x86: drop further pointless/bogus DefaultSize
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef REGISTER_WARNINGS
48 #define REGISTER_WARNINGS 1
49 #endif
50
51 #ifndef INFER_ADDR_PREFIX
52 #define INFER_ADDR_PREFIX 1
53 #endif
54
55 #ifndef DEFAULT_ARCH
56 #define DEFAULT_ARCH "i386"
57 #endif
58
59 #ifndef INLINE
60 #if __GNUC__ >= 2
61 #define INLINE __inline__
62 #else
63 #define INLINE
64 #endif
65 #endif
66
67 /* Prefixes will be emitted in the order defined below.
68 WAIT_PREFIX must be the first prefix since FWAIT is really is an
69 instruction, and so must come before any prefixes.
70 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
71 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
72 #define WAIT_PREFIX 0
73 #define SEG_PREFIX 1
74 #define ADDR_PREFIX 2
75 #define DATA_PREFIX 3
76 #define REP_PREFIX 4
77 #define HLE_PREFIX REP_PREFIX
78 #define BND_PREFIX REP_PREFIX
79 #define LOCK_PREFIX 5
80 #define REX_PREFIX 6 /* must come last. */
81 #define MAX_PREFIXES 7 /* max prefixes per opcode */
82
83 /* we define the syntax here (modulo base,index,scale syntax) */
84 #define REGISTER_PREFIX '%'
85 #define IMMEDIATE_PREFIX '$'
86 #define ABSOLUTE_PREFIX '*'
87
88 /* these are the instruction mnemonic suffixes in AT&T syntax or
89 memory operand size in Intel syntax. */
90 #define WORD_MNEM_SUFFIX 'w'
91 #define BYTE_MNEM_SUFFIX 'b'
92 #define SHORT_MNEM_SUFFIX 's'
93 #define LONG_MNEM_SUFFIX 'l'
94 #define QWORD_MNEM_SUFFIX 'q'
95 /* Intel Syntax. Use a non-ascii letter since since it never appears
96 in instructions. */
97 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
98
99 #define END_OF_INSN '\0'
100
101 /* This matches the C -> StaticRounding alias in the opcode table. */
102 #define commutative staticrounding
103
104 /*
105 'templates' is for grouping together 'template' structures for opcodes
106 of the same name. This is only used for storing the insns in the grand
107 ole hash table of insns.
108 The templates themselves start at START and range up to (but not including)
109 END.
110 */
111 typedef struct
112 {
113 const insn_template *start;
114 const insn_template *end;
115 }
116 templates;
117
118 /* 386 operand encoding bytes: see 386 book for details of this. */
119 typedef struct
120 {
121 unsigned int regmem; /* codes register or memory operand */
122 unsigned int reg; /* codes register operand (or extended opcode) */
123 unsigned int mode; /* how to interpret regmem & reg */
124 }
125 modrm_byte;
126
127 /* x86-64 extension prefix. */
128 typedef int rex_byte;
129
130 /* 386 opcode byte to code indirect addressing. */
131 typedef struct
132 {
133 unsigned base;
134 unsigned index;
135 unsigned scale;
136 }
137 sib_byte;
138
139 /* x86 arch names, types and features */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 enum processor_type type; /* arch type */
145 i386_cpu_flags flags; /* cpu feature flags */
146 unsigned int skip; /* show_arch should skip this. */
147 }
148 arch_entry;
149
150 /* Used to turn off indicated flags. */
151 typedef struct
152 {
153 const char *name; /* arch name */
154 unsigned int len; /* arch string length */
155 i386_cpu_flags flags; /* cpu feature flags */
156 }
157 noarch_entry;
158
159 static void update_code_flag (int, int);
160 static void set_code_flag (int);
161 static void set_16bit_gcc_code_flag (int);
162 static void set_intel_syntax (int);
163 static void set_intel_mnemonic (int);
164 static void set_allow_index_reg (int);
165 static void set_check (int);
166 static void set_cpu_arch (int);
167 #ifdef TE_PE
168 static void pe_directive_secrel (int);
169 #endif
170 static void signed_cons (int);
171 static char *output_invalid (int c);
172 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
173 const char *);
174 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
175 const char *);
176 static int i386_att_operand (char *);
177 static int i386_intel_operand (char *, int);
178 static int i386_intel_simplify (expressionS *);
179 static int i386_intel_parse_name (const char *, expressionS *);
180 static const reg_entry *parse_register (char *, char **);
181 static char *parse_insn (char *, char *);
182 static char *parse_operands (char *, const char *);
183 static void swap_operands (void);
184 static void swap_2_operands (int, int);
185 static enum flag_code i386_addressing_mode (void);
186 static void optimize_imm (void);
187 static void optimize_disp (void);
188 static const insn_template *match_template (char);
189 static int check_string (void);
190 static int process_suffix (void);
191 static int check_byte_reg (void);
192 static int check_long_reg (void);
193 static int check_qword_reg (void);
194 static int check_word_reg (void);
195 static int finalize_imm (void);
196 static int process_operands (void);
197 static const seg_entry *build_modrm_byte (void);
198 static void output_insn (void);
199 static void output_imm (fragS *, offsetT);
200 static void output_disp (fragS *, offsetT);
201 #ifndef I386COFF
202 static void s_bss (int);
203 #endif
204 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
205 static void handle_large_common (int small ATTRIBUTE_UNUSED);
206
207 /* GNU_PROPERTY_X86_ISA_1_USED. */
208 static unsigned int x86_isa_1_used;
209 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
210 static unsigned int x86_feature_2_used;
211 /* Generate x86 used ISA and feature properties. */
212 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
213 #endif
214
215 static const char *default_arch = DEFAULT_ARCH;
216
217 /* This struct describes rounding control and SAE in the instruction. */
218 struct RC_Operation
219 {
220 enum rc_type
221 {
222 rne = 0,
223 rd,
224 ru,
225 rz,
226 saeonly
227 } type;
228 int operand;
229 };
230
231 static struct RC_Operation rc_op;
232
233 /* The struct describes masking, applied to OPERAND in the instruction.
234 MASK is a pointer to the corresponding mask register. ZEROING tells
235 whether merging or zeroing mask is used. */
236 struct Mask_Operation
237 {
238 const reg_entry *mask;
239 unsigned int zeroing;
240 /* The operand where this operation is associated. */
241 int operand;
242 };
243
244 static struct Mask_Operation mask_op;
245
246 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
247 broadcast factor. */
248 struct Broadcast_Operation
249 {
250 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
251 int type;
252
253 /* Index of broadcasted operand. */
254 int operand;
255
256 /* Number of bytes to broadcast. */
257 int bytes;
258 };
259
260 static struct Broadcast_Operation broadcast_op;
261
262 /* VEX prefix. */
263 typedef struct
264 {
265 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
266 unsigned char bytes[4];
267 unsigned int length;
268 /* Destination or source register specifier. */
269 const reg_entry *register_specifier;
270 } vex_prefix;
271
272 /* 'md_assemble ()' gathers together information and puts it into a
273 i386_insn. */
274
275 union i386_op
276 {
277 expressionS *disps;
278 expressionS *imms;
279 const reg_entry *regs;
280 };
281
282 enum i386_error
283 {
284 operand_size_mismatch,
285 operand_type_mismatch,
286 register_type_mismatch,
287 number_of_operands_mismatch,
288 invalid_instruction_suffix,
289 bad_imm4,
290 unsupported_with_intel_mnemonic,
291 unsupported_syntax,
292 unsupported,
293 invalid_vsib_address,
294 invalid_vector_register_set,
295 unsupported_vector_index_register,
296 unsupported_broadcast,
297 broadcast_needed,
298 unsupported_masking,
299 mask_not_on_destination,
300 no_default_mask,
301 unsupported_rc_sae,
302 rc_sae_operand_not_last_imm,
303 invalid_register_operand,
304 };
305
306 struct _i386_insn
307 {
308 /* TM holds the template for the insn were currently assembling. */
309 insn_template tm;
310
311 /* SUFFIX holds the instruction size suffix for byte, word, dword
312 or qword, if given. */
313 char suffix;
314
315 /* OPERANDS gives the number of given operands. */
316 unsigned int operands;
317
318 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
319 of given register, displacement, memory operands and immediate
320 operands. */
321 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
322
323 /* TYPES [i] is the type (see above #defines) which tells us how to
324 use OP[i] for the corresponding operand. */
325 i386_operand_type types[MAX_OPERANDS];
326
327 /* Displacement expression, immediate expression, or register for each
328 operand. */
329 union i386_op op[MAX_OPERANDS];
330
331 /* Flags for operands. */
332 unsigned int flags[MAX_OPERANDS];
333 #define Operand_PCrel 1
334 #define Operand_Mem 2
335
336 /* Relocation type for operand */
337 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
338
339 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
340 the base index byte below. */
341 const reg_entry *base_reg;
342 const reg_entry *index_reg;
343 unsigned int log2_scale_factor;
344
345 /* SEG gives the seg_entries of this insn. They are zero unless
346 explicit segment overrides are given. */
347 const seg_entry *seg[2];
348
349 /* Copied first memory operand string, for re-checking. */
350 char *memop1_string;
351
352 /* PREFIX holds all the given prefix opcodes (usually null).
353 PREFIXES is the number of prefix opcodes. */
354 unsigned int prefixes;
355 unsigned char prefix[MAX_PREFIXES];
356
357 /* The operand to a branch insn indicates an absolute branch. */
358 bfd_boolean jumpabsolute;
359
360 /* Has MMX register operands. */
361 bfd_boolean has_regmmx;
362
363 /* Has XMM register operands. */
364 bfd_boolean has_regxmm;
365
366 /* Has YMM register operands. */
367 bfd_boolean has_regymm;
368
369 /* Has ZMM register operands. */
370 bfd_boolean has_regzmm;
371
372 /* Has GOTPC or TLS relocation. */
373 bfd_boolean has_gotpc_tls_reloc;
374
375 /* RM and SIB are the modrm byte and the sib byte where the
376 addressing modes of this insn are encoded. */
377 modrm_byte rm;
378 rex_byte rex;
379 rex_byte vrex;
380 sib_byte sib;
381 vex_prefix vex;
382
383 /* Masking attributes. */
384 struct Mask_Operation *mask;
385
386 /* Rounding control and SAE attributes. */
387 struct RC_Operation *rounding;
388
389 /* Broadcasting attributes. */
390 struct Broadcast_Operation *broadcast;
391
392 /* Compressed disp8*N attribute. */
393 unsigned int memshift;
394
395 /* Prefer load or store in encoding. */
396 enum
397 {
398 dir_encoding_default = 0,
399 dir_encoding_load,
400 dir_encoding_store,
401 dir_encoding_swap
402 } dir_encoding;
403
404 /* Prefer 8bit or 32bit displacement in encoding. */
405 enum
406 {
407 disp_encoding_default = 0,
408 disp_encoding_8bit,
409 disp_encoding_32bit
410 } disp_encoding;
411
412 /* Prefer the REX byte in encoding. */
413 bfd_boolean rex_encoding;
414
415 /* Disable instruction size optimization. */
416 bfd_boolean no_optimize;
417
418 /* How to encode vector instructions. */
419 enum
420 {
421 vex_encoding_default = 0,
422 vex_encoding_vex,
423 vex_encoding_vex3,
424 vex_encoding_evex
425 } vec_encoding;
426
427 /* REP prefix. */
428 const char *rep_prefix;
429
430 /* HLE prefix. */
431 const char *hle_prefix;
432
433 /* Have BND prefix. */
434 const char *bnd_prefix;
435
436 /* Have NOTRACK prefix. */
437 const char *notrack_prefix;
438
439 /* Error message. */
440 enum i386_error error;
441 };
442
443 typedef struct _i386_insn i386_insn;
444
445 /* Link RC type with corresponding string, that'll be looked for in
446 asm. */
447 struct RC_name
448 {
449 enum rc_type type;
450 const char *name;
451 unsigned int len;
452 };
453
454 static const struct RC_name RC_NamesTable[] =
455 {
456 { rne, STRING_COMMA_LEN ("rn-sae") },
457 { rd, STRING_COMMA_LEN ("rd-sae") },
458 { ru, STRING_COMMA_LEN ("ru-sae") },
459 { rz, STRING_COMMA_LEN ("rz-sae") },
460 { saeonly, STRING_COMMA_LEN ("sae") },
461 };
462
463 /* List of chars besides those in app.c:symbol_chars that can start an
464 operand. Used to prevent the scrubber eating vital white-space. */
465 const char extra_symbol_chars[] = "*%-([{}"
466 #ifdef LEX_AT
467 "@"
468 #endif
469 #ifdef LEX_QM
470 "?"
471 #endif
472 ;
473
474 #if (defined (TE_I386AIX) \
475 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
476 && !defined (TE_GNU) \
477 && !defined (TE_LINUX) \
478 && !defined (TE_NACL) \
479 && !defined (TE_FreeBSD) \
480 && !defined (TE_DragonFly) \
481 && !defined (TE_NetBSD)))
482 /* This array holds the chars that always start a comment. If the
483 pre-processor is disabled, these aren't very useful. The option
484 --divide will remove '/' from this list. */
485 const char *i386_comment_chars = "#/";
486 #define SVR4_COMMENT_CHARS 1
487 #define PREFIX_SEPARATOR '\\'
488
489 #else
490 const char *i386_comment_chars = "#";
491 #define PREFIX_SEPARATOR '/'
492 #endif
493
494 /* This array holds the chars that only start a comment at the beginning of
495 a line. If the line seems to have the form '# 123 filename'
496 .line and .file directives will appear in the pre-processed output.
497 Note that input_file.c hand checks for '#' at the beginning of the
498 first line of the input file. This is because the compiler outputs
499 #NO_APP at the beginning of its output.
500 Also note that comments started like this one will always work if
501 '/' isn't otherwise defined. */
502 const char line_comment_chars[] = "#/";
503
504 const char line_separator_chars[] = ";";
505
506 /* Chars that can be used to separate mant from exp in floating point
507 nums. */
508 const char EXP_CHARS[] = "eE";
509
510 /* Chars that mean this number is a floating point constant
511 As in 0f12.456
512 or 0d1.2345e12. */
513 const char FLT_CHARS[] = "fFdDxX";
514
515 /* Tables for lexical analysis. */
516 static char mnemonic_chars[256];
517 static char register_chars[256];
518 static char operand_chars[256];
519 static char identifier_chars[256];
520 static char digit_chars[256];
521
522 /* Lexical macros. */
523 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
524 #define is_operand_char(x) (operand_chars[(unsigned char) x])
525 #define is_register_char(x) (register_chars[(unsigned char) x])
526 #define is_space_char(x) ((x) == ' ')
527 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
528 #define is_digit_char(x) (digit_chars[(unsigned char) x])
529
530 /* All non-digit non-letter characters that may occur in an operand. */
531 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
532
533 /* md_assemble() always leaves the strings it's passed unaltered. To
534 effect this we maintain a stack of saved characters that we've smashed
535 with '\0's (indicating end of strings for various sub-fields of the
536 assembler instruction). */
537 static char save_stack[32];
538 static char *save_stack_p;
539 #define END_STRING_AND_SAVE(s) \
540 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
541 #define RESTORE_END_STRING(s) \
542 do { *(s) = *--save_stack_p; } while (0)
543
544 /* The instruction we're assembling. */
545 static i386_insn i;
546
547 /* Possible templates for current insn. */
548 static const templates *current_templates;
549
550 /* Per instruction expressionS buffers: max displacements & immediates. */
551 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
552 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
553
554 /* Current operand we are working on. */
555 static int this_operand = -1;
556
557 /* We support four different modes. FLAG_CODE variable is used to distinguish
558 these. */
559
560 enum flag_code {
561 CODE_32BIT,
562 CODE_16BIT,
563 CODE_64BIT };
564
565 static enum flag_code flag_code;
566 static unsigned int object_64bit;
567 static unsigned int disallow_64bit_reloc;
568 static int use_rela_relocations = 0;
569 /* __tls_get_addr/___tls_get_addr symbol for TLS. */
570 static const char *tls_get_addr;
571
572 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
573 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
574 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
575
576 /* The ELF ABI to use. */
577 enum x86_elf_abi
578 {
579 I386_ABI,
580 X86_64_ABI,
581 X86_64_X32_ABI
582 };
583
584 static enum x86_elf_abi x86_elf_abi = I386_ABI;
585 #endif
586
587 #if defined (TE_PE) || defined (TE_PEP)
588 /* Use big object file format. */
589 static int use_big_obj = 0;
590 #endif
591
592 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
593 /* 1 if generating code for a shared library. */
594 static int shared = 0;
595 #endif
596
597 /* 1 for intel syntax,
598 0 if att syntax. */
599 static int intel_syntax = 0;
600
601 /* 1 for Intel64 ISA,
602 0 if AMD64 ISA. */
603 static int intel64;
604
605 /* 1 for intel mnemonic,
606 0 if att mnemonic. */
607 static int intel_mnemonic = !SYSV386_COMPAT;
608
609 /* 1 if pseudo registers are permitted. */
610 static int allow_pseudo_reg = 0;
611
612 /* 1 if register prefix % not required. */
613 static int allow_naked_reg = 0;
614
615 /* 1 if the assembler should add BND prefix for all control-transferring
616 instructions supporting it, even if this prefix wasn't specified
617 explicitly. */
618 static int add_bnd_prefix = 0;
619
620 /* 1 if pseudo index register, eiz/riz, is allowed . */
621 static int allow_index_reg = 0;
622
623 /* 1 if the assembler should ignore LOCK prefix, even if it was
624 specified explicitly. */
625 static int omit_lock_prefix = 0;
626
627 /* 1 if the assembler should encode lfence, mfence, and sfence as
628 "lock addl $0, (%{re}sp)". */
629 static int avoid_fence = 0;
630
631 /* Type of the previous instruction. */
632 static struct
633 {
634 segT seg;
635 const char *file;
636 const char *name;
637 unsigned int line;
638 enum last_insn_kind
639 {
640 last_insn_other = 0,
641 last_insn_directive,
642 last_insn_prefix
643 } kind;
644 } last_insn;
645
646 /* 1 if the assembler should generate relax relocations. */
647
648 static int generate_relax_relocations
649 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
650
651 static enum check_kind
652 {
653 check_none = 0,
654 check_warning,
655 check_error
656 }
657 sse_check, operand_check = check_warning;
658
659 /* Non-zero if branches should be aligned within power of 2 boundary. */
660 static int align_branch_power = 0;
661
662 /* Types of branches to align. */
663 enum align_branch_kind
664 {
665 align_branch_none = 0,
666 align_branch_jcc = 1,
667 align_branch_fused = 2,
668 align_branch_jmp = 3,
669 align_branch_call = 4,
670 align_branch_indirect = 5,
671 align_branch_ret = 6
672 };
673
674 /* Type bits of branches to align. */
675 enum align_branch_bit
676 {
677 align_branch_jcc_bit = 1 << align_branch_jcc,
678 align_branch_fused_bit = 1 << align_branch_fused,
679 align_branch_jmp_bit = 1 << align_branch_jmp,
680 align_branch_call_bit = 1 << align_branch_call,
681 align_branch_indirect_bit = 1 << align_branch_indirect,
682 align_branch_ret_bit = 1 << align_branch_ret
683 };
684
685 static unsigned int align_branch = (align_branch_jcc_bit
686 | align_branch_fused_bit
687 | align_branch_jmp_bit);
688
689 /* The maximum padding size for fused jcc. CMP like instruction can
690 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
691 prefixes. */
692 #define MAX_FUSED_JCC_PADDING_SIZE 20
693
694 /* The maximum number of prefixes added for an instruction. */
695 static unsigned int align_branch_prefix_size = 5;
696
697 /* Optimization:
698 1. Clear the REX_W bit with register operand if possible.
699 2. Above plus use 128bit vector instruction to clear the full vector
700 register.
701 */
702 static int optimize = 0;
703
704 /* Optimization:
705 1. Clear the REX_W bit with register operand if possible.
706 2. Above plus use 128bit vector instruction to clear the full vector
707 register.
708 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
709 "testb $imm7,%r8".
710 */
711 static int optimize_for_space = 0;
712
713 /* Register prefix used for error message. */
714 static const char *register_prefix = "%";
715
716 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
717 leave, push, and pop instructions so that gcc has the same stack
718 frame as in 32 bit mode. */
719 static char stackop_size = '\0';
720
721 /* Non-zero to optimize code alignment. */
722 int optimize_align_code = 1;
723
724 /* Non-zero to quieten some warnings. */
725 static int quiet_warnings = 0;
726
727 /* CPU name. */
728 static const char *cpu_arch_name = NULL;
729 static char *cpu_sub_arch_name = NULL;
730
731 /* CPU feature flags. */
732 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
733
734 /* If we have selected a cpu we are generating instructions for. */
735 static int cpu_arch_tune_set = 0;
736
737 /* Cpu we are generating instructions for. */
738 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
739
740 /* CPU feature flags of cpu we are generating instructions for. */
741 static i386_cpu_flags cpu_arch_tune_flags;
742
743 /* CPU instruction set architecture used. */
744 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
745
746 /* CPU feature flags of instruction set architecture used. */
747 i386_cpu_flags cpu_arch_isa_flags;
748
749 /* If set, conditional jumps are not automatically promoted to handle
750 larger than a byte offset. */
751 static unsigned int no_cond_jump_promotion = 0;
752
753 /* Encode SSE instructions with VEX prefix. */
754 static unsigned int sse2avx;
755
756 /* Encode scalar AVX instructions with specific vector length. */
757 static enum
758 {
759 vex128 = 0,
760 vex256
761 } avxscalar;
762
763 /* Encode VEX WIG instructions with specific vex.w. */
764 static enum
765 {
766 vexw0 = 0,
767 vexw1
768 } vexwig;
769
770 /* Encode scalar EVEX LIG instructions with specific vector length. */
771 static enum
772 {
773 evexl128 = 0,
774 evexl256,
775 evexl512
776 } evexlig;
777
778 /* Encode EVEX WIG instructions with specific evex.w. */
779 static enum
780 {
781 evexw0 = 0,
782 evexw1
783 } evexwig;
784
785 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
786 static enum rc_type evexrcig = rne;
787
788 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
789 static symbolS *GOT_symbol;
790
791 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
792 unsigned int x86_dwarf2_return_column;
793
794 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
795 int x86_cie_data_alignment;
796
797 /* Interface to relax_segment.
798 There are 3 major relax states for 386 jump insns because the
799 different types of jumps add different sizes to frags when we're
800 figuring out what sort of jump to choose to reach a given label.
801
802 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
803 branches which are handled by md_estimate_size_before_relax() and
804 i386_generic_table_relax_frag(). */
805
806 /* Types. */
807 #define UNCOND_JUMP 0
808 #define COND_JUMP 1
809 #define COND_JUMP86 2
810 #define BRANCH_PADDING 3
811 #define BRANCH_PREFIX 4
812 #define FUSED_JCC_PADDING 5
813
814 /* Sizes. */
815 #define CODE16 1
816 #define SMALL 0
817 #define SMALL16 (SMALL | CODE16)
818 #define BIG 2
819 #define BIG16 (BIG | CODE16)
820
821 #ifndef INLINE
822 #ifdef __GNUC__
823 #define INLINE __inline__
824 #else
825 #define INLINE
826 #endif
827 #endif
828
829 #define ENCODE_RELAX_STATE(type, size) \
830 ((relax_substateT) (((type) << 2) | (size)))
831 #define TYPE_FROM_RELAX_STATE(s) \
832 ((s) >> 2)
833 #define DISP_SIZE_FROM_RELAX_STATE(s) \
834 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
835
836 /* This table is used by relax_frag to promote short jumps to long
837 ones where necessary. SMALL (short) jumps may be promoted to BIG
838 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
839 don't allow a short jump in a 32 bit code segment to be promoted to
840 a 16 bit offset jump because it's slower (requires data size
841 prefix), and doesn't work, unless the destination is in the bottom
842 64k of the code segment (The top 16 bits of eip are zeroed). */
843
844 const relax_typeS md_relax_table[] =
845 {
846 /* The fields are:
847 1) most positive reach of this state,
848 2) most negative reach of this state,
849 3) how many bytes this mode will have in the variable part of the frag
850 4) which index into the table to try if we can't fit into this one. */
851
852 /* UNCOND_JUMP states. */
853 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
854 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
855 /* dword jmp adds 4 bytes to frag:
856 0 extra opcode bytes, 4 displacement bytes. */
857 {0, 0, 4, 0},
858 /* word jmp adds 2 byte2 to frag:
859 0 extra opcode bytes, 2 displacement bytes. */
860 {0, 0, 2, 0},
861
862 /* COND_JUMP states. */
863 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
864 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
865 /* dword conditionals adds 5 bytes to frag:
866 1 extra opcode byte, 4 displacement bytes. */
867 {0, 0, 5, 0},
868 /* word conditionals add 3 bytes to frag:
869 1 extra opcode byte, 2 displacement bytes. */
870 {0, 0, 3, 0},
871
872 /* COND_JUMP86 states. */
873 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
874 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
875 /* dword conditionals adds 5 bytes to frag:
876 1 extra opcode byte, 4 displacement bytes. */
877 {0, 0, 5, 0},
878 /* word conditionals add 4 bytes to frag:
879 1 displacement byte and a 3 byte long branch insn. */
880 {0, 0, 4, 0}
881 };
882
883 static const arch_entry cpu_arch[] =
884 {
885 /* Do not replace the first two entries - i386_target_format()
886 relies on them being there in this order. */
887 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
888 CPU_GENERIC32_FLAGS, 0 },
889 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
890 CPU_GENERIC64_FLAGS, 0 },
891 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
892 CPU_NONE_FLAGS, 0 },
893 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
894 CPU_I186_FLAGS, 0 },
895 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
896 CPU_I286_FLAGS, 0 },
897 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
898 CPU_I386_FLAGS, 0 },
899 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
900 CPU_I486_FLAGS, 0 },
901 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
902 CPU_I586_FLAGS, 0 },
903 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
904 CPU_I686_FLAGS, 0 },
905 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
906 CPU_I586_FLAGS, 0 },
907 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
908 CPU_PENTIUMPRO_FLAGS, 0 },
909 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
910 CPU_P2_FLAGS, 0 },
911 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
912 CPU_P3_FLAGS, 0 },
913 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
914 CPU_P4_FLAGS, 0 },
915 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
916 CPU_CORE_FLAGS, 0 },
917 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
918 CPU_NOCONA_FLAGS, 0 },
919 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
920 CPU_CORE_FLAGS, 1 },
921 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
922 CPU_CORE_FLAGS, 0 },
923 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
924 CPU_CORE2_FLAGS, 1 },
925 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
926 CPU_CORE2_FLAGS, 0 },
927 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
928 CPU_COREI7_FLAGS, 0 },
929 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
930 CPU_L1OM_FLAGS, 0 },
931 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
932 CPU_K1OM_FLAGS, 0 },
933 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
934 CPU_IAMCU_FLAGS, 0 },
935 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
936 CPU_K6_FLAGS, 0 },
937 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
938 CPU_K6_2_FLAGS, 0 },
939 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
940 CPU_ATHLON_FLAGS, 0 },
941 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
942 CPU_K8_FLAGS, 1 },
943 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
944 CPU_K8_FLAGS, 0 },
945 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
946 CPU_K8_FLAGS, 0 },
947 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
948 CPU_AMDFAM10_FLAGS, 0 },
949 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
950 CPU_BDVER1_FLAGS, 0 },
951 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
952 CPU_BDVER2_FLAGS, 0 },
953 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
954 CPU_BDVER3_FLAGS, 0 },
955 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
956 CPU_BDVER4_FLAGS, 0 },
957 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
958 CPU_ZNVER1_FLAGS, 0 },
959 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
960 CPU_ZNVER2_FLAGS, 0 },
961 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
962 CPU_BTVER1_FLAGS, 0 },
963 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
964 CPU_BTVER2_FLAGS, 0 },
965 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
966 CPU_8087_FLAGS, 0 },
967 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
968 CPU_287_FLAGS, 0 },
969 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
970 CPU_387_FLAGS, 0 },
971 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
972 CPU_687_FLAGS, 0 },
973 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
974 CPU_CMOV_FLAGS, 0 },
975 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
976 CPU_FXSR_FLAGS, 0 },
977 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
978 CPU_MMX_FLAGS, 0 },
979 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
980 CPU_SSE_FLAGS, 0 },
981 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
982 CPU_SSE2_FLAGS, 0 },
983 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
984 CPU_SSE3_FLAGS, 0 },
985 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
986 CPU_SSSE3_FLAGS, 0 },
987 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
988 CPU_SSE4_1_FLAGS, 0 },
989 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
990 CPU_SSE4_2_FLAGS, 0 },
991 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
992 CPU_SSE4_2_FLAGS, 0 },
993 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
994 CPU_AVX_FLAGS, 0 },
995 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
996 CPU_AVX2_FLAGS, 0 },
997 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
998 CPU_AVX512F_FLAGS, 0 },
999 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
1000 CPU_AVX512CD_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
1002 CPU_AVX512ER_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
1004 CPU_AVX512PF_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
1006 CPU_AVX512DQ_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
1008 CPU_AVX512BW_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
1010 CPU_AVX512VL_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
1012 CPU_VMX_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
1014 CPU_VMFUNC_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
1016 CPU_SMX_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
1018 CPU_XSAVE_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
1020 CPU_XSAVEOPT_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
1022 CPU_XSAVEC_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
1024 CPU_XSAVES_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
1026 CPU_AES_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
1028 CPU_PCLMUL_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
1030 CPU_PCLMUL_FLAGS, 1 },
1031 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
1032 CPU_FSGSBASE_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
1034 CPU_RDRND_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
1036 CPU_F16C_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
1038 CPU_BMI2_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
1040 CPU_FMA_FLAGS, 0 },
1041 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
1042 CPU_FMA4_FLAGS, 0 },
1043 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
1044 CPU_XOP_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
1046 CPU_LWP_FLAGS, 0 },
1047 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
1048 CPU_MOVBE_FLAGS, 0 },
1049 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
1050 CPU_CX16_FLAGS, 0 },
1051 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
1052 CPU_EPT_FLAGS, 0 },
1053 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
1054 CPU_LZCNT_FLAGS, 0 },
1055 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
1056 CPU_HLE_FLAGS, 0 },
1057 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
1058 CPU_RTM_FLAGS, 0 },
1059 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
1060 CPU_INVPCID_FLAGS, 0 },
1061 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
1062 CPU_CLFLUSH_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
1064 CPU_NOP_FLAGS, 0 },
1065 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
1066 CPU_SYSCALL_FLAGS, 0 },
1067 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
1068 CPU_RDTSCP_FLAGS, 0 },
1069 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1070 CPU_3DNOW_FLAGS, 0 },
1071 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1072 CPU_3DNOWA_FLAGS, 0 },
1073 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1074 CPU_PADLOCK_FLAGS, 0 },
1075 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1076 CPU_SVME_FLAGS, 1 },
1077 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1078 CPU_SVME_FLAGS, 0 },
1079 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1080 CPU_SSE4A_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1082 CPU_ABM_FLAGS, 0 },
1083 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1084 CPU_BMI_FLAGS, 0 },
1085 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1086 CPU_TBM_FLAGS, 0 },
1087 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1088 CPU_ADX_FLAGS, 0 },
1089 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1090 CPU_RDSEED_FLAGS, 0 },
1091 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1092 CPU_PRFCHW_FLAGS, 0 },
1093 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1094 CPU_SMAP_FLAGS, 0 },
1095 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1096 CPU_MPX_FLAGS, 0 },
1097 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1098 CPU_SHA_FLAGS, 0 },
1099 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1100 CPU_CLFLUSHOPT_FLAGS, 0 },
1101 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1102 CPU_PREFETCHWT1_FLAGS, 0 },
1103 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1104 CPU_SE1_FLAGS, 0 },
1105 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1106 CPU_CLWB_FLAGS, 0 },
1107 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1108 CPU_AVX512IFMA_FLAGS, 0 },
1109 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1110 CPU_AVX512VBMI_FLAGS, 0 },
1111 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1112 CPU_AVX512_4FMAPS_FLAGS, 0 },
1113 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1114 CPU_AVX512_4VNNIW_FLAGS, 0 },
1115 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1116 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1117 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1118 CPU_AVX512_VBMI2_FLAGS, 0 },
1119 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1120 CPU_AVX512_VNNI_FLAGS, 0 },
1121 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1122 CPU_AVX512_BITALG_FLAGS, 0 },
1123 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1124 CPU_CLZERO_FLAGS, 0 },
1125 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1126 CPU_MWAITX_FLAGS, 0 },
1127 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1128 CPU_OSPKE_FLAGS, 0 },
1129 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1130 CPU_RDPID_FLAGS, 0 },
1131 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1132 CPU_PTWRITE_FLAGS, 0 },
1133 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1134 CPU_IBT_FLAGS, 0 },
1135 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1136 CPU_SHSTK_FLAGS, 0 },
1137 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1138 CPU_GFNI_FLAGS, 0 },
1139 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1140 CPU_VAES_FLAGS, 0 },
1141 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1142 CPU_VPCLMULQDQ_FLAGS, 0 },
1143 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1144 CPU_WBNOINVD_FLAGS, 0 },
1145 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1146 CPU_PCONFIG_FLAGS, 0 },
1147 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1148 CPU_WAITPKG_FLAGS, 0 },
1149 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1150 CPU_CLDEMOTE_FLAGS, 0 },
1151 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1152 CPU_MOVDIRI_FLAGS, 0 },
1153 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1154 CPU_MOVDIR64B_FLAGS, 0 },
1155 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1156 CPU_AVX512_BF16_FLAGS, 0 },
1157 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1158 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1159 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1160 CPU_ENQCMD_FLAGS, 0 },
1161 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1162 CPU_RDPRU_FLAGS, 0 },
1163 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1164 CPU_MCOMMIT_FLAGS, 0 },
1165 };
1166
1167 static const noarch_entry cpu_noarch[] =
1168 {
1169 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1170 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1171 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1172 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1173 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1174 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1175 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1176 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1177 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1178 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1179 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1180 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1181 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1182 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1183 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1184 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1185 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1186 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1187 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1188 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1189 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1190 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1191 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1192 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1193 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1194 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1195 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1196 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1197 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1198 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1199 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1200 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1201 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1202 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1203 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1204 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1205 { STRING_COMMA_LEN ("noavx512_vp2intersect"), CPU_ANY_SHSTK_FLAGS },
1206 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1207 };
1208
1209 #ifdef I386COFF
1210 /* Like s_lcomm_internal in gas/read.c but the alignment string
1211 is allowed to be optional. */
1212
1213 static symbolS *
1214 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1215 {
1216 addressT align = 0;
1217
1218 SKIP_WHITESPACE ();
1219
1220 if (needs_align
1221 && *input_line_pointer == ',')
1222 {
1223 align = parse_align (needs_align - 1);
1224
1225 if (align == (addressT) -1)
1226 return NULL;
1227 }
1228 else
1229 {
1230 if (size >= 8)
1231 align = 3;
1232 else if (size >= 4)
1233 align = 2;
1234 else if (size >= 2)
1235 align = 1;
1236 else
1237 align = 0;
1238 }
1239
1240 bss_alloc (symbolP, size, align);
1241 return symbolP;
1242 }
1243
1244 static void
1245 pe_lcomm (int needs_align)
1246 {
1247 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1248 }
1249 #endif
1250
1251 const pseudo_typeS md_pseudo_table[] =
1252 {
1253 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1254 {"align", s_align_bytes, 0},
1255 #else
1256 {"align", s_align_ptwo, 0},
1257 #endif
1258 {"arch", set_cpu_arch, 0},
1259 #ifndef I386COFF
1260 {"bss", s_bss, 0},
1261 #else
1262 {"lcomm", pe_lcomm, 1},
1263 #endif
1264 {"ffloat", float_cons, 'f'},
1265 {"dfloat", float_cons, 'd'},
1266 {"tfloat", float_cons, 'x'},
1267 {"value", cons, 2},
1268 {"slong", signed_cons, 4},
1269 {"noopt", s_ignore, 0},
1270 {"optim", s_ignore, 0},
1271 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1272 {"code16", set_code_flag, CODE_16BIT},
1273 {"code32", set_code_flag, CODE_32BIT},
1274 #ifdef BFD64
1275 {"code64", set_code_flag, CODE_64BIT},
1276 #endif
1277 {"intel_syntax", set_intel_syntax, 1},
1278 {"att_syntax", set_intel_syntax, 0},
1279 {"intel_mnemonic", set_intel_mnemonic, 1},
1280 {"att_mnemonic", set_intel_mnemonic, 0},
1281 {"allow_index_reg", set_allow_index_reg, 1},
1282 {"disallow_index_reg", set_allow_index_reg, 0},
1283 {"sse_check", set_check, 0},
1284 {"operand_check", set_check, 1},
1285 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1286 {"largecomm", handle_large_common, 0},
1287 #else
1288 {"file", dwarf2_directive_file, 0},
1289 {"loc", dwarf2_directive_loc, 0},
1290 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1291 #endif
1292 #ifdef TE_PE
1293 {"secrel32", pe_directive_secrel, 0},
1294 #endif
1295 {0, 0, 0}
1296 };
1297
1298 /* For interface with expression (). */
1299 extern char *input_line_pointer;
1300
1301 /* Hash table for instruction mnemonic lookup. */
1302 static struct hash_control *op_hash;
1303
1304 /* Hash table for register lookup. */
1305 static struct hash_control *reg_hash;
1306 \f
1307 /* Various efficient no-op patterns for aligning code labels.
1308 Note: Don't try to assemble the instructions in the comments.
1309 0L and 0w are not legal. */
1310 static const unsigned char f32_1[] =
1311 {0x90}; /* nop */
1312 static const unsigned char f32_2[] =
1313 {0x66,0x90}; /* xchg %ax,%ax */
1314 static const unsigned char f32_3[] =
1315 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1316 static const unsigned char f32_4[] =
1317 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1318 static const unsigned char f32_6[] =
1319 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1320 static const unsigned char f32_7[] =
1321 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1322 static const unsigned char f16_3[] =
1323 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1324 static const unsigned char f16_4[] =
1325 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1326 static const unsigned char jump_disp8[] =
1327 {0xeb}; /* jmp disp8 */
1328 static const unsigned char jump32_disp32[] =
1329 {0xe9}; /* jmp disp32 */
1330 static const unsigned char jump16_disp32[] =
1331 {0x66,0xe9}; /* jmp disp32 */
1332 /* 32-bit NOPs patterns. */
1333 static const unsigned char *const f32_patt[] = {
1334 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1335 };
1336 /* 16-bit NOPs patterns. */
1337 static const unsigned char *const f16_patt[] = {
1338 f32_1, f32_2, f16_3, f16_4
1339 };
1340 /* nopl (%[re]ax) */
1341 static const unsigned char alt_3[] =
1342 {0x0f,0x1f,0x00};
1343 /* nopl 0(%[re]ax) */
1344 static const unsigned char alt_4[] =
1345 {0x0f,0x1f,0x40,0x00};
1346 /* nopl 0(%[re]ax,%[re]ax,1) */
1347 static const unsigned char alt_5[] =
1348 {0x0f,0x1f,0x44,0x00,0x00};
1349 /* nopw 0(%[re]ax,%[re]ax,1) */
1350 static const unsigned char alt_6[] =
1351 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1352 /* nopl 0L(%[re]ax) */
1353 static const unsigned char alt_7[] =
1354 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1355 /* nopl 0L(%[re]ax,%[re]ax,1) */
1356 static const unsigned char alt_8[] =
1357 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1358 /* nopw 0L(%[re]ax,%[re]ax,1) */
1359 static const unsigned char alt_9[] =
1360 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1361 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1362 static const unsigned char alt_10[] =
1363 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1364 /* data16 nopw %cs:0L(%eax,%eax,1) */
1365 static const unsigned char alt_11[] =
1366 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1367 /* 32-bit and 64-bit NOPs patterns. */
1368 static const unsigned char *const alt_patt[] = {
1369 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1370 alt_9, alt_10, alt_11
1371 };
1372
1373 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1374 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1375
1376 static void
1377 i386_output_nops (char *where, const unsigned char *const *patt,
1378 int count, int max_single_nop_size)
1379
1380 {
1381 /* Place the longer NOP first. */
1382 int last;
1383 int offset;
1384 const unsigned char *nops;
1385
1386 if (max_single_nop_size < 1)
1387 {
1388 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1389 max_single_nop_size);
1390 return;
1391 }
1392
1393 nops = patt[max_single_nop_size - 1];
1394
1395 /* Use the smaller one if the requsted one isn't available. */
1396 if (nops == NULL)
1397 {
1398 max_single_nop_size--;
1399 nops = patt[max_single_nop_size - 1];
1400 }
1401
1402 last = count % max_single_nop_size;
1403
1404 count -= last;
1405 for (offset = 0; offset < count; offset += max_single_nop_size)
1406 memcpy (where + offset, nops, max_single_nop_size);
1407
1408 if (last)
1409 {
1410 nops = patt[last - 1];
1411 if (nops == NULL)
1412 {
1413 /* Use the smaller one plus one-byte NOP if the needed one
1414 isn't available. */
1415 last--;
1416 nops = patt[last - 1];
1417 memcpy (where + offset, nops, last);
1418 where[offset + last] = *patt[0];
1419 }
1420 else
1421 memcpy (where + offset, nops, last);
1422 }
1423 }
1424
1425 static INLINE int
1426 fits_in_imm7 (offsetT num)
1427 {
1428 return (num & 0x7f) == num;
1429 }
1430
1431 static INLINE int
1432 fits_in_imm31 (offsetT num)
1433 {
1434 return (num & 0x7fffffff) == num;
1435 }
1436
1437 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1438 single NOP instruction LIMIT. */
1439
1440 void
1441 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1442 {
1443 const unsigned char *const *patt = NULL;
1444 int max_single_nop_size;
1445 /* Maximum number of NOPs before switching to jump over NOPs. */
1446 int max_number_of_nops;
1447
1448 switch (fragP->fr_type)
1449 {
1450 case rs_fill_nop:
1451 case rs_align_code:
1452 break;
1453 case rs_machine_dependent:
1454 /* Allow NOP padding for jumps and calls. */
1455 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1456 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1457 break;
1458 /* Fall through. */
1459 default:
1460 return;
1461 }
1462
1463 /* We need to decide which NOP sequence to use for 32bit and
1464 64bit. When -mtune= is used:
1465
1466 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1467 PROCESSOR_GENERIC32, f32_patt will be used.
1468 2. For the rest, alt_patt will be used.
1469
1470 When -mtune= isn't used, alt_patt will be used if
1471 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1472 be used.
1473
1474 When -march= or .arch is used, we can't use anything beyond
1475 cpu_arch_isa_flags. */
1476
1477 if (flag_code == CODE_16BIT)
1478 {
1479 patt = f16_patt;
1480 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1481 /* Limit number of NOPs to 2 in 16-bit mode. */
1482 max_number_of_nops = 2;
1483 }
1484 else
1485 {
1486 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1487 {
1488 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1489 switch (cpu_arch_tune)
1490 {
1491 case PROCESSOR_UNKNOWN:
1492 /* We use cpu_arch_isa_flags to check if we SHOULD
1493 optimize with nops. */
1494 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1495 patt = alt_patt;
1496 else
1497 patt = f32_patt;
1498 break;
1499 case PROCESSOR_PENTIUM4:
1500 case PROCESSOR_NOCONA:
1501 case PROCESSOR_CORE:
1502 case PROCESSOR_CORE2:
1503 case PROCESSOR_COREI7:
1504 case PROCESSOR_L1OM:
1505 case PROCESSOR_K1OM:
1506 case PROCESSOR_GENERIC64:
1507 case PROCESSOR_K6:
1508 case PROCESSOR_ATHLON:
1509 case PROCESSOR_K8:
1510 case PROCESSOR_AMDFAM10:
1511 case PROCESSOR_BD:
1512 case PROCESSOR_ZNVER:
1513 case PROCESSOR_BT:
1514 patt = alt_patt;
1515 break;
1516 case PROCESSOR_I386:
1517 case PROCESSOR_I486:
1518 case PROCESSOR_PENTIUM:
1519 case PROCESSOR_PENTIUMPRO:
1520 case PROCESSOR_IAMCU:
1521 case PROCESSOR_GENERIC32:
1522 patt = f32_patt;
1523 break;
1524 }
1525 }
1526 else
1527 {
1528 switch (fragP->tc_frag_data.tune)
1529 {
1530 case PROCESSOR_UNKNOWN:
1531 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1532 PROCESSOR_UNKNOWN. */
1533 abort ();
1534 break;
1535
1536 case PROCESSOR_I386:
1537 case PROCESSOR_I486:
1538 case PROCESSOR_PENTIUM:
1539 case PROCESSOR_IAMCU:
1540 case PROCESSOR_K6:
1541 case PROCESSOR_ATHLON:
1542 case PROCESSOR_K8:
1543 case PROCESSOR_AMDFAM10:
1544 case PROCESSOR_BD:
1545 case PROCESSOR_ZNVER:
1546 case PROCESSOR_BT:
1547 case PROCESSOR_GENERIC32:
1548 /* We use cpu_arch_isa_flags to check if we CAN optimize
1549 with nops. */
1550 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1551 patt = alt_patt;
1552 else
1553 patt = f32_patt;
1554 break;
1555 case PROCESSOR_PENTIUMPRO:
1556 case PROCESSOR_PENTIUM4:
1557 case PROCESSOR_NOCONA:
1558 case PROCESSOR_CORE:
1559 case PROCESSOR_CORE2:
1560 case PROCESSOR_COREI7:
1561 case PROCESSOR_L1OM:
1562 case PROCESSOR_K1OM:
1563 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1564 patt = alt_patt;
1565 else
1566 patt = f32_patt;
1567 break;
1568 case PROCESSOR_GENERIC64:
1569 patt = alt_patt;
1570 break;
1571 }
1572 }
1573
1574 if (patt == f32_patt)
1575 {
1576 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1577 /* Limit number of NOPs to 2 for older processors. */
1578 max_number_of_nops = 2;
1579 }
1580 else
1581 {
1582 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1583 /* Limit number of NOPs to 7 for newer processors. */
1584 max_number_of_nops = 7;
1585 }
1586 }
1587
1588 if (limit == 0)
1589 limit = max_single_nop_size;
1590
1591 if (fragP->fr_type == rs_fill_nop)
1592 {
1593 /* Output NOPs for .nop directive. */
1594 if (limit > max_single_nop_size)
1595 {
1596 as_bad_where (fragP->fr_file, fragP->fr_line,
1597 _("invalid single nop size: %d "
1598 "(expect within [0, %d])"),
1599 limit, max_single_nop_size);
1600 return;
1601 }
1602 }
1603 else if (fragP->fr_type != rs_machine_dependent)
1604 fragP->fr_var = count;
1605
1606 if ((count / max_single_nop_size) > max_number_of_nops)
1607 {
1608 /* Generate jump over NOPs. */
1609 offsetT disp = count - 2;
1610 if (fits_in_imm7 (disp))
1611 {
1612 /* Use "jmp disp8" if possible. */
1613 count = disp;
1614 where[0] = jump_disp8[0];
1615 where[1] = count;
1616 where += 2;
1617 }
1618 else
1619 {
1620 unsigned int size_of_jump;
1621
1622 if (flag_code == CODE_16BIT)
1623 {
1624 where[0] = jump16_disp32[0];
1625 where[1] = jump16_disp32[1];
1626 size_of_jump = 2;
1627 }
1628 else
1629 {
1630 where[0] = jump32_disp32[0];
1631 size_of_jump = 1;
1632 }
1633
1634 count -= size_of_jump + 4;
1635 if (!fits_in_imm31 (count))
1636 {
1637 as_bad_where (fragP->fr_file, fragP->fr_line,
1638 _("jump over nop padding out of range"));
1639 return;
1640 }
1641
1642 md_number_to_chars (where + size_of_jump, count, 4);
1643 where += size_of_jump + 4;
1644 }
1645 }
1646
1647 /* Generate multiple NOPs. */
1648 i386_output_nops (where, patt, count, limit);
1649 }
1650
1651 static INLINE int
1652 operand_type_all_zero (const union i386_operand_type *x)
1653 {
1654 switch (ARRAY_SIZE(x->array))
1655 {
1656 case 3:
1657 if (x->array[2])
1658 return 0;
1659 /* Fall through. */
1660 case 2:
1661 if (x->array[1])
1662 return 0;
1663 /* Fall through. */
1664 case 1:
1665 return !x->array[0];
1666 default:
1667 abort ();
1668 }
1669 }
1670
1671 static INLINE void
1672 operand_type_set (union i386_operand_type *x, unsigned int v)
1673 {
1674 switch (ARRAY_SIZE(x->array))
1675 {
1676 case 3:
1677 x->array[2] = v;
1678 /* Fall through. */
1679 case 2:
1680 x->array[1] = v;
1681 /* Fall through. */
1682 case 1:
1683 x->array[0] = v;
1684 /* Fall through. */
1685 break;
1686 default:
1687 abort ();
1688 }
1689
1690 x->bitfield.class = ClassNone;
1691 x->bitfield.instance = InstanceNone;
1692 }
1693
1694 static INLINE int
1695 operand_type_equal (const union i386_operand_type *x,
1696 const union i386_operand_type *y)
1697 {
1698 switch (ARRAY_SIZE(x->array))
1699 {
1700 case 3:
1701 if (x->array[2] != y->array[2])
1702 return 0;
1703 /* Fall through. */
1704 case 2:
1705 if (x->array[1] != y->array[1])
1706 return 0;
1707 /* Fall through. */
1708 case 1:
1709 return x->array[0] == y->array[0];
1710 break;
1711 default:
1712 abort ();
1713 }
1714 }
1715
1716 static INLINE int
1717 cpu_flags_all_zero (const union i386_cpu_flags *x)
1718 {
1719 switch (ARRAY_SIZE(x->array))
1720 {
1721 case 4:
1722 if (x->array[3])
1723 return 0;
1724 /* Fall through. */
1725 case 3:
1726 if (x->array[2])
1727 return 0;
1728 /* Fall through. */
1729 case 2:
1730 if (x->array[1])
1731 return 0;
1732 /* Fall through. */
1733 case 1:
1734 return !x->array[0];
1735 default:
1736 abort ();
1737 }
1738 }
1739
1740 static INLINE int
1741 cpu_flags_equal (const union i386_cpu_flags *x,
1742 const union i386_cpu_flags *y)
1743 {
1744 switch (ARRAY_SIZE(x->array))
1745 {
1746 case 4:
1747 if (x->array[3] != y->array[3])
1748 return 0;
1749 /* Fall through. */
1750 case 3:
1751 if (x->array[2] != y->array[2])
1752 return 0;
1753 /* Fall through. */
1754 case 2:
1755 if (x->array[1] != y->array[1])
1756 return 0;
1757 /* Fall through. */
1758 case 1:
1759 return x->array[0] == y->array[0];
1760 break;
1761 default:
1762 abort ();
1763 }
1764 }
1765
1766 static INLINE int
1767 cpu_flags_check_cpu64 (i386_cpu_flags f)
1768 {
1769 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1770 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1771 }
1772
1773 static INLINE i386_cpu_flags
1774 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1775 {
1776 switch (ARRAY_SIZE (x.array))
1777 {
1778 case 4:
1779 x.array [3] &= y.array [3];
1780 /* Fall through. */
1781 case 3:
1782 x.array [2] &= y.array [2];
1783 /* Fall through. */
1784 case 2:
1785 x.array [1] &= y.array [1];
1786 /* Fall through. */
1787 case 1:
1788 x.array [0] &= y.array [0];
1789 break;
1790 default:
1791 abort ();
1792 }
1793 return x;
1794 }
1795
1796 static INLINE i386_cpu_flags
1797 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1798 {
1799 switch (ARRAY_SIZE (x.array))
1800 {
1801 case 4:
1802 x.array [3] |= y.array [3];
1803 /* Fall through. */
1804 case 3:
1805 x.array [2] |= y.array [2];
1806 /* Fall through. */
1807 case 2:
1808 x.array [1] |= y.array [1];
1809 /* Fall through. */
1810 case 1:
1811 x.array [0] |= y.array [0];
1812 break;
1813 default:
1814 abort ();
1815 }
1816 return x;
1817 }
1818
1819 static INLINE i386_cpu_flags
1820 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1821 {
1822 switch (ARRAY_SIZE (x.array))
1823 {
1824 case 4:
1825 x.array [3] &= ~y.array [3];
1826 /* Fall through. */
1827 case 3:
1828 x.array [2] &= ~y.array [2];
1829 /* Fall through. */
1830 case 2:
1831 x.array [1] &= ~y.array [1];
1832 /* Fall through. */
1833 case 1:
1834 x.array [0] &= ~y.array [0];
1835 break;
1836 default:
1837 abort ();
1838 }
1839 return x;
1840 }
1841
1842 #define CPU_FLAGS_ARCH_MATCH 0x1
1843 #define CPU_FLAGS_64BIT_MATCH 0x2
1844
1845 #define CPU_FLAGS_PERFECT_MATCH \
1846 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1847
1848 /* Return CPU flags match bits. */
1849
1850 static int
1851 cpu_flags_match (const insn_template *t)
1852 {
1853 i386_cpu_flags x = t->cpu_flags;
1854 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1855
1856 x.bitfield.cpu64 = 0;
1857 x.bitfield.cpuno64 = 0;
1858
1859 if (cpu_flags_all_zero (&x))
1860 {
1861 /* This instruction is available on all archs. */
1862 match |= CPU_FLAGS_ARCH_MATCH;
1863 }
1864 else
1865 {
1866 /* This instruction is available only on some archs. */
1867 i386_cpu_flags cpu = cpu_arch_flags;
1868
1869 /* AVX512VL is no standalone feature - match it and then strip it. */
1870 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1871 return match;
1872 x.bitfield.cpuavx512vl = 0;
1873
1874 cpu = cpu_flags_and (x, cpu);
1875 if (!cpu_flags_all_zero (&cpu))
1876 {
1877 if (x.bitfield.cpuavx)
1878 {
1879 /* We need to check a few extra flags with AVX. */
1880 if (cpu.bitfield.cpuavx
1881 && (!t->opcode_modifier.sse2avx || sse2avx)
1882 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1883 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1884 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1885 match |= CPU_FLAGS_ARCH_MATCH;
1886 }
1887 else if (x.bitfield.cpuavx512f)
1888 {
1889 /* We need to check a few extra flags with AVX512F. */
1890 if (cpu.bitfield.cpuavx512f
1891 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1892 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1893 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1894 match |= CPU_FLAGS_ARCH_MATCH;
1895 }
1896 else
1897 match |= CPU_FLAGS_ARCH_MATCH;
1898 }
1899 }
1900 return match;
1901 }
1902
1903 static INLINE i386_operand_type
1904 operand_type_and (i386_operand_type x, i386_operand_type y)
1905 {
1906 if (x.bitfield.class != y.bitfield.class)
1907 x.bitfield.class = ClassNone;
1908 if (x.bitfield.instance != y.bitfield.instance)
1909 x.bitfield.instance = InstanceNone;
1910
1911 switch (ARRAY_SIZE (x.array))
1912 {
1913 case 3:
1914 x.array [2] &= y.array [2];
1915 /* Fall through. */
1916 case 2:
1917 x.array [1] &= y.array [1];
1918 /* Fall through. */
1919 case 1:
1920 x.array [0] &= y.array [0];
1921 break;
1922 default:
1923 abort ();
1924 }
1925 return x;
1926 }
1927
1928 static INLINE i386_operand_type
1929 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1930 {
1931 gas_assert (y.bitfield.class == ClassNone);
1932 gas_assert (y.bitfield.instance == InstanceNone);
1933
1934 switch (ARRAY_SIZE (x.array))
1935 {
1936 case 3:
1937 x.array [2] &= ~y.array [2];
1938 /* Fall through. */
1939 case 2:
1940 x.array [1] &= ~y.array [1];
1941 /* Fall through. */
1942 case 1:
1943 x.array [0] &= ~y.array [0];
1944 break;
1945 default:
1946 abort ();
1947 }
1948 return x;
1949 }
1950
1951 static INLINE i386_operand_type
1952 operand_type_or (i386_operand_type x, i386_operand_type y)
1953 {
1954 gas_assert (x.bitfield.class == ClassNone ||
1955 y.bitfield.class == ClassNone ||
1956 x.bitfield.class == y.bitfield.class);
1957 gas_assert (x.bitfield.instance == InstanceNone ||
1958 y.bitfield.instance == InstanceNone ||
1959 x.bitfield.instance == y.bitfield.instance);
1960
1961 switch (ARRAY_SIZE (x.array))
1962 {
1963 case 3:
1964 x.array [2] |= y.array [2];
1965 /* Fall through. */
1966 case 2:
1967 x.array [1] |= y.array [1];
1968 /* Fall through. */
1969 case 1:
1970 x.array [0] |= y.array [0];
1971 break;
1972 default:
1973 abort ();
1974 }
1975 return x;
1976 }
1977
1978 static INLINE i386_operand_type
1979 operand_type_xor (i386_operand_type x, i386_operand_type y)
1980 {
1981 gas_assert (y.bitfield.class == ClassNone);
1982 gas_assert (y.bitfield.instance == InstanceNone);
1983
1984 switch (ARRAY_SIZE (x.array))
1985 {
1986 case 3:
1987 x.array [2] ^= y.array [2];
1988 /* Fall through. */
1989 case 2:
1990 x.array [1] ^= y.array [1];
1991 /* Fall through. */
1992 case 1:
1993 x.array [0] ^= y.array [0];
1994 break;
1995 default:
1996 abort ();
1997 }
1998 return x;
1999 }
2000
2001 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2002 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2003 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2004 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
2005 static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2006 static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
2007 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
2008 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
2009 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2010 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2011 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2012 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2013 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2014 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2015 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2016 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2017 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2018
2019 enum operand_type
2020 {
2021 reg,
2022 imm,
2023 disp,
2024 anymem
2025 };
2026
2027 static INLINE int
2028 operand_type_check (i386_operand_type t, enum operand_type c)
2029 {
2030 switch (c)
2031 {
2032 case reg:
2033 return t.bitfield.class == Reg;
2034
2035 case imm:
2036 return (t.bitfield.imm8
2037 || t.bitfield.imm8s
2038 || t.bitfield.imm16
2039 || t.bitfield.imm32
2040 || t.bitfield.imm32s
2041 || t.bitfield.imm64);
2042
2043 case disp:
2044 return (t.bitfield.disp8
2045 || t.bitfield.disp16
2046 || t.bitfield.disp32
2047 || t.bitfield.disp32s
2048 || t.bitfield.disp64);
2049
2050 case anymem:
2051 return (t.bitfield.disp8
2052 || t.bitfield.disp16
2053 || t.bitfield.disp32
2054 || t.bitfield.disp32s
2055 || t.bitfield.disp64
2056 || t.bitfield.baseindex);
2057
2058 default:
2059 abort ();
2060 }
2061
2062 return 0;
2063 }
2064
2065 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2066 between operand GIVEN and opeand WANTED for instruction template T. */
2067
2068 static INLINE int
2069 match_operand_size (const insn_template *t, unsigned int wanted,
2070 unsigned int given)
2071 {
2072 return !((i.types[given].bitfield.byte
2073 && !t->operand_types[wanted].bitfield.byte)
2074 || (i.types[given].bitfield.word
2075 && !t->operand_types[wanted].bitfield.word)
2076 || (i.types[given].bitfield.dword
2077 && !t->operand_types[wanted].bitfield.dword)
2078 || (i.types[given].bitfield.qword
2079 && !t->operand_types[wanted].bitfield.qword)
2080 || (i.types[given].bitfield.tbyte
2081 && !t->operand_types[wanted].bitfield.tbyte));
2082 }
2083
2084 /* Return 1 if there is no conflict in SIMD register between operand
2085 GIVEN and opeand WANTED for instruction template T. */
2086
2087 static INLINE int
2088 match_simd_size (const insn_template *t, unsigned int wanted,
2089 unsigned int given)
2090 {
2091 return !((i.types[given].bitfield.xmmword
2092 && !t->operand_types[wanted].bitfield.xmmword)
2093 || (i.types[given].bitfield.ymmword
2094 && !t->operand_types[wanted].bitfield.ymmword)
2095 || (i.types[given].bitfield.zmmword
2096 && !t->operand_types[wanted].bitfield.zmmword));
2097 }
2098
2099 /* Return 1 if there is no conflict in any size between operand GIVEN
2100 and opeand WANTED for instruction template T. */
2101
2102 static INLINE int
2103 match_mem_size (const insn_template *t, unsigned int wanted,
2104 unsigned int given)
2105 {
2106 return (match_operand_size (t, wanted, given)
2107 && !((i.types[given].bitfield.unspecified
2108 && !i.broadcast
2109 && !t->operand_types[wanted].bitfield.unspecified)
2110 || (i.types[given].bitfield.fword
2111 && !t->operand_types[wanted].bitfield.fword)
2112 /* For scalar opcode templates to allow register and memory
2113 operands at the same time, some special casing is needed
2114 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2115 down-conversion vpmov*. */
2116 || ((t->operand_types[wanted].bitfield.class == RegSIMD
2117 && !t->opcode_modifier.broadcast
2118 && (t->operand_types[wanted].bitfield.byte
2119 || t->operand_types[wanted].bitfield.word
2120 || t->operand_types[wanted].bitfield.dword
2121 || t->operand_types[wanted].bitfield.qword))
2122 ? (i.types[given].bitfield.xmmword
2123 || i.types[given].bitfield.ymmword
2124 || i.types[given].bitfield.zmmword)
2125 : !match_simd_size(t, wanted, given))));
2126 }
2127
2128 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2129 operands for instruction template T, and it has MATCH_REVERSE set if there
2130 is no size conflict on any operands for the template with operands reversed
2131 (and the template allows for reversing in the first place). */
2132
2133 #define MATCH_STRAIGHT 1
2134 #define MATCH_REVERSE 2
2135
2136 static INLINE unsigned int
2137 operand_size_match (const insn_template *t)
2138 {
2139 unsigned int j, match = MATCH_STRAIGHT;
2140
2141 /* Don't check non-absolute jump instructions. */
2142 if (t->opcode_modifier.jump
2143 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
2144 return match;
2145
2146 /* Check memory and accumulator operand size. */
2147 for (j = 0; j < i.operands; j++)
2148 {
2149 if (i.types[j].bitfield.class != Reg
2150 && i.types[j].bitfield.class != RegSIMD
2151 && t->opcode_modifier.anysize)
2152 continue;
2153
2154 if (t->operand_types[j].bitfield.class == Reg
2155 && !match_operand_size (t, j, j))
2156 {
2157 match = 0;
2158 break;
2159 }
2160
2161 if (t->operand_types[j].bitfield.class == RegSIMD
2162 && !match_simd_size (t, j, j))
2163 {
2164 match = 0;
2165 break;
2166 }
2167
2168 if (t->operand_types[j].bitfield.instance == Accum
2169 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2170 {
2171 match = 0;
2172 break;
2173 }
2174
2175 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2176 {
2177 match = 0;
2178 break;
2179 }
2180 }
2181
2182 if (!t->opcode_modifier.d)
2183 {
2184 mismatch:
2185 if (!match)
2186 i.error = operand_size_mismatch;
2187 return match;
2188 }
2189
2190 /* Check reverse. */
2191 gas_assert (i.operands >= 2 && i.operands <= 3);
2192
2193 for (j = 0; j < i.operands; j++)
2194 {
2195 unsigned int given = i.operands - j - 1;
2196
2197 if (t->operand_types[j].bitfield.class == Reg
2198 && !match_operand_size (t, j, given))
2199 goto mismatch;
2200
2201 if (t->operand_types[j].bitfield.class == RegSIMD
2202 && !match_simd_size (t, j, given))
2203 goto mismatch;
2204
2205 if (t->operand_types[j].bitfield.instance == Accum
2206 && (!match_operand_size (t, j, given)
2207 || !match_simd_size (t, j, given)))
2208 goto mismatch;
2209
2210 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2211 goto mismatch;
2212 }
2213
2214 return match | MATCH_REVERSE;
2215 }
2216
2217 static INLINE int
2218 operand_type_match (i386_operand_type overlap,
2219 i386_operand_type given)
2220 {
2221 i386_operand_type temp = overlap;
2222
2223 temp.bitfield.unspecified = 0;
2224 temp.bitfield.byte = 0;
2225 temp.bitfield.word = 0;
2226 temp.bitfield.dword = 0;
2227 temp.bitfield.fword = 0;
2228 temp.bitfield.qword = 0;
2229 temp.bitfield.tbyte = 0;
2230 temp.bitfield.xmmword = 0;
2231 temp.bitfield.ymmword = 0;
2232 temp.bitfield.zmmword = 0;
2233 if (operand_type_all_zero (&temp))
2234 goto mismatch;
2235
2236 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
2237 return 1;
2238
2239 mismatch:
2240 i.error = operand_type_mismatch;
2241 return 0;
2242 }
2243
2244 /* If given types g0 and g1 are registers they must be of the same type
2245 unless the expected operand type register overlap is null.
2246 Memory operand size of certain SIMD instructions is also being checked
2247 here. */
2248
2249 static INLINE int
2250 operand_type_register_match (i386_operand_type g0,
2251 i386_operand_type t0,
2252 i386_operand_type g1,
2253 i386_operand_type t1)
2254 {
2255 if (g0.bitfield.class != Reg
2256 && g0.bitfield.class != RegSIMD
2257 && (!operand_type_check (g0, anymem)
2258 || g0.bitfield.unspecified
2259 || t0.bitfield.class != RegSIMD))
2260 return 1;
2261
2262 if (g1.bitfield.class != Reg
2263 && g1.bitfield.class != RegSIMD
2264 && (!operand_type_check (g1, anymem)
2265 || g1.bitfield.unspecified
2266 || t1.bitfield.class != RegSIMD))
2267 return 1;
2268
2269 if (g0.bitfield.byte == g1.bitfield.byte
2270 && g0.bitfield.word == g1.bitfield.word
2271 && g0.bitfield.dword == g1.bitfield.dword
2272 && g0.bitfield.qword == g1.bitfield.qword
2273 && g0.bitfield.xmmword == g1.bitfield.xmmword
2274 && g0.bitfield.ymmword == g1.bitfield.ymmword
2275 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2276 return 1;
2277
2278 if (!(t0.bitfield.byte & t1.bitfield.byte)
2279 && !(t0.bitfield.word & t1.bitfield.word)
2280 && !(t0.bitfield.dword & t1.bitfield.dword)
2281 && !(t0.bitfield.qword & t1.bitfield.qword)
2282 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2283 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2284 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2285 return 1;
2286
2287 i.error = register_type_mismatch;
2288
2289 return 0;
2290 }
2291
2292 static INLINE unsigned int
2293 register_number (const reg_entry *r)
2294 {
2295 unsigned int nr = r->reg_num;
2296
2297 if (r->reg_flags & RegRex)
2298 nr += 8;
2299
2300 if (r->reg_flags & RegVRex)
2301 nr += 16;
2302
2303 return nr;
2304 }
2305
2306 static INLINE unsigned int
2307 mode_from_disp_size (i386_operand_type t)
2308 {
2309 if (t.bitfield.disp8)
2310 return 1;
2311 else if (t.bitfield.disp16
2312 || t.bitfield.disp32
2313 || t.bitfield.disp32s)
2314 return 2;
2315 else
2316 return 0;
2317 }
2318
2319 static INLINE int
2320 fits_in_signed_byte (addressT num)
2321 {
2322 return num + 0x80 <= 0xff;
2323 }
2324
2325 static INLINE int
2326 fits_in_unsigned_byte (addressT num)
2327 {
2328 return num <= 0xff;
2329 }
2330
2331 static INLINE int
2332 fits_in_unsigned_word (addressT num)
2333 {
2334 return num <= 0xffff;
2335 }
2336
2337 static INLINE int
2338 fits_in_signed_word (addressT num)
2339 {
2340 return num + 0x8000 <= 0xffff;
2341 }
2342
2343 static INLINE int
2344 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2345 {
2346 #ifndef BFD64
2347 return 1;
2348 #else
2349 return num + 0x80000000 <= 0xffffffff;
2350 #endif
2351 } /* fits_in_signed_long() */
2352
2353 static INLINE int
2354 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2355 {
2356 #ifndef BFD64
2357 return 1;
2358 #else
2359 return num <= 0xffffffff;
2360 #endif
2361 } /* fits_in_unsigned_long() */
2362
2363 static INLINE int
2364 fits_in_disp8 (offsetT num)
2365 {
2366 int shift = i.memshift;
2367 unsigned int mask;
2368
2369 if (shift == -1)
2370 abort ();
2371
2372 mask = (1 << shift) - 1;
2373
2374 /* Return 0 if NUM isn't properly aligned. */
2375 if ((num & mask))
2376 return 0;
2377
2378 /* Check if NUM will fit in 8bit after shift. */
2379 return fits_in_signed_byte (num >> shift);
2380 }
2381
2382 static INLINE int
2383 fits_in_imm4 (offsetT num)
2384 {
2385 return (num & 0xf) == num;
2386 }
2387
2388 static i386_operand_type
2389 smallest_imm_type (offsetT num)
2390 {
2391 i386_operand_type t;
2392
2393 operand_type_set (&t, 0);
2394 t.bitfield.imm64 = 1;
2395
2396 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2397 {
2398 /* This code is disabled on the 486 because all the Imm1 forms
2399 in the opcode table are slower on the i486. They're the
2400 versions with the implicitly specified single-position
2401 displacement, which has another syntax if you really want to
2402 use that form. */
2403 t.bitfield.imm1 = 1;
2404 t.bitfield.imm8 = 1;
2405 t.bitfield.imm8s = 1;
2406 t.bitfield.imm16 = 1;
2407 t.bitfield.imm32 = 1;
2408 t.bitfield.imm32s = 1;
2409 }
2410 else if (fits_in_signed_byte (num))
2411 {
2412 t.bitfield.imm8 = 1;
2413 t.bitfield.imm8s = 1;
2414 t.bitfield.imm16 = 1;
2415 t.bitfield.imm32 = 1;
2416 t.bitfield.imm32s = 1;
2417 }
2418 else if (fits_in_unsigned_byte (num))
2419 {
2420 t.bitfield.imm8 = 1;
2421 t.bitfield.imm16 = 1;
2422 t.bitfield.imm32 = 1;
2423 t.bitfield.imm32s = 1;
2424 }
2425 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2426 {
2427 t.bitfield.imm16 = 1;
2428 t.bitfield.imm32 = 1;
2429 t.bitfield.imm32s = 1;
2430 }
2431 else if (fits_in_signed_long (num))
2432 {
2433 t.bitfield.imm32 = 1;
2434 t.bitfield.imm32s = 1;
2435 }
2436 else if (fits_in_unsigned_long (num))
2437 t.bitfield.imm32 = 1;
2438
2439 return t;
2440 }
2441
2442 static offsetT
2443 offset_in_range (offsetT val, int size)
2444 {
2445 addressT mask;
2446
2447 switch (size)
2448 {
2449 case 1: mask = ((addressT) 1 << 8) - 1; break;
2450 case 2: mask = ((addressT) 1 << 16) - 1; break;
2451 case 4: mask = ((addressT) 2 << 31) - 1; break;
2452 #ifdef BFD64
2453 case 8: mask = ((addressT) 2 << 63) - 1; break;
2454 #endif
2455 default: abort ();
2456 }
2457
2458 #ifdef BFD64
2459 /* If BFD64, sign extend val for 32bit address mode. */
2460 if (flag_code != CODE_64BIT
2461 || i.prefix[ADDR_PREFIX])
2462 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2463 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2464 #endif
2465
2466 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2467 {
2468 char buf1[40], buf2[40];
2469
2470 sprint_value (buf1, val);
2471 sprint_value (buf2, val & mask);
2472 as_warn (_("%s shortened to %s"), buf1, buf2);
2473 }
2474 return val & mask;
2475 }
2476
2477 enum PREFIX_GROUP
2478 {
2479 PREFIX_EXIST = 0,
2480 PREFIX_LOCK,
2481 PREFIX_REP,
2482 PREFIX_DS,
2483 PREFIX_OTHER
2484 };
2485
2486 /* Returns
2487 a. PREFIX_EXIST if attempting to add a prefix where one from the
2488 same class already exists.
2489 b. PREFIX_LOCK if lock prefix is added.
2490 c. PREFIX_REP if rep/repne prefix is added.
2491 d. PREFIX_DS if ds prefix is added.
2492 e. PREFIX_OTHER if other prefix is added.
2493 */
2494
2495 static enum PREFIX_GROUP
2496 add_prefix (unsigned int prefix)
2497 {
2498 enum PREFIX_GROUP ret = PREFIX_OTHER;
2499 unsigned int q;
2500
2501 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2502 && flag_code == CODE_64BIT)
2503 {
2504 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2505 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2506 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2507 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2508 ret = PREFIX_EXIST;
2509 q = REX_PREFIX;
2510 }
2511 else
2512 {
2513 switch (prefix)
2514 {
2515 default:
2516 abort ();
2517
2518 case DS_PREFIX_OPCODE:
2519 ret = PREFIX_DS;
2520 /* Fall through. */
2521 case CS_PREFIX_OPCODE:
2522 case ES_PREFIX_OPCODE:
2523 case FS_PREFIX_OPCODE:
2524 case GS_PREFIX_OPCODE:
2525 case SS_PREFIX_OPCODE:
2526 q = SEG_PREFIX;
2527 break;
2528
2529 case REPNE_PREFIX_OPCODE:
2530 case REPE_PREFIX_OPCODE:
2531 q = REP_PREFIX;
2532 ret = PREFIX_REP;
2533 break;
2534
2535 case LOCK_PREFIX_OPCODE:
2536 q = LOCK_PREFIX;
2537 ret = PREFIX_LOCK;
2538 break;
2539
2540 case FWAIT_OPCODE:
2541 q = WAIT_PREFIX;
2542 break;
2543
2544 case ADDR_PREFIX_OPCODE:
2545 q = ADDR_PREFIX;
2546 break;
2547
2548 case DATA_PREFIX_OPCODE:
2549 q = DATA_PREFIX;
2550 break;
2551 }
2552 if (i.prefix[q] != 0)
2553 ret = PREFIX_EXIST;
2554 }
2555
2556 if (ret)
2557 {
2558 if (!i.prefix[q])
2559 ++i.prefixes;
2560 i.prefix[q] |= prefix;
2561 }
2562 else
2563 as_bad (_("same type of prefix used twice"));
2564
2565 return ret;
2566 }
2567
2568 static void
2569 update_code_flag (int value, int check)
2570 {
2571 PRINTF_LIKE ((*as_error));
2572
2573 flag_code = (enum flag_code) value;
2574 if (flag_code == CODE_64BIT)
2575 {
2576 cpu_arch_flags.bitfield.cpu64 = 1;
2577 cpu_arch_flags.bitfield.cpuno64 = 0;
2578 }
2579 else
2580 {
2581 cpu_arch_flags.bitfield.cpu64 = 0;
2582 cpu_arch_flags.bitfield.cpuno64 = 1;
2583 }
2584 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2585 {
2586 if (check)
2587 as_error = as_fatal;
2588 else
2589 as_error = as_bad;
2590 (*as_error) (_("64bit mode not supported on `%s'."),
2591 cpu_arch_name ? cpu_arch_name : default_arch);
2592 }
2593 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2594 {
2595 if (check)
2596 as_error = as_fatal;
2597 else
2598 as_error = as_bad;
2599 (*as_error) (_("32bit mode not supported on `%s'."),
2600 cpu_arch_name ? cpu_arch_name : default_arch);
2601 }
2602 stackop_size = '\0';
2603 }
2604
2605 static void
2606 set_code_flag (int value)
2607 {
2608 update_code_flag (value, 0);
2609 }
2610
2611 static void
2612 set_16bit_gcc_code_flag (int new_code_flag)
2613 {
2614 flag_code = (enum flag_code) new_code_flag;
2615 if (flag_code != CODE_16BIT)
2616 abort ();
2617 cpu_arch_flags.bitfield.cpu64 = 0;
2618 cpu_arch_flags.bitfield.cpuno64 = 1;
2619 stackop_size = LONG_MNEM_SUFFIX;
2620 }
2621
2622 static void
2623 set_intel_syntax (int syntax_flag)
2624 {
2625 /* Find out if register prefixing is specified. */
2626 int ask_naked_reg = 0;
2627
2628 SKIP_WHITESPACE ();
2629 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2630 {
2631 char *string;
2632 int e = get_symbol_name (&string);
2633
2634 if (strcmp (string, "prefix") == 0)
2635 ask_naked_reg = 1;
2636 else if (strcmp (string, "noprefix") == 0)
2637 ask_naked_reg = -1;
2638 else
2639 as_bad (_("bad argument to syntax directive."));
2640 (void) restore_line_pointer (e);
2641 }
2642 demand_empty_rest_of_line ();
2643
2644 intel_syntax = syntax_flag;
2645
2646 if (ask_naked_reg == 0)
2647 allow_naked_reg = (intel_syntax
2648 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2649 else
2650 allow_naked_reg = (ask_naked_reg < 0);
2651
2652 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2653
2654 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2655 identifier_chars['$'] = intel_syntax ? '$' : 0;
2656 register_prefix = allow_naked_reg ? "" : "%";
2657 }
2658
2659 static void
2660 set_intel_mnemonic (int mnemonic_flag)
2661 {
2662 intel_mnemonic = mnemonic_flag;
2663 }
2664
2665 static void
2666 set_allow_index_reg (int flag)
2667 {
2668 allow_index_reg = flag;
2669 }
2670
2671 static void
2672 set_check (int what)
2673 {
2674 enum check_kind *kind;
2675 const char *str;
2676
2677 if (what)
2678 {
2679 kind = &operand_check;
2680 str = "operand";
2681 }
2682 else
2683 {
2684 kind = &sse_check;
2685 str = "sse";
2686 }
2687
2688 SKIP_WHITESPACE ();
2689
2690 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2691 {
2692 char *string;
2693 int e = get_symbol_name (&string);
2694
2695 if (strcmp (string, "none") == 0)
2696 *kind = check_none;
2697 else if (strcmp (string, "warning") == 0)
2698 *kind = check_warning;
2699 else if (strcmp (string, "error") == 0)
2700 *kind = check_error;
2701 else
2702 as_bad (_("bad argument to %s_check directive."), str);
2703 (void) restore_line_pointer (e);
2704 }
2705 else
2706 as_bad (_("missing argument for %s_check directive"), str);
2707
2708 demand_empty_rest_of_line ();
2709 }
2710
2711 static void
2712 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2713 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2714 {
2715 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2716 static const char *arch;
2717
2718 /* Intel LIOM is only supported on ELF. */
2719 if (!IS_ELF)
2720 return;
2721
2722 if (!arch)
2723 {
2724 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2725 use default_arch. */
2726 arch = cpu_arch_name;
2727 if (!arch)
2728 arch = default_arch;
2729 }
2730
2731 /* If we are targeting Intel MCU, we must enable it. */
2732 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2733 || new_flag.bitfield.cpuiamcu)
2734 return;
2735
2736 /* If we are targeting Intel L1OM, we must enable it. */
2737 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2738 || new_flag.bitfield.cpul1om)
2739 return;
2740
2741 /* If we are targeting Intel K1OM, we must enable it. */
2742 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2743 || new_flag.bitfield.cpuk1om)
2744 return;
2745
2746 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2747 #endif
2748 }
2749
2750 static void
2751 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2752 {
2753 SKIP_WHITESPACE ();
2754
2755 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2756 {
2757 char *string;
2758 int e = get_symbol_name (&string);
2759 unsigned int j;
2760 i386_cpu_flags flags;
2761
2762 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2763 {
2764 if (strcmp (string, cpu_arch[j].name) == 0)
2765 {
2766 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2767
2768 if (*string != '.')
2769 {
2770 cpu_arch_name = cpu_arch[j].name;
2771 cpu_sub_arch_name = NULL;
2772 cpu_arch_flags = cpu_arch[j].flags;
2773 if (flag_code == CODE_64BIT)
2774 {
2775 cpu_arch_flags.bitfield.cpu64 = 1;
2776 cpu_arch_flags.bitfield.cpuno64 = 0;
2777 }
2778 else
2779 {
2780 cpu_arch_flags.bitfield.cpu64 = 0;
2781 cpu_arch_flags.bitfield.cpuno64 = 1;
2782 }
2783 cpu_arch_isa = cpu_arch[j].type;
2784 cpu_arch_isa_flags = cpu_arch[j].flags;
2785 if (!cpu_arch_tune_set)
2786 {
2787 cpu_arch_tune = cpu_arch_isa;
2788 cpu_arch_tune_flags = cpu_arch_isa_flags;
2789 }
2790 break;
2791 }
2792
2793 flags = cpu_flags_or (cpu_arch_flags,
2794 cpu_arch[j].flags);
2795
2796 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2797 {
2798 if (cpu_sub_arch_name)
2799 {
2800 char *name = cpu_sub_arch_name;
2801 cpu_sub_arch_name = concat (name,
2802 cpu_arch[j].name,
2803 (const char *) NULL);
2804 free (name);
2805 }
2806 else
2807 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2808 cpu_arch_flags = flags;
2809 cpu_arch_isa_flags = flags;
2810 }
2811 else
2812 cpu_arch_isa_flags
2813 = cpu_flags_or (cpu_arch_isa_flags,
2814 cpu_arch[j].flags);
2815 (void) restore_line_pointer (e);
2816 demand_empty_rest_of_line ();
2817 return;
2818 }
2819 }
2820
2821 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2822 {
2823 /* Disable an ISA extension. */
2824 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2825 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2826 {
2827 flags = cpu_flags_and_not (cpu_arch_flags,
2828 cpu_noarch[j].flags);
2829 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2830 {
2831 if (cpu_sub_arch_name)
2832 {
2833 char *name = cpu_sub_arch_name;
2834 cpu_sub_arch_name = concat (name, string,
2835 (const char *) NULL);
2836 free (name);
2837 }
2838 else
2839 cpu_sub_arch_name = xstrdup (string);
2840 cpu_arch_flags = flags;
2841 cpu_arch_isa_flags = flags;
2842 }
2843 (void) restore_line_pointer (e);
2844 demand_empty_rest_of_line ();
2845 return;
2846 }
2847
2848 j = ARRAY_SIZE (cpu_arch);
2849 }
2850
2851 if (j >= ARRAY_SIZE (cpu_arch))
2852 as_bad (_("no such architecture: `%s'"), string);
2853
2854 *input_line_pointer = e;
2855 }
2856 else
2857 as_bad (_("missing cpu architecture"));
2858
2859 no_cond_jump_promotion = 0;
2860 if (*input_line_pointer == ','
2861 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2862 {
2863 char *string;
2864 char e;
2865
2866 ++input_line_pointer;
2867 e = get_symbol_name (&string);
2868
2869 if (strcmp (string, "nojumps") == 0)
2870 no_cond_jump_promotion = 1;
2871 else if (strcmp (string, "jumps") == 0)
2872 ;
2873 else
2874 as_bad (_("no such architecture modifier: `%s'"), string);
2875
2876 (void) restore_line_pointer (e);
2877 }
2878
2879 demand_empty_rest_of_line ();
2880 }
2881
2882 enum bfd_architecture
2883 i386_arch (void)
2884 {
2885 if (cpu_arch_isa == PROCESSOR_L1OM)
2886 {
2887 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2888 || flag_code != CODE_64BIT)
2889 as_fatal (_("Intel L1OM is 64bit ELF only"));
2890 return bfd_arch_l1om;
2891 }
2892 else if (cpu_arch_isa == PROCESSOR_K1OM)
2893 {
2894 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2895 || flag_code != CODE_64BIT)
2896 as_fatal (_("Intel K1OM is 64bit ELF only"));
2897 return bfd_arch_k1om;
2898 }
2899 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2900 {
2901 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2902 || flag_code == CODE_64BIT)
2903 as_fatal (_("Intel MCU is 32bit ELF only"));
2904 return bfd_arch_iamcu;
2905 }
2906 else
2907 return bfd_arch_i386;
2908 }
2909
2910 unsigned long
2911 i386_mach (void)
2912 {
2913 if (!strncmp (default_arch, "x86_64", 6))
2914 {
2915 if (cpu_arch_isa == PROCESSOR_L1OM)
2916 {
2917 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2918 || default_arch[6] != '\0')
2919 as_fatal (_("Intel L1OM is 64bit ELF only"));
2920 return bfd_mach_l1om;
2921 }
2922 else if (cpu_arch_isa == PROCESSOR_K1OM)
2923 {
2924 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2925 || default_arch[6] != '\0')
2926 as_fatal (_("Intel K1OM is 64bit ELF only"));
2927 return bfd_mach_k1om;
2928 }
2929 else if (default_arch[6] == '\0')
2930 return bfd_mach_x86_64;
2931 else
2932 return bfd_mach_x64_32;
2933 }
2934 else if (!strcmp (default_arch, "i386")
2935 || !strcmp (default_arch, "iamcu"))
2936 {
2937 if (cpu_arch_isa == PROCESSOR_IAMCU)
2938 {
2939 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2940 as_fatal (_("Intel MCU is 32bit ELF only"));
2941 return bfd_mach_i386_iamcu;
2942 }
2943 else
2944 return bfd_mach_i386_i386;
2945 }
2946 else
2947 as_fatal (_("unknown architecture"));
2948 }
2949 \f
2950 void
2951 md_begin (void)
2952 {
2953 const char *hash_err;
2954
2955 /* Support pseudo prefixes like {disp32}. */
2956 lex_type ['{'] = LEX_BEGIN_NAME;
2957
2958 /* Initialize op_hash hash table. */
2959 op_hash = hash_new ();
2960
2961 {
2962 const insn_template *optab;
2963 templates *core_optab;
2964
2965 /* Setup for loop. */
2966 optab = i386_optab;
2967 core_optab = XNEW (templates);
2968 core_optab->start = optab;
2969
2970 while (1)
2971 {
2972 ++optab;
2973 if (optab->name == NULL
2974 || strcmp (optab->name, (optab - 1)->name) != 0)
2975 {
2976 /* different name --> ship out current template list;
2977 add to hash table; & begin anew. */
2978 core_optab->end = optab;
2979 hash_err = hash_insert (op_hash,
2980 (optab - 1)->name,
2981 (void *) core_optab);
2982 if (hash_err)
2983 {
2984 as_fatal (_("can't hash %s: %s"),
2985 (optab - 1)->name,
2986 hash_err);
2987 }
2988 if (optab->name == NULL)
2989 break;
2990 core_optab = XNEW (templates);
2991 core_optab->start = optab;
2992 }
2993 }
2994 }
2995
2996 /* Initialize reg_hash hash table. */
2997 reg_hash = hash_new ();
2998 {
2999 const reg_entry *regtab;
3000 unsigned int regtab_size = i386_regtab_size;
3001
3002 for (regtab = i386_regtab; regtab_size--; regtab++)
3003 {
3004 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
3005 if (hash_err)
3006 as_fatal (_("can't hash %s: %s"),
3007 regtab->reg_name,
3008 hash_err);
3009 }
3010 }
3011
3012 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
3013 {
3014 int c;
3015 char *p;
3016
3017 for (c = 0; c < 256; c++)
3018 {
3019 if (ISDIGIT (c))
3020 {
3021 digit_chars[c] = c;
3022 mnemonic_chars[c] = c;
3023 register_chars[c] = c;
3024 operand_chars[c] = c;
3025 }
3026 else if (ISLOWER (c))
3027 {
3028 mnemonic_chars[c] = c;
3029 register_chars[c] = c;
3030 operand_chars[c] = c;
3031 }
3032 else if (ISUPPER (c))
3033 {
3034 mnemonic_chars[c] = TOLOWER (c);
3035 register_chars[c] = mnemonic_chars[c];
3036 operand_chars[c] = c;
3037 }
3038 else if (c == '{' || c == '}')
3039 {
3040 mnemonic_chars[c] = c;
3041 operand_chars[c] = c;
3042 }
3043
3044 if (ISALPHA (c) || ISDIGIT (c))
3045 identifier_chars[c] = c;
3046 else if (c >= 128)
3047 {
3048 identifier_chars[c] = c;
3049 operand_chars[c] = c;
3050 }
3051 }
3052
3053 #ifdef LEX_AT
3054 identifier_chars['@'] = '@';
3055 #endif
3056 #ifdef LEX_QM
3057 identifier_chars['?'] = '?';
3058 operand_chars['?'] = '?';
3059 #endif
3060 digit_chars['-'] = '-';
3061 mnemonic_chars['_'] = '_';
3062 mnemonic_chars['-'] = '-';
3063 mnemonic_chars['.'] = '.';
3064 identifier_chars['_'] = '_';
3065 identifier_chars['.'] = '.';
3066
3067 for (p = operand_special_chars; *p != '\0'; p++)
3068 operand_chars[(unsigned char) *p] = *p;
3069 }
3070
3071 if (flag_code == CODE_64BIT)
3072 {
3073 #if defined (OBJ_COFF) && defined (TE_PE)
3074 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3075 ? 32 : 16);
3076 #else
3077 x86_dwarf2_return_column = 16;
3078 #endif
3079 x86_cie_data_alignment = -8;
3080 }
3081 else
3082 {
3083 x86_dwarf2_return_column = 8;
3084 x86_cie_data_alignment = -4;
3085 }
3086
3087 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3088 can be turned into BRANCH_PREFIX frag. */
3089 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3090 abort ();
3091 }
3092
3093 void
3094 i386_print_statistics (FILE *file)
3095 {
3096 hash_print_statistics (file, "i386 opcode", op_hash);
3097 hash_print_statistics (file, "i386 register", reg_hash);
3098 }
3099 \f
3100 #ifdef DEBUG386
3101
3102 /* Debugging routines for md_assemble. */
3103 static void pte (insn_template *);
3104 static void pt (i386_operand_type);
3105 static void pe (expressionS *);
3106 static void ps (symbolS *);
3107
3108 static void
3109 pi (const char *line, i386_insn *x)
3110 {
3111 unsigned int j;
3112
3113 fprintf (stdout, "%s: template ", line);
3114 pte (&x->tm);
3115 fprintf (stdout, " address: base %s index %s scale %x\n",
3116 x->base_reg ? x->base_reg->reg_name : "none",
3117 x->index_reg ? x->index_reg->reg_name : "none",
3118 x->log2_scale_factor);
3119 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3120 x->rm.mode, x->rm.reg, x->rm.regmem);
3121 fprintf (stdout, " sib: base %x index %x scale %x\n",
3122 x->sib.base, x->sib.index, x->sib.scale);
3123 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3124 (x->rex & REX_W) != 0,
3125 (x->rex & REX_R) != 0,
3126 (x->rex & REX_X) != 0,
3127 (x->rex & REX_B) != 0);
3128 for (j = 0; j < x->operands; j++)
3129 {
3130 fprintf (stdout, " #%d: ", j + 1);
3131 pt (x->types[j]);
3132 fprintf (stdout, "\n");
3133 if (x->types[j].bitfield.class == Reg
3134 || x->types[j].bitfield.class == RegMMX
3135 || x->types[j].bitfield.class == RegSIMD
3136 || x->types[j].bitfield.class == SReg
3137 || x->types[j].bitfield.class == RegCR
3138 || x->types[j].bitfield.class == RegDR
3139 || x->types[j].bitfield.class == RegTR)
3140 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3141 if (operand_type_check (x->types[j], imm))
3142 pe (x->op[j].imms);
3143 if (operand_type_check (x->types[j], disp))
3144 pe (x->op[j].disps);
3145 }
3146 }
3147
3148 static void
3149 pte (insn_template *t)
3150 {
3151 unsigned int j;
3152 fprintf (stdout, " %d operands ", t->operands);
3153 fprintf (stdout, "opcode %x ", t->base_opcode);
3154 if (t->extension_opcode != None)
3155 fprintf (stdout, "ext %x ", t->extension_opcode);
3156 if (t->opcode_modifier.d)
3157 fprintf (stdout, "D");
3158 if (t->opcode_modifier.w)
3159 fprintf (stdout, "W");
3160 fprintf (stdout, "\n");
3161 for (j = 0; j < t->operands; j++)
3162 {
3163 fprintf (stdout, " #%d type ", j + 1);
3164 pt (t->operand_types[j]);
3165 fprintf (stdout, "\n");
3166 }
3167 }
3168
3169 static void
3170 pe (expressionS *e)
3171 {
3172 fprintf (stdout, " operation %d\n", e->X_op);
3173 fprintf (stdout, " add_number %ld (%lx)\n",
3174 (long) e->X_add_number, (long) e->X_add_number);
3175 if (e->X_add_symbol)
3176 {
3177 fprintf (stdout, " add_symbol ");
3178 ps (e->X_add_symbol);
3179 fprintf (stdout, "\n");
3180 }
3181 if (e->X_op_symbol)
3182 {
3183 fprintf (stdout, " op_symbol ");
3184 ps (e->X_op_symbol);
3185 fprintf (stdout, "\n");
3186 }
3187 }
3188
3189 static void
3190 ps (symbolS *s)
3191 {
3192 fprintf (stdout, "%s type %s%s",
3193 S_GET_NAME (s),
3194 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3195 segment_name (S_GET_SEGMENT (s)));
3196 }
3197
3198 static struct type_name
3199 {
3200 i386_operand_type mask;
3201 const char *name;
3202 }
3203 const type_names[] =
3204 {
3205 { OPERAND_TYPE_REG8, "r8" },
3206 { OPERAND_TYPE_REG16, "r16" },
3207 { OPERAND_TYPE_REG32, "r32" },
3208 { OPERAND_TYPE_REG64, "r64" },
3209 { OPERAND_TYPE_ACC8, "acc8" },
3210 { OPERAND_TYPE_ACC16, "acc16" },
3211 { OPERAND_TYPE_ACC32, "acc32" },
3212 { OPERAND_TYPE_ACC64, "acc64" },
3213 { OPERAND_TYPE_IMM8, "i8" },
3214 { OPERAND_TYPE_IMM8, "i8s" },
3215 { OPERAND_TYPE_IMM16, "i16" },
3216 { OPERAND_TYPE_IMM32, "i32" },
3217 { OPERAND_TYPE_IMM32S, "i32s" },
3218 { OPERAND_TYPE_IMM64, "i64" },
3219 { OPERAND_TYPE_IMM1, "i1" },
3220 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3221 { OPERAND_TYPE_DISP8, "d8" },
3222 { OPERAND_TYPE_DISP16, "d16" },
3223 { OPERAND_TYPE_DISP32, "d32" },
3224 { OPERAND_TYPE_DISP32S, "d32s" },
3225 { OPERAND_TYPE_DISP64, "d64" },
3226 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3227 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3228 { OPERAND_TYPE_CONTROL, "control reg" },
3229 { OPERAND_TYPE_TEST, "test reg" },
3230 { OPERAND_TYPE_DEBUG, "debug reg" },
3231 { OPERAND_TYPE_FLOATREG, "FReg" },
3232 { OPERAND_TYPE_FLOATACC, "FAcc" },
3233 { OPERAND_TYPE_SREG, "SReg" },
3234 { OPERAND_TYPE_REGMMX, "rMMX" },
3235 { OPERAND_TYPE_REGXMM, "rXMM" },
3236 { OPERAND_TYPE_REGYMM, "rYMM" },
3237 { OPERAND_TYPE_REGZMM, "rZMM" },
3238 { OPERAND_TYPE_REGMASK, "Mask reg" },
3239 };
3240
3241 static void
3242 pt (i386_operand_type t)
3243 {
3244 unsigned int j;
3245 i386_operand_type a;
3246
3247 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3248 {
3249 a = operand_type_and (t, type_names[j].mask);
3250 if (operand_type_equal (&a, &type_names[j].mask))
3251 fprintf (stdout, "%s, ", type_names[j].name);
3252 }
3253 fflush (stdout);
3254 }
3255
3256 #endif /* DEBUG386 */
3257 \f
3258 static bfd_reloc_code_real_type
3259 reloc (unsigned int size,
3260 int pcrel,
3261 int sign,
3262 bfd_reloc_code_real_type other)
3263 {
3264 if (other != NO_RELOC)
3265 {
3266 reloc_howto_type *rel;
3267
3268 if (size == 8)
3269 switch (other)
3270 {
3271 case BFD_RELOC_X86_64_GOT32:
3272 return BFD_RELOC_X86_64_GOT64;
3273 break;
3274 case BFD_RELOC_X86_64_GOTPLT64:
3275 return BFD_RELOC_X86_64_GOTPLT64;
3276 break;
3277 case BFD_RELOC_X86_64_PLTOFF64:
3278 return BFD_RELOC_X86_64_PLTOFF64;
3279 break;
3280 case BFD_RELOC_X86_64_GOTPC32:
3281 other = BFD_RELOC_X86_64_GOTPC64;
3282 break;
3283 case BFD_RELOC_X86_64_GOTPCREL:
3284 other = BFD_RELOC_X86_64_GOTPCREL64;
3285 break;
3286 case BFD_RELOC_X86_64_TPOFF32:
3287 other = BFD_RELOC_X86_64_TPOFF64;
3288 break;
3289 case BFD_RELOC_X86_64_DTPOFF32:
3290 other = BFD_RELOC_X86_64_DTPOFF64;
3291 break;
3292 default:
3293 break;
3294 }
3295
3296 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3297 if (other == BFD_RELOC_SIZE32)
3298 {
3299 if (size == 8)
3300 other = BFD_RELOC_SIZE64;
3301 if (pcrel)
3302 {
3303 as_bad (_("there are no pc-relative size relocations"));
3304 return NO_RELOC;
3305 }
3306 }
3307 #endif
3308
3309 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3310 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3311 sign = -1;
3312
3313 rel = bfd_reloc_type_lookup (stdoutput, other);
3314 if (!rel)
3315 as_bad (_("unknown relocation (%u)"), other);
3316 else if (size != bfd_get_reloc_size (rel))
3317 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3318 bfd_get_reloc_size (rel),
3319 size);
3320 else if (pcrel && !rel->pc_relative)
3321 as_bad (_("non-pc-relative relocation for pc-relative field"));
3322 else if ((rel->complain_on_overflow == complain_overflow_signed
3323 && !sign)
3324 || (rel->complain_on_overflow == complain_overflow_unsigned
3325 && sign > 0))
3326 as_bad (_("relocated field and relocation type differ in signedness"));
3327 else
3328 return other;
3329 return NO_RELOC;
3330 }
3331
3332 if (pcrel)
3333 {
3334 if (!sign)
3335 as_bad (_("there are no unsigned pc-relative relocations"));
3336 switch (size)
3337 {
3338 case 1: return BFD_RELOC_8_PCREL;
3339 case 2: return BFD_RELOC_16_PCREL;
3340 case 4: return BFD_RELOC_32_PCREL;
3341 case 8: return BFD_RELOC_64_PCREL;
3342 }
3343 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3344 }
3345 else
3346 {
3347 if (sign > 0)
3348 switch (size)
3349 {
3350 case 4: return BFD_RELOC_X86_64_32S;
3351 }
3352 else
3353 switch (size)
3354 {
3355 case 1: return BFD_RELOC_8;
3356 case 2: return BFD_RELOC_16;
3357 case 4: return BFD_RELOC_32;
3358 case 8: return BFD_RELOC_64;
3359 }
3360 as_bad (_("cannot do %s %u byte relocation"),
3361 sign > 0 ? "signed" : "unsigned", size);
3362 }
3363
3364 return NO_RELOC;
3365 }
3366
3367 /* Here we decide which fixups can be adjusted to make them relative to
3368 the beginning of the section instead of the symbol. Basically we need
3369 to make sure that the dynamic relocations are done correctly, so in
3370 some cases we force the original symbol to be used. */
3371
3372 int
3373 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3374 {
3375 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3376 if (!IS_ELF)
3377 return 1;
3378
3379 /* Don't adjust pc-relative references to merge sections in 64-bit
3380 mode. */
3381 if (use_rela_relocations
3382 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3383 && fixP->fx_pcrel)
3384 return 0;
3385
3386 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3387 and changed later by validate_fix. */
3388 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3389 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3390 return 0;
3391
3392 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3393 for size relocations. */
3394 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3395 || fixP->fx_r_type == BFD_RELOC_SIZE64
3396 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3397 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3398 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3399 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3400 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3401 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3402 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3403 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3404 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3405 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3406 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3407 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3408 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3409 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3410 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3411 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3412 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3413 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3414 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3415 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3416 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3417 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3418 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3419 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3420 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3421 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3422 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3423 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3424 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3425 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3426 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3427 return 0;
3428 #endif
3429 return 1;
3430 }
3431
3432 static int
3433 intel_float_operand (const char *mnemonic)
3434 {
3435 /* Note that the value returned is meaningful only for opcodes with (memory)
3436 operands, hence the code here is free to improperly handle opcodes that
3437 have no operands (for better performance and smaller code). */
3438
3439 if (mnemonic[0] != 'f')
3440 return 0; /* non-math */
3441
3442 switch (mnemonic[1])
3443 {
3444 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3445 the fs segment override prefix not currently handled because no
3446 call path can make opcodes without operands get here */
3447 case 'i':
3448 return 2 /* integer op */;
3449 case 'l':
3450 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3451 return 3; /* fldcw/fldenv */
3452 break;
3453 case 'n':
3454 if (mnemonic[2] != 'o' /* fnop */)
3455 return 3; /* non-waiting control op */
3456 break;
3457 case 'r':
3458 if (mnemonic[2] == 's')
3459 return 3; /* frstor/frstpm */
3460 break;
3461 case 's':
3462 if (mnemonic[2] == 'a')
3463 return 3; /* fsave */
3464 if (mnemonic[2] == 't')
3465 {
3466 switch (mnemonic[3])
3467 {
3468 case 'c': /* fstcw */
3469 case 'd': /* fstdw */
3470 case 'e': /* fstenv */
3471 case 's': /* fsts[gw] */
3472 return 3;
3473 }
3474 }
3475 break;
3476 case 'x':
3477 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3478 return 0; /* fxsave/fxrstor are not really math ops */
3479 break;
3480 }
3481
3482 return 1;
3483 }
3484
3485 /* Build the VEX prefix. */
3486
3487 static void
3488 build_vex_prefix (const insn_template *t)
3489 {
3490 unsigned int register_specifier;
3491 unsigned int implied_prefix;
3492 unsigned int vector_length;
3493 unsigned int w;
3494
3495 /* Check register specifier. */
3496 if (i.vex.register_specifier)
3497 {
3498 register_specifier =
3499 ~register_number (i.vex.register_specifier) & 0xf;
3500 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3501 }
3502 else
3503 register_specifier = 0xf;
3504
3505 /* Use 2-byte VEX prefix by swapping destination and source operand
3506 if there are more than 1 register operand. */
3507 if (i.reg_operands > 1
3508 && i.vec_encoding != vex_encoding_vex3
3509 && i.dir_encoding == dir_encoding_default
3510 && i.operands == i.reg_operands
3511 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3512 && i.tm.opcode_modifier.vexopcode == VEX0F
3513 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3514 && i.rex == REX_B)
3515 {
3516 unsigned int xchg = i.operands - 1;
3517 union i386_op temp_op;
3518 i386_operand_type temp_type;
3519
3520 temp_type = i.types[xchg];
3521 i.types[xchg] = i.types[0];
3522 i.types[0] = temp_type;
3523 temp_op = i.op[xchg];
3524 i.op[xchg] = i.op[0];
3525 i.op[0] = temp_op;
3526
3527 gas_assert (i.rm.mode == 3);
3528
3529 i.rex = REX_R;
3530 xchg = i.rm.regmem;
3531 i.rm.regmem = i.rm.reg;
3532 i.rm.reg = xchg;
3533
3534 if (i.tm.opcode_modifier.d)
3535 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3536 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3537 else /* Use the next insn. */
3538 i.tm = t[1];
3539 }
3540
3541 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3542 are no memory operands and at least 3 register ones. */
3543 if (i.reg_operands >= 3
3544 && i.vec_encoding != vex_encoding_vex3
3545 && i.reg_operands == i.operands - i.imm_operands
3546 && i.tm.opcode_modifier.vex
3547 && i.tm.opcode_modifier.commutative
3548 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3549 && i.rex == REX_B
3550 && i.vex.register_specifier
3551 && !(i.vex.register_specifier->reg_flags & RegRex))
3552 {
3553 unsigned int xchg = i.operands - i.reg_operands;
3554 union i386_op temp_op;
3555 i386_operand_type temp_type;
3556
3557 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3558 gas_assert (!i.tm.opcode_modifier.sae);
3559 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3560 &i.types[i.operands - 3]));
3561 gas_assert (i.rm.mode == 3);
3562
3563 temp_type = i.types[xchg];
3564 i.types[xchg] = i.types[xchg + 1];
3565 i.types[xchg + 1] = temp_type;
3566 temp_op = i.op[xchg];
3567 i.op[xchg] = i.op[xchg + 1];
3568 i.op[xchg + 1] = temp_op;
3569
3570 i.rex = 0;
3571 xchg = i.rm.regmem | 8;
3572 i.rm.regmem = ~register_specifier & 0xf;
3573 gas_assert (!(i.rm.regmem & 8));
3574 i.vex.register_specifier += xchg - i.rm.regmem;
3575 register_specifier = ~xchg & 0xf;
3576 }
3577
3578 if (i.tm.opcode_modifier.vex == VEXScalar)
3579 vector_length = avxscalar;
3580 else if (i.tm.opcode_modifier.vex == VEX256)
3581 vector_length = 1;
3582 else
3583 {
3584 unsigned int op;
3585
3586 /* Determine vector length from the last multi-length vector
3587 operand. */
3588 vector_length = 0;
3589 for (op = t->operands; op--;)
3590 if (t->operand_types[op].bitfield.xmmword
3591 && t->operand_types[op].bitfield.ymmword
3592 && i.types[op].bitfield.ymmword)
3593 {
3594 vector_length = 1;
3595 break;
3596 }
3597 }
3598
3599 switch ((i.tm.base_opcode >> 8) & 0xff)
3600 {
3601 case 0:
3602 implied_prefix = 0;
3603 break;
3604 case DATA_PREFIX_OPCODE:
3605 implied_prefix = 1;
3606 break;
3607 case REPE_PREFIX_OPCODE:
3608 implied_prefix = 2;
3609 break;
3610 case REPNE_PREFIX_OPCODE:
3611 implied_prefix = 3;
3612 break;
3613 default:
3614 abort ();
3615 }
3616
3617 /* Check the REX.W bit and VEXW. */
3618 if (i.tm.opcode_modifier.vexw == VEXWIG)
3619 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3620 else if (i.tm.opcode_modifier.vexw)
3621 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3622 else
3623 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3624
3625 /* Use 2-byte VEX prefix if possible. */
3626 if (w == 0
3627 && i.vec_encoding != vex_encoding_vex3
3628 && i.tm.opcode_modifier.vexopcode == VEX0F
3629 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3630 {
3631 /* 2-byte VEX prefix. */
3632 unsigned int r;
3633
3634 i.vex.length = 2;
3635 i.vex.bytes[0] = 0xc5;
3636
3637 /* Check the REX.R bit. */
3638 r = (i.rex & REX_R) ? 0 : 1;
3639 i.vex.bytes[1] = (r << 7
3640 | register_specifier << 3
3641 | vector_length << 2
3642 | implied_prefix);
3643 }
3644 else
3645 {
3646 /* 3-byte VEX prefix. */
3647 unsigned int m;
3648
3649 i.vex.length = 3;
3650
3651 switch (i.tm.opcode_modifier.vexopcode)
3652 {
3653 case VEX0F:
3654 m = 0x1;
3655 i.vex.bytes[0] = 0xc4;
3656 break;
3657 case VEX0F38:
3658 m = 0x2;
3659 i.vex.bytes[0] = 0xc4;
3660 break;
3661 case VEX0F3A:
3662 m = 0x3;
3663 i.vex.bytes[0] = 0xc4;
3664 break;
3665 case XOP08:
3666 m = 0x8;
3667 i.vex.bytes[0] = 0x8f;
3668 break;
3669 case XOP09:
3670 m = 0x9;
3671 i.vex.bytes[0] = 0x8f;
3672 break;
3673 case XOP0A:
3674 m = 0xa;
3675 i.vex.bytes[0] = 0x8f;
3676 break;
3677 default:
3678 abort ();
3679 }
3680
3681 /* The high 3 bits of the second VEX byte are 1's compliment
3682 of RXB bits from REX. */
3683 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3684
3685 i.vex.bytes[2] = (w << 7
3686 | register_specifier << 3
3687 | vector_length << 2
3688 | implied_prefix);
3689 }
3690 }
3691
3692 static INLINE bfd_boolean
3693 is_evex_encoding (const insn_template *t)
3694 {
3695 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3696 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3697 || t->opcode_modifier.sae;
3698 }
3699
3700 static INLINE bfd_boolean
3701 is_any_vex_encoding (const insn_template *t)
3702 {
3703 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3704 || is_evex_encoding (t);
3705 }
3706
3707 /* Build the EVEX prefix. */
3708
3709 static void
3710 build_evex_prefix (void)
3711 {
3712 unsigned int register_specifier;
3713 unsigned int implied_prefix;
3714 unsigned int m, w;
3715 rex_byte vrex_used = 0;
3716
3717 /* Check register specifier. */
3718 if (i.vex.register_specifier)
3719 {
3720 gas_assert ((i.vrex & REX_X) == 0);
3721
3722 register_specifier = i.vex.register_specifier->reg_num;
3723 if ((i.vex.register_specifier->reg_flags & RegRex))
3724 register_specifier += 8;
3725 /* The upper 16 registers are encoded in the fourth byte of the
3726 EVEX prefix. */
3727 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3728 i.vex.bytes[3] = 0x8;
3729 register_specifier = ~register_specifier & 0xf;
3730 }
3731 else
3732 {
3733 register_specifier = 0xf;
3734
3735 /* Encode upper 16 vector index register in the fourth byte of
3736 the EVEX prefix. */
3737 if (!(i.vrex & REX_X))
3738 i.vex.bytes[3] = 0x8;
3739 else
3740 vrex_used |= REX_X;
3741 }
3742
3743 switch ((i.tm.base_opcode >> 8) & 0xff)
3744 {
3745 case 0:
3746 implied_prefix = 0;
3747 break;
3748 case DATA_PREFIX_OPCODE:
3749 implied_prefix = 1;
3750 break;
3751 case REPE_PREFIX_OPCODE:
3752 implied_prefix = 2;
3753 break;
3754 case REPNE_PREFIX_OPCODE:
3755 implied_prefix = 3;
3756 break;
3757 default:
3758 abort ();
3759 }
3760
3761 /* 4 byte EVEX prefix. */
3762 i.vex.length = 4;
3763 i.vex.bytes[0] = 0x62;
3764
3765 /* mmmm bits. */
3766 switch (i.tm.opcode_modifier.vexopcode)
3767 {
3768 case VEX0F:
3769 m = 1;
3770 break;
3771 case VEX0F38:
3772 m = 2;
3773 break;
3774 case VEX0F3A:
3775 m = 3;
3776 break;
3777 default:
3778 abort ();
3779 break;
3780 }
3781
3782 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3783 bits from REX. */
3784 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3785
3786 /* The fifth bit of the second EVEX byte is 1's compliment of the
3787 REX_R bit in VREX. */
3788 if (!(i.vrex & REX_R))
3789 i.vex.bytes[1] |= 0x10;
3790 else
3791 vrex_used |= REX_R;
3792
3793 if ((i.reg_operands + i.imm_operands) == i.operands)
3794 {
3795 /* When all operands are registers, the REX_X bit in REX is not
3796 used. We reuse it to encode the upper 16 registers, which is
3797 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3798 as 1's compliment. */
3799 if ((i.vrex & REX_B))
3800 {
3801 vrex_used |= REX_B;
3802 i.vex.bytes[1] &= ~0x40;
3803 }
3804 }
3805
3806 /* EVEX instructions shouldn't need the REX prefix. */
3807 i.vrex &= ~vrex_used;
3808 gas_assert (i.vrex == 0);
3809
3810 /* Check the REX.W bit and VEXW. */
3811 if (i.tm.opcode_modifier.vexw == VEXWIG)
3812 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3813 else if (i.tm.opcode_modifier.vexw)
3814 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3815 else
3816 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3817
3818 /* Encode the U bit. */
3819 implied_prefix |= 0x4;
3820
3821 /* The third byte of the EVEX prefix. */
3822 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3823
3824 /* The fourth byte of the EVEX prefix. */
3825 /* The zeroing-masking bit. */
3826 if (i.mask && i.mask->zeroing)
3827 i.vex.bytes[3] |= 0x80;
3828
3829 /* Don't always set the broadcast bit if there is no RC. */
3830 if (!i.rounding)
3831 {
3832 /* Encode the vector length. */
3833 unsigned int vec_length;
3834
3835 if (!i.tm.opcode_modifier.evex
3836 || i.tm.opcode_modifier.evex == EVEXDYN)
3837 {
3838 unsigned int op;
3839
3840 /* Determine vector length from the last multi-length vector
3841 operand. */
3842 vec_length = 0;
3843 for (op = i.operands; op--;)
3844 if (i.tm.operand_types[op].bitfield.xmmword
3845 + i.tm.operand_types[op].bitfield.ymmword
3846 + i.tm.operand_types[op].bitfield.zmmword > 1)
3847 {
3848 if (i.types[op].bitfield.zmmword)
3849 {
3850 i.tm.opcode_modifier.evex = EVEX512;
3851 break;
3852 }
3853 else if (i.types[op].bitfield.ymmword)
3854 {
3855 i.tm.opcode_modifier.evex = EVEX256;
3856 break;
3857 }
3858 else if (i.types[op].bitfield.xmmword)
3859 {
3860 i.tm.opcode_modifier.evex = EVEX128;
3861 break;
3862 }
3863 else if (i.broadcast && (int) op == i.broadcast->operand)
3864 {
3865 switch (i.broadcast->bytes)
3866 {
3867 case 64:
3868 i.tm.opcode_modifier.evex = EVEX512;
3869 break;
3870 case 32:
3871 i.tm.opcode_modifier.evex = EVEX256;
3872 break;
3873 case 16:
3874 i.tm.opcode_modifier.evex = EVEX128;
3875 break;
3876 default:
3877 abort ();
3878 }
3879 break;
3880 }
3881 }
3882
3883 if (op >= MAX_OPERANDS)
3884 abort ();
3885 }
3886
3887 switch (i.tm.opcode_modifier.evex)
3888 {
3889 case EVEXLIG: /* LL' is ignored */
3890 vec_length = evexlig << 5;
3891 break;
3892 case EVEX128:
3893 vec_length = 0 << 5;
3894 break;
3895 case EVEX256:
3896 vec_length = 1 << 5;
3897 break;
3898 case EVEX512:
3899 vec_length = 2 << 5;
3900 break;
3901 default:
3902 abort ();
3903 break;
3904 }
3905 i.vex.bytes[3] |= vec_length;
3906 /* Encode the broadcast bit. */
3907 if (i.broadcast)
3908 i.vex.bytes[3] |= 0x10;
3909 }
3910 else
3911 {
3912 if (i.rounding->type != saeonly)
3913 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3914 else
3915 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3916 }
3917
3918 if (i.mask && i.mask->mask)
3919 i.vex.bytes[3] |= i.mask->mask->reg_num;
3920 }
3921
3922 static void
3923 process_immext (void)
3924 {
3925 expressionS *exp;
3926
3927 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3928 which is coded in the same place as an 8-bit immediate field
3929 would be. Here we fake an 8-bit immediate operand from the
3930 opcode suffix stored in tm.extension_opcode.
3931
3932 AVX instructions also use this encoding, for some of
3933 3 argument instructions. */
3934
3935 gas_assert (i.imm_operands <= 1
3936 && (i.operands <= 2
3937 || (is_any_vex_encoding (&i.tm)
3938 && i.operands <= 4)));
3939
3940 exp = &im_expressions[i.imm_operands++];
3941 i.op[i.operands].imms = exp;
3942 i.types[i.operands] = imm8;
3943 i.operands++;
3944 exp->X_op = O_constant;
3945 exp->X_add_number = i.tm.extension_opcode;
3946 i.tm.extension_opcode = None;
3947 }
3948
3949
3950 static int
3951 check_hle (void)
3952 {
3953 switch (i.tm.opcode_modifier.hleprefixok)
3954 {
3955 default:
3956 abort ();
3957 case HLEPrefixNone:
3958 as_bad (_("invalid instruction `%s' after `%s'"),
3959 i.tm.name, i.hle_prefix);
3960 return 0;
3961 case HLEPrefixLock:
3962 if (i.prefix[LOCK_PREFIX])
3963 return 1;
3964 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3965 return 0;
3966 case HLEPrefixAny:
3967 return 1;
3968 case HLEPrefixRelease:
3969 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3970 {
3971 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3972 i.tm.name);
3973 return 0;
3974 }
3975 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
3976 {
3977 as_bad (_("memory destination needed for instruction `%s'"
3978 " after `xrelease'"), i.tm.name);
3979 return 0;
3980 }
3981 return 1;
3982 }
3983 }
3984
3985 /* Try the shortest encoding by shortening operand size. */
3986
3987 static void
3988 optimize_encoding (void)
3989 {
3990 unsigned int j;
3991
3992 if (optimize_for_space
3993 && !is_any_vex_encoding (&i.tm)
3994 && i.reg_operands == 1
3995 && i.imm_operands == 1
3996 && !i.types[1].bitfield.byte
3997 && i.op[0].imms->X_op == O_constant
3998 && fits_in_imm7 (i.op[0].imms->X_add_number)
3999 && (i.tm.base_opcode == 0xa8
4000 || (i.tm.base_opcode == 0xf6
4001 && i.tm.extension_opcode == 0x0)))
4002 {
4003 /* Optimize: -Os:
4004 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4005 */
4006 unsigned int base_regnum = i.op[1].regs->reg_num;
4007 if (flag_code == CODE_64BIT || base_regnum < 4)
4008 {
4009 i.types[1].bitfield.byte = 1;
4010 /* Ignore the suffix. */
4011 i.suffix = 0;
4012 /* Convert to byte registers. */
4013 if (i.types[1].bitfield.word)
4014 j = 16;
4015 else if (i.types[1].bitfield.dword)
4016 j = 32;
4017 else
4018 j = 48;
4019 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4020 j += 8;
4021 i.op[1].regs -= j;
4022 }
4023 }
4024 else if (flag_code == CODE_64BIT
4025 && !is_any_vex_encoding (&i.tm)
4026 && ((i.types[1].bitfield.qword
4027 && i.reg_operands == 1
4028 && i.imm_operands == 1
4029 && i.op[0].imms->X_op == O_constant
4030 && ((i.tm.base_opcode == 0xb8
4031 && i.tm.extension_opcode == None
4032 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4033 || (fits_in_imm31 (i.op[0].imms->X_add_number)
4034 && ((i.tm.base_opcode == 0x24
4035 || i.tm.base_opcode == 0xa8)
4036 || (i.tm.base_opcode == 0x80
4037 && i.tm.extension_opcode == 0x4)
4038 || ((i.tm.base_opcode == 0xf6
4039 || (i.tm.base_opcode | 1) == 0xc7)
4040 && i.tm.extension_opcode == 0x0)))
4041 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4042 && i.tm.base_opcode == 0x83
4043 && i.tm.extension_opcode == 0x4)))
4044 || (i.types[0].bitfield.qword
4045 && ((i.reg_operands == 2
4046 && i.op[0].regs == i.op[1].regs
4047 && (i.tm.base_opcode == 0x30
4048 || i.tm.base_opcode == 0x28))
4049 || (i.reg_operands == 1
4050 && i.operands == 1
4051 && i.tm.base_opcode == 0x30)))))
4052 {
4053 /* Optimize: -O:
4054 andq $imm31, %r64 -> andl $imm31, %r32
4055 andq $imm7, %r64 -> andl $imm7, %r32
4056 testq $imm31, %r64 -> testl $imm31, %r32
4057 xorq %r64, %r64 -> xorl %r32, %r32
4058 subq %r64, %r64 -> subl %r32, %r32
4059 movq $imm31, %r64 -> movl $imm31, %r32
4060 movq $imm32, %r64 -> movl $imm32, %r32
4061 */
4062 i.tm.opcode_modifier.norex64 = 1;
4063 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
4064 {
4065 /* Handle
4066 movq $imm31, %r64 -> movl $imm31, %r32
4067 movq $imm32, %r64 -> movl $imm32, %r32
4068 */
4069 i.tm.operand_types[0].bitfield.imm32 = 1;
4070 i.tm.operand_types[0].bitfield.imm32s = 0;
4071 i.tm.operand_types[0].bitfield.imm64 = 0;
4072 i.types[0].bitfield.imm32 = 1;
4073 i.types[0].bitfield.imm32s = 0;
4074 i.types[0].bitfield.imm64 = 0;
4075 i.types[1].bitfield.dword = 1;
4076 i.types[1].bitfield.qword = 0;
4077 if ((i.tm.base_opcode | 1) == 0xc7)
4078 {
4079 /* Handle
4080 movq $imm31, %r64 -> movl $imm31, %r32
4081 */
4082 i.tm.base_opcode = 0xb8;
4083 i.tm.extension_opcode = None;
4084 i.tm.opcode_modifier.w = 0;
4085 i.tm.opcode_modifier.shortform = 1;
4086 i.tm.opcode_modifier.modrm = 0;
4087 }
4088 }
4089 }
4090 else if (optimize > 1
4091 && !optimize_for_space
4092 && !is_any_vex_encoding (&i.tm)
4093 && i.reg_operands == 2
4094 && i.op[0].regs == i.op[1].regs
4095 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4096 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4097 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4098 {
4099 /* Optimize: -O2:
4100 andb %rN, %rN -> testb %rN, %rN
4101 andw %rN, %rN -> testw %rN, %rN
4102 andq %rN, %rN -> testq %rN, %rN
4103 orb %rN, %rN -> testb %rN, %rN
4104 orw %rN, %rN -> testw %rN, %rN
4105 orq %rN, %rN -> testq %rN, %rN
4106
4107 and outside of 64-bit mode
4108
4109 andl %rN, %rN -> testl %rN, %rN
4110 orl %rN, %rN -> testl %rN, %rN
4111 */
4112 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4113 }
4114 else if (i.reg_operands == 3
4115 && i.op[0].regs == i.op[1].regs
4116 && !i.types[2].bitfield.xmmword
4117 && (i.tm.opcode_modifier.vex
4118 || ((!i.mask || i.mask->zeroing)
4119 && !i.rounding
4120 && is_evex_encoding (&i.tm)
4121 && (i.vec_encoding != vex_encoding_evex
4122 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4123 || i.tm.cpu_flags.bitfield.cpuavx512vl
4124 || (i.tm.operand_types[2].bitfield.zmmword
4125 && i.types[2].bitfield.ymmword))))
4126 && ((i.tm.base_opcode == 0x55
4127 || i.tm.base_opcode == 0x6655
4128 || i.tm.base_opcode == 0x66df
4129 || i.tm.base_opcode == 0x57
4130 || i.tm.base_opcode == 0x6657
4131 || i.tm.base_opcode == 0x66ef
4132 || i.tm.base_opcode == 0x66f8
4133 || i.tm.base_opcode == 0x66f9
4134 || i.tm.base_opcode == 0x66fa
4135 || i.tm.base_opcode == 0x66fb
4136 || i.tm.base_opcode == 0x42
4137 || i.tm.base_opcode == 0x6642
4138 || i.tm.base_opcode == 0x47
4139 || i.tm.base_opcode == 0x6647)
4140 && i.tm.extension_opcode == None))
4141 {
4142 /* Optimize: -O1:
4143 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4144 vpsubq and vpsubw:
4145 EVEX VOP %zmmM, %zmmM, %zmmN
4146 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4147 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4148 EVEX VOP %ymmM, %ymmM, %ymmN
4149 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4150 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4151 VEX VOP %ymmM, %ymmM, %ymmN
4152 -> VEX VOP %xmmM, %xmmM, %xmmN
4153 VOP, one of vpandn and vpxor:
4154 VEX VOP %ymmM, %ymmM, %ymmN
4155 -> VEX VOP %xmmM, %xmmM, %xmmN
4156 VOP, one of vpandnd and vpandnq:
4157 EVEX VOP %zmmM, %zmmM, %zmmN
4158 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4159 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4160 EVEX VOP %ymmM, %ymmM, %ymmN
4161 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4162 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4163 VOP, one of vpxord and vpxorq:
4164 EVEX VOP %zmmM, %zmmM, %zmmN
4165 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4166 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4167 EVEX VOP %ymmM, %ymmM, %ymmN
4168 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4169 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4170 VOP, one of kxord and kxorq:
4171 VEX VOP %kM, %kM, %kN
4172 -> VEX kxorw %kM, %kM, %kN
4173 VOP, one of kandnd and kandnq:
4174 VEX VOP %kM, %kM, %kN
4175 -> VEX kandnw %kM, %kM, %kN
4176 */
4177 if (is_evex_encoding (&i.tm))
4178 {
4179 if (i.vec_encoding != vex_encoding_evex)
4180 {
4181 i.tm.opcode_modifier.vex = VEX128;
4182 i.tm.opcode_modifier.vexw = VEXW0;
4183 i.tm.opcode_modifier.evex = 0;
4184 }
4185 else if (optimize > 1)
4186 i.tm.opcode_modifier.evex = EVEX128;
4187 else
4188 return;
4189 }
4190 else if (i.tm.operand_types[0].bitfield.class == RegMask)
4191 {
4192 i.tm.base_opcode &= 0xff;
4193 i.tm.opcode_modifier.vexw = VEXW0;
4194 }
4195 else
4196 i.tm.opcode_modifier.vex = VEX128;
4197
4198 if (i.tm.opcode_modifier.vex)
4199 for (j = 0; j < 3; j++)
4200 {
4201 i.types[j].bitfield.xmmword = 1;
4202 i.types[j].bitfield.ymmword = 0;
4203 }
4204 }
4205 else if (i.vec_encoding != vex_encoding_evex
4206 && !i.types[0].bitfield.zmmword
4207 && !i.types[1].bitfield.zmmword
4208 && !i.mask
4209 && !i.broadcast
4210 && is_evex_encoding (&i.tm)
4211 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4212 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4213 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4214 || (i.tm.base_opcode & ~4) == 0x66db
4215 || (i.tm.base_opcode & ~4) == 0x66eb)
4216 && i.tm.extension_opcode == None)
4217 {
4218 /* Optimize: -O1:
4219 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4220 vmovdqu32 and vmovdqu64:
4221 EVEX VOP %xmmM, %xmmN
4222 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4223 EVEX VOP %ymmM, %ymmN
4224 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4225 EVEX VOP %xmmM, mem
4226 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4227 EVEX VOP %ymmM, mem
4228 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4229 EVEX VOP mem, %xmmN
4230 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4231 EVEX VOP mem, %ymmN
4232 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4233 VOP, one of vpand, vpandn, vpor, vpxor:
4234 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4235 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4236 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4237 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4238 EVEX VOP{d,q} mem, %xmmM, %xmmN
4239 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4240 EVEX VOP{d,q} mem, %ymmM, %ymmN
4241 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4242 */
4243 for (j = 0; j < i.operands; j++)
4244 if (operand_type_check (i.types[j], disp)
4245 && i.op[j].disps->X_op == O_constant)
4246 {
4247 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4248 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4249 bytes, we choose EVEX Disp8 over VEX Disp32. */
4250 int evex_disp8, vex_disp8;
4251 unsigned int memshift = i.memshift;
4252 offsetT n = i.op[j].disps->X_add_number;
4253
4254 evex_disp8 = fits_in_disp8 (n);
4255 i.memshift = 0;
4256 vex_disp8 = fits_in_disp8 (n);
4257 if (evex_disp8 != vex_disp8)
4258 {
4259 i.memshift = memshift;
4260 return;
4261 }
4262
4263 i.types[j].bitfield.disp8 = vex_disp8;
4264 break;
4265 }
4266 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4267 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4268 i.tm.opcode_modifier.vex
4269 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4270 i.tm.opcode_modifier.vexw = VEXW0;
4271 /* VPAND, VPOR, and VPXOR are commutative. */
4272 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4273 i.tm.opcode_modifier.commutative = 1;
4274 i.tm.opcode_modifier.evex = 0;
4275 i.tm.opcode_modifier.masking = 0;
4276 i.tm.opcode_modifier.broadcast = 0;
4277 i.tm.opcode_modifier.disp8memshift = 0;
4278 i.memshift = 0;
4279 if (j < i.operands)
4280 i.types[j].bitfield.disp8
4281 = fits_in_disp8 (i.op[j].disps->X_add_number);
4282 }
4283 }
4284
4285 /* This is the guts of the machine-dependent assembler. LINE points to a
4286 machine dependent instruction. This function is supposed to emit
4287 the frags/bytes it assembles to. */
4288
4289 void
4290 md_assemble (char *line)
4291 {
4292 unsigned int j;
4293 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4294 const insn_template *t;
4295
4296 /* Initialize globals. */
4297 memset (&i, '\0', sizeof (i));
4298 for (j = 0; j < MAX_OPERANDS; j++)
4299 i.reloc[j] = NO_RELOC;
4300 memset (disp_expressions, '\0', sizeof (disp_expressions));
4301 memset (im_expressions, '\0', sizeof (im_expressions));
4302 save_stack_p = save_stack;
4303
4304 /* First parse an instruction mnemonic & call i386_operand for the operands.
4305 We assume that the scrubber has arranged it so that line[0] is the valid
4306 start of a (possibly prefixed) mnemonic. */
4307
4308 line = parse_insn (line, mnemonic);
4309 if (line == NULL)
4310 return;
4311 mnem_suffix = i.suffix;
4312
4313 line = parse_operands (line, mnemonic);
4314 this_operand = -1;
4315 xfree (i.memop1_string);
4316 i.memop1_string = NULL;
4317 if (line == NULL)
4318 return;
4319
4320 /* Now we've parsed the mnemonic into a set of templates, and have the
4321 operands at hand. */
4322
4323 /* All intel opcodes have reversed operands except for "bound" and
4324 "enter". We also don't reverse intersegment "jmp" and "call"
4325 instructions with 2 immediate operands so that the immediate segment
4326 precedes the offset, as it does when in AT&T mode. */
4327 if (intel_syntax
4328 && i.operands > 1
4329 && (strcmp (mnemonic, "bound") != 0)
4330 && (strcmp (mnemonic, "invlpga") != 0)
4331 && !(operand_type_check (i.types[0], imm)
4332 && operand_type_check (i.types[1], imm)))
4333 swap_operands ();
4334
4335 /* The order of the immediates should be reversed
4336 for 2 immediates extrq and insertq instructions */
4337 if (i.imm_operands == 2
4338 && (strcmp (mnemonic, "extrq") == 0
4339 || strcmp (mnemonic, "insertq") == 0))
4340 swap_2_operands (0, 1);
4341
4342 if (i.imm_operands)
4343 optimize_imm ();
4344
4345 /* Don't optimize displacement for movabs since it only takes 64bit
4346 displacement. */
4347 if (i.disp_operands
4348 && i.disp_encoding != disp_encoding_32bit
4349 && (flag_code != CODE_64BIT
4350 || strcmp (mnemonic, "movabs") != 0))
4351 optimize_disp ();
4352
4353 /* Next, we find a template that matches the given insn,
4354 making sure the overlap of the given operands types is consistent
4355 with the template operand types. */
4356
4357 if (!(t = match_template (mnem_suffix)))
4358 return;
4359
4360 if (sse_check != check_none
4361 && !i.tm.opcode_modifier.noavx
4362 && !i.tm.cpu_flags.bitfield.cpuavx
4363 && !i.tm.cpu_flags.bitfield.cpuavx512f
4364 && (i.tm.cpu_flags.bitfield.cpusse
4365 || i.tm.cpu_flags.bitfield.cpusse2
4366 || i.tm.cpu_flags.bitfield.cpusse3
4367 || i.tm.cpu_flags.bitfield.cpussse3
4368 || i.tm.cpu_flags.bitfield.cpusse4_1
4369 || i.tm.cpu_flags.bitfield.cpusse4_2
4370 || i.tm.cpu_flags.bitfield.cpusse4a
4371 || i.tm.cpu_flags.bitfield.cpupclmul
4372 || i.tm.cpu_flags.bitfield.cpuaes
4373 || i.tm.cpu_flags.bitfield.cpusha
4374 || i.tm.cpu_flags.bitfield.cpugfni))
4375 {
4376 (sse_check == check_warning
4377 ? as_warn
4378 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4379 }
4380
4381 /* Zap movzx and movsx suffix. The suffix has been set from
4382 "word ptr" or "byte ptr" on the source operand in Intel syntax
4383 or extracted from mnemonic in AT&T syntax. But we'll use
4384 the destination register to choose the suffix for encoding. */
4385 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4386 {
4387 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4388 there is no suffix, the default will be byte extension. */
4389 if (i.reg_operands != 2
4390 && !i.suffix
4391 && intel_syntax)
4392 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4393
4394 i.suffix = 0;
4395 }
4396
4397 if (i.tm.opcode_modifier.fwait)
4398 if (!add_prefix (FWAIT_OPCODE))
4399 return;
4400
4401 /* Check if REP prefix is OK. */
4402 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4403 {
4404 as_bad (_("invalid instruction `%s' after `%s'"),
4405 i.tm.name, i.rep_prefix);
4406 return;
4407 }
4408
4409 /* Check for lock without a lockable instruction. Destination operand
4410 must be memory unless it is xchg (0x86). */
4411 if (i.prefix[LOCK_PREFIX]
4412 && (!i.tm.opcode_modifier.islockable
4413 || i.mem_operands == 0
4414 || (i.tm.base_opcode != 0x86
4415 && !(i.flags[i.operands - 1] & Operand_Mem))))
4416 {
4417 as_bad (_("expecting lockable instruction after `lock'"));
4418 return;
4419 }
4420
4421 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4422 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4423 {
4424 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4425 return;
4426 }
4427
4428 /* Check if HLE prefix is OK. */
4429 if (i.hle_prefix && !check_hle ())
4430 return;
4431
4432 /* Check BND prefix. */
4433 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4434 as_bad (_("expecting valid branch instruction after `bnd'"));
4435
4436 /* Check NOTRACK prefix. */
4437 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4438 as_bad (_("expecting indirect branch instruction after `notrack'"));
4439
4440 if (i.tm.cpu_flags.bitfield.cpumpx)
4441 {
4442 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4443 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4444 else if (flag_code != CODE_16BIT
4445 ? i.prefix[ADDR_PREFIX]
4446 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4447 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4448 }
4449
4450 /* Insert BND prefix. */
4451 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4452 {
4453 if (!i.prefix[BND_PREFIX])
4454 add_prefix (BND_PREFIX_OPCODE);
4455 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4456 {
4457 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4458 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4459 }
4460 }
4461
4462 /* Check string instruction segment overrides. */
4463 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
4464 {
4465 gas_assert (i.mem_operands);
4466 if (!check_string ())
4467 return;
4468 i.disp_operands = 0;
4469 }
4470
4471 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4472 optimize_encoding ();
4473
4474 if (!process_suffix ())
4475 return;
4476
4477 /* Update operand types. */
4478 for (j = 0; j < i.operands; j++)
4479 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4480
4481 /* Make still unresolved immediate matches conform to size of immediate
4482 given in i.suffix. */
4483 if (!finalize_imm ())
4484 return;
4485
4486 if (i.types[0].bitfield.imm1)
4487 i.imm_operands = 0; /* kludge for shift insns. */
4488
4489 /* We only need to check those implicit registers for instructions
4490 with 3 operands or less. */
4491 if (i.operands <= 3)
4492 for (j = 0; j < i.operands; j++)
4493 if (i.types[j].bitfield.instance != InstanceNone
4494 && !i.types[j].bitfield.xmmword)
4495 i.reg_operands--;
4496
4497 /* ImmExt should be processed after SSE2AVX. */
4498 if (!i.tm.opcode_modifier.sse2avx
4499 && i.tm.opcode_modifier.immext)
4500 process_immext ();
4501
4502 /* For insns with operands there are more diddles to do to the opcode. */
4503 if (i.operands)
4504 {
4505 if (!process_operands ())
4506 return;
4507 }
4508 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4509 {
4510 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4511 as_warn (_("translating to `%sp'"), i.tm.name);
4512 }
4513
4514 if (is_any_vex_encoding (&i.tm))
4515 {
4516 if (!cpu_arch_flags.bitfield.cpui286)
4517 {
4518 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4519 i.tm.name);
4520 return;
4521 }
4522
4523 if (i.tm.opcode_modifier.vex)
4524 build_vex_prefix (t);
4525 else
4526 build_evex_prefix ();
4527 }
4528
4529 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4530 instructions may define INT_OPCODE as well, so avoid this corner
4531 case for those instructions that use MODRM. */
4532 if (i.tm.base_opcode == INT_OPCODE
4533 && !i.tm.opcode_modifier.modrm
4534 && i.op[0].imms->X_add_number == 3)
4535 {
4536 i.tm.base_opcode = INT3_OPCODE;
4537 i.imm_operands = 0;
4538 }
4539
4540 if ((i.tm.opcode_modifier.jump == JUMP
4541 || i.tm.opcode_modifier.jump == JUMP_BYTE
4542 || i.tm.opcode_modifier.jump == JUMP_DWORD)
4543 && i.op[0].disps->X_op == O_constant)
4544 {
4545 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4546 the absolute address given by the constant. Since ix86 jumps and
4547 calls are pc relative, we need to generate a reloc. */
4548 i.op[0].disps->X_add_symbol = &abs_symbol;
4549 i.op[0].disps->X_op = O_symbol;
4550 }
4551
4552 if (i.tm.opcode_modifier.rex64)
4553 i.rex |= REX_W;
4554
4555 /* For 8 bit registers we need an empty rex prefix. Also if the
4556 instruction already has a prefix, we need to convert old
4557 registers to new ones. */
4558
4559 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
4560 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4561 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
4562 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4563 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4564 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
4565 && i.rex != 0))
4566 {
4567 int x;
4568
4569 i.rex |= REX_OPCODE;
4570 for (x = 0; x < 2; x++)
4571 {
4572 /* Look for 8 bit operand that uses old registers. */
4573 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
4574 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4575 {
4576 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4577 /* In case it is "hi" register, give up. */
4578 if (i.op[x].regs->reg_num > 3)
4579 as_bad (_("can't encode register '%s%s' in an "
4580 "instruction requiring REX prefix."),
4581 register_prefix, i.op[x].regs->reg_name);
4582
4583 /* Otherwise it is equivalent to the extended register.
4584 Since the encoding doesn't change this is merely
4585 cosmetic cleanup for debug output. */
4586
4587 i.op[x].regs = i.op[x].regs + 8;
4588 }
4589 }
4590 }
4591
4592 if (i.rex == 0 && i.rex_encoding)
4593 {
4594 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4595 that uses legacy register. If it is "hi" register, don't add
4596 the REX_OPCODE byte. */
4597 int x;
4598 for (x = 0; x < 2; x++)
4599 if (i.types[x].bitfield.class == Reg
4600 && i.types[x].bitfield.byte
4601 && (i.op[x].regs->reg_flags & RegRex64) == 0
4602 && i.op[x].regs->reg_num > 3)
4603 {
4604 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4605 i.rex_encoding = FALSE;
4606 break;
4607 }
4608
4609 if (i.rex_encoding)
4610 i.rex = REX_OPCODE;
4611 }
4612
4613 if (i.rex != 0)
4614 add_prefix (REX_OPCODE | i.rex);
4615
4616 /* We are ready to output the insn. */
4617 output_insn ();
4618
4619 last_insn.seg = now_seg;
4620
4621 if (i.tm.opcode_modifier.isprefix)
4622 {
4623 last_insn.kind = last_insn_prefix;
4624 last_insn.name = i.tm.name;
4625 last_insn.file = as_where (&last_insn.line);
4626 }
4627 else
4628 last_insn.kind = last_insn_other;
4629 }
4630
4631 static char *
4632 parse_insn (char *line, char *mnemonic)
4633 {
4634 char *l = line;
4635 char *token_start = l;
4636 char *mnem_p;
4637 int supported;
4638 const insn_template *t;
4639 char *dot_p = NULL;
4640
4641 while (1)
4642 {
4643 mnem_p = mnemonic;
4644 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4645 {
4646 if (*mnem_p == '.')
4647 dot_p = mnem_p;
4648 mnem_p++;
4649 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4650 {
4651 as_bad (_("no such instruction: `%s'"), token_start);
4652 return NULL;
4653 }
4654 l++;
4655 }
4656 if (!is_space_char (*l)
4657 && *l != END_OF_INSN
4658 && (intel_syntax
4659 || (*l != PREFIX_SEPARATOR
4660 && *l != ',')))
4661 {
4662 as_bad (_("invalid character %s in mnemonic"),
4663 output_invalid (*l));
4664 return NULL;
4665 }
4666 if (token_start == l)
4667 {
4668 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4669 as_bad (_("expecting prefix; got nothing"));
4670 else
4671 as_bad (_("expecting mnemonic; got nothing"));
4672 return NULL;
4673 }
4674
4675 /* Look up instruction (or prefix) via hash table. */
4676 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4677
4678 if (*l != END_OF_INSN
4679 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4680 && current_templates
4681 && current_templates->start->opcode_modifier.isprefix)
4682 {
4683 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4684 {
4685 as_bad ((flag_code != CODE_64BIT
4686 ? _("`%s' is only supported in 64-bit mode")
4687 : _("`%s' is not supported in 64-bit mode")),
4688 current_templates->start->name);
4689 return NULL;
4690 }
4691 /* If we are in 16-bit mode, do not allow addr16 or data16.
4692 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4693 if ((current_templates->start->opcode_modifier.size == SIZE16
4694 || current_templates->start->opcode_modifier.size == SIZE32)
4695 && flag_code != CODE_64BIT
4696 && ((current_templates->start->opcode_modifier.size == SIZE32)
4697 ^ (flag_code == CODE_16BIT)))
4698 {
4699 as_bad (_("redundant %s prefix"),
4700 current_templates->start->name);
4701 return NULL;
4702 }
4703 if (current_templates->start->opcode_length == 0)
4704 {
4705 /* Handle pseudo prefixes. */
4706 switch (current_templates->start->base_opcode)
4707 {
4708 case 0x0:
4709 /* {disp8} */
4710 i.disp_encoding = disp_encoding_8bit;
4711 break;
4712 case 0x1:
4713 /* {disp32} */
4714 i.disp_encoding = disp_encoding_32bit;
4715 break;
4716 case 0x2:
4717 /* {load} */
4718 i.dir_encoding = dir_encoding_load;
4719 break;
4720 case 0x3:
4721 /* {store} */
4722 i.dir_encoding = dir_encoding_store;
4723 break;
4724 case 0x4:
4725 /* {vex} */
4726 i.vec_encoding = vex_encoding_vex;
4727 break;
4728 case 0x5:
4729 /* {vex3} */
4730 i.vec_encoding = vex_encoding_vex3;
4731 break;
4732 case 0x6:
4733 /* {evex} */
4734 i.vec_encoding = vex_encoding_evex;
4735 break;
4736 case 0x7:
4737 /* {rex} */
4738 i.rex_encoding = TRUE;
4739 break;
4740 case 0x8:
4741 /* {nooptimize} */
4742 i.no_optimize = TRUE;
4743 break;
4744 default:
4745 abort ();
4746 }
4747 }
4748 else
4749 {
4750 /* Add prefix, checking for repeated prefixes. */
4751 switch (add_prefix (current_templates->start->base_opcode))
4752 {
4753 case PREFIX_EXIST:
4754 return NULL;
4755 case PREFIX_DS:
4756 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4757 i.notrack_prefix = current_templates->start->name;
4758 break;
4759 case PREFIX_REP:
4760 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4761 i.hle_prefix = current_templates->start->name;
4762 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4763 i.bnd_prefix = current_templates->start->name;
4764 else
4765 i.rep_prefix = current_templates->start->name;
4766 break;
4767 default:
4768 break;
4769 }
4770 }
4771 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4772 token_start = ++l;
4773 }
4774 else
4775 break;
4776 }
4777
4778 if (!current_templates)
4779 {
4780 /* Deprecated functionality (new code should use pseudo-prefixes instead):
4781 Check if we should swap operand or force 32bit displacement in
4782 encoding. */
4783 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4784 i.dir_encoding = dir_encoding_swap;
4785 else if (mnem_p - 3 == dot_p
4786 && dot_p[1] == 'd'
4787 && dot_p[2] == '8')
4788 i.disp_encoding = disp_encoding_8bit;
4789 else if (mnem_p - 4 == dot_p
4790 && dot_p[1] == 'd'
4791 && dot_p[2] == '3'
4792 && dot_p[3] == '2')
4793 i.disp_encoding = disp_encoding_32bit;
4794 else
4795 goto check_suffix;
4796 mnem_p = dot_p;
4797 *dot_p = '\0';
4798 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4799 }
4800
4801 if (!current_templates)
4802 {
4803 check_suffix:
4804 if (mnem_p > mnemonic)
4805 {
4806 /* See if we can get a match by trimming off a suffix. */
4807 switch (mnem_p[-1])
4808 {
4809 case WORD_MNEM_SUFFIX:
4810 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4811 i.suffix = SHORT_MNEM_SUFFIX;
4812 else
4813 /* Fall through. */
4814 case BYTE_MNEM_SUFFIX:
4815 case QWORD_MNEM_SUFFIX:
4816 i.suffix = mnem_p[-1];
4817 mnem_p[-1] = '\0';
4818 current_templates = (const templates *) hash_find (op_hash,
4819 mnemonic);
4820 break;
4821 case SHORT_MNEM_SUFFIX:
4822 case LONG_MNEM_SUFFIX:
4823 if (!intel_syntax)
4824 {
4825 i.suffix = mnem_p[-1];
4826 mnem_p[-1] = '\0';
4827 current_templates = (const templates *) hash_find (op_hash,
4828 mnemonic);
4829 }
4830 break;
4831
4832 /* Intel Syntax. */
4833 case 'd':
4834 if (intel_syntax)
4835 {
4836 if (intel_float_operand (mnemonic) == 1)
4837 i.suffix = SHORT_MNEM_SUFFIX;
4838 else
4839 i.suffix = LONG_MNEM_SUFFIX;
4840 mnem_p[-1] = '\0';
4841 current_templates = (const templates *) hash_find (op_hash,
4842 mnemonic);
4843 }
4844 break;
4845 }
4846 }
4847
4848 if (!current_templates)
4849 {
4850 as_bad (_("no such instruction: `%s'"), token_start);
4851 return NULL;
4852 }
4853 }
4854
4855 if (current_templates->start->opcode_modifier.jump == JUMP
4856 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
4857 {
4858 /* Check for a branch hint. We allow ",pt" and ",pn" for
4859 predict taken and predict not taken respectively.
4860 I'm not sure that branch hints actually do anything on loop
4861 and jcxz insns (JumpByte) for current Pentium4 chips. They
4862 may work in the future and it doesn't hurt to accept them
4863 now. */
4864 if (l[0] == ',' && l[1] == 'p')
4865 {
4866 if (l[2] == 't')
4867 {
4868 if (!add_prefix (DS_PREFIX_OPCODE))
4869 return NULL;
4870 l += 3;
4871 }
4872 else if (l[2] == 'n')
4873 {
4874 if (!add_prefix (CS_PREFIX_OPCODE))
4875 return NULL;
4876 l += 3;
4877 }
4878 }
4879 }
4880 /* Any other comma loses. */
4881 if (*l == ',')
4882 {
4883 as_bad (_("invalid character %s in mnemonic"),
4884 output_invalid (*l));
4885 return NULL;
4886 }
4887
4888 /* Check if instruction is supported on specified architecture. */
4889 supported = 0;
4890 for (t = current_templates->start; t < current_templates->end; ++t)
4891 {
4892 supported |= cpu_flags_match (t);
4893 if (supported == CPU_FLAGS_PERFECT_MATCH)
4894 {
4895 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4896 as_warn (_("use .code16 to ensure correct addressing mode"));
4897
4898 return l;
4899 }
4900 }
4901
4902 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4903 as_bad (flag_code == CODE_64BIT
4904 ? _("`%s' is not supported in 64-bit mode")
4905 : _("`%s' is only supported in 64-bit mode"),
4906 current_templates->start->name);
4907 else
4908 as_bad (_("`%s' is not supported on `%s%s'"),
4909 current_templates->start->name,
4910 cpu_arch_name ? cpu_arch_name : default_arch,
4911 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4912
4913 return NULL;
4914 }
4915
4916 static char *
4917 parse_operands (char *l, const char *mnemonic)
4918 {
4919 char *token_start;
4920
4921 /* 1 if operand is pending after ','. */
4922 unsigned int expecting_operand = 0;
4923
4924 /* Non-zero if operand parens not balanced. */
4925 unsigned int paren_not_balanced;
4926
4927 while (*l != END_OF_INSN)
4928 {
4929 /* Skip optional white space before operand. */
4930 if (is_space_char (*l))
4931 ++l;
4932 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4933 {
4934 as_bad (_("invalid character %s before operand %d"),
4935 output_invalid (*l),
4936 i.operands + 1);
4937 return NULL;
4938 }
4939 token_start = l; /* After white space. */
4940 paren_not_balanced = 0;
4941 while (paren_not_balanced || *l != ',')
4942 {
4943 if (*l == END_OF_INSN)
4944 {
4945 if (paren_not_balanced)
4946 {
4947 if (!intel_syntax)
4948 as_bad (_("unbalanced parenthesis in operand %d."),
4949 i.operands + 1);
4950 else
4951 as_bad (_("unbalanced brackets in operand %d."),
4952 i.operands + 1);
4953 return NULL;
4954 }
4955 else
4956 break; /* we are done */
4957 }
4958 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4959 {
4960 as_bad (_("invalid character %s in operand %d"),
4961 output_invalid (*l),
4962 i.operands + 1);
4963 return NULL;
4964 }
4965 if (!intel_syntax)
4966 {
4967 if (*l == '(')
4968 ++paren_not_balanced;
4969 if (*l == ')')
4970 --paren_not_balanced;
4971 }
4972 else
4973 {
4974 if (*l == '[')
4975 ++paren_not_balanced;
4976 if (*l == ']')
4977 --paren_not_balanced;
4978 }
4979 l++;
4980 }
4981 if (l != token_start)
4982 { /* Yes, we've read in another operand. */
4983 unsigned int operand_ok;
4984 this_operand = i.operands++;
4985 if (i.operands > MAX_OPERANDS)
4986 {
4987 as_bad (_("spurious operands; (%d operands/instruction max)"),
4988 MAX_OPERANDS);
4989 return NULL;
4990 }
4991 i.types[this_operand].bitfield.unspecified = 1;
4992 /* Now parse operand adding info to 'i' as we go along. */
4993 END_STRING_AND_SAVE (l);
4994
4995 if (i.mem_operands > 1)
4996 {
4997 as_bad (_("too many memory references for `%s'"),
4998 mnemonic);
4999 return 0;
5000 }
5001
5002 if (intel_syntax)
5003 operand_ok =
5004 i386_intel_operand (token_start,
5005 intel_float_operand (mnemonic));
5006 else
5007 operand_ok = i386_att_operand (token_start);
5008
5009 RESTORE_END_STRING (l);
5010 if (!operand_ok)
5011 return NULL;
5012 }
5013 else
5014 {
5015 if (expecting_operand)
5016 {
5017 expecting_operand_after_comma:
5018 as_bad (_("expecting operand after ','; got nothing"));
5019 return NULL;
5020 }
5021 if (*l == ',')
5022 {
5023 as_bad (_("expecting operand before ','; got nothing"));
5024 return NULL;
5025 }
5026 }
5027
5028 /* Now *l must be either ',' or END_OF_INSN. */
5029 if (*l == ',')
5030 {
5031 if (*++l == END_OF_INSN)
5032 {
5033 /* Just skip it, if it's \n complain. */
5034 goto expecting_operand_after_comma;
5035 }
5036 expecting_operand = 1;
5037 }
5038 }
5039 return l;
5040 }
5041
5042 static void
5043 swap_2_operands (int xchg1, int xchg2)
5044 {
5045 union i386_op temp_op;
5046 i386_operand_type temp_type;
5047 unsigned int temp_flags;
5048 enum bfd_reloc_code_real temp_reloc;
5049
5050 temp_type = i.types[xchg2];
5051 i.types[xchg2] = i.types[xchg1];
5052 i.types[xchg1] = temp_type;
5053
5054 temp_flags = i.flags[xchg2];
5055 i.flags[xchg2] = i.flags[xchg1];
5056 i.flags[xchg1] = temp_flags;
5057
5058 temp_op = i.op[xchg2];
5059 i.op[xchg2] = i.op[xchg1];
5060 i.op[xchg1] = temp_op;
5061
5062 temp_reloc = i.reloc[xchg2];
5063 i.reloc[xchg2] = i.reloc[xchg1];
5064 i.reloc[xchg1] = temp_reloc;
5065
5066 if (i.mask)
5067 {
5068 if (i.mask->operand == xchg1)
5069 i.mask->operand = xchg2;
5070 else if (i.mask->operand == xchg2)
5071 i.mask->operand = xchg1;
5072 }
5073 if (i.broadcast)
5074 {
5075 if (i.broadcast->operand == xchg1)
5076 i.broadcast->operand = xchg2;
5077 else if (i.broadcast->operand == xchg2)
5078 i.broadcast->operand = xchg1;
5079 }
5080 if (i.rounding)
5081 {
5082 if (i.rounding->operand == xchg1)
5083 i.rounding->operand = xchg2;
5084 else if (i.rounding->operand == xchg2)
5085 i.rounding->operand = xchg1;
5086 }
5087 }
5088
5089 static void
5090 swap_operands (void)
5091 {
5092 switch (i.operands)
5093 {
5094 case 5:
5095 case 4:
5096 swap_2_operands (1, i.operands - 2);
5097 /* Fall through. */
5098 case 3:
5099 case 2:
5100 swap_2_operands (0, i.operands - 1);
5101 break;
5102 default:
5103 abort ();
5104 }
5105
5106 if (i.mem_operands == 2)
5107 {
5108 const seg_entry *temp_seg;
5109 temp_seg = i.seg[0];
5110 i.seg[0] = i.seg[1];
5111 i.seg[1] = temp_seg;
5112 }
5113 }
5114
5115 /* Try to ensure constant immediates are represented in the smallest
5116 opcode possible. */
5117 static void
5118 optimize_imm (void)
5119 {
5120 char guess_suffix = 0;
5121 int op;
5122
5123 if (i.suffix)
5124 guess_suffix = i.suffix;
5125 else if (i.reg_operands)
5126 {
5127 /* Figure out a suffix from the last register operand specified.
5128 We can't do this properly yet, i.e. excluding special register
5129 instances, but the following works for instructions with
5130 immediates. In any case, we can't set i.suffix yet. */
5131 for (op = i.operands; --op >= 0;)
5132 if (i.types[op].bitfield.class != Reg)
5133 continue;
5134 else if (i.types[op].bitfield.byte)
5135 {
5136 guess_suffix = BYTE_MNEM_SUFFIX;
5137 break;
5138 }
5139 else if (i.types[op].bitfield.word)
5140 {
5141 guess_suffix = WORD_MNEM_SUFFIX;
5142 break;
5143 }
5144 else if (i.types[op].bitfield.dword)
5145 {
5146 guess_suffix = LONG_MNEM_SUFFIX;
5147 break;
5148 }
5149 else if (i.types[op].bitfield.qword)
5150 {
5151 guess_suffix = QWORD_MNEM_SUFFIX;
5152 break;
5153 }
5154 }
5155 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5156 guess_suffix = WORD_MNEM_SUFFIX;
5157
5158 for (op = i.operands; --op >= 0;)
5159 if (operand_type_check (i.types[op], imm))
5160 {
5161 switch (i.op[op].imms->X_op)
5162 {
5163 case O_constant:
5164 /* If a suffix is given, this operand may be shortened. */
5165 switch (guess_suffix)
5166 {
5167 case LONG_MNEM_SUFFIX:
5168 i.types[op].bitfield.imm32 = 1;
5169 i.types[op].bitfield.imm64 = 1;
5170 break;
5171 case WORD_MNEM_SUFFIX:
5172 i.types[op].bitfield.imm16 = 1;
5173 i.types[op].bitfield.imm32 = 1;
5174 i.types[op].bitfield.imm32s = 1;
5175 i.types[op].bitfield.imm64 = 1;
5176 break;
5177 case BYTE_MNEM_SUFFIX:
5178 i.types[op].bitfield.imm8 = 1;
5179 i.types[op].bitfield.imm8s = 1;
5180 i.types[op].bitfield.imm16 = 1;
5181 i.types[op].bitfield.imm32 = 1;
5182 i.types[op].bitfield.imm32s = 1;
5183 i.types[op].bitfield.imm64 = 1;
5184 break;
5185 }
5186
5187 /* If this operand is at most 16 bits, convert it
5188 to a signed 16 bit number before trying to see
5189 whether it will fit in an even smaller size.
5190 This allows a 16-bit operand such as $0xffe0 to
5191 be recognised as within Imm8S range. */
5192 if ((i.types[op].bitfield.imm16)
5193 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5194 {
5195 i.op[op].imms->X_add_number =
5196 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5197 }
5198 #ifdef BFD64
5199 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5200 if ((i.types[op].bitfield.imm32)
5201 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5202 == 0))
5203 {
5204 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5205 ^ ((offsetT) 1 << 31))
5206 - ((offsetT) 1 << 31));
5207 }
5208 #endif
5209 i.types[op]
5210 = operand_type_or (i.types[op],
5211 smallest_imm_type (i.op[op].imms->X_add_number));
5212
5213 /* We must avoid matching of Imm32 templates when 64bit
5214 only immediate is available. */
5215 if (guess_suffix == QWORD_MNEM_SUFFIX)
5216 i.types[op].bitfield.imm32 = 0;
5217 break;
5218
5219 case O_absent:
5220 case O_register:
5221 abort ();
5222
5223 /* Symbols and expressions. */
5224 default:
5225 /* Convert symbolic operand to proper sizes for matching, but don't
5226 prevent matching a set of insns that only supports sizes other
5227 than those matching the insn suffix. */
5228 {
5229 i386_operand_type mask, allowed;
5230 const insn_template *t;
5231
5232 operand_type_set (&mask, 0);
5233 operand_type_set (&allowed, 0);
5234
5235 for (t = current_templates->start;
5236 t < current_templates->end;
5237 ++t)
5238 {
5239 allowed = operand_type_or (allowed, t->operand_types[op]);
5240 allowed = operand_type_and (allowed, anyimm);
5241 }
5242 switch (guess_suffix)
5243 {
5244 case QWORD_MNEM_SUFFIX:
5245 mask.bitfield.imm64 = 1;
5246 mask.bitfield.imm32s = 1;
5247 break;
5248 case LONG_MNEM_SUFFIX:
5249 mask.bitfield.imm32 = 1;
5250 break;
5251 case WORD_MNEM_SUFFIX:
5252 mask.bitfield.imm16 = 1;
5253 break;
5254 case BYTE_MNEM_SUFFIX:
5255 mask.bitfield.imm8 = 1;
5256 break;
5257 default:
5258 break;
5259 }
5260 allowed = operand_type_and (mask, allowed);
5261 if (!operand_type_all_zero (&allowed))
5262 i.types[op] = operand_type_and (i.types[op], mask);
5263 }
5264 break;
5265 }
5266 }
5267 }
5268
5269 /* Try to use the smallest displacement type too. */
5270 static void
5271 optimize_disp (void)
5272 {
5273 int op;
5274
5275 for (op = i.operands; --op >= 0;)
5276 if (operand_type_check (i.types[op], disp))
5277 {
5278 if (i.op[op].disps->X_op == O_constant)
5279 {
5280 offsetT op_disp = i.op[op].disps->X_add_number;
5281
5282 if (i.types[op].bitfield.disp16
5283 && (op_disp & ~(offsetT) 0xffff) == 0)
5284 {
5285 /* If this operand is at most 16 bits, convert
5286 to a signed 16 bit number and don't use 64bit
5287 displacement. */
5288 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5289 i.types[op].bitfield.disp64 = 0;
5290 }
5291 #ifdef BFD64
5292 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5293 if (i.types[op].bitfield.disp32
5294 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5295 {
5296 /* If this operand is at most 32 bits, convert
5297 to a signed 32 bit number and don't use 64bit
5298 displacement. */
5299 op_disp &= (((offsetT) 2 << 31) - 1);
5300 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5301 i.types[op].bitfield.disp64 = 0;
5302 }
5303 #endif
5304 if (!op_disp && i.types[op].bitfield.baseindex)
5305 {
5306 i.types[op].bitfield.disp8 = 0;
5307 i.types[op].bitfield.disp16 = 0;
5308 i.types[op].bitfield.disp32 = 0;
5309 i.types[op].bitfield.disp32s = 0;
5310 i.types[op].bitfield.disp64 = 0;
5311 i.op[op].disps = 0;
5312 i.disp_operands--;
5313 }
5314 else if (flag_code == CODE_64BIT)
5315 {
5316 if (fits_in_signed_long (op_disp))
5317 {
5318 i.types[op].bitfield.disp64 = 0;
5319 i.types[op].bitfield.disp32s = 1;
5320 }
5321 if (i.prefix[ADDR_PREFIX]
5322 && fits_in_unsigned_long (op_disp))
5323 i.types[op].bitfield.disp32 = 1;
5324 }
5325 if ((i.types[op].bitfield.disp32
5326 || i.types[op].bitfield.disp32s
5327 || i.types[op].bitfield.disp16)
5328 && fits_in_disp8 (op_disp))
5329 i.types[op].bitfield.disp8 = 1;
5330 }
5331 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5332 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5333 {
5334 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5335 i.op[op].disps, 0, i.reloc[op]);
5336 i.types[op].bitfield.disp8 = 0;
5337 i.types[op].bitfield.disp16 = 0;
5338 i.types[op].bitfield.disp32 = 0;
5339 i.types[op].bitfield.disp32s = 0;
5340 i.types[op].bitfield.disp64 = 0;
5341 }
5342 else
5343 /* We only support 64bit displacement on constants. */
5344 i.types[op].bitfield.disp64 = 0;
5345 }
5346 }
5347
5348 /* Return 1 if there is a match in broadcast bytes between operand
5349 GIVEN and instruction template T. */
5350
5351 static INLINE int
5352 match_broadcast_size (const insn_template *t, unsigned int given)
5353 {
5354 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5355 && i.types[given].bitfield.byte)
5356 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5357 && i.types[given].bitfield.word)
5358 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5359 && i.types[given].bitfield.dword)
5360 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5361 && i.types[given].bitfield.qword));
5362 }
5363
5364 /* Check if operands are valid for the instruction. */
5365
5366 static int
5367 check_VecOperands (const insn_template *t)
5368 {
5369 unsigned int op;
5370 i386_cpu_flags cpu;
5371 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5372
5373 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5374 any one operand are implicity requiring AVX512VL support if the actual
5375 operand size is YMMword or XMMword. Since this function runs after
5376 template matching, there's no need to check for YMMword/XMMword in
5377 the template. */
5378 cpu = cpu_flags_and (t->cpu_flags, avx512);
5379 if (!cpu_flags_all_zero (&cpu)
5380 && !t->cpu_flags.bitfield.cpuavx512vl
5381 && !cpu_arch_flags.bitfield.cpuavx512vl)
5382 {
5383 for (op = 0; op < t->operands; ++op)
5384 {
5385 if (t->operand_types[op].bitfield.zmmword
5386 && (i.types[op].bitfield.ymmword
5387 || i.types[op].bitfield.xmmword))
5388 {
5389 i.error = unsupported;
5390 return 1;
5391 }
5392 }
5393 }
5394
5395 /* Without VSIB byte, we can't have a vector register for index. */
5396 if (!t->opcode_modifier.vecsib
5397 && i.index_reg
5398 && (i.index_reg->reg_type.bitfield.xmmword
5399 || i.index_reg->reg_type.bitfield.ymmword
5400 || i.index_reg->reg_type.bitfield.zmmword))
5401 {
5402 i.error = unsupported_vector_index_register;
5403 return 1;
5404 }
5405
5406 /* Check if default mask is allowed. */
5407 if (t->opcode_modifier.nodefmask
5408 && (!i.mask || i.mask->mask->reg_num == 0))
5409 {
5410 i.error = no_default_mask;
5411 return 1;
5412 }
5413
5414 /* For VSIB byte, we need a vector register for index, and all vector
5415 registers must be distinct. */
5416 if (t->opcode_modifier.vecsib)
5417 {
5418 if (!i.index_reg
5419 || !((t->opcode_modifier.vecsib == VecSIB128
5420 && i.index_reg->reg_type.bitfield.xmmword)
5421 || (t->opcode_modifier.vecsib == VecSIB256
5422 && i.index_reg->reg_type.bitfield.ymmword)
5423 || (t->opcode_modifier.vecsib == VecSIB512
5424 && i.index_reg->reg_type.bitfield.zmmword)))
5425 {
5426 i.error = invalid_vsib_address;
5427 return 1;
5428 }
5429
5430 gas_assert (i.reg_operands == 2 || i.mask);
5431 if (i.reg_operands == 2 && !i.mask)
5432 {
5433 gas_assert (i.types[0].bitfield.class == RegSIMD);
5434 gas_assert (i.types[0].bitfield.xmmword
5435 || i.types[0].bitfield.ymmword);
5436 gas_assert (i.types[2].bitfield.class == RegSIMD);
5437 gas_assert (i.types[2].bitfield.xmmword
5438 || i.types[2].bitfield.ymmword);
5439 if (operand_check == check_none)
5440 return 0;
5441 if (register_number (i.op[0].regs)
5442 != register_number (i.index_reg)
5443 && register_number (i.op[2].regs)
5444 != register_number (i.index_reg)
5445 && register_number (i.op[0].regs)
5446 != register_number (i.op[2].regs))
5447 return 0;
5448 if (operand_check == check_error)
5449 {
5450 i.error = invalid_vector_register_set;
5451 return 1;
5452 }
5453 as_warn (_("mask, index, and destination registers should be distinct"));
5454 }
5455 else if (i.reg_operands == 1 && i.mask)
5456 {
5457 if (i.types[1].bitfield.class == RegSIMD
5458 && (i.types[1].bitfield.xmmword
5459 || i.types[1].bitfield.ymmword
5460 || i.types[1].bitfield.zmmword)
5461 && (register_number (i.op[1].regs)
5462 == register_number (i.index_reg)))
5463 {
5464 if (operand_check == check_error)
5465 {
5466 i.error = invalid_vector_register_set;
5467 return 1;
5468 }
5469 if (operand_check != check_none)
5470 as_warn (_("index and destination registers should be distinct"));
5471 }
5472 }
5473 }
5474
5475 /* Check if broadcast is supported by the instruction and is applied
5476 to the memory operand. */
5477 if (i.broadcast)
5478 {
5479 i386_operand_type type, overlap;
5480
5481 /* Check if specified broadcast is supported in this instruction,
5482 and its broadcast bytes match the memory operand. */
5483 op = i.broadcast->operand;
5484 if (!t->opcode_modifier.broadcast
5485 || !(i.flags[op] & Operand_Mem)
5486 || (!i.types[op].bitfield.unspecified
5487 && !match_broadcast_size (t, op)))
5488 {
5489 bad_broadcast:
5490 i.error = unsupported_broadcast;
5491 return 1;
5492 }
5493
5494 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5495 * i.broadcast->type);
5496 operand_type_set (&type, 0);
5497 switch (i.broadcast->bytes)
5498 {
5499 case 2:
5500 type.bitfield.word = 1;
5501 break;
5502 case 4:
5503 type.bitfield.dword = 1;
5504 break;
5505 case 8:
5506 type.bitfield.qword = 1;
5507 break;
5508 case 16:
5509 type.bitfield.xmmword = 1;
5510 break;
5511 case 32:
5512 type.bitfield.ymmword = 1;
5513 break;
5514 case 64:
5515 type.bitfield.zmmword = 1;
5516 break;
5517 default:
5518 goto bad_broadcast;
5519 }
5520
5521 overlap = operand_type_and (type, t->operand_types[op]);
5522 if (operand_type_all_zero (&overlap))
5523 goto bad_broadcast;
5524
5525 if (t->opcode_modifier.checkregsize)
5526 {
5527 unsigned int j;
5528
5529 type.bitfield.baseindex = 1;
5530 for (j = 0; j < i.operands; ++j)
5531 {
5532 if (j != op
5533 && !operand_type_register_match(i.types[j],
5534 t->operand_types[j],
5535 type,
5536 t->operand_types[op]))
5537 goto bad_broadcast;
5538 }
5539 }
5540 }
5541 /* If broadcast is supported in this instruction, we need to check if
5542 operand of one-element size isn't specified without broadcast. */
5543 else if (t->opcode_modifier.broadcast && i.mem_operands)
5544 {
5545 /* Find memory operand. */
5546 for (op = 0; op < i.operands; op++)
5547 if (i.flags[op] & Operand_Mem)
5548 break;
5549 gas_assert (op < i.operands);
5550 /* Check size of the memory operand. */
5551 if (match_broadcast_size (t, op))
5552 {
5553 i.error = broadcast_needed;
5554 return 1;
5555 }
5556 }
5557 else
5558 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5559
5560 /* Check if requested masking is supported. */
5561 if (i.mask)
5562 {
5563 switch (t->opcode_modifier.masking)
5564 {
5565 case BOTH_MASKING:
5566 break;
5567 case MERGING_MASKING:
5568 if (i.mask->zeroing)
5569 {
5570 case 0:
5571 i.error = unsupported_masking;
5572 return 1;
5573 }
5574 break;
5575 case DYNAMIC_MASKING:
5576 /* Memory destinations allow only merging masking. */
5577 if (i.mask->zeroing && i.mem_operands)
5578 {
5579 /* Find memory operand. */
5580 for (op = 0; op < i.operands; op++)
5581 if (i.flags[op] & Operand_Mem)
5582 break;
5583 gas_assert (op < i.operands);
5584 if (op == i.operands - 1)
5585 {
5586 i.error = unsupported_masking;
5587 return 1;
5588 }
5589 }
5590 break;
5591 default:
5592 abort ();
5593 }
5594 }
5595
5596 /* Check if masking is applied to dest operand. */
5597 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5598 {
5599 i.error = mask_not_on_destination;
5600 return 1;
5601 }
5602
5603 /* Check RC/SAE. */
5604 if (i.rounding)
5605 {
5606 if (!t->opcode_modifier.sae
5607 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
5608 {
5609 i.error = unsupported_rc_sae;
5610 return 1;
5611 }
5612 /* If the instruction has several immediate operands and one of
5613 them is rounding, the rounding operand should be the last
5614 immediate operand. */
5615 if (i.imm_operands > 1
5616 && i.rounding->operand != (int) (i.imm_operands - 1))
5617 {
5618 i.error = rc_sae_operand_not_last_imm;
5619 return 1;
5620 }
5621 }
5622
5623 /* Check vector Disp8 operand. */
5624 if (t->opcode_modifier.disp8memshift
5625 && i.disp_encoding != disp_encoding_32bit)
5626 {
5627 if (i.broadcast)
5628 i.memshift = t->opcode_modifier.broadcast - 1;
5629 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5630 i.memshift = t->opcode_modifier.disp8memshift;
5631 else
5632 {
5633 const i386_operand_type *type = NULL;
5634
5635 i.memshift = 0;
5636 for (op = 0; op < i.operands; op++)
5637 if (i.flags[op] & Operand_Mem)
5638 {
5639 if (t->opcode_modifier.evex == EVEXLIG)
5640 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5641 else if (t->operand_types[op].bitfield.xmmword
5642 + t->operand_types[op].bitfield.ymmword
5643 + t->operand_types[op].bitfield.zmmword <= 1)
5644 type = &t->operand_types[op];
5645 else if (!i.types[op].bitfield.unspecified)
5646 type = &i.types[op];
5647 }
5648 else if (i.types[op].bitfield.class == RegSIMD
5649 && t->opcode_modifier.evex != EVEXLIG)
5650 {
5651 if (i.types[op].bitfield.zmmword)
5652 i.memshift = 6;
5653 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5654 i.memshift = 5;
5655 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5656 i.memshift = 4;
5657 }
5658
5659 if (type)
5660 {
5661 if (type->bitfield.zmmword)
5662 i.memshift = 6;
5663 else if (type->bitfield.ymmword)
5664 i.memshift = 5;
5665 else if (type->bitfield.xmmword)
5666 i.memshift = 4;
5667 }
5668
5669 /* For the check in fits_in_disp8(). */
5670 if (i.memshift == 0)
5671 i.memshift = -1;
5672 }
5673
5674 for (op = 0; op < i.operands; op++)
5675 if (operand_type_check (i.types[op], disp)
5676 && i.op[op].disps->X_op == O_constant)
5677 {
5678 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5679 {
5680 i.types[op].bitfield.disp8 = 1;
5681 return 0;
5682 }
5683 i.types[op].bitfield.disp8 = 0;
5684 }
5685 }
5686
5687 i.memshift = 0;
5688
5689 return 0;
5690 }
5691
5692 /* Check if operands are valid for the instruction. Update VEX
5693 operand types. */
5694
5695 static int
5696 VEX_check_operands (const insn_template *t)
5697 {
5698 if (i.vec_encoding == vex_encoding_evex)
5699 {
5700 /* This instruction must be encoded with EVEX prefix. */
5701 if (!is_evex_encoding (t))
5702 {
5703 i.error = unsupported;
5704 return 1;
5705 }
5706 return 0;
5707 }
5708
5709 if (!t->opcode_modifier.vex)
5710 {
5711 /* This instruction template doesn't have VEX prefix. */
5712 if (i.vec_encoding != vex_encoding_default)
5713 {
5714 i.error = unsupported;
5715 return 1;
5716 }
5717 return 0;
5718 }
5719
5720 /* Check the special Imm4 cases; must be the first operand. */
5721 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
5722 {
5723 if (i.op[0].imms->X_op != O_constant
5724 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5725 {
5726 i.error = bad_imm4;
5727 return 1;
5728 }
5729
5730 /* Turn off Imm<N> so that update_imm won't complain. */
5731 operand_type_set (&i.types[0], 0);
5732 }
5733
5734 return 0;
5735 }
5736
5737 static const insn_template *
5738 match_template (char mnem_suffix)
5739 {
5740 /* Points to template once we've found it. */
5741 const insn_template *t;
5742 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5743 i386_operand_type overlap4;
5744 unsigned int found_reverse_match;
5745 i386_opcode_modifier suffix_check;
5746 i386_operand_type operand_types [MAX_OPERANDS];
5747 int addr_prefix_disp;
5748 unsigned int j, size_match, check_register;
5749 enum i386_error specific_error = 0;
5750
5751 #if MAX_OPERANDS != 5
5752 # error "MAX_OPERANDS must be 5."
5753 #endif
5754
5755 found_reverse_match = 0;
5756 addr_prefix_disp = -1;
5757
5758 /* Prepare for mnemonic suffix check. */
5759 memset (&suffix_check, 0, sizeof (suffix_check));
5760 switch (mnem_suffix)
5761 {
5762 case BYTE_MNEM_SUFFIX:
5763 suffix_check.no_bsuf = 1;
5764 break;
5765 case WORD_MNEM_SUFFIX:
5766 suffix_check.no_wsuf = 1;
5767 break;
5768 case SHORT_MNEM_SUFFIX:
5769 suffix_check.no_ssuf = 1;
5770 break;
5771 case LONG_MNEM_SUFFIX:
5772 suffix_check.no_lsuf = 1;
5773 break;
5774 case QWORD_MNEM_SUFFIX:
5775 suffix_check.no_qsuf = 1;
5776 break;
5777 default:
5778 /* NB: In Intel syntax, normally we can check for memory operand
5779 size when there is no mnemonic suffix. But jmp and call have
5780 2 different encodings with Dword memory operand size, one with
5781 No_ldSuf and the other without. i.suffix is set to
5782 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
5783 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5784 suffix_check.no_ldsuf = 1;
5785 }
5786
5787 /* Must have right number of operands. */
5788 i.error = number_of_operands_mismatch;
5789
5790 for (t = current_templates->start; t < current_templates->end; t++)
5791 {
5792 addr_prefix_disp = -1;
5793 found_reverse_match = 0;
5794
5795 if (i.operands != t->operands)
5796 continue;
5797
5798 /* Check processor support. */
5799 i.error = unsupported;
5800 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
5801 continue;
5802
5803 /* Check AT&T mnemonic. */
5804 i.error = unsupported_with_intel_mnemonic;
5805 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5806 continue;
5807
5808 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5809 i.error = unsupported_syntax;
5810 if ((intel_syntax && t->opcode_modifier.attsyntax)
5811 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5812 || (intel64 && t->opcode_modifier.amd64)
5813 || (!intel64 && t->opcode_modifier.intel64))
5814 continue;
5815
5816 /* Check the suffix. */
5817 i.error = invalid_instruction_suffix;
5818 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5819 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5820 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5821 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5822 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5823 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
5824 continue;
5825
5826 size_match = operand_size_match (t);
5827 if (!size_match)
5828 continue;
5829
5830 /* This is intentionally not
5831
5832 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
5833
5834 as the case of a missing * on the operand is accepted (perhaps with
5835 a warning, issued further down). */
5836 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
5837 {
5838 i.error = operand_type_mismatch;
5839 continue;
5840 }
5841
5842 for (j = 0; j < MAX_OPERANDS; j++)
5843 operand_types[j] = t->operand_types[j];
5844
5845 /* In general, don't allow 64-bit operands in 32-bit mode. */
5846 if (i.suffix == QWORD_MNEM_SUFFIX
5847 && flag_code != CODE_64BIT
5848 && (intel_syntax
5849 ? (!t->opcode_modifier.ignoresize
5850 && !t->opcode_modifier.broadcast
5851 && !intel_float_operand (t->name))
5852 : intel_float_operand (t->name) != 2)
5853 && ((operand_types[0].bitfield.class != RegMMX
5854 && operand_types[0].bitfield.class != RegSIMD)
5855 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5856 && operand_types[t->operands > 1].bitfield.class != RegSIMD))
5857 && (t->base_opcode != 0x0fc7
5858 || t->extension_opcode != 1 /* cmpxchg8b */))
5859 continue;
5860
5861 /* In general, don't allow 32-bit operands on pre-386. */
5862 else if (i.suffix == LONG_MNEM_SUFFIX
5863 && !cpu_arch_flags.bitfield.cpui386
5864 && (intel_syntax
5865 ? (!t->opcode_modifier.ignoresize
5866 && !intel_float_operand (t->name))
5867 : intel_float_operand (t->name) != 2)
5868 && ((operand_types[0].bitfield.class != RegMMX
5869 && operand_types[0].bitfield.class != RegSIMD)
5870 || (operand_types[t->operands > 1].bitfield.class != RegMMX
5871 && operand_types[t->operands > 1].bitfield.class
5872 != RegSIMD)))
5873 continue;
5874
5875 /* Do not verify operands when there are none. */
5876 else
5877 {
5878 if (!t->operands)
5879 /* We've found a match; break out of loop. */
5880 break;
5881 }
5882
5883 if (!t->opcode_modifier.jump
5884 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
5885 {
5886 /* There should be only one Disp operand. */
5887 for (j = 0; j < MAX_OPERANDS; j++)
5888 if (operand_type_check (operand_types[j], disp))
5889 break;
5890 if (j < MAX_OPERANDS)
5891 {
5892 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
5893
5894 addr_prefix_disp = j;
5895
5896 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
5897 operand into Disp32/Disp32/Disp16/Disp32 operand. */
5898 switch (flag_code)
5899 {
5900 case CODE_16BIT:
5901 override = !override;
5902 /* Fall through. */
5903 case CODE_32BIT:
5904 if (operand_types[j].bitfield.disp32
5905 && operand_types[j].bitfield.disp16)
5906 {
5907 operand_types[j].bitfield.disp16 = override;
5908 operand_types[j].bitfield.disp32 = !override;
5909 }
5910 operand_types[j].bitfield.disp32s = 0;
5911 operand_types[j].bitfield.disp64 = 0;
5912 break;
5913
5914 case CODE_64BIT:
5915 if (operand_types[j].bitfield.disp32s
5916 || operand_types[j].bitfield.disp64)
5917 {
5918 operand_types[j].bitfield.disp64 &= !override;
5919 operand_types[j].bitfield.disp32s &= !override;
5920 operand_types[j].bitfield.disp32 = override;
5921 }
5922 operand_types[j].bitfield.disp16 = 0;
5923 break;
5924 }
5925 }
5926 }
5927
5928 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5929 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5930 continue;
5931
5932 /* We check register size if needed. */
5933 if (t->opcode_modifier.checkregsize)
5934 {
5935 check_register = (1 << t->operands) - 1;
5936 if (i.broadcast)
5937 check_register &= ~(1 << i.broadcast->operand);
5938 }
5939 else
5940 check_register = 0;
5941
5942 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5943 switch (t->operands)
5944 {
5945 case 1:
5946 if (!operand_type_match (overlap0, i.types[0]))
5947 continue;
5948 break;
5949 case 2:
5950 /* xchg %eax, %eax is a special case. It is an alias for nop
5951 only in 32bit mode and we can use opcode 0x90. In 64bit
5952 mode, we can't use 0x90 for xchg %eax, %eax since it should
5953 zero-extend %eax to %rax. */
5954 if (flag_code == CODE_64BIT
5955 && t->base_opcode == 0x90
5956 && i.types[0].bitfield.instance == Accum
5957 && i.types[0].bitfield.dword
5958 && i.types[1].bitfield.instance == Accum
5959 && i.types[1].bitfield.dword)
5960 continue;
5961 /* xrelease mov %eax, <disp> is another special case. It must not
5962 match the accumulator-only encoding of mov. */
5963 if (flag_code != CODE_64BIT
5964 && i.hle_prefix
5965 && t->base_opcode == 0xa0
5966 && i.types[0].bitfield.instance == Accum
5967 && (i.flags[1] & Operand_Mem))
5968 continue;
5969 /* Fall through. */
5970
5971 case 3:
5972 if (!(size_match & MATCH_STRAIGHT))
5973 goto check_reverse;
5974 /* Reverse direction of operands if swapping is possible in the first
5975 place (operands need to be symmetric) and
5976 - the load form is requested, and the template is a store form,
5977 - the store form is requested, and the template is a load form,
5978 - the non-default (swapped) form is requested. */
5979 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
5980 if (t->opcode_modifier.d && i.reg_operands == i.operands
5981 && !operand_type_all_zero (&overlap1))
5982 switch (i.dir_encoding)
5983 {
5984 case dir_encoding_load:
5985 if (operand_type_check (operand_types[i.operands - 1], anymem)
5986 || t->opcode_modifier.regmem)
5987 goto check_reverse;
5988 break;
5989
5990 case dir_encoding_store:
5991 if (!operand_type_check (operand_types[i.operands - 1], anymem)
5992 && !t->opcode_modifier.regmem)
5993 goto check_reverse;
5994 break;
5995
5996 case dir_encoding_swap:
5997 goto check_reverse;
5998
5999 case dir_encoding_default:
6000 break;
6001 }
6002 /* If we want store form, we skip the current load. */
6003 if ((i.dir_encoding == dir_encoding_store
6004 || i.dir_encoding == dir_encoding_swap)
6005 && i.mem_operands == 0
6006 && t->opcode_modifier.load)
6007 continue;
6008 /* Fall through. */
6009 case 4:
6010 case 5:
6011 overlap1 = operand_type_and (i.types[1], operand_types[1]);
6012 if (!operand_type_match (overlap0, i.types[0])
6013 || !operand_type_match (overlap1, i.types[1])
6014 || ((check_register & 3) == 3
6015 && !operand_type_register_match (i.types[0],
6016 operand_types[0],
6017 i.types[1],
6018 operand_types[1])))
6019 {
6020 /* Check if other direction is valid ... */
6021 if (!t->opcode_modifier.d)
6022 continue;
6023
6024 check_reverse:
6025 if (!(size_match & MATCH_REVERSE))
6026 continue;
6027 /* Try reversing direction of operands. */
6028 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6029 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
6030 if (!operand_type_match (overlap0, i.types[0])
6031 || !operand_type_match (overlap1, i.types[i.operands - 1])
6032 || (check_register
6033 && !operand_type_register_match (i.types[0],
6034 operand_types[i.operands - 1],
6035 i.types[i.operands - 1],
6036 operand_types[0])))
6037 {
6038 /* Does not match either direction. */
6039 continue;
6040 }
6041 /* found_reverse_match holds which of D or FloatR
6042 we've found. */
6043 if (!t->opcode_modifier.d)
6044 found_reverse_match = 0;
6045 else if (operand_types[0].bitfield.tbyte)
6046 found_reverse_match = Opcode_FloatD;
6047 else if (operand_types[0].bitfield.xmmword
6048 || operand_types[i.operands - 1].bitfield.xmmword
6049 || operand_types[0].bitfield.class == RegMMX
6050 || operand_types[i.operands - 1].bitfield.class == RegMMX
6051 || is_any_vex_encoding(t))
6052 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6053 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
6054 else
6055 found_reverse_match = Opcode_D;
6056 if (t->opcode_modifier.floatr)
6057 found_reverse_match |= Opcode_FloatR;
6058 }
6059 else
6060 {
6061 /* Found a forward 2 operand match here. */
6062 switch (t->operands)
6063 {
6064 case 5:
6065 overlap4 = operand_type_and (i.types[4],
6066 operand_types[4]);
6067 /* Fall through. */
6068 case 4:
6069 overlap3 = operand_type_and (i.types[3],
6070 operand_types[3]);
6071 /* Fall through. */
6072 case 3:
6073 overlap2 = operand_type_and (i.types[2],
6074 operand_types[2]);
6075 break;
6076 }
6077
6078 switch (t->operands)
6079 {
6080 case 5:
6081 if (!operand_type_match (overlap4, i.types[4])
6082 || !operand_type_register_match (i.types[3],
6083 operand_types[3],
6084 i.types[4],
6085 operand_types[4]))
6086 continue;
6087 /* Fall through. */
6088 case 4:
6089 if (!operand_type_match (overlap3, i.types[3])
6090 || ((check_register & 0xa) == 0xa
6091 && !operand_type_register_match (i.types[1],
6092 operand_types[1],
6093 i.types[3],
6094 operand_types[3]))
6095 || ((check_register & 0xc) == 0xc
6096 && !operand_type_register_match (i.types[2],
6097 operand_types[2],
6098 i.types[3],
6099 operand_types[3])))
6100 continue;
6101 /* Fall through. */
6102 case 3:
6103 /* Here we make use of the fact that there are no
6104 reverse match 3 operand instructions. */
6105 if (!operand_type_match (overlap2, i.types[2])
6106 || ((check_register & 5) == 5
6107 && !operand_type_register_match (i.types[0],
6108 operand_types[0],
6109 i.types[2],
6110 operand_types[2]))
6111 || ((check_register & 6) == 6
6112 && !operand_type_register_match (i.types[1],
6113 operand_types[1],
6114 i.types[2],
6115 operand_types[2])))
6116 continue;
6117 break;
6118 }
6119 }
6120 /* Found either forward/reverse 2, 3 or 4 operand match here:
6121 slip through to break. */
6122 }
6123
6124 /* Check if vector and VEX operands are valid. */
6125 if (check_VecOperands (t) || VEX_check_operands (t))
6126 {
6127 specific_error = i.error;
6128 continue;
6129 }
6130
6131 /* We've found a match; break out of loop. */
6132 break;
6133 }
6134
6135 if (t == current_templates->end)
6136 {
6137 /* We found no match. */
6138 const char *err_msg;
6139 switch (specific_error ? specific_error : i.error)
6140 {
6141 default:
6142 abort ();
6143 case operand_size_mismatch:
6144 err_msg = _("operand size mismatch");
6145 break;
6146 case operand_type_mismatch:
6147 err_msg = _("operand type mismatch");
6148 break;
6149 case register_type_mismatch:
6150 err_msg = _("register type mismatch");
6151 break;
6152 case number_of_operands_mismatch:
6153 err_msg = _("number of operands mismatch");
6154 break;
6155 case invalid_instruction_suffix:
6156 err_msg = _("invalid instruction suffix");
6157 break;
6158 case bad_imm4:
6159 err_msg = _("constant doesn't fit in 4 bits");
6160 break;
6161 case unsupported_with_intel_mnemonic:
6162 err_msg = _("unsupported with Intel mnemonic");
6163 break;
6164 case unsupported_syntax:
6165 err_msg = _("unsupported syntax");
6166 break;
6167 case unsupported:
6168 as_bad (_("unsupported instruction `%s'"),
6169 current_templates->start->name);
6170 return NULL;
6171 case invalid_vsib_address:
6172 err_msg = _("invalid VSIB address");
6173 break;
6174 case invalid_vector_register_set:
6175 err_msg = _("mask, index, and destination registers must be distinct");
6176 break;
6177 case unsupported_vector_index_register:
6178 err_msg = _("unsupported vector index register");
6179 break;
6180 case unsupported_broadcast:
6181 err_msg = _("unsupported broadcast");
6182 break;
6183 case broadcast_needed:
6184 err_msg = _("broadcast is needed for operand of such type");
6185 break;
6186 case unsupported_masking:
6187 err_msg = _("unsupported masking");
6188 break;
6189 case mask_not_on_destination:
6190 err_msg = _("mask not on destination operand");
6191 break;
6192 case no_default_mask:
6193 err_msg = _("default mask isn't allowed");
6194 break;
6195 case unsupported_rc_sae:
6196 err_msg = _("unsupported static rounding/sae");
6197 break;
6198 case rc_sae_operand_not_last_imm:
6199 if (intel_syntax)
6200 err_msg = _("RC/SAE operand must precede immediate operands");
6201 else
6202 err_msg = _("RC/SAE operand must follow immediate operands");
6203 break;
6204 case invalid_register_operand:
6205 err_msg = _("invalid register operand");
6206 break;
6207 }
6208 as_bad (_("%s for `%s'"), err_msg,
6209 current_templates->start->name);
6210 return NULL;
6211 }
6212
6213 if (!quiet_warnings)
6214 {
6215 if (!intel_syntax
6216 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6217 as_warn (_("indirect %s without `*'"), t->name);
6218
6219 if (t->opcode_modifier.isprefix
6220 && t->opcode_modifier.ignoresize)
6221 {
6222 /* Warn them that a data or address size prefix doesn't
6223 affect assembly of the next line of code. */
6224 as_warn (_("stand-alone `%s' prefix"), t->name);
6225 }
6226 }
6227
6228 /* Copy the template we found. */
6229 i.tm = *t;
6230
6231 if (addr_prefix_disp != -1)
6232 i.tm.operand_types[addr_prefix_disp]
6233 = operand_types[addr_prefix_disp];
6234
6235 if (found_reverse_match)
6236 {
6237 /* If we found a reverse match we must alter the opcode direction
6238 bit and clear/flip the regmem modifier one. found_reverse_match
6239 holds bits to change (different for int & float insns). */
6240
6241 i.tm.base_opcode ^= found_reverse_match;
6242
6243 i.tm.operand_types[0] = operand_types[i.operands - 1];
6244 i.tm.operand_types[i.operands - 1] = operand_types[0];
6245
6246 /* Certain SIMD insns have their load forms specified in the opcode
6247 table, and hence we need to _set_ RegMem instead of clearing it.
6248 We need to avoid setting the bit though on insns like KMOVW. */
6249 i.tm.opcode_modifier.regmem
6250 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6251 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6252 && !i.tm.opcode_modifier.regmem;
6253 }
6254
6255 return t;
6256 }
6257
6258 static int
6259 check_string (void)
6260 {
6261 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6262 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
6263
6264 if (i.seg[op] != NULL && i.seg[op] != &es)
6265 {
6266 as_bad (_("`%s' operand %u must use `%ses' segment"),
6267 i.tm.name,
6268 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6269 register_prefix);
6270 return 0;
6271 }
6272
6273 /* There's only ever one segment override allowed per instruction.
6274 This instruction possibly has a legal segment override on the
6275 second operand, so copy the segment to where non-string
6276 instructions store it, allowing common code. */
6277 i.seg[op] = i.seg[1];
6278
6279 return 1;
6280 }
6281
6282 static int
6283 process_suffix (void)
6284 {
6285 /* If matched instruction specifies an explicit instruction mnemonic
6286 suffix, use it. */
6287 if (i.tm.opcode_modifier.size == SIZE16)
6288 i.suffix = WORD_MNEM_SUFFIX;
6289 else if (i.tm.opcode_modifier.size == SIZE32)
6290 i.suffix = LONG_MNEM_SUFFIX;
6291 else if (i.tm.opcode_modifier.size == SIZE64)
6292 i.suffix = QWORD_MNEM_SUFFIX;
6293 else if (i.reg_operands
6294 && (i.operands > 1 || i.types[0].bitfield.class == Reg))
6295 {
6296 /* If there's no instruction mnemonic suffix we try to invent one
6297 based on GPR operands. */
6298 if (!i.suffix)
6299 {
6300 /* We take i.suffix from the last register operand specified,
6301 Destination register type is more significant than source
6302 register type. crc32 in SSE4.2 prefers source register
6303 type. */
6304 unsigned int op = i.tm.base_opcode != 0xf20f38f0 ? i.operands : 1;
6305
6306 while (op--)
6307 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6308 || i.tm.operand_types[op].bitfield.instance == Accum)
6309 {
6310 if (i.types[op].bitfield.class != Reg)
6311 continue;
6312 if (i.types[op].bitfield.byte)
6313 i.suffix = BYTE_MNEM_SUFFIX;
6314 else if (i.types[op].bitfield.word)
6315 i.suffix = WORD_MNEM_SUFFIX;
6316 else if (i.types[op].bitfield.dword)
6317 i.suffix = LONG_MNEM_SUFFIX;
6318 else if (i.types[op].bitfield.qword)
6319 i.suffix = QWORD_MNEM_SUFFIX;
6320 else
6321 continue;
6322 break;
6323 }
6324 }
6325 else if (i.suffix == BYTE_MNEM_SUFFIX)
6326 {
6327 if (intel_syntax
6328 && i.tm.opcode_modifier.ignoresize
6329 && i.tm.opcode_modifier.no_bsuf)
6330 i.suffix = 0;
6331 else if (!check_byte_reg ())
6332 return 0;
6333 }
6334 else if (i.suffix == LONG_MNEM_SUFFIX)
6335 {
6336 if (intel_syntax
6337 && i.tm.opcode_modifier.ignoresize
6338 && i.tm.opcode_modifier.no_lsuf
6339 && !i.tm.opcode_modifier.todword
6340 && !i.tm.opcode_modifier.toqword)
6341 i.suffix = 0;
6342 else if (!check_long_reg ())
6343 return 0;
6344 }
6345 else if (i.suffix == QWORD_MNEM_SUFFIX)
6346 {
6347 if (intel_syntax
6348 && i.tm.opcode_modifier.ignoresize
6349 && i.tm.opcode_modifier.no_qsuf
6350 && !i.tm.opcode_modifier.todword
6351 && !i.tm.opcode_modifier.toqword)
6352 i.suffix = 0;
6353 else if (!check_qword_reg ())
6354 return 0;
6355 }
6356 else if (i.suffix == WORD_MNEM_SUFFIX)
6357 {
6358 if (intel_syntax
6359 && i.tm.opcode_modifier.ignoresize
6360 && i.tm.opcode_modifier.no_wsuf)
6361 i.suffix = 0;
6362 else if (!check_word_reg ())
6363 return 0;
6364 }
6365 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6366 /* Do nothing if the instruction is going to ignore the prefix. */
6367 ;
6368 else
6369 abort ();
6370 }
6371 else if (i.tm.opcode_modifier.defaultsize && !i.suffix)
6372 {
6373 i.suffix = stackop_size;
6374 if (stackop_size == LONG_MNEM_SUFFIX)
6375 {
6376 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6377 .code16gcc directive to support 16-bit mode with
6378 32-bit address. For IRET without a suffix, generate
6379 16-bit IRET (opcode 0xcf) to return from an interrupt
6380 handler. */
6381 if (i.tm.base_opcode == 0xcf)
6382 {
6383 i.suffix = WORD_MNEM_SUFFIX;
6384 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6385 }
6386 /* Warn about changed behavior for segment register push/pop. */
6387 else if ((i.tm.base_opcode | 1) == 0x07)
6388 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6389 i.tm.name);
6390 }
6391 }
6392 else if (!i.suffix
6393 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6394 || i.tm.opcode_modifier.jump == JUMP_BYTE
6395 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
6396 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6397 && i.tm.extension_opcode <= 3)))
6398 {
6399 switch (flag_code)
6400 {
6401 case CODE_64BIT:
6402 if (!i.tm.opcode_modifier.no_qsuf)
6403 {
6404 i.suffix = QWORD_MNEM_SUFFIX;
6405 break;
6406 }
6407 /* Fall through. */
6408 case CODE_32BIT:
6409 if (!i.tm.opcode_modifier.no_lsuf)
6410 i.suffix = LONG_MNEM_SUFFIX;
6411 break;
6412 case CODE_16BIT:
6413 if (!i.tm.opcode_modifier.no_wsuf)
6414 i.suffix = WORD_MNEM_SUFFIX;
6415 break;
6416 }
6417 }
6418
6419 if (!i.suffix
6420 && !i.tm.opcode_modifier.defaultsize
6421 && !i.tm.opcode_modifier.ignoresize
6422 /* Accept FLDENV et al without suffix. */
6423 && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
6424 {
6425 unsigned int suffixes;
6426
6427 suffixes = !i.tm.opcode_modifier.no_bsuf;
6428 if (!i.tm.opcode_modifier.no_wsuf)
6429 suffixes |= 1 << 1;
6430 if (!i.tm.opcode_modifier.no_lsuf)
6431 suffixes |= 1 << 2;
6432 if (!i.tm.opcode_modifier.no_ldsuf)
6433 suffixes |= 1 << 3;
6434 if (!i.tm.opcode_modifier.no_ssuf)
6435 suffixes |= 1 << 4;
6436 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6437 suffixes |= 1 << 5;
6438
6439 /* Are multiple suffixes allowed? */
6440 if (suffixes & (suffixes - 1))
6441 {
6442 if (intel_syntax)
6443 {
6444 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6445 return 0;
6446 }
6447 if (operand_check == check_error)
6448 {
6449 as_bad (_("no instruction mnemonic suffix given and "
6450 "no register operands; can't size `%s'"), i.tm.name);
6451 return 0;
6452 }
6453 if (operand_check == check_warning)
6454 as_warn (_("no instruction mnemonic suffix given and "
6455 "no register operands; using default for `%s'"),
6456 i.tm.name);
6457
6458 if (i.tm.opcode_modifier.floatmf)
6459 i.suffix = SHORT_MNEM_SUFFIX;
6460 else if (flag_code == CODE_16BIT)
6461 i.suffix = WORD_MNEM_SUFFIX;
6462 else if (!i.tm.opcode_modifier.no_lsuf)
6463 i.suffix = LONG_MNEM_SUFFIX;
6464 else
6465 i.suffix = QWORD_MNEM_SUFFIX;
6466 }
6467 }
6468
6469 /* Change the opcode based on the operand size given by i.suffix. */
6470 switch (i.suffix)
6471 {
6472 /* Size floating point instruction. */
6473 case LONG_MNEM_SUFFIX:
6474 if (i.tm.opcode_modifier.floatmf)
6475 {
6476 i.tm.base_opcode ^= 4;
6477 break;
6478 }
6479 /* fall through */
6480 case WORD_MNEM_SUFFIX:
6481 case QWORD_MNEM_SUFFIX:
6482 /* It's not a byte, select word/dword operation. */
6483 if (i.tm.opcode_modifier.w)
6484 {
6485 if (i.tm.opcode_modifier.shortform)
6486 i.tm.base_opcode |= 8;
6487 else
6488 i.tm.base_opcode |= 1;
6489 }
6490 /* fall through */
6491 case SHORT_MNEM_SUFFIX:
6492 /* Now select between word & dword operations via the operand
6493 size prefix, except for instructions that will ignore this
6494 prefix anyway. */
6495 if (i.reg_operands > 0
6496 && i.types[0].bitfield.class == Reg
6497 && i.tm.opcode_modifier.addrprefixopreg
6498 && (i.tm.operand_types[0].bitfield.instance == Accum
6499 || i.operands == 1))
6500 {
6501 /* The address size override prefix changes the size of the
6502 first operand. */
6503 if ((flag_code == CODE_32BIT
6504 && i.op[0].regs->reg_type.bitfield.word)
6505 || (flag_code != CODE_32BIT
6506 && i.op[0].regs->reg_type.bitfield.dword))
6507 if (!add_prefix (ADDR_PREFIX_OPCODE))
6508 return 0;
6509 }
6510 else if (i.suffix != QWORD_MNEM_SUFFIX
6511 && !i.tm.opcode_modifier.ignoresize
6512 && !i.tm.opcode_modifier.floatmf
6513 && !is_any_vex_encoding (&i.tm)
6514 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6515 || (flag_code == CODE_64BIT
6516 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
6517 {
6518 unsigned int prefix = DATA_PREFIX_OPCODE;
6519
6520 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
6521 prefix = ADDR_PREFIX_OPCODE;
6522
6523 if (!add_prefix (prefix))
6524 return 0;
6525 }
6526
6527 /* Set mode64 for an operand. */
6528 if (i.suffix == QWORD_MNEM_SUFFIX
6529 && flag_code == CODE_64BIT
6530 && !i.tm.opcode_modifier.norex64
6531 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6532 need rex64. */
6533 && ! (i.operands == 2
6534 && i.tm.base_opcode == 0x90
6535 && i.tm.extension_opcode == None
6536 && i.types[0].bitfield.instance == Accum
6537 && i.types[0].bitfield.qword
6538 && i.types[1].bitfield.instance == Accum
6539 && i.types[1].bitfield.qword))
6540 i.rex |= REX_W;
6541
6542 break;
6543 }
6544
6545 if (i.reg_operands != 0
6546 && i.operands > 1
6547 && i.tm.opcode_modifier.addrprefixopreg
6548 && i.tm.operand_types[0].bitfield.instance != Accum)
6549 {
6550 /* Check invalid register operand when the address size override
6551 prefix changes the size of register operands. */
6552 unsigned int op;
6553 enum { need_word, need_dword, need_qword } need;
6554
6555 if (flag_code == CODE_32BIT)
6556 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6557 else
6558 {
6559 if (i.prefix[ADDR_PREFIX])
6560 need = need_dword;
6561 else
6562 need = flag_code == CODE_64BIT ? need_qword : need_word;
6563 }
6564
6565 for (op = 0; op < i.operands; op++)
6566 if (i.types[op].bitfield.class == Reg
6567 && ((need == need_word
6568 && !i.op[op].regs->reg_type.bitfield.word)
6569 || (need == need_dword
6570 && !i.op[op].regs->reg_type.bitfield.dword)
6571 || (need == need_qword
6572 && !i.op[op].regs->reg_type.bitfield.qword)))
6573 {
6574 as_bad (_("invalid register operand size for `%s'"),
6575 i.tm.name);
6576 return 0;
6577 }
6578 }
6579
6580 return 1;
6581 }
6582
6583 static int
6584 check_byte_reg (void)
6585 {
6586 int op;
6587
6588 for (op = i.operands; --op >= 0;)
6589 {
6590 /* Skip non-register operands. */
6591 if (i.types[op].bitfield.class != Reg)
6592 continue;
6593
6594 /* If this is an eight bit register, it's OK. If it's the 16 or
6595 32 bit version of an eight bit register, we will just use the
6596 low portion, and that's OK too. */
6597 if (i.types[op].bitfield.byte)
6598 continue;
6599
6600 /* I/O port address operands are OK too. */
6601 if (i.tm.operand_types[op].bitfield.instance == RegD
6602 && i.tm.operand_types[op].bitfield.word)
6603 continue;
6604
6605 /* crc32 doesn't generate this warning. */
6606 if (i.tm.base_opcode == 0xf20f38f0)
6607 continue;
6608
6609 if ((i.types[op].bitfield.word
6610 || i.types[op].bitfield.dword
6611 || i.types[op].bitfield.qword)
6612 && i.op[op].regs->reg_num < 4
6613 /* Prohibit these changes in 64bit mode, since the lowering
6614 would be more complicated. */
6615 && flag_code != CODE_64BIT)
6616 {
6617 #if REGISTER_WARNINGS
6618 if (!quiet_warnings)
6619 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6620 register_prefix,
6621 (i.op[op].regs + (i.types[op].bitfield.word
6622 ? REGNAM_AL - REGNAM_AX
6623 : REGNAM_AL - REGNAM_EAX))->reg_name,
6624 register_prefix,
6625 i.op[op].regs->reg_name,
6626 i.suffix);
6627 #endif
6628 continue;
6629 }
6630 /* Any other register is bad. */
6631 if (i.types[op].bitfield.class == Reg
6632 || i.types[op].bitfield.class == RegMMX
6633 || i.types[op].bitfield.class == RegSIMD
6634 || i.types[op].bitfield.class == SReg
6635 || i.types[op].bitfield.class == RegCR
6636 || i.types[op].bitfield.class == RegDR
6637 || i.types[op].bitfield.class == RegTR)
6638 {
6639 as_bad (_("`%s%s' not allowed with `%s%c'"),
6640 register_prefix,
6641 i.op[op].regs->reg_name,
6642 i.tm.name,
6643 i.suffix);
6644 return 0;
6645 }
6646 }
6647 return 1;
6648 }
6649
6650 static int
6651 check_long_reg (void)
6652 {
6653 int op;
6654
6655 for (op = i.operands; --op >= 0;)
6656 /* Skip non-register operands. */
6657 if (i.types[op].bitfield.class != Reg)
6658 continue;
6659 /* Reject eight bit registers, except where the template requires
6660 them. (eg. movzb) */
6661 else if (i.types[op].bitfield.byte
6662 && (i.tm.operand_types[op].bitfield.class == Reg
6663 || i.tm.operand_types[op].bitfield.instance == Accum)
6664 && (i.tm.operand_types[op].bitfield.word
6665 || i.tm.operand_types[op].bitfield.dword))
6666 {
6667 as_bad (_("`%s%s' not allowed with `%s%c'"),
6668 register_prefix,
6669 i.op[op].regs->reg_name,
6670 i.tm.name,
6671 i.suffix);
6672 return 0;
6673 }
6674 /* Error if the e prefix on a general reg is missing. */
6675 else if (i.types[op].bitfield.word
6676 && (i.tm.operand_types[op].bitfield.class == Reg
6677 || i.tm.operand_types[op].bitfield.instance == Accum)
6678 && i.tm.operand_types[op].bitfield.dword)
6679 {
6680 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6681 register_prefix, i.op[op].regs->reg_name,
6682 i.suffix);
6683 return 0;
6684 }
6685 /* Warn if the r prefix on a general reg is present. */
6686 else if (i.types[op].bitfield.qword
6687 && (i.tm.operand_types[op].bitfield.class == Reg
6688 || i.tm.operand_types[op].bitfield.instance == Accum)
6689 && i.tm.operand_types[op].bitfield.dword)
6690 {
6691 if (intel_syntax
6692 && (i.tm.opcode_modifier.toqword
6693 /* Also convert to QWORD for MOVSXD. */
6694 || i.tm.base_opcode == 0x63)
6695 && i.types[0].bitfield.class != RegSIMD)
6696 {
6697 /* Convert to QWORD. We want REX byte. */
6698 i.suffix = QWORD_MNEM_SUFFIX;
6699 }
6700 else
6701 {
6702 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6703 register_prefix, i.op[op].regs->reg_name,
6704 i.suffix);
6705 return 0;
6706 }
6707 }
6708 return 1;
6709 }
6710
6711 static int
6712 check_qword_reg (void)
6713 {
6714 int op;
6715
6716 for (op = i.operands; --op >= 0; )
6717 /* Skip non-register operands. */
6718 if (i.types[op].bitfield.class != Reg)
6719 continue;
6720 /* Reject eight bit registers, except where the template requires
6721 them. (eg. movzb) */
6722 else if (i.types[op].bitfield.byte
6723 && (i.tm.operand_types[op].bitfield.class == Reg
6724 || i.tm.operand_types[op].bitfield.instance == Accum)
6725 && (i.tm.operand_types[op].bitfield.word
6726 || i.tm.operand_types[op].bitfield.dword))
6727 {
6728 as_bad (_("`%s%s' not allowed with `%s%c'"),
6729 register_prefix,
6730 i.op[op].regs->reg_name,
6731 i.tm.name,
6732 i.suffix);
6733 return 0;
6734 }
6735 /* Warn if the r prefix on a general reg is missing. */
6736 else if ((i.types[op].bitfield.word
6737 || i.types[op].bitfield.dword)
6738 && (i.tm.operand_types[op].bitfield.class == Reg
6739 || i.tm.operand_types[op].bitfield.instance == Accum)
6740 && i.tm.operand_types[op].bitfield.qword)
6741 {
6742 /* Prohibit these changes in the 64bit mode, since the
6743 lowering is more complicated. */
6744 if (intel_syntax
6745 && i.tm.opcode_modifier.todword
6746 && i.types[0].bitfield.class != RegSIMD)
6747 {
6748 /* Convert to DWORD. We don't want REX byte. */
6749 i.suffix = LONG_MNEM_SUFFIX;
6750 }
6751 else
6752 {
6753 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6754 register_prefix, i.op[op].regs->reg_name,
6755 i.suffix);
6756 return 0;
6757 }
6758 }
6759 return 1;
6760 }
6761
6762 static int
6763 check_word_reg (void)
6764 {
6765 int op;
6766 for (op = i.operands; --op >= 0;)
6767 /* Skip non-register operands. */
6768 if (i.types[op].bitfield.class != Reg)
6769 continue;
6770 /* Reject eight bit registers, except where the template requires
6771 them. (eg. movzb) */
6772 else if (i.types[op].bitfield.byte
6773 && (i.tm.operand_types[op].bitfield.class == Reg
6774 || i.tm.operand_types[op].bitfield.instance == Accum)
6775 && (i.tm.operand_types[op].bitfield.word
6776 || i.tm.operand_types[op].bitfield.dword))
6777 {
6778 as_bad (_("`%s%s' not allowed with `%s%c'"),
6779 register_prefix,
6780 i.op[op].regs->reg_name,
6781 i.tm.name,
6782 i.suffix);
6783 return 0;
6784 }
6785 /* Warn if the e or r prefix on a general reg is present. */
6786 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6787 && (i.types[op].bitfield.dword
6788 || i.types[op].bitfield.qword)
6789 && (i.tm.operand_types[op].bitfield.class == Reg
6790 || i.tm.operand_types[op].bitfield.instance == Accum)
6791 && i.tm.operand_types[op].bitfield.word)
6792 {
6793 /* Prohibit these changes in the 64bit mode, since the
6794 lowering is more complicated. */
6795 if (flag_code == CODE_64BIT)
6796 {
6797 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6798 register_prefix, i.op[op].regs->reg_name,
6799 i.suffix);
6800 return 0;
6801 }
6802 #if REGISTER_WARNINGS
6803 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6804 register_prefix,
6805 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6806 register_prefix, i.op[op].regs->reg_name, i.suffix);
6807 #endif
6808 }
6809 return 1;
6810 }
6811
6812 static int
6813 update_imm (unsigned int j)
6814 {
6815 i386_operand_type overlap = i.types[j];
6816 if ((overlap.bitfield.imm8
6817 || overlap.bitfield.imm8s
6818 || overlap.bitfield.imm16
6819 || overlap.bitfield.imm32
6820 || overlap.bitfield.imm32s
6821 || overlap.bitfield.imm64)
6822 && !operand_type_equal (&overlap, &imm8)
6823 && !operand_type_equal (&overlap, &imm8s)
6824 && !operand_type_equal (&overlap, &imm16)
6825 && !operand_type_equal (&overlap, &imm32)
6826 && !operand_type_equal (&overlap, &imm32s)
6827 && !operand_type_equal (&overlap, &imm64))
6828 {
6829 if (i.suffix)
6830 {
6831 i386_operand_type temp;
6832
6833 operand_type_set (&temp, 0);
6834 if (i.suffix == BYTE_MNEM_SUFFIX)
6835 {
6836 temp.bitfield.imm8 = overlap.bitfield.imm8;
6837 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6838 }
6839 else if (i.suffix == WORD_MNEM_SUFFIX)
6840 temp.bitfield.imm16 = overlap.bitfield.imm16;
6841 else if (i.suffix == QWORD_MNEM_SUFFIX)
6842 {
6843 temp.bitfield.imm64 = overlap.bitfield.imm64;
6844 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6845 }
6846 else
6847 temp.bitfield.imm32 = overlap.bitfield.imm32;
6848 overlap = temp;
6849 }
6850 else if (operand_type_equal (&overlap, &imm16_32_32s)
6851 || operand_type_equal (&overlap, &imm16_32)
6852 || operand_type_equal (&overlap, &imm16_32s))
6853 {
6854 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6855 overlap = imm16;
6856 else
6857 overlap = imm32s;
6858 }
6859 if (!operand_type_equal (&overlap, &imm8)
6860 && !operand_type_equal (&overlap, &imm8s)
6861 && !operand_type_equal (&overlap, &imm16)
6862 && !operand_type_equal (&overlap, &imm32)
6863 && !operand_type_equal (&overlap, &imm32s)
6864 && !operand_type_equal (&overlap, &imm64))
6865 {
6866 as_bad (_("no instruction mnemonic suffix given; "
6867 "can't determine immediate size"));
6868 return 0;
6869 }
6870 }
6871 i.types[j] = overlap;
6872
6873 return 1;
6874 }
6875
6876 static int
6877 finalize_imm (void)
6878 {
6879 unsigned int j, n;
6880
6881 /* Update the first 2 immediate operands. */
6882 n = i.operands > 2 ? 2 : i.operands;
6883 if (n)
6884 {
6885 for (j = 0; j < n; j++)
6886 if (update_imm (j) == 0)
6887 return 0;
6888
6889 /* The 3rd operand can't be immediate operand. */
6890 gas_assert (operand_type_check (i.types[2], imm) == 0);
6891 }
6892
6893 return 1;
6894 }
6895
6896 static int
6897 process_operands (void)
6898 {
6899 /* Default segment register this instruction will use for memory
6900 accesses. 0 means unknown. This is only for optimizing out
6901 unnecessary segment overrides. */
6902 const seg_entry *default_seg = 0;
6903
6904 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6905 {
6906 unsigned int dupl = i.operands;
6907 unsigned int dest = dupl - 1;
6908 unsigned int j;
6909
6910 /* The destination must be an xmm register. */
6911 gas_assert (i.reg_operands
6912 && MAX_OPERANDS > dupl
6913 && operand_type_equal (&i.types[dest], &regxmm));
6914
6915 if (i.tm.operand_types[0].bitfield.instance == Accum
6916 && i.tm.operand_types[0].bitfield.xmmword)
6917 {
6918 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6919 {
6920 /* Keep xmm0 for instructions with VEX prefix and 3
6921 sources. */
6922 i.tm.operand_types[0].bitfield.instance = InstanceNone;
6923 i.tm.operand_types[0].bitfield.class = RegSIMD;
6924 goto duplicate;
6925 }
6926 else
6927 {
6928 /* We remove the first xmm0 and keep the number of
6929 operands unchanged, which in fact duplicates the
6930 destination. */
6931 for (j = 1; j < i.operands; j++)
6932 {
6933 i.op[j - 1] = i.op[j];
6934 i.types[j - 1] = i.types[j];
6935 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6936 i.flags[j - 1] = i.flags[j];
6937 }
6938 }
6939 }
6940 else if (i.tm.opcode_modifier.implicit1stxmm0)
6941 {
6942 gas_assert ((MAX_OPERANDS - 1) > dupl
6943 && (i.tm.opcode_modifier.vexsources
6944 == VEX3SOURCES));
6945
6946 /* Add the implicit xmm0 for instructions with VEX prefix
6947 and 3 sources. */
6948 for (j = i.operands; j > 0; j--)
6949 {
6950 i.op[j] = i.op[j - 1];
6951 i.types[j] = i.types[j - 1];
6952 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6953 i.flags[j] = i.flags[j - 1];
6954 }
6955 i.op[0].regs
6956 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6957 i.types[0] = regxmm;
6958 i.tm.operand_types[0] = regxmm;
6959
6960 i.operands += 2;
6961 i.reg_operands += 2;
6962 i.tm.operands += 2;
6963
6964 dupl++;
6965 dest++;
6966 i.op[dupl] = i.op[dest];
6967 i.types[dupl] = i.types[dest];
6968 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6969 i.flags[dupl] = i.flags[dest];
6970 }
6971 else
6972 {
6973 duplicate:
6974 i.operands++;
6975 i.reg_operands++;
6976 i.tm.operands++;
6977
6978 i.op[dupl] = i.op[dest];
6979 i.types[dupl] = i.types[dest];
6980 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6981 i.flags[dupl] = i.flags[dest];
6982 }
6983
6984 if (i.tm.opcode_modifier.immext)
6985 process_immext ();
6986 }
6987 else if (i.tm.operand_types[0].bitfield.instance == Accum
6988 && i.tm.operand_types[0].bitfield.xmmword)
6989 {
6990 unsigned int j;
6991
6992 for (j = 1; j < i.operands; j++)
6993 {
6994 i.op[j - 1] = i.op[j];
6995 i.types[j - 1] = i.types[j];
6996
6997 /* We need to adjust fields in i.tm since they are used by
6998 build_modrm_byte. */
6999 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
7000
7001 i.flags[j - 1] = i.flags[j];
7002 }
7003
7004 i.operands--;
7005 i.reg_operands--;
7006 i.tm.operands--;
7007 }
7008 else if (i.tm.opcode_modifier.implicitquadgroup)
7009 {
7010 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7011
7012 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
7013 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
7014 regnum = register_number (i.op[1].regs);
7015 first_reg_in_group = regnum & ~3;
7016 last_reg_in_group = first_reg_in_group + 3;
7017 if (regnum != first_reg_in_group)
7018 as_warn (_("source register `%s%s' implicitly denotes"
7019 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7020 register_prefix, i.op[1].regs->reg_name,
7021 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7022 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7023 i.tm.name);
7024 }
7025 else if (i.tm.opcode_modifier.regkludge)
7026 {
7027 /* The imul $imm, %reg instruction is converted into
7028 imul $imm, %reg, %reg, and the clr %reg instruction
7029 is converted into xor %reg, %reg. */
7030
7031 unsigned int first_reg_op;
7032
7033 if (operand_type_check (i.types[0], reg))
7034 first_reg_op = 0;
7035 else
7036 first_reg_op = 1;
7037 /* Pretend we saw the extra register operand. */
7038 gas_assert (i.reg_operands == 1
7039 && i.op[first_reg_op + 1].regs == 0);
7040 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7041 i.types[first_reg_op + 1] = i.types[first_reg_op];
7042 i.operands++;
7043 i.reg_operands++;
7044 }
7045
7046 if (i.tm.opcode_modifier.modrm)
7047 {
7048 /* The opcode is completed (modulo i.tm.extension_opcode which
7049 must be put into the modrm byte). Now, we make the modrm and
7050 index base bytes based on all the info we've collected. */
7051
7052 default_seg = build_modrm_byte ();
7053 }
7054 else if (i.types[0].bitfield.class == SReg)
7055 {
7056 if (flag_code != CODE_64BIT
7057 ? i.tm.base_opcode == POP_SEG_SHORT
7058 && i.op[0].regs->reg_num == 1
7059 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7060 && i.op[0].regs->reg_num < 4)
7061 {
7062 as_bad (_("you can't `%s %s%s'"),
7063 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7064 return 0;
7065 }
7066 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7067 {
7068 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7069 i.tm.opcode_length = 2;
7070 }
7071 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7072 }
7073 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7074 {
7075 default_seg = &ds;
7076 }
7077 else if (i.tm.opcode_modifier.isstring)
7078 {
7079 /* For the string instructions that allow a segment override
7080 on one of their operands, the default segment is ds. */
7081 default_seg = &ds;
7082 }
7083 else if (i.tm.opcode_modifier.shortform)
7084 {
7085 /* The register or float register operand is in operand
7086 0 or 1. */
7087 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
7088
7089 /* Register goes in low 3 bits of opcode. */
7090 i.tm.base_opcode |= i.op[op].regs->reg_num;
7091 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7092 i.rex |= REX_B;
7093 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7094 {
7095 /* Warn about some common errors, but press on regardless.
7096 The first case can be generated by gcc (<= 2.8.1). */
7097 if (i.operands == 2)
7098 {
7099 /* Reversed arguments on faddp, fsubp, etc. */
7100 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7101 register_prefix, i.op[!intel_syntax].regs->reg_name,
7102 register_prefix, i.op[intel_syntax].regs->reg_name);
7103 }
7104 else
7105 {
7106 /* Extraneous `l' suffix on fp insn. */
7107 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7108 register_prefix, i.op[0].regs->reg_name);
7109 }
7110 }
7111 }
7112
7113 if (i.tm.base_opcode == 0x8d /* lea */
7114 && i.seg[0]
7115 && !quiet_warnings)
7116 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7117
7118 /* If a segment was explicitly specified, and the specified segment
7119 is not the default, use an opcode prefix to select it. If we
7120 never figured out what the default segment is, then default_seg
7121 will be zero at this point, and the specified segment prefix will
7122 always be used. */
7123 if ((i.seg[0]) && (i.seg[0] != default_seg))
7124 {
7125 if (!add_prefix (i.seg[0]->seg_prefix))
7126 return 0;
7127 }
7128 return 1;
7129 }
7130
7131 static const seg_entry *
7132 build_modrm_byte (void)
7133 {
7134 const seg_entry *default_seg = 0;
7135 unsigned int source, dest;
7136 int vex_3_sources;
7137
7138 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7139 if (vex_3_sources)
7140 {
7141 unsigned int nds, reg_slot;
7142 expressionS *exp;
7143
7144 dest = i.operands - 1;
7145 nds = dest - 1;
7146
7147 /* There are 2 kinds of instructions:
7148 1. 5 operands: 4 register operands or 3 register operands
7149 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7150 VexW0 or VexW1. The destination must be either XMM, YMM or
7151 ZMM register.
7152 2. 4 operands: 4 register operands or 3 register operands
7153 plus 1 memory operand, with VexXDS. */
7154 gas_assert ((i.reg_operands == 4
7155 || (i.reg_operands == 3 && i.mem_operands == 1))
7156 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7157 && i.tm.opcode_modifier.vexw
7158 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
7159
7160 /* If VexW1 is set, the first non-immediate operand is the source and
7161 the second non-immediate one is encoded in the immediate operand. */
7162 if (i.tm.opcode_modifier.vexw == VEXW1)
7163 {
7164 source = i.imm_operands;
7165 reg_slot = i.imm_operands + 1;
7166 }
7167 else
7168 {
7169 source = i.imm_operands + 1;
7170 reg_slot = i.imm_operands;
7171 }
7172
7173 if (i.imm_operands == 0)
7174 {
7175 /* When there is no immediate operand, generate an 8bit
7176 immediate operand to encode the first operand. */
7177 exp = &im_expressions[i.imm_operands++];
7178 i.op[i.operands].imms = exp;
7179 i.types[i.operands] = imm8;
7180 i.operands++;
7181
7182 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7183 exp->X_op = O_constant;
7184 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7185 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7186 }
7187 else
7188 {
7189 gas_assert (i.imm_operands == 1);
7190 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7191 gas_assert (!i.tm.opcode_modifier.immext);
7192
7193 /* Turn on Imm8 again so that output_imm will generate it. */
7194 i.types[0].bitfield.imm8 = 1;
7195
7196 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7197 i.op[0].imms->X_add_number
7198 |= register_number (i.op[reg_slot].regs) << 4;
7199 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7200 }
7201
7202 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
7203 i.vex.register_specifier = i.op[nds].regs;
7204 }
7205 else
7206 source = dest = 0;
7207
7208 /* i.reg_operands MUST be the number of real register operands;
7209 implicit registers do not count. If there are 3 register
7210 operands, it must be a instruction with VexNDS. For a
7211 instruction with VexNDD, the destination register is encoded
7212 in VEX prefix. If there are 4 register operands, it must be
7213 a instruction with VEX prefix and 3 sources. */
7214 if (i.mem_operands == 0
7215 && ((i.reg_operands == 2
7216 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7217 || (i.reg_operands == 3
7218 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7219 || (i.reg_operands == 4 && vex_3_sources)))
7220 {
7221 switch (i.operands)
7222 {
7223 case 2:
7224 source = 0;
7225 break;
7226 case 3:
7227 /* When there are 3 operands, one of them may be immediate,
7228 which may be the first or the last operand. Otherwise,
7229 the first operand must be shift count register (cl) or it
7230 is an instruction with VexNDS. */
7231 gas_assert (i.imm_operands == 1
7232 || (i.imm_operands == 0
7233 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7234 || (i.types[0].bitfield.instance == RegC
7235 && i.types[0].bitfield.byte))));
7236 if (operand_type_check (i.types[0], imm)
7237 || (i.types[0].bitfield.instance == RegC
7238 && i.types[0].bitfield.byte))
7239 source = 1;
7240 else
7241 source = 0;
7242 break;
7243 case 4:
7244 /* When there are 4 operands, the first two must be 8bit
7245 immediate operands. The source operand will be the 3rd
7246 one.
7247
7248 For instructions with VexNDS, if the first operand
7249 an imm8, the source operand is the 2nd one. If the last
7250 operand is imm8, the source operand is the first one. */
7251 gas_assert ((i.imm_operands == 2
7252 && i.types[0].bitfield.imm8
7253 && i.types[1].bitfield.imm8)
7254 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7255 && i.imm_operands == 1
7256 && (i.types[0].bitfield.imm8
7257 || i.types[i.operands - 1].bitfield.imm8
7258 || i.rounding)));
7259 if (i.imm_operands == 2)
7260 source = 2;
7261 else
7262 {
7263 if (i.types[0].bitfield.imm8)
7264 source = 1;
7265 else
7266 source = 0;
7267 }
7268 break;
7269 case 5:
7270 if (is_evex_encoding (&i.tm))
7271 {
7272 /* For EVEX instructions, when there are 5 operands, the
7273 first one must be immediate operand. If the second one
7274 is immediate operand, the source operand is the 3th
7275 one. If the last one is immediate operand, the source
7276 operand is the 2nd one. */
7277 gas_assert (i.imm_operands == 2
7278 && i.tm.opcode_modifier.sae
7279 && operand_type_check (i.types[0], imm));
7280 if (operand_type_check (i.types[1], imm))
7281 source = 2;
7282 else if (operand_type_check (i.types[4], imm))
7283 source = 1;
7284 else
7285 abort ();
7286 }
7287 break;
7288 default:
7289 abort ();
7290 }
7291
7292 if (!vex_3_sources)
7293 {
7294 dest = source + 1;
7295
7296 /* RC/SAE operand could be between DEST and SRC. That happens
7297 when one operand is GPR and the other one is XMM/YMM/ZMM
7298 register. */
7299 if (i.rounding && i.rounding->operand == (int) dest)
7300 dest++;
7301
7302 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7303 {
7304 /* For instructions with VexNDS, the register-only source
7305 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7306 register. It is encoded in VEX prefix. */
7307
7308 i386_operand_type op;
7309 unsigned int vvvv;
7310
7311 /* Check register-only source operand when two source
7312 operands are swapped. */
7313 if (!i.tm.operand_types[source].bitfield.baseindex
7314 && i.tm.operand_types[dest].bitfield.baseindex)
7315 {
7316 vvvv = source;
7317 source = dest;
7318 }
7319 else
7320 vvvv = dest;
7321
7322 op = i.tm.operand_types[vvvv];
7323 if ((dest + 1) >= i.operands
7324 || ((op.bitfield.class != Reg
7325 || (!op.bitfield.dword && !op.bitfield.qword))
7326 && op.bitfield.class != RegSIMD
7327 && !operand_type_equal (&op, &regmask)))
7328 abort ();
7329 i.vex.register_specifier = i.op[vvvv].regs;
7330 dest++;
7331 }
7332 }
7333
7334 i.rm.mode = 3;
7335 /* One of the register operands will be encoded in the i.rm.reg
7336 field, the other in the combined i.rm.mode and i.rm.regmem
7337 fields. If no form of this instruction supports a memory
7338 destination operand, then we assume the source operand may
7339 sometimes be a memory operand and so we need to store the
7340 destination in the i.rm.reg field. */
7341 if (!i.tm.opcode_modifier.regmem
7342 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7343 {
7344 i.rm.reg = i.op[dest].regs->reg_num;
7345 i.rm.regmem = i.op[source].regs->reg_num;
7346 if (i.op[dest].regs->reg_type.bitfield.class == RegMMX
7347 || i.op[source].regs->reg_type.bitfield.class == RegMMX)
7348 i.has_regmmx = TRUE;
7349 else if (i.op[dest].regs->reg_type.bitfield.class == RegSIMD
7350 || i.op[source].regs->reg_type.bitfield.class == RegSIMD)
7351 {
7352 if (i.types[dest].bitfield.zmmword
7353 || i.types[source].bitfield.zmmword)
7354 i.has_regzmm = TRUE;
7355 else if (i.types[dest].bitfield.ymmword
7356 || i.types[source].bitfield.ymmword)
7357 i.has_regymm = TRUE;
7358 else
7359 i.has_regxmm = TRUE;
7360 }
7361 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7362 i.rex |= REX_R;
7363 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7364 i.vrex |= REX_R;
7365 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7366 i.rex |= REX_B;
7367 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7368 i.vrex |= REX_B;
7369 }
7370 else
7371 {
7372 i.rm.reg = i.op[source].regs->reg_num;
7373 i.rm.regmem = i.op[dest].regs->reg_num;
7374 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7375 i.rex |= REX_B;
7376 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7377 i.vrex |= REX_B;
7378 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7379 i.rex |= REX_R;
7380 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7381 i.vrex |= REX_R;
7382 }
7383 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7384 {
7385 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
7386 abort ();
7387 i.rex &= ~REX_R;
7388 add_prefix (LOCK_PREFIX_OPCODE);
7389 }
7390 }
7391 else
7392 { /* If it's not 2 reg operands... */
7393 unsigned int mem;
7394
7395 if (i.mem_operands)
7396 {
7397 unsigned int fake_zero_displacement = 0;
7398 unsigned int op;
7399
7400 for (op = 0; op < i.operands; op++)
7401 if (i.flags[op] & Operand_Mem)
7402 break;
7403 gas_assert (op < i.operands);
7404
7405 if (i.tm.opcode_modifier.vecsib)
7406 {
7407 if (i.index_reg->reg_num == RegIZ)
7408 abort ();
7409
7410 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7411 if (!i.base_reg)
7412 {
7413 i.sib.base = NO_BASE_REGISTER;
7414 i.sib.scale = i.log2_scale_factor;
7415 i.types[op].bitfield.disp8 = 0;
7416 i.types[op].bitfield.disp16 = 0;
7417 i.types[op].bitfield.disp64 = 0;
7418 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7419 {
7420 /* Must be 32 bit */
7421 i.types[op].bitfield.disp32 = 1;
7422 i.types[op].bitfield.disp32s = 0;
7423 }
7424 else
7425 {
7426 i.types[op].bitfield.disp32 = 0;
7427 i.types[op].bitfield.disp32s = 1;
7428 }
7429 }
7430 i.sib.index = i.index_reg->reg_num;
7431 if ((i.index_reg->reg_flags & RegRex) != 0)
7432 i.rex |= REX_X;
7433 if ((i.index_reg->reg_flags & RegVRex) != 0)
7434 i.vrex |= REX_X;
7435 }
7436
7437 default_seg = &ds;
7438
7439 if (i.base_reg == 0)
7440 {
7441 i.rm.mode = 0;
7442 if (!i.disp_operands)
7443 fake_zero_displacement = 1;
7444 if (i.index_reg == 0)
7445 {
7446 i386_operand_type newdisp;
7447
7448 gas_assert (!i.tm.opcode_modifier.vecsib);
7449 /* Operand is just <disp> */
7450 if (flag_code == CODE_64BIT)
7451 {
7452 /* 64bit mode overwrites the 32bit absolute
7453 addressing by RIP relative addressing and
7454 absolute addressing is encoded by one of the
7455 redundant SIB forms. */
7456 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7457 i.sib.base = NO_BASE_REGISTER;
7458 i.sib.index = NO_INDEX_REGISTER;
7459 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7460 }
7461 else if ((flag_code == CODE_16BIT)
7462 ^ (i.prefix[ADDR_PREFIX] != 0))
7463 {
7464 i.rm.regmem = NO_BASE_REGISTER_16;
7465 newdisp = disp16;
7466 }
7467 else
7468 {
7469 i.rm.regmem = NO_BASE_REGISTER;
7470 newdisp = disp32;
7471 }
7472 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7473 i.types[op] = operand_type_or (i.types[op], newdisp);
7474 }
7475 else if (!i.tm.opcode_modifier.vecsib)
7476 {
7477 /* !i.base_reg && i.index_reg */
7478 if (i.index_reg->reg_num == RegIZ)
7479 i.sib.index = NO_INDEX_REGISTER;
7480 else
7481 i.sib.index = i.index_reg->reg_num;
7482 i.sib.base = NO_BASE_REGISTER;
7483 i.sib.scale = i.log2_scale_factor;
7484 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7485 i.types[op].bitfield.disp8 = 0;
7486 i.types[op].bitfield.disp16 = 0;
7487 i.types[op].bitfield.disp64 = 0;
7488 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7489 {
7490 /* Must be 32 bit */
7491 i.types[op].bitfield.disp32 = 1;
7492 i.types[op].bitfield.disp32s = 0;
7493 }
7494 else
7495 {
7496 i.types[op].bitfield.disp32 = 0;
7497 i.types[op].bitfield.disp32s = 1;
7498 }
7499 if ((i.index_reg->reg_flags & RegRex) != 0)
7500 i.rex |= REX_X;
7501 }
7502 }
7503 /* RIP addressing for 64bit mode. */
7504 else if (i.base_reg->reg_num == RegIP)
7505 {
7506 gas_assert (!i.tm.opcode_modifier.vecsib);
7507 i.rm.regmem = NO_BASE_REGISTER;
7508 i.types[op].bitfield.disp8 = 0;
7509 i.types[op].bitfield.disp16 = 0;
7510 i.types[op].bitfield.disp32 = 0;
7511 i.types[op].bitfield.disp32s = 1;
7512 i.types[op].bitfield.disp64 = 0;
7513 i.flags[op] |= Operand_PCrel;
7514 if (! i.disp_operands)
7515 fake_zero_displacement = 1;
7516 }
7517 else if (i.base_reg->reg_type.bitfield.word)
7518 {
7519 gas_assert (!i.tm.opcode_modifier.vecsib);
7520 switch (i.base_reg->reg_num)
7521 {
7522 case 3: /* (%bx) */
7523 if (i.index_reg == 0)
7524 i.rm.regmem = 7;
7525 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7526 i.rm.regmem = i.index_reg->reg_num - 6;
7527 break;
7528 case 5: /* (%bp) */
7529 default_seg = &ss;
7530 if (i.index_reg == 0)
7531 {
7532 i.rm.regmem = 6;
7533 if (operand_type_check (i.types[op], disp) == 0)
7534 {
7535 /* fake (%bp) into 0(%bp) */
7536 i.types[op].bitfield.disp8 = 1;
7537 fake_zero_displacement = 1;
7538 }
7539 }
7540 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7541 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7542 break;
7543 default: /* (%si) -> 4 or (%di) -> 5 */
7544 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7545 }
7546 i.rm.mode = mode_from_disp_size (i.types[op]);
7547 }
7548 else /* i.base_reg and 32/64 bit mode */
7549 {
7550 if (flag_code == CODE_64BIT
7551 && operand_type_check (i.types[op], disp))
7552 {
7553 i.types[op].bitfield.disp16 = 0;
7554 i.types[op].bitfield.disp64 = 0;
7555 if (i.prefix[ADDR_PREFIX] == 0)
7556 {
7557 i.types[op].bitfield.disp32 = 0;
7558 i.types[op].bitfield.disp32s = 1;
7559 }
7560 else
7561 {
7562 i.types[op].bitfield.disp32 = 1;
7563 i.types[op].bitfield.disp32s = 0;
7564 }
7565 }
7566
7567 if (!i.tm.opcode_modifier.vecsib)
7568 i.rm.regmem = i.base_reg->reg_num;
7569 if ((i.base_reg->reg_flags & RegRex) != 0)
7570 i.rex |= REX_B;
7571 i.sib.base = i.base_reg->reg_num;
7572 /* x86-64 ignores REX prefix bit here to avoid decoder
7573 complications. */
7574 if (!(i.base_reg->reg_flags & RegRex)
7575 && (i.base_reg->reg_num == EBP_REG_NUM
7576 || i.base_reg->reg_num == ESP_REG_NUM))
7577 default_seg = &ss;
7578 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7579 {
7580 fake_zero_displacement = 1;
7581 i.types[op].bitfield.disp8 = 1;
7582 }
7583 i.sib.scale = i.log2_scale_factor;
7584 if (i.index_reg == 0)
7585 {
7586 gas_assert (!i.tm.opcode_modifier.vecsib);
7587 /* <disp>(%esp) becomes two byte modrm with no index
7588 register. We've already stored the code for esp
7589 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7590 Any base register besides %esp will not use the
7591 extra modrm byte. */
7592 i.sib.index = NO_INDEX_REGISTER;
7593 }
7594 else if (!i.tm.opcode_modifier.vecsib)
7595 {
7596 if (i.index_reg->reg_num == RegIZ)
7597 i.sib.index = NO_INDEX_REGISTER;
7598 else
7599 i.sib.index = i.index_reg->reg_num;
7600 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7601 if ((i.index_reg->reg_flags & RegRex) != 0)
7602 i.rex |= REX_X;
7603 }
7604
7605 if (i.disp_operands
7606 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7607 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7608 i.rm.mode = 0;
7609 else
7610 {
7611 if (!fake_zero_displacement
7612 && !i.disp_operands
7613 && i.disp_encoding)
7614 {
7615 fake_zero_displacement = 1;
7616 if (i.disp_encoding == disp_encoding_8bit)
7617 i.types[op].bitfield.disp8 = 1;
7618 else
7619 i.types[op].bitfield.disp32 = 1;
7620 }
7621 i.rm.mode = mode_from_disp_size (i.types[op]);
7622 }
7623 }
7624
7625 if (fake_zero_displacement)
7626 {
7627 /* Fakes a zero displacement assuming that i.types[op]
7628 holds the correct displacement size. */
7629 expressionS *exp;
7630
7631 gas_assert (i.op[op].disps == 0);
7632 exp = &disp_expressions[i.disp_operands++];
7633 i.op[op].disps = exp;
7634 exp->X_op = O_constant;
7635 exp->X_add_number = 0;
7636 exp->X_add_symbol = (symbolS *) 0;
7637 exp->X_op_symbol = (symbolS *) 0;
7638 }
7639
7640 mem = op;
7641 }
7642 else
7643 mem = ~0;
7644
7645 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7646 {
7647 if (operand_type_check (i.types[0], imm))
7648 i.vex.register_specifier = NULL;
7649 else
7650 {
7651 /* VEX.vvvv encodes one of the sources when the first
7652 operand is not an immediate. */
7653 if (i.tm.opcode_modifier.vexw == VEXW0)
7654 i.vex.register_specifier = i.op[0].regs;
7655 else
7656 i.vex.register_specifier = i.op[1].regs;
7657 }
7658
7659 /* Destination is a XMM register encoded in the ModRM.reg
7660 and VEX.R bit. */
7661 i.rm.reg = i.op[2].regs->reg_num;
7662 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7663 i.rex |= REX_R;
7664
7665 /* ModRM.rm and VEX.B encodes the other source. */
7666 if (!i.mem_operands)
7667 {
7668 i.rm.mode = 3;
7669
7670 if (i.tm.opcode_modifier.vexw == VEXW0)
7671 i.rm.regmem = i.op[1].regs->reg_num;
7672 else
7673 i.rm.regmem = i.op[0].regs->reg_num;
7674
7675 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7676 i.rex |= REX_B;
7677 }
7678 }
7679 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7680 {
7681 i.vex.register_specifier = i.op[2].regs;
7682 if (!i.mem_operands)
7683 {
7684 i.rm.mode = 3;
7685 i.rm.regmem = i.op[1].regs->reg_num;
7686 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7687 i.rex |= REX_B;
7688 }
7689 }
7690 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7691 (if any) based on i.tm.extension_opcode. Again, we must be
7692 careful to make sure that segment/control/debug/test/MMX
7693 registers are coded into the i.rm.reg field. */
7694 else if (i.reg_operands)
7695 {
7696 unsigned int op;
7697 unsigned int vex_reg = ~0;
7698
7699 for (op = 0; op < i.operands; op++)
7700 {
7701 if (i.types[op].bitfield.class == Reg
7702 || i.types[op].bitfield.class == RegBND
7703 || i.types[op].bitfield.class == RegMask
7704 || i.types[op].bitfield.class == SReg
7705 || i.types[op].bitfield.class == RegCR
7706 || i.types[op].bitfield.class == RegDR
7707 || i.types[op].bitfield.class == RegTR)
7708 break;
7709 if (i.types[op].bitfield.class == RegSIMD)
7710 {
7711 if (i.types[op].bitfield.zmmword)
7712 i.has_regzmm = TRUE;
7713 else if (i.types[op].bitfield.ymmword)
7714 i.has_regymm = TRUE;
7715 else
7716 i.has_regxmm = TRUE;
7717 break;
7718 }
7719 if (i.types[op].bitfield.class == RegMMX)
7720 {
7721 i.has_regmmx = TRUE;
7722 break;
7723 }
7724 }
7725
7726 if (vex_3_sources)
7727 op = dest;
7728 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7729 {
7730 /* For instructions with VexNDS, the register-only
7731 source operand is encoded in VEX prefix. */
7732 gas_assert (mem != (unsigned int) ~0);
7733
7734 if (op > mem)
7735 {
7736 vex_reg = op++;
7737 gas_assert (op < i.operands);
7738 }
7739 else
7740 {
7741 /* Check register-only source operand when two source
7742 operands are swapped. */
7743 if (!i.tm.operand_types[op].bitfield.baseindex
7744 && i.tm.operand_types[op + 1].bitfield.baseindex)
7745 {
7746 vex_reg = op;
7747 op += 2;
7748 gas_assert (mem == (vex_reg + 1)
7749 && op < i.operands);
7750 }
7751 else
7752 {
7753 vex_reg = op + 1;
7754 gas_assert (vex_reg < i.operands);
7755 }
7756 }
7757 }
7758 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7759 {
7760 /* For instructions with VexNDD, the register destination
7761 is encoded in VEX prefix. */
7762 if (i.mem_operands == 0)
7763 {
7764 /* There is no memory operand. */
7765 gas_assert ((op + 2) == i.operands);
7766 vex_reg = op + 1;
7767 }
7768 else
7769 {
7770 /* There are only 2 non-immediate operands. */
7771 gas_assert (op < i.imm_operands + 2
7772 && i.operands == i.imm_operands + 2);
7773 vex_reg = i.imm_operands + 1;
7774 }
7775 }
7776 else
7777 gas_assert (op < i.operands);
7778
7779 if (vex_reg != (unsigned int) ~0)
7780 {
7781 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7782
7783 if ((type->bitfield.class != Reg
7784 || (!type->bitfield.dword && !type->bitfield.qword))
7785 && type->bitfield.class != RegSIMD
7786 && !operand_type_equal (type, &regmask))
7787 abort ();
7788
7789 i.vex.register_specifier = i.op[vex_reg].regs;
7790 }
7791
7792 /* Don't set OP operand twice. */
7793 if (vex_reg != op)
7794 {
7795 /* If there is an extension opcode to put here, the
7796 register number must be put into the regmem field. */
7797 if (i.tm.extension_opcode != None)
7798 {
7799 i.rm.regmem = i.op[op].regs->reg_num;
7800 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7801 i.rex |= REX_B;
7802 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7803 i.vrex |= REX_B;
7804 }
7805 else
7806 {
7807 i.rm.reg = i.op[op].regs->reg_num;
7808 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7809 i.rex |= REX_R;
7810 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7811 i.vrex |= REX_R;
7812 }
7813 }
7814
7815 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7816 must set it to 3 to indicate this is a register operand
7817 in the regmem field. */
7818 if (!i.mem_operands)
7819 i.rm.mode = 3;
7820 }
7821
7822 /* Fill in i.rm.reg field with extension opcode (if any). */
7823 if (i.tm.extension_opcode != None)
7824 i.rm.reg = i.tm.extension_opcode;
7825 }
7826 return default_seg;
7827 }
7828
7829 static unsigned int
7830 flip_code16 (unsigned int code16)
7831 {
7832 gas_assert (i.tm.operands == 1);
7833
7834 return !(i.prefix[REX_PREFIX] & REX_W)
7835 && (code16 ? i.tm.operand_types[0].bitfield.disp32
7836 || i.tm.operand_types[0].bitfield.disp32s
7837 : i.tm.operand_types[0].bitfield.disp16)
7838 ? CODE16 : 0;
7839 }
7840
7841 static void
7842 output_branch (void)
7843 {
7844 char *p;
7845 int size;
7846 int code16;
7847 int prefix;
7848 relax_substateT subtype;
7849 symbolS *sym;
7850 offsetT off;
7851
7852 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7853 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7854
7855 prefix = 0;
7856 if (i.prefix[DATA_PREFIX] != 0)
7857 {
7858 prefix = 1;
7859 i.prefixes -= 1;
7860 code16 ^= flip_code16(code16);
7861 }
7862 /* Pentium4 branch hints. */
7863 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7864 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7865 {
7866 prefix++;
7867 i.prefixes--;
7868 }
7869 if (i.prefix[REX_PREFIX] != 0)
7870 {
7871 prefix++;
7872 i.prefixes--;
7873 }
7874
7875 /* BND prefixed jump. */
7876 if (i.prefix[BND_PREFIX] != 0)
7877 {
7878 prefix++;
7879 i.prefixes--;
7880 }
7881
7882 if (i.prefixes != 0)
7883 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
7884
7885 /* It's always a symbol; End frag & setup for relax.
7886 Make sure there is enough room in this frag for the largest
7887 instruction we may generate in md_convert_frag. This is 2
7888 bytes for the opcode and room for the prefix and largest
7889 displacement. */
7890 frag_grow (prefix + 2 + 4);
7891 /* Prefix and 1 opcode byte go in fr_fix. */
7892 p = frag_more (prefix + 1);
7893 if (i.prefix[DATA_PREFIX] != 0)
7894 *p++ = DATA_PREFIX_OPCODE;
7895 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7896 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7897 *p++ = i.prefix[SEG_PREFIX];
7898 if (i.prefix[BND_PREFIX] != 0)
7899 *p++ = BND_PREFIX_OPCODE;
7900 if (i.prefix[REX_PREFIX] != 0)
7901 *p++ = i.prefix[REX_PREFIX];
7902 *p = i.tm.base_opcode;
7903
7904 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7905 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7906 else if (cpu_arch_flags.bitfield.cpui386)
7907 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7908 else
7909 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7910 subtype |= code16;
7911
7912 sym = i.op[0].disps->X_add_symbol;
7913 off = i.op[0].disps->X_add_number;
7914
7915 if (i.op[0].disps->X_op != O_constant
7916 && i.op[0].disps->X_op != O_symbol)
7917 {
7918 /* Handle complex expressions. */
7919 sym = make_expr_symbol (i.op[0].disps);
7920 off = 0;
7921 }
7922
7923 /* 1 possible extra opcode + 4 byte displacement go in var part.
7924 Pass reloc in fr_var. */
7925 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7926 }
7927
7928 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7929 /* Return TRUE iff PLT32 relocation should be used for branching to
7930 symbol S. */
7931
7932 static bfd_boolean
7933 need_plt32_p (symbolS *s)
7934 {
7935 /* PLT32 relocation is ELF only. */
7936 if (!IS_ELF)
7937 return FALSE;
7938
7939 #ifdef TE_SOLARIS
7940 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
7941 krtld support it. */
7942 return FALSE;
7943 #endif
7944
7945 /* Since there is no need to prepare for PLT branch on x86-64, we
7946 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7947 be used as a marker for 32-bit PC-relative branches. */
7948 if (!object_64bit)
7949 return FALSE;
7950
7951 /* Weak or undefined symbol need PLT32 relocation. */
7952 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7953 return TRUE;
7954
7955 /* Non-global symbol doesn't need PLT32 relocation. */
7956 if (! S_IS_EXTERNAL (s))
7957 return FALSE;
7958
7959 /* Other global symbols need PLT32 relocation. NB: Symbol with
7960 non-default visibilities are treated as normal global symbol
7961 so that PLT32 relocation can be used as a marker for 32-bit
7962 PC-relative branches. It is useful for linker relaxation. */
7963 return TRUE;
7964 }
7965 #endif
7966
7967 static void
7968 output_jump (void)
7969 {
7970 char *p;
7971 int size;
7972 fixS *fixP;
7973 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7974
7975 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
7976 {
7977 /* This is a loop or jecxz type instruction. */
7978 size = 1;
7979 if (i.prefix[ADDR_PREFIX] != 0)
7980 {
7981 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7982 i.prefixes -= 1;
7983 }
7984 /* Pentium4 branch hints. */
7985 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7986 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7987 {
7988 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7989 i.prefixes--;
7990 }
7991 }
7992 else
7993 {
7994 int code16;
7995
7996 code16 = 0;
7997 if (flag_code == CODE_16BIT)
7998 code16 = CODE16;
7999
8000 if (i.prefix[DATA_PREFIX] != 0)
8001 {
8002 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
8003 i.prefixes -= 1;
8004 code16 ^= flip_code16(code16);
8005 }
8006
8007 size = 4;
8008 if (code16)
8009 size = 2;
8010 }
8011
8012 /* BND prefixed jump. */
8013 if (i.prefix[BND_PREFIX] != 0)
8014 {
8015 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
8016 i.prefixes -= 1;
8017 }
8018
8019 if (i.prefix[REX_PREFIX] != 0)
8020 {
8021 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
8022 i.prefixes -= 1;
8023 }
8024
8025 if (i.prefixes != 0)
8026 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8027
8028 p = frag_more (i.tm.opcode_length + size);
8029 switch (i.tm.opcode_length)
8030 {
8031 case 2:
8032 *p++ = i.tm.base_opcode >> 8;
8033 /* Fall through. */
8034 case 1:
8035 *p++ = i.tm.base_opcode;
8036 break;
8037 default:
8038 abort ();
8039 }
8040
8041 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8042 if (size == 4
8043 && jump_reloc == NO_RELOC
8044 && need_plt32_p (i.op[0].disps->X_add_symbol))
8045 jump_reloc = BFD_RELOC_X86_64_PLT32;
8046 #endif
8047
8048 jump_reloc = reloc (size, 1, 1, jump_reloc);
8049
8050 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8051 i.op[0].disps, 1, jump_reloc);
8052
8053 /* All jumps handled here are signed, but don't use a signed limit
8054 check for 32 and 16 bit jumps as we want to allow wrap around at
8055 4G and 64k respectively. */
8056 if (size == 1)
8057 fixP->fx_signed = 1;
8058 }
8059
8060 static void
8061 output_interseg_jump (void)
8062 {
8063 char *p;
8064 int size;
8065 int prefix;
8066 int code16;
8067
8068 code16 = 0;
8069 if (flag_code == CODE_16BIT)
8070 code16 = CODE16;
8071
8072 prefix = 0;
8073 if (i.prefix[DATA_PREFIX] != 0)
8074 {
8075 prefix = 1;
8076 i.prefixes -= 1;
8077 code16 ^= CODE16;
8078 }
8079
8080 gas_assert (!i.prefix[REX_PREFIX]);
8081
8082 size = 4;
8083 if (code16)
8084 size = 2;
8085
8086 if (i.prefixes != 0)
8087 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8088
8089 /* 1 opcode; 2 segment; offset */
8090 p = frag_more (prefix + 1 + 2 + size);
8091
8092 if (i.prefix[DATA_PREFIX] != 0)
8093 *p++ = DATA_PREFIX_OPCODE;
8094
8095 if (i.prefix[REX_PREFIX] != 0)
8096 *p++ = i.prefix[REX_PREFIX];
8097
8098 *p++ = i.tm.base_opcode;
8099 if (i.op[1].imms->X_op == O_constant)
8100 {
8101 offsetT n = i.op[1].imms->X_add_number;
8102
8103 if (size == 2
8104 && !fits_in_unsigned_word (n)
8105 && !fits_in_signed_word (n))
8106 {
8107 as_bad (_("16-bit jump out of range"));
8108 return;
8109 }
8110 md_number_to_chars (p, n, size);
8111 }
8112 else
8113 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8114 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8115 if (i.op[0].imms->X_op != O_constant)
8116 as_bad (_("can't handle non absolute segment in `%s'"),
8117 i.tm.name);
8118 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8119 }
8120
8121 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8122 void
8123 x86_cleanup (void)
8124 {
8125 char *p;
8126 asection *seg = now_seg;
8127 subsegT subseg = now_subseg;
8128 asection *sec;
8129 unsigned int alignment, align_size_1;
8130 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8131 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8132 unsigned int padding;
8133
8134 if (!IS_ELF || !x86_used_note)
8135 return;
8136
8137 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8138
8139 /* The .note.gnu.property section layout:
8140
8141 Field Length Contents
8142 ---- ---- ----
8143 n_namsz 4 4
8144 n_descsz 4 The note descriptor size
8145 n_type 4 NT_GNU_PROPERTY_TYPE_0
8146 n_name 4 "GNU"
8147 n_desc n_descsz The program property array
8148 .... .... ....
8149 */
8150
8151 /* Create the .note.gnu.property section. */
8152 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8153 bfd_set_section_flags (sec,
8154 (SEC_ALLOC
8155 | SEC_LOAD
8156 | SEC_DATA
8157 | SEC_HAS_CONTENTS
8158 | SEC_READONLY));
8159
8160 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8161 {
8162 align_size_1 = 7;
8163 alignment = 3;
8164 }
8165 else
8166 {
8167 align_size_1 = 3;
8168 alignment = 2;
8169 }
8170
8171 bfd_set_section_alignment (sec, alignment);
8172 elf_section_type (sec) = SHT_NOTE;
8173
8174 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8175 + 4-byte data */
8176 isa_1_descsz_raw = 4 + 4 + 4;
8177 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8178 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8179
8180 feature_2_descsz_raw = isa_1_descsz;
8181 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8182 + 4-byte data */
8183 feature_2_descsz_raw += 4 + 4 + 4;
8184 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8185 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8186 & ~align_size_1);
8187
8188 descsz = feature_2_descsz;
8189 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8190 p = frag_more (4 + 4 + 4 + 4 + descsz);
8191
8192 /* Write n_namsz. */
8193 md_number_to_chars (p, (valueT) 4, 4);
8194
8195 /* Write n_descsz. */
8196 md_number_to_chars (p + 4, (valueT) descsz, 4);
8197
8198 /* Write n_type. */
8199 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8200
8201 /* Write n_name. */
8202 memcpy (p + 4 * 3, "GNU", 4);
8203
8204 /* Write 4-byte type. */
8205 md_number_to_chars (p + 4 * 4,
8206 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8207
8208 /* Write 4-byte data size. */
8209 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8210
8211 /* Write 4-byte data. */
8212 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8213
8214 /* Zero out paddings. */
8215 padding = isa_1_descsz - isa_1_descsz_raw;
8216 if (padding)
8217 memset (p + 4 * 7, 0, padding);
8218
8219 /* Write 4-byte type. */
8220 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8221 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8222
8223 /* Write 4-byte data size. */
8224 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8225
8226 /* Write 4-byte data. */
8227 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8228 (valueT) x86_feature_2_used, 4);
8229
8230 /* Zero out paddings. */
8231 padding = feature_2_descsz - feature_2_descsz_raw;
8232 if (padding)
8233 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8234
8235 /* We probably can't restore the current segment, for there likely
8236 isn't one yet... */
8237 if (seg && subseg)
8238 subseg_set (seg, subseg);
8239 }
8240 #endif
8241
8242 static unsigned int
8243 encoding_length (const fragS *start_frag, offsetT start_off,
8244 const char *frag_now_ptr)
8245 {
8246 unsigned int len = 0;
8247
8248 if (start_frag != frag_now)
8249 {
8250 const fragS *fr = start_frag;
8251
8252 do {
8253 len += fr->fr_fix;
8254 fr = fr->fr_next;
8255 } while (fr && fr != frag_now);
8256 }
8257
8258 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8259 }
8260
8261 /* Return 1 for test, and, cmp, add, sub, inc and dec which may
8262 be macro-fused with conditional jumps. */
8263
8264 static int
8265 maybe_fused_with_jcc_p (void)
8266 {
8267 /* No RIP address. */
8268 if (i.base_reg && i.base_reg->reg_num == RegIP)
8269 return 0;
8270
8271 /* No VEX/EVEX encoding. */
8272 if (is_any_vex_encoding (&i.tm))
8273 return 0;
8274
8275 /* and, add, sub with destination register. */
8276 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8277 || i.tm.base_opcode <= 5
8278 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8279 || ((i.tm.base_opcode | 3) == 0x83
8280 && ((i.tm.extension_opcode | 1) == 0x5
8281 || i.tm.extension_opcode == 0x0)))
8282 return (i.types[1].bitfield.class == Reg
8283 || i.types[1].bitfield.instance == Accum);
8284
8285 /* test, cmp with any register. */
8286 if ((i.tm.base_opcode | 1) == 0x85
8287 || (i.tm.base_opcode | 1) == 0xa9
8288 || ((i.tm.base_opcode | 1) == 0xf7
8289 && i.tm.extension_opcode == 0)
8290 || (i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
8291 || ((i.tm.base_opcode | 3) == 0x83
8292 && (i.tm.extension_opcode == 0x7)))
8293 return (i.types[0].bitfield.class == Reg
8294 || i.types[0].bitfield.instance == Accum
8295 || i.types[1].bitfield.class == Reg
8296 || i.types[1].bitfield.instance == Accum);
8297
8298 /* inc, dec with any register. */
8299 if ((i.tm.cpu_flags.bitfield.cpuno64
8300 && (i.tm.base_opcode | 0xf) == 0x4f)
8301 || ((i.tm.base_opcode | 1) == 0xff
8302 && i.tm.extension_opcode <= 0x1))
8303 return (i.types[0].bitfield.class == Reg
8304 || i.types[0].bitfield.instance == Accum);
8305
8306 return 0;
8307 }
8308
8309 /* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
8310
8311 static int
8312 add_fused_jcc_padding_frag_p (void)
8313 {
8314 /* NB: Don't work with COND_JUMP86 without i386. */
8315 if (!align_branch_power
8316 || now_seg == absolute_section
8317 || !cpu_arch_flags.bitfield.cpui386
8318 || !(align_branch & align_branch_fused_bit))
8319 return 0;
8320
8321 if (maybe_fused_with_jcc_p ())
8322 {
8323 if (last_insn.kind == last_insn_other
8324 || last_insn.seg != now_seg)
8325 return 1;
8326 if (flag_debug)
8327 as_warn_where (last_insn.file, last_insn.line,
8328 _("`%s` skips -malign-branch-boundary on `%s`"),
8329 last_insn.name, i.tm.name);
8330 }
8331
8332 return 0;
8333 }
8334
8335 /* Return 1 if a BRANCH_PREFIX frag should be generated. */
8336
8337 static int
8338 add_branch_prefix_frag_p (void)
8339 {
8340 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
8341 to PadLock instructions since they include prefixes in opcode. */
8342 if (!align_branch_power
8343 || !align_branch_prefix_size
8344 || now_seg == absolute_section
8345 || i.tm.cpu_flags.bitfield.cpupadlock
8346 || !cpu_arch_flags.bitfield.cpui386)
8347 return 0;
8348
8349 /* Don't add prefix if it is a prefix or there is no operand in case
8350 that segment prefix is special. */
8351 if (!i.operands || i.tm.opcode_modifier.isprefix)
8352 return 0;
8353
8354 if (last_insn.kind == last_insn_other
8355 || last_insn.seg != now_seg)
8356 return 1;
8357
8358 if (flag_debug)
8359 as_warn_where (last_insn.file, last_insn.line,
8360 _("`%s` skips -malign-branch-boundary on `%s`"),
8361 last_insn.name, i.tm.name);
8362
8363 return 0;
8364 }
8365
8366 /* Return 1 if a BRANCH_PADDING frag should be generated. */
8367
8368 static int
8369 add_branch_padding_frag_p (enum align_branch_kind *branch_p)
8370 {
8371 int add_padding;
8372
8373 /* NB: Don't work with COND_JUMP86 without i386. */
8374 if (!align_branch_power
8375 || now_seg == absolute_section
8376 || !cpu_arch_flags.bitfield.cpui386)
8377 return 0;
8378
8379 add_padding = 0;
8380
8381 /* Check for jcc and direct jmp. */
8382 if (i.tm.opcode_modifier.jump == JUMP)
8383 {
8384 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
8385 {
8386 *branch_p = align_branch_jmp;
8387 add_padding = align_branch & align_branch_jmp_bit;
8388 }
8389 else
8390 {
8391 *branch_p = align_branch_jcc;
8392 if ((align_branch & align_branch_jcc_bit))
8393 add_padding = 1;
8394 }
8395 }
8396 else if (is_any_vex_encoding (&i.tm))
8397 return 0;
8398 else if ((i.tm.base_opcode | 1) == 0xc3)
8399 {
8400 /* Near ret. */
8401 *branch_p = align_branch_ret;
8402 if ((align_branch & align_branch_ret_bit))
8403 add_padding = 1;
8404 }
8405 else
8406 {
8407 /* Check for indirect jmp, direct and indirect calls. */
8408 if (i.tm.base_opcode == 0xe8)
8409 {
8410 /* Direct call. */
8411 *branch_p = align_branch_call;
8412 if ((align_branch & align_branch_call_bit))
8413 add_padding = 1;
8414 }
8415 else if (i.tm.base_opcode == 0xff
8416 && (i.tm.extension_opcode == 2
8417 || i.tm.extension_opcode == 4))
8418 {
8419 /* Indirect call and jmp. */
8420 *branch_p = align_branch_indirect;
8421 if ((align_branch & align_branch_indirect_bit))
8422 add_padding = 1;
8423 }
8424
8425 if (add_padding
8426 && i.disp_operands
8427 && tls_get_addr
8428 && (i.op[0].disps->X_op == O_symbol
8429 || (i.op[0].disps->X_op == O_subtract
8430 && i.op[0].disps->X_op_symbol == GOT_symbol)))
8431 {
8432 symbolS *s = i.op[0].disps->X_add_symbol;
8433 /* No padding to call to global or undefined tls_get_addr. */
8434 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
8435 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
8436 return 0;
8437 }
8438 }
8439
8440 if (add_padding
8441 && last_insn.kind != last_insn_other
8442 && last_insn.seg == now_seg)
8443 {
8444 if (flag_debug)
8445 as_warn_where (last_insn.file, last_insn.line,
8446 _("`%s` skips -malign-branch-boundary on `%s`"),
8447 last_insn.name, i.tm.name);
8448 return 0;
8449 }
8450
8451 return add_padding;
8452 }
8453
8454 static void
8455 output_insn (void)
8456 {
8457 fragS *insn_start_frag;
8458 offsetT insn_start_off;
8459 fragS *fragP = NULL;
8460 enum align_branch_kind branch = align_branch_none;
8461
8462 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8463 if (IS_ELF && x86_used_note)
8464 {
8465 if (i.tm.cpu_flags.bitfield.cpucmov)
8466 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
8467 if (i.tm.cpu_flags.bitfield.cpusse)
8468 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
8469 if (i.tm.cpu_flags.bitfield.cpusse2)
8470 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
8471 if (i.tm.cpu_flags.bitfield.cpusse3)
8472 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
8473 if (i.tm.cpu_flags.bitfield.cpussse3)
8474 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
8475 if (i.tm.cpu_flags.bitfield.cpusse4_1)
8476 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
8477 if (i.tm.cpu_flags.bitfield.cpusse4_2)
8478 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
8479 if (i.tm.cpu_flags.bitfield.cpuavx)
8480 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
8481 if (i.tm.cpu_flags.bitfield.cpuavx2)
8482 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
8483 if (i.tm.cpu_flags.bitfield.cpufma)
8484 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
8485 if (i.tm.cpu_flags.bitfield.cpuavx512f)
8486 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
8487 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
8488 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
8489 if (i.tm.cpu_flags.bitfield.cpuavx512er)
8490 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
8491 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
8492 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
8493 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
8494 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
8495 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
8496 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
8497 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
8498 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
8499 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
8500 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
8501 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
8502 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
8503 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
8504 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
8505 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
8506 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
8507 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
8508 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
8509 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
8510 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
8511 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
8512 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
8513 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
8514 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
8515
8516 if (i.tm.cpu_flags.bitfield.cpu8087
8517 || i.tm.cpu_flags.bitfield.cpu287
8518 || i.tm.cpu_flags.bitfield.cpu387
8519 || i.tm.cpu_flags.bitfield.cpu687
8520 || i.tm.cpu_flags.bitfield.cpufisttp)
8521 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
8522 if (i.has_regmmx
8523 || i.tm.base_opcode == 0xf77 /* emms */
8524 || i.tm.base_opcode == 0xf0e /* femms */)
8525 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
8526 if (i.has_regxmm)
8527 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
8528 if (i.has_regymm)
8529 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
8530 if (i.has_regzmm)
8531 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
8532 if (i.tm.cpu_flags.bitfield.cpufxsr)
8533 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
8534 if (i.tm.cpu_flags.bitfield.cpuxsave)
8535 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
8536 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
8537 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
8538 if (i.tm.cpu_flags.bitfield.cpuxsavec)
8539 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
8540 }
8541 #endif
8542
8543 /* Tie dwarf2 debug info to the address at the start of the insn.
8544 We can't do this after the insn has been output as the current
8545 frag may have been closed off. eg. by frag_var. */
8546 dwarf2_emit_insn (0);
8547
8548 insn_start_frag = frag_now;
8549 insn_start_off = frag_now_fix ();
8550
8551 if (add_branch_padding_frag_p (&branch))
8552 {
8553 char *p;
8554 /* Branch can be 8 bytes. Leave some room for prefixes. */
8555 unsigned int max_branch_padding_size = 14;
8556
8557 /* Align section to boundary. */
8558 record_alignment (now_seg, align_branch_power);
8559
8560 /* Make room for padding. */
8561 frag_grow (max_branch_padding_size);
8562
8563 /* Start of the padding. */
8564 p = frag_more (0);
8565
8566 fragP = frag_now;
8567
8568 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
8569 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
8570 NULL, 0, p);
8571
8572 fragP->tc_frag_data.branch_type = branch;
8573 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
8574 }
8575
8576 /* Output jumps. */
8577 if (i.tm.opcode_modifier.jump == JUMP)
8578 output_branch ();
8579 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
8580 || i.tm.opcode_modifier.jump == JUMP_DWORD)
8581 output_jump ();
8582 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
8583 output_interseg_jump ();
8584 else
8585 {
8586 /* Output normal instructions here. */
8587 char *p;
8588 unsigned char *q;
8589 unsigned int j;
8590 unsigned int prefix;
8591
8592 if (avoid_fence
8593 && (i.tm.base_opcode == 0xfaee8
8594 || i.tm.base_opcode == 0xfaef0
8595 || i.tm.base_opcode == 0xfaef8))
8596 {
8597 /* Encode lfence, mfence, and sfence as
8598 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
8599 offsetT val = 0x240483f0ULL;
8600 p = frag_more (5);
8601 md_number_to_chars (p, val, 5);
8602 return;
8603 }
8604
8605 /* Some processors fail on LOCK prefix. This options makes
8606 assembler ignore LOCK prefix and serves as a workaround. */
8607 if (omit_lock_prefix)
8608 {
8609 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
8610 return;
8611 i.prefix[LOCK_PREFIX] = 0;
8612 }
8613
8614 if (branch)
8615 /* Skip if this is a branch. */
8616 ;
8617 else if (add_fused_jcc_padding_frag_p ())
8618 {
8619 /* Make room for padding. */
8620 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
8621 p = frag_more (0);
8622
8623 fragP = frag_now;
8624
8625 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
8626 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
8627 NULL, 0, p);
8628
8629 fragP->tc_frag_data.branch_type = align_branch_fused;
8630 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
8631 }
8632 else if (add_branch_prefix_frag_p ())
8633 {
8634 unsigned int max_prefix_size = align_branch_prefix_size;
8635
8636 /* Make room for padding. */
8637 frag_grow (max_prefix_size);
8638 p = frag_more (0);
8639
8640 fragP = frag_now;
8641
8642 frag_var (rs_machine_dependent, max_prefix_size, 0,
8643 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
8644 NULL, 0, p);
8645
8646 fragP->tc_frag_data.max_bytes = max_prefix_size;
8647 }
8648
8649 /* Since the VEX/EVEX prefix contains the implicit prefix, we
8650 don't need the explicit prefix. */
8651 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
8652 {
8653 switch (i.tm.opcode_length)
8654 {
8655 case 3:
8656 if (i.tm.base_opcode & 0xff000000)
8657 {
8658 prefix = (i.tm.base_opcode >> 24) & 0xff;
8659 if (!i.tm.cpu_flags.bitfield.cpupadlock
8660 || prefix != REPE_PREFIX_OPCODE
8661 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
8662 add_prefix (prefix);
8663 }
8664 break;
8665 case 2:
8666 if ((i.tm.base_opcode & 0xff0000) != 0)
8667 {
8668 prefix = (i.tm.base_opcode >> 16) & 0xff;
8669 add_prefix (prefix);
8670 }
8671 break;
8672 case 1:
8673 break;
8674 case 0:
8675 /* Check for pseudo prefixes. */
8676 as_bad_where (insn_start_frag->fr_file,
8677 insn_start_frag->fr_line,
8678 _("pseudo prefix without instruction"));
8679 return;
8680 default:
8681 abort ();
8682 }
8683
8684 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
8685 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
8686 R_X86_64_GOTTPOFF relocation so that linker can safely
8687 perform IE->LE optimization. A dummy REX_OPCODE prefix
8688 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
8689 relocation for GDesc -> IE/LE optimization. */
8690 if (x86_elf_abi == X86_64_X32_ABI
8691 && i.operands == 2
8692 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
8693 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
8694 && i.prefix[REX_PREFIX] == 0)
8695 add_prefix (REX_OPCODE);
8696 #endif
8697
8698 /* The prefix bytes. */
8699 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
8700 if (*q)
8701 FRAG_APPEND_1_CHAR (*q);
8702 }
8703 else
8704 {
8705 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
8706 if (*q)
8707 switch (j)
8708 {
8709 case REX_PREFIX:
8710 /* REX byte is encoded in VEX prefix. */
8711 break;
8712 case SEG_PREFIX:
8713 case ADDR_PREFIX:
8714 FRAG_APPEND_1_CHAR (*q);
8715 break;
8716 default:
8717 /* There should be no other prefixes for instructions
8718 with VEX prefix. */
8719 abort ();
8720 }
8721
8722 /* For EVEX instructions i.vrex should become 0 after
8723 build_evex_prefix. For VEX instructions upper 16 registers
8724 aren't available, so VREX should be 0. */
8725 if (i.vrex)
8726 abort ();
8727 /* Now the VEX prefix. */
8728 p = frag_more (i.vex.length);
8729 for (j = 0; j < i.vex.length; j++)
8730 p[j] = i.vex.bytes[j];
8731 }
8732
8733 /* Now the opcode; be careful about word order here! */
8734 if (i.tm.opcode_length == 1)
8735 {
8736 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
8737 }
8738 else
8739 {
8740 switch (i.tm.opcode_length)
8741 {
8742 case 4:
8743 p = frag_more (4);
8744 *p++ = (i.tm.base_opcode >> 24) & 0xff;
8745 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8746 break;
8747 case 3:
8748 p = frag_more (3);
8749 *p++ = (i.tm.base_opcode >> 16) & 0xff;
8750 break;
8751 case 2:
8752 p = frag_more (2);
8753 break;
8754 default:
8755 abort ();
8756 break;
8757 }
8758
8759 /* Put out high byte first: can't use md_number_to_chars! */
8760 *p++ = (i.tm.base_opcode >> 8) & 0xff;
8761 *p = i.tm.base_opcode & 0xff;
8762 }
8763
8764 /* Now the modrm byte and sib byte (if present). */
8765 if (i.tm.opcode_modifier.modrm)
8766 {
8767 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
8768 | i.rm.reg << 3
8769 | i.rm.mode << 6));
8770 /* If i.rm.regmem == ESP (4)
8771 && i.rm.mode != (Register mode)
8772 && not 16 bit
8773 ==> need second modrm byte. */
8774 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
8775 && i.rm.mode != 3
8776 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
8777 FRAG_APPEND_1_CHAR ((i.sib.base << 0
8778 | i.sib.index << 3
8779 | i.sib.scale << 6));
8780 }
8781
8782 if (i.disp_operands)
8783 output_disp (insn_start_frag, insn_start_off);
8784
8785 if (i.imm_operands)
8786 output_imm (insn_start_frag, insn_start_off);
8787
8788 /*
8789 * frag_now_fix () returning plain abs_section_offset when we're in the
8790 * absolute section, and abs_section_offset not getting updated as data
8791 * gets added to the frag breaks the logic below.
8792 */
8793 if (now_seg != absolute_section)
8794 {
8795 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
8796 if (j > 15)
8797 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
8798 j);
8799 else if (fragP)
8800 {
8801 /* NB: Don't add prefix with GOTPC relocation since
8802 output_disp() above depends on the fixed encoding
8803 length. Can't add prefix with TLS relocation since
8804 it breaks TLS linker optimization. */
8805 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
8806 /* Prefix count on the current instruction. */
8807 unsigned int count = i.vex.length;
8808 unsigned int k;
8809 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
8810 /* REX byte is encoded in VEX/EVEX prefix. */
8811 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
8812 count++;
8813
8814 /* Count prefixes for extended opcode maps. */
8815 if (!i.vex.length)
8816 switch (i.tm.opcode_length)
8817 {
8818 case 3:
8819 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
8820 {
8821 count++;
8822 switch ((i.tm.base_opcode >> 8) & 0xff)
8823 {
8824 case 0x38:
8825 case 0x3a:
8826 count++;
8827 break;
8828 default:
8829 break;
8830 }
8831 }
8832 break;
8833 case 2:
8834 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
8835 count++;
8836 break;
8837 case 1:
8838 break;
8839 default:
8840 abort ();
8841 }
8842
8843 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
8844 == BRANCH_PREFIX)
8845 {
8846 /* Set the maximum prefix size in BRANCH_PREFIX
8847 frag. */
8848 if (fragP->tc_frag_data.max_bytes > max)
8849 fragP->tc_frag_data.max_bytes = max;
8850 if (fragP->tc_frag_data.max_bytes > count)
8851 fragP->tc_frag_data.max_bytes -= count;
8852 else
8853 fragP->tc_frag_data.max_bytes = 0;
8854 }
8855 else
8856 {
8857 /* Remember the maximum prefix size in FUSED_JCC_PADDING
8858 frag. */
8859 unsigned int max_prefix_size;
8860 if (align_branch_prefix_size > max)
8861 max_prefix_size = max;
8862 else
8863 max_prefix_size = align_branch_prefix_size;
8864 if (max_prefix_size > count)
8865 fragP->tc_frag_data.max_prefix_length
8866 = max_prefix_size - count;
8867 }
8868
8869 /* Use existing segment prefix if possible. Use CS
8870 segment prefix in 64-bit mode. In 32-bit mode, use SS
8871 segment prefix with ESP/EBP base register and use DS
8872 segment prefix without ESP/EBP base register. */
8873 if (i.prefix[SEG_PREFIX])
8874 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
8875 else if (flag_code == CODE_64BIT)
8876 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
8877 else if (i.base_reg
8878 && (i.base_reg->reg_num == 4
8879 || i.base_reg->reg_num == 5))
8880 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
8881 else
8882 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
8883 }
8884 }
8885 }
8886
8887 /* NB: Don't work with COND_JUMP86 without i386. */
8888 if (align_branch_power
8889 && now_seg != absolute_section
8890 && cpu_arch_flags.bitfield.cpui386)
8891 {
8892 /* Terminate each frag so that we can add prefix and check for
8893 fused jcc. */
8894 frag_wane (frag_now);
8895 frag_new (0);
8896 }
8897
8898 #ifdef DEBUG386
8899 if (flag_debug)
8900 {
8901 pi ("" /*line*/, &i);
8902 }
8903 #endif /* DEBUG386 */
8904 }
8905
8906 /* Return the size of the displacement operand N. */
8907
8908 static int
8909 disp_size (unsigned int n)
8910 {
8911 int size = 4;
8912
8913 if (i.types[n].bitfield.disp64)
8914 size = 8;
8915 else if (i.types[n].bitfield.disp8)
8916 size = 1;
8917 else if (i.types[n].bitfield.disp16)
8918 size = 2;
8919 return size;
8920 }
8921
8922 /* Return the size of the immediate operand N. */
8923
8924 static int
8925 imm_size (unsigned int n)
8926 {
8927 int size = 4;
8928 if (i.types[n].bitfield.imm64)
8929 size = 8;
8930 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8931 size = 1;
8932 else if (i.types[n].bitfield.imm16)
8933 size = 2;
8934 return size;
8935 }
8936
8937 static void
8938 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8939 {
8940 char *p;
8941 unsigned int n;
8942
8943 for (n = 0; n < i.operands; n++)
8944 {
8945 if (operand_type_check (i.types[n], disp))
8946 {
8947 if (i.op[n].disps->X_op == O_constant)
8948 {
8949 int size = disp_size (n);
8950 offsetT val = i.op[n].disps->X_add_number;
8951
8952 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8953 size);
8954 p = frag_more (size);
8955 md_number_to_chars (p, val, size);
8956 }
8957 else
8958 {
8959 enum bfd_reloc_code_real reloc_type;
8960 int size = disp_size (n);
8961 int sign = i.types[n].bitfield.disp32s;
8962 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
8963 fixS *fixP;
8964
8965 /* We can't have 8 bit displacement here. */
8966 gas_assert (!i.types[n].bitfield.disp8);
8967
8968 /* The PC relative address is computed relative
8969 to the instruction boundary, so in case immediate
8970 fields follows, we need to adjust the value. */
8971 if (pcrel && i.imm_operands)
8972 {
8973 unsigned int n1;
8974 int sz = 0;
8975
8976 for (n1 = 0; n1 < i.operands; n1++)
8977 if (operand_type_check (i.types[n1], imm))
8978 {
8979 /* Only one immediate is allowed for PC
8980 relative address. */
8981 gas_assert (sz == 0);
8982 sz = imm_size (n1);
8983 i.op[n].disps->X_add_number -= sz;
8984 }
8985 /* We should find the immediate. */
8986 gas_assert (sz != 0);
8987 }
8988
8989 p = frag_more (size);
8990 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
8991 if (GOT_symbol
8992 && GOT_symbol == i.op[n].disps->X_add_symbol
8993 && (((reloc_type == BFD_RELOC_32
8994 || reloc_type == BFD_RELOC_X86_64_32S
8995 || (reloc_type == BFD_RELOC_64
8996 && object_64bit))
8997 && (i.op[n].disps->X_op == O_symbol
8998 || (i.op[n].disps->X_op == O_add
8999 && ((symbol_get_value_expression
9000 (i.op[n].disps->X_op_symbol)->X_op)
9001 == O_subtract))))
9002 || reloc_type == BFD_RELOC_32_PCREL))
9003 {
9004 if (!object_64bit)
9005 {
9006 reloc_type = BFD_RELOC_386_GOTPC;
9007 i.has_gotpc_tls_reloc = TRUE;
9008 i.op[n].imms->X_add_number +=
9009 encoding_length (insn_start_frag, insn_start_off, p);
9010 }
9011 else if (reloc_type == BFD_RELOC_64)
9012 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9013 else
9014 /* Don't do the adjustment for x86-64, as there
9015 the pcrel addressing is relative to the _next_
9016 insn, and that is taken care of in other code. */
9017 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9018 }
9019 else if (align_branch_power)
9020 {
9021 switch (reloc_type)
9022 {
9023 case BFD_RELOC_386_TLS_GD:
9024 case BFD_RELOC_386_TLS_LDM:
9025 case BFD_RELOC_386_TLS_IE:
9026 case BFD_RELOC_386_TLS_IE_32:
9027 case BFD_RELOC_386_TLS_GOTIE:
9028 case BFD_RELOC_386_TLS_GOTDESC:
9029 case BFD_RELOC_386_TLS_DESC_CALL:
9030 case BFD_RELOC_X86_64_TLSGD:
9031 case BFD_RELOC_X86_64_TLSLD:
9032 case BFD_RELOC_X86_64_GOTTPOFF:
9033 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9034 case BFD_RELOC_X86_64_TLSDESC_CALL:
9035 i.has_gotpc_tls_reloc = TRUE;
9036 default:
9037 break;
9038 }
9039 }
9040 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9041 size, i.op[n].disps, pcrel,
9042 reloc_type);
9043 /* Check for "call/jmp *mem", "mov mem, %reg",
9044 "test %reg, mem" and "binop mem, %reg" where binop
9045 is one of adc, add, and, cmp, or, sbb, sub, xor
9046 instructions without data prefix. Always generate
9047 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9048 if (i.prefix[DATA_PREFIX] == 0
9049 && (generate_relax_relocations
9050 || (!object_64bit
9051 && i.rm.mode == 0
9052 && i.rm.regmem == 5))
9053 && (i.rm.mode == 2
9054 || (i.rm.mode == 0 && i.rm.regmem == 5))
9055 && ((i.operands == 1
9056 && i.tm.base_opcode == 0xff
9057 && (i.rm.reg == 2 || i.rm.reg == 4))
9058 || (i.operands == 2
9059 && (i.tm.base_opcode == 0x8b
9060 || i.tm.base_opcode == 0x85
9061 || (i.tm.base_opcode & 0xc7) == 0x03))))
9062 {
9063 if (object_64bit)
9064 {
9065 fixP->fx_tcbit = i.rex != 0;
9066 if (i.base_reg
9067 && (i.base_reg->reg_num == RegIP))
9068 fixP->fx_tcbit2 = 1;
9069 }
9070 else
9071 fixP->fx_tcbit2 = 1;
9072 }
9073 }
9074 }
9075 }
9076 }
9077
9078 static void
9079 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
9080 {
9081 char *p;
9082 unsigned int n;
9083
9084 for (n = 0; n < i.operands; n++)
9085 {
9086 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9087 if (i.rounding && (int) n == i.rounding->operand)
9088 continue;
9089
9090 if (operand_type_check (i.types[n], imm))
9091 {
9092 if (i.op[n].imms->X_op == O_constant)
9093 {
9094 int size = imm_size (n);
9095 offsetT val;
9096
9097 val = offset_in_range (i.op[n].imms->X_add_number,
9098 size);
9099 p = frag_more (size);
9100 md_number_to_chars (p, val, size);
9101 }
9102 else
9103 {
9104 /* Not absolute_section.
9105 Need a 32-bit fixup (don't support 8bit
9106 non-absolute imms). Try to support other
9107 sizes ... */
9108 enum bfd_reloc_code_real reloc_type;
9109 int size = imm_size (n);
9110 int sign;
9111
9112 if (i.types[n].bitfield.imm32s
9113 && (i.suffix == QWORD_MNEM_SUFFIX
9114 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
9115 sign = 1;
9116 else
9117 sign = 0;
9118
9119 p = frag_more (size);
9120 reloc_type = reloc (size, 0, sign, i.reloc[n]);
9121
9122 /* This is tough to explain. We end up with this one if we
9123 * have operands that look like
9124 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9125 * obtain the absolute address of the GOT, and it is strongly
9126 * preferable from a performance point of view to avoid using
9127 * a runtime relocation for this. The actual sequence of
9128 * instructions often look something like:
9129 *
9130 * call .L66
9131 * .L66:
9132 * popl %ebx
9133 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9134 *
9135 * The call and pop essentially return the absolute address
9136 * of the label .L66 and store it in %ebx. The linker itself
9137 * will ultimately change the first operand of the addl so
9138 * that %ebx points to the GOT, but to keep things simple, the
9139 * .o file must have this operand set so that it generates not
9140 * the absolute address of .L66, but the absolute address of
9141 * itself. This allows the linker itself simply treat a GOTPC
9142 * relocation as asking for a pcrel offset to the GOT to be
9143 * added in, and the addend of the relocation is stored in the
9144 * operand field for the instruction itself.
9145 *
9146 * Our job here is to fix the operand so that it would add
9147 * the correct offset so that %ebx would point to itself. The
9148 * thing that is tricky is that .-.L66 will point to the
9149 * beginning of the instruction, so we need to further modify
9150 * the operand so that it will point to itself. There are
9151 * other cases where you have something like:
9152 *
9153 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9154 *
9155 * and here no correction would be required. Internally in
9156 * the assembler we treat operands of this form as not being
9157 * pcrel since the '.' is explicitly mentioned, and I wonder
9158 * whether it would simplify matters to do it this way. Who
9159 * knows. In earlier versions of the PIC patches, the
9160 * pcrel_adjust field was used to store the correction, but
9161 * since the expression is not pcrel, I felt it would be
9162 * confusing to do it this way. */
9163
9164 if ((reloc_type == BFD_RELOC_32
9165 || reloc_type == BFD_RELOC_X86_64_32S
9166 || reloc_type == BFD_RELOC_64)
9167 && GOT_symbol
9168 && GOT_symbol == i.op[n].imms->X_add_symbol
9169 && (i.op[n].imms->X_op == O_symbol
9170 || (i.op[n].imms->X_op == O_add
9171 && ((symbol_get_value_expression
9172 (i.op[n].imms->X_op_symbol)->X_op)
9173 == O_subtract))))
9174 {
9175 if (!object_64bit)
9176 reloc_type = BFD_RELOC_386_GOTPC;
9177 else if (size == 4)
9178 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9179 else if (size == 8)
9180 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9181 i.has_gotpc_tls_reloc = TRUE;
9182 i.op[n].imms->X_add_number +=
9183 encoding_length (insn_start_frag, insn_start_off, p);
9184 }
9185 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9186 i.op[n].imms, 0, reloc_type);
9187 }
9188 }
9189 }
9190 }
9191 \f
9192 /* x86_cons_fix_new is called via the expression parsing code when a
9193 reloc is needed. We use this hook to get the correct .got reloc. */
9194 static int cons_sign = -1;
9195
9196 void
9197 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
9198 expressionS *exp, bfd_reloc_code_real_type r)
9199 {
9200 r = reloc (len, 0, cons_sign, r);
9201
9202 #ifdef TE_PE
9203 if (exp->X_op == O_secrel)
9204 {
9205 exp->X_op = O_symbol;
9206 r = BFD_RELOC_32_SECREL;
9207 }
9208 #endif
9209
9210 fix_new_exp (frag, off, len, exp, 0, r);
9211 }
9212
9213 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9214 purpose of the `.dc.a' internal pseudo-op. */
9215
9216 int
9217 x86_address_bytes (void)
9218 {
9219 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9220 return 4;
9221 return stdoutput->arch_info->bits_per_address / 8;
9222 }
9223
9224 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9225 || defined (LEX_AT)
9226 # define lex_got(reloc, adjust, types) NULL
9227 #else
9228 /* Parse operands of the form
9229 <symbol>@GOTOFF+<nnn>
9230 and similar .plt or .got references.
9231
9232 If we find one, set up the correct relocation in RELOC and copy the
9233 input string, minus the `@GOTOFF' into a malloc'd buffer for
9234 parsing by the calling routine. Return this buffer, and if ADJUST
9235 is non-null set it to the length of the string we removed from the
9236 input line. Otherwise return NULL. */
9237 static char *
9238 lex_got (enum bfd_reloc_code_real *rel,
9239 int *adjust,
9240 i386_operand_type *types)
9241 {
9242 /* Some of the relocations depend on the size of what field is to
9243 be relocated. But in our callers i386_immediate and i386_displacement
9244 we don't yet know the operand size (this will be set by insn
9245 matching). Hence we record the word32 relocation here,
9246 and adjust the reloc according to the real size in reloc(). */
9247 static const struct {
9248 const char *str;
9249 int len;
9250 const enum bfd_reloc_code_real rel[2];
9251 const i386_operand_type types64;
9252 } gotrel[] = {
9253 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9254 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9255 BFD_RELOC_SIZE32 },
9256 OPERAND_TYPE_IMM32_64 },
9257 #endif
9258 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9259 BFD_RELOC_X86_64_PLTOFF64 },
9260 OPERAND_TYPE_IMM64 },
9261 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9262 BFD_RELOC_X86_64_PLT32 },
9263 OPERAND_TYPE_IMM32_32S_DISP32 },
9264 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9265 BFD_RELOC_X86_64_GOTPLT64 },
9266 OPERAND_TYPE_IMM64_DISP64 },
9267 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9268 BFD_RELOC_X86_64_GOTOFF64 },
9269 OPERAND_TYPE_IMM64_DISP64 },
9270 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9271 BFD_RELOC_X86_64_GOTPCREL },
9272 OPERAND_TYPE_IMM32_32S_DISP32 },
9273 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
9274 BFD_RELOC_X86_64_TLSGD },
9275 OPERAND_TYPE_IMM32_32S_DISP32 },
9276 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
9277 _dummy_first_bfd_reloc_code_real },
9278 OPERAND_TYPE_NONE },
9279 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
9280 BFD_RELOC_X86_64_TLSLD },
9281 OPERAND_TYPE_IMM32_32S_DISP32 },
9282 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
9283 BFD_RELOC_X86_64_GOTTPOFF },
9284 OPERAND_TYPE_IMM32_32S_DISP32 },
9285 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
9286 BFD_RELOC_X86_64_TPOFF32 },
9287 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9288 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
9289 _dummy_first_bfd_reloc_code_real },
9290 OPERAND_TYPE_NONE },
9291 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
9292 BFD_RELOC_X86_64_DTPOFF32 },
9293 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9294 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
9295 _dummy_first_bfd_reloc_code_real },
9296 OPERAND_TYPE_NONE },
9297 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
9298 _dummy_first_bfd_reloc_code_real },
9299 OPERAND_TYPE_NONE },
9300 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
9301 BFD_RELOC_X86_64_GOT32 },
9302 OPERAND_TYPE_IMM32_32S_64_DISP32 },
9303 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
9304 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
9305 OPERAND_TYPE_IMM32_32S_DISP32 },
9306 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
9307 BFD_RELOC_X86_64_TLSDESC_CALL },
9308 OPERAND_TYPE_IMM32_32S_DISP32 },
9309 };
9310 char *cp;
9311 unsigned int j;
9312
9313 #if defined (OBJ_MAYBE_ELF)
9314 if (!IS_ELF)
9315 return NULL;
9316 #endif
9317
9318 for (cp = input_line_pointer; *cp != '@'; cp++)
9319 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9320 return NULL;
9321
9322 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9323 {
9324 int len = gotrel[j].len;
9325 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9326 {
9327 if (gotrel[j].rel[object_64bit] != 0)
9328 {
9329 int first, second;
9330 char *tmpbuf, *past_reloc;
9331
9332 *rel = gotrel[j].rel[object_64bit];
9333
9334 if (types)
9335 {
9336 if (flag_code != CODE_64BIT)
9337 {
9338 types->bitfield.imm32 = 1;
9339 types->bitfield.disp32 = 1;
9340 }
9341 else
9342 *types = gotrel[j].types64;
9343 }
9344
9345 if (j != 0 && GOT_symbol == NULL)
9346 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
9347
9348 /* The length of the first part of our input line. */
9349 first = cp - input_line_pointer;
9350
9351 /* The second part goes from after the reloc token until
9352 (and including) an end_of_line char or comma. */
9353 past_reloc = cp + 1 + len;
9354 cp = past_reloc;
9355 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9356 ++cp;
9357 second = cp + 1 - past_reloc;
9358
9359 /* Allocate and copy string. The trailing NUL shouldn't
9360 be necessary, but be safe. */
9361 tmpbuf = XNEWVEC (char, first + second + 2);
9362 memcpy (tmpbuf, input_line_pointer, first);
9363 if (second != 0 && *past_reloc != ' ')
9364 /* Replace the relocation token with ' ', so that
9365 errors like foo@GOTOFF1 will be detected. */
9366 tmpbuf[first++] = ' ';
9367 else
9368 /* Increment length by 1 if the relocation token is
9369 removed. */
9370 len++;
9371 if (adjust)
9372 *adjust = len;
9373 memcpy (tmpbuf + first, past_reloc, second);
9374 tmpbuf[first + second] = '\0';
9375 return tmpbuf;
9376 }
9377
9378 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9379 gotrel[j].str, 1 << (5 + object_64bit));
9380 return NULL;
9381 }
9382 }
9383
9384 /* Might be a symbol version string. Don't as_bad here. */
9385 return NULL;
9386 }
9387 #endif
9388
9389 #ifdef TE_PE
9390 #ifdef lex_got
9391 #undef lex_got
9392 #endif
9393 /* Parse operands of the form
9394 <symbol>@SECREL32+<nnn>
9395
9396 If we find one, set up the correct relocation in RELOC and copy the
9397 input string, minus the `@SECREL32' into a malloc'd buffer for
9398 parsing by the calling routine. Return this buffer, and if ADJUST
9399 is non-null set it to the length of the string we removed from the
9400 input line. Otherwise return NULL.
9401
9402 This function is copied from the ELF version above adjusted for PE targets. */
9403
9404 static char *
9405 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
9406 int *adjust ATTRIBUTE_UNUSED,
9407 i386_operand_type *types)
9408 {
9409 static const struct
9410 {
9411 const char *str;
9412 int len;
9413 const enum bfd_reloc_code_real rel[2];
9414 const i386_operand_type types64;
9415 }
9416 gotrel[] =
9417 {
9418 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
9419 BFD_RELOC_32_SECREL },
9420 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
9421 };
9422
9423 char *cp;
9424 unsigned j;
9425
9426 for (cp = input_line_pointer; *cp != '@'; cp++)
9427 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
9428 return NULL;
9429
9430 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
9431 {
9432 int len = gotrel[j].len;
9433
9434 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
9435 {
9436 if (gotrel[j].rel[object_64bit] != 0)
9437 {
9438 int first, second;
9439 char *tmpbuf, *past_reloc;
9440
9441 *rel = gotrel[j].rel[object_64bit];
9442 if (adjust)
9443 *adjust = len;
9444
9445 if (types)
9446 {
9447 if (flag_code != CODE_64BIT)
9448 {
9449 types->bitfield.imm32 = 1;
9450 types->bitfield.disp32 = 1;
9451 }
9452 else
9453 *types = gotrel[j].types64;
9454 }
9455
9456 /* The length of the first part of our input line. */
9457 first = cp - input_line_pointer;
9458
9459 /* The second part goes from after the reloc token until
9460 (and including) an end_of_line char or comma. */
9461 past_reloc = cp + 1 + len;
9462 cp = past_reloc;
9463 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
9464 ++cp;
9465 second = cp + 1 - past_reloc;
9466
9467 /* Allocate and copy string. The trailing NUL shouldn't
9468 be necessary, but be safe. */
9469 tmpbuf = XNEWVEC (char, first + second + 2);
9470 memcpy (tmpbuf, input_line_pointer, first);
9471 if (second != 0 && *past_reloc != ' ')
9472 /* Replace the relocation token with ' ', so that
9473 errors like foo@SECLREL321 will be detected. */
9474 tmpbuf[first++] = ' ';
9475 memcpy (tmpbuf + first, past_reloc, second);
9476 tmpbuf[first + second] = '\0';
9477 return tmpbuf;
9478 }
9479
9480 as_bad (_("@%s reloc is not supported with %d-bit output format"),
9481 gotrel[j].str, 1 << (5 + object_64bit));
9482 return NULL;
9483 }
9484 }
9485
9486 /* Might be a symbol version string. Don't as_bad here. */
9487 return NULL;
9488 }
9489
9490 #endif /* TE_PE */
9491
9492 bfd_reloc_code_real_type
9493 x86_cons (expressionS *exp, int size)
9494 {
9495 bfd_reloc_code_real_type got_reloc = NO_RELOC;
9496
9497 intel_syntax = -intel_syntax;
9498
9499 exp->X_md = 0;
9500 if (size == 4 || (object_64bit && size == 8))
9501 {
9502 /* Handle @GOTOFF and the like in an expression. */
9503 char *save;
9504 char *gotfree_input_line;
9505 int adjust = 0;
9506
9507 save = input_line_pointer;
9508 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
9509 if (gotfree_input_line)
9510 input_line_pointer = gotfree_input_line;
9511
9512 expression (exp);
9513
9514 if (gotfree_input_line)
9515 {
9516 /* expression () has merrily parsed up to the end of line,
9517 or a comma - in the wrong buffer. Transfer how far
9518 input_line_pointer has moved to the right buffer. */
9519 input_line_pointer = (save
9520 + (input_line_pointer - gotfree_input_line)
9521 + adjust);
9522 free (gotfree_input_line);
9523 if (exp->X_op == O_constant
9524 || exp->X_op == O_absent
9525 || exp->X_op == O_illegal
9526 || exp->X_op == O_register
9527 || exp->X_op == O_big)
9528 {
9529 char c = *input_line_pointer;
9530 *input_line_pointer = 0;
9531 as_bad (_("missing or invalid expression `%s'"), save);
9532 *input_line_pointer = c;
9533 }
9534 else if ((got_reloc == BFD_RELOC_386_PLT32
9535 || got_reloc == BFD_RELOC_X86_64_PLT32)
9536 && exp->X_op != O_symbol)
9537 {
9538 char c = *input_line_pointer;
9539 *input_line_pointer = 0;
9540 as_bad (_("invalid PLT expression `%s'"), save);
9541 *input_line_pointer = c;
9542 }
9543 }
9544 }
9545 else
9546 expression (exp);
9547
9548 intel_syntax = -intel_syntax;
9549
9550 if (intel_syntax)
9551 i386_intel_simplify (exp);
9552
9553 return got_reloc;
9554 }
9555
9556 static void
9557 signed_cons (int size)
9558 {
9559 if (flag_code == CODE_64BIT)
9560 cons_sign = 1;
9561 cons (size);
9562 cons_sign = -1;
9563 }
9564
9565 #ifdef TE_PE
9566 static void
9567 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
9568 {
9569 expressionS exp;
9570
9571 do
9572 {
9573 expression (&exp);
9574 if (exp.X_op == O_symbol)
9575 exp.X_op = O_secrel;
9576
9577 emit_expr (&exp, 4);
9578 }
9579 while (*input_line_pointer++ == ',');
9580
9581 input_line_pointer--;
9582 demand_empty_rest_of_line ();
9583 }
9584 #endif
9585
9586 /* Handle Vector operations. */
9587
9588 static char *
9589 check_VecOperations (char *op_string, char *op_end)
9590 {
9591 const reg_entry *mask;
9592 const char *saved;
9593 char *end_op;
9594
9595 while (*op_string
9596 && (op_end == NULL || op_string < op_end))
9597 {
9598 saved = op_string;
9599 if (*op_string == '{')
9600 {
9601 op_string++;
9602
9603 /* Check broadcasts. */
9604 if (strncmp (op_string, "1to", 3) == 0)
9605 {
9606 int bcst_type;
9607
9608 if (i.broadcast)
9609 goto duplicated_vec_op;
9610
9611 op_string += 3;
9612 if (*op_string == '8')
9613 bcst_type = 8;
9614 else if (*op_string == '4')
9615 bcst_type = 4;
9616 else if (*op_string == '2')
9617 bcst_type = 2;
9618 else if (*op_string == '1'
9619 && *(op_string+1) == '6')
9620 {
9621 bcst_type = 16;
9622 op_string++;
9623 }
9624 else
9625 {
9626 as_bad (_("Unsupported broadcast: `%s'"), saved);
9627 return NULL;
9628 }
9629 op_string++;
9630
9631 broadcast_op.type = bcst_type;
9632 broadcast_op.operand = this_operand;
9633 broadcast_op.bytes = 0;
9634 i.broadcast = &broadcast_op;
9635 }
9636 /* Check masking operation. */
9637 else if ((mask = parse_register (op_string, &end_op)) != NULL)
9638 {
9639 /* k0 can't be used for write mask. */
9640 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
9641 {
9642 as_bad (_("`%s%s' can't be used for write mask"),
9643 register_prefix, mask->reg_name);
9644 return NULL;
9645 }
9646
9647 if (!i.mask)
9648 {
9649 mask_op.mask = mask;
9650 mask_op.zeroing = 0;
9651 mask_op.operand = this_operand;
9652 i.mask = &mask_op;
9653 }
9654 else
9655 {
9656 if (i.mask->mask)
9657 goto duplicated_vec_op;
9658
9659 i.mask->mask = mask;
9660
9661 /* Only "{z}" is allowed here. No need to check
9662 zeroing mask explicitly. */
9663 if (i.mask->operand != this_operand)
9664 {
9665 as_bad (_("invalid write mask `%s'"), saved);
9666 return NULL;
9667 }
9668 }
9669
9670 op_string = end_op;
9671 }
9672 /* Check zeroing-flag for masking operation. */
9673 else if (*op_string == 'z')
9674 {
9675 if (!i.mask)
9676 {
9677 mask_op.mask = NULL;
9678 mask_op.zeroing = 1;
9679 mask_op.operand = this_operand;
9680 i.mask = &mask_op;
9681 }
9682 else
9683 {
9684 if (i.mask->zeroing)
9685 {
9686 duplicated_vec_op:
9687 as_bad (_("duplicated `%s'"), saved);
9688 return NULL;
9689 }
9690
9691 i.mask->zeroing = 1;
9692
9693 /* Only "{%k}" is allowed here. No need to check mask
9694 register explicitly. */
9695 if (i.mask->operand != this_operand)
9696 {
9697 as_bad (_("invalid zeroing-masking `%s'"),
9698 saved);
9699 return NULL;
9700 }
9701 }
9702
9703 op_string++;
9704 }
9705 else
9706 goto unknown_vec_op;
9707
9708 if (*op_string != '}')
9709 {
9710 as_bad (_("missing `}' in `%s'"), saved);
9711 return NULL;
9712 }
9713 op_string++;
9714
9715 /* Strip whitespace since the addition of pseudo prefixes
9716 changed how the scrubber treats '{'. */
9717 if (is_space_char (*op_string))
9718 ++op_string;
9719
9720 continue;
9721 }
9722 unknown_vec_op:
9723 /* We don't know this one. */
9724 as_bad (_("unknown vector operation: `%s'"), saved);
9725 return NULL;
9726 }
9727
9728 if (i.mask && i.mask->zeroing && !i.mask->mask)
9729 {
9730 as_bad (_("zeroing-masking only allowed with write mask"));
9731 return NULL;
9732 }
9733
9734 return op_string;
9735 }
9736
9737 static int
9738 i386_immediate (char *imm_start)
9739 {
9740 char *save_input_line_pointer;
9741 char *gotfree_input_line;
9742 segT exp_seg = 0;
9743 expressionS *exp;
9744 i386_operand_type types;
9745
9746 operand_type_set (&types, ~0);
9747
9748 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
9749 {
9750 as_bad (_("at most %d immediate operands are allowed"),
9751 MAX_IMMEDIATE_OPERANDS);
9752 return 0;
9753 }
9754
9755 exp = &im_expressions[i.imm_operands++];
9756 i.op[this_operand].imms = exp;
9757
9758 if (is_space_char (*imm_start))
9759 ++imm_start;
9760
9761 save_input_line_pointer = input_line_pointer;
9762 input_line_pointer = imm_start;
9763
9764 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9765 if (gotfree_input_line)
9766 input_line_pointer = gotfree_input_line;
9767
9768 exp_seg = expression (exp);
9769
9770 SKIP_WHITESPACE ();
9771
9772 /* Handle vector operations. */
9773 if (*input_line_pointer == '{')
9774 {
9775 input_line_pointer = check_VecOperations (input_line_pointer,
9776 NULL);
9777 if (input_line_pointer == NULL)
9778 return 0;
9779 }
9780
9781 if (*input_line_pointer)
9782 as_bad (_("junk `%s' after expression"), input_line_pointer);
9783
9784 input_line_pointer = save_input_line_pointer;
9785 if (gotfree_input_line)
9786 {
9787 free (gotfree_input_line);
9788
9789 if (exp->X_op == O_constant || exp->X_op == O_register)
9790 exp->X_op = O_illegal;
9791 }
9792
9793 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
9794 }
9795
9796 static int
9797 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9798 i386_operand_type types, const char *imm_start)
9799 {
9800 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
9801 {
9802 if (imm_start)
9803 as_bad (_("missing or invalid immediate expression `%s'"),
9804 imm_start);
9805 return 0;
9806 }
9807 else if (exp->X_op == O_constant)
9808 {
9809 /* Size it properly later. */
9810 i.types[this_operand].bitfield.imm64 = 1;
9811 /* If not 64bit, sign extend val. */
9812 if (flag_code != CODE_64BIT
9813 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
9814 exp->X_add_number
9815 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
9816 }
9817 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9818 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
9819 && exp_seg != absolute_section
9820 && exp_seg != text_section
9821 && exp_seg != data_section
9822 && exp_seg != bss_section
9823 && exp_seg != undefined_section
9824 && !bfd_is_com_section (exp_seg))
9825 {
9826 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9827 return 0;
9828 }
9829 #endif
9830 else if (!intel_syntax && exp_seg == reg_section)
9831 {
9832 if (imm_start)
9833 as_bad (_("illegal immediate register operand %s"), imm_start);
9834 return 0;
9835 }
9836 else
9837 {
9838 /* This is an address. The size of the address will be
9839 determined later, depending on destination register,
9840 suffix, or the default for the section. */
9841 i.types[this_operand].bitfield.imm8 = 1;
9842 i.types[this_operand].bitfield.imm16 = 1;
9843 i.types[this_operand].bitfield.imm32 = 1;
9844 i.types[this_operand].bitfield.imm32s = 1;
9845 i.types[this_operand].bitfield.imm64 = 1;
9846 i.types[this_operand] = operand_type_and (i.types[this_operand],
9847 types);
9848 }
9849
9850 return 1;
9851 }
9852
9853 static char *
9854 i386_scale (char *scale)
9855 {
9856 offsetT val;
9857 char *save = input_line_pointer;
9858
9859 input_line_pointer = scale;
9860 val = get_absolute_expression ();
9861
9862 switch (val)
9863 {
9864 case 1:
9865 i.log2_scale_factor = 0;
9866 break;
9867 case 2:
9868 i.log2_scale_factor = 1;
9869 break;
9870 case 4:
9871 i.log2_scale_factor = 2;
9872 break;
9873 case 8:
9874 i.log2_scale_factor = 3;
9875 break;
9876 default:
9877 {
9878 char sep = *input_line_pointer;
9879
9880 *input_line_pointer = '\0';
9881 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
9882 scale);
9883 *input_line_pointer = sep;
9884 input_line_pointer = save;
9885 return NULL;
9886 }
9887 }
9888 if (i.log2_scale_factor != 0 && i.index_reg == 0)
9889 {
9890 as_warn (_("scale factor of %d without an index register"),
9891 1 << i.log2_scale_factor);
9892 i.log2_scale_factor = 0;
9893 }
9894 scale = input_line_pointer;
9895 input_line_pointer = save;
9896 return scale;
9897 }
9898
9899 static int
9900 i386_displacement (char *disp_start, char *disp_end)
9901 {
9902 expressionS *exp;
9903 segT exp_seg = 0;
9904 char *save_input_line_pointer;
9905 char *gotfree_input_line;
9906 int override;
9907 i386_operand_type bigdisp, types = anydisp;
9908 int ret;
9909
9910 if (i.disp_operands == MAX_MEMORY_OPERANDS)
9911 {
9912 as_bad (_("at most %d displacement operands are allowed"),
9913 MAX_MEMORY_OPERANDS);
9914 return 0;
9915 }
9916
9917 operand_type_set (&bigdisp, 0);
9918 if (i.jumpabsolute
9919 || i.types[this_operand].bitfield.baseindex
9920 || (current_templates->start->opcode_modifier.jump != JUMP
9921 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
9922 {
9923 i386_addressing_mode ();
9924 override = (i.prefix[ADDR_PREFIX] != 0);
9925 if (flag_code == CODE_64BIT)
9926 {
9927 if (!override)
9928 {
9929 bigdisp.bitfield.disp32s = 1;
9930 bigdisp.bitfield.disp64 = 1;
9931 }
9932 else
9933 bigdisp.bitfield.disp32 = 1;
9934 }
9935 else if ((flag_code == CODE_16BIT) ^ override)
9936 bigdisp.bitfield.disp16 = 1;
9937 else
9938 bigdisp.bitfield.disp32 = 1;
9939 }
9940 else
9941 {
9942 /* For PC-relative branches, the width of the displacement may be
9943 dependent upon data size, but is never dependent upon address size.
9944 Also make sure to not unintentionally match against a non-PC-relative
9945 branch template. */
9946 static templates aux_templates;
9947 const insn_template *t = current_templates->start;
9948 bfd_boolean has_intel64 = FALSE;
9949
9950 aux_templates.start = t;
9951 while (++t < current_templates->end)
9952 {
9953 if (t->opcode_modifier.jump
9954 != current_templates->start->opcode_modifier.jump)
9955 break;
9956 if (t->opcode_modifier.intel64)
9957 has_intel64 = TRUE;
9958 }
9959 if (t < current_templates->end)
9960 {
9961 aux_templates.end = t;
9962 current_templates = &aux_templates;
9963 }
9964
9965 override = (i.prefix[DATA_PREFIX] != 0);
9966 if (flag_code == CODE_64BIT)
9967 {
9968 if ((override || i.suffix == WORD_MNEM_SUFFIX)
9969 && (!intel64 || !has_intel64))
9970 bigdisp.bitfield.disp16 = 1;
9971 else
9972 bigdisp.bitfield.disp32s = 1;
9973 }
9974 else
9975 {
9976 if (!override)
9977 override = (i.suffix == (flag_code != CODE_16BIT
9978 ? WORD_MNEM_SUFFIX
9979 : LONG_MNEM_SUFFIX));
9980 bigdisp.bitfield.disp32 = 1;
9981 if ((flag_code == CODE_16BIT) ^ override)
9982 {
9983 bigdisp.bitfield.disp32 = 0;
9984 bigdisp.bitfield.disp16 = 1;
9985 }
9986 }
9987 }
9988 i.types[this_operand] = operand_type_or (i.types[this_operand],
9989 bigdisp);
9990
9991 exp = &disp_expressions[i.disp_operands];
9992 i.op[this_operand].disps = exp;
9993 i.disp_operands++;
9994 save_input_line_pointer = input_line_pointer;
9995 input_line_pointer = disp_start;
9996 END_STRING_AND_SAVE (disp_end);
9997
9998 #ifndef GCC_ASM_O_HACK
9999 #define GCC_ASM_O_HACK 0
10000 #endif
10001 #if GCC_ASM_O_HACK
10002 END_STRING_AND_SAVE (disp_end + 1);
10003 if (i.types[this_operand].bitfield.baseIndex
10004 && displacement_string_end[-1] == '+')
10005 {
10006 /* This hack is to avoid a warning when using the "o"
10007 constraint within gcc asm statements.
10008 For instance:
10009
10010 #define _set_tssldt_desc(n,addr,limit,type) \
10011 __asm__ __volatile__ ( \
10012 "movw %w2,%0\n\t" \
10013 "movw %w1,2+%0\n\t" \
10014 "rorl $16,%1\n\t" \
10015 "movb %b1,4+%0\n\t" \
10016 "movb %4,5+%0\n\t" \
10017 "movb $0,6+%0\n\t" \
10018 "movb %h1,7+%0\n\t" \
10019 "rorl $16,%1" \
10020 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10021
10022 This works great except that the output assembler ends
10023 up looking a bit weird if it turns out that there is
10024 no offset. You end up producing code that looks like:
10025
10026 #APP
10027 movw $235,(%eax)
10028 movw %dx,2+(%eax)
10029 rorl $16,%edx
10030 movb %dl,4+(%eax)
10031 movb $137,5+(%eax)
10032 movb $0,6+(%eax)
10033 movb %dh,7+(%eax)
10034 rorl $16,%edx
10035 #NO_APP
10036
10037 So here we provide the missing zero. */
10038
10039 *displacement_string_end = '0';
10040 }
10041 #endif
10042 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10043 if (gotfree_input_line)
10044 input_line_pointer = gotfree_input_line;
10045
10046 exp_seg = expression (exp);
10047
10048 SKIP_WHITESPACE ();
10049 if (*input_line_pointer)
10050 as_bad (_("junk `%s' after expression"), input_line_pointer);
10051 #if GCC_ASM_O_HACK
10052 RESTORE_END_STRING (disp_end + 1);
10053 #endif
10054 input_line_pointer = save_input_line_pointer;
10055 if (gotfree_input_line)
10056 {
10057 free (gotfree_input_line);
10058
10059 if (exp->X_op == O_constant || exp->X_op == O_register)
10060 exp->X_op = O_illegal;
10061 }
10062
10063 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10064
10065 RESTORE_END_STRING (disp_end);
10066
10067 return ret;
10068 }
10069
10070 static int
10071 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10072 i386_operand_type types, const char *disp_start)
10073 {
10074 i386_operand_type bigdisp;
10075 int ret = 1;
10076
10077 /* We do this to make sure that the section symbol is in
10078 the symbol table. We will ultimately change the relocation
10079 to be relative to the beginning of the section. */
10080 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
10081 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10082 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10083 {
10084 if (exp->X_op != O_symbol)
10085 goto inv_disp;
10086
10087 if (S_IS_LOCAL (exp->X_add_symbol)
10088 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10089 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
10090 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
10091 exp->X_op = O_subtract;
10092 exp->X_op_symbol = GOT_symbol;
10093 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
10094 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
10095 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10096 i.reloc[this_operand] = BFD_RELOC_64;
10097 else
10098 i.reloc[this_operand] = BFD_RELOC_32;
10099 }
10100
10101 else if (exp->X_op == O_absent
10102 || exp->X_op == O_illegal
10103 || exp->X_op == O_big)
10104 {
10105 inv_disp:
10106 as_bad (_("missing or invalid displacement expression `%s'"),
10107 disp_start);
10108 ret = 0;
10109 }
10110
10111 else if (flag_code == CODE_64BIT
10112 && !i.prefix[ADDR_PREFIX]
10113 && exp->X_op == O_constant)
10114 {
10115 /* Since displacement is signed extended to 64bit, don't allow
10116 disp32 and turn off disp32s if they are out of range. */
10117 i.types[this_operand].bitfield.disp32 = 0;
10118 if (!fits_in_signed_long (exp->X_add_number))
10119 {
10120 i.types[this_operand].bitfield.disp32s = 0;
10121 if (i.types[this_operand].bitfield.baseindex)
10122 {
10123 as_bad (_("0x%lx out range of signed 32bit displacement"),
10124 (long) exp->X_add_number);
10125 ret = 0;
10126 }
10127 }
10128 }
10129
10130 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10131 else if (exp->X_op != O_constant
10132 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10133 && exp_seg != absolute_section
10134 && exp_seg != text_section
10135 && exp_seg != data_section
10136 && exp_seg != bss_section
10137 && exp_seg != undefined_section
10138 && !bfd_is_com_section (exp_seg))
10139 {
10140 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10141 ret = 0;
10142 }
10143 #endif
10144
10145 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10146 /* Constants get taken care of by optimize_disp(). */
10147 && exp->X_op != O_constant)
10148 i.types[this_operand].bitfield.disp8 = 1;
10149
10150 /* Check if this is a displacement only operand. */
10151 bigdisp = i.types[this_operand];
10152 bigdisp.bitfield.disp8 = 0;
10153 bigdisp.bitfield.disp16 = 0;
10154 bigdisp.bitfield.disp32 = 0;
10155 bigdisp.bitfield.disp32s = 0;
10156 bigdisp.bitfield.disp64 = 0;
10157 if (operand_type_all_zero (&bigdisp))
10158 i.types[this_operand] = operand_type_and (i.types[this_operand],
10159 types);
10160
10161 return ret;
10162 }
10163
10164 /* Return the active addressing mode, taking address override and
10165 registers forming the address into consideration. Update the
10166 address override prefix if necessary. */
10167
10168 static enum flag_code
10169 i386_addressing_mode (void)
10170 {
10171 enum flag_code addr_mode;
10172
10173 if (i.prefix[ADDR_PREFIX])
10174 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10175 else
10176 {
10177 addr_mode = flag_code;
10178
10179 #if INFER_ADDR_PREFIX
10180 if (i.mem_operands == 0)
10181 {
10182 /* Infer address prefix from the first memory operand. */
10183 const reg_entry *addr_reg = i.base_reg;
10184
10185 if (addr_reg == NULL)
10186 addr_reg = i.index_reg;
10187
10188 if (addr_reg)
10189 {
10190 if (addr_reg->reg_type.bitfield.dword)
10191 addr_mode = CODE_32BIT;
10192 else if (flag_code != CODE_64BIT
10193 && addr_reg->reg_type.bitfield.word)
10194 addr_mode = CODE_16BIT;
10195
10196 if (addr_mode != flag_code)
10197 {
10198 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10199 i.prefixes += 1;
10200 /* Change the size of any displacement too. At most one
10201 of Disp16 or Disp32 is set.
10202 FIXME. There doesn't seem to be any real need for
10203 separate Disp16 and Disp32 flags. The same goes for
10204 Imm16 and Imm32. Removing them would probably clean
10205 up the code quite a lot. */
10206 if (flag_code != CODE_64BIT
10207 && (i.types[this_operand].bitfield.disp16
10208 || i.types[this_operand].bitfield.disp32))
10209 i.types[this_operand]
10210 = operand_type_xor (i.types[this_operand], disp16_32);
10211 }
10212 }
10213 }
10214 #endif
10215 }
10216
10217 return addr_mode;
10218 }
10219
10220 /* Make sure the memory operand we've been dealt is valid.
10221 Return 1 on success, 0 on a failure. */
10222
10223 static int
10224 i386_index_check (const char *operand_string)
10225 {
10226 const char *kind = "base/index";
10227 enum flag_code addr_mode = i386_addressing_mode ();
10228
10229 if (current_templates->start->opcode_modifier.isstring
10230 && !current_templates->start->cpu_flags.bitfield.cpupadlock
10231 && (current_templates->end[-1].opcode_modifier.isstring
10232 || i.mem_operands))
10233 {
10234 /* Memory operands of string insns are special in that they only allow
10235 a single register (rDI, rSI, or rBX) as their memory address. */
10236 const reg_entry *expected_reg;
10237 static const char *di_si[][2] =
10238 {
10239 { "esi", "edi" },
10240 { "si", "di" },
10241 { "rsi", "rdi" }
10242 };
10243 static const char *bx[] = { "ebx", "bx", "rbx" };
10244
10245 kind = "string address";
10246
10247 if (current_templates->start->opcode_modifier.repprefixok)
10248 {
10249 int es_op = current_templates->end[-1].opcode_modifier.isstring
10250 - IS_STRING_ES_OP0;
10251 int op = 0;
10252
10253 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
10254 || ((!i.mem_operands != !intel_syntax)
10255 && current_templates->end[-1].operand_types[1]
10256 .bitfield.baseindex))
10257 op = 1;
10258 expected_reg = hash_find (reg_hash, di_si[addr_mode][op == es_op]);
10259 }
10260 else
10261 expected_reg = hash_find (reg_hash, bx[addr_mode]);
10262
10263 if (i.base_reg != expected_reg
10264 || i.index_reg
10265 || operand_type_check (i.types[this_operand], disp))
10266 {
10267 /* The second memory operand must have the same size as
10268 the first one. */
10269 if (i.mem_operands
10270 && i.base_reg
10271 && !((addr_mode == CODE_64BIT
10272 && i.base_reg->reg_type.bitfield.qword)
10273 || (addr_mode == CODE_32BIT
10274 ? i.base_reg->reg_type.bitfield.dword
10275 : i.base_reg->reg_type.bitfield.word)))
10276 goto bad_address;
10277
10278 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
10279 operand_string,
10280 intel_syntax ? '[' : '(',
10281 register_prefix,
10282 expected_reg->reg_name,
10283 intel_syntax ? ']' : ')');
10284 return 1;
10285 }
10286 else
10287 return 1;
10288
10289 bad_address:
10290 as_bad (_("`%s' is not a valid %s expression"),
10291 operand_string, kind);
10292 return 0;
10293 }
10294 else
10295 {
10296 if (addr_mode != CODE_16BIT)
10297 {
10298 /* 32-bit/64-bit checks. */
10299 if ((i.base_reg
10300 && ((addr_mode == CODE_64BIT
10301 ? !i.base_reg->reg_type.bitfield.qword
10302 : !i.base_reg->reg_type.bitfield.dword)
10303 || (i.index_reg && i.base_reg->reg_num == RegIP)
10304 || i.base_reg->reg_num == RegIZ))
10305 || (i.index_reg
10306 && !i.index_reg->reg_type.bitfield.xmmword
10307 && !i.index_reg->reg_type.bitfield.ymmword
10308 && !i.index_reg->reg_type.bitfield.zmmword
10309 && ((addr_mode == CODE_64BIT
10310 ? !i.index_reg->reg_type.bitfield.qword
10311 : !i.index_reg->reg_type.bitfield.dword)
10312 || !i.index_reg->reg_type.bitfield.baseindex)))
10313 goto bad_address;
10314
10315 /* bndmk, bndldx, and bndstx have special restrictions. */
10316 if (current_templates->start->base_opcode == 0xf30f1b
10317 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
10318 {
10319 /* They cannot use RIP-relative addressing. */
10320 if (i.base_reg && i.base_reg->reg_num == RegIP)
10321 {
10322 as_bad (_("`%s' cannot be used here"), operand_string);
10323 return 0;
10324 }
10325
10326 /* bndldx and bndstx ignore their scale factor. */
10327 if (current_templates->start->base_opcode != 0xf30f1b
10328 && i.log2_scale_factor)
10329 as_warn (_("register scaling is being ignored here"));
10330 }
10331 }
10332 else
10333 {
10334 /* 16-bit checks. */
10335 if ((i.base_reg
10336 && (!i.base_reg->reg_type.bitfield.word
10337 || !i.base_reg->reg_type.bitfield.baseindex))
10338 || (i.index_reg
10339 && (!i.index_reg->reg_type.bitfield.word
10340 || !i.index_reg->reg_type.bitfield.baseindex
10341 || !(i.base_reg
10342 && i.base_reg->reg_num < 6
10343 && i.index_reg->reg_num >= 6
10344 && i.log2_scale_factor == 0))))
10345 goto bad_address;
10346 }
10347 }
10348 return 1;
10349 }
10350
10351 /* Handle vector immediates. */
10352
10353 static int
10354 RC_SAE_immediate (const char *imm_start)
10355 {
10356 unsigned int match_found, j;
10357 const char *pstr = imm_start;
10358 expressionS *exp;
10359
10360 if (*pstr != '{')
10361 return 0;
10362
10363 pstr++;
10364 match_found = 0;
10365 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
10366 {
10367 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
10368 {
10369 if (!i.rounding)
10370 {
10371 rc_op.type = RC_NamesTable[j].type;
10372 rc_op.operand = this_operand;
10373 i.rounding = &rc_op;
10374 }
10375 else
10376 {
10377 as_bad (_("duplicated `%s'"), imm_start);
10378 return 0;
10379 }
10380 pstr += RC_NamesTable[j].len;
10381 match_found = 1;
10382 break;
10383 }
10384 }
10385 if (!match_found)
10386 return 0;
10387
10388 if (*pstr++ != '}')
10389 {
10390 as_bad (_("Missing '}': '%s'"), imm_start);
10391 return 0;
10392 }
10393 /* RC/SAE immediate string should contain nothing more. */;
10394 if (*pstr != 0)
10395 {
10396 as_bad (_("Junk after '}': '%s'"), imm_start);
10397 return 0;
10398 }
10399
10400 exp = &im_expressions[i.imm_operands++];
10401 i.op[this_operand].imms = exp;
10402
10403 exp->X_op = O_constant;
10404 exp->X_add_number = 0;
10405 exp->X_add_symbol = (symbolS *) 0;
10406 exp->X_op_symbol = (symbolS *) 0;
10407
10408 i.types[this_operand].bitfield.imm8 = 1;
10409 return 1;
10410 }
10411
10412 /* Only string instructions can have a second memory operand, so
10413 reduce current_templates to just those if it contains any. */
10414 static int
10415 maybe_adjust_templates (void)
10416 {
10417 const insn_template *t;
10418
10419 gas_assert (i.mem_operands == 1);
10420
10421 for (t = current_templates->start; t < current_templates->end; ++t)
10422 if (t->opcode_modifier.isstring)
10423 break;
10424
10425 if (t < current_templates->end)
10426 {
10427 static templates aux_templates;
10428 bfd_boolean recheck;
10429
10430 aux_templates.start = t;
10431 for (; t < current_templates->end; ++t)
10432 if (!t->opcode_modifier.isstring)
10433 break;
10434 aux_templates.end = t;
10435
10436 /* Determine whether to re-check the first memory operand. */
10437 recheck = (aux_templates.start != current_templates->start
10438 || t != current_templates->end);
10439
10440 current_templates = &aux_templates;
10441
10442 if (recheck)
10443 {
10444 i.mem_operands = 0;
10445 if (i.memop1_string != NULL
10446 && i386_index_check (i.memop1_string) == 0)
10447 return 0;
10448 i.mem_operands = 1;
10449 }
10450 }
10451
10452 return 1;
10453 }
10454
10455 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
10456 on error. */
10457
10458 static int
10459 i386_att_operand (char *operand_string)
10460 {
10461 const reg_entry *r;
10462 char *end_op;
10463 char *op_string = operand_string;
10464
10465 if (is_space_char (*op_string))
10466 ++op_string;
10467
10468 /* We check for an absolute prefix (differentiating,
10469 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
10470 if (*op_string == ABSOLUTE_PREFIX)
10471 {
10472 ++op_string;
10473 if (is_space_char (*op_string))
10474 ++op_string;
10475 i.jumpabsolute = TRUE;
10476 }
10477
10478 /* Check if operand is a register. */
10479 if ((r = parse_register (op_string, &end_op)) != NULL)
10480 {
10481 i386_operand_type temp;
10482
10483 /* Check for a segment override by searching for ':' after a
10484 segment register. */
10485 op_string = end_op;
10486 if (is_space_char (*op_string))
10487 ++op_string;
10488 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
10489 {
10490 switch (r->reg_num)
10491 {
10492 case 0:
10493 i.seg[i.mem_operands] = &es;
10494 break;
10495 case 1:
10496 i.seg[i.mem_operands] = &cs;
10497 break;
10498 case 2:
10499 i.seg[i.mem_operands] = &ss;
10500 break;
10501 case 3:
10502 i.seg[i.mem_operands] = &ds;
10503 break;
10504 case 4:
10505 i.seg[i.mem_operands] = &fs;
10506 break;
10507 case 5:
10508 i.seg[i.mem_operands] = &gs;
10509 break;
10510 }
10511
10512 /* Skip the ':' and whitespace. */
10513 ++op_string;
10514 if (is_space_char (*op_string))
10515 ++op_string;
10516
10517 if (!is_digit_char (*op_string)
10518 && !is_identifier_char (*op_string)
10519 && *op_string != '('
10520 && *op_string != ABSOLUTE_PREFIX)
10521 {
10522 as_bad (_("bad memory operand `%s'"), op_string);
10523 return 0;
10524 }
10525 /* Handle case of %es:*foo. */
10526 if (*op_string == ABSOLUTE_PREFIX)
10527 {
10528 ++op_string;
10529 if (is_space_char (*op_string))
10530 ++op_string;
10531 i.jumpabsolute = TRUE;
10532 }
10533 goto do_memory_reference;
10534 }
10535
10536 /* Handle vector operations. */
10537 if (*op_string == '{')
10538 {
10539 op_string = check_VecOperations (op_string, NULL);
10540 if (op_string == NULL)
10541 return 0;
10542 }
10543
10544 if (*op_string)
10545 {
10546 as_bad (_("junk `%s' after register"), op_string);
10547 return 0;
10548 }
10549 temp = r->reg_type;
10550 temp.bitfield.baseindex = 0;
10551 i.types[this_operand] = operand_type_or (i.types[this_operand],
10552 temp);
10553 i.types[this_operand].bitfield.unspecified = 0;
10554 i.op[this_operand].regs = r;
10555 i.reg_operands++;
10556 }
10557 else if (*op_string == REGISTER_PREFIX)
10558 {
10559 as_bad (_("bad register name `%s'"), op_string);
10560 return 0;
10561 }
10562 else if (*op_string == IMMEDIATE_PREFIX)
10563 {
10564 ++op_string;
10565 if (i.jumpabsolute)
10566 {
10567 as_bad (_("immediate operand illegal with absolute jump"));
10568 return 0;
10569 }
10570 if (!i386_immediate (op_string))
10571 return 0;
10572 }
10573 else if (RC_SAE_immediate (operand_string))
10574 {
10575 /* If it is a RC or SAE immediate, do nothing. */
10576 ;
10577 }
10578 else if (is_digit_char (*op_string)
10579 || is_identifier_char (*op_string)
10580 || *op_string == '"'
10581 || *op_string == '(')
10582 {
10583 /* This is a memory reference of some sort. */
10584 char *base_string;
10585
10586 /* Start and end of displacement string expression (if found). */
10587 char *displacement_string_start;
10588 char *displacement_string_end;
10589 char *vop_start;
10590
10591 do_memory_reference:
10592 if (i.mem_operands == 1 && !maybe_adjust_templates ())
10593 return 0;
10594 if ((i.mem_operands == 1
10595 && !current_templates->start->opcode_modifier.isstring)
10596 || i.mem_operands == 2)
10597 {
10598 as_bad (_("too many memory references for `%s'"),
10599 current_templates->start->name);
10600 return 0;
10601 }
10602
10603 /* Check for base index form. We detect the base index form by
10604 looking for an ')' at the end of the operand, searching
10605 for the '(' matching it, and finding a REGISTER_PREFIX or ','
10606 after the '('. */
10607 base_string = op_string + strlen (op_string);
10608
10609 /* Handle vector operations. */
10610 vop_start = strchr (op_string, '{');
10611 if (vop_start && vop_start < base_string)
10612 {
10613 if (check_VecOperations (vop_start, base_string) == NULL)
10614 return 0;
10615 base_string = vop_start;
10616 }
10617
10618 --base_string;
10619 if (is_space_char (*base_string))
10620 --base_string;
10621
10622 /* If we only have a displacement, set-up for it to be parsed later. */
10623 displacement_string_start = op_string;
10624 displacement_string_end = base_string + 1;
10625
10626 if (*base_string == ')')
10627 {
10628 char *temp_string;
10629 unsigned int parens_balanced = 1;
10630 /* We've already checked that the number of left & right ()'s are
10631 equal, so this loop will not be infinite. */
10632 do
10633 {
10634 base_string--;
10635 if (*base_string == ')')
10636 parens_balanced++;
10637 if (*base_string == '(')
10638 parens_balanced--;
10639 }
10640 while (parens_balanced);
10641
10642 temp_string = base_string;
10643
10644 /* Skip past '(' and whitespace. */
10645 ++base_string;
10646 if (is_space_char (*base_string))
10647 ++base_string;
10648
10649 if (*base_string == ','
10650 || ((i.base_reg = parse_register (base_string, &end_op))
10651 != NULL))
10652 {
10653 displacement_string_end = temp_string;
10654
10655 i.types[this_operand].bitfield.baseindex = 1;
10656
10657 if (i.base_reg)
10658 {
10659 base_string = end_op;
10660 if (is_space_char (*base_string))
10661 ++base_string;
10662 }
10663
10664 /* There may be an index reg or scale factor here. */
10665 if (*base_string == ',')
10666 {
10667 ++base_string;
10668 if (is_space_char (*base_string))
10669 ++base_string;
10670
10671 if ((i.index_reg = parse_register (base_string, &end_op))
10672 != NULL)
10673 {
10674 base_string = end_op;
10675 if (is_space_char (*base_string))
10676 ++base_string;
10677 if (*base_string == ',')
10678 {
10679 ++base_string;
10680 if (is_space_char (*base_string))
10681 ++base_string;
10682 }
10683 else if (*base_string != ')')
10684 {
10685 as_bad (_("expecting `,' or `)' "
10686 "after index register in `%s'"),
10687 operand_string);
10688 return 0;
10689 }
10690 }
10691 else if (*base_string == REGISTER_PREFIX)
10692 {
10693 end_op = strchr (base_string, ',');
10694 if (end_op)
10695 *end_op = '\0';
10696 as_bad (_("bad register name `%s'"), base_string);
10697 return 0;
10698 }
10699
10700 /* Check for scale factor. */
10701 if (*base_string != ')')
10702 {
10703 char *end_scale = i386_scale (base_string);
10704
10705 if (!end_scale)
10706 return 0;
10707
10708 base_string = end_scale;
10709 if (is_space_char (*base_string))
10710 ++base_string;
10711 if (*base_string != ')')
10712 {
10713 as_bad (_("expecting `)' "
10714 "after scale factor in `%s'"),
10715 operand_string);
10716 return 0;
10717 }
10718 }
10719 else if (!i.index_reg)
10720 {
10721 as_bad (_("expecting index register or scale factor "
10722 "after `,'; got '%c'"),
10723 *base_string);
10724 return 0;
10725 }
10726 }
10727 else if (*base_string != ')')
10728 {
10729 as_bad (_("expecting `,' or `)' "
10730 "after base register in `%s'"),
10731 operand_string);
10732 return 0;
10733 }
10734 }
10735 else if (*base_string == REGISTER_PREFIX)
10736 {
10737 end_op = strchr (base_string, ',');
10738 if (end_op)
10739 *end_op = '\0';
10740 as_bad (_("bad register name `%s'"), base_string);
10741 return 0;
10742 }
10743 }
10744
10745 /* If there's an expression beginning the operand, parse it,
10746 assuming displacement_string_start and
10747 displacement_string_end are meaningful. */
10748 if (displacement_string_start != displacement_string_end)
10749 {
10750 if (!i386_displacement (displacement_string_start,
10751 displacement_string_end))
10752 return 0;
10753 }
10754
10755 /* Special case for (%dx) while doing input/output op. */
10756 if (i.base_reg
10757 && i.base_reg->reg_type.bitfield.instance == RegD
10758 && i.base_reg->reg_type.bitfield.word
10759 && i.index_reg == 0
10760 && i.log2_scale_factor == 0
10761 && i.seg[i.mem_operands] == 0
10762 && !operand_type_check (i.types[this_operand], disp))
10763 {
10764 i.types[this_operand] = i.base_reg->reg_type;
10765 return 1;
10766 }
10767
10768 if (i386_index_check (operand_string) == 0)
10769 return 0;
10770 i.flags[this_operand] |= Operand_Mem;
10771 if (i.mem_operands == 0)
10772 i.memop1_string = xstrdup (operand_string);
10773 i.mem_operands++;
10774 }
10775 else
10776 {
10777 /* It's not a memory operand; argh! */
10778 as_bad (_("invalid char %s beginning operand %d `%s'"),
10779 output_invalid (*op_string),
10780 this_operand + 1,
10781 op_string);
10782 return 0;
10783 }
10784 return 1; /* Normal return. */
10785 }
10786 \f
10787 /* Calculate the maximum variable size (i.e., excluding fr_fix)
10788 that an rs_machine_dependent frag may reach. */
10789
10790 unsigned int
10791 i386_frag_max_var (fragS *frag)
10792 {
10793 /* The only relaxable frags are for jumps.
10794 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
10795 gas_assert (frag->fr_type == rs_machine_dependent);
10796 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
10797 }
10798
10799 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10800 static int
10801 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
10802 {
10803 /* STT_GNU_IFUNC symbol must go through PLT. */
10804 if ((symbol_get_bfdsym (fr_symbol)->flags
10805 & BSF_GNU_INDIRECT_FUNCTION) != 0)
10806 return 0;
10807
10808 if (!S_IS_EXTERNAL (fr_symbol))
10809 /* Symbol may be weak or local. */
10810 return !S_IS_WEAK (fr_symbol);
10811
10812 /* Global symbols with non-default visibility can't be preempted. */
10813 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
10814 return 1;
10815
10816 if (fr_var != NO_RELOC)
10817 switch ((enum bfd_reloc_code_real) fr_var)
10818 {
10819 case BFD_RELOC_386_PLT32:
10820 case BFD_RELOC_X86_64_PLT32:
10821 /* Symbol with PLT relocation may be preempted. */
10822 return 0;
10823 default:
10824 abort ();
10825 }
10826
10827 /* Global symbols with default visibility in a shared library may be
10828 preempted by another definition. */
10829 return !shared;
10830 }
10831 #endif
10832
10833 /* Return the next non-empty frag. */
10834
10835 static fragS *
10836 i386_next_non_empty_frag (fragS *fragP)
10837 {
10838 /* There may be a frag with a ".fill 0" when there is no room in
10839 the current frag for frag_grow in output_insn. */
10840 for (fragP = fragP->fr_next;
10841 (fragP != NULL
10842 && fragP->fr_type == rs_fill
10843 && fragP->fr_fix == 0);
10844 fragP = fragP->fr_next)
10845 ;
10846 return fragP;
10847 }
10848
10849 /* Return the next jcc frag after BRANCH_PADDING. */
10850
10851 static fragS *
10852 i386_next_jcc_frag (fragS *fragP)
10853 {
10854 if (!fragP)
10855 return NULL;
10856
10857 if (fragP->fr_type == rs_machine_dependent
10858 && (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10859 == BRANCH_PADDING))
10860 {
10861 fragP = i386_next_non_empty_frag (fragP);
10862 if (fragP->fr_type != rs_machine_dependent)
10863 return NULL;
10864 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == COND_JUMP)
10865 return fragP;
10866 }
10867
10868 return NULL;
10869 }
10870
10871 /* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
10872
10873 static void
10874 i386_classify_machine_dependent_frag (fragS *fragP)
10875 {
10876 fragS *cmp_fragP;
10877 fragS *pad_fragP;
10878 fragS *branch_fragP;
10879 fragS *next_fragP;
10880 unsigned int max_prefix_length;
10881
10882 if (fragP->tc_frag_data.classified)
10883 return;
10884
10885 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
10886 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
10887 for (next_fragP = fragP;
10888 next_fragP != NULL;
10889 next_fragP = next_fragP->fr_next)
10890 {
10891 next_fragP->tc_frag_data.classified = 1;
10892 if (next_fragP->fr_type == rs_machine_dependent)
10893 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
10894 {
10895 case BRANCH_PADDING:
10896 /* The BRANCH_PADDING frag must be followed by a branch
10897 frag. */
10898 branch_fragP = i386_next_non_empty_frag (next_fragP);
10899 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10900 break;
10901 case FUSED_JCC_PADDING:
10902 /* Check if this is a fused jcc:
10903 FUSED_JCC_PADDING
10904 CMP like instruction
10905 BRANCH_PADDING
10906 COND_JUMP
10907 */
10908 cmp_fragP = i386_next_non_empty_frag (next_fragP);
10909 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
10910 branch_fragP = i386_next_jcc_frag (pad_fragP);
10911 if (branch_fragP)
10912 {
10913 /* The BRANCH_PADDING frag is merged with the
10914 FUSED_JCC_PADDING frag. */
10915 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
10916 /* CMP like instruction size. */
10917 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
10918 frag_wane (pad_fragP);
10919 /* Skip to branch_fragP. */
10920 next_fragP = branch_fragP;
10921 }
10922 else if (next_fragP->tc_frag_data.max_prefix_length)
10923 {
10924 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
10925 a fused jcc. */
10926 next_fragP->fr_subtype
10927 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
10928 next_fragP->tc_frag_data.max_bytes
10929 = next_fragP->tc_frag_data.max_prefix_length;
10930 /* This will be updated in the BRANCH_PREFIX scan. */
10931 next_fragP->tc_frag_data.max_prefix_length = 0;
10932 }
10933 else
10934 frag_wane (next_fragP);
10935 break;
10936 }
10937 }
10938
10939 /* Stop if there is no BRANCH_PREFIX. */
10940 if (!align_branch_prefix_size)
10941 return;
10942
10943 /* Scan for BRANCH_PREFIX. */
10944 for (; fragP != NULL; fragP = fragP->fr_next)
10945 {
10946 if (fragP->fr_type != rs_machine_dependent
10947 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
10948 != BRANCH_PREFIX))
10949 continue;
10950
10951 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
10952 COND_JUMP_PREFIX. */
10953 max_prefix_length = 0;
10954 for (next_fragP = fragP;
10955 next_fragP != NULL;
10956 next_fragP = next_fragP->fr_next)
10957 {
10958 if (next_fragP->fr_type == rs_fill)
10959 /* Skip rs_fill frags. */
10960 continue;
10961 else if (next_fragP->fr_type != rs_machine_dependent)
10962 /* Stop for all other frags. */
10963 break;
10964
10965 /* rs_machine_dependent frags. */
10966 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10967 == BRANCH_PREFIX)
10968 {
10969 /* Count BRANCH_PREFIX frags. */
10970 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
10971 {
10972 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
10973 frag_wane (next_fragP);
10974 }
10975 else
10976 max_prefix_length
10977 += next_fragP->tc_frag_data.max_bytes;
10978 }
10979 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10980 == BRANCH_PADDING)
10981 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
10982 == FUSED_JCC_PADDING))
10983 {
10984 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
10985 fragP->tc_frag_data.u.padding_fragP = next_fragP;
10986 break;
10987 }
10988 else
10989 /* Stop for other rs_machine_dependent frags. */
10990 break;
10991 }
10992
10993 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
10994
10995 /* Skip to the next frag. */
10996 fragP = next_fragP;
10997 }
10998 }
10999
11000 /* Compute padding size for
11001
11002 FUSED_JCC_PADDING
11003 CMP like instruction
11004 BRANCH_PADDING
11005 COND_JUMP/UNCOND_JUMP
11006
11007 or
11008
11009 BRANCH_PADDING
11010 COND_JUMP/UNCOND_JUMP
11011 */
11012
11013 static int
11014 i386_branch_padding_size (fragS *fragP, offsetT address)
11015 {
11016 unsigned int offset, size, padding_size;
11017 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11018
11019 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11020 if (!address)
11021 address = fragP->fr_address;
11022 address += fragP->fr_fix;
11023
11024 /* CMP like instrunction size. */
11025 size = fragP->tc_frag_data.cmp_size;
11026
11027 /* The base size of the branch frag. */
11028 size += branch_fragP->fr_fix;
11029
11030 /* Add opcode and displacement bytes for the rs_machine_dependent
11031 branch frag. */
11032 if (branch_fragP->fr_type == rs_machine_dependent)
11033 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11034
11035 /* Check if branch is within boundary and doesn't end at the last
11036 byte. */
11037 offset = address & ((1U << align_branch_power) - 1);
11038 if ((offset + size) >= (1U << align_branch_power))
11039 /* Padding needed to avoid crossing boundary. */
11040 padding_size = (1U << align_branch_power) - offset;
11041 else
11042 /* No padding needed. */
11043 padding_size = 0;
11044
11045 /* The return value may be saved in tc_frag_data.length which is
11046 unsigned byte. */
11047 if (!fits_in_unsigned_byte (padding_size))
11048 abort ();
11049
11050 return padding_size;
11051 }
11052
11053 /* i386_generic_table_relax_frag()
11054
11055 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11056 grow/shrink padding to align branch frags. Hand others to
11057 relax_frag(). */
11058
11059 long
11060 i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11061 {
11062 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11063 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11064 {
11065 long padding_size = i386_branch_padding_size (fragP, 0);
11066 long grow = padding_size - fragP->tc_frag_data.length;
11067
11068 /* When the BRANCH_PREFIX frag is used, the computed address
11069 must match the actual address and there should be no padding. */
11070 if (fragP->tc_frag_data.padding_address
11071 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11072 || padding_size))
11073 abort ();
11074
11075 /* Update the padding size. */
11076 if (grow)
11077 fragP->tc_frag_data.length = padding_size;
11078
11079 return grow;
11080 }
11081 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11082 {
11083 fragS *padding_fragP, *next_fragP;
11084 long padding_size, left_size, last_size;
11085
11086 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11087 if (!padding_fragP)
11088 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11089 return (fragP->tc_frag_data.length
11090 - fragP->tc_frag_data.last_length);
11091
11092 /* Compute the relative address of the padding frag in the very
11093 first time where the BRANCH_PREFIX frag sizes are zero. */
11094 if (!fragP->tc_frag_data.padding_address)
11095 fragP->tc_frag_data.padding_address
11096 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11097
11098 /* First update the last length from the previous interation. */
11099 left_size = fragP->tc_frag_data.prefix_length;
11100 for (next_fragP = fragP;
11101 next_fragP != padding_fragP;
11102 next_fragP = next_fragP->fr_next)
11103 if (next_fragP->fr_type == rs_machine_dependent
11104 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11105 == BRANCH_PREFIX))
11106 {
11107 if (left_size)
11108 {
11109 int max = next_fragP->tc_frag_data.max_bytes;
11110 if (max)
11111 {
11112 int size;
11113 if (max > left_size)
11114 size = left_size;
11115 else
11116 size = max;
11117 left_size -= size;
11118 next_fragP->tc_frag_data.last_length = size;
11119 }
11120 }
11121 else
11122 next_fragP->tc_frag_data.last_length = 0;
11123 }
11124
11125 /* Check the padding size for the padding frag. */
11126 padding_size = i386_branch_padding_size
11127 (padding_fragP, (fragP->fr_address
11128 + fragP->tc_frag_data.padding_address));
11129
11130 last_size = fragP->tc_frag_data.prefix_length;
11131 /* Check if there is change from the last interation. */
11132 if (padding_size == last_size)
11133 {
11134 /* Update the expected address of the padding frag. */
11135 padding_fragP->tc_frag_data.padding_address
11136 = (fragP->fr_address + padding_size
11137 + fragP->tc_frag_data.padding_address);
11138 return 0;
11139 }
11140
11141 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11142 {
11143 /* No padding if there is no sufficient room. Clear the
11144 expected address of the padding frag. */
11145 padding_fragP->tc_frag_data.padding_address = 0;
11146 padding_size = 0;
11147 }
11148 else
11149 /* Store the expected address of the padding frag. */
11150 padding_fragP->tc_frag_data.padding_address
11151 = (fragP->fr_address + padding_size
11152 + fragP->tc_frag_data.padding_address);
11153
11154 fragP->tc_frag_data.prefix_length = padding_size;
11155
11156 /* Update the length for the current interation. */
11157 left_size = padding_size;
11158 for (next_fragP = fragP;
11159 next_fragP != padding_fragP;
11160 next_fragP = next_fragP->fr_next)
11161 if (next_fragP->fr_type == rs_machine_dependent
11162 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11163 == BRANCH_PREFIX))
11164 {
11165 if (left_size)
11166 {
11167 int max = next_fragP->tc_frag_data.max_bytes;
11168 if (max)
11169 {
11170 int size;
11171 if (max > left_size)
11172 size = left_size;
11173 else
11174 size = max;
11175 left_size -= size;
11176 next_fragP->tc_frag_data.length = size;
11177 }
11178 }
11179 else
11180 next_fragP->tc_frag_data.length = 0;
11181 }
11182
11183 return (fragP->tc_frag_data.length
11184 - fragP->tc_frag_data.last_length);
11185 }
11186 return relax_frag (segment, fragP, stretch);
11187 }
11188
11189 /* md_estimate_size_before_relax()
11190
11191 Called just before relax() for rs_machine_dependent frags. The x86
11192 assembler uses these frags to handle variable size jump
11193 instructions.
11194
11195 Any symbol that is now undefined will not become defined.
11196 Return the correct fr_subtype in the frag.
11197 Return the initial "guess for variable size of frag" to caller.
11198 The guess is actually the growth beyond the fixed part. Whatever
11199 we do to grow the fixed or variable part contributes to our
11200 returned value. */
11201
11202 int
11203 md_estimate_size_before_relax (fragS *fragP, segT segment)
11204 {
11205 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11206 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
11207 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11208 {
11209 i386_classify_machine_dependent_frag (fragP);
11210 return fragP->tc_frag_data.length;
11211 }
11212
11213 /* We've already got fragP->fr_subtype right; all we have to do is
11214 check for un-relaxable symbols. On an ELF system, we can't relax
11215 an externally visible symbol, because it may be overridden by a
11216 shared library. */
11217 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
11218 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11219 || (IS_ELF
11220 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
11221 fragP->fr_var))
11222 #endif
11223 #if defined (OBJ_COFF) && defined (TE_PE)
11224 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
11225 && S_IS_WEAK (fragP->fr_symbol))
11226 #endif
11227 )
11228 {
11229 /* Symbol is undefined in this segment, or we need to keep a
11230 reloc so that weak symbols can be overridden. */
11231 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
11232 enum bfd_reloc_code_real reloc_type;
11233 unsigned char *opcode;
11234 int old_fr_fix;
11235
11236 if (fragP->fr_var != NO_RELOC)
11237 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
11238 else if (size == 2)
11239 reloc_type = BFD_RELOC_16_PCREL;
11240 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11241 else if (need_plt32_p (fragP->fr_symbol))
11242 reloc_type = BFD_RELOC_X86_64_PLT32;
11243 #endif
11244 else
11245 reloc_type = BFD_RELOC_32_PCREL;
11246
11247 old_fr_fix = fragP->fr_fix;
11248 opcode = (unsigned char *) fragP->fr_opcode;
11249
11250 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
11251 {
11252 case UNCOND_JUMP:
11253 /* Make jmp (0xeb) a (d)word displacement jump. */
11254 opcode[0] = 0xe9;
11255 fragP->fr_fix += size;
11256 fix_new (fragP, old_fr_fix, size,
11257 fragP->fr_symbol,
11258 fragP->fr_offset, 1,
11259 reloc_type);
11260 break;
11261
11262 case COND_JUMP86:
11263 if (size == 2
11264 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
11265 {
11266 /* Negate the condition, and branch past an
11267 unconditional jump. */
11268 opcode[0] ^= 1;
11269 opcode[1] = 3;
11270 /* Insert an unconditional jump. */
11271 opcode[2] = 0xe9;
11272 /* We added two extra opcode bytes, and have a two byte
11273 offset. */
11274 fragP->fr_fix += 2 + 2;
11275 fix_new (fragP, old_fr_fix + 2, 2,
11276 fragP->fr_symbol,
11277 fragP->fr_offset, 1,
11278 reloc_type);
11279 break;
11280 }
11281 /* Fall through. */
11282
11283 case COND_JUMP:
11284 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
11285 {
11286 fixS *fixP;
11287
11288 fragP->fr_fix += 1;
11289 fixP = fix_new (fragP, old_fr_fix, 1,
11290 fragP->fr_symbol,
11291 fragP->fr_offset, 1,
11292 BFD_RELOC_8_PCREL);
11293 fixP->fx_signed = 1;
11294 break;
11295 }
11296
11297 /* This changes the byte-displacement jump 0x7N
11298 to the (d)word-displacement jump 0x0f,0x8N. */
11299 opcode[1] = opcode[0] + 0x10;
11300 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11301 /* We've added an opcode byte. */
11302 fragP->fr_fix += 1 + size;
11303 fix_new (fragP, old_fr_fix + 1, size,
11304 fragP->fr_symbol,
11305 fragP->fr_offset, 1,
11306 reloc_type);
11307 break;
11308
11309 default:
11310 BAD_CASE (fragP->fr_subtype);
11311 break;
11312 }
11313 frag_wane (fragP);
11314 return fragP->fr_fix - old_fr_fix;
11315 }
11316
11317 /* Guess size depending on current relax state. Initially the relax
11318 state will correspond to a short jump and we return 1, because
11319 the variable part of the frag (the branch offset) is one byte
11320 long. However, we can relax a section more than once and in that
11321 case we must either set fr_subtype back to the unrelaxed state,
11322 or return the value for the appropriate branch. */
11323 return md_relax_table[fragP->fr_subtype].rlx_length;
11324 }
11325
11326 /* Called after relax() is finished.
11327
11328 In: Address of frag.
11329 fr_type == rs_machine_dependent.
11330 fr_subtype is what the address relaxed to.
11331
11332 Out: Any fixSs and constants are set up.
11333 Caller will turn frag into a ".space 0". */
11334
11335 void
11336 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
11337 fragS *fragP)
11338 {
11339 unsigned char *opcode;
11340 unsigned char *where_to_put_displacement = NULL;
11341 offsetT target_address;
11342 offsetT opcode_address;
11343 unsigned int extension = 0;
11344 offsetT displacement_from_opcode_start;
11345
11346 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11347 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
11348 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11349 {
11350 /* Generate nop padding. */
11351 unsigned int size = fragP->tc_frag_data.length;
11352 if (size)
11353 {
11354 if (size > fragP->tc_frag_data.max_bytes)
11355 abort ();
11356
11357 if (flag_debug)
11358 {
11359 const char *msg;
11360 const char *branch = "branch";
11361 const char *prefix = "";
11362 fragS *padding_fragP;
11363 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11364 == BRANCH_PREFIX)
11365 {
11366 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11367 switch (fragP->tc_frag_data.default_prefix)
11368 {
11369 default:
11370 abort ();
11371 break;
11372 case CS_PREFIX_OPCODE:
11373 prefix = " cs";
11374 break;
11375 case DS_PREFIX_OPCODE:
11376 prefix = " ds";
11377 break;
11378 case ES_PREFIX_OPCODE:
11379 prefix = " es";
11380 break;
11381 case FS_PREFIX_OPCODE:
11382 prefix = " fs";
11383 break;
11384 case GS_PREFIX_OPCODE:
11385 prefix = " gs";
11386 break;
11387 case SS_PREFIX_OPCODE:
11388 prefix = " ss";
11389 break;
11390 }
11391 if (padding_fragP)
11392 msg = _("%s:%u: add %d%s at 0x%llx to align "
11393 "%s within %d-byte boundary\n");
11394 else
11395 msg = _("%s:%u: add additional %d%s at 0x%llx to "
11396 "align %s within %d-byte boundary\n");
11397 }
11398 else
11399 {
11400 padding_fragP = fragP;
11401 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
11402 "%s within %d-byte boundary\n");
11403 }
11404
11405 if (padding_fragP)
11406 switch (padding_fragP->tc_frag_data.branch_type)
11407 {
11408 case align_branch_jcc:
11409 branch = "jcc";
11410 break;
11411 case align_branch_fused:
11412 branch = "fused jcc";
11413 break;
11414 case align_branch_jmp:
11415 branch = "jmp";
11416 break;
11417 case align_branch_call:
11418 branch = "call";
11419 break;
11420 case align_branch_indirect:
11421 branch = "indiret branch";
11422 break;
11423 case align_branch_ret:
11424 branch = "ret";
11425 break;
11426 default:
11427 break;
11428 }
11429
11430 fprintf (stdout, msg,
11431 fragP->fr_file, fragP->fr_line, size, prefix,
11432 (long long) fragP->fr_address, branch,
11433 1 << align_branch_power);
11434 }
11435 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11436 memset (fragP->fr_opcode,
11437 fragP->tc_frag_data.default_prefix, size);
11438 else
11439 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
11440 size, 0);
11441 fragP->fr_fix += size;
11442 }
11443 return;
11444 }
11445
11446 opcode = (unsigned char *) fragP->fr_opcode;
11447
11448 /* Address we want to reach in file space. */
11449 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
11450
11451 /* Address opcode resides at in file space. */
11452 opcode_address = fragP->fr_address + fragP->fr_fix;
11453
11454 /* Displacement from opcode start to fill into instruction. */
11455 displacement_from_opcode_start = target_address - opcode_address;
11456
11457 if ((fragP->fr_subtype & BIG) == 0)
11458 {
11459 /* Don't have to change opcode. */
11460 extension = 1; /* 1 opcode + 1 displacement */
11461 where_to_put_displacement = &opcode[1];
11462 }
11463 else
11464 {
11465 if (no_cond_jump_promotion
11466 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
11467 as_warn_where (fragP->fr_file, fragP->fr_line,
11468 _("long jump required"));
11469
11470 switch (fragP->fr_subtype)
11471 {
11472 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
11473 extension = 4; /* 1 opcode + 4 displacement */
11474 opcode[0] = 0xe9;
11475 where_to_put_displacement = &opcode[1];
11476 break;
11477
11478 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
11479 extension = 2; /* 1 opcode + 2 displacement */
11480 opcode[0] = 0xe9;
11481 where_to_put_displacement = &opcode[1];
11482 break;
11483
11484 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
11485 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
11486 extension = 5; /* 2 opcode + 4 displacement */
11487 opcode[1] = opcode[0] + 0x10;
11488 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11489 where_to_put_displacement = &opcode[2];
11490 break;
11491
11492 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
11493 extension = 3; /* 2 opcode + 2 displacement */
11494 opcode[1] = opcode[0] + 0x10;
11495 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
11496 where_to_put_displacement = &opcode[2];
11497 break;
11498
11499 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
11500 extension = 4;
11501 opcode[0] ^= 1;
11502 opcode[1] = 3;
11503 opcode[2] = 0xe9;
11504 where_to_put_displacement = &opcode[3];
11505 break;
11506
11507 default:
11508 BAD_CASE (fragP->fr_subtype);
11509 break;
11510 }
11511 }
11512
11513 /* If size if less then four we are sure that the operand fits,
11514 but if it's 4, then it could be that the displacement is larger
11515 then -/+ 2GB. */
11516 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
11517 && object_64bit
11518 && ((addressT) (displacement_from_opcode_start - extension
11519 + ((addressT) 1 << 31))
11520 > (((addressT) 2 << 31) - 1)))
11521 {
11522 as_bad_where (fragP->fr_file, fragP->fr_line,
11523 _("jump target out of range"));
11524 /* Make us emit 0. */
11525 displacement_from_opcode_start = extension;
11526 }
11527 /* Now put displacement after opcode. */
11528 md_number_to_chars ((char *) where_to_put_displacement,
11529 (valueT) (displacement_from_opcode_start - extension),
11530 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
11531 fragP->fr_fix += extension;
11532 }
11533 \f
11534 /* Apply a fixup (fixP) to segment data, once it has been determined
11535 by our caller that we have all the info we need to fix it up.
11536
11537 Parameter valP is the pointer to the value of the bits.
11538
11539 On the 386, immediates, displacements, and data pointers are all in
11540 the same (little-endian) format, so we don't need to care about which
11541 we are handling. */
11542
11543 void
11544 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
11545 {
11546 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
11547 valueT value = *valP;
11548
11549 #if !defined (TE_Mach)
11550 if (fixP->fx_pcrel)
11551 {
11552 switch (fixP->fx_r_type)
11553 {
11554 default:
11555 break;
11556
11557 case BFD_RELOC_64:
11558 fixP->fx_r_type = BFD_RELOC_64_PCREL;
11559 break;
11560 case BFD_RELOC_32:
11561 case BFD_RELOC_X86_64_32S:
11562 fixP->fx_r_type = BFD_RELOC_32_PCREL;
11563 break;
11564 case BFD_RELOC_16:
11565 fixP->fx_r_type = BFD_RELOC_16_PCREL;
11566 break;
11567 case BFD_RELOC_8:
11568 fixP->fx_r_type = BFD_RELOC_8_PCREL;
11569 break;
11570 }
11571 }
11572
11573 if (fixP->fx_addsy != NULL
11574 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
11575 || fixP->fx_r_type == BFD_RELOC_64_PCREL
11576 || fixP->fx_r_type == BFD_RELOC_16_PCREL
11577 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
11578 && !use_rela_relocations)
11579 {
11580 /* This is a hack. There should be a better way to handle this.
11581 This covers for the fact that bfd_install_relocation will
11582 subtract the current location (for partial_inplace, PC relative
11583 relocations); see more below. */
11584 #ifndef OBJ_AOUT
11585 if (IS_ELF
11586 #ifdef TE_PE
11587 || OUTPUT_FLAVOR == bfd_target_coff_flavour
11588 #endif
11589 )
11590 value += fixP->fx_where + fixP->fx_frag->fr_address;
11591 #endif
11592 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11593 if (IS_ELF)
11594 {
11595 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
11596
11597 if ((sym_seg == seg
11598 || (symbol_section_p (fixP->fx_addsy)
11599 && sym_seg != absolute_section))
11600 && !generic_force_reloc (fixP))
11601 {
11602 /* Yes, we add the values in twice. This is because
11603 bfd_install_relocation subtracts them out again. I think
11604 bfd_install_relocation is broken, but I don't dare change
11605 it. FIXME. */
11606 value += fixP->fx_where + fixP->fx_frag->fr_address;
11607 }
11608 }
11609 #endif
11610 #if defined (OBJ_COFF) && defined (TE_PE)
11611 /* For some reason, the PE format does not store a
11612 section address offset for a PC relative symbol. */
11613 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
11614 || S_IS_WEAK (fixP->fx_addsy))
11615 value += md_pcrel_from (fixP);
11616 #endif
11617 }
11618 #if defined (OBJ_COFF) && defined (TE_PE)
11619 if (fixP->fx_addsy != NULL
11620 && S_IS_WEAK (fixP->fx_addsy)
11621 /* PR 16858: Do not modify weak function references. */
11622 && ! fixP->fx_pcrel)
11623 {
11624 #if !defined (TE_PEP)
11625 /* For x86 PE weak function symbols are neither PC-relative
11626 nor do they set S_IS_FUNCTION. So the only reliable way
11627 to detect them is to check the flags of their containing
11628 section. */
11629 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
11630 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
11631 ;
11632 else
11633 #endif
11634 value -= S_GET_VALUE (fixP->fx_addsy);
11635 }
11636 #endif
11637
11638 /* Fix a few things - the dynamic linker expects certain values here,
11639 and we must not disappoint it. */
11640 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11641 if (IS_ELF && fixP->fx_addsy)
11642 switch (fixP->fx_r_type)
11643 {
11644 case BFD_RELOC_386_PLT32:
11645 case BFD_RELOC_X86_64_PLT32:
11646 /* Make the jump instruction point to the address of the operand.
11647 At runtime we merely add the offset to the actual PLT entry.
11648 NB: Subtract the offset size only for jump instructions. */
11649 if (fixP->fx_pcrel)
11650 value = -4;
11651 break;
11652
11653 case BFD_RELOC_386_TLS_GD:
11654 case BFD_RELOC_386_TLS_LDM:
11655 case BFD_RELOC_386_TLS_IE_32:
11656 case BFD_RELOC_386_TLS_IE:
11657 case BFD_RELOC_386_TLS_GOTIE:
11658 case BFD_RELOC_386_TLS_GOTDESC:
11659 case BFD_RELOC_X86_64_TLSGD:
11660 case BFD_RELOC_X86_64_TLSLD:
11661 case BFD_RELOC_X86_64_GOTTPOFF:
11662 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11663 value = 0; /* Fully resolved at runtime. No addend. */
11664 /* Fallthrough */
11665 case BFD_RELOC_386_TLS_LE:
11666 case BFD_RELOC_386_TLS_LDO_32:
11667 case BFD_RELOC_386_TLS_LE_32:
11668 case BFD_RELOC_X86_64_DTPOFF32:
11669 case BFD_RELOC_X86_64_DTPOFF64:
11670 case BFD_RELOC_X86_64_TPOFF32:
11671 case BFD_RELOC_X86_64_TPOFF64:
11672 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11673 break;
11674
11675 case BFD_RELOC_386_TLS_DESC_CALL:
11676 case BFD_RELOC_X86_64_TLSDESC_CALL:
11677 value = 0; /* Fully resolved at runtime. No addend. */
11678 S_SET_THREAD_LOCAL (fixP->fx_addsy);
11679 fixP->fx_done = 0;
11680 return;
11681
11682 case BFD_RELOC_VTABLE_INHERIT:
11683 case BFD_RELOC_VTABLE_ENTRY:
11684 fixP->fx_done = 0;
11685 return;
11686
11687 default:
11688 break;
11689 }
11690 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
11691 *valP = value;
11692 #endif /* !defined (TE_Mach) */
11693
11694 /* Are we finished with this relocation now? */
11695 if (fixP->fx_addsy == NULL)
11696 fixP->fx_done = 1;
11697 #if defined (OBJ_COFF) && defined (TE_PE)
11698 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
11699 {
11700 fixP->fx_done = 0;
11701 /* Remember value for tc_gen_reloc. */
11702 fixP->fx_addnumber = value;
11703 /* Clear out the frag for now. */
11704 value = 0;
11705 }
11706 #endif
11707 else if (use_rela_relocations)
11708 {
11709 fixP->fx_no_overflow = 1;
11710 /* Remember value for tc_gen_reloc. */
11711 fixP->fx_addnumber = value;
11712 value = 0;
11713 }
11714
11715 md_number_to_chars (p, value, fixP->fx_size);
11716 }
11717 \f
11718 const char *
11719 md_atof (int type, char *litP, int *sizeP)
11720 {
11721 /* This outputs the LITTLENUMs in REVERSE order;
11722 in accord with the bigendian 386. */
11723 return ieee_md_atof (type, litP, sizeP, FALSE);
11724 }
11725 \f
11726 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
11727
11728 static char *
11729 output_invalid (int c)
11730 {
11731 if (ISPRINT (c))
11732 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11733 "'%c'", c);
11734 else
11735 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
11736 "(0x%x)", (unsigned char) c);
11737 return output_invalid_buf;
11738 }
11739
11740 /* REG_STRING starts *before* REGISTER_PREFIX. */
11741
11742 static const reg_entry *
11743 parse_real_register (char *reg_string, char **end_op)
11744 {
11745 char *s = reg_string;
11746 char *p;
11747 char reg_name_given[MAX_REG_NAME_SIZE + 1];
11748 const reg_entry *r;
11749
11750 /* Skip possible REGISTER_PREFIX and possible whitespace. */
11751 if (*s == REGISTER_PREFIX)
11752 ++s;
11753
11754 if (is_space_char (*s))
11755 ++s;
11756
11757 p = reg_name_given;
11758 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
11759 {
11760 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
11761 return (const reg_entry *) NULL;
11762 s++;
11763 }
11764
11765 /* For naked regs, make sure that we are not dealing with an identifier.
11766 This prevents confusing an identifier like `eax_var' with register
11767 `eax'. */
11768 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
11769 return (const reg_entry *) NULL;
11770
11771 *end_op = s;
11772
11773 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
11774
11775 /* Handle floating point regs, allowing spaces in the (i) part. */
11776 if (r == i386_regtab /* %st is first entry of table */)
11777 {
11778 if (!cpu_arch_flags.bitfield.cpu8087
11779 && !cpu_arch_flags.bitfield.cpu287
11780 && !cpu_arch_flags.bitfield.cpu387)
11781 return (const reg_entry *) NULL;
11782
11783 if (is_space_char (*s))
11784 ++s;
11785 if (*s == '(')
11786 {
11787 ++s;
11788 if (is_space_char (*s))
11789 ++s;
11790 if (*s >= '0' && *s <= '7')
11791 {
11792 int fpr = *s - '0';
11793 ++s;
11794 if (is_space_char (*s))
11795 ++s;
11796 if (*s == ')')
11797 {
11798 *end_op = s + 1;
11799 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
11800 know (r);
11801 return r + fpr;
11802 }
11803 }
11804 /* We have "%st(" then garbage. */
11805 return (const reg_entry *) NULL;
11806 }
11807 }
11808
11809 if (r == NULL || allow_pseudo_reg)
11810 return r;
11811
11812 if (operand_type_all_zero (&r->reg_type))
11813 return (const reg_entry *) NULL;
11814
11815 if ((r->reg_type.bitfield.dword
11816 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
11817 || r->reg_type.bitfield.class == RegCR
11818 || r->reg_type.bitfield.class == RegDR
11819 || r->reg_type.bitfield.class == RegTR)
11820 && !cpu_arch_flags.bitfield.cpui386)
11821 return (const reg_entry *) NULL;
11822
11823 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
11824 return (const reg_entry *) NULL;
11825
11826 if (!cpu_arch_flags.bitfield.cpuavx512f)
11827 {
11828 if (r->reg_type.bitfield.zmmword
11829 || r->reg_type.bitfield.class == RegMask)
11830 return (const reg_entry *) NULL;
11831
11832 if (!cpu_arch_flags.bitfield.cpuavx)
11833 {
11834 if (r->reg_type.bitfield.ymmword)
11835 return (const reg_entry *) NULL;
11836
11837 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
11838 return (const reg_entry *) NULL;
11839 }
11840 }
11841
11842 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
11843 return (const reg_entry *) NULL;
11844
11845 /* Don't allow fake index register unless allow_index_reg isn't 0. */
11846 if (!allow_index_reg && r->reg_num == RegIZ)
11847 return (const reg_entry *) NULL;
11848
11849 /* Upper 16 vector registers are only available with VREX in 64bit
11850 mode, and require EVEX encoding. */
11851 if (r->reg_flags & RegVRex)
11852 {
11853 if (!cpu_arch_flags.bitfield.cpuavx512f
11854 || flag_code != CODE_64BIT)
11855 return (const reg_entry *) NULL;
11856
11857 i.vec_encoding = vex_encoding_evex;
11858 }
11859
11860 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
11861 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
11862 && flag_code != CODE_64BIT)
11863 return (const reg_entry *) NULL;
11864
11865 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
11866 && !intel_syntax)
11867 return (const reg_entry *) NULL;
11868
11869 return r;
11870 }
11871
11872 /* REG_STRING starts *before* REGISTER_PREFIX. */
11873
11874 static const reg_entry *
11875 parse_register (char *reg_string, char **end_op)
11876 {
11877 const reg_entry *r;
11878
11879 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
11880 r = parse_real_register (reg_string, end_op);
11881 else
11882 r = NULL;
11883 if (!r)
11884 {
11885 char *save = input_line_pointer;
11886 char c;
11887 symbolS *symbolP;
11888
11889 input_line_pointer = reg_string;
11890 c = get_symbol_name (&reg_string);
11891 symbolP = symbol_find (reg_string);
11892 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
11893 {
11894 const expressionS *e = symbol_get_value_expression (symbolP);
11895
11896 know (e->X_op == O_register);
11897 know (e->X_add_number >= 0
11898 && (valueT) e->X_add_number < i386_regtab_size);
11899 r = i386_regtab + e->X_add_number;
11900 if ((r->reg_flags & RegVRex))
11901 i.vec_encoding = vex_encoding_evex;
11902 *end_op = input_line_pointer;
11903 }
11904 *input_line_pointer = c;
11905 input_line_pointer = save;
11906 }
11907 return r;
11908 }
11909
11910 int
11911 i386_parse_name (char *name, expressionS *e, char *nextcharP)
11912 {
11913 const reg_entry *r;
11914 char *end = input_line_pointer;
11915
11916 *end = *nextcharP;
11917 r = parse_register (name, &input_line_pointer);
11918 if (r && end <= input_line_pointer)
11919 {
11920 *nextcharP = *input_line_pointer;
11921 *input_line_pointer = 0;
11922 e->X_op = O_register;
11923 e->X_add_number = r - i386_regtab;
11924 return 1;
11925 }
11926 input_line_pointer = end;
11927 *end = 0;
11928 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
11929 }
11930
11931 void
11932 md_operand (expressionS *e)
11933 {
11934 char *end;
11935 const reg_entry *r;
11936
11937 switch (*input_line_pointer)
11938 {
11939 case REGISTER_PREFIX:
11940 r = parse_real_register (input_line_pointer, &end);
11941 if (r)
11942 {
11943 e->X_op = O_register;
11944 e->X_add_number = r - i386_regtab;
11945 input_line_pointer = end;
11946 }
11947 break;
11948
11949 case '[':
11950 gas_assert (intel_syntax);
11951 end = input_line_pointer++;
11952 expression (e);
11953 if (*input_line_pointer == ']')
11954 {
11955 ++input_line_pointer;
11956 e->X_op_symbol = make_expr_symbol (e);
11957 e->X_add_symbol = NULL;
11958 e->X_add_number = 0;
11959 e->X_op = O_index;
11960 }
11961 else
11962 {
11963 e->X_op = O_absent;
11964 input_line_pointer = end;
11965 }
11966 break;
11967 }
11968 }
11969
11970 \f
11971 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11972 const char *md_shortopts = "kVQ:sqnO::";
11973 #else
11974 const char *md_shortopts = "qnO::";
11975 #endif
11976
11977 #define OPTION_32 (OPTION_MD_BASE + 0)
11978 #define OPTION_64 (OPTION_MD_BASE + 1)
11979 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
11980 #define OPTION_MARCH (OPTION_MD_BASE + 3)
11981 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
11982 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
11983 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
11984 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
11985 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
11986 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
11987 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
11988 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
11989 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
11990 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
11991 #define OPTION_X32 (OPTION_MD_BASE + 14)
11992 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
11993 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
11994 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
11995 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
11996 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
11997 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
11998 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
11999 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12000 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
12001 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
12002 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
12003 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
12004 #define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12005 #define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12006 #define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
12007 #define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
12008
12009 struct option md_longopts[] =
12010 {
12011 {"32", no_argument, NULL, OPTION_32},
12012 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12013 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12014 {"64", no_argument, NULL, OPTION_64},
12015 #endif
12016 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12017 {"x32", no_argument, NULL, OPTION_X32},
12018 {"mshared", no_argument, NULL, OPTION_MSHARED},
12019 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
12020 #endif
12021 {"divide", no_argument, NULL, OPTION_DIVIDE},
12022 {"march", required_argument, NULL, OPTION_MARCH},
12023 {"mtune", required_argument, NULL, OPTION_MTUNE},
12024 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12025 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12026 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12027 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
12028 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
12029 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
12030 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
12031 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
12032 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
12033 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
12034 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12035 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
12036 # if defined (TE_PE) || defined (TE_PEP)
12037 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12038 #endif
12039 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
12040 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
12041 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
12042 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
12043 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12044 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12045 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
12046 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
12047 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12048 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
12049 {NULL, no_argument, NULL, 0}
12050 };
12051 size_t md_longopts_size = sizeof (md_longopts);
12052
12053 int
12054 md_parse_option (int c, const char *arg)
12055 {
12056 unsigned int j;
12057 char *arch, *next, *saved, *type;
12058
12059 switch (c)
12060 {
12061 case 'n':
12062 optimize_align_code = 0;
12063 break;
12064
12065 case 'q':
12066 quiet_warnings = 1;
12067 break;
12068
12069 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12070 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12071 should be emitted or not. FIXME: Not implemented. */
12072 case 'Q':
12073 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12074 return 0;
12075 break;
12076
12077 /* -V: SVR4 argument to print version ID. */
12078 case 'V':
12079 print_version_id ();
12080 break;
12081
12082 /* -k: Ignore for FreeBSD compatibility. */
12083 case 'k':
12084 break;
12085
12086 case 's':
12087 /* -s: On i386 Solaris, this tells the native assembler to use
12088 .stab instead of .stab.excl. We always use .stab anyhow. */
12089 break;
12090
12091 case OPTION_MSHARED:
12092 shared = 1;
12093 break;
12094
12095 case OPTION_X86_USED_NOTE:
12096 if (strcasecmp (arg, "yes") == 0)
12097 x86_used_note = 1;
12098 else if (strcasecmp (arg, "no") == 0)
12099 x86_used_note = 0;
12100 else
12101 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12102 break;
12103
12104
12105 #endif
12106 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12107 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12108 case OPTION_64:
12109 {
12110 const char **list, **l;
12111
12112 list = bfd_target_list ();
12113 for (l = list; *l != NULL; l++)
12114 if (CONST_STRNEQ (*l, "elf64-x86-64")
12115 || strcmp (*l, "coff-x86-64") == 0
12116 || strcmp (*l, "pe-x86-64") == 0
12117 || strcmp (*l, "pei-x86-64") == 0
12118 || strcmp (*l, "mach-o-x86-64") == 0)
12119 {
12120 default_arch = "x86_64";
12121 break;
12122 }
12123 if (*l == NULL)
12124 as_fatal (_("no compiled in support for x86_64"));
12125 free (list);
12126 }
12127 break;
12128 #endif
12129
12130 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12131 case OPTION_X32:
12132 if (IS_ELF)
12133 {
12134 const char **list, **l;
12135
12136 list = bfd_target_list ();
12137 for (l = list; *l != NULL; l++)
12138 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12139 {
12140 default_arch = "x86_64:32";
12141 break;
12142 }
12143 if (*l == NULL)
12144 as_fatal (_("no compiled in support for 32bit x86_64"));
12145 free (list);
12146 }
12147 else
12148 as_fatal (_("32bit x86_64 is only supported for ELF"));
12149 break;
12150 #endif
12151
12152 case OPTION_32:
12153 default_arch = "i386";
12154 break;
12155
12156 case OPTION_DIVIDE:
12157 #ifdef SVR4_COMMENT_CHARS
12158 {
12159 char *n, *t;
12160 const char *s;
12161
12162 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
12163 t = n;
12164 for (s = i386_comment_chars; *s != '\0'; s++)
12165 if (*s != '/')
12166 *t++ = *s;
12167 *t = '\0';
12168 i386_comment_chars = n;
12169 }
12170 #endif
12171 break;
12172
12173 case OPTION_MARCH:
12174 saved = xstrdup (arg);
12175 arch = saved;
12176 /* Allow -march=+nosse. */
12177 if (*arch == '+')
12178 arch++;
12179 do
12180 {
12181 if (*arch == '.')
12182 as_fatal (_("invalid -march= option: `%s'"), arg);
12183 next = strchr (arch, '+');
12184 if (next)
12185 *next++ = '\0';
12186 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12187 {
12188 if (strcmp (arch, cpu_arch [j].name) == 0)
12189 {
12190 /* Processor. */
12191 if (! cpu_arch[j].flags.bitfield.cpui386)
12192 continue;
12193
12194 cpu_arch_name = cpu_arch[j].name;
12195 cpu_sub_arch_name = NULL;
12196 cpu_arch_flags = cpu_arch[j].flags;
12197 cpu_arch_isa = cpu_arch[j].type;
12198 cpu_arch_isa_flags = cpu_arch[j].flags;
12199 if (!cpu_arch_tune_set)
12200 {
12201 cpu_arch_tune = cpu_arch_isa;
12202 cpu_arch_tune_flags = cpu_arch_isa_flags;
12203 }
12204 break;
12205 }
12206 else if (*cpu_arch [j].name == '.'
12207 && strcmp (arch, cpu_arch [j].name + 1) == 0)
12208 {
12209 /* ISA extension. */
12210 i386_cpu_flags flags;
12211
12212 flags = cpu_flags_or (cpu_arch_flags,
12213 cpu_arch[j].flags);
12214
12215 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12216 {
12217 if (cpu_sub_arch_name)
12218 {
12219 char *name = cpu_sub_arch_name;
12220 cpu_sub_arch_name = concat (name,
12221 cpu_arch[j].name,
12222 (const char *) NULL);
12223 free (name);
12224 }
12225 else
12226 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
12227 cpu_arch_flags = flags;
12228 cpu_arch_isa_flags = flags;
12229 }
12230 else
12231 cpu_arch_isa_flags
12232 = cpu_flags_or (cpu_arch_isa_flags,
12233 cpu_arch[j].flags);
12234 break;
12235 }
12236 }
12237
12238 if (j >= ARRAY_SIZE (cpu_arch))
12239 {
12240 /* Disable an ISA extension. */
12241 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12242 if (strcmp (arch, cpu_noarch [j].name) == 0)
12243 {
12244 i386_cpu_flags flags;
12245
12246 flags = cpu_flags_and_not (cpu_arch_flags,
12247 cpu_noarch[j].flags);
12248 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
12249 {
12250 if (cpu_sub_arch_name)
12251 {
12252 char *name = cpu_sub_arch_name;
12253 cpu_sub_arch_name = concat (arch,
12254 (const char *) NULL);
12255 free (name);
12256 }
12257 else
12258 cpu_sub_arch_name = xstrdup (arch);
12259 cpu_arch_flags = flags;
12260 cpu_arch_isa_flags = flags;
12261 }
12262 break;
12263 }
12264
12265 if (j >= ARRAY_SIZE (cpu_noarch))
12266 j = ARRAY_SIZE (cpu_arch);
12267 }
12268
12269 if (j >= ARRAY_SIZE (cpu_arch))
12270 as_fatal (_("invalid -march= option: `%s'"), arg);
12271
12272 arch = next;
12273 }
12274 while (next != NULL);
12275 free (saved);
12276 break;
12277
12278 case OPTION_MTUNE:
12279 if (*arg == '.')
12280 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12281 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12282 {
12283 if (strcmp (arg, cpu_arch [j].name) == 0)
12284 {
12285 cpu_arch_tune_set = 1;
12286 cpu_arch_tune = cpu_arch [j].type;
12287 cpu_arch_tune_flags = cpu_arch[j].flags;
12288 break;
12289 }
12290 }
12291 if (j >= ARRAY_SIZE (cpu_arch))
12292 as_fatal (_("invalid -mtune= option: `%s'"), arg);
12293 break;
12294
12295 case OPTION_MMNEMONIC:
12296 if (strcasecmp (arg, "att") == 0)
12297 intel_mnemonic = 0;
12298 else if (strcasecmp (arg, "intel") == 0)
12299 intel_mnemonic = 1;
12300 else
12301 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
12302 break;
12303
12304 case OPTION_MSYNTAX:
12305 if (strcasecmp (arg, "att") == 0)
12306 intel_syntax = 0;
12307 else if (strcasecmp (arg, "intel") == 0)
12308 intel_syntax = 1;
12309 else
12310 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
12311 break;
12312
12313 case OPTION_MINDEX_REG:
12314 allow_index_reg = 1;
12315 break;
12316
12317 case OPTION_MNAKED_REG:
12318 allow_naked_reg = 1;
12319 break;
12320
12321 case OPTION_MSSE2AVX:
12322 sse2avx = 1;
12323 break;
12324
12325 case OPTION_MSSE_CHECK:
12326 if (strcasecmp (arg, "error") == 0)
12327 sse_check = check_error;
12328 else if (strcasecmp (arg, "warning") == 0)
12329 sse_check = check_warning;
12330 else if (strcasecmp (arg, "none") == 0)
12331 sse_check = check_none;
12332 else
12333 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
12334 break;
12335
12336 case OPTION_MOPERAND_CHECK:
12337 if (strcasecmp (arg, "error") == 0)
12338 operand_check = check_error;
12339 else if (strcasecmp (arg, "warning") == 0)
12340 operand_check = check_warning;
12341 else if (strcasecmp (arg, "none") == 0)
12342 operand_check = check_none;
12343 else
12344 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
12345 break;
12346
12347 case OPTION_MAVXSCALAR:
12348 if (strcasecmp (arg, "128") == 0)
12349 avxscalar = vex128;
12350 else if (strcasecmp (arg, "256") == 0)
12351 avxscalar = vex256;
12352 else
12353 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
12354 break;
12355
12356 case OPTION_MVEXWIG:
12357 if (strcmp (arg, "0") == 0)
12358 vexwig = vexw0;
12359 else if (strcmp (arg, "1") == 0)
12360 vexwig = vexw1;
12361 else
12362 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
12363 break;
12364
12365 case OPTION_MADD_BND_PREFIX:
12366 add_bnd_prefix = 1;
12367 break;
12368
12369 case OPTION_MEVEXLIG:
12370 if (strcmp (arg, "128") == 0)
12371 evexlig = evexl128;
12372 else if (strcmp (arg, "256") == 0)
12373 evexlig = evexl256;
12374 else if (strcmp (arg, "512") == 0)
12375 evexlig = evexl512;
12376 else
12377 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
12378 break;
12379
12380 case OPTION_MEVEXRCIG:
12381 if (strcmp (arg, "rne") == 0)
12382 evexrcig = rne;
12383 else if (strcmp (arg, "rd") == 0)
12384 evexrcig = rd;
12385 else if (strcmp (arg, "ru") == 0)
12386 evexrcig = ru;
12387 else if (strcmp (arg, "rz") == 0)
12388 evexrcig = rz;
12389 else
12390 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
12391 break;
12392
12393 case OPTION_MEVEXWIG:
12394 if (strcmp (arg, "0") == 0)
12395 evexwig = evexw0;
12396 else if (strcmp (arg, "1") == 0)
12397 evexwig = evexw1;
12398 else
12399 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
12400 break;
12401
12402 # if defined (TE_PE) || defined (TE_PEP)
12403 case OPTION_MBIG_OBJ:
12404 use_big_obj = 1;
12405 break;
12406 #endif
12407
12408 case OPTION_MOMIT_LOCK_PREFIX:
12409 if (strcasecmp (arg, "yes") == 0)
12410 omit_lock_prefix = 1;
12411 else if (strcasecmp (arg, "no") == 0)
12412 omit_lock_prefix = 0;
12413 else
12414 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
12415 break;
12416
12417 case OPTION_MFENCE_AS_LOCK_ADD:
12418 if (strcasecmp (arg, "yes") == 0)
12419 avoid_fence = 1;
12420 else if (strcasecmp (arg, "no") == 0)
12421 avoid_fence = 0;
12422 else
12423 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
12424 break;
12425
12426 case OPTION_MRELAX_RELOCATIONS:
12427 if (strcasecmp (arg, "yes") == 0)
12428 generate_relax_relocations = 1;
12429 else if (strcasecmp (arg, "no") == 0)
12430 generate_relax_relocations = 0;
12431 else
12432 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
12433 break;
12434
12435 case OPTION_MALIGN_BRANCH_BOUNDARY:
12436 {
12437 char *end;
12438 long int align = strtoul (arg, &end, 0);
12439 if (*end == '\0')
12440 {
12441 if (align == 0)
12442 {
12443 align_branch_power = 0;
12444 break;
12445 }
12446 else if (align >= 16)
12447 {
12448 int align_power;
12449 for (align_power = 0;
12450 (align & 1) == 0;
12451 align >>= 1, align_power++)
12452 continue;
12453 /* Limit alignment power to 31. */
12454 if (align == 1 && align_power < 32)
12455 {
12456 align_branch_power = align_power;
12457 break;
12458 }
12459 }
12460 }
12461 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
12462 }
12463 break;
12464
12465 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
12466 {
12467 char *end;
12468 int align = strtoul (arg, &end, 0);
12469 /* Some processors only support 5 prefixes. */
12470 if (*end == '\0' && align >= 0 && align < 6)
12471 {
12472 align_branch_prefix_size = align;
12473 break;
12474 }
12475 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
12476 arg);
12477 }
12478 break;
12479
12480 case OPTION_MALIGN_BRANCH:
12481 align_branch = 0;
12482 saved = xstrdup (arg);
12483 type = saved;
12484 do
12485 {
12486 next = strchr (type, '+');
12487 if (next)
12488 *next++ = '\0';
12489 if (strcasecmp (type, "jcc") == 0)
12490 align_branch |= align_branch_jcc_bit;
12491 else if (strcasecmp (type, "fused") == 0)
12492 align_branch |= align_branch_fused_bit;
12493 else if (strcasecmp (type, "jmp") == 0)
12494 align_branch |= align_branch_jmp_bit;
12495 else if (strcasecmp (type, "call") == 0)
12496 align_branch |= align_branch_call_bit;
12497 else if (strcasecmp (type, "ret") == 0)
12498 align_branch |= align_branch_ret_bit;
12499 else if (strcasecmp (type, "indirect") == 0)
12500 align_branch |= align_branch_indirect_bit;
12501 else
12502 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
12503 type = next;
12504 }
12505 while (next != NULL);
12506 free (saved);
12507 break;
12508
12509 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
12510 align_branch_power = 5;
12511 align_branch_prefix_size = 5;
12512 align_branch = (align_branch_jcc_bit
12513 | align_branch_fused_bit
12514 | align_branch_jmp_bit);
12515 break;
12516
12517 case OPTION_MAMD64:
12518 intel64 = 0;
12519 break;
12520
12521 case OPTION_MINTEL64:
12522 intel64 = 1;
12523 break;
12524
12525 case 'O':
12526 if (arg == NULL)
12527 {
12528 optimize = 1;
12529 /* Turn off -Os. */
12530 optimize_for_space = 0;
12531 }
12532 else if (*arg == 's')
12533 {
12534 optimize_for_space = 1;
12535 /* Turn on all encoding optimizations. */
12536 optimize = INT_MAX;
12537 }
12538 else
12539 {
12540 optimize = atoi (arg);
12541 /* Turn off -Os. */
12542 optimize_for_space = 0;
12543 }
12544 break;
12545
12546 default:
12547 return 0;
12548 }
12549 return 1;
12550 }
12551
12552 #define MESSAGE_TEMPLATE \
12553 " "
12554
12555 static char *
12556 output_message (FILE *stream, char *p, char *message, char *start,
12557 int *left_p, const char *name, int len)
12558 {
12559 int size = sizeof (MESSAGE_TEMPLATE);
12560 int left = *left_p;
12561
12562 /* Reserve 2 spaces for ", " or ",\0" */
12563 left -= len + 2;
12564
12565 /* Check if there is any room. */
12566 if (left >= 0)
12567 {
12568 if (p != start)
12569 {
12570 *p++ = ',';
12571 *p++ = ' ';
12572 }
12573 p = mempcpy (p, name, len);
12574 }
12575 else
12576 {
12577 /* Output the current message now and start a new one. */
12578 *p++ = ',';
12579 *p = '\0';
12580 fprintf (stream, "%s\n", message);
12581 p = start;
12582 left = size - (start - message) - len - 2;
12583
12584 gas_assert (left >= 0);
12585
12586 p = mempcpy (p, name, len);
12587 }
12588
12589 *left_p = left;
12590 return p;
12591 }
12592
12593 static void
12594 show_arch (FILE *stream, int ext, int check)
12595 {
12596 static char message[] = MESSAGE_TEMPLATE;
12597 char *start = message + 27;
12598 char *p;
12599 int size = sizeof (MESSAGE_TEMPLATE);
12600 int left;
12601 const char *name;
12602 int len;
12603 unsigned int j;
12604
12605 p = start;
12606 left = size - (start - message);
12607 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
12608 {
12609 /* Should it be skipped? */
12610 if (cpu_arch [j].skip)
12611 continue;
12612
12613 name = cpu_arch [j].name;
12614 len = cpu_arch [j].len;
12615 if (*name == '.')
12616 {
12617 /* It is an extension. Skip if we aren't asked to show it. */
12618 if (ext)
12619 {
12620 name++;
12621 len--;
12622 }
12623 else
12624 continue;
12625 }
12626 else if (ext)
12627 {
12628 /* It is an processor. Skip if we show only extension. */
12629 continue;
12630 }
12631 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
12632 {
12633 /* It is an impossible processor - skip. */
12634 continue;
12635 }
12636
12637 p = output_message (stream, p, message, start, &left, name, len);
12638 }
12639
12640 /* Display disabled extensions. */
12641 if (ext)
12642 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
12643 {
12644 name = cpu_noarch [j].name;
12645 len = cpu_noarch [j].len;
12646 p = output_message (stream, p, message, start, &left, name,
12647 len);
12648 }
12649
12650 *p = '\0';
12651 fprintf (stream, "%s\n", message);
12652 }
12653
12654 void
12655 md_show_usage (FILE *stream)
12656 {
12657 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12658 fprintf (stream, _("\
12659 -Qy, -Qn ignored\n\
12660 -V print assembler version number\n\
12661 -k ignored\n"));
12662 #endif
12663 fprintf (stream, _("\
12664 -n Do not optimize code alignment\n\
12665 -q quieten some warnings\n"));
12666 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12667 fprintf (stream, _("\
12668 -s ignored\n"));
12669 #endif
12670 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12671 || defined (TE_PE) || defined (TE_PEP))
12672 fprintf (stream, _("\
12673 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
12674 #endif
12675 #ifdef SVR4_COMMENT_CHARS
12676 fprintf (stream, _("\
12677 --divide do not treat `/' as a comment character\n"));
12678 #else
12679 fprintf (stream, _("\
12680 --divide ignored\n"));
12681 #endif
12682 fprintf (stream, _("\
12683 -march=CPU[,+EXTENSION...]\n\
12684 generate code for CPU and EXTENSION, CPU is one of:\n"));
12685 show_arch (stream, 0, 1);
12686 fprintf (stream, _("\
12687 EXTENSION is combination of:\n"));
12688 show_arch (stream, 1, 0);
12689 fprintf (stream, _("\
12690 -mtune=CPU optimize for CPU, CPU is one of:\n"));
12691 show_arch (stream, 0, 0);
12692 fprintf (stream, _("\
12693 -msse2avx encode SSE instructions with VEX prefix\n"));
12694 fprintf (stream, _("\
12695 -msse-check=[none|error|warning] (default: warning)\n\
12696 check SSE instructions\n"));
12697 fprintf (stream, _("\
12698 -moperand-check=[none|error|warning] (default: warning)\n\
12699 check operand combinations for validity\n"));
12700 fprintf (stream, _("\
12701 -mavxscalar=[128|256] (default: 128)\n\
12702 encode scalar AVX instructions with specific vector\n\
12703 length\n"));
12704 fprintf (stream, _("\
12705 -mvexwig=[0|1] (default: 0)\n\
12706 encode VEX instructions with specific VEX.W value\n\
12707 for VEX.W bit ignored instructions\n"));
12708 fprintf (stream, _("\
12709 -mevexlig=[128|256|512] (default: 128)\n\
12710 encode scalar EVEX instructions with specific vector\n\
12711 length\n"));
12712 fprintf (stream, _("\
12713 -mevexwig=[0|1] (default: 0)\n\
12714 encode EVEX instructions with specific EVEX.W value\n\
12715 for EVEX.W bit ignored instructions\n"));
12716 fprintf (stream, _("\
12717 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
12718 encode EVEX instructions with specific EVEX.RC value\n\
12719 for SAE-only ignored instructions\n"));
12720 fprintf (stream, _("\
12721 -mmnemonic=[att|intel] "));
12722 if (SYSV386_COMPAT)
12723 fprintf (stream, _("(default: att)\n"));
12724 else
12725 fprintf (stream, _("(default: intel)\n"));
12726 fprintf (stream, _("\
12727 use AT&T/Intel mnemonic\n"));
12728 fprintf (stream, _("\
12729 -msyntax=[att|intel] (default: att)\n\
12730 use AT&T/Intel syntax\n"));
12731 fprintf (stream, _("\
12732 -mindex-reg support pseudo index registers\n"));
12733 fprintf (stream, _("\
12734 -mnaked-reg don't require `%%' prefix for registers\n"));
12735 fprintf (stream, _("\
12736 -madd-bnd-prefix add BND prefix for all valid branches\n"));
12737 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12738 fprintf (stream, _("\
12739 -mshared disable branch optimization for shared code\n"));
12740 fprintf (stream, _("\
12741 -mx86-used-note=[no|yes] "));
12742 if (DEFAULT_X86_USED_NOTE)
12743 fprintf (stream, _("(default: yes)\n"));
12744 else
12745 fprintf (stream, _("(default: no)\n"));
12746 fprintf (stream, _("\
12747 generate x86 used ISA and feature properties\n"));
12748 #endif
12749 #if defined (TE_PE) || defined (TE_PEP)
12750 fprintf (stream, _("\
12751 -mbig-obj generate big object files\n"));
12752 #endif
12753 fprintf (stream, _("\
12754 -momit-lock-prefix=[no|yes] (default: no)\n\
12755 strip all lock prefixes\n"));
12756 fprintf (stream, _("\
12757 -mfence-as-lock-add=[no|yes] (default: no)\n\
12758 encode lfence, mfence and sfence as\n\
12759 lock addl $0x0, (%%{re}sp)\n"));
12760 fprintf (stream, _("\
12761 -mrelax-relocations=[no|yes] "));
12762 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
12763 fprintf (stream, _("(default: yes)\n"));
12764 else
12765 fprintf (stream, _("(default: no)\n"));
12766 fprintf (stream, _("\
12767 generate relax relocations\n"));
12768 fprintf (stream, _("\
12769 -malign-branch-boundary=NUM (default: 0)\n\
12770 align branches within NUM byte boundary\n"));
12771 fprintf (stream, _("\
12772 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
12773 TYPE is combination of jcc, fused, jmp, call, ret,\n\
12774 indirect\n\
12775 specify types of branches to align\n"));
12776 fprintf (stream, _("\
12777 -malign-branch-prefix-size=NUM (default: 5)\n\
12778 align branches with NUM prefixes per instruction\n"));
12779 fprintf (stream, _("\
12780 -mbranches-within-32B-boundaries\n\
12781 align branches within 32 byte boundary\n"));
12782 fprintf (stream, _("\
12783 -mamd64 accept only AMD64 ISA [default]\n"));
12784 fprintf (stream, _("\
12785 -mintel64 accept only Intel64 ISA\n"));
12786 }
12787
12788 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
12789 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12790 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12791
12792 /* Pick the target format to use. */
12793
12794 const char *
12795 i386_target_format (void)
12796 {
12797 if (!strncmp (default_arch, "x86_64", 6))
12798 {
12799 update_code_flag (CODE_64BIT, 1);
12800 if (default_arch[6] == '\0')
12801 x86_elf_abi = X86_64_ABI;
12802 else
12803 x86_elf_abi = X86_64_X32_ABI;
12804 }
12805 else if (!strcmp (default_arch, "i386"))
12806 update_code_flag (CODE_32BIT, 1);
12807 else if (!strcmp (default_arch, "iamcu"))
12808 {
12809 update_code_flag (CODE_32BIT, 1);
12810 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
12811 {
12812 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
12813 cpu_arch_name = "iamcu";
12814 cpu_sub_arch_name = NULL;
12815 cpu_arch_flags = iamcu_flags;
12816 cpu_arch_isa = PROCESSOR_IAMCU;
12817 cpu_arch_isa_flags = iamcu_flags;
12818 if (!cpu_arch_tune_set)
12819 {
12820 cpu_arch_tune = cpu_arch_isa;
12821 cpu_arch_tune_flags = cpu_arch_isa_flags;
12822 }
12823 }
12824 else if (cpu_arch_isa != PROCESSOR_IAMCU)
12825 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
12826 cpu_arch_name);
12827 }
12828 else
12829 as_fatal (_("unknown architecture"));
12830
12831 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
12832 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12833 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
12834 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
12835
12836 switch (OUTPUT_FLAVOR)
12837 {
12838 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
12839 case bfd_target_aout_flavour:
12840 return AOUT_TARGET_FORMAT;
12841 #endif
12842 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
12843 # if defined (TE_PE) || defined (TE_PEP)
12844 case bfd_target_coff_flavour:
12845 if (flag_code == CODE_64BIT)
12846 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
12847 else
12848 return "pe-i386";
12849 # elif defined (TE_GO32)
12850 case bfd_target_coff_flavour:
12851 return "coff-go32";
12852 # else
12853 case bfd_target_coff_flavour:
12854 return "coff-i386";
12855 # endif
12856 #endif
12857 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
12858 case bfd_target_elf_flavour:
12859 {
12860 const char *format;
12861
12862 switch (x86_elf_abi)
12863 {
12864 default:
12865 format = ELF_TARGET_FORMAT;
12866 #ifndef TE_SOLARIS
12867 tls_get_addr = "___tls_get_addr";
12868 #endif
12869 break;
12870 case X86_64_ABI:
12871 use_rela_relocations = 1;
12872 object_64bit = 1;
12873 #ifndef TE_SOLARIS
12874 tls_get_addr = "__tls_get_addr";
12875 #endif
12876 format = ELF_TARGET_FORMAT64;
12877 break;
12878 case X86_64_X32_ABI:
12879 use_rela_relocations = 1;
12880 object_64bit = 1;
12881 #ifndef TE_SOLARIS
12882 tls_get_addr = "__tls_get_addr";
12883 #endif
12884 disallow_64bit_reloc = 1;
12885 format = ELF_TARGET_FORMAT32;
12886 break;
12887 }
12888 if (cpu_arch_isa == PROCESSOR_L1OM)
12889 {
12890 if (x86_elf_abi != X86_64_ABI)
12891 as_fatal (_("Intel L1OM is 64bit only"));
12892 return ELF_TARGET_L1OM_FORMAT;
12893 }
12894 else if (cpu_arch_isa == PROCESSOR_K1OM)
12895 {
12896 if (x86_elf_abi != X86_64_ABI)
12897 as_fatal (_("Intel K1OM is 64bit only"));
12898 return ELF_TARGET_K1OM_FORMAT;
12899 }
12900 else if (cpu_arch_isa == PROCESSOR_IAMCU)
12901 {
12902 if (x86_elf_abi != I386_ABI)
12903 as_fatal (_("Intel MCU is 32bit only"));
12904 return ELF_TARGET_IAMCU_FORMAT;
12905 }
12906 else
12907 return format;
12908 }
12909 #endif
12910 #if defined (OBJ_MACH_O)
12911 case bfd_target_mach_o_flavour:
12912 if (flag_code == CODE_64BIT)
12913 {
12914 use_rela_relocations = 1;
12915 object_64bit = 1;
12916 return "mach-o-x86-64";
12917 }
12918 else
12919 return "mach-o-i386";
12920 #endif
12921 default:
12922 abort ();
12923 return NULL;
12924 }
12925 }
12926
12927 #endif /* OBJ_MAYBE_ more than one */
12928 \f
12929 symbolS *
12930 md_undefined_symbol (char *name)
12931 {
12932 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
12933 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
12934 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
12935 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
12936 {
12937 if (!GOT_symbol)
12938 {
12939 if (symbol_find (name))
12940 as_bad (_("GOT already in symbol table"));
12941 GOT_symbol = symbol_new (name, undefined_section,
12942 (valueT) 0, &zero_address_frag);
12943 };
12944 return GOT_symbol;
12945 }
12946 return 0;
12947 }
12948
12949 /* Round up a section size to the appropriate boundary. */
12950
12951 valueT
12952 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
12953 {
12954 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
12955 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
12956 {
12957 /* For a.out, force the section size to be aligned. If we don't do
12958 this, BFD will align it for us, but it will not write out the
12959 final bytes of the section. This may be a bug in BFD, but it is
12960 easier to fix it here since that is how the other a.out targets
12961 work. */
12962 int align;
12963
12964 align = bfd_section_alignment (segment);
12965 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
12966 }
12967 #endif
12968
12969 return size;
12970 }
12971
12972 /* On the i386, PC-relative offsets are relative to the start of the
12973 next instruction. That is, the address of the offset, plus its
12974 size, since the offset is always the last part of the insn. */
12975
12976 long
12977 md_pcrel_from (fixS *fixP)
12978 {
12979 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
12980 }
12981
12982 #ifndef I386COFF
12983
12984 static void
12985 s_bss (int ignore ATTRIBUTE_UNUSED)
12986 {
12987 int temp;
12988
12989 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12990 if (IS_ELF)
12991 obj_elf_section_change_hook ();
12992 #endif
12993 temp = get_absolute_expression ();
12994 subseg_set (bss_section, (subsegT) temp);
12995 demand_empty_rest_of_line ();
12996 }
12997
12998 #endif
12999
13000 /* Remember constant directive. */
13001
13002 void
13003 i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13004 {
13005 if (last_insn.kind != last_insn_directive
13006 && (bfd_section_flags (now_seg) & SEC_CODE))
13007 {
13008 last_insn.seg = now_seg;
13009 last_insn.kind = last_insn_directive;
13010 last_insn.name = "constant directive";
13011 last_insn.file = as_where (&last_insn.line);
13012 }
13013 }
13014
13015 void
13016 i386_validate_fix (fixS *fixp)
13017 {
13018 if (fixp->fx_subsy)
13019 {
13020 if (fixp->fx_subsy == GOT_symbol)
13021 {
13022 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13023 {
13024 if (!object_64bit)
13025 abort ();
13026 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13027 if (fixp->fx_tcbit2)
13028 fixp->fx_r_type = (fixp->fx_tcbit
13029 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13030 : BFD_RELOC_X86_64_GOTPCRELX);
13031 else
13032 #endif
13033 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13034 }
13035 else
13036 {
13037 if (!object_64bit)
13038 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13039 else
13040 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13041 }
13042 fixp->fx_subsy = 0;
13043 }
13044 }
13045 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13046 else if (!object_64bit)
13047 {
13048 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13049 && fixp->fx_tcbit2)
13050 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13051 }
13052 #endif
13053 }
13054
13055 arelent *
13056 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
13057 {
13058 arelent *rel;
13059 bfd_reloc_code_real_type code;
13060
13061 switch (fixp->fx_r_type)
13062 {
13063 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13064 case BFD_RELOC_SIZE32:
13065 case BFD_RELOC_SIZE64:
13066 if (S_IS_DEFINED (fixp->fx_addsy)
13067 && !S_IS_EXTERNAL (fixp->fx_addsy))
13068 {
13069 /* Resolve size relocation against local symbol to size of
13070 the symbol plus addend. */
13071 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13072 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13073 && !fits_in_unsigned_long (value))
13074 as_bad_where (fixp->fx_file, fixp->fx_line,
13075 _("symbol size computation overflow"));
13076 fixp->fx_addsy = NULL;
13077 fixp->fx_subsy = NULL;
13078 md_apply_fix (fixp, (valueT *) &value, NULL);
13079 return NULL;
13080 }
13081 #endif
13082 /* Fall through. */
13083
13084 case BFD_RELOC_X86_64_PLT32:
13085 case BFD_RELOC_X86_64_GOT32:
13086 case BFD_RELOC_X86_64_GOTPCREL:
13087 case BFD_RELOC_X86_64_GOTPCRELX:
13088 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13089 case BFD_RELOC_386_PLT32:
13090 case BFD_RELOC_386_GOT32:
13091 case BFD_RELOC_386_GOT32X:
13092 case BFD_RELOC_386_GOTOFF:
13093 case BFD_RELOC_386_GOTPC:
13094 case BFD_RELOC_386_TLS_GD:
13095 case BFD_RELOC_386_TLS_LDM:
13096 case BFD_RELOC_386_TLS_LDO_32:
13097 case BFD_RELOC_386_TLS_IE_32:
13098 case BFD_RELOC_386_TLS_IE:
13099 case BFD_RELOC_386_TLS_GOTIE:
13100 case BFD_RELOC_386_TLS_LE_32:
13101 case BFD_RELOC_386_TLS_LE:
13102 case BFD_RELOC_386_TLS_GOTDESC:
13103 case BFD_RELOC_386_TLS_DESC_CALL:
13104 case BFD_RELOC_X86_64_TLSGD:
13105 case BFD_RELOC_X86_64_TLSLD:
13106 case BFD_RELOC_X86_64_DTPOFF32:
13107 case BFD_RELOC_X86_64_DTPOFF64:
13108 case BFD_RELOC_X86_64_GOTTPOFF:
13109 case BFD_RELOC_X86_64_TPOFF32:
13110 case BFD_RELOC_X86_64_TPOFF64:
13111 case BFD_RELOC_X86_64_GOTOFF64:
13112 case BFD_RELOC_X86_64_GOTPC32:
13113 case BFD_RELOC_X86_64_GOT64:
13114 case BFD_RELOC_X86_64_GOTPCREL64:
13115 case BFD_RELOC_X86_64_GOTPC64:
13116 case BFD_RELOC_X86_64_GOTPLT64:
13117 case BFD_RELOC_X86_64_PLTOFF64:
13118 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13119 case BFD_RELOC_X86_64_TLSDESC_CALL:
13120 case BFD_RELOC_RVA:
13121 case BFD_RELOC_VTABLE_ENTRY:
13122 case BFD_RELOC_VTABLE_INHERIT:
13123 #ifdef TE_PE
13124 case BFD_RELOC_32_SECREL:
13125 #endif
13126 code = fixp->fx_r_type;
13127 break;
13128 case BFD_RELOC_X86_64_32S:
13129 if (!fixp->fx_pcrel)
13130 {
13131 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
13132 code = fixp->fx_r_type;
13133 break;
13134 }
13135 /* Fall through. */
13136 default:
13137 if (fixp->fx_pcrel)
13138 {
13139 switch (fixp->fx_size)
13140 {
13141 default:
13142 as_bad_where (fixp->fx_file, fixp->fx_line,
13143 _("can not do %d byte pc-relative relocation"),
13144 fixp->fx_size);
13145 code = BFD_RELOC_32_PCREL;
13146 break;
13147 case 1: code = BFD_RELOC_8_PCREL; break;
13148 case 2: code = BFD_RELOC_16_PCREL; break;
13149 case 4: code = BFD_RELOC_32_PCREL; break;
13150 #ifdef BFD64
13151 case 8: code = BFD_RELOC_64_PCREL; break;
13152 #endif
13153 }
13154 }
13155 else
13156 {
13157 switch (fixp->fx_size)
13158 {
13159 default:
13160 as_bad_where (fixp->fx_file, fixp->fx_line,
13161 _("can not do %d byte relocation"),
13162 fixp->fx_size);
13163 code = BFD_RELOC_32;
13164 break;
13165 case 1: code = BFD_RELOC_8; break;
13166 case 2: code = BFD_RELOC_16; break;
13167 case 4: code = BFD_RELOC_32; break;
13168 #ifdef BFD64
13169 case 8: code = BFD_RELOC_64; break;
13170 #endif
13171 }
13172 }
13173 break;
13174 }
13175
13176 if ((code == BFD_RELOC_32
13177 || code == BFD_RELOC_32_PCREL
13178 || code == BFD_RELOC_X86_64_32S)
13179 && GOT_symbol
13180 && fixp->fx_addsy == GOT_symbol)
13181 {
13182 if (!object_64bit)
13183 code = BFD_RELOC_386_GOTPC;
13184 else
13185 code = BFD_RELOC_X86_64_GOTPC32;
13186 }
13187 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
13188 && GOT_symbol
13189 && fixp->fx_addsy == GOT_symbol)
13190 {
13191 code = BFD_RELOC_X86_64_GOTPC64;
13192 }
13193
13194 rel = XNEW (arelent);
13195 rel->sym_ptr_ptr = XNEW (asymbol *);
13196 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
13197
13198 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
13199
13200 if (!use_rela_relocations)
13201 {
13202 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
13203 vtable entry to be used in the relocation's section offset. */
13204 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
13205 rel->address = fixp->fx_offset;
13206 #if defined (OBJ_COFF) && defined (TE_PE)
13207 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
13208 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
13209 else
13210 #endif
13211 rel->addend = 0;
13212 }
13213 /* Use the rela in 64bit mode. */
13214 else
13215 {
13216 if (disallow_64bit_reloc)
13217 switch (code)
13218 {
13219 case BFD_RELOC_X86_64_DTPOFF64:
13220 case BFD_RELOC_X86_64_TPOFF64:
13221 case BFD_RELOC_64_PCREL:
13222 case BFD_RELOC_X86_64_GOTOFF64:
13223 case BFD_RELOC_X86_64_GOT64:
13224 case BFD_RELOC_X86_64_GOTPCREL64:
13225 case BFD_RELOC_X86_64_GOTPC64:
13226 case BFD_RELOC_X86_64_GOTPLT64:
13227 case BFD_RELOC_X86_64_PLTOFF64:
13228 as_bad_where (fixp->fx_file, fixp->fx_line,
13229 _("cannot represent relocation type %s in x32 mode"),
13230 bfd_get_reloc_code_name (code));
13231 break;
13232 default:
13233 break;
13234 }
13235
13236 if (!fixp->fx_pcrel)
13237 rel->addend = fixp->fx_offset;
13238 else
13239 switch (code)
13240 {
13241 case BFD_RELOC_X86_64_PLT32:
13242 case BFD_RELOC_X86_64_GOT32:
13243 case BFD_RELOC_X86_64_GOTPCREL:
13244 case BFD_RELOC_X86_64_GOTPCRELX:
13245 case BFD_RELOC_X86_64_REX_GOTPCRELX:
13246 case BFD_RELOC_X86_64_TLSGD:
13247 case BFD_RELOC_X86_64_TLSLD:
13248 case BFD_RELOC_X86_64_GOTTPOFF:
13249 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
13250 case BFD_RELOC_X86_64_TLSDESC_CALL:
13251 rel->addend = fixp->fx_offset - fixp->fx_size;
13252 break;
13253 default:
13254 rel->addend = (section->vma
13255 - fixp->fx_size
13256 + fixp->fx_addnumber
13257 + md_pcrel_from (fixp));
13258 break;
13259 }
13260 }
13261
13262 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
13263 if (rel->howto == NULL)
13264 {
13265 as_bad_where (fixp->fx_file, fixp->fx_line,
13266 _("cannot represent relocation type %s"),
13267 bfd_get_reloc_code_name (code));
13268 /* Set howto to a garbage value so that we can keep going. */
13269 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
13270 gas_assert (rel->howto != NULL);
13271 }
13272
13273 return rel;
13274 }
13275
13276 #include "tc-i386-intel.c"
13277
13278 void
13279 tc_x86_parse_to_dw2regnum (expressionS *exp)
13280 {
13281 int saved_naked_reg;
13282 char saved_register_dot;
13283
13284 saved_naked_reg = allow_naked_reg;
13285 allow_naked_reg = 1;
13286 saved_register_dot = register_chars['.'];
13287 register_chars['.'] = '.';
13288 allow_pseudo_reg = 1;
13289 expression_and_evaluate (exp);
13290 allow_pseudo_reg = 0;
13291 register_chars['.'] = saved_register_dot;
13292 allow_naked_reg = saved_naked_reg;
13293
13294 if (exp->X_op == O_register && exp->X_add_number >= 0)
13295 {
13296 if ((addressT) exp->X_add_number < i386_regtab_size)
13297 {
13298 exp->X_op = O_constant;
13299 exp->X_add_number = i386_regtab[exp->X_add_number]
13300 .dw2_regnum[flag_code >> 1];
13301 }
13302 else
13303 exp->X_op = O_illegal;
13304 }
13305 }
13306
13307 void
13308 tc_x86_frame_initial_instructions (void)
13309 {
13310 static unsigned int sp_regno[2];
13311
13312 if (!sp_regno[flag_code >> 1])
13313 {
13314 char *saved_input = input_line_pointer;
13315 char sp[][4] = {"esp", "rsp"};
13316 expressionS exp;
13317
13318 input_line_pointer = sp[flag_code >> 1];
13319 tc_x86_parse_to_dw2regnum (&exp);
13320 gas_assert (exp.X_op == O_constant);
13321 sp_regno[flag_code >> 1] = exp.X_add_number;
13322 input_line_pointer = saved_input;
13323 }
13324
13325 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
13326 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
13327 }
13328
13329 int
13330 x86_dwarf2_addr_size (void)
13331 {
13332 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13333 if (x86_elf_abi == X86_64_X32_ABI)
13334 return 4;
13335 #endif
13336 return bfd_arch_bits_per_address (stdoutput) / 8;
13337 }
13338
13339 int
13340 i386_elf_section_type (const char *str, size_t len)
13341 {
13342 if (flag_code == CODE_64BIT
13343 && len == sizeof ("unwind") - 1
13344 && strncmp (str, "unwind", 6) == 0)
13345 return SHT_X86_64_UNWIND;
13346
13347 return -1;
13348 }
13349
13350 #ifdef TE_SOLARIS
13351 void
13352 i386_solaris_fix_up_eh_frame (segT sec)
13353 {
13354 if (flag_code == CODE_64BIT)
13355 elf_section_type (sec) = SHT_X86_64_UNWIND;
13356 }
13357 #endif
13358
13359 #ifdef TE_PE
13360 void
13361 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
13362 {
13363 expressionS exp;
13364
13365 exp.X_op = O_secrel;
13366 exp.X_add_symbol = symbol;
13367 exp.X_add_number = 0;
13368 emit_expr (&exp, size);
13369 }
13370 #endif
13371
13372 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13373 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
13374
13375 bfd_vma
13376 x86_64_section_letter (int letter, const char **ptr_msg)
13377 {
13378 if (flag_code == CODE_64BIT)
13379 {
13380 if (letter == 'l')
13381 return SHF_X86_64_LARGE;
13382
13383 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
13384 }
13385 else
13386 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
13387 return -1;
13388 }
13389
13390 bfd_vma
13391 x86_64_section_word (char *str, size_t len)
13392 {
13393 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
13394 return SHF_X86_64_LARGE;
13395
13396 return -1;
13397 }
13398
13399 static void
13400 handle_large_common (int small ATTRIBUTE_UNUSED)
13401 {
13402 if (flag_code != CODE_64BIT)
13403 {
13404 s_comm_internal (0, elf_common_parse);
13405 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
13406 }
13407 else
13408 {
13409 static segT lbss_section;
13410 asection *saved_com_section_ptr = elf_com_section_ptr;
13411 asection *saved_bss_section = bss_section;
13412
13413 if (lbss_section == NULL)
13414 {
13415 flagword applicable;
13416 segT seg = now_seg;
13417 subsegT subseg = now_subseg;
13418
13419 /* The .lbss section is for local .largecomm symbols. */
13420 lbss_section = subseg_new (".lbss", 0);
13421 applicable = bfd_applicable_section_flags (stdoutput);
13422 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
13423 seg_info (lbss_section)->bss = 1;
13424
13425 subseg_set (seg, subseg);
13426 }
13427
13428 elf_com_section_ptr = &_bfd_elf_large_com_section;
13429 bss_section = lbss_section;
13430
13431 s_comm_internal (0, elf_common_parse);
13432
13433 elf_com_section_ptr = saved_com_section_ptr;
13434 bss_section = saved_bss_section;
13435 }
13436 }
13437 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.355149 seconds and 4 git commands to generate.