fcd40e2db3839823c86afb557a8d9769d2313885
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 /* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88 #define END_OF_INSN '\0'
89
90 /*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97 typedef struct
98 {
99 const insn_template *start;
100 const insn_template *end;
101 }
102 templates;
103
104 /* 386 operand encoding bytes: see 386 book for details of this. */
105 typedef struct
106 {
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110 }
111 modrm_byte;
112
113 /* x86-64 extension prefix. */
114 typedef int rex_byte;
115
116 /* 386 opcode byte to code indirect addressing. */
117 typedef struct
118 {
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122 }
123 sib_byte;
124
125 /* x86 arch names, types and features */
126 typedef struct
127 {
128 const char *name; /* arch name */
129 unsigned int len; /* arch string length */
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
132 unsigned int skip; /* show_arch should skip this. */
133 }
134 arch_entry;
135
136 /* Used to turn off indicated flags. */
137 typedef struct
138 {
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142 }
143 noarch_entry;
144
145 static void update_code_flag (int, int);
146 static void set_code_flag (int);
147 static void set_16bit_gcc_code_flag (int);
148 static void set_intel_syntax (int);
149 static void set_intel_mnemonic (int);
150 static void set_allow_index_reg (int);
151 static void set_check (int);
152 static void set_cpu_arch (int);
153 #ifdef TE_PE
154 static void pe_directive_secrel (int);
155 #endif
156 static void signed_cons (int);
157 static char *output_invalid (int c);
158 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
162 static int i386_att_operand (char *);
163 static int i386_intel_operand (char *, int);
164 static int i386_intel_simplify (expressionS *);
165 static int i386_intel_parse_name (const char *, expressionS *);
166 static const reg_entry *parse_register (char *, char **);
167 static char *parse_insn (char *, char *);
168 static char *parse_operands (char *, const char *);
169 static void swap_operands (void);
170 static void swap_2_operands (int, int);
171 static void optimize_imm (void);
172 static void optimize_disp (void);
173 static const insn_template *match_template (char);
174 static int check_string (void);
175 static int process_suffix (void);
176 static int check_byte_reg (void);
177 static int check_long_reg (void);
178 static int check_qword_reg (void);
179 static int check_word_reg (void);
180 static int finalize_imm (void);
181 static int process_operands (void);
182 static const seg_entry *build_modrm_byte (void);
183 static void output_insn (void);
184 static void output_imm (fragS *, offsetT);
185 static void output_disp (fragS *, offsetT);
186 #ifndef I386COFF
187 static void s_bss (int);
188 #endif
189 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190 static void handle_large_common (int small ATTRIBUTE_UNUSED);
191 #endif
192
193 static const char *default_arch = DEFAULT_ARCH;
194
195 /* This struct describes rounding control and SAE in the instruction. */
196 struct RC_Operation
197 {
198 enum rc_type
199 {
200 rne = 0,
201 rd,
202 ru,
203 rz,
204 saeonly
205 } type;
206 int operand;
207 };
208
209 static struct RC_Operation rc_op;
210
211 /* The struct describes masking, applied to OPERAND in the instruction.
212 MASK is a pointer to the corresponding mask register. ZEROING tells
213 whether merging or zeroing mask is used. */
214 struct Mask_Operation
215 {
216 const reg_entry *mask;
217 unsigned int zeroing;
218 /* The operand where this operation is associated. */
219 int operand;
220 };
221
222 static struct Mask_Operation mask_op;
223
224 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
225 broadcast factor. */
226 struct Broadcast_Operation
227 {
228 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
229 int type;
230
231 /* Index of broadcasted operand. */
232 int operand;
233 };
234
235 static struct Broadcast_Operation broadcast_op;
236
237 /* VEX prefix. */
238 typedef struct
239 {
240 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
241 unsigned char bytes[4];
242 unsigned int length;
243 /* Destination or source register specifier. */
244 const reg_entry *register_specifier;
245 } vex_prefix;
246
247 /* 'md_assemble ()' gathers together information and puts it into a
248 i386_insn. */
249
250 union i386_op
251 {
252 expressionS *disps;
253 expressionS *imms;
254 const reg_entry *regs;
255 };
256
257 enum i386_error
258 {
259 operand_size_mismatch,
260 operand_type_mismatch,
261 register_type_mismatch,
262 number_of_operands_mismatch,
263 invalid_instruction_suffix,
264 bad_imm4,
265 unsupported_with_intel_mnemonic,
266 unsupported_syntax,
267 unsupported,
268 invalid_vsib_address,
269 invalid_vector_register_set,
270 unsupported_vector_index_register,
271 unsupported_broadcast,
272 broadcast_not_on_src_operand,
273 broadcast_needed,
274 unsupported_masking,
275 mask_not_on_destination,
276 no_default_mask,
277 unsupported_rc_sae,
278 rc_sae_operand_not_last_imm,
279 invalid_register_operand,
280 };
281
282 struct _i386_insn
283 {
284 /* TM holds the template for the insn were currently assembling. */
285 insn_template tm;
286
287 /* SUFFIX holds the instruction size suffix for byte, word, dword
288 or qword, if given. */
289 char suffix;
290
291 /* OPERANDS gives the number of given operands. */
292 unsigned int operands;
293
294 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
295 of given register, displacement, memory operands and immediate
296 operands. */
297 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
298
299 /* TYPES [i] is the type (see above #defines) which tells us how to
300 use OP[i] for the corresponding operand. */
301 i386_operand_type types[MAX_OPERANDS];
302
303 /* Displacement expression, immediate expression, or register for each
304 operand. */
305 union i386_op op[MAX_OPERANDS];
306
307 /* Flags for operands. */
308 unsigned int flags[MAX_OPERANDS];
309 #define Operand_PCrel 1
310
311 /* Relocation type for operand */
312 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
313
314 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
315 the base index byte below. */
316 const reg_entry *base_reg;
317 const reg_entry *index_reg;
318 unsigned int log2_scale_factor;
319
320 /* SEG gives the seg_entries of this insn. They are zero unless
321 explicit segment overrides are given. */
322 const seg_entry *seg[2];
323
324 /* Copied first memory operand string, for re-checking. */
325 char *memop1_string;
326
327 /* PREFIX holds all the given prefix opcodes (usually null).
328 PREFIXES is the number of prefix opcodes. */
329 unsigned int prefixes;
330 unsigned char prefix[MAX_PREFIXES];
331
332 /* RM and SIB are the modrm byte and the sib byte where the
333 addressing modes of this insn are encoded. */
334 modrm_byte rm;
335 rex_byte rex;
336 rex_byte vrex;
337 sib_byte sib;
338 vex_prefix vex;
339
340 /* Masking attributes. */
341 struct Mask_Operation *mask;
342
343 /* Rounding control and SAE attributes. */
344 struct RC_Operation *rounding;
345
346 /* Broadcasting attributes. */
347 struct Broadcast_Operation *broadcast;
348
349 /* Compressed disp8*N attribute. */
350 unsigned int memshift;
351
352 /* Prefer load or store in encoding. */
353 enum
354 {
355 dir_encoding_default = 0,
356 dir_encoding_load,
357 dir_encoding_store
358 } dir_encoding;
359
360 /* Prefer 8bit or 32bit displacement in encoding. */
361 enum
362 {
363 disp_encoding_default = 0,
364 disp_encoding_8bit,
365 disp_encoding_32bit
366 } disp_encoding;
367
368 /* Prefer the REX byte in encoding. */
369 bfd_boolean rex_encoding;
370
371 /* Disable instruction size optimization. */
372 bfd_boolean no_optimize;
373
374 /* How to encode vector instructions. */
375 enum
376 {
377 vex_encoding_default = 0,
378 vex_encoding_vex2,
379 vex_encoding_vex3,
380 vex_encoding_evex
381 } vec_encoding;
382
383 /* REP prefix. */
384 const char *rep_prefix;
385
386 /* HLE prefix. */
387 const char *hle_prefix;
388
389 /* Have BND prefix. */
390 const char *bnd_prefix;
391
392 /* Have NOTRACK prefix. */
393 const char *notrack_prefix;
394
395 /* Error message. */
396 enum i386_error error;
397 };
398
399 typedef struct _i386_insn i386_insn;
400
401 /* Link RC type with corresponding string, that'll be looked for in
402 asm. */
403 struct RC_name
404 {
405 enum rc_type type;
406 const char *name;
407 unsigned int len;
408 };
409
410 static const struct RC_name RC_NamesTable[] =
411 {
412 { rne, STRING_COMMA_LEN ("rn-sae") },
413 { rd, STRING_COMMA_LEN ("rd-sae") },
414 { ru, STRING_COMMA_LEN ("ru-sae") },
415 { rz, STRING_COMMA_LEN ("rz-sae") },
416 { saeonly, STRING_COMMA_LEN ("sae") },
417 };
418
419 /* List of chars besides those in app.c:symbol_chars that can start an
420 operand. Used to prevent the scrubber eating vital white-space. */
421 const char extra_symbol_chars[] = "*%-([{}"
422 #ifdef LEX_AT
423 "@"
424 #endif
425 #ifdef LEX_QM
426 "?"
427 #endif
428 ;
429
430 #if (defined (TE_I386AIX) \
431 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
432 && !defined (TE_GNU) \
433 && !defined (TE_LINUX) \
434 && !defined (TE_NACL) \
435 && !defined (TE_FreeBSD) \
436 && !defined (TE_DragonFly) \
437 && !defined (TE_NetBSD)))
438 /* This array holds the chars that always start a comment. If the
439 pre-processor is disabled, these aren't very useful. The option
440 --divide will remove '/' from this list. */
441 const char *i386_comment_chars = "#/";
442 #define SVR4_COMMENT_CHARS 1
443 #define PREFIX_SEPARATOR '\\'
444
445 #else
446 const char *i386_comment_chars = "#";
447 #define PREFIX_SEPARATOR '/'
448 #endif
449
450 /* This array holds the chars that only start a comment at the beginning of
451 a line. If the line seems to have the form '# 123 filename'
452 .line and .file directives will appear in the pre-processed output.
453 Note that input_file.c hand checks for '#' at the beginning of the
454 first line of the input file. This is because the compiler outputs
455 #NO_APP at the beginning of its output.
456 Also note that comments started like this one will always work if
457 '/' isn't otherwise defined. */
458 const char line_comment_chars[] = "#/";
459
460 const char line_separator_chars[] = ";";
461
462 /* Chars that can be used to separate mant from exp in floating point
463 nums. */
464 const char EXP_CHARS[] = "eE";
465
466 /* Chars that mean this number is a floating point constant
467 As in 0f12.456
468 or 0d1.2345e12. */
469 const char FLT_CHARS[] = "fFdDxX";
470
471 /* Tables for lexical analysis. */
472 static char mnemonic_chars[256];
473 static char register_chars[256];
474 static char operand_chars[256];
475 static char identifier_chars[256];
476 static char digit_chars[256];
477
478 /* Lexical macros. */
479 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
480 #define is_operand_char(x) (operand_chars[(unsigned char) x])
481 #define is_register_char(x) (register_chars[(unsigned char) x])
482 #define is_space_char(x) ((x) == ' ')
483 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
484 #define is_digit_char(x) (digit_chars[(unsigned char) x])
485
486 /* All non-digit non-letter characters that may occur in an operand. */
487 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
488
489 /* md_assemble() always leaves the strings it's passed unaltered. To
490 effect this we maintain a stack of saved characters that we've smashed
491 with '\0's (indicating end of strings for various sub-fields of the
492 assembler instruction). */
493 static char save_stack[32];
494 static char *save_stack_p;
495 #define END_STRING_AND_SAVE(s) \
496 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
497 #define RESTORE_END_STRING(s) \
498 do { *(s) = *--save_stack_p; } while (0)
499
500 /* The instruction we're assembling. */
501 static i386_insn i;
502
503 /* Possible templates for current insn. */
504 static const templates *current_templates;
505
506 /* Per instruction expressionS buffers: max displacements & immediates. */
507 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
508 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
509
510 /* Current operand we are working on. */
511 static int this_operand = -1;
512
513 /* We support four different modes. FLAG_CODE variable is used to distinguish
514 these. */
515
516 enum flag_code {
517 CODE_32BIT,
518 CODE_16BIT,
519 CODE_64BIT };
520
521 static enum flag_code flag_code;
522 static unsigned int object_64bit;
523 static unsigned int disallow_64bit_reloc;
524 static int use_rela_relocations = 0;
525
526 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
527 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
528 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
529
530 /* The ELF ABI to use. */
531 enum x86_elf_abi
532 {
533 I386_ABI,
534 X86_64_ABI,
535 X86_64_X32_ABI
536 };
537
538 static enum x86_elf_abi x86_elf_abi = I386_ABI;
539 #endif
540
541 #if defined (TE_PE) || defined (TE_PEP)
542 /* Use big object file format. */
543 static int use_big_obj = 0;
544 #endif
545
546 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
547 /* 1 if generating code for a shared library. */
548 static int shared = 0;
549 #endif
550
551 /* 1 for intel syntax,
552 0 if att syntax. */
553 static int intel_syntax = 0;
554
555 /* 1 for Intel64 ISA,
556 0 if AMD64 ISA. */
557 static int intel64;
558
559 /* 1 for intel mnemonic,
560 0 if att mnemonic. */
561 static int intel_mnemonic = !SYSV386_COMPAT;
562
563 /* 1 if pseudo registers are permitted. */
564 static int allow_pseudo_reg = 0;
565
566 /* 1 if register prefix % not required. */
567 static int allow_naked_reg = 0;
568
569 /* 1 if the assembler should add BND prefix for all control-transferring
570 instructions supporting it, even if this prefix wasn't specified
571 explicitly. */
572 static int add_bnd_prefix = 0;
573
574 /* 1 if pseudo index register, eiz/riz, is allowed . */
575 static int allow_index_reg = 0;
576
577 /* 1 if the assembler should ignore LOCK prefix, even if it was
578 specified explicitly. */
579 static int omit_lock_prefix = 0;
580
581 /* 1 if the assembler should encode lfence, mfence, and sfence as
582 "lock addl $0, (%{re}sp)". */
583 static int avoid_fence = 0;
584
585 /* 1 if the assembler should generate relax relocations. */
586
587 static int generate_relax_relocations
588 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
589
590 static enum check_kind
591 {
592 check_none = 0,
593 check_warning,
594 check_error
595 }
596 sse_check, operand_check = check_warning;
597
598 /* Optimization:
599 1. Clear the REX_W bit with register operand if possible.
600 2. Above plus use 128bit vector instruction to clear the full vector
601 register.
602 */
603 static int optimize = 0;
604
605 /* Optimization:
606 1. Clear the REX_W bit with register operand if possible.
607 2. Above plus use 128bit vector instruction to clear the full vector
608 register.
609 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
610 "testb $imm7,%r8".
611 */
612 static int optimize_for_space = 0;
613
614 /* Register prefix used for error message. */
615 static const char *register_prefix = "%";
616
617 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
618 leave, push, and pop instructions so that gcc has the same stack
619 frame as in 32 bit mode. */
620 static char stackop_size = '\0';
621
622 /* Non-zero to optimize code alignment. */
623 int optimize_align_code = 1;
624
625 /* Non-zero to quieten some warnings. */
626 static int quiet_warnings = 0;
627
628 /* CPU name. */
629 static const char *cpu_arch_name = NULL;
630 static char *cpu_sub_arch_name = NULL;
631
632 /* CPU feature flags. */
633 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
634
635 /* If we have selected a cpu we are generating instructions for. */
636 static int cpu_arch_tune_set = 0;
637
638 /* Cpu we are generating instructions for. */
639 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
640
641 /* CPU feature flags of cpu we are generating instructions for. */
642 static i386_cpu_flags cpu_arch_tune_flags;
643
644 /* CPU instruction set architecture used. */
645 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
646
647 /* CPU feature flags of instruction set architecture used. */
648 i386_cpu_flags cpu_arch_isa_flags;
649
650 /* If set, conditional jumps are not automatically promoted to handle
651 larger than a byte offset. */
652 static unsigned int no_cond_jump_promotion = 0;
653
654 /* Encode SSE instructions with VEX prefix. */
655 static unsigned int sse2avx;
656
657 /* Encode scalar AVX instructions with specific vector length. */
658 static enum
659 {
660 vex128 = 0,
661 vex256
662 } avxscalar;
663
664 /* Encode scalar EVEX LIG instructions with specific vector length. */
665 static enum
666 {
667 evexl128 = 0,
668 evexl256,
669 evexl512
670 } evexlig;
671
672 /* Encode EVEX WIG instructions with specific evex.w. */
673 static enum
674 {
675 evexw0 = 0,
676 evexw1
677 } evexwig;
678
679 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
680 static enum rc_type evexrcig = rne;
681
682 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
683 static symbolS *GOT_symbol;
684
685 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
686 unsigned int x86_dwarf2_return_column;
687
688 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
689 int x86_cie_data_alignment;
690
691 /* Interface to relax_segment.
692 There are 3 major relax states for 386 jump insns because the
693 different types of jumps add different sizes to frags when we're
694 figuring out what sort of jump to choose to reach a given label. */
695
696 /* Types. */
697 #define UNCOND_JUMP 0
698 #define COND_JUMP 1
699 #define COND_JUMP86 2
700
701 /* Sizes. */
702 #define CODE16 1
703 #define SMALL 0
704 #define SMALL16 (SMALL | CODE16)
705 #define BIG 2
706 #define BIG16 (BIG | CODE16)
707
708 #ifndef INLINE
709 #ifdef __GNUC__
710 #define INLINE __inline__
711 #else
712 #define INLINE
713 #endif
714 #endif
715
716 #define ENCODE_RELAX_STATE(type, size) \
717 ((relax_substateT) (((type) << 2) | (size)))
718 #define TYPE_FROM_RELAX_STATE(s) \
719 ((s) >> 2)
720 #define DISP_SIZE_FROM_RELAX_STATE(s) \
721 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
722
723 /* This table is used by relax_frag to promote short jumps to long
724 ones where necessary. SMALL (short) jumps may be promoted to BIG
725 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
726 don't allow a short jump in a 32 bit code segment to be promoted to
727 a 16 bit offset jump because it's slower (requires data size
728 prefix), and doesn't work, unless the destination is in the bottom
729 64k of the code segment (The top 16 bits of eip are zeroed). */
730
731 const relax_typeS md_relax_table[] =
732 {
733 /* The fields are:
734 1) most positive reach of this state,
735 2) most negative reach of this state,
736 3) how many bytes this mode will have in the variable part of the frag
737 4) which index into the table to try if we can't fit into this one. */
738
739 /* UNCOND_JUMP states. */
740 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
741 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
742 /* dword jmp adds 4 bytes to frag:
743 0 extra opcode bytes, 4 displacement bytes. */
744 {0, 0, 4, 0},
745 /* word jmp adds 2 byte2 to frag:
746 0 extra opcode bytes, 2 displacement bytes. */
747 {0, 0, 2, 0},
748
749 /* COND_JUMP states. */
750 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
751 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
752 /* dword conditionals adds 5 bytes to frag:
753 1 extra opcode byte, 4 displacement bytes. */
754 {0, 0, 5, 0},
755 /* word conditionals add 3 bytes to frag:
756 1 extra opcode byte, 2 displacement bytes. */
757 {0, 0, 3, 0},
758
759 /* COND_JUMP86 states. */
760 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
761 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
762 /* dword conditionals adds 5 bytes to frag:
763 1 extra opcode byte, 4 displacement bytes. */
764 {0, 0, 5, 0},
765 /* word conditionals add 4 bytes to frag:
766 1 displacement byte and a 3 byte long branch insn. */
767 {0, 0, 4, 0}
768 };
769
770 static const arch_entry cpu_arch[] =
771 {
772 /* Do not replace the first two entries - i386_target_format()
773 relies on them being there in this order. */
774 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
775 CPU_GENERIC32_FLAGS, 0 },
776 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
777 CPU_GENERIC64_FLAGS, 0 },
778 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
779 CPU_NONE_FLAGS, 0 },
780 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
781 CPU_I186_FLAGS, 0 },
782 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
783 CPU_I286_FLAGS, 0 },
784 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
785 CPU_I386_FLAGS, 0 },
786 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
787 CPU_I486_FLAGS, 0 },
788 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
789 CPU_I586_FLAGS, 0 },
790 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
791 CPU_I686_FLAGS, 0 },
792 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
793 CPU_I586_FLAGS, 0 },
794 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
795 CPU_PENTIUMPRO_FLAGS, 0 },
796 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
797 CPU_P2_FLAGS, 0 },
798 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
799 CPU_P3_FLAGS, 0 },
800 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
801 CPU_P4_FLAGS, 0 },
802 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
803 CPU_CORE_FLAGS, 0 },
804 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
805 CPU_NOCONA_FLAGS, 0 },
806 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
807 CPU_CORE_FLAGS, 1 },
808 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
809 CPU_CORE_FLAGS, 0 },
810 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
811 CPU_CORE2_FLAGS, 1 },
812 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
813 CPU_CORE2_FLAGS, 0 },
814 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
815 CPU_COREI7_FLAGS, 0 },
816 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
817 CPU_L1OM_FLAGS, 0 },
818 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
819 CPU_K1OM_FLAGS, 0 },
820 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
821 CPU_IAMCU_FLAGS, 0 },
822 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
823 CPU_K6_FLAGS, 0 },
824 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
825 CPU_K6_2_FLAGS, 0 },
826 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
827 CPU_ATHLON_FLAGS, 0 },
828 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
829 CPU_K8_FLAGS, 1 },
830 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
831 CPU_K8_FLAGS, 0 },
832 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
833 CPU_K8_FLAGS, 0 },
834 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
835 CPU_AMDFAM10_FLAGS, 0 },
836 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
837 CPU_BDVER1_FLAGS, 0 },
838 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
839 CPU_BDVER2_FLAGS, 0 },
840 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
841 CPU_BDVER3_FLAGS, 0 },
842 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
843 CPU_BDVER4_FLAGS, 0 },
844 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
845 CPU_ZNVER1_FLAGS, 0 },
846 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
847 CPU_BTVER1_FLAGS, 0 },
848 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
849 CPU_BTVER2_FLAGS, 0 },
850 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
851 CPU_8087_FLAGS, 0 },
852 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
853 CPU_287_FLAGS, 0 },
854 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
855 CPU_387_FLAGS, 0 },
856 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
857 CPU_687_FLAGS, 0 },
858 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
859 CPU_MMX_FLAGS, 0 },
860 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
861 CPU_SSE_FLAGS, 0 },
862 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
863 CPU_SSE2_FLAGS, 0 },
864 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
865 CPU_SSE3_FLAGS, 0 },
866 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
867 CPU_SSSE3_FLAGS, 0 },
868 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
869 CPU_SSE4_1_FLAGS, 0 },
870 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
871 CPU_SSE4_2_FLAGS, 0 },
872 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
873 CPU_SSE4_2_FLAGS, 0 },
874 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
875 CPU_AVX_FLAGS, 0 },
876 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
877 CPU_AVX2_FLAGS, 0 },
878 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
879 CPU_AVX512F_FLAGS, 0 },
880 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
881 CPU_AVX512CD_FLAGS, 0 },
882 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
883 CPU_AVX512ER_FLAGS, 0 },
884 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
885 CPU_AVX512PF_FLAGS, 0 },
886 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
887 CPU_AVX512DQ_FLAGS, 0 },
888 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
889 CPU_AVX512BW_FLAGS, 0 },
890 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
891 CPU_AVX512VL_FLAGS, 0 },
892 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
893 CPU_VMX_FLAGS, 0 },
894 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
895 CPU_VMFUNC_FLAGS, 0 },
896 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
897 CPU_SMX_FLAGS, 0 },
898 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
899 CPU_XSAVE_FLAGS, 0 },
900 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
901 CPU_XSAVEOPT_FLAGS, 0 },
902 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
903 CPU_XSAVEC_FLAGS, 0 },
904 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
905 CPU_XSAVES_FLAGS, 0 },
906 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
907 CPU_AES_FLAGS, 0 },
908 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
909 CPU_PCLMUL_FLAGS, 0 },
910 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
911 CPU_PCLMUL_FLAGS, 1 },
912 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
913 CPU_FSGSBASE_FLAGS, 0 },
914 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
915 CPU_RDRND_FLAGS, 0 },
916 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
917 CPU_F16C_FLAGS, 0 },
918 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
919 CPU_BMI2_FLAGS, 0 },
920 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
921 CPU_FMA_FLAGS, 0 },
922 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
923 CPU_FMA4_FLAGS, 0 },
924 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
925 CPU_XOP_FLAGS, 0 },
926 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
927 CPU_LWP_FLAGS, 0 },
928 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
929 CPU_MOVBE_FLAGS, 0 },
930 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
931 CPU_CX16_FLAGS, 0 },
932 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
933 CPU_EPT_FLAGS, 0 },
934 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
935 CPU_LZCNT_FLAGS, 0 },
936 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
937 CPU_HLE_FLAGS, 0 },
938 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
939 CPU_RTM_FLAGS, 0 },
940 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
941 CPU_INVPCID_FLAGS, 0 },
942 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
943 CPU_CLFLUSH_FLAGS, 0 },
944 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
945 CPU_NOP_FLAGS, 0 },
946 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
947 CPU_SYSCALL_FLAGS, 0 },
948 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
949 CPU_RDTSCP_FLAGS, 0 },
950 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
951 CPU_3DNOW_FLAGS, 0 },
952 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
953 CPU_3DNOWA_FLAGS, 0 },
954 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
955 CPU_PADLOCK_FLAGS, 0 },
956 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
957 CPU_SVME_FLAGS, 1 },
958 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
959 CPU_SVME_FLAGS, 0 },
960 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
961 CPU_SSE4A_FLAGS, 0 },
962 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
963 CPU_ABM_FLAGS, 0 },
964 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
965 CPU_BMI_FLAGS, 0 },
966 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
967 CPU_TBM_FLAGS, 0 },
968 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
969 CPU_ADX_FLAGS, 0 },
970 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
971 CPU_RDSEED_FLAGS, 0 },
972 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
973 CPU_PRFCHW_FLAGS, 0 },
974 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
975 CPU_SMAP_FLAGS, 0 },
976 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
977 CPU_MPX_FLAGS, 0 },
978 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
979 CPU_SHA_FLAGS, 0 },
980 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
981 CPU_CLFLUSHOPT_FLAGS, 0 },
982 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
983 CPU_PREFETCHWT1_FLAGS, 0 },
984 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
985 CPU_SE1_FLAGS, 0 },
986 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
987 CPU_CLWB_FLAGS, 0 },
988 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
989 CPU_AVX512IFMA_FLAGS, 0 },
990 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
991 CPU_AVX512VBMI_FLAGS, 0 },
992 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
993 CPU_AVX512_4FMAPS_FLAGS, 0 },
994 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
995 CPU_AVX512_4VNNIW_FLAGS, 0 },
996 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
997 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
998 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
999 CPU_AVX512_VBMI2_FLAGS, 0 },
1000 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1001 CPU_AVX512_VNNI_FLAGS, 0 },
1002 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1003 CPU_AVX512_BITALG_FLAGS, 0 },
1004 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1005 CPU_CLZERO_FLAGS, 0 },
1006 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1007 CPU_MWAITX_FLAGS, 0 },
1008 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1009 CPU_OSPKE_FLAGS, 0 },
1010 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1011 CPU_RDPID_FLAGS, 0 },
1012 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1013 CPU_PTWRITE_FLAGS, 0 },
1014 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1015 CPU_IBT_FLAGS, 0 },
1016 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1017 CPU_SHSTK_FLAGS, 0 },
1018 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1019 CPU_GFNI_FLAGS, 0 },
1020 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1021 CPU_VAES_FLAGS, 0 },
1022 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1023 CPU_VPCLMULQDQ_FLAGS, 0 },
1024 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1025 CPU_WBNOINVD_FLAGS, 0 },
1026 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1027 CPU_PCONFIG_FLAGS, 0 },
1028 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1029 CPU_WAITPKG_FLAGS, 0 },
1030 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1031 CPU_CLDEMOTE_FLAGS, 0 },
1032 };
1033
1034 static const noarch_entry cpu_noarch[] =
1035 {
1036 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1037 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1038 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1039 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1040 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1041 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1042 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1043 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1044 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1045 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1046 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1047 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1048 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1049 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1050 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1051 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1052 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1053 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1054 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1055 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1056 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1057 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1058 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1059 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1060 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1061 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1062 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1063 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1064 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1065 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1066 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1067 };
1068
1069 #ifdef I386COFF
1070 /* Like s_lcomm_internal in gas/read.c but the alignment string
1071 is allowed to be optional. */
1072
1073 static symbolS *
1074 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1075 {
1076 addressT align = 0;
1077
1078 SKIP_WHITESPACE ();
1079
1080 if (needs_align
1081 && *input_line_pointer == ',')
1082 {
1083 align = parse_align (needs_align - 1);
1084
1085 if (align == (addressT) -1)
1086 return NULL;
1087 }
1088 else
1089 {
1090 if (size >= 8)
1091 align = 3;
1092 else if (size >= 4)
1093 align = 2;
1094 else if (size >= 2)
1095 align = 1;
1096 else
1097 align = 0;
1098 }
1099
1100 bss_alloc (symbolP, size, align);
1101 return symbolP;
1102 }
1103
1104 static void
1105 pe_lcomm (int needs_align)
1106 {
1107 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1108 }
1109 #endif
1110
1111 const pseudo_typeS md_pseudo_table[] =
1112 {
1113 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1114 {"align", s_align_bytes, 0},
1115 #else
1116 {"align", s_align_ptwo, 0},
1117 #endif
1118 {"arch", set_cpu_arch, 0},
1119 #ifndef I386COFF
1120 {"bss", s_bss, 0},
1121 #else
1122 {"lcomm", pe_lcomm, 1},
1123 #endif
1124 {"ffloat", float_cons, 'f'},
1125 {"dfloat", float_cons, 'd'},
1126 {"tfloat", float_cons, 'x'},
1127 {"value", cons, 2},
1128 {"slong", signed_cons, 4},
1129 {"noopt", s_ignore, 0},
1130 {"optim", s_ignore, 0},
1131 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1132 {"code16", set_code_flag, CODE_16BIT},
1133 {"code32", set_code_flag, CODE_32BIT},
1134 #ifdef BFD64
1135 {"code64", set_code_flag, CODE_64BIT},
1136 #endif
1137 {"intel_syntax", set_intel_syntax, 1},
1138 {"att_syntax", set_intel_syntax, 0},
1139 {"intel_mnemonic", set_intel_mnemonic, 1},
1140 {"att_mnemonic", set_intel_mnemonic, 0},
1141 {"allow_index_reg", set_allow_index_reg, 1},
1142 {"disallow_index_reg", set_allow_index_reg, 0},
1143 {"sse_check", set_check, 0},
1144 {"operand_check", set_check, 1},
1145 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1146 {"largecomm", handle_large_common, 0},
1147 #else
1148 {"file", dwarf2_directive_file, 0},
1149 {"loc", dwarf2_directive_loc, 0},
1150 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1151 #endif
1152 #ifdef TE_PE
1153 {"secrel32", pe_directive_secrel, 0},
1154 #endif
1155 {0, 0, 0}
1156 };
1157
1158 /* For interface with expression (). */
1159 extern char *input_line_pointer;
1160
1161 /* Hash table for instruction mnemonic lookup. */
1162 static struct hash_control *op_hash;
1163
1164 /* Hash table for register lookup. */
1165 static struct hash_control *reg_hash;
1166 \f
1167 /* Various efficient no-op patterns for aligning code labels.
1168 Note: Don't try to assemble the instructions in the comments.
1169 0L and 0w are not legal. */
1170 static const unsigned char f32_1[] =
1171 {0x90}; /* nop */
1172 static const unsigned char f32_2[] =
1173 {0x66,0x90}; /* xchg %ax,%ax */
1174 static const unsigned char f32_3[] =
1175 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1176 static const unsigned char f32_4[] =
1177 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1178 static const unsigned char f32_6[] =
1179 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1180 static const unsigned char f32_7[] =
1181 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1182 static const unsigned char f16_3[] =
1183 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1184 static const unsigned char f16_4[] =
1185 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1186 static const unsigned char jump_disp8[] =
1187 {0xeb}; /* jmp disp8 */
1188 static const unsigned char jump32_disp32[] =
1189 {0xe9}; /* jmp disp32 */
1190 static const unsigned char jump16_disp32[] =
1191 {0x66,0xe9}; /* jmp disp32 */
1192 /* 32-bit NOPs patterns. */
1193 static const unsigned char *const f32_patt[] = {
1194 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1195 };
1196 /* 16-bit NOPs patterns. */
1197 static const unsigned char *const f16_patt[] = {
1198 f32_1, f32_2, f16_3, f16_4
1199 };
1200 /* nopl (%[re]ax) */
1201 static const unsigned char alt_3[] =
1202 {0x0f,0x1f,0x00};
1203 /* nopl 0(%[re]ax) */
1204 static const unsigned char alt_4[] =
1205 {0x0f,0x1f,0x40,0x00};
1206 /* nopl 0(%[re]ax,%[re]ax,1) */
1207 static const unsigned char alt_5[] =
1208 {0x0f,0x1f,0x44,0x00,0x00};
1209 /* nopw 0(%[re]ax,%[re]ax,1) */
1210 static const unsigned char alt_6[] =
1211 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1212 /* nopl 0L(%[re]ax) */
1213 static const unsigned char alt_7[] =
1214 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1215 /* nopl 0L(%[re]ax,%[re]ax,1) */
1216 static const unsigned char alt_8[] =
1217 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1218 /* nopw 0L(%[re]ax,%[re]ax,1) */
1219 static const unsigned char alt_9[] =
1220 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1221 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1222 static const unsigned char alt_10[] =
1223 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1224 /* data16 nopw %cs:0L(%eax,%eax,1) */
1225 static const unsigned char alt_11[] =
1226 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1227 /* 32-bit and 64-bit NOPs patterns. */
1228 static const unsigned char *const alt_patt[] = {
1229 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1230 alt_9, alt_10, alt_11
1231 };
1232
1233 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1234 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1235
1236 static void
1237 i386_output_nops (char *where, const unsigned char *const *patt,
1238 int count, int max_single_nop_size)
1239
1240 {
1241 /* Place the longer NOP first. */
1242 int last;
1243 int offset;
1244 const unsigned char *nops = patt[max_single_nop_size - 1];
1245
1246 /* Use the smaller one if the requsted one isn't available. */
1247 if (nops == NULL)
1248 {
1249 max_single_nop_size--;
1250 nops = patt[max_single_nop_size - 1];
1251 }
1252
1253 last = count % max_single_nop_size;
1254
1255 count -= last;
1256 for (offset = 0; offset < count; offset += max_single_nop_size)
1257 memcpy (where + offset, nops, max_single_nop_size);
1258
1259 if (last)
1260 {
1261 nops = patt[last - 1];
1262 if (nops == NULL)
1263 {
1264 /* Use the smaller one plus one-byte NOP if the needed one
1265 isn't available. */
1266 last--;
1267 nops = patt[last - 1];
1268 memcpy (where + offset, nops, last);
1269 where[offset + last] = *patt[0];
1270 }
1271 else
1272 memcpy (where + offset, nops, last);
1273 }
1274 }
1275
1276 static INLINE int
1277 fits_in_imm7 (offsetT num)
1278 {
1279 return (num & 0x7f) == num;
1280 }
1281
1282 static INLINE int
1283 fits_in_imm31 (offsetT num)
1284 {
1285 return (num & 0x7fffffff) == num;
1286 }
1287
1288 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1289 single NOP instruction LIMIT. */
1290
1291 void
1292 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1293 {
1294 const unsigned char *const *patt = NULL;
1295 int max_single_nop_size;
1296 /* Maximum number of NOPs before switching to jump over NOPs. */
1297 int max_number_of_nops;
1298
1299 switch (fragP->fr_type)
1300 {
1301 case rs_fill_nop:
1302 case rs_align_code:
1303 break;
1304 default:
1305 return;
1306 }
1307
1308 /* We need to decide which NOP sequence to use for 32bit and
1309 64bit. When -mtune= is used:
1310
1311 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1312 PROCESSOR_GENERIC32, f32_patt will be used.
1313 2. For the rest, alt_patt will be used.
1314
1315 When -mtune= isn't used, alt_patt will be used if
1316 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1317 be used.
1318
1319 When -march= or .arch is used, we can't use anything beyond
1320 cpu_arch_isa_flags. */
1321
1322 if (flag_code == CODE_16BIT)
1323 {
1324 patt = f16_patt;
1325 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1326 /* Limit number of NOPs to 2 in 16-bit mode. */
1327 max_number_of_nops = 2;
1328 }
1329 else
1330 {
1331 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1332 {
1333 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1334 switch (cpu_arch_tune)
1335 {
1336 case PROCESSOR_UNKNOWN:
1337 /* We use cpu_arch_isa_flags to check if we SHOULD
1338 optimize with nops. */
1339 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1340 patt = alt_patt;
1341 else
1342 patt = f32_patt;
1343 break;
1344 case PROCESSOR_PENTIUM4:
1345 case PROCESSOR_NOCONA:
1346 case PROCESSOR_CORE:
1347 case PROCESSOR_CORE2:
1348 case PROCESSOR_COREI7:
1349 case PROCESSOR_L1OM:
1350 case PROCESSOR_K1OM:
1351 case PROCESSOR_GENERIC64:
1352 case PROCESSOR_K6:
1353 case PROCESSOR_ATHLON:
1354 case PROCESSOR_K8:
1355 case PROCESSOR_AMDFAM10:
1356 case PROCESSOR_BD:
1357 case PROCESSOR_ZNVER:
1358 case PROCESSOR_BT:
1359 patt = alt_patt;
1360 break;
1361 case PROCESSOR_I386:
1362 case PROCESSOR_I486:
1363 case PROCESSOR_PENTIUM:
1364 case PROCESSOR_PENTIUMPRO:
1365 case PROCESSOR_IAMCU:
1366 case PROCESSOR_GENERIC32:
1367 patt = f32_patt;
1368 break;
1369 }
1370 }
1371 else
1372 {
1373 switch (fragP->tc_frag_data.tune)
1374 {
1375 case PROCESSOR_UNKNOWN:
1376 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1377 PROCESSOR_UNKNOWN. */
1378 abort ();
1379 break;
1380
1381 case PROCESSOR_I386:
1382 case PROCESSOR_I486:
1383 case PROCESSOR_PENTIUM:
1384 case PROCESSOR_IAMCU:
1385 case PROCESSOR_K6:
1386 case PROCESSOR_ATHLON:
1387 case PROCESSOR_K8:
1388 case PROCESSOR_AMDFAM10:
1389 case PROCESSOR_BD:
1390 case PROCESSOR_ZNVER:
1391 case PROCESSOR_BT:
1392 case PROCESSOR_GENERIC32:
1393 /* We use cpu_arch_isa_flags to check if we CAN optimize
1394 with nops. */
1395 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1396 patt = alt_patt;
1397 else
1398 patt = f32_patt;
1399 break;
1400 case PROCESSOR_PENTIUMPRO:
1401 case PROCESSOR_PENTIUM4:
1402 case PROCESSOR_NOCONA:
1403 case PROCESSOR_CORE:
1404 case PROCESSOR_CORE2:
1405 case PROCESSOR_COREI7:
1406 case PROCESSOR_L1OM:
1407 case PROCESSOR_K1OM:
1408 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1409 patt = alt_patt;
1410 else
1411 patt = f32_patt;
1412 break;
1413 case PROCESSOR_GENERIC64:
1414 patt = alt_patt;
1415 break;
1416 }
1417 }
1418
1419 if (patt == f32_patt)
1420 {
1421 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1422 /* Limit number of NOPs to 2 for older processors. */
1423 max_number_of_nops = 2;
1424 }
1425 else
1426 {
1427 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1428 /* Limit number of NOPs to 7 for newer processors. */
1429 max_number_of_nops = 7;
1430 }
1431 }
1432
1433 if (limit == 0)
1434 limit = max_single_nop_size;
1435
1436 if (fragP->fr_type == rs_fill_nop)
1437 {
1438 /* Output NOPs for .nop directive. */
1439 if (limit > max_single_nop_size)
1440 {
1441 as_bad_where (fragP->fr_file, fragP->fr_line,
1442 _("invalid single nop size: %d "
1443 "(expect within [0, %d])"),
1444 limit, max_single_nop_size);
1445 return;
1446 }
1447 }
1448 else
1449 fragP->fr_var = count;
1450
1451 if ((count / max_single_nop_size) > max_number_of_nops)
1452 {
1453 /* Generate jump over NOPs. */
1454 offsetT disp = count - 2;
1455 if (fits_in_imm7 (disp))
1456 {
1457 /* Use "jmp disp8" if possible. */
1458 count = disp;
1459 where[0] = jump_disp8[0];
1460 where[1] = count;
1461 where += 2;
1462 }
1463 else
1464 {
1465 unsigned int size_of_jump;
1466
1467 if (flag_code == CODE_16BIT)
1468 {
1469 where[0] = jump16_disp32[0];
1470 where[1] = jump16_disp32[1];
1471 size_of_jump = 2;
1472 }
1473 else
1474 {
1475 where[0] = jump32_disp32[0];
1476 size_of_jump = 1;
1477 }
1478
1479 count -= size_of_jump + 4;
1480 if (!fits_in_imm31 (count))
1481 {
1482 as_bad_where (fragP->fr_file, fragP->fr_line,
1483 _("jump over nop padding out of range"));
1484 return;
1485 }
1486
1487 md_number_to_chars (where + size_of_jump, count, 4);
1488 where += size_of_jump + 4;
1489 }
1490 }
1491
1492 /* Generate multiple NOPs. */
1493 i386_output_nops (where, patt, count, limit);
1494 }
1495
1496 static INLINE int
1497 operand_type_all_zero (const union i386_operand_type *x)
1498 {
1499 switch (ARRAY_SIZE(x->array))
1500 {
1501 case 3:
1502 if (x->array[2])
1503 return 0;
1504 /* Fall through. */
1505 case 2:
1506 if (x->array[1])
1507 return 0;
1508 /* Fall through. */
1509 case 1:
1510 return !x->array[0];
1511 default:
1512 abort ();
1513 }
1514 }
1515
1516 static INLINE void
1517 operand_type_set (union i386_operand_type *x, unsigned int v)
1518 {
1519 switch (ARRAY_SIZE(x->array))
1520 {
1521 case 3:
1522 x->array[2] = v;
1523 /* Fall through. */
1524 case 2:
1525 x->array[1] = v;
1526 /* Fall through. */
1527 case 1:
1528 x->array[0] = v;
1529 /* Fall through. */
1530 break;
1531 default:
1532 abort ();
1533 }
1534 }
1535
1536 static INLINE int
1537 operand_type_equal (const union i386_operand_type *x,
1538 const union i386_operand_type *y)
1539 {
1540 switch (ARRAY_SIZE(x->array))
1541 {
1542 case 3:
1543 if (x->array[2] != y->array[2])
1544 return 0;
1545 /* Fall through. */
1546 case 2:
1547 if (x->array[1] != y->array[1])
1548 return 0;
1549 /* Fall through. */
1550 case 1:
1551 return x->array[0] == y->array[0];
1552 break;
1553 default:
1554 abort ();
1555 }
1556 }
1557
1558 static INLINE int
1559 cpu_flags_all_zero (const union i386_cpu_flags *x)
1560 {
1561 switch (ARRAY_SIZE(x->array))
1562 {
1563 case 4:
1564 if (x->array[3])
1565 return 0;
1566 /* Fall through. */
1567 case 3:
1568 if (x->array[2])
1569 return 0;
1570 /* Fall through. */
1571 case 2:
1572 if (x->array[1])
1573 return 0;
1574 /* Fall through. */
1575 case 1:
1576 return !x->array[0];
1577 default:
1578 abort ();
1579 }
1580 }
1581
1582 static INLINE int
1583 cpu_flags_equal (const union i386_cpu_flags *x,
1584 const union i386_cpu_flags *y)
1585 {
1586 switch (ARRAY_SIZE(x->array))
1587 {
1588 case 4:
1589 if (x->array[3] != y->array[3])
1590 return 0;
1591 /* Fall through. */
1592 case 3:
1593 if (x->array[2] != y->array[2])
1594 return 0;
1595 /* Fall through. */
1596 case 2:
1597 if (x->array[1] != y->array[1])
1598 return 0;
1599 /* Fall through. */
1600 case 1:
1601 return x->array[0] == y->array[0];
1602 break;
1603 default:
1604 abort ();
1605 }
1606 }
1607
1608 static INLINE int
1609 cpu_flags_check_cpu64 (i386_cpu_flags f)
1610 {
1611 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1612 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1613 }
1614
1615 static INLINE i386_cpu_flags
1616 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1617 {
1618 switch (ARRAY_SIZE (x.array))
1619 {
1620 case 4:
1621 x.array [3] &= y.array [3];
1622 /* Fall through. */
1623 case 3:
1624 x.array [2] &= y.array [2];
1625 /* Fall through. */
1626 case 2:
1627 x.array [1] &= y.array [1];
1628 /* Fall through. */
1629 case 1:
1630 x.array [0] &= y.array [0];
1631 break;
1632 default:
1633 abort ();
1634 }
1635 return x;
1636 }
1637
1638 static INLINE i386_cpu_flags
1639 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1640 {
1641 switch (ARRAY_SIZE (x.array))
1642 {
1643 case 4:
1644 x.array [3] |= y.array [3];
1645 /* Fall through. */
1646 case 3:
1647 x.array [2] |= y.array [2];
1648 /* Fall through. */
1649 case 2:
1650 x.array [1] |= y.array [1];
1651 /* Fall through. */
1652 case 1:
1653 x.array [0] |= y.array [0];
1654 break;
1655 default:
1656 abort ();
1657 }
1658 return x;
1659 }
1660
1661 static INLINE i386_cpu_flags
1662 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1663 {
1664 switch (ARRAY_SIZE (x.array))
1665 {
1666 case 4:
1667 x.array [3] &= ~y.array [3];
1668 /* Fall through. */
1669 case 3:
1670 x.array [2] &= ~y.array [2];
1671 /* Fall through. */
1672 case 2:
1673 x.array [1] &= ~y.array [1];
1674 /* Fall through. */
1675 case 1:
1676 x.array [0] &= ~y.array [0];
1677 break;
1678 default:
1679 abort ();
1680 }
1681 return x;
1682 }
1683
1684 #define CPU_FLAGS_ARCH_MATCH 0x1
1685 #define CPU_FLAGS_64BIT_MATCH 0x2
1686
1687 #define CPU_FLAGS_PERFECT_MATCH \
1688 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1689
1690 /* Return CPU flags match bits. */
1691
1692 static int
1693 cpu_flags_match (const insn_template *t)
1694 {
1695 i386_cpu_flags x = t->cpu_flags;
1696 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1697
1698 x.bitfield.cpu64 = 0;
1699 x.bitfield.cpuno64 = 0;
1700
1701 if (cpu_flags_all_zero (&x))
1702 {
1703 /* This instruction is available on all archs. */
1704 match |= CPU_FLAGS_ARCH_MATCH;
1705 }
1706 else
1707 {
1708 /* This instruction is available only on some archs. */
1709 i386_cpu_flags cpu = cpu_arch_flags;
1710
1711 /* AVX512VL is no standalone feature - match it and then strip it. */
1712 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1713 return match;
1714 x.bitfield.cpuavx512vl = 0;
1715
1716 cpu = cpu_flags_and (x, cpu);
1717 if (!cpu_flags_all_zero (&cpu))
1718 {
1719 if (x.bitfield.cpuavx)
1720 {
1721 /* We need to check a few extra flags with AVX. */
1722 if (cpu.bitfield.cpuavx
1723 && (!t->opcode_modifier.sse2avx || sse2avx)
1724 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1725 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1726 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1727 match |= CPU_FLAGS_ARCH_MATCH;
1728 }
1729 else if (x.bitfield.cpuavx512f)
1730 {
1731 /* We need to check a few extra flags with AVX512F. */
1732 if (cpu.bitfield.cpuavx512f
1733 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1734 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1735 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1736 match |= CPU_FLAGS_ARCH_MATCH;
1737 }
1738 else
1739 match |= CPU_FLAGS_ARCH_MATCH;
1740 }
1741 }
1742 return match;
1743 }
1744
1745 static INLINE i386_operand_type
1746 operand_type_and (i386_operand_type x, i386_operand_type y)
1747 {
1748 switch (ARRAY_SIZE (x.array))
1749 {
1750 case 3:
1751 x.array [2] &= y.array [2];
1752 /* Fall through. */
1753 case 2:
1754 x.array [1] &= y.array [1];
1755 /* Fall through. */
1756 case 1:
1757 x.array [0] &= y.array [0];
1758 break;
1759 default:
1760 abort ();
1761 }
1762 return x;
1763 }
1764
1765 static INLINE i386_operand_type
1766 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1767 {
1768 switch (ARRAY_SIZE (x.array))
1769 {
1770 case 3:
1771 x.array [2] &= ~y.array [2];
1772 /* Fall through. */
1773 case 2:
1774 x.array [1] &= ~y.array [1];
1775 /* Fall through. */
1776 case 1:
1777 x.array [0] &= ~y.array [0];
1778 break;
1779 default:
1780 abort ();
1781 }
1782 return x;
1783 }
1784
1785 static INLINE i386_operand_type
1786 operand_type_or (i386_operand_type x, i386_operand_type y)
1787 {
1788 switch (ARRAY_SIZE (x.array))
1789 {
1790 case 3:
1791 x.array [2] |= y.array [2];
1792 /* Fall through. */
1793 case 2:
1794 x.array [1] |= y.array [1];
1795 /* Fall through. */
1796 case 1:
1797 x.array [0] |= y.array [0];
1798 break;
1799 default:
1800 abort ();
1801 }
1802 return x;
1803 }
1804
1805 static INLINE i386_operand_type
1806 operand_type_xor (i386_operand_type x, i386_operand_type y)
1807 {
1808 switch (ARRAY_SIZE (x.array))
1809 {
1810 case 3:
1811 x.array [2] ^= y.array [2];
1812 /* Fall through. */
1813 case 2:
1814 x.array [1] ^= y.array [1];
1815 /* Fall through. */
1816 case 1:
1817 x.array [0] ^= y.array [0];
1818 break;
1819 default:
1820 abort ();
1821 }
1822 return x;
1823 }
1824
1825 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1826 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1827 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1828 static const i386_operand_type inoutportreg
1829 = OPERAND_TYPE_INOUTPORTREG;
1830 static const i386_operand_type reg16_inoutportreg
1831 = OPERAND_TYPE_REG16_INOUTPORTREG;
1832 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1833 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1834 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1835 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1836 static const i386_operand_type anydisp
1837 = OPERAND_TYPE_ANYDISP;
1838 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1839 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1840 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1841 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1842 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1843 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1844 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1845 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1846 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1847 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1848 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1849 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1850
1851 enum operand_type
1852 {
1853 reg,
1854 imm,
1855 disp,
1856 anymem
1857 };
1858
1859 static INLINE int
1860 operand_type_check (i386_operand_type t, enum operand_type c)
1861 {
1862 switch (c)
1863 {
1864 case reg:
1865 return t.bitfield.reg;
1866
1867 case imm:
1868 return (t.bitfield.imm8
1869 || t.bitfield.imm8s
1870 || t.bitfield.imm16
1871 || t.bitfield.imm32
1872 || t.bitfield.imm32s
1873 || t.bitfield.imm64);
1874
1875 case disp:
1876 return (t.bitfield.disp8
1877 || t.bitfield.disp16
1878 || t.bitfield.disp32
1879 || t.bitfield.disp32s
1880 || t.bitfield.disp64);
1881
1882 case anymem:
1883 return (t.bitfield.disp8
1884 || t.bitfield.disp16
1885 || t.bitfield.disp32
1886 || t.bitfield.disp32s
1887 || t.bitfield.disp64
1888 || t.bitfield.baseindex);
1889
1890 default:
1891 abort ();
1892 }
1893
1894 return 0;
1895 }
1896
1897 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit on
1898 operand J for instruction template T. */
1899
1900 static INLINE int
1901 match_reg_size (const insn_template *t, unsigned int j)
1902 {
1903 return !((i.types[j].bitfield.byte
1904 && !t->operand_types[j].bitfield.byte)
1905 || (i.types[j].bitfield.word
1906 && !t->operand_types[j].bitfield.word)
1907 || (i.types[j].bitfield.dword
1908 && !t->operand_types[j].bitfield.dword)
1909 || (i.types[j].bitfield.qword
1910 && !t->operand_types[j].bitfield.qword)
1911 || (i.types[j].bitfield.tbyte
1912 && !t->operand_types[j].bitfield.tbyte));
1913 }
1914
1915 /* Return 1 if there is no conflict in SIMD register on
1916 operand J for instruction template T. */
1917
1918 static INLINE int
1919 match_simd_size (const insn_template *t, unsigned int j)
1920 {
1921 return !((i.types[j].bitfield.xmmword
1922 && !t->operand_types[j].bitfield.xmmword)
1923 || (i.types[j].bitfield.ymmword
1924 && !t->operand_types[j].bitfield.ymmword)
1925 || (i.types[j].bitfield.zmmword
1926 && !t->operand_types[j].bitfield.zmmword));
1927 }
1928
1929 /* Return 1 if there is no conflict in any size on operand J for
1930 instruction template T. */
1931
1932 static INLINE int
1933 match_mem_size (const insn_template *t, unsigned int j)
1934 {
1935 return (match_reg_size (t, j)
1936 && !((i.types[j].bitfield.unspecified
1937 && !i.broadcast
1938 && !t->operand_types[j].bitfield.unspecified)
1939 || (i.types[j].bitfield.fword
1940 && !t->operand_types[j].bitfield.fword)
1941 /* For scalar opcode templates to allow register and memory
1942 operands at the same time, some special casing is needed
1943 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1944 down-conversion vpmov*. */
1945 || ((t->operand_types[j].bitfield.regsimd
1946 && !t->opcode_modifier.broadcast
1947 && (t->operand_types[j].bitfield.byte
1948 || t->operand_types[j].bitfield.word
1949 || t->operand_types[j].bitfield.dword
1950 || t->operand_types[j].bitfield.qword))
1951 ? (i.types[j].bitfield.xmmword
1952 || i.types[j].bitfield.ymmword
1953 || i.types[j].bitfield.zmmword)
1954 : !match_simd_size(t, j))));
1955 }
1956
1957 /* Return 1 if there is no size conflict on any operands for
1958 instruction template T. */
1959
1960 static INLINE int
1961 operand_size_match (const insn_template *t)
1962 {
1963 unsigned int j;
1964 int match = 1;
1965
1966 /* Don't check jump instructions. */
1967 if (t->opcode_modifier.jump
1968 || t->opcode_modifier.jumpbyte
1969 || t->opcode_modifier.jumpdword
1970 || t->opcode_modifier.jumpintersegment)
1971 return match;
1972
1973 /* Check memory and accumulator operand size. */
1974 for (j = 0; j < i.operands; j++)
1975 {
1976 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1977 && t->operand_types[j].bitfield.anysize)
1978 continue;
1979
1980 if (t->operand_types[j].bitfield.reg
1981 && !match_reg_size (t, j))
1982 {
1983 match = 0;
1984 break;
1985 }
1986
1987 if (t->operand_types[j].bitfield.regsimd
1988 && !match_simd_size (t, j))
1989 {
1990 match = 0;
1991 break;
1992 }
1993
1994 if (t->operand_types[j].bitfield.acc
1995 && (!match_reg_size (t, j) || !match_simd_size (t, j)))
1996 {
1997 match = 0;
1998 break;
1999 }
2000
2001 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
2002 {
2003 match = 0;
2004 break;
2005 }
2006 }
2007
2008 if (match)
2009 return match;
2010 else if (!t->opcode_modifier.d)
2011 {
2012 mismatch:
2013 i.error = operand_size_mismatch;
2014 return 0;
2015 }
2016
2017 /* Check reverse. */
2018 gas_assert (i.operands == 2);
2019
2020 match = 1;
2021 for (j = 0; j < 2; j++)
2022 {
2023 if ((t->operand_types[j].bitfield.reg
2024 || t->operand_types[j].bitfield.acc)
2025 && !match_reg_size (t, j ? 0 : 1))
2026 goto mismatch;
2027
2028 if (i.types[j].bitfield.mem
2029 && !match_mem_size (t, j ? 0 : 1))
2030 goto mismatch;
2031 }
2032
2033 return match;
2034 }
2035
2036 static INLINE int
2037 operand_type_match (i386_operand_type overlap,
2038 i386_operand_type given)
2039 {
2040 i386_operand_type temp = overlap;
2041
2042 temp.bitfield.jumpabsolute = 0;
2043 temp.bitfield.unspecified = 0;
2044 temp.bitfield.byte = 0;
2045 temp.bitfield.word = 0;
2046 temp.bitfield.dword = 0;
2047 temp.bitfield.fword = 0;
2048 temp.bitfield.qword = 0;
2049 temp.bitfield.tbyte = 0;
2050 temp.bitfield.xmmword = 0;
2051 temp.bitfield.ymmword = 0;
2052 temp.bitfield.zmmword = 0;
2053 if (operand_type_all_zero (&temp))
2054 goto mismatch;
2055
2056 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2057 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2058 return 1;
2059
2060 mismatch:
2061 i.error = operand_type_mismatch;
2062 return 0;
2063 }
2064
2065 /* If given types g0 and g1 are registers they must be of the same type
2066 unless the expected operand type register overlap is null.
2067 Memory operand size of certain SIMD instructions is also being checked
2068 here. */
2069
2070 static INLINE int
2071 operand_type_register_match (i386_operand_type g0,
2072 i386_operand_type t0,
2073 i386_operand_type g1,
2074 i386_operand_type t1)
2075 {
2076 if (!g0.bitfield.reg
2077 && !g0.bitfield.regsimd
2078 && (!operand_type_check (g0, anymem)
2079 || g0.bitfield.unspecified
2080 || !t0.bitfield.regsimd))
2081 return 1;
2082
2083 if (!g1.bitfield.reg
2084 && !g1.bitfield.regsimd
2085 && (!operand_type_check (g1, anymem)
2086 || g1.bitfield.unspecified
2087 || !t1.bitfield.regsimd))
2088 return 1;
2089
2090 if (g0.bitfield.byte == g1.bitfield.byte
2091 && g0.bitfield.word == g1.bitfield.word
2092 && g0.bitfield.dword == g1.bitfield.dword
2093 && g0.bitfield.qword == g1.bitfield.qword
2094 && g0.bitfield.xmmword == g1.bitfield.xmmword
2095 && g0.bitfield.ymmword == g1.bitfield.ymmword
2096 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2097 return 1;
2098
2099 if (!(t0.bitfield.byte & t1.bitfield.byte)
2100 && !(t0.bitfield.word & t1.bitfield.word)
2101 && !(t0.bitfield.dword & t1.bitfield.dword)
2102 && !(t0.bitfield.qword & t1.bitfield.qword)
2103 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2104 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2105 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2106 return 1;
2107
2108 i.error = register_type_mismatch;
2109
2110 return 0;
2111 }
2112
2113 static INLINE unsigned int
2114 register_number (const reg_entry *r)
2115 {
2116 unsigned int nr = r->reg_num;
2117
2118 if (r->reg_flags & RegRex)
2119 nr += 8;
2120
2121 if (r->reg_flags & RegVRex)
2122 nr += 16;
2123
2124 return nr;
2125 }
2126
2127 static INLINE unsigned int
2128 mode_from_disp_size (i386_operand_type t)
2129 {
2130 if (t.bitfield.disp8)
2131 return 1;
2132 else if (t.bitfield.disp16
2133 || t.bitfield.disp32
2134 || t.bitfield.disp32s)
2135 return 2;
2136 else
2137 return 0;
2138 }
2139
2140 static INLINE int
2141 fits_in_signed_byte (addressT num)
2142 {
2143 return num + 0x80 <= 0xff;
2144 }
2145
2146 static INLINE int
2147 fits_in_unsigned_byte (addressT num)
2148 {
2149 return num <= 0xff;
2150 }
2151
2152 static INLINE int
2153 fits_in_unsigned_word (addressT num)
2154 {
2155 return num <= 0xffff;
2156 }
2157
2158 static INLINE int
2159 fits_in_signed_word (addressT num)
2160 {
2161 return num + 0x8000 <= 0xffff;
2162 }
2163
2164 static INLINE int
2165 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2166 {
2167 #ifndef BFD64
2168 return 1;
2169 #else
2170 return num + 0x80000000 <= 0xffffffff;
2171 #endif
2172 } /* fits_in_signed_long() */
2173
2174 static INLINE int
2175 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2176 {
2177 #ifndef BFD64
2178 return 1;
2179 #else
2180 return num <= 0xffffffff;
2181 #endif
2182 } /* fits_in_unsigned_long() */
2183
2184 static INLINE int
2185 fits_in_disp8 (offsetT num)
2186 {
2187 int shift = i.memshift;
2188 unsigned int mask;
2189
2190 if (shift == -1)
2191 abort ();
2192
2193 mask = (1 << shift) - 1;
2194
2195 /* Return 0 if NUM isn't properly aligned. */
2196 if ((num & mask))
2197 return 0;
2198
2199 /* Check if NUM will fit in 8bit after shift. */
2200 return fits_in_signed_byte (num >> shift);
2201 }
2202
2203 static INLINE int
2204 fits_in_imm4 (offsetT num)
2205 {
2206 return (num & 0xf) == num;
2207 }
2208
2209 static i386_operand_type
2210 smallest_imm_type (offsetT num)
2211 {
2212 i386_operand_type t;
2213
2214 operand_type_set (&t, 0);
2215 t.bitfield.imm64 = 1;
2216
2217 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2218 {
2219 /* This code is disabled on the 486 because all the Imm1 forms
2220 in the opcode table are slower on the i486. They're the
2221 versions with the implicitly specified single-position
2222 displacement, which has another syntax if you really want to
2223 use that form. */
2224 t.bitfield.imm1 = 1;
2225 t.bitfield.imm8 = 1;
2226 t.bitfield.imm8s = 1;
2227 t.bitfield.imm16 = 1;
2228 t.bitfield.imm32 = 1;
2229 t.bitfield.imm32s = 1;
2230 }
2231 else if (fits_in_signed_byte (num))
2232 {
2233 t.bitfield.imm8 = 1;
2234 t.bitfield.imm8s = 1;
2235 t.bitfield.imm16 = 1;
2236 t.bitfield.imm32 = 1;
2237 t.bitfield.imm32s = 1;
2238 }
2239 else if (fits_in_unsigned_byte (num))
2240 {
2241 t.bitfield.imm8 = 1;
2242 t.bitfield.imm16 = 1;
2243 t.bitfield.imm32 = 1;
2244 t.bitfield.imm32s = 1;
2245 }
2246 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2247 {
2248 t.bitfield.imm16 = 1;
2249 t.bitfield.imm32 = 1;
2250 t.bitfield.imm32s = 1;
2251 }
2252 else if (fits_in_signed_long (num))
2253 {
2254 t.bitfield.imm32 = 1;
2255 t.bitfield.imm32s = 1;
2256 }
2257 else if (fits_in_unsigned_long (num))
2258 t.bitfield.imm32 = 1;
2259
2260 return t;
2261 }
2262
2263 static offsetT
2264 offset_in_range (offsetT val, int size)
2265 {
2266 addressT mask;
2267
2268 switch (size)
2269 {
2270 case 1: mask = ((addressT) 1 << 8) - 1; break;
2271 case 2: mask = ((addressT) 1 << 16) - 1; break;
2272 case 4: mask = ((addressT) 2 << 31) - 1; break;
2273 #ifdef BFD64
2274 case 8: mask = ((addressT) 2 << 63) - 1; break;
2275 #endif
2276 default: abort ();
2277 }
2278
2279 #ifdef BFD64
2280 /* If BFD64, sign extend val for 32bit address mode. */
2281 if (flag_code != CODE_64BIT
2282 || i.prefix[ADDR_PREFIX])
2283 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2284 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2285 #endif
2286
2287 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2288 {
2289 char buf1[40], buf2[40];
2290
2291 sprint_value (buf1, val);
2292 sprint_value (buf2, val & mask);
2293 as_warn (_("%s shortened to %s"), buf1, buf2);
2294 }
2295 return val & mask;
2296 }
2297
2298 enum PREFIX_GROUP
2299 {
2300 PREFIX_EXIST = 0,
2301 PREFIX_LOCK,
2302 PREFIX_REP,
2303 PREFIX_DS,
2304 PREFIX_OTHER
2305 };
2306
2307 /* Returns
2308 a. PREFIX_EXIST if attempting to add a prefix where one from the
2309 same class already exists.
2310 b. PREFIX_LOCK if lock prefix is added.
2311 c. PREFIX_REP if rep/repne prefix is added.
2312 d. PREFIX_DS if ds prefix is added.
2313 e. PREFIX_OTHER if other prefix is added.
2314 */
2315
2316 static enum PREFIX_GROUP
2317 add_prefix (unsigned int prefix)
2318 {
2319 enum PREFIX_GROUP ret = PREFIX_OTHER;
2320 unsigned int q;
2321
2322 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2323 && flag_code == CODE_64BIT)
2324 {
2325 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2326 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2327 && (prefix & (REX_R | REX_X | REX_B))))
2328 ret = PREFIX_EXIST;
2329 q = REX_PREFIX;
2330 }
2331 else
2332 {
2333 switch (prefix)
2334 {
2335 default:
2336 abort ();
2337
2338 case DS_PREFIX_OPCODE:
2339 ret = PREFIX_DS;
2340 /* Fall through. */
2341 case CS_PREFIX_OPCODE:
2342 case ES_PREFIX_OPCODE:
2343 case FS_PREFIX_OPCODE:
2344 case GS_PREFIX_OPCODE:
2345 case SS_PREFIX_OPCODE:
2346 q = SEG_PREFIX;
2347 break;
2348
2349 case REPNE_PREFIX_OPCODE:
2350 case REPE_PREFIX_OPCODE:
2351 q = REP_PREFIX;
2352 ret = PREFIX_REP;
2353 break;
2354
2355 case LOCK_PREFIX_OPCODE:
2356 q = LOCK_PREFIX;
2357 ret = PREFIX_LOCK;
2358 break;
2359
2360 case FWAIT_OPCODE:
2361 q = WAIT_PREFIX;
2362 break;
2363
2364 case ADDR_PREFIX_OPCODE:
2365 q = ADDR_PREFIX;
2366 break;
2367
2368 case DATA_PREFIX_OPCODE:
2369 q = DATA_PREFIX;
2370 break;
2371 }
2372 if (i.prefix[q] != 0)
2373 ret = PREFIX_EXIST;
2374 }
2375
2376 if (ret)
2377 {
2378 if (!i.prefix[q])
2379 ++i.prefixes;
2380 i.prefix[q] |= prefix;
2381 }
2382 else
2383 as_bad (_("same type of prefix used twice"));
2384
2385 return ret;
2386 }
2387
2388 static void
2389 update_code_flag (int value, int check)
2390 {
2391 PRINTF_LIKE ((*as_error));
2392
2393 flag_code = (enum flag_code) value;
2394 if (flag_code == CODE_64BIT)
2395 {
2396 cpu_arch_flags.bitfield.cpu64 = 1;
2397 cpu_arch_flags.bitfield.cpuno64 = 0;
2398 }
2399 else
2400 {
2401 cpu_arch_flags.bitfield.cpu64 = 0;
2402 cpu_arch_flags.bitfield.cpuno64 = 1;
2403 }
2404 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2405 {
2406 if (check)
2407 as_error = as_fatal;
2408 else
2409 as_error = as_bad;
2410 (*as_error) (_("64bit mode not supported on `%s'."),
2411 cpu_arch_name ? cpu_arch_name : default_arch);
2412 }
2413 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2414 {
2415 if (check)
2416 as_error = as_fatal;
2417 else
2418 as_error = as_bad;
2419 (*as_error) (_("32bit mode not supported on `%s'."),
2420 cpu_arch_name ? cpu_arch_name : default_arch);
2421 }
2422 stackop_size = '\0';
2423 }
2424
2425 static void
2426 set_code_flag (int value)
2427 {
2428 update_code_flag (value, 0);
2429 }
2430
2431 static void
2432 set_16bit_gcc_code_flag (int new_code_flag)
2433 {
2434 flag_code = (enum flag_code) new_code_flag;
2435 if (flag_code != CODE_16BIT)
2436 abort ();
2437 cpu_arch_flags.bitfield.cpu64 = 0;
2438 cpu_arch_flags.bitfield.cpuno64 = 1;
2439 stackop_size = LONG_MNEM_SUFFIX;
2440 }
2441
2442 static void
2443 set_intel_syntax (int syntax_flag)
2444 {
2445 /* Find out if register prefixing is specified. */
2446 int ask_naked_reg = 0;
2447
2448 SKIP_WHITESPACE ();
2449 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2450 {
2451 char *string;
2452 int e = get_symbol_name (&string);
2453
2454 if (strcmp (string, "prefix") == 0)
2455 ask_naked_reg = 1;
2456 else if (strcmp (string, "noprefix") == 0)
2457 ask_naked_reg = -1;
2458 else
2459 as_bad (_("bad argument to syntax directive."));
2460 (void) restore_line_pointer (e);
2461 }
2462 demand_empty_rest_of_line ();
2463
2464 intel_syntax = syntax_flag;
2465
2466 if (ask_naked_reg == 0)
2467 allow_naked_reg = (intel_syntax
2468 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2469 else
2470 allow_naked_reg = (ask_naked_reg < 0);
2471
2472 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2473
2474 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2475 identifier_chars['$'] = intel_syntax ? '$' : 0;
2476 register_prefix = allow_naked_reg ? "" : "%";
2477 }
2478
2479 static void
2480 set_intel_mnemonic (int mnemonic_flag)
2481 {
2482 intel_mnemonic = mnemonic_flag;
2483 }
2484
2485 static void
2486 set_allow_index_reg (int flag)
2487 {
2488 allow_index_reg = flag;
2489 }
2490
2491 static void
2492 set_check (int what)
2493 {
2494 enum check_kind *kind;
2495 const char *str;
2496
2497 if (what)
2498 {
2499 kind = &operand_check;
2500 str = "operand";
2501 }
2502 else
2503 {
2504 kind = &sse_check;
2505 str = "sse";
2506 }
2507
2508 SKIP_WHITESPACE ();
2509
2510 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2511 {
2512 char *string;
2513 int e = get_symbol_name (&string);
2514
2515 if (strcmp (string, "none") == 0)
2516 *kind = check_none;
2517 else if (strcmp (string, "warning") == 0)
2518 *kind = check_warning;
2519 else if (strcmp (string, "error") == 0)
2520 *kind = check_error;
2521 else
2522 as_bad (_("bad argument to %s_check directive."), str);
2523 (void) restore_line_pointer (e);
2524 }
2525 else
2526 as_bad (_("missing argument for %s_check directive"), str);
2527
2528 demand_empty_rest_of_line ();
2529 }
2530
2531 static void
2532 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2533 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2534 {
2535 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2536 static const char *arch;
2537
2538 /* Intel LIOM is only supported on ELF. */
2539 if (!IS_ELF)
2540 return;
2541
2542 if (!arch)
2543 {
2544 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2545 use default_arch. */
2546 arch = cpu_arch_name;
2547 if (!arch)
2548 arch = default_arch;
2549 }
2550
2551 /* If we are targeting Intel MCU, we must enable it. */
2552 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2553 || new_flag.bitfield.cpuiamcu)
2554 return;
2555
2556 /* If we are targeting Intel L1OM, we must enable it. */
2557 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2558 || new_flag.bitfield.cpul1om)
2559 return;
2560
2561 /* If we are targeting Intel K1OM, we must enable it. */
2562 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2563 || new_flag.bitfield.cpuk1om)
2564 return;
2565
2566 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2567 #endif
2568 }
2569
2570 static void
2571 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2572 {
2573 SKIP_WHITESPACE ();
2574
2575 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2576 {
2577 char *string;
2578 int e = get_symbol_name (&string);
2579 unsigned int j;
2580 i386_cpu_flags flags;
2581
2582 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2583 {
2584 if (strcmp (string, cpu_arch[j].name) == 0)
2585 {
2586 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2587
2588 if (*string != '.')
2589 {
2590 cpu_arch_name = cpu_arch[j].name;
2591 cpu_sub_arch_name = NULL;
2592 cpu_arch_flags = cpu_arch[j].flags;
2593 if (flag_code == CODE_64BIT)
2594 {
2595 cpu_arch_flags.bitfield.cpu64 = 1;
2596 cpu_arch_flags.bitfield.cpuno64 = 0;
2597 }
2598 else
2599 {
2600 cpu_arch_flags.bitfield.cpu64 = 0;
2601 cpu_arch_flags.bitfield.cpuno64 = 1;
2602 }
2603 cpu_arch_isa = cpu_arch[j].type;
2604 cpu_arch_isa_flags = cpu_arch[j].flags;
2605 if (!cpu_arch_tune_set)
2606 {
2607 cpu_arch_tune = cpu_arch_isa;
2608 cpu_arch_tune_flags = cpu_arch_isa_flags;
2609 }
2610 break;
2611 }
2612
2613 flags = cpu_flags_or (cpu_arch_flags,
2614 cpu_arch[j].flags);
2615
2616 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2617 {
2618 if (cpu_sub_arch_name)
2619 {
2620 char *name = cpu_sub_arch_name;
2621 cpu_sub_arch_name = concat (name,
2622 cpu_arch[j].name,
2623 (const char *) NULL);
2624 free (name);
2625 }
2626 else
2627 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2628 cpu_arch_flags = flags;
2629 cpu_arch_isa_flags = flags;
2630 }
2631 else
2632 cpu_arch_isa_flags
2633 = cpu_flags_or (cpu_arch_isa_flags,
2634 cpu_arch[j].flags);
2635 (void) restore_line_pointer (e);
2636 demand_empty_rest_of_line ();
2637 return;
2638 }
2639 }
2640
2641 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2642 {
2643 /* Disable an ISA extension. */
2644 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2645 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2646 {
2647 flags = cpu_flags_and_not (cpu_arch_flags,
2648 cpu_noarch[j].flags);
2649 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2650 {
2651 if (cpu_sub_arch_name)
2652 {
2653 char *name = cpu_sub_arch_name;
2654 cpu_sub_arch_name = concat (name, string,
2655 (const char *) NULL);
2656 free (name);
2657 }
2658 else
2659 cpu_sub_arch_name = xstrdup (string);
2660 cpu_arch_flags = flags;
2661 cpu_arch_isa_flags = flags;
2662 }
2663 (void) restore_line_pointer (e);
2664 demand_empty_rest_of_line ();
2665 return;
2666 }
2667
2668 j = ARRAY_SIZE (cpu_arch);
2669 }
2670
2671 if (j >= ARRAY_SIZE (cpu_arch))
2672 as_bad (_("no such architecture: `%s'"), string);
2673
2674 *input_line_pointer = e;
2675 }
2676 else
2677 as_bad (_("missing cpu architecture"));
2678
2679 no_cond_jump_promotion = 0;
2680 if (*input_line_pointer == ','
2681 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2682 {
2683 char *string;
2684 char e;
2685
2686 ++input_line_pointer;
2687 e = get_symbol_name (&string);
2688
2689 if (strcmp (string, "nojumps") == 0)
2690 no_cond_jump_promotion = 1;
2691 else if (strcmp (string, "jumps") == 0)
2692 ;
2693 else
2694 as_bad (_("no such architecture modifier: `%s'"), string);
2695
2696 (void) restore_line_pointer (e);
2697 }
2698
2699 demand_empty_rest_of_line ();
2700 }
2701
2702 enum bfd_architecture
2703 i386_arch (void)
2704 {
2705 if (cpu_arch_isa == PROCESSOR_L1OM)
2706 {
2707 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2708 || flag_code != CODE_64BIT)
2709 as_fatal (_("Intel L1OM is 64bit ELF only"));
2710 return bfd_arch_l1om;
2711 }
2712 else if (cpu_arch_isa == PROCESSOR_K1OM)
2713 {
2714 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2715 || flag_code != CODE_64BIT)
2716 as_fatal (_("Intel K1OM is 64bit ELF only"));
2717 return bfd_arch_k1om;
2718 }
2719 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2720 {
2721 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2722 || flag_code == CODE_64BIT)
2723 as_fatal (_("Intel MCU is 32bit ELF only"));
2724 return bfd_arch_iamcu;
2725 }
2726 else
2727 return bfd_arch_i386;
2728 }
2729
2730 unsigned long
2731 i386_mach (void)
2732 {
2733 if (!strncmp (default_arch, "x86_64", 6))
2734 {
2735 if (cpu_arch_isa == PROCESSOR_L1OM)
2736 {
2737 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2738 || default_arch[6] != '\0')
2739 as_fatal (_("Intel L1OM is 64bit ELF only"));
2740 return bfd_mach_l1om;
2741 }
2742 else if (cpu_arch_isa == PROCESSOR_K1OM)
2743 {
2744 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2745 || default_arch[6] != '\0')
2746 as_fatal (_("Intel K1OM is 64bit ELF only"));
2747 return bfd_mach_k1om;
2748 }
2749 else if (default_arch[6] == '\0')
2750 return bfd_mach_x86_64;
2751 else
2752 return bfd_mach_x64_32;
2753 }
2754 else if (!strcmp (default_arch, "i386")
2755 || !strcmp (default_arch, "iamcu"))
2756 {
2757 if (cpu_arch_isa == PROCESSOR_IAMCU)
2758 {
2759 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2760 as_fatal (_("Intel MCU is 32bit ELF only"));
2761 return bfd_mach_i386_iamcu;
2762 }
2763 else
2764 return bfd_mach_i386_i386;
2765 }
2766 else
2767 as_fatal (_("unknown architecture"));
2768 }
2769 \f
2770 void
2771 md_begin (void)
2772 {
2773 const char *hash_err;
2774
2775 /* Support pseudo prefixes like {disp32}. */
2776 lex_type ['{'] = LEX_BEGIN_NAME;
2777
2778 /* Initialize op_hash hash table. */
2779 op_hash = hash_new ();
2780
2781 {
2782 const insn_template *optab;
2783 templates *core_optab;
2784
2785 /* Setup for loop. */
2786 optab = i386_optab;
2787 core_optab = XNEW (templates);
2788 core_optab->start = optab;
2789
2790 while (1)
2791 {
2792 ++optab;
2793 if (optab->name == NULL
2794 || strcmp (optab->name, (optab - 1)->name) != 0)
2795 {
2796 /* different name --> ship out current template list;
2797 add to hash table; & begin anew. */
2798 core_optab->end = optab;
2799 hash_err = hash_insert (op_hash,
2800 (optab - 1)->name,
2801 (void *) core_optab);
2802 if (hash_err)
2803 {
2804 as_fatal (_("can't hash %s: %s"),
2805 (optab - 1)->name,
2806 hash_err);
2807 }
2808 if (optab->name == NULL)
2809 break;
2810 core_optab = XNEW (templates);
2811 core_optab->start = optab;
2812 }
2813 }
2814 }
2815
2816 /* Initialize reg_hash hash table. */
2817 reg_hash = hash_new ();
2818 {
2819 const reg_entry *regtab;
2820 unsigned int regtab_size = i386_regtab_size;
2821
2822 for (regtab = i386_regtab; regtab_size--; regtab++)
2823 {
2824 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2825 if (hash_err)
2826 as_fatal (_("can't hash %s: %s"),
2827 regtab->reg_name,
2828 hash_err);
2829 }
2830 }
2831
2832 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2833 {
2834 int c;
2835 char *p;
2836
2837 for (c = 0; c < 256; c++)
2838 {
2839 if (ISDIGIT (c))
2840 {
2841 digit_chars[c] = c;
2842 mnemonic_chars[c] = c;
2843 register_chars[c] = c;
2844 operand_chars[c] = c;
2845 }
2846 else if (ISLOWER (c))
2847 {
2848 mnemonic_chars[c] = c;
2849 register_chars[c] = c;
2850 operand_chars[c] = c;
2851 }
2852 else if (ISUPPER (c))
2853 {
2854 mnemonic_chars[c] = TOLOWER (c);
2855 register_chars[c] = mnemonic_chars[c];
2856 operand_chars[c] = c;
2857 }
2858 else if (c == '{' || c == '}')
2859 {
2860 mnemonic_chars[c] = c;
2861 operand_chars[c] = c;
2862 }
2863
2864 if (ISALPHA (c) || ISDIGIT (c))
2865 identifier_chars[c] = c;
2866 else if (c >= 128)
2867 {
2868 identifier_chars[c] = c;
2869 operand_chars[c] = c;
2870 }
2871 }
2872
2873 #ifdef LEX_AT
2874 identifier_chars['@'] = '@';
2875 #endif
2876 #ifdef LEX_QM
2877 identifier_chars['?'] = '?';
2878 operand_chars['?'] = '?';
2879 #endif
2880 digit_chars['-'] = '-';
2881 mnemonic_chars['_'] = '_';
2882 mnemonic_chars['-'] = '-';
2883 mnemonic_chars['.'] = '.';
2884 identifier_chars['_'] = '_';
2885 identifier_chars['.'] = '.';
2886
2887 for (p = operand_special_chars; *p != '\0'; p++)
2888 operand_chars[(unsigned char) *p] = *p;
2889 }
2890
2891 if (flag_code == CODE_64BIT)
2892 {
2893 #if defined (OBJ_COFF) && defined (TE_PE)
2894 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2895 ? 32 : 16);
2896 #else
2897 x86_dwarf2_return_column = 16;
2898 #endif
2899 x86_cie_data_alignment = -8;
2900 }
2901 else
2902 {
2903 x86_dwarf2_return_column = 8;
2904 x86_cie_data_alignment = -4;
2905 }
2906 }
2907
2908 void
2909 i386_print_statistics (FILE *file)
2910 {
2911 hash_print_statistics (file, "i386 opcode", op_hash);
2912 hash_print_statistics (file, "i386 register", reg_hash);
2913 }
2914 \f
2915 #ifdef DEBUG386
2916
2917 /* Debugging routines for md_assemble. */
2918 static void pte (insn_template *);
2919 static void pt (i386_operand_type);
2920 static void pe (expressionS *);
2921 static void ps (symbolS *);
2922
2923 static void
2924 pi (char *line, i386_insn *x)
2925 {
2926 unsigned int j;
2927
2928 fprintf (stdout, "%s: template ", line);
2929 pte (&x->tm);
2930 fprintf (stdout, " address: base %s index %s scale %x\n",
2931 x->base_reg ? x->base_reg->reg_name : "none",
2932 x->index_reg ? x->index_reg->reg_name : "none",
2933 x->log2_scale_factor);
2934 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2935 x->rm.mode, x->rm.reg, x->rm.regmem);
2936 fprintf (stdout, " sib: base %x index %x scale %x\n",
2937 x->sib.base, x->sib.index, x->sib.scale);
2938 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2939 (x->rex & REX_W) != 0,
2940 (x->rex & REX_R) != 0,
2941 (x->rex & REX_X) != 0,
2942 (x->rex & REX_B) != 0);
2943 for (j = 0; j < x->operands; j++)
2944 {
2945 fprintf (stdout, " #%d: ", j + 1);
2946 pt (x->types[j]);
2947 fprintf (stdout, "\n");
2948 if (x->types[j].bitfield.reg
2949 || x->types[j].bitfield.regmmx
2950 || x->types[j].bitfield.regsimd
2951 || x->types[j].bitfield.sreg2
2952 || x->types[j].bitfield.sreg3
2953 || x->types[j].bitfield.control
2954 || x->types[j].bitfield.debug
2955 || x->types[j].bitfield.test)
2956 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2957 if (operand_type_check (x->types[j], imm))
2958 pe (x->op[j].imms);
2959 if (operand_type_check (x->types[j], disp))
2960 pe (x->op[j].disps);
2961 }
2962 }
2963
2964 static void
2965 pte (insn_template *t)
2966 {
2967 unsigned int j;
2968 fprintf (stdout, " %d operands ", t->operands);
2969 fprintf (stdout, "opcode %x ", t->base_opcode);
2970 if (t->extension_opcode != None)
2971 fprintf (stdout, "ext %x ", t->extension_opcode);
2972 if (t->opcode_modifier.d)
2973 fprintf (stdout, "D");
2974 if (t->opcode_modifier.w)
2975 fprintf (stdout, "W");
2976 fprintf (stdout, "\n");
2977 for (j = 0; j < t->operands; j++)
2978 {
2979 fprintf (stdout, " #%d type ", j + 1);
2980 pt (t->operand_types[j]);
2981 fprintf (stdout, "\n");
2982 }
2983 }
2984
2985 static void
2986 pe (expressionS *e)
2987 {
2988 fprintf (stdout, " operation %d\n", e->X_op);
2989 fprintf (stdout, " add_number %ld (%lx)\n",
2990 (long) e->X_add_number, (long) e->X_add_number);
2991 if (e->X_add_symbol)
2992 {
2993 fprintf (stdout, " add_symbol ");
2994 ps (e->X_add_symbol);
2995 fprintf (stdout, "\n");
2996 }
2997 if (e->X_op_symbol)
2998 {
2999 fprintf (stdout, " op_symbol ");
3000 ps (e->X_op_symbol);
3001 fprintf (stdout, "\n");
3002 }
3003 }
3004
3005 static void
3006 ps (symbolS *s)
3007 {
3008 fprintf (stdout, "%s type %s%s",
3009 S_GET_NAME (s),
3010 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3011 segment_name (S_GET_SEGMENT (s)));
3012 }
3013
3014 static struct type_name
3015 {
3016 i386_operand_type mask;
3017 const char *name;
3018 }
3019 const type_names[] =
3020 {
3021 { OPERAND_TYPE_REG8, "r8" },
3022 { OPERAND_TYPE_REG16, "r16" },
3023 { OPERAND_TYPE_REG32, "r32" },
3024 { OPERAND_TYPE_REG64, "r64" },
3025 { OPERAND_TYPE_IMM8, "i8" },
3026 { OPERAND_TYPE_IMM8, "i8s" },
3027 { OPERAND_TYPE_IMM16, "i16" },
3028 { OPERAND_TYPE_IMM32, "i32" },
3029 { OPERAND_TYPE_IMM32S, "i32s" },
3030 { OPERAND_TYPE_IMM64, "i64" },
3031 { OPERAND_TYPE_IMM1, "i1" },
3032 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3033 { OPERAND_TYPE_DISP8, "d8" },
3034 { OPERAND_TYPE_DISP16, "d16" },
3035 { OPERAND_TYPE_DISP32, "d32" },
3036 { OPERAND_TYPE_DISP32S, "d32s" },
3037 { OPERAND_TYPE_DISP64, "d64" },
3038 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3039 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3040 { OPERAND_TYPE_CONTROL, "control reg" },
3041 { OPERAND_TYPE_TEST, "test reg" },
3042 { OPERAND_TYPE_DEBUG, "debug reg" },
3043 { OPERAND_TYPE_FLOATREG, "FReg" },
3044 { OPERAND_TYPE_FLOATACC, "FAcc" },
3045 { OPERAND_TYPE_SREG2, "SReg2" },
3046 { OPERAND_TYPE_SREG3, "SReg3" },
3047 { OPERAND_TYPE_ACC, "Acc" },
3048 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3049 { OPERAND_TYPE_REGMMX, "rMMX" },
3050 { OPERAND_TYPE_REGXMM, "rXMM" },
3051 { OPERAND_TYPE_REGYMM, "rYMM" },
3052 { OPERAND_TYPE_REGZMM, "rZMM" },
3053 { OPERAND_TYPE_REGMASK, "Mask reg" },
3054 { OPERAND_TYPE_ESSEG, "es" },
3055 };
3056
3057 static void
3058 pt (i386_operand_type t)
3059 {
3060 unsigned int j;
3061 i386_operand_type a;
3062
3063 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3064 {
3065 a = operand_type_and (t, type_names[j].mask);
3066 if (!operand_type_all_zero (&a))
3067 fprintf (stdout, "%s, ", type_names[j].name);
3068 }
3069 fflush (stdout);
3070 }
3071
3072 #endif /* DEBUG386 */
3073 \f
3074 static bfd_reloc_code_real_type
3075 reloc (unsigned int size,
3076 int pcrel,
3077 int sign,
3078 bfd_reloc_code_real_type other)
3079 {
3080 if (other != NO_RELOC)
3081 {
3082 reloc_howto_type *rel;
3083
3084 if (size == 8)
3085 switch (other)
3086 {
3087 case BFD_RELOC_X86_64_GOT32:
3088 return BFD_RELOC_X86_64_GOT64;
3089 break;
3090 case BFD_RELOC_X86_64_GOTPLT64:
3091 return BFD_RELOC_X86_64_GOTPLT64;
3092 break;
3093 case BFD_RELOC_X86_64_PLTOFF64:
3094 return BFD_RELOC_X86_64_PLTOFF64;
3095 break;
3096 case BFD_RELOC_X86_64_GOTPC32:
3097 other = BFD_RELOC_X86_64_GOTPC64;
3098 break;
3099 case BFD_RELOC_X86_64_GOTPCREL:
3100 other = BFD_RELOC_X86_64_GOTPCREL64;
3101 break;
3102 case BFD_RELOC_X86_64_TPOFF32:
3103 other = BFD_RELOC_X86_64_TPOFF64;
3104 break;
3105 case BFD_RELOC_X86_64_DTPOFF32:
3106 other = BFD_RELOC_X86_64_DTPOFF64;
3107 break;
3108 default:
3109 break;
3110 }
3111
3112 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3113 if (other == BFD_RELOC_SIZE32)
3114 {
3115 if (size == 8)
3116 other = BFD_RELOC_SIZE64;
3117 if (pcrel)
3118 {
3119 as_bad (_("there are no pc-relative size relocations"));
3120 return NO_RELOC;
3121 }
3122 }
3123 #endif
3124
3125 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3126 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3127 sign = -1;
3128
3129 rel = bfd_reloc_type_lookup (stdoutput, other);
3130 if (!rel)
3131 as_bad (_("unknown relocation (%u)"), other);
3132 else if (size != bfd_get_reloc_size (rel))
3133 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3134 bfd_get_reloc_size (rel),
3135 size);
3136 else if (pcrel && !rel->pc_relative)
3137 as_bad (_("non-pc-relative relocation for pc-relative field"));
3138 else if ((rel->complain_on_overflow == complain_overflow_signed
3139 && !sign)
3140 || (rel->complain_on_overflow == complain_overflow_unsigned
3141 && sign > 0))
3142 as_bad (_("relocated field and relocation type differ in signedness"));
3143 else
3144 return other;
3145 return NO_RELOC;
3146 }
3147
3148 if (pcrel)
3149 {
3150 if (!sign)
3151 as_bad (_("there are no unsigned pc-relative relocations"));
3152 switch (size)
3153 {
3154 case 1: return BFD_RELOC_8_PCREL;
3155 case 2: return BFD_RELOC_16_PCREL;
3156 case 4: return BFD_RELOC_32_PCREL;
3157 case 8: return BFD_RELOC_64_PCREL;
3158 }
3159 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3160 }
3161 else
3162 {
3163 if (sign > 0)
3164 switch (size)
3165 {
3166 case 4: return BFD_RELOC_X86_64_32S;
3167 }
3168 else
3169 switch (size)
3170 {
3171 case 1: return BFD_RELOC_8;
3172 case 2: return BFD_RELOC_16;
3173 case 4: return BFD_RELOC_32;
3174 case 8: return BFD_RELOC_64;
3175 }
3176 as_bad (_("cannot do %s %u byte relocation"),
3177 sign > 0 ? "signed" : "unsigned", size);
3178 }
3179
3180 return NO_RELOC;
3181 }
3182
3183 /* Here we decide which fixups can be adjusted to make them relative to
3184 the beginning of the section instead of the symbol. Basically we need
3185 to make sure that the dynamic relocations are done correctly, so in
3186 some cases we force the original symbol to be used. */
3187
3188 int
3189 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3190 {
3191 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3192 if (!IS_ELF)
3193 return 1;
3194
3195 /* Don't adjust pc-relative references to merge sections in 64-bit
3196 mode. */
3197 if (use_rela_relocations
3198 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3199 && fixP->fx_pcrel)
3200 return 0;
3201
3202 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3203 and changed later by validate_fix. */
3204 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3205 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3206 return 0;
3207
3208 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3209 for size relocations. */
3210 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3211 || fixP->fx_r_type == BFD_RELOC_SIZE64
3212 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3213 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3214 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3215 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3216 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3217 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3218 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3219 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3220 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3221 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3222 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3223 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3224 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3225 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3226 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3227 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3228 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3229 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3230 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3231 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3232 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3233 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3234 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3235 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3236 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3237 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3238 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3239 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3240 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3241 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3242 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3243 return 0;
3244 #endif
3245 return 1;
3246 }
3247
3248 static int
3249 intel_float_operand (const char *mnemonic)
3250 {
3251 /* Note that the value returned is meaningful only for opcodes with (memory)
3252 operands, hence the code here is free to improperly handle opcodes that
3253 have no operands (for better performance and smaller code). */
3254
3255 if (mnemonic[0] != 'f')
3256 return 0; /* non-math */
3257
3258 switch (mnemonic[1])
3259 {
3260 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3261 the fs segment override prefix not currently handled because no
3262 call path can make opcodes without operands get here */
3263 case 'i':
3264 return 2 /* integer op */;
3265 case 'l':
3266 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3267 return 3; /* fldcw/fldenv */
3268 break;
3269 case 'n':
3270 if (mnemonic[2] != 'o' /* fnop */)
3271 return 3; /* non-waiting control op */
3272 break;
3273 case 'r':
3274 if (mnemonic[2] == 's')
3275 return 3; /* frstor/frstpm */
3276 break;
3277 case 's':
3278 if (mnemonic[2] == 'a')
3279 return 3; /* fsave */
3280 if (mnemonic[2] == 't')
3281 {
3282 switch (mnemonic[3])
3283 {
3284 case 'c': /* fstcw */
3285 case 'd': /* fstdw */
3286 case 'e': /* fstenv */
3287 case 's': /* fsts[gw] */
3288 return 3;
3289 }
3290 }
3291 break;
3292 case 'x':
3293 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3294 return 0; /* fxsave/fxrstor are not really math ops */
3295 break;
3296 }
3297
3298 return 1;
3299 }
3300
3301 /* Build the VEX prefix. */
3302
3303 static void
3304 build_vex_prefix (const insn_template *t)
3305 {
3306 unsigned int register_specifier;
3307 unsigned int implied_prefix;
3308 unsigned int vector_length;
3309
3310 /* Check register specifier. */
3311 if (i.vex.register_specifier)
3312 {
3313 register_specifier =
3314 ~register_number (i.vex.register_specifier) & 0xf;
3315 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3316 }
3317 else
3318 register_specifier = 0xf;
3319
3320 /* Use 2-byte VEX prefix by swapping destination and source
3321 operand. */
3322 if (i.vec_encoding != vex_encoding_vex3
3323 && i.dir_encoding == dir_encoding_default
3324 && i.operands == i.reg_operands
3325 && i.tm.opcode_modifier.vexopcode == VEX0F
3326 && i.tm.opcode_modifier.load
3327 && i.rex == REX_B)
3328 {
3329 unsigned int xchg = i.operands - 1;
3330 union i386_op temp_op;
3331 i386_operand_type temp_type;
3332
3333 temp_type = i.types[xchg];
3334 i.types[xchg] = i.types[0];
3335 i.types[0] = temp_type;
3336 temp_op = i.op[xchg];
3337 i.op[xchg] = i.op[0];
3338 i.op[0] = temp_op;
3339
3340 gas_assert (i.rm.mode == 3);
3341
3342 i.rex = REX_R;
3343 xchg = i.rm.regmem;
3344 i.rm.regmem = i.rm.reg;
3345 i.rm.reg = xchg;
3346
3347 /* Use the next insn. */
3348 i.tm = t[1];
3349 }
3350
3351 if (i.tm.opcode_modifier.vex == VEXScalar)
3352 vector_length = avxscalar;
3353 else if (i.tm.opcode_modifier.vex == VEX256)
3354 vector_length = 1;
3355 else
3356 {
3357 unsigned int op;
3358
3359 vector_length = 0;
3360 for (op = 0; op < t->operands; ++op)
3361 if (t->operand_types[op].bitfield.xmmword
3362 && t->operand_types[op].bitfield.ymmword
3363 && i.types[op].bitfield.ymmword)
3364 {
3365 vector_length = 1;
3366 break;
3367 }
3368 }
3369
3370 switch ((i.tm.base_opcode >> 8) & 0xff)
3371 {
3372 case 0:
3373 implied_prefix = 0;
3374 break;
3375 case DATA_PREFIX_OPCODE:
3376 implied_prefix = 1;
3377 break;
3378 case REPE_PREFIX_OPCODE:
3379 implied_prefix = 2;
3380 break;
3381 case REPNE_PREFIX_OPCODE:
3382 implied_prefix = 3;
3383 break;
3384 default:
3385 abort ();
3386 }
3387
3388 /* Use 2-byte VEX prefix if possible. */
3389 if (i.vec_encoding != vex_encoding_vex3
3390 && i.tm.opcode_modifier.vexopcode == VEX0F
3391 && i.tm.opcode_modifier.vexw != VEXW1
3392 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3393 {
3394 /* 2-byte VEX prefix. */
3395 unsigned int r;
3396
3397 i.vex.length = 2;
3398 i.vex.bytes[0] = 0xc5;
3399
3400 /* Check the REX.R bit. */
3401 r = (i.rex & REX_R) ? 0 : 1;
3402 i.vex.bytes[1] = (r << 7
3403 | register_specifier << 3
3404 | vector_length << 2
3405 | implied_prefix);
3406 }
3407 else
3408 {
3409 /* 3-byte VEX prefix. */
3410 unsigned int m, w;
3411
3412 i.vex.length = 3;
3413
3414 switch (i.tm.opcode_modifier.vexopcode)
3415 {
3416 case VEX0F:
3417 m = 0x1;
3418 i.vex.bytes[0] = 0xc4;
3419 break;
3420 case VEX0F38:
3421 m = 0x2;
3422 i.vex.bytes[0] = 0xc4;
3423 break;
3424 case VEX0F3A:
3425 m = 0x3;
3426 i.vex.bytes[0] = 0xc4;
3427 break;
3428 case XOP08:
3429 m = 0x8;
3430 i.vex.bytes[0] = 0x8f;
3431 break;
3432 case XOP09:
3433 m = 0x9;
3434 i.vex.bytes[0] = 0x8f;
3435 break;
3436 case XOP0A:
3437 m = 0xa;
3438 i.vex.bytes[0] = 0x8f;
3439 break;
3440 default:
3441 abort ();
3442 }
3443
3444 /* The high 3 bits of the second VEX byte are 1's compliment
3445 of RXB bits from REX. */
3446 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3447
3448 /* Check the REX.W bit. */
3449 w = (i.rex & REX_W) ? 1 : 0;
3450 if (i.tm.opcode_modifier.vexw == VEXW1)
3451 w = 1;
3452
3453 i.vex.bytes[2] = (w << 7
3454 | register_specifier << 3
3455 | vector_length << 2
3456 | implied_prefix);
3457 }
3458 }
3459
3460 static INLINE bfd_boolean
3461 is_evex_encoding (const insn_template *t)
3462 {
3463 return t->opcode_modifier.evex
3464 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3465 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3466 }
3467
3468 /* Build the EVEX prefix. */
3469
3470 static void
3471 build_evex_prefix (void)
3472 {
3473 unsigned int register_specifier;
3474 unsigned int implied_prefix;
3475 unsigned int m, w;
3476 rex_byte vrex_used = 0;
3477
3478 /* Check register specifier. */
3479 if (i.vex.register_specifier)
3480 {
3481 gas_assert ((i.vrex & REX_X) == 0);
3482
3483 register_specifier = i.vex.register_specifier->reg_num;
3484 if ((i.vex.register_specifier->reg_flags & RegRex))
3485 register_specifier += 8;
3486 /* The upper 16 registers are encoded in the fourth byte of the
3487 EVEX prefix. */
3488 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3489 i.vex.bytes[3] = 0x8;
3490 register_specifier = ~register_specifier & 0xf;
3491 }
3492 else
3493 {
3494 register_specifier = 0xf;
3495
3496 /* Encode upper 16 vector index register in the fourth byte of
3497 the EVEX prefix. */
3498 if (!(i.vrex & REX_X))
3499 i.vex.bytes[3] = 0x8;
3500 else
3501 vrex_used |= REX_X;
3502 }
3503
3504 switch ((i.tm.base_opcode >> 8) & 0xff)
3505 {
3506 case 0:
3507 implied_prefix = 0;
3508 break;
3509 case DATA_PREFIX_OPCODE:
3510 implied_prefix = 1;
3511 break;
3512 case REPE_PREFIX_OPCODE:
3513 implied_prefix = 2;
3514 break;
3515 case REPNE_PREFIX_OPCODE:
3516 implied_prefix = 3;
3517 break;
3518 default:
3519 abort ();
3520 }
3521
3522 /* 4 byte EVEX prefix. */
3523 i.vex.length = 4;
3524 i.vex.bytes[0] = 0x62;
3525
3526 /* mmmm bits. */
3527 switch (i.tm.opcode_modifier.vexopcode)
3528 {
3529 case VEX0F:
3530 m = 1;
3531 break;
3532 case VEX0F38:
3533 m = 2;
3534 break;
3535 case VEX0F3A:
3536 m = 3;
3537 break;
3538 default:
3539 abort ();
3540 break;
3541 }
3542
3543 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3544 bits from REX. */
3545 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3546
3547 /* The fifth bit of the second EVEX byte is 1's compliment of the
3548 REX_R bit in VREX. */
3549 if (!(i.vrex & REX_R))
3550 i.vex.bytes[1] |= 0x10;
3551 else
3552 vrex_used |= REX_R;
3553
3554 if ((i.reg_operands + i.imm_operands) == i.operands)
3555 {
3556 /* When all operands are registers, the REX_X bit in REX is not
3557 used. We reuse it to encode the upper 16 registers, which is
3558 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3559 as 1's compliment. */
3560 if ((i.vrex & REX_B))
3561 {
3562 vrex_used |= REX_B;
3563 i.vex.bytes[1] &= ~0x40;
3564 }
3565 }
3566
3567 /* EVEX instructions shouldn't need the REX prefix. */
3568 i.vrex &= ~vrex_used;
3569 gas_assert (i.vrex == 0);
3570
3571 /* Check the REX.W bit. */
3572 w = (i.rex & REX_W) ? 1 : 0;
3573 if (i.tm.opcode_modifier.vexw)
3574 {
3575 if (i.tm.opcode_modifier.vexw == VEXW1)
3576 w = 1;
3577 }
3578 /* If w is not set it means we are dealing with WIG instruction. */
3579 else if (!w)
3580 {
3581 if (evexwig == evexw1)
3582 w = 1;
3583 }
3584
3585 /* Encode the U bit. */
3586 implied_prefix |= 0x4;
3587
3588 /* The third byte of the EVEX prefix. */
3589 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3590
3591 /* The fourth byte of the EVEX prefix. */
3592 /* The zeroing-masking bit. */
3593 if (i.mask && i.mask->zeroing)
3594 i.vex.bytes[3] |= 0x80;
3595
3596 /* Don't always set the broadcast bit if there is no RC. */
3597 if (!i.rounding)
3598 {
3599 /* Encode the vector length. */
3600 unsigned int vec_length;
3601
3602 if (!i.tm.opcode_modifier.evex
3603 || i.tm.opcode_modifier.evex == EVEXDYN)
3604 {
3605 unsigned int op;
3606
3607 vec_length = 0;
3608 for (op = 0; op < i.tm.operands; ++op)
3609 if (i.tm.operand_types[op].bitfield.xmmword
3610 + i.tm.operand_types[op].bitfield.ymmword
3611 + i.tm.operand_types[op].bitfield.zmmword > 1)
3612 {
3613 if (i.types[op].bitfield.zmmword)
3614 i.tm.opcode_modifier.evex = EVEX512;
3615 else if (i.types[op].bitfield.ymmword)
3616 i.tm.opcode_modifier.evex = EVEX256;
3617 else if (i.types[op].bitfield.xmmword)
3618 i.tm.opcode_modifier.evex = EVEX128;
3619 else
3620 continue;
3621 break;
3622 }
3623 }
3624
3625 switch (i.tm.opcode_modifier.evex)
3626 {
3627 case EVEXLIG: /* LL' is ignored */
3628 vec_length = evexlig << 5;
3629 break;
3630 case EVEX128:
3631 vec_length = 0 << 5;
3632 break;
3633 case EVEX256:
3634 vec_length = 1 << 5;
3635 break;
3636 case EVEX512:
3637 vec_length = 2 << 5;
3638 break;
3639 default:
3640 abort ();
3641 break;
3642 }
3643 i.vex.bytes[3] |= vec_length;
3644 /* Encode the broadcast bit. */
3645 if (i.broadcast)
3646 i.vex.bytes[3] |= 0x10;
3647 }
3648 else
3649 {
3650 if (i.rounding->type != saeonly)
3651 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3652 else
3653 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3654 }
3655
3656 if (i.mask && i.mask->mask)
3657 i.vex.bytes[3] |= i.mask->mask->reg_num;
3658 }
3659
3660 static void
3661 process_immext (void)
3662 {
3663 expressionS *exp;
3664
3665 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3666 && i.operands > 0)
3667 {
3668 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3669 with an opcode suffix which is coded in the same place as an
3670 8-bit immediate field would be.
3671 Here we check those operands and remove them afterwards. */
3672 unsigned int x;
3673
3674 for (x = 0; x < i.operands; x++)
3675 if (register_number (i.op[x].regs) != x)
3676 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3677 register_prefix, i.op[x].regs->reg_name, x + 1,
3678 i.tm.name);
3679
3680 i.operands = 0;
3681 }
3682
3683 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3684 {
3685 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3686 suffix which is coded in the same place as an 8-bit immediate
3687 field would be.
3688 Here we check those operands and remove them afterwards. */
3689 unsigned int x;
3690
3691 if (i.operands != 3)
3692 abort();
3693
3694 for (x = 0; x < 2; x++)
3695 if (register_number (i.op[x].regs) != x)
3696 goto bad_register_operand;
3697
3698 /* Check for third operand for mwaitx/monitorx insn. */
3699 if (register_number (i.op[x].regs)
3700 != (x + (i.tm.extension_opcode == 0xfb)))
3701 {
3702 bad_register_operand:
3703 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3704 register_prefix, i.op[x].regs->reg_name, x+1,
3705 i.tm.name);
3706 }
3707
3708 i.operands = 0;
3709 }
3710
3711 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3712 which is coded in the same place as an 8-bit immediate field
3713 would be. Here we fake an 8-bit immediate operand from the
3714 opcode suffix stored in tm.extension_opcode.
3715
3716 AVX instructions also use this encoding, for some of
3717 3 argument instructions. */
3718
3719 gas_assert (i.imm_operands <= 1
3720 && (i.operands <= 2
3721 || ((i.tm.opcode_modifier.vex
3722 || i.tm.opcode_modifier.vexopcode
3723 || is_evex_encoding (&i.tm))
3724 && i.operands <= 4)));
3725
3726 exp = &im_expressions[i.imm_operands++];
3727 i.op[i.operands].imms = exp;
3728 i.types[i.operands] = imm8;
3729 i.operands++;
3730 exp->X_op = O_constant;
3731 exp->X_add_number = i.tm.extension_opcode;
3732 i.tm.extension_opcode = None;
3733 }
3734
3735
3736 static int
3737 check_hle (void)
3738 {
3739 switch (i.tm.opcode_modifier.hleprefixok)
3740 {
3741 default:
3742 abort ();
3743 case HLEPrefixNone:
3744 as_bad (_("invalid instruction `%s' after `%s'"),
3745 i.tm.name, i.hle_prefix);
3746 return 0;
3747 case HLEPrefixLock:
3748 if (i.prefix[LOCK_PREFIX])
3749 return 1;
3750 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3751 return 0;
3752 case HLEPrefixAny:
3753 return 1;
3754 case HLEPrefixRelease:
3755 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3756 {
3757 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3758 i.tm.name);
3759 return 0;
3760 }
3761 if (i.mem_operands == 0
3762 || !operand_type_check (i.types[i.operands - 1], anymem))
3763 {
3764 as_bad (_("memory destination needed for instruction `%s'"
3765 " after `xrelease'"), i.tm.name);
3766 return 0;
3767 }
3768 return 1;
3769 }
3770 }
3771
3772 /* Try the shortest encoding by shortening operand size. */
3773
3774 static void
3775 optimize_encoding (void)
3776 {
3777 int j;
3778
3779 if (optimize_for_space
3780 && i.reg_operands == 1
3781 && i.imm_operands == 1
3782 && !i.types[1].bitfield.byte
3783 && i.op[0].imms->X_op == O_constant
3784 && fits_in_imm7 (i.op[0].imms->X_add_number)
3785 && ((i.tm.base_opcode == 0xa8
3786 && i.tm.extension_opcode == None)
3787 || (i.tm.base_opcode == 0xf6
3788 && i.tm.extension_opcode == 0x0)))
3789 {
3790 /* Optimize: -Os:
3791 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3792 */
3793 unsigned int base_regnum = i.op[1].regs->reg_num;
3794 if (flag_code == CODE_64BIT || base_regnum < 4)
3795 {
3796 i.types[1].bitfield.byte = 1;
3797 /* Ignore the suffix. */
3798 i.suffix = 0;
3799 if (base_regnum >= 4
3800 && !(i.op[1].regs->reg_flags & RegRex))
3801 {
3802 /* Handle SP, BP, SI and DI registers. */
3803 if (i.types[1].bitfield.word)
3804 j = 16;
3805 else if (i.types[1].bitfield.dword)
3806 j = 32;
3807 else
3808 j = 48;
3809 i.op[1].regs -= j;
3810 }
3811 }
3812 }
3813 else if (flag_code == CODE_64BIT
3814 && ((i.types[1].bitfield.qword
3815 && i.reg_operands == 1
3816 && i.imm_operands == 1
3817 && i.op[0].imms->X_op == O_constant
3818 && ((i.tm.base_opcode == 0xb0
3819 && i.tm.extension_opcode == None
3820 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3821 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3822 && (((i.tm.base_opcode == 0x24
3823 || i.tm.base_opcode == 0xa8)
3824 && i.tm.extension_opcode == None)
3825 || (i.tm.base_opcode == 0x80
3826 && i.tm.extension_opcode == 0x4)
3827 || ((i.tm.base_opcode == 0xf6
3828 || i.tm.base_opcode == 0xc6)
3829 && i.tm.extension_opcode == 0x0)))))
3830 || (i.types[0].bitfield.qword
3831 && ((i.reg_operands == 2
3832 && i.op[0].regs == i.op[1].regs
3833 && ((i.tm.base_opcode == 0x30
3834 || i.tm.base_opcode == 0x28)
3835 && i.tm.extension_opcode == None))
3836 || (i.reg_operands == 1
3837 && i.operands == 1
3838 && i.tm.base_opcode == 0x30
3839 && i.tm.extension_opcode == None)))))
3840 {
3841 /* Optimize: -O:
3842 andq $imm31, %r64 -> andl $imm31, %r32
3843 testq $imm31, %r64 -> testl $imm31, %r32
3844 xorq %r64, %r64 -> xorl %r32, %r32
3845 subq %r64, %r64 -> subl %r32, %r32
3846 movq $imm31, %r64 -> movl $imm31, %r32
3847 movq $imm32, %r64 -> movl $imm32, %r32
3848 */
3849 i.tm.opcode_modifier.norex64 = 1;
3850 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3851 {
3852 /* Handle
3853 movq $imm31, %r64 -> movl $imm31, %r32
3854 movq $imm32, %r64 -> movl $imm32, %r32
3855 */
3856 i.tm.operand_types[0].bitfield.imm32 = 1;
3857 i.tm.operand_types[0].bitfield.imm32s = 0;
3858 i.tm.operand_types[0].bitfield.imm64 = 0;
3859 i.types[0].bitfield.imm32 = 1;
3860 i.types[0].bitfield.imm32s = 0;
3861 i.types[0].bitfield.imm64 = 0;
3862 i.types[1].bitfield.dword = 1;
3863 i.types[1].bitfield.qword = 0;
3864 if (i.tm.base_opcode == 0xc6)
3865 {
3866 /* Handle
3867 movq $imm31, %r64 -> movl $imm31, %r32
3868 */
3869 i.tm.base_opcode = 0xb0;
3870 i.tm.extension_opcode = None;
3871 i.tm.opcode_modifier.shortform = 1;
3872 i.tm.opcode_modifier.modrm = 0;
3873 }
3874 }
3875 }
3876 else if (optimize > 1
3877 && i.reg_operands == 3
3878 && i.op[0].regs == i.op[1].regs
3879 && !i.types[2].bitfield.xmmword
3880 && (i.tm.opcode_modifier.vex
3881 || (!i.mask
3882 && !i.rounding
3883 && is_evex_encoding (&i.tm)
3884 && (i.vec_encoding != vex_encoding_evex
3885 || i.tm.cpu_flags.bitfield.cpuavx512vl
3886 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
3887 && ((i.tm.base_opcode == 0x55
3888 || i.tm.base_opcode == 0x6655
3889 || i.tm.base_opcode == 0x66df
3890 || i.tm.base_opcode == 0x57
3891 || i.tm.base_opcode == 0x6657
3892 || i.tm.base_opcode == 0x66ef
3893 || i.tm.base_opcode == 0x66f8
3894 || i.tm.base_opcode == 0x66f9
3895 || i.tm.base_opcode == 0x66fa
3896 || i.tm.base_opcode == 0x66fb)
3897 && i.tm.extension_opcode == None))
3898 {
3899 /* Optimize: -O2:
3900 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3901 vpsubq and vpsubw:
3902 EVEX VOP %zmmM, %zmmM, %zmmN
3903 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3904 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3905 EVEX VOP %ymmM, %ymmM, %ymmN
3906 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3907 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3908 VEX VOP %ymmM, %ymmM, %ymmN
3909 -> VEX VOP %xmmM, %xmmM, %xmmN
3910 VOP, one of vpandn and vpxor:
3911 VEX VOP %ymmM, %ymmM, %ymmN
3912 -> VEX VOP %xmmM, %xmmM, %xmmN
3913 VOP, one of vpandnd and vpandnq:
3914 EVEX VOP %zmmM, %zmmM, %zmmN
3915 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3916 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3917 EVEX VOP %ymmM, %ymmM, %ymmN
3918 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3919 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3920 VOP, one of vpxord and vpxorq:
3921 EVEX VOP %zmmM, %zmmM, %zmmN
3922 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3923 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3924 EVEX VOP %ymmM, %ymmM, %ymmN
3925 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3926 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3927 */
3928 if (is_evex_encoding (&i.tm))
3929 {
3930 if (i.vec_encoding == vex_encoding_evex)
3931 i.tm.opcode_modifier.evex = EVEX128;
3932 else
3933 {
3934 i.tm.opcode_modifier.vex = VEX128;
3935 i.tm.opcode_modifier.vexw = VEXW0;
3936 i.tm.opcode_modifier.evex = 0;
3937 }
3938 }
3939 else
3940 i.tm.opcode_modifier.vex = VEX128;
3941
3942 if (i.tm.opcode_modifier.vex)
3943 for (j = 0; j < 3; j++)
3944 {
3945 i.types[j].bitfield.xmmword = 1;
3946 i.types[j].bitfield.ymmword = 0;
3947 }
3948 }
3949 }
3950
3951 /* This is the guts of the machine-dependent assembler. LINE points to a
3952 machine dependent instruction. This function is supposed to emit
3953 the frags/bytes it assembles to. */
3954
3955 void
3956 md_assemble (char *line)
3957 {
3958 unsigned int j;
3959 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
3960 const insn_template *t;
3961
3962 /* Initialize globals. */
3963 memset (&i, '\0', sizeof (i));
3964 for (j = 0; j < MAX_OPERANDS; j++)
3965 i.reloc[j] = NO_RELOC;
3966 memset (disp_expressions, '\0', sizeof (disp_expressions));
3967 memset (im_expressions, '\0', sizeof (im_expressions));
3968 save_stack_p = save_stack;
3969
3970 /* First parse an instruction mnemonic & call i386_operand for the operands.
3971 We assume that the scrubber has arranged it so that line[0] is the valid
3972 start of a (possibly prefixed) mnemonic. */
3973
3974 line = parse_insn (line, mnemonic);
3975 if (line == NULL)
3976 return;
3977 mnem_suffix = i.suffix;
3978
3979 line = parse_operands (line, mnemonic);
3980 this_operand = -1;
3981 xfree (i.memop1_string);
3982 i.memop1_string = NULL;
3983 if (line == NULL)
3984 return;
3985
3986 /* Now we've parsed the mnemonic into a set of templates, and have the
3987 operands at hand. */
3988
3989 /* All intel opcodes have reversed operands except for "bound" and
3990 "enter". We also don't reverse intersegment "jmp" and "call"
3991 instructions with 2 immediate operands so that the immediate segment
3992 precedes the offset, as it does when in AT&T mode. */
3993 if (intel_syntax
3994 && i.operands > 1
3995 && (strcmp (mnemonic, "bound") != 0)
3996 && (strcmp (mnemonic, "invlpga") != 0)
3997 && !(operand_type_check (i.types[0], imm)
3998 && operand_type_check (i.types[1], imm)))
3999 swap_operands ();
4000
4001 /* The order of the immediates should be reversed
4002 for 2 immediates extrq and insertq instructions */
4003 if (i.imm_operands == 2
4004 && (strcmp (mnemonic, "extrq") == 0
4005 || strcmp (mnemonic, "insertq") == 0))
4006 swap_2_operands (0, 1);
4007
4008 if (i.imm_operands)
4009 optimize_imm ();
4010
4011 /* Don't optimize displacement for movabs since it only takes 64bit
4012 displacement. */
4013 if (i.disp_operands
4014 && i.disp_encoding != disp_encoding_32bit
4015 && (flag_code != CODE_64BIT
4016 || strcmp (mnemonic, "movabs") != 0))
4017 optimize_disp ();
4018
4019 /* Next, we find a template that matches the given insn,
4020 making sure the overlap of the given operands types is consistent
4021 with the template operand types. */
4022
4023 if (!(t = match_template (mnem_suffix)))
4024 return;
4025
4026 if (sse_check != check_none
4027 && !i.tm.opcode_modifier.noavx
4028 && !i.tm.cpu_flags.bitfield.cpuavx
4029 && (i.tm.cpu_flags.bitfield.cpusse
4030 || i.tm.cpu_flags.bitfield.cpusse2
4031 || i.tm.cpu_flags.bitfield.cpusse3
4032 || i.tm.cpu_flags.bitfield.cpussse3
4033 || i.tm.cpu_flags.bitfield.cpusse4_1
4034 || i.tm.cpu_flags.bitfield.cpusse4_2
4035 || i.tm.cpu_flags.bitfield.cpupclmul
4036 || i.tm.cpu_flags.bitfield.cpuaes
4037 || i.tm.cpu_flags.bitfield.cpugfni))
4038 {
4039 (sse_check == check_warning
4040 ? as_warn
4041 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4042 }
4043
4044 /* Zap movzx and movsx suffix. The suffix has been set from
4045 "word ptr" or "byte ptr" on the source operand in Intel syntax
4046 or extracted from mnemonic in AT&T syntax. But we'll use
4047 the destination register to choose the suffix for encoding. */
4048 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4049 {
4050 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4051 there is no suffix, the default will be byte extension. */
4052 if (i.reg_operands != 2
4053 && !i.suffix
4054 && intel_syntax)
4055 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4056
4057 i.suffix = 0;
4058 }
4059
4060 if (i.tm.opcode_modifier.fwait)
4061 if (!add_prefix (FWAIT_OPCODE))
4062 return;
4063
4064 /* Check if REP prefix is OK. */
4065 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4066 {
4067 as_bad (_("invalid instruction `%s' after `%s'"),
4068 i.tm.name, i.rep_prefix);
4069 return;
4070 }
4071
4072 /* Check for lock without a lockable instruction. Destination operand
4073 must be memory unless it is xchg (0x86). */
4074 if (i.prefix[LOCK_PREFIX]
4075 && (!i.tm.opcode_modifier.islockable
4076 || i.mem_operands == 0
4077 || (i.tm.base_opcode != 0x86
4078 && !operand_type_check (i.types[i.operands - 1], anymem))))
4079 {
4080 as_bad (_("expecting lockable instruction after `lock'"));
4081 return;
4082 }
4083
4084 /* Check if HLE prefix is OK. */
4085 if (i.hle_prefix && !check_hle ())
4086 return;
4087
4088 /* Check BND prefix. */
4089 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4090 as_bad (_("expecting valid branch instruction after `bnd'"));
4091
4092 /* Check NOTRACK prefix. */
4093 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4094 as_bad (_("expecting indirect branch instruction after `notrack'"));
4095
4096 if (i.tm.cpu_flags.bitfield.cpumpx)
4097 {
4098 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4099 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4100 else if (flag_code != CODE_16BIT
4101 ? i.prefix[ADDR_PREFIX]
4102 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4103 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4104 }
4105
4106 /* Insert BND prefix. */
4107 if (add_bnd_prefix
4108 && i.tm.opcode_modifier.bndprefixok
4109 && !i.prefix[BND_PREFIX])
4110 add_prefix (BND_PREFIX_OPCODE);
4111
4112 /* Check string instruction segment overrides. */
4113 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4114 {
4115 if (!check_string ())
4116 return;
4117 i.disp_operands = 0;
4118 }
4119
4120 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4121 optimize_encoding ();
4122
4123 if (!process_suffix ())
4124 return;
4125
4126 /* Update operand types. */
4127 for (j = 0; j < i.operands; j++)
4128 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4129
4130 /* Make still unresolved immediate matches conform to size of immediate
4131 given in i.suffix. */
4132 if (!finalize_imm ())
4133 return;
4134
4135 if (i.types[0].bitfield.imm1)
4136 i.imm_operands = 0; /* kludge for shift insns. */
4137
4138 /* We only need to check those implicit registers for instructions
4139 with 3 operands or less. */
4140 if (i.operands <= 3)
4141 for (j = 0; j < i.operands; j++)
4142 if (i.types[j].bitfield.inoutportreg
4143 || i.types[j].bitfield.shiftcount
4144 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4145 i.reg_operands--;
4146
4147 /* ImmExt should be processed after SSE2AVX. */
4148 if (!i.tm.opcode_modifier.sse2avx
4149 && i.tm.opcode_modifier.immext)
4150 process_immext ();
4151
4152 /* For insns with operands there are more diddles to do to the opcode. */
4153 if (i.operands)
4154 {
4155 if (!process_operands ())
4156 return;
4157 }
4158 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4159 {
4160 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4161 as_warn (_("translating to `%sp'"), i.tm.name);
4162 }
4163
4164 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.vexopcode
4165 || is_evex_encoding (&i.tm))
4166 {
4167 if (flag_code == CODE_16BIT)
4168 {
4169 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4170 i.tm.name);
4171 return;
4172 }
4173
4174 if (i.tm.opcode_modifier.vex)
4175 build_vex_prefix (t);
4176 else
4177 build_evex_prefix ();
4178 }
4179
4180 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4181 instructions may define INT_OPCODE as well, so avoid this corner
4182 case for those instructions that use MODRM. */
4183 if (i.tm.base_opcode == INT_OPCODE
4184 && !i.tm.opcode_modifier.modrm
4185 && i.op[0].imms->X_add_number == 3)
4186 {
4187 i.tm.base_opcode = INT3_OPCODE;
4188 i.imm_operands = 0;
4189 }
4190
4191 if ((i.tm.opcode_modifier.jump
4192 || i.tm.opcode_modifier.jumpbyte
4193 || i.tm.opcode_modifier.jumpdword)
4194 && i.op[0].disps->X_op == O_constant)
4195 {
4196 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4197 the absolute address given by the constant. Since ix86 jumps and
4198 calls are pc relative, we need to generate a reloc. */
4199 i.op[0].disps->X_add_symbol = &abs_symbol;
4200 i.op[0].disps->X_op = O_symbol;
4201 }
4202
4203 if (i.tm.opcode_modifier.rex64)
4204 i.rex |= REX_W;
4205
4206 /* For 8 bit registers we need an empty rex prefix. Also if the
4207 instruction already has a prefix, we need to convert old
4208 registers to new ones. */
4209
4210 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4211 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4212 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4213 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4214 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4215 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4216 && i.rex != 0))
4217 {
4218 int x;
4219
4220 i.rex |= REX_OPCODE;
4221 for (x = 0; x < 2; x++)
4222 {
4223 /* Look for 8 bit operand that uses old registers. */
4224 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4225 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4226 {
4227 /* In case it is "hi" register, give up. */
4228 if (i.op[x].regs->reg_num > 3)
4229 as_bad (_("can't encode register '%s%s' in an "
4230 "instruction requiring REX prefix."),
4231 register_prefix, i.op[x].regs->reg_name);
4232
4233 /* Otherwise it is equivalent to the extended register.
4234 Since the encoding doesn't change this is merely
4235 cosmetic cleanup for debug output. */
4236
4237 i.op[x].regs = i.op[x].regs + 8;
4238 }
4239 }
4240 }
4241
4242 if (i.rex == 0 && i.rex_encoding)
4243 {
4244 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4245 that uses legacy register. If it is "hi" register, don't add
4246 the REX_OPCODE byte. */
4247 int x;
4248 for (x = 0; x < 2; x++)
4249 if (i.types[x].bitfield.reg
4250 && i.types[x].bitfield.byte
4251 && (i.op[x].regs->reg_flags & RegRex64) == 0
4252 && i.op[x].regs->reg_num > 3)
4253 {
4254 i.rex_encoding = FALSE;
4255 break;
4256 }
4257
4258 if (i.rex_encoding)
4259 i.rex = REX_OPCODE;
4260 }
4261
4262 if (i.rex != 0)
4263 add_prefix (REX_OPCODE | i.rex);
4264
4265 /* We are ready to output the insn. */
4266 output_insn ();
4267 }
4268
4269 static char *
4270 parse_insn (char *line, char *mnemonic)
4271 {
4272 char *l = line;
4273 char *token_start = l;
4274 char *mnem_p;
4275 int supported;
4276 const insn_template *t;
4277 char *dot_p = NULL;
4278
4279 while (1)
4280 {
4281 mnem_p = mnemonic;
4282 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4283 {
4284 if (*mnem_p == '.')
4285 dot_p = mnem_p;
4286 mnem_p++;
4287 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4288 {
4289 as_bad (_("no such instruction: `%s'"), token_start);
4290 return NULL;
4291 }
4292 l++;
4293 }
4294 if (!is_space_char (*l)
4295 && *l != END_OF_INSN
4296 && (intel_syntax
4297 || (*l != PREFIX_SEPARATOR
4298 && *l != ',')))
4299 {
4300 as_bad (_("invalid character %s in mnemonic"),
4301 output_invalid (*l));
4302 return NULL;
4303 }
4304 if (token_start == l)
4305 {
4306 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4307 as_bad (_("expecting prefix; got nothing"));
4308 else
4309 as_bad (_("expecting mnemonic; got nothing"));
4310 return NULL;
4311 }
4312
4313 /* Look up instruction (or prefix) via hash table. */
4314 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4315
4316 if (*l != END_OF_INSN
4317 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4318 && current_templates
4319 && current_templates->start->opcode_modifier.isprefix)
4320 {
4321 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4322 {
4323 as_bad ((flag_code != CODE_64BIT
4324 ? _("`%s' is only supported in 64-bit mode")
4325 : _("`%s' is not supported in 64-bit mode")),
4326 current_templates->start->name);
4327 return NULL;
4328 }
4329 /* If we are in 16-bit mode, do not allow addr16 or data16.
4330 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4331 if ((current_templates->start->opcode_modifier.size16
4332 || current_templates->start->opcode_modifier.size32)
4333 && flag_code != CODE_64BIT
4334 && (current_templates->start->opcode_modifier.size32
4335 ^ (flag_code == CODE_16BIT)))
4336 {
4337 as_bad (_("redundant %s prefix"),
4338 current_templates->start->name);
4339 return NULL;
4340 }
4341 if (current_templates->start->opcode_length == 0)
4342 {
4343 /* Handle pseudo prefixes. */
4344 switch (current_templates->start->base_opcode)
4345 {
4346 case 0x0:
4347 /* {disp8} */
4348 i.disp_encoding = disp_encoding_8bit;
4349 break;
4350 case 0x1:
4351 /* {disp32} */
4352 i.disp_encoding = disp_encoding_32bit;
4353 break;
4354 case 0x2:
4355 /* {load} */
4356 i.dir_encoding = dir_encoding_load;
4357 break;
4358 case 0x3:
4359 /* {store} */
4360 i.dir_encoding = dir_encoding_store;
4361 break;
4362 case 0x4:
4363 /* {vex2} */
4364 i.vec_encoding = vex_encoding_vex2;
4365 break;
4366 case 0x5:
4367 /* {vex3} */
4368 i.vec_encoding = vex_encoding_vex3;
4369 break;
4370 case 0x6:
4371 /* {evex} */
4372 i.vec_encoding = vex_encoding_evex;
4373 break;
4374 case 0x7:
4375 /* {rex} */
4376 i.rex_encoding = TRUE;
4377 break;
4378 case 0x8:
4379 /* {nooptimize} */
4380 i.no_optimize = TRUE;
4381 break;
4382 default:
4383 abort ();
4384 }
4385 }
4386 else
4387 {
4388 /* Add prefix, checking for repeated prefixes. */
4389 switch (add_prefix (current_templates->start->base_opcode))
4390 {
4391 case PREFIX_EXIST:
4392 return NULL;
4393 case PREFIX_DS:
4394 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4395 i.notrack_prefix = current_templates->start->name;
4396 break;
4397 case PREFIX_REP:
4398 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4399 i.hle_prefix = current_templates->start->name;
4400 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4401 i.bnd_prefix = current_templates->start->name;
4402 else
4403 i.rep_prefix = current_templates->start->name;
4404 break;
4405 default:
4406 break;
4407 }
4408 }
4409 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4410 token_start = ++l;
4411 }
4412 else
4413 break;
4414 }
4415
4416 if (!current_templates)
4417 {
4418 /* Check if we should swap operand or force 32bit displacement in
4419 encoding. */
4420 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4421 i.dir_encoding = dir_encoding_store;
4422 else if (mnem_p - 3 == dot_p
4423 && dot_p[1] == 'd'
4424 && dot_p[2] == '8')
4425 i.disp_encoding = disp_encoding_8bit;
4426 else if (mnem_p - 4 == dot_p
4427 && dot_p[1] == 'd'
4428 && dot_p[2] == '3'
4429 && dot_p[3] == '2')
4430 i.disp_encoding = disp_encoding_32bit;
4431 else
4432 goto check_suffix;
4433 mnem_p = dot_p;
4434 *dot_p = '\0';
4435 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4436 }
4437
4438 if (!current_templates)
4439 {
4440 check_suffix:
4441 /* See if we can get a match by trimming off a suffix. */
4442 switch (mnem_p[-1])
4443 {
4444 case WORD_MNEM_SUFFIX:
4445 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4446 i.suffix = SHORT_MNEM_SUFFIX;
4447 else
4448 /* Fall through. */
4449 case BYTE_MNEM_SUFFIX:
4450 case QWORD_MNEM_SUFFIX:
4451 i.suffix = mnem_p[-1];
4452 mnem_p[-1] = '\0';
4453 current_templates = (const templates *) hash_find (op_hash,
4454 mnemonic);
4455 break;
4456 case SHORT_MNEM_SUFFIX:
4457 case LONG_MNEM_SUFFIX:
4458 if (!intel_syntax)
4459 {
4460 i.suffix = mnem_p[-1];
4461 mnem_p[-1] = '\0';
4462 current_templates = (const templates *) hash_find (op_hash,
4463 mnemonic);
4464 }
4465 break;
4466
4467 /* Intel Syntax. */
4468 case 'd':
4469 if (intel_syntax)
4470 {
4471 if (intel_float_operand (mnemonic) == 1)
4472 i.suffix = SHORT_MNEM_SUFFIX;
4473 else
4474 i.suffix = LONG_MNEM_SUFFIX;
4475 mnem_p[-1] = '\0';
4476 current_templates = (const templates *) hash_find (op_hash,
4477 mnemonic);
4478 }
4479 break;
4480 }
4481 if (!current_templates)
4482 {
4483 as_bad (_("no such instruction: `%s'"), token_start);
4484 return NULL;
4485 }
4486 }
4487
4488 if (current_templates->start->opcode_modifier.jump
4489 || current_templates->start->opcode_modifier.jumpbyte)
4490 {
4491 /* Check for a branch hint. We allow ",pt" and ",pn" for
4492 predict taken and predict not taken respectively.
4493 I'm not sure that branch hints actually do anything on loop
4494 and jcxz insns (JumpByte) for current Pentium4 chips. They
4495 may work in the future and it doesn't hurt to accept them
4496 now. */
4497 if (l[0] == ',' && l[1] == 'p')
4498 {
4499 if (l[2] == 't')
4500 {
4501 if (!add_prefix (DS_PREFIX_OPCODE))
4502 return NULL;
4503 l += 3;
4504 }
4505 else if (l[2] == 'n')
4506 {
4507 if (!add_prefix (CS_PREFIX_OPCODE))
4508 return NULL;
4509 l += 3;
4510 }
4511 }
4512 }
4513 /* Any other comma loses. */
4514 if (*l == ',')
4515 {
4516 as_bad (_("invalid character %s in mnemonic"),
4517 output_invalid (*l));
4518 return NULL;
4519 }
4520
4521 /* Check if instruction is supported on specified architecture. */
4522 supported = 0;
4523 for (t = current_templates->start; t < current_templates->end; ++t)
4524 {
4525 supported |= cpu_flags_match (t);
4526 if (supported == CPU_FLAGS_PERFECT_MATCH)
4527 {
4528 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4529 as_warn (_("use .code16 to ensure correct addressing mode"));
4530
4531 return l;
4532 }
4533 }
4534
4535 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4536 as_bad (flag_code == CODE_64BIT
4537 ? _("`%s' is not supported in 64-bit mode")
4538 : _("`%s' is only supported in 64-bit mode"),
4539 current_templates->start->name);
4540 else
4541 as_bad (_("`%s' is not supported on `%s%s'"),
4542 current_templates->start->name,
4543 cpu_arch_name ? cpu_arch_name : default_arch,
4544 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4545
4546 return NULL;
4547 }
4548
4549 static char *
4550 parse_operands (char *l, const char *mnemonic)
4551 {
4552 char *token_start;
4553
4554 /* 1 if operand is pending after ','. */
4555 unsigned int expecting_operand = 0;
4556
4557 /* Non-zero if operand parens not balanced. */
4558 unsigned int paren_not_balanced;
4559
4560 while (*l != END_OF_INSN)
4561 {
4562 /* Skip optional white space before operand. */
4563 if (is_space_char (*l))
4564 ++l;
4565 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4566 {
4567 as_bad (_("invalid character %s before operand %d"),
4568 output_invalid (*l),
4569 i.operands + 1);
4570 return NULL;
4571 }
4572 token_start = l; /* After white space. */
4573 paren_not_balanced = 0;
4574 while (paren_not_balanced || *l != ',')
4575 {
4576 if (*l == END_OF_INSN)
4577 {
4578 if (paren_not_balanced)
4579 {
4580 if (!intel_syntax)
4581 as_bad (_("unbalanced parenthesis in operand %d."),
4582 i.operands + 1);
4583 else
4584 as_bad (_("unbalanced brackets in operand %d."),
4585 i.operands + 1);
4586 return NULL;
4587 }
4588 else
4589 break; /* we are done */
4590 }
4591 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4592 {
4593 as_bad (_("invalid character %s in operand %d"),
4594 output_invalid (*l),
4595 i.operands + 1);
4596 return NULL;
4597 }
4598 if (!intel_syntax)
4599 {
4600 if (*l == '(')
4601 ++paren_not_balanced;
4602 if (*l == ')')
4603 --paren_not_balanced;
4604 }
4605 else
4606 {
4607 if (*l == '[')
4608 ++paren_not_balanced;
4609 if (*l == ']')
4610 --paren_not_balanced;
4611 }
4612 l++;
4613 }
4614 if (l != token_start)
4615 { /* Yes, we've read in another operand. */
4616 unsigned int operand_ok;
4617 this_operand = i.operands++;
4618 if (i.operands > MAX_OPERANDS)
4619 {
4620 as_bad (_("spurious operands; (%d operands/instruction max)"),
4621 MAX_OPERANDS);
4622 return NULL;
4623 }
4624 i.types[this_operand].bitfield.unspecified = 1;
4625 /* Now parse operand adding info to 'i' as we go along. */
4626 END_STRING_AND_SAVE (l);
4627
4628 if (intel_syntax)
4629 operand_ok =
4630 i386_intel_operand (token_start,
4631 intel_float_operand (mnemonic));
4632 else
4633 operand_ok = i386_att_operand (token_start);
4634
4635 RESTORE_END_STRING (l);
4636 if (!operand_ok)
4637 return NULL;
4638 }
4639 else
4640 {
4641 if (expecting_operand)
4642 {
4643 expecting_operand_after_comma:
4644 as_bad (_("expecting operand after ','; got nothing"));
4645 return NULL;
4646 }
4647 if (*l == ',')
4648 {
4649 as_bad (_("expecting operand before ','; got nothing"));
4650 return NULL;
4651 }
4652 }
4653
4654 /* Now *l must be either ',' or END_OF_INSN. */
4655 if (*l == ',')
4656 {
4657 if (*++l == END_OF_INSN)
4658 {
4659 /* Just skip it, if it's \n complain. */
4660 goto expecting_operand_after_comma;
4661 }
4662 expecting_operand = 1;
4663 }
4664 }
4665 return l;
4666 }
4667
4668 static void
4669 swap_2_operands (int xchg1, int xchg2)
4670 {
4671 union i386_op temp_op;
4672 i386_operand_type temp_type;
4673 enum bfd_reloc_code_real temp_reloc;
4674
4675 temp_type = i.types[xchg2];
4676 i.types[xchg2] = i.types[xchg1];
4677 i.types[xchg1] = temp_type;
4678 temp_op = i.op[xchg2];
4679 i.op[xchg2] = i.op[xchg1];
4680 i.op[xchg1] = temp_op;
4681 temp_reloc = i.reloc[xchg2];
4682 i.reloc[xchg2] = i.reloc[xchg1];
4683 i.reloc[xchg1] = temp_reloc;
4684
4685 if (i.mask)
4686 {
4687 if (i.mask->operand == xchg1)
4688 i.mask->operand = xchg2;
4689 else if (i.mask->operand == xchg2)
4690 i.mask->operand = xchg1;
4691 }
4692 if (i.broadcast)
4693 {
4694 if (i.broadcast->operand == xchg1)
4695 i.broadcast->operand = xchg2;
4696 else if (i.broadcast->operand == xchg2)
4697 i.broadcast->operand = xchg1;
4698 }
4699 if (i.rounding)
4700 {
4701 if (i.rounding->operand == xchg1)
4702 i.rounding->operand = xchg2;
4703 else if (i.rounding->operand == xchg2)
4704 i.rounding->operand = xchg1;
4705 }
4706 }
4707
4708 static void
4709 swap_operands (void)
4710 {
4711 switch (i.operands)
4712 {
4713 case 5:
4714 case 4:
4715 swap_2_operands (1, i.operands - 2);
4716 /* Fall through. */
4717 case 3:
4718 case 2:
4719 swap_2_operands (0, i.operands - 1);
4720 break;
4721 default:
4722 abort ();
4723 }
4724
4725 if (i.mem_operands == 2)
4726 {
4727 const seg_entry *temp_seg;
4728 temp_seg = i.seg[0];
4729 i.seg[0] = i.seg[1];
4730 i.seg[1] = temp_seg;
4731 }
4732 }
4733
4734 /* Try to ensure constant immediates are represented in the smallest
4735 opcode possible. */
4736 static void
4737 optimize_imm (void)
4738 {
4739 char guess_suffix = 0;
4740 int op;
4741
4742 if (i.suffix)
4743 guess_suffix = i.suffix;
4744 else if (i.reg_operands)
4745 {
4746 /* Figure out a suffix from the last register operand specified.
4747 We can't do this properly yet, ie. excluding InOutPortReg,
4748 but the following works for instructions with immediates.
4749 In any case, we can't set i.suffix yet. */
4750 for (op = i.operands; --op >= 0;)
4751 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4752 {
4753 guess_suffix = BYTE_MNEM_SUFFIX;
4754 break;
4755 }
4756 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4757 {
4758 guess_suffix = WORD_MNEM_SUFFIX;
4759 break;
4760 }
4761 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
4762 {
4763 guess_suffix = LONG_MNEM_SUFFIX;
4764 break;
4765 }
4766 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
4767 {
4768 guess_suffix = QWORD_MNEM_SUFFIX;
4769 break;
4770 }
4771 }
4772 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4773 guess_suffix = WORD_MNEM_SUFFIX;
4774
4775 for (op = i.operands; --op >= 0;)
4776 if (operand_type_check (i.types[op], imm))
4777 {
4778 switch (i.op[op].imms->X_op)
4779 {
4780 case O_constant:
4781 /* If a suffix is given, this operand may be shortened. */
4782 switch (guess_suffix)
4783 {
4784 case LONG_MNEM_SUFFIX:
4785 i.types[op].bitfield.imm32 = 1;
4786 i.types[op].bitfield.imm64 = 1;
4787 break;
4788 case WORD_MNEM_SUFFIX:
4789 i.types[op].bitfield.imm16 = 1;
4790 i.types[op].bitfield.imm32 = 1;
4791 i.types[op].bitfield.imm32s = 1;
4792 i.types[op].bitfield.imm64 = 1;
4793 break;
4794 case BYTE_MNEM_SUFFIX:
4795 i.types[op].bitfield.imm8 = 1;
4796 i.types[op].bitfield.imm8s = 1;
4797 i.types[op].bitfield.imm16 = 1;
4798 i.types[op].bitfield.imm32 = 1;
4799 i.types[op].bitfield.imm32s = 1;
4800 i.types[op].bitfield.imm64 = 1;
4801 break;
4802 }
4803
4804 /* If this operand is at most 16 bits, convert it
4805 to a signed 16 bit number before trying to see
4806 whether it will fit in an even smaller size.
4807 This allows a 16-bit operand such as $0xffe0 to
4808 be recognised as within Imm8S range. */
4809 if ((i.types[op].bitfield.imm16)
4810 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4811 {
4812 i.op[op].imms->X_add_number =
4813 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4814 }
4815 #ifdef BFD64
4816 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4817 if ((i.types[op].bitfield.imm32)
4818 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4819 == 0))
4820 {
4821 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4822 ^ ((offsetT) 1 << 31))
4823 - ((offsetT) 1 << 31));
4824 }
4825 #endif
4826 i.types[op]
4827 = operand_type_or (i.types[op],
4828 smallest_imm_type (i.op[op].imms->X_add_number));
4829
4830 /* We must avoid matching of Imm32 templates when 64bit
4831 only immediate is available. */
4832 if (guess_suffix == QWORD_MNEM_SUFFIX)
4833 i.types[op].bitfield.imm32 = 0;
4834 break;
4835
4836 case O_absent:
4837 case O_register:
4838 abort ();
4839
4840 /* Symbols and expressions. */
4841 default:
4842 /* Convert symbolic operand to proper sizes for matching, but don't
4843 prevent matching a set of insns that only supports sizes other
4844 than those matching the insn suffix. */
4845 {
4846 i386_operand_type mask, allowed;
4847 const insn_template *t;
4848
4849 operand_type_set (&mask, 0);
4850 operand_type_set (&allowed, 0);
4851
4852 for (t = current_templates->start;
4853 t < current_templates->end;
4854 ++t)
4855 allowed = operand_type_or (allowed,
4856 t->operand_types[op]);
4857 switch (guess_suffix)
4858 {
4859 case QWORD_MNEM_SUFFIX:
4860 mask.bitfield.imm64 = 1;
4861 mask.bitfield.imm32s = 1;
4862 break;
4863 case LONG_MNEM_SUFFIX:
4864 mask.bitfield.imm32 = 1;
4865 break;
4866 case WORD_MNEM_SUFFIX:
4867 mask.bitfield.imm16 = 1;
4868 break;
4869 case BYTE_MNEM_SUFFIX:
4870 mask.bitfield.imm8 = 1;
4871 break;
4872 default:
4873 break;
4874 }
4875 allowed = operand_type_and (mask, allowed);
4876 if (!operand_type_all_zero (&allowed))
4877 i.types[op] = operand_type_and (i.types[op], mask);
4878 }
4879 break;
4880 }
4881 }
4882 }
4883
4884 /* Try to use the smallest displacement type too. */
4885 static void
4886 optimize_disp (void)
4887 {
4888 int op;
4889
4890 for (op = i.operands; --op >= 0;)
4891 if (operand_type_check (i.types[op], disp))
4892 {
4893 if (i.op[op].disps->X_op == O_constant)
4894 {
4895 offsetT op_disp = i.op[op].disps->X_add_number;
4896
4897 if (i.types[op].bitfield.disp16
4898 && (op_disp & ~(offsetT) 0xffff) == 0)
4899 {
4900 /* If this operand is at most 16 bits, convert
4901 to a signed 16 bit number and don't use 64bit
4902 displacement. */
4903 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4904 i.types[op].bitfield.disp64 = 0;
4905 }
4906 #ifdef BFD64
4907 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4908 if (i.types[op].bitfield.disp32
4909 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4910 {
4911 /* If this operand is at most 32 bits, convert
4912 to a signed 32 bit number and don't use 64bit
4913 displacement. */
4914 op_disp &= (((offsetT) 2 << 31) - 1);
4915 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4916 i.types[op].bitfield.disp64 = 0;
4917 }
4918 #endif
4919 if (!op_disp && i.types[op].bitfield.baseindex)
4920 {
4921 i.types[op].bitfield.disp8 = 0;
4922 i.types[op].bitfield.disp16 = 0;
4923 i.types[op].bitfield.disp32 = 0;
4924 i.types[op].bitfield.disp32s = 0;
4925 i.types[op].bitfield.disp64 = 0;
4926 i.op[op].disps = 0;
4927 i.disp_operands--;
4928 }
4929 else if (flag_code == CODE_64BIT)
4930 {
4931 if (fits_in_signed_long (op_disp))
4932 {
4933 i.types[op].bitfield.disp64 = 0;
4934 i.types[op].bitfield.disp32s = 1;
4935 }
4936 if (i.prefix[ADDR_PREFIX]
4937 && fits_in_unsigned_long (op_disp))
4938 i.types[op].bitfield.disp32 = 1;
4939 }
4940 if ((i.types[op].bitfield.disp32
4941 || i.types[op].bitfield.disp32s
4942 || i.types[op].bitfield.disp16)
4943 && fits_in_disp8 (op_disp))
4944 i.types[op].bitfield.disp8 = 1;
4945 }
4946 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4947 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4948 {
4949 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4950 i.op[op].disps, 0, i.reloc[op]);
4951 i.types[op].bitfield.disp8 = 0;
4952 i.types[op].bitfield.disp16 = 0;
4953 i.types[op].bitfield.disp32 = 0;
4954 i.types[op].bitfield.disp32s = 0;
4955 i.types[op].bitfield.disp64 = 0;
4956 }
4957 else
4958 /* We only support 64bit displacement on constants. */
4959 i.types[op].bitfield.disp64 = 0;
4960 }
4961 }
4962
4963 /* Check if operands are valid for the instruction. */
4964
4965 static int
4966 check_VecOperands (const insn_template *t)
4967 {
4968 unsigned int op;
4969
4970 /* Without VSIB byte, we can't have a vector register for index. */
4971 if (!t->opcode_modifier.vecsib
4972 && i.index_reg
4973 && (i.index_reg->reg_type.bitfield.xmmword
4974 || i.index_reg->reg_type.bitfield.ymmword
4975 || i.index_reg->reg_type.bitfield.zmmword))
4976 {
4977 i.error = unsupported_vector_index_register;
4978 return 1;
4979 }
4980
4981 /* Check if default mask is allowed. */
4982 if (t->opcode_modifier.nodefmask
4983 && (!i.mask || i.mask->mask->reg_num == 0))
4984 {
4985 i.error = no_default_mask;
4986 return 1;
4987 }
4988
4989 /* For VSIB byte, we need a vector register for index, and all vector
4990 registers must be distinct. */
4991 if (t->opcode_modifier.vecsib)
4992 {
4993 if (!i.index_reg
4994 || !((t->opcode_modifier.vecsib == VecSIB128
4995 && i.index_reg->reg_type.bitfield.xmmword)
4996 || (t->opcode_modifier.vecsib == VecSIB256
4997 && i.index_reg->reg_type.bitfield.ymmword)
4998 || (t->opcode_modifier.vecsib == VecSIB512
4999 && i.index_reg->reg_type.bitfield.zmmword)))
5000 {
5001 i.error = invalid_vsib_address;
5002 return 1;
5003 }
5004
5005 gas_assert (i.reg_operands == 2 || i.mask);
5006 if (i.reg_operands == 2 && !i.mask)
5007 {
5008 gas_assert (i.types[0].bitfield.regsimd);
5009 gas_assert (i.types[0].bitfield.xmmword
5010 || i.types[0].bitfield.ymmword);
5011 gas_assert (i.types[2].bitfield.regsimd);
5012 gas_assert (i.types[2].bitfield.xmmword
5013 || i.types[2].bitfield.ymmword);
5014 if (operand_check == check_none)
5015 return 0;
5016 if (register_number (i.op[0].regs)
5017 != register_number (i.index_reg)
5018 && register_number (i.op[2].regs)
5019 != register_number (i.index_reg)
5020 && register_number (i.op[0].regs)
5021 != register_number (i.op[2].regs))
5022 return 0;
5023 if (operand_check == check_error)
5024 {
5025 i.error = invalid_vector_register_set;
5026 return 1;
5027 }
5028 as_warn (_("mask, index, and destination registers should be distinct"));
5029 }
5030 else if (i.reg_operands == 1 && i.mask)
5031 {
5032 if (i.types[1].bitfield.regsimd
5033 && (i.types[1].bitfield.xmmword
5034 || i.types[1].bitfield.ymmword
5035 || i.types[1].bitfield.zmmword)
5036 && (register_number (i.op[1].regs)
5037 == register_number (i.index_reg)))
5038 {
5039 if (operand_check == check_error)
5040 {
5041 i.error = invalid_vector_register_set;
5042 return 1;
5043 }
5044 if (operand_check != check_none)
5045 as_warn (_("index and destination registers should be distinct"));
5046 }
5047 }
5048 }
5049
5050 /* Check if broadcast is supported by the instruction and is applied
5051 to the memory operand. */
5052 if (i.broadcast)
5053 {
5054 i386_operand_type type, overlap;
5055
5056 /* Check if specified broadcast is supported in this instruction,
5057 and it's applied to memory operand of DWORD or QWORD type. */
5058 op = i.broadcast->operand;
5059 if (!t->opcode_modifier.broadcast
5060 || !i.types[op].bitfield.mem
5061 || (!i.types[op].bitfield.unspecified
5062 && (t->operand_types[op].bitfield.dword
5063 ? !i.types[op].bitfield.dword
5064 : !i.types[op].bitfield.qword)))
5065 {
5066 bad_broadcast:
5067 i.error = unsupported_broadcast;
5068 return 1;
5069 }
5070
5071 operand_type_set (&type, 0);
5072 switch ((t->operand_types[op].bitfield.dword ? 4 : 8) * i.broadcast->type)
5073 {
5074 case 8:
5075 type.bitfield.qword = 1;
5076 break;
5077 case 16:
5078 type.bitfield.xmmword = 1;
5079 break;
5080 case 32:
5081 type.bitfield.ymmword = 1;
5082 break;
5083 case 64:
5084 type.bitfield.zmmword = 1;
5085 break;
5086 default:
5087 goto bad_broadcast;
5088 }
5089
5090 overlap = operand_type_and (type, t->operand_types[op]);
5091 if (operand_type_all_zero (&overlap))
5092 goto bad_broadcast;
5093
5094 if (t->opcode_modifier.checkregsize)
5095 {
5096 unsigned int j;
5097
5098 for (j = 0; j < i.operands; ++j)
5099 {
5100 if (j != op
5101 && !operand_type_register_match(i.types[j],
5102 t->operand_types[j],
5103 type,
5104 t->operand_types[op]))
5105 goto bad_broadcast;
5106 }
5107 }
5108 }
5109 /* If broadcast is supported in this instruction, we need to check if
5110 operand of one-element size isn't specified without broadcast. */
5111 else if (t->opcode_modifier.broadcast && i.mem_operands)
5112 {
5113 /* Find memory operand. */
5114 for (op = 0; op < i.operands; op++)
5115 if (operand_type_check (i.types[op], anymem))
5116 break;
5117 gas_assert (op < i.operands);
5118 /* Check size of the memory operand. */
5119 if (t->operand_types[op].bitfield.dword
5120 ? i.types[op].bitfield.dword
5121 : i.types[op].bitfield.qword)
5122 {
5123 i.error = broadcast_needed;
5124 return 1;
5125 }
5126 }
5127 else
5128 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5129
5130 /* Check if requested masking is supported. */
5131 if (i.mask
5132 && (!t->opcode_modifier.masking
5133 || (i.mask->zeroing
5134 && t->opcode_modifier.masking == MERGING_MASKING)))
5135 {
5136 i.error = unsupported_masking;
5137 return 1;
5138 }
5139
5140 /* Check if masking is applied to dest operand. */
5141 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5142 {
5143 i.error = mask_not_on_destination;
5144 return 1;
5145 }
5146
5147 /* Check RC/SAE. */
5148 if (i.rounding)
5149 {
5150 if ((i.rounding->type != saeonly
5151 && !t->opcode_modifier.staticrounding)
5152 || (i.rounding->type == saeonly
5153 && (t->opcode_modifier.staticrounding
5154 || !t->opcode_modifier.sae)))
5155 {
5156 i.error = unsupported_rc_sae;
5157 return 1;
5158 }
5159 /* If the instruction has several immediate operands and one of
5160 them is rounding, the rounding operand should be the last
5161 immediate operand. */
5162 if (i.imm_operands > 1
5163 && i.rounding->operand != (int) (i.imm_operands - 1))
5164 {
5165 i.error = rc_sae_operand_not_last_imm;
5166 return 1;
5167 }
5168 }
5169
5170 /* Check vector Disp8 operand. */
5171 if (t->opcode_modifier.disp8memshift
5172 && i.disp_encoding != disp_encoding_32bit)
5173 {
5174 if (i.broadcast)
5175 i.memshift = t->operand_types[op].bitfield.dword ? 2 : 3;
5176 else
5177 i.memshift = t->opcode_modifier.disp8memshift;
5178
5179 for (op = 0; op < i.operands; op++)
5180 if (operand_type_check (i.types[op], disp)
5181 && i.op[op].disps->X_op == O_constant)
5182 {
5183 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5184 {
5185 i.types[op].bitfield.disp8 = 1;
5186 return 0;
5187 }
5188 i.types[op].bitfield.disp8 = 0;
5189 }
5190 }
5191
5192 i.memshift = 0;
5193
5194 return 0;
5195 }
5196
5197 /* Check if operands are valid for the instruction. Update VEX
5198 operand types. */
5199
5200 static int
5201 VEX_check_operands (const insn_template *t)
5202 {
5203 if (i.vec_encoding == vex_encoding_evex)
5204 {
5205 /* This instruction must be encoded with EVEX prefix. */
5206 if (!is_evex_encoding (t))
5207 {
5208 i.error = unsupported;
5209 return 1;
5210 }
5211 return 0;
5212 }
5213
5214 if (!t->opcode_modifier.vex)
5215 {
5216 /* This instruction template doesn't have VEX prefix. */
5217 if (i.vec_encoding != vex_encoding_default)
5218 {
5219 i.error = unsupported;
5220 return 1;
5221 }
5222 return 0;
5223 }
5224
5225 /* Only check VEX_Imm4, which must be the first operand. */
5226 if (t->operand_types[0].bitfield.vec_imm4)
5227 {
5228 if (i.op[0].imms->X_op != O_constant
5229 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5230 {
5231 i.error = bad_imm4;
5232 return 1;
5233 }
5234
5235 /* Turn off Imm8 so that update_imm won't complain. */
5236 i.types[0] = vec_imm4;
5237 }
5238
5239 return 0;
5240 }
5241
5242 static const insn_template *
5243 match_template (char mnem_suffix)
5244 {
5245 /* Points to template once we've found it. */
5246 const insn_template *t;
5247 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5248 i386_operand_type overlap4;
5249 unsigned int found_reverse_match;
5250 i386_opcode_modifier suffix_check, mnemsuf_check;
5251 i386_operand_type operand_types [MAX_OPERANDS];
5252 int addr_prefix_disp;
5253 unsigned int j;
5254 unsigned int found_cpu_match;
5255 unsigned int check_register;
5256 enum i386_error specific_error = 0;
5257
5258 #if MAX_OPERANDS != 5
5259 # error "MAX_OPERANDS must be 5."
5260 #endif
5261
5262 found_reverse_match = 0;
5263 addr_prefix_disp = -1;
5264
5265 memset (&suffix_check, 0, sizeof (suffix_check));
5266 if (i.suffix == BYTE_MNEM_SUFFIX)
5267 suffix_check.no_bsuf = 1;
5268 else if (i.suffix == WORD_MNEM_SUFFIX)
5269 suffix_check.no_wsuf = 1;
5270 else if (i.suffix == SHORT_MNEM_SUFFIX)
5271 suffix_check.no_ssuf = 1;
5272 else if (i.suffix == LONG_MNEM_SUFFIX)
5273 suffix_check.no_lsuf = 1;
5274 else if (i.suffix == QWORD_MNEM_SUFFIX)
5275 suffix_check.no_qsuf = 1;
5276 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5277 suffix_check.no_ldsuf = 1;
5278
5279 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5280 if (intel_syntax)
5281 {
5282 switch (mnem_suffix)
5283 {
5284 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5285 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5286 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5287 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5288 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5289 }
5290 }
5291
5292 /* Must have right number of operands. */
5293 i.error = number_of_operands_mismatch;
5294
5295 for (t = current_templates->start; t < current_templates->end; t++)
5296 {
5297 addr_prefix_disp = -1;
5298
5299 if (i.operands != t->operands)
5300 continue;
5301
5302 /* Check processor support. */
5303 i.error = unsupported;
5304 found_cpu_match = (cpu_flags_match (t)
5305 == CPU_FLAGS_PERFECT_MATCH);
5306 if (!found_cpu_match)
5307 continue;
5308
5309 /* Check AT&T mnemonic. */
5310 i.error = unsupported_with_intel_mnemonic;
5311 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5312 continue;
5313
5314 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5315 i.error = unsupported_syntax;
5316 if ((intel_syntax && t->opcode_modifier.attsyntax)
5317 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5318 || (intel64 && t->opcode_modifier.amd64)
5319 || (!intel64 && t->opcode_modifier.intel64))
5320 continue;
5321
5322 /* Check the suffix, except for some instructions in intel mode. */
5323 i.error = invalid_instruction_suffix;
5324 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5325 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5326 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5327 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5328 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5329 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5330 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5331 continue;
5332 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5333 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5334 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5335 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5336 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5337 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5338 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5339 continue;
5340
5341 if (!operand_size_match (t))
5342 continue;
5343
5344 for (j = 0; j < MAX_OPERANDS; j++)
5345 operand_types[j] = t->operand_types[j];
5346
5347 /* In general, don't allow 64-bit operands in 32-bit mode. */
5348 if (i.suffix == QWORD_MNEM_SUFFIX
5349 && flag_code != CODE_64BIT
5350 && (intel_syntax
5351 ? (!t->opcode_modifier.ignoresize
5352 && !intel_float_operand (t->name))
5353 : intel_float_operand (t->name) != 2)
5354 && ((!operand_types[0].bitfield.regmmx
5355 && !operand_types[0].bitfield.regsimd)
5356 || (!operand_types[t->operands > 1].bitfield.regmmx
5357 && !operand_types[t->operands > 1].bitfield.regsimd))
5358 && (t->base_opcode != 0x0fc7
5359 || t->extension_opcode != 1 /* cmpxchg8b */))
5360 continue;
5361
5362 /* In general, don't allow 32-bit operands on pre-386. */
5363 else if (i.suffix == LONG_MNEM_SUFFIX
5364 && !cpu_arch_flags.bitfield.cpui386
5365 && (intel_syntax
5366 ? (!t->opcode_modifier.ignoresize
5367 && !intel_float_operand (t->name))
5368 : intel_float_operand (t->name) != 2)
5369 && ((!operand_types[0].bitfield.regmmx
5370 && !operand_types[0].bitfield.regsimd)
5371 || (!operand_types[t->operands > 1].bitfield.regmmx
5372 && !operand_types[t->operands > 1].bitfield.regsimd)))
5373 continue;
5374
5375 /* Do not verify operands when there are none. */
5376 else
5377 {
5378 if (!t->operands)
5379 /* We've found a match; break out of loop. */
5380 break;
5381 }
5382
5383 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5384 into Disp32/Disp16/Disp32 operand. */
5385 if (i.prefix[ADDR_PREFIX] != 0)
5386 {
5387 /* There should be only one Disp operand. */
5388 switch (flag_code)
5389 {
5390 case CODE_16BIT:
5391 for (j = 0; j < MAX_OPERANDS; j++)
5392 {
5393 if (operand_types[j].bitfield.disp16)
5394 {
5395 addr_prefix_disp = j;
5396 operand_types[j].bitfield.disp32 = 1;
5397 operand_types[j].bitfield.disp16 = 0;
5398 break;
5399 }
5400 }
5401 break;
5402 case CODE_32BIT:
5403 for (j = 0; j < MAX_OPERANDS; j++)
5404 {
5405 if (operand_types[j].bitfield.disp32)
5406 {
5407 addr_prefix_disp = j;
5408 operand_types[j].bitfield.disp32 = 0;
5409 operand_types[j].bitfield.disp16 = 1;
5410 break;
5411 }
5412 }
5413 break;
5414 case CODE_64BIT:
5415 for (j = 0; j < MAX_OPERANDS; j++)
5416 {
5417 if (operand_types[j].bitfield.disp64)
5418 {
5419 addr_prefix_disp = j;
5420 operand_types[j].bitfield.disp64 = 0;
5421 operand_types[j].bitfield.disp32 = 1;
5422 break;
5423 }
5424 }
5425 break;
5426 }
5427 }
5428
5429 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5430 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5431 continue;
5432
5433 /* We check register size if needed. */
5434 check_register = t->opcode_modifier.checkregsize;
5435 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5436 switch (t->operands)
5437 {
5438 case 1:
5439 if (!operand_type_match (overlap0, i.types[0]))
5440 continue;
5441 break;
5442 case 2:
5443 /* xchg %eax, %eax is a special case. It is an alias for nop
5444 only in 32bit mode and we can use opcode 0x90. In 64bit
5445 mode, we can't use 0x90 for xchg %eax, %eax since it should
5446 zero-extend %eax to %rax. */
5447 if (flag_code == CODE_64BIT
5448 && t->base_opcode == 0x90
5449 && operand_type_equal (&i.types [0], &acc32)
5450 && operand_type_equal (&i.types [1], &acc32))
5451 continue;
5452 /* xrelease mov %eax, <disp> is another special case. It must not
5453 match the accumulator-only encoding of mov. */
5454 if (flag_code != CODE_64BIT
5455 && i.hle_prefix
5456 && t->base_opcode == 0xa0
5457 && i.types[0].bitfield.acc
5458 && operand_type_check (i.types[1], anymem))
5459 continue;
5460 /* If we want store form, we reverse direction of operands. */
5461 if (i.dir_encoding == dir_encoding_store
5462 && t->opcode_modifier.d)
5463 goto check_reverse;
5464 /* Fall through. */
5465
5466 case 3:
5467 /* If we want store form, we skip the current load. */
5468 if (i.dir_encoding == dir_encoding_store
5469 && i.mem_operands == 0
5470 && t->opcode_modifier.load)
5471 continue;
5472 /* Fall through. */
5473 case 4:
5474 case 5:
5475 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5476 if (!operand_type_match (overlap0, i.types[0])
5477 || !operand_type_match (overlap1, i.types[1])
5478 || (check_register
5479 && !operand_type_register_match (i.types[0],
5480 operand_types[0],
5481 i.types[1],
5482 operand_types[1])))
5483 {
5484 /* Check if other direction is valid ... */
5485 if (!t->opcode_modifier.d)
5486 continue;
5487
5488 check_reverse:
5489 /* Try reversing direction of operands. */
5490 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5491 overlap1 = operand_type_and (i.types[1], operand_types[0]);
5492 if (!operand_type_match (overlap0, i.types[0])
5493 || !operand_type_match (overlap1, i.types[1])
5494 || (check_register
5495 && !operand_type_register_match (i.types[0],
5496 operand_types[1],
5497 i.types[1],
5498 operand_types[0])))
5499 {
5500 /* Does not match either direction. */
5501 continue;
5502 }
5503 /* found_reverse_match holds which of D or FloatR
5504 we've found. */
5505 if (!t->opcode_modifier.d)
5506 found_reverse_match = 0;
5507 else if (operand_types[0].bitfield.tbyte)
5508 found_reverse_match = Opcode_FloatD;
5509 else
5510 found_reverse_match = Opcode_D;
5511 if (t->opcode_modifier.floatr)
5512 found_reverse_match |= Opcode_FloatR;
5513 }
5514 else
5515 {
5516 /* Found a forward 2 operand match here. */
5517 switch (t->operands)
5518 {
5519 case 5:
5520 overlap4 = operand_type_and (i.types[4],
5521 operand_types[4]);
5522 /* Fall through. */
5523 case 4:
5524 overlap3 = operand_type_and (i.types[3],
5525 operand_types[3]);
5526 /* Fall through. */
5527 case 3:
5528 overlap2 = operand_type_and (i.types[2],
5529 operand_types[2]);
5530 break;
5531 }
5532
5533 switch (t->operands)
5534 {
5535 case 5:
5536 if (!operand_type_match (overlap4, i.types[4])
5537 || !operand_type_register_match (i.types[3],
5538 operand_types[3],
5539 i.types[4],
5540 operand_types[4]))
5541 continue;
5542 /* Fall through. */
5543 case 4:
5544 if (!operand_type_match (overlap3, i.types[3])
5545 || (check_register
5546 && (!operand_type_register_match (i.types[1],
5547 operand_types[1],
5548 i.types[3],
5549 operand_types[3])
5550 || !operand_type_register_match (i.types[2],
5551 operand_types[2],
5552 i.types[3],
5553 operand_types[3]))))
5554 continue;
5555 /* Fall through. */
5556 case 3:
5557 /* Here we make use of the fact that there are no
5558 reverse match 3 operand instructions. */
5559 if (!operand_type_match (overlap2, i.types[2])
5560 || (check_register
5561 && (!operand_type_register_match (i.types[0],
5562 operand_types[0],
5563 i.types[2],
5564 operand_types[2])
5565 || !operand_type_register_match (i.types[1],
5566 operand_types[1],
5567 i.types[2],
5568 operand_types[2]))))
5569 continue;
5570 break;
5571 }
5572 }
5573 /* Found either forward/reverse 2, 3 or 4 operand match here:
5574 slip through to break. */
5575 }
5576 if (!found_cpu_match)
5577 {
5578 found_reverse_match = 0;
5579 continue;
5580 }
5581
5582 /* Check if vector and VEX operands are valid. */
5583 if (check_VecOperands (t) || VEX_check_operands (t))
5584 {
5585 specific_error = i.error;
5586 continue;
5587 }
5588
5589 /* We've found a match; break out of loop. */
5590 break;
5591 }
5592
5593 if (t == current_templates->end)
5594 {
5595 /* We found no match. */
5596 const char *err_msg;
5597 switch (specific_error ? specific_error : i.error)
5598 {
5599 default:
5600 abort ();
5601 case operand_size_mismatch:
5602 err_msg = _("operand size mismatch");
5603 break;
5604 case operand_type_mismatch:
5605 err_msg = _("operand type mismatch");
5606 break;
5607 case register_type_mismatch:
5608 err_msg = _("register type mismatch");
5609 break;
5610 case number_of_operands_mismatch:
5611 err_msg = _("number of operands mismatch");
5612 break;
5613 case invalid_instruction_suffix:
5614 err_msg = _("invalid instruction suffix");
5615 break;
5616 case bad_imm4:
5617 err_msg = _("constant doesn't fit in 4 bits");
5618 break;
5619 case unsupported_with_intel_mnemonic:
5620 err_msg = _("unsupported with Intel mnemonic");
5621 break;
5622 case unsupported_syntax:
5623 err_msg = _("unsupported syntax");
5624 break;
5625 case unsupported:
5626 as_bad (_("unsupported instruction `%s'"),
5627 current_templates->start->name);
5628 return NULL;
5629 case invalid_vsib_address:
5630 err_msg = _("invalid VSIB address");
5631 break;
5632 case invalid_vector_register_set:
5633 err_msg = _("mask, index, and destination registers must be distinct");
5634 break;
5635 case unsupported_vector_index_register:
5636 err_msg = _("unsupported vector index register");
5637 break;
5638 case unsupported_broadcast:
5639 err_msg = _("unsupported broadcast");
5640 break;
5641 case broadcast_not_on_src_operand:
5642 err_msg = _("broadcast not on source memory operand");
5643 break;
5644 case broadcast_needed:
5645 err_msg = _("broadcast is needed for operand of such type");
5646 break;
5647 case unsupported_masking:
5648 err_msg = _("unsupported masking");
5649 break;
5650 case mask_not_on_destination:
5651 err_msg = _("mask not on destination operand");
5652 break;
5653 case no_default_mask:
5654 err_msg = _("default mask isn't allowed");
5655 break;
5656 case unsupported_rc_sae:
5657 err_msg = _("unsupported static rounding/sae");
5658 break;
5659 case rc_sae_operand_not_last_imm:
5660 if (intel_syntax)
5661 err_msg = _("RC/SAE operand must precede immediate operands");
5662 else
5663 err_msg = _("RC/SAE operand must follow immediate operands");
5664 break;
5665 case invalid_register_operand:
5666 err_msg = _("invalid register operand");
5667 break;
5668 }
5669 as_bad (_("%s for `%s'"), err_msg,
5670 current_templates->start->name);
5671 return NULL;
5672 }
5673
5674 if (!quiet_warnings)
5675 {
5676 if (!intel_syntax
5677 && (i.types[0].bitfield.jumpabsolute
5678 != operand_types[0].bitfield.jumpabsolute))
5679 {
5680 as_warn (_("indirect %s without `*'"), t->name);
5681 }
5682
5683 if (t->opcode_modifier.isprefix
5684 && t->opcode_modifier.ignoresize)
5685 {
5686 /* Warn them that a data or address size prefix doesn't
5687 affect assembly of the next line of code. */
5688 as_warn (_("stand-alone `%s' prefix"), t->name);
5689 }
5690 }
5691
5692 /* Copy the template we found. */
5693 i.tm = *t;
5694
5695 if (addr_prefix_disp != -1)
5696 i.tm.operand_types[addr_prefix_disp]
5697 = operand_types[addr_prefix_disp];
5698
5699 if (found_reverse_match)
5700 {
5701 /* If we found a reverse match we must alter the opcode
5702 direction bit. found_reverse_match holds bits to change
5703 (different for int & float insns). */
5704
5705 i.tm.base_opcode ^= found_reverse_match;
5706
5707 i.tm.operand_types[0] = operand_types[1];
5708 i.tm.operand_types[1] = operand_types[0];
5709 }
5710
5711 return t;
5712 }
5713
5714 static int
5715 check_string (void)
5716 {
5717 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5718 if (i.tm.operand_types[mem_op].bitfield.esseg)
5719 {
5720 if (i.seg[0] != NULL && i.seg[0] != &es)
5721 {
5722 as_bad (_("`%s' operand %d must use `%ses' segment"),
5723 i.tm.name,
5724 mem_op + 1,
5725 register_prefix);
5726 return 0;
5727 }
5728 /* There's only ever one segment override allowed per instruction.
5729 This instruction possibly has a legal segment override on the
5730 second operand, so copy the segment to where non-string
5731 instructions store it, allowing common code. */
5732 i.seg[0] = i.seg[1];
5733 }
5734 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5735 {
5736 if (i.seg[1] != NULL && i.seg[1] != &es)
5737 {
5738 as_bad (_("`%s' operand %d must use `%ses' segment"),
5739 i.tm.name,
5740 mem_op + 2,
5741 register_prefix);
5742 return 0;
5743 }
5744 }
5745 return 1;
5746 }
5747
5748 static int
5749 process_suffix (void)
5750 {
5751 /* If matched instruction specifies an explicit instruction mnemonic
5752 suffix, use it. */
5753 if (i.tm.opcode_modifier.size16)
5754 i.suffix = WORD_MNEM_SUFFIX;
5755 else if (i.tm.opcode_modifier.size32)
5756 i.suffix = LONG_MNEM_SUFFIX;
5757 else if (i.tm.opcode_modifier.size64)
5758 i.suffix = QWORD_MNEM_SUFFIX;
5759 else if (i.reg_operands)
5760 {
5761 /* If there's no instruction mnemonic suffix we try to invent one
5762 based on register operands. */
5763 if (!i.suffix)
5764 {
5765 /* We take i.suffix from the last register operand specified,
5766 Destination register type is more significant than source
5767 register type. crc32 in SSE4.2 prefers source register
5768 type. */
5769 if (i.tm.base_opcode == 0xf20f38f1)
5770 {
5771 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
5772 i.suffix = WORD_MNEM_SUFFIX;
5773 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
5774 i.suffix = LONG_MNEM_SUFFIX;
5775 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
5776 i.suffix = QWORD_MNEM_SUFFIX;
5777 }
5778 else if (i.tm.base_opcode == 0xf20f38f0)
5779 {
5780 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
5781 i.suffix = BYTE_MNEM_SUFFIX;
5782 }
5783
5784 if (!i.suffix)
5785 {
5786 int op;
5787
5788 if (i.tm.base_opcode == 0xf20f38f1
5789 || i.tm.base_opcode == 0xf20f38f0)
5790 {
5791 /* We have to know the operand size for crc32. */
5792 as_bad (_("ambiguous memory operand size for `%s`"),
5793 i.tm.name);
5794 return 0;
5795 }
5796
5797 for (op = i.operands; --op >= 0;)
5798 if (!i.tm.operand_types[op].bitfield.inoutportreg
5799 && !i.tm.operand_types[op].bitfield.shiftcount)
5800 {
5801 if (!i.types[op].bitfield.reg)
5802 continue;
5803 if (i.types[op].bitfield.byte)
5804 i.suffix = BYTE_MNEM_SUFFIX;
5805 else if (i.types[op].bitfield.word)
5806 i.suffix = WORD_MNEM_SUFFIX;
5807 else if (i.types[op].bitfield.dword)
5808 i.suffix = LONG_MNEM_SUFFIX;
5809 else if (i.types[op].bitfield.qword)
5810 i.suffix = QWORD_MNEM_SUFFIX;
5811 else
5812 continue;
5813 break;
5814 }
5815 }
5816 }
5817 else if (i.suffix == BYTE_MNEM_SUFFIX)
5818 {
5819 if (intel_syntax
5820 && i.tm.opcode_modifier.ignoresize
5821 && i.tm.opcode_modifier.no_bsuf)
5822 i.suffix = 0;
5823 else if (!check_byte_reg ())
5824 return 0;
5825 }
5826 else if (i.suffix == LONG_MNEM_SUFFIX)
5827 {
5828 if (intel_syntax
5829 && i.tm.opcode_modifier.ignoresize
5830 && i.tm.opcode_modifier.no_lsuf
5831 && !i.tm.opcode_modifier.todword
5832 && !i.tm.opcode_modifier.toqword)
5833 i.suffix = 0;
5834 else if (!check_long_reg ())
5835 return 0;
5836 }
5837 else if (i.suffix == QWORD_MNEM_SUFFIX)
5838 {
5839 if (intel_syntax
5840 && i.tm.opcode_modifier.ignoresize
5841 && i.tm.opcode_modifier.no_qsuf
5842 && !i.tm.opcode_modifier.todword
5843 && !i.tm.opcode_modifier.toqword)
5844 i.suffix = 0;
5845 else if (!check_qword_reg ())
5846 return 0;
5847 }
5848 else if (i.suffix == WORD_MNEM_SUFFIX)
5849 {
5850 if (intel_syntax
5851 && i.tm.opcode_modifier.ignoresize
5852 && i.tm.opcode_modifier.no_wsuf)
5853 i.suffix = 0;
5854 else if (!check_word_reg ())
5855 return 0;
5856 }
5857 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5858 /* Do nothing if the instruction is going to ignore the prefix. */
5859 ;
5860 else
5861 abort ();
5862 }
5863 else if (i.tm.opcode_modifier.defaultsize
5864 && !i.suffix
5865 /* exclude fldenv/frstor/fsave/fstenv */
5866 && i.tm.opcode_modifier.no_ssuf)
5867 {
5868 i.suffix = stackop_size;
5869 }
5870 else if (intel_syntax
5871 && !i.suffix
5872 && (i.tm.operand_types[0].bitfield.jumpabsolute
5873 || i.tm.opcode_modifier.jumpbyte
5874 || i.tm.opcode_modifier.jumpintersegment
5875 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5876 && i.tm.extension_opcode <= 3)))
5877 {
5878 switch (flag_code)
5879 {
5880 case CODE_64BIT:
5881 if (!i.tm.opcode_modifier.no_qsuf)
5882 {
5883 i.suffix = QWORD_MNEM_SUFFIX;
5884 break;
5885 }
5886 /* Fall through. */
5887 case CODE_32BIT:
5888 if (!i.tm.opcode_modifier.no_lsuf)
5889 i.suffix = LONG_MNEM_SUFFIX;
5890 break;
5891 case CODE_16BIT:
5892 if (!i.tm.opcode_modifier.no_wsuf)
5893 i.suffix = WORD_MNEM_SUFFIX;
5894 break;
5895 }
5896 }
5897
5898 if (!i.suffix)
5899 {
5900 if (!intel_syntax)
5901 {
5902 if (i.tm.opcode_modifier.w)
5903 {
5904 as_bad (_("no instruction mnemonic suffix given and "
5905 "no register operands; can't size instruction"));
5906 return 0;
5907 }
5908 }
5909 else
5910 {
5911 unsigned int suffixes;
5912
5913 suffixes = !i.tm.opcode_modifier.no_bsuf;
5914 if (!i.tm.opcode_modifier.no_wsuf)
5915 suffixes |= 1 << 1;
5916 if (!i.tm.opcode_modifier.no_lsuf)
5917 suffixes |= 1 << 2;
5918 if (!i.tm.opcode_modifier.no_ldsuf)
5919 suffixes |= 1 << 3;
5920 if (!i.tm.opcode_modifier.no_ssuf)
5921 suffixes |= 1 << 4;
5922 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
5923 suffixes |= 1 << 5;
5924
5925 /* There are more than suffix matches. */
5926 if (i.tm.opcode_modifier.w
5927 || ((suffixes & (suffixes - 1))
5928 && !i.tm.opcode_modifier.defaultsize
5929 && !i.tm.opcode_modifier.ignoresize))
5930 {
5931 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5932 return 0;
5933 }
5934 }
5935 }
5936
5937 /* Change the opcode based on the operand size given by i.suffix. */
5938 switch (i.suffix)
5939 {
5940 /* Size floating point instruction. */
5941 case LONG_MNEM_SUFFIX:
5942 if (i.tm.opcode_modifier.floatmf)
5943 {
5944 i.tm.base_opcode ^= 4;
5945 break;
5946 }
5947 /* fall through */
5948 case WORD_MNEM_SUFFIX:
5949 case QWORD_MNEM_SUFFIX:
5950 /* It's not a byte, select word/dword operation. */
5951 if (i.tm.opcode_modifier.w)
5952 {
5953 if (i.tm.opcode_modifier.shortform)
5954 i.tm.base_opcode |= 8;
5955 else
5956 i.tm.base_opcode |= 1;
5957 }
5958 /* fall through */
5959 case SHORT_MNEM_SUFFIX:
5960 /* Now select between word & dword operations via the operand
5961 size prefix, except for instructions that will ignore this
5962 prefix anyway. */
5963 if (i.tm.opcode_modifier.addrprefixop0)
5964 {
5965 /* The address size override prefix changes the size of the
5966 first operand. */
5967 if ((flag_code == CODE_32BIT
5968 && i.op->regs[0].reg_type.bitfield.word)
5969 || (flag_code != CODE_32BIT
5970 && i.op->regs[0].reg_type.bitfield.dword))
5971 if (!add_prefix (ADDR_PREFIX_OPCODE))
5972 return 0;
5973 }
5974 else if (i.suffix != QWORD_MNEM_SUFFIX
5975 && !i.tm.opcode_modifier.ignoresize
5976 && !i.tm.opcode_modifier.floatmf
5977 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5978 || (flag_code == CODE_64BIT
5979 && i.tm.opcode_modifier.jumpbyte)))
5980 {
5981 unsigned int prefix = DATA_PREFIX_OPCODE;
5982
5983 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5984 prefix = ADDR_PREFIX_OPCODE;
5985
5986 if (!add_prefix (prefix))
5987 return 0;
5988 }
5989
5990 /* Set mode64 for an operand. */
5991 if (i.suffix == QWORD_MNEM_SUFFIX
5992 && flag_code == CODE_64BIT
5993 && !i.tm.opcode_modifier.norex64
5994 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5995 need rex64. */
5996 && ! (i.operands == 2
5997 && i.tm.base_opcode == 0x90
5998 && i.tm.extension_opcode == None
5999 && operand_type_equal (&i.types [0], &acc64)
6000 && operand_type_equal (&i.types [1], &acc64)))
6001 i.rex |= REX_W;
6002
6003 break;
6004 }
6005
6006 return 1;
6007 }
6008
6009 static int
6010 check_byte_reg (void)
6011 {
6012 int op;
6013
6014 for (op = i.operands; --op >= 0;)
6015 {
6016 /* Skip non-register operands. */
6017 if (!i.types[op].bitfield.reg)
6018 continue;
6019
6020 /* If this is an eight bit register, it's OK. If it's the 16 or
6021 32 bit version of an eight bit register, we will just use the
6022 low portion, and that's OK too. */
6023 if (i.types[op].bitfield.byte)
6024 continue;
6025
6026 /* I/O port address operands are OK too. */
6027 if (i.tm.operand_types[op].bitfield.inoutportreg)
6028 continue;
6029
6030 /* crc32 doesn't generate this warning. */
6031 if (i.tm.base_opcode == 0xf20f38f0)
6032 continue;
6033
6034 if ((i.types[op].bitfield.word
6035 || i.types[op].bitfield.dword
6036 || i.types[op].bitfield.qword)
6037 && i.op[op].regs->reg_num < 4
6038 /* Prohibit these changes in 64bit mode, since the lowering
6039 would be more complicated. */
6040 && flag_code != CODE_64BIT)
6041 {
6042 #if REGISTER_WARNINGS
6043 if (!quiet_warnings)
6044 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6045 register_prefix,
6046 (i.op[op].regs + (i.types[op].bitfield.word
6047 ? REGNAM_AL - REGNAM_AX
6048 : REGNAM_AL - REGNAM_EAX))->reg_name,
6049 register_prefix,
6050 i.op[op].regs->reg_name,
6051 i.suffix);
6052 #endif
6053 continue;
6054 }
6055 /* Any other register is bad. */
6056 if (i.types[op].bitfield.reg
6057 || i.types[op].bitfield.regmmx
6058 || i.types[op].bitfield.regsimd
6059 || i.types[op].bitfield.sreg2
6060 || i.types[op].bitfield.sreg3
6061 || i.types[op].bitfield.control
6062 || i.types[op].bitfield.debug
6063 || i.types[op].bitfield.test)
6064 {
6065 as_bad (_("`%s%s' not allowed with `%s%c'"),
6066 register_prefix,
6067 i.op[op].regs->reg_name,
6068 i.tm.name,
6069 i.suffix);
6070 return 0;
6071 }
6072 }
6073 return 1;
6074 }
6075
6076 static int
6077 check_long_reg (void)
6078 {
6079 int op;
6080
6081 for (op = i.operands; --op >= 0;)
6082 /* Skip non-register operands. */
6083 if (!i.types[op].bitfield.reg)
6084 continue;
6085 /* Reject eight bit registers, except where the template requires
6086 them. (eg. movzb) */
6087 else if (i.types[op].bitfield.byte
6088 && (i.tm.operand_types[op].bitfield.reg
6089 || i.tm.operand_types[op].bitfield.acc)
6090 && (i.tm.operand_types[op].bitfield.word
6091 || i.tm.operand_types[op].bitfield.dword))
6092 {
6093 as_bad (_("`%s%s' not allowed with `%s%c'"),
6094 register_prefix,
6095 i.op[op].regs->reg_name,
6096 i.tm.name,
6097 i.suffix);
6098 return 0;
6099 }
6100 /* Warn if the e prefix on a general reg is missing. */
6101 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6102 && i.types[op].bitfield.word
6103 && (i.tm.operand_types[op].bitfield.reg
6104 || i.tm.operand_types[op].bitfield.acc)
6105 && i.tm.operand_types[op].bitfield.dword)
6106 {
6107 /* Prohibit these changes in the 64bit mode, since the
6108 lowering is more complicated. */
6109 if (flag_code == CODE_64BIT)
6110 {
6111 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6112 register_prefix, i.op[op].regs->reg_name,
6113 i.suffix);
6114 return 0;
6115 }
6116 #if REGISTER_WARNINGS
6117 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6118 register_prefix,
6119 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6120 register_prefix, i.op[op].regs->reg_name, i.suffix);
6121 #endif
6122 }
6123 /* Warn if the r prefix on a general reg is present. */
6124 else if (i.types[op].bitfield.qword
6125 && (i.tm.operand_types[op].bitfield.reg
6126 || i.tm.operand_types[op].bitfield.acc)
6127 && i.tm.operand_types[op].bitfield.dword)
6128 {
6129 if (intel_syntax
6130 && i.tm.opcode_modifier.toqword
6131 && !i.types[0].bitfield.regsimd)
6132 {
6133 /* Convert to QWORD. We want REX byte. */
6134 i.suffix = QWORD_MNEM_SUFFIX;
6135 }
6136 else
6137 {
6138 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6139 register_prefix, i.op[op].regs->reg_name,
6140 i.suffix);
6141 return 0;
6142 }
6143 }
6144 return 1;
6145 }
6146
6147 static int
6148 check_qword_reg (void)
6149 {
6150 int op;
6151
6152 for (op = i.operands; --op >= 0; )
6153 /* Skip non-register operands. */
6154 if (!i.types[op].bitfield.reg)
6155 continue;
6156 /* Reject eight bit registers, except where the template requires
6157 them. (eg. movzb) */
6158 else if (i.types[op].bitfield.byte
6159 && (i.tm.operand_types[op].bitfield.reg
6160 || i.tm.operand_types[op].bitfield.acc)
6161 && (i.tm.operand_types[op].bitfield.word
6162 || i.tm.operand_types[op].bitfield.dword))
6163 {
6164 as_bad (_("`%s%s' not allowed with `%s%c'"),
6165 register_prefix,
6166 i.op[op].regs->reg_name,
6167 i.tm.name,
6168 i.suffix);
6169 return 0;
6170 }
6171 /* Warn if the r prefix on a general reg is missing. */
6172 else if ((i.types[op].bitfield.word
6173 || i.types[op].bitfield.dword)
6174 && (i.tm.operand_types[op].bitfield.reg
6175 || i.tm.operand_types[op].bitfield.acc)
6176 && i.tm.operand_types[op].bitfield.qword)
6177 {
6178 /* Prohibit these changes in the 64bit mode, since the
6179 lowering is more complicated. */
6180 if (intel_syntax
6181 && i.tm.opcode_modifier.todword
6182 && !i.types[0].bitfield.regsimd)
6183 {
6184 /* Convert to DWORD. We don't want REX byte. */
6185 i.suffix = LONG_MNEM_SUFFIX;
6186 }
6187 else
6188 {
6189 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6190 register_prefix, i.op[op].regs->reg_name,
6191 i.suffix);
6192 return 0;
6193 }
6194 }
6195 return 1;
6196 }
6197
6198 static int
6199 check_word_reg (void)
6200 {
6201 int op;
6202 for (op = i.operands; --op >= 0;)
6203 /* Skip non-register operands. */
6204 if (!i.types[op].bitfield.reg)
6205 continue;
6206 /* Reject eight bit registers, except where the template requires
6207 them. (eg. movzb) */
6208 else if (i.types[op].bitfield.byte
6209 && (i.tm.operand_types[op].bitfield.reg
6210 || i.tm.operand_types[op].bitfield.acc)
6211 && (i.tm.operand_types[op].bitfield.word
6212 || i.tm.operand_types[op].bitfield.dword))
6213 {
6214 as_bad (_("`%s%s' not allowed with `%s%c'"),
6215 register_prefix,
6216 i.op[op].regs->reg_name,
6217 i.tm.name,
6218 i.suffix);
6219 return 0;
6220 }
6221 /* Warn if the e or r prefix on a general reg is present. */
6222 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6223 && (i.types[op].bitfield.dword
6224 || i.types[op].bitfield.qword)
6225 && (i.tm.operand_types[op].bitfield.reg
6226 || i.tm.operand_types[op].bitfield.acc)
6227 && i.tm.operand_types[op].bitfield.word)
6228 {
6229 /* Prohibit these changes in the 64bit mode, since the
6230 lowering is more complicated. */
6231 if (flag_code == CODE_64BIT)
6232 {
6233 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6234 register_prefix, i.op[op].regs->reg_name,
6235 i.suffix);
6236 return 0;
6237 }
6238 #if REGISTER_WARNINGS
6239 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6240 register_prefix,
6241 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6242 register_prefix, i.op[op].regs->reg_name, i.suffix);
6243 #endif
6244 }
6245 return 1;
6246 }
6247
6248 static int
6249 update_imm (unsigned int j)
6250 {
6251 i386_operand_type overlap = i.types[j];
6252 if ((overlap.bitfield.imm8
6253 || overlap.bitfield.imm8s
6254 || overlap.bitfield.imm16
6255 || overlap.bitfield.imm32
6256 || overlap.bitfield.imm32s
6257 || overlap.bitfield.imm64)
6258 && !operand_type_equal (&overlap, &imm8)
6259 && !operand_type_equal (&overlap, &imm8s)
6260 && !operand_type_equal (&overlap, &imm16)
6261 && !operand_type_equal (&overlap, &imm32)
6262 && !operand_type_equal (&overlap, &imm32s)
6263 && !operand_type_equal (&overlap, &imm64))
6264 {
6265 if (i.suffix)
6266 {
6267 i386_operand_type temp;
6268
6269 operand_type_set (&temp, 0);
6270 if (i.suffix == BYTE_MNEM_SUFFIX)
6271 {
6272 temp.bitfield.imm8 = overlap.bitfield.imm8;
6273 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6274 }
6275 else if (i.suffix == WORD_MNEM_SUFFIX)
6276 temp.bitfield.imm16 = overlap.bitfield.imm16;
6277 else if (i.suffix == QWORD_MNEM_SUFFIX)
6278 {
6279 temp.bitfield.imm64 = overlap.bitfield.imm64;
6280 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6281 }
6282 else
6283 temp.bitfield.imm32 = overlap.bitfield.imm32;
6284 overlap = temp;
6285 }
6286 else if (operand_type_equal (&overlap, &imm16_32_32s)
6287 || operand_type_equal (&overlap, &imm16_32)
6288 || operand_type_equal (&overlap, &imm16_32s))
6289 {
6290 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6291 overlap = imm16;
6292 else
6293 overlap = imm32s;
6294 }
6295 if (!operand_type_equal (&overlap, &imm8)
6296 && !operand_type_equal (&overlap, &imm8s)
6297 && !operand_type_equal (&overlap, &imm16)
6298 && !operand_type_equal (&overlap, &imm32)
6299 && !operand_type_equal (&overlap, &imm32s)
6300 && !operand_type_equal (&overlap, &imm64))
6301 {
6302 as_bad (_("no instruction mnemonic suffix given; "
6303 "can't determine immediate size"));
6304 return 0;
6305 }
6306 }
6307 i.types[j] = overlap;
6308
6309 return 1;
6310 }
6311
6312 static int
6313 finalize_imm (void)
6314 {
6315 unsigned int j, n;
6316
6317 /* Update the first 2 immediate operands. */
6318 n = i.operands > 2 ? 2 : i.operands;
6319 if (n)
6320 {
6321 for (j = 0; j < n; j++)
6322 if (update_imm (j) == 0)
6323 return 0;
6324
6325 /* The 3rd operand can't be immediate operand. */
6326 gas_assert (operand_type_check (i.types[2], imm) == 0);
6327 }
6328
6329 return 1;
6330 }
6331
6332 static int
6333 process_operands (void)
6334 {
6335 /* Default segment register this instruction will use for memory
6336 accesses. 0 means unknown. This is only for optimizing out
6337 unnecessary segment overrides. */
6338 const seg_entry *default_seg = 0;
6339
6340 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6341 {
6342 unsigned int dupl = i.operands;
6343 unsigned int dest = dupl - 1;
6344 unsigned int j;
6345
6346 /* The destination must be an xmm register. */
6347 gas_assert (i.reg_operands
6348 && MAX_OPERANDS > dupl
6349 && operand_type_equal (&i.types[dest], &regxmm));
6350
6351 if (i.tm.operand_types[0].bitfield.acc
6352 && i.tm.operand_types[0].bitfield.xmmword)
6353 {
6354 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6355 {
6356 /* Keep xmm0 for instructions with VEX prefix and 3
6357 sources. */
6358 i.tm.operand_types[0].bitfield.acc = 0;
6359 i.tm.operand_types[0].bitfield.regsimd = 1;
6360 goto duplicate;
6361 }
6362 else
6363 {
6364 /* We remove the first xmm0 and keep the number of
6365 operands unchanged, which in fact duplicates the
6366 destination. */
6367 for (j = 1; j < i.operands; j++)
6368 {
6369 i.op[j - 1] = i.op[j];
6370 i.types[j - 1] = i.types[j];
6371 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6372 }
6373 }
6374 }
6375 else if (i.tm.opcode_modifier.implicit1stxmm0)
6376 {
6377 gas_assert ((MAX_OPERANDS - 1) > dupl
6378 && (i.tm.opcode_modifier.vexsources
6379 == VEX3SOURCES));
6380
6381 /* Add the implicit xmm0 for instructions with VEX prefix
6382 and 3 sources. */
6383 for (j = i.operands; j > 0; j--)
6384 {
6385 i.op[j] = i.op[j - 1];
6386 i.types[j] = i.types[j - 1];
6387 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6388 }
6389 i.op[0].regs
6390 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6391 i.types[0] = regxmm;
6392 i.tm.operand_types[0] = regxmm;
6393
6394 i.operands += 2;
6395 i.reg_operands += 2;
6396 i.tm.operands += 2;
6397
6398 dupl++;
6399 dest++;
6400 i.op[dupl] = i.op[dest];
6401 i.types[dupl] = i.types[dest];
6402 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6403 }
6404 else
6405 {
6406 duplicate:
6407 i.operands++;
6408 i.reg_operands++;
6409 i.tm.operands++;
6410
6411 i.op[dupl] = i.op[dest];
6412 i.types[dupl] = i.types[dest];
6413 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6414 }
6415
6416 if (i.tm.opcode_modifier.immext)
6417 process_immext ();
6418 }
6419 else if (i.tm.operand_types[0].bitfield.acc
6420 && i.tm.operand_types[0].bitfield.xmmword)
6421 {
6422 unsigned int j;
6423
6424 for (j = 1; j < i.operands; j++)
6425 {
6426 i.op[j - 1] = i.op[j];
6427 i.types[j - 1] = i.types[j];
6428
6429 /* We need to adjust fields in i.tm since they are used by
6430 build_modrm_byte. */
6431 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6432 }
6433
6434 i.operands--;
6435 i.reg_operands--;
6436 i.tm.operands--;
6437 }
6438 else if (i.tm.opcode_modifier.implicitquadgroup)
6439 {
6440 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6441
6442 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6443 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6444 regnum = register_number (i.op[1].regs);
6445 first_reg_in_group = regnum & ~3;
6446 last_reg_in_group = first_reg_in_group + 3;
6447 if (regnum != first_reg_in_group)
6448 as_warn (_("source register `%s%s' implicitly denotes"
6449 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6450 register_prefix, i.op[1].regs->reg_name,
6451 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6452 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6453 i.tm.name);
6454 }
6455 else if (i.tm.opcode_modifier.regkludge)
6456 {
6457 /* The imul $imm, %reg instruction is converted into
6458 imul $imm, %reg, %reg, and the clr %reg instruction
6459 is converted into xor %reg, %reg. */
6460
6461 unsigned int first_reg_op;
6462
6463 if (operand_type_check (i.types[0], reg))
6464 first_reg_op = 0;
6465 else
6466 first_reg_op = 1;
6467 /* Pretend we saw the extra register operand. */
6468 gas_assert (i.reg_operands == 1
6469 && i.op[first_reg_op + 1].regs == 0);
6470 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6471 i.types[first_reg_op + 1] = i.types[first_reg_op];
6472 i.operands++;
6473 i.reg_operands++;
6474 }
6475
6476 if (i.tm.opcode_modifier.shortform)
6477 {
6478 if (i.types[0].bitfield.sreg2
6479 || i.types[0].bitfield.sreg3)
6480 {
6481 if (i.tm.base_opcode == POP_SEG_SHORT
6482 && i.op[0].regs->reg_num == 1)
6483 {
6484 as_bad (_("you can't `pop %scs'"), register_prefix);
6485 return 0;
6486 }
6487 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6488 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6489 i.rex |= REX_B;
6490 }
6491 else
6492 {
6493 /* The register or float register operand is in operand
6494 0 or 1. */
6495 unsigned int op;
6496
6497 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6498 || operand_type_check (i.types[0], reg))
6499 op = 0;
6500 else
6501 op = 1;
6502 /* Register goes in low 3 bits of opcode. */
6503 i.tm.base_opcode |= i.op[op].regs->reg_num;
6504 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6505 i.rex |= REX_B;
6506 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6507 {
6508 /* Warn about some common errors, but press on regardless.
6509 The first case can be generated by gcc (<= 2.8.1). */
6510 if (i.operands == 2)
6511 {
6512 /* Reversed arguments on faddp, fsubp, etc. */
6513 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6514 register_prefix, i.op[!intel_syntax].regs->reg_name,
6515 register_prefix, i.op[intel_syntax].regs->reg_name);
6516 }
6517 else
6518 {
6519 /* Extraneous `l' suffix on fp insn. */
6520 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6521 register_prefix, i.op[0].regs->reg_name);
6522 }
6523 }
6524 }
6525 }
6526 else if (i.tm.opcode_modifier.modrm)
6527 {
6528 /* The opcode is completed (modulo i.tm.extension_opcode which
6529 must be put into the modrm byte). Now, we make the modrm and
6530 index base bytes based on all the info we've collected. */
6531
6532 default_seg = build_modrm_byte ();
6533 }
6534 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6535 {
6536 default_seg = &ds;
6537 }
6538 else if (i.tm.opcode_modifier.isstring)
6539 {
6540 /* For the string instructions that allow a segment override
6541 on one of their operands, the default segment is ds. */
6542 default_seg = &ds;
6543 }
6544
6545 if (i.tm.base_opcode == 0x8d /* lea */
6546 && i.seg[0]
6547 && !quiet_warnings)
6548 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6549
6550 /* If a segment was explicitly specified, and the specified segment
6551 is not the default, use an opcode prefix to select it. If we
6552 never figured out what the default segment is, then default_seg
6553 will be zero at this point, and the specified segment prefix will
6554 always be used. */
6555 if ((i.seg[0]) && (i.seg[0] != default_seg))
6556 {
6557 if (!add_prefix (i.seg[0]->seg_prefix))
6558 return 0;
6559 }
6560 return 1;
6561 }
6562
6563 static const seg_entry *
6564 build_modrm_byte (void)
6565 {
6566 const seg_entry *default_seg = 0;
6567 unsigned int source, dest;
6568 int vex_3_sources;
6569
6570 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6571 if (vex_3_sources)
6572 {
6573 unsigned int nds, reg_slot;
6574 expressionS *exp;
6575
6576 dest = i.operands - 1;
6577 nds = dest - 1;
6578
6579 /* There are 2 kinds of instructions:
6580 1. 5 operands: 4 register operands or 3 register operands
6581 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6582 VexW0 or VexW1. The destination must be either XMM, YMM or
6583 ZMM register.
6584 2. 4 operands: 4 register operands or 3 register operands
6585 plus 1 memory operand, with VexXDS. */
6586 gas_assert ((i.reg_operands == 4
6587 || (i.reg_operands == 3 && i.mem_operands == 1))
6588 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6589 && i.tm.opcode_modifier.vexw
6590 && i.tm.operand_types[dest].bitfield.regsimd);
6591
6592 /* If VexW1 is set, the first non-immediate operand is the source and
6593 the second non-immediate one is encoded in the immediate operand. */
6594 if (i.tm.opcode_modifier.vexw == VEXW1)
6595 {
6596 source = i.imm_operands;
6597 reg_slot = i.imm_operands + 1;
6598 }
6599 else
6600 {
6601 source = i.imm_operands + 1;
6602 reg_slot = i.imm_operands;
6603 }
6604
6605 if (i.imm_operands == 0)
6606 {
6607 /* When there is no immediate operand, generate an 8bit
6608 immediate operand to encode the first operand. */
6609 exp = &im_expressions[i.imm_operands++];
6610 i.op[i.operands].imms = exp;
6611 i.types[i.operands] = imm8;
6612 i.operands++;
6613
6614 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6615 exp->X_op = O_constant;
6616 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6617 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6618 }
6619 else
6620 {
6621 unsigned int imm_slot;
6622
6623 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
6624
6625 if (i.tm.opcode_modifier.immext)
6626 {
6627 /* When ImmExt is set, the immediate byte is the last
6628 operand. */
6629 imm_slot = i.operands - 1;
6630 source--;
6631 reg_slot--;
6632 }
6633 else
6634 {
6635 imm_slot = 0;
6636
6637 /* Turn on Imm8 so that output_imm will generate it. */
6638 i.types[imm_slot].bitfield.imm8 = 1;
6639 }
6640
6641 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6642 i.op[imm_slot].imms->X_add_number
6643 |= register_number (i.op[reg_slot].regs) << 4;
6644 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6645 }
6646
6647 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
6648 i.vex.register_specifier = i.op[nds].regs;
6649 }
6650 else
6651 source = dest = 0;
6652
6653 /* i.reg_operands MUST be the number of real register operands;
6654 implicit registers do not count. If there are 3 register
6655 operands, it must be a instruction with VexNDS. For a
6656 instruction with VexNDD, the destination register is encoded
6657 in VEX prefix. If there are 4 register operands, it must be
6658 a instruction with VEX prefix and 3 sources. */
6659 if (i.mem_operands == 0
6660 && ((i.reg_operands == 2
6661 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6662 || (i.reg_operands == 3
6663 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6664 || (i.reg_operands == 4 && vex_3_sources)))
6665 {
6666 switch (i.operands)
6667 {
6668 case 2:
6669 source = 0;
6670 break;
6671 case 3:
6672 /* When there are 3 operands, one of them may be immediate,
6673 which may be the first or the last operand. Otherwise,
6674 the first operand must be shift count register (cl) or it
6675 is an instruction with VexNDS. */
6676 gas_assert (i.imm_operands == 1
6677 || (i.imm_operands == 0
6678 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6679 || i.types[0].bitfield.shiftcount)));
6680 if (operand_type_check (i.types[0], imm)
6681 || i.types[0].bitfield.shiftcount)
6682 source = 1;
6683 else
6684 source = 0;
6685 break;
6686 case 4:
6687 /* When there are 4 operands, the first two must be 8bit
6688 immediate operands. The source operand will be the 3rd
6689 one.
6690
6691 For instructions with VexNDS, if the first operand
6692 an imm8, the source operand is the 2nd one. If the last
6693 operand is imm8, the source operand is the first one. */
6694 gas_assert ((i.imm_operands == 2
6695 && i.types[0].bitfield.imm8
6696 && i.types[1].bitfield.imm8)
6697 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6698 && i.imm_operands == 1
6699 && (i.types[0].bitfield.imm8
6700 || i.types[i.operands - 1].bitfield.imm8
6701 || i.rounding)));
6702 if (i.imm_operands == 2)
6703 source = 2;
6704 else
6705 {
6706 if (i.types[0].bitfield.imm8)
6707 source = 1;
6708 else
6709 source = 0;
6710 }
6711 break;
6712 case 5:
6713 if (is_evex_encoding (&i.tm))
6714 {
6715 /* For EVEX instructions, when there are 5 operands, the
6716 first one must be immediate operand. If the second one
6717 is immediate operand, the source operand is the 3th
6718 one. If the last one is immediate operand, the source
6719 operand is the 2nd one. */
6720 gas_assert (i.imm_operands == 2
6721 && i.tm.opcode_modifier.sae
6722 && operand_type_check (i.types[0], imm));
6723 if (operand_type_check (i.types[1], imm))
6724 source = 2;
6725 else if (operand_type_check (i.types[4], imm))
6726 source = 1;
6727 else
6728 abort ();
6729 }
6730 break;
6731 default:
6732 abort ();
6733 }
6734
6735 if (!vex_3_sources)
6736 {
6737 dest = source + 1;
6738
6739 /* RC/SAE operand could be between DEST and SRC. That happens
6740 when one operand is GPR and the other one is XMM/YMM/ZMM
6741 register. */
6742 if (i.rounding && i.rounding->operand == (int) dest)
6743 dest++;
6744
6745 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6746 {
6747 /* For instructions with VexNDS, the register-only source
6748 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
6749 register. It is encoded in VEX prefix. We need to
6750 clear RegMem bit before calling operand_type_equal. */
6751
6752 i386_operand_type op;
6753 unsigned int vvvv;
6754
6755 /* Check register-only source operand when two source
6756 operands are swapped. */
6757 if (!i.tm.operand_types[source].bitfield.baseindex
6758 && i.tm.operand_types[dest].bitfield.baseindex)
6759 {
6760 vvvv = source;
6761 source = dest;
6762 }
6763 else
6764 vvvv = dest;
6765
6766 op = i.tm.operand_types[vvvv];
6767 op.bitfield.regmem = 0;
6768 if ((dest + 1) >= i.operands
6769 || ((!op.bitfield.reg
6770 || (!op.bitfield.dword && !op.bitfield.qword))
6771 && !op.bitfield.regsimd
6772 && !operand_type_equal (&op, &regmask)))
6773 abort ();
6774 i.vex.register_specifier = i.op[vvvv].regs;
6775 dest++;
6776 }
6777 }
6778
6779 i.rm.mode = 3;
6780 /* One of the register operands will be encoded in the i.tm.reg
6781 field, the other in the combined i.tm.mode and i.tm.regmem
6782 fields. If no form of this instruction supports a memory
6783 destination operand, then we assume the source operand may
6784 sometimes be a memory operand and so we need to store the
6785 destination in the i.rm.reg field. */
6786 if (!i.tm.operand_types[dest].bitfield.regmem
6787 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6788 {
6789 i.rm.reg = i.op[dest].regs->reg_num;
6790 i.rm.regmem = i.op[source].regs->reg_num;
6791 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6792 i.rex |= REX_R;
6793 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6794 i.vrex |= REX_R;
6795 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6796 i.rex |= REX_B;
6797 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6798 i.vrex |= REX_B;
6799 }
6800 else
6801 {
6802 i.rm.reg = i.op[source].regs->reg_num;
6803 i.rm.regmem = i.op[dest].regs->reg_num;
6804 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6805 i.rex |= REX_B;
6806 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6807 i.vrex |= REX_B;
6808 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6809 i.rex |= REX_R;
6810 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6811 i.vrex |= REX_R;
6812 }
6813 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6814 {
6815 if (!i.types[0].bitfield.control
6816 && !i.types[1].bitfield.control)
6817 abort ();
6818 i.rex &= ~(REX_R | REX_B);
6819 add_prefix (LOCK_PREFIX_OPCODE);
6820 }
6821 }
6822 else
6823 { /* If it's not 2 reg operands... */
6824 unsigned int mem;
6825
6826 if (i.mem_operands)
6827 {
6828 unsigned int fake_zero_displacement = 0;
6829 unsigned int op;
6830
6831 for (op = 0; op < i.operands; op++)
6832 if (operand_type_check (i.types[op], anymem))
6833 break;
6834 gas_assert (op < i.operands);
6835
6836 if (i.tm.opcode_modifier.vecsib)
6837 {
6838 if (i.index_reg->reg_num == RegEiz
6839 || i.index_reg->reg_num == RegRiz)
6840 abort ();
6841
6842 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6843 if (!i.base_reg)
6844 {
6845 i.sib.base = NO_BASE_REGISTER;
6846 i.sib.scale = i.log2_scale_factor;
6847 i.types[op].bitfield.disp8 = 0;
6848 i.types[op].bitfield.disp16 = 0;
6849 i.types[op].bitfield.disp64 = 0;
6850 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6851 {
6852 /* Must be 32 bit */
6853 i.types[op].bitfield.disp32 = 1;
6854 i.types[op].bitfield.disp32s = 0;
6855 }
6856 else
6857 {
6858 i.types[op].bitfield.disp32 = 0;
6859 i.types[op].bitfield.disp32s = 1;
6860 }
6861 }
6862 i.sib.index = i.index_reg->reg_num;
6863 if ((i.index_reg->reg_flags & RegRex) != 0)
6864 i.rex |= REX_X;
6865 if ((i.index_reg->reg_flags & RegVRex) != 0)
6866 i.vrex |= REX_X;
6867 }
6868
6869 default_seg = &ds;
6870
6871 if (i.base_reg == 0)
6872 {
6873 i.rm.mode = 0;
6874 if (!i.disp_operands)
6875 fake_zero_displacement = 1;
6876 if (i.index_reg == 0)
6877 {
6878 i386_operand_type newdisp;
6879
6880 gas_assert (!i.tm.opcode_modifier.vecsib);
6881 /* Operand is just <disp> */
6882 if (flag_code == CODE_64BIT)
6883 {
6884 /* 64bit mode overwrites the 32bit absolute
6885 addressing by RIP relative addressing and
6886 absolute addressing is encoded by one of the
6887 redundant SIB forms. */
6888 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6889 i.sib.base = NO_BASE_REGISTER;
6890 i.sib.index = NO_INDEX_REGISTER;
6891 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
6892 }
6893 else if ((flag_code == CODE_16BIT)
6894 ^ (i.prefix[ADDR_PREFIX] != 0))
6895 {
6896 i.rm.regmem = NO_BASE_REGISTER_16;
6897 newdisp = disp16;
6898 }
6899 else
6900 {
6901 i.rm.regmem = NO_BASE_REGISTER;
6902 newdisp = disp32;
6903 }
6904 i.types[op] = operand_type_and_not (i.types[op], anydisp);
6905 i.types[op] = operand_type_or (i.types[op], newdisp);
6906 }
6907 else if (!i.tm.opcode_modifier.vecsib)
6908 {
6909 /* !i.base_reg && i.index_reg */
6910 if (i.index_reg->reg_num == RegEiz
6911 || i.index_reg->reg_num == RegRiz)
6912 i.sib.index = NO_INDEX_REGISTER;
6913 else
6914 i.sib.index = i.index_reg->reg_num;
6915 i.sib.base = NO_BASE_REGISTER;
6916 i.sib.scale = i.log2_scale_factor;
6917 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6918 i.types[op].bitfield.disp8 = 0;
6919 i.types[op].bitfield.disp16 = 0;
6920 i.types[op].bitfield.disp64 = 0;
6921 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6922 {
6923 /* Must be 32 bit */
6924 i.types[op].bitfield.disp32 = 1;
6925 i.types[op].bitfield.disp32s = 0;
6926 }
6927 else
6928 {
6929 i.types[op].bitfield.disp32 = 0;
6930 i.types[op].bitfield.disp32s = 1;
6931 }
6932 if ((i.index_reg->reg_flags & RegRex) != 0)
6933 i.rex |= REX_X;
6934 }
6935 }
6936 /* RIP addressing for 64bit mode. */
6937 else if (i.base_reg->reg_num == RegRip ||
6938 i.base_reg->reg_num == RegEip)
6939 {
6940 gas_assert (!i.tm.opcode_modifier.vecsib);
6941 i.rm.regmem = NO_BASE_REGISTER;
6942 i.types[op].bitfield.disp8 = 0;
6943 i.types[op].bitfield.disp16 = 0;
6944 i.types[op].bitfield.disp32 = 0;
6945 i.types[op].bitfield.disp32s = 1;
6946 i.types[op].bitfield.disp64 = 0;
6947 i.flags[op] |= Operand_PCrel;
6948 if (! i.disp_operands)
6949 fake_zero_displacement = 1;
6950 }
6951 else if (i.base_reg->reg_type.bitfield.word)
6952 {
6953 gas_assert (!i.tm.opcode_modifier.vecsib);
6954 switch (i.base_reg->reg_num)
6955 {
6956 case 3: /* (%bx) */
6957 if (i.index_reg == 0)
6958 i.rm.regmem = 7;
6959 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6960 i.rm.regmem = i.index_reg->reg_num - 6;
6961 break;
6962 case 5: /* (%bp) */
6963 default_seg = &ss;
6964 if (i.index_reg == 0)
6965 {
6966 i.rm.regmem = 6;
6967 if (operand_type_check (i.types[op], disp) == 0)
6968 {
6969 /* fake (%bp) into 0(%bp) */
6970 i.types[op].bitfield.disp8 = 1;
6971 fake_zero_displacement = 1;
6972 }
6973 }
6974 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6975 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6976 break;
6977 default: /* (%si) -> 4 or (%di) -> 5 */
6978 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6979 }
6980 i.rm.mode = mode_from_disp_size (i.types[op]);
6981 }
6982 else /* i.base_reg and 32/64 bit mode */
6983 {
6984 if (flag_code == CODE_64BIT
6985 && operand_type_check (i.types[op], disp))
6986 {
6987 i.types[op].bitfield.disp16 = 0;
6988 i.types[op].bitfield.disp64 = 0;
6989 if (i.prefix[ADDR_PREFIX] == 0)
6990 {
6991 i.types[op].bitfield.disp32 = 0;
6992 i.types[op].bitfield.disp32s = 1;
6993 }
6994 else
6995 {
6996 i.types[op].bitfield.disp32 = 1;
6997 i.types[op].bitfield.disp32s = 0;
6998 }
6999 }
7000
7001 if (!i.tm.opcode_modifier.vecsib)
7002 i.rm.regmem = i.base_reg->reg_num;
7003 if ((i.base_reg->reg_flags & RegRex) != 0)
7004 i.rex |= REX_B;
7005 i.sib.base = i.base_reg->reg_num;
7006 /* x86-64 ignores REX prefix bit here to avoid decoder
7007 complications. */
7008 if (!(i.base_reg->reg_flags & RegRex)
7009 && (i.base_reg->reg_num == EBP_REG_NUM
7010 || i.base_reg->reg_num == ESP_REG_NUM))
7011 default_seg = &ss;
7012 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7013 {
7014 fake_zero_displacement = 1;
7015 i.types[op].bitfield.disp8 = 1;
7016 }
7017 i.sib.scale = i.log2_scale_factor;
7018 if (i.index_reg == 0)
7019 {
7020 gas_assert (!i.tm.opcode_modifier.vecsib);
7021 /* <disp>(%esp) becomes two byte modrm with no index
7022 register. We've already stored the code for esp
7023 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7024 Any base register besides %esp will not use the
7025 extra modrm byte. */
7026 i.sib.index = NO_INDEX_REGISTER;
7027 }
7028 else if (!i.tm.opcode_modifier.vecsib)
7029 {
7030 if (i.index_reg->reg_num == RegEiz
7031 || i.index_reg->reg_num == RegRiz)
7032 i.sib.index = NO_INDEX_REGISTER;
7033 else
7034 i.sib.index = i.index_reg->reg_num;
7035 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7036 if ((i.index_reg->reg_flags & RegRex) != 0)
7037 i.rex |= REX_X;
7038 }
7039
7040 if (i.disp_operands
7041 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7042 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7043 i.rm.mode = 0;
7044 else
7045 {
7046 if (!fake_zero_displacement
7047 && !i.disp_operands
7048 && i.disp_encoding)
7049 {
7050 fake_zero_displacement = 1;
7051 if (i.disp_encoding == disp_encoding_8bit)
7052 i.types[op].bitfield.disp8 = 1;
7053 else
7054 i.types[op].bitfield.disp32 = 1;
7055 }
7056 i.rm.mode = mode_from_disp_size (i.types[op]);
7057 }
7058 }
7059
7060 if (fake_zero_displacement)
7061 {
7062 /* Fakes a zero displacement assuming that i.types[op]
7063 holds the correct displacement size. */
7064 expressionS *exp;
7065
7066 gas_assert (i.op[op].disps == 0);
7067 exp = &disp_expressions[i.disp_operands++];
7068 i.op[op].disps = exp;
7069 exp->X_op = O_constant;
7070 exp->X_add_number = 0;
7071 exp->X_add_symbol = (symbolS *) 0;
7072 exp->X_op_symbol = (symbolS *) 0;
7073 }
7074
7075 mem = op;
7076 }
7077 else
7078 mem = ~0;
7079
7080 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7081 {
7082 if (operand_type_check (i.types[0], imm))
7083 i.vex.register_specifier = NULL;
7084 else
7085 {
7086 /* VEX.vvvv encodes one of the sources when the first
7087 operand is not an immediate. */
7088 if (i.tm.opcode_modifier.vexw == VEXW0)
7089 i.vex.register_specifier = i.op[0].regs;
7090 else
7091 i.vex.register_specifier = i.op[1].regs;
7092 }
7093
7094 /* Destination is a XMM register encoded in the ModRM.reg
7095 and VEX.R bit. */
7096 i.rm.reg = i.op[2].regs->reg_num;
7097 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7098 i.rex |= REX_R;
7099
7100 /* ModRM.rm and VEX.B encodes the other source. */
7101 if (!i.mem_operands)
7102 {
7103 i.rm.mode = 3;
7104
7105 if (i.tm.opcode_modifier.vexw == VEXW0)
7106 i.rm.regmem = i.op[1].regs->reg_num;
7107 else
7108 i.rm.regmem = i.op[0].regs->reg_num;
7109
7110 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7111 i.rex |= REX_B;
7112 }
7113 }
7114 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7115 {
7116 i.vex.register_specifier = i.op[2].regs;
7117 if (!i.mem_operands)
7118 {
7119 i.rm.mode = 3;
7120 i.rm.regmem = i.op[1].regs->reg_num;
7121 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7122 i.rex |= REX_B;
7123 }
7124 }
7125 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7126 (if any) based on i.tm.extension_opcode. Again, we must be
7127 careful to make sure that segment/control/debug/test/MMX
7128 registers are coded into the i.rm.reg field. */
7129 else if (i.reg_operands)
7130 {
7131 unsigned int op;
7132 unsigned int vex_reg = ~0;
7133
7134 for (op = 0; op < i.operands; op++)
7135 if (i.types[op].bitfield.reg
7136 || i.types[op].bitfield.regmmx
7137 || i.types[op].bitfield.regsimd
7138 || i.types[op].bitfield.regbnd
7139 || i.types[op].bitfield.regmask
7140 || i.types[op].bitfield.sreg2
7141 || i.types[op].bitfield.sreg3
7142 || i.types[op].bitfield.control
7143 || i.types[op].bitfield.debug
7144 || i.types[op].bitfield.test)
7145 break;
7146
7147 if (vex_3_sources)
7148 op = dest;
7149 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7150 {
7151 /* For instructions with VexNDS, the register-only
7152 source operand is encoded in VEX prefix. */
7153 gas_assert (mem != (unsigned int) ~0);
7154
7155 if (op > mem)
7156 {
7157 vex_reg = op++;
7158 gas_assert (op < i.operands);
7159 }
7160 else
7161 {
7162 /* Check register-only source operand when two source
7163 operands are swapped. */
7164 if (!i.tm.operand_types[op].bitfield.baseindex
7165 && i.tm.operand_types[op + 1].bitfield.baseindex)
7166 {
7167 vex_reg = op;
7168 op += 2;
7169 gas_assert (mem == (vex_reg + 1)
7170 && op < i.operands);
7171 }
7172 else
7173 {
7174 vex_reg = op + 1;
7175 gas_assert (vex_reg < i.operands);
7176 }
7177 }
7178 }
7179 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7180 {
7181 /* For instructions with VexNDD, the register destination
7182 is encoded in VEX prefix. */
7183 if (i.mem_operands == 0)
7184 {
7185 /* There is no memory operand. */
7186 gas_assert ((op + 2) == i.operands);
7187 vex_reg = op + 1;
7188 }
7189 else
7190 {
7191 /* There are only 2 non-immediate operands. */
7192 gas_assert (op < i.imm_operands + 2
7193 && i.operands == i.imm_operands + 2);
7194 vex_reg = i.imm_operands + 1;
7195 }
7196 }
7197 else
7198 gas_assert (op < i.operands);
7199
7200 if (vex_reg != (unsigned int) ~0)
7201 {
7202 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7203
7204 if ((!type->bitfield.reg
7205 || (!type->bitfield.dword && !type->bitfield.qword))
7206 && !type->bitfield.regsimd
7207 && !operand_type_equal (type, &regmask))
7208 abort ();
7209
7210 i.vex.register_specifier = i.op[vex_reg].regs;
7211 }
7212
7213 /* Don't set OP operand twice. */
7214 if (vex_reg != op)
7215 {
7216 /* If there is an extension opcode to put here, the
7217 register number must be put into the regmem field. */
7218 if (i.tm.extension_opcode != None)
7219 {
7220 i.rm.regmem = i.op[op].regs->reg_num;
7221 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7222 i.rex |= REX_B;
7223 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7224 i.vrex |= REX_B;
7225 }
7226 else
7227 {
7228 i.rm.reg = i.op[op].regs->reg_num;
7229 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7230 i.rex |= REX_R;
7231 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7232 i.vrex |= REX_R;
7233 }
7234 }
7235
7236 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7237 must set it to 3 to indicate this is a register operand
7238 in the regmem field. */
7239 if (!i.mem_operands)
7240 i.rm.mode = 3;
7241 }
7242
7243 /* Fill in i.rm.reg field with extension opcode (if any). */
7244 if (i.tm.extension_opcode != None)
7245 i.rm.reg = i.tm.extension_opcode;
7246 }
7247 return default_seg;
7248 }
7249
7250 static void
7251 output_branch (void)
7252 {
7253 char *p;
7254 int size;
7255 int code16;
7256 int prefix;
7257 relax_substateT subtype;
7258 symbolS *sym;
7259 offsetT off;
7260
7261 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7262 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7263
7264 prefix = 0;
7265 if (i.prefix[DATA_PREFIX] != 0)
7266 {
7267 prefix = 1;
7268 i.prefixes -= 1;
7269 code16 ^= CODE16;
7270 }
7271 /* Pentium4 branch hints. */
7272 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7273 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7274 {
7275 prefix++;
7276 i.prefixes--;
7277 }
7278 if (i.prefix[REX_PREFIX] != 0)
7279 {
7280 prefix++;
7281 i.prefixes--;
7282 }
7283
7284 /* BND prefixed jump. */
7285 if (i.prefix[BND_PREFIX] != 0)
7286 {
7287 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7288 i.prefixes -= 1;
7289 }
7290
7291 if (i.prefixes != 0 && !intel_syntax)
7292 as_warn (_("skipping prefixes on this instruction"));
7293
7294 /* It's always a symbol; End frag & setup for relax.
7295 Make sure there is enough room in this frag for the largest
7296 instruction we may generate in md_convert_frag. This is 2
7297 bytes for the opcode and room for the prefix and largest
7298 displacement. */
7299 frag_grow (prefix + 2 + 4);
7300 /* Prefix and 1 opcode byte go in fr_fix. */
7301 p = frag_more (prefix + 1);
7302 if (i.prefix[DATA_PREFIX] != 0)
7303 *p++ = DATA_PREFIX_OPCODE;
7304 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7305 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7306 *p++ = i.prefix[SEG_PREFIX];
7307 if (i.prefix[REX_PREFIX] != 0)
7308 *p++ = i.prefix[REX_PREFIX];
7309 *p = i.tm.base_opcode;
7310
7311 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7312 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7313 else if (cpu_arch_flags.bitfield.cpui386)
7314 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7315 else
7316 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7317 subtype |= code16;
7318
7319 sym = i.op[0].disps->X_add_symbol;
7320 off = i.op[0].disps->X_add_number;
7321
7322 if (i.op[0].disps->X_op != O_constant
7323 && i.op[0].disps->X_op != O_symbol)
7324 {
7325 /* Handle complex expressions. */
7326 sym = make_expr_symbol (i.op[0].disps);
7327 off = 0;
7328 }
7329
7330 /* 1 possible extra opcode + 4 byte displacement go in var part.
7331 Pass reloc in fr_var. */
7332 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7333 }
7334
7335 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7336 /* Return TRUE iff PLT32 relocation should be used for branching to
7337 symbol S. */
7338
7339 static bfd_boolean
7340 need_plt32_p (symbolS *s)
7341 {
7342 /* PLT32 relocation is ELF only. */
7343 if (!IS_ELF)
7344 return FALSE;
7345
7346 /* Since there is no need to prepare for PLT branch on x86-64, we
7347 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7348 be used as a marker for 32-bit PC-relative branches. */
7349 if (!object_64bit)
7350 return FALSE;
7351
7352 /* Weak or undefined symbol need PLT32 relocation. */
7353 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7354 return TRUE;
7355
7356 /* Non-global symbol doesn't need PLT32 relocation. */
7357 if (! S_IS_EXTERNAL (s))
7358 return FALSE;
7359
7360 /* Other global symbols need PLT32 relocation. NB: Symbol with
7361 non-default visibilities are treated as normal global symbol
7362 so that PLT32 relocation can be used as a marker for 32-bit
7363 PC-relative branches. It is useful for linker relaxation. */
7364 return TRUE;
7365 }
7366 #endif
7367
7368 static void
7369 output_jump (void)
7370 {
7371 char *p;
7372 int size;
7373 fixS *fixP;
7374 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7375
7376 if (i.tm.opcode_modifier.jumpbyte)
7377 {
7378 /* This is a loop or jecxz type instruction. */
7379 size = 1;
7380 if (i.prefix[ADDR_PREFIX] != 0)
7381 {
7382 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7383 i.prefixes -= 1;
7384 }
7385 /* Pentium4 branch hints. */
7386 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7387 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7388 {
7389 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7390 i.prefixes--;
7391 }
7392 }
7393 else
7394 {
7395 int code16;
7396
7397 code16 = 0;
7398 if (flag_code == CODE_16BIT)
7399 code16 = CODE16;
7400
7401 if (i.prefix[DATA_PREFIX] != 0)
7402 {
7403 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7404 i.prefixes -= 1;
7405 code16 ^= CODE16;
7406 }
7407
7408 size = 4;
7409 if (code16)
7410 size = 2;
7411 }
7412
7413 if (i.prefix[REX_PREFIX] != 0)
7414 {
7415 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7416 i.prefixes -= 1;
7417 }
7418
7419 /* BND prefixed jump. */
7420 if (i.prefix[BND_PREFIX] != 0)
7421 {
7422 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7423 i.prefixes -= 1;
7424 }
7425
7426 if (i.prefixes != 0 && !intel_syntax)
7427 as_warn (_("skipping prefixes on this instruction"));
7428
7429 p = frag_more (i.tm.opcode_length + size);
7430 switch (i.tm.opcode_length)
7431 {
7432 case 2:
7433 *p++ = i.tm.base_opcode >> 8;
7434 /* Fall through. */
7435 case 1:
7436 *p++ = i.tm.base_opcode;
7437 break;
7438 default:
7439 abort ();
7440 }
7441
7442 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7443 if (size == 4
7444 && jump_reloc == NO_RELOC
7445 && need_plt32_p (i.op[0].disps->X_add_symbol))
7446 jump_reloc = BFD_RELOC_X86_64_PLT32;
7447 #endif
7448
7449 jump_reloc = reloc (size, 1, 1, jump_reloc);
7450
7451 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7452 i.op[0].disps, 1, jump_reloc);
7453
7454 /* All jumps handled here are signed, but don't use a signed limit
7455 check for 32 and 16 bit jumps as we want to allow wrap around at
7456 4G and 64k respectively. */
7457 if (size == 1)
7458 fixP->fx_signed = 1;
7459 }
7460
7461 static void
7462 output_interseg_jump (void)
7463 {
7464 char *p;
7465 int size;
7466 int prefix;
7467 int code16;
7468
7469 code16 = 0;
7470 if (flag_code == CODE_16BIT)
7471 code16 = CODE16;
7472
7473 prefix = 0;
7474 if (i.prefix[DATA_PREFIX] != 0)
7475 {
7476 prefix = 1;
7477 i.prefixes -= 1;
7478 code16 ^= CODE16;
7479 }
7480 if (i.prefix[REX_PREFIX] != 0)
7481 {
7482 prefix++;
7483 i.prefixes -= 1;
7484 }
7485
7486 size = 4;
7487 if (code16)
7488 size = 2;
7489
7490 if (i.prefixes != 0 && !intel_syntax)
7491 as_warn (_("skipping prefixes on this instruction"));
7492
7493 /* 1 opcode; 2 segment; offset */
7494 p = frag_more (prefix + 1 + 2 + size);
7495
7496 if (i.prefix[DATA_PREFIX] != 0)
7497 *p++ = DATA_PREFIX_OPCODE;
7498
7499 if (i.prefix[REX_PREFIX] != 0)
7500 *p++ = i.prefix[REX_PREFIX];
7501
7502 *p++ = i.tm.base_opcode;
7503 if (i.op[1].imms->X_op == O_constant)
7504 {
7505 offsetT n = i.op[1].imms->X_add_number;
7506
7507 if (size == 2
7508 && !fits_in_unsigned_word (n)
7509 && !fits_in_signed_word (n))
7510 {
7511 as_bad (_("16-bit jump out of range"));
7512 return;
7513 }
7514 md_number_to_chars (p, n, size);
7515 }
7516 else
7517 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7518 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7519 if (i.op[0].imms->X_op != O_constant)
7520 as_bad (_("can't handle non absolute segment in `%s'"),
7521 i.tm.name);
7522 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7523 }
7524
7525 static void
7526 output_insn (void)
7527 {
7528 fragS *insn_start_frag;
7529 offsetT insn_start_off;
7530
7531 /* Tie dwarf2 debug info to the address at the start of the insn.
7532 We can't do this after the insn has been output as the current
7533 frag may have been closed off. eg. by frag_var. */
7534 dwarf2_emit_insn (0);
7535
7536 insn_start_frag = frag_now;
7537 insn_start_off = frag_now_fix ();
7538
7539 /* Output jumps. */
7540 if (i.tm.opcode_modifier.jump)
7541 output_branch ();
7542 else if (i.tm.opcode_modifier.jumpbyte
7543 || i.tm.opcode_modifier.jumpdword)
7544 output_jump ();
7545 else if (i.tm.opcode_modifier.jumpintersegment)
7546 output_interseg_jump ();
7547 else
7548 {
7549 /* Output normal instructions here. */
7550 char *p;
7551 unsigned char *q;
7552 unsigned int j;
7553 unsigned int prefix;
7554
7555 if (avoid_fence
7556 && i.tm.base_opcode == 0xfae
7557 && i.operands == 1
7558 && i.imm_operands == 1
7559 && (i.op[0].imms->X_add_number == 0xe8
7560 || i.op[0].imms->X_add_number == 0xf0
7561 || i.op[0].imms->X_add_number == 0xf8))
7562 {
7563 /* Encode lfence, mfence, and sfence as
7564 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7565 offsetT val = 0x240483f0ULL;
7566 p = frag_more (5);
7567 md_number_to_chars (p, val, 5);
7568 return;
7569 }
7570
7571 /* Some processors fail on LOCK prefix. This options makes
7572 assembler ignore LOCK prefix and serves as a workaround. */
7573 if (omit_lock_prefix)
7574 {
7575 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7576 return;
7577 i.prefix[LOCK_PREFIX] = 0;
7578 }
7579
7580 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7581 don't need the explicit prefix. */
7582 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7583 {
7584 switch (i.tm.opcode_length)
7585 {
7586 case 3:
7587 if (i.tm.base_opcode & 0xff000000)
7588 {
7589 prefix = (i.tm.base_opcode >> 24) & 0xff;
7590 goto check_prefix;
7591 }
7592 break;
7593 case 2:
7594 if ((i.tm.base_opcode & 0xff0000) != 0)
7595 {
7596 prefix = (i.tm.base_opcode >> 16) & 0xff;
7597 if (i.tm.cpu_flags.bitfield.cpupadlock)
7598 {
7599 check_prefix:
7600 if (prefix != REPE_PREFIX_OPCODE
7601 || (i.prefix[REP_PREFIX]
7602 != REPE_PREFIX_OPCODE))
7603 add_prefix (prefix);
7604 }
7605 else
7606 add_prefix (prefix);
7607 }
7608 break;
7609 case 1:
7610 break;
7611 case 0:
7612 /* Check for pseudo prefixes. */
7613 as_bad_where (insn_start_frag->fr_file,
7614 insn_start_frag->fr_line,
7615 _("pseudo prefix without instruction"));
7616 return;
7617 default:
7618 abort ();
7619 }
7620
7621 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7622 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7623 R_X86_64_GOTTPOFF relocation so that linker can safely
7624 perform IE->LE optimization. */
7625 if (x86_elf_abi == X86_64_X32_ABI
7626 && i.operands == 2
7627 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7628 && i.prefix[REX_PREFIX] == 0)
7629 add_prefix (REX_OPCODE);
7630 #endif
7631
7632 /* The prefix bytes. */
7633 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7634 if (*q)
7635 FRAG_APPEND_1_CHAR (*q);
7636 }
7637 else
7638 {
7639 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7640 if (*q)
7641 switch (j)
7642 {
7643 case REX_PREFIX:
7644 /* REX byte is encoded in VEX prefix. */
7645 break;
7646 case SEG_PREFIX:
7647 case ADDR_PREFIX:
7648 FRAG_APPEND_1_CHAR (*q);
7649 break;
7650 default:
7651 /* There should be no other prefixes for instructions
7652 with VEX prefix. */
7653 abort ();
7654 }
7655
7656 /* For EVEX instructions i.vrex should become 0 after
7657 build_evex_prefix. For VEX instructions upper 16 registers
7658 aren't available, so VREX should be 0. */
7659 if (i.vrex)
7660 abort ();
7661 /* Now the VEX prefix. */
7662 p = frag_more (i.vex.length);
7663 for (j = 0; j < i.vex.length; j++)
7664 p[j] = i.vex.bytes[j];
7665 }
7666
7667 /* Now the opcode; be careful about word order here! */
7668 if (i.tm.opcode_length == 1)
7669 {
7670 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7671 }
7672 else
7673 {
7674 switch (i.tm.opcode_length)
7675 {
7676 case 4:
7677 p = frag_more (4);
7678 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7679 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7680 break;
7681 case 3:
7682 p = frag_more (3);
7683 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7684 break;
7685 case 2:
7686 p = frag_more (2);
7687 break;
7688 default:
7689 abort ();
7690 break;
7691 }
7692
7693 /* Put out high byte first: can't use md_number_to_chars! */
7694 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7695 *p = i.tm.base_opcode & 0xff;
7696 }
7697
7698 /* Now the modrm byte and sib byte (if present). */
7699 if (i.tm.opcode_modifier.modrm)
7700 {
7701 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7702 | i.rm.reg << 3
7703 | i.rm.mode << 6));
7704 /* If i.rm.regmem == ESP (4)
7705 && i.rm.mode != (Register mode)
7706 && not 16 bit
7707 ==> need second modrm byte. */
7708 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7709 && i.rm.mode != 3
7710 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
7711 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7712 | i.sib.index << 3
7713 | i.sib.scale << 6));
7714 }
7715
7716 if (i.disp_operands)
7717 output_disp (insn_start_frag, insn_start_off);
7718
7719 if (i.imm_operands)
7720 output_imm (insn_start_frag, insn_start_off);
7721 }
7722
7723 #ifdef DEBUG386
7724 if (flag_debug)
7725 {
7726 pi ("" /*line*/, &i);
7727 }
7728 #endif /* DEBUG386 */
7729 }
7730
7731 /* Return the size of the displacement operand N. */
7732
7733 static int
7734 disp_size (unsigned int n)
7735 {
7736 int size = 4;
7737
7738 if (i.types[n].bitfield.disp64)
7739 size = 8;
7740 else if (i.types[n].bitfield.disp8)
7741 size = 1;
7742 else if (i.types[n].bitfield.disp16)
7743 size = 2;
7744 return size;
7745 }
7746
7747 /* Return the size of the immediate operand N. */
7748
7749 static int
7750 imm_size (unsigned int n)
7751 {
7752 int size = 4;
7753 if (i.types[n].bitfield.imm64)
7754 size = 8;
7755 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7756 size = 1;
7757 else if (i.types[n].bitfield.imm16)
7758 size = 2;
7759 return size;
7760 }
7761
7762 static void
7763 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7764 {
7765 char *p;
7766 unsigned int n;
7767
7768 for (n = 0; n < i.operands; n++)
7769 {
7770 if (operand_type_check (i.types[n], disp))
7771 {
7772 if (i.op[n].disps->X_op == O_constant)
7773 {
7774 int size = disp_size (n);
7775 offsetT val = i.op[n].disps->X_add_number;
7776
7777 val = offset_in_range (val >> i.memshift, size);
7778 p = frag_more (size);
7779 md_number_to_chars (p, val, size);
7780 }
7781 else
7782 {
7783 enum bfd_reloc_code_real reloc_type;
7784 int size = disp_size (n);
7785 int sign = i.types[n].bitfield.disp32s;
7786 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7787 fixS *fixP;
7788
7789 /* We can't have 8 bit displacement here. */
7790 gas_assert (!i.types[n].bitfield.disp8);
7791
7792 /* The PC relative address is computed relative
7793 to the instruction boundary, so in case immediate
7794 fields follows, we need to adjust the value. */
7795 if (pcrel && i.imm_operands)
7796 {
7797 unsigned int n1;
7798 int sz = 0;
7799
7800 for (n1 = 0; n1 < i.operands; n1++)
7801 if (operand_type_check (i.types[n1], imm))
7802 {
7803 /* Only one immediate is allowed for PC
7804 relative address. */
7805 gas_assert (sz == 0);
7806 sz = imm_size (n1);
7807 i.op[n].disps->X_add_number -= sz;
7808 }
7809 /* We should find the immediate. */
7810 gas_assert (sz != 0);
7811 }
7812
7813 p = frag_more (size);
7814 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7815 if (GOT_symbol
7816 && GOT_symbol == i.op[n].disps->X_add_symbol
7817 && (((reloc_type == BFD_RELOC_32
7818 || reloc_type == BFD_RELOC_X86_64_32S
7819 || (reloc_type == BFD_RELOC_64
7820 && object_64bit))
7821 && (i.op[n].disps->X_op == O_symbol
7822 || (i.op[n].disps->X_op == O_add
7823 && ((symbol_get_value_expression
7824 (i.op[n].disps->X_op_symbol)->X_op)
7825 == O_subtract))))
7826 || reloc_type == BFD_RELOC_32_PCREL))
7827 {
7828 offsetT add;
7829
7830 if (insn_start_frag == frag_now)
7831 add = (p - frag_now->fr_literal) - insn_start_off;
7832 else
7833 {
7834 fragS *fr;
7835
7836 add = insn_start_frag->fr_fix - insn_start_off;
7837 for (fr = insn_start_frag->fr_next;
7838 fr && fr != frag_now; fr = fr->fr_next)
7839 add += fr->fr_fix;
7840 add += p - frag_now->fr_literal;
7841 }
7842
7843 if (!object_64bit)
7844 {
7845 reloc_type = BFD_RELOC_386_GOTPC;
7846 i.op[n].imms->X_add_number += add;
7847 }
7848 else if (reloc_type == BFD_RELOC_64)
7849 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7850 else
7851 /* Don't do the adjustment for x86-64, as there
7852 the pcrel addressing is relative to the _next_
7853 insn, and that is taken care of in other code. */
7854 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7855 }
7856 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7857 size, i.op[n].disps, pcrel,
7858 reloc_type);
7859 /* Check for "call/jmp *mem", "mov mem, %reg",
7860 "test %reg, mem" and "binop mem, %reg" where binop
7861 is one of adc, add, and, cmp, or, sbb, sub, xor
7862 instructions. Always generate R_386_GOT32X for
7863 "sym*GOT" operand in 32-bit mode. */
7864 if ((generate_relax_relocations
7865 || (!object_64bit
7866 && i.rm.mode == 0
7867 && i.rm.regmem == 5))
7868 && (i.rm.mode == 2
7869 || (i.rm.mode == 0 && i.rm.regmem == 5))
7870 && ((i.operands == 1
7871 && i.tm.base_opcode == 0xff
7872 && (i.rm.reg == 2 || i.rm.reg == 4))
7873 || (i.operands == 2
7874 && (i.tm.base_opcode == 0x8b
7875 || i.tm.base_opcode == 0x85
7876 || (i.tm.base_opcode & 0xc7) == 0x03))))
7877 {
7878 if (object_64bit)
7879 {
7880 fixP->fx_tcbit = i.rex != 0;
7881 if (i.base_reg
7882 && (i.base_reg->reg_num == RegRip
7883 || i.base_reg->reg_num == RegEip))
7884 fixP->fx_tcbit2 = 1;
7885 }
7886 else
7887 fixP->fx_tcbit2 = 1;
7888 }
7889 }
7890 }
7891 }
7892 }
7893
7894 static void
7895 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7896 {
7897 char *p;
7898 unsigned int n;
7899
7900 for (n = 0; n < i.operands; n++)
7901 {
7902 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7903 if (i.rounding && (int) n == i.rounding->operand)
7904 continue;
7905
7906 if (operand_type_check (i.types[n], imm))
7907 {
7908 if (i.op[n].imms->X_op == O_constant)
7909 {
7910 int size = imm_size (n);
7911 offsetT val;
7912
7913 val = offset_in_range (i.op[n].imms->X_add_number,
7914 size);
7915 p = frag_more (size);
7916 md_number_to_chars (p, val, size);
7917 }
7918 else
7919 {
7920 /* Not absolute_section.
7921 Need a 32-bit fixup (don't support 8bit
7922 non-absolute imms). Try to support other
7923 sizes ... */
7924 enum bfd_reloc_code_real reloc_type;
7925 int size = imm_size (n);
7926 int sign;
7927
7928 if (i.types[n].bitfield.imm32s
7929 && (i.suffix == QWORD_MNEM_SUFFIX
7930 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7931 sign = 1;
7932 else
7933 sign = 0;
7934
7935 p = frag_more (size);
7936 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7937
7938 /* This is tough to explain. We end up with this one if we
7939 * have operands that look like
7940 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7941 * obtain the absolute address of the GOT, and it is strongly
7942 * preferable from a performance point of view to avoid using
7943 * a runtime relocation for this. The actual sequence of
7944 * instructions often look something like:
7945 *
7946 * call .L66
7947 * .L66:
7948 * popl %ebx
7949 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7950 *
7951 * The call and pop essentially return the absolute address
7952 * of the label .L66 and store it in %ebx. The linker itself
7953 * will ultimately change the first operand of the addl so
7954 * that %ebx points to the GOT, but to keep things simple, the
7955 * .o file must have this operand set so that it generates not
7956 * the absolute address of .L66, but the absolute address of
7957 * itself. This allows the linker itself simply treat a GOTPC
7958 * relocation as asking for a pcrel offset to the GOT to be
7959 * added in, and the addend of the relocation is stored in the
7960 * operand field for the instruction itself.
7961 *
7962 * Our job here is to fix the operand so that it would add
7963 * the correct offset so that %ebx would point to itself. The
7964 * thing that is tricky is that .-.L66 will point to the
7965 * beginning of the instruction, so we need to further modify
7966 * the operand so that it will point to itself. There are
7967 * other cases where you have something like:
7968 *
7969 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7970 *
7971 * and here no correction would be required. Internally in
7972 * the assembler we treat operands of this form as not being
7973 * pcrel since the '.' is explicitly mentioned, and I wonder
7974 * whether it would simplify matters to do it this way. Who
7975 * knows. In earlier versions of the PIC patches, the
7976 * pcrel_adjust field was used to store the correction, but
7977 * since the expression is not pcrel, I felt it would be
7978 * confusing to do it this way. */
7979
7980 if ((reloc_type == BFD_RELOC_32
7981 || reloc_type == BFD_RELOC_X86_64_32S
7982 || reloc_type == BFD_RELOC_64)
7983 && GOT_symbol
7984 && GOT_symbol == i.op[n].imms->X_add_symbol
7985 && (i.op[n].imms->X_op == O_symbol
7986 || (i.op[n].imms->X_op == O_add
7987 && ((symbol_get_value_expression
7988 (i.op[n].imms->X_op_symbol)->X_op)
7989 == O_subtract))))
7990 {
7991 offsetT add;
7992
7993 if (insn_start_frag == frag_now)
7994 add = (p - frag_now->fr_literal) - insn_start_off;
7995 else
7996 {
7997 fragS *fr;
7998
7999 add = insn_start_frag->fr_fix - insn_start_off;
8000 for (fr = insn_start_frag->fr_next;
8001 fr && fr != frag_now; fr = fr->fr_next)
8002 add += fr->fr_fix;
8003 add += p - frag_now->fr_literal;
8004 }
8005
8006 if (!object_64bit)
8007 reloc_type = BFD_RELOC_386_GOTPC;
8008 else if (size == 4)
8009 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8010 else if (size == 8)
8011 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8012 i.op[n].imms->X_add_number += add;
8013 }
8014 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8015 i.op[n].imms, 0, reloc_type);
8016 }
8017 }
8018 }
8019 }
8020 \f
8021 /* x86_cons_fix_new is called via the expression parsing code when a
8022 reloc is needed. We use this hook to get the correct .got reloc. */
8023 static int cons_sign = -1;
8024
8025 void
8026 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8027 expressionS *exp, bfd_reloc_code_real_type r)
8028 {
8029 r = reloc (len, 0, cons_sign, r);
8030
8031 #ifdef TE_PE
8032 if (exp->X_op == O_secrel)
8033 {
8034 exp->X_op = O_symbol;
8035 r = BFD_RELOC_32_SECREL;
8036 }
8037 #endif
8038
8039 fix_new_exp (frag, off, len, exp, 0, r);
8040 }
8041
8042 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8043 purpose of the `.dc.a' internal pseudo-op. */
8044
8045 int
8046 x86_address_bytes (void)
8047 {
8048 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8049 return 4;
8050 return stdoutput->arch_info->bits_per_address / 8;
8051 }
8052
8053 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8054 || defined (LEX_AT)
8055 # define lex_got(reloc, adjust, types) NULL
8056 #else
8057 /* Parse operands of the form
8058 <symbol>@GOTOFF+<nnn>
8059 and similar .plt or .got references.
8060
8061 If we find one, set up the correct relocation in RELOC and copy the
8062 input string, minus the `@GOTOFF' into a malloc'd buffer for
8063 parsing by the calling routine. Return this buffer, and if ADJUST
8064 is non-null set it to the length of the string we removed from the
8065 input line. Otherwise return NULL. */
8066 static char *
8067 lex_got (enum bfd_reloc_code_real *rel,
8068 int *adjust,
8069 i386_operand_type *types)
8070 {
8071 /* Some of the relocations depend on the size of what field is to
8072 be relocated. But in our callers i386_immediate and i386_displacement
8073 we don't yet know the operand size (this will be set by insn
8074 matching). Hence we record the word32 relocation here,
8075 and adjust the reloc according to the real size in reloc(). */
8076 static const struct {
8077 const char *str;
8078 int len;
8079 const enum bfd_reloc_code_real rel[2];
8080 const i386_operand_type types64;
8081 } gotrel[] = {
8082 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8083 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8084 BFD_RELOC_SIZE32 },
8085 OPERAND_TYPE_IMM32_64 },
8086 #endif
8087 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8088 BFD_RELOC_X86_64_PLTOFF64 },
8089 OPERAND_TYPE_IMM64 },
8090 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8091 BFD_RELOC_X86_64_PLT32 },
8092 OPERAND_TYPE_IMM32_32S_DISP32 },
8093 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8094 BFD_RELOC_X86_64_GOTPLT64 },
8095 OPERAND_TYPE_IMM64_DISP64 },
8096 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8097 BFD_RELOC_X86_64_GOTOFF64 },
8098 OPERAND_TYPE_IMM64_DISP64 },
8099 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8100 BFD_RELOC_X86_64_GOTPCREL },
8101 OPERAND_TYPE_IMM32_32S_DISP32 },
8102 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8103 BFD_RELOC_X86_64_TLSGD },
8104 OPERAND_TYPE_IMM32_32S_DISP32 },
8105 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8106 _dummy_first_bfd_reloc_code_real },
8107 OPERAND_TYPE_NONE },
8108 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8109 BFD_RELOC_X86_64_TLSLD },
8110 OPERAND_TYPE_IMM32_32S_DISP32 },
8111 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8112 BFD_RELOC_X86_64_GOTTPOFF },
8113 OPERAND_TYPE_IMM32_32S_DISP32 },
8114 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8115 BFD_RELOC_X86_64_TPOFF32 },
8116 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8117 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8118 _dummy_first_bfd_reloc_code_real },
8119 OPERAND_TYPE_NONE },
8120 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8121 BFD_RELOC_X86_64_DTPOFF32 },
8122 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8123 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8124 _dummy_first_bfd_reloc_code_real },
8125 OPERAND_TYPE_NONE },
8126 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8127 _dummy_first_bfd_reloc_code_real },
8128 OPERAND_TYPE_NONE },
8129 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8130 BFD_RELOC_X86_64_GOT32 },
8131 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8132 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8133 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8134 OPERAND_TYPE_IMM32_32S_DISP32 },
8135 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8136 BFD_RELOC_X86_64_TLSDESC_CALL },
8137 OPERAND_TYPE_IMM32_32S_DISP32 },
8138 };
8139 char *cp;
8140 unsigned int j;
8141
8142 #if defined (OBJ_MAYBE_ELF)
8143 if (!IS_ELF)
8144 return NULL;
8145 #endif
8146
8147 for (cp = input_line_pointer; *cp != '@'; cp++)
8148 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8149 return NULL;
8150
8151 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8152 {
8153 int len = gotrel[j].len;
8154 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8155 {
8156 if (gotrel[j].rel[object_64bit] != 0)
8157 {
8158 int first, second;
8159 char *tmpbuf, *past_reloc;
8160
8161 *rel = gotrel[j].rel[object_64bit];
8162
8163 if (types)
8164 {
8165 if (flag_code != CODE_64BIT)
8166 {
8167 types->bitfield.imm32 = 1;
8168 types->bitfield.disp32 = 1;
8169 }
8170 else
8171 *types = gotrel[j].types64;
8172 }
8173
8174 if (j != 0 && GOT_symbol == NULL)
8175 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8176
8177 /* The length of the first part of our input line. */
8178 first = cp - input_line_pointer;
8179
8180 /* The second part goes from after the reloc token until
8181 (and including) an end_of_line char or comma. */
8182 past_reloc = cp + 1 + len;
8183 cp = past_reloc;
8184 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8185 ++cp;
8186 second = cp + 1 - past_reloc;
8187
8188 /* Allocate and copy string. The trailing NUL shouldn't
8189 be necessary, but be safe. */
8190 tmpbuf = XNEWVEC (char, first + second + 2);
8191 memcpy (tmpbuf, input_line_pointer, first);
8192 if (second != 0 && *past_reloc != ' ')
8193 /* Replace the relocation token with ' ', so that
8194 errors like foo@GOTOFF1 will be detected. */
8195 tmpbuf[first++] = ' ';
8196 else
8197 /* Increment length by 1 if the relocation token is
8198 removed. */
8199 len++;
8200 if (adjust)
8201 *adjust = len;
8202 memcpy (tmpbuf + first, past_reloc, second);
8203 tmpbuf[first + second] = '\0';
8204 return tmpbuf;
8205 }
8206
8207 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8208 gotrel[j].str, 1 << (5 + object_64bit));
8209 return NULL;
8210 }
8211 }
8212
8213 /* Might be a symbol version string. Don't as_bad here. */
8214 return NULL;
8215 }
8216 #endif
8217
8218 #ifdef TE_PE
8219 #ifdef lex_got
8220 #undef lex_got
8221 #endif
8222 /* Parse operands of the form
8223 <symbol>@SECREL32+<nnn>
8224
8225 If we find one, set up the correct relocation in RELOC and copy the
8226 input string, minus the `@SECREL32' into a malloc'd buffer for
8227 parsing by the calling routine. Return this buffer, and if ADJUST
8228 is non-null set it to the length of the string we removed from the
8229 input line. Otherwise return NULL.
8230
8231 This function is copied from the ELF version above adjusted for PE targets. */
8232
8233 static char *
8234 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8235 int *adjust ATTRIBUTE_UNUSED,
8236 i386_operand_type *types)
8237 {
8238 static const struct
8239 {
8240 const char *str;
8241 int len;
8242 const enum bfd_reloc_code_real rel[2];
8243 const i386_operand_type types64;
8244 }
8245 gotrel[] =
8246 {
8247 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8248 BFD_RELOC_32_SECREL },
8249 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8250 };
8251
8252 char *cp;
8253 unsigned j;
8254
8255 for (cp = input_line_pointer; *cp != '@'; cp++)
8256 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8257 return NULL;
8258
8259 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8260 {
8261 int len = gotrel[j].len;
8262
8263 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8264 {
8265 if (gotrel[j].rel[object_64bit] != 0)
8266 {
8267 int first, second;
8268 char *tmpbuf, *past_reloc;
8269
8270 *rel = gotrel[j].rel[object_64bit];
8271 if (adjust)
8272 *adjust = len;
8273
8274 if (types)
8275 {
8276 if (flag_code != CODE_64BIT)
8277 {
8278 types->bitfield.imm32 = 1;
8279 types->bitfield.disp32 = 1;
8280 }
8281 else
8282 *types = gotrel[j].types64;
8283 }
8284
8285 /* The length of the first part of our input line. */
8286 first = cp - input_line_pointer;
8287
8288 /* The second part goes from after the reloc token until
8289 (and including) an end_of_line char or comma. */
8290 past_reloc = cp + 1 + len;
8291 cp = past_reloc;
8292 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8293 ++cp;
8294 second = cp + 1 - past_reloc;
8295
8296 /* Allocate and copy string. The trailing NUL shouldn't
8297 be necessary, but be safe. */
8298 tmpbuf = XNEWVEC (char, first + second + 2);
8299 memcpy (tmpbuf, input_line_pointer, first);
8300 if (second != 0 && *past_reloc != ' ')
8301 /* Replace the relocation token with ' ', so that
8302 errors like foo@SECLREL321 will be detected. */
8303 tmpbuf[first++] = ' ';
8304 memcpy (tmpbuf + first, past_reloc, second);
8305 tmpbuf[first + second] = '\0';
8306 return tmpbuf;
8307 }
8308
8309 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8310 gotrel[j].str, 1 << (5 + object_64bit));
8311 return NULL;
8312 }
8313 }
8314
8315 /* Might be a symbol version string. Don't as_bad here. */
8316 return NULL;
8317 }
8318
8319 #endif /* TE_PE */
8320
8321 bfd_reloc_code_real_type
8322 x86_cons (expressionS *exp, int size)
8323 {
8324 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8325
8326 intel_syntax = -intel_syntax;
8327
8328 exp->X_md = 0;
8329 if (size == 4 || (object_64bit && size == 8))
8330 {
8331 /* Handle @GOTOFF and the like in an expression. */
8332 char *save;
8333 char *gotfree_input_line;
8334 int adjust = 0;
8335
8336 save = input_line_pointer;
8337 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8338 if (gotfree_input_line)
8339 input_line_pointer = gotfree_input_line;
8340
8341 expression (exp);
8342
8343 if (gotfree_input_line)
8344 {
8345 /* expression () has merrily parsed up to the end of line,
8346 or a comma - in the wrong buffer. Transfer how far
8347 input_line_pointer has moved to the right buffer. */
8348 input_line_pointer = (save
8349 + (input_line_pointer - gotfree_input_line)
8350 + adjust);
8351 free (gotfree_input_line);
8352 if (exp->X_op == O_constant
8353 || exp->X_op == O_absent
8354 || exp->X_op == O_illegal
8355 || exp->X_op == O_register
8356 || exp->X_op == O_big)
8357 {
8358 char c = *input_line_pointer;
8359 *input_line_pointer = 0;
8360 as_bad (_("missing or invalid expression `%s'"), save);
8361 *input_line_pointer = c;
8362 }
8363 }
8364 }
8365 else
8366 expression (exp);
8367
8368 intel_syntax = -intel_syntax;
8369
8370 if (intel_syntax)
8371 i386_intel_simplify (exp);
8372
8373 return got_reloc;
8374 }
8375
8376 static void
8377 signed_cons (int size)
8378 {
8379 if (flag_code == CODE_64BIT)
8380 cons_sign = 1;
8381 cons (size);
8382 cons_sign = -1;
8383 }
8384
8385 #ifdef TE_PE
8386 static void
8387 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8388 {
8389 expressionS exp;
8390
8391 do
8392 {
8393 expression (&exp);
8394 if (exp.X_op == O_symbol)
8395 exp.X_op = O_secrel;
8396
8397 emit_expr (&exp, 4);
8398 }
8399 while (*input_line_pointer++ == ',');
8400
8401 input_line_pointer--;
8402 demand_empty_rest_of_line ();
8403 }
8404 #endif
8405
8406 /* Handle Vector operations. */
8407
8408 static char *
8409 check_VecOperations (char *op_string, char *op_end)
8410 {
8411 const reg_entry *mask;
8412 const char *saved;
8413 char *end_op;
8414
8415 while (*op_string
8416 && (op_end == NULL || op_string < op_end))
8417 {
8418 saved = op_string;
8419 if (*op_string == '{')
8420 {
8421 op_string++;
8422
8423 /* Check broadcasts. */
8424 if (strncmp (op_string, "1to", 3) == 0)
8425 {
8426 int bcst_type;
8427
8428 if (i.broadcast)
8429 goto duplicated_vec_op;
8430
8431 op_string += 3;
8432 if (*op_string == '8')
8433 bcst_type = 8;
8434 else if (*op_string == '4')
8435 bcst_type = 4;
8436 else if (*op_string == '2')
8437 bcst_type = 2;
8438 else if (*op_string == '1'
8439 && *(op_string+1) == '6')
8440 {
8441 bcst_type = 16;
8442 op_string++;
8443 }
8444 else
8445 {
8446 as_bad (_("Unsupported broadcast: `%s'"), saved);
8447 return NULL;
8448 }
8449 op_string++;
8450
8451 broadcast_op.type = bcst_type;
8452 broadcast_op.operand = this_operand;
8453 i.broadcast = &broadcast_op;
8454 }
8455 /* Check masking operation. */
8456 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8457 {
8458 /* k0 can't be used for write mask. */
8459 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
8460 {
8461 as_bad (_("`%s%s' can't be used for write mask"),
8462 register_prefix, mask->reg_name);
8463 return NULL;
8464 }
8465
8466 if (!i.mask)
8467 {
8468 mask_op.mask = mask;
8469 mask_op.zeroing = 0;
8470 mask_op.operand = this_operand;
8471 i.mask = &mask_op;
8472 }
8473 else
8474 {
8475 if (i.mask->mask)
8476 goto duplicated_vec_op;
8477
8478 i.mask->mask = mask;
8479
8480 /* Only "{z}" is allowed here. No need to check
8481 zeroing mask explicitly. */
8482 if (i.mask->operand != this_operand)
8483 {
8484 as_bad (_("invalid write mask `%s'"), saved);
8485 return NULL;
8486 }
8487 }
8488
8489 op_string = end_op;
8490 }
8491 /* Check zeroing-flag for masking operation. */
8492 else if (*op_string == 'z')
8493 {
8494 if (!i.mask)
8495 {
8496 mask_op.mask = NULL;
8497 mask_op.zeroing = 1;
8498 mask_op.operand = this_operand;
8499 i.mask = &mask_op;
8500 }
8501 else
8502 {
8503 if (i.mask->zeroing)
8504 {
8505 duplicated_vec_op:
8506 as_bad (_("duplicated `%s'"), saved);
8507 return NULL;
8508 }
8509
8510 i.mask->zeroing = 1;
8511
8512 /* Only "{%k}" is allowed here. No need to check mask
8513 register explicitly. */
8514 if (i.mask->operand != this_operand)
8515 {
8516 as_bad (_("invalid zeroing-masking `%s'"),
8517 saved);
8518 return NULL;
8519 }
8520 }
8521
8522 op_string++;
8523 }
8524 else
8525 goto unknown_vec_op;
8526
8527 if (*op_string != '}')
8528 {
8529 as_bad (_("missing `}' in `%s'"), saved);
8530 return NULL;
8531 }
8532 op_string++;
8533
8534 /* Strip whitespace since the addition of pseudo prefixes
8535 changed how the scrubber treats '{'. */
8536 if (is_space_char (*op_string))
8537 ++op_string;
8538
8539 continue;
8540 }
8541 unknown_vec_op:
8542 /* We don't know this one. */
8543 as_bad (_("unknown vector operation: `%s'"), saved);
8544 return NULL;
8545 }
8546
8547 if (i.mask && i.mask->zeroing && !i.mask->mask)
8548 {
8549 as_bad (_("zeroing-masking only allowed with write mask"));
8550 return NULL;
8551 }
8552
8553 return op_string;
8554 }
8555
8556 static int
8557 i386_immediate (char *imm_start)
8558 {
8559 char *save_input_line_pointer;
8560 char *gotfree_input_line;
8561 segT exp_seg = 0;
8562 expressionS *exp;
8563 i386_operand_type types;
8564
8565 operand_type_set (&types, ~0);
8566
8567 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8568 {
8569 as_bad (_("at most %d immediate operands are allowed"),
8570 MAX_IMMEDIATE_OPERANDS);
8571 return 0;
8572 }
8573
8574 exp = &im_expressions[i.imm_operands++];
8575 i.op[this_operand].imms = exp;
8576
8577 if (is_space_char (*imm_start))
8578 ++imm_start;
8579
8580 save_input_line_pointer = input_line_pointer;
8581 input_line_pointer = imm_start;
8582
8583 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8584 if (gotfree_input_line)
8585 input_line_pointer = gotfree_input_line;
8586
8587 exp_seg = expression (exp);
8588
8589 SKIP_WHITESPACE ();
8590
8591 /* Handle vector operations. */
8592 if (*input_line_pointer == '{')
8593 {
8594 input_line_pointer = check_VecOperations (input_line_pointer,
8595 NULL);
8596 if (input_line_pointer == NULL)
8597 return 0;
8598 }
8599
8600 if (*input_line_pointer)
8601 as_bad (_("junk `%s' after expression"), input_line_pointer);
8602
8603 input_line_pointer = save_input_line_pointer;
8604 if (gotfree_input_line)
8605 {
8606 free (gotfree_input_line);
8607
8608 if (exp->X_op == O_constant || exp->X_op == O_register)
8609 exp->X_op = O_illegal;
8610 }
8611
8612 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8613 }
8614
8615 static int
8616 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8617 i386_operand_type types, const char *imm_start)
8618 {
8619 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8620 {
8621 if (imm_start)
8622 as_bad (_("missing or invalid immediate expression `%s'"),
8623 imm_start);
8624 return 0;
8625 }
8626 else if (exp->X_op == O_constant)
8627 {
8628 /* Size it properly later. */
8629 i.types[this_operand].bitfield.imm64 = 1;
8630 /* If not 64bit, sign extend val. */
8631 if (flag_code != CODE_64BIT
8632 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8633 exp->X_add_number
8634 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8635 }
8636 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8637 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8638 && exp_seg != absolute_section
8639 && exp_seg != text_section
8640 && exp_seg != data_section
8641 && exp_seg != bss_section
8642 && exp_seg != undefined_section
8643 && !bfd_is_com_section (exp_seg))
8644 {
8645 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8646 return 0;
8647 }
8648 #endif
8649 else if (!intel_syntax && exp_seg == reg_section)
8650 {
8651 if (imm_start)
8652 as_bad (_("illegal immediate register operand %s"), imm_start);
8653 return 0;
8654 }
8655 else
8656 {
8657 /* This is an address. The size of the address will be
8658 determined later, depending on destination register,
8659 suffix, or the default for the section. */
8660 i.types[this_operand].bitfield.imm8 = 1;
8661 i.types[this_operand].bitfield.imm16 = 1;
8662 i.types[this_operand].bitfield.imm32 = 1;
8663 i.types[this_operand].bitfield.imm32s = 1;
8664 i.types[this_operand].bitfield.imm64 = 1;
8665 i.types[this_operand] = operand_type_and (i.types[this_operand],
8666 types);
8667 }
8668
8669 return 1;
8670 }
8671
8672 static char *
8673 i386_scale (char *scale)
8674 {
8675 offsetT val;
8676 char *save = input_line_pointer;
8677
8678 input_line_pointer = scale;
8679 val = get_absolute_expression ();
8680
8681 switch (val)
8682 {
8683 case 1:
8684 i.log2_scale_factor = 0;
8685 break;
8686 case 2:
8687 i.log2_scale_factor = 1;
8688 break;
8689 case 4:
8690 i.log2_scale_factor = 2;
8691 break;
8692 case 8:
8693 i.log2_scale_factor = 3;
8694 break;
8695 default:
8696 {
8697 char sep = *input_line_pointer;
8698
8699 *input_line_pointer = '\0';
8700 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8701 scale);
8702 *input_line_pointer = sep;
8703 input_line_pointer = save;
8704 return NULL;
8705 }
8706 }
8707 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8708 {
8709 as_warn (_("scale factor of %d without an index register"),
8710 1 << i.log2_scale_factor);
8711 i.log2_scale_factor = 0;
8712 }
8713 scale = input_line_pointer;
8714 input_line_pointer = save;
8715 return scale;
8716 }
8717
8718 static int
8719 i386_displacement (char *disp_start, char *disp_end)
8720 {
8721 expressionS *exp;
8722 segT exp_seg = 0;
8723 char *save_input_line_pointer;
8724 char *gotfree_input_line;
8725 int override;
8726 i386_operand_type bigdisp, types = anydisp;
8727 int ret;
8728
8729 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8730 {
8731 as_bad (_("at most %d displacement operands are allowed"),
8732 MAX_MEMORY_OPERANDS);
8733 return 0;
8734 }
8735
8736 operand_type_set (&bigdisp, 0);
8737 if ((i.types[this_operand].bitfield.jumpabsolute)
8738 || (!current_templates->start->opcode_modifier.jump
8739 && !current_templates->start->opcode_modifier.jumpdword))
8740 {
8741 bigdisp.bitfield.disp32 = 1;
8742 override = (i.prefix[ADDR_PREFIX] != 0);
8743 if (flag_code == CODE_64BIT)
8744 {
8745 if (!override)
8746 {
8747 bigdisp.bitfield.disp32s = 1;
8748 bigdisp.bitfield.disp64 = 1;
8749 }
8750 }
8751 else if ((flag_code == CODE_16BIT) ^ override)
8752 {
8753 bigdisp.bitfield.disp32 = 0;
8754 bigdisp.bitfield.disp16 = 1;
8755 }
8756 }
8757 else
8758 {
8759 /* For PC-relative branches, the width of the displacement
8760 is dependent upon data size, not address size. */
8761 override = (i.prefix[DATA_PREFIX] != 0);
8762 if (flag_code == CODE_64BIT)
8763 {
8764 if (override || i.suffix == WORD_MNEM_SUFFIX)
8765 bigdisp.bitfield.disp16 = 1;
8766 else
8767 {
8768 bigdisp.bitfield.disp32 = 1;
8769 bigdisp.bitfield.disp32s = 1;
8770 }
8771 }
8772 else
8773 {
8774 if (!override)
8775 override = (i.suffix == (flag_code != CODE_16BIT
8776 ? WORD_MNEM_SUFFIX
8777 : LONG_MNEM_SUFFIX));
8778 bigdisp.bitfield.disp32 = 1;
8779 if ((flag_code == CODE_16BIT) ^ override)
8780 {
8781 bigdisp.bitfield.disp32 = 0;
8782 bigdisp.bitfield.disp16 = 1;
8783 }
8784 }
8785 }
8786 i.types[this_operand] = operand_type_or (i.types[this_operand],
8787 bigdisp);
8788
8789 exp = &disp_expressions[i.disp_operands];
8790 i.op[this_operand].disps = exp;
8791 i.disp_operands++;
8792 save_input_line_pointer = input_line_pointer;
8793 input_line_pointer = disp_start;
8794 END_STRING_AND_SAVE (disp_end);
8795
8796 #ifndef GCC_ASM_O_HACK
8797 #define GCC_ASM_O_HACK 0
8798 #endif
8799 #if GCC_ASM_O_HACK
8800 END_STRING_AND_SAVE (disp_end + 1);
8801 if (i.types[this_operand].bitfield.baseIndex
8802 && displacement_string_end[-1] == '+')
8803 {
8804 /* This hack is to avoid a warning when using the "o"
8805 constraint within gcc asm statements.
8806 For instance:
8807
8808 #define _set_tssldt_desc(n,addr,limit,type) \
8809 __asm__ __volatile__ ( \
8810 "movw %w2,%0\n\t" \
8811 "movw %w1,2+%0\n\t" \
8812 "rorl $16,%1\n\t" \
8813 "movb %b1,4+%0\n\t" \
8814 "movb %4,5+%0\n\t" \
8815 "movb $0,6+%0\n\t" \
8816 "movb %h1,7+%0\n\t" \
8817 "rorl $16,%1" \
8818 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8819
8820 This works great except that the output assembler ends
8821 up looking a bit weird if it turns out that there is
8822 no offset. You end up producing code that looks like:
8823
8824 #APP
8825 movw $235,(%eax)
8826 movw %dx,2+(%eax)
8827 rorl $16,%edx
8828 movb %dl,4+(%eax)
8829 movb $137,5+(%eax)
8830 movb $0,6+(%eax)
8831 movb %dh,7+(%eax)
8832 rorl $16,%edx
8833 #NO_APP
8834
8835 So here we provide the missing zero. */
8836
8837 *displacement_string_end = '0';
8838 }
8839 #endif
8840 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8841 if (gotfree_input_line)
8842 input_line_pointer = gotfree_input_line;
8843
8844 exp_seg = expression (exp);
8845
8846 SKIP_WHITESPACE ();
8847 if (*input_line_pointer)
8848 as_bad (_("junk `%s' after expression"), input_line_pointer);
8849 #if GCC_ASM_O_HACK
8850 RESTORE_END_STRING (disp_end + 1);
8851 #endif
8852 input_line_pointer = save_input_line_pointer;
8853 if (gotfree_input_line)
8854 {
8855 free (gotfree_input_line);
8856
8857 if (exp->X_op == O_constant || exp->X_op == O_register)
8858 exp->X_op = O_illegal;
8859 }
8860
8861 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8862
8863 RESTORE_END_STRING (disp_end);
8864
8865 return ret;
8866 }
8867
8868 static int
8869 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8870 i386_operand_type types, const char *disp_start)
8871 {
8872 i386_operand_type bigdisp;
8873 int ret = 1;
8874
8875 /* We do this to make sure that the section symbol is in
8876 the symbol table. We will ultimately change the relocation
8877 to be relative to the beginning of the section. */
8878 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8879 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8880 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8881 {
8882 if (exp->X_op != O_symbol)
8883 goto inv_disp;
8884
8885 if (S_IS_LOCAL (exp->X_add_symbol)
8886 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8887 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8888 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8889 exp->X_op = O_subtract;
8890 exp->X_op_symbol = GOT_symbol;
8891 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8892 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8893 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8894 i.reloc[this_operand] = BFD_RELOC_64;
8895 else
8896 i.reloc[this_operand] = BFD_RELOC_32;
8897 }
8898
8899 else if (exp->X_op == O_absent
8900 || exp->X_op == O_illegal
8901 || exp->X_op == O_big)
8902 {
8903 inv_disp:
8904 as_bad (_("missing or invalid displacement expression `%s'"),
8905 disp_start);
8906 ret = 0;
8907 }
8908
8909 else if (flag_code == CODE_64BIT
8910 && !i.prefix[ADDR_PREFIX]
8911 && exp->X_op == O_constant)
8912 {
8913 /* Since displacement is signed extended to 64bit, don't allow
8914 disp32 and turn off disp32s if they are out of range. */
8915 i.types[this_operand].bitfield.disp32 = 0;
8916 if (!fits_in_signed_long (exp->X_add_number))
8917 {
8918 i.types[this_operand].bitfield.disp32s = 0;
8919 if (i.types[this_operand].bitfield.baseindex)
8920 {
8921 as_bad (_("0x%lx out range of signed 32bit displacement"),
8922 (long) exp->X_add_number);
8923 ret = 0;
8924 }
8925 }
8926 }
8927
8928 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8929 else if (exp->X_op != O_constant
8930 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8931 && exp_seg != absolute_section
8932 && exp_seg != text_section
8933 && exp_seg != data_section
8934 && exp_seg != bss_section
8935 && exp_seg != undefined_section
8936 && !bfd_is_com_section (exp_seg))
8937 {
8938 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8939 ret = 0;
8940 }
8941 #endif
8942
8943 /* Check if this is a displacement only operand. */
8944 bigdisp = i.types[this_operand];
8945 bigdisp.bitfield.disp8 = 0;
8946 bigdisp.bitfield.disp16 = 0;
8947 bigdisp.bitfield.disp32 = 0;
8948 bigdisp.bitfield.disp32s = 0;
8949 bigdisp.bitfield.disp64 = 0;
8950 if (operand_type_all_zero (&bigdisp))
8951 i.types[this_operand] = operand_type_and (i.types[this_operand],
8952 types);
8953
8954 return ret;
8955 }
8956
8957 /* Return the active addressing mode, taking address override and
8958 registers forming the address into consideration. Update the
8959 address override prefix if necessary. */
8960
8961 static enum flag_code
8962 i386_addressing_mode (void)
8963 {
8964 enum flag_code addr_mode;
8965
8966 if (i.prefix[ADDR_PREFIX])
8967 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8968 else
8969 {
8970 addr_mode = flag_code;
8971
8972 #if INFER_ADDR_PREFIX
8973 if (i.mem_operands == 0)
8974 {
8975 /* Infer address prefix from the first memory operand. */
8976 const reg_entry *addr_reg = i.base_reg;
8977
8978 if (addr_reg == NULL)
8979 addr_reg = i.index_reg;
8980
8981 if (addr_reg)
8982 {
8983 if (addr_reg->reg_num == RegEip
8984 || addr_reg->reg_num == RegEiz
8985 || addr_reg->reg_type.bitfield.dword)
8986 addr_mode = CODE_32BIT;
8987 else if (flag_code != CODE_64BIT
8988 && addr_reg->reg_type.bitfield.word)
8989 addr_mode = CODE_16BIT;
8990
8991 if (addr_mode != flag_code)
8992 {
8993 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8994 i.prefixes += 1;
8995 /* Change the size of any displacement too. At most one
8996 of Disp16 or Disp32 is set.
8997 FIXME. There doesn't seem to be any real need for
8998 separate Disp16 and Disp32 flags. The same goes for
8999 Imm16 and Imm32. Removing them would probably clean
9000 up the code quite a lot. */
9001 if (flag_code != CODE_64BIT
9002 && (i.types[this_operand].bitfield.disp16
9003 || i.types[this_operand].bitfield.disp32))
9004 i.types[this_operand]
9005 = operand_type_xor (i.types[this_operand], disp16_32);
9006 }
9007 }
9008 }
9009 #endif
9010 }
9011
9012 return addr_mode;
9013 }
9014
9015 /* Make sure the memory operand we've been dealt is valid.
9016 Return 1 on success, 0 on a failure. */
9017
9018 static int
9019 i386_index_check (const char *operand_string)
9020 {
9021 const char *kind = "base/index";
9022 enum flag_code addr_mode = i386_addressing_mode ();
9023
9024 if (current_templates->start->opcode_modifier.isstring
9025 && !current_templates->start->opcode_modifier.immext
9026 && (current_templates->end[-1].opcode_modifier.isstring
9027 || i.mem_operands))
9028 {
9029 /* Memory operands of string insns are special in that they only allow
9030 a single register (rDI, rSI, or rBX) as their memory address. */
9031 const reg_entry *expected_reg;
9032 static const char *di_si[][2] =
9033 {
9034 { "esi", "edi" },
9035 { "si", "di" },
9036 { "rsi", "rdi" }
9037 };
9038 static const char *bx[] = { "ebx", "bx", "rbx" };
9039
9040 kind = "string address";
9041
9042 if (current_templates->start->opcode_modifier.repprefixok)
9043 {
9044 i386_operand_type type = current_templates->end[-1].operand_types[0];
9045
9046 if (!type.bitfield.baseindex
9047 || ((!i.mem_operands != !intel_syntax)
9048 && current_templates->end[-1].operand_types[1]
9049 .bitfield.baseindex))
9050 type = current_templates->end[-1].operand_types[1];
9051 expected_reg = hash_find (reg_hash,
9052 di_si[addr_mode][type.bitfield.esseg]);
9053
9054 }
9055 else
9056 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9057
9058 if (i.base_reg != expected_reg
9059 || i.index_reg
9060 || operand_type_check (i.types[this_operand], disp))
9061 {
9062 /* The second memory operand must have the same size as
9063 the first one. */
9064 if (i.mem_operands
9065 && i.base_reg
9066 && !((addr_mode == CODE_64BIT
9067 && i.base_reg->reg_type.bitfield.qword)
9068 || (addr_mode == CODE_32BIT
9069 ? i.base_reg->reg_type.bitfield.dword
9070 : i.base_reg->reg_type.bitfield.word)))
9071 goto bad_address;
9072
9073 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9074 operand_string,
9075 intel_syntax ? '[' : '(',
9076 register_prefix,
9077 expected_reg->reg_name,
9078 intel_syntax ? ']' : ')');
9079 return 1;
9080 }
9081 else
9082 return 1;
9083
9084 bad_address:
9085 as_bad (_("`%s' is not a valid %s expression"),
9086 operand_string, kind);
9087 return 0;
9088 }
9089 else
9090 {
9091 if (addr_mode != CODE_16BIT)
9092 {
9093 /* 32-bit/64-bit checks. */
9094 if ((i.base_reg
9095 && (addr_mode == CODE_64BIT
9096 ? !i.base_reg->reg_type.bitfield.qword
9097 : !i.base_reg->reg_type.bitfield.dword)
9098 && (i.index_reg
9099 || (i.base_reg->reg_num
9100 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
9101 || (i.index_reg
9102 && !i.index_reg->reg_type.bitfield.xmmword
9103 && !i.index_reg->reg_type.bitfield.ymmword
9104 && !i.index_reg->reg_type.bitfield.zmmword
9105 && ((addr_mode == CODE_64BIT
9106 ? !(i.index_reg->reg_type.bitfield.qword
9107 || i.index_reg->reg_num == RegRiz)
9108 : !(i.index_reg->reg_type.bitfield.dword
9109 || i.index_reg->reg_num == RegEiz))
9110 || !i.index_reg->reg_type.bitfield.baseindex)))
9111 goto bad_address;
9112
9113 /* bndmk, bndldx, and bndstx have special restrictions. */
9114 if (current_templates->start->base_opcode == 0xf30f1b
9115 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9116 {
9117 /* They cannot use RIP-relative addressing. */
9118 if (i.base_reg && i.base_reg->reg_num == RegRip)
9119 {
9120 as_bad (_("`%s' cannot be used here"), operand_string);
9121 return 0;
9122 }
9123
9124 /* bndldx and bndstx ignore their scale factor. */
9125 if (current_templates->start->base_opcode != 0xf30f1b
9126 && i.log2_scale_factor)
9127 as_warn (_("register scaling is being ignored here"));
9128 }
9129 }
9130 else
9131 {
9132 /* 16-bit checks. */
9133 if ((i.base_reg
9134 && (!i.base_reg->reg_type.bitfield.word
9135 || !i.base_reg->reg_type.bitfield.baseindex))
9136 || (i.index_reg
9137 && (!i.index_reg->reg_type.bitfield.word
9138 || !i.index_reg->reg_type.bitfield.baseindex
9139 || !(i.base_reg
9140 && i.base_reg->reg_num < 6
9141 && i.index_reg->reg_num >= 6
9142 && i.log2_scale_factor == 0))))
9143 goto bad_address;
9144 }
9145 }
9146 return 1;
9147 }
9148
9149 /* Handle vector immediates. */
9150
9151 static int
9152 RC_SAE_immediate (const char *imm_start)
9153 {
9154 unsigned int match_found, j;
9155 const char *pstr = imm_start;
9156 expressionS *exp;
9157
9158 if (*pstr != '{')
9159 return 0;
9160
9161 pstr++;
9162 match_found = 0;
9163 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9164 {
9165 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9166 {
9167 if (!i.rounding)
9168 {
9169 rc_op.type = RC_NamesTable[j].type;
9170 rc_op.operand = this_operand;
9171 i.rounding = &rc_op;
9172 }
9173 else
9174 {
9175 as_bad (_("duplicated `%s'"), imm_start);
9176 return 0;
9177 }
9178 pstr += RC_NamesTable[j].len;
9179 match_found = 1;
9180 break;
9181 }
9182 }
9183 if (!match_found)
9184 return 0;
9185
9186 if (*pstr++ != '}')
9187 {
9188 as_bad (_("Missing '}': '%s'"), imm_start);
9189 return 0;
9190 }
9191 /* RC/SAE immediate string should contain nothing more. */;
9192 if (*pstr != 0)
9193 {
9194 as_bad (_("Junk after '}': '%s'"), imm_start);
9195 return 0;
9196 }
9197
9198 exp = &im_expressions[i.imm_operands++];
9199 i.op[this_operand].imms = exp;
9200
9201 exp->X_op = O_constant;
9202 exp->X_add_number = 0;
9203 exp->X_add_symbol = (symbolS *) 0;
9204 exp->X_op_symbol = (symbolS *) 0;
9205
9206 i.types[this_operand].bitfield.imm8 = 1;
9207 return 1;
9208 }
9209
9210 /* Only string instructions can have a second memory operand, so
9211 reduce current_templates to just those if it contains any. */
9212 static int
9213 maybe_adjust_templates (void)
9214 {
9215 const insn_template *t;
9216
9217 gas_assert (i.mem_operands == 1);
9218
9219 for (t = current_templates->start; t < current_templates->end; ++t)
9220 if (t->opcode_modifier.isstring)
9221 break;
9222
9223 if (t < current_templates->end)
9224 {
9225 static templates aux_templates;
9226 bfd_boolean recheck;
9227
9228 aux_templates.start = t;
9229 for (; t < current_templates->end; ++t)
9230 if (!t->opcode_modifier.isstring)
9231 break;
9232 aux_templates.end = t;
9233
9234 /* Determine whether to re-check the first memory operand. */
9235 recheck = (aux_templates.start != current_templates->start
9236 || t != current_templates->end);
9237
9238 current_templates = &aux_templates;
9239
9240 if (recheck)
9241 {
9242 i.mem_operands = 0;
9243 if (i.memop1_string != NULL
9244 && i386_index_check (i.memop1_string) == 0)
9245 return 0;
9246 i.mem_operands = 1;
9247 }
9248 }
9249
9250 return 1;
9251 }
9252
9253 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9254 on error. */
9255
9256 static int
9257 i386_att_operand (char *operand_string)
9258 {
9259 const reg_entry *r;
9260 char *end_op;
9261 char *op_string = operand_string;
9262
9263 if (is_space_char (*op_string))
9264 ++op_string;
9265
9266 /* We check for an absolute prefix (differentiating,
9267 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9268 if (*op_string == ABSOLUTE_PREFIX)
9269 {
9270 ++op_string;
9271 if (is_space_char (*op_string))
9272 ++op_string;
9273 i.types[this_operand].bitfield.jumpabsolute = 1;
9274 }
9275
9276 /* Check if operand is a register. */
9277 if ((r = parse_register (op_string, &end_op)) != NULL)
9278 {
9279 i386_operand_type temp;
9280
9281 /* Check for a segment override by searching for ':' after a
9282 segment register. */
9283 op_string = end_op;
9284 if (is_space_char (*op_string))
9285 ++op_string;
9286 if (*op_string == ':'
9287 && (r->reg_type.bitfield.sreg2
9288 || r->reg_type.bitfield.sreg3))
9289 {
9290 switch (r->reg_num)
9291 {
9292 case 0:
9293 i.seg[i.mem_operands] = &es;
9294 break;
9295 case 1:
9296 i.seg[i.mem_operands] = &cs;
9297 break;
9298 case 2:
9299 i.seg[i.mem_operands] = &ss;
9300 break;
9301 case 3:
9302 i.seg[i.mem_operands] = &ds;
9303 break;
9304 case 4:
9305 i.seg[i.mem_operands] = &fs;
9306 break;
9307 case 5:
9308 i.seg[i.mem_operands] = &gs;
9309 break;
9310 }
9311
9312 /* Skip the ':' and whitespace. */
9313 ++op_string;
9314 if (is_space_char (*op_string))
9315 ++op_string;
9316
9317 if (!is_digit_char (*op_string)
9318 && !is_identifier_char (*op_string)
9319 && *op_string != '('
9320 && *op_string != ABSOLUTE_PREFIX)
9321 {
9322 as_bad (_("bad memory operand `%s'"), op_string);
9323 return 0;
9324 }
9325 /* Handle case of %es:*foo. */
9326 if (*op_string == ABSOLUTE_PREFIX)
9327 {
9328 ++op_string;
9329 if (is_space_char (*op_string))
9330 ++op_string;
9331 i.types[this_operand].bitfield.jumpabsolute = 1;
9332 }
9333 goto do_memory_reference;
9334 }
9335
9336 /* Handle vector operations. */
9337 if (*op_string == '{')
9338 {
9339 op_string = check_VecOperations (op_string, NULL);
9340 if (op_string == NULL)
9341 return 0;
9342 }
9343
9344 if (*op_string)
9345 {
9346 as_bad (_("junk `%s' after register"), op_string);
9347 return 0;
9348 }
9349 temp = r->reg_type;
9350 temp.bitfield.baseindex = 0;
9351 i.types[this_operand] = operand_type_or (i.types[this_operand],
9352 temp);
9353 i.types[this_operand].bitfield.unspecified = 0;
9354 i.op[this_operand].regs = r;
9355 i.reg_operands++;
9356 }
9357 else if (*op_string == REGISTER_PREFIX)
9358 {
9359 as_bad (_("bad register name `%s'"), op_string);
9360 return 0;
9361 }
9362 else if (*op_string == IMMEDIATE_PREFIX)
9363 {
9364 ++op_string;
9365 if (i.types[this_operand].bitfield.jumpabsolute)
9366 {
9367 as_bad (_("immediate operand illegal with absolute jump"));
9368 return 0;
9369 }
9370 if (!i386_immediate (op_string))
9371 return 0;
9372 }
9373 else if (RC_SAE_immediate (operand_string))
9374 {
9375 /* If it is a RC or SAE immediate, do nothing. */
9376 ;
9377 }
9378 else if (is_digit_char (*op_string)
9379 || is_identifier_char (*op_string)
9380 || *op_string == '"'
9381 || *op_string == '(')
9382 {
9383 /* This is a memory reference of some sort. */
9384 char *base_string;
9385
9386 /* Start and end of displacement string expression (if found). */
9387 char *displacement_string_start;
9388 char *displacement_string_end;
9389 char *vop_start;
9390
9391 do_memory_reference:
9392 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9393 return 0;
9394 if ((i.mem_operands == 1
9395 && !current_templates->start->opcode_modifier.isstring)
9396 || i.mem_operands == 2)
9397 {
9398 as_bad (_("too many memory references for `%s'"),
9399 current_templates->start->name);
9400 return 0;
9401 }
9402
9403 /* Check for base index form. We detect the base index form by
9404 looking for an ')' at the end of the operand, searching
9405 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9406 after the '('. */
9407 base_string = op_string + strlen (op_string);
9408
9409 /* Handle vector operations. */
9410 vop_start = strchr (op_string, '{');
9411 if (vop_start && vop_start < base_string)
9412 {
9413 if (check_VecOperations (vop_start, base_string) == NULL)
9414 return 0;
9415 base_string = vop_start;
9416 }
9417
9418 --base_string;
9419 if (is_space_char (*base_string))
9420 --base_string;
9421
9422 /* If we only have a displacement, set-up for it to be parsed later. */
9423 displacement_string_start = op_string;
9424 displacement_string_end = base_string + 1;
9425
9426 if (*base_string == ')')
9427 {
9428 char *temp_string;
9429 unsigned int parens_balanced = 1;
9430 /* We've already checked that the number of left & right ()'s are
9431 equal, so this loop will not be infinite. */
9432 do
9433 {
9434 base_string--;
9435 if (*base_string == ')')
9436 parens_balanced++;
9437 if (*base_string == '(')
9438 parens_balanced--;
9439 }
9440 while (parens_balanced);
9441
9442 temp_string = base_string;
9443
9444 /* Skip past '(' and whitespace. */
9445 ++base_string;
9446 if (is_space_char (*base_string))
9447 ++base_string;
9448
9449 if (*base_string == ','
9450 || ((i.base_reg = parse_register (base_string, &end_op))
9451 != NULL))
9452 {
9453 displacement_string_end = temp_string;
9454
9455 i.types[this_operand].bitfield.baseindex = 1;
9456
9457 if (i.base_reg)
9458 {
9459 base_string = end_op;
9460 if (is_space_char (*base_string))
9461 ++base_string;
9462 }
9463
9464 /* There may be an index reg or scale factor here. */
9465 if (*base_string == ',')
9466 {
9467 ++base_string;
9468 if (is_space_char (*base_string))
9469 ++base_string;
9470
9471 if ((i.index_reg = parse_register (base_string, &end_op))
9472 != NULL)
9473 {
9474 base_string = end_op;
9475 if (is_space_char (*base_string))
9476 ++base_string;
9477 if (*base_string == ',')
9478 {
9479 ++base_string;
9480 if (is_space_char (*base_string))
9481 ++base_string;
9482 }
9483 else if (*base_string != ')')
9484 {
9485 as_bad (_("expecting `,' or `)' "
9486 "after index register in `%s'"),
9487 operand_string);
9488 return 0;
9489 }
9490 }
9491 else if (*base_string == REGISTER_PREFIX)
9492 {
9493 end_op = strchr (base_string, ',');
9494 if (end_op)
9495 *end_op = '\0';
9496 as_bad (_("bad register name `%s'"), base_string);
9497 return 0;
9498 }
9499
9500 /* Check for scale factor. */
9501 if (*base_string != ')')
9502 {
9503 char *end_scale = i386_scale (base_string);
9504
9505 if (!end_scale)
9506 return 0;
9507
9508 base_string = end_scale;
9509 if (is_space_char (*base_string))
9510 ++base_string;
9511 if (*base_string != ')')
9512 {
9513 as_bad (_("expecting `)' "
9514 "after scale factor in `%s'"),
9515 operand_string);
9516 return 0;
9517 }
9518 }
9519 else if (!i.index_reg)
9520 {
9521 as_bad (_("expecting index register or scale factor "
9522 "after `,'; got '%c'"),
9523 *base_string);
9524 return 0;
9525 }
9526 }
9527 else if (*base_string != ')')
9528 {
9529 as_bad (_("expecting `,' or `)' "
9530 "after base register in `%s'"),
9531 operand_string);
9532 return 0;
9533 }
9534 }
9535 else if (*base_string == REGISTER_PREFIX)
9536 {
9537 end_op = strchr (base_string, ',');
9538 if (end_op)
9539 *end_op = '\0';
9540 as_bad (_("bad register name `%s'"), base_string);
9541 return 0;
9542 }
9543 }
9544
9545 /* If there's an expression beginning the operand, parse it,
9546 assuming displacement_string_start and
9547 displacement_string_end are meaningful. */
9548 if (displacement_string_start != displacement_string_end)
9549 {
9550 if (!i386_displacement (displacement_string_start,
9551 displacement_string_end))
9552 return 0;
9553 }
9554
9555 /* Special case for (%dx) while doing input/output op. */
9556 if (i.base_reg
9557 && operand_type_equal (&i.base_reg->reg_type,
9558 &reg16_inoutportreg)
9559 && i.index_reg == 0
9560 && i.log2_scale_factor == 0
9561 && i.seg[i.mem_operands] == 0
9562 && !operand_type_check (i.types[this_operand], disp))
9563 {
9564 i.types[this_operand] = inoutportreg;
9565 return 1;
9566 }
9567
9568 if (i386_index_check (operand_string) == 0)
9569 return 0;
9570 i.types[this_operand].bitfield.mem = 1;
9571 if (i.mem_operands == 0)
9572 i.memop1_string = xstrdup (operand_string);
9573 i.mem_operands++;
9574 }
9575 else
9576 {
9577 /* It's not a memory operand; argh! */
9578 as_bad (_("invalid char %s beginning operand %d `%s'"),
9579 output_invalid (*op_string),
9580 this_operand + 1,
9581 op_string);
9582 return 0;
9583 }
9584 return 1; /* Normal return. */
9585 }
9586 \f
9587 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9588 that an rs_machine_dependent frag may reach. */
9589
9590 unsigned int
9591 i386_frag_max_var (fragS *frag)
9592 {
9593 /* The only relaxable frags are for jumps.
9594 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9595 gas_assert (frag->fr_type == rs_machine_dependent);
9596 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9597 }
9598
9599 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9600 static int
9601 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9602 {
9603 /* STT_GNU_IFUNC symbol must go through PLT. */
9604 if ((symbol_get_bfdsym (fr_symbol)->flags
9605 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9606 return 0;
9607
9608 if (!S_IS_EXTERNAL (fr_symbol))
9609 /* Symbol may be weak or local. */
9610 return !S_IS_WEAK (fr_symbol);
9611
9612 /* Global symbols with non-default visibility can't be preempted. */
9613 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9614 return 1;
9615
9616 if (fr_var != NO_RELOC)
9617 switch ((enum bfd_reloc_code_real) fr_var)
9618 {
9619 case BFD_RELOC_386_PLT32:
9620 case BFD_RELOC_X86_64_PLT32:
9621 /* Symbol with PLT relocation may be preempted. */
9622 return 0;
9623 default:
9624 abort ();
9625 }
9626
9627 /* Global symbols with default visibility in a shared library may be
9628 preempted by another definition. */
9629 return !shared;
9630 }
9631 #endif
9632
9633 /* md_estimate_size_before_relax()
9634
9635 Called just before relax() for rs_machine_dependent frags. The x86
9636 assembler uses these frags to handle variable size jump
9637 instructions.
9638
9639 Any symbol that is now undefined will not become defined.
9640 Return the correct fr_subtype in the frag.
9641 Return the initial "guess for variable size of frag" to caller.
9642 The guess is actually the growth beyond the fixed part. Whatever
9643 we do to grow the fixed or variable part contributes to our
9644 returned value. */
9645
9646 int
9647 md_estimate_size_before_relax (fragS *fragP, segT segment)
9648 {
9649 /* We've already got fragP->fr_subtype right; all we have to do is
9650 check for un-relaxable symbols. On an ELF system, we can't relax
9651 an externally visible symbol, because it may be overridden by a
9652 shared library. */
9653 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9654 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9655 || (IS_ELF
9656 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9657 fragP->fr_var))
9658 #endif
9659 #if defined (OBJ_COFF) && defined (TE_PE)
9660 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9661 && S_IS_WEAK (fragP->fr_symbol))
9662 #endif
9663 )
9664 {
9665 /* Symbol is undefined in this segment, or we need to keep a
9666 reloc so that weak symbols can be overridden. */
9667 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9668 enum bfd_reloc_code_real reloc_type;
9669 unsigned char *opcode;
9670 int old_fr_fix;
9671
9672 if (fragP->fr_var != NO_RELOC)
9673 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9674 else if (size == 2)
9675 reloc_type = BFD_RELOC_16_PCREL;
9676 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9677 else if (need_plt32_p (fragP->fr_symbol))
9678 reloc_type = BFD_RELOC_X86_64_PLT32;
9679 #endif
9680 else
9681 reloc_type = BFD_RELOC_32_PCREL;
9682
9683 old_fr_fix = fragP->fr_fix;
9684 opcode = (unsigned char *) fragP->fr_opcode;
9685
9686 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9687 {
9688 case UNCOND_JUMP:
9689 /* Make jmp (0xeb) a (d)word displacement jump. */
9690 opcode[0] = 0xe9;
9691 fragP->fr_fix += size;
9692 fix_new (fragP, old_fr_fix, size,
9693 fragP->fr_symbol,
9694 fragP->fr_offset, 1,
9695 reloc_type);
9696 break;
9697
9698 case COND_JUMP86:
9699 if (size == 2
9700 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9701 {
9702 /* Negate the condition, and branch past an
9703 unconditional jump. */
9704 opcode[0] ^= 1;
9705 opcode[1] = 3;
9706 /* Insert an unconditional jump. */
9707 opcode[2] = 0xe9;
9708 /* We added two extra opcode bytes, and have a two byte
9709 offset. */
9710 fragP->fr_fix += 2 + 2;
9711 fix_new (fragP, old_fr_fix + 2, 2,
9712 fragP->fr_symbol,
9713 fragP->fr_offset, 1,
9714 reloc_type);
9715 break;
9716 }
9717 /* Fall through. */
9718
9719 case COND_JUMP:
9720 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9721 {
9722 fixS *fixP;
9723
9724 fragP->fr_fix += 1;
9725 fixP = fix_new (fragP, old_fr_fix, 1,
9726 fragP->fr_symbol,
9727 fragP->fr_offset, 1,
9728 BFD_RELOC_8_PCREL);
9729 fixP->fx_signed = 1;
9730 break;
9731 }
9732
9733 /* This changes the byte-displacement jump 0x7N
9734 to the (d)word-displacement jump 0x0f,0x8N. */
9735 opcode[1] = opcode[0] + 0x10;
9736 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9737 /* We've added an opcode byte. */
9738 fragP->fr_fix += 1 + size;
9739 fix_new (fragP, old_fr_fix + 1, size,
9740 fragP->fr_symbol,
9741 fragP->fr_offset, 1,
9742 reloc_type);
9743 break;
9744
9745 default:
9746 BAD_CASE (fragP->fr_subtype);
9747 break;
9748 }
9749 frag_wane (fragP);
9750 return fragP->fr_fix - old_fr_fix;
9751 }
9752
9753 /* Guess size depending on current relax state. Initially the relax
9754 state will correspond to a short jump and we return 1, because
9755 the variable part of the frag (the branch offset) is one byte
9756 long. However, we can relax a section more than once and in that
9757 case we must either set fr_subtype back to the unrelaxed state,
9758 or return the value for the appropriate branch. */
9759 return md_relax_table[fragP->fr_subtype].rlx_length;
9760 }
9761
9762 /* Called after relax() is finished.
9763
9764 In: Address of frag.
9765 fr_type == rs_machine_dependent.
9766 fr_subtype is what the address relaxed to.
9767
9768 Out: Any fixSs and constants are set up.
9769 Caller will turn frag into a ".space 0". */
9770
9771 void
9772 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9773 fragS *fragP)
9774 {
9775 unsigned char *opcode;
9776 unsigned char *where_to_put_displacement = NULL;
9777 offsetT target_address;
9778 offsetT opcode_address;
9779 unsigned int extension = 0;
9780 offsetT displacement_from_opcode_start;
9781
9782 opcode = (unsigned char *) fragP->fr_opcode;
9783
9784 /* Address we want to reach in file space. */
9785 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9786
9787 /* Address opcode resides at in file space. */
9788 opcode_address = fragP->fr_address + fragP->fr_fix;
9789
9790 /* Displacement from opcode start to fill into instruction. */
9791 displacement_from_opcode_start = target_address - opcode_address;
9792
9793 if ((fragP->fr_subtype & BIG) == 0)
9794 {
9795 /* Don't have to change opcode. */
9796 extension = 1; /* 1 opcode + 1 displacement */
9797 where_to_put_displacement = &opcode[1];
9798 }
9799 else
9800 {
9801 if (no_cond_jump_promotion
9802 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9803 as_warn_where (fragP->fr_file, fragP->fr_line,
9804 _("long jump required"));
9805
9806 switch (fragP->fr_subtype)
9807 {
9808 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9809 extension = 4; /* 1 opcode + 4 displacement */
9810 opcode[0] = 0xe9;
9811 where_to_put_displacement = &opcode[1];
9812 break;
9813
9814 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9815 extension = 2; /* 1 opcode + 2 displacement */
9816 opcode[0] = 0xe9;
9817 where_to_put_displacement = &opcode[1];
9818 break;
9819
9820 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9821 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9822 extension = 5; /* 2 opcode + 4 displacement */
9823 opcode[1] = opcode[0] + 0x10;
9824 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9825 where_to_put_displacement = &opcode[2];
9826 break;
9827
9828 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9829 extension = 3; /* 2 opcode + 2 displacement */
9830 opcode[1] = opcode[0] + 0x10;
9831 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9832 where_to_put_displacement = &opcode[2];
9833 break;
9834
9835 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9836 extension = 4;
9837 opcode[0] ^= 1;
9838 opcode[1] = 3;
9839 opcode[2] = 0xe9;
9840 where_to_put_displacement = &opcode[3];
9841 break;
9842
9843 default:
9844 BAD_CASE (fragP->fr_subtype);
9845 break;
9846 }
9847 }
9848
9849 /* If size if less then four we are sure that the operand fits,
9850 but if it's 4, then it could be that the displacement is larger
9851 then -/+ 2GB. */
9852 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9853 && object_64bit
9854 && ((addressT) (displacement_from_opcode_start - extension
9855 + ((addressT) 1 << 31))
9856 > (((addressT) 2 << 31) - 1)))
9857 {
9858 as_bad_where (fragP->fr_file, fragP->fr_line,
9859 _("jump target out of range"));
9860 /* Make us emit 0. */
9861 displacement_from_opcode_start = extension;
9862 }
9863 /* Now put displacement after opcode. */
9864 md_number_to_chars ((char *) where_to_put_displacement,
9865 (valueT) (displacement_from_opcode_start - extension),
9866 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9867 fragP->fr_fix += extension;
9868 }
9869 \f
9870 /* Apply a fixup (fixP) to segment data, once it has been determined
9871 by our caller that we have all the info we need to fix it up.
9872
9873 Parameter valP is the pointer to the value of the bits.
9874
9875 On the 386, immediates, displacements, and data pointers are all in
9876 the same (little-endian) format, so we don't need to care about which
9877 we are handling. */
9878
9879 void
9880 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9881 {
9882 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9883 valueT value = *valP;
9884
9885 #if !defined (TE_Mach)
9886 if (fixP->fx_pcrel)
9887 {
9888 switch (fixP->fx_r_type)
9889 {
9890 default:
9891 break;
9892
9893 case BFD_RELOC_64:
9894 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9895 break;
9896 case BFD_RELOC_32:
9897 case BFD_RELOC_X86_64_32S:
9898 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9899 break;
9900 case BFD_RELOC_16:
9901 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9902 break;
9903 case BFD_RELOC_8:
9904 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9905 break;
9906 }
9907 }
9908
9909 if (fixP->fx_addsy != NULL
9910 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9911 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9912 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9913 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9914 && !use_rela_relocations)
9915 {
9916 /* This is a hack. There should be a better way to handle this.
9917 This covers for the fact that bfd_install_relocation will
9918 subtract the current location (for partial_inplace, PC relative
9919 relocations); see more below. */
9920 #ifndef OBJ_AOUT
9921 if (IS_ELF
9922 #ifdef TE_PE
9923 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9924 #endif
9925 )
9926 value += fixP->fx_where + fixP->fx_frag->fr_address;
9927 #endif
9928 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9929 if (IS_ELF)
9930 {
9931 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9932
9933 if ((sym_seg == seg
9934 || (symbol_section_p (fixP->fx_addsy)
9935 && sym_seg != absolute_section))
9936 && !generic_force_reloc (fixP))
9937 {
9938 /* Yes, we add the values in twice. This is because
9939 bfd_install_relocation subtracts them out again. I think
9940 bfd_install_relocation is broken, but I don't dare change
9941 it. FIXME. */
9942 value += fixP->fx_where + fixP->fx_frag->fr_address;
9943 }
9944 }
9945 #endif
9946 #if defined (OBJ_COFF) && defined (TE_PE)
9947 /* For some reason, the PE format does not store a
9948 section address offset for a PC relative symbol. */
9949 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9950 || S_IS_WEAK (fixP->fx_addsy))
9951 value += md_pcrel_from (fixP);
9952 #endif
9953 }
9954 #if defined (OBJ_COFF) && defined (TE_PE)
9955 if (fixP->fx_addsy != NULL
9956 && S_IS_WEAK (fixP->fx_addsy)
9957 /* PR 16858: Do not modify weak function references. */
9958 && ! fixP->fx_pcrel)
9959 {
9960 #if !defined (TE_PEP)
9961 /* For x86 PE weak function symbols are neither PC-relative
9962 nor do they set S_IS_FUNCTION. So the only reliable way
9963 to detect them is to check the flags of their containing
9964 section. */
9965 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9966 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9967 ;
9968 else
9969 #endif
9970 value -= S_GET_VALUE (fixP->fx_addsy);
9971 }
9972 #endif
9973
9974 /* Fix a few things - the dynamic linker expects certain values here,
9975 and we must not disappoint it. */
9976 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9977 if (IS_ELF && fixP->fx_addsy)
9978 switch (fixP->fx_r_type)
9979 {
9980 case BFD_RELOC_386_PLT32:
9981 case BFD_RELOC_X86_64_PLT32:
9982 /* Make the jump instruction point to the address of the operand. At
9983 runtime we merely add the offset to the actual PLT entry. */
9984 value = -4;
9985 break;
9986
9987 case BFD_RELOC_386_TLS_GD:
9988 case BFD_RELOC_386_TLS_LDM:
9989 case BFD_RELOC_386_TLS_IE_32:
9990 case BFD_RELOC_386_TLS_IE:
9991 case BFD_RELOC_386_TLS_GOTIE:
9992 case BFD_RELOC_386_TLS_GOTDESC:
9993 case BFD_RELOC_X86_64_TLSGD:
9994 case BFD_RELOC_X86_64_TLSLD:
9995 case BFD_RELOC_X86_64_GOTTPOFF:
9996 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9997 value = 0; /* Fully resolved at runtime. No addend. */
9998 /* Fallthrough */
9999 case BFD_RELOC_386_TLS_LE:
10000 case BFD_RELOC_386_TLS_LDO_32:
10001 case BFD_RELOC_386_TLS_LE_32:
10002 case BFD_RELOC_X86_64_DTPOFF32:
10003 case BFD_RELOC_X86_64_DTPOFF64:
10004 case BFD_RELOC_X86_64_TPOFF32:
10005 case BFD_RELOC_X86_64_TPOFF64:
10006 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10007 break;
10008
10009 case BFD_RELOC_386_TLS_DESC_CALL:
10010 case BFD_RELOC_X86_64_TLSDESC_CALL:
10011 value = 0; /* Fully resolved at runtime. No addend. */
10012 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10013 fixP->fx_done = 0;
10014 return;
10015
10016 case BFD_RELOC_VTABLE_INHERIT:
10017 case BFD_RELOC_VTABLE_ENTRY:
10018 fixP->fx_done = 0;
10019 return;
10020
10021 default:
10022 break;
10023 }
10024 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10025 *valP = value;
10026 #endif /* !defined (TE_Mach) */
10027
10028 /* Are we finished with this relocation now? */
10029 if (fixP->fx_addsy == NULL)
10030 fixP->fx_done = 1;
10031 #if defined (OBJ_COFF) && defined (TE_PE)
10032 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10033 {
10034 fixP->fx_done = 0;
10035 /* Remember value for tc_gen_reloc. */
10036 fixP->fx_addnumber = value;
10037 /* Clear out the frag for now. */
10038 value = 0;
10039 }
10040 #endif
10041 else if (use_rela_relocations)
10042 {
10043 fixP->fx_no_overflow = 1;
10044 /* Remember value for tc_gen_reloc. */
10045 fixP->fx_addnumber = value;
10046 value = 0;
10047 }
10048
10049 md_number_to_chars (p, value, fixP->fx_size);
10050 }
10051 \f
10052 const char *
10053 md_atof (int type, char *litP, int *sizeP)
10054 {
10055 /* This outputs the LITTLENUMs in REVERSE order;
10056 in accord with the bigendian 386. */
10057 return ieee_md_atof (type, litP, sizeP, FALSE);
10058 }
10059 \f
10060 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10061
10062 static char *
10063 output_invalid (int c)
10064 {
10065 if (ISPRINT (c))
10066 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10067 "'%c'", c);
10068 else
10069 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10070 "(0x%x)", (unsigned char) c);
10071 return output_invalid_buf;
10072 }
10073
10074 /* REG_STRING starts *before* REGISTER_PREFIX. */
10075
10076 static const reg_entry *
10077 parse_real_register (char *reg_string, char **end_op)
10078 {
10079 char *s = reg_string;
10080 char *p;
10081 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10082 const reg_entry *r;
10083
10084 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10085 if (*s == REGISTER_PREFIX)
10086 ++s;
10087
10088 if (is_space_char (*s))
10089 ++s;
10090
10091 p = reg_name_given;
10092 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10093 {
10094 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10095 return (const reg_entry *) NULL;
10096 s++;
10097 }
10098
10099 /* For naked regs, make sure that we are not dealing with an identifier.
10100 This prevents confusing an identifier like `eax_var' with register
10101 `eax'. */
10102 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10103 return (const reg_entry *) NULL;
10104
10105 *end_op = s;
10106
10107 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10108
10109 /* Handle floating point regs, allowing spaces in the (i) part. */
10110 if (r == i386_regtab /* %st is first entry of table */)
10111 {
10112 if (!cpu_arch_flags.bitfield.cpu8087
10113 && !cpu_arch_flags.bitfield.cpu287
10114 && !cpu_arch_flags.bitfield.cpu387)
10115 return (const reg_entry *) NULL;
10116
10117 if (is_space_char (*s))
10118 ++s;
10119 if (*s == '(')
10120 {
10121 ++s;
10122 if (is_space_char (*s))
10123 ++s;
10124 if (*s >= '0' && *s <= '7')
10125 {
10126 int fpr = *s - '0';
10127 ++s;
10128 if (is_space_char (*s))
10129 ++s;
10130 if (*s == ')')
10131 {
10132 *end_op = s + 1;
10133 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10134 know (r);
10135 return r + fpr;
10136 }
10137 }
10138 /* We have "%st(" then garbage. */
10139 return (const reg_entry *) NULL;
10140 }
10141 }
10142
10143 if (r == NULL || allow_pseudo_reg)
10144 return r;
10145
10146 if (operand_type_all_zero (&r->reg_type))
10147 return (const reg_entry *) NULL;
10148
10149 if ((r->reg_type.bitfield.dword
10150 || r->reg_type.bitfield.sreg3
10151 || r->reg_type.bitfield.control
10152 || r->reg_type.bitfield.debug
10153 || r->reg_type.bitfield.test)
10154 && !cpu_arch_flags.bitfield.cpui386)
10155 return (const reg_entry *) NULL;
10156
10157 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
10158 return (const reg_entry *) NULL;
10159
10160 if (r->reg_type.bitfield.xmmword && !cpu_arch_flags.bitfield.cpuregxmm)
10161 return (const reg_entry *) NULL;
10162
10163 if (r->reg_type.bitfield.ymmword && !cpu_arch_flags.bitfield.cpuregymm)
10164 return (const reg_entry *) NULL;
10165
10166 if (r->reg_type.bitfield.zmmword && !cpu_arch_flags.bitfield.cpuregzmm)
10167 return (const reg_entry *) NULL;
10168
10169 if (r->reg_type.bitfield.regmask
10170 && !cpu_arch_flags.bitfield.cpuregmask)
10171 return (const reg_entry *) NULL;
10172
10173 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10174 if (!allow_index_reg
10175 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
10176 return (const reg_entry *) NULL;
10177
10178 /* Upper 16 vector register is only available with VREX in 64bit
10179 mode. */
10180 if ((r->reg_flags & RegVRex))
10181 {
10182 if (i.vec_encoding == vex_encoding_default)
10183 i.vec_encoding = vex_encoding_evex;
10184
10185 if (!cpu_arch_flags.bitfield.cpuvrex
10186 || i.vec_encoding != vex_encoding_evex
10187 || flag_code != CODE_64BIT)
10188 return (const reg_entry *) NULL;
10189 }
10190
10191 if (((r->reg_flags & (RegRex64 | RegRex))
10192 || r->reg_type.bitfield.qword)
10193 && (!cpu_arch_flags.bitfield.cpulm
10194 || !operand_type_equal (&r->reg_type, &control))
10195 && flag_code != CODE_64BIT)
10196 return (const reg_entry *) NULL;
10197
10198 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10199 return (const reg_entry *) NULL;
10200
10201 return r;
10202 }
10203
10204 /* REG_STRING starts *before* REGISTER_PREFIX. */
10205
10206 static const reg_entry *
10207 parse_register (char *reg_string, char **end_op)
10208 {
10209 const reg_entry *r;
10210
10211 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10212 r = parse_real_register (reg_string, end_op);
10213 else
10214 r = NULL;
10215 if (!r)
10216 {
10217 char *save = input_line_pointer;
10218 char c;
10219 symbolS *symbolP;
10220
10221 input_line_pointer = reg_string;
10222 c = get_symbol_name (&reg_string);
10223 symbolP = symbol_find (reg_string);
10224 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10225 {
10226 const expressionS *e = symbol_get_value_expression (symbolP);
10227
10228 know (e->X_op == O_register);
10229 know (e->X_add_number >= 0
10230 && (valueT) e->X_add_number < i386_regtab_size);
10231 r = i386_regtab + e->X_add_number;
10232 if ((r->reg_flags & RegVRex))
10233 i.vec_encoding = vex_encoding_evex;
10234 *end_op = input_line_pointer;
10235 }
10236 *input_line_pointer = c;
10237 input_line_pointer = save;
10238 }
10239 return r;
10240 }
10241
10242 int
10243 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10244 {
10245 const reg_entry *r;
10246 char *end = input_line_pointer;
10247
10248 *end = *nextcharP;
10249 r = parse_register (name, &input_line_pointer);
10250 if (r && end <= input_line_pointer)
10251 {
10252 *nextcharP = *input_line_pointer;
10253 *input_line_pointer = 0;
10254 e->X_op = O_register;
10255 e->X_add_number = r - i386_regtab;
10256 return 1;
10257 }
10258 input_line_pointer = end;
10259 *end = 0;
10260 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10261 }
10262
10263 void
10264 md_operand (expressionS *e)
10265 {
10266 char *end;
10267 const reg_entry *r;
10268
10269 switch (*input_line_pointer)
10270 {
10271 case REGISTER_PREFIX:
10272 r = parse_real_register (input_line_pointer, &end);
10273 if (r)
10274 {
10275 e->X_op = O_register;
10276 e->X_add_number = r - i386_regtab;
10277 input_line_pointer = end;
10278 }
10279 break;
10280
10281 case '[':
10282 gas_assert (intel_syntax);
10283 end = input_line_pointer++;
10284 expression (e);
10285 if (*input_line_pointer == ']')
10286 {
10287 ++input_line_pointer;
10288 e->X_op_symbol = make_expr_symbol (e);
10289 e->X_add_symbol = NULL;
10290 e->X_add_number = 0;
10291 e->X_op = O_index;
10292 }
10293 else
10294 {
10295 e->X_op = O_absent;
10296 input_line_pointer = end;
10297 }
10298 break;
10299 }
10300 }
10301
10302 \f
10303 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10304 const char *md_shortopts = "kVQ:sqnO::";
10305 #else
10306 const char *md_shortopts = "qnO::";
10307 #endif
10308
10309 #define OPTION_32 (OPTION_MD_BASE + 0)
10310 #define OPTION_64 (OPTION_MD_BASE + 1)
10311 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
10312 #define OPTION_MARCH (OPTION_MD_BASE + 3)
10313 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
10314 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10315 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10316 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10317 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10318 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
10319 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
10320 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
10321 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10322 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10323 #define OPTION_X32 (OPTION_MD_BASE + 14)
10324 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
10325 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10326 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
10327 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
10328 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
10329 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
10330 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
10331 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10332 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
10333 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
10334
10335 struct option md_longopts[] =
10336 {
10337 {"32", no_argument, NULL, OPTION_32},
10338 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10339 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10340 {"64", no_argument, NULL, OPTION_64},
10341 #endif
10342 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10343 {"x32", no_argument, NULL, OPTION_X32},
10344 {"mshared", no_argument, NULL, OPTION_MSHARED},
10345 #endif
10346 {"divide", no_argument, NULL, OPTION_DIVIDE},
10347 {"march", required_argument, NULL, OPTION_MARCH},
10348 {"mtune", required_argument, NULL, OPTION_MTUNE},
10349 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10350 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10351 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10352 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10353 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
10354 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
10355 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
10356 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
10357 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
10358 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10359 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
10360 # if defined (TE_PE) || defined (TE_PEP)
10361 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10362 #endif
10363 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10364 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10365 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10366 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10367 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10368 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10369 {NULL, no_argument, NULL, 0}
10370 };
10371 size_t md_longopts_size = sizeof (md_longopts);
10372
10373 int
10374 md_parse_option (int c, const char *arg)
10375 {
10376 unsigned int j;
10377 char *arch, *next, *saved;
10378
10379 switch (c)
10380 {
10381 case 'n':
10382 optimize_align_code = 0;
10383 break;
10384
10385 case 'q':
10386 quiet_warnings = 1;
10387 break;
10388
10389 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10390 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10391 should be emitted or not. FIXME: Not implemented. */
10392 case 'Q':
10393 break;
10394
10395 /* -V: SVR4 argument to print version ID. */
10396 case 'V':
10397 print_version_id ();
10398 break;
10399
10400 /* -k: Ignore for FreeBSD compatibility. */
10401 case 'k':
10402 break;
10403
10404 case 's':
10405 /* -s: On i386 Solaris, this tells the native assembler to use
10406 .stab instead of .stab.excl. We always use .stab anyhow. */
10407 break;
10408
10409 case OPTION_MSHARED:
10410 shared = 1;
10411 break;
10412 #endif
10413 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10414 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10415 case OPTION_64:
10416 {
10417 const char **list, **l;
10418
10419 list = bfd_target_list ();
10420 for (l = list; *l != NULL; l++)
10421 if (CONST_STRNEQ (*l, "elf64-x86-64")
10422 || strcmp (*l, "coff-x86-64") == 0
10423 || strcmp (*l, "pe-x86-64") == 0
10424 || strcmp (*l, "pei-x86-64") == 0
10425 || strcmp (*l, "mach-o-x86-64") == 0)
10426 {
10427 default_arch = "x86_64";
10428 break;
10429 }
10430 if (*l == NULL)
10431 as_fatal (_("no compiled in support for x86_64"));
10432 free (list);
10433 }
10434 break;
10435 #endif
10436
10437 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10438 case OPTION_X32:
10439 if (IS_ELF)
10440 {
10441 const char **list, **l;
10442
10443 list = bfd_target_list ();
10444 for (l = list; *l != NULL; l++)
10445 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10446 {
10447 default_arch = "x86_64:32";
10448 break;
10449 }
10450 if (*l == NULL)
10451 as_fatal (_("no compiled in support for 32bit x86_64"));
10452 free (list);
10453 }
10454 else
10455 as_fatal (_("32bit x86_64 is only supported for ELF"));
10456 break;
10457 #endif
10458
10459 case OPTION_32:
10460 default_arch = "i386";
10461 break;
10462
10463 case OPTION_DIVIDE:
10464 #ifdef SVR4_COMMENT_CHARS
10465 {
10466 char *n, *t;
10467 const char *s;
10468
10469 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
10470 t = n;
10471 for (s = i386_comment_chars; *s != '\0'; s++)
10472 if (*s != '/')
10473 *t++ = *s;
10474 *t = '\0';
10475 i386_comment_chars = n;
10476 }
10477 #endif
10478 break;
10479
10480 case OPTION_MARCH:
10481 saved = xstrdup (arg);
10482 arch = saved;
10483 /* Allow -march=+nosse. */
10484 if (*arch == '+')
10485 arch++;
10486 do
10487 {
10488 if (*arch == '.')
10489 as_fatal (_("invalid -march= option: `%s'"), arg);
10490 next = strchr (arch, '+');
10491 if (next)
10492 *next++ = '\0';
10493 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10494 {
10495 if (strcmp (arch, cpu_arch [j].name) == 0)
10496 {
10497 /* Processor. */
10498 if (! cpu_arch[j].flags.bitfield.cpui386)
10499 continue;
10500
10501 cpu_arch_name = cpu_arch[j].name;
10502 cpu_sub_arch_name = NULL;
10503 cpu_arch_flags = cpu_arch[j].flags;
10504 cpu_arch_isa = cpu_arch[j].type;
10505 cpu_arch_isa_flags = cpu_arch[j].flags;
10506 if (!cpu_arch_tune_set)
10507 {
10508 cpu_arch_tune = cpu_arch_isa;
10509 cpu_arch_tune_flags = cpu_arch_isa_flags;
10510 }
10511 break;
10512 }
10513 else if (*cpu_arch [j].name == '.'
10514 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10515 {
10516 /* ISA extension. */
10517 i386_cpu_flags flags;
10518
10519 flags = cpu_flags_or (cpu_arch_flags,
10520 cpu_arch[j].flags);
10521
10522 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10523 {
10524 if (cpu_sub_arch_name)
10525 {
10526 char *name = cpu_sub_arch_name;
10527 cpu_sub_arch_name = concat (name,
10528 cpu_arch[j].name,
10529 (const char *) NULL);
10530 free (name);
10531 }
10532 else
10533 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10534 cpu_arch_flags = flags;
10535 cpu_arch_isa_flags = flags;
10536 }
10537 else
10538 cpu_arch_isa_flags
10539 = cpu_flags_or (cpu_arch_isa_flags,
10540 cpu_arch[j].flags);
10541 break;
10542 }
10543 }
10544
10545 if (j >= ARRAY_SIZE (cpu_arch))
10546 {
10547 /* Disable an ISA extension. */
10548 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10549 if (strcmp (arch, cpu_noarch [j].name) == 0)
10550 {
10551 i386_cpu_flags flags;
10552
10553 flags = cpu_flags_and_not (cpu_arch_flags,
10554 cpu_noarch[j].flags);
10555 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10556 {
10557 if (cpu_sub_arch_name)
10558 {
10559 char *name = cpu_sub_arch_name;
10560 cpu_sub_arch_name = concat (arch,
10561 (const char *) NULL);
10562 free (name);
10563 }
10564 else
10565 cpu_sub_arch_name = xstrdup (arch);
10566 cpu_arch_flags = flags;
10567 cpu_arch_isa_flags = flags;
10568 }
10569 break;
10570 }
10571
10572 if (j >= ARRAY_SIZE (cpu_noarch))
10573 j = ARRAY_SIZE (cpu_arch);
10574 }
10575
10576 if (j >= ARRAY_SIZE (cpu_arch))
10577 as_fatal (_("invalid -march= option: `%s'"), arg);
10578
10579 arch = next;
10580 }
10581 while (next != NULL);
10582 free (saved);
10583 break;
10584
10585 case OPTION_MTUNE:
10586 if (*arg == '.')
10587 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10588 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10589 {
10590 if (strcmp (arg, cpu_arch [j].name) == 0)
10591 {
10592 cpu_arch_tune_set = 1;
10593 cpu_arch_tune = cpu_arch [j].type;
10594 cpu_arch_tune_flags = cpu_arch[j].flags;
10595 break;
10596 }
10597 }
10598 if (j >= ARRAY_SIZE (cpu_arch))
10599 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10600 break;
10601
10602 case OPTION_MMNEMONIC:
10603 if (strcasecmp (arg, "att") == 0)
10604 intel_mnemonic = 0;
10605 else if (strcasecmp (arg, "intel") == 0)
10606 intel_mnemonic = 1;
10607 else
10608 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10609 break;
10610
10611 case OPTION_MSYNTAX:
10612 if (strcasecmp (arg, "att") == 0)
10613 intel_syntax = 0;
10614 else if (strcasecmp (arg, "intel") == 0)
10615 intel_syntax = 1;
10616 else
10617 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10618 break;
10619
10620 case OPTION_MINDEX_REG:
10621 allow_index_reg = 1;
10622 break;
10623
10624 case OPTION_MNAKED_REG:
10625 allow_naked_reg = 1;
10626 break;
10627
10628 case OPTION_MSSE2AVX:
10629 sse2avx = 1;
10630 break;
10631
10632 case OPTION_MSSE_CHECK:
10633 if (strcasecmp (arg, "error") == 0)
10634 sse_check = check_error;
10635 else if (strcasecmp (arg, "warning") == 0)
10636 sse_check = check_warning;
10637 else if (strcasecmp (arg, "none") == 0)
10638 sse_check = check_none;
10639 else
10640 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10641 break;
10642
10643 case OPTION_MOPERAND_CHECK:
10644 if (strcasecmp (arg, "error") == 0)
10645 operand_check = check_error;
10646 else if (strcasecmp (arg, "warning") == 0)
10647 operand_check = check_warning;
10648 else if (strcasecmp (arg, "none") == 0)
10649 operand_check = check_none;
10650 else
10651 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10652 break;
10653
10654 case OPTION_MAVXSCALAR:
10655 if (strcasecmp (arg, "128") == 0)
10656 avxscalar = vex128;
10657 else if (strcasecmp (arg, "256") == 0)
10658 avxscalar = vex256;
10659 else
10660 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10661 break;
10662
10663 case OPTION_MADD_BND_PREFIX:
10664 add_bnd_prefix = 1;
10665 break;
10666
10667 case OPTION_MEVEXLIG:
10668 if (strcmp (arg, "128") == 0)
10669 evexlig = evexl128;
10670 else if (strcmp (arg, "256") == 0)
10671 evexlig = evexl256;
10672 else if (strcmp (arg, "512") == 0)
10673 evexlig = evexl512;
10674 else
10675 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10676 break;
10677
10678 case OPTION_MEVEXRCIG:
10679 if (strcmp (arg, "rne") == 0)
10680 evexrcig = rne;
10681 else if (strcmp (arg, "rd") == 0)
10682 evexrcig = rd;
10683 else if (strcmp (arg, "ru") == 0)
10684 evexrcig = ru;
10685 else if (strcmp (arg, "rz") == 0)
10686 evexrcig = rz;
10687 else
10688 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10689 break;
10690
10691 case OPTION_MEVEXWIG:
10692 if (strcmp (arg, "0") == 0)
10693 evexwig = evexw0;
10694 else if (strcmp (arg, "1") == 0)
10695 evexwig = evexw1;
10696 else
10697 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10698 break;
10699
10700 # if defined (TE_PE) || defined (TE_PEP)
10701 case OPTION_MBIG_OBJ:
10702 use_big_obj = 1;
10703 break;
10704 #endif
10705
10706 case OPTION_MOMIT_LOCK_PREFIX:
10707 if (strcasecmp (arg, "yes") == 0)
10708 omit_lock_prefix = 1;
10709 else if (strcasecmp (arg, "no") == 0)
10710 omit_lock_prefix = 0;
10711 else
10712 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10713 break;
10714
10715 case OPTION_MFENCE_AS_LOCK_ADD:
10716 if (strcasecmp (arg, "yes") == 0)
10717 avoid_fence = 1;
10718 else if (strcasecmp (arg, "no") == 0)
10719 avoid_fence = 0;
10720 else
10721 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10722 break;
10723
10724 case OPTION_MRELAX_RELOCATIONS:
10725 if (strcasecmp (arg, "yes") == 0)
10726 generate_relax_relocations = 1;
10727 else if (strcasecmp (arg, "no") == 0)
10728 generate_relax_relocations = 0;
10729 else
10730 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10731 break;
10732
10733 case OPTION_MAMD64:
10734 intel64 = 0;
10735 break;
10736
10737 case OPTION_MINTEL64:
10738 intel64 = 1;
10739 break;
10740
10741 case 'O':
10742 if (arg == NULL)
10743 {
10744 optimize = 1;
10745 /* Turn off -Os. */
10746 optimize_for_space = 0;
10747 }
10748 else if (*arg == 's')
10749 {
10750 optimize_for_space = 1;
10751 /* Turn on all encoding optimizations. */
10752 optimize = -1;
10753 }
10754 else
10755 {
10756 optimize = atoi (arg);
10757 /* Turn off -Os. */
10758 optimize_for_space = 0;
10759 }
10760 break;
10761
10762 default:
10763 return 0;
10764 }
10765 return 1;
10766 }
10767
10768 #define MESSAGE_TEMPLATE \
10769 " "
10770
10771 static char *
10772 output_message (FILE *stream, char *p, char *message, char *start,
10773 int *left_p, const char *name, int len)
10774 {
10775 int size = sizeof (MESSAGE_TEMPLATE);
10776 int left = *left_p;
10777
10778 /* Reserve 2 spaces for ", " or ",\0" */
10779 left -= len + 2;
10780
10781 /* Check if there is any room. */
10782 if (left >= 0)
10783 {
10784 if (p != start)
10785 {
10786 *p++ = ',';
10787 *p++ = ' ';
10788 }
10789 p = mempcpy (p, name, len);
10790 }
10791 else
10792 {
10793 /* Output the current message now and start a new one. */
10794 *p++ = ',';
10795 *p = '\0';
10796 fprintf (stream, "%s\n", message);
10797 p = start;
10798 left = size - (start - message) - len - 2;
10799
10800 gas_assert (left >= 0);
10801
10802 p = mempcpy (p, name, len);
10803 }
10804
10805 *left_p = left;
10806 return p;
10807 }
10808
10809 static void
10810 show_arch (FILE *stream, int ext, int check)
10811 {
10812 static char message[] = MESSAGE_TEMPLATE;
10813 char *start = message + 27;
10814 char *p;
10815 int size = sizeof (MESSAGE_TEMPLATE);
10816 int left;
10817 const char *name;
10818 int len;
10819 unsigned int j;
10820
10821 p = start;
10822 left = size - (start - message);
10823 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10824 {
10825 /* Should it be skipped? */
10826 if (cpu_arch [j].skip)
10827 continue;
10828
10829 name = cpu_arch [j].name;
10830 len = cpu_arch [j].len;
10831 if (*name == '.')
10832 {
10833 /* It is an extension. Skip if we aren't asked to show it. */
10834 if (ext)
10835 {
10836 name++;
10837 len--;
10838 }
10839 else
10840 continue;
10841 }
10842 else if (ext)
10843 {
10844 /* It is an processor. Skip if we show only extension. */
10845 continue;
10846 }
10847 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10848 {
10849 /* It is an impossible processor - skip. */
10850 continue;
10851 }
10852
10853 p = output_message (stream, p, message, start, &left, name, len);
10854 }
10855
10856 /* Display disabled extensions. */
10857 if (ext)
10858 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10859 {
10860 name = cpu_noarch [j].name;
10861 len = cpu_noarch [j].len;
10862 p = output_message (stream, p, message, start, &left, name,
10863 len);
10864 }
10865
10866 *p = '\0';
10867 fprintf (stream, "%s\n", message);
10868 }
10869
10870 void
10871 md_show_usage (FILE *stream)
10872 {
10873 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10874 fprintf (stream, _("\
10875 -Q ignored\n\
10876 -V print assembler version number\n\
10877 -k ignored\n"));
10878 #endif
10879 fprintf (stream, _("\
10880 -n Do not optimize code alignment\n\
10881 -q quieten some warnings\n"));
10882 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10883 fprintf (stream, _("\
10884 -s ignored\n"));
10885 #endif
10886 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10887 || defined (TE_PE) || defined (TE_PEP))
10888 fprintf (stream, _("\
10889 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10890 #endif
10891 #ifdef SVR4_COMMENT_CHARS
10892 fprintf (stream, _("\
10893 --divide do not treat `/' as a comment character\n"));
10894 #else
10895 fprintf (stream, _("\
10896 --divide ignored\n"));
10897 #endif
10898 fprintf (stream, _("\
10899 -march=CPU[,+EXTENSION...]\n\
10900 generate code for CPU and EXTENSION, CPU is one of:\n"));
10901 show_arch (stream, 0, 1);
10902 fprintf (stream, _("\
10903 EXTENSION is combination of:\n"));
10904 show_arch (stream, 1, 0);
10905 fprintf (stream, _("\
10906 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10907 show_arch (stream, 0, 0);
10908 fprintf (stream, _("\
10909 -msse2avx encode SSE instructions with VEX prefix\n"));
10910 fprintf (stream, _("\
10911 -msse-check=[none|error|warning]\n\
10912 check SSE instructions\n"));
10913 fprintf (stream, _("\
10914 -moperand-check=[none|error|warning]\n\
10915 check operand combinations for validity\n"));
10916 fprintf (stream, _("\
10917 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10918 length\n"));
10919 fprintf (stream, _("\
10920 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10921 length\n"));
10922 fprintf (stream, _("\
10923 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10924 for EVEX.W bit ignored instructions\n"));
10925 fprintf (stream, _("\
10926 -mevexrcig=[rne|rd|ru|rz]\n\
10927 encode EVEX instructions with specific EVEX.RC value\n\
10928 for SAE-only ignored instructions\n"));
10929 fprintf (stream, _("\
10930 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10931 fprintf (stream, _("\
10932 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10933 fprintf (stream, _("\
10934 -mindex-reg support pseudo index registers\n"));
10935 fprintf (stream, _("\
10936 -mnaked-reg don't require `%%' prefix for registers\n"));
10937 fprintf (stream, _("\
10938 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10939 fprintf (stream, _("\
10940 -mshared disable branch optimization for shared code\n"));
10941 # if defined (TE_PE) || defined (TE_PEP)
10942 fprintf (stream, _("\
10943 -mbig-obj generate big object files\n"));
10944 #endif
10945 fprintf (stream, _("\
10946 -momit-lock-prefix=[no|yes]\n\
10947 strip all lock prefixes\n"));
10948 fprintf (stream, _("\
10949 -mfence-as-lock-add=[no|yes]\n\
10950 encode lfence, mfence and sfence as\n\
10951 lock addl $0x0, (%%{re}sp)\n"));
10952 fprintf (stream, _("\
10953 -mrelax-relocations=[no|yes]\n\
10954 generate relax relocations\n"));
10955 fprintf (stream, _("\
10956 -mamd64 accept only AMD64 ISA\n"));
10957 fprintf (stream, _("\
10958 -mintel64 accept only Intel64 ISA\n"));
10959 }
10960
10961 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10962 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10963 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10964
10965 /* Pick the target format to use. */
10966
10967 const char *
10968 i386_target_format (void)
10969 {
10970 if (!strncmp (default_arch, "x86_64", 6))
10971 {
10972 update_code_flag (CODE_64BIT, 1);
10973 if (default_arch[6] == '\0')
10974 x86_elf_abi = X86_64_ABI;
10975 else
10976 x86_elf_abi = X86_64_X32_ABI;
10977 }
10978 else if (!strcmp (default_arch, "i386"))
10979 update_code_flag (CODE_32BIT, 1);
10980 else if (!strcmp (default_arch, "iamcu"))
10981 {
10982 update_code_flag (CODE_32BIT, 1);
10983 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10984 {
10985 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10986 cpu_arch_name = "iamcu";
10987 cpu_sub_arch_name = NULL;
10988 cpu_arch_flags = iamcu_flags;
10989 cpu_arch_isa = PROCESSOR_IAMCU;
10990 cpu_arch_isa_flags = iamcu_flags;
10991 if (!cpu_arch_tune_set)
10992 {
10993 cpu_arch_tune = cpu_arch_isa;
10994 cpu_arch_tune_flags = cpu_arch_isa_flags;
10995 }
10996 }
10997 else if (cpu_arch_isa != PROCESSOR_IAMCU)
10998 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10999 cpu_arch_name);
11000 }
11001 else
11002 as_fatal (_("unknown architecture"));
11003
11004 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11005 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11006 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11007 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11008
11009 switch (OUTPUT_FLAVOR)
11010 {
11011 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11012 case bfd_target_aout_flavour:
11013 return AOUT_TARGET_FORMAT;
11014 #endif
11015 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11016 # if defined (TE_PE) || defined (TE_PEP)
11017 case bfd_target_coff_flavour:
11018 if (flag_code == CODE_64BIT)
11019 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11020 else
11021 return "pe-i386";
11022 # elif defined (TE_GO32)
11023 case bfd_target_coff_flavour:
11024 return "coff-go32";
11025 # else
11026 case bfd_target_coff_flavour:
11027 return "coff-i386";
11028 # endif
11029 #endif
11030 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11031 case bfd_target_elf_flavour:
11032 {
11033 const char *format;
11034
11035 switch (x86_elf_abi)
11036 {
11037 default:
11038 format = ELF_TARGET_FORMAT;
11039 break;
11040 case X86_64_ABI:
11041 use_rela_relocations = 1;
11042 object_64bit = 1;
11043 format = ELF_TARGET_FORMAT64;
11044 break;
11045 case X86_64_X32_ABI:
11046 use_rela_relocations = 1;
11047 object_64bit = 1;
11048 disallow_64bit_reloc = 1;
11049 format = ELF_TARGET_FORMAT32;
11050 break;
11051 }
11052 if (cpu_arch_isa == PROCESSOR_L1OM)
11053 {
11054 if (x86_elf_abi != X86_64_ABI)
11055 as_fatal (_("Intel L1OM is 64bit only"));
11056 return ELF_TARGET_L1OM_FORMAT;
11057 }
11058 else if (cpu_arch_isa == PROCESSOR_K1OM)
11059 {
11060 if (x86_elf_abi != X86_64_ABI)
11061 as_fatal (_("Intel K1OM is 64bit only"));
11062 return ELF_TARGET_K1OM_FORMAT;
11063 }
11064 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11065 {
11066 if (x86_elf_abi != I386_ABI)
11067 as_fatal (_("Intel MCU is 32bit only"));
11068 return ELF_TARGET_IAMCU_FORMAT;
11069 }
11070 else
11071 return format;
11072 }
11073 #endif
11074 #if defined (OBJ_MACH_O)
11075 case bfd_target_mach_o_flavour:
11076 if (flag_code == CODE_64BIT)
11077 {
11078 use_rela_relocations = 1;
11079 object_64bit = 1;
11080 return "mach-o-x86-64";
11081 }
11082 else
11083 return "mach-o-i386";
11084 #endif
11085 default:
11086 abort ();
11087 return NULL;
11088 }
11089 }
11090
11091 #endif /* OBJ_MAYBE_ more than one */
11092 \f
11093 symbolS *
11094 md_undefined_symbol (char *name)
11095 {
11096 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11097 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11098 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11099 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11100 {
11101 if (!GOT_symbol)
11102 {
11103 if (symbol_find (name))
11104 as_bad (_("GOT already in symbol table"));
11105 GOT_symbol = symbol_new (name, undefined_section,
11106 (valueT) 0, &zero_address_frag);
11107 };
11108 return GOT_symbol;
11109 }
11110 return 0;
11111 }
11112
11113 /* Round up a section size to the appropriate boundary. */
11114
11115 valueT
11116 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11117 {
11118 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11119 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11120 {
11121 /* For a.out, force the section size to be aligned. If we don't do
11122 this, BFD will align it for us, but it will not write out the
11123 final bytes of the section. This may be a bug in BFD, but it is
11124 easier to fix it here since that is how the other a.out targets
11125 work. */
11126 int align;
11127
11128 align = bfd_get_section_alignment (stdoutput, segment);
11129 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11130 }
11131 #endif
11132
11133 return size;
11134 }
11135
11136 /* On the i386, PC-relative offsets are relative to the start of the
11137 next instruction. That is, the address of the offset, plus its
11138 size, since the offset is always the last part of the insn. */
11139
11140 long
11141 md_pcrel_from (fixS *fixP)
11142 {
11143 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11144 }
11145
11146 #ifndef I386COFF
11147
11148 static void
11149 s_bss (int ignore ATTRIBUTE_UNUSED)
11150 {
11151 int temp;
11152
11153 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11154 if (IS_ELF)
11155 obj_elf_section_change_hook ();
11156 #endif
11157 temp = get_absolute_expression ();
11158 subseg_set (bss_section, (subsegT) temp);
11159 demand_empty_rest_of_line ();
11160 }
11161
11162 #endif
11163
11164 void
11165 i386_validate_fix (fixS *fixp)
11166 {
11167 if (fixp->fx_subsy)
11168 {
11169 if (fixp->fx_subsy == GOT_symbol)
11170 {
11171 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11172 {
11173 if (!object_64bit)
11174 abort ();
11175 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11176 if (fixp->fx_tcbit2)
11177 fixp->fx_r_type = (fixp->fx_tcbit
11178 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11179 : BFD_RELOC_X86_64_GOTPCRELX);
11180 else
11181 #endif
11182 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11183 }
11184 else
11185 {
11186 if (!object_64bit)
11187 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11188 else
11189 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11190 }
11191 fixp->fx_subsy = 0;
11192 }
11193 }
11194 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11195 else if (!object_64bit)
11196 {
11197 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11198 && fixp->fx_tcbit2)
11199 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11200 }
11201 #endif
11202 }
11203
11204 arelent *
11205 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11206 {
11207 arelent *rel;
11208 bfd_reloc_code_real_type code;
11209
11210 switch (fixp->fx_r_type)
11211 {
11212 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11213 case BFD_RELOC_SIZE32:
11214 case BFD_RELOC_SIZE64:
11215 if (S_IS_DEFINED (fixp->fx_addsy)
11216 && !S_IS_EXTERNAL (fixp->fx_addsy))
11217 {
11218 /* Resolve size relocation against local symbol to size of
11219 the symbol plus addend. */
11220 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11221 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11222 && !fits_in_unsigned_long (value))
11223 as_bad_where (fixp->fx_file, fixp->fx_line,
11224 _("symbol size computation overflow"));
11225 fixp->fx_addsy = NULL;
11226 fixp->fx_subsy = NULL;
11227 md_apply_fix (fixp, (valueT *) &value, NULL);
11228 return NULL;
11229 }
11230 #endif
11231 /* Fall through. */
11232
11233 case BFD_RELOC_X86_64_PLT32:
11234 case BFD_RELOC_X86_64_GOT32:
11235 case BFD_RELOC_X86_64_GOTPCREL:
11236 case BFD_RELOC_X86_64_GOTPCRELX:
11237 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11238 case BFD_RELOC_386_PLT32:
11239 case BFD_RELOC_386_GOT32:
11240 case BFD_RELOC_386_GOT32X:
11241 case BFD_RELOC_386_GOTOFF:
11242 case BFD_RELOC_386_GOTPC:
11243 case BFD_RELOC_386_TLS_GD:
11244 case BFD_RELOC_386_TLS_LDM:
11245 case BFD_RELOC_386_TLS_LDO_32:
11246 case BFD_RELOC_386_TLS_IE_32:
11247 case BFD_RELOC_386_TLS_IE:
11248 case BFD_RELOC_386_TLS_GOTIE:
11249 case BFD_RELOC_386_TLS_LE_32:
11250 case BFD_RELOC_386_TLS_LE:
11251 case BFD_RELOC_386_TLS_GOTDESC:
11252 case BFD_RELOC_386_TLS_DESC_CALL:
11253 case BFD_RELOC_X86_64_TLSGD:
11254 case BFD_RELOC_X86_64_TLSLD:
11255 case BFD_RELOC_X86_64_DTPOFF32:
11256 case BFD_RELOC_X86_64_DTPOFF64:
11257 case BFD_RELOC_X86_64_GOTTPOFF:
11258 case BFD_RELOC_X86_64_TPOFF32:
11259 case BFD_RELOC_X86_64_TPOFF64:
11260 case BFD_RELOC_X86_64_GOTOFF64:
11261 case BFD_RELOC_X86_64_GOTPC32:
11262 case BFD_RELOC_X86_64_GOT64:
11263 case BFD_RELOC_X86_64_GOTPCREL64:
11264 case BFD_RELOC_X86_64_GOTPC64:
11265 case BFD_RELOC_X86_64_GOTPLT64:
11266 case BFD_RELOC_X86_64_PLTOFF64:
11267 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11268 case BFD_RELOC_X86_64_TLSDESC_CALL:
11269 case BFD_RELOC_RVA:
11270 case BFD_RELOC_VTABLE_ENTRY:
11271 case BFD_RELOC_VTABLE_INHERIT:
11272 #ifdef TE_PE
11273 case BFD_RELOC_32_SECREL:
11274 #endif
11275 code = fixp->fx_r_type;
11276 break;
11277 case BFD_RELOC_X86_64_32S:
11278 if (!fixp->fx_pcrel)
11279 {
11280 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11281 code = fixp->fx_r_type;
11282 break;
11283 }
11284 /* Fall through. */
11285 default:
11286 if (fixp->fx_pcrel)
11287 {
11288 switch (fixp->fx_size)
11289 {
11290 default:
11291 as_bad_where (fixp->fx_file, fixp->fx_line,
11292 _("can not do %d byte pc-relative relocation"),
11293 fixp->fx_size);
11294 code = BFD_RELOC_32_PCREL;
11295 break;
11296 case 1: code = BFD_RELOC_8_PCREL; break;
11297 case 2: code = BFD_RELOC_16_PCREL; break;
11298 case 4: code = BFD_RELOC_32_PCREL; break;
11299 #ifdef BFD64
11300 case 8: code = BFD_RELOC_64_PCREL; break;
11301 #endif
11302 }
11303 }
11304 else
11305 {
11306 switch (fixp->fx_size)
11307 {
11308 default:
11309 as_bad_where (fixp->fx_file, fixp->fx_line,
11310 _("can not do %d byte relocation"),
11311 fixp->fx_size);
11312 code = BFD_RELOC_32;
11313 break;
11314 case 1: code = BFD_RELOC_8; break;
11315 case 2: code = BFD_RELOC_16; break;
11316 case 4: code = BFD_RELOC_32; break;
11317 #ifdef BFD64
11318 case 8: code = BFD_RELOC_64; break;
11319 #endif
11320 }
11321 }
11322 break;
11323 }
11324
11325 if ((code == BFD_RELOC_32
11326 || code == BFD_RELOC_32_PCREL
11327 || code == BFD_RELOC_X86_64_32S)
11328 && GOT_symbol
11329 && fixp->fx_addsy == GOT_symbol)
11330 {
11331 if (!object_64bit)
11332 code = BFD_RELOC_386_GOTPC;
11333 else
11334 code = BFD_RELOC_X86_64_GOTPC32;
11335 }
11336 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11337 && GOT_symbol
11338 && fixp->fx_addsy == GOT_symbol)
11339 {
11340 code = BFD_RELOC_X86_64_GOTPC64;
11341 }
11342
11343 rel = XNEW (arelent);
11344 rel->sym_ptr_ptr = XNEW (asymbol *);
11345 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11346
11347 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
11348
11349 if (!use_rela_relocations)
11350 {
11351 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11352 vtable entry to be used in the relocation's section offset. */
11353 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11354 rel->address = fixp->fx_offset;
11355 #if defined (OBJ_COFF) && defined (TE_PE)
11356 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11357 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11358 else
11359 #endif
11360 rel->addend = 0;
11361 }
11362 /* Use the rela in 64bit mode. */
11363 else
11364 {
11365 if (disallow_64bit_reloc)
11366 switch (code)
11367 {
11368 case BFD_RELOC_X86_64_DTPOFF64:
11369 case BFD_RELOC_X86_64_TPOFF64:
11370 case BFD_RELOC_64_PCREL:
11371 case BFD_RELOC_X86_64_GOTOFF64:
11372 case BFD_RELOC_X86_64_GOT64:
11373 case BFD_RELOC_X86_64_GOTPCREL64:
11374 case BFD_RELOC_X86_64_GOTPC64:
11375 case BFD_RELOC_X86_64_GOTPLT64:
11376 case BFD_RELOC_X86_64_PLTOFF64:
11377 as_bad_where (fixp->fx_file, fixp->fx_line,
11378 _("cannot represent relocation type %s in x32 mode"),
11379 bfd_get_reloc_code_name (code));
11380 break;
11381 default:
11382 break;
11383 }
11384
11385 if (!fixp->fx_pcrel)
11386 rel->addend = fixp->fx_offset;
11387 else
11388 switch (code)
11389 {
11390 case BFD_RELOC_X86_64_PLT32:
11391 case BFD_RELOC_X86_64_GOT32:
11392 case BFD_RELOC_X86_64_GOTPCREL:
11393 case BFD_RELOC_X86_64_GOTPCRELX:
11394 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11395 case BFD_RELOC_X86_64_TLSGD:
11396 case BFD_RELOC_X86_64_TLSLD:
11397 case BFD_RELOC_X86_64_GOTTPOFF:
11398 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11399 case BFD_RELOC_X86_64_TLSDESC_CALL:
11400 rel->addend = fixp->fx_offset - fixp->fx_size;
11401 break;
11402 default:
11403 rel->addend = (section->vma
11404 - fixp->fx_size
11405 + fixp->fx_addnumber
11406 + md_pcrel_from (fixp));
11407 break;
11408 }
11409 }
11410
11411 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11412 if (rel->howto == NULL)
11413 {
11414 as_bad_where (fixp->fx_file, fixp->fx_line,
11415 _("cannot represent relocation type %s"),
11416 bfd_get_reloc_code_name (code));
11417 /* Set howto to a garbage value so that we can keep going. */
11418 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
11419 gas_assert (rel->howto != NULL);
11420 }
11421
11422 return rel;
11423 }
11424
11425 #include "tc-i386-intel.c"
11426
11427 void
11428 tc_x86_parse_to_dw2regnum (expressionS *exp)
11429 {
11430 int saved_naked_reg;
11431 char saved_register_dot;
11432
11433 saved_naked_reg = allow_naked_reg;
11434 allow_naked_reg = 1;
11435 saved_register_dot = register_chars['.'];
11436 register_chars['.'] = '.';
11437 allow_pseudo_reg = 1;
11438 expression_and_evaluate (exp);
11439 allow_pseudo_reg = 0;
11440 register_chars['.'] = saved_register_dot;
11441 allow_naked_reg = saved_naked_reg;
11442
11443 if (exp->X_op == O_register && exp->X_add_number >= 0)
11444 {
11445 if ((addressT) exp->X_add_number < i386_regtab_size)
11446 {
11447 exp->X_op = O_constant;
11448 exp->X_add_number = i386_regtab[exp->X_add_number]
11449 .dw2_regnum[flag_code >> 1];
11450 }
11451 else
11452 exp->X_op = O_illegal;
11453 }
11454 }
11455
11456 void
11457 tc_x86_frame_initial_instructions (void)
11458 {
11459 static unsigned int sp_regno[2];
11460
11461 if (!sp_regno[flag_code >> 1])
11462 {
11463 char *saved_input = input_line_pointer;
11464 char sp[][4] = {"esp", "rsp"};
11465 expressionS exp;
11466
11467 input_line_pointer = sp[flag_code >> 1];
11468 tc_x86_parse_to_dw2regnum (&exp);
11469 gas_assert (exp.X_op == O_constant);
11470 sp_regno[flag_code >> 1] = exp.X_add_number;
11471 input_line_pointer = saved_input;
11472 }
11473
11474 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11475 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
11476 }
11477
11478 int
11479 x86_dwarf2_addr_size (void)
11480 {
11481 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11482 if (x86_elf_abi == X86_64_X32_ABI)
11483 return 4;
11484 #endif
11485 return bfd_arch_bits_per_address (stdoutput) / 8;
11486 }
11487
11488 int
11489 i386_elf_section_type (const char *str, size_t len)
11490 {
11491 if (flag_code == CODE_64BIT
11492 && len == sizeof ("unwind") - 1
11493 && strncmp (str, "unwind", 6) == 0)
11494 return SHT_X86_64_UNWIND;
11495
11496 return -1;
11497 }
11498
11499 #ifdef TE_SOLARIS
11500 void
11501 i386_solaris_fix_up_eh_frame (segT sec)
11502 {
11503 if (flag_code == CODE_64BIT)
11504 elf_section_type (sec) = SHT_X86_64_UNWIND;
11505 }
11506 #endif
11507
11508 #ifdef TE_PE
11509 void
11510 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11511 {
11512 expressionS exp;
11513
11514 exp.X_op = O_secrel;
11515 exp.X_add_symbol = symbol;
11516 exp.X_add_number = 0;
11517 emit_expr (&exp, size);
11518 }
11519 #endif
11520
11521 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11522 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11523
11524 bfd_vma
11525 x86_64_section_letter (int letter, const char **ptr_msg)
11526 {
11527 if (flag_code == CODE_64BIT)
11528 {
11529 if (letter == 'l')
11530 return SHF_X86_64_LARGE;
11531
11532 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11533 }
11534 else
11535 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11536 return -1;
11537 }
11538
11539 bfd_vma
11540 x86_64_section_word (char *str, size_t len)
11541 {
11542 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11543 return SHF_X86_64_LARGE;
11544
11545 return -1;
11546 }
11547
11548 static void
11549 handle_large_common (int small ATTRIBUTE_UNUSED)
11550 {
11551 if (flag_code != CODE_64BIT)
11552 {
11553 s_comm_internal (0, elf_common_parse);
11554 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11555 }
11556 else
11557 {
11558 static segT lbss_section;
11559 asection *saved_com_section_ptr = elf_com_section_ptr;
11560 asection *saved_bss_section = bss_section;
11561
11562 if (lbss_section == NULL)
11563 {
11564 flagword applicable;
11565 segT seg = now_seg;
11566 subsegT subseg = now_subseg;
11567
11568 /* The .lbss section is for local .largecomm symbols. */
11569 lbss_section = subseg_new (".lbss", 0);
11570 applicable = bfd_applicable_section_flags (stdoutput);
11571 bfd_set_section_flags (stdoutput, lbss_section,
11572 applicable & SEC_ALLOC);
11573 seg_info (lbss_section)->bss = 1;
11574
11575 subseg_set (seg, subseg);
11576 }
11577
11578 elf_com_section_ptr = &_bfd_elf_large_com_section;
11579 bss_section = lbss_section;
11580
11581 s_comm_internal (0, elf_common_parse);
11582
11583 elf_com_section_ptr = saved_com_section_ptr;
11584 bss_section = saved_bss_section;
11585 }
11586 }
11587 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.292774 seconds and 4 git commands to generate.