2007-12-17 H.J. Lu <hongjiu.lu@intel.com>
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
29
30 #include "as.h"
31 #include "safe-ctype.h"
32 #include "subsegs.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "elf/x86-64.h"
36 #include "opcodes/i386-init.h"
37
38 #ifndef REGISTER_WARNINGS
39 #define REGISTER_WARNINGS 1
40 #endif
41
42 #ifndef INFER_ADDR_PREFIX
43 #define INFER_ADDR_PREFIX 1
44 #endif
45
46 #ifndef DEFAULT_ARCH
47 #define DEFAULT_ARCH "i386"
48 #endif
49
50 #ifndef INLINE
51 #if __GNUC__ >= 2
52 #define INLINE __inline__
53 #else
54 #define INLINE
55 #endif
56 #endif
57
58 static void set_code_flag (int);
59 static void set_16bit_gcc_code_flag (int);
60 static void set_intel_syntax (int);
61 static void set_allow_index_reg (int);
62 static void set_cpu_arch (int);
63 #ifdef TE_PE
64 static void pe_directive_secrel (int);
65 #endif
66 static void signed_cons (int);
67 static char *output_invalid (int c);
68 static int i386_operand (char *);
69 static int i386_intel_operand (char *, int);
70 static const reg_entry *parse_register (char *, char **);
71 static char *parse_insn (char *, char *);
72 static char *parse_operands (char *, const char *);
73 static void swap_operands (void);
74 static void swap_2_operands (int, int);
75 static void optimize_imm (void);
76 static void optimize_disp (void);
77 static int match_template (void);
78 static int check_string (void);
79 static int process_suffix (void);
80 static int check_byte_reg (void);
81 static int check_long_reg (void);
82 static int check_qword_reg (void);
83 static int check_word_reg (void);
84 static int finalize_imm (void);
85 static void process_drex (void);
86 static int process_operands (void);
87 static const seg_entry *build_modrm_byte (void);
88 static void output_insn (void);
89 static void output_imm (fragS *, offsetT);
90 static void output_disp (fragS *, offsetT);
91 #ifndef I386COFF
92 static void s_bss (int);
93 #endif
94 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
95 static void handle_large_common (int small ATTRIBUTE_UNUSED);
96 #endif
97
98 static const char *default_arch = DEFAULT_ARCH;
99
100 /* 'md_assemble ()' gathers together information and puts it into a
101 i386_insn. */
102
103 union i386_op
104 {
105 expressionS *disps;
106 expressionS *imms;
107 const reg_entry *regs;
108 };
109
110 struct _i386_insn
111 {
112 /* TM holds the template for the insn were currently assembling. */
113 template tm;
114
115 /* SUFFIX holds the instruction mnemonic suffix if given.
116 (e.g. 'l' for 'movl') */
117 char suffix;
118
119 /* OPERANDS gives the number of given operands. */
120 unsigned int operands;
121
122 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
123 of given register, displacement, memory operands and immediate
124 operands. */
125 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
126
127 /* TYPES [i] is the type (see above #defines) which tells us how to
128 use OP[i] for the corresponding operand. */
129 i386_operand_type types[MAX_OPERANDS];
130
131 /* Displacement expression, immediate expression, or register for each
132 operand. */
133 union i386_op op[MAX_OPERANDS];
134
135 /* Flags for operands. */
136 unsigned int flags[MAX_OPERANDS];
137 #define Operand_PCrel 1
138
139 /* Relocation type for operand */
140 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
141
142 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
143 the base index byte below. */
144 const reg_entry *base_reg;
145 const reg_entry *index_reg;
146 unsigned int log2_scale_factor;
147
148 /* SEG gives the seg_entries of this insn. They are zero unless
149 explicit segment overrides are given. */
150 const seg_entry *seg[2];
151
152 /* PREFIX holds all the given prefix opcodes (usually null).
153 PREFIXES is the number of prefix opcodes. */
154 unsigned int prefixes;
155 unsigned char prefix[MAX_PREFIXES];
156
157 /* RM and SIB are the modrm byte and the sib byte where the
158 addressing modes of this insn are encoded. DREX is the byte
159 added by the SSE5 instructions. */
160
161 modrm_byte rm;
162 rex_byte rex;
163 sib_byte sib;
164 drex_byte drex;
165 };
166
167 typedef struct _i386_insn i386_insn;
168
169 /* List of chars besides those in app.c:symbol_chars that can start an
170 operand. Used to prevent the scrubber eating vital white-space. */
171 const char extra_symbol_chars[] = "*%-(["
172 #ifdef LEX_AT
173 "@"
174 #endif
175 #ifdef LEX_QM
176 "?"
177 #endif
178 ;
179
180 #if (defined (TE_I386AIX) \
181 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
182 && !defined (TE_GNU) \
183 && !defined (TE_LINUX) \
184 && !defined (TE_NETWARE) \
185 && !defined (TE_FreeBSD) \
186 && !defined (TE_NetBSD)))
187 /* This array holds the chars that always start a comment. If the
188 pre-processor is disabled, these aren't very useful. The option
189 --divide will remove '/' from this list. */
190 const char *i386_comment_chars = "#/";
191 #define SVR4_COMMENT_CHARS 1
192 #define PREFIX_SEPARATOR '\\'
193
194 #else
195 const char *i386_comment_chars = "#";
196 #define PREFIX_SEPARATOR '/'
197 #endif
198
199 /* This array holds the chars that only start a comment at the beginning of
200 a line. If the line seems to have the form '# 123 filename'
201 .line and .file directives will appear in the pre-processed output.
202 Note that input_file.c hand checks for '#' at the beginning of the
203 first line of the input file. This is because the compiler outputs
204 #NO_APP at the beginning of its output.
205 Also note that comments started like this one will always work if
206 '/' isn't otherwise defined. */
207 const char line_comment_chars[] = "#/";
208
209 const char line_separator_chars[] = ";";
210
211 /* Chars that can be used to separate mant from exp in floating point
212 nums. */
213 const char EXP_CHARS[] = "eE";
214
215 /* Chars that mean this number is a floating point constant
216 As in 0f12.456
217 or 0d1.2345e12. */
218 const char FLT_CHARS[] = "fFdDxX";
219
220 /* Tables for lexical analysis. */
221 static char mnemonic_chars[256];
222 static char register_chars[256];
223 static char operand_chars[256];
224 static char identifier_chars[256];
225 static char digit_chars[256];
226
227 /* Lexical macros. */
228 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
229 #define is_operand_char(x) (operand_chars[(unsigned char) x])
230 #define is_register_char(x) (register_chars[(unsigned char) x])
231 #define is_space_char(x) ((x) == ' ')
232 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
233 #define is_digit_char(x) (digit_chars[(unsigned char) x])
234
235 /* All non-digit non-letter characters that may occur in an operand. */
236 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
237
238 /* md_assemble() always leaves the strings it's passed unaltered. To
239 effect this we maintain a stack of saved characters that we've smashed
240 with '\0's (indicating end of strings for various sub-fields of the
241 assembler instruction). */
242 static char save_stack[32];
243 static char *save_stack_p;
244 #define END_STRING_AND_SAVE(s) \
245 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
246 #define RESTORE_END_STRING(s) \
247 do { *(s) = *--save_stack_p; } while (0)
248
249 /* The instruction we're assembling. */
250 static i386_insn i;
251
252 /* Possible templates for current insn. */
253 static const templates *current_templates;
254
255 /* Per instruction expressionS buffers: max displacements & immediates. */
256 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
257 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
258
259 /* Current operand we are working on. */
260 static int this_operand;
261
262 /* We support four different modes. FLAG_CODE variable is used to distinguish
263 these. */
264
265 enum flag_code {
266 CODE_32BIT,
267 CODE_16BIT,
268 CODE_64BIT };
269
270 static enum flag_code flag_code;
271 static unsigned int object_64bit;
272 static int use_rela_relocations = 0;
273
274 /* The names used to print error messages. */
275 static const char *flag_code_names[] =
276 {
277 "32",
278 "16",
279 "64"
280 };
281
282 /* 1 for intel syntax,
283 0 if att syntax. */
284 static int intel_syntax = 0;
285
286 /* 1 if register prefix % not required. */
287 static int allow_naked_reg = 0;
288
289 /* 1 if fake index register, eiz/riz, is allowed . */
290 static int allow_index_reg = 0;
291
292 /* Register prefix used for error message. */
293 static const char *register_prefix = "%";
294
295 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
296 leave, push, and pop instructions so that gcc has the same stack
297 frame as in 32 bit mode. */
298 static char stackop_size = '\0';
299
300 /* Non-zero to optimize code alignment. */
301 int optimize_align_code = 1;
302
303 /* Non-zero to quieten some warnings. */
304 static int quiet_warnings = 0;
305
306 /* CPU name. */
307 static const char *cpu_arch_name = NULL;
308 static const char *cpu_sub_arch_name = NULL;
309
310 /* CPU feature flags. */
311 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
312
313 /* Bitwise NOT of cpu_arch_flags. */
314 static i386_cpu_flags cpu_arch_flags_not;
315
316 /* If we have selected a cpu we are generating instructions for. */
317 static int cpu_arch_tune_set = 0;
318
319 /* Cpu we are generating instructions for. */
320 static enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
321
322 /* CPU feature flags of cpu we are generating instructions for. */
323 static i386_cpu_flags cpu_arch_tune_flags;
324
325 /* CPU instruction set architecture used. */
326 static enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
327
328 /* CPU feature flags of instruction set architecture used. */
329 static i386_cpu_flags cpu_arch_isa_flags;
330
331 /* If set, conditional jumps are not automatically promoted to handle
332 larger than a byte offset. */
333 static unsigned int no_cond_jump_promotion = 0;
334
335 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
336 static symbolS *GOT_symbol;
337
338 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
339 unsigned int x86_dwarf2_return_column;
340
341 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
342 int x86_cie_data_alignment;
343
344 /* Interface to relax_segment.
345 There are 3 major relax states for 386 jump insns because the
346 different types of jumps add different sizes to frags when we're
347 figuring out what sort of jump to choose to reach a given label. */
348
349 /* Types. */
350 #define UNCOND_JUMP 0
351 #define COND_JUMP 1
352 #define COND_JUMP86 2
353
354 /* Sizes. */
355 #define CODE16 1
356 #define SMALL 0
357 #define SMALL16 (SMALL | CODE16)
358 #define BIG 2
359 #define BIG16 (BIG | CODE16)
360
361 #ifndef INLINE
362 #ifdef __GNUC__
363 #define INLINE __inline__
364 #else
365 #define INLINE
366 #endif
367 #endif
368
369 #define ENCODE_RELAX_STATE(type, size) \
370 ((relax_substateT) (((type) << 2) | (size)))
371 #define TYPE_FROM_RELAX_STATE(s) \
372 ((s) >> 2)
373 #define DISP_SIZE_FROM_RELAX_STATE(s) \
374 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
375
376 /* This table is used by relax_frag to promote short jumps to long
377 ones where necessary. SMALL (short) jumps may be promoted to BIG
378 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
379 don't allow a short jump in a 32 bit code segment to be promoted to
380 a 16 bit offset jump because it's slower (requires data size
381 prefix), and doesn't work, unless the destination is in the bottom
382 64k of the code segment (The top 16 bits of eip are zeroed). */
383
384 const relax_typeS md_relax_table[] =
385 {
386 /* The fields are:
387 1) most positive reach of this state,
388 2) most negative reach of this state,
389 3) how many bytes this mode will have in the variable part of the frag
390 4) which index into the table to try if we can't fit into this one. */
391
392 /* UNCOND_JUMP states. */
393 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
394 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
395 /* dword jmp adds 4 bytes to frag:
396 0 extra opcode bytes, 4 displacement bytes. */
397 {0, 0, 4, 0},
398 /* word jmp adds 2 byte2 to frag:
399 0 extra opcode bytes, 2 displacement bytes. */
400 {0, 0, 2, 0},
401
402 /* COND_JUMP states. */
403 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
404 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
405 /* dword conditionals adds 5 bytes to frag:
406 1 extra opcode byte, 4 displacement bytes. */
407 {0, 0, 5, 0},
408 /* word conditionals add 3 bytes to frag:
409 1 extra opcode byte, 2 displacement bytes. */
410 {0, 0, 3, 0},
411
412 /* COND_JUMP86 states. */
413 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
414 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
415 /* dword conditionals adds 5 bytes to frag:
416 1 extra opcode byte, 4 displacement bytes. */
417 {0, 0, 5, 0},
418 /* word conditionals add 4 bytes to frag:
419 1 displacement byte and a 3 byte long branch insn. */
420 {0, 0, 4, 0}
421 };
422
423 static const arch_entry cpu_arch[] =
424 {
425 {"generic32", PROCESSOR_GENERIC32,
426 CPU_GENERIC32_FLAGS },
427 {"generic64", PROCESSOR_GENERIC64,
428 CPU_GENERIC64_FLAGS },
429 {"i8086", PROCESSOR_UNKNOWN,
430 CPU_NONE_FLAGS },
431 {"i186", PROCESSOR_UNKNOWN,
432 CPU_I186_FLAGS },
433 {"i286", PROCESSOR_UNKNOWN,
434 CPU_I286_FLAGS },
435 {"i386", PROCESSOR_I386,
436 CPU_I386_FLAGS },
437 {"i486", PROCESSOR_I486,
438 CPU_I486_FLAGS },
439 {"i586", PROCESSOR_PENTIUM,
440 CPU_I586_FLAGS },
441 {"i686", PROCESSOR_PENTIUMPRO,
442 CPU_I686_FLAGS },
443 {"pentium", PROCESSOR_PENTIUM,
444 CPU_I586_FLAGS },
445 {"pentiumpro",PROCESSOR_PENTIUMPRO,
446 CPU_I686_FLAGS },
447 {"pentiumii", PROCESSOR_PENTIUMPRO,
448 CPU_P2_FLAGS },
449 {"pentiumiii",PROCESSOR_PENTIUMPRO,
450 CPU_P3_FLAGS },
451 {"pentium4", PROCESSOR_PENTIUM4,
452 CPU_P4_FLAGS },
453 {"prescott", PROCESSOR_NOCONA,
454 CPU_CORE_FLAGS },
455 {"nocona", PROCESSOR_NOCONA,
456 CPU_NOCONA_FLAGS },
457 {"yonah", PROCESSOR_CORE,
458 CPU_CORE_FLAGS },
459 {"core", PROCESSOR_CORE,
460 CPU_CORE_FLAGS },
461 {"merom", PROCESSOR_CORE2,
462 CPU_CORE2_FLAGS },
463 {"core2", PROCESSOR_CORE2,
464 CPU_CORE2_FLAGS },
465 {"k6", PROCESSOR_K6,
466 CPU_K6_FLAGS },
467 {"k6_2", PROCESSOR_K6,
468 CPU_K6_2_FLAGS },
469 {"athlon", PROCESSOR_ATHLON,
470 CPU_ATHLON_FLAGS },
471 {"sledgehammer", PROCESSOR_K8,
472 CPU_K8_FLAGS },
473 {"opteron", PROCESSOR_K8,
474 CPU_K8_FLAGS },
475 {"k8", PROCESSOR_K8,
476 CPU_K8_FLAGS },
477 {"amdfam10", PROCESSOR_AMDFAM10,
478 CPU_AMDFAM10_FLAGS },
479 {".mmx", PROCESSOR_UNKNOWN,
480 CPU_MMX_FLAGS },
481 {".sse", PROCESSOR_UNKNOWN,
482 CPU_SSE_FLAGS },
483 {".sse2", PROCESSOR_UNKNOWN,
484 CPU_SSE2_FLAGS },
485 {".sse3", PROCESSOR_UNKNOWN,
486 CPU_SSE3_FLAGS },
487 {".ssse3", PROCESSOR_UNKNOWN,
488 CPU_SSSE3_FLAGS },
489 {".sse4.1", PROCESSOR_UNKNOWN,
490 CPU_SSE4_1_FLAGS },
491 {".sse4.2", PROCESSOR_UNKNOWN,
492 CPU_SSE4_2_FLAGS },
493 {".sse4", PROCESSOR_UNKNOWN,
494 CPU_SSE4_2_FLAGS },
495 {".3dnow", PROCESSOR_UNKNOWN,
496 CPU_3DNOW_FLAGS },
497 {".3dnowa", PROCESSOR_UNKNOWN,
498 CPU_3DNOWA_FLAGS },
499 {".padlock", PROCESSOR_UNKNOWN,
500 CPU_PADLOCK_FLAGS },
501 {".pacifica", PROCESSOR_UNKNOWN,
502 CPU_SVME_FLAGS },
503 {".svme", PROCESSOR_UNKNOWN,
504 CPU_SVME_FLAGS },
505 {".sse4a", PROCESSOR_UNKNOWN,
506 CPU_SSE4A_FLAGS },
507 {".abm", PROCESSOR_UNKNOWN,
508 CPU_ABM_FLAGS },
509 {".sse5", PROCESSOR_UNKNOWN,
510 CPU_SSE5_FLAGS },
511 };
512
513 const pseudo_typeS md_pseudo_table[] =
514 {
515 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
516 {"align", s_align_bytes, 0},
517 #else
518 {"align", s_align_ptwo, 0},
519 #endif
520 {"arch", set_cpu_arch, 0},
521 #ifndef I386COFF
522 {"bss", s_bss, 0},
523 #endif
524 {"ffloat", float_cons, 'f'},
525 {"dfloat", float_cons, 'd'},
526 {"tfloat", float_cons, 'x'},
527 {"value", cons, 2},
528 {"slong", signed_cons, 4},
529 {"noopt", s_ignore, 0},
530 {"optim", s_ignore, 0},
531 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
532 {"code16", set_code_flag, CODE_16BIT},
533 {"code32", set_code_flag, CODE_32BIT},
534 {"code64", set_code_flag, CODE_64BIT},
535 {"intel_syntax", set_intel_syntax, 1},
536 {"att_syntax", set_intel_syntax, 0},
537 {"allow_index_reg", set_allow_index_reg, 1},
538 {"disallow_index_reg", set_allow_index_reg, 0},
539 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
540 {"largecomm", handle_large_common, 0},
541 #else
542 {"file", (void (*) (int)) dwarf2_directive_file, 0},
543 {"loc", dwarf2_directive_loc, 0},
544 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
545 #endif
546 #ifdef TE_PE
547 {"secrel32", pe_directive_secrel, 0},
548 #endif
549 {0, 0, 0}
550 };
551
552 /* For interface with expression (). */
553 extern char *input_line_pointer;
554
555 /* Hash table for instruction mnemonic lookup. */
556 static struct hash_control *op_hash;
557
558 /* Hash table for register lookup. */
559 static struct hash_control *reg_hash;
560 \f
561 void
562 i386_align_code (fragS *fragP, int count)
563 {
564 /* Various efficient no-op patterns for aligning code labels.
565 Note: Don't try to assemble the instructions in the comments.
566 0L and 0w are not legal. */
567 static const char f32_1[] =
568 {0x90}; /* nop */
569 static const char f32_2[] =
570 {0x66,0x90}; /* xchg %ax,%ax */
571 static const char f32_3[] =
572 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
573 static const char f32_4[] =
574 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
575 static const char f32_5[] =
576 {0x90, /* nop */
577 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
578 static const char f32_6[] =
579 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
580 static const char f32_7[] =
581 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
582 static const char f32_8[] =
583 {0x90, /* nop */
584 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
585 static const char f32_9[] =
586 {0x89,0xf6, /* movl %esi,%esi */
587 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
588 static const char f32_10[] =
589 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
590 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
591 static const char f32_11[] =
592 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
593 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
594 static const char f32_12[] =
595 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
596 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
597 static const char f32_13[] =
598 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
599 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
600 static const char f32_14[] =
601 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
602 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
603 static const char f16_3[] =
604 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
605 static const char f16_4[] =
606 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
607 static const char f16_5[] =
608 {0x90, /* nop */
609 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
610 static const char f16_6[] =
611 {0x89,0xf6, /* mov %si,%si */
612 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
613 static const char f16_7[] =
614 {0x8d,0x74,0x00, /* lea 0(%si),%si */
615 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
616 static const char f16_8[] =
617 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
618 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
619 static const char jump_31[] =
620 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
621 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
622 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
623 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
624 static const char *const f32_patt[] = {
625 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
626 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
627 };
628 static const char *const f16_patt[] = {
629 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
630 };
631 /* nopl (%[re]ax) */
632 static const char alt_3[] =
633 {0x0f,0x1f,0x00};
634 /* nopl 0(%[re]ax) */
635 static const char alt_4[] =
636 {0x0f,0x1f,0x40,0x00};
637 /* nopl 0(%[re]ax,%[re]ax,1) */
638 static const char alt_5[] =
639 {0x0f,0x1f,0x44,0x00,0x00};
640 /* nopw 0(%[re]ax,%[re]ax,1) */
641 static const char alt_6[] =
642 {0x66,0x0f,0x1f,0x44,0x00,0x00};
643 /* nopl 0L(%[re]ax) */
644 static const char alt_7[] =
645 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
646 /* nopl 0L(%[re]ax,%[re]ax,1) */
647 static const char alt_8[] =
648 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
649 /* nopw 0L(%[re]ax,%[re]ax,1) */
650 static const char alt_9[] =
651 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
652 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
653 static const char alt_10[] =
654 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
655 /* data16
656 nopw %cs:0L(%[re]ax,%[re]ax,1) */
657 static const char alt_long_11[] =
658 {0x66,
659 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
660 /* data16
661 data16
662 nopw %cs:0L(%[re]ax,%[re]ax,1) */
663 static const char alt_long_12[] =
664 {0x66,
665 0x66,
666 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
667 /* data16
668 data16
669 data16
670 nopw %cs:0L(%[re]ax,%[re]ax,1) */
671 static const char alt_long_13[] =
672 {0x66,
673 0x66,
674 0x66,
675 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
676 /* data16
677 data16
678 data16
679 data16
680 nopw %cs:0L(%[re]ax,%[re]ax,1) */
681 static const char alt_long_14[] =
682 {0x66,
683 0x66,
684 0x66,
685 0x66,
686 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
687 /* data16
688 data16
689 data16
690 data16
691 data16
692 nopw %cs:0L(%[re]ax,%[re]ax,1) */
693 static const char alt_long_15[] =
694 {0x66,
695 0x66,
696 0x66,
697 0x66,
698 0x66,
699 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
700 /* nopl 0(%[re]ax,%[re]ax,1)
701 nopw 0(%[re]ax,%[re]ax,1) */
702 static const char alt_short_11[] =
703 {0x0f,0x1f,0x44,0x00,0x00,
704 0x66,0x0f,0x1f,0x44,0x00,0x00};
705 /* nopw 0(%[re]ax,%[re]ax,1)
706 nopw 0(%[re]ax,%[re]ax,1) */
707 static const char alt_short_12[] =
708 {0x66,0x0f,0x1f,0x44,0x00,0x00,
709 0x66,0x0f,0x1f,0x44,0x00,0x00};
710 /* nopw 0(%[re]ax,%[re]ax,1)
711 nopl 0L(%[re]ax) */
712 static const char alt_short_13[] =
713 {0x66,0x0f,0x1f,0x44,0x00,0x00,
714 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
715 /* nopl 0L(%[re]ax)
716 nopl 0L(%[re]ax) */
717 static const char alt_short_14[] =
718 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
719 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
720 /* nopl 0L(%[re]ax)
721 nopl 0L(%[re]ax,%[re]ax,1) */
722 static const char alt_short_15[] =
723 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
724 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
725 static const char *const alt_short_patt[] = {
726 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
727 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
728 alt_short_14, alt_short_15
729 };
730 static const char *const alt_long_patt[] = {
731 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
732 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
733 alt_long_14, alt_long_15
734 };
735
736 /* Only align for at least a positive non-zero boundary. */
737 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
738 return;
739
740 /* We need to decide which NOP sequence to use for 32bit and
741 64bit. When -mtune= is used:
742
743 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
744 PROCESSOR_GENERIC32, f32_patt will be used.
745 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
746 PROCESSOR_CORE, PROCESSOR_CORE2, and PROCESSOR_GENERIC64,
747 alt_long_patt will be used.
748 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
749 PROCESSOR_AMDFAM10, alt_short_patt will be used.
750
751 When -mtune= isn't used, alt_long_patt will be used if
752 cpu_arch_isa_flags has Cpu686. Otherwise, f32_patt will
753 be used.
754
755 When -march= or .arch is used, we can't use anything beyond
756 cpu_arch_isa_flags. */
757
758 if (flag_code == CODE_16BIT)
759 {
760 if (count > 8)
761 {
762 memcpy (fragP->fr_literal + fragP->fr_fix,
763 jump_31, count);
764 /* Adjust jump offset. */
765 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
766 }
767 else
768 memcpy (fragP->fr_literal + fragP->fr_fix,
769 f16_patt[count - 1], count);
770 }
771 else
772 {
773 const char *const *patt = NULL;
774
775 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
776 {
777 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
778 switch (cpu_arch_tune)
779 {
780 case PROCESSOR_UNKNOWN:
781 /* We use cpu_arch_isa_flags to check if we SHOULD
782 optimize for Cpu686. */
783 if (cpu_arch_isa_flags.bitfield.cpui686)
784 patt = alt_long_patt;
785 else
786 patt = f32_patt;
787 break;
788 case PROCESSOR_PENTIUMPRO:
789 case PROCESSOR_PENTIUM4:
790 case PROCESSOR_NOCONA:
791 case PROCESSOR_CORE:
792 case PROCESSOR_CORE2:
793 case PROCESSOR_GENERIC64:
794 patt = alt_long_patt;
795 break;
796 case PROCESSOR_K6:
797 case PROCESSOR_ATHLON:
798 case PROCESSOR_K8:
799 case PROCESSOR_AMDFAM10:
800 patt = alt_short_patt;
801 break;
802 case PROCESSOR_I386:
803 case PROCESSOR_I486:
804 case PROCESSOR_PENTIUM:
805 case PROCESSOR_GENERIC32:
806 patt = f32_patt;
807 break;
808 }
809 }
810 else
811 {
812 switch (cpu_arch_tune)
813 {
814 case PROCESSOR_UNKNOWN:
815 /* When cpu_arch_isa is net, cpu_arch_tune shouldn't be
816 PROCESSOR_UNKNOWN. */
817 abort ();
818 break;
819
820 case PROCESSOR_I386:
821 case PROCESSOR_I486:
822 case PROCESSOR_PENTIUM:
823 case PROCESSOR_K6:
824 case PROCESSOR_ATHLON:
825 case PROCESSOR_K8:
826 case PROCESSOR_AMDFAM10:
827 case PROCESSOR_GENERIC32:
828 /* We use cpu_arch_isa_flags to check if we CAN optimize
829 for Cpu686. */
830 if (cpu_arch_isa_flags.bitfield.cpui686)
831 patt = alt_short_patt;
832 else
833 patt = f32_patt;
834 break;
835 case PROCESSOR_PENTIUMPRO:
836 case PROCESSOR_PENTIUM4:
837 case PROCESSOR_NOCONA:
838 case PROCESSOR_CORE:
839 case PROCESSOR_CORE2:
840 if (cpu_arch_isa_flags.bitfield.cpui686)
841 patt = alt_long_patt;
842 else
843 patt = f32_patt;
844 break;
845 case PROCESSOR_GENERIC64:
846 patt = alt_long_patt;
847 break;
848 }
849 }
850
851 if (patt == f32_patt)
852 {
853 /* If the padding is less than 15 bytes, we use the normal
854 ones. Otherwise, we use a jump instruction and adjust
855 its offset. */
856 if (count < 15)
857 memcpy (fragP->fr_literal + fragP->fr_fix,
858 patt[count - 1], count);
859 else
860 {
861 memcpy (fragP->fr_literal + fragP->fr_fix,
862 jump_31, count);
863 /* Adjust jump offset. */
864 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
865 }
866 }
867 else
868 {
869 /* Maximum length of an instruction is 15 byte. If the
870 padding is greater than 15 bytes and we don't use jump,
871 we have to break it into smaller pieces. */
872 int padding = count;
873 while (padding > 15)
874 {
875 padding -= 15;
876 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
877 patt [14], 15);
878 }
879
880 if (padding)
881 memcpy (fragP->fr_literal + fragP->fr_fix,
882 patt [padding - 1], padding);
883 }
884 }
885 fragP->fr_var = count;
886 }
887
888 static INLINE int
889 uints_all_zero (const unsigned int *x, unsigned int size)
890 {
891 switch (size)
892 {
893 case 3:
894 if (x[2])
895 return 0;
896 case 2:
897 if (x[1])
898 return 0;
899 case 1:
900 return !x[0];
901 default:
902 abort ();
903 }
904 }
905
906 static INLINE void
907 uints_set (unsigned int *x, unsigned int v, unsigned int size)
908 {
909 switch (size)
910 {
911 case 3:
912 x[2] = v;
913 case 2:
914 x[1] = v;
915 case 1:
916 x[0] = v;
917 break;
918 default:
919 abort ();
920 }
921 }
922
923 static INLINE int
924 uints_equal (const unsigned int *x, const unsigned int *y,
925 unsigned int size)
926 {
927 switch (size)
928 {
929 case 3:
930 if (x[2] != y [2])
931 return 0;
932 case 2:
933 if (x[1] != y [1])
934 return 0;
935 case 1:
936 return x[0] == y [0];
937 break;
938 default:
939 abort ();
940 }
941 }
942
943 #define UINTS_ALL_ZERO(x) \
944 uints_all_zero ((x).array, ARRAY_SIZE ((x).array))
945 #define UINTS_SET(x, v) \
946 uints_set ((x).array, v, ARRAY_SIZE ((x).array))
947 #define UINTS_CLEAR(x) \
948 uints_set ((x).array, 0, ARRAY_SIZE ((x).array))
949 #define UINTS_EQUAL(x, y) \
950 uints_equal ((x).array, (y).array, ARRAY_SIZE ((x).array))
951
952 static INLINE int
953 cpu_flags_check_cpu64 (i386_cpu_flags f)
954 {
955 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
956 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
957 }
958
959 static INLINE i386_cpu_flags
960 cpu_flags_not (i386_cpu_flags x)
961 {
962 switch (ARRAY_SIZE (x.array))
963 {
964 case 3:
965 x.array [2] = ~x.array [2];
966 case 2:
967 x.array [1] = ~x.array [1];
968 case 1:
969 x.array [0] = ~x.array [0];
970 break;
971 default:
972 abort ();
973 }
974
975 #ifdef CpuUnused
976 x.bitfield.unused = 0;
977 #endif
978
979 return x;
980 }
981
982 static INLINE i386_cpu_flags
983 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
984 {
985 switch (ARRAY_SIZE (x.array))
986 {
987 case 3:
988 x.array [2] &= y.array [2];
989 case 2:
990 x.array [1] &= y.array [1];
991 case 1:
992 x.array [0] &= y.array [0];
993 break;
994 default:
995 abort ();
996 }
997 return x;
998 }
999
1000 static INLINE i386_cpu_flags
1001 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1002 {
1003 switch (ARRAY_SIZE (x.array))
1004 {
1005 case 3:
1006 x.array [2] |= y.array [2];
1007 case 2:
1008 x.array [1] |= y.array [1];
1009 case 1:
1010 x.array [0] |= y.array [0];
1011 break;
1012 default:
1013 abort ();
1014 }
1015 return x;
1016 }
1017
1018 static int
1019 cpu_flags_match (i386_cpu_flags x)
1020 {
1021 i386_cpu_flags not = cpu_arch_flags_not;
1022
1023 not.bitfield.cpu64 = 1;
1024 not.bitfield.cpuno64 = 1;
1025
1026 x.bitfield.cpu64 = 0;
1027 x.bitfield.cpuno64 = 0;
1028
1029 not = cpu_flags_and (x, not);
1030 return UINTS_ALL_ZERO (not);
1031 }
1032
1033 static INLINE i386_operand_type
1034 operand_type_and (i386_operand_type x, i386_operand_type y)
1035 {
1036 switch (ARRAY_SIZE (x.array))
1037 {
1038 case 3:
1039 x.array [2] &= y.array [2];
1040 case 2:
1041 x.array [1] &= y.array [1];
1042 case 1:
1043 x.array [0] &= y.array [0];
1044 break;
1045 default:
1046 abort ();
1047 }
1048 return x;
1049 }
1050
1051 static INLINE i386_operand_type
1052 operand_type_or (i386_operand_type x, i386_operand_type y)
1053 {
1054 switch (ARRAY_SIZE (x.array))
1055 {
1056 case 3:
1057 x.array [2] |= y.array [2];
1058 case 2:
1059 x.array [1] |= y.array [1];
1060 case 1:
1061 x.array [0] |= y.array [0];
1062 break;
1063 default:
1064 abort ();
1065 }
1066 return x;
1067 }
1068
1069 static INLINE i386_operand_type
1070 operand_type_xor (i386_operand_type x, i386_operand_type y)
1071 {
1072 switch (ARRAY_SIZE (x.array))
1073 {
1074 case 3:
1075 x.array [2] ^= y.array [2];
1076 case 2:
1077 x.array [1] ^= y.array [1];
1078 case 1:
1079 x.array [0] ^= y.array [0];
1080 break;
1081 default:
1082 abort ();
1083 }
1084 return x;
1085 }
1086
1087 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1088 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1089 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1090 static const i386_operand_type reg16_inoutportreg
1091 = OPERAND_TYPE_REG16_INOUTPORTREG;
1092 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1093 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1094 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1095 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1096 static const i386_operand_type anydisp
1097 = OPERAND_TYPE_ANYDISP;
1098 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1099 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1100 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1101 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1102 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1103 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1104 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1105 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1106 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1107 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1108
1109 enum operand_type
1110 {
1111 reg,
1112 imm,
1113 disp,
1114 anymem
1115 };
1116
1117 static INLINE int
1118 operand_type_check (i386_operand_type t, enum operand_type c)
1119 {
1120 switch (c)
1121 {
1122 case reg:
1123 return (t.bitfield.reg8
1124 || t.bitfield.reg16
1125 || t.bitfield.reg32
1126 || t.bitfield.reg64);
1127
1128 case imm:
1129 return (t.bitfield.imm8
1130 || t.bitfield.imm8s
1131 || t.bitfield.imm16
1132 || t.bitfield.imm32
1133 || t.bitfield.imm32s
1134 || t.bitfield.imm64);
1135
1136 case disp:
1137 return (t.bitfield.disp8
1138 || t.bitfield.disp16
1139 || t.bitfield.disp32
1140 || t.bitfield.disp32s
1141 || t.bitfield.disp64);
1142
1143 case anymem:
1144 return (t.bitfield.disp8
1145 || t.bitfield.disp16
1146 || t.bitfield.disp32
1147 || t.bitfield.disp32s
1148 || t.bitfield.disp64
1149 || t.bitfield.baseindex);
1150
1151 default:
1152 abort ();
1153 }
1154 }
1155
1156 static INLINE int
1157 operand_type_match (i386_operand_type overlap,
1158 i386_operand_type given)
1159 {
1160 i386_operand_type temp = overlap;
1161
1162 temp.bitfield.jumpabsolute = 0;
1163 if (UINTS_ALL_ZERO (temp))
1164 return 0;
1165
1166 return (given.bitfield.baseindex == overlap.bitfield.baseindex
1167 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute);
1168 }
1169
1170 /* If given types r0 and r1 are registers they must be of the same type
1171 unless the expected operand type register overlap is null.
1172 Note that Acc in a template matches every size of reg. */
1173
1174 static INLINE int
1175 operand_type_register_match (i386_operand_type m0,
1176 i386_operand_type g0,
1177 i386_operand_type t0,
1178 i386_operand_type m1,
1179 i386_operand_type g1,
1180 i386_operand_type t1)
1181 {
1182 if (!operand_type_check (g0, reg))
1183 return 1;
1184
1185 if (!operand_type_check (g1, reg))
1186 return 1;
1187
1188 if (g0.bitfield.reg8 == g1.bitfield.reg8
1189 && g0.bitfield.reg16 == g1.bitfield.reg16
1190 && g0.bitfield.reg32 == g1.bitfield.reg32
1191 && g0.bitfield.reg64 == g1.bitfield.reg64)
1192 return 1;
1193
1194 if (m0.bitfield.acc)
1195 {
1196 t0.bitfield.reg8 = 1;
1197 t0.bitfield.reg16 = 1;
1198 t0.bitfield.reg32 = 1;
1199 t0.bitfield.reg64 = 1;
1200 }
1201
1202 if (m1.bitfield.acc)
1203 {
1204 t1.bitfield.reg8 = 1;
1205 t1.bitfield.reg16 = 1;
1206 t1.bitfield.reg32 = 1;
1207 t1.bitfield.reg64 = 1;
1208 }
1209
1210 return (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1211 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1212 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1213 && !(t0.bitfield.reg64 & t1.bitfield.reg64));
1214 }
1215
1216 static INLINE unsigned int
1217 mode_from_disp_size (i386_operand_type t)
1218 {
1219 if (t.bitfield.disp8)
1220 return 1;
1221 else if (t.bitfield.disp16
1222 || t.bitfield.disp32
1223 || t.bitfield.disp32s)
1224 return 2;
1225 else
1226 return 0;
1227 }
1228
1229 static INLINE int
1230 fits_in_signed_byte (offsetT num)
1231 {
1232 return (num >= -128) && (num <= 127);
1233 }
1234
1235 static INLINE int
1236 fits_in_unsigned_byte (offsetT num)
1237 {
1238 return (num & 0xff) == num;
1239 }
1240
1241 static INLINE int
1242 fits_in_unsigned_word (offsetT num)
1243 {
1244 return (num & 0xffff) == num;
1245 }
1246
1247 static INLINE int
1248 fits_in_signed_word (offsetT num)
1249 {
1250 return (-32768 <= num) && (num <= 32767);
1251 }
1252
1253 static INLINE int
1254 fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
1255 {
1256 #ifndef BFD64
1257 return 1;
1258 #else
1259 return (!(((offsetT) -1 << 31) & num)
1260 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
1261 #endif
1262 } /* fits_in_signed_long() */
1263
1264 static INLINE int
1265 fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
1266 {
1267 #ifndef BFD64
1268 return 1;
1269 #else
1270 return (num & (((offsetT) 2 << 31) - 1)) == num;
1271 #endif
1272 } /* fits_in_unsigned_long() */
1273
1274 static i386_operand_type
1275 smallest_imm_type (offsetT num)
1276 {
1277 i386_operand_type t;
1278
1279 UINTS_CLEAR (t);
1280 t.bitfield.imm64 = 1;
1281
1282 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
1283 {
1284 /* This code is disabled on the 486 because all the Imm1 forms
1285 in the opcode table are slower on the i486. They're the
1286 versions with the implicitly specified single-position
1287 displacement, which has another syntax if you really want to
1288 use that form. */
1289 t.bitfield.imm1 = 1;
1290 t.bitfield.imm8 = 1;
1291 t.bitfield.imm8s = 1;
1292 t.bitfield.imm16 = 1;
1293 t.bitfield.imm32 = 1;
1294 t.bitfield.imm32s = 1;
1295 }
1296 else if (fits_in_signed_byte (num))
1297 {
1298 t.bitfield.imm8 = 1;
1299 t.bitfield.imm8s = 1;
1300 t.bitfield.imm16 = 1;
1301 t.bitfield.imm32 = 1;
1302 t.bitfield.imm32s = 1;
1303 }
1304 else if (fits_in_unsigned_byte (num))
1305 {
1306 t.bitfield.imm8 = 1;
1307 t.bitfield.imm16 = 1;
1308 t.bitfield.imm32 = 1;
1309 t.bitfield.imm32s = 1;
1310 }
1311 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
1312 {
1313 t.bitfield.imm16 = 1;
1314 t.bitfield.imm32 = 1;
1315 t.bitfield.imm32s = 1;
1316 }
1317 else if (fits_in_signed_long (num))
1318 {
1319 t.bitfield.imm32 = 1;
1320 t.bitfield.imm32s = 1;
1321 }
1322 else if (fits_in_unsigned_long (num))
1323 t.bitfield.imm32 = 1;
1324
1325 return t;
1326 }
1327
1328 static offsetT
1329 offset_in_range (offsetT val, int size)
1330 {
1331 addressT mask;
1332
1333 switch (size)
1334 {
1335 case 1: mask = ((addressT) 1 << 8) - 1; break;
1336 case 2: mask = ((addressT) 1 << 16) - 1; break;
1337 case 4: mask = ((addressT) 2 << 31) - 1; break;
1338 #ifdef BFD64
1339 case 8: mask = ((addressT) 2 << 63) - 1; break;
1340 #endif
1341 default: abort ();
1342 }
1343
1344 /* If BFD64, sign extend val. */
1345 if (!use_rela_relocations)
1346 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
1347 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
1348
1349 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
1350 {
1351 char buf1[40], buf2[40];
1352
1353 sprint_value (buf1, val);
1354 sprint_value (buf2, val & mask);
1355 as_warn (_("%s shortened to %s"), buf1, buf2);
1356 }
1357 return val & mask;
1358 }
1359
1360 /* Returns 0 if attempting to add a prefix where one from the same
1361 class already exists, 1 if non rep/repne added, 2 if rep/repne
1362 added. */
1363 static int
1364 add_prefix (unsigned int prefix)
1365 {
1366 int ret = 1;
1367 unsigned int q;
1368
1369 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
1370 && flag_code == CODE_64BIT)
1371 {
1372 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
1373 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
1374 && (prefix & (REX_R | REX_X | REX_B))))
1375 ret = 0;
1376 q = REX_PREFIX;
1377 }
1378 else
1379 {
1380 switch (prefix)
1381 {
1382 default:
1383 abort ();
1384
1385 case CS_PREFIX_OPCODE:
1386 case DS_PREFIX_OPCODE:
1387 case ES_PREFIX_OPCODE:
1388 case FS_PREFIX_OPCODE:
1389 case GS_PREFIX_OPCODE:
1390 case SS_PREFIX_OPCODE:
1391 q = SEG_PREFIX;
1392 break;
1393
1394 case REPNE_PREFIX_OPCODE:
1395 case REPE_PREFIX_OPCODE:
1396 ret = 2;
1397 /* fall thru */
1398 case LOCK_PREFIX_OPCODE:
1399 q = LOCKREP_PREFIX;
1400 break;
1401
1402 case FWAIT_OPCODE:
1403 q = WAIT_PREFIX;
1404 break;
1405
1406 case ADDR_PREFIX_OPCODE:
1407 q = ADDR_PREFIX;
1408 break;
1409
1410 case DATA_PREFIX_OPCODE:
1411 q = DATA_PREFIX;
1412 break;
1413 }
1414 if (i.prefix[q] != 0)
1415 ret = 0;
1416 }
1417
1418 if (ret)
1419 {
1420 if (!i.prefix[q])
1421 ++i.prefixes;
1422 i.prefix[q] |= prefix;
1423 }
1424 else
1425 as_bad (_("same type of prefix used twice"));
1426
1427 return ret;
1428 }
1429
1430 static void
1431 set_code_flag (int value)
1432 {
1433 flag_code = value;
1434 if (flag_code == CODE_64BIT)
1435 {
1436 cpu_arch_flags.bitfield.cpu64 = 1;
1437 cpu_arch_flags.bitfield.cpuno64 = 0;
1438 cpu_arch_flags_not.bitfield.cpu64 = 0;
1439 cpu_arch_flags_not.bitfield.cpuno64 = 1;
1440 }
1441 else
1442 {
1443 cpu_arch_flags.bitfield.cpu64 = 0;
1444 cpu_arch_flags.bitfield.cpuno64 = 1;
1445 cpu_arch_flags_not.bitfield.cpu64 = 1;
1446 cpu_arch_flags_not.bitfield.cpuno64 = 0;
1447 }
1448 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
1449 {
1450 as_bad (_("64bit mode not supported on this CPU."));
1451 }
1452 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
1453 {
1454 as_bad (_("32bit mode not supported on this CPU."));
1455 }
1456 stackop_size = '\0';
1457 }
1458
1459 static void
1460 set_16bit_gcc_code_flag (int new_code_flag)
1461 {
1462 flag_code = new_code_flag;
1463 if (flag_code != CODE_16BIT)
1464 abort ();
1465 cpu_arch_flags.bitfield.cpu64 = 0;
1466 cpu_arch_flags.bitfield.cpuno64 = 1;
1467 cpu_arch_flags_not.bitfield.cpu64 = 1;
1468 cpu_arch_flags_not.bitfield.cpuno64 = 0;
1469 stackop_size = LONG_MNEM_SUFFIX;
1470 }
1471
1472 static void
1473 set_intel_syntax (int syntax_flag)
1474 {
1475 /* Find out if register prefixing is specified. */
1476 int ask_naked_reg = 0;
1477
1478 SKIP_WHITESPACE ();
1479 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1480 {
1481 char *string = input_line_pointer;
1482 int e = get_symbol_end ();
1483
1484 if (strcmp (string, "prefix") == 0)
1485 ask_naked_reg = 1;
1486 else if (strcmp (string, "noprefix") == 0)
1487 ask_naked_reg = -1;
1488 else
1489 as_bad (_("bad argument to syntax directive."));
1490 *input_line_pointer = e;
1491 }
1492 demand_empty_rest_of_line ();
1493
1494 intel_syntax = syntax_flag;
1495
1496 if (ask_naked_reg == 0)
1497 allow_naked_reg = (intel_syntax
1498 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
1499 else
1500 allow_naked_reg = (ask_naked_reg < 0);
1501
1502 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
1503 identifier_chars['$'] = intel_syntax ? '$' : 0;
1504 register_prefix = allow_naked_reg ? "" : "%";
1505 }
1506
1507 static void
1508 set_allow_index_reg (int flag)
1509 {
1510 allow_index_reg = flag;
1511 }
1512
1513 static void
1514 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
1515 {
1516 SKIP_WHITESPACE ();
1517
1518 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1519 {
1520 char *string = input_line_pointer;
1521 int e = get_symbol_end ();
1522 unsigned int i;
1523 i386_cpu_flags flags;
1524
1525 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
1526 {
1527 if (strcmp (string, cpu_arch[i].name) == 0)
1528 {
1529 if (*string != '.')
1530 {
1531 cpu_arch_name = cpu_arch[i].name;
1532 cpu_sub_arch_name = NULL;
1533 cpu_arch_flags = cpu_arch[i].flags;
1534 if (flag_code == CODE_64BIT)
1535 {
1536 cpu_arch_flags.bitfield.cpu64 = 1;
1537 cpu_arch_flags.bitfield.cpuno64 = 0;
1538 }
1539 else
1540 {
1541 cpu_arch_flags.bitfield.cpu64 = 0;
1542 cpu_arch_flags.bitfield.cpuno64 = 1;
1543 }
1544 cpu_arch_flags_not = cpu_flags_not (cpu_arch_flags);
1545 cpu_arch_isa = cpu_arch[i].type;
1546 cpu_arch_isa_flags = cpu_arch[i].flags;
1547 if (!cpu_arch_tune_set)
1548 {
1549 cpu_arch_tune = cpu_arch_isa;
1550 cpu_arch_tune_flags = cpu_arch_isa_flags;
1551 }
1552 break;
1553 }
1554
1555 flags = cpu_flags_or (cpu_arch_flags,
1556 cpu_arch[i].flags);
1557 if (!UINTS_EQUAL (flags, cpu_arch_flags))
1558 {
1559 cpu_sub_arch_name = cpu_arch[i].name;
1560 cpu_arch_flags = flags;
1561 cpu_arch_flags_not = cpu_flags_not (cpu_arch_flags);
1562 }
1563 *input_line_pointer = e;
1564 demand_empty_rest_of_line ();
1565 return;
1566 }
1567 }
1568 if (i >= ARRAY_SIZE (cpu_arch))
1569 as_bad (_("no such architecture: `%s'"), string);
1570
1571 *input_line_pointer = e;
1572 }
1573 else
1574 as_bad (_("missing cpu architecture"));
1575
1576 no_cond_jump_promotion = 0;
1577 if (*input_line_pointer == ','
1578 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
1579 {
1580 char *string = ++input_line_pointer;
1581 int e = get_symbol_end ();
1582
1583 if (strcmp (string, "nojumps") == 0)
1584 no_cond_jump_promotion = 1;
1585 else if (strcmp (string, "jumps") == 0)
1586 ;
1587 else
1588 as_bad (_("no such architecture modifier: `%s'"), string);
1589
1590 *input_line_pointer = e;
1591 }
1592
1593 demand_empty_rest_of_line ();
1594 }
1595
1596 unsigned long
1597 i386_mach ()
1598 {
1599 if (!strcmp (default_arch, "x86_64"))
1600 return bfd_mach_x86_64;
1601 else if (!strcmp (default_arch, "i386"))
1602 return bfd_mach_i386_i386;
1603 else
1604 as_fatal (_("Unknown architecture"));
1605 }
1606 \f
1607 void
1608 md_begin ()
1609 {
1610 const char *hash_err;
1611
1612 cpu_arch_flags_not = cpu_flags_not (cpu_arch_flags);
1613
1614 /* Initialize op_hash hash table. */
1615 op_hash = hash_new ();
1616
1617 {
1618 const template *optab;
1619 templates *core_optab;
1620
1621 /* Setup for loop. */
1622 optab = i386_optab;
1623 core_optab = (templates *) xmalloc (sizeof (templates));
1624 core_optab->start = optab;
1625
1626 while (1)
1627 {
1628 ++optab;
1629 if (optab->name == NULL
1630 || strcmp (optab->name, (optab - 1)->name) != 0)
1631 {
1632 /* different name --> ship out current template list;
1633 add to hash table; & begin anew. */
1634 core_optab->end = optab;
1635 hash_err = hash_insert (op_hash,
1636 (optab - 1)->name,
1637 (PTR) core_optab);
1638 if (hash_err)
1639 {
1640 as_fatal (_("Internal Error: Can't hash %s: %s"),
1641 (optab - 1)->name,
1642 hash_err);
1643 }
1644 if (optab->name == NULL)
1645 break;
1646 core_optab = (templates *) xmalloc (sizeof (templates));
1647 core_optab->start = optab;
1648 }
1649 }
1650 }
1651
1652 /* Initialize reg_hash hash table. */
1653 reg_hash = hash_new ();
1654 {
1655 const reg_entry *regtab;
1656 unsigned int regtab_size = i386_regtab_size;
1657
1658 for (regtab = i386_regtab; regtab_size--; regtab++)
1659 {
1660 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
1661 if (hash_err)
1662 as_fatal (_("Internal Error: Can't hash %s: %s"),
1663 regtab->reg_name,
1664 hash_err);
1665 }
1666 }
1667
1668 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
1669 {
1670 int c;
1671 char *p;
1672
1673 for (c = 0; c < 256; c++)
1674 {
1675 if (ISDIGIT (c))
1676 {
1677 digit_chars[c] = c;
1678 mnemonic_chars[c] = c;
1679 register_chars[c] = c;
1680 operand_chars[c] = c;
1681 }
1682 else if (ISLOWER (c))
1683 {
1684 mnemonic_chars[c] = c;
1685 register_chars[c] = c;
1686 operand_chars[c] = c;
1687 }
1688 else if (ISUPPER (c))
1689 {
1690 mnemonic_chars[c] = TOLOWER (c);
1691 register_chars[c] = mnemonic_chars[c];
1692 operand_chars[c] = c;
1693 }
1694
1695 if (ISALPHA (c) || ISDIGIT (c))
1696 identifier_chars[c] = c;
1697 else if (c >= 128)
1698 {
1699 identifier_chars[c] = c;
1700 operand_chars[c] = c;
1701 }
1702 }
1703
1704 #ifdef LEX_AT
1705 identifier_chars['@'] = '@';
1706 #endif
1707 #ifdef LEX_QM
1708 identifier_chars['?'] = '?';
1709 operand_chars['?'] = '?';
1710 #endif
1711 digit_chars['-'] = '-';
1712 mnemonic_chars['-'] = '-';
1713 mnemonic_chars['.'] = '.';
1714 identifier_chars['_'] = '_';
1715 identifier_chars['.'] = '.';
1716
1717 for (p = operand_special_chars; *p != '\0'; p++)
1718 operand_chars[(unsigned char) *p] = *p;
1719 }
1720
1721 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1722 if (IS_ELF)
1723 {
1724 record_alignment (text_section, 2);
1725 record_alignment (data_section, 2);
1726 record_alignment (bss_section, 2);
1727 }
1728 #endif
1729
1730 if (flag_code == CODE_64BIT)
1731 {
1732 x86_dwarf2_return_column = 16;
1733 x86_cie_data_alignment = -8;
1734 }
1735 else
1736 {
1737 x86_dwarf2_return_column = 8;
1738 x86_cie_data_alignment = -4;
1739 }
1740 }
1741
1742 void
1743 i386_print_statistics (FILE *file)
1744 {
1745 hash_print_statistics (file, "i386 opcode", op_hash);
1746 hash_print_statistics (file, "i386 register", reg_hash);
1747 }
1748 \f
1749 #ifdef DEBUG386
1750
1751 /* Debugging routines for md_assemble. */
1752 static void pte (template *);
1753 static void pt (i386_operand_type);
1754 static void pe (expressionS *);
1755 static void ps (symbolS *);
1756
1757 static void
1758 pi (char *line, i386_insn *x)
1759 {
1760 unsigned int i;
1761
1762 fprintf (stdout, "%s: template ", line);
1763 pte (&x->tm);
1764 fprintf (stdout, " address: base %s index %s scale %x\n",
1765 x->base_reg ? x->base_reg->reg_name : "none",
1766 x->index_reg ? x->index_reg->reg_name : "none",
1767 x->log2_scale_factor);
1768 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
1769 x->rm.mode, x->rm.reg, x->rm.regmem);
1770 fprintf (stdout, " sib: base %x index %x scale %x\n",
1771 x->sib.base, x->sib.index, x->sib.scale);
1772 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
1773 (x->rex & REX_W) != 0,
1774 (x->rex & REX_R) != 0,
1775 (x->rex & REX_X) != 0,
1776 (x->rex & REX_B) != 0);
1777 fprintf (stdout, " drex: reg %d rex 0x%x\n",
1778 x->drex.reg, x->drex.rex);
1779 for (i = 0; i < x->operands; i++)
1780 {
1781 fprintf (stdout, " #%d: ", i + 1);
1782 pt (x->types[i]);
1783 fprintf (stdout, "\n");
1784 if (x->types[i].bitfield.reg8
1785 || x->types[i].bitfield.reg16
1786 || x->types[i].bitfield.reg32
1787 || x->types[i].bitfield.reg64
1788 || x->types[i].bitfield.regmmx
1789 || x->types[i].bitfield.regxmm
1790 || x->types[i].bitfield.sreg2
1791 || x->types[i].bitfield.sreg3
1792 || x->types[i].bitfield.control
1793 || x->types[i].bitfield.debug
1794 || x->types[i].bitfield.test)
1795 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
1796 if (operand_type_check (x->types[i], imm))
1797 pe (x->op[i].imms);
1798 if (operand_type_check (x->types[i], disp))
1799 pe (x->op[i].disps);
1800 }
1801 }
1802
1803 static void
1804 pte (template *t)
1805 {
1806 unsigned int i;
1807 fprintf (stdout, " %d operands ", t->operands);
1808 fprintf (stdout, "opcode %x ", t->base_opcode);
1809 if (t->extension_opcode != None)
1810 fprintf (stdout, "ext %x ", t->extension_opcode);
1811 if (t->opcode_modifier.d)
1812 fprintf (stdout, "D");
1813 if (t->opcode_modifier.w)
1814 fprintf (stdout, "W");
1815 fprintf (stdout, "\n");
1816 for (i = 0; i < t->operands; i++)
1817 {
1818 fprintf (stdout, " #%d type ", i + 1);
1819 pt (t->operand_types[i]);
1820 fprintf (stdout, "\n");
1821 }
1822 }
1823
1824 static void
1825 pe (expressionS *e)
1826 {
1827 fprintf (stdout, " operation %d\n", e->X_op);
1828 fprintf (stdout, " add_number %ld (%lx)\n",
1829 (long) e->X_add_number, (long) e->X_add_number);
1830 if (e->X_add_symbol)
1831 {
1832 fprintf (stdout, " add_symbol ");
1833 ps (e->X_add_symbol);
1834 fprintf (stdout, "\n");
1835 }
1836 if (e->X_op_symbol)
1837 {
1838 fprintf (stdout, " op_symbol ");
1839 ps (e->X_op_symbol);
1840 fprintf (stdout, "\n");
1841 }
1842 }
1843
1844 static void
1845 ps (symbolS *s)
1846 {
1847 fprintf (stdout, "%s type %s%s",
1848 S_GET_NAME (s),
1849 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1850 segment_name (S_GET_SEGMENT (s)));
1851 }
1852
1853 static struct type_name
1854 {
1855 i386_operand_type mask;
1856 const char *name;
1857 }
1858 const type_names[] =
1859 {
1860 { OPERAND_TYPE_REG8, "r8" },
1861 { OPERAND_TYPE_REG16, "r16" },
1862 { OPERAND_TYPE_REG32, "r32" },
1863 { OPERAND_TYPE_REG64, "r64" },
1864 { OPERAND_TYPE_IMM8, "i8" },
1865 { OPERAND_TYPE_IMM8, "i8s" },
1866 { OPERAND_TYPE_IMM16, "i16" },
1867 { OPERAND_TYPE_IMM32, "i32" },
1868 { OPERAND_TYPE_IMM32S, "i32s" },
1869 { OPERAND_TYPE_IMM64, "i64" },
1870 { OPERAND_TYPE_IMM1, "i1" },
1871 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
1872 { OPERAND_TYPE_DISP8, "d8" },
1873 { OPERAND_TYPE_DISP16, "d16" },
1874 { OPERAND_TYPE_DISP32, "d32" },
1875 { OPERAND_TYPE_DISP32S, "d32s" },
1876 { OPERAND_TYPE_DISP64, "d64" },
1877 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
1878 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
1879 { OPERAND_TYPE_CONTROL, "control reg" },
1880 { OPERAND_TYPE_TEST, "test reg" },
1881 { OPERAND_TYPE_DEBUG, "debug reg" },
1882 { OPERAND_TYPE_FLOATREG, "FReg" },
1883 { OPERAND_TYPE_FLOATACC, "FAcc" },
1884 { OPERAND_TYPE_SREG2, "SReg2" },
1885 { OPERAND_TYPE_SREG3, "SReg3" },
1886 { OPERAND_TYPE_ACC, "Acc" },
1887 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
1888 { OPERAND_TYPE_REGMMX, "rMMX" },
1889 { OPERAND_TYPE_REGXMM, "rXMM" },
1890 { OPERAND_TYPE_ESSEG, "es" },
1891 };
1892
1893 static void
1894 pt (i386_operand_type t)
1895 {
1896 unsigned int j;
1897 i386_operand_type a;
1898
1899 for (j = 0; j < ARRAY_SIZE (type_names); j++)
1900 {
1901 a = operand_type_and (t, type_names[j].mask);
1902 if (!UINTS_ALL_ZERO (a))
1903 fprintf (stdout, "%s, ", type_names[j].name);
1904 }
1905 fflush (stdout);
1906 }
1907
1908 #endif /* DEBUG386 */
1909 \f
1910 static bfd_reloc_code_real_type
1911 reloc (unsigned int size,
1912 int pcrel,
1913 int sign,
1914 bfd_reloc_code_real_type other)
1915 {
1916 if (other != NO_RELOC)
1917 {
1918 reloc_howto_type *reloc;
1919
1920 if (size == 8)
1921 switch (other)
1922 {
1923 case BFD_RELOC_X86_64_GOT32:
1924 return BFD_RELOC_X86_64_GOT64;
1925 break;
1926 case BFD_RELOC_X86_64_PLTOFF64:
1927 return BFD_RELOC_X86_64_PLTOFF64;
1928 break;
1929 case BFD_RELOC_X86_64_GOTPC32:
1930 other = BFD_RELOC_X86_64_GOTPC64;
1931 break;
1932 case BFD_RELOC_X86_64_GOTPCREL:
1933 other = BFD_RELOC_X86_64_GOTPCREL64;
1934 break;
1935 case BFD_RELOC_X86_64_TPOFF32:
1936 other = BFD_RELOC_X86_64_TPOFF64;
1937 break;
1938 case BFD_RELOC_X86_64_DTPOFF32:
1939 other = BFD_RELOC_X86_64_DTPOFF64;
1940 break;
1941 default:
1942 break;
1943 }
1944
1945 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
1946 if (size == 4 && flag_code != CODE_64BIT)
1947 sign = -1;
1948
1949 reloc = bfd_reloc_type_lookup (stdoutput, other);
1950 if (!reloc)
1951 as_bad (_("unknown relocation (%u)"), other);
1952 else if (size != bfd_get_reloc_size (reloc))
1953 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
1954 bfd_get_reloc_size (reloc),
1955 size);
1956 else if (pcrel && !reloc->pc_relative)
1957 as_bad (_("non-pc-relative relocation for pc-relative field"));
1958 else if ((reloc->complain_on_overflow == complain_overflow_signed
1959 && !sign)
1960 || (reloc->complain_on_overflow == complain_overflow_unsigned
1961 && sign > 0))
1962 as_bad (_("relocated field and relocation type differ in signedness"));
1963 else
1964 return other;
1965 return NO_RELOC;
1966 }
1967
1968 if (pcrel)
1969 {
1970 if (!sign)
1971 as_bad (_("there are no unsigned pc-relative relocations"));
1972 switch (size)
1973 {
1974 case 1: return BFD_RELOC_8_PCREL;
1975 case 2: return BFD_RELOC_16_PCREL;
1976 case 4: return BFD_RELOC_32_PCREL;
1977 case 8: return BFD_RELOC_64_PCREL;
1978 }
1979 as_bad (_("cannot do %u byte pc-relative relocation"), size);
1980 }
1981 else
1982 {
1983 if (sign > 0)
1984 switch (size)
1985 {
1986 case 4: return BFD_RELOC_X86_64_32S;
1987 }
1988 else
1989 switch (size)
1990 {
1991 case 1: return BFD_RELOC_8;
1992 case 2: return BFD_RELOC_16;
1993 case 4: return BFD_RELOC_32;
1994 case 8: return BFD_RELOC_64;
1995 }
1996 as_bad (_("cannot do %s %u byte relocation"),
1997 sign > 0 ? "signed" : "unsigned", size);
1998 }
1999
2000 abort ();
2001 return BFD_RELOC_NONE;
2002 }
2003
2004 /* Here we decide which fixups can be adjusted to make them relative to
2005 the beginning of the section instead of the symbol. Basically we need
2006 to make sure that the dynamic relocations are done correctly, so in
2007 some cases we force the original symbol to be used. */
2008
2009 int
2010 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
2011 {
2012 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2013 if (!IS_ELF)
2014 return 1;
2015
2016 /* Don't adjust pc-relative references to merge sections in 64-bit
2017 mode. */
2018 if (use_rela_relocations
2019 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2020 && fixP->fx_pcrel)
2021 return 0;
2022
2023 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2024 and changed later by validate_fix. */
2025 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2026 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2027 return 0;
2028
2029 /* adjust_reloc_syms doesn't know about the GOT. */
2030 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
2031 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2032 || fixP->fx_r_type == BFD_RELOC_386_GOT32
2033 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2034 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2035 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2036 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
2037 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2038 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
2039 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2040 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
2041 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2042 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
2043 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2044 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
2045 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
2046 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2047 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2048 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
2049 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
2050 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2051 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
2052 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2053 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
2054 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2055 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
2056 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2057 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2058 return 0;
2059 #endif
2060 return 1;
2061 }
2062
2063 static int
2064 intel_float_operand (const char *mnemonic)
2065 {
2066 /* Note that the value returned is meaningful only for opcodes with (memory)
2067 operands, hence the code here is free to improperly handle opcodes that
2068 have no operands (for better performance and smaller code). */
2069
2070 if (mnemonic[0] != 'f')
2071 return 0; /* non-math */
2072
2073 switch (mnemonic[1])
2074 {
2075 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2076 the fs segment override prefix not currently handled because no
2077 call path can make opcodes without operands get here */
2078 case 'i':
2079 return 2 /* integer op */;
2080 case 'l':
2081 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
2082 return 3; /* fldcw/fldenv */
2083 break;
2084 case 'n':
2085 if (mnemonic[2] != 'o' /* fnop */)
2086 return 3; /* non-waiting control op */
2087 break;
2088 case 'r':
2089 if (mnemonic[2] == 's')
2090 return 3; /* frstor/frstpm */
2091 break;
2092 case 's':
2093 if (mnemonic[2] == 'a')
2094 return 3; /* fsave */
2095 if (mnemonic[2] == 't')
2096 {
2097 switch (mnemonic[3])
2098 {
2099 case 'c': /* fstcw */
2100 case 'd': /* fstdw */
2101 case 'e': /* fstenv */
2102 case 's': /* fsts[gw] */
2103 return 3;
2104 }
2105 }
2106 break;
2107 case 'x':
2108 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
2109 return 0; /* fxsave/fxrstor are not really math ops */
2110 break;
2111 }
2112
2113 return 1;
2114 }
2115
2116 /* This is the guts of the machine-dependent assembler. LINE points to a
2117 machine dependent instruction. This function is supposed to emit
2118 the frags/bytes it assembles to. */
2119
2120 void
2121 md_assemble (line)
2122 char *line;
2123 {
2124 unsigned int j;
2125 char mnemonic[MAX_MNEM_SIZE];
2126
2127 /* Initialize globals. */
2128 memset (&i, '\0', sizeof (i));
2129 for (j = 0; j < MAX_OPERANDS; j++)
2130 i.reloc[j] = NO_RELOC;
2131 memset (disp_expressions, '\0', sizeof (disp_expressions));
2132 memset (im_expressions, '\0', sizeof (im_expressions));
2133 save_stack_p = save_stack;
2134
2135 /* First parse an instruction mnemonic & call i386_operand for the operands.
2136 We assume that the scrubber has arranged it so that line[0] is the valid
2137 start of a (possibly prefixed) mnemonic. */
2138
2139 line = parse_insn (line, mnemonic);
2140 if (line == NULL)
2141 return;
2142
2143 line = parse_operands (line, mnemonic);
2144 if (line == NULL)
2145 return;
2146
2147 /* Now we've parsed the mnemonic into a set of templates, and have the
2148 operands at hand. */
2149
2150 /* All intel opcodes have reversed operands except for "bound" and
2151 "enter". We also don't reverse intersegment "jmp" and "call"
2152 instructions with 2 immediate operands so that the immediate segment
2153 precedes the offset, as it does when in AT&T mode. */
2154 if (intel_syntax
2155 && i.operands > 1
2156 && (strcmp (mnemonic, "bound") != 0)
2157 && (strcmp (mnemonic, "invlpga") != 0)
2158 && !(operand_type_check (i.types[0], imm)
2159 && operand_type_check (i.types[1], imm)))
2160 swap_operands ();
2161
2162 /* The order of the immediates should be reversed
2163 for 2 immediates extrq and insertq instructions */
2164 if (i.imm_operands == 2
2165 && (strcmp (mnemonic, "extrq") == 0
2166 || strcmp (mnemonic, "insertq") == 0))
2167 swap_2_operands (0, 1);
2168
2169 if (i.imm_operands)
2170 optimize_imm ();
2171
2172 /* Don't optimize displacement for movabs since it only takes 64bit
2173 displacement. */
2174 if (i.disp_operands
2175 && (flag_code != CODE_64BIT
2176 || strcmp (mnemonic, "movabs") != 0))
2177 optimize_disp ();
2178
2179 /* Next, we find a template that matches the given insn,
2180 making sure the overlap of the given operands types is consistent
2181 with the template operand types. */
2182
2183 if (!match_template ())
2184 return;
2185
2186 if (intel_syntax)
2187 {
2188 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
2189 if (SYSV386_COMPAT
2190 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
2191 i.tm.base_opcode ^= Opcode_FloatR;
2192
2193 /* Zap movzx and movsx suffix. The suffix may have been set from
2194 "word ptr" or "byte ptr" on the source operand, but we'll use
2195 the suffix later to choose the destination register. */
2196 if ((i.tm.base_opcode & ~9) == 0x0fb6)
2197 {
2198 if (i.reg_operands < 2
2199 && !i.suffix
2200 && (!i.tm.opcode_modifier.no_bsuf
2201 || !i.tm.opcode_modifier.no_wsuf
2202 || !i.tm.opcode_modifier.no_lsuf
2203 || !i.tm.opcode_modifier.no_ssuf
2204 || !i.tm.opcode_modifier.no_ldsuf
2205 || !i.tm.opcode_modifier.no_qsuf))
2206 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2207
2208 i.suffix = 0;
2209 }
2210 }
2211
2212 if (i.tm.opcode_modifier.fwait)
2213 if (!add_prefix (FWAIT_OPCODE))
2214 return;
2215
2216 /* Check string instruction segment overrides. */
2217 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
2218 {
2219 if (!check_string ())
2220 return;
2221 }
2222
2223 if (!process_suffix ())
2224 return;
2225
2226 /* Make still unresolved immediate matches conform to size of immediate
2227 given in i.suffix. */
2228 if (!finalize_imm ())
2229 return;
2230
2231 if (i.types[0].bitfield.imm1)
2232 i.imm_operands = 0; /* kludge for shift insns. */
2233
2234 for (j = 0; j < 3; j++)
2235 if (i.types[j].bitfield.inoutportreg
2236 || i.types[j].bitfield.shiftcount
2237 || i.types[j].bitfield.acc
2238 || i.types[j].bitfield.floatacc)
2239 i.reg_operands--;
2240
2241 if (i.tm.opcode_modifier.immext)
2242 {
2243 expressionS *exp;
2244
2245 if (i.tm.cpu_flags.bitfield.cpusse3 && i.operands > 0)
2246 {
2247 /* Streaming SIMD extensions 3 Instructions have the fixed
2248 operands with an opcode suffix which is coded in the same
2249 place as an 8-bit immediate field would be. Here we check
2250 those operands and remove them afterwards. */
2251 unsigned int x;
2252
2253 for (x = 0; x < i.operands; x++)
2254 if (i.op[x].regs->reg_num != x)
2255 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
2256 register_prefix,
2257 i.op[x].regs->reg_name,
2258 x + 1,
2259 i.tm.name);
2260 i.operands = 0;
2261 }
2262
2263 /* These AMD 3DNow! and Intel Katmai New Instructions have an
2264 opcode suffix which is coded in the same place as an 8-bit
2265 immediate field would be. Here we fake an 8-bit immediate
2266 operand from the opcode suffix stored in tm.extension_opcode.
2267 SSE5 also uses this encoding, for some of its 3 argument
2268 instructions. */
2269
2270 assert (i.imm_operands == 0
2271 && (i.operands <= 2
2272 || (i.tm.cpu_flags.bitfield.cpusse5
2273 && i.operands <= 3)));
2274
2275 exp = &im_expressions[i.imm_operands++];
2276 i.op[i.operands].imms = exp;
2277 UINTS_CLEAR (i.types[i.operands]);
2278 i.types[i.operands].bitfield.imm8 = 1;
2279 i.operands++;
2280 exp->X_op = O_constant;
2281 exp->X_add_number = i.tm.extension_opcode;
2282 i.tm.extension_opcode = None;
2283 }
2284
2285 /* For insns with operands there are more diddles to do to the opcode. */
2286 if (i.operands)
2287 {
2288 if (!process_operands ())
2289 return;
2290 }
2291 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
2292 {
2293 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2294 as_warn (_("translating to `%sp'"), i.tm.name);
2295 }
2296
2297 /* Handle conversion of 'int $3' --> special int3 insn. */
2298 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
2299 {
2300 i.tm.base_opcode = INT3_OPCODE;
2301 i.imm_operands = 0;
2302 }
2303
2304 if ((i.tm.opcode_modifier.jump
2305 || i.tm.opcode_modifier.jumpbyte
2306 || i.tm.opcode_modifier.jumpdword)
2307 && i.op[0].disps->X_op == O_constant)
2308 {
2309 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2310 the absolute address given by the constant. Since ix86 jumps and
2311 calls are pc relative, we need to generate a reloc. */
2312 i.op[0].disps->X_add_symbol = &abs_symbol;
2313 i.op[0].disps->X_op = O_symbol;
2314 }
2315
2316 if (i.tm.opcode_modifier.rex64)
2317 i.rex |= REX_W;
2318
2319 /* For 8 bit registers we need an empty rex prefix. Also if the
2320 instruction already has a prefix, we need to convert old
2321 registers to new ones. */
2322
2323 if ((i.types[0].bitfield.reg8
2324 && (i.op[0].regs->reg_flags & RegRex64) != 0)
2325 || (i.types[1].bitfield.reg8
2326 && (i.op[1].regs->reg_flags & RegRex64) != 0)
2327 || ((i.types[0].bitfield.reg8
2328 || i.types[1].bitfield.reg8)
2329 && i.rex != 0))
2330 {
2331 int x;
2332
2333 i.rex |= REX_OPCODE;
2334 for (x = 0; x < 2; x++)
2335 {
2336 /* Look for 8 bit operand that uses old registers. */
2337 if (i.types[x].bitfield.reg8
2338 && (i.op[x].regs->reg_flags & RegRex64) == 0)
2339 {
2340 /* In case it is "hi" register, give up. */
2341 if (i.op[x].regs->reg_num > 3)
2342 as_bad (_("can't encode register '%s%s' in an "
2343 "instruction requiring REX prefix."),
2344 register_prefix, i.op[x].regs->reg_name);
2345
2346 /* Otherwise it is equivalent to the extended register.
2347 Since the encoding doesn't change this is merely
2348 cosmetic cleanup for debug output. */
2349
2350 i.op[x].regs = i.op[x].regs + 8;
2351 }
2352 }
2353 }
2354
2355 /* If the instruction has the DREX attribute (aka SSE5), don't emit a
2356 REX prefix. */
2357 if (i.tm.opcode_modifier.drex || i.tm.opcode_modifier.drexc)
2358 {
2359 i.drex.rex = i.rex;
2360 i.rex = 0;
2361 }
2362 else if (i.rex != 0)
2363 add_prefix (REX_OPCODE | i.rex);
2364
2365 /* We are ready to output the insn. */
2366 output_insn ();
2367 }
2368
2369 static char *
2370 parse_insn (char *line, char *mnemonic)
2371 {
2372 char *l = line;
2373 char *token_start = l;
2374 char *mnem_p;
2375 int supported;
2376 const template *t;
2377
2378 /* Non-zero if we found a prefix only acceptable with string insns. */
2379 const char *expecting_string_instruction = NULL;
2380
2381 while (1)
2382 {
2383 mnem_p = mnemonic;
2384 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
2385 {
2386 mnem_p++;
2387 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
2388 {
2389 as_bad (_("no such instruction: `%s'"), token_start);
2390 return NULL;
2391 }
2392 l++;
2393 }
2394 if (!is_space_char (*l)
2395 && *l != END_OF_INSN
2396 && (intel_syntax
2397 || (*l != PREFIX_SEPARATOR
2398 && *l != ',')))
2399 {
2400 as_bad (_("invalid character %s in mnemonic"),
2401 output_invalid (*l));
2402 return NULL;
2403 }
2404 if (token_start == l)
2405 {
2406 if (!intel_syntax && *l == PREFIX_SEPARATOR)
2407 as_bad (_("expecting prefix; got nothing"));
2408 else
2409 as_bad (_("expecting mnemonic; got nothing"));
2410 return NULL;
2411 }
2412
2413 /* Look up instruction (or prefix) via hash table. */
2414 current_templates = hash_find (op_hash, mnemonic);
2415
2416 if (*l != END_OF_INSN
2417 && (!is_space_char (*l) || l[1] != END_OF_INSN)
2418 && current_templates
2419 && current_templates->start->opcode_modifier.isprefix)
2420 {
2421 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
2422 {
2423 as_bad ((flag_code != CODE_64BIT
2424 ? _("`%s' is only supported in 64-bit mode")
2425 : _("`%s' is not supported in 64-bit mode")),
2426 current_templates->start->name);
2427 return NULL;
2428 }
2429 /* If we are in 16-bit mode, do not allow addr16 or data16.
2430 Similarly, in 32-bit mode, do not allow addr32 or data32. */
2431 if ((current_templates->start->opcode_modifier.size16
2432 || current_templates->start->opcode_modifier.size32)
2433 && flag_code != CODE_64BIT
2434 && (current_templates->start->opcode_modifier.size32
2435 ^ (flag_code == CODE_16BIT)))
2436 {
2437 as_bad (_("redundant %s prefix"),
2438 current_templates->start->name);
2439 return NULL;
2440 }
2441 /* Add prefix, checking for repeated prefixes. */
2442 switch (add_prefix (current_templates->start->base_opcode))
2443 {
2444 case 0:
2445 return NULL;
2446 case 2:
2447 expecting_string_instruction = current_templates->start->name;
2448 break;
2449 }
2450 /* Skip past PREFIX_SEPARATOR and reset token_start. */
2451 token_start = ++l;
2452 }
2453 else
2454 break;
2455 }
2456
2457 if (!current_templates)
2458 {
2459 /* See if we can get a match by trimming off a suffix. */
2460 switch (mnem_p[-1])
2461 {
2462 case WORD_MNEM_SUFFIX:
2463 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
2464 i.suffix = SHORT_MNEM_SUFFIX;
2465 else
2466 case BYTE_MNEM_SUFFIX:
2467 case QWORD_MNEM_SUFFIX:
2468 i.suffix = mnem_p[-1];
2469 mnem_p[-1] = '\0';
2470 current_templates = hash_find (op_hash, mnemonic);
2471 break;
2472 case SHORT_MNEM_SUFFIX:
2473 case LONG_MNEM_SUFFIX:
2474 if (!intel_syntax)
2475 {
2476 i.suffix = mnem_p[-1];
2477 mnem_p[-1] = '\0';
2478 current_templates = hash_find (op_hash, mnemonic);
2479 }
2480 break;
2481
2482 /* Intel Syntax. */
2483 case 'd':
2484 if (intel_syntax)
2485 {
2486 if (intel_float_operand (mnemonic) == 1)
2487 i.suffix = SHORT_MNEM_SUFFIX;
2488 else
2489 i.suffix = LONG_MNEM_SUFFIX;
2490 mnem_p[-1] = '\0';
2491 current_templates = hash_find (op_hash, mnemonic);
2492 }
2493 break;
2494 }
2495 if (!current_templates)
2496 {
2497 as_bad (_("no such instruction: `%s'"), token_start);
2498 return NULL;
2499 }
2500 }
2501
2502 if (current_templates->start->opcode_modifier.jump
2503 || current_templates->start->opcode_modifier.jumpbyte)
2504 {
2505 /* Check for a branch hint. We allow ",pt" and ",pn" for
2506 predict taken and predict not taken respectively.
2507 I'm not sure that branch hints actually do anything on loop
2508 and jcxz insns (JumpByte) for current Pentium4 chips. They
2509 may work in the future and it doesn't hurt to accept them
2510 now. */
2511 if (l[0] == ',' && l[1] == 'p')
2512 {
2513 if (l[2] == 't')
2514 {
2515 if (!add_prefix (DS_PREFIX_OPCODE))
2516 return NULL;
2517 l += 3;
2518 }
2519 else if (l[2] == 'n')
2520 {
2521 if (!add_prefix (CS_PREFIX_OPCODE))
2522 return NULL;
2523 l += 3;
2524 }
2525 }
2526 }
2527 /* Any other comma loses. */
2528 if (*l == ',')
2529 {
2530 as_bad (_("invalid character %s in mnemonic"),
2531 output_invalid (*l));
2532 return NULL;
2533 }
2534
2535 /* Check if instruction is supported on specified architecture. */
2536 supported = 0;
2537 for (t = current_templates->start; t < current_templates->end; ++t)
2538 {
2539 if (cpu_flags_match (t->cpu_flags))
2540 supported |= 1;
2541 if (cpu_flags_check_cpu64 (t->cpu_flags))
2542 supported |= 2;
2543 }
2544 if (!(supported & 2))
2545 {
2546 as_bad (flag_code == CODE_64BIT
2547 ? _("`%s' is not supported in 64-bit mode")
2548 : _("`%s' is only supported in 64-bit mode"),
2549 current_templates->start->name);
2550 return NULL;
2551 }
2552 if (!(supported & 1))
2553 {
2554 as_warn (_("`%s' is not supported on `%s%s'"),
2555 current_templates->start->name,
2556 cpu_arch_name,
2557 cpu_sub_arch_name ? cpu_sub_arch_name : "");
2558 }
2559 else if (!cpu_arch_flags.bitfield.cpui386
2560 && (flag_code != CODE_16BIT))
2561 {
2562 as_warn (_("use .code16 to ensure correct addressing mode"));
2563 }
2564
2565 /* Check for rep/repne without a string instruction. */
2566 if (expecting_string_instruction)
2567 {
2568 static templates override;
2569
2570 for (t = current_templates->start; t < current_templates->end; ++t)
2571 if (t->opcode_modifier.isstring)
2572 break;
2573 if (t >= current_templates->end)
2574 {
2575 as_bad (_("expecting string instruction after `%s'"),
2576 expecting_string_instruction);
2577 return NULL;
2578 }
2579 for (override.start = t; t < current_templates->end; ++t)
2580 if (!t->opcode_modifier.isstring)
2581 break;
2582 override.end = t;
2583 current_templates = &override;
2584 }
2585
2586 return l;
2587 }
2588
2589 static char *
2590 parse_operands (char *l, const char *mnemonic)
2591 {
2592 char *token_start;
2593
2594 /* 1 if operand is pending after ','. */
2595 unsigned int expecting_operand = 0;
2596
2597 /* Non-zero if operand parens not balanced. */
2598 unsigned int paren_not_balanced;
2599
2600 while (*l != END_OF_INSN)
2601 {
2602 /* Skip optional white space before operand. */
2603 if (is_space_char (*l))
2604 ++l;
2605 if (!is_operand_char (*l) && *l != END_OF_INSN)
2606 {
2607 as_bad (_("invalid character %s before operand %d"),
2608 output_invalid (*l),
2609 i.operands + 1);
2610 return NULL;
2611 }
2612 token_start = l; /* after white space */
2613 paren_not_balanced = 0;
2614 while (paren_not_balanced || *l != ',')
2615 {
2616 if (*l == END_OF_INSN)
2617 {
2618 if (paren_not_balanced)
2619 {
2620 if (!intel_syntax)
2621 as_bad (_("unbalanced parenthesis in operand %d."),
2622 i.operands + 1);
2623 else
2624 as_bad (_("unbalanced brackets in operand %d."),
2625 i.operands + 1);
2626 return NULL;
2627 }
2628 else
2629 break; /* we are done */
2630 }
2631 else if (!is_operand_char (*l) && !is_space_char (*l))
2632 {
2633 as_bad (_("invalid character %s in operand %d"),
2634 output_invalid (*l),
2635 i.operands + 1);
2636 return NULL;
2637 }
2638 if (!intel_syntax)
2639 {
2640 if (*l == '(')
2641 ++paren_not_balanced;
2642 if (*l == ')')
2643 --paren_not_balanced;
2644 }
2645 else
2646 {
2647 if (*l == '[')
2648 ++paren_not_balanced;
2649 if (*l == ']')
2650 --paren_not_balanced;
2651 }
2652 l++;
2653 }
2654 if (l != token_start)
2655 { /* Yes, we've read in another operand. */
2656 unsigned int operand_ok;
2657 this_operand = i.operands++;
2658 if (i.operands > MAX_OPERANDS)
2659 {
2660 as_bad (_("spurious operands; (%d operands/instruction max)"),
2661 MAX_OPERANDS);
2662 return NULL;
2663 }
2664 /* Now parse operand adding info to 'i' as we go along. */
2665 END_STRING_AND_SAVE (l);
2666
2667 if (intel_syntax)
2668 operand_ok =
2669 i386_intel_operand (token_start,
2670 intel_float_operand (mnemonic));
2671 else
2672 operand_ok = i386_operand (token_start);
2673
2674 RESTORE_END_STRING (l);
2675 if (!operand_ok)
2676 return NULL;
2677 }
2678 else
2679 {
2680 if (expecting_operand)
2681 {
2682 expecting_operand_after_comma:
2683 as_bad (_("expecting operand after ','; got nothing"));
2684 return NULL;
2685 }
2686 if (*l == ',')
2687 {
2688 as_bad (_("expecting operand before ','; got nothing"));
2689 return NULL;
2690 }
2691 }
2692
2693 /* Now *l must be either ',' or END_OF_INSN. */
2694 if (*l == ',')
2695 {
2696 if (*++l == END_OF_INSN)
2697 {
2698 /* Just skip it, if it's \n complain. */
2699 goto expecting_operand_after_comma;
2700 }
2701 expecting_operand = 1;
2702 }
2703 }
2704 return l;
2705 }
2706
2707 static void
2708 swap_2_operands (int xchg1, int xchg2)
2709 {
2710 union i386_op temp_op;
2711 i386_operand_type temp_type;
2712 enum bfd_reloc_code_real temp_reloc;
2713
2714 temp_type = i.types[xchg2];
2715 i.types[xchg2] = i.types[xchg1];
2716 i.types[xchg1] = temp_type;
2717 temp_op = i.op[xchg2];
2718 i.op[xchg2] = i.op[xchg1];
2719 i.op[xchg1] = temp_op;
2720 temp_reloc = i.reloc[xchg2];
2721 i.reloc[xchg2] = i.reloc[xchg1];
2722 i.reloc[xchg1] = temp_reloc;
2723 }
2724
2725 static void
2726 swap_operands (void)
2727 {
2728 switch (i.operands)
2729 {
2730 case 4:
2731 swap_2_operands (1, i.operands - 2);
2732 case 3:
2733 case 2:
2734 swap_2_operands (0, i.operands - 1);
2735 break;
2736 default:
2737 abort ();
2738 }
2739
2740 if (i.mem_operands == 2)
2741 {
2742 const seg_entry *temp_seg;
2743 temp_seg = i.seg[0];
2744 i.seg[0] = i.seg[1];
2745 i.seg[1] = temp_seg;
2746 }
2747 }
2748
2749 /* Try to ensure constant immediates are represented in the smallest
2750 opcode possible. */
2751 static void
2752 optimize_imm (void)
2753 {
2754 char guess_suffix = 0;
2755 int op;
2756
2757 if (i.suffix)
2758 guess_suffix = i.suffix;
2759 else if (i.reg_operands)
2760 {
2761 /* Figure out a suffix from the last register operand specified.
2762 We can't do this properly yet, ie. excluding InOutPortReg,
2763 but the following works for instructions with immediates.
2764 In any case, we can't set i.suffix yet. */
2765 for (op = i.operands; --op >= 0;)
2766 if (i.types[op].bitfield.reg8)
2767 {
2768 guess_suffix = BYTE_MNEM_SUFFIX;
2769 break;
2770 }
2771 else if (i.types[op].bitfield.reg16)
2772 {
2773 guess_suffix = WORD_MNEM_SUFFIX;
2774 break;
2775 }
2776 else if (i.types[op].bitfield.reg32)
2777 {
2778 guess_suffix = LONG_MNEM_SUFFIX;
2779 break;
2780 }
2781 else if (i.types[op].bitfield.reg64)
2782 {
2783 guess_suffix = QWORD_MNEM_SUFFIX;
2784 break;
2785 }
2786 }
2787 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
2788 guess_suffix = WORD_MNEM_SUFFIX;
2789
2790 for (op = i.operands; --op >= 0;)
2791 if (operand_type_check (i.types[op], imm))
2792 {
2793 switch (i.op[op].imms->X_op)
2794 {
2795 case O_constant:
2796 /* If a suffix is given, this operand may be shortened. */
2797 switch (guess_suffix)
2798 {
2799 case LONG_MNEM_SUFFIX:
2800 i.types[op].bitfield.imm32 = 1;
2801 i.types[op].bitfield.imm64 = 1;
2802 break;
2803 case WORD_MNEM_SUFFIX:
2804 i.types[op].bitfield.imm16 = 1;
2805 i.types[op].bitfield.imm32 = 1;
2806 i.types[op].bitfield.imm32s = 1;
2807 i.types[op].bitfield.imm64 = 1;
2808 break;
2809 case BYTE_MNEM_SUFFIX:
2810 i.types[op].bitfield.imm8 = 1;
2811 i.types[op].bitfield.imm8s = 1;
2812 i.types[op].bitfield.imm16 = 1;
2813 i.types[op].bitfield.imm32 = 1;
2814 i.types[op].bitfield.imm32s = 1;
2815 i.types[op].bitfield.imm64 = 1;
2816 break;
2817 }
2818
2819 /* If this operand is at most 16 bits, convert it
2820 to a signed 16 bit number before trying to see
2821 whether it will fit in an even smaller size.
2822 This allows a 16-bit operand such as $0xffe0 to
2823 be recognised as within Imm8S range. */
2824 if ((i.types[op].bitfield.imm16)
2825 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
2826 {
2827 i.op[op].imms->X_add_number =
2828 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
2829 }
2830 if ((i.types[op].bitfield.imm32)
2831 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
2832 == 0))
2833 {
2834 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
2835 ^ ((offsetT) 1 << 31))
2836 - ((offsetT) 1 << 31));
2837 }
2838 i.types[op]
2839 = operand_type_or (i.types[op],
2840 smallest_imm_type (i.op[op].imms->X_add_number));
2841
2842 /* We must avoid matching of Imm32 templates when 64bit
2843 only immediate is available. */
2844 if (guess_suffix == QWORD_MNEM_SUFFIX)
2845 i.types[op].bitfield.imm32 = 0;
2846 break;
2847
2848 case O_absent:
2849 case O_register:
2850 abort ();
2851
2852 /* Symbols and expressions. */
2853 default:
2854 /* Convert symbolic operand to proper sizes for matching, but don't
2855 prevent matching a set of insns that only supports sizes other
2856 than those matching the insn suffix. */
2857 {
2858 i386_operand_type mask, allowed;
2859 const template *t;
2860
2861 UINTS_CLEAR (mask);
2862 UINTS_CLEAR (allowed);
2863
2864 for (t = current_templates->start;
2865 t < current_templates->end;
2866 ++t)
2867 allowed = operand_type_or (allowed,
2868 t->operand_types[op]);
2869 switch (guess_suffix)
2870 {
2871 case QWORD_MNEM_SUFFIX:
2872 mask.bitfield.imm64 = 1;
2873 mask.bitfield.imm32s = 1;
2874 break;
2875 case LONG_MNEM_SUFFIX:
2876 mask.bitfield.imm32 = 1;
2877 break;
2878 case WORD_MNEM_SUFFIX:
2879 mask.bitfield.imm16 = 1;
2880 break;
2881 case BYTE_MNEM_SUFFIX:
2882 mask.bitfield.imm8 = 1;
2883 break;
2884 default:
2885 break;
2886 }
2887 allowed = operand_type_and (mask, allowed);
2888 if (!UINTS_ALL_ZERO (allowed))
2889 i.types[op] = operand_type_and (i.types[op], mask);
2890 }
2891 break;
2892 }
2893 }
2894 }
2895
2896 /* Try to use the smallest displacement type too. */
2897 static void
2898 optimize_disp (void)
2899 {
2900 int op;
2901
2902 for (op = i.operands; --op >= 0;)
2903 if (operand_type_check (i.types[op], disp))
2904 {
2905 if (i.op[op].disps->X_op == O_constant)
2906 {
2907 offsetT disp = i.op[op].disps->X_add_number;
2908
2909 if (i.types[op].bitfield.disp16
2910 && (disp & ~(offsetT) 0xffff) == 0)
2911 {
2912 /* If this operand is at most 16 bits, convert
2913 to a signed 16 bit number and don't use 64bit
2914 displacement. */
2915 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
2916 i.types[op].bitfield.disp64 = 0;
2917 }
2918 if (i.types[op].bitfield.disp32
2919 && (disp & ~(((offsetT) 2 << 31) - 1)) == 0)
2920 {
2921 /* If this operand is at most 32 bits, convert
2922 to a signed 32 bit number and don't use 64bit
2923 displacement. */
2924 disp &= (((offsetT) 2 << 31) - 1);
2925 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
2926 i.types[op].bitfield.disp64 = 0;
2927 }
2928 if (!disp && i.types[op].bitfield.baseindex)
2929 {
2930 i.types[op].bitfield.disp8 = 0;
2931 i.types[op].bitfield.disp16 = 0;
2932 i.types[op].bitfield.disp32 = 0;
2933 i.types[op].bitfield.disp32s = 0;
2934 i.types[op].bitfield.disp64 = 0;
2935 i.op[op].disps = 0;
2936 i.disp_operands--;
2937 }
2938 else if (flag_code == CODE_64BIT)
2939 {
2940 if (fits_in_signed_long (disp))
2941 {
2942 i.types[op].bitfield.disp64 = 0;
2943 i.types[op].bitfield.disp32s = 1;
2944 }
2945 if (fits_in_unsigned_long (disp))
2946 i.types[op].bitfield.disp32 = 1;
2947 }
2948 if ((i.types[op].bitfield.disp32
2949 || i.types[op].bitfield.disp32s
2950 || i.types[op].bitfield.disp16)
2951 && fits_in_signed_byte (disp))
2952 i.types[op].bitfield.disp8 = 1;
2953 }
2954 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
2955 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
2956 {
2957 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
2958 i.op[op].disps, 0, i.reloc[op]);
2959 i.types[op].bitfield.disp8 = 0;
2960 i.types[op].bitfield.disp16 = 0;
2961 i.types[op].bitfield.disp32 = 0;
2962 i.types[op].bitfield.disp32s = 0;
2963 i.types[op].bitfield.disp64 = 0;
2964 }
2965 else
2966 /* We only support 64bit displacement on constants. */
2967 i.types[op].bitfield.disp64 = 0;
2968 }
2969 }
2970
2971 static int
2972 match_template (void)
2973 {
2974 /* Points to template once we've found it. */
2975 const template *t;
2976 i386_operand_type overlap0, overlap1, overlap2, overlap3;
2977 unsigned int found_reverse_match;
2978 i386_opcode_modifier suffix_check;
2979 i386_operand_type operand_types [MAX_OPERANDS];
2980 int addr_prefix_disp;
2981 unsigned int j;
2982 i386_cpu_flags overlap;
2983
2984 #if MAX_OPERANDS != 4
2985 # error "MAX_OPERANDS must be 4."
2986 #endif
2987
2988 found_reverse_match = 0;
2989 addr_prefix_disp = -1;
2990
2991 memset (&suffix_check, 0, sizeof (suffix_check));
2992 if (i.suffix == BYTE_MNEM_SUFFIX)
2993 suffix_check.no_bsuf = 1;
2994 else if (i.suffix == WORD_MNEM_SUFFIX)
2995 suffix_check.no_wsuf = 1;
2996 else if (i.suffix == SHORT_MNEM_SUFFIX)
2997 suffix_check.no_ssuf = 1;
2998 else if (i.suffix == LONG_MNEM_SUFFIX)
2999 suffix_check.no_lsuf = 1;
3000 else if (i.suffix == QWORD_MNEM_SUFFIX)
3001 suffix_check.no_qsuf = 1;
3002 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
3003 suffix_check.no_ldsuf = 1;
3004
3005 for (t = current_templates->start; t < current_templates->end; t++)
3006 {
3007 addr_prefix_disp = -1;
3008
3009 /* Must have right number of operands. */
3010 if (i.operands != t->operands)
3011 continue;
3012
3013 /* Check the suffix, except for some instructions in intel mode. */
3014 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
3015 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
3016 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
3017 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
3018 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
3019 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
3020 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
3021 continue;
3022
3023 for (j = 0; j < MAX_OPERANDS; j++)
3024 operand_types [j] = t->operand_types [j];
3025
3026 /* In general, don't allow 64-bit operands in 32-bit mode. */
3027 if (i.suffix == QWORD_MNEM_SUFFIX
3028 && flag_code != CODE_64BIT
3029 && (intel_syntax
3030 ? (!t->opcode_modifier.ignoresize
3031 && !intel_float_operand (t->name))
3032 : intel_float_operand (t->name) != 2)
3033 && ((!operand_types[0].bitfield.regmmx
3034 && !operand_types[0].bitfield.regxmm)
3035 || (!operand_types[t->operands > 1].bitfield.regmmx
3036 && !!operand_types[t->operands > 1].bitfield.regxmm))
3037 && (t->base_opcode != 0x0fc7
3038 || t->extension_opcode != 1 /* cmpxchg8b */))
3039 continue;
3040
3041 /* Do not verify operands when there are none. */
3042 else
3043 {
3044 overlap = cpu_flags_and (t->cpu_flags, cpu_arch_flags_not);
3045 if (!t->operands)
3046 {
3047 if (!UINTS_ALL_ZERO (overlap))
3048 continue;
3049 /* We've found a match; break out of loop. */
3050 break;
3051 }
3052 }
3053
3054 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
3055 into Disp32/Disp16/Disp32 operand. */
3056 if (i.prefix[ADDR_PREFIX] != 0)
3057 {
3058 /* There should be only one Disp operand. */
3059 switch (flag_code)
3060 {
3061 case CODE_16BIT:
3062 for (j = 0; j < MAX_OPERANDS; j++)
3063 {
3064 if (operand_types[j].bitfield.disp16)
3065 {
3066 addr_prefix_disp = j;
3067 operand_types[j].bitfield.disp32 = 1;
3068 operand_types[j].bitfield.disp16 = 0;
3069 break;
3070 }
3071 }
3072 break;
3073 case CODE_32BIT:
3074 for (j = 0; j < MAX_OPERANDS; j++)
3075 {
3076 if (operand_types[j].bitfield.disp32)
3077 {
3078 addr_prefix_disp = j;
3079 operand_types[j].bitfield.disp32 = 0;
3080 operand_types[j].bitfield.disp16 = 1;
3081 break;
3082 }
3083 }
3084 break;
3085 case CODE_64BIT:
3086 for (j = 0; j < MAX_OPERANDS; j++)
3087 {
3088 if (operand_types[j].bitfield.disp64)
3089 {
3090 addr_prefix_disp = j;
3091 operand_types[j].bitfield.disp64 = 0;
3092 operand_types[j].bitfield.disp32 = 1;
3093 break;
3094 }
3095 }
3096 break;
3097 }
3098 }
3099
3100 overlap0 = operand_type_and (i.types[0], operand_types[0]);
3101 switch (t->operands)
3102 {
3103 case 1:
3104 if (!operand_type_match (overlap0, i.types[0]))
3105 continue;
3106 break;
3107 case 2:
3108 /* xchg %eax, %eax is a special case. It is an aliase for nop
3109 only in 32bit mode and we can use opcode 0x90. In 64bit
3110 mode, we can't use 0x90 for xchg %eax, %eax since it should
3111 zero-extend %eax to %rax. */
3112 if (flag_code == CODE_64BIT
3113 && t->base_opcode == 0x90
3114 && UINTS_EQUAL (i.types [0], acc32)
3115 && UINTS_EQUAL (i.types [1], acc32))
3116 continue;
3117 case 3:
3118 case 4:
3119 overlap1 = operand_type_and (i.types[1], operand_types[1]);
3120 if (!operand_type_match (overlap0, i.types[0])
3121 || !operand_type_match (overlap1, i.types[1])
3122 /* monitor in SSE3 is a very special case. The first
3123 register and the second register may have different
3124 sizes. The same applies to crc32 in SSE4.2. It is
3125 also true for invlpga, vmload, vmrun and vmsave in
3126 SVME. */
3127 || !((t->base_opcode == 0x0f01
3128 && (t->extension_opcode == 0xc8
3129 || t->extension_opcode == 0xd8
3130 || t->extension_opcode == 0xda
3131 || t->extension_opcode == 0xdb
3132 || t->extension_opcode == 0xdf))
3133 || t->base_opcode == 0xf20f38f1
3134 || operand_type_register_match (overlap0, i.types[0],
3135 operand_types[0],
3136 overlap1, i.types[1],
3137 operand_types[1])))
3138 {
3139 /* Check if other direction is valid ... */
3140 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
3141 continue;
3142
3143 /* Try reversing direction of operands. */
3144 overlap0 = operand_type_and (i.types[0], operand_types[1]);
3145 overlap1 = operand_type_and (i.types[1], operand_types[0]);
3146 if (!operand_type_match (overlap0, i.types[0])
3147 || !operand_type_match (overlap1, i.types[1])
3148 || !operand_type_register_match (overlap0, i.types[0],
3149 operand_types[1],
3150 overlap1, i.types[1],
3151 operand_types[0]))
3152 {
3153 /* Does not match either direction. */
3154 continue;
3155 }
3156 /* found_reverse_match holds which of D or FloatDR
3157 we've found. */
3158 if (t->opcode_modifier.d)
3159 found_reverse_match = Opcode_D;
3160 else if (t->opcode_modifier.floatd)
3161 found_reverse_match = Opcode_FloatD;
3162 else
3163 found_reverse_match = 0;
3164 if (t->opcode_modifier.floatr)
3165 found_reverse_match |= Opcode_FloatR;
3166 }
3167 else
3168 {
3169 /* Found a forward 2 operand match here. */
3170 switch (t->operands)
3171 {
3172 case 4:
3173 overlap3 = operand_type_and (i.types[3],
3174 operand_types[3]);
3175 case 3:
3176 overlap2 = operand_type_and (i.types[2],
3177 operand_types[2]);
3178 break;
3179 }
3180
3181 switch (t->operands)
3182 {
3183 case 4:
3184 if (!operand_type_match (overlap3, i.types[3])
3185 || !operand_type_register_match (overlap2,
3186 i.types[2],
3187 operand_types[2],
3188 overlap3,
3189 i.types[3],
3190 operand_types[3]))
3191 continue;
3192 case 3:
3193 /* Here we make use of the fact that there are no
3194 reverse match 3 operand instructions, and all 3
3195 operand instructions only need to be checked for
3196 register consistency between operands 2 and 3. */
3197 if (!operand_type_match (overlap2, i.types[2])
3198 || !operand_type_register_match (overlap1,
3199 i.types[1],
3200 operand_types[1],
3201 overlap2,
3202 i.types[2],
3203 operand_types[2]))
3204 continue;
3205 break;
3206 }
3207 }
3208 /* Found either forward/reverse 2, 3 or 4 operand match here:
3209 slip through to break. */
3210 }
3211 if (!UINTS_ALL_ZERO (overlap))
3212 {
3213 found_reverse_match = 0;
3214 continue;
3215 }
3216 /* We've found a match; break out of loop. */
3217 break;
3218 }
3219
3220 if (t == current_templates->end)
3221 {
3222 /* We found no match. */
3223 as_bad (_("suffix or operands invalid for `%s'"),
3224 current_templates->start->name);
3225 return 0;
3226 }
3227
3228 if (!quiet_warnings)
3229 {
3230 if (!intel_syntax
3231 && (i.types[0].bitfield.jumpabsolute
3232 != operand_types[0].bitfield.jumpabsolute))
3233 {
3234 as_warn (_("indirect %s without `*'"), t->name);
3235 }
3236
3237 if (t->opcode_modifier.isprefix
3238 && t->opcode_modifier.ignoresize)
3239 {
3240 /* Warn them that a data or address size prefix doesn't
3241 affect assembly of the next line of code. */
3242 as_warn (_("stand-alone `%s' prefix"), t->name);
3243 }
3244 }
3245
3246 /* Copy the template we found. */
3247 i.tm = *t;
3248
3249 if (addr_prefix_disp != -1)
3250 i.tm.operand_types[addr_prefix_disp]
3251 = operand_types[addr_prefix_disp];
3252
3253 if (found_reverse_match)
3254 {
3255 /* If we found a reverse match we must alter the opcode
3256 direction bit. found_reverse_match holds bits to change
3257 (different for int & float insns). */
3258
3259 i.tm.base_opcode ^= found_reverse_match;
3260
3261 i.tm.operand_types[0] = operand_types[1];
3262 i.tm.operand_types[1] = operand_types[0];
3263 }
3264
3265 return 1;
3266 }
3267
3268 static int
3269 check_string (void)
3270 {
3271 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
3272 if (i.tm.operand_types[mem_op].bitfield.esseg)
3273 {
3274 if (i.seg[0] != NULL && i.seg[0] != &es)
3275 {
3276 as_bad (_("`%s' operand %d must use `%%es' segment"),
3277 i.tm.name,
3278 mem_op + 1);
3279 return 0;
3280 }
3281 /* There's only ever one segment override allowed per instruction.
3282 This instruction possibly has a legal segment override on the
3283 second operand, so copy the segment to where non-string
3284 instructions store it, allowing common code. */
3285 i.seg[0] = i.seg[1];
3286 }
3287 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
3288 {
3289 if (i.seg[1] != NULL && i.seg[1] != &es)
3290 {
3291 as_bad (_("`%s' operand %d must use `%%es' segment"),
3292 i.tm.name,
3293 mem_op + 2);
3294 return 0;
3295 }
3296 }
3297 return 1;
3298 }
3299
3300 static int
3301 process_suffix (void)
3302 {
3303 /* If matched instruction specifies an explicit instruction mnemonic
3304 suffix, use it. */
3305 if (i.tm.opcode_modifier.size16)
3306 i.suffix = WORD_MNEM_SUFFIX;
3307 else if (i.tm.opcode_modifier.size32)
3308 i.suffix = LONG_MNEM_SUFFIX;
3309 else if (i.tm.opcode_modifier.size64)
3310 i.suffix = QWORD_MNEM_SUFFIX;
3311 else if (i.reg_operands)
3312 {
3313 /* If there's no instruction mnemonic suffix we try to invent one
3314 based on register operands. */
3315 if (!i.suffix)
3316 {
3317 /* We take i.suffix from the last register operand specified,
3318 Destination register type is more significant than source
3319 register type. crc32 in SSE4.2 prefers source register
3320 type. */
3321 if (i.tm.base_opcode == 0xf20f38f1)
3322 {
3323 if (i.types[0].bitfield.reg16)
3324 i.suffix = WORD_MNEM_SUFFIX;
3325 else if (i.types[0].bitfield.reg32)
3326 i.suffix = LONG_MNEM_SUFFIX;
3327 else if (i.types[0].bitfield.reg64)
3328 i.suffix = QWORD_MNEM_SUFFIX;
3329 }
3330 else if (i.tm.base_opcode == 0xf20f38f0)
3331 {
3332 if (i.types[0].bitfield.reg8)
3333 i.suffix = BYTE_MNEM_SUFFIX;
3334 }
3335
3336 if (!i.suffix)
3337 {
3338 int op;
3339
3340 if (i.tm.base_opcode == 0xf20f38f1
3341 || i.tm.base_opcode == 0xf20f38f0)
3342 {
3343 /* We have to know the operand size for crc32. */
3344 as_bad (_("ambiguous memory operand size for `%s`"),
3345 i.tm.name);
3346 return 0;
3347 }
3348
3349 for (op = i.operands; --op >= 0;)
3350 if (!i.tm.operand_types[op].bitfield.inoutportreg)
3351 {
3352 if (i.types[op].bitfield.reg8)
3353 {
3354 i.suffix = BYTE_MNEM_SUFFIX;
3355 break;
3356 }
3357 else if (i.types[op].bitfield.reg16)
3358 {
3359 i.suffix = WORD_MNEM_SUFFIX;
3360 break;
3361 }
3362 else if (i.types[op].bitfield.reg32)
3363 {
3364 i.suffix = LONG_MNEM_SUFFIX;
3365 break;
3366 }
3367 else if (i.types[op].bitfield.reg64)
3368 {
3369 i.suffix = QWORD_MNEM_SUFFIX;
3370 break;
3371 }
3372 }
3373 }
3374 }
3375 else if (i.suffix == BYTE_MNEM_SUFFIX)
3376 {
3377 if (!check_byte_reg ())
3378 return 0;
3379 }
3380 else if (i.suffix == LONG_MNEM_SUFFIX)
3381 {
3382 if (!check_long_reg ())
3383 return 0;
3384 }
3385 else if (i.suffix == QWORD_MNEM_SUFFIX)
3386 {
3387 if (intel_syntax
3388 && i.tm.opcode_modifier.ignoresize
3389 && i.tm.opcode_modifier.no_qsuf)
3390 i.suffix = 0;
3391 else if (!check_qword_reg ())
3392 return 0;
3393 }
3394 else if (i.suffix == WORD_MNEM_SUFFIX)
3395 {
3396 if (!check_word_reg ())
3397 return 0;
3398 }
3399 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
3400 /* Do nothing if the instruction is going to ignore the prefix. */
3401 ;
3402 else
3403 abort ();
3404 }
3405 else if (i.tm.opcode_modifier.defaultsize
3406 && !i.suffix
3407 /* exclude fldenv/frstor/fsave/fstenv */
3408 && i.tm.opcode_modifier.no_ssuf)
3409 {
3410 i.suffix = stackop_size;
3411 }
3412 else if (intel_syntax
3413 && !i.suffix
3414 && (i.tm.operand_types[0].bitfield.jumpabsolute
3415 || i.tm.opcode_modifier.jumpbyte
3416 || i.tm.opcode_modifier.jumpintersegment
3417 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
3418 && i.tm.extension_opcode <= 3)))
3419 {
3420 switch (flag_code)
3421 {
3422 case CODE_64BIT:
3423 if (!i.tm.opcode_modifier.no_qsuf)
3424 {
3425 i.suffix = QWORD_MNEM_SUFFIX;
3426 break;
3427 }
3428 case CODE_32BIT:
3429 if (!i.tm.opcode_modifier.no_lsuf)
3430 i.suffix = LONG_MNEM_SUFFIX;
3431 break;
3432 case CODE_16BIT:
3433 if (!i.tm.opcode_modifier.no_wsuf)
3434 i.suffix = WORD_MNEM_SUFFIX;
3435 break;
3436 }
3437 }
3438
3439 if (!i.suffix)
3440 {
3441 if (!intel_syntax)
3442 {
3443 if (i.tm.opcode_modifier.w)
3444 {
3445 as_bad (_("no instruction mnemonic suffix given and "
3446 "no register operands; can't size instruction"));
3447 return 0;
3448 }
3449 }
3450 else
3451 {
3452 unsigned int suffixes;
3453
3454 suffixes = !i.tm.opcode_modifier.no_bsuf;
3455 if (!i.tm.opcode_modifier.no_wsuf)
3456 suffixes |= 1 << 1;
3457 if (!i.tm.opcode_modifier.no_lsuf)
3458 suffixes |= 1 << 2;
3459 if (!i.tm.opcode_modifier.no_lsuf)
3460 suffixes |= 1 << 3;
3461 if (!i.tm.opcode_modifier.no_ssuf)
3462 suffixes |= 1 << 4;
3463 if (!i.tm.opcode_modifier.no_qsuf)
3464 suffixes |= 1 << 5;
3465
3466 /* There are more than suffix matches. */
3467 if (i.tm.opcode_modifier.w
3468 || ((suffixes & (suffixes - 1))
3469 && !i.tm.opcode_modifier.defaultsize
3470 && !i.tm.opcode_modifier.ignoresize))
3471 {
3472 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3473 return 0;
3474 }
3475 }
3476 }
3477
3478 /* Change the opcode based on the operand size given by i.suffix;
3479 We don't need to change things for byte insns. */
3480
3481 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
3482 {
3483 /* It's not a byte, select word/dword operation. */
3484 if (i.tm.opcode_modifier.w)
3485 {
3486 if (i.tm.opcode_modifier.shortform)
3487 i.tm.base_opcode |= 8;
3488 else
3489 i.tm.base_opcode |= 1;
3490 }
3491
3492 /* Now select between word & dword operations via the operand
3493 size prefix, except for instructions that will ignore this
3494 prefix anyway. */
3495 if (i.tm.opcode_modifier.addrprefixop0)
3496 {
3497 /* The address size override prefix changes the size of the
3498 first operand. */
3499 if ((flag_code == CODE_32BIT
3500 && i.op->regs[0].reg_type.bitfield.reg16)
3501 || (flag_code != CODE_32BIT
3502 && i.op->regs[0].reg_type.bitfield.reg32))
3503 if (!add_prefix (ADDR_PREFIX_OPCODE))
3504 return 0;
3505 }
3506 else if (i.suffix != QWORD_MNEM_SUFFIX
3507 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
3508 && !i.tm.opcode_modifier.ignoresize
3509 && !i.tm.opcode_modifier.floatmf
3510 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
3511 || (flag_code == CODE_64BIT
3512 && i.tm.opcode_modifier.jumpbyte)))
3513 {
3514 unsigned int prefix = DATA_PREFIX_OPCODE;
3515
3516 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
3517 prefix = ADDR_PREFIX_OPCODE;
3518
3519 if (!add_prefix (prefix))
3520 return 0;
3521 }
3522
3523 /* Set mode64 for an operand. */
3524 if (i.suffix == QWORD_MNEM_SUFFIX
3525 && flag_code == CODE_64BIT
3526 && !i.tm.opcode_modifier.norex64)
3527 {
3528 /* Special case for xchg %rax,%rax. It is NOP and doesn't
3529 need rex64. cmpxchg8b is also a special case. */
3530 if (! (i.operands == 2
3531 && i.tm.base_opcode == 0x90
3532 && i.tm.extension_opcode == None
3533 && UINTS_EQUAL (i.types [0], acc64)
3534 && UINTS_EQUAL (i.types [1], acc64))
3535 && ! (i.operands == 1
3536 && i.tm.base_opcode == 0xfc7
3537 && i.tm.extension_opcode == 1
3538 && !operand_type_check (i.types [0], reg)
3539 && operand_type_check (i.types [0], anymem)))
3540 i.rex |= REX_W;
3541 }
3542
3543 /* Size floating point instruction. */
3544 if (i.suffix == LONG_MNEM_SUFFIX)
3545 if (i.tm.opcode_modifier.floatmf)
3546 i.tm.base_opcode ^= 4;
3547 }
3548
3549 return 1;
3550 }
3551
3552 static int
3553 check_byte_reg (void)
3554 {
3555 int op;
3556
3557 for (op = i.operands; --op >= 0;)
3558 {
3559 /* If this is an eight bit register, it's OK. If it's the 16 or
3560 32 bit version of an eight bit register, we will just use the
3561 low portion, and that's OK too. */
3562 if (i.types[op].bitfield.reg8)
3563 continue;
3564
3565 /* Don't generate this warning if not needed. */
3566 if (intel_syntax && i.tm.opcode_modifier.byteokintel)
3567 continue;
3568
3569 /* crc32 doesn't generate this warning. */
3570 if (i.tm.base_opcode == 0xf20f38f0)
3571 continue;
3572
3573 if ((i.types[op].bitfield.reg16
3574 || i.types[op].bitfield.reg32
3575 || i.types[op].bitfield.reg64)
3576 && i.op[op].regs->reg_num < 4)
3577 {
3578 /* Prohibit these changes in the 64bit mode, since the
3579 lowering is more complicated. */
3580 if (flag_code == CODE_64BIT
3581 && !i.tm.operand_types[op].bitfield.inoutportreg)
3582 {
3583 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3584 register_prefix, i.op[op].regs->reg_name,
3585 i.suffix);
3586 return 0;
3587 }
3588 #if REGISTER_WARNINGS
3589 if (!quiet_warnings
3590 && !i.tm.operand_types[op].bitfield.inoutportreg)
3591 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3592 register_prefix,
3593 (i.op[op].regs + (i.types[op].bitfield.reg16
3594 ? REGNAM_AL - REGNAM_AX
3595 : REGNAM_AL - REGNAM_EAX))->reg_name,
3596 register_prefix,
3597 i.op[op].regs->reg_name,
3598 i.suffix);
3599 #endif
3600 continue;
3601 }
3602 /* Any other register is bad. */
3603 if (i.types[op].bitfield.reg16
3604 || i.types[op].bitfield.reg32
3605 || i.types[op].bitfield.reg64
3606 || i.types[op].bitfield.regmmx
3607 || i.types[op].bitfield.regxmm
3608 || i.types[op].bitfield.sreg2
3609 || i.types[op].bitfield.sreg3
3610 || i.types[op].bitfield.control
3611 || i.types[op].bitfield.debug
3612 || i.types[op].bitfield.test
3613 || i.types[op].bitfield.floatreg
3614 || i.types[op].bitfield.floatacc)
3615 {
3616 as_bad (_("`%s%s' not allowed with `%s%c'"),
3617 register_prefix,
3618 i.op[op].regs->reg_name,
3619 i.tm.name,
3620 i.suffix);
3621 return 0;
3622 }
3623 }
3624 return 1;
3625 }
3626
3627 static int
3628 check_long_reg (void)
3629 {
3630 int op;
3631
3632 for (op = i.operands; --op >= 0;)
3633 /* Reject eight bit registers, except where the template requires
3634 them. (eg. movzb) */
3635 if (i.types[op].bitfield.reg8
3636 && (i.tm.operand_types[op].bitfield.reg16
3637 || i.tm.operand_types[op].bitfield.reg32
3638 || i.tm.operand_types[op].bitfield.acc))
3639 {
3640 as_bad (_("`%s%s' not allowed with `%s%c'"),
3641 register_prefix,
3642 i.op[op].regs->reg_name,
3643 i.tm.name,
3644 i.suffix);
3645 return 0;
3646 }
3647 /* Warn if the e prefix on a general reg is missing. */
3648 else if ((!quiet_warnings || flag_code == CODE_64BIT)
3649 && i.types[op].bitfield.reg16
3650 && (i.tm.operand_types[op].bitfield.reg32
3651 || i.tm.operand_types[op].bitfield.acc))
3652 {
3653 /* Prohibit these changes in the 64bit mode, since the
3654 lowering is more complicated. */
3655 if (flag_code == CODE_64BIT)
3656 {
3657 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3658 register_prefix, i.op[op].regs->reg_name,
3659 i.suffix);
3660 return 0;
3661 }
3662 #if REGISTER_WARNINGS
3663 else
3664 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3665 register_prefix,
3666 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
3667 register_prefix,
3668 i.op[op].regs->reg_name,
3669 i.suffix);
3670 #endif
3671 }
3672 /* Warn if the r prefix on a general reg is missing. */
3673 else if (i.types[op].bitfield.reg64
3674 && (i.tm.operand_types[op].bitfield.reg32
3675 || i.tm.operand_types[op].bitfield.acc))
3676 {
3677 if (intel_syntax
3678 && i.tm.opcode_modifier.toqword
3679 && !i.types[0].bitfield.regxmm)
3680 {
3681 /* Convert to QWORD. We want REX byte. */
3682 i.suffix = QWORD_MNEM_SUFFIX;
3683 }
3684 else
3685 {
3686 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3687 register_prefix, i.op[op].regs->reg_name,
3688 i.suffix);
3689 return 0;
3690 }
3691 }
3692 return 1;
3693 }
3694
3695 static int
3696 check_qword_reg (void)
3697 {
3698 int op;
3699
3700 for (op = i.operands; --op >= 0; )
3701 /* Reject eight bit registers, except where the template requires
3702 them. (eg. movzb) */
3703 if (i.types[op].bitfield.reg8
3704 && (i.tm.operand_types[op].bitfield.reg16
3705 || i.tm.operand_types[op].bitfield.reg32
3706 || i.tm.operand_types[op].bitfield.acc))
3707 {
3708 as_bad (_("`%s%s' not allowed with `%s%c'"),
3709 register_prefix,
3710 i.op[op].regs->reg_name,
3711 i.tm.name,
3712 i.suffix);
3713 return 0;
3714 }
3715 /* Warn if the e prefix on a general reg is missing. */
3716 else if ((i.types[op].bitfield.reg16
3717 || i.types[op].bitfield.reg32)
3718 && (i.tm.operand_types[op].bitfield.reg32
3719 || i.tm.operand_types[op].bitfield.acc))
3720 {
3721 /* Prohibit these changes in the 64bit mode, since the
3722 lowering is more complicated. */
3723 if (intel_syntax
3724 && i.tm.opcode_modifier.todword
3725 && !i.types[0].bitfield.regxmm)
3726 {
3727 /* Convert to DWORD. We don't want REX byte. */
3728 i.suffix = LONG_MNEM_SUFFIX;
3729 }
3730 else
3731 {
3732 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3733 register_prefix, i.op[op].regs->reg_name,
3734 i.suffix);
3735 return 0;
3736 }
3737 }
3738 return 1;
3739 }
3740
3741 static int
3742 check_word_reg (void)
3743 {
3744 int op;
3745 for (op = i.operands; --op >= 0;)
3746 /* Reject eight bit registers, except where the template requires
3747 them. (eg. movzb) */
3748 if (i.types[op].bitfield.reg8
3749 && (i.tm.operand_types[op].bitfield.reg16
3750 || i.tm.operand_types[op].bitfield.reg32
3751 || i.tm.operand_types[op].bitfield.acc))
3752 {
3753 as_bad (_("`%s%s' not allowed with `%s%c'"),
3754 register_prefix,
3755 i.op[op].regs->reg_name,
3756 i.tm.name,
3757 i.suffix);
3758 return 0;
3759 }
3760 /* Warn if the e prefix on a general reg is present. */
3761 else if ((!quiet_warnings || flag_code == CODE_64BIT)
3762 && i.types[op].bitfield.reg32
3763 && (i.tm.operand_types[op].bitfield.reg16
3764 || i.tm.operand_types[op].bitfield.acc))
3765 {
3766 /* Prohibit these changes in the 64bit mode, since the
3767 lowering is more complicated. */
3768 if (flag_code == CODE_64BIT)
3769 {
3770 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3771 register_prefix, i.op[op].regs->reg_name,
3772 i.suffix);
3773 return 0;
3774 }
3775 else
3776 #if REGISTER_WARNINGS
3777 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3778 register_prefix,
3779 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
3780 register_prefix,
3781 i.op[op].regs->reg_name,
3782 i.suffix);
3783 #endif
3784 }
3785 return 1;
3786 }
3787
3788 static int
3789 update_imm (unsigned int j)
3790 {
3791 i386_operand_type overlap;
3792
3793 overlap = operand_type_and (i.types[j], i.tm.operand_types[j]);
3794 if ((overlap.bitfield.imm8
3795 || overlap.bitfield.imm8s
3796 || overlap.bitfield.imm16
3797 || overlap.bitfield.imm32
3798 || overlap.bitfield.imm32s
3799 || overlap.bitfield.imm64)
3800 && !UINTS_EQUAL (overlap, imm8)
3801 && !UINTS_EQUAL (overlap, imm8s)
3802 && !UINTS_EQUAL (overlap, imm16)
3803 && !UINTS_EQUAL (overlap, imm32)
3804 && !UINTS_EQUAL (overlap, imm32s)
3805 && !UINTS_EQUAL (overlap, imm64))
3806 {
3807 if (i.suffix)
3808 {
3809 i386_operand_type temp;
3810
3811 UINTS_CLEAR (temp);
3812 if (i.suffix == BYTE_MNEM_SUFFIX)
3813 {
3814 temp.bitfield.imm8 = overlap.bitfield.imm8;
3815 temp.bitfield.imm8s = overlap.bitfield.imm8s;
3816 }
3817 else if (i.suffix == WORD_MNEM_SUFFIX)
3818 temp.bitfield.imm16 = overlap.bitfield.imm16;
3819 else if (i.suffix == QWORD_MNEM_SUFFIX)
3820 {
3821 temp.bitfield.imm64 = overlap.bitfield.imm64;
3822 temp.bitfield.imm32s = overlap.bitfield.imm32s;
3823 }
3824 else
3825 temp.bitfield.imm32 = overlap.bitfield.imm32;
3826 overlap = temp;
3827 }
3828 else if (UINTS_EQUAL (overlap, imm16_32_32s)
3829 || UINTS_EQUAL (overlap, imm16_32)
3830 || UINTS_EQUAL (overlap, imm16_32s))
3831 {
3832 UINTS_CLEAR (overlap);
3833 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
3834 overlap.bitfield.imm16 = 1;
3835 else
3836 overlap.bitfield.imm32s = 1;
3837 }
3838 if (!UINTS_EQUAL (overlap, imm8)
3839 && !UINTS_EQUAL (overlap, imm8s)
3840 && !UINTS_EQUAL (overlap, imm16)
3841 && !UINTS_EQUAL (overlap, imm32)
3842 && !UINTS_EQUAL (overlap, imm32s)
3843 && !UINTS_EQUAL (overlap, imm64))
3844 {
3845 as_bad (_("no instruction mnemonic suffix given; "
3846 "can't determine immediate size"));
3847 return 0;
3848 }
3849 }
3850 i.types[j] = overlap;
3851
3852 return 1;
3853 }
3854
3855 static int
3856 finalize_imm (void)
3857 {
3858 unsigned int j;
3859
3860 for (j = 0; j < 2; j++)
3861 if (update_imm (j) == 0)
3862 return 0;
3863
3864 i.types[2] = operand_type_and (i.types[2], i.tm.operand_types[2]);
3865 assert (operand_type_check (i.types[2], imm) == 0);
3866
3867 return 1;
3868 }
3869
3870 static void
3871 process_drex (void)
3872 {
3873 i.drex.modrm_reg = None;
3874 i.drex.modrm_regmem = None;
3875
3876 /* SSE5 4 operand instructions must have the destination the same as
3877 one of the inputs. Figure out the destination register and cache
3878 it away in the drex field, and remember which fields to use for
3879 the modrm byte. */
3880 if (i.tm.opcode_modifier.drex
3881 && i.tm.opcode_modifier.drexv
3882 && i.operands == 4)
3883 {
3884 i.tm.extension_opcode = None;
3885
3886 /* Case 1: 4 operand insn, dest = src1, src3 = register. */
3887 if (i.types[0].bitfield.regxmm != 0
3888 && i.types[1].bitfield.regxmm != 0
3889 && i.types[2].bitfield.regxmm != 0
3890 && i.types[3].bitfield.regxmm != 0
3891 && i.op[0].regs->reg_num == i.op[3].regs->reg_num
3892 && i.op[0].regs->reg_flags == i.op[3].regs->reg_flags)
3893 {
3894 /* Clear the arguments that are stored in drex. */
3895 UINTS_CLEAR (i.types[0]);
3896 UINTS_CLEAR (i.types[3]);
3897 i.reg_operands -= 2;
3898
3899 /* There are two different ways to encode a 4 operand
3900 instruction with all registers that uses OC1 set to
3901 0 or 1. Favor setting OC1 to 0 since this mimics the
3902 actions of other SSE5 assemblers. Use modrm encoding 2
3903 for register/register. Include the high order bit that
3904 is normally stored in the REX byte in the register
3905 field. */
3906 i.tm.extension_opcode = DREX_X1_XMEM_X2_X1;
3907 i.drex.modrm_reg = 2;
3908 i.drex.modrm_regmem = 1;
3909 i.drex.reg = (i.op[3].regs->reg_num
3910 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
3911 }
3912
3913 /* Case 2: 4 operand insn, dest = src1, src3 = memory. */
3914 else if (i.types[0].bitfield.regxmm != 0
3915 && i.types[1].bitfield.regxmm != 0
3916 && (i.types[2].bitfield.regxmm
3917 || operand_type_check (i.types[2], anymem))
3918 && i.types[3].bitfield.regxmm != 0
3919 && i.op[0].regs->reg_num == i.op[3].regs->reg_num
3920 && i.op[0].regs->reg_flags == i.op[3].regs->reg_flags)
3921 {
3922 /* clear the arguments that are stored in drex */
3923 UINTS_CLEAR (i.types[0]);
3924 UINTS_CLEAR (i.types[3]);
3925 i.reg_operands -= 2;
3926
3927 /* Specify the modrm encoding for memory addressing. Include
3928 the high order bit that is normally stored in the REX byte
3929 in the register field. */
3930 i.tm.extension_opcode = DREX_X1_X2_XMEM_X1;
3931 i.drex.modrm_reg = 1;
3932 i.drex.modrm_regmem = 2;
3933 i.drex.reg = (i.op[3].regs->reg_num
3934 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
3935 }
3936
3937 /* Case 3: 4 operand insn, dest = src1, src2 = memory. */
3938 else if (i.types[0].bitfield.regxmm != 0
3939 && operand_type_check (i.types[1], anymem) != 0
3940 && i.types[2].bitfield.regxmm != 0
3941 && i.types[3].bitfield.regxmm != 0
3942 && i.op[0].regs->reg_num == i.op[3].regs->reg_num
3943 && i.op[0].regs->reg_flags == i.op[3].regs->reg_flags)
3944 {
3945 /* Clear the arguments that are stored in drex. */
3946 UINTS_CLEAR (i.types[0]);
3947 UINTS_CLEAR (i.types[3]);
3948 i.reg_operands -= 2;
3949
3950 /* Specify the modrm encoding for memory addressing. Include
3951 the high order bit that is normally stored in the REX byte
3952 in the register field. */
3953 i.tm.extension_opcode = DREX_X1_XMEM_X2_X1;
3954 i.drex.modrm_reg = 2;
3955 i.drex.modrm_regmem = 1;
3956 i.drex.reg = (i.op[3].regs->reg_num
3957 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
3958 }
3959
3960 /* Case 4: 4 operand insn, dest = src3, src2 = register. */
3961 else if (i.types[0].bitfield.regxmm != 0
3962 && i.types[1].bitfield.regxmm != 0
3963 && i.types[2].bitfield.regxmm != 0
3964 && i.types[3].bitfield.regxmm != 0
3965 && i.op[2].regs->reg_num == i.op[3].regs->reg_num
3966 && i.op[2].regs->reg_flags == i.op[3].regs->reg_flags)
3967 {
3968 /* clear the arguments that are stored in drex */
3969 UINTS_CLEAR (i.types[2]);
3970 UINTS_CLEAR (i.types[3]);
3971 i.reg_operands -= 2;
3972
3973 /* There are two different ways to encode a 4 operand
3974 instruction with all registers that uses OC1 set to
3975 0 or 1. Favor setting OC1 to 0 since this mimics the
3976 actions of other SSE5 assemblers. Use modrm encoding
3977 2 for register/register. Include the high order bit that
3978 is normally stored in the REX byte in the register
3979 field. */
3980 i.tm.extension_opcode = DREX_XMEM_X1_X2_X2;
3981 i.drex.modrm_reg = 1;
3982 i.drex.modrm_regmem = 0;
3983
3984 /* Remember the register, including the upper bits */
3985 i.drex.reg = (i.op[3].regs->reg_num
3986 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
3987 }
3988
3989 /* Case 5: 4 operand insn, dest = src3, src2 = memory. */
3990 else if (i.types[0].bitfield.regxmm != 0
3991 && (i.types[1].bitfield.regxmm
3992 || operand_type_check (i.types[1], anymem))
3993 && i.types[2].bitfield.regxmm != 0
3994 && i.types[3].bitfield.regxmm != 0
3995 && i.op[2].regs->reg_num == i.op[3].regs->reg_num
3996 && i.op[2].regs->reg_flags == i.op[3].regs->reg_flags)
3997 {
3998 /* Clear the arguments that are stored in drex. */
3999 UINTS_CLEAR (i.types[2]);
4000 UINTS_CLEAR (i.types[3]);
4001 i.reg_operands -= 2;
4002
4003 /* Specify the modrm encoding and remember the register
4004 including the bits normally stored in the REX byte. */
4005 i.tm.extension_opcode = DREX_X1_XMEM_X2_X2;
4006 i.drex.modrm_reg = 0;
4007 i.drex.modrm_regmem = 1;
4008 i.drex.reg = (i.op[3].regs->reg_num
4009 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
4010 }
4011
4012 /* Case 6: 4 operand insn, dest = src3, src1 = memory. */
4013 else if (operand_type_check (i.types[0], anymem) != 0
4014 && i.types[1].bitfield.regxmm != 0
4015 && i.types[2].bitfield.regxmm != 0
4016 && i.types[3].bitfield.regxmm != 0
4017 && i.op[2].regs->reg_num == i.op[3].regs->reg_num
4018 && i.op[2].regs->reg_flags == i.op[3].regs->reg_flags)
4019 {
4020 /* clear the arguments that are stored in drex */
4021 UINTS_CLEAR (i.types[2]);
4022 UINTS_CLEAR (i.types[3]);
4023 i.reg_operands -= 2;
4024
4025 /* Specify the modrm encoding and remember the register
4026 including the bits normally stored in the REX byte. */
4027 i.tm.extension_opcode = DREX_XMEM_X1_X2_X2;
4028 i.drex.modrm_reg = 1;
4029 i.drex.modrm_regmem = 0;
4030 i.drex.reg = (i.op[3].regs->reg_num
4031 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
4032 }
4033
4034 else
4035 as_bad (_("Incorrect operands for the '%s' instruction"),
4036 i.tm.name);
4037 }
4038
4039 /* SSE5 instructions with the DREX byte where the only memory operand
4040 is in the 2nd argument, and the first and last xmm register must
4041 match, and is encoded in the DREX byte. */
4042 else if (i.tm.opcode_modifier.drex
4043 && !i.tm.opcode_modifier.drexv
4044 && i.operands == 4)
4045 {
4046 /* Case 1: 4 operand insn, dest = src1, src3 = reg/mem. */
4047 if (i.types[0].bitfield.regxmm != 0
4048 && (i.types[1].bitfield.regxmm
4049 || operand_type_check(i.types[1], anymem))
4050 && i.types[2].bitfield.regxmm != 0
4051 && i.types[3].bitfield.regxmm != 0
4052 && i.op[0].regs->reg_num == i.op[3].regs->reg_num
4053 && i.op[0].regs->reg_flags == i.op[3].regs->reg_flags)
4054 {
4055 /* clear the arguments that are stored in drex */
4056 UINTS_CLEAR (i.types[0]);
4057 UINTS_CLEAR (i.types[3]);
4058 i.reg_operands -= 2;
4059
4060 /* Specify the modrm encoding and remember the register
4061 including the high bit normally stored in the REX
4062 byte. */
4063 i.drex.modrm_reg = 2;
4064 i.drex.modrm_regmem = 1;
4065 i.drex.reg = (i.op[3].regs->reg_num
4066 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
4067 }
4068
4069 else
4070 as_bad (_("Incorrect operands for the '%s' instruction"),
4071 i.tm.name);
4072 }
4073
4074 /* SSE5 3 operand instructions that the result is a register, being
4075 either operand can be a memory operand, using OC0 to note which
4076 one is the memory. */
4077 else if (i.tm.opcode_modifier.drex
4078 && i.tm.opcode_modifier.drexv
4079 && i.operands == 3)
4080 {
4081 i.tm.extension_opcode = None;
4082
4083 /* Case 1: 3 operand insn, src1 = register. */
4084 if (i.types[0].bitfield.regxmm != 0
4085 && i.types[1].bitfield.regxmm != 0
4086 && i.types[2].bitfield.regxmm != 0)
4087 {
4088 /* Clear the arguments that are stored in drex. */
4089 UINTS_CLEAR (i.types[2]);
4090 i.reg_operands--;
4091
4092 /* Specify the modrm encoding and remember the register
4093 including the high bit normally stored in the REX byte. */
4094 i.tm.extension_opcode = DREX_XMEM_X1_X2;
4095 i.drex.modrm_reg = 1;
4096 i.drex.modrm_regmem = 0;
4097 i.drex.reg = (i.op[2].regs->reg_num
4098 + ((i.op[2].regs->reg_flags & RegRex) ? 8 : 0));
4099 }
4100
4101 /* Case 2: 3 operand insn, src1 = memory. */
4102 else if (operand_type_check (i.types[0], anymem) != 0
4103 && i.types[1].bitfield.regxmm != 0
4104 && i.types[2].bitfield.regxmm != 0)
4105 {
4106 /* Clear the arguments that are stored in drex. */
4107 UINTS_CLEAR (i.types[2]);
4108 i.reg_operands--;
4109
4110 /* Specify the modrm encoding and remember the register
4111 including the high bit normally stored in the REX
4112 byte. */
4113 i.tm.extension_opcode = DREX_XMEM_X1_X2;
4114 i.drex.modrm_reg = 1;
4115 i.drex.modrm_regmem = 0;
4116 i.drex.reg = (i.op[2].regs->reg_num
4117 + ((i.op[2].regs->reg_flags & RegRex) ? 8 : 0));
4118 }
4119
4120 /* Case 3: 3 operand insn, src2 = memory. */
4121 else if (i.types[0].bitfield.regxmm != 0
4122 && operand_type_check (i.types[1], anymem) != 0
4123 && i.types[2].bitfield.regxmm != 0)
4124 {
4125 /* Clear the arguments that are stored in drex. */
4126 UINTS_CLEAR (i.types[2]);
4127 i.reg_operands--;
4128
4129 /* Specify the modrm encoding and remember the register
4130 including the high bit normally stored in the REX byte. */
4131 i.tm.extension_opcode = DREX_X1_XMEM_X2;
4132 i.drex.modrm_reg = 0;
4133 i.drex.modrm_regmem = 1;
4134 i.drex.reg = (i.op[2].regs->reg_num
4135 + ((i.op[2].regs->reg_flags & RegRex) ? 8 : 0));
4136 }
4137
4138 else
4139 as_bad (_("Incorrect operands for the '%s' instruction"),
4140 i.tm.name);
4141 }
4142
4143 /* SSE5 4 operand instructions that are the comparison instructions
4144 where the first operand is the immediate value of the comparison
4145 to be done. */
4146 else if (i.tm.opcode_modifier.drexc != 0 && i.operands == 4)
4147 {
4148 /* Case 1: 4 operand insn, src1 = reg/memory. */
4149 if (operand_type_check (i.types[0], imm) != 0
4150 && (i.types[1].bitfield.regxmm
4151 || operand_type_check (i.types[1], anymem))
4152 && i.types[2].bitfield.regxmm != 0
4153 && i.types[3].bitfield.regxmm != 0)
4154 {
4155 /* clear the arguments that are stored in drex */
4156 UINTS_CLEAR (i.types[3]);
4157 i.reg_operands--;
4158
4159 /* Specify the modrm encoding and remember the register
4160 including the high bit normally stored in the REX byte. */
4161 i.drex.modrm_reg = 2;
4162 i.drex.modrm_regmem = 1;
4163 i.drex.reg = (i.op[3].regs->reg_num
4164 + ((i.op[3].regs->reg_flags & RegRex) ? 8 : 0));
4165 }
4166
4167 /* Case 2: 3 operand insn with ImmExt that places the
4168 opcode_extension as an immediate argument. This is used for
4169 all of the varients of comparison that supplies the appropriate
4170 value as part of the instruction. */
4171 else if ((i.types[0].bitfield.regxmm
4172 || operand_type_check (i.types[0], anymem))
4173 && i.types[1].bitfield.regxmm != 0
4174 && i.types[2].bitfield.regxmm != 0
4175 && operand_type_check (i.types[3], imm) != 0)
4176 {
4177 /* clear the arguments that are stored in drex */
4178 UINTS_CLEAR (i.types[2]);
4179 i.reg_operands--;
4180
4181 /* Specify the modrm encoding and remember the register
4182 including the high bit normally stored in the REX byte. */
4183 i.drex.modrm_reg = 1;
4184 i.drex.modrm_regmem = 0;
4185 i.drex.reg = (i.op[2].regs->reg_num
4186 + ((i.op[2].regs->reg_flags & RegRex) ? 8 : 0));
4187 }
4188
4189 else
4190 as_bad (_("Incorrect operands for the '%s' instruction"),
4191 i.tm.name);
4192 }
4193
4194 else if (i.tm.opcode_modifier.drex
4195 || i.tm.opcode_modifier.drexv
4196 || i.tm.opcode_modifier.drexc)
4197 as_bad (_("Internal error for the '%s' instruction"), i.tm.name);
4198 }
4199
4200 static int
4201 process_operands (void)
4202 {
4203 /* Default segment register this instruction will use for memory
4204 accesses. 0 means unknown. This is only for optimizing out
4205 unnecessary segment overrides. */
4206 const seg_entry *default_seg = 0;
4207
4208 /* Handle all of the DREX munging that SSE5 needs. */
4209 if (i.tm.opcode_modifier.drex
4210 || i.tm.opcode_modifier.drexv
4211 || i.tm.opcode_modifier.drexc)
4212 process_drex ();
4213
4214 if (i.tm.opcode_modifier.firstxmm0)
4215 {
4216 unsigned int j;
4217
4218 /* The first operand is implicit and must be xmm0. */
4219 assert (i.reg_operands && UINTS_EQUAL (i.types[0], regxmm));
4220 if (i.op[0].regs->reg_num != 0)
4221 {
4222 if (intel_syntax)
4223 as_bad (_("the last operand of `%s' must be `%sxmm0'"),
4224 i.tm.name, register_prefix);
4225 else
4226 as_bad (_("the first operand of `%s' must be `%sxmm0'"),
4227 i.tm.name, register_prefix);
4228 return 0;
4229 }
4230
4231 for (j = 1; j < i.operands; j++)
4232 {
4233 i.op[j - 1] = i.op[j];
4234 i.types[j - 1] = i.types[j];
4235
4236 /* We need to adjust fields in i.tm since they are used by
4237 build_modrm_byte. */
4238 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
4239 }
4240
4241 i.operands--;
4242 i.reg_operands--;
4243 i.tm.operands--;
4244 }
4245 else if (i.tm.opcode_modifier.regkludge)
4246 {
4247 /* The imul $imm, %reg instruction is converted into
4248 imul $imm, %reg, %reg, and the clr %reg instruction
4249 is converted into xor %reg, %reg. */
4250
4251 unsigned int first_reg_op;
4252
4253 if (operand_type_check (i.types[0], reg))
4254 first_reg_op = 0;
4255 else
4256 first_reg_op = 1;
4257 /* Pretend we saw the extra register operand. */
4258 assert (i.reg_operands == 1
4259 && i.op[first_reg_op + 1].regs == 0);
4260 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
4261 i.types[first_reg_op + 1] = i.types[first_reg_op];
4262 i.operands++;
4263 i.reg_operands++;
4264 }
4265
4266 if (i.tm.opcode_modifier.shortform)
4267 {
4268 if (i.types[0].bitfield.sreg2
4269 || i.types[0].bitfield.sreg3)
4270 {
4271 if (i.tm.base_opcode == POP_SEG_SHORT
4272 && i.op[0].regs->reg_num == 1)
4273 {
4274 as_bad (_("you can't `pop %%cs'"));
4275 return 0;
4276 }
4277 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
4278 if ((i.op[0].regs->reg_flags & RegRex) != 0)
4279 i.rex |= REX_B;
4280 }
4281 else
4282 {
4283 /* The register or float register operand is in operand
4284 0 or 1. */
4285 unsigned int op;
4286
4287 if (i.types[0].bitfield.floatreg
4288 || operand_type_check (i.types[0], reg))
4289 op = 0;
4290 else
4291 op = 1;
4292 /* Register goes in low 3 bits of opcode. */
4293 i.tm.base_opcode |= i.op[op].regs->reg_num;
4294 if ((i.op[op].regs->reg_flags & RegRex) != 0)
4295 i.rex |= REX_B;
4296 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4297 {
4298 /* Warn about some common errors, but press on regardless.
4299 The first case can be generated by gcc (<= 2.8.1). */
4300 if (i.operands == 2)
4301 {
4302 /* Reversed arguments on faddp, fsubp, etc. */
4303 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
4304 register_prefix, i.op[1].regs->reg_name,
4305 register_prefix, i.op[0].regs->reg_name);
4306 }
4307 else
4308 {
4309 /* Extraneous `l' suffix on fp insn. */
4310 as_warn (_("translating to `%s %s%s'"), i.tm.name,
4311 register_prefix, i.op[0].regs->reg_name);
4312 }
4313 }
4314 }
4315 }
4316 else if (i.tm.opcode_modifier.modrm)
4317 {
4318 /* The opcode is completed (modulo i.tm.extension_opcode which
4319 must be put into the modrm byte). Now, we make the modrm and
4320 index base bytes based on all the info we've collected. */
4321
4322 default_seg = build_modrm_byte ();
4323 }
4324 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
4325 {
4326 default_seg = &ds;
4327 }
4328 else if (i.tm.opcode_modifier.isstring)
4329 {
4330 /* For the string instructions that allow a segment override
4331 on one of their operands, the default segment is ds. */
4332 default_seg = &ds;
4333 }
4334
4335 if (i.tm.base_opcode == 0x8d /* lea */
4336 && i.seg[0]
4337 && !quiet_warnings)
4338 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
4339
4340 /* If a segment was explicitly specified, and the specified segment
4341 is not the default, use an opcode prefix to select it. If we
4342 never figured out what the default segment is, then default_seg
4343 will be zero at this point, and the specified segment prefix will
4344 always be used. */
4345 if ((i.seg[0]) && (i.seg[0] != default_seg))
4346 {
4347 if (!add_prefix (i.seg[0]->seg_prefix))
4348 return 0;
4349 }
4350 return 1;
4351 }
4352
4353 static const seg_entry *
4354 build_modrm_byte (void)
4355 {
4356 const seg_entry *default_seg = 0;
4357
4358 /* SSE5 4 operand instructions are encoded in such a way that one of
4359 the inputs must match the destination register. Process_drex hides
4360 the 3rd argument in the drex field, so that by the time we get
4361 here, it looks to GAS as if this is a 2 operand instruction. */
4362 if ((i.tm.opcode_modifier.drex
4363 || i.tm.opcode_modifier.drexv
4364 || i.tm.opcode_modifier.drexc)
4365 && i.reg_operands == 2)
4366 {
4367 const reg_entry *reg = i.op[i.drex.modrm_reg].regs;
4368 const reg_entry *regmem = i.op[i.drex.modrm_regmem].regs;
4369
4370 i.rm.reg = reg->reg_num;
4371 i.rm.regmem = regmem->reg_num;
4372 i.rm.mode = 3;
4373 if ((reg->reg_flags & RegRex) != 0)
4374 i.rex |= REX_R;
4375 if ((regmem->reg_flags & RegRex) != 0)
4376 i.rex |= REX_B;
4377 }
4378
4379 /* i.reg_operands MUST be the number of real register operands;
4380 implicit registers do not count. */
4381 else if (i.reg_operands == 2)
4382 {
4383 unsigned int source, dest;
4384
4385 switch (i.operands)
4386 {
4387 case 2:
4388 source = 0;
4389 break;
4390 case 3:
4391 /* When there are 3 operands, one of them may be immediate,
4392 which may be the first or the last operand. Otherwise,
4393 the first operand must be shift count register (cl). */
4394 assert (i.imm_operands == 1
4395 || (i.imm_operands == 0
4396 && i.types[0].bitfield.shiftcount));
4397 if (operand_type_check (i.types[0], imm)
4398 || i.types[0].bitfield.shiftcount)
4399 source = 1;
4400 else
4401 source = 0;
4402 break;
4403 case 4:
4404 /* When there are 4 operands, the first two must be 8bit
4405 immediate operands. The source operand will be the 3rd
4406 one. */
4407 assert (i.imm_operands == 2
4408 && i.types[0].bitfield.imm8
4409 && i.types[1].bitfield.imm8);
4410 source = 2;
4411 break;
4412 default:
4413 abort ();
4414 }
4415
4416 dest = source + 1;
4417
4418 i.rm.mode = 3;
4419 /* One of the register operands will be encoded in the i.tm.reg
4420 field, the other in the combined i.tm.mode and i.tm.regmem
4421 fields. If no form of this instruction supports a memory
4422 destination operand, then we assume the source operand may
4423 sometimes be a memory operand and so we need to store the
4424 destination in the i.rm.reg field. */
4425 if (!i.tm.operand_types[dest].bitfield.regmem
4426 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
4427 {
4428 i.rm.reg = i.op[dest].regs->reg_num;
4429 i.rm.regmem = i.op[source].regs->reg_num;
4430 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
4431 i.rex |= REX_R;
4432 if ((i.op[source].regs->reg_flags & RegRex) != 0)
4433 i.rex |= REX_B;
4434 }
4435 else
4436 {
4437 i.rm.reg = i.op[source].regs->reg_num;
4438 i.rm.regmem = i.op[dest].regs->reg_num;
4439 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
4440 i.rex |= REX_B;
4441 if ((i.op[source].regs->reg_flags & RegRex) != 0)
4442 i.rex |= REX_R;
4443 }
4444 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
4445 {
4446 if (!i.types[0].bitfield.control
4447 && !i.types[1].bitfield.control)
4448 abort ();
4449 i.rex &= ~(REX_R | REX_B);
4450 add_prefix (LOCK_PREFIX_OPCODE);
4451 }
4452 }
4453 else
4454 { /* If it's not 2 reg operands... */
4455 if (i.mem_operands)
4456 {
4457 unsigned int fake_zero_displacement = 0;
4458 unsigned int op;
4459
4460 /* This has been precalculated for SSE5 instructions
4461 that have a DREX field earlier in process_drex. */
4462 if (i.tm.opcode_modifier.drex
4463 || i.tm.opcode_modifier.drexv
4464 || i.tm.opcode_modifier.drexc)
4465 op = i.drex.modrm_regmem;
4466 else
4467 {
4468 for (op = 0; op < i.operands; op++)
4469 if (operand_type_check (i.types[op], anymem))
4470 break;
4471 assert (op < i.operands);
4472 }
4473
4474 default_seg = &ds;
4475
4476 if (i.base_reg == 0)
4477 {
4478 i.rm.mode = 0;
4479 if (!i.disp_operands)
4480 fake_zero_displacement = 1;
4481 if (i.index_reg == 0)
4482 {
4483 /* Operand is just <disp> */
4484 if (flag_code == CODE_64BIT)
4485 {
4486 /* 64bit mode overwrites the 32bit absolute
4487 addressing by RIP relative addressing and
4488 absolute addressing is encoded by one of the
4489 redundant SIB forms. */
4490 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
4491 i.sib.base = NO_BASE_REGISTER;
4492 i.sib.index = NO_INDEX_REGISTER;
4493 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
4494 ? disp32s : disp32);
4495 }
4496 else if ((flag_code == CODE_16BIT)
4497 ^ (i.prefix[ADDR_PREFIX] != 0))
4498 {
4499 i.rm.regmem = NO_BASE_REGISTER_16;
4500 i.types[op] = disp16;
4501 }
4502 else
4503 {
4504 i.rm.regmem = NO_BASE_REGISTER;
4505 i.types[op] = disp32;
4506 }
4507 }
4508 else /* !i.base_reg && i.index_reg */
4509 {
4510 if (i.index_reg->reg_num == RegEiz
4511 || i.index_reg->reg_num == RegRiz)
4512 i.sib.index = NO_INDEX_REGISTER;
4513 else
4514 i.sib.index = i.index_reg->reg_num;
4515 i.sib.base = NO_BASE_REGISTER;
4516 i.sib.scale = i.log2_scale_factor;
4517 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
4518 i.types[op].bitfield.disp8 = 0;
4519 i.types[op].bitfield.disp16 = 0;
4520 i.types[op].bitfield.disp64 = 0;
4521 if (flag_code != CODE_64BIT)
4522 {
4523 /* Must be 32 bit */
4524 i.types[op].bitfield.disp32 = 1;
4525 i.types[op].bitfield.disp32s = 0;
4526 }
4527 else
4528 {
4529 i.types[op].bitfield.disp32 = 0;
4530 i.types[op].bitfield.disp32s = 1;
4531 }
4532 if ((i.index_reg->reg_flags & RegRex) != 0)
4533 i.rex |= REX_X;
4534 }
4535 }
4536 /* RIP addressing for 64bit mode. */
4537 else if (i.base_reg->reg_num == RegRip ||
4538 i.base_reg->reg_num == RegEip)
4539 {
4540 i.rm.regmem = NO_BASE_REGISTER;
4541 i.types[op].bitfield.disp8 = 0;
4542 i.types[op].bitfield.disp16 = 0;
4543 i.types[op].bitfield.disp32 = 0;
4544 i.types[op].bitfield.disp32s = 1;
4545 i.types[op].bitfield.disp64 = 0;
4546 i.flags[op] |= Operand_PCrel;
4547 if (! i.disp_operands)
4548 fake_zero_displacement = 1;
4549 }
4550 else if (i.base_reg->reg_type.bitfield.reg16)
4551 {
4552 switch (i.base_reg->reg_num)
4553 {
4554 case 3: /* (%bx) */
4555 if (i.index_reg == 0)
4556 i.rm.regmem = 7;
4557 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
4558 i.rm.regmem = i.index_reg->reg_num - 6;
4559 break;
4560 case 5: /* (%bp) */
4561 default_seg = &ss;
4562 if (i.index_reg == 0)
4563 {
4564 i.rm.regmem = 6;
4565 if (operand_type_check (i.types[op], disp) == 0)
4566 {
4567 /* fake (%bp) into 0(%bp) */
4568 i.types[op].bitfield.disp8 = 1;
4569 fake_zero_displacement = 1;
4570 }
4571 }
4572 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
4573 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
4574 break;
4575 default: /* (%si) -> 4 or (%di) -> 5 */
4576 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
4577 }
4578 i.rm.mode = mode_from_disp_size (i.types[op]);
4579 }
4580 else /* i.base_reg and 32/64 bit mode */
4581 {
4582 if (flag_code == CODE_64BIT
4583 && operand_type_check (i.types[op], disp))
4584 {
4585 i386_operand_type temp;
4586 UINTS_CLEAR (temp);
4587 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
4588 i.types[op] = temp;
4589 if (i.prefix[ADDR_PREFIX] == 0)
4590 i.types[op].bitfield.disp32s = 1;
4591 else
4592 i.types[op].bitfield.disp32 = 1;
4593 }
4594
4595 i.rm.regmem = i.base_reg->reg_num;
4596 if ((i.base_reg->reg_flags & RegRex) != 0)
4597 i.rex |= REX_B;
4598 i.sib.base = i.base_reg->reg_num;
4599 /* x86-64 ignores REX prefix bit here to avoid decoder
4600 complications. */
4601 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
4602 {
4603 default_seg = &ss;
4604 if (i.disp_operands == 0)
4605 {
4606 fake_zero_displacement = 1;
4607 i.types[op].bitfield.disp8 = 1;
4608 }
4609 }
4610 else if (i.base_reg->reg_num == ESP_REG_NUM)
4611 {
4612 default_seg = &ss;
4613 }
4614 i.sib.scale = i.log2_scale_factor;
4615 if (i.index_reg == 0)
4616 {
4617 /* <disp>(%esp) becomes two byte modrm with no index
4618 register. We've already stored the code for esp
4619 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
4620 Any base register besides %esp will not use the
4621 extra modrm byte. */
4622 i.sib.index = NO_INDEX_REGISTER;
4623 }
4624 else
4625 {
4626 if (i.index_reg->reg_num == RegEiz
4627 || i.index_reg->reg_num == RegRiz)
4628 i.sib.index = NO_INDEX_REGISTER;
4629 else
4630 i.sib.index = i.index_reg->reg_num;
4631 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
4632 if ((i.index_reg->reg_flags & RegRex) != 0)
4633 i.rex |= REX_X;
4634 }
4635
4636 if (i.disp_operands
4637 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4638 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
4639 i.rm.mode = 0;
4640 else
4641 i.rm.mode = mode_from_disp_size (i.types[op]);
4642 }
4643
4644 if (fake_zero_displacement)
4645 {
4646 /* Fakes a zero displacement assuming that i.types[op]
4647 holds the correct displacement size. */
4648 expressionS *exp;
4649
4650 assert (i.op[op].disps == 0);
4651 exp = &disp_expressions[i.disp_operands++];
4652 i.op[op].disps = exp;
4653 exp->X_op = O_constant;
4654 exp->X_add_number = 0;
4655 exp->X_add_symbol = (symbolS *) 0;
4656 exp->X_op_symbol = (symbolS *) 0;
4657 }
4658 }
4659
4660 /* Fill in i.rm.reg or i.rm.regmem field with register operand
4661 (if any) based on i.tm.extension_opcode. Again, we must be
4662 careful to make sure that segment/control/debug/test/MMX
4663 registers are coded into the i.rm.reg field. */
4664 if (i.reg_operands)
4665 {
4666 unsigned int op;
4667
4668 /* This has been precalculated for SSE5 instructions
4669 that have a DREX field earlier in process_drex. */
4670 if (i.tm.opcode_modifier.drex
4671 || i.tm.opcode_modifier.drexv
4672 || i.tm.opcode_modifier.drexc)
4673 {
4674 op = i.drex.modrm_reg;
4675 i.rm.reg = i.op[op].regs->reg_num;
4676 if ((i.op[op].regs->reg_flags & RegRex) != 0)
4677 i.rex |= REX_R;
4678 }
4679 else
4680 {
4681 for (op = 0; op < i.operands; op++)
4682 if (i.types[op].bitfield.reg8
4683 || i.types[op].bitfield.reg16
4684 || i.types[op].bitfield.reg32
4685 || i.types[op].bitfield.reg64
4686 || i.types[op].bitfield.regmmx
4687 || i.types[op].bitfield.regxmm
4688 || i.types[op].bitfield.sreg2
4689 || i.types[op].bitfield.sreg3
4690 || i.types[op].bitfield.control
4691 || i.types[op].bitfield.debug
4692 || i.types[op].bitfield.test)
4693 break;
4694
4695 assert (op < i.operands);
4696
4697 /* If there is an extension opcode to put here, the
4698 register number must be put into the regmem field. */
4699 if (i.tm.extension_opcode != None)
4700 {
4701 i.rm.regmem = i.op[op].regs->reg_num;
4702 if ((i.op[op].regs->reg_flags & RegRex) != 0)
4703 i.rex |= REX_B;
4704 }
4705 else
4706 {
4707 i.rm.reg = i.op[op].regs->reg_num;
4708 if ((i.op[op].regs->reg_flags & RegRex) != 0)
4709 i.rex |= REX_R;
4710 }
4711 }
4712
4713 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
4714 must set it to 3 to indicate this is a register operand
4715 in the regmem field. */
4716 if (!i.mem_operands)
4717 i.rm.mode = 3;
4718 }
4719
4720 /* Fill in i.rm.reg field with extension opcode (if any). */
4721 if (i.tm.extension_opcode != None
4722 && !(i.tm.opcode_modifier.drex
4723 || i.tm.opcode_modifier.drexv
4724 || i.tm.opcode_modifier.drexc))
4725 i.rm.reg = i.tm.extension_opcode;
4726 }
4727 return default_seg;
4728 }
4729
4730 static void
4731 output_branch (void)
4732 {
4733 char *p;
4734 int code16;
4735 int prefix;
4736 relax_substateT subtype;
4737 symbolS *sym;
4738 offsetT off;
4739
4740 code16 = 0;
4741 if (flag_code == CODE_16BIT)
4742 code16 = CODE16;
4743
4744 prefix = 0;
4745 if (i.prefix[DATA_PREFIX] != 0)
4746 {
4747 prefix = 1;
4748 i.prefixes -= 1;
4749 code16 ^= CODE16;
4750 }
4751 /* Pentium4 branch hints. */
4752 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
4753 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
4754 {
4755 prefix++;
4756 i.prefixes--;
4757 }
4758 if (i.prefix[REX_PREFIX] != 0)
4759 {
4760 prefix++;
4761 i.prefixes--;
4762 }
4763
4764 if (i.prefixes != 0 && !intel_syntax)
4765 as_warn (_("skipping prefixes on this instruction"));
4766
4767 /* It's always a symbol; End frag & setup for relax.
4768 Make sure there is enough room in this frag for the largest
4769 instruction we may generate in md_convert_frag. This is 2
4770 bytes for the opcode and room for the prefix and largest
4771 displacement. */
4772 frag_grow (prefix + 2 + 4);
4773 /* Prefix and 1 opcode byte go in fr_fix. */
4774 p = frag_more (prefix + 1);
4775 if (i.prefix[DATA_PREFIX] != 0)
4776 *p++ = DATA_PREFIX_OPCODE;
4777 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
4778 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
4779 *p++ = i.prefix[SEG_PREFIX];
4780 if (i.prefix[REX_PREFIX] != 0)
4781 *p++ = i.prefix[REX_PREFIX];
4782 *p = i.tm.base_opcode;
4783
4784 if ((unsigned char) *p == JUMP_PC_RELATIVE)
4785 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
4786 else if (cpu_arch_flags.bitfield.cpui386)
4787 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
4788 else
4789 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
4790 subtype |= code16;
4791
4792 sym = i.op[0].disps->X_add_symbol;
4793 off = i.op[0].disps->X_add_number;
4794
4795 if (i.op[0].disps->X_op != O_constant
4796 && i.op[0].disps->X_op != O_symbol)
4797 {
4798 /* Handle complex expressions. */
4799 sym = make_expr_symbol (i.op[0].disps);
4800 off = 0;
4801 }
4802
4803 /* 1 possible extra opcode + 4 byte displacement go in var part.
4804 Pass reloc in fr_var. */
4805 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
4806 }
4807
4808 static void
4809 output_jump (void)
4810 {
4811 char *p;
4812 int size;
4813 fixS *fixP;
4814
4815 if (i.tm.opcode_modifier.jumpbyte)
4816 {
4817 /* This is a loop or jecxz type instruction. */
4818 size = 1;
4819 if (i.prefix[ADDR_PREFIX] != 0)
4820 {
4821 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
4822 i.prefixes -= 1;
4823 }
4824 /* Pentium4 branch hints. */
4825 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
4826 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
4827 {
4828 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
4829 i.prefixes--;
4830 }
4831 }
4832 else
4833 {
4834 int code16;
4835
4836 code16 = 0;
4837 if (flag_code == CODE_16BIT)
4838 code16 = CODE16;
4839
4840 if (i.prefix[DATA_PREFIX] != 0)
4841 {
4842 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
4843 i.prefixes -= 1;
4844 code16 ^= CODE16;
4845 }
4846
4847 size = 4;
4848 if (code16)
4849 size = 2;
4850 }
4851
4852 if (i.prefix[REX_PREFIX] != 0)
4853 {
4854 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
4855 i.prefixes -= 1;
4856 }
4857
4858 if (i.prefixes != 0 && !intel_syntax)
4859 as_warn (_("skipping prefixes on this instruction"));
4860
4861 p = frag_more (1 + size);
4862 *p++ = i.tm.base_opcode;
4863
4864 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
4865 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
4866
4867 /* All jumps handled here are signed, but don't use a signed limit
4868 check for 32 and 16 bit jumps as we want to allow wrap around at
4869 4G and 64k respectively. */
4870 if (size == 1)
4871 fixP->fx_signed = 1;
4872 }
4873
4874 static void
4875 output_interseg_jump (void)
4876 {
4877 char *p;
4878 int size;
4879 int prefix;
4880 int code16;
4881
4882 code16 = 0;
4883 if (flag_code == CODE_16BIT)
4884 code16 = CODE16;
4885
4886 prefix = 0;
4887 if (i.prefix[DATA_PREFIX] != 0)
4888 {
4889 prefix = 1;
4890 i.prefixes -= 1;
4891 code16 ^= CODE16;
4892 }
4893 if (i.prefix[REX_PREFIX] != 0)
4894 {
4895 prefix++;
4896 i.prefixes -= 1;
4897 }
4898
4899 size = 4;
4900 if (code16)
4901 size = 2;
4902
4903 if (i.prefixes != 0 && !intel_syntax)
4904 as_warn (_("skipping prefixes on this instruction"));
4905
4906 /* 1 opcode; 2 segment; offset */
4907 p = frag_more (prefix + 1 + 2 + size);
4908
4909 if (i.prefix[DATA_PREFIX] != 0)
4910 *p++ = DATA_PREFIX_OPCODE;
4911
4912 if (i.prefix[REX_PREFIX] != 0)
4913 *p++ = i.prefix[REX_PREFIX];
4914
4915 *p++ = i.tm.base_opcode;
4916 if (i.op[1].imms->X_op == O_constant)
4917 {
4918 offsetT n = i.op[1].imms->X_add_number;
4919
4920 if (size == 2
4921 && !fits_in_unsigned_word (n)
4922 && !fits_in_signed_word (n))
4923 {
4924 as_bad (_("16-bit jump out of range"));
4925 return;
4926 }
4927 md_number_to_chars (p, n, size);
4928 }
4929 else
4930 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
4931 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
4932 if (i.op[0].imms->X_op != O_constant)
4933 as_bad (_("can't handle non absolute segment in `%s'"),
4934 i.tm.name);
4935 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
4936 }
4937
4938 static void
4939 output_insn (void)
4940 {
4941 fragS *insn_start_frag;
4942 offsetT insn_start_off;
4943
4944 /* Tie dwarf2 debug info to the address at the start of the insn.
4945 We can't do this after the insn has been output as the current
4946 frag may have been closed off. eg. by frag_var. */
4947 dwarf2_emit_insn (0);
4948
4949 insn_start_frag = frag_now;
4950 insn_start_off = frag_now_fix ();
4951
4952 /* Output jumps. */
4953 if (i.tm.opcode_modifier.jump)
4954 output_branch ();
4955 else if (i.tm.opcode_modifier.jumpbyte
4956 || i.tm.opcode_modifier.jumpdword)
4957 output_jump ();
4958 else if (i.tm.opcode_modifier.jumpintersegment)
4959 output_interseg_jump ();
4960 else
4961 {
4962 /* Output normal instructions here. */
4963 char *p;
4964 unsigned char *q;
4965 unsigned int j;
4966 unsigned int prefix;
4967
4968 switch (i.tm.opcode_length)
4969 {
4970 case 3:
4971 if (i.tm.base_opcode & 0xff000000)
4972 {
4973 prefix = (i.tm.base_opcode >> 24) & 0xff;
4974 goto check_prefix;
4975 }
4976 break;
4977 case 2:
4978 if ((i.tm.base_opcode & 0xff0000) != 0)
4979 {
4980 prefix = (i.tm.base_opcode >> 16) & 0xff;
4981 if (i.tm.cpu_flags.bitfield.cpupadlock)
4982 {
4983 check_prefix:
4984 if (prefix != REPE_PREFIX_OPCODE
4985 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
4986 add_prefix (prefix);
4987 }
4988 else
4989 add_prefix (prefix);
4990 }
4991 break;
4992 case 1:
4993 break;
4994 default:
4995 abort ();
4996 }
4997
4998 /* The prefix bytes. */
4999 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
5000 if (*q)
5001 FRAG_APPEND_1_CHAR (*q);
5002
5003 /* Now the opcode; be careful about word order here! */
5004 if (i.tm.opcode_length == 1)
5005 {
5006 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
5007 }
5008 else
5009 {
5010 switch (i.tm.opcode_length)
5011 {
5012 case 3:
5013 p = frag_more (3);
5014 *p++ = (i.tm.base_opcode >> 16) & 0xff;
5015 break;
5016 case 2:
5017 p = frag_more (2);
5018 break;
5019 default:
5020 abort ();
5021 break;
5022 }
5023
5024 /* Put out high byte first: can't use md_number_to_chars! */
5025 *p++ = (i.tm.base_opcode >> 8) & 0xff;
5026 *p = i.tm.base_opcode & 0xff;
5027
5028 /* On SSE5, encode the OC1 bit in the DREX field if this
5029 encoding has multiple formats. */
5030 if (i.tm.opcode_modifier.drex
5031 && i.tm.opcode_modifier.drexv
5032 && DREX_OC1 (i.tm.extension_opcode))
5033 *p |= DREX_OC1_MASK;
5034 }
5035
5036 /* Now the modrm byte and sib byte (if present). */
5037 if (i.tm.opcode_modifier.modrm)
5038 {
5039 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
5040 | i.rm.reg << 3
5041 | i.rm.mode << 6));
5042 /* If i.rm.regmem == ESP (4)
5043 && i.rm.mode != (Register mode)
5044 && not 16 bit
5045 ==> need second modrm byte. */
5046 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
5047 && i.rm.mode != 3
5048 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
5049 FRAG_APPEND_1_CHAR ((i.sib.base << 0
5050 | i.sib.index << 3
5051 | i.sib.scale << 6));
5052 }
5053
5054 /* Write the DREX byte if needed. */
5055 if (i.tm.opcode_modifier.drex || i.tm.opcode_modifier.drexc)
5056 {
5057 p = frag_more (1);
5058 *p = (((i.drex.reg & 0xf) << 4) | (i.drex.rex & 0x7));
5059
5060 /* Encode the OC0 bit if this encoding has multiple
5061 formats. */
5062 if ((i.tm.opcode_modifier.drex
5063 || i.tm.opcode_modifier.drexv)
5064 && DREX_OC0 (i.tm.extension_opcode))
5065 *p |= DREX_OC0_MASK;
5066 }
5067
5068 if (i.disp_operands)
5069 output_disp (insn_start_frag, insn_start_off);
5070
5071 if (i.imm_operands)
5072 output_imm (insn_start_frag, insn_start_off);
5073 }
5074
5075 #ifdef DEBUG386
5076 if (flag_debug)
5077 {
5078 pi ("" /*line*/, &i);
5079 }
5080 #endif /* DEBUG386 */
5081 }
5082
5083 /* Return the size of the displacement operand N. */
5084
5085 static int
5086 disp_size (unsigned int n)
5087 {
5088 int size = 4;
5089 if (i.types[n].bitfield.disp64)
5090 size = 8;
5091 else if (i.types[n].bitfield.disp8)
5092 size = 1;
5093 else if (i.types[n].bitfield.disp16)
5094 size = 2;
5095 return size;
5096 }
5097
5098 /* Return the size of the immediate operand N. */
5099
5100 static int
5101 imm_size (unsigned int n)
5102 {
5103 int size = 4;
5104 if (i.types[n].bitfield.imm64)
5105 size = 8;
5106 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
5107 size = 1;
5108 else if (i.types[n].bitfield.imm16)
5109 size = 2;
5110 return size;
5111 }
5112
5113 static void
5114 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
5115 {
5116 char *p;
5117 unsigned int n;
5118
5119 for (n = 0; n < i.operands; n++)
5120 {
5121 if (operand_type_check (i.types[n], disp))
5122 {
5123 if (i.op[n].disps->X_op == O_constant)
5124 {
5125 int size = disp_size (n);
5126 offsetT val;
5127
5128 val = offset_in_range (i.op[n].disps->X_add_number,
5129 size);
5130 p = frag_more (size);
5131 md_number_to_chars (p, val, size);
5132 }
5133 else
5134 {
5135 enum bfd_reloc_code_real reloc_type;
5136 int size = disp_size (n);
5137 int sign = i.types[n].bitfield.disp32s;
5138 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
5139
5140 /* We can't have 8 bit displacement here. */
5141 assert (!i.types[n].bitfield.disp8);
5142
5143 /* The PC relative address is computed relative
5144 to the instruction boundary, so in case immediate
5145 fields follows, we need to adjust the value. */
5146 if (pcrel && i.imm_operands)
5147 {
5148 unsigned int n1;
5149 int sz = 0;
5150
5151 for (n1 = 0; n1 < i.operands; n1++)
5152 if (operand_type_check (i.types[n1], imm))
5153 {
5154 /* Only one immediate is allowed for PC
5155 relative address. */
5156 assert (sz == 0);
5157 sz = imm_size (n1);
5158 i.op[n].disps->X_add_number -= sz;
5159 }
5160 /* We should find the immediate. */
5161 assert (sz != 0);
5162 }
5163
5164 p = frag_more (size);
5165 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
5166 if (GOT_symbol
5167 && GOT_symbol == i.op[n].disps->X_add_symbol
5168 && (((reloc_type == BFD_RELOC_32
5169 || reloc_type == BFD_RELOC_X86_64_32S
5170 || (reloc_type == BFD_RELOC_64
5171 && object_64bit))
5172 && (i.op[n].disps->X_op == O_symbol
5173 || (i.op[n].disps->X_op == O_add
5174 && ((symbol_get_value_expression
5175 (i.op[n].disps->X_op_symbol)->X_op)
5176 == O_subtract))))
5177 || reloc_type == BFD_RELOC_32_PCREL))
5178 {
5179 offsetT add;
5180
5181 if (insn_start_frag == frag_now)
5182 add = (p - frag_now->fr_literal) - insn_start_off;
5183 else
5184 {
5185 fragS *fr;
5186
5187 add = insn_start_frag->fr_fix - insn_start_off;
5188 for (fr = insn_start_frag->fr_next;
5189 fr && fr != frag_now; fr = fr->fr_next)
5190 add += fr->fr_fix;
5191 add += p - frag_now->fr_literal;
5192 }
5193
5194 if (!object_64bit)
5195 {
5196 reloc_type = BFD_RELOC_386_GOTPC;
5197 i.op[n].imms->X_add_number += add;
5198 }
5199 else if (reloc_type == BFD_RELOC_64)
5200 reloc_type = BFD_RELOC_X86_64_GOTPC64;
5201 else
5202 /* Don't do the adjustment for x86-64, as there
5203 the pcrel addressing is relative to the _next_
5204 insn, and that is taken care of in other code. */
5205 reloc_type = BFD_RELOC_X86_64_GOTPC32;
5206 }
5207 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5208 i.op[n].disps, pcrel, reloc_type);
5209 }
5210 }
5211 }
5212 }
5213
5214 static void
5215 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
5216 {
5217 char *p;
5218 unsigned int n;
5219
5220 for (n = 0; n < i.operands; n++)
5221 {
5222 if (operand_type_check (i.types[n], imm))
5223 {
5224 if (i.op[n].imms->X_op == O_constant)
5225 {
5226 int size = imm_size (n);
5227 offsetT val;
5228
5229 val = offset_in_range (i.op[n].imms->X_add_number,
5230 size);
5231 p = frag_more (size);
5232 md_number_to_chars (p, val, size);
5233 }
5234 else
5235 {
5236 /* Not absolute_section.
5237 Need a 32-bit fixup (don't support 8bit
5238 non-absolute imms). Try to support other
5239 sizes ... */
5240 enum bfd_reloc_code_real reloc_type;
5241 int size = imm_size (n);
5242 int sign;
5243
5244 if (i.types[n].bitfield.imm32s
5245 && (i.suffix == QWORD_MNEM_SUFFIX
5246 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
5247 sign = 1;
5248 else
5249 sign = 0;
5250
5251 p = frag_more (size);
5252 reloc_type = reloc (size, 0, sign, i.reloc[n]);
5253
5254 /* This is tough to explain. We end up with this one if we
5255 * have operands that look like
5256 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
5257 * obtain the absolute address of the GOT, and it is strongly
5258 * preferable from a performance point of view to avoid using
5259 * a runtime relocation for this. The actual sequence of
5260 * instructions often look something like:
5261 *
5262 * call .L66
5263 * .L66:
5264 * popl %ebx
5265 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
5266 *
5267 * The call and pop essentially return the absolute address
5268 * of the label .L66 and store it in %ebx. The linker itself
5269 * will ultimately change the first operand of the addl so
5270 * that %ebx points to the GOT, but to keep things simple, the
5271 * .o file must have this operand set so that it generates not
5272 * the absolute address of .L66, but the absolute address of
5273 * itself. This allows the linker itself simply treat a GOTPC
5274 * relocation as asking for a pcrel offset to the GOT to be
5275 * added in, and the addend of the relocation is stored in the
5276 * operand field for the instruction itself.
5277 *
5278 * Our job here is to fix the operand so that it would add
5279 * the correct offset so that %ebx would point to itself. The
5280 * thing that is tricky is that .-.L66 will point to the
5281 * beginning of the instruction, so we need to further modify
5282 * the operand so that it will point to itself. There are
5283 * other cases where you have something like:
5284 *
5285 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
5286 *
5287 * and here no correction would be required. Internally in
5288 * the assembler we treat operands of this form as not being
5289 * pcrel since the '.' is explicitly mentioned, and I wonder
5290 * whether it would simplify matters to do it this way. Who
5291 * knows. In earlier versions of the PIC patches, the
5292 * pcrel_adjust field was used to store the correction, but
5293 * since the expression is not pcrel, I felt it would be
5294 * confusing to do it this way. */
5295
5296 if ((reloc_type == BFD_RELOC_32
5297 || reloc_type == BFD_RELOC_X86_64_32S
5298 || reloc_type == BFD_RELOC_64)
5299 && GOT_symbol
5300 && GOT_symbol == i.op[n].imms->X_add_symbol
5301 && (i.op[n].imms->X_op == O_symbol
5302 || (i.op[n].imms->X_op == O_add
5303 && ((symbol_get_value_expression
5304 (i.op[n].imms->X_op_symbol)->X_op)
5305 == O_subtract))))
5306 {
5307 offsetT add;
5308
5309 if (insn_start_frag == frag_now)
5310 add = (p - frag_now->fr_literal) - insn_start_off;
5311 else
5312 {
5313 fragS *fr;
5314
5315 add = insn_start_frag->fr_fix - insn_start_off;
5316 for (fr = insn_start_frag->fr_next;
5317 fr && fr != frag_now; fr = fr->fr_next)
5318 add += fr->fr_fix;
5319 add += p - frag_now->fr_literal;
5320 }
5321
5322 if (!object_64bit)
5323 reloc_type = BFD_RELOC_386_GOTPC;
5324 else if (size == 4)
5325 reloc_type = BFD_RELOC_X86_64_GOTPC32;
5326 else if (size == 8)
5327 reloc_type = BFD_RELOC_X86_64_GOTPC64;
5328 i.op[n].imms->X_add_number += add;
5329 }
5330 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
5331 i.op[n].imms, 0, reloc_type);
5332 }
5333 }
5334 }
5335 }
5336 \f
5337 /* x86_cons_fix_new is called via the expression parsing code when a
5338 reloc is needed. We use this hook to get the correct .got reloc. */
5339 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
5340 static int cons_sign = -1;
5341
5342 void
5343 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
5344 expressionS *exp)
5345 {
5346 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
5347
5348 got_reloc = NO_RELOC;
5349
5350 #ifdef TE_PE
5351 if (exp->X_op == O_secrel)
5352 {
5353 exp->X_op = O_symbol;
5354 r = BFD_RELOC_32_SECREL;
5355 }
5356 #endif
5357
5358 fix_new_exp (frag, off, len, exp, 0, r);
5359 }
5360
5361 #if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
5362 # define lex_got(reloc, adjust, types) NULL
5363 #else
5364 /* Parse operands of the form
5365 <symbol>@GOTOFF+<nnn>
5366 and similar .plt or .got references.
5367
5368 If we find one, set up the correct relocation in RELOC and copy the
5369 input string, minus the `@GOTOFF' into a malloc'd buffer for
5370 parsing by the calling routine. Return this buffer, and if ADJUST
5371 is non-null set it to the length of the string we removed from the
5372 input line. Otherwise return NULL. */
5373 static char *
5374 lex_got (enum bfd_reloc_code_real *reloc,
5375 int *adjust,
5376 i386_operand_type *types)
5377 {
5378 /* Some of the relocations depend on the size of what field is to
5379 be relocated. But in our callers i386_immediate and i386_displacement
5380 we don't yet know the operand size (this will be set by insn
5381 matching). Hence we record the word32 relocation here,
5382 and adjust the reloc according to the real size in reloc(). */
5383 static const struct {
5384 const char *str;
5385 const enum bfd_reloc_code_real rel[2];
5386 const i386_operand_type types64;
5387 } gotrel[] = {
5388 { "PLTOFF", { 0,
5389 BFD_RELOC_X86_64_PLTOFF64 },
5390 OPERAND_TYPE_IMM64 },
5391 { "PLT", { BFD_RELOC_386_PLT32,
5392 BFD_RELOC_X86_64_PLT32 },
5393 OPERAND_TYPE_IMM32_32S_DISP32 },
5394 { "GOTPLT", { 0,
5395 BFD_RELOC_X86_64_GOTPLT64 },
5396 OPERAND_TYPE_IMM64_DISP64 },
5397 { "GOTOFF", { BFD_RELOC_386_GOTOFF,
5398 BFD_RELOC_X86_64_GOTOFF64 },
5399 OPERAND_TYPE_IMM64_DISP64 },
5400 { "GOTPCREL", { 0,
5401 BFD_RELOC_X86_64_GOTPCREL },
5402 OPERAND_TYPE_IMM32_32S_DISP32 },
5403 { "TLSGD", { BFD_RELOC_386_TLS_GD,
5404 BFD_RELOC_X86_64_TLSGD },
5405 OPERAND_TYPE_IMM32_32S_DISP32 },
5406 { "TLSLDM", { BFD_RELOC_386_TLS_LDM,
5407 0 },
5408 OPERAND_TYPE_NONE },
5409 { "TLSLD", { 0,
5410 BFD_RELOC_X86_64_TLSLD },
5411 OPERAND_TYPE_IMM32_32S_DISP32 },
5412 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32,
5413 BFD_RELOC_X86_64_GOTTPOFF },
5414 OPERAND_TYPE_IMM32_32S_DISP32 },
5415 { "TPOFF", { BFD_RELOC_386_TLS_LE_32,
5416 BFD_RELOC_X86_64_TPOFF32 },
5417 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
5418 { "NTPOFF", { BFD_RELOC_386_TLS_LE,
5419 0 },
5420 OPERAND_TYPE_NONE },
5421 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32,
5422 BFD_RELOC_X86_64_DTPOFF32 },
5423
5424 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
5425 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE,
5426 0 },
5427 OPERAND_TYPE_NONE },
5428 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE,
5429 0 },
5430 OPERAND_TYPE_NONE },
5431 { "GOT", { BFD_RELOC_386_GOT32,
5432 BFD_RELOC_X86_64_GOT32 },
5433 OPERAND_TYPE_IMM32_32S_64_DISP32 },
5434 { "TLSDESC", { BFD_RELOC_386_TLS_GOTDESC,
5435 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
5436 OPERAND_TYPE_IMM32_32S_DISP32 },
5437 { "TLSCALL", { BFD_RELOC_386_TLS_DESC_CALL,
5438 BFD_RELOC_X86_64_TLSDESC_CALL },
5439 OPERAND_TYPE_IMM32_32S_DISP32 },
5440 };
5441 char *cp;
5442 unsigned int j;
5443
5444 if (!IS_ELF)
5445 return NULL;
5446
5447 for (cp = input_line_pointer; *cp != '@'; cp++)
5448 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
5449 return NULL;
5450
5451 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
5452 {
5453 int len;
5454
5455 len = strlen (gotrel[j].str);
5456 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
5457 {
5458 if (gotrel[j].rel[object_64bit] != 0)
5459 {
5460 int first, second;
5461 char *tmpbuf, *past_reloc;
5462
5463 *reloc = gotrel[j].rel[object_64bit];
5464 if (adjust)
5465 *adjust = len;
5466
5467 if (types)
5468 {
5469 if (flag_code != CODE_64BIT)
5470 {
5471 types->bitfield.imm32 = 1;
5472 types->bitfield.disp32 = 1;
5473 }
5474 else
5475 *types = gotrel[j].types64;
5476 }
5477
5478 if (GOT_symbol == NULL)
5479 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
5480
5481 /* The length of the first part of our input line. */
5482 first = cp - input_line_pointer;
5483
5484 /* The second part goes from after the reloc token until
5485 (and including) an end_of_line char or comma. */
5486 past_reloc = cp + 1 + len;
5487 cp = past_reloc;
5488 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
5489 ++cp;
5490 second = cp + 1 - past_reloc;
5491
5492 /* Allocate and copy string. The trailing NUL shouldn't
5493 be necessary, but be safe. */
5494 tmpbuf = xmalloc (first + second + 2);
5495 memcpy (tmpbuf, input_line_pointer, first);
5496 if (second != 0 && *past_reloc != ' ')
5497 /* Replace the relocation token with ' ', so that
5498 errors like foo@GOTOFF1 will be detected. */
5499 tmpbuf[first++] = ' ';
5500 memcpy (tmpbuf + first, past_reloc, second);
5501 tmpbuf[first + second] = '\0';
5502 return tmpbuf;
5503 }
5504
5505 as_bad (_("@%s reloc is not supported with %d-bit output format"),
5506 gotrel[j].str, 1 << (5 + object_64bit));
5507 return NULL;
5508 }
5509 }
5510
5511 /* Might be a symbol version string. Don't as_bad here. */
5512 return NULL;
5513 }
5514
5515 void
5516 x86_cons (expressionS *exp, int size)
5517 {
5518 if (size == 4 || (object_64bit && size == 8))
5519 {
5520 /* Handle @GOTOFF and the like in an expression. */
5521 char *save;
5522 char *gotfree_input_line;
5523 int adjust;
5524
5525 save = input_line_pointer;
5526 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
5527 if (gotfree_input_line)
5528 input_line_pointer = gotfree_input_line;
5529
5530 expression (exp);
5531
5532 if (gotfree_input_line)
5533 {
5534 /* expression () has merrily parsed up to the end of line,
5535 or a comma - in the wrong buffer. Transfer how far
5536 input_line_pointer has moved to the right buffer. */
5537 input_line_pointer = (save
5538 + (input_line_pointer - gotfree_input_line)
5539 + adjust);
5540 free (gotfree_input_line);
5541 if (exp->X_op == O_constant
5542 || exp->X_op == O_absent
5543 || exp->X_op == O_illegal
5544 || exp->X_op == O_register
5545 || exp->X_op == O_big)
5546 {
5547 char c = *input_line_pointer;
5548 *input_line_pointer = 0;
5549 as_bad (_("missing or invalid expression `%s'"), save);
5550 *input_line_pointer = c;
5551 }
5552 }
5553 }
5554 else
5555 expression (exp);
5556 }
5557 #endif
5558
5559 static void signed_cons (int size)
5560 {
5561 if (flag_code == CODE_64BIT)
5562 cons_sign = 1;
5563 cons (size);
5564 cons_sign = -1;
5565 }
5566
5567 #ifdef TE_PE
5568 static void
5569 pe_directive_secrel (dummy)
5570 int dummy ATTRIBUTE_UNUSED;
5571 {
5572 expressionS exp;
5573
5574 do
5575 {
5576 expression (&exp);
5577 if (exp.X_op == O_symbol)
5578 exp.X_op = O_secrel;
5579
5580 emit_expr (&exp, 4);
5581 }
5582 while (*input_line_pointer++ == ',');
5583
5584 input_line_pointer--;
5585 demand_empty_rest_of_line ();
5586 }
5587 #endif
5588
5589 static int
5590 i386_immediate (char *imm_start)
5591 {
5592 char *save_input_line_pointer;
5593 char *gotfree_input_line;
5594 segT exp_seg = 0;
5595 expressionS *exp;
5596 i386_operand_type types;
5597
5598 UINTS_SET (types, ~0);
5599
5600 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
5601 {
5602 as_bad (_("at most %d immediate operands are allowed"),
5603 MAX_IMMEDIATE_OPERANDS);
5604 return 0;
5605 }
5606
5607 exp = &im_expressions[i.imm_operands++];
5608 i.op[this_operand].imms = exp;
5609
5610 if (is_space_char (*imm_start))
5611 ++imm_start;
5612
5613 save_input_line_pointer = input_line_pointer;
5614 input_line_pointer = imm_start;
5615
5616 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
5617 if (gotfree_input_line)
5618 input_line_pointer = gotfree_input_line;
5619
5620 exp_seg = expression (exp);
5621
5622 SKIP_WHITESPACE ();
5623 if (*input_line_pointer)
5624 as_bad (_("junk `%s' after expression"), input_line_pointer);
5625
5626 input_line_pointer = save_input_line_pointer;
5627 if (gotfree_input_line)
5628 free (gotfree_input_line);
5629
5630 if (exp->X_op == O_absent
5631 || exp->X_op == O_illegal
5632 || exp->X_op == O_big
5633 || (gotfree_input_line
5634 && (exp->X_op == O_constant
5635 || exp->X_op == O_register)))
5636 {
5637 as_bad (_("missing or invalid immediate expression `%s'"),
5638 imm_start);
5639 return 0;
5640 }
5641 else if (exp->X_op == O_constant)
5642 {
5643 /* Size it properly later. */
5644 i.types[this_operand].bitfield.imm64 = 1;
5645 /* If BFD64, sign extend val. */
5646 if (!use_rela_relocations
5647 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
5648 exp->X_add_number
5649 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
5650 }
5651 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5652 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
5653 && exp_seg != absolute_section
5654 && exp_seg != text_section
5655 && exp_seg != data_section
5656 && exp_seg != bss_section
5657 && exp_seg != undefined_section
5658 && !bfd_is_com_section (exp_seg))
5659 {
5660 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
5661 return 0;
5662 }
5663 #endif
5664 else if (!intel_syntax && exp->X_op == O_register)
5665 {
5666 as_bad (_("illegal immediate register operand %s"), imm_start);
5667 return 0;
5668 }
5669 else
5670 {
5671 /* This is an address. The size of the address will be
5672 determined later, depending on destination register,
5673 suffix, or the default for the section. */
5674 i.types[this_operand].bitfield.imm8 = 1;
5675 i.types[this_operand].bitfield.imm16 = 1;
5676 i.types[this_operand].bitfield.imm32 = 1;
5677 i.types[this_operand].bitfield.imm32s = 1;
5678 i.types[this_operand].bitfield.imm64 = 1;
5679 i.types[this_operand] = operand_type_and (i.types[this_operand],
5680 types);
5681 }
5682
5683 return 1;
5684 }
5685
5686 static char *
5687 i386_scale (char *scale)
5688 {
5689 offsetT val;
5690 char *save = input_line_pointer;
5691
5692 input_line_pointer = scale;
5693 val = get_absolute_expression ();
5694
5695 switch (val)
5696 {
5697 case 1:
5698 i.log2_scale_factor = 0;
5699 break;
5700 case 2:
5701 i.log2_scale_factor = 1;
5702 break;
5703 case 4:
5704 i.log2_scale_factor = 2;
5705 break;
5706 case 8:
5707 i.log2_scale_factor = 3;
5708 break;
5709 default:
5710 {
5711 char sep = *input_line_pointer;
5712
5713 *input_line_pointer = '\0';
5714 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
5715 scale);
5716 *input_line_pointer = sep;
5717 input_line_pointer = save;
5718 return NULL;
5719 }
5720 }
5721 if (i.log2_scale_factor != 0 && i.index_reg == 0)
5722 {
5723 as_warn (_("scale factor of %d without an index register"),
5724 1 << i.log2_scale_factor);
5725 i.log2_scale_factor = 0;
5726 }
5727 scale = input_line_pointer;
5728 input_line_pointer = save;
5729 return scale;
5730 }
5731
5732 static int
5733 i386_displacement (char *disp_start, char *disp_end)
5734 {
5735 expressionS *exp;
5736 segT exp_seg = 0;
5737 char *save_input_line_pointer;
5738 char *gotfree_input_line;
5739 int override;
5740 i386_operand_type bigdisp, types = anydisp;
5741 int ret;
5742
5743 if (i.disp_operands == MAX_MEMORY_OPERANDS)
5744 {
5745 as_bad (_("at most %d displacement operands are allowed"),
5746 MAX_MEMORY_OPERANDS);
5747 return 0;
5748 }
5749
5750 UINTS_CLEAR (bigdisp);
5751 if ((i.types[this_operand].bitfield.jumpabsolute)
5752 || (!current_templates->start->opcode_modifier.jump
5753 && !current_templates->start->opcode_modifier.jumpdword))
5754 {
5755 bigdisp.bitfield.disp32 = 1;
5756 override = (i.prefix[ADDR_PREFIX] != 0);
5757 if (flag_code == CODE_64BIT)
5758 {
5759 if (!override)
5760 {
5761 bigdisp.bitfield.disp32s = 1;
5762 bigdisp.bitfield.disp64 = 1;
5763 }
5764 }
5765 else if ((flag_code == CODE_16BIT) ^ override)
5766 {
5767 bigdisp.bitfield.disp32 = 0;
5768 bigdisp.bitfield.disp16 = 1;
5769 }
5770 }
5771 else
5772 {
5773 /* For PC-relative branches, the width of the displacement
5774 is dependent upon data size, not address size. */
5775 override = (i.prefix[DATA_PREFIX] != 0);
5776 if (flag_code == CODE_64BIT)
5777 {
5778 if (override || i.suffix == WORD_MNEM_SUFFIX)
5779 bigdisp.bitfield.disp16 = 1;
5780 else
5781 {
5782 bigdisp.bitfield.disp32 = 1;
5783 bigdisp.bitfield.disp32s = 1;
5784 }
5785 }
5786 else
5787 {
5788 if (!override)
5789 override = (i.suffix == (flag_code != CODE_16BIT
5790 ? WORD_MNEM_SUFFIX
5791 : LONG_MNEM_SUFFIX));
5792 bigdisp.bitfield.disp32 = 1;
5793 if ((flag_code == CODE_16BIT) ^ override)
5794 {
5795 bigdisp.bitfield.disp32 = 0;
5796 bigdisp.bitfield.disp16 = 1;
5797 }
5798 }
5799 }
5800 i.types[this_operand] = operand_type_or (i.types[this_operand],
5801 bigdisp);
5802
5803 exp = &disp_expressions[i.disp_operands];
5804 i.op[this_operand].disps = exp;
5805 i.disp_operands++;
5806 save_input_line_pointer = input_line_pointer;
5807 input_line_pointer = disp_start;
5808 END_STRING_AND_SAVE (disp_end);
5809
5810 #ifndef GCC_ASM_O_HACK
5811 #define GCC_ASM_O_HACK 0
5812 #endif
5813 #if GCC_ASM_O_HACK
5814 END_STRING_AND_SAVE (disp_end + 1);
5815 if (i.types[this_operand].bitfield.baseIndex
5816 && displacement_string_end[-1] == '+')
5817 {
5818 /* This hack is to avoid a warning when using the "o"
5819 constraint within gcc asm statements.
5820 For instance:
5821
5822 #define _set_tssldt_desc(n,addr,limit,type) \
5823 __asm__ __volatile__ ( \
5824 "movw %w2,%0\n\t" \
5825 "movw %w1,2+%0\n\t" \
5826 "rorl $16,%1\n\t" \
5827 "movb %b1,4+%0\n\t" \
5828 "movb %4,5+%0\n\t" \
5829 "movb $0,6+%0\n\t" \
5830 "movb %h1,7+%0\n\t" \
5831 "rorl $16,%1" \
5832 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
5833
5834 This works great except that the output assembler ends
5835 up looking a bit weird if it turns out that there is
5836 no offset. You end up producing code that looks like:
5837
5838 #APP
5839 movw $235,(%eax)
5840 movw %dx,2+(%eax)
5841 rorl $16,%edx
5842 movb %dl,4+(%eax)
5843 movb $137,5+(%eax)
5844 movb $0,6+(%eax)
5845 movb %dh,7+(%eax)
5846 rorl $16,%edx
5847 #NO_APP
5848
5849 So here we provide the missing zero. */
5850
5851 *displacement_string_end = '0';
5852 }
5853 #endif
5854 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
5855 if (gotfree_input_line)
5856 input_line_pointer = gotfree_input_line;
5857
5858 exp_seg = expression (exp);
5859
5860 SKIP_WHITESPACE ();
5861 if (*input_line_pointer)
5862 as_bad (_("junk `%s' after expression"), input_line_pointer);
5863 #if GCC_ASM_O_HACK
5864 RESTORE_END_STRING (disp_end + 1);
5865 #endif
5866 input_line_pointer = save_input_line_pointer;
5867 if (gotfree_input_line)
5868 free (gotfree_input_line);
5869 ret = 1;
5870
5871 /* We do this to make sure that the section symbol is in
5872 the symbol table. We will ultimately change the relocation
5873 to be relative to the beginning of the section. */
5874 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
5875 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
5876 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
5877 {
5878 if (exp->X_op != O_symbol)
5879 goto inv_disp;
5880
5881 if (S_IS_LOCAL (exp->X_add_symbol)
5882 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
5883 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
5884 exp->X_op = O_subtract;
5885 exp->X_op_symbol = GOT_symbol;
5886 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
5887 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
5888 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
5889 i.reloc[this_operand] = BFD_RELOC_64;
5890 else
5891 i.reloc[this_operand] = BFD_RELOC_32;
5892 }
5893
5894 else if (exp->X_op == O_absent
5895 || exp->X_op == O_illegal
5896 || exp->X_op == O_big
5897 || (gotfree_input_line
5898 && (exp->X_op == O_constant
5899 || exp->X_op == O_register)))
5900 {
5901 inv_disp:
5902 as_bad (_("missing or invalid displacement expression `%s'"),
5903 disp_start);
5904 ret = 0;
5905 }
5906
5907 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
5908 else if (exp->X_op != O_constant
5909 && OUTPUT_FLAVOR == bfd_target_aout_flavour
5910 && exp_seg != absolute_section
5911 && exp_seg != text_section
5912 && exp_seg != data_section
5913 && exp_seg != bss_section
5914 && exp_seg != undefined_section
5915 && !bfd_is_com_section (exp_seg))
5916 {
5917 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
5918 ret = 0;
5919 }
5920 #endif
5921
5922 RESTORE_END_STRING (disp_end);
5923
5924 /* Check if this is a displacement only operand. */
5925 bigdisp = i.types[this_operand];
5926 bigdisp.bitfield.disp8 = 0;
5927 bigdisp.bitfield.disp16 = 0;
5928 bigdisp.bitfield.disp32 = 0;
5929 bigdisp.bitfield.disp32s = 0;
5930 bigdisp.bitfield.disp64 = 0;
5931 if (UINTS_ALL_ZERO (bigdisp))
5932 i.types[this_operand] = operand_type_and (i.types[this_operand],
5933 types);
5934
5935 return ret;
5936 }
5937
5938 /* Make sure the memory operand we've been dealt is valid.
5939 Return 1 on success, 0 on a failure. */
5940
5941 static int
5942 i386_index_check (const char *operand_string)
5943 {
5944 int ok;
5945 #if INFER_ADDR_PREFIX
5946 int fudged = 0;
5947
5948 tryprefix:
5949 #endif
5950 ok = 1;
5951 if (flag_code == CODE_64BIT)
5952 {
5953 if ((i.base_reg
5954 && ((i.prefix[ADDR_PREFIX] == 0
5955 && !i.base_reg->reg_type.bitfield.reg64)
5956 || (i.prefix[ADDR_PREFIX]
5957 && !i.base_reg->reg_type.bitfield.reg32))
5958 && (i.index_reg
5959 || i.base_reg->reg_num !=
5960 (i.prefix[ADDR_PREFIX] == 0 ? RegRip : RegEip)))
5961 || (i.index_reg
5962 && (!i.index_reg->reg_type.bitfield.baseindex
5963 || (i.prefix[ADDR_PREFIX] == 0
5964 && i.index_reg->reg_num != RegRiz
5965 && !i.index_reg->reg_type.bitfield.reg64
5966 )
5967 || (i.prefix[ADDR_PREFIX]
5968 && i.index_reg->reg_num != RegEiz
5969 && !i.index_reg->reg_type.bitfield.reg32))))
5970 ok = 0;
5971 }
5972 else
5973 {
5974 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
5975 {
5976 /* 16bit checks. */
5977 if ((i.base_reg
5978 && (!i.base_reg->reg_type.bitfield.reg16
5979 || !i.base_reg->reg_type.bitfield.baseindex))
5980 || (i.index_reg
5981 && (!i.index_reg->reg_type.bitfield.reg16
5982 || !i.index_reg->reg_type.bitfield.baseindex
5983 || !(i.base_reg
5984 && i.base_reg->reg_num < 6
5985 && i.index_reg->reg_num >= 6
5986 && i.log2_scale_factor == 0))))
5987 ok = 0;
5988 }
5989 else
5990 {
5991 /* 32bit checks. */
5992 if ((i.base_reg
5993 && !i.base_reg->reg_type.bitfield.reg32)
5994 || (i.index_reg
5995 && ((!i.index_reg->reg_type.bitfield.reg32
5996 && i.index_reg->reg_num != RegEiz)
5997 || !i.index_reg->reg_type.bitfield.baseindex)))
5998 ok = 0;
5999 }
6000 }
6001 if (!ok)
6002 {
6003 #if INFER_ADDR_PREFIX
6004 if (i.prefix[ADDR_PREFIX] == 0)
6005 {
6006 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
6007 i.prefixes += 1;
6008 /* Change the size of any displacement too. At most one of
6009 Disp16 or Disp32 is set.
6010 FIXME. There doesn't seem to be any real need for separate
6011 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
6012 Removing them would probably clean up the code quite a lot. */
6013 if (flag_code != CODE_64BIT
6014 && (i.types[this_operand].bitfield.disp16
6015 || i.types[this_operand].bitfield.disp32))
6016 i.types[this_operand]
6017 = operand_type_xor (i.types[this_operand], disp16_32);
6018 fudged = 1;
6019 goto tryprefix;
6020 }
6021 if (fudged)
6022 as_bad (_("`%s' is not a valid base/index expression"),
6023 operand_string);
6024 else
6025 #endif
6026 as_bad (_("`%s' is not a valid %s bit base/index expression"),
6027 operand_string,
6028 flag_code_names[flag_code]);
6029 }
6030 return ok;
6031 }
6032
6033 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
6034 on error. */
6035
6036 static int
6037 i386_operand (char *operand_string)
6038 {
6039 const reg_entry *r;
6040 char *end_op;
6041 char *op_string = operand_string;
6042
6043 if (is_space_char (*op_string))
6044 ++op_string;
6045
6046 /* We check for an absolute prefix (differentiating,
6047 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
6048 if (*op_string == ABSOLUTE_PREFIX)
6049 {
6050 ++op_string;
6051 if (is_space_char (*op_string))
6052 ++op_string;
6053 i.types[this_operand].bitfield.jumpabsolute = 1;
6054 }
6055
6056 /* Check if operand is a register. */
6057 if ((r = parse_register (op_string, &end_op)) != NULL)
6058 {
6059 i386_operand_type temp;
6060
6061 /* Check for a segment override by searching for ':' after a
6062 segment register. */
6063 op_string = end_op;
6064 if (is_space_char (*op_string))
6065 ++op_string;
6066 if (*op_string == ':'
6067 && (r->reg_type.bitfield.sreg2
6068 || r->reg_type.bitfield.sreg3))
6069 {
6070 switch (r->reg_num)
6071 {
6072 case 0:
6073 i.seg[i.mem_operands] = &es;
6074 break;
6075 case 1:
6076 i.seg[i.mem_operands] = &cs;
6077 break;
6078 case 2:
6079 i.seg[i.mem_operands] = &ss;
6080 break;
6081 case 3:
6082 i.seg[i.mem_operands] = &ds;
6083 break;
6084 case 4:
6085 i.seg[i.mem_operands] = &fs;
6086 break;
6087 case 5:
6088 i.seg[i.mem_operands] = &gs;
6089 break;
6090 }
6091
6092 /* Skip the ':' and whitespace. */
6093 ++op_string;
6094 if (is_space_char (*op_string))
6095 ++op_string;
6096
6097 if (!is_digit_char (*op_string)
6098 && !is_identifier_char (*op_string)
6099 && *op_string != '('
6100 && *op_string != ABSOLUTE_PREFIX)
6101 {
6102 as_bad (_("bad memory operand `%s'"), op_string);
6103 return 0;
6104 }
6105 /* Handle case of %es:*foo. */
6106 if (*op_string == ABSOLUTE_PREFIX)
6107 {
6108 ++op_string;
6109 if (is_space_char (*op_string))
6110 ++op_string;
6111 i.types[this_operand].bitfield.jumpabsolute = 1;
6112 }
6113 goto do_memory_reference;
6114 }
6115 if (*op_string)
6116 {
6117 as_bad (_("junk `%s' after register"), op_string);
6118 return 0;
6119 }
6120 temp = r->reg_type;
6121 temp.bitfield.baseindex = 0;
6122 i.types[this_operand] = operand_type_or (i.types[this_operand],
6123 temp);
6124 i.op[this_operand].regs = r;
6125 i.reg_operands++;
6126 }
6127 else if (*op_string == REGISTER_PREFIX)
6128 {
6129 as_bad (_("bad register name `%s'"), op_string);
6130 return 0;
6131 }
6132 else if (*op_string == IMMEDIATE_PREFIX)
6133 {
6134 ++op_string;
6135 if (i.types[this_operand].bitfield.jumpabsolute)
6136 {
6137 as_bad (_("immediate operand illegal with absolute jump"));
6138 return 0;
6139 }
6140 if (!i386_immediate (op_string))
6141 return 0;
6142 }
6143 else if (is_digit_char (*op_string)
6144 || is_identifier_char (*op_string)
6145 || *op_string == '(')
6146 {
6147 /* This is a memory reference of some sort. */
6148 char *base_string;
6149
6150 /* Start and end of displacement string expression (if found). */
6151 char *displacement_string_start;
6152 char *displacement_string_end;
6153
6154 do_memory_reference:
6155 if ((i.mem_operands == 1
6156 && !current_templates->start->opcode_modifier.isstring)
6157 || i.mem_operands == 2)
6158 {
6159 as_bad (_("too many memory references for `%s'"),
6160 current_templates->start->name);
6161 return 0;
6162 }
6163
6164 /* Check for base index form. We detect the base index form by
6165 looking for an ')' at the end of the operand, searching
6166 for the '(' matching it, and finding a REGISTER_PREFIX or ','
6167 after the '('. */
6168 base_string = op_string + strlen (op_string);
6169
6170 --base_string;
6171 if (is_space_char (*base_string))
6172 --base_string;
6173
6174 /* If we only have a displacement, set-up for it to be parsed later. */
6175 displacement_string_start = op_string;
6176 displacement_string_end = base_string + 1;
6177
6178 if (*base_string == ')')
6179 {
6180 char *temp_string;
6181 unsigned int parens_balanced = 1;
6182 /* We've already checked that the number of left & right ()'s are
6183 equal, so this loop will not be infinite. */
6184 do
6185 {
6186 base_string--;
6187 if (*base_string == ')')
6188 parens_balanced++;
6189 if (*base_string == '(')
6190 parens_balanced--;
6191 }
6192 while (parens_balanced);
6193
6194 temp_string = base_string;
6195
6196 /* Skip past '(' and whitespace. */
6197 ++base_string;
6198 if (is_space_char (*base_string))
6199 ++base_string;
6200
6201 if (*base_string == ','
6202 || ((i.base_reg = parse_register (base_string, &end_op))
6203 != NULL))
6204 {
6205 displacement_string_end = temp_string;
6206
6207 i.types[this_operand].bitfield.baseindex = 1;
6208
6209 if (i.base_reg)
6210 {
6211 base_string = end_op;
6212 if (is_space_char (*base_string))
6213 ++base_string;
6214 }
6215
6216 /* There may be an index reg or scale factor here. */
6217 if (*base_string == ',')
6218 {
6219 ++base_string;
6220 if (is_space_char (*base_string))
6221 ++base_string;
6222
6223 if ((i.index_reg = parse_register (base_string, &end_op))
6224 != NULL)
6225 {
6226 base_string = end_op;
6227 if (is_space_char (*base_string))
6228 ++base_string;
6229 if (*base_string == ',')
6230 {
6231 ++base_string;
6232 if (is_space_char (*base_string))
6233 ++base_string;
6234 }
6235 else if (*base_string != ')')
6236 {
6237 as_bad (_("expecting `,' or `)' "
6238 "after index register in `%s'"),
6239 operand_string);
6240 return 0;
6241 }
6242 }
6243 else if (*base_string == REGISTER_PREFIX)
6244 {
6245 as_bad (_("bad register name `%s'"), base_string);
6246 return 0;
6247 }
6248
6249 /* Check for scale factor. */
6250 if (*base_string != ')')
6251 {
6252 char *end_scale = i386_scale (base_string);
6253
6254 if (!end_scale)
6255 return 0;
6256
6257 base_string = end_scale;
6258 if (is_space_char (*base_string))
6259 ++base_string;
6260 if (*base_string != ')')
6261 {
6262 as_bad (_("expecting `)' "
6263 "after scale factor in `%s'"),
6264 operand_string);
6265 return 0;
6266 }
6267 }
6268 else if (!i.index_reg)
6269 {
6270 as_bad (_("expecting index register or scale factor "
6271 "after `,'; got '%c'"),
6272 *base_string);
6273 return 0;
6274 }
6275 }
6276 else if (*base_string != ')')
6277 {
6278 as_bad (_("expecting `,' or `)' "
6279 "after base register in `%s'"),
6280 operand_string);
6281 return 0;
6282 }
6283 }
6284 else if (*base_string == REGISTER_PREFIX)
6285 {
6286 as_bad (_("bad register name `%s'"), base_string);
6287 return 0;
6288 }
6289 }
6290
6291 /* If there's an expression beginning the operand, parse it,
6292 assuming displacement_string_start and
6293 displacement_string_end are meaningful. */
6294 if (displacement_string_start != displacement_string_end)
6295 {
6296 if (!i386_displacement (displacement_string_start,
6297 displacement_string_end))
6298 return 0;
6299 }
6300
6301 /* Special case for (%dx) while doing input/output op. */
6302 if (i.base_reg
6303 && UINTS_EQUAL (i.base_reg->reg_type, reg16_inoutportreg)
6304 && i.index_reg == 0
6305 && i.log2_scale_factor == 0
6306 && i.seg[i.mem_operands] == 0
6307 && !operand_type_check (i.types[this_operand], disp))
6308 {
6309 UINTS_CLEAR (i.types[this_operand]);
6310 i.types[this_operand].bitfield.inoutportreg = 1;
6311 return 1;
6312 }
6313
6314 if (i386_index_check (operand_string) == 0)
6315 return 0;
6316 i.mem_operands++;
6317 }
6318 else
6319 {
6320 /* It's not a memory operand; argh! */
6321 as_bad (_("invalid char %s beginning operand %d `%s'"),
6322 output_invalid (*op_string),
6323 this_operand + 1,
6324 op_string);
6325 return 0;
6326 }
6327 return 1; /* Normal return. */
6328 }
6329 \f
6330 /* md_estimate_size_before_relax()
6331
6332 Called just before relax() for rs_machine_dependent frags. The x86
6333 assembler uses these frags to handle variable size jump
6334 instructions.
6335
6336 Any symbol that is now undefined will not become defined.
6337 Return the correct fr_subtype in the frag.
6338 Return the initial "guess for variable size of frag" to caller.
6339 The guess is actually the growth beyond the fixed part. Whatever
6340 we do to grow the fixed or variable part contributes to our
6341 returned value. */
6342
6343 int
6344 md_estimate_size_before_relax (fragP, segment)
6345 fragS *fragP;
6346 segT segment;
6347 {
6348 /* We've already got fragP->fr_subtype right; all we have to do is
6349 check for un-relaxable symbols. On an ELF system, we can't relax
6350 an externally visible symbol, because it may be overridden by a
6351 shared library. */
6352 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
6353 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6354 || (IS_ELF
6355 && (S_IS_EXTERNAL (fragP->fr_symbol)
6356 || S_IS_WEAK (fragP->fr_symbol)))
6357 #endif
6358 )
6359 {
6360 /* Symbol is undefined in this segment, or we need to keep a
6361 reloc so that weak symbols can be overridden. */
6362 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
6363 enum bfd_reloc_code_real reloc_type;
6364 unsigned char *opcode;
6365 int old_fr_fix;
6366
6367 if (fragP->fr_var != NO_RELOC)
6368 reloc_type = fragP->fr_var;
6369 else if (size == 2)
6370 reloc_type = BFD_RELOC_16_PCREL;
6371 else
6372 reloc_type = BFD_RELOC_32_PCREL;
6373
6374 old_fr_fix = fragP->fr_fix;
6375 opcode = (unsigned char *) fragP->fr_opcode;
6376
6377 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
6378 {
6379 case UNCOND_JUMP:
6380 /* Make jmp (0xeb) a (d)word displacement jump. */
6381 opcode[0] = 0xe9;
6382 fragP->fr_fix += size;
6383 fix_new (fragP, old_fr_fix, size,
6384 fragP->fr_symbol,
6385 fragP->fr_offset, 1,
6386 reloc_type);
6387 break;
6388
6389 case COND_JUMP86:
6390 if (size == 2
6391 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
6392 {
6393 /* Negate the condition, and branch past an
6394 unconditional jump. */
6395 opcode[0] ^= 1;
6396 opcode[1] = 3;
6397 /* Insert an unconditional jump. */
6398 opcode[2] = 0xe9;
6399 /* We added two extra opcode bytes, and have a two byte
6400 offset. */
6401 fragP->fr_fix += 2 + 2;
6402 fix_new (fragP, old_fr_fix + 2, 2,
6403 fragP->fr_symbol,
6404 fragP->fr_offset, 1,
6405 reloc_type);
6406 break;
6407 }
6408 /* Fall through. */
6409
6410 case COND_JUMP:
6411 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
6412 {
6413 fixS *fixP;
6414
6415 fragP->fr_fix += 1;
6416 fixP = fix_new (fragP, old_fr_fix, 1,
6417 fragP->fr_symbol,
6418 fragP->fr_offset, 1,
6419 BFD_RELOC_8_PCREL);
6420 fixP->fx_signed = 1;
6421 break;
6422 }
6423
6424 /* This changes the byte-displacement jump 0x7N
6425 to the (d)word-displacement jump 0x0f,0x8N. */
6426 opcode[1] = opcode[0] + 0x10;
6427 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
6428 /* We've added an opcode byte. */
6429 fragP->fr_fix += 1 + size;
6430 fix_new (fragP, old_fr_fix + 1, size,
6431 fragP->fr_symbol,
6432 fragP->fr_offset, 1,
6433 reloc_type);
6434 break;
6435
6436 default:
6437 BAD_CASE (fragP->fr_subtype);
6438 break;
6439 }
6440 frag_wane (fragP);
6441 return fragP->fr_fix - old_fr_fix;
6442 }
6443
6444 /* Guess size depending on current relax state. Initially the relax
6445 state will correspond to a short jump and we return 1, because
6446 the variable part of the frag (the branch offset) is one byte
6447 long. However, we can relax a section more than once and in that
6448 case we must either set fr_subtype back to the unrelaxed state,
6449 or return the value for the appropriate branch. */
6450 return md_relax_table[fragP->fr_subtype].rlx_length;
6451 }
6452
6453 /* Called after relax() is finished.
6454
6455 In: Address of frag.
6456 fr_type == rs_machine_dependent.
6457 fr_subtype is what the address relaxed to.
6458
6459 Out: Any fixSs and constants are set up.
6460 Caller will turn frag into a ".space 0". */
6461
6462 void
6463 md_convert_frag (abfd, sec, fragP)
6464 bfd *abfd ATTRIBUTE_UNUSED;
6465 segT sec ATTRIBUTE_UNUSED;
6466 fragS *fragP;
6467 {
6468 unsigned char *opcode;
6469 unsigned char *where_to_put_displacement = NULL;
6470 offsetT target_address;
6471 offsetT opcode_address;
6472 unsigned int extension = 0;
6473 offsetT displacement_from_opcode_start;
6474
6475 opcode = (unsigned char *) fragP->fr_opcode;
6476
6477 /* Address we want to reach in file space. */
6478 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
6479
6480 /* Address opcode resides at in file space. */
6481 opcode_address = fragP->fr_address + fragP->fr_fix;
6482
6483 /* Displacement from opcode start to fill into instruction. */
6484 displacement_from_opcode_start = target_address - opcode_address;
6485
6486 if ((fragP->fr_subtype & BIG) == 0)
6487 {
6488 /* Don't have to change opcode. */
6489 extension = 1; /* 1 opcode + 1 displacement */
6490 where_to_put_displacement = &opcode[1];
6491 }
6492 else
6493 {
6494 if (no_cond_jump_promotion
6495 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
6496 as_warn_where (fragP->fr_file, fragP->fr_line,
6497 _("long jump required"));
6498
6499 switch (fragP->fr_subtype)
6500 {
6501 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
6502 extension = 4; /* 1 opcode + 4 displacement */
6503 opcode[0] = 0xe9;
6504 where_to_put_displacement = &opcode[1];
6505 break;
6506
6507 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
6508 extension = 2; /* 1 opcode + 2 displacement */
6509 opcode[0] = 0xe9;
6510 where_to_put_displacement = &opcode[1];
6511 break;
6512
6513 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
6514 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
6515 extension = 5; /* 2 opcode + 4 displacement */
6516 opcode[1] = opcode[0] + 0x10;
6517 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
6518 where_to_put_displacement = &opcode[2];
6519 break;
6520
6521 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
6522 extension = 3; /* 2 opcode + 2 displacement */
6523 opcode[1] = opcode[0] + 0x10;
6524 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
6525 where_to_put_displacement = &opcode[2];
6526 break;
6527
6528 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
6529 extension = 4;
6530 opcode[0] ^= 1;
6531 opcode[1] = 3;
6532 opcode[2] = 0xe9;
6533 where_to_put_displacement = &opcode[3];
6534 break;
6535
6536 default:
6537 BAD_CASE (fragP->fr_subtype);
6538 break;
6539 }
6540 }
6541
6542 /* If size if less then four we are sure that the operand fits,
6543 but if it's 4, then it could be that the displacement is larger
6544 then -/+ 2GB. */
6545 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
6546 && object_64bit
6547 && ((addressT) (displacement_from_opcode_start - extension
6548 + ((addressT) 1 << 31))
6549 > (((addressT) 2 << 31) - 1)))
6550 {
6551 as_bad_where (fragP->fr_file, fragP->fr_line,
6552 _("jump target out of range"));
6553 /* Make us emit 0. */
6554 displacement_from_opcode_start = extension;
6555 }
6556 /* Now put displacement after opcode. */
6557 md_number_to_chars ((char *) where_to_put_displacement,
6558 (valueT) (displacement_from_opcode_start - extension),
6559 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
6560 fragP->fr_fix += extension;
6561 }
6562 \f
6563 /* Apply a fixup (fixS) to segment data, once it has been determined
6564 by our caller that we have all the info we need to fix it up.
6565
6566 On the 386, immediates, displacements, and data pointers are all in
6567 the same (little-endian) format, so we don't need to care about which
6568 we are handling. */
6569
6570 void
6571 md_apply_fix (fixP, valP, seg)
6572 /* The fix we're to put in. */
6573 fixS *fixP;
6574 /* Pointer to the value of the bits. */
6575 valueT *valP;
6576 /* Segment fix is from. */
6577 segT seg ATTRIBUTE_UNUSED;
6578 {
6579 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
6580 valueT value = *valP;
6581
6582 #if !defined (TE_Mach)
6583 if (fixP->fx_pcrel)
6584 {
6585 switch (fixP->fx_r_type)
6586 {
6587 default:
6588 break;
6589
6590 case BFD_RELOC_64:
6591 fixP->fx_r_type = BFD_RELOC_64_PCREL;
6592 break;
6593 case BFD_RELOC_32:
6594 case BFD_RELOC_X86_64_32S:
6595 fixP->fx_r_type = BFD_RELOC_32_PCREL;
6596 break;
6597 case BFD_RELOC_16:
6598 fixP->fx_r_type = BFD_RELOC_16_PCREL;
6599 break;
6600 case BFD_RELOC_8:
6601 fixP->fx_r_type = BFD_RELOC_8_PCREL;
6602 break;
6603 }
6604 }
6605
6606 if (fixP->fx_addsy != NULL
6607 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
6608 || fixP->fx_r_type == BFD_RELOC_64_PCREL
6609 || fixP->fx_r_type == BFD_RELOC_16_PCREL
6610 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
6611 && !use_rela_relocations)
6612 {
6613 /* This is a hack. There should be a better way to handle this.
6614 This covers for the fact that bfd_install_relocation will
6615 subtract the current location (for partial_inplace, PC relative
6616 relocations); see more below. */
6617 #ifndef OBJ_AOUT
6618 if (IS_ELF
6619 #ifdef TE_PE
6620 || OUTPUT_FLAVOR == bfd_target_coff_flavour
6621 #endif
6622 )
6623 value += fixP->fx_where + fixP->fx_frag->fr_address;
6624 #endif
6625 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6626 if (IS_ELF)
6627 {
6628 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
6629
6630 if ((sym_seg == seg
6631 || (symbol_section_p (fixP->fx_addsy)
6632 && sym_seg != absolute_section))
6633 && !generic_force_reloc (fixP))
6634 {
6635 /* Yes, we add the values in twice. This is because
6636 bfd_install_relocation subtracts them out again. I think
6637 bfd_install_relocation is broken, but I don't dare change
6638 it. FIXME. */
6639 value += fixP->fx_where + fixP->fx_frag->fr_address;
6640 }
6641 }
6642 #endif
6643 #if defined (OBJ_COFF) && defined (TE_PE)
6644 /* For some reason, the PE format does not store a
6645 section address offset for a PC relative symbol. */
6646 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
6647 || S_IS_WEAK (fixP->fx_addsy))
6648 value += md_pcrel_from (fixP);
6649 #endif
6650 }
6651
6652 /* Fix a few things - the dynamic linker expects certain values here,
6653 and we must not disappoint it. */
6654 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6655 if (IS_ELF && fixP->fx_addsy)
6656 switch (fixP->fx_r_type)
6657 {
6658 case BFD_RELOC_386_PLT32:
6659 case BFD_RELOC_X86_64_PLT32:
6660 /* Make the jump instruction point to the address of the operand. At
6661 runtime we merely add the offset to the actual PLT entry. */
6662 value = -4;
6663 break;
6664
6665 case BFD_RELOC_386_TLS_GD:
6666 case BFD_RELOC_386_TLS_LDM:
6667 case BFD_RELOC_386_TLS_IE_32:
6668 case BFD_RELOC_386_TLS_IE:
6669 case BFD_RELOC_386_TLS_GOTIE:
6670 case BFD_RELOC_386_TLS_GOTDESC:
6671 case BFD_RELOC_X86_64_TLSGD:
6672 case BFD_RELOC_X86_64_TLSLD:
6673 case BFD_RELOC_X86_64_GOTTPOFF:
6674 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
6675 value = 0; /* Fully resolved at runtime. No addend. */
6676 /* Fallthrough */
6677 case BFD_RELOC_386_TLS_LE:
6678 case BFD_RELOC_386_TLS_LDO_32:
6679 case BFD_RELOC_386_TLS_LE_32:
6680 case BFD_RELOC_X86_64_DTPOFF32:
6681 case BFD_RELOC_X86_64_DTPOFF64:
6682 case BFD_RELOC_X86_64_TPOFF32:
6683 case BFD_RELOC_X86_64_TPOFF64:
6684 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6685 break;
6686
6687 case BFD_RELOC_386_TLS_DESC_CALL:
6688 case BFD_RELOC_X86_64_TLSDESC_CALL:
6689 value = 0; /* Fully resolved at runtime. No addend. */
6690 S_SET_THREAD_LOCAL (fixP->fx_addsy);
6691 fixP->fx_done = 0;
6692 return;
6693
6694 case BFD_RELOC_386_GOT32:
6695 case BFD_RELOC_X86_64_GOT32:
6696 value = 0; /* Fully resolved at runtime. No addend. */
6697 break;
6698
6699 case BFD_RELOC_VTABLE_INHERIT:
6700 case BFD_RELOC_VTABLE_ENTRY:
6701 fixP->fx_done = 0;
6702 return;
6703
6704 default:
6705 break;
6706 }
6707 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
6708 *valP = value;
6709 #endif /* !defined (TE_Mach) */
6710
6711 /* Are we finished with this relocation now? */
6712 if (fixP->fx_addsy == NULL)
6713 fixP->fx_done = 1;
6714 else if (use_rela_relocations)
6715 {
6716 fixP->fx_no_overflow = 1;
6717 /* Remember value for tc_gen_reloc. */
6718 fixP->fx_addnumber = value;
6719 value = 0;
6720 }
6721
6722 md_number_to_chars (p, value, fixP->fx_size);
6723 }
6724 \f
6725 char *
6726 md_atof (int type, char *litP, int *sizeP)
6727 {
6728 /* This outputs the LITTLENUMs in REVERSE order;
6729 in accord with the bigendian 386. */
6730 return ieee_md_atof (type, litP, sizeP, FALSE);
6731 }
6732 \f
6733 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
6734
6735 static char *
6736 output_invalid (int c)
6737 {
6738 if (ISPRINT (c))
6739 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
6740 "'%c'", c);
6741 else
6742 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
6743 "(0x%x)", (unsigned char) c);
6744 return output_invalid_buf;
6745 }
6746
6747 /* REG_STRING starts *before* REGISTER_PREFIX. */
6748
6749 static const reg_entry *
6750 parse_real_register (char *reg_string, char **end_op)
6751 {
6752 char *s = reg_string;
6753 char *p;
6754 char reg_name_given[MAX_REG_NAME_SIZE + 1];
6755 const reg_entry *r;
6756
6757 /* Skip possible REGISTER_PREFIX and possible whitespace. */
6758 if (*s == REGISTER_PREFIX)
6759 ++s;
6760
6761 if (is_space_char (*s))
6762 ++s;
6763
6764 p = reg_name_given;
6765 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
6766 {
6767 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
6768 return (const reg_entry *) NULL;
6769 s++;
6770 }
6771
6772 /* For naked regs, make sure that we are not dealing with an identifier.
6773 This prevents confusing an identifier like `eax_var' with register
6774 `eax'. */
6775 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
6776 return (const reg_entry *) NULL;
6777
6778 *end_op = s;
6779
6780 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
6781
6782 /* Handle floating point regs, allowing spaces in the (i) part. */
6783 if (r == i386_regtab /* %st is first entry of table */)
6784 {
6785 if (is_space_char (*s))
6786 ++s;
6787 if (*s == '(')
6788 {
6789 ++s;
6790 if (is_space_char (*s))
6791 ++s;
6792 if (*s >= '0' && *s <= '7')
6793 {
6794 int fpr = *s - '0';
6795 ++s;
6796 if (is_space_char (*s))
6797 ++s;
6798 if (*s == ')')
6799 {
6800 *end_op = s + 1;
6801 r = hash_find (reg_hash, "st(0)");
6802 know (r);
6803 return r + fpr;
6804 }
6805 }
6806 /* We have "%st(" then garbage. */
6807 return (const reg_entry *) NULL;
6808 }
6809 }
6810
6811 /* Don't allow fake index register unless allow_index_reg isn't 0. */
6812 if (r != NULL
6813 && !allow_index_reg
6814 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
6815 return (const reg_entry *) NULL;
6816
6817 if (r != NULL
6818 && ((r->reg_flags & (RegRex64 | RegRex))
6819 || r->reg_type.bitfield.reg64)
6820 && (!cpu_arch_flags.bitfield.cpulm
6821 || !UINTS_EQUAL (r->reg_type, control))
6822 && flag_code != CODE_64BIT)
6823 return (const reg_entry *) NULL;
6824
6825 return r;
6826 }
6827
6828 /* REG_STRING starts *before* REGISTER_PREFIX. */
6829
6830 static const reg_entry *
6831 parse_register (char *reg_string, char **end_op)
6832 {
6833 const reg_entry *r;
6834
6835 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
6836 r = parse_real_register (reg_string, end_op);
6837 else
6838 r = NULL;
6839 if (!r)
6840 {
6841 char *save = input_line_pointer;
6842 char c;
6843 symbolS *symbolP;
6844
6845 input_line_pointer = reg_string;
6846 c = get_symbol_end ();
6847 symbolP = symbol_find (reg_string);
6848 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
6849 {
6850 const expressionS *e = symbol_get_value_expression (symbolP);
6851
6852 know (e->X_op == O_register);
6853 know (e->X_add_number >= 0
6854 && (valueT) e->X_add_number < i386_regtab_size);
6855 r = i386_regtab + e->X_add_number;
6856 *end_op = input_line_pointer;
6857 }
6858 *input_line_pointer = c;
6859 input_line_pointer = save;
6860 }
6861 return r;
6862 }
6863
6864 int
6865 i386_parse_name (char *name, expressionS *e, char *nextcharP)
6866 {
6867 const reg_entry *r;
6868 char *end = input_line_pointer;
6869
6870 *end = *nextcharP;
6871 r = parse_register (name, &input_line_pointer);
6872 if (r && end <= input_line_pointer)
6873 {
6874 *nextcharP = *input_line_pointer;
6875 *input_line_pointer = 0;
6876 e->X_op = O_register;
6877 e->X_add_number = r - i386_regtab;
6878 return 1;
6879 }
6880 input_line_pointer = end;
6881 *end = 0;
6882 return 0;
6883 }
6884
6885 void
6886 md_operand (expressionS *e)
6887 {
6888 if (*input_line_pointer == REGISTER_PREFIX)
6889 {
6890 char *end;
6891 const reg_entry *r = parse_real_register (input_line_pointer, &end);
6892
6893 if (r)
6894 {
6895 e->X_op = O_register;
6896 e->X_add_number = r - i386_regtab;
6897 input_line_pointer = end;
6898 }
6899 }
6900 }
6901
6902 \f
6903 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6904 const char *md_shortopts = "kVQ:sqn";
6905 #else
6906 const char *md_shortopts = "qn";
6907 #endif
6908
6909 #define OPTION_32 (OPTION_MD_BASE + 0)
6910 #define OPTION_64 (OPTION_MD_BASE + 1)
6911 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
6912 #define OPTION_MARCH (OPTION_MD_BASE + 3)
6913 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
6914
6915 struct option md_longopts[] =
6916 {
6917 {"32", no_argument, NULL, OPTION_32},
6918 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
6919 {"64", no_argument, NULL, OPTION_64},
6920 #endif
6921 {"divide", no_argument, NULL, OPTION_DIVIDE},
6922 {"march", required_argument, NULL, OPTION_MARCH},
6923 {"mtune", required_argument, NULL, OPTION_MTUNE},
6924 {NULL, no_argument, NULL, 0}
6925 };
6926 size_t md_longopts_size = sizeof (md_longopts);
6927
6928 int
6929 md_parse_option (int c, char *arg)
6930 {
6931 unsigned int i;
6932
6933 switch (c)
6934 {
6935 case 'n':
6936 optimize_align_code = 0;
6937 break;
6938
6939 case 'q':
6940 quiet_warnings = 1;
6941 break;
6942
6943 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6944 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
6945 should be emitted or not. FIXME: Not implemented. */
6946 case 'Q':
6947 break;
6948
6949 /* -V: SVR4 argument to print version ID. */
6950 case 'V':
6951 print_version_id ();
6952 break;
6953
6954 /* -k: Ignore for FreeBSD compatibility. */
6955 case 'k':
6956 break;
6957
6958 case 's':
6959 /* -s: On i386 Solaris, this tells the native assembler to use
6960 .stab instead of .stab.excl. We always use .stab anyhow. */
6961 break;
6962 #endif
6963 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
6964 case OPTION_64:
6965 {
6966 const char **list, **l;
6967
6968 list = bfd_target_list ();
6969 for (l = list; *l != NULL; l++)
6970 if (CONST_STRNEQ (*l, "elf64-x86-64")
6971 || strcmp (*l, "coff-x86-64") == 0
6972 || strcmp (*l, "pe-x86-64") == 0
6973 || strcmp (*l, "pei-x86-64") == 0)
6974 {
6975 default_arch = "x86_64";
6976 break;
6977 }
6978 if (*l == NULL)
6979 as_fatal (_("No compiled in support for x86_64"));
6980 free (list);
6981 }
6982 break;
6983 #endif
6984
6985 case OPTION_32:
6986 default_arch = "i386";
6987 break;
6988
6989 case OPTION_DIVIDE:
6990 #ifdef SVR4_COMMENT_CHARS
6991 {
6992 char *n, *t;
6993 const char *s;
6994
6995 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
6996 t = n;
6997 for (s = i386_comment_chars; *s != '\0'; s++)
6998 if (*s != '/')
6999 *t++ = *s;
7000 *t = '\0';
7001 i386_comment_chars = n;
7002 }
7003 #endif
7004 break;
7005
7006 case OPTION_MARCH:
7007 if (*arg == '.')
7008 as_fatal (_("Invalid -march= option: `%s'"), arg);
7009 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
7010 {
7011 if (strcmp (arg, cpu_arch [i].name) == 0)
7012 {
7013 cpu_arch_isa = cpu_arch[i].type;
7014 cpu_arch_isa_flags = cpu_arch[i].flags;
7015 if (!cpu_arch_tune_set)
7016 {
7017 cpu_arch_tune = cpu_arch_isa;
7018 cpu_arch_tune_flags = cpu_arch_isa_flags;
7019 }
7020 break;
7021 }
7022 }
7023 if (i >= ARRAY_SIZE (cpu_arch))
7024 as_fatal (_("Invalid -march= option: `%s'"), arg);
7025 break;
7026
7027 case OPTION_MTUNE:
7028 if (*arg == '.')
7029 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
7030 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
7031 {
7032 if (strcmp (arg, cpu_arch [i].name) == 0)
7033 {
7034 cpu_arch_tune_set = 1;
7035 cpu_arch_tune = cpu_arch [i].type;
7036 cpu_arch_tune_flags = cpu_arch[i].flags;
7037 break;
7038 }
7039 }
7040 if (i >= ARRAY_SIZE (cpu_arch))
7041 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
7042 break;
7043
7044 default:
7045 return 0;
7046 }
7047 return 1;
7048 }
7049
7050 void
7051 md_show_usage (stream)
7052 FILE *stream;
7053 {
7054 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7055 fprintf (stream, _("\
7056 -Q ignored\n\
7057 -V print assembler version number\n\
7058 -k ignored\n"));
7059 #endif
7060 fprintf (stream, _("\
7061 -n Do not optimize code alignment\n\
7062 -q quieten some warnings\n"));
7063 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7064 fprintf (stream, _("\
7065 -s ignored\n"));
7066 #endif
7067 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
7068 fprintf (stream, _("\
7069 --32/--64 generate 32bit/64bit code\n"));
7070 #endif
7071 #ifdef SVR4_COMMENT_CHARS
7072 fprintf (stream, _("\
7073 --divide do not treat `/' as a comment character\n"));
7074 #else
7075 fprintf (stream, _("\
7076 --divide ignored\n"));
7077 #endif
7078 fprintf (stream, _("\
7079 -march=CPU/-mtune=CPU generate code/optimize for CPU, where CPU is one of:\n\
7080 i386, i486, pentium, pentiumpro, pentium4, nocona,\n\
7081 core, core2, k6, athlon, k8, generic32, generic64\n"));
7082
7083 }
7084
7085 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
7086 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (TE_PEP))
7087
7088 /* Pick the target format to use. */
7089
7090 const char *
7091 i386_target_format (void)
7092 {
7093 if (!strcmp (default_arch, "x86_64"))
7094 {
7095 set_code_flag (CODE_64BIT);
7096 if (UINTS_ALL_ZERO (cpu_arch_isa_flags))
7097 {
7098 cpu_arch_isa_flags.bitfield.cpui186 = 1;
7099 cpu_arch_isa_flags.bitfield.cpui286 = 1;
7100 cpu_arch_isa_flags.bitfield.cpui386 = 1;
7101 cpu_arch_isa_flags.bitfield.cpui486 = 1;
7102 cpu_arch_isa_flags.bitfield.cpui586 = 1;
7103 cpu_arch_isa_flags.bitfield.cpui686 = 1;
7104 cpu_arch_isa_flags.bitfield.cpup4 = 1;
7105 cpu_arch_isa_flags.bitfield.cpummx= 1;
7106 cpu_arch_isa_flags.bitfield.cpummx2 = 1;
7107 cpu_arch_isa_flags.bitfield.cpusse = 1;
7108 cpu_arch_isa_flags.bitfield.cpusse2 = 1;
7109 }
7110 if (UINTS_ALL_ZERO (cpu_arch_tune_flags))
7111 {
7112 cpu_arch_tune_flags.bitfield.cpui186 = 1;
7113 cpu_arch_tune_flags.bitfield.cpui286 = 1;
7114 cpu_arch_tune_flags.bitfield.cpui386 = 1;
7115 cpu_arch_tune_flags.bitfield.cpui486 = 1;
7116 cpu_arch_tune_flags.bitfield.cpui586 = 1;
7117 cpu_arch_tune_flags.bitfield.cpui686 = 1;
7118 cpu_arch_tune_flags.bitfield.cpup4 = 1;
7119 cpu_arch_tune_flags.bitfield.cpummx= 1;
7120 cpu_arch_tune_flags.bitfield.cpummx2 = 1;
7121 cpu_arch_tune_flags.bitfield.cpusse = 1;
7122 cpu_arch_tune_flags.bitfield.cpusse2 = 1;
7123 }
7124 }
7125 else if (!strcmp (default_arch, "i386"))
7126 {
7127 set_code_flag (CODE_32BIT);
7128 if (UINTS_ALL_ZERO (cpu_arch_isa_flags))
7129 {
7130 cpu_arch_isa_flags.bitfield.cpui186 = 1;
7131 cpu_arch_isa_flags.bitfield.cpui286 = 1;
7132 cpu_arch_isa_flags.bitfield.cpui386 = 1;
7133 }
7134 if (UINTS_ALL_ZERO (cpu_arch_tune_flags))
7135 {
7136 cpu_arch_tune_flags.bitfield.cpui186 = 1;
7137 cpu_arch_tune_flags.bitfield.cpui286 = 1;
7138 cpu_arch_tune_flags.bitfield.cpui386 = 1;
7139 }
7140 }
7141 else
7142 as_fatal (_("Unknown architecture"));
7143 switch (OUTPUT_FLAVOR)
7144 {
7145 #ifdef TE_PEP
7146 case bfd_target_coff_flavour:
7147 return flag_code == CODE_64BIT ? COFF_TARGET_FORMAT : "coff-i386";
7148 break;
7149 #endif
7150 #ifdef OBJ_MAYBE_AOUT
7151 case bfd_target_aout_flavour:
7152 return AOUT_TARGET_FORMAT;
7153 #endif
7154 #ifdef OBJ_MAYBE_COFF
7155 case bfd_target_coff_flavour:
7156 return "coff-i386";
7157 #endif
7158 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7159 case bfd_target_elf_flavour:
7160 {
7161 if (flag_code == CODE_64BIT)
7162 {
7163 object_64bit = 1;
7164 use_rela_relocations = 1;
7165 }
7166 return flag_code == CODE_64BIT ? ELF_TARGET_FORMAT64 : ELF_TARGET_FORMAT;
7167 }
7168 #endif
7169 default:
7170 abort ();
7171 return NULL;
7172 }
7173 }
7174
7175 #endif /* OBJ_MAYBE_ more than one */
7176
7177 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
7178 void
7179 i386_elf_emit_arch_note (void)
7180 {
7181 if (IS_ELF && cpu_arch_name != NULL)
7182 {
7183 char *p;
7184 asection *seg = now_seg;
7185 subsegT subseg = now_subseg;
7186 Elf_Internal_Note i_note;
7187 Elf_External_Note e_note;
7188 asection *note_secp;
7189 int len;
7190
7191 /* Create the .note section. */
7192 note_secp = subseg_new (".note", 0);
7193 bfd_set_section_flags (stdoutput,
7194 note_secp,
7195 SEC_HAS_CONTENTS | SEC_READONLY);
7196
7197 /* Process the arch string. */
7198 len = strlen (cpu_arch_name);
7199
7200 i_note.namesz = len + 1;
7201 i_note.descsz = 0;
7202 i_note.type = NT_ARCH;
7203 p = frag_more (sizeof (e_note.namesz));
7204 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
7205 p = frag_more (sizeof (e_note.descsz));
7206 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
7207 p = frag_more (sizeof (e_note.type));
7208 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
7209 p = frag_more (len + 1);
7210 strcpy (p, cpu_arch_name);
7211
7212 frag_align (2, 0, 0);
7213
7214 subseg_set (seg, subseg);
7215 }
7216 }
7217 #endif
7218 \f
7219 symbolS *
7220 md_undefined_symbol (name)
7221 char *name;
7222 {
7223 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
7224 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
7225 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
7226 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
7227 {
7228 if (!GOT_symbol)
7229 {
7230 if (symbol_find (name))
7231 as_bad (_("GOT already in symbol table"));
7232 GOT_symbol = symbol_new (name, undefined_section,
7233 (valueT) 0, &zero_address_frag);
7234 };
7235 return GOT_symbol;
7236 }
7237 return 0;
7238 }
7239
7240 /* Round up a section size to the appropriate boundary. */
7241
7242 valueT
7243 md_section_align (segment, size)
7244 segT segment ATTRIBUTE_UNUSED;
7245 valueT size;
7246 {
7247 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
7248 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
7249 {
7250 /* For a.out, force the section size to be aligned. If we don't do
7251 this, BFD will align it for us, but it will not write out the
7252 final bytes of the section. This may be a bug in BFD, but it is
7253 easier to fix it here since that is how the other a.out targets
7254 work. */
7255 int align;
7256
7257 align = bfd_get_section_alignment (stdoutput, segment);
7258 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
7259 }
7260 #endif
7261
7262 return size;
7263 }
7264
7265 /* On the i386, PC-relative offsets are relative to the start of the
7266 next instruction. That is, the address of the offset, plus its
7267 size, since the offset is always the last part of the insn. */
7268
7269 long
7270 md_pcrel_from (fixS *fixP)
7271 {
7272 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
7273 }
7274
7275 #ifndef I386COFF
7276
7277 static void
7278 s_bss (int ignore ATTRIBUTE_UNUSED)
7279 {
7280 int temp;
7281
7282 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7283 if (IS_ELF)
7284 obj_elf_section_change_hook ();
7285 #endif
7286 temp = get_absolute_expression ();
7287 subseg_set (bss_section, (subsegT) temp);
7288 demand_empty_rest_of_line ();
7289 }
7290
7291 #endif
7292
7293 void
7294 i386_validate_fix (fixS *fixp)
7295 {
7296 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
7297 {
7298 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
7299 {
7300 if (!object_64bit)
7301 abort ();
7302 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
7303 }
7304 else
7305 {
7306 if (!object_64bit)
7307 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
7308 else
7309 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
7310 }
7311 fixp->fx_subsy = 0;
7312 }
7313 }
7314
7315 arelent *
7316 tc_gen_reloc (section, fixp)
7317 asection *section ATTRIBUTE_UNUSED;
7318 fixS *fixp;
7319 {
7320 arelent *rel;
7321 bfd_reloc_code_real_type code;
7322
7323 switch (fixp->fx_r_type)
7324 {
7325 case BFD_RELOC_X86_64_PLT32:
7326 case BFD_RELOC_X86_64_GOT32:
7327 case BFD_RELOC_X86_64_GOTPCREL:
7328 case BFD_RELOC_386_PLT32:
7329 case BFD_RELOC_386_GOT32:
7330 case BFD_RELOC_386_GOTOFF:
7331 case BFD_RELOC_386_GOTPC:
7332 case BFD_RELOC_386_TLS_GD:
7333 case BFD_RELOC_386_TLS_LDM:
7334 case BFD_RELOC_386_TLS_LDO_32:
7335 case BFD_RELOC_386_TLS_IE_32:
7336 case BFD_RELOC_386_TLS_IE:
7337 case BFD_RELOC_386_TLS_GOTIE:
7338 case BFD_RELOC_386_TLS_LE_32:
7339 case BFD_RELOC_386_TLS_LE:
7340 case BFD_RELOC_386_TLS_GOTDESC:
7341 case BFD_RELOC_386_TLS_DESC_CALL:
7342 case BFD_RELOC_X86_64_TLSGD:
7343 case BFD_RELOC_X86_64_TLSLD:
7344 case BFD_RELOC_X86_64_DTPOFF32:
7345 case BFD_RELOC_X86_64_DTPOFF64:
7346 case BFD_RELOC_X86_64_GOTTPOFF:
7347 case BFD_RELOC_X86_64_TPOFF32:
7348 case BFD_RELOC_X86_64_TPOFF64:
7349 case BFD_RELOC_X86_64_GOTOFF64:
7350 case BFD_RELOC_X86_64_GOTPC32:
7351 case BFD_RELOC_X86_64_GOT64:
7352 case BFD_RELOC_X86_64_GOTPCREL64:
7353 case BFD_RELOC_X86_64_GOTPC64:
7354 case BFD_RELOC_X86_64_GOTPLT64:
7355 case BFD_RELOC_X86_64_PLTOFF64:
7356 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
7357 case BFD_RELOC_X86_64_TLSDESC_CALL:
7358 case BFD_RELOC_RVA:
7359 case BFD_RELOC_VTABLE_ENTRY:
7360 case BFD_RELOC_VTABLE_INHERIT:
7361 #ifdef TE_PE
7362 case BFD_RELOC_32_SECREL:
7363 #endif
7364 code = fixp->fx_r_type;
7365 break;
7366 case BFD_RELOC_X86_64_32S:
7367 if (!fixp->fx_pcrel)
7368 {
7369 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
7370 code = fixp->fx_r_type;
7371 break;
7372 }
7373 default:
7374 if (fixp->fx_pcrel)
7375 {
7376 switch (fixp->fx_size)
7377 {
7378 default:
7379 as_bad_where (fixp->fx_file, fixp->fx_line,
7380 _("can not do %d byte pc-relative relocation"),
7381 fixp->fx_size);
7382 code = BFD_RELOC_32_PCREL;
7383 break;
7384 case 1: code = BFD_RELOC_8_PCREL; break;
7385 case 2: code = BFD_RELOC_16_PCREL; break;
7386 case 4: code = BFD_RELOC_32_PCREL; break;
7387 #ifdef BFD64
7388 case 8: code = BFD_RELOC_64_PCREL; break;
7389 #endif
7390 }
7391 }
7392 else
7393 {
7394 switch (fixp->fx_size)
7395 {
7396 default:
7397 as_bad_where (fixp->fx_file, fixp->fx_line,
7398 _("can not do %d byte relocation"),
7399 fixp->fx_size);
7400 code = BFD_RELOC_32;
7401 break;
7402 case 1: code = BFD_RELOC_8; break;
7403 case 2: code = BFD_RELOC_16; break;
7404 case 4: code = BFD_RELOC_32; break;
7405 #ifdef BFD64
7406 case 8: code = BFD_RELOC_64; break;
7407 #endif
7408 }
7409 }
7410 break;
7411 }
7412
7413 if ((code == BFD_RELOC_32
7414 || code == BFD_RELOC_32_PCREL
7415 || code == BFD_RELOC_X86_64_32S)
7416 && GOT_symbol
7417 && fixp->fx_addsy == GOT_symbol)
7418 {
7419 if (!object_64bit)
7420 code = BFD_RELOC_386_GOTPC;
7421 else
7422 code = BFD_RELOC_X86_64_GOTPC32;
7423 }
7424 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
7425 && GOT_symbol
7426 && fixp->fx_addsy == GOT_symbol)
7427 {
7428 code = BFD_RELOC_X86_64_GOTPC64;
7429 }
7430
7431 rel = (arelent *) xmalloc (sizeof (arelent));
7432 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
7433 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
7434
7435 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
7436
7437 if (!use_rela_relocations)
7438 {
7439 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
7440 vtable entry to be used in the relocation's section offset. */
7441 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
7442 rel->address = fixp->fx_offset;
7443
7444 rel->addend = 0;
7445 }
7446 /* Use the rela in 64bit mode. */
7447 else
7448 {
7449 if (!fixp->fx_pcrel)
7450 rel->addend = fixp->fx_offset;
7451 else
7452 switch (code)
7453 {
7454 case BFD_RELOC_X86_64_PLT32:
7455 case BFD_RELOC_X86_64_GOT32:
7456 case BFD_RELOC_X86_64_GOTPCREL:
7457 case BFD_RELOC_X86_64_TLSGD:
7458 case BFD_RELOC_X86_64_TLSLD:
7459 case BFD_RELOC_X86_64_GOTTPOFF:
7460 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
7461 case BFD_RELOC_X86_64_TLSDESC_CALL:
7462 rel->addend = fixp->fx_offset - fixp->fx_size;
7463 break;
7464 default:
7465 rel->addend = (section->vma
7466 - fixp->fx_size
7467 + fixp->fx_addnumber
7468 + md_pcrel_from (fixp));
7469 break;
7470 }
7471 }
7472
7473 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
7474 if (rel->howto == NULL)
7475 {
7476 as_bad_where (fixp->fx_file, fixp->fx_line,
7477 _("cannot represent relocation type %s"),
7478 bfd_get_reloc_code_name (code));
7479 /* Set howto to a garbage value so that we can keep going. */
7480 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
7481 assert (rel->howto != NULL);
7482 }
7483
7484 return rel;
7485 }
7486
7487 \f
7488 /* Parse operands using Intel syntax. This implements a recursive descent
7489 parser based on the BNF grammar published in Appendix B of the MASM 6.1
7490 Programmer's Guide.
7491
7492 FIXME: We do not recognize the full operand grammar defined in the MASM
7493 documentation. In particular, all the structure/union and
7494 high-level macro operands are missing.
7495
7496 Uppercase words are terminals, lower case words are non-terminals.
7497 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
7498 bars '|' denote choices. Most grammar productions are implemented in
7499 functions called 'intel_<production>'.
7500
7501 Initial production is 'expr'.
7502
7503 addOp + | -
7504
7505 alpha [a-zA-Z]
7506
7507 binOp & | AND | \| | OR | ^ | XOR
7508
7509 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
7510
7511 constant digits [[ radixOverride ]]
7512
7513 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
7514
7515 digits decdigit
7516 | digits decdigit
7517 | digits hexdigit
7518
7519 decdigit [0-9]
7520
7521 e04 e04 addOp e05
7522 | e05
7523
7524 e05 e05 binOp e06
7525 | e06
7526
7527 e06 e06 mulOp e09
7528 | e09
7529
7530 e09 OFFSET e10
7531 | SHORT e10
7532 | + e10
7533 | - e10
7534 | ~ e10
7535 | NOT e10
7536 | e09 PTR e10
7537 | e09 : e10
7538 | e10
7539
7540 e10 e10 [ expr ]
7541 | e11
7542
7543 e11 ( expr )
7544 | [ expr ]
7545 | constant
7546 | dataType
7547 | id
7548 | $
7549 | register
7550
7551 => expr expr cmpOp e04
7552 | e04
7553
7554 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
7555 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
7556
7557 hexdigit a | b | c | d | e | f
7558 | A | B | C | D | E | F
7559
7560 id alpha
7561 | id alpha
7562 | id decdigit
7563
7564 mulOp * | / | % | MOD | << | SHL | >> | SHR
7565
7566 quote " | '
7567
7568 register specialRegister
7569 | gpRegister
7570 | byteRegister
7571
7572 segmentRegister CS | DS | ES | FS | GS | SS
7573
7574 specialRegister CR0 | CR2 | CR3 | CR4
7575 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
7576 | TR3 | TR4 | TR5 | TR6 | TR7
7577
7578 We simplify the grammar in obvious places (e.g., register parsing is
7579 done by calling parse_register) and eliminate immediate left recursion
7580 to implement a recursive-descent parser.
7581
7582 expr e04 expr'
7583
7584 expr' cmpOp e04 expr'
7585 | Empty
7586
7587 e04 e05 e04'
7588
7589 e04' addOp e05 e04'
7590 | Empty
7591
7592 e05 e06 e05'
7593
7594 e05' binOp e06 e05'
7595 | Empty
7596
7597 e06 e09 e06'
7598
7599 e06' mulOp e09 e06'
7600 | Empty
7601
7602 e09 OFFSET e10 e09'
7603 | SHORT e10'
7604 | + e10'
7605 | - e10'
7606 | ~ e10'
7607 | NOT e10'
7608 | e10 e09'
7609
7610 e09' PTR e10 e09'
7611 | : e10 e09'
7612 | Empty
7613
7614 e10 e11 e10'
7615
7616 e10' [ expr ] e10'
7617 | Empty
7618
7619 e11 ( expr )
7620 | [ expr ]
7621 | BYTE
7622 | WORD
7623 | DWORD
7624 | FWORD
7625 | QWORD
7626 | TBYTE
7627 | OWORD
7628 | XMMWORD
7629 | .
7630 | $
7631 | register
7632 | id
7633 | constant */
7634
7635 /* Parsing structure for the intel syntax parser. Used to implement the
7636 semantic actions for the operand grammar. */
7637 struct intel_parser_s
7638 {
7639 char *op_string; /* The string being parsed. */
7640 int got_a_float; /* Whether the operand is a float. */
7641 int op_modifier; /* Operand modifier. */
7642 int is_mem; /* 1 if operand is memory reference. */
7643 int in_offset; /* >=1 if parsing operand of offset. */
7644 int in_bracket; /* >=1 if parsing operand in brackets. */
7645 const reg_entry *reg; /* Last register reference found. */
7646 char *disp; /* Displacement string being built. */
7647 char *next_operand; /* Resume point when splitting operands. */
7648 };
7649
7650 static struct intel_parser_s intel_parser;
7651
7652 /* Token structure for parsing intel syntax. */
7653 struct intel_token
7654 {
7655 int code; /* Token code. */
7656 const reg_entry *reg; /* Register entry for register tokens. */
7657 char *str; /* String representation. */
7658 };
7659
7660 static struct intel_token cur_token, prev_token;
7661
7662 /* Token codes for the intel parser. Since T_SHORT is already used
7663 by COFF, undefine it first to prevent a warning. */
7664 #define T_NIL -1
7665 #define T_CONST 1
7666 #define T_REG 2
7667 #define T_BYTE 3
7668 #define T_WORD 4
7669 #define T_DWORD 5
7670 #define T_FWORD 6
7671 #define T_QWORD 7
7672 #define T_TBYTE 8
7673 #define T_XMMWORD 9
7674 #undef T_SHORT
7675 #define T_SHORT 10
7676 #define T_OFFSET 11
7677 #define T_PTR 12
7678 #define T_ID 13
7679 #define T_SHL 14
7680 #define T_SHR 15
7681
7682 /* Prototypes for intel parser functions. */
7683 static int intel_match_token (int);
7684 static void intel_putback_token (void);
7685 static void intel_get_token (void);
7686 static int intel_expr (void);
7687 static int intel_e04 (void);
7688 static int intel_e05 (void);
7689 static int intel_e06 (void);
7690 static int intel_e09 (void);
7691 static int intel_e10 (void);
7692 static int intel_e11 (void);
7693
7694 static int
7695 i386_intel_operand (char *operand_string, int got_a_float)
7696 {
7697 int ret;
7698 char *p;
7699
7700 p = intel_parser.op_string = xstrdup (operand_string);
7701 intel_parser.disp = (char *) xmalloc (strlen (operand_string) + 1);
7702
7703 for (;;)
7704 {
7705 /* Initialize token holders. */
7706 cur_token.code = prev_token.code = T_NIL;
7707 cur_token.reg = prev_token.reg = NULL;
7708 cur_token.str = prev_token.str = NULL;
7709
7710 /* Initialize parser structure. */
7711 intel_parser.got_a_float = got_a_float;
7712 intel_parser.op_modifier = 0;
7713 intel_parser.is_mem = 0;
7714 intel_parser.in_offset = 0;
7715 intel_parser.in_bracket = 0;
7716 intel_parser.reg = NULL;
7717 intel_parser.disp[0] = '\0';
7718 intel_parser.next_operand = NULL;
7719
7720 /* Read the first token and start the parser. */
7721 intel_get_token ();
7722 ret = intel_expr ();
7723
7724 if (!ret)
7725 break;
7726
7727 if (cur_token.code != T_NIL)
7728 {
7729 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
7730 current_templates->start->name, cur_token.str);
7731 ret = 0;
7732 }
7733 /* If we found a memory reference, hand it over to i386_displacement
7734 to fill in the rest of the operand fields. */
7735 else if (intel_parser.is_mem)
7736 {
7737 if ((i.mem_operands == 1
7738 && !current_templates->start->opcode_modifier.isstring)
7739 || i.mem_operands == 2)
7740 {
7741 as_bad (_("too many memory references for '%s'"),
7742 current_templates->start->name);
7743 ret = 0;
7744 }
7745 else
7746 {
7747 char *s = intel_parser.disp;
7748 i.mem_operands++;
7749
7750 if (!quiet_warnings && intel_parser.is_mem < 0)
7751 /* See the comments in intel_bracket_expr. */
7752 as_warn (_("Treating `%s' as memory reference"), operand_string);
7753
7754 /* Add the displacement expression. */
7755 if (*s != '\0')
7756 ret = i386_displacement (s, s + strlen (s));
7757 if (ret)
7758 {
7759 /* Swap base and index in 16-bit memory operands like
7760 [si+bx]. Since i386_index_check is also used in AT&T
7761 mode we have to do that here. */
7762 if (i.base_reg
7763 && i.index_reg
7764 && i.base_reg->reg_type.bitfield.reg16
7765 && i.index_reg->reg_type.bitfield.reg16
7766 && i.base_reg->reg_num >= 6
7767 && i.index_reg->reg_num < 6)
7768 {
7769 const reg_entry *base = i.index_reg;
7770
7771 i.index_reg = i.base_reg;
7772 i.base_reg = base;
7773 }
7774 ret = i386_index_check (operand_string);
7775 }
7776 }
7777 }
7778
7779 /* Constant and OFFSET expressions are handled by i386_immediate. */
7780 else if ((intel_parser.op_modifier & (1 << T_OFFSET))
7781 || intel_parser.reg == NULL)
7782 ret = i386_immediate (intel_parser.disp);
7783
7784 if (intel_parser.next_operand && this_operand >= MAX_OPERANDS - 1)
7785 ret = 0;
7786 if (!ret || !intel_parser.next_operand)
7787 break;
7788 intel_parser.op_string = intel_parser.next_operand;
7789 this_operand = i.operands++;
7790 }
7791
7792 free (p);
7793 free (intel_parser.disp);
7794
7795 return ret;
7796 }
7797
7798 #define NUM_ADDRESS_REGS (!!i.base_reg + !!i.index_reg)
7799
7800 /* expr e04 expr'
7801
7802 expr' cmpOp e04 expr'
7803 | Empty */
7804 static int
7805 intel_expr (void)
7806 {
7807 /* XXX Implement the comparison operators. */
7808 return intel_e04 ();
7809 }
7810
7811 /* e04 e05 e04'
7812
7813 e04' addOp e05 e04'
7814 | Empty */
7815 static int
7816 intel_e04 (void)
7817 {
7818 int nregs = -1;
7819
7820 for (;;)
7821 {
7822 if (!intel_e05())
7823 return 0;
7824
7825 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
7826 i.base_reg = i386_regtab + REGNAM_AL; /* al is invalid as base */
7827
7828 if (cur_token.code == '+')
7829 nregs = -1;
7830 else if (cur_token.code == '-')
7831 nregs = NUM_ADDRESS_REGS;
7832 else
7833 return 1;
7834
7835 strcat (intel_parser.disp, cur_token.str);
7836 intel_match_token (cur_token.code);
7837 }
7838 }
7839
7840 /* e05 e06 e05'
7841
7842 e05' binOp e06 e05'
7843 | Empty */
7844 static int
7845 intel_e05 (void)
7846 {
7847 int nregs = ~NUM_ADDRESS_REGS;
7848
7849 for (;;)
7850 {
7851 if (!intel_e06())
7852 return 0;
7853
7854 if (cur_token.code == '&'
7855 || cur_token.code == '|'
7856 || cur_token.code == '^')
7857 {
7858 char str[2];
7859
7860 str[0] = cur_token.code;
7861 str[1] = 0;
7862 strcat (intel_parser.disp, str);
7863 }
7864 else
7865 break;
7866
7867 intel_match_token (cur_token.code);
7868
7869 if (nregs < 0)
7870 nregs = ~nregs;
7871 }
7872 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
7873 i.base_reg = i386_regtab + REGNAM_AL + 1; /* cl is invalid as base */
7874 return 1;
7875 }
7876
7877 /* e06 e09 e06'
7878
7879 e06' mulOp e09 e06'
7880 | Empty */
7881 static int
7882 intel_e06 (void)
7883 {
7884 int nregs = ~NUM_ADDRESS_REGS;
7885
7886 for (;;)
7887 {
7888 if (!intel_e09())
7889 return 0;
7890
7891 if (cur_token.code == '*'
7892 || cur_token.code == '/'
7893 || cur_token.code == '%')
7894 {
7895 char str[2];
7896
7897 str[0] = cur_token.code;
7898 str[1] = 0;
7899 strcat (intel_parser.disp, str);
7900 }
7901 else if (cur_token.code == T_SHL)
7902 strcat (intel_parser.disp, "<<");
7903 else if (cur_token.code == T_SHR)
7904 strcat (intel_parser.disp, ">>");
7905 else
7906 break;
7907
7908 intel_match_token (cur_token.code);
7909
7910 if (nregs < 0)
7911 nregs = ~nregs;
7912 }
7913 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
7914 i.base_reg = i386_regtab + REGNAM_AL + 2; /* dl is invalid as base */
7915 return 1;
7916 }
7917
7918 /* e09 OFFSET e09
7919 | SHORT e09
7920 | + e09
7921 | - e09
7922 | ~ e09
7923 | NOT e09
7924 | e10 e09'
7925
7926 e09' PTR e10 e09'
7927 | : e10 e09'
7928 | Empty */
7929 static int
7930 intel_e09 (void)
7931 {
7932 int nregs = ~NUM_ADDRESS_REGS;
7933 int in_offset = 0;
7934
7935 for (;;)
7936 {
7937 /* Don't consume constants here. */
7938 if (cur_token.code == '+' || cur_token.code == '-')
7939 {
7940 /* Need to look one token ahead - if the next token
7941 is a constant, the current token is its sign. */
7942 int next_code;
7943
7944 intel_match_token (cur_token.code);
7945 next_code = cur_token.code;
7946 intel_putback_token ();
7947 if (next_code == T_CONST)
7948 break;
7949 }
7950
7951 /* e09 OFFSET e09 */
7952 if (cur_token.code == T_OFFSET)
7953 {
7954 if (!in_offset++)
7955 ++intel_parser.in_offset;
7956 }
7957
7958 /* e09 SHORT e09 */
7959 else if (cur_token.code == T_SHORT)
7960 intel_parser.op_modifier |= 1 << T_SHORT;
7961
7962 /* e09 + e09 */
7963 else if (cur_token.code == '+')
7964 strcat (intel_parser.disp, "+");
7965
7966 /* e09 - e09
7967 | ~ e09
7968 | NOT e09 */
7969 else if (cur_token.code == '-' || cur_token.code == '~')
7970 {
7971 char str[2];
7972
7973 if (nregs < 0)
7974 nregs = ~nregs;
7975 str[0] = cur_token.code;
7976 str[1] = 0;
7977 strcat (intel_parser.disp, str);
7978 }
7979
7980 /* e09 e10 e09' */
7981 else
7982 break;
7983
7984 intel_match_token (cur_token.code);
7985 }
7986
7987 for (;;)
7988 {
7989 if (!intel_e10 ())
7990 return 0;
7991
7992 /* e09' PTR e10 e09' */
7993 if (cur_token.code == T_PTR)
7994 {
7995 char suffix;
7996
7997 if (prev_token.code == T_BYTE)
7998 suffix = BYTE_MNEM_SUFFIX;
7999
8000 else if (prev_token.code == T_WORD)
8001 {
8002 if (current_templates->start->name[0] == 'l'
8003 && current_templates->start->name[2] == 's'
8004 && current_templates->start->name[3] == 0)
8005 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
8006 else if (intel_parser.got_a_float == 2) /* "fi..." */
8007 suffix = SHORT_MNEM_SUFFIX;
8008 else
8009 suffix = WORD_MNEM_SUFFIX;
8010 }
8011
8012 else if (prev_token.code == T_DWORD)
8013 {
8014 if (current_templates->start->name[0] == 'l'
8015 && current_templates->start->name[2] == 's'
8016 && current_templates->start->name[3] == 0)
8017 suffix = WORD_MNEM_SUFFIX;
8018 else if (flag_code == CODE_16BIT
8019 && (current_templates->start->opcode_modifier.jump
8020 || current_templates->start->opcode_modifier.jumpdword))
8021 suffix = LONG_DOUBLE_MNEM_SUFFIX;
8022 else if (intel_parser.got_a_float == 1) /* "f..." */
8023 suffix = SHORT_MNEM_SUFFIX;
8024 else
8025 suffix = LONG_MNEM_SUFFIX;
8026 }
8027
8028 else if (prev_token.code == T_FWORD)
8029 {
8030 if (current_templates->start->name[0] == 'l'
8031 && current_templates->start->name[2] == 's'
8032 && current_templates->start->name[3] == 0)
8033 suffix = LONG_MNEM_SUFFIX;
8034 else if (!intel_parser.got_a_float)
8035 {
8036 if (flag_code == CODE_16BIT)
8037 add_prefix (DATA_PREFIX_OPCODE);
8038 suffix = LONG_DOUBLE_MNEM_SUFFIX;
8039 }
8040 else
8041 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
8042 }
8043
8044 else if (prev_token.code == T_QWORD)
8045 {
8046 if (intel_parser.got_a_float == 1) /* "f..." */
8047 suffix = LONG_MNEM_SUFFIX;
8048 else
8049 suffix = QWORD_MNEM_SUFFIX;
8050 }
8051
8052 else if (prev_token.code == T_TBYTE)
8053 {
8054 if (intel_parser.got_a_float == 1)
8055 suffix = LONG_DOUBLE_MNEM_SUFFIX;
8056 else
8057 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
8058 }
8059
8060 else if (prev_token.code == T_XMMWORD)
8061 {
8062 /* XXX ignored for now, but accepted since gcc uses it */
8063 suffix = 0;
8064 }
8065
8066 else
8067 {
8068 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
8069 return 0;
8070 }
8071
8072 /* Operands for jump/call using 'ptr' notation denote absolute
8073 addresses. */
8074 if (current_templates->start->opcode_modifier.jump
8075 || current_templates->start->opcode_modifier.jumpdword)
8076 i.types[this_operand].bitfield.jumpabsolute = 1;
8077
8078 if (current_templates->start->base_opcode == 0x8d /* lea */)
8079 ;
8080 else if (!i.suffix)
8081 i.suffix = suffix;
8082 else if (i.suffix != suffix)
8083 {
8084 as_bad (_("Conflicting operand modifiers"));
8085 return 0;
8086 }
8087
8088 }
8089
8090 /* e09' : e10 e09' */
8091 else if (cur_token.code == ':')
8092 {
8093 if (prev_token.code != T_REG)
8094 {
8095 /* While {call,jmp} SSSS:OOOO is MASM syntax only when SSSS is a
8096 segment/group identifier (which we don't have), using comma
8097 as the operand separator there is even less consistent, since
8098 there all branches only have a single operand. */
8099 if (this_operand != 0
8100 || intel_parser.in_offset
8101 || intel_parser.in_bracket
8102 || (!current_templates->start->opcode_modifier.jump
8103 && !current_templates->start->opcode_modifier.jumpdword
8104 && !current_templates->start->opcode_modifier.jumpintersegment
8105 && !current_templates->start->operand_types[0].bitfield.jumpabsolute))
8106 return intel_match_token (T_NIL);
8107 /* Remember the start of the 2nd operand and terminate 1st
8108 operand here.
8109 XXX This isn't right, yet (when SSSS:OOOO is right operand of
8110 another expression), but it gets at least the simplest case
8111 (a plain number or symbol on the left side) right. */
8112 intel_parser.next_operand = intel_parser.op_string;
8113 *--intel_parser.op_string = '\0';
8114 return intel_match_token (':');
8115 }
8116 }
8117
8118 /* e09' Empty */
8119 else
8120 break;
8121
8122 intel_match_token (cur_token.code);
8123
8124 }
8125
8126 if (in_offset)
8127 {
8128 --intel_parser.in_offset;
8129 if (nregs < 0)
8130 nregs = ~nregs;
8131 if (NUM_ADDRESS_REGS > nregs)
8132 {
8133 as_bad (_("Invalid operand to `OFFSET'"));
8134 return 0;
8135 }
8136 intel_parser.op_modifier |= 1 << T_OFFSET;
8137 }
8138
8139 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
8140 i.base_reg = i386_regtab + REGNAM_AL + 3; /* bl is invalid as base */
8141 return 1;
8142 }
8143
8144 static int
8145 intel_bracket_expr (void)
8146 {
8147 int was_offset = intel_parser.op_modifier & (1 << T_OFFSET);
8148 const char *start = intel_parser.op_string;
8149 int len;
8150
8151 if (i.op[this_operand].regs)
8152 return intel_match_token (T_NIL);
8153
8154 intel_match_token ('[');
8155
8156 /* Mark as a memory operand only if it's not already known to be an
8157 offset expression. If it's an offset expression, we need to keep
8158 the brace in. */
8159 if (!intel_parser.in_offset)
8160 {
8161 ++intel_parser.in_bracket;
8162
8163 /* Operands for jump/call inside brackets denote absolute addresses. */
8164 if (current_templates->start->opcode_modifier.jump
8165 || current_templates->start->opcode_modifier.jumpdword)
8166 i.types[this_operand].bitfield.jumpabsolute = 1;
8167
8168 /* Unfortunately gas always diverged from MASM in a respect that can't
8169 be easily fixed without risking to break code sequences likely to be
8170 encountered (the testsuite even check for this): MASM doesn't consider
8171 an expression inside brackets unconditionally as a memory reference.
8172 When that is e.g. a constant, an offset expression, or the sum of the
8173 two, this is still taken as a constant load. gas, however, always
8174 treated these as memory references. As a compromise, we'll try to make
8175 offset expressions inside brackets work the MASM way (since that's
8176 less likely to be found in real world code), but make constants alone
8177 continue to work the traditional gas way. In either case, issue a
8178 warning. */
8179 intel_parser.op_modifier &= ~was_offset;
8180 }
8181 else
8182 strcat (intel_parser.disp, "[");
8183
8184 /* Add a '+' to the displacement string if necessary. */
8185 if (*intel_parser.disp != '\0'
8186 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
8187 strcat (intel_parser.disp, "+");
8188
8189 if (intel_expr ()
8190 && (len = intel_parser.op_string - start - 1,
8191 intel_match_token (']')))
8192 {
8193 /* Preserve brackets when the operand is an offset expression. */
8194 if (intel_parser.in_offset)
8195 strcat (intel_parser.disp, "]");
8196 else
8197 {
8198 --intel_parser.in_bracket;
8199 if (i.base_reg || i.index_reg)
8200 intel_parser.is_mem = 1;
8201 if (!intel_parser.is_mem)
8202 {
8203 if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
8204 /* Defer the warning until all of the operand was parsed. */
8205 intel_parser.is_mem = -1;
8206 else if (!quiet_warnings)
8207 as_warn (_("`[%.*s]' taken to mean just `%.*s'"),
8208 len, start, len, start);
8209 }
8210 }
8211 intel_parser.op_modifier |= was_offset;
8212
8213 return 1;
8214 }
8215 return 0;
8216 }
8217
8218 /* e10 e11 e10'
8219
8220 e10' [ expr ] e10'
8221 | Empty */
8222 static int
8223 intel_e10 (void)
8224 {
8225 if (!intel_e11 ())
8226 return 0;
8227
8228 while (cur_token.code == '[')
8229 {
8230 if (!intel_bracket_expr ())
8231 return 0;
8232 }
8233
8234 return 1;
8235 }
8236
8237 /* e11 ( expr )
8238 | [ expr ]
8239 | BYTE
8240 | WORD
8241 | DWORD
8242 | FWORD
8243 | QWORD
8244 | TBYTE
8245 | OWORD
8246 | XMMWORD
8247 | $
8248 | .
8249 | register
8250 | id
8251 | constant */
8252 static int
8253 intel_e11 (void)
8254 {
8255 switch (cur_token.code)
8256 {
8257 /* e11 ( expr ) */
8258 case '(':
8259 intel_match_token ('(');
8260 strcat (intel_parser.disp, "(");
8261
8262 if (intel_expr () && intel_match_token (')'))
8263 {
8264 strcat (intel_parser.disp, ")");
8265 return 1;
8266 }
8267 return 0;
8268
8269 /* e11 [ expr ] */
8270 case '[':
8271 return intel_bracket_expr ();
8272
8273 /* e11 $
8274 | . */
8275 case '.':
8276 strcat (intel_parser.disp, cur_token.str);
8277 intel_match_token (cur_token.code);
8278
8279 /* Mark as a memory operand only if it's not already known to be an
8280 offset expression. */
8281 if (!intel_parser.in_offset)
8282 intel_parser.is_mem = 1;
8283
8284 return 1;
8285
8286 /* e11 register */
8287 case T_REG:
8288 {
8289 const reg_entry *reg = intel_parser.reg = cur_token.reg;
8290
8291 intel_match_token (T_REG);
8292
8293 /* Check for segment change. */
8294 if (cur_token.code == ':')
8295 {
8296 if (!reg->reg_type.bitfield.sreg2
8297 && !reg->reg_type.bitfield.sreg3)
8298 {
8299 as_bad (_("`%s' is not a valid segment register"),
8300 reg->reg_name);
8301 return 0;
8302 }
8303 else if (i.seg[i.mem_operands])
8304 as_warn (_("Extra segment override ignored"));
8305 else
8306 {
8307 if (!intel_parser.in_offset)
8308 intel_parser.is_mem = 1;
8309 switch (reg->reg_num)
8310 {
8311 case 0:
8312 i.seg[i.mem_operands] = &es;
8313 break;
8314 case 1:
8315 i.seg[i.mem_operands] = &cs;
8316 break;
8317 case 2:
8318 i.seg[i.mem_operands] = &ss;
8319 break;
8320 case 3:
8321 i.seg[i.mem_operands] = &ds;
8322 break;
8323 case 4:
8324 i.seg[i.mem_operands] = &fs;
8325 break;
8326 case 5:
8327 i.seg[i.mem_operands] = &gs;
8328 break;
8329 }
8330 }
8331 }
8332
8333 /* Not a segment register. Check for register scaling. */
8334 else if (cur_token.code == '*')
8335 {
8336 if (!intel_parser.in_bracket)
8337 {
8338 as_bad (_("Register scaling only allowed in memory operands"));
8339 return 0;
8340 }
8341
8342 if (reg->reg_type.bitfield.reg16) /* Disallow things like [si*1]. */
8343 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
8344 else if (i.index_reg)
8345 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
8346
8347 /* What follows must be a valid scale. */
8348 intel_match_token ('*');
8349 i.index_reg = reg;
8350 i.types[this_operand].bitfield.baseindex = 1;
8351
8352 /* Set the scale after setting the register (otherwise,
8353 i386_scale will complain) */
8354 if (cur_token.code == '+' || cur_token.code == '-')
8355 {
8356 char *str, sign = cur_token.code;
8357 intel_match_token (cur_token.code);
8358 if (cur_token.code != T_CONST)
8359 {
8360 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
8361 cur_token.str);
8362 return 0;
8363 }
8364 str = (char *) xmalloc (strlen (cur_token.str) + 2);
8365 strcpy (str + 1, cur_token.str);
8366 *str = sign;
8367 if (!i386_scale (str))
8368 return 0;
8369 free (str);
8370 }
8371 else if (!i386_scale (cur_token.str))
8372 return 0;
8373 intel_match_token (cur_token.code);
8374 }
8375
8376 /* No scaling. If this is a memory operand, the register is either a
8377 base register (first occurrence) or an index register (second
8378 occurrence). */
8379 else if (intel_parser.in_bracket)
8380 {
8381
8382 if (!i.base_reg)
8383 i.base_reg = reg;
8384 else if (!i.index_reg)
8385 i.index_reg = reg;
8386 else
8387 {
8388 as_bad (_("Too many register references in memory operand"));
8389 return 0;
8390 }
8391
8392 i.types[this_operand].bitfield.baseindex = 1;
8393 }
8394
8395 /* It's neither base nor index. */
8396 else if (!intel_parser.in_offset && !intel_parser.is_mem)
8397 {
8398 i386_operand_type temp = reg->reg_type;
8399 temp.bitfield.baseindex = 0;
8400 i.types[this_operand] = operand_type_or (i.types[this_operand],
8401 temp);
8402 i.op[this_operand].regs = reg;
8403 i.reg_operands++;
8404 }
8405 else
8406 {
8407 as_bad (_("Invalid use of register"));
8408 return 0;
8409 }
8410
8411 /* Since registers are not part of the displacement string (except
8412 when we're parsing offset operands), we may need to remove any
8413 preceding '+' from the displacement string. */
8414 if (*intel_parser.disp != '\0'
8415 && !intel_parser.in_offset)
8416 {
8417 char *s = intel_parser.disp;
8418 s += strlen (s) - 1;
8419 if (*s == '+')
8420 *s = '\0';
8421 }
8422
8423 return 1;
8424 }
8425
8426 /* e11 BYTE
8427 | WORD
8428 | DWORD
8429 | FWORD
8430 | QWORD
8431 | TBYTE
8432 | OWORD
8433 | XMMWORD */
8434 case T_BYTE:
8435 case T_WORD:
8436 case T_DWORD:
8437 case T_FWORD:
8438 case T_QWORD:
8439 case T_TBYTE:
8440 case T_XMMWORD:
8441 intel_match_token (cur_token.code);
8442
8443 if (cur_token.code == T_PTR)
8444 return 1;
8445
8446 /* It must have been an identifier. */
8447 intel_putback_token ();
8448 cur_token.code = T_ID;
8449 /* FALLTHRU */
8450
8451 /* e11 id
8452 | constant */
8453 case T_ID:
8454 if (!intel_parser.in_offset && intel_parser.is_mem <= 0)
8455 {
8456 symbolS *symbolP;
8457
8458 /* The identifier represents a memory reference only if it's not
8459 preceded by an offset modifier and if it's not an equate. */
8460 symbolP = symbol_find(cur_token.str);
8461 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
8462 intel_parser.is_mem = 1;
8463 }
8464 /* FALLTHRU */
8465
8466 case T_CONST:
8467 case '-':
8468 case '+':
8469 {
8470 char *save_str, sign = 0;
8471
8472 /* Allow constants that start with `+' or `-'. */
8473 if (cur_token.code == '-' || cur_token.code == '+')
8474 {
8475 sign = cur_token.code;
8476 intel_match_token (cur_token.code);
8477 if (cur_token.code != T_CONST)
8478 {
8479 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
8480 cur_token.str);
8481 return 0;
8482 }
8483 }
8484
8485 save_str = (char *) xmalloc (strlen (cur_token.str) + 2);
8486 strcpy (save_str + !!sign, cur_token.str);
8487 if (sign)
8488 *save_str = sign;
8489
8490 /* Get the next token to check for register scaling. */
8491 intel_match_token (cur_token.code);
8492
8493 /* Check if this constant is a scaling factor for an
8494 index register. */
8495 if (cur_token.code == '*')
8496 {
8497 if (intel_match_token ('*') && cur_token.code == T_REG)
8498 {
8499 const reg_entry *reg = cur_token.reg;
8500
8501 if (!intel_parser.in_bracket)
8502 {
8503 as_bad (_("Register scaling only allowed "
8504 "in memory operands"));
8505 return 0;
8506 }
8507
8508 /* Disallow things like [1*si].
8509 sp and esp are invalid as index. */
8510 if (reg->reg_type.bitfield.reg16)
8511 reg = i386_regtab + REGNAM_AX + 4;
8512 else if (i.index_reg)
8513 reg = i386_regtab + REGNAM_EAX + 4;
8514
8515 /* The constant is followed by `* reg', so it must be
8516 a valid scale. */
8517 i.index_reg = reg;
8518 i.types[this_operand].bitfield.baseindex = 1;
8519
8520 /* Set the scale after setting the register (otherwise,
8521 i386_scale will complain) */
8522 if (!i386_scale (save_str))
8523 return 0;
8524 intel_match_token (T_REG);
8525
8526 /* Since registers are not part of the displacement
8527 string, we may need to remove any preceding '+' from
8528 the displacement string. */
8529 if (*intel_parser.disp != '\0')
8530 {
8531 char *s = intel_parser.disp;
8532 s += strlen (s) - 1;
8533 if (*s == '+')
8534 *s = '\0';
8535 }
8536
8537 free (save_str);
8538
8539 return 1;
8540 }
8541
8542 /* The constant was not used for register scaling. Since we have
8543 already consumed the token following `*' we now need to put it
8544 back in the stream. */
8545 intel_putback_token ();
8546 }
8547
8548 /* Add the constant to the displacement string. */
8549 strcat (intel_parser.disp, save_str);
8550 free (save_str);
8551
8552 return 1;
8553 }
8554 }
8555
8556 as_bad (_("Unrecognized token '%s'"), cur_token.str);
8557 return 0;
8558 }
8559
8560 /* Match the given token against cur_token. If they match, read the next
8561 token from the operand string. */
8562 static int
8563 intel_match_token (int code)
8564 {
8565 if (cur_token.code == code)
8566 {
8567 intel_get_token ();
8568 return 1;
8569 }
8570 else
8571 {
8572 as_bad (_("Unexpected token `%s'"), cur_token.str);
8573 return 0;
8574 }
8575 }
8576
8577 /* Read a new token from intel_parser.op_string and store it in cur_token. */
8578 static void
8579 intel_get_token (void)
8580 {
8581 char *end_op;
8582 const reg_entry *reg;
8583 struct intel_token new_token;
8584
8585 new_token.code = T_NIL;
8586 new_token.reg = NULL;
8587 new_token.str = NULL;
8588
8589 /* Free the memory allocated to the previous token and move
8590 cur_token to prev_token. */
8591 if (prev_token.str)
8592 free (prev_token.str);
8593
8594 prev_token = cur_token;
8595
8596 /* Skip whitespace. */
8597 while (is_space_char (*intel_parser.op_string))
8598 intel_parser.op_string++;
8599
8600 /* Return an empty token if we find nothing else on the line. */
8601 if (*intel_parser.op_string == '\0')
8602 {
8603 cur_token = new_token;
8604 return;
8605 }
8606
8607 /* The new token cannot be larger than the remainder of the operand
8608 string. */
8609 new_token.str = (char *) xmalloc (strlen (intel_parser.op_string) + 1);
8610 new_token.str[0] = '\0';
8611
8612 if (strchr ("0123456789", *intel_parser.op_string))
8613 {
8614 char *p = new_token.str;
8615 char *q = intel_parser.op_string;
8616 new_token.code = T_CONST;
8617
8618 /* Allow any kind of identifier char to encompass floating point and
8619 hexadecimal numbers. */
8620 while (is_identifier_char (*q))
8621 *p++ = *q++;
8622 *p = '\0';
8623
8624 /* Recognize special symbol names [0-9][bf]. */
8625 if (strlen (intel_parser.op_string) == 2
8626 && (intel_parser.op_string[1] == 'b'
8627 || intel_parser.op_string[1] == 'f'))
8628 new_token.code = T_ID;
8629 }
8630
8631 else if ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL)
8632 {
8633 size_t len = end_op - intel_parser.op_string;
8634
8635 new_token.code = T_REG;
8636 new_token.reg = reg;
8637
8638 memcpy (new_token.str, intel_parser.op_string, len);
8639 new_token.str[len] = '\0';
8640 }
8641
8642 else if (is_identifier_char (*intel_parser.op_string))
8643 {
8644 char *p = new_token.str;
8645 char *q = intel_parser.op_string;
8646
8647 /* A '.' or '$' followed by an identifier char is an identifier.
8648 Otherwise, it's operator '.' followed by an expression. */
8649 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
8650 {
8651 new_token.code = '.';
8652 new_token.str[0] = '.';
8653 new_token.str[1] = '\0';
8654 }
8655 else
8656 {
8657 while (is_identifier_char (*q) || *q == '@')
8658 *p++ = *q++;
8659 *p = '\0';
8660
8661 if (strcasecmp (new_token.str, "NOT") == 0)
8662 new_token.code = '~';
8663
8664 else if (strcasecmp (new_token.str, "MOD") == 0)
8665 new_token.code = '%';
8666
8667 else if (strcasecmp (new_token.str, "AND") == 0)
8668 new_token.code = '&';
8669
8670 else if (strcasecmp (new_token.str, "OR") == 0)
8671 new_token.code = '|';
8672
8673 else if (strcasecmp (new_token.str, "XOR") == 0)
8674 new_token.code = '^';
8675
8676 else if (strcasecmp (new_token.str, "SHL") == 0)
8677 new_token.code = T_SHL;
8678
8679 else if (strcasecmp (new_token.str, "SHR") == 0)
8680 new_token.code = T_SHR;
8681
8682 else if (strcasecmp (new_token.str, "BYTE") == 0)
8683 new_token.code = T_BYTE;
8684
8685 else if (strcasecmp (new_token.str, "WORD") == 0)
8686 new_token.code = T_WORD;
8687
8688 else if (strcasecmp (new_token.str, "DWORD") == 0)
8689 new_token.code = T_DWORD;
8690
8691 else if (strcasecmp (new_token.str, "FWORD") == 0)
8692 new_token.code = T_FWORD;
8693
8694 else if (strcasecmp (new_token.str, "QWORD") == 0)
8695 new_token.code = T_QWORD;
8696
8697 else if (strcasecmp (new_token.str, "TBYTE") == 0
8698 /* XXX remove (gcc still uses it) */
8699 || strcasecmp (new_token.str, "XWORD") == 0)
8700 new_token.code = T_TBYTE;
8701
8702 else if (strcasecmp (new_token.str, "XMMWORD") == 0
8703 || strcasecmp (new_token.str, "OWORD") == 0)
8704 new_token.code = T_XMMWORD;
8705
8706 else if (strcasecmp (new_token.str, "PTR") == 0)
8707 new_token.code = T_PTR;
8708
8709 else if (strcasecmp (new_token.str, "SHORT") == 0)
8710 new_token.code = T_SHORT;
8711
8712 else if (strcasecmp (new_token.str, "OFFSET") == 0)
8713 {
8714 new_token.code = T_OFFSET;
8715
8716 /* ??? This is not mentioned in the MASM grammar but gcc
8717 makes use of it with -mintel-syntax. OFFSET may be
8718 followed by FLAT: */
8719 if (strncasecmp (q, " FLAT:", 6) == 0)
8720 strcat (new_token.str, " FLAT:");
8721 }
8722
8723 /* ??? This is not mentioned in the MASM grammar. */
8724 else if (strcasecmp (new_token.str, "FLAT") == 0)
8725 {
8726 new_token.code = T_OFFSET;
8727 if (*q == ':')
8728 strcat (new_token.str, ":");
8729 else
8730 as_bad (_("`:' expected"));
8731 }
8732
8733 else
8734 new_token.code = T_ID;
8735 }
8736 }
8737
8738 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
8739 {
8740 new_token.code = *intel_parser.op_string;
8741 new_token.str[0] = *intel_parser.op_string;
8742 new_token.str[1] = '\0';
8743 }
8744
8745 else if (strchr ("<>", *intel_parser.op_string)
8746 && *intel_parser.op_string == *(intel_parser.op_string + 1))
8747 {
8748 new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
8749 new_token.str[0] = *intel_parser.op_string;
8750 new_token.str[1] = *intel_parser.op_string;
8751 new_token.str[2] = '\0';
8752 }
8753
8754 else
8755 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
8756
8757 intel_parser.op_string += strlen (new_token.str);
8758 cur_token = new_token;
8759 }
8760
8761 /* Put cur_token back into the token stream and make cur_token point to
8762 prev_token. */
8763 static void
8764 intel_putback_token (void)
8765 {
8766 if (cur_token.code != T_NIL)
8767 {
8768 intel_parser.op_string -= strlen (cur_token.str);
8769 free (cur_token.str);
8770 }
8771 cur_token = prev_token;
8772
8773 /* Forget prev_token. */
8774 prev_token.code = T_NIL;
8775 prev_token.reg = NULL;
8776 prev_token.str = NULL;
8777 }
8778
8779 int
8780 tc_x86_regname_to_dw2regnum (char *regname)
8781 {
8782 unsigned int regnum;
8783 unsigned int regnames_count;
8784 static const char *const regnames_32[] =
8785 {
8786 "eax", "ecx", "edx", "ebx",
8787 "esp", "ebp", "esi", "edi",
8788 "eip", "eflags", NULL,
8789 "st0", "st1", "st2", "st3",
8790 "st4", "st5", "st6", "st7",
8791 NULL, NULL,
8792 "xmm0", "xmm1", "xmm2", "xmm3",
8793 "xmm4", "xmm5", "xmm6", "xmm7",
8794 "mm0", "mm1", "mm2", "mm3",
8795 "mm4", "mm5", "mm6", "mm7",
8796 "fcw", "fsw", "mxcsr",
8797 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
8798 "tr", "ldtr"
8799 };
8800 static const char *const regnames_64[] =
8801 {
8802 "rax", "rdx", "rcx", "rbx",
8803 "rsi", "rdi", "rbp", "rsp",
8804 "r8", "r9", "r10", "r11",
8805 "r12", "r13", "r14", "r15",
8806 "rip",
8807 "xmm0", "xmm1", "xmm2", "xmm3",
8808 "xmm4", "xmm5", "xmm6", "xmm7",
8809 "xmm8", "xmm9", "xmm10", "xmm11",
8810 "xmm12", "xmm13", "xmm14", "xmm15",
8811 "st0", "st1", "st2", "st3",
8812 "st4", "st5", "st6", "st7",
8813 "mm0", "mm1", "mm2", "mm3",
8814 "mm4", "mm5", "mm6", "mm7",
8815 "rflags",
8816 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
8817 "fs.base", "gs.base", NULL, NULL,
8818 "tr", "ldtr",
8819 "mxcsr", "fcw", "fsw"
8820 };
8821 const char *const *regnames;
8822
8823 if (flag_code == CODE_64BIT)
8824 {
8825 regnames = regnames_64;
8826 regnames_count = ARRAY_SIZE (regnames_64);
8827 }
8828 else
8829 {
8830 regnames = regnames_32;
8831 regnames_count = ARRAY_SIZE (regnames_32);
8832 }
8833
8834 for (regnum = 0; regnum < regnames_count; regnum++)
8835 if (regnames[regnum] != NULL
8836 && strcmp (regname, regnames[regnum]) == 0)
8837 return regnum;
8838
8839 return -1;
8840 }
8841
8842 void
8843 tc_x86_frame_initial_instructions (void)
8844 {
8845 static unsigned int sp_regno;
8846
8847 if (!sp_regno)
8848 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
8849 ? "rsp" : "esp");
8850
8851 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
8852 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
8853 }
8854
8855 int
8856 i386_elf_section_type (const char *str, size_t len)
8857 {
8858 if (flag_code == CODE_64BIT
8859 && len == sizeof ("unwind") - 1
8860 && strncmp (str, "unwind", 6) == 0)
8861 return SHT_X86_64_UNWIND;
8862
8863 return -1;
8864 }
8865
8866 #ifdef TE_PE
8867 void
8868 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
8869 {
8870 expressionS expr;
8871
8872 expr.X_op = O_secrel;
8873 expr.X_add_symbol = symbol;
8874 expr.X_add_number = 0;
8875 emit_expr (&expr, size);
8876 }
8877 #endif
8878
8879 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8880 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
8881
8882 int
8883 x86_64_section_letter (int letter, char **ptr_msg)
8884 {
8885 if (flag_code == CODE_64BIT)
8886 {
8887 if (letter == 'l')
8888 return SHF_X86_64_LARGE;
8889
8890 *ptr_msg = _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
8891 }
8892 else
8893 *ptr_msg = _("Bad .section directive: want a,w,x,M,S,G,T in string");
8894 return -1;
8895 }
8896
8897 int
8898 x86_64_section_word (char *str, size_t len)
8899 {
8900 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
8901 return SHF_X86_64_LARGE;
8902
8903 return -1;
8904 }
8905
8906 static void
8907 handle_large_common (int small ATTRIBUTE_UNUSED)
8908 {
8909 if (flag_code != CODE_64BIT)
8910 {
8911 s_comm_internal (0, elf_common_parse);
8912 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
8913 }
8914 else
8915 {
8916 static segT lbss_section;
8917 asection *saved_com_section_ptr = elf_com_section_ptr;
8918 asection *saved_bss_section = bss_section;
8919
8920 if (lbss_section == NULL)
8921 {
8922 flagword applicable;
8923 segT seg = now_seg;
8924 subsegT subseg = now_subseg;
8925
8926 /* The .lbss section is for local .largecomm symbols. */
8927 lbss_section = subseg_new (".lbss", 0);
8928 applicable = bfd_applicable_section_flags (stdoutput);
8929 bfd_set_section_flags (stdoutput, lbss_section,
8930 applicable & SEC_ALLOC);
8931 seg_info (lbss_section)->bss = 1;
8932
8933 subseg_set (seg, subseg);
8934 }
8935
8936 elf_com_section_ptr = &_bfd_elf_large_com_section;
8937 bss_section = lbss_section;
8938
8939 s_comm_internal (0, elf_common_parse);
8940
8941 elf_com_section_ptr = saved_com_section_ptr;
8942 bss_section = saved_bss_section;
8943 }
8944 }
8945 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.20329 seconds and 5 git commands to generate.