tc-ppc.c md_apply_fix tidy
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2015 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 #define XMMWORD_MNEM_SUFFIX 'x'
85 #define YMMWORD_MNEM_SUFFIX 'y'
86 #define ZMMWORD_MNEM_SUFFIX 'z'
87 /* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91 #define END_OF_INSN '\0'
92
93 /*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100 typedef struct
101 {
102 const insn_template *start;
103 const insn_template *end;
104 }
105 templates;
106
107 /* 386 operand encoding bytes: see 386 book for details of this. */
108 typedef struct
109 {
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113 }
114 modrm_byte;
115
116 /* x86-64 extension prefix. */
117 typedef int rex_byte;
118
119 /* 386 opcode byte to code indirect addressing. */
120 typedef struct
121 {
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125 }
126 sib_byte;
127
128 /* x86 arch names, types and features */
129 typedef struct
130 {
131 const char *name; /* arch name */
132 unsigned int len; /* arch string length */
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
135 unsigned int skip; /* show_arch should skip this. */
136 unsigned int negated; /* turn off indicated flags. */
137 }
138 arch_entry;
139
140 static void update_code_flag (int, int);
141 static void set_code_flag (int);
142 static void set_16bit_gcc_code_flag (int);
143 static void set_intel_syntax (int);
144 static void set_intel_mnemonic (int);
145 static void set_allow_index_reg (int);
146 static void set_check (int);
147 static void set_cpu_arch (int);
148 #ifdef TE_PE
149 static void pe_directive_secrel (int);
150 #endif
151 static void signed_cons (int);
152 static char *output_invalid (int c);
153 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
154 const char *);
155 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
156 const char *);
157 static int i386_att_operand (char *);
158 static int i386_intel_operand (char *, int);
159 static int i386_intel_simplify (expressionS *);
160 static int i386_intel_parse_name (const char *, expressionS *);
161 static const reg_entry *parse_register (char *, char **);
162 static char *parse_insn (char *, char *);
163 static char *parse_operands (char *, const char *);
164 static void swap_operands (void);
165 static void swap_2_operands (int, int);
166 static void optimize_imm (void);
167 static void optimize_disp (void);
168 static const insn_template *match_template (void);
169 static int check_string (void);
170 static int process_suffix (void);
171 static int check_byte_reg (void);
172 static int check_long_reg (void);
173 static int check_qword_reg (void);
174 static int check_word_reg (void);
175 static int finalize_imm (void);
176 static int process_operands (void);
177 static const seg_entry *build_modrm_byte (void);
178 static void output_insn (void);
179 static void output_imm (fragS *, offsetT);
180 static void output_disp (fragS *, offsetT);
181 #ifndef I386COFF
182 static void s_bss (int);
183 #endif
184 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
185 static void handle_large_common (int small ATTRIBUTE_UNUSED);
186 #endif
187
188 static const char *default_arch = DEFAULT_ARCH;
189
190 /* This struct describes rounding control and SAE in the instruction. */
191 struct RC_Operation
192 {
193 enum rc_type
194 {
195 rne = 0,
196 rd,
197 ru,
198 rz,
199 saeonly
200 } type;
201 int operand;
202 };
203
204 static struct RC_Operation rc_op;
205
206 /* The struct describes masking, applied to OPERAND in the instruction.
207 MASK is a pointer to the corresponding mask register. ZEROING tells
208 whether merging or zeroing mask is used. */
209 struct Mask_Operation
210 {
211 const reg_entry *mask;
212 unsigned int zeroing;
213 /* The operand where this operation is associated. */
214 int operand;
215 };
216
217 static struct Mask_Operation mask_op;
218
219 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
220 broadcast factor. */
221 struct Broadcast_Operation
222 {
223 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
224 int type;
225
226 /* Index of broadcasted operand. */
227 int operand;
228 };
229
230 static struct Broadcast_Operation broadcast_op;
231
232 /* VEX prefix. */
233 typedef struct
234 {
235 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
236 unsigned char bytes[4];
237 unsigned int length;
238 /* Destination or source register specifier. */
239 const reg_entry *register_specifier;
240 } vex_prefix;
241
242 /* 'md_assemble ()' gathers together information and puts it into a
243 i386_insn. */
244
245 union i386_op
246 {
247 expressionS *disps;
248 expressionS *imms;
249 const reg_entry *regs;
250 };
251
252 enum i386_error
253 {
254 operand_size_mismatch,
255 operand_type_mismatch,
256 register_type_mismatch,
257 number_of_operands_mismatch,
258 invalid_instruction_suffix,
259 bad_imm4,
260 old_gcc_only,
261 unsupported_with_intel_mnemonic,
262 unsupported_syntax,
263 unsupported,
264 invalid_vsib_address,
265 invalid_vector_register_set,
266 unsupported_vector_index_register,
267 unsupported_broadcast,
268 broadcast_not_on_src_operand,
269 broadcast_needed,
270 unsupported_masking,
271 mask_not_on_destination,
272 no_default_mask,
273 unsupported_rc_sae,
274 rc_sae_operand_not_last_imm,
275 invalid_register_operand,
276 try_vector_disp8
277 };
278
279 struct _i386_insn
280 {
281 /* TM holds the template for the insn were currently assembling. */
282 insn_template tm;
283
284 /* SUFFIX holds the instruction size suffix for byte, word, dword
285 or qword, if given. */
286 char suffix;
287
288 /* OPERANDS gives the number of given operands. */
289 unsigned int operands;
290
291 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
292 of given register, displacement, memory operands and immediate
293 operands. */
294 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
295
296 /* TYPES [i] is the type (see above #defines) which tells us how to
297 use OP[i] for the corresponding operand. */
298 i386_operand_type types[MAX_OPERANDS];
299
300 /* Displacement expression, immediate expression, or register for each
301 operand. */
302 union i386_op op[MAX_OPERANDS];
303
304 /* Flags for operands. */
305 unsigned int flags[MAX_OPERANDS];
306 #define Operand_PCrel 1
307
308 /* Relocation type for operand */
309 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
310
311 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
312 the base index byte below. */
313 const reg_entry *base_reg;
314 const reg_entry *index_reg;
315 unsigned int log2_scale_factor;
316
317 /* SEG gives the seg_entries of this insn. They are zero unless
318 explicit segment overrides are given. */
319 const seg_entry *seg[2];
320
321 /* PREFIX holds all the given prefix opcodes (usually null).
322 PREFIXES is the number of prefix opcodes. */
323 unsigned int prefixes;
324 unsigned char prefix[MAX_PREFIXES];
325
326 /* RM and SIB are the modrm byte and the sib byte where the
327 addressing modes of this insn are encoded. */
328 modrm_byte rm;
329 rex_byte rex;
330 rex_byte vrex;
331 sib_byte sib;
332 vex_prefix vex;
333
334 /* Masking attributes. */
335 struct Mask_Operation *mask;
336
337 /* Rounding control and SAE attributes. */
338 struct RC_Operation *rounding;
339
340 /* Broadcasting attributes. */
341 struct Broadcast_Operation *broadcast;
342
343 /* Compressed disp8*N attribute. */
344 unsigned int memshift;
345
346 /* Swap operand in encoding. */
347 unsigned int swap_operand;
348
349 /* Prefer 8bit or 32bit displacement in encoding. */
350 enum
351 {
352 disp_encoding_default = 0,
353 disp_encoding_8bit,
354 disp_encoding_32bit
355 } disp_encoding;
356
357 /* REP prefix. */
358 const char *rep_prefix;
359
360 /* HLE prefix. */
361 const char *hle_prefix;
362
363 /* Have BND prefix. */
364 const char *bnd_prefix;
365
366 /* Need VREX to support upper 16 registers. */
367 int need_vrex;
368
369 /* Error message. */
370 enum i386_error error;
371 };
372
373 typedef struct _i386_insn i386_insn;
374
375 /* Link RC type with corresponding string, that'll be looked for in
376 asm. */
377 struct RC_name
378 {
379 enum rc_type type;
380 const char *name;
381 unsigned int len;
382 };
383
384 static const struct RC_name RC_NamesTable[] =
385 {
386 { rne, STRING_COMMA_LEN ("rn-sae") },
387 { rd, STRING_COMMA_LEN ("rd-sae") },
388 { ru, STRING_COMMA_LEN ("ru-sae") },
389 { rz, STRING_COMMA_LEN ("rz-sae") },
390 { saeonly, STRING_COMMA_LEN ("sae") },
391 };
392
393 /* List of chars besides those in app.c:symbol_chars that can start an
394 operand. Used to prevent the scrubber eating vital white-space. */
395 const char extra_symbol_chars[] = "*%-([{"
396 #ifdef LEX_AT
397 "@"
398 #endif
399 #ifdef LEX_QM
400 "?"
401 #endif
402 ;
403
404 #if (defined (TE_I386AIX) \
405 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
406 && !defined (TE_GNU) \
407 && !defined (TE_LINUX) \
408 && !defined (TE_NACL) \
409 && !defined (TE_NETWARE) \
410 && !defined (TE_FreeBSD) \
411 && !defined (TE_DragonFly) \
412 && !defined (TE_NetBSD)))
413 /* This array holds the chars that always start a comment. If the
414 pre-processor is disabled, these aren't very useful. The option
415 --divide will remove '/' from this list. */
416 const char *i386_comment_chars = "#/";
417 #define SVR4_COMMENT_CHARS 1
418 #define PREFIX_SEPARATOR '\\'
419
420 #else
421 const char *i386_comment_chars = "#";
422 #define PREFIX_SEPARATOR '/'
423 #endif
424
425 /* This array holds the chars that only start a comment at the beginning of
426 a line. If the line seems to have the form '# 123 filename'
427 .line and .file directives will appear in the pre-processed output.
428 Note that input_file.c hand checks for '#' at the beginning of the
429 first line of the input file. This is because the compiler outputs
430 #NO_APP at the beginning of its output.
431 Also note that comments started like this one will always work if
432 '/' isn't otherwise defined. */
433 const char line_comment_chars[] = "#/";
434
435 const char line_separator_chars[] = ";";
436
437 /* Chars that can be used to separate mant from exp in floating point
438 nums. */
439 const char EXP_CHARS[] = "eE";
440
441 /* Chars that mean this number is a floating point constant
442 As in 0f12.456
443 or 0d1.2345e12. */
444 const char FLT_CHARS[] = "fFdDxX";
445
446 /* Tables for lexical analysis. */
447 static char mnemonic_chars[256];
448 static char register_chars[256];
449 static char operand_chars[256];
450 static char identifier_chars[256];
451 static char digit_chars[256];
452
453 /* Lexical macros. */
454 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
455 #define is_operand_char(x) (operand_chars[(unsigned char) x])
456 #define is_register_char(x) (register_chars[(unsigned char) x])
457 #define is_space_char(x) ((x) == ' ')
458 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
459 #define is_digit_char(x) (digit_chars[(unsigned char) x])
460
461 /* All non-digit non-letter characters that may occur in an operand. */
462 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
463
464 /* md_assemble() always leaves the strings it's passed unaltered. To
465 effect this we maintain a stack of saved characters that we've smashed
466 with '\0's (indicating end of strings for various sub-fields of the
467 assembler instruction). */
468 static char save_stack[32];
469 static char *save_stack_p;
470 #define END_STRING_AND_SAVE(s) \
471 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
472 #define RESTORE_END_STRING(s) \
473 do { *(s) = *--save_stack_p; } while (0)
474
475 /* The instruction we're assembling. */
476 static i386_insn i;
477
478 /* Possible templates for current insn. */
479 static const templates *current_templates;
480
481 /* Per instruction expressionS buffers: max displacements & immediates. */
482 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
483 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
484
485 /* Current operand we are working on. */
486 static int this_operand = -1;
487
488 /* We support four different modes. FLAG_CODE variable is used to distinguish
489 these. */
490
491 enum flag_code {
492 CODE_32BIT,
493 CODE_16BIT,
494 CODE_64BIT };
495
496 static enum flag_code flag_code;
497 static unsigned int object_64bit;
498 static unsigned int disallow_64bit_reloc;
499 static int use_rela_relocations = 0;
500
501 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
502 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
503 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
504
505 /* The ELF ABI to use. */
506 enum x86_elf_abi
507 {
508 I386_ABI,
509 X86_64_ABI,
510 X86_64_X32_ABI
511 };
512
513 static enum x86_elf_abi x86_elf_abi = I386_ABI;
514 #endif
515
516 #if defined (TE_PE) || defined (TE_PEP)
517 /* Use big object file format. */
518 static int use_big_obj = 0;
519 #endif
520
521 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
522 /* 1 if generating code for a shared library. */
523 static int shared = 0;
524 #endif
525
526 /* 1 for intel syntax,
527 0 if att syntax. */
528 static int intel_syntax = 0;
529
530 /* 1 for intel mnemonic,
531 0 if att mnemonic. */
532 static int intel_mnemonic = !SYSV386_COMPAT;
533
534 /* 1 if support old (<= 2.8.1) versions of gcc. */
535 static int old_gcc = OLDGCC_COMPAT;
536
537 /* 1 if pseudo registers are permitted. */
538 static int allow_pseudo_reg = 0;
539
540 /* 1 if register prefix % not required. */
541 static int allow_naked_reg = 0;
542
543 /* 1 if the assembler should add BND prefix for all control-tranferring
544 instructions supporting it, even if this prefix wasn't specified
545 explicitly. */
546 static int add_bnd_prefix = 0;
547
548 /* 1 if pseudo index register, eiz/riz, is allowed . */
549 static int allow_index_reg = 0;
550
551 /* 1 if the assembler should ignore LOCK prefix, even if it was
552 specified explicitly. */
553 static int omit_lock_prefix = 0;
554
555 static enum check_kind
556 {
557 check_none = 0,
558 check_warning,
559 check_error
560 }
561 sse_check, operand_check = check_warning;
562
563 /* Register prefix used for error message. */
564 static const char *register_prefix = "%";
565
566 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
567 leave, push, and pop instructions so that gcc has the same stack
568 frame as in 32 bit mode. */
569 static char stackop_size = '\0';
570
571 /* Non-zero to optimize code alignment. */
572 int optimize_align_code = 1;
573
574 /* Non-zero to quieten some warnings. */
575 static int quiet_warnings = 0;
576
577 /* CPU name. */
578 static const char *cpu_arch_name = NULL;
579 static char *cpu_sub_arch_name = NULL;
580
581 /* CPU feature flags. */
582 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
583
584 /* If we have selected a cpu we are generating instructions for. */
585 static int cpu_arch_tune_set = 0;
586
587 /* Cpu we are generating instructions for. */
588 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
589
590 /* CPU feature flags of cpu we are generating instructions for. */
591 static i386_cpu_flags cpu_arch_tune_flags;
592
593 /* CPU instruction set architecture used. */
594 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
595
596 /* CPU feature flags of instruction set architecture used. */
597 i386_cpu_flags cpu_arch_isa_flags;
598
599 /* If set, conditional jumps are not automatically promoted to handle
600 larger than a byte offset. */
601 static unsigned int no_cond_jump_promotion = 0;
602
603 /* Encode SSE instructions with VEX prefix. */
604 static unsigned int sse2avx;
605
606 /* Encode scalar AVX instructions with specific vector length. */
607 static enum
608 {
609 vex128 = 0,
610 vex256
611 } avxscalar;
612
613 /* Encode scalar EVEX LIG instructions with specific vector length. */
614 static enum
615 {
616 evexl128 = 0,
617 evexl256,
618 evexl512
619 } evexlig;
620
621 /* Encode EVEX WIG instructions with specific evex.w. */
622 static enum
623 {
624 evexw0 = 0,
625 evexw1
626 } evexwig;
627
628 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
629 static enum rc_type evexrcig = rne;
630
631 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
632 static symbolS *GOT_symbol;
633
634 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
635 unsigned int x86_dwarf2_return_column;
636
637 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
638 int x86_cie_data_alignment;
639
640 /* Interface to relax_segment.
641 There are 3 major relax states for 386 jump insns because the
642 different types of jumps add different sizes to frags when we're
643 figuring out what sort of jump to choose to reach a given label. */
644
645 /* Types. */
646 #define UNCOND_JUMP 0
647 #define COND_JUMP 1
648 #define COND_JUMP86 2
649
650 /* Sizes. */
651 #define CODE16 1
652 #define SMALL 0
653 #define SMALL16 (SMALL | CODE16)
654 #define BIG 2
655 #define BIG16 (BIG | CODE16)
656
657 #ifndef INLINE
658 #ifdef __GNUC__
659 #define INLINE __inline__
660 #else
661 #define INLINE
662 #endif
663 #endif
664
665 #define ENCODE_RELAX_STATE(type, size) \
666 ((relax_substateT) (((type) << 2) | (size)))
667 #define TYPE_FROM_RELAX_STATE(s) \
668 ((s) >> 2)
669 #define DISP_SIZE_FROM_RELAX_STATE(s) \
670 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
671
672 /* This table is used by relax_frag to promote short jumps to long
673 ones where necessary. SMALL (short) jumps may be promoted to BIG
674 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
675 don't allow a short jump in a 32 bit code segment to be promoted to
676 a 16 bit offset jump because it's slower (requires data size
677 prefix), and doesn't work, unless the destination is in the bottom
678 64k of the code segment (The top 16 bits of eip are zeroed). */
679
680 const relax_typeS md_relax_table[] =
681 {
682 /* The fields are:
683 1) most positive reach of this state,
684 2) most negative reach of this state,
685 3) how many bytes this mode will have in the variable part of the frag
686 4) which index into the table to try if we can't fit into this one. */
687
688 /* UNCOND_JUMP states. */
689 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
690 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
691 /* dword jmp adds 4 bytes to frag:
692 0 extra opcode bytes, 4 displacement bytes. */
693 {0, 0, 4, 0},
694 /* word jmp adds 2 byte2 to frag:
695 0 extra opcode bytes, 2 displacement bytes. */
696 {0, 0, 2, 0},
697
698 /* COND_JUMP states. */
699 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
700 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
701 /* dword conditionals adds 5 bytes to frag:
702 1 extra opcode byte, 4 displacement bytes. */
703 {0, 0, 5, 0},
704 /* word conditionals add 3 bytes to frag:
705 1 extra opcode byte, 2 displacement bytes. */
706 {0, 0, 3, 0},
707
708 /* COND_JUMP86 states. */
709 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
710 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
711 /* dword conditionals adds 5 bytes to frag:
712 1 extra opcode byte, 4 displacement bytes. */
713 {0, 0, 5, 0},
714 /* word conditionals add 4 bytes to frag:
715 1 displacement byte and a 3 byte long branch insn. */
716 {0, 0, 4, 0}
717 };
718
719 static const arch_entry cpu_arch[] =
720 {
721 /* Do not replace the first two entries - i386_target_format()
722 relies on them being there in this order. */
723 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
724 CPU_GENERIC32_FLAGS, 0, 0 },
725 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
726 CPU_GENERIC64_FLAGS, 0, 0 },
727 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
728 CPU_NONE_FLAGS, 0, 0 },
729 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
730 CPU_I186_FLAGS, 0, 0 },
731 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
732 CPU_I286_FLAGS, 0, 0 },
733 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
734 CPU_I386_FLAGS, 0, 0 },
735 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
736 CPU_I486_FLAGS, 0, 0 },
737 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
738 CPU_I586_FLAGS, 0, 0 },
739 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
740 CPU_I686_FLAGS, 0, 0 },
741 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
742 CPU_I586_FLAGS, 0, 0 },
743 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
744 CPU_PENTIUMPRO_FLAGS, 0, 0 },
745 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
746 CPU_P2_FLAGS, 0, 0 },
747 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
748 CPU_P3_FLAGS, 0, 0 },
749 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
750 CPU_P4_FLAGS, 0, 0 },
751 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
752 CPU_CORE_FLAGS, 0, 0 },
753 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
754 CPU_NOCONA_FLAGS, 0, 0 },
755 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
756 CPU_CORE_FLAGS, 1, 0 },
757 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
758 CPU_CORE_FLAGS, 0, 0 },
759 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
760 CPU_CORE2_FLAGS, 1, 0 },
761 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
762 CPU_CORE2_FLAGS, 0, 0 },
763 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
764 CPU_COREI7_FLAGS, 0, 0 },
765 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
766 CPU_L1OM_FLAGS, 0, 0 },
767 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
768 CPU_K1OM_FLAGS, 0, 0 },
769 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
770 CPU_IAMCU_FLAGS, 0, 0 },
771 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
772 CPU_K6_FLAGS, 0, 0 },
773 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
774 CPU_K6_2_FLAGS, 0, 0 },
775 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
776 CPU_ATHLON_FLAGS, 0, 0 },
777 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
778 CPU_K8_FLAGS, 1, 0 },
779 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
780 CPU_K8_FLAGS, 0, 0 },
781 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
782 CPU_K8_FLAGS, 0, 0 },
783 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
784 CPU_AMDFAM10_FLAGS, 0, 0 },
785 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
786 CPU_BDVER1_FLAGS, 0, 0 },
787 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
788 CPU_BDVER2_FLAGS, 0, 0 },
789 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
790 CPU_BDVER3_FLAGS, 0, 0 },
791 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
792 CPU_BDVER4_FLAGS, 0, 0 },
793 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
794 CPU_ZNVER1_FLAGS, 0, 0 },
795 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
796 CPU_BTVER1_FLAGS, 0, 0 },
797 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
798 CPU_BTVER2_FLAGS, 0, 0 },
799 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
800 CPU_8087_FLAGS, 0, 0 },
801 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
802 CPU_287_FLAGS, 0, 0 },
803 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
804 CPU_387_FLAGS, 0, 0 },
805 { STRING_COMMA_LEN (".no87"), PROCESSOR_UNKNOWN,
806 CPU_ANY87_FLAGS, 0, 1 },
807 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
808 CPU_MMX_FLAGS, 0, 0 },
809 { STRING_COMMA_LEN (".nommx"), PROCESSOR_UNKNOWN,
810 CPU_3DNOWA_FLAGS, 0, 1 },
811 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
812 CPU_SSE_FLAGS, 0, 0 },
813 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
814 CPU_SSE2_FLAGS, 0, 0 },
815 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
816 CPU_SSE3_FLAGS, 0, 0 },
817 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
818 CPU_SSSE3_FLAGS, 0, 0 },
819 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
820 CPU_SSE4_1_FLAGS, 0, 0 },
821 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
822 CPU_SSE4_2_FLAGS, 0, 0 },
823 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
824 CPU_SSE4_2_FLAGS, 0, 0 },
825 { STRING_COMMA_LEN (".nosse"), PROCESSOR_UNKNOWN,
826 CPU_ANY_SSE_FLAGS, 0, 1 },
827 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
828 CPU_AVX_FLAGS, 0, 0 },
829 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
830 CPU_AVX2_FLAGS, 0, 0 },
831 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
832 CPU_AVX512F_FLAGS, 0, 0 },
833 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
834 CPU_AVX512CD_FLAGS, 0, 0 },
835 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
836 CPU_AVX512ER_FLAGS, 0, 0 },
837 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
838 CPU_AVX512PF_FLAGS, 0, 0 },
839 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
840 CPU_AVX512DQ_FLAGS, 0, 0 },
841 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
842 CPU_AVX512BW_FLAGS, 0, 0 },
843 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
844 CPU_AVX512VL_FLAGS, 0, 0 },
845 { STRING_COMMA_LEN (".noavx"), PROCESSOR_UNKNOWN,
846 CPU_ANY_AVX_FLAGS, 0, 1 },
847 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
848 CPU_VMX_FLAGS, 0, 0 },
849 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
850 CPU_VMFUNC_FLAGS, 0, 0 },
851 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
852 CPU_SMX_FLAGS, 0, 0 },
853 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
854 CPU_XSAVE_FLAGS, 0, 0 },
855 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
856 CPU_XSAVEOPT_FLAGS, 0, 0 },
857 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
858 CPU_XSAVEC_FLAGS, 0, 0 },
859 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
860 CPU_XSAVES_FLAGS, 0, 0 },
861 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
862 CPU_AES_FLAGS, 0, 0 },
863 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
864 CPU_PCLMUL_FLAGS, 0, 0 },
865 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
866 CPU_PCLMUL_FLAGS, 1, 0 },
867 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
868 CPU_FSGSBASE_FLAGS, 0, 0 },
869 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
870 CPU_RDRND_FLAGS, 0, 0 },
871 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
872 CPU_F16C_FLAGS, 0, 0 },
873 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
874 CPU_BMI2_FLAGS, 0, 0 },
875 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
876 CPU_FMA_FLAGS, 0, 0 },
877 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
878 CPU_FMA4_FLAGS, 0, 0 },
879 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
880 CPU_XOP_FLAGS, 0, 0 },
881 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
882 CPU_LWP_FLAGS, 0, 0 },
883 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
884 CPU_MOVBE_FLAGS, 0, 0 },
885 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
886 CPU_CX16_FLAGS, 0, 0 },
887 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
888 CPU_EPT_FLAGS, 0, 0 },
889 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
890 CPU_LZCNT_FLAGS, 0, 0 },
891 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
892 CPU_HLE_FLAGS, 0, 0 },
893 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
894 CPU_RTM_FLAGS, 0, 0 },
895 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
896 CPU_INVPCID_FLAGS, 0, 0 },
897 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
898 CPU_CLFLUSH_FLAGS, 0, 0 },
899 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
900 CPU_NOP_FLAGS, 0, 0 },
901 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
902 CPU_SYSCALL_FLAGS, 0, 0 },
903 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
904 CPU_RDTSCP_FLAGS, 0, 0 },
905 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
906 CPU_3DNOW_FLAGS, 0, 0 },
907 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
908 CPU_3DNOWA_FLAGS, 0, 0 },
909 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
910 CPU_PADLOCK_FLAGS, 0, 0 },
911 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
912 CPU_SVME_FLAGS, 1, 0 },
913 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
914 CPU_SVME_FLAGS, 0, 0 },
915 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
916 CPU_SSE4A_FLAGS, 0, 0 },
917 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
918 CPU_ABM_FLAGS, 0, 0 },
919 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
920 CPU_BMI_FLAGS, 0, 0 },
921 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
922 CPU_TBM_FLAGS, 0, 0 },
923 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
924 CPU_ADX_FLAGS, 0, 0 },
925 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
926 CPU_RDSEED_FLAGS, 0, 0 },
927 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
928 CPU_PRFCHW_FLAGS, 0, 0 },
929 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
930 CPU_SMAP_FLAGS, 0, 0 },
931 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
932 CPU_MPX_FLAGS, 0, 0 },
933 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
934 CPU_SHA_FLAGS, 0, 0 },
935 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
936 CPU_CLFLUSHOPT_FLAGS, 0, 0 },
937 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
938 CPU_PREFETCHWT1_FLAGS, 0, 0 },
939 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
940 CPU_SE1_FLAGS, 0, 0 },
941 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
942 CPU_CLWB_FLAGS, 0, 0 },
943 { STRING_COMMA_LEN (".pcommit"), PROCESSOR_UNKNOWN,
944 CPU_PCOMMIT_FLAGS, 0, 0 },
945 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
946 CPU_AVX512IFMA_FLAGS, 0, 0 },
947 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
948 CPU_AVX512VBMI_FLAGS, 0, 0 },
949 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
950 CPU_CLZERO_FLAGS, 0, 0 },
951 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
952 CPU_MWAITX_FLAGS, 0, 0 },
953 };
954
955 #ifdef I386COFF
956 /* Like s_lcomm_internal in gas/read.c but the alignment string
957 is allowed to be optional. */
958
959 static symbolS *
960 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
961 {
962 addressT align = 0;
963
964 SKIP_WHITESPACE ();
965
966 if (needs_align
967 && *input_line_pointer == ',')
968 {
969 align = parse_align (needs_align - 1);
970
971 if (align == (addressT) -1)
972 return NULL;
973 }
974 else
975 {
976 if (size >= 8)
977 align = 3;
978 else if (size >= 4)
979 align = 2;
980 else if (size >= 2)
981 align = 1;
982 else
983 align = 0;
984 }
985
986 bss_alloc (symbolP, size, align);
987 return symbolP;
988 }
989
990 static void
991 pe_lcomm (int needs_align)
992 {
993 s_comm_internal (needs_align * 2, pe_lcomm_internal);
994 }
995 #endif
996
997 const pseudo_typeS md_pseudo_table[] =
998 {
999 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1000 {"align", s_align_bytes, 0},
1001 #else
1002 {"align", s_align_ptwo, 0},
1003 #endif
1004 {"arch", set_cpu_arch, 0},
1005 #ifndef I386COFF
1006 {"bss", s_bss, 0},
1007 #else
1008 {"lcomm", pe_lcomm, 1},
1009 #endif
1010 {"ffloat", float_cons, 'f'},
1011 {"dfloat", float_cons, 'd'},
1012 {"tfloat", float_cons, 'x'},
1013 {"value", cons, 2},
1014 {"slong", signed_cons, 4},
1015 {"noopt", s_ignore, 0},
1016 {"optim", s_ignore, 0},
1017 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1018 {"code16", set_code_flag, CODE_16BIT},
1019 {"code32", set_code_flag, CODE_32BIT},
1020 {"code64", set_code_flag, CODE_64BIT},
1021 {"intel_syntax", set_intel_syntax, 1},
1022 {"att_syntax", set_intel_syntax, 0},
1023 {"intel_mnemonic", set_intel_mnemonic, 1},
1024 {"att_mnemonic", set_intel_mnemonic, 0},
1025 {"allow_index_reg", set_allow_index_reg, 1},
1026 {"disallow_index_reg", set_allow_index_reg, 0},
1027 {"sse_check", set_check, 0},
1028 {"operand_check", set_check, 1},
1029 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1030 {"largecomm", handle_large_common, 0},
1031 #else
1032 {"file", (void (*) (int)) dwarf2_directive_file, 0},
1033 {"loc", dwarf2_directive_loc, 0},
1034 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1035 #endif
1036 #ifdef TE_PE
1037 {"secrel32", pe_directive_secrel, 0},
1038 #endif
1039 {0, 0, 0}
1040 };
1041
1042 /* For interface with expression (). */
1043 extern char *input_line_pointer;
1044
1045 /* Hash table for instruction mnemonic lookup. */
1046 static struct hash_control *op_hash;
1047
1048 /* Hash table for register lookup. */
1049 static struct hash_control *reg_hash;
1050 \f
1051 void
1052 i386_align_code (fragS *fragP, int count)
1053 {
1054 /* Various efficient no-op patterns for aligning code labels.
1055 Note: Don't try to assemble the instructions in the comments.
1056 0L and 0w are not legal. */
1057 static const char f32_1[] =
1058 {0x90}; /* nop */
1059 static const char f32_2[] =
1060 {0x66,0x90}; /* xchg %ax,%ax */
1061 static const char f32_3[] =
1062 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1063 static const char f32_4[] =
1064 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1065 static const char f32_5[] =
1066 {0x90, /* nop */
1067 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1068 static const char f32_6[] =
1069 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1070 static const char f32_7[] =
1071 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1072 static const char f32_8[] =
1073 {0x90, /* nop */
1074 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1075 static const char f32_9[] =
1076 {0x89,0xf6, /* movl %esi,%esi */
1077 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1078 static const char f32_10[] =
1079 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1080 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1081 static const char f32_11[] =
1082 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1083 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1084 static const char f32_12[] =
1085 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1086 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1087 static const char f32_13[] =
1088 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1089 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1090 static const char f32_14[] =
1091 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1092 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1093 static const char f16_3[] =
1094 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1095 static const char f16_4[] =
1096 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1097 static const char f16_5[] =
1098 {0x90, /* nop */
1099 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1100 static const char f16_6[] =
1101 {0x89,0xf6, /* mov %si,%si */
1102 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1103 static const char f16_7[] =
1104 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1105 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1106 static const char f16_8[] =
1107 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1108 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1109 static const char jump_31[] =
1110 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1111 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1112 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1113 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1114 static const char *const f32_patt[] = {
1115 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1116 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1117 };
1118 static const char *const f16_patt[] = {
1119 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1120 };
1121 /* nopl (%[re]ax) */
1122 static const char alt_3[] =
1123 {0x0f,0x1f,0x00};
1124 /* nopl 0(%[re]ax) */
1125 static const char alt_4[] =
1126 {0x0f,0x1f,0x40,0x00};
1127 /* nopl 0(%[re]ax,%[re]ax,1) */
1128 static const char alt_5[] =
1129 {0x0f,0x1f,0x44,0x00,0x00};
1130 /* nopw 0(%[re]ax,%[re]ax,1) */
1131 static const char alt_6[] =
1132 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1133 /* nopl 0L(%[re]ax) */
1134 static const char alt_7[] =
1135 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1136 /* nopl 0L(%[re]ax,%[re]ax,1) */
1137 static const char alt_8[] =
1138 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1139 /* nopw 0L(%[re]ax,%[re]ax,1) */
1140 static const char alt_9[] =
1141 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1142 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1143 static const char alt_10[] =
1144 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1145 static const char *const alt_patt[] = {
1146 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1147 alt_9, alt_10
1148 };
1149
1150 /* Only align for at least a positive non-zero boundary. */
1151 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1152 return;
1153
1154 /* We need to decide which NOP sequence to use for 32bit and
1155 64bit. When -mtune= is used:
1156
1157 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1158 PROCESSOR_GENERIC32, f32_patt will be used.
1159 2. For the rest, alt_patt will be used.
1160
1161 When -mtune= isn't used, alt_patt will be used if
1162 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1163 be used.
1164
1165 When -march= or .arch is used, we can't use anything beyond
1166 cpu_arch_isa_flags. */
1167
1168 if (flag_code == CODE_16BIT)
1169 {
1170 if (count > 8)
1171 {
1172 memcpy (fragP->fr_literal + fragP->fr_fix,
1173 jump_31, count);
1174 /* Adjust jump offset. */
1175 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1176 }
1177 else
1178 memcpy (fragP->fr_literal + fragP->fr_fix,
1179 f16_patt[count - 1], count);
1180 }
1181 else
1182 {
1183 const char *const *patt = NULL;
1184
1185 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1186 {
1187 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1188 switch (cpu_arch_tune)
1189 {
1190 case PROCESSOR_UNKNOWN:
1191 /* We use cpu_arch_isa_flags to check if we SHOULD
1192 optimize with nops. */
1193 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1194 patt = alt_patt;
1195 else
1196 patt = f32_patt;
1197 break;
1198 case PROCESSOR_PENTIUM4:
1199 case PROCESSOR_NOCONA:
1200 case PROCESSOR_CORE:
1201 case PROCESSOR_CORE2:
1202 case PROCESSOR_COREI7:
1203 case PROCESSOR_L1OM:
1204 case PROCESSOR_K1OM:
1205 case PROCESSOR_GENERIC64:
1206 case PROCESSOR_K6:
1207 case PROCESSOR_ATHLON:
1208 case PROCESSOR_K8:
1209 case PROCESSOR_AMDFAM10:
1210 case PROCESSOR_BD:
1211 case PROCESSOR_ZNVER:
1212 case PROCESSOR_BT:
1213 patt = alt_patt;
1214 break;
1215 case PROCESSOR_I386:
1216 case PROCESSOR_I486:
1217 case PROCESSOR_PENTIUM:
1218 case PROCESSOR_PENTIUMPRO:
1219 case PROCESSOR_IAMCU:
1220 case PROCESSOR_GENERIC32:
1221 patt = f32_patt;
1222 break;
1223 }
1224 }
1225 else
1226 {
1227 switch (fragP->tc_frag_data.tune)
1228 {
1229 case PROCESSOR_UNKNOWN:
1230 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1231 PROCESSOR_UNKNOWN. */
1232 abort ();
1233 break;
1234
1235 case PROCESSOR_I386:
1236 case PROCESSOR_I486:
1237 case PROCESSOR_PENTIUM:
1238 case PROCESSOR_IAMCU:
1239 case PROCESSOR_K6:
1240 case PROCESSOR_ATHLON:
1241 case PROCESSOR_K8:
1242 case PROCESSOR_AMDFAM10:
1243 case PROCESSOR_BD:
1244 case PROCESSOR_ZNVER:
1245 case PROCESSOR_BT:
1246 case PROCESSOR_GENERIC32:
1247 /* We use cpu_arch_isa_flags to check if we CAN optimize
1248 with nops. */
1249 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1250 patt = alt_patt;
1251 else
1252 patt = f32_patt;
1253 break;
1254 case PROCESSOR_PENTIUMPRO:
1255 case PROCESSOR_PENTIUM4:
1256 case PROCESSOR_NOCONA:
1257 case PROCESSOR_CORE:
1258 case PROCESSOR_CORE2:
1259 case PROCESSOR_COREI7:
1260 case PROCESSOR_L1OM:
1261 case PROCESSOR_K1OM:
1262 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1263 patt = alt_patt;
1264 else
1265 patt = f32_patt;
1266 break;
1267 case PROCESSOR_GENERIC64:
1268 patt = alt_patt;
1269 break;
1270 }
1271 }
1272
1273 if (patt == f32_patt)
1274 {
1275 /* If the padding is less than 15 bytes, we use the normal
1276 ones. Otherwise, we use a jump instruction and adjust
1277 its offset. */
1278 int limit;
1279
1280 /* For 64bit, the limit is 3 bytes. */
1281 if (flag_code == CODE_64BIT
1282 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1283 limit = 3;
1284 else
1285 limit = 15;
1286 if (count < limit)
1287 memcpy (fragP->fr_literal + fragP->fr_fix,
1288 patt[count - 1], count);
1289 else
1290 {
1291 memcpy (fragP->fr_literal + fragP->fr_fix,
1292 jump_31, count);
1293 /* Adjust jump offset. */
1294 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1295 }
1296 }
1297 else
1298 {
1299 /* Maximum length of an instruction is 10 byte. If the
1300 padding is greater than 10 bytes and we don't use jump,
1301 we have to break it into smaller pieces. */
1302 int padding = count;
1303 while (padding > 10)
1304 {
1305 padding -= 10;
1306 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1307 patt [9], 10);
1308 }
1309
1310 if (padding)
1311 memcpy (fragP->fr_literal + fragP->fr_fix,
1312 patt [padding - 1], padding);
1313 }
1314 }
1315 fragP->fr_var = count;
1316 }
1317
1318 static INLINE int
1319 operand_type_all_zero (const union i386_operand_type *x)
1320 {
1321 switch (ARRAY_SIZE(x->array))
1322 {
1323 case 3:
1324 if (x->array[2])
1325 return 0;
1326 case 2:
1327 if (x->array[1])
1328 return 0;
1329 case 1:
1330 return !x->array[0];
1331 default:
1332 abort ();
1333 }
1334 }
1335
1336 static INLINE void
1337 operand_type_set (union i386_operand_type *x, unsigned int v)
1338 {
1339 switch (ARRAY_SIZE(x->array))
1340 {
1341 case 3:
1342 x->array[2] = v;
1343 case 2:
1344 x->array[1] = v;
1345 case 1:
1346 x->array[0] = v;
1347 break;
1348 default:
1349 abort ();
1350 }
1351 }
1352
1353 static INLINE int
1354 operand_type_equal (const union i386_operand_type *x,
1355 const union i386_operand_type *y)
1356 {
1357 switch (ARRAY_SIZE(x->array))
1358 {
1359 case 3:
1360 if (x->array[2] != y->array[2])
1361 return 0;
1362 case 2:
1363 if (x->array[1] != y->array[1])
1364 return 0;
1365 case 1:
1366 return x->array[0] == y->array[0];
1367 break;
1368 default:
1369 abort ();
1370 }
1371 }
1372
1373 static INLINE int
1374 cpu_flags_all_zero (const union i386_cpu_flags *x)
1375 {
1376 switch (ARRAY_SIZE(x->array))
1377 {
1378 case 3:
1379 if (x->array[2])
1380 return 0;
1381 case 2:
1382 if (x->array[1])
1383 return 0;
1384 case 1:
1385 return !x->array[0];
1386 default:
1387 abort ();
1388 }
1389 }
1390
1391 static INLINE int
1392 cpu_flags_equal (const union i386_cpu_flags *x,
1393 const union i386_cpu_flags *y)
1394 {
1395 switch (ARRAY_SIZE(x->array))
1396 {
1397 case 3:
1398 if (x->array[2] != y->array[2])
1399 return 0;
1400 case 2:
1401 if (x->array[1] != y->array[1])
1402 return 0;
1403 case 1:
1404 return x->array[0] == y->array[0];
1405 break;
1406 default:
1407 abort ();
1408 }
1409 }
1410
1411 static INLINE int
1412 cpu_flags_check_cpu64 (i386_cpu_flags f)
1413 {
1414 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1415 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1416 }
1417
1418 static INLINE i386_cpu_flags
1419 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1420 {
1421 switch (ARRAY_SIZE (x.array))
1422 {
1423 case 3:
1424 x.array [2] &= y.array [2];
1425 case 2:
1426 x.array [1] &= y.array [1];
1427 case 1:
1428 x.array [0] &= y.array [0];
1429 break;
1430 default:
1431 abort ();
1432 }
1433 return x;
1434 }
1435
1436 static INLINE i386_cpu_flags
1437 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1438 {
1439 switch (ARRAY_SIZE (x.array))
1440 {
1441 case 3:
1442 x.array [2] |= y.array [2];
1443 case 2:
1444 x.array [1] |= y.array [1];
1445 case 1:
1446 x.array [0] |= y.array [0];
1447 break;
1448 default:
1449 abort ();
1450 }
1451 return x;
1452 }
1453
1454 static INLINE i386_cpu_flags
1455 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1456 {
1457 switch (ARRAY_SIZE (x.array))
1458 {
1459 case 3:
1460 x.array [2] &= ~y.array [2];
1461 case 2:
1462 x.array [1] &= ~y.array [1];
1463 case 1:
1464 x.array [0] &= ~y.array [0];
1465 break;
1466 default:
1467 abort ();
1468 }
1469 return x;
1470 }
1471
1472 static int
1473 valid_iamcu_cpu_flags (const i386_cpu_flags *flags)
1474 {
1475 if (cpu_arch_isa == PROCESSOR_IAMCU)
1476 {
1477 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_COMPAT_FLAGS;
1478 i386_cpu_flags compat_flags;
1479 compat_flags = cpu_flags_and_not (*flags, iamcu_flags);
1480 return cpu_flags_all_zero (&compat_flags);
1481 }
1482 else
1483 return 1;
1484 }
1485
1486 #define CPU_FLAGS_ARCH_MATCH 0x1
1487 #define CPU_FLAGS_64BIT_MATCH 0x2
1488 #define CPU_FLAGS_AES_MATCH 0x4
1489 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1490 #define CPU_FLAGS_AVX_MATCH 0x10
1491
1492 #define CPU_FLAGS_32BIT_MATCH \
1493 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1494 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1495 #define CPU_FLAGS_PERFECT_MATCH \
1496 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1497
1498 /* Return CPU flags match bits. */
1499
1500 static int
1501 cpu_flags_match (const insn_template *t)
1502 {
1503 i386_cpu_flags x = t->cpu_flags;
1504 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1505
1506 x.bitfield.cpu64 = 0;
1507 x.bitfield.cpuno64 = 0;
1508
1509 if (cpu_flags_all_zero (&x))
1510 {
1511 /* This instruction is available on all archs. */
1512 match |= CPU_FLAGS_32BIT_MATCH;
1513 }
1514 else
1515 {
1516 /* This instruction is available only on some archs. */
1517 i386_cpu_flags cpu = cpu_arch_flags;
1518
1519 cpu.bitfield.cpu64 = 0;
1520 cpu.bitfield.cpuno64 = 0;
1521 cpu = cpu_flags_and (x, cpu);
1522 if (!cpu_flags_all_zero (&cpu))
1523 {
1524 if (x.bitfield.cpuavx)
1525 {
1526 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1527 if (cpu.bitfield.cpuavx)
1528 {
1529 /* Check SSE2AVX. */
1530 if (!t->opcode_modifier.sse2avx|| sse2avx)
1531 {
1532 match |= (CPU_FLAGS_ARCH_MATCH
1533 | CPU_FLAGS_AVX_MATCH);
1534 /* Check AES. */
1535 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1536 match |= CPU_FLAGS_AES_MATCH;
1537 /* Check PCLMUL. */
1538 if (!x.bitfield.cpupclmul
1539 || cpu.bitfield.cpupclmul)
1540 match |= CPU_FLAGS_PCLMUL_MATCH;
1541 }
1542 }
1543 else
1544 match |= CPU_FLAGS_ARCH_MATCH;
1545 }
1546 else
1547 match |= CPU_FLAGS_32BIT_MATCH;
1548 }
1549 }
1550 return match;
1551 }
1552
1553 static INLINE i386_operand_type
1554 operand_type_and (i386_operand_type x, i386_operand_type y)
1555 {
1556 switch (ARRAY_SIZE (x.array))
1557 {
1558 case 3:
1559 x.array [2] &= y.array [2];
1560 case 2:
1561 x.array [1] &= y.array [1];
1562 case 1:
1563 x.array [0] &= y.array [0];
1564 break;
1565 default:
1566 abort ();
1567 }
1568 return x;
1569 }
1570
1571 static INLINE i386_operand_type
1572 operand_type_or (i386_operand_type x, i386_operand_type y)
1573 {
1574 switch (ARRAY_SIZE (x.array))
1575 {
1576 case 3:
1577 x.array [2] |= y.array [2];
1578 case 2:
1579 x.array [1] |= y.array [1];
1580 case 1:
1581 x.array [0] |= y.array [0];
1582 break;
1583 default:
1584 abort ();
1585 }
1586 return x;
1587 }
1588
1589 static INLINE i386_operand_type
1590 operand_type_xor (i386_operand_type x, i386_operand_type y)
1591 {
1592 switch (ARRAY_SIZE (x.array))
1593 {
1594 case 3:
1595 x.array [2] ^= y.array [2];
1596 case 2:
1597 x.array [1] ^= y.array [1];
1598 case 1:
1599 x.array [0] ^= y.array [0];
1600 break;
1601 default:
1602 abort ();
1603 }
1604 return x;
1605 }
1606
1607 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1608 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1609 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1610 static const i386_operand_type inoutportreg
1611 = OPERAND_TYPE_INOUTPORTREG;
1612 static const i386_operand_type reg16_inoutportreg
1613 = OPERAND_TYPE_REG16_INOUTPORTREG;
1614 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1615 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1616 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1617 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1618 static const i386_operand_type anydisp
1619 = OPERAND_TYPE_ANYDISP;
1620 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1621 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1622 static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1623 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1624 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1625 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1626 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1627 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1628 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1629 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1630 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1631 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1632 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1633 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1634
1635 enum operand_type
1636 {
1637 reg,
1638 imm,
1639 disp,
1640 anymem
1641 };
1642
1643 static INLINE int
1644 operand_type_check (i386_operand_type t, enum operand_type c)
1645 {
1646 switch (c)
1647 {
1648 case reg:
1649 return (t.bitfield.reg8
1650 || t.bitfield.reg16
1651 || t.bitfield.reg32
1652 || t.bitfield.reg64);
1653
1654 case imm:
1655 return (t.bitfield.imm8
1656 || t.bitfield.imm8s
1657 || t.bitfield.imm16
1658 || t.bitfield.imm32
1659 || t.bitfield.imm32s
1660 || t.bitfield.imm64);
1661
1662 case disp:
1663 return (t.bitfield.disp8
1664 || t.bitfield.disp16
1665 || t.bitfield.disp32
1666 || t.bitfield.disp32s
1667 || t.bitfield.disp64);
1668
1669 case anymem:
1670 return (t.bitfield.disp8
1671 || t.bitfield.disp16
1672 || t.bitfield.disp32
1673 || t.bitfield.disp32s
1674 || t.bitfield.disp64
1675 || t.bitfield.baseindex);
1676
1677 default:
1678 abort ();
1679 }
1680
1681 return 0;
1682 }
1683
1684 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1685 operand J for instruction template T. */
1686
1687 static INLINE int
1688 match_reg_size (const insn_template *t, unsigned int j)
1689 {
1690 return !((i.types[j].bitfield.byte
1691 && !t->operand_types[j].bitfield.byte)
1692 || (i.types[j].bitfield.word
1693 && !t->operand_types[j].bitfield.word)
1694 || (i.types[j].bitfield.dword
1695 && !t->operand_types[j].bitfield.dword)
1696 || (i.types[j].bitfield.qword
1697 && !t->operand_types[j].bitfield.qword));
1698 }
1699
1700 /* Return 1 if there is no conflict in any size on operand J for
1701 instruction template T. */
1702
1703 static INLINE int
1704 match_mem_size (const insn_template *t, unsigned int j)
1705 {
1706 return (match_reg_size (t, j)
1707 && !((i.types[j].bitfield.unspecified
1708 && !i.broadcast
1709 && !t->operand_types[j].bitfield.unspecified)
1710 || (i.types[j].bitfield.fword
1711 && !t->operand_types[j].bitfield.fword)
1712 || (i.types[j].bitfield.tbyte
1713 && !t->operand_types[j].bitfield.tbyte)
1714 || (i.types[j].bitfield.xmmword
1715 && !t->operand_types[j].bitfield.xmmword)
1716 || (i.types[j].bitfield.ymmword
1717 && !t->operand_types[j].bitfield.ymmword)
1718 || (i.types[j].bitfield.zmmword
1719 && !t->operand_types[j].bitfield.zmmword)));
1720 }
1721
1722 /* Return 1 if there is no size conflict on any operands for
1723 instruction template T. */
1724
1725 static INLINE int
1726 operand_size_match (const insn_template *t)
1727 {
1728 unsigned int j;
1729 int match = 1;
1730
1731 /* Don't check jump instructions. */
1732 if (t->opcode_modifier.jump
1733 || t->opcode_modifier.jumpbyte
1734 || t->opcode_modifier.jumpdword
1735 || t->opcode_modifier.jumpintersegment)
1736 return match;
1737
1738 /* Check memory and accumulator operand size. */
1739 for (j = 0; j < i.operands; j++)
1740 {
1741 if (t->operand_types[j].bitfield.anysize)
1742 continue;
1743
1744 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1745 {
1746 match = 0;
1747 break;
1748 }
1749
1750 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1751 {
1752 match = 0;
1753 break;
1754 }
1755 }
1756
1757 if (match)
1758 return match;
1759 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1760 {
1761 mismatch:
1762 i.error = operand_size_mismatch;
1763 return 0;
1764 }
1765
1766 /* Check reverse. */
1767 gas_assert (i.operands == 2);
1768
1769 match = 1;
1770 for (j = 0; j < 2; j++)
1771 {
1772 if (t->operand_types[j].bitfield.acc
1773 && !match_reg_size (t, j ? 0 : 1))
1774 goto mismatch;
1775
1776 if (i.types[j].bitfield.mem
1777 && !match_mem_size (t, j ? 0 : 1))
1778 goto mismatch;
1779 }
1780
1781 return match;
1782 }
1783
1784 static INLINE int
1785 operand_type_match (i386_operand_type overlap,
1786 i386_operand_type given)
1787 {
1788 i386_operand_type temp = overlap;
1789
1790 temp.bitfield.jumpabsolute = 0;
1791 temp.bitfield.unspecified = 0;
1792 temp.bitfield.byte = 0;
1793 temp.bitfield.word = 0;
1794 temp.bitfield.dword = 0;
1795 temp.bitfield.fword = 0;
1796 temp.bitfield.qword = 0;
1797 temp.bitfield.tbyte = 0;
1798 temp.bitfield.xmmword = 0;
1799 temp.bitfield.ymmword = 0;
1800 temp.bitfield.zmmword = 0;
1801 if (operand_type_all_zero (&temp))
1802 goto mismatch;
1803
1804 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1805 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1806 return 1;
1807
1808 mismatch:
1809 i.error = operand_type_mismatch;
1810 return 0;
1811 }
1812
1813 /* If given types g0 and g1 are registers they must be of the same type
1814 unless the expected operand type register overlap is null.
1815 Note that Acc in a template matches every size of reg. */
1816
1817 static INLINE int
1818 operand_type_register_match (i386_operand_type m0,
1819 i386_operand_type g0,
1820 i386_operand_type t0,
1821 i386_operand_type m1,
1822 i386_operand_type g1,
1823 i386_operand_type t1)
1824 {
1825 if (!operand_type_check (g0, reg))
1826 return 1;
1827
1828 if (!operand_type_check (g1, reg))
1829 return 1;
1830
1831 if (g0.bitfield.reg8 == g1.bitfield.reg8
1832 && g0.bitfield.reg16 == g1.bitfield.reg16
1833 && g0.bitfield.reg32 == g1.bitfield.reg32
1834 && g0.bitfield.reg64 == g1.bitfield.reg64)
1835 return 1;
1836
1837 if (m0.bitfield.acc)
1838 {
1839 t0.bitfield.reg8 = 1;
1840 t0.bitfield.reg16 = 1;
1841 t0.bitfield.reg32 = 1;
1842 t0.bitfield.reg64 = 1;
1843 }
1844
1845 if (m1.bitfield.acc)
1846 {
1847 t1.bitfield.reg8 = 1;
1848 t1.bitfield.reg16 = 1;
1849 t1.bitfield.reg32 = 1;
1850 t1.bitfield.reg64 = 1;
1851 }
1852
1853 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1854 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1855 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1856 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1857 return 1;
1858
1859 i.error = register_type_mismatch;
1860
1861 return 0;
1862 }
1863
1864 static INLINE unsigned int
1865 register_number (const reg_entry *r)
1866 {
1867 unsigned int nr = r->reg_num;
1868
1869 if (r->reg_flags & RegRex)
1870 nr += 8;
1871
1872 return nr;
1873 }
1874
1875 static INLINE unsigned int
1876 mode_from_disp_size (i386_operand_type t)
1877 {
1878 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
1879 return 1;
1880 else if (t.bitfield.disp16
1881 || t.bitfield.disp32
1882 || t.bitfield.disp32s)
1883 return 2;
1884 else
1885 return 0;
1886 }
1887
1888 static INLINE int
1889 fits_in_signed_byte (addressT num)
1890 {
1891 return num + 0x80 <= 0xff;
1892 }
1893
1894 static INLINE int
1895 fits_in_unsigned_byte (addressT num)
1896 {
1897 return num <= 0xff;
1898 }
1899
1900 static INLINE int
1901 fits_in_unsigned_word (addressT num)
1902 {
1903 return num <= 0xffff;
1904 }
1905
1906 static INLINE int
1907 fits_in_signed_word (addressT num)
1908 {
1909 return num + 0x8000 <= 0xffff;
1910 }
1911
1912 static INLINE int
1913 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
1914 {
1915 #ifndef BFD64
1916 return 1;
1917 #else
1918 return num + 0x80000000 <= 0xffffffff;
1919 #endif
1920 } /* fits_in_signed_long() */
1921
1922 static INLINE int
1923 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
1924 {
1925 #ifndef BFD64
1926 return 1;
1927 #else
1928 return num <= 0xffffffff;
1929 #endif
1930 } /* fits_in_unsigned_long() */
1931
1932 static INLINE int
1933 fits_in_vec_disp8 (offsetT num)
1934 {
1935 int shift = i.memshift;
1936 unsigned int mask;
1937
1938 if (shift == -1)
1939 abort ();
1940
1941 mask = (1 << shift) - 1;
1942
1943 /* Return 0 if NUM isn't properly aligned. */
1944 if ((num & mask))
1945 return 0;
1946
1947 /* Check if NUM will fit in 8bit after shift. */
1948 return fits_in_signed_byte (num >> shift);
1949 }
1950
1951 static INLINE int
1952 fits_in_imm4 (offsetT num)
1953 {
1954 return (num & 0xf) == num;
1955 }
1956
1957 static i386_operand_type
1958 smallest_imm_type (offsetT num)
1959 {
1960 i386_operand_type t;
1961
1962 operand_type_set (&t, 0);
1963 t.bitfield.imm64 = 1;
1964
1965 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
1966 {
1967 /* This code is disabled on the 486 because all the Imm1 forms
1968 in the opcode table are slower on the i486. They're the
1969 versions with the implicitly specified single-position
1970 displacement, which has another syntax if you really want to
1971 use that form. */
1972 t.bitfield.imm1 = 1;
1973 t.bitfield.imm8 = 1;
1974 t.bitfield.imm8s = 1;
1975 t.bitfield.imm16 = 1;
1976 t.bitfield.imm32 = 1;
1977 t.bitfield.imm32s = 1;
1978 }
1979 else if (fits_in_signed_byte (num))
1980 {
1981 t.bitfield.imm8 = 1;
1982 t.bitfield.imm8s = 1;
1983 t.bitfield.imm16 = 1;
1984 t.bitfield.imm32 = 1;
1985 t.bitfield.imm32s = 1;
1986 }
1987 else if (fits_in_unsigned_byte (num))
1988 {
1989 t.bitfield.imm8 = 1;
1990 t.bitfield.imm16 = 1;
1991 t.bitfield.imm32 = 1;
1992 t.bitfield.imm32s = 1;
1993 }
1994 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
1995 {
1996 t.bitfield.imm16 = 1;
1997 t.bitfield.imm32 = 1;
1998 t.bitfield.imm32s = 1;
1999 }
2000 else if (fits_in_signed_long (num))
2001 {
2002 t.bitfield.imm32 = 1;
2003 t.bitfield.imm32s = 1;
2004 }
2005 else if (fits_in_unsigned_long (num))
2006 t.bitfield.imm32 = 1;
2007
2008 return t;
2009 }
2010
2011 static offsetT
2012 offset_in_range (offsetT val, int size)
2013 {
2014 addressT mask;
2015
2016 switch (size)
2017 {
2018 case 1: mask = ((addressT) 1 << 8) - 1; break;
2019 case 2: mask = ((addressT) 1 << 16) - 1; break;
2020 case 4: mask = ((addressT) 2 << 31) - 1; break;
2021 #ifdef BFD64
2022 case 8: mask = ((addressT) 2 << 63) - 1; break;
2023 #endif
2024 default: abort ();
2025 }
2026
2027 #ifdef BFD64
2028 /* If BFD64, sign extend val for 32bit address mode. */
2029 if (flag_code != CODE_64BIT
2030 || i.prefix[ADDR_PREFIX])
2031 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2032 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2033 #endif
2034
2035 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2036 {
2037 char buf1[40], buf2[40];
2038
2039 sprint_value (buf1, val);
2040 sprint_value (buf2, val & mask);
2041 as_warn (_("%s shortened to %s"), buf1, buf2);
2042 }
2043 return val & mask;
2044 }
2045
2046 enum PREFIX_GROUP
2047 {
2048 PREFIX_EXIST = 0,
2049 PREFIX_LOCK,
2050 PREFIX_REP,
2051 PREFIX_OTHER
2052 };
2053
2054 /* Returns
2055 a. PREFIX_EXIST if attempting to add a prefix where one from the
2056 same class already exists.
2057 b. PREFIX_LOCK if lock prefix is added.
2058 c. PREFIX_REP if rep/repne prefix is added.
2059 d. PREFIX_OTHER if other prefix is added.
2060 */
2061
2062 static enum PREFIX_GROUP
2063 add_prefix (unsigned int prefix)
2064 {
2065 enum PREFIX_GROUP ret = PREFIX_OTHER;
2066 unsigned int q;
2067
2068 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2069 && flag_code == CODE_64BIT)
2070 {
2071 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2072 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2073 && (prefix & (REX_R | REX_X | REX_B))))
2074 ret = PREFIX_EXIST;
2075 q = REX_PREFIX;
2076 }
2077 else
2078 {
2079 switch (prefix)
2080 {
2081 default:
2082 abort ();
2083
2084 case CS_PREFIX_OPCODE:
2085 case DS_PREFIX_OPCODE:
2086 case ES_PREFIX_OPCODE:
2087 case FS_PREFIX_OPCODE:
2088 case GS_PREFIX_OPCODE:
2089 case SS_PREFIX_OPCODE:
2090 q = SEG_PREFIX;
2091 break;
2092
2093 case REPNE_PREFIX_OPCODE:
2094 case REPE_PREFIX_OPCODE:
2095 q = REP_PREFIX;
2096 ret = PREFIX_REP;
2097 break;
2098
2099 case LOCK_PREFIX_OPCODE:
2100 q = LOCK_PREFIX;
2101 ret = PREFIX_LOCK;
2102 break;
2103
2104 case FWAIT_OPCODE:
2105 q = WAIT_PREFIX;
2106 break;
2107
2108 case ADDR_PREFIX_OPCODE:
2109 q = ADDR_PREFIX;
2110 break;
2111
2112 case DATA_PREFIX_OPCODE:
2113 q = DATA_PREFIX;
2114 break;
2115 }
2116 if (i.prefix[q] != 0)
2117 ret = PREFIX_EXIST;
2118 }
2119
2120 if (ret)
2121 {
2122 if (!i.prefix[q])
2123 ++i.prefixes;
2124 i.prefix[q] |= prefix;
2125 }
2126 else
2127 as_bad (_("same type of prefix used twice"));
2128
2129 return ret;
2130 }
2131
2132 static void
2133 update_code_flag (int value, int check)
2134 {
2135 PRINTF_LIKE ((*as_error));
2136
2137 flag_code = (enum flag_code) value;
2138 if (flag_code == CODE_64BIT)
2139 {
2140 cpu_arch_flags.bitfield.cpu64 = 1;
2141 cpu_arch_flags.bitfield.cpuno64 = 0;
2142 }
2143 else
2144 {
2145 cpu_arch_flags.bitfield.cpu64 = 0;
2146 cpu_arch_flags.bitfield.cpuno64 = 1;
2147 }
2148 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2149 {
2150 if (check)
2151 as_error = as_fatal;
2152 else
2153 as_error = as_bad;
2154 (*as_error) (_("64bit mode not supported on `%s'."),
2155 cpu_arch_name ? cpu_arch_name : default_arch);
2156 }
2157 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2158 {
2159 if (check)
2160 as_error = as_fatal;
2161 else
2162 as_error = as_bad;
2163 (*as_error) (_("32bit mode not supported on `%s'."),
2164 cpu_arch_name ? cpu_arch_name : default_arch);
2165 }
2166 stackop_size = '\0';
2167 }
2168
2169 static void
2170 set_code_flag (int value)
2171 {
2172 update_code_flag (value, 0);
2173 }
2174
2175 static void
2176 set_16bit_gcc_code_flag (int new_code_flag)
2177 {
2178 flag_code = (enum flag_code) new_code_flag;
2179 if (flag_code != CODE_16BIT)
2180 abort ();
2181 cpu_arch_flags.bitfield.cpu64 = 0;
2182 cpu_arch_flags.bitfield.cpuno64 = 1;
2183 stackop_size = LONG_MNEM_SUFFIX;
2184 }
2185
2186 static void
2187 set_intel_syntax (int syntax_flag)
2188 {
2189 /* Find out if register prefixing is specified. */
2190 int ask_naked_reg = 0;
2191
2192 SKIP_WHITESPACE ();
2193 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2194 {
2195 char *string;
2196 int e = get_symbol_name (&string);
2197
2198 if (strcmp (string, "prefix") == 0)
2199 ask_naked_reg = 1;
2200 else if (strcmp (string, "noprefix") == 0)
2201 ask_naked_reg = -1;
2202 else
2203 as_bad (_("bad argument to syntax directive."));
2204 (void) restore_line_pointer (e);
2205 }
2206 demand_empty_rest_of_line ();
2207
2208 intel_syntax = syntax_flag;
2209
2210 if (ask_naked_reg == 0)
2211 allow_naked_reg = (intel_syntax
2212 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2213 else
2214 allow_naked_reg = (ask_naked_reg < 0);
2215
2216 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2217
2218 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2219 identifier_chars['$'] = intel_syntax ? '$' : 0;
2220 register_prefix = allow_naked_reg ? "" : "%";
2221 }
2222
2223 static void
2224 set_intel_mnemonic (int mnemonic_flag)
2225 {
2226 intel_mnemonic = mnemonic_flag;
2227 }
2228
2229 static void
2230 set_allow_index_reg (int flag)
2231 {
2232 allow_index_reg = flag;
2233 }
2234
2235 static void
2236 set_check (int what)
2237 {
2238 enum check_kind *kind;
2239 const char *str;
2240
2241 if (what)
2242 {
2243 kind = &operand_check;
2244 str = "operand";
2245 }
2246 else
2247 {
2248 kind = &sse_check;
2249 str = "sse";
2250 }
2251
2252 SKIP_WHITESPACE ();
2253
2254 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2255 {
2256 char *string;
2257 int e = get_symbol_name (&string);
2258
2259 if (strcmp (string, "none") == 0)
2260 *kind = check_none;
2261 else if (strcmp (string, "warning") == 0)
2262 *kind = check_warning;
2263 else if (strcmp (string, "error") == 0)
2264 *kind = check_error;
2265 else
2266 as_bad (_("bad argument to %s_check directive."), str);
2267 (void) restore_line_pointer (e);
2268 }
2269 else
2270 as_bad (_("missing argument for %s_check directive"), str);
2271
2272 demand_empty_rest_of_line ();
2273 }
2274
2275 static void
2276 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2277 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2278 {
2279 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2280 static const char *arch;
2281
2282 /* Intel LIOM is only supported on ELF. */
2283 if (!IS_ELF)
2284 return;
2285
2286 if (!arch)
2287 {
2288 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2289 use default_arch. */
2290 arch = cpu_arch_name;
2291 if (!arch)
2292 arch = default_arch;
2293 }
2294
2295 /* If we are targeting Intel MCU, we must enable it. */
2296 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2297 || new_flag.bitfield.cpuiamcu)
2298 return;
2299
2300 /* If we are targeting Intel L1OM, we must enable it. */
2301 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2302 || new_flag.bitfield.cpul1om)
2303 return;
2304
2305 /* If we are targeting Intel K1OM, we must enable it. */
2306 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2307 || new_flag.bitfield.cpuk1om)
2308 return;
2309
2310 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2311 #endif
2312 }
2313
2314 static void
2315 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2316 {
2317 SKIP_WHITESPACE ();
2318
2319 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2320 {
2321 char *string;
2322 int e = get_symbol_name (&string);
2323 unsigned int j;
2324 i386_cpu_flags flags;
2325
2326 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2327 {
2328 if (strcmp (string, cpu_arch[j].name) == 0)
2329 {
2330 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2331
2332 if (*string != '.')
2333 {
2334 cpu_arch_name = cpu_arch[j].name;
2335 cpu_sub_arch_name = NULL;
2336 cpu_arch_flags = cpu_arch[j].flags;
2337 if (flag_code == CODE_64BIT)
2338 {
2339 cpu_arch_flags.bitfield.cpu64 = 1;
2340 cpu_arch_flags.bitfield.cpuno64 = 0;
2341 }
2342 else
2343 {
2344 cpu_arch_flags.bitfield.cpu64 = 0;
2345 cpu_arch_flags.bitfield.cpuno64 = 1;
2346 }
2347 cpu_arch_isa = cpu_arch[j].type;
2348 cpu_arch_isa_flags = cpu_arch[j].flags;
2349 if (!cpu_arch_tune_set)
2350 {
2351 cpu_arch_tune = cpu_arch_isa;
2352 cpu_arch_tune_flags = cpu_arch_isa_flags;
2353 }
2354 break;
2355 }
2356
2357 if (!cpu_arch[j].negated)
2358 flags = cpu_flags_or (cpu_arch_flags,
2359 cpu_arch[j].flags);
2360 else
2361 flags = cpu_flags_and_not (cpu_arch_flags,
2362 cpu_arch[j].flags);
2363
2364 if (!valid_iamcu_cpu_flags (&flags))
2365 as_fatal (_("`%s' isn't valid for Intel MCU"),
2366 cpu_arch[j].name);
2367 else if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2368 {
2369 if (cpu_sub_arch_name)
2370 {
2371 char *name = cpu_sub_arch_name;
2372 cpu_sub_arch_name = concat (name,
2373 cpu_arch[j].name,
2374 (const char *) NULL);
2375 free (name);
2376 }
2377 else
2378 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2379 cpu_arch_flags = flags;
2380 cpu_arch_isa_flags = flags;
2381 }
2382 (void) restore_line_pointer (e);
2383 demand_empty_rest_of_line ();
2384 return;
2385 }
2386 }
2387 if (j >= ARRAY_SIZE (cpu_arch))
2388 as_bad (_("no such architecture: `%s'"), string);
2389
2390 *input_line_pointer = e;
2391 }
2392 else
2393 as_bad (_("missing cpu architecture"));
2394
2395 no_cond_jump_promotion = 0;
2396 if (*input_line_pointer == ','
2397 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2398 {
2399 char *string;
2400 char e;
2401
2402 ++input_line_pointer;
2403 e = get_symbol_name (&string);
2404
2405 if (strcmp (string, "nojumps") == 0)
2406 no_cond_jump_promotion = 1;
2407 else if (strcmp (string, "jumps") == 0)
2408 ;
2409 else
2410 as_bad (_("no such architecture modifier: `%s'"), string);
2411
2412 (void) restore_line_pointer (e);
2413 }
2414
2415 demand_empty_rest_of_line ();
2416 }
2417
2418 enum bfd_architecture
2419 i386_arch (void)
2420 {
2421 if (cpu_arch_isa == PROCESSOR_L1OM)
2422 {
2423 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2424 || flag_code != CODE_64BIT)
2425 as_fatal (_("Intel L1OM is 64bit ELF only"));
2426 return bfd_arch_l1om;
2427 }
2428 else if (cpu_arch_isa == PROCESSOR_K1OM)
2429 {
2430 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2431 || flag_code != CODE_64BIT)
2432 as_fatal (_("Intel K1OM is 64bit ELF only"));
2433 return bfd_arch_k1om;
2434 }
2435 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2436 {
2437 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2438 || flag_code == CODE_64BIT)
2439 as_fatal (_("Intel MCU is 32bit ELF only"));
2440 return bfd_arch_iamcu;
2441 }
2442 else
2443 return bfd_arch_i386;
2444 }
2445
2446 unsigned long
2447 i386_mach (void)
2448 {
2449 if (!strncmp (default_arch, "x86_64", 6))
2450 {
2451 if (cpu_arch_isa == PROCESSOR_L1OM)
2452 {
2453 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2454 || default_arch[6] != '\0')
2455 as_fatal (_("Intel L1OM is 64bit ELF only"));
2456 return bfd_mach_l1om;
2457 }
2458 else if (cpu_arch_isa == PROCESSOR_K1OM)
2459 {
2460 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2461 || default_arch[6] != '\0')
2462 as_fatal (_("Intel K1OM is 64bit ELF only"));
2463 return bfd_mach_k1om;
2464 }
2465 else if (default_arch[6] == '\0')
2466 return bfd_mach_x86_64;
2467 else
2468 return bfd_mach_x64_32;
2469 }
2470 else if (!strcmp (default_arch, "i386")
2471 || !strcmp (default_arch, "iamcu"))
2472 {
2473 if (cpu_arch_isa == PROCESSOR_IAMCU)
2474 {
2475 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2476 as_fatal (_("Intel MCU is 32bit ELF only"));
2477 return bfd_mach_i386_iamcu;
2478 }
2479 else
2480 return bfd_mach_i386_i386;
2481 }
2482 else
2483 as_fatal (_("unknown architecture"));
2484 }
2485 \f
2486 void
2487 md_begin (void)
2488 {
2489 const char *hash_err;
2490
2491 /* Initialize op_hash hash table. */
2492 op_hash = hash_new ();
2493
2494 {
2495 const insn_template *optab;
2496 templates *core_optab;
2497
2498 /* Setup for loop. */
2499 optab = i386_optab;
2500 core_optab = (templates *) xmalloc (sizeof (templates));
2501 core_optab->start = optab;
2502
2503 while (1)
2504 {
2505 ++optab;
2506 if (optab->name == NULL
2507 || strcmp (optab->name, (optab - 1)->name) != 0)
2508 {
2509 /* different name --> ship out current template list;
2510 add to hash table; & begin anew. */
2511 core_optab->end = optab;
2512 hash_err = hash_insert (op_hash,
2513 (optab - 1)->name,
2514 (void *) core_optab);
2515 if (hash_err)
2516 {
2517 as_fatal (_("can't hash %s: %s"),
2518 (optab - 1)->name,
2519 hash_err);
2520 }
2521 if (optab->name == NULL)
2522 break;
2523 core_optab = (templates *) xmalloc (sizeof (templates));
2524 core_optab->start = optab;
2525 }
2526 }
2527 }
2528
2529 /* Initialize reg_hash hash table. */
2530 reg_hash = hash_new ();
2531 {
2532 const reg_entry *regtab;
2533 unsigned int regtab_size = i386_regtab_size;
2534
2535 for (regtab = i386_regtab; regtab_size--; regtab++)
2536 {
2537 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2538 if (hash_err)
2539 as_fatal (_("can't hash %s: %s"),
2540 regtab->reg_name,
2541 hash_err);
2542 }
2543 }
2544
2545 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2546 {
2547 int c;
2548 char *p;
2549
2550 for (c = 0; c < 256; c++)
2551 {
2552 if (ISDIGIT (c))
2553 {
2554 digit_chars[c] = c;
2555 mnemonic_chars[c] = c;
2556 register_chars[c] = c;
2557 operand_chars[c] = c;
2558 }
2559 else if (ISLOWER (c))
2560 {
2561 mnemonic_chars[c] = c;
2562 register_chars[c] = c;
2563 operand_chars[c] = c;
2564 }
2565 else if (ISUPPER (c))
2566 {
2567 mnemonic_chars[c] = TOLOWER (c);
2568 register_chars[c] = mnemonic_chars[c];
2569 operand_chars[c] = c;
2570 }
2571 else if (c == '{' || c == '}')
2572 operand_chars[c] = c;
2573
2574 if (ISALPHA (c) || ISDIGIT (c))
2575 identifier_chars[c] = c;
2576 else if (c >= 128)
2577 {
2578 identifier_chars[c] = c;
2579 operand_chars[c] = c;
2580 }
2581 }
2582
2583 #ifdef LEX_AT
2584 identifier_chars['@'] = '@';
2585 #endif
2586 #ifdef LEX_QM
2587 identifier_chars['?'] = '?';
2588 operand_chars['?'] = '?';
2589 #endif
2590 digit_chars['-'] = '-';
2591 mnemonic_chars['_'] = '_';
2592 mnemonic_chars['-'] = '-';
2593 mnemonic_chars['.'] = '.';
2594 identifier_chars['_'] = '_';
2595 identifier_chars['.'] = '.';
2596
2597 for (p = operand_special_chars; *p != '\0'; p++)
2598 operand_chars[(unsigned char) *p] = *p;
2599 }
2600
2601 if (flag_code == CODE_64BIT)
2602 {
2603 #if defined (OBJ_COFF) && defined (TE_PE)
2604 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2605 ? 32 : 16);
2606 #else
2607 x86_dwarf2_return_column = 16;
2608 #endif
2609 x86_cie_data_alignment = -8;
2610 }
2611 else
2612 {
2613 x86_dwarf2_return_column = 8;
2614 x86_cie_data_alignment = -4;
2615 }
2616 }
2617
2618 void
2619 i386_print_statistics (FILE *file)
2620 {
2621 hash_print_statistics (file, "i386 opcode", op_hash);
2622 hash_print_statistics (file, "i386 register", reg_hash);
2623 }
2624 \f
2625 #ifdef DEBUG386
2626
2627 /* Debugging routines for md_assemble. */
2628 static void pte (insn_template *);
2629 static void pt (i386_operand_type);
2630 static void pe (expressionS *);
2631 static void ps (symbolS *);
2632
2633 static void
2634 pi (char *line, i386_insn *x)
2635 {
2636 unsigned int j;
2637
2638 fprintf (stdout, "%s: template ", line);
2639 pte (&x->tm);
2640 fprintf (stdout, " address: base %s index %s scale %x\n",
2641 x->base_reg ? x->base_reg->reg_name : "none",
2642 x->index_reg ? x->index_reg->reg_name : "none",
2643 x->log2_scale_factor);
2644 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2645 x->rm.mode, x->rm.reg, x->rm.regmem);
2646 fprintf (stdout, " sib: base %x index %x scale %x\n",
2647 x->sib.base, x->sib.index, x->sib.scale);
2648 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2649 (x->rex & REX_W) != 0,
2650 (x->rex & REX_R) != 0,
2651 (x->rex & REX_X) != 0,
2652 (x->rex & REX_B) != 0);
2653 for (j = 0; j < x->operands; j++)
2654 {
2655 fprintf (stdout, " #%d: ", j + 1);
2656 pt (x->types[j]);
2657 fprintf (stdout, "\n");
2658 if (x->types[j].bitfield.reg8
2659 || x->types[j].bitfield.reg16
2660 || x->types[j].bitfield.reg32
2661 || x->types[j].bitfield.reg64
2662 || x->types[j].bitfield.regmmx
2663 || x->types[j].bitfield.regxmm
2664 || x->types[j].bitfield.regymm
2665 || x->types[j].bitfield.regzmm
2666 || x->types[j].bitfield.sreg2
2667 || x->types[j].bitfield.sreg3
2668 || x->types[j].bitfield.control
2669 || x->types[j].bitfield.debug
2670 || x->types[j].bitfield.test)
2671 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2672 if (operand_type_check (x->types[j], imm))
2673 pe (x->op[j].imms);
2674 if (operand_type_check (x->types[j], disp))
2675 pe (x->op[j].disps);
2676 }
2677 }
2678
2679 static void
2680 pte (insn_template *t)
2681 {
2682 unsigned int j;
2683 fprintf (stdout, " %d operands ", t->operands);
2684 fprintf (stdout, "opcode %x ", t->base_opcode);
2685 if (t->extension_opcode != None)
2686 fprintf (stdout, "ext %x ", t->extension_opcode);
2687 if (t->opcode_modifier.d)
2688 fprintf (stdout, "D");
2689 if (t->opcode_modifier.w)
2690 fprintf (stdout, "W");
2691 fprintf (stdout, "\n");
2692 for (j = 0; j < t->operands; j++)
2693 {
2694 fprintf (stdout, " #%d type ", j + 1);
2695 pt (t->operand_types[j]);
2696 fprintf (stdout, "\n");
2697 }
2698 }
2699
2700 static void
2701 pe (expressionS *e)
2702 {
2703 fprintf (stdout, " operation %d\n", e->X_op);
2704 fprintf (stdout, " add_number %ld (%lx)\n",
2705 (long) e->X_add_number, (long) e->X_add_number);
2706 if (e->X_add_symbol)
2707 {
2708 fprintf (stdout, " add_symbol ");
2709 ps (e->X_add_symbol);
2710 fprintf (stdout, "\n");
2711 }
2712 if (e->X_op_symbol)
2713 {
2714 fprintf (stdout, " op_symbol ");
2715 ps (e->X_op_symbol);
2716 fprintf (stdout, "\n");
2717 }
2718 }
2719
2720 static void
2721 ps (symbolS *s)
2722 {
2723 fprintf (stdout, "%s type %s%s",
2724 S_GET_NAME (s),
2725 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2726 segment_name (S_GET_SEGMENT (s)));
2727 }
2728
2729 static struct type_name
2730 {
2731 i386_operand_type mask;
2732 const char *name;
2733 }
2734 const type_names[] =
2735 {
2736 { OPERAND_TYPE_REG8, "r8" },
2737 { OPERAND_TYPE_REG16, "r16" },
2738 { OPERAND_TYPE_REG32, "r32" },
2739 { OPERAND_TYPE_REG64, "r64" },
2740 { OPERAND_TYPE_IMM8, "i8" },
2741 { OPERAND_TYPE_IMM8, "i8s" },
2742 { OPERAND_TYPE_IMM16, "i16" },
2743 { OPERAND_TYPE_IMM32, "i32" },
2744 { OPERAND_TYPE_IMM32S, "i32s" },
2745 { OPERAND_TYPE_IMM64, "i64" },
2746 { OPERAND_TYPE_IMM1, "i1" },
2747 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2748 { OPERAND_TYPE_DISP8, "d8" },
2749 { OPERAND_TYPE_DISP16, "d16" },
2750 { OPERAND_TYPE_DISP32, "d32" },
2751 { OPERAND_TYPE_DISP32S, "d32s" },
2752 { OPERAND_TYPE_DISP64, "d64" },
2753 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
2754 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2755 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2756 { OPERAND_TYPE_CONTROL, "control reg" },
2757 { OPERAND_TYPE_TEST, "test reg" },
2758 { OPERAND_TYPE_DEBUG, "debug reg" },
2759 { OPERAND_TYPE_FLOATREG, "FReg" },
2760 { OPERAND_TYPE_FLOATACC, "FAcc" },
2761 { OPERAND_TYPE_SREG2, "SReg2" },
2762 { OPERAND_TYPE_SREG3, "SReg3" },
2763 { OPERAND_TYPE_ACC, "Acc" },
2764 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2765 { OPERAND_TYPE_REGMMX, "rMMX" },
2766 { OPERAND_TYPE_REGXMM, "rXMM" },
2767 { OPERAND_TYPE_REGYMM, "rYMM" },
2768 { OPERAND_TYPE_REGZMM, "rZMM" },
2769 { OPERAND_TYPE_REGMASK, "Mask reg" },
2770 { OPERAND_TYPE_ESSEG, "es" },
2771 };
2772
2773 static void
2774 pt (i386_operand_type t)
2775 {
2776 unsigned int j;
2777 i386_operand_type a;
2778
2779 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2780 {
2781 a = operand_type_and (t, type_names[j].mask);
2782 if (!operand_type_all_zero (&a))
2783 fprintf (stdout, "%s, ", type_names[j].name);
2784 }
2785 fflush (stdout);
2786 }
2787
2788 #endif /* DEBUG386 */
2789 \f
2790 static bfd_reloc_code_real_type
2791 reloc (unsigned int size,
2792 int pcrel,
2793 int sign,
2794 bfd_reloc_code_real_type other)
2795 {
2796 if (other != NO_RELOC)
2797 {
2798 reloc_howto_type *rel;
2799
2800 if (size == 8)
2801 switch (other)
2802 {
2803 case BFD_RELOC_X86_64_GOT32:
2804 return BFD_RELOC_X86_64_GOT64;
2805 break;
2806 case BFD_RELOC_X86_64_GOTPLT64:
2807 return BFD_RELOC_X86_64_GOTPLT64;
2808 break;
2809 case BFD_RELOC_X86_64_PLTOFF64:
2810 return BFD_RELOC_X86_64_PLTOFF64;
2811 break;
2812 case BFD_RELOC_X86_64_GOTPC32:
2813 other = BFD_RELOC_X86_64_GOTPC64;
2814 break;
2815 case BFD_RELOC_X86_64_GOTPCREL:
2816 other = BFD_RELOC_X86_64_GOTPCREL64;
2817 break;
2818 case BFD_RELOC_X86_64_TPOFF32:
2819 other = BFD_RELOC_X86_64_TPOFF64;
2820 break;
2821 case BFD_RELOC_X86_64_DTPOFF32:
2822 other = BFD_RELOC_X86_64_DTPOFF64;
2823 break;
2824 default:
2825 break;
2826 }
2827
2828 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2829 if (other == BFD_RELOC_SIZE32)
2830 {
2831 if (size == 8)
2832 other = BFD_RELOC_SIZE64;
2833 if (pcrel)
2834 {
2835 as_bad (_("there are no pc-relative size relocations"));
2836 return NO_RELOC;
2837 }
2838 }
2839 #endif
2840
2841 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2842 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
2843 sign = -1;
2844
2845 rel = bfd_reloc_type_lookup (stdoutput, other);
2846 if (!rel)
2847 as_bad (_("unknown relocation (%u)"), other);
2848 else if (size != bfd_get_reloc_size (rel))
2849 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2850 bfd_get_reloc_size (rel),
2851 size);
2852 else if (pcrel && !rel->pc_relative)
2853 as_bad (_("non-pc-relative relocation for pc-relative field"));
2854 else if ((rel->complain_on_overflow == complain_overflow_signed
2855 && !sign)
2856 || (rel->complain_on_overflow == complain_overflow_unsigned
2857 && sign > 0))
2858 as_bad (_("relocated field and relocation type differ in signedness"));
2859 else
2860 return other;
2861 return NO_RELOC;
2862 }
2863
2864 if (pcrel)
2865 {
2866 if (!sign)
2867 as_bad (_("there are no unsigned pc-relative relocations"));
2868 switch (size)
2869 {
2870 case 1: return BFD_RELOC_8_PCREL;
2871 case 2: return BFD_RELOC_16_PCREL;
2872 case 4: return BFD_RELOC_32_PCREL;
2873 case 8: return BFD_RELOC_64_PCREL;
2874 }
2875 as_bad (_("cannot do %u byte pc-relative relocation"), size);
2876 }
2877 else
2878 {
2879 if (sign > 0)
2880 switch (size)
2881 {
2882 case 4: return BFD_RELOC_X86_64_32S;
2883 }
2884 else
2885 switch (size)
2886 {
2887 case 1: return BFD_RELOC_8;
2888 case 2: return BFD_RELOC_16;
2889 case 4: return BFD_RELOC_32;
2890 case 8: return BFD_RELOC_64;
2891 }
2892 as_bad (_("cannot do %s %u byte relocation"),
2893 sign > 0 ? "signed" : "unsigned", size);
2894 }
2895
2896 return NO_RELOC;
2897 }
2898
2899 /* Here we decide which fixups can be adjusted to make them relative to
2900 the beginning of the section instead of the symbol. Basically we need
2901 to make sure that the dynamic relocations are done correctly, so in
2902 some cases we force the original symbol to be used. */
2903
2904 int
2905 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
2906 {
2907 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2908 if (!IS_ELF)
2909 return 1;
2910
2911 /* Don't adjust pc-relative references to merge sections in 64-bit
2912 mode. */
2913 if (use_rela_relocations
2914 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2915 && fixP->fx_pcrel)
2916 return 0;
2917
2918 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2919 and changed later by validate_fix. */
2920 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2921 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2922 return 0;
2923
2924 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
2925 for size relocations. */
2926 if (fixP->fx_r_type == BFD_RELOC_SIZE32
2927 || fixP->fx_r_type == BFD_RELOC_SIZE64
2928 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
2929 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2930 || fixP->fx_r_type == BFD_RELOC_386_GOT32
2931 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
2932 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2933 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2934 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2935 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
2936 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2937 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
2938 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2939 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
2940 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2941 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
2942 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2943 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
2944 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
2945 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
2946 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
2947 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2948 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2949 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
2950 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
2951 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2952 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
2953 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2954 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
2955 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2956 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
2957 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2958 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2959 return 0;
2960 #endif
2961 return 1;
2962 }
2963
2964 static int
2965 intel_float_operand (const char *mnemonic)
2966 {
2967 /* Note that the value returned is meaningful only for opcodes with (memory)
2968 operands, hence the code here is free to improperly handle opcodes that
2969 have no operands (for better performance and smaller code). */
2970
2971 if (mnemonic[0] != 'f')
2972 return 0; /* non-math */
2973
2974 switch (mnemonic[1])
2975 {
2976 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2977 the fs segment override prefix not currently handled because no
2978 call path can make opcodes without operands get here */
2979 case 'i':
2980 return 2 /* integer op */;
2981 case 'l':
2982 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
2983 return 3; /* fldcw/fldenv */
2984 break;
2985 case 'n':
2986 if (mnemonic[2] != 'o' /* fnop */)
2987 return 3; /* non-waiting control op */
2988 break;
2989 case 'r':
2990 if (mnemonic[2] == 's')
2991 return 3; /* frstor/frstpm */
2992 break;
2993 case 's':
2994 if (mnemonic[2] == 'a')
2995 return 3; /* fsave */
2996 if (mnemonic[2] == 't')
2997 {
2998 switch (mnemonic[3])
2999 {
3000 case 'c': /* fstcw */
3001 case 'd': /* fstdw */
3002 case 'e': /* fstenv */
3003 case 's': /* fsts[gw] */
3004 return 3;
3005 }
3006 }
3007 break;
3008 case 'x':
3009 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3010 return 0; /* fxsave/fxrstor are not really math ops */
3011 break;
3012 }
3013
3014 return 1;
3015 }
3016
3017 /* Build the VEX prefix. */
3018
3019 static void
3020 build_vex_prefix (const insn_template *t)
3021 {
3022 unsigned int register_specifier;
3023 unsigned int implied_prefix;
3024 unsigned int vector_length;
3025
3026 /* Check register specifier. */
3027 if (i.vex.register_specifier)
3028 {
3029 register_specifier =
3030 ~register_number (i.vex.register_specifier) & 0xf;
3031 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3032 }
3033 else
3034 register_specifier = 0xf;
3035
3036 /* Use 2-byte VEX prefix by swappping destination and source
3037 operand. */
3038 if (!i.swap_operand
3039 && i.operands == i.reg_operands
3040 && i.tm.opcode_modifier.vexopcode == VEX0F
3041 && i.tm.opcode_modifier.s
3042 && i.rex == REX_B)
3043 {
3044 unsigned int xchg = i.operands - 1;
3045 union i386_op temp_op;
3046 i386_operand_type temp_type;
3047
3048 temp_type = i.types[xchg];
3049 i.types[xchg] = i.types[0];
3050 i.types[0] = temp_type;
3051 temp_op = i.op[xchg];
3052 i.op[xchg] = i.op[0];
3053 i.op[0] = temp_op;
3054
3055 gas_assert (i.rm.mode == 3);
3056
3057 i.rex = REX_R;
3058 xchg = i.rm.regmem;
3059 i.rm.regmem = i.rm.reg;
3060 i.rm.reg = xchg;
3061
3062 /* Use the next insn. */
3063 i.tm = t[1];
3064 }
3065
3066 if (i.tm.opcode_modifier.vex == VEXScalar)
3067 vector_length = avxscalar;
3068 else
3069 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
3070
3071 switch ((i.tm.base_opcode >> 8) & 0xff)
3072 {
3073 case 0:
3074 implied_prefix = 0;
3075 break;
3076 case DATA_PREFIX_OPCODE:
3077 implied_prefix = 1;
3078 break;
3079 case REPE_PREFIX_OPCODE:
3080 implied_prefix = 2;
3081 break;
3082 case REPNE_PREFIX_OPCODE:
3083 implied_prefix = 3;
3084 break;
3085 default:
3086 abort ();
3087 }
3088
3089 /* Use 2-byte VEX prefix if possible. */
3090 if (i.tm.opcode_modifier.vexopcode == VEX0F
3091 && i.tm.opcode_modifier.vexw != VEXW1
3092 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3093 {
3094 /* 2-byte VEX prefix. */
3095 unsigned int r;
3096
3097 i.vex.length = 2;
3098 i.vex.bytes[0] = 0xc5;
3099
3100 /* Check the REX.R bit. */
3101 r = (i.rex & REX_R) ? 0 : 1;
3102 i.vex.bytes[1] = (r << 7
3103 | register_specifier << 3
3104 | vector_length << 2
3105 | implied_prefix);
3106 }
3107 else
3108 {
3109 /* 3-byte VEX prefix. */
3110 unsigned int m, w;
3111
3112 i.vex.length = 3;
3113
3114 switch (i.tm.opcode_modifier.vexopcode)
3115 {
3116 case VEX0F:
3117 m = 0x1;
3118 i.vex.bytes[0] = 0xc4;
3119 break;
3120 case VEX0F38:
3121 m = 0x2;
3122 i.vex.bytes[0] = 0xc4;
3123 break;
3124 case VEX0F3A:
3125 m = 0x3;
3126 i.vex.bytes[0] = 0xc4;
3127 break;
3128 case XOP08:
3129 m = 0x8;
3130 i.vex.bytes[0] = 0x8f;
3131 break;
3132 case XOP09:
3133 m = 0x9;
3134 i.vex.bytes[0] = 0x8f;
3135 break;
3136 case XOP0A:
3137 m = 0xa;
3138 i.vex.bytes[0] = 0x8f;
3139 break;
3140 default:
3141 abort ();
3142 }
3143
3144 /* The high 3 bits of the second VEX byte are 1's compliment
3145 of RXB bits from REX. */
3146 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3147
3148 /* Check the REX.W bit. */
3149 w = (i.rex & REX_W) ? 1 : 0;
3150 if (i.tm.opcode_modifier.vexw == VEXW1)
3151 w = 1;
3152
3153 i.vex.bytes[2] = (w << 7
3154 | register_specifier << 3
3155 | vector_length << 2
3156 | implied_prefix);
3157 }
3158 }
3159
3160 /* Build the EVEX prefix. */
3161
3162 static void
3163 build_evex_prefix (void)
3164 {
3165 unsigned int register_specifier;
3166 unsigned int implied_prefix;
3167 unsigned int m, w;
3168 rex_byte vrex_used = 0;
3169
3170 /* Check register specifier. */
3171 if (i.vex.register_specifier)
3172 {
3173 gas_assert ((i.vrex & REX_X) == 0);
3174
3175 register_specifier = i.vex.register_specifier->reg_num;
3176 if ((i.vex.register_specifier->reg_flags & RegRex))
3177 register_specifier += 8;
3178 /* The upper 16 registers are encoded in the fourth byte of the
3179 EVEX prefix. */
3180 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3181 i.vex.bytes[3] = 0x8;
3182 register_specifier = ~register_specifier & 0xf;
3183 }
3184 else
3185 {
3186 register_specifier = 0xf;
3187
3188 /* Encode upper 16 vector index register in the fourth byte of
3189 the EVEX prefix. */
3190 if (!(i.vrex & REX_X))
3191 i.vex.bytes[3] = 0x8;
3192 else
3193 vrex_used |= REX_X;
3194 }
3195
3196 switch ((i.tm.base_opcode >> 8) & 0xff)
3197 {
3198 case 0:
3199 implied_prefix = 0;
3200 break;
3201 case DATA_PREFIX_OPCODE:
3202 implied_prefix = 1;
3203 break;
3204 case REPE_PREFIX_OPCODE:
3205 implied_prefix = 2;
3206 break;
3207 case REPNE_PREFIX_OPCODE:
3208 implied_prefix = 3;
3209 break;
3210 default:
3211 abort ();
3212 }
3213
3214 /* 4 byte EVEX prefix. */
3215 i.vex.length = 4;
3216 i.vex.bytes[0] = 0x62;
3217
3218 /* mmmm bits. */
3219 switch (i.tm.opcode_modifier.vexopcode)
3220 {
3221 case VEX0F:
3222 m = 1;
3223 break;
3224 case VEX0F38:
3225 m = 2;
3226 break;
3227 case VEX0F3A:
3228 m = 3;
3229 break;
3230 default:
3231 abort ();
3232 break;
3233 }
3234
3235 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3236 bits from REX. */
3237 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3238
3239 /* The fifth bit of the second EVEX byte is 1's compliment of the
3240 REX_R bit in VREX. */
3241 if (!(i.vrex & REX_R))
3242 i.vex.bytes[1] |= 0x10;
3243 else
3244 vrex_used |= REX_R;
3245
3246 if ((i.reg_operands + i.imm_operands) == i.operands)
3247 {
3248 /* When all operands are registers, the REX_X bit in REX is not
3249 used. We reuse it to encode the upper 16 registers, which is
3250 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3251 as 1's compliment. */
3252 if ((i.vrex & REX_B))
3253 {
3254 vrex_used |= REX_B;
3255 i.vex.bytes[1] &= ~0x40;
3256 }
3257 }
3258
3259 /* EVEX instructions shouldn't need the REX prefix. */
3260 i.vrex &= ~vrex_used;
3261 gas_assert (i.vrex == 0);
3262
3263 /* Check the REX.W bit. */
3264 w = (i.rex & REX_W) ? 1 : 0;
3265 if (i.tm.opcode_modifier.vexw)
3266 {
3267 if (i.tm.opcode_modifier.vexw == VEXW1)
3268 w = 1;
3269 }
3270 /* If w is not set it means we are dealing with WIG instruction. */
3271 else if (!w)
3272 {
3273 if (evexwig == evexw1)
3274 w = 1;
3275 }
3276
3277 /* Encode the U bit. */
3278 implied_prefix |= 0x4;
3279
3280 /* The third byte of the EVEX prefix. */
3281 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3282
3283 /* The fourth byte of the EVEX prefix. */
3284 /* The zeroing-masking bit. */
3285 if (i.mask && i.mask->zeroing)
3286 i.vex.bytes[3] |= 0x80;
3287
3288 /* Don't always set the broadcast bit if there is no RC. */
3289 if (!i.rounding)
3290 {
3291 /* Encode the vector length. */
3292 unsigned int vec_length;
3293
3294 switch (i.tm.opcode_modifier.evex)
3295 {
3296 case EVEXLIG: /* LL' is ignored */
3297 vec_length = evexlig << 5;
3298 break;
3299 case EVEX128:
3300 vec_length = 0 << 5;
3301 break;
3302 case EVEX256:
3303 vec_length = 1 << 5;
3304 break;
3305 case EVEX512:
3306 vec_length = 2 << 5;
3307 break;
3308 default:
3309 abort ();
3310 break;
3311 }
3312 i.vex.bytes[3] |= vec_length;
3313 /* Encode the broadcast bit. */
3314 if (i.broadcast)
3315 i.vex.bytes[3] |= 0x10;
3316 }
3317 else
3318 {
3319 if (i.rounding->type != saeonly)
3320 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3321 else
3322 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3323 }
3324
3325 if (i.mask && i.mask->mask)
3326 i.vex.bytes[3] |= i.mask->mask->reg_num;
3327 }
3328
3329 static void
3330 process_immext (void)
3331 {
3332 expressionS *exp;
3333
3334 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3335 && i.operands > 0)
3336 {
3337 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3338 with an opcode suffix which is coded in the same place as an
3339 8-bit immediate field would be.
3340 Here we check those operands and remove them afterwards. */
3341 unsigned int x;
3342
3343 for (x = 0; x < i.operands; x++)
3344 if (register_number (i.op[x].regs) != x)
3345 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3346 register_prefix, i.op[x].regs->reg_name, x + 1,
3347 i.tm.name);
3348
3349 i.operands = 0;
3350 }
3351
3352 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3353 {
3354 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3355 suffix which is coded in the same place as an 8-bit immediate
3356 field would be.
3357 Here we check those operands and remove them afterwards. */
3358 unsigned int x;
3359
3360 if (i.operands != 3)
3361 abort();
3362
3363 for (x = 0; x < 2; x++)
3364 if (register_number (i.op[x].regs) != x)
3365 goto bad_register_operand;
3366
3367 /* Check for third operand for mwaitx/monitorx insn. */
3368 if (register_number (i.op[x].regs)
3369 != (x + (i.tm.extension_opcode == 0xfb)))
3370 {
3371 bad_register_operand:
3372 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3373 register_prefix, i.op[x].regs->reg_name, x+1,
3374 i.tm.name);
3375 }
3376
3377 i.operands = 0;
3378 }
3379
3380 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3381 which is coded in the same place as an 8-bit immediate field
3382 would be. Here we fake an 8-bit immediate operand from the
3383 opcode suffix stored in tm.extension_opcode.
3384
3385 AVX instructions also use this encoding, for some of
3386 3 argument instructions. */
3387
3388 gas_assert (i.imm_operands <= 1
3389 && (i.operands <= 2
3390 || ((i.tm.opcode_modifier.vex
3391 || i.tm.opcode_modifier.evex)
3392 && i.operands <= 4)));
3393
3394 exp = &im_expressions[i.imm_operands++];
3395 i.op[i.operands].imms = exp;
3396 i.types[i.operands] = imm8;
3397 i.operands++;
3398 exp->X_op = O_constant;
3399 exp->X_add_number = i.tm.extension_opcode;
3400 i.tm.extension_opcode = None;
3401 }
3402
3403
3404 static int
3405 check_hle (void)
3406 {
3407 switch (i.tm.opcode_modifier.hleprefixok)
3408 {
3409 default:
3410 abort ();
3411 case HLEPrefixNone:
3412 as_bad (_("invalid instruction `%s' after `%s'"),
3413 i.tm.name, i.hle_prefix);
3414 return 0;
3415 case HLEPrefixLock:
3416 if (i.prefix[LOCK_PREFIX])
3417 return 1;
3418 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3419 return 0;
3420 case HLEPrefixAny:
3421 return 1;
3422 case HLEPrefixRelease:
3423 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3424 {
3425 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3426 i.tm.name);
3427 return 0;
3428 }
3429 if (i.mem_operands == 0
3430 || !operand_type_check (i.types[i.operands - 1], anymem))
3431 {
3432 as_bad (_("memory destination needed for instruction `%s'"
3433 " after `xrelease'"), i.tm.name);
3434 return 0;
3435 }
3436 return 1;
3437 }
3438 }
3439
3440 /* This is the guts of the machine-dependent assembler. LINE points to a
3441 machine dependent instruction. This function is supposed to emit
3442 the frags/bytes it assembles to. */
3443
3444 void
3445 md_assemble (char *line)
3446 {
3447 unsigned int j;
3448 char mnemonic[MAX_MNEM_SIZE];
3449 const insn_template *t;
3450
3451 /* Initialize globals. */
3452 memset (&i, '\0', sizeof (i));
3453 for (j = 0; j < MAX_OPERANDS; j++)
3454 i.reloc[j] = NO_RELOC;
3455 memset (disp_expressions, '\0', sizeof (disp_expressions));
3456 memset (im_expressions, '\0', sizeof (im_expressions));
3457 save_stack_p = save_stack;
3458
3459 /* First parse an instruction mnemonic & call i386_operand for the operands.
3460 We assume that the scrubber has arranged it so that line[0] is the valid
3461 start of a (possibly prefixed) mnemonic. */
3462
3463 line = parse_insn (line, mnemonic);
3464 if (line == NULL)
3465 return;
3466
3467 line = parse_operands (line, mnemonic);
3468 this_operand = -1;
3469 if (line == NULL)
3470 return;
3471
3472 /* Now we've parsed the mnemonic into a set of templates, and have the
3473 operands at hand. */
3474
3475 /* All intel opcodes have reversed operands except for "bound" and
3476 "enter". We also don't reverse intersegment "jmp" and "call"
3477 instructions with 2 immediate operands so that the immediate segment
3478 precedes the offset, as it does when in AT&T mode. */
3479 if (intel_syntax
3480 && i.operands > 1
3481 && (strcmp (mnemonic, "bound") != 0)
3482 && (strcmp (mnemonic, "invlpga") != 0)
3483 && !(operand_type_check (i.types[0], imm)
3484 && operand_type_check (i.types[1], imm)))
3485 swap_operands ();
3486
3487 /* The order of the immediates should be reversed
3488 for 2 immediates extrq and insertq instructions */
3489 if (i.imm_operands == 2
3490 && (strcmp (mnemonic, "extrq") == 0
3491 || strcmp (mnemonic, "insertq") == 0))
3492 swap_2_operands (0, 1);
3493
3494 if (i.imm_operands)
3495 optimize_imm ();
3496
3497 /* Don't optimize displacement for movabs since it only takes 64bit
3498 displacement. */
3499 if (i.disp_operands
3500 && i.disp_encoding != disp_encoding_32bit
3501 && (flag_code != CODE_64BIT
3502 || strcmp (mnemonic, "movabs") != 0))
3503 optimize_disp ();
3504
3505 /* Next, we find a template that matches the given insn,
3506 making sure the overlap of the given operands types is consistent
3507 with the template operand types. */
3508
3509 if (!(t = match_template ()))
3510 return;
3511
3512 if (sse_check != check_none
3513 && !i.tm.opcode_modifier.noavx
3514 && (i.tm.cpu_flags.bitfield.cpusse
3515 || i.tm.cpu_flags.bitfield.cpusse2
3516 || i.tm.cpu_flags.bitfield.cpusse3
3517 || i.tm.cpu_flags.bitfield.cpussse3
3518 || i.tm.cpu_flags.bitfield.cpusse4_1
3519 || i.tm.cpu_flags.bitfield.cpusse4_2))
3520 {
3521 (sse_check == check_warning
3522 ? as_warn
3523 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3524 }
3525
3526 /* Zap movzx and movsx suffix. The suffix has been set from
3527 "word ptr" or "byte ptr" on the source operand in Intel syntax
3528 or extracted from mnemonic in AT&T syntax. But we'll use
3529 the destination register to choose the suffix for encoding. */
3530 if ((i.tm.base_opcode & ~9) == 0x0fb6)
3531 {
3532 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3533 there is no suffix, the default will be byte extension. */
3534 if (i.reg_operands != 2
3535 && !i.suffix
3536 && intel_syntax)
3537 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3538
3539 i.suffix = 0;
3540 }
3541
3542 if (i.tm.opcode_modifier.fwait)
3543 if (!add_prefix (FWAIT_OPCODE))
3544 return;
3545
3546 /* Check if REP prefix is OK. */
3547 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3548 {
3549 as_bad (_("invalid instruction `%s' after `%s'"),
3550 i.tm.name, i.rep_prefix);
3551 return;
3552 }
3553
3554 /* Check for lock without a lockable instruction. Destination operand
3555 must be memory unless it is xchg (0x86). */
3556 if (i.prefix[LOCK_PREFIX]
3557 && (!i.tm.opcode_modifier.islockable
3558 || i.mem_operands == 0
3559 || (i.tm.base_opcode != 0x86
3560 && !operand_type_check (i.types[i.operands - 1], anymem))))
3561 {
3562 as_bad (_("expecting lockable instruction after `lock'"));
3563 return;
3564 }
3565
3566 /* Check if HLE prefix is OK. */
3567 if (i.hle_prefix && !check_hle ())
3568 return;
3569
3570 /* Check BND prefix. */
3571 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3572 as_bad (_("expecting valid branch instruction after `bnd'"));
3573
3574 if (i.tm.cpu_flags.bitfield.cpumpx
3575 && flag_code == CODE_64BIT
3576 && i.prefix[ADDR_PREFIX])
3577 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3578
3579 /* Insert BND prefix. */
3580 if (add_bnd_prefix
3581 && i.tm.opcode_modifier.bndprefixok
3582 && !i.prefix[BND_PREFIX])
3583 add_prefix (BND_PREFIX_OPCODE);
3584
3585 /* Check string instruction segment overrides. */
3586 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3587 {
3588 if (!check_string ())
3589 return;
3590 i.disp_operands = 0;
3591 }
3592
3593 if (!process_suffix ())
3594 return;
3595
3596 /* Update operand types. */
3597 for (j = 0; j < i.operands; j++)
3598 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3599
3600 /* Make still unresolved immediate matches conform to size of immediate
3601 given in i.suffix. */
3602 if (!finalize_imm ())
3603 return;
3604
3605 if (i.types[0].bitfield.imm1)
3606 i.imm_operands = 0; /* kludge for shift insns. */
3607
3608 /* We only need to check those implicit registers for instructions
3609 with 3 operands or less. */
3610 if (i.operands <= 3)
3611 for (j = 0; j < i.operands; j++)
3612 if (i.types[j].bitfield.inoutportreg
3613 || i.types[j].bitfield.shiftcount
3614 || i.types[j].bitfield.acc
3615 || i.types[j].bitfield.floatacc)
3616 i.reg_operands--;
3617
3618 /* ImmExt should be processed after SSE2AVX. */
3619 if (!i.tm.opcode_modifier.sse2avx
3620 && i.tm.opcode_modifier.immext)
3621 process_immext ();
3622
3623 /* For insns with operands there are more diddles to do to the opcode. */
3624 if (i.operands)
3625 {
3626 if (!process_operands ())
3627 return;
3628 }
3629 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3630 {
3631 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3632 as_warn (_("translating to `%sp'"), i.tm.name);
3633 }
3634
3635 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3636 {
3637 if (flag_code == CODE_16BIT)
3638 {
3639 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3640 i.tm.name);
3641 return;
3642 }
3643
3644 if (i.tm.opcode_modifier.vex)
3645 build_vex_prefix (t);
3646 else
3647 build_evex_prefix ();
3648 }
3649
3650 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3651 instructions may define INT_OPCODE as well, so avoid this corner
3652 case for those instructions that use MODRM. */
3653 if (i.tm.base_opcode == INT_OPCODE
3654 && !i.tm.opcode_modifier.modrm
3655 && i.op[0].imms->X_add_number == 3)
3656 {
3657 i.tm.base_opcode = INT3_OPCODE;
3658 i.imm_operands = 0;
3659 }
3660
3661 if ((i.tm.opcode_modifier.jump
3662 || i.tm.opcode_modifier.jumpbyte
3663 || i.tm.opcode_modifier.jumpdword)
3664 && i.op[0].disps->X_op == O_constant)
3665 {
3666 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3667 the absolute address given by the constant. Since ix86 jumps and
3668 calls are pc relative, we need to generate a reloc. */
3669 i.op[0].disps->X_add_symbol = &abs_symbol;
3670 i.op[0].disps->X_op = O_symbol;
3671 }
3672
3673 if (i.tm.opcode_modifier.rex64)
3674 i.rex |= REX_W;
3675
3676 /* For 8 bit registers we need an empty rex prefix. Also if the
3677 instruction already has a prefix, we need to convert old
3678 registers to new ones. */
3679
3680 if ((i.types[0].bitfield.reg8
3681 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3682 || (i.types[1].bitfield.reg8
3683 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3684 || ((i.types[0].bitfield.reg8
3685 || i.types[1].bitfield.reg8)
3686 && i.rex != 0))
3687 {
3688 int x;
3689
3690 i.rex |= REX_OPCODE;
3691 for (x = 0; x < 2; x++)
3692 {
3693 /* Look for 8 bit operand that uses old registers. */
3694 if (i.types[x].bitfield.reg8
3695 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3696 {
3697 /* In case it is "hi" register, give up. */
3698 if (i.op[x].regs->reg_num > 3)
3699 as_bad (_("can't encode register '%s%s' in an "
3700 "instruction requiring REX prefix."),
3701 register_prefix, i.op[x].regs->reg_name);
3702
3703 /* Otherwise it is equivalent to the extended register.
3704 Since the encoding doesn't change this is merely
3705 cosmetic cleanup for debug output. */
3706
3707 i.op[x].regs = i.op[x].regs + 8;
3708 }
3709 }
3710 }
3711
3712 if (i.rex != 0)
3713 add_prefix (REX_OPCODE | i.rex);
3714
3715 /* We are ready to output the insn. */
3716 output_insn ();
3717 }
3718
3719 static char *
3720 parse_insn (char *line, char *mnemonic)
3721 {
3722 char *l = line;
3723 char *token_start = l;
3724 char *mnem_p;
3725 int supported;
3726 const insn_template *t;
3727 char *dot_p = NULL;
3728
3729 while (1)
3730 {
3731 mnem_p = mnemonic;
3732 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3733 {
3734 if (*mnem_p == '.')
3735 dot_p = mnem_p;
3736 mnem_p++;
3737 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3738 {
3739 as_bad (_("no such instruction: `%s'"), token_start);
3740 return NULL;
3741 }
3742 l++;
3743 }
3744 if (!is_space_char (*l)
3745 && *l != END_OF_INSN
3746 && (intel_syntax
3747 || (*l != PREFIX_SEPARATOR
3748 && *l != ',')))
3749 {
3750 as_bad (_("invalid character %s in mnemonic"),
3751 output_invalid (*l));
3752 return NULL;
3753 }
3754 if (token_start == l)
3755 {
3756 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3757 as_bad (_("expecting prefix; got nothing"));
3758 else
3759 as_bad (_("expecting mnemonic; got nothing"));
3760 return NULL;
3761 }
3762
3763 /* Look up instruction (or prefix) via hash table. */
3764 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3765
3766 if (*l != END_OF_INSN
3767 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3768 && current_templates
3769 && current_templates->start->opcode_modifier.isprefix)
3770 {
3771 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3772 {
3773 as_bad ((flag_code != CODE_64BIT
3774 ? _("`%s' is only supported in 64-bit mode")
3775 : _("`%s' is not supported in 64-bit mode")),
3776 current_templates->start->name);
3777 return NULL;
3778 }
3779 /* If we are in 16-bit mode, do not allow addr16 or data16.
3780 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3781 if ((current_templates->start->opcode_modifier.size16
3782 || current_templates->start->opcode_modifier.size32)
3783 && flag_code != CODE_64BIT
3784 && (current_templates->start->opcode_modifier.size32
3785 ^ (flag_code == CODE_16BIT)))
3786 {
3787 as_bad (_("redundant %s prefix"),
3788 current_templates->start->name);
3789 return NULL;
3790 }
3791 /* Add prefix, checking for repeated prefixes. */
3792 switch (add_prefix (current_templates->start->base_opcode))
3793 {
3794 case PREFIX_EXIST:
3795 return NULL;
3796 case PREFIX_REP:
3797 if (current_templates->start->cpu_flags.bitfield.cpuhle)
3798 i.hle_prefix = current_templates->start->name;
3799 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
3800 i.bnd_prefix = current_templates->start->name;
3801 else
3802 i.rep_prefix = current_templates->start->name;
3803 break;
3804 default:
3805 break;
3806 }
3807 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3808 token_start = ++l;
3809 }
3810 else
3811 break;
3812 }
3813
3814 if (!current_templates)
3815 {
3816 /* Check if we should swap operand or force 32bit displacement in
3817 encoding. */
3818 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3819 i.swap_operand = 1;
3820 else if (mnem_p - 3 == dot_p
3821 && dot_p[1] == 'd'
3822 && dot_p[2] == '8')
3823 i.disp_encoding = disp_encoding_8bit;
3824 else if (mnem_p - 4 == dot_p
3825 && dot_p[1] == 'd'
3826 && dot_p[2] == '3'
3827 && dot_p[3] == '2')
3828 i.disp_encoding = disp_encoding_32bit;
3829 else
3830 goto check_suffix;
3831 mnem_p = dot_p;
3832 *dot_p = '\0';
3833 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3834 }
3835
3836 if (!current_templates)
3837 {
3838 check_suffix:
3839 /* See if we can get a match by trimming off a suffix. */
3840 switch (mnem_p[-1])
3841 {
3842 case WORD_MNEM_SUFFIX:
3843 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3844 i.suffix = SHORT_MNEM_SUFFIX;
3845 else
3846 case BYTE_MNEM_SUFFIX:
3847 case QWORD_MNEM_SUFFIX:
3848 i.suffix = mnem_p[-1];
3849 mnem_p[-1] = '\0';
3850 current_templates = (const templates *) hash_find (op_hash,
3851 mnemonic);
3852 break;
3853 case SHORT_MNEM_SUFFIX:
3854 case LONG_MNEM_SUFFIX:
3855 if (!intel_syntax)
3856 {
3857 i.suffix = mnem_p[-1];
3858 mnem_p[-1] = '\0';
3859 current_templates = (const templates *) hash_find (op_hash,
3860 mnemonic);
3861 }
3862 break;
3863
3864 /* Intel Syntax. */
3865 case 'd':
3866 if (intel_syntax)
3867 {
3868 if (intel_float_operand (mnemonic) == 1)
3869 i.suffix = SHORT_MNEM_SUFFIX;
3870 else
3871 i.suffix = LONG_MNEM_SUFFIX;
3872 mnem_p[-1] = '\0';
3873 current_templates = (const templates *) hash_find (op_hash,
3874 mnemonic);
3875 }
3876 break;
3877 }
3878 if (!current_templates)
3879 {
3880 as_bad (_("no such instruction: `%s'"), token_start);
3881 return NULL;
3882 }
3883 }
3884
3885 if (current_templates->start->opcode_modifier.jump
3886 || current_templates->start->opcode_modifier.jumpbyte)
3887 {
3888 /* Check for a branch hint. We allow ",pt" and ",pn" for
3889 predict taken and predict not taken respectively.
3890 I'm not sure that branch hints actually do anything on loop
3891 and jcxz insns (JumpByte) for current Pentium4 chips. They
3892 may work in the future and it doesn't hurt to accept them
3893 now. */
3894 if (l[0] == ',' && l[1] == 'p')
3895 {
3896 if (l[2] == 't')
3897 {
3898 if (!add_prefix (DS_PREFIX_OPCODE))
3899 return NULL;
3900 l += 3;
3901 }
3902 else if (l[2] == 'n')
3903 {
3904 if (!add_prefix (CS_PREFIX_OPCODE))
3905 return NULL;
3906 l += 3;
3907 }
3908 }
3909 }
3910 /* Any other comma loses. */
3911 if (*l == ',')
3912 {
3913 as_bad (_("invalid character %s in mnemonic"),
3914 output_invalid (*l));
3915 return NULL;
3916 }
3917
3918 /* Check if instruction is supported on specified architecture. */
3919 supported = 0;
3920 for (t = current_templates->start; t < current_templates->end; ++t)
3921 {
3922 supported |= cpu_flags_match (t);
3923 if (supported == CPU_FLAGS_PERFECT_MATCH)
3924 goto skip;
3925 }
3926
3927 if (!(supported & CPU_FLAGS_64BIT_MATCH))
3928 {
3929 as_bad (flag_code == CODE_64BIT
3930 ? _("`%s' is not supported in 64-bit mode")
3931 : _("`%s' is only supported in 64-bit mode"),
3932 current_templates->start->name);
3933 return NULL;
3934 }
3935 if (supported != CPU_FLAGS_PERFECT_MATCH)
3936 {
3937 as_bad (_("`%s' is not supported on `%s%s'"),
3938 current_templates->start->name,
3939 cpu_arch_name ? cpu_arch_name : default_arch,
3940 cpu_sub_arch_name ? cpu_sub_arch_name : "");
3941 return NULL;
3942 }
3943
3944 skip:
3945 if (!cpu_arch_flags.bitfield.cpui386
3946 && (flag_code != CODE_16BIT))
3947 {
3948 as_warn (_("use .code16 to ensure correct addressing mode"));
3949 }
3950
3951 return l;
3952 }
3953
3954 static char *
3955 parse_operands (char *l, const char *mnemonic)
3956 {
3957 char *token_start;
3958
3959 /* 1 if operand is pending after ','. */
3960 unsigned int expecting_operand = 0;
3961
3962 /* Non-zero if operand parens not balanced. */
3963 unsigned int paren_not_balanced;
3964
3965 while (*l != END_OF_INSN)
3966 {
3967 /* Skip optional white space before operand. */
3968 if (is_space_char (*l))
3969 ++l;
3970 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
3971 {
3972 as_bad (_("invalid character %s before operand %d"),
3973 output_invalid (*l),
3974 i.operands + 1);
3975 return NULL;
3976 }
3977 token_start = l; /* After white space. */
3978 paren_not_balanced = 0;
3979 while (paren_not_balanced || *l != ',')
3980 {
3981 if (*l == END_OF_INSN)
3982 {
3983 if (paren_not_balanced)
3984 {
3985 if (!intel_syntax)
3986 as_bad (_("unbalanced parenthesis in operand %d."),
3987 i.operands + 1);
3988 else
3989 as_bad (_("unbalanced brackets in operand %d."),
3990 i.operands + 1);
3991 return NULL;
3992 }
3993 else
3994 break; /* we are done */
3995 }
3996 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
3997 {
3998 as_bad (_("invalid character %s in operand %d"),
3999 output_invalid (*l),
4000 i.operands + 1);
4001 return NULL;
4002 }
4003 if (!intel_syntax)
4004 {
4005 if (*l == '(')
4006 ++paren_not_balanced;
4007 if (*l == ')')
4008 --paren_not_balanced;
4009 }
4010 else
4011 {
4012 if (*l == '[')
4013 ++paren_not_balanced;
4014 if (*l == ']')
4015 --paren_not_balanced;
4016 }
4017 l++;
4018 }
4019 if (l != token_start)
4020 { /* Yes, we've read in another operand. */
4021 unsigned int operand_ok;
4022 this_operand = i.operands++;
4023 i.types[this_operand].bitfield.unspecified = 1;
4024 if (i.operands > MAX_OPERANDS)
4025 {
4026 as_bad (_("spurious operands; (%d operands/instruction max)"),
4027 MAX_OPERANDS);
4028 return NULL;
4029 }
4030 /* Now parse operand adding info to 'i' as we go along. */
4031 END_STRING_AND_SAVE (l);
4032
4033 if (intel_syntax)
4034 operand_ok =
4035 i386_intel_operand (token_start,
4036 intel_float_operand (mnemonic));
4037 else
4038 operand_ok = i386_att_operand (token_start);
4039
4040 RESTORE_END_STRING (l);
4041 if (!operand_ok)
4042 return NULL;
4043 }
4044 else
4045 {
4046 if (expecting_operand)
4047 {
4048 expecting_operand_after_comma:
4049 as_bad (_("expecting operand after ','; got nothing"));
4050 return NULL;
4051 }
4052 if (*l == ',')
4053 {
4054 as_bad (_("expecting operand before ','; got nothing"));
4055 return NULL;
4056 }
4057 }
4058
4059 /* Now *l must be either ',' or END_OF_INSN. */
4060 if (*l == ',')
4061 {
4062 if (*++l == END_OF_INSN)
4063 {
4064 /* Just skip it, if it's \n complain. */
4065 goto expecting_operand_after_comma;
4066 }
4067 expecting_operand = 1;
4068 }
4069 }
4070 return l;
4071 }
4072
4073 static void
4074 swap_2_operands (int xchg1, int xchg2)
4075 {
4076 union i386_op temp_op;
4077 i386_operand_type temp_type;
4078 enum bfd_reloc_code_real temp_reloc;
4079
4080 temp_type = i.types[xchg2];
4081 i.types[xchg2] = i.types[xchg1];
4082 i.types[xchg1] = temp_type;
4083 temp_op = i.op[xchg2];
4084 i.op[xchg2] = i.op[xchg1];
4085 i.op[xchg1] = temp_op;
4086 temp_reloc = i.reloc[xchg2];
4087 i.reloc[xchg2] = i.reloc[xchg1];
4088 i.reloc[xchg1] = temp_reloc;
4089
4090 if (i.mask)
4091 {
4092 if (i.mask->operand == xchg1)
4093 i.mask->operand = xchg2;
4094 else if (i.mask->operand == xchg2)
4095 i.mask->operand = xchg1;
4096 }
4097 if (i.broadcast)
4098 {
4099 if (i.broadcast->operand == xchg1)
4100 i.broadcast->operand = xchg2;
4101 else if (i.broadcast->operand == xchg2)
4102 i.broadcast->operand = xchg1;
4103 }
4104 if (i.rounding)
4105 {
4106 if (i.rounding->operand == xchg1)
4107 i.rounding->operand = xchg2;
4108 else if (i.rounding->operand == xchg2)
4109 i.rounding->operand = xchg1;
4110 }
4111 }
4112
4113 static void
4114 swap_operands (void)
4115 {
4116 switch (i.operands)
4117 {
4118 case 5:
4119 case 4:
4120 swap_2_operands (1, i.operands - 2);
4121 case 3:
4122 case 2:
4123 swap_2_operands (0, i.operands - 1);
4124 break;
4125 default:
4126 abort ();
4127 }
4128
4129 if (i.mem_operands == 2)
4130 {
4131 const seg_entry *temp_seg;
4132 temp_seg = i.seg[0];
4133 i.seg[0] = i.seg[1];
4134 i.seg[1] = temp_seg;
4135 }
4136 }
4137
4138 /* Try to ensure constant immediates are represented in the smallest
4139 opcode possible. */
4140 static void
4141 optimize_imm (void)
4142 {
4143 char guess_suffix = 0;
4144 int op;
4145
4146 if (i.suffix)
4147 guess_suffix = i.suffix;
4148 else if (i.reg_operands)
4149 {
4150 /* Figure out a suffix from the last register operand specified.
4151 We can't do this properly yet, ie. excluding InOutPortReg,
4152 but the following works for instructions with immediates.
4153 In any case, we can't set i.suffix yet. */
4154 for (op = i.operands; --op >= 0;)
4155 if (i.types[op].bitfield.reg8)
4156 {
4157 guess_suffix = BYTE_MNEM_SUFFIX;
4158 break;
4159 }
4160 else if (i.types[op].bitfield.reg16)
4161 {
4162 guess_suffix = WORD_MNEM_SUFFIX;
4163 break;
4164 }
4165 else if (i.types[op].bitfield.reg32)
4166 {
4167 guess_suffix = LONG_MNEM_SUFFIX;
4168 break;
4169 }
4170 else if (i.types[op].bitfield.reg64)
4171 {
4172 guess_suffix = QWORD_MNEM_SUFFIX;
4173 break;
4174 }
4175 }
4176 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4177 guess_suffix = WORD_MNEM_SUFFIX;
4178
4179 for (op = i.operands; --op >= 0;)
4180 if (operand_type_check (i.types[op], imm))
4181 {
4182 switch (i.op[op].imms->X_op)
4183 {
4184 case O_constant:
4185 /* If a suffix is given, this operand may be shortened. */
4186 switch (guess_suffix)
4187 {
4188 case LONG_MNEM_SUFFIX:
4189 i.types[op].bitfield.imm32 = 1;
4190 i.types[op].bitfield.imm64 = 1;
4191 break;
4192 case WORD_MNEM_SUFFIX:
4193 i.types[op].bitfield.imm16 = 1;
4194 i.types[op].bitfield.imm32 = 1;
4195 i.types[op].bitfield.imm32s = 1;
4196 i.types[op].bitfield.imm64 = 1;
4197 break;
4198 case BYTE_MNEM_SUFFIX:
4199 i.types[op].bitfield.imm8 = 1;
4200 i.types[op].bitfield.imm8s = 1;
4201 i.types[op].bitfield.imm16 = 1;
4202 i.types[op].bitfield.imm32 = 1;
4203 i.types[op].bitfield.imm32s = 1;
4204 i.types[op].bitfield.imm64 = 1;
4205 break;
4206 }
4207
4208 /* If this operand is at most 16 bits, convert it
4209 to a signed 16 bit number before trying to see
4210 whether it will fit in an even smaller size.
4211 This allows a 16-bit operand such as $0xffe0 to
4212 be recognised as within Imm8S range. */
4213 if ((i.types[op].bitfield.imm16)
4214 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4215 {
4216 i.op[op].imms->X_add_number =
4217 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4218 }
4219 if ((i.types[op].bitfield.imm32)
4220 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4221 == 0))
4222 {
4223 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4224 ^ ((offsetT) 1 << 31))
4225 - ((offsetT) 1 << 31));
4226 }
4227 i.types[op]
4228 = operand_type_or (i.types[op],
4229 smallest_imm_type (i.op[op].imms->X_add_number));
4230
4231 /* We must avoid matching of Imm32 templates when 64bit
4232 only immediate is available. */
4233 if (guess_suffix == QWORD_MNEM_SUFFIX)
4234 i.types[op].bitfield.imm32 = 0;
4235 break;
4236
4237 case O_absent:
4238 case O_register:
4239 abort ();
4240
4241 /* Symbols and expressions. */
4242 default:
4243 /* Convert symbolic operand to proper sizes for matching, but don't
4244 prevent matching a set of insns that only supports sizes other
4245 than those matching the insn suffix. */
4246 {
4247 i386_operand_type mask, allowed;
4248 const insn_template *t;
4249
4250 operand_type_set (&mask, 0);
4251 operand_type_set (&allowed, 0);
4252
4253 for (t = current_templates->start;
4254 t < current_templates->end;
4255 ++t)
4256 allowed = operand_type_or (allowed,
4257 t->operand_types[op]);
4258 switch (guess_suffix)
4259 {
4260 case QWORD_MNEM_SUFFIX:
4261 mask.bitfield.imm64 = 1;
4262 mask.bitfield.imm32s = 1;
4263 break;
4264 case LONG_MNEM_SUFFIX:
4265 mask.bitfield.imm32 = 1;
4266 break;
4267 case WORD_MNEM_SUFFIX:
4268 mask.bitfield.imm16 = 1;
4269 break;
4270 case BYTE_MNEM_SUFFIX:
4271 mask.bitfield.imm8 = 1;
4272 break;
4273 default:
4274 break;
4275 }
4276 allowed = operand_type_and (mask, allowed);
4277 if (!operand_type_all_zero (&allowed))
4278 i.types[op] = operand_type_and (i.types[op], mask);
4279 }
4280 break;
4281 }
4282 }
4283 }
4284
4285 /* Try to use the smallest displacement type too. */
4286 static void
4287 optimize_disp (void)
4288 {
4289 int op;
4290
4291 for (op = i.operands; --op >= 0;)
4292 if (operand_type_check (i.types[op], disp))
4293 {
4294 if (i.op[op].disps->X_op == O_constant)
4295 {
4296 offsetT op_disp = i.op[op].disps->X_add_number;
4297
4298 if (i.types[op].bitfield.disp16
4299 && (op_disp & ~(offsetT) 0xffff) == 0)
4300 {
4301 /* If this operand is at most 16 bits, convert
4302 to a signed 16 bit number and don't use 64bit
4303 displacement. */
4304 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4305 i.types[op].bitfield.disp64 = 0;
4306 }
4307 if (i.types[op].bitfield.disp32
4308 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4309 {
4310 /* If this operand is at most 32 bits, convert
4311 to a signed 32 bit number and don't use 64bit
4312 displacement. */
4313 op_disp &= (((offsetT) 2 << 31) - 1);
4314 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4315 i.types[op].bitfield.disp64 = 0;
4316 }
4317 if (!op_disp && i.types[op].bitfield.baseindex)
4318 {
4319 i.types[op].bitfield.disp8 = 0;
4320 i.types[op].bitfield.disp16 = 0;
4321 i.types[op].bitfield.disp32 = 0;
4322 i.types[op].bitfield.disp32s = 0;
4323 i.types[op].bitfield.disp64 = 0;
4324 i.op[op].disps = 0;
4325 i.disp_operands--;
4326 }
4327 else if (flag_code == CODE_64BIT)
4328 {
4329 if (fits_in_signed_long (op_disp))
4330 {
4331 i.types[op].bitfield.disp64 = 0;
4332 i.types[op].bitfield.disp32s = 1;
4333 }
4334 if (i.prefix[ADDR_PREFIX]
4335 && fits_in_unsigned_long (op_disp))
4336 i.types[op].bitfield.disp32 = 1;
4337 }
4338 if ((i.types[op].bitfield.disp32
4339 || i.types[op].bitfield.disp32s
4340 || i.types[op].bitfield.disp16)
4341 && fits_in_signed_byte (op_disp))
4342 i.types[op].bitfield.disp8 = 1;
4343 }
4344 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4345 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4346 {
4347 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4348 i.op[op].disps, 0, i.reloc[op]);
4349 i.types[op].bitfield.disp8 = 0;
4350 i.types[op].bitfield.disp16 = 0;
4351 i.types[op].bitfield.disp32 = 0;
4352 i.types[op].bitfield.disp32s = 0;
4353 i.types[op].bitfield.disp64 = 0;
4354 }
4355 else
4356 /* We only support 64bit displacement on constants. */
4357 i.types[op].bitfield.disp64 = 0;
4358 }
4359 }
4360
4361 /* Check if operands are valid for the instruction. */
4362
4363 static int
4364 check_VecOperands (const insn_template *t)
4365 {
4366 unsigned int op;
4367
4368 /* Without VSIB byte, we can't have a vector register for index. */
4369 if (!t->opcode_modifier.vecsib
4370 && i.index_reg
4371 && (i.index_reg->reg_type.bitfield.regxmm
4372 || i.index_reg->reg_type.bitfield.regymm
4373 || i.index_reg->reg_type.bitfield.regzmm))
4374 {
4375 i.error = unsupported_vector_index_register;
4376 return 1;
4377 }
4378
4379 /* Check if default mask is allowed. */
4380 if (t->opcode_modifier.nodefmask
4381 && (!i.mask || i.mask->mask->reg_num == 0))
4382 {
4383 i.error = no_default_mask;
4384 return 1;
4385 }
4386
4387 /* For VSIB byte, we need a vector register for index, and all vector
4388 registers must be distinct. */
4389 if (t->opcode_modifier.vecsib)
4390 {
4391 if (!i.index_reg
4392 || !((t->opcode_modifier.vecsib == VecSIB128
4393 && i.index_reg->reg_type.bitfield.regxmm)
4394 || (t->opcode_modifier.vecsib == VecSIB256
4395 && i.index_reg->reg_type.bitfield.regymm)
4396 || (t->opcode_modifier.vecsib == VecSIB512
4397 && i.index_reg->reg_type.bitfield.regzmm)))
4398 {
4399 i.error = invalid_vsib_address;
4400 return 1;
4401 }
4402
4403 gas_assert (i.reg_operands == 2 || i.mask);
4404 if (i.reg_operands == 2 && !i.mask)
4405 {
4406 gas_assert (i.types[0].bitfield.regxmm
4407 || i.types[0].bitfield.regymm);
4408 gas_assert (i.types[2].bitfield.regxmm
4409 || i.types[2].bitfield.regymm);
4410 if (operand_check == check_none)
4411 return 0;
4412 if (register_number (i.op[0].regs)
4413 != register_number (i.index_reg)
4414 && register_number (i.op[2].regs)
4415 != register_number (i.index_reg)
4416 && register_number (i.op[0].regs)
4417 != register_number (i.op[2].regs))
4418 return 0;
4419 if (operand_check == check_error)
4420 {
4421 i.error = invalid_vector_register_set;
4422 return 1;
4423 }
4424 as_warn (_("mask, index, and destination registers should be distinct"));
4425 }
4426 else if (i.reg_operands == 1 && i.mask)
4427 {
4428 if ((i.types[1].bitfield.regymm
4429 || i.types[1].bitfield.regzmm)
4430 && (register_number (i.op[1].regs)
4431 == register_number (i.index_reg)))
4432 {
4433 if (operand_check == check_error)
4434 {
4435 i.error = invalid_vector_register_set;
4436 return 1;
4437 }
4438 if (operand_check != check_none)
4439 as_warn (_("index and destination registers should be distinct"));
4440 }
4441 }
4442 }
4443
4444 /* Check if broadcast is supported by the instruction and is applied
4445 to the memory operand. */
4446 if (i.broadcast)
4447 {
4448 int broadcasted_opnd_size;
4449
4450 /* Check if specified broadcast is supported in this instruction,
4451 and it's applied to memory operand of DWORD or QWORD type,
4452 depending on VecESize. */
4453 if (i.broadcast->type != t->opcode_modifier.broadcast
4454 || !i.types[i.broadcast->operand].bitfield.mem
4455 || (t->opcode_modifier.vecesize == 0
4456 && !i.types[i.broadcast->operand].bitfield.dword
4457 && !i.types[i.broadcast->operand].bitfield.unspecified)
4458 || (t->opcode_modifier.vecesize == 1
4459 && !i.types[i.broadcast->operand].bitfield.qword
4460 && !i.types[i.broadcast->operand].bitfield.unspecified))
4461 goto bad_broadcast;
4462
4463 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4464 if (i.broadcast->type == BROADCAST_1TO16)
4465 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4466 else if (i.broadcast->type == BROADCAST_1TO8)
4467 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
4468 else if (i.broadcast->type == BROADCAST_1TO4)
4469 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4470 else if (i.broadcast->type == BROADCAST_1TO2)
4471 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
4472 else
4473 goto bad_broadcast;
4474
4475 if ((broadcasted_opnd_size == 256
4476 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4477 || (broadcasted_opnd_size == 512
4478 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4479 {
4480 bad_broadcast:
4481 i.error = unsupported_broadcast;
4482 return 1;
4483 }
4484 }
4485 /* If broadcast is supported in this instruction, we need to check if
4486 operand of one-element size isn't specified without broadcast. */
4487 else if (t->opcode_modifier.broadcast && i.mem_operands)
4488 {
4489 /* Find memory operand. */
4490 for (op = 0; op < i.operands; op++)
4491 if (operand_type_check (i.types[op], anymem))
4492 break;
4493 gas_assert (op < i.operands);
4494 /* Check size of the memory operand. */
4495 if ((t->opcode_modifier.vecesize == 0
4496 && i.types[op].bitfield.dword)
4497 || (t->opcode_modifier.vecesize == 1
4498 && i.types[op].bitfield.qword))
4499 {
4500 i.error = broadcast_needed;
4501 return 1;
4502 }
4503 }
4504
4505 /* Check if requested masking is supported. */
4506 if (i.mask
4507 && (!t->opcode_modifier.masking
4508 || (i.mask->zeroing
4509 && t->opcode_modifier.masking == MERGING_MASKING)))
4510 {
4511 i.error = unsupported_masking;
4512 return 1;
4513 }
4514
4515 /* Check if masking is applied to dest operand. */
4516 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4517 {
4518 i.error = mask_not_on_destination;
4519 return 1;
4520 }
4521
4522 /* Check RC/SAE. */
4523 if (i.rounding)
4524 {
4525 if ((i.rounding->type != saeonly
4526 && !t->opcode_modifier.staticrounding)
4527 || (i.rounding->type == saeonly
4528 && (t->opcode_modifier.staticrounding
4529 || !t->opcode_modifier.sae)))
4530 {
4531 i.error = unsupported_rc_sae;
4532 return 1;
4533 }
4534 /* If the instruction has several immediate operands and one of
4535 them is rounding, the rounding operand should be the last
4536 immediate operand. */
4537 if (i.imm_operands > 1
4538 && i.rounding->operand != (int) (i.imm_operands - 1))
4539 {
4540 i.error = rc_sae_operand_not_last_imm;
4541 return 1;
4542 }
4543 }
4544
4545 /* Check vector Disp8 operand. */
4546 if (t->opcode_modifier.disp8memshift)
4547 {
4548 if (i.broadcast)
4549 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4550 else
4551 i.memshift = t->opcode_modifier.disp8memshift;
4552
4553 for (op = 0; op < i.operands; op++)
4554 if (operand_type_check (i.types[op], disp)
4555 && i.op[op].disps->X_op == O_constant)
4556 {
4557 offsetT value = i.op[op].disps->X_add_number;
4558 int vec_disp8_ok = fits_in_vec_disp8 (value);
4559 if (t->operand_types [op].bitfield.vec_disp8)
4560 {
4561 if (vec_disp8_ok)
4562 i.types[op].bitfield.vec_disp8 = 1;
4563 else
4564 {
4565 /* Vector insn can only have Vec_Disp8/Disp32 in
4566 32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4567 mode. */
4568 i.types[op].bitfield.disp8 = 0;
4569 if (flag_code != CODE_16BIT)
4570 i.types[op].bitfield.disp16 = 0;
4571 }
4572 }
4573 else if (flag_code != CODE_16BIT)
4574 {
4575 /* One form of this instruction supports vector Disp8.
4576 Try vector Disp8 if we need to use Disp32. */
4577 if (vec_disp8_ok && !fits_in_signed_byte (value))
4578 {
4579 i.error = try_vector_disp8;
4580 return 1;
4581 }
4582 }
4583 }
4584 }
4585 else
4586 i.memshift = -1;
4587
4588 return 0;
4589 }
4590
4591 /* Check if operands are valid for the instruction. Update VEX
4592 operand types. */
4593
4594 static int
4595 VEX_check_operands (const insn_template *t)
4596 {
4597 /* VREX is only valid with EVEX prefix. */
4598 if (i.need_vrex && !t->opcode_modifier.evex)
4599 {
4600 i.error = invalid_register_operand;
4601 return 1;
4602 }
4603
4604 if (!t->opcode_modifier.vex)
4605 return 0;
4606
4607 /* Only check VEX_Imm4, which must be the first operand. */
4608 if (t->operand_types[0].bitfield.vec_imm4)
4609 {
4610 if (i.op[0].imms->X_op != O_constant
4611 || !fits_in_imm4 (i.op[0].imms->X_add_number))
4612 {
4613 i.error = bad_imm4;
4614 return 1;
4615 }
4616
4617 /* Turn off Imm8 so that update_imm won't complain. */
4618 i.types[0] = vec_imm4;
4619 }
4620
4621 return 0;
4622 }
4623
4624 static const insn_template *
4625 match_template (void)
4626 {
4627 /* Points to template once we've found it. */
4628 const insn_template *t;
4629 i386_operand_type overlap0, overlap1, overlap2, overlap3;
4630 i386_operand_type overlap4;
4631 unsigned int found_reverse_match;
4632 i386_opcode_modifier suffix_check;
4633 i386_operand_type operand_types [MAX_OPERANDS];
4634 int addr_prefix_disp;
4635 unsigned int j;
4636 unsigned int found_cpu_match;
4637 unsigned int check_register;
4638 enum i386_error specific_error = 0;
4639
4640 #if MAX_OPERANDS != 5
4641 # error "MAX_OPERANDS must be 5."
4642 #endif
4643
4644 found_reverse_match = 0;
4645 addr_prefix_disp = -1;
4646
4647 memset (&suffix_check, 0, sizeof (suffix_check));
4648 if (i.suffix == BYTE_MNEM_SUFFIX)
4649 suffix_check.no_bsuf = 1;
4650 else if (i.suffix == WORD_MNEM_SUFFIX)
4651 suffix_check.no_wsuf = 1;
4652 else if (i.suffix == SHORT_MNEM_SUFFIX)
4653 suffix_check.no_ssuf = 1;
4654 else if (i.suffix == LONG_MNEM_SUFFIX)
4655 suffix_check.no_lsuf = 1;
4656 else if (i.suffix == QWORD_MNEM_SUFFIX)
4657 suffix_check.no_qsuf = 1;
4658 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
4659 suffix_check.no_ldsuf = 1;
4660
4661 /* Must have right number of operands. */
4662 i.error = number_of_operands_mismatch;
4663
4664 for (t = current_templates->start; t < current_templates->end; t++)
4665 {
4666 addr_prefix_disp = -1;
4667
4668 if (i.operands != t->operands)
4669 continue;
4670
4671 /* Check processor support. */
4672 i.error = unsupported;
4673 found_cpu_match = (cpu_flags_match (t)
4674 == CPU_FLAGS_PERFECT_MATCH);
4675 if (!found_cpu_match)
4676 continue;
4677
4678 /* Check old gcc support. */
4679 i.error = old_gcc_only;
4680 if (!old_gcc && t->opcode_modifier.oldgcc)
4681 continue;
4682
4683 /* Check AT&T mnemonic. */
4684 i.error = unsupported_with_intel_mnemonic;
4685 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
4686 continue;
4687
4688 /* Check AT&T/Intel syntax. */
4689 i.error = unsupported_syntax;
4690 if ((intel_syntax && t->opcode_modifier.attsyntax)
4691 || (!intel_syntax && t->opcode_modifier.intelsyntax))
4692 continue;
4693
4694 /* Check the suffix, except for some instructions in intel mode. */
4695 i.error = invalid_instruction_suffix;
4696 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4697 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4698 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4699 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4700 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4701 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4702 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
4703 continue;
4704
4705 if (!operand_size_match (t))
4706 continue;
4707
4708 for (j = 0; j < MAX_OPERANDS; j++)
4709 operand_types[j] = t->operand_types[j];
4710
4711 /* In general, don't allow 64-bit operands in 32-bit mode. */
4712 if (i.suffix == QWORD_MNEM_SUFFIX
4713 && flag_code != CODE_64BIT
4714 && (intel_syntax
4715 ? (!t->opcode_modifier.ignoresize
4716 && !intel_float_operand (t->name))
4717 : intel_float_operand (t->name) != 2)
4718 && ((!operand_types[0].bitfield.regmmx
4719 && !operand_types[0].bitfield.regxmm
4720 && !operand_types[0].bitfield.regymm
4721 && !operand_types[0].bitfield.regzmm)
4722 || (!operand_types[t->operands > 1].bitfield.regmmx
4723 && operand_types[t->operands > 1].bitfield.regxmm
4724 && operand_types[t->operands > 1].bitfield.regymm
4725 && operand_types[t->operands > 1].bitfield.regzmm))
4726 && (t->base_opcode != 0x0fc7
4727 || t->extension_opcode != 1 /* cmpxchg8b */))
4728 continue;
4729
4730 /* In general, don't allow 32-bit operands on pre-386. */
4731 else if (i.suffix == LONG_MNEM_SUFFIX
4732 && !cpu_arch_flags.bitfield.cpui386
4733 && (intel_syntax
4734 ? (!t->opcode_modifier.ignoresize
4735 && !intel_float_operand (t->name))
4736 : intel_float_operand (t->name) != 2)
4737 && ((!operand_types[0].bitfield.regmmx
4738 && !operand_types[0].bitfield.regxmm)
4739 || (!operand_types[t->operands > 1].bitfield.regmmx
4740 && operand_types[t->operands > 1].bitfield.regxmm)))
4741 continue;
4742
4743 /* Do not verify operands when there are none. */
4744 else
4745 {
4746 if (!t->operands)
4747 /* We've found a match; break out of loop. */
4748 break;
4749 }
4750
4751 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
4752 into Disp32/Disp16/Disp32 operand. */
4753 if (i.prefix[ADDR_PREFIX] != 0)
4754 {
4755 /* There should be only one Disp operand. */
4756 switch (flag_code)
4757 {
4758 case CODE_16BIT:
4759 for (j = 0; j < MAX_OPERANDS; j++)
4760 {
4761 if (operand_types[j].bitfield.disp16)
4762 {
4763 addr_prefix_disp = j;
4764 operand_types[j].bitfield.disp32 = 1;
4765 operand_types[j].bitfield.disp16 = 0;
4766 break;
4767 }
4768 }
4769 break;
4770 case CODE_32BIT:
4771 for (j = 0; j < MAX_OPERANDS; j++)
4772 {
4773 if (operand_types[j].bitfield.disp32)
4774 {
4775 addr_prefix_disp = j;
4776 operand_types[j].bitfield.disp32 = 0;
4777 operand_types[j].bitfield.disp16 = 1;
4778 break;
4779 }
4780 }
4781 break;
4782 case CODE_64BIT:
4783 for (j = 0; j < MAX_OPERANDS; j++)
4784 {
4785 if (operand_types[j].bitfield.disp64)
4786 {
4787 addr_prefix_disp = j;
4788 operand_types[j].bitfield.disp64 = 0;
4789 operand_types[j].bitfield.disp32 = 1;
4790 break;
4791 }
4792 }
4793 break;
4794 }
4795 }
4796
4797 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
4798 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
4799 continue;
4800
4801 /* We check register size if needed. */
4802 check_register = t->opcode_modifier.checkregsize;
4803 overlap0 = operand_type_and (i.types[0], operand_types[0]);
4804 switch (t->operands)
4805 {
4806 case 1:
4807 if (!operand_type_match (overlap0, i.types[0]))
4808 continue;
4809 break;
4810 case 2:
4811 /* xchg %eax, %eax is a special case. It is an aliase for nop
4812 only in 32bit mode and we can use opcode 0x90. In 64bit
4813 mode, we can't use 0x90 for xchg %eax, %eax since it should
4814 zero-extend %eax to %rax. */
4815 if (flag_code == CODE_64BIT
4816 && t->base_opcode == 0x90
4817 && operand_type_equal (&i.types [0], &acc32)
4818 && operand_type_equal (&i.types [1], &acc32))
4819 continue;
4820 if (i.swap_operand)
4821 {
4822 /* If we swap operand in encoding, we either match
4823 the next one or reverse direction of operands. */
4824 if (t->opcode_modifier.s)
4825 continue;
4826 else if (t->opcode_modifier.d)
4827 goto check_reverse;
4828 }
4829
4830 case 3:
4831 /* If we swap operand in encoding, we match the next one. */
4832 if (i.swap_operand && t->opcode_modifier.s)
4833 continue;
4834 case 4:
4835 case 5:
4836 overlap1 = operand_type_and (i.types[1], operand_types[1]);
4837 if (!operand_type_match (overlap0, i.types[0])
4838 || !operand_type_match (overlap1, i.types[1])
4839 || (check_register
4840 && !operand_type_register_match (overlap0, i.types[0],
4841 operand_types[0],
4842 overlap1, i.types[1],
4843 operand_types[1])))
4844 {
4845 /* Check if other direction is valid ... */
4846 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
4847 continue;
4848
4849 check_reverse:
4850 /* Try reversing direction of operands. */
4851 overlap0 = operand_type_and (i.types[0], operand_types[1]);
4852 overlap1 = operand_type_and (i.types[1], operand_types[0]);
4853 if (!operand_type_match (overlap0, i.types[0])
4854 || !operand_type_match (overlap1, i.types[1])
4855 || (check_register
4856 && !operand_type_register_match (overlap0,
4857 i.types[0],
4858 operand_types[1],
4859 overlap1,
4860 i.types[1],
4861 operand_types[0])))
4862 {
4863 /* Does not match either direction. */
4864 continue;
4865 }
4866 /* found_reverse_match holds which of D or FloatDR
4867 we've found. */
4868 if (t->opcode_modifier.d)
4869 found_reverse_match = Opcode_D;
4870 else if (t->opcode_modifier.floatd)
4871 found_reverse_match = Opcode_FloatD;
4872 else
4873 found_reverse_match = 0;
4874 if (t->opcode_modifier.floatr)
4875 found_reverse_match |= Opcode_FloatR;
4876 }
4877 else
4878 {
4879 /* Found a forward 2 operand match here. */
4880 switch (t->operands)
4881 {
4882 case 5:
4883 overlap4 = operand_type_and (i.types[4],
4884 operand_types[4]);
4885 case 4:
4886 overlap3 = operand_type_and (i.types[3],
4887 operand_types[3]);
4888 case 3:
4889 overlap2 = operand_type_and (i.types[2],
4890 operand_types[2]);
4891 break;
4892 }
4893
4894 switch (t->operands)
4895 {
4896 case 5:
4897 if (!operand_type_match (overlap4, i.types[4])
4898 || !operand_type_register_match (overlap3,
4899 i.types[3],
4900 operand_types[3],
4901 overlap4,
4902 i.types[4],
4903 operand_types[4]))
4904 continue;
4905 case 4:
4906 if (!operand_type_match (overlap3, i.types[3])
4907 || (check_register
4908 && !operand_type_register_match (overlap2,
4909 i.types[2],
4910 operand_types[2],
4911 overlap3,
4912 i.types[3],
4913 operand_types[3])))
4914 continue;
4915 case 3:
4916 /* Here we make use of the fact that there are no
4917 reverse match 3 operand instructions, and all 3
4918 operand instructions only need to be checked for
4919 register consistency between operands 2 and 3. */
4920 if (!operand_type_match (overlap2, i.types[2])
4921 || (check_register
4922 && !operand_type_register_match (overlap1,
4923 i.types[1],
4924 operand_types[1],
4925 overlap2,
4926 i.types[2],
4927 operand_types[2])))
4928 continue;
4929 break;
4930 }
4931 }
4932 /* Found either forward/reverse 2, 3 or 4 operand match here:
4933 slip through to break. */
4934 }
4935 if (!found_cpu_match)
4936 {
4937 found_reverse_match = 0;
4938 continue;
4939 }
4940
4941 /* Check if vector and VEX operands are valid. */
4942 if (check_VecOperands (t) || VEX_check_operands (t))
4943 {
4944 specific_error = i.error;
4945 continue;
4946 }
4947
4948 /* We've found a match; break out of loop. */
4949 break;
4950 }
4951
4952 if (t == current_templates->end)
4953 {
4954 /* We found no match. */
4955 const char *err_msg;
4956 switch (specific_error ? specific_error : i.error)
4957 {
4958 default:
4959 abort ();
4960 case operand_size_mismatch:
4961 err_msg = _("operand size mismatch");
4962 break;
4963 case operand_type_mismatch:
4964 err_msg = _("operand type mismatch");
4965 break;
4966 case register_type_mismatch:
4967 err_msg = _("register type mismatch");
4968 break;
4969 case number_of_operands_mismatch:
4970 err_msg = _("number of operands mismatch");
4971 break;
4972 case invalid_instruction_suffix:
4973 err_msg = _("invalid instruction suffix");
4974 break;
4975 case bad_imm4:
4976 err_msg = _("constant doesn't fit in 4 bits");
4977 break;
4978 case old_gcc_only:
4979 err_msg = _("only supported with old gcc");
4980 break;
4981 case unsupported_with_intel_mnemonic:
4982 err_msg = _("unsupported with Intel mnemonic");
4983 break;
4984 case unsupported_syntax:
4985 err_msg = _("unsupported syntax");
4986 break;
4987 case unsupported:
4988 as_bad (_("unsupported instruction `%s'"),
4989 current_templates->start->name);
4990 return NULL;
4991 case invalid_vsib_address:
4992 err_msg = _("invalid VSIB address");
4993 break;
4994 case invalid_vector_register_set:
4995 err_msg = _("mask, index, and destination registers must be distinct");
4996 break;
4997 case unsupported_vector_index_register:
4998 err_msg = _("unsupported vector index register");
4999 break;
5000 case unsupported_broadcast:
5001 err_msg = _("unsupported broadcast");
5002 break;
5003 case broadcast_not_on_src_operand:
5004 err_msg = _("broadcast not on source memory operand");
5005 break;
5006 case broadcast_needed:
5007 err_msg = _("broadcast is needed for operand of such type");
5008 break;
5009 case unsupported_masking:
5010 err_msg = _("unsupported masking");
5011 break;
5012 case mask_not_on_destination:
5013 err_msg = _("mask not on destination operand");
5014 break;
5015 case no_default_mask:
5016 err_msg = _("default mask isn't allowed");
5017 break;
5018 case unsupported_rc_sae:
5019 err_msg = _("unsupported static rounding/sae");
5020 break;
5021 case rc_sae_operand_not_last_imm:
5022 if (intel_syntax)
5023 err_msg = _("RC/SAE operand must precede immediate operands");
5024 else
5025 err_msg = _("RC/SAE operand must follow immediate operands");
5026 break;
5027 case invalid_register_operand:
5028 err_msg = _("invalid register operand");
5029 break;
5030 }
5031 as_bad (_("%s for `%s'"), err_msg,
5032 current_templates->start->name);
5033 return NULL;
5034 }
5035
5036 if (!quiet_warnings)
5037 {
5038 if (!intel_syntax
5039 && (i.types[0].bitfield.jumpabsolute
5040 != operand_types[0].bitfield.jumpabsolute))
5041 {
5042 as_warn (_("indirect %s without `*'"), t->name);
5043 }
5044
5045 if (t->opcode_modifier.isprefix
5046 && t->opcode_modifier.ignoresize)
5047 {
5048 /* Warn them that a data or address size prefix doesn't
5049 affect assembly of the next line of code. */
5050 as_warn (_("stand-alone `%s' prefix"), t->name);
5051 }
5052 }
5053
5054 /* Copy the template we found. */
5055 i.tm = *t;
5056
5057 if (addr_prefix_disp != -1)
5058 i.tm.operand_types[addr_prefix_disp]
5059 = operand_types[addr_prefix_disp];
5060
5061 if (found_reverse_match)
5062 {
5063 /* If we found a reverse match we must alter the opcode
5064 direction bit. found_reverse_match holds bits to change
5065 (different for int & float insns). */
5066
5067 i.tm.base_opcode ^= found_reverse_match;
5068
5069 i.tm.operand_types[0] = operand_types[1];
5070 i.tm.operand_types[1] = operand_types[0];
5071 }
5072
5073 return t;
5074 }
5075
5076 static int
5077 check_string (void)
5078 {
5079 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5080 if (i.tm.operand_types[mem_op].bitfield.esseg)
5081 {
5082 if (i.seg[0] != NULL && i.seg[0] != &es)
5083 {
5084 as_bad (_("`%s' operand %d must use `%ses' segment"),
5085 i.tm.name,
5086 mem_op + 1,
5087 register_prefix);
5088 return 0;
5089 }
5090 /* There's only ever one segment override allowed per instruction.
5091 This instruction possibly has a legal segment override on the
5092 second operand, so copy the segment to where non-string
5093 instructions store it, allowing common code. */
5094 i.seg[0] = i.seg[1];
5095 }
5096 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5097 {
5098 if (i.seg[1] != NULL && i.seg[1] != &es)
5099 {
5100 as_bad (_("`%s' operand %d must use `%ses' segment"),
5101 i.tm.name,
5102 mem_op + 2,
5103 register_prefix);
5104 return 0;
5105 }
5106 }
5107 return 1;
5108 }
5109
5110 static int
5111 process_suffix (void)
5112 {
5113 /* If matched instruction specifies an explicit instruction mnemonic
5114 suffix, use it. */
5115 if (i.tm.opcode_modifier.size16)
5116 i.suffix = WORD_MNEM_SUFFIX;
5117 else if (i.tm.opcode_modifier.size32)
5118 i.suffix = LONG_MNEM_SUFFIX;
5119 else if (i.tm.opcode_modifier.size64)
5120 i.suffix = QWORD_MNEM_SUFFIX;
5121 else if (i.reg_operands)
5122 {
5123 /* If there's no instruction mnemonic suffix we try to invent one
5124 based on register operands. */
5125 if (!i.suffix)
5126 {
5127 /* We take i.suffix from the last register operand specified,
5128 Destination register type is more significant than source
5129 register type. crc32 in SSE4.2 prefers source register
5130 type. */
5131 if (i.tm.base_opcode == 0xf20f38f1)
5132 {
5133 if (i.types[0].bitfield.reg16)
5134 i.suffix = WORD_MNEM_SUFFIX;
5135 else if (i.types[0].bitfield.reg32)
5136 i.suffix = LONG_MNEM_SUFFIX;
5137 else if (i.types[0].bitfield.reg64)
5138 i.suffix = QWORD_MNEM_SUFFIX;
5139 }
5140 else if (i.tm.base_opcode == 0xf20f38f0)
5141 {
5142 if (i.types[0].bitfield.reg8)
5143 i.suffix = BYTE_MNEM_SUFFIX;
5144 }
5145
5146 if (!i.suffix)
5147 {
5148 int op;
5149
5150 if (i.tm.base_opcode == 0xf20f38f1
5151 || i.tm.base_opcode == 0xf20f38f0)
5152 {
5153 /* We have to know the operand size for crc32. */
5154 as_bad (_("ambiguous memory operand size for `%s`"),
5155 i.tm.name);
5156 return 0;
5157 }
5158
5159 for (op = i.operands; --op >= 0;)
5160 if (!i.tm.operand_types[op].bitfield.inoutportreg)
5161 {
5162 if (i.types[op].bitfield.reg8)
5163 {
5164 i.suffix = BYTE_MNEM_SUFFIX;
5165 break;
5166 }
5167 else if (i.types[op].bitfield.reg16)
5168 {
5169 i.suffix = WORD_MNEM_SUFFIX;
5170 break;
5171 }
5172 else if (i.types[op].bitfield.reg32)
5173 {
5174 i.suffix = LONG_MNEM_SUFFIX;
5175 break;
5176 }
5177 else if (i.types[op].bitfield.reg64)
5178 {
5179 i.suffix = QWORD_MNEM_SUFFIX;
5180 break;
5181 }
5182 }
5183 }
5184 }
5185 else if (i.suffix == BYTE_MNEM_SUFFIX)
5186 {
5187 if (intel_syntax
5188 && i.tm.opcode_modifier.ignoresize
5189 && i.tm.opcode_modifier.no_bsuf)
5190 i.suffix = 0;
5191 else if (!check_byte_reg ())
5192 return 0;
5193 }
5194 else if (i.suffix == LONG_MNEM_SUFFIX)
5195 {
5196 if (intel_syntax
5197 && i.tm.opcode_modifier.ignoresize
5198 && i.tm.opcode_modifier.no_lsuf)
5199 i.suffix = 0;
5200 else if (!check_long_reg ())
5201 return 0;
5202 }
5203 else if (i.suffix == QWORD_MNEM_SUFFIX)
5204 {
5205 if (intel_syntax
5206 && i.tm.opcode_modifier.ignoresize
5207 && i.tm.opcode_modifier.no_qsuf)
5208 i.suffix = 0;
5209 else if (!check_qword_reg ())
5210 return 0;
5211 }
5212 else if (i.suffix == WORD_MNEM_SUFFIX)
5213 {
5214 if (intel_syntax
5215 && i.tm.opcode_modifier.ignoresize
5216 && i.tm.opcode_modifier.no_wsuf)
5217 i.suffix = 0;
5218 else if (!check_word_reg ())
5219 return 0;
5220 }
5221 else if (i.suffix == XMMWORD_MNEM_SUFFIX
5222 || i.suffix == YMMWORD_MNEM_SUFFIX
5223 || i.suffix == ZMMWORD_MNEM_SUFFIX)
5224 {
5225 /* Skip if the instruction has x/y/z suffix. match_template
5226 should check if it is a valid suffix. */
5227 }
5228 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5229 /* Do nothing if the instruction is going to ignore the prefix. */
5230 ;
5231 else
5232 abort ();
5233 }
5234 else if (i.tm.opcode_modifier.defaultsize
5235 && !i.suffix
5236 /* exclude fldenv/frstor/fsave/fstenv */
5237 && i.tm.opcode_modifier.no_ssuf)
5238 {
5239 i.suffix = stackop_size;
5240 }
5241 else if (intel_syntax
5242 && !i.suffix
5243 && (i.tm.operand_types[0].bitfield.jumpabsolute
5244 || i.tm.opcode_modifier.jumpbyte
5245 || i.tm.opcode_modifier.jumpintersegment
5246 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5247 && i.tm.extension_opcode <= 3)))
5248 {
5249 switch (flag_code)
5250 {
5251 case CODE_64BIT:
5252 if (!i.tm.opcode_modifier.no_qsuf)
5253 {
5254 i.suffix = QWORD_MNEM_SUFFIX;
5255 break;
5256 }
5257 case CODE_32BIT:
5258 if (!i.tm.opcode_modifier.no_lsuf)
5259 i.suffix = LONG_MNEM_SUFFIX;
5260 break;
5261 case CODE_16BIT:
5262 if (!i.tm.opcode_modifier.no_wsuf)
5263 i.suffix = WORD_MNEM_SUFFIX;
5264 break;
5265 }
5266 }
5267
5268 if (!i.suffix)
5269 {
5270 if (!intel_syntax)
5271 {
5272 if (i.tm.opcode_modifier.w)
5273 {
5274 as_bad (_("no instruction mnemonic suffix given and "
5275 "no register operands; can't size instruction"));
5276 return 0;
5277 }
5278 }
5279 else
5280 {
5281 unsigned int suffixes;
5282
5283 suffixes = !i.tm.opcode_modifier.no_bsuf;
5284 if (!i.tm.opcode_modifier.no_wsuf)
5285 suffixes |= 1 << 1;
5286 if (!i.tm.opcode_modifier.no_lsuf)
5287 suffixes |= 1 << 2;
5288 if (!i.tm.opcode_modifier.no_ldsuf)
5289 suffixes |= 1 << 3;
5290 if (!i.tm.opcode_modifier.no_ssuf)
5291 suffixes |= 1 << 4;
5292 if (!i.tm.opcode_modifier.no_qsuf)
5293 suffixes |= 1 << 5;
5294
5295 /* There are more than suffix matches. */
5296 if (i.tm.opcode_modifier.w
5297 || ((suffixes & (suffixes - 1))
5298 && !i.tm.opcode_modifier.defaultsize
5299 && !i.tm.opcode_modifier.ignoresize))
5300 {
5301 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5302 return 0;
5303 }
5304 }
5305 }
5306
5307 /* Change the opcode based on the operand size given by i.suffix;
5308 We don't need to change things for byte insns. */
5309
5310 if (i.suffix
5311 && i.suffix != BYTE_MNEM_SUFFIX
5312 && i.suffix != XMMWORD_MNEM_SUFFIX
5313 && i.suffix != YMMWORD_MNEM_SUFFIX
5314 && i.suffix != ZMMWORD_MNEM_SUFFIX)
5315 {
5316 /* It's not a byte, select word/dword operation. */
5317 if (i.tm.opcode_modifier.w)
5318 {
5319 if (i.tm.opcode_modifier.shortform)
5320 i.tm.base_opcode |= 8;
5321 else
5322 i.tm.base_opcode |= 1;
5323 }
5324
5325 /* Now select between word & dword operations via the operand
5326 size prefix, except for instructions that will ignore this
5327 prefix anyway. */
5328 if (i.tm.opcode_modifier.addrprefixop0)
5329 {
5330 /* The address size override prefix changes the size of the
5331 first operand. */
5332 if ((flag_code == CODE_32BIT
5333 && i.op->regs[0].reg_type.bitfield.reg16)
5334 || (flag_code != CODE_32BIT
5335 && i.op->regs[0].reg_type.bitfield.reg32))
5336 if (!add_prefix (ADDR_PREFIX_OPCODE))
5337 return 0;
5338 }
5339 else if (i.suffix != QWORD_MNEM_SUFFIX
5340 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
5341 && !i.tm.opcode_modifier.ignoresize
5342 && !i.tm.opcode_modifier.floatmf
5343 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5344 || (flag_code == CODE_64BIT
5345 && i.tm.opcode_modifier.jumpbyte)))
5346 {
5347 unsigned int prefix = DATA_PREFIX_OPCODE;
5348
5349 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5350 prefix = ADDR_PREFIX_OPCODE;
5351
5352 if (!add_prefix (prefix))
5353 return 0;
5354 }
5355
5356 /* Set mode64 for an operand. */
5357 if (i.suffix == QWORD_MNEM_SUFFIX
5358 && flag_code == CODE_64BIT
5359 && !i.tm.opcode_modifier.norex64)
5360 {
5361 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5362 need rex64. cmpxchg8b is also a special case. */
5363 if (! (i.operands == 2
5364 && i.tm.base_opcode == 0x90
5365 && i.tm.extension_opcode == None
5366 && operand_type_equal (&i.types [0], &acc64)
5367 && operand_type_equal (&i.types [1], &acc64))
5368 && ! (i.operands == 1
5369 && i.tm.base_opcode == 0xfc7
5370 && i.tm.extension_opcode == 1
5371 && !operand_type_check (i.types [0], reg)
5372 && operand_type_check (i.types [0], anymem)))
5373 i.rex |= REX_W;
5374 }
5375
5376 /* Size floating point instruction. */
5377 if (i.suffix == LONG_MNEM_SUFFIX)
5378 if (i.tm.opcode_modifier.floatmf)
5379 i.tm.base_opcode ^= 4;
5380 }
5381
5382 return 1;
5383 }
5384
5385 static int
5386 check_byte_reg (void)
5387 {
5388 int op;
5389
5390 for (op = i.operands; --op >= 0;)
5391 {
5392 /* If this is an eight bit register, it's OK. If it's the 16 or
5393 32 bit version of an eight bit register, we will just use the
5394 low portion, and that's OK too. */
5395 if (i.types[op].bitfield.reg8)
5396 continue;
5397
5398 /* I/O port address operands are OK too. */
5399 if (i.tm.operand_types[op].bitfield.inoutportreg)
5400 continue;
5401
5402 /* crc32 doesn't generate this warning. */
5403 if (i.tm.base_opcode == 0xf20f38f0)
5404 continue;
5405
5406 if ((i.types[op].bitfield.reg16
5407 || i.types[op].bitfield.reg32
5408 || i.types[op].bitfield.reg64)
5409 && i.op[op].regs->reg_num < 4
5410 /* Prohibit these changes in 64bit mode, since the lowering
5411 would be more complicated. */
5412 && flag_code != CODE_64BIT)
5413 {
5414 #if REGISTER_WARNINGS
5415 if (!quiet_warnings)
5416 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5417 register_prefix,
5418 (i.op[op].regs + (i.types[op].bitfield.reg16
5419 ? REGNAM_AL - REGNAM_AX
5420 : REGNAM_AL - REGNAM_EAX))->reg_name,
5421 register_prefix,
5422 i.op[op].regs->reg_name,
5423 i.suffix);
5424 #endif
5425 continue;
5426 }
5427 /* Any other register is bad. */
5428 if (i.types[op].bitfield.reg16
5429 || i.types[op].bitfield.reg32
5430 || i.types[op].bitfield.reg64
5431 || i.types[op].bitfield.regmmx
5432 || i.types[op].bitfield.regxmm
5433 || i.types[op].bitfield.regymm
5434 || i.types[op].bitfield.regzmm
5435 || i.types[op].bitfield.sreg2
5436 || i.types[op].bitfield.sreg3
5437 || i.types[op].bitfield.control
5438 || i.types[op].bitfield.debug
5439 || i.types[op].bitfield.test
5440 || i.types[op].bitfield.floatreg
5441 || i.types[op].bitfield.floatacc)
5442 {
5443 as_bad (_("`%s%s' not allowed with `%s%c'"),
5444 register_prefix,
5445 i.op[op].regs->reg_name,
5446 i.tm.name,
5447 i.suffix);
5448 return 0;
5449 }
5450 }
5451 return 1;
5452 }
5453
5454 static int
5455 check_long_reg (void)
5456 {
5457 int op;
5458
5459 for (op = i.operands; --op >= 0;)
5460 /* Reject eight bit registers, except where the template requires
5461 them. (eg. movzb) */
5462 if (i.types[op].bitfield.reg8
5463 && (i.tm.operand_types[op].bitfield.reg16
5464 || i.tm.operand_types[op].bitfield.reg32
5465 || i.tm.operand_types[op].bitfield.acc))
5466 {
5467 as_bad (_("`%s%s' not allowed with `%s%c'"),
5468 register_prefix,
5469 i.op[op].regs->reg_name,
5470 i.tm.name,
5471 i.suffix);
5472 return 0;
5473 }
5474 /* Warn if the e prefix on a general reg is missing. */
5475 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5476 && i.types[op].bitfield.reg16
5477 && (i.tm.operand_types[op].bitfield.reg32
5478 || i.tm.operand_types[op].bitfield.acc))
5479 {
5480 /* Prohibit these changes in the 64bit mode, since the
5481 lowering is more complicated. */
5482 if (flag_code == CODE_64BIT)
5483 {
5484 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5485 register_prefix, i.op[op].regs->reg_name,
5486 i.suffix);
5487 return 0;
5488 }
5489 #if REGISTER_WARNINGS
5490 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5491 register_prefix,
5492 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5493 register_prefix, i.op[op].regs->reg_name, i.suffix);
5494 #endif
5495 }
5496 /* Warn if the r prefix on a general reg is present. */
5497 else if (i.types[op].bitfield.reg64
5498 && (i.tm.operand_types[op].bitfield.reg32
5499 || i.tm.operand_types[op].bitfield.acc))
5500 {
5501 if (intel_syntax
5502 && i.tm.opcode_modifier.toqword
5503 && !i.types[0].bitfield.regxmm)
5504 {
5505 /* Convert to QWORD. We want REX byte. */
5506 i.suffix = QWORD_MNEM_SUFFIX;
5507 }
5508 else
5509 {
5510 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5511 register_prefix, i.op[op].regs->reg_name,
5512 i.suffix);
5513 return 0;
5514 }
5515 }
5516 return 1;
5517 }
5518
5519 static int
5520 check_qword_reg (void)
5521 {
5522 int op;
5523
5524 for (op = i.operands; --op >= 0; )
5525 /* Reject eight bit registers, except where the template requires
5526 them. (eg. movzb) */
5527 if (i.types[op].bitfield.reg8
5528 && (i.tm.operand_types[op].bitfield.reg16
5529 || i.tm.operand_types[op].bitfield.reg32
5530 || i.tm.operand_types[op].bitfield.acc))
5531 {
5532 as_bad (_("`%s%s' not allowed with `%s%c'"),
5533 register_prefix,
5534 i.op[op].regs->reg_name,
5535 i.tm.name,
5536 i.suffix);
5537 return 0;
5538 }
5539 /* Warn if the r prefix on a general reg is missing. */
5540 else if ((i.types[op].bitfield.reg16
5541 || i.types[op].bitfield.reg32)
5542 && (i.tm.operand_types[op].bitfield.reg32
5543 || i.tm.operand_types[op].bitfield.acc))
5544 {
5545 /* Prohibit these changes in the 64bit mode, since the
5546 lowering is more complicated. */
5547 if (intel_syntax
5548 && i.tm.opcode_modifier.todword
5549 && !i.types[0].bitfield.regxmm)
5550 {
5551 /* Convert to DWORD. We don't want REX byte. */
5552 i.suffix = LONG_MNEM_SUFFIX;
5553 }
5554 else
5555 {
5556 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5557 register_prefix, i.op[op].regs->reg_name,
5558 i.suffix);
5559 return 0;
5560 }
5561 }
5562 return 1;
5563 }
5564
5565 static int
5566 check_word_reg (void)
5567 {
5568 int op;
5569 for (op = i.operands; --op >= 0;)
5570 /* Reject eight bit registers, except where the template requires
5571 them. (eg. movzb) */
5572 if (i.types[op].bitfield.reg8
5573 && (i.tm.operand_types[op].bitfield.reg16
5574 || i.tm.operand_types[op].bitfield.reg32
5575 || i.tm.operand_types[op].bitfield.acc))
5576 {
5577 as_bad (_("`%s%s' not allowed with `%s%c'"),
5578 register_prefix,
5579 i.op[op].regs->reg_name,
5580 i.tm.name,
5581 i.suffix);
5582 return 0;
5583 }
5584 /* Warn if the e or r prefix on a general reg is present. */
5585 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5586 && (i.types[op].bitfield.reg32
5587 || i.types[op].bitfield.reg64)
5588 && (i.tm.operand_types[op].bitfield.reg16
5589 || i.tm.operand_types[op].bitfield.acc))
5590 {
5591 /* Prohibit these changes in the 64bit mode, since the
5592 lowering is more complicated. */
5593 if (flag_code == CODE_64BIT)
5594 {
5595 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5596 register_prefix, i.op[op].regs->reg_name,
5597 i.suffix);
5598 return 0;
5599 }
5600 #if REGISTER_WARNINGS
5601 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5602 register_prefix,
5603 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5604 register_prefix, i.op[op].regs->reg_name, i.suffix);
5605 #endif
5606 }
5607 return 1;
5608 }
5609
5610 static int
5611 update_imm (unsigned int j)
5612 {
5613 i386_operand_type overlap = i.types[j];
5614 if ((overlap.bitfield.imm8
5615 || overlap.bitfield.imm8s
5616 || overlap.bitfield.imm16
5617 || overlap.bitfield.imm32
5618 || overlap.bitfield.imm32s
5619 || overlap.bitfield.imm64)
5620 && !operand_type_equal (&overlap, &imm8)
5621 && !operand_type_equal (&overlap, &imm8s)
5622 && !operand_type_equal (&overlap, &imm16)
5623 && !operand_type_equal (&overlap, &imm32)
5624 && !operand_type_equal (&overlap, &imm32s)
5625 && !operand_type_equal (&overlap, &imm64))
5626 {
5627 if (i.suffix)
5628 {
5629 i386_operand_type temp;
5630
5631 operand_type_set (&temp, 0);
5632 if (i.suffix == BYTE_MNEM_SUFFIX)
5633 {
5634 temp.bitfield.imm8 = overlap.bitfield.imm8;
5635 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5636 }
5637 else if (i.suffix == WORD_MNEM_SUFFIX)
5638 temp.bitfield.imm16 = overlap.bitfield.imm16;
5639 else if (i.suffix == QWORD_MNEM_SUFFIX)
5640 {
5641 temp.bitfield.imm64 = overlap.bitfield.imm64;
5642 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5643 }
5644 else
5645 temp.bitfield.imm32 = overlap.bitfield.imm32;
5646 overlap = temp;
5647 }
5648 else if (operand_type_equal (&overlap, &imm16_32_32s)
5649 || operand_type_equal (&overlap, &imm16_32)
5650 || operand_type_equal (&overlap, &imm16_32s))
5651 {
5652 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5653 overlap = imm16;
5654 else
5655 overlap = imm32s;
5656 }
5657 if (!operand_type_equal (&overlap, &imm8)
5658 && !operand_type_equal (&overlap, &imm8s)
5659 && !operand_type_equal (&overlap, &imm16)
5660 && !operand_type_equal (&overlap, &imm32)
5661 && !operand_type_equal (&overlap, &imm32s)
5662 && !operand_type_equal (&overlap, &imm64))
5663 {
5664 as_bad (_("no instruction mnemonic suffix given; "
5665 "can't determine immediate size"));
5666 return 0;
5667 }
5668 }
5669 i.types[j] = overlap;
5670
5671 return 1;
5672 }
5673
5674 static int
5675 finalize_imm (void)
5676 {
5677 unsigned int j, n;
5678
5679 /* Update the first 2 immediate operands. */
5680 n = i.operands > 2 ? 2 : i.operands;
5681 if (n)
5682 {
5683 for (j = 0; j < n; j++)
5684 if (update_imm (j) == 0)
5685 return 0;
5686
5687 /* The 3rd operand can't be immediate operand. */
5688 gas_assert (operand_type_check (i.types[2], imm) == 0);
5689 }
5690
5691 return 1;
5692 }
5693
5694 static int
5695 bad_implicit_operand (int xmm)
5696 {
5697 const char *ireg = xmm ? "xmm0" : "ymm0";
5698
5699 if (intel_syntax)
5700 as_bad (_("the last operand of `%s' must be `%s%s'"),
5701 i.tm.name, register_prefix, ireg);
5702 else
5703 as_bad (_("the first operand of `%s' must be `%s%s'"),
5704 i.tm.name, register_prefix, ireg);
5705 return 0;
5706 }
5707
5708 static int
5709 process_operands (void)
5710 {
5711 /* Default segment register this instruction will use for memory
5712 accesses. 0 means unknown. This is only for optimizing out
5713 unnecessary segment overrides. */
5714 const seg_entry *default_seg = 0;
5715
5716 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
5717 {
5718 unsigned int dupl = i.operands;
5719 unsigned int dest = dupl - 1;
5720 unsigned int j;
5721
5722 /* The destination must be an xmm register. */
5723 gas_assert (i.reg_operands
5724 && MAX_OPERANDS > dupl
5725 && operand_type_equal (&i.types[dest], &regxmm));
5726
5727 if (i.tm.opcode_modifier.firstxmm0)
5728 {
5729 /* The first operand is implicit and must be xmm0. */
5730 gas_assert (operand_type_equal (&i.types[0], &regxmm));
5731 if (register_number (i.op[0].regs) != 0)
5732 return bad_implicit_operand (1);
5733
5734 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
5735 {
5736 /* Keep xmm0 for instructions with VEX prefix and 3
5737 sources. */
5738 goto duplicate;
5739 }
5740 else
5741 {
5742 /* We remove the first xmm0 and keep the number of
5743 operands unchanged, which in fact duplicates the
5744 destination. */
5745 for (j = 1; j < i.operands; j++)
5746 {
5747 i.op[j - 1] = i.op[j];
5748 i.types[j - 1] = i.types[j];
5749 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
5750 }
5751 }
5752 }
5753 else if (i.tm.opcode_modifier.implicit1stxmm0)
5754 {
5755 gas_assert ((MAX_OPERANDS - 1) > dupl
5756 && (i.tm.opcode_modifier.vexsources
5757 == VEX3SOURCES));
5758
5759 /* Add the implicit xmm0 for instructions with VEX prefix
5760 and 3 sources. */
5761 for (j = i.operands; j > 0; j--)
5762 {
5763 i.op[j] = i.op[j - 1];
5764 i.types[j] = i.types[j - 1];
5765 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
5766 }
5767 i.op[0].regs
5768 = (const reg_entry *) hash_find (reg_hash, "xmm0");
5769 i.types[0] = regxmm;
5770 i.tm.operand_types[0] = regxmm;
5771
5772 i.operands += 2;
5773 i.reg_operands += 2;
5774 i.tm.operands += 2;
5775
5776 dupl++;
5777 dest++;
5778 i.op[dupl] = i.op[dest];
5779 i.types[dupl] = i.types[dest];
5780 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5781 }
5782 else
5783 {
5784 duplicate:
5785 i.operands++;
5786 i.reg_operands++;
5787 i.tm.operands++;
5788
5789 i.op[dupl] = i.op[dest];
5790 i.types[dupl] = i.types[dest];
5791 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5792 }
5793
5794 if (i.tm.opcode_modifier.immext)
5795 process_immext ();
5796 }
5797 else if (i.tm.opcode_modifier.firstxmm0)
5798 {
5799 unsigned int j;
5800
5801 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
5802 gas_assert (i.reg_operands
5803 && (operand_type_equal (&i.types[0], &regxmm)
5804 || operand_type_equal (&i.types[0], &regymm)
5805 || operand_type_equal (&i.types[0], &regzmm)));
5806 if (register_number (i.op[0].regs) != 0)
5807 return bad_implicit_operand (i.types[0].bitfield.regxmm);
5808
5809 for (j = 1; j < i.operands; j++)
5810 {
5811 i.op[j - 1] = i.op[j];
5812 i.types[j - 1] = i.types[j];
5813
5814 /* We need to adjust fields in i.tm since they are used by
5815 build_modrm_byte. */
5816 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
5817 }
5818
5819 i.operands--;
5820 i.reg_operands--;
5821 i.tm.operands--;
5822 }
5823 else if (i.tm.opcode_modifier.regkludge)
5824 {
5825 /* The imul $imm, %reg instruction is converted into
5826 imul $imm, %reg, %reg, and the clr %reg instruction
5827 is converted into xor %reg, %reg. */
5828
5829 unsigned int first_reg_op;
5830
5831 if (operand_type_check (i.types[0], reg))
5832 first_reg_op = 0;
5833 else
5834 first_reg_op = 1;
5835 /* Pretend we saw the extra register operand. */
5836 gas_assert (i.reg_operands == 1
5837 && i.op[first_reg_op + 1].regs == 0);
5838 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
5839 i.types[first_reg_op + 1] = i.types[first_reg_op];
5840 i.operands++;
5841 i.reg_operands++;
5842 }
5843
5844 if (i.tm.opcode_modifier.shortform)
5845 {
5846 if (i.types[0].bitfield.sreg2
5847 || i.types[0].bitfield.sreg3)
5848 {
5849 if (i.tm.base_opcode == POP_SEG_SHORT
5850 && i.op[0].regs->reg_num == 1)
5851 {
5852 as_bad (_("you can't `pop %scs'"), register_prefix);
5853 return 0;
5854 }
5855 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
5856 if ((i.op[0].regs->reg_flags & RegRex) != 0)
5857 i.rex |= REX_B;
5858 }
5859 else
5860 {
5861 /* The register or float register operand is in operand
5862 0 or 1. */
5863 unsigned int op;
5864
5865 if (i.types[0].bitfield.floatreg
5866 || operand_type_check (i.types[0], reg))
5867 op = 0;
5868 else
5869 op = 1;
5870 /* Register goes in low 3 bits of opcode. */
5871 i.tm.base_opcode |= i.op[op].regs->reg_num;
5872 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5873 i.rex |= REX_B;
5874 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
5875 {
5876 /* Warn about some common errors, but press on regardless.
5877 The first case can be generated by gcc (<= 2.8.1). */
5878 if (i.operands == 2)
5879 {
5880 /* Reversed arguments on faddp, fsubp, etc. */
5881 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
5882 register_prefix, i.op[!intel_syntax].regs->reg_name,
5883 register_prefix, i.op[intel_syntax].regs->reg_name);
5884 }
5885 else
5886 {
5887 /* Extraneous `l' suffix on fp insn. */
5888 as_warn (_("translating to `%s %s%s'"), i.tm.name,
5889 register_prefix, i.op[0].regs->reg_name);
5890 }
5891 }
5892 }
5893 }
5894 else if (i.tm.opcode_modifier.modrm)
5895 {
5896 /* The opcode is completed (modulo i.tm.extension_opcode which
5897 must be put into the modrm byte). Now, we make the modrm and
5898 index base bytes based on all the info we've collected. */
5899
5900 default_seg = build_modrm_byte ();
5901 }
5902 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
5903 {
5904 default_seg = &ds;
5905 }
5906 else if (i.tm.opcode_modifier.isstring)
5907 {
5908 /* For the string instructions that allow a segment override
5909 on one of their operands, the default segment is ds. */
5910 default_seg = &ds;
5911 }
5912
5913 if (i.tm.base_opcode == 0x8d /* lea */
5914 && i.seg[0]
5915 && !quiet_warnings)
5916 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
5917
5918 /* If a segment was explicitly specified, and the specified segment
5919 is not the default, use an opcode prefix to select it. If we
5920 never figured out what the default segment is, then default_seg
5921 will be zero at this point, and the specified segment prefix will
5922 always be used. */
5923 if ((i.seg[0]) && (i.seg[0] != default_seg))
5924 {
5925 if (!add_prefix (i.seg[0]->seg_prefix))
5926 return 0;
5927 }
5928 return 1;
5929 }
5930
5931 static const seg_entry *
5932 build_modrm_byte (void)
5933 {
5934 const seg_entry *default_seg = 0;
5935 unsigned int source, dest;
5936 int vex_3_sources;
5937
5938 /* The first operand of instructions with VEX prefix and 3 sources
5939 must be VEX_Imm4. */
5940 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
5941 if (vex_3_sources)
5942 {
5943 unsigned int nds, reg_slot;
5944 expressionS *exp;
5945
5946 if (i.tm.opcode_modifier.veximmext
5947 && i.tm.opcode_modifier.immext)
5948 {
5949 dest = i.operands - 2;
5950 gas_assert (dest == 3);
5951 }
5952 else
5953 dest = i.operands - 1;
5954 nds = dest - 1;
5955
5956 /* There are 2 kinds of instructions:
5957 1. 5 operands: 4 register operands or 3 register operands
5958 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
5959 VexW0 or VexW1. The destination must be either XMM, YMM or
5960 ZMM register.
5961 2. 4 operands: 4 register operands or 3 register operands
5962 plus 1 memory operand, VexXDS, and VexImmExt */
5963 gas_assert ((i.reg_operands == 4
5964 || (i.reg_operands == 3 && i.mem_operands == 1))
5965 && i.tm.opcode_modifier.vexvvvv == VEXXDS
5966 && (i.tm.opcode_modifier.veximmext
5967 || (i.imm_operands == 1
5968 && i.types[0].bitfield.vec_imm4
5969 && (i.tm.opcode_modifier.vexw == VEXW0
5970 || i.tm.opcode_modifier.vexw == VEXW1)
5971 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
5972 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
5973 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
5974
5975 if (i.imm_operands == 0)
5976 {
5977 /* When there is no immediate operand, generate an 8bit
5978 immediate operand to encode the first operand. */
5979 exp = &im_expressions[i.imm_operands++];
5980 i.op[i.operands].imms = exp;
5981 i.types[i.operands] = imm8;
5982 i.operands++;
5983 /* If VexW1 is set, the first operand is the source and
5984 the second operand is encoded in the immediate operand. */
5985 if (i.tm.opcode_modifier.vexw == VEXW1)
5986 {
5987 source = 0;
5988 reg_slot = 1;
5989 }
5990 else
5991 {
5992 source = 1;
5993 reg_slot = 0;
5994 }
5995
5996 /* FMA swaps REG and NDS. */
5997 if (i.tm.cpu_flags.bitfield.cpufma)
5998 {
5999 unsigned int tmp;
6000 tmp = reg_slot;
6001 reg_slot = nds;
6002 nds = tmp;
6003 }
6004
6005 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6006 &regxmm)
6007 || operand_type_equal (&i.tm.operand_types[reg_slot],
6008 &regymm)
6009 || operand_type_equal (&i.tm.operand_types[reg_slot],
6010 &regzmm));
6011 exp->X_op = O_constant;
6012 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6013 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6014 }
6015 else
6016 {
6017 unsigned int imm_slot;
6018
6019 if (i.tm.opcode_modifier.vexw == VEXW0)
6020 {
6021 /* If VexW0 is set, the third operand is the source and
6022 the second operand is encoded in the immediate
6023 operand. */
6024 source = 2;
6025 reg_slot = 1;
6026 }
6027 else
6028 {
6029 /* VexW1 is set, the second operand is the source and
6030 the third operand is encoded in the immediate
6031 operand. */
6032 source = 1;
6033 reg_slot = 2;
6034 }
6035
6036 if (i.tm.opcode_modifier.immext)
6037 {
6038 /* When ImmExt is set, the immdiate byte is the last
6039 operand. */
6040 imm_slot = i.operands - 1;
6041 source--;
6042 reg_slot--;
6043 }
6044 else
6045 {
6046 imm_slot = 0;
6047
6048 /* Turn on Imm8 so that output_imm will generate it. */
6049 i.types[imm_slot].bitfield.imm8 = 1;
6050 }
6051
6052 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6053 &regxmm)
6054 || operand_type_equal (&i.tm.operand_types[reg_slot],
6055 &regymm)
6056 || operand_type_equal (&i.tm.operand_types[reg_slot],
6057 &regzmm));
6058 i.op[imm_slot].imms->X_add_number
6059 |= register_number (i.op[reg_slot].regs) << 4;
6060 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6061 }
6062
6063 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6064 || operand_type_equal (&i.tm.operand_types[nds],
6065 &regymm)
6066 || operand_type_equal (&i.tm.operand_types[nds],
6067 &regzmm));
6068 i.vex.register_specifier = i.op[nds].regs;
6069 }
6070 else
6071 source = dest = 0;
6072
6073 /* i.reg_operands MUST be the number of real register operands;
6074 implicit registers do not count. If there are 3 register
6075 operands, it must be a instruction with VexNDS. For a
6076 instruction with VexNDD, the destination register is encoded
6077 in VEX prefix. If there are 4 register operands, it must be
6078 a instruction with VEX prefix and 3 sources. */
6079 if (i.mem_operands == 0
6080 && ((i.reg_operands == 2
6081 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6082 || (i.reg_operands == 3
6083 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6084 || (i.reg_operands == 4 && vex_3_sources)))
6085 {
6086 switch (i.operands)
6087 {
6088 case 2:
6089 source = 0;
6090 break;
6091 case 3:
6092 /* When there are 3 operands, one of them may be immediate,
6093 which may be the first or the last operand. Otherwise,
6094 the first operand must be shift count register (cl) or it
6095 is an instruction with VexNDS. */
6096 gas_assert (i.imm_operands == 1
6097 || (i.imm_operands == 0
6098 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6099 || i.types[0].bitfield.shiftcount)));
6100 if (operand_type_check (i.types[0], imm)
6101 || i.types[0].bitfield.shiftcount)
6102 source = 1;
6103 else
6104 source = 0;
6105 break;
6106 case 4:
6107 /* When there are 4 operands, the first two must be 8bit
6108 immediate operands. The source operand will be the 3rd
6109 one.
6110
6111 For instructions with VexNDS, if the first operand
6112 an imm8, the source operand is the 2nd one. If the last
6113 operand is imm8, the source operand is the first one. */
6114 gas_assert ((i.imm_operands == 2
6115 && i.types[0].bitfield.imm8
6116 && i.types[1].bitfield.imm8)
6117 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6118 && i.imm_operands == 1
6119 && (i.types[0].bitfield.imm8
6120 || i.types[i.operands - 1].bitfield.imm8
6121 || i.rounding)));
6122 if (i.imm_operands == 2)
6123 source = 2;
6124 else
6125 {
6126 if (i.types[0].bitfield.imm8)
6127 source = 1;
6128 else
6129 source = 0;
6130 }
6131 break;
6132 case 5:
6133 if (i.tm.opcode_modifier.evex)
6134 {
6135 /* For EVEX instructions, when there are 5 operands, the
6136 first one must be immediate operand. If the second one
6137 is immediate operand, the source operand is the 3th
6138 one. If the last one is immediate operand, the source
6139 operand is the 2nd one. */
6140 gas_assert (i.imm_operands == 2
6141 && i.tm.opcode_modifier.sae
6142 && operand_type_check (i.types[0], imm));
6143 if (operand_type_check (i.types[1], imm))
6144 source = 2;
6145 else if (operand_type_check (i.types[4], imm))
6146 source = 1;
6147 else
6148 abort ();
6149 }
6150 break;
6151 default:
6152 abort ();
6153 }
6154
6155 if (!vex_3_sources)
6156 {
6157 dest = source + 1;
6158
6159 /* RC/SAE operand could be between DEST and SRC. That happens
6160 when one operand is GPR and the other one is XMM/YMM/ZMM
6161 register. */
6162 if (i.rounding && i.rounding->operand == (int) dest)
6163 dest++;
6164
6165 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6166 {
6167 /* For instructions with VexNDS, the register-only source
6168 operand must be 32/64bit integer, XMM, YMM or ZMM
6169 register. It is encoded in VEX prefix. We need to
6170 clear RegMem bit before calling operand_type_equal. */
6171
6172 i386_operand_type op;
6173 unsigned int vvvv;
6174
6175 /* Check register-only source operand when two source
6176 operands are swapped. */
6177 if (!i.tm.operand_types[source].bitfield.baseindex
6178 && i.tm.operand_types[dest].bitfield.baseindex)
6179 {
6180 vvvv = source;
6181 source = dest;
6182 }
6183 else
6184 vvvv = dest;
6185
6186 op = i.tm.operand_types[vvvv];
6187 op.bitfield.regmem = 0;
6188 if ((dest + 1) >= i.operands
6189 || (!op.bitfield.reg32
6190 && op.bitfield.reg64
6191 && !operand_type_equal (&op, &regxmm)
6192 && !operand_type_equal (&op, &regymm)
6193 && !operand_type_equal (&op, &regzmm)
6194 && !operand_type_equal (&op, &regmask)))
6195 abort ();
6196 i.vex.register_specifier = i.op[vvvv].regs;
6197 dest++;
6198 }
6199 }
6200
6201 i.rm.mode = 3;
6202 /* One of the register operands will be encoded in the i.tm.reg
6203 field, the other in the combined i.tm.mode and i.tm.regmem
6204 fields. If no form of this instruction supports a memory
6205 destination operand, then we assume the source operand may
6206 sometimes be a memory operand and so we need to store the
6207 destination in the i.rm.reg field. */
6208 if (!i.tm.operand_types[dest].bitfield.regmem
6209 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6210 {
6211 i.rm.reg = i.op[dest].regs->reg_num;
6212 i.rm.regmem = i.op[source].regs->reg_num;
6213 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6214 i.rex |= REX_R;
6215 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6216 i.vrex |= REX_R;
6217 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6218 i.rex |= REX_B;
6219 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6220 i.vrex |= REX_B;
6221 }
6222 else
6223 {
6224 i.rm.reg = i.op[source].regs->reg_num;
6225 i.rm.regmem = i.op[dest].regs->reg_num;
6226 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6227 i.rex |= REX_B;
6228 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6229 i.vrex |= REX_B;
6230 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6231 i.rex |= REX_R;
6232 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6233 i.vrex |= REX_R;
6234 }
6235 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6236 {
6237 if (!i.types[0].bitfield.control
6238 && !i.types[1].bitfield.control)
6239 abort ();
6240 i.rex &= ~(REX_R | REX_B);
6241 add_prefix (LOCK_PREFIX_OPCODE);
6242 }
6243 }
6244 else
6245 { /* If it's not 2 reg operands... */
6246 unsigned int mem;
6247
6248 if (i.mem_operands)
6249 {
6250 unsigned int fake_zero_displacement = 0;
6251 unsigned int op;
6252
6253 for (op = 0; op < i.operands; op++)
6254 if (operand_type_check (i.types[op], anymem))
6255 break;
6256 gas_assert (op < i.operands);
6257
6258 if (i.tm.opcode_modifier.vecsib)
6259 {
6260 if (i.index_reg->reg_num == RegEiz
6261 || i.index_reg->reg_num == RegRiz)
6262 abort ();
6263
6264 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6265 if (!i.base_reg)
6266 {
6267 i.sib.base = NO_BASE_REGISTER;
6268 i.sib.scale = i.log2_scale_factor;
6269 /* No Vec_Disp8 if there is no base. */
6270 i.types[op].bitfield.vec_disp8 = 0;
6271 i.types[op].bitfield.disp8 = 0;
6272 i.types[op].bitfield.disp16 = 0;
6273 i.types[op].bitfield.disp64 = 0;
6274 if (flag_code != CODE_64BIT)
6275 {
6276 /* Must be 32 bit */
6277 i.types[op].bitfield.disp32 = 1;
6278 i.types[op].bitfield.disp32s = 0;
6279 }
6280 else
6281 {
6282 i.types[op].bitfield.disp32 = 0;
6283 i.types[op].bitfield.disp32s = 1;
6284 }
6285 }
6286 i.sib.index = i.index_reg->reg_num;
6287 if ((i.index_reg->reg_flags & RegRex) != 0)
6288 i.rex |= REX_X;
6289 if ((i.index_reg->reg_flags & RegVRex) != 0)
6290 i.vrex |= REX_X;
6291 }
6292
6293 default_seg = &ds;
6294
6295 if (i.base_reg == 0)
6296 {
6297 i.rm.mode = 0;
6298 if (!i.disp_operands)
6299 {
6300 fake_zero_displacement = 1;
6301 /* Instructions with VSIB byte need 32bit displacement
6302 if there is no base register. */
6303 if (i.tm.opcode_modifier.vecsib)
6304 i.types[op].bitfield.disp32 = 1;
6305 }
6306 if (i.index_reg == 0)
6307 {
6308 gas_assert (!i.tm.opcode_modifier.vecsib);
6309 /* Operand is just <disp> */
6310 if (flag_code == CODE_64BIT)
6311 {
6312 /* 64bit mode overwrites the 32bit absolute
6313 addressing by RIP relative addressing and
6314 absolute addressing is encoded by one of the
6315 redundant SIB forms. */
6316 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6317 i.sib.base = NO_BASE_REGISTER;
6318 i.sib.index = NO_INDEX_REGISTER;
6319 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
6320 ? disp32s : disp32);
6321 }
6322 else if ((flag_code == CODE_16BIT)
6323 ^ (i.prefix[ADDR_PREFIX] != 0))
6324 {
6325 i.rm.regmem = NO_BASE_REGISTER_16;
6326 i.types[op] = disp16;
6327 }
6328 else
6329 {
6330 i.rm.regmem = NO_BASE_REGISTER;
6331 i.types[op] = disp32;
6332 }
6333 }
6334 else if (!i.tm.opcode_modifier.vecsib)
6335 {
6336 /* !i.base_reg && i.index_reg */
6337 if (i.index_reg->reg_num == RegEiz
6338 || i.index_reg->reg_num == RegRiz)
6339 i.sib.index = NO_INDEX_REGISTER;
6340 else
6341 i.sib.index = i.index_reg->reg_num;
6342 i.sib.base = NO_BASE_REGISTER;
6343 i.sib.scale = i.log2_scale_factor;
6344 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6345 /* No Vec_Disp8 if there is no base. */
6346 i.types[op].bitfield.vec_disp8 = 0;
6347 i.types[op].bitfield.disp8 = 0;
6348 i.types[op].bitfield.disp16 = 0;
6349 i.types[op].bitfield.disp64 = 0;
6350 if (flag_code != CODE_64BIT)
6351 {
6352 /* Must be 32 bit */
6353 i.types[op].bitfield.disp32 = 1;
6354 i.types[op].bitfield.disp32s = 0;
6355 }
6356 else
6357 {
6358 i.types[op].bitfield.disp32 = 0;
6359 i.types[op].bitfield.disp32s = 1;
6360 }
6361 if ((i.index_reg->reg_flags & RegRex) != 0)
6362 i.rex |= REX_X;
6363 }
6364 }
6365 /* RIP addressing for 64bit mode. */
6366 else if (i.base_reg->reg_num == RegRip ||
6367 i.base_reg->reg_num == RegEip)
6368 {
6369 gas_assert (!i.tm.opcode_modifier.vecsib);
6370 i.rm.regmem = NO_BASE_REGISTER;
6371 i.types[op].bitfield.disp8 = 0;
6372 i.types[op].bitfield.disp16 = 0;
6373 i.types[op].bitfield.disp32 = 0;
6374 i.types[op].bitfield.disp32s = 1;
6375 i.types[op].bitfield.disp64 = 0;
6376 i.types[op].bitfield.vec_disp8 = 0;
6377 i.flags[op] |= Operand_PCrel;
6378 if (! i.disp_operands)
6379 fake_zero_displacement = 1;
6380 }
6381 else if (i.base_reg->reg_type.bitfield.reg16)
6382 {
6383 gas_assert (!i.tm.opcode_modifier.vecsib);
6384 switch (i.base_reg->reg_num)
6385 {
6386 case 3: /* (%bx) */
6387 if (i.index_reg == 0)
6388 i.rm.regmem = 7;
6389 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6390 i.rm.regmem = i.index_reg->reg_num - 6;
6391 break;
6392 case 5: /* (%bp) */
6393 default_seg = &ss;
6394 if (i.index_reg == 0)
6395 {
6396 i.rm.regmem = 6;
6397 if (operand_type_check (i.types[op], disp) == 0)
6398 {
6399 /* fake (%bp) into 0(%bp) */
6400 if (i.tm.operand_types[op].bitfield.vec_disp8)
6401 i.types[op].bitfield.vec_disp8 = 1;
6402 else
6403 i.types[op].bitfield.disp8 = 1;
6404 fake_zero_displacement = 1;
6405 }
6406 }
6407 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6408 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6409 break;
6410 default: /* (%si) -> 4 or (%di) -> 5 */
6411 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6412 }
6413 i.rm.mode = mode_from_disp_size (i.types[op]);
6414 }
6415 else /* i.base_reg and 32/64 bit mode */
6416 {
6417 if (flag_code == CODE_64BIT
6418 && operand_type_check (i.types[op], disp))
6419 {
6420 i386_operand_type temp;
6421 operand_type_set (&temp, 0);
6422 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6423 temp.bitfield.vec_disp8
6424 = i.types[op].bitfield.vec_disp8;
6425 i.types[op] = temp;
6426 if (i.prefix[ADDR_PREFIX] == 0)
6427 i.types[op].bitfield.disp32s = 1;
6428 else
6429 i.types[op].bitfield.disp32 = 1;
6430 }
6431
6432 if (!i.tm.opcode_modifier.vecsib)
6433 i.rm.regmem = i.base_reg->reg_num;
6434 if ((i.base_reg->reg_flags & RegRex) != 0)
6435 i.rex |= REX_B;
6436 i.sib.base = i.base_reg->reg_num;
6437 /* x86-64 ignores REX prefix bit here to avoid decoder
6438 complications. */
6439 if (!(i.base_reg->reg_flags & RegRex)
6440 && (i.base_reg->reg_num == EBP_REG_NUM
6441 || i.base_reg->reg_num == ESP_REG_NUM))
6442 default_seg = &ss;
6443 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6444 {
6445 fake_zero_displacement = 1;
6446 if (i.tm.operand_types [op].bitfield.vec_disp8)
6447 i.types[op].bitfield.vec_disp8 = 1;
6448 else
6449 i.types[op].bitfield.disp8 = 1;
6450 }
6451 i.sib.scale = i.log2_scale_factor;
6452 if (i.index_reg == 0)
6453 {
6454 gas_assert (!i.tm.opcode_modifier.vecsib);
6455 /* <disp>(%esp) becomes two byte modrm with no index
6456 register. We've already stored the code for esp
6457 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6458 Any base register besides %esp will not use the
6459 extra modrm byte. */
6460 i.sib.index = NO_INDEX_REGISTER;
6461 }
6462 else if (!i.tm.opcode_modifier.vecsib)
6463 {
6464 if (i.index_reg->reg_num == RegEiz
6465 || i.index_reg->reg_num == RegRiz)
6466 i.sib.index = NO_INDEX_REGISTER;
6467 else
6468 i.sib.index = i.index_reg->reg_num;
6469 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6470 if ((i.index_reg->reg_flags & RegRex) != 0)
6471 i.rex |= REX_X;
6472 }
6473
6474 if (i.disp_operands
6475 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6476 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6477 i.rm.mode = 0;
6478 else
6479 {
6480 if (!fake_zero_displacement
6481 && !i.disp_operands
6482 && i.disp_encoding)
6483 {
6484 fake_zero_displacement = 1;
6485 if (i.disp_encoding == disp_encoding_8bit)
6486 i.types[op].bitfield.disp8 = 1;
6487 else
6488 i.types[op].bitfield.disp32 = 1;
6489 }
6490 i.rm.mode = mode_from_disp_size (i.types[op]);
6491 }
6492 }
6493
6494 if (fake_zero_displacement)
6495 {
6496 /* Fakes a zero displacement assuming that i.types[op]
6497 holds the correct displacement size. */
6498 expressionS *exp;
6499
6500 gas_assert (i.op[op].disps == 0);
6501 exp = &disp_expressions[i.disp_operands++];
6502 i.op[op].disps = exp;
6503 exp->X_op = O_constant;
6504 exp->X_add_number = 0;
6505 exp->X_add_symbol = (symbolS *) 0;
6506 exp->X_op_symbol = (symbolS *) 0;
6507 }
6508
6509 mem = op;
6510 }
6511 else
6512 mem = ~0;
6513
6514 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
6515 {
6516 if (operand_type_check (i.types[0], imm))
6517 i.vex.register_specifier = NULL;
6518 else
6519 {
6520 /* VEX.vvvv encodes one of the sources when the first
6521 operand is not an immediate. */
6522 if (i.tm.opcode_modifier.vexw == VEXW0)
6523 i.vex.register_specifier = i.op[0].regs;
6524 else
6525 i.vex.register_specifier = i.op[1].regs;
6526 }
6527
6528 /* Destination is a XMM register encoded in the ModRM.reg
6529 and VEX.R bit. */
6530 i.rm.reg = i.op[2].regs->reg_num;
6531 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6532 i.rex |= REX_R;
6533
6534 /* ModRM.rm and VEX.B encodes the other source. */
6535 if (!i.mem_operands)
6536 {
6537 i.rm.mode = 3;
6538
6539 if (i.tm.opcode_modifier.vexw == VEXW0)
6540 i.rm.regmem = i.op[1].regs->reg_num;
6541 else
6542 i.rm.regmem = i.op[0].regs->reg_num;
6543
6544 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6545 i.rex |= REX_B;
6546 }
6547 }
6548 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
6549 {
6550 i.vex.register_specifier = i.op[2].regs;
6551 if (!i.mem_operands)
6552 {
6553 i.rm.mode = 3;
6554 i.rm.regmem = i.op[1].regs->reg_num;
6555 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6556 i.rex |= REX_B;
6557 }
6558 }
6559 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6560 (if any) based on i.tm.extension_opcode. Again, we must be
6561 careful to make sure that segment/control/debug/test/MMX
6562 registers are coded into the i.rm.reg field. */
6563 else if (i.reg_operands)
6564 {
6565 unsigned int op;
6566 unsigned int vex_reg = ~0;
6567
6568 for (op = 0; op < i.operands; op++)
6569 if (i.types[op].bitfield.reg8
6570 || i.types[op].bitfield.reg16
6571 || i.types[op].bitfield.reg32
6572 || i.types[op].bitfield.reg64
6573 || i.types[op].bitfield.regmmx
6574 || i.types[op].bitfield.regxmm
6575 || i.types[op].bitfield.regymm
6576 || i.types[op].bitfield.regbnd
6577 || i.types[op].bitfield.regzmm
6578 || i.types[op].bitfield.regmask
6579 || i.types[op].bitfield.sreg2
6580 || i.types[op].bitfield.sreg3
6581 || i.types[op].bitfield.control
6582 || i.types[op].bitfield.debug
6583 || i.types[op].bitfield.test)
6584 break;
6585
6586 if (vex_3_sources)
6587 op = dest;
6588 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6589 {
6590 /* For instructions with VexNDS, the register-only
6591 source operand is encoded in VEX prefix. */
6592 gas_assert (mem != (unsigned int) ~0);
6593
6594 if (op > mem)
6595 {
6596 vex_reg = op++;
6597 gas_assert (op < i.operands);
6598 }
6599 else
6600 {
6601 /* Check register-only source operand when two source
6602 operands are swapped. */
6603 if (!i.tm.operand_types[op].bitfield.baseindex
6604 && i.tm.operand_types[op + 1].bitfield.baseindex)
6605 {
6606 vex_reg = op;
6607 op += 2;
6608 gas_assert (mem == (vex_reg + 1)
6609 && op < i.operands);
6610 }
6611 else
6612 {
6613 vex_reg = op + 1;
6614 gas_assert (vex_reg < i.operands);
6615 }
6616 }
6617 }
6618 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
6619 {
6620 /* For instructions with VexNDD, the register destination
6621 is encoded in VEX prefix. */
6622 if (i.mem_operands == 0)
6623 {
6624 /* There is no memory operand. */
6625 gas_assert ((op + 2) == i.operands);
6626 vex_reg = op + 1;
6627 }
6628 else
6629 {
6630 /* There are only 2 operands. */
6631 gas_assert (op < 2 && i.operands == 2);
6632 vex_reg = 1;
6633 }
6634 }
6635 else
6636 gas_assert (op < i.operands);
6637
6638 if (vex_reg != (unsigned int) ~0)
6639 {
6640 i386_operand_type *type = &i.tm.operand_types[vex_reg];
6641
6642 if (type->bitfield.reg32 != 1
6643 && type->bitfield.reg64 != 1
6644 && !operand_type_equal (type, &regxmm)
6645 && !operand_type_equal (type, &regymm)
6646 && !operand_type_equal (type, &regzmm)
6647 && !operand_type_equal (type, &regmask))
6648 abort ();
6649
6650 i.vex.register_specifier = i.op[vex_reg].regs;
6651 }
6652
6653 /* Don't set OP operand twice. */
6654 if (vex_reg != op)
6655 {
6656 /* If there is an extension opcode to put here, the
6657 register number must be put into the regmem field. */
6658 if (i.tm.extension_opcode != None)
6659 {
6660 i.rm.regmem = i.op[op].regs->reg_num;
6661 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6662 i.rex |= REX_B;
6663 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6664 i.vrex |= REX_B;
6665 }
6666 else
6667 {
6668 i.rm.reg = i.op[op].regs->reg_num;
6669 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6670 i.rex |= REX_R;
6671 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6672 i.vrex |= REX_R;
6673 }
6674 }
6675
6676 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6677 must set it to 3 to indicate this is a register operand
6678 in the regmem field. */
6679 if (!i.mem_operands)
6680 i.rm.mode = 3;
6681 }
6682
6683 /* Fill in i.rm.reg field with extension opcode (if any). */
6684 if (i.tm.extension_opcode != None)
6685 i.rm.reg = i.tm.extension_opcode;
6686 }
6687 return default_seg;
6688 }
6689
6690 static void
6691 output_branch (void)
6692 {
6693 char *p;
6694 int size;
6695 int code16;
6696 int prefix;
6697 relax_substateT subtype;
6698 symbolS *sym;
6699 offsetT off;
6700
6701 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
6702 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
6703
6704 prefix = 0;
6705 if (i.prefix[DATA_PREFIX] != 0)
6706 {
6707 prefix = 1;
6708 i.prefixes -= 1;
6709 code16 ^= CODE16;
6710 }
6711 /* Pentium4 branch hints. */
6712 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6713 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6714 {
6715 prefix++;
6716 i.prefixes--;
6717 }
6718 if (i.prefix[REX_PREFIX] != 0)
6719 {
6720 prefix++;
6721 i.prefixes--;
6722 }
6723
6724 /* BND prefixed jump. */
6725 if (i.prefix[BND_PREFIX] != 0)
6726 {
6727 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6728 i.prefixes -= 1;
6729 }
6730
6731 if (i.prefixes != 0 && !intel_syntax)
6732 as_warn (_("skipping prefixes on this instruction"));
6733
6734 /* It's always a symbol; End frag & setup for relax.
6735 Make sure there is enough room in this frag for the largest
6736 instruction we may generate in md_convert_frag. This is 2
6737 bytes for the opcode and room for the prefix and largest
6738 displacement. */
6739 frag_grow (prefix + 2 + 4);
6740 /* Prefix and 1 opcode byte go in fr_fix. */
6741 p = frag_more (prefix + 1);
6742 if (i.prefix[DATA_PREFIX] != 0)
6743 *p++ = DATA_PREFIX_OPCODE;
6744 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
6745 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
6746 *p++ = i.prefix[SEG_PREFIX];
6747 if (i.prefix[REX_PREFIX] != 0)
6748 *p++ = i.prefix[REX_PREFIX];
6749 *p = i.tm.base_opcode;
6750
6751 if ((unsigned char) *p == JUMP_PC_RELATIVE)
6752 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
6753 else if (cpu_arch_flags.bitfield.cpui386)
6754 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
6755 else
6756 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
6757 subtype |= code16;
6758
6759 sym = i.op[0].disps->X_add_symbol;
6760 off = i.op[0].disps->X_add_number;
6761
6762 if (i.op[0].disps->X_op != O_constant
6763 && i.op[0].disps->X_op != O_symbol)
6764 {
6765 /* Handle complex expressions. */
6766 sym = make_expr_symbol (i.op[0].disps);
6767 off = 0;
6768 }
6769
6770 /* 1 possible extra opcode + 4 byte displacement go in var part.
6771 Pass reloc in fr_var. */
6772 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
6773 }
6774
6775 static void
6776 output_jump (void)
6777 {
6778 char *p;
6779 int size;
6780 fixS *fixP;
6781
6782 if (i.tm.opcode_modifier.jumpbyte)
6783 {
6784 /* This is a loop or jecxz type instruction. */
6785 size = 1;
6786 if (i.prefix[ADDR_PREFIX] != 0)
6787 {
6788 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
6789 i.prefixes -= 1;
6790 }
6791 /* Pentium4 branch hints. */
6792 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6793 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6794 {
6795 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
6796 i.prefixes--;
6797 }
6798 }
6799 else
6800 {
6801 int code16;
6802
6803 code16 = 0;
6804 if (flag_code == CODE_16BIT)
6805 code16 = CODE16;
6806
6807 if (i.prefix[DATA_PREFIX] != 0)
6808 {
6809 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
6810 i.prefixes -= 1;
6811 code16 ^= CODE16;
6812 }
6813
6814 size = 4;
6815 if (code16)
6816 size = 2;
6817 }
6818
6819 if (i.prefix[REX_PREFIX] != 0)
6820 {
6821 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
6822 i.prefixes -= 1;
6823 }
6824
6825 /* BND prefixed jump. */
6826 if (i.prefix[BND_PREFIX] != 0)
6827 {
6828 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6829 i.prefixes -= 1;
6830 }
6831
6832 if (i.prefixes != 0 && !intel_syntax)
6833 as_warn (_("skipping prefixes on this instruction"));
6834
6835 p = frag_more (i.tm.opcode_length + size);
6836 switch (i.tm.opcode_length)
6837 {
6838 case 2:
6839 *p++ = i.tm.base_opcode >> 8;
6840 case 1:
6841 *p++ = i.tm.base_opcode;
6842 break;
6843 default:
6844 abort ();
6845 }
6846
6847 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6848 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
6849
6850 /* All jumps handled here are signed, but don't use a signed limit
6851 check for 32 and 16 bit jumps as we want to allow wrap around at
6852 4G and 64k respectively. */
6853 if (size == 1)
6854 fixP->fx_signed = 1;
6855 }
6856
6857 static void
6858 output_interseg_jump (void)
6859 {
6860 char *p;
6861 int size;
6862 int prefix;
6863 int code16;
6864
6865 code16 = 0;
6866 if (flag_code == CODE_16BIT)
6867 code16 = CODE16;
6868
6869 prefix = 0;
6870 if (i.prefix[DATA_PREFIX] != 0)
6871 {
6872 prefix = 1;
6873 i.prefixes -= 1;
6874 code16 ^= CODE16;
6875 }
6876 if (i.prefix[REX_PREFIX] != 0)
6877 {
6878 prefix++;
6879 i.prefixes -= 1;
6880 }
6881
6882 size = 4;
6883 if (code16)
6884 size = 2;
6885
6886 if (i.prefixes != 0 && !intel_syntax)
6887 as_warn (_("skipping prefixes on this instruction"));
6888
6889 /* 1 opcode; 2 segment; offset */
6890 p = frag_more (prefix + 1 + 2 + size);
6891
6892 if (i.prefix[DATA_PREFIX] != 0)
6893 *p++ = DATA_PREFIX_OPCODE;
6894
6895 if (i.prefix[REX_PREFIX] != 0)
6896 *p++ = i.prefix[REX_PREFIX];
6897
6898 *p++ = i.tm.base_opcode;
6899 if (i.op[1].imms->X_op == O_constant)
6900 {
6901 offsetT n = i.op[1].imms->X_add_number;
6902
6903 if (size == 2
6904 && !fits_in_unsigned_word (n)
6905 && !fits_in_signed_word (n))
6906 {
6907 as_bad (_("16-bit jump out of range"));
6908 return;
6909 }
6910 md_number_to_chars (p, n, size);
6911 }
6912 else
6913 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6914 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
6915 if (i.op[0].imms->X_op != O_constant)
6916 as_bad (_("can't handle non absolute segment in `%s'"),
6917 i.tm.name);
6918 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
6919 }
6920
6921 static void
6922 output_insn (void)
6923 {
6924 fragS *insn_start_frag;
6925 offsetT insn_start_off;
6926
6927 /* Tie dwarf2 debug info to the address at the start of the insn.
6928 We can't do this after the insn has been output as the current
6929 frag may have been closed off. eg. by frag_var. */
6930 dwarf2_emit_insn (0);
6931
6932 insn_start_frag = frag_now;
6933 insn_start_off = frag_now_fix ();
6934
6935 /* Output jumps. */
6936 if (i.tm.opcode_modifier.jump)
6937 output_branch ();
6938 else if (i.tm.opcode_modifier.jumpbyte
6939 || i.tm.opcode_modifier.jumpdword)
6940 output_jump ();
6941 else if (i.tm.opcode_modifier.jumpintersegment)
6942 output_interseg_jump ();
6943 else
6944 {
6945 /* Output normal instructions here. */
6946 char *p;
6947 unsigned char *q;
6948 unsigned int j;
6949 unsigned int prefix;
6950
6951 /* Some processors fail on LOCK prefix. This options makes
6952 assembler ignore LOCK prefix and serves as a workaround. */
6953 if (omit_lock_prefix)
6954 {
6955 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
6956 return;
6957 i.prefix[LOCK_PREFIX] = 0;
6958 }
6959
6960 /* Since the VEX/EVEX prefix contains the implicit prefix, we
6961 don't need the explicit prefix. */
6962 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
6963 {
6964 switch (i.tm.opcode_length)
6965 {
6966 case 3:
6967 if (i.tm.base_opcode & 0xff000000)
6968 {
6969 prefix = (i.tm.base_opcode >> 24) & 0xff;
6970 goto check_prefix;
6971 }
6972 break;
6973 case 2:
6974 if ((i.tm.base_opcode & 0xff0000) != 0)
6975 {
6976 prefix = (i.tm.base_opcode >> 16) & 0xff;
6977 if (i.tm.cpu_flags.bitfield.cpupadlock)
6978 {
6979 check_prefix:
6980 if (prefix != REPE_PREFIX_OPCODE
6981 || (i.prefix[REP_PREFIX]
6982 != REPE_PREFIX_OPCODE))
6983 add_prefix (prefix);
6984 }
6985 else
6986 add_prefix (prefix);
6987 }
6988 break;
6989 case 1:
6990 break;
6991 default:
6992 abort ();
6993 }
6994
6995 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
6996 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
6997 R_X86_64_GOTTPOFF relocation so that linker can safely
6998 perform IE->LE optimization. */
6999 if (x86_elf_abi == X86_64_X32_ABI
7000 && i.operands == 2
7001 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7002 && i.prefix[REX_PREFIX] == 0)
7003 add_prefix (REX_OPCODE);
7004 #endif
7005
7006 /* The prefix bytes. */
7007 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7008 if (*q)
7009 FRAG_APPEND_1_CHAR (*q);
7010 }
7011 else
7012 {
7013 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7014 if (*q)
7015 switch (j)
7016 {
7017 case REX_PREFIX:
7018 /* REX byte is encoded in VEX prefix. */
7019 break;
7020 case SEG_PREFIX:
7021 case ADDR_PREFIX:
7022 FRAG_APPEND_1_CHAR (*q);
7023 break;
7024 default:
7025 /* There should be no other prefixes for instructions
7026 with VEX prefix. */
7027 abort ();
7028 }
7029
7030 /* For EVEX instructions i.vrex should become 0 after
7031 build_evex_prefix. For VEX instructions upper 16 registers
7032 aren't available, so VREX should be 0. */
7033 if (i.vrex)
7034 abort ();
7035 /* Now the VEX prefix. */
7036 p = frag_more (i.vex.length);
7037 for (j = 0; j < i.vex.length; j++)
7038 p[j] = i.vex.bytes[j];
7039 }
7040
7041 /* Now the opcode; be careful about word order here! */
7042 if (i.tm.opcode_length == 1)
7043 {
7044 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7045 }
7046 else
7047 {
7048 switch (i.tm.opcode_length)
7049 {
7050 case 4:
7051 p = frag_more (4);
7052 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7053 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7054 break;
7055 case 3:
7056 p = frag_more (3);
7057 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7058 break;
7059 case 2:
7060 p = frag_more (2);
7061 break;
7062 default:
7063 abort ();
7064 break;
7065 }
7066
7067 /* Put out high byte first: can't use md_number_to_chars! */
7068 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7069 *p = i.tm.base_opcode & 0xff;
7070 }
7071
7072 /* Now the modrm byte and sib byte (if present). */
7073 if (i.tm.opcode_modifier.modrm)
7074 {
7075 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7076 | i.rm.reg << 3
7077 | i.rm.mode << 6));
7078 /* If i.rm.regmem == ESP (4)
7079 && i.rm.mode != (Register mode)
7080 && not 16 bit
7081 ==> need second modrm byte. */
7082 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7083 && i.rm.mode != 3
7084 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
7085 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7086 | i.sib.index << 3
7087 | i.sib.scale << 6));
7088 }
7089
7090 if (i.disp_operands)
7091 output_disp (insn_start_frag, insn_start_off);
7092
7093 if (i.imm_operands)
7094 output_imm (insn_start_frag, insn_start_off);
7095 }
7096
7097 #ifdef DEBUG386
7098 if (flag_debug)
7099 {
7100 pi ("" /*line*/, &i);
7101 }
7102 #endif /* DEBUG386 */
7103 }
7104
7105 /* Return the size of the displacement operand N. */
7106
7107 static int
7108 disp_size (unsigned int n)
7109 {
7110 int size = 4;
7111
7112 /* Vec_Disp8 has to be 8bit. */
7113 if (i.types[n].bitfield.vec_disp8)
7114 size = 1;
7115 else if (i.types[n].bitfield.disp64)
7116 size = 8;
7117 else if (i.types[n].bitfield.disp8)
7118 size = 1;
7119 else if (i.types[n].bitfield.disp16)
7120 size = 2;
7121 return size;
7122 }
7123
7124 /* Return the size of the immediate operand N. */
7125
7126 static int
7127 imm_size (unsigned int n)
7128 {
7129 int size = 4;
7130 if (i.types[n].bitfield.imm64)
7131 size = 8;
7132 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7133 size = 1;
7134 else if (i.types[n].bitfield.imm16)
7135 size = 2;
7136 return size;
7137 }
7138
7139 static void
7140 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7141 {
7142 char *p;
7143 unsigned int n;
7144
7145 for (n = 0; n < i.operands; n++)
7146 {
7147 if (i.types[n].bitfield.vec_disp8
7148 || operand_type_check (i.types[n], disp))
7149 {
7150 if (i.op[n].disps->X_op == O_constant)
7151 {
7152 int size = disp_size (n);
7153 offsetT val = i.op[n].disps->X_add_number;
7154
7155 if (i.types[n].bitfield.vec_disp8)
7156 val >>= i.memshift;
7157 val = offset_in_range (val, size);
7158 p = frag_more (size);
7159 md_number_to_chars (p, val, size);
7160 }
7161 else
7162 {
7163 enum bfd_reloc_code_real reloc_type;
7164 int size = disp_size (n);
7165 int sign = i.types[n].bitfield.disp32s;
7166 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7167 fixS *fixP;
7168
7169 /* We can't have 8 bit displacement here. */
7170 gas_assert (!i.types[n].bitfield.disp8);
7171
7172 /* The PC relative address is computed relative
7173 to the instruction boundary, so in case immediate
7174 fields follows, we need to adjust the value. */
7175 if (pcrel && i.imm_operands)
7176 {
7177 unsigned int n1;
7178 int sz = 0;
7179
7180 for (n1 = 0; n1 < i.operands; n1++)
7181 if (operand_type_check (i.types[n1], imm))
7182 {
7183 /* Only one immediate is allowed for PC
7184 relative address. */
7185 gas_assert (sz == 0);
7186 sz = imm_size (n1);
7187 i.op[n].disps->X_add_number -= sz;
7188 }
7189 /* We should find the immediate. */
7190 gas_assert (sz != 0);
7191 }
7192
7193 p = frag_more (size);
7194 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7195 if (GOT_symbol
7196 && GOT_symbol == i.op[n].disps->X_add_symbol
7197 && (((reloc_type == BFD_RELOC_32
7198 || reloc_type == BFD_RELOC_X86_64_32S
7199 || (reloc_type == BFD_RELOC_64
7200 && object_64bit))
7201 && (i.op[n].disps->X_op == O_symbol
7202 || (i.op[n].disps->X_op == O_add
7203 && ((symbol_get_value_expression
7204 (i.op[n].disps->X_op_symbol)->X_op)
7205 == O_subtract))))
7206 || reloc_type == BFD_RELOC_32_PCREL))
7207 {
7208 offsetT add;
7209
7210 if (insn_start_frag == frag_now)
7211 add = (p - frag_now->fr_literal) - insn_start_off;
7212 else
7213 {
7214 fragS *fr;
7215
7216 add = insn_start_frag->fr_fix - insn_start_off;
7217 for (fr = insn_start_frag->fr_next;
7218 fr && fr != frag_now; fr = fr->fr_next)
7219 add += fr->fr_fix;
7220 add += p - frag_now->fr_literal;
7221 }
7222
7223 if (!object_64bit)
7224 {
7225 reloc_type = BFD_RELOC_386_GOTPC;
7226 i.op[n].imms->X_add_number += add;
7227 }
7228 else if (reloc_type == BFD_RELOC_64)
7229 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7230 else
7231 /* Don't do the adjustment for x86-64, as there
7232 the pcrel addressing is relative to the _next_
7233 insn, and that is taken care of in other code. */
7234 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7235 }
7236 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7237 size, i.op[n].disps, pcrel,
7238 reloc_type);
7239 /* Check for "call/jmp *mem", "mov mem, %reg",
7240 "test %reg, mem" and "binop mem, %reg" where binop
7241 is one of adc, add, and, cmp, or, sbb, sub, xor
7242 instructions. */
7243 if ((i.rm.mode == 2
7244 || (i.rm.mode == 0 && i.rm.regmem == 5))
7245 && ((i.operands == 1
7246 && i.tm.base_opcode == 0xff
7247 && (i.rm.reg == 2 || i.rm.reg == 4))
7248 || (i.operands == 2
7249 && (i.tm.base_opcode == 0x8b
7250 || i.tm.base_opcode == 0x85
7251 || (i.tm.base_opcode & 0xc7) == 0x03))))
7252 {
7253 if (object_64bit)
7254 {
7255 fixP->fx_tcbit = i.rex != 0;
7256 if (i.base_reg
7257 && (i.base_reg->reg_num == RegRip
7258 || i.base_reg->reg_num == RegEip))
7259 fixP->fx_tcbit2 = 1;
7260 }
7261 else
7262 fixP->fx_tcbit2 = 1;
7263 }
7264 }
7265 }
7266 }
7267 }
7268
7269 static void
7270 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7271 {
7272 char *p;
7273 unsigned int n;
7274
7275 for (n = 0; n < i.operands; n++)
7276 {
7277 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7278 if (i.rounding && (int) n == i.rounding->operand)
7279 continue;
7280
7281 if (operand_type_check (i.types[n], imm))
7282 {
7283 if (i.op[n].imms->X_op == O_constant)
7284 {
7285 int size = imm_size (n);
7286 offsetT val;
7287
7288 val = offset_in_range (i.op[n].imms->X_add_number,
7289 size);
7290 p = frag_more (size);
7291 md_number_to_chars (p, val, size);
7292 }
7293 else
7294 {
7295 /* Not absolute_section.
7296 Need a 32-bit fixup (don't support 8bit
7297 non-absolute imms). Try to support other
7298 sizes ... */
7299 enum bfd_reloc_code_real reloc_type;
7300 int size = imm_size (n);
7301 int sign;
7302
7303 if (i.types[n].bitfield.imm32s
7304 && (i.suffix == QWORD_MNEM_SUFFIX
7305 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7306 sign = 1;
7307 else
7308 sign = 0;
7309
7310 p = frag_more (size);
7311 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7312
7313 /* This is tough to explain. We end up with this one if we
7314 * have operands that look like
7315 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7316 * obtain the absolute address of the GOT, and it is strongly
7317 * preferable from a performance point of view to avoid using
7318 * a runtime relocation for this. The actual sequence of
7319 * instructions often look something like:
7320 *
7321 * call .L66
7322 * .L66:
7323 * popl %ebx
7324 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7325 *
7326 * The call and pop essentially return the absolute address
7327 * of the label .L66 and store it in %ebx. The linker itself
7328 * will ultimately change the first operand of the addl so
7329 * that %ebx points to the GOT, but to keep things simple, the
7330 * .o file must have this operand set so that it generates not
7331 * the absolute address of .L66, but the absolute address of
7332 * itself. This allows the linker itself simply treat a GOTPC
7333 * relocation as asking for a pcrel offset to the GOT to be
7334 * added in, and the addend of the relocation is stored in the
7335 * operand field for the instruction itself.
7336 *
7337 * Our job here is to fix the operand so that it would add
7338 * the correct offset so that %ebx would point to itself. The
7339 * thing that is tricky is that .-.L66 will point to the
7340 * beginning of the instruction, so we need to further modify
7341 * the operand so that it will point to itself. There are
7342 * other cases where you have something like:
7343 *
7344 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7345 *
7346 * and here no correction would be required. Internally in
7347 * the assembler we treat operands of this form as not being
7348 * pcrel since the '.' is explicitly mentioned, and I wonder
7349 * whether it would simplify matters to do it this way. Who
7350 * knows. In earlier versions of the PIC patches, the
7351 * pcrel_adjust field was used to store the correction, but
7352 * since the expression is not pcrel, I felt it would be
7353 * confusing to do it this way. */
7354
7355 if ((reloc_type == BFD_RELOC_32
7356 || reloc_type == BFD_RELOC_X86_64_32S
7357 || reloc_type == BFD_RELOC_64)
7358 && GOT_symbol
7359 && GOT_symbol == i.op[n].imms->X_add_symbol
7360 && (i.op[n].imms->X_op == O_symbol
7361 || (i.op[n].imms->X_op == O_add
7362 && ((symbol_get_value_expression
7363 (i.op[n].imms->X_op_symbol)->X_op)
7364 == O_subtract))))
7365 {
7366 offsetT add;
7367
7368 if (insn_start_frag == frag_now)
7369 add = (p - frag_now->fr_literal) - insn_start_off;
7370 else
7371 {
7372 fragS *fr;
7373
7374 add = insn_start_frag->fr_fix - insn_start_off;
7375 for (fr = insn_start_frag->fr_next;
7376 fr && fr != frag_now; fr = fr->fr_next)
7377 add += fr->fr_fix;
7378 add += p - frag_now->fr_literal;
7379 }
7380
7381 if (!object_64bit)
7382 reloc_type = BFD_RELOC_386_GOTPC;
7383 else if (size == 4)
7384 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7385 else if (size == 8)
7386 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7387 i.op[n].imms->X_add_number += add;
7388 }
7389 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7390 i.op[n].imms, 0, reloc_type);
7391 }
7392 }
7393 }
7394 }
7395 \f
7396 /* x86_cons_fix_new is called via the expression parsing code when a
7397 reloc is needed. We use this hook to get the correct .got reloc. */
7398 static int cons_sign = -1;
7399
7400 void
7401 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
7402 expressionS *exp, bfd_reloc_code_real_type r)
7403 {
7404 r = reloc (len, 0, cons_sign, r);
7405
7406 #ifdef TE_PE
7407 if (exp->X_op == O_secrel)
7408 {
7409 exp->X_op = O_symbol;
7410 r = BFD_RELOC_32_SECREL;
7411 }
7412 #endif
7413
7414 fix_new_exp (frag, off, len, exp, 0, r);
7415 }
7416
7417 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7418 purpose of the `.dc.a' internal pseudo-op. */
7419
7420 int
7421 x86_address_bytes (void)
7422 {
7423 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7424 return 4;
7425 return stdoutput->arch_info->bits_per_address / 8;
7426 }
7427
7428 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7429 || defined (LEX_AT)
7430 # define lex_got(reloc, adjust, types) NULL
7431 #else
7432 /* Parse operands of the form
7433 <symbol>@GOTOFF+<nnn>
7434 and similar .plt or .got references.
7435
7436 If we find one, set up the correct relocation in RELOC and copy the
7437 input string, minus the `@GOTOFF' into a malloc'd buffer for
7438 parsing by the calling routine. Return this buffer, and if ADJUST
7439 is non-null set it to the length of the string we removed from the
7440 input line. Otherwise return NULL. */
7441 static char *
7442 lex_got (enum bfd_reloc_code_real *rel,
7443 int *adjust,
7444 i386_operand_type *types)
7445 {
7446 /* Some of the relocations depend on the size of what field is to
7447 be relocated. But in our callers i386_immediate and i386_displacement
7448 we don't yet know the operand size (this will be set by insn
7449 matching). Hence we record the word32 relocation here,
7450 and adjust the reloc according to the real size in reloc(). */
7451 static const struct {
7452 const char *str;
7453 int len;
7454 const enum bfd_reloc_code_real rel[2];
7455 const i386_operand_type types64;
7456 } gotrel[] = {
7457 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7458 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7459 BFD_RELOC_SIZE32 },
7460 OPERAND_TYPE_IMM32_64 },
7461 #endif
7462 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7463 BFD_RELOC_X86_64_PLTOFF64 },
7464 OPERAND_TYPE_IMM64 },
7465 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7466 BFD_RELOC_X86_64_PLT32 },
7467 OPERAND_TYPE_IMM32_32S_DISP32 },
7468 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7469 BFD_RELOC_X86_64_GOTPLT64 },
7470 OPERAND_TYPE_IMM64_DISP64 },
7471 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7472 BFD_RELOC_X86_64_GOTOFF64 },
7473 OPERAND_TYPE_IMM64_DISP64 },
7474 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7475 BFD_RELOC_X86_64_GOTPCREL },
7476 OPERAND_TYPE_IMM32_32S_DISP32 },
7477 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7478 BFD_RELOC_X86_64_TLSGD },
7479 OPERAND_TYPE_IMM32_32S_DISP32 },
7480 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7481 _dummy_first_bfd_reloc_code_real },
7482 OPERAND_TYPE_NONE },
7483 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7484 BFD_RELOC_X86_64_TLSLD },
7485 OPERAND_TYPE_IMM32_32S_DISP32 },
7486 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7487 BFD_RELOC_X86_64_GOTTPOFF },
7488 OPERAND_TYPE_IMM32_32S_DISP32 },
7489 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7490 BFD_RELOC_X86_64_TPOFF32 },
7491 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7492 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7493 _dummy_first_bfd_reloc_code_real },
7494 OPERAND_TYPE_NONE },
7495 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7496 BFD_RELOC_X86_64_DTPOFF32 },
7497 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7498 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7499 _dummy_first_bfd_reloc_code_real },
7500 OPERAND_TYPE_NONE },
7501 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7502 _dummy_first_bfd_reloc_code_real },
7503 OPERAND_TYPE_NONE },
7504 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7505 BFD_RELOC_X86_64_GOT32 },
7506 OPERAND_TYPE_IMM32_32S_64_DISP32 },
7507 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7508 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
7509 OPERAND_TYPE_IMM32_32S_DISP32 },
7510 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7511 BFD_RELOC_X86_64_TLSDESC_CALL },
7512 OPERAND_TYPE_IMM32_32S_DISP32 },
7513 };
7514 char *cp;
7515 unsigned int j;
7516
7517 #if defined (OBJ_MAYBE_ELF)
7518 if (!IS_ELF)
7519 return NULL;
7520 #endif
7521
7522 for (cp = input_line_pointer; *cp != '@'; cp++)
7523 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7524 return NULL;
7525
7526 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7527 {
7528 int len = gotrel[j].len;
7529 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7530 {
7531 if (gotrel[j].rel[object_64bit] != 0)
7532 {
7533 int first, second;
7534 char *tmpbuf, *past_reloc;
7535
7536 *rel = gotrel[j].rel[object_64bit];
7537
7538 if (types)
7539 {
7540 if (flag_code != CODE_64BIT)
7541 {
7542 types->bitfield.imm32 = 1;
7543 types->bitfield.disp32 = 1;
7544 }
7545 else
7546 *types = gotrel[j].types64;
7547 }
7548
7549 if (j != 0 && GOT_symbol == NULL)
7550 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7551
7552 /* The length of the first part of our input line. */
7553 first = cp - input_line_pointer;
7554
7555 /* The second part goes from after the reloc token until
7556 (and including) an end_of_line char or comma. */
7557 past_reloc = cp + 1 + len;
7558 cp = past_reloc;
7559 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7560 ++cp;
7561 second = cp + 1 - past_reloc;
7562
7563 /* Allocate and copy string. The trailing NUL shouldn't
7564 be necessary, but be safe. */
7565 tmpbuf = (char *) xmalloc (first + second + 2);
7566 memcpy (tmpbuf, input_line_pointer, first);
7567 if (second != 0 && *past_reloc != ' ')
7568 /* Replace the relocation token with ' ', so that
7569 errors like foo@GOTOFF1 will be detected. */
7570 tmpbuf[first++] = ' ';
7571 else
7572 /* Increment length by 1 if the relocation token is
7573 removed. */
7574 len++;
7575 if (adjust)
7576 *adjust = len;
7577 memcpy (tmpbuf + first, past_reloc, second);
7578 tmpbuf[first + second] = '\0';
7579 return tmpbuf;
7580 }
7581
7582 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7583 gotrel[j].str, 1 << (5 + object_64bit));
7584 return NULL;
7585 }
7586 }
7587
7588 /* Might be a symbol version string. Don't as_bad here. */
7589 return NULL;
7590 }
7591 #endif
7592
7593 #ifdef TE_PE
7594 #ifdef lex_got
7595 #undef lex_got
7596 #endif
7597 /* Parse operands of the form
7598 <symbol>@SECREL32+<nnn>
7599
7600 If we find one, set up the correct relocation in RELOC and copy the
7601 input string, minus the `@SECREL32' into a malloc'd buffer for
7602 parsing by the calling routine. Return this buffer, and if ADJUST
7603 is non-null set it to the length of the string we removed from the
7604 input line. Otherwise return NULL.
7605
7606 This function is copied from the ELF version above adjusted for PE targets. */
7607
7608 static char *
7609 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7610 int *adjust ATTRIBUTE_UNUSED,
7611 i386_operand_type *types)
7612 {
7613 static const struct
7614 {
7615 const char *str;
7616 int len;
7617 const enum bfd_reloc_code_real rel[2];
7618 const i386_operand_type types64;
7619 }
7620 gotrel[] =
7621 {
7622 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7623 BFD_RELOC_32_SECREL },
7624 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7625 };
7626
7627 char *cp;
7628 unsigned j;
7629
7630 for (cp = input_line_pointer; *cp != '@'; cp++)
7631 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7632 return NULL;
7633
7634 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7635 {
7636 int len = gotrel[j].len;
7637
7638 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7639 {
7640 if (gotrel[j].rel[object_64bit] != 0)
7641 {
7642 int first, second;
7643 char *tmpbuf, *past_reloc;
7644
7645 *rel = gotrel[j].rel[object_64bit];
7646 if (adjust)
7647 *adjust = len;
7648
7649 if (types)
7650 {
7651 if (flag_code != CODE_64BIT)
7652 {
7653 types->bitfield.imm32 = 1;
7654 types->bitfield.disp32 = 1;
7655 }
7656 else
7657 *types = gotrel[j].types64;
7658 }
7659
7660 /* The length of the first part of our input line. */
7661 first = cp - input_line_pointer;
7662
7663 /* The second part goes from after the reloc token until
7664 (and including) an end_of_line char or comma. */
7665 past_reloc = cp + 1 + len;
7666 cp = past_reloc;
7667 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7668 ++cp;
7669 second = cp + 1 - past_reloc;
7670
7671 /* Allocate and copy string. The trailing NUL shouldn't
7672 be necessary, but be safe. */
7673 tmpbuf = (char *) xmalloc (first + second + 2);
7674 memcpy (tmpbuf, input_line_pointer, first);
7675 if (second != 0 && *past_reloc != ' ')
7676 /* Replace the relocation token with ' ', so that
7677 errors like foo@SECLREL321 will be detected. */
7678 tmpbuf[first++] = ' ';
7679 memcpy (tmpbuf + first, past_reloc, second);
7680 tmpbuf[first + second] = '\0';
7681 return tmpbuf;
7682 }
7683
7684 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7685 gotrel[j].str, 1 << (5 + object_64bit));
7686 return NULL;
7687 }
7688 }
7689
7690 /* Might be a symbol version string. Don't as_bad here. */
7691 return NULL;
7692 }
7693
7694 #endif /* TE_PE */
7695
7696 bfd_reloc_code_real_type
7697 x86_cons (expressionS *exp, int size)
7698 {
7699 bfd_reloc_code_real_type got_reloc = NO_RELOC;
7700
7701 intel_syntax = -intel_syntax;
7702
7703 exp->X_md = 0;
7704 if (size == 4 || (object_64bit && size == 8))
7705 {
7706 /* Handle @GOTOFF and the like in an expression. */
7707 char *save;
7708 char *gotfree_input_line;
7709 int adjust = 0;
7710
7711 save = input_line_pointer;
7712 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
7713 if (gotfree_input_line)
7714 input_line_pointer = gotfree_input_line;
7715
7716 expression (exp);
7717
7718 if (gotfree_input_line)
7719 {
7720 /* expression () has merrily parsed up to the end of line,
7721 or a comma - in the wrong buffer. Transfer how far
7722 input_line_pointer has moved to the right buffer. */
7723 input_line_pointer = (save
7724 + (input_line_pointer - gotfree_input_line)
7725 + adjust);
7726 free (gotfree_input_line);
7727 if (exp->X_op == O_constant
7728 || exp->X_op == O_absent
7729 || exp->X_op == O_illegal
7730 || exp->X_op == O_register
7731 || exp->X_op == O_big)
7732 {
7733 char c = *input_line_pointer;
7734 *input_line_pointer = 0;
7735 as_bad (_("missing or invalid expression `%s'"), save);
7736 *input_line_pointer = c;
7737 }
7738 }
7739 }
7740 else
7741 expression (exp);
7742
7743 intel_syntax = -intel_syntax;
7744
7745 if (intel_syntax)
7746 i386_intel_simplify (exp);
7747
7748 return got_reloc;
7749 }
7750
7751 static void
7752 signed_cons (int size)
7753 {
7754 if (flag_code == CODE_64BIT)
7755 cons_sign = 1;
7756 cons (size);
7757 cons_sign = -1;
7758 }
7759
7760 #ifdef TE_PE
7761 static void
7762 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
7763 {
7764 expressionS exp;
7765
7766 do
7767 {
7768 expression (&exp);
7769 if (exp.X_op == O_symbol)
7770 exp.X_op = O_secrel;
7771
7772 emit_expr (&exp, 4);
7773 }
7774 while (*input_line_pointer++ == ',');
7775
7776 input_line_pointer--;
7777 demand_empty_rest_of_line ();
7778 }
7779 #endif
7780
7781 /* Handle Vector operations. */
7782
7783 static char *
7784 check_VecOperations (char *op_string, char *op_end)
7785 {
7786 const reg_entry *mask;
7787 const char *saved;
7788 char *end_op;
7789
7790 while (*op_string
7791 && (op_end == NULL || op_string < op_end))
7792 {
7793 saved = op_string;
7794 if (*op_string == '{')
7795 {
7796 op_string++;
7797
7798 /* Check broadcasts. */
7799 if (strncmp (op_string, "1to", 3) == 0)
7800 {
7801 int bcst_type;
7802
7803 if (i.broadcast)
7804 goto duplicated_vec_op;
7805
7806 op_string += 3;
7807 if (*op_string == '8')
7808 bcst_type = BROADCAST_1TO8;
7809 else if (*op_string == '4')
7810 bcst_type = BROADCAST_1TO4;
7811 else if (*op_string == '2')
7812 bcst_type = BROADCAST_1TO2;
7813 else if (*op_string == '1'
7814 && *(op_string+1) == '6')
7815 {
7816 bcst_type = BROADCAST_1TO16;
7817 op_string++;
7818 }
7819 else
7820 {
7821 as_bad (_("Unsupported broadcast: `%s'"), saved);
7822 return NULL;
7823 }
7824 op_string++;
7825
7826 broadcast_op.type = bcst_type;
7827 broadcast_op.operand = this_operand;
7828 i.broadcast = &broadcast_op;
7829 }
7830 /* Check masking operation. */
7831 else if ((mask = parse_register (op_string, &end_op)) != NULL)
7832 {
7833 /* k0 can't be used for write mask. */
7834 if (mask->reg_num == 0)
7835 {
7836 as_bad (_("`%s' can't be used for write mask"),
7837 op_string);
7838 return NULL;
7839 }
7840
7841 if (!i.mask)
7842 {
7843 mask_op.mask = mask;
7844 mask_op.zeroing = 0;
7845 mask_op.operand = this_operand;
7846 i.mask = &mask_op;
7847 }
7848 else
7849 {
7850 if (i.mask->mask)
7851 goto duplicated_vec_op;
7852
7853 i.mask->mask = mask;
7854
7855 /* Only "{z}" is allowed here. No need to check
7856 zeroing mask explicitly. */
7857 if (i.mask->operand != this_operand)
7858 {
7859 as_bad (_("invalid write mask `%s'"), saved);
7860 return NULL;
7861 }
7862 }
7863
7864 op_string = end_op;
7865 }
7866 /* Check zeroing-flag for masking operation. */
7867 else if (*op_string == 'z')
7868 {
7869 if (!i.mask)
7870 {
7871 mask_op.mask = NULL;
7872 mask_op.zeroing = 1;
7873 mask_op.operand = this_operand;
7874 i.mask = &mask_op;
7875 }
7876 else
7877 {
7878 if (i.mask->zeroing)
7879 {
7880 duplicated_vec_op:
7881 as_bad (_("duplicated `%s'"), saved);
7882 return NULL;
7883 }
7884
7885 i.mask->zeroing = 1;
7886
7887 /* Only "{%k}" is allowed here. No need to check mask
7888 register explicitly. */
7889 if (i.mask->operand != this_operand)
7890 {
7891 as_bad (_("invalid zeroing-masking `%s'"),
7892 saved);
7893 return NULL;
7894 }
7895 }
7896
7897 op_string++;
7898 }
7899 else
7900 goto unknown_vec_op;
7901
7902 if (*op_string != '}')
7903 {
7904 as_bad (_("missing `}' in `%s'"), saved);
7905 return NULL;
7906 }
7907 op_string++;
7908 continue;
7909 }
7910 unknown_vec_op:
7911 /* We don't know this one. */
7912 as_bad (_("unknown vector operation: `%s'"), saved);
7913 return NULL;
7914 }
7915
7916 return op_string;
7917 }
7918
7919 static int
7920 i386_immediate (char *imm_start)
7921 {
7922 char *save_input_line_pointer;
7923 char *gotfree_input_line;
7924 segT exp_seg = 0;
7925 expressionS *exp;
7926 i386_operand_type types;
7927
7928 operand_type_set (&types, ~0);
7929
7930 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
7931 {
7932 as_bad (_("at most %d immediate operands are allowed"),
7933 MAX_IMMEDIATE_OPERANDS);
7934 return 0;
7935 }
7936
7937 exp = &im_expressions[i.imm_operands++];
7938 i.op[this_operand].imms = exp;
7939
7940 if (is_space_char (*imm_start))
7941 ++imm_start;
7942
7943 save_input_line_pointer = input_line_pointer;
7944 input_line_pointer = imm_start;
7945
7946 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
7947 if (gotfree_input_line)
7948 input_line_pointer = gotfree_input_line;
7949
7950 exp_seg = expression (exp);
7951
7952 SKIP_WHITESPACE ();
7953
7954 /* Handle vector operations. */
7955 if (*input_line_pointer == '{')
7956 {
7957 input_line_pointer = check_VecOperations (input_line_pointer,
7958 NULL);
7959 if (input_line_pointer == NULL)
7960 return 0;
7961 }
7962
7963 if (*input_line_pointer)
7964 as_bad (_("junk `%s' after expression"), input_line_pointer);
7965
7966 input_line_pointer = save_input_line_pointer;
7967 if (gotfree_input_line)
7968 {
7969 free (gotfree_input_line);
7970
7971 if (exp->X_op == O_constant || exp->X_op == O_register)
7972 exp->X_op = O_illegal;
7973 }
7974
7975 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
7976 }
7977
7978 static int
7979 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
7980 i386_operand_type types, const char *imm_start)
7981 {
7982 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
7983 {
7984 if (imm_start)
7985 as_bad (_("missing or invalid immediate expression `%s'"),
7986 imm_start);
7987 return 0;
7988 }
7989 else if (exp->X_op == O_constant)
7990 {
7991 /* Size it properly later. */
7992 i.types[this_operand].bitfield.imm64 = 1;
7993 /* If not 64bit, sign extend val. */
7994 if (flag_code != CODE_64BIT
7995 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
7996 exp->X_add_number
7997 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
7998 }
7999 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8000 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8001 && exp_seg != absolute_section
8002 && exp_seg != text_section
8003 && exp_seg != data_section
8004 && exp_seg != bss_section
8005 && exp_seg != undefined_section
8006 && !bfd_is_com_section (exp_seg))
8007 {
8008 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8009 return 0;
8010 }
8011 #endif
8012 else if (!intel_syntax && exp_seg == reg_section)
8013 {
8014 if (imm_start)
8015 as_bad (_("illegal immediate register operand %s"), imm_start);
8016 return 0;
8017 }
8018 else
8019 {
8020 /* This is an address. The size of the address will be
8021 determined later, depending on destination register,
8022 suffix, or the default for the section. */
8023 i.types[this_operand].bitfield.imm8 = 1;
8024 i.types[this_operand].bitfield.imm16 = 1;
8025 i.types[this_operand].bitfield.imm32 = 1;
8026 i.types[this_operand].bitfield.imm32s = 1;
8027 i.types[this_operand].bitfield.imm64 = 1;
8028 i.types[this_operand] = operand_type_and (i.types[this_operand],
8029 types);
8030 }
8031
8032 return 1;
8033 }
8034
8035 static char *
8036 i386_scale (char *scale)
8037 {
8038 offsetT val;
8039 char *save = input_line_pointer;
8040
8041 input_line_pointer = scale;
8042 val = get_absolute_expression ();
8043
8044 switch (val)
8045 {
8046 case 1:
8047 i.log2_scale_factor = 0;
8048 break;
8049 case 2:
8050 i.log2_scale_factor = 1;
8051 break;
8052 case 4:
8053 i.log2_scale_factor = 2;
8054 break;
8055 case 8:
8056 i.log2_scale_factor = 3;
8057 break;
8058 default:
8059 {
8060 char sep = *input_line_pointer;
8061
8062 *input_line_pointer = '\0';
8063 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8064 scale);
8065 *input_line_pointer = sep;
8066 input_line_pointer = save;
8067 return NULL;
8068 }
8069 }
8070 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8071 {
8072 as_warn (_("scale factor of %d without an index register"),
8073 1 << i.log2_scale_factor);
8074 i.log2_scale_factor = 0;
8075 }
8076 scale = input_line_pointer;
8077 input_line_pointer = save;
8078 return scale;
8079 }
8080
8081 static int
8082 i386_displacement (char *disp_start, char *disp_end)
8083 {
8084 expressionS *exp;
8085 segT exp_seg = 0;
8086 char *save_input_line_pointer;
8087 char *gotfree_input_line;
8088 int override;
8089 i386_operand_type bigdisp, types = anydisp;
8090 int ret;
8091
8092 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8093 {
8094 as_bad (_("at most %d displacement operands are allowed"),
8095 MAX_MEMORY_OPERANDS);
8096 return 0;
8097 }
8098
8099 operand_type_set (&bigdisp, 0);
8100 if ((i.types[this_operand].bitfield.jumpabsolute)
8101 || (!current_templates->start->opcode_modifier.jump
8102 && !current_templates->start->opcode_modifier.jumpdword))
8103 {
8104 bigdisp.bitfield.disp32 = 1;
8105 override = (i.prefix[ADDR_PREFIX] != 0);
8106 if (flag_code == CODE_64BIT)
8107 {
8108 if (!override)
8109 {
8110 bigdisp.bitfield.disp32s = 1;
8111 bigdisp.bitfield.disp64 = 1;
8112 }
8113 }
8114 else if ((flag_code == CODE_16BIT) ^ override)
8115 {
8116 bigdisp.bitfield.disp32 = 0;
8117 bigdisp.bitfield.disp16 = 1;
8118 }
8119 }
8120 else
8121 {
8122 /* For PC-relative branches, the width of the displacement
8123 is dependent upon data size, not address size. */
8124 override = (i.prefix[DATA_PREFIX] != 0);
8125 if (flag_code == CODE_64BIT)
8126 {
8127 if (override || i.suffix == WORD_MNEM_SUFFIX)
8128 bigdisp.bitfield.disp16 = 1;
8129 else
8130 {
8131 bigdisp.bitfield.disp32 = 1;
8132 bigdisp.bitfield.disp32s = 1;
8133 }
8134 }
8135 else
8136 {
8137 if (!override)
8138 override = (i.suffix == (flag_code != CODE_16BIT
8139 ? WORD_MNEM_SUFFIX
8140 : LONG_MNEM_SUFFIX));
8141 bigdisp.bitfield.disp32 = 1;
8142 if ((flag_code == CODE_16BIT) ^ override)
8143 {
8144 bigdisp.bitfield.disp32 = 0;
8145 bigdisp.bitfield.disp16 = 1;
8146 }
8147 }
8148 }
8149 i.types[this_operand] = operand_type_or (i.types[this_operand],
8150 bigdisp);
8151
8152 exp = &disp_expressions[i.disp_operands];
8153 i.op[this_operand].disps = exp;
8154 i.disp_operands++;
8155 save_input_line_pointer = input_line_pointer;
8156 input_line_pointer = disp_start;
8157 END_STRING_AND_SAVE (disp_end);
8158
8159 #ifndef GCC_ASM_O_HACK
8160 #define GCC_ASM_O_HACK 0
8161 #endif
8162 #if GCC_ASM_O_HACK
8163 END_STRING_AND_SAVE (disp_end + 1);
8164 if (i.types[this_operand].bitfield.baseIndex
8165 && displacement_string_end[-1] == '+')
8166 {
8167 /* This hack is to avoid a warning when using the "o"
8168 constraint within gcc asm statements.
8169 For instance:
8170
8171 #define _set_tssldt_desc(n,addr,limit,type) \
8172 __asm__ __volatile__ ( \
8173 "movw %w2,%0\n\t" \
8174 "movw %w1,2+%0\n\t" \
8175 "rorl $16,%1\n\t" \
8176 "movb %b1,4+%0\n\t" \
8177 "movb %4,5+%0\n\t" \
8178 "movb $0,6+%0\n\t" \
8179 "movb %h1,7+%0\n\t" \
8180 "rorl $16,%1" \
8181 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8182
8183 This works great except that the output assembler ends
8184 up looking a bit weird if it turns out that there is
8185 no offset. You end up producing code that looks like:
8186
8187 #APP
8188 movw $235,(%eax)
8189 movw %dx,2+(%eax)
8190 rorl $16,%edx
8191 movb %dl,4+(%eax)
8192 movb $137,5+(%eax)
8193 movb $0,6+(%eax)
8194 movb %dh,7+(%eax)
8195 rorl $16,%edx
8196 #NO_APP
8197
8198 So here we provide the missing zero. */
8199
8200 *displacement_string_end = '0';
8201 }
8202 #endif
8203 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8204 if (gotfree_input_line)
8205 input_line_pointer = gotfree_input_line;
8206
8207 exp_seg = expression (exp);
8208
8209 SKIP_WHITESPACE ();
8210 if (*input_line_pointer)
8211 as_bad (_("junk `%s' after expression"), input_line_pointer);
8212 #if GCC_ASM_O_HACK
8213 RESTORE_END_STRING (disp_end + 1);
8214 #endif
8215 input_line_pointer = save_input_line_pointer;
8216 if (gotfree_input_line)
8217 {
8218 free (gotfree_input_line);
8219
8220 if (exp->X_op == O_constant || exp->X_op == O_register)
8221 exp->X_op = O_illegal;
8222 }
8223
8224 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8225
8226 RESTORE_END_STRING (disp_end);
8227
8228 return ret;
8229 }
8230
8231 static int
8232 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8233 i386_operand_type types, const char *disp_start)
8234 {
8235 i386_operand_type bigdisp;
8236 int ret = 1;
8237
8238 /* We do this to make sure that the section symbol is in
8239 the symbol table. We will ultimately change the relocation
8240 to be relative to the beginning of the section. */
8241 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8242 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8243 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8244 {
8245 if (exp->X_op != O_symbol)
8246 goto inv_disp;
8247
8248 if (S_IS_LOCAL (exp->X_add_symbol)
8249 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8250 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8251 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8252 exp->X_op = O_subtract;
8253 exp->X_op_symbol = GOT_symbol;
8254 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8255 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8256 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8257 i.reloc[this_operand] = BFD_RELOC_64;
8258 else
8259 i.reloc[this_operand] = BFD_RELOC_32;
8260 }
8261
8262 else if (exp->X_op == O_absent
8263 || exp->X_op == O_illegal
8264 || exp->X_op == O_big)
8265 {
8266 inv_disp:
8267 as_bad (_("missing or invalid displacement expression `%s'"),
8268 disp_start);
8269 ret = 0;
8270 }
8271
8272 else if (flag_code == CODE_64BIT
8273 && !i.prefix[ADDR_PREFIX]
8274 && exp->X_op == O_constant)
8275 {
8276 /* Since displacement is signed extended to 64bit, don't allow
8277 disp32 and turn off disp32s if they are out of range. */
8278 i.types[this_operand].bitfield.disp32 = 0;
8279 if (!fits_in_signed_long (exp->X_add_number))
8280 {
8281 i.types[this_operand].bitfield.disp32s = 0;
8282 if (i.types[this_operand].bitfield.baseindex)
8283 {
8284 as_bad (_("0x%lx out range of signed 32bit displacement"),
8285 (long) exp->X_add_number);
8286 ret = 0;
8287 }
8288 }
8289 }
8290
8291 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8292 else if (exp->X_op != O_constant
8293 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8294 && exp_seg != absolute_section
8295 && exp_seg != text_section
8296 && exp_seg != data_section
8297 && exp_seg != bss_section
8298 && exp_seg != undefined_section
8299 && !bfd_is_com_section (exp_seg))
8300 {
8301 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8302 ret = 0;
8303 }
8304 #endif
8305
8306 /* Check if this is a displacement only operand. */
8307 bigdisp = i.types[this_operand];
8308 bigdisp.bitfield.disp8 = 0;
8309 bigdisp.bitfield.disp16 = 0;
8310 bigdisp.bitfield.disp32 = 0;
8311 bigdisp.bitfield.disp32s = 0;
8312 bigdisp.bitfield.disp64 = 0;
8313 if (operand_type_all_zero (&bigdisp))
8314 i.types[this_operand] = operand_type_and (i.types[this_operand],
8315 types);
8316
8317 return ret;
8318 }
8319
8320 /* Make sure the memory operand we've been dealt is valid.
8321 Return 1 on success, 0 on a failure. */
8322
8323 static int
8324 i386_index_check (const char *operand_string)
8325 {
8326 const char *kind = "base/index";
8327 enum flag_code addr_mode;
8328
8329 if (i.prefix[ADDR_PREFIX])
8330 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8331 else
8332 {
8333 addr_mode = flag_code;
8334
8335 #if INFER_ADDR_PREFIX
8336 if (i.mem_operands == 0)
8337 {
8338 /* Infer address prefix from the first memory operand. */
8339 const reg_entry *addr_reg = i.base_reg;
8340
8341 if (addr_reg == NULL)
8342 addr_reg = i.index_reg;
8343
8344 if (addr_reg)
8345 {
8346 if (addr_reg->reg_num == RegEip
8347 || addr_reg->reg_num == RegEiz
8348 || addr_reg->reg_type.bitfield.reg32)
8349 addr_mode = CODE_32BIT;
8350 else if (flag_code != CODE_64BIT
8351 && addr_reg->reg_type.bitfield.reg16)
8352 addr_mode = CODE_16BIT;
8353
8354 if (addr_mode != flag_code)
8355 {
8356 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8357 i.prefixes += 1;
8358 /* Change the size of any displacement too. At most one
8359 of Disp16 or Disp32 is set.
8360 FIXME. There doesn't seem to be any real need for
8361 separate Disp16 and Disp32 flags. The same goes for
8362 Imm16 and Imm32. Removing them would probably clean
8363 up the code quite a lot. */
8364 if (flag_code != CODE_64BIT
8365 && (i.types[this_operand].bitfield.disp16
8366 || i.types[this_operand].bitfield.disp32))
8367 i.types[this_operand]
8368 = operand_type_xor (i.types[this_operand], disp16_32);
8369 }
8370 }
8371 }
8372 #endif
8373 }
8374
8375 if (current_templates->start->opcode_modifier.isstring
8376 && !current_templates->start->opcode_modifier.immext
8377 && (current_templates->end[-1].opcode_modifier.isstring
8378 || i.mem_operands))
8379 {
8380 /* Memory operands of string insns are special in that they only allow
8381 a single register (rDI, rSI, or rBX) as their memory address. */
8382 const reg_entry *expected_reg;
8383 static const char *di_si[][2] =
8384 {
8385 { "esi", "edi" },
8386 { "si", "di" },
8387 { "rsi", "rdi" }
8388 };
8389 static const char *bx[] = { "ebx", "bx", "rbx" };
8390
8391 kind = "string address";
8392
8393 if (current_templates->start->opcode_modifier.w)
8394 {
8395 i386_operand_type type = current_templates->end[-1].operand_types[0];
8396
8397 if (!type.bitfield.baseindex
8398 || ((!i.mem_operands != !intel_syntax)
8399 && current_templates->end[-1].operand_types[1]
8400 .bitfield.baseindex))
8401 type = current_templates->end[-1].operand_types[1];
8402 expected_reg = hash_find (reg_hash,
8403 di_si[addr_mode][type.bitfield.esseg]);
8404
8405 }
8406 else
8407 expected_reg = hash_find (reg_hash, bx[addr_mode]);
8408
8409 if (i.base_reg != expected_reg
8410 || i.index_reg
8411 || operand_type_check (i.types[this_operand], disp))
8412 {
8413 /* The second memory operand must have the same size as
8414 the first one. */
8415 if (i.mem_operands
8416 && i.base_reg
8417 && !((addr_mode == CODE_64BIT
8418 && i.base_reg->reg_type.bitfield.reg64)
8419 || (addr_mode == CODE_32BIT
8420 ? i.base_reg->reg_type.bitfield.reg32
8421 : i.base_reg->reg_type.bitfield.reg16)))
8422 goto bad_address;
8423
8424 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8425 operand_string,
8426 intel_syntax ? '[' : '(',
8427 register_prefix,
8428 expected_reg->reg_name,
8429 intel_syntax ? ']' : ')');
8430 return 1;
8431 }
8432 else
8433 return 1;
8434
8435 bad_address:
8436 as_bad (_("`%s' is not a valid %s expression"),
8437 operand_string, kind);
8438 return 0;
8439 }
8440 else
8441 {
8442 if (addr_mode != CODE_16BIT)
8443 {
8444 /* 32-bit/64-bit checks. */
8445 if ((i.base_reg
8446 && (addr_mode == CODE_64BIT
8447 ? !i.base_reg->reg_type.bitfield.reg64
8448 : !i.base_reg->reg_type.bitfield.reg32)
8449 && (i.index_reg
8450 || (i.base_reg->reg_num
8451 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8452 || (i.index_reg
8453 && !i.index_reg->reg_type.bitfield.regxmm
8454 && !i.index_reg->reg_type.bitfield.regymm
8455 && !i.index_reg->reg_type.bitfield.regzmm
8456 && ((addr_mode == CODE_64BIT
8457 ? !(i.index_reg->reg_type.bitfield.reg64
8458 || i.index_reg->reg_num == RegRiz)
8459 : !(i.index_reg->reg_type.bitfield.reg32
8460 || i.index_reg->reg_num == RegEiz))
8461 || !i.index_reg->reg_type.bitfield.baseindex)))
8462 goto bad_address;
8463 }
8464 else
8465 {
8466 /* 16-bit checks. */
8467 if ((i.base_reg
8468 && (!i.base_reg->reg_type.bitfield.reg16
8469 || !i.base_reg->reg_type.bitfield.baseindex))
8470 || (i.index_reg
8471 && (!i.index_reg->reg_type.bitfield.reg16
8472 || !i.index_reg->reg_type.bitfield.baseindex
8473 || !(i.base_reg
8474 && i.base_reg->reg_num < 6
8475 && i.index_reg->reg_num >= 6
8476 && i.log2_scale_factor == 0))))
8477 goto bad_address;
8478 }
8479 }
8480 return 1;
8481 }
8482
8483 /* Handle vector immediates. */
8484
8485 static int
8486 RC_SAE_immediate (const char *imm_start)
8487 {
8488 unsigned int match_found, j;
8489 const char *pstr = imm_start;
8490 expressionS *exp;
8491
8492 if (*pstr != '{')
8493 return 0;
8494
8495 pstr++;
8496 match_found = 0;
8497 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8498 {
8499 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8500 {
8501 if (!i.rounding)
8502 {
8503 rc_op.type = RC_NamesTable[j].type;
8504 rc_op.operand = this_operand;
8505 i.rounding = &rc_op;
8506 }
8507 else
8508 {
8509 as_bad (_("duplicated `%s'"), imm_start);
8510 return 0;
8511 }
8512 pstr += RC_NamesTable[j].len;
8513 match_found = 1;
8514 break;
8515 }
8516 }
8517 if (!match_found)
8518 return 0;
8519
8520 if (*pstr++ != '}')
8521 {
8522 as_bad (_("Missing '}': '%s'"), imm_start);
8523 return 0;
8524 }
8525 /* RC/SAE immediate string should contain nothing more. */;
8526 if (*pstr != 0)
8527 {
8528 as_bad (_("Junk after '}': '%s'"), imm_start);
8529 return 0;
8530 }
8531
8532 exp = &im_expressions[i.imm_operands++];
8533 i.op[this_operand].imms = exp;
8534
8535 exp->X_op = O_constant;
8536 exp->X_add_number = 0;
8537 exp->X_add_symbol = (symbolS *) 0;
8538 exp->X_op_symbol = (symbolS *) 0;
8539
8540 i.types[this_operand].bitfield.imm8 = 1;
8541 return 1;
8542 }
8543
8544 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
8545 on error. */
8546
8547 static int
8548 i386_att_operand (char *operand_string)
8549 {
8550 const reg_entry *r;
8551 char *end_op;
8552 char *op_string = operand_string;
8553
8554 if (is_space_char (*op_string))
8555 ++op_string;
8556
8557 /* We check for an absolute prefix (differentiating,
8558 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
8559 if (*op_string == ABSOLUTE_PREFIX)
8560 {
8561 ++op_string;
8562 if (is_space_char (*op_string))
8563 ++op_string;
8564 i.types[this_operand].bitfield.jumpabsolute = 1;
8565 }
8566
8567 /* Check if operand is a register. */
8568 if ((r = parse_register (op_string, &end_op)) != NULL)
8569 {
8570 i386_operand_type temp;
8571
8572 /* Check for a segment override by searching for ':' after a
8573 segment register. */
8574 op_string = end_op;
8575 if (is_space_char (*op_string))
8576 ++op_string;
8577 if (*op_string == ':'
8578 && (r->reg_type.bitfield.sreg2
8579 || r->reg_type.bitfield.sreg3))
8580 {
8581 switch (r->reg_num)
8582 {
8583 case 0:
8584 i.seg[i.mem_operands] = &es;
8585 break;
8586 case 1:
8587 i.seg[i.mem_operands] = &cs;
8588 break;
8589 case 2:
8590 i.seg[i.mem_operands] = &ss;
8591 break;
8592 case 3:
8593 i.seg[i.mem_operands] = &ds;
8594 break;
8595 case 4:
8596 i.seg[i.mem_operands] = &fs;
8597 break;
8598 case 5:
8599 i.seg[i.mem_operands] = &gs;
8600 break;
8601 }
8602
8603 /* Skip the ':' and whitespace. */
8604 ++op_string;
8605 if (is_space_char (*op_string))
8606 ++op_string;
8607
8608 if (!is_digit_char (*op_string)
8609 && !is_identifier_char (*op_string)
8610 && *op_string != '('
8611 && *op_string != ABSOLUTE_PREFIX)
8612 {
8613 as_bad (_("bad memory operand `%s'"), op_string);
8614 return 0;
8615 }
8616 /* Handle case of %es:*foo. */
8617 if (*op_string == ABSOLUTE_PREFIX)
8618 {
8619 ++op_string;
8620 if (is_space_char (*op_string))
8621 ++op_string;
8622 i.types[this_operand].bitfield.jumpabsolute = 1;
8623 }
8624 goto do_memory_reference;
8625 }
8626
8627 /* Handle vector operations. */
8628 if (*op_string == '{')
8629 {
8630 op_string = check_VecOperations (op_string, NULL);
8631 if (op_string == NULL)
8632 return 0;
8633 }
8634
8635 if (*op_string)
8636 {
8637 as_bad (_("junk `%s' after register"), op_string);
8638 return 0;
8639 }
8640 temp = r->reg_type;
8641 temp.bitfield.baseindex = 0;
8642 i.types[this_operand] = operand_type_or (i.types[this_operand],
8643 temp);
8644 i.types[this_operand].bitfield.unspecified = 0;
8645 i.op[this_operand].regs = r;
8646 i.reg_operands++;
8647 }
8648 else if (*op_string == REGISTER_PREFIX)
8649 {
8650 as_bad (_("bad register name `%s'"), op_string);
8651 return 0;
8652 }
8653 else if (*op_string == IMMEDIATE_PREFIX)
8654 {
8655 ++op_string;
8656 if (i.types[this_operand].bitfield.jumpabsolute)
8657 {
8658 as_bad (_("immediate operand illegal with absolute jump"));
8659 return 0;
8660 }
8661 if (!i386_immediate (op_string))
8662 return 0;
8663 }
8664 else if (RC_SAE_immediate (operand_string))
8665 {
8666 /* If it is a RC or SAE immediate, do nothing. */
8667 ;
8668 }
8669 else if (is_digit_char (*op_string)
8670 || is_identifier_char (*op_string)
8671 || *op_string == '"'
8672 || *op_string == '(')
8673 {
8674 /* This is a memory reference of some sort. */
8675 char *base_string;
8676
8677 /* Start and end of displacement string expression (if found). */
8678 char *displacement_string_start;
8679 char *displacement_string_end;
8680 char *vop_start;
8681
8682 do_memory_reference:
8683 if ((i.mem_operands == 1
8684 && !current_templates->start->opcode_modifier.isstring)
8685 || i.mem_operands == 2)
8686 {
8687 as_bad (_("too many memory references for `%s'"),
8688 current_templates->start->name);
8689 return 0;
8690 }
8691
8692 /* Check for base index form. We detect the base index form by
8693 looking for an ')' at the end of the operand, searching
8694 for the '(' matching it, and finding a REGISTER_PREFIX or ','
8695 after the '('. */
8696 base_string = op_string + strlen (op_string);
8697
8698 /* Handle vector operations. */
8699 vop_start = strchr (op_string, '{');
8700 if (vop_start && vop_start < base_string)
8701 {
8702 if (check_VecOperations (vop_start, base_string) == NULL)
8703 return 0;
8704 base_string = vop_start;
8705 }
8706
8707 --base_string;
8708 if (is_space_char (*base_string))
8709 --base_string;
8710
8711 /* If we only have a displacement, set-up for it to be parsed later. */
8712 displacement_string_start = op_string;
8713 displacement_string_end = base_string + 1;
8714
8715 if (*base_string == ')')
8716 {
8717 char *temp_string;
8718 unsigned int parens_balanced = 1;
8719 /* We've already checked that the number of left & right ()'s are
8720 equal, so this loop will not be infinite. */
8721 do
8722 {
8723 base_string--;
8724 if (*base_string == ')')
8725 parens_balanced++;
8726 if (*base_string == '(')
8727 parens_balanced--;
8728 }
8729 while (parens_balanced);
8730
8731 temp_string = base_string;
8732
8733 /* Skip past '(' and whitespace. */
8734 ++base_string;
8735 if (is_space_char (*base_string))
8736 ++base_string;
8737
8738 if (*base_string == ','
8739 || ((i.base_reg = parse_register (base_string, &end_op))
8740 != NULL))
8741 {
8742 displacement_string_end = temp_string;
8743
8744 i.types[this_operand].bitfield.baseindex = 1;
8745
8746 if (i.base_reg)
8747 {
8748 base_string = end_op;
8749 if (is_space_char (*base_string))
8750 ++base_string;
8751 }
8752
8753 /* There may be an index reg or scale factor here. */
8754 if (*base_string == ',')
8755 {
8756 ++base_string;
8757 if (is_space_char (*base_string))
8758 ++base_string;
8759
8760 if ((i.index_reg = parse_register (base_string, &end_op))
8761 != NULL)
8762 {
8763 base_string = end_op;
8764 if (is_space_char (*base_string))
8765 ++base_string;
8766 if (*base_string == ',')
8767 {
8768 ++base_string;
8769 if (is_space_char (*base_string))
8770 ++base_string;
8771 }
8772 else if (*base_string != ')')
8773 {
8774 as_bad (_("expecting `,' or `)' "
8775 "after index register in `%s'"),
8776 operand_string);
8777 return 0;
8778 }
8779 }
8780 else if (*base_string == REGISTER_PREFIX)
8781 {
8782 end_op = strchr (base_string, ',');
8783 if (end_op)
8784 *end_op = '\0';
8785 as_bad (_("bad register name `%s'"), base_string);
8786 return 0;
8787 }
8788
8789 /* Check for scale factor. */
8790 if (*base_string != ')')
8791 {
8792 char *end_scale = i386_scale (base_string);
8793
8794 if (!end_scale)
8795 return 0;
8796
8797 base_string = end_scale;
8798 if (is_space_char (*base_string))
8799 ++base_string;
8800 if (*base_string != ')')
8801 {
8802 as_bad (_("expecting `)' "
8803 "after scale factor in `%s'"),
8804 operand_string);
8805 return 0;
8806 }
8807 }
8808 else if (!i.index_reg)
8809 {
8810 as_bad (_("expecting index register or scale factor "
8811 "after `,'; got '%c'"),
8812 *base_string);
8813 return 0;
8814 }
8815 }
8816 else if (*base_string != ')')
8817 {
8818 as_bad (_("expecting `,' or `)' "
8819 "after base register in `%s'"),
8820 operand_string);
8821 return 0;
8822 }
8823 }
8824 else if (*base_string == REGISTER_PREFIX)
8825 {
8826 end_op = strchr (base_string, ',');
8827 if (end_op)
8828 *end_op = '\0';
8829 as_bad (_("bad register name `%s'"), base_string);
8830 return 0;
8831 }
8832 }
8833
8834 /* If there's an expression beginning the operand, parse it,
8835 assuming displacement_string_start and
8836 displacement_string_end are meaningful. */
8837 if (displacement_string_start != displacement_string_end)
8838 {
8839 if (!i386_displacement (displacement_string_start,
8840 displacement_string_end))
8841 return 0;
8842 }
8843
8844 /* Special case for (%dx) while doing input/output op. */
8845 if (i.base_reg
8846 && operand_type_equal (&i.base_reg->reg_type,
8847 &reg16_inoutportreg)
8848 && i.index_reg == 0
8849 && i.log2_scale_factor == 0
8850 && i.seg[i.mem_operands] == 0
8851 && !operand_type_check (i.types[this_operand], disp))
8852 {
8853 i.types[this_operand] = inoutportreg;
8854 return 1;
8855 }
8856
8857 if (i386_index_check (operand_string) == 0)
8858 return 0;
8859 i.types[this_operand].bitfield.mem = 1;
8860 i.mem_operands++;
8861 }
8862 else
8863 {
8864 /* It's not a memory operand; argh! */
8865 as_bad (_("invalid char %s beginning operand %d `%s'"),
8866 output_invalid (*op_string),
8867 this_operand + 1,
8868 op_string);
8869 return 0;
8870 }
8871 return 1; /* Normal return. */
8872 }
8873 \f
8874 /* Calculate the maximum variable size (i.e., excluding fr_fix)
8875 that an rs_machine_dependent frag may reach. */
8876
8877 unsigned int
8878 i386_frag_max_var (fragS *frag)
8879 {
8880 /* The only relaxable frags are for jumps.
8881 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
8882 gas_assert (frag->fr_type == rs_machine_dependent);
8883 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
8884 }
8885
8886 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8887 static int
8888 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
8889 {
8890 /* STT_GNU_IFUNC symbol must go through PLT. */
8891 if ((symbol_get_bfdsym (fr_symbol)->flags
8892 & BSF_GNU_INDIRECT_FUNCTION) != 0)
8893 return 0;
8894
8895 if (!S_IS_EXTERNAL (fr_symbol))
8896 /* Symbol may be weak or local. */
8897 return !S_IS_WEAK (fr_symbol);
8898
8899 /* Global symbols with non-default visibility can't be preempted. */
8900 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
8901 return 1;
8902
8903 if (fr_var != NO_RELOC)
8904 switch ((enum bfd_reloc_code_real) fr_var)
8905 {
8906 case BFD_RELOC_386_PLT32:
8907 case BFD_RELOC_X86_64_PLT32:
8908 /* Symbol with PLT relocatin may be preempted. */
8909 return 0;
8910 default:
8911 abort ();
8912 }
8913
8914 /* Global symbols with default visibility in a shared library may be
8915 preempted by another definition. */
8916 return !shared;
8917 }
8918 #endif
8919
8920 /* md_estimate_size_before_relax()
8921
8922 Called just before relax() for rs_machine_dependent frags. The x86
8923 assembler uses these frags to handle variable size jump
8924 instructions.
8925
8926 Any symbol that is now undefined will not become defined.
8927 Return the correct fr_subtype in the frag.
8928 Return the initial "guess for variable size of frag" to caller.
8929 The guess is actually the growth beyond the fixed part. Whatever
8930 we do to grow the fixed or variable part contributes to our
8931 returned value. */
8932
8933 int
8934 md_estimate_size_before_relax (fragS *fragP, segT segment)
8935 {
8936 /* We've already got fragP->fr_subtype right; all we have to do is
8937 check for un-relaxable symbols. On an ELF system, we can't relax
8938 an externally visible symbol, because it may be overridden by a
8939 shared library. */
8940 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
8941 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8942 || (IS_ELF
8943 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
8944 fragP->fr_var))
8945 #endif
8946 #if defined (OBJ_COFF) && defined (TE_PE)
8947 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
8948 && S_IS_WEAK (fragP->fr_symbol))
8949 #endif
8950 )
8951 {
8952 /* Symbol is undefined in this segment, or we need to keep a
8953 reloc so that weak symbols can be overridden. */
8954 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
8955 enum bfd_reloc_code_real reloc_type;
8956 unsigned char *opcode;
8957 int old_fr_fix;
8958
8959 if (fragP->fr_var != NO_RELOC)
8960 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
8961 else if (size == 2)
8962 reloc_type = BFD_RELOC_16_PCREL;
8963 else
8964 reloc_type = BFD_RELOC_32_PCREL;
8965
8966 old_fr_fix = fragP->fr_fix;
8967 opcode = (unsigned char *) fragP->fr_opcode;
8968
8969 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
8970 {
8971 case UNCOND_JUMP:
8972 /* Make jmp (0xeb) a (d)word displacement jump. */
8973 opcode[0] = 0xe9;
8974 fragP->fr_fix += size;
8975 fix_new (fragP, old_fr_fix, size,
8976 fragP->fr_symbol,
8977 fragP->fr_offset, 1,
8978 reloc_type);
8979 break;
8980
8981 case COND_JUMP86:
8982 if (size == 2
8983 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
8984 {
8985 /* Negate the condition, and branch past an
8986 unconditional jump. */
8987 opcode[0] ^= 1;
8988 opcode[1] = 3;
8989 /* Insert an unconditional jump. */
8990 opcode[2] = 0xe9;
8991 /* We added two extra opcode bytes, and have a two byte
8992 offset. */
8993 fragP->fr_fix += 2 + 2;
8994 fix_new (fragP, old_fr_fix + 2, 2,
8995 fragP->fr_symbol,
8996 fragP->fr_offset, 1,
8997 reloc_type);
8998 break;
8999 }
9000 /* Fall through. */
9001
9002 case COND_JUMP:
9003 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9004 {
9005 fixS *fixP;
9006
9007 fragP->fr_fix += 1;
9008 fixP = fix_new (fragP, old_fr_fix, 1,
9009 fragP->fr_symbol,
9010 fragP->fr_offset, 1,
9011 BFD_RELOC_8_PCREL);
9012 fixP->fx_signed = 1;
9013 break;
9014 }
9015
9016 /* This changes the byte-displacement jump 0x7N
9017 to the (d)word-displacement jump 0x0f,0x8N. */
9018 opcode[1] = opcode[0] + 0x10;
9019 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9020 /* We've added an opcode byte. */
9021 fragP->fr_fix += 1 + size;
9022 fix_new (fragP, old_fr_fix + 1, size,
9023 fragP->fr_symbol,
9024 fragP->fr_offset, 1,
9025 reloc_type);
9026 break;
9027
9028 default:
9029 BAD_CASE (fragP->fr_subtype);
9030 break;
9031 }
9032 frag_wane (fragP);
9033 return fragP->fr_fix - old_fr_fix;
9034 }
9035
9036 /* Guess size depending on current relax state. Initially the relax
9037 state will correspond to a short jump and we return 1, because
9038 the variable part of the frag (the branch offset) is one byte
9039 long. However, we can relax a section more than once and in that
9040 case we must either set fr_subtype back to the unrelaxed state,
9041 or return the value for the appropriate branch. */
9042 return md_relax_table[fragP->fr_subtype].rlx_length;
9043 }
9044
9045 /* Called after relax() is finished.
9046
9047 In: Address of frag.
9048 fr_type == rs_machine_dependent.
9049 fr_subtype is what the address relaxed to.
9050
9051 Out: Any fixSs and constants are set up.
9052 Caller will turn frag into a ".space 0". */
9053
9054 void
9055 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9056 fragS *fragP)
9057 {
9058 unsigned char *opcode;
9059 unsigned char *where_to_put_displacement = NULL;
9060 offsetT target_address;
9061 offsetT opcode_address;
9062 unsigned int extension = 0;
9063 offsetT displacement_from_opcode_start;
9064
9065 opcode = (unsigned char *) fragP->fr_opcode;
9066
9067 /* Address we want to reach in file space. */
9068 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9069
9070 /* Address opcode resides at in file space. */
9071 opcode_address = fragP->fr_address + fragP->fr_fix;
9072
9073 /* Displacement from opcode start to fill into instruction. */
9074 displacement_from_opcode_start = target_address - opcode_address;
9075
9076 if ((fragP->fr_subtype & BIG) == 0)
9077 {
9078 /* Don't have to change opcode. */
9079 extension = 1; /* 1 opcode + 1 displacement */
9080 where_to_put_displacement = &opcode[1];
9081 }
9082 else
9083 {
9084 if (no_cond_jump_promotion
9085 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9086 as_warn_where (fragP->fr_file, fragP->fr_line,
9087 _("long jump required"));
9088
9089 switch (fragP->fr_subtype)
9090 {
9091 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9092 extension = 4; /* 1 opcode + 4 displacement */
9093 opcode[0] = 0xe9;
9094 where_to_put_displacement = &opcode[1];
9095 break;
9096
9097 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9098 extension = 2; /* 1 opcode + 2 displacement */
9099 opcode[0] = 0xe9;
9100 where_to_put_displacement = &opcode[1];
9101 break;
9102
9103 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9104 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9105 extension = 5; /* 2 opcode + 4 displacement */
9106 opcode[1] = opcode[0] + 0x10;
9107 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9108 where_to_put_displacement = &opcode[2];
9109 break;
9110
9111 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9112 extension = 3; /* 2 opcode + 2 displacement */
9113 opcode[1] = opcode[0] + 0x10;
9114 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9115 where_to_put_displacement = &opcode[2];
9116 break;
9117
9118 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9119 extension = 4;
9120 opcode[0] ^= 1;
9121 opcode[1] = 3;
9122 opcode[2] = 0xe9;
9123 where_to_put_displacement = &opcode[3];
9124 break;
9125
9126 default:
9127 BAD_CASE (fragP->fr_subtype);
9128 break;
9129 }
9130 }
9131
9132 /* If size if less then four we are sure that the operand fits,
9133 but if it's 4, then it could be that the displacement is larger
9134 then -/+ 2GB. */
9135 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9136 && object_64bit
9137 && ((addressT) (displacement_from_opcode_start - extension
9138 + ((addressT) 1 << 31))
9139 > (((addressT) 2 << 31) - 1)))
9140 {
9141 as_bad_where (fragP->fr_file, fragP->fr_line,
9142 _("jump target out of range"));
9143 /* Make us emit 0. */
9144 displacement_from_opcode_start = extension;
9145 }
9146 /* Now put displacement after opcode. */
9147 md_number_to_chars ((char *) where_to_put_displacement,
9148 (valueT) (displacement_from_opcode_start - extension),
9149 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9150 fragP->fr_fix += extension;
9151 }
9152 \f
9153 /* Apply a fixup (fixP) to segment data, once it has been determined
9154 by our caller that we have all the info we need to fix it up.
9155
9156 Parameter valP is the pointer to the value of the bits.
9157
9158 On the 386, immediates, displacements, and data pointers are all in
9159 the same (little-endian) format, so we don't need to care about which
9160 we are handling. */
9161
9162 void
9163 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9164 {
9165 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9166 valueT value = *valP;
9167
9168 #if !defined (TE_Mach)
9169 if (fixP->fx_pcrel)
9170 {
9171 switch (fixP->fx_r_type)
9172 {
9173 default:
9174 break;
9175
9176 case BFD_RELOC_64:
9177 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9178 break;
9179 case BFD_RELOC_32:
9180 case BFD_RELOC_X86_64_32S:
9181 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9182 break;
9183 case BFD_RELOC_16:
9184 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9185 break;
9186 case BFD_RELOC_8:
9187 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9188 break;
9189 }
9190 }
9191
9192 if (fixP->fx_addsy != NULL
9193 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9194 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9195 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9196 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9197 && !use_rela_relocations)
9198 {
9199 /* This is a hack. There should be a better way to handle this.
9200 This covers for the fact that bfd_install_relocation will
9201 subtract the current location (for partial_inplace, PC relative
9202 relocations); see more below. */
9203 #ifndef OBJ_AOUT
9204 if (IS_ELF
9205 #ifdef TE_PE
9206 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9207 #endif
9208 )
9209 value += fixP->fx_where + fixP->fx_frag->fr_address;
9210 #endif
9211 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9212 if (IS_ELF)
9213 {
9214 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9215
9216 if ((sym_seg == seg
9217 || (symbol_section_p (fixP->fx_addsy)
9218 && sym_seg != absolute_section))
9219 && !generic_force_reloc (fixP))
9220 {
9221 /* Yes, we add the values in twice. This is because
9222 bfd_install_relocation subtracts them out again. I think
9223 bfd_install_relocation is broken, but I don't dare change
9224 it. FIXME. */
9225 value += fixP->fx_where + fixP->fx_frag->fr_address;
9226 }
9227 }
9228 #endif
9229 #if defined (OBJ_COFF) && defined (TE_PE)
9230 /* For some reason, the PE format does not store a
9231 section address offset for a PC relative symbol. */
9232 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9233 || S_IS_WEAK (fixP->fx_addsy))
9234 value += md_pcrel_from (fixP);
9235 #endif
9236 }
9237 #if defined (OBJ_COFF) && defined (TE_PE)
9238 if (fixP->fx_addsy != NULL
9239 && S_IS_WEAK (fixP->fx_addsy)
9240 /* PR 16858: Do not modify weak function references. */
9241 && ! fixP->fx_pcrel)
9242 {
9243 #if !defined (TE_PEP)
9244 /* For x86 PE weak function symbols are neither PC-relative
9245 nor do they set S_IS_FUNCTION. So the only reliable way
9246 to detect them is to check the flags of their containing
9247 section. */
9248 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9249 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9250 ;
9251 else
9252 #endif
9253 value -= S_GET_VALUE (fixP->fx_addsy);
9254 }
9255 #endif
9256
9257 /* Fix a few things - the dynamic linker expects certain values here,
9258 and we must not disappoint it. */
9259 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9260 if (IS_ELF && fixP->fx_addsy)
9261 switch (fixP->fx_r_type)
9262 {
9263 case BFD_RELOC_386_PLT32:
9264 case BFD_RELOC_X86_64_PLT32:
9265 /* Make the jump instruction point to the address of the operand. At
9266 runtime we merely add the offset to the actual PLT entry. */
9267 value = -4;
9268 break;
9269
9270 case BFD_RELOC_386_TLS_GD:
9271 case BFD_RELOC_386_TLS_LDM:
9272 case BFD_RELOC_386_TLS_IE_32:
9273 case BFD_RELOC_386_TLS_IE:
9274 case BFD_RELOC_386_TLS_GOTIE:
9275 case BFD_RELOC_386_TLS_GOTDESC:
9276 case BFD_RELOC_X86_64_TLSGD:
9277 case BFD_RELOC_X86_64_TLSLD:
9278 case BFD_RELOC_X86_64_GOTTPOFF:
9279 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9280 value = 0; /* Fully resolved at runtime. No addend. */
9281 /* Fallthrough */
9282 case BFD_RELOC_386_TLS_LE:
9283 case BFD_RELOC_386_TLS_LDO_32:
9284 case BFD_RELOC_386_TLS_LE_32:
9285 case BFD_RELOC_X86_64_DTPOFF32:
9286 case BFD_RELOC_X86_64_DTPOFF64:
9287 case BFD_RELOC_X86_64_TPOFF32:
9288 case BFD_RELOC_X86_64_TPOFF64:
9289 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9290 break;
9291
9292 case BFD_RELOC_386_TLS_DESC_CALL:
9293 case BFD_RELOC_X86_64_TLSDESC_CALL:
9294 value = 0; /* Fully resolved at runtime. No addend. */
9295 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9296 fixP->fx_done = 0;
9297 return;
9298
9299 case BFD_RELOC_386_GOT32:
9300 case BFD_RELOC_X86_64_GOT32:
9301 value = 0; /* Fully resolved at runtime. No addend. */
9302 break;
9303
9304 case BFD_RELOC_VTABLE_INHERIT:
9305 case BFD_RELOC_VTABLE_ENTRY:
9306 fixP->fx_done = 0;
9307 return;
9308
9309 default:
9310 break;
9311 }
9312 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
9313 *valP = value;
9314 #endif /* !defined (TE_Mach) */
9315
9316 /* Are we finished with this relocation now? */
9317 if (fixP->fx_addsy == NULL)
9318 fixP->fx_done = 1;
9319 #if defined (OBJ_COFF) && defined (TE_PE)
9320 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9321 {
9322 fixP->fx_done = 0;
9323 /* Remember value for tc_gen_reloc. */
9324 fixP->fx_addnumber = value;
9325 /* Clear out the frag for now. */
9326 value = 0;
9327 }
9328 #endif
9329 else if (use_rela_relocations)
9330 {
9331 fixP->fx_no_overflow = 1;
9332 /* Remember value for tc_gen_reloc. */
9333 fixP->fx_addnumber = value;
9334 value = 0;
9335 }
9336
9337 md_number_to_chars (p, value, fixP->fx_size);
9338 }
9339 \f
9340 char *
9341 md_atof (int type, char *litP, int *sizeP)
9342 {
9343 /* This outputs the LITTLENUMs in REVERSE order;
9344 in accord with the bigendian 386. */
9345 return ieee_md_atof (type, litP, sizeP, FALSE);
9346 }
9347 \f
9348 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
9349
9350 static char *
9351 output_invalid (int c)
9352 {
9353 if (ISPRINT (c))
9354 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9355 "'%c'", c);
9356 else
9357 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9358 "(0x%x)", (unsigned char) c);
9359 return output_invalid_buf;
9360 }
9361
9362 /* REG_STRING starts *before* REGISTER_PREFIX. */
9363
9364 static const reg_entry *
9365 parse_real_register (char *reg_string, char **end_op)
9366 {
9367 char *s = reg_string;
9368 char *p;
9369 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9370 const reg_entry *r;
9371
9372 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9373 if (*s == REGISTER_PREFIX)
9374 ++s;
9375
9376 if (is_space_char (*s))
9377 ++s;
9378
9379 p = reg_name_given;
9380 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
9381 {
9382 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
9383 return (const reg_entry *) NULL;
9384 s++;
9385 }
9386
9387 /* For naked regs, make sure that we are not dealing with an identifier.
9388 This prevents confusing an identifier like `eax_var' with register
9389 `eax'. */
9390 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9391 return (const reg_entry *) NULL;
9392
9393 *end_op = s;
9394
9395 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9396
9397 /* Handle floating point regs, allowing spaces in the (i) part. */
9398 if (r == i386_regtab /* %st is first entry of table */)
9399 {
9400 if (is_space_char (*s))
9401 ++s;
9402 if (*s == '(')
9403 {
9404 ++s;
9405 if (is_space_char (*s))
9406 ++s;
9407 if (*s >= '0' && *s <= '7')
9408 {
9409 int fpr = *s - '0';
9410 ++s;
9411 if (is_space_char (*s))
9412 ++s;
9413 if (*s == ')')
9414 {
9415 *end_op = s + 1;
9416 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
9417 know (r);
9418 return r + fpr;
9419 }
9420 }
9421 /* We have "%st(" then garbage. */
9422 return (const reg_entry *) NULL;
9423 }
9424 }
9425
9426 if (r == NULL || allow_pseudo_reg)
9427 return r;
9428
9429 if (operand_type_all_zero (&r->reg_type))
9430 return (const reg_entry *) NULL;
9431
9432 if ((r->reg_type.bitfield.reg32
9433 || r->reg_type.bitfield.sreg3
9434 || r->reg_type.bitfield.control
9435 || r->reg_type.bitfield.debug
9436 || r->reg_type.bitfield.test)
9437 && !cpu_arch_flags.bitfield.cpui386)
9438 return (const reg_entry *) NULL;
9439
9440 if (r->reg_type.bitfield.floatreg
9441 && !cpu_arch_flags.bitfield.cpu8087
9442 && !cpu_arch_flags.bitfield.cpu287
9443 && !cpu_arch_flags.bitfield.cpu387)
9444 return (const reg_entry *) NULL;
9445
9446 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
9447 return (const reg_entry *) NULL;
9448
9449 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
9450 return (const reg_entry *) NULL;
9451
9452 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
9453 return (const reg_entry *) NULL;
9454
9455 if ((r->reg_type.bitfield.regzmm || r->reg_type.bitfield.regmask)
9456 && !cpu_arch_flags.bitfield.cpuavx512f)
9457 return (const reg_entry *) NULL;
9458
9459 /* Don't allow fake index register unless allow_index_reg isn't 0. */
9460 if (!allow_index_reg
9461 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9462 return (const reg_entry *) NULL;
9463
9464 /* Upper 16 vector register is only available with VREX in 64bit
9465 mode. */
9466 if ((r->reg_flags & RegVRex))
9467 {
9468 if (!cpu_arch_flags.bitfield.cpuvrex
9469 || flag_code != CODE_64BIT)
9470 return (const reg_entry *) NULL;
9471
9472 i.need_vrex = 1;
9473 }
9474
9475 if (((r->reg_flags & (RegRex64 | RegRex))
9476 || r->reg_type.bitfield.reg64)
9477 && (!cpu_arch_flags.bitfield.cpulm
9478 || !operand_type_equal (&r->reg_type, &control))
9479 && flag_code != CODE_64BIT)
9480 return (const reg_entry *) NULL;
9481
9482 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9483 return (const reg_entry *) NULL;
9484
9485 return r;
9486 }
9487
9488 /* REG_STRING starts *before* REGISTER_PREFIX. */
9489
9490 static const reg_entry *
9491 parse_register (char *reg_string, char **end_op)
9492 {
9493 const reg_entry *r;
9494
9495 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9496 r = parse_real_register (reg_string, end_op);
9497 else
9498 r = NULL;
9499 if (!r)
9500 {
9501 char *save = input_line_pointer;
9502 char c;
9503 symbolS *symbolP;
9504
9505 input_line_pointer = reg_string;
9506 c = get_symbol_name (&reg_string);
9507 symbolP = symbol_find (reg_string);
9508 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9509 {
9510 const expressionS *e = symbol_get_value_expression (symbolP);
9511
9512 know (e->X_op == O_register);
9513 know (e->X_add_number >= 0
9514 && (valueT) e->X_add_number < i386_regtab_size);
9515 r = i386_regtab + e->X_add_number;
9516 if ((r->reg_flags & RegVRex))
9517 i.need_vrex = 1;
9518 *end_op = input_line_pointer;
9519 }
9520 *input_line_pointer = c;
9521 input_line_pointer = save;
9522 }
9523 return r;
9524 }
9525
9526 int
9527 i386_parse_name (char *name, expressionS *e, char *nextcharP)
9528 {
9529 const reg_entry *r;
9530 char *end = input_line_pointer;
9531
9532 *end = *nextcharP;
9533 r = parse_register (name, &input_line_pointer);
9534 if (r && end <= input_line_pointer)
9535 {
9536 *nextcharP = *input_line_pointer;
9537 *input_line_pointer = 0;
9538 e->X_op = O_register;
9539 e->X_add_number = r - i386_regtab;
9540 return 1;
9541 }
9542 input_line_pointer = end;
9543 *end = 0;
9544 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
9545 }
9546
9547 void
9548 md_operand (expressionS *e)
9549 {
9550 char *end;
9551 const reg_entry *r;
9552
9553 switch (*input_line_pointer)
9554 {
9555 case REGISTER_PREFIX:
9556 r = parse_real_register (input_line_pointer, &end);
9557 if (r)
9558 {
9559 e->X_op = O_register;
9560 e->X_add_number = r - i386_regtab;
9561 input_line_pointer = end;
9562 }
9563 break;
9564
9565 case '[':
9566 gas_assert (intel_syntax);
9567 end = input_line_pointer++;
9568 expression (e);
9569 if (*input_line_pointer == ']')
9570 {
9571 ++input_line_pointer;
9572 e->X_op_symbol = make_expr_symbol (e);
9573 e->X_add_symbol = NULL;
9574 e->X_add_number = 0;
9575 e->X_op = O_index;
9576 }
9577 else
9578 {
9579 e->X_op = O_absent;
9580 input_line_pointer = end;
9581 }
9582 break;
9583 }
9584 }
9585
9586 \f
9587 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9588 const char *md_shortopts = "kVQ:sqn";
9589 #else
9590 const char *md_shortopts = "qn";
9591 #endif
9592
9593 #define OPTION_32 (OPTION_MD_BASE + 0)
9594 #define OPTION_64 (OPTION_MD_BASE + 1)
9595 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9596 #define OPTION_MARCH (OPTION_MD_BASE + 3)
9597 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
9598 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9599 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9600 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9601 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9602 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
9603 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
9604 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
9605 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9606 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9607 #define OPTION_X32 (OPTION_MD_BASE + 14)
9608 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
9609 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9610 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
9611 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
9612 #define OPTION_OMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
9613 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
9614 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
9615 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
9616 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
9617
9618 struct option md_longopts[] =
9619 {
9620 {"32", no_argument, NULL, OPTION_32},
9621 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9622 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9623 {"64", no_argument, NULL, OPTION_64},
9624 #endif
9625 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9626 {"x32", no_argument, NULL, OPTION_X32},
9627 {"mshared", no_argument, NULL, OPTION_MSHARED},
9628 #endif
9629 {"divide", no_argument, NULL, OPTION_DIVIDE},
9630 {"march", required_argument, NULL, OPTION_MARCH},
9631 {"mtune", required_argument, NULL, OPTION_MTUNE},
9632 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
9633 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
9634 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
9635 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
9636 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
9637 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
9638 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
9639 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
9640 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
9641 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
9642 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
9643 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
9644 # if defined (TE_PE) || defined (TE_PEP)
9645 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
9646 #endif
9647 {"momit-lock-prefix", required_argument, NULL, OPTION_OMIT_LOCK_PREFIX},
9648 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
9649 {"mamd64", no_argument, NULL, OPTION_MAMD64},
9650 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
9651 {NULL, no_argument, NULL, 0}
9652 };
9653 size_t md_longopts_size = sizeof (md_longopts);
9654
9655 int
9656 md_parse_option (int c, char *arg)
9657 {
9658 unsigned int j;
9659 char *arch, *next;
9660
9661 switch (c)
9662 {
9663 case 'n':
9664 optimize_align_code = 0;
9665 break;
9666
9667 case 'q':
9668 quiet_warnings = 1;
9669 break;
9670
9671 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9672 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
9673 should be emitted or not. FIXME: Not implemented. */
9674 case 'Q':
9675 break;
9676
9677 /* -V: SVR4 argument to print version ID. */
9678 case 'V':
9679 print_version_id ();
9680 break;
9681
9682 /* -k: Ignore for FreeBSD compatibility. */
9683 case 'k':
9684 break;
9685
9686 case 's':
9687 /* -s: On i386 Solaris, this tells the native assembler to use
9688 .stab instead of .stab.excl. We always use .stab anyhow. */
9689 break;
9690
9691 case OPTION_MSHARED:
9692 shared = 1;
9693 break;
9694 #endif
9695 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9696 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9697 case OPTION_64:
9698 {
9699 const char **list, **l;
9700
9701 list = bfd_target_list ();
9702 for (l = list; *l != NULL; l++)
9703 if (CONST_STRNEQ (*l, "elf64-x86-64")
9704 || strcmp (*l, "coff-x86-64") == 0
9705 || strcmp (*l, "pe-x86-64") == 0
9706 || strcmp (*l, "pei-x86-64") == 0
9707 || strcmp (*l, "mach-o-x86-64") == 0)
9708 {
9709 default_arch = "x86_64";
9710 break;
9711 }
9712 if (*l == NULL)
9713 as_fatal (_("no compiled in support for x86_64"));
9714 free (list);
9715 }
9716 break;
9717 #endif
9718
9719 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9720 case OPTION_X32:
9721 if (IS_ELF)
9722 {
9723 const char **list, **l;
9724
9725 list = bfd_target_list ();
9726 for (l = list; *l != NULL; l++)
9727 if (CONST_STRNEQ (*l, "elf32-x86-64"))
9728 {
9729 default_arch = "x86_64:32";
9730 break;
9731 }
9732 if (*l == NULL)
9733 as_fatal (_("no compiled in support for 32bit x86_64"));
9734 free (list);
9735 }
9736 else
9737 as_fatal (_("32bit x86_64 is only supported for ELF"));
9738 break;
9739 #endif
9740
9741 case OPTION_32:
9742 default_arch = "i386";
9743 break;
9744
9745 case OPTION_DIVIDE:
9746 #ifdef SVR4_COMMENT_CHARS
9747 {
9748 char *n, *t;
9749 const char *s;
9750
9751 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
9752 t = n;
9753 for (s = i386_comment_chars; *s != '\0'; s++)
9754 if (*s != '/')
9755 *t++ = *s;
9756 *t = '\0';
9757 i386_comment_chars = n;
9758 }
9759 #endif
9760 break;
9761
9762 case OPTION_MARCH:
9763 arch = xstrdup (arg);
9764 do
9765 {
9766 if (*arch == '.')
9767 as_fatal (_("invalid -march= option: `%s'"), arg);
9768 next = strchr (arch, '+');
9769 if (next)
9770 *next++ = '\0';
9771 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9772 {
9773 if (strcmp (arch, cpu_arch [j].name) == 0)
9774 {
9775 /* Processor. */
9776 if (! cpu_arch[j].flags.bitfield.cpui386)
9777 continue;
9778
9779 cpu_arch_name = cpu_arch[j].name;
9780 cpu_sub_arch_name = NULL;
9781 cpu_arch_flags = cpu_arch[j].flags;
9782 cpu_arch_isa = cpu_arch[j].type;
9783 cpu_arch_isa_flags = cpu_arch[j].flags;
9784 if (!cpu_arch_tune_set)
9785 {
9786 cpu_arch_tune = cpu_arch_isa;
9787 cpu_arch_tune_flags = cpu_arch_isa_flags;
9788 }
9789 break;
9790 }
9791 else if (*cpu_arch [j].name == '.'
9792 && strcmp (arch, cpu_arch [j].name + 1) == 0)
9793 {
9794 /* ISA entension. */
9795 i386_cpu_flags flags;
9796
9797 if (!cpu_arch[j].negated)
9798 flags = cpu_flags_or (cpu_arch_flags,
9799 cpu_arch[j].flags);
9800 else
9801 flags = cpu_flags_and_not (cpu_arch_flags,
9802 cpu_arch[j].flags);
9803
9804 if (!valid_iamcu_cpu_flags (&flags))
9805 as_fatal (_("`%s' isn't valid for Intel MCU"), arch);
9806 else if (!cpu_flags_equal (&flags, &cpu_arch_flags))
9807 {
9808 if (cpu_sub_arch_name)
9809 {
9810 char *name = cpu_sub_arch_name;
9811 cpu_sub_arch_name = concat (name,
9812 cpu_arch[j].name,
9813 (const char *) NULL);
9814 free (name);
9815 }
9816 else
9817 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
9818 cpu_arch_flags = flags;
9819 cpu_arch_isa_flags = flags;
9820 }
9821 break;
9822 }
9823 }
9824
9825 if (j >= ARRAY_SIZE (cpu_arch))
9826 as_fatal (_("invalid -march= option: `%s'"), arg);
9827
9828 arch = next;
9829 }
9830 while (next != NULL );
9831 break;
9832
9833 case OPTION_MTUNE:
9834 if (*arg == '.')
9835 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9836 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9837 {
9838 if (strcmp (arg, cpu_arch [j].name) == 0)
9839 {
9840 cpu_arch_tune_set = 1;
9841 cpu_arch_tune = cpu_arch [j].type;
9842 cpu_arch_tune_flags = cpu_arch[j].flags;
9843 break;
9844 }
9845 }
9846 if (j >= ARRAY_SIZE (cpu_arch))
9847 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9848 break;
9849
9850 case OPTION_MMNEMONIC:
9851 if (strcasecmp (arg, "att") == 0)
9852 intel_mnemonic = 0;
9853 else if (strcasecmp (arg, "intel") == 0)
9854 intel_mnemonic = 1;
9855 else
9856 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
9857 break;
9858
9859 case OPTION_MSYNTAX:
9860 if (strcasecmp (arg, "att") == 0)
9861 intel_syntax = 0;
9862 else if (strcasecmp (arg, "intel") == 0)
9863 intel_syntax = 1;
9864 else
9865 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
9866 break;
9867
9868 case OPTION_MINDEX_REG:
9869 allow_index_reg = 1;
9870 break;
9871
9872 case OPTION_MNAKED_REG:
9873 allow_naked_reg = 1;
9874 break;
9875
9876 case OPTION_MOLD_GCC:
9877 old_gcc = 1;
9878 break;
9879
9880 case OPTION_MSSE2AVX:
9881 sse2avx = 1;
9882 break;
9883
9884 case OPTION_MSSE_CHECK:
9885 if (strcasecmp (arg, "error") == 0)
9886 sse_check = check_error;
9887 else if (strcasecmp (arg, "warning") == 0)
9888 sse_check = check_warning;
9889 else if (strcasecmp (arg, "none") == 0)
9890 sse_check = check_none;
9891 else
9892 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
9893 break;
9894
9895 case OPTION_MOPERAND_CHECK:
9896 if (strcasecmp (arg, "error") == 0)
9897 operand_check = check_error;
9898 else if (strcasecmp (arg, "warning") == 0)
9899 operand_check = check_warning;
9900 else if (strcasecmp (arg, "none") == 0)
9901 operand_check = check_none;
9902 else
9903 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
9904 break;
9905
9906 case OPTION_MAVXSCALAR:
9907 if (strcasecmp (arg, "128") == 0)
9908 avxscalar = vex128;
9909 else if (strcasecmp (arg, "256") == 0)
9910 avxscalar = vex256;
9911 else
9912 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
9913 break;
9914
9915 case OPTION_MADD_BND_PREFIX:
9916 add_bnd_prefix = 1;
9917 break;
9918
9919 case OPTION_MEVEXLIG:
9920 if (strcmp (arg, "128") == 0)
9921 evexlig = evexl128;
9922 else if (strcmp (arg, "256") == 0)
9923 evexlig = evexl256;
9924 else if (strcmp (arg, "512") == 0)
9925 evexlig = evexl512;
9926 else
9927 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
9928 break;
9929
9930 case OPTION_MEVEXRCIG:
9931 if (strcmp (arg, "rne") == 0)
9932 evexrcig = rne;
9933 else if (strcmp (arg, "rd") == 0)
9934 evexrcig = rd;
9935 else if (strcmp (arg, "ru") == 0)
9936 evexrcig = ru;
9937 else if (strcmp (arg, "rz") == 0)
9938 evexrcig = rz;
9939 else
9940 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
9941 break;
9942
9943 case OPTION_MEVEXWIG:
9944 if (strcmp (arg, "0") == 0)
9945 evexwig = evexw0;
9946 else if (strcmp (arg, "1") == 0)
9947 evexwig = evexw1;
9948 else
9949 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
9950 break;
9951
9952 # if defined (TE_PE) || defined (TE_PEP)
9953 case OPTION_MBIG_OBJ:
9954 use_big_obj = 1;
9955 break;
9956 #endif
9957
9958 case OPTION_OMIT_LOCK_PREFIX:
9959 if (strcasecmp (arg, "yes") == 0)
9960 omit_lock_prefix = 1;
9961 else if (strcasecmp (arg, "no") == 0)
9962 omit_lock_prefix = 0;
9963 else
9964 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
9965 break;
9966
9967 case OPTION_MAMD64:
9968 cpu_arch_flags.bitfield.cpuamd64 = 1;
9969 cpu_arch_flags.bitfield.cpuintel64 = 0;
9970 cpu_arch_isa_flags.bitfield.cpuamd64 = 1;
9971 cpu_arch_isa_flags.bitfield.cpuintel64 = 0;
9972 break;
9973
9974 case OPTION_MINTEL64:
9975 cpu_arch_flags.bitfield.cpuamd64 = 0;
9976 cpu_arch_flags.bitfield.cpuintel64 = 1;
9977 cpu_arch_isa_flags.bitfield.cpuamd64 = 0;
9978 cpu_arch_isa_flags.bitfield.cpuintel64 = 1;
9979 break;
9980
9981 default:
9982 return 0;
9983 }
9984 return 1;
9985 }
9986
9987 #define MESSAGE_TEMPLATE \
9988 " "
9989
9990 static void
9991 show_arch (FILE *stream, int ext, int check)
9992 {
9993 static char message[] = MESSAGE_TEMPLATE;
9994 char *start = message + 27;
9995 char *p;
9996 int size = sizeof (MESSAGE_TEMPLATE);
9997 int left;
9998 const char *name;
9999 int len;
10000 unsigned int j;
10001
10002 p = start;
10003 left = size - (start - message);
10004 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10005 {
10006 /* Should it be skipped? */
10007 if (cpu_arch [j].skip)
10008 continue;
10009
10010 name = cpu_arch [j].name;
10011 len = cpu_arch [j].len;
10012 if (*name == '.')
10013 {
10014 /* It is an extension. Skip if we aren't asked to show it. */
10015 if (ext)
10016 {
10017 name++;
10018 len--;
10019 }
10020 else
10021 continue;
10022 }
10023 else if (ext)
10024 {
10025 /* It is an processor. Skip if we show only extension. */
10026 continue;
10027 }
10028 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10029 {
10030 /* It is an impossible processor - skip. */
10031 continue;
10032 }
10033
10034 /* Reserve 2 spaces for ", " or ",\0" */
10035 left -= len + 2;
10036
10037 /* Check if there is any room. */
10038 if (left >= 0)
10039 {
10040 if (p != start)
10041 {
10042 *p++ = ',';
10043 *p++ = ' ';
10044 }
10045 p = mempcpy (p, name, len);
10046 }
10047 else
10048 {
10049 /* Output the current message now and start a new one. */
10050 *p++ = ',';
10051 *p = '\0';
10052 fprintf (stream, "%s\n", message);
10053 p = start;
10054 left = size - (start - message) - len - 2;
10055
10056 gas_assert (left >= 0);
10057
10058 p = mempcpy (p, name, len);
10059 }
10060 }
10061
10062 *p = '\0';
10063 fprintf (stream, "%s\n", message);
10064 }
10065
10066 void
10067 md_show_usage (FILE *stream)
10068 {
10069 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10070 fprintf (stream, _("\
10071 -Q ignored\n\
10072 -V print assembler version number\n\
10073 -k ignored\n"));
10074 #endif
10075 fprintf (stream, _("\
10076 -n Do not optimize code alignment\n\
10077 -q quieten some warnings\n"));
10078 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10079 fprintf (stream, _("\
10080 -s ignored\n"));
10081 #endif
10082 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10083 || defined (TE_PE) || defined (TE_PEP))
10084 fprintf (stream, _("\
10085 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10086 #endif
10087 #ifdef SVR4_COMMENT_CHARS
10088 fprintf (stream, _("\
10089 --divide do not treat `/' as a comment character\n"));
10090 #else
10091 fprintf (stream, _("\
10092 --divide ignored\n"));
10093 #endif
10094 fprintf (stream, _("\
10095 -march=CPU[,+EXTENSION...]\n\
10096 generate code for CPU and EXTENSION, CPU is one of:\n"));
10097 show_arch (stream, 0, 1);
10098 fprintf (stream, _("\
10099 EXTENSION is combination of:\n"));
10100 show_arch (stream, 1, 0);
10101 fprintf (stream, _("\
10102 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10103 show_arch (stream, 0, 0);
10104 fprintf (stream, _("\
10105 -msse2avx encode SSE instructions with VEX prefix\n"));
10106 fprintf (stream, _("\
10107 -msse-check=[none|error|warning]\n\
10108 check SSE instructions\n"));
10109 fprintf (stream, _("\
10110 -moperand-check=[none|error|warning]\n\
10111 check operand combinations for validity\n"));
10112 fprintf (stream, _("\
10113 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10114 length\n"));
10115 fprintf (stream, _("\
10116 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10117 length\n"));
10118 fprintf (stream, _("\
10119 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10120 for EVEX.W bit ignored instructions\n"));
10121 fprintf (stream, _("\
10122 -mevexrcig=[rne|rd|ru|rz]\n\
10123 encode EVEX instructions with specific EVEX.RC value\n\
10124 for SAE-only ignored instructions\n"));
10125 fprintf (stream, _("\
10126 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10127 fprintf (stream, _("\
10128 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10129 fprintf (stream, _("\
10130 -mindex-reg support pseudo index registers\n"));
10131 fprintf (stream, _("\
10132 -mnaked-reg don't require `%%' prefix for registers\n"));
10133 fprintf (stream, _("\
10134 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
10135 fprintf (stream, _("\
10136 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10137 fprintf (stream, _("\
10138 -mshared disable branch optimization for shared code\n"));
10139 # if defined (TE_PE) || defined (TE_PEP)
10140 fprintf (stream, _("\
10141 -mbig-obj generate big object files\n"));
10142 #endif
10143 fprintf (stream, _("\
10144 -momit-lock-prefix=[no|yes]\n\
10145 strip all lock prefixes\n"));
10146 fprintf (stream, _("\
10147 -mamd64 accept only AMD64 ISA\n"));
10148 fprintf (stream, _("\
10149 -mintel64 accept only Intel64 ISA\n"));
10150 }
10151
10152 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10153 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10154 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10155
10156 /* Pick the target format to use. */
10157
10158 const char *
10159 i386_target_format (void)
10160 {
10161 if (!strncmp (default_arch, "x86_64", 6))
10162 {
10163 update_code_flag (CODE_64BIT, 1);
10164 if (default_arch[6] == '\0')
10165 x86_elf_abi = X86_64_ABI;
10166 else
10167 x86_elf_abi = X86_64_X32_ABI;
10168 }
10169 else if (!strcmp (default_arch, "i386"))
10170 update_code_flag (CODE_32BIT, 1);
10171 else if (!strcmp (default_arch, "iamcu"))
10172 {
10173 update_code_flag (CODE_32BIT, 1);
10174 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10175 {
10176 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10177 cpu_arch_name = "iamcu";
10178 cpu_sub_arch_name = NULL;
10179 cpu_arch_flags = iamcu_flags;
10180 cpu_arch_isa = PROCESSOR_IAMCU;
10181 cpu_arch_isa_flags = iamcu_flags;
10182 if (!cpu_arch_tune_set)
10183 {
10184 cpu_arch_tune = cpu_arch_isa;
10185 cpu_arch_tune_flags = cpu_arch_isa_flags;
10186 }
10187 }
10188 else
10189 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10190 cpu_arch_name);
10191 }
10192 else
10193 as_fatal (_("unknown architecture"));
10194
10195 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10196 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10197 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10198 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10199
10200 switch (OUTPUT_FLAVOR)
10201 {
10202 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
10203 case bfd_target_aout_flavour:
10204 return AOUT_TARGET_FORMAT;
10205 #endif
10206 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10207 # if defined (TE_PE) || defined (TE_PEP)
10208 case bfd_target_coff_flavour:
10209 if (flag_code == CODE_64BIT)
10210 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10211 else
10212 return "pe-i386";
10213 # elif defined (TE_GO32)
10214 case bfd_target_coff_flavour:
10215 return "coff-go32";
10216 # else
10217 case bfd_target_coff_flavour:
10218 return "coff-i386";
10219 # endif
10220 #endif
10221 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10222 case bfd_target_elf_flavour:
10223 {
10224 const char *format;
10225
10226 switch (x86_elf_abi)
10227 {
10228 default:
10229 format = ELF_TARGET_FORMAT;
10230 break;
10231 case X86_64_ABI:
10232 use_rela_relocations = 1;
10233 object_64bit = 1;
10234 format = ELF_TARGET_FORMAT64;
10235 break;
10236 case X86_64_X32_ABI:
10237 use_rela_relocations = 1;
10238 object_64bit = 1;
10239 disallow_64bit_reloc = 1;
10240 format = ELF_TARGET_FORMAT32;
10241 break;
10242 }
10243 if (cpu_arch_isa == PROCESSOR_L1OM)
10244 {
10245 if (x86_elf_abi != X86_64_ABI)
10246 as_fatal (_("Intel L1OM is 64bit only"));
10247 return ELF_TARGET_L1OM_FORMAT;
10248 }
10249 else if (cpu_arch_isa == PROCESSOR_K1OM)
10250 {
10251 if (x86_elf_abi != X86_64_ABI)
10252 as_fatal (_("Intel K1OM is 64bit only"));
10253 return ELF_TARGET_K1OM_FORMAT;
10254 }
10255 else if (cpu_arch_isa == PROCESSOR_IAMCU)
10256 {
10257 if (x86_elf_abi != I386_ABI)
10258 as_fatal (_("Intel MCU is 32bit only"));
10259 return ELF_TARGET_IAMCU_FORMAT;
10260 }
10261 else
10262 return format;
10263 }
10264 #endif
10265 #if defined (OBJ_MACH_O)
10266 case bfd_target_mach_o_flavour:
10267 if (flag_code == CODE_64BIT)
10268 {
10269 use_rela_relocations = 1;
10270 object_64bit = 1;
10271 return "mach-o-x86-64";
10272 }
10273 else
10274 return "mach-o-i386";
10275 #endif
10276 default:
10277 abort ();
10278 return NULL;
10279 }
10280 }
10281
10282 #endif /* OBJ_MAYBE_ more than one */
10283 \f
10284 symbolS *
10285 md_undefined_symbol (char *name)
10286 {
10287 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10288 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10289 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10290 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
10291 {
10292 if (!GOT_symbol)
10293 {
10294 if (symbol_find (name))
10295 as_bad (_("GOT already in symbol table"));
10296 GOT_symbol = symbol_new (name, undefined_section,
10297 (valueT) 0, &zero_address_frag);
10298 };
10299 return GOT_symbol;
10300 }
10301 return 0;
10302 }
10303
10304 /* Round up a section size to the appropriate boundary. */
10305
10306 valueT
10307 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
10308 {
10309 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10310 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10311 {
10312 /* For a.out, force the section size to be aligned. If we don't do
10313 this, BFD will align it for us, but it will not write out the
10314 final bytes of the section. This may be a bug in BFD, but it is
10315 easier to fix it here since that is how the other a.out targets
10316 work. */
10317 int align;
10318
10319 align = bfd_get_section_alignment (stdoutput, segment);
10320 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
10321 }
10322 #endif
10323
10324 return size;
10325 }
10326
10327 /* On the i386, PC-relative offsets are relative to the start of the
10328 next instruction. That is, the address of the offset, plus its
10329 size, since the offset is always the last part of the insn. */
10330
10331 long
10332 md_pcrel_from (fixS *fixP)
10333 {
10334 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10335 }
10336
10337 #ifndef I386COFF
10338
10339 static void
10340 s_bss (int ignore ATTRIBUTE_UNUSED)
10341 {
10342 int temp;
10343
10344 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10345 if (IS_ELF)
10346 obj_elf_section_change_hook ();
10347 #endif
10348 temp = get_absolute_expression ();
10349 subseg_set (bss_section, (subsegT) temp);
10350 demand_empty_rest_of_line ();
10351 }
10352
10353 #endif
10354
10355 void
10356 i386_validate_fix (fixS *fixp)
10357 {
10358 if (fixp->fx_subsy)
10359 {
10360 if (fixp->fx_subsy == GOT_symbol)
10361 {
10362 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10363 {
10364 if (!object_64bit)
10365 abort ();
10366 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10367 if (fixp->fx_tcbit2)
10368 fixp->fx_r_type = (fixp->fx_tcbit
10369 ? BFD_RELOC_X86_64_REX_GOTPCRELX
10370 : BFD_RELOC_X86_64_GOTPCRELX);
10371 else
10372 #endif
10373 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10374 }
10375 else
10376 {
10377 if (!object_64bit)
10378 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10379 else
10380 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10381 }
10382 fixp->fx_subsy = 0;
10383 }
10384 }
10385 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10386 else if (!object_64bit)
10387 {
10388 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
10389 && fixp->fx_tcbit2)
10390 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
10391 }
10392 #endif
10393 }
10394
10395 arelent *
10396 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
10397 {
10398 arelent *rel;
10399 bfd_reloc_code_real_type code;
10400
10401 switch (fixp->fx_r_type)
10402 {
10403 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10404 case BFD_RELOC_SIZE32:
10405 case BFD_RELOC_SIZE64:
10406 if (S_IS_DEFINED (fixp->fx_addsy)
10407 && !S_IS_EXTERNAL (fixp->fx_addsy))
10408 {
10409 /* Resolve size relocation against local symbol to size of
10410 the symbol plus addend. */
10411 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10412 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10413 && !fits_in_unsigned_long (value))
10414 as_bad_where (fixp->fx_file, fixp->fx_line,
10415 _("symbol size computation overflow"));
10416 fixp->fx_addsy = NULL;
10417 fixp->fx_subsy = NULL;
10418 md_apply_fix (fixp, (valueT *) &value, NULL);
10419 return NULL;
10420 }
10421 #endif
10422
10423 case BFD_RELOC_X86_64_PLT32:
10424 case BFD_RELOC_X86_64_GOT32:
10425 case BFD_RELOC_X86_64_GOTPCREL:
10426 case BFD_RELOC_X86_64_GOTPCRELX:
10427 case BFD_RELOC_X86_64_REX_GOTPCRELX:
10428 case BFD_RELOC_386_PLT32:
10429 case BFD_RELOC_386_GOT32:
10430 case BFD_RELOC_386_GOT32X:
10431 case BFD_RELOC_386_GOTOFF:
10432 case BFD_RELOC_386_GOTPC:
10433 case BFD_RELOC_386_TLS_GD:
10434 case BFD_RELOC_386_TLS_LDM:
10435 case BFD_RELOC_386_TLS_LDO_32:
10436 case BFD_RELOC_386_TLS_IE_32:
10437 case BFD_RELOC_386_TLS_IE:
10438 case BFD_RELOC_386_TLS_GOTIE:
10439 case BFD_RELOC_386_TLS_LE_32:
10440 case BFD_RELOC_386_TLS_LE:
10441 case BFD_RELOC_386_TLS_GOTDESC:
10442 case BFD_RELOC_386_TLS_DESC_CALL:
10443 case BFD_RELOC_X86_64_TLSGD:
10444 case BFD_RELOC_X86_64_TLSLD:
10445 case BFD_RELOC_X86_64_DTPOFF32:
10446 case BFD_RELOC_X86_64_DTPOFF64:
10447 case BFD_RELOC_X86_64_GOTTPOFF:
10448 case BFD_RELOC_X86_64_TPOFF32:
10449 case BFD_RELOC_X86_64_TPOFF64:
10450 case BFD_RELOC_X86_64_GOTOFF64:
10451 case BFD_RELOC_X86_64_GOTPC32:
10452 case BFD_RELOC_X86_64_GOT64:
10453 case BFD_RELOC_X86_64_GOTPCREL64:
10454 case BFD_RELOC_X86_64_GOTPC64:
10455 case BFD_RELOC_X86_64_GOTPLT64:
10456 case BFD_RELOC_X86_64_PLTOFF64:
10457 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10458 case BFD_RELOC_X86_64_TLSDESC_CALL:
10459 case BFD_RELOC_RVA:
10460 case BFD_RELOC_VTABLE_ENTRY:
10461 case BFD_RELOC_VTABLE_INHERIT:
10462 #ifdef TE_PE
10463 case BFD_RELOC_32_SECREL:
10464 #endif
10465 code = fixp->fx_r_type;
10466 break;
10467 case BFD_RELOC_X86_64_32S:
10468 if (!fixp->fx_pcrel)
10469 {
10470 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10471 code = fixp->fx_r_type;
10472 break;
10473 }
10474 default:
10475 if (fixp->fx_pcrel)
10476 {
10477 switch (fixp->fx_size)
10478 {
10479 default:
10480 as_bad_where (fixp->fx_file, fixp->fx_line,
10481 _("can not do %d byte pc-relative relocation"),
10482 fixp->fx_size);
10483 code = BFD_RELOC_32_PCREL;
10484 break;
10485 case 1: code = BFD_RELOC_8_PCREL; break;
10486 case 2: code = BFD_RELOC_16_PCREL; break;
10487 case 4: code = BFD_RELOC_32_PCREL; break;
10488 #ifdef BFD64
10489 case 8: code = BFD_RELOC_64_PCREL; break;
10490 #endif
10491 }
10492 }
10493 else
10494 {
10495 switch (fixp->fx_size)
10496 {
10497 default:
10498 as_bad_where (fixp->fx_file, fixp->fx_line,
10499 _("can not do %d byte relocation"),
10500 fixp->fx_size);
10501 code = BFD_RELOC_32;
10502 break;
10503 case 1: code = BFD_RELOC_8; break;
10504 case 2: code = BFD_RELOC_16; break;
10505 case 4: code = BFD_RELOC_32; break;
10506 #ifdef BFD64
10507 case 8: code = BFD_RELOC_64; break;
10508 #endif
10509 }
10510 }
10511 break;
10512 }
10513
10514 if ((code == BFD_RELOC_32
10515 || code == BFD_RELOC_32_PCREL
10516 || code == BFD_RELOC_X86_64_32S)
10517 && GOT_symbol
10518 && fixp->fx_addsy == GOT_symbol)
10519 {
10520 if (!object_64bit)
10521 code = BFD_RELOC_386_GOTPC;
10522 else
10523 code = BFD_RELOC_X86_64_GOTPC32;
10524 }
10525 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10526 && GOT_symbol
10527 && fixp->fx_addsy == GOT_symbol)
10528 {
10529 code = BFD_RELOC_X86_64_GOTPC64;
10530 }
10531
10532 rel = (arelent *) xmalloc (sizeof (arelent));
10533 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
10534 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10535
10536 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
10537
10538 if (!use_rela_relocations)
10539 {
10540 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10541 vtable entry to be used in the relocation's section offset. */
10542 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10543 rel->address = fixp->fx_offset;
10544 #if defined (OBJ_COFF) && defined (TE_PE)
10545 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10546 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10547 else
10548 #endif
10549 rel->addend = 0;
10550 }
10551 /* Use the rela in 64bit mode. */
10552 else
10553 {
10554 if (disallow_64bit_reloc)
10555 switch (code)
10556 {
10557 case BFD_RELOC_X86_64_DTPOFF64:
10558 case BFD_RELOC_X86_64_TPOFF64:
10559 case BFD_RELOC_64_PCREL:
10560 case BFD_RELOC_X86_64_GOTOFF64:
10561 case BFD_RELOC_X86_64_GOT64:
10562 case BFD_RELOC_X86_64_GOTPCREL64:
10563 case BFD_RELOC_X86_64_GOTPC64:
10564 case BFD_RELOC_X86_64_GOTPLT64:
10565 case BFD_RELOC_X86_64_PLTOFF64:
10566 as_bad_where (fixp->fx_file, fixp->fx_line,
10567 _("cannot represent relocation type %s in x32 mode"),
10568 bfd_get_reloc_code_name (code));
10569 break;
10570 default:
10571 break;
10572 }
10573
10574 if (!fixp->fx_pcrel)
10575 rel->addend = fixp->fx_offset;
10576 else
10577 switch (code)
10578 {
10579 case BFD_RELOC_X86_64_PLT32:
10580 case BFD_RELOC_X86_64_GOT32:
10581 case BFD_RELOC_X86_64_GOTPCREL:
10582 case BFD_RELOC_X86_64_GOTPCRELX:
10583 case BFD_RELOC_X86_64_REX_GOTPCRELX:
10584 case BFD_RELOC_X86_64_TLSGD:
10585 case BFD_RELOC_X86_64_TLSLD:
10586 case BFD_RELOC_X86_64_GOTTPOFF:
10587 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10588 case BFD_RELOC_X86_64_TLSDESC_CALL:
10589 rel->addend = fixp->fx_offset - fixp->fx_size;
10590 break;
10591 default:
10592 rel->addend = (section->vma
10593 - fixp->fx_size
10594 + fixp->fx_addnumber
10595 + md_pcrel_from (fixp));
10596 break;
10597 }
10598 }
10599
10600 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
10601 if (rel->howto == NULL)
10602 {
10603 as_bad_where (fixp->fx_file, fixp->fx_line,
10604 _("cannot represent relocation type %s"),
10605 bfd_get_reloc_code_name (code));
10606 /* Set howto to a garbage value so that we can keep going. */
10607 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
10608 gas_assert (rel->howto != NULL);
10609 }
10610
10611 return rel;
10612 }
10613
10614 #include "tc-i386-intel.c"
10615
10616 void
10617 tc_x86_parse_to_dw2regnum (expressionS *exp)
10618 {
10619 int saved_naked_reg;
10620 char saved_register_dot;
10621
10622 saved_naked_reg = allow_naked_reg;
10623 allow_naked_reg = 1;
10624 saved_register_dot = register_chars['.'];
10625 register_chars['.'] = '.';
10626 allow_pseudo_reg = 1;
10627 expression_and_evaluate (exp);
10628 allow_pseudo_reg = 0;
10629 register_chars['.'] = saved_register_dot;
10630 allow_naked_reg = saved_naked_reg;
10631
10632 if (exp->X_op == O_register && exp->X_add_number >= 0)
10633 {
10634 if ((addressT) exp->X_add_number < i386_regtab_size)
10635 {
10636 exp->X_op = O_constant;
10637 exp->X_add_number = i386_regtab[exp->X_add_number]
10638 .dw2_regnum[flag_code >> 1];
10639 }
10640 else
10641 exp->X_op = O_illegal;
10642 }
10643 }
10644
10645 void
10646 tc_x86_frame_initial_instructions (void)
10647 {
10648 static unsigned int sp_regno[2];
10649
10650 if (!sp_regno[flag_code >> 1])
10651 {
10652 char *saved_input = input_line_pointer;
10653 char sp[][4] = {"esp", "rsp"};
10654 expressionS exp;
10655
10656 input_line_pointer = sp[flag_code >> 1];
10657 tc_x86_parse_to_dw2regnum (&exp);
10658 gas_assert (exp.X_op == O_constant);
10659 sp_regno[flag_code >> 1] = exp.X_add_number;
10660 input_line_pointer = saved_input;
10661 }
10662
10663 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
10664 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
10665 }
10666
10667 int
10668 x86_dwarf2_addr_size (void)
10669 {
10670 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10671 if (x86_elf_abi == X86_64_X32_ABI)
10672 return 4;
10673 #endif
10674 return bfd_arch_bits_per_address (stdoutput) / 8;
10675 }
10676
10677 int
10678 i386_elf_section_type (const char *str, size_t len)
10679 {
10680 if (flag_code == CODE_64BIT
10681 && len == sizeof ("unwind") - 1
10682 && strncmp (str, "unwind", 6) == 0)
10683 return SHT_X86_64_UNWIND;
10684
10685 return -1;
10686 }
10687
10688 #ifdef TE_SOLARIS
10689 void
10690 i386_solaris_fix_up_eh_frame (segT sec)
10691 {
10692 if (flag_code == CODE_64BIT)
10693 elf_section_type (sec) = SHT_X86_64_UNWIND;
10694 }
10695 #endif
10696
10697 #ifdef TE_PE
10698 void
10699 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10700 {
10701 expressionS exp;
10702
10703 exp.X_op = O_secrel;
10704 exp.X_add_symbol = symbol;
10705 exp.X_add_number = 0;
10706 emit_expr (&exp, size);
10707 }
10708 #endif
10709
10710 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10711 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
10712
10713 bfd_vma
10714 x86_64_section_letter (int letter, char **ptr_msg)
10715 {
10716 if (flag_code == CODE_64BIT)
10717 {
10718 if (letter == 'l')
10719 return SHF_X86_64_LARGE;
10720
10721 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
10722 }
10723 else
10724 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
10725 return -1;
10726 }
10727
10728 bfd_vma
10729 x86_64_section_word (char *str, size_t len)
10730 {
10731 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
10732 return SHF_X86_64_LARGE;
10733
10734 return -1;
10735 }
10736
10737 static void
10738 handle_large_common (int small ATTRIBUTE_UNUSED)
10739 {
10740 if (flag_code != CODE_64BIT)
10741 {
10742 s_comm_internal (0, elf_common_parse);
10743 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
10744 }
10745 else
10746 {
10747 static segT lbss_section;
10748 asection *saved_com_section_ptr = elf_com_section_ptr;
10749 asection *saved_bss_section = bss_section;
10750
10751 if (lbss_section == NULL)
10752 {
10753 flagword applicable;
10754 segT seg = now_seg;
10755 subsegT subseg = now_subseg;
10756
10757 /* The .lbss section is for local .largecomm symbols. */
10758 lbss_section = subseg_new (".lbss", 0);
10759 applicable = bfd_applicable_section_flags (stdoutput);
10760 bfd_set_section_flags (stdoutput, lbss_section,
10761 applicable & SEC_ALLOC);
10762 seg_info (lbss_section)->bss = 1;
10763
10764 subseg_set (seg, subseg);
10765 }
10766
10767 elf_com_section_ptr = &_bfd_elf_large_com_section;
10768 bss_section = lbss_section;
10769
10770 s_comm_internal (0, elf_common_parse);
10771
10772 elf_com_section_ptr = saved_com_section_ptr;
10773 bss_section = saved_bss_section;
10774 }
10775 }
10776 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.319882 seconds and 4 git commands to generate.