_XMMWORD:
6490 intel_match_token (cur_token.code);
6491
6492 if (cur_token.code == T_PTR)
6493 return 1;
6494
6495 /* It must have been an identifier. */
6496 intel_putback_token ();
6497 cur_token.code = T_ID;
6498 /* FALLTHRU */
6499
6500 /* e11 id
6501 | constant */
6502 case T_ID:
6503 if (!intel_parser.in_offset && intel_parser.is_mem <= 0)
6504 {
6505 symbolS *symbolP;
6506
6507 /* The identifier represents a memory reference only if it's not
6508 preceded by an offset modifier and if it's not an equate. */
6509 symbolP = symbol_find(cur_token.str);
6510 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
6511 intel_parser.is_mem = 1;
6512 }
6513 /* FALLTHRU */
6514
6515 case T_CONST:
6516 case '-':
6517 case '+':
6518 {
6519 char *save_str, sign = 0;
6520
6521 /* Allow constants that start with `+' or `-'. */
6522 if (cur_token.code == '-' || cur_token.code == '+')
6523 {
6524 sign = cur_token.code;
6525 intel_match_token (cur_token.code);
6526 if (cur_token.code != T_CONST)
6527 {
6528 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
6529 cur_token.str);
6530 return 0;
6531 }
6532 }
6533
6534 save_str = (char *) xmalloc (strlen (cur_token.str) + 2);
6535 strcpy (save_str + !!sign, cur_token.str);
6536 if (sign)
6537 *save_str = sign;
6538
6539 /* Get the next token to check for register scaling. */
6540 intel_match_token (cur_token.code);
6541
6542 /* Check if this constant is a scaling factor for an index register. */
6543 if (cur_token.code == '*')
6544 {
6545 if (intel_match_token ('*') && cur_token.code == T_REG)
6546 {
6547 const reg_entry *reg = cur_token.reg;
6548
6549 if (!intel_parser.in_bracket)
6550 {
6551 as_bad (_("Register scaling only allowed in memory operands"));
6552 return 0;
6553 }
6554
6555 if (reg->reg_type & Reg16) /* Disallow things like [1*si]. */
6556 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
6557 else if (i.index_reg)
6558 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
6559
6560 /* The constant is followed by `* reg', so it must be
6561 a valid scale. */
6562 i.index_reg = reg;
6563 i.types[this_operand] |= BaseIndex;
6564
6565 /* Set the scale after setting the register (otherwise,
6566 i386_scale will complain) */
6567 if (!i386_scale (save_str))
6568 return 0;
6569 intel_match_token (T_REG);
6570
6571 /* Since registers are not part of the displacement
6572 string, we may need to remove any preceding '+' from
6573 the displacement string. */
6574 if (*intel_parser.disp != '\0')
6575 {
6576 char *s = intel_parser.disp;
6577 s += strlen (s) - 1;
6578 if (*s == '+')
6579 *s = '\0';
6580 }
6581
6582 free (save_str);
6583
6584 return 1;
6585 }
6586
6587 /* The constant was not used for register scaling. Since we have
6588 already consumed the token following `*' we now need to put it
6589 back in the stream. */
6590 intel_putback_token ();
6591 }
6592
6593 /* Add the constant to the displacement string. */
6594 strcat (intel_parser.disp, save_str);
6595 free (save_str);
6596
6597 return 1;
6598 }
6599 }
6600
6601 as_bad (_("Unrecognized token '%s'"), cur_token.str);
6602 return 0;
6603 }
6604
6605 /* Match the given token against cur_token. If they match, read the next
6606 token from the operand string. */
6607 static int
6608 intel_match_token (code)
6609 int code;
6610 {
6611 if (cur_token.code == code)
6612 {
6613 intel_get_token ();
6614 return 1;
6615 }
6616 else
6617 {
6618 as_bad (_("Unexpected token `%s'"), cur_token.str);
6619 return 0;
6620 }
6621 }
6622
6623 /* Read a new token from intel_parser.op_string and store it in cur_token. */
6624 static void
6625 intel_get_token ()
6626 {
6627 char *end_op;
6628 const reg_entry *reg;
6629 struct intel_token new_token;
6630
6631 new_token.code = T_NIL;
6632 new_token.reg = NULL;
6633 new_token.str = NULL;
6634
6635 /* Free the memory allocated to the previous token and move
6636 cur_token to prev_token. */
6637 if (prev_token.str)
6638 free (prev_token.str);
6639
6640 prev_token = cur_token;
6641
6642 /* Skip whitespace. */
6643 while (is_space_char (*intel_parser.op_string))
6644 intel_parser.op_string++;
6645
6646 /* Return an empty token if we find nothing else on the line. */
6647 if (*intel_parser.op_string == '\0')
6648 {
6649 cur_token = new_token;
6650 return;
6651 }
6652
6653 /* The new token cannot be larger than the remainder of the operand
6654 string. */
6655 new_token.str = (char *) xmalloc (strlen (intel_parser.op_string) + 1);
6656 new_token.str[0] = '\0';
6657
6658 if (strchr ("0123456789", *intel_parser.op_string))
6659 {
6660 char *p = new_token.str;
6661 char *q = intel_parser.op_string;
6662 new_token.code = T_CONST;
6663
6664 /* Allow any kind of identifier char to encompass floating point and
6665 hexadecimal numbers. */
6666 while (is_identifier_char (*q))
6667 *p++ = *q++;
6668 *p = '\0';
6669
6670 /* Recognize special symbol names [0-9][bf]. */
6671 if (strlen (intel_parser.op_string) == 2
6672 && (intel_parser.op_string[1] == 'b'
6673 || intel_parser.op_string[1] == 'f'))
6674 new_token.code = T_ID;
6675 }
6676
6677 else if ((*intel_parser.op_string == REGISTER_PREFIX || allow_naked_reg)
6678 && ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL))
6679 {
6680 new_token.code = T_REG;
6681 new_token.reg = reg;
6682
6683 if (*intel_parser.op_string == REGISTER_PREFIX)
6684 {
6685 new_token.str[0] = REGISTER_PREFIX;
6686 new_token.str[1] = '\0';
6687 }
6688
6689 strcat (new_token.str, reg->reg_name);
6690 }
6691
6692 else if (is_identifier_char (*intel_parser.op_string))
6693 {
6694 char *p = new_token.str;
6695 char *q = intel_parser.op_string;
6696
6697 /* A '.' or '$' followed by an identifier char is an identifier.
6698 Otherwise, it's operator '.' followed by an expression. */
6699 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
6700 {
6701 new_token.code = '.';
6702 new_token.str[0] = '.';
6703 new_token.str[1] = '\0';
6704 }
6705 else
6706 {
6707 while (is_identifier_char (*q) || *q == '@')
6708 *p++ = *q++;
6709 *p = '\0';
6710
6711 if (strcasecmp (new_token.str, "NOT") == 0)
6712 new_token.code = '~';
6713
6714 else if (strcasecmp (new_token.str, "MOD") == 0)
6715 new_token.code = '%';
6716
6717 else if (strcasecmp (new_token.str, "AND") == 0)
6718 new_token.code = '&';
6719
6720 else if (strcasecmp (new_token.str, "OR") == 0)
6721 new_token.code = '|';
6722
6723 else if (strcasecmp (new_token.str, "XOR") == 0)
6724 new_token.code = '^';
6725
6726 else if (strcasecmp (new_token.str, "SHL") == 0)
6727 new_token.code = T_SHL;
6728
6729 else if (strcasecmp (new_token.str, "SHR") == 0)
6730 new_token.code = T_SHR;
6731
6732 else if (strcasecmp (new_token.str, "BYTE") == 0)
6733 new_token.code = T_BYTE;
6734
6735 else if (strcasecmp (new_token.str, "WORD") == 0)
6736 new_token.code = T_WORD;
6737
6738 else if (strcasecmp (new_token.str, "DWORD") == 0)
6739 new_token.code = T_DWORD;
6740
6741 else if (strcasecmp (new_token.str, "FWORD") == 0)
6742 new_token.code = T_FWORD;
6743
6744 else if (strcasecmp (new_token.str, "QWORD") == 0)
6745 new_token.code = T_QWORD;
6746
6747 else if (strcasecmp (new_token.str, "TBYTE") == 0
6748 /* XXX remove (gcc still uses it) */
6749 || strcasecmp (new_token.str, "XWORD") == 0)
6750 new_token.code = T_TBYTE;
6751
6752 else if (strcasecmp (new_token.str, "XMMWORD") == 0
6753 || strcasecmp (new_token.str, "OWORD") == 0)
6754 new_token.code = T_XMMWORD;
6755
6756 else if (strcasecmp (new_token.str, "PTR") == 0)
6757 new_token.code = T_PTR;
6758
6759 else if (strcasecmp (new_token.str, "SHORT") == 0)
6760 new_token.code = T_SHORT;
6761
6762 else if (strcasecmp (new_token.str, "OFFSET") == 0)
6763 {
6764 new_token.code = T_OFFSET;
6765
6766 /* ??? This is not mentioned in the MASM grammar but gcc
6767 makes use of it with -mintel-syntax. OFFSET may be
6768 followed by FLAT: */
6769 if (strncasecmp (q, " FLAT:", 6) == 0)
6770 strcat (new_token.str, " FLAT:");
6771 }
6772
6773 /* ??? This is not mentioned in the MASM grammar. */
6774 else if (strcasecmp (new_token.str, "FLAT") == 0)
6775 {
6776 new_token.code = T_OFFSET;
6777 if (*q == ':')
6778 strcat (new_token.str, ":");
6779 else
6780 as_bad (_("`:' expected"));
6781 }
6782
6783 else
6784 new_token.code = T_ID;
6785 }
6786 }
6787
6788 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
6789 {
6790 new_token.code = *intel_parser.op_string;
6791 new_token.str[0] = *intel_parser.op_string;
6792 new_token.str[1] = '\0';
6793 }
6794
6795 else if (strchr ("<>", *intel_parser.op_string)
6796 && *intel_parser.op_string == *(intel_parser.op_string + 1))
6797 {
6798 new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
6799 new_token.str[0] = *intel_parser.op_string;
6800 new_token.str[1] = *intel_parser.op_string;
6801 new_token.str[2] = '\0';
6802 }
6803
6804 else
6805 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
6806
6807 intel_parser.op_string += strlen (new_token.str);
6808 cur_token = new_token;
6809 }
6810
6811 /* Put cur_token back into the token stream and make cur_token point to
6812 prev_token. */
6813 static void
6814 intel_putback_token ()
6815 {
6816 if (cur_token.code != T_NIL)
6817 {
6818 intel_parser.op_string -= strlen (cur_token.str);
6819 free (cur_token.str);
6820 }
6821 cur_token = prev_token;
6822
6823 /* Forget prev_token. */
6824 prev_token.code = T_NIL;
6825 prev_token.reg = NULL;
6826 prev_token.str = NULL;
6827 }
6828
6829 int
6830 tc_x86_regname_to_dw2regnum (const char *regname)
6831 {
6832 unsigned int regnum;
6833 unsigned int regnames_count;
6834 static const char *const regnames_32[] =
6835 {
6836 "eax", "ecx", "edx", "ebx",
6837 "esp", "ebp", "esi", "edi",
6838 "eip", "eflags", NULL,
6839 "st0", "st1", "st2", "st3",
6840 "st4", "st5", "st6", "st7",
6841 NULL, NULL,
6842 "xmm0", "xmm1", "xmm2", "xmm3",
6843 "xmm4", "xmm5", "xmm6", "xmm7",
6844 "mm0", "mm1", "mm2", "mm3",
6845 "mm4", "mm5", "mm6", "mm7"
6846 };
6847 static const char *const regnames_64[] =
6848 {
6849 "rax", "rdx", "rcx", "rbx",
6850 "rsi", "rdi", "rbp", "rsp",
6851 "r8", "r9", "r10", "r11",
6852 "r12", "r13", "r14", "r15",
6853 "rip",
6854 "xmm0", "xmm1", "xmm2", "xmm3",
6855 "xmm4", "xmm5", "xmm6", "xmm7",
6856 "xmm8", "xmm9", "xmm10", "xmm11",
6857 "xmm12", "xmm13", "xmm14", "xmm15",
6858 "st0", "st1", "st2", "st3",
6859 "st4", "st5", "st6", "st7",
6860 "mm0", "mm1", "mm2", "mm3",
6861 "mm4", "mm5", "mm6", "mm7"
6862 };
6863 const char *const *regnames;
6864
6865 if (flag_code == CODE_64BIT)
6866 {
6867 regnames = regnames_64;
6868 regnames_count = ARRAY_SIZE (regnames_64);
6869 }
6870 else
6871 {
6872 regnames = regnames_32;
6873 regnames_count = ARRAY_SIZE (regnames_32);
6874 }
6875
6876 for (regnum = 0; regnum < regnames_count; regnum++)
6877 if (regnames[regnum] != NULL
6878 && strcmp (regname, regnames[regnum]) == 0)
6879 return regnum;
6880
6881 return -1;
6882 }
6883
6884 void
6885 tc_x86_frame_initial_instructions (void)
6886 {
6887 static unsigned int sp_regno;
6888
6889 if (!sp_regno)
6890 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
6891 ? "rsp" : "esp");
6892
6893 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
6894 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
6895 }
6896
6897 int
6898 i386_elf_section_type (const char *str, size_t len)
6899 {
6900 if (flag_code == CODE_64BIT
6901 && len == sizeof ("unwind") - 1
6902 && strncmp (str, "unwind", 6) == 0)
6903 return SHT_X86_64_UNWIND;
6904
6905 return -1;
6906 }
6907
6908 #ifdef TE_PE
6909 void
6910 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
6911 {
6912 expressionS expr;
6913
6914 expr.X_op = O_secrel;
6915 expr.X_add_symbol = symbol;
6916 expr.X_add_number = 0;
6917 emit_expr (&expr, size);
6918 }
6919 #endif
This page took 0.175295 seconds and 4 git commands to generate.