gas/
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
29
30 #include "as.h"
31 #include "safe-ctype.h"
32 #include "subsegs.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "elf/x86-64.h"
36 #include "opcodes/i386-init.h"
37
38 #ifndef REGISTER_WARNINGS
39 #define REGISTER_WARNINGS 1
40 #endif
41
42 #ifndef INFER_ADDR_PREFIX
43 #define INFER_ADDR_PREFIX 1
44 #endif
45
46 #ifndef DEFAULT_ARCH
47 #define DEFAULT_ARCH "i386"
48 #endif
49
50 #ifndef INLINE
51 #if __GNUC__ >= 2
52 #define INLINE __inline__
53 #else
54 #define INLINE
55 #endif
56 #endif
57
58 static void set_code_flag (int);
59 static void set_16bit_gcc_code_flag (int);
60 static void set_intel_syntax (int);
61 static void set_intel_mnemonic (int);
62 static void set_allow_index_reg (int);
63 static void set_cpu_arch (int);
64 #ifdef TE_PE
65 static void pe_directive_secrel (int);
66 #endif
67 static void signed_cons (int);
68 static char *output_invalid (int c);
69 static int i386_att_operand (char *);
70 static int i386_intel_operand (char *, int);
71 static const reg_entry *parse_register (char *, char **);
72 static char *parse_insn (char *, char *);
73 static char *parse_operands (char *, const char *);
74 static void swap_operands (void);
75 static void swap_2_operands (int, int);
76 static void optimize_imm (void);
77 static void optimize_disp (void);
78 static int match_template (void);
79 static int check_string (void);
80 static int process_suffix (void);
81 static int check_byte_reg (void);
82 static int check_long_reg (void);
83 static int check_qword_reg (void);
84 static int check_word_reg (void);
85 static int finalize_imm (void);
86 static void process_drex (void);
87 static int process_operands (void);
88 static const seg_entry *build_modrm_byte (void);
89 static void output_insn (void);
90 static void output_imm (fragS *, offsetT);
91 static void output_disp (fragS *, offsetT);
92 #ifndef I386COFF
93 static void s_bss (int);
94 #endif
95 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
96 static void handle_large_common (int small ATTRIBUTE_UNUSED);
97 #endif
98
99 static const char *default_arch = DEFAULT_ARCH;
100
101 /* 'md_assemble ()' gathers together information and puts it into a
102 i386_insn. */
103
104 union i386_op
105 {
106 expressionS *disps;
107 expressionS *imms;
108 const reg_entry *regs;
109 };
110
111 struct _i386_insn
112 {
113 /* TM holds the template for the insn were currently assembling. */
114 template tm;
115
116 /* SUFFIX holds the instruction size suffix for byte, word, dword
117 or qword, if given. */
118 char suffix;
119
120 /* OPERANDS gives the number of given operands. */
121 unsigned int operands;
122
123 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
124 of given register, displacement, memory operands and immediate
125 operands. */
126 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
127
128 /* TYPES [i] is the type (see above #defines) which tells us how to
129 use OP[i] for the corresponding operand. */
130 i386_operand_type types[MAX_OPERANDS];
131
132 /* Displacement expression, immediate expression, or register for each
133 operand. */
134 union i386_op op[MAX_OPERANDS];
135
136 /* Flags for operands. */
137 unsigned int flags[MAX_OPERANDS];
138 #define Operand_PCrel 1
139
140 /* Relocation type for operand */
141 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
142
143 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
144 the base index byte below. */
145 const reg_entry *base_reg;
146 const reg_entry *index_reg;
147 unsigned int log2_scale_factor;
148
149 /* SEG gives the seg_entries of this insn. They are zero unless
150 explicit segment overrides are given. */
151 const seg_entry *seg[2];
152
153 /* PREFIX holds all the given prefix opcodes (usually null).
154 PREFIXES is the number of prefix opcodes. */
155 unsigned int prefixes;
156 unsigned char prefix[MAX_PREFIXES];
157
158 /* RM and SIB are the modrm byte and the sib byte where the
159 addressing modes of this insn are encoded. DREX is the byte
160 added by the SSE5 instructions. */
161
162 modrm_byte rm;
163 rex_byte rex;
164 sib_byte sib;
165 drex_byte drex;
166 };
167
168 typedef struct _i386_insn i386_insn;
169
170 /* List of chars besides those in app.c:symbol_chars that can start an
171 operand. Used to prevent the scrubber eating vital white-space. */
172 const char extra_symbol_chars[] = "*%-(["
173 #ifdef LEX_AT
174 "@"
175 #endif
176 #ifdef LEX_QM
177 "?"
178 #endif
179 ;
180
181 #if (defined (TE_I386AIX) \
182 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
183 && !defined (TE_GNU) \
184 && !defined (TE_LINUX) \
185 && !defined (TE_NETWARE) \
186 && !defined (TE_FreeBSD) \
187 && !defined (TE_NetBSD)))
188 /* This array holds the chars that always start a comment. If the
189 pre-processor is disabled, these aren't very useful. The option
190 --divide will remove '/' from this list. */
191 const char *i386_comment_chars = "#/";
192 #define SVR4_COMMENT_CHARS 1
193 #define PREFIX_SEPARATOR '\\'
194
195 #else
196 const char *i386_comment_chars = "#";
197 #define PREFIX_SEPARATOR '/'
198 #endif
199
200 /* This array holds the chars that only start a comment at the beginning of
201 a line. If the line seems to have the form '# 123 filename'
202 .line and .file directives will appear in the pre-processed output.
203 Note that input_file.c hand checks for '#' at the beginning of the
204 first line of the input file. This is because the compiler outputs
205 #NO_APP at the beginning of its output.
206 Also note that comments started like this one will always work if
207 '/' isn't otherwise defined. */
208 const char line_comment_chars[] = "#/";
209
210 const char line_separator_chars[] = ";";
211
212 /* Chars that can be used to separate mant from exp in floating point
213 nums. */
214 const char EXP_CHARS[] = "eE";
215
216 /* Chars that mean this number is a floating point constant
217 As in 0f12.456
218 or 0d1.2345e12. */
219 const char FLT_CHARS[] = "fFdDxX";
220
221 /* Tables for lexical analysis. */
222 static char mnemonic_chars[256];
223 static char register_chars[256];
224 static char operand_chars[256];
225 static char identifier_chars[256];
226 static char digit_chars[256];
227
228 /* Lexical macros. */
229 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
230 #define is_operand_char(x) (operand_chars[(unsigned char) x])
231 #define is_register_char(x) (register_chars[(unsigned char) x])
232 #define is_space_char(x) ((x) == ' ')
233 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
234 #define is_digit_char(x) (digit_chars[(unsigned char) x])
235
236 /* All non-digit non-letter characters that may occur in an operand. */
237 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
238
239 /* md_assemble() always leaves the strings it's passed unaltered. To
240 effect this we maintain a stack of saved characters that we've smashed
241 with '\0's (indicating end of strings for various sub-fields of the
242 assembler instruction). */
243 static char save_stack[32];
244 static char *save_stack_p;
245 #define END_STRING_AND_SAVE(s) \
246 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
247 #define RESTORE_END_STRING(s) \
248 do { *(s) = *--save_stack_p; } while (0)
249
250 /* The instruction we're assembling. */
251 static i386_insn i;
252
253 /* Possible templates for current insn. */
254 static const templates *current_templates;
255
256 /* Per instruction expressionS buffers: max displacements & immediates. */
257 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
258 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
259
260 /* Current operand we are working on. */
261 static int this_operand;
262
263 /* We support four different modes. FLAG_CODE variable is used to distinguish
264 these. */
265
266 enum flag_code {
267 CODE_32BIT,
268 CODE_16BIT,
269 CODE_64BIT };
270
271 static enum flag_code flag_code;
272 static unsigned int object_64bit;
273 static int use_rela_relocations = 0;
274
275 /* The names used to print error messages. */
276 static const char *flag_code_names[] =
277 {
278 "32",
279 "16",
280 "64"
281 };
282
283 /* 1 for intel syntax,
284 0 if att syntax. */
285 static int intel_syntax = 0;
286
287 /* 1 for intel mnemonic,
288 0 if att mnemonic. */
289 static int intel_mnemonic = !SYSV386_COMPAT;
290
291 /* 1 if support old (<= 2.8.1) versions of gcc. */
292 static int old_gcc = OLDGCC_COMPAT;
293
294 /* 1 if register prefix % not required. */
295 static int allow_naked_reg = 0;
296
297 /* 1 if pseudo index register, eiz/riz, is allowed . */
298 static int allow_index_reg = 0;
299
300 /* Register prefix used for error message. */
301 static const char *register_prefix = "%";
302
303 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
304 leave, push, and pop instructions so that gcc has the same stack
305 frame as in 32 bit mode. */
306 static char stackop_size = '\0';
307
308 /* Non-zero to optimize code alignment. */
309 int optimize_align_code = 1;
310
311 /* Non-zero to quieten some warnings. */
312 static int quiet_warnings = 0;
313
314 /* CPU name. */
315 static const char *cpu_arch_name = NULL;
316 static const char *cpu_sub_arch_name = NULL;
317
318 /* CPU feature flags. */
319 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
320
321 /* If we have selected a cpu we are generating instructions for. */
322 static int cpu_arch_tune_set = 0;
323
324 /* Cpu we are generating instructions for. */
325 static enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
326
327 /* CPU feature flags of cpu we are generating instructions for. */
328 static i386_cpu_flags cpu_arch_tune_flags;
329
330 /* CPU instruction set architecture used. */
331 static enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
332
333 /* CPU feature flags of instruction set architecture used. */
334 static i386_cpu_flags cpu_arch_isa_flags;
335
336 /* If set, conditional jumps are not automatically promoted to handle
337 larger than a byte offset. */
338 static unsigned int no_cond_jump_promotion = 0;
339
340 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
341 static symbolS *GOT_symbol;
342
343 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
344 unsigned int x86_dwarf2_return_column;
345
346 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
347 int x86_cie_data_alignment;
348
349 /* Interface to relax_segment.
350 There are 3 major relax states for 386 jump insns because the
351 different types of jumps add different sizes to frags when we're
352 figuring out what sort of jump to choose to reach a given label. */
353
354 /* Types. */
355 #define UNCOND_JUMP 0
356 #define COND_JUMP 1
357 #define COND_JUMP86 2
358
359 /* Sizes. */
360 #define CODE16 1
361 #define SMALL 0
362 #define SMALL16 (SMALL | CODE16)
363 #define BIG 2
364 #define BIG16 (BIG | CODE16)
365
366 #ifndef INLINE
367 #ifdef __GNUC__
368 #define INLINE __inline__
369 #else
370 #define INLINE
371 #endif
372 #endif
373
374 #define ENCODE_RELAX_STATE(type, size) \
375 ((relax_substateT) (((type) << 2) | (size)))
376 #define TYPE_FROM_RELAX_STATE(s) \
377 ((s) >> 2)
378 #define DISP_SIZE_FROM_RELAX_STATE(s) \
379 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
380
381 /* This table is used by relax_frag to promote short jumps to long
382 ones where necessary. SMALL (short) jumps may be promoted to BIG
383 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
384 don't allow a short jump in a 32 bit code segment to be promoted to
385 a 16 bit offset jump because it's slower (requires data size
386 prefix), and doesn't work, unless the destination is in the bottom
387 64k of the code segment (The top 16 bits of eip are zeroed). */
388
389 const relax_typeS md_relax_table[] =
390 {
391 /* The fields are:
392 1) most positive reach of this state,
393 2) most negative reach of this state,
394 3) how many bytes this mode will have in the variable part of the frag
395 4) which index into the table to try if we can't fit into this one. */
396
397 /* UNCOND_JUMP states. */
398 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
399 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
400 /* dword jmp adds 4 bytes to frag:
401 0 extra opcode bytes, 4 displacement bytes. */
402 {0, 0, 4, 0},
403 /* word jmp adds 2 byte2 to frag:
404 0 extra opcode bytes, 2 displacement bytes. */
405 {0, 0, 2, 0},
406
407 /* COND_JUMP states. */
408 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
409 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
410 /* dword conditionals adds 5 bytes to frag:
411 1 extra opcode byte, 4 displacement bytes. */
412 {0, 0, 5, 0},
413 /* word conditionals add 3 bytes to frag:
414 1 extra opcode byte, 2 displacement bytes. */
415 {0, 0, 3, 0},
416
417 /* COND_JUMP86 states. */
418 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
419 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
420 /* dword conditionals adds 5 bytes to frag:
421 1 extra opcode byte, 4 displacement bytes. */
422 {0, 0, 5, 0},
423 /* word conditionals add 4 bytes to frag:
424 1 displacement byte and a 3 byte long branch insn. */
425 {0, 0, 4, 0}
426 };
427
428 static const arch_entry cpu_arch[] =
429 {
430 {"generic32", PROCESSOR_GENERIC32,
431 CPU_GENERIC32_FLAGS },
432 {"generic64", PROCESSOR_GENERIC64,
433 CPU_GENERIC64_FLAGS },
434 {"i8086", PROCESSOR_UNKNOWN,
435 CPU_NONE_FLAGS },
436 {"i186", PROCESSOR_UNKNOWN,
437 CPU_I186_FLAGS },
438 {"i286", PROCESSOR_UNKNOWN,
439 CPU_I286_FLAGS },
440 {"i386", PROCESSOR_I386,
441 CPU_I386_FLAGS },
442 {"i486", PROCESSOR_I486,
443 CPU_I486_FLAGS },
444 {"i586", PROCESSOR_PENTIUM,
445 CPU_I586_FLAGS },
446 {"i686", PROCESSOR_PENTIUMPRO,
447 CPU_I686_FLAGS },
448 {"pentium", PROCESSOR_PENTIUM,
449 CPU_I586_FLAGS },
450 {"pentiumpro",PROCESSOR_PENTIUMPRO,
451 CPU_I686_FLAGS },
452 {"pentiumii", PROCESSOR_PENTIUMPRO,
453 CPU_P2_FLAGS },
454 {"pentiumiii",PROCESSOR_PENTIUMPRO,
455 CPU_P3_FLAGS },
456 {"pentium4", PROCESSOR_PENTIUM4,
457 CPU_P4_FLAGS },
458 {"prescott", PROCESSOR_NOCONA,
459 CPU_CORE_FLAGS },
460 {"nocona", PROCESSOR_NOCONA,
461 CPU_NOCONA_FLAGS },
462 {"yonah", PROCESSOR_CORE,
463 CPU_CORE_FLAGS },
464 {"core", PROCESSOR_CORE,
465 CPU_CORE_FLAGS },
466 {"merom", PROCESSOR_CORE2,
467 CPU_CORE2_FLAGS },
468 {"core2", PROCESSOR_CORE2,
469 CPU_CORE2_FLAGS },
470 {"k6", PROCESSOR_K6,
471 CPU_K6_FLAGS },
472 {"k6_2", PROCESSOR_K6,
473 CPU_K6_2_FLAGS },
474 {"athlon", PROCESSOR_ATHLON,
475 CPU_ATHLON_FLAGS },
476 {"sledgehammer", PROCESSOR_K8,
477 CPU_K8_FLAGS },
478 {"opteron", PROCESSOR_K8,
479 CPU_K8_FLAGS },
480 {"k8", PROCESSOR_K8,
481 CPU_K8_FLAGS },
482 {"amdfam10", PROCESSOR_AMDFAM10,
483 CPU_AMDFAM10_FLAGS },
484 {".mmx", PROCESSOR_UNKNOWN,
485 CPU_MMX_FLAGS },
486 {".sse", PROCESSOR_UNKNOWN,
487 CPU_SSE_FLAGS },
488 {".sse2", PROCESSOR_UNKNOWN,
489 CPU_SSE2_FLAGS },
490 {".sse3", PROCESSOR_UNKNOWN,
491 CPU_SSE3_FLAGS },
492 {".ssse3", PROCESSOR_UNKNOWN,
493 CPU_SSSE3_FLAGS },
494 {".sse4.1", PROCESSOR_UNKNOWN,
495 CPU_SSE4_1_FLAGS },
496 {".sse4.2", PROCESSOR_UNKNOWN,
497 CPU_SSE4_2_FLAGS },
498 {".sse4", PROCESSOR_UNKNOWN,
499 CPU_SSE4_2_FLAGS },
500 {".3dnow", PROCESSOR_UNKNOWN,
501 CPU_3DNOW_FLAGS },
502 {".3dnowa", PROCESSOR_UNKNOWN,
503 CPU_3DNOWA_FLAGS },
504 {".padlock", PROCESSOR_UNKNOWN,
505 CPU_PADLOCK_FLAGS },
506 {".pacifica", PROCESSOR_UNKNOWN,
507 CPU_SVME_FLAGS },
508 {".svme", PROCESSOR_UNKNOWN,
509 CPU_SVME_FLAGS },
510 {".sse4a", PROCESSOR_UNKNOWN,
511 CPU_SSE4A_FLAGS },
512 {".abm", PROCESSOR_UNKNOWN,
513 CPU_ABM_FLAGS },
514 {".sse5", PROCESSOR_UNKNOWN,
515 CPU_SSE5_FLAGS },
516 };
517
518 const pseudo_typeS md_pseudo_table[] =
519 {
520 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
521 {"align", s_align_bytes, 0},
522 #else
523 {"align", s_align_ptwo, 0},
524 #endif
525 {"arch", set_cpu_arch, 0},
526 #ifndef I386COFF
527 {"bss", s_bss, 0},
528 #endif
529 {"ffloat", float_cons, 'f'},
530 {"dfloat", float_cons, 'd'},
531 {"tfloat", float_cons, 'x'},
532 {"value", cons, 2},
533 {"slong", signed_cons, 4},
534 {"noopt", s_ignore, 0},
535 {"optim", s_ignore, 0},
536 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
537 {"code16", set_code_flag, CODE_16BIT},
538 {"code32", set_code_flag, CODE_32BIT},
539 {"code64", set_code_flag, CODE_64BIT},
540 {"intel_syntax", set_intel_syntax, 1},
541 {"att_syntax", set_intel_syntax, 0},
542 {"intel_mnemonic", set_intel_mnemonic, 1},
543 {"att_mnemonic", set_intel_mnemonic, 0},
544 {"allow_index_reg", set_allow_index_reg, 1},
545 {"disallow_index_reg", set_allow_index_reg, 0},
546 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
547 {"largecomm", handle_large_common, 0},
548 #else
549 {"file", (void (*) (int)) dwarf2_directive_file, 0},
550 {"loc", dwarf2_directive_loc, 0},
551 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
552 #endif
553 #ifdef TE_PE
554 {"secrel32", pe_directive_secrel, 0},
555 #endif
556 {0, 0, 0}
557 };
558
559 /* For interface with expression (). */
560 extern char *input_line_pointer;
561
562 /* Hash table for instruction mnemonic lookup. */
563 static struct hash_control *op_hash;
564
565 /* Hash table for register lookup. */
566 static struct hash_control *reg_hash;
567 \f
568 void
569 i386_align_code (fragS *fragP, int count)
570 {
571 /* Various efficient no-op patterns for aligning code labels.
572 Note: Don't try to assemble the instructions in the comments.
573 0L and 0w are not legal. */
574 static const char f32_1[] =
575 {0x90}; /* nop */
576 static const char f32_2[] =
577 {0x66,0x90}; /* xchg %ax,%ax */
578 static const char f32_3[] =
579 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
580 static const char f32_4[] =
581 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
582 static const char f32_5[] =
583 {0x90, /* nop */
584 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
585 static const char f32_6[] =
586 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
587 static const char f32_7[] =
588 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
589 static const char f32_8[] =
590 {0x90, /* nop */
591 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
592 static const char f32_9[] =
593 {0x89,0xf6, /* movl %esi,%esi */
594 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
595 static const char f32_10[] =
596 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
597 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
598 static const char f32_11[] =
599 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
600 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
601 static const char f32_12[] =
602 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
603 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
604 static const char f32_13[] =
605 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
606 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
607 static const char f32_14[] =
608 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
609 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
610 static const char f16_3[] =
611 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
612 static const char f16_4[] =
613 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
614 static const char f16_5[] =
615 {0x90, /* nop */
616 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
617 static const char f16_6[] =
618 {0x89,0xf6, /* mov %si,%si */
619 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
620 static const char f16_7[] =
621 {0x8d,0x74,0x00, /* lea 0(%si),%si */
622 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
623 static const char f16_8[] =
624 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
625 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
626 static const char jump_31[] =
627 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
628 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
629 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
630 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
631 static const char *const f32_patt[] = {
632 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
633 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
634 };
635 static const char *const f16_patt[] = {
636 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
637 };
638 /* nopl (%[re]ax) */
639 static const char alt_3[] =
640 {0x0f,0x1f,0x00};
641 /* nopl 0(%[re]ax) */
642 static const char alt_4[] =
643 {0x0f,0x1f,0x40,0x00};
644 /* nopl 0(%[re]ax,%[re]ax,1) */
645 static const char alt_5[] =
646 {0x0f,0x1f,0x44,0x00,0x00};
647 /* nopw 0(%[re]ax,%[re]ax,1) */
648 static const char alt_6[] =
649 {0x66,0x0f,0x1f,0x44,0x00,0x00};
650 /* nopl 0L(%[re]ax) */
651 static const char alt_7[] =
652 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
653 /* nopl 0L(%[re]ax,%[re]ax,1) */
654 static const char alt_8[] =
655 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
656 /* nopw 0L(%[re]ax,%[re]ax,1) */
657 static const char alt_9[] =
658 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
659 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
660 static const char alt_10[] =
661 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
662 /* data16
663 nopw %cs:0L(%[re]ax,%[re]ax,1) */
664 static const char alt_long_11[] =
665 {0x66,
666 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
667 /* data16
668 data16
669 nopw %cs:0L(%[re]ax,%[re]ax,1) */
670 static const char alt_long_12[] =
671 {0x66,
672 0x66,
673 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
674 /* data16
675 data16
676 data16
677 nopw %cs:0L(%[re]ax,%[re]ax,1) */
678 static const char alt_long_13[] =
679 {0x66,
680 0x66,
681 0x66,
682 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
683 /* data16
684 data16
685 data16
686 data16
687 nopw %cs:0L(%[re]ax,%[re]ax,1) */
688 static const char alt_long_14[] =
689 {0x66,
690 0x66,
691 0x66,
692 0x66,
693 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
694 /* data16
695 data16
696 data16
697 data16
698 data16
699 nopw %cs:0L(%[re]ax,%[re]ax,1) */
700 static const char alt_long_15[] =
701 {0x66,
702 0x66,
703 0x66,
704 0x66,
705 0x66,
706 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
707 /* nopl 0(%[re]ax,%[re]ax,1)
708 nopw 0(%[re]ax,%[re]ax,1) */
709 static const char alt_short_11[] =
710 {0x0f,0x1f,0x44,0x00,0x00,
711 0x66,0x0f,0x1f,0x44,0x00,0x00};
712 /* nopw 0(%[re]ax,%[re]ax,1)
713 nopw 0(%[re]ax,%[re]ax,1) */
714 static const char alt_short_12[] =
715 {0x66,0x0f,0x1f,0x44,0x00,0x00,
716 0x66,0x0f,0x1f,0x44,0x00,0x00};
717 /* nopw 0(%[re]ax,%[re]ax,1)
718 nopl 0L(%[re]ax) */
719 static const char alt_short_13[] =
720 {0x66,0x0f,0x1f,0x44,0x00,0x00,
721 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
722 /* nopl 0L(%[re]ax)
723 nopl 0L(%[re]ax) */
724 static const char alt_short_14[] =
725 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
726 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
727 /* nopl 0L(%[re]ax)
728 nopl 0L(%[re]ax,%[re]ax,1) */
729 static const char alt_short_15[] =
730 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
731 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
732 static const char *const alt_short_patt[] = {
733 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
734 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
735 alt_short_14, alt_short_15
736 };
737 static const char *const alt_long_patt[] = {
738 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
739 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
740 alt_long_14, alt_long_15
741 };
742
743 /* Only align for at least a positive non-zero boundary. */
744 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
745 return;
746
747 /* We need to decide which NOP sequence to use for 32bit and
748 64bit. When -mtune= is used:
749
750 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
751 PROCESSOR_GENERIC32, f32_patt will be used.
752 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
753 PROCESSOR_CORE, PROCESSOR_CORE2, and PROCESSOR_GENERIC64,
754 alt_long_patt will be used.
755 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
756 PROCESSOR_AMDFAM10, alt_short_patt will be used.
757
758 When -mtune= isn't used, alt_long_patt will be used if
759 cpu_arch_isa_flags has Cpu686. Otherwise, f32_patt will
760 be used.
761
762 When -march= or .arch is used, we can't use anything beyond
763 cpu_arch_isa_flags. */
764
765 if (flag_code == CODE_16BIT)
766 {
767 if (count > 8)
768 {
769 memcpy (fragP->fr_literal + fragP->fr_fix,
770 jump_31, count);
771 /* Adjust jump offset. */
772 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
773 }
774 else
775 memcpy (fragP->fr_literal + fragP->fr_fix,
776 f16_patt[count - 1], count);
777 }
778 else
779 {
780 const char *const *patt = NULL;
781
782 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
783 {
784 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
785 switch (cpu_arch_tune)
786 {
787 case PROCESSOR_UNKNOWN:
788 /* We use cpu_arch_isa_flags to check if we SHOULD
789 optimize for Cpu686. */
790 if (cpu_arch_isa_flags.bitfield.cpui686)
791 patt = alt_long_patt;
792 else
793 patt = f32_patt;
794 break;
795 case PROCESSOR_PENTIUMPRO:
796 case PROCESSOR_PENTIUM4:
797 case PROCESSOR_NOCONA:
798 case PROCESSOR_CORE:
799 case PROCESSOR_CORE2:
800 case PROCESSOR_GENERIC64:
801 patt = alt_long_patt;
802 break;
803 case PROCESSOR_K6:
804 case PROCESSOR_ATHLON:
805 case PROCESSOR_K8:
806 case PROCESSOR_AMDFAM10:
807 patt = alt_short_patt;
808 break;
809 case PROCESSOR_I386:
810 case PROCESSOR_I486:
811 case PROCESSOR_PENTIUM:
812 case PROCESSOR_GENERIC32:
813 patt = f32_patt;
814 break;
815 }
816 }
817 else
818 {
819 switch (cpu_arch_tune)
820 {
821 case PROCESSOR_UNKNOWN:
822 /* When cpu_arch_isa is net, cpu_arch_tune shouldn't be
823 PROCESSOR_UNKNOWN. */
824 abort ();
825 break;
826
827 case PROCESSOR_I386:
828 case PROCESSOR_I486:
829 case PROCESSOR_PENTIUM:
830 case PROCESSOR_K6:
831 case PROCESSOR_ATHLON:
832 case PROCESSOR_K8:
833 case PROCESSOR_AMDFAM10:
834 case PROCESSOR_GENERIC32:
835 /* We use cpu_arch_isa_flags to check if we CAN optimize
836 for Cpu686. */
837 if (cpu_arch_isa_flags.bitfield.cpui686)
838 patt = alt_short_patt;
839 else
840 patt = f32_patt;
841 break;
842 case PROCESSOR_PENTIUMPRO:
843 case PROCESSOR_PENTIUM4:
844 case PROCESSOR_NOCONA:
845 case PROCESSOR_CORE:
846 case PROCESSOR_CORE2:
847 if (cpu_arch_isa_flags.bitfield.cpui686)
848 patt = alt_long_patt;
849 else
850 patt = f32_patt;
851 break;
852 case PROCESSOR_GENERIC64:
853 patt = alt_long_patt;
854 break;
855 }
856 }
857
858 if (patt == f32_patt)
859 {
860 /* If the padding is less than 15 bytes, we use the normal
861 ones. Otherwise, we use a jump instruction and adjust
862 its offset. */
863 if (count < 15)
864 memcpy (fragP->fr_literal + fragP->fr_fix,
865 patt[count - 1], count);
866 else
867 {
868 memcpy (fragP->fr_literal + fragP->fr_fix,
869 jump_31, count);
870 /* Adjust jump offset. */
871 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
872 }
873 }
874 else
875 {
876 /* Maximum length of an instruction is 15 byte. If the
877 padding is greater than 15 bytes and we don't use jump,
878 we have to break it into smaller pieces. */
879 int padding = count;
880 while (padding > 15)
881 {
882 padding -= 15;
883 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
884 patt [14], 15);
885 }
886
887 if (padding)
888 memcpy (fragP->fr_literal + fragP->fr_fix,
889 patt [padding - 1], padding);
890 }
891 }
892 fragP->fr_var = count;
893 }
894
895 static INLINE int
896 uints_all_zero (const unsigned int *x, unsigned int size)
897 {
898 switch (size)
899 {
900 case 3:
901 if (x[2])
902 return 0;
903 case 2:
904 if (x[1])
905 return 0;
906 case 1:
907 return !x[0];
908 default:
909 abort ();
910 }
911 }
912
913 static INLINE void
914 uints_set (unsigned int *x, unsigned int v, unsigned int size)
915 {
916 switch (size)
917 {
918 case 3:
919 x[2] = v;
920 case 2:
921 x[1] = v;
922 case 1:
923 x[0] = v;
924 break;
925 default:
926 abort ();
927 }
928 }
929
930 static INLINE int
931 uints_equal (const unsigned int *x, const unsigned int *y,
932 unsigned int size)
933 {
934 switch (size)
935 {
936 case 3:
937 if (x[2] != y [2])
938 return 0;
939 case 2:
940 if (x[1] != y [1])
941 return 0;
942 case 1:
943 return x[0] == y [0];
944 break;
945 default:
946 abort ();
947 }
948 }
949
950 #define UINTS_ALL_ZERO(x) \
951 uints_all_zero ((x).array, ARRAY_SIZE ((x).array))
952 #define UINTS_SET(x, v) \
953 uints_set ((x).array, v, ARRAY_SIZE ((x).array))
954 #define UINTS_CLEAR(x) \
955 uints_set ((x).array, 0, ARRAY_SIZE ((x).array))
956 #define UINTS_EQUAL(x, y) \
957 uints_equal ((x).array, (y).array, ARRAY_SIZE ((x).array))
958
959 static INLINE int
960 cpu_flags_check_cpu64 (i386_cpu_flags f)
961 {
962 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
963 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
964 }
965
966 static INLINE i386_cpu_flags
967 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
968 {
969 switch (ARRAY_SIZE (x.array))
970 {
971 case 3:
972 x.array [2] &= y.array [2];
973 case 2:
974 x.array [1] &= y.array [1];
975 case 1:
976 x.array [0] &= y.array [0];
977 break;
978 default:
979 abort ();
980 }
981 return x;
982 }
983
984 static INLINE i386_cpu_flags
985 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
986 {
987 switch (ARRAY_SIZE (x.array))
988 {
989 case 3:
990 x.array [2] |= y.array [2];
991 case 2:
992 x.array [1] |= y.array [1];
993 case 1:
994 x.array [0] |= y.array [0];
995 break;
996 default:
997 abort ();
998 }
999 return x;
1000 }
1001
1002 /* Return 3 if there is a perfect match, 2 if compatible with 64bit,
1003 1 if compatible with arch, 0 if there is no match. */
1004
1005 static int
1006 cpu_flags_match (i386_cpu_flags x)
1007 {
1008 int overlap = cpu_flags_check_cpu64 (x) ? 2 : 0;
1009
1010 x.bitfield.cpu64 = 0;
1011 x.bitfield.cpuno64 = 0;
1012
1013 if (UINTS_ALL_ZERO (x))
1014 overlap |= 1;
1015 else
1016 {
1017 i386_cpu_flags cpu = cpu_arch_flags;
1018
1019 cpu.bitfield.cpu64 = 0;
1020 cpu.bitfield.cpuno64 = 0;
1021 cpu = cpu_flags_and (x, cpu);
1022 overlap |= UINTS_ALL_ZERO (cpu) ? 0 : 1;
1023 }
1024 return overlap;
1025 }
1026
1027 static INLINE i386_operand_type
1028 operand_type_and (i386_operand_type x, i386_operand_type y)
1029 {
1030 switch (ARRAY_SIZE (x.array))
1031 {
1032 case 3:
1033 x.array [2] &= y.array [2];
1034 case 2:
1035 x.array [1] &= y.array [1];
1036 case 1:
1037 x.array [0] &= y.array [0];
1038 break;
1039 default:
1040 abort ();
1041 }
1042 return x;
1043 }
1044
1045 static INLINE i386_operand_type
1046 operand_type_or (i386_operand_type x, i386_operand_type y)
1047 {
1048 switch (ARRAY_SIZE (x.array))
1049 {
1050 case 3:
1051 x.array [2] |= y.array [2];
1052 case 2:
1053 x.array [1] |= y.array [1];
1054 case 1:
1055 x.array [0] |= y.array [0];
1056 break;
1057 default:
1058 abort ();
1059 }
1060 return x;
1061 }
1062
1063 static INLINE i386_operand_type
1064 operand_type_xor (i386_operand_type x, i386_operand_type y)
1065 {
1066 switch (ARRAY_SIZE (x.array))
1067 {
1068 case 3:
1069 x.array [2] ^= y.array [2];
1070 case 2:
1071 x.array [1] ^= y.array [1];
1072 case 1:
1073 x.array [0] ^= y.array [0];
1074 break;
1075 default:
1076 abort ();
1077 }
1078 return x;
1079 }
1080
1081 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1082 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1083 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1084 static const i386_operand_type reg16_inoutportreg
1085 = OPERAND_TYPE_REG16_INOUTPORTREG;
1086 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1087 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1088 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1089 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1090 static const i386_operand_type anydisp
1091 = OPERAND_TYPE_ANYDISP;
1092 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1093 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1094 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1095 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1096 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1097 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1098 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1099 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1100 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1101 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1102
1103 enum operand_type
1104 {
1105 reg,
1106 imm,
1107 disp,
1108 anymem
1109 };
1110
1111 static INLINE int
1112 operand_type_check (i386_operand_type t, enum operand_type c)
1113 {
1114 switch (c)
1115 {
1116 case reg:
1117 return (t.bitfield.reg8
1118 || t.bitfield.reg16
1119 || t.bitfield.reg32
1120 || t.bitfield.reg64);
1121
1122 case imm:
1123 return (t.bitfield.imm8
1124 || t.bitfield.imm8s
1125 || t.bitfield.imm16
1126 || t.bitfield.imm32
1127 || t.bitfield.imm32s
1128 || t.bitfield.imm64);
1129
1130 case disp:
1131 return (t.bitfield.disp8
1132 || t.bitfield.disp16
1133 || t.bitfield.disp32
1134 || t.bitfield.disp32s
1135 || t.bitfield.disp64);
1136
1137 case anymem:
1138 return (t.bitfield.disp8
1139 || t.bitfield.disp16
1140 || t.bitfield.disp32
1141 || t.bitfield.disp32s
1142 || t.bitfield.disp64
1143 || t.bitfield.baseindex);
1144
1145 default:
1146 abort ();
1147 }
1148 }
1149
1150 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1151 operand J for instruction template T. */
1152
1153 static INLINE int
1154 match_reg_size (const template *t, unsigned int j)
1155 {
1156 return !((i.types[j].bitfield.byte
1157 && !t->operand_types[j].bitfield.byte)
1158 || (i.types[j].bitfield.word
1159 && !t->operand_types[j].bitfield.word)
1160 || (i.types[j].bitfield.dword
1161 && !t->operand_types[j].bitfield.dword)
1162 || (i.types[j].bitfield.qword
1163 && !t->operand_types[j].bitfield.qword));
1164 }
1165
1166 /* Return 1 if there is no conflict in any size on operand J for
1167 instruction template T. */
1168
1169 static INLINE int
1170 match_mem_size (const template *t, unsigned int j)
1171 {
1172 return (match_reg_size (t, j)
1173 && !((i.types[j].bitfield.unspecified
1174 && !t->operand_types[j].bitfield.unspecified)
1175 || (i.types[j].bitfield.fword
1176 && !t->operand_types[j].bitfield.fword)
1177 || (i.types[j].bitfield.tbyte
1178 && !t->operand_types[j].bitfield.tbyte)
1179 || (i.types[j].bitfield.xmmword
1180 && !t->operand_types[j].bitfield.xmmword)));
1181 }
1182
1183 /* Return 1 if there is no size conflict on any operands for
1184 instruction template T. */
1185
1186 static INLINE int
1187 operand_size_match (const template *t)
1188 {
1189 unsigned int j;
1190 int match = 1;
1191
1192 /* Don't check jump instructions. */
1193 if (t->opcode_modifier.jump
1194 || t->opcode_modifier.jumpbyte
1195 || t->opcode_modifier.jumpdword
1196 || t->opcode_modifier.jumpintersegment)
1197 return match;
1198
1199 /* Check memory and accumulator operand size. */
1200 for (j = 0; j < i.operands; j++)
1201 {
1202 if (t->operand_types[j].bitfield.anysize)
1203 continue;
1204
1205 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1206 {
1207 match = 0;
1208 break;
1209 }
1210
1211 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1212 {
1213 match = 0;
1214 break;
1215 }
1216 }
1217
1218 if (match
1219 || (!t->opcode_modifier.d && !t->opcode_modifier.floatd))
1220 return match;
1221
1222 /* Check reverse. */
1223 assert (i.operands == 2);
1224
1225 match = 1;
1226 for (j = 0; j < 2; j++)
1227 {
1228 if (t->operand_types[j].bitfield.acc
1229 && !match_reg_size (t, j ? 0 : 1))
1230 {
1231 match = 0;
1232 break;
1233 }
1234
1235 if (i.types[j].bitfield.mem
1236 && !match_mem_size (t, j ? 0 : 1))
1237 {
1238 match = 0;
1239 break;
1240 }
1241 }
1242
1243 return match;
1244 }
1245
1246 static INLINE int
1247 operand_type_match (i386_operand_type overlap,
1248 i386_operand_type given)
1249 {
1250 i386_operand_type temp = overlap;
1251
1252 temp.bitfield.jumpabsolute = 0;
1253 temp.bitfield.unspecified = 0;
1254 temp.bitfield.byte = 0;
1255 temp.bitfield.word = 0;
1256 temp.bitfield.dword = 0;
1257 temp.bitfield.fword = 0;
1258 temp.bitfield.qword = 0;
1259 temp.bitfield.tbyte = 0;
1260 temp.bitfield.xmmword = 0;
1261 if (UINTS_ALL_ZERO (temp))
1262 return 0;
1263
1264 return (given.bitfield.baseindex == overlap.bitfield.baseindex
1265 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute);
1266 }
1267
1268 /* If given types g0 and g1 are registers they must be of the same type
1269 unless the expected operand type register overlap is null.
1270 Note that Acc in a template matches every size of reg. */
1271
1272 static INLINE int
1273 operand_type_register_match (i386_operand_type m0,
1274 i386_operand_type g0,
1275 i386_operand_type t0,
1276 i386_operand_type m1,
1277 i386_operand_type g1,
1278 i386_operand_type t1)
1279 {
1280 if (!operand_type_check (g0, reg))
1281 return 1;
1282
1283 if (!operand_type_check (g1, reg))
1284 return 1;
1285
1286 if (g0.bitfield.reg8 == g1.bitfield.reg8
1287 && g0.bitfield.reg16 == g1.bitfield.reg16
1288 && g0.bitfield.reg32 == g1.bitfield.reg32
1289 && g0.bitfield.reg64 == g1.bitfield.reg64)
1290 return 1;
1291
1292 if (m0.bitfield.acc)
1293 {
1294 t0.bitfield.reg8 = 1;
1295 t0.bitfield.reg16 = 1;
1296 t0.bitfield.reg32 = 1;
1297 t0.bitfield.reg64 = 1;
1298 }
1299
1300 if (m1.bitfield.acc)
1301 {
1302 t1.bitfield.reg8 = 1;
1303 t1.bitfield.reg16 = 1;
1304 t1.bitfield.reg32 = 1;
1305 t1.bitfield.reg64 = 1;
1306 }
1307
1308 return (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1309 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1310 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1311 && !(t0.bitfield.reg64 & t1.bitfield.reg64));
1312 }
1313
1314 static INLINE unsigned int
1315 mode_from_disp_size (i386_operand_type t)
1316 {
1317 if (t.bitfield.disp8)
1318 return 1;
1319 else if (t.bitfield.disp16
1320 || t.bitfield.disp32
1321 || t.bitfield.disp32s)
1322 return 2;
1323 else
1324 return 0;
1325 }
1326
1327 static INLINE int
1328 fits_in_signed_byte (offsetT num)
1329 {
1330 return (num >= -128) && (num <= 127);
1331 }
1332
1333 static INLINE int
1334 fits_in_unsigned_byte (offsetT num)
1335 {
1336 return (num & 0xff) == num;
1337 }
1338
1339 static INLINE int
1340 fits_in_unsigned_word (offsetT num)
1341 {
1342 return (num & 0xffff) == num;
1343 }
1344
1345 static INLINE int
1346 fits_in_signed_word (offsetT num)
1347 {
1348 return (-32768 <= num) && (num <= 32767);
1349 }
1350
1351 static INLINE int
1352 fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
1353 {
1354 #ifndef BFD64
1355 return 1;
1356 #else
1357 return (!(((offsetT) -1 << 31) & num)
1358 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
1359 #endif
1360 } /* fits_in_signed_long() */
1361
1362 static INLINE int
1363 fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
1364 {
1365 #ifndef BFD64
1366 return 1;
1367 #else
1368 return (num & (((offsetT) 2 << 31) - 1)) == num;
1369 #endif
1370 } /* fits_in_unsigned_long() */
1371
1372 static i386_operand_type
1373 smallest_imm_type (offsetT num)
1374 {
1375 i386_operand_type t;
1376
1377 UINTS_CLEAR (t);
1378 t.bitfield.imm64 = 1;
1379
1380 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
1381 {
1382 /* This code is disabled on the 486 because all the Imm1 forms
1383 in the opcode table are slower on the i486. They're the
1384 versions with the implicitly specified single-position
1385 displacement, which has another syntax if you really want to
1386 use that form. */
1387 t.bitfield.imm1 = 1;
1388 t.bitfield.imm8 = 1;
1389 t.bitfield.imm8s = 1;
1390 t.bitfield.imm16 = 1;
1391 t.bitfield.imm32 = 1;
1392 t.bitfield.imm32s = 1;
1393 }
1394 else if (fits_in_signed_byte (num))
1395 {
1396 t.bitfield.imm8 = 1;
1397 t.bitfield.imm8s = 1;
1398 t.bitfield.imm16 = 1;
1399 t.bitfield.imm32 = 1;
1400 t.bitfield.imm32s = 1;
1401 }
1402 else if (fits_in_unsigned_byte (num))
1403 {
1404 t.bitfield.imm8 = 1;
1405 t.bitfield.imm16 = 1;
1406 t.bitfield.imm32 = 1;
1407 t.bitfield.imm32s = 1;
1408 }
1409 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
1410 {
1411 t.bitfield.imm16 = 1;
1412 t.bitfield.imm32 = 1;
1413 t.bitfield.imm32s = 1;
1414 }
1415 else if (fits_in_signed_long (num))
1416 {
1417 t.bitfield.imm32 = 1;
1418 t.bitfield.imm32s = 1;
1419 }
1420 else if (fits_in_unsigned_long (num))
1421 t.bitfield.imm32 = 1;
1422
1423 return t;
1424 }
1425
1426 static offsetT
1427 offset_in_range (offsetT val, int size)
1428 {
1429 addressT mask;
1430
1431 switch (size)
1432 {
1433 case 1: mask = ((addressT) 1 << 8) - 1; break;
1434 case 2: mask = ((addressT) 1 << 16) - 1; break;
1435 case 4: mask = ((addressT) 2 << 31) - 1; break;
1436 #ifdef BFD64
1437 case 8: mask = ((addressT) 2 << 63) - 1; break;
1438 #endif
1439 default: abort ();
1440 }
1441
1442 /* If BFD64, sign extend val. */
1443 if (!use_rela_relocations)
1444 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
1445 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
1446
1447 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
1448 {
1449 char buf1[40], buf2[40];
1450
1451 sprint_value (buf1, val);
1452 sprint_value (buf2, val & mask);
1453 as_warn (_("%s shortened to %s"), buf1, buf2);
1454 }
1455 return val & mask;
1456 }
1457
1458 /* Returns 0 if attempting to add a prefix where one from the same
1459 class already exists, 1 if non rep/repne added, 2 if rep/repne
1460 added. */
1461 static int
1462 add_prefix (unsigned int prefix)
1463 {
1464 int ret = 1;
1465 unsigned int q;
1466
1467 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
1468 && flag_code == CODE_64BIT)
1469 {
1470 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
1471 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
1472 && (prefix & (REX_R | REX_X | REX_B))))
1473 ret = 0;
1474 q = REX_PREFIX;
1475 }
1476 else
1477 {
1478 switch (prefix)
1479 {
1480 default:
1481 abort ();
1482
1483 case CS_PREFIX_OPCODE:
1484 case DS_PREFIX_OPCODE:
1485 case ES_PREFIX_OPCODE:
1486 case FS_PREFIX_OPCODE:
1487 case GS_PREFIX_OPCODE:
1488 case SS_PREFIX_OPCODE:
1489 q = SEG_PREFIX;
1490 break;
1491
1492 case REPNE_PREFIX_OPCODE:
1493 case REPE_PREFIX_OPCODE:
1494 ret = 2;
1495 /* fall thru */
1496 case LOCK_PREFIX_OPCODE:
1497 q = LOCKREP_PREFIX;
1498 break;
1499
1500 case FWAIT_OPCODE:
1501 q = WAIT_PREFIX;
1502 break;
1503
1504 case ADDR_PREFIX_OPCODE:
1505 q = ADDR_PREFIX;
1506 break;
1507
1508 case DATA_PREFIX_OPCODE:
1509 q = DATA_PREFIX;
1510 break;
1511 }
1512 if (i.prefix[q] != 0)
1513 ret = 0;
1514 }
1515
1516 if (ret)
1517 {
1518 if (!i.prefix[q])
1519 ++i.prefixes;
1520 i.prefix[q] |= prefix;
1521 }
1522 else
1523 as_bad (_("same type of prefix used twice"));
1524
1525 return ret;
1526 }
1527
1528 static void
1529 set_code_flag (int value)
1530 {
1531 flag_code = value;
1532 if (flag_code == CODE_64BIT)
1533 {
1534 cpu_arch_flags.bitfield.cpu64 = 1;
1535 cpu_arch_flags.bitfield.cpuno64 = 0;
1536 }
1537 else
1538 {
1539 cpu_arch_flags.bitfield.cpu64 = 0;
1540 cpu_arch_flags.bitfield.cpuno64 = 1;
1541 }
1542 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
1543 {
1544 as_bad (_("64bit mode not supported on this CPU."));
1545 }
1546 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
1547 {
1548 as_bad (_("32bit mode not supported on this CPU."));
1549 }
1550 stackop_size = '\0';
1551 }
1552
1553 static void
1554 set_16bit_gcc_code_flag (int new_code_flag)
1555 {
1556 flag_code = new_code_flag;
1557 if (flag_code != CODE_16BIT)
1558 abort ();
1559 cpu_arch_flags.bitfield.cpu64 = 0;
1560 cpu_arch_flags.bitfield.cpuno64 = 1;
1561 stackop_size = LONG_MNEM_SUFFIX;
1562 }
1563
1564 static void
1565 set_intel_syntax (int syntax_flag)
1566 {
1567 /* Find out if register prefixing is specified. */
1568 int ask_naked_reg = 0;
1569
1570 SKIP_WHITESPACE ();
1571 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1572 {
1573 char *string = input_line_pointer;
1574 int e = get_symbol_end ();
1575
1576 if (strcmp (string, "prefix") == 0)
1577 ask_naked_reg = 1;
1578 else if (strcmp (string, "noprefix") == 0)
1579 ask_naked_reg = -1;
1580 else
1581 as_bad (_("bad argument to syntax directive."));
1582 *input_line_pointer = e;
1583 }
1584 demand_empty_rest_of_line ();
1585
1586 intel_syntax = syntax_flag;
1587
1588 if (ask_naked_reg == 0)
1589 allow_naked_reg = (intel_syntax
1590 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
1591 else
1592 allow_naked_reg = (ask_naked_reg < 0);
1593
1594 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
1595 identifier_chars['$'] = intel_syntax ? '$' : 0;
1596 register_prefix = allow_naked_reg ? "" : "%";
1597 }
1598
1599 static void
1600 set_intel_mnemonic (int mnemonic_flag)
1601 {
1602 intel_mnemonic = mnemonic_flag;
1603 }
1604
1605 static void
1606 set_allow_index_reg (int flag)
1607 {
1608 allow_index_reg = flag;
1609 }
1610
1611 static void
1612 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
1613 {
1614 SKIP_WHITESPACE ();
1615
1616 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1617 {
1618 char *string = input_line_pointer;
1619 int e = get_symbol_end ();
1620 unsigned int i;
1621 i386_cpu_flags flags;
1622
1623 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
1624 {
1625 if (strcmp (string, cpu_arch[i].name) == 0)
1626 {
1627 if (*string != '.')
1628 {
1629 cpu_arch_name = cpu_arch[i].name;
1630 cpu_sub_arch_name = NULL;
1631 cpu_arch_flags = cpu_arch[i].flags;
1632 if (flag_code == CODE_64BIT)
1633 {
1634 cpu_arch_flags.bitfield.cpu64 = 1;
1635 cpu_arch_flags.bitfield.cpuno64 = 0;
1636 }
1637 else
1638 {
1639 cpu_arch_flags.bitfield.cpu64 = 0;
1640 cpu_arch_flags.bitfield.cpuno64 = 1;
1641 }
1642 cpu_arch_isa = cpu_arch[i].type;
1643 cpu_arch_isa_flags = cpu_arch[i].flags;
1644 if (!cpu_arch_tune_set)
1645 {
1646 cpu_arch_tune = cpu_arch_isa;
1647 cpu_arch_tune_flags = cpu_arch_isa_flags;
1648 }
1649 break;
1650 }
1651
1652 flags = cpu_flags_or (cpu_arch_flags,
1653 cpu_arch[i].flags);
1654 if (!UINTS_EQUAL (flags, cpu_arch_flags))
1655 {
1656 cpu_sub_arch_name = cpu_arch[i].name;
1657 cpu_arch_flags = flags;
1658 }
1659 *input_line_pointer = e;
1660 demand_empty_rest_of_line ();
1661 return;
1662 }
1663 }
1664 if (i >= ARRAY_SIZE (cpu_arch))
1665 as_bad (_("no such architecture: `%s'"), string);
1666
1667 *input_line_pointer = e;
1668 }
1669 else
1670 as_bad (_("missing cpu architecture"));
1671
1672 no_cond_jump_promotion = 0;
1673 if (*input_line_pointer == ','
1674 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
1675 {
1676 char *string = ++input_line_pointer;
1677 int e = get_symbol_end ();
1678
1679 if (strcmp (string, "nojumps") == 0)
1680 no_cond_jump_promotion = 1;
1681 else if (strcmp (string, "jumps") == 0)
1682 ;
1683 else
1684 as_bad (_("no such architecture modifier: `%s'"), string);
1685
1686 *input_line_pointer = e;
1687 }
1688
1689 demand_empty_rest_of_line ();
1690 }
1691
1692 unsigned long
1693 i386_mach ()
1694 {
1695 if (!strcmp (default_arch, "x86_64"))
1696 return bfd_mach_x86_64;
1697 else if (!strcmp (default_arch, "i386"))
1698 return bfd_mach_i386_i386;
1699 else
1700 as_fatal (_("Unknown architecture"));
1701 }
1702 \f
1703 void
1704 md_begin ()
1705 {
1706 const char *hash_err;
1707
1708 /* Initialize op_hash hash table. */
1709 op_hash = hash_new ();
1710
1711 {
1712 const template *optab;
1713 templates *core_optab;
1714
1715 /* Setup for loop. */
1716 optab = i386_optab;
1717 core_optab = (templates *) xmalloc (sizeof (templates));
1718 core_optab->start = optab;
1719
1720 while (1)
1721 {
1722 ++optab;
1723 if (optab->name == NULL
1724 || strcmp (optab->name, (optab - 1)->name) != 0)
1725 {
1726 /* different name --> ship out current template list;
1727 add to hash table; & begin anew. */
1728 core_optab->end = optab;
1729 hash_err = hash_insert (op_hash,
1730 (optab - 1)->name,
1731 (PTR) core_optab);
1732 if (hash_err)
1733 {
1734 as_fatal (_("Internal Error: Can't hash %s: %s"),
1735 (optab - 1)->name,
1736 hash_err);
1737 }
1738 if (optab->name == NULL)
1739 break;
1740 core_optab = (templates *) xmalloc (sizeof (templates));
1741 core_optab->start = optab;
1742 }
1743 }
1744 }
1745
1746 /* Initialize reg_hash hash table. */
1747 reg_hash = hash_new ();
1748 {
1749 const reg_entry *regtab;
1750 unsigned int regtab_size = i386_regtab_size;
1751
1752 for (regtab = i386_regtab; regtab_size--; regtab++)
1753 {
1754 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
1755 if (hash_err)
1756 as_fatal (_("Internal Error: Can't hash %s: %s"),
1757 regtab->reg_name,
1758 hash_err);
1759 }
1760 }
1761
1762 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
1763 {
1764 int c;
1765 char *p;
1766
1767 for (c = 0; c < 256; c++)
1768 {
1769 if (ISDIGIT (c))
1770 {
1771 digit_chars[c] = c;
1772 mnemonic_chars[c] = c;
1773 register_chars[c] = c;
1774 operand_chars[c] = c;
1775 }
1776 else if (ISLOWER (c))
1777 {
1778 mnemonic_chars[c] = c;
1779 register_chars[c] = c;
1780 operand_chars[c] = c;
1781 }
1782 else if (ISUPPER (c))
1783 {
1784 mnemonic_chars[c] = TOLOWER (c);
1785 register_chars[c] = mnemonic_chars[c];
1786 operand_chars[c] = c;
1787 }
1788
1789 if (ISALPHA (c) || ISDIGIT (c))
1790 identifier_chars[c] = c;
1791 else if (c >= 128)
1792 {
1793 identifier_chars[c] = c;
1794 operand_chars[c] = c;
1795 }
1796 }
1797
1798 #ifdef LEX_AT
1799 identifier_chars['@'] = '@';
1800 #endif
1801 #ifdef LEX_QM
1802 identifier_chars['?'] = '?';
1803 operand_chars['?'] = '?';
1804 #endif
1805 digit_chars['-'] = '-';
1806 mnemonic_chars['-'] = '-';
1807 mnemonic_chars['.'] = '.';
1808 identifier_chars['_'] = '_';
1809 identifier_chars['.'] = '.';
1810
1811 for (p = operand_special_chars; *p != '\0'; p++)
1812 operand_chars[(unsigned char) *p] = *p;
1813 }
1814
1815 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1816 if (IS_ELF)
1817 {
1818 record_alignment (text_section, 2);
1819 record_alignment (data_section, 2);
1820 record_alignment (bss_section, 2);
1821 }
1822 #endif
1823
1824 if (flag_code == CODE_64BIT)
1825 {
1826 x86_dwarf2_return_column = 16;
1827 x86_cie_data_alignment = -8;
1828 }
1829 else
1830 {
1831 x86_dwarf2_return_column = 8;
1832 x86_cie_data_alignment = -4;
1833 }
1834 }
1835
1836 void
1837 i386_print_statistics (FILE *file)
1838 {
1839 hash_print_statistics (file, "i386 opcode", op_hash);
1840 hash_print_statistics (file, "i386 register", reg_hash);
1841 }
1842 \f
1843 #ifdef DEBUG386
1844
1845 /* Debugging routines for md_assemble. */
1846 static void pte (template *);
1847 static void pt (i386_operand_type);
1848 static void pe (expressionS *);
1849 static void ps (symbolS *);
1850
1851 static void
1852 pi (char *line, i386_insn *x)
1853 {
1854 unsigned int i;
1855
1856 fprintf (stdout, "%s: template ", line);
1857 pte (&x->tm);
1858 fprintf (stdout, " address: base %s index %s scale %x\n",
1859 x->base_reg ? x->base_reg->reg_name : "none",
1860 x->index_reg ? x->index_reg->reg_name : "none",
1861 x->log2_scale_factor);
1862 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
1863 x->rm.mode, x->rm.reg, x->rm.regmem);
1864 fprintf (stdout, " sib: base %x index %x scale %x\n",
1865 x->sib.base, x->sib.index, x->sib.scale);
1866 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
1867 (x->rex & REX_W) != 0,
1868 (x->rex & REX_R) != 0,
1869 (x->rex & REX_X) != 0,
1870 (x->rex & REX_B) != 0);
1871 fprintf (stdout, " drex: reg %d rex 0x%x\n",
1872 x->drex.reg, x->drex.rex);
1873 for (i = 0; i < x->operands; i++)
1874 {
1875 fprintf (stdout, " #%d: ", i + 1);
1876 pt (x->types[i]);
1877 fprintf (stdout, "\n");
1878 if (x->types[i].bitfield.reg8
1879 || x->types[i].bitfield.reg16
1880 || x->types[i].bitfield.reg32
1881 || x->types[i].bitfield.reg64
1882 || x->types[i].bitfield.regmmx
1883 || x->types[i].bitfield.regxmm
1884 || x->types[i].bitfield.sreg2
1885 || x->types[i].bitfield.sreg3
1886 || x->types[i].bitfield.control
1887 || x->types[i].bitfield.debug
1888 || x->types[i].bitfield.test)
1889 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
1890 if (operand_type_check (x->types[i], imm))
1891 pe (x->op[i].imms);
1892 if (operand_type_check (x->types[i], disp))
1893 pe (x->op[i].disps);
1894 }
1895 }
1896
1897 static void
1898 pte (template *t)
1899 {
1900 unsigned int i;
1901 fprintf (stdout, " %d operands ", t->operands);
1902 fprintf (stdout, "opcode %x ", t->base_opcode);
1903 if (t->extension_opcode != None)
1904 fprintf (stdout, "ext %x ", t->extension_opcode);
1905 if (t->opcode_modifier.d)
1906 fprintf (stdout, "D");
1907 if (t->opcode_modifier.w)
1908 fprintf (stdout, "W");
1909 fprintf (stdout, "\n");
1910 for (i = 0; i < t->operands; i++)
1911 {
1912 fprintf (stdout, " #%d type ", i + 1);
1913 pt (t->operand_types[i]);
1914 fprintf (stdout, "\n");
1915 }
1916 }
1917
1918 static void
1919 pe (expressionS *e)
1920 {
1921 fprintf (stdout, " operation %d\n", e->X_op);
1922 fprintf (stdout, " add_number %ld (%lx)\n",
1923 (long) e->X_add_number, (long) e->X_add_number);
1924 if (e->X_add_symbol)
1925 {
1926 fprintf (stdout, " add_symbol ");
1927 ps (e->X_add_symbol);
1928 fprintf (stdout, "\n");
1929 }
1930 if (e->X_op_symbol)
1931 {
1932 fprintf (stdout, " op_symbol ");
1933 ps (e->X_op_symbol);
1934 fprintf (stdout, "\n");
1935 }
1936 }
1937
1938 static void
1939 ps (symbolS *s)
1940 {
1941 fprintf (stdout, "%s type %s%s",
1942 S_GET_NAME (s),
1943 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1944 segment_name (S_GET_SEGMENT (s)));
1945 }
1946
1947 static struct type_name
1948 {
1949 i386_operand_type mask;
1950 const char *name;
1951 }
1952 const type_names[] =
1953 {
1954 { OPERAND_TYPE_REG8, "r8" },
1955 { OPERAND_TYPE_REG16, "r16" },
1956 { OPERAND_TYPE_REG32, "r32" },
1957 { OPERAND_TYPE_REG64, "r64" },
1958 { OPERAND_TYPE_IMM8, "i8" },
1959 { OPERAND_TYPE_IMM8, "i8s" },
1960 { OPERAND_TYPE_IMM16, "i16" },
1961 { OPERAND_TYPE_IMM32, "i32" },
1962 { OPERAND_TYPE_IMM32S, "i32s" },
1963 { OPERAND_TYPE_IMM64, "i64" },
1964 { OPERAND_TYPE_IMM1, "i1" },
1965 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
1966 { OPERAND_TYPE_DISP8, "d8" },
1967 { OPERAND_TYPE_DISP16, "d16" },
1968 { OPERAND_TYPE_DISP32, "d32" },
1969 { OPERAND_TYPE_DISP32S, "d32s" },
1970 { OPERAND_TYPE_DISP64, "d64" },
1971 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
1972 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
1973 { OPERAND_TYPE_CONTROL, "control reg" },
1974 { OPERAND_TYPE_TEST, "test reg" },
1975 { OPERAND_TYPE_DEBUG, "debug reg" },
1976 { OPERAND_TYPE_FLOATREG, "FReg" },
1977 { OPERAND_TYPE_FLOATACC, "FAcc" },
1978 { OPERAND_TYPE_SREG2, "SReg2" },
1979 { OPERAND_TYPE_SREG3, "SReg3" },
1980 { OPERAND_TYPE_ACC, "Acc" },
1981 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
1982 { OPERAND_TYPE_REGMMX, "rMMX" },
1983 { OPERAND_TYPE_REGXMM, "rXMM" },
1984 { OPERAND_TYPE_ESSEG, "es" },
1985 };
1986
1987 static void
1988 pt (i386_operand_type t)
1989 {
1990 unsigned int j;
1991 i386_operand_type a;
1992
1993 for (j = 0; j < ARRAY_SIZE (type_names); j++)
1994 {
1995 a = operand_type_and (t, type_names[j].mask);
1996 if (!UINTS_ALL_ZERO (a))
1997 fprintf (stdout, "%s, ", type_names[j].name);
1998 }
1999 fflush (stdout);
2000 }
2001
2002 #endif /* DEBUG386 */
2003 \f
2004 static bfd_reloc_code_real_type
2005 reloc (unsigned int size,
2006 int pcrel,
2007 int sign,
2008 bfd_reloc_code_real_type other)
2009 {
2010 if (other != NO_RELOC)
2011 {
2012 reloc_howto_type *reloc;
2013
2014 if (size == 8)
2015 switch (other)
2016 {
2017 case BFD_RELOC_X86_64_GOT32:
2018 return BFD_RELOC_X86_64_GOT64;
2019 break;
2020 case BFD_RELOC_X86_64_PLTOFF64:
2021 return BFD_RELOC_X86_64_PLTOFF64;
2022 break;
2023 case BFD_RELOC_X86_64_GOTPC32:
2024 other = BFD_RELOC_X86_64_GOTPC64;
2025 break;
2026 case BFD_RELOC_X86_64_GOTPCREL:
2027 other = BFD_RELOC_X86_64_GOTPCREL64;
2028 break;
2029 case BFD_RELOC_X86_64_TPOFF32:
2030 other = BFD_RELOC_X86_64_TPOFF64;
2031 break;
2032 case BFD_RELOC_X86_64_DTPOFF32:
2033 other = BFD_RELOC_X86_64_DTPOFF64;
2034 break;
2035 default:
2036 break;
2037 }
2038
2039 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2040 if (size == 4 && flag_code != CODE_64BIT)
2041 sign = -1;
2042
2043 reloc = bfd_reloc_type_lookup (stdoutput, other);
2044 if (!reloc)
2045 as_bad (_("unknown relocation (%u)"), other);
2046 else if (size != bfd_get_reloc_size (reloc))
2047 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2048 bfd_get_reloc_size (reloc),
2049 size);
2050 else if (pcrel && !reloc->pc_relative)
2051 as_bad (_("non-pc-relative relocation for pc-relative field"));
2052 else if ((reloc->complain_on_overflow == complain_overflow_signed
2053 && !sign)
2054 || (reloc->complain_on_overflow == complain_overflow_unsigned
2055 && sign > 0))
2056 as_bad (_("relocated field and relocation type differ in signedness"));
2057 else
2058 return other;
2059 return NO_RELOC;
2060 }
2061
2062 if (pcrel)
2063 {
2064 if (!sign)
2065 as_bad (_("there are no unsigned pc-relative relocations"));
2066 switch (size)
2067 {
2068 case 1: return BFD_RELOC_8_PCREL;
2069 case 2: return BFD_RELOC_16_PCREL;
2070 case 4: return BFD_RELOC_32_PCREL;
2071 case 8: return BFD_RELOC_64_PCREL;
2072 }
2073 as_bad (_("cannot do %u byte pc-relative relocation"), size);
2074 }
2075 else
2076 {
2077 if (sign > 0)
2078 switch (size)
2079 {
2080 case 4: return BFD_RELOC_X86_64_32S;
2081 }
2082 else
2083 switch (size)
2084 {
2085 case 1: return BFD_RELOC_8;
2086 case 2: return BFD_RELOC_16;
2087 case 4: return BFD_RELOC_32;
2088 case 8: return BFD_RELOC_64;
2089 }
2090 as_bad (_("cannot do %s %u byte relocation"),
2091 sign > 0 ? "signed" : "unsigned", size);
2092 }
2093
2094 abort ();
2095 return BFD_RELOC_NONE;
2096 }
2097
2098 /* Here we decide which fixups can be adjusted to make them relative to
2099 the beginning of the section instead of the symbol. Basically we need
2100 to make sure that the dynamic relocations are done correctly, so in
2101 some cases we force the original symbol to be used. */
2102
2103 int
2104 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
2105 {
2106 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2107 if (!IS_ELF)
2108 return 1;
2109
2110 /* Don't adjust pc-relative references to merge sections in 64-bit
2111 mode. */
2112 if (use_rela_relocations
2113 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2114 && fixP->fx_pcrel)
2115 return 0;
2116
2117 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2118 and changed later by validate_fix. */
2119 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2120 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2121 return 0;
2122
2123 /* adjust_reloc_syms doesn't know about the GOT. */
2124 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
2125 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2126 || fixP->fx_r_type == BFD_RELOC_386_GOT32
2127 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2128 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2129 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2130 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
2131 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2132 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
2133 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2134 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
2135 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2136 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
2137 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2138 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
2139 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
2140 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2141 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2142 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
2143 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
2144 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2145 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
2146 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2147 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
2148 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2149 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
2150 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2151 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2152 return 0;
2153 #endif
2154 return 1;
2155 }
2156
2157 static int
2158 intel_float_operand (const char *mnemonic)
2159 {
2160 /* Note that the value returned is meaningful only for opcodes with (memory)
2161 operands, hence the code here is free to improperly handle opcodes that
2162 have no operands (for better performance and smaller code). */
2163
2164 if (mnemonic[0] != 'f')
2165 return 0; /* non-math */
2166
2167 switch (mnemonic[1])
2168 {
2169 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2170 the fs segment override prefix not currently handled because no
2171 call path can make opcodes without operands get here */
2172 case 'i':
2173 return 2 /* integer op */;
2174 case 'l':
2175 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
2176 return 3; /* fldcw/fldenv */
2177 break;
2178 case 'n':
2179 if (mnemonic[2] != 'o' /* fnop */)
2180 return 3; /* non-waiting control op */
2181 break;
2182 case 'r':
2183 if (mnemonic[2] == 's')
2184 return 3; /* frstor/frstpm */
2185 break;
2186 case 's':
2187 if (mnemonic[2] == 'a')
2188 return 3; /* fsave */
2189 if (mnemonic[2] == 't')
2190 {
2191 switch (mnemonic[3])
2192 {
2193 case 'c': /* fstcw */
2194 case 'd': /* fstdw */
2195 case 'e': /* fstenv */
2196 case 's': /* fsts[gw] */
2197 return 3;
2198 }
2199 }
2200 break;
2201 case 'x':
2202 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
2203 return 0; /* fxsave/fxrstor are not really math ops */
2204 break;
2205 }
2206
2207 return 1;
2208 }
2209
2210 /* This is the guts of the machine-dependent assembler. LINE points to a
2211 machine dependent instruction. This function is supposed to emit
2212 the frags/bytes it assembles to. */
2213
2214 void
2215 md_assemble (line)
2216 char *line;
2217 {
2218 unsigned int j;
2219 char mnemonic[MAX_MNEM_SIZE];
2220
2221 /* Initialize globals. */
2222 memset (&i, '\0', sizeof (i));
2223 for (j = 0; j < MAX_OPERANDS; j++)
2224 i.reloc[j] = NO_RELOC;
2225 memset (disp_expressions, '\0', sizeof (disp_expressions));
2226 memset (im_expressions, '\0', sizeof (im_expressions));
2227 save_stack_p = save_stack;
2228
2229 /* First parse an instruction mnemonic & call i386_operand for the operands.
2230 We assume that the scrubber has arranged it so that line[0] is the valid
2231 start of a (possibly prefixed) mnemonic. */
2232
2233 line = parse_insn (line, mnemonic);
2234 if (line == NULL)
2235 return;
2236
2237 line = parse_operands (line, mnemonic);
2238 if (line == NULL)
2239 return;
2240
2241 /* Now we've parsed the mnemonic into a set of templates, and have the
2242 operands at hand. */
2243
2244 /* All intel opcodes have reversed operands except for "bound" and
2245 "enter". We also don't reverse intersegment "jmp" and "call"
2246 instructions with 2 immediate operands so that the immediate segment
2247 precedes the offset, as it does when in AT&T mode. */
2248 if (intel_syntax
2249 && i.operands > 1
2250 && (strcmp (mnemonic, "bound") != 0)
2251 && (strcmp (mnemonic, "invlpga") != 0)
2252 && !(operand_type_check (i.types[0], imm)
2253 && operand_type_check (i.types[1], imm)))
2254 swap_operands ();
2255
2256 /* The order of the immediates should be reversed
2257 for 2 immediates extrq and insertq instructions */
2258 if (i.imm_operands == 2
2259 && (strcmp (mnemonic, "extrq") == 0
2260 || strcmp (mnemonic, "insertq") == 0))
2261 swap_2_operands (0, 1);
2262
2263 if (i.imm_operands)
2264 optimize_imm ();
2265
2266 /* Don't optimize displacement for movabs since it only takes 64bit
2267 displacement. */
2268 if (i.disp_operands
2269 && (flag_code != CODE_64BIT
2270 || strcmp (mnemonic, "movabs") != 0))
2271 optimize_disp ();
2272
2273 /* Next, we find a template that matches the given insn,
2274 making sure the overlap of the given operands types is consistent
2275 with the template operand types. */
2276
2277 if (!match_template ())
2278 return;
2279
2280 if (intel_syntax)
2281 {
2282 /* Zap movzx and movsx suffix. The suffix may have been set from
2283 "word ptr" or "byte ptr" on the source operand, but we'll use
2284 the suffix later to choose the destination register. */
2285 if ((i.tm.base_opcode & ~9) == 0x0fb6)
2286 {
2287 if (i.reg_operands < 2
2288 && !i.suffix
2289 && (!i.tm.opcode_modifier.no_bsuf
2290 || !i.tm.opcode_modifier.no_wsuf
2291 || !i.tm.opcode_modifier.no_lsuf
2292 || !i.tm.opcode_modifier.no_ssuf
2293 || !i.tm.opcode_modifier.no_ldsuf
2294 || !i.tm.opcode_modifier.no_qsuf))
2295 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2296
2297 i.suffix = 0;
2298 }
2299 }
2300
2301 if (i.tm.opcode_modifier.fwait)
2302 if (!add_prefix (FWAIT_OPCODE))
2303 return;
2304
2305 /* Check string instruction segment overrides. */
2306 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
2307 {
2308 if (!check_string ())
2309 return;
2310 }
2311
2312 if (!process_suffix ())
2313 return;
2314
2315 /* Make still unresolved immediate matches conform to size of immediate
2316 given in i.suffix. */
2317 if (!finalize_imm ())
2318 return;
2319
2320 if (i.types[0].bitfield.imm1)
2321 i.imm_operands = 0; /* kludge for shift insns. */
2322
2323 for (j = 0; j < 3; j++)
2324 if (i.types[j].bitfield.inoutportreg
2325 || i.types[j].bitfield.shiftcount
2326 || i.types[j].bitfield.acc
2327 || i.types[j].bitfield.floatacc)
2328 i.reg_operands--;
2329
2330 if (i.tm.opcode_modifier.immext)
2331 {
2332 expressionS *exp;
2333
2334 if (i.tm.cpu_flags.bitfield.cpusse3 && i.operands > 0)
2335 {
2336 /* Streaming SIMD extensions 3 Instructions have the fixed
2337 operands with an opcode suffix which is coded in the same
2338 place as an 8-bit immediate field would be. Here we check
2339 those operands and remove them afterwards. */
2340 unsigned int x;
2341
2342 for (x = 0; x < i.operands; x++)
2343 if (i.op[x].regs->reg_num != x)
2344 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
2345 register_prefix,
2346 i.op[x].regs->reg_name,
2347 x + 1,
2348 i.tm.name);
2349 i.operands = 0;
2350 }
2351
2352 /* These AMD 3DNow! and Intel Katmai New Instructions have an
2353 opcode suffix which is coded in the same place as an 8-bit
2354 immediate field would be. Here we fake an 8-bit immediate
2355 operand from the opcode suffix stored in tm.extension_opcode.
2356 SSE5 also uses this encoding, for some of its 3 argument
2357 instructions. */
2358
2359 assert (i.imm_operands == 0
2360 && (i.operands <= 2
2361 || (i.tm.cpu_flags.bitfield.cpusse5
2362 && i.operands <= 3)));
2363
2364 exp = &im_expressions[i.imm_operands++];
2365 i.op[i.operands].imms = exp;
2366 UINTS_CLEAR (i.types[i.operands]);
2367 i.types[i.operands].bitfield.imm8 = 1;
2368 i.operands++;
2369 exp->X_op = O_constant;
2370 exp->X_add_number = i.tm.extension_opcode;
2371 i.tm.extension_opcode = None;
2372 }
2373
2374 /* For insns with operands there are more diddles to do to the opcode. */
2375 if (i.operands)
2376 {
2377 if (!process_operands ())
2378 return;
2379 }
2380 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
2381 {
2382 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2383 as_warn (_("translating to `%sp'"), i.tm.name);
2384 }
2385
2386 /* Handle conversion of 'int $3' --> special int3 insn. */
2387 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
2388 {
2389 i.tm.base_opcode = INT3_OPCODE;
2390 i.imm_operands = 0;
2391 }
2392
2393 if ((i.tm.opcode_modifier.jump
2394 || i.tm.opcode_modifier.jumpbyte
2395 || i.tm.opcode_modifier.jumpdword)
2396 && i.op[0].disps->X_op == O_constant)
2397 {
2398 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2399 the absolute address given by the constant. Since ix86 jumps and
2400 calls are pc relative, we need to generate a reloc. */
2401 i.op[0].disps->X_add_symbol = &abs_symbol;
2402 i.op[0].disps->X_op = O_symbol;
2403 }
2404
2405 if (i.tm.opcode_modifier.rex64)
2406 i.rex |= REX_W;
2407
2408 /* For 8 bit registers we need an empty rex prefix. Also if the
2409 instruction already has a prefix, we need to convert old
2410 registers to new ones. */
2411
2412 if ((i.types[0].bitfield.reg8
2413 && (i.op[0].regs->reg_flags & RegRex64) != 0)
2414 || (i.types[1].bitfield.reg8
2415 && (i.op[1].regs->reg_flags & RegRex64) != 0)
2416 || ((i.types[0].bitfield.reg8
2417 || i.types[1].bitfield.reg8)
2418 && i.rex != 0))
2419 {
2420 int x;
2421
2422 i.rex |= REX_OPCODE;
2423 for (x = 0; x < 2; x++)
2424 {
2425 /* Look for 8 bit operand that uses old registers. */
2426 if (i.types[x].bitfield.reg8
2427 && (i.op[x].regs->reg_flags & RegRex64) == 0)
2428 {
2429 /* In case it is "hi" register, give up. */
2430 if (i.op[x].regs->reg_num > 3)
2431 as_bad (_("can't encode register '%s%s' in an "
2432 "instruction requiring REX prefix."),
2433 register_prefix, i.op[x].regs->reg_name);
2434
2435 /* Otherwise it is equivalent to the extended register.
2436 Since the encoding doesn't change this is merely
2437 cosmetic cleanup for debug output. */
2438
2439 i.op[x].regs = i.op[x].regs + 8;
2440 }
2441 }
2442 }
2443
2444 /* If the instruction has the DREX attribute (aka SSE5), don't emit a
2445 REX prefix. */
2446 if (i.tm.opcode_modifier.drex || i.tm.opcode_modifier.drexc)
2447 {
2448 i.drex.rex = i.rex;
2449 i.rex = 0;
2450 }
2451 else if (i.rex != 0)
2452 add_prefix (REX_OPCODE | i.rex);
2453
2454 /* We are ready to output the insn. */
2455 output_insn ();
2456 }
2457
2458 static char *
2459 parse_insn (char *line, char *mnemonic)
2460 {
2461 char *l = line;
2462 char *token_start = l;
2463 char *mnem_p;
2464 int supported;
2465 const template *t;
2466
2467 /* Non-zero if we found a prefix only acceptable with string insns. */
2468 const char *expecting_string_instruction = NULL;
2469
2470 while (1)
2471 {
2472 mnem_p = mnemonic;
2473 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
2474 {
2475 mnem_p++;
2476 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
2477 {
2478 as_bad (_("no such instruction: `%s'"), token_start);
2479 return NULL;
2480 }
2481 l++;
2482 }
2483 if (!is_space_char (*l)
2484 && *l != END_OF_INSN
2485 && (intel_syntax
2486 || (*l != PREFIX_SEPARATOR
2487 && *l != ',')))
2488 {
2489 as_bad (_("invalid character %s in mnemonic"),
2490 output_invalid (*l));
2491 return NULL;
2492 }
2493 if (token_start == l)
2494 {
2495 if (!intel_syntax && *l == PREFIX_SEPARATOR)
2496 as_bad (_("expecting prefix; got nothing"));
2497 else
2498 as_bad (_("expecting mnemonic; got nothing"));
2499 return NULL;
2500 }
2501
2502 /* Look up instruction (or prefix) via hash table. */
2503 current_templates = hash_find (op_hash, mnemonic);
2504
2505 if (*l != END_OF_INSN
2506 && (!is_space_char (*l) || l[1] != END_OF_INSN)
2507 && current_templates
2508 && current_templates->start->opcode_modifier.isprefix)
2509 {
2510 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2511 {
2512 as_bad ((flag_code != CODE_64BIT
2513 ? _("`%s' is only supported in 64-bit mode")
2514 : _("`%s' is not supported in 64-bit mode")),
2515 current_templates->start->name);
2516 return NULL;
2517 }
2518 /* If we are in 16-bit mode, do not allow addr16 or data16.
2519 Similarly, in 32-bit mode, do not allow addr32 or data32. */
2520 if ((current_templates->start->opcode_modifier.size16
2521 || current_templates->start->opcode_modifier.size32)
2522 && flag_code != CODE_64BIT
2523 && (current_templates->start->opcode_modifier.size32
2524 ^ (flag_code == CODE_16BIT)))
2525 {
2526 as_bad (_("redundant %s prefix"),
2527 current_templates->start->name);
2528 return NULL;
2529 }
2530 /* Add prefix, checking for repeated prefixes. */
2531 switch (add_prefix (current_templates->start->base_opcode))
2532 {
2533 case 0:
2534 return NULL;
2535 case 2:
2536 expecting_string_instruction = current_templates->start->name;
2537 break;
2538 }
2539 /* Skip past PREFIX_SEPARATOR and reset token_start. */
2540 token_start = ++l;
2541 }
2542 else
2543 break;
2544 }
2545
2546 if (!current_templates)
2547 {
2548 /* See if we can get a match by trimming off a suffix. */
2549 switch (mnem_p[-1])
2550 {
2551 case WORD_MNEM_SUFFIX:
2552 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
2553 i.suffix = SHORT_MNEM_SUFFIX;
2554 else
2555 case BYTE_MNEM_SUFFIX:
2556 case QWORD_MNEM_SUFFIX:
2557 i.suffix = mnem_p[-1];
2558 mnem_p[-1] = '\0';
2559 current_templates = hash_find (op_hash, mnemonic);
2560 break;
2561 case SHORT_MNEM_SUFFIX:
2562 case LONG_MNEM_SUFFIX:
2563 if (!intel_syntax)
2564 {
2565 i.suffix = mnem_p[-1];
2566 mnem_p[-1] = '\0';
2567 current_templates = hash_find (op_hash, mnemonic);
2568 }
2569 break;
2570
2571 /* Intel Syntax. */
2572 case 'd':
2573 if (intel_syntax)
2574 {
2575 if (intel_float_operand (mnemonic) == 1)
2576 i.suffix = SHORT_MNEM_SUFFIX;
2577 else
2578 i.suffix = LONG_MNEM_SUFFIX;
2579 mnem_p[-1] = '\0';
2580 current_templates = hash_find (op_hash, mnemonic);
2581 }
2582 break;
2583 }
2584 if (!current_templates)
2585 {
2586 as_bad (_("no such instruction: `%s'"), token_start);
2587 return NULL;
2588 }
2589 }
2590
2591 if (current_templates->start->opcode_modifier.jump
2592 || current_templates->start->opcode_modifier.jumpbyte)
2593 {
2594 /* Check for a branch hint. We allow ",pt" and ",pn" for
2595 predict taken and predict not taken respectively.
2596 I'm not sure that branch hints actually do anything on loop
2597 and jcxz insns (JumpByte) for current Pentium4 chips. They
2598 may work in the future and it doesn't hurt to accept them
2599 now. */
2600 if (l[0] == ',' && l[1] == 'p')
2601 {
2602 if (l[2] == 't')
2603 {
2604 if (!add_prefix (DS_PREFIX_OPCODE))
2605 return NULL;
2606 l += 3;
2607 }
2608 else if (l[2] == 'n')
2609 {
2610 if (!add_prefix (CS_PREFIX_OPCODE))
2611 return NULL;
2612 l += 3;
2613 }
2614 }
2615 }
2616 /* Any other comma loses. */
2617 if (*l == ',')
2618 {
2619 as_bad (_("invalid character %s in mnemonic"),
2620 output_invalid (*l));
2621 return NULL;
2622 }
2623
2624 /* Check if instruction is supported on specified architecture. */
2625 supported = 0;
2626 for (t = current_templates->start; t < current_templates->end; ++t)
2627 {
2628 supported |= cpu_flags_match (t->cpu_flags);
2629 if (supported == 3)
2630 goto skip;
2631 }
2632
2633 if (!(supported & 2))
2634 {
2635 as_bad (flag_code == CODE_64BIT
2636 ? _("`%s' is not supported in 64-bit mode")
2637 : _("`%s' is only supported in 64-bit mode"),
2638 current_templates->start->name);
2639 return NULL;
2640 }
2641 if (!(supported & 1))
2642 {
2643 as_bad (_("`%s' is not supported on `%s%s'"),
2644 current_templates->start->name, cpu_arch_name,
2645 cpu_sub_arch_name ? cpu_sub_arch_name : "");
2646 return NULL;
2647 }
2648
2649 skip:
2650 if (!cpu_arch_flags.bitfield.cpui386
2651 && (flag_code != CODE_16BIT))
2652 {
2653 as_warn (_("use .code16 to ensure correct addressing mode"));
2654 }
2655
2656 /* Check for rep/repne without a string instruction. */
2657 if (expecting_string_instruction)
2658 {
2659 static templates override;
2660
2661 for (t = current_templates->start; t < current_templates->end; ++t)
2662 if (t->opcode_modifier.isstring)
2663 break;
2664 if (t >= current_templates->end)
2665 {
2666 as_bad (_("expecting string instruction after `%s'"),
2667 expecting_string_instruction);
2668 return NULL;
2669 }
2670 for (override.start = t; t < current_templates->end; ++t)
2671 if (!t->opcode_modifier.isstring)
2672 break;
2673 override.end = t;
2674 current_templates = &override;
2675 }
2676
2677 return l;
2678 }
2679
2680 static char *
2681 parse_operands (char *l, const char *mnemonic)
2682 {
2683 char *token_start;
2684
2685 /* 1 if operand is pending after ','. */
2686 unsigned int expecting_operand = 0;
2687
2688 /* Non-zero if operand parens not balanced. */
2689 unsigned int paren_not_balanced;
2690
2691 while (*l != END_OF_INSN)
2692 {
2693 /* Skip optional white space before operand. */
2694 if (is_space_char (*l))
2695 ++l;
2696 if (!is_operand_char (*l) && *l != END_OF_INSN)
2697 {
2698 as_bad (_("invalid character %s before operand %d"),
2699 output_invalid (*l),
2700 i.operands + 1);
2701 return NULL;
2702 }
2703 token_start = l; /* after white space */
2704 paren_not_balanced = 0;
2705 while (paren_not_balanced || *l != ',')
2706 {
2707 if (*l == END_OF_INSN)
2708 {
2709 if (paren_not_balanced)
2710 {
2711 if (!intel_syntax)
2712 as_bad (_("unbalanced parenthesis in operand %d."),
2713 i.operands + 1);
2714 else
2715 as_bad (_("unbalanced brackets in operand %d."),
2716 i.operands + 1);
2717 return NULL;
2718 }
2719 else
2720 break; /* we are done */
2721 }
2722 else if (!is_operand_char (*l) && !is_space_char (*l))
2723 {
2724 as_bad (_("invalid character %s in operand %d"),
2725 output_invalid (*l),
2726 i.operands + 1);
2727 return NULL;
2728 }
2729 if (!intel_syntax)
2730 {
2731 if (*l == '(')
2732 ++paren_not_balanced;
2733 if (*l == ')')
2734 --paren_not_balanced;
2735 }
2736 else
2737 {
2738 if (*l == '[')
2739 ++paren_not_balanced;
2740 if (*l == ']')
2741 --paren_not_balanced;
2742 }
2743 l++;
2744 }
2745 if (l != token_start)
2746 { /* Yes, we've read in another operand. */
2747 unsigned int operand_ok;
2748 this_operand = i.operands++;
2749 i.types[this_operand].bitfield.unspecified = 1;
2750 if (i.operands > MAX_OPERANDS)
2751 {
2752 as_bad (_("spurious operands; (%d operands/instruction max)"),
2753 MAX_OPERANDS);
2754 return NULL;
2755 }
2756 /* Now parse operand adding info to 'i' as we go along. */
2757 END_STRING_AND_SAVE (l);
2758
2759 if (intel_syntax)
2760 operand_ok =
2761 i386_intel_operand (token_start,
2762 intel_float_operand (mnemonic));
2763 else
2764 operand_ok = i386_att_operand (token_start);
2765
2766 RESTORE_END_STRING (l);
2767 if (!operand_ok)
2768 return NULL;
2769 }
2770 else
2771 {
2772 if (expecting_operand)
2773 {
2774 expecting_operand_after_comma:
2775 as_bad (_("expecting operand after ','; got nothing"));
2776 return NULL;
2777 }
2778 if (*l == ',')
2779 {
2780 as_bad (_("expecting operand before ','; got nothing"));
2781 return NULL;
2782 }
2783 }
2784
2785 /* Now *l must be either ',' or END_OF_INSN. */
2786 if (*l == ',')
2787 {
2788 if (*++l == END_OF_INSN)
2789 {
2790 /* Just skip it, if it's \n complain. */
2791 goto expecting_operand_after_comma;
2792 }
2793 expecting_operand = 1;
2794 }
2795 }
2796 return l;
2797 }
2798
2799 static void
2800 swap_2_operands (int xchg1, int xchg2)
2801 {
2802 union i386_op temp_op;
2803 i386_operand_type temp_type;
2804 enum bfd_reloc_code_real temp_reloc;
2805
2806 temp_type = i.types[xchg2];
2807 i.types[xchg2] = i.types[xchg1];
2808 i.types[xchg1] = temp_type;
2809 temp_op = i.op[xchg2];
2810 i.op[xchg2] = i.op[xchg1];
2811 i.op[xchg1] = temp_op;
2812 temp_reloc = i.reloc[xchg2];
2813 i.reloc[xchg2] = i.reloc[xchg1];
2814 i.reloc[xchg1] = temp_reloc;
2815 }
2816
2817 static void
2818 swap_operands (void)
2819 {
2820 switch (i.operands)
2821 {
2822 case 4:
2823 swap_2_operands (1, i.operands - 2);
2824 case 3:
2825 case 2:
2826 swap_2_operands (0, i.operands - 1);
2827 break;
2828 default:
2829 abort ();
2830 }
2831
2832 if (i.mem_operands == 2)
2833 {
2834 const seg_entry *temp_seg;
2835 temp_seg = i.seg[0];
2836 i.seg[0] = i.seg[1];
2837 i.seg[1] = temp_seg;
2838 }
2839 }
2840
2841 /* Try to ensure constant immediates are represented in the smallest
2842 opcode possible. */
2843 static void
2844 optimize_imm (void)
2845 {
2846 char guess_suffix = 0;
2847 int op;
2848
2849 if (i.suffix)
2850 guess_suffix = i.suffix;
2851 else if (i.reg_operands)
2852 {
2853 /* Figure out a suffix from the last register operand specified.
2854 We can't do this properly yet, ie. excluding InOutPortReg,
2855 but the following works for instructions with immediates.
2856 In any case, we can't set i.suffix yet. */
2857 for (op = i.operands; --op >= 0;)
2858 if (i.types[op].bitfield.reg8)
2859 {
2860 guess_suffix = BYTE_MNEM_SUFFIX;
2861 break;
2862 }
2863 else if (i.types[op].bitfield.reg16)
2864 {
2865 guess_suffix = WORD_MNEM_SUFFIX;
2866 break;
2867 }
2868 else if (i.types[op].bitfield.reg32)
2869 {
2870 guess_suffix = LONG_MNEM_SUFFIX;
2871 break;
2872 }
2873 else if (i.types[op].bitfield.reg64)
2874 {
2875 guess_suffix = QWORD_MNEM_SUFFIX;
2876 break;
2877 }
2878 }
2879 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
2880 guess_suffix = WORD_MNEM_SUFFIX;
2881
2882 for (op = i.operands; --op >= 0;)
2883 if (operand_type_check (i.types[op], imm))
2884 {
2885 switch (i.op[op].imms->X_op)
2886 {
2887 case O_constant:
2888 /* If a suffix is given, this operand may be shortened. */
2889 switch (guess_suffix)
2890 {
2891 case LONG_MNEM_SUFFIX:
2892 i.types[op].bitfield.imm32 = 1;
2893 i.types[op].bitfield.imm64 = 1;
2894 break;
2895 case WORD_MNEM_SUFFIX:
2896 i.types[op].bitfield.imm16 = 1;
2897 i.types[op].bitfield.imm32 = 1;
2898 i.types[op].bitfield.imm32s = 1;
2899 i.types[op].bitfield.imm64 = 1;
2900 break;
2901 case BYTE_MNEM_SUFFIX:
2902 i.types[op].bitfield.imm8 = 1;
2903 i.types[op].bitfield.imm8s = 1;
2904 i.types[op].bitfield.imm16 = 1;
2905 i.types[op].bitfield.imm32 = 1;
2906 i.types[op].bitfield.imm32s = 1;
2907 i.types[op].bitfield.imm64 = 1;
2908 break;
2909 }
2910
2911 /* If this operand is at most 16 bits, convert it
2912 to a signed 16 bit number before trying to see
2913 whether it will fit in an even smaller size.
2914 This allows a 16-bit operand such as $0xffe0 to
2915 be recognised as within Imm8S range. */
2916 if ((i.types[op].bitfield.imm16)
2917 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
2918 {
2919 i.op[op].imms->X_add_number =
2920 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
2921 }
2922 if ((i.types[op].bitfield.imm32)
2923 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
2924 == 0))
2925 {
2926 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
2927 ^ ((offsetT) 1 << 31))
2928 - ((offsetT) 1 << 31));
2929 }
2930 i.types[op]
2931 = operand_type_or (i.types[op],
2932 smallest_imm_type (i.op[op].imms->X_add_number));
2933
2934 /* We must avoid matching of Imm32 templates when 64bit
2935 only immediate is available. */
2936 if (guess_suffix == QWORD_MNEM_SUFFIX)
2937 i.types[op].bitfield.imm32 = 0;
2938 break;
2939
2940 case O_absent:
2941 case O_register:
2942 abort ();
2943
2944 /* Symbols and expressions. */
2945 default:
2946 /* Convert symbolic operand to proper sizes for matching, but don't
2947 prevent matching a set of insns that only supports sizes other
2948 than those matching the insn suffix. */
2949 {
2950 i386_operand_type mask, allowed;
2951 const template *t;
2952
2953 UINTS_CLEAR (mask);
2954 UINTS_CLEAR (allowed);
2955
2956 for (t = current_templates->start;
2957 t < current_templates->end;
2958 ++t)
2959 allowed = operand_type_or (allowed,
2960 t->operand_types[op]);
2961 switch (guess_suffix)
2962 {
2963 case QWORD_MNEM_SUFFIX:
2964 mask.bitfield.imm64 = 1;
2965 mask.bitfield.imm32s = 1;
2966 break;
2967 case LONG_MNEM_SUFFIX:
2968 mask.bitfield.imm32 = 1;
2969 break;
2970 case WORD_MNEM_SUFFIX:
2971 mask.bitfield.imm16 = 1;
2972 break;
2973 case BYTE_MNEM_SUFFIX:
2974 mask.bitfield.imm8 = 1;
2975 break;
2976 default:
2977 break;
2978 }
2979 allowed = operand_type_and (mask, allowed);
2980 if (!UINTS_ALL_ZERO (allowed))
2981 i.types[op] = operand_type_and (i.types[op], mask);
2982 }
2983 break;
2984 }
2985 }
2986 }
2987
2988 /* Try to use the smallest displacement type too. */
2989 static void
2990 optimize_disp (void)
2991 {
2992 int op;
2993
2994 for (op = i.operands; --op >= 0;)
2995 if (operand_type_check (i.types[op], disp))
2996 {
2997 if (i.op[op].disps->X_op == O_constant)
2998 {
2999 offsetT disp = i.op[op].disps->X_add_number;
3000
3001 if (i.types[op].bitfield.disp16
3002 && (disp & ~(offsetT) 0xffff) == 0)
3003 {
3004 /* If this operand is at most 16 bits, convert
3005 to a signed 16 bit number and don't use 64bit
3006 displacement. */
3007 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
3008 i.types[op].bitfield.disp64 = 0;
3009 }
3010 if (i.types[op].bitfield.disp32
3011 && (disp & ~(((offsetT) 2 << 31) - 1)) == 0)
3012 {
3013 /* If this operand is at most 32 bits, convert
3014 to a signed 32 bit number and don't use 64bit
3015 displacement. */
3016 disp &= (((offsetT) 2 << 31) - 1);
3017 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
3018 i.types[op].bitfield.disp64 = 0;
3019 }
3020 if (!disp && i.types[op].bitfield.baseindex)
3021 {
3022 i.types[op].bitfield.disp8 = 0;
3023 i.types[op].bitfield.disp16 = 0;
3024 i.types[op].bitfield.disp32 = 0;
3025 i.types[op].bitfield.disp32s = 0;
3026 i.types[op].bitfield.disp64 = 0;
3027 i.op[op].disps = 0;
3028 i.disp_operands--;
3029 }
3030 else if (flag_code == CODE_64BIT)
3031 {
3032 if (fits_in_signed_long (disp))
3033 {
3034 i.types[op].bitfield.disp64 = 0;
3035 i.types[op].bitfield.disp32s = 1;
3036 }
3037 if (fits_in_unsigned_long (disp))
3038 i.types[op].bitfield.disp32 = 1;
3039 }
3040 if ((i.types[op].bitfield.disp32
3041 || i.types[op].bitfield.disp32s
3042 || i.types[op].bitfield.disp16)
3043 && fits_in_signed_byte (disp))
3044 i.types[op].bitfield.disp8 = 1;
3045 }
3046 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
3047 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
3048 {
3049 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
3050 i.op[op].disps, 0, i.reloc[op]);
3051 i.types[op].bitfield.disp8 = 0;
3052 i.types[op].bitfield.disp16 = 0;
3053 i.types[op].bitfield.disp32 = 0;
3054 i.types[op].bitfield.disp32s = 0;
3055 i.types[op].bitfield.disp64 = 0;
3056 }
3057 else
3058 /* We only support 64bit displacement on constants. */
3059 i.types[op].bitfield.disp64 = 0;
3060 }
3061 }
3062
3063 static int
3064 match_template (void)
3065 {
3066 /* Points to template once we've found it. */
3067 const template *t;
3068 i386_operand_type overlap0, overlap1, overlap2, overlap3;
3069 unsigned int found_reverse_match;
3070 i386_opcode_modifier suffix_check;
3071 i386_operand_type operand_types [MAX_OPERANDS];
3072 int addr_prefix_disp;
3073 unsigned int j;
3074 unsigned int found_cpu_match;
3075 unsigned int check_register;
3076
3077 #if MAX_OPERANDS != 4
3078 # error "MAX_OPERANDS must be 4."
3079 #endif
3080
3081 found_reverse_match = 0;
3082 addr_prefix_disp = -1;
3083
3084 memset (&suffix_check, 0, sizeof (suffix_check));
3085 if (i.suffix == BYTE_MNEM_SUFFIX)
3086 suffix_check.no_bsuf = 1;
3087 else if (i.suffix == WORD_MNEM_SUFFIX)
3088 suffix_check.no_wsuf = 1;
3089 else if (i.suffix == SHORT_MNEM_SUFFIX)
3090 suffix_check.no_ssuf = 1;
3091 else if (i.suffix == LONG_MNEM_SUFFIX)
3092 suffix_check.no_lsuf = 1;
3093 else if (i.suffix == QWORD_MNEM_SUFFIX)
3094 suffix_check.no_qsuf = 1;
3095 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
3096 suffix_check.no_ldsuf = 1;
3097
3098 for (t = current_templates->start; t < current_templates->end; t++)
3099 {
3100 addr_prefix_disp = -1;
3101
3102 /* Must have right number of operands. */
3103 if (i.operands != t->operands)
3104 continue;
3105
3106 /* Check processor support. */
3107 found_cpu_match = cpu_flags_match (t->cpu_flags) == 3;
3108 if (!found_cpu_match)
3109 continue;
3110
3111 /* Check old gcc support. */
3112 if (!old_gcc && t->opcode_modifier.oldgcc)
3113 continue;
3114
3115 /* Check AT&T mnemonic. */
3116 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
3117 continue;
3118
3119 /* Check AT&T syntax Intel syntax. */
3120 if ((intel_syntax && t->opcode_modifier.attsyntax)
3121 || (!intel_syntax && t->opcode_modifier.intelsyntax))
3122 continue;
3123
3124 /* Check the suffix, except for some instructions in intel mode. */
3125 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
3126 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
3127 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
3128 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
3129 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
3130 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
3131 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
3132 continue;
3133
3134 if (!operand_size_match (t))
3135 continue;
3136
3137 for (j = 0; j < MAX_OPERANDS; j++)
3138 operand_types[j] = t->operand_types[j];
3139
3140 /* In general, don't allow 64-bit operands in 32-bit mode. */
3141 if (i.suffix == QWORD_MNEM_SUFFIX
3142 && flag_code != CODE_64BIT
3143 && (intel_syntax
3144 ? (!t->opcode_modifier.ignoresize
3145 && !intel_float_operand (t->name))
3146 : intel_float_operand (t->name) != 2)
3147 && ((!operand_types[0].bitfield.regmmx
3148 && !operand_types[0].bitfield.regxmm)
3149 || (!operand_types[t->operands > 1].bitfield.regmmx
3150 && !!operand_types[t->operands > 1].bitfield.regxmm))
3151 && (t->base_opcode != 0x0fc7
3152 || t->extension_opcode != 1 /* cmpxchg8b */))
3153 continue;
3154
3155 /* Do not verify operands when there are none. */
3156 else
3157 {
3158 if (!t->operands)
3159 /* We've found a match; break out of loop. */
3160 break;
3161 }
3162
3163 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
3164 into Disp32/Disp16/Disp32 operand. */
3165 if (i.prefix[ADDR_PREFIX] != 0)
3166 {
3167 /* There should be only one Disp operand. */
3168 switch (flag_code)
3169 {
3170 case CODE_16BIT:
3171 for (j = 0; j < MAX_OPERANDS; j++)
3172 {
3173 if (operand_types[j].bitfield.disp16)
3174 {
3175 addr_prefix_disp = j;
3176 operand_types[j].bitfield.disp32 = 1;
3177 operand_types[j].bitfield.disp16 = 0;
3178 break;
3179 }
3180 }
3181 break;
3182 case CODE_32BIT:
3183 for (j = 0; j < MAX_OPERANDS; j++)
3184 {
3185 if (operand_types[j].bitfield.disp32)
3186 {
3187 addr_prefix_disp = j;
3188 operand_types[j].bitfield.disp32 = 0;
3189 operand_types[j].bitfield.disp16 = 1;
3190 break;
3191 }
3192 }
3193 break;
3194 case CODE_64BIT:
3195 for (j = 0; j < MAX_OPERANDS; j++)
3196 {
3197 if (operand_types[j].bitfield.disp64)
3198 {
3199 addr_prefix_disp = j;
3200 operand_types[j].bitfield.disp64 = 0;
3201 operand_types[j].bitfield.disp32 = 1;
3202 break;
3203 }
3204 }
3205 break;
3206 }
3207 }
3208
3209 /* We check register size only if size of operands can be
3210 encoded the canonical way. */
3211 check_register = t->opcode_modifier.w;
3212 overlap0 = operand_type_and (i.types[0], operand_types[0]);
3213 switch (t->operands)
3214 {
3215 case 1:
3216 if (!operand_type_match (overlap0, i.types[0]))
3217 continue;
3218 break;
3219 case 2:
3220 /* xchg %eax, %eax is a special case. It is an aliase for nop
3221 only in 32bit mode and we can use opcode 0x90. In 64bit
3222 mode, we can't use 0x90 for xchg %eax, %eax since it should
3223 zero-extend %eax to %rax. */
3224 if (flag_code == CODE_64BIT
3225 && t->base_opcode == 0x90
3226 && UINTS_EQUAL (i.types [0], acc32)
3227 && UINTS_EQUAL (i.types [1], acc32))
3228 continue;
3229 case 3:
3230 case 4:
3231 overlap1 = operand_type_and (i.types[1], operand_types[1]);
3232 if (!operand_type_match (overlap0, i.types[0])
3233 || !operand_type_match (overlap1, i.types[1])
3234 || (check_register
3235 && !operand_type_register_match (overlap0, i.types[0],
3236 operand_types[0],
3237 overlap1, i.types[1],
3238 operand_types[1])))
3239 {
3240 /* Check if other direction is valid ... */
3241 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
3242 continue;
3243
3244 /* Try reversing direction of operands. */
3245 overlap0 = operand_type_and (i.types[0], operand_types[1]);
3246 overlap1 = operand_type_and (i.types[1], operand_types[0]);
3247 if (!operand_type_match (overlap0, i.types[0])
3248 || !operand_type_match (overlap1, i.types[1])
3249 || (check_register
3250 && !operand_type_register_match (overlap0,
3251 i.types[0],
3252 operand_types[1],
3253 overlap1,
3254 i.types[1],
3255 operand_types[0])))
3256 {
3257 /* Does not match either direction. */
3258 continue;
3259 }
3260 /* found_reverse_match holds which of D or FloatDR
3261 we've found. */
3262 if (t->opcode_modifier.d)
3263 found_reverse_match = Opcode_D;
3264 else if (t->opcode_modifier.floatd)
3265 found_reverse_match = Opcode_FloatD;
3266 else
3267 found_reverse_match = 0;
3268 if (t->opcode_modifier.floatr)
3269 found_reverse_match |= Opcode_FloatR;
3270 }
3271 else
3272 {
3273 /* Found a forward 2 operand match here. */
3274 switch (t->operands)
3275 {
3276 case 4:
3277 overlap3 = operand_type_and (i.types[3],
3278 operand_types[3]);
3279 case 3:
3280 overlap2 = operand_type_and (i.types[2],
3281 operand_types[2]);
3282 break;
3283 }
3284
3285 switch (t->operands)
3286 {
3287 case 4:
3288 if (!operand_type_match (overlap3, i.types[3])
3289 || (check_register
3290 && !operand_type_register_match (overlap2,
3291 i.types[2],
3292 operand_types[2],
3293 overlap3,
3294 i.types[3],
3295 operand_types[3])))
3296 continue;
3297 case 3:
3298 /* Here we make use of the fact that there are no
3299 reverse match 3 operand instructions, and all 3
3300 operand instructions only need to be checked for
3301 register consistency between operands 2 and 3. */
3302 if (!operand_type_match (overlap2, i.types[2])
3303 || (check_register
3304 && !operand_type_register_match (overlap1,
3305 i.types[1],
3306 operand_types[1],
3307 overlap2,
3308 i.types[2],
3309 operand_types[2])))
3310 continue;
3311 break;
3312 }
3313 }
3314 /* Found either forward/reverse 2, 3 or 4 operand match here:
3315 slip through to break. */
3316 }
3317 if (!found_cpu_match)
3318 {
3319 found_reverse_match = 0;
3320 continue;
3321 }
3322 /* We've found a match; break out of loop. */
3323 break;
3324 }
3325
3326 if (t == current_templates->end)
3327 {
3328 /* We found no match. */
3329 as_bad (_("suffix or operands invalid for `%s'"),
3330 current_templates->start->name);
3331 return 0;
3332 }
3333
3334 if (!quiet_warnings)
3335 {
3336 if (!intel_syntax
3337 && (i.types[0].bitfield.jumpabsolute
3338 != operand_types[0].bitfield.jumpabsolute))
3339 {
3340 as_warn (_("indirect %s without `*'"), t->name);
3341 }
3342
3343 if (t->opcode_modifier.isprefix
3344 && t->opcode_modifier.ignoresize)
3345 {
3346 /* Warn them that a data or address size prefix doesn't
3347 affect assembly of the next line of code. */
3348 as_warn (_("stand-alone `%s' prefix"), t->name);
3349 }
3350 }
3351
3352 /* Copy the template we found. */
3353 i.tm = *t;
3354
3355 if (addr_prefix_disp != -1)
3356 i.tm.operand_types[addr_prefix_disp]
3357 = operand_types[addr_prefix_disp];
3358
3359 if (found_reverse_match)
3360 {
3361 /* If we found a reverse match we must alter the opcode
3362 direction bit. found_reverse_match holds bits to change
3363 (different for int & float insns). */
3364
3365 i.tm.base_opcode ^= found_reverse_match;
3366
3367 i.tm.operand_types[0] = operand_types[1];
3368 i.tm.operand_types[1] = operand_types[0];
3369 }
3370
3371 return 1;
3372 }
3373
3374 static int
3375 check_string (void)
3376 {
3377 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
3378 if (i.tm.operand_types[mem_op].bitfield.esseg)
3379 {
3380 if (i.seg[0] != NULL && i.seg[0] != &es)
3381 {
3382 as_bad (_("`%s' operand %d must use `%%es' segment"),
3383 i.tm.name,
3384 mem_op + 1);
3385 return 0;
3386 }
3387 /* There's only ever one segment override allowed per instruction.
3388 This instruction possibly has a legal segment override on the
3389 second operand, so copy the segment to where non-string
3390 instructions store it, allowing common code. */
3391 i.seg[0] = i.seg[1];
3392 }
3393 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
3394 {
3395 if (i.seg[1] != NULL && i.seg[1] != &es)
3396 {
3397 as_bad (_("`%s' operand %d must use `%%es' segment"),
3398 i.tm.name,
3399 mem_op + 2);
3400 return 0;
3401 }
3402 }
3403 return 1;
3404 }
3405
3406 static int
3407 process_suffix (void)
3408 {
3409 /* If matched instruction specifies an explicit instruction mnemonic
3410 suffix, use it. */
3411 if (i.tm.opcode_modifier.size16)
3412 i.suffix = WORD_MNEM_SUFFIX;
3413 else if (i.tm.opcode_modifier.size32)
3414 i.suffix = LONG_MNEM_SUFFIX;
3415 else if (i.tm.opcode_modifier.size64)
3416 i.suffix = QWORD_MNEM_SUFFIX;
3417 else if (i.reg_operands)
3418 {
3419 /* If there's no instruction mnemonic suffix we try to invent one
3420 based on register operands. */
3421 if (!i.suffix)
3422 {
3423 /* We take i.suffix from the last register operand specified,
3424 Destination register type is more significant than source
3425 register type. crc32 in SSE4.2 prefers source register
3426 type. */
3427 if (i.tm.base_opcode == 0xf20f38f1)
3428 {
3429 if (i.types[0].bitfield.reg16)
3430 i.suffix = WORD_MNEM_SUFFIX;
3431 else if (i.types[0].bitfield.reg32)
3432 i.suffix = LONG_MNEM_SUFFIX;
3433 else if (i.types[0].bitfield.reg64)
3434 i.suffix = QWORD_MNEM_SUFFIX;
3435 }
3436 else if (i.tm.base_opcode == 0xf20f38f0)
3437 {
3438 if (i.types[0].bitfield.reg8)
3439 i.suffix = BYTE_MNEM_SUFFIX;
3440 }
3441
3442 if (!i.suffix)
3443 {
3444 int op;
3445
3446 if (i.tm.base_opcode == 0xf20f38f1
3447 || i.tm.base_opcode == 0xf20f38f0)
3448 {
3449 /* We have to know the operand size for crc32. */
3450 as_bad (_("ambiguous memory operand size for `%s`"),
3451 i.tm.name);
3452 return 0;
3453 }
3454
3455 for (op = i.operands; --op >= 0;)
3456 if (!i.tm.operand_types[op].bitfield.inoutportreg)
3457 {
3458 if (i.types[op].bitfield.reg8)
3459 {
3460 i.suffix = BYTE_MNEM_SUFFIX;
3461 break;
3462 }
3463 else if (i.types[op].bitfield.reg16)
3464 {
3465 i.suffix = WORD_MNEM_SUFFIX;
3466 break;
3467 }
3468 else if (i.types[op].bitfield.reg32)
3469 {
3470 i.suffix = LONG_MNEM_SUFFIX;
3471 break;
3472 }
3473 else if (i.types[op].bitfield.reg64)
3474 {
3475 i.suffix = QWORD_MNEM_SUFFIX;
3476 break;
3477 }
3478 }
3479 }
3480 }
3481 else if (i.suffix == BYTE_MNEM_SUFFIX)
3482 {
3483 if (!check_byte_reg ())
3484 return 0;
3485 }
3486 else if (i.suffix == LONG_MNEM_SUFFIX)
3487 {
3488 if (!check_long_reg ())
3489 return 0;
3490 }
3491 else if (i.suffix == QWORD_MNEM_SUFFIX)
3492 {
3493 if (intel_syntax
3494 && i.tm.opcode_modifier.ignoresize
3495 && i.tm.opcode_modifier.no_qsuf)
3496 i.suffix = 0;
3497 else if (!check_qword_reg ())
3498 return 0;
3499 }
3500 else if (i.suffix == WORD_MNEM_SUFFIX)
3501 {
3502 if (!check_word_reg ())
3503 return 0;
3504 }
3505 else if (i.suffix == XMMWORD_MNEM_SUFFIX)
3506 {
3507 /* Skip if the instruction has x suffix. match_template
3508 should check if it is a valid suffix. */
3509 }
3510 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
3511 /* Do nothing if the instruction is going to ignore the prefix. */
3512 ;
3513 else
3514 abort ();
3515 }
3516 else if (i.tm.opcode_modifier.defaultsize
3517 && !i.suffix
3518 /* exclude fldenv/frstor/fsave/fstenv */
3519 && i.tm.opcode_modifier.no_ssuf)
3520 {
3521 i.suffix = stackop_size;
3522 }
3523 else if (intel_syntax
3524 && !i.suffix
3525 && (i.tm.operand_types[0].bitfield.jumpabsolute
3526 || i.tm.opcode_modifier.jumpbyte
3527 || i.tm.opcode_modifier.jumpintersegment
3528 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
3529 && i.tm.extension_opcode <= 3)))
3530 {
3531 switch (flag_code)
3532 {
3533 case CODE_64BIT:
3534 if (!i.tm.opcode_modifier.no_qsuf)
3535 {
3536 i.suffix = QWORD_MNEM_SUFFIX;
3537 break;
3538 }
3539 case CODE_32BIT:
3540 if (!i.tm.opcode_modifier.no_lsuf)
3541 i.suffix = LONG_MNEM_SUFFIX;
3542 break;
3543 case CODE_16BIT:
3544 if (!i.tm.opcode_modifier.no_wsuf)
3545 i.suffix = WORD_MNEM_SUFFIX;
3546 break;
3547 }
3548 }
3549
3550 if (!i.suffix)
3551 {
3552 if (!intel_syntax)
3553 {
3554 if (i.tm.opcode_modifier.w)
3555 {
3556 as_bad (_("no instruction mnemonic suffix given and "
3557 "no register operands; can't size instruction"));
3558 return 0;
3559 }
3560 }
3561 else
3562 {
3563 unsigned int suffixes;
3564
3565 suffixes = !i.tm.opcode_modifier.no_bsuf;
3566 if (!i.tm.opcode_modifier.no_wsuf)
3567 suffixes |= 1 << 1;
3568 if (!i.tm.opcode_modifier.no_lsuf)
3569 suffixes |= 1 << 2;
3570 if (!i.tm.opcode_modifier.no_ldsuf)
3571 suffixes |= 1 << 3;
3572 if (!i.tm.opcode_modifier.no_ssuf)
3573 suffixes |= 1 << 4;
3574 if (!i.tm.opcode_modifier.no_qsuf)
3575 suffixes |= 1 << 5;
3576
3577 /* There are more than suffix matches. */
3578 if (i.tm.opcode_modifier.w
3579 || ((suffixes & (suffixes - 1))
3580 && !i.tm.opcode_modifier.defaultsize
3581 && !i.tm.opcode_modifier.ignoresize))
3582 {
3583 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3584 return 0;
3585 }
3586 }
3587 }
3588
3589 /* Change the opcode based on the operand size given by i.suffix;
3590 We don't need to change things for byte insns. */
3591
3592 if (i.suffix
3593 && i.suffix != BYTE_MNEM_SUFFIX
3594 && i.suffix != XMMWORD_MNEM_SUFFIX)
3595 {
3596 /* It's not a byte, select word/dword operation. */
3597 if (i.tm.opcode_modifier.w)
3598 {
3599 if (i.tm.opcode_modifier.shortform)
3600 i.tm.base_opcode |= 8;
3601 else
3602 i.tm.base_opcode |= 1;
3603 }
3604
3605 /* Now select between word & dword operations via the operand
3606 size prefix, except for instructions that will ignore this
3607 prefix anyway. */
3608 if (i.tm.opcode_modifier.addrprefixop0)
3609 {
3610 /* The address size override prefix changes the size of the
3611 first operand. */
3612 if ((flag_code == CODE_32BIT
3613 && i.op->regs[0].reg_type.bitfield.reg16)
3614 || (flag_code != CODE_32BIT
3615 && i.op->regs[0].reg_type.bitfield.reg32))
3616 if (!add_prefix (ADDR_PREFIX_OPCODE))
3617 return 0;
3618 }
3619 else if (i.suffix != QWORD_MNEM_SUFFIX
3620 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
3621 && !i.tm.opcode_modifier.ignoresize
3622 && !i.tm.opcode_modifier.floatmf
3623 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
3624 || (flag_code == CODE_64BIT
3625 && i.tm.opcode_modifier.jumpbyte)))
3626 {
3627 unsigned int prefix = DATA_PREFIX_OPCODE;
3628
3629 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
3630 prefix = ADDR_PREFIX_OPCODE;
3631
3632 if (!add_prefix (prefix))
3633 return 0;
3634 }
3635
3636 /* Set mode64 for an operand. */
3637 if (i.suffix == QWORD_MNEM_SUFFIX
3638 && flag_code == CODE_64BIT
3639 && !i.tm.opcode_modifier.norex64)
3640 {
3641 /* Special case for xchg %rax,%rax. It is NOP and doesn't
3642 need rex64. cmpxchg8b is also a special case. */
3643 if (! (i.operands == 2
3644 && i.tm.base_opcode == 0x90
3645 && i.tm.extension_opcode == None
3646 && UINTS_EQUAL (i.types [0], acc64)
3647 && UINTS_EQUAL (i.types [1], acc64))
3648 && ! (i.operands == 1
3649 && i.tm.base_opcode == 0xfc7
3650 && i.tm.extension_opcode == 1
3651 && !operand_type_check (i.types [0], reg)
3652 && operand_type_check (i.types [0], anymem)))
3653 i.rex |= REX_W;
3654 }
3655
3656 /* Size floating point instruction. */
3657 if (i.suffix == LONG_MNEM_SUFFIX)
3658 if (i.tm.opcode_modifier.floatmf)
3659 i.tm.base_opcode ^= 4;
3660 }
3661
3662 return 1;
3663 }
3664
3665 static int
3666 check_byte_reg (void)
3667 {
3668 int op;
3669
3670 for (op = i.operands; --op >= 0;)
3671 {
3672 /* If this is an eight bit register, it's OK. If it's the 16 or
3673 32 bit version of an eight bit register, we will just use the
3674 low portion, and that's OK too. */
3675 if (i.types[op].bitfield.reg8)
3676 continue;
3677
3678 /* Don't generate this warning if not needed. */
3679 if (intel_syntax && i.tm.opcode_modifier.byteokintel)
3680 continue;
3681
3682 /* crc32 doesn't generate this warning. */
3683 if (i.tm.base_opcode == 0xf20f38f0)
3684 continue;
3685
3686 if ((i.types[op].bitfield.reg16
3687 || i.types[op].bitfield.reg32
3688 || i.types[op].bitfield.reg64)
3689 && i.op[op].regs->reg_num < 4)
3690 {
3691 /* Prohibit these changes in the 64bit mode, since the
3692 lowering is more complicated. */
3693 if (flag_code == CODE_64BIT
3694 && !i.tm.operand_types[op].bitfield.inoutportreg)
3695 {
3696 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3697 register_prefix, i.op[op].regs->reg_name,
3698 i.suffix);
3699 return 0;
3700 }
3701 #if REGISTER_WARNINGS
3702 if (!quiet_warnings
3703 && !i.tm.operand_types[op].bitfield.inoutportreg)
3704 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3705 register_prefix,
3706 (i.op[op].regs + (i.types[op].bitfield.reg16
3707 ? REGNAM_AL - REGNAM_AX
3708 : REGNAM_AL - REGNAM_EAX))->reg_name,
3709 register_prefix,
3710 i.op[op].regs->reg_name,
3711 i.suffix);
3712 #endif
3713 continue;
3714 }
3715 /* Any other register is bad. */
3716 if (i.types[op].bitfield.reg16
3717 || i.types[op].bitfield.reg32
3718 || i.types[op].bitfield.reg64
3719 || i.types[op].bitfield.regmmx
3720 || i.types[op].bitfield.regxmm
3721 || i.types[op].bitfield.sreg2
3722 || i.types[op].bitfield.sreg3
3723 || i.types[op].bitfield.control
3724 || i.types[op].bitfield.debug
3725 || i.types[op].bitfield.test
3726 || i.types[op].bitfield.floatreg
3727 || i.types[op].bitfield.floatacc)
3728 {
3729 as_bad (_("`%s%s' not allowed with `%s%c'"),
3730 register_prefix,
3731 i.op[op].regs->reg_name,
3732 i.tm.name,
3733 i.suffix);
3734 return 0;
3735 }
3736 }
3737 return 1;
3738 }
3739
3740 static int
3741 check_long_reg (void)
3742 {
3743 int op;
3744
3745 for (op = i.operands; --op >= 0;)
3746 /* Reject eight bit registers, except where the template requires
3747 them. (eg. movzb) */
3748 if (i.types[op].bitfield.reg8
3749 && (i.tm.operand_types[op].bitfield.reg16
3750 || i.tm.operand_types[op].bitfield.reg32
3751 || i.tm.operand_types[op].bitfield.acc))
3752 {
3753 as_bad (_("`%s%s' not allowed with `%s%c'"),
3754 register_prefix,
3755 i.op[op].regs->reg_name,
3756 i.tm.name,
3757 i.suffix);
3758 return 0;
3759 }
3760 /* Warn if the e prefix on a general reg is missing. */
3761 else if ((!quiet_warnings || flag_code == CODE_64BIT)
3762 && i.types[op].bitfield.reg16
3763 && (i.tm.operand_types[op].bitfield.reg32
3764 || i.tm.operand_types[op].bitfield.acc))
3765 {
3766 /* Prohibit these changes in the 64bit mode, since the
3767 lowering is more complicated. */
3768 if (flag_code == CODE_64BIT)
3769 {
3770 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3771 register_prefix, i.op[op].regs->reg_name,
3772 i.suffix);
3773 return 0;
3774 }
3775 #if REGISTER_WARNINGS
3776 else
3777 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3778 register_prefix,
3779 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
3780 register_prefix,
3781 i.op[op].regs->reg_name,
3782 i.suffix);
3783 #endif
3784 }
3785 /* Warn if the r prefix on a general reg is missing. */
3786 else if (i.types[op].bitfield.reg64
3787 && (i.tm.operand_types[op].bitfield.reg32
3788 || i.tm.operand_types[op].bitfield.acc))
3789 {
3790 if (intel_syntax
3791 && i.tm.opcode_modifier.toqword
3792 && !i.types[0].bitfield.regxmm)
3793 {
3794 /* Convert to QWORD. We want REX byte. */
3795 i.suffix = QWORD_MNEM_SUFFIX;
3796 }
3797 else
3798 {
3799 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3800 register_prefix, i.op[op].regs->reg_name,
3801 i.suffix);
3802 return 0;
3803 }
3804 }
3805 return 1;
3806 }
3807
3808 static int
3809 check_qword_reg (void)
3810 {
3811 int op;
3812
3813 for (op = i.operands; --op >= 0; )
3814 /* Reject eight bit registers, except where the template requires
3815 them. (eg. movzb) */
3816 if (i.types[op].bitfield.reg8
3817 && (i.tm.operand_types[op].bitfield.reg16
3818 || i.tm.operand_types[op].bitfield.reg32
3819 || i.tm.operand_types[op].bitfield.acc))
3820 {
3821 as_bad (_("`%s%s' not allowed with `%s%c'"),
3822 register_prefix,
3823 i.op[op].regs->reg_name,
3824 i.tm.name,
3825 i.suffix);
3826 return 0;
3827 }
3828 /* Warn if the e prefix on a general reg is missing. */
3829 else if ((i.types[op].bitfield.reg16
3830 || i.types[op].bitfield.reg32)
3831 && (i.tm.operand_types[op].bitfield.reg32
3832 || i.tm.operand_types[op].bitfield.acc))
3833 {
3834 /* Prohibit these changes in the 64bit mode, since the
3835 lowering is more complicated. */
3836 if (intel_syntax
3837 && i.tm.opcode_modifier.todword
3838 && !i.types[0].bitfield.regxmm)
3839 {
3840 /* Convert to DWORD. We don't want REX byte. */
3841 i.suffix = LONG_MNEM_SUFFIX;
3842 }
3843 else
3844 {
3845 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3846 register_prefix, i.op[op].regs->reg_name,
3847 i.suffix);
3848 return 0;
3849 }
3850 }
3851 return 1;
3852 }
3853
3854 static int
3855 check_word_reg (void)
3856 {
3857 int op;
3858 for (op = i.operands; --op >= 0;)
3859 /* Reject eight bit registers, except where the template requires
3860 them. (eg. movzb) */
3861 if (i.types[op].bitfield.reg8
3862 && (i.tm.operand_types[op].bitfield.reg16
3863 || i.tm.operand_types[op].bitfield.reg32
3864 || i.tm.operand_types[op].bitfield.acc))
3865 {
3866 as_bad (_("`%s%s' not allowed with `%s%c'"),
3867 register_prefix,
3868 i.op[op].regs->reg_name,
3869 i.tm.name,
3870 i.suffix);
3871 return 0;
3872 }
3873 /* Warn if the e prefix on a general reg is present. */
3874 else if ((!quiet_warnings || flag_code == CODE_64BIT)
3875 && i.types[op].bitfield.reg32
3876 && (i.tm.operand_types[op].bitfield.reg16
3877 || i.tm.operand_types[op].bitfield.acc))
3878 {
3879 /* Prohibit these changes in the 64bit mode, since the
3880 lowering is more complicated. */
3881 if (flag_code == CODE_64BIT)
3882 {
3883 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3884 register_prefix, i.op[op].regs->reg_name,
3885 i.suffix);
3886 return 0;
3887 }
3888 else
3889 #if REGISTER_WARNINGS
3890 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3891 register_prefix,
3892 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
3893 register_prefix,
3894 i.op[op].regs->reg_name,
3895 i.suffix);
3896 #endif
3897 }
3898 return 1;
3899 }
3900
3901 static int
3902 update_imm (unsigned int j)
3903 {
3904 i386_operand_type overlap;
3905
3906 overlap = operand_type_and (i.types[j], i.tm.operand_types[j]);
3907 if ((overlap.bitfield.imm8
3908 || overlap.bitfield.imm8s
3909 || overlap.bitfield.imm16
3910 || overlap.bitfield.imm32
3911 || overlap.bitfield.imm32s
3912 || overlap.bitfield.imm64)
3913 && !UINTS_EQUAL (overlap, imm8)
3914 && !UINTS_EQUAL (overlap, imm8s)
3915 && !UINTS_EQUAL (overlap, imm16)
3916 && !UINTS_EQUAL (overlap, imm32)
3917 && !UINTS_EQUAL (overlap, imm32s)
3918 && !UINTS_EQUAL (overlap, imm64))
3919 {
3920 if (i.suffix)
3921 {
3922 i386_operand_type temp;
3923
3924 UINTS_CLEAR (temp);
3925 if (i.suffix == BYTE_MNEM_SUFFIX)
3926 {
3927 temp.bitfield.imm8 = overlap.bitfield.imm8;
3928 temp.bitfield.imm8s = overlap.bitfield.imm8s;
3929 }
3930 else if (i.suffix == WORD_MNEM_SUFFIX)
3931 temp.bitfield.imm16 = overlap.bitfield.imm16;
3932 else if (i.suffix == QWORD_MNEM_SUFFIX)
3933 {
3934 temp.bitfield.imm64 = overlap.bitfield.imm64;
3935 temp.bitfield.imm32s = overlap.bitfield.imm32s;
3936 }
3937 else
3938 temp.bitfield.imm32 = overlap.bitfield.imm32;
3939 overlap = temp;
3940 }
3941 else if (UINTS_EQUAL (overlap, imm16_32_32s)
3942 || UINTS_EQUAL (overlap, imm16_32)
3943 || UINTS_EQUAL (overlap, imm16_32s))
3944 {
3945 UINTS_CLEAR (overlap);
3946 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
3947 overlap.bitfield.imm16 = 1;
3948 else
3949 overlap.bitfield.imm32s = 1;
3950 }
3951 if (!UINTS_EQUAL (overlap, imm8)
3952 && !UINTS_EQUAL (overlap, imm8s)
3953 && !UINTS_EQUAL (overlap, imm16)
3954 && !UINTS_EQUAL (overlap, imm32)
3955 && !UINTS_EQUAL (overlap, imm32s)
3956 && !UINTS_EQUAL (overlap, imm64))
3957 {
3958 as_bad (_("no instruction mnemonic suffix given; "
3959 "can't determine immediate size"));
3960 return 0;
3961 }
3962 }
3963 i.types[j] = overlap;
3964
3965 return 1;
3966 }
3967
3968 static int
3969 finalize_imm (void)
3970 {
3971 unsigned int j;
3972
3973 for (j = 0; j < 2; j++)
3974 if (update_imm (j) == 0)
3975 return 0;
3976
3977 i.types[2] = operand_type_and (i.types[2], i.tm.operand_types[2]);
3978 assert (operand_type_check (i.types[2], imm) == 0);
3979
3980 return 1;
3981 }
3982
3983 static void
3984 process_drex (void)
3985 {
3986 i.drex.modrm_reg = 0;
3987 i.drex.modrm_regmem = 0;
3988
3989 /* SSE5 4 operand instructions must have the destination the same as
3990 one of the inputs. Figure out the destination register and cache
3991 it away in the drex field, and remember which fields to use for
3992 the modrm byte. */
3993 if (i.tm.opcode_modifier.drex
3994 && i.tm.opcode_modifier.drexv
3995 && i.operands == 4)
3996 {
3997 i.tm.extension_opcode = None;
3998
3999 /* Case 1: 4 operand insn, dest = src1, src3 = register. */
4000 if (i.types[0].bitfield.regxmm != 0
4001 && i.types[1].bitfield.regxmm != 0
4002 && i.types[2].bitfield.regxmm != 0
4003 && i.types[3].bitfield.regxmm != 0
4004 && i.op[0].regs->reg_num == i.op[3].regs->reg_num
4005 && i.op[0].regs->reg_flags == i.op[3].regs->reg_flags)
4006 {
4007 /* Clear the arguments that are stored in drex. */
4008 UINTS_CLEAR (i.types[0]);
4009 UINTS_CLEAR (i.types[3]);
4010 i.reg_operands -= 2;
4011
4012 /* There are two different ways to encode a 4 operand
4013 instruction with all registers that uses OC1 set to
4014 0 or 1. Favor setting OC1 to 0 since this mimics the
4015 actions of other SSE5 assemblers. Use modrm encoding 2
4016 for register/register. Include the high order bit that
4017 is normally stored in the REX byte in the register
4018 field. */
4019 i.tm.extension_opcode = DREX_X1_XMEM_X2_X1;
4020 i.drex.modrm_reg = 2;
4021 i.drex.modrm_regmem = 1;
4022 i.drex.reg = (i.op[3].regs->reg_num
4023 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
4024 }
4025
4026 /* Case 2: 4 operand insn, dest = src1, src3 = memory. */
4027 else if (i.types[0].bitfield.regxmm != 0
4028 && i.types[1].bitfield.regxmm != 0
4029 && (i.types[2].bitfield.regxmm
4030 || operand_type_check (i.types[2], anymem))
4031 && i.types[3].bitfield.regxmm != 0
4032 && i.op[0].regs->reg_num == i.op[3].regs->reg_num
4033 && i.op[0].regs->reg_flags == i.op[3].regs->reg_flags)
4034 {
4035 /* clear the arguments that are stored in drex */
4036 UINTS_CLEAR (i.types[0]);
4037 UINTS_CLEAR (i.types[3]);
4038 i.reg_operands -= 2;
4039
4040 /* Specify the modrm encoding for memory addressing. Include
4041 the high order bit that is normally stored in the REX byte
4042 in the register field. */
4043 i.tm.extension_opcode = DREX_X1_X2_XMEM_X1;
4044 i.drex.modrm_reg = 1;
4045 i.drex.modrm_regmem = 2;
4046 i.drex.reg = (i.op[3].regs->reg_num
4047 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
4048 }
4049
4050 /* Case 3: 4 operand insn, dest = src1, src2 = memory. */
4051 else if (i.types[0].bitfield.regxmm != 0
4052 && operand_type_check (i.types[1], anymem) != 0
4053 && i.types[2].bitfield.regxmm != 0
4054 && i.types[3].bitfield.regxmm != 0
4055 && i.op[0].regs->reg_num == i.op[3].regs->reg_num
4056 && i.op[0].regs->reg_flags == i.op[3].regs->reg_flags)
4057 {
4058 /* Clear the arguments that are stored in drex. */
4059 UINTS_CLEAR (i.types[0]);
4060 UINTS_CLEAR (i.types[3]);
4061 i.reg_operands -= 2;
4062
4063 /* Specify the modrm encoding for memory addressing. Include
4064 the high order bit that is normally stored in the REX byte
4065 in the register field. */
4066 i.tm.extension_opcode = DREX_X1_XMEM_X2_X1;
4067 i.drex.modrm_reg = 2;
4068 i.drex.modrm_regmem = 1;
4069 i.drex.reg = (i.op[3].regs->reg_num
4070 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
4071 }
4072
4073 /* Case 4: 4 operand insn, dest = src3, src2 = register. */
4074 else if (i.types[0].bitfield.regxmm != 0
4075 && i.types[1].bitfield.regxmm != 0
4076 && i.types[2].bitfield.regxmm != 0
4077 && i.types[3].bitfield.regxmm != 0
4078 && i.op[2].regs->reg_num == i.op[3].regs->reg_num
4079 && i.op[2].regs->reg_flags == i.op[3].regs->reg_flags)
4080 {
4081 /* clear the arguments that are stored in drex */
4082 UINTS_CLEAR (i.types[2]);
4083 UINTS_CLEAR (i.types[3]);
4084 i.reg_operands -= 2;
4085
4086 /* There are two different ways to encode a 4 operand
4087 instruction with all registers that uses OC1 set to
4088 0 or 1. Favor setting OC1 to 0 since this mimics the
4089 actions of other SSE5 assemblers. Use modrm encoding
4090 2 for register/register. Include the high order bit that
4091 is normally stored in the REX byte in the register
4092 field. */
4093 i.tm.extension_opcode = DREX_XMEM_X1_X2_X2;
4094 i.drex.modrm_reg = 1;
4095 i.drex.modrm_regmem = 0;
4096
4097 /* Remember the register, including the upper bits */
4098 i.drex.reg = (i.op[3].regs->reg_num
4099 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
4100 }
4101
4102 /* Case 5: 4 operand insn, dest = src3, src2 = memory. */
4103 else if (i.types[0].bitfield.regxmm != 0
4104 && (i.types[1].bitfield.regxmm
4105 || operand_type_check (i.types[1], anymem))
4106 && i.types[2].bitfield.regxmm != 0
4107 && i.types[3].bitfield.regxmm != 0
4108 && i.op[2].regs->reg_num == i.op[3].regs->reg_num
4109 && i.op[2].regs->reg_flags == i.op[3].regs->reg_flags)
4110 {
4111 /* Clear the arguments that are stored in drex. */
4112 UINTS_CLEAR (i.types[2]);
4113 UINTS_CLEAR (i.types[3]);
4114 i.reg_operands -= 2;
4115
4116 /* Specify the modrm encoding and remember the register
4117 including the bits normally stored in the REX byte. */
4118 i.tm.extension_opcode = DREX_X1_XMEM_X2_X2;
4119 i.drex.modrm_reg = 0;
4120 i.drex.modrm_regmem = 1;
4121 i.drex.reg = (i.op[3].regs->reg_num
4122 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
4123 }
4124
4125 /* Case 6: 4 operand insn, dest = src3, src1 = memory. */
4126 else if (operand_type_check (i.types[0], anymem) != 0
4127 && i.types[1].bitfield.regxmm != 0
4128 && i.types[2].bitfield.regxmm != 0
4129 && i.types[3].bitfield.regxmm != 0
4130 && i.op[2].regs->reg_num == i.op[3].regs->reg_num
4131 && i.op[2].regs->reg_flags == i.op[3].regs->reg_flags)
4132 {
4133 /* clear the arguments that are stored in drex */
4134 UINTS_CLEAR (i.types[2]);
4135 UINTS_CLEAR (i.types[3]);
4136 i.reg_operands -= 2;
4137
4138 /* Specify the modrm encoding and remember the register
4139 including the bits normally stored in the REX byte. */
4140 i.tm.extension_opcode = DREX_XMEM_X1_X2_X2;
4141 i.drex.modrm_reg = 1;
4142 i.drex.modrm_regmem = 0;
4143 i.drex.reg = (i.op[3].regs->reg_num
4144 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
4145 }
4146
4147 else
4148 as_bad (_("Incorrect operands for the '%s' instruction"),
4149 i.tm.name);
4150 }
4151
4152 /* SSE5 instructions with the DREX byte where the only memory operand
4153 is in the 2nd argument, and the first and last xmm register must
4154 match, and is encoded in the DREX byte. */
4155 else if (i.tm.opcode_modifier.drex
4156 && !i.tm.opcode_modifier.drexv
4157 && i.operands == 4)
4158 {
4159 /* Case 1: 4 operand insn, dest = src1, src3 = reg/mem. */
4160 if (i.types[0].bitfield.regxmm != 0
4161 && (i.types[1].bitfield.regxmm
4162 || operand_type_check(i.types[1], anymem))
4163 && i.types[2].bitfield.regxmm != 0
4164 && i.types[3].bitfield.regxmm != 0
4165 && i.op[0].regs->reg_num == i.op[3].regs->reg_num
4166 && i.op[0].regs->reg_flags == i.op[3].regs->reg_flags)
4167 {
4168 /* clear the arguments that are stored in drex */
4169 UINTS_CLEAR (i.types[0]);
4170 UINTS_CLEAR (i.types[3]);
4171 i.reg_operands -= 2;
4172
4173 /* Specify the modrm encoding and remember the register
4174 including the high bit normally stored in the REX
4175 byte. */
4176 i.drex.modrm_reg = 2;
4177 i.drex.modrm_regmem = 1;
4178 i.drex.reg = (i.op[3].regs->reg_num
4179 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
4180 }
4181
4182 else
4183 as_bad (_("Incorrect operands for the '%s' instruction"),
4184 i.tm.name);
4185 }
4186
4187 /* SSE5 3 operand instructions that the result is a register, being
4188 either operand can be a memory operand, using OC0 to note which
4189 one is the memory. */
4190 else if (i.tm.opcode_modifier.drex
4191 && i.tm.opcode_modifier.drexv
4192 && i.operands == 3)
4193 {
4194 i.tm.extension_opcode = None;
4195
4196 /* Case 1: 3 operand insn, src1 = register. */
4197 if (i.types[0].bitfield.regxmm != 0
4198 && i.types[1].bitfield.regxmm != 0
4199 && i.types[2].bitfield.regxmm != 0)
4200 {
4201 /* Clear the arguments that are stored in drex. */
4202 UINTS_CLEAR (i.types[2]);
4203 i.reg_operands--;
4204
4205 /* Specify the modrm encoding and remember the register
4206 including the high bit normally stored in the REX byte. */
4207 i.tm.extension_opcode = DREX_XMEM_X1_X2;
4208 i.drex.modrm_reg = 1;
4209 i.drex.modrm_regmem = 0;
4210 i.drex.reg = (i.op[2].regs->reg_num
4211 + ((i.op[2].regs->reg_flags & RegRex) ? 8 : 0));
4212 }
4213
4214 /* Case 2: 3 operand insn, src1 = memory. */
4215 else if (operand_type_check (i.types[0], anymem) != 0
4216 && i.types[1].bitfield.regxmm != 0
4217 && i.types[2].bitfield.regxmm != 0)
4218 {
4219 /* Clear the arguments that are stored in drex. */
4220 UINTS_CLEAR (i.types[2]);
4221 i.reg_operands--;
4222
4223 /* Specify the modrm encoding and remember the register
4224 including the high bit normally stored in the REX
4225 byte. */
4226 i.tm.extension_opcode = DREX_XMEM_X1_X2;
4227 i.drex.modrm_reg = 1;
4228 i.drex.modrm_regmem = 0;
4229 i.drex.reg = (i.op[2].regs->reg_num
4230 + ((i.op[2].regs->reg_flags & RegRex) ? 8 : 0));
4231 }
4232
4233 /* Case 3: 3 operand insn, src2 = memory. */
4234 else if (i.types[0].bitfield.regxmm != 0
4235 && operand_type_check (i.types[1], anymem) != 0
4236 && i.types[2].bitfield.regxmm != 0)
4237 {
4238 /* Clear the arguments that are stored in drex. */
4239 UINTS_CLEAR (i.types[2]);
4240 i.reg_operands--;
4241
4242 /* Specify the modrm encoding and remember the register
4243 including the high bit normally stored in the REX byte. */
4244 i.tm.extension_opcode = DREX_X1_XMEM_X2;
4245 i.drex.modrm_reg = 0;
4246 i.drex.modrm_regmem = 1;
4247 i.drex.reg = (i.op[2].regs->reg_num
4248 + ((i.op[2].regs->reg_flags & RegRex) ? 8 : 0));
4249 }
4250
4251 else
4252 as_bad (_("Incorrect operands for the '%s' instruction"),
4253 i.tm.name);
4254 }
4255
4256 /* SSE5 4 operand instructions that are the comparison instructions
4257 where the first operand is the immediate value of the comparison
4258 to be done. */
4259 else if (i.tm.opcode_modifier.drexc != 0 && i.operands == 4)
4260 {
4261 /* Case 1: 4 operand insn, src1 = reg/memory. */
4262 if (operand_type_check (i.types[0], imm) != 0
4263 && (i.types[1].bitfield.regxmm
4264 || operand_type_check (i.types[1], anymem))
4265 && i.types[2].bitfield.regxmm != 0
4266 && i.types[3].bitfield.regxmm != 0)
4267 {
4268 /* clear the arguments that are stored in drex */
4269 UINTS_CLEAR (i.types[3]);
4270 i.reg_operands--;
4271
4272 /* Specify the modrm encoding and remember the register
4273 including the high bit normally stored in the REX byte. */
4274 i.drex.modrm_reg = 2;
4275 i.drex.modrm_regmem = 1;
4276 i.drex.reg = (i.op[3].regs->reg_num
4277 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
4278 }
4279
4280 /* Case 2: 3 operand insn with ImmExt that places the
4281 opcode_extension as an immediate argument. This is used for
4282 all of the varients of comparison that supplies the appropriate
4283 value as part of the instruction. */
4284 else if ((i.types[0].bitfield.regxmm
4285 || operand_type_check (i.types[0], anymem))
4286 && i.types[1].bitfield.regxmm != 0
4287 && i.types[2].bitfield.regxmm != 0
4288 && operand_type_check (i.types[3], imm) != 0)
4289 {
4290 /* clear the arguments that are stored in drex */
4291 UINTS_CLEAR (i.types[2]);
4292 i.reg_operands--;
4293
4294 /* Specify the modrm encoding and remember the register
4295 including the high bit normally stored in the REX byte. */
4296 i.drex.modrm_reg = 1;
4297 i.drex.modrm_regmem = 0;
4298 i.drex.reg = (i.op[2].regs->reg_num
4299 + ((i.op[2].regs->reg_flags & RegRex) ? 8 : 0));
4300 }
4301
4302 else
4303 as_bad (_("Incorrect operands for the '%s' instruction"),
4304 i.tm.name);
4305 }
4306
4307 else if (i.tm.opcode_modifier.drex
4308 || i.tm.opcode_modifier.drexv
4309 || i.tm.opcode_modifier.drexc)
4310 as_bad (_("Internal error for the '%s' instruction"), i.tm.name);
4311 }
4312
4313 static int
4314 process_operands (void)
4315 {
4316 /* Default segment register this instruction will use for memory
4317 accesses. 0 means unknown. This is only for optimizing out
4318 unnecessary segment overrides. */
4319 const seg_entry *default_seg = 0;
4320
4321 /* Handle all of the DREX munging that SSE5 needs. */
4322 if (i.tm.opcode_modifier.drex
4323 || i.tm.opcode_modifier.drexv
4324 || i.tm.opcode_modifier.drexc)
4325 process_drex ();
4326
4327 if (i.tm.opcode_modifier.firstxmm0)
4328 {
4329 unsigned int j;
4330
4331 /* The first operand is implicit and must be xmm0. */
4332 assert (i.reg_operands && UINTS_EQUAL (i.types[0], regxmm));
4333 if (i.op[0].regs->reg_num != 0)
4334 {
4335 if (intel_syntax)
4336 as_bad (_("the last operand of `%s' must be `%sxmm0'"),
4337 i.tm.name, register_prefix);
4338 else
4339 as_bad (_("the first operand of `%s' must be `%sxmm0'"),
4340 i.tm.name, register_prefix);
4341 return 0;
4342 }
4343
4344 for (j = 1; j < i.operands; j++)
4345 {
4346 i.op[j - 1] = i.op[j];
4347 i.types[j - 1] = i.types[j];
4348
4349 /* We need to adjust fields in i.tm since they are used by
4350 build_modrm_byte. */
4351 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
4352 }
4353
4354 i.operands--;
4355 i.reg_operands--;
4356 i.tm.operands--;
4357 }
4358 else if (i.tm.opcode_modifier.regkludge)
4359 {
4360 /* The imul $imm, %reg instruction is converted into
4361 imul $imm, %reg, %reg, and the clr %reg instruction
4362 is converted into xor %reg, %reg. */
4363
4364 unsigned int first_reg_op;
4365
4366 if (operand_type_check (i.types[0], reg))
4367 first_reg_op = 0;
4368 else
4369 first_reg_op = 1;
4370 /* Pretend we saw the extra register operand. */
4371 assert (i.reg_operands == 1
4372 && i.op[first_reg_op + 1].regs == 0);
4373 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
4374 i.types[first_reg_op + 1] = i.types[first_reg_op];
4375 i.operands++;
4376 i.reg_operands++;
4377 }
4378
4379 if (i.tm.opcode_modifier.shortform)
4380 {
4381 if (i.types[0].bitfield.sreg2
4382 || i.types[0].bitfield.sreg3)
4383 {
4384 if (i.tm.base_opcode == POP_SEG_SHORT
4385 && i.op[0].regs->reg_num == 1)
4386 {
4387 as_bad (_("you can't `pop %%cs'"));
4388 return 0;
4389 }
4390 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
4391 if ((i.op[0].regs->reg_flags & RegRex) != 0)
4392 i.rex |= REX_B;
4393 }
4394 else
4395 {
4396 /* The register or float register operand is in operand
4397 0 or 1. */
4398 unsigned int op;
4399
4400 if (i.types[0].bitfield.floatreg
4401 || operand_type_check (i.types[0], reg))
4402 op = 0;
4403 else
4404 op = 1;
4405 /* Register goes in low 3 bits of opcode. */
4406 i.tm.base_opcode |= i.op[op].regs->reg_num;
4407 if ((i.op[op].regs->reg_flags & RegRex) != 0)
4408 i.rex |= REX_B;
4409 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4410 {
4411 /* Warn about some common errors, but press on regardless.
4412 The first case can be generated by gcc (<= 2.8.1). */
4413 if (i.operands == 2)
4414 {
4415 /* Reversed arguments on faddp, fsubp, etc. */
4416 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
4417 register_prefix, i.op[1].regs->reg_name,
4418 register_prefix, i.op[0].regs->reg_name);
4419 }
4420 else
4421 {
4422 /* Extraneous `l' suffix on fp insn. */
4423 as_warn (_("translating to `%s %s%s'"), i.tm.name,
4424 register_prefix, i.op[0].regs->reg_name);
4425 }
4426 }
4427 }
4428 }
4429 else if (i.tm.opcode_modifier.modrm)
4430 {
4431 /* The opcode is completed (modulo i.tm.extension_opcode which
4432 must be put into the modrm byte). Now, we make the modrm and
4433 index base bytes based on all the info we've collected. */
4434
4435 default_seg = build_modrm_byte ();
4436 }
4437 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
4438 {
4439 default_seg = &ds;
4440 }
4441 else if (i.tm.opcode_modifier.isstring)
4442 {
4443 /* For the string instructions that allow a segment override
4444 on one of their operands, the default segment is ds. */
4445 default_seg = &ds;
4446 }
4447
4448 if (i.tm.base_opcode == 0x8d /* lea */
4449 && i.seg[0]
4450 && !quiet_warnings)
4451 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
4452
4453 /* If a segment was explicitly specified, and the specified segment
4454 is not the default, use an opcode prefix to select it. If we
4455 never figured out what the default segment is, then default_seg
4456 will be zero at this point, and the specified segment prefix will
4457 always be used. */
4458 if ((i.seg[0]) && (i.seg[0] != default_seg))
4459 {
4460 if (!add_prefix (i.seg[0]->seg_prefix))
4461 return 0;
4462 }
4463 return 1;
4464 }
4465
4466 static const seg_entry *
4467 build_modrm_byte (void)
4468 {
4469 const seg_entry *default_seg = 0;
4470
4471 /* SSE5 4 operand instructions are encoded in such a way that one of
4472 the inputs must match the destination register. Process_drex hides
4473 the 3rd argument in the drex field, so that by the time we get
4474 here, it looks to GAS as if this is a 2 operand instruction. */
4475 if ((i.tm.opcode_modifier.drex
4476 || i.tm.opcode_modifier.drexv
4477 || i.tm.opcode_modifier.drexc)
4478 && i.reg_operands == 2)
4479 {
4480 const reg_entry *reg = i.op[i.drex.modrm_reg].regs;
4481 const reg_entry *regmem = i.op[i.drex.modrm_regmem].regs;
4482
4483 i.rm.reg = reg->reg_num;
4484 i.rm.regmem = regmem->reg_num;
4485 i.rm.mode = 3;
4486 if ((reg->reg_flags & RegRex) != 0)
4487 i.rex |= REX_R;
4488 if ((regmem->reg_flags & RegRex) != 0)
4489 i.rex |= REX_B;
4490 }
4491
4492 /* i.reg_operands MUST be the number of real register operands;
4493 implicit registers do not count. */
4494 else if (i.reg_operands == 2)
4495 {
4496 unsigned int source, dest;
4497
4498 switch (i.operands)
4499 {
4500 case 2:
4501 source = 0;
4502 break;
4503 case 3:
4504 /* When there are 3 operands, one of them may be immediate,
4505 which may be the first or the last operand. Otherwise,
4506 the first operand must be shift count register (cl). */
4507 assert (i.imm_operands == 1
4508 || (i.imm_operands == 0
4509 && i.types[0].bitfield.shiftcount));
4510 if (operand_type_check (i.types[0], imm)
4511 || i.types[0].bitfield.shiftcount)
4512 source = 1;
4513 else
4514 source = 0;
4515 break;
4516 case 4:
4517 /* When there are 4 operands, the first two must be 8bit
4518 immediate operands. The source operand will be the 3rd
4519 one. */
4520 assert (i.imm_operands == 2
4521 && i.types[0].bitfield.imm8
4522 && i.types[1].bitfield.imm8);
4523 source = 2;
4524 break;
4525 default:
4526 abort ();
4527 }
4528
4529 dest = source + 1;
4530
4531 i.rm.mode = 3;
4532 /* One of the register operands will be encoded in the i.tm.reg
4533 field, the other in the combined i.tm.mode and i.tm.regmem
4534 fields. If no form of this instruction supports a memory
4535 destination operand, then we assume the source operand may
4536 sometimes be a memory operand and so we need to store the
4537 destination in the i.rm.reg field. */
4538 if (!i.tm.operand_types[dest].bitfield.regmem
4539 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
4540 {
4541 i.rm.reg = i.op[dest].regs->reg_num;
4542 i.rm.regmem = i.op[source].regs->reg_num;
4543 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
4544 i.rex |= REX_R;
4545 if ((i.op[source].regs->reg_flags & RegRex) != 0)
4546 i.rex |= REX_B;
4547 }
4548 else
4549 {
4550 i.rm.reg = i.op[source].regs->reg_num;
4551 i.rm.regmem = i.op[dest].regs->reg_num;
4552 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
4553 i.rex |= REX_B;
4554 if ((i.op[source].regs->reg_flags & RegRex) != 0)
4555 i.rex |= REX_R;
4556 }
4557 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
4558 {
4559 if (!i.types[0].bitfield.control
4560 && !i.types[1].bitfield.control)
4561 abort ();
4562 i.rex &= ~(REX_R | REX_B);
4563 add_prefix (LOCK_PREFIX_OPCODE);
4564 }
4565 }
4566 else
4567 { /* If it's not 2 reg operands... */
4568 if (i.mem_operands)
4569 {
4570 unsigned int fake_zero_displacement = 0;
4571 unsigned int op;
4572
4573 /* This has been precalculated for SSE5 instructions
4574 that have a DREX field earlier in process_drex. */
4575 if (i.tm.opcode_modifier.drex
4576 || i.tm.opcode_modifier.drexv
4577 || i.tm.opcode_modifier.drexc)
4578 op = i.drex.modrm_regmem;
4579 else
4580 {
4581 for (op = 0; op < i.operands; op++)
4582 if (operand_type_check (i.types[op], anymem))
4583 break;
4584 assert (op < i.operands);
4585 }
4586
4587 default_seg = &ds;
4588
4589 if (i.base_reg == 0)
4590 {
4591 i.rm.mode = 0;
4592 if (!i.disp_operands)
4593 fake_zero_displacement = 1;
4594 if (i.index_reg == 0)
4595 {
4596 /* Operand is just <disp> */
4597 if (flag_code == CODE_64BIT)
4598 {
4599 /* 64bit mode overwrites the 32bit absolute
4600 addressing by RIP relative addressing and
4601 absolute addressing is encoded by one of the
4602 redundant SIB forms. */
4603 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
4604 i.sib.base = NO_BASE_REGISTER;
4605 i.sib.index = NO_INDEX_REGISTER;
4606 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
4607 ? disp32s : disp32);
4608 }
4609 else if ((flag_code == CODE_16BIT)
4610 ^ (i.prefix[ADDR_PREFIX] != 0))
4611 {
4612 i.rm.regmem = NO_BASE_REGISTER_16;
4613 i.types[op] = disp16;
4614 }
4615 else
4616 {
4617 i.rm.regmem = NO_BASE_REGISTER;
4618 i.types[op] = disp32;
4619 }
4620 }
4621 else /* !i.base_reg && i.index_reg */
4622 {
4623 if (i.index_reg->reg_num == RegEiz
4624 || i.index_reg->reg_num == RegRiz)
4625 i.sib.index = NO_INDEX_REGISTER;
4626 else
4627 i.sib.index = i.index_reg->reg_num;
4628 i.sib.base = NO_BASE_REGISTER;
4629 i.sib.scale = i.log2_scale_factor;
4630 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
4631 i.types[op].bitfield.disp8 = 0;
4632 i.types[op].bitfield.disp16 = 0;
4633 i.types[op].bitfield.disp64 = 0;
4634 if (flag_code != CODE_64BIT)
4635 {
4636 /* Must be 32 bit */
4637 i.types[op].bitfield.disp32 = 1;
4638 i.types[op].bitfield.disp32s = 0;
4639 }
4640 else
4641 {
4642 i.types[op].bitfield.disp32 = 0;
4643 i.types[op].bitfield.disp32s = 1;
4644 }
4645 if ((i.index_reg->reg_flags & RegRex) != 0)
4646 i.rex |= REX_X;
4647 }
4648 }
4649 /* RIP addressing for 64bit mode. */
4650 else if (i.base_reg->reg_num == RegRip ||
4651 i.base_reg->reg_num == RegEip)
4652 {
4653 i.rm.regmem = NO_BASE_REGISTER;
4654 i.types[op].bitfield.disp8 = 0;
4655 i.types[op].bitfield.disp16 = 0;
4656 i.types[op].bitfield.disp32 = 0;
4657 i.types[op].bitfield.disp32s = 1;
4658 i.types[op].bitfield.disp64 = 0;
4659 i.flags[op] |= Operand_PCrel;
4660 if (! i.disp_operands)
4661 fake_zero_displacement = 1;
4662 }
4663 else if (i.base_reg->reg_type.bitfield.reg16)
4664 {
4665 switch (i.base_reg->reg_num)
4666 {
4667 case 3: /* (%bx) */
4668 if (i.index_reg == 0)
4669 i.rm.regmem = 7;
4670 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
4671 i.rm.regmem = i.index_reg->reg_num - 6;
4672 break;
4673 case 5: /* (%bp) */
4674 default_seg = &ss;
4675 if (i.index_reg == 0)
4676 {
4677 i.rm.regmem = 6;
4678 if (operand_type_check (i.types[op], disp) == 0)
4679 {
4680 /* fake (%bp) into 0(%bp) */
4681 i.types[op].bitfield.disp8 = 1;
4682 fake_zero_displacement = 1;
4683 }
4684 }
4685 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
4686 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
4687 break;
4688 default: /* (%si) -> 4 or (%di) -> 5 */
4689 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
4690 }
4691 i.rm.mode = mode_from_disp_size (i.types[op]);
4692 }
4693 else /* i.base_reg and 32/64 bit mode */
4694 {
4695 if (flag_code == CODE_64BIT
4696 && operand_type_check (i.types[op], disp))
4697 {
4698 i386_operand_type temp;
4699 UINTS_CLEAR (temp);
4700 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
4701 i.types[op] = temp;
4702 if (i.prefix[ADDR_PREFIX] == 0)
4703 i.types[op].bitfield.disp32s = 1;
4704 else
4705 i.types[op].bitfield.disp32 = 1;
4706 }
4707
4708 i.rm.regmem = i.base_reg->reg_num;
4709 if ((i.base_reg->reg_flags & RegRex) != 0)
4710 i.rex |= REX_B;
4711 i.sib.base = i.base_reg->reg_num;
4712 /* x86-64 ignores REX prefix bit here to avoid decoder
4713 complications. */
4714 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
4715 {
4716 default_seg = &ss;
4717 if (i.disp_operands == 0)
4718 {
4719 fake_zero_displacement = 1;
4720 i.types[op].bitfield.disp8 = 1;
4721 }
4722 }
4723 else if (i.base_reg->reg_num == ESP_REG_NUM)
4724 {
4725 default_seg = &ss;
4726 }
4727 i.sib.scale = i.log2_scale_factor;
4728 if (i.index_reg == 0)
4729 {
4730 /* <disp>(%esp) becomes two byte modrm with no index
4731 register. We've already stored the code for esp
4732 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
4733 Any base register besides %esp will not use the
4734 extra modrm byte. */
4735 i.sib.index = NO_INDEX_REGISTER;
4736 }
4737 else
4738 {
4739 if (i.index_reg->reg_num == RegEiz
4740 || i.index_reg->reg_num == RegRiz)
4741 i.sib.index = NO_INDEX_REGISTER;
4742 else
4743 i.sib.index = i.index_reg->reg_num;
4744 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
4745 if ((i.index_reg->reg_flags & RegRex) != 0)
4746 i.rex |= REX_X;
4747 }
4748
4749 if (i.disp_operands
4750 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4751 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
4752 i.rm.mode = 0;
4753 else
4754 i.rm.mode = mode_from_disp_size (i.types[op]);
4755 }
4756
4757 if (fake_zero_displacement)
4758 {
4759 /* Fakes a zero displacement assuming that i.types[op]
4760 holds the correct displacement size. */
4761 expressionS *exp;
4762
4763 assert (i.op[op].disps == 0);
4764 exp = &disp_expressions[i.disp_operands++];
4765 i.op[op].disps = exp;
4766 exp->X_op = O_constant;
4767 exp->X_add_number = 0;
4768 exp->X_add_symbol = (symbolS *) 0;
4769 exp->X_op_symbol = (symbolS *) 0;
4770 }
4771 }
4772
4773 /* Fill in i.rm.reg or i.rm.regmem field with register operand
4774 (if any) based on i.tm.extension_opcode. Again, we must be
4775 careful to make sure that segment/control/debug/test/MMX
4776 registers are coded into the i.rm.reg field. */
4777 if (i.reg_operands)
4778 {
4779 unsigned int op;
4780
4781 /* This has been precalculated for SSE5 instructions
4782 that have a DREX field earlier in process_drex. */
4783 if (i.tm.opcode_modifier.drex
4784 || i.tm.opcode_modifier.drexv
4785 || i.tm.opcode_modifier.drexc)
4786 {
4787 op = i.drex.modrm_reg;
4788 i.rm.reg = i.op[op].regs->reg_num;
4789 if ((i.op[op].regs->reg_flags & RegRex) != 0)
4790 i.rex |= REX_R;
4791 }
4792 else
4793 {
4794 for (op = 0; op < i.operands; op++)
4795 if (i.types[op].bitfield.reg8
4796 || i.types[op].bitfield.reg16
4797 || i.types[op].bitfield.reg32
4798 || i.types[op].bitfield.reg64
4799 || i.types[op].bitfield.regmmx
4800 || i.types[op].bitfield.regxmm
4801 || i.types[op].bitfield.sreg2
4802 || i.types[op].bitfield.sreg3
4803 || i.types[op].bitfield.control
4804 || i.types[op].bitfield.debug
4805 || i.types[op].bitfield.test)
4806 break;
4807
4808 assert (op < i.operands);
4809
4810 /* If there is an extension opcode to put here, the
4811 register number must be put into the regmem field. */
4812 if (i.tm.extension_opcode != None)
4813 {
4814 i.rm.regmem = i.op[op].regs->reg_num;
4815 if ((i.op[op].regs->reg_flags & RegRex) != 0)
4816 i.rex |= REX_B;
4817 }
4818 else
4819 {
4820 i.rm.reg = i.op[op].regs->reg_num;
4821 if ((i.op[op].regs->reg_flags & RegRex) != 0)
4822 i.rex |= REX_R;
4823 }
4824 }
4825
4826 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
4827 must set it to 3 to indicate this is a register operand
4828 in the regmem field. */
4829 if (!i.mem_operands)
4830 i.rm.mode = 3;
4831 }
4832
4833 /* Fill in i.rm.reg field with extension opcode (if any). */
4834 if (i.tm.extension_opcode != None
4835 && !(i.tm.opcode_modifier.drex
4836 || i.tm.opcode_modifier.drexv
4837 || i.tm.opcode_modifier.drexc))
4838 i.rm.reg = i.tm.extension_opcode;
4839 }
4840 return default_seg;
4841 }
4842
4843 static void
4844 output_branch (void)
4845 {
4846 char *p;
4847 int code16;
4848 int prefix;
4849 relax_substateT subtype;
4850 symbolS *sym;
4851 offsetT off;
4852
4853 code16 = 0;
4854 if (flag_code == CODE_16BIT)
4855 code16 = CODE16;
4856
4857 prefix = 0;
4858 if (i.prefix[DATA_PREFIX] != 0)
4859 {
4860 prefix = 1;
4861 i.prefixes -= 1;
4862 code16 ^= CODE16;
4863 }
4864 /* Pentium4 branch hints. */
4865 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
4866 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
4867 {
4868 prefix++;
4869 i.prefixes--;
4870 }
4871 if (i.prefix[REX_PREFIX] != 0)
4872 {
4873 prefix++;
4874 i.prefixes--;
4875 }
4876
4877 if (i.prefixes != 0 && !intel_syntax)
4878 as_warn (_("skipping prefixes on this instruction"));
4879
4880 /* It's always a symbol; End frag & setup for relax.
4881 Make sure there is enough room in this frag for the largest
4882 instruction we may generate in md_convert_frag. This is 2
4883 bytes for the opcode and room for the prefix and largest
4884 displacement. */
4885 frag_grow (prefix + 2 + 4);
4886 /* Prefix and 1 opcode byte go in fr_fix. */
4887 p = frag_more (prefix + 1);
4888 if (i.prefix[DATA_PREFIX] != 0)
4889 *p++ = DATA_PREFIX_OPCODE;
4890 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
4891 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
4892 *p++ = i.prefix[SEG_PREFIX];
4893 if (i.prefix[REX_PREFIX] != 0)
4894 *p++ = i.prefix[REX_PREFIX];
4895 *p = i.tm.base_opcode;
4896
4897 if ((unsigned char) *p == JUMP_PC_RELATIVE)
4898 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
4899 else if (cpu_arch_flags.bitfield.cpui386)
4900 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
4901 else
4902 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
4903 subtype |= code16;
4904
4905 sym = i.op[0].disps->X_add_symbol;
4906 off = i.op[0].disps->X_add_number;
4907
4908 if (i.op[0].disps->X_op != O_constant
4909 && i.op[0].disps->X_op != O_symbol)
4910 {
4911 /* Handle complex expressions. */
4912 sym = make_expr_symbol (i.op[0].disps);
4913 off = 0;
4914 }
4915
4916 /* 1 possible extra opcode + 4 byte displacement go in var part.
4917 Pass reloc in fr_var. */
4918 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
4919 }
4920
4921 static void
4922 output_jump (void)
4923 {
4924 char *p;
4925 int size;
4926 fixS *fixP;
4927
4928 if (i.tm.opcode_modifier.jumpbyte)
4929 {
4930 /* This is a loop or jecxz type instruction. */
4931 size = 1;
4932 if (i.prefix[ADDR_PREFIX] != 0)
4933 {
4934 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
4935 i.prefixes -= 1;
4936 }
4937 /* Pentium4 branch hints. */
4938 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
4939 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
4940 {
4941 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
4942 i.prefixes--;
4943 }
4944 }
4945 else
4946 {
4947 int code16;
4948
4949 code16 = 0;
4950 if (flag_code == CODE_16BIT)
4951 code16 = CODE16;
4952
4953 if (i.prefix[DATA_PREFIX] != 0)
4954 {
4955 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
4956 i.prefixes -= 1;
4957 code16 ^= CODE16;
4958 }
4959
4960 size = 4;
4961 if (code16)
4962 size = 2;
4963 }
4964
4965 if (i.prefix[REX_PREFIX] != 0)
4966 {
4967 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
4968 i.prefixes -= 1;
4969 }
4970
4971 if (i.prefixes != 0 && !intel_syntax)
4972 as_warn (_("skipping prefixes on this instruction"));
4973
4974 p = frag_more (1 + size);
4975 *p++ = i.tm.base_opcode;
4976
4977 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
4978 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
4979
4980 /* All jumps handled here are signed, but don't use a signed limit
4981 check for 32 and 16 bit jumps as we want to allow wrap around at
4982 4G and 64k respectively. */
4983 if (size == 1)
4984 fixP->fx_signed = 1;
4985 }
4986
4987 static void
4988 output_interseg_jump (void)
4989 {
4990 char *p;
4991 int size;
4992 int prefix;
4993 int code16;
4994
4995 code16 = 0;
4996 if (flag_code == CODE_16BIT)
4997 code16 = CODE16;
4998
4999 prefix = 0;
5000 if (i.prefix[DATA_PREFIX] != 0)
5001 {
5002 prefix = 1;
5003 i.prefixes -= 1;
5004 code16 ^= CODE16;
5005 }
5006 if (i.prefix[REX_PREFIX] != 0)
5007 {
5008 prefix++;
5009 i.prefixes -= 1;
5010 }
5011
5012 size = 4;
5013 if (code16)
5014 size = 2;
5015
5016 if (i.prefixes != 0 && !intel_syntax)
5017 as_warn (_("skipping prefixes on this instruction"));
5018
5019 /* 1 opcode; 2 segment; offset */
5020 p = frag_more (prefix + 1 + 2 + size);
5021
5022 if (i.prefix[DATA_PREFIX] != 0)
5023 *p++ = DATA_PREFIX_OPCODE;
5024
5025 if (i.prefix[REX_PREFIX] != 0)
5026 *p++ = i.prefix[REX_PREFIX];
5027
5028 *p++ = i.tm.base_opcode;
5029 if (i.op[1].imms->X_op == O_constant)
5030 {
5031 offsetT n = i.op[1].imms->X_add_number;
5032
5033 if (size == 2
5034 && !fits_in_unsigned_word (n)
5035 && !fits_in_signed_word (n))
5036 {
5037 as_bad (_("16-bit jump out of range"));
5038 return;
5039 }
5040 md_number_to_chars (p, n, size);
5041 }
5042 else
5043 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5044 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
5045 if (i.op[0].imms->X_op != O_constant)
5046 as_bad (_("can't handle non absolute segment in `%s'"),
5047 i.tm.name);
5048 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
5049 }
5050
5051 static void
5052 output_insn (void)
5053 {
5054 fragS *insn_start_frag;
5055 offsetT insn_start_off;
5056
5057 /* Tie dwarf2 debug info to the address at the start of the insn.
5058 We can't do this after the insn has been output as the current
5059 frag may have been closed off. eg. by frag_var. */
5060 dwarf2_emit_insn (0);
5061
5062 insn_start_frag = frag_now;
5063 insn_start_off = frag_now_fix ();
5064
5065 /* Output jumps. */
5066 if (i.tm.opcode_modifier.jump)
5067 output_branch ();
5068 else if (i.tm.opcode_modifier.jumpbyte
5069 || i.tm.opcode_modifier.jumpdword)
5070 output_jump ();
5071 else if (i.tm.opcode_modifier.jumpintersegment)
5072 output_interseg_jump ();
5073 else
5074 {
5075 /* Output normal instructions here. */
5076 char *p;
5077 unsigned char *q;
5078 unsigned int j;
5079 unsigned int prefix;
5080
5081 switch (i.tm.opcode_length)
5082 {
5083 case 3:
5084 if (i.tm.base_opcode & 0xff000000)
5085 {
5086 prefix = (i.tm.base_opcode >> 24) & 0xff;
5087 goto check_prefix;
5088 }
5089 break;
5090 case 2:
5091 if ((i.tm.base_opcode & 0xff0000) != 0)
5092 {
5093 prefix = (i.tm.base_opcode >> 16) & 0xff;
5094 if (i.tm.cpu_flags.bitfield.cpupadlock)
5095 {
5096 check_prefix:
5097 if (prefix != REPE_PREFIX_OPCODE
5098 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
5099 add_prefix (prefix);
5100 }
5101 else
5102 add_prefix (prefix);
5103 }
5104 break;
5105 case 1:
5106 break;
5107 default:
5108 abort ();
5109 }
5110
5111 /* The prefix bytes. */
5112 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
5113 if (*q)
5114 FRAG_APPEND_1_CHAR (*q);
5115
5116 /* Now the opcode; be careful about word order here! */
5117 if (i.tm.opcode_length == 1)
5118 {
5119 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
5120 }
5121 else
5122 {
5123 switch (i.tm.opcode_length)
5124 {
5125 case 3:
5126 p = frag_more (3);
5127 *p++ = (i.tm.base_opcode >> 16) & 0xff;
5128 break;
5129 case 2:
5130 p = frag_more (2);
5131 break;
5132 default:
5133 abort ();
5134 break;
5135 }
5136
5137 /* Put out high byte first: can't use md_number_to_chars! */
5138 *p++ = (i.tm.base_opcode >> 8) & 0xff;
5139 *p = i.tm.base_opcode & 0xff;
5140
5141 /* On SSE5, encode the OC1 bit in the DREX field if this
5142 encoding has multiple formats. */
5143 if (i.tm.opcode_modifier.drex
5144 && i.tm.opcode_modifier.drexv
5145 && DREX_OC1 (i.tm.extension_opcode))
5146 *p |= DREX_OC1_MASK;
5147 }
5148
5149 /* Now the modrm byte and sib byte (if present). */
5150 if (i.tm.opcode_modifier.modrm)
5151 {
5152 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
5153 | i.rm.reg << 3
5154 | i.rm.mode << 6));
5155 /* If i.rm.regmem == ESP (4)
5156 && i.rm.mode != (Register mode)
5157 && not 16 bit
5158 ==> need second modrm byte. */
5159 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
5160 && i.rm.mode != 3
5161 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
5162 FRAG_APPEND_1_CHAR ((i.sib.base << 0
5163 | i.sib.index << 3
5164 | i.sib.scale << 6));
5165 }
5166
5167 /* Write the DREX byte if needed. */
5168 if (i.tm.opcode_modifier.drex || i.tm.opcode_modifier.drexc)
5169 {
5170 p = frag_more (1);
5171 *p = (((i.drex.reg & 0xf) << 4) | (i.drex.rex & 0x7));
5172
5173 /* Encode the OC0 bit if this encoding has multiple
5174 formats. */
5175 if ((i.tm.opcode_modifier.drex
5176 || i.tm.opcode_modifier.drexv)
5177 && DREX_OC0 (i.tm.extension_opcode))
5178 *p |= DREX_OC0_MASK;
5179 }
5180
5181 if (i.disp_operands)
5182 output_disp (insn_start_frag, insn_start_off);
5183
5184 if (i.imm_operands)
5185 output_imm (insn_start_frag, insn_start_off);
5186 }
5187
5188 #ifdef DEBUG386
5189 if (flag_debug)
5190 {
5191 pi ("" /*line*/, &i);
5192 }
5193 #endif /* DEBUG386 */
5194 }
5195
5196 /* Return the size of the displacement operand N. */
5197
5198 static int
5199 disp_size (unsigned int n)
5200 {
5201 int size = 4;
5202 if (i.types[n].bitfield.disp64)
5203 size = 8;
5204 else if (i.types[n].bitfield.disp8)
5205 size = 1;
5206 else if (i.types[n].bitfield.disp16)
5207 size = 2;
5208 return size;
5209 }
5210
5211 /* Return the size of the immediate operand N. */
5212
5213 static int
5214 imm_size (unsigned int n)
5215 {
5216 int size = 4;
5217 if (i.types[n].bitfield.imm64)
5218 size = 8;
5219 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
5220 size = 1;
5221 else if (i.types[n].bitfield.imm16)
5222 size = 2;
5223 return size;
5224 }
5225
5226 static void
5227 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
5228 {
5229 char *p;
5230 unsigned int n;
5231
5232 for (n = 0; n < i.operands; n++)
5233 {
5234 if (operand_type_check (i.types[n], disp))
5235 {
5236 if (i.op[n].disps->X_op == O_constant)
5237 {
5238 int size = disp_size (n);
5239 offsetT val;
5240
5241 val = offset_in_range (i.op[n].disps->X_add_number,
5242 size);
5243 p = frag_more (size);
5244 md_number_to_chars (p, val, size);
5245 }
5246 else
5247 {
5248 enum bfd_reloc_code_real reloc_type;
5249 int size = disp_size (n);
5250 int sign = i.types[n].bitfield.disp32s;
5251 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
5252
5253 /* We can't have 8 bit displacement here. */
5254 assert (!i.types[n].bitfield.disp8);
5255
5256 /* The PC relative address is computed relative
5257 to the instruction boundary, so in case immediate
5258 fields follows, we need to adjust the value. */
5259 if (pcrel && i.imm_operands)
5260 {
5261 unsigned int n1;
5262 int sz = 0;
5263
5264 for (n1 = 0; n1 < i.operands; n1++)
5265 if (operand_type_check (i.types[n1], imm))
5266 {
5267 /* Only one immediate is allowed for PC
5268 relative address. */
5269 assert (sz == 0);
5270 sz = imm_size (n1);
5271 i.op[n].disps->X_add_number -= sz;
5272 }
5273 /* We should find the immediate. */
5274 assert (sz != 0);
5275 }
5276
5277 p = frag_more (size);
5278 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
5279 if (GOT_symbol
5280 && GOT_symbol == i.op[n].disps->X_add_symbol
5281 && (((reloc_type == BFD_RELOC_32
5282 || reloc_type == BFD_RELOC_X86_64_32S
5283 || (reloc_type == BFD_RELOC_64
5284 && object_64bit))
5285 && (i.op[n].disps->X_op == O_symbol
5286 || (i.op[n].disps->X_op == O_add
5287 && ((symbol_get_value_expression
5288 (i.op[n].disps->X_op_symbol)->X_op)
5289 == O_subtract))))
5290 || reloc_type == BFD_RELOC_32_PCREL))
5291 {
5292 offsetT add;
5293
5294 if (insn_start_frag == frag_now)
5295 add = (p - frag_now->fr_literal) - insn_start_off;
5296 else
5297 {
5298 fragS *fr;
5299
5300 add = insn_start_frag->fr_fix - insn_start_off;
5301 for (fr = insn_start_frag->fr_next;
5302 fr && fr != frag_now; fr = fr->fr_next)
5303 add += fr->fr_fix;
5304 add += p - frag_now->fr_literal;
5305 }
5306
5307 if (!object_64bit)
5308 {
5309 reloc_type = BFD_RELOC_386_GOTPC;
5310 i.op[n].imms->X_add_number += add;
5311 }
5312 else if (reloc_type == BFD_RELOC_64)
5313 reloc_type = BFD_RELOC_X86_64_GOTPC64;
5314 else
5315 /* Don't do the adjustment for x86-64, as there
5316 the pcrel addressing is relative to the _next_
5317 insn, and that is taken care of in other code. */
5318 reloc_type = BFD_RELOC_X86_64_GOTPC32;
5319 }
5320 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5321 i.op[n].disps, pcrel, reloc_type);
5322 }
5323 }
5324 }
5325 }
5326
5327 static void
5328 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
5329 {
5330 char *p;
5331 unsigned int n;
5332
5333 for (n = 0; n < i.operands; n++)
5334 {
5335 if (operand_type_check (i.types[n], imm))
5336 {
5337 if (i.op[n].imms->X_op == O_constant)
5338 {
5339 int size = imm_size (n);
5340 offsetT val;
5341
5342 val = offset_in_range (i.op[n].imms->X_add_number,
5343 size);
5344 p = frag_more (size);
5345 md_number_to_chars (p, val, size);
5346 }
5347 else
5348 {
5349 /* Not absolute_section.
5350 Need a 32-bit fixup (don't support 8bit
5351 non-absolute imms). Try to support other
5352 sizes ... */
5353 enum bfd_reloc_code_real reloc_type;
5354 int size = imm_size (n);
5355 int sign;
5356
5357 if (i.types[n].bitfield.imm32s
5358 && (i.suffix == QWORD_MNEM_SUFFIX
5359 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
5360 sign = 1;
5361 else
5362 sign = 0;
5363
5364 p = frag_more (size);
5365 reloc_type = reloc (size, 0, sign, i.reloc[n]);
5366
5367 /* This is tough to explain. We end up with this one if we
5368 * have operands that look like
5369 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
5370 * obtain the absolute address of the GOT, and it is strongly
5371 * preferable from a performance point of view to avoid using
5372 * a runtime relocation for this. The actual sequence of
5373 * instructions often look something like:
5374 *
5375 * call .L66
5376 * .L66:
5377 * popl %ebx
5378 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
5379 *
5380 * The call and pop essentially return the absolute address
5381 * of the label .L66 and store it in %ebx. The linker itself
5382 * will ultimately change the first operand of the addl so
5383 * that %ebx points to the GOT, but to keep things simple, the
5384 * .o file must have this operand set so that it generates not
5385 * the absolute address of .L66, but the absolute address of
5386 * itself. This allows the linker itself simply treat a GOTPC
5387 * relocation as asking for a pcrel offset to the GOT to be
5388 * added in, and the addend of the relocation is stored in the
5389 * operand field for the instruction itself.
5390 *
5391 * Our job here is to fix the operand so that it would add
5392 * the correct offset so that %ebx would point to itself. The
5393 * thing that is tricky is that .-.L66 will point to the
5394 * beginning of the instruction, so we need to further modify
5395 * the operand so that it will point to itself. There are
5396 * other cases where you have something like:
5397 *
5398 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
5399 *
5400 * and here no correction would be required. Internally in
5401 * the assembler we treat operands of this form as not being
5402 * pcrel since the '.' is explicitly mentioned, and I wonder
5403 * whether it would simplify matters to do it this way. Who
5404 * knows. In earlier versions of the PIC patches, the
5405 * pcrel_adjust field was used to store the correction, but
5406 * since the expression is not pcrel, I felt it would be
5407 * confusing to do it this way. */
5408
5409 if ((reloc_type == BFD_RELOC_32
5410 || reloc_type == BFD_RELOC_X86_64_32S
5411 || reloc_type == BFD_RELOC_64)
5412 && GOT_symbol
5413 && GOT_symbol == i.op[n].imms->X_add_symbol
5414 && (i.op[n].imms->X_op == O_symbol
5415 || (i.op[n].imms->X_op == O_add
5416 && ((symbol_get_value_expression
5417 (i.op[n].imms->X_op_symbol)->X_op)
5418 == O_subtract))))
5419 {
5420 offsetT add;
5421
5422 if (insn_start_frag == frag_now)
5423 add = (p - frag_now->fr_literal) - insn_start_off;
5424 else
5425 {
5426 fragS *fr;
5427
5428 add = insn_start_frag->fr_fix - insn_start_off;
5429 for (fr = insn_start_frag->fr_next;
5430 fr && fr != frag_now; fr = fr->fr_next)
5431 add += fr->fr_fix;
5432 add += p - frag_now->fr_literal;
5433 }
5434
5435 if (!object_64bit)
5436 reloc_type = BFD_RELOC_386_GOTPC;
5437 else if (size == 4)
5438 reloc_type = BFD_RELOC_X86_64_GOTPC32;
5439 else if (size == 8)
5440 reloc_type = BFD_RELOC_X86_64_GOTPC64;
5441 i.op[n].imms->X_add_number += add;
5442 }
5443 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5444 i.op[n].imms, 0, reloc_type);
5445 }
5446 }
5447 }
5448 }
5449 \f
5450 /* x86_cons_fix_new is called via the expression parsing code when a
5451 reloc is needed. We use this hook to get the correct .got reloc. */
5452 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
5453 static int cons_sign = -1;
5454
5455 void
5456 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
5457 expressionS *exp)
5458 {
5459 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
5460
5461 got_reloc = NO_RELOC;
5462
5463 #ifdef TE_PE
5464 if (exp->X_op == O_secrel)
5465 {
5466 exp->X_op = O_symbol;
5467 r = BFD_RELOC_32_SECREL;
5468 }
5469 #endif
5470
5471 fix_new_exp (frag, off, len, exp, 0, r);
5472 }
5473
5474 #if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
5475 # define lex_got(reloc, adjust, types) NULL
5476 #else
5477 /* Parse operands of the form
5478 <symbol>@GOTOFF+<nnn>
5479 and similar .plt or .got references.
5480
5481 If we find one, set up the correct relocation in RELOC and copy the
5482 input string, minus the `@GOTOFF' into a malloc'd buffer for
5483 parsing by the calling routine. Return this buffer, and if ADJUST
5484 is non-null set it to the length of the string we removed from the
5485 input line. Otherwise return NULL. */
5486 static char *
5487 lex_got (enum bfd_reloc_code_real *reloc,
5488 int *adjust,
5489 i386_operand_type *types)
5490 {
5491 /* Some of the relocations depend on the size of what field is to
5492 be relocated. But in our callers i386_immediate and i386_displacement
5493 we don't yet know the operand size (this will be set by insn
5494 matching). Hence we record the word32 relocation here,
5495 and adjust the reloc according to the real size in reloc(). */
5496 static const struct {
5497 const char *str;
5498 const enum bfd_reloc_code_real rel[2];
5499 const i386_operand_type types64;
5500 } gotrel[] = {
5501 { "PLTOFF", { 0,
5502 BFD_RELOC_X86_64_PLTOFF64 },
5503 OPERAND_TYPE_IMM64 },
5504 { "PLT", { BFD_RELOC_386_PLT32,
5505 BFD_RELOC_X86_64_PLT32 },
5506 OPERAND_TYPE_IMM32_32S_DISP32 },
5507 { "GOTPLT", { 0,
5508 BFD_RELOC_X86_64_GOTPLT64 },
5509 OPERAND_TYPE_IMM64_DISP64 },
5510 { "GOTOFF", { BFD_RELOC_386_GOTOFF,
5511 BFD_RELOC_X86_64_GOTOFF64 },
5512 OPERAND_TYPE_IMM64_DISP64 },
5513 { "GOTPCREL", { 0,
5514 BFD_RELOC_X86_64_GOTPCREL },
5515 OPERAND_TYPE_IMM32_32S_DISP32 },
5516 { "TLSGD", { BFD_RELOC_386_TLS_GD,
5517 BFD_RELOC_X86_64_TLSGD },
5518 OPERAND_TYPE_IMM32_32S_DISP32 },
5519 { "TLSLDM", { BFD_RELOC_386_TLS_LDM,
5520 0 },
5521 OPERAND_TYPE_NONE },
5522 { "TLSLD", { 0,
5523 BFD_RELOC_X86_64_TLSLD },
5524 OPERAND_TYPE_IMM32_32S_DISP32 },
5525 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32,
5526 BFD_RELOC_X86_64_GOTTPOFF },
5527 OPERAND_TYPE_IMM32_32S_DISP32 },
5528 { "TPOFF", { BFD_RELOC_386_TLS_LE_32,
5529 BFD_RELOC_X86_64_TPOFF32 },
5530 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
5531 { "NTPOFF", { BFD_RELOC_386_TLS_LE,
5532 0 },
5533 OPERAND_TYPE_NONE },
5534 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32,
5535 BFD_RELOC_X86_64_DTPOFF32 },
5536
5537 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
5538 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE,
5539 0 },
5540 OPERAND_TYPE_NONE },
5541 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE,
5542 0 },
5543 OPERAND_TYPE_NONE },
5544 { "GOT", { BFD_RELOC_386_GOT32,
5545 BFD_RELOC_X86_64_GOT32 },
5546 OPERAND_TYPE_IMM32_32S_64_DISP32 },
5547 { "TLSDESC", { BFD_RELOC_386_TLS_GOTDESC,
5548 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
5549 OPERAND_TYPE_IMM32_32S_DISP32 },
5550 { "TLSCALL", { BFD_RELOC_386_TLS_DESC_CALL,
5551 BFD_RELOC_X86_64_TLSDESC_CALL },
5552 OPERAND_TYPE_IMM32_32S_DISP32 },
5553 };
5554 char *cp;
5555 unsigned int j;
5556
5557 if (!IS_ELF)
5558 return NULL;
5559
5560 for (cp = input_line_pointer; *cp != '@'; cp++)
5561 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
5562 return NULL;
5563
5564 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
5565 {
5566 int len;
5567
5568 len = strlen (gotrel[j].str);
5569 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
5570 {
5571 if (gotrel[j].rel[object_64bit] != 0)
5572 {
5573 int first, second;
5574 char *tmpbuf, *past_reloc;
5575
5576 *reloc = gotrel[j].rel[object_64bit];
5577 if (adjust)
5578 *adjust = len;
5579
5580 if (types)
5581 {
5582 if (flag_code != CODE_64BIT)
5583 {
5584 types->bitfield.imm32 = 1;
5585 types->bitfield.disp32 = 1;
5586 }
5587 else
5588 *types = gotrel[j].types64;
5589 }
5590
5591 if (GOT_symbol == NULL)
5592 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
5593
5594 /* The length of the first part of our input line. */
5595 first = cp - input_line_pointer;
5596
5597 /* The second part goes from after the reloc token until
5598 (and including) an end_of_line char or comma. */
5599 past_reloc = cp + 1 + len;
5600 cp = past_reloc;
5601 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
5602 ++cp;
5603 second = cp + 1 - past_reloc;
5604
5605 /* Allocate and copy string. The trailing NUL shouldn't
5606 be necessary, but be safe. */
5607 tmpbuf = xmalloc (first + second + 2);
5608 memcpy (tmpbuf, input_line_pointer, first);
5609 if (second != 0 && *past_reloc != ' ')
5610 /* Replace the relocation token with ' ', so that
5611 errors like foo@GOTOFF1 will be detected. */
5612 tmpbuf[first++] = ' ';
5613 memcpy (tmpbuf + first, past_reloc, second);
5614 tmpbuf[first + second] = '\0';
5615 return tmpbuf;
5616 }
5617
5618 as_bad (_("@%s reloc is not supported with %d-bit output format"),
5619 gotrel[j].str, 1 << (5 + object_64bit));
5620 return NULL;
5621 }
5622 }
5623
5624 /* Might be a symbol version string. Don't as_bad here. */
5625 return NULL;
5626 }
5627
5628 void
5629 x86_cons (expressionS *exp, int size)
5630 {
5631 if (size == 4 || (object_64bit && size == 8))
5632 {
5633 /* Handle @GOTOFF and the like in an expression. */
5634 char *save;
5635 char *gotfree_input_line;
5636 int adjust;
5637
5638 save = input_line_pointer;
5639 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
5640 if (gotfree_input_line)
5641 input_line_pointer = gotfree_input_line;
5642
5643 expression (exp);
5644
5645 if (gotfree_input_line)
5646 {
5647 /* expression () has merrily parsed up to the end of line,
5648 or a comma - in the wrong buffer. Transfer how far
5649 input_line_pointer has moved to the right buffer. */
5650 input_line_pointer = (save
5651 + (input_line_pointer - gotfree_input_line)
5652 + adjust);
5653 free (gotfree_input_line);
5654 if (exp->X_op == O_constant
5655 || exp->X_op == O_absent
5656 || exp->X_op == O_illegal
5657 || exp->X_op == O_register
5658 || exp->X_op == O_big)
5659 {
5660 char c = *input_line_pointer;
5661 *input_line_pointer = 0;
5662 as_bad (_("missing or invalid expression `%s'"), save);
5663 *input_line_pointer = c;
5664 }
5665 }
5666 }
5667 else
5668 expression (exp);
5669 }
5670 #endif
5671
5672 static void signed_cons (int size)
5673 {
5674 if (flag_code == CODE_64BIT)
5675 cons_sign = 1;
5676 cons (size);
5677 cons_sign = -1;
5678 }
5679
5680 #ifdef TE_PE
5681 static void
5682 pe_directive_secrel (dummy)
5683 int dummy ATTRIBUTE_UNUSED;
5684 {
5685 expressionS exp;
5686
5687 do
5688 {
5689 expression (&exp);
5690 if (exp.X_op == O_symbol)
5691 exp.X_op = O_secrel;
5692
5693 emit_expr (&exp, 4);
5694 }
5695 while (*input_line_pointer++ == ',');
5696
5697 input_line_pointer--;
5698 demand_empty_rest_of_line ();
5699 }
5700 #endif
5701
5702 static int
5703 i386_immediate (char *imm_start)
5704 {
5705 char *save_input_line_pointer;
5706 char *gotfree_input_line;
5707 segT exp_seg = 0;
5708 expressionS *exp;
5709 i386_operand_type types;
5710
5711 UINTS_SET (types, ~0);
5712
5713 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
5714 {
5715 as_bad (_("at most %d immediate operands are allowed"),
5716 MAX_IMMEDIATE_OPERANDS);
5717 return 0;
5718 }
5719
5720 exp = &im_expressions[i.imm_operands++];
5721 i.op[this_operand].imms = exp;
5722
5723 if (is_space_char (*imm_start))
5724 ++imm_start;
5725
5726 save_input_line_pointer = input_line_pointer;
5727 input_line_pointer = imm_start;
5728
5729 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
5730 if (gotfree_input_line)
5731 input_line_pointer = gotfree_input_line;
5732
5733 exp_seg = expression (exp);
5734
5735 SKIP_WHITESPACE ();
5736 if (*input_line_pointer)
5737 as_bad (_("junk `%s' after expression"), input_line_pointer);
5738
5739 input_line_pointer = save_input_line_pointer;
5740 if (gotfree_input_line)
5741 free (gotfree_input_line);
5742
5743 if (exp->X_op == O_absent
5744 || exp->X_op == O_illegal
5745 || exp->X_op == O_big
5746 || (gotfree_input_line
5747 && (exp->X_op == O_constant
5748 || exp->X_op == O_register)))
5749 {
5750 as_bad (_("missing or invalid immediate expression `%s'"),
5751 imm_start);
5752 return 0;
5753 }
5754 else if (exp->X_op == O_constant)
5755 {
5756 /* Size it properly later. */
5757 i.types[this_operand].bitfield.imm64 = 1;
5758 /* If BFD64, sign extend val. */
5759 if (!use_rela_relocations
5760 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
5761 exp->X_add_number
5762 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
5763 }
5764 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5765 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
5766 && exp_seg != absolute_section
5767 && exp_seg != text_section
5768 && exp_seg != data_section
5769 && exp_seg != bss_section
5770 && exp_seg != undefined_section
5771 && !bfd_is_com_section (exp_seg))
5772 {
5773 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
5774 return 0;
5775 }
5776 #endif
5777 else if (!intel_syntax && exp->X_op == O_register)
5778 {
5779 as_bad (_("illegal immediate register operand %s"), imm_start);
5780 return 0;
5781 }
5782 else
5783 {
5784 /* This is an address. The size of the address will be
5785 determined later, depending on destination register,
5786 suffix, or the default for the section. */
5787 i.types[this_operand].bitfield.imm8 = 1;
5788 i.types[this_operand].bitfield.imm16 = 1;
5789 i.types[this_operand].bitfield.imm32 = 1;
5790 i.types[this_operand].bitfield.imm32s = 1;
5791 i.types[this_operand].bitfield.imm64 = 1;
5792 i.types[this_operand] = operand_type_and (i.types[this_operand],
5793 types);
5794 }
5795
5796 return 1;
5797 }
5798
5799 static char *
5800 i386_scale (char *scale)
5801 {
5802 offsetT val;
5803 char *save = input_line_pointer;
5804
5805 input_line_pointer = scale;
5806 val = get_absolute_expression ();
5807
5808 switch (val)
5809 {
5810 case 1:
5811 i.log2_scale_factor = 0;
5812 break;
5813 case 2:
5814 i.log2_scale_factor = 1;
5815 break;
5816 case 4:
5817 i.log2_scale_factor = 2;
5818 break;
5819 case 8:
5820 i.log2_scale_factor = 3;
5821 break;
5822 default:
5823 {
5824 char sep = *input_line_pointer;
5825
5826 *input_line_pointer = '\0';
5827 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5828 scale);
5829 *input_line_pointer = sep;
5830 input_line_pointer = save;
5831 return NULL;
5832 }
5833 }
5834 if (i.log2_scale_factor != 0 && i.index_reg == 0)
5835 {
5836 as_warn (_("scale factor of %d without an index register"),
5837 1 << i.log2_scale_factor);
5838 i.log2_scale_factor = 0;
5839 }
5840 scale = input_line_pointer;
5841 input_line_pointer = save;
5842 return scale;
5843 }
5844
5845 static int
5846 i386_displacement (char *disp_start, char *disp_end)
5847 {
5848 expressionS *exp;
5849 segT exp_seg = 0;
5850 char *save_input_line_pointer;
5851 char *gotfree_input_line;
5852 int override;
5853 i386_operand_type bigdisp, types = anydisp;
5854 int ret;
5855
5856 if (i.disp_operands == MAX_MEMORY_OPERANDS)
5857 {
5858 as_bad (_("at most %d displacement operands are allowed"),
5859 MAX_MEMORY_OPERANDS);
5860 return 0;
5861 }
5862
5863 UINTS_CLEAR (bigdisp);
5864 if ((i.types[this_operand].bitfield.jumpabsolute)
5865 || (!current_templates->start->opcode_modifier.jump
5866 && !current_templates->start->opcode_modifier.jumpdword))
5867 {
5868 bigdisp.bitfield.disp32 = 1;
5869 override = (i.prefix[ADDR_PREFIX] != 0);
5870 if (flag_code == CODE_64BIT)
5871 {
5872 if (!override)
5873 {
5874 bigdisp.bitfield.disp32s = 1;
5875 bigdisp.bitfield.disp64 = 1;
5876 }
5877 }
5878 else if ((flag_code == CODE_16BIT) ^ override)
5879 {
5880 bigdisp.bitfield.disp32 = 0;
5881 bigdisp.bitfield.disp16 = 1;
5882 }
5883 }
5884 else
5885 {
5886 /* For PC-relative branches, the width of the displacement
5887 is dependent upon data size, not address size. */
5888 override = (i.prefix[DATA_PREFIX] != 0);
5889 if (flag_code == CODE_64BIT)
5890 {
5891 if (override || i.suffix == WORD_MNEM_SUFFIX)
5892 bigdisp.bitfield.disp16 = 1;
5893 else
5894 {
5895 bigdisp.bitfield.disp32 = 1;
5896 bigdisp.bitfield.disp32s = 1;
5897 }
5898 }
5899 else
5900 {
5901 if (!override)
5902 override = (i.suffix == (flag_code != CODE_16BIT
5903 ? WORD_MNEM_SUFFIX
5904 : LONG_MNEM_SUFFIX));
5905 bigdisp.bitfield.disp32 = 1;
5906 if ((flag_code == CODE_16BIT) ^ override)
5907 {
5908 bigdisp.bitfield.disp32 = 0;
5909 bigdisp.bitfield.disp16 = 1;
5910 }
5911 }
5912 }
5913 i.types[this_operand] = operand_type_or (i.types[this_operand],
5914 bigdisp);
5915
5916 exp = &disp_expressions[i.disp_operands];
5917 i.op[this_operand].disps = exp;
5918 i.disp_operands++;
5919 save_input_line_pointer = input_line_pointer;
5920 input_line_pointer = disp_start;
5921 END_STRING_AND_SAVE (disp_end);
5922
5923 #ifndef GCC_ASM_O_HACK
5924 #define GCC_ASM_O_HACK 0
5925 #endif
5926 #if GCC_ASM_O_HACK
5927 END_STRING_AND_SAVE (disp_end + 1);
5928 if (i.types[this_operand].bitfield.baseIndex
5929 && displacement_string_end[-1] == '+')
5930 {
5931 /* This hack is to avoid a warning when using the "o"
5932 constraint within gcc asm statements.
5933 For instance:
5934
5935 #define _set_tssldt_desc(n,addr,limit,type) \
5936 __asm__ __volatile__ ( \
5937 "movw %w2,%0\n\t" \
5938 "movw %w1,2+%0\n\t" \
5939 "rorl $16,%1\n\t" \
5940 "movb %b1,4+%0\n\t" \
5941 "movb %4,5+%0\n\t" \
5942 "movb $0,6+%0\n\t" \
5943 "movb %h1,7+%0\n\t" \
5944 "rorl $16,%1" \
5945 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
5946
5947 This works great except that the output assembler ends
5948 up looking a bit weird if it turns out that there is
5949 no offset. You end up producing code that looks like:
5950
5951 #APP
5952 movw $235,(%eax)
5953 movw %dx,2+(%eax)
5954 rorl $16,%edx
5955 movb %dl,4+(%eax)
5956 movb $137,5+(%eax)
5957 movb $0,6+(%eax)
5958 movb %dh,7+(%eax)
5959 rorl $16,%edx
5960 #NO_APP
5961
5962 So here we provide the missing zero. */
5963
5964 *displacement_string_end = '0';
5965 }
5966 #endif
5967 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
5968 if (gotfree_input_line)
5969 input_line_pointer = gotfree_input_line;
5970
5971 exp_seg = expression (exp);
5972
5973 SKIP_WHITESPACE ();
5974 if (*input_line_pointer)
5975 as_bad (_("junk `%s' after expression"), input_line_pointer);
5976 #if GCC_ASM_O_HACK
5977 RESTORE_END_STRING (disp_end + 1);
5978 #endif
5979 input_line_pointer = save_input_line_pointer;
5980 if (gotfree_input_line)
5981 free (gotfree_input_line);
5982 ret = 1;
5983
5984 /* We do this to make sure that the section symbol is in
5985 the symbol table. We will ultimately change the relocation
5986 to be relative to the beginning of the section. */
5987 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
5988 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
5989 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
5990 {
5991 if (exp->X_op != O_symbol)
5992 goto inv_disp;
5993
5994 if (S_IS_LOCAL (exp->X_add_symbol)
5995 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
5996 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
5997 exp->X_op = O_subtract;
5998 exp->X_op_symbol = GOT_symbol;
5999 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
6000 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
6001 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
6002 i.reloc[this_operand] = BFD_RELOC_64;
6003 else
6004 i.reloc[this_operand] = BFD_RELOC_32;
6005 }
6006
6007 else if (exp->X_op == O_absent
6008 || exp->X_op == O_illegal
6009 || exp->X_op == O_big
6010 || (gotfree_input_line
6011 && (exp->X_op == O_constant
6012 || exp->X_op == O_register)))
6013 {
6014 inv_disp:
6015 as_bad (_("missing or invalid displacement expression `%s'"),
6016 disp_start);
6017 ret = 0;
6018 }
6019
6020 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6021 else if (exp->X_op != O_constant
6022 && OUTPUT_FLAVOR == bfd_target_aout_flavour
6023 && exp_seg != absolute_section
6024 && exp_seg != text_section
6025 && exp_seg != data_section
6026 && exp_seg != bss_section
6027 && exp_seg != undefined_section
6028 && !bfd_is_com_section (exp_seg))
6029 {
6030 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
6031 ret = 0;
6032 }
6033 #endif
6034
6035 RESTORE_END_STRING (disp_end);
6036
6037 /* Check if this is a displacement only operand. */
6038 bigdisp = i.types[this_operand];
6039 bigdisp.bitfield.disp8 = 0;
6040 bigdisp.bitfield.disp16 = 0;
6041 bigdisp.bitfield.disp32 = 0;
6042 bigdisp.bitfield.disp32s = 0;
6043 bigdisp.bitfield.disp64 = 0;
6044 if (UINTS_ALL_ZERO (bigdisp))
6045 i.types[this_operand] = operand_type_and (i.types[this_operand],
6046 types);
6047
6048 return ret;
6049 }
6050
6051 /* Make sure the memory operand we've been dealt is valid.
6052 Return 1 on success, 0 on a failure. */
6053
6054 static int
6055 i386_index_check (const char *operand_string)
6056 {
6057 int ok;
6058 #if INFER_ADDR_PREFIX
6059 int fudged = 0;
6060
6061 tryprefix:
6062 #endif
6063 ok = 1;
6064 if (flag_code == CODE_64BIT)
6065 {
6066 if ((i.base_reg
6067 && ((i.prefix[ADDR_PREFIX] == 0
6068 && !i.base_reg->reg_type.bitfield.reg64)
6069 || (i.prefix[ADDR_PREFIX]
6070 && !i.base_reg->reg_type.bitfield.reg32))
6071 && (i.index_reg
6072 || i.base_reg->reg_num !=
6073 (i.prefix[ADDR_PREFIX] == 0 ? RegRip : RegEip)))
6074 || (i.index_reg
6075 && (!i.index_reg->reg_type.bitfield.baseindex
6076 || (i.prefix[ADDR_PREFIX] == 0
6077 && i.index_reg->reg_num != RegRiz
6078 && !i.index_reg->reg_type.bitfield.reg64
6079 )
6080 || (i.prefix[ADDR_PREFIX]
6081 && i.index_reg->reg_num != RegEiz
6082 && !i.index_reg->reg_type.bitfield.reg32))))
6083 ok = 0;
6084 }
6085 else
6086 {
6087 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
6088 {
6089 /* 16bit checks. */
6090 if ((i.base_reg
6091 && (!i.base_reg->reg_type.bitfield.reg16
6092 || !i.base_reg->reg_type.bitfield.baseindex))
6093 || (i.index_reg
6094 && (!i.index_reg->reg_type.bitfield.reg16
6095 || !i.index_reg->reg_type.bitfield.baseindex
6096 || !(i.base_reg
6097 && i.base_reg->reg_num < 6
6098 && i.index_reg->reg_num >= 6
6099 && i.log2_scale_factor == 0))))
6100 ok = 0;
6101 }
6102 else
6103 {
6104 /* 32bit checks. */
6105 if ((i.base_reg
6106 && !i.base_reg->reg_type.bitfield.reg32)
6107 || (i.index_reg
6108 && ((!i.index_reg->reg_type.bitfield.reg32
6109 && i.index_reg->reg_num != RegEiz)
6110 || !i.index_reg->reg_type.bitfield.baseindex)))
6111 ok = 0;
6112 }
6113 }
6114 if (!ok)
6115 {
6116 #if INFER_ADDR_PREFIX
6117 if (i.prefix[ADDR_PREFIX] == 0)
6118 {
6119 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
6120 i.prefixes += 1;
6121 /* Change the size of any displacement too. At most one of
6122 Disp16 or Disp32 is set.
6123 FIXME. There doesn't seem to be any real need for separate
6124 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
6125 Removing them would probably clean up the code quite a lot. */
6126 if (flag_code != CODE_64BIT
6127 && (i.types[this_operand].bitfield.disp16
6128 || i.types[this_operand].bitfield.disp32))
6129 i.types[this_operand]
6130 = operand_type_xor (i.types[this_operand], disp16_32);
6131 fudged = 1;
6132 goto tryprefix;
6133 }
6134 if (fudged)
6135 as_bad (_("`%s' is not a valid base/index expression"),
6136 operand_string);
6137 else
6138 #endif
6139 as_bad (_("`%s' is not a valid %s bit base/index expression"),
6140 operand_string,
6141 flag_code_names[flag_code]);
6142 }
6143 return ok;
6144 }
6145
6146 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
6147 on error. */
6148
6149 static int
6150 i386_att_operand (char *operand_string)
6151 {
6152 const reg_entry *r;
6153 char *end_op;
6154 char *op_string = operand_string;
6155
6156 if (is_space_char (*op_string))
6157 ++op_string;
6158
6159 /* We check for an absolute prefix (differentiating,
6160 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
6161 if (*op_string == ABSOLUTE_PREFIX)
6162 {
6163 ++op_string;
6164 if (is_space_char (*op_string))
6165 ++op_string;
6166 i.types[this_operand].bitfield.jumpabsolute = 1;
6167 }
6168
6169 /* Check if operand is a register. */
6170 if ((r = parse_register (op_string, &end_op)) != NULL)
6171 {
6172 i386_operand_type temp;
6173
6174 /* Check for a segment override by searching for ':' after a
6175 segment register. */
6176 op_string = end_op;
6177 if (is_space_char (*op_string))
6178 ++op_string;
6179 if (*op_string == ':'
6180 && (r->reg_type.bitfield.sreg2
6181 || r->reg_type.bitfield.sreg3))
6182 {
6183 switch (r->reg_num)
6184 {
6185 case 0:
6186 i.seg[i.mem_operands] = &es;
6187 break;
6188 case 1:
6189 i.seg[i.mem_operands] = &cs;
6190 break;
6191 case 2:
6192 i.seg[i.mem_operands] = &ss;
6193 break;
6194 case 3:
6195 i.seg[i.mem_operands] = &ds;
6196 break;
6197 case 4:
6198 i.seg[i.mem_operands] = &fs;
6199 break;
6200 case 5:
6201 i.seg[i.mem_operands] = &gs;
6202 break;
6203 }
6204
6205 /* Skip the ':' and whitespace. */
6206 ++op_string;
6207 if (is_space_char (*op_string))
6208 ++op_string;
6209
6210 if (!is_digit_char (*op_string)
6211 && !is_identifier_char (*op_string)
6212 && *op_string != '('
6213 && *op_string != ABSOLUTE_PREFIX)
6214 {
6215 as_bad (_("bad memory operand `%s'"), op_string);
6216 return 0;
6217 }
6218 /* Handle case of %es:*foo. */
6219 if (*op_string == ABSOLUTE_PREFIX)
6220 {
6221 ++op_string;
6222 if (is_space_char (*op_string))
6223 ++op_string;
6224 i.types[this_operand].bitfield.jumpabsolute = 1;
6225 }
6226 goto do_memory_reference;
6227 }
6228 if (*op_string)
6229 {
6230 as_bad (_("junk `%s' after register"), op_string);
6231 return 0;
6232 }
6233 temp = r->reg_type;
6234 temp.bitfield.baseindex = 0;
6235 i.types[this_operand] = operand_type_or (i.types[this_operand],
6236 temp);
6237 i.types[this_operand].bitfield.unspecified = 0;
6238 i.op[this_operand].regs = r;
6239 i.reg_operands++;
6240 }
6241 else if (*op_string == REGISTER_PREFIX)
6242 {
6243 as_bad (_("bad register name `%s'"), op_string);
6244 return 0;
6245 }
6246 else if (*op_string == IMMEDIATE_PREFIX)
6247 {
6248 ++op_string;
6249 if (i.types[this_operand].bitfield.jumpabsolute)
6250 {
6251 as_bad (_("immediate operand illegal with absolute jump"));
6252 return 0;
6253 }
6254 if (!i386_immediate (op_string))
6255 return 0;
6256 }
6257 else if (is_digit_char (*op_string)
6258 || is_identifier_char (*op_string)
6259 || *op_string == '(')
6260 {
6261 /* This is a memory reference of some sort. */
6262 char *base_string;
6263
6264 /* Start and end of displacement string expression (if found). */
6265 char *displacement_string_start;
6266 char *displacement_string_end;
6267
6268 do_memory_reference:
6269 if ((i.mem_operands == 1
6270 && !current_templates->start->opcode_modifier.isstring)
6271 || i.mem_operands == 2)
6272 {
6273 as_bad (_("too many memory references for `%s'"),
6274 current_templates->start->name);
6275 return 0;
6276 }
6277
6278 /* Check for base index form. We detect the base index form by
6279 looking for an ')' at the end of the operand, searching
6280 for the '(' matching it, and finding a REGISTER_PREFIX or ','
6281 after the '('. */
6282 base_string = op_string + strlen (op_string);
6283
6284 --base_string;
6285 if (is_space_char (*base_string))
6286 --base_string;
6287
6288 /* If we only have a displacement, set-up for it to be parsed later. */
6289 displacement_string_start = op_string;
6290 displacement_string_end = base_string + 1;
6291
6292 if (*base_string == ')')
6293 {
6294 char *temp_string;
6295 unsigned int parens_balanced = 1;
6296 /* We've already checked that the number of left & right ()'s are
6297 equal, so this loop will not be infinite. */
6298 do
6299 {
6300 base_string--;
6301 if (*base_string == ')')
6302 parens_balanced++;
6303 if (*base_string == '(')
6304 parens_balanced--;
6305 }
6306 while (parens_balanced);
6307
6308 temp_string = base_string;
6309
6310 /* Skip past '(' and whitespace. */
6311 ++base_string;
6312 if (is_space_char (*base_string))
6313 ++base_string;
6314
6315 if (*base_string == ','
6316 || ((i.base_reg = parse_register (base_string, &end_op))
6317 != NULL))
6318 {
6319 displacement_string_end = temp_string;
6320
6321 i.types[this_operand].bitfield.baseindex = 1;
6322
6323 if (i.base_reg)
6324 {
6325 base_string = end_op;
6326 if (is_space_char (*base_string))
6327 ++base_string;
6328 }
6329
6330 /* There may be an index reg or scale factor here. */
6331 if (*base_string == ',')
6332 {
6333 ++base_string;
6334 if (is_space_char (*base_string))
6335 ++base_string;
6336
6337 if ((i.index_reg = parse_register (base_string, &end_op))
6338 != NULL)
6339 {
6340 base_string = end_op;
6341 if (is_space_char (*base_string))
6342 ++base_string;
6343 if (*base_string == ',')
6344 {
6345 ++base_string;
6346 if (is_space_char (*base_string))
6347 ++base_string;
6348 }
6349 else if (*base_string != ')')
6350 {
6351 as_bad (_("expecting `,' or `)' "
6352 "after index register in `%s'"),
6353 operand_string);
6354 return 0;
6355 }
6356 }
6357 else if (*base_string == REGISTER_PREFIX)
6358 {
6359 as_bad (_("bad register name `%s'"), base_string);
6360 return 0;
6361 }
6362
6363 /* Check for scale factor. */
6364 if (*base_string != ')')
6365 {
6366 char *end_scale = i386_scale (base_string);
6367
6368 if (!end_scale)
6369 return 0;
6370
6371 base_string = end_scale;
6372 if (is_space_char (*base_string))
6373 ++base_string;
6374 if (*base_string != ')')
6375 {
6376 as_bad (_("expecting `)' "
6377 "after scale factor in `%s'"),
6378 operand_string);
6379 return 0;
6380 }
6381 }
6382 else if (!i.index_reg)
6383 {
6384 as_bad (_("expecting index register or scale factor "
6385 "after `,'; got '%c'"),
6386 *base_string);
6387 return 0;
6388 }
6389 }
6390 else if (*base_string != ')')
6391 {
6392 as_bad (_("expecting `,' or `)' "
6393 "after base register in `%s'"),
6394 operand_string);
6395 return 0;
6396 }
6397 }
6398 else if (*base_string == REGISTER_PREFIX)
6399 {
6400 as_bad (_("bad register name `%s'"), base_string);
6401 return 0;
6402 }
6403 }
6404
6405 /* If there's an expression beginning the operand, parse it,
6406 assuming displacement_string_start and
6407 displacement_string_end are meaningful. */
6408 if (displacement_string_start != displacement_string_end)
6409 {
6410 if (!i386_displacement (displacement_string_start,
6411 displacement_string_end))
6412 return 0;
6413 }
6414
6415 /* Special case for (%dx) while doing input/output op. */
6416 if (i.base_reg
6417 && UINTS_EQUAL (i.base_reg->reg_type, reg16_inoutportreg)
6418 && i.index_reg == 0
6419 && i.log2_scale_factor == 0
6420 && i.seg[i.mem_operands] == 0
6421 && !operand_type_check (i.types[this_operand], disp))
6422 {
6423 UINTS_CLEAR (i.types[this_operand]);
6424 i.types[this_operand].bitfield.inoutportreg = 1;
6425 return 1;
6426 }
6427
6428 if (i386_index_check (operand_string) == 0)
6429 return 0;
6430 i.types[this_operand].bitfield.mem = 1;
6431 i.mem_operands++;
6432 }
6433 else
6434 {
6435 /* It's not a memory operand; argh! */
6436 as_bad (_("invalid char %s beginning operand %d `%s'"),
6437 output_invalid (*op_string),
6438 this_operand + 1,
6439 op_string);
6440 return 0;
6441 }
6442 return 1; /* Normal return. */
6443 }
6444 \f
6445 /* md_estimate_size_before_relax()
6446
6447 Called just before relax() for rs_machine_dependent frags. The x86
6448 assembler uses these frags to handle variable size jump
6449 instructions.
6450
6451 Any symbol that is now undefined will not become defined.
6452 Return the correct fr_subtype in the frag.
6453 Return the initial "guess for variable size of frag" to caller.
6454 The guess is actually the growth beyond the fixed part. Whatever
6455 we do to grow the fixed or variable part contributes to our
6456 returned value. */
6457
6458 int
6459 md_estimate_size_before_relax (fragP, segment)
6460 fragS *fragP;
6461 segT segment;
6462 {
6463 /* We've already got fragP->fr_subtype right; all we have to do is
6464 check for un-relaxable symbols. On an ELF system, we can't relax
6465 an externally visible symbol, because it may be overridden by a
6466 shared library. */
6467 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6468 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6469 || (IS_ELF
6470 && (S_IS_EXTERNAL (fragP->fr_symbol)
6471 || S_IS_WEAK (fragP->fr_symbol)))
6472 #endif
6473 )
6474 {
6475 /* Symbol is undefined in this segment, or we need to keep a
6476 reloc so that weak symbols can be overridden. */
6477 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
6478 enum bfd_reloc_code_real reloc_type;
6479 unsigned char *opcode;
6480 int old_fr_fix;
6481
6482 if (fragP->fr_var != NO_RELOC)
6483 reloc_type = fragP->fr_var;
6484 else if (size == 2)
6485 reloc_type = BFD_RELOC_16_PCREL;
6486 else
6487 reloc_type = BFD_RELOC_32_PCREL;
6488
6489 old_fr_fix = fragP->fr_fix;
6490 opcode = (unsigned char *) fragP->fr_opcode;
6491
6492 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
6493 {
6494 case UNCOND_JUMP:
6495 /* Make jmp (0xeb) a (d)word displacement jump. */
6496 opcode[0] = 0xe9;
6497 fragP->fr_fix += size;
6498 fix_new (fragP, old_fr_fix, size,
6499 fragP->fr_symbol,
6500 fragP->fr_offset, 1,
6501 reloc_type);
6502 break;
6503
6504 case COND_JUMP86:
6505 if (size == 2
6506 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
6507 {
6508 /* Negate the condition, and branch past an
6509 unconditional jump. */
6510 opcode[0] ^= 1;
6511 opcode[1] = 3;
6512 /* Insert an unconditional jump. */
6513 opcode[2] = 0xe9;
6514 /* We added two extra opcode bytes, and have a two byte
6515 offset. */
6516 fragP->fr_fix += 2 + 2;
6517 fix_new (fragP, old_fr_fix + 2, 2,
6518 fragP->fr_symbol,
6519 fragP->fr_offset, 1,
6520 reloc_type);
6521 break;
6522 }
6523 /* Fall through. */
6524
6525 case COND_JUMP:
6526 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
6527 {
6528 fixS *fixP;
6529
6530 fragP->fr_fix += 1;
6531 fixP = fix_new (fragP, old_fr_fix, 1,
6532 fragP->fr_symbol,
6533 fragP->fr_offset, 1,
6534 BFD_RELOC_8_PCREL);
6535 fixP->fx_signed = 1;
6536 break;
6537 }
6538
6539 /* This changes the byte-displacement jump 0x7N
6540 to the (d)word-displacement jump 0x0f,0x8N. */
6541 opcode[1] = opcode[0] + 0x10;
6542 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
6543 /* We've added an opcode byte. */
6544 fragP->fr_fix += 1 + size;
6545 fix_new (fragP, old_fr_fix + 1, size,
6546 fragP->fr_symbol,
6547 fragP->fr_offset, 1,
6548 reloc_type);
6549 break;
6550
6551 default:
6552 BAD_CASE (fragP->fr_subtype);
6553 break;
6554 }
6555 frag_wane (fragP);
6556 return fragP->fr_fix - old_fr_fix;
6557 }
6558
6559 /* Guess size depending on current relax state. Initially the relax
6560 state will correspond to a short jump and we return 1, because
6561 the variable part of the frag (the branch offset) is one byte
6562 long. However, we can relax a section more than once and in that
6563 case we must either set fr_subtype back to the unrelaxed state,
6564 or return the value for the appropriate branch. */
6565 return md_relax_table[fragP->fr_subtype].rlx_length;
6566 }
6567
6568 /* Called after relax() is finished.
6569
6570 In: Address of frag.
6571 fr_type == rs_machine_dependent.
6572 fr_subtype is what the address relaxed to.
6573
6574 Out: Any fixSs and constants are set up.
6575 Caller will turn frag into a ".space 0". */
6576
6577 void
6578 md_convert_frag (abfd, sec, fragP)
6579 bfd *abfd ATTRIBUTE_UNUSED;
6580 segT sec ATTRIBUTE_UNUSED;
6581 fragS *fragP;
6582 {
6583 unsigned char *opcode;
6584 unsigned char *where_to_put_displacement = NULL;
6585 offsetT target_address;
6586 offsetT opcode_address;
6587 unsigned int extension = 0;
6588 offsetT displacement_from_opcode_start;
6589
6590 opcode = (unsigned char *) fragP->fr_opcode;
6591
6592 /* Address we want to reach in file space. */
6593 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
6594
6595 /* Address opcode resides at in file space. */
6596 opcode_address = fragP->fr_address + fragP->fr_fix;
6597
6598 /* Displacement from opcode start to fill into instruction. */
6599 displacement_from_opcode_start = target_address - opcode_address;
6600
6601 if ((fragP->fr_subtype & BIG) == 0)
6602 {
6603 /* Don't have to change opcode. */
6604 extension = 1; /* 1 opcode + 1 displacement */
6605 where_to_put_displacement = &opcode[1];
6606 }
6607 else
6608 {
6609 if (no_cond_jump_promotion
6610 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
6611 as_warn_where (fragP->fr_file, fragP->fr_line,
6612 _("long jump required"));
6613
6614 switch (fragP->fr_subtype)
6615 {
6616 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
6617 extension = 4; /* 1 opcode + 4 displacement */
6618 opcode[0] = 0xe9;
6619 where_to_put_displacement = &opcode[1];
6620 break;
6621
6622 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
6623 extension = 2; /* 1 opcode + 2 displacement */
6624 opcode[0] = 0xe9;
6625 where_to_put_displacement = &opcode[1];
6626 break;
6627
6628 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
6629 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
6630 extension = 5; /* 2 opcode + 4 displacement */
6631 opcode[1] = opcode[0] + 0x10;
6632 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
6633 where_to_put_displacement = &opcode[2];
6634 break;
6635
6636 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
6637 extension = 3; /* 2 opcode + 2 displacement */
6638 opcode[1] = opcode[0] + 0x10;
6639 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
6640 where_to_put_displacement = &opcode[2];
6641 break;
6642
6643 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
6644 extension = 4;
6645 opcode[0] ^= 1;
6646 opcode[1] = 3;
6647 opcode[2] = 0xe9;
6648 where_to_put_displacement = &opcode[3];
6649 break;
6650
6651 default:
6652 BAD_CASE (fragP->fr_subtype);
6653 break;
6654 }
6655 }
6656
6657 /* If size if less then four we are sure that the operand fits,
6658 but if it's 4, then it could be that the displacement is larger
6659 then -/+ 2GB. */
6660 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
6661 && object_64bit
6662 && ((addressT) (displacement_from_opcode_start - extension
6663 + ((addressT) 1 << 31))
6664 > (((addressT) 2 << 31) - 1)))
6665 {
6666 as_bad_where (fragP->fr_file, fragP->fr_line,
6667 _("jump target out of range"));
6668 /* Make us emit 0. */
6669 displacement_from_opcode_start = extension;
6670 }
6671 /* Now put displacement after opcode. */
6672 md_number_to_chars ((char *) where_to_put_displacement,
6673 (valueT) (displacement_from_opcode_start - extension),
6674 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
6675 fragP->fr_fix += extension;
6676 }
6677 \f
6678 /* Apply a fixup (fixS) to segment data, once it has been determined
6679 by our caller that we have all the info we need to fix it up.
6680
6681 On the 386, immediates, displacements, and data pointers are all in
6682 the same (little-endian) format, so we don't need to care about which
6683 we are handling. */
6684
6685 void
6686 md_apply_fix (fixP, valP, seg)
6687 /* The fix we're to put in. */
6688 fixS *fixP;
6689 /* Pointer to the value of the bits. */
6690 valueT *valP;
6691 /* Segment fix is from. */
6692 segT seg ATTRIBUTE_UNUSED;
6693 {
6694 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
6695 valueT value = *valP;
6696
6697 #if !defined (TE_Mach)
6698 if (fixP->fx_pcrel)
6699 {
6700 switch (fixP->fx_r_type)
6701 {
6702 default:
6703 break;
6704
6705 case BFD_RELOC_64:
6706 fixP->fx_r_type = BFD_RELOC_64_PCREL;
6707 break;
6708 case BFD_RELOC_32:
6709 case BFD_RELOC_X86_64_32S:
6710 fixP->fx_r_type = BFD_RELOC_32_PCREL;
6711 break;
6712 case BFD_RELOC_16:
6713 fixP->fx_r_type = BFD_RELOC_16_PCREL;
6714 break;
6715 case BFD_RELOC_8:
6716 fixP->fx_r_type = BFD_RELOC_8_PCREL;
6717 break;
6718 }
6719 }
6720
6721 if (fixP->fx_addsy != NULL
6722 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
6723 || fixP->fx_r_type == BFD_RELOC_64_PCREL
6724 || fixP->fx_r_type == BFD_RELOC_16_PCREL
6725 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
6726 && !use_rela_relocations)
6727 {
6728 /* This is a hack. There should be a better way to handle this.
6729 This covers for the fact that bfd_install_relocation will
6730 subtract the current location (for partial_inplace, PC relative
6731 relocations); see more below. */
6732 #ifndef OBJ_AOUT
6733 if (IS_ELF
6734 #ifdef TE_PE
6735 || OUTPUT_FLAVOR == bfd_target_coff_flavour
6736 #endif
6737 )
6738 value += fixP->fx_where + fixP->fx_frag->fr_address;
6739 #endif
6740 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6741 if (IS_ELF)
6742 {
6743 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
6744
6745 if ((sym_seg == seg
6746 || (symbol_section_p (fixP->fx_addsy)
6747 && sym_seg != absolute_section))
6748 && !generic_force_reloc (fixP))
6749 {
6750 /* Yes, we add the values in twice. This is because
6751 bfd_install_relocation subtracts them out again. I think
6752 bfd_install_relocation is broken, but I don't dare change
6753 it. FIXME. */
6754 value += fixP->fx_where + fixP->fx_frag->fr_address;
6755 }
6756 }
6757 #endif
6758 #if defined (OBJ_COFF) && defined (TE_PE)
6759 /* For some reason, the PE format does not store a
6760 section address offset for a PC relative symbol. */
6761 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
6762 || S_IS_WEAK (fixP->fx_addsy))
6763 value += md_pcrel_from (fixP);
6764 #endif
6765 }
6766
6767 /* Fix a few things - the dynamic linker expects certain values here,
6768 and we must not disappoint it. */
6769 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6770 if (IS_ELF && fixP->fx_addsy)
6771 switch (fixP->fx_r_type)
6772 {
6773 case BFD_RELOC_386_PLT32:
6774 case BFD_RELOC_X86_64_PLT32:
6775 /* Make the jump instruction point to the address of the operand. At
6776 runtime we merely add the offset to the actual PLT entry. */
6777 value = -4;
6778 break;
6779
6780 case BFD_RELOC_386_TLS_GD:
6781 case BFD_RELOC_386_TLS_LDM:
6782 case BFD_RELOC_386_TLS_IE_32:
6783 case BFD_RELOC_386_TLS_IE:
6784 case BFD_RELOC_386_TLS_GOTIE:
6785 case BFD_RELOC_386_TLS_GOTDESC:
6786 case BFD_RELOC_X86_64_TLSGD:
6787 case BFD_RELOC_X86_64_TLSLD:
6788 case BFD_RELOC_X86_64_GOTTPOFF:
6789 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
6790 value = 0; /* Fully resolved at runtime. No addend. */
6791 /* Fallthrough */
6792 case BFD_RELOC_386_TLS_LE:
6793 case BFD_RELOC_386_TLS_LDO_32:
6794 case BFD_RELOC_386_TLS_LE_32:
6795 case BFD_RELOC_X86_64_DTPOFF32:
6796 case BFD_RELOC_X86_64_DTPOFF64:
6797 case BFD_RELOC_X86_64_TPOFF32:
6798 case BFD_RELOC_X86_64_TPOFF64:
6799 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6800 break;
6801
6802 case BFD_RELOC_386_TLS_DESC_CALL:
6803 case BFD_RELOC_X86_64_TLSDESC_CALL:
6804 value = 0; /* Fully resolved at runtime. No addend. */
6805 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6806 fixP->fx_done = 0;
6807 return;
6808
6809 case BFD_RELOC_386_GOT32:
6810 case BFD_RELOC_X86_64_GOT32:
6811 value = 0; /* Fully resolved at runtime. No addend. */
6812 break;
6813
6814 case BFD_RELOC_VTABLE_INHERIT:
6815 case BFD_RELOC_VTABLE_ENTRY:
6816 fixP->fx_done = 0;
6817 return;
6818
6819 default:
6820 break;
6821 }
6822 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
6823 *valP = value;
6824 #endif /* !defined (TE_Mach) */
6825
6826 /* Are we finished with this relocation now? */
6827 if (fixP->fx_addsy == NULL)
6828 fixP->fx_done = 1;
6829 else if (use_rela_relocations)
6830 {
6831 fixP->fx_no_overflow = 1;
6832 /* Remember value for tc_gen_reloc. */
6833 fixP->fx_addnumber = value;
6834 value = 0;
6835 }
6836
6837 md_number_to_chars (p, value, fixP->fx_size);
6838 }
6839 \f
6840 char *
6841 md_atof (int type, char *litP, int *sizeP)
6842 {
6843 /* This outputs the LITTLENUMs in REVERSE order;
6844 in accord with the bigendian 386. */
6845 return ieee_md_atof (type, litP, sizeP, FALSE);
6846 }
6847 \f
6848 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
6849
6850 static char *
6851 output_invalid (int c)
6852 {
6853 if (ISPRINT (c))
6854 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
6855 "'%c'", c);
6856 else
6857 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
6858 "(0x%x)", (unsigned char) c);
6859 return output_invalid_buf;
6860 }
6861
6862 /* REG_STRING starts *before* REGISTER_PREFIX. */
6863
6864 static const reg_entry *
6865 parse_real_register (char *reg_string, char **end_op)
6866 {
6867 char *s = reg_string;
6868 char *p;
6869 char reg_name_given[MAX_REG_NAME_SIZE + 1];
6870 const reg_entry *r;
6871
6872 /* Skip possible REGISTER_PREFIX and possible whitespace. */
6873 if (*s == REGISTER_PREFIX)
6874 ++s;
6875
6876 if (is_space_char (*s))
6877 ++s;
6878
6879 p = reg_name_given;
6880 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
6881 {
6882 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
6883 return (const reg_entry *) NULL;
6884 s++;
6885 }
6886
6887 /* For naked regs, make sure that we are not dealing with an identifier.
6888 This prevents confusing an identifier like `eax_var' with register
6889 `eax'. */
6890 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
6891 return (const reg_entry *) NULL;
6892
6893 *end_op = s;
6894
6895 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
6896
6897 /* Handle floating point regs, allowing spaces in the (i) part. */
6898 if (r == i386_regtab /* %st is first entry of table */)
6899 {
6900 if (is_space_char (*s))
6901 ++s;
6902 if (*s == '(')
6903 {
6904 ++s;
6905 if (is_space_char (*s))
6906 ++s;
6907 if (*s >= '0' && *s <= '7')
6908 {
6909 int fpr = *s - '0';
6910 ++s;
6911 if (is_space_char (*s))
6912 ++s;
6913 if (*s == ')')
6914 {
6915 *end_op = s + 1;
6916 r = hash_find (reg_hash, "st(0)");
6917 know (r);
6918 return r + fpr;
6919 }
6920 }
6921 /* We have "%st(" then garbage. */
6922 return (const reg_entry *) NULL;
6923 }
6924 }
6925
6926 /* Don't allow fake index register unless allow_index_reg isn't 0. */
6927 if (r != NULL
6928 && !allow_index_reg
6929 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
6930 return (const reg_entry *) NULL;
6931
6932 if (r != NULL
6933 && ((r->reg_flags & (RegRex64 | RegRex))
6934 || r->reg_type.bitfield.reg64)
6935 && (!cpu_arch_flags.bitfield.cpulm
6936 || !UINTS_EQUAL (r->reg_type, control))
6937 && flag_code != CODE_64BIT)
6938 return (const reg_entry *) NULL;
6939
6940 return r;
6941 }
6942
6943 /* REG_STRING starts *before* REGISTER_PREFIX. */
6944
6945 static const reg_entry *
6946 parse_register (char *reg_string, char **end_op)
6947 {
6948 const reg_entry *r;
6949
6950 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
6951 r = parse_real_register (reg_string, end_op);
6952 else
6953 r = NULL;
6954 if (!r)
6955 {
6956 char *save = input_line_pointer;
6957 char c;
6958 symbolS *symbolP;
6959
6960 input_line_pointer = reg_string;
6961 c = get_symbol_end ();
6962 symbolP = symbol_find (reg_string);
6963 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
6964 {
6965 const expressionS *e = symbol_get_value_expression (symbolP);
6966
6967 know (e->X_op == O_register);
6968 know (e->X_add_number >= 0
6969 && (valueT) e->X_add_number < i386_regtab_size);
6970 r = i386_regtab + e->X_add_number;
6971 *end_op = input_line_pointer;
6972 }
6973 *input_line_pointer = c;
6974 input_line_pointer = save;
6975 }
6976 return r;
6977 }
6978
6979 int
6980 i386_parse_name (char *name, expressionS *e, char *nextcharP)
6981 {
6982 const reg_entry *r;
6983 char *end = input_line_pointer;
6984
6985 *end = *nextcharP;
6986 r = parse_register (name, &input_line_pointer);
6987 if (r && end <= input_line_pointer)
6988 {
6989 *nextcharP = *input_line_pointer;
6990 *input_line_pointer = 0;
6991 e->X_op = O_register;
6992 e->X_add_number = r - i386_regtab;
6993 return 1;
6994 }
6995 input_line_pointer = end;
6996 *end = 0;
6997 return 0;
6998 }
6999
7000 void
7001 md_operand (expressionS *e)
7002 {
7003 if (*input_line_pointer == REGISTER_PREFIX)
7004 {
7005 char *end;
7006 const reg_entry *r = parse_real_register (input_line_pointer, &end);
7007
7008 if (r)
7009 {
7010 e->X_op = O_register;
7011 e->X_add_number = r - i386_regtab;
7012 input_line_pointer = end;
7013 }
7014 }
7015 }
7016
7017 \f
7018 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7019 const char *md_shortopts = "kVQ:sqn";
7020 #else
7021 const char *md_shortopts = "qn";
7022 #endif
7023
7024 #define OPTION_32 (OPTION_MD_BASE + 0)
7025 #define OPTION_64 (OPTION_MD_BASE + 1)
7026 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
7027 #define OPTION_MARCH (OPTION_MD_BASE + 3)
7028 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
7029 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
7030 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
7031 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
7032 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
7033 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
7034
7035 struct option md_longopts[] =
7036 {
7037 {"32", no_argument, NULL, OPTION_32},
7038 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
7039 {"64", no_argument, NULL, OPTION_64},
7040 #endif
7041 {"divide", no_argument, NULL, OPTION_DIVIDE},
7042 {"march", required_argument, NULL, OPTION_MARCH},
7043 {"mtune", required_argument, NULL, OPTION_MTUNE},
7044 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
7045 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
7046 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
7047 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
7048 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
7049 {NULL, no_argument, NULL, 0}
7050 };
7051 size_t md_longopts_size = sizeof (md_longopts);
7052
7053 int
7054 md_parse_option (int c, char *arg)
7055 {
7056 unsigned int i;
7057
7058 switch (c)
7059 {
7060 case 'n':
7061 optimize_align_code = 0;
7062 break;
7063
7064 case 'q':
7065 quiet_warnings = 1;
7066 break;
7067
7068 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7069 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
7070 should be emitted or not. FIXME: Not implemented. */
7071 case 'Q':
7072 break;
7073
7074 /* -V: SVR4 argument to print version ID. */
7075 case 'V':
7076 print_version_id ();
7077 break;
7078
7079 /* -k: Ignore for FreeBSD compatibility. */
7080 case 'k':
7081 break;
7082
7083 case 's':
7084 /* -s: On i386 Solaris, this tells the native assembler to use
7085 .stab instead of .stab.excl. We always use .stab anyhow. */
7086 break;
7087 #endif
7088 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
7089 case OPTION_64:
7090 {
7091 const char **list, **l;
7092
7093 list = bfd_target_list ();
7094 for (l = list; *l != NULL; l++)
7095 if (CONST_STRNEQ (*l, "elf64-x86-64")
7096 || strcmp (*l, "coff-x86-64") == 0
7097 || strcmp (*l, "pe-x86-64") == 0
7098 || strcmp (*l, "pei-x86-64") == 0)
7099 {
7100 default_arch = "x86_64";
7101 break;
7102 }
7103 if (*l == NULL)
7104 as_fatal (_("No compiled in support for x86_64"));
7105 free (list);
7106 }
7107 break;
7108 #endif
7109
7110 case OPTION_32:
7111 default_arch = "i386";
7112 break;
7113
7114 case OPTION_DIVIDE:
7115 #ifdef SVR4_COMMENT_CHARS
7116 {
7117 char *n, *t;
7118 const char *s;
7119
7120 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
7121 t = n;
7122 for (s = i386_comment_chars; *s != '\0'; s++)
7123 if (*s != '/')
7124 *t++ = *s;
7125 *t = '\0';
7126 i386_comment_chars = n;
7127 }
7128 #endif
7129 break;
7130
7131 case OPTION_MARCH:
7132 if (*arg == '.')
7133 as_fatal (_("Invalid -march= option: `%s'"), arg);
7134 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
7135 {
7136 if (strcmp (arg, cpu_arch [i].name) == 0)
7137 {
7138 cpu_arch_isa = cpu_arch[i].type;
7139 cpu_arch_isa_flags = cpu_arch[i].flags;
7140 if (!cpu_arch_tune_set)
7141 {
7142 cpu_arch_tune = cpu_arch_isa;
7143 cpu_arch_tune_flags = cpu_arch_isa_flags;
7144 }
7145 break;
7146 }
7147 }
7148 if (i >= ARRAY_SIZE (cpu_arch))
7149 as_fatal (_("Invalid -march= option: `%s'"), arg);
7150 break;
7151
7152 case OPTION_MTUNE:
7153 if (*arg == '.')
7154 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
7155 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
7156 {
7157 if (strcmp (arg, cpu_arch [i].name) == 0)
7158 {
7159 cpu_arch_tune_set = 1;
7160 cpu_arch_tune = cpu_arch [i].type;
7161 cpu_arch_tune_flags = cpu_arch[i].flags;
7162 break;
7163 }
7164 }
7165 if (i >= ARRAY_SIZE (cpu_arch))
7166 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
7167 break;
7168
7169 case OPTION_MMNEMONIC:
7170 if (strcasecmp (arg, "att") == 0)
7171 intel_mnemonic = 0;
7172 else if (strcasecmp (arg, "intel") == 0)
7173 intel_mnemonic = 1;
7174 else
7175 as_fatal (_("Invalid -mmnemonic= option: `%s'"), arg);
7176 break;
7177
7178 case OPTION_MSYNTAX:
7179 if (strcasecmp (arg, "att") == 0)
7180 intel_syntax = 0;
7181 else if (strcasecmp (arg, "intel") == 0)
7182 intel_syntax = 1;
7183 else
7184 as_fatal (_("Invalid -msyntax= option: `%s'"), arg);
7185 break;
7186
7187 case OPTION_MINDEX_REG:
7188 allow_index_reg = 1;
7189 break;
7190
7191 case OPTION_MNAKED_REG:
7192 allow_naked_reg = 1;
7193 break;
7194
7195 case OPTION_MOLD_GCC:
7196 old_gcc = 1;
7197 break;
7198
7199 default:
7200 return 0;
7201 }
7202 return 1;
7203 }
7204
7205 void
7206 md_show_usage (stream)
7207 FILE *stream;
7208 {
7209 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7210 fprintf (stream, _("\
7211 -Q ignored\n\
7212 -V print assembler version number\n\
7213 -k ignored\n"));
7214 #endif
7215 fprintf (stream, _("\
7216 -n Do not optimize code alignment\n\
7217 -q quieten some warnings\n"));
7218 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7219 fprintf (stream, _("\
7220 -s ignored\n"));
7221 #endif
7222 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
7223 fprintf (stream, _("\
7224 --32/--64 generate 32bit/64bit code\n"));
7225 #endif
7226 #ifdef SVR4_COMMENT_CHARS
7227 fprintf (stream, _("\
7228 --divide do not treat `/' as a comment character\n"));
7229 #else
7230 fprintf (stream, _("\
7231 --divide ignored\n"));
7232 #endif
7233 fprintf (stream, _("\
7234 -march=CPU/-mtune=CPU generate code/optimize for CPU, where CPU is one of:\n\
7235 i386, i486, pentium, pentiumpro, pentium4, nocona,\n\
7236 core, core2, k6, athlon, k8, generic32, generic64\n"));
7237 fprintf (stream, _("\
7238 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
7239 fprintf (stream, _("\
7240 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
7241 fprintf (stream, _("\
7242 -mindex-reg support pseudo index registers\n"));
7243 fprintf (stream, _("\
7244 -mnaked-reg don't require `%%' prefix for registers\n"));
7245 fprintf (stream, _("\
7246 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
7247 }
7248
7249 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
7250 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (TE_PEP))
7251
7252 /* Pick the target format to use. */
7253
7254 const char *
7255 i386_target_format (void)
7256 {
7257 if (!strcmp (default_arch, "x86_64"))
7258 {
7259 set_code_flag (CODE_64BIT);
7260 if (UINTS_ALL_ZERO (cpu_arch_isa_flags))
7261 {
7262 cpu_arch_isa_flags.bitfield.cpui186 = 1;
7263 cpu_arch_isa_flags.bitfield.cpui286 = 1;
7264 cpu_arch_isa_flags.bitfield.cpui386 = 1;
7265 cpu_arch_isa_flags.bitfield.cpui486 = 1;
7266 cpu_arch_isa_flags.bitfield.cpui586 = 1;
7267 cpu_arch_isa_flags.bitfield.cpui686 = 1;
7268 cpu_arch_isa_flags.bitfield.cpup4 = 1;
7269 cpu_arch_isa_flags.bitfield.cpummx= 1;
7270 cpu_arch_isa_flags.bitfield.cpummx2 = 1;
7271 cpu_arch_isa_flags.bitfield.cpusse = 1;
7272 cpu_arch_isa_flags.bitfield.cpusse2 = 1;
7273 }
7274 if (UINTS_ALL_ZERO (cpu_arch_tune_flags))
7275 {
7276 cpu_arch_tune_flags.bitfield.cpui186 = 1;
7277 cpu_arch_tune_flags.bitfield.cpui286 = 1;
7278 cpu_arch_tune_flags.bitfield.cpui386 = 1;
7279 cpu_arch_tune_flags.bitfield.cpui486 = 1;
7280 cpu_arch_tune_flags.bitfield.cpui586 = 1;
7281 cpu_arch_tune_flags.bitfield.cpui686 = 1;
7282 cpu_arch_tune_flags.bitfield.cpup4 = 1;
7283 cpu_arch_tune_flags.bitfield.cpummx= 1;
7284 cpu_arch_tune_flags.bitfield.cpummx2 = 1;
7285 cpu_arch_tune_flags.bitfield.cpusse = 1;
7286 cpu_arch_tune_flags.bitfield.cpusse2 = 1;
7287 }
7288 }
7289 else if (!strcmp (default_arch, "i386"))
7290 {
7291 set_code_flag (CODE_32BIT);
7292 if (UINTS_ALL_ZERO (cpu_arch_isa_flags))
7293 {
7294 cpu_arch_isa_flags.bitfield.cpui186 = 1;
7295 cpu_arch_isa_flags.bitfield.cpui286 = 1;
7296 cpu_arch_isa_flags.bitfield.cpui386 = 1;
7297 }
7298 if (UINTS_ALL_ZERO (cpu_arch_tune_flags))
7299 {
7300 cpu_arch_tune_flags.bitfield.cpui186 = 1;
7301 cpu_arch_tune_flags.bitfield.cpui286 = 1;
7302 cpu_arch_tune_flags.bitfield.cpui386 = 1;
7303 }
7304 }
7305 else
7306 as_fatal (_("Unknown architecture"));
7307 switch (OUTPUT_FLAVOR)
7308 {
7309 #ifdef TE_PEP
7310 case bfd_target_coff_flavour:
7311 return flag_code == CODE_64BIT ? COFF_TARGET_FORMAT : "coff-i386";
7312 break;
7313 #endif
7314 #ifdef OBJ_MAYBE_AOUT
7315 case bfd_target_aout_flavour:
7316 return AOUT_TARGET_FORMAT;
7317 #endif
7318 #ifdef OBJ_MAYBE_COFF
7319 case bfd_target_coff_flavour:
7320 return "coff-i386";
7321 #endif
7322 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7323 case bfd_target_elf_flavour:
7324 {
7325 if (flag_code == CODE_64BIT)
7326 {
7327 object_64bit = 1;
7328 use_rela_relocations = 1;
7329 }
7330 return flag_code == CODE_64BIT ? ELF_TARGET_FORMAT64 : ELF_TARGET_FORMAT;
7331 }
7332 #endif
7333 default:
7334 abort ();
7335 return NULL;
7336 }
7337 }
7338
7339 #endif /* OBJ_MAYBE_ more than one */
7340
7341 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
7342 void
7343 i386_elf_emit_arch_note (void)
7344 {
7345 if (IS_ELF && cpu_arch_name != NULL)
7346 {
7347 char *p;
7348 asection *seg = now_seg;
7349 subsegT subseg = now_subseg;
7350 Elf_Internal_Note i_note;
7351 Elf_External_Note e_note;
7352 asection *note_secp;
7353 int len;
7354
7355 /* Create the .note section. */
7356 note_secp = subseg_new (".note", 0);
7357 bfd_set_section_flags (stdoutput,
7358 note_secp,
7359 SEC_HAS_CONTENTS | SEC_READONLY);
7360
7361 /* Process the arch string. */
7362 len = strlen (cpu_arch_name);
7363
7364 i_note.namesz = len + 1;
7365 i_note.descsz = 0;
7366 i_note.type = NT_ARCH;
7367 p = frag_more (sizeof (e_note.namesz));
7368 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
7369 p = frag_more (sizeof (e_note.descsz));
7370 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
7371 p = frag_more (sizeof (e_note.type));
7372 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
7373 p = frag_more (len + 1);
7374 strcpy (p, cpu_arch_name);
7375
7376 frag_align (2, 0, 0);
7377
7378 subseg_set (seg, subseg);
7379 }
7380 }
7381 #endif
7382 \f
7383 symbolS *
7384 md_undefined_symbol (name)
7385 char *name;
7386 {
7387 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
7388 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
7389 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
7390 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
7391 {
7392 if (!GOT_symbol)
7393 {
7394 if (symbol_find (name))
7395 as_bad (_("GOT already in symbol table"));
7396 GOT_symbol = symbol_new (name, undefined_section,
7397 (valueT) 0, &zero_address_frag);
7398 };
7399 return GOT_symbol;
7400 }
7401 return 0;
7402 }
7403
7404 /* Round up a section size to the appropriate boundary. */
7405
7406 valueT
7407 md_section_align (segment, size)
7408 segT segment ATTRIBUTE_UNUSED;
7409 valueT size;
7410 {
7411 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
7412 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
7413 {
7414 /* For a.out, force the section size to be aligned. If we don't do
7415 this, BFD will align it for us, but it will not write out the
7416 final bytes of the section. This may be a bug in BFD, but it is
7417 easier to fix it here since that is how the other a.out targets
7418 work. */
7419 int align;
7420
7421 align = bfd_get_section_alignment (stdoutput, segment);
7422 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
7423 }
7424 #endif
7425
7426 return size;
7427 }
7428
7429 /* On the i386, PC-relative offsets are relative to the start of the
7430 next instruction. That is, the address of the offset, plus its
7431 size, since the offset is always the last part of the insn. */
7432
7433 long
7434 md_pcrel_from (fixS *fixP)
7435 {
7436 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
7437 }
7438
7439 #ifndef I386COFF
7440
7441 static void
7442 s_bss (int ignore ATTRIBUTE_UNUSED)
7443 {
7444 int temp;
7445
7446 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7447 if (IS_ELF)
7448 obj_elf_section_change_hook ();
7449 #endif
7450 temp = get_absolute_expression ();
7451 subseg_set (bss_section, (subsegT) temp);
7452 demand_empty_rest_of_line ();
7453 }
7454
7455 #endif
7456
7457 void
7458 i386_validate_fix (fixS *fixp)
7459 {
7460 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
7461 {
7462 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
7463 {
7464 if (!object_64bit)
7465 abort ();
7466 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
7467 }
7468 else
7469 {
7470 if (!object_64bit)
7471 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
7472 else
7473 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
7474 }
7475 fixp->fx_subsy = 0;
7476 }
7477 }
7478
7479 arelent *
7480 tc_gen_reloc (section, fixp)
7481 asection *section ATTRIBUTE_UNUSED;
7482 fixS *fixp;
7483 {
7484 arelent *rel;
7485 bfd_reloc_code_real_type code;
7486
7487 switch (fixp->fx_r_type)
7488 {
7489 case BFD_RELOC_X86_64_PLT32:
7490 case BFD_RELOC_X86_64_GOT32:
7491 case BFD_RELOC_X86_64_GOTPCREL:
7492 case BFD_RELOC_386_PLT32:
7493 case BFD_RELOC_386_GOT32:
7494 case BFD_RELOC_386_GOTOFF:
7495 case BFD_RELOC_386_GOTPC:
7496 case BFD_RELOC_386_TLS_GD:
7497 case BFD_RELOC_386_TLS_LDM:
7498 case BFD_RELOC_386_TLS_LDO_32:
7499 case BFD_RELOC_386_TLS_IE_32:
7500 case BFD_RELOC_386_TLS_IE:
7501 case BFD_RELOC_386_TLS_GOTIE:
7502 case BFD_RELOC_386_TLS_LE_32:
7503 case BFD_RELOC_386_TLS_LE:
7504 case BFD_RELOC_386_TLS_GOTDESC:
7505 case BFD_RELOC_386_TLS_DESC_CALL:
7506 case BFD_RELOC_X86_64_TLSGD:
7507 case BFD_RELOC_X86_64_TLSLD:
7508 case BFD_RELOC_X86_64_DTPOFF32:
7509 case BFD_RELOC_X86_64_DTPOFF64:
7510 case BFD_RELOC_X86_64_GOTTPOFF:
7511 case BFD_RELOC_X86_64_TPOFF32:
7512 case BFD_RELOC_X86_64_TPOFF64:
7513 case BFD_RELOC_X86_64_GOTOFF64:
7514 case BFD_RELOC_X86_64_GOTPC32:
7515 case BFD_RELOC_X86_64_GOT64:
7516 case BFD_RELOC_X86_64_GOTPCREL64:
7517 case BFD_RELOC_X86_64_GOTPC64:
7518 case BFD_RELOC_X86_64_GOTPLT64:
7519 case BFD_RELOC_X86_64_PLTOFF64:
7520 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
7521 case BFD_RELOC_X86_64_TLSDESC_CALL:
7522 case BFD_RELOC_RVA:
7523 case BFD_RELOC_VTABLE_ENTRY:
7524 case BFD_RELOC_VTABLE_INHERIT:
7525 #ifdef TE_PE
7526 case BFD_RELOC_32_SECREL:
7527 #endif
7528 code = fixp->fx_r_type;
7529 break;
7530 case BFD_RELOC_X86_64_32S:
7531 if (!fixp->fx_pcrel)
7532 {
7533 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
7534 code = fixp->fx_r_type;
7535 break;
7536 }
7537 default:
7538 if (fixp->fx_pcrel)
7539 {
7540 switch (fixp->fx_size)
7541 {
7542 default:
7543 as_bad_where (fixp->fx_file, fixp->fx_line,
7544 _("can not do %d byte pc-relative relocation"),
7545 fixp->fx_size);
7546 code = BFD_RELOC_32_PCREL;
7547 break;
7548 case 1: code = BFD_RELOC_8_PCREL; break;
7549 case 2: code = BFD_RELOC_16_PCREL; break;
7550 case 4: code = BFD_RELOC_32_PCREL; break;
7551 #ifdef BFD64
7552 case 8: code = BFD_RELOC_64_PCREL; break;
7553 #endif
7554 }
7555 }
7556 else
7557 {
7558 switch (fixp->fx_size)
7559 {
7560 default:
7561 as_bad_where (fixp->fx_file, fixp->fx_line,
7562 _("can not do %d byte relocation"),
7563 fixp->fx_size);
7564 code = BFD_RELOC_32;
7565 break;
7566 case 1: code = BFD_RELOC_8; break;
7567 case 2: code = BFD_RELOC_16; break;
7568 case 4: code = BFD_RELOC_32; break;
7569 #ifdef BFD64
7570 case 8: code = BFD_RELOC_64; break;
7571 #endif
7572 }
7573 }
7574 break;
7575 }
7576
7577 if ((code == BFD_RELOC_32
7578 || code == BFD_RELOC_32_PCREL
7579 || code == BFD_RELOC_X86_64_32S)
7580 && GOT_symbol
7581 && fixp->fx_addsy == GOT_symbol)
7582 {
7583 if (!object_64bit)
7584 code = BFD_RELOC_386_GOTPC;
7585 else
7586 code = BFD_RELOC_X86_64_GOTPC32;
7587 }
7588 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
7589 && GOT_symbol
7590 && fixp->fx_addsy == GOT_symbol)
7591 {
7592 code = BFD_RELOC_X86_64_GOTPC64;
7593 }
7594
7595 rel = (arelent *) xmalloc (sizeof (arelent));
7596 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
7597 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
7598
7599 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
7600
7601 if (!use_rela_relocations)
7602 {
7603 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
7604 vtable entry to be used in the relocation's section offset. */
7605 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
7606 rel->address = fixp->fx_offset;
7607
7608 rel->addend = 0;
7609 }
7610 /* Use the rela in 64bit mode. */
7611 else
7612 {
7613 if (!fixp->fx_pcrel)
7614 rel->addend = fixp->fx_offset;
7615 else
7616 switch (code)
7617 {
7618 case BFD_RELOC_X86_64_PLT32:
7619 case BFD_RELOC_X86_64_GOT32:
7620 case BFD_RELOC_X86_64_GOTPCREL:
7621 case BFD_RELOC_X86_64_TLSGD:
7622 case BFD_RELOC_X86_64_TLSLD:
7623 case BFD_RELOC_X86_64_GOTTPOFF:
7624 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
7625 case BFD_RELOC_X86_64_TLSDESC_CALL:
7626 rel->addend = fixp->fx_offset - fixp->fx_size;
7627 break;
7628 default:
7629 rel->addend = (section->vma
7630 - fixp->fx_size
7631 + fixp->fx_addnumber
7632 + md_pcrel_from (fixp));
7633 break;
7634 }
7635 }
7636
7637 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
7638 if (rel->howto == NULL)
7639 {
7640 as_bad_where (fixp->fx_file, fixp->fx_line,
7641 _("cannot represent relocation type %s"),
7642 bfd_get_reloc_code_name (code));
7643 /* Set howto to a garbage value so that we can keep going. */
7644 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
7645 assert (rel->howto != NULL);
7646 }
7647
7648 return rel;
7649 }
7650
7651 \f
7652 /* Parse operands using Intel syntax. This implements a recursive descent
7653 parser based on the BNF grammar published in Appendix B of the MASM 6.1
7654 Programmer's Guide.
7655
7656 FIXME: We do not recognize the full operand grammar defined in the MASM
7657 documentation. In particular, all the structure/union and
7658 high-level macro operands are missing.
7659
7660 Uppercase words are terminals, lower case words are non-terminals.
7661 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
7662 bars '|' denote choices. Most grammar productions are implemented in
7663 functions called 'intel_<production>'.
7664
7665 Initial production is 'expr'.
7666
7667 addOp + | -
7668
7669 alpha [a-zA-Z]
7670
7671 binOp & | AND | \| | OR | ^ | XOR
7672
7673 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
7674
7675 constant digits [[ radixOverride ]]
7676
7677 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
7678
7679 digits decdigit
7680 | digits decdigit
7681 | digits hexdigit
7682
7683 decdigit [0-9]
7684
7685 e04 e04 addOp e05
7686 | e05
7687
7688 e05 e05 binOp e06
7689 | e06
7690
7691 e06 e06 mulOp e09
7692 | e09
7693
7694 e09 OFFSET e10
7695 | SHORT e10
7696 | + e10
7697 | - e10
7698 | ~ e10
7699 | NOT e10
7700 | e09 PTR e10
7701 | e09 : e10
7702 | e10
7703
7704 e10 e10 [ expr ]
7705 | e11
7706
7707 e11 ( expr )
7708 | [ expr ]
7709 | constant
7710 | dataType
7711 | id
7712 | $
7713 | register
7714
7715 => expr expr cmpOp e04
7716 | e04
7717
7718 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
7719 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
7720
7721 hexdigit a | b | c | d | e | f
7722 | A | B | C | D | E | F
7723
7724 id alpha
7725 | id alpha
7726 | id decdigit
7727
7728 mulOp * | / | % | MOD | << | SHL | >> | SHR
7729
7730 quote " | '
7731
7732 register specialRegister
7733 | gpRegister
7734 | byteRegister
7735
7736 segmentRegister CS | DS | ES | FS | GS | SS
7737
7738 specialRegister CR0 | CR2 | CR3 | CR4
7739 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
7740 | TR3 | TR4 | TR5 | TR6 | TR7
7741
7742 We simplify the grammar in obvious places (e.g., register parsing is
7743 done by calling parse_register) and eliminate immediate left recursion
7744 to implement a recursive-descent parser.
7745
7746 expr e04 expr'
7747
7748 expr' cmpOp e04 expr'
7749 | Empty
7750
7751 e04 e05 e04'
7752
7753 e04' addOp e05 e04'
7754 | Empty
7755
7756 e05 e06 e05'
7757
7758 e05' binOp e06 e05'
7759 | Empty
7760
7761 e06 e09 e06'
7762
7763 e06' mulOp e09 e06'
7764 | Empty
7765
7766 e09 OFFSET e10 e09'
7767 | SHORT e10'
7768 | + e10'
7769 | - e10'
7770 | ~ e10'
7771 | NOT e10'
7772 | e10 e09'
7773
7774 e09' PTR e10 e09'
7775 | : e10 e09'
7776 | Empty
7777
7778 e10 e11 e10'
7779
7780 e10' [ expr ] e10'
7781 | Empty
7782
7783 e11 ( expr )
7784 | [ expr ]
7785 | BYTE
7786 | WORD
7787 | DWORD
7788 | FWORD
7789 | QWORD
7790 | TBYTE
7791 | OWORD
7792 | XMMWORD
7793 | .
7794 | $
7795 | register
7796 | id
7797 | constant */
7798
7799 /* Parsing structure for the intel syntax parser. Used to implement the
7800 semantic actions for the operand grammar. */
7801 struct intel_parser_s
7802 {
7803 char *op_string; /* The string being parsed. */
7804 int got_a_float; /* Whether the operand is a float. */
7805 int op_modifier; /* Operand modifier. */
7806 int is_mem; /* 1 if operand is memory reference. */
7807 int in_offset; /* >=1 if parsing operand of offset. */
7808 int in_bracket; /* >=1 if parsing operand in brackets. */
7809 const reg_entry *reg; /* Last register reference found. */
7810 char *disp; /* Displacement string being built. */
7811 char *next_operand; /* Resume point when splitting operands. */
7812 };
7813
7814 static struct intel_parser_s intel_parser;
7815
7816 /* Token structure for parsing intel syntax. */
7817 struct intel_token
7818 {
7819 int code; /* Token code. */
7820 const reg_entry *reg; /* Register entry for register tokens. */
7821 char *str; /* String representation. */
7822 };
7823
7824 static struct intel_token cur_token, prev_token;
7825
7826 /* Token codes for the intel parser. Since T_SHORT is already used
7827 by COFF, undefine it first to prevent a warning. */
7828 #define T_NIL -1
7829 #define T_CONST 1
7830 #define T_REG 2
7831 #define T_BYTE 3
7832 #define T_WORD 4
7833 #define T_DWORD 5
7834 #define T_FWORD 6
7835 #define T_QWORD 7
7836 #define T_TBYTE 8
7837 #define T_XMMWORD 9
7838 #undef T_SHORT
7839 #define T_SHORT 10
7840 #define T_OFFSET 11
7841 #define T_PTR 12
7842 #define T_ID 13
7843 #define T_SHL 14
7844 #define T_SHR 15
7845
7846 /* Prototypes for intel parser functions. */
7847 static int intel_match_token (int);
7848 static void intel_putback_token (void);
7849 static void intel_get_token (void);
7850 static int intel_expr (void);
7851 static int intel_e04 (void);
7852 static int intel_e05 (void);
7853 static int intel_e06 (void);
7854 static int intel_e09 (void);
7855 static int intel_e10 (void);
7856 static int intel_e11 (void);
7857
7858 static int
7859 i386_intel_operand (char *operand_string, int got_a_float)
7860 {
7861 int ret;
7862 char *p;
7863
7864 p = intel_parser.op_string = xstrdup (operand_string);
7865 intel_parser.disp = (char *) xmalloc (strlen (operand_string) + 1);
7866
7867 for (;;)
7868 {
7869 /* Initialize token holders. */
7870 cur_token.code = prev_token.code = T_NIL;
7871 cur_token.reg = prev_token.reg = NULL;
7872 cur_token.str = prev_token.str = NULL;
7873
7874 /* Initialize parser structure. */
7875 intel_parser.got_a_float = got_a_float;
7876 intel_parser.op_modifier = 0;
7877 intel_parser.is_mem = 0;
7878 intel_parser.in_offset = 0;
7879 intel_parser.in_bracket = 0;
7880 intel_parser.reg = NULL;
7881 intel_parser.disp[0] = '\0';
7882 intel_parser.next_operand = NULL;
7883
7884 /* Read the first token and start the parser. */
7885 intel_get_token ();
7886 ret = intel_expr ();
7887
7888 if (!ret)
7889 break;
7890
7891 if (cur_token.code != T_NIL)
7892 {
7893 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
7894 current_templates->start->name, cur_token.str);
7895 ret = 0;
7896 }
7897 /* If we found a memory reference, hand it over to i386_displacement
7898 to fill in the rest of the operand fields. */
7899 else if (intel_parser.is_mem)
7900 {
7901 if ((i.mem_operands == 1
7902 && !current_templates->start->opcode_modifier.isstring)
7903 || i.mem_operands == 2)
7904 {
7905 as_bad (_("too many memory references for '%s'"),
7906 current_templates->start->name);
7907 ret = 0;
7908 }
7909 else
7910 {
7911 char *s = intel_parser.disp;
7912 i.types[this_operand].bitfield.mem = 1;
7913 i.mem_operands++;
7914
7915 if (!quiet_warnings && intel_parser.is_mem < 0)
7916 /* See the comments in intel_bracket_expr. */
7917 as_warn (_("Treating `%s' as memory reference"), operand_string);
7918
7919 /* Add the displacement expression. */
7920 if (*s != '\0')
7921 ret = i386_displacement (s, s + strlen (s));
7922 if (ret)
7923 {
7924 /* Swap base and index in 16-bit memory operands like
7925 [si+bx]. Since i386_index_check is also used in AT&T
7926 mode we have to do that here. */
7927 if (i.base_reg
7928 && i.index_reg
7929 && i.base_reg->reg_type.bitfield.reg16
7930 && i.index_reg->reg_type.bitfield.reg16
7931 && i.base_reg->reg_num >= 6
7932 && i.index_reg->reg_num < 6)
7933 {
7934 const reg_entry *base = i.index_reg;
7935
7936 i.index_reg = i.base_reg;
7937 i.base_reg = base;
7938 }
7939 ret = i386_index_check (operand_string);
7940 }
7941 }
7942 }
7943
7944 /* Constant and OFFSET expressions are handled by i386_immediate. */
7945 else if ((intel_parser.op_modifier & (1 << T_OFFSET))
7946 || intel_parser.reg == NULL)
7947 ret = i386_immediate (intel_parser.disp);
7948
7949 if (intel_parser.next_operand && this_operand >= MAX_OPERANDS - 1)
7950 ret = 0;
7951 if (!ret || !intel_parser.next_operand)
7952 break;
7953 intel_parser.op_string = intel_parser.next_operand;
7954 this_operand = i.operands++;
7955 i.types[this_operand].bitfield.unspecified = 1;
7956 }
7957
7958 free (p);
7959 free (intel_parser.disp);
7960
7961 return ret;
7962 }
7963
7964 #define NUM_ADDRESS_REGS (!!i.base_reg + !!i.index_reg)
7965
7966 /* expr e04 expr'
7967
7968 expr' cmpOp e04 expr'
7969 | Empty */
7970 static int
7971 intel_expr (void)
7972 {
7973 /* XXX Implement the comparison operators. */
7974 return intel_e04 ();
7975 }
7976
7977 /* e04 e05 e04'
7978
7979 e04' addOp e05 e04'
7980 | Empty */
7981 static int
7982 intel_e04 (void)
7983 {
7984 int nregs = -1;
7985
7986 for (;;)
7987 {
7988 if (!intel_e05())
7989 return 0;
7990
7991 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
7992 i.base_reg = i386_regtab + REGNAM_AL; /* al is invalid as base */
7993
7994 if (cur_token.code == '+')
7995 nregs = -1;
7996 else if (cur_token.code == '-')
7997 nregs = NUM_ADDRESS_REGS;
7998 else
7999 return 1;
8000
8001 strcat (intel_parser.disp, cur_token.str);
8002 intel_match_token (cur_token.code);
8003 }
8004 }
8005
8006 /* e05 e06 e05'
8007
8008 e05' binOp e06 e05'
8009 | Empty */
8010 static int
8011 intel_e05 (void)
8012 {
8013 int nregs = ~NUM_ADDRESS_REGS;
8014
8015 for (;;)
8016 {
8017 if (!intel_e06())
8018 return 0;
8019
8020 if (cur_token.code == '&'
8021 || cur_token.code == '|'
8022 || cur_token.code == '^')
8023 {
8024 char str[2];
8025
8026 str[0] = cur_token.code;
8027 str[1] = 0;
8028 strcat (intel_parser.disp, str);
8029 }
8030 else
8031 break;
8032
8033 intel_match_token (cur_token.code);
8034
8035 if (nregs < 0)
8036 nregs = ~nregs;
8037 }
8038 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
8039 i.base_reg = i386_regtab + REGNAM_AL + 1; /* cl is invalid as base */
8040 return 1;
8041 }
8042
8043 /* e06 e09 e06'
8044
8045 e06' mulOp e09 e06'
8046 | Empty */
8047 static int
8048 intel_e06 (void)
8049 {
8050 int nregs = ~NUM_ADDRESS_REGS;
8051
8052 for (;;)
8053 {
8054 if (!intel_e09())
8055 return 0;
8056
8057 if (cur_token.code == '*'
8058 || cur_token.code == '/'
8059 || cur_token.code == '%')
8060 {
8061 char str[2];
8062
8063 str[0] = cur_token.code;
8064 str[1] = 0;
8065 strcat (intel_parser.disp, str);
8066 }
8067 else if (cur_token.code == T_SHL)
8068 strcat (intel_parser.disp, "<<");
8069 else if (cur_token.code == T_SHR)
8070 strcat (intel_parser.disp, ">>");
8071 else
8072 break;
8073
8074 intel_match_token (cur_token.code);
8075
8076 if (nregs < 0)
8077 nregs = ~nregs;
8078 }
8079 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
8080 i.base_reg = i386_regtab + REGNAM_AL + 2; /* dl is invalid as base */
8081 return 1;
8082 }
8083
8084 /* e09 OFFSET e09
8085 | SHORT e09
8086 | + e09
8087 | - e09
8088 | ~ e09
8089 | NOT e09
8090 | e10 e09'
8091
8092 e09' PTR e10 e09'
8093 | : e10 e09'
8094 | Empty */
8095 static int
8096 intel_e09 (void)
8097 {
8098 int nregs = ~NUM_ADDRESS_REGS;
8099 int in_offset = 0;
8100
8101 for (;;)
8102 {
8103 /* Don't consume constants here. */
8104 if (cur_token.code == '+' || cur_token.code == '-')
8105 {
8106 /* Need to look one token ahead - if the next token
8107 is a constant, the current token is its sign. */
8108 int next_code;
8109
8110 intel_match_token (cur_token.code);
8111 next_code = cur_token.code;
8112 intel_putback_token ();
8113 if (next_code == T_CONST)
8114 break;
8115 }
8116
8117 /* e09 OFFSET e09 */
8118 if (cur_token.code == T_OFFSET)
8119 {
8120 if (!in_offset++)
8121 ++intel_parser.in_offset;
8122 }
8123
8124 /* e09 SHORT e09 */
8125 else if (cur_token.code == T_SHORT)
8126 intel_parser.op_modifier |= 1 << T_SHORT;
8127
8128 /* e09 + e09 */
8129 else if (cur_token.code == '+')
8130 strcat (intel_parser.disp, "+");
8131
8132 /* e09 - e09
8133 | ~ e09
8134 | NOT e09 */
8135 else if (cur_token.code == '-' || cur_token.code == '~')
8136 {
8137 char str[2];
8138
8139 if (nregs < 0)
8140 nregs = ~nregs;
8141 str[0] = cur_token.code;
8142 str[1] = 0;
8143 strcat (intel_parser.disp, str);
8144 }
8145
8146 /* e09 e10 e09' */
8147 else
8148 break;
8149
8150 intel_match_token (cur_token.code);
8151 }
8152
8153 for (;;)
8154 {
8155 if (!intel_e10 ())
8156 return 0;
8157
8158 /* e09' PTR e10 e09' */
8159 if (cur_token.code == T_PTR)
8160 {
8161 char suffix;
8162
8163 if (prev_token.code == T_BYTE)
8164 {
8165 suffix = BYTE_MNEM_SUFFIX;
8166 i.types[this_operand].bitfield.byte = 1;
8167 }
8168
8169 else if (prev_token.code == T_WORD)
8170 {
8171 if (current_templates->start->name[0] == 'l'
8172 && current_templates->start->name[2] == 's'
8173 && current_templates->start->name[3] == 0)
8174 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
8175 else if (intel_parser.got_a_float == 2) /* "fi..." */
8176 suffix = SHORT_MNEM_SUFFIX;
8177 else
8178 suffix = WORD_MNEM_SUFFIX;
8179 i.types[this_operand].bitfield.word = 1;
8180 }
8181
8182 else if (prev_token.code == T_DWORD)
8183 {
8184 if (current_templates->start->name[0] == 'l'
8185 && current_templates->start->name[2] == 's'
8186 && current_templates->start->name[3] == 0)
8187 suffix = WORD_MNEM_SUFFIX;
8188 else if (flag_code == CODE_16BIT
8189 && (current_templates->start->opcode_modifier.jump
8190 || current_templates->start->opcode_modifier.jumpdword))
8191 suffix = LONG_DOUBLE_MNEM_SUFFIX;
8192 else if (intel_parser.got_a_float == 1) /* "f..." */
8193 suffix = SHORT_MNEM_SUFFIX;
8194 else
8195 suffix = LONG_MNEM_SUFFIX;
8196 i.types[this_operand].bitfield.dword = 1;
8197 }
8198
8199 else if (prev_token.code == T_FWORD)
8200 {
8201 if (current_templates->start->name[0] == 'l'
8202 && current_templates->start->name[2] == 's'
8203 && current_templates->start->name[3] == 0)
8204 suffix = LONG_MNEM_SUFFIX;
8205 else if (!intel_parser.got_a_float)
8206 {
8207 if (flag_code == CODE_16BIT)
8208 add_prefix (DATA_PREFIX_OPCODE);
8209 suffix = LONG_DOUBLE_MNEM_SUFFIX;
8210 }
8211 else
8212 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
8213 i.types[this_operand].bitfield.fword = 1;
8214 }
8215
8216 else if (prev_token.code == T_QWORD)
8217 {
8218 if (intel_parser.got_a_float == 1) /* "f..." */
8219 suffix = LONG_MNEM_SUFFIX;
8220 else
8221 suffix = QWORD_MNEM_SUFFIX;
8222 i.types[this_operand].bitfield.qword = 1;
8223 }
8224
8225 else if (prev_token.code == T_TBYTE)
8226 {
8227 if (intel_parser.got_a_float == 1)
8228 suffix = LONG_DOUBLE_MNEM_SUFFIX;
8229 else
8230 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
8231 }
8232
8233 else if (prev_token.code == T_XMMWORD)
8234 {
8235 suffix = XMMWORD_MNEM_SUFFIX;
8236 i.types[this_operand].bitfield.xmmword = 1;
8237 }
8238
8239 else
8240 {
8241 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
8242 return 0;
8243 }
8244
8245 i.types[this_operand].bitfield.unspecified = 0;
8246
8247 /* Operands for jump/call using 'ptr' notation denote absolute
8248 addresses. */
8249 if (current_templates->start->opcode_modifier.jump
8250 || current_templates->start->opcode_modifier.jumpdword)
8251 i.types[this_operand].bitfield.jumpabsolute = 1;
8252
8253 if (current_templates->start->base_opcode == 0x8d /* lea */)
8254 ;
8255 else if (!i.suffix)
8256 i.suffix = suffix;
8257 else if (i.suffix != suffix)
8258 {
8259 as_bad (_("Conflicting operand modifiers"));
8260 return 0;
8261 }
8262
8263 }
8264
8265 /* e09' : e10 e09' */
8266 else if (cur_token.code == ':')
8267 {
8268 if (prev_token.code != T_REG)
8269 {
8270 /* While {call,jmp} SSSS:OOOO is MASM syntax only when SSSS is a
8271 segment/group identifier (which we don't have), using comma
8272 as the operand separator there is even less consistent, since
8273 there all branches only have a single operand. */
8274 if (this_operand != 0
8275 || intel_parser.in_offset
8276 || intel_parser.in_bracket
8277 || (!current_templates->start->opcode_modifier.jump
8278 && !current_templates->start->opcode_modifier.jumpdword
8279 && !current_templates->start->opcode_modifier.jumpintersegment
8280 && !current_templates->start->operand_types[0].bitfield.jumpabsolute))
8281 return intel_match_token (T_NIL);
8282 /* Remember the start of the 2nd operand and terminate 1st
8283 operand here.
8284 XXX This isn't right, yet (when SSSS:OOOO is right operand of
8285 another expression), but it gets at least the simplest case
8286 (a plain number or symbol on the left side) right. */
8287 intel_parser.next_operand = intel_parser.op_string;
8288 *--intel_parser.op_string = '\0';
8289 return intel_match_token (':');
8290 }
8291 }
8292
8293 /* e09' Empty */
8294 else
8295 break;
8296
8297 intel_match_token (cur_token.code);
8298
8299 }
8300
8301 if (in_offset)
8302 {
8303 --intel_parser.in_offset;
8304 if (nregs < 0)
8305 nregs = ~nregs;
8306 if (NUM_ADDRESS_REGS > nregs)
8307 {
8308 as_bad (_("Invalid operand to `OFFSET'"));
8309 return 0;
8310 }
8311 intel_parser.op_modifier |= 1 << T_OFFSET;
8312 }
8313
8314 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
8315 i.base_reg = i386_regtab + REGNAM_AL + 3; /* bl is invalid as base */
8316 return 1;
8317 }
8318
8319 static int
8320 intel_bracket_expr (void)
8321 {
8322 int was_offset = intel_parser.op_modifier & (1 << T_OFFSET);
8323 const char *start = intel_parser.op_string;
8324 int len;
8325
8326 if (i.op[this_operand].regs)
8327 return intel_match_token (T_NIL);
8328
8329 intel_match_token ('[');
8330
8331 /* Mark as a memory operand only if it's not already known to be an
8332 offset expression. If it's an offset expression, we need to keep
8333 the brace in. */
8334 if (!intel_parser.in_offset)
8335 {
8336 ++intel_parser.in_bracket;
8337
8338 /* Operands for jump/call inside brackets denote absolute addresses. */
8339 if (current_templates->start->opcode_modifier.jump
8340 || current_templates->start->opcode_modifier.jumpdword)
8341 i.types[this_operand].bitfield.jumpabsolute = 1;
8342
8343 /* Unfortunately gas always diverged from MASM in a respect that can't
8344 be easily fixed without risking to break code sequences likely to be
8345 encountered (the testsuite even check for this): MASM doesn't consider
8346 an expression inside brackets unconditionally as a memory reference.
8347 When that is e.g. a constant, an offset expression, or the sum of the
8348 two, this is still taken as a constant load. gas, however, always
8349 treated these as memory references. As a compromise, we'll try to make
8350 offset expressions inside brackets work the MASM way (since that's
8351 less likely to be found in real world code), but make constants alone
8352 continue to work the traditional gas way. In either case, issue a
8353 warning. */
8354 intel_parser.op_modifier &= ~was_offset;
8355 }
8356 else
8357 strcat (intel_parser.disp, "[");
8358
8359 /* Add a '+' to the displacement string if necessary. */
8360 if (*intel_parser.disp != '\0'
8361 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
8362 strcat (intel_parser.disp, "+");
8363
8364 if (intel_expr ()
8365 && (len = intel_parser.op_string - start - 1,
8366 intel_match_token (']')))
8367 {
8368 /* Preserve brackets when the operand is an offset expression. */
8369 if (intel_parser.in_offset)
8370 strcat (intel_parser.disp, "]");
8371 else
8372 {
8373 --intel_parser.in_bracket;
8374 if (i.base_reg || i.index_reg)
8375 intel_parser.is_mem = 1;
8376 if (!intel_parser.is_mem)
8377 {
8378 if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
8379 /* Defer the warning until all of the operand was parsed. */
8380 intel_parser.is_mem = -1;
8381 else if (!quiet_warnings)
8382 as_warn (_("`[%.*s]' taken to mean just `%.*s'"),
8383 len, start, len, start);
8384 }
8385 }
8386 intel_parser.op_modifier |= was_offset;
8387
8388 return 1;
8389 }
8390 return 0;
8391 }
8392
8393 /* e10 e11 e10'
8394
8395 e10' [ expr ] e10'
8396 | Empty */
8397 static int
8398 intel_e10 (void)
8399 {
8400 if (!intel_e11 ())
8401 return 0;
8402
8403 while (cur_token.code == '[')
8404 {
8405 if (!intel_bracket_expr ())
8406 return 0;
8407 }
8408
8409 return 1;
8410 }
8411
8412 /* e11 ( expr )
8413 | [ expr ]
8414 | BYTE
8415 | WORD
8416 | DWORD
8417 | FWORD
8418 | QWORD
8419 | TBYTE
8420 | OWORD
8421 | XMMWORD
8422 | $
8423 | .
8424 | register
8425 | id
8426 | constant */
8427 static int
8428 intel_e11 (void)
8429 {
8430 switch (cur_token.code)
8431 {
8432 /* e11 ( expr ) */
8433 case '(':
8434 intel_match_token ('(');
8435 strcat (intel_parser.disp, "(");
8436
8437 if (intel_expr () && intel_match_token (')'))
8438 {
8439 strcat (intel_parser.disp, ")");
8440 return 1;
8441 }
8442 return 0;
8443
8444 /* e11 [ expr ] */
8445 case '[':
8446 return intel_bracket_expr ();
8447
8448 /* e11 $
8449 | . */
8450 case '.':
8451 strcat (intel_parser.disp, cur_token.str);
8452 intel_match_token (cur_token.code);
8453
8454 /* Mark as a memory operand only if it's not already known to be an
8455 offset expression. */
8456 if (!intel_parser.in_offset)
8457 intel_parser.is_mem = 1;
8458
8459 return 1;
8460
8461 /* e11 register */
8462 case T_REG:
8463 {
8464 const reg_entry *reg = intel_parser.reg = cur_token.reg;
8465
8466 intel_match_token (T_REG);
8467
8468 /* Check for segment change. */
8469 if (cur_token.code == ':')
8470 {
8471 if (!reg->reg_type.bitfield.sreg2
8472 && !reg->reg_type.bitfield.sreg3)
8473 {
8474 as_bad (_("`%s' is not a valid segment register"),
8475 reg->reg_name);
8476 return 0;
8477 }
8478 else if (i.seg[i.mem_operands])
8479 as_warn (_("Extra segment override ignored"));
8480 else
8481 {
8482 if (!intel_parser.in_offset)
8483 intel_parser.is_mem = 1;
8484 switch (reg->reg_num)
8485 {
8486 case 0:
8487 i.seg[i.mem_operands] = &es;
8488 break;
8489 case 1:
8490 i.seg[i.mem_operands] = &cs;
8491 break;
8492 case 2:
8493 i.seg[i.mem_operands] = &ss;
8494 break;
8495 case 3:
8496 i.seg[i.mem_operands] = &ds;
8497 break;
8498 case 4:
8499 i.seg[i.mem_operands] = &fs;
8500 break;
8501 case 5:
8502 i.seg[i.mem_operands] = &gs;
8503 break;
8504 }
8505 }
8506 }
8507
8508 /* Not a segment register. Check for register scaling. */
8509 else if (cur_token.code == '*')
8510 {
8511 if (!intel_parser.in_bracket)
8512 {
8513 as_bad (_("Register scaling only allowed in memory operands"));
8514 return 0;
8515 }
8516
8517 if (reg->reg_type.bitfield.reg16) /* Disallow things like [si*1]. */
8518 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
8519 else if (i.index_reg)
8520 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
8521
8522 /* What follows must be a valid scale. */
8523 intel_match_token ('*');
8524 i.index_reg = reg;
8525 i.types[this_operand].bitfield.baseindex = 1;
8526
8527 /* Set the scale after setting the register (otherwise,
8528 i386_scale will complain) */
8529 if (cur_token.code == '+' || cur_token.code == '-')
8530 {
8531 char *str, sign = cur_token.code;
8532 intel_match_token (cur_token.code);
8533 if (cur_token.code != T_CONST)
8534 {
8535 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
8536 cur_token.str);
8537 return 0;
8538 }
8539 str = (char *) xmalloc (strlen (cur_token.str) + 2);
8540 strcpy (str + 1, cur_token.str);
8541 *str = sign;
8542 if (!i386_scale (str))
8543 return 0;
8544 free (str);
8545 }
8546 else if (!i386_scale (cur_token.str))
8547 return 0;
8548 intel_match_token (cur_token.code);
8549 }
8550
8551 /* No scaling. If this is a memory operand, the register is either a
8552 base register (first occurrence) or an index register (second
8553 occurrence). */
8554 else if (intel_parser.in_bracket)
8555 {
8556
8557 if (!i.base_reg)
8558 i.base_reg = reg;
8559 else if (!i.index_reg)
8560 i.index_reg = reg;
8561 else
8562 {
8563 as_bad (_("Too many register references in memory operand"));
8564 return 0;
8565 }
8566
8567 i.types[this_operand].bitfield.baseindex = 1;
8568 }
8569
8570 /* It's neither base nor index. */
8571 else if (!intel_parser.in_offset && !intel_parser.is_mem)
8572 {
8573 i386_operand_type temp = reg->reg_type;
8574 temp.bitfield.baseindex = 0;
8575 i.types[this_operand] = operand_type_or (i.types[this_operand],
8576 temp);
8577 i.types[this_operand].bitfield.unspecified = 0;
8578 i.op[this_operand].regs = reg;
8579 i.reg_operands++;
8580 }
8581 else
8582 {
8583 as_bad (_("Invalid use of register"));
8584 return 0;
8585 }
8586
8587 /* Since registers are not part of the displacement string (except
8588 when we're parsing offset operands), we may need to remove any
8589 preceding '+' from the displacement string. */
8590 if (*intel_parser.disp != '\0'
8591 && !intel_parser.in_offset)
8592 {
8593 char *s = intel_parser.disp;
8594 s += strlen (s) - 1;
8595 if (*s == '+')
8596 *s = '\0';
8597 }
8598
8599 return 1;
8600 }
8601
8602 /* e11 BYTE
8603 | WORD
8604 | DWORD
8605 | FWORD
8606 | QWORD
8607 | TBYTE
8608 | OWORD
8609 | XMMWORD */
8610 case T_BYTE:
8611 case T_WORD:
8612 case T_DWORD:
8613 case T_FWORD:
8614 case T_QWORD:
8615 case T_TBYTE:
8616 case T_XMMWORD:
8617 intel_match_token (cur_token.code);
8618
8619 if (cur_token.code == T_PTR)
8620 return 1;
8621
8622 /* It must have been an identifier. */
8623 intel_putback_token ();
8624 cur_token.code = T_ID;
8625 /* FALLTHRU */
8626
8627 /* e11 id
8628 | constant */
8629 case T_ID:
8630 if (!intel_parser.in_offset && intel_parser.is_mem <= 0)
8631 {
8632 symbolS *symbolP;
8633
8634 /* The identifier represents a memory reference only if it's not
8635 preceded by an offset modifier and if it's not an equate. */
8636 symbolP = symbol_find(cur_token.str);
8637 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
8638 intel_parser.is_mem = 1;
8639 }
8640 /* FALLTHRU */
8641
8642 case T_CONST:
8643 case '-':
8644 case '+':
8645 {
8646 char *save_str, sign = 0;
8647
8648 /* Allow constants that start with `+' or `-'. */
8649 if (cur_token.code == '-' || cur_token.code == '+')
8650 {
8651 sign = cur_token.code;
8652 intel_match_token (cur_token.code);
8653 if (cur_token.code != T_CONST)
8654 {
8655 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
8656 cur_token.str);
8657 return 0;
8658 }
8659 }
8660
8661 save_str = (char *) xmalloc (strlen (cur_token.str) + 2);
8662 strcpy (save_str + !!sign, cur_token.str);
8663 if (sign)
8664 *save_str = sign;
8665
8666 /* Get the next token to check for register scaling. */
8667 intel_match_token (cur_token.code);
8668
8669 /* Check if this constant is a scaling factor for an
8670 index register. */
8671 if (cur_token.code == '*')
8672 {
8673 if (intel_match_token ('*') && cur_token.code == T_REG)
8674 {
8675 const reg_entry *reg = cur_token.reg;
8676
8677 if (!intel_parser.in_bracket)
8678 {
8679 as_bad (_("Register scaling only allowed "
8680 "in memory operands"));
8681 return 0;
8682 }
8683
8684 /* Disallow things like [1*si].
8685 sp and esp are invalid as index. */
8686 if (reg->reg_type.bitfield.reg16)
8687 reg = i386_regtab + REGNAM_AX + 4;
8688 else if (i.index_reg)
8689 reg = i386_regtab + REGNAM_EAX + 4;
8690
8691 /* The constant is followed by `* reg', so it must be
8692 a valid scale. */
8693 i.index_reg = reg;
8694 i.types[this_operand].bitfield.baseindex = 1;
8695
8696 /* Set the scale after setting the register (otherwise,
8697 i386_scale will complain) */
8698 if (!i386_scale (save_str))
8699 return 0;
8700 intel_match_token (T_REG);
8701
8702 /* Since registers are not part of the displacement
8703 string, we may need to remove any preceding '+' from
8704 the displacement string. */
8705 if (*intel_parser.disp != '\0')
8706 {
8707 char *s = intel_parser.disp;
8708 s += strlen (s) - 1;
8709 if (*s == '+')
8710 *s = '\0';
8711 }
8712
8713 free (save_str);
8714
8715 return 1;
8716 }
8717
8718 /* The constant was not used for register scaling. Since we have
8719 already consumed the token following `*' we now need to put it
8720 back in the stream. */
8721 intel_putback_token ();
8722 }
8723
8724 /* Add the constant to the displacement string. */
8725 strcat (intel_parser.disp, save_str);
8726 free (save_str);
8727
8728 return 1;
8729 }
8730 }
8731
8732 as_bad (_("Unrecognized token '%s'"), cur_token.str);
8733 return 0;
8734 }
8735
8736 /* Match the given token against cur_token. If they match, read the next
8737 token from the operand string. */
8738 static int
8739 intel_match_token (int code)
8740 {
8741 if (cur_token.code == code)
8742 {
8743 intel_get_token ();
8744 return 1;
8745 }
8746 else
8747 {
8748 as_bad (_("Unexpected token `%s'"), cur_token.str);
8749 return 0;
8750 }
8751 }
8752
8753 /* Read a new token from intel_parser.op_string and store it in cur_token. */
8754 static void
8755 intel_get_token (void)
8756 {
8757 char *end_op;
8758 const reg_entry *reg;
8759 struct intel_token new_token;
8760
8761 new_token.code = T_NIL;
8762 new_token.reg = NULL;
8763 new_token.str = NULL;
8764
8765 /* Free the memory allocated to the previous token and move
8766 cur_token to prev_token. */
8767 if (prev_token.str)
8768 free (prev_token.str);
8769
8770 prev_token = cur_token;
8771
8772 /* Skip whitespace. */
8773 while (is_space_char (*intel_parser.op_string))
8774 intel_parser.op_string++;
8775
8776 /* Return an empty token if we find nothing else on the line. */
8777 if (*intel_parser.op_string == '\0')
8778 {
8779 cur_token = new_token;
8780 return;
8781 }
8782
8783 /* The new token cannot be larger than the remainder of the operand
8784 string. */
8785 new_token.str = (char *) xmalloc (strlen (intel_parser.op_string) + 1);
8786 new_token.str[0] = '\0';
8787
8788 if (strchr ("0123456789", *intel_parser.op_string))
8789 {
8790 char *p = new_token.str;
8791 char *q = intel_parser.op_string;
8792 new_token.code = T_CONST;
8793
8794 /* Allow any kind of identifier char to encompass floating point and
8795 hexadecimal numbers. */
8796 while (is_identifier_char (*q))
8797 *p++ = *q++;
8798 *p = '\0';
8799
8800 /* Recognize special symbol names [0-9][bf]. */
8801 if (strlen (intel_parser.op_string) == 2
8802 && (intel_parser.op_string[1] == 'b'
8803 || intel_parser.op_string[1] == 'f'))
8804 new_token.code = T_ID;
8805 }
8806
8807 else if ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL)
8808 {
8809 size_t len = end_op - intel_parser.op_string;
8810
8811 new_token.code = T_REG;
8812 new_token.reg = reg;
8813
8814 memcpy (new_token.str, intel_parser.op_string, len);
8815 new_token.str[len] = '\0';
8816 }
8817
8818 else if (is_identifier_char (*intel_parser.op_string))
8819 {
8820 char *p = new_token.str;
8821 char *q = intel_parser.op_string;
8822
8823 /* A '.' or '$' followed by an identifier char is an identifier.
8824 Otherwise, it's operator '.' followed by an expression. */
8825 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
8826 {
8827 new_token.code = '.';
8828 new_token.str[0] = '.';
8829 new_token.str[1] = '\0';
8830 }
8831 else
8832 {
8833 while (is_identifier_char (*q) || *q == '@')
8834 *p++ = *q++;
8835 *p = '\0';
8836
8837 if (strcasecmp (new_token.str, "NOT") == 0)
8838 new_token.code = '~';
8839
8840 else if (strcasecmp (new_token.str, "MOD") == 0)
8841 new_token.code = '%';
8842
8843 else if (strcasecmp (new_token.str, "AND") == 0)
8844 new_token.code = '&';
8845
8846 else if (strcasecmp (new_token.str, "OR") == 0)
8847 new_token.code = '|';
8848
8849 else if (strcasecmp (new_token.str, "XOR") == 0)
8850 new_token.code = '^';
8851
8852 else if (strcasecmp (new_token.str, "SHL") == 0)
8853 new_token.code = T_SHL;
8854
8855 else if (strcasecmp (new_token.str, "SHR") == 0)
8856 new_token.code = T_SHR;
8857
8858 else if (strcasecmp (new_token.str, "BYTE") == 0)
8859 new_token.code = T_BYTE;
8860
8861 else if (strcasecmp (new_token.str, "WORD") == 0)
8862 new_token.code = T_WORD;
8863
8864 else if (strcasecmp (new_token.str, "DWORD") == 0)
8865 new_token.code = T_DWORD;
8866
8867 else if (strcasecmp (new_token.str, "FWORD") == 0)
8868 new_token.code = T_FWORD;
8869
8870 else if (strcasecmp (new_token.str, "QWORD") == 0)
8871 new_token.code = T_QWORD;
8872
8873 else if (strcasecmp (new_token.str, "TBYTE") == 0
8874 /* XXX remove (gcc still uses it) */
8875 || strcasecmp (new_token.str, "XWORD") == 0)
8876 new_token.code = T_TBYTE;
8877
8878 else if (strcasecmp (new_token.str, "XMMWORD") == 0
8879 || strcasecmp (new_token.str, "OWORD") == 0)
8880 new_token.code = T_XMMWORD;
8881
8882 else if (strcasecmp (new_token.str, "PTR") == 0)
8883 new_token.code = T_PTR;
8884
8885 else if (strcasecmp (new_token.str, "SHORT") == 0)
8886 new_token.code = T_SHORT;
8887
8888 else if (strcasecmp (new_token.str, "OFFSET") == 0)
8889 {
8890 new_token.code = T_OFFSET;
8891
8892 /* ??? This is not mentioned in the MASM grammar but gcc
8893 makes use of it with -mintel-syntax. OFFSET may be
8894 followed by FLAT: */
8895 if (strncasecmp (q, " FLAT:", 6) == 0)
8896 strcat (new_token.str, " FLAT:");
8897 }
8898
8899 /* ??? This is not mentioned in the MASM grammar. */
8900 else if (strcasecmp (new_token.str, "FLAT") == 0)
8901 {
8902 new_token.code = T_OFFSET;
8903 if (*q == ':')
8904 strcat (new_token.str, ":");
8905 else
8906 as_bad (_("`:' expected"));
8907 }
8908
8909 else
8910 new_token.code = T_ID;
8911 }
8912 }
8913
8914 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
8915 {
8916 new_token.code = *intel_parser.op_string;
8917 new_token.str[0] = *intel_parser.op_string;
8918 new_token.str[1] = '\0';
8919 }
8920
8921 else if (strchr ("<>", *intel_parser.op_string)
8922 && *intel_parser.op_string == *(intel_parser.op_string + 1))
8923 {
8924 new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
8925 new_token.str[0] = *intel_parser.op_string;
8926 new_token.str[1] = *intel_parser.op_string;
8927 new_token.str[2] = '\0';
8928 }
8929
8930 else
8931 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
8932
8933 intel_parser.op_string += strlen (new_token.str);
8934 cur_token = new_token;
8935 }
8936
8937 /* Put cur_token back into the token stream and make cur_token point to
8938 prev_token. */
8939 static void
8940 intel_putback_token (void)
8941 {
8942 if (cur_token.code != T_NIL)
8943 {
8944 intel_parser.op_string -= strlen (cur_token.str);
8945 free (cur_token.str);
8946 }
8947 cur_token = prev_token;
8948
8949 /* Forget prev_token. */
8950 prev_token.code = T_NIL;
8951 prev_token.reg = NULL;
8952 prev_token.str = NULL;
8953 }
8954
8955 int
8956 tc_x86_regname_to_dw2regnum (char *regname)
8957 {
8958 unsigned int regnum;
8959 unsigned int regnames_count;
8960 static const char *const regnames_32[] =
8961 {
8962 "eax", "ecx", "edx", "ebx",
8963 "esp", "ebp", "esi", "edi",
8964 "eip", "eflags", NULL,
8965 "st0", "st1", "st2", "st3",
8966 "st4", "st5", "st6", "st7",
8967 NULL, NULL,
8968 "xmm0", "xmm1", "xmm2", "xmm3",
8969 "xmm4", "xmm5", "xmm6", "xmm7",
8970 "mm0", "mm1", "mm2", "mm3",
8971 "mm4", "mm5", "mm6", "mm7",
8972 "fcw", "fsw", "mxcsr",
8973 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
8974 "tr", "ldtr"
8975 };
8976 static const char *const regnames_64[] =
8977 {
8978 "rax", "rdx", "rcx", "rbx",
8979 "rsi", "rdi", "rbp", "rsp",
8980 "r8", "r9", "r10", "r11",
8981 "r12", "r13", "r14", "r15",
8982 "rip",
8983 "xmm0", "xmm1", "xmm2", "xmm3",
8984 "xmm4", "xmm5", "xmm6", "xmm7",
8985 "xmm8", "xmm9", "xmm10", "xmm11",
8986 "xmm12", "xmm13", "xmm14", "xmm15",
8987 "st0", "st1", "st2", "st3",
8988 "st4", "st5", "st6", "st7",
8989 "mm0", "mm1", "mm2", "mm3",
8990 "mm4", "mm5", "mm6", "mm7",
8991 "rflags",
8992 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
8993 "fs.base", "gs.base", NULL, NULL,
8994 "tr", "ldtr",
8995 "mxcsr", "fcw", "fsw"
8996 };
8997 const char *const *regnames;
8998
8999 if (flag_code == CODE_64BIT)
9000 {
9001 regnames = regnames_64;
9002 regnames_count = ARRAY_SIZE (regnames_64);
9003 }
9004 else
9005 {
9006 regnames = regnames_32;
9007 regnames_count = ARRAY_SIZE (regnames_32);
9008 }
9009
9010 for (regnum = 0; regnum < regnames_count; regnum++)
9011 if (regnames[regnum] != NULL
9012 && strcmp (regname, regnames[regnum]) == 0)
9013 return regnum;
9014
9015 return -1;
9016 }
9017
9018 void
9019 tc_x86_frame_initial_instructions (void)
9020 {
9021 static unsigned int sp_regno;
9022
9023 if (!sp_regno)
9024 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
9025 ? "rsp" : "esp");
9026
9027 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
9028 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
9029 }
9030
9031 int
9032 i386_elf_section_type (const char *str, size_t len)
9033 {
9034 if (flag_code == CODE_64BIT
9035 && len == sizeof ("unwind") - 1
9036 && strncmp (str, "unwind", 6) == 0)
9037 return SHT_X86_64_UNWIND;
9038
9039 return -1;
9040 }
9041
9042 #ifdef TE_PE
9043 void
9044 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
9045 {
9046 expressionS expr;
9047
9048 expr.X_op = O_secrel;
9049 expr.X_add_symbol = symbol;
9050 expr.X_add_number = 0;
9051 emit_expr (&expr, size);
9052 }
9053 #endif
9054
9055 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9056 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
9057
9058 int
9059 x86_64_section_letter (int letter, char **ptr_msg)
9060 {
9061 if (flag_code == CODE_64BIT)
9062 {
9063 if (letter == 'l')
9064 return SHF_X86_64_LARGE;
9065
9066 *ptr_msg = _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
9067 }
9068 else
9069 *ptr_msg = _("Bad .section directive: want a,w,x,M,S,G,T in string");
9070 return -1;
9071 }
9072
9073 int
9074 x86_64_section_word (char *str, size_t len)
9075 {
9076 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
9077 return SHF_X86_64_LARGE;
9078
9079 return -1;
9080 }
9081
9082 static void
9083 handle_large_common (int small ATTRIBUTE_UNUSED)
9084 {
9085 if (flag_code != CODE_64BIT)
9086 {
9087 s_comm_internal (0, elf_common_parse);
9088 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
9089 }
9090 else
9091 {
9092 static segT lbss_section;
9093 asection *saved_com_section_ptr = elf_com_section_ptr;
9094 asection *saved_bss_section = bss_section;
9095
9096 if (lbss_section == NULL)
9097 {
9098 flagword applicable;
9099 segT seg = now_seg;
9100 subsegT subseg = now_subseg;
9101
9102 /* The .lbss section is for local .largecomm symbols. */
9103 lbss_section = subseg_new (".lbss", 0);
9104 applicable = bfd_applicable_section_flags (stdoutput);
9105 bfd_set_section_flags (stdoutput, lbss_section,
9106 applicable & SEC_ALLOC);
9107 seg_info (lbss_section)->bss = 1;
9108
9109 subseg_set (seg, subseg);
9110 }
9111
9112 elf_com_section_ptr = &_bfd_elf_large_com_section;
9113 bss_section = lbss_section;
9114
9115 s_comm_internal (0, elf_common_parse);
9116
9117 elf_com_section_ptr = saved_com_section_ptr;
9118 bss_section = saved_bss_section;
9119 }
9120 }
9121 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.223254 seconds and 4 git commands to generate.