c629af15f59bb52c452f0c916a86b16b300fc349
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 #define XMMWORD_MNEM_SUFFIX 'x'
85 #define YMMWORD_MNEM_SUFFIX 'y'
86 #define ZMMWORD_MNEM_SUFFIX 'z'
87 /* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91 #define END_OF_INSN '\0'
92
93 /*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100 typedef struct
101 {
102 const insn_template *start;
103 const insn_template *end;
104 }
105 templates;
106
107 /* 386 operand encoding bytes: see 386 book for details of this. */
108 typedef struct
109 {
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113 }
114 modrm_byte;
115
116 /* x86-64 extension prefix. */
117 typedef int rex_byte;
118
119 /* 386 opcode byte to code indirect addressing. */
120 typedef struct
121 {
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125 }
126 sib_byte;
127
128 /* x86 arch names, types and features */
129 typedef struct
130 {
131 const char *name; /* arch name */
132 unsigned int len; /* arch string length */
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
135 unsigned int skip; /* show_arch should skip this. */
136 }
137 arch_entry;
138
139 /* Used to turn off indicated flags. */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 i386_cpu_flags flags; /* cpu feature flags */
145 }
146 noarch_entry;
147
148 static void update_code_flag (int, int);
149 static void set_code_flag (int);
150 static void set_16bit_gcc_code_flag (int);
151 static void set_intel_syntax (int);
152 static void set_intel_mnemonic (int);
153 static void set_allow_index_reg (int);
154 static void set_check (int);
155 static void set_cpu_arch (int);
156 #ifdef TE_PE
157 static void pe_directive_secrel (int);
158 #endif
159 static void signed_cons (int);
160 static char *output_invalid (int c);
161 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
162 const char *);
163 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
164 const char *);
165 static int i386_att_operand (char *);
166 static int i386_intel_operand (char *, int);
167 static int i386_intel_simplify (expressionS *);
168 static int i386_intel_parse_name (const char *, expressionS *);
169 static const reg_entry *parse_register (char *, char **);
170 static char *parse_insn (char *, char *);
171 static char *parse_operands (char *, const char *);
172 static void swap_operands (void);
173 static void swap_2_operands (int, int);
174 static void optimize_imm (void);
175 static void optimize_disp (void);
176 static const insn_template *match_template (char);
177 static int check_string (void);
178 static int process_suffix (void);
179 static int check_byte_reg (void);
180 static int check_long_reg (void);
181 static int check_qword_reg (void);
182 static int check_word_reg (void);
183 static int finalize_imm (void);
184 static int process_operands (void);
185 static const seg_entry *build_modrm_byte (void);
186 static void output_insn (void);
187 static void output_imm (fragS *, offsetT);
188 static void output_disp (fragS *, offsetT);
189 #ifndef I386COFF
190 static void s_bss (int);
191 #endif
192 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
193 static void handle_large_common (int small ATTRIBUTE_UNUSED);
194 #endif
195
196 static const char *default_arch = DEFAULT_ARCH;
197
198 /* This struct describes rounding control and SAE in the instruction. */
199 struct RC_Operation
200 {
201 enum rc_type
202 {
203 rne = 0,
204 rd,
205 ru,
206 rz,
207 saeonly
208 } type;
209 int operand;
210 };
211
212 static struct RC_Operation rc_op;
213
214 /* The struct describes masking, applied to OPERAND in the instruction.
215 MASK is a pointer to the corresponding mask register. ZEROING tells
216 whether merging or zeroing mask is used. */
217 struct Mask_Operation
218 {
219 const reg_entry *mask;
220 unsigned int zeroing;
221 /* The operand where this operation is associated. */
222 int operand;
223 };
224
225 static struct Mask_Operation mask_op;
226
227 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
228 broadcast factor. */
229 struct Broadcast_Operation
230 {
231 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
232 int type;
233
234 /* Index of broadcasted operand. */
235 int operand;
236 };
237
238 static struct Broadcast_Operation broadcast_op;
239
240 /* VEX prefix. */
241 typedef struct
242 {
243 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
244 unsigned char bytes[4];
245 unsigned int length;
246 /* Destination or source register specifier. */
247 const reg_entry *register_specifier;
248 } vex_prefix;
249
250 /* 'md_assemble ()' gathers together information and puts it into a
251 i386_insn. */
252
253 union i386_op
254 {
255 expressionS *disps;
256 expressionS *imms;
257 const reg_entry *regs;
258 };
259
260 enum i386_error
261 {
262 operand_size_mismatch,
263 operand_type_mismatch,
264 register_type_mismatch,
265 number_of_operands_mismatch,
266 invalid_instruction_suffix,
267 bad_imm4,
268 old_gcc_only,
269 unsupported_with_intel_mnemonic,
270 unsupported_syntax,
271 unsupported,
272 invalid_vsib_address,
273 invalid_vector_register_set,
274 unsupported_vector_index_register,
275 unsupported_broadcast,
276 broadcast_not_on_src_operand,
277 broadcast_needed,
278 unsupported_masking,
279 mask_not_on_destination,
280 no_default_mask,
281 unsupported_rc_sae,
282 rc_sae_operand_not_last_imm,
283 invalid_register_operand,
284 };
285
286 struct _i386_insn
287 {
288 /* TM holds the template for the insn were currently assembling. */
289 insn_template tm;
290
291 /* SUFFIX holds the instruction size suffix for byte, word, dword
292 or qword, if given. */
293 char suffix;
294
295 /* OPERANDS gives the number of given operands. */
296 unsigned int operands;
297
298 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
299 of given register, displacement, memory operands and immediate
300 operands. */
301 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
302
303 /* TYPES [i] is the type (see above #defines) which tells us how to
304 use OP[i] for the corresponding operand. */
305 i386_operand_type types[MAX_OPERANDS];
306
307 /* Displacement expression, immediate expression, or register for each
308 operand. */
309 union i386_op op[MAX_OPERANDS];
310
311 /* Flags for operands. */
312 unsigned int flags[MAX_OPERANDS];
313 #define Operand_PCrel 1
314
315 /* Relocation type for operand */
316 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
317
318 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
319 the base index byte below. */
320 const reg_entry *base_reg;
321 const reg_entry *index_reg;
322 unsigned int log2_scale_factor;
323
324 /* SEG gives the seg_entries of this insn. They are zero unless
325 explicit segment overrides are given. */
326 const seg_entry *seg[2];
327
328 /* Copied first memory operand string, for re-checking. */
329 char *memop1_string;
330
331 /* PREFIX holds all the given prefix opcodes (usually null).
332 PREFIXES is the number of prefix opcodes. */
333 unsigned int prefixes;
334 unsigned char prefix[MAX_PREFIXES];
335
336 /* RM and SIB are the modrm byte and the sib byte where the
337 addressing modes of this insn are encoded. */
338 modrm_byte rm;
339 rex_byte rex;
340 rex_byte vrex;
341 sib_byte sib;
342 vex_prefix vex;
343
344 /* Masking attributes. */
345 struct Mask_Operation *mask;
346
347 /* Rounding control and SAE attributes. */
348 struct RC_Operation *rounding;
349
350 /* Broadcasting attributes. */
351 struct Broadcast_Operation *broadcast;
352
353 /* Compressed disp8*N attribute. */
354 unsigned int memshift;
355
356 /* Prefer load or store in encoding. */
357 enum
358 {
359 dir_encoding_default = 0,
360 dir_encoding_load,
361 dir_encoding_store
362 } dir_encoding;
363
364 /* Prefer 8bit or 32bit displacement in encoding. */
365 enum
366 {
367 disp_encoding_default = 0,
368 disp_encoding_8bit,
369 disp_encoding_32bit
370 } disp_encoding;
371
372 /* How to encode vector instructions. */
373 enum
374 {
375 vex_encoding_default = 0,
376 vex_encoding_vex2,
377 vex_encoding_vex3,
378 vex_encoding_evex
379 } vec_encoding;
380
381 /* REP prefix. */
382 const char *rep_prefix;
383
384 /* HLE prefix. */
385 const char *hle_prefix;
386
387 /* Have BND prefix. */
388 const char *bnd_prefix;
389
390 /* Have NOTRACK prefix. */
391 const char *notrack_prefix;
392
393 /* Error message. */
394 enum i386_error error;
395 };
396
397 typedef struct _i386_insn i386_insn;
398
399 /* Link RC type with corresponding string, that'll be looked for in
400 asm. */
401 struct RC_name
402 {
403 enum rc_type type;
404 const char *name;
405 unsigned int len;
406 };
407
408 static const struct RC_name RC_NamesTable[] =
409 {
410 { rne, STRING_COMMA_LEN ("rn-sae") },
411 { rd, STRING_COMMA_LEN ("rd-sae") },
412 { ru, STRING_COMMA_LEN ("ru-sae") },
413 { rz, STRING_COMMA_LEN ("rz-sae") },
414 { saeonly, STRING_COMMA_LEN ("sae") },
415 };
416
417 /* List of chars besides those in app.c:symbol_chars that can start an
418 operand. Used to prevent the scrubber eating vital white-space. */
419 const char extra_symbol_chars[] = "*%-([{}"
420 #ifdef LEX_AT
421 "@"
422 #endif
423 #ifdef LEX_QM
424 "?"
425 #endif
426 ;
427
428 #if (defined (TE_I386AIX) \
429 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
430 && !defined (TE_GNU) \
431 && !defined (TE_LINUX) \
432 && !defined (TE_NACL) \
433 && !defined (TE_NETWARE) \
434 && !defined (TE_FreeBSD) \
435 && !defined (TE_DragonFly) \
436 && !defined (TE_NetBSD)))
437 /* This array holds the chars that always start a comment. If the
438 pre-processor is disabled, these aren't very useful. The option
439 --divide will remove '/' from this list. */
440 const char *i386_comment_chars = "#/";
441 #define SVR4_COMMENT_CHARS 1
442 #define PREFIX_SEPARATOR '\\'
443
444 #else
445 const char *i386_comment_chars = "#";
446 #define PREFIX_SEPARATOR '/'
447 #endif
448
449 /* This array holds the chars that only start a comment at the beginning of
450 a line. If the line seems to have the form '# 123 filename'
451 .line and .file directives will appear in the pre-processed output.
452 Note that input_file.c hand checks for '#' at the beginning of the
453 first line of the input file. This is because the compiler outputs
454 #NO_APP at the beginning of its output.
455 Also note that comments started like this one will always work if
456 '/' isn't otherwise defined. */
457 const char line_comment_chars[] = "#/";
458
459 const char line_separator_chars[] = ";";
460
461 /* Chars that can be used to separate mant from exp in floating point
462 nums. */
463 const char EXP_CHARS[] = "eE";
464
465 /* Chars that mean this number is a floating point constant
466 As in 0f12.456
467 or 0d1.2345e12. */
468 const char FLT_CHARS[] = "fFdDxX";
469
470 /* Tables for lexical analysis. */
471 static char mnemonic_chars[256];
472 static char register_chars[256];
473 static char operand_chars[256];
474 static char identifier_chars[256];
475 static char digit_chars[256];
476
477 /* Lexical macros. */
478 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
479 #define is_operand_char(x) (operand_chars[(unsigned char) x])
480 #define is_register_char(x) (register_chars[(unsigned char) x])
481 #define is_space_char(x) ((x) == ' ')
482 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
483 #define is_digit_char(x) (digit_chars[(unsigned char) x])
484
485 /* All non-digit non-letter characters that may occur in an operand. */
486 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
487
488 /* md_assemble() always leaves the strings it's passed unaltered. To
489 effect this we maintain a stack of saved characters that we've smashed
490 with '\0's (indicating end of strings for various sub-fields of the
491 assembler instruction). */
492 static char save_stack[32];
493 static char *save_stack_p;
494 #define END_STRING_AND_SAVE(s) \
495 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
496 #define RESTORE_END_STRING(s) \
497 do { *(s) = *--save_stack_p; } while (0)
498
499 /* The instruction we're assembling. */
500 static i386_insn i;
501
502 /* Possible templates for current insn. */
503 static const templates *current_templates;
504
505 /* Per instruction expressionS buffers: max displacements & immediates. */
506 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
507 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
508
509 /* Current operand we are working on. */
510 static int this_operand = -1;
511
512 /* We support four different modes. FLAG_CODE variable is used to distinguish
513 these. */
514
515 enum flag_code {
516 CODE_32BIT,
517 CODE_16BIT,
518 CODE_64BIT };
519
520 static enum flag_code flag_code;
521 static unsigned int object_64bit;
522 static unsigned int disallow_64bit_reloc;
523 static int use_rela_relocations = 0;
524
525 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
526 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
527 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
528
529 /* The ELF ABI to use. */
530 enum x86_elf_abi
531 {
532 I386_ABI,
533 X86_64_ABI,
534 X86_64_X32_ABI
535 };
536
537 static enum x86_elf_abi x86_elf_abi = I386_ABI;
538 #endif
539
540 #if defined (TE_PE) || defined (TE_PEP)
541 /* Use big object file format. */
542 static int use_big_obj = 0;
543 #endif
544
545 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
546 /* 1 if generating code for a shared library. */
547 static int shared = 0;
548 #endif
549
550 /* 1 for intel syntax,
551 0 if att syntax. */
552 static int intel_syntax = 0;
553
554 /* 1 for Intel64 ISA,
555 0 if AMD64 ISA. */
556 static int intel64;
557
558 /* 1 for intel mnemonic,
559 0 if att mnemonic. */
560 static int intel_mnemonic = !SYSV386_COMPAT;
561
562 /* 1 if support old (<= 2.8.1) versions of gcc. */
563 static int old_gcc = OLDGCC_COMPAT;
564
565 /* 1 if pseudo registers are permitted. */
566 static int allow_pseudo_reg = 0;
567
568 /* 1 if register prefix % not required. */
569 static int allow_naked_reg = 0;
570
571 /* 1 if the assembler should add BND prefix for all control-transferring
572 instructions supporting it, even if this prefix wasn't specified
573 explicitly. */
574 static int add_bnd_prefix = 0;
575
576 /* 1 if pseudo index register, eiz/riz, is allowed . */
577 static int allow_index_reg = 0;
578
579 /* 1 if the assembler should ignore LOCK prefix, even if it was
580 specified explicitly. */
581 static int omit_lock_prefix = 0;
582
583 /* 1 if the assembler should encode lfence, mfence, and sfence as
584 "lock addl $0, (%{re}sp)". */
585 static int avoid_fence = 0;
586
587 /* 1 if the assembler should generate relax relocations. */
588
589 static int generate_relax_relocations
590 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
591
592 static enum check_kind
593 {
594 check_none = 0,
595 check_warning,
596 check_error
597 }
598 sse_check, operand_check = check_warning;
599
600 /* Register prefix used for error message. */
601 static const char *register_prefix = "%";
602
603 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
604 leave, push, and pop instructions so that gcc has the same stack
605 frame as in 32 bit mode. */
606 static char stackop_size = '\0';
607
608 /* Non-zero to optimize code alignment. */
609 int optimize_align_code = 1;
610
611 /* Non-zero to quieten some warnings. */
612 static int quiet_warnings = 0;
613
614 /* CPU name. */
615 static const char *cpu_arch_name = NULL;
616 static char *cpu_sub_arch_name = NULL;
617
618 /* CPU feature flags. */
619 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
620
621 /* If we have selected a cpu we are generating instructions for. */
622 static int cpu_arch_tune_set = 0;
623
624 /* Cpu we are generating instructions for. */
625 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
626
627 /* CPU feature flags of cpu we are generating instructions for. */
628 static i386_cpu_flags cpu_arch_tune_flags;
629
630 /* CPU instruction set architecture used. */
631 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
632
633 /* CPU feature flags of instruction set architecture used. */
634 i386_cpu_flags cpu_arch_isa_flags;
635
636 /* If set, conditional jumps are not automatically promoted to handle
637 larger than a byte offset. */
638 static unsigned int no_cond_jump_promotion = 0;
639
640 /* Encode SSE instructions with VEX prefix. */
641 static unsigned int sse2avx;
642
643 /* Encode scalar AVX instructions with specific vector length. */
644 static enum
645 {
646 vex128 = 0,
647 vex256
648 } avxscalar;
649
650 /* Encode scalar EVEX LIG instructions with specific vector length. */
651 static enum
652 {
653 evexl128 = 0,
654 evexl256,
655 evexl512
656 } evexlig;
657
658 /* Encode EVEX WIG instructions with specific evex.w. */
659 static enum
660 {
661 evexw0 = 0,
662 evexw1
663 } evexwig;
664
665 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
666 static enum rc_type evexrcig = rne;
667
668 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
669 static symbolS *GOT_symbol;
670
671 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
672 unsigned int x86_dwarf2_return_column;
673
674 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
675 int x86_cie_data_alignment;
676
677 /* Interface to relax_segment.
678 There are 3 major relax states for 386 jump insns because the
679 different types of jumps add different sizes to frags when we're
680 figuring out what sort of jump to choose to reach a given label. */
681
682 /* Types. */
683 #define UNCOND_JUMP 0
684 #define COND_JUMP 1
685 #define COND_JUMP86 2
686
687 /* Sizes. */
688 #define CODE16 1
689 #define SMALL 0
690 #define SMALL16 (SMALL | CODE16)
691 #define BIG 2
692 #define BIG16 (BIG | CODE16)
693
694 #ifndef INLINE
695 #ifdef __GNUC__
696 #define INLINE __inline__
697 #else
698 #define INLINE
699 #endif
700 #endif
701
702 #define ENCODE_RELAX_STATE(type, size) \
703 ((relax_substateT) (((type) << 2) | (size)))
704 #define TYPE_FROM_RELAX_STATE(s) \
705 ((s) >> 2)
706 #define DISP_SIZE_FROM_RELAX_STATE(s) \
707 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
708
709 /* This table is used by relax_frag to promote short jumps to long
710 ones where necessary. SMALL (short) jumps may be promoted to BIG
711 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
712 don't allow a short jump in a 32 bit code segment to be promoted to
713 a 16 bit offset jump because it's slower (requires data size
714 prefix), and doesn't work, unless the destination is in the bottom
715 64k of the code segment (The top 16 bits of eip are zeroed). */
716
717 const relax_typeS md_relax_table[] =
718 {
719 /* The fields are:
720 1) most positive reach of this state,
721 2) most negative reach of this state,
722 3) how many bytes this mode will have in the variable part of the frag
723 4) which index into the table to try if we can't fit into this one. */
724
725 /* UNCOND_JUMP states. */
726 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
727 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
728 /* dword jmp adds 4 bytes to frag:
729 0 extra opcode bytes, 4 displacement bytes. */
730 {0, 0, 4, 0},
731 /* word jmp adds 2 byte2 to frag:
732 0 extra opcode bytes, 2 displacement bytes. */
733 {0, 0, 2, 0},
734
735 /* COND_JUMP states. */
736 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
737 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
738 /* dword conditionals adds 5 bytes to frag:
739 1 extra opcode byte, 4 displacement bytes. */
740 {0, 0, 5, 0},
741 /* word conditionals add 3 bytes to frag:
742 1 extra opcode byte, 2 displacement bytes. */
743 {0, 0, 3, 0},
744
745 /* COND_JUMP86 states. */
746 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
747 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
748 /* dword conditionals adds 5 bytes to frag:
749 1 extra opcode byte, 4 displacement bytes. */
750 {0, 0, 5, 0},
751 /* word conditionals add 4 bytes to frag:
752 1 displacement byte and a 3 byte long branch insn. */
753 {0, 0, 4, 0}
754 };
755
756 static const arch_entry cpu_arch[] =
757 {
758 /* Do not replace the first two entries - i386_target_format()
759 relies on them being there in this order. */
760 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
761 CPU_GENERIC32_FLAGS, 0 },
762 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
763 CPU_GENERIC64_FLAGS, 0 },
764 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
765 CPU_NONE_FLAGS, 0 },
766 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
767 CPU_I186_FLAGS, 0 },
768 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
769 CPU_I286_FLAGS, 0 },
770 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
771 CPU_I386_FLAGS, 0 },
772 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
773 CPU_I486_FLAGS, 0 },
774 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
775 CPU_I586_FLAGS, 0 },
776 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
777 CPU_I686_FLAGS, 0 },
778 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
779 CPU_I586_FLAGS, 0 },
780 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
781 CPU_PENTIUMPRO_FLAGS, 0 },
782 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
783 CPU_P2_FLAGS, 0 },
784 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
785 CPU_P3_FLAGS, 0 },
786 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
787 CPU_P4_FLAGS, 0 },
788 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
789 CPU_CORE_FLAGS, 0 },
790 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
791 CPU_NOCONA_FLAGS, 0 },
792 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
793 CPU_CORE_FLAGS, 1 },
794 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
795 CPU_CORE_FLAGS, 0 },
796 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
797 CPU_CORE2_FLAGS, 1 },
798 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
799 CPU_CORE2_FLAGS, 0 },
800 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
801 CPU_COREI7_FLAGS, 0 },
802 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
803 CPU_L1OM_FLAGS, 0 },
804 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
805 CPU_K1OM_FLAGS, 0 },
806 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
807 CPU_IAMCU_FLAGS, 0 },
808 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
809 CPU_K6_FLAGS, 0 },
810 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
811 CPU_K6_2_FLAGS, 0 },
812 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
813 CPU_ATHLON_FLAGS, 0 },
814 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
815 CPU_K8_FLAGS, 1 },
816 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
817 CPU_K8_FLAGS, 0 },
818 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
819 CPU_K8_FLAGS, 0 },
820 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
821 CPU_AMDFAM10_FLAGS, 0 },
822 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
823 CPU_BDVER1_FLAGS, 0 },
824 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
825 CPU_BDVER2_FLAGS, 0 },
826 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
827 CPU_BDVER3_FLAGS, 0 },
828 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
829 CPU_BDVER4_FLAGS, 0 },
830 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
831 CPU_ZNVER1_FLAGS, 0 },
832 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
833 CPU_BTVER1_FLAGS, 0 },
834 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
835 CPU_BTVER2_FLAGS, 0 },
836 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
837 CPU_8087_FLAGS, 0 },
838 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
839 CPU_287_FLAGS, 0 },
840 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
841 CPU_387_FLAGS, 0 },
842 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
843 CPU_687_FLAGS, 0 },
844 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
845 CPU_MMX_FLAGS, 0 },
846 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
847 CPU_SSE_FLAGS, 0 },
848 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
849 CPU_SSE2_FLAGS, 0 },
850 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
851 CPU_SSE3_FLAGS, 0 },
852 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
853 CPU_SSSE3_FLAGS, 0 },
854 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
855 CPU_SSE4_1_FLAGS, 0 },
856 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
857 CPU_SSE4_2_FLAGS, 0 },
858 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
859 CPU_SSE4_2_FLAGS, 0 },
860 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
861 CPU_AVX_FLAGS, 0 },
862 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
863 CPU_AVX2_FLAGS, 0 },
864 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
865 CPU_AVX512F_FLAGS, 0 },
866 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
867 CPU_AVX512CD_FLAGS, 0 },
868 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
869 CPU_AVX512ER_FLAGS, 0 },
870 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
871 CPU_AVX512PF_FLAGS, 0 },
872 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
873 CPU_AVX512DQ_FLAGS, 0 },
874 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
875 CPU_AVX512BW_FLAGS, 0 },
876 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
877 CPU_AVX512VL_FLAGS, 0 },
878 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
879 CPU_VMX_FLAGS, 0 },
880 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
881 CPU_VMFUNC_FLAGS, 0 },
882 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
883 CPU_SMX_FLAGS, 0 },
884 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
885 CPU_XSAVE_FLAGS, 0 },
886 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
887 CPU_XSAVEOPT_FLAGS, 0 },
888 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
889 CPU_XSAVEC_FLAGS, 0 },
890 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
891 CPU_XSAVES_FLAGS, 0 },
892 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
893 CPU_AES_FLAGS, 0 },
894 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
895 CPU_PCLMUL_FLAGS, 0 },
896 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
897 CPU_PCLMUL_FLAGS, 1 },
898 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
899 CPU_FSGSBASE_FLAGS, 0 },
900 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
901 CPU_RDRND_FLAGS, 0 },
902 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
903 CPU_F16C_FLAGS, 0 },
904 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
905 CPU_BMI2_FLAGS, 0 },
906 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
907 CPU_FMA_FLAGS, 0 },
908 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
909 CPU_FMA4_FLAGS, 0 },
910 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
911 CPU_XOP_FLAGS, 0 },
912 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
913 CPU_LWP_FLAGS, 0 },
914 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
915 CPU_MOVBE_FLAGS, 0 },
916 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
917 CPU_CX16_FLAGS, 0 },
918 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
919 CPU_EPT_FLAGS, 0 },
920 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
921 CPU_LZCNT_FLAGS, 0 },
922 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
923 CPU_HLE_FLAGS, 0 },
924 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
925 CPU_RTM_FLAGS, 0 },
926 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
927 CPU_INVPCID_FLAGS, 0 },
928 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
929 CPU_CLFLUSH_FLAGS, 0 },
930 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
931 CPU_NOP_FLAGS, 0 },
932 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
933 CPU_SYSCALL_FLAGS, 0 },
934 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
935 CPU_RDTSCP_FLAGS, 0 },
936 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
937 CPU_3DNOW_FLAGS, 0 },
938 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
939 CPU_3DNOWA_FLAGS, 0 },
940 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
941 CPU_PADLOCK_FLAGS, 0 },
942 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
943 CPU_SVME_FLAGS, 1 },
944 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
945 CPU_SVME_FLAGS, 0 },
946 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
947 CPU_SSE4A_FLAGS, 0 },
948 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
949 CPU_ABM_FLAGS, 0 },
950 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
951 CPU_BMI_FLAGS, 0 },
952 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
953 CPU_TBM_FLAGS, 0 },
954 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
955 CPU_ADX_FLAGS, 0 },
956 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
957 CPU_RDSEED_FLAGS, 0 },
958 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
959 CPU_PRFCHW_FLAGS, 0 },
960 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
961 CPU_SMAP_FLAGS, 0 },
962 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
963 CPU_MPX_FLAGS, 0 },
964 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
965 CPU_SHA_FLAGS, 0 },
966 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
967 CPU_CLFLUSHOPT_FLAGS, 0 },
968 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
969 CPU_PREFETCHWT1_FLAGS, 0 },
970 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
971 CPU_SE1_FLAGS, 0 },
972 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
973 CPU_CLWB_FLAGS, 0 },
974 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
975 CPU_AVX512IFMA_FLAGS, 0 },
976 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
977 CPU_AVX512VBMI_FLAGS, 0 },
978 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
979 CPU_AVX512_4FMAPS_FLAGS, 0 },
980 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
981 CPU_AVX512_4VNNIW_FLAGS, 0 },
982 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
983 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
984 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
985 CPU_AVX512_VBMI2_FLAGS, 0 },
986 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
987 CPU_AVX512_VNNI_FLAGS, 0 },
988 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
989 CPU_AVX512_BITALG_FLAGS, 0 },
990 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
991 CPU_CLZERO_FLAGS, 0 },
992 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
993 CPU_MWAITX_FLAGS, 0 },
994 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
995 CPU_OSPKE_FLAGS, 0 },
996 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
997 CPU_RDPID_FLAGS, 0 },
998 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
999 CPU_PTWRITE_FLAGS, 0 },
1000 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1001 CPU_IBT_FLAGS, 0 },
1002 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1003 CPU_SHSTK_FLAGS, 0 },
1004 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1005 CPU_GFNI_FLAGS, 0 },
1006 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1007 CPU_VAES_FLAGS, 0 },
1008 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1009 CPU_VPCLMULQDQ_FLAGS, 0 },
1010 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1011 CPU_WBNOINVD_FLAGS, 0 },
1012 };
1013
1014 static const noarch_entry cpu_noarch[] =
1015 {
1016 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1017 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1018 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1019 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1020 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1021 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1022 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1023 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1024 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1025 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1026 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1027 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1028 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1029 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1030 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1031 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1032 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1033 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1034 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1035 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1036 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1037 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1038 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1039 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1040 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1041 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1042 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1043 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1044 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1045 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1046 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1047 };
1048
1049 #ifdef I386COFF
1050 /* Like s_lcomm_internal in gas/read.c but the alignment string
1051 is allowed to be optional. */
1052
1053 static symbolS *
1054 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1055 {
1056 addressT align = 0;
1057
1058 SKIP_WHITESPACE ();
1059
1060 if (needs_align
1061 && *input_line_pointer == ',')
1062 {
1063 align = parse_align (needs_align - 1);
1064
1065 if (align == (addressT) -1)
1066 return NULL;
1067 }
1068 else
1069 {
1070 if (size >= 8)
1071 align = 3;
1072 else if (size >= 4)
1073 align = 2;
1074 else if (size >= 2)
1075 align = 1;
1076 else
1077 align = 0;
1078 }
1079
1080 bss_alloc (symbolP, size, align);
1081 return symbolP;
1082 }
1083
1084 static void
1085 pe_lcomm (int needs_align)
1086 {
1087 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1088 }
1089 #endif
1090
1091 const pseudo_typeS md_pseudo_table[] =
1092 {
1093 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1094 {"align", s_align_bytes, 0},
1095 #else
1096 {"align", s_align_ptwo, 0},
1097 #endif
1098 {"arch", set_cpu_arch, 0},
1099 #ifndef I386COFF
1100 {"bss", s_bss, 0},
1101 #else
1102 {"lcomm", pe_lcomm, 1},
1103 #endif
1104 {"ffloat", float_cons, 'f'},
1105 {"dfloat", float_cons, 'd'},
1106 {"tfloat", float_cons, 'x'},
1107 {"value", cons, 2},
1108 {"slong", signed_cons, 4},
1109 {"noopt", s_ignore, 0},
1110 {"optim", s_ignore, 0},
1111 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1112 {"code16", set_code_flag, CODE_16BIT},
1113 {"code32", set_code_flag, CODE_32BIT},
1114 #ifdef BFD64
1115 {"code64", set_code_flag, CODE_64BIT},
1116 #endif
1117 {"intel_syntax", set_intel_syntax, 1},
1118 {"att_syntax", set_intel_syntax, 0},
1119 {"intel_mnemonic", set_intel_mnemonic, 1},
1120 {"att_mnemonic", set_intel_mnemonic, 0},
1121 {"allow_index_reg", set_allow_index_reg, 1},
1122 {"disallow_index_reg", set_allow_index_reg, 0},
1123 {"sse_check", set_check, 0},
1124 {"operand_check", set_check, 1},
1125 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1126 {"largecomm", handle_large_common, 0},
1127 #else
1128 {"file", (void (*) (int)) dwarf2_directive_file, 0},
1129 {"loc", dwarf2_directive_loc, 0},
1130 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1131 #endif
1132 #ifdef TE_PE
1133 {"secrel32", pe_directive_secrel, 0},
1134 #endif
1135 {0, 0, 0}
1136 };
1137
1138 /* For interface with expression (). */
1139 extern char *input_line_pointer;
1140
1141 /* Hash table for instruction mnemonic lookup. */
1142 static struct hash_control *op_hash;
1143
1144 /* Hash table for register lookup. */
1145 static struct hash_control *reg_hash;
1146 \f
1147 void
1148 i386_align_code (fragS *fragP, int count)
1149 {
1150 /* Various efficient no-op patterns for aligning code labels.
1151 Note: Don't try to assemble the instructions in the comments.
1152 0L and 0w are not legal. */
1153 static const unsigned char f32_1[] =
1154 {0x90}; /* nop */
1155 static const unsigned char f32_2[] =
1156 {0x66,0x90}; /* xchg %ax,%ax */
1157 static const unsigned char f32_3[] =
1158 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1159 static const unsigned char f32_4[] =
1160 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1161 static const unsigned char f32_5[] =
1162 {0x90, /* nop */
1163 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1164 static const unsigned char f32_6[] =
1165 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1166 static const unsigned char f32_7[] =
1167 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1168 static const unsigned char f32_8[] =
1169 {0x90, /* nop */
1170 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1171 static const unsigned char f32_9[] =
1172 {0x89,0xf6, /* movl %esi,%esi */
1173 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1174 static const unsigned char f32_10[] =
1175 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1176 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1177 static const unsigned char f32_11[] =
1178 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1179 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1180 static const unsigned char f32_12[] =
1181 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1182 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1183 static const unsigned char f32_13[] =
1184 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1185 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1186 static const unsigned char f32_14[] =
1187 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1188 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1189 static const unsigned char f16_3[] =
1190 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1191 static const unsigned char f16_4[] =
1192 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1193 static const unsigned char f16_5[] =
1194 {0x90, /* nop */
1195 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1196 static const unsigned char f16_6[] =
1197 {0x89,0xf6, /* mov %si,%si */
1198 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1199 static const unsigned char f16_7[] =
1200 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1201 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1202 static const unsigned char f16_8[] =
1203 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1204 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1205 static const unsigned char jump_31[] =
1206 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1207 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1208 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1209 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1210 static const unsigned char *const f32_patt[] = {
1211 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1212 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1213 };
1214 static const unsigned char *const f16_patt[] = {
1215 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1216 };
1217 /* nopl (%[re]ax) */
1218 static const unsigned char alt_3[] =
1219 {0x0f,0x1f,0x00};
1220 /* nopl 0(%[re]ax) */
1221 static const unsigned char alt_4[] =
1222 {0x0f,0x1f,0x40,0x00};
1223 /* nopl 0(%[re]ax,%[re]ax,1) */
1224 static const unsigned char alt_5[] =
1225 {0x0f,0x1f,0x44,0x00,0x00};
1226 /* nopw 0(%[re]ax,%[re]ax,1) */
1227 static const unsigned char alt_6[] =
1228 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1229 /* nopl 0L(%[re]ax) */
1230 static const unsigned char alt_7[] =
1231 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1232 /* nopl 0L(%[re]ax,%[re]ax,1) */
1233 static const unsigned char alt_8[] =
1234 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1235 /* nopw 0L(%[re]ax,%[re]ax,1) */
1236 static const unsigned char alt_9[] =
1237 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1238 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1239 static const unsigned char alt_10[] =
1240 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1241 static const unsigned char *const alt_patt[] = {
1242 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1243 alt_9, alt_10
1244 };
1245
1246 /* Only align for at least a positive non-zero boundary. */
1247 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1248 return;
1249
1250 /* We need to decide which NOP sequence to use for 32bit and
1251 64bit. When -mtune= is used:
1252
1253 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1254 PROCESSOR_GENERIC32, f32_patt will be used.
1255 2. For the rest, alt_patt will be used.
1256
1257 When -mtune= isn't used, alt_patt will be used if
1258 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1259 be used.
1260
1261 When -march= or .arch is used, we can't use anything beyond
1262 cpu_arch_isa_flags. */
1263
1264 if (flag_code == CODE_16BIT)
1265 {
1266 if (count > 8)
1267 {
1268 memcpy (fragP->fr_literal + fragP->fr_fix,
1269 jump_31, count);
1270 /* Adjust jump offset. */
1271 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1272 }
1273 else
1274 memcpy (fragP->fr_literal + fragP->fr_fix,
1275 f16_patt[count - 1], count);
1276 }
1277 else
1278 {
1279 const unsigned char *const *patt = NULL;
1280
1281 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1282 {
1283 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1284 switch (cpu_arch_tune)
1285 {
1286 case PROCESSOR_UNKNOWN:
1287 /* We use cpu_arch_isa_flags to check if we SHOULD
1288 optimize with nops. */
1289 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1290 patt = alt_patt;
1291 else
1292 patt = f32_patt;
1293 break;
1294 case PROCESSOR_PENTIUM4:
1295 case PROCESSOR_NOCONA:
1296 case PROCESSOR_CORE:
1297 case PROCESSOR_CORE2:
1298 case PROCESSOR_COREI7:
1299 case PROCESSOR_L1OM:
1300 case PROCESSOR_K1OM:
1301 case PROCESSOR_GENERIC64:
1302 case PROCESSOR_K6:
1303 case PROCESSOR_ATHLON:
1304 case PROCESSOR_K8:
1305 case PROCESSOR_AMDFAM10:
1306 case PROCESSOR_BD:
1307 case PROCESSOR_ZNVER:
1308 case PROCESSOR_BT:
1309 patt = alt_patt;
1310 break;
1311 case PROCESSOR_I386:
1312 case PROCESSOR_I486:
1313 case PROCESSOR_PENTIUM:
1314 case PROCESSOR_PENTIUMPRO:
1315 case PROCESSOR_IAMCU:
1316 case PROCESSOR_GENERIC32:
1317 patt = f32_patt;
1318 break;
1319 }
1320 }
1321 else
1322 {
1323 switch (fragP->tc_frag_data.tune)
1324 {
1325 case PROCESSOR_UNKNOWN:
1326 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1327 PROCESSOR_UNKNOWN. */
1328 abort ();
1329 break;
1330
1331 case PROCESSOR_I386:
1332 case PROCESSOR_I486:
1333 case PROCESSOR_PENTIUM:
1334 case PROCESSOR_IAMCU:
1335 case PROCESSOR_K6:
1336 case PROCESSOR_ATHLON:
1337 case PROCESSOR_K8:
1338 case PROCESSOR_AMDFAM10:
1339 case PROCESSOR_BD:
1340 case PROCESSOR_ZNVER:
1341 case PROCESSOR_BT:
1342 case PROCESSOR_GENERIC32:
1343 /* We use cpu_arch_isa_flags to check if we CAN optimize
1344 with nops. */
1345 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1346 patt = alt_patt;
1347 else
1348 patt = f32_patt;
1349 break;
1350 case PROCESSOR_PENTIUMPRO:
1351 case PROCESSOR_PENTIUM4:
1352 case PROCESSOR_NOCONA:
1353 case PROCESSOR_CORE:
1354 case PROCESSOR_CORE2:
1355 case PROCESSOR_COREI7:
1356 case PROCESSOR_L1OM:
1357 case PROCESSOR_K1OM:
1358 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1359 patt = alt_patt;
1360 else
1361 patt = f32_patt;
1362 break;
1363 case PROCESSOR_GENERIC64:
1364 patt = alt_patt;
1365 break;
1366 }
1367 }
1368
1369 if (patt == f32_patt)
1370 {
1371 /* If the padding is less than 15 bytes, we use the normal
1372 ones. Otherwise, we use a jump instruction and adjust
1373 its offset. */
1374 int limit;
1375
1376 /* For 64bit, the limit is 3 bytes. */
1377 if (flag_code == CODE_64BIT
1378 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1379 limit = 3;
1380 else
1381 limit = 15;
1382 if (count < limit)
1383 memcpy (fragP->fr_literal + fragP->fr_fix,
1384 patt[count - 1], count);
1385 else
1386 {
1387 memcpy (fragP->fr_literal + fragP->fr_fix,
1388 jump_31, count);
1389 /* Adjust jump offset. */
1390 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1391 }
1392 }
1393 else
1394 {
1395 /* Maximum length of an instruction is 10 byte. If the
1396 padding is greater than 10 bytes and we don't use jump,
1397 we have to break it into smaller pieces. */
1398 int padding = count;
1399 while (padding > 10)
1400 {
1401 padding -= 10;
1402 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1403 patt [9], 10);
1404 }
1405
1406 if (padding)
1407 memcpy (fragP->fr_literal + fragP->fr_fix,
1408 patt [padding - 1], padding);
1409 }
1410 }
1411 fragP->fr_var = count;
1412 }
1413
1414 static INLINE int
1415 operand_type_all_zero (const union i386_operand_type *x)
1416 {
1417 switch (ARRAY_SIZE(x->array))
1418 {
1419 case 3:
1420 if (x->array[2])
1421 return 0;
1422 /* Fall through. */
1423 case 2:
1424 if (x->array[1])
1425 return 0;
1426 /* Fall through. */
1427 case 1:
1428 return !x->array[0];
1429 default:
1430 abort ();
1431 }
1432 }
1433
1434 static INLINE void
1435 operand_type_set (union i386_operand_type *x, unsigned int v)
1436 {
1437 switch (ARRAY_SIZE(x->array))
1438 {
1439 case 3:
1440 x->array[2] = v;
1441 /* Fall through. */
1442 case 2:
1443 x->array[1] = v;
1444 /* Fall through. */
1445 case 1:
1446 x->array[0] = v;
1447 /* Fall through. */
1448 break;
1449 default:
1450 abort ();
1451 }
1452 }
1453
1454 static INLINE int
1455 operand_type_equal (const union i386_operand_type *x,
1456 const union i386_operand_type *y)
1457 {
1458 switch (ARRAY_SIZE(x->array))
1459 {
1460 case 3:
1461 if (x->array[2] != y->array[2])
1462 return 0;
1463 /* Fall through. */
1464 case 2:
1465 if (x->array[1] != y->array[1])
1466 return 0;
1467 /* Fall through. */
1468 case 1:
1469 return x->array[0] == y->array[0];
1470 break;
1471 default:
1472 abort ();
1473 }
1474 }
1475
1476 static INLINE int
1477 cpu_flags_all_zero (const union i386_cpu_flags *x)
1478 {
1479 switch (ARRAY_SIZE(x->array))
1480 {
1481 case 4:
1482 if (x->array[3])
1483 return 0;
1484 /* Fall through. */
1485 case 3:
1486 if (x->array[2])
1487 return 0;
1488 /* Fall through. */
1489 case 2:
1490 if (x->array[1])
1491 return 0;
1492 /* Fall through. */
1493 case 1:
1494 return !x->array[0];
1495 default:
1496 abort ();
1497 }
1498 }
1499
1500 static INLINE int
1501 cpu_flags_equal (const union i386_cpu_flags *x,
1502 const union i386_cpu_flags *y)
1503 {
1504 switch (ARRAY_SIZE(x->array))
1505 {
1506 case 4:
1507 if (x->array[3] != y->array[3])
1508 return 0;
1509 /* Fall through. */
1510 case 3:
1511 if (x->array[2] != y->array[2])
1512 return 0;
1513 /* Fall through. */
1514 case 2:
1515 if (x->array[1] != y->array[1])
1516 return 0;
1517 /* Fall through. */
1518 case 1:
1519 return x->array[0] == y->array[0];
1520 break;
1521 default:
1522 abort ();
1523 }
1524 }
1525
1526 static INLINE int
1527 cpu_flags_check_cpu64 (i386_cpu_flags f)
1528 {
1529 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1530 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1531 }
1532
1533 static INLINE i386_cpu_flags
1534 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1535 {
1536 switch (ARRAY_SIZE (x.array))
1537 {
1538 case 4:
1539 x.array [3] &= y.array [3];
1540 /* Fall through. */
1541 case 3:
1542 x.array [2] &= y.array [2];
1543 /* Fall through. */
1544 case 2:
1545 x.array [1] &= y.array [1];
1546 /* Fall through. */
1547 case 1:
1548 x.array [0] &= y.array [0];
1549 break;
1550 default:
1551 abort ();
1552 }
1553 return x;
1554 }
1555
1556 static INLINE i386_cpu_flags
1557 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1558 {
1559 switch (ARRAY_SIZE (x.array))
1560 {
1561 case 4:
1562 x.array [3] |= y.array [3];
1563 /* Fall through. */
1564 case 3:
1565 x.array [2] |= y.array [2];
1566 /* Fall through. */
1567 case 2:
1568 x.array [1] |= y.array [1];
1569 /* Fall through. */
1570 case 1:
1571 x.array [0] |= y.array [0];
1572 break;
1573 default:
1574 abort ();
1575 }
1576 return x;
1577 }
1578
1579 static INLINE i386_cpu_flags
1580 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1581 {
1582 switch (ARRAY_SIZE (x.array))
1583 {
1584 case 4:
1585 x.array [3] &= ~y.array [3];
1586 /* Fall through. */
1587 case 3:
1588 x.array [2] &= ~y.array [2];
1589 /* Fall through. */
1590 case 2:
1591 x.array [1] &= ~y.array [1];
1592 /* Fall through. */
1593 case 1:
1594 x.array [0] &= ~y.array [0];
1595 break;
1596 default:
1597 abort ();
1598 }
1599 return x;
1600 }
1601
1602 #define CPU_FLAGS_ARCH_MATCH 0x1
1603 #define CPU_FLAGS_64BIT_MATCH 0x2
1604 #define CPU_FLAGS_AES_MATCH 0x4
1605 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1606 #define CPU_FLAGS_AVX_MATCH 0x10
1607
1608 #define CPU_FLAGS_32BIT_MATCH \
1609 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1610 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1611 #define CPU_FLAGS_PERFECT_MATCH \
1612 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1613
1614 /* Return CPU flags match bits. */
1615
1616 static int
1617 cpu_flags_match (const insn_template *t)
1618 {
1619 i386_cpu_flags x = t->cpu_flags;
1620 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1621
1622 x.bitfield.cpu64 = 0;
1623 x.bitfield.cpuno64 = 0;
1624
1625 if (cpu_flags_all_zero (&x))
1626 {
1627 /* This instruction is available on all archs. */
1628 match |= CPU_FLAGS_32BIT_MATCH;
1629 }
1630 else
1631 {
1632 /* This instruction is available only on some archs. */
1633 i386_cpu_flags cpu = cpu_arch_flags;
1634
1635 cpu = cpu_flags_and (x, cpu);
1636 if (!cpu_flags_all_zero (&cpu))
1637 {
1638 if (x.bitfield.cpuavx)
1639 {
1640 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1641 if (cpu.bitfield.cpuavx)
1642 {
1643 /* Check SSE2AVX. */
1644 if (!t->opcode_modifier.sse2avx|| sse2avx)
1645 {
1646 match |= (CPU_FLAGS_ARCH_MATCH
1647 | CPU_FLAGS_AVX_MATCH);
1648 /* Check AES. */
1649 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1650 match |= CPU_FLAGS_AES_MATCH;
1651 /* Check PCLMUL. */
1652 if (!x.bitfield.cpupclmul
1653 || cpu.bitfield.cpupclmul)
1654 match |= CPU_FLAGS_PCLMUL_MATCH;
1655 }
1656 }
1657 else
1658 match |= CPU_FLAGS_ARCH_MATCH;
1659 }
1660 else if (x.bitfield.cpuavx512vl)
1661 {
1662 /* Match AVX512VL. */
1663 if (cpu.bitfield.cpuavx512vl)
1664 {
1665 /* Need another match. */
1666 cpu.bitfield.cpuavx512vl = 0;
1667 if (!cpu_flags_all_zero (&cpu))
1668 match |= CPU_FLAGS_32BIT_MATCH;
1669 else
1670 match |= CPU_FLAGS_ARCH_MATCH;
1671 }
1672 else
1673 match |= CPU_FLAGS_ARCH_MATCH;
1674 }
1675 else
1676 match |= CPU_FLAGS_32BIT_MATCH;
1677 }
1678 }
1679 return match;
1680 }
1681
1682 static INLINE i386_operand_type
1683 operand_type_and (i386_operand_type x, i386_operand_type y)
1684 {
1685 switch (ARRAY_SIZE (x.array))
1686 {
1687 case 3:
1688 x.array [2] &= y.array [2];
1689 /* Fall through. */
1690 case 2:
1691 x.array [1] &= y.array [1];
1692 /* Fall through. */
1693 case 1:
1694 x.array [0] &= y.array [0];
1695 break;
1696 default:
1697 abort ();
1698 }
1699 return x;
1700 }
1701
1702 static INLINE i386_operand_type
1703 operand_type_or (i386_operand_type x, i386_operand_type y)
1704 {
1705 switch (ARRAY_SIZE (x.array))
1706 {
1707 case 3:
1708 x.array [2] |= y.array [2];
1709 /* Fall through. */
1710 case 2:
1711 x.array [1] |= y.array [1];
1712 /* Fall through. */
1713 case 1:
1714 x.array [0] |= y.array [0];
1715 break;
1716 default:
1717 abort ();
1718 }
1719 return x;
1720 }
1721
1722 static INLINE i386_operand_type
1723 operand_type_xor (i386_operand_type x, i386_operand_type y)
1724 {
1725 switch (ARRAY_SIZE (x.array))
1726 {
1727 case 3:
1728 x.array [2] ^= y.array [2];
1729 /* Fall through. */
1730 case 2:
1731 x.array [1] ^= y.array [1];
1732 /* Fall through. */
1733 case 1:
1734 x.array [0] ^= y.array [0];
1735 break;
1736 default:
1737 abort ();
1738 }
1739 return x;
1740 }
1741
1742 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1743 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1744 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1745 static const i386_operand_type inoutportreg
1746 = OPERAND_TYPE_INOUTPORTREG;
1747 static const i386_operand_type reg16_inoutportreg
1748 = OPERAND_TYPE_REG16_INOUTPORTREG;
1749 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1750 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1751 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1752 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1753 static const i386_operand_type anydisp
1754 = OPERAND_TYPE_ANYDISP;
1755 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1756 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1757 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1758 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1759 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1760 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1761 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1762 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1763 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1764 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1765 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1766 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1767
1768 enum operand_type
1769 {
1770 reg,
1771 imm,
1772 disp,
1773 anymem
1774 };
1775
1776 static INLINE int
1777 operand_type_check (i386_operand_type t, enum operand_type c)
1778 {
1779 switch (c)
1780 {
1781 case reg:
1782 return t.bitfield.reg;
1783
1784 case imm:
1785 return (t.bitfield.imm8
1786 || t.bitfield.imm8s
1787 || t.bitfield.imm16
1788 || t.bitfield.imm32
1789 || t.bitfield.imm32s
1790 || t.bitfield.imm64);
1791
1792 case disp:
1793 return (t.bitfield.disp8
1794 || t.bitfield.disp16
1795 || t.bitfield.disp32
1796 || t.bitfield.disp32s
1797 || t.bitfield.disp64);
1798
1799 case anymem:
1800 return (t.bitfield.disp8
1801 || t.bitfield.disp16
1802 || t.bitfield.disp32
1803 || t.bitfield.disp32s
1804 || t.bitfield.disp64
1805 || t.bitfield.baseindex);
1806
1807 default:
1808 abort ();
1809 }
1810
1811 return 0;
1812 }
1813
1814 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit on
1815 operand J for instruction template T. */
1816
1817 static INLINE int
1818 match_reg_size (const insn_template *t, unsigned int j)
1819 {
1820 return !((i.types[j].bitfield.byte
1821 && !t->operand_types[j].bitfield.byte)
1822 || (i.types[j].bitfield.word
1823 && !t->operand_types[j].bitfield.word)
1824 || (i.types[j].bitfield.dword
1825 && !t->operand_types[j].bitfield.dword)
1826 || (i.types[j].bitfield.qword
1827 && !t->operand_types[j].bitfield.qword)
1828 || (i.types[j].bitfield.tbyte
1829 && !t->operand_types[j].bitfield.tbyte));
1830 }
1831
1832 /* Return 1 if there is no conflict in SIMD register on
1833 operand J for instruction template T. */
1834
1835 static INLINE int
1836 match_simd_size (const insn_template *t, unsigned int j)
1837 {
1838 return !((i.types[j].bitfield.xmmword
1839 && !t->operand_types[j].bitfield.xmmword)
1840 || (i.types[j].bitfield.ymmword
1841 && !t->operand_types[j].bitfield.ymmword)
1842 || (i.types[j].bitfield.zmmword
1843 && !t->operand_types[j].bitfield.zmmword));
1844 }
1845
1846 /* Return 1 if there is no conflict in any size on operand J for
1847 instruction template T. */
1848
1849 static INLINE int
1850 match_mem_size (const insn_template *t, unsigned int j)
1851 {
1852 return (match_reg_size (t, j)
1853 && !((i.types[j].bitfield.unspecified
1854 && !i.broadcast
1855 && !t->operand_types[j].bitfield.unspecified)
1856 || (i.types[j].bitfield.fword
1857 && !t->operand_types[j].bitfield.fword)
1858 /* For scalar opcode templates to allow register and memory
1859 operands at the same time, some special casing is needed
1860 here. */
1861 || ((t->operand_types[j].bitfield.regsimd
1862 && !t->opcode_modifier.broadcast
1863 && (t->operand_types[j].bitfield.dword
1864 || t->operand_types[j].bitfield.qword))
1865 ? (i.types[j].bitfield.xmmword
1866 || i.types[j].bitfield.ymmword
1867 || i.types[j].bitfield.zmmword)
1868 : !match_simd_size(t, j))));
1869 }
1870
1871 /* Return 1 if there is no size conflict on any operands for
1872 instruction template T. */
1873
1874 static INLINE int
1875 operand_size_match (const insn_template *t)
1876 {
1877 unsigned int j;
1878 int match = 1;
1879
1880 /* Don't check jump instructions. */
1881 if (t->opcode_modifier.jump
1882 || t->opcode_modifier.jumpbyte
1883 || t->opcode_modifier.jumpdword
1884 || t->opcode_modifier.jumpintersegment)
1885 return match;
1886
1887 /* Check memory and accumulator operand size. */
1888 for (j = 0; j < i.operands; j++)
1889 {
1890 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1891 && t->operand_types[j].bitfield.anysize)
1892 continue;
1893
1894 if (t->operand_types[j].bitfield.reg
1895 && !match_reg_size (t, j))
1896 {
1897 match = 0;
1898 break;
1899 }
1900
1901 if (t->operand_types[j].bitfield.regsimd
1902 && !match_simd_size (t, j))
1903 {
1904 match = 0;
1905 break;
1906 }
1907
1908 if (t->operand_types[j].bitfield.acc
1909 && (!match_reg_size (t, j) || !match_simd_size (t, j)))
1910 {
1911 match = 0;
1912 break;
1913 }
1914
1915 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1916 {
1917 match = 0;
1918 break;
1919 }
1920 }
1921
1922 if (match)
1923 return match;
1924 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1925 {
1926 mismatch:
1927 i.error = operand_size_mismatch;
1928 return 0;
1929 }
1930
1931 /* Check reverse. */
1932 gas_assert (i.operands == 2);
1933
1934 match = 1;
1935 for (j = 0; j < 2; j++)
1936 {
1937 if ((t->operand_types[j].bitfield.reg
1938 || t->operand_types[j].bitfield.acc)
1939 && !match_reg_size (t, j ? 0 : 1))
1940 goto mismatch;
1941
1942 if (i.types[j].bitfield.mem
1943 && !match_mem_size (t, j ? 0 : 1))
1944 goto mismatch;
1945 }
1946
1947 return match;
1948 }
1949
1950 static INLINE int
1951 operand_type_match (i386_operand_type overlap,
1952 i386_operand_type given)
1953 {
1954 i386_operand_type temp = overlap;
1955
1956 temp.bitfield.jumpabsolute = 0;
1957 temp.bitfield.unspecified = 0;
1958 temp.bitfield.byte = 0;
1959 temp.bitfield.word = 0;
1960 temp.bitfield.dword = 0;
1961 temp.bitfield.fword = 0;
1962 temp.bitfield.qword = 0;
1963 temp.bitfield.tbyte = 0;
1964 temp.bitfield.xmmword = 0;
1965 temp.bitfield.ymmword = 0;
1966 temp.bitfield.zmmword = 0;
1967 if (operand_type_all_zero (&temp))
1968 goto mismatch;
1969
1970 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1971 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1972 return 1;
1973
1974 mismatch:
1975 i.error = operand_type_mismatch;
1976 return 0;
1977 }
1978
1979 /* If given types g0 and g1 are registers they must be of the same type
1980 unless the expected operand type register overlap is null.
1981 Memory operand size of certain SIMD instructions is also being checked
1982 here. */
1983
1984 static INLINE int
1985 operand_type_register_match (i386_operand_type g0,
1986 i386_operand_type t0,
1987 i386_operand_type g1,
1988 i386_operand_type t1)
1989 {
1990 if (!g0.bitfield.reg
1991 && !g0.bitfield.regsimd
1992 && (!operand_type_check (g0, anymem)
1993 || g0.bitfield.unspecified
1994 || !t0.bitfield.regsimd))
1995 return 1;
1996
1997 if (!g1.bitfield.reg
1998 && !g1.bitfield.regsimd
1999 && (!operand_type_check (g1, anymem)
2000 || g1.bitfield.unspecified
2001 || !t1.bitfield.regsimd))
2002 return 1;
2003
2004 if (g0.bitfield.byte == g1.bitfield.byte
2005 && g0.bitfield.word == g1.bitfield.word
2006 && g0.bitfield.dword == g1.bitfield.dword
2007 && g0.bitfield.qword == g1.bitfield.qword
2008 && g0.bitfield.xmmword == g1.bitfield.xmmword
2009 && g0.bitfield.ymmword == g1.bitfield.ymmword
2010 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2011 return 1;
2012
2013 if (!(t0.bitfield.byte & t1.bitfield.byte)
2014 && !(t0.bitfield.word & t1.bitfield.word)
2015 && !(t0.bitfield.dword & t1.bitfield.dword)
2016 && !(t0.bitfield.qword & t1.bitfield.qword)
2017 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2018 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2019 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2020 return 1;
2021
2022 i.error = register_type_mismatch;
2023
2024 return 0;
2025 }
2026
2027 static INLINE unsigned int
2028 register_number (const reg_entry *r)
2029 {
2030 unsigned int nr = r->reg_num;
2031
2032 if (r->reg_flags & RegRex)
2033 nr += 8;
2034
2035 if (r->reg_flags & RegVRex)
2036 nr += 16;
2037
2038 return nr;
2039 }
2040
2041 static INLINE unsigned int
2042 mode_from_disp_size (i386_operand_type t)
2043 {
2044 if (t.bitfield.disp8)
2045 return 1;
2046 else if (t.bitfield.disp16
2047 || t.bitfield.disp32
2048 || t.bitfield.disp32s)
2049 return 2;
2050 else
2051 return 0;
2052 }
2053
2054 static INLINE int
2055 fits_in_signed_byte (addressT num)
2056 {
2057 return num + 0x80 <= 0xff;
2058 }
2059
2060 static INLINE int
2061 fits_in_unsigned_byte (addressT num)
2062 {
2063 return num <= 0xff;
2064 }
2065
2066 static INLINE int
2067 fits_in_unsigned_word (addressT num)
2068 {
2069 return num <= 0xffff;
2070 }
2071
2072 static INLINE int
2073 fits_in_signed_word (addressT num)
2074 {
2075 return num + 0x8000 <= 0xffff;
2076 }
2077
2078 static INLINE int
2079 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2080 {
2081 #ifndef BFD64
2082 return 1;
2083 #else
2084 return num + 0x80000000 <= 0xffffffff;
2085 #endif
2086 } /* fits_in_signed_long() */
2087
2088 static INLINE int
2089 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2090 {
2091 #ifndef BFD64
2092 return 1;
2093 #else
2094 return num <= 0xffffffff;
2095 #endif
2096 } /* fits_in_unsigned_long() */
2097
2098 static INLINE int
2099 fits_in_disp8 (offsetT num)
2100 {
2101 int shift = i.memshift;
2102 unsigned int mask;
2103
2104 if (shift == -1)
2105 abort ();
2106
2107 mask = (1 << shift) - 1;
2108
2109 /* Return 0 if NUM isn't properly aligned. */
2110 if ((num & mask))
2111 return 0;
2112
2113 /* Check if NUM will fit in 8bit after shift. */
2114 return fits_in_signed_byte (num >> shift);
2115 }
2116
2117 static INLINE int
2118 fits_in_imm4 (offsetT num)
2119 {
2120 return (num & 0xf) == num;
2121 }
2122
2123 static i386_operand_type
2124 smallest_imm_type (offsetT num)
2125 {
2126 i386_operand_type t;
2127
2128 operand_type_set (&t, 0);
2129 t.bitfield.imm64 = 1;
2130
2131 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2132 {
2133 /* This code is disabled on the 486 because all the Imm1 forms
2134 in the opcode table are slower on the i486. They're the
2135 versions with the implicitly specified single-position
2136 displacement, which has another syntax if you really want to
2137 use that form. */
2138 t.bitfield.imm1 = 1;
2139 t.bitfield.imm8 = 1;
2140 t.bitfield.imm8s = 1;
2141 t.bitfield.imm16 = 1;
2142 t.bitfield.imm32 = 1;
2143 t.bitfield.imm32s = 1;
2144 }
2145 else if (fits_in_signed_byte (num))
2146 {
2147 t.bitfield.imm8 = 1;
2148 t.bitfield.imm8s = 1;
2149 t.bitfield.imm16 = 1;
2150 t.bitfield.imm32 = 1;
2151 t.bitfield.imm32s = 1;
2152 }
2153 else if (fits_in_unsigned_byte (num))
2154 {
2155 t.bitfield.imm8 = 1;
2156 t.bitfield.imm16 = 1;
2157 t.bitfield.imm32 = 1;
2158 t.bitfield.imm32s = 1;
2159 }
2160 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2161 {
2162 t.bitfield.imm16 = 1;
2163 t.bitfield.imm32 = 1;
2164 t.bitfield.imm32s = 1;
2165 }
2166 else if (fits_in_signed_long (num))
2167 {
2168 t.bitfield.imm32 = 1;
2169 t.bitfield.imm32s = 1;
2170 }
2171 else if (fits_in_unsigned_long (num))
2172 t.bitfield.imm32 = 1;
2173
2174 return t;
2175 }
2176
2177 static offsetT
2178 offset_in_range (offsetT val, int size)
2179 {
2180 addressT mask;
2181
2182 switch (size)
2183 {
2184 case 1: mask = ((addressT) 1 << 8) - 1; break;
2185 case 2: mask = ((addressT) 1 << 16) - 1; break;
2186 case 4: mask = ((addressT) 2 << 31) - 1; break;
2187 #ifdef BFD64
2188 case 8: mask = ((addressT) 2 << 63) - 1; break;
2189 #endif
2190 default: abort ();
2191 }
2192
2193 #ifdef BFD64
2194 /* If BFD64, sign extend val for 32bit address mode. */
2195 if (flag_code != CODE_64BIT
2196 || i.prefix[ADDR_PREFIX])
2197 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2198 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2199 #endif
2200
2201 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2202 {
2203 char buf1[40], buf2[40];
2204
2205 sprint_value (buf1, val);
2206 sprint_value (buf2, val & mask);
2207 as_warn (_("%s shortened to %s"), buf1, buf2);
2208 }
2209 return val & mask;
2210 }
2211
2212 enum PREFIX_GROUP
2213 {
2214 PREFIX_EXIST = 0,
2215 PREFIX_LOCK,
2216 PREFIX_REP,
2217 PREFIX_DS,
2218 PREFIX_OTHER
2219 };
2220
2221 /* Returns
2222 a. PREFIX_EXIST if attempting to add a prefix where one from the
2223 same class already exists.
2224 b. PREFIX_LOCK if lock prefix is added.
2225 c. PREFIX_REP if rep/repne prefix is added.
2226 d. PREFIX_DS if ds prefix is added.
2227 e. PREFIX_OTHER if other prefix is added.
2228 */
2229
2230 static enum PREFIX_GROUP
2231 add_prefix (unsigned int prefix)
2232 {
2233 enum PREFIX_GROUP ret = PREFIX_OTHER;
2234 unsigned int q;
2235
2236 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2237 && flag_code == CODE_64BIT)
2238 {
2239 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2240 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2241 && (prefix & (REX_R | REX_X | REX_B))))
2242 ret = PREFIX_EXIST;
2243 q = REX_PREFIX;
2244 }
2245 else
2246 {
2247 switch (prefix)
2248 {
2249 default:
2250 abort ();
2251
2252 case DS_PREFIX_OPCODE:
2253 ret = PREFIX_DS;
2254 /* Fall through. */
2255 case CS_PREFIX_OPCODE:
2256 case ES_PREFIX_OPCODE:
2257 case FS_PREFIX_OPCODE:
2258 case GS_PREFIX_OPCODE:
2259 case SS_PREFIX_OPCODE:
2260 q = SEG_PREFIX;
2261 break;
2262
2263 case REPNE_PREFIX_OPCODE:
2264 case REPE_PREFIX_OPCODE:
2265 q = REP_PREFIX;
2266 ret = PREFIX_REP;
2267 break;
2268
2269 case LOCK_PREFIX_OPCODE:
2270 q = LOCK_PREFIX;
2271 ret = PREFIX_LOCK;
2272 break;
2273
2274 case FWAIT_OPCODE:
2275 q = WAIT_PREFIX;
2276 break;
2277
2278 case ADDR_PREFIX_OPCODE:
2279 q = ADDR_PREFIX;
2280 break;
2281
2282 case DATA_PREFIX_OPCODE:
2283 q = DATA_PREFIX;
2284 break;
2285 }
2286 if (i.prefix[q] != 0)
2287 ret = PREFIX_EXIST;
2288 }
2289
2290 if (ret)
2291 {
2292 if (!i.prefix[q])
2293 ++i.prefixes;
2294 i.prefix[q] |= prefix;
2295 }
2296 else
2297 as_bad (_("same type of prefix used twice"));
2298
2299 return ret;
2300 }
2301
2302 static void
2303 update_code_flag (int value, int check)
2304 {
2305 PRINTF_LIKE ((*as_error));
2306
2307 flag_code = (enum flag_code) value;
2308 if (flag_code == CODE_64BIT)
2309 {
2310 cpu_arch_flags.bitfield.cpu64 = 1;
2311 cpu_arch_flags.bitfield.cpuno64 = 0;
2312 }
2313 else
2314 {
2315 cpu_arch_flags.bitfield.cpu64 = 0;
2316 cpu_arch_flags.bitfield.cpuno64 = 1;
2317 }
2318 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2319 {
2320 if (check)
2321 as_error = as_fatal;
2322 else
2323 as_error = as_bad;
2324 (*as_error) (_("64bit mode not supported on `%s'."),
2325 cpu_arch_name ? cpu_arch_name : default_arch);
2326 }
2327 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2328 {
2329 if (check)
2330 as_error = as_fatal;
2331 else
2332 as_error = as_bad;
2333 (*as_error) (_("32bit mode not supported on `%s'."),
2334 cpu_arch_name ? cpu_arch_name : default_arch);
2335 }
2336 stackop_size = '\0';
2337 }
2338
2339 static void
2340 set_code_flag (int value)
2341 {
2342 update_code_flag (value, 0);
2343 }
2344
2345 static void
2346 set_16bit_gcc_code_flag (int new_code_flag)
2347 {
2348 flag_code = (enum flag_code) new_code_flag;
2349 if (flag_code != CODE_16BIT)
2350 abort ();
2351 cpu_arch_flags.bitfield.cpu64 = 0;
2352 cpu_arch_flags.bitfield.cpuno64 = 1;
2353 stackop_size = LONG_MNEM_SUFFIX;
2354 }
2355
2356 static void
2357 set_intel_syntax (int syntax_flag)
2358 {
2359 /* Find out if register prefixing is specified. */
2360 int ask_naked_reg = 0;
2361
2362 SKIP_WHITESPACE ();
2363 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2364 {
2365 char *string;
2366 int e = get_symbol_name (&string);
2367
2368 if (strcmp (string, "prefix") == 0)
2369 ask_naked_reg = 1;
2370 else if (strcmp (string, "noprefix") == 0)
2371 ask_naked_reg = -1;
2372 else
2373 as_bad (_("bad argument to syntax directive."));
2374 (void) restore_line_pointer (e);
2375 }
2376 demand_empty_rest_of_line ();
2377
2378 intel_syntax = syntax_flag;
2379
2380 if (ask_naked_reg == 0)
2381 allow_naked_reg = (intel_syntax
2382 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2383 else
2384 allow_naked_reg = (ask_naked_reg < 0);
2385
2386 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2387
2388 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2389 identifier_chars['$'] = intel_syntax ? '$' : 0;
2390 register_prefix = allow_naked_reg ? "" : "%";
2391 }
2392
2393 static void
2394 set_intel_mnemonic (int mnemonic_flag)
2395 {
2396 intel_mnemonic = mnemonic_flag;
2397 }
2398
2399 static void
2400 set_allow_index_reg (int flag)
2401 {
2402 allow_index_reg = flag;
2403 }
2404
2405 static void
2406 set_check (int what)
2407 {
2408 enum check_kind *kind;
2409 const char *str;
2410
2411 if (what)
2412 {
2413 kind = &operand_check;
2414 str = "operand";
2415 }
2416 else
2417 {
2418 kind = &sse_check;
2419 str = "sse";
2420 }
2421
2422 SKIP_WHITESPACE ();
2423
2424 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2425 {
2426 char *string;
2427 int e = get_symbol_name (&string);
2428
2429 if (strcmp (string, "none") == 0)
2430 *kind = check_none;
2431 else if (strcmp (string, "warning") == 0)
2432 *kind = check_warning;
2433 else if (strcmp (string, "error") == 0)
2434 *kind = check_error;
2435 else
2436 as_bad (_("bad argument to %s_check directive."), str);
2437 (void) restore_line_pointer (e);
2438 }
2439 else
2440 as_bad (_("missing argument for %s_check directive"), str);
2441
2442 demand_empty_rest_of_line ();
2443 }
2444
2445 static void
2446 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2447 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2448 {
2449 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2450 static const char *arch;
2451
2452 /* Intel LIOM is only supported on ELF. */
2453 if (!IS_ELF)
2454 return;
2455
2456 if (!arch)
2457 {
2458 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2459 use default_arch. */
2460 arch = cpu_arch_name;
2461 if (!arch)
2462 arch = default_arch;
2463 }
2464
2465 /* If we are targeting Intel MCU, we must enable it. */
2466 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2467 || new_flag.bitfield.cpuiamcu)
2468 return;
2469
2470 /* If we are targeting Intel L1OM, we must enable it. */
2471 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2472 || new_flag.bitfield.cpul1om)
2473 return;
2474
2475 /* If we are targeting Intel K1OM, we must enable it. */
2476 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2477 || new_flag.bitfield.cpuk1om)
2478 return;
2479
2480 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2481 #endif
2482 }
2483
2484 static void
2485 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2486 {
2487 SKIP_WHITESPACE ();
2488
2489 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2490 {
2491 char *string;
2492 int e = get_symbol_name (&string);
2493 unsigned int j;
2494 i386_cpu_flags flags;
2495
2496 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2497 {
2498 if (strcmp (string, cpu_arch[j].name) == 0)
2499 {
2500 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2501
2502 if (*string != '.')
2503 {
2504 cpu_arch_name = cpu_arch[j].name;
2505 cpu_sub_arch_name = NULL;
2506 cpu_arch_flags = cpu_arch[j].flags;
2507 if (flag_code == CODE_64BIT)
2508 {
2509 cpu_arch_flags.bitfield.cpu64 = 1;
2510 cpu_arch_flags.bitfield.cpuno64 = 0;
2511 }
2512 else
2513 {
2514 cpu_arch_flags.bitfield.cpu64 = 0;
2515 cpu_arch_flags.bitfield.cpuno64 = 1;
2516 }
2517 cpu_arch_isa = cpu_arch[j].type;
2518 cpu_arch_isa_flags = cpu_arch[j].flags;
2519 if (!cpu_arch_tune_set)
2520 {
2521 cpu_arch_tune = cpu_arch_isa;
2522 cpu_arch_tune_flags = cpu_arch_isa_flags;
2523 }
2524 break;
2525 }
2526
2527 flags = cpu_flags_or (cpu_arch_flags,
2528 cpu_arch[j].flags);
2529
2530 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2531 {
2532 if (cpu_sub_arch_name)
2533 {
2534 char *name = cpu_sub_arch_name;
2535 cpu_sub_arch_name = concat (name,
2536 cpu_arch[j].name,
2537 (const char *) NULL);
2538 free (name);
2539 }
2540 else
2541 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2542 cpu_arch_flags = flags;
2543 cpu_arch_isa_flags = flags;
2544 }
2545 (void) restore_line_pointer (e);
2546 demand_empty_rest_of_line ();
2547 return;
2548 }
2549 }
2550
2551 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2552 {
2553 /* Disable an ISA extension. */
2554 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2555 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2556 {
2557 flags = cpu_flags_and_not (cpu_arch_flags,
2558 cpu_noarch[j].flags);
2559 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2560 {
2561 if (cpu_sub_arch_name)
2562 {
2563 char *name = cpu_sub_arch_name;
2564 cpu_sub_arch_name = concat (name, string,
2565 (const char *) NULL);
2566 free (name);
2567 }
2568 else
2569 cpu_sub_arch_name = xstrdup (string);
2570 cpu_arch_flags = flags;
2571 cpu_arch_isa_flags = flags;
2572 }
2573 (void) restore_line_pointer (e);
2574 demand_empty_rest_of_line ();
2575 return;
2576 }
2577
2578 j = ARRAY_SIZE (cpu_arch);
2579 }
2580
2581 if (j >= ARRAY_SIZE (cpu_arch))
2582 as_bad (_("no such architecture: `%s'"), string);
2583
2584 *input_line_pointer = e;
2585 }
2586 else
2587 as_bad (_("missing cpu architecture"));
2588
2589 no_cond_jump_promotion = 0;
2590 if (*input_line_pointer == ','
2591 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2592 {
2593 char *string;
2594 char e;
2595
2596 ++input_line_pointer;
2597 e = get_symbol_name (&string);
2598
2599 if (strcmp (string, "nojumps") == 0)
2600 no_cond_jump_promotion = 1;
2601 else if (strcmp (string, "jumps") == 0)
2602 ;
2603 else
2604 as_bad (_("no such architecture modifier: `%s'"), string);
2605
2606 (void) restore_line_pointer (e);
2607 }
2608
2609 demand_empty_rest_of_line ();
2610 }
2611
2612 enum bfd_architecture
2613 i386_arch (void)
2614 {
2615 if (cpu_arch_isa == PROCESSOR_L1OM)
2616 {
2617 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2618 || flag_code != CODE_64BIT)
2619 as_fatal (_("Intel L1OM is 64bit ELF only"));
2620 return bfd_arch_l1om;
2621 }
2622 else if (cpu_arch_isa == PROCESSOR_K1OM)
2623 {
2624 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2625 || flag_code != CODE_64BIT)
2626 as_fatal (_("Intel K1OM is 64bit ELF only"));
2627 return bfd_arch_k1om;
2628 }
2629 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2630 {
2631 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2632 || flag_code == CODE_64BIT)
2633 as_fatal (_("Intel MCU is 32bit ELF only"));
2634 return bfd_arch_iamcu;
2635 }
2636 else
2637 return bfd_arch_i386;
2638 }
2639
2640 unsigned long
2641 i386_mach (void)
2642 {
2643 if (!strncmp (default_arch, "x86_64", 6))
2644 {
2645 if (cpu_arch_isa == PROCESSOR_L1OM)
2646 {
2647 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2648 || default_arch[6] != '\0')
2649 as_fatal (_("Intel L1OM is 64bit ELF only"));
2650 return bfd_mach_l1om;
2651 }
2652 else if (cpu_arch_isa == PROCESSOR_K1OM)
2653 {
2654 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2655 || default_arch[6] != '\0')
2656 as_fatal (_("Intel K1OM is 64bit ELF only"));
2657 return bfd_mach_k1om;
2658 }
2659 else if (default_arch[6] == '\0')
2660 return bfd_mach_x86_64;
2661 else
2662 return bfd_mach_x64_32;
2663 }
2664 else if (!strcmp (default_arch, "i386")
2665 || !strcmp (default_arch, "iamcu"))
2666 {
2667 if (cpu_arch_isa == PROCESSOR_IAMCU)
2668 {
2669 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2670 as_fatal (_("Intel MCU is 32bit ELF only"));
2671 return bfd_mach_i386_iamcu;
2672 }
2673 else
2674 return bfd_mach_i386_i386;
2675 }
2676 else
2677 as_fatal (_("unknown architecture"));
2678 }
2679 \f
2680 void
2681 md_begin (void)
2682 {
2683 const char *hash_err;
2684
2685 /* Support pseudo prefixes like {disp32}. */
2686 lex_type ['{'] = LEX_BEGIN_NAME;
2687
2688 /* Initialize op_hash hash table. */
2689 op_hash = hash_new ();
2690
2691 {
2692 const insn_template *optab;
2693 templates *core_optab;
2694
2695 /* Setup for loop. */
2696 optab = i386_optab;
2697 core_optab = XNEW (templates);
2698 core_optab->start = optab;
2699
2700 while (1)
2701 {
2702 ++optab;
2703 if (optab->name == NULL
2704 || strcmp (optab->name, (optab - 1)->name) != 0)
2705 {
2706 /* different name --> ship out current template list;
2707 add to hash table; & begin anew. */
2708 core_optab->end = optab;
2709 hash_err = hash_insert (op_hash,
2710 (optab - 1)->name,
2711 (void *) core_optab);
2712 if (hash_err)
2713 {
2714 as_fatal (_("can't hash %s: %s"),
2715 (optab - 1)->name,
2716 hash_err);
2717 }
2718 if (optab->name == NULL)
2719 break;
2720 core_optab = XNEW (templates);
2721 core_optab->start = optab;
2722 }
2723 }
2724 }
2725
2726 /* Initialize reg_hash hash table. */
2727 reg_hash = hash_new ();
2728 {
2729 const reg_entry *regtab;
2730 unsigned int regtab_size = i386_regtab_size;
2731
2732 for (regtab = i386_regtab; regtab_size--; regtab++)
2733 {
2734 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2735 if (hash_err)
2736 as_fatal (_("can't hash %s: %s"),
2737 regtab->reg_name,
2738 hash_err);
2739 }
2740 }
2741
2742 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2743 {
2744 int c;
2745 char *p;
2746
2747 for (c = 0; c < 256; c++)
2748 {
2749 if (ISDIGIT (c))
2750 {
2751 digit_chars[c] = c;
2752 mnemonic_chars[c] = c;
2753 register_chars[c] = c;
2754 operand_chars[c] = c;
2755 }
2756 else if (ISLOWER (c))
2757 {
2758 mnemonic_chars[c] = c;
2759 register_chars[c] = c;
2760 operand_chars[c] = c;
2761 }
2762 else if (ISUPPER (c))
2763 {
2764 mnemonic_chars[c] = TOLOWER (c);
2765 register_chars[c] = mnemonic_chars[c];
2766 operand_chars[c] = c;
2767 }
2768 else if (c == '{' || c == '}')
2769 {
2770 mnemonic_chars[c] = c;
2771 operand_chars[c] = c;
2772 }
2773
2774 if (ISALPHA (c) || ISDIGIT (c))
2775 identifier_chars[c] = c;
2776 else if (c >= 128)
2777 {
2778 identifier_chars[c] = c;
2779 operand_chars[c] = c;
2780 }
2781 }
2782
2783 #ifdef LEX_AT
2784 identifier_chars['@'] = '@';
2785 #endif
2786 #ifdef LEX_QM
2787 identifier_chars['?'] = '?';
2788 operand_chars['?'] = '?';
2789 #endif
2790 digit_chars['-'] = '-';
2791 mnemonic_chars['_'] = '_';
2792 mnemonic_chars['-'] = '-';
2793 mnemonic_chars['.'] = '.';
2794 identifier_chars['_'] = '_';
2795 identifier_chars['.'] = '.';
2796
2797 for (p = operand_special_chars; *p != '\0'; p++)
2798 operand_chars[(unsigned char) *p] = *p;
2799 }
2800
2801 if (flag_code == CODE_64BIT)
2802 {
2803 #if defined (OBJ_COFF) && defined (TE_PE)
2804 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2805 ? 32 : 16);
2806 #else
2807 x86_dwarf2_return_column = 16;
2808 #endif
2809 x86_cie_data_alignment = -8;
2810 }
2811 else
2812 {
2813 x86_dwarf2_return_column = 8;
2814 x86_cie_data_alignment = -4;
2815 }
2816 }
2817
2818 void
2819 i386_print_statistics (FILE *file)
2820 {
2821 hash_print_statistics (file, "i386 opcode", op_hash);
2822 hash_print_statistics (file, "i386 register", reg_hash);
2823 }
2824 \f
2825 #ifdef DEBUG386
2826
2827 /* Debugging routines for md_assemble. */
2828 static void pte (insn_template *);
2829 static void pt (i386_operand_type);
2830 static void pe (expressionS *);
2831 static void ps (symbolS *);
2832
2833 static void
2834 pi (char *line, i386_insn *x)
2835 {
2836 unsigned int j;
2837
2838 fprintf (stdout, "%s: template ", line);
2839 pte (&x->tm);
2840 fprintf (stdout, " address: base %s index %s scale %x\n",
2841 x->base_reg ? x->base_reg->reg_name : "none",
2842 x->index_reg ? x->index_reg->reg_name : "none",
2843 x->log2_scale_factor);
2844 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2845 x->rm.mode, x->rm.reg, x->rm.regmem);
2846 fprintf (stdout, " sib: base %x index %x scale %x\n",
2847 x->sib.base, x->sib.index, x->sib.scale);
2848 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2849 (x->rex & REX_W) != 0,
2850 (x->rex & REX_R) != 0,
2851 (x->rex & REX_X) != 0,
2852 (x->rex & REX_B) != 0);
2853 for (j = 0; j < x->operands; j++)
2854 {
2855 fprintf (stdout, " #%d: ", j + 1);
2856 pt (x->types[j]);
2857 fprintf (stdout, "\n");
2858 if (x->types[j].bitfield.reg
2859 || x->types[j].bitfield.regmmx
2860 || x->types[j].bitfield.regsimd
2861 || x->types[j].bitfield.sreg2
2862 || x->types[j].bitfield.sreg3
2863 || x->types[j].bitfield.control
2864 || x->types[j].bitfield.debug
2865 || x->types[j].bitfield.test)
2866 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2867 if (operand_type_check (x->types[j], imm))
2868 pe (x->op[j].imms);
2869 if (operand_type_check (x->types[j], disp))
2870 pe (x->op[j].disps);
2871 }
2872 }
2873
2874 static void
2875 pte (insn_template *t)
2876 {
2877 unsigned int j;
2878 fprintf (stdout, " %d operands ", t->operands);
2879 fprintf (stdout, "opcode %x ", t->base_opcode);
2880 if (t->extension_opcode != None)
2881 fprintf (stdout, "ext %x ", t->extension_opcode);
2882 if (t->opcode_modifier.d)
2883 fprintf (stdout, "D");
2884 if (t->opcode_modifier.w)
2885 fprintf (stdout, "W");
2886 fprintf (stdout, "\n");
2887 for (j = 0; j < t->operands; j++)
2888 {
2889 fprintf (stdout, " #%d type ", j + 1);
2890 pt (t->operand_types[j]);
2891 fprintf (stdout, "\n");
2892 }
2893 }
2894
2895 static void
2896 pe (expressionS *e)
2897 {
2898 fprintf (stdout, " operation %d\n", e->X_op);
2899 fprintf (stdout, " add_number %ld (%lx)\n",
2900 (long) e->X_add_number, (long) e->X_add_number);
2901 if (e->X_add_symbol)
2902 {
2903 fprintf (stdout, " add_symbol ");
2904 ps (e->X_add_symbol);
2905 fprintf (stdout, "\n");
2906 }
2907 if (e->X_op_symbol)
2908 {
2909 fprintf (stdout, " op_symbol ");
2910 ps (e->X_op_symbol);
2911 fprintf (stdout, "\n");
2912 }
2913 }
2914
2915 static void
2916 ps (symbolS *s)
2917 {
2918 fprintf (stdout, "%s type %s%s",
2919 S_GET_NAME (s),
2920 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2921 segment_name (S_GET_SEGMENT (s)));
2922 }
2923
2924 static struct type_name
2925 {
2926 i386_operand_type mask;
2927 const char *name;
2928 }
2929 const type_names[] =
2930 {
2931 { OPERAND_TYPE_REG8, "r8" },
2932 { OPERAND_TYPE_REG16, "r16" },
2933 { OPERAND_TYPE_REG32, "r32" },
2934 { OPERAND_TYPE_REG64, "r64" },
2935 { OPERAND_TYPE_IMM8, "i8" },
2936 { OPERAND_TYPE_IMM8, "i8s" },
2937 { OPERAND_TYPE_IMM16, "i16" },
2938 { OPERAND_TYPE_IMM32, "i32" },
2939 { OPERAND_TYPE_IMM32S, "i32s" },
2940 { OPERAND_TYPE_IMM64, "i64" },
2941 { OPERAND_TYPE_IMM1, "i1" },
2942 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2943 { OPERAND_TYPE_DISP8, "d8" },
2944 { OPERAND_TYPE_DISP16, "d16" },
2945 { OPERAND_TYPE_DISP32, "d32" },
2946 { OPERAND_TYPE_DISP32S, "d32s" },
2947 { OPERAND_TYPE_DISP64, "d64" },
2948 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2949 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2950 { OPERAND_TYPE_CONTROL, "control reg" },
2951 { OPERAND_TYPE_TEST, "test reg" },
2952 { OPERAND_TYPE_DEBUG, "debug reg" },
2953 { OPERAND_TYPE_FLOATREG, "FReg" },
2954 { OPERAND_TYPE_FLOATACC, "FAcc" },
2955 { OPERAND_TYPE_SREG2, "SReg2" },
2956 { OPERAND_TYPE_SREG3, "SReg3" },
2957 { OPERAND_TYPE_ACC, "Acc" },
2958 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2959 { OPERAND_TYPE_REGMMX, "rMMX" },
2960 { OPERAND_TYPE_REGXMM, "rXMM" },
2961 { OPERAND_TYPE_REGYMM, "rYMM" },
2962 { OPERAND_TYPE_REGZMM, "rZMM" },
2963 { OPERAND_TYPE_REGMASK, "Mask reg" },
2964 { OPERAND_TYPE_ESSEG, "es" },
2965 };
2966
2967 static void
2968 pt (i386_operand_type t)
2969 {
2970 unsigned int j;
2971 i386_operand_type a;
2972
2973 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2974 {
2975 a = operand_type_and (t, type_names[j].mask);
2976 if (!operand_type_all_zero (&a))
2977 fprintf (stdout, "%s, ", type_names[j].name);
2978 }
2979 fflush (stdout);
2980 }
2981
2982 #endif /* DEBUG386 */
2983 \f
2984 static bfd_reloc_code_real_type
2985 reloc (unsigned int size,
2986 int pcrel,
2987 int sign,
2988 bfd_reloc_code_real_type other)
2989 {
2990 if (other != NO_RELOC)
2991 {
2992 reloc_howto_type *rel;
2993
2994 if (size == 8)
2995 switch (other)
2996 {
2997 case BFD_RELOC_X86_64_GOT32:
2998 return BFD_RELOC_X86_64_GOT64;
2999 break;
3000 case BFD_RELOC_X86_64_GOTPLT64:
3001 return BFD_RELOC_X86_64_GOTPLT64;
3002 break;
3003 case BFD_RELOC_X86_64_PLTOFF64:
3004 return BFD_RELOC_X86_64_PLTOFF64;
3005 break;
3006 case BFD_RELOC_X86_64_GOTPC32:
3007 other = BFD_RELOC_X86_64_GOTPC64;
3008 break;
3009 case BFD_RELOC_X86_64_GOTPCREL:
3010 other = BFD_RELOC_X86_64_GOTPCREL64;
3011 break;
3012 case BFD_RELOC_X86_64_TPOFF32:
3013 other = BFD_RELOC_X86_64_TPOFF64;
3014 break;
3015 case BFD_RELOC_X86_64_DTPOFF32:
3016 other = BFD_RELOC_X86_64_DTPOFF64;
3017 break;
3018 default:
3019 break;
3020 }
3021
3022 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3023 if (other == BFD_RELOC_SIZE32)
3024 {
3025 if (size == 8)
3026 other = BFD_RELOC_SIZE64;
3027 if (pcrel)
3028 {
3029 as_bad (_("there are no pc-relative size relocations"));
3030 return NO_RELOC;
3031 }
3032 }
3033 #endif
3034
3035 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3036 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3037 sign = -1;
3038
3039 rel = bfd_reloc_type_lookup (stdoutput, other);
3040 if (!rel)
3041 as_bad (_("unknown relocation (%u)"), other);
3042 else if (size != bfd_get_reloc_size (rel))
3043 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3044 bfd_get_reloc_size (rel),
3045 size);
3046 else if (pcrel && !rel->pc_relative)
3047 as_bad (_("non-pc-relative relocation for pc-relative field"));
3048 else if ((rel->complain_on_overflow == complain_overflow_signed
3049 && !sign)
3050 || (rel->complain_on_overflow == complain_overflow_unsigned
3051 && sign > 0))
3052 as_bad (_("relocated field and relocation type differ in signedness"));
3053 else
3054 return other;
3055 return NO_RELOC;
3056 }
3057
3058 if (pcrel)
3059 {
3060 if (!sign)
3061 as_bad (_("there are no unsigned pc-relative relocations"));
3062 switch (size)
3063 {
3064 case 1: return BFD_RELOC_8_PCREL;
3065 case 2: return BFD_RELOC_16_PCREL;
3066 case 4: return BFD_RELOC_32_PCREL;
3067 case 8: return BFD_RELOC_64_PCREL;
3068 }
3069 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3070 }
3071 else
3072 {
3073 if (sign > 0)
3074 switch (size)
3075 {
3076 case 4: return BFD_RELOC_X86_64_32S;
3077 }
3078 else
3079 switch (size)
3080 {
3081 case 1: return BFD_RELOC_8;
3082 case 2: return BFD_RELOC_16;
3083 case 4: return BFD_RELOC_32;
3084 case 8: return BFD_RELOC_64;
3085 }
3086 as_bad (_("cannot do %s %u byte relocation"),
3087 sign > 0 ? "signed" : "unsigned", size);
3088 }
3089
3090 return NO_RELOC;
3091 }
3092
3093 /* Here we decide which fixups can be adjusted to make them relative to
3094 the beginning of the section instead of the symbol. Basically we need
3095 to make sure that the dynamic relocations are done correctly, so in
3096 some cases we force the original symbol to be used. */
3097
3098 int
3099 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3100 {
3101 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3102 if (!IS_ELF)
3103 return 1;
3104
3105 /* Don't adjust pc-relative references to merge sections in 64-bit
3106 mode. */
3107 if (use_rela_relocations
3108 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3109 && fixP->fx_pcrel)
3110 return 0;
3111
3112 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3113 and changed later by validate_fix. */
3114 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3115 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3116 return 0;
3117
3118 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3119 for size relocations. */
3120 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3121 || fixP->fx_r_type == BFD_RELOC_SIZE64
3122 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3123 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3124 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3125 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3126 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3127 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3128 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3129 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3130 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3131 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3132 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3133 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3134 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3135 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3136 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3137 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3138 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3139 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3140 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3141 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3142 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3143 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3144 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3145 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3146 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3147 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3148 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3149 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3150 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3151 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3152 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3153 return 0;
3154 #endif
3155 return 1;
3156 }
3157
3158 static int
3159 intel_float_operand (const char *mnemonic)
3160 {
3161 /* Note that the value returned is meaningful only for opcodes with (memory)
3162 operands, hence the code here is free to improperly handle opcodes that
3163 have no operands (for better performance and smaller code). */
3164
3165 if (mnemonic[0] != 'f')
3166 return 0; /* non-math */
3167
3168 switch (mnemonic[1])
3169 {
3170 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3171 the fs segment override prefix not currently handled because no
3172 call path can make opcodes without operands get here */
3173 case 'i':
3174 return 2 /* integer op */;
3175 case 'l':
3176 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3177 return 3; /* fldcw/fldenv */
3178 break;
3179 case 'n':
3180 if (mnemonic[2] != 'o' /* fnop */)
3181 return 3; /* non-waiting control op */
3182 break;
3183 case 'r':
3184 if (mnemonic[2] == 's')
3185 return 3; /* frstor/frstpm */
3186 break;
3187 case 's':
3188 if (mnemonic[2] == 'a')
3189 return 3; /* fsave */
3190 if (mnemonic[2] == 't')
3191 {
3192 switch (mnemonic[3])
3193 {
3194 case 'c': /* fstcw */
3195 case 'd': /* fstdw */
3196 case 'e': /* fstenv */
3197 case 's': /* fsts[gw] */
3198 return 3;
3199 }
3200 }
3201 break;
3202 case 'x':
3203 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3204 return 0; /* fxsave/fxrstor are not really math ops */
3205 break;
3206 }
3207
3208 return 1;
3209 }
3210
3211 /* Build the VEX prefix. */
3212
3213 static void
3214 build_vex_prefix (const insn_template *t)
3215 {
3216 unsigned int register_specifier;
3217 unsigned int implied_prefix;
3218 unsigned int vector_length;
3219
3220 /* Check register specifier. */
3221 if (i.vex.register_specifier)
3222 {
3223 register_specifier =
3224 ~register_number (i.vex.register_specifier) & 0xf;
3225 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3226 }
3227 else
3228 register_specifier = 0xf;
3229
3230 /* Use 2-byte VEX prefix by swapping destination and source
3231 operand. */
3232 if (i.vec_encoding != vex_encoding_vex3
3233 && i.dir_encoding == dir_encoding_default
3234 && i.operands == i.reg_operands
3235 && i.tm.opcode_modifier.vexopcode == VEX0F
3236 && i.tm.opcode_modifier.load
3237 && i.rex == REX_B)
3238 {
3239 unsigned int xchg = i.operands - 1;
3240 union i386_op temp_op;
3241 i386_operand_type temp_type;
3242
3243 temp_type = i.types[xchg];
3244 i.types[xchg] = i.types[0];
3245 i.types[0] = temp_type;
3246 temp_op = i.op[xchg];
3247 i.op[xchg] = i.op[0];
3248 i.op[0] = temp_op;
3249
3250 gas_assert (i.rm.mode == 3);
3251
3252 i.rex = REX_R;
3253 xchg = i.rm.regmem;
3254 i.rm.regmem = i.rm.reg;
3255 i.rm.reg = xchg;
3256
3257 /* Use the next insn. */
3258 i.tm = t[1];
3259 }
3260
3261 if (i.tm.opcode_modifier.vex == VEXScalar)
3262 vector_length = avxscalar;
3263 else if (i.tm.opcode_modifier.vex == VEX256)
3264 vector_length = 1;
3265 else
3266 {
3267 unsigned int op;
3268
3269 vector_length = 0;
3270 for (op = 0; op < t->operands; ++op)
3271 if (t->operand_types[op].bitfield.xmmword
3272 && t->operand_types[op].bitfield.ymmword
3273 && i.types[op].bitfield.ymmword)
3274 {
3275 vector_length = 1;
3276 break;
3277 }
3278 }
3279
3280 switch ((i.tm.base_opcode >> 8) & 0xff)
3281 {
3282 case 0:
3283 implied_prefix = 0;
3284 break;
3285 case DATA_PREFIX_OPCODE:
3286 implied_prefix = 1;
3287 break;
3288 case REPE_PREFIX_OPCODE:
3289 implied_prefix = 2;
3290 break;
3291 case REPNE_PREFIX_OPCODE:
3292 implied_prefix = 3;
3293 break;
3294 default:
3295 abort ();
3296 }
3297
3298 /* Use 2-byte VEX prefix if possible. */
3299 if (i.vec_encoding != vex_encoding_vex3
3300 && i.tm.opcode_modifier.vexopcode == VEX0F
3301 && i.tm.opcode_modifier.vexw != VEXW1
3302 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3303 {
3304 /* 2-byte VEX prefix. */
3305 unsigned int r;
3306
3307 i.vex.length = 2;
3308 i.vex.bytes[0] = 0xc5;
3309
3310 /* Check the REX.R bit. */
3311 r = (i.rex & REX_R) ? 0 : 1;
3312 i.vex.bytes[1] = (r << 7
3313 | register_specifier << 3
3314 | vector_length << 2
3315 | implied_prefix);
3316 }
3317 else
3318 {
3319 /* 3-byte VEX prefix. */
3320 unsigned int m, w;
3321
3322 i.vex.length = 3;
3323
3324 switch (i.tm.opcode_modifier.vexopcode)
3325 {
3326 case VEX0F:
3327 m = 0x1;
3328 i.vex.bytes[0] = 0xc4;
3329 break;
3330 case VEX0F38:
3331 m = 0x2;
3332 i.vex.bytes[0] = 0xc4;
3333 break;
3334 case VEX0F3A:
3335 m = 0x3;
3336 i.vex.bytes[0] = 0xc4;
3337 break;
3338 case XOP08:
3339 m = 0x8;
3340 i.vex.bytes[0] = 0x8f;
3341 break;
3342 case XOP09:
3343 m = 0x9;
3344 i.vex.bytes[0] = 0x8f;
3345 break;
3346 case XOP0A:
3347 m = 0xa;
3348 i.vex.bytes[0] = 0x8f;
3349 break;
3350 default:
3351 abort ();
3352 }
3353
3354 /* The high 3 bits of the second VEX byte are 1's compliment
3355 of RXB bits from REX. */
3356 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3357
3358 /* Check the REX.W bit. */
3359 w = (i.rex & REX_W) ? 1 : 0;
3360 if (i.tm.opcode_modifier.vexw == VEXW1)
3361 w = 1;
3362
3363 i.vex.bytes[2] = (w << 7
3364 | register_specifier << 3
3365 | vector_length << 2
3366 | implied_prefix);
3367 }
3368 }
3369
3370 /* Build the EVEX prefix. */
3371
3372 static void
3373 build_evex_prefix (void)
3374 {
3375 unsigned int register_specifier;
3376 unsigned int implied_prefix;
3377 unsigned int m, w;
3378 rex_byte vrex_used = 0;
3379
3380 /* Check register specifier. */
3381 if (i.vex.register_specifier)
3382 {
3383 gas_assert ((i.vrex & REX_X) == 0);
3384
3385 register_specifier = i.vex.register_specifier->reg_num;
3386 if ((i.vex.register_specifier->reg_flags & RegRex))
3387 register_specifier += 8;
3388 /* The upper 16 registers are encoded in the fourth byte of the
3389 EVEX prefix. */
3390 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3391 i.vex.bytes[3] = 0x8;
3392 register_specifier = ~register_specifier & 0xf;
3393 }
3394 else
3395 {
3396 register_specifier = 0xf;
3397
3398 /* Encode upper 16 vector index register in the fourth byte of
3399 the EVEX prefix. */
3400 if (!(i.vrex & REX_X))
3401 i.vex.bytes[3] = 0x8;
3402 else
3403 vrex_used |= REX_X;
3404 }
3405
3406 switch ((i.tm.base_opcode >> 8) & 0xff)
3407 {
3408 case 0:
3409 implied_prefix = 0;
3410 break;
3411 case DATA_PREFIX_OPCODE:
3412 implied_prefix = 1;
3413 break;
3414 case REPE_PREFIX_OPCODE:
3415 implied_prefix = 2;
3416 break;
3417 case REPNE_PREFIX_OPCODE:
3418 implied_prefix = 3;
3419 break;
3420 default:
3421 abort ();
3422 }
3423
3424 /* 4 byte EVEX prefix. */
3425 i.vex.length = 4;
3426 i.vex.bytes[0] = 0x62;
3427
3428 /* mmmm bits. */
3429 switch (i.tm.opcode_modifier.vexopcode)
3430 {
3431 case VEX0F:
3432 m = 1;
3433 break;
3434 case VEX0F38:
3435 m = 2;
3436 break;
3437 case VEX0F3A:
3438 m = 3;
3439 break;
3440 default:
3441 abort ();
3442 break;
3443 }
3444
3445 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3446 bits from REX. */
3447 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3448
3449 /* The fifth bit of the second EVEX byte is 1's compliment of the
3450 REX_R bit in VREX. */
3451 if (!(i.vrex & REX_R))
3452 i.vex.bytes[1] |= 0x10;
3453 else
3454 vrex_used |= REX_R;
3455
3456 if ((i.reg_operands + i.imm_operands) == i.operands)
3457 {
3458 /* When all operands are registers, the REX_X bit in REX is not
3459 used. We reuse it to encode the upper 16 registers, which is
3460 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3461 as 1's compliment. */
3462 if ((i.vrex & REX_B))
3463 {
3464 vrex_used |= REX_B;
3465 i.vex.bytes[1] &= ~0x40;
3466 }
3467 }
3468
3469 /* EVEX instructions shouldn't need the REX prefix. */
3470 i.vrex &= ~vrex_used;
3471 gas_assert (i.vrex == 0);
3472
3473 /* Check the REX.W bit. */
3474 w = (i.rex & REX_W) ? 1 : 0;
3475 if (i.tm.opcode_modifier.vexw)
3476 {
3477 if (i.tm.opcode_modifier.vexw == VEXW1)
3478 w = 1;
3479 }
3480 /* If w is not set it means we are dealing with WIG instruction. */
3481 else if (!w)
3482 {
3483 if (evexwig == evexw1)
3484 w = 1;
3485 }
3486
3487 /* Encode the U bit. */
3488 implied_prefix |= 0x4;
3489
3490 /* The third byte of the EVEX prefix. */
3491 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3492
3493 /* The fourth byte of the EVEX prefix. */
3494 /* The zeroing-masking bit. */
3495 if (i.mask && i.mask->zeroing)
3496 i.vex.bytes[3] |= 0x80;
3497
3498 /* Don't always set the broadcast bit if there is no RC. */
3499 if (!i.rounding)
3500 {
3501 /* Encode the vector length. */
3502 unsigned int vec_length;
3503
3504 switch (i.tm.opcode_modifier.evex)
3505 {
3506 case EVEXLIG: /* LL' is ignored */
3507 vec_length = evexlig << 5;
3508 break;
3509 case EVEX128:
3510 vec_length = 0 << 5;
3511 break;
3512 case EVEX256:
3513 vec_length = 1 << 5;
3514 break;
3515 case EVEX512:
3516 vec_length = 2 << 5;
3517 break;
3518 default:
3519 abort ();
3520 break;
3521 }
3522 i.vex.bytes[3] |= vec_length;
3523 /* Encode the broadcast bit. */
3524 if (i.broadcast)
3525 i.vex.bytes[3] |= 0x10;
3526 }
3527 else
3528 {
3529 if (i.rounding->type != saeonly)
3530 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3531 else
3532 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3533 }
3534
3535 if (i.mask && i.mask->mask)
3536 i.vex.bytes[3] |= i.mask->mask->reg_num;
3537 }
3538
3539 static void
3540 process_immext (void)
3541 {
3542 expressionS *exp;
3543
3544 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3545 && i.operands > 0)
3546 {
3547 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3548 with an opcode suffix which is coded in the same place as an
3549 8-bit immediate field would be.
3550 Here we check those operands and remove them afterwards. */
3551 unsigned int x;
3552
3553 for (x = 0; x < i.operands; x++)
3554 if (register_number (i.op[x].regs) != x)
3555 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3556 register_prefix, i.op[x].regs->reg_name, x + 1,
3557 i.tm.name);
3558
3559 i.operands = 0;
3560 }
3561
3562 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3563 {
3564 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3565 suffix which is coded in the same place as an 8-bit immediate
3566 field would be.
3567 Here we check those operands and remove them afterwards. */
3568 unsigned int x;
3569
3570 if (i.operands != 3)
3571 abort();
3572
3573 for (x = 0; x < 2; x++)
3574 if (register_number (i.op[x].regs) != x)
3575 goto bad_register_operand;
3576
3577 /* Check for third operand for mwaitx/monitorx insn. */
3578 if (register_number (i.op[x].regs)
3579 != (x + (i.tm.extension_opcode == 0xfb)))
3580 {
3581 bad_register_operand:
3582 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3583 register_prefix, i.op[x].regs->reg_name, x+1,
3584 i.tm.name);
3585 }
3586
3587 i.operands = 0;
3588 }
3589
3590 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3591 which is coded in the same place as an 8-bit immediate field
3592 would be. Here we fake an 8-bit immediate operand from the
3593 opcode suffix stored in tm.extension_opcode.
3594
3595 AVX instructions also use this encoding, for some of
3596 3 argument instructions. */
3597
3598 gas_assert (i.imm_operands <= 1
3599 && (i.operands <= 2
3600 || ((i.tm.opcode_modifier.vex
3601 || i.tm.opcode_modifier.evex)
3602 && i.operands <= 4)));
3603
3604 exp = &im_expressions[i.imm_operands++];
3605 i.op[i.operands].imms = exp;
3606 i.types[i.operands] = imm8;
3607 i.operands++;
3608 exp->X_op = O_constant;
3609 exp->X_add_number = i.tm.extension_opcode;
3610 i.tm.extension_opcode = None;
3611 }
3612
3613
3614 static int
3615 check_hle (void)
3616 {
3617 switch (i.tm.opcode_modifier.hleprefixok)
3618 {
3619 default:
3620 abort ();
3621 case HLEPrefixNone:
3622 as_bad (_("invalid instruction `%s' after `%s'"),
3623 i.tm.name, i.hle_prefix);
3624 return 0;
3625 case HLEPrefixLock:
3626 if (i.prefix[LOCK_PREFIX])
3627 return 1;
3628 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3629 return 0;
3630 case HLEPrefixAny:
3631 return 1;
3632 case HLEPrefixRelease:
3633 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3634 {
3635 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3636 i.tm.name);
3637 return 0;
3638 }
3639 if (i.mem_operands == 0
3640 || !operand_type_check (i.types[i.operands - 1], anymem))
3641 {
3642 as_bad (_("memory destination needed for instruction `%s'"
3643 " after `xrelease'"), i.tm.name);
3644 return 0;
3645 }
3646 return 1;
3647 }
3648 }
3649
3650 /* This is the guts of the machine-dependent assembler. LINE points to a
3651 machine dependent instruction. This function is supposed to emit
3652 the frags/bytes it assembles to. */
3653
3654 void
3655 md_assemble (char *line)
3656 {
3657 unsigned int j;
3658 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
3659 const insn_template *t;
3660
3661 /* Initialize globals. */
3662 memset (&i, '\0', sizeof (i));
3663 for (j = 0; j < MAX_OPERANDS; j++)
3664 i.reloc[j] = NO_RELOC;
3665 memset (disp_expressions, '\0', sizeof (disp_expressions));
3666 memset (im_expressions, '\0', sizeof (im_expressions));
3667 save_stack_p = save_stack;
3668
3669 /* First parse an instruction mnemonic & call i386_operand for the operands.
3670 We assume that the scrubber has arranged it so that line[0] is the valid
3671 start of a (possibly prefixed) mnemonic. */
3672
3673 line = parse_insn (line, mnemonic);
3674 if (line == NULL)
3675 return;
3676 mnem_suffix = i.suffix;
3677
3678 line = parse_operands (line, mnemonic);
3679 this_operand = -1;
3680 xfree (i.memop1_string);
3681 i.memop1_string = NULL;
3682 if (line == NULL)
3683 return;
3684
3685 /* Now we've parsed the mnemonic into a set of templates, and have the
3686 operands at hand. */
3687
3688 /* All intel opcodes have reversed operands except for "bound" and
3689 "enter". We also don't reverse intersegment "jmp" and "call"
3690 instructions with 2 immediate operands so that the immediate segment
3691 precedes the offset, as it does when in AT&T mode. */
3692 if (intel_syntax
3693 && i.operands > 1
3694 && (strcmp (mnemonic, "bound") != 0)
3695 && (strcmp (mnemonic, "invlpga") != 0)
3696 && !(operand_type_check (i.types[0], imm)
3697 && operand_type_check (i.types[1], imm)))
3698 swap_operands ();
3699
3700 /* The order of the immediates should be reversed
3701 for 2 immediates extrq and insertq instructions */
3702 if (i.imm_operands == 2
3703 && (strcmp (mnemonic, "extrq") == 0
3704 || strcmp (mnemonic, "insertq") == 0))
3705 swap_2_operands (0, 1);
3706
3707 if (i.imm_operands)
3708 optimize_imm ();
3709
3710 /* Don't optimize displacement for movabs since it only takes 64bit
3711 displacement. */
3712 if (i.disp_operands
3713 && i.disp_encoding != disp_encoding_32bit
3714 && (flag_code != CODE_64BIT
3715 || strcmp (mnemonic, "movabs") != 0))
3716 optimize_disp ();
3717
3718 /* Next, we find a template that matches the given insn,
3719 making sure the overlap of the given operands types is consistent
3720 with the template operand types. */
3721
3722 if (!(t = match_template (mnem_suffix)))
3723 return;
3724
3725 if (sse_check != check_none
3726 && !i.tm.opcode_modifier.noavx
3727 && (i.tm.cpu_flags.bitfield.cpusse
3728 || i.tm.cpu_flags.bitfield.cpusse2
3729 || i.tm.cpu_flags.bitfield.cpusse3
3730 || i.tm.cpu_flags.bitfield.cpussse3
3731 || i.tm.cpu_flags.bitfield.cpusse4_1
3732 || i.tm.cpu_flags.bitfield.cpusse4_2))
3733 {
3734 (sse_check == check_warning
3735 ? as_warn
3736 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3737 }
3738
3739 /* Zap movzx and movsx suffix. The suffix has been set from
3740 "word ptr" or "byte ptr" on the source operand in Intel syntax
3741 or extracted from mnemonic in AT&T syntax. But we'll use
3742 the destination register to choose the suffix for encoding. */
3743 if ((i.tm.base_opcode & ~9) == 0x0fb6)
3744 {
3745 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3746 there is no suffix, the default will be byte extension. */
3747 if (i.reg_operands != 2
3748 && !i.suffix
3749 && intel_syntax)
3750 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3751
3752 i.suffix = 0;
3753 }
3754
3755 if (i.tm.opcode_modifier.fwait)
3756 if (!add_prefix (FWAIT_OPCODE))
3757 return;
3758
3759 /* Check if REP prefix is OK. */
3760 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3761 {
3762 as_bad (_("invalid instruction `%s' after `%s'"),
3763 i.tm.name, i.rep_prefix);
3764 return;
3765 }
3766
3767 /* Check for lock without a lockable instruction. Destination operand
3768 must be memory unless it is xchg (0x86). */
3769 if (i.prefix[LOCK_PREFIX]
3770 && (!i.tm.opcode_modifier.islockable
3771 || i.mem_operands == 0
3772 || (i.tm.base_opcode != 0x86
3773 && !operand_type_check (i.types[i.operands - 1], anymem))))
3774 {
3775 as_bad (_("expecting lockable instruction after `lock'"));
3776 return;
3777 }
3778
3779 /* Check if HLE prefix is OK. */
3780 if (i.hle_prefix && !check_hle ())
3781 return;
3782
3783 /* Check BND prefix. */
3784 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3785 as_bad (_("expecting valid branch instruction after `bnd'"));
3786
3787 /* Check NOTRACK prefix. */
3788 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
3789 as_bad (_("expecting indirect branch instruction after `notrack'"));
3790
3791 if (i.tm.cpu_flags.bitfield.cpumpx)
3792 {
3793 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
3794 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3795 else if (flag_code != CODE_16BIT
3796 ? i.prefix[ADDR_PREFIX]
3797 : i.mem_operands && !i.prefix[ADDR_PREFIX])
3798 as_bad (_("16-bit address isn't allowed in MPX instructions"));
3799 }
3800
3801 /* Insert BND prefix. */
3802 if (add_bnd_prefix
3803 && i.tm.opcode_modifier.bndprefixok
3804 && !i.prefix[BND_PREFIX])
3805 add_prefix (BND_PREFIX_OPCODE);
3806
3807 /* Check string instruction segment overrides. */
3808 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3809 {
3810 if (!check_string ())
3811 return;
3812 i.disp_operands = 0;
3813 }
3814
3815 if (!process_suffix ())
3816 return;
3817
3818 /* Update operand types. */
3819 for (j = 0; j < i.operands; j++)
3820 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3821
3822 /* Make still unresolved immediate matches conform to size of immediate
3823 given in i.suffix. */
3824 if (!finalize_imm ())
3825 return;
3826
3827 if (i.types[0].bitfield.imm1)
3828 i.imm_operands = 0; /* kludge for shift insns. */
3829
3830 /* We only need to check those implicit registers for instructions
3831 with 3 operands or less. */
3832 if (i.operands <= 3)
3833 for (j = 0; j < i.operands; j++)
3834 if (i.types[j].bitfield.inoutportreg
3835 || i.types[j].bitfield.shiftcount
3836 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
3837 i.reg_operands--;
3838
3839 /* ImmExt should be processed after SSE2AVX. */
3840 if (!i.tm.opcode_modifier.sse2avx
3841 && i.tm.opcode_modifier.immext)
3842 process_immext ();
3843
3844 /* For insns with operands there are more diddles to do to the opcode. */
3845 if (i.operands)
3846 {
3847 if (!process_operands ())
3848 return;
3849 }
3850 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3851 {
3852 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3853 as_warn (_("translating to `%sp'"), i.tm.name);
3854 }
3855
3856 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3857 {
3858 if (flag_code == CODE_16BIT)
3859 {
3860 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3861 i.tm.name);
3862 return;
3863 }
3864
3865 if (i.tm.opcode_modifier.vex)
3866 build_vex_prefix (t);
3867 else
3868 build_evex_prefix ();
3869 }
3870
3871 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3872 instructions may define INT_OPCODE as well, so avoid this corner
3873 case for those instructions that use MODRM. */
3874 if (i.tm.base_opcode == INT_OPCODE
3875 && !i.tm.opcode_modifier.modrm
3876 && i.op[0].imms->X_add_number == 3)
3877 {
3878 i.tm.base_opcode = INT3_OPCODE;
3879 i.imm_operands = 0;
3880 }
3881
3882 if ((i.tm.opcode_modifier.jump
3883 || i.tm.opcode_modifier.jumpbyte
3884 || i.tm.opcode_modifier.jumpdword)
3885 && i.op[0].disps->X_op == O_constant)
3886 {
3887 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3888 the absolute address given by the constant. Since ix86 jumps and
3889 calls are pc relative, we need to generate a reloc. */
3890 i.op[0].disps->X_add_symbol = &abs_symbol;
3891 i.op[0].disps->X_op = O_symbol;
3892 }
3893
3894 if (i.tm.opcode_modifier.rex64)
3895 i.rex |= REX_W;
3896
3897 /* For 8 bit registers we need an empty rex prefix. Also if the
3898 instruction already has a prefix, we need to convert old
3899 registers to new ones. */
3900
3901 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
3902 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3903 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
3904 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3905 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
3906 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
3907 && i.rex != 0))
3908 {
3909 int x;
3910
3911 i.rex |= REX_OPCODE;
3912 for (x = 0; x < 2; x++)
3913 {
3914 /* Look for 8 bit operand that uses old registers. */
3915 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
3916 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3917 {
3918 /* In case it is "hi" register, give up. */
3919 if (i.op[x].regs->reg_num > 3)
3920 as_bad (_("can't encode register '%s%s' in an "
3921 "instruction requiring REX prefix."),
3922 register_prefix, i.op[x].regs->reg_name);
3923
3924 /* Otherwise it is equivalent to the extended register.
3925 Since the encoding doesn't change this is merely
3926 cosmetic cleanup for debug output. */
3927
3928 i.op[x].regs = i.op[x].regs + 8;
3929 }
3930 }
3931 }
3932
3933 if (i.rex != 0)
3934 add_prefix (REX_OPCODE | i.rex);
3935
3936 /* We are ready to output the insn. */
3937 output_insn ();
3938 }
3939
3940 static char *
3941 parse_insn (char *line, char *mnemonic)
3942 {
3943 char *l = line;
3944 char *token_start = l;
3945 char *mnem_p;
3946 int supported;
3947 const insn_template *t;
3948 char *dot_p = NULL;
3949
3950 while (1)
3951 {
3952 mnem_p = mnemonic;
3953 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3954 {
3955 if (*mnem_p == '.')
3956 dot_p = mnem_p;
3957 mnem_p++;
3958 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3959 {
3960 as_bad (_("no such instruction: `%s'"), token_start);
3961 return NULL;
3962 }
3963 l++;
3964 }
3965 if (!is_space_char (*l)
3966 && *l != END_OF_INSN
3967 && (intel_syntax
3968 || (*l != PREFIX_SEPARATOR
3969 && *l != ',')))
3970 {
3971 as_bad (_("invalid character %s in mnemonic"),
3972 output_invalid (*l));
3973 return NULL;
3974 }
3975 if (token_start == l)
3976 {
3977 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3978 as_bad (_("expecting prefix; got nothing"));
3979 else
3980 as_bad (_("expecting mnemonic; got nothing"));
3981 return NULL;
3982 }
3983
3984 /* Look up instruction (or prefix) via hash table. */
3985 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3986
3987 if (*l != END_OF_INSN
3988 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3989 && current_templates
3990 && current_templates->start->opcode_modifier.isprefix)
3991 {
3992 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3993 {
3994 as_bad ((flag_code != CODE_64BIT
3995 ? _("`%s' is only supported in 64-bit mode")
3996 : _("`%s' is not supported in 64-bit mode")),
3997 current_templates->start->name);
3998 return NULL;
3999 }
4000 /* If we are in 16-bit mode, do not allow addr16 or data16.
4001 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4002 if ((current_templates->start->opcode_modifier.size16
4003 || current_templates->start->opcode_modifier.size32)
4004 && flag_code != CODE_64BIT
4005 && (current_templates->start->opcode_modifier.size32
4006 ^ (flag_code == CODE_16BIT)))
4007 {
4008 as_bad (_("redundant %s prefix"),
4009 current_templates->start->name);
4010 return NULL;
4011 }
4012 if (current_templates->start->opcode_length == 0)
4013 {
4014 /* Handle pseudo prefixes. */
4015 switch (current_templates->start->base_opcode)
4016 {
4017 case 0x0:
4018 /* {disp8} */
4019 i.disp_encoding = disp_encoding_8bit;
4020 break;
4021 case 0x1:
4022 /* {disp32} */
4023 i.disp_encoding = disp_encoding_32bit;
4024 break;
4025 case 0x2:
4026 /* {load} */
4027 i.dir_encoding = dir_encoding_load;
4028 break;
4029 case 0x3:
4030 /* {store} */
4031 i.dir_encoding = dir_encoding_store;
4032 break;
4033 case 0x4:
4034 /* {vex2} */
4035 i.vec_encoding = vex_encoding_vex2;
4036 break;
4037 case 0x5:
4038 /* {vex3} */
4039 i.vec_encoding = vex_encoding_vex3;
4040 break;
4041 case 0x6:
4042 /* {evex} */
4043 i.vec_encoding = vex_encoding_evex;
4044 break;
4045 default:
4046 abort ();
4047 }
4048 }
4049 else
4050 {
4051 /* Add prefix, checking for repeated prefixes. */
4052 switch (add_prefix (current_templates->start->base_opcode))
4053 {
4054 case PREFIX_EXIST:
4055 return NULL;
4056 case PREFIX_DS:
4057 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4058 i.notrack_prefix = current_templates->start->name;
4059 break;
4060 case PREFIX_REP:
4061 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4062 i.hle_prefix = current_templates->start->name;
4063 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4064 i.bnd_prefix = current_templates->start->name;
4065 else
4066 i.rep_prefix = current_templates->start->name;
4067 break;
4068 default:
4069 break;
4070 }
4071 }
4072 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4073 token_start = ++l;
4074 }
4075 else
4076 break;
4077 }
4078
4079 if (!current_templates)
4080 {
4081 /* Check if we should swap operand or force 32bit displacement in
4082 encoding. */
4083 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4084 i.dir_encoding = dir_encoding_store;
4085 else if (mnem_p - 3 == dot_p
4086 && dot_p[1] == 'd'
4087 && dot_p[2] == '8')
4088 i.disp_encoding = disp_encoding_8bit;
4089 else if (mnem_p - 4 == dot_p
4090 && dot_p[1] == 'd'
4091 && dot_p[2] == '3'
4092 && dot_p[3] == '2')
4093 i.disp_encoding = disp_encoding_32bit;
4094 else
4095 goto check_suffix;
4096 mnem_p = dot_p;
4097 *dot_p = '\0';
4098 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4099 }
4100
4101 if (!current_templates)
4102 {
4103 check_suffix:
4104 /* See if we can get a match by trimming off a suffix. */
4105 switch (mnem_p[-1])
4106 {
4107 case WORD_MNEM_SUFFIX:
4108 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4109 i.suffix = SHORT_MNEM_SUFFIX;
4110 else
4111 /* Fall through. */
4112 case BYTE_MNEM_SUFFIX:
4113 case QWORD_MNEM_SUFFIX:
4114 i.suffix = mnem_p[-1];
4115 mnem_p[-1] = '\0';
4116 current_templates = (const templates *) hash_find (op_hash,
4117 mnemonic);
4118 break;
4119 case SHORT_MNEM_SUFFIX:
4120 case LONG_MNEM_SUFFIX:
4121 if (!intel_syntax)
4122 {
4123 i.suffix = mnem_p[-1];
4124 mnem_p[-1] = '\0';
4125 current_templates = (const templates *) hash_find (op_hash,
4126 mnemonic);
4127 }
4128 break;
4129
4130 /* Intel Syntax. */
4131 case 'd':
4132 if (intel_syntax)
4133 {
4134 if (intel_float_operand (mnemonic) == 1)
4135 i.suffix = SHORT_MNEM_SUFFIX;
4136 else
4137 i.suffix = LONG_MNEM_SUFFIX;
4138 mnem_p[-1] = '\0';
4139 current_templates = (const templates *) hash_find (op_hash,
4140 mnemonic);
4141 }
4142 break;
4143 }
4144 if (!current_templates)
4145 {
4146 as_bad (_("no such instruction: `%s'"), token_start);
4147 return NULL;
4148 }
4149 }
4150
4151 if (current_templates->start->opcode_modifier.jump
4152 || current_templates->start->opcode_modifier.jumpbyte)
4153 {
4154 /* Check for a branch hint. We allow ",pt" and ",pn" for
4155 predict taken and predict not taken respectively.
4156 I'm not sure that branch hints actually do anything on loop
4157 and jcxz insns (JumpByte) for current Pentium4 chips. They
4158 may work in the future and it doesn't hurt to accept them
4159 now. */
4160 if (l[0] == ',' && l[1] == 'p')
4161 {
4162 if (l[2] == 't')
4163 {
4164 if (!add_prefix (DS_PREFIX_OPCODE))
4165 return NULL;
4166 l += 3;
4167 }
4168 else if (l[2] == 'n')
4169 {
4170 if (!add_prefix (CS_PREFIX_OPCODE))
4171 return NULL;
4172 l += 3;
4173 }
4174 }
4175 }
4176 /* Any other comma loses. */
4177 if (*l == ',')
4178 {
4179 as_bad (_("invalid character %s in mnemonic"),
4180 output_invalid (*l));
4181 return NULL;
4182 }
4183
4184 /* Check if instruction is supported on specified architecture. */
4185 supported = 0;
4186 for (t = current_templates->start; t < current_templates->end; ++t)
4187 {
4188 supported |= cpu_flags_match (t);
4189 if (supported == CPU_FLAGS_PERFECT_MATCH)
4190 goto skip;
4191 }
4192
4193 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4194 {
4195 as_bad (flag_code == CODE_64BIT
4196 ? _("`%s' is not supported in 64-bit mode")
4197 : _("`%s' is only supported in 64-bit mode"),
4198 current_templates->start->name);
4199 return NULL;
4200 }
4201 if (supported != CPU_FLAGS_PERFECT_MATCH)
4202 {
4203 as_bad (_("`%s' is not supported on `%s%s'"),
4204 current_templates->start->name,
4205 cpu_arch_name ? cpu_arch_name : default_arch,
4206 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4207 return NULL;
4208 }
4209
4210 skip:
4211 if (!cpu_arch_flags.bitfield.cpui386
4212 && (flag_code != CODE_16BIT))
4213 {
4214 as_warn (_("use .code16 to ensure correct addressing mode"));
4215 }
4216
4217 return l;
4218 }
4219
4220 static char *
4221 parse_operands (char *l, const char *mnemonic)
4222 {
4223 char *token_start;
4224
4225 /* 1 if operand is pending after ','. */
4226 unsigned int expecting_operand = 0;
4227
4228 /* Non-zero if operand parens not balanced. */
4229 unsigned int paren_not_balanced;
4230
4231 while (*l != END_OF_INSN)
4232 {
4233 /* Skip optional white space before operand. */
4234 if (is_space_char (*l))
4235 ++l;
4236 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4237 {
4238 as_bad (_("invalid character %s before operand %d"),
4239 output_invalid (*l),
4240 i.operands + 1);
4241 return NULL;
4242 }
4243 token_start = l; /* After white space. */
4244 paren_not_balanced = 0;
4245 while (paren_not_balanced || *l != ',')
4246 {
4247 if (*l == END_OF_INSN)
4248 {
4249 if (paren_not_balanced)
4250 {
4251 if (!intel_syntax)
4252 as_bad (_("unbalanced parenthesis in operand %d."),
4253 i.operands + 1);
4254 else
4255 as_bad (_("unbalanced brackets in operand %d."),
4256 i.operands + 1);
4257 return NULL;
4258 }
4259 else
4260 break; /* we are done */
4261 }
4262 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4263 {
4264 as_bad (_("invalid character %s in operand %d"),
4265 output_invalid (*l),
4266 i.operands + 1);
4267 return NULL;
4268 }
4269 if (!intel_syntax)
4270 {
4271 if (*l == '(')
4272 ++paren_not_balanced;
4273 if (*l == ')')
4274 --paren_not_balanced;
4275 }
4276 else
4277 {
4278 if (*l == '[')
4279 ++paren_not_balanced;
4280 if (*l == ']')
4281 --paren_not_balanced;
4282 }
4283 l++;
4284 }
4285 if (l != token_start)
4286 { /* Yes, we've read in another operand. */
4287 unsigned int operand_ok;
4288 this_operand = i.operands++;
4289 if (i.operands > MAX_OPERANDS)
4290 {
4291 as_bad (_("spurious operands; (%d operands/instruction max)"),
4292 MAX_OPERANDS);
4293 return NULL;
4294 }
4295 i.types[this_operand].bitfield.unspecified = 1;
4296 /* Now parse operand adding info to 'i' as we go along. */
4297 END_STRING_AND_SAVE (l);
4298
4299 if (intel_syntax)
4300 operand_ok =
4301 i386_intel_operand (token_start,
4302 intel_float_operand (mnemonic));
4303 else
4304 operand_ok = i386_att_operand (token_start);
4305
4306 RESTORE_END_STRING (l);
4307 if (!operand_ok)
4308 return NULL;
4309 }
4310 else
4311 {
4312 if (expecting_operand)
4313 {
4314 expecting_operand_after_comma:
4315 as_bad (_("expecting operand after ','; got nothing"));
4316 return NULL;
4317 }
4318 if (*l == ',')
4319 {
4320 as_bad (_("expecting operand before ','; got nothing"));
4321 return NULL;
4322 }
4323 }
4324
4325 /* Now *l must be either ',' or END_OF_INSN. */
4326 if (*l == ',')
4327 {
4328 if (*++l == END_OF_INSN)
4329 {
4330 /* Just skip it, if it's \n complain. */
4331 goto expecting_operand_after_comma;
4332 }
4333 expecting_operand = 1;
4334 }
4335 }
4336 return l;
4337 }
4338
4339 static void
4340 swap_2_operands (int xchg1, int xchg2)
4341 {
4342 union i386_op temp_op;
4343 i386_operand_type temp_type;
4344 enum bfd_reloc_code_real temp_reloc;
4345
4346 temp_type = i.types[xchg2];
4347 i.types[xchg2] = i.types[xchg1];
4348 i.types[xchg1] = temp_type;
4349 temp_op = i.op[xchg2];
4350 i.op[xchg2] = i.op[xchg1];
4351 i.op[xchg1] = temp_op;
4352 temp_reloc = i.reloc[xchg2];
4353 i.reloc[xchg2] = i.reloc[xchg1];
4354 i.reloc[xchg1] = temp_reloc;
4355
4356 if (i.mask)
4357 {
4358 if (i.mask->operand == xchg1)
4359 i.mask->operand = xchg2;
4360 else if (i.mask->operand == xchg2)
4361 i.mask->operand = xchg1;
4362 }
4363 if (i.broadcast)
4364 {
4365 if (i.broadcast->operand == xchg1)
4366 i.broadcast->operand = xchg2;
4367 else if (i.broadcast->operand == xchg2)
4368 i.broadcast->operand = xchg1;
4369 }
4370 if (i.rounding)
4371 {
4372 if (i.rounding->operand == xchg1)
4373 i.rounding->operand = xchg2;
4374 else if (i.rounding->operand == xchg2)
4375 i.rounding->operand = xchg1;
4376 }
4377 }
4378
4379 static void
4380 swap_operands (void)
4381 {
4382 switch (i.operands)
4383 {
4384 case 5:
4385 case 4:
4386 swap_2_operands (1, i.operands - 2);
4387 /* Fall through. */
4388 case 3:
4389 case 2:
4390 swap_2_operands (0, i.operands - 1);
4391 break;
4392 default:
4393 abort ();
4394 }
4395
4396 if (i.mem_operands == 2)
4397 {
4398 const seg_entry *temp_seg;
4399 temp_seg = i.seg[0];
4400 i.seg[0] = i.seg[1];
4401 i.seg[1] = temp_seg;
4402 }
4403 }
4404
4405 /* Try to ensure constant immediates are represented in the smallest
4406 opcode possible. */
4407 static void
4408 optimize_imm (void)
4409 {
4410 char guess_suffix = 0;
4411 int op;
4412
4413 if (i.suffix)
4414 guess_suffix = i.suffix;
4415 else if (i.reg_operands)
4416 {
4417 /* Figure out a suffix from the last register operand specified.
4418 We can't do this properly yet, ie. excluding InOutPortReg,
4419 but the following works for instructions with immediates.
4420 In any case, we can't set i.suffix yet. */
4421 for (op = i.operands; --op >= 0;)
4422 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4423 {
4424 guess_suffix = BYTE_MNEM_SUFFIX;
4425 break;
4426 }
4427 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4428 {
4429 guess_suffix = WORD_MNEM_SUFFIX;
4430 break;
4431 }
4432 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
4433 {
4434 guess_suffix = LONG_MNEM_SUFFIX;
4435 break;
4436 }
4437 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
4438 {
4439 guess_suffix = QWORD_MNEM_SUFFIX;
4440 break;
4441 }
4442 }
4443 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4444 guess_suffix = WORD_MNEM_SUFFIX;
4445
4446 for (op = i.operands; --op >= 0;)
4447 if (operand_type_check (i.types[op], imm))
4448 {
4449 switch (i.op[op].imms->X_op)
4450 {
4451 case O_constant:
4452 /* If a suffix is given, this operand may be shortened. */
4453 switch (guess_suffix)
4454 {
4455 case LONG_MNEM_SUFFIX:
4456 i.types[op].bitfield.imm32 = 1;
4457 i.types[op].bitfield.imm64 = 1;
4458 break;
4459 case WORD_MNEM_SUFFIX:
4460 i.types[op].bitfield.imm16 = 1;
4461 i.types[op].bitfield.imm32 = 1;
4462 i.types[op].bitfield.imm32s = 1;
4463 i.types[op].bitfield.imm64 = 1;
4464 break;
4465 case BYTE_MNEM_SUFFIX:
4466 i.types[op].bitfield.imm8 = 1;
4467 i.types[op].bitfield.imm8s = 1;
4468 i.types[op].bitfield.imm16 = 1;
4469 i.types[op].bitfield.imm32 = 1;
4470 i.types[op].bitfield.imm32s = 1;
4471 i.types[op].bitfield.imm64 = 1;
4472 break;
4473 }
4474
4475 /* If this operand is at most 16 bits, convert it
4476 to a signed 16 bit number before trying to see
4477 whether it will fit in an even smaller size.
4478 This allows a 16-bit operand such as $0xffe0 to
4479 be recognised as within Imm8S range. */
4480 if ((i.types[op].bitfield.imm16)
4481 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4482 {
4483 i.op[op].imms->X_add_number =
4484 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4485 }
4486 #ifdef BFD64
4487 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4488 if ((i.types[op].bitfield.imm32)
4489 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4490 == 0))
4491 {
4492 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4493 ^ ((offsetT) 1 << 31))
4494 - ((offsetT) 1 << 31));
4495 }
4496 #endif
4497 i.types[op]
4498 = operand_type_or (i.types[op],
4499 smallest_imm_type (i.op[op].imms->X_add_number));
4500
4501 /* We must avoid matching of Imm32 templates when 64bit
4502 only immediate is available. */
4503 if (guess_suffix == QWORD_MNEM_SUFFIX)
4504 i.types[op].bitfield.imm32 = 0;
4505 break;
4506
4507 case O_absent:
4508 case O_register:
4509 abort ();
4510
4511 /* Symbols and expressions. */
4512 default:
4513 /* Convert symbolic operand to proper sizes for matching, but don't
4514 prevent matching a set of insns that only supports sizes other
4515 than those matching the insn suffix. */
4516 {
4517 i386_operand_type mask, allowed;
4518 const insn_template *t;
4519
4520 operand_type_set (&mask, 0);
4521 operand_type_set (&allowed, 0);
4522
4523 for (t = current_templates->start;
4524 t < current_templates->end;
4525 ++t)
4526 allowed = operand_type_or (allowed,
4527 t->operand_types[op]);
4528 switch (guess_suffix)
4529 {
4530 case QWORD_MNEM_SUFFIX:
4531 mask.bitfield.imm64 = 1;
4532 mask.bitfield.imm32s = 1;
4533 break;
4534 case LONG_MNEM_SUFFIX:
4535 mask.bitfield.imm32 = 1;
4536 break;
4537 case WORD_MNEM_SUFFIX:
4538 mask.bitfield.imm16 = 1;
4539 break;
4540 case BYTE_MNEM_SUFFIX:
4541 mask.bitfield.imm8 = 1;
4542 break;
4543 default:
4544 break;
4545 }
4546 allowed = operand_type_and (mask, allowed);
4547 if (!operand_type_all_zero (&allowed))
4548 i.types[op] = operand_type_and (i.types[op], mask);
4549 }
4550 break;
4551 }
4552 }
4553 }
4554
4555 /* Try to use the smallest displacement type too. */
4556 static void
4557 optimize_disp (void)
4558 {
4559 int op;
4560
4561 for (op = i.operands; --op >= 0;)
4562 if (operand_type_check (i.types[op], disp))
4563 {
4564 if (i.op[op].disps->X_op == O_constant)
4565 {
4566 offsetT op_disp = i.op[op].disps->X_add_number;
4567
4568 if (i.types[op].bitfield.disp16
4569 && (op_disp & ~(offsetT) 0xffff) == 0)
4570 {
4571 /* If this operand is at most 16 bits, convert
4572 to a signed 16 bit number and don't use 64bit
4573 displacement. */
4574 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4575 i.types[op].bitfield.disp64 = 0;
4576 }
4577 #ifdef BFD64
4578 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4579 if (i.types[op].bitfield.disp32
4580 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4581 {
4582 /* If this operand is at most 32 bits, convert
4583 to a signed 32 bit number and don't use 64bit
4584 displacement. */
4585 op_disp &= (((offsetT) 2 << 31) - 1);
4586 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4587 i.types[op].bitfield.disp64 = 0;
4588 }
4589 #endif
4590 if (!op_disp && i.types[op].bitfield.baseindex)
4591 {
4592 i.types[op].bitfield.disp8 = 0;
4593 i.types[op].bitfield.disp16 = 0;
4594 i.types[op].bitfield.disp32 = 0;
4595 i.types[op].bitfield.disp32s = 0;
4596 i.types[op].bitfield.disp64 = 0;
4597 i.op[op].disps = 0;
4598 i.disp_operands--;
4599 }
4600 else if (flag_code == CODE_64BIT)
4601 {
4602 if (fits_in_signed_long (op_disp))
4603 {
4604 i.types[op].bitfield.disp64 = 0;
4605 i.types[op].bitfield.disp32s = 1;
4606 }
4607 if (i.prefix[ADDR_PREFIX]
4608 && fits_in_unsigned_long (op_disp))
4609 i.types[op].bitfield.disp32 = 1;
4610 }
4611 if ((i.types[op].bitfield.disp32
4612 || i.types[op].bitfield.disp32s
4613 || i.types[op].bitfield.disp16)
4614 && fits_in_disp8 (op_disp))
4615 i.types[op].bitfield.disp8 = 1;
4616 }
4617 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4618 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4619 {
4620 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4621 i.op[op].disps, 0, i.reloc[op]);
4622 i.types[op].bitfield.disp8 = 0;
4623 i.types[op].bitfield.disp16 = 0;
4624 i.types[op].bitfield.disp32 = 0;
4625 i.types[op].bitfield.disp32s = 0;
4626 i.types[op].bitfield.disp64 = 0;
4627 }
4628 else
4629 /* We only support 64bit displacement on constants. */
4630 i.types[op].bitfield.disp64 = 0;
4631 }
4632 }
4633
4634 /* Check if operands are valid for the instruction. */
4635
4636 static int
4637 check_VecOperands (const insn_template *t)
4638 {
4639 unsigned int op;
4640
4641 /* Without VSIB byte, we can't have a vector register for index. */
4642 if (!t->opcode_modifier.vecsib
4643 && i.index_reg
4644 && (i.index_reg->reg_type.bitfield.xmmword
4645 || i.index_reg->reg_type.bitfield.ymmword
4646 || i.index_reg->reg_type.bitfield.zmmword))
4647 {
4648 i.error = unsupported_vector_index_register;
4649 return 1;
4650 }
4651
4652 /* Check if default mask is allowed. */
4653 if (t->opcode_modifier.nodefmask
4654 && (!i.mask || i.mask->mask->reg_num == 0))
4655 {
4656 i.error = no_default_mask;
4657 return 1;
4658 }
4659
4660 /* For VSIB byte, we need a vector register for index, and all vector
4661 registers must be distinct. */
4662 if (t->opcode_modifier.vecsib)
4663 {
4664 if (!i.index_reg
4665 || !((t->opcode_modifier.vecsib == VecSIB128
4666 && i.index_reg->reg_type.bitfield.xmmword)
4667 || (t->opcode_modifier.vecsib == VecSIB256
4668 && i.index_reg->reg_type.bitfield.ymmword)
4669 || (t->opcode_modifier.vecsib == VecSIB512
4670 && i.index_reg->reg_type.bitfield.zmmword)))
4671 {
4672 i.error = invalid_vsib_address;
4673 return 1;
4674 }
4675
4676 gas_assert (i.reg_operands == 2 || i.mask);
4677 if (i.reg_operands == 2 && !i.mask)
4678 {
4679 gas_assert (i.types[0].bitfield.regsimd);
4680 gas_assert (i.types[0].bitfield.xmmword
4681 || i.types[0].bitfield.ymmword);
4682 gas_assert (i.types[2].bitfield.regsimd);
4683 gas_assert (i.types[2].bitfield.xmmword
4684 || i.types[2].bitfield.ymmword);
4685 if (operand_check == check_none)
4686 return 0;
4687 if (register_number (i.op[0].regs)
4688 != register_number (i.index_reg)
4689 && register_number (i.op[2].regs)
4690 != register_number (i.index_reg)
4691 && register_number (i.op[0].regs)
4692 != register_number (i.op[2].regs))
4693 return 0;
4694 if (operand_check == check_error)
4695 {
4696 i.error = invalid_vector_register_set;
4697 return 1;
4698 }
4699 as_warn (_("mask, index, and destination registers should be distinct"));
4700 }
4701 else if (i.reg_operands == 1 && i.mask)
4702 {
4703 if (i.types[1].bitfield.regsimd
4704 && (i.types[1].bitfield.xmmword
4705 || i.types[1].bitfield.ymmword
4706 || i.types[1].bitfield.zmmword)
4707 && (register_number (i.op[1].regs)
4708 == register_number (i.index_reg)))
4709 {
4710 if (operand_check == check_error)
4711 {
4712 i.error = invalid_vector_register_set;
4713 return 1;
4714 }
4715 if (operand_check != check_none)
4716 as_warn (_("index and destination registers should be distinct"));
4717 }
4718 }
4719 }
4720
4721 /* Check if broadcast is supported by the instruction and is applied
4722 to the memory operand. */
4723 if (i.broadcast)
4724 {
4725 int broadcasted_opnd_size;
4726
4727 /* Check if specified broadcast is supported in this instruction,
4728 and it's applied to memory operand of DWORD or QWORD type,
4729 depending on VecESize. */
4730 if (i.broadcast->type != t->opcode_modifier.broadcast
4731 || !i.types[i.broadcast->operand].bitfield.mem
4732 || (t->opcode_modifier.vecesize == 0
4733 && !i.types[i.broadcast->operand].bitfield.dword
4734 && !i.types[i.broadcast->operand].bitfield.unspecified)
4735 || (t->opcode_modifier.vecesize == 1
4736 && !i.types[i.broadcast->operand].bitfield.qword
4737 && !i.types[i.broadcast->operand].bitfield.unspecified))
4738 goto bad_broadcast;
4739
4740 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4741 if (i.broadcast->type == BROADCAST_1TO16)
4742 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4743 else if (i.broadcast->type == BROADCAST_1TO8)
4744 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
4745 else if (i.broadcast->type == BROADCAST_1TO4)
4746 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4747 else if (i.broadcast->type == BROADCAST_1TO2)
4748 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
4749 else
4750 goto bad_broadcast;
4751
4752 if ((broadcasted_opnd_size == 256
4753 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4754 || (broadcasted_opnd_size == 512
4755 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4756 {
4757 bad_broadcast:
4758 i.error = unsupported_broadcast;
4759 return 1;
4760 }
4761 }
4762 /* If broadcast is supported in this instruction, we need to check if
4763 operand of one-element size isn't specified without broadcast. */
4764 else if (t->opcode_modifier.broadcast && i.mem_operands)
4765 {
4766 /* Find memory operand. */
4767 for (op = 0; op < i.operands; op++)
4768 if (operand_type_check (i.types[op], anymem))
4769 break;
4770 gas_assert (op < i.operands);
4771 /* Check size of the memory operand. */
4772 if ((t->opcode_modifier.vecesize == 0
4773 && i.types[op].bitfield.dword)
4774 || (t->opcode_modifier.vecesize == 1
4775 && i.types[op].bitfield.qword))
4776 {
4777 i.error = broadcast_needed;
4778 return 1;
4779 }
4780 }
4781
4782 /* Check if requested masking is supported. */
4783 if (i.mask
4784 && (!t->opcode_modifier.masking
4785 || (i.mask->zeroing
4786 && t->opcode_modifier.masking == MERGING_MASKING)))
4787 {
4788 i.error = unsupported_masking;
4789 return 1;
4790 }
4791
4792 /* Check if masking is applied to dest operand. */
4793 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4794 {
4795 i.error = mask_not_on_destination;
4796 return 1;
4797 }
4798
4799 /* Check RC/SAE. */
4800 if (i.rounding)
4801 {
4802 if ((i.rounding->type != saeonly
4803 && !t->opcode_modifier.staticrounding)
4804 || (i.rounding->type == saeonly
4805 && (t->opcode_modifier.staticrounding
4806 || !t->opcode_modifier.sae)))
4807 {
4808 i.error = unsupported_rc_sae;
4809 return 1;
4810 }
4811 /* If the instruction has several immediate operands and one of
4812 them is rounding, the rounding operand should be the last
4813 immediate operand. */
4814 if (i.imm_operands > 1
4815 && i.rounding->operand != (int) (i.imm_operands - 1))
4816 {
4817 i.error = rc_sae_operand_not_last_imm;
4818 return 1;
4819 }
4820 }
4821
4822 /* Check vector Disp8 operand. */
4823 if (t->opcode_modifier.disp8memshift
4824 && i.disp_encoding != disp_encoding_32bit)
4825 {
4826 if (i.broadcast)
4827 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4828 else
4829 i.memshift = t->opcode_modifier.disp8memshift;
4830
4831 for (op = 0; op < i.operands; op++)
4832 if (operand_type_check (i.types[op], disp)
4833 && i.op[op].disps->X_op == O_constant)
4834 {
4835 if (fits_in_disp8 (i.op[op].disps->X_add_number))
4836 {
4837 i.types[op].bitfield.disp8 = 1;
4838 return 0;
4839 }
4840 i.types[op].bitfield.disp8 = 0;
4841 }
4842 }
4843
4844 i.memshift = 0;
4845
4846 return 0;
4847 }
4848
4849 /* Check if operands are valid for the instruction. Update VEX
4850 operand types. */
4851
4852 static int
4853 VEX_check_operands (const insn_template *t)
4854 {
4855 if (i.vec_encoding == vex_encoding_evex)
4856 {
4857 /* This instruction must be encoded with EVEX prefix. */
4858 if (!t->opcode_modifier.evex)
4859 {
4860 i.error = unsupported;
4861 return 1;
4862 }
4863 return 0;
4864 }
4865
4866 if (!t->opcode_modifier.vex)
4867 {
4868 /* This instruction template doesn't have VEX prefix. */
4869 if (i.vec_encoding != vex_encoding_default)
4870 {
4871 i.error = unsupported;
4872 return 1;
4873 }
4874 return 0;
4875 }
4876
4877 /* Only check VEX_Imm4, which must be the first operand. */
4878 if (t->operand_types[0].bitfield.vec_imm4)
4879 {
4880 if (i.op[0].imms->X_op != O_constant
4881 || !fits_in_imm4 (i.op[0].imms->X_add_number))
4882 {
4883 i.error = bad_imm4;
4884 return 1;
4885 }
4886
4887 /* Turn off Imm8 so that update_imm won't complain. */
4888 i.types[0] = vec_imm4;
4889 }
4890
4891 return 0;
4892 }
4893
4894 static const insn_template *
4895 match_template (char mnem_suffix)
4896 {
4897 /* Points to template once we've found it. */
4898 const insn_template *t;
4899 i386_operand_type overlap0, overlap1, overlap2, overlap3;
4900 i386_operand_type overlap4;
4901 unsigned int found_reverse_match;
4902 i386_opcode_modifier suffix_check, mnemsuf_check;
4903 i386_operand_type operand_types [MAX_OPERANDS];
4904 int addr_prefix_disp;
4905 unsigned int j;
4906 unsigned int found_cpu_match;
4907 unsigned int check_register;
4908 enum i386_error specific_error = 0;
4909
4910 #if MAX_OPERANDS != 5
4911 # error "MAX_OPERANDS must be 5."
4912 #endif
4913
4914 found_reverse_match = 0;
4915 addr_prefix_disp = -1;
4916
4917 memset (&suffix_check, 0, sizeof (suffix_check));
4918 if (i.suffix == BYTE_MNEM_SUFFIX)
4919 suffix_check.no_bsuf = 1;
4920 else if (i.suffix == WORD_MNEM_SUFFIX)
4921 suffix_check.no_wsuf = 1;
4922 else if (i.suffix == SHORT_MNEM_SUFFIX)
4923 suffix_check.no_ssuf = 1;
4924 else if (i.suffix == LONG_MNEM_SUFFIX)
4925 suffix_check.no_lsuf = 1;
4926 else if (i.suffix == QWORD_MNEM_SUFFIX)
4927 suffix_check.no_qsuf = 1;
4928 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
4929 suffix_check.no_ldsuf = 1;
4930
4931 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
4932 if (intel_syntax)
4933 {
4934 switch (mnem_suffix)
4935 {
4936 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
4937 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
4938 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
4939 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
4940 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
4941 }
4942 }
4943
4944 /* Must have right number of operands. */
4945 i.error = number_of_operands_mismatch;
4946
4947 for (t = current_templates->start; t < current_templates->end; t++)
4948 {
4949 addr_prefix_disp = -1;
4950
4951 if (i.operands != t->operands)
4952 continue;
4953
4954 /* Check processor support. */
4955 i.error = unsupported;
4956 found_cpu_match = (cpu_flags_match (t)
4957 == CPU_FLAGS_PERFECT_MATCH);
4958 if (!found_cpu_match)
4959 continue;
4960
4961 /* Check old gcc support. */
4962 i.error = old_gcc_only;
4963 if (!old_gcc && t->opcode_modifier.oldgcc)
4964 continue;
4965
4966 /* Check AT&T mnemonic. */
4967 i.error = unsupported_with_intel_mnemonic;
4968 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
4969 continue;
4970
4971 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
4972 i.error = unsupported_syntax;
4973 if ((intel_syntax && t->opcode_modifier.attsyntax)
4974 || (!intel_syntax && t->opcode_modifier.intelsyntax)
4975 || (intel64 && t->opcode_modifier.amd64)
4976 || (!intel64 && t->opcode_modifier.intel64))
4977 continue;
4978
4979 /* Check the suffix, except for some instructions in intel mode. */
4980 i.error = invalid_instruction_suffix;
4981 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4982 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4983 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4984 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4985 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4986 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4987 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
4988 continue;
4989 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
4990 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
4991 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
4992 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
4993 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
4994 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
4995 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
4996 continue;
4997
4998 if (!operand_size_match (t))
4999 continue;
5000
5001 for (j = 0; j < MAX_OPERANDS; j++)
5002 operand_types[j] = t->operand_types[j];
5003
5004 /* In general, don't allow 64-bit operands in 32-bit mode. */
5005 if (i.suffix == QWORD_MNEM_SUFFIX
5006 && flag_code != CODE_64BIT
5007 && (intel_syntax
5008 ? (!t->opcode_modifier.ignoresize
5009 && !intel_float_operand (t->name))
5010 : intel_float_operand (t->name) != 2)
5011 && ((!operand_types[0].bitfield.regmmx
5012 && !operand_types[0].bitfield.regsimd)
5013 || (!operand_types[t->operands > 1].bitfield.regmmx
5014 && !operand_types[t->operands > 1].bitfield.regsimd))
5015 && (t->base_opcode != 0x0fc7
5016 || t->extension_opcode != 1 /* cmpxchg8b */))
5017 continue;
5018
5019 /* In general, don't allow 32-bit operands on pre-386. */
5020 else if (i.suffix == LONG_MNEM_SUFFIX
5021 && !cpu_arch_flags.bitfield.cpui386
5022 && (intel_syntax
5023 ? (!t->opcode_modifier.ignoresize
5024 && !intel_float_operand (t->name))
5025 : intel_float_operand (t->name) != 2)
5026 && ((!operand_types[0].bitfield.regmmx
5027 && !operand_types[0].bitfield.regsimd)
5028 || (!operand_types[t->operands > 1].bitfield.regmmx
5029 && !operand_types[t->operands > 1].bitfield.regsimd)))
5030 continue;
5031
5032 /* Do not verify operands when there are none. */
5033 else
5034 {
5035 if (!t->operands)
5036 /* We've found a match; break out of loop. */
5037 break;
5038 }
5039
5040 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5041 into Disp32/Disp16/Disp32 operand. */
5042 if (i.prefix[ADDR_PREFIX] != 0)
5043 {
5044 /* There should be only one Disp operand. */
5045 switch (flag_code)
5046 {
5047 case CODE_16BIT:
5048 for (j = 0; j < MAX_OPERANDS; j++)
5049 {
5050 if (operand_types[j].bitfield.disp16)
5051 {
5052 addr_prefix_disp = j;
5053 operand_types[j].bitfield.disp32 = 1;
5054 operand_types[j].bitfield.disp16 = 0;
5055 break;
5056 }
5057 }
5058 break;
5059 case CODE_32BIT:
5060 for (j = 0; j < MAX_OPERANDS; j++)
5061 {
5062 if (operand_types[j].bitfield.disp32)
5063 {
5064 addr_prefix_disp = j;
5065 operand_types[j].bitfield.disp32 = 0;
5066 operand_types[j].bitfield.disp16 = 1;
5067 break;
5068 }
5069 }
5070 break;
5071 case CODE_64BIT:
5072 for (j = 0; j < MAX_OPERANDS; j++)
5073 {
5074 if (operand_types[j].bitfield.disp64)
5075 {
5076 addr_prefix_disp = j;
5077 operand_types[j].bitfield.disp64 = 0;
5078 operand_types[j].bitfield.disp32 = 1;
5079 break;
5080 }
5081 }
5082 break;
5083 }
5084 }
5085
5086 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5087 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5088 continue;
5089
5090 /* We check register size if needed. */
5091 check_register = t->opcode_modifier.checkregsize;
5092 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5093 switch (t->operands)
5094 {
5095 case 1:
5096 if (!operand_type_match (overlap0, i.types[0]))
5097 continue;
5098 break;
5099 case 2:
5100 /* xchg %eax, %eax is a special case. It is an alias for nop
5101 only in 32bit mode and we can use opcode 0x90. In 64bit
5102 mode, we can't use 0x90 for xchg %eax, %eax since it should
5103 zero-extend %eax to %rax. */
5104 if (flag_code == CODE_64BIT
5105 && t->base_opcode == 0x90
5106 && operand_type_equal (&i.types [0], &acc32)
5107 && operand_type_equal (&i.types [1], &acc32))
5108 continue;
5109 /* If we want store form, we reverse direction of operands. */
5110 if (i.dir_encoding == dir_encoding_store
5111 && t->opcode_modifier.d)
5112 goto check_reverse;
5113 /* Fall through. */
5114
5115 case 3:
5116 /* If we want store form, we skip the current load. */
5117 if (i.dir_encoding == dir_encoding_store
5118 && i.mem_operands == 0
5119 && t->opcode_modifier.load)
5120 continue;
5121 /* Fall through. */
5122 case 4:
5123 case 5:
5124 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5125 if (!operand_type_match (overlap0, i.types[0])
5126 || !operand_type_match (overlap1, i.types[1])
5127 || (check_register
5128 && !operand_type_register_match (i.types[0],
5129 operand_types[0],
5130 i.types[1],
5131 operand_types[1])))
5132 {
5133 /* Check if other direction is valid ... */
5134 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
5135 continue;
5136
5137 check_reverse:
5138 /* Try reversing direction of operands. */
5139 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5140 overlap1 = operand_type_and (i.types[1], operand_types[0]);
5141 if (!operand_type_match (overlap0, i.types[0])
5142 || !operand_type_match (overlap1, i.types[1])
5143 || (check_register
5144 && !operand_type_register_match (i.types[0],
5145 operand_types[1],
5146 i.types[1],
5147 operand_types[0])))
5148 {
5149 /* Does not match either direction. */
5150 continue;
5151 }
5152 /* found_reverse_match holds which of D or FloatDR
5153 we've found. */
5154 if (t->opcode_modifier.d)
5155 found_reverse_match = Opcode_D;
5156 else if (t->opcode_modifier.floatd)
5157 found_reverse_match = Opcode_FloatD;
5158 else
5159 found_reverse_match = 0;
5160 if (t->opcode_modifier.floatr)
5161 found_reverse_match |= Opcode_FloatR;
5162 }
5163 else
5164 {
5165 /* Found a forward 2 operand match here. */
5166 switch (t->operands)
5167 {
5168 case 5:
5169 overlap4 = operand_type_and (i.types[4],
5170 operand_types[4]);
5171 /* Fall through. */
5172 case 4:
5173 overlap3 = operand_type_and (i.types[3],
5174 operand_types[3]);
5175 /* Fall through. */
5176 case 3:
5177 overlap2 = operand_type_and (i.types[2],
5178 operand_types[2]);
5179 break;
5180 }
5181
5182 switch (t->operands)
5183 {
5184 case 5:
5185 if (!operand_type_match (overlap4, i.types[4])
5186 || !operand_type_register_match (i.types[3],
5187 operand_types[3],
5188 i.types[4],
5189 operand_types[4]))
5190 continue;
5191 /* Fall through. */
5192 case 4:
5193 if (!operand_type_match (overlap3, i.types[3])
5194 || (check_register
5195 && !operand_type_register_match (i.types[2],
5196 operand_types[2],
5197 i.types[3],
5198 operand_types[3])))
5199 continue;
5200 /* Fall through. */
5201 case 3:
5202 /* Here we make use of the fact that there are no
5203 reverse match 3 operand instructions, and all 3
5204 operand instructions only need to be checked for
5205 register consistency between operands 2 and 3. */
5206 if (!operand_type_match (overlap2, i.types[2])
5207 || (check_register
5208 && !operand_type_register_match (i.types[1],
5209 operand_types[1],
5210 i.types[2],
5211 operand_types[2])))
5212 continue;
5213 break;
5214 }
5215 }
5216 /* Found either forward/reverse 2, 3 or 4 operand match here:
5217 slip through to break. */
5218 }
5219 if (!found_cpu_match)
5220 {
5221 found_reverse_match = 0;
5222 continue;
5223 }
5224
5225 /* Check if vector and VEX operands are valid. */
5226 if (check_VecOperands (t) || VEX_check_operands (t))
5227 {
5228 specific_error = i.error;
5229 continue;
5230 }
5231
5232 /* We've found a match; break out of loop. */
5233 break;
5234 }
5235
5236 if (t == current_templates->end)
5237 {
5238 /* We found no match. */
5239 const char *err_msg;
5240 switch (specific_error ? specific_error : i.error)
5241 {
5242 default:
5243 abort ();
5244 case operand_size_mismatch:
5245 err_msg = _("operand size mismatch");
5246 break;
5247 case operand_type_mismatch:
5248 err_msg = _("operand type mismatch");
5249 break;
5250 case register_type_mismatch:
5251 err_msg = _("register type mismatch");
5252 break;
5253 case number_of_operands_mismatch:
5254 err_msg = _("number of operands mismatch");
5255 break;
5256 case invalid_instruction_suffix:
5257 err_msg = _("invalid instruction suffix");
5258 break;
5259 case bad_imm4:
5260 err_msg = _("constant doesn't fit in 4 bits");
5261 break;
5262 case old_gcc_only:
5263 err_msg = _("only supported with old gcc");
5264 break;
5265 case unsupported_with_intel_mnemonic:
5266 err_msg = _("unsupported with Intel mnemonic");
5267 break;
5268 case unsupported_syntax:
5269 err_msg = _("unsupported syntax");
5270 break;
5271 case unsupported:
5272 as_bad (_("unsupported instruction `%s'"),
5273 current_templates->start->name);
5274 return NULL;
5275 case invalid_vsib_address:
5276 err_msg = _("invalid VSIB address");
5277 break;
5278 case invalid_vector_register_set:
5279 err_msg = _("mask, index, and destination registers must be distinct");
5280 break;
5281 case unsupported_vector_index_register:
5282 err_msg = _("unsupported vector index register");
5283 break;
5284 case unsupported_broadcast:
5285 err_msg = _("unsupported broadcast");
5286 break;
5287 case broadcast_not_on_src_operand:
5288 err_msg = _("broadcast not on source memory operand");
5289 break;
5290 case broadcast_needed:
5291 err_msg = _("broadcast is needed for operand of such type");
5292 break;
5293 case unsupported_masking:
5294 err_msg = _("unsupported masking");
5295 break;
5296 case mask_not_on_destination:
5297 err_msg = _("mask not on destination operand");
5298 break;
5299 case no_default_mask:
5300 err_msg = _("default mask isn't allowed");
5301 break;
5302 case unsupported_rc_sae:
5303 err_msg = _("unsupported static rounding/sae");
5304 break;
5305 case rc_sae_operand_not_last_imm:
5306 if (intel_syntax)
5307 err_msg = _("RC/SAE operand must precede immediate operands");
5308 else
5309 err_msg = _("RC/SAE operand must follow immediate operands");
5310 break;
5311 case invalid_register_operand:
5312 err_msg = _("invalid register operand");
5313 break;
5314 }
5315 as_bad (_("%s for `%s'"), err_msg,
5316 current_templates->start->name);
5317 return NULL;
5318 }
5319
5320 if (!quiet_warnings)
5321 {
5322 if (!intel_syntax
5323 && (i.types[0].bitfield.jumpabsolute
5324 != operand_types[0].bitfield.jumpabsolute))
5325 {
5326 as_warn (_("indirect %s without `*'"), t->name);
5327 }
5328
5329 if (t->opcode_modifier.isprefix
5330 && t->opcode_modifier.ignoresize)
5331 {
5332 /* Warn them that a data or address size prefix doesn't
5333 affect assembly of the next line of code. */
5334 as_warn (_("stand-alone `%s' prefix"), t->name);
5335 }
5336 }
5337
5338 /* Copy the template we found. */
5339 i.tm = *t;
5340
5341 if (addr_prefix_disp != -1)
5342 i.tm.operand_types[addr_prefix_disp]
5343 = operand_types[addr_prefix_disp];
5344
5345 if (found_reverse_match)
5346 {
5347 /* If we found a reverse match we must alter the opcode
5348 direction bit. found_reverse_match holds bits to change
5349 (different for int & float insns). */
5350
5351 i.tm.base_opcode ^= found_reverse_match;
5352
5353 i.tm.operand_types[0] = operand_types[1];
5354 i.tm.operand_types[1] = operand_types[0];
5355 }
5356
5357 return t;
5358 }
5359
5360 static int
5361 check_string (void)
5362 {
5363 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5364 if (i.tm.operand_types[mem_op].bitfield.esseg)
5365 {
5366 if (i.seg[0] != NULL && i.seg[0] != &es)
5367 {
5368 as_bad (_("`%s' operand %d must use `%ses' segment"),
5369 i.tm.name,
5370 mem_op + 1,
5371 register_prefix);
5372 return 0;
5373 }
5374 /* There's only ever one segment override allowed per instruction.
5375 This instruction possibly has a legal segment override on the
5376 second operand, so copy the segment to where non-string
5377 instructions store it, allowing common code. */
5378 i.seg[0] = i.seg[1];
5379 }
5380 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5381 {
5382 if (i.seg[1] != NULL && i.seg[1] != &es)
5383 {
5384 as_bad (_("`%s' operand %d must use `%ses' segment"),
5385 i.tm.name,
5386 mem_op + 2,
5387 register_prefix);
5388 return 0;
5389 }
5390 }
5391 return 1;
5392 }
5393
5394 static int
5395 process_suffix (void)
5396 {
5397 /* If matched instruction specifies an explicit instruction mnemonic
5398 suffix, use it. */
5399 if (i.tm.opcode_modifier.size16)
5400 i.suffix = WORD_MNEM_SUFFIX;
5401 else if (i.tm.opcode_modifier.size32)
5402 i.suffix = LONG_MNEM_SUFFIX;
5403 else if (i.tm.opcode_modifier.size64)
5404 i.suffix = QWORD_MNEM_SUFFIX;
5405 else if (i.reg_operands)
5406 {
5407 /* If there's no instruction mnemonic suffix we try to invent one
5408 based on register operands. */
5409 if (!i.suffix)
5410 {
5411 /* We take i.suffix from the last register operand specified,
5412 Destination register type is more significant than source
5413 register type. crc32 in SSE4.2 prefers source register
5414 type. */
5415 if (i.tm.base_opcode == 0xf20f38f1)
5416 {
5417 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
5418 i.suffix = WORD_MNEM_SUFFIX;
5419 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
5420 i.suffix = LONG_MNEM_SUFFIX;
5421 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
5422 i.suffix = QWORD_MNEM_SUFFIX;
5423 }
5424 else if (i.tm.base_opcode == 0xf20f38f0)
5425 {
5426 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
5427 i.suffix = BYTE_MNEM_SUFFIX;
5428 }
5429
5430 if (!i.suffix)
5431 {
5432 int op;
5433
5434 if (i.tm.base_opcode == 0xf20f38f1
5435 || i.tm.base_opcode == 0xf20f38f0)
5436 {
5437 /* We have to know the operand size for crc32. */
5438 as_bad (_("ambiguous memory operand size for `%s`"),
5439 i.tm.name);
5440 return 0;
5441 }
5442
5443 for (op = i.operands; --op >= 0;)
5444 if (!i.tm.operand_types[op].bitfield.inoutportreg
5445 && !i.tm.operand_types[op].bitfield.shiftcount)
5446 {
5447 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
5448 {
5449 i.suffix = BYTE_MNEM_SUFFIX;
5450 break;
5451 }
5452 if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
5453 {
5454 i.suffix = WORD_MNEM_SUFFIX;
5455 break;
5456 }
5457 if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
5458 {
5459 i.suffix = LONG_MNEM_SUFFIX;
5460 break;
5461 }
5462 if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
5463 {
5464 i.suffix = QWORD_MNEM_SUFFIX;
5465 break;
5466 }
5467 }
5468 }
5469 }
5470 else if (i.suffix == BYTE_MNEM_SUFFIX)
5471 {
5472 if (intel_syntax
5473 && i.tm.opcode_modifier.ignoresize
5474 && i.tm.opcode_modifier.no_bsuf)
5475 i.suffix = 0;
5476 else if (!check_byte_reg ())
5477 return 0;
5478 }
5479 else if (i.suffix == LONG_MNEM_SUFFIX)
5480 {
5481 if (intel_syntax
5482 && i.tm.opcode_modifier.ignoresize
5483 && i.tm.opcode_modifier.no_lsuf)
5484 i.suffix = 0;
5485 else if (!check_long_reg ())
5486 return 0;
5487 }
5488 else if (i.suffix == QWORD_MNEM_SUFFIX)
5489 {
5490 if (intel_syntax
5491 && i.tm.opcode_modifier.ignoresize
5492 && i.tm.opcode_modifier.no_qsuf)
5493 i.suffix = 0;
5494 else if (!check_qword_reg ())
5495 return 0;
5496 }
5497 else if (i.suffix == WORD_MNEM_SUFFIX)
5498 {
5499 if (intel_syntax
5500 && i.tm.opcode_modifier.ignoresize
5501 && i.tm.opcode_modifier.no_wsuf)
5502 i.suffix = 0;
5503 else if (!check_word_reg ())
5504 return 0;
5505 }
5506 else if (i.suffix == XMMWORD_MNEM_SUFFIX
5507 || i.suffix == YMMWORD_MNEM_SUFFIX
5508 || i.suffix == ZMMWORD_MNEM_SUFFIX)
5509 {
5510 /* Skip if the instruction has x/y/z suffix. match_template
5511 should check if it is a valid suffix. */
5512 }
5513 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5514 /* Do nothing if the instruction is going to ignore the prefix. */
5515 ;
5516 else
5517 abort ();
5518 }
5519 else if (i.tm.opcode_modifier.defaultsize
5520 && !i.suffix
5521 /* exclude fldenv/frstor/fsave/fstenv */
5522 && i.tm.opcode_modifier.no_ssuf)
5523 {
5524 i.suffix = stackop_size;
5525 }
5526 else if (intel_syntax
5527 && !i.suffix
5528 && (i.tm.operand_types[0].bitfield.jumpabsolute
5529 || i.tm.opcode_modifier.jumpbyte
5530 || i.tm.opcode_modifier.jumpintersegment
5531 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5532 && i.tm.extension_opcode <= 3)))
5533 {
5534 switch (flag_code)
5535 {
5536 case CODE_64BIT:
5537 if (!i.tm.opcode_modifier.no_qsuf)
5538 {
5539 i.suffix = QWORD_MNEM_SUFFIX;
5540 break;
5541 }
5542 /* Fall through. */
5543 case CODE_32BIT:
5544 if (!i.tm.opcode_modifier.no_lsuf)
5545 i.suffix = LONG_MNEM_SUFFIX;
5546 break;
5547 case CODE_16BIT:
5548 if (!i.tm.opcode_modifier.no_wsuf)
5549 i.suffix = WORD_MNEM_SUFFIX;
5550 break;
5551 }
5552 }
5553
5554 if (!i.suffix)
5555 {
5556 if (!intel_syntax)
5557 {
5558 if (i.tm.opcode_modifier.w)
5559 {
5560 as_bad (_("no instruction mnemonic suffix given and "
5561 "no register operands; can't size instruction"));
5562 return 0;
5563 }
5564 }
5565 else
5566 {
5567 unsigned int suffixes;
5568
5569 suffixes = !i.tm.opcode_modifier.no_bsuf;
5570 if (!i.tm.opcode_modifier.no_wsuf)
5571 suffixes |= 1 << 1;
5572 if (!i.tm.opcode_modifier.no_lsuf)
5573 suffixes |= 1 << 2;
5574 if (!i.tm.opcode_modifier.no_ldsuf)
5575 suffixes |= 1 << 3;
5576 if (!i.tm.opcode_modifier.no_ssuf)
5577 suffixes |= 1 << 4;
5578 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
5579 suffixes |= 1 << 5;
5580
5581 /* There are more than suffix matches. */
5582 if (i.tm.opcode_modifier.w
5583 || ((suffixes & (suffixes - 1))
5584 && !i.tm.opcode_modifier.defaultsize
5585 && !i.tm.opcode_modifier.ignoresize))
5586 {
5587 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5588 return 0;
5589 }
5590 }
5591 }
5592
5593 /* Change the opcode based on the operand size given by i.suffix;
5594 We don't need to change things for byte insns. */
5595
5596 if (i.suffix
5597 && i.suffix != BYTE_MNEM_SUFFIX
5598 && i.suffix != XMMWORD_MNEM_SUFFIX
5599 && i.suffix != YMMWORD_MNEM_SUFFIX
5600 && i.suffix != ZMMWORD_MNEM_SUFFIX)
5601 {
5602 /* It's not a byte, select word/dword operation. */
5603 if (i.tm.opcode_modifier.w)
5604 {
5605 if (i.tm.opcode_modifier.shortform)
5606 i.tm.base_opcode |= 8;
5607 else
5608 i.tm.base_opcode |= 1;
5609 }
5610
5611 /* Now select between word & dword operations via the operand
5612 size prefix, except for instructions that will ignore this
5613 prefix anyway. */
5614 if (i.tm.opcode_modifier.addrprefixop0)
5615 {
5616 /* The address size override prefix changes the size of the
5617 first operand. */
5618 if ((flag_code == CODE_32BIT
5619 && i.op->regs[0].reg_type.bitfield.word)
5620 || (flag_code != CODE_32BIT
5621 && i.op->regs[0].reg_type.bitfield.dword))
5622 if (!add_prefix (ADDR_PREFIX_OPCODE))
5623 return 0;
5624 }
5625 else if (i.suffix != QWORD_MNEM_SUFFIX
5626 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
5627 && !i.tm.opcode_modifier.ignoresize
5628 && !i.tm.opcode_modifier.floatmf
5629 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5630 || (flag_code == CODE_64BIT
5631 && i.tm.opcode_modifier.jumpbyte)))
5632 {
5633 unsigned int prefix = DATA_PREFIX_OPCODE;
5634
5635 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5636 prefix = ADDR_PREFIX_OPCODE;
5637
5638 if (!add_prefix (prefix))
5639 return 0;
5640 }
5641
5642 /* Set mode64 for an operand. */
5643 if (i.suffix == QWORD_MNEM_SUFFIX
5644 && flag_code == CODE_64BIT
5645 && !i.tm.opcode_modifier.norex64)
5646 {
5647 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5648 need rex64. cmpxchg8b is also a special case. */
5649 if (! (i.operands == 2
5650 && i.tm.base_opcode == 0x90
5651 && i.tm.extension_opcode == None
5652 && operand_type_equal (&i.types [0], &acc64)
5653 && operand_type_equal (&i.types [1], &acc64))
5654 && ! (i.operands == 1
5655 && i.tm.base_opcode == 0xfc7
5656 && i.tm.extension_opcode == 1
5657 && !operand_type_check (i.types [0], reg)
5658 && operand_type_check (i.types [0], anymem)))
5659 i.rex |= REX_W;
5660 }
5661
5662 /* Size floating point instruction. */
5663 if (i.suffix == LONG_MNEM_SUFFIX)
5664 if (i.tm.opcode_modifier.floatmf)
5665 i.tm.base_opcode ^= 4;
5666 }
5667
5668 return 1;
5669 }
5670
5671 static int
5672 check_byte_reg (void)
5673 {
5674 int op;
5675
5676 for (op = i.operands; --op >= 0;)
5677 {
5678 /* Skip non-register operands. */
5679 if (!i.types[op].bitfield.reg)
5680 continue;
5681
5682 /* If this is an eight bit register, it's OK. If it's the 16 or
5683 32 bit version of an eight bit register, we will just use the
5684 low portion, and that's OK too. */
5685 if (i.types[op].bitfield.byte)
5686 continue;
5687
5688 /* I/O port address operands are OK too. */
5689 if (i.tm.operand_types[op].bitfield.inoutportreg)
5690 continue;
5691
5692 /* crc32 doesn't generate this warning. */
5693 if (i.tm.base_opcode == 0xf20f38f0)
5694 continue;
5695
5696 if ((i.types[op].bitfield.word
5697 || i.types[op].bitfield.dword
5698 || i.types[op].bitfield.qword)
5699 && i.op[op].regs->reg_num < 4
5700 /* Prohibit these changes in 64bit mode, since the lowering
5701 would be more complicated. */
5702 && flag_code != CODE_64BIT)
5703 {
5704 #if REGISTER_WARNINGS
5705 if (!quiet_warnings)
5706 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5707 register_prefix,
5708 (i.op[op].regs + (i.types[op].bitfield.word
5709 ? REGNAM_AL - REGNAM_AX
5710 : REGNAM_AL - REGNAM_EAX))->reg_name,
5711 register_prefix,
5712 i.op[op].regs->reg_name,
5713 i.suffix);
5714 #endif
5715 continue;
5716 }
5717 /* Any other register is bad. */
5718 if (i.types[op].bitfield.reg
5719 || i.types[op].bitfield.regmmx
5720 || i.types[op].bitfield.regsimd
5721 || i.types[op].bitfield.sreg2
5722 || i.types[op].bitfield.sreg3
5723 || i.types[op].bitfield.control
5724 || i.types[op].bitfield.debug
5725 || i.types[op].bitfield.test)
5726 {
5727 as_bad (_("`%s%s' not allowed with `%s%c'"),
5728 register_prefix,
5729 i.op[op].regs->reg_name,
5730 i.tm.name,
5731 i.suffix);
5732 return 0;
5733 }
5734 }
5735 return 1;
5736 }
5737
5738 static int
5739 check_long_reg (void)
5740 {
5741 int op;
5742
5743 for (op = i.operands; --op >= 0;)
5744 /* Skip non-register operands. */
5745 if (!i.types[op].bitfield.reg)
5746 continue;
5747 /* Reject eight bit registers, except where the template requires
5748 them. (eg. movzb) */
5749 else if (i.types[op].bitfield.byte
5750 && (i.tm.operand_types[op].bitfield.reg
5751 || i.tm.operand_types[op].bitfield.acc)
5752 && (i.tm.operand_types[op].bitfield.word
5753 || i.tm.operand_types[op].bitfield.dword))
5754 {
5755 as_bad (_("`%s%s' not allowed with `%s%c'"),
5756 register_prefix,
5757 i.op[op].regs->reg_name,
5758 i.tm.name,
5759 i.suffix);
5760 return 0;
5761 }
5762 /* Warn if the e prefix on a general reg is missing. */
5763 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5764 && i.types[op].bitfield.word
5765 && (i.tm.operand_types[op].bitfield.reg
5766 || i.tm.operand_types[op].bitfield.acc)
5767 && i.tm.operand_types[op].bitfield.dword)
5768 {
5769 /* Prohibit these changes in the 64bit mode, since the
5770 lowering is more complicated. */
5771 if (flag_code == CODE_64BIT)
5772 {
5773 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5774 register_prefix, i.op[op].regs->reg_name,
5775 i.suffix);
5776 return 0;
5777 }
5778 #if REGISTER_WARNINGS
5779 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5780 register_prefix,
5781 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5782 register_prefix, i.op[op].regs->reg_name, i.suffix);
5783 #endif
5784 }
5785 /* Warn if the r prefix on a general reg is present. */
5786 else if (i.types[op].bitfield.qword
5787 && (i.tm.operand_types[op].bitfield.reg
5788 || i.tm.operand_types[op].bitfield.acc)
5789 && i.tm.operand_types[op].bitfield.dword)
5790 {
5791 if (intel_syntax
5792 && i.tm.opcode_modifier.toqword
5793 && !i.types[0].bitfield.regsimd)
5794 {
5795 /* Convert to QWORD. We want REX byte. */
5796 i.suffix = QWORD_MNEM_SUFFIX;
5797 }
5798 else
5799 {
5800 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5801 register_prefix, i.op[op].regs->reg_name,
5802 i.suffix);
5803 return 0;
5804 }
5805 }
5806 return 1;
5807 }
5808
5809 static int
5810 check_qword_reg (void)
5811 {
5812 int op;
5813
5814 for (op = i.operands; --op >= 0; )
5815 /* Skip non-register operands. */
5816 if (!i.types[op].bitfield.reg)
5817 continue;
5818 /* Reject eight bit registers, except where the template requires
5819 them. (eg. movzb) */
5820 else if (i.types[op].bitfield.byte
5821 && (i.tm.operand_types[op].bitfield.reg
5822 || i.tm.operand_types[op].bitfield.acc)
5823 && (i.tm.operand_types[op].bitfield.word
5824 || i.tm.operand_types[op].bitfield.dword))
5825 {
5826 as_bad (_("`%s%s' not allowed with `%s%c'"),
5827 register_prefix,
5828 i.op[op].regs->reg_name,
5829 i.tm.name,
5830 i.suffix);
5831 return 0;
5832 }
5833 /* Warn if the r prefix on a general reg is missing. */
5834 else if ((i.types[op].bitfield.word
5835 || i.types[op].bitfield.dword)
5836 && (i.tm.operand_types[op].bitfield.reg
5837 || i.tm.operand_types[op].bitfield.acc)
5838 && i.tm.operand_types[op].bitfield.qword)
5839 {
5840 /* Prohibit these changes in the 64bit mode, since the
5841 lowering is more complicated. */
5842 if (intel_syntax
5843 && i.tm.opcode_modifier.todword
5844 && !i.types[0].bitfield.regsimd)
5845 {
5846 /* Convert to DWORD. We don't want REX byte. */
5847 i.suffix = LONG_MNEM_SUFFIX;
5848 }
5849 else
5850 {
5851 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5852 register_prefix, i.op[op].regs->reg_name,
5853 i.suffix);
5854 return 0;
5855 }
5856 }
5857 return 1;
5858 }
5859
5860 static int
5861 check_word_reg (void)
5862 {
5863 int op;
5864 for (op = i.operands; --op >= 0;)
5865 /* Skip non-register operands. */
5866 if (!i.types[op].bitfield.reg)
5867 continue;
5868 /* Reject eight bit registers, except where the template requires
5869 them. (eg. movzb) */
5870 else if (i.types[op].bitfield.byte
5871 && (i.tm.operand_types[op].bitfield.reg
5872 || i.tm.operand_types[op].bitfield.acc)
5873 && (i.tm.operand_types[op].bitfield.word
5874 || i.tm.operand_types[op].bitfield.dword))
5875 {
5876 as_bad (_("`%s%s' not allowed with `%s%c'"),
5877 register_prefix,
5878 i.op[op].regs->reg_name,
5879 i.tm.name,
5880 i.suffix);
5881 return 0;
5882 }
5883 /* Warn if the e or r prefix on a general reg is present. */
5884 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5885 && (i.types[op].bitfield.dword
5886 || i.types[op].bitfield.qword)
5887 && (i.tm.operand_types[op].bitfield.reg
5888 || i.tm.operand_types[op].bitfield.acc)
5889 && i.tm.operand_types[op].bitfield.word)
5890 {
5891 /* Prohibit these changes in the 64bit mode, since the
5892 lowering is more complicated. */
5893 if (flag_code == CODE_64BIT)
5894 {
5895 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5896 register_prefix, i.op[op].regs->reg_name,
5897 i.suffix);
5898 return 0;
5899 }
5900 #if REGISTER_WARNINGS
5901 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5902 register_prefix,
5903 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5904 register_prefix, i.op[op].regs->reg_name, i.suffix);
5905 #endif
5906 }
5907 return 1;
5908 }
5909
5910 static int
5911 update_imm (unsigned int j)
5912 {
5913 i386_operand_type overlap = i.types[j];
5914 if ((overlap.bitfield.imm8
5915 || overlap.bitfield.imm8s
5916 || overlap.bitfield.imm16
5917 || overlap.bitfield.imm32
5918 || overlap.bitfield.imm32s
5919 || overlap.bitfield.imm64)
5920 && !operand_type_equal (&overlap, &imm8)
5921 && !operand_type_equal (&overlap, &imm8s)
5922 && !operand_type_equal (&overlap, &imm16)
5923 && !operand_type_equal (&overlap, &imm32)
5924 && !operand_type_equal (&overlap, &imm32s)
5925 && !operand_type_equal (&overlap, &imm64))
5926 {
5927 if (i.suffix)
5928 {
5929 i386_operand_type temp;
5930
5931 operand_type_set (&temp, 0);
5932 if (i.suffix == BYTE_MNEM_SUFFIX)
5933 {
5934 temp.bitfield.imm8 = overlap.bitfield.imm8;
5935 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5936 }
5937 else if (i.suffix == WORD_MNEM_SUFFIX)
5938 temp.bitfield.imm16 = overlap.bitfield.imm16;
5939 else if (i.suffix == QWORD_MNEM_SUFFIX)
5940 {
5941 temp.bitfield.imm64 = overlap.bitfield.imm64;
5942 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5943 }
5944 else
5945 temp.bitfield.imm32 = overlap.bitfield.imm32;
5946 overlap = temp;
5947 }
5948 else if (operand_type_equal (&overlap, &imm16_32_32s)
5949 || operand_type_equal (&overlap, &imm16_32)
5950 || operand_type_equal (&overlap, &imm16_32s))
5951 {
5952 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5953 overlap = imm16;
5954 else
5955 overlap = imm32s;
5956 }
5957 if (!operand_type_equal (&overlap, &imm8)
5958 && !operand_type_equal (&overlap, &imm8s)
5959 && !operand_type_equal (&overlap, &imm16)
5960 && !operand_type_equal (&overlap, &imm32)
5961 && !operand_type_equal (&overlap, &imm32s)
5962 && !operand_type_equal (&overlap, &imm64))
5963 {
5964 as_bad (_("no instruction mnemonic suffix given; "
5965 "can't determine immediate size"));
5966 return 0;
5967 }
5968 }
5969 i.types[j] = overlap;
5970
5971 return 1;
5972 }
5973
5974 static int
5975 finalize_imm (void)
5976 {
5977 unsigned int j, n;
5978
5979 /* Update the first 2 immediate operands. */
5980 n = i.operands > 2 ? 2 : i.operands;
5981 if (n)
5982 {
5983 for (j = 0; j < n; j++)
5984 if (update_imm (j) == 0)
5985 return 0;
5986
5987 /* The 3rd operand can't be immediate operand. */
5988 gas_assert (operand_type_check (i.types[2], imm) == 0);
5989 }
5990
5991 return 1;
5992 }
5993
5994 static int
5995 process_operands (void)
5996 {
5997 /* Default segment register this instruction will use for memory
5998 accesses. 0 means unknown. This is only for optimizing out
5999 unnecessary segment overrides. */
6000 const seg_entry *default_seg = 0;
6001
6002 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6003 {
6004 unsigned int dupl = i.operands;
6005 unsigned int dest = dupl - 1;
6006 unsigned int j;
6007
6008 /* The destination must be an xmm register. */
6009 gas_assert (i.reg_operands
6010 && MAX_OPERANDS > dupl
6011 && operand_type_equal (&i.types[dest], &regxmm));
6012
6013 if (i.tm.operand_types[0].bitfield.acc
6014 && i.tm.operand_types[0].bitfield.xmmword)
6015 {
6016 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6017 {
6018 /* Keep xmm0 for instructions with VEX prefix and 3
6019 sources. */
6020 i.tm.operand_types[0].bitfield.acc = 0;
6021 i.tm.operand_types[0].bitfield.regsimd = 1;
6022 goto duplicate;
6023 }
6024 else
6025 {
6026 /* We remove the first xmm0 and keep the number of
6027 operands unchanged, which in fact duplicates the
6028 destination. */
6029 for (j = 1; j < i.operands; j++)
6030 {
6031 i.op[j - 1] = i.op[j];
6032 i.types[j - 1] = i.types[j];
6033 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6034 }
6035 }
6036 }
6037 else if (i.tm.opcode_modifier.implicit1stxmm0)
6038 {
6039 gas_assert ((MAX_OPERANDS - 1) > dupl
6040 && (i.tm.opcode_modifier.vexsources
6041 == VEX3SOURCES));
6042
6043 /* Add the implicit xmm0 for instructions with VEX prefix
6044 and 3 sources. */
6045 for (j = i.operands; j > 0; j--)
6046 {
6047 i.op[j] = i.op[j - 1];
6048 i.types[j] = i.types[j - 1];
6049 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6050 }
6051 i.op[0].regs
6052 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6053 i.types[0] = regxmm;
6054 i.tm.operand_types[0] = regxmm;
6055
6056 i.operands += 2;
6057 i.reg_operands += 2;
6058 i.tm.operands += 2;
6059
6060 dupl++;
6061 dest++;
6062 i.op[dupl] = i.op[dest];
6063 i.types[dupl] = i.types[dest];
6064 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6065 }
6066 else
6067 {
6068 duplicate:
6069 i.operands++;
6070 i.reg_operands++;
6071 i.tm.operands++;
6072
6073 i.op[dupl] = i.op[dest];
6074 i.types[dupl] = i.types[dest];
6075 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6076 }
6077
6078 if (i.tm.opcode_modifier.immext)
6079 process_immext ();
6080 }
6081 else if (i.tm.operand_types[0].bitfield.acc
6082 && i.tm.operand_types[0].bitfield.xmmword)
6083 {
6084 unsigned int j;
6085
6086 for (j = 1; j < i.operands; j++)
6087 {
6088 i.op[j - 1] = i.op[j];
6089 i.types[j - 1] = i.types[j];
6090
6091 /* We need to adjust fields in i.tm since they are used by
6092 build_modrm_byte. */
6093 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6094 }
6095
6096 i.operands--;
6097 i.reg_operands--;
6098 i.tm.operands--;
6099 }
6100 else if (i.tm.opcode_modifier.implicitquadgroup)
6101 {
6102 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6103 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6104 unsigned int regnum = register_number (i.op[1].regs);
6105 unsigned int first_reg_in_group = regnum & ~3;
6106 unsigned int last_reg_in_group = first_reg_in_group + 3;
6107 if (regnum != first_reg_in_group) {
6108 as_warn (_("the second source register `%s%s' implicitly denotes"
6109 " `%s%.3s%d' to `%s%.3s%d' source group in `%s'"),
6110 register_prefix, i.op[1].regs->reg_name,
6111 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6112 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6113 i.tm.name);
6114 }
6115 }
6116 else if (i.tm.opcode_modifier.regkludge)
6117 {
6118 /* The imul $imm, %reg instruction is converted into
6119 imul $imm, %reg, %reg, and the clr %reg instruction
6120 is converted into xor %reg, %reg. */
6121
6122 unsigned int first_reg_op;
6123
6124 if (operand_type_check (i.types[0], reg))
6125 first_reg_op = 0;
6126 else
6127 first_reg_op = 1;
6128 /* Pretend we saw the extra register operand. */
6129 gas_assert (i.reg_operands == 1
6130 && i.op[first_reg_op + 1].regs == 0);
6131 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6132 i.types[first_reg_op + 1] = i.types[first_reg_op];
6133 i.operands++;
6134 i.reg_operands++;
6135 }
6136
6137 if (i.tm.opcode_modifier.shortform)
6138 {
6139 if (i.types[0].bitfield.sreg2
6140 || i.types[0].bitfield.sreg3)
6141 {
6142 if (i.tm.base_opcode == POP_SEG_SHORT
6143 && i.op[0].regs->reg_num == 1)
6144 {
6145 as_bad (_("you can't `pop %scs'"), register_prefix);
6146 return 0;
6147 }
6148 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6149 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6150 i.rex |= REX_B;
6151 }
6152 else
6153 {
6154 /* The register or float register operand is in operand
6155 0 or 1. */
6156 unsigned int op;
6157
6158 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6159 || operand_type_check (i.types[0], reg))
6160 op = 0;
6161 else
6162 op = 1;
6163 /* Register goes in low 3 bits of opcode. */
6164 i.tm.base_opcode |= i.op[op].regs->reg_num;
6165 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6166 i.rex |= REX_B;
6167 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6168 {
6169 /* Warn about some common errors, but press on regardless.
6170 The first case can be generated by gcc (<= 2.8.1). */
6171 if (i.operands == 2)
6172 {
6173 /* Reversed arguments on faddp, fsubp, etc. */
6174 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6175 register_prefix, i.op[!intel_syntax].regs->reg_name,
6176 register_prefix, i.op[intel_syntax].regs->reg_name);
6177 }
6178 else
6179 {
6180 /* Extraneous `l' suffix on fp insn. */
6181 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6182 register_prefix, i.op[0].regs->reg_name);
6183 }
6184 }
6185 }
6186 }
6187 else if (i.tm.opcode_modifier.modrm)
6188 {
6189 /* The opcode is completed (modulo i.tm.extension_opcode which
6190 must be put into the modrm byte). Now, we make the modrm and
6191 index base bytes based on all the info we've collected. */
6192
6193 default_seg = build_modrm_byte ();
6194 }
6195 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6196 {
6197 default_seg = &ds;
6198 }
6199 else if (i.tm.opcode_modifier.isstring)
6200 {
6201 /* For the string instructions that allow a segment override
6202 on one of their operands, the default segment is ds. */
6203 default_seg = &ds;
6204 }
6205
6206 if (i.tm.base_opcode == 0x8d /* lea */
6207 && i.seg[0]
6208 && !quiet_warnings)
6209 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6210
6211 /* If a segment was explicitly specified, and the specified segment
6212 is not the default, use an opcode prefix to select it. If we
6213 never figured out what the default segment is, then default_seg
6214 will be zero at this point, and the specified segment prefix will
6215 always be used. */
6216 if ((i.seg[0]) && (i.seg[0] != default_seg))
6217 {
6218 if (!add_prefix (i.seg[0]->seg_prefix))
6219 return 0;
6220 }
6221 return 1;
6222 }
6223
6224 static const seg_entry *
6225 build_modrm_byte (void)
6226 {
6227 const seg_entry *default_seg = 0;
6228 unsigned int source, dest;
6229 int vex_3_sources;
6230
6231 /* The first operand of instructions with VEX prefix and 3 sources
6232 must be VEX_Imm4. */
6233 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6234 if (vex_3_sources)
6235 {
6236 unsigned int nds, reg_slot;
6237 expressionS *exp;
6238
6239 if (i.tm.opcode_modifier.veximmext
6240 && i.tm.opcode_modifier.immext)
6241 {
6242 dest = i.operands - 2;
6243 gas_assert (dest == 3);
6244 }
6245 else
6246 dest = i.operands - 1;
6247 nds = dest - 1;
6248
6249 /* There are 2 kinds of instructions:
6250 1. 5 operands: 4 register operands or 3 register operands
6251 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6252 VexW0 or VexW1. The destination must be either XMM, YMM or
6253 ZMM register.
6254 2. 4 operands: 4 register operands or 3 register operands
6255 plus 1 memory operand, VexXDS, and VexImmExt */
6256 gas_assert ((i.reg_operands == 4
6257 || (i.reg_operands == 3 && i.mem_operands == 1))
6258 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6259 && (i.tm.opcode_modifier.veximmext
6260 || (i.imm_operands == 1
6261 && i.types[0].bitfield.vec_imm4
6262 && (i.tm.opcode_modifier.vexw == VEXW0
6263 || i.tm.opcode_modifier.vexw == VEXW1)
6264 && i.tm.operand_types[dest].bitfield.regsimd)));
6265
6266 if (i.imm_operands == 0)
6267 {
6268 /* When there is no immediate operand, generate an 8bit
6269 immediate operand to encode the first operand. */
6270 exp = &im_expressions[i.imm_operands++];
6271 i.op[i.operands].imms = exp;
6272 i.types[i.operands] = imm8;
6273 i.operands++;
6274 /* If VexW1 is set, the first operand is the source and
6275 the second operand is encoded in the immediate operand. */
6276 if (i.tm.opcode_modifier.vexw == VEXW1)
6277 {
6278 source = 0;
6279 reg_slot = 1;
6280 }
6281 else
6282 {
6283 source = 1;
6284 reg_slot = 0;
6285 }
6286
6287 /* FMA swaps REG and NDS. */
6288 if (i.tm.cpu_flags.bitfield.cpufma)
6289 {
6290 unsigned int tmp;
6291 tmp = reg_slot;
6292 reg_slot = nds;
6293 nds = tmp;
6294 }
6295
6296 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6297 exp->X_op = O_constant;
6298 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6299 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6300 }
6301 else
6302 {
6303 unsigned int imm_slot;
6304
6305 if (i.tm.opcode_modifier.vexw == VEXW0)
6306 {
6307 /* If VexW0 is set, the third operand is the source and
6308 the second operand is encoded in the immediate
6309 operand. */
6310 source = 2;
6311 reg_slot = 1;
6312 }
6313 else
6314 {
6315 /* VexW1 is set, the second operand is the source and
6316 the third operand is encoded in the immediate
6317 operand. */
6318 source = 1;
6319 reg_slot = 2;
6320 }
6321
6322 if (i.tm.opcode_modifier.immext)
6323 {
6324 /* When ImmExt is set, the immediate byte is the last
6325 operand. */
6326 imm_slot = i.operands - 1;
6327 source--;
6328 reg_slot--;
6329 }
6330 else
6331 {
6332 imm_slot = 0;
6333
6334 /* Turn on Imm8 so that output_imm will generate it. */
6335 i.types[imm_slot].bitfield.imm8 = 1;
6336 }
6337
6338 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6339 i.op[imm_slot].imms->X_add_number
6340 |= register_number (i.op[reg_slot].regs) << 4;
6341 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6342 }
6343
6344 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
6345 i.vex.register_specifier = i.op[nds].regs;
6346 }
6347 else
6348 source = dest = 0;
6349
6350 /* i.reg_operands MUST be the number of real register operands;
6351 implicit registers do not count. If there are 3 register
6352 operands, it must be a instruction with VexNDS. For a
6353 instruction with VexNDD, the destination register is encoded
6354 in VEX prefix. If there are 4 register operands, it must be
6355 a instruction with VEX prefix and 3 sources. */
6356 if (i.mem_operands == 0
6357 && ((i.reg_operands == 2
6358 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6359 || (i.reg_operands == 3
6360 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6361 || (i.reg_operands == 4 && vex_3_sources)))
6362 {
6363 switch (i.operands)
6364 {
6365 case 2:
6366 source = 0;
6367 break;
6368 case 3:
6369 /* When there are 3 operands, one of them may be immediate,
6370 which may be the first or the last operand. Otherwise,
6371 the first operand must be shift count register (cl) or it
6372 is an instruction with VexNDS. */
6373 gas_assert (i.imm_operands == 1
6374 || (i.imm_operands == 0
6375 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6376 || i.types[0].bitfield.shiftcount)));
6377 if (operand_type_check (i.types[0], imm)
6378 || i.types[0].bitfield.shiftcount)
6379 source = 1;
6380 else
6381 source = 0;
6382 break;
6383 case 4:
6384 /* When there are 4 operands, the first two must be 8bit
6385 immediate operands. The source operand will be the 3rd
6386 one.
6387
6388 For instructions with VexNDS, if the first operand
6389 an imm8, the source operand is the 2nd one. If the last
6390 operand is imm8, the source operand is the first one. */
6391 gas_assert ((i.imm_operands == 2
6392 && i.types[0].bitfield.imm8
6393 && i.types[1].bitfield.imm8)
6394 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6395 && i.imm_operands == 1
6396 && (i.types[0].bitfield.imm8
6397 || i.types[i.operands - 1].bitfield.imm8
6398 || i.rounding)));
6399 if (i.imm_operands == 2)
6400 source = 2;
6401 else
6402 {
6403 if (i.types[0].bitfield.imm8)
6404 source = 1;
6405 else
6406 source = 0;
6407 }
6408 break;
6409 case 5:
6410 if (i.tm.opcode_modifier.evex)
6411 {
6412 /* For EVEX instructions, when there are 5 operands, the
6413 first one must be immediate operand. If the second one
6414 is immediate operand, the source operand is the 3th
6415 one. If the last one is immediate operand, the source
6416 operand is the 2nd one. */
6417 gas_assert (i.imm_operands == 2
6418 && i.tm.opcode_modifier.sae
6419 && operand_type_check (i.types[0], imm));
6420 if (operand_type_check (i.types[1], imm))
6421 source = 2;
6422 else if (operand_type_check (i.types[4], imm))
6423 source = 1;
6424 else
6425 abort ();
6426 }
6427 break;
6428 default:
6429 abort ();
6430 }
6431
6432 if (!vex_3_sources)
6433 {
6434 dest = source + 1;
6435
6436 /* RC/SAE operand could be between DEST and SRC. That happens
6437 when one operand is GPR and the other one is XMM/YMM/ZMM
6438 register. */
6439 if (i.rounding && i.rounding->operand == (int) dest)
6440 dest++;
6441
6442 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6443 {
6444 /* For instructions with VexNDS, the register-only source
6445 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
6446 register. It is encoded in VEX prefix. We need to
6447 clear RegMem bit before calling operand_type_equal. */
6448
6449 i386_operand_type op;
6450 unsigned int vvvv;
6451
6452 /* Check register-only source operand when two source
6453 operands are swapped. */
6454 if (!i.tm.operand_types[source].bitfield.baseindex
6455 && i.tm.operand_types[dest].bitfield.baseindex)
6456 {
6457 vvvv = source;
6458 source = dest;
6459 }
6460 else
6461 vvvv = dest;
6462
6463 op = i.tm.operand_types[vvvv];
6464 op.bitfield.regmem = 0;
6465 if ((dest + 1) >= i.operands
6466 || ((!op.bitfield.reg
6467 || (!op.bitfield.dword && !op.bitfield.qword))
6468 && !op.bitfield.regsimd
6469 && !operand_type_equal (&op, &regmask)))
6470 abort ();
6471 i.vex.register_specifier = i.op[vvvv].regs;
6472 dest++;
6473 }
6474 }
6475
6476 i.rm.mode = 3;
6477 /* One of the register operands will be encoded in the i.tm.reg
6478 field, the other in the combined i.tm.mode and i.tm.regmem
6479 fields. If no form of this instruction supports a memory
6480 destination operand, then we assume the source operand may
6481 sometimes be a memory operand and so we need to store the
6482 destination in the i.rm.reg field. */
6483 if (!i.tm.operand_types[dest].bitfield.regmem
6484 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6485 {
6486 i.rm.reg = i.op[dest].regs->reg_num;
6487 i.rm.regmem = i.op[source].regs->reg_num;
6488 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6489 i.rex |= REX_R;
6490 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6491 i.vrex |= REX_R;
6492 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6493 i.rex |= REX_B;
6494 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6495 i.vrex |= REX_B;
6496 }
6497 else
6498 {
6499 i.rm.reg = i.op[source].regs->reg_num;
6500 i.rm.regmem = i.op[dest].regs->reg_num;
6501 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6502 i.rex |= REX_B;
6503 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6504 i.vrex |= REX_B;
6505 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6506 i.rex |= REX_R;
6507 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6508 i.vrex |= REX_R;
6509 }
6510 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6511 {
6512 if (!i.types[0].bitfield.control
6513 && !i.types[1].bitfield.control)
6514 abort ();
6515 i.rex &= ~(REX_R | REX_B);
6516 add_prefix (LOCK_PREFIX_OPCODE);
6517 }
6518 }
6519 else
6520 { /* If it's not 2 reg operands... */
6521 unsigned int mem;
6522
6523 if (i.mem_operands)
6524 {
6525 unsigned int fake_zero_displacement = 0;
6526 unsigned int op;
6527
6528 for (op = 0; op < i.operands; op++)
6529 if (operand_type_check (i.types[op], anymem))
6530 break;
6531 gas_assert (op < i.operands);
6532
6533 if (i.tm.opcode_modifier.vecsib)
6534 {
6535 if (i.index_reg->reg_num == RegEiz
6536 || i.index_reg->reg_num == RegRiz)
6537 abort ();
6538
6539 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6540 if (!i.base_reg)
6541 {
6542 i.sib.base = NO_BASE_REGISTER;
6543 i.sib.scale = i.log2_scale_factor;
6544 i.types[op].bitfield.disp8 = 0;
6545 i.types[op].bitfield.disp16 = 0;
6546 i.types[op].bitfield.disp64 = 0;
6547 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6548 {
6549 /* Must be 32 bit */
6550 i.types[op].bitfield.disp32 = 1;
6551 i.types[op].bitfield.disp32s = 0;
6552 }
6553 else
6554 {
6555 i.types[op].bitfield.disp32 = 0;
6556 i.types[op].bitfield.disp32s = 1;
6557 }
6558 }
6559 i.sib.index = i.index_reg->reg_num;
6560 if ((i.index_reg->reg_flags & RegRex) != 0)
6561 i.rex |= REX_X;
6562 if ((i.index_reg->reg_flags & RegVRex) != 0)
6563 i.vrex |= REX_X;
6564 }
6565
6566 default_seg = &ds;
6567
6568 if (i.base_reg == 0)
6569 {
6570 i.rm.mode = 0;
6571 if (!i.disp_operands)
6572 fake_zero_displacement = 1;
6573 if (i.index_reg == 0)
6574 {
6575 gas_assert (!i.tm.opcode_modifier.vecsib);
6576 /* Operand is just <disp> */
6577 if (flag_code == CODE_64BIT)
6578 {
6579 /* 64bit mode overwrites the 32bit absolute
6580 addressing by RIP relative addressing and
6581 absolute addressing is encoded by one of the
6582 redundant SIB forms. */
6583 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6584 i.sib.base = NO_BASE_REGISTER;
6585 i.sib.index = NO_INDEX_REGISTER;
6586 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
6587 ? disp32s : disp32);
6588 }
6589 else if ((flag_code == CODE_16BIT)
6590 ^ (i.prefix[ADDR_PREFIX] != 0))
6591 {
6592 i.rm.regmem = NO_BASE_REGISTER_16;
6593 i.types[op] = disp16;
6594 }
6595 else
6596 {
6597 i.rm.regmem = NO_BASE_REGISTER;
6598 i.types[op] = disp32;
6599 }
6600 }
6601 else if (!i.tm.opcode_modifier.vecsib)
6602 {
6603 /* !i.base_reg && i.index_reg */
6604 if (i.index_reg->reg_num == RegEiz
6605 || i.index_reg->reg_num == RegRiz)
6606 i.sib.index = NO_INDEX_REGISTER;
6607 else
6608 i.sib.index = i.index_reg->reg_num;
6609 i.sib.base = NO_BASE_REGISTER;
6610 i.sib.scale = i.log2_scale_factor;
6611 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6612 i.types[op].bitfield.disp8 = 0;
6613 i.types[op].bitfield.disp16 = 0;
6614 i.types[op].bitfield.disp64 = 0;
6615 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6616 {
6617 /* Must be 32 bit */
6618 i.types[op].bitfield.disp32 = 1;
6619 i.types[op].bitfield.disp32s = 0;
6620 }
6621 else
6622 {
6623 i.types[op].bitfield.disp32 = 0;
6624 i.types[op].bitfield.disp32s = 1;
6625 }
6626 if ((i.index_reg->reg_flags & RegRex) != 0)
6627 i.rex |= REX_X;
6628 }
6629 }
6630 /* RIP addressing for 64bit mode. */
6631 else if (i.base_reg->reg_num == RegRip ||
6632 i.base_reg->reg_num == RegEip)
6633 {
6634 gas_assert (!i.tm.opcode_modifier.vecsib);
6635 i.rm.regmem = NO_BASE_REGISTER;
6636 i.types[op].bitfield.disp8 = 0;
6637 i.types[op].bitfield.disp16 = 0;
6638 i.types[op].bitfield.disp32 = 0;
6639 i.types[op].bitfield.disp32s = 1;
6640 i.types[op].bitfield.disp64 = 0;
6641 i.flags[op] |= Operand_PCrel;
6642 if (! i.disp_operands)
6643 fake_zero_displacement = 1;
6644 }
6645 else if (i.base_reg->reg_type.bitfield.word)
6646 {
6647 gas_assert (!i.tm.opcode_modifier.vecsib);
6648 switch (i.base_reg->reg_num)
6649 {
6650 case 3: /* (%bx) */
6651 if (i.index_reg == 0)
6652 i.rm.regmem = 7;
6653 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6654 i.rm.regmem = i.index_reg->reg_num - 6;
6655 break;
6656 case 5: /* (%bp) */
6657 default_seg = &ss;
6658 if (i.index_reg == 0)
6659 {
6660 i.rm.regmem = 6;
6661 if (operand_type_check (i.types[op], disp) == 0)
6662 {
6663 /* fake (%bp) into 0(%bp) */
6664 i.types[op].bitfield.disp8 = 1;
6665 fake_zero_displacement = 1;
6666 }
6667 }
6668 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6669 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6670 break;
6671 default: /* (%si) -> 4 or (%di) -> 5 */
6672 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6673 }
6674 i.rm.mode = mode_from_disp_size (i.types[op]);
6675 }
6676 else /* i.base_reg and 32/64 bit mode */
6677 {
6678 if (flag_code == CODE_64BIT
6679 && operand_type_check (i.types[op], disp))
6680 {
6681 i386_operand_type temp;
6682 operand_type_set (&temp, 0);
6683 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6684 i.types[op] = temp;
6685 if (i.prefix[ADDR_PREFIX] == 0)
6686 i.types[op].bitfield.disp32s = 1;
6687 else
6688 i.types[op].bitfield.disp32 = 1;
6689 }
6690
6691 if (!i.tm.opcode_modifier.vecsib)
6692 i.rm.regmem = i.base_reg->reg_num;
6693 if ((i.base_reg->reg_flags & RegRex) != 0)
6694 i.rex |= REX_B;
6695 i.sib.base = i.base_reg->reg_num;
6696 /* x86-64 ignores REX prefix bit here to avoid decoder
6697 complications. */
6698 if (!(i.base_reg->reg_flags & RegRex)
6699 && (i.base_reg->reg_num == EBP_REG_NUM
6700 || i.base_reg->reg_num == ESP_REG_NUM))
6701 default_seg = &ss;
6702 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6703 {
6704 fake_zero_displacement = 1;
6705 i.types[op].bitfield.disp8 = 1;
6706 }
6707 i.sib.scale = i.log2_scale_factor;
6708 if (i.index_reg == 0)
6709 {
6710 gas_assert (!i.tm.opcode_modifier.vecsib);
6711 /* <disp>(%esp) becomes two byte modrm with no index
6712 register. We've already stored the code for esp
6713 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6714 Any base register besides %esp will not use the
6715 extra modrm byte. */
6716 i.sib.index = NO_INDEX_REGISTER;
6717 }
6718 else if (!i.tm.opcode_modifier.vecsib)
6719 {
6720 if (i.index_reg->reg_num == RegEiz
6721 || i.index_reg->reg_num == RegRiz)
6722 i.sib.index = NO_INDEX_REGISTER;
6723 else
6724 i.sib.index = i.index_reg->reg_num;
6725 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6726 if ((i.index_reg->reg_flags & RegRex) != 0)
6727 i.rex |= REX_X;
6728 }
6729
6730 if (i.disp_operands
6731 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6732 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6733 i.rm.mode = 0;
6734 else
6735 {
6736 if (!fake_zero_displacement
6737 && !i.disp_operands
6738 && i.disp_encoding)
6739 {
6740 fake_zero_displacement = 1;
6741 if (i.disp_encoding == disp_encoding_8bit)
6742 i.types[op].bitfield.disp8 = 1;
6743 else
6744 i.types[op].bitfield.disp32 = 1;
6745 }
6746 i.rm.mode = mode_from_disp_size (i.types[op]);
6747 }
6748 }
6749
6750 if (fake_zero_displacement)
6751 {
6752 /* Fakes a zero displacement assuming that i.types[op]
6753 holds the correct displacement size. */
6754 expressionS *exp;
6755
6756 gas_assert (i.op[op].disps == 0);
6757 exp = &disp_expressions[i.disp_operands++];
6758 i.op[op].disps = exp;
6759 exp->X_op = O_constant;
6760 exp->X_add_number = 0;
6761 exp->X_add_symbol = (symbolS *) 0;
6762 exp->X_op_symbol = (symbolS *) 0;
6763 }
6764
6765 mem = op;
6766 }
6767 else
6768 mem = ~0;
6769
6770 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
6771 {
6772 if (operand_type_check (i.types[0], imm))
6773 i.vex.register_specifier = NULL;
6774 else
6775 {
6776 /* VEX.vvvv encodes one of the sources when the first
6777 operand is not an immediate. */
6778 if (i.tm.opcode_modifier.vexw == VEXW0)
6779 i.vex.register_specifier = i.op[0].regs;
6780 else
6781 i.vex.register_specifier = i.op[1].regs;
6782 }
6783
6784 /* Destination is a XMM register encoded in the ModRM.reg
6785 and VEX.R bit. */
6786 i.rm.reg = i.op[2].regs->reg_num;
6787 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6788 i.rex |= REX_R;
6789
6790 /* ModRM.rm and VEX.B encodes the other source. */
6791 if (!i.mem_operands)
6792 {
6793 i.rm.mode = 3;
6794
6795 if (i.tm.opcode_modifier.vexw == VEXW0)
6796 i.rm.regmem = i.op[1].regs->reg_num;
6797 else
6798 i.rm.regmem = i.op[0].regs->reg_num;
6799
6800 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6801 i.rex |= REX_B;
6802 }
6803 }
6804 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
6805 {
6806 i.vex.register_specifier = i.op[2].regs;
6807 if (!i.mem_operands)
6808 {
6809 i.rm.mode = 3;
6810 i.rm.regmem = i.op[1].regs->reg_num;
6811 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6812 i.rex |= REX_B;
6813 }
6814 }
6815 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6816 (if any) based on i.tm.extension_opcode. Again, we must be
6817 careful to make sure that segment/control/debug/test/MMX
6818 registers are coded into the i.rm.reg field. */
6819 else if (i.reg_operands)
6820 {
6821 unsigned int op;
6822 unsigned int vex_reg = ~0;
6823
6824 for (op = 0; op < i.operands; op++)
6825 if (i.types[op].bitfield.reg
6826 || i.types[op].bitfield.regmmx
6827 || i.types[op].bitfield.regsimd
6828 || i.types[op].bitfield.regbnd
6829 || i.types[op].bitfield.regmask
6830 || i.types[op].bitfield.sreg2
6831 || i.types[op].bitfield.sreg3
6832 || i.types[op].bitfield.control
6833 || i.types[op].bitfield.debug
6834 || i.types[op].bitfield.test)
6835 break;
6836
6837 if (vex_3_sources)
6838 op = dest;
6839 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6840 {
6841 /* For instructions with VexNDS, the register-only
6842 source operand is encoded in VEX prefix. */
6843 gas_assert (mem != (unsigned int) ~0);
6844
6845 if (op > mem)
6846 {
6847 vex_reg = op++;
6848 gas_assert (op < i.operands);
6849 }
6850 else
6851 {
6852 /* Check register-only source operand when two source
6853 operands are swapped. */
6854 if (!i.tm.operand_types[op].bitfield.baseindex
6855 && i.tm.operand_types[op + 1].bitfield.baseindex)
6856 {
6857 vex_reg = op;
6858 op += 2;
6859 gas_assert (mem == (vex_reg + 1)
6860 && op < i.operands);
6861 }
6862 else
6863 {
6864 vex_reg = op + 1;
6865 gas_assert (vex_reg < i.operands);
6866 }
6867 }
6868 }
6869 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
6870 {
6871 /* For instructions with VexNDD, the register destination
6872 is encoded in VEX prefix. */
6873 if (i.mem_operands == 0)
6874 {
6875 /* There is no memory operand. */
6876 gas_assert ((op + 2) == i.operands);
6877 vex_reg = op + 1;
6878 }
6879 else
6880 {
6881 /* There are only 2 operands. */
6882 gas_assert (op < 2 && i.operands == 2);
6883 vex_reg = 1;
6884 }
6885 }
6886 else
6887 gas_assert (op < i.operands);
6888
6889 if (vex_reg != (unsigned int) ~0)
6890 {
6891 i386_operand_type *type = &i.tm.operand_types[vex_reg];
6892
6893 if ((!type->bitfield.reg
6894 || (!type->bitfield.dword && !type->bitfield.qword))
6895 && !type->bitfield.regsimd
6896 && !operand_type_equal (type, &regmask))
6897 abort ();
6898
6899 i.vex.register_specifier = i.op[vex_reg].regs;
6900 }
6901
6902 /* Don't set OP operand twice. */
6903 if (vex_reg != op)
6904 {
6905 /* If there is an extension opcode to put here, the
6906 register number must be put into the regmem field. */
6907 if (i.tm.extension_opcode != None)
6908 {
6909 i.rm.regmem = i.op[op].regs->reg_num;
6910 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6911 i.rex |= REX_B;
6912 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6913 i.vrex |= REX_B;
6914 }
6915 else
6916 {
6917 i.rm.reg = i.op[op].regs->reg_num;
6918 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6919 i.rex |= REX_R;
6920 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6921 i.vrex |= REX_R;
6922 }
6923 }
6924
6925 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6926 must set it to 3 to indicate this is a register operand
6927 in the regmem field. */
6928 if (!i.mem_operands)
6929 i.rm.mode = 3;
6930 }
6931
6932 /* Fill in i.rm.reg field with extension opcode (if any). */
6933 if (i.tm.extension_opcode != None)
6934 i.rm.reg = i.tm.extension_opcode;
6935 }
6936 return default_seg;
6937 }
6938
6939 static void
6940 output_branch (void)
6941 {
6942 char *p;
6943 int size;
6944 int code16;
6945 int prefix;
6946 relax_substateT subtype;
6947 symbolS *sym;
6948 offsetT off;
6949
6950 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
6951 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
6952
6953 prefix = 0;
6954 if (i.prefix[DATA_PREFIX] != 0)
6955 {
6956 prefix = 1;
6957 i.prefixes -= 1;
6958 code16 ^= CODE16;
6959 }
6960 /* Pentium4 branch hints. */
6961 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6962 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6963 {
6964 prefix++;
6965 i.prefixes--;
6966 }
6967 if (i.prefix[REX_PREFIX] != 0)
6968 {
6969 prefix++;
6970 i.prefixes--;
6971 }
6972
6973 /* BND prefixed jump. */
6974 if (i.prefix[BND_PREFIX] != 0)
6975 {
6976 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6977 i.prefixes -= 1;
6978 }
6979
6980 if (i.prefixes != 0 && !intel_syntax)
6981 as_warn (_("skipping prefixes on this instruction"));
6982
6983 /* It's always a symbol; End frag & setup for relax.
6984 Make sure there is enough room in this frag for the largest
6985 instruction we may generate in md_convert_frag. This is 2
6986 bytes for the opcode and room for the prefix and largest
6987 displacement. */
6988 frag_grow (prefix + 2 + 4);
6989 /* Prefix and 1 opcode byte go in fr_fix. */
6990 p = frag_more (prefix + 1);
6991 if (i.prefix[DATA_PREFIX] != 0)
6992 *p++ = DATA_PREFIX_OPCODE;
6993 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
6994 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
6995 *p++ = i.prefix[SEG_PREFIX];
6996 if (i.prefix[REX_PREFIX] != 0)
6997 *p++ = i.prefix[REX_PREFIX];
6998 *p = i.tm.base_opcode;
6999
7000 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7001 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7002 else if (cpu_arch_flags.bitfield.cpui386)
7003 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7004 else
7005 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7006 subtype |= code16;
7007
7008 sym = i.op[0].disps->X_add_symbol;
7009 off = i.op[0].disps->X_add_number;
7010
7011 if (i.op[0].disps->X_op != O_constant
7012 && i.op[0].disps->X_op != O_symbol)
7013 {
7014 /* Handle complex expressions. */
7015 sym = make_expr_symbol (i.op[0].disps);
7016 off = 0;
7017 }
7018
7019 /* 1 possible extra opcode + 4 byte displacement go in var part.
7020 Pass reloc in fr_var. */
7021 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7022 }
7023
7024 static void
7025 output_jump (void)
7026 {
7027 char *p;
7028 int size;
7029 fixS *fixP;
7030
7031 if (i.tm.opcode_modifier.jumpbyte)
7032 {
7033 /* This is a loop or jecxz type instruction. */
7034 size = 1;
7035 if (i.prefix[ADDR_PREFIX] != 0)
7036 {
7037 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7038 i.prefixes -= 1;
7039 }
7040 /* Pentium4 branch hints. */
7041 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7042 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7043 {
7044 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7045 i.prefixes--;
7046 }
7047 }
7048 else
7049 {
7050 int code16;
7051
7052 code16 = 0;
7053 if (flag_code == CODE_16BIT)
7054 code16 = CODE16;
7055
7056 if (i.prefix[DATA_PREFIX] != 0)
7057 {
7058 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7059 i.prefixes -= 1;
7060 code16 ^= CODE16;
7061 }
7062
7063 size = 4;
7064 if (code16)
7065 size = 2;
7066 }
7067
7068 if (i.prefix[REX_PREFIX] != 0)
7069 {
7070 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7071 i.prefixes -= 1;
7072 }
7073
7074 /* BND prefixed jump. */
7075 if (i.prefix[BND_PREFIX] != 0)
7076 {
7077 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7078 i.prefixes -= 1;
7079 }
7080
7081 if (i.prefixes != 0 && !intel_syntax)
7082 as_warn (_("skipping prefixes on this instruction"));
7083
7084 p = frag_more (i.tm.opcode_length + size);
7085 switch (i.tm.opcode_length)
7086 {
7087 case 2:
7088 *p++ = i.tm.base_opcode >> 8;
7089 /* Fall through. */
7090 case 1:
7091 *p++ = i.tm.base_opcode;
7092 break;
7093 default:
7094 abort ();
7095 }
7096
7097 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7098 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
7099
7100 /* All jumps handled here are signed, but don't use a signed limit
7101 check for 32 and 16 bit jumps as we want to allow wrap around at
7102 4G and 64k respectively. */
7103 if (size == 1)
7104 fixP->fx_signed = 1;
7105 }
7106
7107 static void
7108 output_interseg_jump (void)
7109 {
7110 char *p;
7111 int size;
7112 int prefix;
7113 int code16;
7114
7115 code16 = 0;
7116 if (flag_code == CODE_16BIT)
7117 code16 = CODE16;
7118
7119 prefix = 0;
7120 if (i.prefix[DATA_PREFIX] != 0)
7121 {
7122 prefix = 1;
7123 i.prefixes -= 1;
7124 code16 ^= CODE16;
7125 }
7126 if (i.prefix[REX_PREFIX] != 0)
7127 {
7128 prefix++;
7129 i.prefixes -= 1;
7130 }
7131
7132 size = 4;
7133 if (code16)
7134 size = 2;
7135
7136 if (i.prefixes != 0 && !intel_syntax)
7137 as_warn (_("skipping prefixes on this instruction"));
7138
7139 /* 1 opcode; 2 segment; offset */
7140 p = frag_more (prefix + 1 + 2 + size);
7141
7142 if (i.prefix[DATA_PREFIX] != 0)
7143 *p++ = DATA_PREFIX_OPCODE;
7144
7145 if (i.prefix[REX_PREFIX] != 0)
7146 *p++ = i.prefix[REX_PREFIX];
7147
7148 *p++ = i.tm.base_opcode;
7149 if (i.op[1].imms->X_op == O_constant)
7150 {
7151 offsetT n = i.op[1].imms->X_add_number;
7152
7153 if (size == 2
7154 && !fits_in_unsigned_word (n)
7155 && !fits_in_signed_word (n))
7156 {
7157 as_bad (_("16-bit jump out of range"));
7158 return;
7159 }
7160 md_number_to_chars (p, n, size);
7161 }
7162 else
7163 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7164 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7165 if (i.op[0].imms->X_op != O_constant)
7166 as_bad (_("can't handle non absolute segment in `%s'"),
7167 i.tm.name);
7168 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7169 }
7170
7171 static void
7172 output_insn (void)
7173 {
7174 fragS *insn_start_frag;
7175 offsetT insn_start_off;
7176
7177 /* Tie dwarf2 debug info to the address at the start of the insn.
7178 We can't do this after the insn has been output as the current
7179 frag may have been closed off. eg. by frag_var. */
7180 dwarf2_emit_insn (0);
7181
7182 insn_start_frag = frag_now;
7183 insn_start_off = frag_now_fix ();
7184
7185 /* Output jumps. */
7186 if (i.tm.opcode_modifier.jump)
7187 output_branch ();
7188 else if (i.tm.opcode_modifier.jumpbyte
7189 || i.tm.opcode_modifier.jumpdword)
7190 output_jump ();
7191 else if (i.tm.opcode_modifier.jumpintersegment)
7192 output_interseg_jump ();
7193 else
7194 {
7195 /* Output normal instructions here. */
7196 char *p;
7197 unsigned char *q;
7198 unsigned int j;
7199 unsigned int prefix;
7200
7201 if (avoid_fence
7202 && i.tm.base_opcode == 0xfae
7203 && i.operands == 1
7204 && i.imm_operands == 1
7205 && (i.op[0].imms->X_add_number == 0xe8
7206 || i.op[0].imms->X_add_number == 0xf0
7207 || i.op[0].imms->X_add_number == 0xf8))
7208 {
7209 /* Encode lfence, mfence, and sfence as
7210 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7211 offsetT val = 0x240483f0ULL;
7212 p = frag_more (5);
7213 md_number_to_chars (p, val, 5);
7214 return;
7215 }
7216
7217 /* Some processors fail on LOCK prefix. This options makes
7218 assembler ignore LOCK prefix and serves as a workaround. */
7219 if (omit_lock_prefix)
7220 {
7221 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7222 return;
7223 i.prefix[LOCK_PREFIX] = 0;
7224 }
7225
7226 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7227 don't need the explicit prefix. */
7228 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7229 {
7230 switch (i.tm.opcode_length)
7231 {
7232 case 3:
7233 if (i.tm.base_opcode & 0xff000000)
7234 {
7235 prefix = (i.tm.base_opcode >> 24) & 0xff;
7236 goto check_prefix;
7237 }
7238 break;
7239 case 2:
7240 if ((i.tm.base_opcode & 0xff0000) != 0)
7241 {
7242 prefix = (i.tm.base_opcode >> 16) & 0xff;
7243 if (i.tm.cpu_flags.bitfield.cpupadlock)
7244 {
7245 check_prefix:
7246 if (prefix != REPE_PREFIX_OPCODE
7247 || (i.prefix[REP_PREFIX]
7248 != REPE_PREFIX_OPCODE))
7249 add_prefix (prefix);
7250 }
7251 else
7252 add_prefix (prefix);
7253 }
7254 break;
7255 case 1:
7256 break;
7257 case 0:
7258 /* Check for pseudo prefixes. */
7259 as_bad_where (insn_start_frag->fr_file,
7260 insn_start_frag->fr_line,
7261 _("pseudo prefix without instruction"));
7262 return;
7263 default:
7264 abort ();
7265 }
7266
7267 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7268 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7269 R_X86_64_GOTTPOFF relocation so that linker can safely
7270 perform IE->LE optimization. */
7271 if (x86_elf_abi == X86_64_X32_ABI
7272 && i.operands == 2
7273 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7274 && i.prefix[REX_PREFIX] == 0)
7275 add_prefix (REX_OPCODE);
7276 #endif
7277
7278 /* The prefix bytes. */
7279 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7280 if (*q)
7281 FRAG_APPEND_1_CHAR (*q);
7282 }
7283 else
7284 {
7285 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7286 if (*q)
7287 switch (j)
7288 {
7289 case REX_PREFIX:
7290 /* REX byte is encoded in VEX prefix. */
7291 break;
7292 case SEG_PREFIX:
7293 case ADDR_PREFIX:
7294 FRAG_APPEND_1_CHAR (*q);
7295 break;
7296 default:
7297 /* There should be no other prefixes for instructions
7298 with VEX prefix. */
7299 abort ();
7300 }
7301
7302 /* For EVEX instructions i.vrex should become 0 after
7303 build_evex_prefix. For VEX instructions upper 16 registers
7304 aren't available, so VREX should be 0. */
7305 if (i.vrex)
7306 abort ();
7307 /* Now the VEX prefix. */
7308 p = frag_more (i.vex.length);
7309 for (j = 0; j < i.vex.length; j++)
7310 p[j] = i.vex.bytes[j];
7311 }
7312
7313 /* Now the opcode; be careful about word order here! */
7314 if (i.tm.opcode_length == 1)
7315 {
7316 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7317 }
7318 else
7319 {
7320 switch (i.tm.opcode_length)
7321 {
7322 case 4:
7323 p = frag_more (4);
7324 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7325 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7326 break;
7327 case 3:
7328 p = frag_more (3);
7329 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7330 break;
7331 case 2:
7332 p = frag_more (2);
7333 break;
7334 default:
7335 abort ();
7336 break;
7337 }
7338
7339 /* Put out high byte first: can't use md_number_to_chars! */
7340 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7341 *p = i.tm.base_opcode & 0xff;
7342 }
7343
7344 /* Now the modrm byte and sib byte (if present). */
7345 if (i.tm.opcode_modifier.modrm)
7346 {
7347 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7348 | i.rm.reg << 3
7349 | i.rm.mode << 6));
7350 /* If i.rm.regmem == ESP (4)
7351 && i.rm.mode != (Register mode)
7352 && not 16 bit
7353 ==> need second modrm byte. */
7354 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7355 && i.rm.mode != 3
7356 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
7357 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7358 | i.sib.index << 3
7359 | i.sib.scale << 6));
7360 }
7361
7362 if (i.disp_operands)
7363 output_disp (insn_start_frag, insn_start_off);
7364
7365 if (i.imm_operands)
7366 output_imm (insn_start_frag, insn_start_off);
7367 }
7368
7369 #ifdef DEBUG386
7370 if (flag_debug)
7371 {
7372 pi ("" /*line*/, &i);
7373 }
7374 #endif /* DEBUG386 */
7375 }
7376
7377 /* Return the size of the displacement operand N. */
7378
7379 static int
7380 disp_size (unsigned int n)
7381 {
7382 int size = 4;
7383
7384 if (i.types[n].bitfield.disp64)
7385 size = 8;
7386 else if (i.types[n].bitfield.disp8)
7387 size = 1;
7388 else if (i.types[n].bitfield.disp16)
7389 size = 2;
7390 return size;
7391 }
7392
7393 /* Return the size of the immediate operand N. */
7394
7395 static int
7396 imm_size (unsigned int n)
7397 {
7398 int size = 4;
7399 if (i.types[n].bitfield.imm64)
7400 size = 8;
7401 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7402 size = 1;
7403 else if (i.types[n].bitfield.imm16)
7404 size = 2;
7405 return size;
7406 }
7407
7408 static void
7409 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7410 {
7411 char *p;
7412 unsigned int n;
7413
7414 for (n = 0; n < i.operands; n++)
7415 {
7416 if (operand_type_check (i.types[n], disp))
7417 {
7418 if (i.op[n].disps->X_op == O_constant)
7419 {
7420 int size = disp_size (n);
7421 offsetT val = i.op[n].disps->X_add_number;
7422
7423 val = offset_in_range (val >> i.memshift, size);
7424 p = frag_more (size);
7425 md_number_to_chars (p, val, size);
7426 }
7427 else
7428 {
7429 enum bfd_reloc_code_real reloc_type;
7430 int size = disp_size (n);
7431 int sign = i.types[n].bitfield.disp32s;
7432 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7433 fixS *fixP;
7434
7435 /* We can't have 8 bit displacement here. */
7436 gas_assert (!i.types[n].bitfield.disp8);
7437
7438 /* The PC relative address is computed relative
7439 to the instruction boundary, so in case immediate
7440 fields follows, we need to adjust the value. */
7441 if (pcrel && i.imm_operands)
7442 {
7443 unsigned int n1;
7444 int sz = 0;
7445
7446 for (n1 = 0; n1 < i.operands; n1++)
7447 if (operand_type_check (i.types[n1], imm))
7448 {
7449 /* Only one immediate is allowed for PC
7450 relative address. */
7451 gas_assert (sz == 0);
7452 sz = imm_size (n1);
7453 i.op[n].disps->X_add_number -= sz;
7454 }
7455 /* We should find the immediate. */
7456 gas_assert (sz != 0);
7457 }
7458
7459 p = frag_more (size);
7460 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7461 if (GOT_symbol
7462 && GOT_symbol == i.op[n].disps->X_add_symbol
7463 && (((reloc_type == BFD_RELOC_32
7464 || reloc_type == BFD_RELOC_X86_64_32S
7465 || (reloc_type == BFD_RELOC_64
7466 && object_64bit))
7467 && (i.op[n].disps->X_op == O_symbol
7468 || (i.op[n].disps->X_op == O_add
7469 && ((symbol_get_value_expression
7470 (i.op[n].disps->X_op_symbol)->X_op)
7471 == O_subtract))))
7472 || reloc_type == BFD_RELOC_32_PCREL))
7473 {
7474 offsetT add;
7475
7476 if (insn_start_frag == frag_now)
7477 add = (p - frag_now->fr_literal) - insn_start_off;
7478 else
7479 {
7480 fragS *fr;
7481
7482 add = insn_start_frag->fr_fix - insn_start_off;
7483 for (fr = insn_start_frag->fr_next;
7484 fr && fr != frag_now; fr = fr->fr_next)
7485 add += fr->fr_fix;
7486 add += p - frag_now->fr_literal;
7487 }
7488
7489 if (!object_64bit)
7490 {
7491 reloc_type = BFD_RELOC_386_GOTPC;
7492 i.op[n].imms->X_add_number += add;
7493 }
7494 else if (reloc_type == BFD_RELOC_64)
7495 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7496 else
7497 /* Don't do the adjustment for x86-64, as there
7498 the pcrel addressing is relative to the _next_
7499 insn, and that is taken care of in other code. */
7500 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7501 }
7502 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7503 size, i.op[n].disps, pcrel,
7504 reloc_type);
7505 /* Check for "call/jmp *mem", "mov mem, %reg",
7506 "test %reg, mem" and "binop mem, %reg" where binop
7507 is one of adc, add, and, cmp, or, sbb, sub, xor
7508 instructions. Always generate R_386_GOT32X for
7509 "sym*GOT" operand in 32-bit mode. */
7510 if ((generate_relax_relocations
7511 || (!object_64bit
7512 && i.rm.mode == 0
7513 && i.rm.regmem == 5))
7514 && (i.rm.mode == 2
7515 || (i.rm.mode == 0 && i.rm.regmem == 5))
7516 && ((i.operands == 1
7517 && i.tm.base_opcode == 0xff
7518 && (i.rm.reg == 2 || i.rm.reg == 4))
7519 || (i.operands == 2
7520 && (i.tm.base_opcode == 0x8b
7521 || i.tm.base_opcode == 0x85
7522 || (i.tm.base_opcode & 0xc7) == 0x03))))
7523 {
7524 if (object_64bit)
7525 {
7526 fixP->fx_tcbit = i.rex != 0;
7527 if (i.base_reg
7528 && (i.base_reg->reg_num == RegRip
7529 || i.base_reg->reg_num == RegEip))
7530 fixP->fx_tcbit2 = 1;
7531 }
7532 else
7533 fixP->fx_tcbit2 = 1;
7534 }
7535 }
7536 }
7537 }
7538 }
7539
7540 static void
7541 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7542 {
7543 char *p;
7544 unsigned int n;
7545
7546 for (n = 0; n < i.operands; n++)
7547 {
7548 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7549 if (i.rounding && (int) n == i.rounding->operand)
7550 continue;
7551
7552 if (operand_type_check (i.types[n], imm))
7553 {
7554 if (i.op[n].imms->X_op == O_constant)
7555 {
7556 int size = imm_size (n);
7557 offsetT val;
7558
7559 val = offset_in_range (i.op[n].imms->X_add_number,
7560 size);
7561 p = frag_more (size);
7562 md_number_to_chars (p, val, size);
7563 }
7564 else
7565 {
7566 /* Not absolute_section.
7567 Need a 32-bit fixup (don't support 8bit
7568 non-absolute imms). Try to support other
7569 sizes ... */
7570 enum bfd_reloc_code_real reloc_type;
7571 int size = imm_size (n);
7572 int sign;
7573
7574 if (i.types[n].bitfield.imm32s
7575 && (i.suffix == QWORD_MNEM_SUFFIX
7576 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7577 sign = 1;
7578 else
7579 sign = 0;
7580
7581 p = frag_more (size);
7582 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7583
7584 /* This is tough to explain. We end up with this one if we
7585 * have operands that look like
7586 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7587 * obtain the absolute address of the GOT, and it is strongly
7588 * preferable from a performance point of view to avoid using
7589 * a runtime relocation for this. The actual sequence of
7590 * instructions often look something like:
7591 *
7592 * call .L66
7593 * .L66:
7594 * popl %ebx
7595 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7596 *
7597 * The call and pop essentially return the absolute address
7598 * of the label .L66 and store it in %ebx. The linker itself
7599 * will ultimately change the first operand of the addl so
7600 * that %ebx points to the GOT, but to keep things simple, the
7601 * .o file must have this operand set so that it generates not
7602 * the absolute address of .L66, but the absolute address of
7603 * itself. This allows the linker itself simply treat a GOTPC
7604 * relocation as asking for a pcrel offset to the GOT to be
7605 * added in, and the addend of the relocation is stored in the
7606 * operand field for the instruction itself.
7607 *
7608 * Our job here is to fix the operand so that it would add
7609 * the correct offset so that %ebx would point to itself. The
7610 * thing that is tricky is that .-.L66 will point to the
7611 * beginning of the instruction, so we need to further modify
7612 * the operand so that it will point to itself. There are
7613 * other cases where you have something like:
7614 *
7615 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7616 *
7617 * and here no correction would be required. Internally in
7618 * the assembler we treat operands of this form as not being
7619 * pcrel since the '.' is explicitly mentioned, and I wonder
7620 * whether it would simplify matters to do it this way. Who
7621 * knows. In earlier versions of the PIC patches, the
7622 * pcrel_adjust field was used to store the correction, but
7623 * since the expression is not pcrel, I felt it would be
7624 * confusing to do it this way. */
7625
7626 if ((reloc_type == BFD_RELOC_32
7627 || reloc_type == BFD_RELOC_X86_64_32S
7628 || reloc_type == BFD_RELOC_64)
7629 && GOT_symbol
7630 && GOT_symbol == i.op[n].imms->X_add_symbol
7631 && (i.op[n].imms->X_op == O_symbol
7632 || (i.op[n].imms->X_op == O_add
7633 && ((symbol_get_value_expression
7634 (i.op[n].imms->X_op_symbol)->X_op)
7635 == O_subtract))))
7636 {
7637 offsetT add;
7638
7639 if (insn_start_frag == frag_now)
7640 add = (p - frag_now->fr_literal) - insn_start_off;
7641 else
7642 {
7643 fragS *fr;
7644
7645 add = insn_start_frag->fr_fix - insn_start_off;
7646 for (fr = insn_start_frag->fr_next;
7647 fr && fr != frag_now; fr = fr->fr_next)
7648 add += fr->fr_fix;
7649 add += p - frag_now->fr_literal;
7650 }
7651
7652 if (!object_64bit)
7653 reloc_type = BFD_RELOC_386_GOTPC;
7654 else if (size == 4)
7655 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7656 else if (size == 8)
7657 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7658 i.op[n].imms->X_add_number += add;
7659 }
7660 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7661 i.op[n].imms, 0, reloc_type);
7662 }
7663 }
7664 }
7665 }
7666 \f
7667 /* x86_cons_fix_new is called via the expression parsing code when a
7668 reloc is needed. We use this hook to get the correct .got reloc. */
7669 static int cons_sign = -1;
7670
7671 void
7672 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
7673 expressionS *exp, bfd_reloc_code_real_type r)
7674 {
7675 r = reloc (len, 0, cons_sign, r);
7676
7677 #ifdef TE_PE
7678 if (exp->X_op == O_secrel)
7679 {
7680 exp->X_op = O_symbol;
7681 r = BFD_RELOC_32_SECREL;
7682 }
7683 #endif
7684
7685 fix_new_exp (frag, off, len, exp, 0, r);
7686 }
7687
7688 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7689 purpose of the `.dc.a' internal pseudo-op. */
7690
7691 int
7692 x86_address_bytes (void)
7693 {
7694 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7695 return 4;
7696 return stdoutput->arch_info->bits_per_address / 8;
7697 }
7698
7699 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7700 || defined (LEX_AT)
7701 # define lex_got(reloc, adjust, types) NULL
7702 #else
7703 /* Parse operands of the form
7704 <symbol>@GOTOFF+<nnn>
7705 and similar .plt or .got references.
7706
7707 If we find one, set up the correct relocation in RELOC and copy the
7708 input string, minus the `@GOTOFF' into a malloc'd buffer for
7709 parsing by the calling routine. Return this buffer, and if ADJUST
7710 is non-null set it to the length of the string we removed from the
7711 input line. Otherwise return NULL. */
7712 static char *
7713 lex_got (enum bfd_reloc_code_real *rel,
7714 int *adjust,
7715 i386_operand_type *types)
7716 {
7717 /* Some of the relocations depend on the size of what field is to
7718 be relocated. But in our callers i386_immediate and i386_displacement
7719 we don't yet know the operand size (this will be set by insn
7720 matching). Hence we record the word32 relocation here,
7721 and adjust the reloc according to the real size in reloc(). */
7722 static const struct {
7723 const char *str;
7724 int len;
7725 const enum bfd_reloc_code_real rel[2];
7726 const i386_operand_type types64;
7727 } gotrel[] = {
7728 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7729 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7730 BFD_RELOC_SIZE32 },
7731 OPERAND_TYPE_IMM32_64 },
7732 #endif
7733 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7734 BFD_RELOC_X86_64_PLTOFF64 },
7735 OPERAND_TYPE_IMM64 },
7736 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7737 BFD_RELOC_X86_64_PLT32 },
7738 OPERAND_TYPE_IMM32_32S_DISP32 },
7739 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7740 BFD_RELOC_X86_64_GOTPLT64 },
7741 OPERAND_TYPE_IMM64_DISP64 },
7742 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7743 BFD_RELOC_X86_64_GOTOFF64 },
7744 OPERAND_TYPE_IMM64_DISP64 },
7745 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7746 BFD_RELOC_X86_64_GOTPCREL },
7747 OPERAND_TYPE_IMM32_32S_DISP32 },
7748 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7749 BFD_RELOC_X86_64_TLSGD },
7750 OPERAND_TYPE_IMM32_32S_DISP32 },
7751 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7752 _dummy_first_bfd_reloc_code_real },
7753 OPERAND_TYPE_NONE },
7754 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7755 BFD_RELOC_X86_64_TLSLD },
7756 OPERAND_TYPE_IMM32_32S_DISP32 },
7757 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7758 BFD_RELOC_X86_64_GOTTPOFF },
7759 OPERAND_TYPE_IMM32_32S_DISP32 },
7760 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7761 BFD_RELOC_X86_64_TPOFF32 },
7762 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7763 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7764 _dummy_first_bfd_reloc_code_real },
7765 OPERAND_TYPE_NONE },
7766 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7767 BFD_RELOC_X86_64_DTPOFF32 },
7768 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7769 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7770 _dummy_first_bfd_reloc_code_real },
7771 OPERAND_TYPE_NONE },
7772 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7773 _dummy_first_bfd_reloc_code_real },
7774 OPERAND_TYPE_NONE },
7775 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7776 BFD_RELOC_X86_64_GOT32 },
7777 OPERAND_TYPE_IMM32_32S_64_DISP32 },
7778 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7779 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
7780 OPERAND_TYPE_IMM32_32S_DISP32 },
7781 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7782 BFD_RELOC_X86_64_TLSDESC_CALL },
7783 OPERAND_TYPE_IMM32_32S_DISP32 },
7784 };
7785 char *cp;
7786 unsigned int j;
7787
7788 #if defined (OBJ_MAYBE_ELF)
7789 if (!IS_ELF)
7790 return NULL;
7791 #endif
7792
7793 for (cp = input_line_pointer; *cp != '@'; cp++)
7794 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7795 return NULL;
7796
7797 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7798 {
7799 int len = gotrel[j].len;
7800 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7801 {
7802 if (gotrel[j].rel[object_64bit] != 0)
7803 {
7804 int first, second;
7805 char *tmpbuf, *past_reloc;
7806
7807 *rel = gotrel[j].rel[object_64bit];
7808
7809 if (types)
7810 {
7811 if (flag_code != CODE_64BIT)
7812 {
7813 types->bitfield.imm32 = 1;
7814 types->bitfield.disp32 = 1;
7815 }
7816 else
7817 *types = gotrel[j].types64;
7818 }
7819
7820 if (j != 0 && GOT_symbol == NULL)
7821 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7822
7823 /* The length of the first part of our input line. */
7824 first = cp - input_line_pointer;
7825
7826 /* The second part goes from after the reloc token until
7827 (and including) an end_of_line char or comma. */
7828 past_reloc = cp + 1 + len;
7829 cp = past_reloc;
7830 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7831 ++cp;
7832 second = cp + 1 - past_reloc;
7833
7834 /* Allocate and copy string. The trailing NUL shouldn't
7835 be necessary, but be safe. */
7836 tmpbuf = XNEWVEC (char, first + second + 2);
7837 memcpy (tmpbuf, input_line_pointer, first);
7838 if (second != 0 && *past_reloc != ' ')
7839 /* Replace the relocation token with ' ', so that
7840 errors like foo@GOTOFF1 will be detected. */
7841 tmpbuf[first++] = ' ';
7842 else
7843 /* Increment length by 1 if the relocation token is
7844 removed. */
7845 len++;
7846 if (adjust)
7847 *adjust = len;
7848 memcpy (tmpbuf + first, past_reloc, second);
7849 tmpbuf[first + second] = '\0';
7850 return tmpbuf;
7851 }
7852
7853 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7854 gotrel[j].str, 1 << (5 + object_64bit));
7855 return NULL;
7856 }
7857 }
7858
7859 /* Might be a symbol version string. Don't as_bad here. */
7860 return NULL;
7861 }
7862 #endif
7863
7864 #ifdef TE_PE
7865 #ifdef lex_got
7866 #undef lex_got
7867 #endif
7868 /* Parse operands of the form
7869 <symbol>@SECREL32+<nnn>
7870
7871 If we find one, set up the correct relocation in RELOC and copy the
7872 input string, minus the `@SECREL32' into a malloc'd buffer for
7873 parsing by the calling routine. Return this buffer, and if ADJUST
7874 is non-null set it to the length of the string we removed from the
7875 input line. Otherwise return NULL.
7876
7877 This function is copied from the ELF version above adjusted for PE targets. */
7878
7879 static char *
7880 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7881 int *adjust ATTRIBUTE_UNUSED,
7882 i386_operand_type *types)
7883 {
7884 static const struct
7885 {
7886 const char *str;
7887 int len;
7888 const enum bfd_reloc_code_real rel[2];
7889 const i386_operand_type types64;
7890 }
7891 gotrel[] =
7892 {
7893 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7894 BFD_RELOC_32_SECREL },
7895 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7896 };
7897
7898 char *cp;
7899 unsigned j;
7900
7901 for (cp = input_line_pointer; *cp != '@'; cp++)
7902 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7903 return NULL;
7904
7905 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7906 {
7907 int len = gotrel[j].len;
7908
7909 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7910 {
7911 if (gotrel[j].rel[object_64bit] != 0)
7912 {
7913 int first, second;
7914 char *tmpbuf, *past_reloc;
7915
7916 *rel = gotrel[j].rel[object_64bit];
7917 if (adjust)
7918 *adjust = len;
7919
7920 if (types)
7921 {
7922 if (flag_code != CODE_64BIT)
7923 {
7924 types->bitfield.imm32 = 1;
7925 types->bitfield.disp32 = 1;
7926 }
7927 else
7928 *types = gotrel[j].types64;
7929 }
7930
7931 /* The length of the first part of our input line. */
7932 first = cp - input_line_pointer;
7933
7934 /* The second part goes from after the reloc token until
7935 (and including) an end_of_line char or comma. */
7936 past_reloc = cp + 1 + len;
7937 cp = past_reloc;
7938 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7939 ++cp;
7940 second = cp + 1 - past_reloc;
7941
7942 /* Allocate and copy string. The trailing NUL shouldn't
7943 be necessary, but be safe. */
7944 tmpbuf = XNEWVEC (char, first + second + 2);
7945 memcpy (tmpbuf, input_line_pointer, first);
7946 if (second != 0 && *past_reloc != ' ')
7947 /* Replace the relocation token with ' ', so that
7948 errors like foo@SECLREL321 will be detected. */
7949 tmpbuf[first++] = ' ';
7950 memcpy (tmpbuf + first, past_reloc, second);
7951 tmpbuf[first + second] = '\0';
7952 return tmpbuf;
7953 }
7954
7955 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7956 gotrel[j].str, 1 << (5 + object_64bit));
7957 return NULL;
7958 }
7959 }
7960
7961 /* Might be a symbol version string. Don't as_bad here. */
7962 return NULL;
7963 }
7964
7965 #endif /* TE_PE */
7966
7967 bfd_reloc_code_real_type
7968 x86_cons (expressionS *exp, int size)
7969 {
7970 bfd_reloc_code_real_type got_reloc = NO_RELOC;
7971
7972 intel_syntax = -intel_syntax;
7973
7974 exp->X_md = 0;
7975 if (size == 4 || (object_64bit && size == 8))
7976 {
7977 /* Handle @GOTOFF and the like in an expression. */
7978 char *save;
7979 char *gotfree_input_line;
7980 int adjust = 0;
7981
7982 save = input_line_pointer;
7983 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
7984 if (gotfree_input_line)
7985 input_line_pointer = gotfree_input_line;
7986
7987 expression (exp);
7988
7989 if (gotfree_input_line)
7990 {
7991 /* expression () has merrily parsed up to the end of line,
7992 or a comma - in the wrong buffer. Transfer how far
7993 input_line_pointer has moved to the right buffer. */
7994 input_line_pointer = (save
7995 + (input_line_pointer - gotfree_input_line)
7996 + adjust);
7997 free (gotfree_input_line);
7998 if (exp->X_op == O_constant
7999 || exp->X_op == O_absent
8000 || exp->X_op == O_illegal
8001 || exp->X_op == O_register
8002 || exp->X_op == O_big)
8003 {
8004 char c = *input_line_pointer;
8005 *input_line_pointer = 0;
8006 as_bad (_("missing or invalid expression `%s'"), save);
8007 *input_line_pointer = c;
8008 }
8009 }
8010 }
8011 else
8012 expression (exp);
8013
8014 intel_syntax = -intel_syntax;
8015
8016 if (intel_syntax)
8017 i386_intel_simplify (exp);
8018
8019 return got_reloc;
8020 }
8021
8022 static void
8023 signed_cons (int size)
8024 {
8025 if (flag_code == CODE_64BIT)
8026 cons_sign = 1;
8027 cons (size);
8028 cons_sign = -1;
8029 }
8030
8031 #ifdef TE_PE
8032 static void
8033 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8034 {
8035 expressionS exp;
8036
8037 do
8038 {
8039 expression (&exp);
8040 if (exp.X_op == O_symbol)
8041 exp.X_op = O_secrel;
8042
8043 emit_expr (&exp, 4);
8044 }
8045 while (*input_line_pointer++ == ',');
8046
8047 input_line_pointer--;
8048 demand_empty_rest_of_line ();
8049 }
8050 #endif
8051
8052 /* Handle Vector operations. */
8053
8054 static char *
8055 check_VecOperations (char *op_string, char *op_end)
8056 {
8057 const reg_entry *mask;
8058 const char *saved;
8059 char *end_op;
8060
8061 while (*op_string
8062 && (op_end == NULL || op_string < op_end))
8063 {
8064 saved = op_string;
8065 if (*op_string == '{')
8066 {
8067 op_string++;
8068
8069 /* Check broadcasts. */
8070 if (strncmp (op_string, "1to", 3) == 0)
8071 {
8072 int bcst_type;
8073
8074 if (i.broadcast)
8075 goto duplicated_vec_op;
8076
8077 op_string += 3;
8078 if (*op_string == '8')
8079 bcst_type = BROADCAST_1TO8;
8080 else if (*op_string == '4')
8081 bcst_type = BROADCAST_1TO4;
8082 else if (*op_string == '2')
8083 bcst_type = BROADCAST_1TO2;
8084 else if (*op_string == '1'
8085 && *(op_string+1) == '6')
8086 {
8087 bcst_type = BROADCAST_1TO16;
8088 op_string++;
8089 }
8090 else
8091 {
8092 as_bad (_("Unsupported broadcast: `%s'"), saved);
8093 return NULL;
8094 }
8095 op_string++;
8096
8097 broadcast_op.type = bcst_type;
8098 broadcast_op.operand = this_operand;
8099 i.broadcast = &broadcast_op;
8100 }
8101 /* Check masking operation. */
8102 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8103 {
8104 /* k0 can't be used for write mask. */
8105 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
8106 {
8107 as_bad (_("`%s%s' can't be used for write mask"),
8108 register_prefix, mask->reg_name);
8109 return NULL;
8110 }
8111
8112 if (!i.mask)
8113 {
8114 mask_op.mask = mask;
8115 mask_op.zeroing = 0;
8116 mask_op.operand = this_operand;
8117 i.mask = &mask_op;
8118 }
8119 else
8120 {
8121 if (i.mask->mask)
8122 goto duplicated_vec_op;
8123
8124 i.mask->mask = mask;
8125
8126 /* Only "{z}" is allowed here. No need to check
8127 zeroing mask explicitly. */
8128 if (i.mask->operand != this_operand)
8129 {
8130 as_bad (_("invalid write mask `%s'"), saved);
8131 return NULL;
8132 }
8133 }
8134
8135 op_string = end_op;
8136 }
8137 /* Check zeroing-flag for masking operation. */
8138 else if (*op_string == 'z')
8139 {
8140 if (!i.mask)
8141 {
8142 mask_op.mask = NULL;
8143 mask_op.zeroing = 1;
8144 mask_op.operand = this_operand;
8145 i.mask = &mask_op;
8146 }
8147 else
8148 {
8149 if (i.mask->zeroing)
8150 {
8151 duplicated_vec_op:
8152 as_bad (_("duplicated `%s'"), saved);
8153 return NULL;
8154 }
8155
8156 i.mask->zeroing = 1;
8157
8158 /* Only "{%k}" is allowed here. No need to check mask
8159 register explicitly. */
8160 if (i.mask->operand != this_operand)
8161 {
8162 as_bad (_("invalid zeroing-masking `%s'"),
8163 saved);
8164 return NULL;
8165 }
8166 }
8167
8168 op_string++;
8169 }
8170 else
8171 goto unknown_vec_op;
8172
8173 if (*op_string != '}')
8174 {
8175 as_bad (_("missing `}' in `%s'"), saved);
8176 return NULL;
8177 }
8178 op_string++;
8179 continue;
8180 }
8181 unknown_vec_op:
8182 /* We don't know this one. */
8183 as_bad (_("unknown vector operation: `%s'"), saved);
8184 return NULL;
8185 }
8186
8187 if (i.mask && i.mask->zeroing && !i.mask->mask)
8188 {
8189 as_bad (_("zeroing-masking only allowed with write mask"));
8190 return NULL;
8191 }
8192
8193 return op_string;
8194 }
8195
8196 static int
8197 i386_immediate (char *imm_start)
8198 {
8199 char *save_input_line_pointer;
8200 char *gotfree_input_line;
8201 segT exp_seg = 0;
8202 expressionS *exp;
8203 i386_operand_type types;
8204
8205 operand_type_set (&types, ~0);
8206
8207 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8208 {
8209 as_bad (_("at most %d immediate operands are allowed"),
8210 MAX_IMMEDIATE_OPERANDS);
8211 return 0;
8212 }
8213
8214 exp = &im_expressions[i.imm_operands++];
8215 i.op[this_operand].imms = exp;
8216
8217 if (is_space_char (*imm_start))
8218 ++imm_start;
8219
8220 save_input_line_pointer = input_line_pointer;
8221 input_line_pointer = imm_start;
8222
8223 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8224 if (gotfree_input_line)
8225 input_line_pointer = gotfree_input_line;
8226
8227 exp_seg = expression (exp);
8228
8229 SKIP_WHITESPACE ();
8230
8231 /* Handle vector operations. */
8232 if (*input_line_pointer == '{')
8233 {
8234 input_line_pointer = check_VecOperations (input_line_pointer,
8235 NULL);
8236 if (input_line_pointer == NULL)
8237 return 0;
8238 }
8239
8240 if (*input_line_pointer)
8241 as_bad (_("junk `%s' after expression"), input_line_pointer);
8242
8243 input_line_pointer = save_input_line_pointer;
8244 if (gotfree_input_line)
8245 {
8246 free (gotfree_input_line);
8247
8248 if (exp->X_op == O_constant || exp->X_op == O_register)
8249 exp->X_op = O_illegal;
8250 }
8251
8252 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8253 }
8254
8255 static int
8256 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8257 i386_operand_type types, const char *imm_start)
8258 {
8259 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8260 {
8261 if (imm_start)
8262 as_bad (_("missing or invalid immediate expression `%s'"),
8263 imm_start);
8264 return 0;
8265 }
8266 else if (exp->X_op == O_constant)
8267 {
8268 /* Size it properly later. */
8269 i.types[this_operand].bitfield.imm64 = 1;
8270 /* If not 64bit, sign extend val. */
8271 if (flag_code != CODE_64BIT
8272 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8273 exp->X_add_number
8274 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8275 }
8276 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8277 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8278 && exp_seg != absolute_section
8279 && exp_seg != text_section
8280 && exp_seg != data_section
8281 && exp_seg != bss_section
8282 && exp_seg != undefined_section
8283 && !bfd_is_com_section (exp_seg))
8284 {
8285 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8286 return 0;
8287 }
8288 #endif
8289 else if (!intel_syntax && exp_seg == reg_section)
8290 {
8291 if (imm_start)
8292 as_bad (_("illegal immediate register operand %s"), imm_start);
8293 return 0;
8294 }
8295 else
8296 {
8297 /* This is an address. The size of the address will be
8298 determined later, depending on destination register,
8299 suffix, or the default for the section. */
8300 i.types[this_operand].bitfield.imm8 = 1;
8301 i.types[this_operand].bitfield.imm16 = 1;
8302 i.types[this_operand].bitfield.imm32 = 1;
8303 i.types[this_operand].bitfield.imm32s = 1;
8304 i.types[this_operand].bitfield.imm64 = 1;
8305 i.types[this_operand] = operand_type_and (i.types[this_operand],
8306 types);
8307 }
8308
8309 return 1;
8310 }
8311
8312 static char *
8313 i386_scale (char *scale)
8314 {
8315 offsetT val;
8316 char *save = input_line_pointer;
8317
8318 input_line_pointer = scale;
8319 val = get_absolute_expression ();
8320
8321 switch (val)
8322 {
8323 case 1:
8324 i.log2_scale_factor = 0;
8325 break;
8326 case 2:
8327 i.log2_scale_factor = 1;
8328 break;
8329 case 4:
8330 i.log2_scale_factor = 2;
8331 break;
8332 case 8:
8333 i.log2_scale_factor = 3;
8334 break;
8335 default:
8336 {
8337 char sep = *input_line_pointer;
8338
8339 *input_line_pointer = '\0';
8340 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8341 scale);
8342 *input_line_pointer = sep;
8343 input_line_pointer = save;
8344 return NULL;
8345 }
8346 }
8347 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8348 {
8349 as_warn (_("scale factor of %d without an index register"),
8350 1 << i.log2_scale_factor);
8351 i.log2_scale_factor = 0;
8352 }
8353 scale = input_line_pointer;
8354 input_line_pointer = save;
8355 return scale;
8356 }
8357
8358 static int
8359 i386_displacement (char *disp_start, char *disp_end)
8360 {
8361 expressionS *exp;
8362 segT exp_seg = 0;
8363 char *save_input_line_pointer;
8364 char *gotfree_input_line;
8365 int override;
8366 i386_operand_type bigdisp, types = anydisp;
8367 int ret;
8368
8369 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8370 {
8371 as_bad (_("at most %d displacement operands are allowed"),
8372 MAX_MEMORY_OPERANDS);
8373 return 0;
8374 }
8375
8376 operand_type_set (&bigdisp, 0);
8377 if ((i.types[this_operand].bitfield.jumpabsolute)
8378 || (!current_templates->start->opcode_modifier.jump
8379 && !current_templates->start->opcode_modifier.jumpdword))
8380 {
8381 bigdisp.bitfield.disp32 = 1;
8382 override = (i.prefix[ADDR_PREFIX] != 0);
8383 if (flag_code == CODE_64BIT)
8384 {
8385 if (!override)
8386 {
8387 bigdisp.bitfield.disp32s = 1;
8388 bigdisp.bitfield.disp64 = 1;
8389 }
8390 }
8391 else if ((flag_code == CODE_16BIT) ^ override)
8392 {
8393 bigdisp.bitfield.disp32 = 0;
8394 bigdisp.bitfield.disp16 = 1;
8395 }
8396 }
8397 else
8398 {
8399 /* For PC-relative branches, the width of the displacement
8400 is dependent upon data size, not address size. */
8401 override = (i.prefix[DATA_PREFIX] != 0);
8402 if (flag_code == CODE_64BIT)
8403 {
8404 if (override || i.suffix == WORD_MNEM_SUFFIX)
8405 bigdisp.bitfield.disp16 = 1;
8406 else
8407 {
8408 bigdisp.bitfield.disp32 = 1;
8409 bigdisp.bitfield.disp32s = 1;
8410 }
8411 }
8412 else
8413 {
8414 if (!override)
8415 override = (i.suffix == (flag_code != CODE_16BIT
8416 ? WORD_MNEM_SUFFIX
8417 : LONG_MNEM_SUFFIX));
8418 bigdisp.bitfield.disp32 = 1;
8419 if ((flag_code == CODE_16BIT) ^ override)
8420 {
8421 bigdisp.bitfield.disp32 = 0;
8422 bigdisp.bitfield.disp16 = 1;
8423 }
8424 }
8425 }
8426 i.types[this_operand] = operand_type_or (i.types[this_operand],
8427 bigdisp);
8428
8429 exp = &disp_expressions[i.disp_operands];
8430 i.op[this_operand].disps = exp;
8431 i.disp_operands++;
8432 save_input_line_pointer = input_line_pointer;
8433 input_line_pointer = disp_start;
8434 END_STRING_AND_SAVE (disp_end);
8435
8436 #ifndef GCC_ASM_O_HACK
8437 #define GCC_ASM_O_HACK 0
8438 #endif
8439 #if GCC_ASM_O_HACK
8440 END_STRING_AND_SAVE (disp_end + 1);
8441 if (i.types[this_operand].bitfield.baseIndex
8442 && displacement_string_end[-1] == '+')
8443 {
8444 /* This hack is to avoid a warning when using the "o"
8445 constraint within gcc asm statements.
8446 For instance:
8447
8448 #define _set_tssldt_desc(n,addr,limit,type) \
8449 __asm__ __volatile__ ( \
8450 "movw %w2,%0\n\t" \
8451 "movw %w1,2+%0\n\t" \
8452 "rorl $16,%1\n\t" \
8453 "movb %b1,4+%0\n\t" \
8454 "movb %4,5+%0\n\t" \
8455 "movb $0,6+%0\n\t" \
8456 "movb %h1,7+%0\n\t" \
8457 "rorl $16,%1" \
8458 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8459
8460 This works great except that the output assembler ends
8461 up looking a bit weird if it turns out that there is
8462 no offset. You end up producing code that looks like:
8463
8464 #APP
8465 movw $235,(%eax)
8466 movw %dx,2+(%eax)
8467 rorl $16,%edx
8468 movb %dl,4+(%eax)
8469 movb $137,5+(%eax)
8470 movb $0,6+(%eax)
8471 movb %dh,7+(%eax)
8472 rorl $16,%edx
8473 #NO_APP
8474
8475 So here we provide the missing zero. */
8476
8477 *displacement_string_end = '0';
8478 }
8479 #endif
8480 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8481 if (gotfree_input_line)
8482 input_line_pointer = gotfree_input_line;
8483
8484 exp_seg = expression (exp);
8485
8486 SKIP_WHITESPACE ();
8487 if (*input_line_pointer)
8488 as_bad (_("junk `%s' after expression"), input_line_pointer);
8489 #if GCC_ASM_O_HACK
8490 RESTORE_END_STRING (disp_end + 1);
8491 #endif
8492 input_line_pointer = save_input_line_pointer;
8493 if (gotfree_input_line)
8494 {
8495 free (gotfree_input_line);
8496
8497 if (exp->X_op == O_constant || exp->X_op == O_register)
8498 exp->X_op = O_illegal;
8499 }
8500
8501 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8502
8503 RESTORE_END_STRING (disp_end);
8504
8505 return ret;
8506 }
8507
8508 static int
8509 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8510 i386_operand_type types, const char *disp_start)
8511 {
8512 i386_operand_type bigdisp;
8513 int ret = 1;
8514
8515 /* We do this to make sure that the section symbol is in
8516 the symbol table. We will ultimately change the relocation
8517 to be relative to the beginning of the section. */
8518 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8519 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8520 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8521 {
8522 if (exp->X_op != O_symbol)
8523 goto inv_disp;
8524
8525 if (S_IS_LOCAL (exp->X_add_symbol)
8526 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8527 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8528 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8529 exp->X_op = O_subtract;
8530 exp->X_op_symbol = GOT_symbol;
8531 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8532 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8533 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8534 i.reloc[this_operand] = BFD_RELOC_64;
8535 else
8536 i.reloc[this_operand] = BFD_RELOC_32;
8537 }
8538
8539 else if (exp->X_op == O_absent
8540 || exp->X_op == O_illegal
8541 || exp->X_op == O_big)
8542 {
8543 inv_disp:
8544 as_bad (_("missing or invalid displacement expression `%s'"),
8545 disp_start);
8546 ret = 0;
8547 }
8548
8549 else if (flag_code == CODE_64BIT
8550 && !i.prefix[ADDR_PREFIX]
8551 && exp->X_op == O_constant)
8552 {
8553 /* Since displacement is signed extended to 64bit, don't allow
8554 disp32 and turn off disp32s if they are out of range. */
8555 i.types[this_operand].bitfield.disp32 = 0;
8556 if (!fits_in_signed_long (exp->X_add_number))
8557 {
8558 i.types[this_operand].bitfield.disp32s = 0;
8559 if (i.types[this_operand].bitfield.baseindex)
8560 {
8561 as_bad (_("0x%lx out range of signed 32bit displacement"),
8562 (long) exp->X_add_number);
8563 ret = 0;
8564 }
8565 }
8566 }
8567
8568 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8569 else if (exp->X_op != O_constant
8570 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8571 && exp_seg != absolute_section
8572 && exp_seg != text_section
8573 && exp_seg != data_section
8574 && exp_seg != bss_section
8575 && exp_seg != undefined_section
8576 && !bfd_is_com_section (exp_seg))
8577 {
8578 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8579 ret = 0;
8580 }
8581 #endif
8582
8583 /* Check if this is a displacement only operand. */
8584 bigdisp = i.types[this_operand];
8585 bigdisp.bitfield.disp8 = 0;
8586 bigdisp.bitfield.disp16 = 0;
8587 bigdisp.bitfield.disp32 = 0;
8588 bigdisp.bitfield.disp32s = 0;
8589 bigdisp.bitfield.disp64 = 0;
8590 if (operand_type_all_zero (&bigdisp))
8591 i.types[this_operand] = operand_type_and (i.types[this_operand],
8592 types);
8593
8594 return ret;
8595 }
8596
8597 /* Return the active addressing mode, taking address override and
8598 registers forming the address into consideration. Update the
8599 address override prefix if necessary. */
8600
8601 static enum flag_code
8602 i386_addressing_mode (void)
8603 {
8604 enum flag_code addr_mode;
8605
8606 if (i.prefix[ADDR_PREFIX])
8607 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8608 else
8609 {
8610 addr_mode = flag_code;
8611
8612 #if INFER_ADDR_PREFIX
8613 if (i.mem_operands == 0)
8614 {
8615 /* Infer address prefix from the first memory operand. */
8616 const reg_entry *addr_reg = i.base_reg;
8617
8618 if (addr_reg == NULL)
8619 addr_reg = i.index_reg;
8620
8621 if (addr_reg)
8622 {
8623 if (addr_reg->reg_num == RegEip
8624 || addr_reg->reg_num == RegEiz
8625 || addr_reg->reg_type.bitfield.dword)
8626 addr_mode = CODE_32BIT;
8627 else if (flag_code != CODE_64BIT
8628 && addr_reg->reg_type.bitfield.word)
8629 addr_mode = CODE_16BIT;
8630
8631 if (addr_mode != flag_code)
8632 {
8633 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8634 i.prefixes += 1;
8635 /* Change the size of any displacement too. At most one
8636 of Disp16 or Disp32 is set.
8637 FIXME. There doesn't seem to be any real need for
8638 separate Disp16 and Disp32 flags. The same goes for
8639 Imm16 and Imm32. Removing them would probably clean
8640 up the code quite a lot. */
8641 if (flag_code != CODE_64BIT
8642 && (i.types[this_operand].bitfield.disp16
8643 || i.types[this_operand].bitfield.disp32))
8644 i.types[this_operand]
8645 = operand_type_xor (i.types[this_operand], disp16_32);
8646 }
8647 }
8648 }
8649 #endif
8650 }
8651
8652 return addr_mode;
8653 }
8654
8655 /* Make sure the memory operand we've been dealt is valid.
8656 Return 1 on success, 0 on a failure. */
8657
8658 static int
8659 i386_index_check (const char *operand_string)
8660 {
8661 const char *kind = "base/index";
8662 enum flag_code addr_mode = i386_addressing_mode ();
8663
8664 if (current_templates->start->opcode_modifier.isstring
8665 && !current_templates->start->opcode_modifier.immext
8666 && (current_templates->end[-1].opcode_modifier.isstring
8667 || i.mem_operands))
8668 {
8669 /* Memory operands of string insns are special in that they only allow
8670 a single register (rDI, rSI, or rBX) as their memory address. */
8671 const reg_entry *expected_reg;
8672 static const char *di_si[][2] =
8673 {
8674 { "esi", "edi" },
8675 { "si", "di" },
8676 { "rsi", "rdi" }
8677 };
8678 static const char *bx[] = { "ebx", "bx", "rbx" };
8679
8680 kind = "string address";
8681
8682 if (current_templates->start->opcode_modifier.repprefixok)
8683 {
8684 i386_operand_type type = current_templates->end[-1].operand_types[0];
8685
8686 if (!type.bitfield.baseindex
8687 || ((!i.mem_operands != !intel_syntax)
8688 && current_templates->end[-1].operand_types[1]
8689 .bitfield.baseindex))
8690 type = current_templates->end[-1].operand_types[1];
8691 expected_reg = hash_find (reg_hash,
8692 di_si[addr_mode][type.bitfield.esseg]);
8693
8694 }
8695 else
8696 expected_reg = hash_find (reg_hash, bx[addr_mode]);
8697
8698 if (i.base_reg != expected_reg
8699 || i.index_reg
8700 || operand_type_check (i.types[this_operand], disp))
8701 {
8702 /* The second memory operand must have the same size as
8703 the first one. */
8704 if (i.mem_operands
8705 && i.base_reg
8706 && !((addr_mode == CODE_64BIT
8707 && i.base_reg->reg_type.bitfield.qword)
8708 || (addr_mode == CODE_32BIT
8709 ? i.base_reg->reg_type.bitfield.dword
8710 : i.base_reg->reg_type.bitfield.word)))
8711 goto bad_address;
8712
8713 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8714 operand_string,
8715 intel_syntax ? '[' : '(',
8716 register_prefix,
8717 expected_reg->reg_name,
8718 intel_syntax ? ']' : ')');
8719 return 1;
8720 }
8721 else
8722 return 1;
8723
8724 bad_address:
8725 as_bad (_("`%s' is not a valid %s expression"),
8726 operand_string, kind);
8727 return 0;
8728 }
8729 else
8730 {
8731 if (addr_mode != CODE_16BIT)
8732 {
8733 /* 32-bit/64-bit checks. */
8734 if ((i.base_reg
8735 && (addr_mode == CODE_64BIT
8736 ? !i.base_reg->reg_type.bitfield.qword
8737 : !i.base_reg->reg_type.bitfield.dword)
8738 && (i.index_reg
8739 || (i.base_reg->reg_num
8740 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8741 || (i.index_reg
8742 && !i.index_reg->reg_type.bitfield.xmmword
8743 && !i.index_reg->reg_type.bitfield.ymmword
8744 && !i.index_reg->reg_type.bitfield.zmmword
8745 && ((addr_mode == CODE_64BIT
8746 ? !(i.index_reg->reg_type.bitfield.qword
8747 || i.index_reg->reg_num == RegRiz)
8748 : !(i.index_reg->reg_type.bitfield.dword
8749 || i.index_reg->reg_num == RegEiz))
8750 || !i.index_reg->reg_type.bitfield.baseindex)))
8751 goto bad_address;
8752
8753 /* bndmk, bndldx, and bndstx have special restrictions. */
8754 if (current_templates->start->base_opcode == 0xf30f1b
8755 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
8756 {
8757 /* They cannot use RIP-relative addressing. */
8758 if (i.base_reg && i.base_reg->reg_num == RegRip)
8759 {
8760 as_bad (_("`%s' cannot be used here"), operand_string);
8761 return 0;
8762 }
8763
8764 /* bndldx and bndstx ignore their scale factor. */
8765 if (current_templates->start->base_opcode != 0xf30f1b
8766 && i.log2_scale_factor)
8767 as_warn (_("register scaling is being ignored here"));
8768 }
8769 }
8770 else
8771 {
8772 /* 16-bit checks. */
8773 if ((i.base_reg
8774 && (!i.base_reg->reg_type.bitfield.word
8775 || !i.base_reg->reg_type.bitfield.baseindex))
8776 || (i.index_reg
8777 && (!i.index_reg->reg_type.bitfield.word
8778 || !i.index_reg->reg_type.bitfield.baseindex
8779 || !(i.base_reg
8780 && i.base_reg->reg_num < 6
8781 && i.index_reg->reg_num >= 6
8782 && i.log2_scale_factor == 0))))
8783 goto bad_address;
8784 }
8785 }
8786 return 1;
8787 }
8788
8789 /* Handle vector immediates. */
8790
8791 static int
8792 RC_SAE_immediate (const char *imm_start)
8793 {
8794 unsigned int match_found, j;
8795 const char *pstr = imm_start;
8796 expressionS *exp;
8797
8798 if (*pstr != '{')
8799 return 0;
8800
8801 pstr++;
8802 match_found = 0;
8803 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8804 {
8805 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8806 {
8807 if (!i.rounding)
8808 {
8809 rc_op.type = RC_NamesTable[j].type;
8810 rc_op.operand = this_operand;
8811 i.rounding = &rc_op;
8812 }
8813 else
8814 {
8815 as_bad (_("duplicated `%s'"), imm_start);
8816 return 0;
8817 }
8818 pstr += RC_NamesTable[j].len;
8819 match_found = 1;
8820 break;
8821 }
8822 }
8823 if (!match_found)
8824 return 0;
8825
8826 if (*pstr++ != '}')
8827 {
8828 as_bad (_("Missing '}': '%s'"), imm_start);
8829 return 0;
8830 }
8831 /* RC/SAE immediate string should contain nothing more. */;
8832 if (*pstr != 0)
8833 {
8834 as_bad (_("Junk after '}': '%s'"), imm_start);
8835 return 0;
8836 }
8837
8838 exp = &im_expressions[i.imm_operands++];
8839 i.op[this_operand].imms = exp;
8840
8841 exp->X_op = O_constant;
8842 exp->X_add_number = 0;
8843 exp->X_add_symbol = (symbolS *) 0;
8844 exp->X_op_symbol = (symbolS *) 0;
8845
8846 i.types[this_operand].bitfield.imm8 = 1;
8847 return 1;
8848 }
8849
8850 /* Only string instructions can have a second memory operand, so
8851 reduce current_templates to just those if it contains any. */
8852 static int
8853 maybe_adjust_templates (void)
8854 {
8855 const insn_template *t;
8856
8857 gas_assert (i.mem_operands == 1);
8858
8859 for (t = current_templates->start; t < current_templates->end; ++t)
8860 if (t->opcode_modifier.isstring)
8861 break;
8862
8863 if (t < current_templates->end)
8864 {
8865 static templates aux_templates;
8866 bfd_boolean recheck;
8867
8868 aux_templates.start = t;
8869 for (; t < current_templates->end; ++t)
8870 if (!t->opcode_modifier.isstring)
8871 break;
8872 aux_templates.end = t;
8873
8874 /* Determine whether to re-check the first memory operand. */
8875 recheck = (aux_templates.start != current_templates->start
8876 || t != current_templates->end);
8877
8878 current_templates = &aux_templates;
8879
8880 if (recheck)
8881 {
8882 i.mem_operands = 0;
8883 if (i.memop1_string != NULL
8884 && i386_index_check (i.memop1_string) == 0)
8885 return 0;
8886 i.mem_operands = 1;
8887 }
8888 }
8889
8890 return 1;
8891 }
8892
8893 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
8894 on error. */
8895
8896 static int
8897 i386_att_operand (char *operand_string)
8898 {
8899 const reg_entry *r;
8900 char *end_op;
8901 char *op_string = operand_string;
8902
8903 if (is_space_char (*op_string))
8904 ++op_string;
8905
8906 /* We check for an absolute prefix (differentiating,
8907 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
8908 if (*op_string == ABSOLUTE_PREFIX)
8909 {
8910 ++op_string;
8911 if (is_space_char (*op_string))
8912 ++op_string;
8913 i.types[this_operand].bitfield.jumpabsolute = 1;
8914 }
8915
8916 /* Check if operand is a register. */
8917 if ((r = parse_register (op_string, &end_op)) != NULL)
8918 {
8919 i386_operand_type temp;
8920
8921 /* Check for a segment override by searching for ':' after a
8922 segment register. */
8923 op_string = end_op;
8924 if (is_space_char (*op_string))
8925 ++op_string;
8926 if (*op_string == ':'
8927 && (r->reg_type.bitfield.sreg2
8928 || r->reg_type.bitfield.sreg3))
8929 {
8930 switch (r->reg_num)
8931 {
8932 case 0:
8933 i.seg[i.mem_operands] = &es;
8934 break;
8935 case 1:
8936 i.seg[i.mem_operands] = &cs;
8937 break;
8938 case 2:
8939 i.seg[i.mem_operands] = &ss;
8940 break;
8941 case 3:
8942 i.seg[i.mem_operands] = &ds;
8943 break;
8944 case 4:
8945 i.seg[i.mem_operands] = &fs;
8946 break;
8947 case 5:
8948 i.seg[i.mem_operands] = &gs;
8949 break;
8950 }
8951
8952 /* Skip the ':' and whitespace. */
8953 ++op_string;
8954 if (is_space_char (*op_string))
8955 ++op_string;
8956
8957 if (!is_digit_char (*op_string)
8958 && !is_identifier_char (*op_string)
8959 && *op_string != '('
8960 && *op_string != ABSOLUTE_PREFIX)
8961 {
8962 as_bad (_("bad memory operand `%s'"), op_string);
8963 return 0;
8964 }
8965 /* Handle case of %es:*foo. */
8966 if (*op_string == ABSOLUTE_PREFIX)
8967 {
8968 ++op_string;
8969 if (is_space_char (*op_string))
8970 ++op_string;
8971 i.types[this_operand].bitfield.jumpabsolute = 1;
8972 }
8973 goto do_memory_reference;
8974 }
8975
8976 /* Handle vector operations. */
8977 if (*op_string == '{')
8978 {
8979 op_string = check_VecOperations (op_string, NULL);
8980 if (op_string == NULL)
8981 return 0;
8982 }
8983
8984 if (*op_string)
8985 {
8986 as_bad (_("junk `%s' after register"), op_string);
8987 return 0;
8988 }
8989 temp = r->reg_type;
8990 temp.bitfield.baseindex = 0;
8991 i.types[this_operand] = operand_type_or (i.types[this_operand],
8992 temp);
8993 i.types[this_operand].bitfield.unspecified = 0;
8994 i.op[this_operand].regs = r;
8995 i.reg_operands++;
8996 }
8997 else if (*op_string == REGISTER_PREFIX)
8998 {
8999 as_bad (_("bad register name `%s'"), op_string);
9000 return 0;
9001 }
9002 else if (*op_string == IMMEDIATE_PREFIX)
9003 {
9004 ++op_string;
9005 if (i.types[this_operand].bitfield.jumpabsolute)
9006 {
9007 as_bad (_("immediate operand illegal with absolute jump"));
9008 return 0;
9009 }
9010 if (!i386_immediate (op_string))
9011 return 0;
9012 }
9013 else if (RC_SAE_immediate (operand_string))
9014 {
9015 /* If it is a RC or SAE immediate, do nothing. */
9016 ;
9017 }
9018 else if (is_digit_char (*op_string)
9019 || is_identifier_char (*op_string)
9020 || *op_string == '"'
9021 || *op_string == '(')
9022 {
9023 /* This is a memory reference of some sort. */
9024 char *base_string;
9025
9026 /* Start and end of displacement string expression (if found). */
9027 char *displacement_string_start;
9028 char *displacement_string_end;
9029 char *vop_start;
9030
9031 do_memory_reference:
9032 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9033 return 0;
9034 if ((i.mem_operands == 1
9035 && !current_templates->start->opcode_modifier.isstring)
9036 || i.mem_operands == 2)
9037 {
9038 as_bad (_("too many memory references for `%s'"),
9039 current_templates->start->name);
9040 return 0;
9041 }
9042
9043 /* Check for base index form. We detect the base index form by
9044 looking for an ')' at the end of the operand, searching
9045 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9046 after the '('. */
9047 base_string = op_string + strlen (op_string);
9048
9049 /* Handle vector operations. */
9050 vop_start = strchr (op_string, '{');
9051 if (vop_start && vop_start < base_string)
9052 {
9053 if (check_VecOperations (vop_start, base_string) == NULL)
9054 return 0;
9055 base_string = vop_start;
9056 }
9057
9058 --base_string;
9059 if (is_space_char (*base_string))
9060 --base_string;
9061
9062 /* If we only have a displacement, set-up for it to be parsed later. */
9063 displacement_string_start = op_string;
9064 displacement_string_end = base_string + 1;
9065
9066 if (*base_string == ')')
9067 {
9068 char *temp_string;
9069 unsigned int parens_balanced = 1;
9070 /* We've already checked that the number of left & right ()'s are
9071 equal, so this loop will not be infinite. */
9072 do
9073 {
9074 base_string--;
9075 if (*base_string == ')')
9076 parens_balanced++;
9077 if (*base_string == '(')
9078 parens_balanced--;
9079 }
9080 while (parens_balanced);
9081
9082 temp_string = base_string;
9083
9084 /* Skip past '(' and whitespace. */
9085 ++base_string;
9086 if (is_space_char (*base_string))
9087 ++base_string;
9088
9089 if (*base_string == ','
9090 || ((i.base_reg = parse_register (base_string, &end_op))
9091 != NULL))
9092 {
9093 displacement_string_end = temp_string;
9094
9095 i.types[this_operand].bitfield.baseindex = 1;
9096
9097 if (i.base_reg)
9098 {
9099 base_string = end_op;
9100 if (is_space_char (*base_string))
9101 ++base_string;
9102 }
9103
9104 /* There may be an index reg or scale factor here. */
9105 if (*base_string == ',')
9106 {
9107 ++base_string;
9108 if (is_space_char (*base_string))
9109 ++base_string;
9110
9111 if ((i.index_reg = parse_register (base_string, &end_op))
9112 != NULL)
9113 {
9114 base_string = end_op;
9115 if (is_space_char (*base_string))
9116 ++base_string;
9117 if (*base_string == ',')
9118 {
9119 ++base_string;
9120 if (is_space_char (*base_string))
9121 ++base_string;
9122 }
9123 else if (*base_string != ')')
9124 {
9125 as_bad (_("expecting `,' or `)' "
9126 "after index register in `%s'"),
9127 operand_string);
9128 return 0;
9129 }
9130 }
9131 else if (*base_string == REGISTER_PREFIX)
9132 {
9133 end_op = strchr (base_string, ',');
9134 if (end_op)
9135 *end_op = '\0';
9136 as_bad (_("bad register name `%s'"), base_string);
9137 return 0;
9138 }
9139
9140 /* Check for scale factor. */
9141 if (*base_string != ')')
9142 {
9143 char *end_scale = i386_scale (base_string);
9144
9145 if (!end_scale)
9146 return 0;
9147
9148 base_string = end_scale;
9149 if (is_space_char (*base_string))
9150 ++base_string;
9151 if (*base_string != ')')
9152 {
9153 as_bad (_("expecting `)' "
9154 "after scale factor in `%s'"),
9155 operand_string);
9156 return 0;
9157 }
9158 }
9159 else if (!i.index_reg)
9160 {
9161 as_bad (_("expecting index register or scale factor "
9162 "after `,'; got '%c'"),
9163 *base_string);
9164 return 0;
9165 }
9166 }
9167 else if (*base_string != ')')
9168 {
9169 as_bad (_("expecting `,' or `)' "
9170 "after base register in `%s'"),
9171 operand_string);
9172 return 0;
9173 }
9174 }
9175 else if (*base_string == REGISTER_PREFIX)
9176 {
9177 end_op = strchr (base_string, ',');
9178 if (end_op)
9179 *end_op = '\0';
9180 as_bad (_("bad register name `%s'"), base_string);
9181 return 0;
9182 }
9183 }
9184
9185 /* If there's an expression beginning the operand, parse it,
9186 assuming displacement_string_start and
9187 displacement_string_end are meaningful. */
9188 if (displacement_string_start != displacement_string_end)
9189 {
9190 if (!i386_displacement (displacement_string_start,
9191 displacement_string_end))
9192 return 0;
9193 }
9194
9195 /* Special case for (%dx) while doing input/output op. */
9196 if (i.base_reg
9197 && operand_type_equal (&i.base_reg->reg_type,
9198 &reg16_inoutportreg)
9199 && i.index_reg == 0
9200 && i.log2_scale_factor == 0
9201 && i.seg[i.mem_operands] == 0
9202 && !operand_type_check (i.types[this_operand], disp))
9203 {
9204 i.types[this_operand] = inoutportreg;
9205 return 1;
9206 }
9207
9208 if (i386_index_check (operand_string) == 0)
9209 return 0;
9210 i.types[this_operand].bitfield.mem = 1;
9211 if (i.mem_operands == 0)
9212 i.memop1_string = xstrdup (operand_string);
9213 i.mem_operands++;
9214 }
9215 else
9216 {
9217 /* It's not a memory operand; argh! */
9218 as_bad (_("invalid char %s beginning operand %d `%s'"),
9219 output_invalid (*op_string),
9220 this_operand + 1,
9221 op_string);
9222 return 0;
9223 }
9224 return 1; /* Normal return. */
9225 }
9226 \f
9227 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9228 that an rs_machine_dependent frag may reach. */
9229
9230 unsigned int
9231 i386_frag_max_var (fragS *frag)
9232 {
9233 /* The only relaxable frags are for jumps.
9234 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9235 gas_assert (frag->fr_type == rs_machine_dependent);
9236 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9237 }
9238
9239 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9240 static int
9241 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9242 {
9243 /* STT_GNU_IFUNC symbol must go through PLT. */
9244 if ((symbol_get_bfdsym (fr_symbol)->flags
9245 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9246 return 0;
9247
9248 if (!S_IS_EXTERNAL (fr_symbol))
9249 /* Symbol may be weak or local. */
9250 return !S_IS_WEAK (fr_symbol);
9251
9252 /* Global symbols with non-default visibility can't be preempted. */
9253 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9254 return 1;
9255
9256 if (fr_var != NO_RELOC)
9257 switch ((enum bfd_reloc_code_real) fr_var)
9258 {
9259 case BFD_RELOC_386_PLT32:
9260 case BFD_RELOC_X86_64_PLT32:
9261 /* Symbol with PLT relocation may be preempted. */
9262 return 0;
9263 default:
9264 abort ();
9265 }
9266
9267 /* Global symbols with default visibility in a shared library may be
9268 preempted by another definition. */
9269 return !shared;
9270 }
9271 #endif
9272
9273 /* md_estimate_size_before_relax()
9274
9275 Called just before relax() for rs_machine_dependent frags. The x86
9276 assembler uses these frags to handle variable size jump
9277 instructions.
9278
9279 Any symbol that is now undefined will not become defined.
9280 Return the correct fr_subtype in the frag.
9281 Return the initial "guess for variable size of frag" to caller.
9282 The guess is actually the growth beyond the fixed part. Whatever
9283 we do to grow the fixed or variable part contributes to our
9284 returned value. */
9285
9286 int
9287 md_estimate_size_before_relax (fragS *fragP, segT segment)
9288 {
9289 /* We've already got fragP->fr_subtype right; all we have to do is
9290 check for un-relaxable symbols. On an ELF system, we can't relax
9291 an externally visible symbol, because it may be overridden by a
9292 shared library. */
9293 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9294 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9295 || (IS_ELF
9296 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9297 fragP->fr_var))
9298 #endif
9299 #if defined (OBJ_COFF) && defined (TE_PE)
9300 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9301 && S_IS_WEAK (fragP->fr_symbol))
9302 #endif
9303 )
9304 {
9305 /* Symbol is undefined in this segment, or we need to keep a
9306 reloc so that weak symbols can be overridden. */
9307 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9308 enum bfd_reloc_code_real reloc_type;
9309 unsigned char *opcode;
9310 int old_fr_fix;
9311
9312 if (fragP->fr_var != NO_RELOC)
9313 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9314 else if (size == 2)
9315 reloc_type = BFD_RELOC_16_PCREL;
9316 else
9317 reloc_type = BFD_RELOC_32_PCREL;
9318
9319 old_fr_fix = fragP->fr_fix;
9320 opcode = (unsigned char *) fragP->fr_opcode;
9321
9322 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9323 {
9324 case UNCOND_JUMP:
9325 /* Make jmp (0xeb) a (d)word displacement jump. */
9326 opcode[0] = 0xe9;
9327 fragP->fr_fix += size;
9328 fix_new (fragP, old_fr_fix, size,
9329 fragP->fr_symbol,
9330 fragP->fr_offset, 1,
9331 reloc_type);
9332 break;
9333
9334 case COND_JUMP86:
9335 if (size == 2
9336 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9337 {
9338 /* Negate the condition, and branch past an
9339 unconditional jump. */
9340 opcode[0] ^= 1;
9341 opcode[1] = 3;
9342 /* Insert an unconditional jump. */
9343 opcode[2] = 0xe9;
9344 /* We added two extra opcode bytes, and have a two byte
9345 offset. */
9346 fragP->fr_fix += 2 + 2;
9347 fix_new (fragP, old_fr_fix + 2, 2,
9348 fragP->fr_symbol,
9349 fragP->fr_offset, 1,
9350 reloc_type);
9351 break;
9352 }
9353 /* Fall through. */
9354
9355 case COND_JUMP:
9356 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9357 {
9358 fixS *fixP;
9359
9360 fragP->fr_fix += 1;
9361 fixP = fix_new (fragP, old_fr_fix, 1,
9362 fragP->fr_symbol,
9363 fragP->fr_offset, 1,
9364 BFD_RELOC_8_PCREL);
9365 fixP->fx_signed = 1;
9366 break;
9367 }
9368
9369 /* This changes the byte-displacement jump 0x7N
9370 to the (d)word-displacement jump 0x0f,0x8N. */
9371 opcode[1] = opcode[0] + 0x10;
9372 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9373 /* We've added an opcode byte. */
9374 fragP->fr_fix += 1 + size;
9375 fix_new (fragP, old_fr_fix + 1, size,
9376 fragP->fr_symbol,
9377 fragP->fr_offset, 1,
9378 reloc_type);
9379 break;
9380
9381 default:
9382 BAD_CASE (fragP->fr_subtype);
9383 break;
9384 }
9385 frag_wane (fragP);
9386 return fragP->fr_fix - old_fr_fix;
9387 }
9388
9389 /* Guess size depending on current relax state. Initially the relax
9390 state will correspond to a short jump and we return 1, because
9391 the variable part of the frag (the branch offset) is one byte
9392 long. However, we can relax a section more than once and in that
9393 case we must either set fr_subtype back to the unrelaxed state,
9394 or return the value for the appropriate branch. */
9395 return md_relax_table[fragP->fr_subtype].rlx_length;
9396 }
9397
9398 /* Called after relax() is finished.
9399
9400 In: Address of frag.
9401 fr_type == rs_machine_dependent.
9402 fr_subtype is what the address relaxed to.
9403
9404 Out: Any fixSs and constants are set up.
9405 Caller will turn frag into a ".space 0". */
9406
9407 void
9408 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9409 fragS *fragP)
9410 {
9411 unsigned char *opcode;
9412 unsigned char *where_to_put_displacement = NULL;
9413 offsetT target_address;
9414 offsetT opcode_address;
9415 unsigned int extension = 0;
9416 offsetT displacement_from_opcode_start;
9417
9418 opcode = (unsigned char *) fragP->fr_opcode;
9419
9420 /* Address we want to reach in file space. */
9421 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9422
9423 /* Address opcode resides at in file space. */
9424 opcode_address = fragP->fr_address + fragP->fr_fix;
9425
9426 /* Displacement from opcode start to fill into instruction. */
9427 displacement_from_opcode_start = target_address - opcode_address;
9428
9429 if ((fragP->fr_subtype & BIG) == 0)
9430 {
9431 /* Don't have to change opcode. */
9432 extension = 1; /* 1 opcode + 1 displacement */
9433 where_to_put_displacement = &opcode[1];
9434 }
9435 else
9436 {
9437 if (no_cond_jump_promotion
9438 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9439 as_warn_where (fragP->fr_file, fragP->fr_line,
9440 _("long jump required"));
9441
9442 switch (fragP->fr_subtype)
9443 {
9444 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9445 extension = 4; /* 1 opcode + 4 displacement */
9446 opcode[0] = 0xe9;
9447 where_to_put_displacement = &opcode[1];
9448 break;
9449
9450 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9451 extension = 2; /* 1 opcode + 2 displacement */
9452 opcode[0] = 0xe9;
9453 where_to_put_displacement = &opcode[1];
9454 break;
9455
9456 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9457 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9458 extension = 5; /* 2 opcode + 4 displacement */
9459 opcode[1] = opcode[0] + 0x10;
9460 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9461 where_to_put_displacement = &opcode[2];
9462 break;
9463
9464 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9465 extension = 3; /* 2 opcode + 2 displacement */
9466 opcode[1] = opcode[0] + 0x10;
9467 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9468 where_to_put_displacement = &opcode[2];
9469 break;
9470
9471 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9472 extension = 4;
9473 opcode[0] ^= 1;
9474 opcode[1] = 3;
9475 opcode[2] = 0xe9;
9476 where_to_put_displacement = &opcode[3];
9477 break;
9478
9479 default:
9480 BAD_CASE (fragP->fr_subtype);
9481 break;
9482 }
9483 }
9484
9485 /* If size if less then four we are sure that the operand fits,
9486 but if it's 4, then it could be that the displacement is larger
9487 then -/+ 2GB. */
9488 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9489 && object_64bit
9490 && ((addressT) (displacement_from_opcode_start - extension
9491 + ((addressT) 1 << 31))
9492 > (((addressT) 2 << 31) - 1)))
9493 {
9494 as_bad_where (fragP->fr_file, fragP->fr_line,
9495 _("jump target out of range"));
9496 /* Make us emit 0. */
9497 displacement_from_opcode_start = extension;
9498 }
9499 /* Now put displacement after opcode. */
9500 md_number_to_chars ((char *) where_to_put_displacement,
9501 (valueT) (displacement_from_opcode_start - extension),
9502 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9503 fragP->fr_fix += extension;
9504 }
9505 \f
9506 /* Apply a fixup (fixP) to segment data, once it has been determined
9507 by our caller that we have all the info we need to fix it up.
9508
9509 Parameter valP is the pointer to the value of the bits.
9510
9511 On the 386, immediates, displacements, and data pointers are all in
9512 the same (little-endian) format, so we don't need to care about which
9513 we are handling. */
9514
9515 void
9516 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9517 {
9518 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9519 valueT value = *valP;
9520
9521 #if !defined (TE_Mach)
9522 if (fixP->fx_pcrel)
9523 {
9524 switch (fixP->fx_r_type)
9525 {
9526 default:
9527 break;
9528
9529 case BFD_RELOC_64:
9530 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9531 break;
9532 case BFD_RELOC_32:
9533 case BFD_RELOC_X86_64_32S:
9534 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9535 break;
9536 case BFD_RELOC_16:
9537 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9538 break;
9539 case BFD_RELOC_8:
9540 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9541 break;
9542 }
9543 }
9544
9545 if (fixP->fx_addsy != NULL
9546 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9547 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9548 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9549 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9550 && !use_rela_relocations)
9551 {
9552 /* This is a hack. There should be a better way to handle this.
9553 This covers for the fact that bfd_install_relocation will
9554 subtract the current location (for partial_inplace, PC relative
9555 relocations); see more below. */
9556 #ifndef OBJ_AOUT
9557 if (IS_ELF
9558 #ifdef TE_PE
9559 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9560 #endif
9561 )
9562 value += fixP->fx_where + fixP->fx_frag->fr_address;
9563 #endif
9564 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9565 if (IS_ELF)
9566 {
9567 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9568
9569 if ((sym_seg == seg
9570 || (symbol_section_p (fixP->fx_addsy)
9571 && sym_seg != absolute_section))
9572 && !generic_force_reloc (fixP))
9573 {
9574 /* Yes, we add the values in twice. This is because
9575 bfd_install_relocation subtracts them out again. I think
9576 bfd_install_relocation is broken, but I don't dare change
9577 it. FIXME. */
9578 value += fixP->fx_where + fixP->fx_frag->fr_address;
9579 }
9580 }
9581 #endif
9582 #if defined (OBJ_COFF) && defined (TE_PE)
9583 /* For some reason, the PE format does not store a
9584 section address offset for a PC relative symbol. */
9585 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9586 || S_IS_WEAK (fixP->fx_addsy))
9587 value += md_pcrel_from (fixP);
9588 #endif
9589 }
9590 #if defined (OBJ_COFF) && defined (TE_PE)
9591 if (fixP->fx_addsy != NULL
9592 && S_IS_WEAK (fixP->fx_addsy)
9593 /* PR 16858: Do not modify weak function references. */
9594 && ! fixP->fx_pcrel)
9595 {
9596 #if !defined (TE_PEP)
9597 /* For x86 PE weak function symbols are neither PC-relative
9598 nor do they set S_IS_FUNCTION. So the only reliable way
9599 to detect them is to check the flags of their containing
9600 section. */
9601 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9602 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9603 ;
9604 else
9605 #endif
9606 value -= S_GET_VALUE (fixP->fx_addsy);
9607 }
9608 #endif
9609
9610 /* Fix a few things - the dynamic linker expects certain values here,
9611 and we must not disappoint it. */
9612 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9613 if (IS_ELF && fixP->fx_addsy)
9614 switch (fixP->fx_r_type)
9615 {
9616 case BFD_RELOC_386_PLT32:
9617 case BFD_RELOC_X86_64_PLT32:
9618 /* Make the jump instruction point to the address of the operand. At
9619 runtime we merely add the offset to the actual PLT entry. */
9620 value = -4;
9621 break;
9622
9623 case BFD_RELOC_386_TLS_GD:
9624 case BFD_RELOC_386_TLS_LDM:
9625 case BFD_RELOC_386_TLS_IE_32:
9626 case BFD_RELOC_386_TLS_IE:
9627 case BFD_RELOC_386_TLS_GOTIE:
9628 case BFD_RELOC_386_TLS_GOTDESC:
9629 case BFD_RELOC_X86_64_TLSGD:
9630 case BFD_RELOC_X86_64_TLSLD:
9631 case BFD_RELOC_X86_64_GOTTPOFF:
9632 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9633 value = 0; /* Fully resolved at runtime. No addend. */
9634 /* Fallthrough */
9635 case BFD_RELOC_386_TLS_LE:
9636 case BFD_RELOC_386_TLS_LDO_32:
9637 case BFD_RELOC_386_TLS_LE_32:
9638 case BFD_RELOC_X86_64_DTPOFF32:
9639 case BFD_RELOC_X86_64_DTPOFF64:
9640 case BFD_RELOC_X86_64_TPOFF32:
9641 case BFD_RELOC_X86_64_TPOFF64:
9642 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9643 break;
9644
9645 case BFD_RELOC_386_TLS_DESC_CALL:
9646 case BFD_RELOC_X86_64_TLSDESC_CALL:
9647 value = 0; /* Fully resolved at runtime. No addend. */
9648 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9649 fixP->fx_done = 0;
9650 return;
9651
9652 case BFD_RELOC_VTABLE_INHERIT:
9653 case BFD_RELOC_VTABLE_ENTRY:
9654 fixP->fx_done = 0;
9655 return;
9656
9657 default:
9658 break;
9659 }
9660 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
9661 *valP = value;
9662 #endif /* !defined (TE_Mach) */
9663
9664 /* Are we finished with this relocation now? */
9665 if (fixP->fx_addsy == NULL)
9666 fixP->fx_done = 1;
9667 #if defined (OBJ_COFF) && defined (TE_PE)
9668 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9669 {
9670 fixP->fx_done = 0;
9671 /* Remember value for tc_gen_reloc. */
9672 fixP->fx_addnumber = value;
9673 /* Clear out the frag for now. */
9674 value = 0;
9675 }
9676 #endif
9677 else if (use_rela_relocations)
9678 {
9679 fixP->fx_no_overflow = 1;
9680 /* Remember value for tc_gen_reloc. */
9681 fixP->fx_addnumber = value;
9682 value = 0;
9683 }
9684
9685 md_number_to_chars (p, value, fixP->fx_size);
9686 }
9687 \f
9688 const char *
9689 md_atof (int type, char *litP, int *sizeP)
9690 {
9691 /* This outputs the LITTLENUMs in REVERSE order;
9692 in accord with the bigendian 386. */
9693 return ieee_md_atof (type, litP, sizeP, FALSE);
9694 }
9695 \f
9696 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
9697
9698 static char *
9699 output_invalid (int c)
9700 {
9701 if (ISPRINT (c))
9702 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9703 "'%c'", c);
9704 else
9705 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9706 "(0x%x)", (unsigned char) c);
9707 return output_invalid_buf;
9708 }
9709
9710 /* REG_STRING starts *before* REGISTER_PREFIX. */
9711
9712 static const reg_entry *
9713 parse_real_register (char *reg_string, char **end_op)
9714 {
9715 char *s = reg_string;
9716 char *p;
9717 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9718 const reg_entry *r;
9719
9720 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9721 if (*s == REGISTER_PREFIX)
9722 ++s;
9723
9724 if (is_space_char (*s))
9725 ++s;
9726
9727 p = reg_name_given;
9728 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
9729 {
9730 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
9731 return (const reg_entry *) NULL;
9732 s++;
9733 }
9734
9735 /* For naked regs, make sure that we are not dealing with an identifier.
9736 This prevents confusing an identifier like `eax_var' with register
9737 `eax'. */
9738 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9739 return (const reg_entry *) NULL;
9740
9741 *end_op = s;
9742
9743 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9744
9745 /* Handle floating point regs, allowing spaces in the (i) part. */
9746 if (r == i386_regtab /* %st is first entry of table */)
9747 {
9748 if (is_space_char (*s))
9749 ++s;
9750 if (*s == '(')
9751 {
9752 ++s;
9753 if (is_space_char (*s))
9754 ++s;
9755 if (*s >= '0' && *s <= '7')
9756 {
9757 int fpr = *s - '0';
9758 ++s;
9759 if (is_space_char (*s))
9760 ++s;
9761 if (*s == ')')
9762 {
9763 *end_op = s + 1;
9764 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
9765 know (r);
9766 return r + fpr;
9767 }
9768 }
9769 /* We have "%st(" then garbage. */
9770 return (const reg_entry *) NULL;
9771 }
9772 }
9773
9774 if (r == NULL || allow_pseudo_reg)
9775 return r;
9776
9777 if (operand_type_all_zero (&r->reg_type))
9778 return (const reg_entry *) NULL;
9779
9780 if ((r->reg_type.bitfield.dword
9781 || r->reg_type.bitfield.sreg3
9782 || r->reg_type.bitfield.control
9783 || r->reg_type.bitfield.debug
9784 || r->reg_type.bitfield.test)
9785 && !cpu_arch_flags.bitfield.cpui386)
9786 return (const reg_entry *) NULL;
9787
9788 if (r->reg_type.bitfield.tbyte
9789 && !cpu_arch_flags.bitfield.cpu8087
9790 && !cpu_arch_flags.bitfield.cpu287
9791 && !cpu_arch_flags.bitfield.cpu387)
9792 return (const reg_entry *) NULL;
9793
9794 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
9795 return (const reg_entry *) NULL;
9796
9797 if (r->reg_type.bitfield.xmmword && !cpu_arch_flags.bitfield.cpuregxmm)
9798 return (const reg_entry *) NULL;
9799
9800 if (r->reg_type.bitfield.ymmword && !cpu_arch_flags.bitfield.cpuregymm)
9801 return (const reg_entry *) NULL;
9802
9803 if (r->reg_type.bitfield.zmmword && !cpu_arch_flags.bitfield.cpuregzmm)
9804 return (const reg_entry *) NULL;
9805
9806 if (r->reg_type.bitfield.regmask
9807 && !cpu_arch_flags.bitfield.cpuregmask)
9808 return (const reg_entry *) NULL;
9809
9810 /* Don't allow fake index register unless allow_index_reg isn't 0. */
9811 if (!allow_index_reg
9812 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9813 return (const reg_entry *) NULL;
9814
9815 /* Upper 16 vector register is only available with VREX in 64bit
9816 mode. */
9817 if ((r->reg_flags & RegVRex))
9818 {
9819 if (i.vec_encoding == vex_encoding_default)
9820 i.vec_encoding = vex_encoding_evex;
9821
9822 if (!cpu_arch_flags.bitfield.cpuvrex
9823 || i.vec_encoding != vex_encoding_evex
9824 || flag_code != CODE_64BIT)
9825 return (const reg_entry *) NULL;
9826 }
9827
9828 if (((r->reg_flags & (RegRex64 | RegRex))
9829 || r->reg_type.bitfield.qword)
9830 && (!cpu_arch_flags.bitfield.cpulm
9831 || !operand_type_equal (&r->reg_type, &control))
9832 && flag_code != CODE_64BIT)
9833 return (const reg_entry *) NULL;
9834
9835 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9836 return (const reg_entry *) NULL;
9837
9838 return r;
9839 }
9840
9841 /* REG_STRING starts *before* REGISTER_PREFIX. */
9842
9843 static const reg_entry *
9844 parse_register (char *reg_string, char **end_op)
9845 {
9846 const reg_entry *r;
9847
9848 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9849 r = parse_real_register (reg_string, end_op);
9850 else
9851 r = NULL;
9852 if (!r)
9853 {
9854 char *save = input_line_pointer;
9855 char c;
9856 symbolS *symbolP;
9857
9858 input_line_pointer = reg_string;
9859 c = get_symbol_name (&reg_string);
9860 symbolP = symbol_find (reg_string);
9861 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9862 {
9863 const expressionS *e = symbol_get_value_expression (symbolP);
9864
9865 know (e->X_op == O_register);
9866 know (e->X_add_number >= 0
9867 && (valueT) e->X_add_number < i386_regtab_size);
9868 r = i386_regtab + e->X_add_number;
9869 if ((r->reg_flags & RegVRex))
9870 i.vec_encoding = vex_encoding_evex;
9871 *end_op = input_line_pointer;
9872 }
9873 *input_line_pointer = c;
9874 input_line_pointer = save;
9875 }
9876 return r;
9877 }
9878
9879 int
9880 i386_parse_name (char *name, expressionS *e, char *nextcharP)
9881 {
9882 const reg_entry *r;
9883 char *end = input_line_pointer;
9884
9885 *end = *nextcharP;
9886 r = parse_register (name, &input_line_pointer);
9887 if (r && end <= input_line_pointer)
9888 {
9889 *nextcharP = *input_line_pointer;
9890 *input_line_pointer = 0;
9891 e->X_op = O_register;
9892 e->X_add_number = r - i386_regtab;
9893 return 1;
9894 }
9895 input_line_pointer = end;
9896 *end = 0;
9897 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
9898 }
9899
9900 void
9901 md_operand (expressionS *e)
9902 {
9903 char *end;
9904 const reg_entry *r;
9905
9906 switch (*input_line_pointer)
9907 {
9908 case REGISTER_PREFIX:
9909 r = parse_real_register (input_line_pointer, &end);
9910 if (r)
9911 {
9912 e->X_op = O_register;
9913 e->X_add_number = r - i386_regtab;
9914 input_line_pointer = end;
9915 }
9916 break;
9917
9918 case '[':
9919 gas_assert (intel_syntax);
9920 end = input_line_pointer++;
9921 expression (e);
9922 if (*input_line_pointer == ']')
9923 {
9924 ++input_line_pointer;
9925 e->X_op_symbol = make_expr_symbol (e);
9926 e->X_add_symbol = NULL;
9927 e->X_add_number = 0;
9928 e->X_op = O_index;
9929 }
9930 else
9931 {
9932 e->X_op = O_absent;
9933 input_line_pointer = end;
9934 }
9935 break;
9936 }
9937 }
9938
9939 \f
9940 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9941 const char *md_shortopts = "kVQ:sqn";
9942 #else
9943 const char *md_shortopts = "qn";
9944 #endif
9945
9946 #define OPTION_32 (OPTION_MD_BASE + 0)
9947 #define OPTION_64 (OPTION_MD_BASE + 1)
9948 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9949 #define OPTION_MARCH (OPTION_MD_BASE + 3)
9950 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
9951 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9952 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9953 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9954 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9955 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
9956 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
9957 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
9958 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9959 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9960 #define OPTION_X32 (OPTION_MD_BASE + 14)
9961 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
9962 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9963 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
9964 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
9965 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
9966 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
9967 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
9968 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
9969 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
9970 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
9971 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 25)
9972
9973 struct option md_longopts[] =
9974 {
9975 {"32", no_argument, NULL, OPTION_32},
9976 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9977 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9978 {"64", no_argument, NULL, OPTION_64},
9979 #endif
9980 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9981 {"x32", no_argument, NULL, OPTION_X32},
9982 {"mshared", no_argument, NULL, OPTION_MSHARED},
9983 #endif
9984 {"divide", no_argument, NULL, OPTION_DIVIDE},
9985 {"march", required_argument, NULL, OPTION_MARCH},
9986 {"mtune", required_argument, NULL, OPTION_MTUNE},
9987 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
9988 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
9989 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
9990 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
9991 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
9992 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
9993 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
9994 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
9995 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
9996 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
9997 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
9998 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
9999 # if defined (TE_PE) || defined (TE_PEP)
10000 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10001 #endif
10002 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10003 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10004 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10005 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10006 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10007 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10008 {NULL, no_argument, NULL, 0}
10009 };
10010 size_t md_longopts_size = sizeof (md_longopts);
10011
10012 int
10013 md_parse_option (int c, const char *arg)
10014 {
10015 unsigned int j;
10016 char *arch, *next, *saved;
10017
10018 switch (c)
10019 {
10020 case 'n':
10021 optimize_align_code = 0;
10022 break;
10023
10024 case 'q':
10025 quiet_warnings = 1;
10026 break;
10027
10028 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10029 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10030 should be emitted or not. FIXME: Not implemented. */
10031 case 'Q':
10032 break;
10033
10034 /* -V: SVR4 argument to print version ID. */
10035 case 'V':
10036 print_version_id ();
10037 break;
10038
10039 /* -k: Ignore for FreeBSD compatibility. */
10040 case 'k':
10041 break;
10042
10043 case 's':
10044 /* -s: On i386 Solaris, this tells the native assembler to use
10045 .stab instead of .stab.excl. We always use .stab anyhow. */
10046 break;
10047
10048 case OPTION_MSHARED:
10049 shared = 1;
10050 break;
10051 #endif
10052 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10053 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10054 case OPTION_64:
10055 {
10056 const char **list, **l;
10057
10058 list = bfd_target_list ();
10059 for (l = list; *l != NULL; l++)
10060 if (CONST_STRNEQ (*l, "elf64-x86-64")
10061 || strcmp (*l, "coff-x86-64") == 0
10062 || strcmp (*l, "pe-x86-64") == 0
10063 || strcmp (*l, "pei-x86-64") == 0
10064 || strcmp (*l, "mach-o-x86-64") == 0)
10065 {
10066 default_arch = "x86_64";
10067 break;
10068 }
10069 if (*l == NULL)
10070 as_fatal (_("no compiled in support for x86_64"));
10071 free (list);
10072 }
10073 break;
10074 #endif
10075
10076 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10077 case OPTION_X32:
10078 if (IS_ELF)
10079 {
10080 const char **list, **l;
10081
10082 list = bfd_target_list ();
10083 for (l = list; *l != NULL; l++)
10084 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10085 {
10086 default_arch = "x86_64:32";
10087 break;
10088 }
10089 if (*l == NULL)
10090 as_fatal (_("no compiled in support for 32bit x86_64"));
10091 free (list);
10092 }
10093 else
10094 as_fatal (_("32bit x86_64 is only supported for ELF"));
10095 break;
10096 #endif
10097
10098 case OPTION_32:
10099 default_arch = "i386";
10100 break;
10101
10102 case OPTION_DIVIDE:
10103 #ifdef SVR4_COMMENT_CHARS
10104 {
10105 char *n, *t;
10106 const char *s;
10107
10108 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
10109 t = n;
10110 for (s = i386_comment_chars; *s != '\0'; s++)
10111 if (*s != '/')
10112 *t++ = *s;
10113 *t = '\0';
10114 i386_comment_chars = n;
10115 }
10116 #endif
10117 break;
10118
10119 case OPTION_MARCH:
10120 saved = xstrdup (arg);
10121 arch = saved;
10122 /* Allow -march=+nosse. */
10123 if (*arch == '+')
10124 arch++;
10125 do
10126 {
10127 if (*arch == '.')
10128 as_fatal (_("invalid -march= option: `%s'"), arg);
10129 next = strchr (arch, '+');
10130 if (next)
10131 *next++ = '\0';
10132 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10133 {
10134 if (strcmp (arch, cpu_arch [j].name) == 0)
10135 {
10136 /* Processor. */
10137 if (! cpu_arch[j].flags.bitfield.cpui386)
10138 continue;
10139
10140 cpu_arch_name = cpu_arch[j].name;
10141 cpu_sub_arch_name = NULL;
10142 cpu_arch_flags = cpu_arch[j].flags;
10143 cpu_arch_isa = cpu_arch[j].type;
10144 cpu_arch_isa_flags = cpu_arch[j].flags;
10145 if (!cpu_arch_tune_set)
10146 {
10147 cpu_arch_tune = cpu_arch_isa;
10148 cpu_arch_tune_flags = cpu_arch_isa_flags;
10149 }
10150 break;
10151 }
10152 else if (*cpu_arch [j].name == '.'
10153 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10154 {
10155 /* ISA extension. */
10156 i386_cpu_flags flags;
10157
10158 flags = cpu_flags_or (cpu_arch_flags,
10159 cpu_arch[j].flags);
10160
10161 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10162 {
10163 if (cpu_sub_arch_name)
10164 {
10165 char *name = cpu_sub_arch_name;
10166 cpu_sub_arch_name = concat (name,
10167 cpu_arch[j].name,
10168 (const char *) NULL);
10169 free (name);
10170 }
10171 else
10172 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10173 cpu_arch_flags = flags;
10174 cpu_arch_isa_flags = flags;
10175 }
10176 break;
10177 }
10178 }
10179
10180 if (j >= ARRAY_SIZE (cpu_arch))
10181 {
10182 /* Disable an ISA extension. */
10183 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10184 if (strcmp (arch, cpu_noarch [j].name) == 0)
10185 {
10186 i386_cpu_flags flags;
10187
10188 flags = cpu_flags_and_not (cpu_arch_flags,
10189 cpu_noarch[j].flags);
10190 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10191 {
10192 if (cpu_sub_arch_name)
10193 {
10194 char *name = cpu_sub_arch_name;
10195 cpu_sub_arch_name = concat (arch,
10196 (const char *) NULL);
10197 free (name);
10198 }
10199 else
10200 cpu_sub_arch_name = xstrdup (arch);
10201 cpu_arch_flags = flags;
10202 cpu_arch_isa_flags = flags;
10203 }
10204 break;
10205 }
10206
10207 if (j >= ARRAY_SIZE (cpu_noarch))
10208 j = ARRAY_SIZE (cpu_arch);
10209 }
10210
10211 if (j >= ARRAY_SIZE (cpu_arch))
10212 as_fatal (_("invalid -march= option: `%s'"), arg);
10213
10214 arch = next;
10215 }
10216 while (next != NULL);
10217 free (saved);
10218 break;
10219
10220 case OPTION_MTUNE:
10221 if (*arg == '.')
10222 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10223 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10224 {
10225 if (strcmp (arg, cpu_arch [j].name) == 0)
10226 {
10227 cpu_arch_tune_set = 1;
10228 cpu_arch_tune = cpu_arch [j].type;
10229 cpu_arch_tune_flags = cpu_arch[j].flags;
10230 break;
10231 }
10232 }
10233 if (j >= ARRAY_SIZE (cpu_arch))
10234 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10235 break;
10236
10237 case OPTION_MMNEMONIC:
10238 if (strcasecmp (arg, "att") == 0)
10239 intel_mnemonic = 0;
10240 else if (strcasecmp (arg, "intel") == 0)
10241 intel_mnemonic = 1;
10242 else
10243 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10244 break;
10245
10246 case OPTION_MSYNTAX:
10247 if (strcasecmp (arg, "att") == 0)
10248 intel_syntax = 0;
10249 else if (strcasecmp (arg, "intel") == 0)
10250 intel_syntax = 1;
10251 else
10252 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10253 break;
10254
10255 case OPTION_MINDEX_REG:
10256 allow_index_reg = 1;
10257 break;
10258
10259 case OPTION_MNAKED_REG:
10260 allow_naked_reg = 1;
10261 break;
10262
10263 case OPTION_MOLD_GCC:
10264 old_gcc = 1;
10265 break;
10266
10267 case OPTION_MSSE2AVX:
10268 sse2avx = 1;
10269 break;
10270
10271 case OPTION_MSSE_CHECK:
10272 if (strcasecmp (arg, "error") == 0)
10273 sse_check = check_error;
10274 else if (strcasecmp (arg, "warning") == 0)
10275 sse_check = check_warning;
10276 else if (strcasecmp (arg, "none") == 0)
10277 sse_check = check_none;
10278 else
10279 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10280 break;
10281
10282 case OPTION_MOPERAND_CHECK:
10283 if (strcasecmp (arg, "error") == 0)
10284 operand_check = check_error;
10285 else if (strcasecmp (arg, "warning") == 0)
10286 operand_check = check_warning;
10287 else if (strcasecmp (arg, "none") == 0)
10288 operand_check = check_none;
10289 else
10290 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10291 break;
10292
10293 case OPTION_MAVXSCALAR:
10294 if (strcasecmp (arg, "128") == 0)
10295 avxscalar = vex128;
10296 else if (strcasecmp (arg, "256") == 0)
10297 avxscalar = vex256;
10298 else
10299 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10300 break;
10301
10302 case OPTION_MADD_BND_PREFIX:
10303 add_bnd_prefix = 1;
10304 break;
10305
10306 case OPTION_MEVEXLIG:
10307 if (strcmp (arg, "128") == 0)
10308 evexlig = evexl128;
10309 else if (strcmp (arg, "256") == 0)
10310 evexlig = evexl256;
10311 else if (strcmp (arg, "512") == 0)
10312 evexlig = evexl512;
10313 else
10314 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10315 break;
10316
10317 case OPTION_MEVEXRCIG:
10318 if (strcmp (arg, "rne") == 0)
10319 evexrcig = rne;
10320 else if (strcmp (arg, "rd") == 0)
10321 evexrcig = rd;
10322 else if (strcmp (arg, "ru") == 0)
10323 evexrcig = ru;
10324 else if (strcmp (arg, "rz") == 0)
10325 evexrcig = rz;
10326 else
10327 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10328 break;
10329
10330 case OPTION_MEVEXWIG:
10331 if (strcmp (arg, "0") == 0)
10332 evexwig = evexw0;
10333 else if (strcmp (arg, "1") == 0)
10334 evexwig = evexw1;
10335 else
10336 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10337 break;
10338
10339 # if defined (TE_PE) || defined (TE_PEP)
10340 case OPTION_MBIG_OBJ:
10341 use_big_obj = 1;
10342 break;
10343 #endif
10344
10345 case OPTION_MOMIT_LOCK_PREFIX:
10346 if (strcasecmp (arg, "yes") == 0)
10347 omit_lock_prefix = 1;
10348 else if (strcasecmp (arg, "no") == 0)
10349 omit_lock_prefix = 0;
10350 else
10351 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10352 break;
10353
10354 case OPTION_MFENCE_AS_LOCK_ADD:
10355 if (strcasecmp (arg, "yes") == 0)
10356 avoid_fence = 1;
10357 else if (strcasecmp (arg, "no") == 0)
10358 avoid_fence = 0;
10359 else
10360 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10361 break;
10362
10363 case OPTION_MRELAX_RELOCATIONS:
10364 if (strcasecmp (arg, "yes") == 0)
10365 generate_relax_relocations = 1;
10366 else if (strcasecmp (arg, "no") == 0)
10367 generate_relax_relocations = 0;
10368 else
10369 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10370 break;
10371
10372 case OPTION_MAMD64:
10373 intel64 = 0;
10374 break;
10375
10376 case OPTION_MINTEL64:
10377 intel64 = 1;
10378 break;
10379
10380 default:
10381 return 0;
10382 }
10383 return 1;
10384 }
10385
10386 #define MESSAGE_TEMPLATE \
10387 " "
10388
10389 static char *
10390 output_message (FILE *stream, char *p, char *message, char *start,
10391 int *left_p, const char *name, int len)
10392 {
10393 int size = sizeof (MESSAGE_TEMPLATE);
10394 int left = *left_p;
10395
10396 /* Reserve 2 spaces for ", " or ",\0" */
10397 left -= len + 2;
10398
10399 /* Check if there is any room. */
10400 if (left >= 0)
10401 {
10402 if (p != start)
10403 {
10404 *p++ = ',';
10405 *p++ = ' ';
10406 }
10407 p = mempcpy (p, name, len);
10408 }
10409 else
10410 {
10411 /* Output the current message now and start a new one. */
10412 *p++ = ',';
10413 *p = '\0';
10414 fprintf (stream, "%s\n", message);
10415 p = start;
10416 left = size - (start - message) - len - 2;
10417
10418 gas_assert (left >= 0);
10419
10420 p = mempcpy (p, name, len);
10421 }
10422
10423 *left_p = left;
10424 return p;
10425 }
10426
10427 static void
10428 show_arch (FILE *stream, int ext, int check)
10429 {
10430 static char message[] = MESSAGE_TEMPLATE;
10431 char *start = message + 27;
10432 char *p;
10433 int size = sizeof (MESSAGE_TEMPLATE);
10434 int left;
10435 const char *name;
10436 int len;
10437 unsigned int j;
10438
10439 p = start;
10440 left = size - (start - message);
10441 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10442 {
10443 /* Should it be skipped? */
10444 if (cpu_arch [j].skip)
10445 continue;
10446
10447 name = cpu_arch [j].name;
10448 len = cpu_arch [j].len;
10449 if (*name == '.')
10450 {
10451 /* It is an extension. Skip if we aren't asked to show it. */
10452 if (ext)
10453 {
10454 name++;
10455 len--;
10456 }
10457 else
10458 continue;
10459 }
10460 else if (ext)
10461 {
10462 /* It is an processor. Skip if we show only extension. */
10463 continue;
10464 }
10465 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10466 {
10467 /* It is an impossible processor - skip. */
10468 continue;
10469 }
10470
10471 p = output_message (stream, p, message, start, &left, name, len);
10472 }
10473
10474 /* Display disabled extensions. */
10475 if (ext)
10476 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10477 {
10478 name = cpu_noarch [j].name;
10479 len = cpu_noarch [j].len;
10480 p = output_message (stream, p, message, start, &left, name,
10481 len);
10482 }
10483
10484 *p = '\0';
10485 fprintf (stream, "%s\n", message);
10486 }
10487
10488 void
10489 md_show_usage (FILE *stream)
10490 {
10491 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10492 fprintf (stream, _("\
10493 -Q ignored\n\
10494 -V print assembler version number\n\
10495 -k ignored\n"));
10496 #endif
10497 fprintf (stream, _("\
10498 -n Do not optimize code alignment\n\
10499 -q quieten some warnings\n"));
10500 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10501 fprintf (stream, _("\
10502 -s ignored\n"));
10503 #endif
10504 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10505 || defined (TE_PE) || defined (TE_PEP))
10506 fprintf (stream, _("\
10507 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10508 #endif
10509 #ifdef SVR4_COMMENT_CHARS
10510 fprintf (stream, _("\
10511 --divide do not treat `/' as a comment character\n"));
10512 #else
10513 fprintf (stream, _("\
10514 --divide ignored\n"));
10515 #endif
10516 fprintf (stream, _("\
10517 -march=CPU[,+EXTENSION...]\n\
10518 generate code for CPU and EXTENSION, CPU is one of:\n"));
10519 show_arch (stream, 0, 1);
10520 fprintf (stream, _("\
10521 EXTENSION is combination of:\n"));
10522 show_arch (stream, 1, 0);
10523 fprintf (stream, _("\
10524 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10525 show_arch (stream, 0, 0);
10526 fprintf (stream, _("\
10527 -msse2avx encode SSE instructions with VEX prefix\n"));
10528 fprintf (stream, _("\
10529 -msse-check=[none|error|warning]\n\
10530 check SSE instructions\n"));
10531 fprintf (stream, _("\
10532 -moperand-check=[none|error|warning]\n\
10533 check operand combinations for validity\n"));
10534 fprintf (stream, _("\
10535 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10536 length\n"));
10537 fprintf (stream, _("\
10538 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10539 length\n"));
10540 fprintf (stream, _("\
10541 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10542 for EVEX.W bit ignored instructions\n"));
10543 fprintf (stream, _("\
10544 -mevexrcig=[rne|rd|ru|rz]\n\
10545 encode EVEX instructions with specific EVEX.RC value\n\
10546 for SAE-only ignored instructions\n"));
10547 fprintf (stream, _("\
10548 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10549 fprintf (stream, _("\
10550 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10551 fprintf (stream, _("\
10552 -mindex-reg support pseudo index registers\n"));
10553 fprintf (stream, _("\
10554 -mnaked-reg don't require `%%' prefix for registers\n"));
10555 fprintf (stream, _("\
10556 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
10557 fprintf (stream, _("\
10558 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10559 fprintf (stream, _("\
10560 -mshared disable branch optimization for shared code\n"));
10561 # if defined (TE_PE) || defined (TE_PEP)
10562 fprintf (stream, _("\
10563 -mbig-obj generate big object files\n"));
10564 #endif
10565 fprintf (stream, _("\
10566 -momit-lock-prefix=[no|yes]\n\
10567 strip all lock prefixes\n"));
10568 fprintf (stream, _("\
10569 -mfence-as-lock-add=[no|yes]\n\
10570 encode lfence, mfence and sfence as\n\
10571 lock addl $0x0, (%%{re}sp)\n"));
10572 fprintf (stream, _("\
10573 -mrelax-relocations=[no|yes]\n\
10574 generate relax relocations\n"));
10575 fprintf (stream, _("\
10576 -mamd64 accept only AMD64 ISA\n"));
10577 fprintf (stream, _("\
10578 -mintel64 accept only Intel64 ISA\n"));
10579 }
10580
10581 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10582 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10583 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10584
10585 /* Pick the target format to use. */
10586
10587 const char *
10588 i386_target_format (void)
10589 {
10590 if (!strncmp (default_arch, "x86_64", 6))
10591 {
10592 update_code_flag (CODE_64BIT, 1);
10593 if (default_arch[6] == '\0')
10594 x86_elf_abi = X86_64_ABI;
10595 else
10596 x86_elf_abi = X86_64_X32_ABI;
10597 }
10598 else if (!strcmp (default_arch, "i386"))
10599 update_code_flag (CODE_32BIT, 1);
10600 else if (!strcmp (default_arch, "iamcu"))
10601 {
10602 update_code_flag (CODE_32BIT, 1);
10603 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10604 {
10605 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10606 cpu_arch_name = "iamcu";
10607 cpu_sub_arch_name = NULL;
10608 cpu_arch_flags = iamcu_flags;
10609 cpu_arch_isa = PROCESSOR_IAMCU;
10610 cpu_arch_isa_flags = iamcu_flags;
10611 if (!cpu_arch_tune_set)
10612 {
10613 cpu_arch_tune = cpu_arch_isa;
10614 cpu_arch_tune_flags = cpu_arch_isa_flags;
10615 }
10616 }
10617 else if (cpu_arch_isa != PROCESSOR_IAMCU)
10618 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10619 cpu_arch_name);
10620 }
10621 else
10622 as_fatal (_("unknown architecture"));
10623
10624 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10625 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10626 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10627 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10628
10629 switch (OUTPUT_FLAVOR)
10630 {
10631 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
10632 case bfd_target_aout_flavour:
10633 return AOUT_TARGET_FORMAT;
10634 #endif
10635 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10636 # if defined (TE_PE) || defined (TE_PEP)
10637 case bfd_target_coff_flavour:
10638 if (flag_code == CODE_64BIT)
10639 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10640 else
10641 return "pe-i386";
10642 # elif defined (TE_GO32)
10643 case bfd_target_coff_flavour:
10644 return "coff-go32";
10645 # else
10646 case bfd_target_coff_flavour:
10647 return "coff-i386";
10648 # endif
10649 #endif
10650 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10651 case bfd_target_elf_flavour:
10652 {
10653 const char *format;
10654
10655 switch (x86_elf_abi)
10656 {
10657 default:
10658 format = ELF_TARGET_FORMAT;
10659 break;
10660 case X86_64_ABI:
10661 use_rela_relocations = 1;
10662 object_64bit = 1;
10663 format = ELF_TARGET_FORMAT64;
10664 break;
10665 case X86_64_X32_ABI:
10666 use_rela_relocations = 1;
10667 object_64bit = 1;
10668 disallow_64bit_reloc = 1;
10669 format = ELF_TARGET_FORMAT32;
10670 break;
10671 }
10672 if (cpu_arch_isa == PROCESSOR_L1OM)
10673 {
10674 if (x86_elf_abi != X86_64_ABI)
10675 as_fatal (_("Intel L1OM is 64bit only"));
10676 return ELF_TARGET_L1OM_FORMAT;
10677 }
10678 else if (cpu_arch_isa == PROCESSOR_K1OM)
10679 {
10680 if (x86_elf_abi != X86_64_ABI)
10681 as_fatal (_("Intel K1OM is 64bit only"));
10682 return ELF_TARGET_K1OM_FORMAT;
10683 }
10684 else if (cpu_arch_isa == PROCESSOR_IAMCU)
10685 {
10686 if (x86_elf_abi != I386_ABI)
10687 as_fatal (_("Intel MCU is 32bit only"));
10688 return ELF_TARGET_IAMCU_FORMAT;
10689 }
10690 else
10691 return format;
10692 }
10693 #endif
10694 #if defined (OBJ_MACH_O)
10695 case bfd_target_mach_o_flavour:
10696 if (flag_code == CODE_64BIT)
10697 {
10698 use_rela_relocations = 1;
10699 object_64bit = 1;
10700 return "mach-o-x86-64";
10701 }
10702 else
10703 return "mach-o-i386";
10704 #endif
10705 default:
10706 abort ();
10707 return NULL;
10708 }
10709 }
10710
10711 #endif /* OBJ_MAYBE_ more than one */
10712 \f
10713 symbolS *
10714 md_undefined_symbol (char *name)
10715 {
10716 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10717 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10718 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10719 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
10720 {
10721 if (!GOT_symbol)
10722 {
10723 if (symbol_find (name))
10724 as_bad (_("GOT already in symbol table"));
10725 GOT_symbol = symbol_new (name, undefined_section,
10726 (valueT) 0, &zero_address_frag);
10727 };
10728 return GOT_symbol;
10729 }
10730 return 0;
10731 }
10732
10733 /* Round up a section size to the appropriate boundary. */
10734
10735 valueT
10736 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
10737 {
10738 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10739 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10740 {
10741 /* For a.out, force the section size to be aligned. If we don't do
10742 this, BFD will align it for us, but it will not write out the
10743 final bytes of the section. This may be a bug in BFD, but it is
10744 easier to fix it here since that is how the other a.out targets
10745 work. */
10746 int align;
10747
10748 align = bfd_get_section_alignment (stdoutput, segment);
10749 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
10750 }
10751 #endif
10752
10753 return size;
10754 }
10755
10756 /* On the i386, PC-relative offsets are relative to the start of the
10757 next instruction. That is, the address of the offset, plus its
10758 size, since the offset is always the last part of the insn. */
10759
10760 long
10761 md_pcrel_from (fixS *fixP)
10762 {
10763 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10764 }
10765
10766 #ifndef I386COFF
10767
10768 static void
10769 s_bss (int ignore ATTRIBUTE_UNUSED)
10770 {
10771 int temp;
10772
10773 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10774 if (IS_ELF)
10775 obj_elf_section_change_hook ();
10776 #endif
10777 temp = get_absolute_expression ();
10778 subseg_set (bss_section, (subsegT) temp);
10779 demand_empty_rest_of_line ();
10780 }
10781
10782 #endif
10783
10784 void
10785 i386_validate_fix (fixS *fixp)
10786 {
10787 if (fixp->fx_subsy)
10788 {
10789 if (fixp->fx_subsy == GOT_symbol)
10790 {
10791 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10792 {
10793 if (!object_64bit)
10794 abort ();
10795 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10796 if (fixp->fx_tcbit2)
10797 fixp->fx_r_type = (fixp->fx_tcbit
10798 ? BFD_RELOC_X86_64_REX_GOTPCRELX
10799 : BFD_RELOC_X86_64_GOTPCRELX);
10800 else
10801 #endif
10802 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10803 }
10804 else
10805 {
10806 if (!object_64bit)
10807 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10808 else
10809 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10810 }
10811 fixp->fx_subsy = 0;
10812 }
10813 }
10814 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10815 else if (!object_64bit)
10816 {
10817 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
10818 && fixp->fx_tcbit2)
10819 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
10820 }
10821 #endif
10822 }
10823
10824 arelent *
10825 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
10826 {
10827 arelent *rel;
10828 bfd_reloc_code_real_type code;
10829
10830 switch (fixp->fx_r_type)
10831 {
10832 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10833 case BFD_RELOC_SIZE32:
10834 case BFD_RELOC_SIZE64:
10835 if (S_IS_DEFINED (fixp->fx_addsy)
10836 && !S_IS_EXTERNAL (fixp->fx_addsy))
10837 {
10838 /* Resolve size relocation against local symbol to size of
10839 the symbol plus addend. */
10840 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10841 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10842 && !fits_in_unsigned_long (value))
10843 as_bad_where (fixp->fx_file, fixp->fx_line,
10844 _("symbol size computation overflow"));
10845 fixp->fx_addsy = NULL;
10846 fixp->fx_subsy = NULL;
10847 md_apply_fix (fixp, (valueT *) &value, NULL);
10848 return NULL;
10849 }
10850 #endif
10851 /* Fall through. */
10852
10853 case BFD_RELOC_X86_64_PLT32:
10854 case BFD_RELOC_X86_64_GOT32:
10855 case BFD_RELOC_X86_64_GOTPCREL:
10856 case BFD_RELOC_X86_64_GOTPCRELX:
10857 case BFD_RELOC_X86_64_REX_GOTPCRELX:
10858 case BFD_RELOC_386_PLT32:
10859 case BFD_RELOC_386_GOT32:
10860 case BFD_RELOC_386_GOT32X:
10861 case BFD_RELOC_386_GOTOFF:
10862 case BFD_RELOC_386_GOTPC:
10863 case BFD_RELOC_386_TLS_GD:
10864 case BFD_RELOC_386_TLS_LDM:
10865 case BFD_RELOC_386_TLS_LDO_32:
10866 case BFD_RELOC_386_TLS_IE_32:
10867 case BFD_RELOC_386_TLS_IE:
10868 case BFD_RELOC_386_TLS_GOTIE:
10869 case BFD_RELOC_386_TLS_LE_32:
10870 case BFD_RELOC_386_TLS_LE:
10871 case BFD_RELOC_386_TLS_GOTDESC:
10872 case BFD_RELOC_386_TLS_DESC_CALL:
10873 case BFD_RELOC_X86_64_TLSGD:
10874 case BFD_RELOC_X86_64_TLSLD:
10875 case BFD_RELOC_X86_64_DTPOFF32:
10876 case BFD_RELOC_X86_64_DTPOFF64:
10877 case BFD_RELOC_X86_64_GOTTPOFF:
10878 case BFD_RELOC_X86_64_TPOFF32:
10879 case BFD_RELOC_X86_64_TPOFF64:
10880 case BFD_RELOC_X86_64_GOTOFF64:
10881 case BFD_RELOC_X86_64_GOTPC32:
10882 case BFD_RELOC_X86_64_GOT64:
10883 case BFD_RELOC_X86_64_GOTPCREL64:
10884 case BFD_RELOC_X86_64_GOTPC64:
10885 case BFD_RELOC_X86_64_GOTPLT64:
10886 case BFD_RELOC_X86_64_PLTOFF64:
10887 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10888 case BFD_RELOC_X86_64_TLSDESC_CALL:
10889 case BFD_RELOC_RVA:
10890 case BFD_RELOC_VTABLE_ENTRY:
10891 case BFD_RELOC_VTABLE_INHERIT:
10892 #ifdef TE_PE
10893 case BFD_RELOC_32_SECREL:
10894 #endif
10895 code = fixp->fx_r_type;
10896 break;
10897 case BFD_RELOC_X86_64_32S:
10898 if (!fixp->fx_pcrel)
10899 {
10900 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10901 code = fixp->fx_r_type;
10902 break;
10903 }
10904 /* Fall through. */
10905 default:
10906 if (fixp->fx_pcrel)
10907 {
10908 switch (fixp->fx_size)
10909 {
10910 default:
10911 as_bad_where (fixp->fx_file, fixp->fx_line,
10912 _("can not do %d byte pc-relative relocation"),
10913 fixp->fx_size);
10914 code = BFD_RELOC_32_PCREL;
10915 break;
10916 case 1: code = BFD_RELOC_8_PCREL; break;
10917 case 2: code = BFD_RELOC_16_PCREL; break;
10918 case 4: code = BFD_RELOC_32_PCREL; break;
10919 #ifdef BFD64
10920 case 8: code = BFD_RELOC_64_PCREL; break;
10921 #endif
10922 }
10923 }
10924 else
10925 {
10926 switch (fixp->fx_size)
10927 {
10928 default:
10929 as_bad_where (fixp->fx_file, fixp->fx_line,
10930 _("can not do %d byte relocation"),
10931 fixp->fx_size);
10932 code = BFD_RELOC_32;
10933 break;
10934 case 1: code = BFD_RELOC_8; break;
10935 case 2: code = BFD_RELOC_16; break;
10936 case 4: code = BFD_RELOC_32; break;
10937 #ifdef BFD64
10938 case 8: code = BFD_RELOC_64; break;
10939 #endif
10940 }
10941 }
10942 break;
10943 }
10944
10945 if ((code == BFD_RELOC_32
10946 || code == BFD_RELOC_32_PCREL
10947 || code == BFD_RELOC_X86_64_32S)
10948 && GOT_symbol
10949 && fixp->fx_addsy == GOT_symbol)
10950 {
10951 if (!object_64bit)
10952 code = BFD_RELOC_386_GOTPC;
10953 else
10954 code = BFD_RELOC_X86_64_GOTPC32;
10955 }
10956 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10957 && GOT_symbol
10958 && fixp->fx_addsy == GOT_symbol)
10959 {
10960 code = BFD_RELOC_X86_64_GOTPC64;
10961 }
10962
10963 rel = XNEW (arelent);
10964 rel->sym_ptr_ptr = XNEW (asymbol *);
10965 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10966
10967 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
10968
10969 if (!use_rela_relocations)
10970 {
10971 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10972 vtable entry to be used in the relocation's section offset. */
10973 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10974 rel->address = fixp->fx_offset;
10975 #if defined (OBJ_COFF) && defined (TE_PE)
10976 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10977 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10978 else
10979 #endif
10980 rel->addend = 0;
10981 }
10982 /* Use the rela in 64bit mode. */
10983 else
10984 {
10985 if (disallow_64bit_reloc)
10986 switch (code)
10987 {
10988 case BFD_RELOC_X86_64_DTPOFF64:
10989 case BFD_RELOC_X86_64_TPOFF64:
10990 case BFD_RELOC_64_PCREL:
10991 case BFD_RELOC_X86_64_GOTOFF64:
10992 case BFD_RELOC_X86_64_GOT64:
10993 case BFD_RELOC_X86_64_GOTPCREL64:
10994 case BFD_RELOC_X86_64_GOTPC64:
10995 case BFD_RELOC_X86_64_GOTPLT64:
10996 case BFD_RELOC_X86_64_PLTOFF64:
10997 as_bad_where (fixp->fx_file, fixp->fx_line,
10998 _("cannot represent relocation type %s in x32 mode"),
10999 bfd_get_reloc_code_name (code));
11000 break;
11001 default:
11002 break;
11003 }
11004
11005 if (!fixp->fx_pcrel)
11006 rel->addend = fixp->fx_offset;
11007 else
11008 switch (code)
11009 {
11010 case BFD_RELOC_X86_64_PLT32:
11011 case BFD_RELOC_X86_64_GOT32:
11012 case BFD_RELOC_X86_64_GOTPCREL:
11013 case BFD_RELOC_X86_64_GOTPCRELX:
11014 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11015 case BFD_RELOC_X86_64_TLSGD:
11016 case BFD_RELOC_X86_64_TLSLD:
11017 case BFD_RELOC_X86_64_GOTTPOFF:
11018 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11019 case BFD_RELOC_X86_64_TLSDESC_CALL:
11020 rel->addend = fixp->fx_offset - fixp->fx_size;
11021 break;
11022 default:
11023 rel->addend = (section->vma
11024 - fixp->fx_size
11025 + fixp->fx_addnumber
11026 + md_pcrel_from (fixp));
11027 break;
11028 }
11029 }
11030
11031 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11032 if (rel->howto == NULL)
11033 {
11034 as_bad_where (fixp->fx_file, fixp->fx_line,
11035 _("cannot represent relocation type %s"),
11036 bfd_get_reloc_code_name (code));
11037 /* Set howto to a garbage value so that we can keep going. */
11038 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
11039 gas_assert (rel->howto != NULL);
11040 }
11041
11042 return rel;
11043 }
11044
11045 #include "tc-i386-intel.c"
11046
11047 void
11048 tc_x86_parse_to_dw2regnum (expressionS *exp)
11049 {
11050 int saved_naked_reg;
11051 char saved_register_dot;
11052
11053 saved_naked_reg = allow_naked_reg;
11054 allow_naked_reg = 1;
11055 saved_register_dot = register_chars['.'];
11056 register_chars['.'] = '.';
11057 allow_pseudo_reg = 1;
11058 expression_and_evaluate (exp);
11059 allow_pseudo_reg = 0;
11060 register_chars['.'] = saved_register_dot;
11061 allow_naked_reg = saved_naked_reg;
11062
11063 if (exp->X_op == O_register && exp->X_add_number >= 0)
11064 {
11065 if ((addressT) exp->X_add_number < i386_regtab_size)
11066 {
11067 exp->X_op = O_constant;
11068 exp->X_add_number = i386_regtab[exp->X_add_number]
11069 .dw2_regnum[flag_code >> 1];
11070 }
11071 else
11072 exp->X_op = O_illegal;
11073 }
11074 }
11075
11076 void
11077 tc_x86_frame_initial_instructions (void)
11078 {
11079 static unsigned int sp_regno[2];
11080
11081 if (!sp_regno[flag_code >> 1])
11082 {
11083 char *saved_input = input_line_pointer;
11084 char sp[][4] = {"esp", "rsp"};
11085 expressionS exp;
11086
11087 input_line_pointer = sp[flag_code >> 1];
11088 tc_x86_parse_to_dw2regnum (&exp);
11089 gas_assert (exp.X_op == O_constant);
11090 sp_regno[flag_code >> 1] = exp.X_add_number;
11091 input_line_pointer = saved_input;
11092 }
11093
11094 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11095 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
11096 }
11097
11098 int
11099 x86_dwarf2_addr_size (void)
11100 {
11101 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11102 if (x86_elf_abi == X86_64_X32_ABI)
11103 return 4;
11104 #endif
11105 return bfd_arch_bits_per_address (stdoutput) / 8;
11106 }
11107
11108 int
11109 i386_elf_section_type (const char *str, size_t len)
11110 {
11111 if (flag_code == CODE_64BIT
11112 && len == sizeof ("unwind") - 1
11113 && strncmp (str, "unwind", 6) == 0)
11114 return SHT_X86_64_UNWIND;
11115
11116 return -1;
11117 }
11118
11119 #ifdef TE_SOLARIS
11120 void
11121 i386_solaris_fix_up_eh_frame (segT sec)
11122 {
11123 if (flag_code == CODE_64BIT)
11124 elf_section_type (sec) = SHT_X86_64_UNWIND;
11125 }
11126 #endif
11127
11128 #ifdef TE_PE
11129 void
11130 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11131 {
11132 expressionS exp;
11133
11134 exp.X_op = O_secrel;
11135 exp.X_add_symbol = symbol;
11136 exp.X_add_number = 0;
11137 emit_expr (&exp, size);
11138 }
11139 #endif
11140
11141 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11142 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11143
11144 bfd_vma
11145 x86_64_section_letter (int letter, const char **ptr_msg)
11146 {
11147 if (flag_code == CODE_64BIT)
11148 {
11149 if (letter == 'l')
11150 return SHF_X86_64_LARGE;
11151
11152 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11153 }
11154 else
11155 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11156 return -1;
11157 }
11158
11159 bfd_vma
11160 x86_64_section_word (char *str, size_t len)
11161 {
11162 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11163 return SHF_X86_64_LARGE;
11164
11165 return -1;
11166 }
11167
11168 static void
11169 handle_large_common (int small ATTRIBUTE_UNUSED)
11170 {
11171 if (flag_code != CODE_64BIT)
11172 {
11173 s_comm_internal (0, elf_common_parse);
11174 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11175 }
11176 else
11177 {
11178 static segT lbss_section;
11179 asection *saved_com_section_ptr = elf_com_section_ptr;
11180 asection *saved_bss_section = bss_section;
11181
11182 if (lbss_section == NULL)
11183 {
11184 flagword applicable;
11185 segT seg = now_seg;
11186 subsegT subseg = now_subseg;
11187
11188 /* The .lbss section is for local .largecomm symbols. */
11189 lbss_section = subseg_new (".lbss", 0);
11190 applicable = bfd_applicable_section_flags (stdoutput);
11191 bfd_set_section_flags (stdoutput, lbss_section,
11192 applicable & SEC_ALLOC);
11193 seg_info (lbss_section)->bss = 1;
11194
11195 subseg_set (seg, subseg);
11196 }
11197
11198 elf_com_section_ptr = &_bfd_elf_large_com_section;
11199 bss_section = lbss_section;
11200
11201 s_comm_internal (0, elf_common_parse);
11202
11203 elf_com_section_ptr = saved_com_section_ptr;
11204 bss_section = saved_bss_section;
11205 }
11206 }
11207 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.249489 seconds and 3 git commands to generate.