b69130a71ca62f2b32472a50b4efeb60253c029a
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2016 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 #define XMMWORD_MNEM_SUFFIX 'x'
85 #define YMMWORD_MNEM_SUFFIX 'y'
86 #define ZMMWORD_MNEM_SUFFIX 'z'
87 /* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91 #define END_OF_INSN '\0'
92
93 /*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100 typedef struct
101 {
102 const insn_template *start;
103 const insn_template *end;
104 }
105 templates;
106
107 /* 386 operand encoding bytes: see 386 book for details of this. */
108 typedef struct
109 {
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113 }
114 modrm_byte;
115
116 /* x86-64 extension prefix. */
117 typedef int rex_byte;
118
119 /* 386 opcode byte to code indirect addressing. */
120 typedef struct
121 {
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125 }
126 sib_byte;
127
128 /* x86 arch names, types and features */
129 typedef struct
130 {
131 const char *name; /* arch name */
132 unsigned int len; /* arch string length */
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
135 unsigned int skip; /* show_arch should skip this. */
136 }
137 arch_entry;
138
139 /* Used to turn off indicated flags. */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 i386_cpu_flags flags; /* cpu feature flags */
145 }
146 noarch_entry;
147
148 static void update_code_flag (int, int);
149 static void set_code_flag (int);
150 static void set_16bit_gcc_code_flag (int);
151 static void set_intel_syntax (int);
152 static void set_intel_mnemonic (int);
153 static void set_allow_index_reg (int);
154 static void set_check (int);
155 static void set_cpu_arch (int);
156 #ifdef TE_PE
157 static void pe_directive_secrel (int);
158 #endif
159 static void signed_cons (int);
160 static char *output_invalid (int c);
161 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
162 const char *);
163 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
164 const char *);
165 static int i386_att_operand (char *);
166 static int i386_intel_operand (char *, int);
167 static int i386_intel_simplify (expressionS *);
168 static int i386_intel_parse_name (const char *, expressionS *);
169 static const reg_entry *parse_register (char *, char **);
170 static char *parse_insn (char *, char *);
171 static char *parse_operands (char *, const char *);
172 static void swap_operands (void);
173 static void swap_2_operands (int, int);
174 static void optimize_imm (void);
175 static void optimize_disp (void);
176 static const insn_template *match_template (void);
177 static int check_string (void);
178 static int process_suffix (void);
179 static int check_byte_reg (void);
180 static int check_long_reg (void);
181 static int check_qword_reg (void);
182 static int check_word_reg (void);
183 static int finalize_imm (void);
184 static int process_operands (void);
185 static const seg_entry *build_modrm_byte (void);
186 static void output_insn (void);
187 static void output_imm (fragS *, offsetT);
188 static void output_disp (fragS *, offsetT);
189 #ifndef I386COFF
190 static void s_bss (int);
191 #endif
192 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
193 static void handle_large_common (int small ATTRIBUTE_UNUSED);
194 #endif
195
196 static const char *default_arch = DEFAULT_ARCH;
197
198 /* This struct describes rounding control and SAE in the instruction. */
199 struct RC_Operation
200 {
201 enum rc_type
202 {
203 rne = 0,
204 rd,
205 ru,
206 rz,
207 saeonly
208 } type;
209 int operand;
210 };
211
212 static struct RC_Operation rc_op;
213
214 /* The struct describes masking, applied to OPERAND in the instruction.
215 MASK is a pointer to the corresponding mask register. ZEROING tells
216 whether merging or zeroing mask is used. */
217 struct Mask_Operation
218 {
219 const reg_entry *mask;
220 unsigned int zeroing;
221 /* The operand where this operation is associated. */
222 int operand;
223 };
224
225 static struct Mask_Operation mask_op;
226
227 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
228 broadcast factor. */
229 struct Broadcast_Operation
230 {
231 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
232 int type;
233
234 /* Index of broadcasted operand. */
235 int operand;
236 };
237
238 static struct Broadcast_Operation broadcast_op;
239
240 /* VEX prefix. */
241 typedef struct
242 {
243 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
244 unsigned char bytes[4];
245 unsigned int length;
246 /* Destination or source register specifier. */
247 const reg_entry *register_specifier;
248 } vex_prefix;
249
250 /* 'md_assemble ()' gathers together information and puts it into a
251 i386_insn. */
252
253 union i386_op
254 {
255 expressionS *disps;
256 expressionS *imms;
257 const reg_entry *regs;
258 };
259
260 enum i386_error
261 {
262 operand_size_mismatch,
263 operand_type_mismatch,
264 register_type_mismatch,
265 number_of_operands_mismatch,
266 invalid_instruction_suffix,
267 bad_imm4,
268 old_gcc_only,
269 unsupported_with_intel_mnemonic,
270 unsupported_syntax,
271 unsupported,
272 invalid_vsib_address,
273 invalid_vector_register_set,
274 unsupported_vector_index_register,
275 unsupported_broadcast,
276 broadcast_not_on_src_operand,
277 broadcast_needed,
278 unsupported_masking,
279 mask_not_on_destination,
280 no_default_mask,
281 unsupported_rc_sae,
282 rc_sae_operand_not_last_imm,
283 invalid_register_operand,
284 try_vector_disp8
285 };
286
287 struct _i386_insn
288 {
289 /* TM holds the template for the insn were currently assembling. */
290 insn_template tm;
291
292 /* SUFFIX holds the instruction size suffix for byte, word, dword
293 or qword, if given. */
294 char suffix;
295
296 /* OPERANDS gives the number of given operands. */
297 unsigned int operands;
298
299 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
300 of given register, displacement, memory operands and immediate
301 operands. */
302 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
303
304 /* TYPES [i] is the type (see above #defines) which tells us how to
305 use OP[i] for the corresponding operand. */
306 i386_operand_type types[MAX_OPERANDS];
307
308 /* Displacement expression, immediate expression, or register for each
309 operand. */
310 union i386_op op[MAX_OPERANDS];
311
312 /* Flags for operands. */
313 unsigned int flags[MAX_OPERANDS];
314 #define Operand_PCrel 1
315
316 /* Relocation type for operand */
317 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
318
319 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
320 the base index byte below. */
321 const reg_entry *base_reg;
322 const reg_entry *index_reg;
323 unsigned int log2_scale_factor;
324
325 /* SEG gives the seg_entries of this insn. They are zero unless
326 explicit segment overrides are given. */
327 const seg_entry *seg[2];
328
329 /* PREFIX holds all the given prefix opcodes (usually null).
330 PREFIXES is the number of prefix opcodes. */
331 unsigned int prefixes;
332 unsigned char prefix[MAX_PREFIXES];
333
334 /* RM and SIB are the modrm byte and the sib byte where the
335 addressing modes of this insn are encoded. */
336 modrm_byte rm;
337 rex_byte rex;
338 rex_byte vrex;
339 sib_byte sib;
340 vex_prefix vex;
341
342 /* Masking attributes. */
343 struct Mask_Operation *mask;
344
345 /* Rounding control and SAE attributes. */
346 struct RC_Operation *rounding;
347
348 /* Broadcasting attributes. */
349 struct Broadcast_Operation *broadcast;
350
351 /* Compressed disp8*N attribute. */
352 unsigned int memshift;
353
354 /* Swap operand in encoding. */
355 unsigned int swap_operand;
356
357 /* Prefer 8bit or 32bit displacement in encoding. */
358 enum
359 {
360 disp_encoding_default = 0,
361 disp_encoding_8bit,
362 disp_encoding_32bit
363 } disp_encoding;
364
365 /* REP prefix. */
366 const char *rep_prefix;
367
368 /* HLE prefix. */
369 const char *hle_prefix;
370
371 /* Have BND prefix. */
372 const char *bnd_prefix;
373
374 /* Need VREX to support upper 16 registers. */
375 int need_vrex;
376
377 /* Error message. */
378 enum i386_error error;
379 };
380
381 typedef struct _i386_insn i386_insn;
382
383 /* Link RC type with corresponding string, that'll be looked for in
384 asm. */
385 struct RC_name
386 {
387 enum rc_type type;
388 const char *name;
389 unsigned int len;
390 };
391
392 static const struct RC_name RC_NamesTable[] =
393 {
394 { rne, STRING_COMMA_LEN ("rn-sae") },
395 { rd, STRING_COMMA_LEN ("rd-sae") },
396 { ru, STRING_COMMA_LEN ("ru-sae") },
397 { rz, STRING_COMMA_LEN ("rz-sae") },
398 { saeonly, STRING_COMMA_LEN ("sae") },
399 };
400
401 /* List of chars besides those in app.c:symbol_chars that can start an
402 operand. Used to prevent the scrubber eating vital white-space. */
403 const char extra_symbol_chars[] = "*%-([{"
404 #ifdef LEX_AT
405 "@"
406 #endif
407 #ifdef LEX_QM
408 "?"
409 #endif
410 ;
411
412 #if (defined (TE_I386AIX) \
413 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
414 && !defined (TE_GNU) \
415 && !defined (TE_LINUX) \
416 && !defined (TE_NACL) \
417 && !defined (TE_NETWARE) \
418 && !defined (TE_FreeBSD) \
419 && !defined (TE_DragonFly) \
420 && !defined (TE_NetBSD)))
421 /* This array holds the chars that always start a comment. If the
422 pre-processor is disabled, these aren't very useful. The option
423 --divide will remove '/' from this list. */
424 const char *i386_comment_chars = "#/";
425 #define SVR4_COMMENT_CHARS 1
426 #define PREFIX_SEPARATOR '\\'
427
428 #else
429 const char *i386_comment_chars = "#";
430 #define PREFIX_SEPARATOR '/'
431 #endif
432
433 /* This array holds the chars that only start a comment at the beginning of
434 a line. If the line seems to have the form '# 123 filename'
435 .line and .file directives will appear in the pre-processed output.
436 Note that input_file.c hand checks for '#' at the beginning of the
437 first line of the input file. This is because the compiler outputs
438 #NO_APP at the beginning of its output.
439 Also note that comments started like this one will always work if
440 '/' isn't otherwise defined. */
441 const char line_comment_chars[] = "#/";
442
443 const char line_separator_chars[] = ";";
444
445 /* Chars that can be used to separate mant from exp in floating point
446 nums. */
447 const char EXP_CHARS[] = "eE";
448
449 /* Chars that mean this number is a floating point constant
450 As in 0f12.456
451 or 0d1.2345e12. */
452 const char FLT_CHARS[] = "fFdDxX";
453
454 /* Tables for lexical analysis. */
455 static char mnemonic_chars[256];
456 static char register_chars[256];
457 static char operand_chars[256];
458 static char identifier_chars[256];
459 static char digit_chars[256];
460
461 /* Lexical macros. */
462 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
463 #define is_operand_char(x) (operand_chars[(unsigned char) x])
464 #define is_register_char(x) (register_chars[(unsigned char) x])
465 #define is_space_char(x) ((x) == ' ')
466 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
467 #define is_digit_char(x) (digit_chars[(unsigned char) x])
468
469 /* All non-digit non-letter characters that may occur in an operand. */
470 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
471
472 /* md_assemble() always leaves the strings it's passed unaltered. To
473 effect this we maintain a stack of saved characters that we've smashed
474 with '\0's (indicating end of strings for various sub-fields of the
475 assembler instruction). */
476 static char save_stack[32];
477 static char *save_stack_p;
478 #define END_STRING_AND_SAVE(s) \
479 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
480 #define RESTORE_END_STRING(s) \
481 do { *(s) = *--save_stack_p; } while (0)
482
483 /* The instruction we're assembling. */
484 static i386_insn i;
485
486 /* Possible templates for current insn. */
487 static const templates *current_templates;
488
489 /* Per instruction expressionS buffers: max displacements & immediates. */
490 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
491 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
492
493 /* Current operand we are working on. */
494 static int this_operand = -1;
495
496 /* We support four different modes. FLAG_CODE variable is used to distinguish
497 these. */
498
499 enum flag_code {
500 CODE_32BIT,
501 CODE_16BIT,
502 CODE_64BIT };
503
504 static enum flag_code flag_code;
505 static unsigned int object_64bit;
506 static unsigned int disallow_64bit_reloc;
507 static int use_rela_relocations = 0;
508
509 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
510 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
511 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
512
513 /* The ELF ABI to use. */
514 enum x86_elf_abi
515 {
516 I386_ABI,
517 X86_64_ABI,
518 X86_64_X32_ABI
519 };
520
521 static enum x86_elf_abi x86_elf_abi = I386_ABI;
522 #endif
523
524 #if defined (TE_PE) || defined (TE_PEP)
525 /* Use big object file format. */
526 static int use_big_obj = 0;
527 #endif
528
529 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
530 /* 1 if generating code for a shared library. */
531 static int shared = 0;
532 #endif
533
534 /* 1 for intel syntax,
535 0 if att syntax. */
536 static int intel_syntax = 0;
537
538 /* 1 for Intel64 ISA,
539 0 if AMD64 ISA. */
540 static int intel64;
541
542 /* 1 for intel mnemonic,
543 0 if att mnemonic. */
544 static int intel_mnemonic = !SYSV386_COMPAT;
545
546 /* 1 if support old (<= 2.8.1) versions of gcc. */
547 static int old_gcc = OLDGCC_COMPAT;
548
549 /* 1 if pseudo registers are permitted. */
550 static int allow_pseudo_reg = 0;
551
552 /* 1 if register prefix % not required. */
553 static int allow_naked_reg = 0;
554
555 /* 1 if the assembler should add BND prefix for all control-tranferring
556 instructions supporting it, even if this prefix wasn't specified
557 explicitly. */
558 static int add_bnd_prefix = 0;
559
560 /* 1 if pseudo index register, eiz/riz, is allowed . */
561 static int allow_index_reg = 0;
562
563 /* 1 if the assembler should ignore LOCK prefix, even if it was
564 specified explicitly. */
565 static int omit_lock_prefix = 0;
566
567 /* 1 if the assembler should encode lfence, mfence, and sfence as
568 "lock addl $0, (%{re}sp)". */
569 static int avoid_fence = 0;
570
571 /* 1 if the assembler should generate relax relocations. */
572
573 static int generate_relax_relocations
574 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
575
576 static enum check_kind
577 {
578 check_none = 0,
579 check_warning,
580 check_error
581 }
582 sse_check, operand_check = check_warning;
583
584 /* Register prefix used for error message. */
585 static const char *register_prefix = "%";
586
587 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
588 leave, push, and pop instructions so that gcc has the same stack
589 frame as in 32 bit mode. */
590 static char stackop_size = '\0';
591
592 /* Non-zero to optimize code alignment. */
593 int optimize_align_code = 1;
594
595 /* Non-zero to quieten some warnings. */
596 static int quiet_warnings = 0;
597
598 /* CPU name. */
599 static const char *cpu_arch_name = NULL;
600 static char *cpu_sub_arch_name = NULL;
601
602 /* CPU feature flags. */
603 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
604
605 /* If we have selected a cpu we are generating instructions for. */
606 static int cpu_arch_tune_set = 0;
607
608 /* Cpu we are generating instructions for. */
609 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
610
611 /* CPU feature flags of cpu we are generating instructions for. */
612 static i386_cpu_flags cpu_arch_tune_flags;
613
614 /* CPU instruction set architecture used. */
615 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
616
617 /* CPU feature flags of instruction set architecture used. */
618 i386_cpu_flags cpu_arch_isa_flags;
619
620 /* If set, conditional jumps are not automatically promoted to handle
621 larger than a byte offset. */
622 static unsigned int no_cond_jump_promotion = 0;
623
624 /* Encode SSE instructions with VEX prefix. */
625 static unsigned int sse2avx;
626
627 /* Encode scalar AVX instructions with specific vector length. */
628 static enum
629 {
630 vex128 = 0,
631 vex256
632 } avxscalar;
633
634 /* Encode scalar EVEX LIG instructions with specific vector length. */
635 static enum
636 {
637 evexl128 = 0,
638 evexl256,
639 evexl512
640 } evexlig;
641
642 /* Encode EVEX WIG instructions with specific evex.w. */
643 static enum
644 {
645 evexw0 = 0,
646 evexw1
647 } evexwig;
648
649 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
650 static enum rc_type evexrcig = rne;
651
652 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
653 static symbolS *GOT_symbol;
654
655 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
656 unsigned int x86_dwarf2_return_column;
657
658 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
659 int x86_cie_data_alignment;
660
661 /* Interface to relax_segment.
662 There are 3 major relax states for 386 jump insns because the
663 different types of jumps add different sizes to frags when we're
664 figuring out what sort of jump to choose to reach a given label. */
665
666 /* Types. */
667 #define UNCOND_JUMP 0
668 #define COND_JUMP 1
669 #define COND_JUMP86 2
670
671 /* Sizes. */
672 #define CODE16 1
673 #define SMALL 0
674 #define SMALL16 (SMALL | CODE16)
675 #define BIG 2
676 #define BIG16 (BIG | CODE16)
677
678 #ifndef INLINE
679 #ifdef __GNUC__
680 #define INLINE __inline__
681 #else
682 #define INLINE
683 #endif
684 #endif
685
686 #define ENCODE_RELAX_STATE(type, size) \
687 ((relax_substateT) (((type) << 2) | (size)))
688 #define TYPE_FROM_RELAX_STATE(s) \
689 ((s) >> 2)
690 #define DISP_SIZE_FROM_RELAX_STATE(s) \
691 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
692
693 /* This table is used by relax_frag to promote short jumps to long
694 ones where necessary. SMALL (short) jumps may be promoted to BIG
695 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
696 don't allow a short jump in a 32 bit code segment to be promoted to
697 a 16 bit offset jump because it's slower (requires data size
698 prefix), and doesn't work, unless the destination is in the bottom
699 64k of the code segment (The top 16 bits of eip are zeroed). */
700
701 const relax_typeS md_relax_table[] =
702 {
703 /* The fields are:
704 1) most positive reach of this state,
705 2) most negative reach of this state,
706 3) how many bytes this mode will have in the variable part of the frag
707 4) which index into the table to try if we can't fit into this one. */
708
709 /* UNCOND_JUMP states. */
710 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
711 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
712 /* dword jmp adds 4 bytes to frag:
713 0 extra opcode bytes, 4 displacement bytes. */
714 {0, 0, 4, 0},
715 /* word jmp adds 2 byte2 to frag:
716 0 extra opcode bytes, 2 displacement bytes. */
717 {0, 0, 2, 0},
718
719 /* COND_JUMP states. */
720 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
721 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
722 /* dword conditionals adds 5 bytes to frag:
723 1 extra opcode byte, 4 displacement bytes. */
724 {0, 0, 5, 0},
725 /* word conditionals add 3 bytes to frag:
726 1 extra opcode byte, 2 displacement bytes. */
727 {0, 0, 3, 0},
728
729 /* COND_JUMP86 states. */
730 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
731 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
732 /* dword conditionals adds 5 bytes to frag:
733 1 extra opcode byte, 4 displacement bytes. */
734 {0, 0, 5, 0},
735 /* word conditionals add 4 bytes to frag:
736 1 displacement byte and a 3 byte long branch insn. */
737 {0, 0, 4, 0}
738 };
739
740 static const arch_entry cpu_arch[] =
741 {
742 /* Do not replace the first two entries - i386_target_format()
743 relies on them being there in this order. */
744 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
745 CPU_GENERIC32_FLAGS, 0 },
746 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
747 CPU_GENERIC64_FLAGS, 0 },
748 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
749 CPU_NONE_FLAGS, 0 },
750 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
751 CPU_I186_FLAGS, 0 },
752 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
753 CPU_I286_FLAGS, 0 },
754 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
755 CPU_I386_FLAGS, 0 },
756 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
757 CPU_I486_FLAGS, 0 },
758 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
759 CPU_I586_FLAGS, 0 },
760 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
761 CPU_I686_FLAGS, 0 },
762 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
763 CPU_I586_FLAGS, 0 },
764 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
765 CPU_PENTIUMPRO_FLAGS, 0 },
766 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
767 CPU_P2_FLAGS, 0 },
768 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
769 CPU_P3_FLAGS, 0 },
770 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
771 CPU_P4_FLAGS, 0 },
772 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
773 CPU_CORE_FLAGS, 0 },
774 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
775 CPU_NOCONA_FLAGS, 0 },
776 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
777 CPU_CORE_FLAGS, 1 },
778 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
779 CPU_CORE_FLAGS, 0 },
780 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
781 CPU_CORE2_FLAGS, 1 },
782 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
783 CPU_CORE2_FLAGS, 0 },
784 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
785 CPU_COREI7_FLAGS, 0 },
786 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
787 CPU_L1OM_FLAGS, 0 },
788 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
789 CPU_K1OM_FLAGS, 0 },
790 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
791 CPU_IAMCU_FLAGS, 0 },
792 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
793 CPU_K6_FLAGS, 0 },
794 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
795 CPU_K6_2_FLAGS, 0 },
796 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
797 CPU_ATHLON_FLAGS, 0 },
798 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
799 CPU_K8_FLAGS, 1 },
800 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
801 CPU_K8_FLAGS, 0 },
802 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
803 CPU_K8_FLAGS, 0 },
804 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
805 CPU_AMDFAM10_FLAGS, 0 },
806 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
807 CPU_BDVER1_FLAGS, 0 },
808 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
809 CPU_BDVER2_FLAGS, 0 },
810 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
811 CPU_BDVER3_FLAGS, 0 },
812 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
813 CPU_BDVER4_FLAGS, 0 },
814 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
815 CPU_ZNVER1_FLAGS, 0 },
816 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
817 CPU_BTVER1_FLAGS, 0 },
818 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
819 CPU_BTVER2_FLAGS, 0 },
820 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
821 CPU_8087_FLAGS, 0 },
822 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
823 CPU_287_FLAGS, 0 },
824 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
825 CPU_387_FLAGS, 0 },
826 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
827 CPU_687_FLAGS, 0 },
828 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
829 CPU_MMX_FLAGS, 0 },
830 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
831 CPU_SSE_FLAGS, 0 },
832 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
833 CPU_SSE2_FLAGS, 0 },
834 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
835 CPU_SSE3_FLAGS, 0 },
836 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
837 CPU_SSSE3_FLAGS, 0 },
838 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
839 CPU_SSE4_1_FLAGS, 0 },
840 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
841 CPU_SSE4_2_FLAGS, 0 },
842 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
843 CPU_SSE4_2_FLAGS, 0 },
844 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
845 CPU_AVX_FLAGS, 0 },
846 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
847 CPU_AVX2_FLAGS, 0 },
848 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
849 CPU_AVX512F_FLAGS, 0 },
850 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
851 CPU_AVX512CD_FLAGS, 0 },
852 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
853 CPU_AVX512ER_FLAGS, 0 },
854 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
855 CPU_AVX512PF_FLAGS, 0 },
856 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
857 CPU_AVX512DQ_FLAGS, 0 },
858 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
859 CPU_AVX512BW_FLAGS, 0 },
860 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
861 CPU_AVX512VL_FLAGS, 0 },
862 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
863 CPU_VMX_FLAGS, 0 },
864 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
865 CPU_VMFUNC_FLAGS, 0 },
866 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
867 CPU_SMX_FLAGS, 0 },
868 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
869 CPU_XSAVE_FLAGS, 0 },
870 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
871 CPU_XSAVEOPT_FLAGS, 0 },
872 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
873 CPU_XSAVEC_FLAGS, 0 },
874 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
875 CPU_XSAVES_FLAGS, 0 },
876 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
877 CPU_AES_FLAGS, 0 },
878 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
879 CPU_PCLMUL_FLAGS, 0 },
880 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
881 CPU_PCLMUL_FLAGS, 1 },
882 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
883 CPU_FSGSBASE_FLAGS, 0 },
884 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
885 CPU_RDRND_FLAGS, 0 },
886 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
887 CPU_F16C_FLAGS, 0 },
888 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
889 CPU_BMI2_FLAGS, 0 },
890 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
891 CPU_FMA_FLAGS, 0 },
892 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
893 CPU_FMA4_FLAGS, 0 },
894 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
895 CPU_XOP_FLAGS, 0 },
896 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
897 CPU_LWP_FLAGS, 0 },
898 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
899 CPU_MOVBE_FLAGS, 0 },
900 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
901 CPU_CX16_FLAGS, 0 },
902 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
903 CPU_EPT_FLAGS, 0 },
904 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
905 CPU_LZCNT_FLAGS, 0 },
906 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
907 CPU_HLE_FLAGS, 0 },
908 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
909 CPU_RTM_FLAGS, 0 },
910 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
911 CPU_INVPCID_FLAGS, 0 },
912 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
913 CPU_CLFLUSH_FLAGS, 0 },
914 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
915 CPU_NOP_FLAGS, 0 },
916 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
917 CPU_SYSCALL_FLAGS, 0 },
918 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
919 CPU_RDTSCP_FLAGS, 0 },
920 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
921 CPU_3DNOW_FLAGS, 0 },
922 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
923 CPU_3DNOWA_FLAGS, 0 },
924 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
925 CPU_PADLOCK_FLAGS, 0 },
926 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
927 CPU_SVME_FLAGS, 1 },
928 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
929 CPU_SVME_FLAGS, 0 },
930 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
931 CPU_SSE4A_FLAGS, 0 },
932 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
933 CPU_ABM_FLAGS, 0 },
934 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
935 CPU_BMI_FLAGS, 0 },
936 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
937 CPU_TBM_FLAGS, 0 },
938 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
939 CPU_ADX_FLAGS, 0 },
940 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
941 CPU_RDSEED_FLAGS, 0 },
942 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
943 CPU_PRFCHW_FLAGS, 0 },
944 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
945 CPU_SMAP_FLAGS, 0 },
946 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
947 CPU_MPX_FLAGS, 0 },
948 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
949 CPU_SHA_FLAGS, 0 },
950 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
951 CPU_CLFLUSHOPT_FLAGS, 0 },
952 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
953 CPU_PREFETCHWT1_FLAGS, 0 },
954 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
955 CPU_SE1_FLAGS, 0 },
956 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
957 CPU_CLWB_FLAGS, 0 },
958 { STRING_COMMA_LEN (".pcommit"), PROCESSOR_UNKNOWN,
959 CPU_PCOMMIT_FLAGS, 0 },
960 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
961 CPU_AVX512IFMA_FLAGS, 0 },
962 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
963 CPU_AVX512VBMI_FLAGS, 0 },
964 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
965 CPU_CLZERO_FLAGS, 0 },
966 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
967 CPU_MWAITX_FLAGS, 0 },
968 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
969 CPU_OSPKE_FLAGS, 0 },
970 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
971 CPU_RDPID_FLAGS, 0 },
972 };
973
974 static const noarch_entry cpu_noarch[] =
975 {
976 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
977 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
978 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
979 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
980 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
981 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
982 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
983 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
984 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
985 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
986 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
987 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
988 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
989 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
990 };
991
992 #ifdef I386COFF
993 /* Like s_lcomm_internal in gas/read.c but the alignment string
994 is allowed to be optional. */
995
996 static symbolS *
997 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
998 {
999 addressT align = 0;
1000
1001 SKIP_WHITESPACE ();
1002
1003 if (needs_align
1004 && *input_line_pointer == ',')
1005 {
1006 align = parse_align (needs_align - 1);
1007
1008 if (align == (addressT) -1)
1009 return NULL;
1010 }
1011 else
1012 {
1013 if (size >= 8)
1014 align = 3;
1015 else if (size >= 4)
1016 align = 2;
1017 else if (size >= 2)
1018 align = 1;
1019 else
1020 align = 0;
1021 }
1022
1023 bss_alloc (symbolP, size, align);
1024 return symbolP;
1025 }
1026
1027 static void
1028 pe_lcomm (int needs_align)
1029 {
1030 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1031 }
1032 #endif
1033
1034 const pseudo_typeS md_pseudo_table[] =
1035 {
1036 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1037 {"align", s_align_bytes, 0},
1038 #else
1039 {"align", s_align_ptwo, 0},
1040 #endif
1041 {"arch", set_cpu_arch, 0},
1042 #ifndef I386COFF
1043 {"bss", s_bss, 0},
1044 #else
1045 {"lcomm", pe_lcomm, 1},
1046 #endif
1047 {"ffloat", float_cons, 'f'},
1048 {"dfloat", float_cons, 'd'},
1049 {"tfloat", float_cons, 'x'},
1050 {"value", cons, 2},
1051 {"slong", signed_cons, 4},
1052 {"noopt", s_ignore, 0},
1053 {"optim", s_ignore, 0},
1054 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1055 {"code16", set_code_flag, CODE_16BIT},
1056 {"code32", set_code_flag, CODE_32BIT},
1057 {"code64", set_code_flag, CODE_64BIT},
1058 {"intel_syntax", set_intel_syntax, 1},
1059 {"att_syntax", set_intel_syntax, 0},
1060 {"intel_mnemonic", set_intel_mnemonic, 1},
1061 {"att_mnemonic", set_intel_mnemonic, 0},
1062 {"allow_index_reg", set_allow_index_reg, 1},
1063 {"disallow_index_reg", set_allow_index_reg, 0},
1064 {"sse_check", set_check, 0},
1065 {"operand_check", set_check, 1},
1066 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1067 {"largecomm", handle_large_common, 0},
1068 #else
1069 {"file", (void (*) (int)) dwarf2_directive_file, 0},
1070 {"loc", dwarf2_directive_loc, 0},
1071 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1072 #endif
1073 #ifdef TE_PE
1074 {"secrel32", pe_directive_secrel, 0},
1075 #endif
1076 {0, 0, 0}
1077 };
1078
1079 /* For interface with expression (). */
1080 extern char *input_line_pointer;
1081
1082 /* Hash table for instruction mnemonic lookup. */
1083 static struct hash_control *op_hash;
1084
1085 /* Hash table for register lookup. */
1086 static struct hash_control *reg_hash;
1087 \f
1088 void
1089 i386_align_code (fragS *fragP, int count)
1090 {
1091 /* Various efficient no-op patterns for aligning code labels.
1092 Note: Don't try to assemble the instructions in the comments.
1093 0L and 0w are not legal. */
1094 static const unsigned char f32_1[] =
1095 {0x90}; /* nop */
1096 static const unsigned char f32_2[] =
1097 {0x66,0x90}; /* xchg %ax,%ax */
1098 static const unsigned char f32_3[] =
1099 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1100 static const unsigned char f32_4[] =
1101 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1102 static const unsigned char f32_5[] =
1103 {0x90, /* nop */
1104 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1105 static const unsigned char f32_6[] =
1106 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1107 static const unsigned char f32_7[] =
1108 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1109 static const unsigned char f32_8[] =
1110 {0x90, /* nop */
1111 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1112 static const unsigned char f32_9[] =
1113 {0x89,0xf6, /* movl %esi,%esi */
1114 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1115 static const unsigned char f32_10[] =
1116 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1117 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1118 static const unsigned char f32_11[] =
1119 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1120 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1121 static const unsigned char f32_12[] =
1122 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1123 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1124 static const unsigned char f32_13[] =
1125 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1126 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1127 static const unsigned char f32_14[] =
1128 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1129 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1130 static const unsigned char f16_3[] =
1131 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1132 static const unsigned char f16_4[] =
1133 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1134 static const unsigned char f16_5[] =
1135 {0x90, /* nop */
1136 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1137 static const unsigned char f16_6[] =
1138 {0x89,0xf6, /* mov %si,%si */
1139 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1140 static const unsigned char f16_7[] =
1141 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1142 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1143 static const unsigned char f16_8[] =
1144 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1145 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1146 static const unsigned char jump_31[] =
1147 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1148 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1149 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1150 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1151 static const unsigned char *const f32_patt[] = {
1152 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1153 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1154 };
1155 static const unsigned char *const f16_patt[] = {
1156 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1157 };
1158 /* nopl (%[re]ax) */
1159 static const unsigned char alt_3[] =
1160 {0x0f,0x1f,0x00};
1161 /* nopl 0(%[re]ax) */
1162 static const unsigned char alt_4[] =
1163 {0x0f,0x1f,0x40,0x00};
1164 /* nopl 0(%[re]ax,%[re]ax,1) */
1165 static const unsigned char alt_5[] =
1166 {0x0f,0x1f,0x44,0x00,0x00};
1167 /* nopw 0(%[re]ax,%[re]ax,1) */
1168 static const unsigned char alt_6[] =
1169 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1170 /* nopl 0L(%[re]ax) */
1171 static const unsigned char alt_7[] =
1172 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1173 /* nopl 0L(%[re]ax,%[re]ax,1) */
1174 static const unsigned char alt_8[] =
1175 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1176 /* nopw 0L(%[re]ax,%[re]ax,1) */
1177 static const unsigned char alt_9[] =
1178 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1179 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1180 static const unsigned char alt_10[] =
1181 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1182 static const unsigned char *const alt_patt[] = {
1183 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1184 alt_9, alt_10
1185 };
1186
1187 /* Only align for at least a positive non-zero boundary. */
1188 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1189 return;
1190
1191 /* We need to decide which NOP sequence to use for 32bit and
1192 64bit. When -mtune= is used:
1193
1194 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1195 PROCESSOR_GENERIC32, f32_patt will be used.
1196 2. For the rest, alt_patt will be used.
1197
1198 When -mtune= isn't used, alt_patt will be used if
1199 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1200 be used.
1201
1202 When -march= or .arch is used, we can't use anything beyond
1203 cpu_arch_isa_flags. */
1204
1205 if (flag_code == CODE_16BIT)
1206 {
1207 if (count > 8)
1208 {
1209 memcpy (fragP->fr_literal + fragP->fr_fix,
1210 jump_31, count);
1211 /* Adjust jump offset. */
1212 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1213 }
1214 else
1215 memcpy (fragP->fr_literal + fragP->fr_fix,
1216 f16_patt[count - 1], count);
1217 }
1218 else
1219 {
1220 const unsigned char *const *patt = NULL;
1221
1222 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1223 {
1224 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1225 switch (cpu_arch_tune)
1226 {
1227 case PROCESSOR_UNKNOWN:
1228 /* We use cpu_arch_isa_flags to check if we SHOULD
1229 optimize with nops. */
1230 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1231 patt = alt_patt;
1232 else
1233 patt = f32_patt;
1234 break;
1235 case PROCESSOR_PENTIUM4:
1236 case PROCESSOR_NOCONA:
1237 case PROCESSOR_CORE:
1238 case PROCESSOR_CORE2:
1239 case PROCESSOR_COREI7:
1240 case PROCESSOR_L1OM:
1241 case PROCESSOR_K1OM:
1242 case PROCESSOR_GENERIC64:
1243 case PROCESSOR_K6:
1244 case PROCESSOR_ATHLON:
1245 case PROCESSOR_K8:
1246 case PROCESSOR_AMDFAM10:
1247 case PROCESSOR_BD:
1248 case PROCESSOR_ZNVER:
1249 case PROCESSOR_BT:
1250 patt = alt_patt;
1251 break;
1252 case PROCESSOR_I386:
1253 case PROCESSOR_I486:
1254 case PROCESSOR_PENTIUM:
1255 case PROCESSOR_PENTIUMPRO:
1256 case PROCESSOR_IAMCU:
1257 case PROCESSOR_GENERIC32:
1258 patt = f32_patt;
1259 break;
1260 }
1261 }
1262 else
1263 {
1264 switch (fragP->tc_frag_data.tune)
1265 {
1266 case PROCESSOR_UNKNOWN:
1267 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1268 PROCESSOR_UNKNOWN. */
1269 abort ();
1270 break;
1271
1272 case PROCESSOR_I386:
1273 case PROCESSOR_I486:
1274 case PROCESSOR_PENTIUM:
1275 case PROCESSOR_IAMCU:
1276 case PROCESSOR_K6:
1277 case PROCESSOR_ATHLON:
1278 case PROCESSOR_K8:
1279 case PROCESSOR_AMDFAM10:
1280 case PROCESSOR_BD:
1281 case PROCESSOR_ZNVER:
1282 case PROCESSOR_BT:
1283 case PROCESSOR_GENERIC32:
1284 /* We use cpu_arch_isa_flags to check if we CAN optimize
1285 with nops. */
1286 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1287 patt = alt_patt;
1288 else
1289 patt = f32_patt;
1290 break;
1291 case PROCESSOR_PENTIUMPRO:
1292 case PROCESSOR_PENTIUM4:
1293 case PROCESSOR_NOCONA:
1294 case PROCESSOR_CORE:
1295 case PROCESSOR_CORE2:
1296 case PROCESSOR_COREI7:
1297 case PROCESSOR_L1OM:
1298 case PROCESSOR_K1OM:
1299 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1300 patt = alt_patt;
1301 else
1302 patt = f32_patt;
1303 break;
1304 case PROCESSOR_GENERIC64:
1305 patt = alt_patt;
1306 break;
1307 }
1308 }
1309
1310 if (patt == f32_patt)
1311 {
1312 /* If the padding is less than 15 bytes, we use the normal
1313 ones. Otherwise, we use a jump instruction and adjust
1314 its offset. */
1315 int limit;
1316
1317 /* For 64bit, the limit is 3 bytes. */
1318 if (flag_code == CODE_64BIT
1319 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1320 limit = 3;
1321 else
1322 limit = 15;
1323 if (count < limit)
1324 memcpy (fragP->fr_literal + fragP->fr_fix,
1325 patt[count - 1], count);
1326 else
1327 {
1328 memcpy (fragP->fr_literal + fragP->fr_fix,
1329 jump_31, count);
1330 /* Adjust jump offset. */
1331 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1332 }
1333 }
1334 else
1335 {
1336 /* Maximum length of an instruction is 10 byte. If the
1337 padding is greater than 10 bytes and we don't use jump,
1338 we have to break it into smaller pieces. */
1339 int padding = count;
1340 while (padding > 10)
1341 {
1342 padding -= 10;
1343 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1344 patt [9], 10);
1345 }
1346
1347 if (padding)
1348 memcpy (fragP->fr_literal + fragP->fr_fix,
1349 patt [padding - 1], padding);
1350 }
1351 }
1352 fragP->fr_var = count;
1353 }
1354
1355 static INLINE int
1356 operand_type_all_zero (const union i386_operand_type *x)
1357 {
1358 switch (ARRAY_SIZE(x->array))
1359 {
1360 case 3:
1361 if (x->array[2])
1362 return 0;
1363 case 2:
1364 if (x->array[1])
1365 return 0;
1366 case 1:
1367 return !x->array[0];
1368 default:
1369 abort ();
1370 }
1371 }
1372
1373 static INLINE void
1374 operand_type_set (union i386_operand_type *x, unsigned int v)
1375 {
1376 switch (ARRAY_SIZE(x->array))
1377 {
1378 case 3:
1379 x->array[2] = v;
1380 case 2:
1381 x->array[1] = v;
1382 case 1:
1383 x->array[0] = v;
1384 break;
1385 default:
1386 abort ();
1387 }
1388 }
1389
1390 static INLINE int
1391 operand_type_equal (const union i386_operand_type *x,
1392 const union i386_operand_type *y)
1393 {
1394 switch (ARRAY_SIZE(x->array))
1395 {
1396 case 3:
1397 if (x->array[2] != y->array[2])
1398 return 0;
1399 case 2:
1400 if (x->array[1] != y->array[1])
1401 return 0;
1402 case 1:
1403 return x->array[0] == y->array[0];
1404 break;
1405 default:
1406 abort ();
1407 }
1408 }
1409
1410 static INLINE int
1411 cpu_flags_all_zero (const union i386_cpu_flags *x)
1412 {
1413 switch (ARRAY_SIZE(x->array))
1414 {
1415 case 3:
1416 if (x->array[2])
1417 return 0;
1418 case 2:
1419 if (x->array[1])
1420 return 0;
1421 case 1:
1422 return !x->array[0];
1423 default:
1424 abort ();
1425 }
1426 }
1427
1428 static INLINE int
1429 cpu_flags_equal (const union i386_cpu_flags *x,
1430 const union i386_cpu_flags *y)
1431 {
1432 switch (ARRAY_SIZE(x->array))
1433 {
1434 case 3:
1435 if (x->array[2] != y->array[2])
1436 return 0;
1437 case 2:
1438 if (x->array[1] != y->array[1])
1439 return 0;
1440 case 1:
1441 return x->array[0] == y->array[0];
1442 break;
1443 default:
1444 abort ();
1445 }
1446 }
1447
1448 static INLINE int
1449 cpu_flags_check_cpu64 (i386_cpu_flags f)
1450 {
1451 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1452 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1453 }
1454
1455 static INLINE i386_cpu_flags
1456 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1457 {
1458 switch (ARRAY_SIZE (x.array))
1459 {
1460 case 3:
1461 x.array [2] &= y.array [2];
1462 case 2:
1463 x.array [1] &= y.array [1];
1464 case 1:
1465 x.array [0] &= y.array [0];
1466 break;
1467 default:
1468 abort ();
1469 }
1470 return x;
1471 }
1472
1473 static INLINE i386_cpu_flags
1474 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1475 {
1476 switch (ARRAY_SIZE (x.array))
1477 {
1478 case 3:
1479 x.array [2] |= y.array [2];
1480 case 2:
1481 x.array [1] |= y.array [1];
1482 case 1:
1483 x.array [0] |= y.array [0];
1484 break;
1485 default:
1486 abort ();
1487 }
1488 return x;
1489 }
1490
1491 static INLINE i386_cpu_flags
1492 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1493 {
1494 switch (ARRAY_SIZE (x.array))
1495 {
1496 case 3:
1497 x.array [2] &= ~y.array [2];
1498 case 2:
1499 x.array [1] &= ~y.array [1];
1500 case 1:
1501 x.array [0] &= ~y.array [0];
1502 break;
1503 default:
1504 abort ();
1505 }
1506 return x;
1507 }
1508
1509 static int
1510 valid_iamcu_cpu_flags (const i386_cpu_flags *flags)
1511 {
1512 if (cpu_arch_isa == PROCESSOR_IAMCU)
1513 {
1514 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_COMPAT_FLAGS;
1515 i386_cpu_flags compat_flags;
1516 compat_flags = cpu_flags_and_not (*flags, iamcu_flags);
1517 return cpu_flags_all_zero (&compat_flags);
1518 }
1519 else
1520 return 1;
1521 }
1522
1523 #define CPU_FLAGS_ARCH_MATCH 0x1
1524 #define CPU_FLAGS_64BIT_MATCH 0x2
1525 #define CPU_FLAGS_AES_MATCH 0x4
1526 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1527 #define CPU_FLAGS_AVX_MATCH 0x10
1528
1529 #define CPU_FLAGS_32BIT_MATCH \
1530 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1531 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1532 #define CPU_FLAGS_PERFECT_MATCH \
1533 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1534
1535 /* Return CPU flags match bits. */
1536
1537 static int
1538 cpu_flags_match (const insn_template *t)
1539 {
1540 i386_cpu_flags x = t->cpu_flags;
1541 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1542
1543 x.bitfield.cpu64 = 0;
1544 x.bitfield.cpuno64 = 0;
1545
1546 if (cpu_flags_all_zero (&x))
1547 {
1548 /* This instruction is available on all archs. */
1549 match |= CPU_FLAGS_32BIT_MATCH;
1550 }
1551 else
1552 {
1553 /* This instruction is available only on some archs. */
1554 i386_cpu_flags cpu = cpu_arch_flags;
1555
1556 cpu = cpu_flags_and (x, cpu);
1557 if (!cpu_flags_all_zero (&cpu))
1558 {
1559 if (x.bitfield.cpuavx)
1560 {
1561 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1562 if (cpu.bitfield.cpuavx)
1563 {
1564 /* Check SSE2AVX. */
1565 if (!t->opcode_modifier.sse2avx|| sse2avx)
1566 {
1567 match |= (CPU_FLAGS_ARCH_MATCH
1568 | CPU_FLAGS_AVX_MATCH);
1569 /* Check AES. */
1570 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1571 match |= CPU_FLAGS_AES_MATCH;
1572 /* Check PCLMUL. */
1573 if (!x.bitfield.cpupclmul
1574 || cpu.bitfield.cpupclmul)
1575 match |= CPU_FLAGS_PCLMUL_MATCH;
1576 }
1577 }
1578 else
1579 match |= CPU_FLAGS_ARCH_MATCH;
1580 }
1581 else if (x.bitfield.cpuavx512vl)
1582 {
1583 /* Match AVX512VL. */
1584 if (cpu.bitfield.cpuavx512vl)
1585 {
1586 /* Need another match. */
1587 cpu.bitfield.cpuavx512vl = 0;
1588 if (!cpu_flags_all_zero (&cpu))
1589 match |= CPU_FLAGS_32BIT_MATCH;
1590 else
1591 match |= CPU_FLAGS_ARCH_MATCH;
1592 }
1593 else
1594 match |= CPU_FLAGS_ARCH_MATCH;
1595 }
1596 else
1597 match |= CPU_FLAGS_32BIT_MATCH;
1598 }
1599 }
1600 return match;
1601 }
1602
1603 static INLINE i386_operand_type
1604 operand_type_and (i386_operand_type x, i386_operand_type y)
1605 {
1606 switch (ARRAY_SIZE (x.array))
1607 {
1608 case 3:
1609 x.array [2] &= y.array [2];
1610 case 2:
1611 x.array [1] &= y.array [1];
1612 case 1:
1613 x.array [0] &= y.array [0];
1614 break;
1615 default:
1616 abort ();
1617 }
1618 return x;
1619 }
1620
1621 static INLINE i386_operand_type
1622 operand_type_or (i386_operand_type x, i386_operand_type y)
1623 {
1624 switch (ARRAY_SIZE (x.array))
1625 {
1626 case 3:
1627 x.array [2] |= y.array [2];
1628 case 2:
1629 x.array [1] |= y.array [1];
1630 case 1:
1631 x.array [0] |= y.array [0];
1632 break;
1633 default:
1634 abort ();
1635 }
1636 return x;
1637 }
1638
1639 static INLINE i386_operand_type
1640 operand_type_xor (i386_operand_type x, i386_operand_type y)
1641 {
1642 switch (ARRAY_SIZE (x.array))
1643 {
1644 case 3:
1645 x.array [2] ^= y.array [2];
1646 case 2:
1647 x.array [1] ^= y.array [1];
1648 case 1:
1649 x.array [0] ^= y.array [0];
1650 break;
1651 default:
1652 abort ();
1653 }
1654 return x;
1655 }
1656
1657 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1658 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1659 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1660 static const i386_operand_type inoutportreg
1661 = OPERAND_TYPE_INOUTPORTREG;
1662 static const i386_operand_type reg16_inoutportreg
1663 = OPERAND_TYPE_REG16_INOUTPORTREG;
1664 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1665 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1666 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1667 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1668 static const i386_operand_type anydisp
1669 = OPERAND_TYPE_ANYDISP;
1670 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1671 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1672 static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1673 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1674 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1675 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1676 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1677 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1678 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1679 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1680 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1681 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1682 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1683 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1684
1685 enum operand_type
1686 {
1687 reg,
1688 imm,
1689 disp,
1690 anymem
1691 };
1692
1693 static INLINE int
1694 operand_type_check (i386_operand_type t, enum operand_type c)
1695 {
1696 switch (c)
1697 {
1698 case reg:
1699 return (t.bitfield.reg8
1700 || t.bitfield.reg16
1701 || t.bitfield.reg32
1702 || t.bitfield.reg64);
1703
1704 case imm:
1705 return (t.bitfield.imm8
1706 || t.bitfield.imm8s
1707 || t.bitfield.imm16
1708 || t.bitfield.imm32
1709 || t.bitfield.imm32s
1710 || t.bitfield.imm64);
1711
1712 case disp:
1713 return (t.bitfield.disp8
1714 || t.bitfield.disp16
1715 || t.bitfield.disp32
1716 || t.bitfield.disp32s
1717 || t.bitfield.disp64);
1718
1719 case anymem:
1720 return (t.bitfield.disp8
1721 || t.bitfield.disp16
1722 || t.bitfield.disp32
1723 || t.bitfield.disp32s
1724 || t.bitfield.disp64
1725 || t.bitfield.baseindex);
1726
1727 default:
1728 abort ();
1729 }
1730
1731 return 0;
1732 }
1733
1734 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1735 operand J for instruction template T. */
1736
1737 static INLINE int
1738 match_reg_size (const insn_template *t, unsigned int j)
1739 {
1740 return !((i.types[j].bitfield.byte
1741 && !t->operand_types[j].bitfield.byte)
1742 || (i.types[j].bitfield.word
1743 && !t->operand_types[j].bitfield.word)
1744 || (i.types[j].bitfield.dword
1745 && !t->operand_types[j].bitfield.dword)
1746 || (i.types[j].bitfield.qword
1747 && !t->operand_types[j].bitfield.qword));
1748 }
1749
1750 /* Return 1 if there is no conflict in any size on operand J for
1751 instruction template T. */
1752
1753 static INLINE int
1754 match_mem_size (const insn_template *t, unsigned int j)
1755 {
1756 return (match_reg_size (t, j)
1757 && !((i.types[j].bitfield.unspecified
1758 && !i.broadcast
1759 && !t->operand_types[j].bitfield.unspecified)
1760 || (i.types[j].bitfield.fword
1761 && !t->operand_types[j].bitfield.fword)
1762 || (i.types[j].bitfield.tbyte
1763 && !t->operand_types[j].bitfield.tbyte)
1764 || (i.types[j].bitfield.xmmword
1765 && !t->operand_types[j].bitfield.xmmword)
1766 || (i.types[j].bitfield.ymmword
1767 && !t->operand_types[j].bitfield.ymmword)
1768 || (i.types[j].bitfield.zmmword
1769 && !t->operand_types[j].bitfield.zmmword)));
1770 }
1771
1772 /* Return 1 if there is no size conflict on any operands for
1773 instruction template T. */
1774
1775 static INLINE int
1776 operand_size_match (const insn_template *t)
1777 {
1778 unsigned int j;
1779 int match = 1;
1780
1781 /* Don't check jump instructions. */
1782 if (t->opcode_modifier.jump
1783 || t->opcode_modifier.jumpbyte
1784 || t->opcode_modifier.jumpdword
1785 || t->opcode_modifier.jumpintersegment)
1786 return match;
1787
1788 /* Check memory and accumulator operand size. */
1789 for (j = 0; j < i.operands; j++)
1790 {
1791 if (t->operand_types[j].bitfield.anysize)
1792 continue;
1793
1794 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1795 {
1796 match = 0;
1797 break;
1798 }
1799
1800 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1801 {
1802 match = 0;
1803 break;
1804 }
1805 }
1806
1807 if (match)
1808 return match;
1809 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1810 {
1811 mismatch:
1812 i.error = operand_size_mismatch;
1813 return 0;
1814 }
1815
1816 /* Check reverse. */
1817 gas_assert (i.operands == 2);
1818
1819 match = 1;
1820 for (j = 0; j < 2; j++)
1821 {
1822 if (t->operand_types[j].bitfield.acc
1823 && !match_reg_size (t, j ? 0 : 1))
1824 goto mismatch;
1825
1826 if (i.types[j].bitfield.mem
1827 && !match_mem_size (t, j ? 0 : 1))
1828 goto mismatch;
1829 }
1830
1831 return match;
1832 }
1833
1834 static INLINE int
1835 operand_type_match (i386_operand_type overlap,
1836 i386_operand_type given)
1837 {
1838 i386_operand_type temp = overlap;
1839
1840 temp.bitfield.jumpabsolute = 0;
1841 temp.bitfield.unspecified = 0;
1842 temp.bitfield.byte = 0;
1843 temp.bitfield.word = 0;
1844 temp.bitfield.dword = 0;
1845 temp.bitfield.fword = 0;
1846 temp.bitfield.qword = 0;
1847 temp.bitfield.tbyte = 0;
1848 temp.bitfield.xmmword = 0;
1849 temp.bitfield.ymmword = 0;
1850 temp.bitfield.zmmword = 0;
1851 if (operand_type_all_zero (&temp))
1852 goto mismatch;
1853
1854 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1855 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1856 return 1;
1857
1858 mismatch:
1859 i.error = operand_type_mismatch;
1860 return 0;
1861 }
1862
1863 /* If given types g0 and g1 are registers they must be of the same type
1864 unless the expected operand type register overlap is null.
1865 Note that Acc in a template matches every size of reg. */
1866
1867 static INLINE int
1868 operand_type_register_match (i386_operand_type m0,
1869 i386_operand_type g0,
1870 i386_operand_type t0,
1871 i386_operand_type m1,
1872 i386_operand_type g1,
1873 i386_operand_type t1)
1874 {
1875 if (!operand_type_check (g0, reg))
1876 return 1;
1877
1878 if (!operand_type_check (g1, reg))
1879 return 1;
1880
1881 if (g0.bitfield.reg8 == g1.bitfield.reg8
1882 && g0.bitfield.reg16 == g1.bitfield.reg16
1883 && g0.bitfield.reg32 == g1.bitfield.reg32
1884 && g0.bitfield.reg64 == g1.bitfield.reg64)
1885 return 1;
1886
1887 if (m0.bitfield.acc)
1888 {
1889 t0.bitfield.reg8 = 1;
1890 t0.bitfield.reg16 = 1;
1891 t0.bitfield.reg32 = 1;
1892 t0.bitfield.reg64 = 1;
1893 }
1894
1895 if (m1.bitfield.acc)
1896 {
1897 t1.bitfield.reg8 = 1;
1898 t1.bitfield.reg16 = 1;
1899 t1.bitfield.reg32 = 1;
1900 t1.bitfield.reg64 = 1;
1901 }
1902
1903 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1904 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1905 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1906 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1907 return 1;
1908
1909 i.error = register_type_mismatch;
1910
1911 return 0;
1912 }
1913
1914 static INLINE unsigned int
1915 register_number (const reg_entry *r)
1916 {
1917 unsigned int nr = r->reg_num;
1918
1919 if (r->reg_flags & RegRex)
1920 nr += 8;
1921
1922 if (r->reg_flags & RegVRex)
1923 nr += 16;
1924
1925 return nr;
1926 }
1927
1928 static INLINE unsigned int
1929 mode_from_disp_size (i386_operand_type t)
1930 {
1931 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
1932 return 1;
1933 else if (t.bitfield.disp16
1934 || t.bitfield.disp32
1935 || t.bitfield.disp32s)
1936 return 2;
1937 else
1938 return 0;
1939 }
1940
1941 static INLINE int
1942 fits_in_signed_byte (addressT num)
1943 {
1944 return num + 0x80 <= 0xff;
1945 }
1946
1947 static INLINE int
1948 fits_in_unsigned_byte (addressT num)
1949 {
1950 return num <= 0xff;
1951 }
1952
1953 static INLINE int
1954 fits_in_unsigned_word (addressT num)
1955 {
1956 return num <= 0xffff;
1957 }
1958
1959 static INLINE int
1960 fits_in_signed_word (addressT num)
1961 {
1962 return num + 0x8000 <= 0xffff;
1963 }
1964
1965 static INLINE int
1966 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
1967 {
1968 #ifndef BFD64
1969 return 1;
1970 #else
1971 return num + 0x80000000 <= 0xffffffff;
1972 #endif
1973 } /* fits_in_signed_long() */
1974
1975 static INLINE int
1976 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
1977 {
1978 #ifndef BFD64
1979 return 1;
1980 #else
1981 return num <= 0xffffffff;
1982 #endif
1983 } /* fits_in_unsigned_long() */
1984
1985 static INLINE int
1986 fits_in_vec_disp8 (offsetT num)
1987 {
1988 int shift = i.memshift;
1989 unsigned int mask;
1990
1991 if (shift == -1)
1992 abort ();
1993
1994 mask = (1 << shift) - 1;
1995
1996 /* Return 0 if NUM isn't properly aligned. */
1997 if ((num & mask))
1998 return 0;
1999
2000 /* Check if NUM will fit in 8bit after shift. */
2001 return fits_in_signed_byte (num >> shift);
2002 }
2003
2004 static INLINE int
2005 fits_in_imm4 (offsetT num)
2006 {
2007 return (num & 0xf) == num;
2008 }
2009
2010 static i386_operand_type
2011 smallest_imm_type (offsetT num)
2012 {
2013 i386_operand_type t;
2014
2015 operand_type_set (&t, 0);
2016 t.bitfield.imm64 = 1;
2017
2018 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2019 {
2020 /* This code is disabled on the 486 because all the Imm1 forms
2021 in the opcode table are slower on the i486. They're the
2022 versions with the implicitly specified single-position
2023 displacement, which has another syntax if you really want to
2024 use that form. */
2025 t.bitfield.imm1 = 1;
2026 t.bitfield.imm8 = 1;
2027 t.bitfield.imm8s = 1;
2028 t.bitfield.imm16 = 1;
2029 t.bitfield.imm32 = 1;
2030 t.bitfield.imm32s = 1;
2031 }
2032 else if (fits_in_signed_byte (num))
2033 {
2034 t.bitfield.imm8 = 1;
2035 t.bitfield.imm8s = 1;
2036 t.bitfield.imm16 = 1;
2037 t.bitfield.imm32 = 1;
2038 t.bitfield.imm32s = 1;
2039 }
2040 else if (fits_in_unsigned_byte (num))
2041 {
2042 t.bitfield.imm8 = 1;
2043 t.bitfield.imm16 = 1;
2044 t.bitfield.imm32 = 1;
2045 t.bitfield.imm32s = 1;
2046 }
2047 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2048 {
2049 t.bitfield.imm16 = 1;
2050 t.bitfield.imm32 = 1;
2051 t.bitfield.imm32s = 1;
2052 }
2053 else if (fits_in_signed_long (num))
2054 {
2055 t.bitfield.imm32 = 1;
2056 t.bitfield.imm32s = 1;
2057 }
2058 else if (fits_in_unsigned_long (num))
2059 t.bitfield.imm32 = 1;
2060
2061 return t;
2062 }
2063
2064 static offsetT
2065 offset_in_range (offsetT val, int size)
2066 {
2067 addressT mask;
2068
2069 switch (size)
2070 {
2071 case 1: mask = ((addressT) 1 << 8) - 1; break;
2072 case 2: mask = ((addressT) 1 << 16) - 1; break;
2073 case 4: mask = ((addressT) 2 << 31) - 1; break;
2074 #ifdef BFD64
2075 case 8: mask = ((addressT) 2 << 63) - 1; break;
2076 #endif
2077 default: abort ();
2078 }
2079
2080 #ifdef BFD64
2081 /* If BFD64, sign extend val for 32bit address mode. */
2082 if (flag_code != CODE_64BIT
2083 || i.prefix[ADDR_PREFIX])
2084 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2085 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2086 #endif
2087
2088 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2089 {
2090 char buf1[40], buf2[40];
2091
2092 sprint_value (buf1, val);
2093 sprint_value (buf2, val & mask);
2094 as_warn (_("%s shortened to %s"), buf1, buf2);
2095 }
2096 return val & mask;
2097 }
2098
2099 enum PREFIX_GROUP
2100 {
2101 PREFIX_EXIST = 0,
2102 PREFIX_LOCK,
2103 PREFIX_REP,
2104 PREFIX_OTHER
2105 };
2106
2107 /* Returns
2108 a. PREFIX_EXIST if attempting to add a prefix where one from the
2109 same class already exists.
2110 b. PREFIX_LOCK if lock prefix is added.
2111 c. PREFIX_REP if rep/repne prefix is added.
2112 d. PREFIX_OTHER if other prefix is added.
2113 */
2114
2115 static enum PREFIX_GROUP
2116 add_prefix (unsigned int prefix)
2117 {
2118 enum PREFIX_GROUP ret = PREFIX_OTHER;
2119 unsigned int q;
2120
2121 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2122 && flag_code == CODE_64BIT)
2123 {
2124 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2125 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2126 && (prefix & (REX_R | REX_X | REX_B))))
2127 ret = PREFIX_EXIST;
2128 q = REX_PREFIX;
2129 }
2130 else
2131 {
2132 switch (prefix)
2133 {
2134 default:
2135 abort ();
2136
2137 case CS_PREFIX_OPCODE:
2138 case DS_PREFIX_OPCODE:
2139 case ES_PREFIX_OPCODE:
2140 case FS_PREFIX_OPCODE:
2141 case GS_PREFIX_OPCODE:
2142 case SS_PREFIX_OPCODE:
2143 q = SEG_PREFIX;
2144 break;
2145
2146 case REPNE_PREFIX_OPCODE:
2147 case REPE_PREFIX_OPCODE:
2148 q = REP_PREFIX;
2149 ret = PREFIX_REP;
2150 break;
2151
2152 case LOCK_PREFIX_OPCODE:
2153 q = LOCK_PREFIX;
2154 ret = PREFIX_LOCK;
2155 break;
2156
2157 case FWAIT_OPCODE:
2158 q = WAIT_PREFIX;
2159 break;
2160
2161 case ADDR_PREFIX_OPCODE:
2162 q = ADDR_PREFIX;
2163 break;
2164
2165 case DATA_PREFIX_OPCODE:
2166 q = DATA_PREFIX;
2167 break;
2168 }
2169 if (i.prefix[q] != 0)
2170 ret = PREFIX_EXIST;
2171 }
2172
2173 if (ret)
2174 {
2175 if (!i.prefix[q])
2176 ++i.prefixes;
2177 i.prefix[q] |= prefix;
2178 }
2179 else
2180 as_bad (_("same type of prefix used twice"));
2181
2182 return ret;
2183 }
2184
2185 static void
2186 update_code_flag (int value, int check)
2187 {
2188 PRINTF_LIKE ((*as_error));
2189
2190 flag_code = (enum flag_code) value;
2191 if (flag_code == CODE_64BIT)
2192 {
2193 cpu_arch_flags.bitfield.cpu64 = 1;
2194 cpu_arch_flags.bitfield.cpuno64 = 0;
2195 }
2196 else
2197 {
2198 cpu_arch_flags.bitfield.cpu64 = 0;
2199 cpu_arch_flags.bitfield.cpuno64 = 1;
2200 }
2201 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2202 {
2203 if (check)
2204 as_error = as_fatal;
2205 else
2206 as_error = as_bad;
2207 (*as_error) (_("64bit mode not supported on `%s'."),
2208 cpu_arch_name ? cpu_arch_name : default_arch);
2209 }
2210 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2211 {
2212 if (check)
2213 as_error = as_fatal;
2214 else
2215 as_error = as_bad;
2216 (*as_error) (_("32bit mode not supported on `%s'."),
2217 cpu_arch_name ? cpu_arch_name : default_arch);
2218 }
2219 stackop_size = '\0';
2220 }
2221
2222 static void
2223 set_code_flag (int value)
2224 {
2225 update_code_flag (value, 0);
2226 }
2227
2228 static void
2229 set_16bit_gcc_code_flag (int new_code_flag)
2230 {
2231 flag_code = (enum flag_code) new_code_flag;
2232 if (flag_code != CODE_16BIT)
2233 abort ();
2234 cpu_arch_flags.bitfield.cpu64 = 0;
2235 cpu_arch_flags.bitfield.cpuno64 = 1;
2236 stackop_size = LONG_MNEM_SUFFIX;
2237 }
2238
2239 static void
2240 set_intel_syntax (int syntax_flag)
2241 {
2242 /* Find out if register prefixing is specified. */
2243 int ask_naked_reg = 0;
2244
2245 SKIP_WHITESPACE ();
2246 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2247 {
2248 char *string;
2249 int e = get_symbol_name (&string);
2250
2251 if (strcmp (string, "prefix") == 0)
2252 ask_naked_reg = 1;
2253 else if (strcmp (string, "noprefix") == 0)
2254 ask_naked_reg = -1;
2255 else
2256 as_bad (_("bad argument to syntax directive."));
2257 (void) restore_line_pointer (e);
2258 }
2259 demand_empty_rest_of_line ();
2260
2261 intel_syntax = syntax_flag;
2262
2263 if (ask_naked_reg == 0)
2264 allow_naked_reg = (intel_syntax
2265 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2266 else
2267 allow_naked_reg = (ask_naked_reg < 0);
2268
2269 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2270
2271 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2272 identifier_chars['$'] = intel_syntax ? '$' : 0;
2273 register_prefix = allow_naked_reg ? "" : "%";
2274 }
2275
2276 static void
2277 set_intel_mnemonic (int mnemonic_flag)
2278 {
2279 intel_mnemonic = mnemonic_flag;
2280 }
2281
2282 static void
2283 set_allow_index_reg (int flag)
2284 {
2285 allow_index_reg = flag;
2286 }
2287
2288 static void
2289 set_check (int what)
2290 {
2291 enum check_kind *kind;
2292 const char *str;
2293
2294 if (what)
2295 {
2296 kind = &operand_check;
2297 str = "operand";
2298 }
2299 else
2300 {
2301 kind = &sse_check;
2302 str = "sse";
2303 }
2304
2305 SKIP_WHITESPACE ();
2306
2307 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2308 {
2309 char *string;
2310 int e = get_symbol_name (&string);
2311
2312 if (strcmp (string, "none") == 0)
2313 *kind = check_none;
2314 else if (strcmp (string, "warning") == 0)
2315 *kind = check_warning;
2316 else if (strcmp (string, "error") == 0)
2317 *kind = check_error;
2318 else
2319 as_bad (_("bad argument to %s_check directive."), str);
2320 (void) restore_line_pointer (e);
2321 }
2322 else
2323 as_bad (_("missing argument for %s_check directive"), str);
2324
2325 demand_empty_rest_of_line ();
2326 }
2327
2328 static void
2329 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2330 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2331 {
2332 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2333 static const char *arch;
2334
2335 /* Intel LIOM is only supported on ELF. */
2336 if (!IS_ELF)
2337 return;
2338
2339 if (!arch)
2340 {
2341 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2342 use default_arch. */
2343 arch = cpu_arch_name;
2344 if (!arch)
2345 arch = default_arch;
2346 }
2347
2348 /* If we are targeting Intel MCU, we must enable it. */
2349 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2350 || new_flag.bitfield.cpuiamcu)
2351 return;
2352
2353 /* If we are targeting Intel L1OM, we must enable it. */
2354 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2355 || new_flag.bitfield.cpul1om)
2356 return;
2357
2358 /* If we are targeting Intel K1OM, we must enable it. */
2359 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2360 || new_flag.bitfield.cpuk1om)
2361 return;
2362
2363 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2364 #endif
2365 }
2366
2367 static void
2368 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2369 {
2370 SKIP_WHITESPACE ();
2371
2372 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2373 {
2374 char *string;
2375 int e = get_symbol_name (&string);
2376 unsigned int j;
2377 i386_cpu_flags flags;
2378
2379 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2380 {
2381 if (strcmp (string, cpu_arch[j].name) == 0)
2382 {
2383 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2384
2385 if (*string != '.')
2386 {
2387 cpu_arch_name = cpu_arch[j].name;
2388 cpu_sub_arch_name = NULL;
2389 cpu_arch_flags = cpu_arch[j].flags;
2390 if (flag_code == CODE_64BIT)
2391 {
2392 cpu_arch_flags.bitfield.cpu64 = 1;
2393 cpu_arch_flags.bitfield.cpuno64 = 0;
2394 }
2395 else
2396 {
2397 cpu_arch_flags.bitfield.cpu64 = 0;
2398 cpu_arch_flags.bitfield.cpuno64 = 1;
2399 }
2400 cpu_arch_isa = cpu_arch[j].type;
2401 cpu_arch_isa_flags = cpu_arch[j].flags;
2402 if (!cpu_arch_tune_set)
2403 {
2404 cpu_arch_tune = cpu_arch_isa;
2405 cpu_arch_tune_flags = cpu_arch_isa_flags;
2406 }
2407 break;
2408 }
2409
2410 flags = cpu_flags_or (cpu_arch_flags,
2411 cpu_arch[j].flags);
2412
2413 if (!valid_iamcu_cpu_flags (&flags))
2414 as_fatal (_("`%s' isn't valid for Intel MCU"),
2415 cpu_arch[j].name);
2416 else if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2417 {
2418 if (cpu_sub_arch_name)
2419 {
2420 char *name = cpu_sub_arch_name;
2421 cpu_sub_arch_name = concat (name,
2422 cpu_arch[j].name,
2423 (const char *) NULL);
2424 free (name);
2425 }
2426 else
2427 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2428 cpu_arch_flags = flags;
2429 cpu_arch_isa_flags = flags;
2430 }
2431 (void) restore_line_pointer (e);
2432 demand_empty_rest_of_line ();
2433 return;
2434 }
2435 }
2436
2437 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2438 {
2439 /* Disable an ISA entension. */
2440 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2441 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2442 {
2443 flags = cpu_flags_and_not (cpu_arch_flags,
2444 cpu_noarch[j].flags);
2445 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2446 {
2447 if (cpu_sub_arch_name)
2448 {
2449 char *name = cpu_sub_arch_name;
2450 cpu_sub_arch_name = concat (name, string,
2451 (const char *) NULL);
2452 free (name);
2453 }
2454 else
2455 cpu_sub_arch_name = xstrdup (string);
2456 cpu_arch_flags = flags;
2457 cpu_arch_isa_flags = flags;
2458 }
2459 (void) restore_line_pointer (e);
2460 demand_empty_rest_of_line ();
2461 return;
2462 }
2463
2464 j = ARRAY_SIZE (cpu_arch);
2465 }
2466
2467 if (j >= ARRAY_SIZE (cpu_arch))
2468 as_bad (_("no such architecture: `%s'"), string);
2469
2470 *input_line_pointer = e;
2471 }
2472 else
2473 as_bad (_("missing cpu architecture"));
2474
2475 no_cond_jump_promotion = 0;
2476 if (*input_line_pointer == ','
2477 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2478 {
2479 char *string;
2480 char e;
2481
2482 ++input_line_pointer;
2483 e = get_symbol_name (&string);
2484
2485 if (strcmp (string, "nojumps") == 0)
2486 no_cond_jump_promotion = 1;
2487 else if (strcmp (string, "jumps") == 0)
2488 ;
2489 else
2490 as_bad (_("no such architecture modifier: `%s'"), string);
2491
2492 (void) restore_line_pointer (e);
2493 }
2494
2495 demand_empty_rest_of_line ();
2496 }
2497
2498 enum bfd_architecture
2499 i386_arch (void)
2500 {
2501 if (cpu_arch_isa == PROCESSOR_L1OM)
2502 {
2503 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2504 || flag_code != CODE_64BIT)
2505 as_fatal (_("Intel L1OM is 64bit ELF only"));
2506 return bfd_arch_l1om;
2507 }
2508 else if (cpu_arch_isa == PROCESSOR_K1OM)
2509 {
2510 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2511 || flag_code != CODE_64BIT)
2512 as_fatal (_("Intel K1OM is 64bit ELF only"));
2513 return bfd_arch_k1om;
2514 }
2515 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2516 {
2517 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2518 || flag_code == CODE_64BIT)
2519 as_fatal (_("Intel MCU is 32bit ELF only"));
2520 return bfd_arch_iamcu;
2521 }
2522 else
2523 return bfd_arch_i386;
2524 }
2525
2526 unsigned long
2527 i386_mach (void)
2528 {
2529 if (!strncmp (default_arch, "x86_64", 6))
2530 {
2531 if (cpu_arch_isa == PROCESSOR_L1OM)
2532 {
2533 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2534 || default_arch[6] != '\0')
2535 as_fatal (_("Intel L1OM is 64bit ELF only"));
2536 return bfd_mach_l1om;
2537 }
2538 else if (cpu_arch_isa == PROCESSOR_K1OM)
2539 {
2540 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2541 || default_arch[6] != '\0')
2542 as_fatal (_("Intel K1OM is 64bit ELF only"));
2543 return bfd_mach_k1om;
2544 }
2545 else if (default_arch[6] == '\0')
2546 return bfd_mach_x86_64;
2547 else
2548 return bfd_mach_x64_32;
2549 }
2550 else if (!strcmp (default_arch, "i386")
2551 || !strcmp (default_arch, "iamcu"))
2552 {
2553 if (cpu_arch_isa == PROCESSOR_IAMCU)
2554 {
2555 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2556 as_fatal (_("Intel MCU is 32bit ELF only"));
2557 return bfd_mach_i386_iamcu;
2558 }
2559 else
2560 return bfd_mach_i386_i386;
2561 }
2562 else
2563 as_fatal (_("unknown architecture"));
2564 }
2565 \f
2566 void
2567 md_begin (void)
2568 {
2569 const char *hash_err;
2570
2571 /* Initialize op_hash hash table. */
2572 op_hash = hash_new ();
2573
2574 {
2575 const insn_template *optab;
2576 templates *core_optab;
2577
2578 /* Setup for loop. */
2579 optab = i386_optab;
2580 core_optab = XNEW (templates);
2581 core_optab->start = optab;
2582
2583 while (1)
2584 {
2585 ++optab;
2586 if (optab->name == NULL
2587 || strcmp (optab->name, (optab - 1)->name) != 0)
2588 {
2589 /* different name --> ship out current template list;
2590 add to hash table; & begin anew. */
2591 core_optab->end = optab;
2592 hash_err = hash_insert (op_hash,
2593 (optab - 1)->name,
2594 (void *) core_optab);
2595 if (hash_err)
2596 {
2597 as_fatal (_("can't hash %s: %s"),
2598 (optab - 1)->name,
2599 hash_err);
2600 }
2601 if (optab->name == NULL)
2602 break;
2603 core_optab = XNEW (templates);
2604 core_optab->start = optab;
2605 }
2606 }
2607 }
2608
2609 /* Initialize reg_hash hash table. */
2610 reg_hash = hash_new ();
2611 {
2612 const reg_entry *regtab;
2613 unsigned int regtab_size = i386_regtab_size;
2614
2615 for (regtab = i386_regtab; regtab_size--; regtab++)
2616 {
2617 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2618 if (hash_err)
2619 as_fatal (_("can't hash %s: %s"),
2620 regtab->reg_name,
2621 hash_err);
2622 }
2623 }
2624
2625 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2626 {
2627 int c;
2628 char *p;
2629
2630 for (c = 0; c < 256; c++)
2631 {
2632 if (ISDIGIT (c))
2633 {
2634 digit_chars[c] = c;
2635 mnemonic_chars[c] = c;
2636 register_chars[c] = c;
2637 operand_chars[c] = c;
2638 }
2639 else if (ISLOWER (c))
2640 {
2641 mnemonic_chars[c] = c;
2642 register_chars[c] = c;
2643 operand_chars[c] = c;
2644 }
2645 else if (ISUPPER (c))
2646 {
2647 mnemonic_chars[c] = TOLOWER (c);
2648 register_chars[c] = mnemonic_chars[c];
2649 operand_chars[c] = c;
2650 }
2651 else if (c == '{' || c == '}')
2652 operand_chars[c] = c;
2653
2654 if (ISALPHA (c) || ISDIGIT (c))
2655 identifier_chars[c] = c;
2656 else if (c >= 128)
2657 {
2658 identifier_chars[c] = c;
2659 operand_chars[c] = c;
2660 }
2661 }
2662
2663 #ifdef LEX_AT
2664 identifier_chars['@'] = '@';
2665 #endif
2666 #ifdef LEX_QM
2667 identifier_chars['?'] = '?';
2668 operand_chars['?'] = '?';
2669 #endif
2670 digit_chars['-'] = '-';
2671 mnemonic_chars['_'] = '_';
2672 mnemonic_chars['-'] = '-';
2673 mnemonic_chars['.'] = '.';
2674 identifier_chars['_'] = '_';
2675 identifier_chars['.'] = '.';
2676
2677 for (p = operand_special_chars; *p != '\0'; p++)
2678 operand_chars[(unsigned char) *p] = *p;
2679 }
2680
2681 if (flag_code == CODE_64BIT)
2682 {
2683 #if defined (OBJ_COFF) && defined (TE_PE)
2684 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2685 ? 32 : 16);
2686 #else
2687 x86_dwarf2_return_column = 16;
2688 #endif
2689 x86_cie_data_alignment = -8;
2690 }
2691 else
2692 {
2693 x86_dwarf2_return_column = 8;
2694 x86_cie_data_alignment = -4;
2695 }
2696 }
2697
2698 void
2699 i386_print_statistics (FILE *file)
2700 {
2701 hash_print_statistics (file, "i386 opcode", op_hash);
2702 hash_print_statistics (file, "i386 register", reg_hash);
2703 }
2704 \f
2705 #ifdef DEBUG386
2706
2707 /* Debugging routines for md_assemble. */
2708 static void pte (insn_template *);
2709 static void pt (i386_operand_type);
2710 static void pe (expressionS *);
2711 static void ps (symbolS *);
2712
2713 static void
2714 pi (char *line, i386_insn *x)
2715 {
2716 unsigned int j;
2717
2718 fprintf (stdout, "%s: template ", line);
2719 pte (&x->tm);
2720 fprintf (stdout, " address: base %s index %s scale %x\n",
2721 x->base_reg ? x->base_reg->reg_name : "none",
2722 x->index_reg ? x->index_reg->reg_name : "none",
2723 x->log2_scale_factor);
2724 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2725 x->rm.mode, x->rm.reg, x->rm.regmem);
2726 fprintf (stdout, " sib: base %x index %x scale %x\n",
2727 x->sib.base, x->sib.index, x->sib.scale);
2728 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2729 (x->rex & REX_W) != 0,
2730 (x->rex & REX_R) != 0,
2731 (x->rex & REX_X) != 0,
2732 (x->rex & REX_B) != 0);
2733 for (j = 0; j < x->operands; j++)
2734 {
2735 fprintf (stdout, " #%d: ", j + 1);
2736 pt (x->types[j]);
2737 fprintf (stdout, "\n");
2738 if (x->types[j].bitfield.reg8
2739 || x->types[j].bitfield.reg16
2740 || x->types[j].bitfield.reg32
2741 || x->types[j].bitfield.reg64
2742 || x->types[j].bitfield.regmmx
2743 || x->types[j].bitfield.regxmm
2744 || x->types[j].bitfield.regymm
2745 || x->types[j].bitfield.regzmm
2746 || x->types[j].bitfield.sreg2
2747 || x->types[j].bitfield.sreg3
2748 || x->types[j].bitfield.control
2749 || x->types[j].bitfield.debug
2750 || x->types[j].bitfield.test)
2751 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2752 if (operand_type_check (x->types[j], imm))
2753 pe (x->op[j].imms);
2754 if (operand_type_check (x->types[j], disp))
2755 pe (x->op[j].disps);
2756 }
2757 }
2758
2759 static void
2760 pte (insn_template *t)
2761 {
2762 unsigned int j;
2763 fprintf (stdout, " %d operands ", t->operands);
2764 fprintf (stdout, "opcode %x ", t->base_opcode);
2765 if (t->extension_opcode != None)
2766 fprintf (stdout, "ext %x ", t->extension_opcode);
2767 if (t->opcode_modifier.d)
2768 fprintf (stdout, "D");
2769 if (t->opcode_modifier.w)
2770 fprintf (stdout, "W");
2771 fprintf (stdout, "\n");
2772 for (j = 0; j < t->operands; j++)
2773 {
2774 fprintf (stdout, " #%d type ", j + 1);
2775 pt (t->operand_types[j]);
2776 fprintf (stdout, "\n");
2777 }
2778 }
2779
2780 static void
2781 pe (expressionS *e)
2782 {
2783 fprintf (stdout, " operation %d\n", e->X_op);
2784 fprintf (stdout, " add_number %ld (%lx)\n",
2785 (long) e->X_add_number, (long) e->X_add_number);
2786 if (e->X_add_symbol)
2787 {
2788 fprintf (stdout, " add_symbol ");
2789 ps (e->X_add_symbol);
2790 fprintf (stdout, "\n");
2791 }
2792 if (e->X_op_symbol)
2793 {
2794 fprintf (stdout, " op_symbol ");
2795 ps (e->X_op_symbol);
2796 fprintf (stdout, "\n");
2797 }
2798 }
2799
2800 static void
2801 ps (symbolS *s)
2802 {
2803 fprintf (stdout, "%s type %s%s",
2804 S_GET_NAME (s),
2805 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2806 segment_name (S_GET_SEGMENT (s)));
2807 }
2808
2809 static struct type_name
2810 {
2811 i386_operand_type mask;
2812 const char *name;
2813 }
2814 const type_names[] =
2815 {
2816 { OPERAND_TYPE_REG8, "r8" },
2817 { OPERAND_TYPE_REG16, "r16" },
2818 { OPERAND_TYPE_REG32, "r32" },
2819 { OPERAND_TYPE_REG64, "r64" },
2820 { OPERAND_TYPE_IMM8, "i8" },
2821 { OPERAND_TYPE_IMM8, "i8s" },
2822 { OPERAND_TYPE_IMM16, "i16" },
2823 { OPERAND_TYPE_IMM32, "i32" },
2824 { OPERAND_TYPE_IMM32S, "i32s" },
2825 { OPERAND_TYPE_IMM64, "i64" },
2826 { OPERAND_TYPE_IMM1, "i1" },
2827 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2828 { OPERAND_TYPE_DISP8, "d8" },
2829 { OPERAND_TYPE_DISP16, "d16" },
2830 { OPERAND_TYPE_DISP32, "d32" },
2831 { OPERAND_TYPE_DISP32S, "d32s" },
2832 { OPERAND_TYPE_DISP64, "d64" },
2833 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
2834 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2835 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2836 { OPERAND_TYPE_CONTROL, "control reg" },
2837 { OPERAND_TYPE_TEST, "test reg" },
2838 { OPERAND_TYPE_DEBUG, "debug reg" },
2839 { OPERAND_TYPE_FLOATREG, "FReg" },
2840 { OPERAND_TYPE_FLOATACC, "FAcc" },
2841 { OPERAND_TYPE_SREG2, "SReg2" },
2842 { OPERAND_TYPE_SREG3, "SReg3" },
2843 { OPERAND_TYPE_ACC, "Acc" },
2844 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2845 { OPERAND_TYPE_REGMMX, "rMMX" },
2846 { OPERAND_TYPE_REGXMM, "rXMM" },
2847 { OPERAND_TYPE_REGYMM, "rYMM" },
2848 { OPERAND_TYPE_REGZMM, "rZMM" },
2849 { OPERAND_TYPE_REGMASK, "Mask reg" },
2850 { OPERAND_TYPE_ESSEG, "es" },
2851 };
2852
2853 static void
2854 pt (i386_operand_type t)
2855 {
2856 unsigned int j;
2857 i386_operand_type a;
2858
2859 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2860 {
2861 a = operand_type_and (t, type_names[j].mask);
2862 if (!operand_type_all_zero (&a))
2863 fprintf (stdout, "%s, ", type_names[j].name);
2864 }
2865 fflush (stdout);
2866 }
2867
2868 #endif /* DEBUG386 */
2869 \f
2870 static bfd_reloc_code_real_type
2871 reloc (unsigned int size,
2872 int pcrel,
2873 int sign,
2874 bfd_reloc_code_real_type other)
2875 {
2876 if (other != NO_RELOC)
2877 {
2878 reloc_howto_type *rel;
2879
2880 if (size == 8)
2881 switch (other)
2882 {
2883 case BFD_RELOC_X86_64_GOT32:
2884 return BFD_RELOC_X86_64_GOT64;
2885 break;
2886 case BFD_RELOC_X86_64_GOTPLT64:
2887 return BFD_RELOC_X86_64_GOTPLT64;
2888 break;
2889 case BFD_RELOC_X86_64_PLTOFF64:
2890 return BFD_RELOC_X86_64_PLTOFF64;
2891 break;
2892 case BFD_RELOC_X86_64_GOTPC32:
2893 other = BFD_RELOC_X86_64_GOTPC64;
2894 break;
2895 case BFD_RELOC_X86_64_GOTPCREL:
2896 other = BFD_RELOC_X86_64_GOTPCREL64;
2897 break;
2898 case BFD_RELOC_X86_64_TPOFF32:
2899 other = BFD_RELOC_X86_64_TPOFF64;
2900 break;
2901 case BFD_RELOC_X86_64_DTPOFF32:
2902 other = BFD_RELOC_X86_64_DTPOFF64;
2903 break;
2904 default:
2905 break;
2906 }
2907
2908 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2909 if (other == BFD_RELOC_SIZE32)
2910 {
2911 if (size == 8)
2912 other = BFD_RELOC_SIZE64;
2913 if (pcrel)
2914 {
2915 as_bad (_("there are no pc-relative size relocations"));
2916 return NO_RELOC;
2917 }
2918 }
2919 #endif
2920
2921 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2922 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
2923 sign = -1;
2924
2925 rel = bfd_reloc_type_lookup (stdoutput, other);
2926 if (!rel)
2927 as_bad (_("unknown relocation (%u)"), other);
2928 else if (size != bfd_get_reloc_size (rel))
2929 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2930 bfd_get_reloc_size (rel),
2931 size);
2932 else if (pcrel && !rel->pc_relative)
2933 as_bad (_("non-pc-relative relocation for pc-relative field"));
2934 else if ((rel->complain_on_overflow == complain_overflow_signed
2935 && !sign)
2936 || (rel->complain_on_overflow == complain_overflow_unsigned
2937 && sign > 0))
2938 as_bad (_("relocated field and relocation type differ in signedness"));
2939 else
2940 return other;
2941 return NO_RELOC;
2942 }
2943
2944 if (pcrel)
2945 {
2946 if (!sign)
2947 as_bad (_("there are no unsigned pc-relative relocations"));
2948 switch (size)
2949 {
2950 case 1: return BFD_RELOC_8_PCREL;
2951 case 2: return BFD_RELOC_16_PCREL;
2952 case 4: return BFD_RELOC_32_PCREL;
2953 case 8: return BFD_RELOC_64_PCREL;
2954 }
2955 as_bad (_("cannot do %u byte pc-relative relocation"), size);
2956 }
2957 else
2958 {
2959 if (sign > 0)
2960 switch (size)
2961 {
2962 case 4: return BFD_RELOC_X86_64_32S;
2963 }
2964 else
2965 switch (size)
2966 {
2967 case 1: return BFD_RELOC_8;
2968 case 2: return BFD_RELOC_16;
2969 case 4: return BFD_RELOC_32;
2970 case 8: return BFD_RELOC_64;
2971 }
2972 as_bad (_("cannot do %s %u byte relocation"),
2973 sign > 0 ? "signed" : "unsigned", size);
2974 }
2975
2976 return NO_RELOC;
2977 }
2978
2979 /* Here we decide which fixups can be adjusted to make them relative to
2980 the beginning of the section instead of the symbol. Basically we need
2981 to make sure that the dynamic relocations are done correctly, so in
2982 some cases we force the original symbol to be used. */
2983
2984 int
2985 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
2986 {
2987 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2988 if (!IS_ELF)
2989 return 1;
2990
2991 /* Don't adjust pc-relative references to merge sections in 64-bit
2992 mode. */
2993 if (use_rela_relocations
2994 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2995 && fixP->fx_pcrel)
2996 return 0;
2997
2998 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2999 and changed later by validate_fix. */
3000 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3001 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3002 return 0;
3003
3004 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3005 for size relocations. */
3006 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3007 || fixP->fx_r_type == BFD_RELOC_SIZE64
3008 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3009 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3010 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3011 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3012 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3013 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3014 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3015 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3016 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3017 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3018 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3019 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3020 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3021 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3022 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3023 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3024 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3025 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3026 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3027 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3028 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3029 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3030 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3031 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3032 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3033 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3034 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3035 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3036 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3037 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3038 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3039 return 0;
3040 #endif
3041 return 1;
3042 }
3043
3044 static int
3045 intel_float_operand (const char *mnemonic)
3046 {
3047 /* Note that the value returned is meaningful only for opcodes with (memory)
3048 operands, hence the code here is free to improperly handle opcodes that
3049 have no operands (for better performance and smaller code). */
3050
3051 if (mnemonic[0] != 'f')
3052 return 0; /* non-math */
3053
3054 switch (mnemonic[1])
3055 {
3056 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3057 the fs segment override prefix not currently handled because no
3058 call path can make opcodes without operands get here */
3059 case 'i':
3060 return 2 /* integer op */;
3061 case 'l':
3062 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3063 return 3; /* fldcw/fldenv */
3064 break;
3065 case 'n':
3066 if (mnemonic[2] != 'o' /* fnop */)
3067 return 3; /* non-waiting control op */
3068 break;
3069 case 'r':
3070 if (mnemonic[2] == 's')
3071 return 3; /* frstor/frstpm */
3072 break;
3073 case 's':
3074 if (mnemonic[2] == 'a')
3075 return 3; /* fsave */
3076 if (mnemonic[2] == 't')
3077 {
3078 switch (mnemonic[3])
3079 {
3080 case 'c': /* fstcw */
3081 case 'd': /* fstdw */
3082 case 'e': /* fstenv */
3083 case 's': /* fsts[gw] */
3084 return 3;
3085 }
3086 }
3087 break;
3088 case 'x':
3089 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3090 return 0; /* fxsave/fxrstor are not really math ops */
3091 break;
3092 }
3093
3094 return 1;
3095 }
3096
3097 /* Build the VEX prefix. */
3098
3099 static void
3100 build_vex_prefix (const insn_template *t)
3101 {
3102 unsigned int register_specifier;
3103 unsigned int implied_prefix;
3104 unsigned int vector_length;
3105
3106 /* Check register specifier. */
3107 if (i.vex.register_specifier)
3108 {
3109 register_specifier =
3110 ~register_number (i.vex.register_specifier) & 0xf;
3111 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3112 }
3113 else
3114 register_specifier = 0xf;
3115
3116 /* Use 2-byte VEX prefix by swappping destination and source
3117 operand. */
3118 if (!i.swap_operand
3119 && i.operands == i.reg_operands
3120 && i.tm.opcode_modifier.vexopcode == VEX0F
3121 && i.tm.opcode_modifier.s
3122 && i.rex == REX_B)
3123 {
3124 unsigned int xchg = i.operands - 1;
3125 union i386_op temp_op;
3126 i386_operand_type temp_type;
3127
3128 temp_type = i.types[xchg];
3129 i.types[xchg] = i.types[0];
3130 i.types[0] = temp_type;
3131 temp_op = i.op[xchg];
3132 i.op[xchg] = i.op[0];
3133 i.op[0] = temp_op;
3134
3135 gas_assert (i.rm.mode == 3);
3136
3137 i.rex = REX_R;
3138 xchg = i.rm.regmem;
3139 i.rm.regmem = i.rm.reg;
3140 i.rm.reg = xchg;
3141
3142 /* Use the next insn. */
3143 i.tm = t[1];
3144 }
3145
3146 if (i.tm.opcode_modifier.vex == VEXScalar)
3147 vector_length = avxscalar;
3148 else
3149 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
3150
3151 switch ((i.tm.base_opcode >> 8) & 0xff)
3152 {
3153 case 0:
3154 implied_prefix = 0;
3155 break;
3156 case DATA_PREFIX_OPCODE:
3157 implied_prefix = 1;
3158 break;
3159 case REPE_PREFIX_OPCODE:
3160 implied_prefix = 2;
3161 break;
3162 case REPNE_PREFIX_OPCODE:
3163 implied_prefix = 3;
3164 break;
3165 default:
3166 abort ();
3167 }
3168
3169 /* Use 2-byte VEX prefix if possible. */
3170 if (i.tm.opcode_modifier.vexopcode == VEX0F
3171 && i.tm.opcode_modifier.vexw != VEXW1
3172 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3173 {
3174 /* 2-byte VEX prefix. */
3175 unsigned int r;
3176
3177 i.vex.length = 2;
3178 i.vex.bytes[0] = 0xc5;
3179
3180 /* Check the REX.R bit. */
3181 r = (i.rex & REX_R) ? 0 : 1;
3182 i.vex.bytes[1] = (r << 7
3183 | register_specifier << 3
3184 | vector_length << 2
3185 | implied_prefix);
3186 }
3187 else
3188 {
3189 /* 3-byte VEX prefix. */
3190 unsigned int m, w;
3191
3192 i.vex.length = 3;
3193
3194 switch (i.tm.opcode_modifier.vexopcode)
3195 {
3196 case VEX0F:
3197 m = 0x1;
3198 i.vex.bytes[0] = 0xc4;
3199 break;
3200 case VEX0F38:
3201 m = 0x2;
3202 i.vex.bytes[0] = 0xc4;
3203 break;
3204 case VEX0F3A:
3205 m = 0x3;
3206 i.vex.bytes[0] = 0xc4;
3207 break;
3208 case XOP08:
3209 m = 0x8;
3210 i.vex.bytes[0] = 0x8f;
3211 break;
3212 case XOP09:
3213 m = 0x9;
3214 i.vex.bytes[0] = 0x8f;
3215 break;
3216 case XOP0A:
3217 m = 0xa;
3218 i.vex.bytes[0] = 0x8f;
3219 break;
3220 default:
3221 abort ();
3222 }
3223
3224 /* The high 3 bits of the second VEX byte are 1's compliment
3225 of RXB bits from REX. */
3226 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3227
3228 /* Check the REX.W bit. */
3229 w = (i.rex & REX_W) ? 1 : 0;
3230 if (i.tm.opcode_modifier.vexw == VEXW1)
3231 w = 1;
3232
3233 i.vex.bytes[2] = (w << 7
3234 | register_specifier << 3
3235 | vector_length << 2
3236 | implied_prefix);
3237 }
3238 }
3239
3240 /* Build the EVEX prefix. */
3241
3242 static void
3243 build_evex_prefix (void)
3244 {
3245 unsigned int register_specifier;
3246 unsigned int implied_prefix;
3247 unsigned int m, w;
3248 rex_byte vrex_used = 0;
3249
3250 /* Check register specifier. */
3251 if (i.vex.register_specifier)
3252 {
3253 gas_assert ((i.vrex & REX_X) == 0);
3254
3255 register_specifier = i.vex.register_specifier->reg_num;
3256 if ((i.vex.register_specifier->reg_flags & RegRex))
3257 register_specifier += 8;
3258 /* The upper 16 registers are encoded in the fourth byte of the
3259 EVEX prefix. */
3260 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3261 i.vex.bytes[3] = 0x8;
3262 register_specifier = ~register_specifier & 0xf;
3263 }
3264 else
3265 {
3266 register_specifier = 0xf;
3267
3268 /* Encode upper 16 vector index register in the fourth byte of
3269 the EVEX prefix. */
3270 if (!(i.vrex & REX_X))
3271 i.vex.bytes[3] = 0x8;
3272 else
3273 vrex_used |= REX_X;
3274 }
3275
3276 switch ((i.tm.base_opcode >> 8) & 0xff)
3277 {
3278 case 0:
3279 implied_prefix = 0;
3280 break;
3281 case DATA_PREFIX_OPCODE:
3282 implied_prefix = 1;
3283 break;
3284 case REPE_PREFIX_OPCODE:
3285 implied_prefix = 2;
3286 break;
3287 case REPNE_PREFIX_OPCODE:
3288 implied_prefix = 3;
3289 break;
3290 default:
3291 abort ();
3292 }
3293
3294 /* 4 byte EVEX prefix. */
3295 i.vex.length = 4;
3296 i.vex.bytes[0] = 0x62;
3297
3298 /* mmmm bits. */
3299 switch (i.tm.opcode_modifier.vexopcode)
3300 {
3301 case VEX0F:
3302 m = 1;
3303 break;
3304 case VEX0F38:
3305 m = 2;
3306 break;
3307 case VEX0F3A:
3308 m = 3;
3309 break;
3310 default:
3311 abort ();
3312 break;
3313 }
3314
3315 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3316 bits from REX. */
3317 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3318
3319 /* The fifth bit of the second EVEX byte is 1's compliment of the
3320 REX_R bit in VREX. */
3321 if (!(i.vrex & REX_R))
3322 i.vex.bytes[1] |= 0x10;
3323 else
3324 vrex_used |= REX_R;
3325
3326 if ((i.reg_operands + i.imm_operands) == i.operands)
3327 {
3328 /* When all operands are registers, the REX_X bit in REX is not
3329 used. We reuse it to encode the upper 16 registers, which is
3330 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3331 as 1's compliment. */
3332 if ((i.vrex & REX_B))
3333 {
3334 vrex_used |= REX_B;
3335 i.vex.bytes[1] &= ~0x40;
3336 }
3337 }
3338
3339 /* EVEX instructions shouldn't need the REX prefix. */
3340 i.vrex &= ~vrex_used;
3341 gas_assert (i.vrex == 0);
3342
3343 /* Check the REX.W bit. */
3344 w = (i.rex & REX_W) ? 1 : 0;
3345 if (i.tm.opcode_modifier.vexw)
3346 {
3347 if (i.tm.opcode_modifier.vexw == VEXW1)
3348 w = 1;
3349 }
3350 /* If w is not set it means we are dealing with WIG instruction. */
3351 else if (!w)
3352 {
3353 if (evexwig == evexw1)
3354 w = 1;
3355 }
3356
3357 /* Encode the U bit. */
3358 implied_prefix |= 0x4;
3359
3360 /* The third byte of the EVEX prefix. */
3361 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3362
3363 /* The fourth byte of the EVEX prefix. */
3364 /* The zeroing-masking bit. */
3365 if (i.mask && i.mask->zeroing)
3366 i.vex.bytes[3] |= 0x80;
3367
3368 /* Don't always set the broadcast bit if there is no RC. */
3369 if (!i.rounding)
3370 {
3371 /* Encode the vector length. */
3372 unsigned int vec_length;
3373
3374 switch (i.tm.opcode_modifier.evex)
3375 {
3376 case EVEXLIG: /* LL' is ignored */
3377 vec_length = evexlig << 5;
3378 break;
3379 case EVEX128:
3380 vec_length = 0 << 5;
3381 break;
3382 case EVEX256:
3383 vec_length = 1 << 5;
3384 break;
3385 case EVEX512:
3386 vec_length = 2 << 5;
3387 break;
3388 default:
3389 abort ();
3390 break;
3391 }
3392 i.vex.bytes[3] |= vec_length;
3393 /* Encode the broadcast bit. */
3394 if (i.broadcast)
3395 i.vex.bytes[3] |= 0x10;
3396 }
3397 else
3398 {
3399 if (i.rounding->type != saeonly)
3400 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3401 else
3402 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3403 }
3404
3405 if (i.mask && i.mask->mask)
3406 i.vex.bytes[3] |= i.mask->mask->reg_num;
3407 }
3408
3409 static void
3410 process_immext (void)
3411 {
3412 expressionS *exp;
3413
3414 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3415 && i.operands > 0)
3416 {
3417 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3418 with an opcode suffix which is coded in the same place as an
3419 8-bit immediate field would be.
3420 Here we check those operands and remove them afterwards. */
3421 unsigned int x;
3422
3423 for (x = 0; x < i.operands; x++)
3424 if (register_number (i.op[x].regs) != x)
3425 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3426 register_prefix, i.op[x].regs->reg_name, x + 1,
3427 i.tm.name);
3428
3429 i.operands = 0;
3430 }
3431
3432 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3433 {
3434 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3435 suffix which is coded in the same place as an 8-bit immediate
3436 field would be.
3437 Here we check those operands and remove them afterwards. */
3438 unsigned int x;
3439
3440 if (i.operands != 3)
3441 abort();
3442
3443 for (x = 0; x < 2; x++)
3444 if (register_number (i.op[x].regs) != x)
3445 goto bad_register_operand;
3446
3447 /* Check for third operand for mwaitx/monitorx insn. */
3448 if (register_number (i.op[x].regs)
3449 != (x + (i.tm.extension_opcode == 0xfb)))
3450 {
3451 bad_register_operand:
3452 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3453 register_prefix, i.op[x].regs->reg_name, x+1,
3454 i.tm.name);
3455 }
3456
3457 i.operands = 0;
3458 }
3459
3460 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3461 which is coded in the same place as an 8-bit immediate field
3462 would be. Here we fake an 8-bit immediate operand from the
3463 opcode suffix stored in tm.extension_opcode.
3464
3465 AVX instructions also use this encoding, for some of
3466 3 argument instructions. */
3467
3468 gas_assert (i.imm_operands <= 1
3469 && (i.operands <= 2
3470 || ((i.tm.opcode_modifier.vex
3471 || i.tm.opcode_modifier.evex)
3472 && i.operands <= 4)));
3473
3474 exp = &im_expressions[i.imm_operands++];
3475 i.op[i.operands].imms = exp;
3476 i.types[i.operands] = imm8;
3477 i.operands++;
3478 exp->X_op = O_constant;
3479 exp->X_add_number = i.tm.extension_opcode;
3480 i.tm.extension_opcode = None;
3481 }
3482
3483
3484 static int
3485 check_hle (void)
3486 {
3487 switch (i.tm.opcode_modifier.hleprefixok)
3488 {
3489 default:
3490 abort ();
3491 case HLEPrefixNone:
3492 as_bad (_("invalid instruction `%s' after `%s'"),
3493 i.tm.name, i.hle_prefix);
3494 return 0;
3495 case HLEPrefixLock:
3496 if (i.prefix[LOCK_PREFIX])
3497 return 1;
3498 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3499 return 0;
3500 case HLEPrefixAny:
3501 return 1;
3502 case HLEPrefixRelease:
3503 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3504 {
3505 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3506 i.tm.name);
3507 return 0;
3508 }
3509 if (i.mem_operands == 0
3510 || !operand_type_check (i.types[i.operands - 1], anymem))
3511 {
3512 as_bad (_("memory destination needed for instruction `%s'"
3513 " after `xrelease'"), i.tm.name);
3514 return 0;
3515 }
3516 return 1;
3517 }
3518 }
3519
3520 /* This is the guts of the machine-dependent assembler. LINE points to a
3521 machine dependent instruction. This function is supposed to emit
3522 the frags/bytes it assembles to. */
3523
3524 void
3525 md_assemble (char *line)
3526 {
3527 unsigned int j;
3528 char mnemonic[MAX_MNEM_SIZE];
3529 const insn_template *t;
3530
3531 /* Initialize globals. */
3532 memset (&i, '\0', sizeof (i));
3533 for (j = 0; j < MAX_OPERANDS; j++)
3534 i.reloc[j] = NO_RELOC;
3535 memset (disp_expressions, '\0', sizeof (disp_expressions));
3536 memset (im_expressions, '\0', sizeof (im_expressions));
3537 save_stack_p = save_stack;
3538
3539 /* First parse an instruction mnemonic & call i386_operand for the operands.
3540 We assume that the scrubber has arranged it so that line[0] is the valid
3541 start of a (possibly prefixed) mnemonic. */
3542
3543 line = parse_insn (line, mnemonic);
3544 if (line == NULL)
3545 return;
3546
3547 line = parse_operands (line, mnemonic);
3548 this_operand = -1;
3549 if (line == NULL)
3550 return;
3551
3552 /* Now we've parsed the mnemonic into a set of templates, and have the
3553 operands at hand. */
3554
3555 /* All intel opcodes have reversed operands except for "bound" and
3556 "enter". We also don't reverse intersegment "jmp" and "call"
3557 instructions with 2 immediate operands so that the immediate segment
3558 precedes the offset, as it does when in AT&T mode. */
3559 if (intel_syntax
3560 && i.operands > 1
3561 && (strcmp (mnemonic, "bound") != 0)
3562 && (strcmp (mnemonic, "invlpga") != 0)
3563 && !(operand_type_check (i.types[0], imm)
3564 && operand_type_check (i.types[1], imm)))
3565 swap_operands ();
3566
3567 /* The order of the immediates should be reversed
3568 for 2 immediates extrq and insertq instructions */
3569 if (i.imm_operands == 2
3570 && (strcmp (mnemonic, "extrq") == 0
3571 || strcmp (mnemonic, "insertq") == 0))
3572 swap_2_operands (0, 1);
3573
3574 if (i.imm_operands)
3575 optimize_imm ();
3576
3577 /* Don't optimize displacement for movabs since it only takes 64bit
3578 displacement. */
3579 if (i.disp_operands
3580 && i.disp_encoding != disp_encoding_32bit
3581 && (flag_code != CODE_64BIT
3582 || strcmp (mnemonic, "movabs") != 0))
3583 optimize_disp ();
3584
3585 /* Next, we find a template that matches the given insn,
3586 making sure the overlap of the given operands types is consistent
3587 with the template operand types. */
3588
3589 if (!(t = match_template ()))
3590 return;
3591
3592 if (sse_check != check_none
3593 && !i.tm.opcode_modifier.noavx
3594 && (i.tm.cpu_flags.bitfield.cpusse
3595 || i.tm.cpu_flags.bitfield.cpusse2
3596 || i.tm.cpu_flags.bitfield.cpusse3
3597 || i.tm.cpu_flags.bitfield.cpussse3
3598 || i.tm.cpu_flags.bitfield.cpusse4_1
3599 || i.tm.cpu_flags.bitfield.cpusse4_2))
3600 {
3601 (sse_check == check_warning
3602 ? as_warn
3603 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3604 }
3605
3606 /* Zap movzx and movsx suffix. The suffix has been set from
3607 "word ptr" or "byte ptr" on the source operand in Intel syntax
3608 or extracted from mnemonic in AT&T syntax. But we'll use
3609 the destination register to choose the suffix for encoding. */
3610 if ((i.tm.base_opcode & ~9) == 0x0fb6)
3611 {
3612 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3613 there is no suffix, the default will be byte extension. */
3614 if (i.reg_operands != 2
3615 && !i.suffix
3616 && intel_syntax)
3617 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3618
3619 i.suffix = 0;
3620 }
3621
3622 if (i.tm.opcode_modifier.fwait)
3623 if (!add_prefix (FWAIT_OPCODE))
3624 return;
3625
3626 /* Check if REP prefix is OK. */
3627 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3628 {
3629 as_bad (_("invalid instruction `%s' after `%s'"),
3630 i.tm.name, i.rep_prefix);
3631 return;
3632 }
3633
3634 /* Check for lock without a lockable instruction. Destination operand
3635 must be memory unless it is xchg (0x86). */
3636 if (i.prefix[LOCK_PREFIX]
3637 && (!i.tm.opcode_modifier.islockable
3638 || i.mem_operands == 0
3639 || (i.tm.base_opcode != 0x86
3640 && !operand_type_check (i.types[i.operands - 1], anymem))))
3641 {
3642 as_bad (_("expecting lockable instruction after `lock'"));
3643 return;
3644 }
3645
3646 /* Check if HLE prefix is OK. */
3647 if (i.hle_prefix && !check_hle ())
3648 return;
3649
3650 /* Check BND prefix. */
3651 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3652 as_bad (_("expecting valid branch instruction after `bnd'"));
3653
3654 if (i.tm.cpu_flags.bitfield.cpumpx
3655 && flag_code == CODE_64BIT
3656 && i.prefix[ADDR_PREFIX])
3657 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3658
3659 /* Insert BND prefix. */
3660 if (add_bnd_prefix
3661 && i.tm.opcode_modifier.bndprefixok
3662 && !i.prefix[BND_PREFIX])
3663 add_prefix (BND_PREFIX_OPCODE);
3664
3665 /* Check string instruction segment overrides. */
3666 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3667 {
3668 if (!check_string ())
3669 return;
3670 i.disp_operands = 0;
3671 }
3672
3673 if (!process_suffix ())
3674 return;
3675
3676 /* Update operand types. */
3677 for (j = 0; j < i.operands; j++)
3678 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3679
3680 /* Make still unresolved immediate matches conform to size of immediate
3681 given in i.suffix. */
3682 if (!finalize_imm ())
3683 return;
3684
3685 if (i.types[0].bitfield.imm1)
3686 i.imm_operands = 0; /* kludge for shift insns. */
3687
3688 /* We only need to check those implicit registers for instructions
3689 with 3 operands or less. */
3690 if (i.operands <= 3)
3691 for (j = 0; j < i.operands; j++)
3692 if (i.types[j].bitfield.inoutportreg
3693 || i.types[j].bitfield.shiftcount
3694 || i.types[j].bitfield.acc
3695 || i.types[j].bitfield.floatacc)
3696 i.reg_operands--;
3697
3698 /* ImmExt should be processed after SSE2AVX. */
3699 if (!i.tm.opcode_modifier.sse2avx
3700 && i.tm.opcode_modifier.immext)
3701 process_immext ();
3702
3703 /* For insns with operands there are more diddles to do to the opcode. */
3704 if (i.operands)
3705 {
3706 if (!process_operands ())
3707 return;
3708 }
3709 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3710 {
3711 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3712 as_warn (_("translating to `%sp'"), i.tm.name);
3713 }
3714
3715 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3716 {
3717 if (flag_code == CODE_16BIT)
3718 {
3719 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3720 i.tm.name);
3721 return;
3722 }
3723
3724 if (i.tm.opcode_modifier.vex)
3725 build_vex_prefix (t);
3726 else
3727 build_evex_prefix ();
3728 }
3729
3730 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3731 instructions may define INT_OPCODE as well, so avoid this corner
3732 case for those instructions that use MODRM. */
3733 if (i.tm.base_opcode == INT_OPCODE
3734 && !i.tm.opcode_modifier.modrm
3735 && i.op[0].imms->X_add_number == 3)
3736 {
3737 i.tm.base_opcode = INT3_OPCODE;
3738 i.imm_operands = 0;
3739 }
3740
3741 if ((i.tm.opcode_modifier.jump
3742 || i.tm.opcode_modifier.jumpbyte
3743 || i.tm.opcode_modifier.jumpdword)
3744 && i.op[0].disps->X_op == O_constant)
3745 {
3746 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3747 the absolute address given by the constant. Since ix86 jumps and
3748 calls are pc relative, we need to generate a reloc. */
3749 i.op[0].disps->X_add_symbol = &abs_symbol;
3750 i.op[0].disps->X_op = O_symbol;
3751 }
3752
3753 if (i.tm.opcode_modifier.rex64)
3754 i.rex |= REX_W;
3755
3756 /* For 8 bit registers we need an empty rex prefix. Also if the
3757 instruction already has a prefix, we need to convert old
3758 registers to new ones. */
3759
3760 if ((i.types[0].bitfield.reg8
3761 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3762 || (i.types[1].bitfield.reg8
3763 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3764 || ((i.types[0].bitfield.reg8
3765 || i.types[1].bitfield.reg8)
3766 && i.rex != 0))
3767 {
3768 int x;
3769
3770 i.rex |= REX_OPCODE;
3771 for (x = 0; x < 2; x++)
3772 {
3773 /* Look for 8 bit operand that uses old registers. */
3774 if (i.types[x].bitfield.reg8
3775 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3776 {
3777 /* In case it is "hi" register, give up. */
3778 if (i.op[x].regs->reg_num > 3)
3779 as_bad (_("can't encode register '%s%s' in an "
3780 "instruction requiring REX prefix."),
3781 register_prefix, i.op[x].regs->reg_name);
3782
3783 /* Otherwise it is equivalent to the extended register.
3784 Since the encoding doesn't change this is merely
3785 cosmetic cleanup for debug output. */
3786
3787 i.op[x].regs = i.op[x].regs + 8;
3788 }
3789 }
3790 }
3791
3792 if (i.rex != 0)
3793 add_prefix (REX_OPCODE | i.rex);
3794
3795 /* We are ready to output the insn. */
3796 output_insn ();
3797 }
3798
3799 static char *
3800 parse_insn (char *line, char *mnemonic)
3801 {
3802 char *l = line;
3803 char *token_start = l;
3804 char *mnem_p;
3805 int supported;
3806 const insn_template *t;
3807 char *dot_p = NULL;
3808
3809 while (1)
3810 {
3811 mnem_p = mnemonic;
3812 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3813 {
3814 if (*mnem_p == '.')
3815 dot_p = mnem_p;
3816 mnem_p++;
3817 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3818 {
3819 as_bad (_("no such instruction: `%s'"), token_start);
3820 return NULL;
3821 }
3822 l++;
3823 }
3824 if (!is_space_char (*l)
3825 && *l != END_OF_INSN
3826 && (intel_syntax
3827 || (*l != PREFIX_SEPARATOR
3828 && *l != ',')))
3829 {
3830 as_bad (_("invalid character %s in mnemonic"),
3831 output_invalid (*l));
3832 return NULL;
3833 }
3834 if (token_start == l)
3835 {
3836 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3837 as_bad (_("expecting prefix; got nothing"));
3838 else
3839 as_bad (_("expecting mnemonic; got nothing"));
3840 return NULL;
3841 }
3842
3843 /* Look up instruction (or prefix) via hash table. */
3844 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3845
3846 if (*l != END_OF_INSN
3847 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3848 && current_templates
3849 && current_templates->start->opcode_modifier.isprefix)
3850 {
3851 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3852 {
3853 as_bad ((flag_code != CODE_64BIT
3854 ? _("`%s' is only supported in 64-bit mode")
3855 : _("`%s' is not supported in 64-bit mode")),
3856 current_templates->start->name);
3857 return NULL;
3858 }
3859 /* If we are in 16-bit mode, do not allow addr16 or data16.
3860 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3861 if ((current_templates->start->opcode_modifier.size16
3862 || current_templates->start->opcode_modifier.size32)
3863 && flag_code != CODE_64BIT
3864 && (current_templates->start->opcode_modifier.size32
3865 ^ (flag_code == CODE_16BIT)))
3866 {
3867 as_bad (_("redundant %s prefix"),
3868 current_templates->start->name);
3869 return NULL;
3870 }
3871 /* Add prefix, checking for repeated prefixes. */
3872 switch (add_prefix (current_templates->start->base_opcode))
3873 {
3874 case PREFIX_EXIST:
3875 return NULL;
3876 case PREFIX_REP:
3877 if (current_templates->start->cpu_flags.bitfield.cpuhle)
3878 i.hle_prefix = current_templates->start->name;
3879 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
3880 i.bnd_prefix = current_templates->start->name;
3881 else
3882 i.rep_prefix = current_templates->start->name;
3883 break;
3884 default:
3885 break;
3886 }
3887 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3888 token_start = ++l;
3889 }
3890 else
3891 break;
3892 }
3893
3894 if (!current_templates)
3895 {
3896 /* Check if we should swap operand or force 32bit displacement in
3897 encoding. */
3898 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3899 i.swap_operand = 1;
3900 else if (mnem_p - 3 == dot_p
3901 && dot_p[1] == 'd'
3902 && dot_p[2] == '8')
3903 i.disp_encoding = disp_encoding_8bit;
3904 else if (mnem_p - 4 == dot_p
3905 && dot_p[1] == 'd'
3906 && dot_p[2] == '3'
3907 && dot_p[3] == '2')
3908 i.disp_encoding = disp_encoding_32bit;
3909 else
3910 goto check_suffix;
3911 mnem_p = dot_p;
3912 *dot_p = '\0';
3913 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3914 }
3915
3916 if (!current_templates)
3917 {
3918 check_suffix:
3919 /* See if we can get a match by trimming off a suffix. */
3920 switch (mnem_p[-1])
3921 {
3922 case WORD_MNEM_SUFFIX:
3923 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3924 i.suffix = SHORT_MNEM_SUFFIX;
3925 else
3926 case BYTE_MNEM_SUFFIX:
3927 case QWORD_MNEM_SUFFIX:
3928 i.suffix = mnem_p[-1];
3929 mnem_p[-1] = '\0';
3930 current_templates = (const templates *) hash_find (op_hash,
3931 mnemonic);
3932 break;
3933 case SHORT_MNEM_SUFFIX:
3934 case LONG_MNEM_SUFFIX:
3935 if (!intel_syntax)
3936 {
3937 i.suffix = mnem_p[-1];
3938 mnem_p[-1] = '\0';
3939 current_templates = (const templates *) hash_find (op_hash,
3940 mnemonic);
3941 }
3942 break;
3943
3944 /* Intel Syntax. */
3945 case 'd':
3946 if (intel_syntax)
3947 {
3948 if (intel_float_operand (mnemonic) == 1)
3949 i.suffix = SHORT_MNEM_SUFFIX;
3950 else
3951 i.suffix = LONG_MNEM_SUFFIX;
3952 mnem_p[-1] = '\0';
3953 current_templates = (const templates *) hash_find (op_hash,
3954 mnemonic);
3955 }
3956 break;
3957 }
3958 if (!current_templates)
3959 {
3960 as_bad (_("no such instruction: `%s'"), token_start);
3961 return NULL;
3962 }
3963 }
3964
3965 if (current_templates->start->opcode_modifier.jump
3966 || current_templates->start->opcode_modifier.jumpbyte)
3967 {
3968 /* Check for a branch hint. We allow ",pt" and ",pn" for
3969 predict taken and predict not taken respectively.
3970 I'm not sure that branch hints actually do anything on loop
3971 and jcxz insns (JumpByte) for current Pentium4 chips. They
3972 may work in the future and it doesn't hurt to accept them
3973 now. */
3974 if (l[0] == ',' && l[1] == 'p')
3975 {
3976 if (l[2] == 't')
3977 {
3978 if (!add_prefix (DS_PREFIX_OPCODE))
3979 return NULL;
3980 l += 3;
3981 }
3982 else if (l[2] == 'n')
3983 {
3984 if (!add_prefix (CS_PREFIX_OPCODE))
3985 return NULL;
3986 l += 3;
3987 }
3988 }
3989 }
3990 /* Any other comma loses. */
3991 if (*l == ',')
3992 {
3993 as_bad (_("invalid character %s in mnemonic"),
3994 output_invalid (*l));
3995 return NULL;
3996 }
3997
3998 /* Check if instruction is supported on specified architecture. */
3999 supported = 0;
4000 for (t = current_templates->start; t < current_templates->end; ++t)
4001 {
4002 supported |= cpu_flags_match (t);
4003 if (supported == CPU_FLAGS_PERFECT_MATCH)
4004 goto skip;
4005 }
4006
4007 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4008 {
4009 as_bad (flag_code == CODE_64BIT
4010 ? _("`%s' is not supported in 64-bit mode")
4011 : _("`%s' is only supported in 64-bit mode"),
4012 current_templates->start->name);
4013 return NULL;
4014 }
4015 if (supported != CPU_FLAGS_PERFECT_MATCH)
4016 {
4017 as_bad (_("`%s' is not supported on `%s%s'"),
4018 current_templates->start->name,
4019 cpu_arch_name ? cpu_arch_name : default_arch,
4020 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4021 return NULL;
4022 }
4023
4024 skip:
4025 if (!cpu_arch_flags.bitfield.cpui386
4026 && (flag_code != CODE_16BIT))
4027 {
4028 as_warn (_("use .code16 to ensure correct addressing mode"));
4029 }
4030
4031 return l;
4032 }
4033
4034 static char *
4035 parse_operands (char *l, const char *mnemonic)
4036 {
4037 char *token_start;
4038
4039 /* 1 if operand is pending after ','. */
4040 unsigned int expecting_operand = 0;
4041
4042 /* Non-zero if operand parens not balanced. */
4043 unsigned int paren_not_balanced;
4044
4045 while (*l != END_OF_INSN)
4046 {
4047 /* Skip optional white space before operand. */
4048 if (is_space_char (*l))
4049 ++l;
4050 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4051 {
4052 as_bad (_("invalid character %s before operand %d"),
4053 output_invalid (*l),
4054 i.operands + 1);
4055 return NULL;
4056 }
4057 token_start = l; /* After white space. */
4058 paren_not_balanced = 0;
4059 while (paren_not_balanced || *l != ',')
4060 {
4061 if (*l == END_OF_INSN)
4062 {
4063 if (paren_not_balanced)
4064 {
4065 if (!intel_syntax)
4066 as_bad (_("unbalanced parenthesis in operand %d."),
4067 i.operands + 1);
4068 else
4069 as_bad (_("unbalanced brackets in operand %d."),
4070 i.operands + 1);
4071 return NULL;
4072 }
4073 else
4074 break; /* we are done */
4075 }
4076 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4077 {
4078 as_bad (_("invalid character %s in operand %d"),
4079 output_invalid (*l),
4080 i.operands + 1);
4081 return NULL;
4082 }
4083 if (!intel_syntax)
4084 {
4085 if (*l == '(')
4086 ++paren_not_balanced;
4087 if (*l == ')')
4088 --paren_not_balanced;
4089 }
4090 else
4091 {
4092 if (*l == '[')
4093 ++paren_not_balanced;
4094 if (*l == ']')
4095 --paren_not_balanced;
4096 }
4097 l++;
4098 }
4099 if (l != token_start)
4100 { /* Yes, we've read in another operand. */
4101 unsigned int operand_ok;
4102 this_operand = i.operands++;
4103 i.types[this_operand].bitfield.unspecified = 1;
4104 if (i.operands > MAX_OPERANDS)
4105 {
4106 as_bad (_("spurious operands; (%d operands/instruction max)"),
4107 MAX_OPERANDS);
4108 return NULL;
4109 }
4110 /* Now parse operand adding info to 'i' as we go along. */
4111 END_STRING_AND_SAVE (l);
4112
4113 if (intel_syntax)
4114 operand_ok =
4115 i386_intel_operand (token_start,
4116 intel_float_operand (mnemonic));
4117 else
4118 operand_ok = i386_att_operand (token_start);
4119
4120 RESTORE_END_STRING (l);
4121 if (!operand_ok)
4122 return NULL;
4123 }
4124 else
4125 {
4126 if (expecting_operand)
4127 {
4128 expecting_operand_after_comma:
4129 as_bad (_("expecting operand after ','; got nothing"));
4130 return NULL;
4131 }
4132 if (*l == ',')
4133 {
4134 as_bad (_("expecting operand before ','; got nothing"));
4135 return NULL;
4136 }
4137 }
4138
4139 /* Now *l must be either ',' or END_OF_INSN. */
4140 if (*l == ',')
4141 {
4142 if (*++l == END_OF_INSN)
4143 {
4144 /* Just skip it, if it's \n complain. */
4145 goto expecting_operand_after_comma;
4146 }
4147 expecting_operand = 1;
4148 }
4149 }
4150 return l;
4151 }
4152
4153 static void
4154 swap_2_operands (int xchg1, int xchg2)
4155 {
4156 union i386_op temp_op;
4157 i386_operand_type temp_type;
4158 enum bfd_reloc_code_real temp_reloc;
4159
4160 temp_type = i.types[xchg2];
4161 i.types[xchg2] = i.types[xchg1];
4162 i.types[xchg1] = temp_type;
4163 temp_op = i.op[xchg2];
4164 i.op[xchg2] = i.op[xchg1];
4165 i.op[xchg1] = temp_op;
4166 temp_reloc = i.reloc[xchg2];
4167 i.reloc[xchg2] = i.reloc[xchg1];
4168 i.reloc[xchg1] = temp_reloc;
4169
4170 if (i.mask)
4171 {
4172 if (i.mask->operand == xchg1)
4173 i.mask->operand = xchg2;
4174 else if (i.mask->operand == xchg2)
4175 i.mask->operand = xchg1;
4176 }
4177 if (i.broadcast)
4178 {
4179 if (i.broadcast->operand == xchg1)
4180 i.broadcast->operand = xchg2;
4181 else if (i.broadcast->operand == xchg2)
4182 i.broadcast->operand = xchg1;
4183 }
4184 if (i.rounding)
4185 {
4186 if (i.rounding->operand == xchg1)
4187 i.rounding->operand = xchg2;
4188 else if (i.rounding->operand == xchg2)
4189 i.rounding->operand = xchg1;
4190 }
4191 }
4192
4193 static void
4194 swap_operands (void)
4195 {
4196 switch (i.operands)
4197 {
4198 case 5:
4199 case 4:
4200 swap_2_operands (1, i.operands - 2);
4201 case 3:
4202 case 2:
4203 swap_2_operands (0, i.operands - 1);
4204 break;
4205 default:
4206 abort ();
4207 }
4208
4209 if (i.mem_operands == 2)
4210 {
4211 const seg_entry *temp_seg;
4212 temp_seg = i.seg[0];
4213 i.seg[0] = i.seg[1];
4214 i.seg[1] = temp_seg;
4215 }
4216 }
4217
4218 /* Try to ensure constant immediates are represented in the smallest
4219 opcode possible. */
4220 static void
4221 optimize_imm (void)
4222 {
4223 char guess_suffix = 0;
4224 int op;
4225
4226 if (i.suffix)
4227 guess_suffix = i.suffix;
4228 else if (i.reg_operands)
4229 {
4230 /* Figure out a suffix from the last register operand specified.
4231 We can't do this properly yet, ie. excluding InOutPortReg,
4232 but the following works for instructions with immediates.
4233 In any case, we can't set i.suffix yet. */
4234 for (op = i.operands; --op >= 0;)
4235 if (i.types[op].bitfield.reg8)
4236 {
4237 guess_suffix = BYTE_MNEM_SUFFIX;
4238 break;
4239 }
4240 else if (i.types[op].bitfield.reg16)
4241 {
4242 guess_suffix = WORD_MNEM_SUFFIX;
4243 break;
4244 }
4245 else if (i.types[op].bitfield.reg32)
4246 {
4247 guess_suffix = LONG_MNEM_SUFFIX;
4248 break;
4249 }
4250 else if (i.types[op].bitfield.reg64)
4251 {
4252 guess_suffix = QWORD_MNEM_SUFFIX;
4253 break;
4254 }
4255 }
4256 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4257 guess_suffix = WORD_MNEM_SUFFIX;
4258
4259 for (op = i.operands; --op >= 0;)
4260 if (operand_type_check (i.types[op], imm))
4261 {
4262 switch (i.op[op].imms->X_op)
4263 {
4264 case O_constant:
4265 /* If a suffix is given, this operand may be shortened. */
4266 switch (guess_suffix)
4267 {
4268 case LONG_MNEM_SUFFIX:
4269 i.types[op].bitfield.imm32 = 1;
4270 i.types[op].bitfield.imm64 = 1;
4271 break;
4272 case WORD_MNEM_SUFFIX:
4273 i.types[op].bitfield.imm16 = 1;
4274 i.types[op].bitfield.imm32 = 1;
4275 i.types[op].bitfield.imm32s = 1;
4276 i.types[op].bitfield.imm64 = 1;
4277 break;
4278 case BYTE_MNEM_SUFFIX:
4279 i.types[op].bitfield.imm8 = 1;
4280 i.types[op].bitfield.imm8s = 1;
4281 i.types[op].bitfield.imm16 = 1;
4282 i.types[op].bitfield.imm32 = 1;
4283 i.types[op].bitfield.imm32s = 1;
4284 i.types[op].bitfield.imm64 = 1;
4285 break;
4286 }
4287
4288 /* If this operand is at most 16 bits, convert it
4289 to a signed 16 bit number before trying to see
4290 whether it will fit in an even smaller size.
4291 This allows a 16-bit operand such as $0xffe0 to
4292 be recognised as within Imm8S range. */
4293 if ((i.types[op].bitfield.imm16)
4294 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4295 {
4296 i.op[op].imms->X_add_number =
4297 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4298 }
4299 #ifdef BFD64
4300 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4301 if ((i.types[op].bitfield.imm32)
4302 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4303 == 0))
4304 {
4305 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4306 ^ ((offsetT) 1 << 31))
4307 - ((offsetT) 1 << 31));
4308 }
4309 #endif
4310 i.types[op]
4311 = operand_type_or (i.types[op],
4312 smallest_imm_type (i.op[op].imms->X_add_number));
4313
4314 /* We must avoid matching of Imm32 templates when 64bit
4315 only immediate is available. */
4316 if (guess_suffix == QWORD_MNEM_SUFFIX)
4317 i.types[op].bitfield.imm32 = 0;
4318 break;
4319
4320 case O_absent:
4321 case O_register:
4322 abort ();
4323
4324 /* Symbols and expressions. */
4325 default:
4326 /* Convert symbolic operand to proper sizes for matching, but don't
4327 prevent matching a set of insns that only supports sizes other
4328 than those matching the insn suffix. */
4329 {
4330 i386_operand_type mask, allowed;
4331 const insn_template *t;
4332
4333 operand_type_set (&mask, 0);
4334 operand_type_set (&allowed, 0);
4335
4336 for (t = current_templates->start;
4337 t < current_templates->end;
4338 ++t)
4339 allowed = operand_type_or (allowed,
4340 t->operand_types[op]);
4341 switch (guess_suffix)
4342 {
4343 case QWORD_MNEM_SUFFIX:
4344 mask.bitfield.imm64 = 1;
4345 mask.bitfield.imm32s = 1;
4346 break;
4347 case LONG_MNEM_SUFFIX:
4348 mask.bitfield.imm32 = 1;
4349 break;
4350 case WORD_MNEM_SUFFIX:
4351 mask.bitfield.imm16 = 1;
4352 break;
4353 case BYTE_MNEM_SUFFIX:
4354 mask.bitfield.imm8 = 1;
4355 break;
4356 default:
4357 break;
4358 }
4359 allowed = operand_type_and (mask, allowed);
4360 if (!operand_type_all_zero (&allowed))
4361 i.types[op] = operand_type_and (i.types[op], mask);
4362 }
4363 break;
4364 }
4365 }
4366 }
4367
4368 /* Try to use the smallest displacement type too. */
4369 static void
4370 optimize_disp (void)
4371 {
4372 int op;
4373
4374 for (op = i.operands; --op >= 0;)
4375 if (operand_type_check (i.types[op], disp))
4376 {
4377 if (i.op[op].disps->X_op == O_constant)
4378 {
4379 offsetT op_disp = i.op[op].disps->X_add_number;
4380
4381 if (i.types[op].bitfield.disp16
4382 && (op_disp & ~(offsetT) 0xffff) == 0)
4383 {
4384 /* If this operand is at most 16 bits, convert
4385 to a signed 16 bit number and don't use 64bit
4386 displacement. */
4387 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4388 i.types[op].bitfield.disp64 = 0;
4389 }
4390 #ifdef BFD64
4391 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4392 if (i.types[op].bitfield.disp32
4393 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4394 {
4395 /* If this operand is at most 32 bits, convert
4396 to a signed 32 bit number and don't use 64bit
4397 displacement. */
4398 op_disp &= (((offsetT) 2 << 31) - 1);
4399 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4400 i.types[op].bitfield.disp64 = 0;
4401 }
4402 #endif
4403 if (!op_disp && i.types[op].bitfield.baseindex)
4404 {
4405 i.types[op].bitfield.disp8 = 0;
4406 i.types[op].bitfield.disp16 = 0;
4407 i.types[op].bitfield.disp32 = 0;
4408 i.types[op].bitfield.disp32s = 0;
4409 i.types[op].bitfield.disp64 = 0;
4410 i.op[op].disps = 0;
4411 i.disp_operands--;
4412 }
4413 else if (flag_code == CODE_64BIT)
4414 {
4415 if (fits_in_signed_long (op_disp))
4416 {
4417 i.types[op].bitfield.disp64 = 0;
4418 i.types[op].bitfield.disp32s = 1;
4419 }
4420 if (i.prefix[ADDR_PREFIX]
4421 && fits_in_unsigned_long (op_disp))
4422 i.types[op].bitfield.disp32 = 1;
4423 }
4424 if ((i.types[op].bitfield.disp32
4425 || i.types[op].bitfield.disp32s
4426 || i.types[op].bitfield.disp16)
4427 && fits_in_signed_byte (op_disp))
4428 i.types[op].bitfield.disp8 = 1;
4429 }
4430 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4431 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4432 {
4433 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4434 i.op[op].disps, 0, i.reloc[op]);
4435 i.types[op].bitfield.disp8 = 0;
4436 i.types[op].bitfield.disp16 = 0;
4437 i.types[op].bitfield.disp32 = 0;
4438 i.types[op].bitfield.disp32s = 0;
4439 i.types[op].bitfield.disp64 = 0;
4440 }
4441 else
4442 /* We only support 64bit displacement on constants. */
4443 i.types[op].bitfield.disp64 = 0;
4444 }
4445 }
4446
4447 /* Check if operands are valid for the instruction. */
4448
4449 static int
4450 check_VecOperands (const insn_template *t)
4451 {
4452 unsigned int op;
4453
4454 /* Without VSIB byte, we can't have a vector register for index. */
4455 if (!t->opcode_modifier.vecsib
4456 && i.index_reg
4457 && (i.index_reg->reg_type.bitfield.regxmm
4458 || i.index_reg->reg_type.bitfield.regymm
4459 || i.index_reg->reg_type.bitfield.regzmm))
4460 {
4461 i.error = unsupported_vector_index_register;
4462 return 1;
4463 }
4464
4465 /* Check if default mask is allowed. */
4466 if (t->opcode_modifier.nodefmask
4467 && (!i.mask || i.mask->mask->reg_num == 0))
4468 {
4469 i.error = no_default_mask;
4470 return 1;
4471 }
4472
4473 /* For VSIB byte, we need a vector register for index, and all vector
4474 registers must be distinct. */
4475 if (t->opcode_modifier.vecsib)
4476 {
4477 if (!i.index_reg
4478 || !((t->opcode_modifier.vecsib == VecSIB128
4479 && i.index_reg->reg_type.bitfield.regxmm)
4480 || (t->opcode_modifier.vecsib == VecSIB256
4481 && i.index_reg->reg_type.bitfield.regymm)
4482 || (t->opcode_modifier.vecsib == VecSIB512
4483 && i.index_reg->reg_type.bitfield.regzmm)))
4484 {
4485 i.error = invalid_vsib_address;
4486 return 1;
4487 }
4488
4489 gas_assert (i.reg_operands == 2 || i.mask);
4490 if (i.reg_operands == 2 && !i.mask)
4491 {
4492 gas_assert (i.types[0].bitfield.regxmm
4493 || i.types[0].bitfield.regymm);
4494 gas_assert (i.types[2].bitfield.regxmm
4495 || i.types[2].bitfield.regymm);
4496 if (operand_check == check_none)
4497 return 0;
4498 if (register_number (i.op[0].regs)
4499 != register_number (i.index_reg)
4500 && register_number (i.op[2].regs)
4501 != register_number (i.index_reg)
4502 && register_number (i.op[0].regs)
4503 != register_number (i.op[2].regs))
4504 return 0;
4505 if (operand_check == check_error)
4506 {
4507 i.error = invalid_vector_register_set;
4508 return 1;
4509 }
4510 as_warn (_("mask, index, and destination registers should be distinct"));
4511 }
4512 else if (i.reg_operands == 1 && i.mask)
4513 {
4514 if ((i.types[1].bitfield.regymm
4515 || i.types[1].bitfield.regzmm)
4516 && (register_number (i.op[1].regs)
4517 == register_number (i.index_reg)))
4518 {
4519 if (operand_check == check_error)
4520 {
4521 i.error = invalid_vector_register_set;
4522 return 1;
4523 }
4524 if (operand_check != check_none)
4525 as_warn (_("index and destination registers should be distinct"));
4526 }
4527 }
4528 }
4529
4530 /* Check if broadcast is supported by the instruction and is applied
4531 to the memory operand. */
4532 if (i.broadcast)
4533 {
4534 int broadcasted_opnd_size;
4535
4536 /* Check if specified broadcast is supported in this instruction,
4537 and it's applied to memory operand of DWORD or QWORD type,
4538 depending on VecESize. */
4539 if (i.broadcast->type != t->opcode_modifier.broadcast
4540 || !i.types[i.broadcast->operand].bitfield.mem
4541 || (t->opcode_modifier.vecesize == 0
4542 && !i.types[i.broadcast->operand].bitfield.dword
4543 && !i.types[i.broadcast->operand].bitfield.unspecified)
4544 || (t->opcode_modifier.vecesize == 1
4545 && !i.types[i.broadcast->operand].bitfield.qword
4546 && !i.types[i.broadcast->operand].bitfield.unspecified))
4547 goto bad_broadcast;
4548
4549 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4550 if (i.broadcast->type == BROADCAST_1TO16)
4551 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4552 else if (i.broadcast->type == BROADCAST_1TO8)
4553 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
4554 else if (i.broadcast->type == BROADCAST_1TO4)
4555 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4556 else if (i.broadcast->type == BROADCAST_1TO2)
4557 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
4558 else
4559 goto bad_broadcast;
4560
4561 if ((broadcasted_opnd_size == 256
4562 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4563 || (broadcasted_opnd_size == 512
4564 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4565 {
4566 bad_broadcast:
4567 i.error = unsupported_broadcast;
4568 return 1;
4569 }
4570 }
4571 /* If broadcast is supported in this instruction, we need to check if
4572 operand of one-element size isn't specified without broadcast. */
4573 else if (t->opcode_modifier.broadcast && i.mem_operands)
4574 {
4575 /* Find memory operand. */
4576 for (op = 0; op < i.operands; op++)
4577 if (operand_type_check (i.types[op], anymem))
4578 break;
4579 gas_assert (op < i.operands);
4580 /* Check size of the memory operand. */
4581 if ((t->opcode_modifier.vecesize == 0
4582 && i.types[op].bitfield.dword)
4583 || (t->opcode_modifier.vecesize == 1
4584 && i.types[op].bitfield.qword))
4585 {
4586 i.error = broadcast_needed;
4587 return 1;
4588 }
4589 }
4590
4591 /* Check if requested masking is supported. */
4592 if (i.mask
4593 && (!t->opcode_modifier.masking
4594 || (i.mask->zeroing
4595 && t->opcode_modifier.masking == MERGING_MASKING)))
4596 {
4597 i.error = unsupported_masking;
4598 return 1;
4599 }
4600
4601 /* Check if masking is applied to dest operand. */
4602 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4603 {
4604 i.error = mask_not_on_destination;
4605 return 1;
4606 }
4607
4608 /* Check RC/SAE. */
4609 if (i.rounding)
4610 {
4611 if ((i.rounding->type != saeonly
4612 && !t->opcode_modifier.staticrounding)
4613 || (i.rounding->type == saeonly
4614 && (t->opcode_modifier.staticrounding
4615 || !t->opcode_modifier.sae)))
4616 {
4617 i.error = unsupported_rc_sae;
4618 return 1;
4619 }
4620 /* If the instruction has several immediate operands and one of
4621 them is rounding, the rounding operand should be the last
4622 immediate operand. */
4623 if (i.imm_operands > 1
4624 && i.rounding->operand != (int) (i.imm_operands - 1))
4625 {
4626 i.error = rc_sae_operand_not_last_imm;
4627 return 1;
4628 }
4629 }
4630
4631 /* Check vector Disp8 operand. */
4632 if (t->opcode_modifier.disp8memshift)
4633 {
4634 if (i.broadcast)
4635 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4636 else
4637 i.memshift = t->opcode_modifier.disp8memshift;
4638
4639 for (op = 0; op < i.operands; op++)
4640 if (operand_type_check (i.types[op], disp)
4641 && i.op[op].disps->X_op == O_constant)
4642 {
4643 offsetT value = i.op[op].disps->X_add_number;
4644 int vec_disp8_ok
4645 = (i.disp_encoding != disp_encoding_32bit
4646 && fits_in_vec_disp8 (value));
4647 if (t->operand_types [op].bitfield.vec_disp8)
4648 {
4649 if (vec_disp8_ok)
4650 i.types[op].bitfield.vec_disp8 = 1;
4651 else
4652 {
4653 /* Vector insn can only have Vec_Disp8/Disp32 in
4654 32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4655 mode. */
4656 i.types[op].bitfield.disp8 = 0;
4657 if (flag_code != CODE_16BIT)
4658 i.types[op].bitfield.disp16 = 0;
4659 }
4660 }
4661 else if (flag_code != CODE_16BIT)
4662 {
4663 /* One form of this instruction supports vector Disp8.
4664 Try vector Disp8 if we need to use Disp32. */
4665 if (vec_disp8_ok && !fits_in_signed_byte (value))
4666 {
4667 i.error = try_vector_disp8;
4668 return 1;
4669 }
4670 }
4671 }
4672 }
4673 else
4674 i.memshift = -1;
4675
4676 return 0;
4677 }
4678
4679 /* Check if operands are valid for the instruction. Update VEX
4680 operand types. */
4681
4682 static int
4683 VEX_check_operands (const insn_template *t)
4684 {
4685 /* VREX is only valid with EVEX prefix. */
4686 if (i.need_vrex && !t->opcode_modifier.evex)
4687 {
4688 i.error = invalid_register_operand;
4689 return 1;
4690 }
4691
4692 if (!t->opcode_modifier.vex)
4693 return 0;
4694
4695 /* Only check VEX_Imm4, which must be the first operand. */
4696 if (t->operand_types[0].bitfield.vec_imm4)
4697 {
4698 if (i.op[0].imms->X_op != O_constant
4699 || !fits_in_imm4 (i.op[0].imms->X_add_number))
4700 {
4701 i.error = bad_imm4;
4702 return 1;
4703 }
4704
4705 /* Turn off Imm8 so that update_imm won't complain. */
4706 i.types[0] = vec_imm4;
4707 }
4708
4709 return 0;
4710 }
4711
4712 static const insn_template *
4713 match_template (void)
4714 {
4715 /* Points to template once we've found it. */
4716 const insn_template *t;
4717 i386_operand_type overlap0, overlap1, overlap2, overlap3;
4718 i386_operand_type overlap4;
4719 unsigned int found_reverse_match;
4720 i386_opcode_modifier suffix_check;
4721 i386_operand_type operand_types [MAX_OPERANDS];
4722 int addr_prefix_disp;
4723 unsigned int j;
4724 unsigned int found_cpu_match;
4725 unsigned int check_register;
4726 enum i386_error specific_error = 0;
4727
4728 #if MAX_OPERANDS != 5
4729 # error "MAX_OPERANDS must be 5."
4730 #endif
4731
4732 found_reverse_match = 0;
4733 addr_prefix_disp = -1;
4734
4735 memset (&suffix_check, 0, sizeof (suffix_check));
4736 if (i.suffix == BYTE_MNEM_SUFFIX)
4737 suffix_check.no_bsuf = 1;
4738 else if (i.suffix == WORD_MNEM_SUFFIX)
4739 suffix_check.no_wsuf = 1;
4740 else if (i.suffix == SHORT_MNEM_SUFFIX)
4741 suffix_check.no_ssuf = 1;
4742 else if (i.suffix == LONG_MNEM_SUFFIX)
4743 suffix_check.no_lsuf = 1;
4744 else if (i.suffix == QWORD_MNEM_SUFFIX)
4745 suffix_check.no_qsuf = 1;
4746 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
4747 suffix_check.no_ldsuf = 1;
4748
4749 /* Must have right number of operands. */
4750 i.error = number_of_operands_mismatch;
4751
4752 for (t = current_templates->start; t < current_templates->end; t++)
4753 {
4754 addr_prefix_disp = -1;
4755
4756 if (i.operands != t->operands)
4757 continue;
4758
4759 /* Check processor support. */
4760 i.error = unsupported;
4761 found_cpu_match = (cpu_flags_match (t)
4762 == CPU_FLAGS_PERFECT_MATCH);
4763 if (!found_cpu_match)
4764 continue;
4765
4766 /* Check old gcc support. */
4767 i.error = old_gcc_only;
4768 if (!old_gcc && t->opcode_modifier.oldgcc)
4769 continue;
4770
4771 /* Check AT&T mnemonic. */
4772 i.error = unsupported_with_intel_mnemonic;
4773 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
4774 continue;
4775
4776 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
4777 i.error = unsupported_syntax;
4778 if ((intel_syntax && t->opcode_modifier.attsyntax)
4779 || (!intel_syntax && t->opcode_modifier.intelsyntax)
4780 || (intel64 && t->opcode_modifier.amd64)
4781 || (!intel64 && t->opcode_modifier.intel64))
4782 continue;
4783
4784 /* Check the suffix, except for some instructions in intel mode. */
4785 i.error = invalid_instruction_suffix;
4786 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4787 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4788 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4789 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4790 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4791 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4792 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
4793 continue;
4794
4795 if (!operand_size_match (t))
4796 continue;
4797
4798 for (j = 0; j < MAX_OPERANDS; j++)
4799 operand_types[j] = t->operand_types[j];
4800
4801 /* In general, don't allow 64-bit operands in 32-bit mode. */
4802 if (i.suffix == QWORD_MNEM_SUFFIX
4803 && flag_code != CODE_64BIT
4804 && (intel_syntax
4805 ? (!t->opcode_modifier.ignoresize
4806 && !intel_float_operand (t->name))
4807 : intel_float_operand (t->name) != 2)
4808 && ((!operand_types[0].bitfield.regmmx
4809 && !operand_types[0].bitfield.regxmm
4810 && !operand_types[0].bitfield.regymm
4811 && !operand_types[0].bitfield.regzmm)
4812 || (!operand_types[t->operands > 1].bitfield.regmmx
4813 && operand_types[t->operands > 1].bitfield.regxmm
4814 && operand_types[t->operands > 1].bitfield.regymm
4815 && operand_types[t->operands > 1].bitfield.regzmm))
4816 && (t->base_opcode != 0x0fc7
4817 || t->extension_opcode != 1 /* cmpxchg8b */))
4818 continue;
4819
4820 /* In general, don't allow 32-bit operands on pre-386. */
4821 else if (i.suffix == LONG_MNEM_SUFFIX
4822 && !cpu_arch_flags.bitfield.cpui386
4823 && (intel_syntax
4824 ? (!t->opcode_modifier.ignoresize
4825 && !intel_float_operand (t->name))
4826 : intel_float_operand (t->name) != 2)
4827 && ((!operand_types[0].bitfield.regmmx
4828 && !operand_types[0].bitfield.regxmm)
4829 || (!operand_types[t->operands > 1].bitfield.regmmx
4830 && operand_types[t->operands > 1].bitfield.regxmm)))
4831 continue;
4832
4833 /* Do not verify operands when there are none. */
4834 else
4835 {
4836 if (!t->operands)
4837 /* We've found a match; break out of loop. */
4838 break;
4839 }
4840
4841 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
4842 into Disp32/Disp16/Disp32 operand. */
4843 if (i.prefix[ADDR_PREFIX] != 0)
4844 {
4845 /* There should be only one Disp operand. */
4846 switch (flag_code)
4847 {
4848 case CODE_16BIT:
4849 for (j = 0; j < MAX_OPERANDS; j++)
4850 {
4851 if (operand_types[j].bitfield.disp16)
4852 {
4853 addr_prefix_disp = j;
4854 operand_types[j].bitfield.disp32 = 1;
4855 operand_types[j].bitfield.disp16 = 0;
4856 break;
4857 }
4858 }
4859 break;
4860 case CODE_32BIT:
4861 for (j = 0; j < MAX_OPERANDS; j++)
4862 {
4863 if (operand_types[j].bitfield.disp32)
4864 {
4865 addr_prefix_disp = j;
4866 operand_types[j].bitfield.disp32 = 0;
4867 operand_types[j].bitfield.disp16 = 1;
4868 break;
4869 }
4870 }
4871 break;
4872 case CODE_64BIT:
4873 for (j = 0; j < MAX_OPERANDS; j++)
4874 {
4875 if (operand_types[j].bitfield.disp64)
4876 {
4877 addr_prefix_disp = j;
4878 operand_types[j].bitfield.disp64 = 0;
4879 operand_types[j].bitfield.disp32 = 1;
4880 break;
4881 }
4882 }
4883 break;
4884 }
4885 }
4886
4887 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
4888 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
4889 continue;
4890
4891 /* We check register size if needed. */
4892 check_register = t->opcode_modifier.checkregsize;
4893 overlap0 = operand_type_and (i.types[0], operand_types[0]);
4894 switch (t->operands)
4895 {
4896 case 1:
4897 if (!operand_type_match (overlap0, i.types[0]))
4898 continue;
4899 break;
4900 case 2:
4901 /* xchg %eax, %eax is a special case. It is an aliase for nop
4902 only in 32bit mode and we can use opcode 0x90. In 64bit
4903 mode, we can't use 0x90 for xchg %eax, %eax since it should
4904 zero-extend %eax to %rax. */
4905 if (flag_code == CODE_64BIT
4906 && t->base_opcode == 0x90
4907 && operand_type_equal (&i.types [0], &acc32)
4908 && operand_type_equal (&i.types [1], &acc32))
4909 continue;
4910 if (i.swap_operand)
4911 {
4912 /* If we swap operand in encoding, we either match
4913 the next one or reverse direction of operands. */
4914 if (t->opcode_modifier.s)
4915 continue;
4916 else if (t->opcode_modifier.d)
4917 goto check_reverse;
4918 }
4919
4920 case 3:
4921 /* If we swap operand in encoding, we match the next one. */
4922 if (i.swap_operand && t->opcode_modifier.s)
4923 continue;
4924 case 4:
4925 case 5:
4926 overlap1 = operand_type_and (i.types[1], operand_types[1]);
4927 if (!operand_type_match (overlap0, i.types[0])
4928 || !operand_type_match (overlap1, i.types[1])
4929 || (check_register
4930 && !operand_type_register_match (overlap0, i.types[0],
4931 operand_types[0],
4932 overlap1, i.types[1],
4933 operand_types[1])))
4934 {
4935 /* Check if other direction is valid ... */
4936 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
4937 continue;
4938
4939 check_reverse:
4940 /* Try reversing direction of operands. */
4941 overlap0 = operand_type_and (i.types[0], operand_types[1]);
4942 overlap1 = operand_type_and (i.types[1], operand_types[0]);
4943 if (!operand_type_match (overlap0, i.types[0])
4944 || !operand_type_match (overlap1, i.types[1])
4945 || (check_register
4946 && !operand_type_register_match (overlap0,
4947 i.types[0],
4948 operand_types[1],
4949 overlap1,
4950 i.types[1],
4951 operand_types[0])))
4952 {
4953 /* Does not match either direction. */
4954 continue;
4955 }
4956 /* found_reverse_match holds which of D or FloatDR
4957 we've found. */
4958 if (t->opcode_modifier.d)
4959 found_reverse_match = Opcode_D;
4960 else if (t->opcode_modifier.floatd)
4961 found_reverse_match = Opcode_FloatD;
4962 else
4963 found_reverse_match = 0;
4964 if (t->opcode_modifier.floatr)
4965 found_reverse_match |= Opcode_FloatR;
4966 }
4967 else
4968 {
4969 /* Found a forward 2 operand match here. */
4970 switch (t->operands)
4971 {
4972 case 5:
4973 overlap4 = operand_type_and (i.types[4],
4974 operand_types[4]);
4975 case 4:
4976 overlap3 = operand_type_and (i.types[3],
4977 operand_types[3]);
4978 case 3:
4979 overlap2 = operand_type_and (i.types[2],
4980 operand_types[2]);
4981 break;
4982 }
4983
4984 switch (t->operands)
4985 {
4986 case 5:
4987 if (!operand_type_match (overlap4, i.types[4])
4988 || !operand_type_register_match (overlap3,
4989 i.types[3],
4990 operand_types[3],
4991 overlap4,
4992 i.types[4],
4993 operand_types[4]))
4994 continue;
4995 case 4:
4996 if (!operand_type_match (overlap3, i.types[3])
4997 || (check_register
4998 && !operand_type_register_match (overlap2,
4999 i.types[2],
5000 operand_types[2],
5001 overlap3,
5002 i.types[3],
5003 operand_types[3])))
5004 continue;
5005 case 3:
5006 /* Here we make use of the fact that there are no
5007 reverse match 3 operand instructions, and all 3
5008 operand instructions only need to be checked for
5009 register consistency between operands 2 and 3. */
5010 if (!operand_type_match (overlap2, i.types[2])
5011 || (check_register
5012 && !operand_type_register_match (overlap1,
5013 i.types[1],
5014 operand_types[1],
5015 overlap2,
5016 i.types[2],
5017 operand_types[2])))
5018 continue;
5019 break;
5020 }
5021 }
5022 /* Found either forward/reverse 2, 3 or 4 operand match here:
5023 slip through to break. */
5024 }
5025 if (!found_cpu_match)
5026 {
5027 found_reverse_match = 0;
5028 continue;
5029 }
5030
5031 /* Check if vector and VEX operands are valid. */
5032 if (check_VecOperands (t) || VEX_check_operands (t))
5033 {
5034 specific_error = i.error;
5035 continue;
5036 }
5037
5038 /* We've found a match; break out of loop. */
5039 break;
5040 }
5041
5042 if (t == current_templates->end)
5043 {
5044 /* We found no match. */
5045 const char *err_msg;
5046 switch (specific_error ? specific_error : i.error)
5047 {
5048 default:
5049 abort ();
5050 case operand_size_mismatch:
5051 err_msg = _("operand size mismatch");
5052 break;
5053 case operand_type_mismatch:
5054 err_msg = _("operand type mismatch");
5055 break;
5056 case register_type_mismatch:
5057 err_msg = _("register type mismatch");
5058 break;
5059 case number_of_operands_mismatch:
5060 err_msg = _("number of operands mismatch");
5061 break;
5062 case invalid_instruction_suffix:
5063 err_msg = _("invalid instruction suffix");
5064 break;
5065 case bad_imm4:
5066 err_msg = _("constant doesn't fit in 4 bits");
5067 break;
5068 case old_gcc_only:
5069 err_msg = _("only supported with old gcc");
5070 break;
5071 case unsupported_with_intel_mnemonic:
5072 err_msg = _("unsupported with Intel mnemonic");
5073 break;
5074 case unsupported_syntax:
5075 err_msg = _("unsupported syntax");
5076 break;
5077 case unsupported:
5078 as_bad (_("unsupported instruction `%s'"),
5079 current_templates->start->name);
5080 return NULL;
5081 case invalid_vsib_address:
5082 err_msg = _("invalid VSIB address");
5083 break;
5084 case invalid_vector_register_set:
5085 err_msg = _("mask, index, and destination registers must be distinct");
5086 break;
5087 case unsupported_vector_index_register:
5088 err_msg = _("unsupported vector index register");
5089 break;
5090 case unsupported_broadcast:
5091 err_msg = _("unsupported broadcast");
5092 break;
5093 case broadcast_not_on_src_operand:
5094 err_msg = _("broadcast not on source memory operand");
5095 break;
5096 case broadcast_needed:
5097 err_msg = _("broadcast is needed for operand of such type");
5098 break;
5099 case unsupported_masking:
5100 err_msg = _("unsupported masking");
5101 break;
5102 case mask_not_on_destination:
5103 err_msg = _("mask not on destination operand");
5104 break;
5105 case no_default_mask:
5106 err_msg = _("default mask isn't allowed");
5107 break;
5108 case unsupported_rc_sae:
5109 err_msg = _("unsupported static rounding/sae");
5110 break;
5111 case rc_sae_operand_not_last_imm:
5112 if (intel_syntax)
5113 err_msg = _("RC/SAE operand must precede immediate operands");
5114 else
5115 err_msg = _("RC/SAE operand must follow immediate operands");
5116 break;
5117 case invalid_register_operand:
5118 err_msg = _("invalid register operand");
5119 break;
5120 }
5121 as_bad (_("%s for `%s'"), err_msg,
5122 current_templates->start->name);
5123 return NULL;
5124 }
5125
5126 if (!quiet_warnings)
5127 {
5128 if (!intel_syntax
5129 && (i.types[0].bitfield.jumpabsolute
5130 != operand_types[0].bitfield.jumpabsolute))
5131 {
5132 as_warn (_("indirect %s without `*'"), t->name);
5133 }
5134
5135 if (t->opcode_modifier.isprefix
5136 && t->opcode_modifier.ignoresize)
5137 {
5138 /* Warn them that a data or address size prefix doesn't
5139 affect assembly of the next line of code. */
5140 as_warn (_("stand-alone `%s' prefix"), t->name);
5141 }
5142 }
5143
5144 /* Copy the template we found. */
5145 i.tm = *t;
5146
5147 if (addr_prefix_disp != -1)
5148 i.tm.operand_types[addr_prefix_disp]
5149 = operand_types[addr_prefix_disp];
5150
5151 if (found_reverse_match)
5152 {
5153 /* If we found a reverse match we must alter the opcode
5154 direction bit. found_reverse_match holds bits to change
5155 (different for int & float insns). */
5156
5157 i.tm.base_opcode ^= found_reverse_match;
5158
5159 i.tm.operand_types[0] = operand_types[1];
5160 i.tm.operand_types[1] = operand_types[0];
5161 }
5162
5163 return t;
5164 }
5165
5166 static int
5167 check_string (void)
5168 {
5169 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5170 if (i.tm.operand_types[mem_op].bitfield.esseg)
5171 {
5172 if (i.seg[0] != NULL && i.seg[0] != &es)
5173 {
5174 as_bad (_("`%s' operand %d must use `%ses' segment"),
5175 i.tm.name,
5176 mem_op + 1,
5177 register_prefix);
5178 return 0;
5179 }
5180 /* There's only ever one segment override allowed per instruction.
5181 This instruction possibly has a legal segment override on the
5182 second operand, so copy the segment to where non-string
5183 instructions store it, allowing common code. */
5184 i.seg[0] = i.seg[1];
5185 }
5186 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5187 {
5188 if (i.seg[1] != NULL && i.seg[1] != &es)
5189 {
5190 as_bad (_("`%s' operand %d must use `%ses' segment"),
5191 i.tm.name,
5192 mem_op + 2,
5193 register_prefix);
5194 return 0;
5195 }
5196 }
5197 return 1;
5198 }
5199
5200 static int
5201 process_suffix (void)
5202 {
5203 /* If matched instruction specifies an explicit instruction mnemonic
5204 suffix, use it. */
5205 if (i.tm.opcode_modifier.size16)
5206 i.suffix = WORD_MNEM_SUFFIX;
5207 else if (i.tm.opcode_modifier.size32)
5208 i.suffix = LONG_MNEM_SUFFIX;
5209 else if (i.tm.opcode_modifier.size64)
5210 i.suffix = QWORD_MNEM_SUFFIX;
5211 else if (i.reg_operands)
5212 {
5213 /* If there's no instruction mnemonic suffix we try to invent one
5214 based on register operands. */
5215 if (!i.suffix)
5216 {
5217 /* We take i.suffix from the last register operand specified,
5218 Destination register type is more significant than source
5219 register type. crc32 in SSE4.2 prefers source register
5220 type. */
5221 if (i.tm.base_opcode == 0xf20f38f1)
5222 {
5223 if (i.types[0].bitfield.reg16)
5224 i.suffix = WORD_MNEM_SUFFIX;
5225 else if (i.types[0].bitfield.reg32)
5226 i.suffix = LONG_MNEM_SUFFIX;
5227 else if (i.types[0].bitfield.reg64)
5228 i.suffix = QWORD_MNEM_SUFFIX;
5229 }
5230 else if (i.tm.base_opcode == 0xf20f38f0)
5231 {
5232 if (i.types[0].bitfield.reg8)
5233 i.suffix = BYTE_MNEM_SUFFIX;
5234 }
5235
5236 if (!i.suffix)
5237 {
5238 int op;
5239
5240 if (i.tm.base_opcode == 0xf20f38f1
5241 || i.tm.base_opcode == 0xf20f38f0)
5242 {
5243 /* We have to know the operand size for crc32. */
5244 as_bad (_("ambiguous memory operand size for `%s`"),
5245 i.tm.name);
5246 return 0;
5247 }
5248
5249 for (op = i.operands; --op >= 0;)
5250 if (!i.tm.operand_types[op].bitfield.inoutportreg)
5251 {
5252 if (i.types[op].bitfield.reg8)
5253 {
5254 i.suffix = BYTE_MNEM_SUFFIX;
5255 break;
5256 }
5257 else if (i.types[op].bitfield.reg16)
5258 {
5259 i.suffix = WORD_MNEM_SUFFIX;
5260 break;
5261 }
5262 else if (i.types[op].bitfield.reg32)
5263 {
5264 i.suffix = LONG_MNEM_SUFFIX;
5265 break;
5266 }
5267 else if (i.types[op].bitfield.reg64)
5268 {
5269 i.suffix = QWORD_MNEM_SUFFIX;
5270 break;
5271 }
5272 }
5273 }
5274 }
5275 else if (i.suffix == BYTE_MNEM_SUFFIX)
5276 {
5277 if (intel_syntax
5278 && i.tm.opcode_modifier.ignoresize
5279 && i.tm.opcode_modifier.no_bsuf)
5280 i.suffix = 0;
5281 else if (!check_byte_reg ())
5282 return 0;
5283 }
5284 else if (i.suffix == LONG_MNEM_SUFFIX)
5285 {
5286 if (intel_syntax
5287 && i.tm.opcode_modifier.ignoresize
5288 && i.tm.opcode_modifier.no_lsuf)
5289 i.suffix = 0;
5290 else if (!check_long_reg ())
5291 return 0;
5292 }
5293 else if (i.suffix == QWORD_MNEM_SUFFIX)
5294 {
5295 if (intel_syntax
5296 && i.tm.opcode_modifier.ignoresize
5297 && i.tm.opcode_modifier.no_qsuf)
5298 i.suffix = 0;
5299 else if (!check_qword_reg ())
5300 return 0;
5301 }
5302 else if (i.suffix == WORD_MNEM_SUFFIX)
5303 {
5304 if (intel_syntax
5305 && i.tm.opcode_modifier.ignoresize
5306 && i.tm.opcode_modifier.no_wsuf)
5307 i.suffix = 0;
5308 else if (!check_word_reg ())
5309 return 0;
5310 }
5311 else if (i.suffix == XMMWORD_MNEM_SUFFIX
5312 || i.suffix == YMMWORD_MNEM_SUFFIX
5313 || i.suffix == ZMMWORD_MNEM_SUFFIX)
5314 {
5315 /* Skip if the instruction has x/y/z suffix. match_template
5316 should check if it is a valid suffix. */
5317 }
5318 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5319 /* Do nothing if the instruction is going to ignore the prefix. */
5320 ;
5321 else
5322 abort ();
5323 }
5324 else if (i.tm.opcode_modifier.defaultsize
5325 && !i.suffix
5326 /* exclude fldenv/frstor/fsave/fstenv */
5327 && i.tm.opcode_modifier.no_ssuf)
5328 {
5329 i.suffix = stackop_size;
5330 }
5331 else if (intel_syntax
5332 && !i.suffix
5333 && (i.tm.operand_types[0].bitfield.jumpabsolute
5334 || i.tm.opcode_modifier.jumpbyte
5335 || i.tm.opcode_modifier.jumpintersegment
5336 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5337 && i.tm.extension_opcode <= 3)))
5338 {
5339 switch (flag_code)
5340 {
5341 case CODE_64BIT:
5342 if (!i.tm.opcode_modifier.no_qsuf)
5343 {
5344 i.suffix = QWORD_MNEM_SUFFIX;
5345 break;
5346 }
5347 case CODE_32BIT:
5348 if (!i.tm.opcode_modifier.no_lsuf)
5349 i.suffix = LONG_MNEM_SUFFIX;
5350 break;
5351 case CODE_16BIT:
5352 if (!i.tm.opcode_modifier.no_wsuf)
5353 i.suffix = WORD_MNEM_SUFFIX;
5354 break;
5355 }
5356 }
5357
5358 if (!i.suffix)
5359 {
5360 if (!intel_syntax)
5361 {
5362 if (i.tm.opcode_modifier.w)
5363 {
5364 as_bad (_("no instruction mnemonic suffix given and "
5365 "no register operands; can't size instruction"));
5366 return 0;
5367 }
5368 }
5369 else
5370 {
5371 unsigned int suffixes;
5372
5373 suffixes = !i.tm.opcode_modifier.no_bsuf;
5374 if (!i.tm.opcode_modifier.no_wsuf)
5375 suffixes |= 1 << 1;
5376 if (!i.tm.opcode_modifier.no_lsuf)
5377 suffixes |= 1 << 2;
5378 if (!i.tm.opcode_modifier.no_ldsuf)
5379 suffixes |= 1 << 3;
5380 if (!i.tm.opcode_modifier.no_ssuf)
5381 suffixes |= 1 << 4;
5382 if (!i.tm.opcode_modifier.no_qsuf)
5383 suffixes |= 1 << 5;
5384
5385 /* There are more than suffix matches. */
5386 if (i.tm.opcode_modifier.w
5387 || ((suffixes & (suffixes - 1))
5388 && !i.tm.opcode_modifier.defaultsize
5389 && !i.tm.opcode_modifier.ignoresize))
5390 {
5391 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5392 return 0;
5393 }
5394 }
5395 }
5396
5397 /* Change the opcode based on the operand size given by i.suffix;
5398 We don't need to change things for byte insns. */
5399
5400 if (i.suffix
5401 && i.suffix != BYTE_MNEM_SUFFIX
5402 && i.suffix != XMMWORD_MNEM_SUFFIX
5403 && i.suffix != YMMWORD_MNEM_SUFFIX
5404 && i.suffix != ZMMWORD_MNEM_SUFFIX)
5405 {
5406 /* It's not a byte, select word/dword operation. */
5407 if (i.tm.opcode_modifier.w)
5408 {
5409 if (i.tm.opcode_modifier.shortform)
5410 i.tm.base_opcode |= 8;
5411 else
5412 i.tm.base_opcode |= 1;
5413 }
5414
5415 /* Now select between word & dword operations via the operand
5416 size prefix, except for instructions that will ignore this
5417 prefix anyway. */
5418 if (i.tm.opcode_modifier.addrprefixop0)
5419 {
5420 /* The address size override prefix changes the size of the
5421 first operand. */
5422 if ((flag_code == CODE_32BIT
5423 && i.op->regs[0].reg_type.bitfield.reg16)
5424 || (flag_code != CODE_32BIT
5425 && i.op->regs[0].reg_type.bitfield.reg32))
5426 if (!add_prefix (ADDR_PREFIX_OPCODE))
5427 return 0;
5428 }
5429 else if (i.suffix != QWORD_MNEM_SUFFIX
5430 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
5431 && !i.tm.opcode_modifier.ignoresize
5432 && !i.tm.opcode_modifier.floatmf
5433 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5434 || (flag_code == CODE_64BIT
5435 && i.tm.opcode_modifier.jumpbyte)))
5436 {
5437 unsigned int prefix = DATA_PREFIX_OPCODE;
5438
5439 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5440 prefix = ADDR_PREFIX_OPCODE;
5441
5442 if (!add_prefix (prefix))
5443 return 0;
5444 }
5445
5446 /* Set mode64 for an operand. */
5447 if (i.suffix == QWORD_MNEM_SUFFIX
5448 && flag_code == CODE_64BIT
5449 && !i.tm.opcode_modifier.norex64)
5450 {
5451 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5452 need rex64. cmpxchg8b is also a special case. */
5453 if (! (i.operands == 2
5454 && i.tm.base_opcode == 0x90
5455 && i.tm.extension_opcode == None
5456 && operand_type_equal (&i.types [0], &acc64)
5457 && operand_type_equal (&i.types [1], &acc64))
5458 && ! (i.operands == 1
5459 && i.tm.base_opcode == 0xfc7
5460 && i.tm.extension_opcode == 1
5461 && !operand_type_check (i.types [0], reg)
5462 && operand_type_check (i.types [0], anymem)))
5463 i.rex |= REX_W;
5464 }
5465
5466 /* Size floating point instruction. */
5467 if (i.suffix == LONG_MNEM_SUFFIX)
5468 if (i.tm.opcode_modifier.floatmf)
5469 i.tm.base_opcode ^= 4;
5470 }
5471
5472 return 1;
5473 }
5474
5475 static int
5476 check_byte_reg (void)
5477 {
5478 int op;
5479
5480 for (op = i.operands; --op >= 0;)
5481 {
5482 /* If this is an eight bit register, it's OK. If it's the 16 or
5483 32 bit version of an eight bit register, we will just use the
5484 low portion, and that's OK too. */
5485 if (i.types[op].bitfield.reg8)
5486 continue;
5487
5488 /* I/O port address operands are OK too. */
5489 if (i.tm.operand_types[op].bitfield.inoutportreg)
5490 continue;
5491
5492 /* crc32 doesn't generate this warning. */
5493 if (i.tm.base_opcode == 0xf20f38f0)
5494 continue;
5495
5496 if ((i.types[op].bitfield.reg16
5497 || i.types[op].bitfield.reg32
5498 || i.types[op].bitfield.reg64)
5499 && i.op[op].regs->reg_num < 4
5500 /* Prohibit these changes in 64bit mode, since the lowering
5501 would be more complicated. */
5502 && flag_code != CODE_64BIT)
5503 {
5504 #if REGISTER_WARNINGS
5505 if (!quiet_warnings)
5506 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5507 register_prefix,
5508 (i.op[op].regs + (i.types[op].bitfield.reg16
5509 ? REGNAM_AL - REGNAM_AX
5510 : REGNAM_AL - REGNAM_EAX))->reg_name,
5511 register_prefix,
5512 i.op[op].regs->reg_name,
5513 i.suffix);
5514 #endif
5515 continue;
5516 }
5517 /* Any other register is bad. */
5518 if (i.types[op].bitfield.reg16
5519 || i.types[op].bitfield.reg32
5520 || i.types[op].bitfield.reg64
5521 || i.types[op].bitfield.regmmx
5522 || i.types[op].bitfield.regxmm
5523 || i.types[op].bitfield.regymm
5524 || i.types[op].bitfield.regzmm
5525 || i.types[op].bitfield.sreg2
5526 || i.types[op].bitfield.sreg3
5527 || i.types[op].bitfield.control
5528 || i.types[op].bitfield.debug
5529 || i.types[op].bitfield.test
5530 || i.types[op].bitfield.floatreg
5531 || i.types[op].bitfield.floatacc)
5532 {
5533 as_bad (_("`%s%s' not allowed with `%s%c'"),
5534 register_prefix,
5535 i.op[op].regs->reg_name,
5536 i.tm.name,
5537 i.suffix);
5538 return 0;
5539 }
5540 }
5541 return 1;
5542 }
5543
5544 static int
5545 check_long_reg (void)
5546 {
5547 int op;
5548
5549 for (op = i.operands; --op >= 0;)
5550 /* Reject eight bit registers, except where the template requires
5551 them. (eg. movzb) */
5552 if (i.types[op].bitfield.reg8
5553 && (i.tm.operand_types[op].bitfield.reg16
5554 || i.tm.operand_types[op].bitfield.reg32
5555 || i.tm.operand_types[op].bitfield.acc))
5556 {
5557 as_bad (_("`%s%s' not allowed with `%s%c'"),
5558 register_prefix,
5559 i.op[op].regs->reg_name,
5560 i.tm.name,
5561 i.suffix);
5562 return 0;
5563 }
5564 /* Warn if the e prefix on a general reg is missing. */
5565 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5566 && i.types[op].bitfield.reg16
5567 && (i.tm.operand_types[op].bitfield.reg32
5568 || i.tm.operand_types[op].bitfield.acc))
5569 {
5570 /* Prohibit these changes in the 64bit mode, since the
5571 lowering is more complicated. */
5572 if (flag_code == CODE_64BIT)
5573 {
5574 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5575 register_prefix, i.op[op].regs->reg_name,
5576 i.suffix);
5577 return 0;
5578 }
5579 #if REGISTER_WARNINGS
5580 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5581 register_prefix,
5582 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5583 register_prefix, i.op[op].regs->reg_name, i.suffix);
5584 #endif
5585 }
5586 /* Warn if the r prefix on a general reg is present. */
5587 else if (i.types[op].bitfield.reg64
5588 && (i.tm.operand_types[op].bitfield.reg32
5589 || i.tm.operand_types[op].bitfield.acc))
5590 {
5591 if (intel_syntax
5592 && i.tm.opcode_modifier.toqword
5593 && !i.types[0].bitfield.regxmm)
5594 {
5595 /* Convert to QWORD. We want REX byte. */
5596 i.suffix = QWORD_MNEM_SUFFIX;
5597 }
5598 else
5599 {
5600 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5601 register_prefix, i.op[op].regs->reg_name,
5602 i.suffix);
5603 return 0;
5604 }
5605 }
5606 return 1;
5607 }
5608
5609 static int
5610 check_qword_reg (void)
5611 {
5612 int op;
5613
5614 for (op = i.operands; --op >= 0; )
5615 /* Reject eight bit registers, except where the template requires
5616 them. (eg. movzb) */
5617 if (i.types[op].bitfield.reg8
5618 && (i.tm.operand_types[op].bitfield.reg16
5619 || i.tm.operand_types[op].bitfield.reg32
5620 || i.tm.operand_types[op].bitfield.acc))
5621 {
5622 as_bad (_("`%s%s' not allowed with `%s%c'"),
5623 register_prefix,
5624 i.op[op].regs->reg_name,
5625 i.tm.name,
5626 i.suffix);
5627 return 0;
5628 }
5629 /* Warn if the r prefix on a general reg is missing. */
5630 else if ((i.types[op].bitfield.reg16
5631 || i.types[op].bitfield.reg32)
5632 && (i.tm.operand_types[op].bitfield.reg32
5633 || i.tm.operand_types[op].bitfield.acc))
5634 {
5635 /* Prohibit these changes in the 64bit mode, since the
5636 lowering is more complicated. */
5637 if (intel_syntax
5638 && i.tm.opcode_modifier.todword
5639 && !i.types[0].bitfield.regxmm)
5640 {
5641 /* Convert to DWORD. We don't want REX byte. */
5642 i.suffix = LONG_MNEM_SUFFIX;
5643 }
5644 else
5645 {
5646 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5647 register_prefix, i.op[op].regs->reg_name,
5648 i.suffix);
5649 return 0;
5650 }
5651 }
5652 return 1;
5653 }
5654
5655 static int
5656 check_word_reg (void)
5657 {
5658 int op;
5659 for (op = i.operands; --op >= 0;)
5660 /* Reject eight bit registers, except where the template requires
5661 them. (eg. movzb) */
5662 if (i.types[op].bitfield.reg8
5663 && (i.tm.operand_types[op].bitfield.reg16
5664 || i.tm.operand_types[op].bitfield.reg32
5665 || i.tm.operand_types[op].bitfield.acc))
5666 {
5667 as_bad (_("`%s%s' not allowed with `%s%c'"),
5668 register_prefix,
5669 i.op[op].regs->reg_name,
5670 i.tm.name,
5671 i.suffix);
5672 return 0;
5673 }
5674 /* Warn if the e or r prefix on a general reg is present. */
5675 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5676 && (i.types[op].bitfield.reg32
5677 || i.types[op].bitfield.reg64)
5678 && (i.tm.operand_types[op].bitfield.reg16
5679 || i.tm.operand_types[op].bitfield.acc))
5680 {
5681 /* Prohibit these changes in the 64bit mode, since the
5682 lowering is more complicated. */
5683 if (flag_code == CODE_64BIT)
5684 {
5685 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5686 register_prefix, i.op[op].regs->reg_name,
5687 i.suffix);
5688 return 0;
5689 }
5690 #if REGISTER_WARNINGS
5691 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5692 register_prefix,
5693 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5694 register_prefix, i.op[op].regs->reg_name, i.suffix);
5695 #endif
5696 }
5697 return 1;
5698 }
5699
5700 static int
5701 update_imm (unsigned int j)
5702 {
5703 i386_operand_type overlap = i.types[j];
5704 if ((overlap.bitfield.imm8
5705 || overlap.bitfield.imm8s
5706 || overlap.bitfield.imm16
5707 || overlap.bitfield.imm32
5708 || overlap.bitfield.imm32s
5709 || overlap.bitfield.imm64)
5710 && !operand_type_equal (&overlap, &imm8)
5711 && !operand_type_equal (&overlap, &imm8s)
5712 && !operand_type_equal (&overlap, &imm16)
5713 && !operand_type_equal (&overlap, &imm32)
5714 && !operand_type_equal (&overlap, &imm32s)
5715 && !operand_type_equal (&overlap, &imm64))
5716 {
5717 if (i.suffix)
5718 {
5719 i386_operand_type temp;
5720
5721 operand_type_set (&temp, 0);
5722 if (i.suffix == BYTE_MNEM_SUFFIX)
5723 {
5724 temp.bitfield.imm8 = overlap.bitfield.imm8;
5725 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5726 }
5727 else if (i.suffix == WORD_MNEM_SUFFIX)
5728 temp.bitfield.imm16 = overlap.bitfield.imm16;
5729 else if (i.suffix == QWORD_MNEM_SUFFIX)
5730 {
5731 temp.bitfield.imm64 = overlap.bitfield.imm64;
5732 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5733 }
5734 else
5735 temp.bitfield.imm32 = overlap.bitfield.imm32;
5736 overlap = temp;
5737 }
5738 else if (operand_type_equal (&overlap, &imm16_32_32s)
5739 || operand_type_equal (&overlap, &imm16_32)
5740 || operand_type_equal (&overlap, &imm16_32s))
5741 {
5742 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5743 overlap = imm16;
5744 else
5745 overlap = imm32s;
5746 }
5747 if (!operand_type_equal (&overlap, &imm8)
5748 && !operand_type_equal (&overlap, &imm8s)
5749 && !operand_type_equal (&overlap, &imm16)
5750 && !operand_type_equal (&overlap, &imm32)
5751 && !operand_type_equal (&overlap, &imm32s)
5752 && !operand_type_equal (&overlap, &imm64))
5753 {
5754 as_bad (_("no instruction mnemonic suffix given; "
5755 "can't determine immediate size"));
5756 return 0;
5757 }
5758 }
5759 i.types[j] = overlap;
5760
5761 return 1;
5762 }
5763
5764 static int
5765 finalize_imm (void)
5766 {
5767 unsigned int j, n;
5768
5769 /* Update the first 2 immediate operands. */
5770 n = i.operands > 2 ? 2 : i.operands;
5771 if (n)
5772 {
5773 for (j = 0; j < n; j++)
5774 if (update_imm (j) == 0)
5775 return 0;
5776
5777 /* The 3rd operand can't be immediate operand. */
5778 gas_assert (operand_type_check (i.types[2], imm) == 0);
5779 }
5780
5781 return 1;
5782 }
5783
5784 static int
5785 bad_implicit_operand (int xmm)
5786 {
5787 const char *ireg = xmm ? "xmm0" : "ymm0";
5788
5789 if (intel_syntax)
5790 as_bad (_("the last operand of `%s' must be `%s%s'"),
5791 i.tm.name, register_prefix, ireg);
5792 else
5793 as_bad (_("the first operand of `%s' must be `%s%s'"),
5794 i.tm.name, register_prefix, ireg);
5795 return 0;
5796 }
5797
5798 static int
5799 process_operands (void)
5800 {
5801 /* Default segment register this instruction will use for memory
5802 accesses. 0 means unknown. This is only for optimizing out
5803 unnecessary segment overrides. */
5804 const seg_entry *default_seg = 0;
5805
5806 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
5807 {
5808 unsigned int dupl = i.operands;
5809 unsigned int dest = dupl - 1;
5810 unsigned int j;
5811
5812 /* The destination must be an xmm register. */
5813 gas_assert (i.reg_operands
5814 && MAX_OPERANDS > dupl
5815 && operand_type_equal (&i.types[dest], &regxmm));
5816
5817 if (i.tm.opcode_modifier.firstxmm0)
5818 {
5819 /* The first operand is implicit and must be xmm0. */
5820 gas_assert (operand_type_equal (&i.types[0], &regxmm));
5821 if (register_number (i.op[0].regs) != 0)
5822 return bad_implicit_operand (1);
5823
5824 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
5825 {
5826 /* Keep xmm0 for instructions with VEX prefix and 3
5827 sources. */
5828 goto duplicate;
5829 }
5830 else
5831 {
5832 /* We remove the first xmm0 and keep the number of
5833 operands unchanged, which in fact duplicates the
5834 destination. */
5835 for (j = 1; j < i.operands; j++)
5836 {
5837 i.op[j - 1] = i.op[j];
5838 i.types[j - 1] = i.types[j];
5839 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
5840 }
5841 }
5842 }
5843 else if (i.tm.opcode_modifier.implicit1stxmm0)
5844 {
5845 gas_assert ((MAX_OPERANDS - 1) > dupl
5846 && (i.tm.opcode_modifier.vexsources
5847 == VEX3SOURCES));
5848
5849 /* Add the implicit xmm0 for instructions with VEX prefix
5850 and 3 sources. */
5851 for (j = i.operands; j > 0; j--)
5852 {
5853 i.op[j] = i.op[j - 1];
5854 i.types[j] = i.types[j - 1];
5855 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
5856 }
5857 i.op[0].regs
5858 = (const reg_entry *) hash_find (reg_hash, "xmm0");
5859 i.types[0] = regxmm;
5860 i.tm.operand_types[0] = regxmm;
5861
5862 i.operands += 2;
5863 i.reg_operands += 2;
5864 i.tm.operands += 2;
5865
5866 dupl++;
5867 dest++;
5868 i.op[dupl] = i.op[dest];
5869 i.types[dupl] = i.types[dest];
5870 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5871 }
5872 else
5873 {
5874 duplicate:
5875 i.operands++;
5876 i.reg_operands++;
5877 i.tm.operands++;
5878
5879 i.op[dupl] = i.op[dest];
5880 i.types[dupl] = i.types[dest];
5881 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5882 }
5883
5884 if (i.tm.opcode_modifier.immext)
5885 process_immext ();
5886 }
5887 else if (i.tm.opcode_modifier.firstxmm0)
5888 {
5889 unsigned int j;
5890
5891 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
5892 gas_assert (i.reg_operands
5893 && (operand_type_equal (&i.types[0], &regxmm)
5894 || operand_type_equal (&i.types[0], &regymm)
5895 || operand_type_equal (&i.types[0], &regzmm)));
5896 if (register_number (i.op[0].regs) != 0)
5897 return bad_implicit_operand (i.types[0].bitfield.regxmm);
5898
5899 for (j = 1; j < i.operands; j++)
5900 {
5901 i.op[j - 1] = i.op[j];
5902 i.types[j - 1] = i.types[j];
5903
5904 /* We need to adjust fields in i.tm since they are used by
5905 build_modrm_byte. */
5906 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
5907 }
5908
5909 i.operands--;
5910 i.reg_operands--;
5911 i.tm.operands--;
5912 }
5913 else if (i.tm.opcode_modifier.regkludge)
5914 {
5915 /* The imul $imm, %reg instruction is converted into
5916 imul $imm, %reg, %reg, and the clr %reg instruction
5917 is converted into xor %reg, %reg. */
5918
5919 unsigned int first_reg_op;
5920
5921 if (operand_type_check (i.types[0], reg))
5922 first_reg_op = 0;
5923 else
5924 first_reg_op = 1;
5925 /* Pretend we saw the extra register operand. */
5926 gas_assert (i.reg_operands == 1
5927 && i.op[first_reg_op + 1].regs == 0);
5928 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
5929 i.types[first_reg_op + 1] = i.types[first_reg_op];
5930 i.operands++;
5931 i.reg_operands++;
5932 }
5933
5934 if (i.tm.opcode_modifier.shortform)
5935 {
5936 if (i.types[0].bitfield.sreg2
5937 || i.types[0].bitfield.sreg3)
5938 {
5939 if (i.tm.base_opcode == POP_SEG_SHORT
5940 && i.op[0].regs->reg_num == 1)
5941 {
5942 as_bad (_("you can't `pop %scs'"), register_prefix);
5943 return 0;
5944 }
5945 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
5946 if ((i.op[0].regs->reg_flags & RegRex) != 0)
5947 i.rex |= REX_B;
5948 }
5949 else
5950 {
5951 /* The register or float register operand is in operand
5952 0 or 1. */
5953 unsigned int op;
5954
5955 if (i.types[0].bitfield.floatreg
5956 || operand_type_check (i.types[0], reg))
5957 op = 0;
5958 else
5959 op = 1;
5960 /* Register goes in low 3 bits of opcode. */
5961 i.tm.base_opcode |= i.op[op].regs->reg_num;
5962 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5963 i.rex |= REX_B;
5964 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
5965 {
5966 /* Warn about some common errors, but press on regardless.
5967 The first case can be generated by gcc (<= 2.8.1). */
5968 if (i.operands == 2)
5969 {
5970 /* Reversed arguments on faddp, fsubp, etc. */
5971 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
5972 register_prefix, i.op[!intel_syntax].regs->reg_name,
5973 register_prefix, i.op[intel_syntax].regs->reg_name);
5974 }
5975 else
5976 {
5977 /* Extraneous `l' suffix on fp insn. */
5978 as_warn (_("translating to `%s %s%s'"), i.tm.name,
5979 register_prefix, i.op[0].regs->reg_name);
5980 }
5981 }
5982 }
5983 }
5984 else if (i.tm.opcode_modifier.modrm)
5985 {
5986 /* The opcode is completed (modulo i.tm.extension_opcode which
5987 must be put into the modrm byte). Now, we make the modrm and
5988 index base bytes based on all the info we've collected. */
5989
5990 default_seg = build_modrm_byte ();
5991 }
5992 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
5993 {
5994 default_seg = &ds;
5995 }
5996 else if (i.tm.opcode_modifier.isstring)
5997 {
5998 /* For the string instructions that allow a segment override
5999 on one of their operands, the default segment is ds. */
6000 default_seg = &ds;
6001 }
6002
6003 if (i.tm.base_opcode == 0x8d /* lea */
6004 && i.seg[0]
6005 && !quiet_warnings)
6006 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6007
6008 /* If a segment was explicitly specified, and the specified segment
6009 is not the default, use an opcode prefix to select it. If we
6010 never figured out what the default segment is, then default_seg
6011 will be zero at this point, and the specified segment prefix will
6012 always be used. */
6013 if ((i.seg[0]) && (i.seg[0] != default_seg))
6014 {
6015 if (!add_prefix (i.seg[0]->seg_prefix))
6016 return 0;
6017 }
6018 return 1;
6019 }
6020
6021 static const seg_entry *
6022 build_modrm_byte (void)
6023 {
6024 const seg_entry *default_seg = 0;
6025 unsigned int source, dest;
6026 int vex_3_sources;
6027
6028 /* The first operand of instructions with VEX prefix and 3 sources
6029 must be VEX_Imm4. */
6030 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6031 if (vex_3_sources)
6032 {
6033 unsigned int nds, reg_slot;
6034 expressionS *exp;
6035
6036 if (i.tm.opcode_modifier.veximmext
6037 && i.tm.opcode_modifier.immext)
6038 {
6039 dest = i.operands - 2;
6040 gas_assert (dest == 3);
6041 }
6042 else
6043 dest = i.operands - 1;
6044 nds = dest - 1;
6045
6046 /* There are 2 kinds of instructions:
6047 1. 5 operands: 4 register operands or 3 register operands
6048 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6049 VexW0 or VexW1. The destination must be either XMM, YMM or
6050 ZMM register.
6051 2. 4 operands: 4 register operands or 3 register operands
6052 plus 1 memory operand, VexXDS, and VexImmExt */
6053 gas_assert ((i.reg_operands == 4
6054 || (i.reg_operands == 3 && i.mem_operands == 1))
6055 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6056 && (i.tm.opcode_modifier.veximmext
6057 || (i.imm_operands == 1
6058 && i.types[0].bitfield.vec_imm4
6059 && (i.tm.opcode_modifier.vexw == VEXW0
6060 || i.tm.opcode_modifier.vexw == VEXW1)
6061 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
6062 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
6063 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
6064
6065 if (i.imm_operands == 0)
6066 {
6067 /* When there is no immediate operand, generate an 8bit
6068 immediate operand to encode the first operand. */
6069 exp = &im_expressions[i.imm_operands++];
6070 i.op[i.operands].imms = exp;
6071 i.types[i.operands] = imm8;
6072 i.operands++;
6073 /* If VexW1 is set, the first operand is the source and
6074 the second operand is encoded in the immediate operand. */
6075 if (i.tm.opcode_modifier.vexw == VEXW1)
6076 {
6077 source = 0;
6078 reg_slot = 1;
6079 }
6080 else
6081 {
6082 source = 1;
6083 reg_slot = 0;
6084 }
6085
6086 /* FMA swaps REG and NDS. */
6087 if (i.tm.cpu_flags.bitfield.cpufma)
6088 {
6089 unsigned int tmp;
6090 tmp = reg_slot;
6091 reg_slot = nds;
6092 nds = tmp;
6093 }
6094
6095 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6096 &regxmm)
6097 || operand_type_equal (&i.tm.operand_types[reg_slot],
6098 &regymm)
6099 || operand_type_equal (&i.tm.operand_types[reg_slot],
6100 &regzmm));
6101 exp->X_op = O_constant;
6102 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6103 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6104 }
6105 else
6106 {
6107 unsigned int imm_slot;
6108
6109 if (i.tm.opcode_modifier.vexw == VEXW0)
6110 {
6111 /* If VexW0 is set, the third operand is the source and
6112 the second operand is encoded in the immediate
6113 operand. */
6114 source = 2;
6115 reg_slot = 1;
6116 }
6117 else
6118 {
6119 /* VexW1 is set, the second operand is the source and
6120 the third operand is encoded in the immediate
6121 operand. */
6122 source = 1;
6123 reg_slot = 2;
6124 }
6125
6126 if (i.tm.opcode_modifier.immext)
6127 {
6128 /* When ImmExt is set, the immdiate byte is the last
6129 operand. */
6130 imm_slot = i.operands - 1;
6131 source--;
6132 reg_slot--;
6133 }
6134 else
6135 {
6136 imm_slot = 0;
6137
6138 /* Turn on Imm8 so that output_imm will generate it. */
6139 i.types[imm_slot].bitfield.imm8 = 1;
6140 }
6141
6142 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6143 &regxmm)
6144 || operand_type_equal (&i.tm.operand_types[reg_slot],
6145 &regymm)
6146 || operand_type_equal (&i.tm.operand_types[reg_slot],
6147 &regzmm));
6148 i.op[imm_slot].imms->X_add_number
6149 |= register_number (i.op[reg_slot].regs) << 4;
6150 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6151 }
6152
6153 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6154 || operand_type_equal (&i.tm.operand_types[nds],
6155 &regymm)
6156 || operand_type_equal (&i.tm.operand_types[nds],
6157 &regzmm));
6158 i.vex.register_specifier = i.op[nds].regs;
6159 }
6160 else
6161 source = dest = 0;
6162
6163 /* i.reg_operands MUST be the number of real register operands;
6164 implicit registers do not count. If there are 3 register
6165 operands, it must be a instruction with VexNDS. For a
6166 instruction with VexNDD, the destination register is encoded
6167 in VEX prefix. If there are 4 register operands, it must be
6168 a instruction with VEX prefix and 3 sources. */
6169 if (i.mem_operands == 0
6170 && ((i.reg_operands == 2
6171 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6172 || (i.reg_operands == 3
6173 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6174 || (i.reg_operands == 4 && vex_3_sources)))
6175 {
6176 switch (i.operands)
6177 {
6178 case 2:
6179 source = 0;
6180 break;
6181 case 3:
6182 /* When there are 3 operands, one of them may be immediate,
6183 which may be the first or the last operand. Otherwise,
6184 the first operand must be shift count register (cl) or it
6185 is an instruction with VexNDS. */
6186 gas_assert (i.imm_operands == 1
6187 || (i.imm_operands == 0
6188 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6189 || i.types[0].bitfield.shiftcount)));
6190 if (operand_type_check (i.types[0], imm)
6191 || i.types[0].bitfield.shiftcount)
6192 source = 1;
6193 else
6194 source = 0;
6195 break;
6196 case 4:
6197 /* When there are 4 operands, the first two must be 8bit
6198 immediate operands. The source operand will be the 3rd
6199 one.
6200
6201 For instructions with VexNDS, if the first operand
6202 an imm8, the source operand is the 2nd one. If the last
6203 operand is imm8, the source operand is the first one. */
6204 gas_assert ((i.imm_operands == 2
6205 && i.types[0].bitfield.imm8
6206 && i.types[1].bitfield.imm8)
6207 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6208 && i.imm_operands == 1
6209 && (i.types[0].bitfield.imm8
6210 || i.types[i.operands - 1].bitfield.imm8
6211 || i.rounding)));
6212 if (i.imm_operands == 2)
6213 source = 2;
6214 else
6215 {
6216 if (i.types[0].bitfield.imm8)
6217 source = 1;
6218 else
6219 source = 0;
6220 }
6221 break;
6222 case 5:
6223 if (i.tm.opcode_modifier.evex)
6224 {
6225 /* For EVEX instructions, when there are 5 operands, the
6226 first one must be immediate operand. If the second one
6227 is immediate operand, the source operand is the 3th
6228 one. If the last one is immediate operand, the source
6229 operand is the 2nd one. */
6230 gas_assert (i.imm_operands == 2
6231 && i.tm.opcode_modifier.sae
6232 && operand_type_check (i.types[0], imm));
6233 if (operand_type_check (i.types[1], imm))
6234 source = 2;
6235 else if (operand_type_check (i.types[4], imm))
6236 source = 1;
6237 else
6238 abort ();
6239 }
6240 break;
6241 default:
6242 abort ();
6243 }
6244
6245 if (!vex_3_sources)
6246 {
6247 dest = source + 1;
6248
6249 /* RC/SAE operand could be between DEST and SRC. That happens
6250 when one operand is GPR and the other one is XMM/YMM/ZMM
6251 register. */
6252 if (i.rounding && i.rounding->operand == (int) dest)
6253 dest++;
6254
6255 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6256 {
6257 /* For instructions with VexNDS, the register-only source
6258 operand must be 32/64bit integer, XMM, YMM or ZMM
6259 register. It is encoded in VEX prefix. We need to
6260 clear RegMem bit before calling operand_type_equal. */
6261
6262 i386_operand_type op;
6263 unsigned int vvvv;
6264
6265 /* Check register-only source operand when two source
6266 operands are swapped. */
6267 if (!i.tm.operand_types[source].bitfield.baseindex
6268 && i.tm.operand_types[dest].bitfield.baseindex)
6269 {
6270 vvvv = source;
6271 source = dest;
6272 }
6273 else
6274 vvvv = dest;
6275
6276 op = i.tm.operand_types[vvvv];
6277 op.bitfield.regmem = 0;
6278 if ((dest + 1) >= i.operands
6279 || (!op.bitfield.reg32
6280 && op.bitfield.reg64
6281 && !operand_type_equal (&op, &regxmm)
6282 && !operand_type_equal (&op, &regymm)
6283 && !operand_type_equal (&op, &regzmm)
6284 && !operand_type_equal (&op, &regmask)))
6285 abort ();
6286 i.vex.register_specifier = i.op[vvvv].regs;
6287 dest++;
6288 }
6289 }
6290
6291 i.rm.mode = 3;
6292 /* One of the register operands will be encoded in the i.tm.reg
6293 field, the other in the combined i.tm.mode and i.tm.regmem
6294 fields. If no form of this instruction supports a memory
6295 destination operand, then we assume the source operand may
6296 sometimes be a memory operand and so we need to store the
6297 destination in the i.rm.reg field. */
6298 if (!i.tm.operand_types[dest].bitfield.regmem
6299 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6300 {
6301 i.rm.reg = i.op[dest].regs->reg_num;
6302 i.rm.regmem = i.op[source].regs->reg_num;
6303 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6304 i.rex |= REX_R;
6305 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6306 i.vrex |= REX_R;
6307 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6308 i.rex |= REX_B;
6309 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6310 i.vrex |= REX_B;
6311 }
6312 else
6313 {
6314 i.rm.reg = i.op[source].regs->reg_num;
6315 i.rm.regmem = i.op[dest].regs->reg_num;
6316 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6317 i.rex |= REX_B;
6318 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6319 i.vrex |= REX_B;
6320 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6321 i.rex |= REX_R;
6322 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6323 i.vrex |= REX_R;
6324 }
6325 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6326 {
6327 if (!i.types[0].bitfield.control
6328 && !i.types[1].bitfield.control)
6329 abort ();
6330 i.rex &= ~(REX_R | REX_B);
6331 add_prefix (LOCK_PREFIX_OPCODE);
6332 }
6333 }
6334 else
6335 { /* If it's not 2 reg operands... */
6336 unsigned int mem;
6337
6338 if (i.mem_operands)
6339 {
6340 unsigned int fake_zero_displacement = 0;
6341 unsigned int op;
6342
6343 for (op = 0; op < i.operands; op++)
6344 if (operand_type_check (i.types[op], anymem))
6345 break;
6346 gas_assert (op < i.operands);
6347
6348 if (i.tm.opcode_modifier.vecsib)
6349 {
6350 if (i.index_reg->reg_num == RegEiz
6351 || i.index_reg->reg_num == RegRiz)
6352 abort ();
6353
6354 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6355 if (!i.base_reg)
6356 {
6357 i.sib.base = NO_BASE_REGISTER;
6358 i.sib.scale = i.log2_scale_factor;
6359 /* No Vec_Disp8 if there is no base. */
6360 i.types[op].bitfield.vec_disp8 = 0;
6361 i.types[op].bitfield.disp8 = 0;
6362 i.types[op].bitfield.disp16 = 0;
6363 i.types[op].bitfield.disp64 = 0;
6364 if (flag_code != CODE_64BIT)
6365 {
6366 /* Must be 32 bit */
6367 i.types[op].bitfield.disp32 = 1;
6368 i.types[op].bitfield.disp32s = 0;
6369 }
6370 else
6371 {
6372 i.types[op].bitfield.disp32 = 0;
6373 i.types[op].bitfield.disp32s = 1;
6374 }
6375 }
6376 i.sib.index = i.index_reg->reg_num;
6377 if ((i.index_reg->reg_flags & RegRex) != 0)
6378 i.rex |= REX_X;
6379 if ((i.index_reg->reg_flags & RegVRex) != 0)
6380 i.vrex |= REX_X;
6381 }
6382
6383 default_seg = &ds;
6384
6385 if (i.base_reg == 0)
6386 {
6387 i.rm.mode = 0;
6388 if (!i.disp_operands)
6389 {
6390 fake_zero_displacement = 1;
6391 /* Instructions with VSIB byte need 32bit displacement
6392 if there is no base register. */
6393 if (i.tm.opcode_modifier.vecsib)
6394 i.types[op].bitfield.disp32 = 1;
6395 }
6396 if (i.index_reg == 0)
6397 {
6398 gas_assert (!i.tm.opcode_modifier.vecsib);
6399 /* Operand is just <disp> */
6400 if (flag_code == CODE_64BIT)
6401 {
6402 /* 64bit mode overwrites the 32bit absolute
6403 addressing by RIP relative addressing and
6404 absolute addressing is encoded by one of the
6405 redundant SIB forms. */
6406 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6407 i.sib.base = NO_BASE_REGISTER;
6408 i.sib.index = NO_INDEX_REGISTER;
6409 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
6410 ? disp32s : disp32);
6411 }
6412 else if ((flag_code == CODE_16BIT)
6413 ^ (i.prefix[ADDR_PREFIX] != 0))
6414 {
6415 i.rm.regmem = NO_BASE_REGISTER_16;
6416 i.types[op] = disp16;
6417 }
6418 else
6419 {
6420 i.rm.regmem = NO_BASE_REGISTER;
6421 i.types[op] = disp32;
6422 }
6423 }
6424 else if (!i.tm.opcode_modifier.vecsib)
6425 {
6426 /* !i.base_reg && i.index_reg */
6427 if (i.index_reg->reg_num == RegEiz
6428 || i.index_reg->reg_num == RegRiz)
6429 i.sib.index = NO_INDEX_REGISTER;
6430 else
6431 i.sib.index = i.index_reg->reg_num;
6432 i.sib.base = NO_BASE_REGISTER;
6433 i.sib.scale = i.log2_scale_factor;
6434 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6435 /* No Vec_Disp8 if there is no base. */
6436 i.types[op].bitfield.vec_disp8 = 0;
6437 i.types[op].bitfield.disp8 = 0;
6438 i.types[op].bitfield.disp16 = 0;
6439 i.types[op].bitfield.disp64 = 0;
6440 if (flag_code != CODE_64BIT)
6441 {
6442 /* Must be 32 bit */
6443 i.types[op].bitfield.disp32 = 1;
6444 i.types[op].bitfield.disp32s = 0;
6445 }
6446 else
6447 {
6448 i.types[op].bitfield.disp32 = 0;
6449 i.types[op].bitfield.disp32s = 1;
6450 }
6451 if ((i.index_reg->reg_flags & RegRex) != 0)
6452 i.rex |= REX_X;
6453 }
6454 }
6455 /* RIP addressing for 64bit mode. */
6456 else if (i.base_reg->reg_num == RegRip ||
6457 i.base_reg->reg_num == RegEip)
6458 {
6459 gas_assert (!i.tm.opcode_modifier.vecsib);
6460 i.rm.regmem = NO_BASE_REGISTER;
6461 i.types[op].bitfield.disp8 = 0;
6462 i.types[op].bitfield.disp16 = 0;
6463 i.types[op].bitfield.disp32 = 0;
6464 i.types[op].bitfield.disp32s = 1;
6465 i.types[op].bitfield.disp64 = 0;
6466 i.types[op].bitfield.vec_disp8 = 0;
6467 i.flags[op] |= Operand_PCrel;
6468 if (! i.disp_operands)
6469 fake_zero_displacement = 1;
6470 }
6471 else if (i.base_reg->reg_type.bitfield.reg16)
6472 {
6473 gas_assert (!i.tm.opcode_modifier.vecsib);
6474 switch (i.base_reg->reg_num)
6475 {
6476 case 3: /* (%bx) */
6477 if (i.index_reg == 0)
6478 i.rm.regmem = 7;
6479 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6480 i.rm.regmem = i.index_reg->reg_num - 6;
6481 break;
6482 case 5: /* (%bp) */
6483 default_seg = &ss;
6484 if (i.index_reg == 0)
6485 {
6486 i.rm.regmem = 6;
6487 if (operand_type_check (i.types[op], disp) == 0)
6488 {
6489 /* fake (%bp) into 0(%bp) */
6490 if (i.tm.operand_types[op].bitfield.vec_disp8)
6491 i.types[op].bitfield.vec_disp8 = 1;
6492 else
6493 i.types[op].bitfield.disp8 = 1;
6494 fake_zero_displacement = 1;
6495 }
6496 }
6497 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6498 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6499 break;
6500 default: /* (%si) -> 4 or (%di) -> 5 */
6501 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6502 }
6503 i.rm.mode = mode_from_disp_size (i.types[op]);
6504 }
6505 else /* i.base_reg and 32/64 bit mode */
6506 {
6507 if (flag_code == CODE_64BIT
6508 && operand_type_check (i.types[op], disp))
6509 {
6510 i386_operand_type temp;
6511 operand_type_set (&temp, 0);
6512 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6513 temp.bitfield.vec_disp8
6514 = i.types[op].bitfield.vec_disp8;
6515 i.types[op] = temp;
6516 if (i.prefix[ADDR_PREFIX] == 0)
6517 i.types[op].bitfield.disp32s = 1;
6518 else
6519 i.types[op].bitfield.disp32 = 1;
6520 }
6521
6522 if (!i.tm.opcode_modifier.vecsib)
6523 i.rm.regmem = i.base_reg->reg_num;
6524 if ((i.base_reg->reg_flags & RegRex) != 0)
6525 i.rex |= REX_B;
6526 i.sib.base = i.base_reg->reg_num;
6527 /* x86-64 ignores REX prefix bit here to avoid decoder
6528 complications. */
6529 if (!(i.base_reg->reg_flags & RegRex)
6530 && (i.base_reg->reg_num == EBP_REG_NUM
6531 || i.base_reg->reg_num == ESP_REG_NUM))
6532 default_seg = &ss;
6533 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6534 {
6535 fake_zero_displacement = 1;
6536 if (i.tm.operand_types [op].bitfield.vec_disp8)
6537 i.types[op].bitfield.vec_disp8 = 1;
6538 else
6539 i.types[op].bitfield.disp8 = 1;
6540 }
6541 i.sib.scale = i.log2_scale_factor;
6542 if (i.index_reg == 0)
6543 {
6544 gas_assert (!i.tm.opcode_modifier.vecsib);
6545 /* <disp>(%esp) becomes two byte modrm with no index
6546 register. We've already stored the code for esp
6547 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6548 Any base register besides %esp will not use the
6549 extra modrm byte. */
6550 i.sib.index = NO_INDEX_REGISTER;
6551 }
6552 else if (!i.tm.opcode_modifier.vecsib)
6553 {
6554 if (i.index_reg->reg_num == RegEiz
6555 || i.index_reg->reg_num == RegRiz)
6556 i.sib.index = NO_INDEX_REGISTER;
6557 else
6558 i.sib.index = i.index_reg->reg_num;
6559 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6560 if ((i.index_reg->reg_flags & RegRex) != 0)
6561 i.rex |= REX_X;
6562 }
6563
6564 if (i.disp_operands
6565 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6566 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6567 i.rm.mode = 0;
6568 else
6569 {
6570 if (!fake_zero_displacement
6571 && !i.disp_operands
6572 && i.disp_encoding)
6573 {
6574 fake_zero_displacement = 1;
6575 if (i.disp_encoding == disp_encoding_8bit)
6576 i.types[op].bitfield.disp8 = 1;
6577 else
6578 i.types[op].bitfield.disp32 = 1;
6579 }
6580 i.rm.mode = mode_from_disp_size (i.types[op]);
6581 }
6582 }
6583
6584 if (fake_zero_displacement)
6585 {
6586 /* Fakes a zero displacement assuming that i.types[op]
6587 holds the correct displacement size. */
6588 expressionS *exp;
6589
6590 gas_assert (i.op[op].disps == 0);
6591 exp = &disp_expressions[i.disp_operands++];
6592 i.op[op].disps = exp;
6593 exp->X_op = O_constant;
6594 exp->X_add_number = 0;
6595 exp->X_add_symbol = (symbolS *) 0;
6596 exp->X_op_symbol = (symbolS *) 0;
6597 }
6598
6599 mem = op;
6600 }
6601 else
6602 mem = ~0;
6603
6604 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
6605 {
6606 if (operand_type_check (i.types[0], imm))
6607 i.vex.register_specifier = NULL;
6608 else
6609 {
6610 /* VEX.vvvv encodes one of the sources when the first
6611 operand is not an immediate. */
6612 if (i.tm.opcode_modifier.vexw == VEXW0)
6613 i.vex.register_specifier = i.op[0].regs;
6614 else
6615 i.vex.register_specifier = i.op[1].regs;
6616 }
6617
6618 /* Destination is a XMM register encoded in the ModRM.reg
6619 and VEX.R bit. */
6620 i.rm.reg = i.op[2].regs->reg_num;
6621 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6622 i.rex |= REX_R;
6623
6624 /* ModRM.rm and VEX.B encodes the other source. */
6625 if (!i.mem_operands)
6626 {
6627 i.rm.mode = 3;
6628
6629 if (i.tm.opcode_modifier.vexw == VEXW0)
6630 i.rm.regmem = i.op[1].regs->reg_num;
6631 else
6632 i.rm.regmem = i.op[0].regs->reg_num;
6633
6634 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6635 i.rex |= REX_B;
6636 }
6637 }
6638 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
6639 {
6640 i.vex.register_specifier = i.op[2].regs;
6641 if (!i.mem_operands)
6642 {
6643 i.rm.mode = 3;
6644 i.rm.regmem = i.op[1].regs->reg_num;
6645 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6646 i.rex |= REX_B;
6647 }
6648 }
6649 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6650 (if any) based on i.tm.extension_opcode. Again, we must be
6651 careful to make sure that segment/control/debug/test/MMX
6652 registers are coded into the i.rm.reg field. */
6653 else if (i.reg_operands)
6654 {
6655 unsigned int op;
6656 unsigned int vex_reg = ~0;
6657
6658 for (op = 0; op < i.operands; op++)
6659 if (i.types[op].bitfield.reg8
6660 || i.types[op].bitfield.reg16
6661 || i.types[op].bitfield.reg32
6662 || i.types[op].bitfield.reg64
6663 || i.types[op].bitfield.regmmx
6664 || i.types[op].bitfield.regxmm
6665 || i.types[op].bitfield.regymm
6666 || i.types[op].bitfield.regbnd
6667 || i.types[op].bitfield.regzmm
6668 || i.types[op].bitfield.regmask
6669 || i.types[op].bitfield.sreg2
6670 || i.types[op].bitfield.sreg3
6671 || i.types[op].bitfield.control
6672 || i.types[op].bitfield.debug
6673 || i.types[op].bitfield.test)
6674 break;
6675
6676 if (vex_3_sources)
6677 op = dest;
6678 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6679 {
6680 /* For instructions with VexNDS, the register-only
6681 source operand is encoded in VEX prefix. */
6682 gas_assert (mem != (unsigned int) ~0);
6683
6684 if (op > mem)
6685 {
6686 vex_reg = op++;
6687 gas_assert (op < i.operands);
6688 }
6689 else
6690 {
6691 /* Check register-only source operand when two source
6692 operands are swapped. */
6693 if (!i.tm.operand_types[op].bitfield.baseindex
6694 && i.tm.operand_types[op + 1].bitfield.baseindex)
6695 {
6696 vex_reg = op;
6697 op += 2;
6698 gas_assert (mem == (vex_reg + 1)
6699 && op < i.operands);
6700 }
6701 else
6702 {
6703 vex_reg = op + 1;
6704 gas_assert (vex_reg < i.operands);
6705 }
6706 }
6707 }
6708 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
6709 {
6710 /* For instructions with VexNDD, the register destination
6711 is encoded in VEX prefix. */
6712 if (i.mem_operands == 0)
6713 {
6714 /* There is no memory operand. */
6715 gas_assert ((op + 2) == i.operands);
6716 vex_reg = op + 1;
6717 }
6718 else
6719 {
6720 /* There are only 2 operands. */
6721 gas_assert (op < 2 && i.operands == 2);
6722 vex_reg = 1;
6723 }
6724 }
6725 else
6726 gas_assert (op < i.operands);
6727
6728 if (vex_reg != (unsigned int) ~0)
6729 {
6730 i386_operand_type *type = &i.tm.operand_types[vex_reg];
6731
6732 if (type->bitfield.reg32 != 1
6733 && type->bitfield.reg64 != 1
6734 && !operand_type_equal (type, &regxmm)
6735 && !operand_type_equal (type, &regymm)
6736 && !operand_type_equal (type, &regzmm)
6737 && !operand_type_equal (type, &regmask))
6738 abort ();
6739
6740 i.vex.register_specifier = i.op[vex_reg].regs;
6741 }
6742
6743 /* Don't set OP operand twice. */
6744 if (vex_reg != op)
6745 {
6746 /* If there is an extension opcode to put here, the
6747 register number must be put into the regmem field. */
6748 if (i.tm.extension_opcode != None)
6749 {
6750 i.rm.regmem = i.op[op].regs->reg_num;
6751 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6752 i.rex |= REX_B;
6753 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6754 i.vrex |= REX_B;
6755 }
6756 else
6757 {
6758 i.rm.reg = i.op[op].regs->reg_num;
6759 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6760 i.rex |= REX_R;
6761 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6762 i.vrex |= REX_R;
6763 }
6764 }
6765
6766 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6767 must set it to 3 to indicate this is a register operand
6768 in the regmem field. */
6769 if (!i.mem_operands)
6770 i.rm.mode = 3;
6771 }
6772
6773 /* Fill in i.rm.reg field with extension opcode (if any). */
6774 if (i.tm.extension_opcode != None)
6775 i.rm.reg = i.tm.extension_opcode;
6776 }
6777 return default_seg;
6778 }
6779
6780 static void
6781 output_branch (void)
6782 {
6783 char *p;
6784 int size;
6785 int code16;
6786 int prefix;
6787 relax_substateT subtype;
6788 symbolS *sym;
6789 offsetT off;
6790
6791 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
6792 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
6793
6794 prefix = 0;
6795 if (i.prefix[DATA_PREFIX] != 0)
6796 {
6797 prefix = 1;
6798 i.prefixes -= 1;
6799 code16 ^= CODE16;
6800 }
6801 /* Pentium4 branch hints. */
6802 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6803 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6804 {
6805 prefix++;
6806 i.prefixes--;
6807 }
6808 if (i.prefix[REX_PREFIX] != 0)
6809 {
6810 prefix++;
6811 i.prefixes--;
6812 }
6813
6814 /* BND prefixed jump. */
6815 if (i.prefix[BND_PREFIX] != 0)
6816 {
6817 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6818 i.prefixes -= 1;
6819 }
6820
6821 if (i.prefixes != 0 && !intel_syntax)
6822 as_warn (_("skipping prefixes on this instruction"));
6823
6824 /* It's always a symbol; End frag & setup for relax.
6825 Make sure there is enough room in this frag for the largest
6826 instruction we may generate in md_convert_frag. This is 2
6827 bytes for the opcode and room for the prefix and largest
6828 displacement. */
6829 frag_grow (prefix + 2 + 4);
6830 /* Prefix and 1 opcode byte go in fr_fix. */
6831 p = frag_more (prefix + 1);
6832 if (i.prefix[DATA_PREFIX] != 0)
6833 *p++ = DATA_PREFIX_OPCODE;
6834 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
6835 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
6836 *p++ = i.prefix[SEG_PREFIX];
6837 if (i.prefix[REX_PREFIX] != 0)
6838 *p++ = i.prefix[REX_PREFIX];
6839 *p = i.tm.base_opcode;
6840
6841 if ((unsigned char) *p == JUMP_PC_RELATIVE)
6842 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
6843 else if (cpu_arch_flags.bitfield.cpui386)
6844 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
6845 else
6846 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
6847 subtype |= code16;
6848
6849 sym = i.op[0].disps->X_add_symbol;
6850 off = i.op[0].disps->X_add_number;
6851
6852 if (i.op[0].disps->X_op != O_constant
6853 && i.op[0].disps->X_op != O_symbol)
6854 {
6855 /* Handle complex expressions. */
6856 sym = make_expr_symbol (i.op[0].disps);
6857 off = 0;
6858 }
6859
6860 /* 1 possible extra opcode + 4 byte displacement go in var part.
6861 Pass reloc in fr_var. */
6862 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
6863 }
6864
6865 static void
6866 output_jump (void)
6867 {
6868 char *p;
6869 int size;
6870 fixS *fixP;
6871
6872 if (i.tm.opcode_modifier.jumpbyte)
6873 {
6874 /* This is a loop or jecxz type instruction. */
6875 size = 1;
6876 if (i.prefix[ADDR_PREFIX] != 0)
6877 {
6878 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
6879 i.prefixes -= 1;
6880 }
6881 /* Pentium4 branch hints. */
6882 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6883 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6884 {
6885 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
6886 i.prefixes--;
6887 }
6888 }
6889 else
6890 {
6891 int code16;
6892
6893 code16 = 0;
6894 if (flag_code == CODE_16BIT)
6895 code16 = CODE16;
6896
6897 if (i.prefix[DATA_PREFIX] != 0)
6898 {
6899 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
6900 i.prefixes -= 1;
6901 code16 ^= CODE16;
6902 }
6903
6904 size = 4;
6905 if (code16)
6906 size = 2;
6907 }
6908
6909 if (i.prefix[REX_PREFIX] != 0)
6910 {
6911 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
6912 i.prefixes -= 1;
6913 }
6914
6915 /* BND prefixed jump. */
6916 if (i.prefix[BND_PREFIX] != 0)
6917 {
6918 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6919 i.prefixes -= 1;
6920 }
6921
6922 if (i.prefixes != 0 && !intel_syntax)
6923 as_warn (_("skipping prefixes on this instruction"));
6924
6925 p = frag_more (i.tm.opcode_length + size);
6926 switch (i.tm.opcode_length)
6927 {
6928 case 2:
6929 *p++ = i.tm.base_opcode >> 8;
6930 case 1:
6931 *p++ = i.tm.base_opcode;
6932 break;
6933 default:
6934 abort ();
6935 }
6936
6937 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6938 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
6939
6940 /* All jumps handled here are signed, but don't use a signed limit
6941 check for 32 and 16 bit jumps as we want to allow wrap around at
6942 4G and 64k respectively. */
6943 if (size == 1)
6944 fixP->fx_signed = 1;
6945 }
6946
6947 static void
6948 output_interseg_jump (void)
6949 {
6950 char *p;
6951 int size;
6952 int prefix;
6953 int code16;
6954
6955 code16 = 0;
6956 if (flag_code == CODE_16BIT)
6957 code16 = CODE16;
6958
6959 prefix = 0;
6960 if (i.prefix[DATA_PREFIX] != 0)
6961 {
6962 prefix = 1;
6963 i.prefixes -= 1;
6964 code16 ^= CODE16;
6965 }
6966 if (i.prefix[REX_PREFIX] != 0)
6967 {
6968 prefix++;
6969 i.prefixes -= 1;
6970 }
6971
6972 size = 4;
6973 if (code16)
6974 size = 2;
6975
6976 if (i.prefixes != 0 && !intel_syntax)
6977 as_warn (_("skipping prefixes on this instruction"));
6978
6979 /* 1 opcode; 2 segment; offset */
6980 p = frag_more (prefix + 1 + 2 + size);
6981
6982 if (i.prefix[DATA_PREFIX] != 0)
6983 *p++ = DATA_PREFIX_OPCODE;
6984
6985 if (i.prefix[REX_PREFIX] != 0)
6986 *p++ = i.prefix[REX_PREFIX];
6987
6988 *p++ = i.tm.base_opcode;
6989 if (i.op[1].imms->X_op == O_constant)
6990 {
6991 offsetT n = i.op[1].imms->X_add_number;
6992
6993 if (size == 2
6994 && !fits_in_unsigned_word (n)
6995 && !fits_in_signed_word (n))
6996 {
6997 as_bad (_("16-bit jump out of range"));
6998 return;
6999 }
7000 md_number_to_chars (p, n, size);
7001 }
7002 else
7003 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7004 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7005 if (i.op[0].imms->X_op != O_constant)
7006 as_bad (_("can't handle non absolute segment in `%s'"),
7007 i.tm.name);
7008 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7009 }
7010
7011 static void
7012 output_insn (void)
7013 {
7014 fragS *insn_start_frag;
7015 offsetT insn_start_off;
7016
7017 /* Tie dwarf2 debug info to the address at the start of the insn.
7018 We can't do this after the insn has been output as the current
7019 frag may have been closed off. eg. by frag_var. */
7020 dwarf2_emit_insn (0);
7021
7022 insn_start_frag = frag_now;
7023 insn_start_off = frag_now_fix ();
7024
7025 /* Output jumps. */
7026 if (i.tm.opcode_modifier.jump)
7027 output_branch ();
7028 else if (i.tm.opcode_modifier.jumpbyte
7029 || i.tm.opcode_modifier.jumpdword)
7030 output_jump ();
7031 else if (i.tm.opcode_modifier.jumpintersegment)
7032 output_interseg_jump ();
7033 else
7034 {
7035 /* Output normal instructions here. */
7036 char *p;
7037 unsigned char *q;
7038 unsigned int j;
7039 unsigned int prefix;
7040
7041 if (avoid_fence
7042 && i.tm.base_opcode == 0xfae
7043 && i.operands == 1
7044 && i.imm_operands == 1
7045 && (i.op[0].imms->X_add_number == 0xe8
7046 || i.op[0].imms->X_add_number == 0xf0
7047 || i.op[0].imms->X_add_number == 0xf8))
7048 {
7049 /* Encode lfence, mfence, and sfence as
7050 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7051 offsetT val = 0x240483f0ULL;
7052 p = frag_more (5);
7053 md_number_to_chars (p, val, 5);
7054 return;
7055 }
7056
7057 /* Some processors fail on LOCK prefix. This options makes
7058 assembler ignore LOCK prefix and serves as a workaround. */
7059 if (omit_lock_prefix)
7060 {
7061 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7062 return;
7063 i.prefix[LOCK_PREFIX] = 0;
7064 }
7065
7066 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7067 don't need the explicit prefix. */
7068 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7069 {
7070 switch (i.tm.opcode_length)
7071 {
7072 case 3:
7073 if (i.tm.base_opcode & 0xff000000)
7074 {
7075 prefix = (i.tm.base_opcode >> 24) & 0xff;
7076 goto check_prefix;
7077 }
7078 break;
7079 case 2:
7080 if ((i.tm.base_opcode & 0xff0000) != 0)
7081 {
7082 prefix = (i.tm.base_opcode >> 16) & 0xff;
7083 if (i.tm.cpu_flags.bitfield.cpupadlock)
7084 {
7085 check_prefix:
7086 if (prefix != REPE_PREFIX_OPCODE
7087 || (i.prefix[REP_PREFIX]
7088 != REPE_PREFIX_OPCODE))
7089 add_prefix (prefix);
7090 }
7091 else
7092 add_prefix (prefix);
7093 }
7094 break;
7095 case 1:
7096 break;
7097 default:
7098 abort ();
7099 }
7100
7101 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7102 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7103 R_X86_64_GOTTPOFF relocation so that linker can safely
7104 perform IE->LE optimization. */
7105 if (x86_elf_abi == X86_64_X32_ABI
7106 && i.operands == 2
7107 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7108 && i.prefix[REX_PREFIX] == 0)
7109 add_prefix (REX_OPCODE);
7110 #endif
7111
7112 /* The prefix bytes. */
7113 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7114 if (*q)
7115 FRAG_APPEND_1_CHAR (*q);
7116 }
7117 else
7118 {
7119 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7120 if (*q)
7121 switch (j)
7122 {
7123 case REX_PREFIX:
7124 /* REX byte is encoded in VEX prefix. */
7125 break;
7126 case SEG_PREFIX:
7127 case ADDR_PREFIX:
7128 FRAG_APPEND_1_CHAR (*q);
7129 break;
7130 default:
7131 /* There should be no other prefixes for instructions
7132 with VEX prefix. */
7133 abort ();
7134 }
7135
7136 /* For EVEX instructions i.vrex should become 0 after
7137 build_evex_prefix. For VEX instructions upper 16 registers
7138 aren't available, so VREX should be 0. */
7139 if (i.vrex)
7140 abort ();
7141 /* Now the VEX prefix. */
7142 p = frag_more (i.vex.length);
7143 for (j = 0; j < i.vex.length; j++)
7144 p[j] = i.vex.bytes[j];
7145 }
7146
7147 /* Now the opcode; be careful about word order here! */
7148 if (i.tm.opcode_length == 1)
7149 {
7150 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7151 }
7152 else
7153 {
7154 switch (i.tm.opcode_length)
7155 {
7156 case 4:
7157 p = frag_more (4);
7158 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7159 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7160 break;
7161 case 3:
7162 p = frag_more (3);
7163 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7164 break;
7165 case 2:
7166 p = frag_more (2);
7167 break;
7168 default:
7169 abort ();
7170 break;
7171 }
7172
7173 /* Put out high byte first: can't use md_number_to_chars! */
7174 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7175 *p = i.tm.base_opcode & 0xff;
7176 }
7177
7178 /* Now the modrm byte and sib byte (if present). */
7179 if (i.tm.opcode_modifier.modrm)
7180 {
7181 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7182 | i.rm.reg << 3
7183 | i.rm.mode << 6));
7184 /* If i.rm.regmem == ESP (4)
7185 && i.rm.mode != (Register mode)
7186 && not 16 bit
7187 ==> need second modrm byte. */
7188 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7189 && i.rm.mode != 3
7190 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
7191 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7192 | i.sib.index << 3
7193 | i.sib.scale << 6));
7194 }
7195
7196 if (i.disp_operands)
7197 output_disp (insn_start_frag, insn_start_off);
7198
7199 if (i.imm_operands)
7200 output_imm (insn_start_frag, insn_start_off);
7201 }
7202
7203 #ifdef DEBUG386
7204 if (flag_debug)
7205 {
7206 pi ("" /*line*/, &i);
7207 }
7208 #endif /* DEBUG386 */
7209 }
7210
7211 /* Return the size of the displacement operand N. */
7212
7213 static int
7214 disp_size (unsigned int n)
7215 {
7216 int size = 4;
7217
7218 /* Vec_Disp8 has to be 8bit. */
7219 if (i.types[n].bitfield.vec_disp8)
7220 size = 1;
7221 else if (i.types[n].bitfield.disp64)
7222 size = 8;
7223 else if (i.types[n].bitfield.disp8)
7224 size = 1;
7225 else if (i.types[n].bitfield.disp16)
7226 size = 2;
7227 return size;
7228 }
7229
7230 /* Return the size of the immediate operand N. */
7231
7232 static int
7233 imm_size (unsigned int n)
7234 {
7235 int size = 4;
7236 if (i.types[n].bitfield.imm64)
7237 size = 8;
7238 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7239 size = 1;
7240 else if (i.types[n].bitfield.imm16)
7241 size = 2;
7242 return size;
7243 }
7244
7245 static void
7246 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7247 {
7248 char *p;
7249 unsigned int n;
7250
7251 for (n = 0; n < i.operands; n++)
7252 {
7253 if (i.types[n].bitfield.vec_disp8
7254 || operand_type_check (i.types[n], disp))
7255 {
7256 if (i.op[n].disps->X_op == O_constant)
7257 {
7258 int size = disp_size (n);
7259 offsetT val = i.op[n].disps->X_add_number;
7260
7261 if (i.types[n].bitfield.vec_disp8)
7262 val >>= i.memshift;
7263 val = offset_in_range (val, size);
7264 p = frag_more (size);
7265 md_number_to_chars (p, val, size);
7266 }
7267 else
7268 {
7269 enum bfd_reloc_code_real reloc_type;
7270 int size = disp_size (n);
7271 int sign = i.types[n].bitfield.disp32s;
7272 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7273 fixS *fixP;
7274
7275 /* We can't have 8 bit displacement here. */
7276 gas_assert (!i.types[n].bitfield.disp8);
7277
7278 /* The PC relative address is computed relative
7279 to the instruction boundary, so in case immediate
7280 fields follows, we need to adjust the value. */
7281 if (pcrel && i.imm_operands)
7282 {
7283 unsigned int n1;
7284 int sz = 0;
7285
7286 for (n1 = 0; n1 < i.operands; n1++)
7287 if (operand_type_check (i.types[n1], imm))
7288 {
7289 /* Only one immediate is allowed for PC
7290 relative address. */
7291 gas_assert (sz == 0);
7292 sz = imm_size (n1);
7293 i.op[n].disps->X_add_number -= sz;
7294 }
7295 /* We should find the immediate. */
7296 gas_assert (sz != 0);
7297 }
7298
7299 p = frag_more (size);
7300 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7301 if (GOT_symbol
7302 && GOT_symbol == i.op[n].disps->X_add_symbol
7303 && (((reloc_type == BFD_RELOC_32
7304 || reloc_type == BFD_RELOC_X86_64_32S
7305 || (reloc_type == BFD_RELOC_64
7306 && object_64bit))
7307 && (i.op[n].disps->X_op == O_symbol
7308 || (i.op[n].disps->X_op == O_add
7309 && ((symbol_get_value_expression
7310 (i.op[n].disps->X_op_symbol)->X_op)
7311 == O_subtract))))
7312 || reloc_type == BFD_RELOC_32_PCREL))
7313 {
7314 offsetT add;
7315
7316 if (insn_start_frag == frag_now)
7317 add = (p - frag_now->fr_literal) - insn_start_off;
7318 else
7319 {
7320 fragS *fr;
7321
7322 add = insn_start_frag->fr_fix - insn_start_off;
7323 for (fr = insn_start_frag->fr_next;
7324 fr && fr != frag_now; fr = fr->fr_next)
7325 add += fr->fr_fix;
7326 add += p - frag_now->fr_literal;
7327 }
7328
7329 if (!object_64bit)
7330 {
7331 reloc_type = BFD_RELOC_386_GOTPC;
7332 i.op[n].imms->X_add_number += add;
7333 }
7334 else if (reloc_type == BFD_RELOC_64)
7335 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7336 else
7337 /* Don't do the adjustment for x86-64, as there
7338 the pcrel addressing is relative to the _next_
7339 insn, and that is taken care of in other code. */
7340 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7341 }
7342 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7343 size, i.op[n].disps, pcrel,
7344 reloc_type);
7345 /* Check for "call/jmp *mem", "mov mem, %reg",
7346 "test %reg, mem" and "binop mem, %reg" where binop
7347 is one of adc, add, and, cmp, or, sbb, sub, xor
7348 instructions. Always generate R_386_GOT32X for
7349 "sym*GOT" operand in 32-bit mode. */
7350 if ((generate_relax_relocations
7351 || (!object_64bit
7352 && i.rm.mode == 0
7353 && i.rm.regmem == 5))
7354 && (i.rm.mode == 2
7355 || (i.rm.mode == 0 && i.rm.regmem == 5))
7356 && ((i.operands == 1
7357 && i.tm.base_opcode == 0xff
7358 && (i.rm.reg == 2 || i.rm.reg == 4))
7359 || (i.operands == 2
7360 && (i.tm.base_opcode == 0x8b
7361 || i.tm.base_opcode == 0x85
7362 || (i.tm.base_opcode & 0xc7) == 0x03))))
7363 {
7364 if (object_64bit)
7365 {
7366 fixP->fx_tcbit = i.rex != 0;
7367 if (i.base_reg
7368 && (i.base_reg->reg_num == RegRip
7369 || i.base_reg->reg_num == RegEip))
7370 fixP->fx_tcbit2 = 1;
7371 }
7372 else
7373 fixP->fx_tcbit2 = 1;
7374 }
7375 }
7376 }
7377 }
7378 }
7379
7380 static void
7381 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7382 {
7383 char *p;
7384 unsigned int n;
7385
7386 for (n = 0; n < i.operands; n++)
7387 {
7388 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7389 if (i.rounding && (int) n == i.rounding->operand)
7390 continue;
7391
7392 if (operand_type_check (i.types[n], imm))
7393 {
7394 if (i.op[n].imms->X_op == O_constant)
7395 {
7396 int size = imm_size (n);
7397 offsetT val;
7398
7399 val = offset_in_range (i.op[n].imms->X_add_number,
7400 size);
7401 p = frag_more (size);
7402 md_number_to_chars (p, val, size);
7403 }
7404 else
7405 {
7406 /* Not absolute_section.
7407 Need a 32-bit fixup (don't support 8bit
7408 non-absolute imms). Try to support other
7409 sizes ... */
7410 enum bfd_reloc_code_real reloc_type;
7411 int size = imm_size (n);
7412 int sign;
7413
7414 if (i.types[n].bitfield.imm32s
7415 && (i.suffix == QWORD_MNEM_SUFFIX
7416 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7417 sign = 1;
7418 else
7419 sign = 0;
7420
7421 p = frag_more (size);
7422 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7423
7424 /* This is tough to explain. We end up with this one if we
7425 * have operands that look like
7426 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7427 * obtain the absolute address of the GOT, and it is strongly
7428 * preferable from a performance point of view to avoid using
7429 * a runtime relocation for this. The actual sequence of
7430 * instructions often look something like:
7431 *
7432 * call .L66
7433 * .L66:
7434 * popl %ebx
7435 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7436 *
7437 * The call and pop essentially return the absolute address
7438 * of the label .L66 and store it in %ebx. The linker itself
7439 * will ultimately change the first operand of the addl so
7440 * that %ebx points to the GOT, but to keep things simple, the
7441 * .o file must have this operand set so that it generates not
7442 * the absolute address of .L66, but the absolute address of
7443 * itself. This allows the linker itself simply treat a GOTPC
7444 * relocation as asking for a pcrel offset to the GOT to be
7445 * added in, and the addend of the relocation is stored in the
7446 * operand field for the instruction itself.
7447 *
7448 * Our job here is to fix the operand so that it would add
7449 * the correct offset so that %ebx would point to itself. The
7450 * thing that is tricky is that .-.L66 will point to the
7451 * beginning of the instruction, so we need to further modify
7452 * the operand so that it will point to itself. There are
7453 * other cases where you have something like:
7454 *
7455 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7456 *
7457 * and here no correction would be required. Internally in
7458 * the assembler we treat operands of this form as not being
7459 * pcrel since the '.' is explicitly mentioned, and I wonder
7460 * whether it would simplify matters to do it this way. Who
7461 * knows. In earlier versions of the PIC patches, the
7462 * pcrel_adjust field was used to store the correction, but
7463 * since the expression is not pcrel, I felt it would be
7464 * confusing to do it this way. */
7465
7466 if ((reloc_type == BFD_RELOC_32
7467 || reloc_type == BFD_RELOC_X86_64_32S
7468 || reloc_type == BFD_RELOC_64)
7469 && GOT_symbol
7470 && GOT_symbol == i.op[n].imms->X_add_symbol
7471 && (i.op[n].imms->X_op == O_symbol
7472 || (i.op[n].imms->X_op == O_add
7473 && ((symbol_get_value_expression
7474 (i.op[n].imms->X_op_symbol)->X_op)
7475 == O_subtract))))
7476 {
7477 offsetT add;
7478
7479 if (insn_start_frag == frag_now)
7480 add = (p - frag_now->fr_literal) - insn_start_off;
7481 else
7482 {
7483 fragS *fr;
7484
7485 add = insn_start_frag->fr_fix - insn_start_off;
7486 for (fr = insn_start_frag->fr_next;
7487 fr && fr != frag_now; fr = fr->fr_next)
7488 add += fr->fr_fix;
7489 add += p - frag_now->fr_literal;
7490 }
7491
7492 if (!object_64bit)
7493 reloc_type = BFD_RELOC_386_GOTPC;
7494 else if (size == 4)
7495 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7496 else if (size == 8)
7497 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7498 i.op[n].imms->X_add_number += add;
7499 }
7500 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7501 i.op[n].imms, 0, reloc_type);
7502 }
7503 }
7504 }
7505 }
7506 \f
7507 /* x86_cons_fix_new is called via the expression parsing code when a
7508 reloc is needed. We use this hook to get the correct .got reloc. */
7509 static int cons_sign = -1;
7510
7511 void
7512 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
7513 expressionS *exp, bfd_reloc_code_real_type r)
7514 {
7515 r = reloc (len, 0, cons_sign, r);
7516
7517 #ifdef TE_PE
7518 if (exp->X_op == O_secrel)
7519 {
7520 exp->X_op = O_symbol;
7521 r = BFD_RELOC_32_SECREL;
7522 }
7523 #endif
7524
7525 fix_new_exp (frag, off, len, exp, 0, r);
7526 }
7527
7528 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7529 purpose of the `.dc.a' internal pseudo-op. */
7530
7531 int
7532 x86_address_bytes (void)
7533 {
7534 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7535 return 4;
7536 return stdoutput->arch_info->bits_per_address / 8;
7537 }
7538
7539 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7540 || defined (LEX_AT)
7541 # define lex_got(reloc, adjust, types) NULL
7542 #else
7543 /* Parse operands of the form
7544 <symbol>@GOTOFF+<nnn>
7545 and similar .plt or .got references.
7546
7547 If we find one, set up the correct relocation in RELOC and copy the
7548 input string, minus the `@GOTOFF' into a malloc'd buffer for
7549 parsing by the calling routine. Return this buffer, and if ADJUST
7550 is non-null set it to the length of the string we removed from the
7551 input line. Otherwise return NULL. */
7552 static char *
7553 lex_got (enum bfd_reloc_code_real *rel,
7554 int *adjust,
7555 i386_operand_type *types)
7556 {
7557 /* Some of the relocations depend on the size of what field is to
7558 be relocated. But in our callers i386_immediate and i386_displacement
7559 we don't yet know the operand size (this will be set by insn
7560 matching). Hence we record the word32 relocation here,
7561 and adjust the reloc according to the real size in reloc(). */
7562 static const struct {
7563 const char *str;
7564 int len;
7565 const enum bfd_reloc_code_real rel[2];
7566 const i386_operand_type types64;
7567 } gotrel[] = {
7568 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7569 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7570 BFD_RELOC_SIZE32 },
7571 OPERAND_TYPE_IMM32_64 },
7572 #endif
7573 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7574 BFD_RELOC_X86_64_PLTOFF64 },
7575 OPERAND_TYPE_IMM64 },
7576 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7577 BFD_RELOC_X86_64_PLT32 },
7578 OPERAND_TYPE_IMM32_32S_DISP32 },
7579 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7580 BFD_RELOC_X86_64_GOTPLT64 },
7581 OPERAND_TYPE_IMM64_DISP64 },
7582 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7583 BFD_RELOC_X86_64_GOTOFF64 },
7584 OPERAND_TYPE_IMM64_DISP64 },
7585 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7586 BFD_RELOC_X86_64_GOTPCREL },
7587 OPERAND_TYPE_IMM32_32S_DISP32 },
7588 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7589 BFD_RELOC_X86_64_TLSGD },
7590 OPERAND_TYPE_IMM32_32S_DISP32 },
7591 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7592 _dummy_first_bfd_reloc_code_real },
7593 OPERAND_TYPE_NONE },
7594 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7595 BFD_RELOC_X86_64_TLSLD },
7596 OPERAND_TYPE_IMM32_32S_DISP32 },
7597 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7598 BFD_RELOC_X86_64_GOTTPOFF },
7599 OPERAND_TYPE_IMM32_32S_DISP32 },
7600 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7601 BFD_RELOC_X86_64_TPOFF32 },
7602 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7603 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7604 _dummy_first_bfd_reloc_code_real },
7605 OPERAND_TYPE_NONE },
7606 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7607 BFD_RELOC_X86_64_DTPOFF32 },
7608 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7609 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7610 _dummy_first_bfd_reloc_code_real },
7611 OPERAND_TYPE_NONE },
7612 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7613 _dummy_first_bfd_reloc_code_real },
7614 OPERAND_TYPE_NONE },
7615 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7616 BFD_RELOC_X86_64_GOT32 },
7617 OPERAND_TYPE_IMM32_32S_64_DISP32 },
7618 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7619 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
7620 OPERAND_TYPE_IMM32_32S_DISP32 },
7621 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7622 BFD_RELOC_X86_64_TLSDESC_CALL },
7623 OPERAND_TYPE_IMM32_32S_DISP32 },
7624 };
7625 char *cp;
7626 unsigned int j;
7627
7628 #if defined (OBJ_MAYBE_ELF)
7629 if (!IS_ELF)
7630 return NULL;
7631 #endif
7632
7633 for (cp = input_line_pointer; *cp != '@'; cp++)
7634 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7635 return NULL;
7636
7637 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7638 {
7639 int len = gotrel[j].len;
7640 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7641 {
7642 if (gotrel[j].rel[object_64bit] != 0)
7643 {
7644 int first, second;
7645 char *tmpbuf, *past_reloc;
7646
7647 *rel = gotrel[j].rel[object_64bit];
7648
7649 if (types)
7650 {
7651 if (flag_code != CODE_64BIT)
7652 {
7653 types->bitfield.imm32 = 1;
7654 types->bitfield.disp32 = 1;
7655 }
7656 else
7657 *types = gotrel[j].types64;
7658 }
7659
7660 if (j != 0 && GOT_symbol == NULL)
7661 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7662
7663 /* The length of the first part of our input line. */
7664 first = cp - input_line_pointer;
7665
7666 /* The second part goes from after the reloc token until
7667 (and including) an end_of_line char or comma. */
7668 past_reloc = cp + 1 + len;
7669 cp = past_reloc;
7670 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7671 ++cp;
7672 second = cp + 1 - past_reloc;
7673
7674 /* Allocate and copy string. The trailing NUL shouldn't
7675 be necessary, but be safe. */
7676 tmpbuf = XNEWVEC (char, first + second + 2);
7677 memcpy (tmpbuf, input_line_pointer, first);
7678 if (second != 0 && *past_reloc != ' ')
7679 /* Replace the relocation token with ' ', so that
7680 errors like foo@GOTOFF1 will be detected. */
7681 tmpbuf[first++] = ' ';
7682 else
7683 /* Increment length by 1 if the relocation token is
7684 removed. */
7685 len++;
7686 if (adjust)
7687 *adjust = len;
7688 memcpy (tmpbuf + first, past_reloc, second);
7689 tmpbuf[first + second] = '\0';
7690 return tmpbuf;
7691 }
7692
7693 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7694 gotrel[j].str, 1 << (5 + object_64bit));
7695 return NULL;
7696 }
7697 }
7698
7699 /* Might be a symbol version string. Don't as_bad here. */
7700 return NULL;
7701 }
7702 #endif
7703
7704 #ifdef TE_PE
7705 #ifdef lex_got
7706 #undef lex_got
7707 #endif
7708 /* Parse operands of the form
7709 <symbol>@SECREL32+<nnn>
7710
7711 If we find one, set up the correct relocation in RELOC and copy the
7712 input string, minus the `@SECREL32' into a malloc'd buffer for
7713 parsing by the calling routine. Return this buffer, and if ADJUST
7714 is non-null set it to the length of the string we removed from the
7715 input line. Otherwise return NULL.
7716
7717 This function is copied from the ELF version above adjusted for PE targets. */
7718
7719 static char *
7720 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7721 int *adjust ATTRIBUTE_UNUSED,
7722 i386_operand_type *types)
7723 {
7724 static const struct
7725 {
7726 const char *str;
7727 int len;
7728 const enum bfd_reloc_code_real rel[2];
7729 const i386_operand_type types64;
7730 }
7731 gotrel[] =
7732 {
7733 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7734 BFD_RELOC_32_SECREL },
7735 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7736 };
7737
7738 char *cp;
7739 unsigned j;
7740
7741 for (cp = input_line_pointer; *cp != '@'; cp++)
7742 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7743 return NULL;
7744
7745 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7746 {
7747 int len = gotrel[j].len;
7748
7749 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7750 {
7751 if (gotrel[j].rel[object_64bit] != 0)
7752 {
7753 int first, second;
7754 char *tmpbuf, *past_reloc;
7755
7756 *rel = gotrel[j].rel[object_64bit];
7757 if (adjust)
7758 *adjust = len;
7759
7760 if (types)
7761 {
7762 if (flag_code != CODE_64BIT)
7763 {
7764 types->bitfield.imm32 = 1;
7765 types->bitfield.disp32 = 1;
7766 }
7767 else
7768 *types = gotrel[j].types64;
7769 }
7770
7771 /* The length of the first part of our input line. */
7772 first = cp - input_line_pointer;
7773
7774 /* The second part goes from after the reloc token until
7775 (and including) an end_of_line char or comma. */
7776 past_reloc = cp + 1 + len;
7777 cp = past_reloc;
7778 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7779 ++cp;
7780 second = cp + 1 - past_reloc;
7781
7782 /* Allocate and copy string. The trailing NUL shouldn't
7783 be necessary, but be safe. */
7784 tmpbuf = XNEWVEC (char, first + second + 2);
7785 memcpy (tmpbuf, input_line_pointer, first);
7786 if (second != 0 && *past_reloc != ' ')
7787 /* Replace the relocation token with ' ', so that
7788 errors like foo@SECLREL321 will be detected. */
7789 tmpbuf[first++] = ' ';
7790 memcpy (tmpbuf + first, past_reloc, second);
7791 tmpbuf[first + second] = '\0';
7792 return tmpbuf;
7793 }
7794
7795 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7796 gotrel[j].str, 1 << (5 + object_64bit));
7797 return NULL;
7798 }
7799 }
7800
7801 /* Might be a symbol version string. Don't as_bad here. */
7802 return NULL;
7803 }
7804
7805 #endif /* TE_PE */
7806
7807 bfd_reloc_code_real_type
7808 x86_cons (expressionS *exp, int size)
7809 {
7810 bfd_reloc_code_real_type got_reloc = NO_RELOC;
7811
7812 intel_syntax = -intel_syntax;
7813
7814 exp->X_md = 0;
7815 if (size == 4 || (object_64bit && size == 8))
7816 {
7817 /* Handle @GOTOFF and the like in an expression. */
7818 char *save;
7819 char *gotfree_input_line;
7820 int adjust = 0;
7821
7822 save = input_line_pointer;
7823 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
7824 if (gotfree_input_line)
7825 input_line_pointer = gotfree_input_line;
7826
7827 expression (exp);
7828
7829 if (gotfree_input_line)
7830 {
7831 /* expression () has merrily parsed up to the end of line,
7832 or a comma - in the wrong buffer. Transfer how far
7833 input_line_pointer has moved to the right buffer. */
7834 input_line_pointer = (save
7835 + (input_line_pointer - gotfree_input_line)
7836 + adjust);
7837 free (gotfree_input_line);
7838 if (exp->X_op == O_constant
7839 || exp->X_op == O_absent
7840 || exp->X_op == O_illegal
7841 || exp->X_op == O_register
7842 || exp->X_op == O_big)
7843 {
7844 char c = *input_line_pointer;
7845 *input_line_pointer = 0;
7846 as_bad (_("missing or invalid expression `%s'"), save);
7847 *input_line_pointer = c;
7848 }
7849 }
7850 }
7851 else
7852 expression (exp);
7853
7854 intel_syntax = -intel_syntax;
7855
7856 if (intel_syntax)
7857 i386_intel_simplify (exp);
7858
7859 return got_reloc;
7860 }
7861
7862 static void
7863 signed_cons (int size)
7864 {
7865 if (flag_code == CODE_64BIT)
7866 cons_sign = 1;
7867 cons (size);
7868 cons_sign = -1;
7869 }
7870
7871 #ifdef TE_PE
7872 static void
7873 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
7874 {
7875 expressionS exp;
7876
7877 do
7878 {
7879 expression (&exp);
7880 if (exp.X_op == O_symbol)
7881 exp.X_op = O_secrel;
7882
7883 emit_expr (&exp, 4);
7884 }
7885 while (*input_line_pointer++ == ',');
7886
7887 input_line_pointer--;
7888 demand_empty_rest_of_line ();
7889 }
7890 #endif
7891
7892 /* Handle Vector operations. */
7893
7894 static char *
7895 check_VecOperations (char *op_string, char *op_end)
7896 {
7897 const reg_entry *mask;
7898 const char *saved;
7899 char *end_op;
7900
7901 while (*op_string
7902 && (op_end == NULL || op_string < op_end))
7903 {
7904 saved = op_string;
7905 if (*op_string == '{')
7906 {
7907 op_string++;
7908
7909 /* Check broadcasts. */
7910 if (strncmp (op_string, "1to", 3) == 0)
7911 {
7912 int bcst_type;
7913
7914 if (i.broadcast)
7915 goto duplicated_vec_op;
7916
7917 op_string += 3;
7918 if (*op_string == '8')
7919 bcst_type = BROADCAST_1TO8;
7920 else if (*op_string == '4')
7921 bcst_type = BROADCAST_1TO4;
7922 else if (*op_string == '2')
7923 bcst_type = BROADCAST_1TO2;
7924 else if (*op_string == '1'
7925 && *(op_string+1) == '6')
7926 {
7927 bcst_type = BROADCAST_1TO16;
7928 op_string++;
7929 }
7930 else
7931 {
7932 as_bad (_("Unsupported broadcast: `%s'"), saved);
7933 return NULL;
7934 }
7935 op_string++;
7936
7937 broadcast_op.type = bcst_type;
7938 broadcast_op.operand = this_operand;
7939 i.broadcast = &broadcast_op;
7940 }
7941 /* Check masking operation. */
7942 else if ((mask = parse_register (op_string, &end_op)) != NULL)
7943 {
7944 /* k0 can't be used for write mask. */
7945 if (mask->reg_num == 0)
7946 {
7947 as_bad (_("`%s' can't be used for write mask"),
7948 op_string);
7949 return NULL;
7950 }
7951
7952 if (!i.mask)
7953 {
7954 mask_op.mask = mask;
7955 mask_op.zeroing = 0;
7956 mask_op.operand = this_operand;
7957 i.mask = &mask_op;
7958 }
7959 else
7960 {
7961 if (i.mask->mask)
7962 goto duplicated_vec_op;
7963
7964 i.mask->mask = mask;
7965
7966 /* Only "{z}" is allowed here. No need to check
7967 zeroing mask explicitly. */
7968 if (i.mask->operand != this_operand)
7969 {
7970 as_bad (_("invalid write mask `%s'"), saved);
7971 return NULL;
7972 }
7973 }
7974
7975 op_string = end_op;
7976 }
7977 /* Check zeroing-flag for masking operation. */
7978 else if (*op_string == 'z')
7979 {
7980 if (!i.mask)
7981 {
7982 mask_op.mask = NULL;
7983 mask_op.zeroing = 1;
7984 mask_op.operand = this_operand;
7985 i.mask = &mask_op;
7986 }
7987 else
7988 {
7989 if (i.mask->zeroing)
7990 {
7991 duplicated_vec_op:
7992 as_bad (_("duplicated `%s'"), saved);
7993 return NULL;
7994 }
7995
7996 i.mask->zeroing = 1;
7997
7998 /* Only "{%k}" is allowed here. No need to check mask
7999 register explicitly. */
8000 if (i.mask->operand != this_operand)
8001 {
8002 as_bad (_("invalid zeroing-masking `%s'"),
8003 saved);
8004 return NULL;
8005 }
8006 }
8007
8008 op_string++;
8009 }
8010 else
8011 goto unknown_vec_op;
8012
8013 if (*op_string != '}')
8014 {
8015 as_bad (_("missing `}' in `%s'"), saved);
8016 return NULL;
8017 }
8018 op_string++;
8019 continue;
8020 }
8021 unknown_vec_op:
8022 /* We don't know this one. */
8023 as_bad (_("unknown vector operation: `%s'"), saved);
8024 return NULL;
8025 }
8026
8027 return op_string;
8028 }
8029
8030 static int
8031 i386_immediate (char *imm_start)
8032 {
8033 char *save_input_line_pointer;
8034 char *gotfree_input_line;
8035 segT exp_seg = 0;
8036 expressionS *exp;
8037 i386_operand_type types;
8038
8039 operand_type_set (&types, ~0);
8040
8041 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8042 {
8043 as_bad (_("at most %d immediate operands are allowed"),
8044 MAX_IMMEDIATE_OPERANDS);
8045 return 0;
8046 }
8047
8048 exp = &im_expressions[i.imm_operands++];
8049 i.op[this_operand].imms = exp;
8050
8051 if (is_space_char (*imm_start))
8052 ++imm_start;
8053
8054 save_input_line_pointer = input_line_pointer;
8055 input_line_pointer = imm_start;
8056
8057 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8058 if (gotfree_input_line)
8059 input_line_pointer = gotfree_input_line;
8060
8061 exp_seg = expression (exp);
8062
8063 SKIP_WHITESPACE ();
8064
8065 /* Handle vector operations. */
8066 if (*input_line_pointer == '{')
8067 {
8068 input_line_pointer = check_VecOperations (input_line_pointer,
8069 NULL);
8070 if (input_line_pointer == NULL)
8071 return 0;
8072 }
8073
8074 if (*input_line_pointer)
8075 as_bad (_("junk `%s' after expression"), input_line_pointer);
8076
8077 input_line_pointer = save_input_line_pointer;
8078 if (gotfree_input_line)
8079 {
8080 free (gotfree_input_line);
8081
8082 if (exp->X_op == O_constant || exp->X_op == O_register)
8083 exp->X_op = O_illegal;
8084 }
8085
8086 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8087 }
8088
8089 static int
8090 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8091 i386_operand_type types, const char *imm_start)
8092 {
8093 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8094 {
8095 if (imm_start)
8096 as_bad (_("missing or invalid immediate expression `%s'"),
8097 imm_start);
8098 return 0;
8099 }
8100 else if (exp->X_op == O_constant)
8101 {
8102 /* Size it properly later. */
8103 i.types[this_operand].bitfield.imm64 = 1;
8104 /* If not 64bit, sign extend val. */
8105 if (flag_code != CODE_64BIT
8106 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8107 exp->X_add_number
8108 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8109 }
8110 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8111 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8112 && exp_seg != absolute_section
8113 && exp_seg != text_section
8114 && exp_seg != data_section
8115 && exp_seg != bss_section
8116 && exp_seg != undefined_section
8117 && !bfd_is_com_section (exp_seg))
8118 {
8119 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8120 return 0;
8121 }
8122 #endif
8123 else if (!intel_syntax && exp_seg == reg_section)
8124 {
8125 if (imm_start)
8126 as_bad (_("illegal immediate register operand %s"), imm_start);
8127 return 0;
8128 }
8129 else
8130 {
8131 /* This is an address. The size of the address will be
8132 determined later, depending on destination register,
8133 suffix, or the default for the section. */
8134 i.types[this_operand].bitfield.imm8 = 1;
8135 i.types[this_operand].bitfield.imm16 = 1;
8136 i.types[this_operand].bitfield.imm32 = 1;
8137 i.types[this_operand].bitfield.imm32s = 1;
8138 i.types[this_operand].bitfield.imm64 = 1;
8139 i.types[this_operand] = operand_type_and (i.types[this_operand],
8140 types);
8141 }
8142
8143 return 1;
8144 }
8145
8146 static char *
8147 i386_scale (char *scale)
8148 {
8149 offsetT val;
8150 char *save = input_line_pointer;
8151
8152 input_line_pointer = scale;
8153 val = get_absolute_expression ();
8154
8155 switch (val)
8156 {
8157 case 1:
8158 i.log2_scale_factor = 0;
8159 break;
8160 case 2:
8161 i.log2_scale_factor = 1;
8162 break;
8163 case 4:
8164 i.log2_scale_factor = 2;
8165 break;
8166 case 8:
8167 i.log2_scale_factor = 3;
8168 break;
8169 default:
8170 {
8171 char sep = *input_line_pointer;
8172
8173 *input_line_pointer = '\0';
8174 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8175 scale);
8176 *input_line_pointer = sep;
8177 input_line_pointer = save;
8178 return NULL;
8179 }
8180 }
8181 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8182 {
8183 as_warn (_("scale factor of %d without an index register"),
8184 1 << i.log2_scale_factor);
8185 i.log2_scale_factor = 0;
8186 }
8187 scale = input_line_pointer;
8188 input_line_pointer = save;
8189 return scale;
8190 }
8191
8192 static int
8193 i386_displacement (char *disp_start, char *disp_end)
8194 {
8195 expressionS *exp;
8196 segT exp_seg = 0;
8197 char *save_input_line_pointer;
8198 char *gotfree_input_line;
8199 int override;
8200 i386_operand_type bigdisp, types = anydisp;
8201 int ret;
8202
8203 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8204 {
8205 as_bad (_("at most %d displacement operands are allowed"),
8206 MAX_MEMORY_OPERANDS);
8207 return 0;
8208 }
8209
8210 operand_type_set (&bigdisp, 0);
8211 if ((i.types[this_operand].bitfield.jumpabsolute)
8212 || (!current_templates->start->opcode_modifier.jump
8213 && !current_templates->start->opcode_modifier.jumpdword))
8214 {
8215 bigdisp.bitfield.disp32 = 1;
8216 override = (i.prefix[ADDR_PREFIX] != 0);
8217 if (flag_code == CODE_64BIT)
8218 {
8219 if (!override)
8220 {
8221 bigdisp.bitfield.disp32s = 1;
8222 bigdisp.bitfield.disp64 = 1;
8223 }
8224 }
8225 else if ((flag_code == CODE_16BIT) ^ override)
8226 {
8227 bigdisp.bitfield.disp32 = 0;
8228 bigdisp.bitfield.disp16 = 1;
8229 }
8230 }
8231 else
8232 {
8233 /* For PC-relative branches, the width of the displacement
8234 is dependent upon data size, not address size. */
8235 override = (i.prefix[DATA_PREFIX] != 0);
8236 if (flag_code == CODE_64BIT)
8237 {
8238 if (override || i.suffix == WORD_MNEM_SUFFIX)
8239 bigdisp.bitfield.disp16 = 1;
8240 else
8241 {
8242 bigdisp.bitfield.disp32 = 1;
8243 bigdisp.bitfield.disp32s = 1;
8244 }
8245 }
8246 else
8247 {
8248 if (!override)
8249 override = (i.suffix == (flag_code != CODE_16BIT
8250 ? WORD_MNEM_SUFFIX
8251 : LONG_MNEM_SUFFIX));
8252 bigdisp.bitfield.disp32 = 1;
8253 if ((flag_code == CODE_16BIT) ^ override)
8254 {
8255 bigdisp.bitfield.disp32 = 0;
8256 bigdisp.bitfield.disp16 = 1;
8257 }
8258 }
8259 }
8260 i.types[this_operand] = operand_type_or (i.types[this_operand],
8261 bigdisp);
8262
8263 exp = &disp_expressions[i.disp_operands];
8264 i.op[this_operand].disps = exp;
8265 i.disp_operands++;
8266 save_input_line_pointer = input_line_pointer;
8267 input_line_pointer = disp_start;
8268 END_STRING_AND_SAVE (disp_end);
8269
8270 #ifndef GCC_ASM_O_HACK
8271 #define GCC_ASM_O_HACK 0
8272 #endif
8273 #if GCC_ASM_O_HACK
8274 END_STRING_AND_SAVE (disp_end + 1);
8275 if (i.types[this_operand].bitfield.baseIndex
8276 && displacement_string_end[-1] == '+')
8277 {
8278 /* This hack is to avoid a warning when using the "o"
8279 constraint within gcc asm statements.
8280 For instance:
8281
8282 #define _set_tssldt_desc(n,addr,limit,type) \
8283 __asm__ __volatile__ ( \
8284 "movw %w2,%0\n\t" \
8285 "movw %w1,2+%0\n\t" \
8286 "rorl $16,%1\n\t" \
8287 "movb %b1,4+%0\n\t" \
8288 "movb %4,5+%0\n\t" \
8289 "movb $0,6+%0\n\t" \
8290 "movb %h1,7+%0\n\t" \
8291 "rorl $16,%1" \
8292 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8293
8294 This works great except that the output assembler ends
8295 up looking a bit weird if it turns out that there is
8296 no offset. You end up producing code that looks like:
8297
8298 #APP
8299 movw $235,(%eax)
8300 movw %dx,2+(%eax)
8301 rorl $16,%edx
8302 movb %dl,4+(%eax)
8303 movb $137,5+(%eax)
8304 movb $0,6+(%eax)
8305 movb %dh,7+(%eax)
8306 rorl $16,%edx
8307 #NO_APP
8308
8309 So here we provide the missing zero. */
8310
8311 *displacement_string_end = '0';
8312 }
8313 #endif
8314 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8315 if (gotfree_input_line)
8316 input_line_pointer = gotfree_input_line;
8317
8318 exp_seg = expression (exp);
8319
8320 SKIP_WHITESPACE ();
8321 if (*input_line_pointer)
8322 as_bad (_("junk `%s' after expression"), input_line_pointer);
8323 #if GCC_ASM_O_HACK
8324 RESTORE_END_STRING (disp_end + 1);
8325 #endif
8326 input_line_pointer = save_input_line_pointer;
8327 if (gotfree_input_line)
8328 {
8329 free (gotfree_input_line);
8330
8331 if (exp->X_op == O_constant || exp->X_op == O_register)
8332 exp->X_op = O_illegal;
8333 }
8334
8335 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8336
8337 RESTORE_END_STRING (disp_end);
8338
8339 return ret;
8340 }
8341
8342 static int
8343 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8344 i386_operand_type types, const char *disp_start)
8345 {
8346 i386_operand_type bigdisp;
8347 int ret = 1;
8348
8349 /* We do this to make sure that the section symbol is in
8350 the symbol table. We will ultimately change the relocation
8351 to be relative to the beginning of the section. */
8352 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8353 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8354 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8355 {
8356 if (exp->X_op != O_symbol)
8357 goto inv_disp;
8358
8359 if (S_IS_LOCAL (exp->X_add_symbol)
8360 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8361 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8362 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8363 exp->X_op = O_subtract;
8364 exp->X_op_symbol = GOT_symbol;
8365 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8366 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8367 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8368 i.reloc[this_operand] = BFD_RELOC_64;
8369 else
8370 i.reloc[this_operand] = BFD_RELOC_32;
8371 }
8372
8373 else if (exp->X_op == O_absent
8374 || exp->X_op == O_illegal
8375 || exp->X_op == O_big)
8376 {
8377 inv_disp:
8378 as_bad (_("missing or invalid displacement expression `%s'"),
8379 disp_start);
8380 ret = 0;
8381 }
8382
8383 else if (flag_code == CODE_64BIT
8384 && !i.prefix[ADDR_PREFIX]
8385 && exp->X_op == O_constant)
8386 {
8387 /* Since displacement is signed extended to 64bit, don't allow
8388 disp32 and turn off disp32s if they are out of range. */
8389 i.types[this_operand].bitfield.disp32 = 0;
8390 if (!fits_in_signed_long (exp->X_add_number))
8391 {
8392 i.types[this_operand].bitfield.disp32s = 0;
8393 if (i.types[this_operand].bitfield.baseindex)
8394 {
8395 as_bad (_("0x%lx out range of signed 32bit displacement"),
8396 (long) exp->X_add_number);
8397 ret = 0;
8398 }
8399 }
8400 }
8401
8402 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8403 else if (exp->X_op != O_constant
8404 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8405 && exp_seg != absolute_section
8406 && exp_seg != text_section
8407 && exp_seg != data_section
8408 && exp_seg != bss_section
8409 && exp_seg != undefined_section
8410 && !bfd_is_com_section (exp_seg))
8411 {
8412 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8413 ret = 0;
8414 }
8415 #endif
8416
8417 /* Check if this is a displacement only operand. */
8418 bigdisp = i.types[this_operand];
8419 bigdisp.bitfield.disp8 = 0;
8420 bigdisp.bitfield.disp16 = 0;
8421 bigdisp.bitfield.disp32 = 0;
8422 bigdisp.bitfield.disp32s = 0;
8423 bigdisp.bitfield.disp64 = 0;
8424 if (operand_type_all_zero (&bigdisp))
8425 i.types[this_operand] = operand_type_and (i.types[this_operand],
8426 types);
8427
8428 return ret;
8429 }
8430
8431 /* Make sure the memory operand we've been dealt is valid.
8432 Return 1 on success, 0 on a failure. */
8433
8434 static int
8435 i386_index_check (const char *operand_string)
8436 {
8437 const char *kind = "base/index";
8438 enum flag_code addr_mode;
8439
8440 if (i.prefix[ADDR_PREFIX])
8441 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8442 else
8443 {
8444 addr_mode = flag_code;
8445
8446 #if INFER_ADDR_PREFIX
8447 if (i.mem_operands == 0)
8448 {
8449 /* Infer address prefix from the first memory operand. */
8450 const reg_entry *addr_reg = i.base_reg;
8451
8452 if (addr_reg == NULL)
8453 addr_reg = i.index_reg;
8454
8455 if (addr_reg)
8456 {
8457 if (addr_reg->reg_num == RegEip
8458 || addr_reg->reg_num == RegEiz
8459 || addr_reg->reg_type.bitfield.reg32)
8460 addr_mode = CODE_32BIT;
8461 else if (flag_code != CODE_64BIT
8462 && addr_reg->reg_type.bitfield.reg16)
8463 addr_mode = CODE_16BIT;
8464
8465 if (addr_mode != flag_code)
8466 {
8467 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8468 i.prefixes += 1;
8469 /* Change the size of any displacement too. At most one
8470 of Disp16 or Disp32 is set.
8471 FIXME. There doesn't seem to be any real need for
8472 separate Disp16 and Disp32 flags. The same goes for
8473 Imm16 and Imm32. Removing them would probably clean
8474 up the code quite a lot. */
8475 if (flag_code != CODE_64BIT
8476 && (i.types[this_operand].bitfield.disp16
8477 || i.types[this_operand].bitfield.disp32))
8478 i.types[this_operand]
8479 = operand_type_xor (i.types[this_operand], disp16_32);
8480 }
8481 }
8482 }
8483 #endif
8484 }
8485
8486 if (current_templates->start->opcode_modifier.isstring
8487 && !current_templates->start->opcode_modifier.immext
8488 && (current_templates->end[-1].opcode_modifier.isstring
8489 || i.mem_operands))
8490 {
8491 /* Memory operands of string insns are special in that they only allow
8492 a single register (rDI, rSI, or rBX) as their memory address. */
8493 const reg_entry *expected_reg;
8494 static const char *di_si[][2] =
8495 {
8496 { "esi", "edi" },
8497 { "si", "di" },
8498 { "rsi", "rdi" }
8499 };
8500 static const char *bx[] = { "ebx", "bx", "rbx" };
8501
8502 kind = "string address";
8503
8504 if (current_templates->start->opcode_modifier.w)
8505 {
8506 i386_operand_type type = current_templates->end[-1].operand_types[0];
8507
8508 if (!type.bitfield.baseindex
8509 || ((!i.mem_operands != !intel_syntax)
8510 && current_templates->end[-1].operand_types[1]
8511 .bitfield.baseindex))
8512 type = current_templates->end[-1].operand_types[1];
8513 expected_reg = hash_find (reg_hash,
8514 di_si[addr_mode][type.bitfield.esseg]);
8515
8516 }
8517 else
8518 expected_reg = hash_find (reg_hash, bx[addr_mode]);
8519
8520 if (i.base_reg != expected_reg
8521 || i.index_reg
8522 || operand_type_check (i.types[this_operand], disp))
8523 {
8524 /* The second memory operand must have the same size as
8525 the first one. */
8526 if (i.mem_operands
8527 && i.base_reg
8528 && !((addr_mode == CODE_64BIT
8529 && i.base_reg->reg_type.bitfield.reg64)
8530 || (addr_mode == CODE_32BIT
8531 ? i.base_reg->reg_type.bitfield.reg32
8532 : i.base_reg->reg_type.bitfield.reg16)))
8533 goto bad_address;
8534
8535 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8536 operand_string,
8537 intel_syntax ? '[' : '(',
8538 register_prefix,
8539 expected_reg->reg_name,
8540 intel_syntax ? ']' : ')');
8541 return 1;
8542 }
8543 else
8544 return 1;
8545
8546 bad_address:
8547 as_bad (_("`%s' is not a valid %s expression"),
8548 operand_string, kind);
8549 return 0;
8550 }
8551 else
8552 {
8553 if (addr_mode != CODE_16BIT)
8554 {
8555 /* 32-bit/64-bit checks. */
8556 if ((i.base_reg
8557 && (addr_mode == CODE_64BIT
8558 ? !i.base_reg->reg_type.bitfield.reg64
8559 : !i.base_reg->reg_type.bitfield.reg32)
8560 && (i.index_reg
8561 || (i.base_reg->reg_num
8562 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8563 || (i.index_reg
8564 && !i.index_reg->reg_type.bitfield.regxmm
8565 && !i.index_reg->reg_type.bitfield.regymm
8566 && !i.index_reg->reg_type.bitfield.regzmm
8567 && ((addr_mode == CODE_64BIT
8568 ? !(i.index_reg->reg_type.bitfield.reg64
8569 || i.index_reg->reg_num == RegRiz)
8570 : !(i.index_reg->reg_type.bitfield.reg32
8571 || i.index_reg->reg_num == RegEiz))
8572 || !i.index_reg->reg_type.bitfield.baseindex)))
8573 goto bad_address;
8574 }
8575 else
8576 {
8577 /* 16-bit checks. */
8578 if ((i.base_reg
8579 && (!i.base_reg->reg_type.bitfield.reg16
8580 || !i.base_reg->reg_type.bitfield.baseindex))
8581 || (i.index_reg
8582 && (!i.index_reg->reg_type.bitfield.reg16
8583 || !i.index_reg->reg_type.bitfield.baseindex
8584 || !(i.base_reg
8585 && i.base_reg->reg_num < 6
8586 && i.index_reg->reg_num >= 6
8587 && i.log2_scale_factor == 0))))
8588 goto bad_address;
8589 }
8590 }
8591 return 1;
8592 }
8593
8594 /* Handle vector immediates. */
8595
8596 static int
8597 RC_SAE_immediate (const char *imm_start)
8598 {
8599 unsigned int match_found, j;
8600 const char *pstr = imm_start;
8601 expressionS *exp;
8602
8603 if (*pstr != '{')
8604 return 0;
8605
8606 pstr++;
8607 match_found = 0;
8608 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8609 {
8610 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8611 {
8612 if (!i.rounding)
8613 {
8614 rc_op.type = RC_NamesTable[j].type;
8615 rc_op.operand = this_operand;
8616 i.rounding = &rc_op;
8617 }
8618 else
8619 {
8620 as_bad (_("duplicated `%s'"), imm_start);
8621 return 0;
8622 }
8623 pstr += RC_NamesTable[j].len;
8624 match_found = 1;
8625 break;
8626 }
8627 }
8628 if (!match_found)
8629 return 0;
8630
8631 if (*pstr++ != '}')
8632 {
8633 as_bad (_("Missing '}': '%s'"), imm_start);
8634 return 0;
8635 }
8636 /* RC/SAE immediate string should contain nothing more. */;
8637 if (*pstr != 0)
8638 {
8639 as_bad (_("Junk after '}': '%s'"), imm_start);
8640 return 0;
8641 }
8642
8643 exp = &im_expressions[i.imm_operands++];
8644 i.op[this_operand].imms = exp;
8645
8646 exp->X_op = O_constant;
8647 exp->X_add_number = 0;
8648 exp->X_add_symbol = (symbolS *) 0;
8649 exp->X_op_symbol = (symbolS *) 0;
8650
8651 i.types[this_operand].bitfield.imm8 = 1;
8652 return 1;
8653 }
8654
8655 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
8656 on error. */
8657
8658 static int
8659 i386_att_operand (char *operand_string)
8660 {
8661 const reg_entry *r;
8662 char *end_op;
8663 char *op_string = operand_string;
8664
8665 if (is_space_char (*op_string))
8666 ++op_string;
8667
8668 /* We check for an absolute prefix (differentiating,
8669 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
8670 if (*op_string == ABSOLUTE_PREFIX)
8671 {
8672 ++op_string;
8673 if (is_space_char (*op_string))
8674 ++op_string;
8675 i.types[this_operand].bitfield.jumpabsolute = 1;
8676 }
8677
8678 /* Check if operand is a register. */
8679 if ((r = parse_register (op_string, &end_op)) != NULL)
8680 {
8681 i386_operand_type temp;
8682
8683 /* Check for a segment override by searching for ':' after a
8684 segment register. */
8685 op_string = end_op;
8686 if (is_space_char (*op_string))
8687 ++op_string;
8688 if (*op_string == ':'
8689 && (r->reg_type.bitfield.sreg2
8690 || r->reg_type.bitfield.sreg3))
8691 {
8692 switch (r->reg_num)
8693 {
8694 case 0:
8695 i.seg[i.mem_operands] = &es;
8696 break;
8697 case 1:
8698 i.seg[i.mem_operands] = &cs;
8699 break;
8700 case 2:
8701 i.seg[i.mem_operands] = &ss;
8702 break;
8703 case 3:
8704 i.seg[i.mem_operands] = &ds;
8705 break;
8706 case 4:
8707 i.seg[i.mem_operands] = &fs;
8708 break;
8709 case 5:
8710 i.seg[i.mem_operands] = &gs;
8711 break;
8712 }
8713
8714 /* Skip the ':' and whitespace. */
8715 ++op_string;
8716 if (is_space_char (*op_string))
8717 ++op_string;
8718
8719 if (!is_digit_char (*op_string)
8720 && !is_identifier_char (*op_string)
8721 && *op_string != '('
8722 && *op_string != ABSOLUTE_PREFIX)
8723 {
8724 as_bad (_("bad memory operand `%s'"), op_string);
8725 return 0;
8726 }
8727 /* Handle case of %es:*foo. */
8728 if (*op_string == ABSOLUTE_PREFIX)
8729 {
8730 ++op_string;
8731 if (is_space_char (*op_string))
8732 ++op_string;
8733 i.types[this_operand].bitfield.jumpabsolute = 1;
8734 }
8735 goto do_memory_reference;
8736 }
8737
8738 /* Handle vector operations. */
8739 if (*op_string == '{')
8740 {
8741 op_string = check_VecOperations (op_string, NULL);
8742 if (op_string == NULL)
8743 return 0;
8744 }
8745
8746 if (*op_string)
8747 {
8748 as_bad (_("junk `%s' after register"), op_string);
8749 return 0;
8750 }
8751 temp = r->reg_type;
8752 temp.bitfield.baseindex = 0;
8753 i.types[this_operand] = operand_type_or (i.types[this_operand],
8754 temp);
8755 i.types[this_operand].bitfield.unspecified = 0;
8756 i.op[this_operand].regs = r;
8757 i.reg_operands++;
8758 }
8759 else if (*op_string == REGISTER_PREFIX)
8760 {
8761 as_bad (_("bad register name `%s'"), op_string);
8762 return 0;
8763 }
8764 else if (*op_string == IMMEDIATE_PREFIX)
8765 {
8766 ++op_string;
8767 if (i.types[this_operand].bitfield.jumpabsolute)
8768 {
8769 as_bad (_("immediate operand illegal with absolute jump"));
8770 return 0;
8771 }
8772 if (!i386_immediate (op_string))
8773 return 0;
8774 }
8775 else if (RC_SAE_immediate (operand_string))
8776 {
8777 /* If it is a RC or SAE immediate, do nothing. */
8778 ;
8779 }
8780 else if (is_digit_char (*op_string)
8781 || is_identifier_char (*op_string)
8782 || *op_string == '"'
8783 || *op_string == '(')
8784 {
8785 /* This is a memory reference of some sort. */
8786 char *base_string;
8787
8788 /* Start and end of displacement string expression (if found). */
8789 char *displacement_string_start;
8790 char *displacement_string_end;
8791 char *vop_start;
8792
8793 do_memory_reference:
8794 if ((i.mem_operands == 1
8795 && !current_templates->start->opcode_modifier.isstring)
8796 || i.mem_operands == 2)
8797 {
8798 as_bad (_("too many memory references for `%s'"),
8799 current_templates->start->name);
8800 return 0;
8801 }
8802
8803 /* Check for base index form. We detect the base index form by
8804 looking for an ')' at the end of the operand, searching
8805 for the '(' matching it, and finding a REGISTER_PREFIX or ','
8806 after the '('. */
8807 base_string = op_string + strlen (op_string);
8808
8809 /* Handle vector operations. */
8810 vop_start = strchr (op_string, '{');
8811 if (vop_start && vop_start < base_string)
8812 {
8813 if (check_VecOperations (vop_start, base_string) == NULL)
8814 return 0;
8815 base_string = vop_start;
8816 }
8817
8818 --base_string;
8819 if (is_space_char (*base_string))
8820 --base_string;
8821
8822 /* If we only have a displacement, set-up for it to be parsed later. */
8823 displacement_string_start = op_string;
8824 displacement_string_end = base_string + 1;
8825
8826 if (*base_string == ')')
8827 {
8828 char *temp_string;
8829 unsigned int parens_balanced = 1;
8830 /* We've already checked that the number of left & right ()'s are
8831 equal, so this loop will not be infinite. */
8832 do
8833 {
8834 base_string--;
8835 if (*base_string == ')')
8836 parens_balanced++;
8837 if (*base_string == '(')
8838 parens_balanced--;
8839 }
8840 while (parens_balanced);
8841
8842 temp_string = base_string;
8843
8844 /* Skip past '(' and whitespace. */
8845 ++base_string;
8846 if (is_space_char (*base_string))
8847 ++base_string;
8848
8849 if (*base_string == ','
8850 || ((i.base_reg = parse_register (base_string, &end_op))
8851 != NULL))
8852 {
8853 displacement_string_end = temp_string;
8854
8855 i.types[this_operand].bitfield.baseindex = 1;
8856
8857 if (i.base_reg)
8858 {
8859 base_string = end_op;
8860 if (is_space_char (*base_string))
8861 ++base_string;
8862 }
8863
8864 /* There may be an index reg or scale factor here. */
8865 if (*base_string == ',')
8866 {
8867 ++base_string;
8868 if (is_space_char (*base_string))
8869 ++base_string;
8870
8871 if ((i.index_reg = parse_register (base_string, &end_op))
8872 != NULL)
8873 {
8874 base_string = end_op;
8875 if (is_space_char (*base_string))
8876 ++base_string;
8877 if (*base_string == ',')
8878 {
8879 ++base_string;
8880 if (is_space_char (*base_string))
8881 ++base_string;
8882 }
8883 else if (*base_string != ')')
8884 {
8885 as_bad (_("expecting `,' or `)' "
8886 "after index register in `%s'"),
8887 operand_string);
8888 return 0;
8889 }
8890 }
8891 else if (*base_string == REGISTER_PREFIX)
8892 {
8893 end_op = strchr (base_string, ',');
8894 if (end_op)
8895 *end_op = '\0';
8896 as_bad (_("bad register name `%s'"), base_string);
8897 return 0;
8898 }
8899
8900 /* Check for scale factor. */
8901 if (*base_string != ')')
8902 {
8903 char *end_scale = i386_scale (base_string);
8904
8905 if (!end_scale)
8906 return 0;
8907
8908 base_string = end_scale;
8909 if (is_space_char (*base_string))
8910 ++base_string;
8911 if (*base_string != ')')
8912 {
8913 as_bad (_("expecting `)' "
8914 "after scale factor in `%s'"),
8915 operand_string);
8916 return 0;
8917 }
8918 }
8919 else if (!i.index_reg)
8920 {
8921 as_bad (_("expecting index register or scale factor "
8922 "after `,'; got '%c'"),
8923 *base_string);
8924 return 0;
8925 }
8926 }
8927 else if (*base_string != ')')
8928 {
8929 as_bad (_("expecting `,' or `)' "
8930 "after base register in `%s'"),
8931 operand_string);
8932 return 0;
8933 }
8934 }
8935 else if (*base_string == REGISTER_PREFIX)
8936 {
8937 end_op = strchr (base_string, ',');
8938 if (end_op)
8939 *end_op = '\0';
8940 as_bad (_("bad register name `%s'"), base_string);
8941 return 0;
8942 }
8943 }
8944
8945 /* If there's an expression beginning the operand, parse it,
8946 assuming displacement_string_start and
8947 displacement_string_end are meaningful. */
8948 if (displacement_string_start != displacement_string_end)
8949 {
8950 if (!i386_displacement (displacement_string_start,
8951 displacement_string_end))
8952 return 0;
8953 }
8954
8955 /* Special case for (%dx) while doing input/output op. */
8956 if (i.base_reg
8957 && operand_type_equal (&i.base_reg->reg_type,
8958 &reg16_inoutportreg)
8959 && i.index_reg == 0
8960 && i.log2_scale_factor == 0
8961 && i.seg[i.mem_operands] == 0
8962 && !operand_type_check (i.types[this_operand], disp))
8963 {
8964 i.types[this_operand] = inoutportreg;
8965 return 1;
8966 }
8967
8968 if (i386_index_check (operand_string) == 0)
8969 return 0;
8970 i.types[this_operand].bitfield.mem = 1;
8971 i.mem_operands++;
8972 }
8973 else
8974 {
8975 /* It's not a memory operand; argh! */
8976 as_bad (_("invalid char %s beginning operand %d `%s'"),
8977 output_invalid (*op_string),
8978 this_operand + 1,
8979 op_string);
8980 return 0;
8981 }
8982 return 1; /* Normal return. */
8983 }
8984 \f
8985 /* Calculate the maximum variable size (i.e., excluding fr_fix)
8986 that an rs_machine_dependent frag may reach. */
8987
8988 unsigned int
8989 i386_frag_max_var (fragS *frag)
8990 {
8991 /* The only relaxable frags are for jumps.
8992 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
8993 gas_assert (frag->fr_type == rs_machine_dependent);
8994 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
8995 }
8996
8997 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8998 static int
8999 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9000 {
9001 /* STT_GNU_IFUNC symbol must go through PLT. */
9002 if ((symbol_get_bfdsym (fr_symbol)->flags
9003 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9004 return 0;
9005
9006 if (!S_IS_EXTERNAL (fr_symbol))
9007 /* Symbol may be weak or local. */
9008 return !S_IS_WEAK (fr_symbol);
9009
9010 /* Global symbols with non-default visibility can't be preempted. */
9011 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9012 return 1;
9013
9014 if (fr_var != NO_RELOC)
9015 switch ((enum bfd_reloc_code_real) fr_var)
9016 {
9017 case BFD_RELOC_386_PLT32:
9018 case BFD_RELOC_X86_64_PLT32:
9019 /* Symbol with PLT relocatin may be preempted. */
9020 return 0;
9021 default:
9022 abort ();
9023 }
9024
9025 /* Global symbols with default visibility in a shared library may be
9026 preempted by another definition. */
9027 return !shared;
9028 }
9029 #endif
9030
9031 /* md_estimate_size_before_relax()
9032
9033 Called just before relax() for rs_machine_dependent frags. The x86
9034 assembler uses these frags to handle variable size jump
9035 instructions.
9036
9037 Any symbol that is now undefined will not become defined.
9038 Return the correct fr_subtype in the frag.
9039 Return the initial "guess for variable size of frag" to caller.
9040 The guess is actually the growth beyond the fixed part. Whatever
9041 we do to grow the fixed or variable part contributes to our
9042 returned value. */
9043
9044 int
9045 md_estimate_size_before_relax (fragS *fragP, segT segment)
9046 {
9047 /* We've already got fragP->fr_subtype right; all we have to do is
9048 check for un-relaxable symbols. On an ELF system, we can't relax
9049 an externally visible symbol, because it may be overridden by a
9050 shared library. */
9051 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9052 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9053 || (IS_ELF
9054 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9055 fragP->fr_var))
9056 #endif
9057 #if defined (OBJ_COFF) && defined (TE_PE)
9058 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9059 && S_IS_WEAK (fragP->fr_symbol))
9060 #endif
9061 )
9062 {
9063 /* Symbol is undefined in this segment, or we need to keep a
9064 reloc so that weak symbols can be overridden. */
9065 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9066 enum bfd_reloc_code_real reloc_type;
9067 unsigned char *opcode;
9068 int old_fr_fix;
9069
9070 if (fragP->fr_var != NO_RELOC)
9071 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9072 else if (size == 2)
9073 reloc_type = BFD_RELOC_16_PCREL;
9074 else
9075 reloc_type = BFD_RELOC_32_PCREL;
9076
9077 old_fr_fix = fragP->fr_fix;
9078 opcode = (unsigned char *) fragP->fr_opcode;
9079
9080 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9081 {
9082 case UNCOND_JUMP:
9083 /* Make jmp (0xeb) a (d)word displacement jump. */
9084 opcode[0] = 0xe9;
9085 fragP->fr_fix += size;
9086 fix_new (fragP, old_fr_fix, size,
9087 fragP->fr_symbol,
9088 fragP->fr_offset, 1,
9089 reloc_type);
9090 break;
9091
9092 case COND_JUMP86:
9093 if (size == 2
9094 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9095 {
9096 /* Negate the condition, and branch past an
9097 unconditional jump. */
9098 opcode[0] ^= 1;
9099 opcode[1] = 3;
9100 /* Insert an unconditional jump. */
9101 opcode[2] = 0xe9;
9102 /* We added two extra opcode bytes, and have a two byte
9103 offset. */
9104 fragP->fr_fix += 2 + 2;
9105 fix_new (fragP, old_fr_fix + 2, 2,
9106 fragP->fr_symbol,
9107 fragP->fr_offset, 1,
9108 reloc_type);
9109 break;
9110 }
9111 /* Fall through. */
9112
9113 case COND_JUMP:
9114 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9115 {
9116 fixS *fixP;
9117
9118 fragP->fr_fix += 1;
9119 fixP = fix_new (fragP, old_fr_fix, 1,
9120 fragP->fr_symbol,
9121 fragP->fr_offset, 1,
9122 BFD_RELOC_8_PCREL);
9123 fixP->fx_signed = 1;
9124 break;
9125 }
9126
9127 /* This changes the byte-displacement jump 0x7N
9128 to the (d)word-displacement jump 0x0f,0x8N. */
9129 opcode[1] = opcode[0] + 0x10;
9130 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9131 /* We've added an opcode byte. */
9132 fragP->fr_fix += 1 + size;
9133 fix_new (fragP, old_fr_fix + 1, size,
9134 fragP->fr_symbol,
9135 fragP->fr_offset, 1,
9136 reloc_type);
9137 break;
9138
9139 default:
9140 BAD_CASE (fragP->fr_subtype);
9141 break;
9142 }
9143 frag_wane (fragP);
9144 return fragP->fr_fix - old_fr_fix;
9145 }
9146
9147 /* Guess size depending on current relax state. Initially the relax
9148 state will correspond to a short jump and we return 1, because
9149 the variable part of the frag (the branch offset) is one byte
9150 long. However, we can relax a section more than once and in that
9151 case we must either set fr_subtype back to the unrelaxed state,
9152 or return the value for the appropriate branch. */
9153 return md_relax_table[fragP->fr_subtype].rlx_length;
9154 }
9155
9156 /* Called after relax() is finished.
9157
9158 In: Address of frag.
9159 fr_type == rs_machine_dependent.
9160 fr_subtype is what the address relaxed to.
9161
9162 Out: Any fixSs and constants are set up.
9163 Caller will turn frag into a ".space 0". */
9164
9165 void
9166 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9167 fragS *fragP)
9168 {
9169 unsigned char *opcode;
9170 unsigned char *where_to_put_displacement = NULL;
9171 offsetT target_address;
9172 offsetT opcode_address;
9173 unsigned int extension = 0;
9174 offsetT displacement_from_opcode_start;
9175
9176 opcode = (unsigned char *) fragP->fr_opcode;
9177
9178 /* Address we want to reach in file space. */
9179 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9180
9181 /* Address opcode resides at in file space. */
9182 opcode_address = fragP->fr_address + fragP->fr_fix;
9183
9184 /* Displacement from opcode start to fill into instruction. */
9185 displacement_from_opcode_start = target_address - opcode_address;
9186
9187 if ((fragP->fr_subtype & BIG) == 0)
9188 {
9189 /* Don't have to change opcode. */
9190 extension = 1; /* 1 opcode + 1 displacement */
9191 where_to_put_displacement = &opcode[1];
9192 }
9193 else
9194 {
9195 if (no_cond_jump_promotion
9196 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9197 as_warn_where (fragP->fr_file, fragP->fr_line,
9198 _("long jump required"));
9199
9200 switch (fragP->fr_subtype)
9201 {
9202 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9203 extension = 4; /* 1 opcode + 4 displacement */
9204 opcode[0] = 0xe9;
9205 where_to_put_displacement = &opcode[1];
9206 break;
9207
9208 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9209 extension = 2; /* 1 opcode + 2 displacement */
9210 opcode[0] = 0xe9;
9211 where_to_put_displacement = &opcode[1];
9212 break;
9213
9214 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9215 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9216 extension = 5; /* 2 opcode + 4 displacement */
9217 opcode[1] = opcode[0] + 0x10;
9218 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9219 where_to_put_displacement = &opcode[2];
9220 break;
9221
9222 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9223 extension = 3; /* 2 opcode + 2 displacement */
9224 opcode[1] = opcode[0] + 0x10;
9225 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9226 where_to_put_displacement = &opcode[2];
9227 break;
9228
9229 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9230 extension = 4;
9231 opcode[0] ^= 1;
9232 opcode[1] = 3;
9233 opcode[2] = 0xe9;
9234 where_to_put_displacement = &opcode[3];
9235 break;
9236
9237 default:
9238 BAD_CASE (fragP->fr_subtype);
9239 break;
9240 }
9241 }
9242
9243 /* If size if less then four we are sure that the operand fits,
9244 but if it's 4, then it could be that the displacement is larger
9245 then -/+ 2GB. */
9246 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9247 && object_64bit
9248 && ((addressT) (displacement_from_opcode_start - extension
9249 + ((addressT) 1 << 31))
9250 > (((addressT) 2 << 31) - 1)))
9251 {
9252 as_bad_where (fragP->fr_file, fragP->fr_line,
9253 _("jump target out of range"));
9254 /* Make us emit 0. */
9255 displacement_from_opcode_start = extension;
9256 }
9257 /* Now put displacement after opcode. */
9258 md_number_to_chars ((char *) where_to_put_displacement,
9259 (valueT) (displacement_from_opcode_start - extension),
9260 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9261 fragP->fr_fix += extension;
9262 }
9263 \f
9264 /* Apply a fixup (fixP) to segment data, once it has been determined
9265 by our caller that we have all the info we need to fix it up.
9266
9267 Parameter valP is the pointer to the value of the bits.
9268
9269 On the 386, immediates, displacements, and data pointers are all in
9270 the same (little-endian) format, so we don't need to care about which
9271 we are handling. */
9272
9273 void
9274 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9275 {
9276 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9277 valueT value = *valP;
9278
9279 #if !defined (TE_Mach)
9280 if (fixP->fx_pcrel)
9281 {
9282 switch (fixP->fx_r_type)
9283 {
9284 default:
9285 break;
9286
9287 case BFD_RELOC_64:
9288 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9289 break;
9290 case BFD_RELOC_32:
9291 case BFD_RELOC_X86_64_32S:
9292 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9293 break;
9294 case BFD_RELOC_16:
9295 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9296 break;
9297 case BFD_RELOC_8:
9298 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9299 break;
9300 }
9301 }
9302
9303 if (fixP->fx_addsy != NULL
9304 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9305 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9306 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9307 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9308 && !use_rela_relocations)
9309 {
9310 /* This is a hack. There should be a better way to handle this.
9311 This covers for the fact that bfd_install_relocation will
9312 subtract the current location (for partial_inplace, PC relative
9313 relocations); see more below. */
9314 #ifndef OBJ_AOUT
9315 if (IS_ELF
9316 #ifdef TE_PE
9317 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9318 #endif
9319 )
9320 value += fixP->fx_where + fixP->fx_frag->fr_address;
9321 #endif
9322 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9323 if (IS_ELF)
9324 {
9325 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9326
9327 if ((sym_seg == seg
9328 || (symbol_section_p (fixP->fx_addsy)
9329 && sym_seg != absolute_section))
9330 && !generic_force_reloc (fixP))
9331 {
9332 /* Yes, we add the values in twice. This is because
9333 bfd_install_relocation subtracts them out again. I think
9334 bfd_install_relocation is broken, but I don't dare change
9335 it. FIXME. */
9336 value += fixP->fx_where + fixP->fx_frag->fr_address;
9337 }
9338 }
9339 #endif
9340 #if defined (OBJ_COFF) && defined (TE_PE)
9341 /* For some reason, the PE format does not store a
9342 section address offset for a PC relative symbol. */
9343 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9344 || S_IS_WEAK (fixP->fx_addsy))
9345 value += md_pcrel_from (fixP);
9346 #endif
9347 }
9348 #if defined (OBJ_COFF) && defined (TE_PE)
9349 if (fixP->fx_addsy != NULL
9350 && S_IS_WEAK (fixP->fx_addsy)
9351 /* PR 16858: Do not modify weak function references. */
9352 && ! fixP->fx_pcrel)
9353 {
9354 #if !defined (TE_PEP)
9355 /* For x86 PE weak function symbols are neither PC-relative
9356 nor do they set S_IS_FUNCTION. So the only reliable way
9357 to detect them is to check the flags of their containing
9358 section. */
9359 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9360 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9361 ;
9362 else
9363 #endif
9364 value -= S_GET_VALUE (fixP->fx_addsy);
9365 }
9366 #endif
9367
9368 /* Fix a few things - the dynamic linker expects certain values here,
9369 and we must not disappoint it. */
9370 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9371 if (IS_ELF && fixP->fx_addsy)
9372 switch (fixP->fx_r_type)
9373 {
9374 case BFD_RELOC_386_PLT32:
9375 case BFD_RELOC_X86_64_PLT32:
9376 /* Make the jump instruction point to the address of the operand. At
9377 runtime we merely add the offset to the actual PLT entry. */
9378 value = -4;
9379 break;
9380
9381 case BFD_RELOC_386_TLS_GD:
9382 case BFD_RELOC_386_TLS_LDM:
9383 case BFD_RELOC_386_TLS_IE_32:
9384 case BFD_RELOC_386_TLS_IE:
9385 case BFD_RELOC_386_TLS_GOTIE:
9386 case BFD_RELOC_386_TLS_GOTDESC:
9387 case BFD_RELOC_X86_64_TLSGD:
9388 case BFD_RELOC_X86_64_TLSLD:
9389 case BFD_RELOC_X86_64_GOTTPOFF:
9390 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9391 value = 0; /* Fully resolved at runtime. No addend. */
9392 /* Fallthrough */
9393 case BFD_RELOC_386_TLS_LE:
9394 case BFD_RELOC_386_TLS_LDO_32:
9395 case BFD_RELOC_386_TLS_LE_32:
9396 case BFD_RELOC_X86_64_DTPOFF32:
9397 case BFD_RELOC_X86_64_DTPOFF64:
9398 case BFD_RELOC_X86_64_TPOFF32:
9399 case BFD_RELOC_X86_64_TPOFF64:
9400 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9401 break;
9402
9403 case BFD_RELOC_386_TLS_DESC_CALL:
9404 case BFD_RELOC_X86_64_TLSDESC_CALL:
9405 value = 0; /* Fully resolved at runtime. No addend. */
9406 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9407 fixP->fx_done = 0;
9408 return;
9409
9410 case BFD_RELOC_VTABLE_INHERIT:
9411 case BFD_RELOC_VTABLE_ENTRY:
9412 fixP->fx_done = 0;
9413 return;
9414
9415 default:
9416 break;
9417 }
9418 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
9419 *valP = value;
9420 #endif /* !defined (TE_Mach) */
9421
9422 /* Are we finished with this relocation now? */
9423 if (fixP->fx_addsy == NULL)
9424 fixP->fx_done = 1;
9425 #if defined (OBJ_COFF) && defined (TE_PE)
9426 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9427 {
9428 fixP->fx_done = 0;
9429 /* Remember value for tc_gen_reloc. */
9430 fixP->fx_addnumber = value;
9431 /* Clear out the frag for now. */
9432 value = 0;
9433 }
9434 #endif
9435 else if (use_rela_relocations)
9436 {
9437 fixP->fx_no_overflow = 1;
9438 /* Remember value for tc_gen_reloc. */
9439 fixP->fx_addnumber = value;
9440 value = 0;
9441 }
9442
9443 md_number_to_chars (p, value, fixP->fx_size);
9444 }
9445 \f
9446 const char *
9447 md_atof (int type, char *litP, int *sizeP)
9448 {
9449 /* This outputs the LITTLENUMs in REVERSE order;
9450 in accord with the bigendian 386. */
9451 return ieee_md_atof (type, litP, sizeP, FALSE);
9452 }
9453 \f
9454 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
9455
9456 static char *
9457 output_invalid (int c)
9458 {
9459 if (ISPRINT (c))
9460 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9461 "'%c'", c);
9462 else
9463 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9464 "(0x%x)", (unsigned char) c);
9465 return output_invalid_buf;
9466 }
9467
9468 /* REG_STRING starts *before* REGISTER_PREFIX. */
9469
9470 static const reg_entry *
9471 parse_real_register (char *reg_string, char **end_op)
9472 {
9473 char *s = reg_string;
9474 char *p;
9475 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9476 const reg_entry *r;
9477
9478 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9479 if (*s == REGISTER_PREFIX)
9480 ++s;
9481
9482 if (is_space_char (*s))
9483 ++s;
9484
9485 p = reg_name_given;
9486 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
9487 {
9488 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
9489 return (const reg_entry *) NULL;
9490 s++;
9491 }
9492
9493 /* For naked regs, make sure that we are not dealing with an identifier.
9494 This prevents confusing an identifier like `eax_var' with register
9495 `eax'. */
9496 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9497 return (const reg_entry *) NULL;
9498
9499 *end_op = s;
9500
9501 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9502
9503 /* Handle floating point regs, allowing spaces in the (i) part. */
9504 if (r == i386_regtab /* %st is first entry of table */)
9505 {
9506 if (is_space_char (*s))
9507 ++s;
9508 if (*s == '(')
9509 {
9510 ++s;
9511 if (is_space_char (*s))
9512 ++s;
9513 if (*s >= '0' && *s <= '7')
9514 {
9515 int fpr = *s - '0';
9516 ++s;
9517 if (is_space_char (*s))
9518 ++s;
9519 if (*s == ')')
9520 {
9521 *end_op = s + 1;
9522 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
9523 know (r);
9524 return r + fpr;
9525 }
9526 }
9527 /* We have "%st(" then garbage. */
9528 return (const reg_entry *) NULL;
9529 }
9530 }
9531
9532 if (r == NULL || allow_pseudo_reg)
9533 return r;
9534
9535 if (operand_type_all_zero (&r->reg_type))
9536 return (const reg_entry *) NULL;
9537
9538 if ((r->reg_type.bitfield.reg32
9539 || r->reg_type.bitfield.sreg3
9540 || r->reg_type.bitfield.control
9541 || r->reg_type.bitfield.debug
9542 || r->reg_type.bitfield.test)
9543 && !cpu_arch_flags.bitfield.cpui386)
9544 return (const reg_entry *) NULL;
9545
9546 if (r->reg_type.bitfield.floatreg
9547 && !cpu_arch_flags.bitfield.cpu8087
9548 && !cpu_arch_flags.bitfield.cpu287
9549 && !cpu_arch_flags.bitfield.cpu387)
9550 return (const reg_entry *) NULL;
9551
9552 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
9553 return (const reg_entry *) NULL;
9554
9555 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpuregxmm)
9556 return (const reg_entry *) NULL;
9557
9558 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuregymm)
9559 return (const reg_entry *) NULL;
9560
9561 if (r->reg_type.bitfield.regzmm && !cpu_arch_flags.bitfield.cpuregzmm)
9562 return (const reg_entry *) NULL;
9563
9564 if (r->reg_type.bitfield.regmask
9565 && !cpu_arch_flags.bitfield.cpuregmask)
9566 return (const reg_entry *) NULL;
9567
9568 /* Don't allow fake index register unless allow_index_reg isn't 0. */
9569 if (!allow_index_reg
9570 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9571 return (const reg_entry *) NULL;
9572
9573 /* Upper 16 vector register is only available with VREX in 64bit
9574 mode. */
9575 if ((r->reg_flags & RegVRex))
9576 {
9577 if (!cpu_arch_flags.bitfield.cpuvrex
9578 || flag_code != CODE_64BIT)
9579 return (const reg_entry *) NULL;
9580
9581 i.need_vrex = 1;
9582 }
9583
9584 if (((r->reg_flags & (RegRex64 | RegRex))
9585 || r->reg_type.bitfield.reg64)
9586 && (!cpu_arch_flags.bitfield.cpulm
9587 || !operand_type_equal (&r->reg_type, &control))
9588 && flag_code != CODE_64BIT)
9589 return (const reg_entry *) NULL;
9590
9591 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9592 return (const reg_entry *) NULL;
9593
9594 return r;
9595 }
9596
9597 /* REG_STRING starts *before* REGISTER_PREFIX. */
9598
9599 static const reg_entry *
9600 parse_register (char *reg_string, char **end_op)
9601 {
9602 const reg_entry *r;
9603
9604 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9605 r = parse_real_register (reg_string, end_op);
9606 else
9607 r = NULL;
9608 if (!r)
9609 {
9610 char *save = input_line_pointer;
9611 char c;
9612 symbolS *symbolP;
9613
9614 input_line_pointer = reg_string;
9615 c = get_symbol_name (&reg_string);
9616 symbolP = symbol_find (reg_string);
9617 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9618 {
9619 const expressionS *e = symbol_get_value_expression (symbolP);
9620
9621 know (e->X_op == O_register);
9622 know (e->X_add_number >= 0
9623 && (valueT) e->X_add_number < i386_regtab_size);
9624 r = i386_regtab + e->X_add_number;
9625 if ((r->reg_flags & RegVRex))
9626 i.need_vrex = 1;
9627 *end_op = input_line_pointer;
9628 }
9629 *input_line_pointer = c;
9630 input_line_pointer = save;
9631 }
9632 return r;
9633 }
9634
9635 int
9636 i386_parse_name (char *name, expressionS *e, char *nextcharP)
9637 {
9638 const reg_entry *r;
9639 char *end = input_line_pointer;
9640
9641 *end = *nextcharP;
9642 r = parse_register (name, &input_line_pointer);
9643 if (r && end <= input_line_pointer)
9644 {
9645 *nextcharP = *input_line_pointer;
9646 *input_line_pointer = 0;
9647 e->X_op = O_register;
9648 e->X_add_number = r - i386_regtab;
9649 return 1;
9650 }
9651 input_line_pointer = end;
9652 *end = 0;
9653 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
9654 }
9655
9656 void
9657 md_operand (expressionS *e)
9658 {
9659 char *end;
9660 const reg_entry *r;
9661
9662 switch (*input_line_pointer)
9663 {
9664 case REGISTER_PREFIX:
9665 r = parse_real_register (input_line_pointer, &end);
9666 if (r)
9667 {
9668 e->X_op = O_register;
9669 e->X_add_number = r - i386_regtab;
9670 input_line_pointer = end;
9671 }
9672 break;
9673
9674 case '[':
9675 gas_assert (intel_syntax);
9676 end = input_line_pointer++;
9677 expression (e);
9678 if (*input_line_pointer == ']')
9679 {
9680 ++input_line_pointer;
9681 e->X_op_symbol = make_expr_symbol (e);
9682 e->X_add_symbol = NULL;
9683 e->X_add_number = 0;
9684 e->X_op = O_index;
9685 }
9686 else
9687 {
9688 e->X_op = O_absent;
9689 input_line_pointer = end;
9690 }
9691 break;
9692 }
9693 }
9694
9695 \f
9696 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9697 const char *md_shortopts = "kVQ:sqn";
9698 #else
9699 const char *md_shortopts = "qn";
9700 #endif
9701
9702 #define OPTION_32 (OPTION_MD_BASE + 0)
9703 #define OPTION_64 (OPTION_MD_BASE + 1)
9704 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9705 #define OPTION_MARCH (OPTION_MD_BASE + 3)
9706 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
9707 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9708 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9709 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9710 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9711 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
9712 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
9713 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
9714 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9715 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9716 #define OPTION_X32 (OPTION_MD_BASE + 14)
9717 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
9718 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9719 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
9720 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
9721 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
9722 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
9723 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
9724 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
9725 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
9726 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
9727 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 25)
9728
9729 struct option md_longopts[] =
9730 {
9731 {"32", no_argument, NULL, OPTION_32},
9732 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9733 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9734 {"64", no_argument, NULL, OPTION_64},
9735 #endif
9736 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9737 {"x32", no_argument, NULL, OPTION_X32},
9738 {"mshared", no_argument, NULL, OPTION_MSHARED},
9739 #endif
9740 {"divide", no_argument, NULL, OPTION_DIVIDE},
9741 {"march", required_argument, NULL, OPTION_MARCH},
9742 {"mtune", required_argument, NULL, OPTION_MTUNE},
9743 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
9744 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
9745 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
9746 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
9747 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
9748 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
9749 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
9750 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
9751 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
9752 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
9753 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
9754 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
9755 # if defined (TE_PE) || defined (TE_PEP)
9756 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
9757 #endif
9758 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
9759 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
9760 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
9761 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
9762 {"mamd64", no_argument, NULL, OPTION_MAMD64},
9763 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
9764 {NULL, no_argument, NULL, 0}
9765 };
9766 size_t md_longopts_size = sizeof (md_longopts);
9767
9768 int
9769 md_parse_option (int c, const char *arg)
9770 {
9771 unsigned int j;
9772 char *arch, *next, *saved;
9773
9774 switch (c)
9775 {
9776 case 'n':
9777 optimize_align_code = 0;
9778 break;
9779
9780 case 'q':
9781 quiet_warnings = 1;
9782 break;
9783
9784 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9785 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
9786 should be emitted or not. FIXME: Not implemented. */
9787 case 'Q':
9788 break;
9789
9790 /* -V: SVR4 argument to print version ID. */
9791 case 'V':
9792 print_version_id ();
9793 break;
9794
9795 /* -k: Ignore for FreeBSD compatibility. */
9796 case 'k':
9797 break;
9798
9799 case 's':
9800 /* -s: On i386 Solaris, this tells the native assembler to use
9801 .stab instead of .stab.excl. We always use .stab anyhow. */
9802 break;
9803
9804 case OPTION_MSHARED:
9805 shared = 1;
9806 break;
9807 #endif
9808 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9809 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9810 case OPTION_64:
9811 {
9812 const char **list, **l;
9813
9814 list = bfd_target_list ();
9815 for (l = list; *l != NULL; l++)
9816 if (CONST_STRNEQ (*l, "elf64-x86-64")
9817 || strcmp (*l, "coff-x86-64") == 0
9818 || strcmp (*l, "pe-x86-64") == 0
9819 || strcmp (*l, "pei-x86-64") == 0
9820 || strcmp (*l, "mach-o-x86-64") == 0)
9821 {
9822 default_arch = "x86_64";
9823 break;
9824 }
9825 if (*l == NULL)
9826 as_fatal (_("no compiled in support for x86_64"));
9827 free (list);
9828 }
9829 break;
9830 #endif
9831
9832 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9833 case OPTION_X32:
9834 if (IS_ELF)
9835 {
9836 const char **list, **l;
9837
9838 list = bfd_target_list ();
9839 for (l = list; *l != NULL; l++)
9840 if (CONST_STRNEQ (*l, "elf32-x86-64"))
9841 {
9842 default_arch = "x86_64:32";
9843 break;
9844 }
9845 if (*l == NULL)
9846 as_fatal (_("no compiled in support for 32bit x86_64"));
9847 free (list);
9848 }
9849 else
9850 as_fatal (_("32bit x86_64 is only supported for ELF"));
9851 break;
9852 #endif
9853
9854 case OPTION_32:
9855 default_arch = "i386";
9856 break;
9857
9858 case OPTION_DIVIDE:
9859 #ifdef SVR4_COMMENT_CHARS
9860 {
9861 char *n, *t;
9862 const char *s;
9863
9864 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
9865 t = n;
9866 for (s = i386_comment_chars; *s != '\0'; s++)
9867 if (*s != '/')
9868 *t++ = *s;
9869 *t = '\0';
9870 i386_comment_chars = n;
9871 }
9872 #endif
9873 break;
9874
9875 case OPTION_MARCH:
9876 saved = xstrdup (arg);
9877 arch = saved;
9878 /* Allow -march=+nosse. */
9879 if (*arch == '+')
9880 arch++;
9881 do
9882 {
9883 if (*arch == '.')
9884 as_fatal (_("invalid -march= option: `%s'"), arg);
9885 next = strchr (arch, '+');
9886 if (next)
9887 *next++ = '\0';
9888 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9889 {
9890 if (strcmp (arch, cpu_arch [j].name) == 0)
9891 {
9892 /* Processor. */
9893 if (! cpu_arch[j].flags.bitfield.cpui386)
9894 continue;
9895
9896 cpu_arch_name = cpu_arch[j].name;
9897 cpu_sub_arch_name = NULL;
9898 cpu_arch_flags = cpu_arch[j].flags;
9899 cpu_arch_isa = cpu_arch[j].type;
9900 cpu_arch_isa_flags = cpu_arch[j].flags;
9901 if (!cpu_arch_tune_set)
9902 {
9903 cpu_arch_tune = cpu_arch_isa;
9904 cpu_arch_tune_flags = cpu_arch_isa_flags;
9905 }
9906 break;
9907 }
9908 else if (*cpu_arch [j].name == '.'
9909 && strcmp (arch, cpu_arch [j].name + 1) == 0)
9910 {
9911 /* ISA entension. */
9912 i386_cpu_flags flags;
9913
9914 flags = cpu_flags_or (cpu_arch_flags,
9915 cpu_arch[j].flags);
9916
9917 if (!valid_iamcu_cpu_flags (&flags))
9918 as_fatal (_("`%s' isn't valid for Intel MCU"), arch);
9919 else if (!cpu_flags_equal (&flags, &cpu_arch_flags))
9920 {
9921 if (cpu_sub_arch_name)
9922 {
9923 char *name = cpu_sub_arch_name;
9924 cpu_sub_arch_name = concat (name,
9925 cpu_arch[j].name,
9926 (const char *) NULL);
9927 free (name);
9928 }
9929 else
9930 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
9931 cpu_arch_flags = flags;
9932 cpu_arch_isa_flags = flags;
9933 }
9934 break;
9935 }
9936 }
9937
9938 if (j >= ARRAY_SIZE (cpu_arch))
9939 {
9940 /* Disable an ISA entension. */
9941 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
9942 if (strcmp (arch, cpu_noarch [j].name) == 0)
9943 {
9944 i386_cpu_flags flags;
9945
9946 flags = cpu_flags_and_not (cpu_arch_flags,
9947 cpu_noarch[j].flags);
9948 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
9949 {
9950 if (cpu_sub_arch_name)
9951 {
9952 char *name = cpu_sub_arch_name;
9953 cpu_sub_arch_name = concat (arch,
9954 (const char *) NULL);
9955 free (name);
9956 }
9957 else
9958 cpu_sub_arch_name = xstrdup (arch);
9959 cpu_arch_flags = flags;
9960 cpu_arch_isa_flags = flags;
9961 }
9962 break;
9963 }
9964
9965 if (j >= ARRAY_SIZE (cpu_noarch))
9966 j = ARRAY_SIZE (cpu_arch);
9967 }
9968
9969 if (j >= ARRAY_SIZE (cpu_arch))
9970 as_fatal (_("invalid -march= option: `%s'"), arg);
9971
9972 arch = next;
9973 }
9974 while (next != NULL);
9975 free (saved);
9976 break;
9977
9978 case OPTION_MTUNE:
9979 if (*arg == '.')
9980 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9981 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9982 {
9983 if (strcmp (arg, cpu_arch [j].name) == 0)
9984 {
9985 cpu_arch_tune_set = 1;
9986 cpu_arch_tune = cpu_arch [j].type;
9987 cpu_arch_tune_flags = cpu_arch[j].flags;
9988 break;
9989 }
9990 }
9991 if (j >= ARRAY_SIZE (cpu_arch))
9992 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9993 break;
9994
9995 case OPTION_MMNEMONIC:
9996 if (strcasecmp (arg, "att") == 0)
9997 intel_mnemonic = 0;
9998 else if (strcasecmp (arg, "intel") == 0)
9999 intel_mnemonic = 1;
10000 else
10001 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10002 break;
10003
10004 case OPTION_MSYNTAX:
10005 if (strcasecmp (arg, "att") == 0)
10006 intel_syntax = 0;
10007 else if (strcasecmp (arg, "intel") == 0)
10008 intel_syntax = 1;
10009 else
10010 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10011 break;
10012
10013 case OPTION_MINDEX_REG:
10014 allow_index_reg = 1;
10015 break;
10016
10017 case OPTION_MNAKED_REG:
10018 allow_naked_reg = 1;
10019 break;
10020
10021 case OPTION_MOLD_GCC:
10022 old_gcc = 1;
10023 break;
10024
10025 case OPTION_MSSE2AVX:
10026 sse2avx = 1;
10027 break;
10028
10029 case OPTION_MSSE_CHECK:
10030 if (strcasecmp (arg, "error") == 0)
10031 sse_check = check_error;
10032 else if (strcasecmp (arg, "warning") == 0)
10033 sse_check = check_warning;
10034 else if (strcasecmp (arg, "none") == 0)
10035 sse_check = check_none;
10036 else
10037 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10038 break;
10039
10040 case OPTION_MOPERAND_CHECK:
10041 if (strcasecmp (arg, "error") == 0)
10042 operand_check = check_error;
10043 else if (strcasecmp (arg, "warning") == 0)
10044 operand_check = check_warning;
10045 else if (strcasecmp (arg, "none") == 0)
10046 operand_check = check_none;
10047 else
10048 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10049 break;
10050
10051 case OPTION_MAVXSCALAR:
10052 if (strcasecmp (arg, "128") == 0)
10053 avxscalar = vex128;
10054 else if (strcasecmp (arg, "256") == 0)
10055 avxscalar = vex256;
10056 else
10057 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10058 break;
10059
10060 case OPTION_MADD_BND_PREFIX:
10061 add_bnd_prefix = 1;
10062 break;
10063
10064 case OPTION_MEVEXLIG:
10065 if (strcmp (arg, "128") == 0)
10066 evexlig = evexl128;
10067 else if (strcmp (arg, "256") == 0)
10068 evexlig = evexl256;
10069 else if (strcmp (arg, "512") == 0)
10070 evexlig = evexl512;
10071 else
10072 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10073 break;
10074
10075 case OPTION_MEVEXRCIG:
10076 if (strcmp (arg, "rne") == 0)
10077 evexrcig = rne;
10078 else if (strcmp (arg, "rd") == 0)
10079 evexrcig = rd;
10080 else if (strcmp (arg, "ru") == 0)
10081 evexrcig = ru;
10082 else if (strcmp (arg, "rz") == 0)
10083 evexrcig = rz;
10084 else
10085 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10086 break;
10087
10088 case OPTION_MEVEXWIG:
10089 if (strcmp (arg, "0") == 0)
10090 evexwig = evexw0;
10091 else if (strcmp (arg, "1") == 0)
10092 evexwig = evexw1;
10093 else
10094 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10095 break;
10096
10097 # if defined (TE_PE) || defined (TE_PEP)
10098 case OPTION_MBIG_OBJ:
10099 use_big_obj = 1;
10100 break;
10101 #endif
10102
10103 case OPTION_MOMIT_LOCK_PREFIX:
10104 if (strcasecmp (arg, "yes") == 0)
10105 omit_lock_prefix = 1;
10106 else if (strcasecmp (arg, "no") == 0)
10107 omit_lock_prefix = 0;
10108 else
10109 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10110 break;
10111
10112 case OPTION_MFENCE_AS_LOCK_ADD:
10113 if (strcasecmp (arg, "yes") == 0)
10114 avoid_fence = 1;
10115 else if (strcasecmp (arg, "no") == 0)
10116 avoid_fence = 0;
10117 else
10118 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10119 break;
10120
10121 case OPTION_MRELAX_RELOCATIONS:
10122 if (strcasecmp (arg, "yes") == 0)
10123 generate_relax_relocations = 1;
10124 else if (strcasecmp (arg, "no") == 0)
10125 generate_relax_relocations = 0;
10126 else
10127 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10128 break;
10129
10130 case OPTION_MAMD64:
10131 intel64 = 0;
10132 break;
10133
10134 case OPTION_MINTEL64:
10135 intel64 = 1;
10136 break;
10137
10138 default:
10139 return 0;
10140 }
10141 return 1;
10142 }
10143
10144 #define MESSAGE_TEMPLATE \
10145 " "
10146
10147 static char *
10148 output_message (FILE *stream, char *p, char *message, char *start,
10149 int *left_p, const char *name, int len)
10150 {
10151 int size = sizeof (MESSAGE_TEMPLATE);
10152 int left = *left_p;
10153
10154 /* Reserve 2 spaces for ", " or ",\0" */
10155 left -= len + 2;
10156
10157 /* Check if there is any room. */
10158 if (left >= 0)
10159 {
10160 if (p != start)
10161 {
10162 *p++ = ',';
10163 *p++ = ' ';
10164 }
10165 p = mempcpy (p, name, len);
10166 }
10167 else
10168 {
10169 /* Output the current message now and start a new one. */
10170 *p++ = ',';
10171 *p = '\0';
10172 fprintf (stream, "%s\n", message);
10173 p = start;
10174 left = size - (start - message) - len - 2;
10175
10176 gas_assert (left >= 0);
10177
10178 p = mempcpy (p, name, len);
10179 }
10180
10181 *left_p = left;
10182 return p;
10183 }
10184
10185 static void
10186 show_arch (FILE *stream, int ext, int check)
10187 {
10188 static char message[] = MESSAGE_TEMPLATE;
10189 char *start = message + 27;
10190 char *p;
10191 int size = sizeof (MESSAGE_TEMPLATE);
10192 int left;
10193 const char *name;
10194 int len;
10195 unsigned int j;
10196
10197 p = start;
10198 left = size - (start - message);
10199 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10200 {
10201 /* Should it be skipped? */
10202 if (cpu_arch [j].skip)
10203 continue;
10204
10205 name = cpu_arch [j].name;
10206 len = cpu_arch [j].len;
10207 if (*name == '.')
10208 {
10209 /* It is an extension. Skip if we aren't asked to show it. */
10210 if (ext)
10211 {
10212 name++;
10213 len--;
10214 }
10215 else
10216 continue;
10217 }
10218 else if (ext)
10219 {
10220 /* It is an processor. Skip if we show only extension. */
10221 continue;
10222 }
10223 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10224 {
10225 /* It is an impossible processor - skip. */
10226 continue;
10227 }
10228
10229 p = output_message (stream, p, message, start, &left, name, len);
10230 }
10231
10232 /* Display disabled extensions. */
10233 if (ext)
10234 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10235 {
10236 name = cpu_noarch [j].name;
10237 len = cpu_noarch [j].len;
10238 p = output_message (stream, p, message, start, &left, name,
10239 len);
10240 }
10241
10242 *p = '\0';
10243 fprintf (stream, "%s\n", message);
10244 }
10245
10246 void
10247 md_show_usage (FILE *stream)
10248 {
10249 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10250 fprintf (stream, _("\
10251 -Q ignored\n\
10252 -V print assembler version number\n\
10253 -k ignored\n"));
10254 #endif
10255 fprintf (stream, _("\
10256 -n Do not optimize code alignment\n\
10257 -q quieten some warnings\n"));
10258 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10259 fprintf (stream, _("\
10260 -s ignored\n"));
10261 #endif
10262 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10263 || defined (TE_PE) || defined (TE_PEP))
10264 fprintf (stream, _("\
10265 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10266 #endif
10267 #ifdef SVR4_COMMENT_CHARS
10268 fprintf (stream, _("\
10269 --divide do not treat `/' as a comment character\n"));
10270 #else
10271 fprintf (stream, _("\
10272 --divide ignored\n"));
10273 #endif
10274 fprintf (stream, _("\
10275 -march=CPU[,+EXTENSION...]\n\
10276 generate code for CPU and EXTENSION, CPU is one of:\n"));
10277 show_arch (stream, 0, 1);
10278 fprintf (stream, _("\
10279 EXTENSION is combination of:\n"));
10280 show_arch (stream, 1, 0);
10281 fprintf (stream, _("\
10282 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10283 show_arch (stream, 0, 0);
10284 fprintf (stream, _("\
10285 -msse2avx encode SSE instructions with VEX prefix\n"));
10286 fprintf (stream, _("\
10287 -msse-check=[none|error|warning]\n\
10288 check SSE instructions\n"));
10289 fprintf (stream, _("\
10290 -moperand-check=[none|error|warning]\n\
10291 check operand combinations for validity\n"));
10292 fprintf (stream, _("\
10293 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10294 length\n"));
10295 fprintf (stream, _("\
10296 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10297 length\n"));
10298 fprintf (stream, _("\
10299 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10300 for EVEX.W bit ignored instructions\n"));
10301 fprintf (stream, _("\
10302 -mevexrcig=[rne|rd|ru|rz]\n\
10303 encode EVEX instructions with specific EVEX.RC value\n\
10304 for SAE-only ignored instructions\n"));
10305 fprintf (stream, _("\
10306 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10307 fprintf (stream, _("\
10308 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10309 fprintf (stream, _("\
10310 -mindex-reg support pseudo index registers\n"));
10311 fprintf (stream, _("\
10312 -mnaked-reg don't require `%%' prefix for registers\n"));
10313 fprintf (stream, _("\
10314 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
10315 fprintf (stream, _("\
10316 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10317 fprintf (stream, _("\
10318 -mshared disable branch optimization for shared code\n"));
10319 # if defined (TE_PE) || defined (TE_PEP)
10320 fprintf (stream, _("\
10321 -mbig-obj generate big object files\n"));
10322 #endif
10323 fprintf (stream, _("\
10324 -momit-lock-prefix=[no|yes]\n\
10325 strip all lock prefixes\n"));
10326 fprintf (stream, _("\
10327 -mfence-as-lock-add=[no|yes]\n\
10328 encode lfence, mfence and sfence as\n\
10329 lock addl $0x0, (%%{re}sp)\n"));
10330 fprintf (stream, _("\
10331 -mrelax-relocations=[no|yes]\n\
10332 generate relax relocations\n"));
10333 fprintf (stream, _("\
10334 -mamd64 accept only AMD64 ISA\n"));
10335 fprintf (stream, _("\
10336 -mintel64 accept only Intel64 ISA\n"));
10337 }
10338
10339 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10340 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10341 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10342
10343 /* Pick the target format to use. */
10344
10345 const char *
10346 i386_target_format (void)
10347 {
10348 if (!strncmp (default_arch, "x86_64", 6))
10349 {
10350 update_code_flag (CODE_64BIT, 1);
10351 if (default_arch[6] == '\0')
10352 x86_elf_abi = X86_64_ABI;
10353 else
10354 x86_elf_abi = X86_64_X32_ABI;
10355 }
10356 else if (!strcmp (default_arch, "i386"))
10357 update_code_flag (CODE_32BIT, 1);
10358 else if (!strcmp (default_arch, "iamcu"))
10359 {
10360 update_code_flag (CODE_32BIT, 1);
10361 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10362 {
10363 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10364 cpu_arch_name = "iamcu";
10365 cpu_sub_arch_name = NULL;
10366 cpu_arch_flags = iamcu_flags;
10367 cpu_arch_isa = PROCESSOR_IAMCU;
10368 cpu_arch_isa_flags = iamcu_flags;
10369 if (!cpu_arch_tune_set)
10370 {
10371 cpu_arch_tune = cpu_arch_isa;
10372 cpu_arch_tune_flags = cpu_arch_isa_flags;
10373 }
10374 }
10375 else
10376 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10377 cpu_arch_name);
10378 }
10379 else
10380 as_fatal (_("unknown architecture"));
10381
10382 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10383 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10384 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10385 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10386
10387 switch (OUTPUT_FLAVOR)
10388 {
10389 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
10390 case bfd_target_aout_flavour:
10391 return AOUT_TARGET_FORMAT;
10392 #endif
10393 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10394 # if defined (TE_PE) || defined (TE_PEP)
10395 case bfd_target_coff_flavour:
10396 if (flag_code == CODE_64BIT)
10397 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10398 else
10399 return "pe-i386";
10400 # elif defined (TE_GO32)
10401 case bfd_target_coff_flavour:
10402 return "coff-go32";
10403 # else
10404 case bfd_target_coff_flavour:
10405 return "coff-i386";
10406 # endif
10407 #endif
10408 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10409 case bfd_target_elf_flavour:
10410 {
10411 const char *format;
10412
10413 switch (x86_elf_abi)
10414 {
10415 default:
10416 format = ELF_TARGET_FORMAT;
10417 break;
10418 case X86_64_ABI:
10419 use_rela_relocations = 1;
10420 object_64bit = 1;
10421 format = ELF_TARGET_FORMAT64;
10422 break;
10423 case X86_64_X32_ABI:
10424 use_rela_relocations = 1;
10425 object_64bit = 1;
10426 disallow_64bit_reloc = 1;
10427 format = ELF_TARGET_FORMAT32;
10428 break;
10429 }
10430 if (cpu_arch_isa == PROCESSOR_L1OM)
10431 {
10432 if (x86_elf_abi != X86_64_ABI)
10433 as_fatal (_("Intel L1OM is 64bit only"));
10434 return ELF_TARGET_L1OM_FORMAT;
10435 }
10436 else if (cpu_arch_isa == PROCESSOR_K1OM)
10437 {
10438 if (x86_elf_abi != X86_64_ABI)
10439 as_fatal (_("Intel K1OM is 64bit only"));
10440 return ELF_TARGET_K1OM_FORMAT;
10441 }
10442 else if (cpu_arch_isa == PROCESSOR_IAMCU)
10443 {
10444 if (x86_elf_abi != I386_ABI)
10445 as_fatal (_("Intel MCU is 32bit only"));
10446 return ELF_TARGET_IAMCU_FORMAT;
10447 }
10448 else
10449 return format;
10450 }
10451 #endif
10452 #if defined (OBJ_MACH_O)
10453 case bfd_target_mach_o_flavour:
10454 if (flag_code == CODE_64BIT)
10455 {
10456 use_rela_relocations = 1;
10457 object_64bit = 1;
10458 return "mach-o-x86-64";
10459 }
10460 else
10461 return "mach-o-i386";
10462 #endif
10463 default:
10464 abort ();
10465 return NULL;
10466 }
10467 }
10468
10469 #endif /* OBJ_MAYBE_ more than one */
10470 \f
10471 symbolS *
10472 md_undefined_symbol (char *name)
10473 {
10474 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10475 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10476 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10477 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
10478 {
10479 if (!GOT_symbol)
10480 {
10481 if (symbol_find (name))
10482 as_bad (_("GOT already in symbol table"));
10483 GOT_symbol = symbol_new (name, undefined_section,
10484 (valueT) 0, &zero_address_frag);
10485 };
10486 return GOT_symbol;
10487 }
10488 return 0;
10489 }
10490
10491 /* Round up a section size to the appropriate boundary. */
10492
10493 valueT
10494 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
10495 {
10496 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10497 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10498 {
10499 /* For a.out, force the section size to be aligned. If we don't do
10500 this, BFD will align it for us, but it will not write out the
10501 final bytes of the section. This may be a bug in BFD, but it is
10502 easier to fix it here since that is how the other a.out targets
10503 work. */
10504 int align;
10505
10506 align = bfd_get_section_alignment (stdoutput, segment);
10507 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
10508 }
10509 #endif
10510
10511 return size;
10512 }
10513
10514 /* On the i386, PC-relative offsets are relative to the start of the
10515 next instruction. That is, the address of the offset, plus its
10516 size, since the offset is always the last part of the insn. */
10517
10518 long
10519 md_pcrel_from (fixS *fixP)
10520 {
10521 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10522 }
10523
10524 #ifndef I386COFF
10525
10526 static void
10527 s_bss (int ignore ATTRIBUTE_UNUSED)
10528 {
10529 int temp;
10530
10531 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10532 if (IS_ELF)
10533 obj_elf_section_change_hook ();
10534 #endif
10535 temp = get_absolute_expression ();
10536 subseg_set (bss_section, (subsegT) temp);
10537 demand_empty_rest_of_line ();
10538 }
10539
10540 #endif
10541
10542 void
10543 i386_validate_fix (fixS *fixp)
10544 {
10545 if (fixp->fx_subsy)
10546 {
10547 if (fixp->fx_subsy == GOT_symbol)
10548 {
10549 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10550 {
10551 if (!object_64bit)
10552 abort ();
10553 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10554 if (fixp->fx_tcbit2)
10555 fixp->fx_r_type = (fixp->fx_tcbit
10556 ? BFD_RELOC_X86_64_REX_GOTPCRELX
10557 : BFD_RELOC_X86_64_GOTPCRELX);
10558 else
10559 #endif
10560 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10561 }
10562 else
10563 {
10564 if (!object_64bit)
10565 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10566 else
10567 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10568 }
10569 fixp->fx_subsy = 0;
10570 }
10571 }
10572 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10573 else if (!object_64bit)
10574 {
10575 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
10576 && fixp->fx_tcbit2)
10577 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
10578 }
10579 #endif
10580 }
10581
10582 arelent *
10583 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
10584 {
10585 arelent *rel;
10586 bfd_reloc_code_real_type code;
10587
10588 switch (fixp->fx_r_type)
10589 {
10590 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10591 case BFD_RELOC_SIZE32:
10592 case BFD_RELOC_SIZE64:
10593 if (S_IS_DEFINED (fixp->fx_addsy)
10594 && !S_IS_EXTERNAL (fixp->fx_addsy))
10595 {
10596 /* Resolve size relocation against local symbol to size of
10597 the symbol plus addend. */
10598 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10599 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10600 && !fits_in_unsigned_long (value))
10601 as_bad_where (fixp->fx_file, fixp->fx_line,
10602 _("symbol size computation overflow"));
10603 fixp->fx_addsy = NULL;
10604 fixp->fx_subsy = NULL;
10605 md_apply_fix (fixp, (valueT *) &value, NULL);
10606 return NULL;
10607 }
10608 #endif
10609
10610 case BFD_RELOC_X86_64_PLT32:
10611 case BFD_RELOC_X86_64_GOT32:
10612 case BFD_RELOC_X86_64_GOTPCREL:
10613 case BFD_RELOC_X86_64_GOTPCRELX:
10614 case BFD_RELOC_X86_64_REX_GOTPCRELX:
10615 case BFD_RELOC_386_PLT32:
10616 case BFD_RELOC_386_GOT32:
10617 case BFD_RELOC_386_GOT32X:
10618 case BFD_RELOC_386_GOTOFF:
10619 case BFD_RELOC_386_GOTPC:
10620 case BFD_RELOC_386_TLS_GD:
10621 case BFD_RELOC_386_TLS_LDM:
10622 case BFD_RELOC_386_TLS_LDO_32:
10623 case BFD_RELOC_386_TLS_IE_32:
10624 case BFD_RELOC_386_TLS_IE:
10625 case BFD_RELOC_386_TLS_GOTIE:
10626 case BFD_RELOC_386_TLS_LE_32:
10627 case BFD_RELOC_386_TLS_LE:
10628 case BFD_RELOC_386_TLS_GOTDESC:
10629 case BFD_RELOC_386_TLS_DESC_CALL:
10630 case BFD_RELOC_X86_64_TLSGD:
10631 case BFD_RELOC_X86_64_TLSLD:
10632 case BFD_RELOC_X86_64_DTPOFF32:
10633 case BFD_RELOC_X86_64_DTPOFF64:
10634 case BFD_RELOC_X86_64_GOTTPOFF:
10635 case BFD_RELOC_X86_64_TPOFF32:
10636 case BFD_RELOC_X86_64_TPOFF64:
10637 case BFD_RELOC_X86_64_GOTOFF64:
10638 case BFD_RELOC_X86_64_GOTPC32:
10639 case BFD_RELOC_X86_64_GOT64:
10640 case BFD_RELOC_X86_64_GOTPCREL64:
10641 case BFD_RELOC_X86_64_GOTPC64:
10642 case BFD_RELOC_X86_64_GOTPLT64:
10643 case BFD_RELOC_X86_64_PLTOFF64:
10644 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10645 case BFD_RELOC_X86_64_TLSDESC_CALL:
10646 case BFD_RELOC_RVA:
10647 case BFD_RELOC_VTABLE_ENTRY:
10648 case BFD_RELOC_VTABLE_INHERIT:
10649 #ifdef TE_PE
10650 case BFD_RELOC_32_SECREL:
10651 #endif
10652 code = fixp->fx_r_type;
10653 break;
10654 case BFD_RELOC_X86_64_32S:
10655 if (!fixp->fx_pcrel)
10656 {
10657 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10658 code = fixp->fx_r_type;
10659 break;
10660 }
10661 default:
10662 if (fixp->fx_pcrel)
10663 {
10664 switch (fixp->fx_size)
10665 {
10666 default:
10667 as_bad_where (fixp->fx_file, fixp->fx_line,
10668 _("can not do %d byte pc-relative relocation"),
10669 fixp->fx_size);
10670 code = BFD_RELOC_32_PCREL;
10671 break;
10672 case 1: code = BFD_RELOC_8_PCREL; break;
10673 case 2: code = BFD_RELOC_16_PCREL; break;
10674 case 4: code = BFD_RELOC_32_PCREL; break;
10675 #ifdef BFD64
10676 case 8: code = BFD_RELOC_64_PCREL; break;
10677 #endif
10678 }
10679 }
10680 else
10681 {
10682 switch (fixp->fx_size)
10683 {
10684 default:
10685 as_bad_where (fixp->fx_file, fixp->fx_line,
10686 _("can not do %d byte relocation"),
10687 fixp->fx_size);
10688 code = BFD_RELOC_32;
10689 break;
10690 case 1: code = BFD_RELOC_8; break;
10691 case 2: code = BFD_RELOC_16; break;
10692 case 4: code = BFD_RELOC_32; break;
10693 #ifdef BFD64
10694 case 8: code = BFD_RELOC_64; break;
10695 #endif
10696 }
10697 }
10698 break;
10699 }
10700
10701 if ((code == BFD_RELOC_32
10702 || code == BFD_RELOC_32_PCREL
10703 || code == BFD_RELOC_X86_64_32S)
10704 && GOT_symbol
10705 && fixp->fx_addsy == GOT_symbol)
10706 {
10707 if (!object_64bit)
10708 code = BFD_RELOC_386_GOTPC;
10709 else
10710 code = BFD_RELOC_X86_64_GOTPC32;
10711 }
10712 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10713 && GOT_symbol
10714 && fixp->fx_addsy == GOT_symbol)
10715 {
10716 code = BFD_RELOC_X86_64_GOTPC64;
10717 }
10718
10719 rel = XNEW (arelent);
10720 rel->sym_ptr_ptr = XNEW (asymbol *);
10721 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10722
10723 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
10724
10725 if (!use_rela_relocations)
10726 {
10727 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10728 vtable entry to be used in the relocation's section offset. */
10729 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10730 rel->address = fixp->fx_offset;
10731 #if defined (OBJ_COFF) && defined (TE_PE)
10732 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10733 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10734 else
10735 #endif
10736 rel->addend = 0;
10737 }
10738 /* Use the rela in 64bit mode. */
10739 else
10740 {
10741 if (disallow_64bit_reloc)
10742 switch (code)
10743 {
10744 case BFD_RELOC_X86_64_DTPOFF64:
10745 case BFD_RELOC_X86_64_TPOFF64:
10746 case BFD_RELOC_64_PCREL:
10747 case BFD_RELOC_X86_64_GOTOFF64:
10748 case BFD_RELOC_X86_64_GOT64:
10749 case BFD_RELOC_X86_64_GOTPCREL64:
10750 case BFD_RELOC_X86_64_GOTPC64:
10751 case BFD_RELOC_X86_64_GOTPLT64:
10752 case BFD_RELOC_X86_64_PLTOFF64:
10753 as_bad_where (fixp->fx_file, fixp->fx_line,
10754 _("cannot represent relocation type %s in x32 mode"),
10755 bfd_get_reloc_code_name (code));
10756 break;
10757 default:
10758 break;
10759 }
10760
10761 if (!fixp->fx_pcrel)
10762 rel->addend = fixp->fx_offset;
10763 else
10764 switch (code)
10765 {
10766 case BFD_RELOC_X86_64_PLT32:
10767 case BFD_RELOC_X86_64_GOT32:
10768 case BFD_RELOC_X86_64_GOTPCREL:
10769 case BFD_RELOC_X86_64_GOTPCRELX:
10770 case BFD_RELOC_X86_64_REX_GOTPCRELX:
10771 case BFD_RELOC_X86_64_TLSGD:
10772 case BFD_RELOC_X86_64_TLSLD:
10773 case BFD_RELOC_X86_64_GOTTPOFF:
10774 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10775 case BFD_RELOC_X86_64_TLSDESC_CALL:
10776 rel->addend = fixp->fx_offset - fixp->fx_size;
10777 break;
10778 default:
10779 rel->addend = (section->vma
10780 - fixp->fx_size
10781 + fixp->fx_addnumber
10782 + md_pcrel_from (fixp));
10783 break;
10784 }
10785 }
10786
10787 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
10788 if (rel->howto == NULL)
10789 {
10790 as_bad_where (fixp->fx_file, fixp->fx_line,
10791 _("cannot represent relocation type %s"),
10792 bfd_get_reloc_code_name (code));
10793 /* Set howto to a garbage value so that we can keep going. */
10794 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
10795 gas_assert (rel->howto != NULL);
10796 }
10797
10798 return rel;
10799 }
10800
10801 #include "tc-i386-intel.c"
10802
10803 void
10804 tc_x86_parse_to_dw2regnum (expressionS *exp)
10805 {
10806 int saved_naked_reg;
10807 char saved_register_dot;
10808
10809 saved_naked_reg = allow_naked_reg;
10810 allow_naked_reg = 1;
10811 saved_register_dot = register_chars['.'];
10812 register_chars['.'] = '.';
10813 allow_pseudo_reg = 1;
10814 expression_and_evaluate (exp);
10815 allow_pseudo_reg = 0;
10816 register_chars['.'] = saved_register_dot;
10817 allow_naked_reg = saved_naked_reg;
10818
10819 if (exp->X_op == O_register && exp->X_add_number >= 0)
10820 {
10821 if ((addressT) exp->X_add_number < i386_regtab_size)
10822 {
10823 exp->X_op = O_constant;
10824 exp->X_add_number = i386_regtab[exp->X_add_number]
10825 .dw2_regnum[flag_code >> 1];
10826 }
10827 else
10828 exp->X_op = O_illegal;
10829 }
10830 }
10831
10832 void
10833 tc_x86_frame_initial_instructions (void)
10834 {
10835 static unsigned int sp_regno[2];
10836
10837 if (!sp_regno[flag_code >> 1])
10838 {
10839 char *saved_input = input_line_pointer;
10840 char sp[][4] = {"esp", "rsp"};
10841 expressionS exp;
10842
10843 input_line_pointer = sp[flag_code >> 1];
10844 tc_x86_parse_to_dw2regnum (&exp);
10845 gas_assert (exp.X_op == O_constant);
10846 sp_regno[flag_code >> 1] = exp.X_add_number;
10847 input_line_pointer = saved_input;
10848 }
10849
10850 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
10851 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
10852 }
10853
10854 int
10855 x86_dwarf2_addr_size (void)
10856 {
10857 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10858 if (x86_elf_abi == X86_64_X32_ABI)
10859 return 4;
10860 #endif
10861 return bfd_arch_bits_per_address (stdoutput) / 8;
10862 }
10863
10864 int
10865 i386_elf_section_type (const char *str, size_t len)
10866 {
10867 if (flag_code == CODE_64BIT
10868 && len == sizeof ("unwind") - 1
10869 && strncmp (str, "unwind", 6) == 0)
10870 return SHT_X86_64_UNWIND;
10871
10872 return -1;
10873 }
10874
10875 #ifdef TE_SOLARIS
10876 void
10877 i386_solaris_fix_up_eh_frame (segT sec)
10878 {
10879 if (flag_code == CODE_64BIT)
10880 elf_section_type (sec) = SHT_X86_64_UNWIND;
10881 }
10882 #endif
10883
10884 #ifdef TE_PE
10885 void
10886 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10887 {
10888 expressionS exp;
10889
10890 exp.X_op = O_secrel;
10891 exp.X_add_symbol = symbol;
10892 exp.X_add_number = 0;
10893 emit_expr (&exp, size);
10894 }
10895 #endif
10896
10897 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10898 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
10899
10900 bfd_vma
10901 x86_64_section_letter (int letter, const char **ptr_msg)
10902 {
10903 if (flag_code == CODE_64BIT)
10904 {
10905 if (letter == 'l')
10906 return SHF_X86_64_LARGE;
10907
10908 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
10909 }
10910 else
10911 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
10912 return -1;
10913 }
10914
10915 bfd_vma
10916 x86_64_section_word (char *str, size_t len)
10917 {
10918 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
10919 return SHF_X86_64_LARGE;
10920
10921 return -1;
10922 }
10923
10924 static void
10925 handle_large_common (int small ATTRIBUTE_UNUSED)
10926 {
10927 if (flag_code != CODE_64BIT)
10928 {
10929 s_comm_internal (0, elf_common_parse);
10930 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
10931 }
10932 else
10933 {
10934 static segT lbss_section;
10935 asection *saved_com_section_ptr = elf_com_section_ptr;
10936 asection *saved_bss_section = bss_section;
10937
10938 if (lbss_section == NULL)
10939 {
10940 flagword applicable;
10941 segT seg = now_seg;
10942 subsegT subseg = now_subseg;
10943
10944 /* The .lbss section is for local .largecomm symbols. */
10945 lbss_section = subseg_new (".lbss", 0);
10946 applicable = bfd_applicable_section_flags (stdoutput);
10947 bfd_set_section_flags (stdoutput, lbss_section,
10948 applicable & SEC_ALLOC);
10949 seg_info (lbss_section)->bss = 1;
10950
10951 subseg_set (seg, subseg);
10952 }
10953
10954 elf_com_section_ptr = &_bfd_elf_large_com_section;
10955 bss_section = lbss_section;
10956
10957 s_comm_internal (0, elf_common_parse);
10958
10959 elf_com_section_ptr = saved_com_section_ptr;
10960 bss_section = saved_bss_section;
10961 }
10962 }
10963 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.260454 seconds and 4 git commands to generate.