x86: Check invalid XMM register in AVX512 gathers
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2017 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 #define XMMWORD_MNEM_SUFFIX 'x'
85 #define YMMWORD_MNEM_SUFFIX 'y'
86 #define ZMMWORD_MNEM_SUFFIX 'z'
87 /* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91 #define END_OF_INSN '\0'
92
93 /*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100 typedef struct
101 {
102 const insn_template *start;
103 const insn_template *end;
104 }
105 templates;
106
107 /* 386 operand encoding bytes: see 386 book for details of this. */
108 typedef struct
109 {
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113 }
114 modrm_byte;
115
116 /* x86-64 extension prefix. */
117 typedef int rex_byte;
118
119 /* 386 opcode byte to code indirect addressing. */
120 typedef struct
121 {
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125 }
126 sib_byte;
127
128 /* x86 arch names, types and features */
129 typedef struct
130 {
131 const char *name; /* arch name */
132 unsigned int len; /* arch string length */
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
135 unsigned int skip; /* show_arch should skip this. */
136 }
137 arch_entry;
138
139 /* Used to turn off indicated flags. */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 i386_cpu_flags flags; /* cpu feature flags */
145 }
146 noarch_entry;
147
148 static void update_code_flag (int, int);
149 static void set_code_flag (int);
150 static void set_16bit_gcc_code_flag (int);
151 static void set_intel_syntax (int);
152 static void set_intel_mnemonic (int);
153 static void set_allow_index_reg (int);
154 static void set_check (int);
155 static void set_cpu_arch (int);
156 #ifdef TE_PE
157 static void pe_directive_secrel (int);
158 #endif
159 static void signed_cons (int);
160 static char *output_invalid (int c);
161 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
162 const char *);
163 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
164 const char *);
165 static int i386_att_operand (char *);
166 static int i386_intel_operand (char *, int);
167 static int i386_intel_simplify (expressionS *);
168 static int i386_intel_parse_name (const char *, expressionS *);
169 static const reg_entry *parse_register (char *, char **);
170 static char *parse_insn (char *, char *);
171 static char *parse_operands (char *, const char *);
172 static void swap_operands (void);
173 static void swap_2_operands (int, int);
174 static void optimize_imm (void);
175 static void optimize_disp (void);
176 static const insn_template *match_template (char);
177 static int check_string (void);
178 static int process_suffix (void);
179 static int check_byte_reg (void);
180 static int check_long_reg (void);
181 static int check_qword_reg (void);
182 static int check_word_reg (void);
183 static int finalize_imm (void);
184 static int process_operands (void);
185 static const seg_entry *build_modrm_byte (void);
186 static void output_insn (void);
187 static void output_imm (fragS *, offsetT);
188 static void output_disp (fragS *, offsetT);
189 #ifndef I386COFF
190 static void s_bss (int);
191 #endif
192 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
193 static void handle_large_common (int small ATTRIBUTE_UNUSED);
194 #endif
195
196 static const char *default_arch = DEFAULT_ARCH;
197
198 /* This struct describes rounding control and SAE in the instruction. */
199 struct RC_Operation
200 {
201 enum rc_type
202 {
203 rne = 0,
204 rd,
205 ru,
206 rz,
207 saeonly
208 } type;
209 int operand;
210 };
211
212 static struct RC_Operation rc_op;
213
214 /* The struct describes masking, applied to OPERAND in the instruction.
215 MASK is a pointer to the corresponding mask register. ZEROING tells
216 whether merging or zeroing mask is used. */
217 struct Mask_Operation
218 {
219 const reg_entry *mask;
220 unsigned int zeroing;
221 /* The operand where this operation is associated. */
222 int operand;
223 };
224
225 static struct Mask_Operation mask_op;
226
227 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
228 broadcast factor. */
229 struct Broadcast_Operation
230 {
231 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
232 int type;
233
234 /* Index of broadcasted operand. */
235 int operand;
236 };
237
238 static struct Broadcast_Operation broadcast_op;
239
240 /* VEX prefix. */
241 typedef struct
242 {
243 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
244 unsigned char bytes[4];
245 unsigned int length;
246 /* Destination or source register specifier. */
247 const reg_entry *register_specifier;
248 } vex_prefix;
249
250 /* 'md_assemble ()' gathers together information and puts it into a
251 i386_insn. */
252
253 union i386_op
254 {
255 expressionS *disps;
256 expressionS *imms;
257 const reg_entry *regs;
258 };
259
260 enum i386_error
261 {
262 operand_size_mismatch,
263 operand_type_mismatch,
264 register_type_mismatch,
265 number_of_operands_mismatch,
266 invalid_instruction_suffix,
267 bad_imm4,
268 old_gcc_only,
269 unsupported_with_intel_mnemonic,
270 unsupported_syntax,
271 unsupported,
272 invalid_vsib_address,
273 invalid_vector_register_set,
274 unsupported_vector_index_register,
275 unsupported_broadcast,
276 broadcast_not_on_src_operand,
277 broadcast_needed,
278 unsupported_masking,
279 mask_not_on_destination,
280 no_default_mask,
281 unsupported_rc_sae,
282 rc_sae_operand_not_last_imm,
283 invalid_register_operand,
284 try_vector_disp8
285 };
286
287 struct _i386_insn
288 {
289 /* TM holds the template for the insn were currently assembling. */
290 insn_template tm;
291
292 /* SUFFIX holds the instruction size suffix for byte, word, dword
293 or qword, if given. */
294 char suffix;
295
296 /* OPERANDS gives the number of given operands. */
297 unsigned int operands;
298
299 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
300 of given register, displacement, memory operands and immediate
301 operands. */
302 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
303
304 /* TYPES [i] is the type (see above #defines) which tells us how to
305 use OP[i] for the corresponding operand. */
306 i386_operand_type types[MAX_OPERANDS];
307
308 /* Displacement expression, immediate expression, or register for each
309 operand. */
310 union i386_op op[MAX_OPERANDS];
311
312 /* Flags for operands. */
313 unsigned int flags[MAX_OPERANDS];
314 #define Operand_PCrel 1
315
316 /* Relocation type for operand */
317 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
318
319 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
320 the base index byte below. */
321 const reg_entry *base_reg;
322 const reg_entry *index_reg;
323 unsigned int log2_scale_factor;
324
325 /* SEG gives the seg_entries of this insn. They are zero unless
326 explicit segment overrides are given. */
327 const seg_entry *seg[2];
328
329 /* Copied first memory operand string, for re-checking. */
330 char *memop1_string;
331
332 /* PREFIX holds all the given prefix opcodes (usually null).
333 PREFIXES is the number of prefix opcodes. */
334 unsigned int prefixes;
335 unsigned char prefix[MAX_PREFIXES];
336
337 /* RM and SIB are the modrm byte and the sib byte where the
338 addressing modes of this insn are encoded. */
339 modrm_byte rm;
340 rex_byte rex;
341 rex_byte vrex;
342 sib_byte sib;
343 vex_prefix vex;
344
345 /* Masking attributes. */
346 struct Mask_Operation *mask;
347
348 /* Rounding control and SAE attributes. */
349 struct RC_Operation *rounding;
350
351 /* Broadcasting attributes. */
352 struct Broadcast_Operation *broadcast;
353
354 /* Compressed disp8*N attribute. */
355 unsigned int memshift;
356
357 /* Prefer load or store in encoding. */
358 enum
359 {
360 dir_encoding_default = 0,
361 dir_encoding_load,
362 dir_encoding_store
363 } dir_encoding;
364
365 /* Prefer 8bit or 32bit displacement in encoding. */
366 enum
367 {
368 disp_encoding_default = 0,
369 disp_encoding_8bit,
370 disp_encoding_32bit
371 } disp_encoding;
372
373 /* How to encode vector instructions. */
374 enum
375 {
376 vex_encoding_default = 0,
377 vex_encoding_vex2,
378 vex_encoding_vex3,
379 vex_encoding_evex
380 } vec_encoding;
381
382 /* REP prefix. */
383 const char *rep_prefix;
384
385 /* HLE prefix. */
386 const char *hle_prefix;
387
388 /* Have BND prefix. */
389 const char *bnd_prefix;
390
391 /* Have NOTRACK prefix. */
392 const char *notrack_prefix;
393
394 /* Error message. */
395 enum i386_error error;
396 };
397
398 typedef struct _i386_insn i386_insn;
399
400 /* Link RC type with corresponding string, that'll be looked for in
401 asm. */
402 struct RC_name
403 {
404 enum rc_type type;
405 const char *name;
406 unsigned int len;
407 };
408
409 static const struct RC_name RC_NamesTable[] =
410 {
411 { rne, STRING_COMMA_LEN ("rn-sae") },
412 { rd, STRING_COMMA_LEN ("rd-sae") },
413 { ru, STRING_COMMA_LEN ("ru-sae") },
414 { rz, STRING_COMMA_LEN ("rz-sae") },
415 { saeonly, STRING_COMMA_LEN ("sae") },
416 };
417
418 /* List of chars besides those in app.c:symbol_chars that can start an
419 operand. Used to prevent the scrubber eating vital white-space. */
420 const char extra_symbol_chars[] = "*%-([{}"
421 #ifdef LEX_AT
422 "@"
423 #endif
424 #ifdef LEX_QM
425 "?"
426 #endif
427 ;
428
429 #if (defined (TE_I386AIX) \
430 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
431 && !defined (TE_GNU) \
432 && !defined (TE_LINUX) \
433 && !defined (TE_NACL) \
434 && !defined (TE_NETWARE) \
435 && !defined (TE_FreeBSD) \
436 && !defined (TE_DragonFly) \
437 && !defined (TE_NetBSD)))
438 /* This array holds the chars that always start a comment. If the
439 pre-processor is disabled, these aren't very useful. The option
440 --divide will remove '/' from this list. */
441 const char *i386_comment_chars = "#/";
442 #define SVR4_COMMENT_CHARS 1
443 #define PREFIX_SEPARATOR '\\'
444
445 #else
446 const char *i386_comment_chars = "#";
447 #define PREFIX_SEPARATOR '/'
448 #endif
449
450 /* This array holds the chars that only start a comment at the beginning of
451 a line. If the line seems to have the form '# 123 filename'
452 .line and .file directives will appear in the pre-processed output.
453 Note that input_file.c hand checks for '#' at the beginning of the
454 first line of the input file. This is because the compiler outputs
455 #NO_APP at the beginning of its output.
456 Also note that comments started like this one will always work if
457 '/' isn't otherwise defined. */
458 const char line_comment_chars[] = "#/";
459
460 const char line_separator_chars[] = ";";
461
462 /* Chars that can be used to separate mant from exp in floating point
463 nums. */
464 const char EXP_CHARS[] = "eE";
465
466 /* Chars that mean this number is a floating point constant
467 As in 0f12.456
468 or 0d1.2345e12. */
469 const char FLT_CHARS[] = "fFdDxX";
470
471 /* Tables for lexical analysis. */
472 static char mnemonic_chars[256];
473 static char register_chars[256];
474 static char operand_chars[256];
475 static char identifier_chars[256];
476 static char digit_chars[256];
477
478 /* Lexical macros. */
479 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
480 #define is_operand_char(x) (operand_chars[(unsigned char) x])
481 #define is_register_char(x) (register_chars[(unsigned char) x])
482 #define is_space_char(x) ((x) == ' ')
483 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
484 #define is_digit_char(x) (digit_chars[(unsigned char) x])
485
486 /* All non-digit non-letter characters that may occur in an operand. */
487 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
488
489 /* md_assemble() always leaves the strings it's passed unaltered. To
490 effect this we maintain a stack of saved characters that we've smashed
491 with '\0's (indicating end of strings for various sub-fields of the
492 assembler instruction). */
493 static char save_stack[32];
494 static char *save_stack_p;
495 #define END_STRING_AND_SAVE(s) \
496 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
497 #define RESTORE_END_STRING(s) \
498 do { *(s) = *--save_stack_p; } while (0)
499
500 /* The instruction we're assembling. */
501 static i386_insn i;
502
503 /* Possible templates for current insn. */
504 static const templates *current_templates;
505
506 /* Per instruction expressionS buffers: max displacements & immediates. */
507 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
508 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
509
510 /* Current operand we are working on. */
511 static int this_operand = -1;
512
513 /* We support four different modes. FLAG_CODE variable is used to distinguish
514 these. */
515
516 enum flag_code {
517 CODE_32BIT,
518 CODE_16BIT,
519 CODE_64BIT };
520
521 static enum flag_code flag_code;
522 static unsigned int object_64bit;
523 static unsigned int disallow_64bit_reloc;
524 static int use_rela_relocations = 0;
525
526 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
527 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
528 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
529
530 /* The ELF ABI to use. */
531 enum x86_elf_abi
532 {
533 I386_ABI,
534 X86_64_ABI,
535 X86_64_X32_ABI
536 };
537
538 static enum x86_elf_abi x86_elf_abi = I386_ABI;
539 #endif
540
541 #if defined (TE_PE) || defined (TE_PEP)
542 /* Use big object file format. */
543 static int use_big_obj = 0;
544 #endif
545
546 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
547 /* 1 if generating code for a shared library. */
548 static int shared = 0;
549 #endif
550
551 /* 1 for intel syntax,
552 0 if att syntax. */
553 static int intel_syntax = 0;
554
555 /* 1 for Intel64 ISA,
556 0 if AMD64 ISA. */
557 static int intel64;
558
559 /* 1 for intel mnemonic,
560 0 if att mnemonic. */
561 static int intel_mnemonic = !SYSV386_COMPAT;
562
563 /* 1 if support old (<= 2.8.1) versions of gcc. */
564 static int old_gcc = OLDGCC_COMPAT;
565
566 /* 1 if pseudo registers are permitted. */
567 static int allow_pseudo_reg = 0;
568
569 /* 1 if register prefix % not required. */
570 static int allow_naked_reg = 0;
571
572 /* 1 if the assembler should add BND prefix for all control-transferring
573 instructions supporting it, even if this prefix wasn't specified
574 explicitly. */
575 static int add_bnd_prefix = 0;
576
577 /* 1 if pseudo index register, eiz/riz, is allowed . */
578 static int allow_index_reg = 0;
579
580 /* 1 if the assembler should ignore LOCK prefix, even if it was
581 specified explicitly. */
582 static int omit_lock_prefix = 0;
583
584 /* 1 if the assembler should encode lfence, mfence, and sfence as
585 "lock addl $0, (%{re}sp)". */
586 static int avoid_fence = 0;
587
588 /* 1 if the assembler should generate relax relocations. */
589
590 static int generate_relax_relocations
591 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
592
593 static enum check_kind
594 {
595 check_none = 0,
596 check_warning,
597 check_error
598 }
599 sse_check, operand_check = check_warning;
600
601 /* Register prefix used for error message. */
602 static const char *register_prefix = "%";
603
604 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
605 leave, push, and pop instructions so that gcc has the same stack
606 frame as in 32 bit mode. */
607 static char stackop_size = '\0';
608
609 /* Non-zero to optimize code alignment. */
610 int optimize_align_code = 1;
611
612 /* Non-zero to quieten some warnings. */
613 static int quiet_warnings = 0;
614
615 /* CPU name. */
616 static const char *cpu_arch_name = NULL;
617 static char *cpu_sub_arch_name = NULL;
618
619 /* CPU feature flags. */
620 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
621
622 /* If we have selected a cpu we are generating instructions for. */
623 static int cpu_arch_tune_set = 0;
624
625 /* Cpu we are generating instructions for. */
626 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
627
628 /* CPU feature flags of cpu we are generating instructions for. */
629 static i386_cpu_flags cpu_arch_tune_flags;
630
631 /* CPU instruction set architecture used. */
632 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
633
634 /* CPU feature flags of instruction set architecture used. */
635 i386_cpu_flags cpu_arch_isa_flags;
636
637 /* If set, conditional jumps are not automatically promoted to handle
638 larger than a byte offset. */
639 static unsigned int no_cond_jump_promotion = 0;
640
641 /* Encode SSE instructions with VEX prefix. */
642 static unsigned int sse2avx;
643
644 /* Encode scalar AVX instructions with specific vector length. */
645 static enum
646 {
647 vex128 = 0,
648 vex256
649 } avxscalar;
650
651 /* Encode scalar EVEX LIG instructions with specific vector length. */
652 static enum
653 {
654 evexl128 = 0,
655 evexl256,
656 evexl512
657 } evexlig;
658
659 /* Encode EVEX WIG instructions with specific evex.w. */
660 static enum
661 {
662 evexw0 = 0,
663 evexw1
664 } evexwig;
665
666 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
667 static enum rc_type evexrcig = rne;
668
669 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
670 static symbolS *GOT_symbol;
671
672 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
673 unsigned int x86_dwarf2_return_column;
674
675 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
676 int x86_cie_data_alignment;
677
678 /* Interface to relax_segment.
679 There are 3 major relax states for 386 jump insns because the
680 different types of jumps add different sizes to frags when we're
681 figuring out what sort of jump to choose to reach a given label. */
682
683 /* Types. */
684 #define UNCOND_JUMP 0
685 #define COND_JUMP 1
686 #define COND_JUMP86 2
687
688 /* Sizes. */
689 #define CODE16 1
690 #define SMALL 0
691 #define SMALL16 (SMALL | CODE16)
692 #define BIG 2
693 #define BIG16 (BIG | CODE16)
694
695 #ifndef INLINE
696 #ifdef __GNUC__
697 #define INLINE __inline__
698 #else
699 #define INLINE
700 #endif
701 #endif
702
703 #define ENCODE_RELAX_STATE(type, size) \
704 ((relax_substateT) (((type) << 2) | (size)))
705 #define TYPE_FROM_RELAX_STATE(s) \
706 ((s) >> 2)
707 #define DISP_SIZE_FROM_RELAX_STATE(s) \
708 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
709
710 /* This table is used by relax_frag to promote short jumps to long
711 ones where necessary. SMALL (short) jumps may be promoted to BIG
712 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
713 don't allow a short jump in a 32 bit code segment to be promoted to
714 a 16 bit offset jump because it's slower (requires data size
715 prefix), and doesn't work, unless the destination is in the bottom
716 64k of the code segment (The top 16 bits of eip are zeroed). */
717
718 const relax_typeS md_relax_table[] =
719 {
720 /* The fields are:
721 1) most positive reach of this state,
722 2) most negative reach of this state,
723 3) how many bytes this mode will have in the variable part of the frag
724 4) which index into the table to try if we can't fit into this one. */
725
726 /* UNCOND_JUMP states. */
727 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
728 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
729 /* dword jmp adds 4 bytes to frag:
730 0 extra opcode bytes, 4 displacement bytes. */
731 {0, 0, 4, 0},
732 /* word jmp adds 2 byte2 to frag:
733 0 extra opcode bytes, 2 displacement bytes. */
734 {0, 0, 2, 0},
735
736 /* COND_JUMP states. */
737 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
738 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
739 /* dword conditionals adds 5 bytes to frag:
740 1 extra opcode byte, 4 displacement bytes. */
741 {0, 0, 5, 0},
742 /* word conditionals add 3 bytes to frag:
743 1 extra opcode byte, 2 displacement bytes. */
744 {0, 0, 3, 0},
745
746 /* COND_JUMP86 states. */
747 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
748 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
749 /* dword conditionals adds 5 bytes to frag:
750 1 extra opcode byte, 4 displacement bytes. */
751 {0, 0, 5, 0},
752 /* word conditionals add 4 bytes to frag:
753 1 displacement byte and a 3 byte long branch insn. */
754 {0, 0, 4, 0}
755 };
756
757 static const arch_entry cpu_arch[] =
758 {
759 /* Do not replace the first two entries - i386_target_format()
760 relies on them being there in this order. */
761 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
762 CPU_GENERIC32_FLAGS, 0 },
763 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
764 CPU_GENERIC64_FLAGS, 0 },
765 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
766 CPU_NONE_FLAGS, 0 },
767 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
768 CPU_I186_FLAGS, 0 },
769 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
770 CPU_I286_FLAGS, 0 },
771 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
772 CPU_I386_FLAGS, 0 },
773 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
774 CPU_I486_FLAGS, 0 },
775 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
776 CPU_I586_FLAGS, 0 },
777 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
778 CPU_I686_FLAGS, 0 },
779 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
780 CPU_I586_FLAGS, 0 },
781 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
782 CPU_PENTIUMPRO_FLAGS, 0 },
783 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
784 CPU_P2_FLAGS, 0 },
785 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
786 CPU_P3_FLAGS, 0 },
787 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
788 CPU_P4_FLAGS, 0 },
789 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
790 CPU_CORE_FLAGS, 0 },
791 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
792 CPU_NOCONA_FLAGS, 0 },
793 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
794 CPU_CORE_FLAGS, 1 },
795 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
796 CPU_CORE_FLAGS, 0 },
797 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
798 CPU_CORE2_FLAGS, 1 },
799 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
800 CPU_CORE2_FLAGS, 0 },
801 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
802 CPU_COREI7_FLAGS, 0 },
803 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
804 CPU_L1OM_FLAGS, 0 },
805 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
806 CPU_K1OM_FLAGS, 0 },
807 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
808 CPU_IAMCU_FLAGS, 0 },
809 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
810 CPU_K6_FLAGS, 0 },
811 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
812 CPU_K6_2_FLAGS, 0 },
813 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
814 CPU_ATHLON_FLAGS, 0 },
815 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
816 CPU_K8_FLAGS, 1 },
817 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
818 CPU_K8_FLAGS, 0 },
819 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
820 CPU_K8_FLAGS, 0 },
821 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
822 CPU_AMDFAM10_FLAGS, 0 },
823 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
824 CPU_BDVER1_FLAGS, 0 },
825 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
826 CPU_BDVER2_FLAGS, 0 },
827 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
828 CPU_BDVER3_FLAGS, 0 },
829 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
830 CPU_BDVER4_FLAGS, 0 },
831 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
832 CPU_ZNVER1_FLAGS, 0 },
833 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
834 CPU_BTVER1_FLAGS, 0 },
835 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
836 CPU_BTVER2_FLAGS, 0 },
837 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
838 CPU_8087_FLAGS, 0 },
839 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
840 CPU_287_FLAGS, 0 },
841 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
842 CPU_387_FLAGS, 0 },
843 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
844 CPU_687_FLAGS, 0 },
845 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
846 CPU_MMX_FLAGS, 0 },
847 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
848 CPU_SSE_FLAGS, 0 },
849 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
850 CPU_SSE2_FLAGS, 0 },
851 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
852 CPU_SSE3_FLAGS, 0 },
853 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
854 CPU_SSSE3_FLAGS, 0 },
855 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
856 CPU_SSE4_1_FLAGS, 0 },
857 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
858 CPU_SSE4_2_FLAGS, 0 },
859 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
860 CPU_SSE4_2_FLAGS, 0 },
861 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
862 CPU_AVX_FLAGS, 0 },
863 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
864 CPU_AVX2_FLAGS, 0 },
865 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
866 CPU_AVX512F_FLAGS, 0 },
867 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
868 CPU_AVX512CD_FLAGS, 0 },
869 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
870 CPU_AVX512ER_FLAGS, 0 },
871 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
872 CPU_AVX512PF_FLAGS, 0 },
873 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
874 CPU_AVX512DQ_FLAGS, 0 },
875 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
876 CPU_AVX512BW_FLAGS, 0 },
877 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
878 CPU_AVX512VL_FLAGS, 0 },
879 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
880 CPU_VMX_FLAGS, 0 },
881 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
882 CPU_VMFUNC_FLAGS, 0 },
883 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
884 CPU_SMX_FLAGS, 0 },
885 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
886 CPU_XSAVE_FLAGS, 0 },
887 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
888 CPU_XSAVEOPT_FLAGS, 0 },
889 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
890 CPU_XSAVEC_FLAGS, 0 },
891 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
892 CPU_XSAVES_FLAGS, 0 },
893 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
894 CPU_AES_FLAGS, 0 },
895 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
896 CPU_PCLMUL_FLAGS, 0 },
897 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
898 CPU_PCLMUL_FLAGS, 1 },
899 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
900 CPU_FSGSBASE_FLAGS, 0 },
901 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
902 CPU_RDRND_FLAGS, 0 },
903 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
904 CPU_F16C_FLAGS, 0 },
905 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
906 CPU_BMI2_FLAGS, 0 },
907 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
908 CPU_FMA_FLAGS, 0 },
909 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
910 CPU_FMA4_FLAGS, 0 },
911 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
912 CPU_XOP_FLAGS, 0 },
913 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
914 CPU_LWP_FLAGS, 0 },
915 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
916 CPU_MOVBE_FLAGS, 0 },
917 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
918 CPU_CX16_FLAGS, 0 },
919 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
920 CPU_EPT_FLAGS, 0 },
921 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
922 CPU_LZCNT_FLAGS, 0 },
923 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
924 CPU_HLE_FLAGS, 0 },
925 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
926 CPU_RTM_FLAGS, 0 },
927 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
928 CPU_INVPCID_FLAGS, 0 },
929 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
930 CPU_CLFLUSH_FLAGS, 0 },
931 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
932 CPU_NOP_FLAGS, 0 },
933 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
934 CPU_SYSCALL_FLAGS, 0 },
935 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
936 CPU_RDTSCP_FLAGS, 0 },
937 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
938 CPU_3DNOW_FLAGS, 0 },
939 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
940 CPU_3DNOWA_FLAGS, 0 },
941 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
942 CPU_PADLOCK_FLAGS, 0 },
943 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
944 CPU_SVME_FLAGS, 1 },
945 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
946 CPU_SVME_FLAGS, 0 },
947 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
948 CPU_SSE4A_FLAGS, 0 },
949 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
950 CPU_ABM_FLAGS, 0 },
951 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
952 CPU_BMI_FLAGS, 0 },
953 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
954 CPU_TBM_FLAGS, 0 },
955 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
956 CPU_ADX_FLAGS, 0 },
957 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
958 CPU_RDSEED_FLAGS, 0 },
959 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
960 CPU_PRFCHW_FLAGS, 0 },
961 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
962 CPU_SMAP_FLAGS, 0 },
963 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
964 CPU_MPX_FLAGS, 0 },
965 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
966 CPU_SHA_FLAGS, 0 },
967 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
968 CPU_CLFLUSHOPT_FLAGS, 0 },
969 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
970 CPU_PREFETCHWT1_FLAGS, 0 },
971 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
972 CPU_SE1_FLAGS, 0 },
973 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
974 CPU_CLWB_FLAGS, 0 },
975 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
976 CPU_AVX512IFMA_FLAGS, 0 },
977 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
978 CPU_AVX512VBMI_FLAGS, 0 },
979 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
980 CPU_AVX512_4FMAPS_FLAGS, 0 },
981 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
982 CPU_AVX512_4VNNIW_FLAGS, 0 },
983 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
984 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
985 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
986 CPU_AVX512_VBMI2_FLAGS, 0 },
987 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
988 CPU_AVX512_VNNI_FLAGS, 0 },
989 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
990 CPU_AVX512_BITALG_FLAGS, 0 },
991 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
992 CPU_CLZERO_FLAGS, 0 },
993 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
994 CPU_MWAITX_FLAGS, 0 },
995 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
996 CPU_OSPKE_FLAGS, 0 },
997 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
998 CPU_RDPID_FLAGS, 0 },
999 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1000 CPU_PTWRITE_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".cet"), PROCESSOR_UNKNOWN,
1002 CPU_CET_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1004 CPU_GFNI_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1006 CPU_VAES_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1008 CPU_VPCLMULQDQ_FLAGS, 0 },
1009 };
1010
1011 static const noarch_entry cpu_noarch[] =
1012 {
1013 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1014 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1015 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1016 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1017 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1018 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1019 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1020 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1021 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1022 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1023 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1024 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1025 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1026 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1027 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1028 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1029 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1030 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1031 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1032 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1033 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1034 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1035 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1036 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1037 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1038 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1039 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1040 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1041 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1042 };
1043
1044 #ifdef I386COFF
1045 /* Like s_lcomm_internal in gas/read.c but the alignment string
1046 is allowed to be optional. */
1047
1048 static symbolS *
1049 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1050 {
1051 addressT align = 0;
1052
1053 SKIP_WHITESPACE ();
1054
1055 if (needs_align
1056 && *input_line_pointer == ',')
1057 {
1058 align = parse_align (needs_align - 1);
1059
1060 if (align == (addressT) -1)
1061 return NULL;
1062 }
1063 else
1064 {
1065 if (size >= 8)
1066 align = 3;
1067 else if (size >= 4)
1068 align = 2;
1069 else if (size >= 2)
1070 align = 1;
1071 else
1072 align = 0;
1073 }
1074
1075 bss_alloc (symbolP, size, align);
1076 return symbolP;
1077 }
1078
1079 static void
1080 pe_lcomm (int needs_align)
1081 {
1082 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1083 }
1084 #endif
1085
1086 const pseudo_typeS md_pseudo_table[] =
1087 {
1088 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1089 {"align", s_align_bytes, 0},
1090 #else
1091 {"align", s_align_ptwo, 0},
1092 #endif
1093 {"arch", set_cpu_arch, 0},
1094 #ifndef I386COFF
1095 {"bss", s_bss, 0},
1096 #else
1097 {"lcomm", pe_lcomm, 1},
1098 #endif
1099 {"ffloat", float_cons, 'f'},
1100 {"dfloat", float_cons, 'd'},
1101 {"tfloat", float_cons, 'x'},
1102 {"value", cons, 2},
1103 {"slong", signed_cons, 4},
1104 {"noopt", s_ignore, 0},
1105 {"optim", s_ignore, 0},
1106 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1107 {"code16", set_code_flag, CODE_16BIT},
1108 {"code32", set_code_flag, CODE_32BIT},
1109 #ifdef BFD64
1110 {"code64", set_code_flag, CODE_64BIT},
1111 #endif
1112 {"intel_syntax", set_intel_syntax, 1},
1113 {"att_syntax", set_intel_syntax, 0},
1114 {"intel_mnemonic", set_intel_mnemonic, 1},
1115 {"att_mnemonic", set_intel_mnemonic, 0},
1116 {"allow_index_reg", set_allow_index_reg, 1},
1117 {"disallow_index_reg", set_allow_index_reg, 0},
1118 {"sse_check", set_check, 0},
1119 {"operand_check", set_check, 1},
1120 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1121 {"largecomm", handle_large_common, 0},
1122 #else
1123 {"file", (void (*) (int)) dwarf2_directive_file, 0},
1124 {"loc", dwarf2_directive_loc, 0},
1125 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1126 #endif
1127 #ifdef TE_PE
1128 {"secrel32", pe_directive_secrel, 0},
1129 #endif
1130 {0, 0, 0}
1131 };
1132
1133 /* For interface with expression (). */
1134 extern char *input_line_pointer;
1135
1136 /* Hash table for instruction mnemonic lookup. */
1137 static struct hash_control *op_hash;
1138
1139 /* Hash table for register lookup. */
1140 static struct hash_control *reg_hash;
1141 \f
1142 void
1143 i386_align_code (fragS *fragP, int count)
1144 {
1145 /* Various efficient no-op patterns for aligning code labels.
1146 Note: Don't try to assemble the instructions in the comments.
1147 0L and 0w are not legal. */
1148 static const unsigned char f32_1[] =
1149 {0x90}; /* nop */
1150 static const unsigned char f32_2[] =
1151 {0x66,0x90}; /* xchg %ax,%ax */
1152 static const unsigned char f32_3[] =
1153 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1154 static const unsigned char f32_4[] =
1155 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1156 static const unsigned char f32_5[] =
1157 {0x90, /* nop */
1158 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1159 static const unsigned char f32_6[] =
1160 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1161 static const unsigned char f32_7[] =
1162 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1163 static const unsigned char f32_8[] =
1164 {0x90, /* nop */
1165 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1166 static const unsigned char f32_9[] =
1167 {0x89,0xf6, /* movl %esi,%esi */
1168 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1169 static const unsigned char f32_10[] =
1170 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1171 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1172 static const unsigned char f32_11[] =
1173 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1174 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1175 static const unsigned char f32_12[] =
1176 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1177 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1178 static const unsigned char f32_13[] =
1179 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1180 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1181 static const unsigned char f32_14[] =
1182 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1183 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1184 static const unsigned char f16_3[] =
1185 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1186 static const unsigned char f16_4[] =
1187 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1188 static const unsigned char f16_5[] =
1189 {0x90, /* nop */
1190 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1191 static const unsigned char f16_6[] =
1192 {0x89,0xf6, /* mov %si,%si */
1193 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1194 static const unsigned char f16_7[] =
1195 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1196 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1197 static const unsigned char f16_8[] =
1198 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1199 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1200 static const unsigned char jump_31[] =
1201 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1202 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1203 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1204 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1205 static const unsigned char *const f32_patt[] = {
1206 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1207 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1208 };
1209 static const unsigned char *const f16_patt[] = {
1210 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1211 };
1212 /* nopl (%[re]ax) */
1213 static const unsigned char alt_3[] =
1214 {0x0f,0x1f,0x00};
1215 /* nopl 0(%[re]ax) */
1216 static const unsigned char alt_4[] =
1217 {0x0f,0x1f,0x40,0x00};
1218 /* nopl 0(%[re]ax,%[re]ax,1) */
1219 static const unsigned char alt_5[] =
1220 {0x0f,0x1f,0x44,0x00,0x00};
1221 /* nopw 0(%[re]ax,%[re]ax,1) */
1222 static const unsigned char alt_6[] =
1223 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1224 /* nopl 0L(%[re]ax) */
1225 static const unsigned char alt_7[] =
1226 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1227 /* nopl 0L(%[re]ax,%[re]ax,1) */
1228 static const unsigned char alt_8[] =
1229 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1230 /* nopw 0L(%[re]ax,%[re]ax,1) */
1231 static const unsigned char alt_9[] =
1232 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1233 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1234 static const unsigned char alt_10[] =
1235 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1236 static const unsigned char *const alt_patt[] = {
1237 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1238 alt_9, alt_10
1239 };
1240
1241 /* Only align for at least a positive non-zero boundary. */
1242 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1243 return;
1244
1245 /* We need to decide which NOP sequence to use for 32bit and
1246 64bit. When -mtune= is used:
1247
1248 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1249 PROCESSOR_GENERIC32, f32_patt will be used.
1250 2. For the rest, alt_patt will be used.
1251
1252 When -mtune= isn't used, alt_patt will be used if
1253 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1254 be used.
1255
1256 When -march= or .arch is used, we can't use anything beyond
1257 cpu_arch_isa_flags. */
1258
1259 if (flag_code == CODE_16BIT)
1260 {
1261 if (count > 8)
1262 {
1263 memcpy (fragP->fr_literal + fragP->fr_fix,
1264 jump_31, count);
1265 /* Adjust jump offset. */
1266 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1267 }
1268 else
1269 memcpy (fragP->fr_literal + fragP->fr_fix,
1270 f16_patt[count - 1], count);
1271 }
1272 else
1273 {
1274 const unsigned char *const *patt = NULL;
1275
1276 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1277 {
1278 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1279 switch (cpu_arch_tune)
1280 {
1281 case PROCESSOR_UNKNOWN:
1282 /* We use cpu_arch_isa_flags to check if we SHOULD
1283 optimize with nops. */
1284 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1285 patt = alt_patt;
1286 else
1287 patt = f32_patt;
1288 break;
1289 case PROCESSOR_PENTIUM4:
1290 case PROCESSOR_NOCONA:
1291 case PROCESSOR_CORE:
1292 case PROCESSOR_CORE2:
1293 case PROCESSOR_COREI7:
1294 case PROCESSOR_L1OM:
1295 case PROCESSOR_K1OM:
1296 case PROCESSOR_GENERIC64:
1297 case PROCESSOR_K6:
1298 case PROCESSOR_ATHLON:
1299 case PROCESSOR_K8:
1300 case PROCESSOR_AMDFAM10:
1301 case PROCESSOR_BD:
1302 case PROCESSOR_ZNVER:
1303 case PROCESSOR_BT:
1304 patt = alt_patt;
1305 break;
1306 case PROCESSOR_I386:
1307 case PROCESSOR_I486:
1308 case PROCESSOR_PENTIUM:
1309 case PROCESSOR_PENTIUMPRO:
1310 case PROCESSOR_IAMCU:
1311 case PROCESSOR_GENERIC32:
1312 patt = f32_patt;
1313 break;
1314 }
1315 }
1316 else
1317 {
1318 switch (fragP->tc_frag_data.tune)
1319 {
1320 case PROCESSOR_UNKNOWN:
1321 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1322 PROCESSOR_UNKNOWN. */
1323 abort ();
1324 break;
1325
1326 case PROCESSOR_I386:
1327 case PROCESSOR_I486:
1328 case PROCESSOR_PENTIUM:
1329 case PROCESSOR_IAMCU:
1330 case PROCESSOR_K6:
1331 case PROCESSOR_ATHLON:
1332 case PROCESSOR_K8:
1333 case PROCESSOR_AMDFAM10:
1334 case PROCESSOR_BD:
1335 case PROCESSOR_ZNVER:
1336 case PROCESSOR_BT:
1337 case PROCESSOR_GENERIC32:
1338 /* We use cpu_arch_isa_flags to check if we CAN optimize
1339 with nops. */
1340 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1341 patt = alt_patt;
1342 else
1343 patt = f32_patt;
1344 break;
1345 case PROCESSOR_PENTIUMPRO:
1346 case PROCESSOR_PENTIUM4:
1347 case PROCESSOR_NOCONA:
1348 case PROCESSOR_CORE:
1349 case PROCESSOR_CORE2:
1350 case PROCESSOR_COREI7:
1351 case PROCESSOR_L1OM:
1352 case PROCESSOR_K1OM:
1353 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1354 patt = alt_patt;
1355 else
1356 patt = f32_patt;
1357 break;
1358 case PROCESSOR_GENERIC64:
1359 patt = alt_patt;
1360 break;
1361 }
1362 }
1363
1364 if (patt == f32_patt)
1365 {
1366 /* If the padding is less than 15 bytes, we use the normal
1367 ones. Otherwise, we use a jump instruction and adjust
1368 its offset. */
1369 int limit;
1370
1371 /* For 64bit, the limit is 3 bytes. */
1372 if (flag_code == CODE_64BIT
1373 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1374 limit = 3;
1375 else
1376 limit = 15;
1377 if (count < limit)
1378 memcpy (fragP->fr_literal + fragP->fr_fix,
1379 patt[count - 1], count);
1380 else
1381 {
1382 memcpy (fragP->fr_literal + fragP->fr_fix,
1383 jump_31, count);
1384 /* Adjust jump offset. */
1385 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1386 }
1387 }
1388 else
1389 {
1390 /* Maximum length of an instruction is 10 byte. If the
1391 padding is greater than 10 bytes and we don't use jump,
1392 we have to break it into smaller pieces. */
1393 int padding = count;
1394 while (padding > 10)
1395 {
1396 padding -= 10;
1397 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1398 patt [9], 10);
1399 }
1400
1401 if (padding)
1402 memcpy (fragP->fr_literal + fragP->fr_fix,
1403 patt [padding - 1], padding);
1404 }
1405 }
1406 fragP->fr_var = count;
1407 }
1408
1409 static INLINE int
1410 operand_type_all_zero (const union i386_operand_type *x)
1411 {
1412 switch (ARRAY_SIZE(x->array))
1413 {
1414 case 3:
1415 if (x->array[2])
1416 return 0;
1417 /* Fall through. */
1418 case 2:
1419 if (x->array[1])
1420 return 0;
1421 /* Fall through. */
1422 case 1:
1423 return !x->array[0];
1424 default:
1425 abort ();
1426 }
1427 }
1428
1429 static INLINE void
1430 operand_type_set (union i386_operand_type *x, unsigned int v)
1431 {
1432 switch (ARRAY_SIZE(x->array))
1433 {
1434 case 3:
1435 x->array[2] = v;
1436 /* Fall through. */
1437 case 2:
1438 x->array[1] = v;
1439 /* Fall through. */
1440 case 1:
1441 x->array[0] = v;
1442 /* Fall through. */
1443 break;
1444 default:
1445 abort ();
1446 }
1447 }
1448
1449 static INLINE int
1450 operand_type_equal (const union i386_operand_type *x,
1451 const union i386_operand_type *y)
1452 {
1453 switch (ARRAY_SIZE(x->array))
1454 {
1455 case 3:
1456 if (x->array[2] != y->array[2])
1457 return 0;
1458 /* Fall through. */
1459 case 2:
1460 if (x->array[1] != y->array[1])
1461 return 0;
1462 /* Fall through. */
1463 case 1:
1464 return x->array[0] == y->array[0];
1465 break;
1466 default:
1467 abort ();
1468 }
1469 }
1470
1471 static INLINE int
1472 cpu_flags_all_zero (const union i386_cpu_flags *x)
1473 {
1474 switch (ARRAY_SIZE(x->array))
1475 {
1476 case 4:
1477 if (x->array[3])
1478 return 0;
1479 /* Fall through. */
1480 case 3:
1481 if (x->array[2])
1482 return 0;
1483 /* Fall through. */
1484 case 2:
1485 if (x->array[1])
1486 return 0;
1487 /* Fall through. */
1488 case 1:
1489 return !x->array[0];
1490 default:
1491 abort ();
1492 }
1493 }
1494
1495 static INLINE int
1496 cpu_flags_equal (const union i386_cpu_flags *x,
1497 const union i386_cpu_flags *y)
1498 {
1499 switch (ARRAY_SIZE(x->array))
1500 {
1501 case 4:
1502 if (x->array[3] != y->array[3])
1503 return 0;
1504 /* Fall through. */
1505 case 3:
1506 if (x->array[2] != y->array[2])
1507 return 0;
1508 /* Fall through. */
1509 case 2:
1510 if (x->array[1] != y->array[1])
1511 return 0;
1512 /* Fall through. */
1513 case 1:
1514 return x->array[0] == y->array[0];
1515 break;
1516 default:
1517 abort ();
1518 }
1519 }
1520
1521 static INLINE int
1522 cpu_flags_check_cpu64 (i386_cpu_flags f)
1523 {
1524 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1525 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1526 }
1527
1528 static INLINE i386_cpu_flags
1529 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1530 {
1531 switch (ARRAY_SIZE (x.array))
1532 {
1533 case 4:
1534 x.array [3] &= y.array [3];
1535 /* Fall through. */
1536 case 3:
1537 x.array [2] &= y.array [2];
1538 /* Fall through. */
1539 case 2:
1540 x.array [1] &= y.array [1];
1541 /* Fall through. */
1542 case 1:
1543 x.array [0] &= y.array [0];
1544 break;
1545 default:
1546 abort ();
1547 }
1548 return x;
1549 }
1550
1551 static INLINE i386_cpu_flags
1552 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1553 {
1554 switch (ARRAY_SIZE (x.array))
1555 {
1556 case 4:
1557 x.array [3] |= y.array [3];
1558 /* Fall through. */
1559 case 3:
1560 x.array [2] |= y.array [2];
1561 /* Fall through. */
1562 case 2:
1563 x.array [1] |= y.array [1];
1564 /* Fall through. */
1565 case 1:
1566 x.array [0] |= y.array [0];
1567 break;
1568 default:
1569 abort ();
1570 }
1571 return x;
1572 }
1573
1574 static INLINE i386_cpu_flags
1575 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1576 {
1577 switch (ARRAY_SIZE (x.array))
1578 {
1579 case 4:
1580 x.array [3] &= ~y.array [3];
1581 /* Fall through. */
1582 case 3:
1583 x.array [2] &= ~y.array [2];
1584 /* Fall through. */
1585 case 2:
1586 x.array [1] &= ~y.array [1];
1587 /* Fall through. */
1588 case 1:
1589 x.array [0] &= ~y.array [0];
1590 break;
1591 default:
1592 abort ();
1593 }
1594 return x;
1595 }
1596
1597 #define CPU_FLAGS_ARCH_MATCH 0x1
1598 #define CPU_FLAGS_64BIT_MATCH 0x2
1599 #define CPU_FLAGS_AES_MATCH 0x4
1600 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1601 #define CPU_FLAGS_AVX_MATCH 0x10
1602
1603 #define CPU_FLAGS_32BIT_MATCH \
1604 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1605 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1606 #define CPU_FLAGS_PERFECT_MATCH \
1607 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1608
1609 /* Return CPU flags match bits. */
1610
1611 static int
1612 cpu_flags_match (const insn_template *t)
1613 {
1614 i386_cpu_flags x = t->cpu_flags;
1615 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1616
1617 x.bitfield.cpu64 = 0;
1618 x.bitfield.cpuno64 = 0;
1619
1620 if (cpu_flags_all_zero (&x))
1621 {
1622 /* This instruction is available on all archs. */
1623 match |= CPU_FLAGS_32BIT_MATCH;
1624 }
1625 else
1626 {
1627 /* This instruction is available only on some archs. */
1628 i386_cpu_flags cpu = cpu_arch_flags;
1629
1630 cpu = cpu_flags_and (x, cpu);
1631 if (!cpu_flags_all_zero (&cpu))
1632 {
1633 if (x.bitfield.cpuavx)
1634 {
1635 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1636 if (cpu.bitfield.cpuavx)
1637 {
1638 /* Check SSE2AVX. */
1639 if (!t->opcode_modifier.sse2avx|| sse2avx)
1640 {
1641 match |= (CPU_FLAGS_ARCH_MATCH
1642 | CPU_FLAGS_AVX_MATCH);
1643 /* Check AES. */
1644 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1645 match |= CPU_FLAGS_AES_MATCH;
1646 /* Check PCLMUL. */
1647 if (!x.bitfield.cpupclmul
1648 || cpu.bitfield.cpupclmul)
1649 match |= CPU_FLAGS_PCLMUL_MATCH;
1650 }
1651 }
1652 else
1653 match |= CPU_FLAGS_ARCH_MATCH;
1654 }
1655 else if (x.bitfield.cpuavx512vl)
1656 {
1657 /* Match AVX512VL. */
1658 if (cpu.bitfield.cpuavx512vl)
1659 {
1660 /* Need another match. */
1661 cpu.bitfield.cpuavx512vl = 0;
1662 if (!cpu_flags_all_zero (&cpu))
1663 match |= CPU_FLAGS_32BIT_MATCH;
1664 else
1665 match |= CPU_FLAGS_ARCH_MATCH;
1666 }
1667 else
1668 match |= CPU_FLAGS_ARCH_MATCH;
1669 }
1670 else
1671 match |= CPU_FLAGS_32BIT_MATCH;
1672 }
1673 }
1674 return match;
1675 }
1676
1677 static INLINE i386_operand_type
1678 operand_type_and (i386_operand_type x, i386_operand_type y)
1679 {
1680 switch (ARRAY_SIZE (x.array))
1681 {
1682 case 3:
1683 x.array [2] &= y.array [2];
1684 /* Fall through. */
1685 case 2:
1686 x.array [1] &= y.array [1];
1687 /* Fall through. */
1688 case 1:
1689 x.array [0] &= y.array [0];
1690 break;
1691 default:
1692 abort ();
1693 }
1694 return x;
1695 }
1696
1697 static INLINE i386_operand_type
1698 operand_type_or (i386_operand_type x, i386_operand_type y)
1699 {
1700 switch (ARRAY_SIZE (x.array))
1701 {
1702 case 3:
1703 x.array [2] |= y.array [2];
1704 /* Fall through. */
1705 case 2:
1706 x.array [1] |= y.array [1];
1707 /* Fall through. */
1708 case 1:
1709 x.array [0] |= y.array [0];
1710 break;
1711 default:
1712 abort ();
1713 }
1714 return x;
1715 }
1716
1717 static INLINE i386_operand_type
1718 operand_type_xor (i386_operand_type x, i386_operand_type y)
1719 {
1720 switch (ARRAY_SIZE (x.array))
1721 {
1722 case 3:
1723 x.array [2] ^= y.array [2];
1724 /* Fall through. */
1725 case 2:
1726 x.array [1] ^= y.array [1];
1727 /* Fall through. */
1728 case 1:
1729 x.array [0] ^= y.array [0];
1730 break;
1731 default:
1732 abort ();
1733 }
1734 return x;
1735 }
1736
1737 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1738 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1739 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1740 static const i386_operand_type inoutportreg
1741 = OPERAND_TYPE_INOUTPORTREG;
1742 static const i386_operand_type reg16_inoutportreg
1743 = OPERAND_TYPE_REG16_INOUTPORTREG;
1744 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1745 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1746 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1747 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1748 static const i386_operand_type anydisp
1749 = OPERAND_TYPE_ANYDISP;
1750 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1751 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1752 static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1753 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1754 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1755 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1756 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1757 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1758 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1759 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1760 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1761 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1762 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1763 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1764
1765 enum operand_type
1766 {
1767 reg,
1768 imm,
1769 disp,
1770 anymem
1771 };
1772
1773 static INLINE int
1774 operand_type_check (i386_operand_type t, enum operand_type c)
1775 {
1776 switch (c)
1777 {
1778 case reg:
1779 return (t.bitfield.reg8
1780 || t.bitfield.reg16
1781 || t.bitfield.reg32
1782 || t.bitfield.reg64);
1783
1784 case imm:
1785 return (t.bitfield.imm8
1786 || t.bitfield.imm8s
1787 || t.bitfield.imm16
1788 || t.bitfield.imm32
1789 || t.bitfield.imm32s
1790 || t.bitfield.imm64);
1791
1792 case disp:
1793 return (t.bitfield.disp8
1794 || t.bitfield.disp16
1795 || t.bitfield.disp32
1796 || t.bitfield.disp32s
1797 || t.bitfield.disp64);
1798
1799 case anymem:
1800 return (t.bitfield.disp8
1801 || t.bitfield.disp16
1802 || t.bitfield.disp32
1803 || t.bitfield.disp32s
1804 || t.bitfield.disp64
1805 || t.bitfield.baseindex);
1806
1807 default:
1808 abort ();
1809 }
1810
1811 return 0;
1812 }
1813
1814 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1815 operand J for instruction template T. */
1816
1817 static INLINE int
1818 match_reg_size (const insn_template *t, unsigned int j)
1819 {
1820 return !((i.types[j].bitfield.byte
1821 && !t->operand_types[j].bitfield.byte)
1822 || (i.types[j].bitfield.word
1823 && !t->operand_types[j].bitfield.word)
1824 || (i.types[j].bitfield.dword
1825 && !t->operand_types[j].bitfield.dword)
1826 || (i.types[j].bitfield.qword
1827 && !t->operand_types[j].bitfield.qword));
1828 }
1829
1830 /* Return 1 if there is no conflict in any size on operand J for
1831 instruction template T. */
1832
1833 static INLINE int
1834 match_mem_size (const insn_template *t, unsigned int j)
1835 {
1836 return (match_reg_size (t, j)
1837 && !((i.types[j].bitfield.unspecified
1838 && !i.broadcast
1839 && !t->operand_types[j].bitfield.unspecified)
1840 || (i.types[j].bitfield.fword
1841 && !t->operand_types[j].bitfield.fword)
1842 || (i.types[j].bitfield.tbyte
1843 && !t->operand_types[j].bitfield.tbyte)
1844 || (i.types[j].bitfield.xmmword
1845 && !t->operand_types[j].bitfield.xmmword)
1846 || (i.types[j].bitfield.ymmword
1847 && !t->operand_types[j].bitfield.ymmword)
1848 || (i.types[j].bitfield.zmmword
1849 && !t->operand_types[j].bitfield.zmmword)));
1850 }
1851
1852 /* Return 1 if there is no size conflict on any operands for
1853 instruction template T. */
1854
1855 static INLINE int
1856 operand_size_match (const insn_template *t)
1857 {
1858 unsigned int j;
1859 int match = 1;
1860
1861 /* Don't check jump instructions. */
1862 if (t->opcode_modifier.jump
1863 || t->opcode_modifier.jumpbyte
1864 || t->opcode_modifier.jumpdword
1865 || t->opcode_modifier.jumpintersegment)
1866 return match;
1867
1868 /* Check memory and accumulator operand size. */
1869 for (j = 0; j < i.operands; j++)
1870 {
1871 if (t->operand_types[j].bitfield.anysize)
1872 continue;
1873
1874 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1875 {
1876 match = 0;
1877 break;
1878 }
1879
1880 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1881 {
1882 match = 0;
1883 break;
1884 }
1885 }
1886
1887 if (match)
1888 return match;
1889 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1890 {
1891 mismatch:
1892 i.error = operand_size_mismatch;
1893 return 0;
1894 }
1895
1896 /* Check reverse. */
1897 gas_assert (i.operands == 2);
1898
1899 match = 1;
1900 for (j = 0; j < 2; j++)
1901 {
1902 if (t->operand_types[j].bitfield.acc
1903 && !match_reg_size (t, j ? 0 : 1))
1904 goto mismatch;
1905
1906 if (i.types[j].bitfield.mem
1907 && !match_mem_size (t, j ? 0 : 1))
1908 goto mismatch;
1909 }
1910
1911 return match;
1912 }
1913
1914 static INLINE int
1915 operand_type_match (i386_operand_type overlap,
1916 i386_operand_type given)
1917 {
1918 i386_operand_type temp = overlap;
1919
1920 temp.bitfield.jumpabsolute = 0;
1921 temp.bitfield.unspecified = 0;
1922 temp.bitfield.byte = 0;
1923 temp.bitfield.word = 0;
1924 temp.bitfield.dword = 0;
1925 temp.bitfield.fword = 0;
1926 temp.bitfield.qword = 0;
1927 temp.bitfield.tbyte = 0;
1928 temp.bitfield.xmmword = 0;
1929 temp.bitfield.ymmword = 0;
1930 temp.bitfield.zmmword = 0;
1931 if (operand_type_all_zero (&temp))
1932 goto mismatch;
1933
1934 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1935 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1936 return 1;
1937
1938 mismatch:
1939 i.error = operand_type_mismatch;
1940 return 0;
1941 }
1942
1943 /* If given types g0 and g1 are registers they must be of the same type
1944 unless the expected operand type register overlap is null.
1945 Note that Acc in a template matches every size of reg. */
1946
1947 static INLINE int
1948 operand_type_register_match (i386_operand_type m0,
1949 i386_operand_type g0,
1950 i386_operand_type t0,
1951 i386_operand_type m1,
1952 i386_operand_type g1,
1953 i386_operand_type t1)
1954 {
1955 if (!operand_type_check (g0, reg))
1956 return 1;
1957
1958 if (!operand_type_check (g1, reg))
1959 return 1;
1960
1961 if (g0.bitfield.reg8 == g1.bitfield.reg8
1962 && g0.bitfield.reg16 == g1.bitfield.reg16
1963 && g0.bitfield.reg32 == g1.bitfield.reg32
1964 && g0.bitfield.reg64 == g1.bitfield.reg64)
1965 return 1;
1966
1967 if (m0.bitfield.acc)
1968 {
1969 t0.bitfield.reg8 = 1;
1970 t0.bitfield.reg16 = 1;
1971 t0.bitfield.reg32 = 1;
1972 t0.bitfield.reg64 = 1;
1973 }
1974
1975 if (m1.bitfield.acc)
1976 {
1977 t1.bitfield.reg8 = 1;
1978 t1.bitfield.reg16 = 1;
1979 t1.bitfield.reg32 = 1;
1980 t1.bitfield.reg64 = 1;
1981 }
1982
1983 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1984 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1985 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1986 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1987 return 1;
1988
1989 i.error = register_type_mismatch;
1990
1991 return 0;
1992 }
1993
1994 static INLINE unsigned int
1995 register_number (const reg_entry *r)
1996 {
1997 unsigned int nr = r->reg_num;
1998
1999 if (r->reg_flags & RegRex)
2000 nr += 8;
2001
2002 if (r->reg_flags & RegVRex)
2003 nr += 16;
2004
2005 return nr;
2006 }
2007
2008 static INLINE unsigned int
2009 mode_from_disp_size (i386_operand_type t)
2010 {
2011 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
2012 return 1;
2013 else if (t.bitfield.disp16
2014 || t.bitfield.disp32
2015 || t.bitfield.disp32s)
2016 return 2;
2017 else
2018 return 0;
2019 }
2020
2021 static INLINE int
2022 fits_in_signed_byte (addressT num)
2023 {
2024 return num + 0x80 <= 0xff;
2025 }
2026
2027 static INLINE int
2028 fits_in_unsigned_byte (addressT num)
2029 {
2030 return num <= 0xff;
2031 }
2032
2033 static INLINE int
2034 fits_in_unsigned_word (addressT num)
2035 {
2036 return num <= 0xffff;
2037 }
2038
2039 static INLINE int
2040 fits_in_signed_word (addressT num)
2041 {
2042 return num + 0x8000 <= 0xffff;
2043 }
2044
2045 static INLINE int
2046 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2047 {
2048 #ifndef BFD64
2049 return 1;
2050 #else
2051 return num + 0x80000000 <= 0xffffffff;
2052 #endif
2053 } /* fits_in_signed_long() */
2054
2055 static INLINE int
2056 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2057 {
2058 #ifndef BFD64
2059 return 1;
2060 #else
2061 return num <= 0xffffffff;
2062 #endif
2063 } /* fits_in_unsigned_long() */
2064
2065 static INLINE int
2066 fits_in_vec_disp8 (offsetT num)
2067 {
2068 int shift = i.memshift;
2069 unsigned int mask;
2070
2071 if (shift == -1)
2072 abort ();
2073
2074 mask = (1 << shift) - 1;
2075
2076 /* Return 0 if NUM isn't properly aligned. */
2077 if ((num & mask))
2078 return 0;
2079
2080 /* Check if NUM will fit in 8bit after shift. */
2081 return fits_in_signed_byte (num >> shift);
2082 }
2083
2084 static INLINE int
2085 fits_in_imm4 (offsetT num)
2086 {
2087 return (num & 0xf) == num;
2088 }
2089
2090 static i386_operand_type
2091 smallest_imm_type (offsetT num)
2092 {
2093 i386_operand_type t;
2094
2095 operand_type_set (&t, 0);
2096 t.bitfield.imm64 = 1;
2097
2098 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2099 {
2100 /* This code is disabled on the 486 because all the Imm1 forms
2101 in the opcode table are slower on the i486. They're the
2102 versions with the implicitly specified single-position
2103 displacement, which has another syntax if you really want to
2104 use that form. */
2105 t.bitfield.imm1 = 1;
2106 t.bitfield.imm8 = 1;
2107 t.bitfield.imm8s = 1;
2108 t.bitfield.imm16 = 1;
2109 t.bitfield.imm32 = 1;
2110 t.bitfield.imm32s = 1;
2111 }
2112 else if (fits_in_signed_byte (num))
2113 {
2114 t.bitfield.imm8 = 1;
2115 t.bitfield.imm8s = 1;
2116 t.bitfield.imm16 = 1;
2117 t.bitfield.imm32 = 1;
2118 t.bitfield.imm32s = 1;
2119 }
2120 else if (fits_in_unsigned_byte (num))
2121 {
2122 t.bitfield.imm8 = 1;
2123 t.bitfield.imm16 = 1;
2124 t.bitfield.imm32 = 1;
2125 t.bitfield.imm32s = 1;
2126 }
2127 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2128 {
2129 t.bitfield.imm16 = 1;
2130 t.bitfield.imm32 = 1;
2131 t.bitfield.imm32s = 1;
2132 }
2133 else if (fits_in_signed_long (num))
2134 {
2135 t.bitfield.imm32 = 1;
2136 t.bitfield.imm32s = 1;
2137 }
2138 else if (fits_in_unsigned_long (num))
2139 t.bitfield.imm32 = 1;
2140
2141 return t;
2142 }
2143
2144 static offsetT
2145 offset_in_range (offsetT val, int size)
2146 {
2147 addressT mask;
2148
2149 switch (size)
2150 {
2151 case 1: mask = ((addressT) 1 << 8) - 1; break;
2152 case 2: mask = ((addressT) 1 << 16) - 1; break;
2153 case 4: mask = ((addressT) 2 << 31) - 1; break;
2154 #ifdef BFD64
2155 case 8: mask = ((addressT) 2 << 63) - 1; break;
2156 #endif
2157 default: abort ();
2158 }
2159
2160 #ifdef BFD64
2161 /* If BFD64, sign extend val for 32bit address mode. */
2162 if (flag_code != CODE_64BIT
2163 || i.prefix[ADDR_PREFIX])
2164 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2165 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2166 #endif
2167
2168 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2169 {
2170 char buf1[40], buf2[40];
2171
2172 sprint_value (buf1, val);
2173 sprint_value (buf2, val & mask);
2174 as_warn (_("%s shortened to %s"), buf1, buf2);
2175 }
2176 return val & mask;
2177 }
2178
2179 enum PREFIX_GROUP
2180 {
2181 PREFIX_EXIST = 0,
2182 PREFIX_LOCK,
2183 PREFIX_REP,
2184 PREFIX_DS,
2185 PREFIX_OTHER
2186 };
2187
2188 /* Returns
2189 a. PREFIX_EXIST if attempting to add a prefix where one from the
2190 same class already exists.
2191 b. PREFIX_LOCK if lock prefix is added.
2192 c. PREFIX_REP if rep/repne prefix is added.
2193 d. PREFIX_DS if ds prefix is added.
2194 e. PREFIX_OTHER if other prefix is added.
2195 */
2196
2197 static enum PREFIX_GROUP
2198 add_prefix (unsigned int prefix)
2199 {
2200 enum PREFIX_GROUP ret = PREFIX_OTHER;
2201 unsigned int q;
2202
2203 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2204 && flag_code == CODE_64BIT)
2205 {
2206 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2207 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2208 && (prefix & (REX_R | REX_X | REX_B))))
2209 ret = PREFIX_EXIST;
2210 q = REX_PREFIX;
2211 }
2212 else
2213 {
2214 switch (prefix)
2215 {
2216 default:
2217 abort ();
2218
2219 case DS_PREFIX_OPCODE:
2220 ret = PREFIX_DS;
2221 /* Fall through. */
2222 case CS_PREFIX_OPCODE:
2223 case ES_PREFIX_OPCODE:
2224 case FS_PREFIX_OPCODE:
2225 case GS_PREFIX_OPCODE:
2226 case SS_PREFIX_OPCODE:
2227 q = SEG_PREFIX;
2228 break;
2229
2230 case REPNE_PREFIX_OPCODE:
2231 case REPE_PREFIX_OPCODE:
2232 q = REP_PREFIX;
2233 ret = PREFIX_REP;
2234 break;
2235
2236 case LOCK_PREFIX_OPCODE:
2237 q = LOCK_PREFIX;
2238 ret = PREFIX_LOCK;
2239 break;
2240
2241 case FWAIT_OPCODE:
2242 q = WAIT_PREFIX;
2243 break;
2244
2245 case ADDR_PREFIX_OPCODE:
2246 q = ADDR_PREFIX;
2247 break;
2248
2249 case DATA_PREFIX_OPCODE:
2250 q = DATA_PREFIX;
2251 break;
2252 }
2253 if (i.prefix[q] != 0)
2254 ret = PREFIX_EXIST;
2255 }
2256
2257 if (ret)
2258 {
2259 if (!i.prefix[q])
2260 ++i.prefixes;
2261 i.prefix[q] |= prefix;
2262 }
2263 else
2264 as_bad (_("same type of prefix used twice"));
2265
2266 return ret;
2267 }
2268
2269 static void
2270 update_code_flag (int value, int check)
2271 {
2272 PRINTF_LIKE ((*as_error));
2273
2274 flag_code = (enum flag_code) value;
2275 if (flag_code == CODE_64BIT)
2276 {
2277 cpu_arch_flags.bitfield.cpu64 = 1;
2278 cpu_arch_flags.bitfield.cpuno64 = 0;
2279 }
2280 else
2281 {
2282 cpu_arch_flags.bitfield.cpu64 = 0;
2283 cpu_arch_flags.bitfield.cpuno64 = 1;
2284 }
2285 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2286 {
2287 if (check)
2288 as_error = as_fatal;
2289 else
2290 as_error = as_bad;
2291 (*as_error) (_("64bit mode not supported on `%s'."),
2292 cpu_arch_name ? cpu_arch_name : default_arch);
2293 }
2294 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2295 {
2296 if (check)
2297 as_error = as_fatal;
2298 else
2299 as_error = as_bad;
2300 (*as_error) (_("32bit mode not supported on `%s'."),
2301 cpu_arch_name ? cpu_arch_name : default_arch);
2302 }
2303 stackop_size = '\0';
2304 }
2305
2306 static void
2307 set_code_flag (int value)
2308 {
2309 update_code_flag (value, 0);
2310 }
2311
2312 static void
2313 set_16bit_gcc_code_flag (int new_code_flag)
2314 {
2315 flag_code = (enum flag_code) new_code_flag;
2316 if (flag_code != CODE_16BIT)
2317 abort ();
2318 cpu_arch_flags.bitfield.cpu64 = 0;
2319 cpu_arch_flags.bitfield.cpuno64 = 1;
2320 stackop_size = LONG_MNEM_SUFFIX;
2321 }
2322
2323 static void
2324 set_intel_syntax (int syntax_flag)
2325 {
2326 /* Find out if register prefixing is specified. */
2327 int ask_naked_reg = 0;
2328
2329 SKIP_WHITESPACE ();
2330 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2331 {
2332 char *string;
2333 int e = get_symbol_name (&string);
2334
2335 if (strcmp (string, "prefix") == 0)
2336 ask_naked_reg = 1;
2337 else if (strcmp (string, "noprefix") == 0)
2338 ask_naked_reg = -1;
2339 else
2340 as_bad (_("bad argument to syntax directive."));
2341 (void) restore_line_pointer (e);
2342 }
2343 demand_empty_rest_of_line ();
2344
2345 intel_syntax = syntax_flag;
2346
2347 if (ask_naked_reg == 0)
2348 allow_naked_reg = (intel_syntax
2349 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2350 else
2351 allow_naked_reg = (ask_naked_reg < 0);
2352
2353 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2354
2355 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2356 identifier_chars['$'] = intel_syntax ? '$' : 0;
2357 register_prefix = allow_naked_reg ? "" : "%";
2358 }
2359
2360 static void
2361 set_intel_mnemonic (int mnemonic_flag)
2362 {
2363 intel_mnemonic = mnemonic_flag;
2364 }
2365
2366 static void
2367 set_allow_index_reg (int flag)
2368 {
2369 allow_index_reg = flag;
2370 }
2371
2372 static void
2373 set_check (int what)
2374 {
2375 enum check_kind *kind;
2376 const char *str;
2377
2378 if (what)
2379 {
2380 kind = &operand_check;
2381 str = "operand";
2382 }
2383 else
2384 {
2385 kind = &sse_check;
2386 str = "sse";
2387 }
2388
2389 SKIP_WHITESPACE ();
2390
2391 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2392 {
2393 char *string;
2394 int e = get_symbol_name (&string);
2395
2396 if (strcmp (string, "none") == 0)
2397 *kind = check_none;
2398 else if (strcmp (string, "warning") == 0)
2399 *kind = check_warning;
2400 else if (strcmp (string, "error") == 0)
2401 *kind = check_error;
2402 else
2403 as_bad (_("bad argument to %s_check directive."), str);
2404 (void) restore_line_pointer (e);
2405 }
2406 else
2407 as_bad (_("missing argument for %s_check directive"), str);
2408
2409 demand_empty_rest_of_line ();
2410 }
2411
2412 static void
2413 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2414 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2415 {
2416 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2417 static const char *arch;
2418
2419 /* Intel LIOM is only supported on ELF. */
2420 if (!IS_ELF)
2421 return;
2422
2423 if (!arch)
2424 {
2425 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2426 use default_arch. */
2427 arch = cpu_arch_name;
2428 if (!arch)
2429 arch = default_arch;
2430 }
2431
2432 /* If we are targeting Intel MCU, we must enable it. */
2433 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2434 || new_flag.bitfield.cpuiamcu)
2435 return;
2436
2437 /* If we are targeting Intel L1OM, we must enable it. */
2438 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2439 || new_flag.bitfield.cpul1om)
2440 return;
2441
2442 /* If we are targeting Intel K1OM, we must enable it. */
2443 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2444 || new_flag.bitfield.cpuk1om)
2445 return;
2446
2447 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2448 #endif
2449 }
2450
2451 static void
2452 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2453 {
2454 SKIP_WHITESPACE ();
2455
2456 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2457 {
2458 char *string;
2459 int e = get_symbol_name (&string);
2460 unsigned int j;
2461 i386_cpu_flags flags;
2462
2463 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2464 {
2465 if (strcmp (string, cpu_arch[j].name) == 0)
2466 {
2467 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2468
2469 if (*string != '.')
2470 {
2471 cpu_arch_name = cpu_arch[j].name;
2472 cpu_sub_arch_name = NULL;
2473 cpu_arch_flags = cpu_arch[j].flags;
2474 if (flag_code == CODE_64BIT)
2475 {
2476 cpu_arch_flags.bitfield.cpu64 = 1;
2477 cpu_arch_flags.bitfield.cpuno64 = 0;
2478 }
2479 else
2480 {
2481 cpu_arch_flags.bitfield.cpu64 = 0;
2482 cpu_arch_flags.bitfield.cpuno64 = 1;
2483 }
2484 cpu_arch_isa = cpu_arch[j].type;
2485 cpu_arch_isa_flags = cpu_arch[j].flags;
2486 if (!cpu_arch_tune_set)
2487 {
2488 cpu_arch_tune = cpu_arch_isa;
2489 cpu_arch_tune_flags = cpu_arch_isa_flags;
2490 }
2491 break;
2492 }
2493
2494 flags = cpu_flags_or (cpu_arch_flags,
2495 cpu_arch[j].flags);
2496
2497 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2498 {
2499 if (cpu_sub_arch_name)
2500 {
2501 char *name = cpu_sub_arch_name;
2502 cpu_sub_arch_name = concat (name,
2503 cpu_arch[j].name,
2504 (const char *) NULL);
2505 free (name);
2506 }
2507 else
2508 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2509 cpu_arch_flags = flags;
2510 cpu_arch_isa_flags = flags;
2511 }
2512 (void) restore_line_pointer (e);
2513 demand_empty_rest_of_line ();
2514 return;
2515 }
2516 }
2517
2518 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2519 {
2520 /* Disable an ISA extension. */
2521 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2522 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2523 {
2524 flags = cpu_flags_and_not (cpu_arch_flags,
2525 cpu_noarch[j].flags);
2526 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2527 {
2528 if (cpu_sub_arch_name)
2529 {
2530 char *name = cpu_sub_arch_name;
2531 cpu_sub_arch_name = concat (name, string,
2532 (const char *) NULL);
2533 free (name);
2534 }
2535 else
2536 cpu_sub_arch_name = xstrdup (string);
2537 cpu_arch_flags = flags;
2538 cpu_arch_isa_flags = flags;
2539 }
2540 (void) restore_line_pointer (e);
2541 demand_empty_rest_of_line ();
2542 return;
2543 }
2544
2545 j = ARRAY_SIZE (cpu_arch);
2546 }
2547
2548 if (j >= ARRAY_SIZE (cpu_arch))
2549 as_bad (_("no such architecture: `%s'"), string);
2550
2551 *input_line_pointer = e;
2552 }
2553 else
2554 as_bad (_("missing cpu architecture"));
2555
2556 no_cond_jump_promotion = 0;
2557 if (*input_line_pointer == ','
2558 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2559 {
2560 char *string;
2561 char e;
2562
2563 ++input_line_pointer;
2564 e = get_symbol_name (&string);
2565
2566 if (strcmp (string, "nojumps") == 0)
2567 no_cond_jump_promotion = 1;
2568 else if (strcmp (string, "jumps") == 0)
2569 ;
2570 else
2571 as_bad (_("no such architecture modifier: `%s'"), string);
2572
2573 (void) restore_line_pointer (e);
2574 }
2575
2576 demand_empty_rest_of_line ();
2577 }
2578
2579 enum bfd_architecture
2580 i386_arch (void)
2581 {
2582 if (cpu_arch_isa == PROCESSOR_L1OM)
2583 {
2584 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2585 || flag_code != CODE_64BIT)
2586 as_fatal (_("Intel L1OM is 64bit ELF only"));
2587 return bfd_arch_l1om;
2588 }
2589 else if (cpu_arch_isa == PROCESSOR_K1OM)
2590 {
2591 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2592 || flag_code != CODE_64BIT)
2593 as_fatal (_("Intel K1OM is 64bit ELF only"));
2594 return bfd_arch_k1om;
2595 }
2596 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2597 {
2598 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2599 || flag_code == CODE_64BIT)
2600 as_fatal (_("Intel MCU is 32bit ELF only"));
2601 return bfd_arch_iamcu;
2602 }
2603 else
2604 return bfd_arch_i386;
2605 }
2606
2607 unsigned long
2608 i386_mach (void)
2609 {
2610 if (!strncmp (default_arch, "x86_64", 6))
2611 {
2612 if (cpu_arch_isa == PROCESSOR_L1OM)
2613 {
2614 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2615 || default_arch[6] != '\0')
2616 as_fatal (_("Intel L1OM is 64bit ELF only"));
2617 return bfd_mach_l1om;
2618 }
2619 else if (cpu_arch_isa == PROCESSOR_K1OM)
2620 {
2621 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2622 || default_arch[6] != '\0')
2623 as_fatal (_("Intel K1OM is 64bit ELF only"));
2624 return bfd_mach_k1om;
2625 }
2626 else if (default_arch[6] == '\0')
2627 return bfd_mach_x86_64;
2628 else
2629 return bfd_mach_x64_32;
2630 }
2631 else if (!strcmp (default_arch, "i386")
2632 || !strcmp (default_arch, "iamcu"))
2633 {
2634 if (cpu_arch_isa == PROCESSOR_IAMCU)
2635 {
2636 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2637 as_fatal (_("Intel MCU is 32bit ELF only"));
2638 return bfd_mach_i386_iamcu;
2639 }
2640 else
2641 return bfd_mach_i386_i386;
2642 }
2643 else
2644 as_fatal (_("unknown architecture"));
2645 }
2646 \f
2647 void
2648 md_begin (void)
2649 {
2650 const char *hash_err;
2651
2652 /* Support pseudo prefixes like {disp32}. */
2653 lex_type ['{'] = LEX_BEGIN_NAME;
2654
2655 /* Initialize op_hash hash table. */
2656 op_hash = hash_new ();
2657
2658 {
2659 const insn_template *optab;
2660 templates *core_optab;
2661
2662 /* Setup for loop. */
2663 optab = i386_optab;
2664 core_optab = XNEW (templates);
2665 core_optab->start = optab;
2666
2667 while (1)
2668 {
2669 ++optab;
2670 if (optab->name == NULL
2671 || strcmp (optab->name, (optab - 1)->name) != 0)
2672 {
2673 /* different name --> ship out current template list;
2674 add to hash table; & begin anew. */
2675 core_optab->end = optab;
2676 hash_err = hash_insert (op_hash,
2677 (optab - 1)->name,
2678 (void *) core_optab);
2679 if (hash_err)
2680 {
2681 as_fatal (_("can't hash %s: %s"),
2682 (optab - 1)->name,
2683 hash_err);
2684 }
2685 if (optab->name == NULL)
2686 break;
2687 core_optab = XNEW (templates);
2688 core_optab->start = optab;
2689 }
2690 }
2691 }
2692
2693 /* Initialize reg_hash hash table. */
2694 reg_hash = hash_new ();
2695 {
2696 const reg_entry *regtab;
2697 unsigned int regtab_size = i386_regtab_size;
2698
2699 for (regtab = i386_regtab; regtab_size--; regtab++)
2700 {
2701 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2702 if (hash_err)
2703 as_fatal (_("can't hash %s: %s"),
2704 regtab->reg_name,
2705 hash_err);
2706 }
2707 }
2708
2709 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2710 {
2711 int c;
2712 char *p;
2713
2714 for (c = 0; c < 256; c++)
2715 {
2716 if (ISDIGIT (c))
2717 {
2718 digit_chars[c] = c;
2719 mnemonic_chars[c] = c;
2720 register_chars[c] = c;
2721 operand_chars[c] = c;
2722 }
2723 else if (ISLOWER (c))
2724 {
2725 mnemonic_chars[c] = c;
2726 register_chars[c] = c;
2727 operand_chars[c] = c;
2728 }
2729 else if (ISUPPER (c))
2730 {
2731 mnemonic_chars[c] = TOLOWER (c);
2732 register_chars[c] = mnemonic_chars[c];
2733 operand_chars[c] = c;
2734 }
2735 else if (c == '{' || c == '}')
2736 {
2737 mnemonic_chars[c] = c;
2738 operand_chars[c] = c;
2739 }
2740
2741 if (ISALPHA (c) || ISDIGIT (c))
2742 identifier_chars[c] = c;
2743 else if (c >= 128)
2744 {
2745 identifier_chars[c] = c;
2746 operand_chars[c] = c;
2747 }
2748 }
2749
2750 #ifdef LEX_AT
2751 identifier_chars['@'] = '@';
2752 #endif
2753 #ifdef LEX_QM
2754 identifier_chars['?'] = '?';
2755 operand_chars['?'] = '?';
2756 #endif
2757 digit_chars['-'] = '-';
2758 mnemonic_chars['_'] = '_';
2759 mnemonic_chars['-'] = '-';
2760 mnemonic_chars['.'] = '.';
2761 identifier_chars['_'] = '_';
2762 identifier_chars['.'] = '.';
2763
2764 for (p = operand_special_chars; *p != '\0'; p++)
2765 operand_chars[(unsigned char) *p] = *p;
2766 }
2767
2768 if (flag_code == CODE_64BIT)
2769 {
2770 #if defined (OBJ_COFF) && defined (TE_PE)
2771 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2772 ? 32 : 16);
2773 #else
2774 x86_dwarf2_return_column = 16;
2775 #endif
2776 x86_cie_data_alignment = -8;
2777 }
2778 else
2779 {
2780 x86_dwarf2_return_column = 8;
2781 x86_cie_data_alignment = -4;
2782 }
2783 }
2784
2785 void
2786 i386_print_statistics (FILE *file)
2787 {
2788 hash_print_statistics (file, "i386 opcode", op_hash);
2789 hash_print_statistics (file, "i386 register", reg_hash);
2790 }
2791 \f
2792 #ifdef DEBUG386
2793
2794 /* Debugging routines for md_assemble. */
2795 static void pte (insn_template *);
2796 static void pt (i386_operand_type);
2797 static void pe (expressionS *);
2798 static void ps (symbolS *);
2799
2800 static void
2801 pi (char *line, i386_insn *x)
2802 {
2803 unsigned int j;
2804
2805 fprintf (stdout, "%s: template ", line);
2806 pte (&x->tm);
2807 fprintf (stdout, " address: base %s index %s scale %x\n",
2808 x->base_reg ? x->base_reg->reg_name : "none",
2809 x->index_reg ? x->index_reg->reg_name : "none",
2810 x->log2_scale_factor);
2811 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2812 x->rm.mode, x->rm.reg, x->rm.regmem);
2813 fprintf (stdout, " sib: base %x index %x scale %x\n",
2814 x->sib.base, x->sib.index, x->sib.scale);
2815 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2816 (x->rex & REX_W) != 0,
2817 (x->rex & REX_R) != 0,
2818 (x->rex & REX_X) != 0,
2819 (x->rex & REX_B) != 0);
2820 for (j = 0; j < x->operands; j++)
2821 {
2822 fprintf (stdout, " #%d: ", j + 1);
2823 pt (x->types[j]);
2824 fprintf (stdout, "\n");
2825 if (x->types[j].bitfield.reg8
2826 || x->types[j].bitfield.reg16
2827 || x->types[j].bitfield.reg32
2828 || x->types[j].bitfield.reg64
2829 || x->types[j].bitfield.regmmx
2830 || x->types[j].bitfield.regxmm
2831 || x->types[j].bitfield.regymm
2832 || x->types[j].bitfield.regzmm
2833 || x->types[j].bitfield.sreg2
2834 || x->types[j].bitfield.sreg3
2835 || x->types[j].bitfield.control
2836 || x->types[j].bitfield.debug
2837 || x->types[j].bitfield.test)
2838 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2839 if (operand_type_check (x->types[j], imm))
2840 pe (x->op[j].imms);
2841 if (operand_type_check (x->types[j], disp))
2842 pe (x->op[j].disps);
2843 }
2844 }
2845
2846 static void
2847 pte (insn_template *t)
2848 {
2849 unsigned int j;
2850 fprintf (stdout, " %d operands ", t->operands);
2851 fprintf (stdout, "opcode %x ", t->base_opcode);
2852 if (t->extension_opcode != None)
2853 fprintf (stdout, "ext %x ", t->extension_opcode);
2854 if (t->opcode_modifier.d)
2855 fprintf (stdout, "D");
2856 if (t->opcode_modifier.w)
2857 fprintf (stdout, "W");
2858 fprintf (stdout, "\n");
2859 for (j = 0; j < t->operands; j++)
2860 {
2861 fprintf (stdout, " #%d type ", j + 1);
2862 pt (t->operand_types[j]);
2863 fprintf (stdout, "\n");
2864 }
2865 }
2866
2867 static void
2868 pe (expressionS *e)
2869 {
2870 fprintf (stdout, " operation %d\n", e->X_op);
2871 fprintf (stdout, " add_number %ld (%lx)\n",
2872 (long) e->X_add_number, (long) e->X_add_number);
2873 if (e->X_add_symbol)
2874 {
2875 fprintf (stdout, " add_symbol ");
2876 ps (e->X_add_symbol);
2877 fprintf (stdout, "\n");
2878 }
2879 if (e->X_op_symbol)
2880 {
2881 fprintf (stdout, " op_symbol ");
2882 ps (e->X_op_symbol);
2883 fprintf (stdout, "\n");
2884 }
2885 }
2886
2887 static void
2888 ps (symbolS *s)
2889 {
2890 fprintf (stdout, "%s type %s%s",
2891 S_GET_NAME (s),
2892 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2893 segment_name (S_GET_SEGMENT (s)));
2894 }
2895
2896 static struct type_name
2897 {
2898 i386_operand_type mask;
2899 const char *name;
2900 }
2901 const type_names[] =
2902 {
2903 { OPERAND_TYPE_REG8, "r8" },
2904 { OPERAND_TYPE_REG16, "r16" },
2905 { OPERAND_TYPE_REG32, "r32" },
2906 { OPERAND_TYPE_REG64, "r64" },
2907 { OPERAND_TYPE_IMM8, "i8" },
2908 { OPERAND_TYPE_IMM8, "i8s" },
2909 { OPERAND_TYPE_IMM16, "i16" },
2910 { OPERAND_TYPE_IMM32, "i32" },
2911 { OPERAND_TYPE_IMM32S, "i32s" },
2912 { OPERAND_TYPE_IMM64, "i64" },
2913 { OPERAND_TYPE_IMM1, "i1" },
2914 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2915 { OPERAND_TYPE_DISP8, "d8" },
2916 { OPERAND_TYPE_DISP16, "d16" },
2917 { OPERAND_TYPE_DISP32, "d32" },
2918 { OPERAND_TYPE_DISP32S, "d32s" },
2919 { OPERAND_TYPE_DISP64, "d64" },
2920 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
2921 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2922 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2923 { OPERAND_TYPE_CONTROL, "control reg" },
2924 { OPERAND_TYPE_TEST, "test reg" },
2925 { OPERAND_TYPE_DEBUG, "debug reg" },
2926 { OPERAND_TYPE_FLOATREG, "FReg" },
2927 { OPERAND_TYPE_FLOATACC, "FAcc" },
2928 { OPERAND_TYPE_SREG2, "SReg2" },
2929 { OPERAND_TYPE_SREG3, "SReg3" },
2930 { OPERAND_TYPE_ACC, "Acc" },
2931 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2932 { OPERAND_TYPE_REGMMX, "rMMX" },
2933 { OPERAND_TYPE_REGXMM, "rXMM" },
2934 { OPERAND_TYPE_REGYMM, "rYMM" },
2935 { OPERAND_TYPE_REGZMM, "rZMM" },
2936 { OPERAND_TYPE_REGMASK, "Mask reg" },
2937 { OPERAND_TYPE_ESSEG, "es" },
2938 };
2939
2940 static void
2941 pt (i386_operand_type t)
2942 {
2943 unsigned int j;
2944 i386_operand_type a;
2945
2946 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2947 {
2948 a = operand_type_and (t, type_names[j].mask);
2949 if (!operand_type_all_zero (&a))
2950 fprintf (stdout, "%s, ", type_names[j].name);
2951 }
2952 fflush (stdout);
2953 }
2954
2955 #endif /* DEBUG386 */
2956 \f
2957 static bfd_reloc_code_real_type
2958 reloc (unsigned int size,
2959 int pcrel,
2960 int sign,
2961 bfd_reloc_code_real_type other)
2962 {
2963 if (other != NO_RELOC)
2964 {
2965 reloc_howto_type *rel;
2966
2967 if (size == 8)
2968 switch (other)
2969 {
2970 case BFD_RELOC_X86_64_GOT32:
2971 return BFD_RELOC_X86_64_GOT64;
2972 break;
2973 case BFD_RELOC_X86_64_GOTPLT64:
2974 return BFD_RELOC_X86_64_GOTPLT64;
2975 break;
2976 case BFD_RELOC_X86_64_PLTOFF64:
2977 return BFD_RELOC_X86_64_PLTOFF64;
2978 break;
2979 case BFD_RELOC_X86_64_GOTPC32:
2980 other = BFD_RELOC_X86_64_GOTPC64;
2981 break;
2982 case BFD_RELOC_X86_64_GOTPCREL:
2983 other = BFD_RELOC_X86_64_GOTPCREL64;
2984 break;
2985 case BFD_RELOC_X86_64_TPOFF32:
2986 other = BFD_RELOC_X86_64_TPOFF64;
2987 break;
2988 case BFD_RELOC_X86_64_DTPOFF32:
2989 other = BFD_RELOC_X86_64_DTPOFF64;
2990 break;
2991 default:
2992 break;
2993 }
2994
2995 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2996 if (other == BFD_RELOC_SIZE32)
2997 {
2998 if (size == 8)
2999 other = BFD_RELOC_SIZE64;
3000 if (pcrel)
3001 {
3002 as_bad (_("there are no pc-relative size relocations"));
3003 return NO_RELOC;
3004 }
3005 }
3006 #endif
3007
3008 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3009 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3010 sign = -1;
3011
3012 rel = bfd_reloc_type_lookup (stdoutput, other);
3013 if (!rel)
3014 as_bad (_("unknown relocation (%u)"), other);
3015 else if (size != bfd_get_reloc_size (rel))
3016 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3017 bfd_get_reloc_size (rel),
3018 size);
3019 else if (pcrel && !rel->pc_relative)
3020 as_bad (_("non-pc-relative relocation for pc-relative field"));
3021 else if ((rel->complain_on_overflow == complain_overflow_signed
3022 && !sign)
3023 || (rel->complain_on_overflow == complain_overflow_unsigned
3024 && sign > 0))
3025 as_bad (_("relocated field and relocation type differ in signedness"));
3026 else
3027 return other;
3028 return NO_RELOC;
3029 }
3030
3031 if (pcrel)
3032 {
3033 if (!sign)
3034 as_bad (_("there are no unsigned pc-relative relocations"));
3035 switch (size)
3036 {
3037 case 1: return BFD_RELOC_8_PCREL;
3038 case 2: return BFD_RELOC_16_PCREL;
3039 case 4: return BFD_RELOC_32_PCREL;
3040 case 8: return BFD_RELOC_64_PCREL;
3041 }
3042 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3043 }
3044 else
3045 {
3046 if (sign > 0)
3047 switch (size)
3048 {
3049 case 4: return BFD_RELOC_X86_64_32S;
3050 }
3051 else
3052 switch (size)
3053 {
3054 case 1: return BFD_RELOC_8;
3055 case 2: return BFD_RELOC_16;
3056 case 4: return BFD_RELOC_32;
3057 case 8: return BFD_RELOC_64;
3058 }
3059 as_bad (_("cannot do %s %u byte relocation"),
3060 sign > 0 ? "signed" : "unsigned", size);
3061 }
3062
3063 return NO_RELOC;
3064 }
3065
3066 /* Here we decide which fixups can be adjusted to make them relative to
3067 the beginning of the section instead of the symbol. Basically we need
3068 to make sure that the dynamic relocations are done correctly, so in
3069 some cases we force the original symbol to be used. */
3070
3071 int
3072 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3073 {
3074 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3075 if (!IS_ELF)
3076 return 1;
3077
3078 /* Don't adjust pc-relative references to merge sections in 64-bit
3079 mode. */
3080 if (use_rela_relocations
3081 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3082 && fixP->fx_pcrel)
3083 return 0;
3084
3085 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3086 and changed later by validate_fix. */
3087 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3088 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3089 return 0;
3090
3091 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3092 for size relocations. */
3093 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3094 || fixP->fx_r_type == BFD_RELOC_SIZE64
3095 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3096 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3097 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3098 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3099 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3100 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3101 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3102 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3103 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3104 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3105 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3106 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3107 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3108 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3109 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3110 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3111 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3112 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3113 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3114 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3115 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3116 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3117 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3118 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3119 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3120 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3121 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3122 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3123 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3124 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3125 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3126 return 0;
3127 #endif
3128 return 1;
3129 }
3130
3131 static int
3132 intel_float_operand (const char *mnemonic)
3133 {
3134 /* Note that the value returned is meaningful only for opcodes with (memory)
3135 operands, hence the code here is free to improperly handle opcodes that
3136 have no operands (for better performance and smaller code). */
3137
3138 if (mnemonic[0] != 'f')
3139 return 0; /* non-math */
3140
3141 switch (mnemonic[1])
3142 {
3143 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3144 the fs segment override prefix not currently handled because no
3145 call path can make opcodes without operands get here */
3146 case 'i':
3147 return 2 /* integer op */;
3148 case 'l':
3149 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3150 return 3; /* fldcw/fldenv */
3151 break;
3152 case 'n':
3153 if (mnemonic[2] != 'o' /* fnop */)
3154 return 3; /* non-waiting control op */
3155 break;
3156 case 'r':
3157 if (mnemonic[2] == 's')
3158 return 3; /* frstor/frstpm */
3159 break;
3160 case 's':
3161 if (mnemonic[2] == 'a')
3162 return 3; /* fsave */
3163 if (mnemonic[2] == 't')
3164 {
3165 switch (mnemonic[3])
3166 {
3167 case 'c': /* fstcw */
3168 case 'd': /* fstdw */
3169 case 'e': /* fstenv */
3170 case 's': /* fsts[gw] */
3171 return 3;
3172 }
3173 }
3174 break;
3175 case 'x':
3176 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3177 return 0; /* fxsave/fxrstor are not really math ops */
3178 break;
3179 }
3180
3181 return 1;
3182 }
3183
3184 /* Build the VEX prefix. */
3185
3186 static void
3187 build_vex_prefix (const insn_template *t)
3188 {
3189 unsigned int register_specifier;
3190 unsigned int implied_prefix;
3191 unsigned int vector_length;
3192
3193 /* Check register specifier. */
3194 if (i.vex.register_specifier)
3195 {
3196 register_specifier =
3197 ~register_number (i.vex.register_specifier) & 0xf;
3198 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3199 }
3200 else
3201 register_specifier = 0xf;
3202
3203 /* Use 2-byte VEX prefix by swapping destination and source
3204 operand. */
3205 if (i.vec_encoding != vex_encoding_vex3
3206 && i.dir_encoding == dir_encoding_default
3207 && i.operands == i.reg_operands
3208 && i.tm.opcode_modifier.vexopcode == VEX0F
3209 && i.tm.opcode_modifier.load
3210 && i.rex == REX_B)
3211 {
3212 unsigned int xchg = i.operands - 1;
3213 union i386_op temp_op;
3214 i386_operand_type temp_type;
3215
3216 temp_type = i.types[xchg];
3217 i.types[xchg] = i.types[0];
3218 i.types[0] = temp_type;
3219 temp_op = i.op[xchg];
3220 i.op[xchg] = i.op[0];
3221 i.op[0] = temp_op;
3222
3223 gas_assert (i.rm.mode == 3);
3224
3225 i.rex = REX_R;
3226 xchg = i.rm.regmem;
3227 i.rm.regmem = i.rm.reg;
3228 i.rm.reg = xchg;
3229
3230 /* Use the next insn. */
3231 i.tm = t[1];
3232 }
3233
3234 if (i.tm.opcode_modifier.vex == VEXScalar)
3235 vector_length = avxscalar;
3236 else
3237 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
3238
3239 switch ((i.tm.base_opcode >> 8) & 0xff)
3240 {
3241 case 0:
3242 implied_prefix = 0;
3243 break;
3244 case DATA_PREFIX_OPCODE:
3245 implied_prefix = 1;
3246 break;
3247 case REPE_PREFIX_OPCODE:
3248 implied_prefix = 2;
3249 break;
3250 case REPNE_PREFIX_OPCODE:
3251 implied_prefix = 3;
3252 break;
3253 default:
3254 abort ();
3255 }
3256
3257 /* Use 2-byte VEX prefix if possible. */
3258 if (i.vec_encoding != vex_encoding_vex3
3259 && i.tm.opcode_modifier.vexopcode == VEX0F
3260 && i.tm.opcode_modifier.vexw != VEXW1
3261 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3262 {
3263 /* 2-byte VEX prefix. */
3264 unsigned int r;
3265
3266 i.vex.length = 2;
3267 i.vex.bytes[0] = 0xc5;
3268
3269 /* Check the REX.R bit. */
3270 r = (i.rex & REX_R) ? 0 : 1;
3271 i.vex.bytes[1] = (r << 7
3272 | register_specifier << 3
3273 | vector_length << 2
3274 | implied_prefix);
3275 }
3276 else
3277 {
3278 /* 3-byte VEX prefix. */
3279 unsigned int m, w;
3280
3281 i.vex.length = 3;
3282
3283 switch (i.tm.opcode_modifier.vexopcode)
3284 {
3285 case VEX0F:
3286 m = 0x1;
3287 i.vex.bytes[0] = 0xc4;
3288 break;
3289 case VEX0F38:
3290 m = 0x2;
3291 i.vex.bytes[0] = 0xc4;
3292 break;
3293 case VEX0F3A:
3294 m = 0x3;
3295 i.vex.bytes[0] = 0xc4;
3296 break;
3297 case XOP08:
3298 m = 0x8;
3299 i.vex.bytes[0] = 0x8f;
3300 break;
3301 case XOP09:
3302 m = 0x9;
3303 i.vex.bytes[0] = 0x8f;
3304 break;
3305 case XOP0A:
3306 m = 0xa;
3307 i.vex.bytes[0] = 0x8f;
3308 break;
3309 default:
3310 abort ();
3311 }
3312
3313 /* The high 3 bits of the second VEX byte are 1's compliment
3314 of RXB bits from REX. */
3315 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3316
3317 /* Check the REX.W bit. */
3318 w = (i.rex & REX_W) ? 1 : 0;
3319 if (i.tm.opcode_modifier.vexw == VEXW1)
3320 w = 1;
3321
3322 i.vex.bytes[2] = (w << 7
3323 | register_specifier << 3
3324 | vector_length << 2
3325 | implied_prefix);
3326 }
3327 }
3328
3329 /* Build the EVEX prefix. */
3330
3331 static void
3332 build_evex_prefix (void)
3333 {
3334 unsigned int register_specifier;
3335 unsigned int implied_prefix;
3336 unsigned int m, w;
3337 rex_byte vrex_used = 0;
3338
3339 /* Check register specifier. */
3340 if (i.vex.register_specifier)
3341 {
3342 gas_assert ((i.vrex & REX_X) == 0);
3343
3344 register_specifier = i.vex.register_specifier->reg_num;
3345 if ((i.vex.register_specifier->reg_flags & RegRex))
3346 register_specifier += 8;
3347 /* The upper 16 registers are encoded in the fourth byte of the
3348 EVEX prefix. */
3349 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3350 i.vex.bytes[3] = 0x8;
3351 register_specifier = ~register_specifier & 0xf;
3352 }
3353 else
3354 {
3355 register_specifier = 0xf;
3356
3357 /* Encode upper 16 vector index register in the fourth byte of
3358 the EVEX prefix. */
3359 if (!(i.vrex & REX_X))
3360 i.vex.bytes[3] = 0x8;
3361 else
3362 vrex_used |= REX_X;
3363 }
3364
3365 switch ((i.tm.base_opcode >> 8) & 0xff)
3366 {
3367 case 0:
3368 implied_prefix = 0;
3369 break;
3370 case DATA_PREFIX_OPCODE:
3371 implied_prefix = 1;
3372 break;
3373 case REPE_PREFIX_OPCODE:
3374 implied_prefix = 2;
3375 break;
3376 case REPNE_PREFIX_OPCODE:
3377 implied_prefix = 3;
3378 break;
3379 default:
3380 abort ();
3381 }
3382
3383 /* 4 byte EVEX prefix. */
3384 i.vex.length = 4;
3385 i.vex.bytes[0] = 0x62;
3386
3387 /* mmmm bits. */
3388 switch (i.tm.opcode_modifier.vexopcode)
3389 {
3390 case VEX0F:
3391 m = 1;
3392 break;
3393 case VEX0F38:
3394 m = 2;
3395 break;
3396 case VEX0F3A:
3397 m = 3;
3398 break;
3399 default:
3400 abort ();
3401 break;
3402 }
3403
3404 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3405 bits from REX. */
3406 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3407
3408 /* The fifth bit of the second EVEX byte is 1's compliment of the
3409 REX_R bit in VREX. */
3410 if (!(i.vrex & REX_R))
3411 i.vex.bytes[1] |= 0x10;
3412 else
3413 vrex_used |= REX_R;
3414
3415 if ((i.reg_operands + i.imm_operands) == i.operands)
3416 {
3417 /* When all operands are registers, the REX_X bit in REX is not
3418 used. We reuse it to encode the upper 16 registers, which is
3419 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3420 as 1's compliment. */
3421 if ((i.vrex & REX_B))
3422 {
3423 vrex_used |= REX_B;
3424 i.vex.bytes[1] &= ~0x40;
3425 }
3426 }
3427
3428 /* EVEX instructions shouldn't need the REX prefix. */
3429 i.vrex &= ~vrex_used;
3430 gas_assert (i.vrex == 0);
3431
3432 /* Check the REX.W bit. */
3433 w = (i.rex & REX_W) ? 1 : 0;
3434 if (i.tm.opcode_modifier.vexw)
3435 {
3436 if (i.tm.opcode_modifier.vexw == VEXW1)
3437 w = 1;
3438 }
3439 /* If w is not set it means we are dealing with WIG instruction. */
3440 else if (!w)
3441 {
3442 if (evexwig == evexw1)
3443 w = 1;
3444 }
3445
3446 /* Encode the U bit. */
3447 implied_prefix |= 0x4;
3448
3449 /* The third byte of the EVEX prefix. */
3450 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3451
3452 /* The fourth byte of the EVEX prefix. */
3453 /* The zeroing-masking bit. */
3454 if (i.mask && i.mask->zeroing)
3455 i.vex.bytes[3] |= 0x80;
3456
3457 /* Don't always set the broadcast bit if there is no RC. */
3458 if (!i.rounding)
3459 {
3460 /* Encode the vector length. */
3461 unsigned int vec_length;
3462
3463 switch (i.tm.opcode_modifier.evex)
3464 {
3465 case EVEXLIG: /* LL' is ignored */
3466 vec_length = evexlig << 5;
3467 break;
3468 case EVEX128:
3469 vec_length = 0 << 5;
3470 break;
3471 case EVEX256:
3472 vec_length = 1 << 5;
3473 break;
3474 case EVEX512:
3475 vec_length = 2 << 5;
3476 break;
3477 default:
3478 abort ();
3479 break;
3480 }
3481 i.vex.bytes[3] |= vec_length;
3482 /* Encode the broadcast bit. */
3483 if (i.broadcast)
3484 i.vex.bytes[3] |= 0x10;
3485 }
3486 else
3487 {
3488 if (i.rounding->type != saeonly)
3489 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3490 else
3491 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3492 }
3493
3494 if (i.mask && i.mask->mask)
3495 i.vex.bytes[3] |= i.mask->mask->reg_num;
3496 }
3497
3498 static void
3499 process_immext (void)
3500 {
3501 expressionS *exp;
3502
3503 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3504 && i.operands > 0)
3505 {
3506 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3507 with an opcode suffix which is coded in the same place as an
3508 8-bit immediate field would be.
3509 Here we check those operands and remove them afterwards. */
3510 unsigned int x;
3511
3512 for (x = 0; x < i.operands; x++)
3513 if (register_number (i.op[x].regs) != x)
3514 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3515 register_prefix, i.op[x].regs->reg_name, x + 1,
3516 i.tm.name);
3517
3518 i.operands = 0;
3519 }
3520
3521 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3522 {
3523 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3524 suffix which is coded in the same place as an 8-bit immediate
3525 field would be.
3526 Here we check those operands and remove them afterwards. */
3527 unsigned int x;
3528
3529 if (i.operands != 3)
3530 abort();
3531
3532 for (x = 0; x < 2; x++)
3533 if (register_number (i.op[x].regs) != x)
3534 goto bad_register_operand;
3535
3536 /* Check for third operand for mwaitx/monitorx insn. */
3537 if (register_number (i.op[x].regs)
3538 != (x + (i.tm.extension_opcode == 0xfb)))
3539 {
3540 bad_register_operand:
3541 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3542 register_prefix, i.op[x].regs->reg_name, x+1,
3543 i.tm.name);
3544 }
3545
3546 i.operands = 0;
3547 }
3548
3549 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3550 which is coded in the same place as an 8-bit immediate field
3551 would be. Here we fake an 8-bit immediate operand from the
3552 opcode suffix stored in tm.extension_opcode.
3553
3554 AVX instructions also use this encoding, for some of
3555 3 argument instructions. */
3556
3557 gas_assert (i.imm_operands <= 1
3558 && (i.operands <= 2
3559 || ((i.tm.opcode_modifier.vex
3560 || i.tm.opcode_modifier.evex)
3561 && i.operands <= 4)));
3562
3563 exp = &im_expressions[i.imm_operands++];
3564 i.op[i.operands].imms = exp;
3565 i.types[i.operands] = imm8;
3566 i.operands++;
3567 exp->X_op = O_constant;
3568 exp->X_add_number = i.tm.extension_opcode;
3569 i.tm.extension_opcode = None;
3570 }
3571
3572
3573 static int
3574 check_hle (void)
3575 {
3576 switch (i.tm.opcode_modifier.hleprefixok)
3577 {
3578 default:
3579 abort ();
3580 case HLEPrefixNone:
3581 as_bad (_("invalid instruction `%s' after `%s'"),
3582 i.tm.name, i.hle_prefix);
3583 return 0;
3584 case HLEPrefixLock:
3585 if (i.prefix[LOCK_PREFIX])
3586 return 1;
3587 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3588 return 0;
3589 case HLEPrefixAny:
3590 return 1;
3591 case HLEPrefixRelease:
3592 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3593 {
3594 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3595 i.tm.name);
3596 return 0;
3597 }
3598 if (i.mem_operands == 0
3599 || !operand_type_check (i.types[i.operands - 1], anymem))
3600 {
3601 as_bad (_("memory destination needed for instruction `%s'"
3602 " after `xrelease'"), i.tm.name);
3603 return 0;
3604 }
3605 return 1;
3606 }
3607 }
3608
3609 /* This is the guts of the machine-dependent assembler. LINE points to a
3610 machine dependent instruction. This function is supposed to emit
3611 the frags/bytes it assembles to. */
3612
3613 void
3614 md_assemble (char *line)
3615 {
3616 unsigned int j;
3617 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
3618 const insn_template *t;
3619
3620 /* Initialize globals. */
3621 memset (&i, '\0', sizeof (i));
3622 for (j = 0; j < MAX_OPERANDS; j++)
3623 i.reloc[j] = NO_RELOC;
3624 memset (disp_expressions, '\0', sizeof (disp_expressions));
3625 memset (im_expressions, '\0', sizeof (im_expressions));
3626 save_stack_p = save_stack;
3627
3628 /* First parse an instruction mnemonic & call i386_operand for the operands.
3629 We assume that the scrubber has arranged it so that line[0] is the valid
3630 start of a (possibly prefixed) mnemonic. */
3631
3632 line = parse_insn (line, mnemonic);
3633 if (line == NULL)
3634 return;
3635 mnem_suffix = i.suffix;
3636
3637 line = parse_operands (line, mnemonic);
3638 this_operand = -1;
3639 xfree (i.memop1_string);
3640 i.memop1_string = NULL;
3641 if (line == NULL)
3642 return;
3643
3644 /* Now we've parsed the mnemonic into a set of templates, and have the
3645 operands at hand. */
3646
3647 /* All intel opcodes have reversed operands except for "bound" and
3648 "enter". We also don't reverse intersegment "jmp" and "call"
3649 instructions with 2 immediate operands so that the immediate segment
3650 precedes the offset, as it does when in AT&T mode. */
3651 if (intel_syntax
3652 && i.operands > 1
3653 && (strcmp (mnemonic, "bound") != 0)
3654 && (strcmp (mnemonic, "invlpga") != 0)
3655 && !(operand_type_check (i.types[0], imm)
3656 && operand_type_check (i.types[1], imm)))
3657 swap_operands ();
3658
3659 /* The order of the immediates should be reversed
3660 for 2 immediates extrq and insertq instructions */
3661 if (i.imm_operands == 2
3662 && (strcmp (mnemonic, "extrq") == 0
3663 || strcmp (mnemonic, "insertq") == 0))
3664 swap_2_operands (0, 1);
3665
3666 if (i.imm_operands)
3667 optimize_imm ();
3668
3669 /* Don't optimize displacement for movabs since it only takes 64bit
3670 displacement. */
3671 if (i.disp_operands
3672 && i.disp_encoding != disp_encoding_32bit
3673 && (flag_code != CODE_64BIT
3674 || strcmp (mnemonic, "movabs") != 0))
3675 optimize_disp ();
3676
3677 /* Next, we find a template that matches the given insn,
3678 making sure the overlap of the given operands types is consistent
3679 with the template operand types. */
3680
3681 if (!(t = match_template (mnem_suffix)))
3682 return;
3683
3684 if (sse_check != check_none
3685 && !i.tm.opcode_modifier.noavx
3686 && (i.tm.cpu_flags.bitfield.cpusse
3687 || i.tm.cpu_flags.bitfield.cpusse2
3688 || i.tm.cpu_flags.bitfield.cpusse3
3689 || i.tm.cpu_flags.bitfield.cpussse3
3690 || i.tm.cpu_flags.bitfield.cpusse4_1
3691 || i.tm.cpu_flags.bitfield.cpusse4_2))
3692 {
3693 (sse_check == check_warning
3694 ? as_warn
3695 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3696 }
3697
3698 /* Zap movzx and movsx suffix. The suffix has been set from
3699 "word ptr" or "byte ptr" on the source operand in Intel syntax
3700 or extracted from mnemonic in AT&T syntax. But we'll use
3701 the destination register to choose the suffix for encoding. */
3702 if ((i.tm.base_opcode & ~9) == 0x0fb6)
3703 {
3704 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3705 there is no suffix, the default will be byte extension. */
3706 if (i.reg_operands != 2
3707 && !i.suffix
3708 && intel_syntax)
3709 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3710
3711 i.suffix = 0;
3712 }
3713
3714 if (i.tm.opcode_modifier.fwait)
3715 if (!add_prefix (FWAIT_OPCODE))
3716 return;
3717
3718 /* Check if REP prefix is OK. */
3719 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3720 {
3721 as_bad (_("invalid instruction `%s' after `%s'"),
3722 i.tm.name, i.rep_prefix);
3723 return;
3724 }
3725
3726 /* Check for lock without a lockable instruction. Destination operand
3727 must be memory unless it is xchg (0x86). */
3728 if (i.prefix[LOCK_PREFIX]
3729 && (!i.tm.opcode_modifier.islockable
3730 || i.mem_operands == 0
3731 || (i.tm.base_opcode != 0x86
3732 && !operand_type_check (i.types[i.operands - 1], anymem))))
3733 {
3734 as_bad (_("expecting lockable instruction after `lock'"));
3735 return;
3736 }
3737
3738 /* Check if HLE prefix is OK. */
3739 if (i.hle_prefix && !check_hle ())
3740 return;
3741
3742 /* Check BND prefix. */
3743 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3744 as_bad (_("expecting valid branch instruction after `bnd'"));
3745
3746 /* Check NOTRACK prefix. */
3747 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
3748 as_bad (_("expecting indirect branch instruction after `notrack'"));
3749
3750 if (i.tm.cpu_flags.bitfield.cpumpx)
3751 {
3752 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
3753 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3754 else if (flag_code != CODE_16BIT
3755 ? i.prefix[ADDR_PREFIX]
3756 : i.mem_operands && !i.prefix[ADDR_PREFIX])
3757 as_bad (_("16-bit address isn't allowed in MPX instructions"));
3758 }
3759
3760 /* Insert BND prefix. */
3761 if (add_bnd_prefix
3762 && i.tm.opcode_modifier.bndprefixok
3763 && !i.prefix[BND_PREFIX])
3764 add_prefix (BND_PREFIX_OPCODE);
3765
3766 /* Check string instruction segment overrides. */
3767 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3768 {
3769 if (!check_string ())
3770 return;
3771 i.disp_operands = 0;
3772 }
3773
3774 if (!process_suffix ())
3775 return;
3776
3777 /* Update operand types. */
3778 for (j = 0; j < i.operands; j++)
3779 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3780
3781 /* Make still unresolved immediate matches conform to size of immediate
3782 given in i.suffix. */
3783 if (!finalize_imm ())
3784 return;
3785
3786 if (i.types[0].bitfield.imm1)
3787 i.imm_operands = 0; /* kludge for shift insns. */
3788
3789 /* We only need to check those implicit registers for instructions
3790 with 3 operands or less. */
3791 if (i.operands <= 3)
3792 for (j = 0; j < i.operands; j++)
3793 if (i.types[j].bitfield.inoutportreg
3794 || i.types[j].bitfield.shiftcount
3795 || i.types[j].bitfield.acc
3796 || i.types[j].bitfield.floatacc)
3797 i.reg_operands--;
3798
3799 /* ImmExt should be processed after SSE2AVX. */
3800 if (!i.tm.opcode_modifier.sse2avx
3801 && i.tm.opcode_modifier.immext)
3802 process_immext ();
3803
3804 /* For insns with operands there are more diddles to do to the opcode. */
3805 if (i.operands)
3806 {
3807 if (!process_operands ())
3808 return;
3809 }
3810 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3811 {
3812 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3813 as_warn (_("translating to `%sp'"), i.tm.name);
3814 }
3815
3816 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3817 {
3818 if (flag_code == CODE_16BIT)
3819 {
3820 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3821 i.tm.name);
3822 return;
3823 }
3824
3825 if (i.tm.opcode_modifier.vex)
3826 build_vex_prefix (t);
3827 else
3828 build_evex_prefix ();
3829 }
3830
3831 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3832 instructions may define INT_OPCODE as well, so avoid this corner
3833 case for those instructions that use MODRM. */
3834 if (i.tm.base_opcode == INT_OPCODE
3835 && !i.tm.opcode_modifier.modrm
3836 && i.op[0].imms->X_add_number == 3)
3837 {
3838 i.tm.base_opcode = INT3_OPCODE;
3839 i.imm_operands = 0;
3840 }
3841
3842 if ((i.tm.opcode_modifier.jump
3843 || i.tm.opcode_modifier.jumpbyte
3844 || i.tm.opcode_modifier.jumpdword)
3845 && i.op[0].disps->X_op == O_constant)
3846 {
3847 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3848 the absolute address given by the constant. Since ix86 jumps and
3849 calls are pc relative, we need to generate a reloc. */
3850 i.op[0].disps->X_add_symbol = &abs_symbol;
3851 i.op[0].disps->X_op = O_symbol;
3852 }
3853
3854 if (i.tm.opcode_modifier.rex64)
3855 i.rex |= REX_W;
3856
3857 /* For 8 bit registers we need an empty rex prefix. Also if the
3858 instruction already has a prefix, we need to convert old
3859 registers to new ones. */
3860
3861 if ((i.types[0].bitfield.reg8
3862 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3863 || (i.types[1].bitfield.reg8
3864 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3865 || ((i.types[0].bitfield.reg8
3866 || i.types[1].bitfield.reg8)
3867 && i.rex != 0))
3868 {
3869 int x;
3870
3871 i.rex |= REX_OPCODE;
3872 for (x = 0; x < 2; x++)
3873 {
3874 /* Look for 8 bit operand that uses old registers. */
3875 if (i.types[x].bitfield.reg8
3876 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3877 {
3878 /* In case it is "hi" register, give up. */
3879 if (i.op[x].regs->reg_num > 3)
3880 as_bad (_("can't encode register '%s%s' in an "
3881 "instruction requiring REX prefix."),
3882 register_prefix, i.op[x].regs->reg_name);
3883
3884 /* Otherwise it is equivalent to the extended register.
3885 Since the encoding doesn't change this is merely
3886 cosmetic cleanup for debug output. */
3887
3888 i.op[x].regs = i.op[x].regs + 8;
3889 }
3890 }
3891 }
3892
3893 if (i.rex != 0)
3894 add_prefix (REX_OPCODE | i.rex);
3895
3896 /* We are ready to output the insn. */
3897 output_insn ();
3898 }
3899
3900 static char *
3901 parse_insn (char *line, char *mnemonic)
3902 {
3903 char *l = line;
3904 char *token_start = l;
3905 char *mnem_p;
3906 int supported;
3907 const insn_template *t;
3908 char *dot_p = NULL;
3909
3910 while (1)
3911 {
3912 mnem_p = mnemonic;
3913 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3914 {
3915 if (*mnem_p == '.')
3916 dot_p = mnem_p;
3917 mnem_p++;
3918 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3919 {
3920 as_bad (_("no such instruction: `%s'"), token_start);
3921 return NULL;
3922 }
3923 l++;
3924 }
3925 if (!is_space_char (*l)
3926 && *l != END_OF_INSN
3927 && (intel_syntax
3928 || (*l != PREFIX_SEPARATOR
3929 && *l != ',')))
3930 {
3931 as_bad (_("invalid character %s in mnemonic"),
3932 output_invalid (*l));
3933 return NULL;
3934 }
3935 if (token_start == l)
3936 {
3937 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3938 as_bad (_("expecting prefix; got nothing"));
3939 else
3940 as_bad (_("expecting mnemonic; got nothing"));
3941 return NULL;
3942 }
3943
3944 /* Look up instruction (or prefix) via hash table. */
3945 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3946
3947 if (*l != END_OF_INSN
3948 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3949 && current_templates
3950 && current_templates->start->opcode_modifier.isprefix)
3951 {
3952 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3953 {
3954 as_bad ((flag_code != CODE_64BIT
3955 ? _("`%s' is only supported in 64-bit mode")
3956 : _("`%s' is not supported in 64-bit mode")),
3957 current_templates->start->name);
3958 return NULL;
3959 }
3960 /* If we are in 16-bit mode, do not allow addr16 or data16.
3961 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3962 if ((current_templates->start->opcode_modifier.size16
3963 || current_templates->start->opcode_modifier.size32)
3964 && flag_code != CODE_64BIT
3965 && (current_templates->start->opcode_modifier.size32
3966 ^ (flag_code == CODE_16BIT)))
3967 {
3968 as_bad (_("redundant %s prefix"),
3969 current_templates->start->name);
3970 return NULL;
3971 }
3972 if (current_templates->start->opcode_length == 0)
3973 {
3974 /* Handle pseudo prefixes. */
3975 switch (current_templates->start->base_opcode)
3976 {
3977 case 0x0:
3978 /* {disp8} */
3979 i.disp_encoding = disp_encoding_8bit;
3980 break;
3981 case 0x1:
3982 /* {disp32} */
3983 i.disp_encoding = disp_encoding_32bit;
3984 break;
3985 case 0x2:
3986 /* {load} */
3987 i.dir_encoding = dir_encoding_load;
3988 break;
3989 case 0x3:
3990 /* {store} */
3991 i.dir_encoding = dir_encoding_store;
3992 break;
3993 case 0x4:
3994 /* {vex2} */
3995 i.vec_encoding = vex_encoding_vex2;
3996 break;
3997 case 0x5:
3998 /* {vex3} */
3999 i.vec_encoding = vex_encoding_vex3;
4000 break;
4001 case 0x6:
4002 /* {evex} */
4003 i.vec_encoding = vex_encoding_evex;
4004 break;
4005 default:
4006 abort ();
4007 }
4008 }
4009 else
4010 {
4011 /* Add prefix, checking for repeated prefixes. */
4012 switch (add_prefix (current_templates->start->base_opcode))
4013 {
4014 case PREFIX_EXIST:
4015 return NULL;
4016 case PREFIX_DS:
4017 if (current_templates->start->cpu_flags.bitfield.cpucet)
4018 i.notrack_prefix = current_templates->start->name;
4019 break;
4020 case PREFIX_REP:
4021 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4022 i.hle_prefix = current_templates->start->name;
4023 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4024 i.bnd_prefix = current_templates->start->name;
4025 else
4026 i.rep_prefix = current_templates->start->name;
4027 break;
4028 default:
4029 break;
4030 }
4031 }
4032 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4033 token_start = ++l;
4034 }
4035 else
4036 break;
4037 }
4038
4039 if (!current_templates)
4040 {
4041 /* Check if we should swap operand or force 32bit displacement in
4042 encoding. */
4043 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4044 i.dir_encoding = dir_encoding_store;
4045 else if (mnem_p - 3 == dot_p
4046 && dot_p[1] == 'd'
4047 && dot_p[2] == '8')
4048 i.disp_encoding = disp_encoding_8bit;
4049 else if (mnem_p - 4 == dot_p
4050 && dot_p[1] == 'd'
4051 && dot_p[2] == '3'
4052 && dot_p[3] == '2')
4053 i.disp_encoding = disp_encoding_32bit;
4054 else
4055 goto check_suffix;
4056 mnem_p = dot_p;
4057 *dot_p = '\0';
4058 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4059 }
4060
4061 if (!current_templates)
4062 {
4063 check_suffix:
4064 /* See if we can get a match by trimming off a suffix. */
4065 switch (mnem_p[-1])
4066 {
4067 case WORD_MNEM_SUFFIX:
4068 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4069 i.suffix = SHORT_MNEM_SUFFIX;
4070 else
4071 /* Fall through. */
4072 case BYTE_MNEM_SUFFIX:
4073 case QWORD_MNEM_SUFFIX:
4074 i.suffix = mnem_p[-1];
4075 mnem_p[-1] = '\0';
4076 current_templates = (const templates *) hash_find (op_hash,
4077 mnemonic);
4078 break;
4079 case SHORT_MNEM_SUFFIX:
4080 case LONG_MNEM_SUFFIX:
4081 if (!intel_syntax)
4082 {
4083 i.suffix = mnem_p[-1];
4084 mnem_p[-1] = '\0';
4085 current_templates = (const templates *) hash_find (op_hash,
4086 mnemonic);
4087 }
4088 break;
4089
4090 /* Intel Syntax. */
4091 case 'd':
4092 if (intel_syntax)
4093 {
4094 if (intel_float_operand (mnemonic) == 1)
4095 i.suffix = SHORT_MNEM_SUFFIX;
4096 else
4097 i.suffix = LONG_MNEM_SUFFIX;
4098 mnem_p[-1] = '\0';
4099 current_templates = (const templates *) hash_find (op_hash,
4100 mnemonic);
4101 }
4102 break;
4103 }
4104 if (!current_templates)
4105 {
4106 as_bad (_("no such instruction: `%s'"), token_start);
4107 return NULL;
4108 }
4109 }
4110
4111 if (current_templates->start->opcode_modifier.jump
4112 || current_templates->start->opcode_modifier.jumpbyte)
4113 {
4114 /* Check for a branch hint. We allow ",pt" and ",pn" for
4115 predict taken and predict not taken respectively.
4116 I'm not sure that branch hints actually do anything on loop
4117 and jcxz insns (JumpByte) for current Pentium4 chips. They
4118 may work in the future and it doesn't hurt to accept them
4119 now. */
4120 if (l[0] == ',' && l[1] == 'p')
4121 {
4122 if (l[2] == 't')
4123 {
4124 if (!add_prefix (DS_PREFIX_OPCODE))
4125 return NULL;
4126 l += 3;
4127 }
4128 else if (l[2] == 'n')
4129 {
4130 if (!add_prefix (CS_PREFIX_OPCODE))
4131 return NULL;
4132 l += 3;
4133 }
4134 }
4135 }
4136 /* Any other comma loses. */
4137 if (*l == ',')
4138 {
4139 as_bad (_("invalid character %s in mnemonic"),
4140 output_invalid (*l));
4141 return NULL;
4142 }
4143
4144 /* Check if instruction is supported on specified architecture. */
4145 supported = 0;
4146 for (t = current_templates->start; t < current_templates->end; ++t)
4147 {
4148 supported |= cpu_flags_match (t);
4149 if (supported == CPU_FLAGS_PERFECT_MATCH)
4150 goto skip;
4151 }
4152
4153 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4154 {
4155 as_bad (flag_code == CODE_64BIT
4156 ? _("`%s' is not supported in 64-bit mode")
4157 : _("`%s' is only supported in 64-bit mode"),
4158 current_templates->start->name);
4159 return NULL;
4160 }
4161 if (supported != CPU_FLAGS_PERFECT_MATCH)
4162 {
4163 as_bad (_("`%s' is not supported on `%s%s'"),
4164 current_templates->start->name,
4165 cpu_arch_name ? cpu_arch_name : default_arch,
4166 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4167 return NULL;
4168 }
4169
4170 skip:
4171 if (!cpu_arch_flags.bitfield.cpui386
4172 && (flag_code != CODE_16BIT))
4173 {
4174 as_warn (_("use .code16 to ensure correct addressing mode"));
4175 }
4176
4177 return l;
4178 }
4179
4180 static char *
4181 parse_operands (char *l, const char *mnemonic)
4182 {
4183 char *token_start;
4184
4185 /* 1 if operand is pending after ','. */
4186 unsigned int expecting_operand = 0;
4187
4188 /* Non-zero if operand parens not balanced. */
4189 unsigned int paren_not_balanced;
4190
4191 while (*l != END_OF_INSN)
4192 {
4193 /* Skip optional white space before operand. */
4194 if (is_space_char (*l))
4195 ++l;
4196 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4197 {
4198 as_bad (_("invalid character %s before operand %d"),
4199 output_invalid (*l),
4200 i.operands + 1);
4201 return NULL;
4202 }
4203 token_start = l; /* After white space. */
4204 paren_not_balanced = 0;
4205 while (paren_not_balanced || *l != ',')
4206 {
4207 if (*l == END_OF_INSN)
4208 {
4209 if (paren_not_balanced)
4210 {
4211 if (!intel_syntax)
4212 as_bad (_("unbalanced parenthesis in operand %d."),
4213 i.operands + 1);
4214 else
4215 as_bad (_("unbalanced brackets in operand %d."),
4216 i.operands + 1);
4217 return NULL;
4218 }
4219 else
4220 break; /* we are done */
4221 }
4222 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4223 {
4224 as_bad (_("invalid character %s in operand %d"),
4225 output_invalid (*l),
4226 i.operands + 1);
4227 return NULL;
4228 }
4229 if (!intel_syntax)
4230 {
4231 if (*l == '(')
4232 ++paren_not_balanced;
4233 if (*l == ')')
4234 --paren_not_balanced;
4235 }
4236 else
4237 {
4238 if (*l == '[')
4239 ++paren_not_balanced;
4240 if (*l == ']')
4241 --paren_not_balanced;
4242 }
4243 l++;
4244 }
4245 if (l != token_start)
4246 { /* Yes, we've read in another operand. */
4247 unsigned int operand_ok;
4248 this_operand = i.operands++;
4249 if (i.operands > MAX_OPERANDS)
4250 {
4251 as_bad (_("spurious operands; (%d operands/instruction max)"),
4252 MAX_OPERANDS);
4253 return NULL;
4254 }
4255 i.types[this_operand].bitfield.unspecified = 1;
4256 /* Now parse operand adding info to 'i' as we go along. */
4257 END_STRING_AND_SAVE (l);
4258
4259 if (intel_syntax)
4260 operand_ok =
4261 i386_intel_operand (token_start,
4262 intel_float_operand (mnemonic));
4263 else
4264 operand_ok = i386_att_operand (token_start);
4265
4266 RESTORE_END_STRING (l);
4267 if (!operand_ok)
4268 return NULL;
4269 }
4270 else
4271 {
4272 if (expecting_operand)
4273 {
4274 expecting_operand_after_comma:
4275 as_bad (_("expecting operand after ','; got nothing"));
4276 return NULL;
4277 }
4278 if (*l == ',')
4279 {
4280 as_bad (_("expecting operand before ','; got nothing"));
4281 return NULL;
4282 }
4283 }
4284
4285 /* Now *l must be either ',' or END_OF_INSN. */
4286 if (*l == ',')
4287 {
4288 if (*++l == END_OF_INSN)
4289 {
4290 /* Just skip it, if it's \n complain. */
4291 goto expecting_operand_after_comma;
4292 }
4293 expecting_operand = 1;
4294 }
4295 }
4296 return l;
4297 }
4298
4299 static void
4300 swap_2_operands (int xchg1, int xchg2)
4301 {
4302 union i386_op temp_op;
4303 i386_operand_type temp_type;
4304 enum bfd_reloc_code_real temp_reloc;
4305
4306 temp_type = i.types[xchg2];
4307 i.types[xchg2] = i.types[xchg1];
4308 i.types[xchg1] = temp_type;
4309 temp_op = i.op[xchg2];
4310 i.op[xchg2] = i.op[xchg1];
4311 i.op[xchg1] = temp_op;
4312 temp_reloc = i.reloc[xchg2];
4313 i.reloc[xchg2] = i.reloc[xchg1];
4314 i.reloc[xchg1] = temp_reloc;
4315
4316 if (i.mask)
4317 {
4318 if (i.mask->operand == xchg1)
4319 i.mask->operand = xchg2;
4320 else if (i.mask->operand == xchg2)
4321 i.mask->operand = xchg1;
4322 }
4323 if (i.broadcast)
4324 {
4325 if (i.broadcast->operand == xchg1)
4326 i.broadcast->operand = xchg2;
4327 else if (i.broadcast->operand == xchg2)
4328 i.broadcast->operand = xchg1;
4329 }
4330 if (i.rounding)
4331 {
4332 if (i.rounding->operand == xchg1)
4333 i.rounding->operand = xchg2;
4334 else if (i.rounding->operand == xchg2)
4335 i.rounding->operand = xchg1;
4336 }
4337 }
4338
4339 static void
4340 swap_operands (void)
4341 {
4342 switch (i.operands)
4343 {
4344 case 5:
4345 case 4:
4346 swap_2_operands (1, i.operands - 2);
4347 /* Fall through. */
4348 case 3:
4349 case 2:
4350 swap_2_operands (0, i.operands - 1);
4351 break;
4352 default:
4353 abort ();
4354 }
4355
4356 if (i.mem_operands == 2)
4357 {
4358 const seg_entry *temp_seg;
4359 temp_seg = i.seg[0];
4360 i.seg[0] = i.seg[1];
4361 i.seg[1] = temp_seg;
4362 }
4363 }
4364
4365 /* Try to ensure constant immediates are represented in the smallest
4366 opcode possible. */
4367 static void
4368 optimize_imm (void)
4369 {
4370 char guess_suffix = 0;
4371 int op;
4372
4373 if (i.suffix)
4374 guess_suffix = i.suffix;
4375 else if (i.reg_operands)
4376 {
4377 /* Figure out a suffix from the last register operand specified.
4378 We can't do this properly yet, ie. excluding InOutPortReg,
4379 but the following works for instructions with immediates.
4380 In any case, we can't set i.suffix yet. */
4381 for (op = i.operands; --op >= 0;)
4382 if (i.types[op].bitfield.reg8)
4383 {
4384 guess_suffix = BYTE_MNEM_SUFFIX;
4385 break;
4386 }
4387 else if (i.types[op].bitfield.reg16)
4388 {
4389 guess_suffix = WORD_MNEM_SUFFIX;
4390 break;
4391 }
4392 else if (i.types[op].bitfield.reg32)
4393 {
4394 guess_suffix = LONG_MNEM_SUFFIX;
4395 break;
4396 }
4397 else if (i.types[op].bitfield.reg64)
4398 {
4399 guess_suffix = QWORD_MNEM_SUFFIX;
4400 break;
4401 }
4402 }
4403 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4404 guess_suffix = WORD_MNEM_SUFFIX;
4405
4406 for (op = i.operands; --op >= 0;)
4407 if (operand_type_check (i.types[op], imm))
4408 {
4409 switch (i.op[op].imms->X_op)
4410 {
4411 case O_constant:
4412 /* If a suffix is given, this operand may be shortened. */
4413 switch (guess_suffix)
4414 {
4415 case LONG_MNEM_SUFFIX:
4416 i.types[op].bitfield.imm32 = 1;
4417 i.types[op].bitfield.imm64 = 1;
4418 break;
4419 case WORD_MNEM_SUFFIX:
4420 i.types[op].bitfield.imm16 = 1;
4421 i.types[op].bitfield.imm32 = 1;
4422 i.types[op].bitfield.imm32s = 1;
4423 i.types[op].bitfield.imm64 = 1;
4424 break;
4425 case BYTE_MNEM_SUFFIX:
4426 i.types[op].bitfield.imm8 = 1;
4427 i.types[op].bitfield.imm8s = 1;
4428 i.types[op].bitfield.imm16 = 1;
4429 i.types[op].bitfield.imm32 = 1;
4430 i.types[op].bitfield.imm32s = 1;
4431 i.types[op].bitfield.imm64 = 1;
4432 break;
4433 }
4434
4435 /* If this operand is at most 16 bits, convert it
4436 to a signed 16 bit number before trying to see
4437 whether it will fit in an even smaller size.
4438 This allows a 16-bit operand such as $0xffe0 to
4439 be recognised as within Imm8S range. */
4440 if ((i.types[op].bitfield.imm16)
4441 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4442 {
4443 i.op[op].imms->X_add_number =
4444 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4445 }
4446 #ifdef BFD64
4447 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4448 if ((i.types[op].bitfield.imm32)
4449 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4450 == 0))
4451 {
4452 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4453 ^ ((offsetT) 1 << 31))
4454 - ((offsetT) 1 << 31));
4455 }
4456 #endif
4457 i.types[op]
4458 = operand_type_or (i.types[op],
4459 smallest_imm_type (i.op[op].imms->X_add_number));
4460
4461 /* We must avoid matching of Imm32 templates when 64bit
4462 only immediate is available. */
4463 if (guess_suffix == QWORD_MNEM_SUFFIX)
4464 i.types[op].bitfield.imm32 = 0;
4465 break;
4466
4467 case O_absent:
4468 case O_register:
4469 abort ();
4470
4471 /* Symbols and expressions. */
4472 default:
4473 /* Convert symbolic operand to proper sizes for matching, but don't
4474 prevent matching a set of insns that only supports sizes other
4475 than those matching the insn suffix. */
4476 {
4477 i386_operand_type mask, allowed;
4478 const insn_template *t;
4479
4480 operand_type_set (&mask, 0);
4481 operand_type_set (&allowed, 0);
4482
4483 for (t = current_templates->start;
4484 t < current_templates->end;
4485 ++t)
4486 allowed = operand_type_or (allowed,
4487 t->operand_types[op]);
4488 switch (guess_suffix)
4489 {
4490 case QWORD_MNEM_SUFFIX:
4491 mask.bitfield.imm64 = 1;
4492 mask.bitfield.imm32s = 1;
4493 break;
4494 case LONG_MNEM_SUFFIX:
4495 mask.bitfield.imm32 = 1;
4496 break;
4497 case WORD_MNEM_SUFFIX:
4498 mask.bitfield.imm16 = 1;
4499 break;
4500 case BYTE_MNEM_SUFFIX:
4501 mask.bitfield.imm8 = 1;
4502 break;
4503 default:
4504 break;
4505 }
4506 allowed = operand_type_and (mask, allowed);
4507 if (!operand_type_all_zero (&allowed))
4508 i.types[op] = operand_type_and (i.types[op], mask);
4509 }
4510 break;
4511 }
4512 }
4513 }
4514
4515 /* Try to use the smallest displacement type too. */
4516 static void
4517 optimize_disp (void)
4518 {
4519 int op;
4520
4521 for (op = i.operands; --op >= 0;)
4522 if (operand_type_check (i.types[op], disp))
4523 {
4524 if (i.op[op].disps->X_op == O_constant)
4525 {
4526 offsetT op_disp = i.op[op].disps->X_add_number;
4527
4528 if (i.types[op].bitfield.disp16
4529 && (op_disp & ~(offsetT) 0xffff) == 0)
4530 {
4531 /* If this operand is at most 16 bits, convert
4532 to a signed 16 bit number and don't use 64bit
4533 displacement. */
4534 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4535 i.types[op].bitfield.disp64 = 0;
4536 }
4537 #ifdef BFD64
4538 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4539 if (i.types[op].bitfield.disp32
4540 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4541 {
4542 /* If this operand is at most 32 bits, convert
4543 to a signed 32 bit number and don't use 64bit
4544 displacement. */
4545 op_disp &= (((offsetT) 2 << 31) - 1);
4546 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4547 i.types[op].bitfield.disp64 = 0;
4548 }
4549 #endif
4550 if (!op_disp && i.types[op].bitfield.baseindex)
4551 {
4552 i.types[op].bitfield.disp8 = 0;
4553 i.types[op].bitfield.disp16 = 0;
4554 i.types[op].bitfield.disp32 = 0;
4555 i.types[op].bitfield.disp32s = 0;
4556 i.types[op].bitfield.disp64 = 0;
4557 i.op[op].disps = 0;
4558 i.disp_operands--;
4559 }
4560 else if (flag_code == CODE_64BIT)
4561 {
4562 if (fits_in_signed_long (op_disp))
4563 {
4564 i.types[op].bitfield.disp64 = 0;
4565 i.types[op].bitfield.disp32s = 1;
4566 }
4567 if (i.prefix[ADDR_PREFIX]
4568 && fits_in_unsigned_long (op_disp))
4569 i.types[op].bitfield.disp32 = 1;
4570 }
4571 if ((i.types[op].bitfield.disp32
4572 || i.types[op].bitfield.disp32s
4573 || i.types[op].bitfield.disp16)
4574 && fits_in_signed_byte (op_disp))
4575 i.types[op].bitfield.disp8 = 1;
4576 }
4577 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4578 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4579 {
4580 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4581 i.op[op].disps, 0, i.reloc[op]);
4582 i.types[op].bitfield.disp8 = 0;
4583 i.types[op].bitfield.disp16 = 0;
4584 i.types[op].bitfield.disp32 = 0;
4585 i.types[op].bitfield.disp32s = 0;
4586 i.types[op].bitfield.disp64 = 0;
4587 }
4588 else
4589 /* We only support 64bit displacement on constants. */
4590 i.types[op].bitfield.disp64 = 0;
4591 }
4592 }
4593
4594 /* Check if operands are valid for the instruction. */
4595
4596 static int
4597 check_VecOperands (const insn_template *t)
4598 {
4599 unsigned int op;
4600
4601 /* Without VSIB byte, we can't have a vector register for index. */
4602 if (!t->opcode_modifier.vecsib
4603 && i.index_reg
4604 && (i.index_reg->reg_type.bitfield.regxmm
4605 || i.index_reg->reg_type.bitfield.regymm
4606 || i.index_reg->reg_type.bitfield.regzmm))
4607 {
4608 i.error = unsupported_vector_index_register;
4609 return 1;
4610 }
4611
4612 /* Check if default mask is allowed. */
4613 if (t->opcode_modifier.nodefmask
4614 && (!i.mask || i.mask->mask->reg_num == 0))
4615 {
4616 i.error = no_default_mask;
4617 return 1;
4618 }
4619
4620 /* For VSIB byte, we need a vector register for index, and all vector
4621 registers must be distinct. */
4622 if (t->opcode_modifier.vecsib)
4623 {
4624 if (!i.index_reg
4625 || !((t->opcode_modifier.vecsib == VecSIB128
4626 && i.index_reg->reg_type.bitfield.regxmm)
4627 || (t->opcode_modifier.vecsib == VecSIB256
4628 && i.index_reg->reg_type.bitfield.regymm)
4629 || (t->opcode_modifier.vecsib == VecSIB512
4630 && i.index_reg->reg_type.bitfield.regzmm)))
4631 {
4632 i.error = invalid_vsib_address;
4633 return 1;
4634 }
4635
4636 gas_assert (i.reg_operands == 2 || i.mask);
4637 if (i.reg_operands == 2 && !i.mask)
4638 {
4639 gas_assert (i.types[0].bitfield.regxmm
4640 || i.types[0].bitfield.regymm);
4641 gas_assert (i.types[2].bitfield.regxmm
4642 || i.types[2].bitfield.regymm);
4643 if (operand_check == check_none)
4644 return 0;
4645 if (register_number (i.op[0].regs)
4646 != register_number (i.index_reg)
4647 && register_number (i.op[2].regs)
4648 != register_number (i.index_reg)
4649 && register_number (i.op[0].regs)
4650 != register_number (i.op[2].regs))
4651 return 0;
4652 if (operand_check == check_error)
4653 {
4654 i.error = invalid_vector_register_set;
4655 return 1;
4656 }
4657 as_warn (_("mask, index, and destination registers should be distinct"));
4658 }
4659 else if (i.reg_operands == 1 && i.mask)
4660 {
4661 if ((i.types[1].bitfield.regxmm
4662 || i.types[1].bitfield.regymm
4663 || i.types[1].bitfield.regzmm)
4664 && (register_number (i.op[1].regs)
4665 == register_number (i.index_reg)))
4666 {
4667 if (operand_check == check_error)
4668 {
4669 i.error = invalid_vector_register_set;
4670 return 1;
4671 }
4672 if (operand_check != check_none)
4673 as_warn (_("index and destination registers should be distinct"));
4674 }
4675 }
4676 }
4677
4678 /* Check if broadcast is supported by the instruction and is applied
4679 to the memory operand. */
4680 if (i.broadcast)
4681 {
4682 int broadcasted_opnd_size;
4683
4684 /* Check if specified broadcast is supported in this instruction,
4685 and it's applied to memory operand of DWORD or QWORD type,
4686 depending on VecESize. */
4687 if (i.broadcast->type != t->opcode_modifier.broadcast
4688 || !i.types[i.broadcast->operand].bitfield.mem
4689 || (t->opcode_modifier.vecesize == 0
4690 && !i.types[i.broadcast->operand].bitfield.dword
4691 && !i.types[i.broadcast->operand].bitfield.unspecified)
4692 || (t->opcode_modifier.vecesize == 1
4693 && !i.types[i.broadcast->operand].bitfield.qword
4694 && !i.types[i.broadcast->operand].bitfield.unspecified))
4695 goto bad_broadcast;
4696
4697 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4698 if (i.broadcast->type == BROADCAST_1TO16)
4699 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4700 else if (i.broadcast->type == BROADCAST_1TO8)
4701 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
4702 else if (i.broadcast->type == BROADCAST_1TO4)
4703 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4704 else if (i.broadcast->type == BROADCAST_1TO2)
4705 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
4706 else
4707 goto bad_broadcast;
4708
4709 if ((broadcasted_opnd_size == 256
4710 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4711 || (broadcasted_opnd_size == 512
4712 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4713 {
4714 bad_broadcast:
4715 i.error = unsupported_broadcast;
4716 return 1;
4717 }
4718 }
4719 /* If broadcast is supported in this instruction, we need to check if
4720 operand of one-element size isn't specified without broadcast. */
4721 else if (t->opcode_modifier.broadcast && i.mem_operands)
4722 {
4723 /* Find memory operand. */
4724 for (op = 0; op < i.operands; op++)
4725 if (operand_type_check (i.types[op], anymem))
4726 break;
4727 gas_assert (op < i.operands);
4728 /* Check size of the memory operand. */
4729 if ((t->opcode_modifier.vecesize == 0
4730 && i.types[op].bitfield.dword)
4731 || (t->opcode_modifier.vecesize == 1
4732 && i.types[op].bitfield.qword))
4733 {
4734 i.error = broadcast_needed;
4735 return 1;
4736 }
4737 }
4738
4739 /* Check if requested masking is supported. */
4740 if (i.mask
4741 && (!t->opcode_modifier.masking
4742 || (i.mask->zeroing
4743 && t->opcode_modifier.masking == MERGING_MASKING)))
4744 {
4745 i.error = unsupported_masking;
4746 return 1;
4747 }
4748
4749 /* Check if masking is applied to dest operand. */
4750 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4751 {
4752 i.error = mask_not_on_destination;
4753 return 1;
4754 }
4755
4756 /* Check RC/SAE. */
4757 if (i.rounding)
4758 {
4759 if ((i.rounding->type != saeonly
4760 && !t->opcode_modifier.staticrounding)
4761 || (i.rounding->type == saeonly
4762 && (t->opcode_modifier.staticrounding
4763 || !t->opcode_modifier.sae)))
4764 {
4765 i.error = unsupported_rc_sae;
4766 return 1;
4767 }
4768 /* If the instruction has several immediate operands and one of
4769 them is rounding, the rounding operand should be the last
4770 immediate operand. */
4771 if (i.imm_operands > 1
4772 && i.rounding->operand != (int) (i.imm_operands - 1))
4773 {
4774 i.error = rc_sae_operand_not_last_imm;
4775 return 1;
4776 }
4777 }
4778
4779 /* Check vector Disp8 operand. */
4780 if (t->opcode_modifier.disp8memshift)
4781 {
4782 if (i.broadcast)
4783 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4784 else
4785 i.memshift = t->opcode_modifier.disp8memshift;
4786
4787 for (op = 0; op < i.operands; op++)
4788 if (operand_type_check (i.types[op], disp)
4789 && i.op[op].disps->X_op == O_constant)
4790 {
4791 offsetT value = i.op[op].disps->X_add_number;
4792 int vec_disp8_ok
4793 = (i.disp_encoding != disp_encoding_32bit
4794 && fits_in_vec_disp8 (value));
4795 if (t->operand_types [op].bitfield.vec_disp8)
4796 {
4797 if (vec_disp8_ok)
4798 i.types[op].bitfield.vec_disp8 = 1;
4799 else
4800 {
4801 /* Vector insn can only have Vec_Disp8/Disp32 in
4802 32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4803 mode. */
4804 i.types[op].bitfield.disp8 = 0;
4805 if (flag_code != CODE_16BIT)
4806 i.types[op].bitfield.disp16 = 0;
4807 }
4808 }
4809 else if (flag_code != CODE_16BIT)
4810 {
4811 /* One form of this instruction supports vector Disp8.
4812 Try vector Disp8 if we need to use Disp32. */
4813 if (vec_disp8_ok && !fits_in_signed_byte (value))
4814 {
4815 i.error = try_vector_disp8;
4816 return 1;
4817 }
4818 }
4819 }
4820 }
4821 else
4822 i.memshift = -1;
4823
4824 return 0;
4825 }
4826
4827 /* Check if operands are valid for the instruction. Update VEX
4828 operand types. */
4829
4830 static int
4831 VEX_check_operands (const insn_template *t)
4832 {
4833 if (i.vec_encoding == vex_encoding_evex)
4834 {
4835 /* This instruction must be encoded with EVEX prefix. */
4836 if (!t->opcode_modifier.evex)
4837 {
4838 i.error = unsupported;
4839 return 1;
4840 }
4841 return 0;
4842 }
4843
4844 if (!t->opcode_modifier.vex)
4845 {
4846 /* This instruction template doesn't have VEX prefix. */
4847 if (i.vec_encoding != vex_encoding_default)
4848 {
4849 i.error = unsupported;
4850 return 1;
4851 }
4852 return 0;
4853 }
4854
4855 /* Only check VEX_Imm4, which must be the first operand. */
4856 if (t->operand_types[0].bitfield.vec_imm4)
4857 {
4858 if (i.op[0].imms->X_op != O_constant
4859 || !fits_in_imm4 (i.op[0].imms->X_add_number))
4860 {
4861 i.error = bad_imm4;
4862 return 1;
4863 }
4864
4865 /* Turn off Imm8 so that update_imm won't complain. */
4866 i.types[0] = vec_imm4;
4867 }
4868
4869 return 0;
4870 }
4871
4872 static const insn_template *
4873 match_template (char mnem_suffix)
4874 {
4875 /* Points to template once we've found it. */
4876 const insn_template *t;
4877 i386_operand_type overlap0, overlap1, overlap2, overlap3;
4878 i386_operand_type overlap4;
4879 unsigned int found_reverse_match;
4880 i386_opcode_modifier suffix_check, mnemsuf_check;
4881 i386_operand_type operand_types [MAX_OPERANDS];
4882 int addr_prefix_disp;
4883 unsigned int j;
4884 unsigned int found_cpu_match;
4885 unsigned int check_register;
4886 enum i386_error specific_error = 0;
4887
4888 #if MAX_OPERANDS != 5
4889 # error "MAX_OPERANDS must be 5."
4890 #endif
4891
4892 found_reverse_match = 0;
4893 addr_prefix_disp = -1;
4894
4895 memset (&suffix_check, 0, sizeof (suffix_check));
4896 if (i.suffix == BYTE_MNEM_SUFFIX)
4897 suffix_check.no_bsuf = 1;
4898 else if (i.suffix == WORD_MNEM_SUFFIX)
4899 suffix_check.no_wsuf = 1;
4900 else if (i.suffix == SHORT_MNEM_SUFFIX)
4901 suffix_check.no_ssuf = 1;
4902 else if (i.suffix == LONG_MNEM_SUFFIX)
4903 suffix_check.no_lsuf = 1;
4904 else if (i.suffix == QWORD_MNEM_SUFFIX)
4905 suffix_check.no_qsuf = 1;
4906 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
4907 suffix_check.no_ldsuf = 1;
4908
4909 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
4910 if (intel_syntax)
4911 {
4912 switch (mnem_suffix)
4913 {
4914 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
4915 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
4916 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
4917 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
4918 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
4919 }
4920 }
4921
4922 /* Must have right number of operands. */
4923 i.error = number_of_operands_mismatch;
4924
4925 for (t = current_templates->start; t < current_templates->end; t++)
4926 {
4927 addr_prefix_disp = -1;
4928
4929 if (i.operands != t->operands)
4930 continue;
4931
4932 /* Check processor support. */
4933 i.error = unsupported;
4934 found_cpu_match = (cpu_flags_match (t)
4935 == CPU_FLAGS_PERFECT_MATCH);
4936 if (!found_cpu_match)
4937 continue;
4938
4939 /* Check old gcc support. */
4940 i.error = old_gcc_only;
4941 if (!old_gcc && t->opcode_modifier.oldgcc)
4942 continue;
4943
4944 /* Check AT&T mnemonic. */
4945 i.error = unsupported_with_intel_mnemonic;
4946 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
4947 continue;
4948
4949 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
4950 i.error = unsupported_syntax;
4951 if ((intel_syntax && t->opcode_modifier.attsyntax)
4952 || (!intel_syntax && t->opcode_modifier.intelsyntax)
4953 || (intel64 && t->opcode_modifier.amd64)
4954 || (!intel64 && t->opcode_modifier.intel64))
4955 continue;
4956
4957 /* Check the suffix, except for some instructions in intel mode. */
4958 i.error = invalid_instruction_suffix;
4959 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4960 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4961 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4962 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4963 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4964 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4965 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
4966 continue;
4967 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
4968 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
4969 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
4970 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
4971 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
4972 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
4973 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
4974 continue;
4975
4976 if (!operand_size_match (t))
4977 continue;
4978
4979 for (j = 0; j < MAX_OPERANDS; j++)
4980 operand_types[j] = t->operand_types[j];
4981
4982 /* In general, don't allow 64-bit operands in 32-bit mode. */
4983 if (i.suffix == QWORD_MNEM_SUFFIX
4984 && flag_code != CODE_64BIT
4985 && (intel_syntax
4986 ? (!t->opcode_modifier.ignoresize
4987 && !intel_float_operand (t->name))
4988 : intel_float_operand (t->name) != 2)
4989 && ((!operand_types[0].bitfield.regmmx
4990 && !operand_types[0].bitfield.regxmm
4991 && !operand_types[0].bitfield.regymm
4992 && !operand_types[0].bitfield.regzmm)
4993 || (!operand_types[t->operands > 1].bitfield.regmmx
4994 && operand_types[t->operands > 1].bitfield.regxmm
4995 && operand_types[t->operands > 1].bitfield.regymm
4996 && operand_types[t->operands > 1].bitfield.regzmm))
4997 && (t->base_opcode != 0x0fc7
4998 || t->extension_opcode != 1 /* cmpxchg8b */))
4999 continue;
5000
5001 /* In general, don't allow 32-bit operands on pre-386. */
5002 else if (i.suffix == LONG_MNEM_SUFFIX
5003 && !cpu_arch_flags.bitfield.cpui386
5004 && (intel_syntax
5005 ? (!t->opcode_modifier.ignoresize
5006 && !intel_float_operand (t->name))
5007 : intel_float_operand (t->name) != 2)
5008 && ((!operand_types[0].bitfield.regmmx
5009 && !operand_types[0].bitfield.regxmm)
5010 || (!operand_types[t->operands > 1].bitfield.regmmx
5011 && operand_types[t->operands > 1].bitfield.regxmm)))
5012 continue;
5013
5014 /* Do not verify operands when there are none. */
5015 else
5016 {
5017 if (!t->operands)
5018 /* We've found a match; break out of loop. */
5019 break;
5020 }
5021
5022 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5023 into Disp32/Disp16/Disp32 operand. */
5024 if (i.prefix[ADDR_PREFIX] != 0)
5025 {
5026 /* There should be only one Disp operand. */
5027 switch (flag_code)
5028 {
5029 case CODE_16BIT:
5030 for (j = 0; j < MAX_OPERANDS; j++)
5031 {
5032 if (operand_types[j].bitfield.disp16)
5033 {
5034 addr_prefix_disp = j;
5035 operand_types[j].bitfield.disp32 = 1;
5036 operand_types[j].bitfield.disp16 = 0;
5037 break;
5038 }
5039 }
5040 break;
5041 case CODE_32BIT:
5042 for (j = 0; j < MAX_OPERANDS; j++)
5043 {
5044 if (operand_types[j].bitfield.disp32)
5045 {
5046 addr_prefix_disp = j;
5047 operand_types[j].bitfield.disp32 = 0;
5048 operand_types[j].bitfield.disp16 = 1;
5049 break;
5050 }
5051 }
5052 break;
5053 case CODE_64BIT:
5054 for (j = 0; j < MAX_OPERANDS; j++)
5055 {
5056 if (operand_types[j].bitfield.disp64)
5057 {
5058 addr_prefix_disp = j;
5059 operand_types[j].bitfield.disp64 = 0;
5060 operand_types[j].bitfield.disp32 = 1;
5061 break;
5062 }
5063 }
5064 break;
5065 }
5066 }
5067
5068 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5069 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5070 continue;
5071
5072 /* We check register size if needed. */
5073 check_register = t->opcode_modifier.checkregsize;
5074 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5075 switch (t->operands)
5076 {
5077 case 1:
5078 if (!operand_type_match (overlap0, i.types[0]))
5079 continue;
5080 break;
5081 case 2:
5082 /* xchg %eax, %eax is a special case. It is an alias for nop
5083 only in 32bit mode and we can use opcode 0x90. In 64bit
5084 mode, we can't use 0x90 for xchg %eax, %eax since it should
5085 zero-extend %eax to %rax. */
5086 if (flag_code == CODE_64BIT
5087 && t->base_opcode == 0x90
5088 && operand_type_equal (&i.types [0], &acc32)
5089 && operand_type_equal (&i.types [1], &acc32))
5090 continue;
5091 /* If we want store form, we reverse direction of operands. */
5092 if (i.dir_encoding == dir_encoding_store
5093 && t->opcode_modifier.d)
5094 goto check_reverse;
5095 /* Fall through. */
5096
5097 case 3:
5098 /* If we want store form, we skip the current load. */
5099 if (i.dir_encoding == dir_encoding_store
5100 && i.mem_operands == 0
5101 && t->opcode_modifier.load)
5102 continue;
5103 /* Fall through. */
5104 case 4:
5105 case 5:
5106 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5107 if (!operand_type_match (overlap0, i.types[0])
5108 || !operand_type_match (overlap1, i.types[1])
5109 || (check_register
5110 && !operand_type_register_match (overlap0, i.types[0],
5111 operand_types[0],
5112 overlap1, i.types[1],
5113 operand_types[1])))
5114 {
5115 /* Check if other direction is valid ... */
5116 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
5117 continue;
5118
5119 check_reverse:
5120 /* Try reversing direction of operands. */
5121 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5122 overlap1 = operand_type_and (i.types[1], operand_types[0]);
5123 if (!operand_type_match (overlap0, i.types[0])
5124 || !operand_type_match (overlap1, i.types[1])
5125 || (check_register
5126 && !operand_type_register_match (overlap0,
5127 i.types[0],
5128 operand_types[1],
5129 overlap1,
5130 i.types[1],
5131 operand_types[0])))
5132 {
5133 /* Does not match either direction. */
5134 continue;
5135 }
5136 /* found_reverse_match holds which of D or FloatDR
5137 we've found. */
5138 if (t->opcode_modifier.d)
5139 found_reverse_match = Opcode_D;
5140 else if (t->opcode_modifier.floatd)
5141 found_reverse_match = Opcode_FloatD;
5142 else
5143 found_reverse_match = 0;
5144 if (t->opcode_modifier.floatr)
5145 found_reverse_match |= Opcode_FloatR;
5146 }
5147 else
5148 {
5149 /* Found a forward 2 operand match here. */
5150 switch (t->operands)
5151 {
5152 case 5:
5153 overlap4 = operand_type_and (i.types[4],
5154 operand_types[4]);
5155 /* Fall through. */
5156 case 4:
5157 overlap3 = operand_type_and (i.types[3],
5158 operand_types[3]);
5159 /* Fall through. */
5160 case 3:
5161 overlap2 = operand_type_and (i.types[2],
5162 operand_types[2]);
5163 break;
5164 }
5165
5166 switch (t->operands)
5167 {
5168 case 5:
5169 if (!operand_type_match (overlap4, i.types[4])
5170 || !operand_type_register_match (overlap3,
5171 i.types[3],
5172 operand_types[3],
5173 overlap4,
5174 i.types[4],
5175 operand_types[4]))
5176 continue;
5177 /* Fall through. */
5178 case 4:
5179 if (!operand_type_match (overlap3, i.types[3])
5180 || (check_register
5181 && !operand_type_register_match (overlap2,
5182 i.types[2],
5183 operand_types[2],
5184 overlap3,
5185 i.types[3],
5186 operand_types[3])))
5187 continue;
5188 /* Fall through. */
5189 case 3:
5190 /* Here we make use of the fact that there are no
5191 reverse match 3 operand instructions, and all 3
5192 operand instructions only need to be checked for
5193 register consistency between operands 2 and 3. */
5194 if (!operand_type_match (overlap2, i.types[2])
5195 || (check_register
5196 && !operand_type_register_match (overlap1,
5197 i.types[1],
5198 operand_types[1],
5199 overlap2,
5200 i.types[2],
5201 operand_types[2])))
5202 continue;
5203 break;
5204 }
5205 }
5206 /* Found either forward/reverse 2, 3 or 4 operand match here:
5207 slip through to break. */
5208 }
5209 if (!found_cpu_match)
5210 {
5211 found_reverse_match = 0;
5212 continue;
5213 }
5214
5215 /* Check if vector and VEX operands are valid. */
5216 if (check_VecOperands (t) || VEX_check_operands (t))
5217 {
5218 specific_error = i.error;
5219 continue;
5220 }
5221
5222 /* We've found a match; break out of loop. */
5223 break;
5224 }
5225
5226 if (t == current_templates->end)
5227 {
5228 /* We found no match. */
5229 const char *err_msg;
5230 switch (specific_error ? specific_error : i.error)
5231 {
5232 default:
5233 abort ();
5234 case operand_size_mismatch:
5235 err_msg = _("operand size mismatch");
5236 break;
5237 case operand_type_mismatch:
5238 err_msg = _("operand type mismatch");
5239 break;
5240 case register_type_mismatch:
5241 err_msg = _("register type mismatch");
5242 break;
5243 case number_of_operands_mismatch:
5244 err_msg = _("number of operands mismatch");
5245 break;
5246 case invalid_instruction_suffix:
5247 err_msg = _("invalid instruction suffix");
5248 break;
5249 case bad_imm4:
5250 err_msg = _("constant doesn't fit in 4 bits");
5251 break;
5252 case old_gcc_only:
5253 err_msg = _("only supported with old gcc");
5254 break;
5255 case unsupported_with_intel_mnemonic:
5256 err_msg = _("unsupported with Intel mnemonic");
5257 break;
5258 case unsupported_syntax:
5259 err_msg = _("unsupported syntax");
5260 break;
5261 case unsupported:
5262 as_bad (_("unsupported instruction `%s'"),
5263 current_templates->start->name);
5264 return NULL;
5265 case invalid_vsib_address:
5266 err_msg = _("invalid VSIB address");
5267 break;
5268 case invalid_vector_register_set:
5269 err_msg = _("mask, index, and destination registers must be distinct");
5270 break;
5271 case unsupported_vector_index_register:
5272 err_msg = _("unsupported vector index register");
5273 break;
5274 case unsupported_broadcast:
5275 err_msg = _("unsupported broadcast");
5276 break;
5277 case broadcast_not_on_src_operand:
5278 err_msg = _("broadcast not on source memory operand");
5279 break;
5280 case broadcast_needed:
5281 err_msg = _("broadcast is needed for operand of such type");
5282 break;
5283 case unsupported_masking:
5284 err_msg = _("unsupported masking");
5285 break;
5286 case mask_not_on_destination:
5287 err_msg = _("mask not on destination operand");
5288 break;
5289 case no_default_mask:
5290 err_msg = _("default mask isn't allowed");
5291 break;
5292 case unsupported_rc_sae:
5293 err_msg = _("unsupported static rounding/sae");
5294 break;
5295 case rc_sae_operand_not_last_imm:
5296 if (intel_syntax)
5297 err_msg = _("RC/SAE operand must precede immediate operands");
5298 else
5299 err_msg = _("RC/SAE operand must follow immediate operands");
5300 break;
5301 case invalid_register_operand:
5302 err_msg = _("invalid register operand");
5303 break;
5304 }
5305 as_bad (_("%s for `%s'"), err_msg,
5306 current_templates->start->name);
5307 return NULL;
5308 }
5309
5310 if (!quiet_warnings)
5311 {
5312 if (!intel_syntax
5313 && (i.types[0].bitfield.jumpabsolute
5314 != operand_types[0].bitfield.jumpabsolute))
5315 {
5316 as_warn (_("indirect %s without `*'"), t->name);
5317 }
5318
5319 if (t->opcode_modifier.isprefix
5320 && t->opcode_modifier.ignoresize)
5321 {
5322 /* Warn them that a data or address size prefix doesn't
5323 affect assembly of the next line of code. */
5324 as_warn (_("stand-alone `%s' prefix"), t->name);
5325 }
5326 }
5327
5328 /* Copy the template we found. */
5329 i.tm = *t;
5330
5331 if (addr_prefix_disp != -1)
5332 i.tm.operand_types[addr_prefix_disp]
5333 = operand_types[addr_prefix_disp];
5334
5335 if (found_reverse_match)
5336 {
5337 /* If we found a reverse match we must alter the opcode
5338 direction bit. found_reverse_match holds bits to change
5339 (different for int & float insns). */
5340
5341 i.tm.base_opcode ^= found_reverse_match;
5342
5343 i.tm.operand_types[0] = operand_types[1];
5344 i.tm.operand_types[1] = operand_types[0];
5345 }
5346
5347 return t;
5348 }
5349
5350 static int
5351 check_string (void)
5352 {
5353 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5354 if (i.tm.operand_types[mem_op].bitfield.esseg)
5355 {
5356 if (i.seg[0] != NULL && i.seg[0] != &es)
5357 {
5358 as_bad (_("`%s' operand %d must use `%ses' segment"),
5359 i.tm.name,
5360 mem_op + 1,
5361 register_prefix);
5362 return 0;
5363 }
5364 /* There's only ever one segment override allowed per instruction.
5365 This instruction possibly has a legal segment override on the
5366 second operand, so copy the segment to where non-string
5367 instructions store it, allowing common code. */
5368 i.seg[0] = i.seg[1];
5369 }
5370 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5371 {
5372 if (i.seg[1] != NULL && i.seg[1] != &es)
5373 {
5374 as_bad (_("`%s' operand %d must use `%ses' segment"),
5375 i.tm.name,
5376 mem_op + 2,
5377 register_prefix);
5378 return 0;
5379 }
5380 }
5381 return 1;
5382 }
5383
5384 static int
5385 process_suffix (void)
5386 {
5387 /* If matched instruction specifies an explicit instruction mnemonic
5388 suffix, use it. */
5389 if (i.tm.opcode_modifier.size16)
5390 i.suffix = WORD_MNEM_SUFFIX;
5391 else if (i.tm.opcode_modifier.size32)
5392 i.suffix = LONG_MNEM_SUFFIX;
5393 else if (i.tm.opcode_modifier.size64)
5394 i.suffix = QWORD_MNEM_SUFFIX;
5395 else if (i.reg_operands)
5396 {
5397 /* If there's no instruction mnemonic suffix we try to invent one
5398 based on register operands. */
5399 if (!i.suffix)
5400 {
5401 /* We take i.suffix from the last register operand specified,
5402 Destination register type is more significant than source
5403 register type. crc32 in SSE4.2 prefers source register
5404 type. */
5405 if (i.tm.base_opcode == 0xf20f38f1)
5406 {
5407 if (i.types[0].bitfield.reg16)
5408 i.suffix = WORD_MNEM_SUFFIX;
5409 else if (i.types[0].bitfield.reg32)
5410 i.suffix = LONG_MNEM_SUFFIX;
5411 else if (i.types[0].bitfield.reg64)
5412 i.suffix = QWORD_MNEM_SUFFIX;
5413 }
5414 else if (i.tm.base_opcode == 0xf20f38f0)
5415 {
5416 if (i.types[0].bitfield.reg8)
5417 i.suffix = BYTE_MNEM_SUFFIX;
5418 }
5419
5420 if (!i.suffix)
5421 {
5422 int op;
5423
5424 if (i.tm.base_opcode == 0xf20f38f1
5425 || i.tm.base_opcode == 0xf20f38f0)
5426 {
5427 /* We have to know the operand size for crc32. */
5428 as_bad (_("ambiguous memory operand size for `%s`"),
5429 i.tm.name);
5430 return 0;
5431 }
5432
5433 for (op = i.operands; --op >= 0;)
5434 if (!i.tm.operand_types[op].bitfield.inoutportreg)
5435 {
5436 if (i.types[op].bitfield.reg8)
5437 {
5438 i.suffix = BYTE_MNEM_SUFFIX;
5439 break;
5440 }
5441 else if (i.types[op].bitfield.reg16)
5442 {
5443 i.suffix = WORD_MNEM_SUFFIX;
5444 break;
5445 }
5446 else if (i.types[op].bitfield.reg32)
5447 {
5448 i.suffix = LONG_MNEM_SUFFIX;
5449 break;
5450 }
5451 else if (i.types[op].bitfield.reg64)
5452 {
5453 i.suffix = QWORD_MNEM_SUFFIX;
5454 break;
5455 }
5456 }
5457 }
5458 }
5459 else if (i.suffix == BYTE_MNEM_SUFFIX)
5460 {
5461 if (intel_syntax
5462 && i.tm.opcode_modifier.ignoresize
5463 && i.tm.opcode_modifier.no_bsuf)
5464 i.suffix = 0;
5465 else if (!check_byte_reg ())
5466 return 0;
5467 }
5468 else if (i.suffix == LONG_MNEM_SUFFIX)
5469 {
5470 if (intel_syntax
5471 && i.tm.opcode_modifier.ignoresize
5472 && i.tm.opcode_modifier.no_lsuf)
5473 i.suffix = 0;
5474 else if (!check_long_reg ())
5475 return 0;
5476 }
5477 else if (i.suffix == QWORD_MNEM_SUFFIX)
5478 {
5479 if (intel_syntax
5480 && i.tm.opcode_modifier.ignoresize
5481 && i.tm.opcode_modifier.no_qsuf)
5482 i.suffix = 0;
5483 else if (!check_qword_reg ())
5484 return 0;
5485 }
5486 else if (i.suffix == WORD_MNEM_SUFFIX)
5487 {
5488 if (intel_syntax
5489 && i.tm.opcode_modifier.ignoresize
5490 && i.tm.opcode_modifier.no_wsuf)
5491 i.suffix = 0;
5492 else if (!check_word_reg ())
5493 return 0;
5494 }
5495 else if (i.suffix == XMMWORD_MNEM_SUFFIX
5496 || i.suffix == YMMWORD_MNEM_SUFFIX
5497 || i.suffix == ZMMWORD_MNEM_SUFFIX)
5498 {
5499 /* Skip if the instruction has x/y/z suffix. match_template
5500 should check if it is a valid suffix. */
5501 }
5502 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5503 /* Do nothing if the instruction is going to ignore the prefix. */
5504 ;
5505 else
5506 abort ();
5507 }
5508 else if (i.tm.opcode_modifier.defaultsize
5509 && !i.suffix
5510 /* exclude fldenv/frstor/fsave/fstenv */
5511 && i.tm.opcode_modifier.no_ssuf)
5512 {
5513 i.suffix = stackop_size;
5514 }
5515 else if (intel_syntax
5516 && !i.suffix
5517 && (i.tm.operand_types[0].bitfield.jumpabsolute
5518 || i.tm.opcode_modifier.jumpbyte
5519 || i.tm.opcode_modifier.jumpintersegment
5520 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5521 && i.tm.extension_opcode <= 3)))
5522 {
5523 switch (flag_code)
5524 {
5525 case CODE_64BIT:
5526 if (!i.tm.opcode_modifier.no_qsuf)
5527 {
5528 i.suffix = QWORD_MNEM_SUFFIX;
5529 break;
5530 }
5531 /* Fall through. */
5532 case CODE_32BIT:
5533 if (!i.tm.opcode_modifier.no_lsuf)
5534 i.suffix = LONG_MNEM_SUFFIX;
5535 break;
5536 case CODE_16BIT:
5537 if (!i.tm.opcode_modifier.no_wsuf)
5538 i.suffix = WORD_MNEM_SUFFIX;
5539 break;
5540 }
5541 }
5542
5543 if (!i.suffix)
5544 {
5545 if (!intel_syntax)
5546 {
5547 if (i.tm.opcode_modifier.w)
5548 {
5549 as_bad (_("no instruction mnemonic suffix given and "
5550 "no register operands; can't size instruction"));
5551 return 0;
5552 }
5553 }
5554 else
5555 {
5556 unsigned int suffixes;
5557
5558 suffixes = !i.tm.opcode_modifier.no_bsuf;
5559 if (!i.tm.opcode_modifier.no_wsuf)
5560 suffixes |= 1 << 1;
5561 if (!i.tm.opcode_modifier.no_lsuf)
5562 suffixes |= 1 << 2;
5563 if (!i.tm.opcode_modifier.no_ldsuf)
5564 suffixes |= 1 << 3;
5565 if (!i.tm.opcode_modifier.no_ssuf)
5566 suffixes |= 1 << 4;
5567 if (!i.tm.opcode_modifier.no_qsuf)
5568 suffixes |= 1 << 5;
5569
5570 /* There are more than suffix matches. */
5571 if (i.tm.opcode_modifier.w
5572 || ((suffixes & (suffixes - 1))
5573 && !i.tm.opcode_modifier.defaultsize
5574 && !i.tm.opcode_modifier.ignoresize))
5575 {
5576 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5577 return 0;
5578 }
5579 }
5580 }
5581
5582 /* Change the opcode based on the operand size given by i.suffix;
5583 We don't need to change things for byte insns. */
5584
5585 if (i.suffix
5586 && i.suffix != BYTE_MNEM_SUFFIX
5587 && i.suffix != XMMWORD_MNEM_SUFFIX
5588 && i.suffix != YMMWORD_MNEM_SUFFIX
5589 && i.suffix != ZMMWORD_MNEM_SUFFIX)
5590 {
5591 /* It's not a byte, select word/dword operation. */
5592 if (i.tm.opcode_modifier.w)
5593 {
5594 if (i.tm.opcode_modifier.shortform)
5595 i.tm.base_opcode |= 8;
5596 else
5597 i.tm.base_opcode |= 1;
5598 }
5599
5600 /* Now select between word & dword operations via the operand
5601 size prefix, except for instructions that will ignore this
5602 prefix anyway. */
5603 if (i.tm.opcode_modifier.addrprefixop0)
5604 {
5605 /* The address size override prefix changes the size of the
5606 first operand. */
5607 if ((flag_code == CODE_32BIT
5608 && i.op->regs[0].reg_type.bitfield.reg16)
5609 || (flag_code != CODE_32BIT
5610 && i.op->regs[0].reg_type.bitfield.reg32))
5611 if (!add_prefix (ADDR_PREFIX_OPCODE))
5612 return 0;
5613 }
5614 else if (i.suffix != QWORD_MNEM_SUFFIX
5615 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
5616 && !i.tm.opcode_modifier.ignoresize
5617 && !i.tm.opcode_modifier.floatmf
5618 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5619 || (flag_code == CODE_64BIT
5620 && i.tm.opcode_modifier.jumpbyte)))
5621 {
5622 unsigned int prefix = DATA_PREFIX_OPCODE;
5623
5624 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5625 prefix = ADDR_PREFIX_OPCODE;
5626
5627 if (!add_prefix (prefix))
5628 return 0;
5629 }
5630
5631 /* Set mode64 for an operand. */
5632 if (i.suffix == QWORD_MNEM_SUFFIX
5633 && flag_code == CODE_64BIT
5634 && !i.tm.opcode_modifier.norex64)
5635 {
5636 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5637 need rex64. cmpxchg8b is also a special case. */
5638 if (! (i.operands == 2
5639 && i.tm.base_opcode == 0x90
5640 && i.tm.extension_opcode == None
5641 && operand_type_equal (&i.types [0], &acc64)
5642 && operand_type_equal (&i.types [1], &acc64))
5643 && ! (i.operands == 1
5644 && i.tm.base_opcode == 0xfc7
5645 && i.tm.extension_opcode == 1
5646 && !operand_type_check (i.types [0], reg)
5647 && operand_type_check (i.types [0], anymem)))
5648 i.rex |= REX_W;
5649 }
5650
5651 /* Size floating point instruction. */
5652 if (i.suffix == LONG_MNEM_SUFFIX)
5653 if (i.tm.opcode_modifier.floatmf)
5654 i.tm.base_opcode ^= 4;
5655 }
5656
5657 return 1;
5658 }
5659
5660 static int
5661 check_byte_reg (void)
5662 {
5663 int op;
5664
5665 for (op = i.operands; --op >= 0;)
5666 {
5667 /* If this is an eight bit register, it's OK. If it's the 16 or
5668 32 bit version of an eight bit register, we will just use the
5669 low portion, and that's OK too. */
5670 if (i.types[op].bitfield.reg8)
5671 continue;
5672
5673 /* I/O port address operands are OK too. */
5674 if (i.tm.operand_types[op].bitfield.inoutportreg)
5675 continue;
5676
5677 /* crc32 doesn't generate this warning. */
5678 if (i.tm.base_opcode == 0xf20f38f0)
5679 continue;
5680
5681 if ((i.types[op].bitfield.reg16
5682 || i.types[op].bitfield.reg32
5683 || i.types[op].bitfield.reg64)
5684 && i.op[op].regs->reg_num < 4
5685 /* Prohibit these changes in 64bit mode, since the lowering
5686 would be more complicated. */
5687 && flag_code != CODE_64BIT)
5688 {
5689 #if REGISTER_WARNINGS
5690 if (!quiet_warnings)
5691 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5692 register_prefix,
5693 (i.op[op].regs + (i.types[op].bitfield.reg16
5694 ? REGNAM_AL - REGNAM_AX
5695 : REGNAM_AL - REGNAM_EAX))->reg_name,
5696 register_prefix,
5697 i.op[op].regs->reg_name,
5698 i.suffix);
5699 #endif
5700 continue;
5701 }
5702 /* Any other register is bad. */
5703 if (i.types[op].bitfield.reg16
5704 || i.types[op].bitfield.reg32
5705 || i.types[op].bitfield.reg64
5706 || i.types[op].bitfield.regmmx
5707 || i.types[op].bitfield.regxmm
5708 || i.types[op].bitfield.regymm
5709 || i.types[op].bitfield.regzmm
5710 || i.types[op].bitfield.sreg2
5711 || i.types[op].bitfield.sreg3
5712 || i.types[op].bitfield.control
5713 || i.types[op].bitfield.debug
5714 || i.types[op].bitfield.test
5715 || i.types[op].bitfield.floatreg
5716 || i.types[op].bitfield.floatacc)
5717 {
5718 as_bad (_("`%s%s' not allowed with `%s%c'"),
5719 register_prefix,
5720 i.op[op].regs->reg_name,
5721 i.tm.name,
5722 i.suffix);
5723 return 0;
5724 }
5725 }
5726 return 1;
5727 }
5728
5729 static int
5730 check_long_reg (void)
5731 {
5732 int op;
5733
5734 for (op = i.operands; --op >= 0;)
5735 /* Reject eight bit registers, except where the template requires
5736 them. (eg. movzb) */
5737 if (i.types[op].bitfield.reg8
5738 && (i.tm.operand_types[op].bitfield.reg16
5739 || i.tm.operand_types[op].bitfield.reg32
5740 || i.tm.operand_types[op].bitfield.acc))
5741 {
5742 as_bad (_("`%s%s' not allowed with `%s%c'"),
5743 register_prefix,
5744 i.op[op].regs->reg_name,
5745 i.tm.name,
5746 i.suffix);
5747 return 0;
5748 }
5749 /* Warn if the e prefix on a general reg is missing. */
5750 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5751 && i.types[op].bitfield.reg16
5752 && (i.tm.operand_types[op].bitfield.reg32
5753 || i.tm.operand_types[op].bitfield.acc))
5754 {
5755 /* Prohibit these changes in the 64bit mode, since the
5756 lowering is more complicated. */
5757 if (flag_code == CODE_64BIT)
5758 {
5759 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5760 register_prefix, i.op[op].regs->reg_name,
5761 i.suffix);
5762 return 0;
5763 }
5764 #if REGISTER_WARNINGS
5765 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5766 register_prefix,
5767 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5768 register_prefix, i.op[op].regs->reg_name, i.suffix);
5769 #endif
5770 }
5771 /* Warn if the r prefix on a general reg is present. */
5772 else if (i.types[op].bitfield.reg64
5773 && (i.tm.operand_types[op].bitfield.reg32
5774 || i.tm.operand_types[op].bitfield.acc))
5775 {
5776 if (intel_syntax
5777 && i.tm.opcode_modifier.toqword
5778 && !i.types[0].bitfield.regxmm)
5779 {
5780 /* Convert to QWORD. We want REX byte. */
5781 i.suffix = QWORD_MNEM_SUFFIX;
5782 }
5783 else
5784 {
5785 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5786 register_prefix, i.op[op].regs->reg_name,
5787 i.suffix);
5788 return 0;
5789 }
5790 }
5791 return 1;
5792 }
5793
5794 static int
5795 check_qword_reg (void)
5796 {
5797 int op;
5798
5799 for (op = i.operands; --op >= 0; )
5800 /* Reject eight bit registers, except where the template requires
5801 them. (eg. movzb) */
5802 if (i.types[op].bitfield.reg8
5803 && (i.tm.operand_types[op].bitfield.reg16
5804 || i.tm.operand_types[op].bitfield.reg32
5805 || i.tm.operand_types[op].bitfield.acc))
5806 {
5807 as_bad (_("`%s%s' not allowed with `%s%c'"),
5808 register_prefix,
5809 i.op[op].regs->reg_name,
5810 i.tm.name,
5811 i.suffix);
5812 return 0;
5813 }
5814 /* Warn if the r prefix on a general reg is missing. */
5815 else if ((i.types[op].bitfield.reg16
5816 || i.types[op].bitfield.reg32)
5817 && (i.tm.operand_types[op].bitfield.reg64
5818 || i.tm.operand_types[op].bitfield.acc))
5819 {
5820 /* Prohibit these changes in the 64bit mode, since the
5821 lowering is more complicated. */
5822 if (intel_syntax
5823 && i.tm.opcode_modifier.todword
5824 && !i.types[0].bitfield.regxmm)
5825 {
5826 /* Convert to DWORD. We don't want REX byte. */
5827 i.suffix = LONG_MNEM_SUFFIX;
5828 }
5829 else
5830 {
5831 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5832 register_prefix, i.op[op].regs->reg_name,
5833 i.suffix);
5834 return 0;
5835 }
5836 }
5837 return 1;
5838 }
5839
5840 static int
5841 check_word_reg (void)
5842 {
5843 int op;
5844 for (op = i.operands; --op >= 0;)
5845 /* Reject eight bit registers, except where the template requires
5846 them. (eg. movzb) */
5847 if (i.types[op].bitfield.reg8
5848 && (i.tm.operand_types[op].bitfield.reg16
5849 || i.tm.operand_types[op].bitfield.reg32
5850 || i.tm.operand_types[op].bitfield.acc))
5851 {
5852 as_bad (_("`%s%s' not allowed with `%s%c'"),
5853 register_prefix,
5854 i.op[op].regs->reg_name,
5855 i.tm.name,
5856 i.suffix);
5857 return 0;
5858 }
5859 /* Warn if the e or r prefix on a general reg is present. */
5860 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5861 && (i.types[op].bitfield.reg32
5862 || i.types[op].bitfield.reg64)
5863 && (i.tm.operand_types[op].bitfield.reg16
5864 || i.tm.operand_types[op].bitfield.acc))
5865 {
5866 /* Prohibit these changes in the 64bit mode, since the
5867 lowering is more complicated. */
5868 if (flag_code == CODE_64BIT)
5869 {
5870 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5871 register_prefix, i.op[op].regs->reg_name,
5872 i.suffix);
5873 return 0;
5874 }
5875 #if REGISTER_WARNINGS
5876 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5877 register_prefix,
5878 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5879 register_prefix, i.op[op].regs->reg_name, i.suffix);
5880 #endif
5881 }
5882 return 1;
5883 }
5884
5885 static int
5886 update_imm (unsigned int j)
5887 {
5888 i386_operand_type overlap = i.types[j];
5889 if ((overlap.bitfield.imm8
5890 || overlap.bitfield.imm8s
5891 || overlap.bitfield.imm16
5892 || overlap.bitfield.imm32
5893 || overlap.bitfield.imm32s
5894 || overlap.bitfield.imm64)
5895 && !operand_type_equal (&overlap, &imm8)
5896 && !operand_type_equal (&overlap, &imm8s)
5897 && !operand_type_equal (&overlap, &imm16)
5898 && !operand_type_equal (&overlap, &imm32)
5899 && !operand_type_equal (&overlap, &imm32s)
5900 && !operand_type_equal (&overlap, &imm64))
5901 {
5902 if (i.suffix)
5903 {
5904 i386_operand_type temp;
5905
5906 operand_type_set (&temp, 0);
5907 if (i.suffix == BYTE_MNEM_SUFFIX)
5908 {
5909 temp.bitfield.imm8 = overlap.bitfield.imm8;
5910 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5911 }
5912 else if (i.suffix == WORD_MNEM_SUFFIX)
5913 temp.bitfield.imm16 = overlap.bitfield.imm16;
5914 else if (i.suffix == QWORD_MNEM_SUFFIX)
5915 {
5916 temp.bitfield.imm64 = overlap.bitfield.imm64;
5917 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5918 }
5919 else
5920 temp.bitfield.imm32 = overlap.bitfield.imm32;
5921 overlap = temp;
5922 }
5923 else if (operand_type_equal (&overlap, &imm16_32_32s)
5924 || operand_type_equal (&overlap, &imm16_32)
5925 || operand_type_equal (&overlap, &imm16_32s))
5926 {
5927 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5928 overlap = imm16;
5929 else
5930 overlap = imm32s;
5931 }
5932 if (!operand_type_equal (&overlap, &imm8)
5933 && !operand_type_equal (&overlap, &imm8s)
5934 && !operand_type_equal (&overlap, &imm16)
5935 && !operand_type_equal (&overlap, &imm32)
5936 && !operand_type_equal (&overlap, &imm32s)
5937 && !operand_type_equal (&overlap, &imm64))
5938 {
5939 as_bad (_("no instruction mnemonic suffix given; "
5940 "can't determine immediate size"));
5941 return 0;
5942 }
5943 }
5944 i.types[j] = overlap;
5945
5946 return 1;
5947 }
5948
5949 static int
5950 finalize_imm (void)
5951 {
5952 unsigned int j, n;
5953
5954 /* Update the first 2 immediate operands. */
5955 n = i.operands > 2 ? 2 : i.operands;
5956 if (n)
5957 {
5958 for (j = 0; j < n; j++)
5959 if (update_imm (j) == 0)
5960 return 0;
5961
5962 /* The 3rd operand can't be immediate operand. */
5963 gas_assert (operand_type_check (i.types[2], imm) == 0);
5964 }
5965
5966 return 1;
5967 }
5968
5969 static int
5970 bad_implicit_operand (int xmm)
5971 {
5972 const char *ireg = xmm ? "xmm0" : "ymm0";
5973
5974 if (intel_syntax)
5975 as_bad (_("the last operand of `%s' must be `%s%s'"),
5976 i.tm.name, register_prefix, ireg);
5977 else
5978 as_bad (_("the first operand of `%s' must be `%s%s'"),
5979 i.tm.name, register_prefix, ireg);
5980 return 0;
5981 }
5982
5983 static int
5984 process_operands (void)
5985 {
5986 /* Default segment register this instruction will use for memory
5987 accesses. 0 means unknown. This is only for optimizing out
5988 unnecessary segment overrides. */
5989 const seg_entry *default_seg = 0;
5990
5991 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
5992 {
5993 unsigned int dupl = i.operands;
5994 unsigned int dest = dupl - 1;
5995 unsigned int j;
5996
5997 /* The destination must be an xmm register. */
5998 gas_assert (i.reg_operands
5999 && MAX_OPERANDS > dupl
6000 && operand_type_equal (&i.types[dest], &regxmm));
6001
6002 if (i.tm.opcode_modifier.firstxmm0)
6003 {
6004 /* The first operand is implicit and must be xmm0. */
6005 gas_assert (operand_type_equal (&i.types[0], &regxmm));
6006 if (register_number (i.op[0].regs) != 0)
6007 return bad_implicit_operand (1);
6008
6009 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6010 {
6011 /* Keep xmm0 for instructions with VEX prefix and 3
6012 sources. */
6013 goto duplicate;
6014 }
6015 else
6016 {
6017 /* We remove the first xmm0 and keep the number of
6018 operands unchanged, which in fact duplicates the
6019 destination. */
6020 for (j = 1; j < i.operands; j++)
6021 {
6022 i.op[j - 1] = i.op[j];
6023 i.types[j - 1] = i.types[j];
6024 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6025 }
6026 }
6027 }
6028 else if (i.tm.opcode_modifier.implicit1stxmm0)
6029 {
6030 gas_assert ((MAX_OPERANDS - 1) > dupl
6031 && (i.tm.opcode_modifier.vexsources
6032 == VEX3SOURCES));
6033
6034 /* Add the implicit xmm0 for instructions with VEX prefix
6035 and 3 sources. */
6036 for (j = i.operands; j > 0; j--)
6037 {
6038 i.op[j] = i.op[j - 1];
6039 i.types[j] = i.types[j - 1];
6040 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6041 }
6042 i.op[0].regs
6043 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6044 i.types[0] = regxmm;
6045 i.tm.operand_types[0] = regxmm;
6046
6047 i.operands += 2;
6048 i.reg_operands += 2;
6049 i.tm.operands += 2;
6050
6051 dupl++;
6052 dest++;
6053 i.op[dupl] = i.op[dest];
6054 i.types[dupl] = i.types[dest];
6055 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6056 }
6057 else
6058 {
6059 duplicate:
6060 i.operands++;
6061 i.reg_operands++;
6062 i.tm.operands++;
6063
6064 i.op[dupl] = i.op[dest];
6065 i.types[dupl] = i.types[dest];
6066 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6067 }
6068
6069 if (i.tm.opcode_modifier.immext)
6070 process_immext ();
6071 }
6072 else if (i.tm.opcode_modifier.firstxmm0)
6073 {
6074 unsigned int j;
6075
6076 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
6077 gas_assert (i.reg_operands
6078 && (operand_type_equal (&i.types[0], &regxmm)
6079 || operand_type_equal (&i.types[0], &regymm)
6080 || operand_type_equal (&i.types[0], &regzmm)));
6081 if (register_number (i.op[0].regs) != 0)
6082 return bad_implicit_operand (i.types[0].bitfield.regxmm);
6083
6084 for (j = 1; j < i.operands; j++)
6085 {
6086 i.op[j - 1] = i.op[j];
6087 i.types[j - 1] = i.types[j];
6088
6089 /* We need to adjust fields in i.tm since they are used by
6090 build_modrm_byte. */
6091 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6092 }
6093
6094 i.operands--;
6095 i.reg_operands--;
6096 i.tm.operands--;
6097 }
6098 else if (i.tm.opcode_modifier.implicitquadgroup)
6099 {
6100 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6101 gas_assert (i.operands >= 2
6102 && (operand_type_equal (&i.types[1], &regxmm)
6103 || operand_type_equal (&i.types[1], &regymm)
6104 || operand_type_equal (&i.types[1], &regzmm)));
6105 unsigned int regnum = register_number (i.op[1].regs);
6106 unsigned int first_reg_in_group = regnum & ~3;
6107 unsigned int last_reg_in_group = first_reg_in_group + 3;
6108 if (regnum != first_reg_in_group) {
6109 as_warn (_("the second source register `%s%s' implicitly denotes"
6110 " `%s%.3s%d' to `%s%.3s%d' source group in `%s'"),
6111 register_prefix, i.op[1].regs->reg_name,
6112 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6113 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6114 i.tm.name);
6115 }
6116 }
6117 else if (i.tm.opcode_modifier.regkludge)
6118 {
6119 /* The imul $imm, %reg instruction is converted into
6120 imul $imm, %reg, %reg, and the clr %reg instruction
6121 is converted into xor %reg, %reg. */
6122
6123 unsigned int first_reg_op;
6124
6125 if (operand_type_check (i.types[0], reg))
6126 first_reg_op = 0;
6127 else
6128 first_reg_op = 1;
6129 /* Pretend we saw the extra register operand. */
6130 gas_assert (i.reg_operands == 1
6131 && i.op[first_reg_op + 1].regs == 0);
6132 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6133 i.types[first_reg_op + 1] = i.types[first_reg_op];
6134 i.operands++;
6135 i.reg_operands++;
6136 }
6137
6138 if (i.tm.opcode_modifier.shortform)
6139 {
6140 if (i.types[0].bitfield.sreg2
6141 || i.types[0].bitfield.sreg3)
6142 {
6143 if (i.tm.base_opcode == POP_SEG_SHORT
6144 && i.op[0].regs->reg_num == 1)
6145 {
6146 as_bad (_("you can't `pop %scs'"), register_prefix);
6147 return 0;
6148 }
6149 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6150 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6151 i.rex |= REX_B;
6152 }
6153 else
6154 {
6155 /* The register or float register operand is in operand
6156 0 or 1. */
6157 unsigned int op;
6158
6159 if (i.types[0].bitfield.floatreg
6160 || operand_type_check (i.types[0], reg))
6161 op = 0;
6162 else
6163 op = 1;
6164 /* Register goes in low 3 bits of opcode. */
6165 i.tm.base_opcode |= i.op[op].regs->reg_num;
6166 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6167 i.rex |= REX_B;
6168 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6169 {
6170 /* Warn about some common errors, but press on regardless.
6171 The first case can be generated by gcc (<= 2.8.1). */
6172 if (i.operands == 2)
6173 {
6174 /* Reversed arguments on faddp, fsubp, etc. */
6175 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6176 register_prefix, i.op[!intel_syntax].regs->reg_name,
6177 register_prefix, i.op[intel_syntax].regs->reg_name);
6178 }
6179 else
6180 {
6181 /* Extraneous `l' suffix on fp insn. */
6182 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6183 register_prefix, i.op[0].regs->reg_name);
6184 }
6185 }
6186 }
6187 }
6188 else if (i.tm.opcode_modifier.modrm)
6189 {
6190 /* The opcode is completed (modulo i.tm.extension_opcode which
6191 must be put into the modrm byte). Now, we make the modrm and
6192 index base bytes based on all the info we've collected. */
6193
6194 default_seg = build_modrm_byte ();
6195 }
6196 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6197 {
6198 default_seg = &ds;
6199 }
6200 else if (i.tm.opcode_modifier.isstring)
6201 {
6202 /* For the string instructions that allow a segment override
6203 on one of their operands, the default segment is ds. */
6204 default_seg = &ds;
6205 }
6206
6207 if (i.tm.base_opcode == 0x8d /* lea */
6208 && i.seg[0]
6209 && !quiet_warnings)
6210 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6211
6212 /* If a segment was explicitly specified, and the specified segment
6213 is not the default, use an opcode prefix to select it. If we
6214 never figured out what the default segment is, then default_seg
6215 will be zero at this point, and the specified segment prefix will
6216 always be used. */
6217 if ((i.seg[0]) && (i.seg[0] != default_seg))
6218 {
6219 if (!add_prefix (i.seg[0]->seg_prefix))
6220 return 0;
6221 }
6222 return 1;
6223 }
6224
6225 static const seg_entry *
6226 build_modrm_byte (void)
6227 {
6228 const seg_entry *default_seg = 0;
6229 unsigned int source, dest;
6230 int vex_3_sources;
6231
6232 /* The first operand of instructions with VEX prefix and 3 sources
6233 must be VEX_Imm4. */
6234 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6235 if (vex_3_sources)
6236 {
6237 unsigned int nds, reg_slot;
6238 expressionS *exp;
6239
6240 if (i.tm.opcode_modifier.veximmext
6241 && i.tm.opcode_modifier.immext)
6242 {
6243 dest = i.operands - 2;
6244 gas_assert (dest == 3);
6245 }
6246 else
6247 dest = i.operands - 1;
6248 nds = dest - 1;
6249
6250 /* There are 2 kinds of instructions:
6251 1. 5 operands: 4 register operands or 3 register operands
6252 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6253 VexW0 or VexW1. The destination must be either XMM, YMM or
6254 ZMM register.
6255 2. 4 operands: 4 register operands or 3 register operands
6256 plus 1 memory operand, VexXDS, and VexImmExt */
6257 gas_assert ((i.reg_operands == 4
6258 || (i.reg_operands == 3 && i.mem_operands == 1))
6259 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6260 && (i.tm.opcode_modifier.veximmext
6261 || (i.imm_operands == 1
6262 && i.types[0].bitfield.vec_imm4
6263 && (i.tm.opcode_modifier.vexw == VEXW0
6264 || i.tm.opcode_modifier.vexw == VEXW1)
6265 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
6266 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
6267 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
6268
6269 if (i.imm_operands == 0)
6270 {
6271 /* When there is no immediate operand, generate an 8bit
6272 immediate operand to encode the first operand. */
6273 exp = &im_expressions[i.imm_operands++];
6274 i.op[i.operands].imms = exp;
6275 i.types[i.operands] = imm8;
6276 i.operands++;
6277 /* If VexW1 is set, the first operand is the source and
6278 the second operand is encoded in the immediate operand. */
6279 if (i.tm.opcode_modifier.vexw == VEXW1)
6280 {
6281 source = 0;
6282 reg_slot = 1;
6283 }
6284 else
6285 {
6286 source = 1;
6287 reg_slot = 0;
6288 }
6289
6290 /* FMA swaps REG and NDS. */
6291 if (i.tm.cpu_flags.bitfield.cpufma)
6292 {
6293 unsigned int tmp;
6294 tmp = reg_slot;
6295 reg_slot = nds;
6296 nds = tmp;
6297 }
6298
6299 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6300 &regxmm)
6301 || operand_type_equal (&i.tm.operand_types[reg_slot],
6302 &regymm)
6303 || operand_type_equal (&i.tm.operand_types[reg_slot],
6304 &regzmm));
6305 exp->X_op = O_constant;
6306 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6307 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6308 }
6309 else
6310 {
6311 unsigned int imm_slot;
6312
6313 if (i.tm.opcode_modifier.vexw == VEXW0)
6314 {
6315 /* If VexW0 is set, the third operand is the source and
6316 the second operand is encoded in the immediate
6317 operand. */
6318 source = 2;
6319 reg_slot = 1;
6320 }
6321 else
6322 {
6323 /* VexW1 is set, the second operand is the source and
6324 the third operand is encoded in the immediate
6325 operand. */
6326 source = 1;
6327 reg_slot = 2;
6328 }
6329
6330 if (i.tm.opcode_modifier.immext)
6331 {
6332 /* When ImmExt is set, the immediate byte is the last
6333 operand. */
6334 imm_slot = i.operands - 1;
6335 source--;
6336 reg_slot--;
6337 }
6338 else
6339 {
6340 imm_slot = 0;
6341
6342 /* Turn on Imm8 so that output_imm will generate it. */
6343 i.types[imm_slot].bitfield.imm8 = 1;
6344 }
6345
6346 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6347 &regxmm)
6348 || operand_type_equal (&i.tm.operand_types[reg_slot],
6349 &regymm)
6350 || operand_type_equal (&i.tm.operand_types[reg_slot],
6351 &regzmm));
6352 i.op[imm_slot].imms->X_add_number
6353 |= register_number (i.op[reg_slot].regs) << 4;
6354 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6355 }
6356
6357 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6358 || operand_type_equal (&i.tm.operand_types[nds],
6359 &regymm)
6360 || operand_type_equal (&i.tm.operand_types[nds],
6361 &regzmm));
6362 i.vex.register_specifier = i.op[nds].regs;
6363 }
6364 else
6365 source = dest = 0;
6366
6367 /* i.reg_operands MUST be the number of real register operands;
6368 implicit registers do not count. If there are 3 register
6369 operands, it must be a instruction with VexNDS. For a
6370 instruction with VexNDD, the destination register is encoded
6371 in VEX prefix. If there are 4 register operands, it must be
6372 a instruction with VEX prefix and 3 sources. */
6373 if (i.mem_operands == 0
6374 && ((i.reg_operands == 2
6375 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6376 || (i.reg_operands == 3
6377 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6378 || (i.reg_operands == 4 && vex_3_sources)))
6379 {
6380 switch (i.operands)
6381 {
6382 case 2:
6383 source = 0;
6384 break;
6385 case 3:
6386 /* When there are 3 operands, one of them may be immediate,
6387 which may be the first or the last operand. Otherwise,
6388 the first operand must be shift count register (cl) or it
6389 is an instruction with VexNDS. */
6390 gas_assert (i.imm_operands == 1
6391 || (i.imm_operands == 0
6392 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6393 || i.types[0].bitfield.shiftcount)));
6394 if (operand_type_check (i.types[0], imm)
6395 || i.types[0].bitfield.shiftcount)
6396 source = 1;
6397 else
6398 source = 0;
6399 break;
6400 case 4:
6401 /* When there are 4 operands, the first two must be 8bit
6402 immediate operands. The source operand will be the 3rd
6403 one.
6404
6405 For instructions with VexNDS, if the first operand
6406 an imm8, the source operand is the 2nd one. If the last
6407 operand is imm8, the source operand is the first one. */
6408 gas_assert ((i.imm_operands == 2
6409 && i.types[0].bitfield.imm8
6410 && i.types[1].bitfield.imm8)
6411 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6412 && i.imm_operands == 1
6413 && (i.types[0].bitfield.imm8
6414 || i.types[i.operands - 1].bitfield.imm8
6415 || i.rounding)));
6416 if (i.imm_operands == 2)
6417 source = 2;
6418 else
6419 {
6420 if (i.types[0].bitfield.imm8)
6421 source = 1;
6422 else
6423 source = 0;
6424 }
6425 break;
6426 case 5:
6427 if (i.tm.opcode_modifier.evex)
6428 {
6429 /* For EVEX instructions, when there are 5 operands, the
6430 first one must be immediate operand. If the second one
6431 is immediate operand, the source operand is the 3th
6432 one. If the last one is immediate operand, the source
6433 operand is the 2nd one. */
6434 gas_assert (i.imm_operands == 2
6435 && i.tm.opcode_modifier.sae
6436 && operand_type_check (i.types[0], imm));
6437 if (operand_type_check (i.types[1], imm))
6438 source = 2;
6439 else if (operand_type_check (i.types[4], imm))
6440 source = 1;
6441 else
6442 abort ();
6443 }
6444 break;
6445 default:
6446 abort ();
6447 }
6448
6449 if (!vex_3_sources)
6450 {
6451 dest = source + 1;
6452
6453 /* RC/SAE operand could be between DEST and SRC. That happens
6454 when one operand is GPR and the other one is XMM/YMM/ZMM
6455 register. */
6456 if (i.rounding && i.rounding->operand == (int) dest)
6457 dest++;
6458
6459 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6460 {
6461 /* For instructions with VexNDS, the register-only source
6462 operand must be 32/64bit integer, XMM, YMM or ZMM
6463 register. It is encoded in VEX prefix. We need to
6464 clear RegMem bit before calling operand_type_equal. */
6465
6466 i386_operand_type op;
6467 unsigned int vvvv;
6468
6469 /* Check register-only source operand when two source
6470 operands are swapped. */
6471 if (!i.tm.operand_types[source].bitfield.baseindex
6472 && i.tm.operand_types[dest].bitfield.baseindex)
6473 {
6474 vvvv = source;
6475 source = dest;
6476 }
6477 else
6478 vvvv = dest;
6479
6480 op = i.tm.operand_types[vvvv];
6481 op.bitfield.regmem = 0;
6482 if ((dest + 1) >= i.operands
6483 || (!op.bitfield.reg32
6484 && op.bitfield.reg64
6485 && !operand_type_equal (&op, &regxmm)
6486 && !operand_type_equal (&op, &regymm)
6487 && !operand_type_equal (&op, &regzmm)
6488 && !operand_type_equal (&op, &regmask)))
6489 abort ();
6490 i.vex.register_specifier = i.op[vvvv].regs;
6491 dest++;
6492 }
6493 }
6494
6495 i.rm.mode = 3;
6496 /* One of the register operands will be encoded in the i.tm.reg
6497 field, the other in the combined i.tm.mode and i.tm.regmem
6498 fields. If no form of this instruction supports a memory
6499 destination operand, then we assume the source operand may
6500 sometimes be a memory operand and so we need to store the
6501 destination in the i.rm.reg field. */
6502 if (!i.tm.operand_types[dest].bitfield.regmem
6503 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6504 {
6505 i.rm.reg = i.op[dest].regs->reg_num;
6506 i.rm.regmem = i.op[source].regs->reg_num;
6507 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6508 i.rex |= REX_R;
6509 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6510 i.vrex |= REX_R;
6511 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6512 i.rex |= REX_B;
6513 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6514 i.vrex |= REX_B;
6515 }
6516 else
6517 {
6518 i.rm.reg = i.op[source].regs->reg_num;
6519 i.rm.regmem = i.op[dest].regs->reg_num;
6520 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6521 i.rex |= REX_B;
6522 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6523 i.vrex |= REX_B;
6524 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6525 i.rex |= REX_R;
6526 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6527 i.vrex |= REX_R;
6528 }
6529 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6530 {
6531 if (!i.types[0].bitfield.control
6532 && !i.types[1].bitfield.control)
6533 abort ();
6534 i.rex &= ~(REX_R | REX_B);
6535 add_prefix (LOCK_PREFIX_OPCODE);
6536 }
6537 }
6538 else
6539 { /* If it's not 2 reg operands... */
6540 unsigned int mem;
6541
6542 if (i.mem_operands)
6543 {
6544 unsigned int fake_zero_displacement = 0;
6545 unsigned int op;
6546
6547 for (op = 0; op < i.operands; op++)
6548 if (operand_type_check (i.types[op], anymem))
6549 break;
6550 gas_assert (op < i.operands);
6551
6552 if (i.tm.opcode_modifier.vecsib)
6553 {
6554 if (i.index_reg->reg_num == RegEiz
6555 || i.index_reg->reg_num == RegRiz)
6556 abort ();
6557
6558 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6559 if (!i.base_reg)
6560 {
6561 i.sib.base = NO_BASE_REGISTER;
6562 i.sib.scale = i.log2_scale_factor;
6563 /* No Vec_Disp8 if there is no base. */
6564 i.types[op].bitfield.vec_disp8 = 0;
6565 i.types[op].bitfield.disp8 = 0;
6566 i.types[op].bitfield.disp16 = 0;
6567 i.types[op].bitfield.disp64 = 0;
6568 if (flag_code != CODE_64BIT)
6569 {
6570 /* Must be 32 bit */
6571 i.types[op].bitfield.disp32 = 1;
6572 i.types[op].bitfield.disp32s = 0;
6573 }
6574 else
6575 {
6576 i.types[op].bitfield.disp32 = 0;
6577 i.types[op].bitfield.disp32s = 1;
6578 }
6579 }
6580 i.sib.index = i.index_reg->reg_num;
6581 if ((i.index_reg->reg_flags & RegRex) != 0)
6582 i.rex |= REX_X;
6583 if ((i.index_reg->reg_flags & RegVRex) != 0)
6584 i.vrex |= REX_X;
6585 }
6586
6587 default_seg = &ds;
6588
6589 if (i.base_reg == 0)
6590 {
6591 i.rm.mode = 0;
6592 if (!i.disp_operands)
6593 {
6594 fake_zero_displacement = 1;
6595 /* Instructions with VSIB byte need 32bit displacement
6596 if there is no base register. */
6597 if (i.tm.opcode_modifier.vecsib)
6598 i.types[op].bitfield.disp32 = 1;
6599 }
6600 if (i.index_reg == 0)
6601 {
6602 gas_assert (!i.tm.opcode_modifier.vecsib);
6603 /* Operand is just <disp> */
6604 if (flag_code == CODE_64BIT)
6605 {
6606 /* 64bit mode overwrites the 32bit absolute
6607 addressing by RIP relative addressing and
6608 absolute addressing is encoded by one of the
6609 redundant SIB forms. */
6610 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6611 i.sib.base = NO_BASE_REGISTER;
6612 i.sib.index = NO_INDEX_REGISTER;
6613 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
6614 ? disp32s : disp32);
6615 }
6616 else if ((flag_code == CODE_16BIT)
6617 ^ (i.prefix[ADDR_PREFIX] != 0))
6618 {
6619 i.rm.regmem = NO_BASE_REGISTER_16;
6620 i.types[op] = disp16;
6621 }
6622 else
6623 {
6624 i.rm.regmem = NO_BASE_REGISTER;
6625 i.types[op] = disp32;
6626 }
6627 }
6628 else if (!i.tm.opcode_modifier.vecsib)
6629 {
6630 /* !i.base_reg && i.index_reg */
6631 if (i.index_reg->reg_num == RegEiz
6632 || i.index_reg->reg_num == RegRiz)
6633 i.sib.index = NO_INDEX_REGISTER;
6634 else
6635 i.sib.index = i.index_reg->reg_num;
6636 i.sib.base = NO_BASE_REGISTER;
6637 i.sib.scale = i.log2_scale_factor;
6638 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6639 /* No Vec_Disp8 if there is no base. */
6640 i.types[op].bitfield.vec_disp8 = 0;
6641 i.types[op].bitfield.disp8 = 0;
6642 i.types[op].bitfield.disp16 = 0;
6643 i.types[op].bitfield.disp64 = 0;
6644 if (flag_code != CODE_64BIT)
6645 {
6646 /* Must be 32 bit */
6647 i.types[op].bitfield.disp32 = 1;
6648 i.types[op].bitfield.disp32s = 0;
6649 }
6650 else
6651 {
6652 i.types[op].bitfield.disp32 = 0;
6653 i.types[op].bitfield.disp32s = 1;
6654 }
6655 if ((i.index_reg->reg_flags & RegRex) != 0)
6656 i.rex |= REX_X;
6657 }
6658 }
6659 /* RIP addressing for 64bit mode. */
6660 else if (i.base_reg->reg_num == RegRip ||
6661 i.base_reg->reg_num == RegEip)
6662 {
6663 gas_assert (!i.tm.opcode_modifier.vecsib);
6664 i.rm.regmem = NO_BASE_REGISTER;
6665 i.types[op].bitfield.disp8 = 0;
6666 i.types[op].bitfield.disp16 = 0;
6667 i.types[op].bitfield.disp32 = 0;
6668 i.types[op].bitfield.disp32s = 1;
6669 i.types[op].bitfield.disp64 = 0;
6670 i.types[op].bitfield.vec_disp8 = 0;
6671 i.flags[op] |= Operand_PCrel;
6672 if (! i.disp_operands)
6673 fake_zero_displacement = 1;
6674 }
6675 else if (i.base_reg->reg_type.bitfield.reg16)
6676 {
6677 gas_assert (!i.tm.opcode_modifier.vecsib);
6678 switch (i.base_reg->reg_num)
6679 {
6680 case 3: /* (%bx) */
6681 if (i.index_reg == 0)
6682 i.rm.regmem = 7;
6683 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6684 i.rm.regmem = i.index_reg->reg_num - 6;
6685 break;
6686 case 5: /* (%bp) */
6687 default_seg = &ss;
6688 if (i.index_reg == 0)
6689 {
6690 i.rm.regmem = 6;
6691 if (operand_type_check (i.types[op], disp) == 0)
6692 {
6693 /* fake (%bp) into 0(%bp) */
6694 if (i.tm.operand_types[op].bitfield.vec_disp8)
6695 i.types[op].bitfield.vec_disp8 = 1;
6696 else
6697 i.types[op].bitfield.disp8 = 1;
6698 fake_zero_displacement = 1;
6699 }
6700 }
6701 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6702 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6703 break;
6704 default: /* (%si) -> 4 or (%di) -> 5 */
6705 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6706 }
6707 i.rm.mode = mode_from_disp_size (i.types[op]);
6708 }
6709 else /* i.base_reg and 32/64 bit mode */
6710 {
6711 if (flag_code == CODE_64BIT
6712 && operand_type_check (i.types[op], disp))
6713 {
6714 i386_operand_type temp;
6715 operand_type_set (&temp, 0);
6716 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6717 temp.bitfield.vec_disp8
6718 = i.types[op].bitfield.vec_disp8;
6719 i.types[op] = temp;
6720 if (i.prefix[ADDR_PREFIX] == 0)
6721 i.types[op].bitfield.disp32s = 1;
6722 else
6723 i.types[op].bitfield.disp32 = 1;
6724 }
6725
6726 if (!i.tm.opcode_modifier.vecsib)
6727 i.rm.regmem = i.base_reg->reg_num;
6728 if ((i.base_reg->reg_flags & RegRex) != 0)
6729 i.rex |= REX_B;
6730 i.sib.base = i.base_reg->reg_num;
6731 /* x86-64 ignores REX prefix bit here to avoid decoder
6732 complications. */
6733 if (!(i.base_reg->reg_flags & RegRex)
6734 && (i.base_reg->reg_num == EBP_REG_NUM
6735 || i.base_reg->reg_num == ESP_REG_NUM))
6736 default_seg = &ss;
6737 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6738 {
6739 fake_zero_displacement = 1;
6740 if (i.tm.operand_types [op].bitfield.vec_disp8)
6741 i.types[op].bitfield.vec_disp8 = 1;
6742 else
6743 i.types[op].bitfield.disp8 = 1;
6744 }
6745 i.sib.scale = i.log2_scale_factor;
6746 if (i.index_reg == 0)
6747 {
6748 gas_assert (!i.tm.opcode_modifier.vecsib);
6749 /* <disp>(%esp) becomes two byte modrm with no index
6750 register. We've already stored the code for esp
6751 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6752 Any base register besides %esp will not use the
6753 extra modrm byte. */
6754 i.sib.index = NO_INDEX_REGISTER;
6755 }
6756 else if (!i.tm.opcode_modifier.vecsib)
6757 {
6758 if (i.index_reg->reg_num == RegEiz
6759 || i.index_reg->reg_num == RegRiz)
6760 i.sib.index = NO_INDEX_REGISTER;
6761 else
6762 i.sib.index = i.index_reg->reg_num;
6763 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6764 if ((i.index_reg->reg_flags & RegRex) != 0)
6765 i.rex |= REX_X;
6766 }
6767
6768 if (i.disp_operands
6769 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6770 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6771 i.rm.mode = 0;
6772 else
6773 {
6774 if (!fake_zero_displacement
6775 && !i.disp_operands
6776 && i.disp_encoding)
6777 {
6778 fake_zero_displacement = 1;
6779 if (i.disp_encoding == disp_encoding_8bit)
6780 i.types[op].bitfield.disp8 = 1;
6781 else
6782 i.types[op].bitfield.disp32 = 1;
6783 }
6784 i.rm.mode = mode_from_disp_size (i.types[op]);
6785 }
6786 }
6787
6788 if (fake_zero_displacement)
6789 {
6790 /* Fakes a zero displacement assuming that i.types[op]
6791 holds the correct displacement size. */
6792 expressionS *exp;
6793
6794 gas_assert (i.op[op].disps == 0);
6795 exp = &disp_expressions[i.disp_operands++];
6796 i.op[op].disps = exp;
6797 exp->X_op = O_constant;
6798 exp->X_add_number = 0;
6799 exp->X_add_symbol = (symbolS *) 0;
6800 exp->X_op_symbol = (symbolS *) 0;
6801 }
6802
6803 mem = op;
6804 }
6805 else
6806 mem = ~0;
6807
6808 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
6809 {
6810 if (operand_type_check (i.types[0], imm))
6811 i.vex.register_specifier = NULL;
6812 else
6813 {
6814 /* VEX.vvvv encodes one of the sources when the first
6815 operand is not an immediate. */
6816 if (i.tm.opcode_modifier.vexw == VEXW0)
6817 i.vex.register_specifier = i.op[0].regs;
6818 else
6819 i.vex.register_specifier = i.op[1].regs;
6820 }
6821
6822 /* Destination is a XMM register encoded in the ModRM.reg
6823 and VEX.R bit. */
6824 i.rm.reg = i.op[2].regs->reg_num;
6825 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6826 i.rex |= REX_R;
6827
6828 /* ModRM.rm and VEX.B encodes the other source. */
6829 if (!i.mem_operands)
6830 {
6831 i.rm.mode = 3;
6832
6833 if (i.tm.opcode_modifier.vexw == VEXW0)
6834 i.rm.regmem = i.op[1].regs->reg_num;
6835 else
6836 i.rm.regmem = i.op[0].regs->reg_num;
6837
6838 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6839 i.rex |= REX_B;
6840 }
6841 }
6842 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
6843 {
6844 i.vex.register_specifier = i.op[2].regs;
6845 if (!i.mem_operands)
6846 {
6847 i.rm.mode = 3;
6848 i.rm.regmem = i.op[1].regs->reg_num;
6849 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6850 i.rex |= REX_B;
6851 }
6852 }
6853 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6854 (if any) based on i.tm.extension_opcode. Again, we must be
6855 careful to make sure that segment/control/debug/test/MMX
6856 registers are coded into the i.rm.reg field. */
6857 else if (i.reg_operands)
6858 {
6859 unsigned int op;
6860 unsigned int vex_reg = ~0;
6861
6862 for (op = 0; op < i.operands; op++)
6863 if (i.types[op].bitfield.reg8
6864 || i.types[op].bitfield.reg16
6865 || i.types[op].bitfield.reg32
6866 || i.types[op].bitfield.reg64
6867 || i.types[op].bitfield.regmmx
6868 || i.types[op].bitfield.regxmm
6869 || i.types[op].bitfield.regymm
6870 || i.types[op].bitfield.regbnd
6871 || i.types[op].bitfield.regzmm
6872 || i.types[op].bitfield.regmask
6873 || i.types[op].bitfield.sreg2
6874 || i.types[op].bitfield.sreg3
6875 || i.types[op].bitfield.control
6876 || i.types[op].bitfield.debug
6877 || i.types[op].bitfield.test)
6878 break;
6879
6880 if (vex_3_sources)
6881 op = dest;
6882 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6883 {
6884 /* For instructions with VexNDS, the register-only
6885 source operand is encoded in VEX prefix. */
6886 gas_assert (mem != (unsigned int) ~0);
6887
6888 if (op > mem)
6889 {
6890 vex_reg = op++;
6891 gas_assert (op < i.operands);
6892 }
6893 else
6894 {
6895 /* Check register-only source operand when two source
6896 operands are swapped. */
6897 if (!i.tm.operand_types[op].bitfield.baseindex
6898 && i.tm.operand_types[op + 1].bitfield.baseindex)
6899 {
6900 vex_reg = op;
6901 op += 2;
6902 gas_assert (mem == (vex_reg + 1)
6903 && op < i.operands);
6904 }
6905 else
6906 {
6907 vex_reg = op + 1;
6908 gas_assert (vex_reg < i.operands);
6909 }
6910 }
6911 }
6912 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
6913 {
6914 /* For instructions with VexNDD, the register destination
6915 is encoded in VEX prefix. */
6916 if (i.mem_operands == 0)
6917 {
6918 /* There is no memory operand. */
6919 gas_assert ((op + 2) == i.operands);
6920 vex_reg = op + 1;
6921 }
6922 else
6923 {
6924 /* There are only 2 operands. */
6925 gas_assert (op < 2 && i.operands == 2);
6926 vex_reg = 1;
6927 }
6928 }
6929 else
6930 gas_assert (op < i.operands);
6931
6932 if (vex_reg != (unsigned int) ~0)
6933 {
6934 i386_operand_type *type = &i.tm.operand_types[vex_reg];
6935
6936 if (type->bitfield.reg32 != 1
6937 && type->bitfield.reg64 != 1
6938 && !operand_type_equal (type, &regxmm)
6939 && !operand_type_equal (type, &regymm)
6940 && !operand_type_equal (type, &regzmm)
6941 && !operand_type_equal (type, &regmask))
6942 abort ();
6943
6944 i.vex.register_specifier = i.op[vex_reg].regs;
6945 }
6946
6947 /* Don't set OP operand twice. */
6948 if (vex_reg != op)
6949 {
6950 /* If there is an extension opcode to put here, the
6951 register number must be put into the regmem field. */
6952 if (i.tm.extension_opcode != None)
6953 {
6954 i.rm.regmem = i.op[op].regs->reg_num;
6955 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6956 i.rex |= REX_B;
6957 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6958 i.vrex |= REX_B;
6959 }
6960 else
6961 {
6962 i.rm.reg = i.op[op].regs->reg_num;
6963 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6964 i.rex |= REX_R;
6965 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6966 i.vrex |= REX_R;
6967 }
6968 }
6969
6970 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6971 must set it to 3 to indicate this is a register operand
6972 in the regmem field. */
6973 if (!i.mem_operands)
6974 i.rm.mode = 3;
6975 }
6976
6977 /* Fill in i.rm.reg field with extension opcode (if any). */
6978 if (i.tm.extension_opcode != None)
6979 i.rm.reg = i.tm.extension_opcode;
6980 }
6981 return default_seg;
6982 }
6983
6984 static void
6985 output_branch (void)
6986 {
6987 char *p;
6988 int size;
6989 int code16;
6990 int prefix;
6991 relax_substateT subtype;
6992 symbolS *sym;
6993 offsetT off;
6994
6995 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
6996 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
6997
6998 prefix = 0;
6999 if (i.prefix[DATA_PREFIX] != 0)
7000 {
7001 prefix = 1;
7002 i.prefixes -= 1;
7003 code16 ^= CODE16;
7004 }
7005 /* Pentium4 branch hints. */
7006 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7007 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7008 {
7009 prefix++;
7010 i.prefixes--;
7011 }
7012 if (i.prefix[REX_PREFIX] != 0)
7013 {
7014 prefix++;
7015 i.prefixes--;
7016 }
7017
7018 /* BND prefixed jump. */
7019 if (i.prefix[BND_PREFIX] != 0)
7020 {
7021 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7022 i.prefixes -= 1;
7023 }
7024
7025 if (i.prefixes != 0 && !intel_syntax)
7026 as_warn (_("skipping prefixes on this instruction"));
7027
7028 /* It's always a symbol; End frag & setup for relax.
7029 Make sure there is enough room in this frag for the largest
7030 instruction we may generate in md_convert_frag. This is 2
7031 bytes for the opcode and room for the prefix and largest
7032 displacement. */
7033 frag_grow (prefix + 2 + 4);
7034 /* Prefix and 1 opcode byte go in fr_fix. */
7035 p = frag_more (prefix + 1);
7036 if (i.prefix[DATA_PREFIX] != 0)
7037 *p++ = DATA_PREFIX_OPCODE;
7038 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7039 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7040 *p++ = i.prefix[SEG_PREFIX];
7041 if (i.prefix[REX_PREFIX] != 0)
7042 *p++ = i.prefix[REX_PREFIX];
7043 *p = i.tm.base_opcode;
7044
7045 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7046 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7047 else if (cpu_arch_flags.bitfield.cpui386)
7048 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7049 else
7050 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7051 subtype |= code16;
7052
7053 sym = i.op[0].disps->X_add_symbol;
7054 off = i.op[0].disps->X_add_number;
7055
7056 if (i.op[0].disps->X_op != O_constant
7057 && i.op[0].disps->X_op != O_symbol)
7058 {
7059 /* Handle complex expressions. */
7060 sym = make_expr_symbol (i.op[0].disps);
7061 off = 0;
7062 }
7063
7064 /* 1 possible extra opcode + 4 byte displacement go in var part.
7065 Pass reloc in fr_var. */
7066 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7067 }
7068
7069 static void
7070 output_jump (void)
7071 {
7072 char *p;
7073 int size;
7074 fixS *fixP;
7075
7076 if (i.tm.opcode_modifier.jumpbyte)
7077 {
7078 /* This is a loop or jecxz type instruction. */
7079 size = 1;
7080 if (i.prefix[ADDR_PREFIX] != 0)
7081 {
7082 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7083 i.prefixes -= 1;
7084 }
7085 /* Pentium4 branch hints. */
7086 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7087 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7088 {
7089 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7090 i.prefixes--;
7091 }
7092 }
7093 else
7094 {
7095 int code16;
7096
7097 code16 = 0;
7098 if (flag_code == CODE_16BIT)
7099 code16 = CODE16;
7100
7101 if (i.prefix[DATA_PREFIX] != 0)
7102 {
7103 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7104 i.prefixes -= 1;
7105 code16 ^= CODE16;
7106 }
7107
7108 size = 4;
7109 if (code16)
7110 size = 2;
7111 }
7112
7113 if (i.prefix[REX_PREFIX] != 0)
7114 {
7115 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7116 i.prefixes -= 1;
7117 }
7118
7119 /* BND prefixed jump. */
7120 if (i.prefix[BND_PREFIX] != 0)
7121 {
7122 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7123 i.prefixes -= 1;
7124 }
7125
7126 if (i.prefixes != 0 && !intel_syntax)
7127 as_warn (_("skipping prefixes on this instruction"));
7128
7129 p = frag_more (i.tm.opcode_length + size);
7130 switch (i.tm.opcode_length)
7131 {
7132 case 2:
7133 *p++ = i.tm.base_opcode >> 8;
7134 /* Fall through. */
7135 case 1:
7136 *p++ = i.tm.base_opcode;
7137 break;
7138 default:
7139 abort ();
7140 }
7141
7142 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7143 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
7144
7145 /* All jumps handled here are signed, but don't use a signed limit
7146 check for 32 and 16 bit jumps as we want to allow wrap around at
7147 4G and 64k respectively. */
7148 if (size == 1)
7149 fixP->fx_signed = 1;
7150 }
7151
7152 static void
7153 output_interseg_jump (void)
7154 {
7155 char *p;
7156 int size;
7157 int prefix;
7158 int code16;
7159
7160 code16 = 0;
7161 if (flag_code == CODE_16BIT)
7162 code16 = CODE16;
7163
7164 prefix = 0;
7165 if (i.prefix[DATA_PREFIX] != 0)
7166 {
7167 prefix = 1;
7168 i.prefixes -= 1;
7169 code16 ^= CODE16;
7170 }
7171 if (i.prefix[REX_PREFIX] != 0)
7172 {
7173 prefix++;
7174 i.prefixes -= 1;
7175 }
7176
7177 size = 4;
7178 if (code16)
7179 size = 2;
7180
7181 if (i.prefixes != 0 && !intel_syntax)
7182 as_warn (_("skipping prefixes on this instruction"));
7183
7184 /* 1 opcode; 2 segment; offset */
7185 p = frag_more (prefix + 1 + 2 + size);
7186
7187 if (i.prefix[DATA_PREFIX] != 0)
7188 *p++ = DATA_PREFIX_OPCODE;
7189
7190 if (i.prefix[REX_PREFIX] != 0)
7191 *p++ = i.prefix[REX_PREFIX];
7192
7193 *p++ = i.tm.base_opcode;
7194 if (i.op[1].imms->X_op == O_constant)
7195 {
7196 offsetT n = i.op[1].imms->X_add_number;
7197
7198 if (size == 2
7199 && !fits_in_unsigned_word (n)
7200 && !fits_in_signed_word (n))
7201 {
7202 as_bad (_("16-bit jump out of range"));
7203 return;
7204 }
7205 md_number_to_chars (p, n, size);
7206 }
7207 else
7208 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7209 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7210 if (i.op[0].imms->X_op != O_constant)
7211 as_bad (_("can't handle non absolute segment in `%s'"),
7212 i.tm.name);
7213 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7214 }
7215
7216 static void
7217 output_insn (void)
7218 {
7219 fragS *insn_start_frag;
7220 offsetT insn_start_off;
7221
7222 /* Tie dwarf2 debug info to the address at the start of the insn.
7223 We can't do this after the insn has been output as the current
7224 frag may have been closed off. eg. by frag_var. */
7225 dwarf2_emit_insn (0);
7226
7227 insn_start_frag = frag_now;
7228 insn_start_off = frag_now_fix ();
7229
7230 /* Output jumps. */
7231 if (i.tm.opcode_modifier.jump)
7232 output_branch ();
7233 else if (i.tm.opcode_modifier.jumpbyte
7234 || i.tm.opcode_modifier.jumpdword)
7235 output_jump ();
7236 else if (i.tm.opcode_modifier.jumpintersegment)
7237 output_interseg_jump ();
7238 else
7239 {
7240 /* Output normal instructions here. */
7241 char *p;
7242 unsigned char *q;
7243 unsigned int j;
7244 unsigned int prefix;
7245
7246 if (avoid_fence
7247 && i.tm.base_opcode == 0xfae
7248 && i.operands == 1
7249 && i.imm_operands == 1
7250 && (i.op[0].imms->X_add_number == 0xe8
7251 || i.op[0].imms->X_add_number == 0xf0
7252 || i.op[0].imms->X_add_number == 0xf8))
7253 {
7254 /* Encode lfence, mfence, and sfence as
7255 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7256 offsetT val = 0x240483f0ULL;
7257 p = frag_more (5);
7258 md_number_to_chars (p, val, 5);
7259 return;
7260 }
7261
7262 /* Some processors fail on LOCK prefix. This options makes
7263 assembler ignore LOCK prefix and serves as a workaround. */
7264 if (omit_lock_prefix)
7265 {
7266 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7267 return;
7268 i.prefix[LOCK_PREFIX] = 0;
7269 }
7270
7271 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7272 don't need the explicit prefix. */
7273 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7274 {
7275 switch (i.tm.opcode_length)
7276 {
7277 case 3:
7278 if (i.tm.base_opcode & 0xff000000)
7279 {
7280 prefix = (i.tm.base_opcode >> 24) & 0xff;
7281 goto check_prefix;
7282 }
7283 break;
7284 case 2:
7285 if ((i.tm.base_opcode & 0xff0000) != 0)
7286 {
7287 prefix = (i.tm.base_opcode >> 16) & 0xff;
7288 if (i.tm.cpu_flags.bitfield.cpupadlock)
7289 {
7290 check_prefix:
7291 if (prefix != REPE_PREFIX_OPCODE
7292 || (i.prefix[REP_PREFIX]
7293 != REPE_PREFIX_OPCODE))
7294 add_prefix (prefix);
7295 }
7296 else
7297 add_prefix (prefix);
7298 }
7299 break;
7300 case 1:
7301 break;
7302 default:
7303 abort ();
7304 }
7305
7306 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7307 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7308 R_X86_64_GOTTPOFF relocation so that linker can safely
7309 perform IE->LE optimization. */
7310 if (x86_elf_abi == X86_64_X32_ABI
7311 && i.operands == 2
7312 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7313 && i.prefix[REX_PREFIX] == 0)
7314 add_prefix (REX_OPCODE);
7315 #endif
7316
7317 /* The prefix bytes. */
7318 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7319 if (*q)
7320 FRAG_APPEND_1_CHAR (*q);
7321 }
7322 else
7323 {
7324 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7325 if (*q)
7326 switch (j)
7327 {
7328 case REX_PREFIX:
7329 /* REX byte is encoded in VEX prefix. */
7330 break;
7331 case SEG_PREFIX:
7332 case ADDR_PREFIX:
7333 FRAG_APPEND_1_CHAR (*q);
7334 break;
7335 default:
7336 /* There should be no other prefixes for instructions
7337 with VEX prefix. */
7338 abort ();
7339 }
7340
7341 /* For EVEX instructions i.vrex should become 0 after
7342 build_evex_prefix. For VEX instructions upper 16 registers
7343 aren't available, so VREX should be 0. */
7344 if (i.vrex)
7345 abort ();
7346 /* Now the VEX prefix. */
7347 p = frag_more (i.vex.length);
7348 for (j = 0; j < i.vex.length; j++)
7349 p[j] = i.vex.bytes[j];
7350 }
7351
7352 /* Now the opcode; be careful about word order here! */
7353 if (i.tm.opcode_length == 1)
7354 {
7355 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7356 }
7357 else
7358 {
7359 switch (i.tm.opcode_length)
7360 {
7361 case 4:
7362 p = frag_more (4);
7363 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7364 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7365 break;
7366 case 3:
7367 p = frag_more (3);
7368 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7369 break;
7370 case 2:
7371 p = frag_more (2);
7372 break;
7373 default:
7374 abort ();
7375 break;
7376 }
7377
7378 /* Put out high byte first: can't use md_number_to_chars! */
7379 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7380 *p = i.tm.base_opcode & 0xff;
7381 }
7382
7383 /* Now the modrm byte and sib byte (if present). */
7384 if (i.tm.opcode_modifier.modrm)
7385 {
7386 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7387 | i.rm.reg << 3
7388 | i.rm.mode << 6));
7389 /* If i.rm.regmem == ESP (4)
7390 && i.rm.mode != (Register mode)
7391 && not 16 bit
7392 ==> need second modrm byte. */
7393 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7394 && i.rm.mode != 3
7395 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
7396 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7397 | i.sib.index << 3
7398 | i.sib.scale << 6));
7399 }
7400
7401 if (i.disp_operands)
7402 output_disp (insn_start_frag, insn_start_off);
7403
7404 if (i.imm_operands)
7405 output_imm (insn_start_frag, insn_start_off);
7406 }
7407
7408 #ifdef DEBUG386
7409 if (flag_debug)
7410 {
7411 pi ("" /*line*/, &i);
7412 }
7413 #endif /* DEBUG386 */
7414 }
7415
7416 /* Return the size of the displacement operand N. */
7417
7418 static int
7419 disp_size (unsigned int n)
7420 {
7421 int size = 4;
7422
7423 /* Vec_Disp8 has to be 8bit. */
7424 if (i.types[n].bitfield.vec_disp8)
7425 size = 1;
7426 else if (i.types[n].bitfield.disp64)
7427 size = 8;
7428 else if (i.types[n].bitfield.disp8)
7429 size = 1;
7430 else if (i.types[n].bitfield.disp16)
7431 size = 2;
7432 return size;
7433 }
7434
7435 /* Return the size of the immediate operand N. */
7436
7437 static int
7438 imm_size (unsigned int n)
7439 {
7440 int size = 4;
7441 if (i.types[n].bitfield.imm64)
7442 size = 8;
7443 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7444 size = 1;
7445 else if (i.types[n].bitfield.imm16)
7446 size = 2;
7447 return size;
7448 }
7449
7450 static void
7451 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7452 {
7453 char *p;
7454 unsigned int n;
7455
7456 for (n = 0; n < i.operands; n++)
7457 {
7458 if (i.types[n].bitfield.vec_disp8
7459 || operand_type_check (i.types[n], disp))
7460 {
7461 if (i.op[n].disps->X_op == O_constant)
7462 {
7463 int size = disp_size (n);
7464 offsetT val = i.op[n].disps->X_add_number;
7465
7466 if (i.types[n].bitfield.vec_disp8)
7467 val >>= i.memshift;
7468 val = offset_in_range (val, size);
7469 p = frag_more (size);
7470 md_number_to_chars (p, val, size);
7471 }
7472 else
7473 {
7474 enum bfd_reloc_code_real reloc_type;
7475 int size = disp_size (n);
7476 int sign = i.types[n].bitfield.disp32s;
7477 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7478 fixS *fixP;
7479
7480 /* We can't have 8 bit displacement here. */
7481 gas_assert (!i.types[n].bitfield.disp8);
7482
7483 /* The PC relative address is computed relative
7484 to the instruction boundary, so in case immediate
7485 fields follows, we need to adjust the value. */
7486 if (pcrel && i.imm_operands)
7487 {
7488 unsigned int n1;
7489 int sz = 0;
7490
7491 for (n1 = 0; n1 < i.operands; n1++)
7492 if (operand_type_check (i.types[n1], imm))
7493 {
7494 /* Only one immediate is allowed for PC
7495 relative address. */
7496 gas_assert (sz == 0);
7497 sz = imm_size (n1);
7498 i.op[n].disps->X_add_number -= sz;
7499 }
7500 /* We should find the immediate. */
7501 gas_assert (sz != 0);
7502 }
7503
7504 p = frag_more (size);
7505 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7506 if (GOT_symbol
7507 && GOT_symbol == i.op[n].disps->X_add_symbol
7508 && (((reloc_type == BFD_RELOC_32
7509 || reloc_type == BFD_RELOC_X86_64_32S
7510 || (reloc_type == BFD_RELOC_64
7511 && object_64bit))
7512 && (i.op[n].disps->X_op == O_symbol
7513 || (i.op[n].disps->X_op == O_add
7514 && ((symbol_get_value_expression
7515 (i.op[n].disps->X_op_symbol)->X_op)
7516 == O_subtract))))
7517 || reloc_type == BFD_RELOC_32_PCREL))
7518 {
7519 offsetT add;
7520
7521 if (insn_start_frag == frag_now)
7522 add = (p - frag_now->fr_literal) - insn_start_off;
7523 else
7524 {
7525 fragS *fr;
7526
7527 add = insn_start_frag->fr_fix - insn_start_off;
7528 for (fr = insn_start_frag->fr_next;
7529 fr && fr != frag_now; fr = fr->fr_next)
7530 add += fr->fr_fix;
7531 add += p - frag_now->fr_literal;
7532 }
7533
7534 if (!object_64bit)
7535 {
7536 reloc_type = BFD_RELOC_386_GOTPC;
7537 i.op[n].imms->X_add_number += add;
7538 }
7539 else if (reloc_type == BFD_RELOC_64)
7540 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7541 else
7542 /* Don't do the adjustment for x86-64, as there
7543 the pcrel addressing is relative to the _next_
7544 insn, and that is taken care of in other code. */
7545 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7546 }
7547 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7548 size, i.op[n].disps, pcrel,
7549 reloc_type);
7550 /* Check for "call/jmp *mem", "mov mem, %reg",
7551 "test %reg, mem" and "binop mem, %reg" where binop
7552 is one of adc, add, and, cmp, or, sbb, sub, xor
7553 instructions. Always generate R_386_GOT32X for
7554 "sym*GOT" operand in 32-bit mode. */
7555 if ((generate_relax_relocations
7556 || (!object_64bit
7557 && i.rm.mode == 0
7558 && i.rm.regmem == 5))
7559 && (i.rm.mode == 2
7560 || (i.rm.mode == 0 && i.rm.regmem == 5))
7561 && ((i.operands == 1
7562 && i.tm.base_opcode == 0xff
7563 && (i.rm.reg == 2 || i.rm.reg == 4))
7564 || (i.operands == 2
7565 && (i.tm.base_opcode == 0x8b
7566 || i.tm.base_opcode == 0x85
7567 || (i.tm.base_opcode & 0xc7) == 0x03))))
7568 {
7569 if (object_64bit)
7570 {
7571 fixP->fx_tcbit = i.rex != 0;
7572 if (i.base_reg
7573 && (i.base_reg->reg_num == RegRip
7574 || i.base_reg->reg_num == RegEip))
7575 fixP->fx_tcbit2 = 1;
7576 }
7577 else
7578 fixP->fx_tcbit2 = 1;
7579 }
7580 }
7581 }
7582 }
7583 }
7584
7585 static void
7586 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7587 {
7588 char *p;
7589 unsigned int n;
7590
7591 for (n = 0; n < i.operands; n++)
7592 {
7593 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7594 if (i.rounding && (int) n == i.rounding->operand)
7595 continue;
7596
7597 if (operand_type_check (i.types[n], imm))
7598 {
7599 if (i.op[n].imms->X_op == O_constant)
7600 {
7601 int size = imm_size (n);
7602 offsetT val;
7603
7604 val = offset_in_range (i.op[n].imms->X_add_number,
7605 size);
7606 p = frag_more (size);
7607 md_number_to_chars (p, val, size);
7608 }
7609 else
7610 {
7611 /* Not absolute_section.
7612 Need a 32-bit fixup (don't support 8bit
7613 non-absolute imms). Try to support other
7614 sizes ... */
7615 enum bfd_reloc_code_real reloc_type;
7616 int size = imm_size (n);
7617 int sign;
7618
7619 if (i.types[n].bitfield.imm32s
7620 && (i.suffix == QWORD_MNEM_SUFFIX
7621 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7622 sign = 1;
7623 else
7624 sign = 0;
7625
7626 p = frag_more (size);
7627 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7628
7629 /* This is tough to explain. We end up with this one if we
7630 * have operands that look like
7631 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7632 * obtain the absolute address of the GOT, and it is strongly
7633 * preferable from a performance point of view to avoid using
7634 * a runtime relocation for this. The actual sequence of
7635 * instructions often look something like:
7636 *
7637 * call .L66
7638 * .L66:
7639 * popl %ebx
7640 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7641 *
7642 * The call and pop essentially return the absolute address
7643 * of the label .L66 and store it in %ebx. The linker itself
7644 * will ultimately change the first operand of the addl so
7645 * that %ebx points to the GOT, but to keep things simple, the
7646 * .o file must have this operand set so that it generates not
7647 * the absolute address of .L66, but the absolute address of
7648 * itself. This allows the linker itself simply treat a GOTPC
7649 * relocation as asking for a pcrel offset to the GOT to be
7650 * added in, and the addend of the relocation is stored in the
7651 * operand field for the instruction itself.
7652 *
7653 * Our job here is to fix the operand so that it would add
7654 * the correct offset so that %ebx would point to itself. The
7655 * thing that is tricky is that .-.L66 will point to the
7656 * beginning of the instruction, so we need to further modify
7657 * the operand so that it will point to itself. There are
7658 * other cases where you have something like:
7659 *
7660 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7661 *
7662 * and here no correction would be required. Internally in
7663 * the assembler we treat operands of this form as not being
7664 * pcrel since the '.' is explicitly mentioned, and I wonder
7665 * whether it would simplify matters to do it this way. Who
7666 * knows. In earlier versions of the PIC patches, the
7667 * pcrel_adjust field was used to store the correction, but
7668 * since the expression is not pcrel, I felt it would be
7669 * confusing to do it this way. */
7670
7671 if ((reloc_type == BFD_RELOC_32
7672 || reloc_type == BFD_RELOC_X86_64_32S
7673 || reloc_type == BFD_RELOC_64)
7674 && GOT_symbol
7675 && GOT_symbol == i.op[n].imms->X_add_symbol
7676 && (i.op[n].imms->X_op == O_symbol
7677 || (i.op[n].imms->X_op == O_add
7678 && ((symbol_get_value_expression
7679 (i.op[n].imms->X_op_symbol)->X_op)
7680 == O_subtract))))
7681 {
7682 offsetT add;
7683
7684 if (insn_start_frag == frag_now)
7685 add = (p - frag_now->fr_literal) - insn_start_off;
7686 else
7687 {
7688 fragS *fr;
7689
7690 add = insn_start_frag->fr_fix - insn_start_off;
7691 for (fr = insn_start_frag->fr_next;
7692 fr && fr != frag_now; fr = fr->fr_next)
7693 add += fr->fr_fix;
7694 add += p - frag_now->fr_literal;
7695 }
7696
7697 if (!object_64bit)
7698 reloc_type = BFD_RELOC_386_GOTPC;
7699 else if (size == 4)
7700 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7701 else if (size == 8)
7702 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7703 i.op[n].imms->X_add_number += add;
7704 }
7705 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7706 i.op[n].imms, 0, reloc_type);
7707 }
7708 }
7709 }
7710 }
7711 \f
7712 /* x86_cons_fix_new is called via the expression parsing code when a
7713 reloc is needed. We use this hook to get the correct .got reloc. */
7714 static int cons_sign = -1;
7715
7716 void
7717 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
7718 expressionS *exp, bfd_reloc_code_real_type r)
7719 {
7720 r = reloc (len, 0, cons_sign, r);
7721
7722 #ifdef TE_PE
7723 if (exp->X_op == O_secrel)
7724 {
7725 exp->X_op = O_symbol;
7726 r = BFD_RELOC_32_SECREL;
7727 }
7728 #endif
7729
7730 fix_new_exp (frag, off, len, exp, 0, r);
7731 }
7732
7733 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7734 purpose of the `.dc.a' internal pseudo-op. */
7735
7736 int
7737 x86_address_bytes (void)
7738 {
7739 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7740 return 4;
7741 return stdoutput->arch_info->bits_per_address / 8;
7742 }
7743
7744 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7745 || defined (LEX_AT)
7746 # define lex_got(reloc, adjust, types) NULL
7747 #else
7748 /* Parse operands of the form
7749 <symbol>@GOTOFF+<nnn>
7750 and similar .plt or .got references.
7751
7752 If we find one, set up the correct relocation in RELOC and copy the
7753 input string, minus the `@GOTOFF' into a malloc'd buffer for
7754 parsing by the calling routine. Return this buffer, and if ADJUST
7755 is non-null set it to the length of the string we removed from the
7756 input line. Otherwise return NULL. */
7757 static char *
7758 lex_got (enum bfd_reloc_code_real *rel,
7759 int *adjust,
7760 i386_operand_type *types)
7761 {
7762 /* Some of the relocations depend on the size of what field is to
7763 be relocated. But in our callers i386_immediate and i386_displacement
7764 we don't yet know the operand size (this will be set by insn
7765 matching). Hence we record the word32 relocation here,
7766 and adjust the reloc according to the real size in reloc(). */
7767 static const struct {
7768 const char *str;
7769 int len;
7770 const enum bfd_reloc_code_real rel[2];
7771 const i386_operand_type types64;
7772 } gotrel[] = {
7773 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7774 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7775 BFD_RELOC_SIZE32 },
7776 OPERAND_TYPE_IMM32_64 },
7777 #endif
7778 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7779 BFD_RELOC_X86_64_PLTOFF64 },
7780 OPERAND_TYPE_IMM64 },
7781 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7782 BFD_RELOC_X86_64_PLT32 },
7783 OPERAND_TYPE_IMM32_32S_DISP32 },
7784 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7785 BFD_RELOC_X86_64_GOTPLT64 },
7786 OPERAND_TYPE_IMM64_DISP64 },
7787 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7788 BFD_RELOC_X86_64_GOTOFF64 },
7789 OPERAND_TYPE_IMM64_DISP64 },
7790 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7791 BFD_RELOC_X86_64_GOTPCREL },
7792 OPERAND_TYPE_IMM32_32S_DISP32 },
7793 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7794 BFD_RELOC_X86_64_TLSGD },
7795 OPERAND_TYPE_IMM32_32S_DISP32 },
7796 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7797 _dummy_first_bfd_reloc_code_real },
7798 OPERAND_TYPE_NONE },
7799 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7800 BFD_RELOC_X86_64_TLSLD },
7801 OPERAND_TYPE_IMM32_32S_DISP32 },
7802 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7803 BFD_RELOC_X86_64_GOTTPOFF },
7804 OPERAND_TYPE_IMM32_32S_DISP32 },
7805 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7806 BFD_RELOC_X86_64_TPOFF32 },
7807 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7808 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7809 _dummy_first_bfd_reloc_code_real },
7810 OPERAND_TYPE_NONE },
7811 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7812 BFD_RELOC_X86_64_DTPOFF32 },
7813 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7814 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7815 _dummy_first_bfd_reloc_code_real },
7816 OPERAND_TYPE_NONE },
7817 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7818 _dummy_first_bfd_reloc_code_real },
7819 OPERAND_TYPE_NONE },
7820 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7821 BFD_RELOC_X86_64_GOT32 },
7822 OPERAND_TYPE_IMM32_32S_64_DISP32 },
7823 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7824 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
7825 OPERAND_TYPE_IMM32_32S_DISP32 },
7826 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7827 BFD_RELOC_X86_64_TLSDESC_CALL },
7828 OPERAND_TYPE_IMM32_32S_DISP32 },
7829 };
7830 char *cp;
7831 unsigned int j;
7832
7833 #if defined (OBJ_MAYBE_ELF)
7834 if (!IS_ELF)
7835 return NULL;
7836 #endif
7837
7838 for (cp = input_line_pointer; *cp != '@'; cp++)
7839 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7840 return NULL;
7841
7842 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7843 {
7844 int len = gotrel[j].len;
7845 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7846 {
7847 if (gotrel[j].rel[object_64bit] != 0)
7848 {
7849 int first, second;
7850 char *tmpbuf, *past_reloc;
7851
7852 *rel = gotrel[j].rel[object_64bit];
7853
7854 if (types)
7855 {
7856 if (flag_code != CODE_64BIT)
7857 {
7858 types->bitfield.imm32 = 1;
7859 types->bitfield.disp32 = 1;
7860 }
7861 else
7862 *types = gotrel[j].types64;
7863 }
7864
7865 if (j != 0 && GOT_symbol == NULL)
7866 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7867
7868 /* The length of the first part of our input line. */
7869 first = cp - input_line_pointer;
7870
7871 /* The second part goes from after the reloc token until
7872 (and including) an end_of_line char or comma. */
7873 past_reloc = cp + 1 + len;
7874 cp = past_reloc;
7875 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7876 ++cp;
7877 second = cp + 1 - past_reloc;
7878
7879 /* Allocate and copy string. The trailing NUL shouldn't
7880 be necessary, but be safe. */
7881 tmpbuf = XNEWVEC (char, first + second + 2);
7882 memcpy (tmpbuf, input_line_pointer, first);
7883 if (second != 0 && *past_reloc != ' ')
7884 /* Replace the relocation token with ' ', so that
7885 errors like foo@GOTOFF1 will be detected. */
7886 tmpbuf[first++] = ' ';
7887 else
7888 /* Increment length by 1 if the relocation token is
7889 removed. */
7890 len++;
7891 if (adjust)
7892 *adjust = len;
7893 memcpy (tmpbuf + first, past_reloc, second);
7894 tmpbuf[first + second] = '\0';
7895 return tmpbuf;
7896 }
7897
7898 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7899 gotrel[j].str, 1 << (5 + object_64bit));
7900 return NULL;
7901 }
7902 }
7903
7904 /* Might be a symbol version string. Don't as_bad here. */
7905 return NULL;
7906 }
7907 #endif
7908
7909 #ifdef TE_PE
7910 #ifdef lex_got
7911 #undef lex_got
7912 #endif
7913 /* Parse operands of the form
7914 <symbol>@SECREL32+<nnn>
7915
7916 If we find one, set up the correct relocation in RELOC and copy the
7917 input string, minus the `@SECREL32' into a malloc'd buffer for
7918 parsing by the calling routine. Return this buffer, and if ADJUST
7919 is non-null set it to the length of the string we removed from the
7920 input line. Otherwise return NULL.
7921
7922 This function is copied from the ELF version above adjusted for PE targets. */
7923
7924 static char *
7925 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7926 int *adjust ATTRIBUTE_UNUSED,
7927 i386_operand_type *types)
7928 {
7929 static const struct
7930 {
7931 const char *str;
7932 int len;
7933 const enum bfd_reloc_code_real rel[2];
7934 const i386_operand_type types64;
7935 }
7936 gotrel[] =
7937 {
7938 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7939 BFD_RELOC_32_SECREL },
7940 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7941 };
7942
7943 char *cp;
7944 unsigned j;
7945
7946 for (cp = input_line_pointer; *cp != '@'; cp++)
7947 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7948 return NULL;
7949
7950 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7951 {
7952 int len = gotrel[j].len;
7953
7954 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7955 {
7956 if (gotrel[j].rel[object_64bit] != 0)
7957 {
7958 int first, second;
7959 char *tmpbuf, *past_reloc;
7960
7961 *rel = gotrel[j].rel[object_64bit];
7962 if (adjust)
7963 *adjust = len;
7964
7965 if (types)
7966 {
7967 if (flag_code != CODE_64BIT)
7968 {
7969 types->bitfield.imm32 = 1;
7970 types->bitfield.disp32 = 1;
7971 }
7972 else
7973 *types = gotrel[j].types64;
7974 }
7975
7976 /* The length of the first part of our input line. */
7977 first = cp - input_line_pointer;
7978
7979 /* The second part goes from after the reloc token until
7980 (and including) an end_of_line char or comma. */
7981 past_reloc = cp + 1 + len;
7982 cp = past_reloc;
7983 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7984 ++cp;
7985 second = cp + 1 - past_reloc;
7986
7987 /* Allocate and copy string. The trailing NUL shouldn't
7988 be necessary, but be safe. */
7989 tmpbuf = XNEWVEC (char, first + second + 2);
7990 memcpy (tmpbuf, input_line_pointer, first);
7991 if (second != 0 && *past_reloc != ' ')
7992 /* Replace the relocation token with ' ', so that
7993 errors like foo@SECLREL321 will be detected. */
7994 tmpbuf[first++] = ' ';
7995 memcpy (tmpbuf + first, past_reloc, second);
7996 tmpbuf[first + second] = '\0';
7997 return tmpbuf;
7998 }
7999
8000 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8001 gotrel[j].str, 1 << (5 + object_64bit));
8002 return NULL;
8003 }
8004 }
8005
8006 /* Might be a symbol version string. Don't as_bad here. */
8007 return NULL;
8008 }
8009
8010 #endif /* TE_PE */
8011
8012 bfd_reloc_code_real_type
8013 x86_cons (expressionS *exp, int size)
8014 {
8015 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8016
8017 intel_syntax = -intel_syntax;
8018
8019 exp->X_md = 0;
8020 if (size == 4 || (object_64bit && size == 8))
8021 {
8022 /* Handle @GOTOFF and the like in an expression. */
8023 char *save;
8024 char *gotfree_input_line;
8025 int adjust = 0;
8026
8027 save = input_line_pointer;
8028 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8029 if (gotfree_input_line)
8030 input_line_pointer = gotfree_input_line;
8031
8032 expression (exp);
8033
8034 if (gotfree_input_line)
8035 {
8036 /* expression () has merrily parsed up to the end of line,
8037 or a comma - in the wrong buffer. Transfer how far
8038 input_line_pointer has moved to the right buffer. */
8039 input_line_pointer = (save
8040 + (input_line_pointer - gotfree_input_line)
8041 + adjust);
8042 free (gotfree_input_line);
8043 if (exp->X_op == O_constant
8044 || exp->X_op == O_absent
8045 || exp->X_op == O_illegal
8046 || exp->X_op == O_register
8047 || exp->X_op == O_big)
8048 {
8049 char c = *input_line_pointer;
8050 *input_line_pointer = 0;
8051 as_bad (_("missing or invalid expression `%s'"), save);
8052 *input_line_pointer = c;
8053 }
8054 }
8055 }
8056 else
8057 expression (exp);
8058
8059 intel_syntax = -intel_syntax;
8060
8061 if (intel_syntax)
8062 i386_intel_simplify (exp);
8063
8064 return got_reloc;
8065 }
8066
8067 static void
8068 signed_cons (int size)
8069 {
8070 if (flag_code == CODE_64BIT)
8071 cons_sign = 1;
8072 cons (size);
8073 cons_sign = -1;
8074 }
8075
8076 #ifdef TE_PE
8077 static void
8078 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8079 {
8080 expressionS exp;
8081
8082 do
8083 {
8084 expression (&exp);
8085 if (exp.X_op == O_symbol)
8086 exp.X_op = O_secrel;
8087
8088 emit_expr (&exp, 4);
8089 }
8090 while (*input_line_pointer++ == ',');
8091
8092 input_line_pointer--;
8093 demand_empty_rest_of_line ();
8094 }
8095 #endif
8096
8097 /* Handle Vector operations. */
8098
8099 static char *
8100 check_VecOperations (char *op_string, char *op_end)
8101 {
8102 const reg_entry *mask;
8103 const char *saved;
8104 char *end_op;
8105
8106 while (*op_string
8107 && (op_end == NULL || op_string < op_end))
8108 {
8109 saved = op_string;
8110 if (*op_string == '{')
8111 {
8112 op_string++;
8113
8114 /* Check broadcasts. */
8115 if (strncmp (op_string, "1to", 3) == 0)
8116 {
8117 int bcst_type;
8118
8119 if (i.broadcast)
8120 goto duplicated_vec_op;
8121
8122 op_string += 3;
8123 if (*op_string == '8')
8124 bcst_type = BROADCAST_1TO8;
8125 else if (*op_string == '4')
8126 bcst_type = BROADCAST_1TO4;
8127 else if (*op_string == '2')
8128 bcst_type = BROADCAST_1TO2;
8129 else if (*op_string == '1'
8130 && *(op_string+1) == '6')
8131 {
8132 bcst_type = BROADCAST_1TO16;
8133 op_string++;
8134 }
8135 else
8136 {
8137 as_bad (_("Unsupported broadcast: `%s'"), saved);
8138 return NULL;
8139 }
8140 op_string++;
8141
8142 broadcast_op.type = bcst_type;
8143 broadcast_op.operand = this_operand;
8144 i.broadcast = &broadcast_op;
8145 }
8146 /* Check masking operation. */
8147 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8148 {
8149 /* k0 can't be used for write mask. */
8150 if (mask->reg_num == 0)
8151 {
8152 as_bad (_("`%s' can't be used for write mask"),
8153 op_string);
8154 return NULL;
8155 }
8156
8157 if (!i.mask)
8158 {
8159 mask_op.mask = mask;
8160 mask_op.zeroing = 0;
8161 mask_op.operand = this_operand;
8162 i.mask = &mask_op;
8163 }
8164 else
8165 {
8166 if (i.mask->mask)
8167 goto duplicated_vec_op;
8168
8169 i.mask->mask = mask;
8170
8171 /* Only "{z}" is allowed here. No need to check
8172 zeroing mask explicitly. */
8173 if (i.mask->operand != this_operand)
8174 {
8175 as_bad (_("invalid write mask `%s'"), saved);
8176 return NULL;
8177 }
8178 }
8179
8180 op_string = end_op;
8181 }
8182 /* Check zeroing-flag for masking operation. */
8183 else if (*op_string == 'z')
8184 {
8185 if (!i.mask)
8186 {
8187 mask_op.mask = NULL;
8188 mask_op.zeroing = 1;
8189 mask_op.operand = this_operand;
8190 i.mask = &mask_op;
8191 }
8192 else
8193 {
8194 if (i.mask->zeroing)
8195 {
8196 duplicated_vec_op:
8197 as_bad (_("duplicated `%s'"), saved);
8198 return NULL;
8199 }
8200
8201 i.mask->zeroing = 1;
8202
8203 /* Only "{%k}" is allowed here. No need to check mask
8204 register explicitly. */
8205 if (i.mask->operand != this_operand)
8206 {
8207 as_bad (_("invalid zeroing-masking `%s'"),
8208 saved);
8209 return NULL;
8210 }
8211 }
8212
8213 op_string++;
8214 }
8215 else
8216 goto unknown_vec_op;
8217
8218 if (*op_string != '}')
8219 {
8220 as_bad (_("missing `}' in `%s'"), saved);
8221 return NULL;
8222 }
8223 op_string++;
8224 continue;
8225 }
8226 unknown_vec_op:
8227 /* We don't know this one. */
8228 as_bad (_("unknown vector operation: `%s'"), saved);
8229 return NULL;
8230 }
8231
8232 return op_string;
8233 }
8234
8235 static int
8236 i386_immediate (char *imm_start)
8237 {
8238 char *save_input_line_pointer;
8239 char *gotfree_input_line;
8240 segT exp_seg = 0;
8241 expressionS *exp;
8242 i386_operand_type types;
8243
8244 operand_type_set (&types, ~0);
8245
8246 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8247 {
8248 as_bad (_("at most %d immediate operands are allowed"),
8249 MAX_IMMEDIATE_OPERANDS);
8250 return 0;
8251 }
8252
8253 exp = &im_expressions[i.imm_operands++];
8254 i.op[this_operand].imms = exp;
8255
8256 if (is_space_char (*imm_start))
8257 ++imm_start;
8258
8259 save_input_line_pointer = input_line_pointer;
8260 input_line_pointer = imm_start;
8261
8262 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8263 if (gotfree_input_line)
8264 input_line_pointer = gotfree_input_line;
8265
8266 exp_seg = expression (exp);
8267
8268 SKIP_WHITESPACE ();
8269
8270 /* Handle vector operations. */
8271 if (*input_line_pointer == '{')
8272 {
8273 input_line_pointer = check_VecOperations (input_line_pointer,
8274 NULL);
8275 if (input_line_pointer == NULL)
8276 return 0;
8277 }
8278
8279 if (*input_line_pointer)
8280 as_bad (_("junk `%s' after expression"), input_line_pointer);
8281
8282 input_line_pointer = save_input_line_pointer;
8283 if (gotfree_input_line)
8284 {
8285 free (gotfree_input_line);
8286
8287 if (exp->X_op == O_constant || exp->X_op == O_register)
8288 exp->X_op = O_illegal;
8289 }
8290
8291 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8292 }
8293
8294 static int
8295 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8296 i386_operand_type types, const char *imm_start)
8297 {
8298 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8299 {
8300 if (imm_start)
8301 as_bad (_("missing or invalid immediate expression `%s'"),
8302 imm_start);
8303 return 0;
8304 }
8305 else if (exp->X_op == O_constant)
8306 {
8307 /* Size it properly later. */
8308 i.types[this_operand].bitfield.imm64 = 1;
8309 /* If not 64bit, sign extend val. */
8310 if (flag_code != CODE_64BIT
8311 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8312 exp->X_add_number
8313 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8314 }
8315 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8316 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8317 && exp_seg != absolute_section
8318 && exp_seg != text_section
8319 && exp_seg != data_section
8320 && exp_seg != bss_section
8321 && exp_seg != undefined_section
8322 && !bfd_is_com_section (exp_seg))
8323 {
8324 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8325 return 0;
8326 }
8327 #endif
8328 else if (!intel_syntax && exp_seg == reg_section)
8329 {
8330 if (imm_start)
8331 as_bad (_("illegal immediate register operand %s"), imm_start);
8332 return 0;
8333 }
8334 else
8335 {
8336 /* This is an address. The size of the address will be
8337 determined later, depending on destination register,
8338 suffix, or the default for the section. */
8339 i.types[this_operand].bitfield.imm8 = 1;
8340 i.types[this_operand].bitfield.imm16 = 1;
8341 i.types[this_operand].bitfield.imm32 = 1;
8342 i.types[this_operand].bitfield.imm32s = 1;
8343 i.types[this_operand].bitfield.imm64 = 1;
8344 i.types[this_operand] = operand_type_and (i.types[this_operand],
8345 types);
8346 }
8347
8348 return 1;
8349 }
8350
8351 static char *
8352 i386_scale (char *scale)
8353 {
8354 offsetT val;
8355 char *save = input_line_pointer;
8356
8357 input_line_pointer = scale;
8358 val = get_absolute_expression ();
8359
8360 switch (val)
8361 {
8362 case 1:
8363 i.log2_scale_factor = 0;
8364 break;
8365 case 2:
8366 i.log2_scale_factor = 1;
8367 break;
8368 case 4:
8369 i.log2_scale_factor = 2;
8370 break;
8371 case 8:
8372 i.log2_scale_factor = 3;
8373 break;
8374 default:
8375 {
8376 char sep = *input_line_pointer;
8377
8378 *input_line_pointer = '\0';
8379 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8380 scale);
8381 *input_line_pointer = sep;
8382 input_line_pointer = save;
8383 return NULL;
8384 }
8385 }
8386 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8387 {
8388 as_warn (_("scale factor of %d without an index register"),
8389 1 << i.log2_scale_factor);
8390 i.log2_scale_factor = 0;
8391 }
8392 scale = input_line_pointer;
8393 input_line_pointer = save;
8394 return scale;
8395 }
8396
8397 static int
8398 i386_displacement (char *disp_start, char *disp_end)
8399 {
8400 expressionS *exp;
8401 segT exp_seg = 0;
8402 char *save_input_line_pointer;
8403 char *gotfree_input_line;
8404 int override;
8405 i386_operand_type bigdisp, types = anydisp;
8406 int ret;
8407
8408 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8409 {
8410 as_bad (_("at most %d displacement operands are allowed"),
8411 MAX_MEMORY_OPERANDS);
8412 return 0;
8413 }
8414
8415 operand_type_set (&bigdisp, 0);
8416 if ((i.types[this_operand].bitfield.jumpabsolute)
8417 || (!current_templates->start->opcode_modifier.jump
8418 && !current_templates->start->opcode_modifier.jumpdword))
8419 {
8420 bigdisp.bitfield.disp32 = 1;
8421 override = (i.prefix[ADDR_PREFIX] != 0);
8422 if (flag_code == CODE_64BIT)
8423 {
8424 if (!override)
8425 {
8426 bigdisp.bitfield.disp32s = 1;
8427 bigdisp.bitfield.disp64 = 1;
8428 }
8429 }
8430 else if ((flag_code == CODE_16BIT) ^ override)
8431 {
8432 bigdisp.bitfield.disp32 = 0;
8433 bigdisp.bitfield.disp16 = 1;
8434 }
8435 }
8436 else
8437 {
8438 /* For PC-relative branches, the width of the displacement
8439 is dependent upon data size, not address size. */
8440 override = (i.prefix[DATA_PREFIX] != 0);
8441 if (flag_code == CODE_64BIT)
8442 {
8443 if (override || i.suffix == WORD_MNEM_SUFFIX)
8444 bigdisp.bitfield.disp16 = 1;
8445 else
8446 {
8447 bigdisp.bitfield.disp32 = 1;
8448 bigdisp.bitfield.disp32s = 1;
8449 }
8450 }
8451 else
8452 {
8453 if (!override)
8454 override = (i.suffix == (flag_code != CODE_16BIT
8455 ? WORD_MNEM_SUFFIX
8456 : LONG_MNEM_SUFFIX));
8457 bigdisp.bitfield.disp32 = 1;
8458 if ((flag_code == CODE_16BIT) ^ override)
8459 {
8460 bigdisp.bitfield.disp32 = 0;
8461 bigdisp.bitfield.disp16 = 1;
8462 }
8463 }
8464 }
8465 i.types[this_operand] = operand_type_or (i.types[this_operand],
8466 bigdisp);
8467
8468 exp = &disp_expressions[i.disp_operands];
8469 i.op[this_operand].disps = exp;
8470 i.disp_operands++;
8471 save_input_line_pointer = input_line_pointer;
8472 input_line_pointer = disp_start;
8473 END_STRING_AND_SAVE (disp_end);
8474
8475 #ifndef GCC_ASM_O_HACK
8476 #define GCC_ASM_O_HACK 0
8477 #endif
8478 #if GCC_ASM_O_HACK
8479 END_STRING_AND_SAVE (disp_end + 1);
8480 if (i.types[this_operand].bitfield.baseIndex
8481 && displacement_string_end[-1] == '+')
8482 {
8483 /* This hack is to avoid a warning when using the "o"
8484 constraint within gcc asm statements.
8485 For instance:
8486
8487 #define _set_tssldt_desc(n,addr,limit,type) \
8488 __asm__ __volatile__ ( \
8489 "movw %w2,%0\n\t" \
8490 "movw %w1,2+%0\n\t" \
8491 "rorl $16,%1\n\t" \
8492 "movb %b1,4+%0\n\t" \
8493 "movb %4,5+%0\n\t" \
8494 "movb $0,6+%0\n\t" \
8495 "movb %h1,7+%0\n\t" \
8496 "rorl $16,%1" \
8497 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8498
8499 This works great except that the output assembler ends
8500 up looking a bit weird if it turns out that there is
8501 no offset. You end up producing code that looks like:
8502
8503 #APP
8504 movw $235,(%eax)
8505 movw %dx,2+(%eax)
8506 rorl $16,%edx
8507 movb %dl,4+(%eax)
8508 movb $137,5+(%eax)
8509 movb $0,6+(%eax)
8510 movb %dh,7+(%eax)
8511 rorl $16,%edx
8512 #NO_APP
8513
8514 So here we provide the missing zero. */
8515
8516 *displacement_string_end = '0';
8517 }
8518 #endif
8519 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8520 if (gotfree_input_line)
8521 input_line_pointer = gotfree_input_line;
8522
8523 exp_seg = expression (exp);
8524
8525 SKIP_WHITESPACE ();
8526 if (*input_line_pointer)
8527 as_bad (_("junk `%s' after expression"), input_line_pointer);
8528 #if GCC_ASM_O_HACK
8529 RESTORE_END_STRING (disp_end + 1);
8530 #endif
8531 input_line_pointer = save_input_line_pointer;
8532 if (gotfree_input_line)
8533 {
8534 free (gotfree_input_line);
8535
8536 if (exp->X_op == O_constant || exp->X_op == O_register)
8537 exp->X_op = O_illegal;
8538 }
8539
8540 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8541
8542 RESTORE_END_STRING (disp_end);
8543
8544 return ret;
8545 }
8546
8547 static int
8548 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8549 i386_operand_type types, const char *disp_start)
8550 {
8551 i386_operand_type bigdisp;
8552 int ret = 1;
8553
8554 /* We do this to make sure that the section symbol is in
8555 the symbol table. We will ultimately change the relocation
8556 to be relative to the beginning of the section. */
8557 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8558 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8559 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8560 {
8561 if (exp->X_op != O_symbol)
8562 goto inv_disp;
8563
8564 if (S_IS_LOCAL (exp->X_add_symbol)
8565 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8566 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8567 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8568 exp->X_op = O_subtract;
8569 exp->X_op_symbol = GOT_symbol;
8570 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8571 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8572 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8573 i.reloc[this_operand] = BFD_RELOC_64;
8574 else
8575 i.reloc[this_operand] = BFD_RELOC_32;
8576 }
8577
8578 else if (exp->X_op == O_absent
8579 || exp->X_op == O_illegal
8580 || exp->X_op == O_big)
8581 {
8582 inv_disp:
8583 as_bad (_("missing or invalid displacement expression `%s'"),
8584 disp_start);
8585 ret = 0;
8586 }
8587
8588 else if (flag_code == CODE_64BIT
8589 && !i.prefix[ADDR_PREFIX]
8590 && exp->X_op == O_constant)
8591 {
8592 /* Since displacement is signed extended to 64bit, don't allow
8593 disp32 and turn off disp32s if they are out of range. */
8594 i.types[this_operand].bitfield.disp32 = 0;
8595 if (!fits_in_signed_long (exp->X_add_number))
8596 {
8597 i.types[this_operand].bitfield.disp32s = 0;
8598 if (i.types[this_operand].bitfield.baseindex)
8599 {
8600 as_bad (_("0x%lx out range of signed 32bit displacement"),
8601 (long) exp->X_add_number);
8602 ret = 0;
8603 }
8604 }
8605 }
8606
8607 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8608 else if (exp->X_op != O_constant
8609 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8610 && exp_seg != absolute_section
8611 && exp_seg != text_section
8612 && exp_seg != data_section
8613 && exp_seg != bss_section
8614 && exp_seg != undefined_section
8615 && !bfd_is_com_section (exp_seg))
8616 {
8617 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8618 ret = 0;
8619 }
8620 #endif
8621
8622 /* Check if this is a displacement only operand. */
8623 bigdisp = i.types[this_operand];
8624 bigdisp.bitfield.disp8 = 0;
8625 bigdisp.bitfield.disp16 = 0;
8626 bigdisp.bitfield.disp32 = 0;
8627 bigdisp.bitfield.disp32s = 0;
8628 bigdisp.bitfield.disp64 = 0;
8629 if (operand_type_all_zero (&bigdisp))
8630 i.types[this_operand] = operand_type_and (i.types[this_operand],
8631 types);
8632
8633 return ret;
8634 }
8635
8636 /* Make sure the memory operand we've been dealt is valid.
8637 Return 1 on success, 0 on a failure. */
8638
8639 static int
8640 i386_index_check (const char *operand_string)
8641 {
8642 const char *kind = "base/index";
8643 enum flag_code addr_mode;
8644
8645 if (i.prefix[ADDR_PREFIX])
8646 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8647 else
8648 {
8649 addr_mode = flag_code;
8650
8651 #if INFER_ADDR_PREFIX
8652 if (i.mem_operands == 0)
8653 {
8654 /* Infer address prefix from the first memory operand. */
8655 const reg_entry *addr_reg = i.base_reg;
8656
8657 if (addr_reg == NULL)
8658 addr_reg = i.index_reg;
8659
8660 if (addr_reg)
8661 {
8662 if (addr_reg->reg_num == RegEip
8663 || addr_reg->reg_num == RegEiz
8664 || addr_reg->reg_type.bitfield.reg32)
8665 addr_mode = CODE_32BIT;
8666 else if (flag_code != CODE_64BIT
8667 && addr_reg->reg_type.bitfield.reg16)
8668 addr_mode = CODE_16BIT;
8669
8670 if (addr_mode != flag_code)
8671 {
8672 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8673 i.prefixes += 1;
8674 /* Change the size of any displacement too. At most one
8675 of Disp16 or Disp32 is set.
8676 FIXME. There doesn't seem to be any real need for
8677 separate Disp16 and Disp32 flags. The same goes for
8678 Imm16 and Imm32. Removing them would probably clean
8679 up the code quite a lot. */
8680 if (flag_code != CODE_64BIT
8681 && (i.types[this_operand].bitfield.disp16
8682 || i.types[this_operand].bitfield.disp32))
8683 i.types[this_operand]
8684 = operand_type_xor (i.types[this_operand], disp16_32);
8685 }
8686 }
8687 }
8688 #endif
8689 }
8690
8691 if (current_templates->start->opcode_modifier.isstring
8692 && !current_templates->start->opcode_modifier.immext
8693 && (current_templates->end[-1].opcode_modifier.isstring
8694 || i.mem_operands))
8695 {
8696 /* Memory operands of string insns are special in that they only allow
8697 a single register (rDI, rSI, or rBX) as their memory address. */
8698 const reg_entry *expected_reg;
8699 static const char *di_si[][2] =
8700 {
8701 { "esi", "edi" },
8702 { "si", "di" },
8703 { "rsi", "rdi" }
8704 };
8705 static const char *bx[] = { "ebx", "bx", "rbx" };
8706
8707 kind = "string address";
8708
8709 if (current_templates->start->opcode_modifier.repprefixok)
8710 {
8711 i386_operand_type type = current_templates->end[-1].operand_types[0];
8712
8713 if (!type.bitfield.baseindex
8714 || ((!i.mem_operands != !intel_syntax)
8715 && current_templates->end[-1].operand_types[1]
8716 .bitfield.baseindex))
8717 type = current_templates->end[-1].operand_types[1];
8718 expected_reg = hash_find (reg_hash,
8719 di_si[addr_mode][type.bitfield.esseg]);
8720
8721 }
8722 else
8723 expected_reg = hash_find (reg_hash, bx[addr_mode]);
8724
8725 if (i.base_reg != expected_reg
8726 || i.index_reg
8727 || operand_type_check (i.types[this_operand], disp))
8728 {
8729 /* The second memory operand must have the same size as
8730 the first one. */
8731 if (i.mem_operands
8732 && i.base_reg
8733 && !((addr_mode == CODE_64BIT
8734 && i.base_reg->reg_type.bitfield.reg64)
8735 || (addr_mode == CODE_32BIT
8736 ? i.base_reg->reg_type.bitfield.reg32
8737 : i.base_reg->reg_type.bitfield.reg16)))
8738 goto bad_address;
8739
8740 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8741 operand_string,
8742 intel_syntax ? '[' : '(',
8743 register_prefix,
8744 expected_reg->reg_name,
8745 intel_syntax ? ']' : ')');
8746 return 1;
8747 }
8748 else
8749 return 1;
8750
8751 bad_address:
8752 as_bad (_("`%s' is not a valid %s expression"),
8753 operand_string, kind);
8754 return 0;
8755 }
8756 else
8757 {
8758 if (addr_mode != CODE_16BIT)
8759 {
8760 /* 32-bit/64-bit checks. */
8761 if ((i.base_reg
8762 && (addr_mode == CODE_64BIT
8763 ? !i.base_reg->reg_type.bitfield.reg64
8764 : !i.base_reg->reg_type.bitfield.reg32)
8765 && (i.index_reg
8766 || (i.base_reg->reg_num
8767 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8768 || (i.index_reg
8769 && !i.index_reg->reg_type.bitfield.regxmm
8770 && !i.index_reg->reg_type.bitfield.regymm
8771 && !i.index_reg->reg_type.bitfield.regzmm
8772 && ((addr_mode == CODE_64BIT
8773 ? !(i.index_reg->reg_type.bitfield.reg64
8774 || i.index_reg->reg_num == RegRiz)
8775 : !(i.index_reg->reg_type.bitfield.reg32
8776 || i.index_reg->reg_num == RegEiz))
8777 || !i.index_reg->reg_type.bitfield.baseindex)))
8778 goto bad_address;
8779
8780 /* bndmk, bndldx, and bndstx have special restrictions. */
8781 if (current_templates->start->base_opcode == 0xf30f1b
8782 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
8783 {
8784 /* They cannot use RIP-relative addressing. */
8785 if (i.base_reg && i.base_reg->reg_num == RegRip)
8786 {
8787 as_bad (_("`%s' cannot be used here"), operand_string);
8788 return 0;
8789 }
8790
8791 /* bndldx and bndstx ignore their scale factor. */
8792 if (current_templates->start->base_opcode != 0xf30f1b
8793 && i.log2_scale_factor)
8794 as_warn (_("register scaling is being ignored here"));
8795 }
8796 }
8797 else
8798 {
8799 /* 16-bit checks. */
8800 if ((i.base_reg
8801 && (!i.base_reg->reg_type.bitfield.reg16
8802 || !i.base_reg->reg_type.bitfield.baseindex))
8803 || (i.index_reg
8804 && (!i.index_reg->reg_type.bitfield.reg16
8805 || !i.index_reg->reg_type.bitfield.baseindex
8806 || !(i.base_reg
8807 && i.base_reg->reg_num < 6
8808 && i.index_reg->reg_num >= 6
8809 && i.log2_scale_factor == 0))))
8810 goto bad_address;
8811 }
8812 }
8813 return 1;
8814 }
8815
8816 /* Handle vector immediates. */
8817
8818 static int
8819 RC_SAE_immediate (const char *imm_start)
8820 {
8821 unsigned int match_found, j;
8822 const char *pstr = imm_start;
8823 expressionS *exp;
8824
8825 if (*pstr != '{')
8826 return 0;
8827
8828 pstr++;
8829 match_found = 0;
8830 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8831 {
8832 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8833 {
8834 if (!i.rounding)
8835 {
8836 rc_op.type = RC_NamesTable[j].type;
8837 rc_op.operand = this_operand;
8838 i.rounding = &rc_op;
8839 }
8840 else
8841 {
8842 as_bad (_("duplicated `%s'"), imm_start);
8843 return 0;
8844 }
8845 pstr += RC_NamesTable[j].len;
8846 match_found = 1;
8847 break;
8848 }
8849 }
8850 if (!match_found)
8851 return 0;
8852
8853 if (*pstr++ != '}')
8854 {
8855 as_bad (_("Missing '}': '%s'"), imm_start);
8856 return 0;
8857 }
8858 /* RC/SAE immediate string should contain nothing more. */;
8859 if (*pstr != 0)
8860 {
8861 as_bad (_("Junk after '}': '%s'"), imm_start);
8862 return 0;
8863 }
8864
8865 exp = &im_expressions[i.imm_operands++];
8866 i.op[this_operand].imms = exp;
8867
8868 exp->X_op = O_constant;
8869 exp->X_add_number = 0;
8870 exp->X_add_symbol = (symbolS *) 0;
8871 exp->X_op_symbol = (symbolS *) 0;
8872
8873 i.types[this_operand].bitfield.imm8 = 1;
8874 return 1;
8875 }
8876
8877 /* Only string instructions can have a second memory operand, so
8878 reduce current_templates to just those if it contains any. */
8879 static int
8880 maybe_adjust_templates (void)
8881 {
8882 const insn_template *t;
8883
8884 gas_assert (i.mem_operands == 1);
8885
8886 for (t = current_templates->start; t < current_templates->end; ++t)
8887 if (t->opcode_modifier.isstring)
8888 break;
8889
8890 if (t < current_templates->end)
8891 {
8892 static templates aux_templates;
8893 bfd_boolean recheck;
8894
8895 aux_templates.start = t;
8896 for (; t < current_templates->end; ++t)
8897 if (!t->opcode_modifier.isstring)
8898 break;
8899 aux_templates.end = t;
8900
8901 /* Determine whether to re-check the first memory operand. */
8902 recheck = (aux_templates.start != current_templates->start
8903 || t != current_templates->end);
8904
8905 current_templates = &aux_templates;
8906
8907 if (recheck)
8908 {
8909 i.mem_operands = 0;
8910 if (i.memop1_string != NULL
8911 && i386_index_check (i.memop1_string) == 0)
8912 return 0;
8913 i.mem_operands = 1;
8914 }
8915 }
8916
8917 return 1;
8918 }
8919
8920 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
8921 on error. */
8922
8923 static int
8924 i386_att_operand (char *operand_string)
8925 {
8926 const reg_entry *r;
8927 char *end_op;
8928 char *op_string = operand_string;
8929
8930 if (is_space_char (*op_string))
8931 ++op_string;
8932
8933 /* We check for an absolute prefix (differentiating,
8934 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
8935 if (*op_string == ABSOLUTE_PREFIX)
8936 {
8937 ++op_string;
8938 if (is_space_char (*op_string))
8939 ++op_string;
8940 i.types[this_operand].bitfield.jumpabsolute = 1;
8941 }
8942
8943 /* Check if operand is a register. */
8944 if ((r = parse_register (op_string, &end_op)) != NULL)
8945 {
8946 i386_operand_type temp;
8947
8948 /* Check for a segment override by searching for ':' after a
8949 segment register. */
8950 op_string = end_op;
8951 if (is_space_char (*op_string))
8952 ++op_string;
8953 if (*op_string == ':'
8954 && (r->reg_type.bitfield.sreg2
8955 || r->reg_type.bitfield.sreg3))
8956 {
8957 switch (r->reg_num)
8958 {
8959 case 0:
8960 i.seg[i.mem_operands] = &es;
8961 break;
8962 case 1:
8963 i.seg[i.mem_operands] = &cs;
8964 break;
8965 case 2:
8966 i.seg[i.mem_operands] = &ss;
8967 break;
8968 case 3:
8969 i.seg[i.mem_operands] = &ds;
8970 break;
8971 case 4:
8972 i.seg[i.mem_operands] = &fs;
8973 break;
8974 case 5:
8975 i.seg[i.mem_operands] = &gs;
8976 break;
8977 }
8978
8979 /* Skip the ':' and whitespace. */
8980 ++op_string;
8981 if (is_space_char (*op_string))
8982 ++op_string;
8983
8984 if (!is_digit_char (*op_string)
8985 && !is_identifier_char (*op_string)
8986 && *op_string != '('
8987 && *op_string != ABSOLUTE_PREFIX)
8988 {
8989 as_bad (_("bad memory operand `%s'"), op_string);
8990 return 0;
8991 }
8992 /* Handle case of %es:*foo. */
8993 if (*op_string == ABSOLUTE_PREFIX)
8994 {
8995 ++op_string;
8996 if (is_space_char (*op_string))
8997 ++op_string;
8998 i.types[this_operand].bitfield.jumpabsolute = 1;
8999 }
9000 goto do_memory_reference;
9001 }
9002
9003 /* Handle vector operations. */
9004 if (*op_string == '{')
9005 {
9006 op_string = check_VecOperations (op_string, NULL);
9007 if (op_string == NULL)
9008 return 0;
9009 }
9010
9011 if (*op_string)
9012 {
9013 as_bad (_("junk `%s' after register"), op_string);
9014 return 0;
9015 }
9016 temp = r->reg_type;
9017 temp.bitfield.baseindex = 0;
9018 i.types[this_operand] = operand_type_or (i.types[this_operand],
9019 temp);
9020 i.types[this_operand].bitfield.unspecified = 0;
9021 i.op[this_operand].regs = r;
9022 i.reg_operands++;
9023 }
9024 else if (*op_string == REGISTER_PREFIX)
9025 {
9026 as_bad (_("bad register name `%s'"), op_string);
9027 return 0;
9028 }
9029 else if (*op_string == IMMEDIATE_PREFIX)
9030 {
9031 ++op_string;
9032 if (i.types[this_operand].bitfield.jumpabsolute)
9033 {
9034 as_bad (_("immediate operand illegal with absolute jump"));
9035 return 0;
9036 }
9037 if (!i386_immediate (op_string))
9038 return 0;
9039 }
9040 else if (RC_SAE_immediate (operand_string))
9041 {
9042 /* If it is a RC or SAE immediate, do nothing. */
9043 ;
9044 }
9045 else if (is_digit_char (*op_string)
9046 || is_identifier_char (*op_string)
9047 || *op_string == '"'
9048 || *op_string == '(')
9049 {
9050 /* This is a memory reference of some sort. */
9051 char *base_string;
9052
9053 /* Start and end of displacement string expression (if found). */
9054 char *displacement_string_start;
9055 char *displacement_string_end;
9056 char *vop_start;
9057
9058 do_memory_reference:
9059 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9060 return 0;
9061 if ((i.mem_operands == 1
9062 && !current_templates->start->opcode_modifier.isstring)
9063 || i.mem_operands == 2)
9064 {
9065 as_bad (_("too many memory references for `%s'"),
9066 current_templates->start->name);
9067 return 0;
9068 }
9069
9070 /* Check for base index form. We detect the base index form by
9071 looking for an ')' at the end of the operand, searching
9072 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9073 after the '('. */
9074 base_string = op_string + strlen (op_string);
9075
9076 /* Handle vector operations. */
9077 vop_start = strchr (op_string, '{');
9078 if (vop_start && vop_start < base_string)
9079 {
9080 if (check_VecOperations (vop_start, base_string) == NULL)
9081 return 0;
9082 base_string = vop_start;
9083 }
9084
9085 --base_string;
9086 if (is_space_char (*base_string))
9087 --base_string;
9088
9089 /* If we only have a displacement, set-up for it to be parsed later. */
9090 displacement_string_start = op_string;
9091 displacement_string_end = base_string + 1;
9092
9093 if (*base_string == ')')
9094 {
9095 char *temp_string;
9096 unsigned int parens_balanced = 1;
9097 /* We've already checked that the number of left & right ()'s are
9098 equal, so this loop will not be infinite. */
9099 do
9100 {
9101 base_string--;
9102 if (*base_string == ')')
9103 parens_balanced++;
9104 if (*base_string == '(')
9105 parens_balanced--;
9106 }
9107 while (parens_balanced);
9108
9109 temp_string = base_string;
9110
9111 /* Skip past '(' and whitespace. */
9112 ++base_string;
9113 if (is_space_char (*base_string))
9114 ++base_string;
9115
9116 if (*base_string == ','
9117 || ((i.base_reg = parse_register (base_string, &end_op))
9118 != NULL))
9119 {
9120 displacement_string_end = temp_string;
9121
9122 i.types[this_operand].bitfield.baseindex = 1;
9123
9124 if (i.base_reg)
9125 {
9126 base_string = end_op;
9127 if (is_space_char (*base_string))
9128 ++base_string;
9129 }
9130
9131 /* There may be an index reg or scale factor here. */
9132 if (*base_string == ',')
9133 {
9134 ++base_string;
9135 if (is_space_char (*base_string))
9136 ++base_string;
9137
9138 if ((i.index_reg = parse_register (base_string, &end_op))
9139 != NULL)
9140 {
9141 base_string = end_op;
9142 if (is_space_char (*base_string))
9143 ++base_string;
9144 if (*base_string == ',')
9145 {
9146 ++base_string;
9147 if (is_space_char (*base_string))
9148 ++base_string;
9149 }
9150 else if (*base_string != ')')
9151 {
9152 as_bad (_("expecting `,' or `)' "
9153 "after index register in `%s'"),
9154 operand_string);
9155 return 0;
9156 }
9157 }
9158 else if (*base_string == REGISTER_PREFIX)
9159 {
9160 end_op = strchr (base_string, ',');
9161 if (end_op)
9162 *end_op = '\0';
9163 as_bad (_("bad register name `%s'"), base_string);
9164 return 0;
9165 }
9166
9167 /* Check for scale factor. */
9168 if (*base_string != ')')
9169 {
9170 char *end_scale = i386_scale (base_string);
9171
9172 if (!end_scale)
9173 return 0;
9174
9175 base_string = end_scale;
9176 if (is_space_char (*base_string))
9177 ++base_string;
9178 if (*base_string != ')')
9179 {
9180 as_bad (_("expecting `)' "
9181 "after scale factor in `%s'"),
9182 operand_string);
9183 return 0;
9184 }
9185 }
9186 else if (!i.index_reg)
9187 {
9188 as_bad (_("expecting index register or scale factor "
9189 "after `,'; got '%c'"),
9190 *base_string);
9191 return 0;
9192 }
9193 }
9194 else if (*base_string != ')')
9195 {
9196 as_bad (_("expecting `,' or `)' "
9197 "after base register in `%s'"),
9198 operand_string);
9199 return 0;
9200 }
9201 }
9202 else if (*base_string == REGISTER_PREFIX)
9203 {
9204 end_op = strchr (base_string, ',');
9205 if (end_op)
9206 *end_op = '\0';
9207 as_bad (_("bad register name `%s'"), base_string);
9208 return 0;
9209 }
9210 }
9211
9212 /* If there's an expression beginning the operand, parse it,
9213 assuming displacement_string_start and
9214 displacement_string_end are meaningful. */
9215 if (displacement_string_start != displacement_string_end)
9216 {
9217 if (!i386_displacement (displacement_string_start,
9218 displacement_string_end))
9219 return 0;
9220 }
9221
9222 /* Special case for (%dx) while doing input/output op. */
9223 if (i.base_reg
9224 && operand_type_equal (&i.base_reg->reg_type,
9225 &reg16_inoutportreg)
9226 && i.index_reg == 0
9227 && i.log2_scale_factor == 0
9228 && i.seg[i.mem_operands] == 0
9229 && !operand_type_check (i.types[this_operand], disp))
9230 {
9231 i.types[this_operand] = inoutportreg;
9232 return 1;
9233 }
9234
9235 if (i386_index_check (operand_string) == 0)
9236 return 0;
9237 i.types[this_operand].bitfield.mem = 1;
9238 if (i.mem_operands == 0)
9239 i.memop1_string = xstrdup (operand_string);
9240 i.mem_operands++;
9241 }
9242 else
9243 {
9244 /* It's not a memory operand; argh! */
9245 as_bad (_("invalid char %s beginning operand %d `%s'"),
9246 output_invalid (*op_string),
9247 this_operand + 1,
9248 op_string);
9249 return 0;
9250 }
9251 return 1; /* Normal return. */
9252 }
9253 \f
9254 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9255 that an rs_machine_dependent frag may reach. */
9256
9257 unsigned int
9258 i386_frag_max_var (fragS *frag)
9259 {
9260 /* The only relaxable frags are for jumps.
9261 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9262 gas_assert (frag->fr_type == rs_machine_dependent);
9263 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9264 }
9265
9266 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9267 static int
9268 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9269 {
9270 /* STT_GNU_IFUNC symbol must go through PLT. */
9271 if ((symbol_get_bfdsym (fr_symbol)->flags
9272 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9273 return 0;
9274
9275 if (!S_IS_EXTERNAL (fr_symbol))
9276 /* Symbol may be weak or local. */
9277 return !S_IS_WEAK (fr_symbol);
9278
9279 /* Global symbols with non-default visibility can't be preempted. */
9280 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9281 return 1;
9282
9283 if (fr_var != NO_RELOC)
9284 switch ((enum bfd_reloc_code_real) fr_var)
9285 {
9286 case BFD_RELOC_386_PLT32:
9287 case BFD_RELOC_X86_64_PLT32:
9288 /* Symbol with PLT relocation may be preempted. */
9289 return 0;
9290 default:
9291 abort ();
9292 }
9293
9294 /* Global symbols with default visibility in a shared library may be
9295 preempted by another definition. */
9296 return !shared;
9297 }
9298 #endif
9299
9300 /* md_estimate_size_before_relax()
9301
9302 Called just before relax() for rs_machine_dependent frags. The x86
9303 assembler uses these frags to handle variable size jump
9304 instructions.
9305
9306 Any symbol that is now undefined will not become defined.
9307 Return the correct fr_subtype in the frag.
9308 Return the initial "guess for variable size of frag" to caller.
9309 The guess is actually the growth beyond the fixed part. Whatever
9310 we do to grow the fixed or variable part contributes to our
9311 returned value. */
9312
9313 int
9314 md_estimate_size_before_relax (fragS *fragP, segT segment)
9315 {
9316 /* We've already got fragP->fr_subtype right; all we have to do is
9317 check for un-relaxable symbols. On an ELF system, we can't relax
9318 an externally visible symbol, because it may be overridden by a
9319 shared library. */
9320 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9321 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9322 || (IS_ELF
9323 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9324 fragP->fr_var))
9325 #endif
9326 #if defined (OBJ_COFF) && defined (TE_PE)
9327 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9328 && S_IS_WEAK (fragP->fr_symbol))
9329 #endif
9330 )
9331 {
9332 /* Symbol is undefined in this segment, or we need to keep a
9333 reloc so that weak symbols can be overridden. */
9334 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9335 enum bfd_reloc_code_real reloc_type;
9336 unsigned char *opcode;
9337 int old_fr_fix;
9338
9339 if (fragP->fr_var != NO_RELOC)
9340 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9341 else if (size == 2)
9342 reloc_type = BFD_RELOC_16_PCREL;
9343 else
9344 reloc_type = BFD_RELOC_32_PCREL;
9345
9346 old_fr_fix = fragP->fr_fix;
9347 opcode = (unsigned char *) fragP->fr_opcode;
9348
9349 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9350 {
9351 case UNCOND_JUMP:
9352 /* Make jmp (0xeb) a (d)word displacement jump. */
9353 opcode[0] = 0xe9;
9354 fragP->fr_fix += size;
9355 fix_new (fragP, old_fr_fix, size,
9356 fragP->fr_symbol,
9357 fragP->fr_offset, 1,
9358 reloc_type);
9359 break;
9360
9361 case COND_JUMP86:
9362 if (size == 2
9363 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9364 {
9365 /* Negate the condition, and branch past an
9366 unconditional jump. */
9367 opcode[0] ^= 1;
9368 opcode[1] = 3;
9369 /* Insert an unconditional jump. */
9370 opcode[2] = 0xe9;
9371 /* We added two extra opcode bytes, and have a two byte
9372 offset. */
9373 fragP->fr_fix += 2 + 2;
9374 fix_new (fragP, old_fr_fix + 2, 2,
9375 fragP->fr_symbol,
9376 fragP->fr_offset, 1,
9377 reloc_type);
9378 break;
9379 }
9380 /* Fall through. */
9381
9382 case COND_JUMP:
9383 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9384 {
9385 fixS *fixP;
9386
9387 fragP->fr_fix += 1;
9388 fixP = fix_new (fragP, old_fr_fix, 1,
9389 fragP->fr_symbol,
9390 fragP->fr_offset, 1,
9391 BFD_RELOC_8_PCREL);
9392 fixP->fx_signed = 1;
9393 break;
9394 }
9395
9396 /* This changes the byte-displacement jump 0x7N
9397 to the (d)word-displacement jump 0x0f,0x8N. */
9398 opcode[1] = opcode[0] + 0x10;
9399 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9400 /* We've added an opcode byte. */
9401 fragP->fr_fix += 1 + size;
9402 fix_new (fragP, old_fr_fix + 1, size,
9403 fragP->fr_symbol,
9404 fragP->fr_offset, 1,
9405 reloc_type);
9406 break;
9407
9408 default:
9409 BAD_CASE (fragP->fr_subtype);
9410 break;
9411 }
9412 frag_wane (fragP);
9413 return fragP->fr_fix - old_fr_fix;
9414 }
9415
9416 /* Guess size depending on current relax state. Initially the relax
9417 state will correspond to a short jump and we return 1, because
9418 the variable part of the frag (the branch offset) is one byte
9419 long. However, we can relax a section more than once and in that
9420 case we must either set fr_subtype back to the unrelaxed state,
9421 or return the value for the appropriate branch. */
9422 return md_relax_table[fragP->fr_subtype].rlx_length;
9423 }
9424
9425 /* Called after relax() is finished.
9426
9427 In: Address of frag.
9428 fr_type == rs_machine_dependent.
9429 fr_subtype is what the address relaxed to.
9430
9431 Out: Any fixSs and constants are set up.
9432 Caller will turn frag into a ".space 0". */
9433
9434 void
9435 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9436 fragS *fragP)
9437 {
9438 unsigned char *opcode;
9439 unsigned char *where_to_put_displacement = NULL;
9440 offsetT target_address;
9441 offsetT opcode_address;
9442 unsigned int extension = 0;
9443 offsetT displacement_from_opcode_start;
9444
9445 opcode = (unsigned char *) fragP->fr_opcode;
9446
9447 /* Address we want to reach in file space. */
9448 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9449
9450 /* Address opcode resides at in file space. */
9451 opcode_address = fragP->fr_address + fragP->fr_fix;
9452
9453 /* Displacement from opcode start to fill into instruction. */
9454 displacement_from_opcode_start = target_address - opcode_address;
9455
9456 if ((fragP->fr_subtype & BIG) == 0)
9457 {
9458 /* Don't have to change opcode. */
9459 extension = 1; /* 1 opcode + 1 displacement */
9460 where_to_put_displacement = &opcode[1];
9461 }
9462 else
9463 {
9464 if (no_cond_jump_promotion
9465 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9466 as_warn_where (fragP->fr_file, fragP->fr_line,
9467 _("long jump required"));
9468
9469 switch (fragP->fr_subtype)
9470 {
9471 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9472 extension = 4; /* 1 opcode + 4 displacement */
9473 opcode[0] = 0xe9;
9474 where_to_put_displacement = &opcode[1];
9475 break;
9476
9477 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9478 extension = 2; /* 1 opcode + 2 displacement */
9479 opcode[0] = 0xe9;
9480 where_to_put_displacement = &opcode[1];
9481 break;
9482
9483 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9484 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9485 extension = 5; /* 2 opcode + 4 displacement */
9486 opcode[1] = opcode[0] + 0x10;
9487 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9488 where_to_put_displacement = &opcode[2];
9489 break;
9490
9491 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9492 extension = 3; /* 2 opcode + 2 displacement */
9493 opcode[1] = opcode[0] + 0x10;
9494 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9495 where_to_put_displacement = &opcode[2];
9496 break;
9497
9498 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9499 extension = 4;
9500 opcode[0] ^= 1;
9501 opcode[1] = 3;
9502 opcode[2] = 0xe9;
9503 where_to_put_displacement = &opcode[3];
9504 break;
9505
9506 default:
9507 BAD_CASE (fragP->fr_subtype);
9508 break;
9509 }
9510 }
9511
9512 /* If size if less then four we are sure that the operand fits,
9513 but if it's 4, then it could be that the displacement is larger
9514 then -/+ 2GB. */
9515 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9516 && object_64bit
9517 && ((addressT) (displacement_from_opcode_start - extension
9518 + ((addressT) 1 << 31))
9519 > (((addressT) 2 << 31) - 1)))
9520 {
9521 as_bad_where (fragP->fr_file, fragP->fr_line,
9522 _("jump target out of range"));
9523 /* Make us emit 0. */
9524 displacement_from_opcode_start = extension;
9525 }
9526 /* Now put displacement after opcode. */
9527 md_number_to_chars ((char *) where_to_put_displacement,
9528 (valueT) (displacement_from_opcode_start - extension),
9529 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9530 fragP->fr_fix += extension;
9531 }
9532 \f
9533 /* Apply a fixup (fixP) to segment data, once it has been determined
9534 by our caller that we have all the info we need to fix it up.
9535
9536 Parameter valP is the pointer to the value of the bits.
9537
9538 On the 386, immediates, displacements, and data pointers are all in
9539 the same (little-endian) format, so we don't need to care about which
9540 we are handling. */
9541
9542 void
9543 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9544 {
9545 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9546 valueT value = *valP;
9547
9548 #if !defined (TE_Mach)
9549 if (fixP->fx_pcrel)
9550 {
9551 switch (fixP->fx_r_type)
9552 {
9553 default:
9554 break;
9555
9556 case BFD_RELOC_64:
9557 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9558 break;
9559 case BFD_RELOC_32:
9560 case BFD_RELOC_X86_64_32S:
9561 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9562 break;
9563 case BFD_RELOC_16:
9564 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9565 break;
9566 case BFD_RELOC_8:
9567 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9568 break;
9569 }
9570 }
9571
9572 if (fixP->fx_addsy != NULL
9573 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9574 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9575 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9576 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9577 && !use_rela_relocations)
9578 {
9579 /* This is a hack. There should be a better way to handle this.
9580 This covers for the fact that bfd_install_relocation will
9581 subtract the current location (for partial_inplace, PC relative
9582 relocations); see more below. */
9583 #ifndef OBJ_AOUT
9584 if (IS_ELF
9585 #ifdef TE_PE
9586 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9587 #endif
9588 )
9589 value += fixP->fx_where + fixP->fx_frag->fr_address;
9590 #endif
9591 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9592 if (IS_ELF)
9593 {
9594 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9595
9596 if ((sym_seg == seg
9597 || (symbol_section_p (fixP->fx_addsy)
9598 && sym_seg != absolute_section))
9599 && !generic_force_reloc (fixP))
9600 {
9601 /* Yes, we add the values in twice. This is because
9602 bfd_install_relocation subtracts them out again. I think
9603 bfd_install_relocation is broken, but I don't dare change
9604 it. FIXME. */
9605 value += fixP->fx_where + fixP->fx_frag->fr_address;
9606 }
9607 }
9608 #endif
9609 #if defined (OBJ_COFF) && defined (TE_PE)
9610 /* For some reason, the PE format does not store a
9611 section address offset for a PC relative symbol. */
9612 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9613 || S_IS_WEAK (fixP->fx_addsy))
9614 value += md_pcrel_from (fixP);
9615 #endif
9616 }
9617 #if defined (OBJ_COFF) && defined (TE_PE)
9618 if (fixP->fx_addsy != NULL
9619 && S_IS_WEAK (fixP->fx_addsy)
9620 /* PR 16858: Do not modify weak function references. */
9621 && ! fixP->fx_pcrel)
9622 {
9623 #if !defined (TE_PEP)
9624 /* For x86 PE weak function symbols are neither PC-relative
9625 nor do they set S_IS_FUNCTION. So the only reliable way
9626 to detect them is to check the flags of their containing
9627 section. */
9628 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9629 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9630 ;
9631 else
9632 #endif
9633 value -= S_GET_VALUE (fixP->fx_addsy);
9634 }
9635 #endif
9636
9637 /* Fix a few things - the dynamic linker expects certain values here,
9638 and we must not disappoint it. */
9639 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9640 if (IS_ELF && fixP->fx_addsy)
9641 switch (fixP->fx_r_type)
9642 {
9643 case BFD_RELOC_386_PLT32:
9644 case BFD_RELOC_X86_64_PLT32:
9645 /* Make the jump instruction point to the address of the operand. At
9646 runtime we merely add the offset to the actual PLT entry. */
9647 value = -4;
9648 break;
9649
9650 case BFD_RELOC_386_TLS_GD:
9651 case BFD_RELOC_386_TLS_LDM:
9652 case BFD_RELOC_386_TLS_IE_32:
9653 case BFD_RELOC_386_TLS_IE:
9654 case BFD_RELOC_386_TLS_GOTIE:
9655 case BFD_RELOC_386_TLS_GOTDESC:
9656 case BFD_RELOC_X86_64_TLSGD:
9657 case BFD_RELOC_X86_64_TLSLD:
9658 case BFD_RELOC_X86_64_GOTTPOFF:
9659 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9660 value = 0; /* Fully resolved at runtime. No addend. */
9661 /* Fallthrough */
9662 case BFD_RELOC_386_TLS_LE:
9663 case BFD_RELOC_386_TLS_LDO_32:
9664 case BFD_RELOC_386_TLS_LE_32:
9665 case BFD_RELOC_X86_64_DTPOFF32:
9666 case BFD_RELOC_X86_64_DTPOFF64:
9667 case BFD_RELOC_X86_64_TPOFF32:
9668 case BFD_RELOC_X86_64_TPOFF64:
9669 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9670 break;
9671
9672 case BFD_RELOC_386_TLS_DESC_CALL:
9673 case BFD_RELOC_X86_64_TLSDESC_CALL:
9674 value = 0; /* Fully resolved at runtime. No addend. */
9675 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9676 fixP->fx_done = 0;
9677 return;
9678
9679 case BFD_RELOC_VTABLE_INHERIT:
9680 case BFD_RELOC_VTABLE_ENTRY:
9681 fixP->fx_done = 0;
9682 return;
9683
9684 default:
9685 break;
9686 }
9687 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
9688 *valP = value;
9689 #endif /* !defined (TE_Mach) */
9690
9691 /* Are we finished with this relocation now? */
9692 if (fixP->fx_addsy == NULL)
9693 fixP->fx_done = 1;
9694 #if defined (OBJ_COFF) && defined (TE_PE)
9695 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9696 {
9697 fixP->fx_done = 0;
9698 /* Remember value for tc_gen_reloc. */
9699 fixP->fx_addnumber = value;
9700 /* Clear out the frag for now. */
9701 value = 0;
9702 }
9703 #endif
9704 else if (use_rela_relocations)
9705 {
9706 fixP->fx_no_overflow = 1;
9707 /* Remember value for tc_gen_reloc. */
9708 fixP->fx_addnumber = value;
9709 value = 0;
9710 }
9711
9712 md_number_to_chars (p, value, fixP->fx_size);
9713 }
9714 \f
9715 const char *
9716 md_atof (int type, char *litP, int *sizeP)
9717 {
9718 /* This outputs the LITTLENUMs in REVERSE order;
9719 in accord with the bigendian 386. */
9720 return ieee_md_atof (type, litP, sizeP, FALSE);
9721 }
9722 \f
9723 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
9724
9725 static char *
9726 output_invalid (int c)
9727 {
9728 if (ISPRINT (c))
9729 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9730 "'%c'", c);
9731 else
9732 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9733 "(0x%x)", (unsigned char) c);
9734 return output_invalid_buf;
9735 }
9736
9737 /* REG_STRING starts *before* REGISTER_PREFIX. */
9738
9739 static const reg_entry *
9740 parse_real_register (char *reg_string, char **end_op)
9741 {
9742 char *s = reg_string;
9743 char *p;
9744 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9745 const reg_entry *r;
9746
9747 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9748 if (*s == REGISTER_PREFIX)
9749 ++s;
9750
9751 if (is_space_char (*s))
9752 ++s;
9753
9754 p = reg_name_given;
9755 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
9756 {
9757 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
9758 return (const reg_entry *) NULL;
9759 s++;
9760 }
9761
9762 /* For naked regs, make sure that we are not dealing with an identifier.
9763 This prevents confusing an identifier like `eax_var' with register
9764 `eax'. */
9765 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9766 return (const reg_entry *) NULL;
9767
9768 *end_op = s;
9769
9770 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9771
9772 /* Handle floating point regs, allowing spaces in the (i) part. */
9773 if (r == i386_regtab /* %st is first entry of table */)
9774 {
9775 if (is_space_char (*s))
9776 ++s;
9777 if (*s == '(')
9778 {
9779 ++s;
9780 if (is_space_char (*s))
9781 ++s;
9782 if (*s >= '0' && *s <= '7')
9783 {
9784 int fpr = *s - '0';
9785 ++s;
9786 if (is_space_char (*s))
9787 ++s;
9788 if (*s == ')')
9789 {
9790 *end_op = s + 1;
9791 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
9792 know (r);
9793 return r + fpr;
9794 }
9795 }
9796 /* We have "%st(" then garbage. */
9797 return (const reg_entry *) NULL;
9798 }
9799 }
9800
9801 if (r == NULL || allow_pseudo_reg)
9802 return r;
9803
9804 if (operand_type_all_zero (&r->reg_type))
9805 return (const reg_entry *) NULL;
9806
9807 if ((r->reg_type.bitfield.reg32
9808 || r->reg_type.bitfield.sreg3
9809 || r->reg_type.bitfield.control
9810 || r->reg_type.bitfield.debug
9811 || r->reg_type.bitfield.test)
9812 && !cpu_arch_flags.bitfield.cpui386)
9813 return (const reg_entry *) NULL;
9814
9815 if (r->reg_type.bitfield.floatreg
9816 && !cpu_arch_flags.bitfield.cpu8087
9817 && !cpu_arch_flags.bitfield.cpu287
9818 && !cpu_arch_flags.bitfield.cpu387)
9819 return (const reg_entry *) NULL;
9820
9821 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
9822 return (const reg_entry *) NULL;
9823
9824 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpuregxmm)
9825 return (const reg_entry *) NULL;
9826
9827 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuregymm)
9828 return (const reg_entry *) NULL;
9829
9830 if (r->reg_type.bitfield.regzmm && !cpu_arch_flags.bitfield.cpuregzmm)
9831 return (const reg_entry *) NULL;
9832
9833 if (r->reg_type.bitfield.regmask
9834 && !cpu_arch_flags.bitfield.cpuregmask)
9835 return (const reg_entry *) NULL;
9836
9837 /* Don't allow fake index register unless allow_index_reg isn't 0. */
9838 if (!allow_index_reg
9839 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9840 return (const reg_entry *) NULL;
9841
9842 /* Upper 16 vector register is only available with VREX in 64bit
9843 mode. */
9844 if ((r->reg_flags & RegVRex))
9845 {
9846 if (i.vec_encoding == vex_encoding_default)
9847 i.vec_encoding = vex_encoding_evex;
9848
9849 if (!cpu_arch_flags.bitfield.cpuvrex
9850 || i.vec_encoding != vex_encoding_evex
9851 || flag_code != CODE_64BIT)
9852 return (const reg_entry *) NULL;
9853 }
9854
9855 if (((r->reg_flags & (RegRex64 | RegRex))
9856 || r->reg_type.bitfield.reg64)
9857 && (!cpu_arch_flags.bitfield.cpulm
9858 || !operand_type_equal (&r->reg_type, &control))
9859 && flag_code != CODE_64BIT)
9860 return (const reg_entry *) NULL;
9861
9862 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9863 return (const reg_entry *) NULL;
9864
9865 return r;
9866 }
9867
9868 /* REG_STRING starts *before* REGISTER_PREFIX. */
9869
9870 static const reg_entry *
9871 parse_register (char *reg_string, char **end_op)
9872 {
9873 const reg_entry *r;
9874
9875 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9876 r = parse_real_register (reg_string, end_op);
9877 else
9878 r = NULL;
9879 if (!r)
9880 {
9881 char *save = input_line_pointer;
9882 char c;
9883 symbolS *symbolP;
9884
9885 input_line_pointer = reg_string;
9886 c = get_symbol_name (&reg_string);
9887 symbolP = symbol_find (reg_string);
9888 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9889 {
9890 const expressionS *e = symbol_get_value_expression (symbolP);
9891
9892 know (e->X_op == O_register);
9893 know (e->X_add_number >= 0
9894 && (valueT) e->X_add_number < i386_regtab_size);
9895 r = i386_regtab + e->X_add_number;
9896 if ((r->reg_flags & RegVRex))
9897 i.vec_encoding = vex_encoding_evex;
9898 *end_op = input_line_pointer;
9899 }
9900 *input_line_pointer = c;
9901 input_line_pointer = save;
9902 }
9903 return r;
9904 }
9905
9906 int
9907 i386_parse_name (char *name, expressionS *e, char *nextcharP)
9908 {
9909 const reg_entry *r;
9910 char *end = input_line_pointer;
9911
9912 *end = *nextcharP;
9913 r = parse_register (name, &input_line_pointer);
9914 if (r && end <= input_line_pointer)
9915 {
9916 *nextcharP = *input_line_pointer;
9917 *input_line_pointer = 0;
9918 e->X_op = O_register;
9919 e->X_add_number = r - i386_regtab;
9920 return 1;
9921 }
9922 input_line_pointer = end;
9923 *end = 0;
9924 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
9925 }
9926
9927 void
9928 md_operand (expressionS *e)
9929 {
9930 char *end;
9931 const reg_entry *r;
9932
9933 switch (*input_line_pointer)
9934 {
9935 case REGISTER_PREFIX:
9936 r = parse_real_register (input_line_pointer, &end);
9937 if (r)
9938 {
9939 e->X_op = O_register;
9940 e->X_add_number = r - i386_regtab;
9941 input_line_pointer = end;
9942 }
9943 break;
9944
9945 case '[':
9946 gas_assert (intel_syntax);
9947 end = input_line_pointer++;
9948 expression (e);
9949 if (*input_line_pointer == ']')
9950 {
9951 ++input_line_pointer;
9952 e->X_op_symbol = make_expr_symbol (e);
9953 e->X_add_symbol = NULL;
9954 e->X_add_number = 0;
9955 e->X_op = O_index;
9956 }
9957 else
9958 {
9959 e->X_op = O_absent;
9960 input_line_pointer = end;
9961 }
9962 break;
9963 }
9964 }
9965
9966 \f
9967 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9968 const char *md_shortopts = "kVQ:sqn";
9969 #else
9970 const char *md_shortopts = "qn";
9971 #endif
9972
9973 #define OPTION_32 (OPTION_MD_BASE + 0)
9974 #define OPTION_64 (OPTION_MD_BASE + 1)
9975 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9976 #define OPTION_MARCH (OPTION_MD_BASE + 3)
9977 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
9978 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9979 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9980 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9981 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9982 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
9983 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
9984 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
9985 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9986 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9987 #define OPTION_X32 (OPTION_MD_BASE + 14)
9988 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
9989 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9990 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
9991 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
9992 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
9993 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
9994 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
9995 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
9996 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
9997 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
9998 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 25)
9999
10000 struct option md_longopts[] =
10001 {
10002 {"32", no_argument, NULL, OPTION_32},
10003 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10004 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10005 {"64", no_argument, NULL, OPTION_64},
10006 #endif
10007 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10008 {"x32", no_argument, NULL, OPTION_X32},
10009 {"mshared", no_argument, NULL, OPTION_MSHARED},
10010 #endif
10011 {"divide", no_argument, NULL, OPTION_DIVIDE},
10012 {"march", required_argument, NULL, OPTION_MARCH},
10013 {"mtune", required_argument, NULL, OPTION_MTUNE},
10014 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10015 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10016 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10017 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10018 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
10019 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
10020 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
10021 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
10022 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
10023 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
10024 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10025 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
10026 # if defined (TE_PE) || defined (TE_PEP)
10027 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10028 #endif
10029 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10030 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10031 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10032 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10033 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10034 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10035 {NULL, no_argument, NULL, 0}
10036 };
10037 size_t md_longopts_size = sizeof (md_longopts);
10038
10039 int
10040 md_parse_option (int c, const char *arg)
10041 {
10042 unsigned int j;
10043 char *arch, *next, *saved;
10044
10045 switch (c)
10046 {
10047 case 'n':
10048 optimize_align_code = 0;
10049 break;
10050
10051 case 'q':
10052 quiet_warnings = 1;
10053 break;
10054
10055 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10056 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10057 should be emitted or not. FIXME: Not implemented. */
10058 case 'Q':
10059 break;
10060
10061 /* -V: SVR4 argument to print version ID. */
10062 case 'V':
10063 print_version_id ();
10064 break;
10065
10066 /* -k: Ignore for FreeBSD compatibility. */
10067 case 'k':
10068 break;
10069
10070 case 's':
10071 /* -s: On i386 Solaris, this tells the native assembler to use
10072 .stab instead of .stab.excl. We always use .stab anyhow. */
10073 break;
10074
10075 case OPTION_MSHARED:
10076 shared = 1;
10077 break;
10078 #endif
10079 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10080 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10081 case OPTION_64:
10082 {
10083 const char **list, **l;
10084
10085 list = bfd_target_list ();
10086 for (l = list; *l != NULL; l++)
10087 if (CONST_STRNEQ (*l, "elf64-x86-64")
10088 || strcmp (*l, "coff-x86-64") == 0
10089 || strcmp (*l, "pe-x86-64") == 0
10090 || strcmp (*l, "pei-x86-64") == 0
10091 || strcmp (*l, "mach-o-x86-64") == 0)
10092 {
10093 default_arch = "x86_64";
10094 break;
10095 }
10096 if (*l == NULL)
10097 as_fatal (_("no compiled in support for x86_64"));
10098 free (list);
10099 }
10100 break;
10101 #endif
10102
10103 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10104 case OPTION_X32:
10105 if (IS_ELF)
10106 {
10107 const char **list, **l;
10108
10109 list = bfd_target_list ();
10110 for (l = list; *l != NULL; l++)
10111 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10112 {
10113 default_arch = "x86_64:32";
10114 break;
10115 }
10116 if (*l == NULL)
10117 as_fatal (_("no compiled in support for 32bit x86_64"));
10118 free (list);
10119 }
10120 else
10121 as_fatal (_("32bit x86_64 is only supported for ELF"));
10122 break;
10123 #endif
10124
10125 case OPTION_32:
10126 default_arch = "i386";
10127 break;
10128
10129 case OPTION_DIVIDE:
10130 #ifdef SVR4_COMMENT_CHARS
10131 {
10132 char *n, *t;
10133 const char *s;
10134
10135 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
10136 t = n;
10137 for (s = i386_comment_chars; *s != '\0'; s++)
10138 if (*s != '/')
10139 *t++ = *s;
10140 *t = '\0';
10141 i386_comment_chars = n;
10142 }
10143 #endif
10144 break;
10145
10146 case OPTION_MARCH:
10147 saved = xstrdup (arg);
10148 arch = saved;
10149 /* Allow -march=+nosse. */
10150 if (*arch == '+')
10151 arch++;
10152 do
10153 {
10154 if (*arch == '.')
10155 as_fatal (_("invalid -march= option: `%s'"), arg);
10156 next = strchr (arch, '+');
10157 if (next)
10158 *next++ = '\0';
10159 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10160 {
10161 if (strcmp (arch, cpu_arch [j].name) == 0)
10162 {
10163 /* Processor. */
10164 if (! cpu_arch[j].flags.bitfield.cpui386)
10165 continue;
10166
10167 cpu_arch_name = cpu_arch[j].name;
10168 cpu_sub_arch_name = NULL;
10169 cpu_arch_flags = cpu_arch[j].flags;
10170 cpu_arch_isa = cpu_arch[j].type;
10171 cpu_arch_isa_flags = cpu_arch[j].flags;
10172 if (!cpu_arch_tune_set)
10173 {
10174 cpu_arch_tune = cpu_arch_isa;
10175 cpu_arch_tune_flags = cpu_arch_isa_flags;
10176 }
10177 break;
10178 }
10179 else if (*cpu_arch [j].name == '.'
10180 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10181 {
10182 /* ISA extension. */
10183 i386_cpu_flags flags;
10184
10185 flags = cpu_flags_or (cpu_arch_flags,
10186 cpu_arch[j].flags);
10187
10188 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10189 {
10190 if (cpu_sub_arch_name)
10191 {
10192 char *name = cpu_sub_arch_name;
10193 cpu_sub_arch_name = concat (name,
10194 cpu_arch[j].name,
10195 (const char *) NULL);
10196 free (name);
10197 }
10198 else
10199 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10200 cpu_arch_flags = flags;
10201 cpu_arch_isa_flags = flags;
10202 }
10203 break;
10204 }
10205 }
10206
10207 if (j >= ARRAY_SIZE (cpu_arch))
10208 {
10209 /* Disable an ISA extension. */
10210 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10211 if (strcmp (arch, cpu_noarch [j].name) == 0)
10212 {
10213 i386_cpu_flags flags;
10214
10215 flags = cpu_flags_and_not (cpu_arch_flags,
10216 cpu_noarch[j].flags);
10217 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10218 {
10219 if (cpu_sub_arch_name)
10220 {
10221 char *name = cpu_sub_arch_name;
10222 cpu_sub_arch_name = concat (arch,
10223 (const char *) NULL);
10224 free (name);
10225 }
10226 else
10227 cpu_sub_arch_name = xstrdup (arch);
10228 cpu_arch_flags = flags;
10229 cpu_arch_isa_flags = flags;
10230 }
10231 break;
10232 }
10233
10234 if (j >= ARRAY_SIZE (cpu_noarch))
10235 j = ARRAY_SIZE (cpu_arch);
10236 }
10237
10238 if (j >= ARRAY_SIZE (cpu_arch))
10239 as_fatal (_("invalid -march= option: `%s'"), arg);
10240
10241 arch = next;
10242 }
10243 while (next != NULL);
10244 free (saved);
10245 break;
10246
10247 case OPTION_MTUNE:
10248 if (*arg == '.')
10249 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10250 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10251 {
10252 if (strcmp (arg, cpu_arch [j].name) == 0)
10253 {
10254 cpu_arch_tune_set = 1;
10255 cpu_arch_tune = cpu_arch [j].type;
10256 cpu_arch_tune_flags = cpu_arch[j].flags;
10257 break;
10258 }
10259 }
10260 if (j >= ARRAY_SIZE (cpu_arch))
10261 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10262 break;
10263
10264 case OPTION_MMNEMONIC:
10265 if (strcasecmp (arg, "att") == 0)
10266 intel_mnemonic = 0;
10267 else if (strcasecmp (arg, "intel") == 0)
10268 intel_mnemonic = 1;
10269 else
10270 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10271 break;
10272
10273 case OPTION_MSYNTAX:
10274 if (strcasecmp (arg, "att") == 0)
10275 intel_syntax = 0;
10276 else if (strcasecmp (arg, "intel") == 0)
10277 intel_syntax = 1;
10278 else
10279 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10280 break;
10281
10282 case OPTION_MINDEX_REG:
10283 allow_index_reg = 1;
10284 break;
10285
10286 case OPTION_MNAKED_REG:
10287 allow_naked_reg = 1;
10288 break;
10289
10290 case OPTION_MOLD_GCC:
10291 old_gcc = 1;
10292 break;
10293
10294 case OPTION_MSSE2AVX:
10295 sse2avx = 1;
10296 break;
10297
10298 case OPTION_MSSE_CHECK:
10299 if (strcasecmp (arg, "error") == 0)
10300 sse_check = check_error;
10301 else if (strcasecmp (arg, "warning") == 0)
10302 sse_check = check_warning;
10303 else if (strcasecmp (arg, "none") == 0)
10304 sse_check = check_none;
10305 else
10306 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10307 break;
10308
10309 case OPTION_MOPERAND_CHECK:
10310 if (strcasecmp (arg, "error") == 0)
10311 operand_check = check_error;
10312 else if (strcasecmp (arg, "warning") == 0)
10313 operand_check = check_warning;
10314 else if (strcasecmp (arg, "none") == 0)
10315 operand_check = check_none;
10316 else
10317 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10318 break;
10319
10320 case OPTION_MAVXSCALAR:
10321 if (strcasecmp (arg, "128") == 0)
10322 avxscalar = vex128;
10323 else if (strcasecmp (arg, "256") == 0)
10324 avxscalar = vex256;
10325 else
10326 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10327 break;
10328
10329 case OPTION_MADD_BND_PREFIX:
10330 add_bnd_prefix = 1;
10331 break;
10332
10333 case OPTION_MEVEXLIG:
10334 if (strcmp (arg, "128") == 0)
10335 evexlig = evexl128;
10336 else if (strcmp (arg, "256") == 0)
10337 evexlig = evexl256;
10338 else if (strcmp (arg, "512") == 0)
10339 evexlig = evexl512;
10340 else
10341 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10342 break;
10343
10344 case OPTION_MEVEXRCIG:
10345 if (strcmp (arg, "rne") == 0)
10346 evexrcig = rne;
10347 else if (strcmp (arg, "rd") == 0)
10348 evexrcig = rd;
10349 else if (strcmp (arg, "ru") == 0)
10350 evexrcig = ru;
10351 else if (strcmp (arg, "rz") == 0)
10352 evexrcig = rz;
10353 else
10354 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10355 break;
10356
10357 case OPTION_MEVEXWIG:
10358 if (strcmp (arg, "0") == 0)
10359 evexwig = evexw0;
10360 else if (strcmp (arg, "1") == 0)
10361 evexwig = evexw1;
10362 else
10363 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10364 break;
10365
10366 # if defined (TE_PE) || defined (TE_PEP)
10367 case OPTION_MBIG_OBJ:
10368 use_big_obj = 1;
10369 break;
10370 #endif
10371
10372 case OPTION_MOMIT_LOCK_PREFIX:
10373 if (strcasecmp (arg, "yes") == 0)
10374 omit_lock_prefix = 1;
10375 else if (strcasecmp (arg, "no") == 0)
10376 omit_lock_prefix = 0;
10377 else
10378 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10379 break;
10380
10381 case OPTION_MFENCE_AS_LOCK_ADD:
10382 if (strcasecmp (arg, "yes") == 0)
10383 avoid_fence = 1;
10384 else if (strcasecmp (arg, "no") == 0)
10385 avoid_fence = 0;
10386 else
10387 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10388 break;
10389
10390 case OPTION_MRELAX_RELOCATIONS:
10391 if (strcasecmp (arg, "yes") == 0)
10392 generate_relax_relocations = 1;
10393 else if (strcasecmp (arg, "no") == 0)
10394 generate_relax_relocations = 0;
10395 else
10396 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10397 break;
10398
10399 case OPTION_MAMD64:
10400 intel64 = 0;
10401 break;
10402
10403 case OPTION_MINTEL64:
10404 intel64 = 1;
10405 break;
10406
10407 default:
10408 return 0;
10409 }
10410 return 1;
10411 }
10412
10413 #define MESSAGE_TEMPLATE \
10414 " "
10415
10416 static char *
10417 output_message (FILE *stream, char *p, char *message, char *start,
10418 int *left_p, const char *name, int len)
10419 {
10420 int size = sizeof (MESSAGE_TEMPLATE);
10421 int left = *left_p;
10422
10423 /* Reserve 2 spaces for ", " or ",\0" */
10424 left -= len + 2;
10425
10426 /* Check if there is any room. */
10427 if (left >= 0)
10428 {
10429 if (p != start)
10430 {
10431 *p++ = ',';
10432 *p++ = ' ';
10433 }
10434 p = mempcpy (p, name, len);
10435 }
10436 else
10437 {
10438 /* Output the current message now and start a new one. */
10439 *p++ = ',';
10440 *p = '\0';
10441 fprintf (stream, "%s\n", message);
10442 p = start;
10443 left = size - (start - message) - len - 2;
10444
10445 gas_assert (left >= 0);
10446
10447 p = mempcpy (p, name, len);
10448 }
10449
10450 *left_p = left;
10451 return p;
10452 }
10453
10454 static void
10455 show_arch (FILE *stream, int ext, int check)
10456 {
10457 static char message[] = MESSAGE_TEMPLATE;
10458 char *start = message + 27;
10459 char *p;
10460 int size = sizeof (MESSAGE_TEMPLATE);
10461 int left;
10462 const char *name;
10463 int len;
10464 unsigned int j;
10465
10466 p = start;
10467 left = size - (start - message);
10468 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10469 {
10470 /* Should it be skipped? */
10471 if (cpu_arch [j].skip)
10472 continue;
10473
10474 name = cpu_arch [j].name;
10475 len = cpu_arch [j].len;
10476 if (*name == '.')
10477 {
10478 /* It is an extension. Skip if we aren't asked to show it. */
10479 if (ext)
10480 {
10481 name++;
10482 len--;
10483 }
10484 else
10485 continue;
10486 }
10487 else if (ext)
10488 {
10489 /* It is an processor. Skip if we show only extension. */
10490 continue;
10491 }
10492 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10493 {
10494 /* It is an impossible processor - skip. */
10495 continue;
10496 }
10497
10498 p = output_message (stream, p, message, start, &left, name, len);
10499 }
10500
10501 /* Display disabled extensions. */
10502 if (ext)
10503 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10504 {
10505 name = cpu_noarch [j].name;
10506 len = cpu_noarch [j].len;
10507 p = output_message (stream, p, message, start, &left, name,
10508 len);
10509 }
10510
10511 *p = '\0';
10512 fprintf (stream, "%s\n", message);
10513 }
10514
10515 void
10516 md_show_usage (FILE *stream)
10517 {
10518 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10519 fprintf (stream, _("\
10520 -Q ignored\n\
10521 -V print assembler version number\n\
10522 -k ignored\n"));
10523 #endif
10524 fprintf (stream, _("\
10525 -n Do not optimize code alignment\n\
10526 -q quieten some warnings\n"));
10527 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10528 fprintf (stream, _("\
10529 -s ignored\n"));
10530 #endif
10531 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10532 || defined (TE_PE) || defined (TE_PEP))
10533 fprintf (stream, _("\
10534 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10535 #endif
10536 #ifdef SVR4_COMMENT_CHARS
10537 fprintf (stream, _("\
10538 --divide do not treat `/' as a comment character\n"));
10539 #else
10540 fprintf (stream, _("\
10541 --divide ignored\n"));
10542 #endif
10543 fprintf (stream, _("\
10544 -march=CPU[,+EXTENSION...]\n\
10545 generate code for CPU and EXTENSION, CPU is one of:\n"));
10546 show_arch (stream, 0, 1);
10547 fprintf (stream, _("\
10548 EXTENSION is combination of:\n"));
10549 show_arch (stream, 1, 0);
10550 fprintf (stream, _("\
10551 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10552 show_arch (stream, 0, 0);
10553 fprintf (stream, _("\
10554 -msse2avx encode SSE instructions with VEX prefix\n"));
10555 fprintf (stream, _("\
10556 -msse-check=[none|error|warning]\n\
10557 check SSE instructions\n"));
10558 fprintf (stream, _("\
10559 -moperand-check=[none|error|warning]\n\
10560 check operand combinations for validity\n"));
10561 fprintf (stream, _("\
10562 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10563 length\n"));
10564 fprintf (stream, _("\
10565 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10566 length\n"));
10567 fprintf (stream, _("\
10568 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10569 for EVEX.W bit ignored instructions\n"));
10570 fprintf (stream, _("\
10571 -mevexrcig=[rne|rd|ru|rz]\n\
10572 encode EVEX instructions with specific EVEX.RC value\n\
10573 for SAE-only ignored instructions\n"));
10574 fprintf (stream, _("\
10575 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10576 fprintf (stream, _("\
10577 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10578 fprintf (stream, _("\
10579 -mindex-reg support pseudo index registers\n"));
10580 fprintf (stream, _("\
10581 -mnaked-reg don't require `%%' prefix for registers\n"));
10582 fprintf (stream, _("\
10583 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
10584 fprintf (stream, _("\
10585 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10586 fprintf (stream, _("\
10587 -mshared disable branch optimization for shared code\n"));
10588 # if defined (TE_PE) || defined (TE_PEP)
10589 fprintf (stream, _("\
10590 -mbig-obj generate big object files\n"));
10591 #endif
10592 fprintf (stream, _("\
10593 -momit-lock-prefix=[no|yes]\n\
10594 strip all lock prefixes\n"));
10595 fprintf (stream, _("\
10596 -mfence-as-lock-add=[no|yes]\n\
10597 encode lfence, mfence and sfence as\n\
10598 lock addl $0x0, (%%{re}sp)\n"));
10599 fprintf (stream, _("\
10600 -mrelax-relocations=[no|yes]\n\
10601 generate relax relocations\n"));
10602 fprintf (stream, _("\
10603 -mamd64 accept only AMD64 ISA\n"));
10604 fprintf (stream, _("\
10605 -mintel64 accept only Intel64 ISA\n"));
10606 }
10607
10608 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10609 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10610 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10611
10612 /* Pick the target format to use. */
10613
10614 const char *
10615 i386_target_format (void)
10616 {
10617 if (!strncmp (default_arch, "x86_64", 6))
10618 {
10619 update_code_flag (CODE_64BIT, 1);
10620 if (default_arch[6] == '\0')
10621 x86_elf_abi = X86_64_ABI;
10622 else
10623 x86_elf_abi = X86_64_X32_ABI;
10624 }
10625 else if (!strcmp (default_arch, "i386"))
10626 update_code_flag (CODE_32BIT, 1);
10627 else if (!strcmp (default_arch, "iamcu"))
10628 {
10629 update_code_flag (CODE_32BIT, 1);
10630 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10631 {
10632 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10633 cpu_arch_name = "iamcu";
10634 cpu_sub_arch_name = NULL;
10635 cpu_arch_flags = iamcu_flags;
10636 cpu_arch_isa = PROCESSOR_IAMCU;
10637 cpu_arch_isa_flags = iamcu_flags;
10638 if (!cpu_arch_tune_set)
10639 {
10640 cpu_arch_tune = cpu_arch_isa;
10641 cpu_arch_tune_flags = cpu_arch_isa_flags;
10642 }
10643 }
10644 else if (cpu_arch_isa != PROCESSOR_IAMCU)
10645 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10646 cpu_arch_name);
10647 }
10648 else
10649 as_fatal (_("unknown architecture"));
10650
10651 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10652 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10653 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10654 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10655
10656 switch (OUTPUT_FLAVOR)
10657 {
10658 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
10659 case bfd_target_aout_flavour:
10660 return AOUT_TARGET_FORMAT;
10661 #endif
10662 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10663 # if defined (TE_PE) || defined (TE_PEP)
10664 case bfd_target_coff_flavour:
10665 if (flag_code == CODE_64BIT)
10666 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10667 else
10668 return "pe-i386";
10669 # elif defined (TE_GO32)
10670 case bfd_target_coff_flavour:
10671 return "coff-go32";
10672 # else
10673 case bfd_target_coff_flavour:
10674 return "coff-i386";
10675 # endif
10676 #endif
10677 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10678 case bfd_target_elf_flavour:
10679 {
10680 const char *format;
10681
10682 switch (x86_elf_abi)
10683 {
10684 default:
10685 format = ELF_TARGET_FORMAT;
10686 break;
10687 case X86_64_ABI:
10688 use_rela_relocations = 1;
10689 object_64bit = 1;
10690 format = ELF_TARGET_FORMAT64;
10691 break;
10692 case X86_64_X32_ABI:
10693 use_rela_relocations = 1;
10694 object_64bit = 1;
10695 disallow_64bit_reloc = 1;
10696 format = ELF_TARGET_FORMAT32;
10697 break;
10698 }
10699 if (cpu_arch_isa == PROCESSOR_L1OM)
10700 {
10701 if (x86_elf_abi != X86_64_ABI)
10702 as_fatal (_("Intel L1OM is 64bit only"));
10703 return ELF_TARGET_L1OM_FORMAT;
10704 }
10705 else if (cpu_arch_isa == PROCESSOR_K1OM)
10706 {
10707 if (x86_elf_abi != X86_64_ABI)
10708 as_fatal (_("Intel K1OM is 64bit only"));
10709 return ELF_TARGET_K1OM_FORMAT;
10710 }
10711 else if (cpu_arch_isa == PROCESSOR_IAMCU)
10712 {
10713 if (x86_elf_abi != I386_ABI)
10714 as_fatal (_("Intel MCU is 32bit only"));
10715 return ELF_TARGET_IAMCU_FORMAT;
10716 }
10717 else
10718 return format;
10719 }
10720 #endif
10721 #if defined (OBJ_MACH_O)
10722 case bfd_target_mach_o_flavour:
10723 if (flag_code == CODE_64BIT)
10724 {
10725 use_rela_relocations = 1;
10726 object_64bit = 1;
10727 return "mach-o-x86-64";
10728 }
10729 else
10730 return "mach-o-i386";
10731 #endif
10732 default:
10733 abort ();
10734 return NULL;
10735 }
10736 }
10737
10738 #endif /* OBJ_MAYBE_ more than one */
10739 \f
10740 symbolS *
10741 md_undefined_symbol (char *name)
10742 {
10743 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10744 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10745 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10746 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
10747 {
10748 if (!GOT_symbol)
10749 {
10750 if (symbol_find (name))
10751 as_bad (_("GOT already in symbol table"));
10752 GOT_symbol = symbol_new (name, undefined_section,
10753 (valueT) 0, &zero_address_frag);
10754 };
10755 return GOT_symbol;
10756 }
10757 return 0;
10758 }
10759
10760 /* Round up a section size to the appropriate boundary. */
10761
10762 valueT
10763 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
10764 {
10765 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10766 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10767 {
10768 /* For a.out, force the section size to be aligned. If we don't do
10769 this, BFD will align it for us, but it will not write out the
10770 final bytes of the section. This may be a bug in BFD, but it is
10771 easier to fix it here since that is how the other a.out targets
10772 work. */
10773 int align;
10774
10775 align = bfd_get_section_alignment (stdoutput, segment);
10776 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
10777 }
10778 #endif
10779
10780 return size;
10781 }
10782
10783 /* On the i386, PC-relative offsets are relative to the start of the
10784 next instruction. That is, the address of the offset, plus its
10785 size, since the offset is always the last part of the insn. */
10786
10787 long
10788 md_pcrel_from (fixS *fixP)
10789 {
10790 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10791 }
10792
10793 #ifndef I386COFF
10794
10795 static void
10796 s_bss (int ignore ATTRIBUTE_UNUSED)
10797 {
10798 int temp;
10799
10800 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10801 if (IS_ELF)
10802 obj_elf_section_change_hook ();
10803 #endif
10804 temp = get_absolute_expression ();
10805 subseg_set (bss_section, (subsegT) temp);
10806 demand_empty_rest_of_line ();
10807 }
10808
10809 #endif
10810
10811 void
10812 i386_validate_fix (fixS *fixp)
10813 {
10814 if (fixp->fx_subsy)
10815 {
10816 if (fixp->fx_subsy == GOT_symbol)
10817 {
10818 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10819 {
10820 if (!object_64bit)
10821 abort ();
10822 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10823 if (fixp->fx_tcbit2)
10824 fixp->fx_r_type = (fixp->fx_tcbit
10825 ? BFD_RELOC_X86_64_REX_GOTPCRELX
10826 : BFD_RELOC_X86_64_GOTPCRELX);
10827 else
10828 #endif
10829 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10830 }
10831 else
10832 {
10833 if (!object_64bit)
10834 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10835 else
10836 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10837 }
10838 fixp->fx_subsy = 0;
10839 }
10840 }
10841 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10842 else if (!object_64bit)
10843 {
10844 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
10845 && fixp->fx_tcbit2)
10846 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
10847 }
10848 #endif
10849 }
10850
10851 arelent *
10852 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
10853 {
10854 arelent *rel;
10855 bfd_reloc_code_real_type code;
10856
10857 switch (fixp->fx_r_type)
10858 {
10859 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10860 case BFD_RELOC_SIZE32:
10861 case BFD_RELOC_SIZE64:
10862 if (S_IS_DEFINED (fixp->fx_addsy)
10863 && !S_IS_EXTERNAL (fixp->fx_addsy))
10864 {
10865 /* Resolve size relocation against local symbol to size of
10866 the symbol plus addend. */
10867 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10868 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10869 && !fits_in_unsigned_long (value))
10870 as_bad_where (fixp->fx_file, fixp->fx_line,
10871 _("symbol size computation overflow"));
10872 fixp->fx_addsy = NULL;
10873 fixp->fx_subsy = NULL;
10874 md_apply_fix (fixp, (valueT *) &value, NULL);
10875 return NULL;
10876 }
10877 #endif
10878 /* Fall through. */
10879
10880 case BFD_RELOC_X86_64_PLT32:
10881 case BFD_RELOC_X86_64_GOT32:
10882 case BFD_RELOC_X86_64_GOTPCREL:
10883 case BFD_RELOC_X86_64_GOTPCRELX:
10884 case BFD_RELOC_X86_64_REX_GOTPCRELX:
10885 case BFD_RELOC_386_PLT32:
10886 case BFD_RELOC_386_GOT32:
10887 case BFD_RELOC_386_GOT32X:
10888 case BFD_RELOC_386_GOTOFF:
10889 case BFD_RELOC_386_GOTPC:
10890 case BFD_RELOC_386_TLS_GD:
10891 case BFD_RELOC_386_TLS_LDM:
10892 case BFD_RELOC_386_TLS_LDO_32:
10893 case BFD_RELOC_386_TLS_IE_32:
10894 case BFD_RELOC_386_TLS_IE:
10895 case BFD_RELOC_386_TLS_GOTIE:
10896 case BFD_RELOC_386_TLS_LE_32:
10897 case BFD_RELOC_386_TLS_LE:
10898 case BFD_RELOC_386_TLS_GOTDESC:
10899 case BFD_RELOC_386_TLS_DESC_CALL:
10900 case BFD_RELOC_X86_64_TLSGD:
10901 case BFD_RELOC_X86_64_TLSLD:
10902 case BFD_RELOC_X86_64_DTPOFF32:
10903 case BFD_RELOC_X86_64_DTPOFF64:
10904 case BFD_RELOC_X86_64_GOTTPOFF:
10905 case BFD_RELOC_X86_64_TPOFF32:
10906 case BFD_RELOC_X86_64_TPOFF64:
10907 case BFD_RELOC_X86_64_GOTOFF64:
10908 case BFD_RELOC_X86_64_GOTPC32:
10909 case BFD_RELOC_X86_64_GOT64:
10910 case BFD_RELOC_X86_64_GOTPCREL64:
10911 case BFD_RELOC_X86_64_GOTPC64:
10912 case BFD_RELOC_X86_64_GOTPLT64:
10913 case BFD_RELOC_X86_64_PLTOFF64:
10914 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10915 case BFD_RELOC_X86_64_TLSDESC_CALL:
10916 case BFD_RELOC_RVA:
10917 case BFD_RELOC_VTABLE_ENTRY:
10918 case BFD_RELOC_VTABLE_INHERIT:
10919 #ifdef TE_PE
10920 case BFD_RELOC_32_SECREL:
10921 #endif
10922 code = fixp->fx_r_type;
10923 break;
10924 case BFD_RELOC_X86_64_32S:
10925 if (!fixp->fx_pcrel)
10926 {
10927 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10928 code = fixp->fx_r_type;
10929 break;
10930 }
10931 /* Fall through. */
10932 default:
10933 if (fixp->fx_pcrel)
10934 {
10935 switch (fixp->fx_size)
10936 {
10937 default:
10938 as_bad_where (fixp->fx_file, fixp->fx_line,
10939 _("can not do %d byte pc-relative relocation"),
10940 fixp->fx_size);
10941 code = BFD_RELOC_32_PCREL;
10942 break;
10943 case 1: code = BFD_RELOC_8_PCREL; break;
10944 case 2: code = BFD_RELOC_16_PCREL; break;
10945 case 4: code = BFD_RELOC_32_PCREL; break;
10946 #ifdef BFD64
10947 case 8: code = BFD_RELOC_64_PCREL; break;
10948 #endif
10949 }
10950 }
10951 else
10952 {
10953 switch (fixp->fx_size)
10954 {
10955 default:
10956 as_bad_where (fixp->fx_file, fixp->fx_line,
10957 _("can not do %d byte relocation"),
10958 fixp->fx_size);
10959 code = BFD_RELOC_32;
10960 break;
10961 case 1: code = BFD_RELOC_8; break;
10962 case 2: code = BFD_RELOC_16; break;
10963 case 4: code = BFD_RELOC_32; break;
10964 #ifdef BFD64
10965 case 8: code = BFD_RELOC_64; break;
10966 #endif
10967 }
10968 }
10969 break;
10970 }
10971
10972 if ((code == BFD_RELOC_32
10973 || code == BFD_RELOC_32_PCREL
10974 || code == BFD_RELOC_X86_64_32S)
10975 && GOT_symbol
10976 && fixp->fx_addsy == GOT_symbol)
10977 {
10978 if (!object_64bit)
10979 code = BFD_RELOC_386_GOTPC;
10980 else
10981 code = BFD_RELOC_X86_64_GOTPC32;
10982 }
10983 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10984 && GOT_symbol
10985 && fixp->fx_addsy == GOT_symbol)
10986 {
10987 code = BFD_RELOC_X86_64_GOTPC64;
10988 }
10989
10990 rel = XNEW (arelent);
10991 rel->sym_ptr_ptr = XNEW (asymbol *);
10992 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10993
10994 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
10995
10996 if (!use_rela_relocations)
10997 {
10998 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10999 vtable entry to be used in the relocation's section offset. */
11000 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11001 rel->address = fixp->fx_offset;
11002 #if defined (OBJ_COFF) && defined (TE_PE)
11003 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11004 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11005 else
11006 #endif
11007 rel->addend = 0;
11008 }
11009 /* Use the rela in 64bit mode. */
11010 else
11011 {
11012 if (disallow_64bit_reloc)
11013 switch (code)
11014 {
11015 case BFD_RELOC_X86_64_DTPOFF64:
11016 case BFD_RELOC_X86_64_TPOFF64:
11017 case BFD_RELOC_64_PCREL:
11018 case BFD_RELOC_X86_64_GOTOFF64:
11019 case BFD_RELOC_X86_64_GOT64:
11020 case BFD_RELOC_X86_64_GOTPCREL64:
11021 case BFD_RELOC_X86_64_GOTPC64:
11022 case BFD_RELOC_X86_64_GOTPLT64:
11023 case BFD_RELOC_X86_64_PLTOFF64:
11024 as_bad_where (fixp->fx_file, fixp->fx_line,
11025 _("cannot represent relocation type %s in x32 mode"),
11026 bfd_get_reloc_code_name (code));
11027 break;
11028 default:
11029 break;
11030 }
11031
11032 if (!fixp->fx_pcrel)
11033 rel->addend = fixp->fx_offset;
11034 else
11035 switch (code)
11036 {
11037 case BFD_RELOC_X86_64_PLT32:
11038 case BFD_RELOC_X86_64_GOT32:
11039 case BFD_RELOC_X86_64_GOTPCREL:
11040 case BFD_RELOC_X86_64_GOTPCRELX:
11041 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11042 case BFD_RELOC_X86_64_TLSGD:
11043 case BFD_RELOC_X86_64_TLSLD:
11044 case BFD_RELOC_X86_64_GOTTPOFF:
11045 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11046 case BFD_RELOC_X86_64_TLSDESC_CALL:
11047 rel->addend = fixp->fx_offset - fixp->fx_size;
11048 break;
11049 default:
11050 rel->addend = (section->vma
11051 - fixp->fx_size
11052 + fixp->fx_addnumber
11053 + md_pcrel_from (fixp));
11054 break;
11055 }
11056 }
11057
11058 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11059 if (rel->howto == NULL)
11060 {
11061 as_bad_where (fixp->fx_file, fixp->fx_line,
11062 _("cannot represent relocation type %s"),
11063 bfd_get_reloc_code_name (code));
11064 /* Set howto to a garbage value so that we can keep going. */
11065 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
11066 gas_assert (rel->howto != NULL);
11067 }
11068
11069 return rel;
11070 }
11071
11072 #include "tc-i386-intel.c"
11073
11074 void
11075 tc_x86_parse_to_dw2regnum (expressionS *exp)
11076 {
11077 int saved_naked_reg;
11078 char saved_register_dot;
11079
11080 saved_naked_reg = allow_naked_reg;
11081 allow_naked_reg = 1;
11082 saved_register_dot = register_chars['.'];
11083 register_chars['.'] = '.';
11084 allow_pseudo_reg = 1;
11085 expression_and_evaluate (exp);
11086 allow_pseudo_reg = 0;
11087 register_chars['.'] = saved_register_dot;
11088 allow_naked_reg = saved_naked_reg;
11089
11090 if (exp->X_op == O_register && exp->X_add_number >= 0)
11091 {
11092 if ((addressT) exp->X_add_number < i386_regtab_size)
11093 {
11094 exp->X_op = O_constant;
11095 exp->X_add_number = i386_regtab[exp->X_add_number]
11096 .dw2_regnum[flag_code >> 1];
11097 }
11098 else
11099 exp->X_op = O_illegal;
11100 }
11101 }
11102
11103 void
11104 tc_x86_frame_initial_instructions (void)
11105 {
11106 static unsigned int sp_regno[2];
11107
11108 if (!sp_regno[flag_code >> 1])
11109 {
11110 char *saved_input = input_line_pointer;
11111 char sp[][4] = {"esp", "rsp"};
11112 expressionS exp;
11113
11114 input_line_pointer = sp[flag_code >> 1];
11115 tc_x86_parse_to_dw2regnum (&exp);
11116 gas_assert (exp.X_op == O_constant);
11117 sp_regno[flag_code >> 1] = exp.X_add_number;
11118 input_line_pointer = saved_input;
11119 }
11120
11121 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11122 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
11123 }
11124
11125 int
11126 x86_dwarf2_addr_size (void)
11127 {
11128 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11129 if (x86_elf_abi == X86_64_X32_ABI)
11130 return 4;
11131 #endif
11132 return bfd_arch_bits_per_address (stdoutput) / 8;
11133 }
11134
11135 int
11136 i386_elf_section_type (const char *str, size_t len)
11137 {
11138 if (flag_code == CODE_64BIT
11139 && len == sizeof ("unwind") - 1
11140 && strncmp (str, "unwind", 6) == 0)
11141 return SHT_X86_64_UNWIND;
11142
11143 return -1;
11144 }
11145
11146 #ifdef TE_SOLARIS
11147 void
11148 i386_solaris_fix_up_eh_frame (segT sec)
11149 {
11150 if (flag_code == CODE_64BIT)
11151 elf_section_type (sec) = SHT_X86_64_UNWIND;
11152 }
11153 #endif
11154
11155 #ifdef TE_PE
11156 void
11157 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11158 {
11159 expressionS exp;
11160
11161 exp.X_op = O_secrel;
11162 exp.X_add_symbol = symbol;
11163 exp.X_add_number = 0;
11164 emit_expr (&exp, size);
11165 }
11166 #endif
11167
11168 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11169 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11170
11171 bfd_vma
11172 x86_64_section_letter (int letter, const char **ptr_msg)
11173 {
11174 if (flag_code == CODE_64BIT)
11175 {
11176 if (letter == 'l')
11177 return SHF_X86_64_LARGE;
11178
11179 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11180 }
11181 else
11182 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11183 return -1;
11184 }
11185
11186 bfd_vma
11187 x86_64_section_word (char *str, size_t len)
11188 {
11189 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11190 return SHF_X86_64_LARGE;
11191
11192 return -1;
11193 }
11194
11195 static void
11196 handle_large_common (int small ATTRIBUTE_UNUSED)
11197 {
11198 if (flag_code != CODE_64BIT)
11199 {
11200 s_comm_internal (0, elf_common_parse);
11201 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11202 }
11203 else
11204 {
11205 static segT lbss_section;
11206 asection *saved_com_section_ptr = elf_com_section_ptr;
11207 asection *saved_bss_section = bss_section;
11208
11209 if (lbss_section == NULL)
11210 {
11211 flagword applicable;
11212 segT seg = now_seg;
11213 subsegT subseg = now_subseg;
11214
11215 /* The .lbss section is for local .largecomm symbols. */
11216 lbss_section = subseg_new (".lbss", 0);
11217 applicable = bfd_applicable_section_flags (stdoutput);
11218 bfd_set_section_flags (stdoutput, lbss_section,
11219 applicable & SEC_ALLOC);
11220 seg_info (lbss_section)->bss = 1;
11221
11222 subseg_set (seg, subseg);
11223 }
11224
11225 elf_com_section_ptr = &_bfd_elf_large_com_section;
11226 bss_section = lbss_section;
11227
11228 s_comm_internal (0, elf_common_parse);
11229
11230 elf_com_section_ptr = saved_com_section_ptr;
11231 bss_section = saved_bss_section;
11232 }
11233 }
11234 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.27249 seconds and 4 git commands to generate.