x86: Optimize with EVEX128 encoding for AVX512VL
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 /* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88 #define END_OF_INSN '\0'
89
90 /*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97 typedef struct
98 {
99 const insn_template *start;
100 const insn_template *end;
101 }
102 templates;
103
104 /* 386 operand encoding bytes: see 386 book for details of this. */
105 typedef struct
106 {
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110 }
111 modrm_byte;
112
113 /* x86-64 extension prefix. */
114 typedef int rex_byte;
115
116 /* 386 opcode byte to code indirect addressing. */
117 typedef struct
118 {
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122 }
123 sib_byte;
124
125 /* x86 arch names, types and features */
126 typedef struct
127 {
128 const char *name; /* arch name */
129 unsigned int len; /* arch string length */
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
132 unsigned int skip; /* show_arch should skip this. */
133 }
134 arch_entry;
135
136 /* Used to turn off indicated flags. */
137 typedef struct
138 {
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142 }
143 noarch_entry;
144
145 static void update_code_flag (int, int);
146 static void set_code_flag (int);
147 static void set_16bit_gcc_code_flag (int);
148 static void set_intel_syntax (int);
149 static void set_intel_mnemonic (int);
150 static void set_allow_index_reg (int);
151 static void set_check (int);
152 static void set_cpu_arch (int);
153 #ifdef TE_PE
154 static void pe_directive_secrel (int);
155 #endif
156 static void signed_cons (int);
157 static char *output_invalid (int c);
158 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
162 static int i386_att_operand (char *);
163 static int i386_intel_operand (char *, int);
164 static int i386_intel_simplify (expressionS *);
165 static int i386_intel_parse_name (const char *, expressionS *);
166 static const reg_entry *parse_register (char *, char **);
167 static char *parse_insn (char *, char *);
168 static char *parse_operands (char *, const char *);
169 static void swap_operands (void);
170 static void swap_2_operands (int, int);
171 static void optimize_imm (void);
172 static void optimize_disp (void);
173 static const insn_template *match_template (char);
174 static int check_string (void);
175 static int process_suffix (void);
176 static int check_byte_reg (void);
177 static int check_long_reg (void);
178 static int check_qword_reg (void);
179 static int check_word_reg (void);
180 static int finalize_imm (void);
181 static int process_operands (void);
182 static const seg_entry *build_modrm_byte (void);
183 static void output_insn (void);
184 static void output_imm (fragS *, offsetT);
185 static void output_disp (fragS *, offsetT);
186 #ifndef I386COFF
187 static void s_bss (int);
188 #endif
189 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190 static void handle_large_common (int small ATTRIBUTE_UNUSED);
191 #endif
192
193 static const char *default_arch = DEFAULT_ARCH;
194
195 /* This struct describes rounding control and SAE in the instruction. */
196 struct RC_Operation
197 {
198 enum rc_type
199 {
200 rne = 0,
201 rd,
202 ru,
203 rz,
204 saeonly
205 } type;
206 int operand;
207 };
208
209 static struct RC_Operation rc_op;
210
211 /* The struct describes masking, applied to OPERAND in the instruction.
212 MASK is a pointer to the corresponding mask register. ZEROING tells
213 whether merging or zeroing mask is used. */
214 struct Mask_Operation
215 {
216 const reg_entry *mask;
217 unsigned int zeroing;
218 /* The operand where this operation is associated. */
219 int operand;
220 };
221
222 static struct Mask_Operation mask_op;
223
224 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
225 broadcast factor. */
226 struct Broadcast_Operation
227 {
228 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
229 int type;
230
231 /* Index of broadcasted operand. */
232 int operand;
233 };
234
235 static struct Broadcast_Operation broadcast_op;
236
237 /* VEX prefix. */
238 typedef struct
239 {
240 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
241 unsigned char bytes[4];
242 unsigned int length;
243 /* Destination or source register specifier. */
244 const reg_entry *register_specifier;
245 } vex_prefix;
246
247 /* 'md_assemble ()' gathers together information and puts it into a
248 i386_insn. */
249
250 union i386_op
251 {
252 expressionS *disps;
253 expressionS *imms;
254 const reg_entry *regs;
255 };
256
257 enum i386_error
258 {
259 operand_size_mismatch,
260 operand_type_mismatch,
261 register_type_mismatch,
262 number_of_operands_mismatch,
263 invalid_instruction_suffix,
264 bad_imm4,
265 unsupported_with_intel_mnemonic,
266 unsupported_syntax,
267 unsupported,
268 invalid_vsib_address,
269 invalid_vector_register_set,
270 unsupported_vector_index_register,
271 unsupported_broadcast,
272 broadcast_not_on_src_operand,
273 broadcast_needed,
274 unsupported_masking,
275 mask_not_on_destination,
276 no_default_mask,
277 unsupported_rc_sae,
278 rc_sae_operand_not_last_imm,
279 invalid_register_operand,
280 };
281
282 struct _i386_insn
283 {
284 /* TM holds the template for the insn were currently assembling. */
285 insn_template tm;
286
287 /* SUFFIX holds the instruction size suffix for byte, word, dword
288 or qword, if given. */
289 char suffix;
290
291 /* OPERANDS gives the number of given operands. */
292 unsigned int operands;
293
294 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
295 of given register, displacement, memory operands and immediate
296 operands. */
297 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
298
299 /* TYPES [i] is the type (see above #defines) which tells us how to
300 use OP[i] for the corresponding operand. */
301 i386_operand_type types[MAX_OPERANDS];
302
303 /* Displacement expression, immediate expression, or register for each
304 operand. */
305 union i386_op op[MAX_OPERANDS];
306
307 /* Flags for operands. */
308 unsigned int flags[MAX_OPERANDS];
309 #define Operand_PCrel 1
310
311 /* Relocation type for operand */
312 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
313
314 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
315 the base index byte below. */
316 const reg_entry *base_reg;
317 const reg_entry *index_reg;
318 unsigned int log2_scale_factor;
319
320 /* SEG gives the seg_entries of this insn. They are zero unless
321 explicit segment overrides are given. */
322 const seg_entry *seg[2];
323
324 /* Copied first memory operand string, for re-checking. */
325 char *memop1_string;
326
327 /* PREFIX holds all the given prefix opcodes (usually null).
328 PREFIXES is the number of prefix opcodes. */
329 unsigned int prefixes;
330 unsigned char prefix[MAX_PREFIXES];
331
332 /* RM and SIB are the modrm byte and the sib byte where the
333 addressing modes of this insn are encoded. */
334 modrm_byte rm;
335 rex_byte rex;
336 rex_byte vrex;
337 sib_byte sib;
338 vex_prefix vex;
339
340 /* Masking attributes. */
341 struct Mask_Operation *mask;
342
343 /* Rounding control and SAE attributes. */
344 struct RC_Operation *rounding;
345
346 /* Broadcasting attributes. */
347 struct Broadcast_Operation *broadcast;
348
349 /* Compressed disp8*N attribute. */
350 unsigned int memshift;
351
352 /* Prefer load or store in encoding. */
353 enum
354 {
355 dir_encoding_default = 0,
356 dir_encoding_load,
357 dir_encoding_store
358 } dir_encoding;
359
360 /* Prefer 8bit or 32bit displacement in encoding. */
361 enum
362 {
363 disp_encoding_default = 0,
364 disp_encoding_8bit,
365 disp_encoding_32bit
366 } disp_encoding;
367
368 /* Prefer the REX byte in encoding. */
369 bfd_boolean rex_encoding;
370
371 /* Disable instruction size optimization. */
372 bfd_boolean no_optimize;
373
374 /* How to encode vector instructions. */
375 enum
376 {
377 vex_encoding_default = 0,
378 vex_encoding_vex2,
379 vex_encoding_vex3,
380 vex_encoding_evex
381 } vec_encoding;
382
383 /* REP prefix. */
384 const char *rep_prefix;
385
386 /* HLE prefix. */
387 const char *hle_prefix;
388
389 /* Have BND prefix. */
390 const char *bnd_prefix;
391
392 /* Have NOTRACK prefix. */
393 const char *notrack_prefix;
394
395 /* Error message. */
396 enum i386_error error;
397 };
398
399 typedef struct _i386_insn i386_insn;
400
401 /* Link RC type with corresponding string, that'll be looked for in
402 asm. */
403 struct RC_name
404 {
405 enum rc_type type;
406 const char *name;
407 unsigned int len;
408 };
409
410 static const struct RC_name RC_NamesTable[] =
411 {
412 { rne, STRING_COMMA_LEN ("rn-sae") },
413 { rd, STRING_COMMA_LEN ("rd-sae") },
414 { ru, STRING_COMMA_LEN ("ru-sae") },
415 { rz, STRING_COMMA_LEN ("rz-sae") },
416 { saeonly, STRING_COMMA_LEN ("sae") },
417 };
418
419 /* List of chars besides those in app.c:symbol_chars that can start an
420 operand. Used to prevent the scrubber eating vital white-space. */
421 const char extra_symbol_chars[] = "*%-([{}"
422 #ifdef LEX_AT
423 "@"
424 #endif
425 #ifdef LEX_QM
426 "?"
427 #endif
428 ;
429
430 #if (defined (TE_I386AIX) \
431 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
432 && !defined (TE_GNU) \
433 && !defined (TE_LINUX) \
434 && !defined (TE_NACL) \
435 && !defined (TE_NETWARE) \
436 && !defined (TE_FreeBSD) \
437 && !defined (TE_DragonFly) \
438 && !defined (TE_NetBSD)))
439 /* This array holds the chars that always start a comment. If the
440 pre-processor is disabled, these aren't very useful. The option
441 --divide will remove '/' from this list. */
442 const char *i386_comment_chars = "#/";
443 #define SVR4_COMMENT_CHARS 1
444 #define PREFIX_SEPARATOR '\\'
445
446 #else
447 const char *i386_comment_chars = "#";
448 #define PREFIX_SEPARATOR '/'
449 #endif
450
451 /* This array holds the chars that only start a comment at the beginning of
452 a line. If the line seems to have the form '# 123 filename'
453 .line and .file directives will appear in the pre-processed output.
454 Note that input_file.c hand checks for '#' at the beginning of the
455 first line of the input file. This is because the compiler outputs
456 #NO_APP at the beginning of its output.
457 Also note that comments started like this one will always work if
458 '/' isn't otherwise defined. */
459 const char line_comment_chars[] = "#/";
460
461 const char line_separator_chars[] = ";";
462
463 /* Chars that can be used to separate mant from exp in floating point
464 nums. */
465 const char EXP_CHARS[] = "eE";
466
467 /* Chars that mean this number is a floating point constant
468 As in 0f12.456
469 or 0d1.2345e12. */
470 const char FLT_CHARS[] = "fFdDxX";
471
472 /* Tables for lexical analysis. */
473 static char mnemonic_chars[256];
474 static char register_chars[256];
475 static char operand_chars[256];
476 static char identifier_chars[256];
477 static char digit_chars[256];
478
479 /* Lexical macros. */
480 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
481 #define is_operand_char(x) (operand_chars[(unsigned char) x])
482 #define is_register_char(x) (register_chars[(unsigned char) x])
483 #define is_space_char(x) ((x) == ' ')
484 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
485 #define is_digit_char(x) (digit_chars[(unsigned char) x])
486
487 /* All non-digit non-letter characters that may occur in an operand. */
488 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
489
490 /* md_assemble() always leaves the strings it's passed unaltered. To
491 effect this we maintain a stack of saved characters that we've smashed
492 with '\0's (indicating end of strings for various sub-fields of the
493 assembler instruction). */
494 static char save_stack[32];
495 static char *save_stack_p;
496 #define END_STRING_AND_SAVE(s) \
497 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
498 #define RESTORE_END_STRING(s) \
499 do { *(s) = *--save_stack_p; } while (0)
500
501 /* The instruction we're assembling. */
502 static i386_insn i;
503
504 /* Possible templates for current insn. */
505 static const templates *current_templates;
506
507 /* Per instruction expressionS buffers: max displacements & immediates. */
508 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
509 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
510
511 /* Current operand we are working on. */
512 static int this_operand = -1;
513
514 /* We support four different modes. FLAG_CODE variable is used to distinguish
515 these. */
516
517 enum flag_code {
518 CODE_32BIT,
519 CODE_16BIT,
520 CODE_64BIT };
521
522 static enum flag_code flag_code;
523 static unsigned int object_64bit;
524 static unsigned int disallow_64bit_reloc;
525 static int use_rela_relocations = 0;
526
527 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
528 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
529 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
530
531 /* The ELF ABI to use. */
532 enum x86_elf_abi
533 {
534 I386_ABI,
535 X86_64_ABI,
536 X86_64_X32_ABI
537 };
538
539 static enum x86_elf_abi x86_elf_abi = I386_ABI;
540 #endif
541
542 #if defined (TE_PE) || defined (TE_PEP)
543 /* Use big object file format. */
544 static int use_big_obj = 0;
545 #endif
546
547 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
548 /* 1 if generating code for a shared library. */
549 static int shared = 0;
550 #endif
551
552 /* 1 for intel syntax,
553 0 if att syntax. */
554 static int intel_syntax = 0;
555
556 /* 1 for Intel64 ISA,
557 0 if AMD64 ISA. */
558 static int intel64;
559
560 /* 1 for intel mnemonic,
561 0 if att mnemonic. */
562 static int intel_mnemonic = !SYSV386_COMPAT;
563
564 /* 1 if pseudo registers are permitted. */
565 static int allow_pseudo_reg = 0;
566
567 /* 1 if register prefix % not required. */
568 static int allow_naked_reg = 0;
569
570 /* 1 if the assembler should add BND prefix for all control-transferring
571 instructions supporting it, even if this prefix wasn't specified
572 explicitly. */
573 static int add_bnd_prefix = 0;
574
575 /* 1 if pseudo index register, eiz/riz, is allowed . */
576 static int allow_index_reg = 0;
577
578 /* 1 if the assembler should ignore LOCK prefix, even if it was
579 specified explicitly. */
580 static int omit_lock_prefix = 0;
581
582 /* 1 if the assembler should encode lfence, mfence, and sfence as
583 "lock addl $0, (%{re}sp)". */
584 static int avoid_fence = 0;
585
586 /* 1 if the assembler should generate relax relocations. */
587
588 static int generate_relax_relocations
589 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
590
591 static enum check_kind
592 {
593 check_none = 0,
594 check_warning,
595 check_error
596 }
597 sse_check, operand_check = check_warning;
598
599 /* Optimization:
600 1. Clear the REX_W bit with register operand if possible.
601 2. Above plus use 128bit vector instruction to clear the full vector
602 register.
603 */
604 static int optimize = 0;
605
606 /* Optimization:
607 1. Clear the REX_W bit with register operand if possible.
608 2. Above plus use 128bit vector instruction to clear the full vector
609 register.
610 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
611 "testb $imm7,%r8".
612 */
613 static int optimize_for_space = 0;
614
615 /* Register prefix used for error message. */
616 static const char *register_prefix = "%";
617
618 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
619 leave, push, and pop instructions so that gcc has the same stack
620 frame as in 32 bit mode. */
621 static char stackop_size = '\0';
622
623 /* Non-zero to optimize code alignment. */
624 int optimize_align_code = 1;
625
626 /* Non-zero to quieten some warnings. */
627 static int quiet_warnings = 0;
628
629 /* CPU name. */
630 static const char *cpu_arch_name = NULL;
631 static char *cpu_sub_arch_name = NULL;
632
633 /* CPU feature flags. */
634 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
635
636 /* If we have selected a cpu we are generating instructions for. */
637 static int cpu_arch_tune_set = 0;
638
639 /* Cpu we are generating instructions for. */
640 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
641
642 /* CPU feature flags of cpu we are generating instructions for. */
643 static i386_cpu_flags cpu_arch_tune_flags;
644
645 /* CPU instruction set architecture used. */
646 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
647
648 /* CPU feature flags of instruction set architecture used. */
649 i386_cpu_flags cpu_arch_isa_flags;
650
651 /* If set, conditional jumps are not automatically promoted to handle
652 larger than a byte offset. */
653 static unsigned int no_cond_jump_promotion = 0;
654
655 /* Encode SSE instructions with VEX prefix. */
656 static unsigned int sse2avx;
657
658 /* Encode scalar AVX instructions with specific vector length. */
659 static enum
660 {
661 vex128 = 0,
662 vex256
663 } avxscalar;
664
665 /* Encode scalar EVEX LIG instructions with specific vector length. */
666 static enum
667 {
668 evexl128 = 0,
669 evexl256,
670 evexl512
671 } evexlig;
672
673 /* Encode EVEX WIG instructions with specific evex.w. */
674 static enum
675 {
676 evexw0 = 0,
677 evexw1
678 } evexwig;
679
680 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
681 static enum rc_type evexrcig = rne;
682
683 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
684 static symbolS *GOT_symbol;
685
686 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
687 unsigned int x86_dwarf2_return_column;
688
689 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
690 int x86_cie_data_alignment;
691
692 /* Interface to relax_segment.
693 There are 3 major relax states for 386 jump insns because the
694 different types of jumps add different sizes to frags when we're
695 figuring out what sort of jump to choose to reach a given label. */
696
697 /* Types. */
698 #define UNCOND_JUMP 0
699 #define COND_JUMP 1
700 #define COND_JUMP86 2
701
702 /* Sizes. */
703 #define CODE16 1
704 #define SMALL 0
705 #define SMALL16 (SMALL | CODE16)
706 #define BIG 2
707 #define BIG16 (BIG | CODE16)
708
709 #ifndef INLINE
710 #ifdef __GNUC__
711 #define INLINE __inline__
712 #else
713 #define INLINE
714 #endif
715 #endif
716
717 #define ENCODE_RELAX_STATE(type, size) \
718 ((relax_substateT) (((type) << 2) | (size)))
719 #define TYPE_FROM_RELAX_STATE(s) \
720 ((s) >> 2)
721 #define DISP_SIZE_FROM_RELAX_STATE(s) \
722 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
723
724 /* This table is used by relax_frag to promote short jumps to long
725 ones where necessary. SMALL (short) jumps may be promoted to BIG
726 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
727 don't allow a short jump in a 32 bit code segment to be promoted to
728 a 16 bit offset jump because it's slower (requires data size
729 prefix), and doesn't work, unless the destination is in the bottom
730 64k of the code segment (The top 16 bits of eip are zeroed). */
731
732 const relax_typeS md_relax_table[] =
733 {
734 /* The fields are:
735 1) most positive reach of this state,
736 2) most negative reach of this state,
737 3) how many bytes this mode will have in the variable part of the frag
738 4) which index into the table to try if we can't fit into this one. */
739
740 /* UNCOND_JUMP states. */
741 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
742 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
743 /* dword jmp adds 4 bytes to frag:
744 0 extra opcode bytes, 4 displacement bytes. */
745 {0, 0, 4, 0},
746 /* word jmp adds 2 byte2 to frag:
747 0 extra opcode bytes, 2 displacement bytes. */
748 {0, 0, 2, 0},
749
750 /* COND_JUMP states. */
751 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
752 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
753 /* dword conditionals adds 5 bytes to frag:
754 1 extra opcode byte, 4 displacement bytes. */
755 {0, 0, 5, 0},
756 /* word conditionals add 3 bytes to frag:
757 1 extra opcode byte, 2 displacement bytes. */
758 {0, 0, 3, 0},
759
760 /* COND_JUMP86 states. */
761 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
762 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
763 /* dword conditionals adds 5 bytes to frag:
764 1 extra opcode byte, 4 displacement bytes. */
765 {0, 0, 5, 0},
766 /* word conditionals add 4 bytes to frag:
767 1 displacement byte and a 3 byte long branch insn. */
768 {0, 0, 4, 0}
769 };
770
771 static const arch_entry cpu_arch[] =
772 {
773 /* Do not replace the first two entries - i386_target_format()
774 relies on them being there in this order. */
775 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
776 CPU_GENERIC32_FLAGS, 0 },
777 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
778 CPU_GENERIC64_FLAGS, 0 },
779 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
780 CPU_NONE_FLAGS, 0 },
781 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
782 CPU_I186_FLAGS, 0 },
783 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
784 CPU_I286_FLAGS, 0 },
785 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
786 CPU_I386_FLAGS, 0 },
787 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
788 CPU_I486_FLAGS, 0 },
789 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
790 CPU_I586_FLAGS, 0 },
791 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
792 CPU_I686_FLAGS, 0 },
793 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
794 CPU_I586_FLAGS, 0 },
795 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
796 CPU_PENTIUMPRO_FLAGS, 0 },
797 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
798 CPU_P2_FLAGS, 0 },
799 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
800 CPU_P3_FLAGS, 0 },
801 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
802 CPU_P4_FLAGS, 0 },
803 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
804 CPU_CORE_FLAGS, 0 },
805 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
806 CPU_NOCONA_FLAGS, 0 },
807 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
808 CPU_CORE_FLAGS, 1 },
809 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
810 CPU_CORE_FLAGS, 0 },
811 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
812 CPU_CORE2_FLAGS, 1 },
813 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
814 CPU_CORE2_FLAGS, 0 },
815 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
816 CPU_COREI7_FLAGS, 0 },
817 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
818 CPU_L1OM_FLAGS, 0 },
819 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
820 CPU_K1OM_FLAGS, 0 },
821 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
822 CPU_IAMCU_FLAGS, 0 },
823 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
824 CPU_K6_FLAGS, 0 },
825 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
826 CPU_K6_2_FLAGS, 0 },
827 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
828 CPU_ATHLON_FLAGS, 0 },
829 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
830 CPU_K8_FLAGS, 1 },
831 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
832 CPU_K8_FLAGS, 0 },
833 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
834 CPU_K8_FLAGS, 0 },
835 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
836 CPU_AMDFAM10_FLAGS, 0 },
837 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
838 CPU_BDVER1_FLAGS, 0 },
839 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
840 CPU_BDVER2_FLAGS, 0 },
841 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
842 CPU_BDVER3_FLAGS, 0 },
843 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
844 CPU_BDVER4_FLAGS, 0 },
845 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
846 CPU_ZNVER1_FLAGS, 0 },
847 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
848 CPU_BTVER1_FLAGS, 0 },
849 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
850 CPU_BTVER2_FLAGS, 0 },
851 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
852 CPU_8087_FLAGS, 0 },
853 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
854 CPU_287_FLAGS, 0 },
855 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
856 CPU_387_FLAGS, 0 },
857 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
858 CPU_687_FLAGS, 0 },
859 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
860 CPU_MMX_FLAGS, 0 },
861 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
862 CPU_SSE_FLAGS, 0 },
863 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
864 CPU_SSE2_FLAGS, 0 },
865 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
866 CPU_SSE3_FLAGS, 0 },
867 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
868 CPU_SSSE3_FLAGS, 0 },
869 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
870 CPU_SSE4_1_FLAGS, 0 },
871 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
872 CPU_SSE4_2_FLAGS, 0 },
873 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
874 CPU_SSE4_2_FLAGS, 0 },
875 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
876 CPU_AVX_FLAGS, 0 },
877 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
878 CPU_AVX2_FLAGS, 0 },
879 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
880 CPU_AVX512F_FLAGS, 0 },
881 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
882 CPU_AVX512CD_FLAGS, 0 },
883 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
884 CPU_AVX512ER_FLAGS, 0 },
885 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
886 CPU_AVX512PF_FLAGS, 0 },
887 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
888 CPU_AVX512DQ_FLAGS, 0 },
889 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
890 CPU_AVX512BW_FLAGS, 0 },
891 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
892 CPU_AVX512VL_FLAGS, 0 },
893 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
894 CPU_VMX_FLAGS, 0 },
895 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
896 CPU_VMFUNC_FLAGS, 0 },
897 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
898 CPU_SMX_FLAGS, 0 },
899 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
900 CPU_XSAVE_FLAGS, 0 },
901 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
902 CPU_XSAVEOPT_FLAGS, 0 },
903 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
904 CPU_XSAVEC_FLAGS, 0 },
905 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
906 CPU_XSAVES_FLAGS, 0 },
907 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
908 CPU_AES_FLAGS, 0 },
909 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
910 CPU_PCLMUL_FLAGS, 0 },
911 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
912 CPU_PCLMUL_FLAGS, 1 },
913 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
914 CPU_FSGSBASE_FLAGS, 0 },
915 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
916 CPU_RDRND_FLAGS, 0 },
917 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
918 CPU_F16C_FLAGS, 0 },
919 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
920 CPU_BMI2_FLAGS, 0 },
921 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
922 CPU_FMA_FLAGS, 0 },
923 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
924 CPU_FMA4_FLAGS, 0 },
925 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
926 CPU_XOP_FLAGS, 0 },
927 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
928 CPU_LWP_FLAGS, 0 },
929 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
930 CPU_MOVBE_FLAGS, 0 },
931 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
932 CPU_CX16_FLAGS, 0 },
933 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
934 CPU_EPT_FLAGS, 0 },
935 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
936 CPU_LZCNT_FLAGS, 0 },
937 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
938 CPU_HLE_FLAGS, 0 },
939 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
940 CPU_RTM_FLAGS, 0 },
941 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
942 CPU_INVPCID_FLAGS, 0 },
943 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
944 CPU_CLFLUSH_FLAGS, 0 },
945 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
946 CPU_NOP_FLAGS, 0 },
947 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
948 CPU_SYSCALL_FLAGS, 0 },
949 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
950 CPU_RDTSCP_FLAGS, 0 },
951 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
952 CPU_3DNOW_FLAGS, 0 },
953 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
954 CPU_3DNOWA_FLAGS, 0 },
955 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
956 CPU_PADLOCK_FLAGS, 0 },
957 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
958 CPU_SVME_FLAGS, 1 },
959 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
960 CPU_SVME_FLAGS, 0 },
961 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
962 CPU_SSE4A_FLAGS, 0 },
963 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
964 CPU_ABM_FLAGS, 0 },
965 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
966 CPU_BMI_FLAGS, 0 },
967 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
968 CPU_TBM_FLAGS, 0 },
969 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
970 CPU_ADX_FLAGS, 0 },
971 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
972 CPU_RDSEED_FLAGS, 0 },
973 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
974 CPU_PRFCHW_FLAGS, 0 },
975 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
976 CPU_SMAP_FLAGS, 0 },
977 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
978 CPU_MPX_FLAGS, 0 },
979 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
980 CPU_SHA_FLAGS, 0 },
981 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
982 CPU_CLFLUSHOPT_FLAGS, 0 },
983 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
984 CPU_PREFETCHWT1_FLAGS, 0 },
985 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
986 CPU_SE1_FLAGS, 0 },
987 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
988 CPU_CLWB_FLAGS, 0 },
989 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
990 CPU_AVX512IFMA_FLAGS, 0 },
991 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
992 CPU_AVX512VBMI_FLAGS, 0 },
993 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
994 CPU_AVX512_4FMAPS_FLAGS, 0 },
995 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
996 CPU_AVX512_4VNNIW_FLAGS, 0 },
997 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
998 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
999 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1000 CPU_AVX512_VBMI2_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1002 CPU_AVX512_VNNI_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1004 CPU_AVX512_BITALG_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1006 CPU_CLZERO_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1008 CPU_MWAITX_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1010 CPU_OSPKE_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1012 CPU_RDPID_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1014 CPU_PTWRITE_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1016 CPU_IBT_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1018 CPU_SHSTK_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1020 CPU_GFNI_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1022 CPU_VAES_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1024 CPU_VPCLMULQDQ_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1026 CPU_WBNOINVD_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1028 CPU_PCONFIG_FLAGS, 0 },
1029 };
1030
1031 static const noarch_entry cpu_noarch[] =
1032 {
1033 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1034 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1035 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1036 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1037 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1038 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1039 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1040 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1041 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1042 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1043 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1044 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1045 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1046 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1047 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1048 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1049 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1050 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1051 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1052 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1053 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1054 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1055 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1056 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1057 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1058 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1059 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1060 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1061 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1062 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1063 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1064 };
1065
1066 #ifdef I386COFF
1067 /* Like s_lcomm_internal in gas/read.c but the alignment string
1068 is allowed to be optional. */
1069
1070 static symbolS *
1071 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1072 {
1073 addressT align = 0;
1074
1075 SKIP_WHITESPACE ();
1076
1077 if (needs_align
1078 && *input_line_pointer == ',')
1079 {
1080 align = parse_align (needs_align - 1);
1081
1082 if (align == (addressT) -1)
1083 return NULL;
1084 }
1085 else
1086 {
1087 if (size >= 8)
1088 align = 3;
1089 else if (size >= 4)
1090 align = 2;
1091 else if (size >= 2)
1092 align = 1;
1093 else
1094 align = 0;
1095 }
1096
1097 bss_alloc (symbolP, size, align);
1098 return symbolP;
1099 }
1100
1101 static void
1102 pe_lcomm (int needs_align)
1103 {
1104 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1105 }
1106 #endif
1107
1108 const pseudo_typeS md_pseudo_table[] =
1109 {
1110 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1111 {"align", s_align_bytes, 0},
1112 #else
1113 {"align", s_align_ptwo, 0},
1114 #endif
1115 {"arch", set_cpu_arch, 0},
1116 #ifndef I386COFF
1117 {"bss", s_bss, 0},
1118 #else
1119 {"lcomm", pe_lcomm, 1},
1120 #endif
1121 {"ffloat", float_cons, 'f'},
1122 {"dfloat", float_cons, 'd'},
1123 {"tfloat", float_cons, 'x'},
1124 {"value", cons, 2},
1125 {"slong", signed_cons, 4},
1126 {"noopt", s_ignore, 0},
1127 {"optim", s_ignore, 0},
1128 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1129 {"code16", set_code_flag, CODE_16BIT},
1130 {"code32", set_code_flag, CODE_32BIT},
1131 #ifdef BFD64
1132 {"code64", set_code_flag, CODE_64BIT},
1133 #endif
1134 {"intel_syntax", set_intel_syntax, 1},
1135 {"att_syntax", set_intel_syntax, 0},
1136 {"intel_mnemonic", set_intel_mnemonic, 1},
1137 {"att_mnemonic", set_intel_mnemonic, 0},
1138 {"allow_index_reg", set_allow_index_reg, 1},
1139 {"disallow_index_reg", set_allow_index_reg, 0},
1140 {"sse_check", set_check, 0},
1141 {"operand_check", set_check, 1},
1142 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1143 {"largecomm", handle_large_common, 0},
1144 #else
1145 {"file", dwarf2_directive_file, 0},
1146 {"loc", dwarf2_directive_loc, 0},
1147 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1148 #endif
1149 #ifdef TE_PE
1150 {"secrel32", pe_directive_secrel, 0},
1151 #endif
1152 {0, 0, 0}
1153 };
1154
1155 /* For interface with expression (). */
1156 extern char *input_line_pointer;
1157
1158 /* Hash table for instruction mnemonic lookup. */
1159 static struct hash_control *op_hash;
1160
1161 /* Hash table for register lookup. */
1162 static struct hash_control *reg_hash;
1163 \f
1164 /* Various efficient no-op patterns for aligning code labels.
1165 Note: Don't try to assemble the instructions in the comments.
1166 0L and 0w are not legal. */
1167 static const unsigned char f32_1[] =
1168 {0x90}; /* nop */
1169 static const unsigned char f32_2[] =
1170 {0x66,0x90}; /* xchg %ax,%ax */
1171 static const unsigned char f32_3[] =
1172 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1173 static const unsigned char f32_4[] =
1174 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1175 static const unsigned char f32_6[] =
1176 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1177 static const unsigned char f32_7[] =
1178 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1179 static const unsigned char f16_3[] =
1180 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1181 static const unsigned char f16_4[] =
1182 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1183 static const unsigned char jump_disp8[] =
1184 {0xeb}; /* jmp disp8 */
1185 static const unsigned char jump32_disp32[] =
1186 {0xe9}; /* jmp disp32 */
1187 static const unsigned char jump16_disp32[] =
1188 {0x66,0xe9}; /* jmp disp32 */
1189 /* 32-bit NOPs patterns. */
1190 static const unsigned char *const f32_patt[] = {
1191 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1192 };
1193 /* 16-bit NOPs patterns. */
1194 static const unsigned char *const f16_patt[] = {
1195 f32_1, f32_2, f16_3, f16_4
1196 };
1197 /* nopl (%[re]ax) */
1198 static const unsigned char alt_3[] =
1199 {0x0f,0x1f,0x00};
1200 /* nopl 0(%[re]ax) */
1201 static const unsigned char alt_4[] =
1202 {0x0f,0x1f,0x40,0x00};
1203 /* nopl 0(%[re]ax,%[re]ax,1) */
1204 static const unsigned char alt_5[] =
1205 {0x0f,0x1f,0x44,0x00,0x00};
1206 /* nopw 0(%[re]ax,%[re]ax,1) */
1207 static const unsigned char alt_6[] =
1208 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1209 /* nopl 0L(%[re]ax) */
1210 static const unsigned char alt_7[] =
1211 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1212 /* nopl 0L(%[re]ax,%[re]ax,1) */
1213 static const unsigned char alt_8[] =
1214 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1215 /* nopw 0L(%[re]ax,%[re]ax,1) */
1216 static const unsigned char alt_9[] =
1217 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1218 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1219 static const unsigned char alt_10[] =
1220 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1221 /* data16 nopw %cs:0L(%eax,%eax,1) */
1222 static const unsigned char alt_11[] =
1223 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1224 /* 32-bit and 64-bit NOPs patterns. */
1225 static const unsigned char *const alt_patt[] = {
1226 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1227 alt_9, alt_10, alt_11
1228 };
1229
1230 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1231 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1232
1233 static void
1234 i386_output_nops (char *where, const unsigned char *const *patt,
1235 int count, int max_single_nop_size)
1236
1237 {
1238 /* Place the longer NOP first. */
1239 int last;
1240 int offset;
1241 const unsigned char *nops = patt[max_single_nop_size - 1];
1242
1243 /* Use the smaller one if the requsted one isn't available. */
1244 if (nops == NULL)
1245 {
1246 max_single_nop_size--;
1247 nops = patt[max_single_nop_size - 1];
1248 }
1249
1250 last = count % max_single_nop_size;
1251
1252 count -= last;
1253 for (offset = 0; offset < count; offset += max_single_nop_size)
1254 memcpy (where + offset, nops, max_single_nop_size);
1255
1256 if (last)
1257 {
1258 nops = patt[last - 1];
1259 if (nops == NULL)
1260 {
1261 /* Use the smaller one plus one-byte NOP if the needed one
1262 isn't available. */
1263 last--;
1264 nops = patt[last - 1];
1265 memcpy (where + offset, nops, last);
1266 where[offset + last] = *patt[0];
1267 }
1268 else
1269 memcpy (where + offset, nops, last);
1270 }
1271 }
1272
1273 static INLINE int
1274 fits_in_imm7 (offsetT num)
1275 {
1276 return (num & 0x7f) == num;
1277 }
1278
1279 static INLINE int
1280 fits_in_imm31 (offsetT num)
1281 {
1282 return (num & 0x7fffffff) == num;
1283 }
1284
1285 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1286 single NOP instruction LIMIT. */
1287
1288 void
1289 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1290 {
1291 const unsigned char *const *patt = NULL;
1292 int max_single_nop_size;
1293 /* Maximum number of NOPs before switching to jump over NOPs. */
1294 int max_number_of_nops;
1295
1296 switch (fragP->fr_type)
1297 {
1298 case rs_fill_nop:
1299 case rs_align_code:
1300 break;
1301 default:
1302 return;
1303 }
1304
1305 /* We need to decide which NOP sequence to use for 32bit and
1306 64bit. When -mtune= is used:
1307
1308 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1309 PROCESSOR_GENERIC32, f32_patt will be used.
1310 2. For the rest, alt_patt will be used.
1311
1312 When -mtune= isn't used, alt_patt will be used if
1313 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1314 be used.
1315
1316 When -march= or .arch is used, we can't use anything beyond
1317 cpu_arch_isa_flags. */
1318
1319 if (flag_code == CODE_16BIT)
1320 {
1321 patt = f16_patt;
1322 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1323 /* Limit number of NOPs to 2 in 16-bit mode. */
1324 max_number_of_nops = 2;
1325 }
1326 else
1327 {
1328 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1329 {
1330 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1331 switch (cpu_arch_tune)
1332 {
1333 case PROCESSOR_UNKNOWN:
1334 /* We use cpu_arch_isa_flags to check if we SHOULD
1335 optimize with nops. */
1336 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1337 patt = alt_patt;
1338 else
1339 patt = f32_patt;
1340 break;
1341 case PROCESSOR_PENTIUM4:
1342 case PROCESSOR_NOCONA:
1343 case PROCESSOR_CORE:
1344 case PROCESSOR_CORE2:
1345 case PROCESSOR_COREI7:
1346 case PROCESSOR_L1OM:
1347 case PROCESSOR_K1OM:
1348 case PROCESSOR_GENERIC64:
1349 case PROCESSOR_K6:
1350 case PROCESSOR_ATHLON:
1351 case PROCESSOR_K8:
1352 case PROCESSOR_AMDFAM10:
1353 case PROCESSOR_BD:
1354 case PROCESSOR_ZNVER:
1355 case PROCESSOR_BT:
1356 patt = alt_patt;
1357 break;
1358 case PROCESSOR_I386:
1359 case PROCESSOR_I486:
1360 case PROCESSOR_PENTIUM:
1361 case PROCESSOR_PENTIUMPRO:
1362 case PROCESSOR_IAMCU:
1363 case PROCESSOR_GENERIC32:
1364 patt = f32_patt;
1365 break;
1366 }
1367 }
1368 else
1369 {
1370 switch (fragP->tc_frag_data.tune)
1371 {
1372 case PROCESSOR_UNKNOWN:
1373 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1374 PROCESSOR_UNKNOWN. */
1375 abort ();
1376 break;
1377
1378 case PROCESSOR_I386:
1379 case PROCESSOR_I486:
1380 case PROCESSOR_PENTIUM:
1381 case PROCESSOR_IAMCU:
1382 case PROCESSOR_K6:
1383 case PROCESSOR_ATHLON:
1384 case PROCESSOR_K8:
1385 case PROCESSOR_AMDFAM10:
1386 case PROCESSOR_BD:
1387 case PROCESSOR_ZNVER:
1388 case PROCESSOR_BT:
1389 case PROCESSOR_GENERIC32:
1390 /* We use cpu_arch_isa_flags to check if we CAN optimize
1391 with nops. */
1392 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1393 patt = alt_patt;
1394 else
1395 patt = f32_patt;
1396 break;
1397 case PROCESSOR_PENTIUMPRO:
1398 case PROCESSOR_PENTIUM4:
1399 case PROCESSOR_NOCONA:
1400 case PROCESSOR_CORE:
1401 case PROCESSOR_CORE2:
1402 case PROCESSOR_COREI7:
1403 case PROCESSOR_L1OM:
1404 case PROCESSOR_K1OM:
1405 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1406 patt = alt_patt;
1407 else
1408 patt = f32_patt;
1409 break;
1410 case PROCESSOR_GENERIC64:
1411 patt = alt_patt;
1412 break;
1413 }
1414 }
1415
1416 if (patt == f32_patt)
1417 {
1418 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1419 /* Limit number of NOPs to 2 for older processors. */
1420 max_number_of_nops = 2;
1421 }
1422 else
1423 {
1424 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1425 /* Limit number of NOPs to 7 for newer processors. */
1426 max_number_of_nops = 7;
1427 }
1428 }
1429
1430 if (limit == 0)
1431 limit = max_single_nop_size;
1432
1433 if (fragP->fr_type == rs_fill_nop)
1434 {
1435 /* Output NOPs for .nop directive. */
1436 if (limit > max_single_nop_size)
1437 {
1438 as_bad_where (fragP->fr_file, fragP->fr_line,
1439 _("invalid single nop size: %d "
1440 "(expect within [0, %d])"),
1441 limit, max_single_nop_size);
1442 return;
1443 }
1444 }
1445 else
1446 fragP->fr_var = count;
1447
1448 if ((count / max_single_nop_size) > max_number_of_nops)
1449 {
1450 /* Generate jump over NOPs. */
1451 offsetT disp = count - 2;
1452 if (fits_in_imm7 (disp))
1453 {
1454 /* Use "jmp disp8" if possible. */
1455 count = disp;
1456 where[0] = jump_disp8[0];
1457 where[1] = count;
1458 where += 2;
1459 }
1460 else
1461 {
1462 unsigned int size_of_jump;
1463
1464 if (flag_code == CODE_16BIT)
1465 {
1466 where[0] = jump16_disp32[0];
1467 where[1] = jump16_disp32[1];
1468 size_of_jump = 2;
1469 }
1470 else
1471 {
1472 where[0] = jump32_disp32[0];
1473 size_of_jump = 1;
1474 }
1475
1476 count -= size_of_jump + 4;
1477 if (!fits_in_imm31 (count))
1478 {
1479 as_bad_where (fragP->fr_file, fragP->fr_line,
1480 _("jump over nop padding out of range"));
1481 return;
1482 }
1483
1484 md_number_to_chars (where + size_of_jump, count, 4);
1485 where += size_of_jump + 4;
1486 }
1487 }
1488
1489 /* Generate multiple NOPs. */
1490 i386_output_nops (where, patt, count, limit);
1491 }
1492
1493 static INLINE int
1494 operand_type_all_zero (const union i386_operand_type *x)
1495 {
1496 switch (ARRAY_SIZE(x->array))
1497 {
1498 case 3:
1499 if (x->array[2])
1500 return 0;
1501 /* Fall through. */
1502 case 2:
1503 if (x->array[1])
1504 return 0;
1505 /* Fall through. */
1506 case 1:
1507 return !x->array[0];
1508 default:
1509 abort ();
1510 }
1511 }
1512
1513 static INLINE void
1514 operand_type_set (union i386_operand_type *x, unsigned int v)
1515 {
1516 switch (ARRAY_SIZE(x->array))
1517 {
1518 case 3:
1519 x->array[2] = v;
1520 /* Fall through. */
1521 case 2:
1522 x->array[1] = v;
1523 /* Fall through. */
1524 case 1:
1525 x->array[0] = v;
1526 /* Fall through. */
1527 break;
1528 default:
1529 abort ();
1530 }
1531 }
1532
1533 static INLINE int
1534 operand_type_equal (const union i386_operand_type *x,
1535 const union i386_operand_type *y)
1536 {
1537 switch (ARRAY_SIZE(x->array))
1538 {
1539 case 3:
1540 if (x->array[2] != y->array[2])
1541 return 0;
1542 /* Fall through. */
1543 case 2:
1544 if (x->array[1] != y->array[1])
1545 return 0;
1546 /* Fall through. */
1547 case 1:
1548 return x->array[0] == y->array[0];
1549 break;
1550 default:
1551 abort ();
1552 }
1553 }
1554
1555 static INLINE int
1556 cpu_flags_all_zero (const union i386_cpu_flags *x)
1557 {
1558 switch (ARRAY_SIZE(x->array))
1559 {
1560 case 4:
1561 if (x->array[3])
1562 return 0;
1563 /* Fall through. */
1564 case 3:
1565 if (x->array[2])
1566 return 0;
1567 /* Fall through. */
1568 case 2:
1569 if (x->array[1])
1570 return 0;
1571 /* Fall through. */
1572 case 1:
1573 return !x->array[0];
1574 default:
1575 abort ();
1576 }
1577 }
1578
1579 static INLINE int
1580 cpu_flags_equal (const union i386_cpu_flags *x,
1581 const union i386_cpu_flags *y)
1582 {
1583 switch (ARRAY_SIZE(x->array))
1584 {
1585 case 4:
1586 if (x->array[3] != y->array[3])
1587 return 0;
1588 /* Fall through. */
1589 case 3:
1590 if (x->array[2] != y->array[2])
1591 return 0;
1592 /* Fall through. */
1593 case 2:
1594 if (x->array[1] != y->array[1])
1595 return 0;
1596 /* Fall through. */
1597 case 1:
1598 return x->array[0] == y->array[0];
1599 break;
1600 default:
1601 abort ();
1602 }
1603 }
1604
1605 static INLINE int
1606 cpu_flags_check_cpu64 (i386_cpu_flags f)
1607 {
1608 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1609 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1610 }
1611
1612 static INLINE i386_cpu_flags
1613 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1614 {
1615 switch (ARRAY_SIZE (x.array))
1616 {
1617 case 4:
1618 x.array [3] &= y.array [3];
1619 /* Fall through. */
1620 case 3:
1621 x.array [2] &= y.array [2];
1622 /* Fall through. */
1623 case 2:
1624 x.array [1] &= y.array [1];
1625 /* Fall through. */
1626 case 1:
1627 x.array [0] &= y.array [0];
1628 break;
1629 default:
1630 abort ();
1631 }
1632 return x;
1633 }
1634
1635 static INLINE i386_cpu_flags
1636 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1637 {
1638 switch (ARRAY_SIZE (x.array))
1639 {
1640 case 4:
1641 x.array [3] |= y.array [3];
1642 /* Fall through. */
1643 case 3:
1644 x.array [2] |= y.array [2];
1645 /* Fall through. */
1646 case 2:
1647 x.array [1] |= y.array [1];
1648 /* Fall through. */
1649 case 1:
1650 x.array [0] |= y.array [0];
1651 break;
1652 default:
1653 abort ();
1654 }
1655 return x;
1656 }
1657
1658 static INLINE i386_cpu_flags
1659 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1660 {
1661 switch (ARRAY_SIZE (x.array))
1662 {
1663 case 4:
1664 x.array [3] &= ~y.array [3];
1665 /* Fall through. */
1666 case 3:
1667 x.array [2] &= ~y.array [2];
1668 /* Fall through. */
1669 case 2:
1670 x.array [1] &= ~y.array [1];
1671 /* Fall through. */
1672 case 1:
1673 x.array [0] &= ~y.array [0];
1674 break;
1675 default:
1676 abort ();
1677 }
1678 return x;
1679 }
1680
1681 #define CPU_FLAGS_ARCH_MATCH 0x1
1682 #define CPU_FLAGS_64BIT_MATCH 0x2
1683
1684 #define CPU_FLAGS_PERFECT_MATCH \
1685 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1686
1687 /* Return CPU flags match bits. */
1688
1689 static int
1690 cpu_flags_match (const insn_template *t)
1691 {
1692 i386_cpu_flags x = t->cpu_flags;
1693 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1694
1695 x.bitfield.cpu64 = 0;
1696 x.bitfield.cpuno64 = 0;
1697
1698 if (cpu_flags_all_zero (&x))
1699 {
1700 /* This instruction is available on all archs. */
1701 match |= CPU_FLAGS_ARCH_MATCH;
1702 }
1703 else
1704 {
1705 /* This instruction is available only on some archs. */
1706 i386_cpu_flags cpu = cpu_arch_flags;
1707
1708 /* AVX512VL is no standalone feature - match it and then strip it. */
1709 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1710 return match;
1711 x.bitfield.cpuavx512vl = 0;
1712
1713 cpu = cpu_flags_and (x, cpu);
1714 if (!cpu_flags_all_zero (&cpu))
1715 {
1716 if (x.bitfield.cpuavx)
1717 {
1718 /* We need to check a few extra flags with AVX. */
1719 if (cpu.bitfield.cpuavx
1720 && (!t->opcode_modifier.sse2avx || sse2avx)
1721 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1722 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1723 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1724 match |= CPU_FLAGS_ARCH_MATCH;
1725 }
1726 else if (x.bitfield.cpuavx512f)
1727 {
1728 /* We need to check a few extra flags with AVX512F. */
1729 if (cpu.bitfield.cpuavx512f
1730 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1731 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1732 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1733 match |= CPU_FLAGS_ARCH_MATCH;
1734 }
1735 else
1736 match |= CPU_FLAGS_ARCH_MATCH;
1737 }
1738 }
1739 return match;
1740 }
1741
1742 static INLINE i386_operand_type
1743 operand_type_and (i386_operand_type x, i386_operand_type y)
1744 {
1745 switch (ARRAY_SIZE (x.array))
1746 {
1747 case 3:
1748 x.array [2] &= y.array [2];
1749 /* Fall through. */
1750 case 2:
1751 x.array [1] &= y.array [1];
1752 /* Fall through. */
1753 case 1:
1754 x.array [0] &= y.array [0];
1755 break;
1756 default:
1757 abort ();
1758 }
1759 return x;
1760 }
1761
1762 static INLINE i386_operand_type
1763 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1764 {
1765 switch (ARRAY_SIZE (x.array))
1766 {
1767 case 3:
1768 x.array [2] &= ~y.array [2];
1769 /* Fall through. */
1770 case 2:
1771 x.array [1] &= ~y.array [1];
1772 /* Fall through. */
1773 case 1:
1774 x.array [0] &= ~y.array [0];
1775 break;
1776 default:
1777 abort ();
1778 }
1779 return x;
1780 }
1781
1782 static INLINE i386_operand_type
1783 operand_type_or (i386_operand_type x, i386_operand_type y)
1784 {
1785 switch (ARRAY_SIZE (x.array))
1786 {
1787 case 3:
1788 x.array [2] |= y.array [2];
1789 /* Fall through. */
1790 case 2:
1791 x.array [1] |= y.array [1];
1792 /* Fall through. */
1793 case 1:
1794 x.array [0] |= y.array [0];
1795 break;
1796 default:
1797 abort ();
1798 }
1799 return x;
1800 }
1801
1802 static INLINE i386_operand_type
1803 operand_type_xor (i386_operand_type x, i386_operand_type y)
1804 {
1805 switch (ARRAY_SIZE (x.array))
1806 {
1807 case 3:
1808 x.array [2] ^= y.array [2];
1809 /* Fall through. */
1810 case 2:
1811 x.array [1] ^= y.array [1];
1812 /* Fall through. */
1813 case 1:
1814 x.array [0] ^= y.array [0];
1815 break;
1816 default:
1817 abort ();
1818 }
1819 return x;
1820 }
1821
1822 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1823 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1824 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1825 static const i386_operand_type inoutportreg
1826 = OPERAND_TYPE_INOUTPORTREG;
1827 static const i386_operand_type reg16_inoutportreg
1828 = OPERAND_TYPE_REG16_INOUTPORTREG;
1829 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1830 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1831 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1832 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1833 static const i386_operand_type anydisp
1834 = OPERAND_TYPE_ANYDISP;
1835 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1836 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1837 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1838 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1839 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1840 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1841 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1842 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1843 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1844 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1845 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1846 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1847
1848 enum operand_type
1849 {
1850 reg,
1851 imm,
1852 disp,
1853 anymem
1854 };
1855
1856 static INLINE int
1857 operand_type_check (i386_operand_type t, enum operand_type c)
1858 {
1859 switch (c)
1860 {
1861 case reg:
1862 return t.bitfield.reg;
1863
1864 case imm:
1865 return (t.bitfield.imm8
1866 || t.bitfield.imm8s
1867 || t.bitfield.imm16
1868 || t.bitfield.imm32
1869 || t.bitfield.imm32s
1870 || t.bitfield.imm64);
1871
1872 case disp:
1873 return (t.bitfield.disp8
1874 || t.bitfield.disp16
1875 || t.bitfield.disp32
1876 || t.bitfield.disp32s
1877 || t.bitfield.disp64);
1878
1879 case anymem:
1880 return (t.bitfield.disp8
1881 || t.bitfield.disp16
1882 || t.bitfield.disp32
1883 || t.bitfield.disp32s
1884 || t.bitfield.disp64
1885 || t.bitfield.baseindex);
1886
1887 default:
1888 abort ();
1889 }
1890
1891 return 0;
1892 }
1893
1894 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit on
1895 operand J for instruction template T. */
1896
1897 static INLINE int
1898 match_reg_size (const insn_template *t, unsigned int j)
1899 {
1900 return !((i.types[j].bitfield.byte
1901 && !t->operand_types[j].bitfield.byte)
1902 || (i.types[j].bitfield.word
1903 && !t->operand_types[j].bitfield.word)
1904 || (i.types[j].bitfield.dword
1905 && !t->operand_types[j].bitfield.dword)
1906 || (i.types[j].bitfield.qword
1907 && !t->operand_types[j].bitfield.qword)
1908 || (i.types[j].bitfield.tbyte
1909 && !t->operand_types[j].bitfield.tbyte));
1910 }
1911
1912 /* Return 1 if there is no conflict in SIMD register on
1913 operand J for instruction template T. */
1914
1915 static INLINE int
1916 match_simd_size (const insn_template *t, unsigned int j)
1917 {
1918 return !((i.types[j].bitfield.xmmword
1919 && !t->operand_types[j].bitfield.xmmword)
1920 || (i.types[j].bitfield.ymmword
1921 && !t->operand_types[j].bitfield.ymmword)
1922 || (i.types[j].bitfield.zmmword
1923 && !t->operand_types[j].bitfield.zmmword));
1924 }
1925
1926 /* Return 1 if there is no conflict in any size on operand J for
1927 instruction template T. */
1928
1929 static INLINE int
1930 match_mem_size (const insn_template *t, unsigned int j)
1931 {
1932 return (match_reg_size (t, j)
1933 && !((i.types[j].bitfield.unspecified
1934 && !i.broadcast
1935 && !t->operand_types[j].bitfield.unspecified)
1936 || (i.types[j].bitfield.fword
1937 && !t->operand_types[j].bitfield.fword)
1938 /* For scalar opcode templates to allow register and memory
1939 operands at the same time, some special casing is needed
1940 here. */
1941 || ((t->operand_types[j].bitfield.regsimd
1942 && !t->opcode_modifier.broadcast
1943 && (t->operand_types[j].bitfield.dword
1944 || t->operand_types[j].bitfield.qword))
1945 ? (i.types[j].bitfield.xmmword
1946 || i.types[j].bitfield.ymmword
1947 || i.types[j].bitfield.zmmword)
1948 : !match_simd_size(t, j))));
1949 }
1950
1951 /* Return 1 if there is no size conflict on any operands for
1952 instruction template T. */
1953
1954 static INLINE int
1955 operand_size_match (const insn_template *t)
1956 {
1957 unsigned int j;
1958 int match = 1;
1959
1960 /* Don't check jump instructions. */
1961 if (t->opcode_modifier.jump
1962 || t->opcode_modifier.jumpbyte
1963 || t->opcode_modifier.jumpdword
1964 || t->opcode_modifier.jumpintersegment)
1965 return match;
1966
1967 /* Check memory and accumulator operand size. */
1968 for (j = 0; j < i.operands; j++)
1969 {
1970 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1971 && t->operand_types[j].bitfield.anysize)
1972 continue;
1973
1974 if (t->operand_types[j].bitfield.reg
1975 && !match_reg_size (t, j))
1976 {
1977 match = 0;
1978 break;
1979 }
1980
1981 if (t->operand_types[j].bitfield.regsimd
1982 && !match_simd_size (t, j))
1983 {
1984 match = 0;
1985 break;
1986 }
1987
1988 if (t->operand_types[j].bitfield.acc
1989 && (!match_reg_size (t, j) || !match_simd_size (t, j)))
1990 {
1991 match = 0;
1992 break;
1993 }
1994
1995 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1996 {
1997 match = 0;
1998 break;
1999 }
2000 }
2001
2002 if (match)
2003 return match;
2004 else if (!t->opcode_modifier.d)
2005 {
2006 mismatch:
2007 i.error = operand_size_mismatch;
2008 return 0;
2009 }
2010
2011 /* Check reverse. */
2012 gas_assert (i.operands == 2);
2013
2014 match = 1;
2015 for (j = 0; j < 2; j++)
2016 {
2017 if ((t->operand_types[j].bitfield.reg
2018 || t->operand_types[j].bitfield.acc)
2019 && !match_reg_size (t, j ? 0 : 1))
2020 goto mismatch;
2021
2022 if (i.types[j].bitfield.mem
2023 && !match_mem_size (t, j ? 0 : 1))
2024 goto mismatch;
2025 }
2026
2027 return match;
2028 }
2029
2030 static INLINE int
2031 operand_type_match (i386_operand_type overlap,
2032 i386_operand_type given)
2033 {
2034 i386_operand_type temp = overlap;
2035
2036 temp.bitfield.jumpabsolute = 0;
2037 temp.bitfield.unspecified = 0;
2038 temp.bitfield.byte = 0;
2039 temp.bitfield.word = 0;
2040 temp.bitfield.dword = 0;
2041 temp.bitfield.fword = 0;
2042 temp.bitfield.qword = 0;
2043 temp.bitfield.tbyte = 0;
2044 temp.bitfield.xmmword = 0;
2045 temp.bitfield.ymmword = 0;
2046 temp.bitfield.zmmword = 0;
2047 if (operand_type_all_zero (&temp))
2048 goto mismatch;
2049
2050 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2051 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2052 return 1;
2053
2054 mismatch:
2055 i.error = operand_type_mismatch;
2056 return 0;
2057 }
2058
2059 /* If given types g0 and g1 are registers they must be of the same type
2060 unless the expected operand type register overlap is null.
2061 Memory operand size of certain SIMD instructions is also being checked
2062 here. */
2063
2064 static INLINE int
2065 operand_type_register_match (i386_operand_type g0,
2066 i386_operand_type t0,
2067 i386_operand_type g1,
2068 i386_operand_type t1)
2069 {
2070 if (!g0.bitfield.reg
2071 && !g0.bitfield.regsimd
2072 && (!operand_type_check (g0, anymem)
2073 || g0.bitfield.unspecified
2074 || !t0.bitfield.regsimd))
2075 return 1;
2076
2077 if (!g1.bitfield.reg
2078 && !g1.bitfield.regsimd
2079 && (!operand_type_check (g1, anymem)
2080 || g1.bitfield.unspecified
2081 || !t1.bitfield.regsimd))
2082 return 1;
2083
2084 if (g0.bitfield.byte == g1.bitfield.byte
2085 && g0.bitfield.word == g1.bitfield.word
2086 && g0.bitfield.dword == g1.bitfield.dword
2087 && g0.bitfield.qword == g1.bitfield.qword
2088 && g0.bitfield.xmmword == g1.bitfield.xmmword
2089 && g0.bitfield.ymmword == g1.bitfield.ymmword
2090 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2091 return 1;
2092
2093 if (!(t0.bitfield.byte & t1.bitfield.byte)
2094 && !(t0.bitfield.word & t1.bitfield.word)
2095 && !(t0.bitfield.dword & t1.bitfield.dword)
2096 && !(t0.bitfield.qword & t1.bitfield.qword)
2097 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2098 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2099 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2100 return 1;
2101
2102 i.error = register_type_mismatch;
2103
2104 return 0;
2105 }
2106
2107 static INLINE unsigned int
2108 register_number (const reg_entry *r)
2109 {
2110 unsigned int nr = r->reg_num;
2111
2112 if (r->reg_flags & RegRex)
2113 nr += 8;
2114
2115 if (r->reg_flags & RegVRex)
2116 nr += 16;
2117
2118 return nr;
2119 }
2120
2121 static INLINE unsigned int
2122 mode_from_disp_size (i386_operand_type t)
2123 {
2124 if (t.bitfield.disp8)
2125 return 1;
2126 else if (t.bitfield.disp16
2127 || t.bitfield.disp32
2128 || t.bitfield.disp32s)
2129 return 2;
2130 else
2131 return 0;
2132 }
2133
2134 static INLINE int
2135 fits_in_signed_byte (addressT num)
2136 {
2137 return num + 0x80 <= 0xff;
2138 }
2139
2140 static INLINE int
2141 fits_in_unsigned_byte (addressT num)
2142 {
2143 return num <= 0xff;
2144 }
2145
2146 static INLINE int
2147 fits_in_unsigned_word (addressT num)
2148 {
2149 return num <= 0xffff;
2150 }
2151
2152 static INLINE int
2153 fits_in_signed_word (addressT num)
2154 {
2155 return num + 0x8000 <= 0xffff;
2156 }
2157
2158 static INLINE int
2159 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2160 {
2161 #ifndef BFD64
2162 return 1;
2163 #else
2164 return num + 0x80000000 <= 0xffffffff;
2165 #endif
2166 } /* fits_in_signed_long() */
2167
2168 static INLINE int
2169 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2170 {
2171 #ifndef BFD64
2172 return 1;
2173 #else
2174 return num <= 0xffffffff;
2175 #endif
2176 } /* fits_in_unsigned_long() */
2177
2178 static INLINE int
2179 fits_in_disp8 (offsetT num)
2180 {
2181 int shift = i.memshift;
2182 unsigned int mask;
2183
2184 if (shift == -1)
2185 abort ();
2186
2187 mask = (1 << shift) - 1;
2188
2189 /* Return 0 if NUM isn't properly aligned. */
2190 if ((num & mask))
2191 return 0;
2192
2193 /* Check if NUM will fit in 8bit after shift. */
2194 return fits_in_signed_byte (num >> shift);
2195 }
2196
2197 static INLINE int
2198 fits_in_imm4 (offsetT num)
2199 {
2200 return (num & 0xf) == num;
2201 }
2202
2203 static i386_operand_type
2204 smallest_imm_type (offsetT num)
2205 {
2206 i386_operand_type t;
2207
2208 operand_type_set (&t, 0);
2209 t.bitfield.imm64 = 1;
2210
2211 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2212 {
2213 /* This code is disabled on the 486 because all the Imm1 forms
2214 in the opcode table are slower on the i486. They're the
2215 versions with the implicitly specified single-position
2216 displacement, which has another syntax if you really want to
2217 use that form. */
2218 t.bitfield.imm1 = 1;
2219 t.bitfield.imm8 = 1;
2220 t.bitfield.imm8s = 1;
2221 t.bitfield.imm16 = 1;
2222 t.bitfield.imm32 = 1;
2223 t.bitfield.imm32s = 1;
2224 }
2225 else if (fits_in_signed_byte (num))
2226 {
2227 t.bitfield.imm8 = 1;
2228 t.bitfield.imm8s = 1;
2229 t.bitfield.imm16 = 1;
2230 t.bitfield.imm32 = 1;
2231 t.bitfield.imm32s = 1;
2232 }
2233 else if (fits_in_unsigned_byte (num))
2234 {
2235 t.bitfield.imm8 = 1;
2236 t.bitfield.imm16 = 1;
2237 t.bitfield.imm32 = 1;
2238 t.bitfield.imm32s = 1;
2239 }
2240 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2241 {
2242 t.bitfield.imm16 = 1;
2243 t.bitfield.imm32 = 1;
2244 t.bitfield.imm32s = 1;
2245 }
2246 else if (fits_in_signed_long (num))
2247 {
2248 t.bitfield.imm32 = 1;
2249 t.bitfield.imm32s = 1;
2250 }
2251 else if (fits_in_unsigned_long (num))
2252 t.bitfield.imm32 = 1;
2253
2254 return t;
2255 }
2256
2257 static offsetT
2258 offset_in_range (offsetT val, int size)
2259 {
2260 addressT mask;
2261
2262 switch (size)
2263 {
2264 case 1: mask = ((addressT) 1 << 8) - 1; break;
2265 case 2: mask = ((addressT) 1 << 16) - 1; break;
2266 case 4: mask = ((addressT) 2 << 31) - 1; break;
2267 #ifdef BFD64
2268 case 8: mask = ((addressT) 2 << 63) - 1; break;
2269 #endif
2270 default: abort ();
2271 }
2272
2273 #ifdef BFD64
2274 /* If BFD64, sign extend val for 32bit address mode. */
2275 if (flag_code != CODE_64BIT
2276 || i.prefix[ADDR_PREFIX])
2277 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2278 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2279 #endif
2280
2281 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2282 {
2283 char buf1[40], buf2[40];
2284
2285 sprint_value (buf1, val);
2286 sprint_value (buf2, val & mask);
2287 as_warn (_("%s shortened to %s"), buf1, buf2);
2288 }
2289 return val & mask;
2290 }
2291
2292 enum PREFIX_GROUP
2293 {
2294 PREFIX_EXIST = 0,
2295 PREFIX_LOCK,
2296 PREFIX_REP,
2297 PREFIX_DS,
2298 PREFIX_OTHER
2299 };
2300
2301 /* Returns
2302 a. PREFIX_EXIST if attempting to add a prefix where one from the
2303 same class already exists.
2304 b. PREFIX_LOCK if lock prefix is added.
2305 c. PREFIX_REP if rep/repne prefix is added.
2306 d. PREFIX_DS if ds prefix is added.
2307 e. PREFIX_OTHER if other prefix is added.
2308 */
2309
2310 static enum PREFIX_GROUP
2311 add_prefix (unsigned int prefix)
2312 {
2313 enum PREFIX_GROUP ret = PREFIX_OTHER;
2314 unsigned int q;
2315
2316 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2317 && flag_code == CODE_64BIT)
2318 {
2319 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2320 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2321 && (prefix & (REX_R | REX_X | REX_B))))
2322 ret = PREFIX_EXIST;
2323 q = REX_PREFIX;
2324 }
2325 else
2326 {
2327 switch (prefix)
2328 {
2329 default:
2330 abort ();
2331
2332 case DS_PREFIX_OPCODE:
2333 ret = PREFIX_DS;
2334 /* Fall through. */
2335 case CS_PREFIX_OPCODE:
2336 case ES_PREFIX_OPCODE:
2337 case FS_PREFIX_OPCODE:
2338 case GS_PREFIX_OPCODE:
2339 case SS_PREFIX_OPCODE:
2340 q = SEG_PREFIX;
2341 break;
2342
2343 case REPNE_PREFIX_OPCODE:
2344 case REPE_PREFIX_OPCODE:
2345 q = REP_PREFIX;
2346 ret = PREFIX_REP;
2347 break;
2348
2349 case LOCK_PREFIX_OPCODE:
2350 q = LOCK_PREFIX;
2351 ret = PREFIX_LOCK;
2352 break;
2353
2354 case FWAIT_OPCODE:
2355 q = WAIT_PREFIX;
2356 break;
2357
2358 case ADDR_PREFIX_OPCODE:
2359 q = ADDR_PREFIX;
2360 break;
2361
2362 case DATA_PREFIX_OPCODE:
2363 q = DATA_PREFIX;
2364 break;
2365 }
2366 if (i.prefix[q] != 0)
2367 ret = PREFIX_EXIST;
2368 }
2369
2370 if (ret)
2371 {
2372 if (!i.prefix[q])
2373 ++i.prefixes;
2374 i.prefix[q] |= prefix;
2375 }
2376 else
2377 as_bad (_("same type of prefix used twice"));
2378
2379 return ret;
2380 }
2381
2382 static void
2383 update_code_flag (int value, int check)
2384 {
2385 PRINTF_LIKE ((*as_error));
2386
2387 flag_code = (enum flag_code) value;
2388 if (flag_code == CODE_64BIT)
2389 {
2390 cpu_arch_flags.bitfield.cpu64 = 1;
2391 cpu_arch_flags.bitfield.cpuno64 = 0;
2392 }
2393 else
2394 {
2395 cpu_arch_flags.bitfield.cpu64 = 0;
2396 cpu_arch_flags.bitfield.cpuno64 = 1;
2397 }
2398 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2399 {
2400 if (check)
2401 as_error = as_fatal;
2402 else
2403 as_error = as_bad;
2404 (*as_error) (_("64bit mode not supported on `%s'."),
2405 cpu_arch_name ? cpu_arch_name : default_arch);
2406 }
2407 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2408 {
2409 if (check)
2410 as_error = as_fatal;
2411 else
2412 as_error = as_bad;
2413 (*as_error) (_("32bit mode not supported on `%s'."),
2414 cpu_arch_name ? cpu_arch_name : default_arch);
2415 }
2416 stackop_size = '\0';
2417 }
2418
2419 static void
2420 set_code_flag (int value)
2421 {
2422 update_code_flag (value, 0);
2423 }
2424
2425 static void
2426 set_16bit_gcc_code_flag (int new_code_flag)
2427 {
2428 flag_code = (enum flag_code) new_code_flag;
2429 if (flag_code != CODE_16BIT)
2430 abort ();
2431 cpu_arch_flags.bitfield.cpu64 = 0;
2432 cpu_arch_flags.bitfield.cpuno64 = 1;
2433 stackop_size = LONG_MNEM_SUFFIX;
2434 }
2435
2436 static void
2437 set_intel_syntax (int syntax_flag)
2438 {
2439 /* Find out if register prefixing is specified. */
2440 int ask_naked_reg = 0;
2441
2442 SKIP_WHITESPACE ();
2443 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2444 {
2445 char *string;
2446 int e = get_symbol_name (&string);
2447
2448 if (strcmp (string, "prefix") == 0)
2449 ask_naked_reg = 1;
2450 else if (strcmp (string, "noprefix") == 0)
2451 ask_naked_reg = -1;
2452 else
2453 as_bad (_("bad argument to syntax directive."));
2454 (void) restore_line_pointer (e);
2455 }
2456 demand_empty_rest_of_line ();
2457
2458 intel_syntax = syntax_flag;
2459
2460 if (ask_naked_reg == 0)
2461 allow_naked_reg = (intel_syntax
2462 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2463 else
2464 allow_naked_reg = (ask_naked_reg < 0);
2465
2466 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2467
2468 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2469 identifier_chars['$'] = intel_syntax ? '$' : 0;
2470 register_prefix = allow_naked_reg ? "" : "%";
2471 }
2472
2473 static void
2474 set_intel_mnemonic (int mnemonic_flag)
2475 {
2476 intel_mnemonic = mnemonic_flag;
2477 }
2478
2479 static void
2480 set_allow_index_reg (int flag)
2481 {
2482 allow_index_reg = flag;
2483 }
2484
2485 static void
2486 set_check (int what)
2487 {
2488 enum check_kind *kind;
2489 const char *str;
2490
2491 if (what)
2492 {
2493 kind = &operand_check;
2494 str = "operand";
2495 }
2496 else
2497 {
2498 kind = &sse_check;
2499 str = "sse";
2500 }
2501
2502 SKIP_WHITESPACE ();
2503
2504 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2505 {
2506 char *string;
2507 int e = get_symbol_name (&string);
2508
2509 if (strcmp (string, "none") == 0)
2510 *kind = check_none;
2511 else if (strcmp (string, "warning") == 0)
2512 *kind = check_warning;
2513 else if (strcmp (string, "error") == 0)
2514 *kind = check_error;
2515 else
2516 as_bad (_("bad argument to %s_check directive."), str);
2517 (void) restore_line_pointer (e);
2518 }
2519 else
2520 as_bad (_("missing argument for %s_check directive"), str);
2521
2522 demand_empty_rest_of_line ();
2523 }
2524
2525 static void
2526 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2527 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2528 {
2529 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2530 static const char *arch;
2531
2532 /* Intel LIOM is only supported on ELF. */
2533 if (!IS_ELF)
2534 return;
2535
2536 if (!arch)
2537 {
2538 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2539 use default_arch. */
2540 arch = cpu_arch_name;
2541 if (!arch)
2542 arch = default_arch;
2543 }
2544
2545 /* If we are targeting Intel MCU, we must enable it. */
2546 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2547 || new_flag.bitfield.cpuiamcu)
2548 return;
2549
2550 /* If we are targeting Intel L1OM, we must enable it. */
2551 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2552 || new_flag.bitfield.cpul1om)
2553 return;
2554
2555 /* If we are targeting Intel K1OM, we must enable it. */
2556 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2557 || new_flag.bitfield.cpuk1om)
2558 return;
2559
2560 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2561 #endif
2562 }
2563
2564 static void
2565 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2566 {
2567 SKIP_WHITESPACE ();
2568
2569 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2570 {
2571 char *string;
2572 int e = get_symbol_name (&string);
2573 unsigned int j;
2574 i386_cpu_flags flags;
2575
2576 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2577 {
2578 if (strcmp (string, cpu_arch[j].name) == 0)
2579 {
2580 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2581
2582 if (*string != '.')
2583 {
2584 cpu_arch_name = cpu_arch[j].name;
2585 cpu_sub_arch_name = NULL;
2586 cpu_arch_flags = cpu_arch[j].flags;
2587 if (flag_code == CODE_64BIT)
2588 {
2589 cpu_arch_flags.bitfield.cpu64 = 1;
2590 cpu_arch_flags.bitfield.cpuno64 = 0;
2591 }
2592 else
2593 {
2594 cpu_arch_flags.bitfield.cpu64 = 0;
2595 cpu_arch_flags.bitfield.cpuno64 = 1;
2596 }
2597 cpu_arch_isa = cpu_arch[j].type;
2598 cpu_arch_isa_flags = cpu_arch[j].flags;
2599 if (!cpu_arch_tune_set)
2600 {
2601 cpu_arch_tune = cpu_arch_isa;
2602 cpu_arch_tune_flags = cpu_arch_isa_flags;
2603 }
2604 break;
2605 }
2606
2607 flags = cpu_flags_or (cpu_arch_flags,
2608 cpu_arch[j].flags);
2609
2610 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2611 {
2612 if (cpu_sub_arch_name)
2613 {
2614 char *name = cpu_sub_arch_name;
2615 cpu_sub_arch_name = concat (name,
2616 cpu_arch[j].name,
2617 (const char *) NULL);
2618 free (name);
2619 }
2620 else
2621 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2622 cpu_arch_flags = flags;
2623 cpu_arch_isa_flags = flags;
2624 }
2625 else
2626 cpu_arch_isa_flags
2627 = cpu_flags_or (cpu_arch_isa_flags,
2628 cpu_arch[j].flags);
2629 (void) restore_line_pointer (e);
2630 demand_empty_rest_of_line ();
2631 return;
2632 }
2633 }
2634
2635 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2636 {
2637 /* Disable an ISA extension. */
2638 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2639 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2640 {
2641 flags = cpu_flags_and_not (cpu_arch_flags,
2642 cpu_noarch[j].flags);
2643 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2644 {
2645 if (cpu_sub_arch_name)
2646 {
2647 char *name = cpu_sub_arch_name;
2648 cpu_sub_arch_name = concat (name, string,
2649 (const char *) NULL);
2650 free (name);
2651 }
2652 else
2653 cpu_sub_arch_name = xstrdup (string);
2654 cpu_arch_flags = flags;
2655 cpu_arch_isa_flags = flags;
2656 }
2657 (void) restore_line_pointer (e);
2658 demand_empty_rest_of_line ();
2659 return;
2660 }
2661
2662 j = ARRAY_SIZE (cpu_arch);
2663 }
2664
2665 if (j >= ARRAY_SIZE (cpu_arch))
2666 as_bad (_("no such architecture: `%s'"), string);
2667
2668 *input_line_pointer = e;
2669 }
2670 else
2671 as_bad (_("missing cpu architecture"));
2672
2673 no_cond_jump_promotion = 0;
2674 if (*input_line_pointer == ','
2675 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2676 {
2677 char *string;
2678 char e;
2679
2680 ++input_line_pointer;
2681 e = get_symbol_name (&string);
2682
2683 if (strcmp (string, "nojumps") == 0)
2684 no_cond_jump_promotion = 1;
2685 else if (strcmp (string, "jumps") == 0)
2686 ;
2687 else
2688 as_bad (_("no such architecture modifier: `%s'"), string);
2689
2690 (void) restore_line_pointer (e);
2691 }
2692
2693 demand_empty_rest_of_line ();
2694 }
2695
2696 enum bfd_architecture
2697 i386_arch (void)
2698 {
2699 if (cpu_arch_isa == PROCESSOR_L1OM)
2700 {
2701 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2702 || flag_code != CODE_64BIT)
2703 as_fatal (_("Intel L1OM is 64bit ELF only"));
2704 return bfd_arch_l1om;
2705 }
2706 else if (cpu_arch_isa == PROCESSOR_K1OM)
2707 {
2708 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2709 || flag_code != CODE_64BIT)
2710 as_fatal (_("Intel K1OM is 64bit ELF only"));
2711 return bfd_arch_k1om;
2712 }
2713 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2714 {
2715 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2716 || flag_code == CODE_64BIT)
2717 as_fatal (_("Intel MCU is 32bit ELF only"));
2718 return bfd_arch_iamcu;
2719 }
2720 else
2721 return bfd_arch_i386;
2722 }
2723
2724 unsigned long
2725 i386_mach (void)
2726 {
2727 if (!strncmp (default_arch, "x86_64", 6))
2728 {
2729 if (cpu_arch_isa == PROCESSOR_L1OM)
2730 {
2731 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2732 || default_arch[6] != '\0')
2733 as_fatal (_("Intel L1OM is 64bit ELF only"));
2734 return bfd_mach_l1om;
2735 }
2736 else if (cpu_arch_isa == PROCESSOR_K1OM)
2737 {
2738 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2739 || default_arch[6] != '\0')
2740 as_fatal (_("Intel K1OM is 64bit ELF only"));
2741 return bfd_mach_k1om;
2742 }
2743 else if (default_arch[6] == '\0')
2744 return bfd_mach_x86_64;
2745 else
2746 return bfd_mach_x64_32;
2747 }
2748 else if (!strcmp (default_arch, "i386")
2749 || !strcmp (default_arch, "iamcu"))
2750 {
2751 if (cpu_arch_isa == PROCESSOR_IAMCU)
2752 {
2753 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2754 as_fatal (_("Intel MCU is 32bit ELF only"));
2755 return bfd_mach_i386_iamcu;
2756 }
2757 else
2758 return bfd_mach_i386_i386;
2759 }
2760 else
2761 as_fatal (_("unknown architecture"));
2762 }
2763 \f
2764 void
2765 md_begin (void)
2766 {
2767 const char *hash_err;
2768
2769 /* Support pseudo prefixes like {disp32}. */
2770 lex_type ['{'] = LEX_BEGIN_NAME;
2771
2772 /* Initialize op_hash hash table. */
2773 op_hash = hash_new ();
2774
2775 {
2776 const insn_template *optab;
2777 templates *core_optab;
2778
2779 /* Setup for loop. */
2780 optab = i386_optab;
2781 core_optab = XNEW (templates);
2782 core_optab->start = optab;
2783
2784 while (1)
2785 {
2786 ++optab;
2787 if (optab->name == NULL
2788 || strcmp (optab->name, (optab - 1)->name) != 0)
2789 {
2790 /* different name --> ship out current template list;
2791 add to hash table; & begin anew. */
2792 core_optab->end = optab;
2793 hash_err = hash_insert (op_hash,
2794 (optab - 1)->name,
2795 (void *) core_optab);
2796 if (hash_err)
2797 {
2798 as_fatal (_("can't hash %s: %s"),
2799 (optab - 1)->name,
2800 hash_err);
2801 }
2802 if (optab->name == NULL)
2803 break;
2804 core_optab = XNEW (templates);
2805 core_optab->start = optab;
2806 }
2807 }
2808 }
2809
2810 /* Initialize reg_hash hash table. */
2811 reg_hash = hash_new ();
2812 {
2813 const reg_entry *regtab;
2814 unsigned int regtab_size = i386_regtab_size;
2815
2816 for (regtab = i386_regtab; regtab_size--; regtab++)
2817 {
2818 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2819 if (hash_err)
2820 as_fatal (_("can't hash %s: %s"),
2821 regtab->reg_name,
2822 hash_err);
2823 }
2824 }
2825
2826 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2827 {
2828 int c;
2829 char *p;
2830
2831 for (c = 0; c < 256; c++)
2832 {
2833 if (ISDIGIT (c))
2834 {
2835 digit_chars[c] = c;
2836 mnemonic_chars[c] = c;
2837 register_chars[c] = c;
2838 operand_chars[c] = c;
2839 }
2840 else if (ISLOWER (c))
2841 {
2842 mnemonic_chars[c] = c;
2843 register_chars[c] = c;
2844 operand_chars[c] = c;
2845 }
2846 else if (ISUPPER (c))
2847 {
2848 mnemonic_chars[c] = TOLOWER (c);
2849 register_chars[c] = mnemonic_chars[c];
2850 operand_chars[c] = c;
2851 }
2852 else if (c == '{' || c == '}')
2853 {
2854 mnemonic_chars[c] = c;
2855 operand_chars[c] = c;
2856 }
2857
2858 if (ISALPHA (c) || ISDIGIT (c))
2859 identifier_chars[c] = c;
2860 else if (c >= 128)
2861 {
2862 identifier_chars[c] = c;
2863 operand_chars[c] = c;
2864 }
2865 }
2866
2867 #ifdef LEX_AT
2868 identifier_chars['@'] = '@';
2869 #endif
2870 #ifdef LEX_QM
2871 identifier_chars['?'] = '?';
2872 operand_chars['?'] = '?';
2873 #endif
2874 digit_chars['-'] = '-';
2875 mnemonic_chars['_'] = '_';
2876 mnemonic_chars['-'] = '-';
2877 mnemonic_chars['.'] = '.';
2878 identifier_chars['_'] = '_';
2879 identifier_chars['.'] = '.';
2880
2881 for (p = operand_special_chars; *p != '\0'; p++)
2882 operand_chars[(unsigned char) *p] = *p;
2883 }
2884
2885 if (flag_code == CODE_64BIT)
2886 {
2887 #if defined (OBJ_COFF) && defined (TE_PE)
2888 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2889 ? 32 : 16);
2890 #else
2891 x86_dwarf2_return_column = 16;
2892 #endif
2893 x86_cie_data_alignment = -8;
2894 }
2895 else
2896 {
2897 x86_dwarf2_return_column = 8;
2898 x86_cie_data_alignment = -4;
2899 }
2900 }
2901
2902 void
2903 i386_print_statistics (FILE *file)
2904 {
2905 hash_print_statistics (file, "i386 opcode", op_hash);
2906 hash_print_statistics (file, "i386 register", reg_hash);
2907 }
2908 \f
2909 #ifdef DEBUG386
2910
2911 /* Debugging routines for md_assemble. */
2912 static void pte (insn_template *);
2913 static void pt (i386_operand_type);
2914 static void pe (expressionS *);
2915 static void ps (symbolS *);
2916
2917 static void
2918 pi (char *line, i386_insn *x)
2919 {
2920 unsigned int j;
2921
2922 fprintf (stdout, "%s: template ", line);
2923 pte (&x->tm);
2924 fprintf (stdout, " address: base %s index %s scale %x\n",
2925 x->base_reg ? x->base_reg->reg_name : "none",
2926 x->index_reg ? x->index_reg->reg_name : "none",
2927 x->log2_scale_factor);
2928 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2929 x->rm.mode, x->rm.reg, x->rm.regmem);
2930 fprintf (stdout, " sib: base %x index %x scale %x\n",
2931 x->sib.base, x->sib.index, x->sib.scale);
2932 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2933 (x->rex & REX_W) != 0,
2934 (x->rex & REX_R) != 0,
2935 (x->rex & REX_X) != 0,
2936 (x->rex & REX_B) != 0);
2937 for (j = 0; j < x->operands; j++)
2938 {
2939 fprintf (stdout, " #%d: ", j + 1);
2940 pt (x->types[j]);
2941 fprintf (stdout, "\n");
2942 if (x->types[j].bitfield.reg
2943 || x->types[j].bitfield.regmmx
2944 || x->types[j].bitfield.regsimd
2945 || x->types[j].bitfield.sreg2
2946 || x->types[j].bitfield.sreg3
2947 || x->types[j].bitfield.control
2948 || x->types[j].bitfield.debug
2949 || x->types[j].bitfield.test)
2950 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2951 if (operand_type_check (x->types[j], imm))
2952 pe (x->op[j].imms);
2953 if (operand_type_check (x->types[j], disp))
2954 pe (x->op[j].disps);
2955 }
2956 }
2957
2958 static void
2959 pte (insn_template *t)
2960 {
2961 unsigned int j;
2962 fprintf (stdout, " %d operands ", t->operands);
2963 fprintf (stdout, "opcode %x ", t->base_opcode);
2964 if (t->extension_opcode != None)
2965 fprintf (stdout, "ext %x ", t->extension_opcode);
2966 if (t->opcode_modifier.d)
2967 fprintf (stdout, "D");
2968 if (t->opcode_modifier.w)
2969 fprintf (stdout, "W");
2970 fprintf (stdout, "\n");
2971 for (j = 0; j < t->operands; j++)
2972 {
2973 fprintf (stdout, " #%d type ", j + 1);
2974 pt (t->operand_types[j]);
2975 fprintf (stdout, "\n");
2976 }
2977 }
2978
2979 static void
2980 pe (expressionS *e)
2981 {
2982 fprintf (stdout, " operation %d\n", e->X_op);
2983 fprintf (stdout, " add_number %ld (%lx)\n",
2984 (long) e->X_add_number, (long) e->X_add_number);
2985 if (e->X_add_symbol)
2986 {
2987 fprintf (stdout, " add_symbol ");
2988 ps (e->X_add_symbol);
2989 fprintf (stdout, "\n");
2990 }
2991 if (e->X_op_symbol)
2992 {
2993 fprintf (stdout, " op_symbol ");
2994 ps (e->X_op_symbol);
2995 fprintf (stdout, "\n");
2996 }
2997 }
2998
2999 static void
3000 ps (symbolS *s)
3001 {
3002 fprintf (stdout, "%s type %s%s",
3003 S_GET_NAME (s),
3004 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3005 segment_name (S_GET_SEGMENT (s)));
3006 }
3007
3008 static struct type_name
3009 {
3010 i386_operand_type mask;
3011 const char *name;
3012 }
3013 const type_names[] =
3014 {
3015 { OPERAND_TYPE_REG8, "r8" },
3016 { OPERAND_TYPE_REG16, "r16" },
3017 { OPERAND_TYPE_REG32, "r32" },
3018 { OPERAND_TYPE_REG64, "r64" },
3019 { OPERAND_TYPE_IMM8, "i8" },
3020 { OPERAND_TYPE_IMM8, "i8s" },
3021 { OPERAND_TYPE_IMM16, "i16" },
3022 { OPERAND_TYPE_IMM32, "i32" },
3023 { OPERAND_TYPE_IMM32S, "i32s" },
3024 { OPERAND_TYPE_IMM64, "i64" },
3025 { OPERAND_TYPE_IMM1, "i1" },
3026 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3027 { OPERAND_TYPE_DISP8, "d8" },
3028 { OPERAND_TYPE_DISP16, "d16" },
3029 { OPERAND_TYPE_DISP32, "d32" },
3030 { OPERAND_TYPE_DISP32S, "d32s" },
3031 { OPERAND_TYPE_DISP64, "d64" },
3032 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3033 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3034 { OPERAND_TYPE_CONTROL, "control reg" },
3035 { OPERAND_TYPE_TEST, "test reg" },
3036 { OPERAND_TYPE_DEBUG, "debug reg" },
3037 { OPERAND_TYPE_FLOATREG, "FReg" },
3038 { OPERAND_TYPE_FLOATACC, "FAcc" },
3039 { OPERAND_TYPE_SREG2, "SReg2" },
3040 { OPERAND_TYPE_SREG3, "SReg3" },
3041 { OPERAND_TYPE_ACC, "Acc" },
3042 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3043 { OPERAND_TYPE_REGMMX, "rMMX" },
3044 { OPERAND_TYPE_REGXMM, "rXMM" },
3045 { OPERAND_TYPE_REGYMM, "rYMM" },
3046 { OPERAND_TYPE_REGZMM, "rZMM" },
3047 { OPERAND_TYPE_REGMASK, "Mask reg" },
3048 { OPERAND_TYPE_ESSEG, "es" },
3049 };
3050
3051 static void
3052 pt (i386_operand_type t)
3053 {
3054 unsigned int j;
3055 i386_operand_type a;
3056
3057 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3058 {
3059 a = operand_type_and (t, type_names[j].mask);
3060 if (!operand_type_all_zero (&a))
3061 fprintf (stdout, "%s, ", type_names[j].name);
3062 }
3063 fflush (stdout);
3064 }
3065
3066 #endif /* DEBUG386 */
3067 \f
3068 static bfd_reloc_code_real_type
3069 reloc (unsigned int size,
3070 int pcrel,
3071 int sign,
3072 bfd_reloc_code_real_type other)
3073 {
3074 if (other != NO_RELOC)
3075 {
3076 reloc_howto_type *rel;
3077
3078 if (size == 8)
3079 switch (other)
3080 {
3081 case BFD_RELOC_X86_64_GOT32:
3082 return BFD_RELOC_X86_64_GOT64;
3083 break;
3084 case BFD_RELOC_X86_64_GOTPLT64:
3085 return BFD_RELOC_X86_64_GOTPLT64;
3086 break;
3087 case BFD_RELOC_X86_64_PLTOFF64:
3088 return BFD_RELOC_X86_64_PLTOFF64;
3089 break;
3090 case BFD_RELOC_X86_64_GOTPC32:
3091 other = BFD_RELOC_X86_64_GOTPC64;
3092 break;
3093 case BFD_RELOC_X86_64_GOTPCREL:
3094 other = BFD_RELOC_X86_64_GOTPCREL64;
3095 break;
3096 case BFD_RELOC_X86_64_TPOFF32:
3097 other = BFD_RELOC_X86_64_TPOFF64;
3098 break;
3099 case BFD_RELOC_X86_64_DTPOFF32:
3100 other = BFD_RELOC_X86_64_DTPOFF64;
3101 break;
3102 default:
3103 break;
3104 }
3105
3106 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3107 if (other == BFD_RELOC_SIZE32)
3108 {
3109 if (size == 8)
3110 other = BFD_RELOC_SIZE64;
3111 if (pcrel)
3112 {
3113 as_bad (_("there are no pc-relative size relocations"));
3114 return NO_RELOC;
3115 }
3116 }
3117 #endif
3118
3119 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3120 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3121 sign = -1;
3122
3123 rel = bfd_reloc_type_lookup (stdoutput, other);
3124 if (!rel)
3125 as_bad (_("unknown relocation (%u)"), other);
3126 else if (size != bfd_get_reloc_size (rel))
3127 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3128 bfd_get_reloc_size (rel),
3129 size);
3130 else if (pcrel && !rel->pc_relative)
3131 as_bad (_("non-pc-relative relocation for pc-relative field"));
3132 else if ((rel->complain_on_overflow == complain_overflow_signed
3133 && !sign)
3134 || (rel->complain_on_overflow == complain_overflow_unsigned
3135 && sign > 0))
3136 as_bad (_("relocated field and relocation type differ in signedness"));
3137 else
3138 return other;
3139 return NO_RELOC;
3140 }
3141
3142 if (pcrel)
3143 {
3144 if (!sign)
3145 as_bad (_("there are no unsigned pc-relative relocations"));
3146 switch (size)
3147 {
3148 case 1: return BFD_RELOC_8_PCREL;
3149 case 2: return BFD_RELOC_16_PCREL;
3150 case 4: return BFD_RELOC_32_PCREL;
3151 case 8: return BFD_RELOC_64_PCREL;
3152 }
3153 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3154 }
3155 else
3156 {
3157 if (sign > 0)
3158 switch (size)
3159 {
3160 case 4: return BFD_RELOC_X86_64_32S;
3161 }
3162 else
3163 switch (size)
3164 {
3165 case 1: return BFD_RELOC_8;
3166 case 2: return BFD_RELOC_16;
3167 case 4: return BFD_RELOC_32;
3168 case 8: return BFD_RELOC_64;
3169 }
3170 as_bad (_("cannot do %s %u byte relocation"),
3171 sign > 0 ? "signed" : "unsigned", size);
3172 }
3173
3174 return NO_RELOC;
3175 }
3176
3177 /* Here we decide which fixups can be adjusted to make them relative to
3178 the beginning of the section instead of the symbol. Basically we need
3179 to make sure that the dynamic relocations are done correctly, so in
3180 some cases we force the original symbol to be used. */
3181
3182 int
3183 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3184 {
3185 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3186 if (!IS_ELF)
3187 return 1;
3188
3189 /* Don't adjust pc-relative references to merge sections in 64-bit
3190 mode. */
3191 if (use_rela_relocations
3192 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3193 && fixP->fx_pcrel)
3194 return 0;
3195
3196 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3197 and changed later by validate_fix. */
3198 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3199 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3200 return 0;
3201
3202 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3203 for size relocations. */
3204 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3205 || fixP->fx_r_type == BFD_RELOC_SIZE64
3206 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3207 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3208 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3209 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3210 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3211 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3212 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3213 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3214 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3215 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3216 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3217 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3218 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3219 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3220 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3221 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3222 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3223 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3224 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3225 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3226 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3227 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3228 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3229 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3230 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3231 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3232 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3233 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3234 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3235 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3236 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3237 return 0;
3238 #endif
3239 return 1;
3240 }
3241
3242 static int
3243 intel_float_operand (const char *mnemonic)
3244 {
3245 /* Note that the value returned is meaningful only for opcodes with (memory)
3246 operands, hence the code here is free to improperly handle opcodes that
3247 have no operands (for better performance and smaller code). */
3248
3249 if (mnemonic[0] != 'f')
3250 return 0; /* non-math */
3251
3252 switch (mnemonic[1])
3253 {
3254 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3255 the fs segment override prefix not currently handled because no
3256 call path can make opcodes without operands get here */
3257 case 'i':
3258 return 2 /* integer op */;
3259 case 'l':
3260 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3261 return 3; /* fldcw/fldenv */
3262 break;
3263 case 'n':
3264 if (mnemonic[2] != 'o' /* fnop */)
3265 return 3; /* non-waiting control op */
3266 break;
3267 case 'r':
3268 if (mnemonic[2] == 's')
3269 return 3; /* frstor/frstpm */
3270 break;
3271 case 's':
3272 if (mnemonic[2] == 'a')
3273 return 3; /* fsave */
3274 if (mnemonic[2] == 't')
3275 {
3276 switch (mnemonic[3])
3277 {
3278 case 'c': /* fstcw */
3279 case 'd': /* fstdw */
3280 case 'e': /* fstenv */
3281 case 's': /* fsts[gw] */
3282 return 3;
3283 }
3284 }
3285 break;
3286 case 'x':
3287 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3288 return 0; /* fxsave/fxrstor are not really math ops */
3289 break;
3290 }
3291
3292 return 1;
3293 }
3294
3295 /* Build the VEX prefix. */
3296
3297 static void
3298 build_vex_prefix (const insn_template *t)
3299 {
3300 unsigned int register_specifier;
3301 unsigned int implied_prefix;
3302 unsigned int vector_length;
3303
3304 /* Check register specifier. */
3305 if (i.vex.register_specifier)
3306 {
3307 register_specifier =
3308 ~register_number (i.vex.register_specifier) & 0xf;
3309 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3310 }
3311 else
3312 register_specifier = 0xf;
3313
3314 /* Use 2-byte VEX prefix by swapping destination and source
3315 operand. */
3316 if (i.vec_encoding != vex_encoding_vex3
3317 && i.dir_encoding == dir_encoding_default
3318 && i.operands == i.reg_operands
3319 && i.tm.opcode_modifier.vexopcode == VEX0F
3320 && i.tm.opcode_modifier.load
3321 && i.rex == REX_B)
3322 {
3323 unsigned int xchg = i.operands - 1;
3324 union i386_op temp_op;
3325 i386_operand_type temp_type;
3326
3327 temp_type = i.types[xchg];
3328 i.types[xchg] = i.types[0];
3329 i.types[0] = temp_type;
3330 temp_op = i.op[xchg];
3331 i.op[xchg] = i.op[0];
3332 i.op[0] = temp_op;
3333
3334 gas_assert (i.rm.mode == 3);
3335
3336 i.rex = REX_R;
3337 xchg = i.rm.regmem;
3338 i.rm.regmem = i.rm.reg;
3339 i.rm.reg = xchg;
3340
3341 /* Use the next insn. */
3342 i.tm = t[1];
3343 }
3344
3345 if (i.tm.opcode_modifier.vex == VEXScalar)
3346 vector_length = avxscalar;
3347 else if (i.tm.opcode_modifier.vex == VEX256)
3348 vector_length = 1;
3349 else
3350 {
3351 unsigned int op;
3352
3353 vector_length = 0;
3354 for (op = 0; op < t->operands; ++op)
3355 if (t->operand_types[op].bitfield.xmmword
3356 && t->operand_types[op].bitfield.ymmword
3357 && i.types[op].bitfield.ymmword)
3358 {
3359 vector_length = 1;
3360 break;
3361 }
3362 }
3363
3364 switch ((i.tm.base_opcode >> 8) & 0xff)
3365 {
3366 case 0:
3367 implied_prefix = 0;
3368 break;
3369 case DATA_PREFIX_OPCODE:
3370 implied_prefix = 1;
3371 break;
3372 case REPE_PREFIX_OPCODE:
3373 implied_prefix = 2;
3374 break;
3375 case REPNE_PREFIX_OPCODE:
3376 implied_prefix = 3;
3377 break;
3378 default:
3379 abort ();
3380 }
3381
3382 /* Use 2-byte VEX prefix if possible. */
3383 if (i.vec_encoding != vex_encoding_vex3
3384 && i.tm.opcode_modifier.vexopcode == VEX0F
3385 && i.tm.opcode_modifier.vexw != VEXW1
3386 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3387 {
3388 /* 2-byte VEX prefix. */
3389 unsigned int r;
3390
3391 i.vex.length = 2;
3392 i.vex.bytes[0] = 0xc5;
3393
3394 /* Check the REX.R bit. */
3395 r = (i.rex & REX_R) ? 0 : 1;
3396 i.vex.bytes[1] = (r << 7
3397 | register_specifier << 3
3398 | vector_length << 2
3399 | implied_prefix);
3400 }
3401 else
3402 {
3403 /* 3-byte VEX prefix. */
3404 unsigned int m, w;
3405
3406 i.vex.length = 3;
3407
3408 switch (i.tm.opcode_modifier.vexopcode)
3409 {
3410 case VEX0F:
3411 m = 0x1;
3412 i.vex.bytes[0] = 0xc4;
3413 break;
3414 case VEX0F38:
3415 m = 0x2;
3416 i.vex.bytes[0] = 0xc4;
3417 break;
3418 case VEX0F3A:
3419 m = 0x3;
3420 i.vex.bytes[0] = 0xc4;
3421 break;
3422 case XOP08:
3423 m = 0x8;
3424 i.vex.bytes[0] = 0x8f;
3425 break;
3426 case XOP09:
3427 m = 0x9;
3428 i.vex.bytes[0] = 0x8f;
3429 break;
3430 case XOP0A:
3431 m = 0xa;
3432 i.vex.bytes[0] = 0x8f;
3433 break;
3434 default:
3435 abort ();
3436 }
3437
3438 /* The high 3 bits of the second VEX byte are 1's compliment
3439 of RXB bits from REX. */
3440 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3441
3442 /* Check the REX.W bit. */
3443 w = (i.rex & REX_W) ? 1 : 0;
3444 if (i.tm.opcode_modifier.vexw == VEXW1)
3445 w = 1;
3446
3447 i.vex.bytes[2] = (w << 7
3448 | register_specifier << 3
3449 | vector_length << 2
3450 | implied_prefix);
3451 }
3452 }
3453
3454 static INLINE bfd_boolean
3455 is_evex_encoding (const insn_template *t)
3456 {
3457 return t->opcode_modifier.evex
3458 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3459 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3460 }
3461
3462 /* Build the EVEX prefix. */
3463
3464 static void
3465 build_evex_prefix (void)
3466 {
3467 unsigned int register_specifier;
3468 unsigned int implied_prefix;
3469 unsigned int m, w;
3470 rex_byte vrex_used = 0;
3471
3472 /* Check register specifier. */
3473 if (i.vex.register_specifier)
3474 {
3475 gas_assert ((i.vrex & REX_X) == 0);
3476
3477 register_specifier = i.vex.register_specifier->reg_num;
3478 if ((i.vex.register_specifier->reg_flags & RegRex))
3479 register_specifier += 8;
3480 /* The upper 16 registers are encoded in the fourth byte of the
3481 EVEX prefix. */
3482 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3483 i.vex.bytes[3] = 0x8;
3484 register_specifier = ~register_specifier & 0xf;
3485 }
3486 else
3487 {
3488 register_specifier = 0xf;
3489
3490 /* Encode upper 16 vector index register in the fourth byte of
3491 the EVEX prefix. */
3492 if (!(i.vrex & REX_X))
3493 i.vex.bytes[3] = 0x8;
3494 else
3495 vrex_used |= REX_X;
3496 }
3497
3498 switch ((i.tm.base_opcode >> 8) & 0xff)
3499 {
3500 case 0:
3501 implied_prefix = 0;
3502 break;
3503 case DATA_PREFIX_OPCODE:
3504 implied_prefix = 1;
3505 break;
3506 case REPE_PREFIX_OPCODE:
3507 implied_prefix = 2;
3508 break;
3509 case REPNE_PREFIX_OPCODE:
3510 implied_prefix = 3;
3511 break;
3512 default:
3513 abort ();
3514 }
3515
3516 /* 4 byte EVEX prefix. */
3517 i.vex.length = 4;
3518 i.vex.bytes[0] = 0x62;
3519
3520 /* mmmm bits. */
3521 switch (i.tm.opcode_modifier.vexopcode)
3522 {
3523 case VEX0F:
3524 m = 1;
3525 break;
3526 case VEX0F38:
3527 m = 2;
3528 break;
3529 case VEX0F3A:
3530 m = 3;
3531 break;
3532 default:
3533 abort ();
3534 break;
3535 }
3536
3537 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3538 bits from REX. */
3539 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3540
3541 /* The fifth bit of the second EVEX byte is 1's compliment of the
3542 REX_R bit in VREX. */
3543 if (!(i.vrex & REX_R))
3544 i.vex.bytes[1] |= 0x10;
3545 else
3546 vrex_used |= REX_R;
3547
3548 if ((i.reg_operands + i.imm_operands) == i.operands)
3549 {
3550 /* When all operands are registers, the REX_X bit in REX is not
3551 used. We reuse it to encode the upper 16 registers, which is
3552 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3553 as 1's compliment. */
3554 if ((i.vrex & REX_B))
3555 {
3556 vrex_used |= REX_B;
3557 i.vex.bytes[1] &= ~0x40;
3558 }
3559 }
3560
3561 /* EVEX instructions shouldn't need the REX prefix. */
3562 i.vrex &= ~vrex_used;
3563 gas_assert (i.vrex == 0);
3564
3565 /* Check the REX.W bit. */
3566 w = (i.rex & REX_W) ? 1 : 0;
3567 if (i.tm.opcode_modifier.vexw)
3568 {
3569 if (i.tm.opcode_modifier.vexw == VEXW1)
3570 w = 1;
3571 }
3572 /* If w is not set it means we are dealing with WIG instruction. */
3573 else if (!w)
3574 {
3575 if (evexwig == evexw1)
3576 w = 1;
3577 }
3578
3579 /* Encode the U bit. */
3580 implied_prefix |= 0x4;
3581
3582 /* The third byte of the EVEX prefix. */
3583 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3584
3585 /* The fourth byte of the EVEX prefix. */
3586 /* The zeroing-masking bit. */
3587 if (i.mask && i.mask->zeroing)
3588 i.vex.bytes[3] |= 0x80;
3589
3590 /* Don't always set the broadcast bit if there is no RC. */
3591 if (!i.rounding)
3592 {
3593 /* Encode the vector length. */
3594 unsigned int vec_length;
3595
3596 if (!i.tm.opcode_modifier.evex
3597 || i.tm.opcode_modifier.evex == EVEXDYN)
3598 {
3599 unsigned int op;
3600
3601 vec_length = 0;
3602 for (op = 0; op < i.tm.operands; ++op)
3603 if (i.tm.operand_types[op].bitfield.xmmword
3604 + i.tm.operand_types[op].bitfield.ymmword
3605 + i.tm.operand_types[op].bitfield.zmmword > 1)
3606 {
3607 if (i.types[op].bitfield.zmmword)
3608 i.tm.opcode_modifier.evex = EVEX512;
3609 else if (i.types[op].bitfield.ymmword)
3610 i.tm.opcode_modifier.evex = EVEX256;
3611 else if (i.types[op].bitfield.xmmword)
3612 i.tm.opcode_modifier.evex = EVEX128;
3613 else
3614 continue;
3615 break;
3616 }
3617 }
3618
3619 switch (i.tm.opcode_modifier.evex)
3620 {
3621 case EVEXLIG: /* LL' is ignored */
3622 vec_length = evexlig << 5;
3623 break;
3624 case EVEX128:
3625 vec_length = 0 << 5;
3626 break;
3627 case EVEX256:
3628 vec_length = 1 << 5;
3629 break;
3630 case EVEX512:
3631 vec_length = 2 << 5;
3632 break;
3633 default:
3634 abort ();
3635 break;
3636 }
3637 i.vex.bytes[3] |= vec_length;
3638 /* Encode the broadcast bit. */
3639 if (i.broadcast)
3640 i.vex.bytes[3] |= 0x10;
3641 }
3642 else
3643 {
3644 if (i.rounding->type != saeonly)
3645 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3646 else
3647 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3648 }
3649
3650 if (i.mask && i.mask->mask)
3651 i.vex.bytes[3] |= i.mask->mask->reg_num;
3652 }
3653
3654 static void
3655 process_immext (void)
3656 {
3657 expressionS *exp;
3658
3659 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3660 && i.operands > 0)
3661 {
3662 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3663 with an opcode suffix which is coded in the same place as an
3664 8-bit immediate field would be.
3665 Here we check those operands and remove them afterwards. */
3666 unsigned int x;
3667
3668 for (x = 0; x < i.operands; x++)
3669 if (register_number (i.op[x].regs) != x)
3670 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3671 register_prefix, i.op[x].regs->reg_name, x + 1,
3672 i.tm.name);
3673
3674 i.operands = 0;
3675 }
3676
3677 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3678 {
3679 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3680 suffix which is coded in the same place as an 8-bit immediate
3681 field would be.
3682 Here we check those operands and remove them afterwards. */
3683 unsigned int x;
3684
3685 if (i.operands != 3)
3686 abort();
3687
3688 for (x = 0; x < 2; x++)
3689 if (register_number (i.op[x].regs) != x)
3690 goto bad_register_operand;
3691
3692 /* Check for third operand for mwaitx/monitorx insn. */
3693 if (register_number (i.op[x].regs)
3694 != (x + (i.tm.extension_opcode == 0xfb)))
3695 {
3696 bad_register_operand:
3697 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3698 register_prefix, i.op[x].regs->reg_name, x+1,
3699 i.tm.name);
3700 }
3701
3702 i.operands = 0;
3703 }
3704
3705 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3706 which is coded in the same place as an 8-bit immediate field
3707 would be. Here we fake an 8-bit immediate operand from the
3708 opcode suffix stored in tm.extension_opcode.
3709
3710 AVX instructions also use this encoding, for some of
3711 3 argument instructions. */
3712
3713 gas_assert (i.imm_operands <= 1
3714 && (i.operands <= 2
3715 || ((i.tm.opcode_modifier.vex
3716 || i.tm.opcode_modifier.vexopcode
3717 || is_evex_encoding (&i.tm))
3718 && i.operands <= 4)));
3719
3720 exp = &im_expressions[i.imm_operands++];
3721 i.op[i.operands].imms = exp;
3722 i.types[i.operands] = imm8;
3723 i.operands++;
3724 exp->X_op = O_constant;
3725 exp->X_add_number = i.tm.extension_opcode;
3726 i.tm.extension_opcode = None;
3727 }
3728
3729
3730 static int
3731 check_hle (void)
3732 {
3733 switch (i.tm.opcode_modifier.hleprefixok)
3734 {
3735 default:
3736 abort ();
3737 case HLEPrefixNone:
3738 as_bad (_("invalid instruction `%s' after `%s'"),
3739 i.tm.name, i.hle_prefix);
3740 return 0;
3741 case HLEPrefixLock:
3742 if (i.prefix[LOCK_PREFIX])
3743 return 1;
3744 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3745 return 0;
3746 case HLEPrefixAny:
3747 return 1;
3748 case HLEPrefixRelease:
3749 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3750 {
3751 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3752 i.tm.name);
3753 return 0;
3754 }
3755 if (i.mem_operands == 0
3756 || !operand_type_check (i.types[i.operands - 1], anymem))
3757 {
3758 as_bad (_("memory destination needed for instruction `%s'"
3759 " after `xrelease'"), i.tm.name);
3760 return 0;
3761 }
3762 return 1;
3763 }
3764 }
3765
3766 /* Try the shortest encoding by shortening operand size. */
3767
3768 static void
3769 optimize_encoding (void)
3770 {
3771 int j;
3772
3773 if (optimize_for_space
3774 && i.reg_operands == 1
3775 && i.imm_operands == 1
3776 && !i.types[1].bitfield.byte
3777 && i.op[0].imms->X_op == O_constant
3778 && fits_in_imm7 (i.op[0].imms->X_add_number)
3779 && ((i.tm.base_opcode == 0xa8
3780 && i.tm.extension_opcode == None)
3781 || (i.tm.base_opcode == 0xf6
3782 && i.tm.extension_opcode == 0x0)))
3783 {
3784 /* Optimize: -Os:
3785 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3786 */
3787 unsigned int base_regnum = i.op[1].regs->reg_num;
3788 if (flag_code == CODE_64BIT || base_regnum < 4)
3789 {
3790 i.types[1].bitfield.byte = 1;
3791 /* Ignore the suffix. */
3792 i.suffix = 0;
3793 if (base_regnum >= 4
3794 && !(i.op[1].regs->reg_flags & RegRex))
3795 {
3796 /* Handle SP, BP, SI and DI registers. */
3797 if (i.types[1].bitfield.word)
3798 j = 16;
3799 else if (i.types[1].bitfield.dword)
3800 j = 32;
3801 else
3802 j = 48;
3803 i.op[1].regs -= j;
3804 }
3805 }
3806 }
3807 else if (flag_code == CODE_64BIT
3808 && ((i.types[1].bitfield.qword
3809 && i.reg_operands == 1
3810 && i.imm_operands == 1
3811 && i.op[0].imms->X_op == O_constant
3812 && ((i.tm.base_opcode == 0xb0
3813 && i.tm.extension_opcode == None
3814 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3815 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3816 && (((i.tm.base_opcode == 0x24
3817 || i.tm.base_opcode == 0xa8)
3818 && i.tm.extension_opcode == None)
3819 || (i.tm.base_opcode == 0x80
3820 && i.tm.extension_opcode == 0x4)
3821 || ((i.tm.base_opcode == 0xf6
3822 || i.tm.base_opcode == 0xc6)
3823 && i.tm.extension_opcode == 0x0)))))
3824 || (i.types[0].bitfield.qword
3825 && ((i.reg_operands == 2
3826 && i.op[0].regs == i.op[1].regs
3827 && ((i.tm.base_opcode == 0x30
3828 || i.tm.base_opcode == 0x28)
3829 && i.tm.extension_opcode == None))
3830 || (i.reg_operands == 1
3831 && i.operands == 1
3832 && i.tm.base_opcode == 0x30
3833 && i.tm.extension_opcode == None)))))
3834 {
3835 /* Optimize: -O:
3836 andq $imm31, %r64 -> andl $imm31, %r32
3837 testq $imm31, %r64 -> testl $imm31, %r32
3838 xorq %r64, %r64 -> xorl %r32, %r32
3839 subq %r64, %r64 -> subl %r32, %r32
3840 movq $imm31, %r64 -> movl $imm31, %r32
3841 movq $imm32, %r64 -> movl $imm32, %r32
3842 */
3843 i.tm.opcode_modifier.norex64 = 1;
3844 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3845 {
3846 /* Handle
3847 movq $imm31, %r64 -> movl $imm31, %r32
3848 movq $imm32, %r64 -> movl $imm32, %r32
3849 */
3850 i.tm.operand_types[0].bitfield.imm32 = 1;
3851 i.tm.operand_types[0].bitfield.imm32s = 0;
3852 i.tm.operand_types[0].bitfield.imm64 = 0;
3853 i.types[0].bitfield.imm32 = 1;
3854 i.types[0].bitfield.imm32s = 0;
3855 i.types[0].bitfield.imm64 = 0;
3856 i.types[1].bitfield.dword = 1;
3857 i.types[1].bitfield.qword = 0;
3858 if (i.tm.base_opcode == 0xc6)
3859 {
3860 /* Handle
3861 movq $imm31, %r64 -> movl $imm31, %r32
3862 */
3863 i.tm.base_opcode = 0xb0;
3864 i.tm.extension_opcode = None;
3865 i.tm.opcode_modifier.shortform = 1;
3866 i.tm.opcode_modifier.modrm = 0;
3867 }
3868 }
3869 }
3870 else if (optimize > 1
3871 && i.reg_operands == 3
3872 && i.op[0].regs == i.op[1].regs
3873 && !i.types[2].bitfield.xmmword
3874 && (i.tm.opcode_modifier.vex
3875 || (!i.mask
3876 && !i.rounding
3877 && is_evex_encoding (&i.tm)
3878 && (i.tm.cpu_flags.bitfield.cpuavx512vl
3879 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
3880 && ((i.tm.base_opcode == 0x55
3881 || i.tm.base_opcode == 0x6655
3882 || i.tm.base_opcode == 0x66df
3883 || i.tm.base_opcode == 0x57
3884 || i.tm.base_opcode == 0x6657
3885 || i.tm.base_opcode == 0x66ef
3886 || i.tm.base_opcode == 0x66f8
3887 || i.tm.base_opcode == 0x66f9
3888 || i.tm.base_opcode == 0x66fa
3889 || i.tm.base_opcode == 0x66fb)
3890 && i.tm.extension_opcode == None))
3891 {
3892 /* Optimize: -O2:
3893 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3894 vpsubq and vpsubw:
3895 EVEX VOP %zmmM, %zmmM, %zmmN
3896 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3897 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3898 EVEX VOP %ymmM, %ymmM, %ymmN
3899 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3900 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3901 VEX VOP %ymmM, %ymmM, %ymmN
3902 -> VEX VOP %xmmM, %xmmM, %xmmN
3903 VOP, one of vpandn and vpxor:
3904 VEX VOP %ymmM, %ymmM, %ymmN
3905 -> VEX VOP %xmmM, %xmmM, %xmmN
3906 VOP, one of vpandnd and vpandnq:
3907 EVEX VOP %zmmM, %zmmM, %zmmN
3908 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3909 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3910 EVEX VOP %ymmM, %ymmM, %ymmN
3911 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3912 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3913 VOP, one of vpxord and vpxorq:
3914 EVEX VOP %zmmM, %zmmM, %zmmN
3915 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3916 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3917 EVEX VOP %ymmM, %ymmM, %ymmN
3918 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3919 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3920 */
3921 if (is_evex_encoding (&i.tm))
3922 {
3923 if (i.vec_encoding == vex_encoding_evex)
3924 i.tm.opcode_modifier.evex = EVEX128;
3925 else
3926 {
3927 i.tm.opcode_modifier.vex = VEX128;
3928 i.tm.opcode_modifier.vexw = VEXW0;
3929 i.tm.opcode_modifier.evex = 0;
3930 }
3931 }
3932 else
3933 i.tm.opcode_modifier.vex = VEX128;
3934
3935 if (i.tm.opcode_modifier.vex)
3936 for (j = 0; j < 3; j++)
3937 {
3938 i.types[j].bitfield.xmmword = 1;
3939 i.types[j].bitfield.ymmword = 0;
3940 }
3941 }
3942 }
3943
3944 /* This is the guts of the machine-dependent assembler. LINE points to a
3945 machine dependent instruction. This function is supposed to emit
3946 the frags/bytes it assembles to. */
3947
3948 void
3949 md_assemble (char *line)
3950 {
3951 unsigned int j;
3952 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
3953 const insn_template *t;
3954
3955 /* Initialize globals. */
3956 memset (&i, '\0', sizeof (i));
3957 for (j = 0; j < MAX_OPERANDS; j++)
3958 i.reloc[j] = NO_RELOC;
3959 memset (disp_expressions, '\0', sizeof (disp_expressions));
3960 memset (im_expressions, '\0', sizeof (im_expressions));
3961 save_stack_p = save_stack;
3962
3963 /* First parse an instruction mnemonic & call i386_operand for the operands.
3964 We assume that the scrubber has arranged it so that line[0] is the valid
3965 start of a (possibly prefixed) mnemonic. */
3966
3967 line = parse_insn (line, mnemonic);
3968 if (line == NULL)
3969 return;
3970 mnem_suffix = i.suffix;
3971
3972 line = parse_operands (line, mnemonic);
3973 this_operand = -1;
3974 xfree (i.memop1_string);
3975 i.memop1_string = NULL;
3976 if (line == NULL)
3977 return;
3978
3979 /* Now we've parsed the mnemonic into a set of templates, and have the
3980 operands at hand. */
3981
3982 /* All intel opcodes have reversed operands except for "bound" and
3983 "enter". We also don't reverse intersegment "jmp" and "call"
3984 instructions with 2 immediate operands so that the immediate segment
3985 precedes the offset, as it does when in AT&T mode. */
3986 if (intel_syntax
3987 && i.operands > 1
3988 && (strcmp (mnemonic, "bound") != 0)
3989 && (strcmp (mnemonic, "invlpga") != 0)
3990 && !(operand_type_check (i.types[0], imm)
3991 && operand_type_check (i.types[1], imm)))
3992 swap_operands ();
3993
3994 /* The order of the immediates should be reversed
3995 for 2 immediates extrq and insertq instructions */
3996 if (i.imm_operands == 2
3997 && (strcmp (mnemonic, "extrq") == 0
3998 || strcmp (mnemonic, "insertq") == 0))
3999 swap_2_operands (0, 1);
4000
4001 if (i.imm_operands)
4002 optimize_imm ();
4003
4004 /* Don't optimize displacement for movabs since it only takes 64bit
4005 displacement. */
4006 if (i.disp_operands
4007 && i.disp_encoding != disp_encoding_32bit
4008 && (flag_code != CODE_64BIT
4009 || strcmp (mnemonic, "movabs") != 0))
4010 optimize_disp ();
4011
4012 /* Next, we find a template that matches the given insn,
4013 making sure the overlap of the given operands types is consistent
4014 with the template operand types. */
4015
4016 if (!(t = match_template (mnem_suffix)))
4017 return;
4018
4019 if (sse_check != check_none
4020 && !i.tm.opcode_modifier.noavx
4021 && !i.tm.cpu_flags.bitfield.cpuavx
4022 && (i.tm.cpu_flags.bitfield.cpusse
4023 || i.tm.cpu_flags.bitfield.cpusse2
4024 || i.tm.cpu_flags.bitfield.cpusse3
4025 || i.tm.cpu_flags.bitfield.cpussse3
4026 || i.tm.cpu_flags.bitfield.cpusse4_1
4027 || i.tm.cpu_flags.bitfield.cpusse4_2
4028 || i.tm.cpu_flags.bitfield.cpupclmul
4029 || i.tm.cpu_flags.bitfield.cpuaes
4030 || i.tm.cpu_flags.bitfield.cpugfni))
4031 {
4032 (sse_check == check_warning
4033 ? as_warn
4034 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4035 }
4036
4037 /* Zap movzx and movsx suffix. The suffix has been set from
4038 "word ptr" or "byte ptr" on the source operand in Intel syntax
4039 or extracted from mnemonic in AT&T syntax. But we'll use
4040 the destination register to choose the suffix for encoding. */
4041 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4042 {
4043 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4044 there is no suffix, the default will be byte extension. */
4045 if (i.reg_operands != 2
4046 && !i.suffix
4047 && intel_syntax)
4048 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4049
4050 i.suffix = 0;
4051 }
4052
4053 if (i.tm.opcode_modifier.fwait)
4054 if (!add_prefix (FWAIT_OPCODE))
4055 return;
4056
4057 /* Check if REP prefix is OK. */
4058 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4059 {
4060 as_bad (_("invalid instruction `%s' after `%s'"),
4061 i.tm.name, i.rep_prefix);
4062 return;
4063 }
4064
4065 /* Check for lock without a lockable instruction. Destination operand
4066 must be memory unless it is xchg (0x86). */
4067 if (i.prefix[LOCK_PREFIX]
4068 && (!i.tm.opcode_modifier.islockable
4069 || i.mem_operands == 0
4070 || (i.tm.base_opcode != 0x86
4071 && !operand_type_check (i.types[i.operands - 1], anymem))))
4072 {
4073 as_bad (_("expecting lockable instruction after `lock'"));
4074 return;
4075 }
4076
4077 /* Check if HLE prefix is OK. */
4078 if (i.hle_prefix && !check_hle ())
4079 return;
4080
4081 /* Check BND prefix. */
4082 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4083 as_bad (_("expecting valid branch instruction after `bnd'"));
4084
4085 /* Check NOTRACK prefix. */
4086 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4087 as_bad (_("expecting indirect branch instruction after `notrack'"));
4088
4089 if (i.tm.cpu_flags.bitfield.cpumpx)
4090 {
4091 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4092 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4093 else if (flag_code != CODE_16BIT
4094 ? i.prefix[ADDR_PREFIX]
4095 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4096 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4097 }
4098
4099 /* Insert BND prefix. */
4100 if (add_bnd_prefix
4101 && i.tm.opcode_modifier.bndprefixok
4102 && !i.prefix[BND_PREFIX])
4103 add_prefix (BND_PREFIX_OPCODE);
4104
4105 /* Check string instruction segment overrides. */
4106 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4107 {
4108 if (!check_string ())
4109 return;
4110 i.disp_operands = 0;
4111 }
4112
4113 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4114 optimize_encoding ();
4115
4116 if (!process_suffix ())
4117 return;
4118
4119 /* Update operand types. */
4120 for (j = 0; j < i.operands; j++)
4121 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4122
4123 /* Make still unresolved immediate matches conform to size of immediate
4124 given in i.suffix. */
4125 if (!finalize_imm ())
4126 return;
4127
4128 if (i.types[0].bitfield.imm1)
4129 i.imm_operands = 0; /* kludge for shift insns. */
4130
4131 /* We only need to check those implicit registers for instructions
4132 with 3 operands or less. */
4133 if (i.operands <= 3)
4134 for (j = 0; j < i.operands; j++)
4135 if (i.types[j].bitfield.inoutportreg
4136 || i.types[j].bitfield.shiftcount
4137 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4138 i.reg_operands--;
4139
4140 /* ImmExt should be processed after SSE2AVX. */
4141 if (!i.tm.opcode_modifier.sse2avx
4142 && i.tm.opcode_modifier.immext)
4143 process_immext ();
4144
4145 /* For insns with operands there are more diddles to do to the opcode. */
4146 if (i.operands)
4147 {
4148 if (!process_operands ())
4149 return;
4150 }
4151 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4152 {
4153 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4154 as_warn (_("translating to `%sp'"), i.tm.name);
4155 }
4156
4157 if (i.tm.opcode_modifier.vex || i.tm.opcode_modifier.vexopcode
4158 || is_evex_encoding (&i.tm))
4159 {
4160 if (flag_code == CODE_16BIT)
4161 {
4162 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4163 i.tm.name);
4164 return;
4165 }
4166
4167 if (i.tm.opcode_modifier.vex)
4168 build_vex_prefix (t);
4169 else
4170 build_evex_prefix ();
4171 }
4172
4173 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4174 instructions may define INT_OPCODE as well, so avoid this corner
4175 case for those instructions that use MODRM. */
4176 if (i.tm.base_opcode == INT_OPCODE
4177 && !i.tm.opcode_modifier.modrm
4178 && i.op[0].imms->X_add_number == 3)
4179 {
4180 i.tm.base_opcode = INT3_OPCODE;
4181 i.imm_operands = 0;
4182 }
4183
4184 if ((i.tm.opcode_modifier.jump
4185 || i.tm.opcode_modifier.jumpbyte
4186 || i.tm.opcode_modifier.jumpdword)
4187 && i.op[0].disps->X_op == O_constant)
4188 {
4189 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4190 the absolute address given by the constant. Since ix86 jumps and
4191 calls are pc relative, we need to generate a reloc. */
4192 i.op[0].disps->X_add_symbol = &abs_symbol;
4193 i.op[0].disps->X_op = O_symbol;
4194 }
4195
4196 if (i.tm.opcode_modifier.rex64)
4197 i.rex |= REX_W;
4198
4199 /* For 8 bit registers we need an empty rex prefix. Also if the
4200 instruction already has a prefix, we need to convert old
4201 registers to new ones. */
4202
4203 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4204 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4205 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4206 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4207 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4208 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4209 && i.rex != 0))
4210 {
4211 int x;
4212
4213 i.rex |= REX_OPCODE;
4214 for (x = 0; x < 2; x++)
4215 {
4216 /* Look for 8 bit operand that uses old registers. */
4217 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4218 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4219 {
4220 /* In case it is "hi" register, give up. */
4221 if (i.op[x].regs->reg_num > 3)
4222 as_bad (_("can't encode register '%s%s' in an "
4223 "instruction requiring REX prefix."),
4224 register_prefix, i.op[x].regs->reg_name);
4225
4226 /* Otherwise it is equivalent to the extended register.
4227 Since the encoding doesn't change this is merely
4228 cosmetic cleanup for debug output. */
4229
4230 i.op[x].regs = i.op[x].regs + 8;
4231 }
4232 }
4233 }
4234
4235 if (i.rex == 0 && i.rex_encoding)
4236 {
4237 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4238 that uses legacy register. If it is "hi" register, don't add
4239 the REX_OPCODE byte. */
4240 int x;
4241 for (x = 0; x < 2; x++)
4242 if (i.types[x].bitfield.reg
4243 && i.types[x].bitfield.byte
4244 && (i.op[x].regs->reg_flags & RegRex64) == 0
4245 && i.op[x].regs->reg_num > 3)
4246 {
4247 i.rex_encoding = FALSE;
4248 break;
4249 }
4250
4251 if (i.rex_encoding)
4252 i.rex = REX_OPCODE;
4253 }
4254
4255 if (i.rex != 0)
4256 add_prefix (REX_OPCODE | i.rex);
4257
4258 /* We are ready to output the insn. */
4259 output_insn ();
4260 }
4261
4262 static char *
4263 parse_insn (char *line, char *mnemonic)
4264 {
4265 char *l = line;
4266 char *token_start = l;
4267 char *mnem_p;
4268 int supported;
4269 const insn_template *t;
4270 char *dot_p = NULL;
4271
4272 while (1)
4273 {
4274 mnem_p = mnemonic;
4275 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4276 {
4277 if (*mnem_p == '.')
4278 dot_p = mnem_p;
4279 mnem_p++;
4280 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4281 {
4282 as_bad (_("no such instruction: `%s'"), token_start);
4283 return NULL;
4284 }
4285 l++;
4286 }
4287 if (!is_space_char (*l)
4288 && *l != END_OF_INSN
4289 && (intel_syntax
4290 || (*l != PREFIX_SEPARATOR
4291 && *l != ',')))
4292 {
4293 as_bad (_("invalid character %s in mnemonic"),
4294 output_invalid (*l));
4295 return NULL;
4296 }
4297 if (token_start == l)
4298 {
4299 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4300 as_bad (_("expecting prefix; got nothing"));
4301 else
4302 as_bad (_("expecting mnemonic; got nothing"));
4303 return NULL;
4304 }
4305
4306 /* Look up instruction (or prefix) via hash table. */
4307 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4308
4309 if (*l != END_OF_INSN
4310 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4311 && current_templates
4312 && current_templates->start->opcode_modifier.isprefix)
4313 {
4314 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4315 {
4316 as_bad ((flag_code != CODE_64BIT
4317 ? _("`%s' is only supported in 64-bit mode")
4318 : _("`%s' is not supported in 64-bit mode")),
4319 current_templates->start->name);
4320 return NULL;
4321 }
4322 /* If we are in 16-bit mode, do not allow addr16 or data16.
4323 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4324 if ((current_templates->start->opcode_modifier.size16
4325 || current_templates->start->opcode_modifier.size32)
4326 && flag_code != CODE_64BIT
4327 && (current_templates->start->opcode_modifier.size32
4328 ^ (flag_code == CODE_16BIT)))
4329 {
4330 as_bad (_("redundant %s prefix"),
4331 current_templates->start->name);
4332 return NULL;
4333 }
4334 if (current_templates->start->opcode_length == 0)
4335 {
4336 /* Handle pseudo prefixes. */
4337 switch (current_templates->start->base_opcode)
4338 {
4339 case 0x0:
4340 /* {disp8} */
4341 i.disp_encoding = disp_encoding_8bit;
4342 break;
4343 case 0x1:
4344 /* {disp32} */
4345 i.disp_encoding = disp_encoding_32bit;
4346 break;
4347 case 0x2:
4348 /* {load} */
4349 i.dir_encoding = dir_encoding_load;
4350 break;
4351 case 0x3:
4352 /* {store} */
4353 i.dir_encoding = dir_encoding_store;
4354 break;
4355 case 0x4:
4356 /* {vex2} */
4357 i.vec_encoding = vex_encoding_vex2;
4358 break;
4359 case 0x5:
4360 /* {vex3} */
4361 i.vec_encoding = vex_encoding_vex3;
4362 break;
4363 case 0x6:
4364 /* {evex} */
4365 i.vec_encoding = vex_encoding_evex;
4366 break;
4367 case 0x7:
4368 /* {rex} */
4369 i.rex_encoding = TRUE;
4370 break;
4371 case 0x8:
4372 /* {nooptimize} */
4373 i.no_optimize = TRUE;
4374 break;
4375 default:
4376 abort ();
4377 }
4378 }
4379 else
4380 {
4381 /* Add prefix, checking for repeated prefixes. */
4382 switch (add_prefix (current_templates->start->base_opcode))
4383 {
4384 case PREFIX_EXIST:
4385 return NULL;
4386 case PREFIX_DS:
4387 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4388 i.notrack_prefix = current_templates->start->name;
4389 break;
4390 case PREFIX_REP:
4391 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4392 i.hle_prefix = current_templates->start->name;
4393 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4394 i.bnd_prefix = current_templates->start->name;
4395 else
4396 i.rep_prefix = current_templates->start->name;
4397 break;
4398 default:
4399 break;
4400 }
4401 }
4402 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4403 token_start = ++l;
4404 }
4405 else
4406 break;
4407 }
4408
4409 if (!current_templates)
4410 {
4411 /* Check if we should swap operand or force 32bit displacement in
4412 encoding. */
4413 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4414 i.dir_encoding = dir_encoding_store;
4415 else if (mnem_p - 3 == dot_p
4416 && dot_p[1] == 'd'
4417 && dot_p[2] == '8')
4418 i.disp_encoding = disp_encoding_8bit;
4419 else if (mnem_p - 4 == dot_p
4420 && dot_p[1] == 'd'
4421 && dot_p[2] == '3'
4422 && dot_p[3] == '2')
4423 i.disp_encoding = disp_encoding_32bit;
4424 else
4425 goto check_suffix;
4426 mnem_p = dot_p;
4427 *dot_p = '\0';
4428 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4429 }
4430
4431 if (!current_templates)
4432 {
4433 check_suffix:
4434 /* See if we can get a match by trimming off a suffix. */
4435 switch (mnem_p[-1])
4436 {
4437 case WORD_MNEM_SUFFIX:
4438 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4439 i.suffix = SHORT_MNEM_SUFFIX;
4440 else
4441 /* Fall through. */
4442 case BYTE_MNEM_SUFFIX:
4443 case QWORD_MNEM_SUFFIX:
4444 i.suffix = mnem_p[-1];
4445 mnem_p[-1] = '\0';
4446 current_templates = (const templates *) hash_find (op_hash,
4447 mnemonic);
4448 break;
4449 case SHORT_MNEM_SUFFIX:
4450 case LONG_MNEM_SUFFIX:
4451 if (!intel_syntax)
4452 {
4453 i.suffix = mnem_p[-1];
4454 mnem_p[-1] = '\0';
4455 current_templates = (const templates *) hash_find (op_hash,
4456 mnemonic);
4457 }
4458 break;
4459
4460 /* Intel Syntax. */
4461 case 'd':
4462 if (intel_syntax)
4463 {
4464 if (intel_float_operand (mnemonic) == 1)
4465 i.suffix = SHORT_MNEM_SUFFIX;
4466 else
4467 i.suffix = LONG_MNEM_SUFFIX;
4468 mnem_p[-1] = '\0';
4469 current_templates = (const templates *) hash_find (op_hash,
4470 mnemonic);
4471 }
4472 break;
4473 }
4474 if (!current_templates)
4475 {
4476 as_bad (_("no such instruction: `%s'"), token_start);
4477 return NULL;
4478 }
4479 }
4480
4481 if (current_templates->start->opcode_modifier.jump
4482 || current_templates->start->opcode_modifier.jumpbyte)
4483 {
4484 /* Check for a branch hint. We allow ",pt" and ",pn" for
4485 predict taken and predict not taken respectively.
4486 I'm not sure that branch hints actually do anything on loop
4487 and jcxz insns (JumpByte) for current Pentium4 chips. They
4488 may work in the future and it doesn't hurt to accept them
4489 now. */
4490 if (l[0] == ',' && l[1] == 'p')
4491 {
4492 if (l[2] == 't')
4493 {
4494 if (!add_prefix (DS_PREFIX_OPCODE))
4495 return NULL;
4496 l += 3;
4497 }
4498 else if (l[2] == 'n')
4499 {
4500 if (!add_prefix (CS_PREFIX_OPCODE))
4501 return NULL;
4502 l += 3;
4503 }
4504 }
4505 }
4506 /* Any other comma loses. */
4507 if (*l == ',')
4508 {
4509 as_bad (_("invalid character %s in mnemonic"),
4510 output_invalid (*l));
4511 return NULL;
4512 }
4513
4514 /* Check if instruction is supported on specified architecture. */
4515 supported = 0;
4516 for (t = current_templates->start; t < current_templates->end; ++t)
4517 {
4518 supported |= cpu_flags_match (t);
4519 if (supported == CPU_FLAGS_PERFECT_MATCH)
4520 {
4521 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4522 as_warn (_("use .code16 to ensure correct addressing mode"));
4523
4524 return l;
4525 }
4526 }
4527
4528 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4529 as_bad (flag_code == CODE_64BIT
4530 ? _("`%s' is not supported in 64-bit mode")
4531 : _("`%s' is only supported in 64-bit mode"),
4532 current_templates->start->name);
4533 else
4534 as_bad (_("`%s' is not supported on `%s%s'"),
4535 current_templates->start->name,
4536 cpu_arch_name ? cpu_arch_name : default_arch,
4537 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4538
4539 return NULL;
4540 }
4541
4542 static char *
4543 parse_operands (char *l, const char *mnemonic)
4544 {
4545 char *token_start;
4546
4547 /* 1 if operand is pending after ','. */
4548 unsigned int expecting_operand = 0;
4549
4550 /* Non-zero if operand parens not balanced. */
4551 unsigned int paren_not_balanced;
4552
4553 while (*l != END_OF_INSN)
4554 {
4555 /* Skip optional white space before operand. */
4556 if (is_space_char (*l))
4557 ++l;
4558 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4559 {
4560 as_bad (_("invalid character %s before operand %d"),
4561 output_invalid (*l),
4562 i.operands + 1);
4563 return NULL;
4564 }
4565 token_start = l; /* After white space. */
4566 paren_not_balanced = 0;
4567 while (paren_not_balanced || *l != ',')
4568 {
4569 if (*l == END_OF_INSN)
4570 {
4571 if (paren_not_balanced)
4572 {
4573 if (!intel_syntax)
4574 as_bad (_("unbalanced parenthesis in operand %d."),
4575 i.operands + 1);
4576 else
4577 as_bad (_("unbalanced brackets in operand %d."),
4578 i.operands + 1);
4579 return NULL;
4580 }
4581 else
4582 break; /* we are done */
4583 }
4584 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4585 {
4586 as_bad (_("invalid character %s in operand %d"),
4587 output_invalid (*l),
4588 i.operands + 1);
4589 return NULL;
4590 }
4591 if (!intel_syntax)
4592 {
4593 if (*l == '(')
4594 ++paren_not_balanced;
4595 if (*l == ')')
4596 --paren_not_balanced;
4597 }
4598 else
4599 {
4600 if (*l == '[')
4601 ++paren_not_balanced;
4602 if (*l == ']')
4603 --paren_not_balanced;
4604 }
4605 l++;
4606 }
4607 if (l != token_start)
4608 { /* Yes, we've read in another operand. */
4609 unsigned int operand_ok;
4610 this_operand = i.operands++;
4611 if (i.operands > MAX_OPERANDS)
4612 {
4613 as_bad (_("spurious operands; (%d operands/instruction max)"),
4614 MAX_OPERANDS);
4615 return NULL;
4616 }
4617 i.types[this_operand].bitfield.unspecified = 1;
4618 /* Now parse operand adding info to 'i' as we go along. */
4619 END_STRING_AND_SAVE (l);
4620
4621 if (intel_syntax)
4622 operand_ok =
4623 i386_intel_operand (token_start,
4624 intel_float_operand (mnemonic));
4625 else
4626 operand_ok = i386_att_operand (token_start);
4627
4628 RESTORE_END_STRING (l);
4629 if (!operand_ok)
4630 return NULL;
4631 }
4632 else
4633 {
4634 if (expecting_operand)
4635 {
4636 expecting_operand_after_comma:
4637 as_bad (_("expecting operand after ','; got nothing"));
4638 return NULL;
4639 }
4640 if (*l == ',')
4641 {
4642 as_bad (_("expecting operand before ','; got nothing"));
4643 return NULL;
4644 }
4645 }
4646
4647 /* Now *l must be either ',' or END_OF_INSN. */
4648 if (*l == ',')
4649 {
4650 if (*++l == END_OF_INSN)
4651 {
4652 /* Just skip it, if it's \n complain. */
4653 goto expecting_operand_after_comma;
4654 }
4655 expecting_operand = 1;
4656 }
4657 }
4658 return l;
4659 }
4660
4661 static void
4662 swap_2_operands (int xchg1, int xchg2)
4663 {
4664 union i386_op temp_op;
4665 i386_operand_type temp_type;
4666 enum bfd_reloc_code_real temp_reloc;
4667
4668 temp_type = i.types[xchg2];
4669 i.types[xchg2] = i.types[xchg1];
4670 i.types[xchg1] = temp_type;
4671 temp_op = i.op[xchg2];
4672 i.op[xchg2] = i.op[xchg1];
4673 i.op[xchg1] = temp_op;
4674 temp_reloc = i.reloc[xchg2];
4675 i.reloc[xchg2] = i.reloc[xchg1];
4676 i.reloc[xchg1] = temp_reloc;
4677
4678 if (i.mask)
4679 {
4680 if (i.mask->operand == xchg1)
4681 i.mask->operand = xchg2;
4682 else if (i.mask->operand == xchg2)
4683 i.mask->operand = xchg1;
4684 }
4685 if (i.broadcast)
4686 {
4687 if (i.broadcast->operand == xchg1)
4688 i.broadcast->operand = xchg2;
4689 else if (i.broadcast->operand == xchg2)
4690 i.broadcast->operand = xchg1;
4691 }
4692 if (i.rounding)
4693 {
4694 if (i.rounding->operand == xchg1)
4695 i.rounding->operand = xchg2;
4696 else if (i.rounding->operand == xchg2)
4697 i.rounding->operand = xchg1;
4698 }
4699 }
4700
4701 static void
4702 swap_operands (void)
4703 {
4704 switch (i.operands)
4705 {
4706 case 5:
4707 case 4:
4708 swap_2_operands (1, i.operands - 2);
4709 /* Fall through. */
4710 case 3:
4711 case 2:
4712 swap_2_operands (0, i.operands - 1);
4713 break;
4714 default:
4715 abort ();
4716 }
4717
4718 if (i.mem_operands == 2)
4719 {
4720 const seg_entry *temp_seg;
4721 temp_seg = i.seg[0];
4722 i.seg[0] = i.seg[1];
4723 i.seg[1] = temp_seg;
4724 }
4725 }
4726
4727 /* Try to ensure constant immediates are represented in the smallest
4728 opcode possible. */
4729 static void
4730 optimize_imm (void)
4731 {
4732 char guess_suffix = 0;
4733 int op;
4734
4735 if (i.suffix)
4736 guess_suffix = i.suffix;
4737 else if (i.reg_operands)
4738 {
4739 /* Figure out a suffix from the last register operand specified.
4740 We can't do this properly yet, ie. excluding InOutPortReg,
4741 but the following works for instructions with immediates.
4742 In any case, we can't set i.suffix yet. */
4743 for (op = i.operands; --op >= 0;)
4744 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4745 {
4746 guess_suffix = BYTE_MNEM_SUFFIX;
4747 break;
4748 }
4749 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4750 {
4751 guess_suffix = WORD_MNEM_SUFFIX;
4752 break;
4753 }
4754 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
4755 {
4756 guess_suffix = LONG_MNEM_SUFFIX;
4757 break;
4758 }
4759 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
4760 {
4761 guess_suffix = QWORD_MNEM_SUFFIX;
4762 break;
4763 }
4764 }
4765 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4766 guess_suffix = WORD_MNEM_SUFFIX;
4767
4768 for (op = i.operands; --op >= 0;)
4769 if (operand_type_check (i.types[op], imm))
4770 {
4771 switch (i.op[op].imms->X_op)
4772 {
4773 case O_constant:
4774 /* If a suffix is given, this operand may be shortened. */
4775 switch (guess_suffix)
4776 {
4777 case LONG_MNEM_SUFFIX:
4778 i.types[op].bitfield.imm32 = 1;
4779 i.types[op].bitfield.imm64 = 1;
4780 break;
4781 case WORD_MNEM_SUFFIX:
4782 i.types[op].bitfield.imm16 = 1;
4783 i.types[op].bitfield.imm32 = 1;
4784 i.types[op].bitfield.imm32s = 1;
4785 i.types[op].bitfield.imm64 = 1;
4786 break;
4787 case BYTE_MNEM_SUFFIX:
4788 i.types[op].bitfield.imm8 = 1;
4789 i.types[op].bitfield.imm8s = 1;
4790 i.types[op].bitfield.imm16 = 1;
4791 i.types[op].bitfield.imm32 = 1;
4792 i.types[op].bitfield.imm32s = 1;
4793 i.types[op].bitfield.imm64 = 1;
4794 break;
4795 }
4796
4797 /* If this operand is at most 16 bits, convert it
4798 to a signed 16 bit number before trying to see
4799 whether it will fit in an even smaller size.
4800 This allows a 16-bit operand such as $0xffe0 to
4801 be recognised as within Imm8S range. */
4802 if ((i.types[op].bitfield.imm16)
4803 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4804 {
4805 i.op[op].imms->X_add_number =
4806 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4807 }
4808 #ifdef BFD64
4809 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4810 if ((i.types[op].bitfield.imm32)
4811 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4812 == 0))
4813 {
4814 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4815 ^ ((offsetT) 1 << 31))
4816 - ((offsetT) 1 << 31));
4817 }
4818 #endif
4819 i.types[op]
4820 = operand_type_or (i.types[op],
4821 smallest_imm_type (i.op[op].imms->X_add_number));
4822
4823 /* We must avoid matching of Imm32 templates when 64bit
4824 only immediate is available. */
4825 if (guess_suffix == QWORD_MNEM_SUFFIX)
4826 i.types[op].bitfield.imm32 = 0;
4827 break;
4828
4829 case O_absent:
4830 case O_register:
4831 abort ();
4832
4833 /* Symbols and expressions. */
4834 default:
4835 /* Convert symbolic operand to proper sizes for matching, but don't
4836 prevent matching a set of insns that only supports sizes other
4837 than those matching the insn suffix. */
4838 {
4839 i386_operand_type mask, allowed;
4840 const insn_template *t;
4841
4842 operand_type_set (&mask, 0);
4843 operand_type_set (&allowed, 0);
4844
4845 for (t = current_templates->start;
4846 t < current_templates->end;
4847 ++t)
4848 allowed = operand_type_or (allowed,
4849 t->operand_types[op]);
4850 switch (guess_suffix)
4851 {
4852 case QWORD_MNEM_SUFFIX:
4853 mask.bitfield.imm64 = 1;
4854 mask.bitfield.imm32s = 1;
4855 break;
4856 case LONG_MNEM_SUFFIX:
4857 mask.bitfield.imm32 = 1;
4858 break;
4859 case WORD_MNEM_SUFFIX:
4860 mask.bitfield.imm16 = 1;
4861 break;
4862 case BYTE_MNEM_SUFFIX:
4863 mask.bitfield.imm8 = 1;
4864 break;
4865 default:
4866 break;
4867 }
4868 allowed = operand_type_and (mask, allowed);
4869 if (!operand_type_all_zero (&allowed))
4870 i.types[op] = operand_type_and (i.types[op], mask);
4871 }
4872 break;
4873 }
4874 }
4875 }
4876
4877 /* Try to use the smallest displacement type too. */
4878 static void
4879 optimize_disp (void)
4880 {
4881 int op;
4882
4883 for (op = i.operands; --op >= 0;)
4884 if (operand_type_check (i.types[op], disp))
4885 {
4886 if (i.op[op].disps->X_op == O_constant)
4887 {
4888 offsetT op_disp = i.op[op].disps->X_add_number;
4889
4890 if (i.types[op].bitfield.disp16
4891 && (op_disp & ~(offsetT) 0xffff) == 0)
4892 {
4893 /* If this operand is at most 16 bits, convert
4894 to a signed 16 bit number and don't use 64bit
4895 displacement. */
4896 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4897 i.types[op].bitfield.disp64 = 0;
4898 }
4899 #ifdef BFD64
4900 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4901 if (i.types[op].bitfield.disp32
4902 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4903 {
4904 /* If this operand is at most 32 bits, convert
4905 to a signed 32 bit number and don't use 64bit
4906 displacement. */
4907 op_disp &= (((offsetT) 2 << 31) - 1);
4908 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4909 i.types[op].bitfield.disp64 = 0;
4910 }
4911 #endif
4912 if (!op_disp && i.types[op].bitfield.baseindex)
4913 {
4914 i.types[op].bitfield.disp8 = 0;
4915 i.types[op].bitfield.disp16 = 0;
4916 i.types[op].bitfield.disp32 = 0;
4917 i.types[op].bitfield.disp32s = 0;
4918 i.types[op].bitfield.disp64 = 0;
4919 i.op[op].disps = 0;
4920 i.disp_operands--;
4921 }
4922 else if (flag_code == CODE_64BIT)
4923 {
4924 if (fits_in_signed_long (op_disp))
4925 {
4926 i.types[op].bitfield.disp64 = 0;
4927 i.types[op].bitfield.disp32s = 1;
4928 }
4929 if (i.prefix[ADDR_PREFIX]
4930 && fits_in_unsigned_long (op_disp))
4931 i.types[op].bitfield.disp32 = 1;
4932 }
4933 if ((i.types[op].bitfield.disp32
4934 || i.types[op].bitfield.disp32s
4935 || i.types[op].bitfield.disp16)
4936 && fits_in_disp8 (op_disp))
4937 i.types[op].bitfield.disp8 = 1;
4938 }
4939 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4940 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4941 {
4942 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4943 i.op[op].disps, 0, i.reloc[op]);
4944 i.types[op].bitfield.disp8 = 0;
4945 i.types[op].bitfield.disp16 = 0;
4946 i.types[op].bitfield.disp32 = 0;
4947 i.types[op].bitfield.disp32s = 0;
4948 i.types[op].bitfield.disp64 = 0;
4949 }
4950 else
4951 /* We only support 64bit displacement on constants. */
4952 i.types[op].bitfield.disp64 = 0;
4953 }
4954 }
4955
4956 /* Check if operands are valid for the instruction. */
4957
4958 static int
4959 check_VecOperands (const insn_template *t)
4960 {
4961 unsigned int op;
4962
4963 /* Without VSIB byte, we can't have a vector register for index. */
4964 if (!t->opcode_modifier.vecsib
4965 && i.index_reg
4966 && (i.index_reg->reg_type.bitfield.xmmword
4967 || i.index_reg->reg_type.bitfield.ymmword
4968 || i.index_reg->reg_type.bitfield.zmmword))
4969 {
4970 i.error = unsupported_vector_index_register;
4971 return 1;
4972 }
4973
4974 /* Check if default mask is allowed. */
4975 if (t->opcode_modifier.nodefmask
4976 && (!i.mask || i.mask->mask->reg_num == 0))
4977 {
4978 i.error = no_default_mask;
4979 return 1;
4980 }
4981
4982 /* For VSIB byte, we need a vector register for index, and all vector
4983 registers must be distinct. */
4984 if (t->opcode_modifier.vecsib)
4985 {
4986 if (!i.index_reg
4987 || !((t->opcode_modifier.vecsib == VecSIB128
4988 && i.index_reg->reg_type.bitfield.xmmword)
4989 || (t->opcode_modifier.vecsib == VecSIB256
4990 && i.index_reg->reg_type.bitfield.ymmword)
4991 || (t->opcode_modifier.vecsib == VecSIB512
4992 && i.index_reg->reg_type.bitfield.zmmword)))
4993 {
4994 i.error = invalid_vsib_address;
4995 return 1;
4996 }
4997
4998 gas_assert (i.reg_operands == 2 || i.mask);
4999 if (i.reg_operands == 2 && !i.mask)
5000 {
5001 gas_assert (i.types[0].bitfield.regsimd);
5002 gas_assert (i.types[0].bitfield.xmmword
5003 || i.types[0].bitfield.ymmword);
5004 gas_assert (i.types[2].bitfield.regsimd);
5005 gas_assert (i.types[2].bitfield.xmmword
5006 || i.types[2].bitfield.ymmword);
5007 if (operand_check == check_none)
5008 return 0;
5009 if (register_number (i.op[0].regs)
5010 != register_number (i.index_reg)
5011 && register_number (i.op[2].regs)
5012 != register_number (i.index_reg)
5013 && register_number (i.op[0].regs)
5014 != register_number (i.op[2].regs))
5015 return 0;
5016 if (operand_check == check_error)
5017 {
5018 i.error = invalid_vector_register_set;
5019 return 1;
5020 }
5021 as_warn (_("mask, index, and destination registers should be distinct"));
5022 }
5023 else if (i.reg_operands == 1 && i.mask)
5024 {
5025 if (i.types[1].bitfield.regsimd
5026 && (i.types[1].bitfield.xmmword
5027 || i.types[1].bitfield.ymmword
5028 || i.types[1].bitfield.zmmword)
5029 && (register_number (i.op[1].regs)
5030 == register_number (i.index_reg)))
5031 {
5032 if (operand_check == check_error)
5033 {
5034 i.error = invalid_vector_register_set;
5035 return 1;
5036 }
5037 if (operand_check != check_none)
5038 as_warn (_("index and destination registers should be distinct"));
5039 }
5040 }
5041 }
5042
5043 /* Check if broadcast is supported by the instruction and is applied
5044 to the memory operand. */
5045 if (i.broadcast)
5046 {
5047 int broadcasted_opnd_size;
5048
5049 /* Check if specified broadcast is supported in this instruction,
5050 and it's applied to memory operand of DWORD or QWORD type,
5051 depending on VecESize. */
5052 if (i.broadcast->type != t->opcode_modifier.broadcast
5053 || !i.types[i.broadcast->operand].bitfield.mem
5054 || (t->opcode_modifier.vecesize == 0
5055 && !i.types[i.broadcast->operand].bitfield.dword
5056 && !i.types[i.broadcast->operand].bitfield.unspecified)
5057 || (t->opcode_modifier.vecesize == 1
5058 && !i.types[i.broadcast->operand].bitfield.qword
5059 && !i.types[i.broadcast->operand].bitfield.unspecified))
5060 goto bad_broadcast;
5061
5062 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
5063 if (i.broadcast->type == BROADCAST_1TO16)
5064 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
5065 else if (i.broadcast->type == BROADCAST_1TO8)
5066 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
5067 else if (i.broadcast->type == BROADCAST_1TO4)
5068 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
5069 else if (i.broadcast->type == BROADCAST_1TO2)
5070 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
5071 else
5072 goto bad_broadcast;
5073
5074 if ((broadcasted_opnd_size == 256
5075 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
5076 || (broadcasted_opnd_size == 512
5077 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
5078 {
5079 bad_broadcast:
5080 i.error = unsupported_broadcast;
5081 return 1;
5082 }
5083 }
5084 /* If broadcast is supported in this instruction, we need to check if
5085 operand of one-element size isn't specified without broadcast. */
5086 else if (t->opcode_modifier.broadcast && i.mem_operands)
5087 {
5088 /* Find memory operand. */
5089 for (op = 0; op < i.operands; op++)
5090 if (operand_type_check (i.types[op], anymem))
5091 break;
5092 gas_assert (op < i.operands);
5093 /* Check size of the memory operand. */
5094 if ((t->opcode_modifier.vecesize == 0
5095 && i.types[op].bitfield.dword)
5096 || (t->opcode_modifier.vecesize == 1
5097 && i.types[op].bitfield.qword))
5098 {
5099 i.error = broadcast_needed;
5100 return 1;
5101 }
5102 }
5103
5104 /* Check if requested masking is supported. */
5105 if (i.mask
5106 && (!t->opcode_modifier.masking
5107 || (i.mask->zeroing
5108 && t->opcode_modifier.masking == MERGING_MASKING)))
5109 {
5110 i.error = unsupported_masking;
5111 return 1;
5112 }
5113
5114 /* Check if masking is applied to dest operand. */
5115 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5116 {
5117 i.error = mask_not_on_destination;
5118 return 1;
5119 }
5120
5121 /* Check RC/SAE. */
5122 if (i.rounding)
5123 {
5124 if ((i.rounding->type != saeonly
5125 && !t->opcode_modifier.staticrounding)
5126 || (i.rounding->type == saeonly
5127 && (t->opcode_modifier.staticrounding
5128 || !t->opcode_modifier.sae)))
5129 {
5130 i.error = unsupported_rc_sae;
5131 return 1;
5132 }
5133 /* If the instruction has several immediate operands and one of
5134 them is rounding, the rounding operand should be the last
5135 immediate operand. */
5136 if (i.imm_operands > 1
5137 && i.rounding->operand != (int) (i.imm_operands - 1))
5138 {
5139 i.error = rc_sae_operand_not_last_imm;
5140 return 1;
5141 }
5142 }
5143
5144 /* Check vector Disp8 operand. */
5145 if (t->opcode_modifier.disp8memshift
5146 && i.disp_encoding != disp_encoding_32bit)
5147 {
5148 if (i.broadcast)
5149 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
5150 else
5151 i.memshift = t->opcode_modifier.disp8memshift;
5152
5153 for (op = 0; op < i.operands; op++)
5154 if (operand_type_check (i.types[op], disp)
5155 && i.op[op].disps->X_op == O_constant)
5156 {
5157 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5158 {
5159 i.types[op].bitfield.disp8 = 1;
5160 return 0;
5161 }
5162 i.types[op].bitfield.disp8 = 0;
5163 }
5164 }
5165
5166 i.memshift = 0;
5167
5168 return 0;
5169 }
5170
5171 /* Check if operands are valid for the instruction. Update VEX
5172 operand types. */
5173
5174 static int
5175 VEX_check_operands (const insn_template *t)
5176 {
5177 if (i.vec_encoding == vex_encoding_evex)
5178 {
5179 /* This instruction must be encoded with EVEX prefix. */
5180 if (!is_evex_encoding (t))
5181 {
5182 i.error = unsupported;
5183 return 1;
5184 }
5185 return 0;
5186 }
5187
5188 if (!t->opcode_modifier.vex)
5189 {
5190 /* This instruction template doesn't have VEX prefix. */
5191 if (i.vec_encoding != vex_encoding_default)
5192 {
5193 i.error = unsupported;
5194 return 1;
5195 }
5196 return 0;
5197 }
5198
5199 /* Only check VEX_Imm4, which must be the first operand. */
5200 if (t->operand_types[0].bitfield.vec_imm4)
5201 {
5202 if (i.op[0].imms->X_op != O_constant
5203 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5204 {
5205 i.error = bad_imm4;
5206 return 1;
5207 }
5208
5209 /* Turn off Imm8 so that update_imm won't complain. */
5210 i.types[0] = vec_imm4;
5211 }
5212
5213 return 0;
5214 }
5215
5216 static const insn_template *
5217 match_template (char mnem_suffix)
5218 {
5219 /* Points to template once we've found it. */
5220 const insn_template *t;
5221 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5222 i386_operand_type overlap4;
5223 unsigned int found_reverse_match;
5224 i386_opcode_modifier suffix_check, mnemsuf_check;
5225 i386_operand_type operand_types [MAX_OPERANDS];
5226 int addr_prefix_disp;
5227 unsigned int j;
5228 unsigned int found_cpu_match;
5229 unsigned int check_register;
5230 enum i386_error specific_error = 0;
5231
5232 #if MAX_OPERANDS != 5
5233 # error "MAX_OPERANDS must be 5."
5234 #endif
5235
5236 found_reverse_match = 0;
5237 addr_prefix_disp = -1;
5238
5239 memset (&suffix_check, 0, sizeof (suffix_check));
5240 if (i.suffix == BYTE_MNEM_SUFFIX)
5241 suffix_check.no_bsuf = 1;
5242 else if (i.suffix == WORD_MNEM_SUFFIX)
5243 suffix_check.no_wsuf = 1;
5244 else if (i.suffix == SHORT_MNEM_SUFFIX)
5245 suffix_check.no_ssuf = 1;
5246 else if (i.suffix == LONG_MNEM_SUFFIX)
5247 suffix_check.no_lsuf = 1;
5248 else if (i.suffix == QWORD_MNEM_SUFFIX)
5249 suffix_check.no_qsuf = 1;
5250 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5251 suffix_check.no_ldsuf = 1;
5252
5253 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5254 if (intel_syntax)
5255 {
5256 switch (mnem_suffix)
5257 {
5258 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5259 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5260 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5261 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5262 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5263 }
5264 }
5265
5266 /* Must have right number of operands. */
5267 i.error = number_of_operands_mismatch;
5268
5269 for (t = current_templates->start; t < current_templates->end; t++)
5270 {
5271 addr_prefix_disp = -1;
5272
5273 if (i.operands != t->operands)
5274 continue;
5275
5276 /* Check processor support. */
5277 i.error = unsupported;
5278 found_cpu_match = (cpu_flags_match (t)
5279 == CPU_FLAGS_PERFECT_MATCH);
5280 if (!found_cpu_match)
5281 continue;
5282
5283 /* Check AT&T mnemonic. */
5284 i.error = unsupported_with_intel_mnemonic;
5285 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5286 continue;
5287
5288 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5289 i.error = unsupported_syntax;
5290 if ((intel_syntax && t->opcode_modifier.attsyntax)
5291 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5292 || (intel64 && t->opcode_modifier.amd64)
5293 || (!intel64 && t->opcode_modifier.intel64))
5294 continue;
5295
5296 /* Check the suffix, except for some instructions in intel mode. */
5297 i.error = invalid_instruction_suffix;
5298 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5299 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5300 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5301 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5302 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5303 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5304 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5305 continue;
5306 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5307 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5308 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5309 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5310 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5311 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5312 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5313 continue;
5314
5315 if (!operand_size_match (t))
5316 continue;
5317
5318 for (j = 0; j < MAX_OPERANDS; j++)
5319 operand_types[j] = t->operand_types[j];
5320
5321 /* In general, don't allow 64-bit operands in 32-bit mode. */
5322 if (i.suffix == QWORD_MNEM_SUFFIX
5323 && flag_code != CODE_64BIT
5324 && (intel_syntax
5325 ? (!t->opcode_modifier.ignoresize
5326 && !intel_float_operand (t->name))
5327 : intel_float_operand (t->name) != 2)
5328 && ((!operand_types[0].bitfield.regmmx
5329 && !operand_types[0].bitfield.regsimd)
5330 || (!operand_types[t->operands > 1].bitfield.regmmx
5331 && !operand_types[t->operands > 1].bitfield.regsimd))
5332 && (t->base_opcode != 0x0fc7
5333 || t->extension_opcode != 1 /* cmpxchg8b */))
5334 continue;
5335
5336 /* In general, don't allow 32-bit operands on pre-386. */
5337 else if (i.suffix == LONG_MNEM_SUFFIX
5338 && !cpu_arch_flags.bitfield.cpui386
5339 && (intel_syntax
5340 ? (!t->opcode_modifier.ignoresize
5341 && !intel_float_operand (t->name))
5342 : intel_float_operand (t->name) != 2)
5343 && ((!operand_types[0].bitfield.regmmx
5344 && !operand_types[0].bitfield.regsimd)
5345 || (!operand_types[t->operands > 1].bitfield.regmmx
5346 && !operand_types[t->operands > 1].bitfield.regsimd)))
5347 continue;
5348
5349 /* Do not verify operands when there are none. */
5350 else
5351 {
5352 if (!t->operands)
5353 /* We've found a match; break out of loop. */
5354 break;
5355 }
5356
5357 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5358 into Disp32/Disp16/Disp32 operand. */
5359 if (i.prefix[ADDR_PREFIX] != 0)
5360 {
5361 /* There should be only one Disp operand. */
5362 switch (flag_code)
5363 {
5364 case CODE_16BIT:
5365 for (j = 0; j < MAX_OPERANDS; j++)
5366 {
5367 if (operand_types[j].bitfield.disp16)
5368 {
5369 addr_prefix_disp = j;
5370 operand_types[j].bitfield.disp32 = 1;
5371 operand_types[j].bitfield.disp16 = 0;
5372 break;
5373 }
5374 }
5375 break;
5376 case CODE_32BIT:
5377 for (j = 0; j < MAX_OPERANDS; j++)
5378 {
5379 if (operand_types[j].bitfield.disp32)
5380 {
5381 addr_prefix_disp = j;
5382 operand_types[j].bitfield.disp32 = 0;
5383 operand_types[j].bitfield.disp16 = 1;
5384 break;
5385 }
5386 }
5387 break;
5388 case CODE_64BIT:
5389 for (j = 0; j < MAX_OPERANDS; j++)
5390 {
5391 if (operand_types[j].bitfield.disp64)
5392 {
5393 addr_prefix_disp = j;
5394 operand_types[j].bitfield.disp64 = 0;
5395 operand_types[j].bitfield.disp32 = 1;
5396 break;
5397 }
5398 }
5399 break;
5400 }
5401 }
5402
5403 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5404 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5405 continue;
5406
5407 /* We check register size if needed. */
5408 check_register = t->opcode_modifier.checkregsize;
5409 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5410 switch (t->operands)
5411 {
5412 case 1:
5413 if (!operand_type_match (overlap0, i.types[0]))
5414 continue;
5415 break;
5416 case 2:
5417 /* xchg %eax, %eax is a special case. It is an alias for nop
5418 only in 32bit mode and we can use opcode 0x90. In 64bit
5419 mode, we can't use 0x90 for xchg %eax, %eax since it should
5420 zero-extend %eax to %rax. */
5421 if (flag_code == CODE_64BIT
5422 && t->base_opcode == 0x90
5423 && operand_type_equal (&i.types [0], &acc32)
5424 && operand_type_equal (&i.types [1], &acc32))
5425 continue;
5426 /* If we want store form, we reverse direction of operands. */
5427 if (i.dir_encoding == dir_encoding_store
5428 && t->opcode_modifier.d)
5429 goto check_reverse;
5430 /* Fall through. */
5431
5432 case 3:
5433 /* If we want store form, we skip the current load. */
5434 if (i.dir_encoding == dir_encoding_store
5435 && i.mem_operands == 0
5436 && t->opcode_modifier.load)
5437 continue;
5438 /* Fall through. */
5439 case 4:
5440 case 5:
5441 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5442 if (!operand_type_match (overlap0, i.types[0])
5443 || !operand_type_match (overlap1, i.types[1])
5444 || (check_register
5445 && !operand_type_register_match (i.types[0],
5446 operand_types[0],
5447 i.types[1],
5448 operand_types[1])))
5449 {
5450 /* Check if other direction is valid ... */
5451 if (!t->opcode_modifier.d)
5452 continue;
5453
5454 check_reverse:
5455 /* Try reversing direction of operands. */
5456 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5457 overlap1 = operand_type_and (i.types[1], operand_types[0]);
5458 if (!operand_type_match (overlap0, i.types[0])
5459 || !operand_type_match (overlap1, i.types[1])
5460 || (check_register
5461 && !operand_type_register_match (i.types[0],
5462 operand_types[1],
5463 i.types[1],
5464 operand_types[0])))
5465 {
5466 /* Does not match either direction. */
5467 continue;
5468 }
5469 /* found_reverse_match holds which of D or FloatR
5470 we've found. */
5471 if (!t->opcode_modifier.d)
5472 found_reverse_match = 0;
5473 else if (operand_types[0].bitfield.tbyte)
5474 found_reverse_match = Opcode_FloatD;
5475 else
5476 found_reverse_match = Opcode_D;
5477 if (t->opcode_modifier.floatr)
5478 found_reverse_match |= Opcode_FloatR;
5479 }
5480 else
5481 {
5482 /* Found a forward 2 operand match here. */
5483 switch (t->operands)
5484 {
5485 case 5:
5486 overlap4 = operand_type_and (i.types[4],
5487 operand_types[4]);
5488 /* Fall through. */
5489 case 4:
5490 overlap3 = operand_type_and (i.types[3],
5491 operand_types[3]);
5492 /* Fall through. */
5493 case 3:
5494 overlap2 = operand_type_and (i.types[2],
5495 operand_types[2]);
5496 break;
5497 }
5498
5499 switch (t->operands)
5500 {
5501 case 5:
5502 if (!operand_type_match (overlap4, i.types[4])
5503 || !operand_type_register_match (i.types[3],
5504 operand_types[3],
5505 i.types[4],
5506 operand_types[4]))
5507 continue;
5508 /* Fall through. */
5509 case 4:
5510 if (!operand_type_match (overlap3, i.types[3])
5511 || (check_register
5512 && !operand_type_register_match (i.types[2],
5513 operand_types[2],
5514 i.types[3],
5515 operand_types[3])))
5516 continue;
5517 /* Fall through. */
5518 case 3:
5519 /* Here we make use of the fact that there are no
5520 reverse match 3 operand instructions. */
5521 if (!operand_type_match (overlap2, i.types[2])
5522 || (check_register
5523 && (!operand_type_register_match (i.types[0],
5524 operand_types[0],
5525 i.types[2],
5526 operand_types[2])
5527 || !operand_type_register_match (i.types[1],
5528 operand_types[1],
5529 i.types[2],
5530 operand_types[2]))))
5531 continue;
5532 break;
5533 }
5534 }
5535 /* Found either forward/reverse 2, 3 or 4 operand match here:
5536 slip through to break. */
5537 }
5538 if (!found_cpu_match)
5539 {
5540 found_reverse_match = 0;
5541 continue;
5542 }
5543
5544 /* Check if vector and VEX operands are valid. */
5545 if (check_VecOperands (t) || VEX_check_operands (t))
5546 {
5547 specific_error = i.error;
5548 continue;
5549 }
5550
5551 /* We've found a match; break out of loop. */
5552 break;
5553 }
5554
5555 if (t == current_templates->end)
5556 {
5557 /* We found no match. */
5558 const char *err_msg;
5559 switch (specific_error ? specific_error : i.error)
5560 {
5561 default:
5562 abort ();
5563 case operand_size_mismatch:
5564 err_msg = _("operand size mismatch");
5565 break;
5566 case operand_type_mismatch:
5567 err_msg = _("operand type mismatch");
5568 break;
5569 case register_type_mismatch:
5570 err_msg = _("register type mismatch");
5571 break;
5572 case number_of_operands_mismatch:
5573 err_msg = _("number of operands mismatch");
5574 break;
5575 case invalid_instruction_suffix:
5576 err_msg = _("invalid instruction suffix");
5577 break;
5578 case bad_imm4:
5579 err_msg = _("constant doesn't fit in 4 bits");
5580 break;
5581 case unsupported_with_intel_mnemonic:
5582 err_msg = _("unsupported with Intel mnemonic");
5583 break;
5584 case unsupported_syntax:
5585 err_msg = _("unsupported syntax");
5586 break;
5587 case unsupported:
5588 as_bad (_("unsupported instruction `%s'"),
5589 current_templates->start->name);
5590 return NULL;
5591 case invalid_vsib_address:
5592 err_msg = _("invalid VSIB address");
5593 break;
5594 case invalid_vector_register_set:
5595 err_msg = _("mask, index, and destination registers must be distinct");
5596 break;
5597 case unsupported_vector_index_register:
5598 err_msg = _("unsupported vector index register");
5599 break;
5600 case unsupported_broadcast:
5601 err_msg = _("unsupported broadcast");
5602 break;
5603 case broadcast_not_on_src_operand:
5604 err_msg = _("broadcast not on source memory operand");
5605 break;
5606 case broadcast_needed:
5607 err_msg = _("broadcast is needed for operand of such type");
5608 break;
5609 case unsupported_masking:
5610 err_msg = _("unsupported masking");
5611 break;
5612 case mask_not_on_destination:
5613 err_msg = _("mask not on destination operand");
5614 break;
5615 case no_default_mask:
5616 err_msg = _("default mask isn't allowed");
5617 break;
5618 case unsupported_rc_sae:
5619 err_msg = _("unsupported static rounding/sae");
5620 break;
5621 case rc_sae_operand_not_last_imm:
5622 if (intel_syntax)
5623 err_msg = _("RC/SAE operand must precede immediate operands");
5624 else
5625 err_msg = _("RC/SAE operand must follow immediate operands");
5626 break;
5627 case invalid_register_operand:
5628 err_msg = _("invalid register operand");
5629 break;
5630 }
5631 as_bad (_("%s for `%s'"), err_msg,
5632 current_templates->start->name);
5633 return NULL;
5634 }
5635
5636 if (!quiet_warnings)
5637 {
5638 if (!intel_syntax
5639 && (i.types[0].bitfield.jumpabsolute
5640 != operand_types[0].bitfield.jumpabsolute))
5641 {
5642 as_warn (_("indirect %s without `*'"), t->name);
5643 }
5644
5645 if (t->opcode_modifier.isprefix
5646 && t->opcode_modifier.ignoresize)
5647 {
5648 /* Warn them that a data or address size prefix doesn't
5649 affect assembly of the next line of code. */
5650 as_warn (_("stand-alone `%s' prefix"), t->name);
5651 }
5652 }
5653
5654 /* Copy the template we found. */
5655 i.tm = *t;
5656
5657 if (addr_prefix_disp != -1)
5658 i.tm.operand_types[addr_prefix_disp]
5659 = operand_types[addr_prefix_disp];
5660
5661 if (found_reverse_match)
5662 {
5663 /* If we found a reverse match we must alter the opcode
5664 direction bit. found_reverse_match holds bits to change
5665 (different for int & float insns). */
5666
5667 i.tm.base_opcode ^= found_reverse_match;
5668
5669 i.tm.operand_types[0] = operand_types[1];
5670 i.tm.operand_types[1] = operand_types[0];
5671 }
5672
5673 return t;
5674 }
5675
5676 static int
5677 check_string (void)
5678 {
5679 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5680 if (i.tm.operand_types[mem_op].bitfield.esseg)
5681 {
5682 if (i.seg[0] != NULL && i.seg[0] != &es)
5683 {
5684 as_bad (_("`%s' operand %d must use `%ses' segment"),
5685 i.tm.name,
5686 mem_op + 1,
5687 register_prefix);
5688 return 0;
5689 }
5690 /* There's only ever one segment override allowed per instruction.
5691 This instruction possibly has a legal segment override on the
5692 second operand, so copy the segment to where non-string
5693 instructions store it, allowing common code. */
5694 i.seg[0] = i.seg[1];
5695 }
5696 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5697 {
5698 if (i.seg[1] != NULL && i.seg[1] != &es)
5699 {
5700 as_bad (_("`%s' operand %d must use `%ses' segment"),
5701 i.tm.name,
5702 mem_op + 2,
5703 register_prefix);
5704 return 0;
5705 }
5706 }
5707 return 1;
5708 }
5709
5710 static int
5711 process_suffix (void)
5712 {
5713 /* If matched instruction specifies an explicit instruction mnemonic
5714 suffix, use it. */
5715 if (i.tm.opcode_modifier.size16)
5716 i.suffix = WORD_MNEM_SUFFIX;
5717 else if (i.tm.opcode_modifier.size32)
5718 i.suffix = LONG_MNEM_SUFFIX;
5719 else if (i.tm.opcode_modifier.size64)
5720 i.suffix = QWORD_MNEM_SUFFIX;
5721 else if (i.reg_operands)
5722 {
5723 /* If there's no instruction mnemonic suffix we try to invent one
5724 based on register operands. */
5725 if (!i.suffix)
5726 {
5727 /* We take i.suffix from the last register operand specified,
5728 Destination register type is more significant than source
5729 register type. crc32 in SSE4.2 prefers source register
5730 type. */
5731 if (i.tm.base_opcode == 0xf20f38f1)
5732 {
5733 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
5734 i.suffix = WORD_MNEM_SUFFIX;
5735 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
5736 i.suffix = LONG_MNEM_SUFFIX;
5737 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
5738 i.suffix = QWORD_MNEM_SUFFIX;
5739 }
5740 else if (i.tm.base_opcode == 0xf20f38f0)
5741 {
5742 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
5743 i.suffix = BYTE_MNEM_SUFFIX;
5744 }
5745
5746 if (!i.suffix)
5747 {
5748 int op;
5749
5750 if (i.tm.base_opcode == 0xf20f38f1
5751 || i.tm.base_opcode == 0xf20f38f0)
5752 {
5753 /* We have to know the operand size for crc32. */
5754 as_bad (_("ambiguous memory operand size for `%s`"),
5755 i.tm.name);
5756 return 0;
5757 }
5758
5759 for (op = i.operands; --op >= 0;)
5760 if (!i.tm.operand_types[op].bitfield.inoutportreg
5761 && !i.tm.operand_types[op].bitfield.shiftcount)
5762 {
5763 if (!i.types[op].bitfield.reg)
5764 continue;
5765 if (i.types[op].bitfield.byte)
5766 i.suffix = BYTE_MNEM_SUFFIX;
5767 else if (i.types[op].bitfield.word)
5768 i.suffix = WORD_MNEM_SUFFIX;
5769 else if (i.types[op].bitfield.dword)
5770 i.suffix = LONG_MNEM_SUFFIX;
5771 else if (i.types[op].bitfield.qword)
5772 i.suffix = QWORD_MNEM_SUFFIX;
5773 else
5774 continue;
5775 break;
5776 }
5777 }
5778 }
5779 else if (i.suffix == BYTE_MNEM_SUFFIX)
5780 {
5781 if (intel_syntax
5782 && i.tm.opcode_modifier.ignoresize
5783 && i.tm.opcode_modifier.no_bsuf)
5784 i.suffix = 0;
5785 else if (!check_byte_reg ())
5786 return 0;
5787 }
5788 else if (i.suffix == LONG_MNEM_SUFFIX)
5789 {
5790 if (intel_syntax
5791 && i.tm.opcode_modifier.ignoresize
5792 && i.tm.opcode_modifier.no_lsuf)
5793 i.suffix = 0;
5794 else if (!check_long_reg ())
5795 return 0;
5796 }
5797 else if (i.suffix == QWORD_MNEM_SUFFIX)
5798 {
5799 if (intel_syntax
5800 && i.tm.opcode_modifier.ignoresize
5801 && i.tm.opcode_modifier.no_qsuf)
5802 i.suffix = 0;
5803 else if (!check_qword_reg ())
5804 return 0;
5805 }
5806 else if (i.suffix == WORD_MNEM_SUFFIX)
5807 {
5808 if (intel_syntax
5809 && i.tm.opcode_modifier.ignoresize
5810 && i.tm.opcode_modifier.no_wsuf)
5811 i.suffix = 0;
5812 else if (!check_word_reg ())
5813 return 0;
5814 }
5815 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5816 /* Do nothing if the instruction is going to ignore the prefix. */
5817 ;
5818 else
5819 abort ();
5820 }
5821 else if (i.tm.opcode_modifier.defaultsize
5822 && !i.suffix
5823 /* exclude fldenv/frstor/fsave/fstenv */
5824 && i.tm.opcode_modifier.no_ssuf)
5825 {
5826 i.suffix = stackop_size;
5827 }
5828 else if (intel_syntax
5829 && !i.suffix
5830 && (i.tm.operand_types[0].bitfield.jumpabsolute
5831 || i.tm.opcode_modifier.jumpbyte
5832 || i.tm.opcode_modifier.jumpintersegment
5833 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5834 && i.tm.extension_opcode <= 3)))
5835 {
5836 switch (flag_code)
5837 {
5838 case CODE_64BIT:
5839 if (!i.tm.opcode_modifier.no_qsuf)
5840 {
5841 i.suffix = QWORD_MNEM_SUFFIX;
5842 break;
5843 }
5844 /* Fall through. */
5845 case CODE_32BIT:
5846 if (!i.tm.opcode_modifier.no_lsuf)
5847 i.suffix = LONG_MNEM_SUFFIX;
5848 break;
5849 case CODE_16BIT:
5850 if (!i.tm.opcode_modifier.no_wsuf)
5851 i.suffix = WORD_MNEM_SUFFIX;
5852 break;
5853 }
5854 }
5855
5856 if (!i.suffix)
5857 {
5858 if (!intel_syntax)
5859 {
5860 if (i.tm.opcode_modifier.w)
5861 {
5862 as_bad (_("no instruction mnemonic suffix given and "
5863 "no register operands; can't size instruction"));
5864 return 0;
5865 }
5866 }
5867 else
5868 {
5869 unsigned int suffixes;
5870
5871 suffixes = !i.tm.opcode_modifier.no_bsuf;
5872 if (!i.tm.opcode_modifier.no_wsuf)
5873 suffixes |= 1 << 1;
5874 if (!i.tm.opcode_modifier.no_lsuf)
5875 suffixes |= 1 << 2;
5876 if (!i.tm.opcode_modifier.no_ldsuf)
5877 suffixes |= 1 << 3;
5878 if (!i.tm.opcode_modifier.no_ssuf)
5879 suffixes |= 1 << 4;
5880 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
5881 suffixes |= 1 << 5;
5882
5883 /* There are more than suffix matches. */
5884 if (i.tm.opcode_modifier.w
5885 || ((suffixes & (suffixes - 1))
5886 && !i.tm.opcode_modifier.defaultsize
5887 && !i.tm.opcode_modifier.ignoresize))
5888 {
5889 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5890 return 0;
5891 }
5892 }
5893 }
5894
5895 /* Change the opcode based on the operand size given by i.suffix. */
5896 switch (i.suffix)
5897 {
5898 /* Size floating point instruction. */
5899 case LONG_MNEM_SUFFIX:
5900 if (i.tm.opcode_modifier.floatmf)
5901 {
5902 i.tm.base_opcode ^= 4;
5903 break;
5904 }
5905 /* fall through */
5906 case WORD_MNEM_SUFFIX:
5907 case QWORD_MNEM_SUFFIX:
5908 /* It's not a byte, select word/dword operation. */
5909 if (i.tm.opcode_modifier.w)
5910 {
5911 if (i.tm.opcode_modifier.shortform)
5912 i.tm.base_opcode |= 8;
5913 else
5914 i.tm.base_opcode |= 1;
5915 }
5916 /* fall through */
5917 case SHORT_MNEM_SUFFIX:
5918 /* Now select between word & dword operations via the operand
5919 size prefix, except for instructions that will ignore this
5920 prefix anyway. */
5921 if (i.tm.opcode_modifier.addrprefixop0)
5922 {
5923 /* The address size override prefix changes the size of the
5924 first operand. */
5925 if ((flag_code == CODE_32BIT
5926 && i.op->regs[0].reg_type.bitfield.word)
5927 || (flag_code != CODE_32BIT
5928 && i.op->regs[0].reg_type.bitfield.dword))
5929 if (!add_prefix (ADDR_PREFIX_OPCODE))
5930 return 0;
5931 }
5932 else if (i.suffix != QWORD_MNEM_SUFFIX
5933 && !i.tm.opcode_modifier.ignoresize
5934 && !i.tm.opcode_modifier.floatmf
5935 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5936 || (flag_code == CODE_64BIT
5937 && i.tm.opcode_modifier.jumpbyte)))
5938 {
5939 unsigned int prefix = DATA_PREFIX_OPCODE;
5940
5941 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5942 prefix = ADDR_PREFIX_OPCODE;
5943
5944 if (!add_prefix (prefix))
5945 return 0;
5946 }
5947
5948 /* Set mode64 for an operand. */
5949 if (i.suffix == QWORD_MNEM_SUFFIX
5950 && flag_code == CODE_64BIT
5951 && !i.tm.opcode_modifier.norex64
5952 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5953 need rex64. */
5954 && ! (i.operands == 2
5955 && i.tm.base_opcode == 0x90
5956 && i.tm.extension_opcode == None
5957 && operand_type_equal (&i.types [0], &acc64)
5958 && operand_type_equal (&i.types [1], &acc64)))
5959 i.rex |= REX_W;
5960
5961 break;
5962 }
5963
5964 return 1;
5965 }
5966
5967 static int
5968 check_byte_reg (void)
5969 {
5970 int op;
5971
5972 for (op = i.operands; --op >= 0;)
5973 {
5974 /* Skip non-register operands. */
5975 if (!i.types[op].bitfield.reg)
5976 continue;
5977
5978 /* If this is an eight bit register, it's OK. If it's the 16 or
5979 32 bit version of an eight bit register, we will just use the
5980 low portion, and that's OK too. */
5981 if (i.types[op].bitfield.byte)
5982 continue;
5983
5984 /* I/O port address operands are OK too. */
5985 if (i.tm.operand_types[op].bitfield.inoutportreg)
5986 continue;
5987
5988 /* crc32 doesn't generate this warning. */
5989 if (i.tm.base_opcode == 0xf20f38f0)
5990 continue;
5991
5992 if ((i.types[op].bitfield.word
5993 || i.types[op].bitfield.dword
5994 || i.types[op].bitfield.qword)
5995 && i.op[op].regs->reg_num < 4
5996 /* Prohibit these changes in 64bit mode, since the lowering
5997 would be more complicated. */
5998 && flag_code != CODE_64BIT)
5999 {
6000 #if REGISTER_WARNINGS
6001 if (!quiet_warnings)
6002 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6003 register_prefix,
6004 (i.op[op].regs + (i.types[op].bitfield.word
6005 ? REGNAM_AL - REGNAM_AX
6006 : REGNAM_AL - REGNAM_EAX))->reg_name,
6007 register_prefix,
6008 i.op[op].regs->reg_name,
6009 i.suffix);
6010 #endif
6011 continue;
6012 }
6013 /* Any other register is bad. */
6014 if (i.types[op].bitfield.reg
6015 || i.types[op].bitfield.regmmx
6016 || i.types[op].bitfield.regsimd
6017 || i.types[op].bitfield.sreg2
6018 || i.types[op].bitfield.sreg3
6019 || i.types[op].bitfield.control
6020 || i.types[op].bitfield.debug
6021 || i.types[op].bitfield.test)
6022 {
6023 as_bad (_("`%s%s' not allowed with `%s%c'"),
6024 register_prefix,
6025 i.op[op].regs->reg_name,
6026 i.tm.name,
6027 i.suffix);
6028 return 0;
6029 }
6030 }
6031 return 1;
6032 }
6033
6034 static int
6035 check_long_reg (void)
6036 {
6037 int op;
6038
6039 for (op = i.operands; --op >= 0;)
6040 /* Skip non-register operands. */
6041 if (!i.types[op].bitfield.reg)
6042 continue;
6043 /* Reject eight bit registers, except where the template requires
6044 them. (eg. movzb) */
6045 else if (i.types[op].bitfield.byte
6046 && (i.tm.operand_types[op].bitfield.reg
6047 || i.tm.operand_types[op].bitfield.acc)
6048 && (i.tm.operand_types[op].bitfield.word
6049 || i.tm.operand_types[op].bitfield.dword))
6050 {
6051 as_bad (_("`%s%s' not allowed with `%s%c'"),
6052 register_prefix,
6053 i.op[op].regs->reg_name,
6054 i.tm.name,
6055 i.suffix);
6056 return 0;
6057 }
6058 /* Warn if the e prefix on a general reg is missing. */
6059 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6060 && i.types[op].bitfield.word
6061 && (i.tm.operand_types[op].bitfield.reg
6062 || i.tm.operand_types[op].bitfield.acc)
6063 && i.tm.operand_types[op].bitfield.dword)
6064 {
6065 /* Prohibit these changes in the 64bit mode, since the
6066 lowering is more complicated. */
6067 if (flag_code == CODE_64BIT)
6068 {
6069 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6070 register_prefix, i.op[op].regs->reg_name,
6071 i.suffix);
6072 return 0;
6073 }
6074 #if REGISTER_WARNINGS
6075 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6076 register_prefix,
6077 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6078 register_prefix, i.op[op].regs->reg_name, i.suffix);
6079 #endif
6080 }
6081 /* Warn if the r prefix on a general reg is present. */
6082 else if (i.types[op].bitfield.qword
6083 && (i.tm.operand_types[op].bitfield.reg
6084 || i.tm.operand_types[op].bitfield.acc)
6085 && i.tm.operand_types[op].bitfield.dword)
6086 {
6087 if (intel_syntax
6088 && i.tm.opcode_modifier.toqword
6089 && !i.types[0].bitfield.regsimd)
6090 {
6091 /* Convert to QWORD. We want REX byte. */
6092 i.suffix = QWORD_MNEM_SUFFIX;
6093 }
6094 else
6095 {
6096 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6097 register_prefix, i.op[op].regs->reg_name,
6098 i.suffix);
6099 return 0;
6100 }
6101 }
6102 return 1;
6103 }
6104
6105 static int
6106 check_qword_reg (void)
6107 {
6108 int op;
6109
6110 for (op = i.operands; --op >= 0; )
6111 /* Skip non-register operands. */
6112 if (!i.types[op].bitfield.reg)
6113 continue;
6114 /* Reject eight bit registers, except where the template requires
6115 them. (eg. movzb) */
6116 else if (i.types[op].bitfield.byte
6117 && (i.tm.operand_types[op].bitfield.reg
6118 || i.tm.operand_types[op].bitfield.acc)
6119 && (i.tm.operand_types[op].bitfield.word
6120 || i.tm.operand_types[op].bitfield.dword))
6121 {
6122 as_bad (_("`%s%s' not allowed with `%s%c'"),
6123 register_prefix,
6124 i.op[op].regs->reg_name,
6125 i.tm.name,
6126 i.suffix);
6127 return 0;
6128 }
6129 /* Warn if the r prefix on a general reg is missing. */
6130 else if ((i.types[op].bitfield.word
6131 || i.types[op].bitfield.dword)
6132 && (i.tm.operand_types[op].bitfield.reg
6133 || i.tm.operand_types[op].bitfield.acc)
6134 && i.tm.operand_types[op].bitfield.qword)
6135 {
6136 /* Prohibit these changes in the 64bit mode, since the
6137 lowering is more complicated. */
6138 if (intel_syntax
6139 && i.tm.opcode_modifier.todword
6140 && !i.types[0].bitfield.regsimd)
6141 {
6142 /* Convert to DWORD. We don't want REX byte. */
6143 i.suffix = LONG_MNEM_SUFFIX;
6144 }
6145 else
6146 {
6147 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6148 register_prefix, i.op[op].regs->reg_name,
6149 i.suffix);
6150 return 0;
6151 }
6152 }
6153 return 1;
6154 }
6155
6156 static int
6157 check_word_reg (void)
6158 {
6159 int op;
6160 for (op = i.operands; --op >= 0;)
6161 /* Skip non-register operands. */
6162 if (!i.types[op].bitfield.reg)
6163 continue;
6164 /* Reject eight bit registers, except where the template requires
6165 them. (eg. movzb) */
6166 else if (i.types[op].bitfield.byte
6167 && (i.tm.operand_types[op].bitfield.reg
6168 || i.tm.operand_types[op].bitfield.acc)
6169 && (i.tm.operand_types[op].bitfield.word
6170 || i.tm.operand_types[op].bitfield.dword))
6171 {
6172 as_bad (_("`%s%s' not allowed with `%s%c'"),
6173 register_prefix,
6174 i.op[op].regs->reg_name,
6175 i.tm.name,
6176 i.suffix);
6177 return 0;
6178 }
6179 /* Warn if the e or r prefix on a general reg is present. */
6180 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6181 && (i.types[op].bitfield.dword
6182 || i.types[op].bitfield.qword)
6183 && (i.tm.operand_types[op].bitfield.reg
6184 || i.tm.operand_types[op].bitfield.acc)
6185 && i.tm.operand_types[op].bitfield.word)
6186 {
6187 /* Prohibit these changes in the 64bit mode, since the
6188 lowering is more complicated. */
6189 if (flag_code == CODE_64BIT)
6190 {
6191 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6192 register_prefix, i.op[op].regs->reg_name,
6193 i.suffix);
6194 return 0;
6195 }
6196 #if REGISTER_WARNINGS
6197 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6198 register_prefix,
6199 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6200 register_prefix, i.op[op].regs->reg_name, i.suffix);
6201 #endif
6202 }
6203 return 1;
6204 }
6205
6206 static int
6207 update_imm (unsigned int j)
6208 {
6209 i386_operand_type overlap = i.types[j];
6210 if ((overlap.bitfield.imm8
6211 || overlap.bitfield.imm8s
6212 || overlap.bitfield.imm16
6213 || overlap.bitfield.imm32
6214 || overlap.bitfield.imm32s
6215 || overlap.bitfield.imm64)
6216 && !operand_type_equal (&overlap, &imm8)
6217 && !operand_type_equal (&overlap, &imm8s)
6218 && !operand_type_equal (&overlap, &imm16)
6219 && !operand_type_equal (&overlap, &imm32)
6220 && !operand_type_equal (&overlap, &imm32s)
6221 && !operand_type_equal (&overlap, &imm64))
6222 {
6223 if (i.suffix)
6224 {
6225 i386_operand_type temp;
6226
6227 operand_type_set (&temp, 0);
6228 if (i.suffix == BYTE_MNEM_SUFFIX)
6229 {
6230 temp.bitfield.imm8 = overlap.bitfield.imm8;
6231 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6232 }
6233 else if (i.suffix == WORD_MNEM_SUFFIX)
6234 temp.bitfield.imm16 = overlap.bitfield.imm16;
6235 else if (i.suffix == QWORD_MNEM_SUFFIX)
6236 {
6237 temp.bitfield.imm64 = overlap.bitfield.imm64;
6238 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6239 }
6240 else
6241 temp.bitfield.imm32 = overlap.bitfield.imm32;
6242 overlap = temp;
6243 }
6244 else if (operand_type_equal (&overlap, &imm16_32_32s)
6245 || operand_type_equal (&overlap, &imm16_32)
6246 || operand_type_equal (&overlap, &imm16_32s))
6247 {
6248 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6249 overlap = imm16;
6250 else
6251 overlap = imm32s;
6252 }
6253 if (!operand_type_equal (&overlap, &imm8)
6254 && !operand_type_equal (&overlap, &imm8s)
6255 && !operand_type_equal (&overlap, &imm16)
6256 && !operand_type_equal (&overlap, &imm32)
6257 && !operand_type_equal (&overlap, &imm32s)
6258 && !operand_type_equal (&overlap, &imm64))
6259 {
6260 as_bad (_("no instruction mnemonic suffix given; "
6261 "can't determine immediate size"));
6262 return 0;
6263 }
6264 }
6265 i.types[j] = overlap;
6266
6267 return 1;
6268 }
6269
6270 static int
6271 finalize_imm (void)
6272 {
6273 unsigned int j, n;
6274
6275 /* Update the first 2 immediate operands. */
6276 n = i.operands > 2 ? 2 : i.operands;
6277 if (n)
6278 {
6279 for (j = 0; j < n; j++)
6280 if (update_imm (j) == 0)
6281 return 0;
6282
6283 /* The 3rd operand can't be immediate operand. */
6284 gas_assert (operand_type_check (i.types[2], imm) == 0);
6285 }
6286
6287 return 1;
6288 }
6289
6290 static int
6291 process_operands (void)
6292 {
6293 /* Default segment register this instruction will use for memory
6294 accesses. 0 means unknown. This is only for optimizing out
6295 unnecessary segment overrides. */
6296 const seg_entry *default_seg = 0;
6297
6298 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6299 {
6300 unsigned int dupl = i.operands;
6301 unsigned int dest = dupl - 1;
6302 unsigned int j;
6303
6304 /* The destination must be an xmm register. */
6305 gas_assert (i.reg_operands
6306 && MAX_OPERANDS > dupl
6307 && operand_type_equal (&i.types[dest], &regxmm));
6308
6309 if (i.tm.operand_types[0].bitfield.acc
6310 && i.tm.operand_types[0].bitfield.xmmword)
6311 {
6312 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6313 {
6314 /* Keep xmm0 for instructions with VEX prefix and 3
6315 sources. */
6316 i.tm.operand_types[0].bitfield.acc = 0;
6317 i.tm.operand_types[0].bitfield.regsimd = 1;
6318 goto duplicate;
6319 }
6320 else
6321 {
6322 /* We remove the first xmm0 and keep the number of
6323 operands unchanged, which in fact duplicates the
6324 destination. */
6325 for (j = 1; j < i.operands; j++)
6326 {
6327 i.op[j - 1] = i.op[j];
6328 i.types[j - 1] = i.types[j];
6329 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6330 }
6331 }
6332 }
6333 else if (i.tm.opcode_modifier.implicit1stxmm0)
6334 {
6335 gas_assert ((MAX_OPERANDS - 1) > dupl
6336 && (i.tm.opcode_modifier.vexsources
6337 == VEX3SOURCES));
6338
6339 /* Add the implicit xmm0 for instructions with VEX prefix
6340 and 3 sources. */
6341 for (j = i.operands; j > 0; j--)
6342 {
6343 i.op[j] = i.op[j - 1];
6344 i.types[j] = i.types[j - 1];
6345 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6346 }
6347 i.op[0].regs
6348 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6349 i.types[0] = regxmm;
6350 i.tm.operand_types[0] = regxmm;
6351
6352 i.operands += 2;
6353 i.reg_operands += 2;
6354 i.tm.operands += 2;
6355
6356 dupl++;
6357 dest++;
6358 i.op[dupl] = i.op[dest];
6359 i.types[dupl] = i.types[dest];
6360 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6361 }
6362 else
6363 {
6364 duplicate:
6365 i.operands++;
6366 i.reg_operands++;
6367 i.tm.operands++;
6368
6369 i.op[dupl] = i.op[dest];
6370 i.types[dupl] = i.types[dest];
6371 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6372 }
6373
6374 if (i.tm.opcode_modifier.immext)
6375 process_immext ();
6376 }
6377 else if (i.tm.operand_types[0].bitfield.acc
6378 && i.tm.operand_types[0].bitfield.xmmword)
6379 {
6380 unsigned int j;
6381
6382 for (j = 1; j < i.operands; j++)
6383 {
6384 i.op[j - 1] = i.op[j];
6385 i.types[j - 1] = i.types[j];
6386
6387 /* We need to adjust fields in i.tm since they are used by
6388 build_modrm_byte. */
6389 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6390 }
6391
6392 i.operands--;
6393 i.reg_operands--;
6394 i.tm.operands--;
6395 }
6396 else if (i.tm.opcode_modifier.implicitquadgroup)
6397 {
6398 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6399
6400 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6401 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6402 regnum = register_number (i.op[1].regs);
6403 first_reg_in_group = regnum & ~3;
6404 last_reg_in_group = first_reg_in_group + 3;
6405 if (regnum != first_reg_in_group)
6406 as_warn (_("source register `%s%s' implicitly denotes"
6407 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6408 register_prefix, i.op[1].regs->reg_name,
6409 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6410 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6411 i.tm.name);
6412 }
6413 else if (i.tm.opcode_modifier.regkludge)
6414 {
6415 /* The imul $imm, %reg instruction is converted into
6416 imul $imm, %reg, %reg, and the clr %reg instruction
6417 is converted into xor %reg, %reg. */
6418
6419 unsigned int first_reg_op;
6420
6421 if (operand_type_check (i.types[0], reg))
6422 first_reg_op = 0;
6423 else
6424 first_reg_op = 1;
6425 /* Pretend we saw the extra register operand. */
6426 gas_assert (i.reg_operands == 1
6427 && i.op[first_reg_op + 1].regs == 0);
6428 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6429 i.types[first_reg_op + 1] = i.types[first_reg_op];
6430 i.operands++;
6431 i.reg_operands++;
6432 }
6433
6434 if (i.tm.opcode_modifier.shortform)
6435 {
6436 if (i.types[0].bitfield.sreg2
6437 || i.types[0].bitfield.sreg3)
6438 {
6439 if (i.tm.base_opcode == POP_SEG_SHORT
6440 && i.op[0].regs->reg_num == 1)
6441 {
6442 as_bad (_("you can't `pop %scs'"), register_prefix);
6443 return 0;
6444 }
6445 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6446 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6447 i.rex |= REX_B;
6448 }
6449 else
6450 {
6451 /* The register or float register operand is in operand
6452 0 or 1. */
6453 unsigned int op;
6454
6455 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6456 || operand_type_check (i.types[0], reg))
6457 op = 0;
6458 else
6459 op = 1;
6460 /* Register goes in low 3 bits of opcode. */
6461 i.tm.base_opcode |= i.op[op].regs->reg_num;
6462 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6463 i.rex |= REX_B;
6464 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6465 {
6466 /* Warn about some common errors, but press on regardless.
6467 The first case can be generated by gcc (<= 2.8.1). */
6468 if (i.operands == 2)
6469 {
6470 /* Reversed arguments on faddp, fsubp, etc. */
6471 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6472 register_prefix, i.op[!intel_syntax].regs->reg_name,
6473 register_prefix, i.op[intel_syntax].regs->reg_name);
6474 }
6475 else
6476 {
6477 /* Extraneous `l' suffix on fp insn. */
6478 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6479 register_prefix, i.op[0].regs->reg_name);
6480 }
6481 }
6482 }
6483 }
6484 else if (i.tm.opcode_modifier.modrm)
6485 {
6486 /* The opcode is completed (modulo i.tm.extension_opcode which
6487 must be put into the modrm byte). Now, we make the modrm and
6488 index base bytes based on all the info we've collected. */
6489
6490 default_seg = build_modrm_byte ();
6491 }
6492 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6493 {
6494 default_seg = &ds;
6495 }
6496 else if (i.tm.opcode_modifier.isstring)
6497 {
6498 /* For the string instructions that allow a segment override
6499 on one of their operands, the default segment is ds. */
6500 default_seg = &ds;
6501 }
6502
6503 if (i.tm.base_opcode == 0x8d /* lea */
6504 && i.seg[0]
6505 && !quiet_warnings)
6506 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6507
6508 /* If a segment was explicitly specified, and the specified segment
6509 is not the default, use an opcode prefix to select it. If we
6510 never figured out what the default segment is, then default_seg
6511 will be zero at this point, and the specified segment prefix will
6512 always be used. */
6513 if ((i.seg[0]) && (i.seg[0] != default_seg))
6514 {
6515 if (!add_prefix (i.seg[0]->seg_prefix))
6516 return 0;
6517 }
6518 return 1;
6519 }
6520
6521 static const seg_entry *
6522 build_modrm_byte (void)
6523 {
6524 const seg_entry *default_seg = 0;
6525 unsigned int source, dest;
6526 int vex_3_sources;
6527
6528 /* The first operand of instructions with VEX prefix and 3 sources
6529 must be VEX_Imm4. */
6530 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6531 if (vex_3_sources)
6532 {
6533 unsigned int nds, reg_slot;
6534 expressionS *exp;
6535
6536 if (i.tm.opcode_modifier.veximmext
6537 && i.tm.opcode_modifier.immext)
6538 {
6539 dest = i.operands - 2;
6540 gas_assert (dest == 3);
6541 }
6542 else
6543 dest = i.operands - 1;
6544 nds = dest - 1;
6545
6546 /* There are 2 kinds of instructions:
6547 1. 5 operands: 4 register operands or 3 register operands
6548 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6549 VexW0 or VexW1. The destination must be either XMM, YMM or
6550 ZMM register.
6551 2. 4 operands: 4 register operands or 3 register operands
6552 plus 1 memory operand, VexXDS, and VexImmExt */
6553 gas_assert ((i.reg_operands == 4
6554 || (i.reg_operands == 3 && i.mem_operands == 1))
6555 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6556 && (i.tm.opcode_modifier.veximmext
6557 || (i.imm_operands == 1
6558 && i.types[0].bitfield.vec_imm4
6559 && (i.tm.opcode_modifier.vexw == VEXW0
6560 || i.tm.opcode_modifier.vexw == VEXW1)
6561 && i.tm.operand_types[dest].bitfield.regsimd)));
6562
6563 if (i.imm_operands == 0)
6564 {
6565 /* When there is no immediate operand, generate an 8bit
6566 immediate operand to encode the first operand. */
6567 exp = &im_expressions[i.imm_operands++];
6568 i.op[i.operands].imms = exp;
6569 i.types[i.operands] = imm8;
6570 i.operands++;
6571 /* If VexW1 is set, the first operand is the source and
6572 the second operand is encoded in the immediate operand. */
6573 if (i.tm.opcode_modifier.vexw == VEXW1)
6574 {
6575 source = 0;
6576 reg_slot = 1;
6577 }
6578 else
6579 {
6580 source = 1;
6581 reg_slot = 0;
6582 }
6583
6584 /* FMA swaps REG and NDS. */
6585 if (i.tm.cpu_flags.bitfield.cpufma)
6586 {
6587 unsigned int tmp;
6588 tmp = reg_slot;
6589 reg_slot = nds;
6590 nds = tmp;
6591 }
6592
6593 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6594 exp->X_op = O_constant;
6595 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6596 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6597 }
6598 else
6599 {
6600 unsigned int imm_slot;
6601
6602 if (i.tm.opcode_modifier.vexw == VEXW0)
6603 {
6604 /* If VexW0 is set, the third operand is the source and
6605 the second operand is encoded in the immediate
6606 operand. */
6607 source = 2;
6608 reg_slot = 1;
6609 }
6610 else
6611 {
6612 /* VexW1 is set, the second operand is the source and
6613 the third operand is encoded in the immediate
6614 operand. */
6615 source = 1;
6616 reg_slot = 2;
6617 }
6618
6619 if (i.tm.opcode_modifier.immext)
6620 {
6621 /* When ImmExt is set, the immediate byte is the last
6622 operand. */
6623 imm_slot = i.operands - 1;
6624 source--;
6625 reg_slot--;
6626 }
6627 else
6628 {
6629 imm_slot = 0;
6630
6631 /* Turn on Imm8 so that output_imm will generate it. */
6632 i.types[imm_slot].bitfield.imm8 = 1;
6633 }
6634
6635 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6636 i.op[imm_slot].imms->X_add_number
6637 |= register_number (i.op[reg_slot].regs) << 4;
6638 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6639 }
6640
6641 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
6642 i.vex.register_specifier = i.op[nds].regs;
6643 }
6644 else
6645 source = dest = 0;
6646
6647 /* i.reg_operands MUST be the number of real register operands;
6648 implicit registers do not count. If there are 3 register
6649 operands, it must be a instruction with VexNDS. For a
6650 instruction with VexNDD, the destination register is encoded
6651 in VEX prefix. If there are 4 register operands, it must be
6652 a instruction with VEX prefix and 3 sources. */
6653 if (i.mem_operands == 0
6654 && ((i.reg_operands == 2
6655 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6656 || (i.reg_operands == 3
6657 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6658 || (i.reg_operands == 4 && vex_3_sources)))
6659 {
6660 switch (i.operands)
6661 {
6662 case 2:
6663 source = 0;
6664 break;
6665 case 3:
6666 /* When there are 3 operands, one of them may be immediate,
6667 which may be the first or the last operand. Otherwise,
6668 the first operand must be shift count register (cl) or it
6669 is an instruction with VexNDS. */
6670 gas_assert (i.imm_operands == 1
6671 || (i.imm_operands == 0
6672 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6673 || i.types[0].bitfield.shiftcount)));
6674 if (operand_type_check (i.types[0], imm)
6675 || i.types[0].bitfield.shiftcount)
6676 source = 1;
6677 else
6678 source = 0;
6679 break;
6680 case 4:
6681 /* When there are 4 operands, the first two must be 8bit
6682 immediate operands. The source operand will be the 3rd
6683 one.
6684
6685 For instructions with VexNDS, if the first operand
6686 an imm8, the source operand is the 2nd one. If the last
6687 operand is imm8, the source operand is the first one. */
6688 gas_assert ((i.imm_operands == 2
6689 && i.types[0].bitfield.imm8
6690 && i.types[1].bitfield.imm8)
6691 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6692 && i.imm_operands == 1
6693 && (i.types[0].bitfield.imm8
6694 || i.types[i.operands - 1].bitfield.imm8
6695 || i.rounding)));
6696 if (i.imm_operands == 2)
6697 source = 2;
6698 else
6699 {
6700 if (i.types[0].bitfield.imm8)
6701 source = 1;
6702 else
6703 source = 0;
6704 }
6705 break;
6706 case 5:
6707 if (is_evex_encoding (&i.tm))
6708 {
6709 /* For EVEX instructions, when there are 5 operands, the
6710 first one must be immediate operand. If the second one
6711 is immediate operand, the source operand is the 3th
6712 one. If the last one is immediate operand, the source
6713 operand is the 2nd one. */
6714 gas_assert (i.imm_operands == 2
6715 && i.tm.opcode_modifier.sae
6716 && operand_type_check (i.types[0], imm));
6717 if (operand_type_check (i.types[1], imm))
6718 source = 2;
6719 else if (operand_type_check (i.types[4], imm))
6720 source = 1;
6721 else
6722 abort ();
6723 }
6724 break;
6725 default:
6726 abort ();
6727 }
6728
6729 if (!vex_3_sources)
6730 {
6731 dest = source + 1;
6732
6733 /* RC/SAE operand could be between DEST and SRC. That happens
6734 when one operand is GPR and the other one is XMM/YMM/ZMM
6735 register. */
6736 if (i.rounding && i.rounding->operand == (int) dest)
6737 dest++;
6738
6739 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6740 {
6741 /* For instructions with VexNDS, the register-only source
6742 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
6743 register. It is encoded in VEX prefix. We need to
6744 clear RegMem bit before calling operand_type_equal. */
6745
6746 i386_operand_type op;
6747 unsigned int vvvv;
6748
6749 /* Check register-only source operand when two source
6750 operands are swapped. */
6751 if (!i.tm.operand_types[source].bitfield.baseindex
6752 && i.tm.operand_types[dest].bitfield.baseindex)
6753 {
6754 vvvv = source;
6755 source = dest;
6756 }
6757 else
6758 vvvv = dest;
6759
6760 op = i.tm.operand_types[vvvv];
6761 op.bitfield.regmem = 0;
6762 if ((dest + 1) >= i.operands
6763 || ((!op.bitfield.reg
6764 || (!op.bitfield.dword && !op.bitfield.qword))
6765 && !op.bitfield.regsimd
6766 && !operand_type_equal (&op, &regmask)))
6767 abort ();
6768 i.vex.register_specifier = i.op[vvvv].regs;
6769 dest++;
6770 }
6771 }
6772
6773 i.rm.mode = 3;
6774 /* One of the register operands will be encoded in the i.tm.reg
6775 field, the other in the combined i.tm.mode and i.tm.regmem
6776 fields. If no form of this instruction supports a memory
6777 destination operand, then we assume the source operand may
6778 sometimes be a memory operand and so we need to store the
6779 destination in the i.rm.reg field. */
6780 if (!i.tm.operand_types[dest].bitfield.regmem
6781 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6782 {
6783 i.rm.reg = i.op[dest].regs->reg_num;
6784 i.rm.regmem = i.op[source].regs->reg_num;
6785 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6786 i.rex |= REX_R;
6787 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6788 i.vrex |= REX_R;
6789 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6790 i.rex |= REX_B;
6791 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6792 i.vrex |= REX_B;
6793 }
6794 else
6795 {
6796 i.rm.reg = i.op[source].regs->reg_num;
6797 i.rm.regmem = i.op[dest].regs->reg_num;
6798 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6799 i.rex |= REX_B;
6800 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6801 i.vrex |= REX_B;
6802 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6803 i.rex |= REX_R;
6804 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6805 i.vrex |= REX_R;
6806 }
6807 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6808 {
6809 if (!i.types[0].bitfield.control
6810 && !i.types[1].bitfield.control)
6811 abort ();
6812 i.rex &= ~(REX_R | REX_B);
6813 add_prefix (LOCK_PREFIX_OPCODE);
6814 }
6815 }
6816 else
6817 { /* If it's not 2 reg operands... */
6818 unsigned int mem;
6819
6820 if (i.mem_operands)
6821 {
6822 unsigned int fake_zero_displacement = 0;
6823 unsigned int op;
6824
6825 for (op = 0; op < i.operands; op++)
6826 if (operand_type_check (i.types[op], anymem))
6827 break;
6828 gas_assert (op < i.operands);
6829
6830 if (i.tm.opcode_modifier.vecsib)
6831 {
6832 if (i.index_reg->reg_num == RegEiz
6833 || i.index_reg->reg_num == RegRiz)
6834 abort ();
6835
6836 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6837 if (!i.base_reg)
6838 {
6839 i.sib.base = NO_BASE_REGISTER;
6840 i.sib.scale = i.log2_scale_factor;
6841 i.types[op].bitfield.disp8 = 0;
6842 i.types[op].bitfield.disp16 = 0;
6843 i.types[op].bitfield.disp64 = 0;
6844 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6845 {
6846 /* Must be 32 bit */
6847 i.types[op].bitfield.disp32 = 1;
6848 i.types[op].bitfield.disp32s = 0;
6849 }
6850 else
6851 {
6852 i.types[op].bitfield.disp32 = 0;
6853 i.types[op].bitfield.disp32s = 1;
6854 }
6855 }
6856 i.sib.index = i.index_reg->reg_num;
6857 if ((i.index_reg->reg_flags & RegRex) != 0)
6858 i.rex |= REX_X;
6859 if ((i.index_reg->reg_flags & RegVRex) != 0)
6860 i.vrex |= REX_X;
6861 }
6862
6863 default_seg = &ds;
6864
6865 if (i.base_reg == 0)
6866 {
6867 i.rm.mode = 0;
6868 if (!i.disp_operands)
6869 fake_zero_displacement = 1;
6870 if (i.index_reg == 0)
6871 {
6872 i386_operand_type newdisp;
6873
6874 gas_assert (!i.tm.opcode_modifier.vecsib);
6875 /* Operand is just <disp> */
6876 if (flag_code == CODE_64BIT)
6877 {
6878 /* 64bit mode overwrites the 32bit absolute
6879 addressing by RIP relative addressing and
6880 absolute addressing is encoded by one of the
6881 redundant SIB forms. */
6882 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6883 i.sib.base = NO_BASE_REGISTER;
6884 i.sib.index = NO_INDEX_REGISTER;
6885 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
6886 }
6887 else if ((flag_code == CODE_16BIT)
6888 ^ (i.prefix[ADDR_PREFIX] != 0))
6889 {
6890 i.rm.regmem = NO_BASE_REGISTER_16;
6891 newdisp = disp16;
6892 }
6893 else
6894 {
6895 i.rm.regmem = NO_BASE_REGISTER;
6896 newdisp = disp32;
6897 }
6898 i.types[op] = operand_type_and_not (i.types[op], anydisp);
6899 i.types[op] = operand_type_or (i.types[op], newdisp);
6900 }
6901 else if (!i.tm.opcode_modifier.vecsib)
6902 {
6903 /* !i.base_reg && i.index_reg */
6904 if (i.index_reg->reg_num == RegEiz
6905 || i.index_reg->reg_num == RegRiz)
6906 i.sib.index = NO_INDEX_REGISTER;
6907 else
6908 i.sib.index = i.index_reg->reg_num;
6909 i.sib.base = NO_BASE_REGISTER;
6910 i.sib.scale = i.log2_scale_factor;
6911 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6912 i.types[op].bitfield.disp8 = 0;
6913 i.types[op].bitfield.disp16 = 0;
6914 i.types[op].bitfield.disp64 = 0;
6915 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
6916 {
6917 /* Must be 32 bit */
6918 i.types[op].bitfield.disp32 = 1;
6919 i.types[op].bitfield.disp32s = 0;
6920 }
6921 else
6922 {
6923 i.types[op].bitfield.disp32 = 0;
6924 i.types[op].bitfield.disp32s = 1;
6925 }
6926 if ((i.index_reg->reg_flags & RegRex) != 0)
6927 i.rex |= REX_X;
6928 }
6929 }
6930 /* RIP addressing for 64bit mode. */
6931 else if (i.base_reg->reg_num == RegRip ||
6932 i.base_reg->reg_num == RegEip)
6933 {
6934 gas_assert (!i.tm.opcode_modifier.vecsib);
6935 i.rm.regmem = NO_BASE_REGISTER;
6936 i.types[op].bitfield.disp8 = 0;
6937 i.types[op].bitfield.disp16 = 0;
6938 i.types[op].bitfield.disp32 = 0;
6939 i.types[op].bitfield.disp32s = 1;
6940 i.types[op].bitfield.disp64 = 0;
6941 i.flags[op] |= Operand_PCrel;
6942 if (! i.disp_operands)
6943 fake_zero_displacement = 1;
6944 }
6945 else if (i.base_reg->reg_type.bitfield.word)
6946 {
6947 gas_assert (!i.tm.opcode_modifier.vecsib);
6948 switch (i.base_reg->reg_num)
6949 {
6950 case 3: /* (%bx) */
6951 if (i.index_reg == 0)
6952 i.rm.regmem = 7;
6953 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6954 i.rm.regmem = i.index_reg->reg_num - 6;
6955 break;
6956 case 5: /* (%bp) */
6957 default_seg = &ss;
6958 if (i.index_reg == 0)
6959 {
6960 i.rm.regmem = 6;
6961 if (operand_type_check (i.types[op], disp) == 0)
6962 {
6963 /* fake (%bp) into 0(%bp) */
6964 i.types[op].bitfield.disp8 = 1;
6965 fake_zero_displacement = 1;
6966 }
6967 }
6968 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6969 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6970 break;
6971 default: /* (%si) -> 4 or (%di) -> 5 */
6972 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6973 }
6974 i.rm.mode = mode_from_disp_size (i.types[op]);
6975 }
6976 else /* i.base_reg and 32/64 bit mode */
6977 {
6978 if (flag_code == CODE_64BIT
6979 && operand_type_check (i.types[op], disp))
6980 {
6981 i.types[op].bitfield.disp16 = 0;
6982 i.types[op].bitfield.disp64 = 0;
6983 if (i.prefix[ADDR_PREFIX] == 0)
6984 {
6985 i.types[op].bitfield.disp32 = 0;
6986 i.types[op].bitfield.disp32s = 1;
6987 }
6988 else
6989 {
6990 i.types[op].bitfield.disp32 = 1;
6991 i.types[op].bitfield.disp32s = 0;
6992 }
6993 }
6994
6995 if (!i.tm.opcode_modifier.vecsib)
6996 i.rm.regmem = i.base_reg->reg_num;
6997 if ((i.base_reg->reg_flags & RegRex) != 0)
6998 i.rex |= REX_B;
6999 i.sib.base = i.base_reg->reg_num;
7000 /* x86-64 ignores REX prefix bit here to avoid decoder
7001 complications. */
7002 if (!(i.base_reg->reg_flags & RegRex)
7003 && (i.base_reg->reg_num == EBP_REG_NUM
7004 || i.base_reg->reg_num == ESP_REG_NUM))
7005 default_seg = &ss;
7006 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7007 {
7008 fake_zero_displacement = 1;
7009 i.types[op].bitfield.disp8 = 1;
7010 }
7011 i.sib.scale = i.log2_scale_factor;
7012 if (i.index_reg == 0)
7013 {
7014 gas_assert (!i.tm.opcode_modifier.vecsib);
7015 /* <disp>(%esp) becomes two byte modrm with no index
7016 register. We've already stored the code for esp
7017 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7018 Any base register besides %esp will not use the
7019 extra modrm byte. */
7020 i.sib.index = NO_INDEX_REGISTER;
7021 }
7022 else if (!i.tm.opcode_modifier.vecsib)
7023 {
7024 if (i.index_reg->reg_num == RegEiz
7025 || i.index_reg->reg_num == RegRiz)
7026 i.sib.index = NO_INDEX_REGISTER;
7027 else
7028 i.sib.index = i.index_reg->reg_num;
7029 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7030 if ((i.index_reg->reg_flags & RegRex) != 0)
7031 i.rex |= REX_X;
7032 }
7033
7034 if (i.disp_operands
7035 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7036 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7037 i.rm.mode = 0;
7038 else
7039 {
7040 if (!fake_zero_displacement
7041 && !i.disp_operands
7042 && i.disp_encoding)
7043 {
7044 fake_zero_displacement = 1;
7045 if (i.disp_encoding == disp_encoding_8bit)
7046 i.types[op].bitfield.disp8 = 1;
7047 else
7048 i.types[op].bitfield.disp32 = 1;
7049 }
7050 i.rm.mode = mode_from_disp_size (i.types[op]);
7051 }
7052 }
7053
7054 if (fake_zero_displacement)
7055 {
7056 /* Fakes a zero displacement assuming that i.types[op]
7057 holds the correct displacement size. */
7058 expressionS *exp;
7059
7060 gas_assert (i.op[op].disps == 0);
7061 exp = &disp_expressions[i.disp_operands++];
7062 i.op[op].disps = exp;
7063 exp->X_op = O_constant;
7064 exp->X_add_number = 0;
7065 exp->X_add_symbol = (symbolS *) 0;
7066 exp->X_op_symbol = (symbolS *) 0;
7067 }
7068
7069 mem = op;
7070 }
7071 else
7072 mem = ~0;
7073
7074 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7075 {
7076 if (operand_type_check (i.types[0], imm))
7077 i.vex.register_specifier = NULL;
7078 else
7079 {
7080 /* VEX.vvvv encodes one of the sources when the first
7081 operand is not an immediate. */
7082 if (i.tm.opcode_modifier.vexw == VEXW0)
7083 i.vex.register_specifier = i.op[0].regs;
7084 else
7085 i.vex.register_specifier = i.op[1].regs;
7086 }
7087
7088 /* Destination is a XMM register encoded in the ModRM.reg
7089 and VEX.R bit. */
7090 i.rm.reg = i.op[2].regs->reg_num;
7091 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7092 i.rex |= REX_R;
7093
7094 /* ModRM.rm and VEX.B encodes the other source. */
7095 if (!i.mem_operands)
7096 {
7097 i.rm.mode = 3;
7098
7099 if (i.tm.opcode_modifier.vexw == VEXW0)
7100 i.rm.regmem = i.op[1].regs->reg_num;
7101 else
7102 i.rm.regmem = i.op[0].regs->reg_num;
7103
7104 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7105 i.rex |= REX_B;
7106 }
7107 }
7108 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7109 {
7110 i.vex.register_specifier = i.op[2].regs;
7111 if (!i.mem_operands)
7112 {
7113 i.rm.mode = 3;
7114 i.rm.regmem = i.op[1].regs->reg_num;
7115 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7116 i.rex |= REX_B;
7117 }
7118 }
7119 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7120 (if any) based on i.tm.extension_opcode. Again, we must be
7121 careful to make sure that segment/control/debug/test/MMX
7122 registers are coded into the i.rm.reg field. */
7123 else if (i.reg_operands)
7124 {
7125 unsigned int op;
7126 unsigned int vex_reg = ~0;
7127
7128 for (op = 0; op < i.operands; op++)
7129 if (i.types[op].bitfield.reg
7130 || i.types[op].bitfield.regmmx
7131 || i.types[op].bitfield.regsimd
7132 || i.types[op].bitfield.regbnd
7133 || i.types[op].bitfield.regmask
7134 || i.types[op].bitfield.sreg2
7135 || i.types[op].bitfield.sreg3
7136 || i.types[op].bitfield.control
7137 || i.types[op].bitfield.debug
7138 || i.types[op].bitfield.test)
7139 break;
7140
7141 if (vex_3_sources)
7142 op = dest;
7143 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7144 {
7145 /* For instructions with VexNDS, the register-only
7146 source operand is encoded in VEX prefix. */
7147 gas_assert (mem != (unsigned int) ~0);
7148
7149 if (op > mem)
7150 {
7151 vex_reg = op++;
7152 gas_assert (op < i.operands);
7153 }
7154 else
7155 {
7156 /* Check register-only source operand when two source
7157 operands are swapped. */
7158 if (!i.tm.operand_types[op].bitfield.baseindex
7159 && i.tm.operand_types[op + 1].bitfield.baseindex)
7160 {
7161 vex_reg = op;
7162 op += 2;
7163 gas_assert (mem == (vex_reg + 1)
7164 && op < i.operands);
7165 }
7166 else
7167 {
7168 vex_reg = op + 1;
7169 gas_assert (vex_reg < i.operands);
7170 }
7171 }
7172 }
7173 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7174 {
7175 /* For instructions with VexNDD, the register destination
7176 is encoded in VEX prefix. */
7177 if (i.mem_operands == 0)
7178 {
7179 /* There is no memory operand. */
7180 gas_assert ((op + 2) == i.operands);
7181 vex_reg = op + 1;
7182 }
7183 else
7184 {
7185 /* There are only 2 non-immediate operands. */
7186 gas_assert (op < i.imm_operands + 2
7187 && i.operands == i.imm_operands + 2);
7188 vex_reg = i.imm_operands + 1;
7189 }
7190 }
7191 else
7192 gas_assert (op < i.operands);
7193
7194 if (vex_reg != (unsigned int) ~0)
7195 {
7196 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7197
7198 if ((!type->bitfield.reg
7199 || (!type->bitfield.dword && !type->bitfield.qword))
7200 && !type->bitfield.regsimd
7201 && !operand_type_equal (type, &regmask))
7202 abort ();
7203
7204 i.vex.register_specifier = i.op[vex_reg].regs;
7205 }
7206
7207 /* Don't set OP operand twice. */
7208 if (vex_reg != op)
7209 {
7210 /* If there is an extension opcode to put here, the
7211 register number must be put into the regmem field. */
7212 if (i.tm.extension_opcode != None)
7213 {
7214 i.rm.regmem = i.op[op].regs->reg_num;
7215 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7216 i.rex |= REX_B;
7217 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7218 i.vrex |= REX_B;
7219 }
7220 else
7221 {
7222 i.rm.reg = i.op[op].regs->reg_num;
7223 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7224 i.rex |= REX_R;
7225 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7226 i.vrex |= REX_R;
7227 }
7228 }
7229
7230 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7231 must set it to 3 to indicate this is a register operand
7232 in the regmem field. */
7233 if (!i.mem_operands)
7234 i.rm.mode = 3;
7235 }
7236
7237 /* Fill in i.rm.reg field with extension opcode (if any). */
7238 if (i.tm.extension_opcode != None)
7239 i.rm.reg = i.tm.extension_opcode;
7240 }
7241 return default_seg;
7242 }
7243
7244 static void
7245 output_branch (void)
7246 {
7247 char *p;
7248 int size;
7249 int code16;
7250 int prefix;
7251 relax_substateT subtype;
7252 symbolS *sym;
7253 offsetT off;
7254
7255 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7256 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7257
7258 prefix = 0;
7259 if (i.prefix[DATA_PREFIX] != 0)
7260 {
7261 prefix = 1;
7262 i.prefixes -= 1;
7263 code16 ^= CODE16;
7264 }
7265 /* Pentium4 branch hints. */
7266 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7267 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7268 {
7269 prefix++;
7270 i.prefixes--;
7271 }
7272 if (i.prefix[REX_PREFIX] != 0)
7273 {
7274 prefix++;
7275 i.prefixes--;
7276 }
7277
7278 /* BND prefixed jump. */
7279 if (i.prefix[BND_PREFIX] != 0)
7280 {
7281 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7282 i.prefixes -= 1;
7283 }
7284
7285 if (i.prefixes != 0 && !intel_syntax)
7286 as_warn (_("skipping prefixes on this instruction"));
7287
7288 /* It's always a symbol; End frag & setup for relax.
7289 Make sure there is enough room in this frag for the largest
7290 instruction we may generate in md_convert_frag. This is 2
7291 bytes for the opcode and room for the prefix and largest
7292 displacement. */
7293 frag_grow (prefix + 2 + 4);
7294 /* Prefix and 1 opcode byte go in fr_fix. */
7295 p = frag_more (prefix + 1);
7296 if (i.prefix[DATA_PREFIX] != 0)
7297 *p++ = DATA_PREFIX_OPCODE;
7298 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7299 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7300 *p++ = i.prefix[SEG_PREFIX];
7301 if (i.prefix[REX_PREFIX] != 0)
7302 *p++ = i.prefix[REX_PREFIX];
7303 *p = i.tm.base_opcode;
7304
7305 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7306 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7307 else if (cpu_arch_flags.bitfield.cpui386)
7308 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7309 else
7310 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7311 subtype |= code16;
7312
7313 sym = i.op[0].disps->X_add_symbol;
7314 off = i.op[0].disps->X_add_number;
7315
7316 if (i.op[0].disps->X_op != O_constant
7317 && i.op[0].disps->X_op != O_symbol)
7318 {
7319 /* Handle complex expressions. */
7320 sym = make_expr_symbol (i.op[0].disps);
7321 off = 0;
7322 }
7323
7324 /* 1 possible extra opcode + 4 byte displacement go in var part.
7325 Pass reloc in fr_var. */
7326 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7327 }
7328
7329 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7330 /* Return TRUE iff PLT32 relocation should be used for branching to
7331 symbol S. */
7332
7333 static bfd_boolean
7334 need_plt32_p (symbolS *s)
7335 {
7336 /* PLT32 relocation is ELF only. */
7337 if (!IS_ELF)
7338 return FALSE;
7339
7340 /* Since there is no need to prepare for PLT branch on x86-64, we
7341 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7342 be used as a marker for 32-bit PC-relative branches. */
7343 if (!object_64bit)
7344 return FALSE;
7345
7346 /* Weak or undefined symbol need PLT32 relocation. */
7347 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7348 return TRUE;
7349
7350 /* Non-global symbol doesn't need PLT32 relocation. */
7351 if (! S_IS_EXTERNAL (s))
7352 return FALSE;
7353
7354 /* Other global symbols need PLT32 relocation. NB: Symbol with
7355 non-default visibilities are treated as normal global symbol
7356 so that PLT32 relocation can be used as a marker for 32-bit
7357 PC-relative branches. It is useful for linker relaxation. */
7358 return TRUE;
7359 }
7360 #endif
7361
7362 static void
7363 output_jump (void)
7364 {
7365 char *p;
7366 int size;
7367 fixS *fixP;
7368 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7369
7370 if (i.tm.opcode_modifier.jumpbyte)
7371 {
7372 /* This is a loop or jecxz type instruction. */
7373 size = 1;
7374 if (i.prefix[ADDR_PREFIX] != 0)
7375 {
7376 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7377 i.prefixes -= 1;
7378 }
7379 /* Pentium4 branch hints. */
7380 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7381 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7382 {
7383 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7384 i.prefixes--;
7385 }
7386 }
7387 else
7388 {
7389 int code16;
7390
7391 code16 = 0;
7392 if (flag_code == CODE_16BIT)
7393 code16 = CODE16;
7394
7395 if (i.prefix[DATA_PREFIX] != 0)
7396 {
7397 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7398 i.prefixes -= 1;
7399 code16 ^= CODE16;
7400 }
7401
7402 size = 4;
7403 if (code16)
7404 size = 2;
7405 }
7406
7407 if (i.prefix[REX_PREFIX] != 0)
7408 {
7409 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7410 i.prefixes -= 1;
7411 }
7412
7413 /* BND prefixed jump. */
7414 if (i.prefix[BND_PREFIX] != 0)
7415 {
7416 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7417 i.prefixes -= 1;
7418 }
7419
7420 if (i.prefixes != 0 && !intel_syntax)
7421 as_warn (_("skipping prefixes on this instruction"));
7422
7423 p = frag_more (i.tm.opcode_length + size);
7424 switch (i.tm.opcode_length)
7425 {
7426 case 2:
7427 *p++ = i.tm.base_opcode >> 8;
7428 /* Fall through. */
7429 case 1:
7430 *p++ = i.tm.base_opcode;
7431 break;
7432 default:
7433 abort ();
7434 }
7435
7436 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7437 if (size == 4
7438 && jump_reloc == NO_RELOC
7439 && need_plt32_p (i.op[0].disps->X_add_symbol))
7440 jump_reloc = BFD_RELOC_X86_64_PLT32;
7441 #endif
7442
7443 jump_reloc = reloc (size, 1, 1, jump_reloc);
7444
7445 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7446 i.op[0].disps, 1, jump_reloc);
7447
7448 /* All jumps handled here are signed, but don't use a signed limit
7449 check for 32 and 16 bit jumps as we want to allow wrap around at
7450 4G and 64k respectively. */
7451 if (size == 1)
7452 fixP->fx_signed = 1;
7453 }
7454
7455 static void
7456 output_interseg_jump (void)
7457 {
7458 char *p;
7459 int size;
7460 int prefix;
7461 int code16;
7462
7463 code16 = 0;
7464 if (flag_code == CODE_16BIT)
7465 code16 = CODE16;
7466
7467 prefix = 0;
7468 if (i.prefix[DATA_PREFIX] != 0)
7469 {
7470 prefix = 1;
7471 i.prefixes -= 1;
7472 code16 ^= CODE16;
7473 }
7474 if (i.prefix[REX_PREFIX] != 0)
7475 {
7476 prefix++;
7477 i.prefixes -= 1;
7478 }
7479
7480 size = 4;
7481 if (code16)
7482 size = 2;
7483
7484 if (i.prefixes != 0 && !intel_syntax)
7485 as_warn (_("skipping prefixes on this instruction"));
7486
7487 /* 1 opcode; 2 segment; offset */
7488 p = frag_more (prefix + 1 + 2 + size);
7489
7490 if (i.prefix[DATA_PREFIX] != 0)
7491 *p++ = DATA_PREFIX_OPCODE;
7492
7493 if (i.prefix[REX_PREFIX] != 0)
7494 *p++ = i.prefix[REX_PREFIX];
7495
7496 *p++ = i.tm.base_opcode;
7497 if (i.op[1].imms->X_op == O_constant)
7498 {
7499 offsetT n = i.op[1].imms->X_add_number;
7500
7501 if (size == 2
7502 && !fits_in_unsigned_word (n)
7503 && !fits_in_signed_word (n))
7504 {
7505 as_bad (_("16-bit jump out of range"));
7506 return;
7507 }
7508 md_number_to_chars (p, n, size);
7509 }
7510 else
7511 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7512 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7513 if (i.op[0].imms->X_op != O_constant)
7514 as_bad (_("can't handle non absolute segment in `%s'"),
7515 i.tm.name);
7516 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7517 }
7518
7519 static void
7520 output_insn (void)
7521 {
7522 fragS *insn_start_frag;
7523 offsetT insn_start_off;
7524
7525 /* Tie dwarf2 debug info to the address at the start of the insn.
7526 We can't do this after the insn has been output as the current
7527 frag may have been closed off. eg. by frag_var. */
7528 dwarf2_emit_insn (0);
7529
7530 insn_start_frag = frag_now;
7531 insn_start_off = frag_now_fix ();
7532
7533 /* Output jumps. */
7534 if (i.tm.opcode_modifier.jump)
7535 output_branch ();
7536 else if (i.tm.opcode_modifier.jumpbyte
7537 || i.tm.opcode_modifier.jumpdword)
7538 output_jump ();
7539 else if (i.tm.opcode_modifier.jumpintersegment)
7540 output_interseg_jump ();
7541 else
7542 {
7543 /* Output normal instructions here. */
7544 char *p;
7545 unsigned char *q;
7546 unsigned int j;
7547 unsigned int prefix;
7548
7549 if (avoid_fence
7550 && i.tm.base_opcode == 0xfae
7551 && i.operands == 1
7552 && i.imm_operands == 1
7553 && (i.op[0].imms->X_add_number == 0xe8
7554 || i.op[0].imms->X_add_number == 0xf0
7555 || i.op[0].imms->X_add_number == 0xf8))
7556 {
7557 /* Encode lfence, mfence, and sfence as
7558 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7559 offsetT val = 0x240483f0ULL;
7560 p = frag_more (5);
7561 md_number_to_chars (p, val, 5);
7562 return;
7563 }
7564
7565 /* Some processors fail on LOCK prefix. This options makes
7566 assembler ignore LOCK prefix and serves as a workaround. */
7567 if (omit_lock_prefix)
7568 {
7569 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7570 return;
7571 i.prefix[LOCK_PREFIX] = 0;
7572 }
7573
7574 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7575 don't need the explicit prefix. */
7576 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7577 {
7578 switch (i.tm.opcode_length)
7579 {
7580 case 3:
7581 if (i.tm.base_opcode & 0xff000000)
7582 {
7583 prefix = (i.tm.base_opcode >> 24) & 0xff;
7584 goto check_prefix;
7585 }
7586 break;
7587 case 2:
7588 if ((i.tm.base_opcode & 0xff0000) != 0)
7589 {
7590 prefix = (i.tm.base_opcode >> 16) & 0xff;
7591 if (i.tm.cpu_flags.bitfield.cpupadlock)
7592 {
7593 check_prefix:
7594 if (prefix != REPE_PREFIX_OPCODE
7595 || (i.prefix[REP_PREFIX]
7596 != REPE_PREFIX_OPCODE))
7597 add_prefix (prefix);
7598 }
7599 else
7600 add_prefix (prefix);
7601 }
7602 break;
7603 case 1:
7604 break;
7605 case 0:
7606 /* Check for pseudo prefixes. */
7607 as_bad_where (insn_start_frag->fr_file,
7608 insn_start_frag->fr_line,
7609 _("pseudo prefix without instruction"));
7610 return;
7611 default:
7612 abort ();
7613 }
7614
7615 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7616 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7617 R_X86_64_GOTTPOFF relocation so that linker can safely
7618 perform IE->LE optimization. */
7619 if (x86_elf_abi == X86_64_X32_ABI
7620 && i.operands == 2
7621 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7622 && i.prefix[REX_PREFIX] == 0)
7623 add_prefix (REX_OPCODE);
7624 #endif
7625
7626 /* The prefix bytes. */
7627 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7628 if (*q)
7629 FRAG_APPEND_1_CHAR (*q);
7630 }
7631 else
7632 {
7633 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7634 if (*q)
7635 switch (j)
7636 {
7637 case REX_PREFIX:
7638 /* REX byte is encoded in VEX prefix. */
7639 break;
7640 case SEG_PREFIX:
7641 case ADDR_PREFIX:
7642 FRAG_APPEND_1_CHAR (*q);
7643 break;
7644 default:
7645 /* There should be no other prefixes for instructions
7646 with VEX prefix. */
7647 abort ();
7648 }
7649
7650 /* For EVEX instructions i.vrex should become 0 after
7651 build_evex_prefix. For VEX instructions upper 16 registers
7652 aren't available, so VREX should be 0. */
7653 if (i.vrex)
7654 abort ();
7655 /* Now the VEX prefix. */
7656 p = frag_more (i.vex.length);
7657 for (j = 0; j < i.vex.length; j++)
7658 p[j] = i.vex.bytes[j];
7659 }
7660
7661 /* Now the opcode; be careful about word order here! */
7662 if (i.tm.opcode_length == 1)
7663 {
7664 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7665 }
7666 else
7667 {
7668 switch (i.tm.opcode_length)
7669 {
7670 case 4:
7671 p = frag_more (4);
7672 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7673 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7674 break;
7675 case 3:
7676 p = frag_more (3);
7677 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7678 break;
7679 case 2:
7680 p = frag_more (2);
7681 break;
7682 default:
7683 abort ();
7684 break;
7685 }
7686
7687 /* Put out high byte first: can't use md_number_to_chars! */
7688 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7689 *p = i.tm.base_opcode & 0xff;
7690 }
7691
7692 /* Now the modrm byte and sib byte (if present). */
7693 if (i.tm.opcode_modifier.modrm)
7694 {
7695 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7696 | i.rm.reg << 3
7697 | i.rm.mode << 6));
7698 /* If i.rm.regmem == ESP (4)
7699 && i.rm.mode != (Register mode)
7700 && not 16 bit
7701 ==> need second modrm byte. */
7702 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7703 && i.rm.mode != 3
7704 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
7705 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7706 | i.sib.index << 3
7707 | i.sib.scale << 6));
7708 }
7709
7710 if (i.disp_operands)
7711 output_disp (insn_start_frag, insn_start_off);
7712
7713 if (i.imm_operands)
7714 output_imm (insn_start_frag, insn_start_off);
7715 }
7716
7717 #ifdef DEBUG386
7718 if (flag_debug)
7719 {
7720 pi ("" /*line*/, &i);
7721 }
7722 #endif /* DEBUG386 */
7723 }
7724
7725 /* Return the size of the displacement operand N. */
7726
7727 static int
7728 disp_size (unsigned int n)
7729 {
7730 int size = 4;
7731
7732 if (i.types[n].bitfield.disp64)
7733 size = 8;
7734 else if (i.types[n].bitfield.disp8)
7735 size = 1;
7736 else if (i.types[n].bitfield.disp16)
7737 size = 2;
7738 return size;
7739 }
7740
7741 /* Return the size of the immediate operand N. */
7742
7743 static int
7744 imm_size (unsigned int n)
7745 {
7746 int size = 4;
7747 if (i.types[n].bitfield.imm64)
7748 size = 8;
7749 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7750 size = 1;
7751 else if (i.types[n].bitfield.imm16)
7752 size = 2;
7753 return size;
7754 }
7755
7756 static void
7757 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7758 {
7759 char *p;
7760 unsigned int n;
7761
7762 for (n = 0; n < i.operands; n++)
7763 {
7764 if (operand_type_check (i.types[n], disp))
7765 {
7766 if (i.op[n].disps->X_op == O_constant)
7767 {
7768 int size = disp_size (n);
7769 offsetT val = i.op[n].disps->X_add_number;
7770
7771 val = offset_in_range (val >> i.memshift, size);
7772 p = frag_more (size);
7773 md_number_to_chars (p, val, size);
7774 }
7775 else
7776 {
7777 enum bfd_reloc_code_real reloc_type;
7778 int size = disp_size (n);
7779 int sign = i.types[n].bitfield.disp32s;
7780 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7781 fixS *fixP;
7782
7783 /* We can't have 8 bit displacement here. */
7784 gas_assert (!i.types[n].bitfield.disp8);
7785
7786 /* The PC relative address is computed relative
7787 to the instruction boundary, so in case immediate
7788 fields follows, we need to adjust the value. */
7789 if (pcrel && i.imm_operands)
7790 {
7791 unsigned int n1;
7792 int sz = 0;
7793
7794 for (n1 = 0; n1 < i.operands; n1++)
7795 if (operand_type_check (i.types[n1], imm))
7796 {
7797 /* Only one immediate is allowed for PC
7798 relative address. */
7799 gas_assert (sz == 0);
7800 sz = imm_size (n1);
7801 i.op[n].disps->X_add_number -= sz;
7802 }
7803 /* We should find the immediate. */
7804 gas_assert (sz != 0);
7805 }
7806
7807 p = frag_more (size);
7808 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
7809 if (GOT_symbol
7810 && GOT_symbol == i.op[n].disps->X_add_symbol
7811 && (((reloc_type == BFD_RELOC_32
7812 || reloc_type == BFD_RELOC_X86_64_32S
7813 || (reloc_type == BFD_RELOC_64
7814 && object_64bit))
7815 && (i.op[n].disps->X_op == O_symbol
7816 || (i.op[n].disps->X_op == O_add
7817 && ((symbol_get_value_expression
7818 (i.op[n].disps->X_op_symbol)->X_op)
7819 == O_subtract))))
7820 || reloc_type == BFD_RELOC_32_PCREL))
7821 {
7822 offsetT add;
7823
7824 if (insn_start_frag == frag_now)
7825 add = (p - frag_now->fr_literal) - insn_start_off;
7826 else
7827 {
7828 fragS *fr;
7829
7830 add = insn_start_frag->fr_fix - insn_start_off;
7831 for (fr = insn_start_frag->fr_next;
7832 fr && fr != frag_now; fr = fr->fr_next)
7833 add += fr->fr_fix;
7834 add += p - frag_now->fr_literal;
7835 }
7836
7837 if (!object_64bit)
7838 {
7839 reloc_type = BFD_RELOC_386_GOTPC;
7840 i.op[n].imms->X_add_number += add;
7841 }
7842 else if (reloc_type == BFD_RELOC_64)
7843 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7844 else
7845 /* Don't do the adjustment for x86-64, as there
7846 the pcrel addressing is relative to the _next_
7847 insn, and that is taken care of in other code. */
7848 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7849 }
7850 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
7851 size, i.op[n].disps, pcrel,
7852 reloc_type);
7853 /* Check for "call/jmp *mem", "mov mem, %reg",
7854 "test %reg, mem" and "binop mem, %reg" where binop
7855 is one of adc, add, and, cmp, or, sbb, sub, xor
7856 instructions. Always generate R_386_GOT32X for
7857 "sym*GOT" operand in 32-bit mode. */
7858 if ((generate_relax_relocations
7859 || (!object_64bit
7860 && i.rm.mode == 0
7861 && i.rm.regmem == 5))
7862 && (i.rm.mode == 2
7863 || (i.rm.mode == 0 && i.rm.regmem == 5))
7864 && ((i.operands == 1
7865 && i.tm.base_opcode == 0xff
7866 && (i.rm.reg == 2 || i.rm.reg == 4))
7867 || (i.operands == 2
7868 && (i.tm.base_opcode == 0x8b
7869 || i.tm.base_opcode == 0x85
7870 || (i.tm.base_opcode & 0xc7) == 0x03))))
7871 {
7872 if (object_64bit)
7873 {
7874 fixP->fx_tcbit = i.rex != 0;
7875 if (i.base_reg
7876 && (i.base_reg->reg_num == RegRip
7877 || i.base_reg->reg_num == RegEip))
7878 fixP->fx_tcbit2 = 1;
7879 }
7880 else
7881 fixP->fx_tcbit2 = 1;
7882 }
7883 }
7884 }
7885 }
7886 }
7887
7888 static void
7889 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7890 {
7891 char *p;
7892 unsigned int n;
7893
7894 for (n = 0; n < i.operands; n++)
7895 {
7896 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7897 if (i.rounding && (int) n == i.rounding->operand)
7898 continue;
7899
7900 if (operand_type_check (i.types[n], imm))
7901 {
7902 if (i.op[n].imms->X_op == O_constant)
7903 {
7904 int size = imm_size (n);
7905 offsetT val;
7906
7907 val = offset_in_range (i.op[n].imms->X_add_number,
7908 size);
7909 p = frag_more (size);
7910 md_number_to_chars (p, val, size);
7911 }
7912 else
7913 {
7914 /* Not absolute_section.
7915 Need a 32-bit fixup (don't support 8bit
7916 non-absolute imms). Try to support other
7917 sizes ... */
7918 enum bfd_reloc_code_real reloc_type;
7919 int size = imm_size (n);
7920 int sign;
7921
7922 if (i.types[n].bitfield.imm32s
7923 && (i.suffix == QWORD_MNEM_SUFFIX
7924 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7925 sign = 1;
7926 else
7927 sign = 0;
7928
7929 p = frag_more (size);
7930 reloc_type = reloc (size, 0, sign, i.reloc[n]);
7931
7932 /* This is tough to explain. We end up with this one if we
7933 * have operands that look like
7934 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7935 * obtain the absolute address of the GOT, and it is strongly
7936 * preferable from a performance point of view to avoid using
7937 * a runtime relocation for this. The actual sequence of
7938 * instructions often look something like:
7939 *
7940 * call .L66
7941 * .L66:
7942 * popl %ebx
7943 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7944 *
7945 * The call and pop essentially return the absolute address
7946 * of the label .L66 and store it in %ebx. The linker itself
7947 * will ultimately change the first operand of the addl so
7948 * that %ebx points to the GOT, but to keep things simple, the
7949 * .o file must have this operand set so that it generates not
7950 * the absolute address of .L66, but the absolute address of
7951 * itself. This allows the linker itself simply treat a GOTPC
7952 * relocation as asking for a pcrel offset to the GOT to be
7953 * added in, and the addend of the relocation is stored in the
7954 * operand field for the instruction itself.
7955 *
7956 * Our job here is to fix the operand so that it would add
7957 * the correct offset so that %ebx would point to itself. The
7958 * thing that is tricky is that .-.L66 will point to the
7959 * beginning of the instruction, so we need to further modify
7960 * the operand so that it will point to itself. There are
7961 * other cases where you have something like:
7962 *
7963 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7964 *
7965 * and here no correction would be required. Internally in
7966 * the assembler we treat operands of this form as not being
7967 * pcrel since the '.' is explicitly mentioned, and I wonder
7968 * whether it would simplify matters to do it this way. Who
7969 * knows. In earlier versions of the PIC patches, the
7970 * pcrel_adjust field was used to store the correction, but
7971 * since the expression is not pcrel, I felt it would be
7972 * confusing to do it this way. */
7973
7974 if ((reloc_type == BFD_RELOC_32
7975 || reloc_type == BFD_RELOC_X86_64_32S
7976 || reloc_type == BFD_RELOC_64)
7977 && GOT_symbol
7978 && GOT_symbol == i.op[n].imms->X_add_symbol
7979 && (i.op[n].imms->X_op == O_symbol
7980 || (i.op[n].imms->X_op == O_add
7981 && ((symbol_get_value_expression
7982 (i.op[n].imms->X_op_symbol)->X_op)
7983 == O_subtract))))
7984 {
7985 offsetT add;
7986
7987 if (insn_start_frag == frag_now)
7988 add = (p - frag_now->fr_literal) - insn_start_off;
7989 else
7990 {
7991 fragS *fr;
7992
7993 add = insn_start_frag->fr_fix - insn_start_off;
7994 for (fr = insn_start_frag->fr_next;
7995 fr && fr != frag_now; fr = fr->fr_next)
7996 add += fr->fr_fix;
7997 add += p - frag_now->fr_literal;
7998 }
7999
8000 if (!object_64bit)
8001 reloc_type = BFD_RELOC_386_GOTPC;
8002 else if (size == 4)
8003 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8004 else if (size == 8)
8005 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8006 i.op[n].imms->X_add_number += add;
8007 }
8008 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8009 i.op[n].imms, 0, reloc_type);
8010 }
8011 }
8012 }
8013 }
8014 \f
8015 /* x86_cons_fix_new is called via the expression parsing code when a
8016 reloc is needed. We use this hook to get the correct .got reloc. */
8017 static int cons_sign = -1;
8018
8019 void
8020 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8021 expressionS *exp, bfd_reloc_code_real_type r)
8022 {
8023 r = reloc (len, 0, cons_sign, r);
8024
8025 #ifdef TE_PE
8026 if (exp->X_op == O_secrel)
8027 {
8028 exp->X_op = O_symbol;
8029 r = BFD_RELOC_32_SECREL;
8030 }
8031 #endif
8032
8033 fix_new_exp (frag, off, len, exp, 0, r);
8034 }
8035
8036 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8037 purpose of the `.dc.a' internal pseudo-op. */
8038
8039 int
8040 x86_address_bytes (void)
8041 {
8042 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8043 return 4;
8044 return stdoutput->arch_info->bits_per_address / 8;
8045 }
8046
8047 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8048 || defined (LEX_AT)
8049 # define lex_got(reloc, adjust, types) NULL
8050 #else
8051 /* Parse operands of the form
8052 <symbol>@GOTOFF+<nnn>
8053 and similar .plt or .got references.
8054
8055 If we find one, set up the correct relocation in RELOC and copy the
8056 input string, minus the `@GOTOFF' into a malloc'd buffer for
8057 parsing by the calling routine. Return this buffer, and if ADJUST
8058 is non-null set it to the length of the string we removed from the
8059 input line. Otherwise return NULL. */
8060 static char *
8061 lex_got (enum bfd_reloc_code_real *rel,
8062 int *adjust,
8063 i386_operand_type *types)
8064 {
8065 /* Some of the relocations depend on the size of what field is to
8066 be relocated. But in our callers i386_immediate and i386_displacement
8067 we don't yet know the operand size (this will be set by insn
8068 matching). Hence we record the word32 relocation here,
8069 and adjust the reloc according to the real size in reloc(). */
8070 static const struct {
8071 const char *str;
8072 int len;
8073 const enum bfd_reloc_code_real rel[2];
8074 const i386_operand_type types64;
8075 } gotrel[] = {
8076 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8077 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8078 BFD_RELOC_SIZE32 },
8079 OPERAND_TYPE_IMM32_64 },
8080 #endif
8081 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8082 BFD_RELOC_X86_64_PLTOFF64 },
8083 OPERAND_TYPE_IMM64 },
8084 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8085 BFD_RELOC_X86_64_PLT32 },
8086 OPERAND_TYPE_IMM32_32S_DISP32 },
8087 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8088 BFD_RELOC_X86_64_GOTPLT64 },
8089 OPERAND_TYPE_IMM64_DISP64 },
8090 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8091 BFD_RELOC_X86_64_GOTOFF64 },
8092 OPERAND_TYPE_IMM64_DISP64 },
8093 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8094 BFD_RELOC_X86_64_GOTPCREL },
8095 OPERAND_TYPE_IMM32_32S_DISP32 },
8096 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8097 BFD_RELOC_X86_64_TLSGD },
8098 OPERAND_TYPE_IMM32_32S_DISP32 },
8099 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8100 _dummy_first_bfd_reloc_code_real },
8101 OPERAND_TYPE_NONE },
8102 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8103 BFD_RELOC_X86_64_TLSLD },
8104 OPERAND_TYPE_IMM32_32S_DISP32 },
8105 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8106 BFD_RELOC_X86_64_GOTTPOFF },
8107 OPERAND_TYPE_IMM32_32S_DISP32 },
8108 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8109 BFD_RELOC_X86_64_TPOFF32 },
8110 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8111 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8112 _dummy_first_bfd_reloc_code_real },
8113 OPERAND_TYPE_NONE },
8114 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8115 BFD_RELOC_X86_64_DTPOFF32 },
8116 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8117 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8118 _dummy_first_bfd_reloc_code_real },
8119 OPERAND_TYPE_NONE },
8120 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8121 _dummy_first_bfd_reloc_code_real },
8122 OPERAND_TYPE_NONE },
8123 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8124 BFD_RELOC_X86_64_GOT32 },
8125 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8126 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8127 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8128 OPERAND_TYPE_IMM32_32S_DISP32 },
8129 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8130 BFD_RELOC_X86_64_TLSDESC_CALL },
8131 OPERAND_TYPE_IMM32_32S_DISP32 },
8132 };
8133 char *cp;
8134 unsigned int j;
8135
8136 #if defined (OBJ_MAYBE_ELF)
8137 if (!IS_ELF)
8138 return NULL;
8139 #endif
8140
8141 for (cp = input_line_pointer; *cp != '@'; cp++)
8142 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8143 return NULL;
8144
8145 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8146 {
8147 int len = gotrel[j].len;
8148 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8149 {
8150 if (gotrel[j].rel[object_64bit] != 0)
8151 {
8152 int first, second;
8153 char *tmpbuf, *past_reloc;
8154
8155 *rel = gotrel[j].rel[object_64bit];
8156
8157 if (types)
8158 {
8159 if (flag_code != CODE_64BIT)
8160 {
8161 types->bitfield.imm32 = 1;
8162 types->bitfield.disp32 = 1;
8163 }
8164 else
8165 *types = gotrel[j].types64;
8166 }
8167
8168 if (j != 0 && GOT_symbol == NULL)
8169 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8170
8171 /* The length of the first part of our input line. */
8172 first = cp - input_line_pointer;
8173
8174 /* The second part goes from after the reloc token until
8175 (and including) an end_of_line char or comma. */
8176 past_reloc = cp + 1 + len;
8177 cp = past_reloc;
8178 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8179 ++cp;
8180 second = cp + 1 - past_reloc;
8181
8182 /* Allocate and copy string. The trailing NUL shouldn't
8183 be necessary, but be safe. */
8184 tmpbuf = XNEWVEC (char, first + second + 2);
8185 memcpy (tmpbuf, input_line_pointer, first);
8186 if (second != 0 && *past_reloc != ' ')
8187 /* Replace the relocation token with ' ', so that
8188 errors like foo@GOTOFF1 will be detected. */
8189 tmpbuf[first++] = ' ';
8190 else
8191 /* Increment length by 1 if the relocation token is
8192 removed. */
8193 len++;
8194 if (adjust)
8195 *adjust = len;
8196 memcpy (tmpbuf + first, past_reloc, second);
8197 tmpbuf[first + second] = '\0';
8198 return tmpbuf;
8199 }
8200
8201 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8202 gotrel[j].str, 1 << (5 + object_64bit));
8203 return NULL;
8204 }
8205 }
8206
8207 /* Might be a symbol version string. Don't as_bad here. */
8208 return NULL;
8209 }
8210 #endif
8211
8212 #ifdef TE_PE
8213 #ifdef lex_got
8214 #undef lex_got
8215 #endif
8216 /* Parse operands of the form
8217 <symbol>@SECREL32+<nnn>
8218
8219 If we find one, set up the correct relocation in RELOC and copy the
8220 input string, minus the `@SECREL32' into a malloc'd buffer for
8221 parsing by the calling routine. Return this buffer, and if ADJUST
8222 is non-null set it to the length of the string we removed from the
8223 input line. Otherwise return NULL.
8224
8225 This function is copied from the ELF version above adjusted for PE targets. */
8226
8227 static char *
8228 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8229 int *adjust ATTRIBUTE_UNUSED,
8230 i386_operand_type *types)
8231 {
8232 static const struct
8233 {
8234 const char *str;
8235 int len;
8236 const enum bfd_reloc_code_real rel[2];
8237 const i386_operand_type types64;
8238 }
8239 gotrel[] =
8240 {
8241 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8242 BFD_RELOC_32_SECREL },
8243 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8244 };
8245
8246 char *cp;
8247 unsigned j;
8248
8249 for (cp = input_line_pointer; *cp != '@'; cp++)
8250 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8251 return NULL;
8252
8253 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8254 {
8255 int len = gotrel[j].len;
8256
8257 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8258 {
8259 if (gotrel[j].rel[object_64bit] != 0)
8260 {
8261 int first, second;
8262 char *tmpbuf, *past_reloc;
8263
8264 *rel = gotrel[j].rel[object_64bit];
8265 if (adjust)
8266 *adjust = len;
8267
8268 if (types)
8269 {
8270 if (flag_code != CODE_64BIT)
8271 {
8272 types->bitfield.imm32 = 1;
8273 types->bitfield.disp32 = 1;
8274 }
8275 else
8276 *types = gotrel[j].types64;
8277 }
8278
8279 /* The length of the first part of our input line. */
8280 first = cp - input_line_pointer;
8281
8282 /* The second part goes from after the reloc token until
8283 (and including) an end_of_line char or comma. */
8284 past_reloc = cp + 1 + len;
8285 cp = past_reloc;
8286 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8287 ++cp;
8288 second = cp + 1 - past_reloc;
8289
8290 /* Allocate and copy string. The trailing NUL shouldn't
8291 be necessary, but be safe. */
8292 tmpbuf = XNEWVEC (char, first + second + 2);
8293 memcpy (tmpbuf, input_line_pointer, first);
8294 if (second != 0 && *past_reloc != ' ')
8295 /* Replace the relocation token with ' ', so that
8296 errors like foo@SECLREL321 will be detected. */
8297 tmpbuf[first++] = ' ';
8298 memcpy (tmpbuf + first, past_reloc, second);
8299 tmpbuf[first + second] = '\0';
8300 return tmpbuf;
8301 }
8302
8303 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8304 gotrel[j].str, 1 << (5 + object_64bit));
8305 return NULL;
8306 }
8307 }
8308
8309 /* Might be a symbol version string. Don't as_bad here. */
8310 return NULL;
8311 }
8312
8313 #endif /* TE_PE */
8314
8315 bfd_reloc_code_real_type
8316 x86_cons (expressionS *exp, int size)
8317 {
8318 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8319
8320 intel_syntax = -intel_syntax;
8321
8322 exp->X_md = 0;
8323 if (size == 4 || (object_64bit && size == 8))
8324 {
8325 /* Handle @GOTOFF and the like in an expression. */
8326 char *save;
8327 char *gotfree_input_line;
8328 int adjust = 0;
8329
8330 save = input_line_pointer;
8331 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8332 if (gotfree_input_line)
8333 input_line_pointer = gotfree_input_line;
8334
8335 expression (exp);
8336
8337 if (gotfree_input_line)
8338 {
8339 /* expression () has merrily parsed up to the end of line,
8340 or a comma - in the wrong buffer. Transfer how far
8341 input_line_pointer has moved to the right buffer. */
8342 input_line_pointer = (save
8343 + (input_line_pointer - gotfree_input_line)
8344 + adjust);
8345 free (gotfree_input_line);
8346 if (exp->X_op == O_constant
8347 || exp->X_op == O_absent
8348 || exp->X_op == O_illegal
8349 || exp->X_op == O_register
8350 || exp->X_op == O_big)
8351 {
8352 char c = *input_line_pointer;
8353 *input_line_pointer = 0;
8354 as_bad (_("missing or invalid expression `%s'"), save);
8355 *input_line_pointer = c;
8356 }
8357 }
8358 }
8359 else
8360 expression (exp);
8361
8362 intel_syntax = -intel_syntax;
8363
8364 if (intel_syntax)
8365 i386_intel_simplify (exp);
8366
8367 return got_reloc;
8368 }
8369
8370 static void
8371 signed_cons (int size)
8372 {
8373 if (flag_code == CODE_64BIT)
8374 cons_sign = 1;
8375 cons (size);
8376 cons_sign = -1;
8377 }
8378
8379 #ifdef TE_PE
8380 static void
8381 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8382 {
8383 expressionS exp;
8384
8385 do
8386 {
8387 expression (&exp);
8388 if (exp.X_op == O_symbol)
8389 exp.X_op = O_secrel;
8390
8391 emit_expr (&exp, 4);
8392 }
8393 while (*input_line_pointer++ == ',');
8394
8395 input_line_pointer--;
8396 demand_empty_rest_of_line ();
8397 }
8398 #endif
8399
8400 /* Handle Vector operations. */
8401
8402 static char *
8403 check_VecOperations (char *op_string, char *op_end)
8404 {
8405 const reg_entry *mask;
8406 const char *saved;
8407 char *end_op;
8408
8409 while (*op_string
8410 && (op_end == NULL || op_string < op_end))
8411 {
8412 saved = op_string;
8413 if (*op_string == '{')
8414 {
8415 op_string++;
8416
8417 /* Check broadcasts. */
8418 if (strncmp (op_string, "1to", 3) == 0)
8419 {
8420 int bcst_type;
8421
8422 if (i.broadcast)
8423 goto duplicated_vec_op;
8424
8425 op_string += 3;
8426 if (*op_string == '8')
8427 bcst_type = BROADCAST_1TO8;
8428 else if (*op_string == '4')
8429 bcst_type = BROADCAST_1TO4;
8430 else if (*op_string == '2')
8431 bcst_type = BROADCAST_1TO2;
8432 else if (*op_string == '1'
8433 && *(op_string+1) == '6')
8434 {
8435 bcst_type = BROADCAST_1TO16;
8436 op_string++;
8437 }
8438 else
8439 {
8440 as_bad (_("Unsupported broadcast: `%s'"), saved);
8441 return NULL;
8442 }
8443 op_string++;
8444
8445 broadcast_op.type = bcst_type;
8446 broadcast_op.operand = this_operand;
8447 i.broadcast = &broadcast_op;
8448 }
8449 /* Check masking operation. */
8450 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8451 {
8452 /* k0 can't be used for write mask. */
8453 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
8454 {
8455 as_bad (_("`%s%s' can't be used for write mask"),
8456 register_prefix, mask->reg_name);
8457 return NULL;
8458 }
8459
8460 if (!i.mask)
8461 {
8462 mask_op.mask = mask;
8463 mask_op.zeroing = 0;
8464 mask_op.operand = this_operand;
8465 i.mask = &mask_op;
8466 }
8467 else
8468 {
8469 if (i.mask->mask)
8470 goto duplicated_vec_op;
8471
8472 i.mask->mask = mask;
8473
8474 /* Only "{z}" is allowed here. No need to check
8475 zeroing mask explicitly. */
8476 if (i.mask->operand != this_operand)
8477 {
8478 as_bad (_("invalid write mask `%s'"), saved);
8479 return NULL;
8480 }
8481 }
8482
8483 op_string = end_op;
8484 }
8485 /* Check zeroing-flag for masking operation. */
8486 else if (*op_string == 'z')
8487 {
8488 if (!i.mask)
8489 {
8490 mask_op.mask = NULL;
8491 mask_op.zeroing = 1;
8492 mask_op.operand = this_operand;
8493 i.mask = &mask_op;
8494 }
8495 else
8496 {
8497 if (i.mask->zeroing)
8498 {
8499 duplicated_vec_op:
8500 as_bad (_("duplicated `%s'"), saved);
8501 return NULL;
8502 }
8503
8504 i.mask->zeroing = 1;
8505
8506 /* Only "{%k}" is allowed here. No need to check mask
8507 register explicitly. */
8508 if (i.mask->operand != this_operand)
8509 {
8510 as_bad (_("invalid zeroing-masking `%s'"),
8511 saved);
8512 return NULL;
8513 }
8514 }
8515
8516 op_string++;
8517 }
8518 else
8519 goto unknown_vec_op;
8520
8521 if (*op_string != '}')
8522 {
8523 as_bad (_("missing `}' in `%s'"), saved);
8524 return NULL;
8525 }
8526 op_string++;
8527 continue;
8528 }
8529 unknown_vec_op:
8530 /* We don't know this one. */
8531 as_bad (_("unknown vector operation: `%s'"), saved);
8532 return NULL;
8533 }
8534
8535 if (i.mask && i.mask->zeroing && !i.mask->mask)
8536 {
8537 as_bad (_("zeroing-masking only allowed with write mask"));
8538 return NULL;
8539 }
8540
8541 return op_string;
8542 }
8543
8544 static int
8545 i386_immediate (char *imm_start)
8546 {
8547 char *save_input_line_pointer;
8548 char *gotfree_input_line;
8549 segT exp_seg = 0;
8550 expressionS *exp;
8551 i386_operand_type types;
8552
8553 operand_type_set (&types, ~0);
8554
8555 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8556 {
8557 as_bad (_("at most %d immediate operands are allowed"),
8558 MAX_IMMEDIATE_OPERANDS);
8559 return 0;
8560 }
8561
8562 exp = &im_expressions[i.imm_operands++];
8563 i.op[this_operand].imms = exp;
8564
8565 if (is_space_char (*imm_start))
8566 ++imm_start;
8567
8568 save_input_line_pointer = input_line_pointer;
8569 input_line_pointer = imm_start;
8570
8571 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8572 if (gotfree_input_line)
8573 input_line_pointer = gotfree_input_line;
8574
8575 exp_seg = expression (exp);
8576
8577 SKIP_WHITESPACE ();
8578
8579 /* Handle vector operations. */
8580 if (*input_line_pointer == '{')
8581 {
8582 input_line_pointer = check_VecOperations (input_line_pointer,
8583 NULL);
8584 if (input_line_pointer == NULL)
8585 return 0;
8586 }
8587
8588 if (*input_line_pointer)
8589 as_bad (_("junk `%s' after expression"), input_line_pointer);
8590
8591 input_line_pointer = save_input_line_pointer;
8592 if (gotfree_input_line)
8593 {
8594 free (gotfree_input_line);
8595
8596 if (exp->X_op == O_constant || exp->X_op == O_register)
8597 exp->X_op = O_illegal;
8598 }
8599
8600 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8601 }
8602
8603 static int
8604 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8605 i386_operand_type types, const char *imm_start)
8606 {
8607 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8608 {
8609 if (imm_start)
8610 as_bad (_("missing or invalid immediate expression `%s'"),
8611 imm_start);
8612 return 0;
8613 }
8614 else if (exp->X_op == O_constant)
8615 {
8616 /* Size it properly later. */
8617 i.types[this_operand].bitfield.imm64 = 1;
8618 /* If not 64bit, sign extend val. */
8619 if (flag_code != CODE_64BIT
8620 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8621 exp->X_add_number
8622 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8623 }
8624 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8625 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8626 && exp_seg != absolute_section
8627 && exp_seg != text_section
8628 && exp_seg != data_section
8629 && exp_seg != bss_section
8630 && exp_seg != undefined_section
8631 && !bfd_is_com_section (exp_seg))
8632 {
8633 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8634 return 0;
8635 }
8636 #endif
8637 else if (!intel_syntax && exp_seg == reg_section)
8638 {
8639 if (imm_start)
8640 as_bad (_("illegal immediate register operand %s"), imm_start);
8641 return 0;
8642 }
8643 else
8644 {
8645 /* This is an address. The size of the address will be
8646 determined later, depending on destination register,
8647 suffix, or the default for the section. */
8648 i.types[this_operand].bitfield.imm8 = 1;
8649 i.types[this_operand].bitfield.imm16 = 1;
8650 i.types[this_operand].bitfield.imm32 = 1;
8651 i.types[this_operand].bitfield.imm32s = 1;
8652 i.types[this_operand].bitfield.imm64 = 1;
8653 i.types[this_operand] = operand_type_and (i.types[this_operand],
8654 types);
8655 }
8656
8657 return 1;
8658 }
8659
8660 static char *
8661 i386_scale (char *scale)
8662 {
8663 offsetT val;
8664 char *save = input_line_pointer;
8665
8666 input_line_pointer = scale;
8667 val = get_absolute_expression ();
8668
8669 switch (val)
8670 {
8671 case 1:
8672 i.log2_scale_factor = 0;
8673 break;
8674 case 2:
8675 i.log2_scale_factor = 1;
8676 break;
8677 case 4:
8678 i.log2_scale_factor = 2;
8679 break;
8680 case 8:
8681 i.log2_scale_factor = 3;
8682 break;
8683 default:
8684 {
8685 char sep = *input_line_pointer;
8686
8687 *input_line_pointer = '\0';
8688 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8689 scale);
8690 *input_line_pointer = sep;
8691 input_line_pointer = save;
8692 return NULL;
8693 }
8694 }
8695 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8696 {
8697 as_warn (_("scale factor of %d without an index register"),
8698 1 << i.log2_scale_factor);
8699 i.log2_scale_factor = 0;
8700 }
8701 scale = input_line_pointer;
8702 input_line_pointer = save;
8703 return scale;
8704 }
8705
8706 static int
8707 i386_displacement (char *disp_start, char *disp_end)
8708 {
8709 expressionS *exp;
8710 segT exp_seg = 0;
8711 char *save_input_line_pointer;
8712 char *gotfree_input_line;
8713 int override;
8714 i386_operand_type bigdisp, types = anydisp;
8715 int ret;
8716
8717 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8718 {
8719 as_bad (_("at most %d displacement operands are allowed"),
8720 MAX_MEMORY_OPERANDS);
8721 return 0;
8722 }
8723
8724 operand_type_set (&bigdisp, 0);
8725 if ((i.types[this_operand].bitfield.jumpabsolute)
8726 || (!current_templates->start->opcode_modifier.jump
8727 && !current_templates->start->opcode_modifier.jumpdword))
8728 {
8729 bigdisp.bitfield.disp32 = 1;
8730 override = (i.prefix[ADDR_PREFIX] != 0);
8731 if (flag_code == CODE_64BIT)
8732 {
8733 if (!override)
8734 {
8735 bigdisp.bitfield.disp32s = 1;
8736 bigdisp.bitfield.disp64 = 1;
8737 }
8738 }
8739 else if ((flag_code == CODE_16BIT) ^ override)
8740 {
8741 bigdisp.bitfield.disp32 = 0;
8742 bigdisp.bitfield.disp16 = 1;
8743 }
8744 }
8745 else
8746 {
8747 /* For PC-relative branches, the width of the displacement
8748 is dependent upon data size, not address size. */
8749 override = (i.prefix[DATA_PREFIX] != 0);
8750 if (flag_code == CODE_64BIT)
8751 {
8752 if (override || i.suffix == WORD_MNEM_SUFFIX)
8753 bigdisp.bitfield.disp16 = 1;
8754 else
8755 {
8756 bigdisp.bitfield.disp32 = 1;
8757 bigdisp.bitfield.disp32s = 1;
8758 }
8759 }
8760 else
8761 {
8762 if (!override)
8763 override = (i.suffix == (flag_code != CODE_16BIT
8764 ? WORD_MNEM_SUFFIX
8765 : LONG_MNEM_SUFFIX));
8766 bigdisp.bitfield.disp32 = 1;
8767 if ((flag_code == CODE_16BIT) ^ override)
8768 {
8769 bigdisp.bitfield.disp32 = 0;
8770 bigdisp.bitfield.disp16 = 1;
8771 }
8772 }
8773 }
8774 i.types[this_operand] = operand_type_or (i.types[this_operand],
8775 bigdisp);
8776
8777 exp = &disp_expressions[i.disp_operands];
8778 i.op[this_operand].disps = exp;
8779 i.disp_operands++;
8780 save_input_line_pointer = input_line_pointer;
8781 input_line_pointer = disp_start;
8782 END_STRING_AND_SAVE (disp_end);
8783
8784 #ifndef GCC_ASM_O_HACK
8785 #define GCC_ASM_O_HACK 0
8786 #endif
8787 #if GCC_ASM_O_HACK
8788 END_STRING_AND_SAVE (disp_end + 1);
8789 if (i.types[this_operand].bitfield.baseIndex
8790 && displacement_string_end[-1] == '+')
8791 {
8792 /* This hack is to avoid a warning when using the "o"
8793 constraint within gcc asm statements.
8794 For instance:
8795
8796 #define _set_tssldt_desc(n,addr,limit,type) \
8797 __asm__ __volatile__ ( \
8798 "movw %w2,%0\n\t" \
8799 "movw %w1,2+%0\n\t" \
8800 "rorl $16,%1\n\t" \
8801 "movb %b1,4+%0\n\t" \
8802 "movb %4,5+%0\n\t" \
8803 "movb $0,6+%0\n\t" \
8804 "movb %h1,7+%0\n\t" \
8805 "rorl $16,%1" \
8806 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8807
8808 This works great except that the output assembler ends
8809 up looking a bit weird if it turns out that there is
8810 no offset. You end up producing code that looks like:
8811
8812 #APP
8813 movw $235,(%eax)
8814 movw %dx,2+(%eax)
8815 rorl $16,%edx
8816 movb %dl,4+(%eax)
8817 movb $137,5+(%eax)
8818 movb $0,6+(%eax)
8819 movb %dh,7+(%eax)
8820 rorl $16,%edx
8821 #NO_APP
8822
8823 So here we provide the missing zero. */
8824
8825 *displacement_string_end = '0';
8826 }
8827 #endif
8828 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8829 if (gotfree_input_line)
8830 input_line_pointer = gotfree_input_line;
8831
8832 exp_seg = expression (exp);
8833
8834 SKIP_WHITESPACE ();
8835 if (*input_line_pointer)
8836 as_bad (_("junk `%s' after expression"), input_line_pointer);
8837 #if GCC_ASM_O_HACK
8838 RESTORE_END_STRING (disp_end + 1);
8839 #endif
8840 input_line_pointer = save_input_line_pointer;
8841 if (gotfree_input_line)
8842 {
8843 free (gotfree_input_line);
8844
8845 if (exp->X_op == O_constant || exp->X_op == O_register)
8846 exp->X_op = O_illegal;
8847 }
8848
8849 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8850
8851 RESTORE_END_STRING (disp_end);
8852
8853 return ret;
8854 }
8855
8856 static int
8857 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8858 i386_operand_type types, const char *disp_start)
8859 {
8860 i386_operand_type bigdisp;
8861 int ret = 1;
8862
8863 /* We do this to make sure that the section symbol is in
8864 the symbol table. We will ultimately change the relocation
8865 to be relative to the beginning of the section. */
8866 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8867 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8868 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8869 {
8870 if (exp->X_op != O_symbol)
8871 goto inv_disp;
8872
8873 if (S_IS_LOCAL (exp->X_add_symbol)
8874 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8875 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8876 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8877 exp->X_op = O_subtract;
8878 exp->X_op_symbol = GOT_symbol;
8879 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8880 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8881 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8882 i.reloc[this_operand] = BFD_RELOC_64;
8883 else
8884 i.reloc[this_operand] = BFD_RELOC_32;
8885 }
8886
8887 else if (exp->X_op == O_absent
8888 || exp->X_op == O_illegal
8889 || exp->X_op == O_big)
8890 {
8891 inv_disp:
8892 as_bad (_("missing or invalid displacement expression `%s'"),
8893 disp_start);
8894 ret = 0;
8895 }
8896
8897 else if (flag_code == CODE_64BIT
8898 && !i.prefix[ADDR_PREFIX]
8899 && exp->X_op == O_constant)
8900 {
8901 /* Since displacement is signed extended to 64bit, don't allow
8902 disp32 and turn off disp32s if they are out of range. */
8903 i.types[this_operand].bitfield.disp32 = 0;
8904 if (!fits_in_signed_long (exp->X_add_number))
8905 {
8906 i.types[this_operand].bitfield.disp32s = 0;
8907 if (i.types[this_operand].bitfield.baseindex)
8908 {
8909 as_bad (_("0x%lx out range of signed 32bit displacement"),
8910 (long) exp->X_add_number);
8911 ret = 0;
8912 }
8913 }
8914 }
8915
8916 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8917 else if (exp->X_op != O_constant
8918 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8919 && exp_seg != absolute_section
8920 && exp_seg != text_section
8921 && exp_seg != data_section
8922 && exp_seg != bss_section
8923 && exp_seg != undefined_section
8924 && !bfd_is_com_section (exp_seg))
8925 {
8926 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8927 ret = 0;
8928 }
8929 #endif
8930
8931 /* Check if this is a displacement only operand. */
8932 bigdisp = i.types[this_operand];
8933 bigdisp.bitfield.disp8 = 0;
8934 bigdisp.bitfield.disp16 = 0;
8935 bigdisp.bitfield.disp32 = 0;
8936 bigdisp.bitfield.disp32s = 0;
8937 bigdisp.bitfield.disp64 = 0;
8938 if (operand_type_all_zero (&bigdisp))
8939 i.types[this_operand] = operand_type_and (i.types[this_operand],
8940 types);
8941
8942 return ret;
8943 }
8944
8945 /* Return the active addressing mode, taking address override and
8946 registers forming the address into consideration. Update the
8947 address override prefix if necessary. */
8948
8949 static enum flag_code
8950 i386_addressing_mode (void)
8951 {
8952 enum flag_code addr_mode;
8953
8954 if (i.prefix[ADDR_PREFIX])
8955 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8956 else
8957 {
8958 addr_mode = flag_code;
8959
8960 #if INFER_ADDR_PREFIX
8961 if (i.mem_operands == 0)
8962 {
8963 /* Infer address prefix from the first memory operand. */
8964 const reg_entry *addr_reg = i.base_reg;
8965
8966 if (addr_reg == NULL)
8967 addr_reg = i.index_reg;
8968
8969 if (addr_reg)
8970 {
8971 if (addr_reg->reg_num == RegEip
8972 || addr_reg->reg_num == RegEiz
8973 || addr_reg->reg_type.bitfield.dword)
8974 addr_mode = CODE_32BIT;
8975 else if (flag_code != CODE_64BIT
8976 && addr_reg->reg_type.bitfield.word)
8977 addr_mode = CODE_16BIT;
8978
8979 if (addr_mode != flag_code)
8980 {
8981 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8982 i.prefixes += 1;
8983 /* Change the size of any displacement too. At most one
8984 of Disp16 or Disp32 is set.
8985 FIXME. There doesn't seem to be any real need for
8986 separate Disp16 and Disp32 flags. The same goes for
8987 Imm16 and Imm32. Removing them would probably clean
8988 up the code quite a lot. */
8989 if (flag_code != CODE_64BIT
8990 && (i.types[this_operand].bitfield.disp16
8991 || i.types[this_operand].bitfield.disp32))
8992 i.types[this_operand]
8993 = operand_type_xor (i.types[this_operand], disp16_32);
8994 }
8995 }
8996 }
8997 #endif
8998 }
8999
9000 return addr_mode;
9001 }
9002
9003 /* Make sure the memory operand we've been dealt is valid.
9004 Return 1 on success, 0 on a failure. */
9005
9006 static int
9007 i386_index_check (const char *operand_string)
9008 {
9009 const char *kind = "base/index";
9010 enum flag_code addr_mode = i386_addressing_mode ();
9011
9012 if (current_templates->start->opcode_modifier.isstring
9013 && !current_templates->start->opcode_modifier.immext
9014 && (current_templates->end[-1].opcode_modifier.isstring
9015 || i.mem_operands))
9016 {
9017 /* Memory operands of string insns are special in that they only allow
9018 a single register (rDI, rSI, or rBX) as their memory address. */
9019 const reg_entry *expected_reg;
9020 static const char *di_si[][2] =
9021 {
9022 { "esi", "edi" },
9023 { "si", "di" },
9024 { "rsi", "rdi" }
9025 };
9026 static const char *bx[] = { "ebx", "bx", "rbx" };
9027
9028 kind = "string address";
9029
9030 if (current_templates->start->opcode_modifier.repprefixok)
9031 {
9032 i386_operand_type type = current_templates->end[-1].operand_types[0];
9033
9034 if (!type.bitfield.baseindex
9035 || ((!i.mem_operands != !intel_syntax)
9036 && current_templates->end[-1].operand_types[1]
9037 .bitfield.baseindex))
9038 type = current_templates->end[-1].operand_types[1];
9039 expected_reg = hash_find (reg_hash,
9040 di_si[addr_mode][type.bitfield.esseg]);
9041
9042 }
9043 else
9044 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9045
9046 if (i.base_reg != expected_reg
9047 || i.index_reg
9048 || operand_type_check (i.types[this_operand], disp))
9049 {
9050 /* The second memory operand must have the same size as
9051 the first one. */
9052 if (i.mem_operands
9053 && i.base_reg
9054 && !((addr_mode == CODE_64BIT
9055 && i.base_reg->reg_type.bitfield.qword)
9056 || (addr_mode == CODE_32BIT
9057 ? i.base_reg->reg_type.bitfield.dword
9058 : i.base_reg->reg_type.bitfield.word)))
9059 goto bad_address;
9060
9061 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9062 operand_string,
9063 intel_syntax ? '[' : '(',
9064 register_prefix,
9065 expected_reg->reg_name,
9066 intel_syntax ? ']' : ')');
9067 return 1;
9068 }
9069 else
9070 return 1;
9071
9072 bad_address:
9073 as_bad (_("`%s' is not a valid %s expression"),
9074 operand_string, kind);
9075 return 0;
9076 }
9077 else
9078 {
9079 if (addr_mode != CODE_16BIT)
9080 {
9081 /* 32-bit/64-bit checks. */
9082 if ((i.base_reg
9083 && (addr_mode == CODE_64BIT
9084 ? !i.base_reg->reg_type.bitfield.qword
9085 : !i.base_reg->reg_type.bitfield.dword)
9086 && (i.index_reg
9087 || (i.base_reg->reg_num
9088 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
9089 || (i.index_reg
9090 && !i.index_reg->reg_type.bitfield.xmmword
9091 && !i.index_reg->reg_type.bitfield.ymmword
9092 && !i.index_reg->reg_type.bitfield.zmmword
9093 && ((addr_mode == CODE_64BIT
9094 ? !(i.index_reg->reg_type.bitfield.qword
9095 || i.index_reg->reg_num == RegRiz)
9096 : !(i.index_reg->reg_type.bitfield.dword
9097 || i.index_reg->reg_num == RegEiz))
9098 || !i.index_reg->reg_type.bitfield.baseindex)))
9099 goto bad_address;
9100
9101 /* bndmk, bndldx, and bndstx have special restrictions. */
9102 if (current_templates->start->base_opcode == 0xf30f1b
9103 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9104 {
9105 /* They cannot use RIP-relative addressing. */
9106 if (i.base_reg && i.base_reg->reg_num == RegRip)
9107 {
9108 as_bad (_("`%s' cannot be used here"), operand_string);
9109 return 0;
9110 }
9111
9112 /* bndldx and bndstx ignore their scale factor. */
9113 if (current_templates->start->base_opcode != 0xf30f1b
9114 && i.log2_scale_factor)
9115 as_warn (_("register scaling is being ignored here"));
9116 }
9117 }
9118 else
9119 {
9120 /* 16-bit checks. */
9121 if ((i.base_reg
9122 && (!i.base_reg->reg_type.bitfield.word
9123 || !i.base_reg->reg_type.bitfield.baseindex))
9124 || (i.index_reg
9125 && (!i.index_reg->reg_type.bitfield.word
9126 || !i.index_reg->reg_type.bitfield.baseindex
9127 || !(i.base_reg
9128 && i.base_reg->reg_num < 6
9129 && i.index_reg->reg_num >= 6
9130 && i.log2_scale_factor == 0))))
9131 goto bad_address;
9132 }
9133 }
9134 return 1;
9135 }
9136
9137 /* Handle vector immediates. */
9138
9139 static int
9140 RC_SAE_immediate (const char *imm_start)
9141 {
9142 unsigned int match_found, j;
9143 const char *pstr = imm_start;
9144 expressionS *exp;
9145
9146 if (*pstr != '{')
9147 return 0;
9148
9149 pstr++;
9150 match_found = 0;
9151 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9152 {
9153 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9154 {
9155 if (!i.rounding)
9156 {
9157 rc_op.type = RC_NamesTable[j].type;
9158 rc_op.operand = this_operand;
9159 i.rounding = &rc_op;
9160 }
9161 else
9162 {
9163 as_bad (_("duplicated `%s'"), imm_start);
9164 return 0;
9165 }
9166 pstr += RC_NamesTable[j].len;
9167 match_found = 1;
9168 break;
9169 }
9170 }
9171 if (!match_found)
9172 return 0;
9173
9174 if (*pstr++ != '}')
9175 {
9176 as_bad (_("Missing '}': '%s'"), imm_start);
9177 return 0;
9178 }
9179 /* RC/SAE immediate string should contain nothing more. */;
9180 if (*pstr != 0)
9181 {
9182 as_bad (_("Junk after '}': '%s'"), imm_start);
9183 return 0;
9184 }
9185
9186 exp = &im_expressions[i.imm_operands++];
9187 i.op[this_operand].imms = exp;
9188
9189 exp->X_op = O_constant;
9190 exp->X_add_number = 0;
9191 exp->X_add_symbol = (symbolS *) 0;
9192 exp->X_op_symbol = (symbolS *) 0;
9193
9194 i.types[this_operand].bitfield.imm8 = 1;
9195 return 1;
9196 }
9197
9198 /* Only string instructions can have a second memory operand, so
9199 reduce current_templates to just those if it contains any. */
9200 static int
9201 maybe_adjust_templates (void)
9202 {
9203 const insn_template *t;
9204
9205 gas_assert (i.mem_operands == 1);
9206
9207 for (t = current_templates->start; t < current_templates->end; ++t)
9208 if (t->opcode_modifier.isstring)
9209 break;
9210
9211 if (t < current_templates->end)
9212 {
9213 static templates aux_templates;
9214 bfd_boolean recheck;
9215
9216 aux_templates.start = t;
9217 for (; t < current_templates->end; ++t)
9218 if (!t->opcode_modifier.isstring)
9219 break;
9220 aux_templates.end = t;
9221
9222 /* Determine whether to re-check the first memory operand. */
9223 recheck = (aux_templates.start != current_templates->start
9224 || t != current_templates->end);
9225
9226 current_templates = &aux_templates;
9227
9228 if (recheck)
9229 {
9230 i.mem_operands = 0;
9231 if (i.memop1_string != NULL
9232 && i386_index_check (i.memop1_string) == 0)
9233 return 0;
9234 i.mem_operands = 1;
9235 }
9236 }
9237
9238 return 1;
9239 }
9240
9241 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9242 on error. */
9243
9244 static int
9245 i386_att_operand (char *operand_string)
9246 {
9247 const reg_entry *r;
9248 char *end_op;
9249 char *op_string = operand_string;
9250
9251 if (is_space_char (*op_string))
9252 ++op_string;
9253
9254 /* We check for an absolute prefix (differentiating,
9255 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9256 if (*op_string == ABSOLUTE_PREFIX)
9257 {
9258 ++op_string;
9259 if (is_space_char (*op_string))
9260 ++op_string;
9261 i.types[this_operand].bitfield.jumpabsolute = 1;
9262 }
9263
9264 /* Check if operand is a register. */
9265 if ((r = parse_register (op_string, &end_op)) != NULL)
9266 {
9267 i386_operand_type temp;
9268
9269 /* Check for a segment override by searching for ':' after a
9270 segment register. */
9271 op_string = end_op;
9272 if (is_space_char (*op_string))
9273 ++op_string;
9274 if (*op_string == ':'
9275 && (r->reg_type.bitfield.sreg2
9276 || r->reg_type.bitfield.sreg3))
9277 {
9278 switch (r->reg_num)
9279 {
9280 case 0:
9281 i.seg[i.mem_operands] = &es;
9282 break;
9283 case 1:
9284 i.seg[i.mem_operands] = &cs;
9285 break;
9286 case 2:
9287 i.seg[i.mem_operands] = &ss;
9288 break;
9289 case 3:
9290 i.seg[i.mem_operands] = &ds;
9291 break;
9292 case 4:
9293 i.seg[i.mem_operands] = &fs;
9294 break;
9295 case 5:
9296 i.seg[i.mem_operands] = &gs;
9297 break;
9298 }
9299
9300 /* Skip the ':' and whitespace. */
9301 ++op_string;
9302 if (is_space_char (*op_string))
9303 ++op_string;
9304
9305 if (!is_digit_char (*op_string)
9306 && !is_identifier_char (*op_string)
9307 && *op_string != '('
9308 && *op_string != ABSOLUTE_PREFIX)
9309 {
9310 as_bad (_("bad memory operand `%s'"), op_string);
9311 return 0;
9312 }
9313 /* Handle case of %es:*foo. */
9314 if (*op_string == ABSOLUTE_PREFIX)
9315 {
9316 ++op_string;
9317 if (is_space_char (*op_string))
9318 ++op_string;
9319 i.types[this_operand].bitfield.jumpabsolute = 1;
9320 }
9321 goto do_memory_reference;
9322 }
9323
9324 /* Handle vector operations. */
9325 if (*op_string == '{')
9326 {
9327 op_string = check_VecOperations (op_string, NULL);
9328 if (op_string == NULL)
9329 return 0;
9330 }
9331
9332 if (*op_string)
9333 {
9334 as_bad (_("junk `%s' after register"), op_string);
9335 return 0;
9336 }
9337 temp = r->reg_type;
9338 temp.bitfield.baseindex = 0;
9339 i.types[this_operand] = operand_type_or (i.types[this_operand],
9340 temp);
9341 i.types[this_operand].bitfield.unspecified = 0;
9342 i.op[this_operand].regs = r;
9343 i.reg_operands++;
9344 }
9345 else if (*op_string == REGISTER_PREFIX)
9346 {
9347 as_bad (_("bad register name `%s'"), op_string);
9348 return 0;
9349 }
9350 else if (*op_string == IMMEDIATE_PREFIX)
9351 {
9352 ++op_string;
9353 if (i.types[this_operand].bitfield.jumpabsolute)
9354 {
9355 as_bad (_("immediate operand illegal with absolute jump"));
9356 return 0;
9357 }
9358 if (!i386_immediate (op_string))
9359 return 0;
9360 }
9361 else if (RC_SAE_immediate (operand_string))
9362 {
9363 /* If it is a RC or SAE immediate, do nothing. */
9364 ;
9365 }
9366 else if (is_digit_char (*op_string)
9367 || is_identifier_char (*op_string)
9368 || *op_string == '"'
9369 || *op_string == '(')
9370 {
9371 /* This is a memory reference of some sort. */
9372 char *base_string;
9373
9374 /* Start and end of displacement string expression (if found). */
9375 char *displacement_string_start;
9376 char *displacement_string_end;
9377 char *vop_start;
9378
9379 do_memory_reference:
9380 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9381 return 0;
9382 if ((i.mem_operands == 1
9383 && !current_templates->start->opcode_modifier.isstring)
9384 || i.mem_operands == 2)
9385 {
9386 as_bad (_("too many memory references for `%s'"),
9387 current_templates->start->name);
9388 return 0;
9389 }
9390
9391 /* Check for base index form. We detect the base index form by
9392 looking for an ')' at the end of the operand, searching
9393 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9394 after the '('. */
9395 base_string = op_string + strlen (op_string);
9396
9397 /* Handle vector operations. */
9398 vop_start = strchr (op_string, '{');
9399 if (vop_start && vop_start < base_string)
9400 {
9401 if (check_VecOperations (vop_start, base_string) == NULL)
9402 return 0;
9403 base_string = vop_start;
9404 }
9405
9406 --base_string;
9407 if (is_space_char (*base_string))
9408 --base_string;
9409
9410 /* If we only have a displacement, set-up for it to be parsed later. */
9411 displacement_string_start = op_string;
9412 displacement_string_end = base_string + 1;
9413
9414 if (*base_string == ')')
9415 {
9416 char *temp_string;
9417 unsigned int parens_balanced = 1;
9418 /* We've already checked that the number of left & right ()'s are
9419 equal, so this loop will not be infinite. */
9420 do
9421 {
9422 base_string--;
9423 if (*base_string == ')')
9424 parens_balanced++;
9425 if (*base_string == '(')
9426 parens_balanced--;
9427 }
9428 while (parens_balanced);
9429
9430 temp_string = base_string;
9431
9432 /* Skip past '(' and whitespace. */
9433 ++base_string;
9434 if (is_space_char (*base_string))
9435 ++base_string;
9436
9437 if (*base_string == ','
9438 || ((i.base_reg = parse_register (base_string, &end_op))
9439 != NULL))
9440 {
9441 displacement_string_end = temp_string;
9442
9443 i.types[this_operand].bitfield.baseindex = 1;
9444
9445 if (i.base_reg)
9446 {
9447 base_string = end_op;
9448 if (is_space_char (*base_string))
9449 ++base_string;
9450 }
9451
9452 /* There may be an index reg or scale factor here. */
9453 if (*base_string == ',')
9454 {
9455 ++base_string;
9456 if (is_space_char (*base_string))
9457 ++base_string;
9458
9459 if ((i.index_reg = parse_register (base_string, &end_op))
9460 != NULL)
9461 {
9462 base_string = end_op;
9463 if (is_space_char (*base_string))
9464 ++base_string;
9465 if (*base_string == ',')
9466 {
9467 ++base_string;
9468 if (is_space_char (*base_string))
9469 ++base_string;
9470 }
9471 else if (*base_string != ')')
9472 {
9473 as_bad (_("expecting `,' or `)' "
9474 "after index register in `%s'"),
9475 operand_string);
9476 return 0;
9477 }
9478 }
9479 else if (*base_string == REGISTER_PREFIX)
9480 {
9481 end_op = strchr (base_string, ',');
9482 if (end_op)
9483 *end_op = '\0';
9484 as_bad (_("bad register name `%s'"), base_string);
9485 return 0;
9486 }
9487
9488 /* Check for scale factor. */
9489 if (*base_string != ')')
9490 {
9491 char *end_scale = i386_scale (base_string);
9492
9493 if (!end_scale)
9494 return 0;
9495
9496 base_string = end_scale;
9497 if (is_space_char (*base_string))
9498 ++base_string;
9499 if (*base_string != ')')
9500 {
9501 as_bad (_("expecting `)' "
9502 "after scale factor in `%s'"),
9503 operand_string);
9504 return 0;
9505 }
9506 }
9507 else if (!i.index_reg)
9508 {
9509 as_bad (_("expecting index register or scale factor "
9510 "after `,'; got '%c'"),
9511 *base_string);
9512 return 0;
9513 }
9514 }
9515 else if (*base_string != ')')
9516 {
9517 as_bad (_("expecting `,' or `)' "
9518 "after base register in `%s'"),
9519 operand_string);
9520 return 0;
9521 }
9522 }
9523 else if (*base_string == REGISTER_PREFIX)
9524 {
9525 end_op = strchr (base_string, ',');
9526 if (end_op)
9527 *end_op = '\0';
9528 as_bad (_("bad register name `%s'"), base_string);
9529 return 0;
9530 }
9531 }
9532
9533 /* If there's an expression beginning the operand, parse it,
9534 assuming displacement_string_start and
9535 displacement_string_end are meaningful. */
9536 if (displacement_string_start != displacement_string_end)
9537 {
9538 if (!i386_displacement (displacement_string_start,
9539 displacement_string_end))
9540 return 0;
9541 }
9542
9543 /* Special case for (%dx) while doing input/output op. */
9544 if (i.base_reg
9545 && operand_type_equal (&i.base_reg->reg_type,
9546 &reg16_inoutportreg)
9547 && i.index_reg == 0
9548 && i.log2_scale_factor == 0
9549 && i.seg[i.mem_operands] == 0
9550 && !operand_type_check (i.types[this_operand], disp))
9551 {
9552 i.types[this_operand] = inoutportreg;
9553 return 1;
9554 }
9555
9556 if (i386_index_check (operand_string) == 0)
9557 return 0;
9558 i.types[this_operand].bitfield.mem = 1;
9559 if (i.mem_operands == 0)
9560 i.memop1_string = xstrdup (operand_string);
9561 i.mem_operands++;
9562 }
9563 else
9564 {
9565 /* It's not a memory operand; argh! */
9566 as_bad (_("invalid char %s beginning operand %d `%s'"),
9567 output_invalid (*op_string),
9568 this_operand + 1,
9569 op_string);
9570 return 0;
9571 }
9572 return 1; /* Normal return. */
9573 }
9574 \f
9575 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9576 that an rs_machine_dependent frag may reach. */
9577
9578 unsigned int
9579 i386_frag_max_var (fragS *frag)
9580 {
9581 /* The only relaxable frags are for jumps.
9582 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9583 gas_assert (frag->fr_type == rs_machine_dependent);
9584 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9585 }
9586
9587 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9588 static int
9589 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9590 {
9591 /* STT_GNU_IFUNC symbol must go through PLT. */
9592 if ((symbol_get_bfdsym (fr_symbol)->flags
9593 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9594 return 0;
9595
9596 if (!S_IS_EXTERNAL (fr_symbol))
9597 /* Symbol may be weak or local. */
9598 return !S_IS_WEAK (fr_symbol);
9599
9600 /* Global symbols with non-default visibility can't be preempted. */
9601 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9602 return 1;
9603
9604 if (fr_var != NO_RELOC)
9605 switch ((enum bfd_reloc_code_real) fr_var)
9606 {
9607 case BFD_RELOC_386_PLT32:
9608 case BFD_RELOC_X86_64_PLT32:
9609 /* Symbol with PLT relocation may be preempted. */
9610 return 0;
9611 default:
9612 abort ();
9613 }
9614
9615 /* Global symbols with default visibility in a shared library may be
9616 preempted by another definition. */
9617 return !shared;
9618 }
9619 #endif
9620
9621 /* md_estimate_size_before_relax()
9622
9623 Called just before relax() for rs_machine_dependent frags. The x86
9624 assembler uses these frags to handle variable size jump
9625 instructions.
9626
9627 Any symbol that is now undefined will not become defined.
9628 Return the correct fr_subtype in the frag.
9629 Return the initial "guess for variable size of frag" to caller.
9630 The guess is actually the growth beyond the fixed part. Whatever
9631 we do to grow the fixed or variable part contributes to our
9632 returned value. */
9633
9634 int
9635 md_estimate_size_before_relax (fragS *fragP, segT segment)
9636 {
9637 /* We've already got fragP->fr_subtype right; all we have to do is
9638 check for un-relaxable symbols. On an ELF system, we can't relax
9639 an externally visible symbol, because it may be overridden by a
9640 shared library. */
9641 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9642 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9643 || (IS_ELF
9644 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9645 fragP->fr_var))
9646 #endif
9647 #if defined (OBJ_COFF) && defined (TE_PE)
9648 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9649 && S_IS_WEAK (fragP->fr_symbol))
9650 #endif
9651 )
9652 {
9653 /* Symbol is undefined in this segment, or we need to keep a
9654 reloc so that weak symbols can be overridden. */
9655 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9656 enum bfd_reloc_code_real reloc_type;
9657 unsigned char *opcode;
9658 int old_fr_fix;
9659
9660 if (fragP->fr_var != NO_RELOC)
9661 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9662 else if (size == 2)
9663 reloc_type = BFD_RELOC_16_PCREL;
9664 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9665 else if (need_plt32_p (fragP->fr_symbol))
9666 reloc_type = BFD_RELOC_X86_64_PLT32;
9667 #endif
9668 else
9669 reloc_type = BFD_RELOC_32_PCREL;
9670
9671 old_fr_fix = fragP->fr_fix;
9672 opcode = (unsigned char *) fragP->fr_opcode;
9673
9674 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9675 {
9676 case UNCOND_JUMP:
9677 /* Make jmp (0xeb) a (d)word displacement jump. */
9678 opcode[0] = 0xe9;
9679 fragP->fr_fix += size;
9680 fix_new (fragP, old_fr_fix, size,
9681 fragP->fr_symbol,
9682 fragP->fr_offset, 1,
9683 reloc_type);
9684 break;
9685
9686 case COND_JUMP86:
9687 if (size == 2
9688 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9689 {
9690 /* Negate the condition, and branch past an
9691 unconditional jump. */
9692 opcode[0] ^= 1;
9693 opcode[1] = 3;
9694 /* Insert an unconditional jump. */
9695 opcode[2] = 0xe9;
9696 /* We added two extra opcode bytes, and have a two byte
9697 offset. */
9698 fragP->fr_fix += 2 + 2;
9699 fix_new (fragP, old_fr_fix + 2, 2,
9700 fragP->fr_symbol,
9701 fragP->fr_offset, 1,
9702 reloc_type);
9703 break;
9704 }
9705 /* Fall through. */
9706
9707 case COND_JUMP:
9708 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9709 {
9710 fixS *fixP;
9711
9712 fragP->fr_fix += 1;
9713 fixP = fix_new (fragP, old_fr_fix, 1,
9714 fragP->fr_symbol,
9715 fragP->fr_offset, 1,
9716 BFD_RELOC_8_PCREL);
9717 fixP->fx_signed = 1;
9718 break;
9719 }
9720
9721 /* This changes the byte-displacement jump 0x7N
9722 to the (d)word-displacement jump 0x0f,0x8N. */
9723 opcode[1] = opcode[0] + 0x10;
9724 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9725 /* We've added an opcode byte. */
9726 fragP->fr_fix += 1 + size;
9727 fix_new (fragP, old_fr_fix + 1, size,
9728 fragP->fr_symbol,
9729 fragP->fr_offset, 1,
9730 reloc_type);
9731 break;
9732
9733 default:
9734 BAD_CASE (fragP->fr_subtype);
9735 break;
9736 }
9737 frag_wane (fragP);
9738 return fragP->fr_fix - old_fr_fix;
9739 }
9740
9741 /* Guess size depending on current relax state. Initially the relax
9742 state will correspond to a short jump and we return 1, because
9743 the variable part of the frag (the branch offset) is one byte
9744 long. However, we can relax a section more than once and in that
9745 case we must either set fr_subtype back to the unrelaxed state,
9746 or return the value for the appropriate branch. */
9747 return md_relax_table[fragP->fr_subtype].rlx_length;
9748 }
9749
9750 /* Called after relax() is finished.
9751
9752 In: Address of frag.
9753 fr_type == rs_machine_dependent.
9754 fr_subtype is what the address relaxed to.
9755
9756 Out: Any fixSs and constants are set up.
9757 Caller will turn frag into a ".space 0". */
9758
9759 void
9760 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
9761 fragS *fragP)
9762 {
9763 unsigned char *opcode;
9764 unsigned char *where_to_put_displacement = NULL;
9765 offsetT target_address;
9766 offsetT opcode_address;
9767 unsigned int extension = 0;
9768 offsetT displacement_from_opcode_start;
9769
9770 opcode = (unsigned char *) fragP->fr_opcode;
9771
9772 /* Address we want to reach in file space. */
9773 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
9774
9775 /* Address opcode resides at in file space. */
9776 opcode_address = fragP->fr_address + fragP->fr_fix;
9777
9778 /* Displacement from opcode start to fill into instruction. */
9779 displacement_from_opcode_start = target_address - opcode_address;
9780
9781 if ((fragP->fr_subtype & BIG) == 0)
9782 {
9783 /* Don't have to change opcode. */
9784 extension = 1; /* 1 opcode + 1 displacement */
9785 where_to_put_displacement = &opcode[1];
9786 }
9787 else
9788 {
9789 if (no_cond_jump_promotion
9790 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9791 as_warn_where (fragP->fr_file, fragP->fr_line,
9792 _("long jump required"));
9793
9794 switch (fragP->fr_subtype)
9795 {
9796 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9797 extension = 4; /* 1 opcode + 4 displacement */
9798 opcode[0] = 0xe9;
9799 where_to_put_displacement = &opcode[1];
9800 break;
9801
9802 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9803 extension = 2; /* 1 opcode + 2 displacement */
9804 opcode[0] = 0xe9;
9805 where_to_put_displacement = &opcode[1];
9806 break;
9807
9808 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9809 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9810 extension = 5; /* 2 opcode + 4 displacement */
9811 opcode[1] = opcode[0] + 0x10;
9812 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9813 where_to_put_displacement = &opcode[2];
9814 break;
9815
9816 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9817 extension = 3; /* 2 opcode + 2 displacement */
9818 opcode[1] = opcode[0] + 0x10;
9819 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9820 where_to_put_displacement = &opcode[2];
9821 break;
9822
9823 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9824 extension = 4;
9825 opcode[0] ^= 1;
9826 opcode[1] = 3;
9827 opcode[2] = 0xe9;
9828 where_to_put_displacement = &opcode[3];
9829 break;
9830
9831 default:
9832 BAD_CASE (fragP->fr_subtype);
9833 break;
9834 }
9835 }
9836
9837 /* If size if less then four we are sure that the operand fits,
9838 but if it's 4, then it could be that the displacement is larger
9839 then -/+ 2GB. */
9840 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9841 && object_64bit
9842 && ((addressT) (displacement_from_opcode_start - extension
9843 + ((addressT) 1 << 31))
9844 > (((addressT) 2 << 31) - 1)))
9845 {
9846 as_bad_where (fragP->fr_file, fragP->fr_line,
9847 _("jump target out of range"));
9848 /* Make us emit 0. */
9849 displacement_from_opcode_start = extension;
9850 }
9851 /* Now put displacement after opcode. */
9852 md_number_to_chars ((char *) where_to_put_displacement,
9853 (valueT) (displacement_from_opcode_start - extension),
9854 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9855 fragP->fr_fix += extension;
9856 }
9857 \f
9858 /* Apply a fixup (fixP) to segment data, once it has been determined
9859 by our caller that we have all the info we need to fix it up.
9860
9861 Parameter valP is the pointer to the value of the bits.
9862
9863 On the 386, immediates, displacements, and data pointers are all in
9864 the same (little-endian) format, so we don't need to care about which
9865 we are handling. */
9866
9867 void
9868 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9869 {
9870 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9871 valueT value = *valP;
9872
9873 #if !defined (TE_Mach)
9874 if (fixP->fx_pcrel)
9875 {
9876 switch (fixP->fx_r_type)
9877 {
9878 default:
9879 break;
9880
9881 case BFD_RELOC_64:
9882 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9883 break;
9884 case BFD_RELOC_32:
9885 case BFD_RELOC_X86_64_32S:
9886 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9887 break;
9888 case BFD_RELOC_16:
9889 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9890 break;
9891 case BFD_RELOC_8:
9892 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9893 break;
9894 }
9895 }
9896
9897 if (fixP->fx_addsy != NULL
9898 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9899 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9900 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9901 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
9902 && !use_rela_relocations)
9903 {
9904 /* This is a hack. There should be a better way to handle this.
9905 This covers for the fact that bfd_install_relocation will
9906 subtract the current location (for partial_inplace, PC relative
9907 relocations); see more below. */
9908 #ifndef OBJ_AOUT
9909 if (IS_ELF
9910 #ifdef TE_PE
9911 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9912 #endif
9913 )
9914 value += fixP->fx_where + fixP->fx_frag->fr_address;
9915 #endif
9916 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9917 if (IS_ELF)
9918 {
9919 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9920
9921 if ((sym_seg == seg
9922 || (symbol_section_p (fixP->fx_addsy)
9923 && sym_seg != absolute_section))
9924 && !generic_force_reloc (fixP))
9925 {
9926 /* Yes, we add the values in twice. This is because
9927 bfd_install_relocation subtracts them out again. I think
9928 bfd_install_relocation is broken, but I don't dare change
9929 it. FIXME. */
9930 value += fixP->fx_where + fixP->fx_frag->fr_address;
9931 }
9932 }
9933 #endif
9934 #if defined (OBJ_COFF) && defined (TE_PE)
9935 /* For some reason, the PE format does not store a
9936 section address offset for a PC relative symbol. */
9937 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9938 || S_IS_WEAK (fixP->fx_addsy))
9939 value += md_pcrel_from (fixP);
9940 #endif
9941 }
9942 #if defined (OBJ_COFF) && defined (TE_PE)
9943 if (fixP->fx_addsy != NULL
9944 && S_IS_WEAK (fixP->fx_addsy)
9945 /* PR 16858: Do not modify weak function references. */
9946 && ! fixP->fx_pcrel)
9947 {
9948 #if !defined (TE_PEP)
9949 /* For x86 PE weak function symbols are neither PC-relative
9950 nor do they set S_IS_FUNCTION. So the only reliable way
9951 to detect them is to check the flags of their containing
9952 section. */
9953 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9954 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9955 ;
9956 else
9957 #endif
9958 value -= S_GET_VALUE (fixP->fx_addsy);
9959 }
9960 #endif
9961
9962 /* Fix a few things - the dynamic linker expects certain values here,
9963 and we must not disappoint it. */
9964 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9965 if (IS_ELF && fixP->fx_addsy)
9966 switch (fixP->fx_r_type)
9967 {
9968 case BFD_RELOC_386_PLT32:
9969 case BFD_RELOC_X86_64_PLT32:
9970 /* Make the jump instruction point to the address of the operand. At
9971 runtime we merely add the offset to the actual PLT entry. */
9972 value = -4;
9973 break;
9974
9975 case BFD_RELOC_386_TLS_GD:
9976 case BFD_RELOC_386_TLS_LDM:
9977 case BFD_RELOC_386_TLS_IE_32:
9978 case BFD_RELOC_386_TLS_IE:
9979 case BFD_RELOC_386_TLS_GOTIE:
9980 case BFD_RELOC_386_TLS_GOTDESC:
9981 case BFD_RELOC_X86_64_TLSGD:
9982 case BFD_RELOC_X86_64_TLSLD:
9983 case BFD_RELOC_X86_64_GOTTPOFF:
9984 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9985 value = 0; /* Fully resolved at runtime. No addend. */
9986 /* Fallthrough */
9987 case BFD_RELOC_386_TLS_LE:
9988 case BFD_RELOC_386_TLS_LDO_32:
9989 case BFD_RELOC_386_TLS_LE_32:
9990 case BFD_RELOC_X86_64_DTPOFF32:
9991 case BFD_RELOC_X86_64_DTPOFF64:
9992 case BFD_RELOC_X86_64_TPOFF32:
9993 case BFD_RELOC_X86_64_TPOFF64:
9994 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9995 break;
9996
9997 case BFD_RELOC_386_TLS_DESC_CALL:
9998 case BFD_RELOC_X86_64_TLSDESC_CALL:
9999 value = 0; /* Fully resolved at runtime. No addend. */
10000 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10001 fixP->fx_done = 0;
10002 return;
10003
10004 case BFD_RELOC_VTABLE_INHERIT:
10005 case BFD_RELOC_VTABLE_ENTRY:
10006 fixP->fx_done = 0;
10007 return;
10008
10009 default:
10010 break;
10011 }
10012 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10013 *valP = value;
10014 #endif /* !defined (TE_Mach) */
10015
10016 /* Are we finished with this relocation now? */
10017 if (fixP->fx_addsy == NULL)
10018 fixP->fx_done = 1;
10019 #if defined (OBJ_COFF) && defined (TE_PE)
10020 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10021 {
10022 fixP->fx_done = 0;
10023 /* Remember value for tc_gen_reloc. */
10024 fixP->fx_addnumber = value;
10025 /* Clear out the frag for now. */
10026 value = 0;
10027 }
10028 #endif
10029 else if (use_rela_relocations)
10030 {
10031 fixP->fx_no_overflow = 1;
10032 /* Remember value for tc_gen_reloc. */
10033 fixP->fx_addnumber = value;
10034 value = 0;
10035 }
10036
10037 md_number_to_chars (p, value, fixP->fx_size);
10038 }
10039 \f
10040 const char *
10041 md_atof (int type, char *litP, int *sizeP)
10042 {
10043 /* This outputs the LITTLENUMs in REVERSE order;
10044 in accord with the bigendian 386. */
10045 return ieee_md_atof (type, litP, sizeP, FALSE);
10046 }
10047 \f
10048 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10049
10050 static char *
10051 output_invalid (int c)
10052 {
10053 if (ISPRINT (c))
10054 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10055 "'%c'", c);
10056 else
10057 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10058 "(0x%x)", (unsigned char) c);
10059 return output_invalid_buf;
10060 }
10061
10062 /* REG_STRING starts *before* REGISTER_PREFIX. */
10063
10064 static const reg_entry *
10065 parse_real_register (char *reg_string, char **end_op)
10066 {
10067 char *s = reg_string;
10068 char *p;
10069 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10070 const reg_entry *r;
10071
10072 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10073 if (*s == REGISTER_PREFIX)
10074 ++s;
10075
10076 if (is_space_char (*s))
10077 ++s;
10078
10079 p = reg_name_given;
10080 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10081 {
10082 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10083 return (const reg_entry *) NULL;
10084 s++;
10085 }
10086
10087 /* For naked regs, make sure that we are not dealing with an identifier.
10088 This prevents confusing an identifier like `eax_var' with register
10089 `eax'. */
10090 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10091 return (const reg_entry *) NULL;
10092
10093 *end_op = s;
10094
10095 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10096
10097 /* Handle floating point regs, allowing spaces in the (i) part. */
10098 if (r == i386_regtab /* %st is first entry of table */)
10099 {
10100 if (is_space_char (*s))
10101 ++s;
10102 if (*s == '(')
10103 {
10104 ++s;
10105 if (is_space_char (*s))
10106 ++s;
10107 if (*s >= '0' && *s <= '7')
10108 {
10109 int fpr = *s - '0';
10110 ++s;
10111 if (is_space_char (*s))
10112 ++s;
10113 if (*s == ')')
10114 {
10115 *end_op = s + 1;
10116 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10117 know (r);
10118 return r + fpr;
10119 }
10120 }
10121 /* We have "%st(" then garbage. */
10122 return (const reg_entry *) NULL;
10123 }
10124 }
10125
10126 if (r == NULL || allow_pseudo_reg)
10127 return r;
10128
10129 if (operand_type_all_zero (&r->reg_type))
10130 return (const reg_entry *) NULL;
10131
10132 if ((r->reg_type.bitfield.dword
10133 || r->reg_type.bitfield.sreg3
10134 || r->reg_type.bitfield.control
10135 || r->reg_type.bitfield.debug
10136 || r->reg_type.bitfield.test)
10137 && !cpu_arch_flags.bitfield.cpui386)
10138 return (const reg_entry *) NULL;
10139
10140 if (r->reg_type.bitfield.tbyte
10141 && !cpu_arch_flags.bitfield.cpu8087
10142 && !cpu_arch_flags.bitfield.cpu287
10143 && !cpu_arch_flags.bitfield.cpu387)
10144 return (const reg_entry *) NULL;
10145
10146 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpuregmmx)
10147 return (const reg_entry *) NULL;
10148
10149 if (r->reg_type.bitfield.xmmword && !cpu_arch_flags.bitfield.cpuregxmm)
10150 return (const reg_entry *) NULL;
10151
10152 if (r->reg_type.bitfield.ymmword && !cpu_arch_flags.bitfield.cpuregymm)
10153 return (const reg_entry *) NULL;
10154
10155 if (r->reg_type.bitfield.zmmword && !cpu_arch_flags.bitfield.cpuregzmm)
10156 return (const reg_entry *) NULL;
10157
10158 if (r->reg_type.bitfield.regmask
10159 && !cpu_arch_flags.bitfield.cpuregmask)
10160 return (const reg_entry *) NULL;
10161
10162 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10163 if (!allow_index_reg
10164 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
10165 return (const reg_entry *) NULL;
10166
10167 /* Upper 16 vector register is only available with VREX in 64bit
10168 mode. */
10169 if ((r->reg_flags & RegVRex))
10170 {
10171 if (i.vec_encoding == vex_encoding_default)
10172 i.vec_encoding = vex_encoding_evex;
10173
10174 if (!cpu_arch_flags.bitfield.cpuvrex
10175 || i.vec_encoding != vex_encoding_evex
10176 || flag_code != CODE_64BIT)
10177 return (const reg_entry *) NULL;
10178 }
10179
10180 if (((r->reg_flags & (RegRex64 | RegRex))
10181 || r->reg_type.bitfield.qword)
10182 && (!cpu_arch_flags.bitfield.cpulm
10183 || !operand_type_equal (&r->reg_type, &control))
10184 && flag_code != CODE_64BIT)
10185 return (const reg_entry *) NULL;
10186
10187 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10188 return (const reg_entry *) NULL;
10189
10190 return r;
10191 }
10192
10193 /* REG_STRING starts *before* REGISTER_PREFIX. */
10194
10195 static const reg_entry *
10196 parse_register (char *reg_string, char **end_op)
10197 {
10198 const reg_entry *r;
10199
10200 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10201 r = parse_real_register (reg_string, end_op);
10202 else
10203 r = NULL;
10204 if (!r)
10205 {
10206 char *save = input_line_pointer;
10207 char c;
10208 symbolS *symbolP;
10209
10210 input_line_pointer = reg_string;
10211 c = get_symbol_name (&reg_string);
10212 symbolP = symbol_find (reg_string);
10213 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10214 {
10215 const expressionS *e = symbol_get_value_expression (symbolP);
10216
10217 know (e->X_op == O_register);
10218 know (e->X_add_number >= 0
10219 && (valueT) e->X_add_number < i386_regtab_size);
10220 r = i386_regtab + e->X_add_number;
10221 if ((r->reg_flags & RegVRex))
10222 i.vec_encoding = vex_encoding_evex;
10223 *end_op = input_line_pointer;
10224 }
10225 *input_line_pointer = c;
10226 input_line_pointer = save;
10227 }
10228 return r;
10229 }
10230
10231 int
10232 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10233 {
10234 const reg_entry *r;
10235 char *end = input_line_pointer;
10236
10237 *end = *nextcharP;
10238 r = parse_register (name, &input_line_pointer);
10239 if (r && end <= input_line_pointer)
10240 {
10241 *nextcharP = *input_line_pointer;
10242 *input_line_pointer = 0;
10243 e->X_op = O_register;
10244 e->X_add_number = r - i386_regtab;
10245 return 1;
10246 }
10247 input_line_pointer = end;
10248 *end = 0;
10249 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10250 }
10251
10252 void
10253 md_operand (expressionS *e)
10254 {
10255 char *end;
10256 const reg_entry *r;
10257
10258 switch (*input_line_pointer)
10259 {
10260 case REGISTER_PREFIX:
10261 r = parse_real_register (input_line_pointer, &end);
10262 if (r)
10263 {
10264 e->X_op = O_register;
10265 e->X_add_number = r - i386_regtab;
10266 input_line_pointer = end;
10267 }
10268 break;
10269
10270 case '[':
10271 gas_assert (intel_syntax);
10272 end = input_line_pointer++;
10273 expression (e);
10274 if (*input_line_pointer == ']')
10275 {
10276 ++input_line_pointer;
10277 e->X_op_symbol = make_expr_symbol (e);
10278 e->X_add_symbol = NULL;
10279 e->X_add_number = 0;
10280 e->X_op = O_index;
10281 }
10282 else
10283 {
10284 e->X_op = O_absent;
10285 input_line_pointer = end;
10286 }
10287 break;
10288 }
10289 }
10290
10291 \f
10292 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10293 const char *md_shortopts = "kVQ:sqnO::";
10294 #else
10295 const char *md_shortopts = "qnO::";
10296 #endif
10297
10298 #define OPTION_32 (OPTION_MD_BASE + 0)
10299 #define OPTION_64 (OPTION_MD_BASE + 1)
10300 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
10301 #define OPTION_MARCH (OPTION_MD_BASE + 3)
10302 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
10303 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10304 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10305 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10306 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10307 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
10308 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
10309 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
10310 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10311 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10312 #define OPTION_X32 (OPTION_MD_BASE + 14)
10313 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
10314 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10315 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
10316 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
10317 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
10318 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
10319 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
10320 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10321 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
10322 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
10323
10324 struct option md_longopts[] =
10325 {
10326 {"32", no_argument, NULL, OPTION_32},
10327 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10328 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10329 {"64", no_argument, NULL, OPTION_64},
10330 #endif
10331 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10332 {"x32", no_argument, NULL, OPTION_X32},
10333 {"mshared", no_argument, NULL, OPTION_MSHARED},
10334 #endif
10335 {"divide", no_argument, NULL, OPTION_DIVIDE},
10336 {"march", required_argument, NULL, OPTION_MARCH},
10337 {"mtune", required_argument, NULL, OPTION_MTUNE},
10338 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10339 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10340 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10341 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10342 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
10343 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
10344 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
10345 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
10346 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
10347 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10348 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
10349 # if defined (TE_PE) || defined (TE_PEP)
10350 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10351 #endif
10352 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10353 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10354 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10355 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10356 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10357 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10358 {NULL, no_argument, NULL, 0}
10359 };
10360 size_t md_longopts_size = sizeof (md_longopts);
10361
10362 int
10363 md_parse_option (int c, const char *arg)
10364 {
10365 unsigned int j;
10366 char *arch, *next, *saved;
10367
10368 switch (c)
10369 {
10370 case 'n':
10371 optimize_align_code = 0;
10372 break;
10373
10374 case 'q':
10375 quiet_warnings = 1;
10376 break;
10377
10378 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10379 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10380 should be emitted or not. FIXME: Not implemented. */
10381 case 'Q':
10382 break;
10383
10384 /* -V: SVR4 argument to print version ID. */
10385 case 'V':
10386 print_version_id ();
10387 break;
10388
10389 /* -k: Ignore for FreeBSD compatibility. */
10390 case 'k':
10391 break;
10392
10393 case 's':
10394 /* -s: On i386 Solaris, this tells the native assembler to use
10395 .stab instead of .stab.excl. We always use .stab anyhow. */
10396 break;
10397
10398 case OPTION_MSHARED:
10399 shared = 1;
10400 break;
10401 #endif
10402 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10403 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10404 case OPTION_64:
10405 {
10406 const char **list, **l;
10407
10408 list = bfd_target_list ();
10409 for (l = list; *l != NULL; l++)
10410 if (CONST_STRNEQ (*l, "elf64-x86-64")
10411 || strcmp (*l, "coff-x86-64") == 0
10412 || strcmp (*l, "pe-x86-64") == 0
10413 || strcmp (*l, "pei-x86-64") == 0
10414 || strcmp (*l, "mach-o-x86-64") == 0)
10415 {
10416 default_arch = "x86_64";
10417 break;
10418 }
10419 if (*l == NULL)
10420 as_fatal (_("no compiled in support for x86_64"));
10421 free (list);
10422 }
10423 break;
10424 #endif
10425
10426 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10427 case OPTION_X32:
10428 if (IS_ELF)
10429 {
10430 const char **list, **l;
10431
10432 list = bfd_target_list ();
10433 for (l = list; *l != NULL; l++)
10434 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10435 {
10436 default_arch = "x86_64:32";
10437 break;
10438 }
10439 if (*l == NULL)
10440 as_fatal (_("no compiled in support for 32bit x86_64"));
10441 free (list);
10442 }
10443 else
10444 as_fatal (_("32bit x86_64 is only supported for ELF"));
10445 break;
10446 #endif
10447
10448 case OPTION_32:
10449 default_arch = "i386";
10450 break;
10451
10452 case OPTION_DIVIDE:
10453 #ifdef SVR4_COMMENT_CHARS
10454 {
10455 char *n, *t;
10456 const char *s;
10457
10458 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
10459 t = n;
10460 for (s = i386_comment_chars; *s != '\0'; s++)
10461 if (*s != '/')
10462 *t++ = *s;
10463 *t = '\0';
10464 i386_comment_chars = n;
10465 }
10466 #endif
10467 break;
10468
10469 case OPTION_MARCH:
10470 saved = xstrdup (arg);
10471 arch = saved;
10472 /* Allow -march=+nosse. */
10473 if (*arch == '+')
10474 arch++;
10475 do
10476 {
10477 if (*arch == '.')
10478 as_fatal (_("invalid -march= option: `%s'"), arg);
10479 next = strchr (arch, '+');
10480 if (next)
10481 *next++ = '\0';
10482 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10483 {
10484 if (strcmp (arch, cpu_arch [j].name) == 0)
10485 {
10486 /* Processor. */
10487 if (! cpu_arch[j].flags.bitfield.cpui386)
10488 continue;
10489
10490 cpu_arch_name = cpu_arch[j].name;
10491 cpu_sub_arch_name = NULL;
10492 cpu_arch_flags = cpu_arch[j].flags;
10493 cpu_arch_isa = cpu_arch[j].type;
10494 cpu_arch_isa_flags = cpu_arch[j].flags;
10495 if (!cpu_arch_tune_set)
10496 {
10497 cpu_arch_tune = cpu_arch_isa;
10498 cpu_arch_tune_flags = cpu_arch_isa_flags;
10499 }
10500 break;
10501 }
10502 else if (*cpu_arch [j].name == '.'
10503 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10504 {
10505 /* ISA extension. */
10506 i386_cpu_flags flags;
10507
10508 flags = cpu_flags_or (cpu_arch_flags,
10509 cpu_arch[j].flags);
10510
10511 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10512 {
10513 if (cpu_sub_arch_name)
10514 {
10515 char *name = cpu_sub_arch_name;
10516 cpu_sub_arch_name = concat (name,
10517 cpu_arch[j].name,
10518 (const char *) NULL);
10519 free (name);
10520 }
10521 else
10522 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10523 cpu_arch_flags = flags;
10524 cpu_arch_isa_flags = flags;
10525 }
10526 else
10527 cpu_arch_isa_flags
10528 = cpu_flags_or (cpu_arch_isa_flags,
10529 cpu_arch[j].flags);
10530 break;
10531 }
10532 }
10533
10534 if (j >= ARRAY_SIZE (cpu_arch))
10535 {
10536 /* Disable an ISA extension. */
10537 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10538 if (strcmp (arch, cpu_noarch [j].name) == 0)
10539 {
10540 i386_cpu_flags flags;
10541
10542 flags = cpu_flags_and_not (cpu_arch_flags,
10543 cpu_noarch[j].flags);
10544 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10545 {
10546 if (cpu_sub_arch_name)
10547 {
10548 char *name = cpu_sub_arch_name;
10549 cpu_sub_arch_name = concat (arch,
10550 (const char *) NULL);
10551 free (name);
10552 }
10553 else
10554 cpu_sub_arch_name = xstrdup (arch);
10555 cpu_arch_flags = flags;
10556 cpu_arch_isa_flags = flags;
10557 }
10558 break;
10559 }
10560
10561 if (j >= ARRAY_SIZE (cpu_noarch))
10562 j = ARRAY_SIZE (cpu_arch);
10563 }
10564
10565 if (j >= ARRAY_SIZE (cpu_arch))
10566 as_fatal (_("invalid -march= option: `%s'"), arg);
10567
10568 arch = next;
10569 }
10570 while (next != NULL);
10571 free (saved);
10572 break;
10573
10574 case OPTION_MTUNE:
10575 if (*arg == '.')
10576 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10577 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10578 {
10579 if (strcmp (arg, cpu_arch [j].name) == 0)
10580 {
10581 cpu_arch_tune_set = 1;
10582 cpu_arch_tune = cpu_arch [j].type;
10583 cpu_arch_tune_flags = cpu_arch[j].flags;
10584 break;
10585 }
10586 }
10587 if (j >= ARRAY_SIZE (cpu_arch))
10588 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10589 break;
10590
10591 case OPTION_MMNEMONIC:
10592 if (strcasecmp (arg, "att") == 0)
10593 intel_mnemonic = 0;
10594 else if (strcasecmp (arg, "intel") == 0)
10595 intel_mnemonic = 1;
10596 else
10597 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10598 break;
10599
10600 case OPTION_MSYNTAX:
10601 if (strcasecmp (arg, "att") == 0)
10602 intel_syntax = 0;
10603 else if (strcasecmp (arg, "intel") == 0)
10604 intel_syntax = 1;
10605 else
10606 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10607 break;
10608
10609 case OPTION_MINDEX_REG:
10610 allow_index_reg = 1;
10611 break;
10612
10613 case OPTION_MNAKED_REG:
10614 allow_naked_reg = 1;
10615 break;
10616
10617 case OPTION_MSSE2AVX:
10618 sse2avx = 1;
10619 break;
10620
10621 case OPTION_MSSE_CHECK:
10622 if (strcasecmp (arg, "error") == 0)
10623 sse_check = check_error;
10624 else if (strcasecmp (arg, "warning") == 0)
10625 sse_check = check_warning;
10626 else if (strcasecmp (arg, "none") == 0)
10627 sse_check = check_none;
10628 else
10629 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10630 break;
10631
10632 case OPTION_MOPERAND_CHECK:
10633 if (strcasecmp (arg, "error") == 0)
10634 operand_check = check_error;
10635 else if (strcasecmp (arg, "warning") == 0)
10636 operand_check = check_warning;
10637 else if (strcasecmp (arg, "none") == 0)
10638 operand_check = check_none;
10639 else
10640 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10641 break;
10642
10643 case OPTION_MAVXSCALAR:
10644 if (strcasecmp (arg, "128") == 0)
10645 avxscalar = vex128;
10646 else if (strcasecmp (arg, "256") == 0)
10647 avxscalar = vex256;
10648 else
10649 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10650 break;
10651
10652 case OPTION_MADD_BND_PREFIX:
10653 add_bnd_prefix = 1;
10654 break;
10655
10656 case OPTION_MEVEXLIG:
10657 if (strcmp (arg, "128") == 0)
10658 evexlig = evexl128;
10659 else if (strcmp (arg, "256") == 0)
10660 evexlig = evexl256;
10661 else if (strcmp (arg, "512") == 0)
10662 evexlig = evexl512;
10663 else
10664 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10665 break;
10666
10667 case OPTION_MEVEXRCIG:
10668 if (strcmp (arg, "rne") == 0)
10669 evexrcig = rne;
10670 else if (strcmp (arg, "rd") == 0)
10671 evexrcig = rd;
10672 else if (strcmp (arg, "ru") == 0)
10673 evexrcig = ru;
10674 else if (strcmp (arg, "rz") == 0)
10675 evexrcig = rz;
10676 else
10677 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10678 break;
10679
10680 case OPTION_MEVEXWIG:
10681 if (strcmp (arg, "0") == 0)
10682 evexwig = evexw0;
10683 else if (strcmp (arg, "1") == 0)
10684 evexwig = evexw1;
10685 else
10686 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10687 break;
10688
10689 # if defined (TE_PE) || defined (TE_PEP)
10690 case OPTION_MBIG_OBJ:
10691 use_big_obj = 1;
10692 break;
10693 #endif
10694
10695 case OPTION_MOMIT_LOCK_PREFIX:
10696 if (strcasecmp (arg, "yes") == 0)
10697 omit_lock_prefix = 1;
10698 else if (strcasecmp (arg, "no") == 0)
10699 omit_lock_prefix = 0;
10700 else
10701 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10702 break;
10703
10704 case OPTION_MFENCE_AS_LOCK_ADD:
10705 if (strcasecmp (arg, "yes") == 0)
10706 avoid_fence = 1;
10707 else if (strcasecmp (arg, "no") == 0)
10708 avoid_fence = 0;
10709 else
10710 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10711 break;
10712
10713 case OPTION_MRELAX_RELOCATIONS:
10714 if (strcasecmp (arg, "yes") == 0)
10715 generate_relax_relocations = 1;
10716 else if (strcasecmp (arg, "no") == 0)
10717 generate_relax_relocations = 0;
10718 else
10719 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10720 break;
10721
10722 case OPTION_MAMD64:
10723 intel64 = 0;
10724 break;
10725
10726 case OPTION_MINTEL64:
10727 intel64 = 1;
10728 break;
10729
10730 case 'O':
10731 if (arg == NULL)
10732 {
10733 optimize = 1;
10734 /* Turn off -Os. */
10735 optimize_for_space = 0;
10736 }
10737 else if (*arg == 's')
10738 {
10739 optimize_for_space = 1;
10740 /* Turn on all encoding optimizations. */
10741 optimize = -1;
10742 }
10743 else
10744 {
10745 optimize = atoi (arg);
10746 /* Turn off -Os. */
10747 optimize_for_space = 0;
10748 }
10749 break;
10750
10751 default:
10752 return 0;
10753 }
10754 return 1;
10755 }
10756
10757 #define MESSAGE_TEMPLATE \
10758 " "
10759
10760 static char *
10761 output_message (FILE *stream, char *p, char *message, char *start,
10762 int *left_p, const char *name, int len)
10763 {
10764 int size = sizeof (MESSAGE_TEMPLATE);
10765 int left = *left_p;
10766
10767 /* Reserve 2 spaces for ", " or ",\0" */
10768 left -= len + 2;
10769
10770 /* Check if there is any room. */
10771 if (left >= 0)
10772 {
10773 if (p != start)
10774 {
10775 *p++ = ',';
10776 *p++ = ' ';
10777 }
10778 p = mempcpy (p, name, len);
10779 }
10780 else
10781 {
10782 /* Output the current message now and start a new one. */
10783 *p++ = ',';
10784 *p = '\0';
10785 fprintf (stream, "%s\n", message);
10786 p = start;
10787 left = size - (start - message) - len - 2;
10788
10789 gas_assert (left >= 0);
10790
10791 p = mempcpy (p, name, len);
10792 }
10793
10794 *left_p = left;
10795 return p;
10796 }
10797
10798 static void
10799 show_arch (FILE *stream, int ext, int check)
10800 {
10801 static char message[] = MESSAGE_TEMPLATE;
10802 char *start = message + 27;
10803 char *p;
10804 int size = sizeof (MESSAGE_TEMPLATE);
10805 int left;
10806 const char *name;
10807 int len;
10808 unsigned int j;
10809
10810 p = start;
10811 left = size - (start - message);
10812 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10813 {
10814 /* Should it be skipped? */
10815 if (cpu_arch [j].skip)
10816 continue;
10817
10818 name = cpu_arch [j].name;
10819 len = cpu_arch [j].len;
10820 if (*name == '.')
10821 {
10822 /* It is an extension. Skip if we aren't asked to show it. */
10823 if (ext)
10824 {
10825 name++;
10826 len--;
10827 }
10828 else
10829 continue;
10830 }
10831 else if (ext)
10832 {
10833 /* It is an processor. Skip if we show only extension. */
10834 continue;
10835 }
10836 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
10837 {
10838 /* It is an impossible processor - skip. */
10839 continue;
10840 }
10841
10842 p = output_message (stream, p, message, start, &left, name, len);
10843 }
10844
10845 /* Display disabled extensions. */
10846 if (ext)
10847 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10848 {
10849 name = cpu_noarch [j].name;
10850 len = cpu_noarch [j].len;
10851 p = output_message (stream, p, message, start, &left, name,
10852 len);
10853 }
10854
10855 *p = '\0';
10856 fprintf (stream, "%s\n", message);
10857 }
10858
10859 void
10860 md_show_usage (FILE *stream)
10861 {
10862 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10863 fprintf (stream, _("\
10864 -Q ignored\n\
10865 -V print assembler version number\n\
10866 -k ignored\n"));
10867 #endif
10868 fprintf (stream, _("\
10869 -n Do not optimize code alignment\n\
10870 -q quieten some warnings\n"));
10871 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10872 fprintf (stream, _("\
10873 -s ignored\n"));
10874 #endif
10875 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10876 || defined (TE_PE) || defined (TE_PEP))
10877 fprintf (stream, _("\
10878 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
10879 #endif
10880 #ifdef SVR4_COMMENT_CHARS
10881 fprintf (stream, _("\
10882 --divide do not treat `/' as a comment character\n"));
10883 #else
10884 fprintf (stream, _("\
10885 --divide ignored\n"));
10886 #endif
10887 fprintf (stream, _("\
10888 -march=CPU[,+EXTENSION...]\n\
10889 generate code for CPU and EXTENSION, CPU is one of:\n"));
10890 show_arch (stream, 0, 1);
10891 fprintf (stream, _("\
10892 EXTENSION is combination of:\n"));
10893 show_arch (stream, 1, 0);
10894 fprintf (stream, _("\
10895 -mtune=CPU optimize for CPU, CPU is one of:\n"));
10896 show_arch (stream, 0, 0);
10897 fprintf (stream, _("\
10898 -msse2avx encode SSE instructions with VEX prefix\n"));
10899 fprintf (stream, _("\
10900 -msse-check=[none|error|warning]\n\
10901 check SSE instructions\n"));
10902 fprintf (stream, _("\
10903 -moperand-check=[none|error|warning]\n\
10904 check operand combinations for validity\n"));
10905 fprintf (stream, _("\
10906 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
10907 length\n"));
10908 fprintf (stream, _("\
10909 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
10910 length\n"));
10911 fprintf (stream, _("\
10912 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
10913 for EVEX.W bit ignored instructions\n"));
10914 fprintf (stream, _("\
10915 -mevexrcig=[rne|rd|ru|rz]\n\
10916 encode EVEX instructions with specific EVEX.RC value\n\
10917 for SAE-only ignored instructions\n"));
10918 fprintf (stream, _("\
10919 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
10920 fprintf (stream, _("\
10921 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
10922 fprintf (stream, _("\
10923 -mindex-reg support pseudo index registers\n"));
10924 fprintf (stream, _("\
10925 -mnaked-reg don't require `%%' prefix for registers\n"));
10926 fprintf (stream, _("\
10927 -madd-bnd-prefix add BND prefix for all valid branches\n"));
10928 fprintf (stream, _("\
10929 -mshared disable branch optimization for shared code\n"));
10930 # if defined (TE_PE) || defined (TE_PEP)
10931 fprintf (stream, _("\
10932 -mbig-obj generate big object files\n"));
10933 #endif
10934 fprintf (stream, _("\
10935 -momit-lock-prefix=[no|yes]\n\
10936 strip all lock prefixes\n"));
10937 fprintf (stream, _("\
10938 -mfence-as-lock-add=[no|yes]\n\
10939 encode lfence, mfence and sfence as\n\
10940 lock addl $0x0, (%%{re}sp)\n"));
10941 fprintf (stream, _("\
10942 -mrelax-relocations=[no|yes]\n\
10943 generate relax relocations\n"));
10944 fprintf (stream, _("\
10945 -mamd64 accept only AMD64 ISA\n"));
10946 fprintf (stream, _("\
10947 -mintel64 accept only Intel64 ISA\n"));
10948 }
10949
10950 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10951 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10952 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10953
10954 /* Pick the target format to use. */
10955
10956 const char *
10957 i386_target_format (void)
10958 {
10959 if (!strncmp (default_arch, "x86_64", 6))
10960 {
10961 update_code_flag (CODE_64BIT, 1);
10962 if (default_arch[6] == '\0')
10963 x86_elf_abi = X86_64_ABI;
10964 else
10965 x86_elf_abi = X86_64_X32_ABI;
10966 }
10967 else if (!strcmp (default_arch, "i386"))
10968 update_code_flag (CODE_32BIT, 1);
10969 else if (!strcmp (default_arch, "iamcu"))
10970 {
10971 update_code_flag (CODE_32BIT, 1);
10972 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
10973 {
10974 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
10975 cpu_arch_name = "iamcu";
10976 cpu_sub_arch_name = NULL;
10977 cpu_arch_flags = iamcu_flags;
10978 cpu_arch_isa = PROCESSOR_IAMCU;
10979 cpu_arch_isa_flags = iamcu_flags;
10980 if (!cpu_arch_tune_set)
10981 {
10982 cpu_arch_tune = cpu_arch_isa;
10983 cpu_arch_tune_flags = cpu_arch_isa_flags;
10984 }
10985 }
10986 else if (cpu_arch_isa != PROCESSOR_IAMCU)
10987 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
10988 cpu_arch_name);
10989 }
10990 else
10991 as_fatal (_("unknown architecture"));
10992
10993 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10994 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10995 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10996 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10997
10998 switch (OUTPUT_FLAVOR)
10999 {
11000 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11001 case bfd_target_aout_flavour:
11002 return AOUT_TARGET_FORMAT;
11003 #endif
11004 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11005 # if defined (TE_PE) || defined (TE_PEP)
11006 case bfd_target_coff_flavour:
11007 if (flag_code == CODE_64BIT)
11008 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11009 else
11010 return "pe-i386";
11011 # elif defined (TE_GO32)
11012 case bfd_target_coff_flavour:
11013 return "coff-go32";
11014 # else
11015 case bfd_target_coff_flavour:
11016 return "coff-i386";
11017 # endif
11018 #endif
11019 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11020 case bfd_target_elf_flavour:
11021 {
11022 const char *format;
11023
11024 switch (x86_elf_abi)
11025 {
11026 default:
11027 format = ELF_TARGET_FORMAT;
11028 break;
11029 case X86_64_ABI:
11030 use_rela_relocations = 1;
11031 object_64bit = 1;
11032 format = ELF_TARGET_FORMAT64;
11033 break;
11034 case X86_64_X32_ABI:
11035 use_rela_relocations = 1;
11036 object_64bit = 1;
11037 disallow_64bit_reloc = 1;
11038 format = ELF_TARGET_FORMAT32;
11039 break;
11040 }
11041 if (cpu_arch_isa == PROCESSOR_L1OM)
11042 {
11043 if (x86_elf_abi != X86_64_ABI)
11044 as_fatal (_("Intel L1OM is 64bit only"));
11045 return ELF_TARGET_L1OM_FORMAT;
11046 }
11047 else if (cpu_arch_isa == PROCESSOR_K1OM)
11048 {
11049 if (x86_elf_abi != X86_64_ABI)
11050 as_fatal (_("Intel K1OM is 64bit only"));
11051 return ELF_TARGET_K1OM_FORMAT;
11052 }
11053 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11054 {
11055 if (x86_elf_abi != I386_ABI)
11056 as_fatal (_("Intel MCU is 32bit only"));
11057 return ELF_TARGET_IAMCU_FORMAT;
11058 }
11059 else
11060 return format;
11061 }
11062 #endif
11063 #if defined (OBJ_MACH_O)
11064 case bfd_target_mach_o_flavour:
11065 if (flag_code == CODE_64BIT)
11066 {
11067 use_rela_relocations = 1;
11068 object_64bit = 1;
11069 return "mach-o-x86-64";
11070 }
11071 else
11072 return "mach-o-i386";
11073 #endif
11074 default:
11075 abort ();
11076 return NULL;
11077 }
11078 }
11079
11080 #endif /* OBJ_MAYBE_ more than one */
11081 \f
11082 symbolS *
11083 md_undefined_symbol (char *name)
11084 {
11085 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11086 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11087 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11088 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11089 {
11090 if (!GOT_symbol)
11091 {
11092 if (symbol_find (name))
11093 as_bad (_("GOT already in symbol table"));
11094 GOT_symbol = symbol_new (name, undefined_section,
11095 (valueT) 0, &zero_address_frag);
11096 };
11097 return GOT_symbol;
11098 }
11099 return 0;
11100 }
11101
11102 /* Round up a section size to the appropriate boundary. */
11103
11104 valueT
11105 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11106 {
11107 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11108 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11109 {
11110 /* For a.out, force the section size to be aligned. If we don't do
11111 this, BFD will align it for us, but it will not write out the
11112 final bytes of the section. This may be a bug in BFD, but it is
11113 easier to fix it here since that is how the other a.out targets
11114 work. */
11115 int align;
11116
11117 align = bfd_get_section_alignment (stdoutput, segment);
11118 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11119 }
11120 #endif
11121
11122 return size;
11123 }
11124
11125 /* On the i386, PC-relative offsets are relative to the start of the
11126 next instruction. That is, the address of the offset, plus its
11127 size, since the offset is always the last part of the insn. */
11128
11129 long
11130 md_pcrel_from (fixS *fixP)
11131 {
11132 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11133 }
11134
11135 #ifndef I386COFF
11136
11137 static void
11138 s_bss (int ignore ATTRIBUTE_UNUSED)
11139 {
11140 int temp;
11141
11142 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11143 if (IS_ELF)
11144 obj_elf_section_change_hook ();
11145 #endif
11146 temp = get_absolute_expression ();
11147 subseg_set (bss_section, (subsegT) temp);
11148 demand_empty_rest_of_line ();
11149 }
11150
11151 #endif
11152
11153 void
11154 i386_validate_fix (fixS *fixp)
11155 {
11156 if (fixp->fx_subsy)
11157 {
11158 if (fixp->fx_subsy == GOT_symbol)
11159 {
11160 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11161 {
11162 if (!object_64bit)
11163 abort ();
11164 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11165 if (fixp->fx_tcbit2)
11166 fixp->fx_r_type = (fixp->fx_tcbit
11167 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11168 : BFD_RELOC_X86_64_GOTPCRELX);
11169 else
11170 #endif
11171 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11172 }
11173 else
11174 {
11175 if (!object_64bit)
11176 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11177 else
11178 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11179 }
11180 fixp->fx_subsy = 0;
11181 }
11182 }
11183 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11184 else if (!object_64bit)
11185 {
11186 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11187 && fixp->fx_tcbit2)
11188 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11189 }
11190 #endif
11191 }
11192
11193 arelent *
11194 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11195 {
11196 arelent *rel;
11197 bfd_reloc_code_real_type code;
11198
11199 switch (fixp->fx_r_type)
11200 {
11201 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11202 case BFD_RELOC_SIZE32:
11203 case BFD_RELOC_SIZE64:
11204 if (S_IS_DEFINED (fixp->fx_addsy)
11205 && !S_IS_EXTERNAL (fixp->fx_addsy))
11206 {
11207 /* Resolve size relocation against local symbol to size of
11208 the symbol plus addend. */
11209 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11210 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11211 && !fits_in_unsigned_long (value))
11212 as_bad_where (fixp->fx_file, fixp->fx_line,
11213 _("symbol size computation overflow"));
11214 fixp->fx_addsy = NULL;
11215 fixp->fx_subsy = NULL;
11216 md_apply_fix (fixp, (valueT *) &value, NULL);
11217 return NULL;
11218 }
11219 #endif
11220 /* Fall through. */
11221
11222 case BFD_RELOC_X86_64_PLT32:
11223 case BFD_RELOC_X86_64_GOT32:
11224 case BFD_RELOC_X86_64_GOTPCREL:
11225 case BFD_RELOC_X86_64_GOTPCRELX:
11226 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11227 case BFD_RELOC_386_PLT32:
11228 case BFD_RELOC_386_GOT32:
11229 case BFD_RELOC_386_GOT32X:
11230 case BFD_RELOC_386_GOTOFF:
11231 case BFD_RELOC_386_GOTPC:
11232 case BFD_RELOC_386_TLS_GD:
11233 case BFD_RELOC_386_TLS_LDM:
11234 case BFD_RELOC_386_TLS_LDO_32:
11235 case BFD_RELOC_386_TLS_IE_32:
11236 case BFD_RELOC_386_TLS_IE:
11237 case BFD_RELOC_386_TLS_GOTIE:
11238 case BFD_RELOC_386_TLS_LE_32:
11239 case BFD_RELOC_386_TLS_LE:
11240 case BFD_RELOC_386_TLS_GOTDESC:
11241 case BFD_RELOC_386_TLS_DESC_CALL:
11242 case BFD_RELOC_X86_64_TLSGD:
11243 case BFD_RELOC_X86_64_TLSLD:
11244 case BFD_RELOC_X86_64_DTPOFF32:
11245 case BFD_RELOC_X86_64_DTPOFF64:
11246 case BFD_RELOC_X86_64_GOTTPOFF:
11247 case BFD_RELOC_X86_64_TPOFF32:
11248 case BFD_RELOC_X86_64_TPOFF64:
11249 case BFD_RELOC_X86_64_GOTOFF64:
11250 case BFD_RELOC_X86_64_GOTPC32:
11251 case BFD_RELOC_X86_64_GOT64:
11252 case BFD_RELOC_X86_64_GOTPCREL64:
11253 case BFD_RELOC_X86_64_GOTPC64:
11254 case BFD_RELOC_X86_64_GOTPLT64:
11255 case BFD_RELOC_X86_64_PLTOFF64:
11256 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11257 case BFD_RELOC_X86_64_TLSDESC_CALL:
11258 case BFD_RELOC_RVA:
11259 case BFD_RELOC_VTABLE_ENTRY:
11260 case BFD_RELOC_VTABLE_INHERIT:
11261 #ifdef TE_PE
11262 case BFD_RELOC_32_SECREL:
11263 #endif
11264 code = fixp->fx_r_type;
11265 break;
11266 case BFD_RELOC_X86_64_32S:
11267 if (!fixp->fx_pcrel)
11268 {
11269 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11270 code = fixp->fx_r_type;
11271 break;
11272 }
11273 /* Fall through. */
11274 default:
11275 if (fixp->fx_pcrel)
11276 {
11277 switch (fixp->fx_size)
11278 {
11279 default:
11280 as_bad_where (fixp->fx_file, fixp->fx_line,
11281 _("can not do %d byte pc-relative relocation"),
11282 fixp->fx_size);
11283 code = BFD_RELOC_32_PCREL;
11284 break;
11285 case 1: code = BFD_RELOC_8_PCREL; break;
11286 case 2: code = BFD_RELOC_16_PCREL; break;
11287 case 4: code = BFD_RELOC_32_PCREL; break;
11288 #ifdef BFD64
11289 case 8: code = BFD_RELOC_64_PCREL; break;
11290 #endif
11291 }
11292 }
11293 else
11294 {
11295 switch (fixp->fx_size)
11296 {
11297 default:
11298 as_bad_where (fixp->fx_file, fixp->fx_line,
11299 _("can not do %d byte relocation"),
11300 fixp->fx_size);
11301 code = BFD_RELOC_32;
11302 break;
11303 case 1: code = BFD_RELOC_8; break;
11304 case 2: code = BFD_RELOC_16; break;
11305 case 4: code = BFD_RELOC_32; break;
11306 #ifdef BFD64
11307 case 8: code = BFD_RELOC_64; break;
11308 #endif
11309 }
11310 }
11311 break;
11312 }
11313
11314 if ((code == BFD_RELOC_32
11315 || code == BFD_RELOC_32_PCREL
11316 || code == BFD_RELOC_X86_64_32S)
11317 && GOT_symbol
11318 && fixp->fx_addsy == GOT_symbol)
11319 {
11320 if (!object_64bit)
11321 code = BFD_RELOC_386_GOTPC;
11322 else
11323 code = BFD_RELOC_X86_64_GOTPC32;
11324 }
11325 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11326 && GOT_symbol
11327 && fixp->fx_addsy == GOT_symbol)
11328 {
11329 code = BFD_RELOC_X86_64_GOTPC64;
11330 }
11331
11332 rel = XNEW (arelent);
11333 rel->sym_ptr_ptr = XNEW (asymbol *);
11334 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11335
11336 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
11337
11338 if (!use_rela_relocations)
11339 {
11340 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11341 vtable entry to be used in the relocation's section offset. */
11342 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11343 rel->address = fixp->fx_offset;
11344 #if defined (OBJ_COFF) && defined (TE_PE)
11345 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11346 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11347 else
11348 #endif
11349 rel->addend = 0;
11350 }
11351 /* Use the rela in 64bit mode. */
11352 else
11353 {
11354 if (disallow_64bit_reloc)
11355 switch (code)
11356 {
11357 case BFD_RELOC_X86_64_DTPOFF64:
11358 case BFD_RELOC_X86_64_TPOFF64:
11359 case BFD_RELOC_64_PCREL:
11360 case BFD_RELOC_X86_64_GOTOFF64:
11361 case BFD_RELOC_X86_64_GOT64:
11362 case BFD_RELOC_X86_64_GOTPCREL64:
11363 case BFD_RELOC_X86_64_GOTPC64:
11364 case BFD_RELOC_X86_64_GOTPLT64:
11365 case BFD_RELOC_X86_64_PLTOFF64:
11366 as_bad_where (fixp->fx_file, fixp->fx_line,
11367 _("cannot represent relocation type %s in x32 mode"),
11368 bfd_get_reloc_code_name (code));
11369 break;
11370 default:
11371 break;
11372 }
11373
11374 if (!fixp->fx_pcrel)
11375 rel->addend = fixp->fx_offset;
11376 else
11377 switch (code)
11378 {
11379 case BFD_RELOC_X86_64_PLT32:
11380 case BFD_RELOC_X86_64_GOT32:
11381 case BFD_RELOC_X86_64_GOTPCREL:
11382 case BFD_RELOC_X86_64_GOTPCRELX:
11383 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11384 case BFD_RELOC_X86_64_TLSGD:
11385 case BFD_RELOC_X86_64_TLSLD:
11386 case BFD_RELOC_X86_64_GOTTPOFF:
11387 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11388 case BFD_RELOC_X86_64_TLSDESC_CALL:
11389 rel->addend = fixp->fx_offset - fixp->fx_size;
11390 break;
11391 default:
11392 rel->addend = (section->vma
11393 - fixp->fx_size
11394 + fixp->fx_addnumber
11395 + md_pcrel_from (fixp));
11396 break;
11397 }
11398 }
11399
11400 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11401 if (rel->howto == NULL)
11402 {
11403 as_bad_where (fixp->fx_file, fixp->fx_line,
11404 _("cannot represent relocation type %s"),
11405 bfd_get_reloc_code_name (code));
11406 /* Set howto to a garbage value so that we can keep going. */
11407 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
11408 gas_assert (rel->howto != NULL);
11409 }
11410
11411 return rel;
11412 }
11413
11414 #include "tc-i386-intel.c"
11415
11416 void
11417 tc_x86_parse_to_dw2regnum (expressionS *exp)
11418 {
11419 int saved_naked_reg;
11420 char saved_register_dot;
11421
11422 saved_naked_reg = allow_naked_reg;
11423 allow_naked_reg = 1;
11424 saved_register_dot = register_chars['.'];
11425 register_chars['.'] = '.';
11426 allow_pseudo_reg = 1;
11427 expression_and_evaluate (exp);
11428 allow_pseudo_reg = 0;
11429 register_chars['.'] = saved_register_dot;
11430 allow_naked_reg = saved_naked_reg;
11431
11432 if (exp->X_op == O_register && exp->X_add_number >= 0)
11433 {
11434 if ((addressT) exp->X_add_number < i386_regtab_size)
11435 {
11436 exp->X_op = O_constant;
11437 exp->X_add_number = i386_regtab[exp->X_add_number]
11438 .dw2_regnum[flag_code >> 1];
11439 }
11440 else
11441 exp->X_op = O_illegal;
11442 }
11443 }
11444
11445 void
11446 tc_x86_frame_initial_instructions (void)
11447 {
11448 static unsigned int sp_regno[2];
11449
11450 if (!sp_regno[flag_code >> 1])
11451 {
11452 char *saved_input = input_line_pointer;
11453 char sp[][4] = {"esp", "rsp"};
11454 expressionS exp;
11455
11456 input_line_pointer = sp[flag_code >> 1];
11457 tc_x86_parse_to_dw2regnum (&exp);
11458 gas_assert (exp.X_op == O_constant);
11459 sp_regno[flag_code >> 1] = exp.X_add_number;
11460 input_line_pointer = saved_input;
11461 }
11462
11463 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11464 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
11465 }
11466
11467 int
11468 x86_dwarf2_addr_size (void)
11469 {
11470 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11471 if (x86_elf_abi == X86_64_X32_ABI)
11472 return 4;
11473 #endif
11474 return bfd_arch_bits_per_address (stdoutput) / 8;
11475 }
11476
11477 int
11478 i386_elf_section_type (const char *str, size_t len)
11479 {
11480 if (flag_code == CODE_64BIT
11481 && len == sizeof ("unwind") - 1
11482 && strncmp (str, "unwind", 6) == 0)
11483 return SHT_X86_64_UNWIND;
11484
11485 return -1;
11486 }
11487
11488 #ifdef TE_SOLARIS
11489 void
11490 i386_solaris_fix_up_eh_frame (segT sec)
11491 {
11492 if (flag_code == CODE_64BIT)
11493 elf_section_type (sec) = SHT_X86_64_UNWIND;
11494 }
11495 #endif
11496
11497 #ifdef TE_PE
11498 void
11499 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11500 {
11501 expressionS exp;
11502
11503 exp.X_op = O_secrel;
11504 exp.X_add_symbol = symbol;
11505 exp.X_add_number = 0;
11506 emit_expr (&exp, size);
11507 }
11508 #endif
11509
11510 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11511 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11512
11513 bfd_vma
11514 x86_64_section_letter (int letter, const char **ptr_msg)
11515 {
11516 if (flag_code == CODE_64BIT)
11517 {
11518 if (letter == 'l')
11519 return SHF_X86_64_LARGE;
11520
11521 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11522 }
11523 else
11524 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11525 return -1;
11526 }
11527
11528 bfd_vma
11529 x86_64_section_word (char *str, size_t len)
11530 {
11531 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11532 return SHF_X86_64_LARGE;
11533
11534 return -1;
11535 }
11536
11537 static void
11538 handle_large_common (int small ATTRIBUTE_UNUSED)
11539 {
11540 if (flag_code != CODE_64BIT)
11541 {
11542 s_comm_internal (0, elf_common_parse);
11543 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11544 }
11545 else
11546 {
11547 static segT lbss_section;
11548 asection *saved_com_section_ptr = elf_com_section_ptr;
11549 asection *saved_bss_section = bss_section;
11550
11551 if (lbss_section == NULL)
11552 {
11553 flagword applicable;
11554 segT seg = now_seg;
11555 subsegT subseg = now_subseg;
11556
11557 /* The .lbss section is for local .largecomm symbols. */
11558 lbss_section = subseg_new (".lbss", 0);
11559 applicable = bfd_applicable_section_flags (stdoutput);
11560 bfd_set_section_flags (stdoutput, lbss_section,
11561 applicable & SEC_ALLOC);
11562 seg_info (lbss_section)->bss = 1;
11563
11564 subseg_set (seg, subseg);
11565 }
11566
11567 elf_com_section_ptr = &_bfd_elf_large_com_section;
11568 bss_section = lbss_section;
11569
11570 s_comm_internal (0, elf_common_parse);
11571
11572 elf_com_section_ptr = saved_com_section_ptr;
11573 bss_section = saved_bss_section;
11574 }
11575 }
11576 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.273588 seconds and 5 git commands to generate.