dff42bdb91813e02ed407537ae8e012fe3fb0aa5
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 #define XMMWORD_MNEM_SUFFIX 'x'
85 #define YMMWORD_MNEM_SUFFIX 'y'
86 #define ZMMWORD_MNEM_SUFFIX 'z'
87 /* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91 #define END_OF_INSN '\0'
92
93 /*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100 typedef struct
101 {
102 const insn_template *start;
103 const insn_template *end;
104 }
105 templates;
106
107 /* 386 operand encoding bytes: see 386 book for details of this. */
108 typedef struct
109 {
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113 }
114 modrm_byte;
115
116 /* x86-64 extension prefix. */
117 typedef int rex_byte;
118
119 /* 386 opcode byte to code indirect addressing. */
120 typedef struct
121 {
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125 }
126 sib_byte;
127
128 /* x86 arch names, types and features */
129 typedef struct
130 {
131 const char *name; /* arch name */
132 unsigned int len; /* arch string length */
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
135 unsigned int skip; /* show_arch should skip this. */
136 }
137 arch_entry;
138
139 /* Used to turn off indicated flags. */
140 typedef struct
141 {
142 const char *name; /* arch name */
143 unsigned int len; /* arch string length */
144 i386_cpu_flags flags; /* cpu feature flags */
145 }
146 noarch_entry;
147
148 static void update_code_flag (int, int);
149 static void set_code_flag (int);
150 static void set_16bit_gcc_code_flag (int);
151 static void set_intel_syntax (int);
152 static void set_intel_mnemonic (int);
153 static void set_allow_index_reg (int);
154 static void set_check (int);
155 static void set_cpu_arch (int);
156 #ifdef TE_PE
157 static void pe_directive_secrel (int);
158 #endif
159 static void signed_cons (int);
160 static char *output_invalid (int c);
161 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
162 const char *);
163 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
164 const char *);
165 static int i386_att_operand (char *);
166 static int i386_intel_operand (char *, int);
167 static int i386_intel_simplify (expressionS *);
168 static int i386_intel_parse_name (const char *, expressionS *);
169 static const reg_entry *parse_register (char *, char **);
170 static char *parse_insn (char *, char *);
171 static char *parse_operands (char *, const char *);
172 static void swap_operands (void);
173 static void swap_2_operands (int, int);
174 static void optimize_imm (void);
175 static void optimize_disp (void);
176 static const insn_template *match_template (char);
177 static int check_string (void);
178 static int process_suffix (void);
179 static int check_byte_reg (void);
180 static int check_long_reg (void);
181 static int check_qword_reg (void);
182 static int check_word_reg (void);
183 static int finalize_imm (void);
184 static int process_operands (void);
185 static const seg_entry *build_modrm_byte (void);
186 static void output_insn (void);
187 static void output_imm (fragS *, offsetT);
188 static void output_disp (fragS *, offsetT);
189 #ifndef I386COFF
190 static void s_bss (int);
191 #endif
192 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
193 static void handle_large_common (int small ATTRIBUTE_UNUSED);
194 #endif
195
196 static const char *default_arch = DEFAULT_ARCH;
197
198 /* This struct describes rounding control and SAE in the instruction. */
199 struct RC_Operation
200 {
201 enum rc_type
202 {
203 rne = 0,
204 rd,
205 ru,
206 rz,
207 saeonly
208 } type;
209 int operand;
210 };
211
212 static struct RC_Operation rc_op;
213
214 /* The struct describes masking, applied to OPERAND in the instruction.
215 MASK is a pointer to the corresponding mask register. ZEROING tells
216 whether merging or zeroing mask is used. */
217 struct Mask_Operation
218 {
219 const reg_entry *mask;
220 unsigned int zeroing;
221 /* The operand where this operation is associated. */
222 int operand;
223 };
224
225 static struct Mask_Operation mask_op;
226
227 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
228 broadcast factor. */
229 struct Broadcast_Operation
230 {
231 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
232 int type;
233
234 /* Index of broadcasted operand. */
235 int operand;
236 };
237
238 static struct Broadcast_Operation broadcast_op;
239
240 /* VEX prefix. */
241 typedef struct
242 {
243 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
244 unsigned char bytes[4];
245 unsigned int length;
246 /* Destination or source register specifier. */
247 const reg_entry *register_specifier;
248 } vex_prefix;
249
250 /* 'md_assemble ()' gathers together information and puts it into a
251 i386_insn. */
252
253 union i386_op
254 {
255 expressionS *disps;
256 expressionS *imms;
257 const reg_entry *regs;
258 };
259
260 enum i386_error
261 {
262 operand_size_mismatch,
263 operand_type_mismatch,
264 register_type_mismatch,
265 number_of_operands_mismatch,
266 invalid_instruction_suffix,
267 bad_imm4,
268 old_gcc_only,
269 unsupported_with_intel_mnemonic,
270 unsupported_syntax,
271 unsupported,
272 invalid_vsib_address,
273 invalid_vector_register_set,
274 unsupported_vector_index_register,
275 unsupported_broadcast,
276 broadcast_not_on_src_operand,
277 broadcast_needed,
278 unsupported_masking,
279 mask_not_on_destination,
280 no_default_mask,
281 unsupported_rc_sae,
282 rc_sae_operand_not_last_imm,
283 invalid_register_operand,
284 };
285
286 struct _i386_insn
287 {
288 /* TM holds the template for the insn were currently assembling. */
289 insn_template tm;
290
291 /* SUFFIX holds the instruction size suffix for byte, word, dword
292 or qword, if given. */
293 char suffix;
294
295 /* OPERANDS gives the number of given operands. */
296 unsigned int operands;
297
298 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
299 of given register, displacement, memory operands and immediate
300 operands. */
301 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
302
303 /* TYPES [i] is the type (see above #defines) which tells us how to
304 use OP[i] for the corresponding operand. */
305 i386_operand_type types[MAX_OPERANDS];
306
307 /* Displacement expression, immediate expression, or register for each
308 operand. */
309 union i386_op op[MAX_OPERANDS];
310
311 /* Flags for operands. */
312 unsigned int flags[MAX_OPERANDS];
313 #define Operand_PCrel 1
314
315 /* Relocation type for operand */
316 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
317
318 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
319 the base index byte below. */
320 const reg_entry *base_reg;
321 const reg_entry *index_reg;
322 unsigned int log2_scale_factor;
323
324 /* SEG gives the seg_entries of this insn. They are zero unless
325 explicit segment overrides are given. */
326 const seg_entry *seg[2];
327
328 /* Copied first memory operand string, for re-checking. */
329 char *memop1_string;
330
331 /* PREFIX holds all the given prefix opcodes (usually null).
332 PREFIXES is the number of prefix opcodes. */
333 unsigned int prefixes;
334 unsigned char prefix[MAX_PREFIXES];
335
336 /* RM and SIB are the modrm byte and the sib byte where the
337 addressing modes of this insn are encoded. */
338 modrm_byte rm;
339 rex_byte rex;
340 rex_byte vrex;
341 sib_byte sib;
342 vex_prefix vex;
343
344 /* Masking attributes. */
345 struct Mask_Operation *mask;
346
347 /* Rounding control and SAE attributes. */
348 struct RC_Operation *rounding;
349
350 /* Broadcasting attributes. */
351 struct Broadcast_Operation *broadcast;
352
353 /* Compressed disp8*N attribute. */
354 unsigned int memshift;
355
356 /* Prefer load or store in encoding. */
357 enum
358 {
359 dir_encoding_default = 0,
360 dir_encoding_load,
361 dir_encoding_store
362 } dir_encoding;
363
364 /* Prefer 8bit or 32bit displacement in encoding. */
365 enum
366 {
367 disp_encoding_default = 0,
368 disp_encoding_8bit,
369 disp_encoding_32bit
370 } disp_encoding;
371
372 /* Prefer the REX byte in encoding. */
373 bfd_boolean rex_encoding;
374
375 /* How to encode vector instructions. */
376 enum
377 {
378 vex_encoding_default = 0,
379 vex_encoding_vex2,
380 vex_encoding_vex3,
381 vex_encoding_evex
382 } vec_encoding;
383
384 /* REP prefix. */
385 const char *rep_prefix;
386
387 /* HLE prefix. */
388 const char *hle_prefix;
389
390 /* Have BND prefix. */
391 const char *bnd_prefix;
392
393 /* Have NOTRACK prefix. */
394 const char *notrack_prefix;
395
396 /* Error message. */
397 enum i386_error error;
398 };
399
400 typedef struct _i386_insn i386_insn;
401
402 /* Link RC type with corresponding string, that'll be looked for in
403 asm. */
404 struct RC_name
405 {
406 enum rc_type type;
407 const char *name;
408 unsigned int len;
409 };
410
411 static const struct RC_name RC_NamesTable[] =
412 {
413 { rne, STRING_COMMA_LEN ("rn-sae") },
414 { rd, STRING_COMMA_LEN ("rd-sae") },
415 { ru, STRING_COMMA_LEN ("ru-sae") },
416 { rz, STRING_COMMA_LEN ("rz-sae") },
417 { saeonly, STRING_COMMA_LEN ("sae") },
418 };
419
420 /* List of chars besides those in app.c:symbol_chars that can start an
421 operand. Used to prevent the scrubber eating vital white-space. */
422 const char extra_symbol_chars[] = "*%-([{}"
423 #ifdef LEX_AT
424 "@"
425 #endif
426 #ifdef LEX_QM
427 "?"
428 #endif
429 ;
430
431 #if (defined (TE_I386AIX) \
432 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
433 && !defined (TE_GNU) \
434 && !defined (TE_LINUX) \
435 && !defined (TE_NACL) \
436 && !defined (TE_NETWARE) \
437 && !defined (TE_FreeBSD) \
438 && !defined (TE_DragonFly) \
439 && !defined (TE_NetBSD)))
440 /* This array holds the chars that always start a comment. If the
441 pre-processor is disabled, these aren't very useful. The option
442 --divide will remove '/' from this list. */
443 const char *i386_comment_chars = "#/";
444 #define SVR4_COMMENT_CHARS 1
445 #define PREFIX_SEPARATOR '\\'
446
447 #else
448 const char *i386_comment_chars = "#";
449 #define PREFIX_SEPARATOR '/'
450 #endif
451
452 /* This array holds the chars that only start a comment at the beginning of
453 a line. If the line seems to have the form '# 123 filename'
454 .line and .file directives will appear in the pre-processed output.
455 Note that input_file.c hand checks for '#' at the beginning of the
456 first line of the input file. This is because the compiler outputs
457 #NO_APP at the beginning of its output.
458 Also note that comments started like this one will always work if
459 '/' isn't otherwise defined. */
460 const char line_comment_chars[] = "#/";
461
462 const char line_separator_chars[] = ";";
463
464 /* Chars that can be used to separate mant from exp in floating point
465 nums. */
466 const char EXP_CHARS[] = "eE";
467
468 /* Chars that mean this number is a floating point constant
469 As in 0f12.456
470 or 0d1.2345e12. */
471 const char FLT_CHARS[] = "fFdDxX";
472
473 /* Tables for lexical analysis. */
474 static char mnemonic_chars[256];
475 static char register_chars[256];
476 static char operand_chars[256];
477 static char identifier_chars[256];
478 static char digit_chars[256];
479
480 /* Lexical macros. */
481 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
482 #define is_operand_char(x) (operand_chars[(unsigned char) x])
483 #define is_register_char(x) (register_chars[(unsigned char) x])
484 #define is_space_char(x) ((x) == ' ')
485 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
486 #define is_digit_char(x) (digit_chars[(unsigned char) x])
487
488 /* All non-digit non-letter characters that may occur in an operand. */
489 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
490
491 /* md_assemble() always leaves the strings it's passed unaltered. To
492 effect this we maintain a stack of saved characters that we've smashed
493 with '\0's (indicating end of strings for various sub-fields of the
494 assembler instruction). */
495 static char save_stack[32];
496 static char *save_stack_p;
497 #define END_STRING_AND_SAVE(s) \
498 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
499 #define RESTORE_END_STRING(s) \
500 do { *(s) = *--save_stack_p; } while (0)
501
502 /* The instruction we're assembling. */
503 static i386_insn i;
504
505 /* Possible templates for current insn. */
506 static const templates *current_templates;
507
508 /* Per instruction expressionS buffers: max displacements & immediates. */
509 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
510 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
511
512 /* Current operand we are working on. */
513 static int this_operand = -1;
514
515 /* We support four different modes. FLAG_CODE variable is used to distinguish
516 these. */
517
518 enum flag_code {
519 CODE_32BIT,
520 CODE_16BIT,
521 CODE_64BIT };
522
523 static enum flag_code flag_code;
524 static unsigned int object_64bit;
525 static unsigned int disallow_64bit_reloc;
526 static int use_rela_relocations = 0;
527
528 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
529 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
530 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
531
532 /* The ELF ABI to use. */
533 enum x86_elf_abi
534 {
535 I386_ABI,
536 X86_64_ABI,
537 X86_64_X32_ABI
538 };
539
540 static enum x86_elf_abi x86_elf_abi = I386_ABI;
541 #endif
542
543 #if defined (TE_PE) || defined (TE_PEP)
544 /* Use big object file format. */
545 static int use_big_obj = 0;
546 #endif
547
548 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
549 /* 1 if generating code for a shared library. */
550 static int shared = 0;
551 #endif
552
553 /* 1 for intel syntax,
554 0 if att syntax. */
555 static int intel_syntax = 0;
556
557 /* 1 for Intel64 ISA,
558 0 if AMD64 ISA. */
559 static int intel64;
560
561 /* 1 for intel mnemonic,
562 0 if att mnemonic. */
563 static int intel_mnemonic = !SYSV386_COMPAT;
564
565 /* 1 if support old (<= 2.8.1) versions of gcc. */
566 static int old_gcc = OLDGCC_COMPAT;
567
568 /* 1 if pseudo registers are permitted. */
569 static int allow_pseudo_reg = 0;
570
571 /* 1 if register prefix % not required. */
572 static int allow_naked_reg = 0;
573
574 /* 1 if the assembler should add BND prefix for all control-transferring
575 instructions supporting it, even if this prefix wasn't specified
576 explicitly. */
577 static int add_bnd_prefix = 0;
578
579 /* 1 if pseudo index register, eiz/riz, is allowed . */
580 static int allow_index_reg = 0;
581
582 /* 1 if the assembler should ignore LOCK prefix, even if it was
583 specified explicitly. */
584 static int omit_lock_prefix = 0;
585
586 /* 1 if the assembler should encode lfence, mfence, and sfence as
587 "lock addl $0, (%{re}sp)". */
588 static int avoid_fence = 0;
589
590 /* 1 if the assembler should generate relax relocations. */
591
592 static int generate_relax_relocations
593 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
594
595 static enum check_kind
596 {
597 check_none = 0,
598 check_warning,
599 check_error
600 }
601 sse_check, operand_check = check_warning;
602
603 /* Register prefix used for error message. */
604 static const char *register_prefix = "%";
605
606 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
607 leave, push, and pop instructions so that gcc has the same stack
608 frame as in 32 bit mode. */
609 static char stackop_size = '\0';
610
611 /* Non-zero to optimize code alignment. */
612 int optimize_align_code = 1;
613
614 /* Non-zero to quieten some warnings. */
615 static int quiet_warnings = 0;
616
617 /* CPU name. */
618 static const char *cpu_arch_name = NULL;
619 static char *cpu_sub_arch_name = NULL;
620
621 /* CPU feature flags. */
622 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
623
624 /* If we have selected a cpu we are generating instructions for. */
625 static int cpu_arch_tune_set = 0;
626
627 /* Cpu we are generating instructions for. */
628 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
629
630 /* CPU feature flags of cpu we are generating instructions for. */
631 static i386_cpu_flags cpu_arch_tune_flags;
632
633 /* CPU instruction set architecture used. */
634 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
635
636 /* CPU feature flags of instruction set architecture used. */
637 i386_cpu_flags cpu_arch_isa_flags;
638
639 /* If set, conditional jumps are not automatically promoted to handle
640 larger than a byte offset. */
641 static unsigned int no_cond_jump_promotion = 0;
642
643 /* Encode SSE instructions with VEX prefix. */
644 static unsigned int sse2avx;
645
646 /* Encode scalar AVX instructions with specific vector length. */
647 static enum
648 {
649 vex128 = 0,
650 vex256
651 } avxscalar;
652
653 /* Encode scalar EVEX LIG instructions with specific vector length. */
654 static enum
655 {
656 evexl128 = 0,
657 evexl256,
658 evexl512
659 } evexlig;
660
661 /* Encode EVEX WIG instructions with specific evex.w. */
662 static enum
663 {
664 evexw0 = 0,
665 evexw1
666 } evexwig;
667
668 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
669 static enum rc_type evexrcig = rne;
670
671 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
672 static symbolS *GOT_symbol;
673
674 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
675 unsigned int x86_dwarf2_return_column;
676
677 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
678 int x86_cie_data_alignment;
679
680 /* Interface to relax_segment.
681 There are 3 major relax states for 386 jump insns because the
682 different types of jumps add different sizes to frags when we're
683 figuring out what sort of jump to choose to reach a given label. */
684
685 /* Types. */
686 #define UNCOND_JUMP 0
687 #define COND_JUMP 1
688 #define COND_JUMP86 2
689
690 /* Sizes. */
691 #define CODE16 1
692 #define SMALL 0
693 #define SMALL16 (SMALL | CODE16)
694 #define BIG 2
695 #define BIG16 (BIG | CODE16)
696
697 #ifndef INLINE
698 #ifdef __GNUC__
699 #define INLINE __inline__
700 #else
701 #define INLINE
702 #endif
703 #endif
704
705 #define ENCODE_RELAX_STATE(type, size) \
706 ((relax_substateT) (((type) << 2) | (size)))
707 #define TYPE_FROM_RELAX_STATE(s) \
708 ((s) >> 2)
709 #define DISP_SIZE_FROM_RELAX_STATE(s) \
710 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
711
712 /* This table is used by relax_frag to promote short jumps to long
713 ones where necessary. SMALL (short) jumps may be promoted to BIG
714 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
715 don't allow a short jump in a 32 bit code segment to be promoted to
716 a 16 bit offset jump because it's slower (requires data size
717 prefix), and doesn't work, unless the destination is in the bottom
718 64k of the code segment (The top 16 bits of eip are zeroed). */
719
720 const relax_typeS md_relax_table[] =
721 {
722 /* The fields are:
723 1) most positive reach of this state,
724 2) most negative reach of this state,
725 3) how many bytes this mode will have in the variable part of the frag
726 4) which index into the table to try if we can't fit into this one. */
727
728 /* UNCOND_JUMP states. */
729 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
730 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
731 /* dword jmp adds 4 bytes to frag:
732 0 extra opcode bytes, 4 displacement bytes. */
733 {0, 0, 4, 0},
734 /* word jmp adds 2 byte2 to frag:
735 0 extra opcode bytes, 2 displacement bytes. */
736 {0, 0, 2, 0},
737
738 /* COND_JUMP states. */
739 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
740 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
741 /* dword conditionals adds 5 bytes to frag:
742 1 extra opcode byte, 4 displacement bytes. */
743 {0, 0, 5, 0},
744 /* word conditionals add 3 bytes to frag:
745 1 extra opcode byte, 2 displacement bytes. */
746 {0, 0, 3, 0},
747
748 /* COND_JUMP86 states. */
749 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
750 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
751 /* dword conditionals adds 5 bytes to frag:
752 1 extra opcode byte, 4 displacement bytes. */
753 {0, 0, 5, 0},
754 /* word conditionals add 4 bytes to frag:
755 1 displacement byte and a 3 byte long branch insn. */
756 {0, 0, 4, 0}
757 };
758
759 static const arch_entry cpu_arch[] =
760 {
761 /* Do not replace the first two entries - i386_target_format()
762 relies on them being there in this order. */
763 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
764 CPU_GENERIC32_FLAGS, 0 },
765 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
766 CPU_GENERIC64_FLAGS, 0 },
767 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
768 CPU_NONE_FLAGS, 0 },
769 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
770 CPU_I186_FLAGS, 0 },
771 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
772 CPU_I286_FLAGS, 0 },
773 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
774 CPU_I386_FLAGS, 0 },
775 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
776 CPU_I486_FLAGS, 0 },
777 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
778 CPU_I586_FLAGS, 0 },
779 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
780 CPU_I686_FLAGS, 0 },
781 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
782 CPU_I586_FLAGS, 0 },
783 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
784 CPU_PENTIUMPRO_FLAGS, 0 },
785 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
786 CPU_P2_FLAGS, 0 },
787 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
788 CPU_P3_FLAGS, 0 },
789 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
790 CPU_P4_FLAGS, 0 },
791 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
792 CPU_CORE_FLAGS, 0 },
793 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
794 CPU_NOCONA_FLAGS, 0 },
795 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
796 CPU_CORE_FLAGS, 1 },
797 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
798 CPU_CORE_FLAGS, 0 },
799 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
800 CPU_CORE2_FLAGS, 1 },
801 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
802 CPU_CORE2_FLAGS, 0 },
803 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
804 CPU_COREI7_FLAGS, 0 },
805 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
806 CPU_L1OM_FLAGS, 0 },
807 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
808 CPU_K1OM_FLAGS, 0 },
809 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
810 CPU_IAMCU_FLAGS, 0 },
811 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
812 CPU_K6_FLAGS, 0 },
813 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
814 CPU_K6_2_FLAGS, 0 },
815 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
816 CPU_ATHLON_FLAGS, 0 },
817 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
818 CPU_K8_FLAGS, 1 },
819 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
820 CPU_K8_FLAGS, 0 },
821 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
822 CPU_K8_FLAGS, 0 },
823 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
824 CPU_AMDFAM10_FLAGS, 0 },
825 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
826 CPU_BDVER1_FLAGS, 0 },
827 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
828 CPU_BDVER2_FLAGS, 0 },
829 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
830 CPU_BDVER3_FLAGS, 0 },
831 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
832 CPU_BDVER4_FLAGS, 0 },
833 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
834 CPU_ZNVER1_FLAGS, 0 },
835 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
836 CPU_BTVER1_FLAGS, 0 },
837 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
838 CPU_BTVER2_FLAGS, 0 },
839 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
840 CPU_8087_FLAGS, 0 },
841 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
842 CPU_287_FLAGS, 0 },
843 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
844 CPU_387_FLAGS, 0 },
845 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
846 CPU_687_FLAGS, 0 },
847 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
848 CPU_MMX_FLAGS, 0 },
849 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
850 CPU_SSE_FLAGS, 0 },
851 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
852 CPU_SSE2_FLAGS, 0 },
853 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
854 CPU_SSE3_FLAGS, 0 },
855 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
856 CPU_SSSE3_FLAGS, 0 },
857 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
858 CPU_SSE4_1_FLAGS, 0 },
859 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
860 CPU_SSE4_2_FLAGS, 0 },
861 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
862 CPU_SSE4_2_FLAGS, 0 },
863 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
864 CPU_AVX_FLAGS, 0 },
865 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
866 CPU_AVX2_FLAGS, 0 },
867 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
868 CPU_AVX512F_FLAGS, 0 },
869 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
870 CPU_AVX512CD_FLAGS, 0 },
871 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
872 CPU_AVX512ER_FLAGS, 0 },
873 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
874 CPU_AVX512PF_FLAGS, 0 },
875 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
876 CPU_AVX512DQ_FLAGS, 0 },
877 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
878 CPU_AVX512BW_FLAGS, 0 },
879 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
880 CPU_AVX512VL_FLAGS, 0 },
881 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
882 CPU_VMX_FLAGS, 0 },
883 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
884 CPU_VMFUNC_FLAGS, 0 },
885 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
886 CPU_SMX_FLAGS, 0 },
887 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
888 CPU_XSAVE_FLAGS, 0 },
889 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
890 CPU_XSAVEOPT_FLAGS, 0 },
891 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
892 CPU_XSAVEC_FLAGS, 0 },
893 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
894 CPU_XSAVES_FLAGS, 0 },
895 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
896 CPU_AES_FLAGS, 0 },
897 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
898 CPU_PCLMUL_FLAGS, 0 },
899 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
900 CPU_PCLMUL_FLAGS, 1 },
901 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
902 CPU_FSGSBASE_FLAGS, 0 },
903 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
904 CPU_RDRND_FLAGS, 0 },
905 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
906 CPU_F16C_FLAGS, 0 },
907 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
908 CPU_BMI2_FLAGS, 0 },
909 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
910 CPU_FMA_FLAGS, 0 },
911 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
912 CPU_FMA4_FLAGS, 0 },
913 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
914 CPU_XOP_FLAGS, 0 },
915 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
916 CPU_LWP_FLAGS, 0 },
917 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
918 CPU_MOVBE_FLAGS, 0 },
919 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
920 CPU_CX16_FLAGS, 0 },
921 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
922 CPU_EPT_FLAGS, 0 },
923 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
924 CPU_LZCNT_FLAGS, 0 },
925 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
926 CPU_HLE_FLAGS, 0 },
927 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
928 CPU_RTM_FLAGS, 0 },
929 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
930 CPU_INVPCID_FLAGS, 0 },
931 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
932 CPU_CLFLUSH_FLAGS, 0 },
933 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
934 CPU_NOP_FLAGS, 0 },
935 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
936 CPU_SYSCALL_FLAGS, 0 },
937 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
938 CPU_RDTSCP_FLAGS, 0 },
939 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
940 CPU_3DNOW_FLAGS, 0 },
941 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
942 CPU_3DNOWA_FLAGS, 0 },
943 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
944 CPU_PADLOCK_FLAGS, 0 },
945 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
946 CPU_SVME_FLAGS, 1 },
947 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
948 CPU_SVME_FLAGS, 0 },
949 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
950 CPU_SSE4A_FLAGS, 0 },
951 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
952 CPU_ABM_FLAGS, 0 },
953 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
954 CPU_BMI_FLAGS, 0 },
955 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
956 CPU_TBM_FLAGS, 0 },
957 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
958 CPU_ADX_FLAGS, 0 },
959 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
960 CPU_RDSEED_FLAGS, 0 },
961 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
962 CPU_PRFCHW_FLAGS, 0 },
963 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
964 CPU_SMAP_FLAGS, 0 },
965 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
966 CPU_MPX_FLAGS, 0 },
967 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
968 CPU_SHA_FLAGS, 0 },
969 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
970 CPU_CLFLUSHOPT_FLAGS, 0 },
971 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
972 CPU_PREFETCHWT1_FLAGS, 0 },
973 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
974 CPU_SE1_FLAGS, 0 },
975 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
976 CPU_CLWB_FLAGS, 0 },
977 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
978 CPU_AVX512IFMA_FLAGS, 0 },
979 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
980 CPU_AVX512VBMI_FLAGS, 0 },
981 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
982 CPU_AVX512_4FMAPS_FLAGS, 0 },
983 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
984 CPU_AVX512_4VNNIW_FLAGS, 0 },
985 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
986 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
987 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
988 CPU_AVX512_VBMI2_FLAGS, 0 },
989 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
990 CPU_AVX512_VNNI_FLAGS, 0 },
991 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
992 CPU_AVX512_BITALG_FLAGS, 0 },
993 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
994 CPU_CLZERO_FLAGS, 0 },
995 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
996 CPU_MWAITX_FLAGS, 0 },
997 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
998 CPU_OSPKE_FLAGS, 0 },
999 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1000 CPU_RDPID_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1002 CPU_PTWRITE_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1004 CPU_IBT_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1006 CPU_SHSTK_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1008 CPU_GFNI_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1010 CPU_VAES_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1012 CPU_VPCLMULQDQ_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1014 CPU_WBNOINVD_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1016 CPU_PCONFIG_FLAGS, 0 },
1017 };
1018
1019 static const noarch_entry cpu_noarch[] =
1020 {
1021 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1022 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1023 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1024 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1025 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1026 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1027 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1028 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1029 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1030 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1031 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1032 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1033 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1034 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1035 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1036 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1037 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1038 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1039 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1040 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1041 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1042 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1043 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1044 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1045 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1046 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1047 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1048 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1049 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1050 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1051 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1052 };
1053
1054 #ifdef I386COFF
1055 /* Like s_lcomm_internal in gas/read.c but the alignment string
1056 is allowed to be optional. */
1057
1058 static symbolS *
1059 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1060 {
1061 addressT align = 0;
1062
1063 SKIP_WHITESPACE ();
1064
1065 if (needs_align
1066 && *input_line_pointer == ',')
1067 {
1068 align = parse_align (needs_align - 1);
1069
1070 if (align == (addressT) -1)
1071 return NULL;
1072 }
1073 else
1074 {
1075 if (size >= 8)
1076 align = 3;
1077 else if (size >= 4)
1078 align = 2;
1079 else if (size >= 2)
1080 align = 1;
1081 else
1082 align = 0;
1083 }
1084
1085 bss_alloc (symbolP, size, align);
1086 return symbolP;
1087 }
1088
1089 static void
1090 pe_lcomm (int needs_align)
1091 {
1092 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1093 }
1094 #endif
1095
1096 const pseudo_typeS md_pseudo_table[] =
1097 {
1098 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1099 {"align", s_align_bytes, 0},
1100 #else
1101 {"align", s_align_ptwo, 0},
1102 #endif
1103 {"arch", set_cpu_arch, 0},
1104 #ifndef I386COFF
1105 {"bss", s_bss, 0},
1106 #else
1107 {"lcomm", pe_lcomm, 1},
1108 #endif
1109 {"ffloat", float_cons, 'f'},
1110 {"dfloat", float_cons, 'd'},
1111 {"tfloat", float_cons, 'x'},
1112 {"value", cons, 2},
1113 {"slong", signed_cons, 4},
1114 {"noopt", s_ignore, 0},
1115 {"optim", s_ignore, 0},
1116 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1117 {"code16", set_code_flag, CODE_16BIT},
1118 {"code32", set_code_flag, CODE_32BIT},
1119 #ifdef BFD64
1120 {"code64", set_code_flag, CODE_64BIT},
1121 #endif
1122 {"intel_syntax", set_intel_syntax, 1},
1123 {"att_syntax", set_intel_syntax, 0},
1124 {"intel_mnemonic", set_intel_mnemonic, 1},
1125 {"att_mnemonic", set_intel_mnemonic, 0},
1126 {"allow_index_reg", set_allow_index_reg, 1},
1127 {"disallow_index_reg", set_allow_index_reg, 0},
1128 {"sse_check", set_check, 0},
1129 {"operand_check", set_check, 1},
1130 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1131 {"largecomm", handle_large_common, 0},
1132 #else
1133 {"file", dwarf2_directive_file, 0},
1134 {"loc", dwarf2_directive_loc, 0},
1135 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1136 #endif
1137 #ifdef TE_PE
1138 {"secrel32", pe_directive_secrel, 0},
1139 #endif
1140 {0, 0, 0}
1141 };
1142
1143 /* For interface with expression (). */
1144 extern char *input_line_pointer;
1145
1146 /* Hash table for instruction mnemonic lookup. */
1147 static struct hash_control *op_hash;
1148
1149 /* Hash table for register lookup. */
1150 static struct hash_control *reg_hash;
1151 \f
1152 /* Various efficient no-op patterns for aligning code labels.
1153 Note: Don't try to assemble the instructions in the comments.
1154 0L and 0w are not legal. */
1155 static const unsigned char f32_1[] =
1156 {0x90}; /* nop */
1157 static const unsigned char f32_2[] =
1158 {0x66,0x90}; /* xchg %ax,%ax */
1159 static const unsigned char f32_3[] =
1160 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1161 static const unsigned char f32_4[] =
1162 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1163 static const unsigned char f32_5[] =
1164 {0x90, /* nop */
1165 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1166 static const unsigned char f32_6[] =
1167 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1168 static const unsigned char f32_7[] =
1169 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1170 static const unsigned char f32_8[] =
1171 {0x90, /* nop */
1172 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1173 static const unsigned char f32_9[] =
1174 {0x89,0xf6, /* movl %esi,%esi */
1175 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1176 static const unsigned char f32_10[] =
1177 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1178 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1179 static const unsigned char f32_11[] =
1180 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1181 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1182 static const unsigned char f32_12[] =
1183 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1184 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1185 static const unsigned char f32_13[] =
1186 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1187 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1188 static const unsigned char f32_14[] =
1189 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1190 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1191 static const unsigned char f16_3[] =
1192 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1193 static const unsigned char f16_4[] =
1194 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1195 static const unsigned char f16_5[] =
1196 {0x90, /* nop */
1197 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1198 static const unsigned char f16_6[] =
1199 {0x89,0xf6, /* mov %si,%si */
1200 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1201 static const unsigned char f16_7[] =
1202 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1203 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1204 static const unsigned char f16_8[] =
1205 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1206 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1207 static const unsigned char jump_31[] =
1208 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1209 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1210 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1211 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1212 /* 32-bit NOPs patterns. */
1213 static const unsigned char *const f32_patt[] = {
1214 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1215 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1216 };
1217 /* 16-bit NOPs patterns. */
1218 static const unsigned char *const f16_patt[] = {
1219 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1220 };
1221 /* nopl (%[re]ax) */
1222 static const unsigned char alt_3[] =
1223 {0x0f,0x1f,0x00};
1224 /* nopl 0(%[re]ax) */
1225 static const unsigned char alt_4[] =
1226 {0x0f,0x1f,0x40,0x00};
1227 /* nopl 0(%[re]ax,%[re]ax,1) */
1228 static const unsigned char alt_5[] =
1229 {0x0f,0x1f,0x44,0x00,0x00};
1230 /* nopw 0(%[re]ax,%[re]ax,1) */
1231 static const unsigned char alt_6[] =
1232 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1233 /* nopl 0L(%[re]ax) */
1234 static const unsigned char alt_7[] =
1235 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1236 /* nopl 0L(%[re]ax,%[re]ax,1) */
1237 static const unsigned char alt_8[] =
1238 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1239 /* nopw 0L(%[re]ax,%[re]ax,1) */
1240 static const unsigned char alt_9[] =
1241 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1242 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1243 static const unsigned char alt_10[] =
1244 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1245 /* 32-bit and 64-bit NOPs patterns. */
1246 static const unsigned char *const alt_patt[] = {
1247 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1248 alt_9, alt_10
1249 };
1250 /* 64-bit only: nopw %cs:0L(%eax,%eax,1) */
1251 static const unsigned char alt64_11[] =
1252 {0x67,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1253 /* 64-bit NOPs patterns. */
1254 static const unsigned char *const alt64_patt[] = {
1255 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1256 alt_9, alt_10, alt64_11
1257 };
1258
1259 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1260 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1261
1262 static void
1263 i386_output_nops (char *where, const unsigned char *const *patt,
1264 int count, int max_single_nop_size)
1265
1266 {
1267 while (count > max_single_nop_size)
1268 {
1269 count -= max_single_nop_size;
1270 memcpy (where + count, patt[max_single_nop_size - 1],
1271 max_single_nop_size);
1272 }
1273
1274 if (count)
1275 memcpy (where, patt[count - 1], count);
1276 }
1277
1278
1279 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1280 single NOP instruction LIMIT. */
1281
1282 void
1283 i386_generate_nops (fragS *f, char *where, offsetT count, int limit)
1284 {
1285 /* Output NOPs for .nop directive. */
1286 int max_single_nop_size;
1287 const unsigned char *const *patt;
1288
1289 if (flag_code == CODE_16BIT)
1290 {
1291 patt = f16_patt;
1292 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1293 }
1294 else if (flag_code == CODE_64BIT)
1295 {
1296 patt = alt64_patt;
1297 max_single_nop_size = sizeof (alt64_patt) / sizeof (alt64_patt[0]);
1298 }
1299 else
1300 {
1301 patt = alt_patt;
1302 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1303 }
1304 if (limit == 0)
1305 limit = max_single_nop_size;
1306 else if (limit > max_single_nop_size)
1307 {
1308 as_bad_where (f->fr_file, f->fr_line,
1309 _("invalide single nop size: %d (expect within [0, %d])"),
1310 limit, max_single_nop_size);
1311 return;
1312 }
1313
1314 i386_output_nops (where, patt, count, limit);
1315 }
1316
1317 void
1318 i386_align_code (fragS *fragP, int count)
1319 {
1320 /* Only align for at least a positive non-zero boundary. */
1321 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1322 return;
1323
1324 /* We need to decide which NOP sequence to use for 32bit and
1325 64bit. When -mtune= is used:
1326
1327 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1328 PROCESSOR_GENERIC32, f32_patt will be used.
1329 2. For the rest, alt_patt will be used.
1330
1331 When -mtune= isn't used, alt_patt will be used if
1332 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1333 be used.
1334
1335 When -march= or .arch is used, we can't use anything beyond
1336 cpu_arch_isa_flags. */
1337
1338 if (flag_code == CODE_16BIT)
1339 {
1340 if (count > 8)
1341 {
1342 memcpy (fragP->fr_literal + fragP->fr_fix,
1343 jump_31, count);
1344 /* Adjust jump offset. */
1345 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1346 }
1347 else
1348 memcpy (fragP->fr_literal + fragP->fr_fix,
1349 f16_patt[count - 1], count);
1350 }
1351 else
1352 {
1353 const unsigned char *const *patt = NULL;
1354
1355 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1356 {
1357 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1358 switch (cpu_arch_tune)
1359 {
1360 case PROCESSOR_UNKNOWN:
1361 /* We use cpu_arch_isa_flags to check if we SHOULD
1362 optimize with nops. */
1363 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1364 patt = alt_patt;
1365 else
1366 patt = f32_patt;
1367 break;
1368 case PROCESSOR_PENTIUM4:
1369 case PROCESSOR_NOCONA:
1370 case PROCESSOR_CORE:
1371 case PROCESSOR_CORE2:
1372 case PROCESSOR_COREI7:
1373 case PROCESSOR_L1OM:
1374 case PROCESSOR_K1OM:
1375 case PROCESSOR_GENERIC64:
1376 case PROCESSOR_K6:
1377 case PROCESSOR_ATHLON:
1378 case PROCESSOR_K8:
1379 case PROCESSOR_AMDFAM10:
1380 case PROCESSOR_BD:
1381 case PROCESSOR_ZNVER:
1382 case PROCESSOR_BT:
1383 patt = alt_patt;
1384 break;
1385 case PROCESSOR_I386:
1386 case PROCESSOR_I486:
1387 case PROCESSOR_PENTIUM:
1388 case PROCESSOR_PENTIUMPRO:
1389 case PROCESSOR_IAMCU:
1390 case PROCESSOR_GENERIC32:
1391 patt = f32_patt;
1392 break;
1393 }
1394 }
1395 else
1396 {
1397 switch (fragP->tc_frag_data.tune)
1398 {
1399 case PROCESSOR_UNKNOWN:
1400 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1401 PROCESSOR_UNKNOWN. */
1402 abort ();
1403 break;
1404
1405 case PROCESSOR_I386:
1406 case PROCESSOR_I486:
1407 case PROCESSOR_PENTIUM:
1408 case PROCESSOR_IAMCU:
1409 case PROCESSOR_K6:
1410 case PROCESSOR_ATHLON:
1411 case PROCESSOR_K8:
1412 case PROCESSOR_AMDFAM10:
1413 case PROCESSOR_BD:
1414 case PROCESSOR_ZNVER:
1415 case PROCESSOR_BT:
1416 case PROCESSOR_GENERIC32:
1417 /* We use cpu_arch_isa_flags to check if we CAN optimize
1418 with nops. */
1419 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1420 patt = alt_patt;
1421 else
1422 patt = f32_patt;
1423 break;
1424 case PROCESSOR_PENTIUMPRO:
1425 case PROCESSOR_PENTIUM4:
1426 case PROCESSOR_NOCONA:
1427 case PROCESSOR_CORE:
1428 case PROCESSOR_CORE2:
1429 case PROCESSOR_COREI7:
1430 case PROCESSOR_L1OM:
1431 case PROCESSOR_K1OM:
1432 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1433 patt = alt_patt;
1434 else
1435 patt = f32_patt;
1436 break;
1437 case PROCESSOR_GENERIC64:
1438 patt = alt_patt;
1439 break;
1440 }
1441 }
1442
1443 if (patt == f32_patt)
1444 {
1445 /* If the padding is less than 15 bytes, we use the normal
1446 ones. Otherwise, we use a jump instruction and adjust
1447 its offset. */
1448 int limit;
1449
1450 /* For 64bit, the limit is 3 bytes. */
1451 if (flag_code == CODE_64BIT
1452 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1453 limit = 3;
1454 else
1455 limit = 15;
1456 if (count < limit)
1457 memcpy (fragP->fr_literal + fragP->fr_fix,
1458 patt[count - 1], count);
1459 else
1460 {
1461 memcpy (fragP->fr_literal + fragP->fr_fix,
1462 jump_31, count);
1463 /* Adjust jump offset. */
1464 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1465 }
1466 }
1467 else
1468 {
1469 /* Maximum length of an instruction is 10 byte. If the
1470 padding is greater than 10 bytes and we don't use jump,
1471 we have to break it into smaller pieces. */
1472 i386_output_nops (fragP->fr_literal + fragP->fr_fix,
1473 patt, count, 10);
1474 }
1475 }
1476 fragP->fr_var = count;
1477 }
1478
1479 static INLINE int
1480 operand_type_all_zero (const union i386_operand_type *x)
1481 {
1482 switch (ARRAY_SIZE(x->array))
1483 {
1484 case 3:
1485 if (x->array[2])
1486 return 0;
1487 /* Fall through. */
1488 case 2:
1489 if (x->array[1])
1490 return 0;
1491 /* Fall through. */
1492 case 1:
1493 return !x->array[0];
1494 default:
1495 abort ();
1496 }
1497 }
1498
1499 static INLINE void
1500 operand_type_set (union i386_operand_type *x, unsigned int v)
1501 {
1502 switch (ARRAY_SIZE(x->array))
1503 {
1504 case 3:
1505 x->array[2] = v;
1506 /* Fall through. */
1507 case 2:
1508 x->array[1] = v;
1509 /* Fall through. */
1510 case 1:
1511 x->array[0] = v;
1512 /* Fall through. */
1513 break;
1514 default:
1515 abort ();
1516 }
1517 }
1518
1519 static INLINE int
1520 operand_type_equal (const union i386_operand_type *x,
1521 const union i386_operand_type *y)
1522 {
1523 switch (ARRAY_SIZE(x->array))
1524 {
1525 case 3:
1526 if (x->array[2] != y->array[2])
1527 return 0;
1528 /* Fall through. */
1529 case 2:
1530 if (x->array[1] != y->array[1])
1531 return 0;
1532 /* Fall through. */
1533 case 1:
1534 return x->array[0] == y->array[0];
1535 break;
1536 default:
1537 abort ();
1538 }
1539 }
1540
1541 static INLINE int
1542 cpu_flags_all_zero (const union i386_cpu_flags *x)
1543 {
1544 switch (ARRAY_SIZE(x->array))
1545 {
1546 case 4:
1547 if (x->array[3])
1548 return 0;
1549 /* Fall through. */
1550 case 3:
1551 if (x->array[2])
1552 return 0;
1553 /* Fall through. */
1554 case 2:
1555 if (x->array[1])
1556 return 0;
1557 /* Fall through. */
1558 case 1:
1559 return !x->array[0];
1560 default:
1561 abort ();
1562 }
1563 }
1564
1565 static INLINE int
1566 cpu_flags_equal (const union i386_cpu_flags *x,
1567 const union i386_cpu_flags *y)
1568 {
1569 switch (ARRAY_SIZE(x->array))
1570 {
1571 case 4:
1572 if (x->array[3] != y->array[3])
1573 return 0;
1574 /* Fall through. */
1575 case 3:
1576 if (x->array[2] != y->array[2])
1577 return 0;
1578 /* Fall through. */
1579 case 2:
1580 if (x->array[1] != y->array[1])
1581 return 0;
1582 /* Fall through. */
1583 case 1:
1584 return x->array[0] == y->array[0];
1585 break;
1586 default:
1587 abort ();
1588 }
1589 }
1590
1591 static INLINE int
1592 cpu_flags_check_cpu64 (i386_cpu_flags f)
1593 {
1594 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1595 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1596 }
1597
1598 static INLINE i386_cpu_flags
1599 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1600 {
1601 switch (ARRAY_SIZE (x.array))
1602 {
1603 case 4:
1604 x.array [3] &= y.array [3];
1605 /* Fall through. */
1606 case 3:
1607 x.array [2] &= y.array [2];
1608 /* Fall through. */
1609 case 2:
1610 x.array [1] &= y.array [1];
1611 /* Fall through. */
1612 case 1:
1613 x.array [0] &= y.array [0];
1614 break;
1615 default:
1616 abort ();
1617 }
1618 return x;
1619 }
1620
1621 static INLINE i386_cpu_flags
1622 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1623 {
1624 switch (ARRAY_SIZE (x.array))
1625 {
1626 case 4:
1627 x.array [3] |= y.array [3];
1628 /* Fall through. */
1629 case 3:
1630 x.array [2] |= y.array [2];
1631 /* Fall through. */
1632 case 2:
1633 x.array [1] |= y.array [1];
1634 /* Fall through. */
1635 case 1:
1636 x.array [0] |= y.array [0];
1637 break;
1638 default:
1639 abort ();
1640 }
1641 return x;
1642 }
1643
1644 static INLINE i386_cpu_flags
1645 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1646 {
1647 switch (ARRAY_SIZE (x.array))
1648 {
1649 case 4:
1650 x.array [3] &= ~y.array [3];
1651 /* Fall through. */
1652 case 3:
1653 x.array [2] &= ~y.array [2];
1654 /* Fall through. */
1655 case 2:
1656 x.array [1] &= ~y.array [1];
1657 /* Fall through. */
1658 case 1:
1659 x.array [0] &= ~y.array [0];
1660 break;
1661 default:
1662 abort ();
1663 }
1664 return x;
1665 }
1666
1667 #define CPU_FLAGS_ARCH_MATCH 0x1
1668 #define CPU_FLAGS_64BIT_MATCH 0x2
1669 #define CPU_FLAGS_AES_MATCH 0x4
1670 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1671 #define CPU_FLAGS_AVX_MATCH 0x10
1672
1673 #define CPU_FLAGS_32BIT_MATCH \
1674 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1675 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1676 #define CPU_FLAGS_PERFECT_MATCH \
1677 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1678
1679 /* Return CPU flags match bits. */
1680
1681 static int
1682 cpu_flags_match (const insn_template *t)
1683 {
1684 i386_cpu_flags x = t->cpu_flags;
1685 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1686
1687 x.bitfield.cpu64 = 0;
1688 x.bitfield.cpuno64 = 0;
1689
1690 if (cpu_flags_all_zero (&x))
1691 {
1692 /* This instruction is available on all archs. */
1693 match |= CPU_FLAGS_32BIT_MATCH;
1694 }
1695 else
1696 {
1697 /* This instruction is available only on some archs. */
1698 i386_cpu_flags cpu = cpu_arch_flags;
1699
1700 cpu = cpu_flags_and (x, cpu);
1701 if (!cpu_flags_all_zero (&cpu))
1702 {
1703 if (x.bitfield.cpuavx)
1704 {
1705 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1706 if (cpu.bitfield.cpuavx)
1707 {
1708 /* Check SSE2AVX. */
1709 if (!t->opcode_modifier.sse2avx|| sse2avx)
1710 {
1711 match |= (CPU_FLAGS_ARCH_MATCH
1712 | CPU_FLAGS_AVX_MATCH);
1713 /* Check AES. */
1714 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1715 match |= CPU_FLAGS_AES_MATCH;
1716 /* Check PCLMUL. */
1717 if (!x.bitfield.cpupclmul
1718 || cpu.bitfield.cpupclmul)
1719 match |= CPU_FLAGS_PCLMUL_MATCH;
1720 }
1721 }
1722 else
1723 match |= CPU_FLAGS_ARCH_MATCH;
1724 }
1725 else if (x.bitfield.cpuavx512vl)
1726 {
1727 /* Match AVX512VL. */
1728 if (cpu.bitfield.cpuavx512vl)
1729 {
1730 /* Need another match. */
1731 cpu.bitfield.cpuavx512vl = 0;
1732 if (!cpu_flags_all_zero (&cpu))
1733 match |= CPU_FLAGS_32BIT_MATCH;
1734 else
1735 match |= CPU_FLAGS_ARCH_MATCH;
1736 }
1737 else
1738 match |= CPU_FLAGS_ARCH_MATCH;
1739 }
1740 else
1741 match |= CPU_FLAGS_32BIT_MATCH;
1742 }
1743 }
1744 return match;
1745 }
1746
1747 static INLINE i386_operand_type
1748 operand_type_and (i386_operand_type x, i386_operand_type y)
1749 {
1750 switch (ARRAY_SIZE (x.array))
1751 {
1752 case 3:
1753 x.array [2] &= y.array [2];
1754 /* Fall through. */
1755 case 2:
1756 x.array [1] &= y.array [1];
1757 /* Fall through. */
1758 case 1:
1759 x.array [0] &= y.array [0];
1760 break;
1761 default:
1762 abort ();
1763 }
1764 return x;
1765 }
1766
1767 static INLINE i386_operand_type
1768 operand_type_or (i386_operand_type x, i386_operand_type y)
1769 {
1770 switch (ARRAY_SIZE (x.array))
1771 {
1772 case 3:
1773 x.array [2] |= y.array [2];
1774 /* Fall through. */
1775 case 2:
1776 x.array [1] |= y.array [1];
1777 /* Fall through. */
1778 case 1:
1779 x.array [0] |= y.array [0];
1780 break;
1781 default:
1782 abort ();
1783 }
1784 return x;
1785 }
1786
1787 static INLINE i386_operand_type
1788 operand_type_xor (i386_operand_type x, i386_operand_type y)
1789 {
1790 switch (ARRAY_SIZE (x.array))
1791 {
1792 case 3:
1793 x.array [2] ^= y.array [2];
1794 /* Fall through. */
1795 case 2:
1796 x.array [1] ^= y.array [1];
1797 /* Fall through. */
1798 case 1:
1799 x.array [0] ^= y.array [0];
1800 break;
1801 default:
1802 abort ();
1803 }
1804 return x;
1805 }
1806
1807 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1808 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1809 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1810 static const i386_operand_type inoutportreg
1811 = OPERAND_TYPE_INOUTPORTREG;
1812 static const i386_operand_type reg16_inoutportreg
1813 = OPERAND_TYPE_REG16_INOUTPORTREG;
1814 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1815 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1816 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1817 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1818 static const i386_operand_type anydisp
1819 = OPERAND_TYPE_ANYDISP;
1820 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1821 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1822 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1823 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1824 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1825 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1826 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1827 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1828 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1829 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1830 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1831 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1832
1833 enum operand_type
1834 {
1835 reg,
1836 imm,
1837 disp,
1838 anymem
1839 };
1840
1841 static INLINE int
1842 operand_type_check (i386_operand_type t, enum operand_type c)
1843 {
1844 switch (c)
1845 {
1846 case reg:
1847 return t.bitfield.reg;
1848
1849 case imm:
1850 return (t.bitfield.imm8
1851 || t.bitfield.imm8s
1852 || t.bitfield.imm16
1853 || t.bitfield.imm32
1854 || t.bitfield.imm32s
1855 || t.bitfield.imm64);
1856
1857 case disp:
1858 return (t.bitfield.disp8
1859 || t.bitfield.disp16
1860 || t.bitfield.disp32
1861 || t.bitfield.disp32s
1862 || t.bitfield.disp64);
1863
1864 case anymem:
1865 return (t.bitfield.disp8
1866 || t.bitfield.disp16
1867 || t.bitfield.disp32
1868 || t.bitfield.disp32s
1869 || t.bitfield.disp64
1870 || t.bitfield.baseindex);
1871
1872 default:
1873 abort ();
1874 }
1875
1876 return 0;
1877 }
1878
1879 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit on
1880 operand J for instruction template T. */
1881
1882 static INLINE int
1883 match_reg_size (const insn_template *t, unsigned int j)
1884 {
1885 return !((i.types[j].bitfield.byte
1886 && !t->operand_types[j].bitfield.byte)
1887 || (i.types[j].bitfield.word
1888 && !t->operand_types[j].bitfield.word)
1889 || (i.types[j].bitfield.dword
1890 && !t->operand_types[j].bitfield.dword)
1891 || (i.types[j].bitfield.qword
1892 && !t->operand_types[j].bitfield.qword)
1893 || (i.types[j].bitfield.tbyte
1894 && !t->operand_types[j].bitfield.tbyte));
1895 }
1896
1897 /* Return 1 if there is no conflict in SIMD register on
1898 operand J for instruction template T. */
1899
1900 static INLINE int
1901 match_simd_size (const insn_template *t, unsigned int j)
1902 {
1903 return !((i.types[j].bitfield.xmmword
1904 && !t->operand_types[j].bitfield.xmmword)
1905 || (i.types[j].bitfield.ymmword
1906 && !t->operand_types[j].bitfield.ymmword)
1907 || (i.types[j].bitfield.zmmword
1908 && !t->operand_types[j].bitfield.zmmword));
1909 }
1910
1911 /* Return 1 if there is no conflict in any size on operand J for
1912 instruction template T. */
1913
1914 static INLINE int
1915 match_mem_size (const insn_template *t, unsigned int j)
1916 {
1917 return (match_reg_size (t, j)
1918 && !((i.types[j].bitfield.unspecified
1919 && !i.broadcast
1920 && !t->operand_types[j].bitfield.unspecified)
1921 || (i.types[j].bitfield.fword
1922 && !t->operand_types[j].bitfield.fword)
1923 /* For scalar opcode templates to allow register and memory
1924 operands at the same time, some special casing is needed
1925 here. */
1926 || ((t->operand_types[j].bitfield.regsimd
1927 && !t->opcode_modifier.broadcast
1928 && (t->operand_types[j].bitfield.dword
1929 || t->operand_types[j].bitfield.qword))
1930 ? (i.types[j].bitfield.xmmword
1931 || i.types[j].bitfield.ymmword
1932 || i.types[j].bitfield.zmmword)
1933 : !match_simd_size(t, j))));
1934 }
1935
1936 /* Return 1 if there is no size conflict on any operands for
1937 instruction template T. */
1938
1939 static INLINE int
1940 operand_size_match (const insn_template *t)
1941 {
1942 unsigned int j;
1943 int match = 1;
1944
1945 /* Don't check jump instructions. */
1946 if (t->opcode_modifier.jump
1947 || t->opcode_modifier.jumpbyte
1948 || t->opcode_modifier.jumpdword
1949 || t->opcode_modifier.jumpintersegment)
1950 return match;
1951
1952 /* Check memory and accumulator operand size. */
1953 for (j = 0; j < i.operands; j++)
1954 {
1955 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1956 && t->operand_types[j].bitfield.anysize)
1957 continue;
1958
1959 if (t->operand_types[j].bitfield.reg
1960 && !match_reg_size (t, j))
1961 {
1962 match = 0;
1963 break;
1964 }
1965
1966 if (t->operand_types[j].bitfield.regsimd
1967 && !match_simd_size (t, j))
1968 {
1969 match = 0;
1970 break;
1971 }
1972
1973 if (t->operand_types[j].bitfield.acc
1974 && (!match_reg_size (t, j) || !match_simd_size (t, j)))
1975 {
1976 match = 0;
1977 break;
1978 }
1979
1980 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1981 {
1982 match = 0;
1983 break;
1984 }
1985 }
1986
1987 if (match)
1988 return match;
1989 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1990 {
1991 mismatch:
1992 i.error = operand_size_mismatch;
1993 return 0;
1994 }
1995
1996 /* Check reverse. */
1997 gas_assert (i.operands == 2);
1998
1999 match = 1;
2000 for (j = 0; j < 2; j++)
2001 {
2002 if ((t->operand_types[j].bitfield.reg
2003 || t->operand_types[j].bitfield.acc)
2004 && !match_reg_size (t, j ? 0 : 1))
2005 goto mismatch;
2006
2007 if (i.types[j].bitfield.mem
2008 && !match_mem_size (t, j ? 0 : 1))
2009 goto mismatch;
2010 }
2011
2012 return match;
2013 }
2014
2015 static INLINE int
2016 operand_type_match (i386_operand_type overlap,
2017 i386_operand_type given)
2018 {
2019 i386_operand_type temp = overlap;
2020
2021 temp.bitfield.jumpabsolute = 0;
2022 temp.bitfield.unspecified = 0;
2023 temp.bitfield.byte = 0;
2024 temp.bitfield.word = 0;
2025 temp.bitfield.dword = 0;
2026 temp.bitfield.fword = 0;
2027 temp.bitfield.qword = 0;
2028 temp.bitfield.tbyte = 0;
2029 temp.bitfield.xmmword = 0;
2030 temp.bitfield.ymmword = 0;
2031 temp.bitfield.zmmword = 0;
2032 if (operand_type_all_zero (&temp))
2033 goto mismatch;
2034
2035 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2036 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2037 return 1;
2038
2039 mismatch:
2040 i.error = operand_type_mismatch;
2041 return 0;
2042 }
2043
2044 /* If given types g0 and g1 are registers they must be of the same type
2045 unless the expected operand type register overlap is null.
2046 Memory operand size of certain SIMD instructions is also being checked
2047 here. */
2048
2049 static INLINE int
2050 operand_type_register_match (i386_operand_type g0,
2051 i386_operand_type t0,
2052 i386_operand_type g1,
2053 i386_operand_type t1)
2054 {
2055 if (!g0.bitfield.reg
2056 && !g0.bitfield.regsimd
2057 && (!operand_type_check (g0, anymem)
2058 || g0.bitfield.unspecified
2059 || !t0.bitfield.regsimd))
2060 return 1;
2061
2062 if (!g1.bitfield.reg
2063 && !g1.bitfield.regsimd
2064 && (!operand_type_check (g1, anymem)
2065 || g1.bitfield.unspecified
2066 || !t1.bitfield.regsimd))
2067 return 1;
2068
2069 if (g0.bitfield.byte == g1.bitfield.byte
2070 && g0.bitfield.word == g1.bitfield.word
2071 && g0.bitfield.dword == g1.bitfield.dword
2072 && g0.bitfield.qword == g1.bitfield.qword
2073 && g0.bitfield.xmmword == g1.bitfield.xmmword
2074 && g0.bitfield.ymmword == g1.bitfield.ymmword
2075 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2076 return 1;
2077
2078 if (!(t0.bitfield.byte & t1.bitfield.byte)
2079 && !(t0.bitfield.word & t1.bitfield.word)
2080 && !(t0.bitfield.dword & t1.bitfield.dword)
2081 && !(t0.bitfield.qword & t1.bitfield.qword)
2082 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2083 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2084 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2085 return 1;
2086
2087 i.error = register_type_mismatch;
2088
2089 return 0;
2090 }
2091
2092 static INLINE unsigned int
2093 register_number (const reg_entry *r)
2094 {
2095 unsigned int nr = r->reg_num;
2096
2097 if (r->reg_flags & RegRex)
2098 nr += 8;
2099
2100 if (r->reg_flags & RegVRex)
2101 nr += 16;
2102
2103 return nr;
2104 }
2105
2106 static INLINE unsigned int
2107 mode_from_disp_size (i386_operand_type t)
2108 {
2109 if (t.bitfield.disp8)
2110 return 1;
2111 else if (t.bitfield.disp16
2112 || t.bitfield.disp32
2113 || t.bitfield.disp32s)
2114 return 2;
2115 else
2116 return 0;
2117 }
2118
2119 static INLINE int
2120 fits_in_signed_byte (addressT num)
2121 {
2122 return num + 0x80 <= 0xff;
2123 }
2124
2125 static INLINE int
2126 fits_in_unsigned_byte (addressT num)
2127 {
2128 return num <= 0xff;
2129 }
2130
2131 static INLINE int
2132 fits_in_unsigned_word (addressT num)
2133 {
2134 return num <= 0xffff;
2135 }
2136
2137 static INLINE int
2138 fits_in_signed_word (addressT num)
2139 {
2140 return num + 0x8000 <= 0xffff;
2141 }
2142
2143 static INLINE int
2144 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2145 {
2146 #ifndef BFD64
2147 return 1;
2148 #else
2149 return num + 0x80000000 <= 0xffffffff;
2150 #endif
2151 } /* fits_in_signed_long() */
2152
2153 static INLINE int
2154 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2155 {
2156 #ifndef BFD64
2157 return 1;
2158 #else
2159 return num <= 0xffffffff;
2160 #endif
2161 } /* fits_in_unsigned_long() */
2162
2163 static INLINE int
2164 fits_in_disp8 (offsetT num)
2165 {
2166 int shift = i.memshift;
2167 unsigned int mask;
2168
2169 if (shift == -1)
2170 abort ();
2171
2172 mask = (1 << shift) - 1;
2173
2174 /* Return 0 if NUM isn't properly aligned. */
2175 if ((num & mask))
2176 return 0;
2177
2178 /* Check if NUM will fit in 8bit after shift. */
2179 return fits_in_signed_byte (num >> shift);
2180 }
2181
2182 static INLINE int
2183 fits_in_imm4 (offsetT num)
2184 {
2185 return (num & 0xf) == num;
2186 }
2187
2188 static i386_operand_type
2189 smallest_imm_type (offsetT num)
2190 {
2191 i386_operand_type t;
2192
2193 operand_type_set (&t, 0);
2194 t.bitfield.imm64 = 1;
2195
2196 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2197 {
2198 /* This code is disabled on the 486 because all the Imm1 forms
2199 in the opcode table are slower on the i486. They're the
2200 versions with the implicitly specified single-position
2201 displacement, which has another syntax if you really want to
2202 use that form. */
2203 t.bitfield.imm1 = 1;
2204 t.bitfield.imm8 = 1;
2205 t.bitfield.imm8s = 1;
2206 t.bitfield.imm16 = 1;
2207 t.bitfield.imm32 = 1;
2208 t.bitfield.imm32s = 1;
2209 }
2210 else if (fits_in_signed_byte (num))
2211 {
2212 t.bitfield.imm8 = 1;
2213 t.bitfield.imm8s = 1;
2214 t.bitfield.imm16 = 1;
2215 t.bitfield.imm32 = 1;
2216 t.bitfield.imm32s = 1;
2217 }
2218 else if (fits_in_unsigned_byte (num))
2219 {
2220 t.bitfield.imm8 = 1;
2221 t.bitfield.imm16 = 1;
2222 t.bitfield.imm32 = 1;
2223 t.bitfield.imm32s = 1;
2224 }
2225 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2226 {
2227 t.bitfield.imm16 = 1;
2228 t.bitfield.imm32 = 1;
2229 t.bitfield.imm32s = 1;
2230 }
2231 else if (fits_in_signed_long (num))
2232 {
2233 t.bitfield.imm32 = 1;
2234 t.bitfield.imm32s = 1;
2235 }
2236 else if (fits_in_unsigned_long (num))
2237 t.bitfield.imm32 = 1;
2238
2239 return t;
2240 }
2241
2242 static offsetT
2243 offset_in_range (offsetT val, int size)
2244 {
2245 addressT mask;
2246
2247 switch (size)
2248 {
2249 case 1: mask = ((addressT) 1 << 8) - 1; break;
2250 case 2: mask = ((addressT) 1 << 16) - 1; break;
2251 case 4: mask = ((addressT) 2 << 31) - 1; break;
2252 #ifdef BFD64
2253 case 8: mask = ((addressT) 2 << 63) - 1; break;
2254 #endif
2255 default: abort ();
2256 }
2257
2258 #ifdef BFD64
2259 /* If BFD64, sign extend val for 32bit address mode. */
2260 if (flag_code != CODE_64BIT
2261 || i.prefix[ADDR_PREFIX])
2262 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2263 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2264 #endif
2265
2266 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2267 {
2268 char buf1[40], buf2[40];
2269
2270 sprint_value (buf1, val);
2271 sprint_value (buf2, val & mask);
2272 as_warn (_("%s shortened to %s"), buf1, buf2);
2273 }
2274 return val & mask;
2275 }
2276
2277 enum PREFIX_GROUP
2278 {
2279 PREFIX_EXIST = 0,
2280 PREFIX_LOCK,
2281 PREFIX_REP,
2282 PREFIX_DS,
2283 PREFIX_OTHER
2284 };
2285
2286 /* Returns
2287 a. PREFIX_EXIST if attempting to add a prefix where one from the
2288 same class already exists.
2289 b. PREFIX_LOCK if lock prefix is added.
2290 c. PREFIX_REP if rep/repne prefix is added.
2291 d. PREFIX_DS if ds prefix is added.
2292 e. PREFIX_OTHER if other prefix is added.
2293 */
2294
2295 static enum PREFIX_GROUP
2296 add_prefix (unsigned int prefix)
2297 {
2298 enum PREFIX_GROUP ret = PREFIX_OTHER;
2299 unsigned int q;
2300
2301 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2302 && flag_code == CODE_64BIT)
2303 {
2304 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2305 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2306 && (prefix & (REX_R | REX_X | REX_B))))
2307 ret = PREFIX_EXIST;
2308 q = REX_PREFIX;
2309 }
2310 else
2311 {
2312 switch (prefix)
2313 {
2314 default:
2315 abort ();
2316
2317 case DS_PREFIX_OPCODE:
2318 ret = PREFIX_DS;
2319 /* Fall through. */
2320 case CS_PREFIX_OPCODE:
2321 case ES_PREFIX_OPCODE:
2322 case FS_PREFIX_OPCODE:
2323 case GS_PREFIX_OPCODE:
2324 case SS_PREFIX_OPCODE:
2325 q = SEG_PREFIX;
2326 break;
2327
2328 case REPNE_PREFIX_OPCODE:
2329 case REPE_PREFIX_OPCODE:
2330 q = REP_PREFIX;
2331 ret = PREFIX_REP;
2332 break;
2333
2334 case LOCK_PREFIX_OPCODE:
2335 q = LOCK_PREFIX;
2336 ret = PREFIX_LOCK;
2337 break;
2338
2339 case FWAIT_OPCODE:
2340 q = WAIT_PREFIX;
2341 break;
2342
2343 case ADDR_PREFIX_OPCODE:
2344 q = ADDR_PREFIX;
2345 break;
2346
2347 case DATA_PREFIX_OPCODE:
2348 q = DATA_PREFIX;
2349 break;
2350 }
2351 if (i.prefix[q] != 0)
2352 ret = PREFIX_EXIST;
2353 }
2354
2355 if (ret)
2356 {
2357 if (!i.prefix[q])
2358 ++i.prefixes;
2359 i.prefix[q] |= prefix;
2360 }
2361 else
2362 as_bad (_("same type of prefix used twice"));
2363
2364 return ret;
2365 }
2366
2367 static void
2368 update_code_flag (int value, int check)
2369 {
2370 PRINTF_LIKE ((*as_error));
2371
2372 flag_code = (enum flag_code) value;
2373 if (flag_code == CODE_64BIT)
2374 {
2375 cpu_arch_flags.bitfield.cpu64 = 1;
2376 cpu_arch_flags.bitfield.cpuno64 = 0;
2377 }
2378 else
2379 {
2380 cpu_arch_flags.bitfield.cpu64 = 0;
2381 cpu_arch_flags.bitfield.cpuno64 = 1;
2382 }
2383 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2384 {
2385 if (check)
2386 as_error = as_fatal;
2387 else
2388 as_error = as_bad;
2389 (*as_error) (_("64bit mode not supported on `%s'."),
2390 cpu_arch_name ? cpu_arch_name : default_arch);
2391 }
2392 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2393 {
2394 if (check)
2395 as_error = as_fatal;
2396 else
2397 as_error = as_bad;
2398 (*as_error) (_("32bit mode not supported on `%s'."),
2399 cpu_arch_name ? cpu_arch_name : default_arch);
2400 }
2401 stackop_size = '\0';
2402 }
2403
2404 static void
2405 set_code_flag (int value)
2406 {
2407 update_code_flag (value, 0);
2408 }
2409
2410 static void
2411 set_16bit_gcc_code_flag (int new_code_flag)
2412 {
2413 flag_code = (enum flag_code) new_code_flag;
2414 if (flag_code != CODE_16BIT)
2415 abort ();
2416 cpu_arch_flags.bitfield.cpu64 = 0;
2417 cpu_arch_flags.bitfield.cpuno64 = 1;
2418 stackop_size = LONG_MNEM_SUFFIX;
2419 }
2420
2421 static void
2422 set_intel_syntax (int syntax_flag)
2423 {
2424 /* Find out if register prefixing is specified. */
2425 int ask_naked_reg = 0;
2426
2427 SKIP_WHITESPACE ();
2428 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2429 {
2430 char *string;
2431 int e = get_symbol_name (&string);
2432
2433 if (strcmp (string, "prefix") == 0)
2434 ask_naked_reg = 1;
2435 else if (strcmp (string, "noprefix") == 0)
2436 ask_naked_reg = -1;
2437 else
2438 as_bad (_("bad argument to syntax directive."));
2439 (void) restore_line_pointer (e);
2440 }
2441 demand_empty_rest_of_line ();
2442
2443 intel_syntax = syntax_flag;
2444
2445 if (ask_naked_reg == 0)
2446 allow_naked_reg = (intel_syntax
2447 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2448 else
2449 allow_naked_reg = (ask_naked_reg < 0);
2450
2451 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2452
2453 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2454 identifier_chars['$'] = intel_syntax ? '$' : 0;
2455 register_prefix = allow_naked_reg ? "" : "%";
2456 }
2457
2458 static void
2459 set_intel_mnemonic (int mnemonic_flag)
2460 {
2461 intel_mnemonic = mnemonic_flag;
2462 }
2463
2464 static void
2465 set_allow_index_reg (int flag)
2466 {
2467 allow_index_reg = flag;
2468 }
2469
2470 static void
2471 set_check (int what)
2472 {
2473 enum check_kind *kind;
2474 const char *str;
2475
2476 if (what)
2477 {
2478 kind = &operand_check;
2479 str = "operand";
2480 }
2481 else
2482 {
2483 kind = &sse_check;
2484 str = "sse";
2485 }
2486
2487 SKIP_WHITESPACE ();
2488
2489 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2490 {
2491 char *string;
2492 int e = get_symbol_name (&string);
2493
2494 if (strcmp (string, "none") == 0)
2495 *kind = check_none;
2496 else if (strcmp (string, "warning") == 0)
2497 *kind = check_warning;
2498 else if (strcmp (string, "error") == 0)
2499 *kind = check_error;
2500 else
2501 as_bad (_("bad argument to %s_check directive."), str);
2502 (void) restore_line_pointer (e);
2503 }
2504 else
2505 as_bad (_("missing argument for %s_check directive"), str);
2506
2507 demand_empty_rest_of_line ();
2508 }
2509
2510 static void
2511 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2512 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2513 {
2514 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2515 static const char *arch;
2516
2517 /* Intel LIOM is only supported on ELF. */
2518 if (!IS_ELF)
2519 return;
2520
2521 if (!arch)
2522 {
2523 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2524 use default_arch. */
2525 arch = cpu_arch_name;
2526 if (!arch)
2527 arch = default_arch;
2528 }
2529
2530 /* If we are targeting Intel MCU, we must enable it. */
2531 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2532 || new_flag.bitfield.cpuiamcu)
2533 return;
2534
2535 /* If we are targeting Intel L1OM, we must enable it. */
2536 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2537 || new_flag.bitfield.cpul1om)
2538 return;
2539
2540 /* If we are targeting Intel K1OM, we must enable it. */
2541 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2542 || new_flag.bitfield.cpuk1om)
2543 return;
2544
2545 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2546 #endif
2547 }
2548
2549 static void
2550 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2551 {
2552 SKIP_WHITESPACE ();
2553
2554 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2555 {
2556 char *string;
2557 int e = get_symbol_name (&string);
2558 unsigned int j;
2559 i386_cpu_flags flags;
2560
2561 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2562 {
2563 if (strcmp (string, cpu_arch[j].name) == 0)
2564 {
2565 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2566
2567 if (*string != '.')
2568 {
2569 cpu_arch_name = cpu_arch[j].name;
2570 cpu_sub_arch_name = NULL;
2571 cpu_arch_flags = cpu_arch[j].flags;
2572 if (flag_code == CODE_64BIT)
2573 {
2574 cpu_arch_flags.bitfield.cpu64 = 1;
2575 cpu_arch_flags.bitfield.cpuno64 = 0;
2576 }
2577 else
2578 {
2579 cpu_arch_flags.bitfield.cpu64 = 0;
2580 cpu_arch_flags.bitfield.cpuno64 = 1;
2581 }
2582 cpu_arch_isa = cpu_arch[j].type;
2583 cpu_arch_isa_flags = cpu_arch[j].flags;
2584 if (!cpu_arch_tune_set)
2585 {
2586 cpu_arch_tune = cpu_arch_isa;
2587 cpu_arch_tune_flags = cpu_arch_isa_flags;
2588 }
2589 break;
2590 }
2591
2592 flags = cpu_flags_or (cpu_arch_flags,
2593 cpu_arch[j].flags);
2594
2595 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2596 {
2597 if (cpu_sub_arch_name)
2598 {
2599 char *name = cpu_sub_arch_name;
2600 cpu_sub_arch_name = concat (name,
2601 cpu_arch[j].name,
2602 (const char *) NULL);
2603 free (name);
2604 }
2605 else
2606 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2607 cpu_arch_flags = flags;
2608 cpu_arch_isa_flags = flags;
2609 }
2610 (void) restore_line_pointer (e);
2611 demand_empty_rest_of_line ();
2612 return;
2613 }
2614 }
2615
2616 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2617 {
2618 /* Disable an ISA extension. */
2619 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2620 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2621 {
2622 flags = cpu_flags_and_not (cpu_arch_flags,
2623 cpu_noarch[j].flags);
2624 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2625 {
2626 if (cpu_sub_arch_name)
2627 {
2628 char *name = cpu_sub_arch_name;
2629 cpu_sub_arch_name = concat (name, string,
2630 (const char *) NULL);
2631 free (name);
2632 }
2633 else
2634 cpu_sub_arch_name = xstrdup (string);
2635 cpu_arch_flags = flags;
2636 cpu_arch_isa_flags = flags;
2637 }
2638 (void) restore_line_pointer (e);
2639 demand_empty_rest_of_line ();
2640 return;
2641 }
2642
2643 j = ARRAY_SIZE (cpu_arch);
2644 }
2645
2646 if (j >= ARRAY_SIZE (cpu_arch))
2647 as_bad (_("no such architecture: `%s'"), string);
2648
2649 *input_line_pointer = e;
2650 }
2651 else
2652 as_bad (_("missing cpu architecture"));
2653
2654 no_cond_jump_promotion = 0;
2655 if (*input_line_pointer == ','
2656 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2657 {
2658 char *string;
2659 char e;
2660
2661 ++input_line_pointer;
2662 e = get_symbol_name (&string);
2663
2664 if (strcmp (string, "nojumps") == 0)
2665 no_cond_jump_promotion = 1;
2666 else if (strcmp (string, "jumps") == 0)
2667 ;
2668 else
2669 as_bad (_("no such architecture modifier: `%s'"), string);
2670
2671 (void) restore_line_pointer (e);
2672 }
2673
2674 demand_empty_rest_of_line ();
2675 }
2676
2677 enum bfd_architecture
2678 i386_arch (void)
2679 {
2680 if (cpu_arch_isa == PROCESSOR_L1OM)
2681 {
2682 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2683 || flag_code != CODE_64BIT)
2684 as_fatal (_("Intel L1OM is 64bit ELF only"));
2685 return bfd_arch_l1om;
2686 }
2687 else if (cpu_arch_isa == PROCESSOR_K1OM)
2688 {
2689 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2690 || flag_code != CODE_64BIT)
2691 as_fatal (_("Intel K1OM is 64bit ELF only"));
2692 return bfd_arch_k1om;
2693 }
2694 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2695 {
2696 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2697 || flag_code == CODE_64BIT)
2698 as_fatal (_("Intel MCU is 32bit ELF only"));
2699 return bfd_arch_iamcu;
2700 }
2701 else
2702 return bfd_arch_i386;
2703 }
2704
2705 unsigned long
2706 i386_mach (void)
2707 {
2708 if (!strncmp (default_arch, "x86_64", 6))
2709 {
2710 if (cpu_arch_isa == PROCESSOR_L1OM)
2711 {
2712 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2713 || default_arch[6] != '\0')
2714 as_fatal (_("Intel L1OM is 64bit ELF only"));
2715 return bfd_mach_l1om;
2716 }
2717 else if (cpu_arch_isa == PROCESSOR_K1OM)
2718 {
2719 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2720 || default_arch[6] != '\0')
2721 as_fatal (_("Intel K1OM is 64bit ELF only"));
2722 return bfd_mach_k1om;
2723 }
2724 else if (default_arch[6] == '\0')
2725 return bfd_mach_x86_64;
2726 else
2727 return bfd_mach_x64_32;
2728 }
2729 else if (!strcmp (default_arch, "i386")
2730 || !strcmp (default_arch, "iamcu"))
2731 {
2732 if (cpu_arch_isa == PROCESSOR_IAMCU)
2733 {
2734 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2735 as_fatal (_("Intel MCU is 32bit ELF only"));
2736 return bfd_mach_i386_iamcu;
2737 }
2738 else
2739 return bfd_mach_i386_i386;
2740 }
2741 else
2742 as_fatal (_("unknown architecture"));
2743 }
2744 \f
2745 void
2746 md_begin (void)
2747 {
2748 const char *hash_err;
2749
2750 /* Support pseudo prefixes like {disp32}. */
2751 lex_type ['{'] = LEX_BEGIN_NAME;
2752
2753 /* Initialize op_hash hash table. */
2754 op_hash = hash_new ();
2755
2756 {
2757 const insn_template *optab;
2758 templates *core_optab;
2759
2760 /* Setup for loop. */
2761 optab = i386_optab;
2762 core_optab = XNEW (templates);
2763 core_optab->start = optab;
2764
2765 while (1)
2766 {
2767 ++optab;
2768 if (optab->name == NULL
2769 || strcmp (optab->name, (optab - 1)->name) != 0)
2770 {
2771 /* different name --> ship out current template list;
2772 add to hash table; & begin anew. */
2773 core_optab->end = optab;
2774 hash_err = hash_insert (op_hash,
2775 (optab - 1)->name,
2776 (void *) core_optab);
2777 if (hash_err)
2778 {
2779 as_fatal (_("can't hash %s: %s"),
2780 (optab - 1)->name,
2781 hash_err);
2782 }
2783 if (optab->name == NULL)
2784 break;
2785 core_optab = XNEW (templates);
2786 core_optab->start = optab;
2787 }
2788 }
2789 }
2790
2791 /* Initialize reg_hash hash table. */
2792 reg_hash = hash_new ();
2793 {
2794 const reg_entry *regtab;
2795 unsigned int regtab_size = i386_regtab_size;
2796
2797 for (regtab = i386_regtab; regtab_size--; regtab++)
2798 {
2799 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2800 if (hash_err)
2801 as_fatal (_("can't hash %s: %s"),
2802 regtab->reg_name,
2803 hash_err);
2804 }
2805 }
2806
2807 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2808 {
2809 int c;
2810 char *p;
2811
2812 for (c = 0; c < 256; c++)
2813 {
2814 if (ISDIGIT (c))
2815 {
2816 digit_chars[c] = c;
2817 mnemonic_chars[c] = c;
2818 register_chars[c] = c;
2819 operand_chars[c] = c;
2820 }
2821 else if (ISLOWER (c))
2822 {
2823 mnemonic_chars[c] = c;
2824 register_chars[c] = c;
2825 operand_chars[c] = c;
2826 }
2827 else if (ISUPPER (c))
2828 {
2829 mnemonic_chars[c] = TOLOWER (c);
2830 register_chars[c] = mnemonic_chars[c];
2831 operand_chars[c] = c;
2832 }
2833 else if (c == '{' || c == '}')
2834 {
2835 mnemonic_chars[c] = c;
2836 operand_chars[c] = c;
2837 }
2838
2839 if (ISALPHA (c) || ISDIGIT (c))
2840 identifier_chars[c] = c;
2841 else if (c >= 128)
2842 {
2843 identifier_chars[c] = c;
2844 operand_chars[c] = c;
2845 }
2846 }
2847
2848 #ifdef LEX_AT
2849 identifier_chars['@'] = '@';
2850 #endif
2851 #ifdef LEX_QM
2852 identifier_chars['?'] = '?';
2853 operand_chars['?'] = '?';
2854 #endif
2855 digit_chars['-'] = '-';
2856 mnemonic_chars['_'] = '_';
2857 mnemonic_chars['-'] = '-';
2858 mnemonic_chars['.'] = '.';
2859 identifier_chars['_'] = '_';
2860 identifier_chars['.'] = '.';
2861
2862 for (p = operand_special_chars; *p != '\0'; p++)
2863 operand_chars[(unsigned char) *p] = *p;
2864 }
2865
2866 if (flag_code == CODE_64BIT)
2867 {
2868 #if defined (OBJ_COFF) && defined (TE_PE)
2869 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2870 ? 32 : 16);
2871 #else
2872 x86_dwarf2_return_column = 16;
2873 #endif
2874 x86_cie_data_alignment = -8;
2875 }
2876 else
2877 {
2878 x86_dwarf2_return_column = 8;
2879 x86_cie_data_alignment = -4;
2880 }
2881 }
2882
2883 void
2884 i386_print_statistics (FILE *file)
2885 {
2886 hash_print_statistics (file, "i386 opcode", op_hash);
2887 hash_print_statistics (file, "i386 register", reg_hash);
2888 }
2889 \f
2890 #ifdef DEBUG386
2891
2892 /* Debugging routines for md_assemble. */
2893 static void pte (insn_template *);
2894 static void pt (i386_operand_type);
2895 static void pe (expressionS *);
2896 static void ps (symbolS *);
2897
2898 static void
2899 pi (char *line, i386_insn *x)
2900 {
2901 unsigned int j;
2902
2903 fprintf (stdout, "%s: template ", line);
2904 pte (&x->tm);
2905 fprintf (stdout, " address: base %s index %s scale %x\n",
2906 x->base_reg ? x->base_reg->reg_name : "none",
2907 x->index_reg ? x->index_reg->reg_name : "none",
2908 x->log2_scale_factor);
2909 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2910 x->rm.mode, x->rm.reg, x->rm.regmem);
2911 fprintf (stdout, " sib: base %x index %x scale %x\n",
2912 x->sib.base, x->sib.index, x->sib.scale);
2913 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2914 (x->rex & REX_W) != 0,
2915 (x->rex & REX_R) != 0,
2916 (x->rex & REX_X) != 0,
2917 (x->rex & REX_B) != 0);
2918 for (j = 0; j < x->operands; j++)
2919 {
2920 fprintf (stdout, " #%d: ", j + 1);
2921 pt (x->types[j]);
2922 fprintf (stdout, "\n");
2923 if (x->types[j].bitfield.reg
2924 || x->types[j].bitfield.regmmx
2925 || x->types[j].bitfield.regsimd
2926 || x->types[j].bitfield.sreg2
2927 || x->types[j].bitfield.sreg3
2928 || x->types[j].bitfield.control
2929 || x->types[j].bitfield.debug
2930 || x->types[j].bitfield.test)
2931 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2932 if (operand_type_check (x->types[j], imm))
2933 pe (x->op[j].imms);
2934 if (operand_type_check (x->types[j], disp))
2935 pe (x->op[j].disps);
2936 }
2937 }
2938
2939 static void
2940 pte (insn_template *t)
2941 {
2942 unsigned int j;
2943 fprintf (stdout, " %d operands ", t->operands);
2944 fprintf (stdout, "opcode %x ", t->base_opcode);
2945 if (t->extension_opcode != None)
2946 fprintf (stdout, "ext %x ", t->extension_opcode);
2947 if (t->opcode_modifier.d)
2948 fprintf (stdout, "D");
2949 if (t->opcode_modifier.w)
2950 fprintf (stdout, "W");
2951 fprintf (stdout, "\n");
2952 for (j = 0; j < t->operands; j++)
2953 {
2954 fprintf (stdout, " #%d type ", j + 1);
2955 pt (t->operand_types[j]);
2956 fprintf (stdout, "\n");
2957 }
2958 }
2959
2960 static void
2961 pe (expressionS *e)
2962 {
2963 fprintf (stdout, " operation %d\n", e->X_op);
2964 fprintf (stdout, " add_number %ld (%lx)\n",
2965 (long) e->X_add_number, (long) e->X_add_number);
2966 if (e->X_add_symbol)
2967 {
2968 fprintf (stdout, " add_symbol ");
2969 ps (e->X_add_symbol);
2970 fprintf (stdout, "\n");
2971 }
2972 if (e->X_op_symbol)
2973 {
2974 fprintf (stdout, " op_symbol ");
2975 ps (e->X_op_symbol);
2976 fprintf (stdout, "\n");
2977 }
2978 }
2979
2980 static void
2981 ps (symbolS *s)
2982 {
2983 fprintf (stdout, "%s type %s%s",
2984 S_GET_NAME (s),
2985 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2986 segment_name (S_GET_SEGMENT (s)));
2987 }
2988
2989 static struct type_name
2990 {
2991 i386_operand_type mask;
2992 const char *name;
2993 }
2994 const type_names[] =
2995 {
2996 { OPERAND_TYPE_REG8, "r8" },
2997 { OPERAND_TYPE_REG16, "r16" },
2998 { OPERAND_TYPE_REG32, "r32" },
2999 { OPERAND_TYPE_REG64, "r64" },
3000 { OPERAND_TYPE_IMM8, "i8" },
3001 { OPERAND_TYPE_IMM8, "i8s" },
3002 { OPERAND_TYPE_IMM16, "i16" },
3003 { OPERAND_TYPE_IMM32, "i32" },
3004 { OPERAND_TYPE_IMM32S, "i32s" },
3005 { OPERAND_TYPE_IMM64, "i64" },
3006 { OPERAND_TYPE_IMM1, "i1" },
3007 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3008 { OPERAND_TYPE_DISP8, "d8" },
3009 { OPERAND_TYPE_DISP16, "d16" },
3010 { OPERAND_TYPE_DISP32, "d32" },
3011 { OPERAND_TYPE_DISP32S, "d32s" },
3012 { OPERAND_TYPE_DISP64, "d64" },
3013 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3014 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3015 { OPERAND_TYPE_CONTROL, "control reg" },
3016 { OPERAND_TYPE_TEST, "test reg" },
3017 { OPERAND_TYPE_DEBUG, "debug reg" },
3018 { OPERAND_TYPE_FLOATREG, "FReg" },
3019 { OPERAND_TYPE_FLOATACC, "FAcc" },
3020 { OPERAND_TYPE_SREG2, "SReg2" },
3021 { OPERAND_TYPE_SREG3, "SReg3" },
3022 { OPERAND_TYPE_ACC, "Acc" },
3023 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3024 { OPERAND_TYPE_REGMMX, "rMMX" },
3025 { OPERAND_TYPE_REGXMM, "rXMM" },
3026 { OPERAND_TYPE_REGYMM, "rYMM" },
3027 { OPERAND_TYPE_REGZMM, "rZMM" },
3028 { OPERAND_TYPE_REGMASK, "Mask reg" },
3029 { OPERAND_TYPE_ESSEG, "es" },
3030 };
3031
3032 static void
3033 pt (i386_operand_type t)
3034 {
3035 unsigned int j;
3036 i386_operand_type a;
3037
3038 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3039 {
3040 a = operand_type_and (t, type_names[j].mask);
3041 if (!operand_type_all_zero (&a))
3042 fprintf (stdout, "%s, ", type_names[j].name);
3043 }
3044 fflush (stdout);
3045 }
3046
3047 #endif /* DEBUG386 */
3048 \f
3049 static bfd_reloc_code_real_type
3050 reloc (unsigned int size,
3051 int pcrel,
3052 int sign,
3053 bfd_reloc_code_real_type other)
3054 {
3055 if (other != NO_RELOC)
3056 {
3057 reloc_howto_type *rel;
3058
3059 if (size == 8)
3060 switch (other)
3061 {
3062 case BFD_RELOC_X86_64_GOT32:
3063 return BFD_RELOC_X86_64_GOT64;
3064 break;
3065 case BFD_RELOC_X86_64_GOTPLT64:
3066 return BFD_RELOC_X86_64_GOTPLT64;
3067 break;
3068 case BFD_RELOC_X86_64_PLTOFF64:
3069 return BFD_RELOC_X86_64_PLTOFF64;
3070 break;
3071 case BFD_RELOC_X86_64_GOTPC32:
3072 other = BFD_RELOC_X86_64_GOTPC64;
3073 break;
3074 case BFD_RELOC_X86_64_GOTPCREL:
3075 other = BFD_RELOC_X86_64_GOTPCREL64;
3076 break;
3077 case BFD_RELOC_X86_64_TPOFF32:
3078 other = BFD_RELOC_X86_64_TPOFF64;
3079 break;
3080 case BFD_RELOC_X86_64_DTPOFF32:
3081 other = BFD_RELOC_X86_64_DTPOFF64;
3082 break;
3083 default:
3084 break;
3085 }
3086
3087 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3088 if (other == BFD_RELOC_SIZE32)
3089 {
3090 if (size == 8)
3091 other = BFD_RELOC_SIZE64;
3092 if (pcrel)
3093 {
3094 as_bad (_("there are no pc-relative size relocations"));
3095 return NO_RELOC;
3096 }
3097 }
3098 #endif
3099
3100 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3101 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3102 sign = -1;
3103
3104 rel = bfd_reloc_type_lookup (stdoutput, other);
3105 if (!rel)
3106 as_bad (_("unknown relocation (%u)"), other);
3107 else if (size != bfd_get_reloc_size (rel))
3108 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3109 bfd_get_reloc_size (rel),
3110 size);
3111 else if (pcrel && !rel->pc_relative)
3112 as_bad (_("non-pc-relative relocation for pc-relative field"));
3113 else if ((rel->complain_on_overflow == complain_overflow_signed
3114 && !sign)
3115 || (rel->complain_on_overflow == complain_overflow_unsigned
3116 && sign > 0))
3117 as_bad (_("relocated field and relocation type differ in signedness"));
3118 else
3119 return other;
3120 return NO_RELOC;
3121 }
3122
3123 if (pcrel)
3124 {
3125 if (!sign)
3126 as_bad (_("there are no unsigned pc-relative relocations"));
3127 switch (size)
3128 {
3129 case 1: return BFD_RELOC_8_PCREL;
3130 case 2: return BFD_RELOC_16_PCREL;
3131 case 4: return BFD_RELOC_32_PCREL;
3132 case 8: return BFD_RELOC_64_PCREL;
3133 }
3134 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3135 }
3136 else
3137 {
3138 if (sign > 0)
3139 switch (size)
3140 {
3141 case 4: return BFD_RELOC_X86_64_32S;
3142 }
3143 else
3144 switch (size)
3145 {
3146 case 1: return BFD_RELOC_8;
3147 case 2: return BFD_RELOC_16;
3148 case 4: return BFD_RELOC_32;
3149 case 8: return BFD_RELOC_64;
3150 }
3151 as_bad (_("cannot do %s %u byte relocation"),
3152 sign > 0 ? "signed" : "unsigned", size);
3153 }
3154
3155 return NO_RELOC;
3156 }
3157
3158 /* Here we decide which fixups can be adjusted to make them relative to
3159 the beginning of the section instead of the symbol. Basically we need
3160 to make sure that the dynamic relocations are done correctly, so in
3161 some cases we force the original symbol to be used. */
3162
3163 int
3164 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3165 {
3166 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3167 if (!IS_ELF)
3168 return 1;
3169
3170 /* Don't adjust pc-relative references to merge sections in 64-bit
3171 mode. */
3172 if (use_rela_relocations
3173 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3174 && fixP->fx_pcrel)
3175 return 0;
3176
3177 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3178 and changed later by validate_fix. */
3179 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3180 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3181 return 0;
3182
3183 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3184 for size relocations. */
3185 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3186 || fixP->fx_r_type == BFD_RELOC_SIZE64
3187 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3188 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3189 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3190 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3191 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3192 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3193 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3194 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3195 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3196 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3197 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3198 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3199 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3200 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3201 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3202 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3203 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3204 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3205 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3206 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3207 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3208 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3209 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3210 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3211 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3212 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3213 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3214 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3215 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3216 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3217 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3218 return 0;
3219 #endif
3220 return 1;
3221 }
3222
3223 static int
3224 intel_float_operand (const char *mnemonic)
3225 {
3226 /* Note that the value returned is meaningful only for opcodes with (memory)
3227 operands, hence the code here is free to improperly handle opcodes that
3228 have no operands (for better performance and smaller code). */
3229
3230 if (mnemonic[0] != 'f')
3231 return 0; /* non-math */
3232
3233 switch (mnemonic[1])
3234 {
3235 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3236 the fs segment override prefix not currently handled because no
3237 call path can make opcodes without operands get here */
3238 case 'i':
3239 return 2 /* integer op */;
3240 case 'l':
3241 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3242 return 3; /* fldcw/fldenv */
3243 break;
3244 case 'n':
3245 if (mnemonic[2] != 'o' /* fnop */)
3246 return 3; /* non-waiting control op */
3247 break;
3248 case 'r':
3249 if (mnemonic[2] == 's')
3250 return 3; /* frstor/frstpm */
3251 break;
3252 case 's':
3253 if (mnemonic[2] == 'a')
3254 return 3; /* fsave */
3255 if (mnemonic[2] == 't')
3256 {
3257 switch (mnemonic[3])
3258 {
3259 case 'c': /* fstcw */
3260 case 'd': /* fstdw */
3261 case 'e': /* fstenv */
3262 case 's': /* fsts[gw] */
3263 return 3;
3264 }
3265 }
3266 break;
3267 case 'x':
3268 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3269 return 0; /* fxsave/fxrstor are not really math ops */
3270 break;
3271 }
3272
3273 return 1;
3274 }
3275
3276 /* Build the VEX prefix. */
3277
3278 static void
3279 build_vex_prefix (const insn_template *t)
3280 {
3281 unsigned int register_specifier;
3282 unsigned int implied_prefix;
3283 unsigned int vector_length;
3284
3285 /* Check register specifier. */
3286 if (i.vex.register_specifier)
3287 {
3288 register_specifier =
3289 ~register_number (i.vex.register_specifier) & 0xf;
3290 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3291 }
3292 else
3293 register_specifier = 0xf;
3294
3295 /* Use 2-byte VEX prefix by swapping destination and source
3296 operand. */
3297 if (i.vec_encoding != vex_encoding_vex3
3298 && i.dir_encoding == dir_encoding_default
3299 && i.operands == i.reg_operands
3300 && i.tm.opcode_modifier.vexopcode == VEX0F
3301 && i.tm.opcode_modifier.load
3302 && i.rex == REX_B)
3303 {
3304 unsigned int xchg = i.operands - 1;
3305 union i386_op temp_op;
3306 i386_operand_type temp_type;
3307
3308 temp_type = i.types[xchg];
3309 i.types[xchg] = i.types[0];
3310 i.types[0] = temp_type;
3311 temp_op = i.op[xchg];
3312 i.op[xchg] = i.op[0];
3313 i.op[0] = temp_op;
3314
3315 gas_assert (i.rm.mode == 3);
3316
3317 i.rex = REX_R;
3318 xchg = i.rm.regmem;
3319 i.rm.regmem = i.rm.reg;
3320 i.rm.reg = xchg;
3321
3322 /* Use the next insn. */
3323 i.tm = t[1];
3324 }
3325
3326 if (i.tm.opcode_modifier.vex == VEXScalar)
3327 vector_length = avxscalar;
3328 else if (i.tm.opcode_modifier.vex == VEX256)
3329 vector_length = 1;
3330 else
3331 {
3332 unsigned int op;
3333
3334 vector_length = 0;
3335 for (op = 0; op < t->operands; ++op)
3336 if (t->operand_types[op].bitfield.xmmword
3337 && t->operand_types[op].bitfield.ymmword
3338 && i.types[op].bitfield.ymmword)
3339 {
3340 vector_length = 1;
3341 break;
3342 }
3343 }
3344
3345 switch ((i.tm.base_opcode >> 8) & 0xff)
3346 {
3347 case 0:
3348 implied_prefix = 0;
3349 break;
3350 case DATA_PREFIX_OPCODE:
3351 implied_prefix = 1;
3352 break;
3353 case REPE_PREFIX_OPCODE:
3354 implied_prefix = 2;
3355 break;
3356 case REPNE_PREFIX_OPCODE:
3357 implied_prefix = 3;
3358 break;
3359 default:
3360 abort ();
3361 }
3362
3363 /* Use 2-byte VEX prefix if possible. */
3364 if (i.vec_encoding != vex_encoding_vex3
3365 && i.tm.opcode_modifier.vexopcode == VEX0F
3366 && i.tm.opcode_modifier.vexw != VEXW1
3367 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3368 {
3369 /* 2-byte VEX prefix. */
3370 unsigned int r;
3371
3372 i.vex.length = 2;
3373 i.vex.bytes[0] = 0xc5;
3374
3375 /* Check the REX.R bit. */
3376 r = (i.rex & REX_R) ? 0 : 1;
3377 i.vex.bytes[1] = (r << 7
3378 | register_specifier << 3
3379 | vector_length << 2
3380 | implied_prefix);
3381 }
3382 else
3383 {
3384 /* 3-byte VEX prefix. */
3385 unsigned int m, w;
3386
3387 i.vex.length = 3;
3388
3389 switch (i.tm.opcode_modifier.vexopcode)
3390 {
3391 case VEX0F:
3392 m = 0x1;
3393 i.vex.bytes[0] = 0xc4;
3394 break;
3395 case VEX0F38:
3396 m = 0x2;
3397 i.vex.bytes[0] = 0xc4;
3398 break;
3399 case VEX0F3A:
3400 m = 0x3;
3401 i.vex.bytes[0] = 0xc4;
3402 break;
3403 case XOP08:
3404 m = 0x8;
3405 i.vex.bytes[0] = 0x8f;
3406 break;
3407 case XOP09:
3408 m = 0x9;
3409 i.vex.bytes[0] = 0x8f;
3410 break;
3411 case XOP0A:
3412 m = 0xa;
3413 i.vex.bytes[0] = 0x8f;
3414 break;
3415 default:
3416 abort ();
3417 }
3418
3419 /* The high 3 bits of the second VEX byte are 1's compliment
3420 of RXB bits from REX. */
3421 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3422
3423 /* Check the REX.W bit. */
3424 w = (i.rex & REX_W) ? 1 : 0;
3425 if (i.tm.opcode_modifier.vexw == VEXW1)
3426 w = 1;
3427
3428 i.vex.bytes[2] = (w << 7
3429 | register_specifier << 3
3430 | vector_length << 2
3431 | implied_prefix);
3432 }
3433 }
3434
3435 /* Build the EVEX prefix. */
3436
3437 static void
3438 build_evex_prefix (void)
3439 {
3440 unsigned int register_specifier;
3441 unsigned int implied_prefix;
3442 unsigned int m, w;
3443 rex_byte vrex_used = 0;
3444
3445 /* Check register specifier. */
3446 if (i.vex.register_specifier)
3447 {
3448 gas_assert ((i.vrex & REX_X) == 0);
3449
3450 register_specifier = i.vex.register_specifier->reg_num;
3451 if ((i.vex.register_specifier->reg_flags & RegRex))
3452 register_specifier += 8;
3453 /* The upper 16 registers are encoded in the fourth byte of the
3454 EVEX prefix. */
3455 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3456 i.vex.bytes[3] = 0x8;
3457 register_specifier = ~register_specifier & 0xf;
3458 }
3459 else
3460 {
3461 register_specifier = 0xf;
3462
3463 /* Encode upper 16 vector index register in the fourth byte of
3464 the EVEX prefix. */
3465 if (!(i.vrex & REX_X))
3466 i.vex.bytes[3] = 0x8;
3467 else
3468 vrex_used |= REX_X;
3469 }
3470
3471 switch ((i.tm.base_opcode >> 8) & 0xff)
3472 {
3473 case 0:
3474 implied_prefix = 0;
3475 break;
3476 case DATA_PREFIX_OPCODE:
3477 implied_prefix = 1;
3478 break;
3479 case REPE_PREFIX_OPCODE:
3480 implied_prefix = 2;
3481 break;
3482 case REPNE_PREFIX_OPCODE:
3483 implied_prefix = 3;
3484 break;
3485 default:
3486 abort ();
3487 }
3488
3489 /* 4 byte EVEX prefix. */
3490 i.vex.length = 4;
3491 i.vex.bytes[0] = 0x62;
3492
3493 /* mmmm bits. */
3494 switch (i.tm.opcode_modifier.vexopcode)
3495 {
3496 case VEX0F:
3497 m = 1;
3498 break;
3499 case VEX0F38:
3500 m = 2;
3501 break;
3502 case VEX0F3A:
3503 m = 3;
3504 break;
3505 default:
3506 abort ();
3507 break;
3508 }
3509
3510 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3511 bits from REX. */
3512 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3513
3514 /* The fifth bit of the second EVEX byte is 1's compliment of the
3515 REX_R bit in VREX. */
3516 if (!(i.vrex & REX_R))
3517 i.vex.bytes[1] |= 0x10;
3518 else
3519 vrex_used |= REX_R;
3520
3521 if ((i.reg_operands + i.imm_operands) == i.operands)
3522 {
3523 /* When all operands are registers, the REX_X bit in REX is not
3524 used. We reuse it to encode the upper 16 registers, which is
3525 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3526 as 1's compliment. */
3527 if ((i.vrex & REX_B))
3528 {
3529 vrex_used |= REX_B;
3530 i.vex.bytes[1] &= ~0x40;
3531 }
3532 }
3533
3534 /* EVEX instructions shouldn't need the REX prefix. */
3535 i.vrex &= ~vrex_used;
3536 gas_assert (i.vrex == 0);
3537
3538 /* Check the REX.W bit. */
3539 w = (i.rex & REX_W) ? 1 : 0;
3540 if (i.tm.opcode_modifier.vexw)
3541 {
3542 if (i.tm.opcode_modifier.vexw == VEXW1)
3543 w = 1;
3544 }
3545 /* If w is not set it means we are dealing with WIG instruction. */
3546 else if (!w)
3547 {
3548 if (evexwig == evexw1)
3549 w = 1;
3550 }
3551
3552 /* Encode the U bit. */
3553 implied_prefix |= 0x4;
3554
3555 /* The third byte of the EVEX prefix. */
3556 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3557
3558 /* The fourth byte of the EVEX prefix. */
3559 /* The zeroing-masking bit. */
3560 if (i.mask && i.mask->zeroing)
3561 i.vex.bytes[3] |= 0x80;
3562
3563 /* Don't always set the broadcast bit if there is no RC. */
3564 if (!i.rounding)
3565 {
3566 /* Encode the vector length. */
3567 unsigned int vec_length;
3568
3569 switch (i.tm.opcode_modifier.evex)
3570 {
3571 case EVEXLIG: /* LL' is ignored */
3572 vec_length = evexlig << 5;
3573 break;
3574 case EVEX128:
3575 vec_length = 0 << 5;
3576 break;
3577 case EVEX256:
3578 vec_length = 1 << 5;
3579 break;
3580 case EVEX512:
3581 vec_length = 2 << 5;
3582 break;
3583 default:
3584 abort ();
3585 break;
3586 }
3587 i.vex.bytes[3] |= vec_length;
3588 /* Encode the broadcast bit. */
3589 if (i.broadcast)
3590 i.vex.bytes[3] |= 0x10;
3591 }
3592 else
3593 {
3594 if (i.rounding->type != saeonly)
3595 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3596 else
3597 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3598 }
3599
3600 if (i.mask && i.mask->mask)
3601 i.vex.bytes[3] |= i.mask->mask->reg_num;
3602 }
3603
3604 static void
3605 process_immext (void)
3606 {
3607 expressionS *exp;
3608
3609 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3610 && i.operands > 0)
3611 {
3612 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3613 with an opcode suffix which is coded in the same place as an
3614 8-bit immediate field would be.
3615 Here we check those operands and remove them afterwards. */
3616 unsigned int x;
3617
3618 for (x = 0; x < i.operands; x++)
3619 if (register_number (i.op[x].regs) != x)
3620 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3621 register_prefix, i.op[x].regs->reg_name, x + 1,
3622 i.tm.name);
3623
3624 i.operands = 0;
3625 }
3626
3627 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3628 {
3629 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3630 suffix which is coded in the same place as an 8-bit immediate
3631 field would be.
3632 Here we check those operands and remove them afterwards. */
3633 unsigned int x;
3634
3635 if (i.operands != 3)
3636 abort();
3637
3638 for (x = 0; x < 2; x++)
3639 if (register_number (i.op[x].regs) != x)
3640 goto bad_register_operand;
3641
3642 /* Check for third operand for mwaitx/monitorx insn. */
3643 if (register_number (i.op[x].regs)
3644 != (x + (i.tm.extension_opcode == 0xfb)))
3645 {
3646 bad_register_operand:
3647 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3648 register_prefix, i.op[x].regs->reg_name, x+1,
3649 i.tm.name);
3650 }
3651
3652 i.operands = 0;
3653 }
3654
3655 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3656 which is coded in the same place as an 8-bit immediate field
3657 would be. Here we fake an 8-bit immediate operand from the
3658 opcode suffix stored in tm.extension_opcode.
3659
3660 AVX instructions also use this encoding, for some of
3661 3 argument instructions. */
3662
3663 gas_assert (i.imm_operands <= 1
3664 && (i.operands <= 2
3665 || ((i.tm.opcode_modifier.vex
3666 || i.tm.opcode_modifier.evex)
3667 && i.operands <= 4)));
3668
3669 exp = &im_expressions[i.imm_operands++];
3670 i.op[i.operands].imms = exp;
3671 i.types[i.operands] = imm8;
3672 i.operands++;
3673 exp->X_op = O_constant;
3674 exp->X_add_number = i.tm.extension_opcode;
3675 i.tm.extension_opcode = None;
3676 }
3677
3678
3679 static int
3680 check_hle (void)
3681 {
3682 switch (i.tm.opcode_modifier.hleprefixok)
3683 {
3684 default:
3685 abort ();
3686 case HLEPrefixNone:
3687 as_bad (_("invalid instruction `%s' after `%s'"),
3688 i.tm.name, i.hle_prefix);
3689 return 0;
3690 case HLEPrefixLock:
3691 if (i.prefix[LOCK_PREFIX])
3692 return 1;
3693 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3694 return 0;
3695 case HLEPrefixAny:
3696 return 1;
3697 case HLEPrefixRelease:
3698 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3699 {
3700 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3701 i.tm.name);
3702 return 0;
3703 }
3704 if (i.mem_operands == 0
3705 || !operand_type_check (i.types[i.operands - 1], anymem))
3706 {
3707 as_bad (_("memory destination needed for instruction `%s'"
3708 " after `xrelease'"), i.tm.name);
3709 return 0;
3710 }
3711 return 1;
3712 }
3713 }
3714
3715 /* This is the guts of the machine-dependent assembler. LINE points to a
3716 machine dependent instruction. This function is supposed to emit
3717 the frags/bytes it assembles to. */
3718
3719 void
3720 md_assemble (char *line)
3721 {
3722 unsigned int j;
3723 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
3724 const insn_template *t;
3725
3726 /* Initialize globals. */
3727 memset (&i, '\0', sizeof (i));
3728 for (j = 0; j < MAX_OPERANDS; j++)
3729 i.reloc[j] = NO_RELOC;
3730 memset (disp_expressions, '\0', sizeof (disp_expressions));
3731 memset (im_expressions, '\0', sizeof (im_expressions));
3732 save_stack_p = save_stack;
3733
3734 /* First parse an instruction mnemonic & call i386_operand for the operands.
3735 We assume that the scrubber has arranged it so that line[0] is the valid
3736 start of a (possibly prefixed) mnemonic. */
3737
3738 line = parse_insn (line, mnemonic);
3739 if (line == NULL)
3740 return;
3741 mnem_suffix = i.suffix;
3742
3743 line = parse_operands (line, mnemonic);
3744 this_operand = -1;
3745 xfree (i.memop1_string);
3746 i.memop1_string = NULL;
3747 if (line == NULL)
3748 return;
3749
3750 /* Now we've parsed the mnemonic into a set of templates, and have the
3751 operands at hand. */
3752
3753 /* All intel opcodes have reversed operands except for "bound" and
3754 "enter". We also don't reverse intersegment "jmp" and "call"
3755 instructions with 2 immediate operands so that the immediate segment
3756 precedes the offset, as it does when in AT&T mode. */
3757 if (intel_syntax
3758 && i.operands > 1
3759 && (strcmp (mnemonic, "bound") != 0)
3760 && (strcmp (mnemonic, "invlpga") != 0)
3761 && !(operand_type_check (i.types[0], imm)
3762 && operand_type_check (i.types[1], imm)))
3763 swap_operands ();
3764
3765 /* The order of the immediates should be reversed
3766 for 2 immediates extrq and insertq instructions */
3767 if (i.imm_operands == 2
3768 && (strcmp (mnemonic, "extrq") == 0
3769 || strcmp (mnemonic, "insertq") == 0))
3770 swap_2_operands (0, 1);
3771
3772 if (i.imm_operands)
3773 optimize_imm ();
3774
3775 /* Don't optimize displacement for movabs since it only takes 64bit
3776 displacement. */
3777 if (i.disp_operands
3778 && i.disp_encoding != disp_encoding_32bit
3779 && (flag_code != CODE_64BIT
3780 || strcmp (mnemonic, "movabs") != 0))
3781 optimize_disp ();
3782
3783 /* Next, we find a template that matches the given insn,
3784 making sure the overlap of the given operands types is consistent
3785 with the template operand types. */
3786
3787 if (!(t = match_template (mnem_suffix)))
3788 return;
3789
3790 if (sse_check != check_none
3791 && !i.tm.opcode_modifier.noavx
3792 && (i.tm.cpu_flags.bitfield.cpusse
3793 || i.tm.cpu_flags.bitfield.cpusse2
3794 || i.tm.cpu_flags.bitfield.cpusse3
3795 || i.tm.cpu_flags.bitfield.cpussse3
3796 || i.tm.cpu_flags.bitfield.cpusse4_1
3797 || i.tm.cpu_flags.bitfield.cpusse4_2))
3798 {
3799 (sse_check == check_warning
3800 ? as_warn
3801 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3802 }
3803
3804 /* Zap movzx and movsx suffix. The suffix has been set from
3805 "word ptr" or "byte ptr" on the source operand in Intel syntax
3806 or extracted from mnemonic in AT&T syntax. But we'll use
3807 the destination register to choose the suffix for encoding. */
3808 if ((i.tm.base_opcode & ~9) == 0x0fb6)
3809 {
3810 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3811 there is no suffix, the default will be byte extension. */
3812 if (i.reg_operands != 2
3813 && !i.suffix
3814 && intel_syntax)
3815 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3816
3817 i.suffix = 0;
3818 }
3819
3820 if (i.tm.opcode_modifier.fwait)
3821 if (!add_prefix (FWAIT_OPCODE))
3822 return;
3823
3824 /* Check if REP prefix is OK. */
3825 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3826 {
3827 as_bad (_("invalid instruction `%s' after `%s'"),
3828 i.tm.name, i.rep_prefix);
3829 return;
3830 }
3831
3832 /* Check for lock without a lockable instruction. Destination operand
3833 must be memory unless it is xchg (0x86). */
3834 if (i.prefix[LOCK_PREFIX]
3835 && (!i.tm.opcode_modifier.islockable
3836 || i.mem_operands == 0
3837 || (i.tm.base_opcode != 0x86
3838 && !operand_type_check (i.types[i.operands - 1], anymem))))
3839 {
3840 as_bad (_("expecting lockable instruction after `lock'"));
3841 return;
3842 }
3843
3844 /* Check if HLE prefix is OK. */
3845 if (i.hle_prefix && !check_hle ())
3846 return;
3847
3848 /* Check BND prefix. */
3849 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3850 as_bad (_("expecting valid branch instruction after `bnd'"));
3851
3852 /* Check NOTRACK prefix. */
3853 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
3854 as_bad (_("expecting indirect branch instruction after `notrack'"));
3855
3856 if (i.tm.cpu_flags.bitfield.cpumpx)
3857 {
3858 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
3859 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3860 else if (flag_code != CODE_16BIT
3861 ? i.prefix[ADDR_PREFIX]
3862 : i.mem_operands && !i.prefix[ADDR_PREFIX])
3863 as_bad (_("16-bit address isn't allowed in MPX instructions"));
3864 }
3865
3866 /* Insert BND prefix. */
3867 if (add_bnd_prefix
3868 && i.tm.opcode_modifier.bndprefixok
3869 && !i.prefix[BND_PREFIX])
3870 add_prefix (BND_PREFIX_OPCODE);
3871
3872 /* Check string instruction segment overrides. */
3873 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3874 {
3875 if (!check_string ())
3876 return;
3877 i.disp_operands = 0;
3878 }
3879
3880 if (!process_suffix ())
3881 return;
3882
3883 /* Update operand types. */
3884 for (j = 0; j < i.operands; j++)
3885 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3886
3887 /* Make still unresolved immediate matches conform to size of immediate
3888 given in i.suffix. */
3889 if (!finalize_imm ())
3890 return;
3891
3892 if (i.types[0].bitfield.imm1)
3893 i.imm_operands = 0; /* kludge for shift insns. */
3894
3895 /* We only need to check those implicit registers for instructions
3896 with 3 operands or less. */
3897 if (i.operands <= 3)
3898 for (j = 0; j < i.operands; j++)
3899 if (i.types[j].bitfield.inoutportreg
3900 || i.types[j].bitfield.shiftcount
3901 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
3902 i.reg_operands--;
3903
3904 /* ImmExt should be processed after SSE2AVX. */
3905 if (!i.tm.opcode_modifier.sse2avx
3906 && i.tm.opcode_modifier.immext)
3907 process_immext ();
3908
3909 /* For insns with operands there are more diddles to do to the opcode. */
3910 if (i.operands)
3911 {
3912 if (!process_operands ())
3913 return;
3914 }
3915 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3916 {
3917 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3918 as_warn (_("translating to `%sp'"), i.tm.name);
3919 }
3920
3921 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.evex)
3922 {
3923 if (flag_code == CODE_16BIT)
3924 {
3925 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
3926 i.tm.name);
3927 return;
3928 }
3929
3930 if (i.tm.opcode_modifier.vex)
3931 build_vex_prefix (t);
3932 else
3933 build_evex_prefix ();
3934 }
3935
3936 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3937 instructions may define INT_OPCODE as well, so avoid this corner
3938 case for those instructions that use MODRM. */
3939 if (i.tm.base_opcode == INT_OPCODE
3940 && !i.tm.opcode_modifier.modrm
3941 && i.op[0].imms->X_add_number == 3)
3942 {
3943 i.tm.base_opcode = INT3_OPCODE;
3944 i.imm_operands = 0;
3945 }
3946
3947 if ((i.tm.opcode_modifier.jump
3948 || i.tm.opcode_modifier.jumpbyte
3949 || i.tm.opcode_modifier.jumpdword)
3950 && i.op[0].disps->X_op == O_constant)
3951 {
3952 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3953 the absolute address given by the constant. Since ix86 jumps and
3954 calls are pc relative, we need to generate a reloc. */
3955 i.op[0].disps->X_add_symbol = &abs_symbol;
3956 i.op[0].disps->X_op = O_symbol;
3957 }
3958
3959 if (i.tm.opcode_modifier.rex64)
3960 i.rex |= REX_W;
3961
3962 /* For 8 bit registers we need an empty rex prefix. Also if the
3963 instruction already has a prefix, we need to convert old
3964 registers to new ones. */
3965
3966 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
3967 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3968 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
3969 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3970 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
3971 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
3972 && i.rex != 0))
3973 {
3974 int x;
3975
3976 i.rex |= REX_OPCODE;
3977 for (x = 0; x < 2; x++)
3978 {
3979 /* Look for 8 bit operand that uses old registers. */
3980 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
3981 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3982 {
3983 /* In case it is "hi" register, give up. */
3984 if (i.op[x].regs->reg_num > 3)
3985 as_bad (_("can't encode register '%s%s' in an "
3986 "instruction requiring REX prefix."),
3987 register_prefix, i.op[x].regs->reg_name);
3988
3989 /* Otherwise it is equivalent to the extended register.
3990 Since the encoding doesn't change this is merely
3991 cosmetic cleanup for debug output. */
3992
3993 i.op[x].regs = i.op[x].regs + 8;
3994 }
3995 }
3996 }
3997
3998 if (i.rex == 0 && i.rex_encoding)
3999 {
4000 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4001 that uses legacy register. If it is "hi" register, don't add
4002 the REX_OPCODE byte. */
4003 int x;
4004 for (x = 0; x < 2; x++)
4005 if (i.types[x].bitfield.reg
4006 && i.types[x].bitfield.byte
4007 && (i.op[x].regs->reg_flags & RegRex64) == 0
4008 && i.op[x].regs->reg_num > 3)
4009 {
4010 i.rex_encoding = FALSE;
4011 break;
4012 }
4013
4014 if (i.rex_encoding)
4015 i.rex = REX_OPCODE;
4016 }
4017
4018 if (i.rex != 0)
4019 add_prefix (REX_OPCODE | i.rex);
4020
4021 /* We are ready to output the insn. */
4022 output_insn ();
4023 }
4024
4025 static char *
4026 parse_insn (char *line, char *mnemonic)
4027 {
4028 char *l = line;
4029 char *token_start = l;
4030 char *mnem_p;
4031 int supported;
4032 const insn_template *t;
4033 char *dot_p = NULL;
4034
4035 while (1)
4036 {
4037 mnem_p = mnemonic;
4038 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4039 {
4040 if (*mnem_p == '.')
4041 dot_p = mnem_p;
4042 mnem_p++;
4043 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4044 {
4045 as_bad (_("no such instruction: `%s'"), token_start);
4046 return NULL;
4047 }
4048 l++;
4049 }
4050 if (!is_space_char (*l)
4051 && *l != END_OF_INSN
4052 && (intel_syntax
4053 || (*l != PREFIX_SEPARATOR
4054 && *l != ',')))
4055 {
4056 as_bad (_("invalid character %s in mnemonic"),
4057 output_invalid (*l));
4058 return NULL;
4059 }
4060 if (token_start == l)
4061 {
4062 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4063 as_bad (_("expecting prefix; got nothing"));
4064 else
4065 as_bad (_("expecting mnemonic; got nothing"));
4066 return NULL;
4067 }
4068
4069 /* Look up instruction (or prefix) via hash table. */
4070 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4071
4072 if (*l != END_OF_INSN
4073 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4074 && current_templates
4075 && current_templates->start->opcode_modifier.isprefix)
4076 {
4077 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4078 {
4079 as_bad ((flag_code != CODE_64BIT
4080 ? _("`%s' is only supported in 64-bit mode")
4081 : _("`%s' is not supported in 64-bit mode")),
4082 current_templates->start->name);
4083 return NULL;
4084 }
4085 /* If we are in 16-bit mode, do not allow addr16 or data16.
4086 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4087 if ((current_templates->start->opcode_modifier.size16
4088 || current_templates->start->opcode_modifier.size32)
4089 && flag_code != CODE_64BIT
4090 && (current_templates->start->opcode_modifier.size32
4091 ^ (flag_code == CODE_16BIT)))
4092 {
4093 as_bad (_("redundant %s prefix"),
4094 current_templates->start->name);
4095 return NULL;
4096 }
4097 if (current_templates->start->opcode_length == 0)
4098 {
4099 /* Handle pseudo prefixes. */
4100 switch (current_templates->start->base_opcode)
4101 {
4102 case 0x0:
4103 /* {disp8} */
4104 i.disp_encoding = disp_encoding_8bit;
4105 break;
4106 case 0x1:
4107 /* {disp32} */
4108 i.disp_encoding = disp_encoding_32bit;
4109 break;
4110 case 0x2:
4111 /* {load} */
4112 i.dir_encoding = dir_encoding_load;
4113 break;
4114 case 0x3:
4115 /* {store} */
4116 i.dir_encoding = dir_encoding_store;
4117 break;
4118 case 0x4:
4119 /* {vex2} */
4120 i.vec_encoding = vex_encoding_vex2;
4121 break;
4122 case 0x5:
4123 /* {vex3} */
4124 i.vec_encoding = vex_encoding_vex3;
4125 break;
4126 case 0x6:
4127 /* {evex} */
4128 i.vec_encoding = vex_encoding_evex;
4129 break;
4130 case 0x7:
4131 /* {rex} */
4132 i.rex_encoding = TRUE;
4133 break;
4134 default:
4135 abort ();
4136 }
4137 }
4138 else
4139 {
4140 /* Add prefix, checking for repeated prefixes. */
4141 switch (add_prefix (current_templates->start->base_opcode))
4142 {
4143 case PREFIX_EXIST:
4144 return NULL;
4145 case PREFIX_DS:
4146 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4147 i.notrack_prefix = current_templates->start->name;
4148 break;
4149 case PREFIX_REP:
4150 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4151 i.hle_prefix = current_templates->start->name;
4152 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4153 i.bnd_prefix = current_templates->start->name;
4154 else
4155 i.rep_prefix = current_templates->start->name;
4156 break;
4157 default:
4158 break;
4159 }
4160 }
4161 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4162 token_start = ++l;
4163 }
4164 else
4165 break;
4166 }
4167
4168 if (!current_templates)
4169 {
4170 /* Check if we should swap operand or force 32bit displacement in
4171 encoding. */
4172 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4173 i.dir_encoding = dir_encoding_store;
4174 else if (mnem_p - 3 == dot_p
4175 && dot_p[1] == 'd'
4176 && dot_p[2] == '8')
4177 i.disp_encoding = disp_encoding_8bit;
4178 else if (mnem_p - 4 == dot_p
4179 && dot_p[1] == 'd'
4180 && dot_p[2] == '3'
4181 && dot_p[3] == '2')
4182 i.disp_encoding = disp_encoding_32bit;
4183 else
4184 goto check_suffix;
4185 mnem_p = dot_p;
4186 *dot_p = '\0';
4187 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4188 }
4189
4190 if (!current_templates)
4191 {
4192 check_suffix:
4193 /* See if we can get a match by trimming off a suffix. */
4194 switch (mnem_p[-1])
4195 {
4196 case WORD_MNEM_SUFFIX:
4197 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4198 i.suffix = SHORT_MNEM_SUFFIX;
4199 else
4200 /* Fall through. */
4201 case BYTE_MNEM_SUFFIX:
4202 case QWORD_MNEM_SUFFIX:
4203 i.suffix = mnem_p[-1];
4204 mnem_p[-1] = '\0';
4205 current_templates = (const templates *) hash_find (op_hash,
4206 mnemonic);
4207 break;
4208 case SHORT_MNEM_SUFFIX:
4209 case LONG_MNEM_SUFFIX:
4210 if (!intel_syntax)
4211 {
4212 i.suffix = mnem_p[-1];
4213 mnem_p[-1] = '\0';
4214 current_templates = (const templates *) hash_find (op_hash,
4215 mnemonic);
4216 }
4217 break;
4218
4219 /* Intel Syntax. */
4220 case 'd':
4221 if (intel_syntax)
4222 {
4223 if (intel_float_operand (mnemonic) == 1)
4224 i.suffix = SHORT_MNEM_SUFFIX;
4225 else
4226 i.suffix = LONG_MNEM_SUFFIX;
4227 mnem_p[-1] = '\0';
4228 current_templates = (const templates *) hash_find (op_hash,
4229 mnemonic);
4230 }
4231 break;
4232 }
4233 if (!current_templates)
4234 {
4235 as_bad (_("no such instruction: `%s'"), token_start);
4236 return NULL;
4237 }
4238 }
4239
4240 if (current_templates->start->opcode_modifier.jump
4241 || current_templates->start->opcode_modifier.jumpbyte)
4242 {
4243 /* Check for a branch hint. We allow ",pt" and ",pn" for
4244 predict taken and predict not taken respectively.
4245 I'm not sure that branch hints actually do anything on loop
4246 and jcxz insns (JumpByte) for current Pentium4 chips. They
4247 may work in the future and it doesn't hurt to accept them
4248 now. */
4249 if (l[0] == ',' && l[1] == 'p')
4250 {
4251 if (l[2] == 't')
4252 {
4253 if (!add_prefix (DS_PREFIX_OPCODE))
4254 return NULL;
4255 l += 3;
4256 }
4257 else if (l[2] == 'n')
4258 {
4259 if (!add_prefix (CS_PREFIX_OPCODE))
4260 return NULL;
4261 l += 3;
4262 }
4263 }
4264 }
4265 /* Any other comma loses. */
4266 if (*l == ',')
4267 {
4268 as_bad (_("invalid character %s in mnemonic"),
4269 output_invalid (*l));
4270 return NULL;
4271 }
4272
4273 /* Check if instruction is supported on specified architecture. */
4274 supported = 0;
4275 for (t = current_templates->start; t < current_templates->end; ++t)
4276 {
4277 supported |= cpu_flags_match (t);
4278 if (supported == CPU_FLAGS_PERFECT_MATCH)
4279 goto skip;
4280 }
4281
4282 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4283 {
4284 as_bad (flag_code == CODE_64BIT
4285 ? _("`%s' is not supported in 64-bit mode")
4286 : _("`%s' is only supported in 64-bit mode"),
4287 current_templates->start->name);
4288 return NULL;
4289 }
4290 if (supported != CPU_FLAGS_PERFECT_MATCH)
4291 {
4292 as_bad (_("`%s' is not supported on `%s%s'"),
4293 current_templates->start->name,
4294 cpu_arch_name ? cpu_arch_name : default_arch,
4295 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4296 return NULL;
4297 }
4298
4299 skip:
4300 if (!cpu_arch_flags.bitfield.cpui386
4301 && (flag_code != CODE_16BIT))
4302 {
4303 as_warn (_("use .code16 to ensure correct addressing mode"));
4304 }
4305
4306 return l;
4307 }
4308
4309 static char *
4310 parse_operands (char *l, const char *mnemonic)
4311 {
4312 char *token_start;
4313
4314 /* 1 if operand is pending after ','. */
4315 unsigned int expecting_operand = 0;
4316
4317 /* Non-zero if operand parens not balanced. */
4318 unsigned int paren_not_balanced;
4319
4320 while (*l != END_OF_INSN)
4321 {
4322 /* Skip optional white space before operand. */
4323 if (is_space_char (*l))
4324 ++l;
4325 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4326 {
4327 as_bad (_("invalid character %s before operand %d"),
4328 output_invalid (*l),
4329 i.operands + 1);
4330 return NULL;
4331 }
4332 token_start = l; /* After white space. */
4333 paren_not_balanced = 0;
4334 while (paren_not_balanced || *l != ',')
4335 {
4336 if (*l == END_OF_INSN)
4337 {
4338 if (paren_not_balanced)
4339 {
4340 if (!intel_syntax)
4341 as_bad (_("unbalanced parenthesis in operand %d."),
4342 i.operands + 1);
4343 else
4344 as_bad (_("unbalanced brackets in operand %d."),
4345 i.operands + 1);
4346 return NULL;
4347 }
4348 else
4349 break; /* we are done */
4350 }
4351 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4352 {
4353 as_bad (_("invalid character %s in operand %d"),
4354 output_invalid (*l),
4355 i.operands + 1);
4356 return NULL;
4357 }
4358 if (!intel_syntax)
4359 {
4360 if (*l == '(')
4361 ++paren_not_balanced;
4362 if (*l == ')')
4363 --paren_not_balanced;
4364 }
4365 else
4366 {
4367 if (*l == '[')
4368 ++paren_not_balanced;
4369 if (*l == ']')
4370 --paren_not_balanced;
4371 }
4372 l++;
4373 }
4374 if (l != token_start)
4375 { /* Yes, we've read in another operand. */
4376 unsigned int operand_ok;
4377 this_operand = i.operands++;
4378 if (i.operands > MAX_OPERANDS)
4379 {
4380 as_bad (_("spurious operands; (%d operands/instruction max)"),
4381 MAX_OPERANDS);
4382 return NULL;
4383 }
4384 i.types[this_operand].bitfield.unspecified = 1;
4385 /* Now parse operand adding info to 'i' as we go along. */
4386 END_STRING_AND_SAVE (l);
4387
4388 if (intel_syntax)
4389 operand_ok =
4390 i386_intel_operand (token_start,
4391 intel_float_operand (mnemonic));
4392 else
4393 operand_ok = i386_att_operand (token_start);
4394
4395 RESTORE_END_STRING (l);
4396 if (!operand_ok)
4397 return NULL;
4398 }
4399 else
4400 {
4401 if (expecting_operand)
4402 {
4403 expecting_operand_after_comma:
4404 as_bad (_("expecting operand after ','; got nothing"));
4405 return NULL;
4406 }
4407 if (*l == ',')
4408 {
4409 as_bad (_("expecting operand before ','; got nothing"));
4410 return NULL;
4411 }
4412 }
4413
4414 /* Now *l must be either ',' or END_OF_INSN. */
4415 if (*l == ',')
4416 {
4417 if (*++l == END_OF_INSN)
4418 {
4419 /* Just skip it, if it's \n complain. */
4420 goto expecting_operand_after_comma;
4421 }
4422 expecting_operand = 1;
4423 }
4424 }
4425 return l;
4426 }
4427
4428 static void
4429 swap_2_operands (int xchg1, int xchg2)
4430 {
4431 union i386_op temp_op;
4432 i386_operand_type temp_type;
4433 enum bfd_reloc_code_real temp_reloc;
4434
4435 temp_type = i.types[xchg2];
4436 i.types[xchg2] = i.types[xchg1];
4437 i.types[xchg1] = temp_type;
4438 temp_op = i.op[xchg2];
4439 i.op[xchg2] = i.op[xchg1];
4440 i.op[xchg1] = temp_op;
4441 temp_reloc = i.reloc[xchg2];
4442 i.reloc[xchg2] = i.reloc[xchg1];
4443 i.reloc[xchg1] = temp_reloc;
4444
4445 if (i.mask)
4446 {
4447 if (i.mask->operand == xchg1)
4448 i.mask->operand = xchg2;
4449 else if (i.mask->operand == xchg2)
4450 i.mask->operand = xchg1;
4451 }
4452 if (i.broadcast)
4453 {
4454 if (i.broadcast->operand == xchg1)
4455 i.broadcast->operand = xchg2;
4456 else if (i.broadcast->operand == xchg2)
4457 i.broadcast->operand = xchg1;
4458 }
4459 if (i.rounding)
4460 {
4461 if (i.rounding->operand == xchg1)
4462 i.rounding->operand = xchg2;
4463 else if (i.rounding->operand == xchg2)
4464 i.rounding->operand = xchg1;
4465 }
4466 }
4467
4468 static void
4469 swap_operands (void)
4470 {
4471 switch (i.operands)
4472 {
4473 case 5:
4474 case 4:
4475 swap_2_operands (1, i.operands - 2);
4476 /* Fall through. */
4477 case 3:
4478 case 2:
4479 swap_2_operands (0, i.operands - 1);
4480 break;
4481 default:
4482 abort ();
4483 }
4484
4485 if (i.mem_operands == 2)
4486 {
4487 const seg_entry *temp_seg;
4488 temp_seg = i.seg[0];
4489 i.seg[0] = i.seg[1];
4490 i.seg[1] = temp_seg;
4491 }
4492 }
4493
4494 /* Try to ensure constant immediates are represented in the smallest
4495 opcode possible. */
4496 static void
4497 optimize_imm (void)
4498 {
4499 char guess_suffix = 0;
4500 int op;
4501
4502 if (i.suffix)
4503 guess_suffix = i.suffix;
4504 else if (i.reg_operands)
4505 {
4506 /* Figure out a suffix from the last register operand specified.
4507 We can't do this properly yet, ie. excluding InOutPortReg,
4508 but the following works for instructions with immediates.
4509 In any case, we can't set i.suffix yet. */
4510 for (op = i.operands; --op >= 0;)
4511 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4512 {
4513 guess_suffix = BYTE_MNEM_SUFFIX;
4514 break;
4515 }
4516 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4517 {
4518 guess_suffix = WORD_MNEM_SUFFIX;
4519 break;
4520 }
4521 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
4522 {
4523 guess_suffix = LONG_MNEM_SUFFIX;
4524 break;
4525 }
4526 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
4527 {
4528 guess_suffix = QWORD_MNEM_SUFFIX;
4529 break;
4530 }
4531 }
4532 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4533 guess_suffix = WORD_MNEM_SUFFIX;
4534
4535 for (op = i.operands; --op >= 0;)
4536 if (operand_type_check (i.types[op], imm))
4537 {
4538 switch (i.op[op].imms->X_op)
4539 {
4540 case O_constant:
4541 /* If a suffix is given, this operand may be shortened. */
4542 switch (guess_suffix)
4543 {
4544 case LONG_MNEM_SUFFIX:
4545 i.types[op].bitfield.imm32 = 1;
4546 i.types[op].bitfield.imm64 = 1;
4547 break;
4548 case WORD_MNEM_SUFFIX:
4549 i.types[op].bitfield.imm16 = 1;
4550 i.types[op].bitfield.imm32 = 1;
4551 i.types[op].bitfield.imm32s = 1;
4552 i.types[op].bitfield.imm64 = 1;
4553 break;
4554 case BYTE_MNEM_SUFFIX:
4555 i.types[op].bitfield.imm8 = 1;
4556 i.types[op].bitfield.imm8s = 1;
4557 i.types[op].bitfield.imm16 = 1;
4558 i.types[op].bitfield.imm32 = 1;
4559 i.types[op].bitfield.imm32s = 1;
4560 i.types[op].bitfield.imm64 = 1;
4561 break;
4562 }
4563
4564 /* If this operand is at most 16 bits, convert it
4565 to a signed 16 bit number before trying to see
4566 whether it will fit in an even smaller size.
4567 This allows a 16-bit operand such as $0xffe0 to
4568 be recognised as within Imm8S range. */
4569 if ((i.types[op].bitfield.imm16)
4570 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4571 {
4572 i.op[op].imms->X_add_number =
4573 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4574 }
4575 #ifdef BFD64
4576 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4577 if ((i.types[op].bitfield.imm32)
4578 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4579 == 0))
4580 {
4581 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4582 ^ ((offsetT) 1 << 31))
4583 - ((offsetT) 1 << 31));
4584 }
4585 #endif
4586 i.types[op]
4587 = operand_type_or (i.types[op],
4588 smallest_imm_type (i.op[op].imms->X_add_number));
4589
4590 /* We must avoid matching of Imm32 templates when 64bit
4591 only immediate is available. */
4592 if (guess_suffix == QWORD_MNEM_SUFFIX)
4593 i.types[op].bitfield.imm32 = 0;
4594 break;
4595
4596 case O_absent:
4597 case O_register:
4598 abort ();
4599
4600 /* Symbols and expressions. */
4601 default:
4602 /* Convert symbolic operand to proper sizes for matching, but don't
4603 prevent matching a set of insns that only supports sizes other
4604 than those matching the insn suffix. */
4605 {
4606 i386_operand_type mask, allowed;
4607 const insn_template *t;
4608
4609 operand_type_set (&mask, 0);
4610 operand_type_set (&allowed, 0);
4611
4612 for (t = current_templates->start;
4613 t < current_templates->end;
4614 ++t)
4615 allowed = operand_type_or (allowed,
4616 t->operand_types[op]);
4617 switch (guess_suffix)
4618 {
4619 case QWORD_MNEM_SUFFIX:
4620 mask.bitfield.imm64 = 1;
4621 mask.bitfield.imm32s = 1;
4622 break;
4623 case LONG_MNEM_SUFFIX:
4624 mask.bitfield.imm32 = 1;
4625 break;
4626 case WORD_MNEM_SUFFIX:
4627 mask.bitfield.imm16 = 1;
4628 break;
4629 case BYTE_MNEM_SUFFIX:
4630 mask.bitfield.imm8 = 1;
4631 break;
4632 default:
4633 break;
4634 }
4635 allowed = operand_type_and (mask, allowed);
4636 if (!operand_type_all_zero (&allowed))
4637 i.types[op] = operand_type_and (i.types[op], mask);
4638 }
4639 break;
4640 }
4641 }
4642 }
4643
4644 /* Try to use the smallest displacement type too. */
4645 static void
4646 optimize_disp (void)
4647 {
4648 int op;
4649
4650 for (op = i.operands; --op >= 0;)
4651 if (operand_type_check (i.types[op], disp))
4652 {
4653 if (i.op[op].disps->X_op == O_constant)
4654 {
4655 offsetT op_disp = i.op[op].disps->X_add_number;
4656
4657 if (i.types[op].bitfield.disp16
4658 && (op_disp & ~(offsetT) 0xffff) == 0)
4659 {
4660 /* If this operand is at most 16 bits, convert
4661 to a signed 16 bit number and don't use 64bit
4662 displacement. */
4663 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4664 i.types[op].bitfield.disp64 = 0;
4665 }
4666 #ifdef BFD64
4667 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4668 if (i.types[op].bitfield.disp32
4669 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4670 {
4671 /* If this operand is at most 32 bits, convert
4672 to a signed 32 bit number and don't use 64bit
4673 displacement. */
4674 op_disp &= (((offsetT) 2 << 31) - 1);
4675 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4676 i.types[op].bitfield.disp64 = 0;
4677 }
4678 #endif
4679 if (!op_disp && i.types[op].bitfield.baseindex)
4680 {
4681 i.types[op].bitfield.disp8 = 0;
4682 i.types[op].bitfield.disp16 = 0;
4683 i.types[op].bitfield.disp32 = 0;
4684 i.types[op].bitfield.disp32s = 0;
4685 i.types[op].bitfield.disp64 = 0;
4686 i.op[op].disps = 0;
4687 i.disp_operands--;
4688 }
4689 else if (flag_code == CODE_64BIT)
4690 {
4691 if (fits_in_signed_long (op_disp))
4692 {
4693 i.types[op].bitfield.disp64 = 0;
4694 i.types[op].bitfield.disp32s = 1;
4695 }
4696 if (i.prefix[ADDR_PREFIX]
4697 && fits_in_unsigned_long (op_disp))
4698 i.types[op].bitfield.disp32 = 1;
4699 }
4700 if ((i.types[op].bitfield.disp32
4701 || i.types[op].bitfield.disp32s
4702 || i.types[op].bitfield.disp16)
4703 && fits_in_disp8 (op_disp))
4704 i.types[op].bitfield.disp8 = 1;
4705 }
4706 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4707 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4708 {
4709 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4710 i.op[op].disps, 0, i.reloc[op]);
4711 i.types[op].bitfield.disp8 = 0;
4712 i.types[op].bitfield.disp16 = 0;
4713 i.types[op].bitfield.disp32 = 0;
4714 i.types[op].bitfield.disp32s = 0;
4715 i.types[op].bitfield.disp64 = 0;
4716 }
4717 else
4718 /* We only support 64bit displacement on constants. */
4719 i.types[op].bitfield.disp64 = 0;
4720 }
4721 }
4722
4723 /* Check if operands are valid for the instruction. */
4724
4725 static int
4726 check_VecOperands (const insn_template *t)
4727 {
4728 unsigned int op;
4729
4730 /* Without VSIB byte, we can't have a vector register for index. */
4731 if (!t->opcode_modifier.vecsib
4732 && i.index_reg
4733 && (i.index_reg->reg_type.bitfield.xmmword
4734 || i.index_reg->reg_type.bitfield.ymmword
4735 || i.index_reg->reg_type.bitfield.zmmword))
4736 {
4737 i.error = unsupported_vector_index_register;
4738 return 1;
4739 }
4740
4741 /* Check if default mask is allowed. */
4742 if (t->opcode_modifier.nodefmask
4743 && (!i.mask || i.mask->mask->reg_num == 0))
4744 {
4745 i.error = no_default_mask;
4746 return 1;
4747 }
4748
4749 /* For VSIB byte, we need a vector register for index, and all vector
4750 registers must be distinct. */
4751 if (t->opcode_modifier.vecsib)
4752 {
4753 if (!i.index_reg
4754 || !((t->opcode_modifier.vecsib == VecSIB128
4755 && i.index_reg->reg_type.bitfield.xmmword)
4756 || (t->opcode_modifier.vecsib == VecSIB256
4757 && i.index_reg->reg_type.bitfield.ymmword)
4758 || (t->opcode_modifier.vecsib == VecSIB512
4759 && i.index_reg->reg_type.bitfield.zmmword)))
4760 {
4761 i.error = invalid_vsib_address;
4762 return 1;
4763 }
4764
4765 gas_assert (i.reg_operands == 2 || i.mask);
4766 if (i.reg_operands == 2 && !i.mask)
4767 {
4768 gas_assert (i.types[0].bitfield.regsimd);
4769 gas_assert (i.types[0].bitfield.xmmword
4770 || i.types[0].bitfield.ymmword);
4771 gas_assert (i.types[2].bitfield.regsimd);
4772 gas_assert (i.types[2].bitfield.xmmword
4773 || i.types[2].bitfield.ymmword);
4774 if (operand_check == check_none)
4775 return 0;
4776 if (register_number (i.op[0].regs)
4777 != register_number (i.index_reg)
4778 && register_number (i.op[2].regs)
4779 != register_number (i.index_reg)
4780 && register_number (i.op[0].regs)
4781 != register_number (i.op[2].regs))
4782 return 0;
4783 if (operand_check == check_error)
4784 {
4785 i.error = invalid_vector_register_set;
4786 return 1;
4787 }
4788 as_warn (_("mask, index, and destination registers should be distinct"));
4789 }
4790 else if (i.reg_operands == 1 && i.mask)
4791 {
4792 if (i.types[1].bitfield.regsimd
4793 && (i.types[1].bitfield.xmmword
4794 || i.types[1].bitfield.ymmword
4795 || i.types[1].bitfield.zmmword)
4796 && (register_number (i.op[1].regs)
4797 == register_number (i.index_reg)))
4798 {
4799 if (operand_check == check_error)
4800 {
4801 i.error = invalid_vector_register_set;
4802 return 1;
4803 }
4804 if (operand_check != check_none)
4805 as_warn (_("index and destination registers should be distinct"));
4806 }
4807 }
4808 }
4809
4810 /* Check if broadcast is supported by the instruction and is applied
4811 to the memory operand. */
4812 if (i.broadcast)
4813 {
4814 int broadcasted_opnd_size;
4815
4816 /* Check if specified broadcast is supported in this instruction,
4817 and it's applied to memory operand of DWORD or QWORD type,
4818 depending on VecESize. */
4819 if (i.broadcast->type != t->opcode_modifier.broadcast
4820 || !i.types[i.broadcast->operand].bitfield.mem
4821 || (t->opcode_modifier.vecesize == 0
4822 && !i.types[i.broadcast->operand].bitfield.dword
4823 && !i.types[i.broadcast->operand].bitfield.unspecified)
4824 || (t->opcode_modifier.vecesize == 1
4825 && !i.types[i.broadcast->operand].bitfield.qword
4826 && !i.types[i.broadcast->operand].bitfield.unspecified))
4827 goto bad_broadcast;
4828
4829 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4830 if (i.broadcast->type == BROADCAST_1TO16)
4831 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4832 else if (i.broadcast->type == BROADCAST_1TO8)
4833 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
4834 else if (i.broadcast->type == BROADCAST_1TO4)
4835 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4836 else if (i.broadcast->type == BROADCAST_1TO2)
4837 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
4838 else
4839 goto bad_broadcast;
4840
4841 if ((broadcasted_opnd_size == 256
4842 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4843 || (broadcasted_opnd_size == 512
4844 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4845 {
4846 bad_broadcast:
4847 i.error = unsupported_broadcast;
4848 return 1;
4849 }
4850 }
4851 /* If broadcast is supported in this instruction, we need to check if
4852 operand of one-element size isn't specified without broadcast. */
4853 else if (t->opcode_modifier.broadcast && i.mem_operands)
4854 {
4855 /* Find memory operand. */
4856 for (op = 0; op < i.operands; op++)
4857 if (operand_type_check (i.types[op], anymem))
4858 break;
4859 gas_assert (op < i.operands);
4860 /* Check size of the memory operand. */
4861 if ((t->opcode_modifier.vecesize == 0
4862 && i.types[op].bitfield.dword)
4863 || (t->opcode_modifier.vecesize == 1
4864 && i.types[op].bitfield.qword))
4865 {
4866 i.error = broadcast_needed;
4867 return 1;
4868 }
4869 }
4870
4871 /* Check if requested masking is supported. */
4872 if (i.mask
4873 && (!t->opcode_modifier.masking
4874 || (i.mask->zeroing
4875 && t->opcode_modifier.masking == MERGING_MASKING)))
4876 {
4877 i.error = unsupported_masking;
4878 return 1;
4879 }
4880
4881 /* Check if masking is applied to dest operand. */
4882 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4883 {
4884 i.error = mask_not_on_destination;
4885 return 1;
4886 }
4887
4888 /* Check RC/SAE. */
4889 if (i.rounding)
4890 {
4891 if ((i.rounding->type != saeonly
4892 && !t->opcode_modifier.staticrounding)
4893 || (i.rounding->type == saeonly
4894 && (t->opcode_modifier.staticrounding
4895 || !t->opcode_modifier.sae)))
4896 {
4897 i.error = unsupported_rc_sae;
4898 return 1;
4899 }
4900 /* If the instruction has several immediate operands and one of
4901 them is rounding, the rounding operand should be the last
4902 immediate operand. */
4903 if (i.imm_operands > 1
4904 && i.rounding->operand != (int) (i.imm_operands - 1))
4905 {
4906 i.error = rc_sae_operand_not_last_imm;
4907 return 1;
4908 }
4909 }
4910
4911 /* Check vector Disp8 operand. */
4912 if (t->opcode_modifier.disp8memshift
4913 && i.disp_encoding != disp_encoding_32bit)
4914 {
4915 if (i.broadcast)
4916 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4917 else
4918 i.memshift = t->opcode_modifier.disp8memshift;
4919
4920 for (op = 0; op < i.operands; op++)
4921 if (operand_type_check (i.types[op], disp)
4922 && i.op[op].disps->X_op == O_constant)
4923 {
4924 if (fits_in_disp8 (i.op[op].disps->X_add_number))
4925 {
4926 i.types[op].bitfield.disp8 = 1;
4927 return 0;
4928 }
4929 i.types[op].bitfield.disp8 = 0;
4930 }
4931 }
4932
4933 i.memshift = 0;
4934
4935 return 0;
4936 }
4937
4938 /* Check if operands are valid for the instruction. Update VEX
4939 operand types. */
4940
4941 static int
4942 VEX_check_operands (const insn_template *t)
4943 {
4944 if (i.vec_encoding == vex_encoding_evex)
4945 {
4946 /* This instruction must be encoded with EVEX prefix. */
4947 if (!t->opcode_modifier.evex)
4948 {
4949 i.error = unsupported;
4950 return 1;
4951 }
4952 return 0;
4953 }
4954
4955 if (!t->opcode_modifier.vex)
4956 {
4957 /* This instruction template doesn't have VEX prefix. */
4958 if (i.vec_encoding != vex_encoding_default)
4959 {
4960 i.error = unsupported;
4961 return 1;
4962 }
4963 return 0;
4964 }
4965
4966 /* Only check VEX_Imm4, which must be the first operand. */
4967 if (t->operand_types[0].bitfield.vec_imm4)
4968 {
4969 if (i.op[0].imms->X_op != O_constant
4970 || !fits_in_imm4 (i.op[0].imms->X_add_number))
4971 {
4972 i.error = bad_imm4;
4973 return 1;
4974 }
4975
4976 /* Turn off Imm8 so that update_imm won't complain. */
4977 i.types[0] = vec_imm4;
4978 }
4979
4980 return 0;
4981 }
4982
4983 static const insn_template *
4984 match_template (char mnem_suffix)
4985 {
4986 /* Points to template once we've found it. */
4987 const insn_template *t;
4988 i386_operand_type overlap0, overlap1, overlap2, overlap3;
4989 i386_operand_type overlap4;
4990 unsigned int found_reverse_match;
4991 i386_opcode_modifier suffix_check, mnemsuf_check;
4992 i386_operand_type operand_types [MAX_OPERANDS];
4993 int addr_prefix_disp;
4994 unsigned int j;
4995 unsigned int found_cpu_match;
4996 unsigned int check_register;
4997 enum i386_error specific_error = 0;
4998
4999 #if MAX_OPERANDS != 5
5000 # error "MAX_OPERANDS must be 5."
5001 #endif
5002
5003 found_reverse_match = 0;
5004 addr_prefix_disp = -1;
5005
5006 memset (&suffix_check, 0, sizeof (suffix_check));
5007 if (i.suffix == BYTE_MNEM_SUFFIX)
5008 suffix_check.no_bsuf = 1;
5009 else if (i.suffix == WORD_MNEM_SUFFIX)
5010 suffix_check.no_wsuf = 1;
5011 else if (i.suffix == SHORT_MNEM_SUFFIX)
5012 suffix_check.no_ssuf = 1;
5013 else if (i.suffix == LONG_MNEM_SUFFIX)
5014 suffix_check.no_lsuf = 1;
5015 else if (i.suffix == QWORD_MNEM_SUFFIX)
5016 suffix_check.no_qsuf = 1;
5017 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5018 suffix_check.no_ldsuf = 1;
5019
5020 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5021 if (intel_syntax)
5022 {
5023 switch (mnem_suffix)
5024 {
5025 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5026 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5027 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5028 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5029 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5030 }
5031 }
5032
5033 /* Must have right number of operands. */
5034 i.error = number_of_operands_mismatch;
5035
5036 for (t = current_templates->start; t < current_templates->end; t++)
5037 {
5038 addr_prefix_disp = -1;
5039
5040 if (i.operands != t->operands)
5041 continue;
5042
5043 /* Check processor support. */
5044 i.error = unsupported;
5045 found_cpu_match = (cpu_flags_match (t)
5046 == CPU_FLAGS_PERFECT_MATCH);
5047 if (!found_cpu_match)
5048 continue;
5049
5050 /* Check old gcc support. */
5051 i.error = old_gcc_only;
5052 if (!old_gcc && t->opcode_modifier.oldgcc)
5053 continue;
5054
5055 /* Check AT&T mnemonic. */
5056 i.error = unsupported_with_intel_mnemonic;
5057 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5058 continue;
5059
5060 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5061 i.error = unsupported_syntax;
5062 if ((intel_syntax && t->opcode_modifier.attsyntax)
5063 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5064 || (intel64 && t->opcode_modifier.amd64)
5065 || (!intel64 && t->opcode_modifier.intel64))
5066 continue;
5067
5068 /* Check the suffix, except for some instructions in intel mode. */
5069 i.error = invalid_instruction_suffix;
5070 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5071 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5072 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5073 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5074 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5075 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5076 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5077 continue;
5078 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5079 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5080 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5081 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5082 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5083 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5084 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5085 continue;
5086
5087 if (!operand_size_match (t))
5088 continue;
5089
5090 for (j = 0; j < MAX_OPERANDS; j++)
5091 operand_types[j] = t->operand_types[j];
5092
5093 /* In general, don't allow 64-bit operands in 32-bit mode. */
5094 if (i.suffix == QWORD_MNEM_SUFFIX
5095 && flag_code != CODE_64BIT
5096 && (intel_syntax
5097 ? (!t->opcode_modifier.ignoresize
5098 && !intel_float_operand (t->name))
5099 : intel_float_operand (t->name) != 2)
5100 && ((!operand_types[0].bitfield.regmmx
5101 && !operand_types[0].bitfield.regsimd)
5102 || (!operand_types[t->operands > 1].bitfield.regmmx
5103 && !operand_types[t->operands > 1].bitfield.regsimd))
5104 && (t->base_opcode != 0x0fc7
5105 || t->extension_opcode != 1 /* cmpxchg8b */))
5106 continue;
5107
5108 /* In general, don't allow 32-bit operands on pre-386. */
5109 else if (i.suffix == LONG_MNEM_SUFFIX
5110 && !cpu_arch_flags.bitfield.cpui386
5111 && (intel_syntax
5112 ? (!t->opcode_modifier.ignoresize
5113 && !intel_float_operand (t->name))
5114 : intel_float_operand (t->name) != 2)
5115 && ((!operand_types[0].bitfield.regmmx
5116 && !operand_types[0].bitfield.regsimd)
5117 || (!operand_types[t->operands > 1].bitfield.regmmx
5118 && !operand_types[t->operands > 1].bitfield.regsimd)))
5119 continue;
5120
5121 /* Do not verify operands when there are none. */
5122 else
5123 {
5124 if (!t->operands)
5125 /* We've found a match; break out of loop. */
5126 break;
5127 }
5128
5129 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5130 into Disp32/Disp16/Disp32 operand. */
5131 if (i.prefix[ADDR_PREFIX] != 0)
5132 {
5133 /* There should be only one Disp operand. */
5134 switch (flag_code)
5135 {
5136 case CODE_16BIT:
5137 for (j = 0; j < MAX_OPERANDS; j++)
5138 {
5139 if (operand_types[j].bitfield.disp16)
5140 {
5141 addr_prefix_disp = j;
5142 operand_types[j].bitfield.disp32 = 1;
5143 operand_types[j].bitfield.disp16 = 0;
5144 break;
5145 }
5146 }
5147 break;
5148 case CODE_32BIT:
5149 for (j = 0; j < MAX_OPERANDS; j++)
5150 {
5151 if (operand_types[j].bitfield.disp32)
5152 {
5153 addr_prefix_disp = j;
5154 operand_types[j].bitfield.disp32 = 0;
5155 operand_types[j].bitfield.disp16 = 1;
5156 break;
5157 }
5158 }
5159 break;
5160 case CODE_64BIT:
5161 for (j = 0; j < MAX_OPERANDS; j++)
5162 {
5163 if (operand_types[j].bitfield.disp64)
5164 {
5165 addr_prefix_disp = j;
5166 operand_types[j].bitfield.disp64 = 0;
5167 operand_types[j].bitfield.disp32 = 1;
5168 break;
5169 }
5170 }
5171 break;
5172 }
5173 }
5174
5175 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5176 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5177 continue;
5178
5179 /* We check register size if needed. */
5180 check_register = t->opcode_modifier.checkregsize;
5181 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5182 switch (t->operands)
5183 {
5184 case 1:
5185 if (!operand_type_match (overlap0, i.types[0]))
5186 continue;
5187 break;
5188 case 2:
5189 /* xchg %eax, %eax is a special case. It is an alias for nop
5190 only in 32bit mode and we can use opcode 0x90. In 64bit
5191 mode, we can't use 0x90 for xchg %eax, %eax since it should
5192 zero-extend %eax to %rax. */
5193 if (flag_code == CODE_64BIT
5194 && t->base_opcode == 0x90
5195 && operand_type_equal (&i.types [0], &acc32)
5196 && operand_type_equal (&i.types [1], &acc32))
5197 continue;
5198 /* If we want store form, we reverse direction of operands. */
5199 if (i.dir_encoding == dir_encoding_store
5200 && t->opcode_modifier.d)
5201 goto check_reverse;
5202 /* Fall through. */
5203
5204 case 3:
5205 /* If we want store form, we skip the current load. */
5206 if (i.dir_encoding == dir_encoding_store
5207 && i.mem_operands == 0
5208 && t->opcode_modifier.load)
5209 continue;
5210 /* Fall through. */
5211 case 4:
5212 case 5:
5213 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5214 if (!operand_type_match (overlap0, i.types[0])
5215 || !operand_type_match (overlap1, i.types[1])
5216 || (check_register
5217 && !operand_type_register_match (i.types[0],
5218 operand_types[0],
5219 i.types[1],
5220 operand_types[1])))
5221 {
5222 /* Check if other direction is valid ... */
5223 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
5224 continue;
5225
5226 check_reverse:
5227 /* Try reversing direction of operands. */
5228 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5229 overlap1 = operand_type_and (i.types[1], operand_types[0]);
5230 if (!operand_type_match (overlap0, i.types[0])
5231 || !operand_type_match (overlap1, i.types[1])
5232 || (check_register
5233 && !operand_type_register_match (i.types[0],
5234 operand_types[1],
5235 i.types[1],
5236 operand_types[0])))
5237 {
5238 /* Does not match either direction. */
5239 continue;
5240 }
5241 /* found_reverse_match holds which of D or FloatDR
5242 we've found. */
5243 if (t->opcode_modifier.d)
5244 found_reverse_match = Opcode_D;
5245 else if (t->opcode_modifier.floatd)
5246 found_reverse_match = Opcode_FloatD;
5247 else
5248 found_reverse_match = 0;
5249 if (t->opcode_modifier.floatr)
5250 found_reverse_match |= Opcode_FloatR;
5251 }
5252 else
5253 {
5254 /* Found a forward 2 operand match here. */
5255 switch (t->operands)
5256 {
5257 case 5:
5258 overlap4 = operand_type_and (i.types[4],
5259 operand_types[4]);
5260 /* Fall through. */
5261 case 4:
5262 overlap3 = operand_type_and (i.types[3],
5263 operand_types[3]);
5264 /* Fall through. */
5265 case 3:
5266 overlap2 = operand_type_and (i.types[2],
5267 operand_types[2]);
5268 break;
5269 }
5270
5271 switch (t->operands)
5272 {
5273 case 5:
5274 if (!operand_type_match (overlap4, i.types[4])
5275 || !operand_type_register_match (i.types[3],
5276 operand_types[3],
5277 i.types[4],
5278 operand_types[4]))
5279 continue;
5280 /* Fall through. */
5281 case 4:
5282 if (!operand_type_match (overlap3, i.types[3])
5283 || (check_register
5284 && !operand_type_register_match (i.types[2],
5285 operand_types[2],
5286 i.types[3],
5287 operand_types[3])))
5288 continue;
5289 /* Fall through. */
5290 case 3:
5291 /* Here we make use of the fact that there are no
5292 reverse match 3 operand instructions, and all 3
5293 operand instructions only need to be checked for
5294 register consistency between operands 2 and 3. */
5295 if (!operand_type_match (overlap2, i.types[2])
5296 || (check_register
5297 && !operand_type_register_match (i.types[1],
5298 operand_types[1],
5299 i.types[2],
5300 operand_types[2])))
5301 continue;
5302 break;
5303 }
5304 }
5305 /* Found either forward/reverse 2, 3 or 4 operand match here:
5306 slip through to break. */
5307 }
5308 if (!found_cpu_match)
5309 {
5310 found_reverse_match = 0;
5311 continue;
5312 }
5313
5314 /* Check if vector and VEX operands are valid. */
5315 if (check_VecOperands (t) || VEX_check_operands (t))
5316 {
5317 specific_error = i.error;
5318 continue;
5319 }
5320
5321 /* We've found a match; break out of loop. */
5322 break;
5323 }
5324
5325 if (t == current_templates->end)
5326 {
5327 /* We found no match. */
5328 const char *err_msg;
5329 switch (specific_error ? specific_error : i.error)
5330 {
5331 default:
5332 abort ();
5333 case operand_size_mismatch:
5334 err_msg = _("operand size mismatch");
5335 break;
5336 case operand_type_mismatch:
5337 err_msg = _("operand type mismatch");
5338 break;
5339 case register_type_mismatch:
5340 err_msg = _("register type mismatch");
5341 break;
5342 case number_of_operands_mismatch:
5343 err_msg = _("number of operands mismatch");
5344 break;
5345 case invalid_instruction_suffix:
5346 err_msg = _("invalid instruction suffix");
5347 break;
5348 case bad_imm4:
5349 err_msg = _("constant doesn't fit in 4 bits");
5350 break;
5351 case old_gcc_only:
5352 err_msg = _("only supported with old gcc");
5353 break;
5354 case unsupported_with_intel_mnemonic:
5355 err_msg = _("unsupported with Intel mnemonic");
5356 break;
5357 case unsupported_syntax:
5358 err_msg = _("unsupported syntax");
5359 break;
5360 case unsupported:
5361 as_bad (_("unsupported instruction `%s'"),
5362 current_templates->start->name);
5363 return NULL;
5364 case invalid_vsib_address:
5365 err_msg = _("invalid VSIB address");
5366 break;
5367 case invalid_vector_register_set:
5368 err_msg = _("mask, index, and destination registers must be distinct");
5369 break;
5370 case unsupported_vector_index_register:
5371 err_msg = _("unsupported vector index register");
5372 break;
5373 case unsupported_broadcast:
5374 err_msg = _("unsupported broadcast");
5375 break;
5376 case broadcast_not_on_src_operand:
5377 err_msg = _("broadcast not on source memory operand");
5378 break;
5379 case broadcast_needed:
5380 err_msg = _("broadcast is needed for operand of such type");
5381 break;
5382 case unsupported_masking:
5383 err_msg = _("unsupported masking");
5384 break;
5385 case mask_not_on_destination:
5386 err_msg = _("mask not on destination operand");
5387 break;
5388 case no_default_mask:
5389 err_msg = _("default mask isn't allowed");
5390 break;
5391 case unsupported_rc_sae:
5392 err_msg = _("unsupported static rounding/sae");
5393 break;
5394 case rc_sae_operand_not_last_imm:
5395 if (intel_syntax)
5396 err_msg = _("RC/SAE operand must precede immediate operands");
5397 else
5398 err_msg = _("RC/SAE operand must follow immediate operands");
5399 break;
5400 case invalid_register_operand:
5401 err_msg = _("invalid register operand");
5402 break;
5403 }
5404 as_bad (_("%s for `%s'"), err_msg,
5405 current_templates->start->name);
5406 return NULL;
5407 }
5408
5409 if (!quiet_warnings)
5410 {
5411 if (!intel_syntax
5412 && (i.types[0].bitfield.jumpabsolute
5413 != operand_types[0].bitfield.jumpabsolute))
5414 {
5415 as_warn (_("indirect %s without `*'"), t->name);
5416 }
5417
5418 if (t->opcode_modifier.isprefix
5419 && t->opcode_modifier.ignoresize)
5420 {
5421 /* Warn them that a data or address size prefix doesn't
5422 affect assembly of the next line of code. */
5423 as_warn (_("stand-alone `%s' prefix"), t->name);
5424 }
5425 }
5426
5427 /* Copy the template we found. */
5428 i.tm = *t;
5429
5430 if (addr_prefix_disp != -1)
5431 i.tm.operand_types[addr_prefix_disp]
5432 = operand_types[addr_prefix_disp];
5433
5434 if (found_reverse_match)
5435 {
5436 /* If we found a reverse match we must alter the opcode
5437 direction bit. found_reverse_match holds bits to change
5438 (different for int & float insns). */
5439
5440 i.tm.base_opcode ^= found_reverse_match;
5441
5442 i.tm.operand_types[0] = operand_types[1];
5443 i.tm.operand_types[1] = operand_types[0];
5444 }
5445
5446 return t;
5447 }
5448
5449 static int
5450 check_string (void)
5451 {
5452 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5453 if (i.tm.operand_types[mem_op].bitfield.esseg)
5454 {
5455 if (i.seg[0] != NULL && i.seg[0] != &es)
5456 {
5457 as_bad (_("`%s' operand %d must use `%ses' segment"),
5458 i.tm.name,
5459 mem_op + 1,
5460 register_prefix);
5461 return 0;
5462 }
5463 /* There's only ever one segment override allowed per instruction.
5464 This instruction possibly has a legal segment override on the
5465 second operand, so copy the segment to where non-string
5466 instructions store it, allowing common code. */
5467 i.seg[0] = i.seg[1];
5468 }
5469 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5470 {
5471 if (i.seg[1] != NULL && i.seg[1] != &es)
5472 {
5473 as_bad (_("`%s' operand %d must use `%ses' segment"),
5474 i.tm.name,
5475 mem_op + 2,
5476 register_prefix);
5477 return 0;
5478 }
5479 }
5480 return 1;
5481 }
5482
5483 static int
5484 process_suffix (void)
5485 {
5486 /* If matched instruction specifies an explicit instruction mnemonic
5487 suffix, use it. */
5488 if (i.tm.opcode_modifier.size16)
5489 i.suffix = WORD_MNEM_SUFFIX;
5490 else if (i.tm.opcode_modifier.size32)
5491 i.suffix = LONG_MNEM_SUFFIX;
5492 else if (i.tm.opcode_modifier.size64)
5493 i.suffix = QWORD_MNEM_SUFFIX;
5494 else if (i.reg_operands)
5495 {
5496 /* If there's no instruction mnemonic suffix we try to invent one
5497 based on register operands. */
5498 if (!i.suffix)
5499 {
5500 /* We take i.suffix from the last register operand specified,
5501 Destination register type is more significant than source
5502 register type. crc32 in SSE4.2 prefers source register
5503 type. */
5504 if (i.tm.base_opcode == 0xf20f38f1)
5505 {
5506 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
5507 i.suffix = WORD_MNEM_SUFFIX;
5508 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
5509 i.suffix = LONG_MNEM_SUFFIX;
5510 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
5511 i.suffix = QWORD_MNEM_SUFFIX;
5512 }
5513 else if (i.tm.base_opcode == 0xf20f38f0)
5514 {
5515 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
5516 i.suffix = BYTE_MNEM_SUFFIX;
5517 }
5518
5519 if (!i.suffix)
5520 {
5521 int op;
5522
5523 if (i.tm.base_opcode == 0xf20f38f1
5524 || i.tm.base_opcode == 0xf20f38f0)
5525 {
5526 /* We have to know the operand size for crc32. */
5527 as_bad (_("ambiguous memory operand size for `%s`"),
5528 i.tm.name);
5529 return 0;
5530 }
5531
5532 for (op = i.operands; --op >= 0;)
5533 if (!i.tm.operand_types[op].bitfield.inoutportreg
5534 && !i.tm.operand_types[op].bitfield.shiftcount)
5535 {
5536 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
5537 {
5538 i.suffix = BYTE_MNEM_SUFFIX;
5539 break;
5540 }
5541 if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
5542 {
5543 i.suffix = WORD_MNEM_SUFFIX;
5544 break;
5545 }
5546 if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
5547 {
5548 i.suffix = LONG_MNEM_SUFFIX;
5549 break;
5550 }
5551 if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
5552 {
5553 i.suffix = QWORD_MNEM_SUFFIX;
5554 break;
5555 }
5556 }
5557 }
5558 }
5559 else if (i.suffix == BYTE_MNEM_SUFFIX)
5560 {
5561 if (intel_syntax
5562 && i.tm.opcode_modifier.ignoresize
5563 && i.tm.opcode_modifier.no_bsuf)
5564 i.suffix = 0;
5565 else if (!check_byte_reg ())
5566 return 0;
5567 }
5568 else if (i.suffix == LONG_MNEM_SUFFIX)
5569 {
5570 if (intel_syntax
5571 && i.tm.opcode_modifier.ignoresize
5572 && i.tm.opcode_modifier.no_lsuf)
5573 i.suffix = 0;
5574 else if (!check_long_reg ())
5575 return 0;
5576 }
5577 else if (i.suffix == QWORD_MNEM_SUFFIX)
5578 {
5579 if (intel_syntax
5580 && i.tm.opcode_modifier.ignoresize
5581 && i.tm.opcode_modifier.no_qsuf)
5582 i.suffix = 0;
5583 else if (!check_qword_reg ())
5584 return 0;
5585 }
5586 else if (i.suffix == WORD_MNEM_SUFFIX)
5587 {
5588 if (intel_syntax
5589 && i.tm.opcode_modifier.ignoresize
5590 && i.tm.opcode_modifier.no_wsuf)
5591 i.suffix = 0;
5592 else if (!check_word_reg ())
5593 return 0;
5594 }
5595 else if (i.suffix == XMMWORD_MNEM_SUFFIX
5596 || i.suffix == YMMWORD_MNEM_SUFFIX
5597 || i.suffix == ZMMWORD_MNEM_SUFFIX)
5598 {
5599 /* Skip if the instruction has x/y/z suffix. match_template
5600 should check if it is a valid suffix. */
5601 }
5602 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5603 /* Do nothing if the instruction is going to ignore the prefix. */
5604 ;
5605 else
5606 abort ();
5607 }
5608 else if (i.tm.opcode_modifier.defaultsize
5609 && !i.suffix
5610 /* exclude fldenv/frstor/fsave/fstenv */
5611 && i.tm.opcode_modifier.no_ssuf)
5612 {
5613 i.suffix = stackop_size;
5614 }
5615 else if (intel_syntax
5616 && !i.suffix
5617 && (i.tm.operand_types[0].bitfield.jumpabsolute
5618 || i.tm.opcode_modifier.jumpbyte
5619 || i.tm.opcode_modifier.jumpintersegment
5620 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5621 && i.tm.extension_opcode <= 3)))
5622 {
5623 switch (flag_code)
5624 {
5625 case CODE_64BIT:
5626 if (!i.tm.opcode_modifier.no_qsuf)
5627 {
5628 i.suffix = QWORD_MNEM_SUFFIX;
5629 break;
5630 }
5631 /* Fall through. */
5632 case CODE_32BIT:
5633 if (!i.tm.opcode_modifier.no_lsuf)
5634 i.suffix = LONG_MNEM_SUFFIX;
5635 break;
5636 case CODE_16BIT:
5637 if (!i.tm.opcode_modifier.no_wsuf)
5638 i.suffix = WORD_MNEM_SUFFIX;
5639 break;
5640 }
5641 }
5642
5643 if (!i.suffix)
5644 {
5645 if (!intel_syntax)
5646 {
5647 if (i.tm.opcode_modifier.w)
5648 {
5649 as_bad (_("no instruction mnemonic suffix given and "
5650 "no register operands; can't size instruction"));
5651 return 0;
5652 }
5653 }
5654 else
5655 {
5656 unsigned int suffixes;
5657
5658 suffixes = !i.tm.opcode_modifier.no_bsuf;
5659 if (!i.tm.opcode_modifier.no_wsuf)
5660 suffixes |= 1 << 1;
5661 if (!i.tm.opcode_modifier.no_lsuf)
5662 suffixes |= 1 << 2;
5663 if (!i.tm.opcode_modifier.no_ldsuf)
5664 suffixes |= 1 << 3;
5665 if (!i.tm.opcode_modifier.no_ssuf)
5666 suffixes |= 1 << 4;
5667 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
5668 suffixes |= 1 << 5;
5669
5670 /* There are more than suffix matches. */
5671 if (i.tm.opcode_modifier.w
5672 || ((suffixes & (suffixes - 1))
5673 && !i.tm.opcode_modifier.defaultsize
5674 && !i.tm.opcode_modifier.ignoresize))
5675 {
5676 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5677 return 0;
5678 }
5679 }
5680 }
5681
5682 /* Change the opcode based on the operand size given by i.suffix;
5683 We don't need to change things for byte insns. */
5684
5685 if (i.suffix
5686 && i.suffix != BYTE_MNEM_SUFFIX
5687 && i.suffix != XMMWORD_MNEM_SUFFIX
5688 && i.suffix != YMMWORD_MNEM_SUFFIX
5689 && i.suffix != ZMMWORD_MNEM_SUFFIX)
5690 {
5691 /* It's not a byte, select word/dword operation. */
5692 if (i.tm.opcode_modifier.w)
5693 {
5694 if (i.tm.opcode_modifier.shortform)
5695 i.tm.base_opcode |= 8;
5696 else
5697 i.tm.base_opcode |= 1;
5698 }
5699
5700 /* Now select between word & dword operations via the operand
5701 size prefix, except for instructions that will ignore this
5702 prefix anyway. */
5703 if (i.tm.opcode_modifier.addrprefixop0)
5704 {
5705 /* The address size override prefix changes the size of the
5706 first operand. */
5707 if ((flag_code == CODE_32BIT
5708 && i.op->regs[0].reg_type.bitfield.word)
5709 || (flag_code != CODE_32BIT
5710 && i.op->regs[0].reg_type.bitfield.dword))
5711 if (!add_prefix (ADDR_PREFIX_OPCODE))
5712 return 0;
5713 }
5714 else if (i.suffix != QWORD_MNEM_SUFFIX
5715 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
5716 && !i.tm.opcode_modifier.ignoresize
5717 && !i.tm.opcode_modifier.floatmf
5718 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5719 || (flag_code == CODE_64BIT
5720 && i.tm.opcode_modifier.jumpbyte)))
5721 {
5722 unsigned int prefix = DATA_PREFIX_OPCODE;
5723
5724 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5725 prefix = ADDR_PREFIX_OPCODE;
5726
5727 if (!add_prefix (prefix))
5728 return 0;
5729 }
5730
5731 /* Set mode64 for an operand. */
5732 if (i.suffix == QWORD_MNEM_SUFFIX
5733 && flag_code == CODE_64BIT
5734 && !i.tm.opcode_modifier.norex64)
5735 {
5736 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5737 need rex64. cmpxchg8b is also a special case. */
5738 if (! (i.operands == 2
5739 && i.tm.base_opcode == 0x90
5740 && i.tm.extension_opcode == None
5741 && operand_type_equal (&i.types [0], &acc64)
5742 && operand_type_equal (&i.types [1], &acc64))
5743 && ! (i.operands == 1
5744 && i.tm.base_opcode == 0xfc7
5745 && i.tm.extension_opcode == 1
5746 && !operand_type_check (i.types [0], reg)
5747 && operand_type_check (i.types [0], anymem)))
5748 i.rex |= REX_W;
5749 }
5750
5751 /* Size floating point instruction. */
5752 if (i.suffix == LONG_MNEM_SUFFIX)
5753 if (i.tm.opcode_modifier.floatmf)
5754 i.tm.base_opcode ^= 4;
5755 }
5756
5757 return 1;
5758 }
5759
5760 static int
5761 check_byte_reg (void)
5762 {
5763 int op;
5764
5765 for (op = i.operands; --op >= 0;)
5766 {
5767 /* Skip non-register operands. */
5768 if (!i.types[op].bitfield.reg)
5769 continue;
5770
5771 /* If this is an eight bit register, it's OK. If it's the 16 or
5772 32 bit version of an eight bit register, we will just use the
5773 low portion, and that's OK too. */
5774 if (i.types[op].bitfield.byte)
5775 continue;
5776
5777 /* I/O port address operands are OK too. */
5778 if (i.tm.operand_types[op].bitfield.inoutportreg)
5779 continue;
5780
5781 /* crc32 doesn't generate this warning. */
5782 if (i.tm.base_opcode == 0xf20f38f0)
5783 continue;
5784
5785 if ((i.types[op].bitfield.word
5786 || i.types[op].bitfield.dword
5787 || i.types[op].bitfield.qword)
5788 && i.op[op].regs->reg_num < 4
5789 /* Prohibit these changes in 64bit mode, since the lowering
5790 would be more complicated. */
5791 && flag_code != CODE_64BIT)
5792 {
5793 #if REGISTER_WARNINGS
5794 if (!quiet_warnings)
5795 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5796 register_prefix,
5797 (i.op[op].regs + (i.types[op].bitfield.word
5798 ? REGNAM_AL - REGNAM_AX
5799 : REGNAM_AL - REGNAM_EAX))->reg_name,
5800 register_prefix,
5801 i.op[op].regs->reg_name,
5802 i.suffix);
5803 #endif
5804 continue;
5805 }
5806 /* Any other register is bad. */
5807 if (i.types[op].bitfield.reg
5808 || i.types[op].bitfield.regmmx
5809 || i.types[op].bitfield.regsimd
5810 || i.types[op].bitfield.sreg2
5811 || i.types[op].bitfield.sreg3
5812 || i.types[op].bitfield.control
5813 || i.types[op].bitfield.debug
5814 || i.types[op].bitfield.test)
5815 {
5816 as_bad (_("`%s%s' not allowed with `%s%c'"),
5817 register_prefix,
5818 i.op[op].regs->reg_name,
5819 i.tm.name,
5820 i.suffix);
5821 return 0;
5822 }
5823 }
5824 return 1;
5825 }
5826
5827 static int
5828 check_long_reg (void)
5829 {
5830 int op;
5831
5832 for (op = i.operands; --op >= 0;)
5833 /* Skip non-register operands. */
5834 if (!i.types[op].bitfield.reg)
5835 continue;
5836 /* Reject eight bit registers, except where the template requires
5837 them. (eg. movzb) */
5838 else if (i.types[op].bitfield.byte
5839 && (i.tm.operand_types[op].bitfield.reg
5840 || i.tm.operand_types[op].bitfield.acc)
5841 && (i.tm.operand_types[op].bitfield.word
5842 || i.tm.operand_types[op].bitfield.dword))
5843 {
5844 as_bad (_("`%s%s' not allowed with `%s%c'"),
5845 register_prefix,
5846 i.op[op].regs->reg_name,
5847 i.tm.name,
5848 i.suffix);
5849 return 0;
5850 }
5851 /* Warn if the e prefix on a general reg is missing. */
5852 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5853 && i.types[op].bitfield.word
5854 && (i.tm.operand_types[op].bitfield.reg
5855 || i.tm.operand_types[op].bitfield.acc)
5856 && i.tm.operand_types[op].bitfield.dword)
5857 {
5858 /* Prohibit these changes in the 64bit mode, since the
5859 lowering is more complicated. */
5860 if (flag_code == CODE_64BIT)
5861 {
5862 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5863 register_prefix, i.op[op].regs->reg_name,
5864 i.suffix);
5865 return 0;
5866 }
5867 #if REGISTER_WARNINGS
5868 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5869 register_prefix,
5870 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5871 register_prefix, i.op[op].regs->reg_name, i.suffix);
5872 #endif
5873 }
5874 /* Warn if the r prefix on a general reg is present. */
5875 else if (i.types[op].bitfield.qword
5876 && (i.tm.operand_types[op].bitfield.reg
5877 || i.tm.operand_types[op].bitfield.acc)
5878 && i.tm.operand_types[op].bitfield.dword)
5879 {
5880 if (intel_syntax
5881 && i.tm.opcode_modifier.toqword
5882 && !i.types[0].bitfield.regsimd)
5883 {
5884 /* Convert to QWORD. We want REX byte. */
5885 i.suffix = QWORD_MNEM_SUFFIX;
5886 }
5887 else
5888 {
5889 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5890 register_prefix, i.op[op].regs->reg_name,
5891 i.suffix);
5892 return 0;
5893 }
5894 }
5895 return 1;
5896 }
5897
5898 static int
5899 check_qword_reg (void)
5900 {
5901 int op;
5902
5903 for (op = i.operands; --op >= 0; )
5904 /* Skip non-register operands. */
5905 if (!i.types[op].bitfield.reg)
5906 continue;
5907 /* Reject eight bit registers, except where the template requires
5908 them. (eg. movzb) */
5909 else if (i.types[op].bitfield.byte
5910 && (i.tm.operand_types[op].bitfield.reg
5911 || i.tm.operand_types[op].bitfield.acc)
5912 && (i.tm.operand_types[op].bitfield.word
5913 || i.tm.operand_types[op].bitfield.dword))
5914 {
5915 as_bad (_("`%s%s' not allowed with `%s%c'"),
5916 register_prefix,
5917 i.op[op].regs->reg_name,
5918 i.tm.name,
5919 i.suffix);
5920 return 0;
5921 }
5922 /* Warn if the r prefix on a general reg is missing. */
5923 else if ((i.types[op].bitfield.word
5924 || i.types[op].bitfield.dword)
5925 && (i.tm.operand_types[op].bitfield.reg
5926 || i.tm.operand_types[op].bitfield.acc)
5927 && i.tm.operand_types[op].bitfield.qword)
5928 {
5929 /* Prohibit these changes in the 64bit mode, since the
5930 lowering is more complicated. */
5931 if (intel_syntax
5932 && i.tm.opcode_modifier.todword
5933 && !i.types[0].bitfield.regsimd)
5934 {
5935 /* Convert to DWORD. We don't want REX byte. */
5936 i.suffix = LONG_MNEM_SUFFIX;
5937 }
5938 else
5939 {
5940 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5941 register_prefix, i.op[op].regs->reg_name,
5942 i.suffix);
5943 return 0;
5944 }
5945 }
5946 return 1;
5947 }
5948
5949 static int
5950 check_word_reg (void)
5951 {
5952 int op;
5953 for (op = i.operands; --op >= 0;)
5954 /* Skip non-register operands. */
5955 if (!i.types[op].bitfield.reg)
5956 continue;
5957 /* Reject eight bit registers, except where the template requires
5958 them. (eg. movzb) */
5959 else if (i.types[op].bitfield.byte
5960 && (i.tm.operand_types[op].bitfield.reg
5961 || i.tm.operand_types[op].bitfield.acc)
5962 && (i.tm.operand_types[op].bitfield.word
5963 || i.tm.operand_types[op].bitfield.dword))
5964 {
5965 as_bad (_("`%s%s' not allowed with `%s%c'"),
5966 register_prefix,
5967 i.op[op].regs->reg_name,
5968 i.tm.name,
5969 i.suffix);
5970 return 0;
5971 }
5972 /* Warn if the e or r prefix on a general reg is present. */
5973 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5974 && (i.types[op].bitfield.dword
5975 || i.types[op].bitfield.qword)
5976 && (i.tm.operand_types[op].bitfield.reg
5977 || i.tm.operand_types[op].bitfield.acc)
5978 && i.tm.operand_types[op].bitfield.word)
5979 {
5980 /* Prohibit these changes in the 64bit mode, since the
5981 lowering is more complicated. */
5982 if (flag_code == CODE_64BIT)
5983 {
5984 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5985 register_prefix, i.op[op].regs->reg_name,
5986 i.suffix);
5987 return 0;
5988 }
5989 #if REGISTER_WARNINGS
5990 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5991 register_prefix,
5992 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5993 register_prefix, i.op[op].regs->reg_name, i.suffix);
5994 #endif
5995 }
5996 return 1;
5997 }
5998
5999 static int
6000 update_imm (unsigned int j)
6001 {
6002 i386_operand_type overlap = i.types[j];
6003 if ((overlap.bitfield.imm8
6004 || overlap.bitfield.imm8s
6005 || overlap.bitfield.imm16
6006 || overlap.bitfield.imm32
6007 || overlap.bitfield.imm32s
6008 || overlap.bitfield.imm64)
6009 && !operand_type_equal (&overlap, &imm8)
6010 && !operand_type_equal (&overlap, &imm8s)
6011 && !operand_type_equal (&overlap, &imm16)
6012 && !operand_type_equal (&overlap, &imm32)
6013 && !operand_type_equal (&overlap, &imm32s)
6014 && !operand_type_equal (&overlap, &imm64))
6015 {
6016 if (i.suffix)
6017 {
6018 i386_operand_type temp;
6019
6020 operand_type_set (&temp, 0);
6021 if (i.suffix == BYTE_MNEM_SUFFIX)
6022 {
6023 temp.bitfield.imm8 = overlap.bitfield.imm8;
6024 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6025 }
6026 else if (i.suffix == WORD_MNEM_SUFFIX)
6027 temp.bitfield.imm16 = overlap.bitfield.imm16;
6028 else if (i.suffix == QWORD_MNEM_SUFFIX)
6029 {
6030 temp.bitfield.imm64 = overlap.bitfield.imm64;
6031 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6032 }
6033 else
6034 temp.bitfield.imm32 = overlap.bitfield.imm32;
6035 overlap = temp;
6036 }
6037 else if (operand_type_equal (&overlap, &imm16_32_32s)
6038 || operand_type_equal (&overlap, &imm16_32)
6039 || operand_type_equal (&overlap, &imm16_32s))
6040 {
6041 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6042 overlap = imm16;
6043 else
6044 overlap = imm32s;
6045 }
6046 if (!operand_type_equal (&overlap, &imm8)
6047 && !operand_type_equal (&overlap, &imm8s)
6048 && !operand_type_equal (&overlap, &imm16)
6049 && !operand_type_equal (&overlap, &imm32)
6050 && !operand_type_equal (&overlap, &imm32s)
6051 && !operand_type_equal (&overlap, &imm64))
6052 {
6053 as_bad (_("no instruction mnemonic suffix given; "
6054 "can't determine immediate size"));
6055 return 0;
6056 }
6057 }
6058 i.types[j] = overlap;
6059
6060 return 1;
6061 }
6062
6063 static int
6064 finalize_imm (void)
6065 {
6066 unsigned int j, n;
6067
6068 /* Update the first 2 immediate operands. */
6069 n = i.operands > 2 ? 2 : i.operands;
6070 if (n)
6071 {
6072 for (j = 0; j < n; j++)
6073 if (update_imm (j) == 0)
6074 return 0;
6075
6076 /* The 3rd operand can't be immediate operand. */
6077 gas_assert (operand_type_check (i.types[2], imm) == 0);
6078 }
6079
6080 return 1;
6081 }
6082
6083 static int
6084 process_operands (void)
6085 {
6086 /* Default segment register this instruction will use for memory
6087 accesses. 0 means unknown. This is only for optimizing out
6088 unnecessary segment overrides. */
6089 const seg_entry *default_seg = 0;
6090
6091 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6092 {
6093 unsigned int dupl = i.operands;
6094 unsigned int dest = dupl - 1;
6095 unsigned int j;
6096
6097 /* The destination must be an xmm register. */
6098 gas_assert (i.reg_operands
6099 && MAX_OPERANDS > dupl
6100 && operand_type_equal (&i.types[dest], &regxmm));
6101
6102 if (i.tm.operand_types[0].bitfield.acc
6103 && i.tm.operand_types[0].bitfield.xmmword)
6104 {
6105 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6106 {
6107 /* Keep xmm0 for instructions with VEX prefix and 3
6108 sources. */
6109 i.tm.operand_types[0].bitfield.acc = 0;
6110 i.tm.operand_types[0].bitfield.regsimd = 1;
6111 goto duplicate;
6112 }
6113 else
6114 {
6115 /* We remove the first xmm0 and keep the number of
6116 operands unchanged, which in fact duplicates the
6117 destination. */
6118 for (j = 1; j < i.operands; j++)
6119 {
6120 i.op[j - 1] = i.op[j];
6121 i.types[j - 1] = i.types[j];
6122 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6123 }
6124 }
6125 }
6126 else if (i.tm.opcode_modifier.implicit1stxmm0)
6127 {
6128 gas_assert ((MAX_OPERANDS - 1) > dupl
6129 && (i.tm.opcode_modifier.vexsources
6130 == VEX3SOURCES));
6131
6132 /* Add the implicit xmm0 for instructions with VEX prefix
6133 and 3 sources. */
6134 for (j = i.operands; j > 0; j--)
6135 {
6136 i.op[j] = i.op[j - 1];
6137 i.types[j] = i.types[j - 1];
6138 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6139 }
6140 i.op[0].regs
6141 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6142 i.types[0] = regxmm;
6143 i.tm.operand_types[0] = regxmm;
6144
6145 i.operands += 2;
6146 i.reg_operands += 2;
6147 i.tm.operands += 2;
6148
6149 dupl++;
6150 dest++;
6151 i.op[dupl] = i.op[dest];
6152 i.types[dupl] = i.types[dest];
6153 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6154 }
6155 else
6156 {
6157 duplicate:
6158 i.operands++;
6159 i.reg_operands++;
6160 i.tm.operands++;
6161
6162 i.op[dupl] = i.op[dest];
6163 i.types[dupl] = i.types[dest];
6164 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6165 }
6166
6167 if (i.tm.opcode_modifier.immext)
6168 process_immext ();
6169 }
6170 else if (i.tm.operand_types[0].bitfield.acc
6171 && i.tm.operand_types[0].bitfield.xmmword)
6172 {
6173 unsigned int j;
6174
6175 for (j = 1; j < i.operands; j++)
6176 {
6177 i.op[j - 1] = i.op[j];
6178 i.types[j - 1] = i.types[j];
6179
6180 /* We need to adjust fields in i.tm since they are used by
6181 build_modrm_byte. */
6182 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6183 }
6184
6185 i.operands--;
6186 i.reg_operands--;
6187 i.tm.operands--;
6188 }
6189 else if (i.tm.opcode_modifier.implicitquadgroup)
6190 {
6191 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6192 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6193 unsigned int regnum = register_number (i.op[1].regs);
6194 unsigned int first_reg_in_group = regnum & ~3;
6195 unsigned int last_reg_in_group = first_reg_in_group + 3;
6196 if (regnum != first_reg_in_group) {
6197 as_warn (_("the second source register `%s%s' implicitly denotes"
6198 " `%s%.3s%d' to `%s%.3s%d' source group in `%s'"),
6199 register_prefix, i.op[1].regs->reg_name,
6200 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6201 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6202 i.tm.name);
6203 }
6204 }
6205 else if (i.tm.opcode_modifier.regkludge)
6206 {
6207 /* The imul $imm, %reg instruction is converted into
6208 imul $imm, %reg, %reg, and the clr %reg instruction
6209 is converted into xor %reg, %reg. */
6210
6211 unsigned int first_reg_op;
6212
6213 if (operand_type_check (i.types[0], reg))
6214 first_reg_op = 0;
6215 else
6216 first_reg_op = 1;
6217 /* Pretend we saw the extra register operand. */
6218 gas_assert (i.reg_operands == 1
6219 && i.op[first_reg_op + 1].regs == 0);
6220 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6221 i.types[first_reg_op + 1] = i.types[first_reg_op];
6222 i.operands++;
6223 i.reg_operands++;
6224 }
6225
6226 if (i.tm.opcode_modifier.shortform)
6227 {
6228 if (i.types[0].bitfield.sreg2
6229 || i.types[0].bitfield.sreg3)
6230 {
6231 if (i.tm.base_opcode == POP_SEG_SHORT
6232 && i.op[0].regs->reg_num == 1)
6233 {
6234 as_bad (_("you can't `pop %scs'"), register_prefix);
6235 return 0;
6236 }
6237 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6238 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6239 i.rex |= REX_B;
6240 }
6241 else
6242 {
6243 /* The register or float register operand is in operand
6244 0 or 1. */
6245 unsigned int op;
6246
6247 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6248 || operand_type_check (i.types[0], reg))
6249 op = 0;
6250 else
6251 op = 1;
6252 /* Register goes in low 3 bits of opcode. */
6253 i.tm.base_opcode |= i.op[op].regs->reg_num;
6254 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6255 i.rex |= REX_B;
6256 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6257 {
6258 /* Warn about some common errors, but press on regardless.
6259 The first case can be generated by gcc (<= 2.8.1). */
6260 if (i.operands == 2)
6261 {
6262 /* Reversed arguments on faddp, fsubp, etc. */
6263 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6264 register_prefix, i.op[!intel_syntax].regs->reg_name,
6265 register_prefix, i.op[intel_syntax].regs->reg_name);
6266 }
6267 else
6268 {
6269 /* Extraneous `l' suffix on fp insn. */
6270 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6271 register_prefix, i.op[0].regs->reg_name);
6272 }
6273 }
6274 }
6275 }
6276 else if (i.tm.opcode_modifier.modrm)
6277 {
6278 /* The opcode is completed (modulo i.tm.extension_opcode which
6279 must be put into the modrm byte). Now, we make the modrm and
6280 index base bytes based on all the info we've collected. */
6281
6282 default_seg = build_modrm_byte ();
6283 }
6284 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6285 {
6286 default_seg = &ds;
6287 }
6288 else if (i.tm.opcode_modifier.isstring)
6289 {
6290 /* For the string instructions that allow a segment override
6291 on one of their operands, the default segment is ds. */
6292 default_seg = &ds;
6293 }
6294
6295 if (i.tm.base_opcode == 0x8d /* lea */
6296 && i.seg[0]
6297 && !quiet_warnings)
6298 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6299
6300 /* If a segment was explicitly specified, and the specified segment
6301 is not the default, use an opcode prefix to select it. If we
6302 never figured out what the default segment is, then default_seg
6303 will be zero at this point, and the specified segment prefix will
6304 always be used. */
6305 if ((i.seg[0]) && (i.seg[0] != default_seg))
6306 {
6307 if (!add_prefix (i.seg[0]->seg_prefix))
6308 return 0;
6309 }
6310 return 1;
6311 }
6312
6313 static const seg_entry *
6314 build_modrm_byte (void)
6315 {
6316 const seg_entry *default_seg = 0;
6317 unsigned int source, dest;
6318 int vex_3_sources;
6319
6320 /* The first operand of instructions with VEX prefix and 3 sources
6321 must be VEX_Imm4. */
6322 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6323 if (vex_3_sources)
6324 {
6325 unsigned int nds, reg_slot;
6326 expressionS *exp;
6327
6328 if (i.tm.opcode_modifier.veximmext
6329 && i.tm.opcode_modifier.immext)
6330 {
6331 dest = i.operands - 2;
6332 gas_assert (dest == 3);
6333 }
6334 else
6335 dest = i.operands - 1;
6336 nds = dest - 1;
6337
6338 /* There are 2 kinds of instructions:
6339 1. 5 operands: 4 register operands or 3 register operands
6340 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6341 VexW0 or VexW1. The destination must be either XMM, YMM or
6342 ZMM register.
6343 2. 4 operands: 4 register operands or 3 register operands
6344 plus 1 memory operand, VexXDS, and VexImmExt */
6345 gas_assert ((i.reg_operands == 4
6346 || (i.reg_operands == 3 && i.mem_operands == 1))
6347 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6348 && (i.tm.opcode_modifier.veximmext
6349 || (i.imm_operands == 1
6350 && i.types[0].bitfield.vec_imm4
6351 && (i.tm.opcode_modifier.vexw == VEXW0
6352 || i.tm.opcode_modifier.vexw == VEXW1)
6353 && i.tm.operand_types[dest].bitfield.regsimd)));
6354
6355 if (i.imm_operands == 0)
6356 {
6357 /* When there is no immediate operand, generate an 8bit
6358 immediate operand to encode the first operand. */
6359 exp = &im_expressions[i.imm_operands++];
6360 i.op[i.operands].imms = exp;
6361 i.types[i.operands] = imm8;
6362 i.operands++;
6363 /* If VexW1 is set, the first operand is the source and
6364 the second operand is encoded in the immediate operand. */
6365 if (i.tm.opcode_modifier.vexw == VEXW1)
6366 {
6367 source = 0;
6368 reg_slot = 1;
6369 }
6370 else
6371 {
6372 source = 1;
6373 reg_slot = 0;
6374 }
6375
6376 /* FMA swaps REG and NDS. */
6377 if (i.tm.cpu_flags.bitfield.cpufma)
6378 {
6379 unsigned int tmp;
6380 tmp = reg_slot;
6381 reg_slot = nds;
6382 nds = tmp;
6383 }
6384
6385 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6386 exp->X_op = O_constant;
6387 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6388 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6389 }
6390 else
6391 {
6392 unsigned int imm_slot;
6393
6394 if (i.tm.opcode_modifier.vexw == VEXW0)
6395 {
6396 /* If VexW0 is set, the third operand is the source and
6397 the second operand is encoded in the immediate
6398 operand. */
6399 source = 2;
6400 reg_slot = 1;
6401 }
6402 else
6403 {
6404 /* VexW1 is set, the second operand is the source and
6405 the third operand is encoded in the immediate
6406 operand. */
6407 source = 1;
6408 reg_slot = 2;
6409 }
6410
6411 if (i.tm.opcode_modifier.immext)
6412 {
6413 /* When ImmExt is set, the immediate byte is the last
6414 operand. */
6415 imm_slot = i.operands - 1;
6416 source--;
6417 reg_slot--;
6418 }
6419 else
6420 {
6421 imm_slot = 0;
6422
6423 /* Turn on Imm8 so that output_imm will generate it. */
6424 i.types[imm_slot].bitfield.imm8 = 1;
6425 }
6426
6427 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6428 i.op[imm_slot].imms->X_add_number
6429 |= register_number (i.op[reg_slot].regs) << 4;
6430 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6431 }
6432
6433 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
6434 i.vex.register_specifier = i.op[nds].regs;
6435 }
6436 else
6437 source = dest = 0;
6438
6439 /* i.reg_operands MUST be the number of real register operands;
6440 implicit registers do not count. If there are 3 register
6441 operands, it must be a instruction with VexNDS. For a
6442 instruction with VexNDD, the destination register is encoded
6443 in VEX prefix. If there are 4 register operands, it must be
6444 a instruction with VEX prefix and 3 sources. */
6445 if (i.mem_operands == 0
6446 && ((i.reg_operands == 2
6447 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6448 || (i.reg_operands == 3
6449 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6450 || (i.reg_operands == 4 && vex_3_sources)))
6451 {
6452 switch (i.operands)
6453 {
6454 case 2:
6455 source = 0;
6456 break;
6457 case 3:
6458 /* When there are 3 operands, one of them may be immediate,
6459 which may be the first or the last operand. Otherwise,
6460 the first operand must be shift count register (cl) or it
6461 is an instruction with VexNDS. */
6462 gas_assert (i.imm_operands == 1
6463 || (i.imm_operands == 0
6464 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6465 || i.types[0].bitfield.shiftcount)));
6466 if (operand_type_check (i.types[0], imm)
6467 || i.types[0].bitfield.shiftcount)
6468 source = 1;
6469 else
6470 source = 0;
6471 break;
6472 case 4:
6473 /* When there are 4 operands, the first two must be 8bit
6474 immediate operands. The source operand will be the 3rd
6475 one.
6476
6477 For instructions with VexNDS, if the first operand
6478 an imm8, the source operand is the 2nd one. If the last
6479 operand is imm8, the source operand is the first one. */
6480 gas_assert ((i.imm_operands == 2
6481 && i.types[0].bitfield.imm8
6482 && i.types[1].bitfield.imm8)
6483 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6484 && i.imm_operands == 1
6485 && (i.types[0].bitfield.imm8
6486 || i.types[i.operands - 1].bitfield.imm8
6487 || i.rounding)));
6488 if (i.imm_operands == 2)
6489 source = 2;
6490 else
6491 {
6492 if (i.types[0].bitfield.imm8)
6493 source = 1;
6494 else
6495 source = 0;
6496 }
6497 break;
6498 case 5:
6499 if (i.tm.opcode_modifier.evex)
6500 {
6501 /* For EVEX instructions, when there are 5 operands, the
6502 first one must be immediate operand. If the second one
6503 is immediate operand, the source operand is the 3th
6504 one. If the last one is immediate operand, the source
6505 operand is the 2nd one. */
6506 gas_assert (i.imm_operands == 2
6507 && i.tm.opcode_modifier.sae
6508 && operand_type_check (i.types[0], imm));
6509 if (operand_type_check (i.types[1], imm))
6510 source = 2;
6511 else if (operand_type_check (i.types[4], imm))
6512 source = 1;
6513 else
6514 abort ();
6515 }
6516 break;
6517 default:
6518 abort ();
6519 }
6520
6521 if (!vex_3_sources)
6522 {
6523 dest = source + 1;
6524
6525 /* RC/SAE operand could be between DEST and SRC. That happens
6526 when one operand is GPR and the other one is XMM/YMM/ZMM
6527 register. */
6528 if (i.rounding && i.rounding->operand == (int) dest)
6529 dest++;
6530
6531 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6532 {
6533 /* For instructions with VexNDS, the register-only source
6534 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
6535 register. It is encoded in VEX prefix. We need to
6536 clear RegMem bit before calling operand_type_equal. */
6537
6538 i386_operand_type op;
6539 unsigned int vvvv;
6540
6541 /* Check register-only source operand when two source
6542 operands are swapped. */
6543 if (!i.tm.operand_types[source].bitfield.baseindex
6544 && i.tm.operand_types[dest].bitfield.baseindex)
6545 {
6546 vvvv = source;
6547 source = dest;
6548 }
6549 else
6550 vvvv = dest;
6551
6552 op = i.tm.operand_types[vvvv];
6553 op.bitfield.regmem = 0;
6554 if ((dest + 1) >= i.operands
6555 || ((!op.bitfield.reg
6556 || (!op.bitfield.dword && !op.bitfield.qword))
6557 && !op.bitfield.regsimd
6558 && !operand_type_equal (&op, &regmask)))
6559 abort ();
6560 i.vex.register_specifier = i.op[vvvv].regs;
6561 dest++;
6562 }
6563 }
6564
6565 i.rm.mode = 3;
6566 /* One of the register operands will be encoded in the i.tm.reg
6567 field, the other in the combined i.tm.mode and i.tm.regmem
6568 fields. If no form of this instruction supports a memory
6569 destination operand, then we assume the source operand may
6570 sometimes be a memory operand and so we need to store the
6571 destination in the i.rm.reg field. */
6572 if (!i.tm.operand_types[dest].bitfield.regmem
6573 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6574 {
6575 i.rm.reg = i.op[dest].regs->reg_num;
6576 i.rm.regmem = i.op[source].regs->reg_num;
6577 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6578 i.rex |= REX_R;
6579 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6580 i.vrex |= REX_R;
6581 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6582 i.rex |= REX_B;
6583 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6584 i.vrex |= REX_B;
6585 }
6586 else
6587 {
6588 i.rm.reg = i.op[source].regs->reg_num;
6589 i.rm.regmem = i.op[dest].regs->reg_num;
6590 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6591 i.rex |= REX_B;
6592 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6593 i.vrex |= REX_B;
6594 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6595 i.rex |= REX_R;
6596 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6597 i.vrex |= REX_R;
6598 }
6599 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6600 {
6601 if (!i.types[0].bitfield.control
6602 && !i.types[1].bitfield.control)
6603 abort ();
6604 i.rex &= ~(REX_R | REX_B);
6605 add_prefix (LOCK_PREFIX_OPCODE);
6606 }
6607 }
6608 else
6609 { /* If it's not 2 reg operands... */
6610 unsigned int mem;
6611
6612 if (i.mem_operands)
6613 {
6614 unsigned int fake_zero_displacement = 0;
6615 unsigned int op;
6616
6617 for (op = 0; op < i.operands; op++)
6618 if (operand_type_check (i.types[op], anymem))
6619 break;
6620 gas_assert (op < i.operands);
6621
6622 if (i.tm.opcode_modifier.vecsib)
6623 {
6624 if (i.index_reg->reg_num == RegEiz
6625 || i.index_reg->reg_num == RegRiz)
6626 abort ();
6627
6628 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6629 if (!i.base_reg)
6630 {
6631 i.sib.base = NO_BASE_REGISTER;
6632 i.sib.scale = i.log2_scale_factor;
6633 i.types[op].bitfield.disp8 = 0;
6634 i.types[op].bitfield.disp16 = 0;
6635 i.types[op].bitfield.disp64 = 0;
6636 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6637 {
6638 /* Must be 32 bit */
6639 i.types[op].bitfield.disp32 = 1;
6640 i.types[op].bitfield.disp32s = 0;
6641 }
6642 else
6643 {
6644 i.types[op].bitfield.disp32 = 0;
6645 i.types[op].bitfield.disp32s = 1;
6646 }
6647 }
6648 i.sib.index = i.index_reg->reg_num;
6649 if ((i.index_reg->reg_flags & RegRex) != 0)
6650 i.rex |= REX_X;
6651 if ((i.index_reg->reg_flags & RegVRex) != 0)
6652 i.vrex |= REX_X;
6653 }
6654
6655 default_seg = &ds;
6656
6657 if (i.base_reg == 0)
6658 {
6659 i.rm.mode = 0;
6660 if (!i.disp_operands)
6661 fake_zero_displacement = 1;
6662 if (i.index_reg == 0)
6663 {
6664 gas_assert (!i.tm.opcode_modifier.vecsib);
6665 /* Operand is just <disp> */
6666 if (flag_code == CODE_64BIT)
6667 {
6668 /* 64bit mode overwrites the 32bit absolute
6669 addressing by RIP relative addressing and
6670 absolute addressing is encoded by one of the
6671 redundant SIB forms. */
6672 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6673 i.sib.base = NO_BASE_REGISTER;
6674 i.sib.index = NO_INDEX_REGISTER;
6675 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
6676 ? disp32s : disp32);
6677 }
6678 else if ((flag_code == CODE_16BIT)
6679 ^ (i.prefix[ADDR_PREFIX] != 0))
6680 {
6681 i.rm.regmem = NO_BASE_REGISTER_16;
6682 i.types[op] = disp16;
6683 }
6684 else
6685 {
6686 i.rm.regmem = NO_BASE_REGISTER;
6687 i.types[op] = disp32;
6688 }
6689 }
6690 else if (!i.tm.opcode_modifier.vecsib)
6691 {
6692 /* !i.base_reg && i.index_reg */
6693 if (i.index_reg->reg_num == RegEiz
6694 || i.index_reg->reg_num == RegRiz)
6695 i.sib.index = NO_INDEX_REGISTER;
6696 else
6697 i.sib.index = i.index_reg->reg_num;
6698 i.sib.base = NO_BASE_REGISTER;
6699 i.sib.scale = i.log2_scale_factor;
6700 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6701 i.types[op].bitfield.disp8 = 0;
6702 i.types[op].bitfield.disp16 = 0;
6703 i.types[op].bitfield.disp64 = 0;
6704 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6705 {
6706 /* Must be 32 bit */
6707 i.types[op].bitfield.disp32 = 1;
6708 i.types[op].bitfield.disp32s = 0;
6709 }
6710 else
6711 {
6712 i.types[op].bitfield.disp32 = 0;
6713 i.types[op].bitfield.disp32s = 1;
6714 }
6715 if ((i.index_reg->reg_flags & RegRex) != 0)
6716 i.rex |= REX_X;
6717 }
6718 }
6719 /* RIP addressing for 64bit mode. */
6720 else if (i.base_reg->reg_num == RegRip ||
6721 i.base_reg->reg_num == RegEip)
6722 {
6723 gas_assert (!i.tm.opcode_modifier.vecsib);
6724 i.rm.regmem = NO_BASE_REGISTER;
6725 i.types[op].bitfield.disp8 = 0;
6726 i.types[op].bitfield.disp16 = 0;
6727 i.types[op].bitfield.disp32 = 0;
6728 i.types[op].bitfield.disp32s = 1;
6729 i.types[op].bitfield.disp64 = 0;
6730 i.flags[op] |= Operand_PCrel;
6731 if (! i.disp_operands)
6732 fake_zero_displacement = 1;
6733 }
6734 else if (i.base_reg->reg_type.bitfield.word)
6735 {
6736 gas_assert (!i.tm.opcode_modifier.vecsib);
6737 switch (i.base_reg->reg_num)
6738 {
6739 case 3: /* (%bx) */
6740 if (i.index_reg == 0)
6741 i.rm.regmem = 7;
6742 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6743 i.rm.regmem = i.index_reg->reg_num - 6;
6744 break;
6745 case 5: /* (%bp) */
6746 default_seg = &ss;
6747 if (i.index_reg == 0)
6748 {
6749 i.rm.regmem = 6;
6750 if (operand_type_check (i.types[op], disp) == 0)
6751 {
6752 /* fake (%bp) into 0(%bp) */
6753 i.types[op].bitfield.disp8 = 1;
6754 fake_zero_displacement = 1;
6755 }
6756 }
6757 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6758 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6759 break;
6760 default: /* (%si) -> 4 or (%di) -> 5 */
6761 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6762 }
6763 i.rm.mode = mode_from_disp_size (i.types[op]);
6764 }
6765 else /* i.base_reg and 32/64 bit mode */
6766 {
6767 if (flag_code == CODE_64BIT
6768 && operand_type_check (i.types[op], disp))
6769 {
6770 i386_operand_type temp;
6771 operand_type_set (&temp, 0);
6772 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6773 i.types[op] = temp;
6774 if (i.prefix[ADDR_PREFIX] == 0)
6775 i.types[op].bitfield.disp32s = 1;
6776 else
6777 i.types[op].bitfield.disp32 = 1;
6778 }
6779
6780 if (!i.tm.opcode_modifier.vecsib)
6781 i.rm.regmem = i.base_reg->reg_num;
6782 if ((i.base_reg->reg_flags & RegRex) != 0)
6783 i.rex |= REX_B;
6784 i.sib.base = i.base_reg->reg_num;
6785 /* x86-64 ignores REX prefix bit here to avoid decoder
6786 complications. */
6787 if (!(i.base_reg->reg_flags & RegRex)
6788 && (i.base_reg->reg_num == EBP_REG_NUM
6789 || i.base_reg->reg_num == ESP_REG_NUM))
6790 default_seg = &ss;
6791 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6792 {
6793 fake_zero_displacement = 1;
6794 i.types[op].bitfield.disp8 = 1;
6795 }
6796 i.sib.scale = i.log2_scale_factor;
6797 if (i.index_reg == 0)
6798 {
6799 gas_assert (!i.tm.opcode_modifier.vecsib);
6800 /* <disp>(%esp) becomes two byte modrm with no index
6801 register. We've already stored the code for esp
6802 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6803 Any base register besides %esp will not use the
6804 extra modrm byte. */
6805 i.sib.index = NO_INDEX_REGISTER;
6806 }
6807 else if (!i.tm.opcode_modifier.vecsib)
6808 {
6809 if (i.index_reg->reg_num == RegEiz
6810 || i.index_reg->reg_num == RegRiz)
6811 i.sib.index = NO_INDEX_REGISTER;
6812 else
6813 i.sib.index = i.index_reg->reg_num;
6814 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6815 if ((i.index_reg->reg_flags & RegRex) != 0)
6816 i.rex |= REX_X;
6817 }
6818
6819 if (i.disp_operands
6820 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6821 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6822 i.rm.mode = 0;
6823 else
6824 {
6825 if (!fake_zero_displacement
6826 && !i.disp_operands
6827 && i.disp_encoding)
6828 {
6829 fake_zero_displacement = 1;
6830 if (i.disp_encoding == disp_encoding_8bit)
6831 i.types[op].bitfield.disp8 = 1;
6832 else
6833 i.types[op].bitfield.disp32 = 1;
6834 }
6835 i.rm.mode = mode_from_disp_size (i.types[op]);
6836 }
6837 }
6838
6839 if (fake_zero_displacement)
6840 {
6841 /* Fakes a zero displacement assuming that i.types[op]
6842 holds the correct displacement size. */
6843 expressionS *exp;
6844
6845 gas_assert (i.op[op].disps == 0);
6846 exp = &disp_expressions[i.disp_operands++];
6847 i.op[op].disps = exp;
6848 exp->X_op = O_constant;
6849 exp->X_add_number = 0;
6850 exp->X_add_symbol = (symbolS *) 0;
6851 exp->X_op_symbol = (symbolS *) 0;
6852 }
6853
6854 mem = op;
6855 }
6856 else
6857 mem = ~0;
6858
6859 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
6860 {
6861 if (operand_type_check (i.types[0], imm))
6862 i.vex.register_specifier = NULL;
6863 else
6864 {
6865 /* VEX.vvvv encodes one of the sources when the first
6866 operand is not an immediate. */
6867 if (i.tm.opcode_modifier.vexw == VEXW0)
6868 i.vex.register_specifier = i.op[0].regs;
6869 else
6870 i.vex.register_specifier = i.op[1].regs;
6871 }
6872
6873 /* Destination is a XMM register encoded in the ModRM.reg
6874 and VEX.R bit. */
6875 i.rm.reg = i.op[2].regs->reg_num;
6876 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6877 i.rex |= REX_R;
6878
6879 /* ModRM.rm and VEX.B encodes the other source. */
6880 if (!i.mem_operands)
6881 {
6882 i.rm.mode = 3;
6883
6884 if (i.tm.opcode_modifier.vexw == VEXW0)
6885 i.rm.regmem = i.op[1].regs->reg_num;
6886 else
6887 i.rm.regmem = i.op[0].regs->reg_num;
6888
6889 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6890 i.rex |= REX_B;
6891 }
6892 }
6893 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
6894 {
6895 i.vex.register_specifier = i.op[2].regs;
6896 if (!i.mem_operands)
6897 {
6898 i.rm.mode = 3;
6899 i.rm.regmem = i.op[1].regs->reg_num;
6900 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6901 i.rex |= REX_B;
6902 }
6903 }
6904 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6905 (if any) based on i.tm.extension_opcode. Again, we must be
6906 careful to make sure that segment/control/debug/test/MMX
6907 registers are coded into the i.rm.reg field. */
6908 else if (i.reg_operands)
6909 {
6910 unsigned int op;
6911 unsigned int vex_reg = ~0;
6912
6913 for (op = 0; op < i.operands; op++)
6914 if (i.types[op].bitfield.reg
6915 || i.types[op].bitfield.regmmx
6916 || i.types[op].bitfield.regsimd
6917 || i.types[op].bitfield.regbnd
6918 || i.types[op].bitfield.regmask
6919 || i.types[op].bitfield.sreg2
6920 || i.types[op].bitfield.sreg3
6921 || i.types[op].bitfield.control
6922 || i.types[op].bitfield.debug
6923 || i.types[op].bitfield.test)
6924 break;
6925
6926 if (vex_3_sources)
6927 op = dest;
6928 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6929 {
6930 /* For instructions with VexNDS, the register-only
6931 source operand is encoded in VEX prefix. */
6932 gas_assert (mem != (unsigned int) ~0);
6933
6934 if (op > mem)
6935 {
6936 vex_reg = op++;
6937 gas_assert (op < i.operands);
6938 }
6939 else
6940 {
6941 /* Check register-only source operand when two source
6942 operands are swapped. */
6943 if (!i.tm.operand_types[op].bitfield.baseindex
6944 && i.tm.operand_types[op + 1].bitfield.baseindex)
6945 {
6946 vex_reg = op;
6947 op += 2;
6948 gas_assert (mem == (vex_reg + 1)
6949 && op < i.operands);
6950 }
6951 else
6952 {
6953 vex_reg = op + 1;
6954 gas_assert (vex_reg < i.operands);
6955 }
6956 }
6957 }
6958 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
6959 {
6960 /* For instructions with VexNDD, the register destination
6961 is encoded in VEX prefix. */
6962 if (i.mem_operands == 0)
6963 {
6964 /* There is no memory operand. */
6965 gas_assert ((op + 2) == i.operands);
6966 vex_reg = op + 1;
6967 }
6968 else
6969 {
6970 /* There are only 2 operands. */
6971 gas_assert (op < 2 && i.operands == 2);
6972 vex_reg = 1;
6973 }
6974 }
6975 else
6976 gas_assert (op < i.operands);
6977
6978 if (vex_reg != (unsigned int) ~0)
6979 {
6980 i386_operand_type *type = &i.tm.operand_types[vex_reg];
6981
6982 if ((!type->bitfield.reg
6983 || (!type->bitfield.dword && !type->bitfield.qword))
6984 && !type->bitfield.regsimd
6985 && !operand_type_equal (type, &regmask))
6986 abort ();
6987
6988 i.vex.register_specifier = i.op[vex_reg].regs;
6989 }
6990
6991 /* Don't set OP operand twice. */
6992 if (vex_reg != op)
6993 {
6994 /* If there is an extension opcode to put here, the
6995 register number must be put into the regmem field. */
6996 if (i.tm.extension_opcode != None)
6997 {
6998 i.rm.regmem = i.op[op].regs->reg_num;
6999 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7000 i.rex |= REX_B;
7001 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7002 i.vrex |= REX_B;
7003 }
7004 else
7005 {
7006 i.rm.reg = i.op[op].regs->reg_num;
7007 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7008 i.rex |= REX_R;
7009 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7010 i.vrex |= REX_R;
7011 }
7012 }
7013
7014 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7015 must set it to 3 to indicate this is a register operand
7016 in the regmem field. */
7017 if (!i.mem_operands)
7018 i.rm.mode = 3;
7019 }
7020
7021 /* Fill in i.rm.reg field with extension opcode (if any). */
7022 if (i.tm.extension_opcode != None)
7023 i.rm.reg = i.tm.extension_opcode;
7024 }
7025 return default_seg;
7026 }
7027
7028 static void
7029 output_branch (void)
7030 {
7031 char *p;
7032 int size;
7033 int code16;
7034 int prefix;
7035 relax_substateT subtype;
7036 symbolS *sym;
7037 offsetT off;
7038
7039 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7040 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7041
7042 prefix = 0;
7043 if (i.prefix[DATA_PREFIX] != 0)
7044 {
7045 prefix = 1;
7046 i.prefixes -= 1;
7047 code16 ^= CODE16;
7048 }
7049 /* Pentium4 branch hints. */
7050 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7051 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7052 {
7053 prefix++;
7054 i.prefixes--;
7055 }
7056 if (i.prefix[REX_PREFIX] != 0)
7057 {
7058 prefix++;
7059 i.prefixes--;
7060 }
7061
7062 /* BND prefixed jump. */
7063 if (i.prefix[BND_PREFIX] != 0)
7064 {
7065 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7066 i.prefixes -= 1;
7067 }
7068
7069 if (i.prefixes != 0 && !intel_syntax)
7070 as_warn (_("skipping prefixes on this instruction"));
7071
7072 /* It's always a symbol; End frag & setup for relax.
7073 Make sure there is enough room in this frag for the largest
7074 instruction we may generate in md_convert_frag. This is 2
7075 bytes for the opcode and room for the prefix and largest
7076 displacement. */
7077 frag_grow (prefix + 2 + 4);
7078 /* Prefix and 1 opcode byte go in fr_fix. */
7079 p = frag_more (prefix + 1);
7080 if (i.prefix[DATA_PREFIX] != 0)
7081 *p++ = DATA_PREFIX_OPCODE;
7082 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7083 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7084 *p++ = i.prefix[SEG_PREFIX];
7085 if (i.prefix[REX_PREFIX] != 0)
7086 *p++ = i.prefix[REX_PREFIX];
7087 *p = i.tm.base_opcode;
7088
7089 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7090 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7091 else if (cpu_arch_flags.bitfield.cpui386)
7092 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7093 else
7094 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7095 subtype |= code16;
7096
7097 sym = i.op[0].disps->X_add_symbol;
7098 off = i.op[0].disps->X_add_number;
7099
7100 if (i.op[0].disps->X_op != O_constant
7101 && i.op[0].disps->X_op != O_symbol)
7102 {
7103 /* Handle complex expressions. */
7104 sym = make_expr_symbol (i.op[0].disps);
7105 off = 0;
7106 }
7107
7108 /* 1 possible extra opcode + 4 byte displacement go in var part.
7109 Pass reloc in fr_var. */
7110 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7111 }
7112
7113 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7114 /* Return TRUE iff PLT32 relocation should be used for branching to
7115 symbol S. */
7116
7117 static bfd_boolean
7118 need_plt32_p (symbolS *s)
7119 {
7120 /* PLT32 relocation is ELF only. */
7121 if (!IS_ELF)
7122 return FALSE;
7123
7124 /* Since there is no need to prepare for PLT branch on x86-64, we
7125 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7126 be used as a marker for 32-bit PC-relative branches. */
7127 if (!object_64bit)
7128 return FALSE;
7129
7130 /* Weak or undefined symbol need PLT32 relocation. */
7131 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7132 return TRUE;
7133
7134 /* Non-global symbol doesn't need PLT32 relocation. */
7135 if (! S_IS_EXTERNAL (s))
7136 return FALSE;
7137
7138 /* Other global symbols need PLT32 relocation. NB: Symbol with
7139 non-default visibilities are treated as normal global symbol
7140 so that PLT32 relocation can be used as a marker for 32-bit
7141 PC-relative branches. It is useful for linker relaxation. */
7142 return TRUE;
7143 }
7144 #endif
7145
7146 static void
7147 output_jump (void)
7148 {
7149 char *p;
7150 int size;
7151 fixS *fixP;
7152 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7153
7154 if (i.tm.opcode_modifier.jumpbyte)
7155 {
7156 /* This is a loop or jecxz type instruction. */
7157 size = 1;
7158 if (i.prefix[ADDR_PREFIX] != 0)
7159 {
7160 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7161 i.prefixes -= 1;
7162 }
7163 /* Pentium4 branch hints. */
7164 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7165 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7166 {
7167 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7168 i.prefixes--;
7169 }
7170 }
7171 else
7172 {
7173 int code16;
7174
7175 code16 = 0;
7176 if (flag_code == CODE_16BIT)
7177 code16 = CODE16;
7178
7179 if (i.prefix[DATA_PREFIX] != 0)
7180 {
7181 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7182 i.prefixes -= 1;
7183 code16 ^= CODE16;
7184 }
7185
7186 size = 4;
7187 if (code16)
7188 size = 2;
7189 }
7190
7191 if (i.prefix[REX_PREFIX] != 0)
7192 {
7193 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7194 i.prefixes -= 1;
7195 }
7196
7197 /* BND prefixed jump. */
7198 if (i.prefix[BND_PREFIX] != 0)
7199 {
7200 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7201 i.prefixes -= 1;
7202 }
7203
7204 if (i.prefixes != 0 && !intel_syntax)
7205 as_warn (_("skipping prefixes on this instruction"));
7206
7207 p = frag_more (i.tm.opcode_length + size);
7208 switch (i.tm.opcode_length)
7209 {
7210 case 2:
7211 *p++ = i.tm.base_opcode >> 8;
7212 /* Fall through. */
7213 case 1:
7214 *p++ = i.tm.base_opcode;
7215 break;
7216 default:
7217 abort ();
7218 }
7219
7220 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7221 if (size == 4
7222 && jump_reloc == NO_RELOC
7223 && need_plt32_p (i.op[0].disps->X_add_symbol))
7224 jump_reloc = BFD_RELOC_X86_64_PLT32;
7225 #endif
7226
7227 jump_reloc = reloc (size, 1, 1, jump_reloc);
7228
7229 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7230 i.op[0].disps, 1, jump_reloc);
7231
7232 /* All jumps handled here are signed, but don't use a signed limit
7233 check for 32 and 16 bit jumps as we want to allow wrap around at
7234 4G and 64k respectively. */
7235 if (size == 1)
7236 fixP->fx_signed = 1;
7237 }
7238
7239 static void
7240 output_interseg_jump (void)
7241 {
7242 char *p;
7243 int size;
7244 int prefix;
7245 int code16;
7246
7247 code16 = 0;
7248 if (flag_code == CODE_16BIT)
7249 code16 = CODE16;
7250
7251 prefix = 0;
7252 if (i.prefix[DATA_PREFIX] != 0)
7253 {
7254 prefix = 1;
7255 i.prefixes -= 1;
7256 code16 ^= CODE16;
7257 }
7258 if (i.prefix[REX_PREFIX] != 0)
7259 {
7260 prefix++;
7261 i.prefixes -= 1;
7262 }
7263
7264 size = 4;
7265 if (code16)
7266 size = 2;
7267
7268 if (i.prefixes != 0 && !intel_syntax)
7269 as_warn (_("skipping prefixes on this instruction"));
7270
7271 /* 1 opcode; 2 segment; offset */
7272 p = frag_more (prefix + 1 + 2 + size);
7273
7274 if (i.prefix[DATA_PREFIX] != 0)
7275 *p++ = DATA_PREFIX_OPCODE;
7276
7277 if (i.prefix[REX_PREFIX] != 0)
7278 *p++ = i.prefix[REX_PREFIX];
7279
7280 *p++ = i.tm.base_opcode;
7281 if (i.op[1].imms->X_op == O_constant)
7282 {
7283 offsetT n = i.op[1].imms->X_add_number;
7284
7285 if (size == 2
7286 && !fits_in_unsigned_word (n)
7287 && !fits_in_signed_word (n))
7288 {
7289 as_bad (_("16-bit jump out of range"));
7290 return;
7291 }
7292 md_number_to_chars (p, n, size);
7293 }
7294 else
7295 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7296 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7297 if (i.op[0].imms->X_op != O_constant)
7298 as_bad (_("can't handle non absolute segment in `%s'"),
7299 i.tm.name);
7300 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7301 }
7302
7303 static void
7304 output_insn (void)
7305 {
7306 fragS *insn_start_frag;
7307 offsetT insn_start_off;
7308
7309 /* Tie dwarf2 debug info to the address at the start of the insn.
7310 We can't do this after the insn has been output as the current
7311 frag may have been closed off. eg. by frag_var. */
7312 dwarf2_emit_insn (0);
7313
7314 insn_start_frag = frag_now;
7315 insn_start_off = frag_now_fix ();
7316
7317 /* Output jumps. */
7318 if (i.tm.opcode_modifier.jump)
7319 output_branch ();
7320 else if (i.tm.opcode_modifier.jumpbyte
7321 || i.tm.opcode_modifier.jumpdword)
7322 output_jump ();
7323 else if (i.tm.opcode_modifier.jumpintersegment)
7324 output_interseg_jump ();
7325 else
7326 {
7327 /* Output normal instructions here. */
7328 char *p;
7329 unsigned char *q;
7330 unsigned int j;
7331 unsigned int prefix;
7332
7333 if (avoid_fence
7334 && i.tm.base_opcode == 0xfae
7335 && i.operands == 1
7336 && i.imm_operands == 1
7337 && (i.op[0].imms->X_add_number == 0xe8
7338 || i.op[0].imms->X_add_number == 0xf0
7339 || i.op[0].imms->X_add_number == 0xf8))
7340 {
7341 /* Encode lfence, mfence, and sfence as
7342 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7343 offsetT val = 0x240483f0ULL;
7344 p = frag_more (5);
7345 md_number_to_chars (p, val, 5);
7346 return;
7347 }
7348
7349 /* Some processors fail on LOCK prefix. This options makes
7350 assembler ignore LOCK prefix and serves as a workaround. */
7351 if (omit_lock_prefix)
7352 {
7353 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7354 return;
7355 i.prefix[LOCK_PREFIX] = 0;
7356 }
7357
7358 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7359 don't need the explicit prefix. */
7360 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7361 {
7362 switch (i.tm.opcode_length)
7363 {
7364 case 3:
7365 if (i.tm.base_opcode & 0xff000000)
7366 {
7367 prefix = (i.tm.base_opcode >> 24) & 0xff;
7368 goto check_prefix;
7369 }
7370 break;
7371 case 2:
7372 if ((i.tm.base_opcode & 0xff0000) != 0)
7373 {
7374 prefix = (i.tm.base_opcode >> 16) & 0xff;
7375 if (i.tm.cpu_flags.bitfield.cpupadlock)
7376 {
7377 check_prefix:
7378 if (prefix != REPE_PREFIX_OPCODE
7379 || (i.prefix[REP_PREFIX]
7380 != REPE_PREFIX_OPCODE))
7381 add_prefix (prefix);
7382 }
7383 else
7384 add_prefix (prefix);
7385 }
7386 break;
7387 case 1:
7388 break;
7389 case 0:
7390 /* Check for pseudo prefixes. */
7391 as_bad_where (insn_start_frag->fr_file,
7392 insn_start_frag->fr_line,
7393 _("pseudo prefix without instruction"));
7394 return;
7395 default:
7396 abort ();
7397 }
7398
7399 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7400 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7401 R_X86_64_GOTTPOFF relocation so that linker can safely
7402 perform IE->LE optimization. */
7403 if (x86_elf_abi == X86_64_X32_ABI
7404 && i.operands == 2
7405 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7406 && i.prefix[REX_PREFIX] == 0)
7407 add_prefix (REX_OPCODE);
7408 #endif
7409
7410 /* The prefix bytes. */
7411 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7412 if (*q)
7413 FRAG_APPEND_1_CHAR (*q);
7414 }
7415 else
7416 {
7417 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7418 if (*q)
7419 switch (j)
7420 {
7421 case REX_PREFIX:
7422 /* REX byte is encoded in VEX prefix. */
7423 break;
7424 case SEG_PREFIX:
7425 case ADDR_PREFIX:
7426 FRAG_APPEND_1_CHAR (*q);
7427 break;
7428 default:
7429 /* There should be no other prefixes for instructions
7430 with VEX prefix. */
7431 abort ();
7432 }
7433
7434 /* For EVEX instructions i.vrex should become 0 after
7435 build_evex_prefix. For VEX instructions upper 16 registers
7436 aren't available, so VREX should be 0. */
7437 if (i.vrex)
7438 abort ();
7439 /* Now the VEX prefix. */
7440 p = frag_more (i.vex.length);
7441 for (j = 0; j < i.vex.length; j++)
7442 p[j] = i.vex.bytes[j];
7443 }
7444
7445 /* Now the opcode; be careful about word order here! */
7446 if (i.tm.opcode_length == 1)
7447 {
7448 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7449 }
7450 else
7451 {
7452 switch (i.tm.opcode_length)
7453 {
7454 case 4:
7455 p = frag_more (4);
7456 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7457 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7458 break;
7459 case 3:
7460 p = frag_more (3);
7461 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7462 break;
7463 case 2:
7464 p = frag_more (2);
7465 break;
7466 default:
7467 abort ();
7468 break;
7469 }
7470
7471 /* Put out high byte first: can't use md_number_to_chars! */
7472 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7473 *p = i.tm.base_opcode & 0xff;
7474 }
7475
7476 /* Now the modrm byte and sib byte (if present). */
7477 if (i.tm.opcode_modifier.modrm)
7478 {
7479 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7480 | i.rm.reg << 3
7481 | i.rm.mode << 6));
7482 /* If i.rm.regmem == ESP (4)
7483 && i.rm.mode != (Register mode)
7484 && not 16 bit
7485 ==> need second modrm byte. */
7486 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7487 && i.rm.mode != 3
7488 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
7489 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7490 | i.sib.index << 3
7491 | i.sib.scale << 6));
7492 }
7493
7494 if (i.disp_operands)
7495 output_disp (insn_start_frag, insn_start_off);
7496
7497 if (i.imm_operands)
7498 output_imm (insn_start_frag, insn_start_off);
7499 }
7500
7501 #ifdef DEBUG386
7502 if (flag_debug)
7503 {
7504 pi ("" /*line*/, &i);
7505 }
7506 #endif /* DEBUG386 */
7507 }
7508
7509 /* Return the size of the displacement operand N. */
7510
7511 static int
7512 disp_size (unsigned int n)
7513 {
7514 int size = 4;
7515
7516 if (i.types[n].bitfield.disp64)
7517 size = 8;
7518 else if (i.types[n].bitfield.disp8)
7519 size = 1;
7520 else if (i.types[n].bitfield.disp16)
7521 size = 2;
7522 return size;
7523 }
7524
7525 /* Return the size of the immediate operand N. */
7526
7527 static int
7528 imm_size (unsigned int n)
7529 {
7530 int size = 4;
7531 if (i.types[n].bitfield.imm64)
7532 size = 8;
7533 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7534 size = 1;
7535 else if (i.types[n].bitfield.imm16)
7536 size = 2;
7537 return size;
7538 }
7539
7540 static void
7541 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7542 {
7543 char *p;
7544 unsigned int n;
7545
7546 for (n = 0; n < i.operands; n++)
7547 {
7548 if (operand_type_check (i.types[n], disp))
7549 {
7550 if (i.op[n].disps->X_op == O_constant)
7551 {
7552 int size = disp_size (n);
7553 offsetT val = i.op[n].disps->X_add_number;
7554
7555 val = offset_in_range (val >> i.memshift, size);
7556 p = frag_more (size);
7557 md_number_to_chars (p, val, size);
7558 }
7559 else
7560 {
7561 enum bfd_reloc_code_real reloc_type;
7562 int size = disp_size (n);
7563 int sign = i.types[n].bitfield.disp32s;
7564 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7565 fixS *fixP;
7566
7567 /* We can't have 8 bit displacement here. */
7568 gas_assert (!i.types[n].bitfield.disp8);
7569
7570 /* The PC relative address is computed relative
7571 to the instruction boundary, so in case immediate
7572 fields follows, we need to adjust the value. */
7573 if (pcrel && i.imm_operands)
7574 {
7575 unsigned int n1;
7576 int sz = 0;
7577
7578 for (n1 = 0; n1 < i.operands; n1++)
7579 if (operand_type_check (i.types[n1], imm))
7580 {
7581 /* Only one immediate is allowed for PC
7582 relative address. */
7583 gas_assert (sz == 0);
7584 sz = imm_size (n1);
7585 i.op[n].disps->X_add_number -= sz;
7586 }
7587 /* We should find the immediate. */
7588 gas_assert (sz != 0);
7589 }
7590
7591 p = frag_more (size);
7592 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7593 if (GOT_symbol
7594 && GOT_symbol == i.op[n].disps->X_add_symbol
7595 && (((reloc_type == BFD_RELOC_32
7596 || reloc_type == BFD_RELOC_X86_64_32S
7597 || (reloc_type == BFD_RELOC_64
7598 && object_64bit))
7599 && (i.op[n].disps->X_op == O_symbol
7600 || (i.op[n].disps->X_op == O_add
7601 && ((symbol_get_value_expression
7602 (i.op[n].disps->X_op_symbol)->X_op)
7603 == O_subtract))))
7604 || reloc_type == BFD_RELOC_32_PCREL))
7605 {
7606 offsetT add;
7607
7608 if (insn_start_frag == frag_now)
7609 add = (p - frag_now->fr_literal) - insn_start_off;
7610 else
7611 {
7612 fragS *fr;
7613
7614 add = insn_start_frag->fr_fix - insn_start_off;
7615 for (fr = insn_start_frag->fr_next;
7616 fr && fr != frag_now; fr = fr->fr_next)
7617 add += fr->fr_fix;
7618 add += p - frag_now->fr_literal;
7619 }
7620
7621 if (!object_64bit)
7622 {
7623 reloc_type = BFD_RELOC_386_GOTPC;
7624 i.op[n].imms->X_add_number += add;
7625 }
7626 else if (reloc_type == BFD_RELOC_64)
7627 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7628 else
7629 /* Don't do the adjustment for x86-64, as there
7630 the pcrel addressing is relative to the _next_
7631 insn, and that is taken care of in other code. */
7632 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7633 }
7634 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7635 size, i.op[n].disps, pcrel,
7636 reloc_type);
7637 /* Check for "call/jmp *mem", "mov mem, %reg",
7638 "test %reg, mem" and "binop mem, %reg" where binop
7639 is one of adc, add, and, cmp, or, sbb, sub, xor
7640 instructions. Always generate R_386_GOT32X for
7641 "sym*GOT" operand in 32-bit mode. */
7642 if ((generate_relax_relocations
7643 || (!object_64bit
7644 && i.rm.mode == 0
7645 && i.rm.regmem == 5))
7646 && (i.rm.mode == 2
7647 || (i.rm.mode == 0 && i.rm.regmem == 5))
7648 && ((i.operands == 1
7649 && i.tm.base_opcode == 0xff
7650 && (i.rm.reg == 2 || i.rm.reg == 4))
7651 || (i.operands == 2
7652 && (i.tm.base_opcode == 0x8b
7653 || i.tm.base_opcode == 0x85
7654 || (i.tm.base_opcode & 0xc7) == 0x03))))
7655 {
7656 if (object_64bit)
7657 {
7658 fixP->fx_tcbit = i.rex != 0;
7659 if (i.base_reg
7660 && (i.base_reg->reg_num == RegRip
7661 || i.base_reg->reg_num == RegEip))
7662 fixP->fx_tcbit2 = 1;
7663 }
7664 else
7665 fixP->fx_tcbit2 = 1;
7666 }
7667 }
7668 }
7669 }
7670 }
7671
7672 static void
7673 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7674 {
7675 char *p;
7676 unsigned int n;
7677
7678 for (n = 0; n < i.operands; n++)
7679 {
7680 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7681 if (i.rounding && (int) n == i.rounding->operand)
7682 continue;
7683
7684 if (operand_type_check (i.types[n], imm))
7685 {
7686 if (i.op[n].imms->X_op == O_constant)
7687 {
7688 int size = imm_size (n);
7689 offsetT val;
7690
7691 val = offset_in_range (i.op[n].imms->X_add_number,
7692 size);
7693 p = frag_more (size);
7694 md_number_to_chars (p, val, size);
7695 }
7696 else
7697 {
7698 /* Not absolute_section.
7699 Need a 32-bit fixup (don't support 8bit
7700 non-absolute imms). Try to support other
7701 sizes ... */
7702 enum bfd_reloc_code_real reloc_type;
7703 int size = imm_size (n);
7704 int sign;
7705
7706 if (i.types[n].bitfield.imm32s
7707 && (i.suffix == QWORD_MNEM_SUFFIX
7708 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7709 sign = 1;
7710 else
7711 sign = 0;
7712
7713 p = frag_more (size);
7714 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7715
7716 /* This is tough to explain. We end up with this one if we
7717 * have operands that look like
7718 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7719 * obtain the absolute address of the GOT, and it is strongly
7720 * preferable from a performance point of view to avoid using
7721 * a runtime relocation for this. The actual sequence of
7722 * instructions often look something like:
7723 *
7724 * call .L66
7725 * .L66:
7726 * popl %ebx
7727 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7728 *
7729 * The call and pop essentially return the absolute address
7730 * of the label .L66 and store it in %ebx. The linker itself
7731 * will ultimately change the first operand of the addl so
7732 * that %ebx points to the GOT, but to keep things simple, the
7733 * .o file must have this operand set so that it generates not
7734 * the absolute address of .L66, but the absolute address of
7735 * itself. This allows the linker itself simply treat a GOTPC
7736 * relocation as asking for a pcrel offset to the GOT to be
7737 * added in, and the addend of the relocation is stored in the
7738 * operand field for the instruction itself.
7739 *
7740 * Our job here is to fix the operand so that it would add
7741 * the correct offset so that %ebx would point to itself. The
7742 * thing that is tricky is that .-.L66 will point to the
7743 * beginning of the instruction, so we need to further modify
7744 * the operand so that it will point to itself. There are
7745 * other cases where you have something like:
7746 *
7747 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7748 *
7749 * and here no correction would be required. Internally in
7750 * the assembler we treat operands of this form as not being
7751 * pcrel since the '.' is explicitly mentioned, and I wonder
7752 * whether it would simplify matters to do it this way. Who
7753 * knows. In earlier versions of the PIC patches, the
7754 * pcrel_adjust field was used to store the correction, but
7755 * since the expression is not pcrel, I felt it would be
7756 * confusing to do it this way. */
7757
7758 if ((reloc_type == BFD_RELOC_32
7759 || reloc_type == BFD_RELOC_X86_64_32S
7760 || reloc_type == BFD_RELOC_64)
7761 && GOT_symbol
7762 && GOT_symbol == i.op[n].imms->X_add_symbol
7763 && (i.op[n].imms->X_op == O_symbol
7764 || (i.op[n].imms->X_op == O_add
7765 && ((symbol_get_value_expression
7766 (i.op[n].imms->X_op_symbol)->X_op)
7767 == O_subtract))))
7768 {
7769 offsetT add;
7770
7771 if (insn_start_frag == frag_now)
7772 add = (p - frag_now->fr_literal) - insn_start_off;
7773 else
7774 {
7775 fragS *fr;
7776
7777 add = insn_start_frag->fr_fix - insn_start_off;
7778 for (fr = insn_start_frag->fr_next;
7779 fr && fr != frag_now; fr = fr->fr_next)
7780 add += fr->fr_fix;
7781 add += p - frag_now->fr_literal;
7782 }
7783
7784 if (!object_64bit)
7785 reloc_type = BFD_RELOC_386_GOTPC;
7786 else if (size == 4)
7787 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7788 else if (size == 8)
7789 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7790 i.op[n].imms->X_add_number += add;
7791 }
7792 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7793 i.op[n].imms, 0, reloc_type);
7794 }
7795 }
7796 }
7797 }
7798 \f
7799 /* x86_cons_fix_new is called via the expression parsing code when a
7800 reloc is needed. We use this hook to get the correct .got reloc. */
7801 static int cons_sign = -1;
7802
7803 void
7804 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
7805 expressionS *exp, bfd_reloc_code_real_type r)
7806 {
7807 r = reloc (len, 0, cons_sign, r);
7808
7809 #ifdef TE_PE
7810 if (exp->X_op == O_secrel)
7811 {
7812 exp->X_op = O_symbol;
7813 r = BFD_RELOC_32_SECREL;
7814 }
7815 #endif
7816
7817 fix_new_exp (frag, off, len, exp, 0, r);
7818 }
7819
7820 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7821 purpose of the `.dc.a' internal pseudo-op. */
7822
7823 int
7824 x86_address_bytes (void)
7825 {
7826 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7827 return 4;
7828 return stdoutput->arch_info->bits_per_address / 8;
7829 }
7830
7831 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7832 || defined (LEX_AT)
7833 # define lex_got(reloc, adjust, types) NULL
7834 #else
7835 /* Parse operands of the form
7836 <symbol>@GOTOFF+<nnn>
7837 and similar .plt or .got references.
7838
7839 If we find one, set up the correct relocation in RELOC and copy the
7840 input string, minus the `@GOTOFF' into a malloc'd buffer for
7841 parsing by the calling routine. Return this buffer, and if ADJUST
7842 is non-null set it to the length of the string we removed from the
7843 input line. Otherwise return NULL. */
7844 static char *
7845 lex_got (enum bfd_reloc_code_real *rel,
7846 int *adjust,
7847 i386_operand_type *types)
7848 {
7849 /* Some of the relocations depend on the size of what field is to
7850 be relocated. But in our callers i386_immediate and i386_displacement
7851 we don't yet know the operand size (this will be set by insn
7852 matching). Hence we record the word32 relocation here,
7853 and adjust the reloc according to the real size in reloc(). */
7854 static const struct {
7855 const char *str;
7856 int len;
7857 const enum bfd_reloc_code_real rel[2];
7858 const i386_operand_type types64;
7859 } gotrel[] = {
7860 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7861 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7862 BFD_RELOC_SIZE32 },
7863 OPERAND_TYPE_IMM32_64 },
7864 #endif
7865 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7866 BFD_RELOC_X86_64_PLTOFF64 },
7867 OPERAND_TYPE_IMM64 },
7868 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7869 BFD_RELOC_X86_64_PLT32 },
7870 OPERAND_TYPE_IMM32_32S_DISP32 },
7871 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7872 BFD_RELOC_X86_64_GOTPLT64 },
7873 OPERAND_TYPE_IMM64_DISP64 },
7874 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7875 BFD_RELOC_X86_64_GOTOFF64 },
7876 OPERAND_TYPE_IMM64_DISP64 },
7877 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7878 BFD_RELOC_X86_64_GOTPCREL },
7879 OPERAND_TYPE_IMM32_32S_DISP32 },
7880 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7881 BFD_RELOC_X86_64_TLSGD },
7882 OPERAND_TYPE_IMM32_32S_DISP32 },
7883 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7884 _dummy_first_bfd_reloc_code_real },
7885 OPERAND_TYPE_NONE },
7886 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7887 BFD_RELOC_X86_64_TLSLD },
7888 OPERAND_TYPE_IMM32_32S_DISP32 },
7889 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7890 BFD_RELOC_X86_64_GOTTPOFF },
7891 OPERAND_TYPE_IMM32_32S_DISP32 },
7892 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7893 BFD_RELOC_X86_64_TPOFF32 },
7894 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7895 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7896 _dummy_first_bfd_reloc_code_real },
7897 OPERAND_TYPE_NONE },
7898 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7899 BFD_RELOC_X86_64_DTPOFF32 },
7900 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7901 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7902 _dummy_first_bfd_reloc_code_real },
7903 OPERAND_TYPE_NONE },
7904 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7905 _dummy_first_bfd_reloc_code_real },
7906 OPERAND_TYPE_NONE },
7907 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7908 BFD_RELOC_X86_64_GOT32 },
7909 OPERAND_TYPE_IMM32_32S_64_DISP32 },
7910 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7911 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
7912 OPERAND_TYPE_IMM32_32S_DISP32 },
7913 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7914 BFD_RELOC_X86_64_TLSDESC_CALL },
7915 OPERAND_TYPE_IMM32_32S_DISP32 },
7916 };
7917 char *cp;
7918 unsigned int j;
7919
7920 #if defined (OBJ_MAYBE_ELF)
7921 if (!IS_ELF)
7922 return NULL;
7923 #endif
7924
7925 for (cp = input_line_pointer; *cp != '@'; cp++)
7926 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7927 return NULL;
7928
7929 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7930 {
7931 int len = gotrel[j].len;
7932 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7933 {
7934 if (gotrel[j].rel[object_64bit] != 0)
7935 {
7936 int first, second;
7937 char *tmpbuf, *past_reloc;
7938
7939 *rel = gotrel[j].rel[object_64bit];
7940
7941 if (types)
7942 {
7943 if (flag_code != CODE_64BIT)
7944 {
7945 types->bitfield.imm32 = 1;
7946 types->bitfield.disp32 = 1;
7947 }
7948 else
7949 *types = gotrel[j].types64;
7950 }
7951
7952 if (j != 0 && GOT_symbol == NULL)
7953 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7954
7955 /* The length of the first part of our input line. */
7956 first = cp - input_line_pointer;
7957
7958 /* The second part goes from after the reloc token until
7959 (and including) an end_of_line char or comma. */
7960 past_reloc = cp + 1 + len;
7961 cp = past_reloc;
7962 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7963 ++cp;
7964 second = cp + 1 - past_reloc;
7965
7966 /* Allocate and copy string. The trailing NUL shouldn't
7967 be necessary, but be safe. */
7968 tmpbuf = XNEWVEC (char, first + second + 2);
7969 memcpy (tmpbuf, input_line_pointer, first);
7970 if (second != 0 && *past_reloc != ' ')
7971 /* Replace the relocation token with ' ', so that
7972 errors like foo@GOTOFF1 will be detected. */
7973 tmpbuf[first++] = ' ';
7974 else
7975 /* Increment length by 1 if the relocation token is
7976 removed. */
7977 len++;
7978 if (adjust)
7979 *adjust = len;
7980 memcpy (tmpbuf + first, past_reloc, second);
7981 tmpbuf[first + second] = '\0';
7982 return tmpbuf;
7983 }
7984
7985 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7986 gotrel[j].str, 1 << (5 + object_64bit));
7987 return NULL;
7988 }
7989 }
7990
7991 /* Might be a symbol version string. Don't as_bad here. */
7992 return NULL;
7993 }
7994 #endif
7995
7996 #ifdef TE_PE
7997 #ifdef lex_got
7998 #undef lex_got
7999 #endif
8000 /* Parse operands of the form
8001 <symbol>@SECREL32+<nnn>
8002
8003 If we find one, set up the correct relocation in RELOC and copy the
8004 input string, minus the `@SECREL32' into a malloc'd buffer for
8005 parsing by the calling routine. Return this buffer, and if ADJUST
8006 is non-null set it to the length of the string we removed from the
8007 input line. Otherwise return NULL.
8008
8009 This function is copied from the ELF version above adjusted for PE targets. */
8010
8011 static char *
8012 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8013 int *adjust ATTRIBUTE_UNUSED,
8014 i386_operand_type *types)
8015 {
8016 static const struct
8017 {
8018 const char *str;
8019 int len;
8020 const enum bfd_reloc_code_real rel[2];
8021 const i386_operand_type types64;
8022 }
8023 gotrel[] =
8024 {
8025 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8026 BFD_RELOC_32_SECREL },
8027 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8028 };
8029
8030 char *cp;
8031 unsigned j;
8032
8033 for (cp = input_line_pointer; *cp != '@'; cp++)
8034 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8035 return NULL;
8036
8037 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8038 {
8039 int len = gotrel[j].len;
8040
8041 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8042 {
8043 if (gotrel[j].rel[object_64bit] != 0)
8044 {
8045 int first, second;
8046 char *tmpbuf, *past_reloc;
8047
8048 *rel = gotrel[j].rel[object_64bit];
8049 if (adjust)
8050 *adjust = len;
8051
8052 if (types)
8053 {
8054 if (flag_code != CODE_64BIT)
8055 {
8056 types->bitfield.imm32 = 1;
8057 types->bitfield.disp32 = 1;
8058 }
8059 else
8060 *types = gotrel[j].types64;
8061 }
8062
8063 /* The length of the first part of our input line. */
8064 first = cp - input_line_pointer;
8065
8066 /* The second part goes from after the reloc token until
8067 (and including) an end_of_line char or comma. */
8068 past_reloc = cp + 1 + len;
8069 cp = past_reloc;
8070 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8071 ++cp;
8072 second = cp + 1 - past_reloc;
8073
8074 /* Allocate and copy string. The trailing NUL shouldn't
8075 be necessary, but be safe. */
8076 tmpbuf = XNEWVEC (char, first + second + 2);
8077 memcpy (tmpbuf, input_line_pointer, first);
8078 if (second != 0 && *past_reloc != ' ')
8079 /* Replace the relocation token with ' ', so that
8080 errors like foo@SECLREL321 will be detected. */
8081 tmpbuf[first++] = ' ';
8082 memcpy (tmpbuf + first, past_reloc, second);
8083 tmpbuf[first + second] = '\0';
8084 return tmpbuf;
8085 }
8086
8087 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8088 gotrel[j].str, 1 << (5 + object_64bit));
8089 return NULL;
8090 }
8091 }
8092
8093 /* Might be a symbol version string. Don't as_bad here. */
8094 return NULL;
8095 }
8096
8097 #endif /* TE_PE */
8098
8099 bfd_reloc_code_real_type
8100 x86_cons (expressionS *exp, int size)
8101 {
8102 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8103
8104 intel_syntax = -intel_syntax;
8105
8106 exp->X_md = 0;
8107 if (size == 4 || (object_64bit && size == 8))
8108 {
8109 /* Handle @GOTOFF and the like in an expression. */
8110 char *save;
8111 char *gotfree_input_line;
8112 int adjust = 0;
8113
8114 save = input_line_pointer;
8115 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8116 if (gotfree_input_line)
8117 input_line_pointer = gotfree_input_line;
8118
8119 expression (exp);
8120
8121 if (gotfree_input_line)
8122 {
8123 /* expression () has merrily parsed up to the end of line,
8124 or a comma - in the wrong buffer. Transfer how far
8125 input_line_pointer has moved to the right buffer. */
8126 input_line_pointer = (save
8127 + (input_line_pointer - gotfree_input_line)
8128 + adjust);
8129 free (gotfree_input_line);
8130 if (exp->X_op == O_constant
8131 || exp->X_op == O_absent
8132 || exp->X_op == O_illegal
8133 || exp->X_op == O_register
8134 || exp->X_op == O_big)
8135 {
8136 char c = *input_line_pointer;
8137 *input_line_pointer = 0;
8138 as_bad (_("missing or invalid expression `%s'"), save);
8139 *input_line_pointer = c;
8140 }
8141 }
8142 }
8143 else
8144 expression (exp);
8145
8146 intel_syntax = -intel_syntax;
8147
8148 if (intel_syntax)
8149 i386_intel_simplify (exp);
8150
8151 return got_reloc;
8152 }
8153
8154 static void
8155 signed_cons (int size)
8156 {
8157 if (flag_code == CODE_64BIT)
8158 cons_sign = 1;
8159 cons (size);
8160 cons_sign = -1;
8161 }
8162
8163 #ifdef TE_PE
8164 static void
8165 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8166 {
8167 expressionS exp;
8168
8169 do
8170 {
8171 expression (&exp);
8172 if (exp.X_op == O_symbol)
8173 exp.X_op = O_secrel;
8174
8175 emit_expr (&exp, 4);
8176 }
8177 while (*input_line_pointer++ == ',');
8178
8179 input_line_pointer--;
8180 demand_empty_rest_of_line ();
8181 }
8182 #endif
8183
8184 /* Handle Vector operations. */
8185
8186 static char *
8187 check_VecOperations (char *op_string, char *op_end)
8188 {
8189 const reg_entry *mask;
8190 const char *saved;
8191 char *end_op;
8192
8193 while (*op_string
8194 && (op_end == NULL || op_string < op_end))
8195 {
8196 saved = op_string;
8197 if (*op_string == '{')
8198 {
8199 op_string++;
8200
8201 /* Check broadcasts. */
8202 if (strncmp (op_string, "1to", 3) == 0)
8203 {
8204 int bcst_type;
8205
8206 if (i.broadcast)
8207 goto duplicated_vec_op;
8208
8209 op_string += 3;
8210 if (*op_string == '8')
8211 bcst_type = BROADCAST_1TO8;
8212 else if (*op_string == '4')
8213 bcst_type = BROADCAST_1TO4;
8214 else if (*op_string == '2')
8215 bcst_type = BROADCAST_1TO2;
8216 else if (*op_string == '1'
8217 && *(op_string+1) == '6')
8218 {
8219 bcst_type = BROADCAST_1TO16;
8220 op_string++;
8221 }
8222 else
8223 {
8224 as_bad (_("Unsupported broadcast: `%s'"), saved);
8225 return NULL;
8226 }
8227 op_string++;
8228
8229 broadcast_op.type = bcst_type;
8230 broadcast_op.operand = this_operand;
8231 i.broadcast = &broadcast_op;
8232 }
8233 /* Check masking operation. */
8234 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8235 {
8236 /* k0 can't be used for write mask. */
8237 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
8238 {
8239 as_bad (_("`%s%s' can't be used for write mask"),
8240 register_prefix, mask->reg_name);
8241 return NULL;
8242 }
8243
8244 if (!i.mask)
8245 {
8246 mask_op.mask = mask;
8247 mask_op.zeroing = 0;
8248 mask_op.operand = this_operand;
8249 i.mask = &mask_op;
8250 }
8251 else
8252 {
8253 if (i.mask->mask)
8254 goto duplicated_vec_op;
8255
8256 i.mask->mask = mask;
8257
8258 /* Only "{z}" is allowed here. No need to check
8259 zeroing mask explicitly. */
8260 if (i.mask->operand != this_operand)
8261 {
8262 as_bad (_("invalid write mask `%s'"), saved);
8263 return NULL;
8264 }
8265 }
8266
8267 op_string = end_op;
8268 }
8269 /* Check zeroing-flag for masking operation. */
8270 else if (*op_string == 'z')
8271 {
8272 if (!i.mask)
8273 {
8274 mask_op.mask = NULL;
8275 mask_op.zeroing = 1;
8276 mask_op.operand = this_operand;
8277 i.mask = &mask_op;
8278 }
8279 else
8280 {
8281 if (i.mask->zeroing)
8282 {
8283 duplicated_vec_op:
8284 as_bad (_("duplicated `%s'"), saved);
8285 return NULL;
8286 }
8287
8288 i.mask->zeroing = 1;
8289
8290 /* Only "{%k}" is allowed here. No need to check mask
8291 register explicitly. */
8292 if (i.mask->operand != this_operand)
8293 {
8294 as_bad (_("invalid zeroing-masking `%s'"),
8295 saved);
8296 return NULL;
8297 }
8298 }
8299
8300 op_string++;
8301 }
8302 else
8303 goto unknown_vec_op;
8304
8305 if (*op_string != '}')
8306 {
8307 as_bad (_("missing `}' in `%s'"), saved);
8308 return NULL;
8309 }
8310 op_string++;
8311 continue;
8312 }
8313 unknown_vec_op:
8314 /* We don't know this one. */
8315 as_bad (_("unknown vector operation: `%s'"), saved);
8316 return NULL;
8317 }
8318
8319 if (i.mask && i.mask->zeroing && !i.mask->mask)
8320 {
8321 as_bad (_("zeroing-masking only allowed with write mask"));
8322 return NULL;
8323 }
8324
8325 return op_string;
8326 }
8327
8328 static int
8329 i386_immediate (char *imm_start)
8330 {
8331 char *save_input_line_pointer;
8332 char *gotfree_input_line;
8333 segT exp_seg = 0;
8334 expressionS *exp;
8335 i386_operand_type types;
8336
8337 operand_type_set (&types, ~0);
8338
8339 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8340 {
8341 as_bad (_("at most %d immediate operands are allowed"),
8342 MAX_IMMEDIATE_OPERANDS);
8343 return 0;
8344 }
8345
8346 exp = &im_expressions[i.imm_operands++];
8347 i.op[this_operand].imms = exp;
8348
8349 if (is_space_char (*imm_start))
8350 ++imm_start;
8351
8352 save_input_line_pointer = input_line_pointer;
8353 input_line_pointer = imm_start;
8354
8355 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8356 if (gotfree_input_line)
8357 input_line_pointer = gotfree_input_line;
8358
8359 exp_seg = expression (exp);
8360
8361 SKIP_WHITESPACE ();
8362
8363 /* Handle vector operations. */
8364 if (*input_line_pointer == '{')
8365 {
8366 input_line_pointer = check_VecOperations (input_line_pointer,
8367 NULL);
8368 if (input_line_pointer == NULL)
8369 return 0;
8370 }
8371
8372 if (*input_line_pointer)
8373 as_bad (_("junk `%s' after expression"), input_line_pointer);
8374
8375 input_line_pointer = save_input_line_pointer;
8376 if (gotfree_input_line)
8377 {
8378 free (gotfree_input_line);
8379
8380 if (exp->X_op == O_constant || exp->X_op == O_register)
8381 exp->X_op = O_illegal;
8382 }
8383
8384 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8385 }
8386
8387 static int
8388 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8389 i386_operand_type types, const char *imm_start)
8390 {
8391 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8392 {
8393 if (imm_start)
8394 as_bad (_("missing or invalid immediate expression `%s'"),
8395 imm_start);
8396 return 0;
8397 }
8398 else if (exp->X_op == O_constant)
8399 {
8400 /* Size it properly later. */
8401 i.types[this_operand].bitfield.imm64 = 1;
8402 /* If not 64bit, sign extend val. */
8403 if (flag_code != CODE_64BIT
8404 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8405 exp->X_add_number
8406 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8407 }
8408 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8409 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8410 && exp_seg != absolute_section
8411 && exp_seg != text_section
8412 && exp_seg != data_section
8413 && exp_seg != bss_section
8414 && exp_seg != undefined_section
8415 && !bfd_is_com_section (exp_seg))
8416 {
8417 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8418 return 0;
8419 }
8420 #endif
8421 else if (!intel_syntax && exp_seg == reg_section)
8422 {
8423 if (imm_start)
8424 as_bad (_("illegal immediate register operand %s"), imm_start);
8425 return 0;
8426 }
8427 else
8428 {
8429 /* This is an address. The size of the address will be
8430 determined later, depending on destination register,
8431 suffix, or the default for the section. */
8432 i.types[this_operand].bitfield.imm8 = 1;
8433 i.types[this_operand].bitfield.imm16 = 1;
8434 i.types[this_operand].bitfield.imm32 = 1;
8435 i.types[this_operand].bitfield.imm32s = 1;
8436 i.types[this_operand].bitfield.imm64 = 1;
8437 i.types[this_operand] = operand_type_and (i.types[this_operand],
8438 types);
8439 }
8440
8441 return 1;
8442 }
8443
8444 static char *
8445 i386_scale (char *scale)
8446 {
8447 offsetT val;
8448 char *save = input_line_pointer;
8449
8450 input_line_pointer = scale;
8451 val = get_absolute_expression ();
8452
8453 switch (val)
8454 {
8455 case 1:
8456 i.log2_scale_factor = 0;
8457 break;
8458 case 2:
8459 i.log2_scale_factor = 1;
8460 break;
8461 case 4:
8462 i.log2_scale_factor = 2;
8463 break;
8464 case 8:
8465 i.log2_scale_factor = 3;
8466 break;
8467 default:
8468 {
8469 char sep = *input_line_pointer;
8470
8471 *input_line_pointer = '\0';
8472 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8473 scale);
8474 *input_line_pointer = sep;
8475 input_line_pointer = save;
8476 return NULL;
8477 }
8478 }
8479 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8480 {
8481 as_warn (_("scale factor of %d without an index register"),
8482 1 << i.log2_scale_factor);
8483 i.log2_scale_factor = 0;
8484 }
8485 scale = input_line_pointer;
8486 input_line_pointer = save;
8487 return scale;
8488 }
8489
8490 static int
8491 i386_displacement (char *disp_start, char *disp_end)
8492 {
8493 expressionS *exp;
8494 segT exp_seg = 0;
8495 char *save_input_line_pointer;
8496 char *gotfree_input_line;
8497 int override;
8498 i386_operand_type bigdisp, types = anydisp;
8499 int ret;
8500
8501 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8502 {
8503 as_bad (_("at most %d displacement operands are allowed"),
8504 MAX_MEMORY_OPERANDS);
8505 return 0;
8506 }
8507
8508 operand_type_set (&bigdisp, 0);
8509 if ((i.types[this_operand].bitfield.jumpabsolute)
8510 || (!current_templates->start->opcode_modifier.jump
8511 && !current_templates->start->opcode_modifier.jumpdword))
8512 {
8513 bigdisp.bitfield.disp32 = 1;
8514 override = (i.prefix[ADDR_PREFIX] != 0);
8515 if (flag_code == CODE_64BIT)
8516 {
8517 if (!override)
8518 {
8519 bigdisp.bitfield.disp32s = 1;
8520 bigdisp.bitfield.disp64 = 1;
8521 }
8522 }
8523 else if ((flag_code == CODE_16BIT) ^ override)
8524 {
8525 bigdisp.bitfield.disp32 = 0;
8526 bigdisp.bitfield.disp16 = 1;
8527 }
8528 }
8529 else
8530 {
8531 /* For PC-relative branches, the width of the displacement
8532 is dependent upon data size, not address size. */
8533 override = (i.prefix[DATA_PREFIX] != 0);
8534 if (flag_code == CODE_64BIT)
8535 {
8536 if (override || i.suffix == WORD_MNEM_SUFFIX)
8537 bigdisp.bitfield.disp16 = 1;
8538 else
8539 {
8540 bigdisp.bitfield.disp32 = 1;
8541 bigdisp.bitfield.disp32s = 1;
8542 }
8543 }
8544 else
8545 {
8546 if (!override)
8547 override = (i.suffix == (flag_code != CODE_16BIT
8548 ? WORD_MNEM_SUFFIX
8549 : LONG_MNEM_SUFFIX));
8550 bigdisp.bitfield.disp32 = 1;
8551 if ((flag_code == CODE_16BIT) ^ override)
8552 {
8553 bigdisp.bitfield.disp32 = 0;
8554 bigdisp.bitfield.disp16 = 1;
8555 }
8556 }
8557 }
8558 i.types[this_operand] = operand_type_or (i.types[this_operand],
8559 bigdisp);
8560
8561 exp = &disp_expressions[i.disp_operands];
8562 i.op[this_operand].disps = exp;
8563 i.disp_operands++;
8564 save_input_line_pointer = input_line_pointer;
8565 input_line_pointer = disp_start;
8566 END_STRING_AND_SAVE (disp_end);
8567
8568 #ifndef GCC_ASM_O_HACK
8569 #define GCC_ASM_O_HACK 0
8570 #endif
8571 #if GCC_ASM_O_HACK
8572 END_STRING_AND_SAVE (disp_end + 1);
8573 if (i.types[this_operand].bitfield.baseIndex
8574 && displacement_string_end[-1] == '+')
8575 {
8576 /* This hack is to avoid a warning when using the "o"
8577 constraint within gcc asm statements.
8578 For instance:
8579
8580 #define _set_tssldt_desc(n,addr,limit,type) \
8581 __asm__ __volatile__ ( \
8582 "movw %w2,%0\n\t" \
8583 "movw %w1,2+%0\n\t" \
8584 "rorl $16,%1\n\t" \
8585 "movb %b1,4+%0\n\t" \
8586 "movb %4,5+%0\n\t" \
8587 "movb $0,6+%0\n\t" \
8588 "movb %h1,7+%0\n\t" \
8589 "rorl $16,%1" \
8590 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8591
8592 This works great except that the output assembler ends
8593 up looking a bit weird if it turns out that there is
8594 no offset. You end up producing code that looks like:
8595
8596 #APP
8597 movw $235,(%eax)
8598 movw %dx,2+(%eax)
8599 rorl $16,%edx
8600 movb %dl,4+(%eax)
8601 movb $137,5+(%eax)
8602 movb $0,6+(%eax)
8603 movb %dh,7+(%eax)
8604 rorl $16,%edx
8605 #NO_APP
8606
8607 So here we provide the missing zero. */
8608
8609 *displacement_string_end = '0';
8610 }
8611 #endif
8612 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8613 if (gotfree_input_line)
8614 input_line_pointer = gotfree_input_line;
8615
8616 exp_seg = expression (exp);
8617
8618 SKIP_WHITESPACE ();
8619 if (*input_line_pointer)
8620 as_bad (_("junk `%s' after expression"), input_line_pointer);
8621 #if GCC_ASM_O_HACK
8622 RESTORE_END_STRING (disp_end + 1);
8623 #endif
8624 input_line_pointer = save_input_line_pointer;
8625 if (gotfree_input_line)
8626 {
8627 free (gotfree_input_line);
8628
8629 if (exp->X_op == O_constant || exp->X_op == O_register)
8630 exp->X_op = O_illegal;
8631 }
8632
8633 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8634
8635 RESTORE_END_STRING (disp_end);
8636
8637 return ret;
8638 }
8639
8640 static int
8641 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8642 i386_operand_type types, const char *disp_start)
8643 {
8644 i386_operand_type bigdisp;
8645 int ret = 1;
8646
8647 /* We do this to make sure that the section symbol is in
8648 the symbol table. We will ultimately change the relocation
8649 to be relative to the beginning of the section. */
8650 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8651 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8652 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8653 {
8654 if (exp->X_op != O_symbol)
8655 goto inv_disp;
8656
8657 if (S_IS_LOCAL (exp->X_add_symbol)
8658 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8659 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8660 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8661 exp->X_op = O_subtract;
8662 exp->X_op_symbol = GOT_symbol;
8663 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8664 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8665 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8666 i.reloc[this_operand] = BFD_RELOC_64;
8667 else
8668 i.reloc[this_operand] = BFD_RELOC_32;
8669 }
8670
8671 else if (exp->X_op == O_absent
8672 || exp->X_op == O_illegal
8673 || exp->X_op == O_big)
8674 {
8675 inv_disp:
8676 as_bad (_("missing or invalid displacement expression `%s'"),
8677 disp_start);
8678 ret = 0;
8679 }
8680
8681 else if (flag_code == CODE_64BIT
8682 && !i.prefix[ADDR_PREFIX]
8683 && exp->X_op == O_constant)
8684 {
8685 /* Since displacement is signed extended to 64bit, don't allow
8686 disp32 and turn off disp32s if they are out of range. */
8687 i.types[this_operand].bitfield.disp32 = 0;
8688 if (!fits_in_signed_long (exp->X_add_number))
8689 {
8690 i.types[this_operand].bitfield.disp32s = 0;
8691 if (i.types[this_operand].bitfield.baseindex)
8692 {
8693 as_bad (_("0x%lx out range of signed 32bit displacement"),
8694 (long) exp->X_add_number);
8695 ret = 0;
8696 }
8697 }
8698 }
8699
8700 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8701 else if (exp->X_op != O_constant
8702 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8703 && exp_seg != absolute_section
8704 && exp_seg != text_section
8705 && exp_seg != data_section
8706 && exp_seg != bss_section
8707 && exp_seg != undefined_section
8708 && !bfd_is_com_section (exp_seg))
8709 {
8710 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8711 ret = 0;
8712 }
8713 #endif
8714
8715 /* Check if this is a displacement only operand. */
8716 bigdisp = i.types[this_operand];
8717 bigdisp.bitfield.disp8 = 0;
8718 bigdisp.bitfield.disp16 = 0;
8719 bigdisp.bitfield.disp32 = 0;
8720 bigdisp.bitfield.disp32s = 0;
8721 bigdisp.bitfield.disp64 = 0;
8722 if (operand_type_all_zero (&bigdisp))
8723 i.types[this_operand] = operand_type_and (i.types[this_operand],
8724 types);
8725
8726 return ret;
8727 }
8728
8729 /* Return the active addressing mode, taking address override and
8730 registers forming the address into consideration. Update the
8731 address override prefix if necessary. */
8732
8733 static enum flag_code
8734 i386_addressing_mode (void)
8735 {
8736 enum flag_code addr_mode;
8737
8738 if (i.prefix[ADDR_PREFIX])
8739 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8740 else
8741 {
8742 addr_mode = flag_code;
8743
8744 #if INFER_ADDR_PREFIX
8745 if (i.mem_operands == 0)
8746 {
8747 /* Infer address prefix from the first memory operand. */
8748 const reg_entry *addr_reg = i.base_reg;
8749
8750 if (addr_reg == NULL)
8751 addr_reg = i.index_reg;
8752
8753 if (addr_reg)
8754 {
8755 if (addr_reg->reg_num == RegEip
8756 || addr_reg->reg_num == RegEiz
8757 || addr_reg->reg_type.bitfield.dword)
8758 addr_mode = CODE_32BIT;
8759 else if (flag_code != CODE_64BIT
8760 && addr_reg->reg_type.bitfield.word)
8761 addr_mode = CODE_16BIT;
8762
8763 if (addr_mode != flag_code)
8764 {
8765 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8766 i.prefixes += 1;
8767 /* Change the size of any displacement too. At most one
8768 of Disp16 or Disp32 is set.
8769 FIXME. There doesn't seem to be any real need for
8770 separate Disp16 and Disp32 flags. The same goes for
8771 Imm16 and Imm32. Removing them would probably clean
8772 up the code quite a lot. */
8773 if (flag_code != CODE_64BIT
8774 && (i.types[this_operand].bitfield.disp16
8775 || i.types[this_operand].bitfield.disp32))
8776 i.types[this_operand]
8777 = operand_type_xor (i.types[this_operand], disp16_32);
8778 }
8779 }
8780 }
8781 #endif
8782 }
8783
8784 return addr_mode;
8785 }
8786
8787 /* Make sure the memory operand we've been dealt is valid.
8788 Return 1 on success, 0 on a failure. */
8789
8790 static int
8791 i386_index_check (const char *operand_string)
8792 {
8793 const char *kind = "base/index";
8794 enum flag_code addr_mode = i386_addressing_mode ();
8795
8796 if (current_templates->start->opcode_modifier.isstring
8797 && !current_templates->start->opcode_modifier.immext
8798 && (current_templates->end[-1].opcode_modifier.isstring
8799 || i.mem_operands))
8800 {
8801 /* Memory operands of string insns are special in that they only allow
8802 a single register (rDI, rSI, or rBX) as their memory address. */
8803 const reg_entry *expected_reg;
8804 static const char *di_si[][2] =
8805 {
8806 { "esi", "edi" },
8807 { "si", "di" },
8808 { "rsi", "rdi" }
8809 };
8810 static const char *bx[] = { "ebx", "bx", "rbx" };
8811
8812 kind = "string address";
8813
8814 if (current_templates->start->opcode_modifier.repprefixok)
8815 {
8816 i386_operand_type type = current_templates->end[-1].operand_types[0];
8817
8818 if (!type.bitfield.baseindex
8819 || ((!i.mem_operands != !intel_syntax)
8820 && current_templates->end[-1].operand_types[1]
8821 .bitfield.baseindex))
8822 type = current_templates->end[-1].operand_types[1];
8823 expected_reg = hash_find (reg_hash,
8824 di_si[addr_mode][type.bitfield.esseg]);
8825
8826 }
8827 else
8828 expected_reg = hash_find (reg_hash, bx[addr_mode]);
8829
8830 if (i.base_reg != expected_reg
8831 || i.index_reg
8832 || operand_type_check (i.types[this_operand], disp))
8833 {
8834 /* The second memory operand must have the same size as
8835 the first one. */
8836 if (i.mem_operands
8837 && i.base_reg
8838 && !((addr_mode == CODE_64BIT
8839 && i.base_reg->reg_type.bitfield.qword)
8840 || (addr_mode == CODE_32BIT
8841 ? i.base_reg->reg_type.bitfield.dword
8842 : i.base_reg->reg_type.bitfield.word)))
8843 goto bad_address;
8844
8845 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8846 operand_string,
8847 intel_syntax ? '[' : '(',
8848 register_prefix,
8849 expected_reg->reg_name,
8850 intel_syntax ? ']' : ')');
8851 return 1;
8852 }
8853 else
8854 return 1;
8855
8856 bad_address:
8857 as_bad (_("`%s' is not a valid %s expression"),
8858 operand_string, kind);
8859 return 0;
8860 }
8861 else
8862 {
8863 if (addr_mode != CODE_16BIT)
8864 {
8865 /* 32-bit/64-bit checks. */
8866 if ((i.base_reg
8867 && (addr_mode == CODE_64BIT
8868 ? !i.base_reg->reg_type.bitfield.qword
8869 : !i.base_reg->reg_type.bitfield.dword)
8870 && (i.index_reg
8871 || (i.base_reg->reg_num
8872 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8873 || (i.index_reg
8874 && !i.index_reg->reg_type.bitfield.xmmword
8875 && !i.index_reg->reg_type.bitfield.ymmword
8876 && !i.index_reg->reg_type.bitfield.zmmword
8877 && ((addr_mode == CODE_64BIT
8878 ? !(i.index_reg->reg_type.bitfield.qword
8879 || i.index_reg->reg_num == RegRiz)
8880 : !(i.index_reg->reg_type.bitfield.dword
8881 || i.index_reg->reg_num == RegEiz))
8882 || !i.index_reg->reg_type.bitfield.baseindex)))
8883 goto bad_address;
8884
8885 /* bndmk, bndldx, and bndstx have special restrictions. */
8886 if (current_templates->start->base_opcode == 0xf30f1b
8887 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
8888 {
8889 /* They cannot use RIP-relative addressing. */
8890 if (i.base_reg && i.base_reg->reg_num == RegRip)
8891 {
8892 as_bad (_("`%s' cannot be used here"), operand_string);
8893 return 0;
8894 }
8895
8896 /* bndldx and bndstx ignore their scale factor. */
8897 if (current_templates->start->base_opcode != 0xf30f1b
8898 && i.log2_scale_factor)
8899 as_warn (_("register scaling is being ignored here"));
8900 }
8901 }
8902 else
8903 {
8904 /* 16-bit checks. */
8905 if ((i.base_reg
8906 && (!i.base_reg->reg_type.bitfield.word
8907 || !i.base_reg->reg_type.bitfield.baseindex))
8908 || (i.index_reg
8909 && (!i.index_reg->reg_type.bitfield.word
8910 || !i.index_reg->reg_type.bitfield.baseindex
8911 || !(i.base_reg
8912 && i.base_reg->reg_num < 6
8913 && i.index_reg->reg_num >= 6
8914 && i.log2_scale_factor == 0))))
8915 goto bad_address;
8916 }
8917 }
8918 return 1;
8919 }
8920
8921 /* Handle vector immediates. */
8922
8923 static int
8924 RC_SAE_immediate (const char *imm_start)
8925 {
8926 unsigned int match_found, j;
8927 const char *pstr = imm_start;
8928 expressionS *exp;
8929
8930 if (*pstr != '{')
8931 return 0;
8932
8933 pstr++;
8934 match_found = 0;
8935 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8936 {
8937 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8938 {
8939 if (!i.rounding)
8940 {
8941 rc_op.type = RC_NamesTable[j].type;
8942 rc_op.operand = this_operand;
8943 i.rounding = &rc_op;
8944 }
8945 else
8946 {
8947 as_bad (_("duplicated `%s'"), imm_start);
8948 return 0;
8949 }
8950 pstr += RC_NamesTable[j].len;
8951 match_found = 1;
8952 break;
8953 }
8954 }
8955 if (!match_found)
8956 return 0;
8957
8958 if (*pstr++ != '}')
8959 {
8960 as_bad (_("Missing '}': '%s'"), imm_start);
8961 return 0;
8962 }
8963 /* RC/SAE immediate string should contain nothing more. */;
8964 if (*pstr != 0)
8965 {
8966 as_bad (_("Junk after '}': '%s'"), imm_start);
8967 return 0;
8968 }
8969
8970 exp = &im_expressions[i.imm_operands++];
8971 i.op[this_operand].imms = exp;
8972
8973 exp->X_op = O_constant;
8974 exp->X_add_number = 0;
8975 exp->X_add_symbol = (symbolS *) 0;
8976 exp->X_op_symbol = (symbolS *) 0;
8977
8978 i.types[this_operand].bitfield.imm8 = 1;
8979 return 1;
8980 }
8981
8982 /* Only string instructions can have a second memory operand, so
8983 reduce current_templates to just those if it contains any. */
8984 static int
8985 maybe_adjust_templates (void)
8986 {
8987 const insn_template *t;
8988
8989 gas_assert (i.mem_operands == 1);
8990
8991 for (t = current_templates->start; t < current_templates->end; ++t)
8992 if (t->opcode_modifier.isstring)
8993 break;
8994
8995 if (t < current_templates->end)
8996 {
8997 static templates aux_templates;
8998 bfd_boolean recheck;
8999
9000 aux_templates.start = t;
9001 for (; t < current_templates->end; ++t)
9002 if (!t->opcode_modifier.isstring)
9003 break;
9004 aux_templates.end = t;
9005
9006 /* Determine whether to re-check the first memory operand. */
9007 recheck = (aux_templates.start != current_templates->start
9008 || t != current_templates->end);
9009
9010 current_templates = &aux_templates;
9011
9012 if (recheck)
9013 {
9014 i.mem_operands = 0;
9015 if (i.memop1_string != NULL
9016 && i386_index_check (i.memop1_string) == 0)
9017 return 0;
9018 i.mem_operands = 1;
9019 }
9020 }
9021
9022 return 1;
9023 }
9024
9025 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9026 on error. */
9027
9028 static int
9029 i386_att_operand (char *operand_string)
9030 {
9031 const reg_entry *r;
9032 char *end_op;
9033 char *op_string = operand_string;
9034
9035 if (is_space_char (*op_string))
9036 ++op_string;
9037
9038 /* We check for an absolute prefix (differentiating,
9039 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9040 if (*op_string == ABSOLUTE_PREFIX)
9041 {
9042 ++op_string;
9043 if (is_space_char (*op_string))
9044 ++op_string;
9045 i.types[this_operand].bitfield.jumpabsolute = 1;
9046 }
9047
9048 /* Check if operand is a register. */
9049 if ((r = parse_register (op_string, &end_op)) != NULL)
9050 {
9051 i386_operand_type temp;
9052
9053 /* Check for a segment override by searching for ':' after a
9054 segment register. */
9055 op_string = end_op;
9056 if (is_space_char (*op_string))
9057 ++op_string;
9058 if (*op_string == ':'
9059 && (r->reg_type.bitfield.sreg2
9060 || r->reg_type.bitfield.sreg3))
9061 {
9062 switch (r->reg_num)
9063 {
9064 case 0:
9065 i.seg[i.mem_operands] = &es;
9066 break;
9067 case 1:
9068 i.seg[i.mem_operands] = &cs;
9069 break;
9070 case 2:
9071 i.seg[i.mem_operands] = &ss;
9072 break;
9073 case 3:
9074 i.seg[i.mem_operands] = &ds;
9075 break;
9076 case 4:
9077 i.seg[i.mem_operands] = &fs;
9078 break;
9079 case 5:
9080 i.seg[i.mem_operands] = &gs;
9081 break;
9082 }
9083
9084 /* Skip the ':' and whitespace. */
9085 ++op_string;
9086 if (is_space_char (*op_string))
9087 ++op_string;
9088
9089 if (!is_digit_char (*op_string)
9090 && !is_identifier_char (*op_string)
9091 && *op_string != '('
9092 && *op_string != ABSOLUTE_PREFIX)
9093 {
9094 as_bad (_("bad memory operand `%s'"), op_string);
9095 return 0;
9096 }
9097 /* Handle case of %es:*foo. */
9098 if (*op_string == ABSOLUTE_PREFIX)
9099 {
9100 ++op_string;
9101 if (is_space_char (*op_string))
9102 ++op_string;
9103 i.types[this_operand].bitfield.jumpabsolute = 1;
9104 }
9105 goto do_memory_reference;
9106 }
9107
9108 /* Handle vector operations. */
9109 if (*op_string == '{')
9110 {
9111 op_string = check_VecOperations (op_string, NULL);
9112 if (op_string == NULL)
9113 return 0;
9114 }
9115
9116 if (*op_string)
9117 {
9118 as_bad (_("junk `%s' after register"), op_string);
9119 return 0;
9120 }
9121 temp = r->reg_type;
9122 temp.bitfield.baseindex = 0;
9123 i.types[this_operand] = operand_type_or (i.types[this_operand],
9124 temp);
9125 i.types[this_operand].bitfield.unspecified = 0;
9126 i.op[this_operand].regs = r;
9127 i.reg_operands++;
9128 }
9129 else if (*op_string == REGISTER_PREFIX)
9130 {
9131 as_bad (_("bad register name `%s'"), op_string);
9132 return 0;
9133 }
9134 else if (*op_string == IMMEDIATE_PREFIX)
9135 {
9136 ++op_string;
9137 if (i.types[this_operand].bitfield.jumpabsolute)
9138 {
9139 as_bad (_("immediate operand illegal with absolute jump"));
9140 return 0;
9141 }
9142 if (!i386_immediate (op_string))
9143 return 0;
9144 }
9145 else if (RC_SAE_immediate (operand_string))
9146 {
9147 /* If it is a RC or SAE immediate, do nothing. */
9148 ;
9149 }
9150 else if (is_digit_char (*op_string)
9151 || is_identifier_char (*op_string)
9152 || *op_string == '"'
9153 || *op_string == '(')
9154 {
9155 /* This is a memory reference of some sort. */
9156 char *base_string;
9157
9158 /* Start and end of displacement string expression (if found). */
9159 char *displacement_string_start;
9160 char *displacement_string_end;
9161 char *vop_start;
9162
9163 do_memory_reference:
9164 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9165 return 0;
9166 if ((i.mem_operands == 1
9167 && !current_templates->start->opcode_modifier.isstring)
9168 || i.mem_operands == 2)
9169 {
9170 as_bad (_("too many memory references for `%s'"),
9171 current_templates->start->name);
9172 return 0;
9173 }
9174
9175 /* Check for base index form. We detect the base index form by
9176 looking for an ')' at the end of the operand, searching
9177 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9178 after the '('. */
9179 base_string = op_string + strlen (op_string);
9180
9181 /* Handle vector operations. */
9182 vop_start = strchr (op_string, '{');
9183 if (vop_start && vop_start < base_string)
9184 {
9185 if (check_VecOperations (vop_start, base_string) == NULL)
9186 return 0;
9187 base_string = vop_start;
9188 }
9189
9190 --base_string;
9191 if (is_space_char (*base_string))
9192 --base_string;
9193
9194 /* If we only have a displacement, set-up for it to be parsed later. */
9195 displacement_string_start = op_string;
9196 displacement_string_end = base_string + 1;
9197
9198 if (*base_string == ')')
9199 {
9200 char *temp_string;
9201 unsigned int parens_balanced = 1;
9202 /* We've already checked that the number of left & right ()'s are
9203 equal, so this loop will not be infinite. */
9204 do
9205 {
9206 base_string--;
9207 if (*base_string == ')')
9208 parens_balanced++;
9209 if (*base_string == '(')
9210 parens_balanced--;
9211 }
9212 while (parens_balanced);
9213
9214 temp_string = base_string;
9215
9216 /* Skip past '(' and whitespace. */
9217 ++base_string;
9218 if (is_space_char (*base_string))
9219 ++base_string;
9220
9221 if (*base_string == ','
9222 || ((i.base_reg = parse_register (base_string, &end_op))
9223 != NULL))
9224 {
9225 displacement_string_end = temp_string;
9226
9227 i.types[this_operand].bitfield.baseindex = 1;
9228
9229 if (i.base_reg)
9230 {
9231 base_string = end_op;
9232 if (is_space_char (*base_string))
9233 ++base_string;
9234 }
9235
9236 /* There may be an index reg or scale factor here. */
9237 if (*base_string == ',')
9238 {
9239 ++base_string;
9240 if (is_space_char (*base_string))
9241 ++base_string;
9242
9243 if ((i.index_reg = parse_register (base_string, &end_op))
9244 != NULL)
9245 {
9246 base_string = end_op;
9247 if (is_space_char (*base_string))
9248 ++base_string;
9249 if (*base_string == ',')
9250 {
9251 ++base_string;
9252 if (is_space_char (*base_string))
9253 ++base_string;
9254 }
9255 else if (*base_string != ')')
9256 {
9257 as_bad (_("expecting `,' or `)' "
9258 "after index register in `%s'"),
9259 operand_string);
9260 return 0;
9261 }
9262 }
9263 else if (*base_string == REGISTER_PREFIX)
9264 {
9265 end_op = strchr (base_string, ',');
9266 if (end_op)
9267 *end_op = '\0';
9268 as_bad (_("bad register name `%s'"), base_string);
9269 return 0;
9270 }
9271
9272 /* Check for scale factor. */
9273 if (*base_string != ')')
9274 {
9275 char *end_scale = i386_scale (base_string);
9276
9277 if (!end_scale)
9278 return 0;
9279
9280 base_string = end_scale;
9281 if (is_space_char (*base_string))
9282 ++base_string;
9283 if (*base_string != ')')
9284 {
9285 as_bad (_("expecting `)' "
9286 "after scale factor in `%s'"),
9287 operand_string);
9288 return 0;
9289 }
9290 }
9291 else if (!i.index_reg)
9292 {
9293 as_bad (_("expecting index register or scale factor "
9294 "after `,'; got '%c'"),
9295 *base_string);
9296 return 0;
9297 }
9298 }
9299 else if (*base_string != ')')
9300 {
9301 as_bad (_("expecting `,' or `)' "
9302 "after base register in `%s'"),
9303 operand_string);
9304 return 0;
9305 }
9306 }
9307 else if (*base_string == REGISTER_PREFIX)
9308 {
9309 end_op = strchr (base_string, ',');
9310 if (end_op)
9311 *end_op = '\0';
9312 as_bad (_("bad register name `%s'"), base_string);
9313 return 0;
9314 }
9315 }
9316
9317 /* If there's an expression beginning the operand, parse it,
9318 assuming displacement_string_start and
9319 displacement_string_end are meaningful. */
9320 if (displacement_string_start != displacement_string_end)
9321 {
9322 if (!i386_displacement (displacement_string_start,
9323 displacement_string_end))
9324 return 0;
9325 }
9326
9327 /* Special case for (%dx) while doing input/output op. */
9328 if (i.base_reg
9329 && operand_type_equal (&i.base_reg->reg_type,
9330 &reg16_inoutportreg)
9331 && i.index_reg == 0
9332 && i.log2_scale_factor == 0
9333 && i.seg[i.mem_operands] == 0
9334 && !operand_type_check (i.types[this_operand], disp))
9335 {
9336 i.types[this_operand] = inoutportreg;
9337 return 1;
9338 }
9339
9340 if (i386_index_check (operand_string) == 0)
9341 return 0;
9342 i.types[this_operand].bitfield.mem = 1;
9343 if (i.mem_operands == 0)
9344 i.memop1_string = xstrdup (operand_string);
9345 i.mem_operands++;
9346 }
9347 else
9348 {
9349 /* It's not a memory operand; argh! */
9350 as_bad (_("invalid char %s beginning operand %d `%s'"),
9351 output_invalid (*op_string),
9352 this_operand + 1,
9353 op_string);
9354 return 0;
9355 }
9356 return 1; /* Normal return. */
9357 }
9358 \f
9359 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9360 that an rs_machine_dependent frag may reach. */
9361
9362 unsigned int
9363 i386_frag_max_var (fragS *frag)
9364 {
9365 /* The only relaxable frags are for jumps.
9366 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9367 gas_assert (frag->fr_type == rs_machine_dependent);
9368 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9369 }
9370
9371 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9372 static int
9373 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9374 {
9375 /* STT_GNU_IFUNC symbol must go through PLT. */
9376 if ((symbol_get_bfdsym (fr_symbol)->flags
9377 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9378 return 0;
9379
9380 if (!S_IS_EXTERNAL (fr_symbol))
9381 /* Symbol may be weak or local. */
9382 return !S_IS_WEAK (fr_symbol);
9383
9384 /* Global symbols with non-default visibility can't be preempted. */
9385 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9386 return 1;
9387
9388 if (fr_var != NO_RELOC)
9389 switch ((enum bfd_reloc_code_real) fr_var)
9390 {
9391 case BFD_RELOC_386_PLT32:
9392 case BFD_RELOC_X86_64_PLT32:
9393 /* Symbol with PLT relocation may be preempted. */
9394 return 0;
9395 default:
9396 abort ();
9397 }
9398
9399 /* Global symbols with default visibility in a shared library may be
9400 preempted by another definition. */
9401 return !shared;
9402 }
9403 #endif
9404
9405 /* md_estimate_size_before_relax()
9406
9407 Called just before relax() for rs_machine_dependent frags. The x86
9408 assembler uses these frags to handle variable size jump
9409 instructions.
9410
9411 Any symbol that is now undefined will not become defined.
9412 Return the correct fr_subtype in the frag.
9413 Return the initial "guess for variable size of frag" to caller.
9414 The guess is actually the growth beyond the fixed part. Whatever
9415 we do to grow the fixed or variable part contributes to our
9416 returned value. */
9417
9418 int
9419 md_estimate_size_before_relax (fragS *fragP, segT segment)
9420 {
9421 /* We've already got fragP->fr_subtype right; all we have to do is
9422 check for un-relaxable symbols. On an ELF system, we can't relax
9423 an externally visible symbol, because it may be overridden by a
9424 shared library. */
9425 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9426 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9427 || (IS_ELF
9428 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9429 fragP->fr_var))
9430 #endif
9431 #if defined (OBJ_COFF) && defined (TE_PE)
9432 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9433 && S_IS_WEAK (fragP->fr_symbol))
9434 #endif
9435 )
9436 {
9437 /* Symbol is undefined in this segment, or we need to keep a
9438 reloc so that weak symbols can be overridden. */
9439 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9440 enum bfd_reloc_code_real reloc_type;
9441 unsigned char *opcode;
9442 int old_fr_fix;
9443
9444 if (fragP->fr_var != NO_RELOC)
9445 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9446 else if (size == 2)
9447 reloc_type = BFD_RELOC_16_PCREL;
9448 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9449 else if (need_plt32_p (fragP->fr_symbol))
9450 reloc_type = BFD_RELOC_X86_64_PLT32;
9451 #endif
9452 else
9453 reloc_type = BFD_RELOC_32_PCREL;
9454
9455 old_fr_fix = fragP->fr_fix;
9456 opcode = (unsigned char *) fragP->fr_opcode;
9457
9458 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9459 {
9460 case UNCOND_JUMP:
9461 /* Make jmp (0xeb) a (d)word displacement jump. */
9462 opcode[0] = 0xe9;
9463 fragP->fr_fix += size;
9464 fix_new (fragP, old_fr_fix, size,
9465 fragP->fr_symbol,
9466 fragP->fr_offset, 1,
9467 reloc_type);
9468 break;
9469
9470 case COND_JUMP86:
9471 if (size == 2
9472 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9473 {
9474 /* Negate the condition, and branch past an
9475 unconditional jump. */
9476 opcode[0] ^= 1;
9477 opcode[1] = 3;
9478 /* Insert an unconditional jump. */
9479 opcode[2] = 0xe9;
9480 /* We added two extra opcode bytes, and have a two byte
9481 offset. */
9482 fragP->fr_fix += 2 + 2;
9483 fix_new (fragP, old_fr_fix + 2, 2,
9484 fragP->fr_symbol,
9485 fragP->fr_offset, 1,
9486 reloc_type);
9487 break;
9488 }
9489 /* Fall through. */
9490
9491 case COND_JUMP:
9492 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9493 {
9494 fixS *fixP;
9495
9496 fragP->fr_fix += 1;
9497 fixP = fix_new (fragP, old_fr_fix, 1,
9498 fragP->fr_symbol,
9499 fragP->fr_offset, 1,
9500 BFD_RELOC_8_PCREL);
9501 fixP->fx_signed = 1;
9502 break;
9503 }
9504
9505 /* This changes the byte-displacement jump 0x7N
9506 to the (d)word-displacement jump 0x0f,0x8N. */
9507 opcode[1] = opcode[0] + 0x10;
9508 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9509 /* We've added an opcode byte. */
9510 fragP->fr_fix += 1 + size;
9511 fix_new (fragP, old_fr_fix + 1, size,
9512 fragP->fr_symbol,
9513 fragP->fr_offset, 1,
9514 reloc_type);
9515 break;
9516
9517 default:
9518 BAD_CASE (fragP->fr_subtype);
9519 break;
9520 }
9521 frag_wane (fragP);
9522 return fragP->fr_fix - old_fr_fix;
9523 }
9524
9525 /* Guess size depending on current relax state. Initially the relax
9526 state will correspond to a short jump and we return 1, because
9527 the variable part of the frag (the branch offset) is one byte
9528 long. However, we can relax a section more than once and in that
9529 case we must either set fr_subtype back to the unrelaxed state,
9530 or return the value for the appropriate branch. */
9531 return md_relax_table[fragP->fr_subtype].rlx_length;
9532 }
9533
9534 /* Called after relax() is finished.
9535
9536 In: Address of frag.
9537 fr_type == rs_machine_dependent.
9538 fr_subtype is what the address relaxed to.
9539
9540 Out: Any fixSs and constants are set up.
9541 Caller will turn frag into a ".space 0". */
9542
9543 void
9544 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9545 fragS *fragP)
9546 {
9547 unsigned char *opcode;
9548 unsigned char *where_to_put_displacement = NULL;
9549 offsetT target_address;
9550 offsetT opcode_address;
9551 unsigned int extension = 0;
9552 offsetT displacement_from_opcode_start;
9553
9554 opcode = (unsigned char *) fragP->fr_opcode;
9555
9556 /* Address we want to reach in file space. */
9557 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9558
9559 /* Address opcode resides at in file space. */
9560 opcode_address = fragP->fr_address + fragP->fr_fix;
9561
9562 /* Displacement from opcode start to fill into instruction. */
9563 displacement_from_opcode_start = target_address - opcode_address;
9564
9565 if ((fragP->fr_subtype & BIG) == 0)
9566 {
9567 /* Don't have to change opcode. */
9568 extension = 1; /* 1 opcode + 1 displacement */
9569 where_to_put_displacement = &opcode[1];
9570 }
9571 else
9572 {
9573 if (no_cond_jump_promotion
9574 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9575 as_warn_where (fragP->fr_file, fragP->fr_line,
9576 _("long jump required"));
9577
9578 switch (fragP->fr_subtype)
9579 {
9580 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9581 extension = 4; /* 1 opcode + 4 displacement */
9582 opcode[0] = 0xe9;
9583 where_to_put_displacement = &opcode[1];
9584 break;
9585
9586 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9587 extension = 2; /* 1 opcode + 2 displacement */
9588 opcode[0] = 0xe9;
9589 where_to_put_displacement = &opcode[1];
9590 break;
9591
9592 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9593 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9594 extension = 5; /* 2 opcode + 4 displacement */
9595 opcode[1] = opcode[0] + 0x10;
9596 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9597 where_to_put_displacement = &opcode[2];
9598 break;
9599
9600 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9601 extension = 3; /* 2 opcode + 2 displacement */
9602 opcode[1] = opcode[0] + 0x10;
9603 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9604 where_to_put_displacement = &opcode[2];
9605 break;
9606
9607 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9608 extension = 4;
9609 opcode[0] ^= 1;
9610 opcode[1] = 3;
9611 opcode[2] = 0xe9;
9612 where_to_put_displacement = &opcode[3];
9613 break;
9614
9615 default:
9616 BAD_CASE (fragP->fr_subtype);
9617 break;
9618 }
9619 }
9620
9621 /* If size if less then four we are sure that the operand fits,
9622 but if it's 4, then it could be that the displacement is larger
9623 then -/+ 2GB. */
9624 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9625 && object_64bit
9626 && ((addressT) (displacement_from_opcode_start - extension
9627 + ((addressT) 1 << 31))
9628 > (((addressT) 2 << 31) - 1)))
9629 {
9630 as_bad_where (fragP->fr_file, fragP->fr_line,
9631 _("jump target out of range"));
9632 /* Make us emit 0. */
9633 displacement_from_opcode_start = extension;
9634 }
9635 /* Now put displacement after opcode. */
9636 md_number_to_chars ((char *) where_to_put_displacement,
9637 (valueT) (displacement_from_opcode_start - extension),
9638 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9639 fragP->fr_fix += extension;
9640 }
9641 \f
9642 /* Apply a fixup (fixP) to segment data, once it has been determined
9643 by our caller that we have all the info we need to fix it up.
9644
9645 Parameter valP is the pointer to the value of the bits.
9646
9647 On the 386, immediates, displacements, and data pointers are all in
9648 the same (little-endian) format, so we don't need to care about which
9649 we are handling. */
9650
9651 void
9652 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9653 {
9654 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9655 valueT value = *valP;
9656
9657 #if !defined (TE_Mach)
9658 if (fixP->fx_pcrel)
9659 {
9660 switch (fixP->fx_r_type)
9661 {
9662 default:
9663 break;
9664
9665 case BFD_RELOC_64:
9666 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9667 break;
9668 case BFD_RELOC_32:
9669 case BFD_RELOC_X86_64_32S:
9670 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9671 break;
9672 case BFD_RELOC_16:
9673 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9674 break;
9675 case BFD_RELOC_8:
9676 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9677 break;
9678 }
9679 }
9680
9681 if (fixP->fx_addsy != NULL
9682 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9683 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9684 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9685 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9686 && !use_rela_relocations)
9687 {
9688 /* This is a hack. There should be a better way to handle this.
9689 This covers for the fact that bfd_install_relocation will
9690 subtract the current location (for partial_inplace, PC relative
9691 relocations); see more below. */
9692 #ifndef OBJ_AOUT
9693 if (IS_ELF
9694 #ifdef TE_PE
9695 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9696 #endif
9697 )
9698 value += fixP->fx_where + fixP->fx_frag->fr_address;
9699 #endif
9700 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9701 if (IS_ELF)
9702 {
9703 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9704
9705 if ((sym_seg == seg
9706 || (symbol_section_p (fixP->fx_addsy)
9707 && sym_seg != absolute_section))
9708 && !generic_force_reloc (fixP))
9709 {
9710 /* Yes, we add the values in twice. This is because
9711 bfd_install_relocation subtracts them out again. I think
9712 bfd_install_relocation is broken, but I don't dare change
9713 it. FIXME. */
9714 value += fixP->fx_where + fixP->fx_frag->fr_address;
9715 }
9716 }
9717 #endif
9718 #if defined (OBJ_COFF) && defined (TE_PE)
9719 /* For some reason, the PE format does not store a
9720 section address offset for a PC relative symbol. */
9721 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9722 || S_IS_WEAK (fixP->fx_addsy))
9723 value += md_pcrel_from (fixP);
9724 #endif
9725 }
9726 #if defined (OBJ_COFF) && defined (TE_PE)
9727 if (fixP->fx_addsy != NULL
9728 && S_IS_WEAK (fixP->fx_addsy)
9729 /* PR 16858: Do not modify weak function references. */
9730 && ! fixP->fx_pcrel)
9731 {
9732 #if !defined (TE_PEP)
9733 /* For x86 PE weak function symbols are neither PC-relative
9734 nor do they set S_IS_FUNCTION. So the only reliable way
9735 to detect them is to check the flags of their containing
9736 section. */
9737 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9738 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9739 ;
9740 else
9741 #endif
9742 value -= S_GET_VALUE (fixP->fx_addsy);
9743 }
9744 #endif
9745
9746 /* Fix a few things - the dynamic linker expects certain values here,
9747 and we must not disappoint it. */
9748 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9749 if (IS_ELF && fixP->fx_addsy)
9750 switch (fixP->fx_r_type)
9751 {
9752 case BFD_RELOC_386_PLT32:
9753 case BFD_RELOC_X86_64_PLT32:
9754 /* Make the jump instruction point to the address of the operand. At
9755 runtime we merely add the offset to the actual PLT entry. */
9756 value = -4;
9757 break;
9758
9759 case BFD_RELOC_386_TLS_GD:
9760 case BFD_RELOC_386_TLS_LDM:
9761 case BFD_RELOC_386_TLS_IE_32:
9762 case BFD_RELOC_386_TLS_IE:
9763 case BFD_RELOC_386_TLS_GOTIE:
9764 case BFD_RELOC_386_TLS_GOTDESC:
9765 case BFD_RELOC_X86_64_TLSGD:
9766 case BFD_RELOC_X86_64_TLSLD:
9767 case BFD_RELOC_X86_64_GOTTPOFF:
9768 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9769 value = 0; /* Fully resolved at runtime. No addend. */
9770 /* Fallthrough */
9771 case BFD_RELOC_386_TLS_LE:
9772 case BFD_RELOC_386_TLS_LDO_32:
9773 case BFD_RELOC_386_TLS_LE_32:
9774 case BFD_RELOC_X86_64_DTPOFF32:
9775 case BFD_RELOC_X86_64_DTPOFF64:
9776 case BFD_RELOC_X86_64_TPOFF32:
9777 case BFD_RELOC_X86_64_TPOFF64:
9778 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9779 break;
9780
9781 case BFD_RELOC_386_TLS_DESC_CALL:
9782 case BFD_RELOC_X86_64_TLSDESC_CALL:
9783 value = 0; /* Fully resolved at runtime. No addend. */
9784 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9785 fixP->fx_done = 0;
9786 return;
9787
9788 case BFD_RELOC_VTABLE_INHERIT:
9789 case BFD_RELOC_VTABLE_ENTRY:
9790 fixP->fx_done = 0;
9791 return;
9792
9793 default:
9794 break;
9795 }
9796 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
9797 *valP = value;
9798 #endif /* !defined (TE_Mach) */
9799
9800 /* Are we finished with this relocation now? */
9801 if (fixP->fx_addsy == NULL)
9802 fixP->fx_done = 1;
9803 #if defined (OBJ_COFF) && defined (TE_PE)
9804 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9805 {
9806 fixP->fx_done = 0;
9807 /* Remember value for tc_gen_reloc. */
9808 fixP->fx_addnumber = value;
9809 /* Clear out the frag for now. */
9810 value = 0;
9811 }
9812 #endif
9813 else if (use_rela_relocations)
9814 {
9815 fixP->fx_no_overflow = 1;
9816 /* Remember value for tc_gen_reloc. */
9817 fixP->fx_addnumber = value;
9818 value = 0;
9819 }
9820
9821 md_number_to_chars (p, value, fixP->fx_size);
9822 }
9823 \f
9824 const char *
9825 md_atof (int type, char *litP, int *sizeP)
9826 {
9827 /* This outputs the LITTLENUMs in REVERSE order;
9828 in accord with the bigendian 386. */
9829 return ieee_md_atof (type, litP, sizeP, FALSE);
9830 }
9831 \f
9832 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
9833
9834 static char *
9835 output_invalid (int c)
9836 {
9837 if (ISPRINT (c))
9838 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9839 "'%c'", c);
9840 else
9841 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9842 "(0x%x)", (unsigned char) c);
9843 return output_invalid_buf;
9844 }
9845
9846 /* REG_STRING starts *before* REGISTER_PREFIX. */
9847
9848 static const reg_entry *
9849 parse_real_register (char *reg_string, char **end_op)
9850 {
9851 char *s = reg_string;
9852 char *p;
9853 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9854 const reg_entry *r;
9855
9856 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9857 if (*s == REGISTER_PREFIX)
9858 ++s;
9859
9860 if (is_space_char (*s))
9861 ++s;
9862
9863 p = reg_name_given;
9864 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
9865 {
9866 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
9867 return (const reg_entry *) NULL;
9868 s++;
9869 }
9870
9871 /* For naked regs, make sure that we are not dealing with an identifier.
9872 This prevents confusing an identifier like `eax_var' with register
9873 `eax'. */
9874 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9875 return (const reg_entry *) NULL;
9876
9877 *end_op = s;
9878
9879 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9880
9881 /* Handle floating point regs, allowing spaces in the (i) part. */
9882 if (r == i386_regtab /* %st is first entry of table */)
9883 {
9884 if (is_space_char (*s))
9885 ++s;
9886 if (*s == '(')
9887 {
9888 ++s;
9889 if (is_space_char (*s))
9890 ++s;
9891 if (*s >= '0' && *s <= '7')
9892 {
9893 int fpr = *s - '0';
9894 ++s;
9895 if (is_space_char (*s))
9896 ++s;
9897 if (*s == ')')
9898 {
9899 *end_op = s + 1;
9900 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
9901 know (r);
9902 return r + fpr;
9903 }
9904 }
9905 /* We have "%st(" then garbage. */
9906 return (const reg_entry *) NULL;
9907 }
9908 }
9909
9910 if (r == NULL || allow_pseudo_reg)
9911 return r;
9912
9913 if (operand_type_all_zero (&r->reg_type))
9914 return (const reg_entry *) NULL;
9915
9916 if ((r->reg_type.bitfield.dword
9917 || r->reg_type.bitfield.sreg3
9918 || r->reg_type.bitfield.control
9919 || r->reg_type.bitfield.debug
9920 || r->reg_type.bitfield.test)
9921 && !cpu_arch_flags.bitfield.cpui386)
9922 return (const reg_entry *) NULL;
9923
9924 if (r->reg_type.bitfield.tbyte
9925 && !cpu_arch_flags.bitfield.cpu8087
9926 && !cpu_arch_flags.bitfield.cpu287
9927 && !cpu_arch_flags.bitfield.cpu387)
9928 return (const reg_entry *) NULL;
9929
9930 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
9931 return (const reg_entry *) NULL;
9932
9933 if (r->reg_type.bitfield.xmmword && !cpu_arch_flags.bitfield.cpuregxmm)
9934 return (const reg_entry *) NULL;
9935
9936 if (r->reg_type.bitfield.ymmword && !cpu_arch_flags.bitfield.cpuregymm)
9937 return (const reg_entry *) NULL;
9938
9939 if (r->reg_type.bitfield.zmmword && !cpu_arch_flags.bitfield.cpuregzmm)
9940 return (const reg_entry *) NULL;
9941
9942 if (r->reg_type.bitfield.regmask
9943 && !cpu_arch_flags.bitfield.cpuregmask)
9944 return (const reg_entry *) NULL;
9945
9946 /* Don't allow fake index register unless allow_index_reg isn't 0. */
9947 if (!allow_index_reg
9948 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9949 return (const reg_entry *) NULL;
9950
9951 /* Upper 16 vector register is only available with VREX in 64bit
9952 mode. */
9953 if ((r->reg_flags & RegVRex))
9954 {
9955 if (i.vec_encoding == vex_encoding_default)
9956 i.vec_encoding = vex_encoding_evex;
9957
9958 if (!cpu_arch_flags.bitfield.cpuvrex
9959 || i.vec_encoding != vex_encoding_evex
9960 || flag_code != CODE_64BIT)
9961 return (const reg_entry *) NULL;
9962 }
9963
9964 if (((r->reg_flags & (RegRex64 | RegRex))
9965 || r->reg_type.bitfield.qword)
9966 && (!cpu_arch_flags.bitfield.cpulm
9967 || !operand_type_equal (&r->reg_type, &control))
9968 && flag_code != CODE_64BIT)
9969 return (const reg_entry *) NULL;
9970
9971 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9972 return (const reg_entry *) NULL;
9973
9974 return r;
9975 }
9976
9977 /* REG_STRING starts *before* REGISTER_PREFIX. */
9978
9979 static const reg_entry *
9980 parse_register (char *reg_string, char **end_op)
9981 {
9982 const reg_entry *r;
9983
9984 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9985 r = parse_real_register (reg_string, end_op);
9986 else
9987 r = NULL;
9988 if (!r)
9989 {
9990 char *save = input_line_pointer;
9991 char c;
9992 symbolS *symbolP;
9993
9994 input_line_pointer = reg_string;
9995 c = get_symbol_name (&reg_string);
9996 symbolP = symbol_find (reg_string);
9997 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9998 {
9999 const expressionS *e = symbol_get_value_expression (symbolP);
10000
10001 know (e->X_op == O_register);
10002 know (e->X_add_number >= 0
10003 && (valueT) e->X_add_number < i386_regtab_size);
10004 r = i386_regtab + e->X_add_number;
10005 if ((r->reg_flags & RegVRex))
10006 i.vec_encoding = vex_encoding_evex;
10007 *end_op = input_line_pointer;
10008 }
10009 *input_line_pointer = c;
10010 input_line_pointer = save;
10011 }
10012 return r;
10013 }
10014
10015 int
10016 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10017 {
10018 const reg_entry *r;
10019 char *end = input_line_pointer;
10020
10021 *end = *nextcharP;
10022 r = parse_register (name, &input_line_pointer);
10023 if (r && end <= input_line_pointer)
10024 {
10025 *nextcharP = *input_line_pointer;
10026 *input_line_pointer = 0;
10027 e->X_op = O_register;
10028 e->X_add_number = r - i386_regtab;
10029 return 1;
10030 }
10031 input_line_pointer = end;
10032 *end = 0;
10033 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10034 }
10035
10036 void
10037 md_operand (expressionS *e)
10038 {
10039 char *end;
10040 const reg_entry *r;
10041
10042 switch (*input_line_pointer)
10043 {
10044 case REGISTER_PREFIX:
10045 r = parse_real_register (input_line_pointer, &end);
10046 if (r)
10047 {
10048 e->X_op = O_register;
10049 e->X_add_number = r - i386_regtab;
10050 input_line_pointer = end;
10051 }
10052 break;
10053
10054 case '[':
10055 gas_assert (intel_syntax);
10056 end = input_line_pointer++;
10057 expression (e);
10058 if (*input_line_pointer == ']')
10059 {
10060 ++input_line_pointer;
10061 e->X_op_symbol = make_expr_symbol (e);
10062 e->X_add_symbol = NULL;
10063 e->X_add_number = 0;
10064 e->X_op = O_index;
10065 }
10066 else
10067 {
10068 e->X_op = O_absent;
10069 input_line_pointer = end;
10070 }
10071 break;
10072 }
10073 }
10074
10075 \f
10076 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10077 const char *md_shortopts = "kVQ:sqn";
10078 #else
10079 const char *md_shortopts = "qn";
10080 #endif
10081
10082 #define OPTION_32 (OPTION_MD_BASE + 0)
10083 #define OPTION_64 (OPTION_MD_BASE + 1)
10084 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
10085 #define OPTION_MARCH (OPTION_MD_BASE + 3)
10086 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
10087 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10088 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10089 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10090 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10091 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
10092 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
10093 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
10094 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10095 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10096 #define OPTION_X32 (OPTION_MD_BASE + 14)
10097 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
10098 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10099 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
10100 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
10101 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
10102 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
10103 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
10104 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10105 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
10106 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
10107 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 25)
10108
10109 struct option md_longopts[] =
10110 {
10111 {"32", no_argument, NULL, OPTION_32},
10112 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10113 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10114 {"64", no_argument, NULL, OPTION_64},
10115 #endif
10116 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10117 {"x32", no_argument, NULL, OPTION_X32},
10118 {"mshared", no_argument, NULL, OPTION_MSHARED},
10119 #endif
10120 {"divide", no_argument, NULL, OPTION_DIVIDE},
10121 {"march", required_argument, NULL, OPTION_MARCH},
10122 {"mtune", required_argument, NULL, OPTION_MTUNE},
10123 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10124 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10125 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10126 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10127 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
10128 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
10129 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
10130 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
10131 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
10132 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
10133 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10134 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
10135 # if defined (TE_PE) || defined (TE_PEP)
10136 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10137 #endif
10138 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10139 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10140 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10141 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10142 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10143 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10144 {NULL, no_argument, NULL, 0}
10145 };
10146 size_t md_longopts_size = sizeof (md_longopts);
10147
10148 int
10149 md_parse_option (int c, const char *arg)
10150 {
10151 unsigned int j;
10152 char *arch, *next, *saved;
10153
10154 switch (c)
10155 {
10156 case 'n':
10157 optimize_align_code = 0;
10158 break;
10159
10160 case 'q':
10161 quiet_warnings = 1;
10162 break;
10163
10164 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10165 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10166 should be emitted or not. FIXME: Not implemented. */
10167 case 'Q':
10168 break;
10169
10170 /* -V: SVR4 argument to print version ID. */
10171 case 'V':
10172 print_version_id ();
10173 break;
10174
10175 /* -k: Ignore for FreeBSD compatibility. */
10176 case 'k':
10177 break;
10178
10179 case 's':
10180 /* -s: On i386 Solaris, this tells the native assembler to use
10181 .stab instead of .stab.excl. We always use .stab anyhow. */
10182 break;
10183
10184 case OPTION_MSHARED:
10185 shared = 1;
10186 break;
10187 #endif
10188 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10189 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10190 case OPTION_64:
10191 {
10192 const char **list, **l;
10193
10194 list = bfd_target_list ();
10195 for (l = list; *l != NULL; l++)
10196 if (CONST_STRNEQ (*l, "elf64-x86-64")
10197 || strcmp (*l, "coff-x86-64") == 0
10198 || strcmp (*l, "pe-x86-64") == 0
10199 || strcmp (*l, "pei-x86-64") == 0
10200 || strcmp (*l, "mach-o-x86-64") == 0)
10201 {
10202 default_arch = "x86_64";
10203 break;
10204 }
10205 if (*l == NULL)
10206 as_fatal (_("no compiled in support for x86_64"));
10207 free (list);
10208 }
10209 break;
10210 #endif
10211
10212 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10213 case OPTION_X32:
10214 if (IS_ELF)
10215 {
10216 const char **list, **l;
10217
10218 list = bfd_target_list ();
10219 for (l = list; *l != NULL; l++)
10220 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10221 {
10222 default_arch = "x86_64:32";
10223 break;
10224 }
10225 if (*l == NULL)
10226 as_fatal (_("no compiled in support for 32bit x86_64"));
10227 free (list);
10228 }
10229 else
10230 as_fatal (_("32bit x86_64 is only supported for ELF"));
10231 break;
10232 #endif
10233
10234 case OPTION_32:
10235 default_arch = "i386";
10236 break;
10237
10238 case OPTION_DIVIDE:
10239 #ifdef SVR4_COMMENT_CHARS
10240 {
10241 char *n, *t;
10242 const char *s;
10243
10244 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
10245 t = n;
10246 for (s = i386_comment_chars; *s != '\0'; s++)
10247 if (*s != '/')
10248 *t++ = *s;
10249 *t = '\0';
10250 i386_comment_chars = n;
10251 }
10252 #endif
10253 break;
10254
10255 case OPTION_MARCH:
10256 saved = xstrdup (arg);
10257 arch = saved;
10258 /* Allow -march=+nosse. */
10259 if (*arch == '+')
10260 arch++;
10261 do
10262 {
10263 if (*arch == '.')
10264 as_fatal (_("invalid -march= option: `%s'"), arg);
10265 next = strchr (arch, '+');
10266 if (next)
10267 *next++ = '\0';
10268 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10269 {
10270 if (strcmp (arch, cpu_arch [j].name) == 0)
10271 {
10272 /* Processor. */
10273 if (! cpu_arch[j].flags.bitfield.cpui386)
10274 continue;
10275
10276 cpu_arch_name = cpu_arch[j].name;
10277 cpu_sub_arch_name = NULL;
10278 cpu_arch_flags = cpu_arch[j].flags;
10279 cpu_arch_isa = cpu_arch[j].type;
10280 cpu_arch_isa_flags = cpu_arch[j].flags;
10281 if (!cpu_arch_tune_set)
10282 {
10283 cpu_arch_tune = cpu_arch_isa;
10284 cpu_arch_tune_flags = cpu_arch_isa_flags;
10285 }
10286 break;
10287 }
10288 else if (*cpu_arch [j].name == '.'
10289 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10290 {
10291 /* ISA extension. */
10292 i386_cpu_flags flags;
10293
10294 flags = cpu_flags_or (cpu_arch_flags,
10295 cpu_arch[j].flags);
10296
10297 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10298 {
10299 if (cpu_sub_arch_name)
10300 {
10301 char *name = cpu_sub_arch_name;
10302 cpu_sub_arch_name = concat (name,
10303 cpu_arch[j].name,
10304 (const char *) NULL);
10305 free (name);
10306 }
10307 else
10308 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10309 cpu_arch_flags = flags;
10310 cpu_arch_isa_flags = flags;
10311 }
10312 break;
10313 }
10314 }
10315
10316 if (j >= ARRAY_SIZE (cpu_arch))
10317 {
10318 /* Disable an ISA extension. */
10319 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10320 if (strcmp (arch, cpu_noarch [j].name) == 0)
10321 {
10322 i386_cpu_flags flags;
10323
10324 flags = cpu_flags_and_not (cpu_arch_flags,
10325 cpu_noarch[j].flags);
10326 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10327 {
10328 if (cpu_sub_arch_name)
10329 {
10330 char *name = cpu_sub_arch_name;
10331 cpu_sub_arch_name = concat (arch,
10332 (const char *) NULL);
10333 free (name);
10334 }
10335 else
10336 cpu_sub_arch_name = xstrdup (arch);
10337 cpu_arch_flags = flags;
10338 cpu_arch_isa_flags = flags;
10339 }
10340 break;
10341 }
10342
10343 if (j >= ARRAY_SIZE (cpu_noarch))
10344 j = ARRAY_SIZE (cpu_arch);
10345 }
10346
10347 if (j >= ARRAY_SIZE (cpu_arch))
10348 as_fatal (_("invalid -march= option: `%s'"), arg);
10349
10350 arch = next;
10351 }
10352 while (next != NULL);
10353 free (saved);
10354 break;
10355
10356 case OPTION_MTUNE:
10357 if (*arg == '.')
10358 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10359 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10360 {
10361 if (strcmp (arg, cpu_arch [j].name) == 0)
10362 {
10363 cpu_arch_tune_set = 1;
10364 cpu_arch_tune = cpu_arch [j].type;
10365 cpu_arch_tune_flags = cpu_arch[j].flags;
10366 break;
10367 }
10368 }
10369 if (j >= ARRAY_SIZE (cpu_arch))
10370 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10371 break;
10372
10373 case OPTION_MMNEMONIC:
10374 if (strcasecmp (arg, "att") == 0)
10375 intel_mnemonic = 0;
10376 else if (strcasecmp (arg, "intel") == 0)
10377 intel_mnemonic = 1;
10378 else
10379 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10380 break;
10381
10382 case OPTION_MSYNTAX:
10383 if (strcasecmp (arg, "att") == 0)
10384 intel_syntax = 0;
10385 else if (strcasecmp (arg, "intel") == 0)
10386 intel_syntax = 1;
10387 else
10388 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10389 break;
10390
10391 case OPTION_MINDEX_REG:
10392 allow_index_reg = 1;
10393 break;
10394
10395 case OPTION_MNAKED_REG:
10396 allow_naked_reg = 1;
10397 break;
10398
10399 case OPTION_MOLD_GCC:
10400 old_gcc = 1;
10401 break;
10402
10403 case OPTION_MSSE2AVX:
10404 sse2avx = 1;
10405 break;
10406
10407 case OPTION_MSSE_CHECK:
10408 if (strcasecmp (arg, "error") == 0)
10409 sse_check = check_error;
10410 else if (strcasecmp (arg, "warning") == 0)
10411 sse_check = check_warning;
10412 else if (strcasecmp (arg, "none") == 0)
10413 sse_check = check_none;
10414 else
10415 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10416 break;
10417
10418 case OPTION_MOPERAND_CHECK:
10419 if (strcasecmp (arg, "error") == 0)
10420 operand_check = check_error;
10421 else if (strcasecmp (arg, "warning") == 0)
10422 operand_check = check_warning;
10423 else if (strcasecmp (arg, "none") == 0)
10424 operand_check = check_none;
10425 else
10426 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10427 break;
10428
10429 case OPTION_MAVXSCALAR:
10430 if (strcasecmp (arg, "128") == 0)
10431 avxscalar = vex128;
10432 else if (strcasecmp (arg, "256") == 0)
10433 avxscalar = vex256;
10434 else
10435 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10436 break;
10437
10438 case OPTION_MADD_BND_PREFIX:
10439 add_bnd_prefix = 1;
10440 break;
10441
10442 case OPTION_MEVEXLIG:
10443 if (strcmp (arg, "128") == 0)
10444 evexlig = evexl128;
10445 else if (strcmp (arg, "256") == 0)
10446 evexlig = evexl256;
10447 else if (strcmp (arg, "512") == 0)
10448 evexlig = evexl512;
10449 else
10450 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10451 break;
10452
10453 case OPTION_MEVEXRCIG:
10454 if (strcmp (arg, "rne") == 0)
10455 evexrcig = rne;
10456 else if (strcmp (arg, "rd") == 0)
10457 evexrcig = rd;
10458 else if (strcmp (arg, "ru") == 0)
10459 evexrcig = ru;
10460 else if (strcmp (arg, "rz") == 0)
10461 evexrcig = rz;
10462 else
10463 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10464 break;
10465
10466 case OPTION_MEVEXWIG:
10467 if (strcmp (arg, "0") == 0)
10468 evexwig = evexw0;
10469 else if (strcmp (arg, "1") == 0)
10470 evexwig = evexw1;
10471 else
10472 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10473 break;
10474
10475 # if defined (TE_PE) || defined (TE_PEP)
10476 case OPTION_MBIG_OBJ:
10477 use_big_obj = 1;
10478 break;
10479 #endif
10480
10481 case OPTION_MOMIT_LOCK_PREFIX:
10482 if (strcasecmp (arg, "yes") == 0)
10483 omit_lock_prefix = 1;
10484 else if (strcasecmp (arg, "no") == 0)
10485 omit_lock_prefix = 0;
10486 else
10487 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10488 break;
10489
10490 case OPTION_MFENCE_AS_LOCK_ADD:
10491 if (strcasecmp (arg, "yes") == 0)
10492 avoid_fence = 1;
10493 else if (strcasecmp (arg, "no") == 0)
10494 avoid_fence = 0;
10495 else
10496 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10497 break;
10498
10499 case OPTION_MRELAX_RELOCATIONS:
10500 if (strcasecmp (arg, "yes") == 0)
10501 generate_relax_relocations = 1;
10502 else if (strcasecmp (arg, "no") == 0)
10503 generate_relax_relocations = 0;
10504 else
10505 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10506 break;
10507
10508 case OPTION_MAMD64:
10509 intel64 = 0;
10510 break;
10511
10512 case OPTION_MINTEL64:
10513 intel64 = 1;
10514 break;
10515
10516 default:
10517 return 0;
10518 }
10519 return 1;
10520 }
10521
10522 #define MESSAGE_TEMPLATE \
10523 " "
10524
10525 static char *
10526 output_message (FILE *stream, char *p, char *message, char *start,
10527 int *left_p, const char *name, int len)
10528 {
10529 int size = sizeof (MESSAGE_TEMPLATE);
10530 int left = *left_p;
10531
10532 /* Reserve 2 spaces for ", " or ",\0" */
10533 left -= len + 2;
10534
10535 /* Check if there is any room. */
10536 if (left >= 0)
10537 {
10538 if (p != start)
10539 {
10540 *p++ = ',';
10541 *p++ = ' ';
10542 }
10543 p = mempcpy (p, name, len);
10544 }
10545 else
10546 {
10547 /* Output the current message now and start a new one. */
10548 *p++ = ',';
10549 *p = '\0';
10550 fprintf (stream, "%s\n", message);
10551 p = start;
10552 left = size - (start - message) - len - 2;
10553
10554 gas_assert (left >= 0);
10555
10556 p = mempcpy (p, name, len);
10557 }
10558
10559 *left_p = left;
10560 return p;
10561 }
10562
10563 static void
10564 show_arch (FILE *stream, int ext, int check)
10565 {
10566 static char message[] = MESSAGE_TEMPLATE;
10567 char *start = message + 27;
10568 char *p;
10569 int size = sizeof (MESSAGE_TEMPLATE);
10570 int left;
10571 const char *name;
10572 int len;
10573 unsigned int j;
10574
10575 p = start;
10576 left = size - (start - message);
10577 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10578 {
10579 /* Should it be skipped? */
10580 if (cpu_arch [j].skip)
10581 continue;
10582
10583 name = cpu_arch [j].name;
10584 len = cpu_arch [j].len;
10585 if (*name == '.')
10586 {
10587 /* It is an extension. Skip if we aren't asked to show it. */
10588 if (ext)
10589 {
10590 name++;
10591 len--;
10592 }
10593 else
10594 continue;
10595 }
10596 else if (ext)
10597 {
10598 /* It is an processor. Skip if we show only extension. */
10599 continue;
10600 }
10601 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10602 {
10603 /* It is an impossible processor - skip. */
10604 continue;
10605 }
10606
10607 p = output_message (stream, p, message, start, &left, name, len);
10608 }
10609
10610 /* Display disabled extensions. */
10611 if (ext)
10612 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10613 {
10614 name = cpu_noarch [j].name;
10615 len = cpu_noarch [j].len;
10616 p = output_message (stream, p, message, start, &left, name,
10617 len);
10618 }
10619
10620 *p = '\0';
10621 fprintf (stream, "%s\n", message);
10622 }
10623
10624 void
10625 md_show_usage (FILE *stream)
10626 {
10627 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10628 fprintf (stream, _("\
10629 -Q ignored\n\
10630 -V print assembler version number\n\
10631 -k ignored\n"));
10632 #endif
10633 fprintf (stream, _("\
10634 -n Do not optimize code alignment\n\
10635 -q quieten some warnings\n"));
10636 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10637 fprintf (stream, _("\
10638 -s ignored\n"));
10639 #endif
10640 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10641 || defined (TE_PE) || defined (TE_PEP))
10642 fprintf (stream, _("\
10643 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10644 #endif
10645 #ifdef SVR4_COMMENT_CHARS
10646 fprintf (stream, _("\
10647 --divide do not treat `/' as a comment character\n"));
10648 #else
10649 fprintf (stream, _("\
10650 --divide ignored\n"));
10651 #endif
10652 fprintf (stream, _("\
10653 -march=CPU[,+EXTENSION...]\n\
10654 generate code for CPU and EXTENSION, CPU is one of:\n"));
10655 show_arch (stream, 0, 1);
10656 fprintf (stream, _("\
10657 EXTENSION is combination of:\n"));
10658 show_arch (stream, 1, 0);
10659 fprintf (stream, _("\
10660 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10661 show_arch (stream, 0, 0);
10662 fprintf (stream, _("\
10663 -msse2avx encode SSE instructions with VEX prefix\n"));
10664 fprintf (stream, _("\
10665 -msse-check=[none|error|warning]\n\
10666 check SSE instructions\n"));
10667 fprintf (stream, _("\
10668 -moperand-check=[none|error|warning]\n\
10669 check operand combinations for validity\n"));
10670 fprintf (stream, _("\
10671 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10672 length\n"));
10673 fprintf (stream, _("\
10674 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10675 length\n"));
10676 fprintf (stream, _("\
10677 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10678 for EVEX.W bit ignored instructions\n"));
10679 fprintf (stream, _("\
10680 -mevexrcig=[rne|rd|ru|rz]\n\
10681 encode EVEX instructions with specific EVEX.RC value\n\
10682 for SAE-only ignored instructions\n"));
10683 fprintf (stream, _("\
10684 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10685 fprintf (stream, _("\
10686 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10687 fprintf (stream, _("\
10688 -mindex-reg support pseudo index registers\n"));
10689 fprintf (stream, _("\
10690 -mnaked-reg don't require `%%' prefix for registers\n"));
10691 fprintf (stream, _("\
10692 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
10693 fprintf (stream, _("\
10694 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10695 fprintf (stream, _("\
10696 -mshared disable branch optimization for shared code\n"));
10697 # if defined (TE_PE) || defined (TE_PEP)
10698 fprintf (stream, _("\
10699 -mbig-obj generate big object files\n"));
10700 #endif
10701 fprintf (stream, _("\
10702 -momit-lock-prefix=[no|yes]\n\
10703 strip all lock prefixes\n"));
10704 fprintf (stream, _("\
10705 -mfence-as-lock-add=[no|yes]\n\
10706 encode lfence, mfence and sfence as\n\
10707 lock addl $0x0, (%%{re}sp)\n"));
10708 fprintf (stream, _("\
10709 -mrelax-relocations=[no|yes]\n\
10710 generate relax relocations\n"));
10711 fprintf (stream, _("\
10712 -mamd64 accept only AMD64 ISA\n"));
10713 fprintf (stream, _("\
10714 -mintel64 accept only Intel64 ISA\n"));
10715 }
10716
10717 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10718 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10719 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10720
10721 /* Pick the target format to use. */
10722
10723 const char *
10724 i386_target_format (void)
10725 {
10726 if (!strncmp (default_arch, "x86_64", 6))
10727 {
10728 update_code_flag (CODE_64BIT, 1);
10729 if (default_arch[6] == '\0')
10730 x86_elf_abi = X86_64_ABI;
10731 else
10732 x86_elf_abi = X86_64_X32_ABI;
10733 }
10734 else if (!strcmp (default_arch, "i386"))
10735 update_code_flag (CODE_32BIT, 1);
10736 else if (!strcmp (default_arch, "iamcu"))
10737 {
10738 update_code_flag (CODE_32BIT, 1);
10739 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10740 {
10741 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10742 cpu_arch_name = "iamcu";
10743 cpu_sub_arch_name = NULL;
10744 cpu_arch_flags = iamcu_flags;
10745 cpu_arch_isa = PROCESSOR_IAMCU;
10746 cpu_arch_isa_flags = iamcu_flags;
10747 if (!cpu_arch_tune_set)
10748 {
10749 cpu_arch_tune = cpu_arch_isa;
10750 cpu_arch_tune_flags = cpu_arch_isa_flags;
10751 }
10752 }
10753 else if (cpu_arch_isa != PROCESSOR_IAMCU)
10754 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10755 cpu_arch_name);
10756 }
10757 else
10758 as_fatal (_("unknown architecture"));
10759
10760 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10761 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10762 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10763 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10764
10765 switch (OUTPUT_FLAVOR)
10766 {
10767 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
10768 case bfd_target_aout_flavour:
10769 return AOUT_TARGET_FORMAT;
10770 #endif
10771 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10772 # if defined (TE_PE) || defined (TE_PEP)
10773 case bfd_target_coff_flavour:
10774 if (flag_code == CODE_64BIT)
10775 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10776 else
10777 return "pe-i386";
10778 # elif defined (TE_GO32)
10779 case bfd_target_coff_flavour:
10780 return "coff-go32";
10781 # else
10782 case bfd_target_coff_flavour:
10783 return "coff-i386";
10784 # endif
10785 #endif
10786 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10787 case bfd_target_elf_flavour:
10788 {
10789 const char *format;
10790
10791 switch (x86_elf_abi)
10792 {
10793 default:
10794 format = ELF_TARGET_FORMAT;
10795 break;
10796 case X86_64_ABI:
10797 use_rela_relocations = 1;
10798 object_64bit = 1;
10799 format = ELF_TARGET_FORMAT64;
10800 break;
10801 case X86_64_X32_ABI:
10802 use_rela_relocations = 1;
10803 object_64bit = 1;
10804 disallow_64bit_reloc = 1;
10805 format = ELF_TARGET_FORMAT32;
10806 break;
10807 }
10808 if (cpu_arch_isa == PROCESSOR_L1OM)
10809 {
10810 if (x86_elf_abi != X86_64_ABI)
10811 as_fatal (_("Intel L1OM is 64bit only"));
10812 return ELF_TARGET_L1OM_FORMAT;
10813 }
10814 else if (cpu_arch_isa == PROCESSOR_K1OM)
10815 {
10816 if (x86_elf_abi != X86_64_ABI)
10817 as_fatal (_("Intel K1OM is 64bit only"));
10818 return ELF_TARGET_K1OM_FORMAT;
10819 }
10820 else if (cpu_arch_isa == PROCESSOR_IAMCU)
10821 {
10822 if (x86_elf_abi != I386_ABI)
10823 as_fatal (_("Intel MCU is 32bit only"));
10824 return ELF_TARGET_IAMCU_FORMAT;
10825 }
10826 else
10827 return format;
10828 }
10829 #endif
10830 #if defined (OBJ_MACH_O)
10831 case bfd_target_mach_o_flavour:
10832 if (flag_code == CODE_64BIT)
10833 {
10834 use_rela_relocations = 1;
10835 object_64bit = 1;
10836 return "mach-o-x86-64";
10837 }
10838 else
10839 return "mach-o-i386";
10840 #endif
10841 default:
10842 abort ();
10843 return NULL;
10844 }
10845 }
10846
10847 #endif /* OBJ_MAYBE_ more than one */
10848 \f
10849 symbolS *
10850 md_undefined_symbol (char *name)
10851 {
10852 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10853 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10854 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10855 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
10856 {
10857 if (!GOT_symbol)
10858 {
10859 if (symbol_find (name))
10860 as_bad (_("GOT already in symbol table"));
10861 GOT_symbol = symbol_new (name, undefined_section,
10862 (valueT) 0, &zero_address_frag);
10863 };
10864 return GOT_symbol;
10865 }
10866 return 0;
10867 }
10868
10869 /* Round up a section size to the appropriate boundary. */
10870
10871 valueT
10872 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
10873 {
10874 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10875 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10876 {
10877 /* For a.out, force the section size to be aligned. If we don't do
10878 this, BFD will align it for us, but it will not write out the
10879 final bytes of the section. This may be a bug in BFD, but it is
10880 easier to fix it here since that is how the other a.out targets
10881 work. */
10882 int align;
10883
10884 align = bfd_get_section_alignment (stdoutput, segment);
10885 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
10886 }
10887 #endif
10888
10889 return size;
10890 }
10891
10892 /* On the i386, PC-relative offsets are relative to the start of the
10893 next instruction. That is, the address of the offset, plus its
10894 size, since the offset is always the last part of the insn. */
10895
10896 long
10897 md_pcrel_from (fixS *fixP)
10898 {
10899 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10900 }
10901
10902 #ifndef I386COFF
10903
10904 static void
10905 s_bss (int ignore ATTRIBUTE_UNUSED)
10906 {
10907 int temp;
10908
10909 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10910 if (IS_ELF)
10911 obj_elf_section_change_hook ();
10912 #endif
10913 temp = get_absolute_expression ();
10914 subseg_set (bss_section, (subsegT) temp);
10915 demand_empty_rest_of_line ();
10916 }
10917
10918 #endif
10919
10920 void
10921 i386_validate_fix (fixS *fixp)
10922 {
10923 if (fixp->fx_subsy)
10924 {
10925 if (fixp->fx_subsy == GOT_symbol)
10926 {
10927 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10928 {
10929 if (!object_64bit)
10930 abort ();
10931 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10932 if (fixp->fx_tcbit2)
10933 fixp->fx_r_type = (fixp->fx_tcbit
10934 ? BFD_RELOC_X86_64_REX_GOTPCRELX
10935 : BFD_RELOC_X86_64_GOTPCRELX);
10936 else
10937 #endif
10938 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10939 }
10940 else
10941 {
10942 if (!object_64bit)
10943 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10944 else
10945 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10946 }
10947 fixp->fx_subsy = 0;
10948 }
10949 }
10950 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10951 else if (!object_64bit)
10952 {
10953 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
10954 && fixp->fx_tcbit2)
10955 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
10956 }
10957 #endif
10958 }
10959
10960 arelent *
10961 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
10962 {
10963 arelent *rel;
10964 bfd_reloc_code_real_type code;
10965
10966 switch (fixp->fx_r_type)
10967 {
10968 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10969 case BFD_RELOC_SIZE32:
10970 case BFD_RELOC_SIZE64:
10971 if (S_IS_DEFINED (fixp->fx_addsy)
10972 && !S_IS_EXTERNAL (fixp->fx_addsy))
10973 {
10974 /* Resolve size relocation against local symbol to size of
10975 the symbol plus addend. */
10976 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10977 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10978 && !fits_in_unsigned_long (value))
10979 as_bad_where (fixp->fx_file, fixp->fx_line,
10980 _("symbol size computation overflow"));
10981 fixp->fx_addsy = NULL;
10982 fixp->fx_subsy = NULL;
10983 md_apply_fix (fixp, (valueT *) &value, NULL);
10984 return NULL;
10985 }
10986 #endif
10987 /* Fall through. */
10988
10989 case BFD_RELOC_X86_64_PLT32:
10990 case BFD_RELOC_X86_64_GOT32:
10991 case BFD_RELOC_X86_64_GOTPCREL:
10992 case BFD_RELOC_X86_64_GOTPCRELX:
10993 case BFD_RELOC_X86_64_REX_GOTPCRELX:
10994 case BFD_RELOC_386_PLT32:
10995 case BFD_RELOC_386_GOT32:
10996 case BFD_RELOC_386_GOT32X:
10997 case BFD_RELOC_386_GOTOFF:
10998 case BFD_RELOC_386_GOTPC:
10999 case BFD_RELOC_386_TLS_GD:
11000 case BFD_RELOC_386_TLS_LDM:
11001 case BFD_RELOC_386_TLS_LDO_32:
11002 case BFD_RELOC_386_TLS_IE_32:
11003 case BFD_RELOC_386_TLS_IE:
11004 case BFD_RELOC_386_TLS_GOTIE:
11005 case BFD_RELOC_386_TLS_LE_32:
11006 case BFD_RELOC_386_TLS_LE:
11007 case BFD_RELOC_386_TLS_GOTDESC:
11008 case BFD_RELOC_386_TLS_DESC_CALL:
11009 case BFD_RELOC_X86_64_TLSGD:
11010 case BFD_RELOC_X86_64_TLSLD:
11011 case BFD_RELOC_X86_64_DTPOFF32:
11012 case BFD_RELOC_X86_64_DTPOFF64:
11013 case BFD_RELOC_X86_64_GOTTPOFF:
11014 case BFD_RELOC_X86_64_TPOFF32:
11015 case BFD_RELOC_X86_64_TPOFF64:
11016 case BFD_RELOC_X86_64_GOTOFF64:
11017 case BFD_RELOC_X86_64_GOTPC32:
11018 case BFD_RELOC_X86_64_GOT64:
11019 case BFD_RELOC_X86_64_GOTPCREL64:
11020 case BFD_RELOC_X86_64_GOTPC64:
11021 case BFD_RELOC_X86_64_GOTPLT64:
11022 case BFD_RELOC_X86_64_PLTOFF64:
11023 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11024 case BFD_RELOC_X86_64_TLSDESC_CALL:
11025 case BFD_RELOC_RVA:
11026 case BFD_RELOC_VTABLE_ENTRY:
11027 case BFD_RELOC_VTABLE_INHERIT:
11028 #ifdef TE_PE
11029 case BFD_RELOC_32_SECREL:
11030 #endif
11031 code = fixp->fx_r_type;
11032 break;
11033 case BFD_RELOC_X86_64_32S:
11034 if (!fixp->fx_pcrel)
11035 {
11036 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11037 code = fixp->fx_r_type;
11038 break;
11039 }
11040 /* Fall through. */
11041 default:
11042 if (fixp->fx_pcrel)
11043 {
11044 switch (fixp->fx_size)
11045 {
11046 default:
11047 as_bad_where (fixp->fx_file, fixp->fx_line,
11048 _("can not do %d byte pc-relative relocation"),
11049 fixp->fx_size);
11050 code = BFD_RELOC_32_PCREL;
11051 break;
11052 case 1: code = BFD_RELOC_8_PCREL; break;
11053 case 2: code = BFD_RELOC_16_PCREL; break;
11054 case 4: code = BFD_RELOC_32_PCREL; break;
11055 #ifdef BFD64
11056 case 8: code = BFD_RELOC_64_PCREL; break;
11057 #endif
11058 }
11059 }
11060 else
11061 {
11062 switch (fixp->fx_size)
11063 {
11064 default:
11065 as_bad_where (fixp->fx_file, fixp->fx_line,
11066 _("can not do %d byte relocation"),
11067 fixp->fx_size);
11068 code = BFD_RELOC_32;
11069 break;
11070 case 1: code = BFD_RELOC_8; break;
11071 case 2: code = BFD_RELOC_16; break;
11072 case 4: code = BFD_RELOC_32; break;
11073 #ifdef BFD64
11074 case 8: code = BFD_RELOC_64; break;
11075 #endif
11076 }
11077 }
11078 break;
11079 }
11080
11081 if ((code == BFD_RELOC_32
11082 || code == BFD_RELOC_32_PCREL
11083 || code == BFD_RELOC_X86_64_32S)
11084 && GOT_symbol
11085 && fixp->fx_addsy == GOT_symbol)
11086 {
11087 if (!object_64bit)
11088 code = BFD_RELOC_386_GOTPC;
11089 else
11090 code = BFD_RELOC_X86_64_GOTPC32;
11091 }
11092 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11093 && GOT_symbol
11094 && fixp->fx_addsy == GOT_symbol)
11095 {
11096 code = BFD_RELOC_X86_64_GOTPC64;
11097 }
11098
11099 rel = XNEW (arelent);
11100 rel->sym_ptr_ptr = XNEW (asymbol *);
11101 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11102
11103 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
11104
11105 if (!use_rela_relocations)
11106 {
11107 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11108 vtable entry to be used in the relocation's section offset. */
11109 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11110 rel->address = fixp->fx_offset;
11111 #if defined (OBJ_COFF) && defined (TE_PE)
11112 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11113 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11114 else
11115 #endif
11116 rel->addend = 0;
11117 }
11118 /* Use the rela in 64bit mode. */
11119 else
11120 {
11121 if (disallow_64bit_reloc)
11122 switch (code)
11123 {
11124 case BFD_RELOC_X86_64_DTPOFF64:
11125 case BFD_RELOC_X86_64_TPOFF64:
11126 case BFD_RELOC_64_PCREL:
11127 case BFD_RELOC_X86_64_GOTOFF64:
11128 case BFD_RELOC_X86_64_GOT64:
11129 case BFD_RELOC_X86_64_GOTPCREL64:
11130 case BFD_RELOC_X86_64_GOTPC64:
11131 case BFD_RELOC_X86_64_GOTPLT64:
11132 case BFD_RELOC_X86_64_PLTOFF64:
11133 as_bad_where (fixp->fx_file, fixp->fx_line,
11134 _("cannot represent relocation type %s in x32 mode"),
11135 bfd_get_reloc_code_name (code));
11136 break;
11137 default:
11138 break;
11139 }
11140
11141 if (!fixp->fx_pcrel)
11142 rel->addend = fixp->fx_offset;
11143 else
11144 switch (code)
11145 {
11146 case BFD_RELOC_X86_64_PLT32:
11147 case BFD_RELOC_X86_64_GOT32:
11148 case BFD_RELOC_X86_64_GOTPCREL:
11149 case BFD_RELOC_X86_64_GOTPCRELX:
11150 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11151 case BFD_RELOC_X86_64_TLSGD:
11152 case BFD_RELOC_X86_64_TLSLD:
11153 case BFD_RELOC_X86_64_GOTTPOFF:
11154 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11155 case BFD_RELOC_X86_64_TLSDESC_CALL:
11156 rel->addend = fixp->fx_offset - fixp->fx_size;
11157 break;
11158 default:
11159 rel->addend = (section->vma
11160 - fixp->fx_size
11161 + fixp->fx_addnumber
11162 + md_pcrel_from (fixp));
11163 break;
11164 }
11165 }
11166
11167 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11168 if (rel->howto == NULL)
11169 {
11170 as_bad_where (fixp->fx_file, fixp->fx_line,
11171 _("cannot represent relocation type %s"),
11172 bfd_get_reloc_code_name (code));
11173 /* Set howto to a garbage value so that we can keep going. */
11174 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
11175 gas_assert (rel->howto != NULL);
11176 }
11177
11178 return rel;
11179 }
11180
11181 #include "tc-i386-intel.c"
11182
11183 void
11184 tc_x86_parse_to_dw2regnum (expressionS *exp)
11185 {
11186 int saved_naked_reg;
11187 char saved_register_dot;
11188
11189 saved_naked_reg = allow_naked_reg;
11190 allow_naked_reg = 1;
11191 saved_register_dot = register_chars['.'];
11192 register_chars['.'] = '.';
11193 allow_pseudo_reg = 1;
11194 expression_and_evaluate (exp);
11195 allow_pseudo_reg = 0;
11196 register_chars['.'] = saved_register_dot;
11197 allow_naked_reg = saved_naked_reg;
11198
11199 if (exp->X_op == O_register && exp->X_add_number >= 0)
11200 {
11201 if ((addressT) exp->X_add_number < i386_regtab_size)
11202 {
11203 exp->X_op = O_constant;
11204 exp->X_add_number = i386_regtab[exp->X_add_number]
11205 .dw2_regnum[flag_code >> 1];
11206 }
11207 else
11208 exp->X_op = O_illegal;
11209 }
11210 }
11211
11212 void
11213 tc_x86_frame_initial_instructions (void)
11214 {
11215 static unsigned int sp_regno[2];
11216
11217 if (!sp_regno[flag_code >> 1])
11218 {
11219 char *saved_input = input_line_pointer;
11220 char sp[][4] = {"esp", "rsp"};
11221 expressionS exp;
11222
11223 input_line_pointer = sp[flag_code >> 1];
11224 tc_x86_parse_to_dw2regnum (&exp);
11225 gas_assert (exp.X_op == O_constant);
11226 sp_regno[flag_code >> 1] = exp.X_add_number;
11227 input_line_pointer = saved_input;
11228 }
11229
11230 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11231 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
11232 }
11233
11234 int
11235 x86_dwarf2_addr_size (void)
11236 {
11237 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11238 if (x86_elf_abi == X86_64_X32_ABI)
11239 return 4;
11240 #endif
11241 return bfd_arch_bits_per_address (stdoutput) / 8;
11242 }
11243
11244 int
11245 i386_elf_section_type (const char *str, size_t len)
11246 {
11247 if (flag_code == CODE_64BIT
11248 && len == sizeof ("unwind") - 1
11249 && strncmp (str, "unwind", 6) == 0)
11250 return SHT_X86_64_UNWIND;
11251
11252 return -1;
11253 }
11254
11255 #ifdef TE_SOLARIS
11256 void
11257 i386_solaris_fix_up_eh_frame (segT sec)
11258 {
11259 if (flag_code == CODE_64BIT)
11260 elf_section_type (sec) = SHT_X86_64_UNWIND;
11261 }
11262 #endif
11263
11264 #ifdef TE_PE
11265 void
11266 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11267 {
11268 expressionS exp;
11269
11270 exp.X_op = O_secrel;
11271 exp.X_add_symbol = symbol;
11272 exp.X_add_number = 0;
11273 emit_expr (&exp, size);
11274 }
11275 #endif
11276
11277 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11278 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11279
11280 bfd_vma
11281 x86_64_section_letter (int letter, const char **ptr_msg)
11282 {
11283 if (flag_code == CODE_64BIT)
11284 {
11285 if (letter == 'l')
11286 return SHF_X86_64_LARGE;
11287
11288 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11289 }
11290 else
11291 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11292 return -1;
11293 }
11294
11295 bfd_vma
11296 x86_64_section_word (char *str, size_t len)
11297 {
11298 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11299 return SHF_X86_64_LARGE;
11300
11301 return -1;
11302 }
11303
11304 static void
11305 handle_large_common (int small ATTRIBUTE_UNUSED)
11306 {
11307 if (flag_code != CODE_64BIT)
11308 {
11309 s_comm_internal (0, elf_common_parse);
11310 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11311 }
11312 else
11313 {
11314 static segT lbss_section;
11315 asection *saved_com_section_ptr = elf_com_section_ptr;
11316 asection *saved_bss_section = bss_section;
11317
11318 if (lbss_section == NULL)
11319 {
11320 flagword applicable;
11321 segT seg = now_seg;
11322 subsegT subseg = now_subseg;
11323
11324 /* The .lbss section is for local .largecomm symbols. */
11325 lbss_section = subseg_new (".lbss", 0);
11326 applicable = bfd_applicable_section_flags (stdoutput);
11327 bfd_set_section_flags (stdoutput, lbss_section,
11328 applicable & SEC_ALLOC);
11329 seg_info (lbss_section)->bss = 1;
11330
11331 subseg_set (seg, subseg);
11332 }
11333
11334 elf_com_section_ptr = &_bfd_elf_large_com_section;
11335 bss_section = lbss_section;
11336
11337 s_comm_internal (0, elf_common_parse);
11338
11339 elf_com_section_ptr = saved_com_section_ptr;
11340 bss_section = saved_bss_section;
11341 }
11342 }
11343 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.274688 seconds and 4 git commands to generate.