* config/atof-vax.c (md_atof): Fix comparison inside know().
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
29
30 #include "as.h"
31 #include "safe-ctype.h"
32 #include "subsegs.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "elf/x86-64.h"
36
37 #ifndef REGISTER_WARNINGS
38 #define REGISTER_WARNINGS 1
39 #endif
40
41 #ifndef INFER_ADDR_PREFIX
42 #define INFER_ADDR_PREFIX 1
43 #endif
44
45 #ifndef SCALE1_WHEN_NO_INDEX
46 /* Specifying a scale factor besides 1 when there is no index is
47 futile. eg. `mov (%ebx,2),%al' does exactly the same as
48 `mov (%ebx),%al'. To slavishly follow what the programmer
49 specified, set SCALE1_WHEN_NO_INDEX to 0. */
50 #define SCALE1_WHEN_NO_INDEX 1
51 #endif
52
53 #ifndef DEFAULT_ARCH
54 #define DEFAULT_ARCH "i386"
55 #endif
56
57 #ifndef INLINE
58 #if __GNUC__ >= 2
59 #define INLINE __inline__
60 #else
61 #define INLINE
62 #endif
63 #endif
64
65 static void set_code_flag (int);
66 static void set_16bit_gcc_code_flag (int);
67 static void set_intel_syntax (int);
68 static void set_cpu_arch (int);
69 #ifdef TE_PE
70 static void pe_directive_secrel (int);
71 #endif
72 static void signed_cons (int);
73 static char *output_invalid (int c);
74 static int i386_operand (char *);
75 static int i386_intel_operand (char *, int);
76 static const reg_entry *parse_register (char *, char **);
77 static char *parse_insn (char *, char *);
78 static char *parse_operands (char *, const char *);
79 static void swap_operands (void);
80 static void swap_2_operands (int, int);
81 static void optimize_imm (void);
82 static void optimize_disp (void);
83 static int match_template (void);
84 static int check_string (void);
85 static int process_suffix (void);
86 static int check_byte_reg (void);
87 static int check_long_reg (void);
88 static int check_qword_reg (void);
89 static int check_word_reg (void);
90 static int finalize_imm (void);
91 static int process_operands (void);
92 static const seg_entry *build_modrm_byte (void);
93 static void output_insn (void);
94 static void output_imm (fragS *, offsetT);
95 static void output_disp (fragS *, offsetT);
96 #ifndef I386COFF
97 static void s_bss (int);
98 #endif
99 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
100 static void handle_large_common (int small ATTRIBUTE_UNUSED);
101 #endif
102
103 static const char *default_arch = DEFAULT_ARCH;
104
105 /* 'md_assemble ()' gathers together information and puts it into a
106 i386_insn. */
107
108 union i386_op
109 {
110 expressionS *disps;
111 expressionS *imms;
112 const reg_entry *regs;
113 };
114
115 struct _i386_insn
116 {
117 /* TM holds the template for the insn were currently assembling. */
118 template tm;
119
120 /* SUFFIX holds the instruction mnemonic suffix if given.
121 (e.g. 'l' for 'movl') */
122 char suffix;
123
124 /* OPERANDS gives the number of given operands. */
125 unsigned int operands;
126
127 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
128 of given register, displacement, memory operands and immediate
129 operands. */
130 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
131
132 /* TYPES [i] is the type (see above #defines) which tells us how to
133 use OP[i] for the corresponding operand. */
134 unsigned int types[MAX_OPERANDS];
135
136 /* Displacement expression, immediate expression, or register for each
137 operand. */
138 union i386_op op[MAX_OPERANDS];
139
140 /* Flags for operands. */
141 unsigned int flags[MAX_OPERANDS];
142 #define Operand_PCrel 1
143
144 /* Relocation type for operand */
145 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
146
147 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
148 the base index byte below. */
149 const reg_entry *base_reg;
150 const reg_entry *index_reg;
151 unsigned int log2_scale_factor;
152
153 /* SEG gives the seg_entries of this insn. They are zero unless
154 explicit segment overrides are given. */
155 const seg_entry *seg[2];
156
157 /* PREFIX holds all the given prefix opcodes (usually null).
158 PREFIXES is the number of prefix opcodes. */
159 unsigned int prefixes;
160 unsigned char prefix[MAX_PREFIXES];
161
162 /* RM and SIB are the modrm byte and the sib byte where the
163 addressing modes of this insn are encoded. */
164
165 modrm_byte rm;
166 rex_byte rex;
167 sib_byte sib;
168 };
169
170 typedef struct _i386_insn i386_insn;
171
172 /* List of chars besides those in app.c:symbol_chars that can start an
173 operand. Used to prevent the scrubber eating vital white-space. */
174 const char extra_symbol_chars[] = "*%-(["
175 #ifdef LEX_AT
176 "@"
177 #endif
178 #ifdef LEX_QM
179 "?"
180 #endif
181 ;
182
183 #if (defined (TE_I386AIX) \
184 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
185 && !defined (TE_GNU) \
186 && !defined (TE_LINUX) \
187 && !defined (TE_NETWARE) \
188 && !defined (TE_FreeBSD) \
189 && !defined (TE_NetBSD)))
190 /* This array holds the chars that always start a comment. If the
191 pre-processor is disabled, these aren't very useful. The option
192 --divide will remove '/' from this list. */
193 const char *i386_comment_chars = "#/";
194 #define SVR4_COMMENT_CHARS 1
195 #define PREFIX_SEPARATOR '\\'
196
197 #else
198 const char *i386_comment_chars = "#";
199 #define PREFIX_SEPARATOR '/'
200 #endif
201
202 /* This array holds the chars that only start a comment at the beginning of
203 a line. If the line seems to have the form '# 123 filename'
204 .line and .file directives will appear in the pre-processed output.
205 Note that input_file.c hand checks for '#' at the beginning of the
206 first line of the input file. This is because the compiler outputs
207 #NO_APP at the beginning of its output.
208 Also note that comments started like this one will always work if
209 '/' isn't otherwise defined. */
210 const char line_comment_chars[] = "#/";
211
212 const char line_separator_chars[] = ";";
213
214 /* Chars that can be used to separate mant from exp in floating point
215 nums. */
216 const char EXP_CHARS[] = "eE";
217
218 /* Chars that mean this number is a floating point constant
219 As in 0f12.456
220 or 0d1.2345e12. */
221 const char FLT_CHARS[] = "fFdDxX";
222
223 /* Tables for lexical analysis. */
224 static char mnemonic_chars[256];
225 static char register_chars[256];
226 static char operand_chars[256];
227 static char identifier_chars[256];
228 static char digit_chars[256];
229
230 /* Lexical macros. */
231 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
232 #define is_operand_char(x) (operand_chars[(unsigned char) x])
233 #define is_register_char(x) (register_chars[(unsigned char) x])
234 #define is_space_char(x) ((x) == ' ')
235 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
236 #define is_digit_char(x) (digit_chars[(unsigned char) x])
237
238 /* All non-digit non-letter characters that may occur in an operand. */
239 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
240
241 /* md_assemble() always leaves the strings it's passed unaltered. To
242 effect this we maintain a stack of saved characters that we've smashed
243 with '\0's (indicating end of strings for various sub-fields of the
244 assembler instruction). */
245 static char save_stack[32];
246 static char *save_stack_p;
247 #define END_STRING_AND_SAVE(s) \
248 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
249 #define RESTORE_END_STRING(s) \
250 do { *(s) = *--save_stack_p; } while (0)
251
252 /* The instruction we're assembling. */
253 static i386_insn i;
254
255 /* Possible templates for current insn. */
256 static const templates *current_templates;
257
258 /* Per instruction expressionS buffers: max displacements & immediates. */
259 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
260 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
261
262 /* Current operand we are working on. */
263 static int this_operand;
264
265 /* We support four different modes. FLAG_CODE variable is used to distinguish
266 these. */
267
268 enum flag_code {
269 CODE_32BIT,
270 CODE_16BIT,
271 CODE_64BIT };
272 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
273
274 static enum flag_code flag_code;
275 static unsigned int object_64bit;
276 static int use_rela_relocations = 0;
277
278 /* The names used to print error messages. */
279 static const char *flag_code_names[] =
280 {
281 "32",
282 "16",
283 "64"
284 };
285
286 /* 1 for intel syntax,
287 0 if att syntax. */
288 static int intel_syntax = 0;
289
290 /* 1 if register prefix % not required. */
291 static int allow_naked_reg = 0;
292
293 /* Register prefix used for error message. */
294 static const char *register_prefix = "%";
295
296 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
297 leave, push, and pop instructions so that gcc has the same stack
298 frame as in 32 bit mode. */
299 static char stackop_size = '\0';
300
301 /* Non-zero to optimize code alignment. */
302 int optimize_align_code = 1;
303
304 /* Non-zero to quieten some warnings. */
305 static int quiet_warnings = 0;
306
307 /* CPU name. */
308 static const char *cpu_arch_name = NULL;
309 static const char *cpu_sub_arch_name = NULL;
310
311 /* CPU feature flags. */
312 static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
313
314 /* If we have selected a cpu we are generating instructions for. */
315 static int cpu_arch_tune_set = 0;
316
317 /* Cpu we are generating instructions for. */
318 static enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
319
320 /* CPU feature flags of cpu we are generating instructions for. */
321 static unsigned int cpu_arch_tune_flags = 0;
322
323 /* CPU instruction set architecture used. */
324 static enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
325
326 /* CPU feature flags of instruction set architecture used. */
327 static unsigned int cpu_arch_isa_flags = 0;
328
329 /* If set, conditional jumps are not automatically promoted to handle
330 larger than a byte offset. */
331 static unsigned int no_cond_jump_promotion = 0;
332
333 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
334 static symbolS *GOT_symbol;
335
336 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
337 unsigned int x86_dwarf2_return_column;
338
339 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
340 int x86_cie_data_alignment;
341
342 /* Interface to relax_segment.
343 There are 3 major relax states for 386 jump insns because the
344 different types of jumps add different sizes to frags when we're
345 figuring out what sort of jump to choose to reach a given label. */
346
347 /* Types. */
348 #define UNCOND_JUMP 0
349 #define COND_JUMP 1
350 #define COND_JUMP86 2
351
352 /* Sizes. */
353 #define CODE16 1
354 #define SMALL 0
355 #define SMALL16 (SMALL | CODE16)
356 #define BIG 2
357 #define BIG16 (BIG | CODE16)
358
359 #ifndef INLINE
360 #ifdef __GNUC__
361 #define INLINE __inline__
362 #else
363 #define INLINE
364 #endif
365 #endif
366
367 #define ENCODE_RELAX_STATE(type, size) \
368 ((relax_substateT) (((type) << 2) | (size)))
369 #define TYPE_FROM_RELAX_STATE(s) \
370 ((s) >> 2)
371 #define DISP_SIZE_FROM_RELAX_STATE(s) \
372 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
373
374 /* This table is used by relax_frag to promote short jumps to long
375 ones where necessary. SMALL (short) jumps may be promoted to BIG
376 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
377 don't allow a short jump in a 32 bit code segment to be promoted to
378 a 16 bit offset jump because it's slower (requires data size
379 prefix), and doesn't work, unless the destination is in the bottom
380 64k of the code segment (The top 16 bits of eip are zeroed). */
381
382 const relax_typeS md_relax_table[] =
383 {
384 /* The fields are:
385 1) most positive reach of this state,
386 2) most negative reach of this state,
387 3) how many bytes this mode will have in the variable part of the frag
388 4) which index into the table to try if we can't fit into this one. */
389
390 /* UNCOND_JUMP states. */
391 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
392 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
393 /* dword jmp adds 4 bytes to frag:
394 0 extra opcode bytes, 4 displacement bytes. */
395 {0, 0, 4, 0},
396 /* word jmp adds 2 byte2 to frag:
397 0 extra opcode bytes, 2 displacement bytes. */
398 {0, 0, 2, 0},
399
400 /* COND_JUMP states. */
401 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
402 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
403 /* dword conditionals adds 5 bytes to frag:
404 1 extra opcode byte, 4 displacement bytes. */
405 {0, 0, 5, 0},
406 /* word conditionals add 3 bytes to frag:
407 1 extra opcode byte, 2 displacement bytes. */
408 {0, 0, 3, 0},
409
410 /* COND_JUMP86 states. */
411 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
412 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
413 /* dword conditionals adds 5 bytes to frag:
414 1 extra opcode byte, 4 displacement bytes. */
415 {0, 0, 5, 0},
416 /* word conditionals add 4 bytes to frag:
417 1 displacement byte and a 3 byte long branch insn. */
418 {0, 0, 4, 0}
419 };
420
421 static const arch_entry cpu_arch[] =
422 {
423 {"generic32", PROCESSOR_GENERIC32,
424 Cpu186|Cpu286|Cpu386},
425 {"generic64", PROCESSOR_GENERIC64,
426 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
427 |CpuMMX2|CpuSSE|CpuSSE2},
428 {"i8086", PROCESSOR_UNKNOWN,
429 0},
430 {"i186", PROCESSOR_UNKNOWN,
431 Cpu186},
432 {"i286", PROCESSOR_UNKNOWN,
433 Cpu186|Cpu286},
434 {"i386", PROCESSOR_GENERIC32,
435 Cpu186|Cpu286|Cpu386},
436 {"i486", PROCESSOR_I486,
437 Cpu186|Cpu286|Cpu386|Cpu486},
438 {"i586", PROCESSOR_PENTIUM,
439 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586},
440 {"i686", PROCESSOR_PENTIUMPRO,
441 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686},
442 {"pentium", PROCESSOR_PENTIUM,
443 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586},
444 {"pentiumpro",PROCESSOR_PENTIUMPRO,
445 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686},
446 {"pentiumii", PROCESSOR_PENTIUMPRO,
447 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX},
448 {"pentiumiii",PROCESSOR_PENTIUMPRO,
449 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuMMX2|CpuSSE},
450 {"pentium4", PROCESSOR_PENTIUM4,
451 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
452 |CpuMMX2|CpuSSE|CpuSSE2},
453 {"prescott", PROCESSOR_NOCONA,
454 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
455 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
456 {"nocona", PROCESSOR_NOCONA,
457 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
458 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
459 {"yonah", PROCESSOR_CORE,
460 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
461 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
462 {"core", PROCESSOR_CORE,
463 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
464 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
465 {"merom", PROCESSOR_CORE2,
466 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
467 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
468 {"core2", PROCESSOR_CORE2,
469 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
470 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
471 {"k6", PROCESSOR_K6,
472 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX},
473 {"k6_2", PROCESSOR_K6,
474 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow},
475 {"athlon", PROCESSOR_ATHLON,
476 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
477 |CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA},
478 {"sledgehammer", PROCESSOR_K8,
479 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
480 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
481 {"opteron", PROCESSOR_K8,
482 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
483 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
484 {"k8", PROCESSOR_K8,
485 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
486 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
487 {"amdfam10", PROCESSOR_AMDFAM10,
488 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuSledgehammer
489 |CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2|CpuSSE3|CpuSSE4a
490 |CpuABM},
491 {".mmx", PROCESSOR_UNKNOWN,
492 CpuMMX},
493 {".sse", PROCESSOR_UNKNOWN,
494 CpuMMX|CpuMMX2|CpuSSE},
495 {".sse2", PROCESSOR_UNKNOWN,
496 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2},
497 {".sse3", PROCESSOR_UNKNOWN,
498 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
499 {".ssse3", PROCESSOR_UNKNOWN,
500 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
501 {".sse4.1", PROCESSOR_UNKNOWN,
502 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3|CpuSSE4_1},
503 {".sse4.2", PROCESSOR_UNKNOWN,
504 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3|CpuSSE4},
505 {".sse4", PROCESSOR_UNKNOWN,
506 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3|CpuSSE4},
507 {".3dnow", PROCESSOR_UNKNOWN,
508 CpuMMX|Cpu3dnow},
509 {".3dnowa", PROCESSOR_UNKNOWN,
510 CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA},
511 {".padlock", PROCESSOR_UNKNOWN,
512 CpuPadLock},
513 {".pacifica", PROCESSOR_UNKNOWN,
514 CpuSVME},
515 {".svme", PROCESSOR_UNKNOWN,
516 CpuSVME},
517 {".sse4a", PROCESSOR_UNKNOWN,
518 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSE4a},
519 {".abm", PROCESSOR_UNKNOWN,
520 CpuABM}
521 };
522
523 const pseudo_typeS md_pseudo_table[] =
524 {
525 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
526 {"align", s_align_bytes, 0},
527 #else
528 {"align", s_align_ptwo, 0},
529 #endif
530 {"arch", set_cpu_arch, 0},
531 #ifndef I386COFF
532 {"bss", s_bss, 0},
533 #endif
534 {"ffloat", float_cons, 'f'},
535 {"dfloat", float_cons, 'd'},
536 {"tfloat", float_cons, 'x'},
537 {"value", cons, 2},
538 {"slong", signed_cons, 4},
539 {"noopt", s_ignore, 0},
540 {"optim", s_ignore, 0},
541 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
542 {"code16", set_code_flag, CODE_16BIT},
543 {"code32", set_code_flag, CODE_32BIT},
544 {"code64", set_code_flag, CODE_64BIT},
545 {"intel_syntax", set_intel_syntax, 1},
546 {"att_syntax", set_intel_syntax, 0},
547 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
548 {"largecomm", handle_large_common, 0},
549 #else
550 {"file", (void (*) (int)) dwarf2_directive_file, 0},
551 {"loc", dwarf2_directive_loc, 0},
552 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
553 #endif
554 #ifdef TE_PE
555 {"secrel32", pe_directive_secrel, 0},
556 #endif
557 {0, 0, 0}
558 };
559
560 /* For interface with expression (). */
561 extern char *input_line_pointer;
562
563 /* Hash table for instruction mnemonic lookup. */
564 static struct hash_control *op_hash;
565
566 /* Hash table for register lookup. */
567 static struct hash_control *reg_hash;
568 \f
569 void
570 i386_align_code (fragS *fragP, int count)
571 {
572 /* Various efficient no-op patterns for aligning code labels.
573 Note: Don't try to assemble the instructions in the comments.
574 0L and 0w are not legal. */
575 static const char f32_1[] =
576 {0x90}; /* nop */
577 static const char f32_2[] =
578 {0x66,0x90}; /* xchg %ax,%ax */
579 static const char f32_3[] =
580 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
581 static const char f32_4[] =
582 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
583 static const char f32_5[] =
584 {0x90, /* nop */
585 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
586 static const char f32_6[] =
587 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
588 static const char f32_7[] =
589 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
590 static const char f32_8[] =
591 {0x90, /* nop */
592 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
593 static const char f32_9[] =
594 {0x89,0xf6, /* movl %esi,%esi */
595 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
596 static const char f32_10[] =
597 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
598 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
599 static const char f32_11[] =
600 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
601 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
602 static const char f32_12[] =
603 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
604 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
605 static const char f32_13[] =
606 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
607 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
608 static const char f32_14[] =
609 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
610 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
611 static const char f32_15[] =
612 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
613 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
614 static const char f16_3[] =
615 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
616 static const char f16_4[] =
617 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
618 static const char f16_5[] =
619 {0x90, /* nop */
620 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
621 static const char f16_6[] =
622 {0x89,0xf6, /* mov %si,%si */
623 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
624 static const char f16_7[] =
625 {0x8d,0x74,0x00, /* lea 0(%si),%si */
626 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
627 static const char f16_8[] =
628 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
629 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
630 static const char *const f32_patt[] = {
631 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
632 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
633 };
634 static const char *const f16_patt[] = {
635 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
636 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
637 };
638 /* nopl (%[re]ax) */
639 static const char alt_3[] =
640 {0x0f,0x1f,0x00};
641 /* nopl 0(%[re]ax) */
642 static const char alt_4[] =
643 {0x0f,0x1f,0x40,0x00};
644 /* nopl 0(%[re]ax,%[re]ax,1) */
645 static const char alt_5[] =
646 {0x0f,0x1f,0x44,0x00,0x00};
647 /* nopw 0(%[re]ax,%[re]ax,1) */
648 static const char alt_6[] =
649 {0x66,0x0f,0x1f,0x44,0x00,0x00};
650 /* nopl 0L(%[re]ax) */
651 static const char alt_7[] =
652 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
653 /* nopl 0L(%[re]ax,%[re]ax,1) */
654 static const char alt_8[] =
655 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
656 /* nopw 0L(%[re]ax,%[re]ax,1) */
657 static const char alt_9[] =
658 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
659 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
660 static const char alt_10[] =
661 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
662 /* data16
663 nopw %cs:0L(%[re]ax,%[re]ax,1) */
664 static const char alt_long_11[] =
665 {0x66,
666 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
667 /* data16
668 data16
669 nopw %cs:0L(%[re]ax,%[re]ax,1) */
670 static const char alt_long_12[] =
671 {0x66,
672 0x66,
673 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
674 /* data16
675 data16
676 data16
677 nopw %cs:0L(%[re]ax,%[re]ax,1) */
678 static const char alt_long_13[] =
679 {0x66,
680 0x66,
681 0x66,
682 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
683 /* data16
684 data16
685 data16
686 data16
687 nopw %cs:0L(%[re]ax,%[re]ax,1) */
688 static const char alt_long_14[] =
689 {0x66,
690 0x66,
691 0x66,
692 0x66,
693 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
694 /* data16
695 data16
696 data16
697 data16
698 data16
699 nopw %cs:0L(%[re]ax,%[re]ax,1) */
700 static const char alt_long_15[] =
701 {0x66,
702 0x66,
703 0x66,
704 0x66,
705 0x66,
706 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
707 /* nopl 0(%[re]ax,%[re]ax,1)
708 nopw 0(%[re]ax,%[re]ax,1) */
709 static const char alt_short_11[] =
710 {0x0f,0x1f,0x44,0x00,0x00,
711 0x66,0x0f,0x1f,0x44,0x00,0x00};
712 /* nopw 0(%[re]ax,%[re]ax,1)
713 nopw 0(%[re]ax,%[re]ax,1) */
714 static const char alt_short_12[] =
715 {0x66,0x0f,0x1f,0x44,0x00,0x00,
716 0x66,0x0f,0x1f,0x44,0x00,0x00};
717 /* nopw 0(%[re]ax,%[re]ax,1)
718 nopl 0L(%[re]ax) */
719 static const char alt_short_13[] =
720 {0x66,0x0f,0x1f,0x44,0x00,0x00,
721 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
722 /* nopl 0L(%[re]ax)
723 nopl 0L(%[re]ax) */
724 static const char alt_short_14[] =
725 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
726 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
727 /* nopl 0L(%[re]ax)
728 nopl 0L(%[re]ax,%[re]ax,1) */
729 static const char alt_short_15[] =
730 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
731 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
732 static const char *const alt_short_patt[] = {
733 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
734 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
735 alt_short_14, alt_short_15
736 };
737 static const char *const alt_long_patt[] = {
738 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
739 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
740 alt_long_14, alt_long_15
741 };
742
743 if (count <= 0 || count > 15)
744 return;
745
746 /* We need to decide which NOP sequence to use for 32bit and
747 64bit. When -mtune= is used:
748
749 1. For PROCESSOR_I486, PROCESSOR_PENTIUM and PROCESSOR_GENERIC32,
750 f32_patt will be used.
751 2. For PROCESSOR_K8 and PROCESSOR_AMDFAM10 in 64bit, NOPs with
752 0x66 prefix will be used.
753 3. For PROCESSOR_CORE2, alt_long_patt will be used.
754 4. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
755 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_K6, PROCESSOR_ATHLON
756 and PROCESSOR_GENERIC64, alt_short_patt will be used.
757
758 When -mtune= isn't used, alt_short_patt will be used if
759 cpu_arch_isa_flags has Cpu686. Otherwise, f32_patt will be used.
760
761 When -march= or .arch is used, we can't use anything beyond
762 cpu_arch_isa_flags. */
763
764 if (flag_code == CODE_16BIT)
765 {
766 memcpy (fragP->fr_literal + fragP->fr_fix,
767 f16_patt[count - 1], count);
768 if (count > 8)
769 /* Adjust jump offset. */
770 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
771 }
772 else if (flag_code == CODE_64BIT && cpu_arch_tune == PROCESSOR_K8)
773 {
774 int i;
775 int nnops = (count + 3) / 4;
776 int len = count / nnops;
777 int remains = count - nnops * len;
778 int pos = 0;
779
780 /* The recommended way to pad 64bit code is to use NOPs preceded
781 by maximally four 0x66 prefixes. Balance the size of nops. */
782 for (i = 0; i < remains; i++)
783 {
784 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len);
785 fragP->fr_literal[fragP->fr_fix + pos + len] = 0x90;
786 pos += len + 1;
787 }
788 for (; i < nnops; i++)
789 {
790 memset (fragP->fr_literal + fragP->fr_fix + pos, 0x66, len - 1);
791 fragP->fr_literal[fragP->fr_fix + pos + len - 1] = 0x90;
792 pos += len;
793 }
794 }
795 else
796 {
797 const char *const *patt = NULL;
798
799 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
800 {
801 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
802 switch (cpu_arch_tune)
803 {
804 case PROCESSOR_UNKNOWN:
805 /* We use cpu_arch_isa_flags to check if we SHOULD
806 optimize for Cpu686. */
807 if ((cpu_arch_isa_flags & Cpu686) != 0)
808 patt = alt_short_patt;
809 else
810 patt = f32_patt;
811 break;
812 case PROCESSOR_CORE2:
813 patt = alt_long_patt;
814 break;
815 case PROCESSOR_PENTIUMPRO:
816 case PROCESSOR_PENTIUM4:
817 case PROCESSOR_NOCONA:
818 case PROCESSOR_CORE:
819 case PROCESSOR_K6:
820 case PROCESSOR_ATHLON:
821 case PROCESSOR_K8:
822 case PROCESSOR_GENERIC64:
823 case PROCESSOR_AMDFAM10:
824 patt = alt_short_patt;
825 break;
826 case PROCESSOR_I486:
827 case PROCESSOR_PENTIUM:
828 case PROCESSOR_GENERIC32:
829 patt = f32_patt;
830 break;
831 }
832 }
833 else
834 {
835 switch (cpu_arch_tune)
836 {
837 case PROCESSOR_UNKNOWN:
838 /* When cpu_arch_isa is net, cpu_arch_tune shouldn't be
839 PROCESSOR_UNKNOWN. */
840 abort ();
841 break;
842
843 case PROCESSOR_I486:
844 case PROCESSOR_PENTIUM:
845 case PROCESSOR_PENTIUMPRO:
846 case PROCESSOR_PENTIUM4:
847 case PROCESSOR_NOCONA:
848 case PROCESSOR_CORE:
849 case PROCESSOR_K6:
850 case PROCESSOR_ATHLON:
851 case PROCESSOR_K8:
852 case PROCESSOR_AMDFAM10:
853 case PROCESSOR_GENERIC32:
854 /* We use cpu_arch_isa_flags to check if we CAN optimize
855 for Cpu686. */
856 if ((cpu_arch_isa_flags & Cpu686) != 0)
857 patt = alt_short_patt;
858 else
859 patt = f32_patt;
860 break;
861 case PROCESSOR_CORE2:
862 if ((cpu_arch_isa_flags & Cpu686) != 0)
863 patt = alt_long_patt;
864 else
865 patt = f32_patt;
866 break;
867 case PROCESSOR_GENERIC64:
868 patt = alt_short_patt;
869 break;
870 }
871 }
872
873 memcpy (fragP->fr_literal + fragP->fr_fix,
874 patt[count - 1], count);
875 }
876 fragP->fr_var = count;
877 }
878
879 static INLINE unsigned int
880 mode_from_disp_size (unsigned int t)
881 {
882 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
883 }
884
885 static INLINE int
886 fits_in_signed_byte (offsetT num)
887 {
888 return (num >= -128) && (num <= 127);
889 }
890
891 static INLINE int
892 fits_in_unsigned_byte (offsetT num)
893 {
894 return (num & 0xff) == num;
895 }
896
897 static INLINE int
898 fits_in_unsigned_word (offsetT num)
899 {
900 return (num & 0xffff) == num;
901 }
902
903 static INLINE int
904 fits_in_signed_word (offsetT num)
905 {
906 return (-32768 <= num) && (num <= 32767);
907 }
908
909 static INLINE int
910 fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
911 {
912 #ifndef BFD64
913 return 1;
914 #else
915 return (!(((offsetT) -1 << 31) & num)
916 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
917 #endif
918 } /* fits_in_signed_long() */
919
920 static INLINE int
921 fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
922 {
923 #ifndef BFD64
924 return 1;
925 #else
926 return (num & (((offsetT) 2 << 31) - 1)) == num;
927 #endif
928 } /* fits_in_unsigned_long() */
929
930 static unsigned int
931 smallest_imm_type (offsetT num)
932 {
933 if (cpu_arch_flags != (Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
934 {
935 /* This code is disabled on the 486 because all the Imm1 forms
936 in the opcode table are slower on the i486. They're the
937 versions with the implicitly specified single-position
938 displacement, which has another syntax if you really want to
939 use that form. */
940 if (num == 1)
941 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
942 }
943 return (fits_in_signed_byte (num)
944 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
945 : fits_in_unsigned_byte (num)
946 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
947 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
948 ? (Imm16 | Imm32 | Imm32S | Imm64)
949 : fits_in_signed_long (num)
950 ? (Imm32 | Imm32S | Imm64)
951 : fits_in_unsigned_long (num)
952 ? (Imm32 | Imm64)
953 : Imm64);
954 }
955
956 static offsetT
957 offset_in_range (offsetT val, int size)
958 {
959 addressT mask;
960
961 switch (size)
962 {
963 case 1: mask = ((addressT) 1 << 8) - 1; break;
964 case 2: mask = ((addressT) 1 << 16) - 1; break;
965 case 4: mask = ((addressT) 2 << 31) - 1; break;
966 #ifdef BFD64
967 case 8: mask = ((addressT) 2 << 63) - 1; break;
968 #endif
969 default: abort ();
970 }
971
972 /* If BFD64, sign extend val. */
973 if (!use_rela_relocations)
974 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
975 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
976
977 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
978 {
979 char buf1[40], buf2[40];
980
981 sprint_value (buf1, val);
982 sprint_value (buf2, val & mask);
983 as_warn (_("%s shortened to %s"), buf1, buf2);
984 }
985 return val & mask;
986 }
987
988 /* Returns 0 if attempting to add a prefix where one from the same
989 class already exists, 1 if non rep/repne added, 2 if rep/repne
990 added. */
991 static int
992 add_prefix (unsigned int prefix)
993 {
994 int ret = 1;
995 unsigned int q;
996
997 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
998 && flag_code == CODE_64BIT)
999 {
1000 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
1001 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
1002 && (prefix & (REX_R | REX_X | REX_B))))
1003 ret = 0;
1004 q = REX_PREFIX;
1005 }
1006 else
1007 {
1008 switch (prefix)
1009 {
1010 default:
1011 abort ();
1012
1013 case CS_PREFIX_OPCODE:
1014 case DS_PREFIX_OPCODE:
1015 case ES_PREFIX_OPCODE:
1016 case FS_PREFIX_OPCODE:
1017 case GS_PREFIX_OPCODE:
1018 case SS_PREFIX_OPCODE:
1019 q = SEG_PREFIX;
1020 break;
1021
1022 case REPNE_PREFIX_OPCODE:
1023 case REPE_PREFIX_OPCODE:
1024 ret = 2;
1025 /* fall thru */
1026 case LOCK_PREFIX_OPCODE:
1027 q = LOCKREP_PREFIX;
1028 break;
1029
1030 case FWAIT_OPCODE:
1031 q = WAIT_PREFIX;
1032 break;
1033
1034 case ADDR_PREFIX_OPCODE:
1035 q = ADDR_PREFIX;
1036 break;
1037
1038 case DATA_PREFIX_OPCODE:
1039 q = DATA_PREFIX;
1040 break;
1041 }
1042 if (i.prefix[q] != 0)
1043 ret = 0;
1044 }
1045
1046 if (ret)
1047 {
1048 if (!i.prefix[q])
1049 ++i.prefixes;
1050 i.prefix[q] |= prefix;
1051 }
1052 else
1053 as_bad (_("same type of prefix used twice"));
1054
1055 return ret;
1056 }
1057
1058 static void
1059 set_code_flag (int value)
1060 {
1061 flag_code = value;
1062 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
1063 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
1064 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
1065 {
1066 as_bad (_("64bit mode not supported on this CPU."));
1067 }
1068 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
1069 {
1070 as_bad (_("32bit mode not supported on this CPU."));
1071 }
1072 stackop_size = '\0';
1073 }
1074
1075 static void
1076 set_16bit_gcc_code_flag (int new_code_flag)
1077 {
1078 flag_code = new_code_flag;
1079 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
1080 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
1081 stackop_size = LONG_MNEM_SUFFIX;
1082 }
1083
1084 static void
1085 set_intel_syntax (int syntax_flag)
1086 {
1087 /* Find out if register prefixing is specified. */
1088 int ask_naked_reg = 0;
1089
1090 SKIP_WHITESPACE ();
1091 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1092 {
1093 char *string = input_line_pointer;
1094 int e = get_symbol_end ();
1095
1096 if (strcmp (string, "prefix") == 0)
1097 ask_naked_reg = 1;
1098 else if (strcmp (string, "noprefix") == 0)
1099 ask_naked_reg = -1;
1100 else
1101 as_bad (_("bad argument to syntax directive."));
1102 *input_line_pointer = e;
1103 }
1104 demand_empty_rest_of_line ();
1105
1106 intel_syntax = syntax_flag;
1107
1108 if (ask_naked_reg == 0)
1109 allow_naked_reg = (intel_syntax
1110 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
1111 else
1112 allow_naked_reg = (ask_naked_reg < 0);
1113
1114 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
1115 identifier_chars['$'] = intel_syntax ? '$' : 0;
1116 register_prefix = allow_naked_reg ? "" : "%";
1117 }
1118
1119 static void
1120 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
1121 {
1122 SKIP_WHITESPACE ();
1123
1124 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1125 {
1126 char *string = input_line_pointer;
1127 int e = get_symbol_end ();
1128 unsigned int i;
1129
1130 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
1131 {
1132 if (strcmp (string, cpu_arch[i].name) == 0)
1133 {
1134 if (*string != '.')
1135 {
1136 cpu_arch_name = cpu_arch[i].name;
1137 cpu_sub_arch_name = NULL;
1138 cpu_arch_flags = (cpu_arch[i].flags
1139 | (flag_code == CODE_64BIT
1140 ? Cpu64 : CpuNo64));
1141 cpu_arch_isa = cpu_arch[i].type;
1142 cpu_arch_isa_flags = cpu_arch[i].flags;
1143 if (!cpu_arch_tune_set)
1144 {
1145 cpu_arch_tune = cpu_arch_isa;
1146 cpu_arch_tune_flags = cpu_arch_isa_flags;
1147 }
1148 break;
1149 }
1150 if ((cpu_arch_flags | cpu_arch[i].flags) != cpu_arch_flags)
1151 {
1152 cpu_sub_arch_name = cpu_arch[i].name;
1153 cpu_arch_flags |= cpu_arch[i].flags;
1154 }
1155 *input_line_pointer = e;
1156 demand_empty_rest_of_line ();
1157 return;
1158 }
1159 }
1160 if (i >= ARRAY_SIZE (cpu_arch))
1161 as_bad (_("no such architecture: `%s'"), string);
1162
1163 *input_line_pointer = e;
1164 }
1165 else
1166 as_bad (_("missing cpu architecture"));
1167
1168 no_cond_jump_promotion = 0;
1169 if (*input_line_pointer == ','
1170 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
1171 {
1172 char *string = ++input_line_pointer;
1173 int e = get_symbol_end ();
1174
1175 if (strcmp (string, "nojumps") == 0)
1176 no_cond_jump_promotion = 1;
1177 else if (strcmp (string, "jumps") == 0)
1178 ;
1179 else
1180 as_bad (_("no such architecture modifier: `%s'"), string);
1181
1182 *input_line_pointer = e;
1183 }
1184
1185 demand_empty_rest_of_line ();
1186 }
1187
1188 unsigned long
1189 i386_mach ()
1190 {
1191 if (!strcmp (default_arch, "x86_64"))
1192 return bfd_mach_x86_64;
1193 else if (!strcmp (default_arch, "i386"))
1194 return bfd_mach_i386_i386;
1195 else
1196 as_fatal (_("Unknown architecture"));
1197 }
1198 \f
1199 void
1200 md_begin ()
1201 {
1202 const char *hash_err;
1203
1204 /* Initialize op_hash hash table. */
1205 op_hash = hash_new ();
1206
1207 {
1208 const template *optab;
1209 templates *core_optab;
1210
1211 /* Setup for loop. */
1212 optab = i386_optab;
1213 core_optab = (templates *) xmalloc (sizeof (templates));
1214 core_optab->start = optab;
1215
1216 while (1)
1217 {
1218 ++optab;
1219 if (optab->name == NULL
1220 || strcmp (optab->name, (optab - 1)->name) != 0)
1221 {
1222 /* different name --> ship out current template list;
1223 add to hash table; & begin anew. */
1224 core_optab->end = optab;
1225 hash_err = hash_insert (op_hash,
1226 (optab - 1)->name,
1227 (PTR) core_optab);
1228 if (hash_err)
1229 {
1230 as_fatal (_("Internal Error: Can't hash %s: %s"),
1231 (optab - 1)->name,
1232 hash_err);
1233 }
1234 if (optab->name == NULL)
1235 break;
1236 core_optab = (templates *) xmalloc (sizeof (templates));
1237 core_optab->start = optab;
1238 }
1239 }
1240 }
1241
1242 /* Initialize reg_hash hash table. */
1243 reg_hash = hash_new ();
1244 {
1245 const reg_entry *regtab;
1246 unsigned int regtab_size = i386_regtab_size;
1247
1248 for (regtab = i386_regtab; regtab_size--; regtab++)
1249 {
1250 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
1251 if (hash_err)
1252 as_fatal (_("Internal Error: Can't hash %s: %s"),
1253 regtab->reg_name,
1254 hash_err);
1255 }
1256 }
1257
1258 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
1259 {
1260 int c;
1261 char *p;
1262
1263 for (c = 0; c < 256; c++)
1264 {
1265 if (ISDIGIT (c))
1266 {
1267 digit_chars[c] = c;
1268 mnemonic_chars[c] = c;
1269 register_chars[c] = c;
1270 operand_chars[c] = c;
1271 }
1272 else if (ISLOWER (c))
1273 {
1274 mnemonic_chars[c] = c;
1275 register_chars[c] = c;
1276 operand_chars[c] = c;
1277 }
1278 else if (ISUPPER (c))
1279 {
1280 mnemonic_chars[c] = TOLOWER (c);
1281 register_chars[c] = mnemonic_chars[c];
1282 operand_chars[c] = c;
1283 }
1284
1285 if (ISALPHA (c) || ISDIGIT (c))
1286 identifier_chars[c] = c;
1287 else if (c >= 128)
1288 {
1289 identifier_chars[c] = c;
1290 operand_chars[c] = c;
1291 }
1292 }
1293
1294 #ifdef LEX_AT
1295 identifier_chars['@'] = '@';
1296 #endif
1297 #ifdef LEX_QM
1298 identifier_chars['?'] = '?';
1299 operand_chars['?'] = '?';
1300 #endif
1301 digit_chars['-'] = '-';
1302 mnemonic_chars['-'] = '-';
1303 mnemonic_chars['.'] = '.';
1304 identifier_chars['_'] = '_';
1305 identifier_chars['.'] = '.';
1306
1307 for (p = operand_special_chars; *p != '\0'; p++)
1308 operand_chars[(unsigned char) *p] = *p;
1309 }
1310
1311 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1312 if (IS_ELF)
1313 {
1314 record_alignment (text_section, 2);
1315 record_alignment (data_section, 2);
1316 record_alignment (bss_section, 2);
1317 }
1318 #endif
1319
1320 if (flag_code == CODE_64BIT)
1321 {
1322 x86_dwarf2_return_column = 16;
1323 x86_cie_data_alignment = -8;
1324 }
1325 else
1326 {
1327 x86_dwarf2_return_column = 8;
1328 x86_cie_data_alignment = -4;
1329 }
1330 }
1331
1332 void
1333 i386_print_statistics (FILE *file)
1334 {
1335 hash_print_statistics (file, "i386 opcode", op_hash);
1336 hash_print_statistics (file, "i386 register", reg_hash);
1337 }
1338 \f
1339 #ifdef DEBUG386
1340
1341 /* Debugging routines for md_assemble. */
1342 static void pte (template *);
1343 static void pt (unsigned int);
1344 static void pe (expressionS *);
1345 static void ps (symbolS *);
1346
1347 static void
1348 pi (char *line, i386_insn *x)
1349 {
1350 unsigned int i;
1351
1352 fprintf (stdout, "%s: template ", line);
1353 pte (&x->tm);
1354 fprintf (stdout, " address: base %s index %s scale %x\n",
1355 x->base_reg ? x->base_reg->reg_name : "none",
1356 x->index_reg ? x->index_reg->reg_name : "none",
1357 x->log2_scale_factor);
1358 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
1359 x->rm.mode, x->rm.reg, x->rm.regmem);
1360 fprintf (stdout, " sib: base %x index %x scale %x\n",
1361 x->sib.base, x->sib.index, x->sib.scale);
1362 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
1363 (x->rex & REX_W) != 0,
1364 (x->rex & REX_R) != 0,
1365 (x->rex & REX_X) != 0,
1366 (x->rex & REX_B) != 0);
1367 for (i = 0; i < x->operands; i++)
1368 {
1369 fprintf (stdout, " #%d: ", i + 1);
1370 pt (x->types[i]);
1371 fprintf (stdout, "\n");
1372 if (x->types[i]
1373 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
1374 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
1375 if (x->types[i] & Imm)
1376 pe (x->op[i].imms);
1377 if (x->types[i] & Disp)
1378 pe (x->op[i].disps);
1379 }
1380 }
1381
1382 static void
1383 pte (template *t)
1384 {
1385 unsigned int i;
1386 fprintf (stdout, " %d operands ", t->operands);
1387 fprintf (stdout, "opcode %x ", t->base_opcode);
1388 if (t->extension_opcode != None)
1389 fprintf (stdout, "ext %x ", t->extension_opcode);
1390 if (t->opcode_modifier & D)
1391 fprintf (stdout, "D");
1392 if (t->opcode_modifier & W)
1393 fprintf (stdout, "W");
1394 fprintf (stdout, "\n");
1395 for (i = 0; i < t->operands; i++)
1396 {
1397 fprintf (stdout, " #%d type ", i + 1);
1398 pt (t->operand_types[i]);
1399 fprintf (stdout, "\n");
1400 }
1401 }
1402
1403 static void
1404 pe (expressionS *e)
1405 {
1406 fprintf (stdout, " operation %d\n", e->X_op);
1407 fprintf (stdout, " add_number %ld (%lx)\n",
1408 (long) e->X_add_number, (long) e->X_add_number);
1409 if (e->X_add_symbol)
1410 {
1411 fprintf (stdout, " add_symbol ");
1412 ps (e->X_add_symbol);
1413 fprintf (stdout, "\n");
1414 }
1415 if (e->X_op_symbol)
1416 {
1417 fprintf (stdout, " op_symbol ");
1418 ps (e->X_op_symbol);
1419 fprintf (stdout, "\n");
1420 }
1421 }
1422
1423 static void
1424 ps (symbolS *s)
1425 {
1426 fprintf (stdout, "%s type %s%s",
1427 S_GET_NAME (s),
1428 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1429 segment_name (S_GET_SEGMENT (s)));
1430 }
1431
1432 static struct type_name
1433 {
1434 unsigned int mask;
1435 char *tname;
1436 }
1437 const type_names[] =
1438 {
1439 { Reg8, "r8" },
1440 { Reg16, "r16" },
1441 { Reg32, "r32" },
1442 { Reg64, "r64" },
1443 { Imm8, "i8" },
1444 { Imm8S, "i8s" },
1445 { Imm16, "i16" },
1446 { Imm32, "i32" },
1447 { Imm32S, "i32s" },
1448 { Imm64, "i64" },
1449 { Imm1, "i1" },
1450 { BaseIndex, "BaseIndex" },
1451 { Disp8, "d8" },
1452 { Disp16, "d16" },
1453 { Disp32, "d32" },
1454 { Disp32S, "d32s" },
1455 { Disp64, "d64" },
1456 { InOutPortReg, "InOutPortReg" },
1457 { ShiftCount, "ShiftCount" },
1458 { Control, "control reg" },
1459 { Test, "test reg" },
1460 { Debug, "debug reg" },
1461 { FloatReg, "FReg" },
1462 { FloatAcc, "FAcc" },
1463 { SReg2, "SReg2" },
1464 { SReg3, "SReg3" },
1465 { Acc, "Acc" },
1466 { JumpAbsolute, "Jump Absolute" },
1467 { RegMMX, "rMMX" },
1468 { RegXMM, "rXMM" },
1469 { EsSeg, "es" },
1470 { 0, "" }
1471 };
1472
1473 static void
1474 pt (t)
1475 unsigned int t;
1476 {
1477 const struct type_name *ty;
1478
1479 for (ty = type_names; ty->mask; ty++)
1480 if (t & ty->mask)
1481 fprintf (stdout, "%s, ", ty->tname);
1482 fflush (stdout);
1483 }
1484
1485 #endif /* DEBUG386 */
1486 \f
1487 static bfd_reloc_code_real_type
1488 reloc (unsigned int size,
1489 int pcrel,
1490 int sign,
1491 bfd_reloc_code_real_type other)
1492 {
1493 if (other != NO_RELOC)
1494 {
1495 reloc_howto_type *reloc;
1496
1497 if (size == 8)
1498 switch (other)
1499 {
1500 case BFD_RELOC_X86_64_GOT32:
1501 return BFD_RELOC_X86_64_GOT64;
1502 break;
1503 case BFD_RELOC_X86_64_PLTOFF64:
1504 return BFD_RELOC_X86_64_PLTOFF64;
1505 break;
1506 case BFD_RELOC_X86_64_GOTPC32:
1507 other = BFD_RELOC_X86_64_GOTPC64;
1508 break;
1509 case BFD_RELOC_X86_64_GOTPCREL:
1510 other = BFD_RELOC_X86_64_GOTPCREL64;
1511 break;
1512 case BFD_RELOC_X86_64_TPOFF32:
1513 other = BFD_RELOC_X86_64_TPOFF64;
1514 break;
1515 case BFD_RELOC_X86_64_DTPOFF32:
1516 other = BFD_RELOC_X86_64_DTPOFF64;
1517 break;
1518 default:
1519 break;
1520 }
1521
1522 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
1523 if (size == 4 && flag_code != CODE_64BIT)
1524 sign = -1;
1525
1526 reloc = bfd_reloc_type_lookup (stdoutput, other);
1527 if (!reloc)
1528 as_bad (_("unknown relocation (%u)"), other);
1529 else if (size != bfd_get_reloc_size (reloc))
1530 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
1531 bfd_get_reloc_size (reloc),
1532 size);
1533 else if (pcrel && !reloc->pc_relative)
1534 as_bad (_("non-pc-relative relocation for pc-relative field"));
1535 else if ((reloc->complain_on_overflow == complain_overflow_signed
1536 && !sign)
1537 || (reloc->complain_on_overflow == complain_overflow_unsigned
1538 && sign > 0))
1539 as_bad (_("relocated field and relocation type differ in signedness"));
1540 else
1541 return other;
1542 return NO_RELOC;
1543 }
1544
1545 if (pcrel)
1546 {
1547 if (!sign)
1548 as_bad (_("there are no unsigned pc-relative relocations"));
1549 switch (size)
1550 {
1551 case 1: return BFD_RELOC_8_PCREL;
1552 case 2: return BFD_RELOC_16_PCREL;
1553 case 4: return BFD_RELOC_32_PCREL;
1554 case 8: return BFD_RELOC_64_PCREL;
1555 }
1556 as_bad (_("cannot do %u byte pc-relative relocation"), size);
1557 }
1558 else
1559 {
1560 if (sign > 0)
1561 switch (size)
1562 {
1563 case 4: return BFD_RELOC_X86_64_32S;
1564 }
1565 else
1566 switch (size)
1567 {
1568 case 1: return BFD_RELOC_8;
1569 case 2: return BFD_RELOC_16;
1570 case 4: return BFD_RELOC_32;
1571 case 8: return BFD_RELOC_64;
1572 }
1573 as_bad (_("cannot do %s %u byte relocation"),
1574 sign > 0 ? "signed" : "unsigned", size);
1575 }
1576
1577 abort ();
1578 return BFD_RELOC_NONE;
1579 }
1580
1581 /* Here we decide which fixups can be adjusted to make them relative to
1582 the beginning of the section instead of the symbol. Basically we need
1583 to make sure that the dynamic relocations are done correctly, so in
1584 some cases we force the original symbol to be used. */
1585
1586 int
1587 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
1588 {
1589 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1590 if (!IS_ELF)
1591 return 1;
1592
1593 /* Don't adjust pc-relative references to merge sections in 64-bit
1594 mode. */
1595 if (use_rela_relocations
1596 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1597 && fixP->fx_pcrel)
1598 return 0;
1599
1600 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1601 and changed later by validate_fix. */
1602 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
1603 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
1604 return 0;
1605
1606 /* adjust_reloc_syms doesn't know about the GOT. */
1607 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1608 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1609 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1610 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1611 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1612 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1613 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
1614 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1615 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
1616 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1617 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
1618 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
1619 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
1620 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1621 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1622 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1623 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1624 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1625 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1626 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
1627 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1628 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
1629 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
1630 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
1631 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
1632 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
1633 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1634 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1635 return 0;
1636 #endif
1637 return 1;
1638 }
1639
1640 static int
1641 intel_float_operand (const char *mnemonic)
1642 {
1643 /* Note that the value returned is meaningful only for opcodes with (memory)
1644 operands, hence the code here is free to improperly handle opcodes that
1645 have no operands (for better performance and smaller code). */
1646
1647 if (mnemonic[0] != 'f')
1648 return 0; /* non-math */
1649
1650 switch (mnemonic[1])
1651 {
1652 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
1653 the fs segment override prefix not currently handled because no
1654 call path can make opcodes without operands get here */
1655 case 'i':
1656 return 2 /* integer op */;
1657 case 'l':
1658 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
1659 return 3; /* fldcw/fldenv */
1660 break;
1661 case 'n':
1662 if (mnemonic[2] != 'o' /* fnop */)
1663 return 3; /* non-waiting control op */
1664 break;
1665 case 'r':
1666 if (mnemonic[2] == 's')
1667 return 3; /* frstor/frstpm */
1668 break;
1669 case 's':
1670 if (mnemonic[2] == 'a')
1671 return 3; /* fsave */
1672 if (mnemonic[2] == 't')
1673 {
1674 switch (mnemonic[3])
1675 {
1676 case 'c': /* fstcw */
1677 case 'd': /* fstdw */
1678 case 'e': /* fstenv */
1679 case 's': /* fsts[gw] */
1680 return 3;
1681 }
1682 }
1683 break;
1684 case 'x':
1685 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
1686 return 0; /* fxsave/fxrstor are not really math ops */
1687 break;
1688 }
1689
1690 return 1;
1691 }
1692
1693 /* This is the guts of the machine-dependent assembler. LINE points to a
1694 machine dependent instruction. This function is supposed to emit
1695 the frags/bytes it assembles to. */
1696
1697 void
1698 md_assemble (line)
1699 char *line;
1700 {
1701 int j;
1702 char mnemonic[MAX_MNEM_SIZE];
1703
1704 /* Initialize globals. */
1705 memset (&i, '\0', sizeof (i));
1706 for (j = 0; j < MAX_OPERANDS; j++)
1707 i.reloc[j] = NO_RELOC;
1708 memset (disp_expressions, '\0', sizeof (disp_expressions));
1709 memset (im_expressions, '\0', sizeof (im_expressions));
1710 save_stack_p = save_stack;
1711
1712 /* First parse an instruction mnemonic & call i386_operand for the operands.
1713 We assume that the scrubber has arranged it so that line[0] is the valid
1714 start of a (possibly prefixed) mnemonic. */
1715
1716 line = parse_insn (line, mnemonic);
1717 if (line == NULL)
1718 return;
1719
1720 line = parse_operands (line, mnemonic);
1721 if (line == NULL)
1722 return;
1723
1724 /* The order of the immediates should be reversed
1725 for 2 immediates extrq and insertq instructions */
1726 if ((i.imm_operands == 2)
1727 && ((strcmp (mnemonic, "extrq") == 0)
1728 || (strcmp (mnemonic, "insertq") == 0)))
1729 {
1730 swap_2_operands (0, 1);
1731 /* "extrq" and insertq" are the only two instructions whose operands
1732 have to be reversed even though they have two immediate operands.
1733 */
1734 if (intel_syntax)
1735 swap_operands ();
1736 }
1737
1738 /* Now we've parsed the mnemonic into a set of templates, and have the
1739 operands at hand. */
1740
1741 /* All intel opcodes have reversed operands except for "bound" and
1742 "enter". We also don't reverse intersegment "jmp" and "call"
1743 instructions with 2 immediate operands so that the immediate segment
1744 precedes the offset, as it does when in AT&T mode. */
1745 if (intel_syntax
1746 && i.operands > 1
1747 && (strcmp (mnemonic, "bound") != 0)
1748 && (strcmp (mnemonic, "invlpga") != 0)
1749 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1750 swap_operands ();
1751
1752 if (i.imm_operands)
1753 optimize_imm ();
1754
1755 /* Don't optimize displacement for movabs since it only takes 64bit
1756 displacement. */
1757 if (i.disp_operands
1758 && (flag_code != CODE_64BIT
1759 || strcmp (mnemonic, "movabs") != 0))
1760 optimize_disp ();
1761
1762 /* Next, we find a template that matches the given insn,
1763 making sure the overlap of the given operands types is consistent
1764 with the template operand types. */
1765
1766 if (!match_template ())
1767 return;
1768
1769 if (intel_syntax)
1770 {
1771 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1772 if (SYSV386_COMPAT
1773 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1774 i.tm.base_opcode ^= Opcode_FloatR;
1775
1776 /* Zap movzx and movsx suffix. The suffix may have been set from
1777 "word ptr" or "byte ptr" on the source operand, but we'll use
1778 the suffix later to choose the destination register. */
1779 if ((i.tm.base_opcode & ~9) == 0x0fb6)
1780 {
1781 if (i.reg_operands < 2
1782 && !i.suffix
1783 && (~i.tm.opcode_modifier
1784 & (No_bSuf
1785 | No_wSuf
1786 | No_lSuf
1787 | No_sSuf
1788 | No_xSuf
1789 | No_qSuf)))
1790 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
1791
1792 i.suffix = 0;
1793 }
1794 }
1795
1796 if (i.tm.opcode_modifier & FWait)
1797 if (!add_prefix (FWAIT_OPCODE))
1798 return;
1799
1800 /* Check string instruction segment overrides. */
1801 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1802 {
1803 if (!check_string ())
1804 return;
1805 }
1806
1807 if (!process_suffix ())
1808 return;
1809
1810 /* Make still unresolved immediate matches conform to size of immediate
1811 given in i.suffix. */
1812 if (!finalize_imm ())
1813 return;
1814
1815 if (i.types[0] & Imm1)
1816 i.imm_operands = 0; /* kludge for shift insns. */
1817 if (i.types[0] & ImplicitRegister)
1818 i.reg_operands--;
1819 if (i.types[1] & ImplicitRegister)
1820 i.reg_operands--;
1821 if (i.types[2] & ImplicitRegister)
1822 i.reg_operands--;
1823
1824 if (i.tm.opcode_modifier & ImmExt)
1825 {
1826 expressionS *exp;
1827
1828 if ((i.tm.cpu_flags & CpuSSE3) && i.operands > 0)
1829 {
1830 /* Streaming SIMD extensions 3 Instructions have the fixed
1831 operands with an opcode suffix which is coded in the same
1832 place as an 8-bit immediate field would be. Here we check
1833 those operands and remove them afterwards. */
1834 unsigned int x;
1835
1836 for (x = 0; x < i.operands; x++)
1837 if (i.op[x].regs->reg_num != x)
1838 as_bad (_("can't use register '%%%s' as operand %d in '%s'."),
1839 i.op[x].regs->reg_name, x + 1, i.tm.name);
1840 i.operands = 0;
1841 }
1842
1843 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1844 opcode suffix which is coded in the same place as an 8-bit
1845 immediate field would be. Here we fake an 8-bit immediate
1846 operand from the opcode suffix stored in tm.extension_opcode. */
1847
1848 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
1849
1850 exp = &im_expressions[i.imm_operands++];
1851 i.op[i.operands].imms = exp;
1852 i.types[i.operands++] = Imm8;
1853 exp->X_op = O_constant;
1854 exp->X_add_number = i.tm.extension_opcode;
1855 i.tm.extension_opcode = None;
1856 }
1857
1858 /* For insns with operands there are more diddles to do to the opcode. */
1859 if (i.operands)
1860 {
1861 if (!process_operands ())
1862 return;
1863 }
1864 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1865 {
1866 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1867 as_warn (_("translating to `%sp'"), i.tm.name);
1868 }
1869
1870 /* Handle conversion of 'int $3' --> special int3 insn. */
1871 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1872 {
1873 i.tm.base_opcode = INT3_OPCODE;
1874 i.imm_operands = 0;
1875 }
1876
1877 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1878 && i.op[0].disps->X_op == O_constant)
1879 {
1880 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1881 the absolute address given by the constant. Since ix86 jumps and
1882 calls are pc relative, we need to generate a reloc. */
1883 i.op[0].disps->X_add_symbol = &abs_symbol;
1884 i.op[0].disps->X_op = O_symbol;
1885 }
1886
1887 if ((i.tm.opcode_modifier & Rex64) != 0)
1888 i.rex |= REX_W;
1889
1890 /* For 8 bit registers we need an empty rex prefix. Also if the
1891 instruction already has a prefix, we need to convert old
1892 registers to new ones. */
1893
1894 if (((i.types[0] & Reg8) != 0
1895 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1896 || ((i.types[1] & Reg8) != 0
1897 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1898 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1899 && i.rex != 0))
1900 {
1901 int x;
1902
1903 i.rex |= REX_OPCODE;
1904 for (x = 0; x < 2; x++)
1905 {
1906 /* Look for 8 bit operand that uses old registers. */
1907 if ((i.types[x] & Reg8) != 0
1908 && (i.op[x].regs->reg_flags & RegRex64) == 0)
1909 {
1910 /* In case it is "hi" register, give up. */
1911 if (i.op[x].regs->reg_num > 3)
1912 as_bad (_("can't encode register '%%%s' in an "
1913 "instruction requiring REX prefix."),
1914 i.op[x].regs->reg_name);
1915
1916 /* Otherwise it is equivalent to the extended register.
1917 Since the encoding doesn't change this is merely
1918 cosmetic cleanup for debug output. */
1919
1920 i.op[x].regs = i.op[x].regs + 8;
1921 }
1922 }
1923 }
1924
1925 if (i.rex != 0)
1926 add_prefix (REX_OPCODE | i.rex);
1927
1928 /* We are ready to output the insn. */
1929 output_insn ();
1930 }
1931
1932 static char *
1933 parse_insn (char *line, char *mnemonic)
1934 {
1935 char *l = line;
1936 char *token_start = l;
1937 char *mnem_p;
1938 int supported;
1939 const template *t;
1940
1941 /* Non-zero if we found a prefix only acceptable with string insns. */
1942 const char *expecting_string_instruction = NULL;
1943
1944 while (1)
1945 {
1946 mnem_p = mnemonic;
1947 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1948 {
1949 mnem_p++;
1950 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
1951 {
1952 as_bad (_("no such instruction: `%s'"), token_start);
1953 return NULL;
1954 }
1955 l++;
1956 }
1957 if (!is_space_char (*l)
1958 && *l != END_OF_INSN
1959 && (intel_syntax
1960 || (*l != PREFIX_SEPARATOR
1961 && *l != ',')))
1962 {
1963 as_bad (_("invalid character %s in mnemonic"),
1964 output_invalid (*l));
1965 return NULL;
1966 }
1967 if (token_start == l)
1968 {
1969 if (!intel_syntax && *l == PREFIX_SEPARATOR)
1970 as_bad (_("expecting prefix; got nothing"));
1971 else
1972 as_bad (_("expecting mnemonic; got nothing"));
1973 return NULL;
1974 }
1975
1976 /* Look up instruction (or prefix) via hash table. */
1977 current_templates = hash_find (op_hash, mnemonic);
1978
1979 if (*l != END_OF_INSN
1980 && (!is_space_char (*l) || l[1] != END_OF_INSN)
1981 && current_templates
1982 && (current_templates->start->opcode_modifier & IsPrefix))
1983 {
1984 if (current_templates->start->cpu_flags
1985 & (flag_code != CODE_64BIT ? Cpu64 : CpuNo64))
1986 {
1987 as_bad ((flag_code != CODE_64BIT
1988 ? _("`%s' is only supported in 64-bit mode")
1989 : _("`%s' is not supported in 64-bit mode")),
1990 current_templates->start->name);
1991 return NULL;
1992 }
1993 /* If we are in 16-bit mode, do not allow addr16 or data16.
1994 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1995 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1996 && flag_code != CODE_64BIT
1997 && (((current_templates->start->opcode_modifier & Size32) != 0)
1998 ^ (flag_code == CODE_16BIT)))
1999 {
2000 as_bad (_("redundant %s prefix"),
2001 current_templates->start->name);
2002 return NULL;
2003 }
2004 /* Add prefix, checking for repeated prefixes. */
2005 switch (add_prefix (current_templates->start->base_opcode))
2006 {
2007 case 0:
2008 return NULL;
2009 case 2:
2010 expecting_string_instruction = current_templates->start->name;
2011 break;
2012 }
2013 /* Skip past PREFIX_SEPARATOR and reset token_start. */
2014 token_start = ++l;
2015 }
2016 else
2017 break;
2018 }
2019
2020 if (!current_templates)
2021 {
2022 /* See if we can get a match by trimming off a suffix. */
2023 switch (mnem_p[-1])
2024 {
2025 case WORD_MNEM_SUFFIX:
2026 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
2027 i.suffix = SHORT_MNEM_SUFFIX;
2028 else
2029 case BYTE_MNEM_SUFFIX:
2030 case QWORD_MNEM_SUFFIX:
2031 i.suffix = mnem_p[-1];
2032 mnem_p[-1] = '\0';
2033 current_templates = hash_find (op_hash, mnemonic);
2034 break;
2035 case SHORT_MNEM_SUFFIX:
2036 case LONG_MNEM_SUFFIX:
2037 if (!intel_syntax)
2038 {
2039 i.suffix = mnem_p[-1];
2040 mnem_p[-1] = '\0';
2041 current_templates = hash_find (op_hash, mnemonic);
2042 }
2043 break;
2044
2045 /* Intel Syntax. */
2046 case 'd':
2047 if (intel_syntax)
2048 {
2049 if (intel_float_operand (mnemonic) == 1)
2050 i.suffix = SHORT_MNEM_SUFFIX;
2051 else
2052 i.suffix = LONG_MNEM_SUFFIX;
2053 mnem_p[-1] = '\0';
2054 current_templates = hash_find (op_hash, mnemonic);
2055 }
2056 break;
2057 }
2058 if (!current_templates)
2059 {
2060 as_bad (_("no such instruction: `%s'"), token_start);
2061 return NULL;
2062 }
2063 }
2064
2065 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
2066 {
2067 /* Check for a branch hint. We allow ",pt" and ",pn" for
2068 predict taken and predict not taken respectively.
2069 I'm not sure that branch hints actually do anything on loop
2070 and jcxz insns (JumpByte) for current Pentium4 chips. They
2071 may work in the future and it doesn't hurt to accept them
2072 now. */
2073 if (l[0] == ',' && l[1] == 'p')
2074 {
2075 if (l[2] == 't')
2076 {
2077 if (!add_prefix (DS_PREFIX_OPCODE))
2078 return NULL;
2079 l += 3;
2080 }
2081 else if (l[2] == 'n')
2082 {
2083 if (!add_prefix (CS_PREFIX_OPCODE))
2084 return NULL;
2085 l += 3;
2086 }
2087 }
2088 }
2089 /* Any other comma loses. */
2090 if (*l == ',')
2091 {
2092 as_bad (_("invalid character %s in mnemonic"),
2093 output_invalid (*l));
2094 return NULL;
2095 }
2096
2097 /* Check if instruction is supported on specified architecture. */
2098 supported = 0;
2099 for (t = current_templates->start; t < current_templates->end; ++t)
2100 {
2101 if (!((t->cpu_flags & ~(Cpu64 | CpuNo64))
2102 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64))))
2103 supported |= 1;
2104 if (!(t->cpu_flags & (flag_code == CODE_64BIT ? CpuNo64 : Cpu64)))
2105 supported |= 2;
2106 }
2107 if (!(supported & 2))
2108 {
2109 as_bad (flag_code == CODE_64BIT
2110 ? _("`%s' is not supported in 64-bit mode")
2111 : _("`%s' is only supported in 64-bit mode"),
2112 current_templates->start->name);
2113 return NULL;
2114 }
2115 if (!(supported & 1))
2116 {
2117 as_warn (_("`%s' is not supported on `%s%s'"),
2118 current_templates->start->name,
2119 cpu_arch_name,
2120 cpu_sub_arch_name ? cpu_sub_arch_name : "");
2121 }
2122 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
2123 {
2124 as_warn (_("use .code16 to ensure correct addressing mode"));
2125 }
2126
2127 /* Check for rep/repne without a string instruction. */
2128 if (expecting_string_instruction)
2129 {
2130 static templates override;
2131
2132 for (t = current_templates->start; t < current_templates->end; ++t)
2133 if (t->opcode_modifier & IsString)
2134 break;
2135 if (t >= current_templates->end)
2136 {
2137 as_bad (_("expecting string instruction after `%s'"),
2138 expecting_string_instruction);
2139 return NULL;
2140 }
2141 for (override.start = t; t < current_templates->end; ++t)
2142 if (!(t->opcode_modifier & IsString))
2143 break;
2144 override.end = t;
2145 current_templates = &override;
2146 }
2147
2148 return l;
2149 }
2150
2151 static char *
2152 parse_operands (char *l, const char *mnemonic)
2153 {
2154 char *token_start;
2155
2156 /* 1 if operand is pending after ','. */
2157 unsigned int expecting_operand = 0;
2158
2159 /* Non-zero if operand parens not balanced. */
2160 unsigned int paren_not_balanced;
2161
2162 while (*l != END_OF_INSN)
2163 {
2164 /* Skip optional white space before operand. */
2165 if (is_space_char (*l))
2166 ++l;
2167 if (!is_operand_char (*l) && *l != END_OF_INSN)
2168 {
2169 as_bad (_("invalid character %s before operand %d"),
2170 output_invalid (*l),
2171 i.operands + 1);
2172 return NULL;
2173 }
2174 token_start = l; /* after white space */
2175 paren_not_balanced = 0;
2176 while (paren_not_balanced || *l != ',')
2177 {
2178 if (*l == END_OF_INSN)
2179 {
2180 if (paren_not_balanced)
2181 {
2182 if (!intel_syntax)
2183 as_bad (_("unbalanced parenthesis in operand %d."),
2184 i.operands + 1);
2185 else
2186 as_bad (_("unbalanced brackets in operand %d."),
2187 i.operands + 1);
2188 return NULL;
2189 }
2190 else
2191 break; /* we are done */
2192 }
2193 else if (!is_operand_char (*l) && !is_space_char (*l))
2194 {
2195 as_bad (_("invalid character %s in operand %d"),
2196 output_invalid (*l),
2197 i.operands + 1);
2198 return NULL;
2199 }
2200 if (!intel_syntax)
2201 {
2202 if (*l == '(')
2203 ++paren_not_balanced;
2204 if (*l == ')')
2205 --paren_not_balanced;
2206 }
2207 else
2208 {
2209 if (*l == '[')
2210 ++paren_not_balanced;
2211 if (*l == ']')
2212 --paren_not_balanced;
2213 }
2214 l++;
2215 }
2216 if (l != token_start)
2217 { /* Yes, we've read in another operand. */
2218 unsigned int operand_ok;
2219 this_operand = i.operands++;
2220 if (i.operands > MAX_OPERANDS)
2221 {
2222 as_bad (_("spurious operands; (%d operands/instruction max)"),
2223 MAX_OPERANDS);
2224 return NULL;
2225 }
2226 /* Now parse operand adding info to 'i' as we go along. */
2227 END_STRING_AND_SAVE (l);
2228
2229 if (intel_syntax)
2230 operand_ok =
2231 i386_intel_operand (token_start,
2232 intel_float_operand (mnemonic));
2233 else
2234 operand_ok = i386_operand (token_start);
2235
2236 RESTORE_END_STRING (l);
2237 if (!operand_ok)
2238 return NULL;
2239 }
2240 else
2241 {
2242 if (expecting_operand)
2243 {
2244 expecting_operand_after_comma:
2245 as_bad (_("expecting operand after ','; got nothing"));
2246 return NULL;
2247 }
2248 if (*l == ',')
2249 {
2250 as_bad (_("expecting operand before ','; got nothing"));
2251 return NULL;
2252 }
2253 }
2254
2255 /* Now *l must be either ',' or END_OF_INSN. */
2256 if (*l == ',')
2257 {
2258 if (*++l == END_OF_INSN)
2259 {
2260 /* Just skip it, if it's \n complain. */
2261 goto expecting_operand_after_comma;
2262 }
2263 expecting_operand = 1;
2264 }
2265 }
2266 return l;
2267 }
2268
2269 static void
2270 swap_2_operands (int xchg1, int xchg2)
2271 {
2272 union i386_op temp_op;
2273 unsigned int temp_type;
2274 enum bfd_reloc_code_real temp_reloc;
2275
2276 temp_type = i.types[xchg2];
2277 i.types[xchg2] = i.types[xchg1];
2278 i.types[xchg1] = temp_type;
2279 temp_op = i.op[xchg2];
2280 i.op[xchg2] = i.op[xchg1];
2281 i.op[xchg1] = temp_op;
2282 temp_reloc = i.reloc[xchg2];
2283 i.reloc[xchg2] = i.reloc[xchg1];
2284 i.reloc[xchg1] = temp_reloc;
2285 }
2286
2287 static void
2288 swap_operands (void)
2289 {
2290 switch (i.operands)
2291 {
2292 case 4:
2293 swap_2_operands (1, i.operands - 2);
2294 case 3:
2295 case 2:
2296 swap_2_operands (0, i.operands - 1);
2297 break;
2298 default:
2299 abort ();
2300 }
2301
2302 if (i.mem_operands == 2)
2303 {
2304 const seg_entry *temp_seg;
2305 temp_seg = i.seg[0];
2306 i.seg[0] = i.seg[1];
2307 i.seg[1] = temp_seg;
2308 }
2309 }
2310
2311 /* Try to ensure constant immediates are represented in the smallest
2312 opcode possible. */
2313 static void
2314 optimize_imm (void)
2315 {
2316 char guess_suffix = 0;
2317 int op;
2318
2319 if (i.suffix)
2320 guess_suffix = i.suffix;
2321 else if (i.reg_operands)
2322 {
2323 /* Figure out a suffix from the last register operand specified.
2324 We can't do this properly yet, ie. excluding InOutPortReg,
2325 but the following works for instructions with immediates.
2326 In any case, we can't set i.suffix yet. */
2327 for (op = i.operands; --op >= 0;)
2328 if (i.types[op] & Reg)
2329 {
2330 if (i.types[op] & Reg8)
2331 guess_suffix = BYTE_MNEM_SUFFIX;
2332 else if (i.types[op] & Reg16)
2333 guess_suffix = WORD_MNEM_SUFFIX;
2334 else if (i.types[op] & Reg32)
2335 guess_suffix = LONG_MNEM_SUFFIX;
2336 else if (i.types[op] & Reg64)
2337 guess_suffix = QWORD_MNEM_SUFFIX;
2338 break;
2339 }
2340 }
2341 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
2342 guess_suffix = WORD_MNEM_SUFFIX;
2343
2344 for (op = i.operands; --op >= 0;)
2345 if (i.types[op] & Imm)
2346 {
2347 switch (i.op[op].imms->X_op)
2348 {
2349 case O_constant:
2350 /* If a suffix is given, this operand may be shortened. */
2351 switch (guess_suffix)
2352 {
2353 case LONG_MNEM_SUFFIX:
2354 i.types[op] |= Imm32 | Imm64;
2355 break;
2356 case WORD_MNEM_SUFFIX:
2357 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
2358 break;
2359 case BYTE_MNEM_SUFFIX:
2360 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
2361 break;
2362 }
2363
2364 /* If this operand is at most 16 bits, convert it
2365 to a signed 16 bit number before trying to see
2366 whether it will fit in an even smaller size.
2367 This allows a 16-bit operand such as $0xffe0 to
2368 be recognised as within Imm8S range. */
2369 if ((i.types[op] & Imm16)
2370 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
2371 {
2372 i.op[op].imms->X_add_number =
2373 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
2374 }
2375 if ((i.types[op] & Imm32)
2376 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
2377 == 0))
2378 {
2379 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
2380 ^ ((offsetT) 1 << 31))
2381 - ((offsetT) 1 << 31));
2382 }
2383 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
2384
2385 /* We must avoid matching of Imm32 templates when 64bit
2386 only immediate is available. */
2387 if (guess_suffix == QWORD_MNEM_SUFFIX)
2388 i.types[op] &= ~Imm32;
2389 break;
2390
2391 case O_absent:
2392 case O_register:
2393 abort ();
2394
2395 /* Symbols and expressions. */
2396 default:
2397 /* Convert symbolic operand to proper sizes for matching, but don't
2398 prevent matching a set of insns that only supports sizes other
2399 than those matching the insn suffix. */
2400 {
2401 unsigned int mask, allowed = 0;
2402 const template *t;
2403
2404 for (t = current_templates->start;
2405 t < current_templates->end;
2406 ++t)
2407 allowed |= t->operand_types[op];
2408 switch (guess_suffix)
2409 {
2410 case QWORD_MNEM_SUFFIX:
2411 mask = Imm64 | Imm32S;
2412 break;
2413 case LONG_MNEM_SUFFIX:
2414 mask = Imm32;
2415 break;
2416 case WORD_MNEM_SUFFIX:
2417 mask = Imm16;
2418 break;
2419 case BYTE_MNEM_SUFFIX:
2420 mask = Imm8;
2421 break;
2422 default:
2423 mask = 0;
2424 break;
2425 }
2426 if (mask & allowed)
2427 i.types[op] &= mask;
2428 }
2429 break;
2430 }
2431 }
2432 }
2433
2434 /* Try to use the smallest displacement type too. */
2435 static void
2436 optimize_disp (void)
2437 {
2438 int op;
2439
2440 for (op = i.operands; --op >= 0;)
2441 if (i.types[op] & Disp)
2442 {
2443 if (i.op[op].disps->X_op == O_constant)
2444 {
2445 offsetT disp = i.op[op].disps->X_add_number;
2446
2447 if ((i.types[op] & Disp16)
2448 && (disp & ~(offsetT) 0xffff) == 0)
2449 {
2450 /* If this operand is at most 16 bits, convert
2451 to a signed 16 bit number and don't use 64bit
2452 displacement. */
2453 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
2454 i.types[op] &= ~Disp64;
2455 }
2456 if ((i.types[op] & Disp32)
2457 && (disp & ~(((offsetT) 2 << 31) - 1)) == 0)
2458 {
2459 /* If this operand is at most 32 bits, convert
2460 to a signed 32 bit number and don't use 64bit
2461 displacement. */
2462 disp &= (((offsetT) 2 << 31) - 1);
2463 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
2464 i.types[op] &= ~Disp64;
2465 }
2466 if (!disp && (i.types[op] & BaseIndex))
2467 {
2468 i.types[op] &= ~Disp;
2469 i.op[op].disps = 0;
2470 i.disp_operands--;
2471 }
2472 else if (flag_code == CODE_64BIT)
2473 {
2474 if (fits_in_signed_long (disp))
2475 {
2476 i.types[op] &= ~Disp64;
2477 i.types[op] |= Disp32S;
2478 }
2479 if (fits_in_unsigned_long (disp))
2480 i.types[op] |= Disp32;
2481 }
2482 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
2483 && fits_in_signed_byte (disp))
2484 i.types[op] |= Disp8;
2485 }
2486 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
2487 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
2488 {
2489 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
2490 i.op[op].disps, 0, i.reloc[op]);
2491 i.types[op] &= ~Disp;
2492 }
2493 else
2494 /* We only support 64bit displacement on constants. */
2495 i.types[op] &= ~Disp64;
2496 }
2497 }
2498
2499 static int
2500 match_template (void)
2501 {
2502 /* Points to template once we've found it. */
2503 const template *t;
2504 unsigned int overlap0, overlap1, overlap2, overlap3;
2505 unsigned int found_reverse_match;
2506 int suffix_check;
2507 unsigned int operand_types [MAX_OPERANDS];
2508 int addr_prefix_disp;
2509 unsigned int j;
2510
2511 #if MAX_OPERANDS != 4
2512 # error "MAX_OPERANDS must be 4."
2513 #endif
2514
2515 #define MATCH(overlap, given, template) \
2516 ((overlap & ~JumpAbsolute) \
2517 && (((given) & (BaseIndex | JumpAbsolute)) \
2518 == ((overlap) & (BaseIndex | JumpAbsolute))))
2519
2520 /* If given types r0 and r1 are registers they must be of the same type
2521 unless the expected operand type register overlap is null.
2522 Note that Acc in a template matches every size of reg. */
2523 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2524 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2525 || ((g0) & Reg) == ((g1) & Reg) \
2526 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2527
2528 overlap0 = 0;
2529 overlap1 = 0;
2530 overlap2 = 0;
2531 overlap3 = 0;
2532 found_reverse_match = 0;
2533 for (j = 0; j < MAX_OPERANDS; j++)
2534 operand_types [j] = 0;
2535 addr_prefix_disp = -1;
2536 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2537 ? No_bSuf
2538 : (i.suffix == WORD_MNEM_SUFFIX
2539 ? No_wSuf
2540 : (i.suffix == SHORT_MNEM_SUFFIX
2541 ? No_sSuf
2542 : (i.suffix == LONG_MNEM_SUFFIX
2543 ? No_lSuf
2544 : (i.suffix == QWORD_MNEM_SUFFIX
2545 ? No_qSuf
2546 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2547 ? No_xSuf : 0))))));
2548
2549 for (t = current_templates->start; t < current_templates->end; t++)
2550 {
2551 addr_prefix_disp = -1;
2552
2553 /* Must have right number of operands. */
2554 if (i.operands != t->operands)
2555 continue;
2556
2557 /* Check the suffix, except for some instructions in intel mode. */
2558 if ((t->opcode_modifier & suffix_check)
2559 && !(intel_syntax
2560 && (t->opcode_modifier & IgnoreSize)))
2561 continue;
2562
2563 for (j = 0; j < MAX_OPERANDS; j++)
2564 operand_types [j] = t->operand_types [j];
2565
2566 /* In general, don't allow 64-bit operands in 32-bit mode. */
2567 if (i.suffix == QWORD_MNEM_SUFFIX
2568 && flag_code != CODE_64BIT
2569 && (intel_syntax
2570 ? (!(t->opcode_modifier & IgnoreSize)
2571 && !intel_float_operand (t->name))
2572 : intel_float_operand (t->name) != 2)
2573 && (!(operand_types[0] & (RegMMX | RegXMM))
2574 || !(operand_types[t->operands > 1] & (RegMMX | RegXMM)))
2575 && (t->base_opcode != 0x0fc7
2576 || t->extension_opcode != 1 /* cmpxchg8b */))
2577 continue;
2578
2579 /* Do not verify operands when there are none. */
2580 else if (!t->operands)
2581 {
2582 if (t->cpu_flags & ~cpu_arch_flags)
2583 continue;
2584 /* We've found a match; break out of loop. */
2585 break;
2586 }
2587
2588 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
2589 into Disp32/Disp16/Disp32 operand. */
2590 if (i.prefix[ADDR_PREFIX] != 0)
2591 {
2592 unsigned int DispOn = 0, DispOff = 0;
2593
2594 switch (flag_code)
2595 {
2596 case CODE_16BIT:
2597 DispOn = Disp32;
2598 DispOff = Disp16;
2599 break;
2600 case CODE_32BIT:
2601 DispOn = Disp16;
2602 DispOff = Disp32;
2603 break;
2604 case CODE_64BIT:
2605 DispOn = Disp32;
2606 DispOff = Disp64;
2607 break;
2608 }
2609
2610 for (j = 0; j < MAX_OPERANDS; j++)
2611 {
2612 /* There should be only one Disp operand. */
2613 if ((operand_types[j] & DispOff))
2614 {
2615 addr_prefix_disp = j;
2616 operand_types[j] |= DispOn;
2617 operand_types[j] &= ~DispOff;
2618 break;
2619 }
2620 }
2621 }
2622
2623 overlap0 = i.types[0] & operand_types[0];
2624 switch (t->operands)
2625 {
2626 case 1:
2627 if (!MATCH (overlap0, i.types[0], operand_types[0]))
2628 continue;
2629 break;
2630 case 2:
2631 /* xchg %eax, %eax is a special case. It is an aliase for nop
2632 only in 32bit mode and we can use opcode 0x90. In 64bit
2633 mode, we can't use 0x90 for xchg %eax, %eax since it should
2634 zero-extend %eax to %rax. */
2635 if (flag_code == CODE_64BIT
2636 && t->base_opcode == 0x90
2637 && i.types [0] == (Acc | Reg32)
2638 && i.types [1] == (Acc | Reg32))
2639 continue;
2640 case 3:
2641 case 4:
2642 overlap1 = i.types[1] & operand_types[1];
2643 if (!MATCH (overlap0, i.types[0], operand_types[0])
2644 || !MATCH (overlap1, i.types[1], operand_types[1])
2645 /* monitor in SSE3 is a very special case. The first
2646 register and the second register may have different
2647 sizes. The same applies to crc32 in SSE4.2. */
2648 || !((t->base_opcode == 0x0f01
2649 && t->extension_opcode == 0xc8)
2650 || t->base_opcode == 0xf20f38f1
2651 || CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2652 operand_types[0],
2653 overlap1, i.types[1],
2654 operand_types[1])))
2655 {
2656 /* Check if other direction is valid ... */
2657 if ((t->opcode_modifier & (D | FloatD)) == 0)
2658 continue;
2659
2660 /* Try reversing direction of operands. */
2661 overlap0 = i.types[0] & operand_types[1];
2662 overlap1 = i.types[1] & operand_types[0];
2663 if (!MATCH (overlap0, i.types[0], operand_types[1])
2664 || !MATCH (overlap1, i.types[1], operand_types[0])
2665 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2666 operand_types[1],
2667 overlap1, i.types[1],
2668 operand_types[0]))
2669 {
2670 /* Does not match either direction. */
2671 continue;
2672 }
2673 /* found_reverse_match holds which of D or FloatDR
2674 we've found. */
2675 if ((t->opcode_modifier & D))
2676 found_reverse_match = Opcode_D;
2677 else if ((t->opcode_modifier & FloatD))
2678 found_reverse_match = Opcode_FloatD;
2679 else
2680 found_reverse_match = 0;
2681 if ((t->opcode_modifier & FloatR))
2682 found_reverse_match |= Opcode_FloatR;
2683 }
2684 else
2685 {
2686 /* Found a forward 2 operand match here. */
2687 switch (t->operands)
2688 {
2689 case 4:
2690 overlap3 = i.types[3] & operand_types[3];
2691 case 3:
2692 overlap2 = i.types[2] & operand_types[2];
2693 break;
2694 }
2695
2696 switch (t->operands)
2697 {
2698 case 4:
2699 if (!MATCH (overlap3, i.types[3], operand_types[3])
2700 || !CONSISTENT_REGISTER_MATCH (overlap2,
2701 i.types[2],
2702 operand_types[2],
2703 overlap3,
2704 i.types[3],
2705 operand_types[3]))
2706 continue;
2707 case 3:
2708 /* Here we make use of the fact that there are no
2709 reverse match 3 operand instructions, and all 3
2710 operand instructions only need to be checked for
2711 register consistency between operands 2 and 3. */
2712 if (!MATCH (overlap2, i.types[2], operand_types[2])
2713 || !CONSISTENT_REGISTER_MATCH (overlap1,
2714 i.types[1],
2715 operand_types[1],
2716 overlap2,
2717 i.types[2],
2718 operand_types[2]))
2719 continue;
2720 break;
2721 }
2722 }
2723 /* Found either forward/reverse 2, 3 or 4 operand match here:
2724 slip through to break. */
2725 }
2726 if (t->cpu_flags & ~cpu_arch_flags)
2727 {
2728 found_reverse_match = 0;
2729 continue;
2730 }
2731 /* We've found a match; break out of loop. */
2732 break;
2733 }
2734
2735 if (t == current_templates->end)
2736 {
2737 /* We found no match. */
2738 as_bad (_("suffix or operands invalid for `%s'"),
2739 current_templates->start->name);
2740 return 0;
2741 }
2742
2743 if (!quiet_warnings)
2744 {
2745 if (!intel_syntax
2746 && ((i.types[0] & JumpAbsolute)
2747 != (operand_types[0] & JumpAbsolute)))
2748 {
2749 as_warn (_("indirect %s without `*'"), t->name);
2750 }
2751
2752 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2753 == (IsPrefix | IgnoreSize))
2754 {
2755 /* Warn them that a data or address size prefix doesn't
2756 affect assembly of the next line of code. */
2757 as_warn (_("stand-alone `%s' prefix"), t->name);
2758 }
2759 }
2760
2761 /* Copy the template we found. */
2762 i.tm = *t;
2763
2764 if (addr_prefix_disp != -1)
2765 i.tm.operand_types[addr_prefix_disp]
2766 = operand_types[addr_prefix_disp];
2767
2768 if (found_reverse_match)
2769 {
2770 /* If we found a reverse match we must alter the opcode
2771 direction bit. found_reverse_match holds bits to change
2772 (different for int & float insns). */
2773
2774 i.tm.base_opcode ^= found_reverse_match;
2775
2776 i.tm.operand_types[0] = operand_types[1];
2777 i.tm.operand_types[1] = operand_types[0];
2778 }
2779
2780 return 1;
2781 }
2782
2783 static int
2784 check_string (void)
2785 {
2786 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2787 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2788 {
2789 if (i.seg[0] != NULL && i.seg[0] != &es)
2790 {
2791 as_bad (_("`%s' operand %d must use `%%es' segment"),
2792 i.tm.name,
2793 mem_op + 1);
2794 return 0;
2795 }
2796 /* There's only ever one segment override allowed per instruction.
2797 This instruction possibly has a legal segment override on the
2798 second operand, so copy the segment to where non-string
2799 instructions store it, allowing common code. */
2800 i.seg[0] = i.seg[1];
2801 }
2802 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2803 {
2804 if (i.seg[1] != NULL && i.seg[1] != &es)
2805 {
2806 as_bad (_("`%s' operand %d must use `%%es' segment"),
2807 i.tm.name,
2808 mem_op + 2);
2809 return 0;
2810 }
2811 }
2812 return 1;
2813 }
2814
2815 static int
2816 process_suffix (void)
2817 {
2818 /* If matched instruction specifies an explicit instruction mnemonic
2819 suffix, use it. */
2820 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2821 {
2822 if (i.tm.opcode_modifier & Size16)
2823 i.suffix = WORD_MNEM_SUFFIX;
2824 else if (i.tm.opcode_modifier & Size64)
2825 i.suffix = QWORD_MNEM_SUFFIX;
2826 else
2827 i.suffix = LONG_MNEM_SUFFIX;
2828 }
2829 else if (i.reg_operands)
2830 {
2831 /* If there's no instruction mnemonic suffix we try to invent one
2832 based on register operands. */
2833 if (!i.suffix)
2834 {
2835 /* We take i.suffix from the last register operand specified,
2836 Destination register type is more significant than source
2837 register type. crc32 in SSE4.2 prefers source register
2838 type. */
2839 if (i.tm.base_opcode == 0xf20f38f1)
2840 {
2841 if ((i.types[0] & Reg))
2842 i.suffix = ((i.types[0] & Reg16) ? WORD_MNEM_SUFFIX :
2843 LONG_MNEM_SUFFIX);
2844 }
2845
2846 if (!i.suffix)
2847 {
2848 int op;
2849
2850 for (op = i.operands; --op >= 0;)
2851 if ((i.types[op] & Reg)
2852 && !(i.tm.operand_types[op] & InOutPortReg))
2853 {
2854 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2855 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2856 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2857 LONG_MNEM_SUFFIX);
2858 break;
2859 }
2860 }
2861 }
2862 else if (i.suffix == BYTE_MNEM_SUFFIX)
2863 {
2864 if (!check_byte_reg ())
2865 return 0;
2866 }
2867 else if (i.suffix == LONG_MNEM_SUFFIX)
2868 {
2869 if (!check_long_reg ())
2870 return 0;
2871 }
2872 else if (i.suffix == QWORD_MNEM_SUFFIX)
2873 {
2874 if (!check_qword_reg ())
2875 return 0;
2876 }
2877 else if (i.suffix == WORD_MNEM_SUFFIX)
2878 {
2879 if (!check_word_reg ())
2880 return 0;
2881 }
2882 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2883 /* Do nothing if the instruction is going to ignore the prefix. */
2884 ;
2885 else
2886 abort ();
2887 }
2888 else if ((i.tm.opcode_modifier & DefaultSize)
2889 && !i.suffix
2890 /* exclude fldenv/frstor/fsave/fstenv */
2891 && (i.tm.opcode_modifier & No_sSuf))
2892 {
2893 i.suffix = stackop_size;
2894 }
2895 else if (intel_syntax
2896 && !i.suffix
2897 && ((i.tm.operand_types[0] & JumpAbsolute)
2898 || (i.tm.opcode_modifier & (JumpByte|JumpInterSegment))
2899 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
2900 && i.tm.extension_opcode <= 3)))
2901 {
2902 switch (flag_code)
2903 {
2904 case CODE_64BIT:
2905 if (!(i.tm.opcode_modifier & No_qSuf))
2906 {
2907 i.suffix = QWORD_MNEM_SUFFIX;
2908 break;
2909 }
2910 case CODE_32BIT:
2911 if (!(i.tm.opcode_modifier & No_lSuf))
2912 i.suffix = LONG_MNEM_SUFFIX;
2913 break;
2914 case CODE_16BIT:
2915 if (!(i.tm.opcode_modifier & No_wSuf))
2916 i.suffix = WORD_MNEM_SUFFIX;
2917 break;
2918 }
2919 }
2920
2921 if (!i.suffix)
2922 {
2923 if (!intel_syntax)
2924 {
2925 if (i.tm.opcode_modifier & W)
2926 {
2927 as_bad (_("no instruction mnemonic suffix given and "
2928 "no register operands; can't size instruction"));
2929 return 0;
2930 }
2931 }
2932 else
2933 {
2934 unsigned int suffixes = (~i.tm.opcode_modifier
2935 & (No_bSuf
2936 | No_wSuf
2937 | No_lSuf
2938 | No_sSuf
2939 | No_xSuf
2940 | No_qSuf));
2941
2942 if ((i.tm.opcode_modifier & W)
2943 || ((suffixes & (suffixes - 1))
2944 && !(i.tm.opcode_modifier & (DefaultSize | IgnoreSize))))
2945 {
2946 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2947 return 0;
2948 }
2949 }
2950 }
2951
2952 /* Change the opcode based on the operand size given by i.suffix;
2953 We don't need to change things for byte insns. */
2954
2955 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2956 {
2957 /* It's not a byte, select word/dword operation. */
2958 if (i.tm.opcode_modifier & W)
2959 {
2960 if (i.tm.opcode_modifier & ShortForm)
2961 i.tm.base_opcode |= 8;
2962 else
2963 i.tm.base_opcode |= 1;
2964 }
2965
2966 /* Now select between word & dword operations via the operand
2967 size prefix, except for instructions that will ignore this
2968 prefix anyway. */
2969 if (i.tm.base_opcode == 0x0f01 && i.tm.extension_opcode == 0xc8)
2970 {
2971 /* monitor in SSE3 is a very special case. The default size
2972 of AX is the size of mode. The address size override
2973 prefix will change the size of AX. */
2974 if (i.op->regs[0].reg_type &
2975 (flag_code == CODE_32BIT ? Reg16 : Reg32))
2976 if (!add_prefix (ADDR_PREFIX_OPCODE))
2977 return 0;
2978 }
2979 else if (i.suffix != QWORD_MNEM_SUFFIX
2980 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
2981 && !(i.tm.opcode_modifier & (IgnoreSize | FloatMF))
2982 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
2983 || (flag_code == CODE_64BIT
2984 && (i.tm.opcode_modifier & JumpByte))))
2985 {
2986 unsigned int prefix = DATA_PREFIX_OPCODE;
2987
2988 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
2989 prefix = ADDR_PREFIX_OPCODE;
2990
2991 if (!add_prefix (prefix))
2992 return 0;
2993 }
2994
2995 /* Set mode64 for an operand. */
2996 if (i.suffix == QWORD_MNEM_SUFFIX
2997 && flag_code == CODE_64BIT
2998 && (i.tm.opcode_modifier & NoRex64) == 0)
2999 {
3000 /* Special case for xchg %rax,%rax. It is NOP and doesn't
3001 need rex64. */
3002 if (i.operands != 2
3003 || i.types [0] != (Acc | Reg64)
3004 || i.types [1] != (Acc | Reg64)
3005 || i.tm.base_opcode != 0x90)
3006 i.rex |= REX_W;
3007 }
3008
3009 /* Size floating point instruction. */
3010 if (i.suffix == LONG_MNEM_SUFFIX)
3011 if (i.tm.opcode_modifier & FloatMF)
3012 i.tm.base_opcode ^= 4;
3013 }
3014
3015 return 1;
3016 }
3017
3018 static int
3019 check_byte_reg (void)
3020 {
3021 int op;
3022
3023 for (op = i.operands; --op >= 0;)
3024 {
3025 /* If this is an eight bit register, it's OK. If it's the 16 or
3026 32 bit version of an eight bit register, we will just use the
3027 low portion, and that's OK too. */
3028 if (i.types[op] & Reg8)
3029 continue;
3030
3031 /* movzx and movsx should not generate this warning. */
3032 if (intel_syntax
3033 && (i.tm.base_opcode == 0xfb7
3034 || i.tm.base_opcode == 0xfb6
3035 || i.tm.base_opcode == 0x63
3036 || i.tm.base_opcode == 0xfbe
3037 || i.tm.base_opcode == 0xfbf))
3038 continue;
3039
3040 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4)
3041 {
3042 /* Prohibit these changes in the 64bit mode, since the
3043 lowering is more complicated. */
3044 if (flag_code == CODE_64BIT
3045 && (i.tm.operand_types[op] & InOutPortReg) == 0)
3046 {
3047 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3048 register_prefix, i.op[op].regs->reg_name,
3049 i.suffix);
3050 return 0;
3051 }
3052 #if REGISTER_WARNINGS
3053 if (!quiet_warnings
3054 && (i.tm.operand_types[op] & InOutPortReg) == 0)
3055 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
3056 (i.op[op].regs + (i.types[op] & Reg16
3057 ? REGNAM_AL - REGNAM_AX
3058 : REGNAM_AL - REGNAM_EAX))->reg_name,
3059 i.op[op].regs->reg_name,
3060 i.suffix);
3061 #endif
3062 continue;
3063 }
3064 /* Any other register is bad. */
3065 if (i.types[op] & (Reg | RegMMX | RegXMM
3066 | SReg2 | SReg3
3067 | Control | Debug | Test
3068 | FloatReg | FloatAcc))
3069 {
3070 as_bad (_("`%%%s' not allowed with `%s%c'"),
3071 i.op[op].regs->reg_name,
3072 i.tm.name,
3073 i.suffix);
3074 return 0;
3075 }
3076 }
3077 return 1;
3078 }
3079
3080 static int
3081 check_long_reg (void)
3082 {
3083 int op;
3084
3085 for (op = i.operands; --op >= 0;)
3086 /* Reject eight bit registers, except where the template requires
3087 them. (eg. movzb) */
3088 if ((i.types[op] & Reg8) != 0
3089 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3090 {
3091 as_bad (_("`%%%s' not allowed with `%s%c'"),
3092 i.op[op].regs->reg_name,
3093 i.tm.name,
3094 i.suffix);
3095 return 0;
3096 }
3097 /* Warn if the e prefix on a general reg is missing. */
3098 else if ((!quiet_warnings || flag_code == CODE_64BIT)
3099 && (i.types[op] & Reg16) != 0
3100 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3101 {
3102 /* Prohibit these changes in the 64bit mode, since the
3103 lowering is more complicated. */
3104 if (flag_code == CODE_64BIT)
3105 {
3106 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3107 register_prefix, i.op[op].regs->reg_name,
3108 i.suffix);
3109 return 0;
3110 }
3111 #if REGISTER_WARNINGS
3112 else
3113 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
3114 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
3115 i.op[op].regs->reg_name,
3116 i.suffix);
3117 #endif
3118 }
3119 /* Warn if the r prefix on a general reg is missing. */
3120 else if ((i.types[op] & Reg64) != 0
3121 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3122 {
3123 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3124 register_prefix, i.op[op].regs->reg_name,
3125 i.suffix);
3126 return 0;
3127 }
3128 return 1;
3129 }
3130
3131 static int
3132 check_qword_reg (void)
3133 {
3134 int op;
3135
3136 for (op = i.operands; --op >= 0; )
3137 /* Reject eight bit registers, except where the template requires
3138 them. (eg. movzb) */
3139 if ((i.types[op] & Reg8) != 0
3140 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3141 {
3142 as_bad (_("`%%%s' not allowed with `%s%c'"),
3143 i.op[op].regs->reg_name,
3144 i.tm.name,
3145 i.suffix);
3146 return 0;
3147 }
3148 /* Warn if the e prefix on a general reg is missing. */
3149 else if (((i.types[op] & Reg16) != 0
3150 || (i.types[op] & Reg32) != 0)
3151 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3152 {
3153 /* Prohibit these changes in the 64bit mode, since the
3154 lowering is more complicated. */
3155 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3156 register_prefix, i.op[op].regs->reg_name,
3157 i.suffix);
3158 return 0;
3159 }
3160 return 1;
3161 }
3162
3163 static int
3164 check_word_reg (void)
3165 {
3166 int op;
3167 for (op = i.operands; --op >= 0;)
3168 /* Reject eight bit registers, except where the template requires
3169 them. (eg. movzb) */
3170 if ((i.types[op] & Reg8) != 0
3171 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3172 {
3173 as_bad (_("`%%%s' not allowed with `%s%c'"),
3174 i.op[op].regs->reg_name,
3175 i.tm.name,
3176 i.suffix);
3177 return 0;
3178 }
3179 /* Warn if the e prefix on a general reg is present. */
3180 else if ((!quiet_warnings || flag_code == CODE_64BIT)
3181 && (i.types[op] & Reg32) != 0
3182 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
3183 {
3184 /* Prohibit these changes in the 64bit mode, since the
3185 lowering is more complicated. */
3186 if (flag_code == CODE_64BIT)
3187 {
3188 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3189 register_prefix, i.op[op].regs->reg_name,
3190 i.suffix);
3191 return 0;
3192 }
3193 else
3194 #if REGISTER_WARNINGS
3195 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
3196 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
3197 i.op[op].regs->reg_name,
3198 i.suffix);
3199 #endif
3200 }
3201 return 1;
3202 }
3203
3204 static int
3205 finalize_imm (void)
3206 {
3207 unsigned int overlap0, overlap1, overlap2;
3208
3209 overlap0 = i.types[0] & i.tm.operand_types[0];
3210 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64))
3211 && overlap0 != Imm8 && overlap0 != Imm8S
3212 && overlap0 != Imm16 && overlap0 != Imm32S
3213 && overlap0 != Imm32 && overlap0 != Imm64)
3214 {
3215 if (i.suffix)
3216 {
3217 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
3218 ? Imm8 | Imm8S
3219 : (i.suffix == WORD_MNEM_SUFFIX
3220 ? Imm16
3221 : (i.suffix == QWORD_MNEM_SUFFIX
3222 ? Imm64 | Imm32S
3223 : Imm32)));
3224 }
3225 else if (overlap0 == (Imm16 | Imm32S | Imm32)
3226 || overlap0 == (Imm16 | Imm32)
3227 || overlap0 == (Imm16 | Imm32S))
3228 {
3229 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
3230 ? Imm16 : Imm32S);
3231 }
3232 if (overlap0 != Imm8 && overlap0 != Imm8S
3233 && overlap0 != Imm16 && overlap0 != Imm32S
3234 && overlap0 != Imm32 && overlap0 != Imm64)
3235 {
3236 as_bad (_("no instruction mnemonic suffix given; "
3237 "can't determine immediate size"));
3238 return 0;
3239 }
3240 }
3241 i.types[0] = overlap0;
3242
3243 overlap1 = i.types[1] & i.tm.operand_types[1];
3244 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32 | Imm64))
3245 && overlap1 != Imm8 && overlap1 != Imm8S
3246 && overlap1 != Imm16 && overlap1 != Imm32S
3247 && overlap1 != Imm32 && overlap1 != Imm64)
3248 {
3249 if (i.suffix)
3250 {
3251 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
3252 ? Imm8 | Imm8S
3253 : (i.suffix == WORD_MNEM_SUFFIX
3254 ? Imm16
3255 : (i.suffix == QWORD_MNEM_SUFFIX
3256 ? Imm64 | Imm32S
3257 : Imm32)));
3258 }
3259 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
3260 || overlap1 == (Imm16 | Imm32)
3261 || overlap1 == (Imm16 | Imm32S))
3262 {
3263 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
3264 ? Imm16 : Imm32S);
3265 }
3266 if (overlap1 != Imm8 && overlap1 != Imm8S
3267 && overlap1 != Imm16 && overlap1 != Imm32S
3268 && overlap1 != Imm32 && overlap1 != Imm64)
3269 {
3270 as_bad (_("no instruction mnemonic suffix given; "
3271 "can't determine immediate size %x %c"),
3272 overlap1, i.suffix);
3273 return 0;
3274 }
3275 }
3276 i.types[1] = overlap1;
3277
3278 overlap2 = i.types[2] & i.tm.operand_types[2];
3279 assert ((overlap2 & Imm) == 0);
3280 i.types[2] = overlap2;
3281
3282 return 1;
3283 }
3284
3285 static int
3286 process_operands (void)
3287 {
3288 /* Default segment register this instruction will use for memory
3289 accesses. 0 means unknown. This is only for optimizing out
3290 unnecessary segment overrides. */
3291 const seg_entry *default_seg = 0;
3292
3293 /* The imul $imm, %reg instruction is converted into
3294 imul $imm, %reg, %reg, and the clr %reg instruction
3295 is converted into xor %reg, %reg. */
3296 if (i.tm.opcode_modifier & regKludge)
3297 {
3298 if ((i.tm.cpu_flags & CpuSSE4_1))
3299 {
3300 /* The first operand in instruction blendvpd, blendvps and
3301 pblendvb in SSE4.1 is implicit and must be xmm0. */
3302 assert (i.operands == 3
3303 && i.reg_operands >= 2
3304 && i.types[0] == RegXMM);
3305 if (i.op[0].regs->reg_num != 0)
3306 {
3307 if (intel_syntax)
3308 as_bad (_("the last operand of `%s' must be `%sxmm0'"),
3309 i.tm.name, register_prefix);
3310 else
3311 as_bad (_("the first operand of `%s' must be `%sxmm0'"),
3312 i.tm.name, register_prefix);
3313 return 0;
3314 }
3315 i.op[0] = i.op[1];
3316 i.op[1] = i.op[2];
3317 i.types[0] = i.types[1];
3318 i.types[1] = i.types[2];
3319 i.operands--;
3320 i.reg_operands--;
3321
3322 /* We need to adjust fields in i.tm since they are used by
3323 build_modrm_byte. */
3324 i.tm.operand_types [0] = i.tm.operand_types [1];
3325 i.tm.operand_types [1] = i.tm.operand_types [2];
3326 i.tm.operands--;
3327 }
3328 else
3329 {
3330 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
3331 /* Pretend we saw the extra register operand. */
3332 assert (i.reg_operands == 1
3333 && i.op[first_reg_op + 1].regs == 0);
3334 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
3335 i.types[first_reg_op + 1] = i.types[first_reg_op];
3336 i.operands++;
3337 i.reg_operands++;
3338 }
3339 }
3340
3341 if (i.tm.opcode_modifier & ShortForm)
3342 {
3343 if (i.types[0] & (SReg2 | SReg3))
3344 {
3345 if (i.tm.base_opcode == POP_SEG_SHORT
3346 && i.op[0].regs->reg_num == 1)
3347 {
3348 as_bad (_("you can't `pop %%cs'"));
3349 return 0;
3350 }
3351 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
3352 if ((i.op[0].regs->reg_flags & RegRex) != 0)
3353 i.rex |= REX_B;
3354 }
3355 else
3356 {
3357 /* The register or float register operand is in operand 0 or 1. */
3358 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
3359 /* Register goes in low 3 bits of opcode. */
3360 i.tm.base_opcode |= i.op[op].regs->reg_num;
3361 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3362 i.rex |= REX_B;
3363 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
3364 {
3365 /* Warn about some common errors, but press on regardless.
3366 The first case can be generated by gcc (<= 2.8.1). */
3367 if (i.operands == 2)
3368 {
3369 /* Reversed arguments on faddp, fsubp, etc. */
3370 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
3371 i.op[1].regs->reg_name,
3372 i.op[0].regs->reg_name);
3373 }
3374 else
3375 {
3376 /* Extraneous `l' suffix on fp insn. */
3377 as_warn (_("translating to `%s %%%s'"), i.tm.name,
3378 i.op[0].regs->reg_name);
3379 }
3380 }
3381 }
3382 }
3383 else if (i.tm.opcode_modifier & Modrm)
3384 {
3385 /* The opcode is completed (modulo i.tm.extension_opcode which
3386 must be put into the modrm byte). Now, we make the modrm and
3387 index base bytes based on all the info we've collected. */
3388
3389 default_seg = build_modrm_byte ();
3390 }
3391 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
3392 {
3393 default_seg = &ds;
3394 }
3395 else if ((i.tm.opcode_modifier & IsString) != 0)
3396 {
3397 /* For the string instructions that allow a segment override
3398 on one of their operands, the default segment is ds. */
3399 default_seg = &ds;
3400 }
3401
3402 if ((i.tm.base_opcode == 0x8d /* lea */
3403 || (i.tm.cpu_flags & CpuSVME))
3404 && i.seg[0] && !quiet_warnings)
3405 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
3406
3407 /* If a segment was explicitly specified, and the specified segment
3408 is not the default, use an opcode prefix to select it. If we
3409 never figured out what the default segment is, then default_seg
3410 will be zero at this point, and the specified segment prefix will
3411 always be used. */
3412 if ((i.seg[0]) && (i.seg[0] != default_seg))
3413 {
3414 if (!add_prefix (i.seg[0]->seg_prefix))
3415 return 0;
3416 }
3417 return 1;
3418 }
3419
3420 static const seg_entry *
3421 build_modrm_byte (void)
3422 {
3423 const seg_entry *default_seg = 0;
3424
3425 /* i.reg_operands MUST be the number of real register operands;
3426 implicit registers do not count. */
3427 if (i.reg_operands == 2)
3428 {
3429 unsigned int source, dest;
3430
3431 switch (i.operands)
3432 {
3433 case 2:
3434 source = 0;
3435 break;
3436 case 3:
3437 /* When there are 3 operands, one of them may be immediate,
3438 which may be the first or the last operand. Otherwise,
3439 the first operand must be shift count register (cl). */
3440 assert (i.imm_operands == 1
3441 || (i.imm_operands == 0
3442 && (i.types[0] & ShiftCount)));
3443 source = (i.types[0] & (Imm | ShiftCount)) ? 1 : 0;
3444 break;
3445 case 4:
3446 /* When there are 4 operands, the first two must be immediate
3447 operands. The source operand will be the 3rd one. */
3448 assert (i.imm_operands == 2
3449 && (i.types[0] & Imm)
3450 && (i.types[1] & Imm));
3451 source = 2;
3452 break;
3453 default:
3454 abort ();
3455 }
3456
3457 dest = source + 1;
3458
3459 i.rm.mode = 3;
3460 /* One of the register operands will be encoded in the i.tm.reg
3461 field, the other in the combined i.tm.mode and i.tm.regmem
3462 fields. If no form of this instruction supports a memory
3463 destination operand, then we assume the source operand may
3464 sometimes be a memory operand and so we need to store the
3465 destination in the i.rm.reg field. */
3466 if ((i.tm.operand_types[dest] & (AnyMem | RegMem)) == 0)
3467 {
3468 i.rm.reg = i.op[dest].regs->reg_num;
3469 i.rm.regmem = i.op[source].regs->reg_num;
3470 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
3471 i.rex |= REX_R;
3472 if ((i.op[source].regs->reg_flags & RegRex) != 0)
3473 i.rex |= REX_B;
3474 }
3475 else
3476 {
3477 i.rm.reg = i.op[source].regs->reg_num;
3478 i.rm.regmem = i.op[dest].regs->reg_num;
3479 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
3480 i.rex |= REX_B;
3481 if ((i.op[source].regs->reg_flags & RegRex) != 0)
3482 i.rex |= REX_R;
3483 }
3484 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
3485 {
3486 if (!((i.types[0] | i.types[1]) & Control))
3487 abort ();
3488 i.rex &= ~(REX_R | REX_B);
3489 add_prefix (LOCK_PREFIX_OPCODE);
3490 }
3491 }
3492 else
3493 { /* If it's not 2 reg operands... */
3494 if (i.mem_operands)
3495 {
3496 unsigned int fake_zero_displacement = 0;
3497 unsigned int op;
3498
3499 for (op = 0; op < i.operands; op++)
3500 if ((i.types[op] & AnyMem))
3501 break;
3502 assert (op < i.operands);
3503
3504 default_seg = &ds;
3505
3506 if (i.base_reg == 0)
3507 {
3508 i.rm.mode = 0;
3509 if (!i.disp_operands)
3510 fake_zero_displacement = 1;
3511 if (i.index_reg == 0)
3512 {
3513 /* Operand is just <disp> */
3514 if (flag_code == CODE_64BIT)
3515 {
3516 /* 64bit mode overwrites the 32bit absolute
3517 addressing by RIP relative addressing and
3518 absolute addressing is encoded by one of the
3519 redundant SIB forms. */
3520 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3521 i.sib.base = NO_BASE_REGISTER;
3522 i.sib.index = NO_INDEX_REGISTER;
3523 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
3524 ? Disp32S : Disp32);
3525 }
3526 else if ((flag_code == CODE_16BIT)
3527 ^ (i.prefix[ADDR_PREFIX] != 0))
3528 {
3529 i.rm.regmem = NO_BASE_REGISTER_16;
3530 i.types[op] = Disp16;
3531 }
3532 else
3533 {
3534 i.rm.regmem = NO_BASE_REGISTER;
3535 i.types[op] = Disp32;
3536 }
3537 }
3538 else /* !i.base_reg && i.index_reg */
3539 {
3540 i.sib.index = i.index_reg->reg_num;
3541 i.sib.base = NO_BASE_REGISTER;
3542 i.sib.scale = i.log2_scale_factor;
3543 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3544 i.types[op] &= ~Disp;
3545 if (flag_code != CODE_64BIT)
3546 i.types[op] |= Disp32; /* Must be 32 bit */
3547 else
3548 i.types[op] |= Disp32S;
3549 if ((i.index_reg->reg_flags & RegRex) != 0)
3550 i.rex |= REX_X;
3551 }
3552 }
3553 /* RIP addressing for 64bit mode. */
3554 else if (i.base_reg->reg_type == BaseIndex)
3555 {
3556 i.rm.regmem = NO_BASE_REGISTER;
3557 i.types[op] &= ~ Disp;
3558 i.types[op] |= Disp32S;
3559 i.flags[op] |= Operand_PCrel;
3560 if (! i.disp_operands)
3561 fake_zero_displacement = 1;
3562 }
3563 else if (i.base_reg->reg_type & Reg16)
3564 {
3565 switch (i.base_reg->reg_num)
3566 {
3567 case 3: /* (%bx) */
3568 if (i.index_reg == 0)
3569 i.rm.regmem = 7;
3570 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
3571 i.rm.regmem = i.index_reg->reg_num - 6;
3572 break;
3573 case 5: /* (%bp) */
3574 default_seg = &ss;
3575 if (i.index_reg == 0)
3576 {
3577 i.rm.regmem = 6;
3578 if ((i.types[op] & Disp) == 0)
3579 {
3580 /* fake (%bp) into 0(%bp) */
3581 i.types[op] |= Disp8;
3582 fake_zero_displacement = 1;
3583 }
3584 }
3585 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
3586 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
3587 break;
3588 default: /* (%si) -> 4 or (%di) -> 5 */
3589 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
3590 }
3591 i.rm.mode = mode_from_disp_size (i.types[op]);
3592 }
3593 else /* i.base_reg and 32/64 bit mode */
3594 {
3595 if (flag_code == CODE_64BIT
3596 && (i.types[op] & Disp))
3597 i.types[op] = ((i.types[op] & Disp8)
3598 | (i.prefix[ADDR_PREFIX] == 0
3599 ? Disp32S : Disp32));
3600
3601 i.rm.regmem = i.base_reg->reg_num;
3602 if ((i.base_reg->reg_flags & RegRex) != 0)
3603 i.rex |= REX_B;
3604 i.sib.base = i.base_reg->reg_num;
3605 /* x86-64 ignores REX prefix bit here to avoid decoder
3606 complications. */
3607 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
3608 {
3609 default_seg = &ss;
3610 if (i.disp_operands == 0)
3611 {
3612 fake_zero_displacement = 1;
3613 i.types[op] |= Disp8;
3614 }
3615 }
3616 else if (i.base_reg->reg_num == ESP_REG_NUM)
3617 {
3618 default_seg = &ss;
3619 }
3620 i.sib.scale = i.log2_scale_factor;
3621 if (i.index_reg == 0)
3622 {
3623 /* <disp>(%esp) becomes two byte modrm with no index
3624 register. We've already stored the code for esp
3625 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
3626 Any base register besides %esp will not use the
3627 extra modrm byte. */
3628 i.sib.index = NO_INDEX_REGISTER;
3629 #if !SCALE1_WHEN_NO_INDEX
3630 /* Another case where we force the second modrm byte. */
3631 if (i.log2_scale_factor)
3632 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3633 #endif
3634 }
3635 else
3636 {
3637 i.sib.index = i.index_reg->reg_num;
3638 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3639 if ((i.index_reg->reg_flags & RegRex) != 0)
3640 i.rex |= REX_X;
3641 }
3642
3643 if (i.disp_operands
3644 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
3645 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
3646 i.rm.mode = 0;
3647 else
3648 i.rm.mode = mode_from_disp_size (i.types[op]);
3649 }
3650
3651 if (fake_zero_displacement)
3652 {
3653 /* Fakes a zero displacement assuming that i.types[op]
3654 holds the correct displacement size. */
3655 expressionS *exp;
3656
3657 assert (i.op[op].disps == 0);
3658 exp = &disp_expressions[i.disp_operands++];
3659 i.op[op].disps = exp;
3660 exp->X_op = O_constant;
3661 exp->X_add_number = 0;
3662 exp->X_add_symbol = (symbolS *) 0;
3663 exp->X_op_symbol = (symbolS *) 0;
3664 }
3665 }
3666
3667 /* Fill in i.rm.reg or i.rm.regmem field with register operand
3668 (if any) based on i.tm.extension_opcode. Again, we must be
3669 careful to make sure that segment/control/debug/test/MMX
3670 registers are coded into the i.rm.reg field. */
3671 if (i.reg_operands)
3672 {
3673 unsigned int op;
3674
3675 for (op = 0; op < i.operands; op++)
3676 if ((i.types[op] & (Reg | RegMMX | RegXMM
3677 | SReg2 | SReg3
3678 | Control | Debug | Test)))
3679 break;
3680 assert (op < i.operands);
3681
3682 /* If there is an extension opcode to put here, the register
3683 number must be put into the regmem field. */
3684 if (i.tm.extension_opcode != None)
3685 {
3686 i.rm.regmem = i.op[op].regs->reg_num;
3687 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3688 i.rex |= REX_B;
3689 }
3690 else
3691 {
3692 i.rm.reg = i.op[op].regs->reg_num;
3693 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3694 i.rex |= REX_R;
3695 }
3696
3697 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
3698 must set it to 3 to indicate this is a register operand
3699 in the regmem field. */
3700 if (!i.mem_operands)
3701 i.rm.mode = 3;
3702 }
3703
3704 /* Fill in i.rm.reg field with extension opcode (if any). */
3705 if (i.tm.extension_opcode != None)
3706 i.rm.reg = i.tm.extension_opcode;
3707 }
3708 return default_seg;
3709 }
3710
3711 static void
3712 output_branch (void)
3713 {
3714 char *p;
3715 int code16;
3716 int prefix;
3717 relax_substateT subtype;
3718 symbolS *sym;
3719 offsetT off;
3720
3721 code16 = 0;
3722 if (flag_code == CODE_16BIT)
3723 code16 = CODE16;
3724
3725 prefix = 0;
3726 if (i.prefix[DATA_PREFIX] != 0)
3727 {
3728 prefix = 1;
3729 i.prefixes -= 1;
3730 code16 ^= CODE16;
3731 }
3732 /* Pentium4 branch hints. */
3733 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3734 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3735 {
3736 prefix++;
3737 i.prefixes--;
3738 }
3739 if (i.prefix[REX_PREFIX] != 0)
3740 {
3741 prefix++;
3742 i.prefixes--;
3743 }
3744
3745 if (i.prefixes != 0 && !intel_syntax)
3746 as_warn (_("skipping prefixes on this instruction"));
3747
3748 /* It's always a symbol; End frag & setup for relax.
3749 Make sure there is enough room in this frag for the largest
3750 instruction we may generate in md_convert_frag. This is 2
3751 bytes for the opcode and room for the prefix and largest
3752 displacement. */
3753 frag_grow (prefix + 2 + 4);
3754 /* Prefix and 1 opcode byte go in fr_fix. */
3755 p = frag_more (prefix + 1);
3756 if (i.prefix[DATA_PREFIX] != 0)
3757 *p++ = DATA_PREFIX_OPCODE;
3758 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
3759 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
3760 *p++ = i.prefix[SEG_PREFIX];
3761 if (i.prefix[REX_PREFIX] != 0)
3762 *p++ = i.prefix[REX_PREFIX];
3763 *p = i.tm.base_opcode;
3764
3765 if ((unsigned char) *p == JUMP_PC_RELATIVE)
3766 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
3767 else if ((cpu_arch_flags & Cpu386) != 0)
3768 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3769 else
3770 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3771 subtype |= code16;
3772
3773 sym = i.op[0].disps->X_add_symbol;
3774 off = i.op[0].disps->X_add_number;
3775
3776 if (i.op[0].disps->X_op != O_constant
3777 && i.op[0].disps->X_op != O_symbol)
3778 {
3779 /* Handle complex expressions. */
3780 sym = make_expr_symbol (i.op[0].disps);
3781 off = 0;
3782 }
3783
3784 /* 1 possible extra opcode + 4 byte displacement go in var part.
3785 Pass reloc in fr_var. */
3786 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3787 }
3788
3789 static void
3790 output_jump (void)
3791 {
3792 char *p;
3793 int size;
3794 fixS *fixP;
3795
3796 if (i.tm.opcode_modifier & JumpByte)
3797 {
3798 /* This is a loop or jecxz type instruction. */
3799 size = 1;
3800 if (i.prefix[ADDR_PREFIX] != 0)
3801 {
3802 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3803 i.prefixes -= 1;
3804 }
3805 /* Pentium4 branch hints. */
3806 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3807 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3808 {
3809 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3810 i.prefixes--;
3811 }
3812 }
3813 else
3814 {
3815 int code16;
3816
3817 code16 = 0;
3818 if (flag_code == CODE_16BIT)
3819 code16 = CODE16;
3820
3821 if (i.prefix[DATA_PREFIX] != 0)
3822 {
3823 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3824 i.prefixes -= 1;
3825 code16 ^= CODE16;
3826 }
3827
3828 size = 4;
3829 if (code16)
3830 size = 2;
3831 }
3832
3833 if (i.prefix[REX_PREFIX] != 0)
3834 {
3835 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3836 i.prefixes -= 1;
3837 }
3838
3839 if (i.prefixes != 0 && !intel_syntax)
3840 as_warn (_("skipping prefixes on this instruction"));
3841
3842 p = frag_more (1 + size);
3843 *p++ = i.tm.base_opcode;
3844
3845 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3846 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3847
3848 /* All jumps handled here are signed, but don't use a signed limit
3849 check for 32 and 16 bit jumps as we want to allow wrap around at
3850 4G and 64k respectively. */
3851 if (size == 1)
3852 fixP->fx_signed = 1;
3853 }
3854
3855 static void
3856 output_interseg_jump (void)
3857 {
3858 char *p;
3859 int size;
3860 int prefix;
3861 int code16;
3862
3863 code16 = 0;
3864 if (flag_code == CODE_16BIT)
3865 code16 = CODE16;
3866
3867 prefix = 0;
3868 if (i.prefix[DATA_PREFIX] != 0)
3869 {
3870 prefix = 1;
3871 i.prefixes -= 1;
3872 code16 ^= CODE16;
3873 }
3874 if (i.prefix[REX_PREFIX] != 0)
3875 {
3876 prefix++;
3877 i.prefixes -= 1;
3878 }
3879
3880 size = 4;
3881 if (code16)
3882 size = 2;
3883
3884 if (i.prefixes != 0 && !intel_syntax)
3885 as_warn (_("skipping prefixes on this instruction"));
3886
3887 /* 1 opcode; 2 segment; offset */
3888 p = frag_more (prefix + 1 + 2 + size);
3889
3890 if (i.prefix[DATA_PREFIX] != 0)
3891 *p++ = DATA_PREFIX_OPCODE;
3892
3893 if (i.prefix[REX_PREFIX] != 0)
3894 *p++ = i.prefix[REX_PREFIX];
3895
3896 *p++ = i.tm.base_opcode;
3897 if (i.op[1].imms->X_op == O_constant)
3898 {
3899 offsetT n = i.op[1].imms->X_add_number;
3900
3901 if (size == 2
3902 && !fits_in_unsigned_word (n)
3903 && !fits_in_signed_word (n))
3904 {
3905 as_bad (_("16-bit jump out of range"));
3906 return;
3907 }
3908 md_number_to_chars (p, n, size);
3909 }
3910 else
3911 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3912 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3913 if (i.op[0].imms->X_op != O_constant)
3914 as_bad (_("can't handle non absolute segment in `%s'"),
3915 i.tm.name);
3916 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3917 }
3918
3919 static void
3920 output_insn (void)
3921 {
3922 fragS *insn_start_frag;
3923 offsetT insn_start_off;
3924
3925 /* Tie dwarf2 debug info to the address at the start of the insn.
3926 We can't do this after the insn has been output as the current
3927 frag may have been closed off. eg. by frag_var. */
3928 dwarf2_emit_insn (0);
3929
3930 insn_start_frag = frag_now;
3931 insn_start_off = frag_now_fix ();
3932
3933 /* Output jumps. */
3934 if (i.tm.opcode_modifier & Jump)
3935 output_branch ();
3936 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
3937 output_jump ();
3938 else if (i.tm.opcode_modifier & JumpInterSegment)
3939 output_interseg_jump ();
3940 else
3941 {
3942 /* Output normal instructions here. */
3943 char *p;
3944 unsigned char *q;
3945 unsigned int prefix;
3946
3947 /* All opcodes on i386 have either 1 or 2 bytes. SSSE3 and
3948 SSE4 instructions have 3 bytes. We may use one more higher
3949 byte to specify a prefix the instruction requires. Exclude
3950 instructions which are in both SSE4 and ABM. */
3951 if ((i.tm.cpu_flags & (CpuSSSE3 | CpuSSE4)) != 0
3952 && (i.tm.cpu_flags & CpuABM) == 0)
3953 {
3954 if (i.tm.base_opcode & 0xff000000)
3955 {
3956 prefix = (i.tm.base_opcode >> 24) & 0xff;
3957 goto check_prefix;
3958 }
3959 }
3960 else if ((i.tm.base_opcode & 0xff0000) != 0)
3961 {
3962 prefix = (i.tm.base_opcode >> 16) & 0xff;
3963 if ((i.tm.cpu_flags & CpuPadLock) != 0)
3964 {
3965 check_prefix:
3966 if (prefix != REPE_PREFIX_OPCODE
3967 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
3968 add_prefix (prefix);
3969 }
3970 else
3971 add_prefix (prefix);
3972 }
3973
3974 /* The prefix bytes. */
3975 for (q = i.prefix;
3976 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
3977 q++)
3978 {
3979 if (*q)
3980 {
3981 p = frag_more (1);
3982 md_number_to_chars (p, (valueT) *q, 1);
3983 }
3984 }
3985
3986 /* Now the opcode; be careful about word order here! */
3987 if (fits_in_unsigned_byte (i.tm.base_opcode))
3988 {
3989 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
3990 }
3991 else
3992 {
3993 if ((i.tm.cpu_flags & (CpuSSSE3 | CpuSSE4)) != 0
3994 && (i.tm.cpu_flags & CpuABM) == 0)
3995 {
3996 p = frag_more (3);
3997 *p++ = (i.tm.base_opcode >> 16) & 0xff;
3998 }
3999 else
4000 p = frag_more (2);
4001
4002 /* Put out high byte first: can't use md_number_to_chars! */
4003 *p++ = (i.tm.base_opcode >> 8) & 0xff;
4004 *p = i.tm.base_opcode & 0xff;
4005 }
4006
4007 /* Now the modrm byte and sib byte (if present). */
4008 if (i.tm.opcode_modifier & Modrm)
4009 {
4010 p = frag_more (1);
4011 md_number_to_chars (p,
4012 (valueT) (i.rm.regmem << 0
4013 | i.rm.reg << 3
4014 | i.rm.mode << 6),
4015 1);
4016 /* If i.rm.regmem == ESP (4)
4017 && i.rm.mode != (Register mode)
4018 && not 16 bit
4019 ==> need second modrm byte. */
4020 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
4021 && i.rm.mode != 3
4022 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
4023 {
4024 p = frag_more (1);
4025 md_number_to_chars (p,
4026 (valueT) (i.sib.base << 0
4027 | i.sib.index << 3
4028 | i.sib.scale << 6),
4029 1);
4030 }
4031 }
4032
4033 if (i.disp_operands)
4034 output_disp (insn_start_frag, insn_start_off);
4035
4036 if (i.imm_operands)
4037 output_imm (insn_start_frag, insn_start_off);
4038 }
4039
4040 #ifdef DEBUG386
4041 if (flag_debug)
4042 {
4043 pi ("" /*line*/, &i);
4044 }
4045 #endif /* DEBUG386 */
4046 }
4047
4048 static void
4049 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
4050 {
4051 char *p;
4052 unsigned int n;
4053
4054 for (n = 0; n < i.operands; n++)
4055 {
4056 if (i.types[n] & Disp)
4057 {
4058 if (i.op[n].disps->X_op == O_constant)
4059 {
4060 int size;
4061 offsetT val;
4062
4063 size = 4;
4064 if (i.types[n] & (Disp8 | Disp16 | Disp64))
4065 {
4066 size = 2;
4067 if (i.types[n] & Disp8)
4068 size = 1;
4069 if (i.types[n] & Disp64)
4070 size = 8;
4071 }
4072 val = offset_in_range (i.op[n].disps->X_add_number,
4073 size);
4074 p = frag_more (size);
4075 md_number_to_chars (p, val, size);
4076 }
4077 else
4078 {
4079 enum bfd_reloc_code_real reloc_type;
4080 int size = 4;
4081 int sign = 0;
4082 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
4083
4084 /* The PC relative address is computed relative
4085 to the instruction boundary, so in case immediate
4086 fields follows, we need to adjust the value. */
4087 if (pcrel && i.imm_operands)
4088 {
4089 int imm_size = 4;
4090 unsigned int n1;
4091
4092 for (n1 = 0; n1 < i.operands; n1++)
4093 if (i.types[n1] & Imm)
4094 {
4095 if (i.types[n1] & (Imm8 | Imm8S | Imm16 | Imm64))
4096 {
4097 imm_size = 2;
4098 if (i.types[n1] & (Imm8 | Imm8S))
4099 imm_size = 1;
4100 if (i.types[n1] & Imm64)
4101 imm_size = 8;
4102 }
4103 break;
4104 }
4105 /* We should find the immediate. */
4106 if (n1 == i.operands)
4107 abort ();
4108 i.op[n].disps->X_add_number -= imm_size;
4109 }
4110
4111 if (i.types[n] & Disp32S)
4112 sign = 1;
4113
4114 if (i.types[n] & (Disp16 | Disp64))
4115 {
4116 size = 2;
4117 if (i.types[n] & Disp64)
4118 size = 8;
4119 }
4120
4121 p = frag_more (size);
4122 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
4123 if (GOT_symbol
4124 && GOT_symbol == i.op[n].disps->X_add_symbol
4125 && (((reloc_type == BFD_RELOC_32
4126 || reloc_type == BFD_RELOC_X86_64_32S
4127 || (reloc_type == BFD_RELOC_64
4128 && object_64bit))
4129 && (i.op[n].disps->X_op == O_symbol
4130 || (i.op[n].disps->X_op == O_add
4131 && ((symbol_get_value_expression
4132 (i.op[n].disps->X_op_symbol)->X_op)
4133 == O_subtract))))
4134 || reloc_type == BFD_RELOC_32_PCREL))
4135 {
4136 offsetT add;
4137
4138 if (insn_start_frag == frag_now)
4139 add = (p - frag_now->fr_literal) - insn_start_off;
4140 else
4141 {
4142 fragS *fr;
4143
4144 add = insn_start_frag->fr_fix - insn_start_off;
4145 for (fr = insn_start_frag->fr_next;
4146 fr && fr != frag_now; fr = fr->fr_next)
4147 add += fr->fr_fix;
4148 add += p - frag_now->fr_literal;
4149 }
4150
4151 if (!object_64bit)
4152 {
4153 reloc_type = BFD_RELOC_386_GOTPC;
4154 i.op[n].imms->X_add_number += add;
4155 }
4156 else if (reloc_type == BFD_RELOC_64)
4157 reloc_type = BFD_RELOC_X86_64_GOTPC64;
4158 else
4159 /* Don't do the adjustment for x86-64, as there
4160 the pcrel addressing is relative to the _next_
4161 insn, and that is taken care of in other code. */
4162 reloc_type = BFD_RELOC_X86_64_GOTPC32;
4163 }
4164 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
4165 i.op[n].disps, pcrel, reloc_type);
4166 }
4167 }
4168 }
4169 }
4170
4171 static void
4172 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
4173 {
4174 char *p;
4175 unsigned int n;
4176
4177 for (n = 0; n < i.operands; n++)
4178 {
4179 if (i.types[n] & Imm)
4180 {
4181 if (i.op[n].imms->X_op == O_constant)
4182 {
4183 int size;
4184 offsetT val;
4185
4186 size = 4;
4187 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
4188 {
4189 size = 2;
4190 if (i.types[n] & (Imm8 | Imm8S))
4191 size = 1;
4192 else if (i.types[n] & Imm64)
4193 size = 8;
4194 }
4195 val = offset_in_range (i.op[n].imms->X_add_number,
4196 size);
4197 p = frag_more (size);
4198 md_number_to_chars (p, val, size);
4199 }
4200 else
4201 {
4202 /* Not absolute_section.
4203 Need a 32-bit fixup (don't support 8bit
4204 non-absolute imms). Try to support other
4205 sizes ... */
4206 enum bfd_reloc_code_real reloc_type;
4207 int size = 4;
4208 int sign = 0;
4209
4210 if ((i.types[n] & (Imm32S))
4211 && (i.suffix == QWORD_MNEM_SUFFIX
4212 || (!i.suffix && (i.tm.opcode_modifier & No_lSuf))))
4213 sign = 1;
4214 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
4215 {
4216 size = 2;
4217 if (i.types[n] & (Imm8 | Imm8S))
4218 size = 1;
4219 if (i.types[n] & Imm64)
4220 size = 8;
4221 }
4222
4223 p = frag_more (size);
4224 reloc_type = reloc (size, 0, sign, i.reloc[n]);
4225
4226 /* This is tough to explain. We end up with this one if we
4227 * have operands that look like
4228 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
4229 * obtain the absolute address of the GOT, and it is strongly
4230 * preferable from a performance point of view to avoid using
4231 * a runtime relocation for this. The actual sequence of
4232 * instructions often look something like:
4233 *
4234 * call .L66
4235 * .L66:
4236 * popl %ebx
4237 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
4238 *
4239 * The call and pop essentially return the absolute address
4240 * of the label .L66 and store it in %ebx. The linker itself
4241 * will ultimately change the first operand of the addl so
4242 * that %ebx points to the GOT, but to keep things simple, the
4243 * .o file must have this operand set so that it generates not
4244 * the absolute address of .L66, but the absolute address of
4245 * itself. This allows the linker itself simply treat a GOTPC
4246 * relocation as asking for a pcrel offset to the GOT to be
4247 * added in, and the addend of the relocation is stored in the
4248 * operand field for the instruction itself.
4249 *
4250 * Our job here is to fix the operand so that it would add
4251 * the correct offset so that %ebx would point to itself. The
4252 * thing that is tricky is that .-.L66 will point to the
4253 * beginning of the instruction, so we need to further modify
4254 * the operand so that it will point to itself. There are
4255 * other cases where you have something like:
4256 *
4257 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
4258 *
4259 * and here no correction would be required. Internally in
4260 * the assembler we treat operands of this form as not being
4261 * pcrel since the '.' is explicitly mentioned, and I wonder
4262 * whether it would simplify matters to do it this way. Who
4263 * knows. In earlier versions of the PIC patches, the
4264 * pcrel_adjust field was used to store the correction, but
4265 * since the expression is not pcrel, I felt it would be
4266 * confusing to do it this way. */
4267
4268 if ((reloc_type == BFD_RELOC_32
4269 || reloc_type == BFD_RELOC_X86_64_32S
4270 || reloc_type == BFD_RELOC_64)
4271 && GOT_symbol
4272 && GOT_symbol == i.op[n].imms->X_add_symbol
4273 && (i.op[n].imms->X_op == O_symbol
4274 || (i.op[n].imms->X_op == O_add
4275 && ((symbol_get_value_expression
4276 (i.op[n].imms->X_op_symbol)->X_op)
4277 == O_subtract))))
4278 {
4279 offsetT add;
4280
4281 if (insn_start_frag == frag_now)
4282 add = (p - frag_now->fr_literal) - insn_start_off;
4283 else
4284 {
4285 fragS *fr;
4286
4287 add = insn_start_frag->fr_fix - insn_start_off;
4288 for (fr = insn_start_frag->fr_next;
4289 fr && fr != frag_now; fr = fr->fr_next)
4290 add += fr->fr_fix;
4291 add += p - frag_now->fr_literal;
4292 }
4293
4294 if (!object_64bit)
4295 reloc_type = BFD_RELOC_386_GOTPC;
4296 else if (size == 4)
4297 reloc_type = BFD_RELOC_X86_64_GOTPC32;
4298 else if (size == 8)
4299 reloc_type = BFD_RELOC_X86_64_GOTPC64;
4300 i.op[n].imms->X_add_number += add;
4301 }
4302 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
4303 i.op[n].imms, 0, reloc_type);
4304 }
4305 }
4306 }
4307 }
4308 \f
4309 /* x86_cons_fix_new is called via the expression parsing code when a
4310 reloc is needed. We use this hook to get the correct .got reloc. */
4311 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
4312 static int cons_sign = -1;
4313
4314 void
4315 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
4316 expressionS *exp)
4317 {
4318 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
4319
4320 got_reloc = NO_RELOC;
4321
4322 #ifdef TE_PE
4323 if (exp->X_op == O_secrel)
4324 {
4325 exp->X_op = O_symbol;
4326 r = BFD_RELOC_32_SECREL;
4327 }
4328 #endif
4329
4330 fix_new_exp (frag, off, len, exp, 0, r);
4331 }
4332
4333 #if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
4334 # define lex_got(reloc, adjust, types) NULL
4335 #else
4336 /* Parse operands of the form
4337 <symbol>@GOTOFF+<nnn>
4338 and similar .plt or .got references.
4339
4340 If we find one, set up the correct relocation in RELOC and copy the
4341 input string, minus the `@GOTOFF' into a malloc'd buffer for
4342 parsing by the calling routine. Return this buffer, and if ADJUST
4343 is non-null set it to the length of the string we removed from the
4344 input line. Otherwise return NULL. */
4345 static char *
4346 lex_got (enum bfd_reloc_code_real *reloc,
4347 int *adjust,
4348 unsigned int *types)
4349 {
4350 /* Some of the relocations depend on the size of what field is to
4351 be relocated. But in our callers i386_immediate and i386_displacement
4352 we don't yet know the operand size (this will be set by insn
4353 matching). Hence we record the word32 relocation here,
4354 and adjust the reloc according to the real size in reloc(). */
4355 static const struct {
4356 const char *str;
4357 const enum bfd_reloc_code_real rel[2];
4358 const unsigned int types64;
4359 } gotrel[] = {
4360 { "PLTOFF", { 0,
4361 BFD_RELOC_X86_64_PLTOFF64 },
4362 Imm64 },
4363 { "PLT", { BFD_RELOC_386_PLT32,
4364 BFD_RELOC_X86_64_PLT32 },
4365 Imm32 | Imm32S | Disp32 },
4366 { "GOTPLT", { 0,
4367 BFD_RELOC_X86_64_GOTPLT64 },
4368 Imm64 | Disp64 },
4369 { "GOTOFF", { BFD_RELOC_386_GOTOFF,
4370 BFD_RELOC_X86_64_GOTOFF64 },
4371 Imm64 | Disp64 },
4372 { "GOTPCREL", { 0,
4373 BFD_RELOC_X86_64_GOTPCREL },
4374 Imm32 | Imm32S | Disp32 },
4375 { "TLSGD", { BFD_RELOC_386_TLS_GD,
4376 BFD_RELOC_X86_64_TLSGD },
4377 Imm32 | Imm32S | Disp32 },
4378 { "TLSLDM", { BFD_RELOC_386_TLS_LDM,
4379 0 },
4380 0 },
4381 { "TLSLD", { 0,
4382 BFD_RELOC_X86_64_TLSLD },
4383 Imm32 | Imm32S | Disp32 },
4384 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32,
4385 BFD_RELOC_X86_64_GOTTPOFF },
4386 Imm32 | Imm32S | Disp32 },
4387 { "TPOFF", { BFD_RELOC_386_TLS_LE_32,
4388 BFD_RELOC_X86_64_TPOFF32 },
4389 Imm32 | Imm32S | Imm64 | Disp32 | Disp64 },
4390 { "NTPOFF", { BFD_RELOC_386_TLS_LE,
4391 0 },
4392 0 },
4393 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32,
4394 BFD_RELOC_X86_64_DTPOFF32 },
4395 Imm32 | Imm32S | Imm64 | Disp32 | Disp64 },
4396 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE,
4397 0 },
4398 0 },
4399 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE,
4400 0 },
4401 0 },
4402 { "GOT", { BFD_RELOC_386_GOT32,
4403 BFD_RELOC_X86_64_GOT32 },
4404 Imm32 | Imm32S | Disp32 | Imm64 },
4405 { "TLSDESC", { BFD_RELOC_386_TLS_GOTDESC,
4406 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
4407 Imm32 | Imm32S | Disp32 },
4408 { "TLSCALL", { BFD_RELOC_386_TLS_DESC_CALL,
4409 BFD_RELOC_X86_64_TLSDESC_CALL },
4410 Imm32 | Imm32S | Disp32 }
4411 };
4412 char *cp;
4413 unsigned int j;
4414
4415 if (!IS_ELF)
4416 return NULL;
4417
4418 for (cp = input_line_pointer; *cp != '@'; cp++)
4419 if (is_end_of_line[(unsigned char) *cp])
4420 return NULL;
4421
4422 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
4423 {
4424 int len;
4425
4426 len = strlen (gotrel[j].str);
4427 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
4428 {
4429 if (gotrel[j].rel[object_64bit] != 0)
4430 {
4431 int first, second;
4432 char *tmpbuf, *past_reloc;
4433
4434 *reloc = gotrel[j].rel[object_64bit];
4435 if (adjust)
4436 *adjust = len;
4437
4438 if (types)
4439 {
4440 if (flag_code != CODE_64BIT)
4441 *types = Imm32 | Disp32;
4442 else
4443 *types = gotrel[j].types64;
4444 }
4445
4446 if (GOT_symbol == NULL)
4447 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
4448
4449 /* Replace the relocation token with ' ', so that
4450 errors like foo@GOTOFF1 will be detected. */
4451
4452 /* The length of the first part of our input line. */
4453 first = cp - input_line_pointer;
4454
4455 /* The second part goes from after the reloc token until
4456 (and including) an end_of_line char. Don't use strlen
4457 here as the end_of_line char may not be a NUL. */
4458 past_reloc = cp + 1 + len;
4459 for (cp = past_reloc; !is_end_of_line[(unsigned char) *cp++]; )
4460 ;
4461 second = cp - past_reloc;
4462
4463 /* Allocate and copy string. The trailing NUL shouldn't
4464 be necessary, but be safe. */
4465 tmpbuf = xmalloc (first + second + 2);
4466 memcpy (tmpbuf, input_line_pointer, first);
4467 tmpbuf[first] = ' ';
4468 memcpy (tmpbuf + first + 1, past_reloc, second);
4469 tmpbuf[first + second + 1] = '\0';
4470 return tmpbuf;
4471 }
4472
4473 as_bad (_("@%s reloc is not supported with %d-bit output format"),
4474 gotrel[j].str, 1 << (5 + object_64bit));
4475 return NULL;
4476 }
4477 }
4478
4479 /* Might be a symbol version string. Don't as_bad here. */
4480 return NULL;
4481 }
4482
4483 void
4484 x86_cons (expressionS *exp, int size)
4485 {
4486 if (size == 4 || (object_64bit && size == 8))
4487 {
4488 /* Handle @GOTOFF and the like in an expression. */
4489 char *save;
4490 char *gotfree_input_line;
4491 int adjust;
4492
4493 save = input_line_pointer;
4494 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
4495 if (gotfree_input_line)
4496 input_line_pointer = gotfree_input_line;
4497
4498 expression (exp);
4499
4500 if (gotfree_input_line)
4501 {
4502 /* expression () has merrily parsed up to the end of line,
4503 or a comma - in the wrong buffer. Transfer how far
4504 input_line_pointer has moved to the right buffer. */
4505 input_line_pointer = (save
4506 + (input_line_pointer - gotfree_input_line)
4507 + adjust);
4508 free (gotfree_input_line);
4509 }
4510 }
4511 else
4512 expression (exp);
4513 }
4514 #endif
4515
4516 static void signed_cons (int size)
4517 {
4518 if (flag_code == CODE_64BIT)
4519 cons_sign = 1;
4520 cons (size);
4521 cons_sign = -1;
4522 }
4523
4524 #ifdef TE_PE
4525 static void
4526 pe_directive_secrel (dummy)
4527 int dummy ATTRIBUTE_UNUSED;
4528 {
4529 expressionS exp;
4530
4531 do
4532 {
4533 expression (&exp);
4534 if (exp.X_op == O_symbol)
4535 exp.X_op = O_secrel;
4536
4537 emit_expr (&exp, 4);
4538 }
4539 while (*input_line_pointer++ == ',');
4540
4541 input_line_pointer--;
4542 demand_empty_rest_of_line ();
4543 }
4544 #endif
4545
4546 static int
4547 i386_immediate (char *imm_start)
4548 {
4549 char *save_input_line_pointer;
4550 char *gotfree_input_line;
4551 segT exp_seg = 0;
4552 expressionS *exp;
4553 unsigned int types = ~0U;
4554
4555 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
4556 {
4557 as_bad (_("at most %d immediate operands are allowed"),
4558 MAX_IMMEDIATE_OPERANDS);
4559 return 0;
4560 }
4561
4562 exp = &im_expressions[i.imm_operands++];
4563 i.op[this_operand].imms = exp;
4564
4565 if (is_space_char (*imm_start))
4566 ++imm_start;
4567
4568 save_input_line_pointer = input_line_pointer;
4569 input_line_pointer = imm_start;
4570
4571 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
4572 if (gotfree_input_line)
4573 input_line_pointer = gotfree_input_line;
4574
4575 exp_seg = expression (exp);
4576
4577 SKIP_WHITESPACE ();
4578 if (*input_line_pointer)
4579 as_bad (_("junk `%s' after expression"), input_line_pointer);
4580
4581 input_line_pointer = save_input_line_pointer;
4582 if (gotfree_input_line)
4583 free (gotfree_input_line);
4584
4585 if (exp->X_op == O_absent || exp->X_op == O_big)
4586 {
4587 /* Missing or bad expr becomes absolute 0. */
4588 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
4589 imm_start);
4590 exp->X_op = O_constant;
4591 exp->X_add_number = 0;
4592 exp->X_add_symbol = (symbolS *) 0;
4593 exp->X_op_symbol = (symbolS *) 0;
4594 }
4595 else if (exp->X_op == O_constant)
4596 {
4597 /* Size it properly later. */
4598 i.types[this_operand] |= Imm64;
4599 /* If BFD64, sign extend val. */
4600 if (!use_rela_relocations
4601 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
4602 exp->X_add_number
4603 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
4604 }
4605 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4606 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
4607 && exp_seg != absolute_section
4608 && exp_seg != text_section
4609 && exp_seg != data_section
4610 && exp_seg != bss_section
4611 && exp_seg != undefined_section
4612 && !bfd_is_com_section (exp_seg))
4613 {
4614 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4615 return 0;
4616 }
4617 #endif
4618 else if (!intel_syntax && exp->X_op == O_register)
4619 {
4620 as_bad (_("illegal immediate register operand %s"), imm_start);
4621 return 0;
4622 }
4623 else
4624 {
4625 /* This is an address. The size of the address will be
4626 determined later, depending on destination register,
4627 suffix, or the default for the section. */
4628 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
4629 i.types[this_operand] &= types;
4630 }
4631
4632 return 1;
4633 }
4634
4635 static char *
4636 i386_scale (char *scale)
4637 {
4638 offsetT val;
4639 char *save = input_line_pointer;
4640
4641 input_line_pointer = scale;
4642 val = get_absolute_expression ();
4643
4644 switch (val)
4645 {
4646 case 1:
4647 i.log2_scale_factor = 0;
4648 break;
4649 case 2:
4650 i.log2_scale_factor = 1;
4651 break;
4652 case 4:
4653 i.log2_scale_factor = 2;
4654 break;
4655 case 8:
4656 i.log2_scale_factor = 3;
4657 break;
4658 default:
4659 {
4660 char sep = *input_line_pointer;
4661
4662 *input_line_pointer = '\0';
4663 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
4664 scale);
4665 *input_line_pointer = sep;
4666 input_line_pointer = save;
4667 return NULL;
4668 }
4669 }
4670 if (i.log2_scale_factor != 0 && i.index_reg == 0)
4671 {
4672 as_warn (_("scale factor of %d without an index register"),
4673 1 << i.log2_scale_factor);
4674 #if SCALE1_WHEN_NO_INDEX
4675 i.log2_scale_factor = 0;
4676 #endif
4677 }
4678 scale = input_line_pointer;
4679 input_line_pointer = save;
4680 return scale;
4681 }
4682
4683 static int
4684 i386_displacement (char *disp_start, char *disp_end)
4685 {
4686 expressionS *exp;
4687 segT exp_seg = 0;
4688 char *save_input_line_pointer;
4689 char *gotfree_input_line;
4690 int bigdisp, override;
4691 unsigned int types = Disp;
4692
4693 if (i.disp_operands == MAX_MEMORY_OPERANDS)
4694 {
4695 as_bad (_("at most %d displacement operands are allowed"),
4696 MAX_MEMORY_OPERANDS);
4697 return 0;
4698 }
4699
4700 if ((i.types[this_operand] & JumpAbsolute)
4701 || !(current_templates->start->opcode_modifier & (Jump | JumpDword)))
4702 {
4703 bigdisp = Disp32;
4704 override = (i.prefix[ADDR_PREFIX] != 0);
4705 }
4706 else
4707 {
4708 /* For PC-relative branches, the width of the displacement
4709 is dependent upon data size, not address size. */
4710 bigdisp = 0;
4711 override = (i.prefix[DATA_PREFIX] != 0);
4712 }
4713 if (flag_code == CODE_64BIT)
4714 {
4715 if (!bigdisp)
4716 bigdisp = ((override || i.suffix == WORD_MNEM_SUFFIX)
4717 ? Disp16
4718 : Disp32S | Disp32);
4719 else if (!override)
4720 bigdisp = Disp64 | Disp32S | Disp32;
4721 }
4722 else
4723 {
4724 if (!bigdisp)
4725 {
4726 if (!override)
4727 override = (i.suffix == (flag_code != CODE_16BIT
4728 ? WORD_MNEM_SUFFIX
4729 : LONG_MNEM_SUFFIX));
4730 bigdisp = Disp32;
4731 }
4732 if ((flag_code == CODE_16BIT) ^ override)
4733 bigdisp = Disp16;
4734 }
4735 i.types[this_operand] |= bigdisp;
4736
4737 exp = &disp_expressions[i.disp_operands];
4738 i.op[this_operand].disps = exp;
4739 i.disp_operands++;
4740 save_input_line_pointer = input_line_pointer;
4741 input_line_pointer = disp_start;
4742 END_STRING_AND_SAVE (disp_end);
4743
4744 #ifndef GCC_ASM_O_HACK
4745 #define GCC_ASM_O_HACK 0
4746 #endif
4747 #if GCC_ASM_O_HACK
4748 END_STRING_AND_SAVE (disp_end + 1);
4749 if ((i.types[this_operand] & BaseIndex) != 0
4750 && displacement_string_end[-1] == '+')
4751 {
4752 /* This hack is to avoid a warning when using the "o"
4753 constraint within gcc asm statements.
4754 For instance:
4755
4756 #define _set_tssldt_desc(n,addr,limit,type) \
4757 __asm__ __volatile__ ( \
4758 "movw %w2,%0\n\t" \
4759 "movw %w1,2+%0\n\t" \
4760 "rorl $16,%1\n\t" \
4761 "movb %b1,4+%0\n\t" \
4762 "movb %4,5+%0\n\t" \
4763 "movb $0,6+%0\n\t" \
4764 "movb %h1,7+%0\n\t" \
4765 "rorl $16,%1" \
4766 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
4767
4768 This works great except that the output assembler ends
4769 up looking a bit weird if it turns out that there is
4770 no offset. You end up producing code that looks like:
4771
4772 #APP
4773 movw $235,(%eax)
4774 movw %dx,2+(%eax)
4775 rorl $16,%edx
4776 movb %dl,4+(%eax)
4777 movb $137,5+(%eax)
4778 movb $0,6+(%eax)
4779 movb %dh,7+(%eax)
4780 rorl $16,%edx
4781 #NO_APP
4782
4783 So here we provide the missing zero. */
4784
4785 *displacement_string_end = '0';
4786 }
4787 #endif
4788 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
4789 if (gotfree_input_line)
4790 input_line_pointer = gotfree_input_line;
4791
4792 exp_seg = expression (exp);
4793
4794 SKIP_WHITESPACE ();
4795 if (*input_line_pointer)
4796 as_bad (_("junk `%s' after expression"), input_line_pointer);
4797 #if GCC_ASM_O_HACK
4798 RESTORE_END_STRING (disp_end + 1);
4799 #endif
4800 RESTORE_END_STRING (disp_end);
4801 input_line_pointer = save_input_line_pointer;
4802 if (gotfree_input_line)
4803 free (gotfree_input_line);
4804
4805 /* We do this to make sure that the section symbol is in
4806 the symbol table. We will ultimately change the relocation
4807 to be relative to the beginning of the section. */
4808 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
4809 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4810 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
4811 {
4812 if (exp->X_op != O_symbol)
4813 {
4814 as_bad (_("bad expression used with @%s"),
4815 (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4816 ? "GOTPCREL"
4817 : "GOTOFF"));
4818 return 0;
4819 }
4820
4821 if (S_IS_LOCAL (exp->X_add_symbol)
4822 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
4823 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
4824 exp->X_op = O_subtract;
4825 exp->X_op_symbol = GOT_symbol;
4826 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
4827 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
4828 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
4829 i.reloc[this_operand] = BFD_RELOC_64;
4830 else
4831 i.reloc[this_operand] = BFD_RELOC_32;
4832 }
4833
4834 if (exp->X_op == O_absent || exp->X_op == O_big)
4835 {
4836 /* Missing or bad expr becomes absolute 0. */
4837 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
4838 disp_start);
4839 exp->X_op = O_constant;
4840 exp->X_add_number = 0;
4841 exp->X_add_symbol = (symbolS *) 0;
4842 exp->X_op_symbol = (symbolS *) 0;
4843 }
4844
4845 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4846 if (exp->X_op != O_constant
4847 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4848 && exp_seg != absolute_section
4849 && exp_seg != text_section
4850 && exp_seg != data_section
4851 && exp_seg != bss_section
4852 && exp_seg != undefined_section
4853 && !bfd_is_com_section (exp_seg))
4854 {
4855 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4856 return 0;
4857 }
4858 #endif
4859
4860 if (!(i.types[this_operand] & ~Disp))
4861 i.types[this_operand] &= types;
4862
4863 return 1;
4864 }
4865
4866 /* Make sure the memory operand we've been dealt is valid.
4867 Return 1 on success, 0 on a failure. */
4868
4869 static int
4870 i386_index_check (const char *operand_string)
4871 {
4872 int ok;
4873 #if INFER_ADDR_PREFIX
4874 int fudged = 0;
4875
4876 tryprefix:
4877 #endif
4878 ok = 1;
4879 if ((current_templates->start->cpu_flags & CpuSVME)
4880 && current_templates->end[-1].operand_types[0] == AnyMem)
4881 {
4882 /* Memory operands of SVME insns are special in that they only allow
4883 rAX as their memory address and ignore any segment override. */
4884 unsigned RegXX;
4885
4886 /* SKINIT is even more restrictive: it always requires EAX. */
4887 if (strcmp (current_templates->start->name, "skinit") == 0)
4888 RegXX = Reg32;
4889 else if (flag_code == CODE_64BIT)
4890 RegXX = i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32;
4891 else
4892 RegXX = ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0)
4893 ? Reg16
4894 : Reg32);
4895 if (!i.base_reg
4896 || !(i.base_reg->reg_type & Acc)
4897 || !(i.base_reg->reg_type & RegXX)
4898 || i.index_reg
4899 || (i.types[0] & Disp))
4900 ok = 0;
4901 }
4902 else if (flag_code == CODE_64BIT)
4903 {
4904 unsigned RegXX = (i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32);
4905
4906 if ((i.base_reg
4907 && ((i.base_reg->reg_type & RegXX) == 0)
4908 && (i.base_reg->reg_type != BaseIndex
4909 || i.index_reg))
4910 || (i.index_reg
4911 && ((i.index_reg->reg_type & (RegXX | BaseIndex))
4912 != (RegXX | BaseIndex))))
4913 ok = 0;
4914 }
4915 else
4916 {
4917 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4918 {
4919 /* 16bit checks. */
4920 if ((i.base_reg
4921 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
4922 != (Reg16 | BaseIndex)))
4923 || (i.index_reg
4924 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
4925 != (Reg16 | BaseIndex))
4926 || !(i.base_reg
4927 && i.base_reg->reg_num < 6
4928 && i.index_reg->reg_num >= 6
4929 && i.log2_scale_factor == 0))))
4930 ok = 0;
4931 }
4932 else
4933 {
4934 /* 32bit checks. */
4935 if ((i.base_reg
4936 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
4937 || (i.index_reg
4938 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
4939 != (Reg32 | BaseIndex))))
4940 ok = 0;
4941 }
4942 }
4943 if (!ok)
4944 {
4945 #if INFER_ADDR_PREFIX
4946 if (i.prefix[ADDR_PREFIX] == 0)
4947 {
4948 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
4949 i.prefixes += 1;
4950 /* Change the size of any displacement too. At most one of
4951 Disp16 or Disp32 is set.
4952 FIXME. There doesn't seem to be any real need for separate
4953 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
4954 Removing them would probably clean up the code quite a lot. */
4955 if (flag_code != CODE_64BIT
4956 && (i.types[this_operand] & (Disp16 | Disp32)))
4957 i.types[this_operand] ^= (Disp16 | Disp32);
4958 fudged = 1;
4959 goto tryprefix;
4960 }
4961 if (fudged)
4962 as_bad (_("`%s' is not a valid base/index expression"),
4963 operand_string);
4964 else
4965 #endif
4966 as_bad (_("`%s' is not a valid %s bit base/index expression"),
4967 operand_string,
4968 flag_code_names[flag_code]);
4969 }
4970 return ok;
4971 }
4972
4973 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
4974 on error. */
4975
4976 static int
4977 i386_operand (char *operand_string)
4978 {
4979 const reg_entry *r;
4980 char *end_op;
4981 char *op_string = operand_string;
4982
4983 if (is_space_char (*op_string))
4984 ++op_string;
4985
4986 /* We check for an absolute prefix (differentiating,
4987 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
4988 if (*op_string == ABSOLUTE_PREFIX)
4989 {
4990 ++op_string;
4991 if (is_space_char (*op_string))
4992 ++op_string;
4993 i.types[this_operand] |= JumpAbsolute;
4994 }
4995
4996 /* Check if operand is a register. */
4997 if ((r = parse_register (op_string, &end_op)) != NULL)
4998 {
4999 /* Check for a segment override by searching for ':' after a
5000 segment register. */
5001 op_string = end_op;
5002 if (is_space_char (*op_string))
5003 ++op_string;
5004 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
5005 {
5006 switch (r->reg_num)
5007 {
5008 case 0:
5009 i.seg[i.mem_operands] = &es;
5010 break;
5011 case 1:
5012 i.seg[i.mem_operands] = &cs;
5013 break;
5014 case 2:
5015 i.seg[i.mem_operands] = &ss;
5016 break;
5017 case 3:
5018 i.seg[i.mem_operands] = &ds;
5019 break;
5020 case 4:
5021 i.seg[i.mem_operands] = &fs;
5022 break;
5023 case 5:
5024 i.seg[i.mem_operands] = &gs;
5025 break;
5026 }
5027
5028 /* Skip the ':' and whitespace. */
5029 ++op_string;
5030 if (is_space_char (*op_string))
5031 ++op_string;
5032
5033 if (!is_digit_char (*op_string)
5034 && !is_identifier_char (*op_string)
5035 && *op_string != '('
5036 && *op_string != ABSOLUTE_PREFIX)
5037 {
5038 as_bad (_("bad memory operand `%s'"), op_string);
5039 return 0;
5040 }
5041 /* Handle case of %es:*foo. */
5042 if (*op_string == ABSOLUTE_PREFIX)
5043 {
5044 ++op_string;
5045 if (is_space_char (*op_string))
5046 ++op_string;
5047 i.types[this_operand] |= JumpAbsolute;
5048 }
5049 goto do_memory_reference;
5050 }
5051 if (*op_string)
5052 {
5053 as_bad (_("junk `%s' after register"), op_string);
5054 return 0;
5055 }
5056 i.types[this_operand] |= r->reg_type & ~BaseIndex;
5057 i.op[this_operand].regs = r;
5058 i.reg_operands++;
5059 }
5060 else if (*op_string == REGISTER_PREFIX)
5061 {
5062 as_bad (_("bad register name `%s'"), op_string);
5063 return 0;
5064 }
5065 else if (*op_string == IMMEDIATE_PREFIX)
5066 {
5067 ++op_string;
5068 if (i.types[this_operand] & JumpAbsolute)
5069 {
5070 as_bad (_("immediate operand illegal with absolute jump"));
5071 return 0;
5072 }
5073 if (!i386_immediate (op_string))
5074 return 0;
5075 }
5076 else if (is_digit_char (*op_string)
5077 || is_identifier_char (*op_string)
5078 || *op_string == '(')
5079 {
5080 /* This is a memory reference of some sort. */
5081 char *base_string;
5082
5083 /* Start and end of displacement string expression (if found). */
5084 char *displacement_string_start;
5085 char *displacement_string_end;
5086
5087 do_memory_reference:
5088 if ((i.mem_operands == 1
5089 && (current_templates->start->opcode_modifier & IsString) == 0)
5090 || i.mem_operands == 2)
5091 {
5092 as_bad (_("too many memory references for `%s'"),
5093 current_templates->start->name);
5094 return 0;
5095 }
5096
5097 /* Check for base index form. We detect the base index form by
5098 looking for an ')' at the end of the operand, searching
5099 for the '(' matching it, and finding a REGISTER_PREFIX or ','
5100 after the '('. */
5101 base_string = op_string + strlen (op_string);
5102
5103 --base_string;
5104 if (is_space_char (*base_string))
5105 --base_string;
5106
5107 /* If we only have a displacement, set-up for it to be parsed later. */
5108 displacement_string_start = op_string;
5109 displacement_string_end = base_string + 1;
5110
5111 if (*base_string == ')')
5112 {
5113 char *temp_string;
5114 unsigned int parens_balanced = 1;
5115 /* We've already checked that the number of left & right ()'s are
5116 equal, so this loop will not be infinite. */
5117 do
5118 {
5119 base_string--;
5120 if (*base_string == ')')
5121 parens_balanced++;
5122 if (*base_string == '(')
5123 parens_balanced--;
5124 }
5125 while (parens_balanced);
5126
5127 temp_string = base_string;
5128
5129 /* Skip past '(' and whitespace. */
5130 ++base_string;
5131 if (is_space_char (*base_string))
5132 ++base_string;
5133
5134 if (*base_string == ','
5135 || ((i.base_reg = parse_register (base_string, &end_op))
5136 != NULL))
5137 {
5138 displacement_string_end = temp_string;
5139
5140 i.types[this_operand] |= BaseIndex;
5141
5142 if (i.base_reg)
5143 {
5144 base_string = end_op;
5145 if (is_space_char (*base_string))
5146 ++base_string;
5147 }
5148
5149 /* There may be an index reg or scale factor here. */
5150 if (*base_string == ',')
5151 {
5152 ++base_string;
5153 if (is_space_char (*base_string))
5154 ++base_string;
5155
5156 if ((i.index_reg = parse_register (base_string, &end_op))
5157 != NULL)
5158 {
5159 base_string = end_op;
5160 if (is_space_char (*base_string))
5161 ++base_string;
5162 if (*base_string == ',')
5163 {
5164 ++base_string;
5165 if (is_space_char (*base_string))
5166 ++base_string;
5167 }
5168 else if (*base_string != ')')
5169 {
5170 as_bad (_("expecting `,' or `)' "
5171 "after index register in `%s'"),
5172 operand_string);
5173 return 0;
5174 }
5175 }
5176 else if (*base_string == REGISTER_PREFIX)
5177 {
5178 as_bad (_("bad register name `%s'"), base_string);
5179 return 0;
5180 }
5181
5182 /* Check for scale factor. */
5183 if (*base_string != ')')
5184 {
5185 char *end_scale = i386_scale (base_string);
5186
5187 if (!end_scale)
5188 return 0;
5189
5190 base_string = end_scale;
5191 if (is_space_char (*base_string))
5192 ++base_string;
5193 if (*base_string != ')')
5194 {
5195 as_bad (_("expecting `)' "
5196 "after scale factor in `%s'"),
5197 operand_string);
5198 return 0;
5199 }
5200 }
5201 else if (!i.index_reg)
5202 {
5203 as_bad (_("expecting index register or scale factor "
5204 "after `,'; got '%c'"),
5205 *base_string);
5206 return 0;
5207 }
5208 }
5209 else if (*base_string != ')')
5210 {
5211 as_bad (_("expecting `,' or `)' "
5212 "after base register in `%s'"),
5213 operand_string);
5214 return 0;
5215 }
5216 }
5217 else if (*base_string == REGISTER_PREFIX)
5218 {
5219 as_bad (_("bad register name `%s'"), base_string);
5220 return 0;
5221 }
5222 }
5223
5224 /* If there's an expression beginning the operand, parse it,
5225 assuming displacement_string_start and
5226 displacement_string_end are meaningful. */
5227 if (displacement_string_start != displacement_string_end)
5228 {
5229 if (!i386_displacement (displacement_string_start,
5230 displacement_string_end))
5231 return 0;
5232 }
5233
5234 /* Special case for (%dx) while doing input/output op. */
5235 if (i.base_reg
5236 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
5237 && i.index_reg == 0
5238 && i.log2_scale_factor == 0
5239 && i.seg[i.mem_operands] == 0
5240 && (i.types[this_operand] & Disp) == 0)
5241 {
5242 i.types[this_operand] = InOutPortReg;
5243 return 1;
5244 }
5245
5246 if (i386_index_check (operand_string) == 0)
5247 return 0;
5248 i.mem_operands++;
5249 }
5250 else
5251 {
5252 /* It's not a memory operand; argh! */
5253 as_bad (_("invalid char %s beginning operand %d `%s'"),
5254 output_invalid (*op_string),
5255 this_operand + 1,
5256 op_string);
5257 return 0;
5258 }
5259 return 1; /* Normal return. */
5260 }
5261 \f
5262 /* md_estimate_size_before_relax()
5263
5264 Called just before relax() for rs_machine_dependent frags. The x86
5265 assembler uses these frags to handle variable size jump
5266 instructions.
5267
5268 Any symbol that is now undefined will not become defined.
5269 Return the correct fr_subtype in the frag.
5270 Return the initial "guess for variable size of frag" to caller.
5271 The guess is actually the growth beyond the fixed part. Whatever
5272 we do to grow the fixed or variable part contributes to our
5273 returned value. */
5274
5275 int
5276 md_estimate_size_before_relax (fragP, segment)
5277 fragS *fragP;
5278 segT segment;
5279 {
5280 /* We've already got fragP->fr_subtype right; all we have to do is
5281 check for un-relaxable symbols. On an ELF system, we can't relax
5282 an externally visible symbol, because it may be overridden by a
5283 shared library. */
5284 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
5285 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5286 || (IS_ELF
5287 && (S_IS_EXTERNAL (fragP->fr_symbol)
5288 || S_IS_WEAK (fragP->fr_symbol)))
5289 #endif
5290 )
5291 {
5292 /* Symbol is undefined in this segment, or we need to keep a
5293 reloc so that weak symbols can be overridden. */
5294 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
5295 enum bfd_reloc_code_real reloc_type;
5296 unsigned char *opcode;
5297 int old_fr_fix;
5298
5299 if (fragP->fr_var != NO_RELOC)
5300 reloc_type = fragP->fr_var;
5301 else if (size == 2)
5302 reloc_type = BFD_RELOC_16_PCREL;
5303 else
5304 reloc_type = BFD_RELOC_32_PCREL;
5305
5306 old_fr_fix = fragP->fr_fix;
5307 opcode = (unsigned char *) fragP->fr_opcode;
5308
5309 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
5310 {
5311 case UNCOND_JUMP:
5312 /* Make jmp (0xeb) a (d)word displacement jump. */
5313 opcode[0] = 0xe9;
5314 fragP->fr_fix += size;
5315 fix_new (fragP, old_fr_fix, size,
5316 fragP->fr_symbol,
5317 fragP->fr_offset, 1,
5318 reloc_type);
5319 break;
5320
5321 case COND_JUMP86:
5322 if (size == 2
5323 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
5324 {
5325 /* Negate the condition, and branch past an
5326 unconditional jump. */
5327 opcode[0] ^= 1;
5328 opcode[1] = 3;
5329 /* Insert an unconditional jump. */
5330 opcode[2] = 0xe9;
5331 /* We added two extra opcode bytes, and have a two byte
5332 offset. */
5333 fragP->fr_fix += 2 + 2;
5334 fix_new (fragP, old_fr_fix + 2, 2,
5335 fragP->fr_symbol,
5336 fragP->fr_offset, 1,
5337 reloc_type);
5338 break;
5339 }
5340 /* Fall through. */
5341
5342 case COND_JUMP:
5343 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
5344 {
5345 fixS *fixP;
5346
5347 fragP->fr_fix += 1;
5348 fixP = fix_new (fragP, old_fr_fix, 1,
5349 fragP->fr_symbol,
5350 fragP->fr_offset, 1,
5351 BFD_RELOC_8_PCREL);
5352 fixP->fx_signed = 1;
5353 break;
5354 }
5355
5356 /* This changes the byte-displacement jump 0x7N
5357 to the (d)word-displacement jump 0x0f,0x8N. */
5358 opcode[1] = opcode[0] + 0x10;
5359 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5360 /* We've added an opcode byte. */
5361 fragP->fr_fix += 1 + size;
5362 fix_new (fragP, old_fr_fix + 1, size,
5363 fragP->fr_symbol,
5364 fragP->fr_offset, 1,
5365 reloc_type);
5366 break;
5367
5368 default:
5369 BAD_CASE (fragP->fr_subtype);
5370 break;
5371 }
5372 frag_wane (fragP);
5373 return fragP->fr_fix - old_fr_fix;
5374 }
5375
5376 /* Guess size depending on current relax state. Initially the relax
5377 state will correspond to a short jump and we return 1, because
5378 the variable part of the frag (the branch offset) is one byte
5379 long. However, we can relax a section more than once and in that
5380 case we must either set fr_subtype back to the unrelaxed state,
5381 or return the value for the appropriate branch. */
5382 return md_relax_table[fragP->fr_subtype].rlx_length;
5383 }
5384
5385 /* Called after relax() is finished.
5386
5387 In: Address of frag.
5388 fr_type == rs_machine_dependent.
5389 fr_subtype is what the address relaxed to.
5390
5391 Out: Any fixSs and constants are set up.
5392 Caller will turn frag into a ".space 0". */
5393
5394 void
5395 md_convert_frag (abfd, sec, fragP)
5396 bfd *abfd ATTRIBUTE_UNUSED;
5397 segT sec ATTRIBUTE_UNUSED;
5398 fragS *fragP;
5399 {
5400 unsigned char *opcode;
5401 unsigned char *where_to_put_displacement = NULL;
5402 offsetT target_address;
5403 offsetT opcode_address;
5404 unsigned int extension = 0;
5405 offsetT displacement_from_opcode_start;
5406
5407 opcode = (unsigned char *) fragP->fr_opcode;
5408
5409 /* Address we want to reach in file space. */
5410 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
5411
5412 /* Address opcode resides at in file space. */
5413 opcode_address = fragP->fr_address + fragP->fr_fix;
5414
5415 /* Displacement from opcode start to fill into instruction. */
5416 displacement_from_opcode_start = target_address - opcode_address;
5417
5418 if ((fragP->fr_subtype & BIG) == 0)
5419 {
5420 /* Don't have to change opcode. */
5421 extension = 1; /* 1 opcode + 1 displacement */
5422 where_to_put_displacement = &opcode[1];
5423 }
5424 else
5425 {
5426 if (no_cond_jump_promotion
5427 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
5428 as_warn_where (fragP->fr_file, fragP->fr_line,
5429 _("long jump required"));
5430
5431 switch (fragP->fr_subtype)
5432 {
5433 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
5434 extension = 4; /* 1 opcode + 4 displacement */
5435 opcode[0] = 0xe9;
5436 where_to_put_displacement = &opcode[1];
5437 break;
5438
5439 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
5440 extension = 2; /* 1 opcode + 2 displacement */
5441 opcode[0] = 0xe9;
5442 where_to_put_displacement = &opcode[1];
5443 break;
5444
5445 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
5446 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
5447 extension = 5; /* 2 opcode + 4 displacement */
5448 opcode[1] = opcode[0] + 0x10;
5449 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5450 where_to_put_displacement = &opcode[2];
5451 break;
5452
5453 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
5454 extension = 3; /* 2 opcode + 2 displacement */
5455 opcode[1] = opcode[0] + 0x10;
5456 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5457 where_to_put_displacement = &opcode[2];
5458 break;
5459
5460 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
5461 extension = 4;
5462 opcode[0] ^= 1;
5463 opcode[1] = 3;
5464 opcode[2] = 0xe9;
5465 where_to_put_displacement = &opcode[3];
5466 break;
5467
5468 default:
5469 BAD_CASE (fragP->fr_subtype);
5470 break;
5471 }
5472 }
5473
5474 /* If size if less then four we are sure that the operand fits,
5475 but if it's 4, then it could be that the displacement is larger
5476 then -/+ 2GB. */
5477 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
5478 && object_64bit
5479 && ((addressT) (displacement_from_opcode_start - extension
5480 + ((addressT) 1 << 31))
5481 > (((addressT) 2 << 31) - 1)))
5482 {
5483 as_bad_where (fragP->fr_file, fragP->fr_line,
5484 _("jump target out of range"));
5485 /* Make us emit 0. */
5486 displacement_from_opcode_start = extension;
5487 }
5488 /* Now put displacement after opcode. */
5489 md_number_to_chars ((char *) where_to_put_displacement,
5490 (valueT) (displacement_from_opcode_start - extension),
5491 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
5492 fragP->fr_fix += extension;
5493 }
5494 \f
5495 /* Size of byte displacement jmp. */
5496 int md_short_jump_size = 2;
5497
5498 /* Size of dword displacement jmp. */
5499 int md_long_jump_size = 5;
5500
5501 void
5502 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
5503 char *ptr;
5504 addressT from_addr, to_addr;
5505 fragS *frag ATTRIBUTE_UNUSED;
5506 symbolS *to_symbol ATTRIBUTE_UNUSED;
5507 {
5508 offsetT offset;
5509
5510 offset = to_addr - (from_addr + 2);
5511 /* Opcode for byte-disp jump. */
5512 md_number_to_chars (ptr, (valueT) 0xeb, 1);
5513 md_number_to_chars (ptr + 1, (valueT) offset, 1);
5514 }
5515
5516 void
5517 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
5518 char *ptr;
5519 addressT from_addr, to_addr;
5520 fragS *frag ATTRIBUTE_UNUSED;
5521 symbolS *to_symbol ATTRIBUTE_UNUSED;
5522 {
5523 offsetT offset;
5524
5525 offset = to_addr - (from_addr + 5);
5526 md_number_to_chars (ptr, (valueT) 0xe9, 1);
5527 md_number_to_chars (ptr + 1, (valueT) offset, 4);
5528 }
5529 \f
5530 /* Apply a fixup (fixS) to segment data, once it has been determined
5531 by our caller that we have all the info we need to fix it up.
5532
5533 On the 386, immediates, displacements, and data pointers are all in
5534 the same (little-endian) format, so we don't need to care about which
5535 we are handling. */
5536
5537 void
5538 md_apply_fix (fixP, valP, seg)
5539 /* The fix we're to put in. */
5540 fixS *fixP;
5541 /* Pointer to the value of the bits. */
5542 valueT *valP;
5543 /* Segment fix is from. */
5544 segT seg ATTRIBUTE_UNUSED;
5545 {
5546 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
5547 valueT value = *valP;
5548
5549 #if !defined (TE_Mach)
5550 if (fixP->fx_pcrel)
5551 {
5552 switch (fixP->fx_r_type)
5553 {
5554 default:
5555 break;
5556
5557 case BFD_RELOC_64:
5558 fixP->fx_r_type = BFD_RELOC_64_PCREL;
5559 break;
5560 case BFD_RELOC_32:
5561 case BFD_RELOC_X86_64_32S:
5562 fixP->fx_r_type = BFD_RELOC_32_PCREL;
5563 break;
5564 case BFD_RELOC_16:
5565 fixP->fx_r_type = BFD_RELOC_16_PCREL;
5566 break;
5567 case BFD_RELOC_8:
5568 fixP->fx_r_type = BFD_RELOC_8_PCREL;
5569 break;
5570 }
5571 }
5572
5573 if (fixP->fx_addsy != NULL
5574 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
5575 || fixP->fx_r_type == BFD_RELOC_64_PCREL
5576 || fixP->fx_r_type == BFD_RELOC_16_PCREL
5577 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
5578 && !use_rela_relocations)
5579 {
5580 /* This is a hack. There should be a better way to handle this.
5581 This covers for the fact that bfd_install_relocation will
5582 subtract the current location (for partial_inplace, PC relative
5583 relocations); see more below. */
5584 #ifndef OBJ_AOUT
5585 if (IS_ELF
5586 #ifdef TE_PE
5587 || OUTPUT_FLAVOR == bfd_target_coff_flavour
5588 #endif
5589 )
5590 value += fixP->fx_where + fixP->fx_frag->fr_address;
5591 #endif
5592 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5593 if (IS_ELF)
5594 {
5595 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
5596
5597 if ((sym_seg == seg
5598 || (symbol_section_p (fixP->fx_addsy)
5599 && sym_seg != absolute_section))
5600 && !generic_force_reloc (fixP))
5601 {
5602 /* Yes, we add the values in twice. This is because
5603 bfd_install_relocation subtracts them out again. I think
5604 bfd_install_relocation is broken, but I don't dare change
5605 it. FIXME. */
5606 value += fixP->fx_where + fixP->fx_frag->fr_address;
5607 }
5608 }
5609 #endif
5610 #if defined (OBJ_COFF) && defined (TE_PE)
5611 /* For some reason, the PE format does not store a
5612 section address offset for a PC relative symbol. */
5613 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
5614 || S_IS_WEAK (fixP->fx_addsy))
5615 value += md_pcrel_from (fixP);
5616 #endif
5617 }
5618
5619 /* Fix a few things - the dynamic linker expects certain values here,
5620 and we must not disappoint it. */
5621 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5622 if (IS_ELF && fixP->fx_addsy)
5623 switch (fixP->fx_r_type)
5624 {
5625 case BFD_RELOC_386_PLT32:
5626 case BFD_RELOC_X86_64_PLT32:
5627 /* Make the jump instruction point to the address of the operand. At
5628 runtime we merely add the offset to the actual PLT entry. */
5629 value = -4;
5630 break;
5631
5632 case BFD_RELOC_386_TLS_GD:
5633 case BFD_RELOC_386_TLS_LDM:
5634 case BFD_RELOC_386_TLS_IE_32:
5635 case BFD_RELOC_386_TLS_IE:
5636 case BFD_RELOC_386_TLS_GOTIE:
5637 case BFD_RELOC_386_TLS_GOTDESC:
5638 case BFD_RELOC_X86_64_TLSGD:
5639 case BFD_RELOC_X86_64_TLSLD:
5640 case BFD_RELOC_X86_64_GOTTPOFF:
5641 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
5642 value = 0; /* Fully resolved at runtime. No addend. */
5643 /* Fallthrough */
5644 case BFD_RELOC_386_TLS_LE:
5645 case BFD_RELOC_386_TLS_LDO_32:
5646 case BFD_RELOC_386_TLS_LE_32:
5647 case BFD_RELOC_X86_64_DTPOFF32:
5648 case BFD_RELOC_X86_64_DTPOFF64:
5649 case BFD_RELOC_X86_64_TPOFF32:
5650 case BFD_RELOC_X86_64_TPOFF64:
5651 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5652 break;
5653
5654 case BFD_RELOC_386_TLS_DESC_CALL:
5655 case BFD_RELOC_X86_64_TLSDESC_CALL:
5656 value = 0; /* Fully resolved at runtime. No addend. */
5657 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5658 fixP->fx_done = 0;
5659 return;
5660
5661 case BFD_RELOC_386_GOT32:
5662 case BFD_RELOC_X86_64_GOT32:
5663 value = 0; /* Fully resolved at runtime. No addend. */
5664 break;
5665
5666 case BFD_RELOC_VTABLE_INHERIT:
5667 case BFD_RELOC_VTABLE_ENTRY:
5668 fixP->fx_done = 0;
5669 return;
5670
5671 default:
5672 break;
5673 }
5674 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
5675 *valP = value;
5676 #endif /* !defined (TE_Mach) */
5677
5678 /* Are we finished with this relocation now? */
5679 if (fixP->fx_addsy == NULL)
5680 fixP->fx_done = 1;
5681 else if (use_rela_relocations)
5682 {
5683 fixP->fx_no_overflow = 1;
5684 /* Remember value for tc_gen_reloc. */
5685 fixP->fx_addnumber = value;
5686 value = 0;
5687 }
5688
5689 md_number_to_chars (p, value, fixP->fx_size);
5690 }
5691 \f
5692 #define MAX_LITTLENUMS 6
5693
5694 /* Turn the string pointed to by litP into a floating point constant
5695 of type TYPE, and emit the appropriate bytes. The number of
5696 LITTLENUMS emitted is stored in *SIZEP. An error message is
5697 returned, or NULL on OK. */
5698
5699 char *
5700 md_atof (type, litP, sizeP)
5701 int type;
5702 char *litP;
5703 int *sizeP;
5704 {
5705 int prec;
5706 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5707 LITTLENUM_TYPE *wordP;
5708 char *t;
5709
5710 switch (type)
5711 {
5712 case 'f':
5713 case 'F':
5714 prec = 2;
5715 break;
5716
5717 case 'd':
5718 case 'D':
5719 prec = 4;
5720 break;
5721
5722 case 'x':
5723 case 'X':
5724 prec = 5;
5725 break;
5726
5727 default:
5728 *sizeP = 0;
5729 return _("Bad call to md_atof ()");
5730 }
5731 t = atof_ieee (input_line_pointer, type, words);
5732 if (t)
5733 input_line_pointer = t;
5734
5735 *sizeP = prec * sizeof (LITTLENUM_TYPE);
5736 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
5737 the bigendian 386. */
5738 for (wordP = words + prec - 1; prec--;)
5739 {
5740 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
5741 litP += sizeof (LITTLENUM_TYPE);
5742 }
5743 return 0;
5744 }
5745 \f
5746 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
5747
5748 static char *
5749 output_invalid (int c)
5750 {
5751 if (ISPRINT (c))
5752 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
5753 "'%c'", c);
5754 else
5755 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
5756 "(0x%x)", (unsigned char) c);
5757 return output_invalid_buf;
5758 }
5759
5760 /* REG_STRING starts *before* REGISTER_PREFIX. */
5761
5762 static const reg_entry *
5763 parse_real_register (char *reg_string, char **end_op)
5764 {
5765 char *s = reg_string;
5766 char *p;
5767 char reg_name_given[MAX_REG_NAME_SIZE + 1];
5768 const reg_entry *r;
5769
5770 /* Skip possible REGISTER_PREFIX and possible whitespace. */
5771 if (*s == REGISTER_PREFIX)
5772 ++s;
5773
5774 if (is_space_char (*s))
5775 ++s;
5776
5777 p = reg_name_given;
5778 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
5779 {
5780 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
5781 return (const reg_entry *) NULL;
5782 s++;
5783 }
5784
5785 /* For naked regs, make sure that we are not dealing with an identifier.
5786 This prevents confusing an identifier like `eax_var' with register
5787 `eax'. */
5788 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
5789 return (const reg_entry *) NULL;
5790
5791 *end_op = s;
5792
5793 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
5794
5795 /* Handle floating point regs, allowing spaces in the (i) part. */
5796 if (r == i386_regtab /* %st is first entry of table */)
5797 {
5798 if (is_space_char (*s))
5799 ++s;
5800 if (*s == '(')
5801 {
5802 ++s;
5803 if (is_space_char (*s))
5804 ++s;
5805 if (*s >= '0' && *s <= '7')
5806 {
5807 int fpr = *s - '0';
5808 ++s;
5809 if (is_space_char (*s))
5810 ++s;
5811 if (*s == ')')
5812 {
5813 *end_op = s + 1;
5814 r = hash_find (reg_hash, "st(0)");
5815 know (r);
5816 return r + fpr;
5817 }
5818 }
5819 /* We have "%st(" then garbage. */
5820 return (const reg_entry *) NULL;
5821 }
5822 }
5823
5824 if (r != NULL
5825 && ((r->reg_flags & (RegRex64 | RegRex)) | (r->reg_type & Reg64)) != 0
5826 && (r->reg_type != Control || !(cpu_arch_flags & CpuSledgehammer))
5827 && flag_code != CODE_64BIT)
5828 return (const reg_entry *) NULL;
5829
5830 return r;
5831 }
5832
5833 /* REG_STRING starts *before* REGISTER_PREFIX. */
5834
5835 static const reg_entry *
5836 parse_register (char *reg_string, char **end_op)
5837 {
5838 const reg_entry *r;
5839
5840 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
5841 r = parse_real_register (reg_string, end_op);
5842 else
5843 r = NULL;
5844 if (!r)
5845 {
5846 char *save = input_line_pointer;
5847 char c;
5848 symbolS *symbolP;
5849
5850 input_line_pointer = reg_string;
5851 c = get_symbol_end ();
5852 symbolP = symbol_find (reg_string);
5853 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
5854 {
5855 const expressionS *e = symbol_get_value_expression (symbolP);
5856
5857 know (e->X_op == O_register);
5858 know (e->X_add_number >= 0
5859 && (valueT) e->X_add_number < i386_regtab_size);
5860 r = i386_regtab + e->X_add_number;
5861 *end_op = input_line_pointer;
5862 }
5863 *input_line_pointer = c;
5864 input_line_pointer = save;
5865 }
5866 return r;
5867 }
5868
5869 int
5870 i386_parse_name (char *name, expressionS *e, char *nextcharP)
5871 {
5872 const reg_entry *r;
5873 char *end = input_line_pointer;
5874
5875 *end = *nextcharP;
5876 r = parse_register (name, &input_line_pointer);
5877 if (r && end <= input_line_pointer)
5878 {
5879 *nextcharP = *input_line_pointer;
5880 *input_line_pointer = 0;
5881 e->X_op = O_register;
5882 e->X_add_number = r - i386_regtab;
5883 return 1;
5884 }
5885 input_line_pointer = end;
5886 *end = 0;
5887 return 0;
5888 }
5889
5890 void
5891 md_operand (expressionS *e)
5892 {
5893 if (*input_line_pointer == REGISTER_PREFIX)
5894 {
5895 char *end;
5896 const reg_entry *r = parse_real_register (input_line_pointer, &end);
5897
5898 if (r)
5899 {
5900 e->X_op = O_register;
5901 e->X_add_number = r - i386_regtab;
5902 input_line_pointer = end;
5903 }
5904 }
5905 }
5906
5907 \f
5908 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5909 const char *md_shortopts = "kVQ:sqn";
5910 #else
5911 const char *md_shortopts = "qn";
5912 #endif
5913
5914 #define OPTION_32 (OPTION_MD_BASE + 0)
5915 #define OPTION_64 (OPTION_MD_BASE + 1)
5916 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
5917 #define OPTION_MARCH (OPTION_MD_BASE + 3)
5918 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
5919
5920 struct option md_longopts[] =
5921 {
5922 {"32", no_argument, NULL, OPTION_32},
5923 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
5924 {"64", no_argument, NULL, OPTION_64},
5925 #endif
5926 {"divide", no_argument, NULL, OPTION_DIVIDE},
5927 {"march", required_argument, NULL, OPTION_MARCH},
5928 {"mtune", required_argument, NULL, OPTION_MTUNE},
5929 {NULL, no_argument, NULL, 0}
5930 };
5931 size_t md_longopts_size = sizeof (md_longopts);
5932
5933 int
5934 md_parse_option (int c, char *arg)
5935 {
5936 unsigned int i;
5937
5938 switch (c)
5939 {
5940 case 'n':
5941 optimize_align_code = 0;
5942 break;
5943
5944 case 'q':
5945 quiet_warnings = 1;
5946 break;
5947
5948 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5949 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
5950 should be emitted or not. FIXME: Not implemented. */
5951 case 'Q':
5952 break;
5953
5954 /* -V: SVR4 argument to print version ID. */
5955 case 'V':
5956 print_version_id ();
5957 break;
5958
5959 /* -k: Ignore for FreeBSD compatibility. */
5960 case 'k':
5961 break;
5962
5963 case 's':
5964 /* -s: On i386 Solaris, this tells the native assembler to use
5965 .stab instead of .stab.excl. We always use .stab anyhow. */
5966 break;
5967 #endif
5968 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
5969 case OPTION_64:
5970 {
5971 const char **list, **l;
5972
5973 list = bfd_target_list ();
5974 for (l = list; *l != NULL; l++)
5975 if (CONST_STRNEQ (*l, "elf64-x86-64")
5976 || strcmp (*l, "coff-x86-64") == 0
5977 || strcmp (*l, "pe-x86-64") == 0
5978 || strcmp (*l, "pei-x86-64") == 0)
5979 {
5980 default_arch = "x86_64";
5981 break;
5982 }
5983 if (*l == NULL)
5984 as_fatal (_("No compiled in support for x86_64"));
5985 free (list);
5986 }
5987 break;
5988 #endif
5989
5990 case OPTION_32:
5991 default_arch = "i386";
5992 break;
5993
5994 case OPTION_DIVIDE:
5995 #ifdef SVR4_COMMENT_CHARS
5996 {
5997 char *n, *t;
5998 const char *s;
5999
6000 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
6001 t = n;
6002 for (s = i386_comment_chars; *s != '\0'; s++)
6003 if (*s != '/')
6004 *t++ = *s;
6005 *t = '\0';
6006 i386_comment_chars = n;
6007 }
6008 #endif
6009 break;
6010
6011 case OPTION_MARCH:
6012 if (*arg == '.')
6013 as_fatal (_("Invalid -march= option: `%s'"), arg);
6014 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
6015 {
6016 if (strcmp (arg, cpu_arch [i].name) == 0)
6017 {
6018 cpu_arch_isa = cpu_arch[i].type;
6019 cpu_arch_isa_flags = cpu_arch[i].flags;
6020 if (!cpu_arch_tune_set)
6021 {
6022 cpu_arch_tune = cpu_arch_isa;
6023 cpu_arch_tune_flags = cpu_arch_isa_flags;
6024 }
6025 break;
6026 }
6027 }
6028 if (i >= ARRAY_SIZE (cpu_arch))
6029 as_fatal (_("Invalid -march= option: `%s'"), arg);
6030 break;
6031
6032 case OPTION_MTUNE:
6033 if (*arg == '.')
6034 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
6035 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
6036 {
6037 if (strcmp (arg, cpu_arch [i].name) == 0)
6038 {
6039 cpu_arch_tune_set = 1;
6040 cpu_arch_tune = cpu_arch [i].type;
6041 cpu_arch_tune_flags = cpu_arch[i].flags;
6042 break;
6043 }
6044 }
6045 if (i >= ARRAY_SIZE (cpu_arch))
6046 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
6047 break;
6048
6049 default:
6050 return 0;
6051 }
6052 return 1;
6053 }
6054
6055 void
6056 md_show_usage (stream)
6057 FILE *stream;
6058 {
6059 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6060 fprintf (stream, _("\
6061 -Q ignored\n\
6062 -V print assembler version number\n\
6063 -k ignored\n"));
6064 #endif
6065 fprintf (stream, _("\
6066 -n Do not optimize code alignment\n\
6067 -q quieten some warnings\n"));
6068 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6069 fprintf (stream, _("\
6070 -s ignored\n"));
6071 #endif
6072 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
6073 fprintf (stream, _("\
6074 --32/--64 generate 32bit/64bit code\n"));
6075 #endif
6076 #ifdef SVR4_COMMENT_CHARS
6077 fprintf (stream, _("\
6078 --divide do not treat `/' as a comment character\n"));
6079 #else
6080 fprintf (stream, _("\
6081 --divide ignored\n"));
6082 #endif
6083 fprintf (stream, _("\
6084 -march=CPU/-mtune=CPU generate code/optimize for CPU, where CPU is one of:\n\
6085 i386, i486, pentium, pentiumpro, pentium4, nocona,\n\
6086 core, core2, k6, athlon, k8, generic32, generic64\n"));
6087
6088 }
6089
6090 #if defined(TE_PEP)
6091 const char *
6092 x86_64_target_format (void)
6093 {
6094 if (strcmp (default_arch, "x86_64") == 0)
6095 {
6096 set_code_flag (CODE_64BIT);
6097 return COFF_TARGET_FORMAT;
6098 }
6099 else if (strcmp (default_arch, "i386") == 0)
6100 {
6101 set_code_flag (CODE_32BIT);
6102 return "coff-i386";
6103 }
6104
6105 as_fatal (_("Unknown architecture"));
6106 return NULL;
6107 }
6108 #endif
6109
6110 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
6111 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
6112
6113 /* Pick the target format to use. */
6114
6115 const char *
6116 i386_target_format (void)
6117 {
6118 if (!strcmp (default_arch, "x86_64"))
6119 {
6120 set_code_flag (CODE_64BIT);
6121 if (cpu_arch_isa_flags == 0)
6122 cpu_arch_isa_flags = Cpu186|Cpu286|Cpu386|Cpu486
6123 |Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2
6124 |CpuSSE|CpuSSE2;
6125 if (cpu_arch_tune_flags == 0)
6126 cpu_arch_tune_flags = Cpu186|Cpu286|Cpu386|Cpu486
6127 |Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2
6128 |CpuSSE|CpuSSE2;
6129 }
6130 else if (!strcmp (default_arch, "i386"))
6131 {
6132 set_code_flag (CODE_32BIT);
6133 if (cpu_arch_isa_flags == 0)
6134 cpu_arch_isa_flags = Cpu186|Cpu286|Cpu386;
6135 if (cpu_arch_tune_flags == 0)
6136 cpu_arch_tune_flags = Cpu186|Cpu286|Cpu386;
6137 }
6138 else
6139 as_fatal (_("Unknown architecture"));
6140 switch (OUTPUT_FLAVOR)
6141 {
6142 #ifdef OBJ_MAYBE_AOUT
6143 case bfd_target_aout_flavour:
6144 return AOUT_TARGET_FORMAT;
6145 #endif
6146 #ifdef OBJ_MAYBE_COFF
6147 case bfd_target_coff_flavour:
6148 return "coff-i386";
6149 #endif
6150 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
6151 case bfd_target_elf_flavour:
6152 {
6153 if (flag_code == CODE_64BIT)
6154 {
6155 object_64bit = 1;
6156 use_rela_relocations = 1;
6157 }
6158 return flag_code == CODE_64BIT ? ELF_TARGET_FORMAT64 : ELF_TARGET_FORMAT;
6159 }
6160 #endif
6161 default:
6162 abort ();
6163 return NULL;
6164 }
6165 }
6166
6167 #endif /* OBJ_MAYBE_ more than one */
6168
6169 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
6170 void
6171 i386_elf_emit_arch_note (void)
6172 {
6173 if (IS_ELF && cpu_arch_name != NULL)
6174 {
6175 char *p;
6176 asection *seg = now_seg;
6177 subsegT subseg = now_subseg;
6178 Elf_Internal_Note i_note;
6179 Elf_External_Note e_note;
6180 asection *note_secp;
6181 int len;
6182
6183 /* Create the .note section. */
6184 note_secp = subseg_new (".note", 0);
6185 bfd_set_section_flags (stdoutput,
6186 note_secp,
6187 SEC_HAS_CONTENTS | SEC_READONLY);
6188
6189 /* Process the arch string. */
6190 len = strlen (cpu_arch_name);
6191
6192 i_note.namesz = len + 1;
6193 i_note.descsz = 0;
6194 i_note.type = NT_ARCH;
6195 p = frag_more (sizeof (e_note.namesz));
6196 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
6197 p = frag_more (sizeof (e_note.descsz));
6198 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
6199 p = frag_more (sizeof (e_note.type));
6200 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
6201 p = frag_more (len + 1);
6202 strcpy (p, cpu_arch_name);
6203
6204 frag_align (2, 0, 0);
6205
6206 subseg_set (seg, subseg);
6207 }
6208 }
6209 #endif
6210 \f
6211 symbolS *
6212 md_undefined_symbol (name)
6213 char *name;
6214 {
6215 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
6216 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
6217 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
6218 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
6219 {
6220 if (!GOT_symbol)
6221 {
6222 if (symbol_find (name))
6223 as_bad (_("GOT already in symbol table"));
6224 GOT_symbol = symbol_new (name, undefined_section,
6225 (valueT) 0, &zero_address_frag);
6226 };
6227 return GOT_symbol;
6228 }
6229 return 0;
6230 }
6231
6232 /* Round up a section size to the appropriate boundary. */
6233
6234 valueT
6235 md_section_align (segment, size)
6236 segT segment ATTRIBUTE_UNUSED;
6237 valueT size;
6238 {
6239 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6240 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
6241 {
6242 /* For a.out, force the section size to be aligned. If we don't do
6243 this, BFD will align it for us, but it will not write out the
6244 final bytes of the section. This may be a bug in BFD, but it is
6245 easier to fix it here since that is how the other a.out targets
6246 work. */
6247 int align;
6248
6249 align = bfd_get_section_alignment (stdoutput, segment);
6250 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
6251 }
6252 #endif
6253
6254 return size;
6255 }
6256
6257 /* On the i386, PC-relative offsets are relative to the start of the
6258 next instruction. That is, the address of the offset, plus its
6259 size, since the offset is always the last part of the insn. */
6260
6261 long
6262 md_pcrel_from (fixS *fixP)
6263 {
6264 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
6265 }
6266
6267 #ifndef I386COFF
6268
6269 static void
6270 s_bss (int ignore ATTRIBUTE_UNUSED)
6271 {
6272 int temp;
6273
6274 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6275 if (IS_ELF)
6276 obj_elf_section_change_hook ();
6277 #endif
6278 temp = get_absolute_expression ();
6279 subseg_set (bss_section, (subsegT) temp);
6280 demand_empty_rest_of_line ();
6281 }
6282
6283 #endif
6284
6285 void
6286 i386_validate_fix (fixS *fixp)
6287 {
6288 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
6289 {
6290 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
6291 {
6292 if (!object_64bit)
6293 abort ();
6294 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
6295 }
6296 else
6297 {
6298 if (!object_64bit)
6299 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
6300 else
6301 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
6302 }
6303 fixp->fx_subsy = 0;
6304 }
6305 }
6306
6307 arelent *
6308 tc_gen_reloc (section, fixp)
6309 asection *section ATTRIBUTE_UNUSED;
6310 fixS *fixp;
6311 {
6312 arelent *rel;
6313 bfd_reloc_code_real_type code;
6314
6315 switch (fixp->fx_r_type)
6316 {
6317 case BFD_RELOC_X86_64_PLT32:
6318 case BFD_RELOC_X86_64_GOT32:
6319 case BFD_RELOC_X86_64_GOTPCREL:
6320 case BFD_RELOC_386_PLT32:
6321 case BFD_RELOC_386_GOT32:
6322 case BFD_RELOC_386_GOTOFF:
6323 case BFD_RELOC_386_GOTPC:
6324 case BFD_RELOC_386_TLS_GD:
6325 case BFD_RELOC_386_TLS_LDM:
6326 case BFD_RELOC_386_TLS_LDO_32:
6327 case BFD_RELOC_386_TLS_IE_32:
6328 case BFD_RELOC_386_TLS_IE:
6329 case BFD_RELOC_386_TLS_GOTIE:
6330 case BFD_RELOC_386_TLS_LE_32:
6331 case BFD_RELOC_386_TLS_LE:
6332 case BFD_RELOC_386_TLS_GOTDESC:
6333 case BFD_RELOC_386_TLS_DESC_CALL:
6334 case BFD_RELOC_X86_64_TLSGD:
6335 case BFD_RELOC_X86_64_TLSLD:
6336 case BFD_RELOC_X86_64_DTPOFF32:
6337 case BFD_RELOC_X86_64_DTPOFF64:
6338 case BFD_RELOC_X86_64_GOTTPOFF:
6339 case BFD_RELOC_X86_64_TPOFF32:
6340 case BFD_RELOC_X86_64_TPOFF64:
6341 case BFD_RELOC_X86_64_GOTOFF64:
6342 case BFD_RELOC_X86_64_GOTPC32:
6343 case BFD_RELOC_X86_64_GOT64:
6344 case BFD_RELOC_X86_64_GOTPCREL64:
6345 case BFD_RELOC_X86_64_GOTPC64:
6346 case BFD_RELOC_X86_64_GOTPLT64:
6347 case BFD_RELOC_X86_64_PLTOFF64:
6348 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
6349 case BFD_RELOC_X86_64_TLSDESC_CALL:
6350 case BFD_RELOC_RVA:
6351 case BFD_RELOC_VTABLE_ENTRY:
6352 case BFD_RELOC_VTABLE_INHERIT:
6353 #ifdef TE_PE
6354 case BFD_RELOC_32_SECREL:
6355 #endif
6356 code = fixp->fx_r_type;
6357 break;
6358 case BFD_RELOC_X86_64_32S:
6359 if (!fixp->fx_pcrel)
6360 {
6361 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
6362 code = fixp->fx_r_type;
6363 break;
6364 }
6365 default:
6366 if (fixp->fx_pcrel)
6367 {
6368 switch (fixp->fx_size)
6369 {
6370 default:
6371 as_bad_where (fixp->fx_file, fixp->fx_line,
6372 _("can not do %d byte pc-relative relocation"),
6373 fixp->fx_size);
6374 code = BFD_RELOC_32_PCREL;
6375 break;
6376 case 1: code = BFD_RELOC_8_PCREL; break;
6377 case 2: code = BFD_RELOC_16_PCREL; break;
6378 case 4: code = BFD_RELOC_32_PCREL; break;
6379 #ifdef BFD64
6380 case 8: code = BFD_RELOC_64_PCREL; break;
6381 #endif
6382 }
6383 }
6384 else
6385 {
6386 switch (fixp->fx_size)
6387 {
6388 default:
6389 as_bad_where (fixp->fx_file, fixp->fx_line,
6390 _("can not do %d byte relocation"),
6391 fixp->fx_size);
6392 code = BFD_RELOC_32;
6393 break;
6394 case 1: code = BFD_RELOC_8; break;
6395 case 2: code = BFD_RELOC_16; break;
6396 case 4: code = BFD_RELOC_32; break;
6397 #ifdef BFD64
6398 case 8: code = BFD_RELOC_64; break;
6399 #endif
6400 }
6401 }
6402 break;
6403 }
6404
6405 if ((code == BFD_RELOC_32
6406 || code == BFD_RELOC_32_PCREL
6407 || code == BFD_RELOC_X86_64_32S)
6408 && GOT_symbol
6409 && fixp->fx_addsy == GOT_symbol)
6410 {
6411 if (!object_64bit)
6412 code = BFD_RELOC_386_GOTPC;
6413 else
6414 code = BFD_RELOC_X86_64_GOTPC32;
6415 }
6416 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
6417 && GOT_symbol
6418 && fixp->fx_addsy == GOT_symbol)
6419 {
6420 code = BFD_RELOC_X86_64_GOTPC64;
6421 }
6422
6423 rel = (arelent *) xmalloc (sizeof (arelent));
6424 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
6425 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
6426
6427 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
6428
6429 if (!use_rela_relocations)
6430 {
6431 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
6432 vtable entry to be used in the relocation's section offset. */
6433 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
6434 rel->address = fixp->fx_offset;
6435
6436 rel->addend = 0;
6437 }
6438 /* Use the rela in 64bit mode. */
6439 else
6440 {
6441 if (!fixp->fx_pcrel)
6442 rel->addend = fixp->fx_offset;
6443 else
6444 switch (code)
6445 {
6446 case BFD_RELOC_X86_64_PLT32:
6447 case BFD_RELOC_X86_64_GOT32:
6448 case BFD_RELOC_X86_64_GOTPCREL:
6449 case BFD_RELOC_X86_64_TLSGD:
6450 case BFD_RELOC_X86_64_TLSLD:
6451 case BFD_RELOC_X86_64_GOTTPOFF:
6452 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
6453 case BFD_RELOC_X86_64_TLSDESC_CALL:
6454 rel->addend = fixp->fx_offset - fixp->fx_size;
6455 break;
6456 default:
6457 rel->addend = (section->vma
6458 - fixp->fx_size
6459 + fixp->fx_addnumber
6460 + md_pcrel_from (fixp));
6461 break;
6462 }
6463 }
6464
6465 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
6466 if (rel->howto == NULL)
6467 {
6468 as_bad_where (fixp->fx_file, fixp->fx_line,
6469 _("cannot represent relocation type %s"),
6470 bfd_get_reloc_code_name (code));
6471 /* Set howto to a garbage value so that we can keep going. */
6472 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
6473 assert (rel->howto != NULL);
6474 }
6475
6476 return rel;
6477 }
6478
6479 \f
6480 /* Parse operands using Intel syntax. This implements a recursive descent
6481 parser based on the BNF grammar published in Appendix B of the MASM 6.1
6482 Programmer's Guide.
6483
6484 FIXME: We do not recognize the full operand grammar defined in the MASM
6485 documentation. In particular, all the structure/union and
6486 high-level macro operands are missing.
6487
6488 Uppercase words are terminals, lower case words are non-terminals.
6489 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
6490 bars '|' denote choices. Most grammar productions are implemented in
6491 functions called 'intel_<production>'.
6492
6493 Initial production is 'expr'.
6494
6495 addOp + | -
6496
6497 alpha [a-zA-Z]
6498
6499 binOp & | AND | \| | OR | ^ | XOR
6500
6501 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
6502
6503 constant digits [[ radixOverride ]]
6504
6505 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
6506
6507 digits decdigit
6508 | digits decdigit
6509 | digits hexdigit
6510
6511 decdigit [0-9]
6512
6513 e04 e04 addOp e05
6514 | e05
6515
6516 e05 e05 binOp e06
6517 | e06
6518
6519 e06 e06 mulOp e09
6520 | e09
6521
6522 e09 OFFSET e10
6523 | SHORT e10
6524 | + e10
6525 | - e10
6526 | ~ e10
6527 | NOT e10
6528 | e09 PTR e10
6529 | e09 : e10
6530 | e10
6531
6532 e10 e10 [ expr ]
6533 | e11
6534
6535 e11 ( expr )
6536 | [ expr ]
6537 | constant
6538 | dataType
6539 | id
6540 | $
6541 | register
6542
6543 => expr expr cmpOp e04
6544 | e04
6545
6546 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
6547 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
6548
6549 hexdigit a | b | c | d | e | f
6550 | A | B | C | D | E | F
6551
6552 id alpha
6553 | id alpha
6554 | id decdigit
6555
6556 mulOp * | / | % | MOD | << | SHL | >> | SHR
6557
6558 quote " | '
6559
6560 register specialRegister
6561 | gpRegister
6562 | byteRegister
6563
6564 segmentRegister CS | DS | ES | FS | GS | SS
6565
6566 specialRegister CR0 | CR2 | CR3 | CR4
6567 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
6568 | TR3 | TR4 | TR5 | TR6 | TR7
6569
6570 We simplify the grammar in obvious places (e.g., register parsing is
6571 done by calling parse_register) and eliminate immediate left recursion
6572 to implement a recursive-descent parser.
6573
6574 expr e04 expr'
6575
6576 expr' cmpOp e04 expr'
6577 | Empty
6578
6579 e04 e05 e04'
6580
6581 e04' addOp e05 e04'
6582 | Empty
6583
6584 e05 e06 e05'
6585
6586 e05' binOp e06 e05'
6587 | Empty
6588
6589 e06 e09 e06'
6590
6591 e06' mulOp e09 e06'
6592 | Empty
6593
6594 e09 OFFSET e10 e09'
6595 | SHORT e10'
6596 | + e10'
6597 | - e10'
6598 | ~ e10'
6599 | NOT e10'
6600 | e10 e09'
6601
6602 e09' PTR e10 e09'
6603 | : e10 e09'
6604 | Empty
6605
6606 e10 e11 e10'
6607
6608 e10' [ expr ] e10'
6609 | Empty
6610
6611 e11 ( expr )
6612 | [ expr ]
6613 | BYTE
6614 | WORD
6615 | DWORD
6616 | FWORD
6617 | QWORD
6618 | TBYTE
6619 | OWORD
6620 | XMMWORD
6621 | .
6622 | $
6623 | register
6624 | id
6625 | constant */
6626
6627 /* Parsing structure for the intel syntax parser. Used to implement the
6628 semantic actions for the operand grammar. */
6629 struct intel_parser_s
6630 {
6631 char *op_string; /* The string being parsed. */
6632 int got_a_float; /* Whether the operand is a float. */
6633 int op_modifier; /* Operand modifier. */
6634 int is_mem; /* 1 if operand is memory reference. */
6635 int in_offset; /* >=1 if parsing operand of offset. */
6636 int in_bracket; /* >=1 if parsing operand in brackets. */
6637 const reg_entry *reg; /* Last register reference found. */
6638 char *disp; /* Displacement string being built. */
6639 char *next_operand; /* Resume point when splitting operands. */
6640 };
6641
6642 static struct intel_parser_s intel_parser;
6643
6644 /* Token structure for parsing intel syntax. */
6645 struct intel_token
6646 {
6647 int code; /* Token code. */
6648 const reg_entry *reg; /* Register entry for register tokens. */
6649 char *str; /* String representation. */
6650 };
6651
6652 static struct intel_token cur_token, prev_token;
6653
6654 /* Token codes for the intel parser. Since T_SHORT is already used
6655 by COFF, undefine it first to prevent a warning. */
6656 #define T_NIL -1
6657 #define T_CONST 1
6658 #define T_REG 2
6659 #define T_BYTE 3
6660 #define T_WORD 4
6661 #define T_DWORD 5
6662 #define T_FWORD 6
6663 #define T_QWORD 7
6664 #define T_TBYTE 8
6665 #define T_XMMWORD 9
6666 #undef T_SHORT
6667 #define T_SHORT 10
6668 #define T_OFFSET 11
6669 #define T_PTR 12
6670 #define T_ID 13
6671 #define T_SHL 14
6672 #define T_SHR 15
6673
6674 /* Prototypes for intel parser functions. */
6675 static int intel_match_token (int);
6676 static void intel_putback_token (void);
6677 static void intel_get_token (void);
6678 static int intel_expr (void);
6679 static int intel_e04 (void);
6680 static int intel_e05 (void);
6681 static int intel_e06 (void);
6682 static int intel_e09 (void);
6683 static int intel_e10 (void);
6684 static int intel_e11 (void);
6685
6686 static int
6687 i386_intel_operand (char *operand_string, int got_a_float)
6688 {
6689 int ret;
6690 char *p;
6691
6692 p = intel_parser.op_string = xstrdup (operand_string);
6693 intel_parser.disp = (char *) xmalloc (strlen (operand_string) + 1);
6694
6695 for (;;)
6696 {
6697 /* Initialize token holders. */
6698 cur_token.code = prev_token.code = T_NIL;
6699 cur_token.reg = prev_token.reg = NULL;
6700 cur_token.str = prev_token.str = NULL;
6701
6702 /* Initialize parser structure. */
6703 intel_parser.got_a_float = got_a_float;
6704 intel_parser.op_modifier = 0;
6705 intel_parser.is_mem = 0;
6706 intel_parser.in_offset = 0;
6707 intel_parser.in_bracket = 0;
6708 intel_parser.reg = NULL;
6709 intel_parser.disp[0] = '\0';
6710 intel_parser.next_operand = NULL;
6711
6712 /* Read the first token and start the parser. */
6713 intel_get_token ();
6714 ret = intel_expr ();
6715
6716 if (!ret)
6717 break;
6718
6719 if (cur_token.code != T_NIL)
6720 {
6721 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
6722 current_templates->start->name, cur_token.str);
6723 ret = 0;
6724 }
6725 /* If we found a memory reference, hand it over to i386_displacement
6726 to fill in the rest of the operand fields. */
6727 else if (intel_parser.is_mem)
6728 {
6729 if ((i.mem_operands == 1
6730 && (current_templates->start->opcode_modifier & IsString) == 0)
6731 || i.mem_operands == 2)
6732 {
6733 as_bad (_("too many memory references for '%s'"),
6734 current_templates->start->name);
6735 ret = 0;
6736 }
6737 else
6738 {
6739 char *s = intel_parser.disp;
6740 i.mem_operands++;
6741
6742 if (!quiet_warnings && intel_parser.is_mem < 0)
6743 /* See the comments in intel_bracket_expr. */
6744 as_warn (_("Treating `%s' as memory reference"), operand_string);
6745
6746 /* Add the displacement expression. */
6747 if (*s != '\0')
6748 ret = i386_displacement (s, s + strlen (s));
6749 if (ret)
6750 {
6751 /* Swap base and index in 16-bit memory operands like
6752 [si+bx]. Since i386_index_check is also used in AT&T
6753 mode we have to do that here. */
6754 if (i.base_reg
6755 && i.index_reg
6756 && (i.base_reg->reg_type & Reg16)
6757 && (i.index_reg->reg_type & Reg16)
6758 && i.base_reg->reg_num >= 6
6759 && i.index_reg->reg_num < 6)
6760 {
6761 const reg_entry *base = i.index_reg;
6762
6763 i.index_reg = i.base_reg;
6764 i.base_reg = base;
6765 }
6766 ret = i386_index_check (operand_string);
6767 }
6768 }
6769 }
6770
6771 /* Constant and OFFSET expressions are handled by i386_immediate. */
6772 else if ((intel_parser.op_modifier & (1 << T_OFFSET))
6773 || intel_parser.reg == NULL)
6774 ret = i386_immediate (intel_parser.disp);
6775
6776 if (intel_parser.next_operand && this_operand >= MAX_OPERANDS - 1)
6777 ret = 0;
6778 if (!ret || !intel_parser.next_operand)
6779 break;
6780 intel_parser.op_string = intel_parser.next_operand;
6781 this_operand = i.operands++;
6782 }
6783
6784 free (p);
6785 free (intel_parser.disp);
6786
6787 return ret;
6788 }
6789
6790 #define NUM_ADDRESS_REGS (!!i.base_reg + !!i.index_reg)
6791
6792 /* expr e04 expr'
6793
6794 expr' cmpOp e04 expr'
6795 | Empty */
6796 static int
6797 intel_expr (void)
6798 {
6799 /* XXX Implement the comparison operators. */
6800 return intel_e04 ();
6801 }
6802
6803 /* e04 e05 e04'
6804
6805 e04' addOp e05 e04'
6806 | Empty */
6807 static int
6808 intel_e04 (void)
6809 {
6810 int nregs = -1;
6811
6812 for (;;)
6813 {
6814 if (!intel_e05())
6815 return 0;
6816
6817 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6818 i.base_reg = i386_regtab + REGNAM_AL; /* al is invalid as base */
6819
6820 if (cur_token.code == '+')
6821 nregs = -1;
6822 else if (cur_token.code == '-')
6823 nregs = NUM_ADDRESS_REGS;
6824 else
6825 return 1;
6826
6827 strcat (intel_parser.disp, cur_token.str);
6828 intel_match_token (cur_token.code);
6829 }
6830 }
6831
6832 /* e05 e06 e05'
6833
6834 e05' binOp e06 e05'
6835 | Empty */
6836 static int
6837 intel_e05 (void)
6838 {
6839 int nregs = ~NUM_ADDRESS_REGS;
6840
6841 for (;;)
6842 {
6843 if (!intel_e06())
6844 return 0;
6845
6846 if (cur_token.code == '&'
6847 || cur_token.code == '|'
6848 || cur_token.code == '^')
6849 {
6850 char str[2];
6851
6852 str[0] = cur_token.code;
6853 str[1] = 0;
6854 strcat (intel_parser.disp, str);
6855 }
6856 else
6857 break;
6858
6859 intel_match_token (cur_token.code);
6860
6861 if (nregs < 0)
6862 nregs = ~nregs;
6863 }
6864 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6865 i.base_reg = i386_regtab + REGNAM_AL + 1; /* cl is invalid as base */
6866 return 1;
6867 }
6868
6869 /* e06 e09 e06'
6870
6871 e06' mulOp e09 e06'
6872 | Empty */
6873 static int
6874 intel_e06 (void)
6875 {
6876 int nregs = ~NUM_ADDRESS_REGS;
6877
6878 for (;;)
6879 {
6880 if (!intel_e09())
6881 return 0;
6882
6883 if (cur_token.code == '*'
6884 || cur_token.code == '/'
6885 || cur_token.code == '%')
6886 {
6887 char str[2];
6888
6889 str[0] = cur_token.code;
6890 str[1] = 0;
6891 strcat (intel_parser.disp, str);
6892 }
6893 else if (cur_token.code == T_SHL)
6894 strcat (intel_parser.disp, "<<");
6895 else if (cur_token.code == T_SHR)
6896 strcat (intel_parser.disp, ">>");
6897 else
6898 break;
6899
6900 intel_match_token (cur_token.code);
6901
6902 if (nregs < 0)
6903 nregs = ~nregs;
6904 }
6905 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6906 i.base_reg = i386_regtab + REGNAM_AL + 2; /* dl is invalid as base */
6907 return 1;
6908 }
6909
6910 /* e09 OFFSET e09
6911 | SHORT e09
6912 | + e09
6913 | - e09
6914 | ~ e09
6915 | NOT e09
6916 | e10 e09'
6917
6918 e09' PTR e10 e09'
6919 | : e10 e09'
6920 | Empty */
6921 static int
6922 intel_e09 (void)
6923 {
6924 int nregs = ~NUM_ADDRESS_REGS;
6925 int in_offset = 0;
6926
6927 for (;;)
6928 {
6929 /* Don't consume constants here. */
6930 if (cur_token.code == '+' || cur_token.code == '-')
6931 {
6932 /* Need to look one token ahead - if the next token
6933 is a constant, the current token is its sign. */
6934 int next_code;
6935
6936 intel_match_token (cur_token.code);
6937 next_code = cur_token.code;
6938 intel_putback_token ();
6939 if (next_code == T_CONST)
6940 break;
6941 }
6942
6943 /* e09 OFFSET e09 */
6944 if (cur_token.code == T_OFFSET)
6945 {
6946 if (!in_offset++)
6947 ++intel_parser.in_offset;
6948 }
6949
6950 /* e09 SHORT e09 */
6951 else if (cur_token.code == T_SHORT)
6952 intel_parser.op_modifier |= 1 << T_SHORT;
6953
6954 /* e09 + e09 */
6955 else if (cur_token.code == '+')
6956 strcat (intel_parser.disp, "+");
6957
6958 /* e09 - e09
6959 | ~ e09
6960 | NOT e09 */
6961 else if (cur_token.code == '-' || cur_token.code == '~')
6962 {
6963 char str[2];
6964
6965 if (nregs < 0)
6966 nregs = ~nregs;
6967 str[0] = cur_token.code;
6968 str[1] = 0;
6969 strcat (intel_parser.disp, str);
6970 }
6971
6972 /* e09 e10 e09' */
6973 else
6974 break;
6975
6976 intel_match_token (cur_token.code);
6977 }
6978
6979 for (;;)
6980 {
6981 if (!intel_e10 ())
6982 return 0;
6983
6984 /* e09' PTR e10 e09' */
6985 if (cur_token.code == T_PTR)
6986 {
6987 char suffix;
6988
6989 if (prev_token.code == T_BYTE)
6990 suffix = BYTE_MNEM_SUFFIX;
6991
6992 else if (prev_token.code == T_WORD)
6993 {
6994 if (current_templates->start->name[0] == 'l'
6995 && current_templates->start->name[2] == 's'
6996 && current_templates->start->name[3] == 0)
6997 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
6998 else if (intel_parser.got_a_float == 2) /* "fi..." */
6999 suffix = SHORT_MNEM_SUFFIX;
7000 else
7001 suffix = WORD_MNEM_SUFFIX;
7002 }
7003
7004 else if (prev_token.code == T_DWORD)
7005 {
7006 if (current_templates->start->name[0] == 'l'
7007 && current_templates->start->name[2] == 's'
7008 && current_templates->start->name[3] == 0)
7009 suffix = WORD_MNEM_SUFFIX;
7010 else if (flag_code == CODE_16BIT
7011 && (current_templates->start->opcode_modifier
7012 & (Jump | JumpDword)))
7013 suffix = LONG_DOUBLE_MNEM_SUFFIX;
7014 else if (intel_parser.got_a_float == 1) /* "f..." */
7015 suffix = SHORT_MNEM_SUFFIX;
7016 else
7017 suffix = LONG_MNEM_SUFFIX;
7018 }
7019
7020 else if (prev_token.code == T_FWORD)
7021 {
7022 if (current_templates->start->name[0] == 'l'
7023 && current_templates->start->name[2] == 's'
7024 && current_templates->start->name[3] == 0)
7025 suffix = LONG_MNEM_SUFFIX;
7026 else if (!intel_parser.got_a_float)
7027 {
7028 if (flag_code == CODE_16BIT)
7029 add_prefix (DATA_PREFIX_OPCODE);
7030 suffix = LONG_DOUBLE_MNEM_SUFFIX;
7031 }
7032 else
7033 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
7034 }
7035
7036 else if (prev_token.code == T_QWORD)
7037 {
7038 if (intel_parser.got_a_float == 1) /* "f..." */
7039 suffix = LONG_MNEM_SUFFIX;
7040 else
7041 suffix = QWORD_MNEM_SUFFIX;
7042 }
7043
7044 else if (prev_token.code == T_TBYTE)
7045 {
7046 if (intel_parser.got_a_float == 1)
7047 suffix = LONG_DOUBLE_MNEM_SUFFIX;
7048 else
7049 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
7050 }
7051
7052 else if (prev_token.code == T_XMMWORD)
7053 {
7054 /* XXX ignored for now, but accepted since gcc uses it */
7055 suffix = 0;
7056 }
7057
7058 else
7059 {
7060 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
7061 return 0;
7062 }
7063
7064 /* Operands for jump/call using 'ptr' notation denote absolute
7065 addresses. */
7066 if (current_templates->start->opcode_modifier & (Jump | JumpDword))
7067 i.types[this_operand] |= JumpAbsolute;
7068
7069 if (current_templates->start->base_opcode == 0x8d /* lea */)
7070 ;
7071 else if (!i.suffix)
7072 i.suffix = suffix;
7073 else if (i.suffix != suffix)
7074 {
7075 as_bad (_("Conflicting operand modifiers"));
7076 return 0;
7077 }
7078
7079 }
7080
7081 /* e09' : e10 e09' */
7082 else if (cur_token.code == ':')
7083 {
7084 if (prev_token.code != T_REG)
7085 {
7086 /* While {call,jmp} SSSS:OOOO is MASM syntax only when SSSS is a
7087 segment/group identifier (which we don't have), using comma
7088 as the operand separator there is even less consistent, since
7089 there all branches only have a single operand. */
7090 if (this_operand != 0
7091 || intel_parser.in_offset
7092 || intel_parser.in_bracket
7093 || (!(current_templates->start->opcode_modifier
7094 & (Jump|JumpDword|JumpInterSegment))
7095 && !(current_templates->start->operand_types[0]
7096 & JumpAbsolute)))
7097 return intel_match_token (T_NIL);
7098 /* Remember the start of the 2nd operand and terminate 1st
7099 operand here.
7100 XXX This isn't right, yet (when SSSS:OOOO is right operand of
7101 another expression), but it gets at least the simplest case
7102 (a plain number or symbol on the left side) right. */
7103 intel_parser.next_operand = intel_parser.op_string;
7104 *--intel_parser.op_string = '\0';
7105 return intel_match_token (':');
7106 }
7107 }
7108
7109 /* e09' Empty */
7110 else
7111 break;
7112
7113 intel_match_token (cur_token.code);
7114
7115 }
7116
7117 if (in_offset)
7118 {
7119 --intel_parser.in_offset;
7120 if (nregs < 0)
7121 nregs = ~nregs;
7122 if (NUM_ADDRESS_REGS > nregs)
7123 {
7124 as_bad (_("Invalid operand to `OFFSET'"));
7125 return 0;
7126 }
7127 intel_parser.op_modifier |= 1 << T_OFFSET;
7128 }
7129
7130 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
7131 i.base_reg = i386_regtab + REGNAM_AL + 3; /* bl is invalid as base */
7132 return 1;
7133 }
7134
7135 static int
7136 intel_bracket_expr (void)
7137 {
7138 int was_offset = intel_parser.op_modifier & (1 << T_OFFSET);
7139 const char *start = intel_parser.op_string;
7140 int len;
7141
7142 if (i.op[this_operand].regs)
7143 return intel_match_token (T_NIL);
7144
7145 intel_match_token ('[');
7146
7147 /* Mark as a memory operand only if it's not already known to be an
7148 offset expression. If it's an offset expression, we need to keep
7149 the brace in. */
7150 if (!intel_parser.in_offset)
7151 {
7152 ++intel_parser.in_bracket;
7153
7154 /* Operands for jump/call inside brackets denote absolute addresses. */
7155 if (current_templates->start->opcode_modifier & (Jump | JumpDword))
7156 i.types[this_operand] |= JumpAbsolute;
7157
7158 /* Unfortunately gas always diverged from MASM in a respect that can't
7159 be easily fixed without risking to break code sequences likely to be
7160 encountered (the testsuite even check for this): MASM doesn't consider
7161 an expression inside brackets unconditionally as a memory reference.
7162 When that is e.g. a constant, an offset expression, or the sum of the
7163 two, this is still taken as a constant load. gas, however, always
7164 treated these as memory references. As a compromise, we'll try to make
7165 offset expressions inside brackets work the MASM way (since that's
7166 less likely to be found in real world code), but make constants alone
7167 continue to work the traditional gas way. In either case, issue a
7168 warning. */
7169 intel_parser.op_modifier &= ~was_offset;
7170 }
7171 else
7172 strcat (intel_parser.disp, "[");
7173
7174 /* Add a '+' to the displacement string if necessary. */
7175 if (*intel_parser.disp != '\0'
7176 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
7177 strcat (intel_parser.disp, "+");
7178
7179 if (intel_expr ()
7180 && (len = intel_parser.op_string - start - 1,
7181 intel_match_token (']')))
7182 {
7183 /* Preserve brackets when the operand is an offset expression. */
7184 if (intel_parser.in_offset)
7185 strcat (intel_parser.disp, "]");
7186 else
7187 {
7188 --intel_parser.in_bracket;
7189 if (i.base_reg || i.index_reg)
7190 intel_parser.is_mem = 1;
7191 if (!intel_parser.is_mem)
7192 {
7193 if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
7194 /* Defer the warning until all of the operand was parsed. */
7195 intel_parser.is_mem = -1;
7196 else if (!quiet_warnings)
7197 as_warn (_("`[%.*s]' taken to mean just `%.*s'"),
7198 len, start, len, start);
7199 }
7200 }
7201 intel_parser.op_modifier |= was_offset;
7202
7203 return 1;
7204 }
7205 return 0;
7206 }
7207
7208 /* e10 e11 e10'
7209
7210 e10' [ expr ] e10'
7211 | Empty */
7212 static int
7213 intel_e10 (void)
7214 {
7215 if (!intel_e11 ())
7216 return 0;
7217
7218 while (cur_token.code == '[')
7219 {
7220 if (!intel_bracket_expr ())
7221 return 0;
7222 }
7223
7224 return 1;
7225 }
7226
7227 /* e11 ( expr )
7228 | [ expr ]
7229 | BYTE
7230 | WORD
7231 | DWORD
7232 | FWORD
7233 | QWORD
7234 | TBYTE
7235 | OWORD
7236 | XMMWORD
7237 | $
7238 | .
7239 | register
7240 | id
7241 | constant */
7242 static int
7243 intel_e11 (void)
7244 {
7245 switch (cur_token.code)
7246 {
7247 /* e11 ( expr ) */
7248 case '(':
7249 intel_match_token ('(');
7250 strcat (intel_parser.disp, "(");
7251
7252 if (intel_expr () && intel_match_token (')'))
7253 {
7254 strcat (intel_parser.disp, ")");
7255 return 1;
7256 }
7257 return 0;
7258
7259 /* e11 [ expr ] */
7260 case '[':
7261 return intel_bracket_expr ();
7262
7263 /* e11 $
7264 | . */
7265 case '.':
7266 strcat (intel_parser.disp, cur_token.str);
7267 intel_match_token (cur_token.code);
7268
7269 /* Mark as a memory operand only if it's not already known to be an
7270 offset expression. */
7271 if (!intel_parser.in_offset)
7272 intel_parser.is_mem = 1;
7273
7274 return 1;
7275
7276 /* e11 register */
7277 case T_REG:
7278 {
7279 const reg_entry *reg = intel_parser.reg = cur_token.reg;
7280
7281 intel_match_token (T_REG);
7282
7283 /* Check for segment change. */
7284 if (cur_token.code == ':')
7285 {
7286 if (!(reg->reg_type & (SReg2 | SReg3)))
7287 {
7288 as_bad (_("`%s' is not a valid segment register"),
7289 reg->reg_name);
7290 return 0;
7291 }
7292 else if (i.seg[i.mem_operands])
7293 as_warn (_("Extra segment override ignored"));
7294 else
7295 {
7296 if (!intel_parser.in_offset)
7297 intel_parser.is_mem = 1;
7298 switch (reg->reg_num)
7299 {
7300 case 0:
7301 i.seg[i.mem_operands] = &es;
7302 break;
7303 case 1:
7304 i.seg[i.mem_operands] = &cs;
7305 break;
7306 case 2:
7307 i.seg[i.mem_operands] = &ss;
7308 break;
7309 case 3:
7310 i.seg[i.mem_operands] = &ds;
7311 break;
7312 case 4:
7313 i.seg[i.mem_operands] = &fs;
7314 break;
7315 case 5:
7316 i.seg[i.mem_operands] = &gs;
7317 break;
7318 }
7319 }
7320 }
7321
7322 /* Not a segment register. Check for register scaling. */
7323 else if (cur_token.code == '*')
7324 {
7325 if (!intel_parser.in_bracket)
7326 {
7327 as_bad (_("Register scaling only allowed in memory operands"));
7328 return 0;
7329 }
7330
7331 if (reg->reg_type & Reg16) /* Disallow things like [si*1]. */
7332 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
7333 else if (i.index_reg)
7334 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
7335
7336 /* What follows must be a valid scale. */
7337 intel_match_token ('*');
7338 i.index_reg = reg;
7339 i.types[this_operand] |= BaseIndex;
7340
7341 /* Set the scale after setting the register (otherwise,
7342 i386_scale will complain) */
7343 if (cur_token.code == '+' || cur_token.code == '-')
7344 {
7345 char *str, sign = cur_token.code;
7346 intel_match_token (cur_token.code);
7347 if (cur_token.code != T_CONST)
7348 {
7349 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
7350 cur_token.str);
7351 return 0;
7352 }
7353 str = (char *) xmalloc (strlen (cur_token.str) + 2);
7354 strcpy (str + 1, cur_token.str);
7355 *str = sign;
7356 if (!i386_scale (str))
7357 return 0;
7358 free (str);
7359 }
7360 else if (!i386_scale (cur_token.str))
7361 return 0;
7362 intel_match_token (cur_token.code);
7363 }
7364
7365 /* No scaling. If this is a memory operand, the register is either a
7366 base register (first occurrence) or an index register (second
7367 occurrence). */
7368 else if (intel_parser.in_bracket)
7369 {
7370
7371 if (!i.base_reg)
7372 i.base_reg = reg;
7373 else if (!i.index_reg)
7374 i.index_reg = reg;
7375 else
7376 {
7377 as_bad (_("Too many register references in memory operand"));
7378 return 0;
7379 }
7380
7381 i.types[this_operand] |= BaseIndex;
7382 }
7383
7384 /* It's neither base nor index. */
7385 else if (!intel_parser.in_offset && !intel_parser.is_mem)
7386 {
7387 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
7388 i.op[this_operand].regs = reg;
7389 i.reg_operands++;
7390 }
7391 else
7392 {
7393 as_bad (_("Invalid use of register"));
7394 return 0;
7395 }
7396
7397 /* Since registers are not part of the displacement string (except
7398 when we're parsing offset operands), we may need to remove any
7399 preceding '+' from the displacement string. */
7400 if (*intel_parser.disp != '\0'
7401 && !intel_parser.in_offset)
7402 {
7403 char *s = intel_parser.disp;
7404 s += strlen (s) - 1;
7405 if (*s == '+')
7406 *s = '\0';
7407 }
7408
7409 return 1;
7410 }
7411
7412 /* e11 BYTE
7413 | WORD
7414 | DWORD
7415 | FWORD
7416 | QWORD
7417 | TBYTE
7418 | OWORD
7419 | XMMWORD */
7420 case T_BYTE:
7421 case T_WORD:
7422 case T_DWORD:
7423 case T_FWORD:
7424 case T_QWORD:
7425 case T_TBYTE:
7426 case T_XMMWORD:
7427 intel_match_token (cur_token.code);
7428
7429 if (cur_token.code == T_PTR)
7430 return 1;
7431
7432 /* It must have been an identifier. */
7433 intel_putback_token ();
7434 cur_token.code = T_ID;
7435 /* FALLTHRU */
7436
7437 /* e11 id
7438 | constant */
7439 case T_ID:
7440 if (!intel_parser.in_offset && intel_parser.is_mem <= 0)
7441 {
7442 symbolS *symbolP;
7443
7444 /* The identifier represents a memory reference only if it's not
7445 preceded by an offset modifier and if it's not an equate. */
7446 symbolP = symbol_find(cur_token.str);
7447 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
7448 intel_parser.is_mem = 1;
7449 }
7450 /* FALLTHRU */
7451
7452 case T_CONST:
7453 case '-':
7454 case '+':
7455 {
7456 char *save_str, sign = 0;
7457
7458 /* Allow constants that start with `+' or `-'. */
7459 if (cur_token.code == '-' || cur_token.code == '+')
7460 {
7461 sign = cur_token.code;
7462 intel_match_token (cur_token.code);
7463 if (cur_token.code != T_CONST)
7464 {
7465 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
7466 cur_token.str);
7467 return 0;
7468 }
7469 }
7470
7471 save_str = (char *) xmalloc (strlen (cur_token.str) + 2);
7472 strcpy (save_str + !!sign, cur_token.str);
7473 if (sign)
7474 *save_str = sign;
7475
7476 /* Get the next token to check for register scaling. */
7477 intel_match_token (cur_token.code);
7478
7479 /* Check if this constant is a scaling factor for an
7480 index register. */
7481 if (cur_token.code == '*')
7482 {
7483 if (intel_match_token ('*') && cur_token.code == T_REG)
7484 {
7485 const reg_entry *reg = cur_token.reg;
7486
7487 if (!intel_parser.in_bracket)
7488 {
7489 as_bad (_("Register scaling only allowed "
7490 "in memory operands"));
7491 return 0;
7492 }
7493
7494 /* Disallow things like [1*si].
7495 sp and esp are invalid as index. */
7496 if (reg->reg_type & Reg16)
7497 reg = i386_regtab + REGNAM_AX + 4;
7498 else if (i.index_reg)
7499 reg = i386_regtab + REGNAM_EAX + 4;
7500
7501 /* The constant is followed by `* reg', so it must be
7502 a valid scale. */
7503 i.index_reg = reg;
7504 i.types[this_operand] |= BaseIndex;
7505
7506 /* Set the scale after setting the register (otherwise,
7507 i386_scale will complain) */
7508 if (!i386_scale (save_str))
7509 return 0;
7510 intel_match_token (T_REG);
7511
7512 /* Since registers are not part of the displacement
7513 string, we may need to remove any preceding '+' from
7514 the displacement string. */
7515 if (*intel_parser.disp != '\0')
7516 {
7517 char *s = intel_parser.disp;
7518 s += strlen (s) - 1;
7519 if (*s == '+')
7520 *s = '\0';
7521 }
7522
7523 free (save_str);
7524
7525 return 1;
7526 }
7527
7528 /* The constant was not used for register scaling. Since we have
7529 already consumed the token following `*' we now need to put it
7530 back in the stream. */
7531 intel_putback_token ();
7532 }
7533
7534 /* Add the constant to the displacement string. */
7535 strcat (intel_parser.disp, save_str);
7536 free (save_str);
7537
7538 return 1;
7539 }
7540 }
7541
7542 as_bad (_("Unrecognized token '%s'"), cur_token.str);
7543 return 0;
7544 }
7545
7546 /* Match the given token against cur_token. If they match, read the next
7547 token from the operand string. */
7548 static int
7549 intel_match_token (int code)
7550 {
7551 if (cur_token.code == code)
7552 {
7553 intel_get_token ();
7554 return 1;
7555 }
7556 else
7557 {
7558 as_bad (_("Unexpected token `%s'"), cur_token.str);
7559 return 0;
7560 }
7561 }
7562
7563 /* Read a new token from intel_parser.op_string and store it in cur_token. */
7564 static void
7565 intel_get_token (void)
7566 {
7567 char *end_op;
7568 const reg_entry *reg;
7569 struct intel_token new_token;
7570
7571 new_token.code = T_NIL;
7572 new_token.reg = NULL;
7573 new_token.str = NULL;
7574
7575 /* Free the memory allocated to the previous token and move
7576 cur_token to prev_token. */
7577 if (prev_token.str)
7578 free (prev_token.str);
7579
7580 prev_token = cur_token;
7581
7582 /* Skip whitespace. */
7583 while (is_space_char (*intel_parser.op_string))
7584 intel_parser.op_string++;
7585
7586 /* Return an empty token if we find nothing else on the line. */
7587 if (*intel_parser.op_string == '\0')
7588 {
7589 cur_token = new_token;
7590 return;
7591 }
7592
7593 /* The new token cannot be larger than the remainder of the operand
7594 string. */
7595 new_token.str = (char *) xmalloc (strlen (intel_parser.op_string) + 1);
7596 new_token.str[0] = '\0';
7597
7598 if (strchr ("0123456789", *intel_parser.op_string))
7599 {
7600 char *p = new_token.str;
7601 char *q = intel_parser.op_string;
7602 new_token.code = T_CONST;
7603
7604 /* Allow any kind of identifier char to encompass floating point and
7605 hexadecimal numbers. */
7606 while (is_identifier_char (*q))
7607 *p++ = *q++;
7608 *p = '\0';
7609
7610 /* Recognize special symbol names [0-9][bf]. */
7611 if (strlen (intel_parser.op_string) == 2
7612 && (intel_parser.op_string[1] == 'b'
7613 || intel_parser.op_string[1] == 'f'))
7614 new_token.code = T_ID;
7615 }
7616
7617 else if ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL)
7618 {
7619 size_t len = end_op - intel_parser.op_string;
7620
7621 new_token.code = T_REG;
7622 new_token.reg = reg;
7623
7624 memcpy (new_token.str, intel_parser.op_string, len);
7625 new_token.str[len] = '\0';
7626 }
7627
7628 else if (is_identifier_char (*intel_parser.op_string))
7629 {
7630 char *p = new_token.str;
7631 char *q = intel_parser.op_string;
7632
7633 /* A '.' or '$' followed by an identifier char is an identifier.
7634 Otherwise, it's operator '.' followed by an expression. */
7635 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
7636 {
7637 new_token.code = '.';
7638 new_token.str[0] = '.';
7639 new_token.str[1] = '\0';
7640 }
7641 else
7642 {
7643 while (is_identifier_char (*q) || *q == '@')
7644 *p++ = *q++;
7645 *p = '\0';
7646
7647 if (strcasecmp (new_token.str, "NOT") == 0)
7648 new_token.code = '~';
7649
7650 else if (strcasecmp (new_token.str, "MOD") == 0)
7651 new_token.code = '%';
7652
7653 else if (strcasecmp (new_token.str, "AND") == 0)
7654 new_token.code = '&';
7655
7656 else if (strcasecmp (new_token.str, "OR") == 0)
7657 new_token.code = '|';
7658
7659 else if (strcasecmp (new_token.str, "XOR") == 0)
7660 new_token.code = '^';
7661
7662 else if (strcasecmp (new_token.str, "SHL") == 0)
7663 new_token.code = T_SHL;
7664
7665 else if (strcasecmp (new_token.str, "SHR") == 0)
7666 new_token.code = T_SHR;
7667
7668 else if (strcasecmp (new_token.str, "BYTE") == 0)
7669 new_token.code = T_BYTE;
7670
7671 else if (strcasecmp (new_token.str, "WORD") == 0)
7672 new_token.code = T_WORD;
7673
7674 else if (strcasecmp (new_token.str, "DWORD") == 0)
7675 new_token.code = T_DWORD;
7676
7677 else if (strcasecmp (new_token.str, "FWORD") == 0)
7678 new_token.code = T_FWORD;
7679
7680 else if (strcasecmp (new_token.str, "QWORD") == 0)
7681 new_token.code = T_QWORD;
7682
7683 else if (strcasecmp (new_token.str, "TBYTE") == 0
7684 /* XXX remove (gcc still uses it) */
7685 || strcasecmp (new_token.str, "XWORD") == 0)
7686 new_token.code = T_TBYTE;
7687
7688 else if (strcasecmp (new_token.str, "XMMWORD") == 0
7689 || strcasecmp (new_token.str, "OWORD") == 0)
7690 new_token.code = T_XMMWORD;
7691
7692 else if (strcasecmp (new_token.str, "PTR") == 0)
7693 new_token.code = T_PTR;
7694
7695 else if (strcasecmp (new_token.str, "SHORT") == 0)
7696 new_token.code = T_SHORT;
7697
7698 else if (strcasecmp (new_token.str, "OFFSET") == 0)
7699 {
7700 new_token.code = T_OFFSET;
7701
7702 /* ??? This is not mentioned in the MASM grammar but gcc
7703 makes use of it with -mintel-syntax. OFFSET may be
7704 followed by FLAT: */
7705 if (strncasecmp (q, " FLAT:", 6) == 0)
7706 strcat (new_token.str, " FLAT:");
7707 }
7708
7709 /* ??? This is not mentioned in the MASM grammar. */
7710 else if (strcasecmp (new_token.str, "FLAT") == 0)
7711 {
7712 new_token.code = T_OFFSET;
7713 if (*q == ':')
7714 strcat (new_token.str, ":");
7715 else
7716 as_bad (_("`:' expected"));
7717 }
7718
7719 else
7720 new_token.code = T_ID;
7721 }
7722 }
7723
7724 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
7725 {
7726 new_token.code = *intel_parser.op_string;
7727 new_token.str[0] = *intel_parser.op_string;
7728 new_token.str[1] = '\0';
7729 }
7730
7731 else if (strchr ("<>", *intel_parser.op_string)
7732 && *intel_parser.op_string == *(intel_parser.op_string + 1))
7733 {
7734 new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
7735 new_token.str[0] = *intel_parser.op_string;
7736 new_token.str[1] = *intel_parser.op_string;
7737 new_token.str[2] = '\0';
7738 }
7739
7740 else
7741 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
7742
7743 intel_parser.op_string += strlen (new_token.str);
7744 cur_token = new_token;
7745 }
7746
7747 /* Put cur_token back into the token stream and make cur_token point to
7748 prev_token. */
7749 static void
7750 intel_putback_token (void)
7751 {
7752 if (cur_token.code != T_NIL)
7753 {
7754 intel_parser.op_string -= strlen (cur_token.str);
7755 free (cur_token.str);
7756 }
7757 cur_token = prev_token;
7758
7759 /* Forget prev_token. */
7760 prev_token.code = T_NIL;
7761 prev_token.reg = NULL;
7762 prev_token.str = NULL;
7763 }
7764
7765 int
7766 tc_x86_regname_to_dw2regnum (char *regname)
7767 {
7768 unsigned int regnum;
7769 unsigned int regnames_count;
7770 static const char *const regnames_32[] =
7771 {
7772 "eax", "ecx", "edx", "ebx",
7773 "esp", "ebp", "esi", "edi",
7774 "eip", "eflags", NULL,
7775 "st0", "st1", "st2", "st3",
7776 "st4", "st5", "st6", "st7",
7777 NULL, NULL,
7778 "xmm0", "xmm1", "xmm2", "xmm3",
7779 "xmm4", "xmm5", "xmm6", "xmm7",
7780 "mm0", "mm1", "mm2", "mm3",
7781 "mm4", "mm5", "mm6", "mm7",
7782 "fcw", "fsw", "mxcsr",
7783 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
7784 "tr", "ldtr"
7785 };
7786 static const char *const regnames_64[] =
7787 {
7788 "rax", "rdx", "rcx", "rbx",
7789 "rsi", "rdi", "rbp", "rsp",
7790 "r8", "r9", "r10", "r11",
7791 "r12", "r13", "r14", "r15",
7792 "rip",
7793 "xmm0", "xmm1", "xmm2", "xmm3",
7794 "xmm4", "xmm5", "xmm6", "xmm7",
7795 "xmm8", "xmm9", "xmm10", "xmm11",
7796 "xmm12", "xmm13", "xmm14", "xmm15",
7797 "st0", "st1", "st2", "st3",
7798 "st4", "st5", "st6", "st7",
7799 "mm0", "mm1", "mm2", "mm3",
7800 "mm4", "mm5", "mm6", "mm7",
7801 "rflags",
7802 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
7803 "fs.base", "gs.base", NULL, NULL,
7804 "tr", "ldtr",
7805 "mxcsr", "fcw", "fsw"
7806 };
7807 const char *const *regnames;
7808
7809 if (flag_code == CODE_64BIT)
7810 {
7811 regnames = regnames_64;
7812 regnames_count = ARRAY_SIZE (regnames_64);
7813 }
7814 else
7815 {
7816 regnames = regnames_32;
7817 regnames_count = ARRAY_SIZE (regnames_32);
7818 }
7819
7820 for (regnum = 0; regnum < regnames_count; regnum++)
7821 if (regnames[regnum] != NULL
7822 && strcmp (regname, regnames[regnum]) == 0)
7823 return regnum;
7824
7825 return -1;
7826 }
7827
7828 void
7829 tc_x86_frame_initial_instructions (void)
7830 {
7831 static unsigned int sp_regno;
7832
7833 if (!sp_regno)
7834 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
7835 ? "rsp" : "esp");
7836
7837 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
7838 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
7839 }
7840
7841 int
7842 i386_elf_section_type (const char *str, size_t len)
7843 {
7844 if (flag_code == CODE_64BIT
7845 && len == sizeof ("unwind") - 1
7846 && strncmp (str, "unwind", 6) == 0)
7847 return SHT_X86_64_UNWIND;
7848
7849 return -1;
7850 }
7851
7852 #ifdef TE_PE
7853 void
7854 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
7855 {
7856 expressionS expr;
7857
7858 expr.X_op = O_secrel;
7859 expr.X_add_symbol = symbol;
7860 expr.X_add_number = 0;
7861 emit_expr (&expr, size);
7862 }
7863 #endif
7864
7865 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7866 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
7867
7868 int
7869 x86_64_section_letter (int letter, char **ptr_msg)
7870 {
7871 if (flag_code == CODE_64BIT)
7872 {
7873 if (letter == 'l')
7874 return SHF_X86_64_LARGE;
7875
7876 *ptr_msg = _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
7877 }
7878 else
7879 *ptr_msg = _("Bad .section directive: want a,w,x,M,S,G,T in string");
7880 return -1;
7881 }
7882
7883 int
7884 x86_64_section_word (char *str, size_t len)
7885 {
7886 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
7887 return SHF_X86_64_LARGE;
7888
7889 return -1;
7890 }
7891
7892 static void
7893 handle_large_common (int small ATTRIBUTE_UNUSED)
7894 {
7895 if (flag_code != CODE_64BIT)
7896 {
7897 s_comm_internal (0, elf_common_parse);
7898 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
7899 }
7900 else
7901 {
7902 static segT lbss_section;
7903 asection *saved_com_section_ptr = elf_com_section_ptr;
7904 asection *saved_bss_section = bss_section;
7905
7906 if (lbss_section == NULL)
7907 {
7908 flagword applicable;
7909 segT seg = now_seg;
7910 subsegT subseg = now_subseg;
7911
7912 /* The .lbss section is for local .largecomm symbols. */
7913 lbss_section = subseg_new (".lbss", 0);
7914 applicable = bfd_applicable_section_flags (stdoutput);
7915 bfd_set_section_flags (stdoutput, lbss_section,
7916 applicable & SEC_ALLOC);
7917 seg_info (lbss_section)->bss = 1;
7918
7919 subseg_set (seg, subseg);
7920 }
7921
7922 elf_com_section_ptr = &_bfd_elf_large_com_section;
7923 bss_section = lbss_section;
7924
7925 s_comm_internal (0, elf_common_parse);
7926
7927 elf_com_section_ptr = saved_com_section_ptr;
7928 bss_section = saved_bss_section;
7929 }
7930 }
7931 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.277898 seconds and 4 git commands to generate.