Add AMD znver3 processor support
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef INFER_ADDR_PREFIX
48 #define INFER_ADDR_PREFIX 1
49 #endif
50
51 #ifndef DEFAULT_ARCH
52 #define DEFAULT_ARCH "i386"
53 #endif
54
55 #ifndef INLINE
56 #if __GNUC__ >= 2
57 #define INLINE __inline__
58 #else
59 #define INLINE
60 #endif
61 #endif
62
63 /* Prefixes will be emitted in the order defined below.
64 WAIT_PREFIX must be the first prefix since FWAIT is really is an
65 instruction, and so must come before any prefixes.
66 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
67 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
68 #define WAIT_PREFIX 0
69 #define SEG_PREFIX 1
70 #define ADDR_PREFIX 2
71 #define DATA_PREFIX 3
72 #define REP_PREFIX 4
73 #define HLE_PREFIX REP_PREFIX
74 #define BND_PREFIX REP_PREFIX
75 #define LOCK_PREFIX 5
76 #define REX_PREFIX 6 /* must come last. */
77 #define MAX_PREFIXES 7 /* max prefixes per opcode */
78
79 /* we define the syntax here (modulo base,index,scale syntax) */
80 #define REGISTER_PREFIX '%'
81 #define IMMEDIATE_PREFIX '$'
82 #define ABSOLUTE_PREFIX '*'
83
84 /* these are the instruction mnemonic suffixes in AT&T syntax or
85 memory operand size in Intel syntax. */
86 #define WORD_MNEM_SUFFIX 'w'
87 #define BYTE_MNEM_SUFFIX 'b'
88 #define SHORT_MNEM_SUFFIX 's'
89 #define LONG_MNEM_SUFFIX 'l'
90 #define QWORD_MNEM_SUFFIX 'q'
91 /* Intel Syntax. Use a non-ascii letter since since it never appears
92 in instructions. */
93 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
94
95 #define END_OF_INSN '\0'
96
97 /* This matches the C -> StaticRounding alias in the opcode table. */
98 #define commutative staticrounding
99
100 /*
101 'templates' is for grouping together 'template' structures for opcodes
102 of the same name. This is only used for storing the insns in the grand
103 ole hash table of insns.
104 The templates themselves start at START and range up to (but not including)
105 END.
106 */
107 typedef struct
108 {
109 const insn_template *start;
110 const insn_template *end;
111 }
112 templates;
113
114 /* 386 operand encoding bytes: see 386 book for details of this. */
115 typedef struct
116 {
117 unsigned int regmem; /* codes register or memory operand */
118 unsigned int reg; /* codes register operand (or extended opcode) */
119 unsigned int mode; /* how to interpret regmem & reg */
120 }
121 modrm_byte;
122
123 /* x86-64 extension prefix. */
124 typedef int rex_byte;
125
126 /* 386 opcode byte to code indirect addressing. */
127 typedef struct
128 {
129 unsigned base;
130 unsigned index;
131 unsigned scale;
132 }
133 sib_byte;
134
135 /* x86 arch names, types and features */
136 typedef struct
137 {
138 const char *name; /* arch name */
139 unsigned int len; /* arch string length */
140 enum processor_type type; /* arch type */
141 i386_cpu_flags flags; /* cpu feature flags */
142 unsigned int skip; /* show_arch should skip this. */
143 }
144 arch_entry;
145
146 /* Used to turn off indicated flags. */
147 typedef struct
148 {
149 const char *name; /* arch name */
150 unsigned int len; /* arch string length */
151 i386_cpu_flags flags; /* cpu feature flags */
152 }
153 noarch_entry;
154
155 static void update_code_flag (int, int);
156 static void set_code_flag (int);
157 static void set_16bit_gcc_code_flag (int);
158 static void set_intel_syntax (int);
159 static void set_intel_mnemonic (int);
160 static void set_allow_index_reg (int);
161 static void set_check (int);
162 static void set_cpu_arch (int);
163 #ifdef TE_PE
164 static void pe_directive_secrel (int);
165 #endif
166 static void signed_cons (int);
167 static char *output_invalid (int c);
168 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
169 const char *);
170 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
171 const char *);
172 static int i386_att_operand (char *);
173 static int i386_intel_operand (char *, int);
174 static int i386_intel_simplify (expressionS *);
175 static int i386_intel_parse_name (const char *, expressionS *);
176 static const reg_entry *parse_register (char *, char **);
177 static char *parse_insn (char *, char *);
178 static char *parse_operands (char *, const char *);
179 static void swap_operands (void);
180 static void swap_2_operands (int, int);
181 static enum flag_code i386_addressing_mode (void);
182 static void optimize_imm (void);
183 static void optimize_disp (void);
184 static const insn_template *match_template (char);
185 static int check_string (void);
186 static int process_suffix (void);
187 static int check_byte_reg (void);
188 static int check_long_reg (void);
189 static int check_qword_reg (void);
190 static int check_word_reg (void);
191 static int finalize_imm (void);
192 static int process_operands (void);
193 static const seg_entry *build_modrm_byte (void);
194 static void output_insn (void);
195 static void output_imm (fragS *, offsetT);
196 static void output_disp (fragS *, offsetT);
197 #ifndef I386COFF
198 static void s_bss (int);
199 #endif
200 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201 static void handle_large_common (int small ATTRIBUTE_UNUSED);
202
203 /* GNU_PROPERTY_X86_ISA_1_USED. */
204 static unsigned int x86_isa_1_used;
205 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
206 static unsigned int x86_feature_2_used;
207 /* Generate x86 used ISA and feature properties. */
208 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
209 #endif
210
211 static const char *default_arch = DEFAULT_ARCH;
212
213 /* parse_register() returns this when a register alias cannot be used. */
214 static const reg_entry bad_reg = { "<bad>", OPERAND_TYPE_NONE, 0, 0,
215 { Dw2Inval, Dw2Inval } };
216
217 /* This struct describes rounding control and SAE in the instruction. */
218 struct RC_Operation
219 {
220 enum rc_type
221 {
222 rne = 0,
223 rd,
224 ru,
225 rz,
226 saeonly
227 } type;
228 int operand;
229 };
230
231 static struct RC_Operation rc_op;
232
233 /* The struct describes masking, applied to OPERAND in the instruction.
234 MASK is a pointer to the corresponding mask register. ZEROING tells
235 whether merging or zeroing mask is used. */
236 struct Mask_Operation
237 {
238 const reg_entry *mask;
239 unsigned int zeroing;
240 /* The operand where this operation is associated. */
241 int operand;
242 };
243
244 static struct Mask_Operation mask_op;
245
246 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
247 broadcast factor. */
248 struct Broadcast_Operation
249 {
250 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
251 int type;
252
253 /* Index of broadcasted operand. */
254 int operand;
255
256 /* Number of bytes to broadcast. */
257 int bytes;
258 };
259
260 static struct Broadcast_Operation broadcast_op;
261
262 /* VEX prefix. */
263 typedef struct
264 {
265 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
266 unsigned char bytes[4];
267 unsigned int length;
268 /* Destination or source register specifier. */
269 const reg_entry *register_specifier;
270 } vex_prefix;
271
272 /* 'md_assemble ()' gathers together information and puts it into a
273 i386_insn. */
274
275 union i386_op
276 {
277 expressionS *disps;
278 expressionS *imms;
279 const reg_entry *regs;
280 };
281
282 enum i386_error
283 {
284 operand_size_mismatch,
285 operand_type_mismatch,
286 register_type_mismatch,
287 number_of_operands_mismatch,
288 invalid_instruction_suffix,
289 bad_imm4,
290 unsupported_with_intel_mnemonic,
291 unsupported_syntax,
292 unsupported,
293 invalid_sib_address,
294 invalid_vsib_address,
295 invalid_vector_register_set,
296 invalid_tmm_register_set,
297 unsupported_vector_index_register,
298 unsupported_broadcast,
299 broadcast_needed,
300 unsupported_masking,
301 mask_not_on_destination,
302 no_default_mask,
303 unsupported_rc_sae,
304 rc_sae_operand_not_last_imm,
305 invalid_register_operand,
306 };
307
308 struct _i386_insn
309 {
310 /* TM holds the template for the insn were currently assembling. */
311 insn_template tm;
312
313 /* SUFFIX holds the instruction size suffix for byte, word, dword
314 or qword, if given. */
315 char suffix;
316
317 /* OPERANDS gives the number of given operands. */
318 unsigned int operands;
319
320 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
321 of given register, displacement, memory operands and immediate
322 operands. */
323 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
324
325 /* TYPES [i] is the type (see above #defines) which tells us how to
326 use OP[i] for the corresponding operand. */
327 i386_operand_type types[MAX_OPERANDS];
328
329 /* Displacement expression, immediate expression, or register for each
330 operand. */
331 union i386_op op[MAX_OPERANDS];
332
333 /* Flags for operands. */
334 unsigned int flags[MAX_OPERANDS];
335 #define Operand_PCrel 1
336 #define Operand_Mem 2
337
338 /* Relocation type for operand */
339 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
340
341 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
342 the base index byte below. */
343 const reg_entry *base_reg;
344 const reg_entry *index_reg;
345 unsigned int log2_scale_factor;
346
347 /* SEG gives the seg_entries of this insn. They are zero unless
348 explicit segment overrides are given. */
349 const seg_entry *seg[2];
350
351 /* Copied first memory operand string, for re-checking. */
352 char *memop1_string;
353
354 /* PREFIX holds all the given prefix opcodes (usually null).
355 PREFIXES is the number of prefix opcodes. */
356 unsigned int prefixes;
357 unsigned char prefix[MAX_PREFIXES];
358
359 /* Register is in low 3 bits of opcode. */
360 bfd_boolean short_form;
361
362 /* The operand to a branch insn indicates an absolute branch. */
363 bfd_boolean jumpabsolute;
364
365 /* Extended states. */
366 enum
367 {
368 /* Use MMX state. */
369 xstate_mmx = 1 << 0,
370 /* Use XMM state. */
371 xstate_xmm = 1 << 1,
372 /* Use YMM state. */
373 xstate_ymm = 1 << 2 | xstate_xmm,
374 /* Use ZMM state. */
375 xstate_zmm = 1 << 3 | xstate_ymm,
376 /* Use TMM state. */
377 xstate_tmm = 1 << 4,
378 /* Use MASK state. */
379 xstate_mask = 1 << 5
380 } xstate;
381
382 /* Has GOTPC or TLS relocation. */
383 bfd_boolean has_gotpc_tls_reloc;
384
385 /* RM and SIB are the modrm byte and the sib byte where the
386 addressing modes of this insn are encoded. */
387 modrm_byte rm;
388 rex_byte rex;
389 rex_byte vrex;
390 sib_byte sib;
391 vex_prefix vex;
392
393 /* Masking attributes. */
394 struct Mask_Operation *mask;
395
396 /* Rounding control and SAE attributes. */
397 struct RC_Operation *rounding;
398
399 /* Broadcasting attributes. */
400 struct Broadcast_Operation *broadcast;
401
402 /* Compressed disp8*N attribute. */
403 unsigned int memshift;
404
405 /* Prefer load or store in encoding. */
406 enum
407 {
408 dir_encoding_default = 0,
409 dir_encoding_load,
410 dir_encoding_store,
411 dir_encoding_swap
412 } dir_encoding;
413
414 /* Prefer 8bit, 16bit, 32bit displacement in encoding. */
415 enum
416 {
417 disp_encoding_default = 0,
418 disp_encoding_8bit,
419 disp_encoding_16bit,
420 disp_encoding_32bit
421 } disp_encoding;
422
423 /* Prefer the REX byte in encoding. */
424 bfd_boolean rex_encoding;
425
426 /* Disable instruction size optimization. */
427 bfd_boolean no_optimize;
428
429 /* How to encode vector instructions. */
430 enum
431 {
432 vex_encoding_default = 0,
433 vex_encoding_vex,
434 vex_encoding_vex3,
435 vex_encoding_evex,
436 vex_encoding_error
437 } vec_encoding;
438
439 /* REP prefix. */
440 const char *rep_prefix;
441
442 /* HLE prefix. */
443 const char *hle_prefix;
444
445 /* Have BND prefix. */
446 const char *bnd_prefix;
447
448 /* Have NOTRACK prefix. */
449 const char *notrack_prefix;
450
451 /* Error message. */
452 enum i386_error error;
453 };
454
455 typedef struct _i386_insn i386_insn;
456
457 /* Link RC type with corresponding string, that'll be looked for in
458 asm. */
459 struct RC_name
460 {
461 enum rc_type type;
462 const char *name;
463 unsigned int len;
464 };
465
466 static const struct RC_name RC_NamesTable[] =
467 {
468 { rne, STRING_COMMA_LEN ("rn-sae") },
469 { rd, STRING_COMMA_LEN ("rd-sae") },
470 { ru, STRING_COMMA_LEN ("ru-sae") },
471 { rz, STRING_COMMA_LEN ("rz-sae") },
472 { saeonly, STRING_COMMA_LEN ("sae") },
473 };
474
475 /* List of chars besides those in app.c:symbol_chars that can start an
476 operand. Used to prevent the scrubber eating vital white-space. */
477 const char extra_symbol_chars[] = "*%-([{}"
478 #ifdef LEX_AT
479 "@"
480 #endif
481 #ifdef LEX_QM
482 "?"
483 #endif
484 ;
485
486 #if ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
487 && !defined (TE_GNU) \
488 && !defined (TE_LINUX) \
489 && !defined (TE_FreeBSD) \
490 && !defined (TE_DragonFly) \
491 && !defined (TE_NetBSD))
492 /* This array holds the chars that always start a comment. If the
493 pre-processor is disabled, these aren't very useful. The option
494 --divide will remove '/' from this list. */
495 const char *i386_comment_chars = "#/";
496 #define SVR4_COMMENT_CHARS 1
497 #define PREFIX_SEPARATOR '\\'
498
499 #else
500 const char *i386_comment_chars = "#";
501 #define PREFIX_SEPARATOR '/'
502 #endif
503
504 /* This array holds the chars that only start a comment at the beginning of
505 a line. If the line seems to have the form '# 123 filename'
506 .line and .file directives will appear in the pre-processed output.
507 Note that input_file.c hand checks for '#' at the beginning of the
508 first line of the input file. This is because the compiler outputs
509 #NO_APP at the beginning of its output.
510 Also note that comments started like this one will always work if
511 '/' isn't otherwise defined. */
512 const char line_comment_chars[] = "#/";
513
514 const char line_separator_chars[] = ";";
515
516 /* Chars that can be used to separate mant from exp in floating point
517 nums. */
518 const char EXP_CHARS[] = "eE";
519
520 /* Chars that mean this number is a floating point constant
521 As in 0f12.456
522 or 0d1.2345e12. */
523 const char FLT_CHARS[] = "fFdDxX";
524
525 /* Tables for lexical analysis. */
526 static char mnemonic_chars[256];
527 static char register_chars[256];
528 static char operand_chars[256];
529 static char identifier_chars[256];
530 static char digit_chars[256];
531
532 /* Lexical macros. */
533 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
534 #define is_operand_char(x) (operand_chars[(unsigned char) x])
535 #define is_register_char(x) (register_chars[(unsigned char) x])
536 #define is_space_char(x) ((x) == ' ')
537 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
538 #define is_digit_char(x) (digit_chars[(unsigned char) x])
539
540 /* All non-digit non-letter characters that may occur in an operand. */
541 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
542
543 /* md_assemble() always leaves the strings it's passed unaltered. To
544 effect this we maintain a stack of saved characters that we've smashed
545 with '\0's (indicating end of strings for various sub-fields of the
546 assembler instruction). */
547 static char save_stack[32];
548 static char *save_stack_p;
549 #define END_STRING_AND_SAVE(s) \
550 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
551 #define RESTORE_END_STRING(s) \
552 do { *(s) = *--save_stack_p; } while (0)
553
554 /* The instruction we're assembling. */
555 static i386_insn i;
556
557 /* Possible templates for current insn. */
558 static const templates *current_templates;
559
560 /* Per instruction expressionS buffers: max displacements & immediates. */
561 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
562 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
563
564 /* Current operand we are working on. */
565 static int this_operand = -1;
566
567 /* We support four different modes. FLAG_CODE variable is used to distinguish
568 these. */
569
570 enum flag_code {
571 CODE_32BIT,
572 CODE_16BIT,
573 CODE_64BIT };
574
575 static enum flag_code flag_code;
576 static unsigned int object_64bit;
577 static unsigned int disallow_64bit_reloc;
578 static int use_rela_relocations = 0;
579 /* __tls_get_addr/___tls_get_addr symbol for TLS. */
580 static const char *tls_get_addr;
581
582 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
583 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
584 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
585
586 /* The ELF ABI to use. */
587 enum x86_elf_abi
588 {
589 I386_ABI,
590 X86_64_ABI,
591 X86_64_X32_ABI
592 };
593
594 static enum x86_elf_abi x86_elf_abi = I386_ABI;
595 #endif
596
597 #if defined (TE_PE) || defined (TE_PEP)
598 /* Use big object file format. */
599 static int use_big_obj = 0;
600 #endif
601
602 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
603 /* 1 if generating code for a shared library. */
604 static int shared = 0;
605 #endif
606
607 /* 1 for intel syntax,
608 0 if att syntax. */
609 static int intel_syntax = 0;
610
611 static enum x86_64_isa
612 {
613 amd64 = 1, /* AMD64 ISA. */
614 intel64 /* Intel64 ISA. */
615 } isa64;
616
617 /* 1 for intel mnemonic,
618 0 if att mnemonic. */
619 static int intel_mnemonic = !SYSV386_COMPAT;
620
621 /* 1 if pseudo registers are permitted. */
622 static int allow_pseudo_reg = 0;
623
624 /* 1 if register prefix % not required. */
625 static int allow_naked_reg = 0;
626
627 /* 1 if the assembler should add BND prefix for all control-transferring
628 instructions supporting it, even if this prefix wasn't specified
629 explicitly. */
630 static int add_bnd_prefix = 0;
631
632 /* 1 if pseudo index register, eiz/riz, is allowed . */
633 static int allow_index_reg = 0;
634
635 /* 1 if the assembler should ignore LOCK prefix, even if it was
636 specified explicitly. */
637 static int omit_lock_prefix = 0;
638
639 /* 1 if the assembler should encode lfence, mfence, and sfence as
640 "lock addl $0, (%{re}sp)". */
641 static int avoid_fence = 0;
642
643 /* 1 if lfence should be inserted after every load. */
644 static int lfence_after_load = 0;
645
646 /* Non-zero if lfence should be inserted before indirect branch. */
647 static enum lfence_before_indirect_branch_kind
648 {
649 lfence_branch_none = 0,
650 lfence_branch_register,
651 lfence_branch_memory,
652 lfence_branch_all
653 }
654 lfence_before_indirect_branch;
655
656 /* Non-zero if lfence should be inserted before ret. */
657 static enum lfence_before_ret_kind
658 {
659 lfence_before_ret_none = 0,
660 lfence_before_ret_not,
661 lfence_before_ret_or,
662 lfence_before_ret_shl
663 }
664 lfence_before_ret;
665
666 /* Types of previous instruction is .byte or prefix. */
667 static struct
668 {
669 segT seg;
670 const char *file;
671 const char *name;
672 unsigned int line;
673 enum last_insn_kind
674 {
675 last_insn_other = 0,
676 last_insn_directive,
677 last_insn_prefix
678 } kind;
679 } last_insn;
680
681 /* 1 if the assembler should generate relax relocations. */
682
683 static int generate_relax_relocations
684 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
685
686 static enum check_kind
687 {
688 check_none = 0,
689 check_warning,
690 check_error
691 }
692 sse_check, operand_check = check_warning;
693
694 /* Non-zero if branches should be aligned within power of 2 boundary. */
695 static int align_branch_power = 0;
696
697 /* Types of branches to align. */
698 enum align_branch_kind
699 {
700 align_branch_none = 0,
701 align_branch_jcc = 1,
702 align_branch_fused = 2,
703 align_branch_jmp = 3,
704 align_branch_call = 4,
705 align_branch_indirect = 5,
706 align_branch_ret = 6
707 };
708
709 /* Type bits of branches to align. */
710 enum align_branch_bit
711 {
712 align_branch_jcc_bit = 1 << align_branch_jcc,
713 align_branch_fused_bit = 1 << align_branch_fused,
714 align_branch_jmp_bit = 1 << align_branch_jmp,
715 align_branch_call_bit = 1 << align_branch_call,
716 align_branch_indirect_bit = 1 << align_branch_indirect,
717 align_branch_ret_bit = 1 << align_branch_ret
718 };
719
720 static unsigned int align_branch = (align_branch_jcc_bit
721 | align_branch_fused_bit
722 | align_branch_jmp_bit);
723
724 /* Types of condition jump used by macro-fusion. */
725 enum mf_jcc_kind
726 {
727 mf_jcc_jo = 0, /* base opcode 0x70 */
728 mf_jcc_jc, /* base opcode 0x72 */
729 mf_jcc_je, /* base opcode 0x74 */
730 mf_jcc_jna, /* base opcode 0x76 */
731 mf_jcc_js, /* base opcode 0x78 */
732 mf_jcc_jp, /* base opcode 0x7a */
733 mf_jcc_jl, /* base opcode 0x7c */
734 mf_jcc_jle, /* base opcode 0x7e */
735 };
736
737 /* Types of compare flag-modifying insntructions used by macro-fusion. */
738 enum mf_cmp_kind
739 {
740 mf_cmp_test_and, /* test/cmp */
741 mf_cmp_alu_cmp, /* add/sub/cmp */
742 mf_cmp_incdec /* inc/dec */
743 };
744
745 /* The maximum padding size for fused jcc. CMP like instruction can
746 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
747 prefixes. */
748 #define MAX_FUSED_JCC_PADDING_SIZE 20
749
750 /* The maximum number of prefixes added for an instruction. */
751 static unsigned int align_branch_prefix_size = 5;
752
753 /* Optimization:
754 1. Clear the REX_W bit with register operand if possible.
755 2. Above plus use 128bit vector instruction to clear the full vector
756 register.
757 */
758 static int optimize = 0;
759
760 /* Optimization:
761 1. Clear the REX_W bit with register operand if possible.
762 2. Above plus use 128bit vector instruction to clear the full vector
763 register.
764 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
765 "testb $imm7,%r8".
766 */
767 static int optimize_for_space = 0;
768
769 /* Register prefix used for error message. */
770 static const char *register_prefix = "%";
771
772 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
773 leave, push, and pop instructions so that gcc has the same stack
774 frame as in 32 bit mode. */
775 static char stackop_size = '\0';
776
777 /* Non-zero to optimize code alignment. */
778 int optimize_align_code = 1;
779
780 /* Non-zero to quieten some warnings. */
781 static int quiet_warnings = 0;
782
783 /* CPU name. */
784 static const char *cpu_arch_name = NULL;
785 static char *cpu_sub_arch_name = NULL;
786
787 /* CPU feature flags. */
788 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
789
790 /* If we have selected a cpu we are generating instructions for. */
791 static int cpu_arch_tune_set = 0;
792
793 /* Cpu we are generating instructions for. */
794 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
795
796 /* CPU feature flags of cpu we are generating instructions for. */
797 static i386_cpu_flags cpu_arch_tune_flags;
798
799 /* CPU instruction set architecture used. */
800 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
801
802 /* CPU feature flags of instruction set architecture used. */
803 i386_cpu_flags cpu_arch_isa_flags;
804
805 /* If set, conditional jumps are not automatically promoted to handle
806 larger than a byte offset. */
807 static unsigned int no_cond_jump_promotion = 0;
808
809 /* Encode SSE instructions with VEX prefix. */
810 static unsigned int sse2avx;
811
812 /* Encode scalar AVX instructions with specific vector length. */
813 static enum
814 {
815 vex128 = 0,
816 vex256
817 } avxscalar;
818
819 /* Encode VEX WIG instructions with specific vex.w. */
820 static enum
821 {
822 vexw0 = 0,
823 vexw1
824 } vexwig;
825
826 /* Encode scalar EVEX LIG instructions with specific vector length. */
827 static enum
828 {
829 evexl128 = 0,
830 evexl256,
831 evexl512
832 } evexlig;
833
834 /* Encode EVEX WIG instructions with specific evex.w. */
835 static enum
836 {
837 evexw0 = 0,
838 evexw1
839 } evexwig;
840
841 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
842 static enum rc_type evexrcig = rne;
843
844 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
845 static symbolS *GOT_symbol;
846
847 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
848 unsigned int x86_dwarf2_return_column;
849
850 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
851 int x86_cie_data_alignment;
852
853 /* Interface to relax_segment.
854 There are 3 major relax states for 386 jump insns because the
855 different types of jumps add different sizes to frags when we're
856 figuring out what sort of jump to choose to reach a given label.
857
858 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
859 branches which are handled by md_estimate_size_before_relax() and
860 i386_generic_table_relax_frag(). */
861
862 /* Types. */
863 #define UNCOND_JUMP 0
864 #define COND_JUMP 1
865 #define COND_JUMP86 2
866 #define BRANCH_PADDING 3
867 #define BRANCH_PREFIX 4
868 #define FUSED_JCC_PADDING 5
869
870 /* Sizes. */
871 #define CODE16 1
872 #define SMALL 0
873 #define SMALL16 (SMALL | CODE16)
874 #define BIG 2
875 #define BIG16 (BIG | CODE16)
876
877 #ifndef INLINE
878 #ifdef __GNUC__
879 #define INLINE __inline__
880 #else
881 #define INLINE
882 #endif
883 #endif
884
885 #define ENCODE_RELAX_STATE(type, size) \
886 ((relax_substateT) (((type) << 2) | (size)))
887 #define TYPE_FROM_RELAX_STATE(s) \
888 ((s) >> 2)
889 #define DISP_SIZE_FROM_RELAX_STATE(s) \
890 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
891
892 /* This table is used by relax_frag to promote short jumps to long
893 ones where necessary. SMALL (short) jumps may be promoted to BIG
894 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
895 don't allow a short jump in a 32 bit code segment to be promoted to
896 a 16 bit offset jump because it's slower (requires data size
897 prefix), and doesn't work, unless the destination is in the bottom
898 64k of the code segment (The top 16 bits of eip are zeroed). */
899
900 const relax_typeS md_relax_table[] =
901 {
902 /* The fields are:
903 1) most positive reach of this state,
904 2) most negative reach of this state,
905 3) how many bytes this mode will have in the variable part of the frag
906 4) which index into the table to try if we can't fit into this one. */
907
908 /* UNCOND_JUMP states. */
909 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
910 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
911 /* dword jmp adds 4 bytes to frag:
912 0 extra opcode bytes, 4 displacement bytes. */
913 {0, 0, 4, 0},
914 /* word jmp adds 2 byte2 to frag:
915 0 extra opcode bytes, 2 displacement bytes. */
916 {0, 0, 2, 0},
917
918 /* COND_JUMP states. */
919 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
920 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
921 /* dword conditionals adds 5 bytes to frag:
922 1 extra opcode byte, 4 displacement bytes. */
923 {0, 0, 5, 0},
924 /* word conditionals add 3 bytes to frag:
925 1 extra opcode byte, 2 displacement bytes. */
926 {0, 0, 3, 0},
927
928 /* COND_JUMP86 states. */
929 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
930 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
931 /* dword conditionals adds 5 bytes to frag:
932 1 extra opcode byte, 4 displacement bytes. */
933 {0, 0, 5, 0},
934 /* word conditionals add 4 bytes to frag:
935 1 displacement byte and a 3 byte long branch insn. */
936 {0, 0, 4, 0}
937 };
938
939 static const arch_entry cpu_arch[] =
940 {
941 /* Do not replace the first two entries - i386_target_format()
942 relies on them being there in this order. */
943 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
944 CPU_GENERIC32_FLAGS, 0 },
945 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
946 CPU_GENERIC64_FLAGS, 0 },
947 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
948 CPU_NONE_FLAGS, 0 },
949 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
950 CPU_I186_FLAGS, 0 },
951 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
952 CPU_I286_FLAGS, 0 },
953 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
954 CPU_I386_FLAGS, 0 },
955 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
956 CPU_I486_FLAGS, 0 },
957 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
958 CPU_I586_FLAGS, 0 },
959 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
960 CPU_I686_FLAGS, 0 },
961 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
962 CPU_I586_FLAGS, 0 },
963 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
964 CPU_PENTIUMPRO_FLAGS, 0 },
965 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
966 CPU_P2_FLAGS, 0 },
967 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
968 CPU_P3_FLAGS, 0 },
969 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
970 CPU_P4_FLAGS, 0 },
971 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
972 CPU_CORE_FLAGS, 0 },
973 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
974 CPU_NOCONA_FLAGS, 0 },
975 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
976 CPU_CORE_FLAGS, 1 },
977 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
978 CPU_CORE_FLAGS, 0 },
979 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
980 CPU_CORE2_FLAGS, 1 },
981 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
982 CPU_CORE2_FLAGS, 0 },
983 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
984 CPU_COREI7_FLAGS, 0 },
985 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
986 CPU_L1OM_FLAGS, 0 },
987 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
988 CPU_K1OM_FLAGS, 0 },
989 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
990 CPU_IAMCU_FLAGS, 0 },
991 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
992 CPU_K6_FLAGS, 0 },
993 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
994 CPU_K6_2_FLAGS, 0 },
995 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
996 CPU_ATHLON_FLAGS, 0 },
997 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
998 CPU_K8_FLAGS, 1 },
999 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
1000 CPU_K8_FLAGS, 0 },
1001 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
1002 CPU_K8_FLAGS, 0 },
1003 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
1004 CPU_AMDFAM10_FLAGS, 0 },
1005 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
1006 CPU_BDVER1_FLAGS, 0 },
1007 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
1008 CPU_BDVER2_FLAGS, 0 },
1009 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
1010 CPU_BDVER3_FLAGS, 0 },
1011 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
1012 CPU_BDVER4_FLAGS, 0 },
1013 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
1014 CPU_ZNVER1_FLAGS, 0 },
1015 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
1016 CPU_ZNVER2_FLAGS, 0 },
1017 { STRING_COMMA_LEN ("znver3"), PROCESSOR_ZNVER,
1018 CPU_ZNVER3_FLAGS, 0 },
1019 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
1020 CPU_BTVER1_FLAGS, 0 },
1021 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
1022 CPU_BTVER2_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
1024 CPU_8087_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
1026 CPU_287_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
1028 CPU_387_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
1030 CPU_687_FLAGS, 0 },
1031 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
1032 CPU_CMOV_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
1034 CPU_FXSR_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
1036 CPU_MMX_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
1038 CPU_SSE_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
1040 CPU_SSE2_FLAGS, 0 },
1041 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
1042 CPU_SSE3_FLAGS, 0 },
1043 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1044 CPU_SSE4A_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
1046 CPU_SSSE3_FLAGS, 0 },
1047 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
1048 CPU_SSE4_1_FLAGS, 0 },
1049 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
1050 CPU_SSE4_2_FLAGS, 0 },
1051 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
1052 CPU_SSE4_2_FLAGS, 0 },
1053 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
1054 CPU_AVX_FLAGS, 0 },
1055 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
1056 CPU_AVX2_FLAGS, 0 },
1057 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
1058 CPU_AVX512F_FLAGS, 0 },
1059 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
1060 CPU_AVX512CD_FLAGS, 0 },
1061 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
1062 CPU_AVX512ER_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
1064 CPU_AVX512PF_FLAGS, 0 },
1065 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
1066 CPU_AVX512DQ_FLAGS, 0 },
1067 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
1068 CPU_AVX512BW_FLAGS, 0 },
1069 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
1070 CPU_AVX512VL_FLAGS, 0 },
1071 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
1072 CPU_VMX_FLAGS, 0 },
1073 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
1074 CPU_VMFUNC_FLAGS, 0 },
1075 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
1076 CPU_SMX_FLAGS, 0 },
1077 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
1078 CPU_XSAVE_FLAGS, 0 },
1079 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
1080 CPU_XSAVEOPT_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
1082 CPU_XSAVEC_FLAGS, 0 },
1083 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
1084 CPU_XSAVES_FLAGS, 0 },
1085 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
1086 CPU_AES_FLAGS, 0 },
1087 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
1088 CPU_PCLMUL_FLAGS, 0 },
1089 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
1090 CPU_PCLMUL_FLAGS, 1 },
1091 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
1092 CPU_FSGSBASE_FLAGS, 0 },
1093 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
1094 CPU_RDRND_FLAGS, 0 },
1095 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
1096 CPU_F16C_FLAGS, 0 },
1097 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
1098 CPU_BMI2_FLAGS, 0 },
1099 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
1100 CPU_FMA_FLAGS, 0 },
1101 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
1102 CPU_FMA4_FLAGS, 0 },
1103 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
1104 CPU_XOP_FLAGS, 0 },
1105 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
1106 CPU_LWP_FLAGS, 0 },
1107 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
1108 CPU_MOVBE_FLAGS, 0 },
1109 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
1110 CPU_CX16_FLAGS, 0 },
1111 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
1112 CPU_EPT_FLAGS, 0 },
1113 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
1114 CPU_LZCNT_FLAGS, 0 },
1115 { STRING_COMMA_LEN (".popcnt"), PROCESSOR_UNKNOWN,
1116 CPU_POPCNT_FLAGS, 0 },
1117 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
1118 CPU_HLE_FLAGS, 0 },
1119 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
1120 CPU_RTM_FLAGS, 0 },
1121 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
1122 CPU_INVPCID_FLAGS, 0 },
1123 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
1124 CPU_CLFLUSH_FLAGS, 0 },
1125 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
1126 CPU_NOP_FLAGS, 0 },
1127 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
1128 CPU_SYSCALL_FLAGS, 0 },
1129 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
1130 CPU_RDTSCP_FLAGS, 0 },
1131 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1132 CPU_3DNOW_FLAGS, 0 },
1133 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1134 CPU_3DNOWA_FLAGS, 0 },
1135 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1136 CPU_PADLOCK_FLAGS, 0 },
1137 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1138 CPU_SVME_FLAGS, 1 },
1139 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1140 CPU_SVME_FLAGS, 0 },
1141 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1142 CPU_SSE4A_FLAGS, 0 },
1143 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1144 CPU_ABM_FLAGS, 0 },
1145 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1146 CPU_BMI_FLAGS, 0 },
1147 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1148 CPU_TBM_FLAGS, 0 },
1149 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1150 CPU_ADX_FLAGS, 0 },
1151 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1152 CPU_RDSEED_FLAGS, 0 },
1153 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1154 CPU_PRFCHW_FLAGS, 0 },
1155 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1156 CPU_SMAP_FLAGS, 0 },
1157 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1158 CPU_MPX_FLAGS, 0 },
1159 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1160 CPU_SHA_FLAGS, 0 },
1161 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1162 CPU_CLFLUSHOPT_FLAGS, 0 },
1163 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1164 CPU_PREFETCHWT1_FLAGS, 0 },
1165 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1166 CPU_SE1_FLAGS, 0 },
1167 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1168 CPU_CLWB_FLAGS, 0 },
1169 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1170 CPU_AVX512IFMA_FLAGS, 0 },
1171 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1172 CPU_AVX512VBMI_FLAGS, 0 },
1173 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1174 CPU_AVX512_4FMAPS_FLAGS, 0 },
1175 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1176 CPU_AVX512_4VNNIW_FLAGS, 0 },
1177 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1178 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1179 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1180 CPU_AVX512_VBMI2_FLAGS, 0 },
1181 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1182 CPU_AVX512_VNNI_FLAGS, 0 },
1183 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1184 CPU_AVX512_BITALG_FLAGS, 0 },
1185 { STRING_COMMA_LEN (".avx_vnni"), PROCESSOR_UNKNOWN,
1186 CPU_AVX_VNNI_FLAGS, 0 },
1187 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1188 CPU_CLZERO_FLAGS, 0 },
1189 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1190 CPU_MWAITX_FLAGS, 0 },
1191 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1192 CPU_OSPKE_FLAGS, 0 },
1193 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1194 CPU_RDPID_FLAGS, 0 },
1195 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1196 CPU_PTWRITE_FLAGS, 0 },
1197 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1198 CPU_IBT_FLAGS, 0 },
1199 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1200 CPU_SHSTK_FLAGS, 0 },
1201 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1202 CPU_GFNI_FLAGS, 0 },
1203 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1204 CPU_VAES_FLAGS, 0 },
1205 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1206 CPU_VPCLMULQDQ_FLAGS, 0 },
1207 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1208 CPU_WBNOINVD_FLAGS, 0 },
1209 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1210 CPU_PCONFIG_FLAGS, 0 },
1211 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1212 CPU_WAITPKG_FLAGS, 0 },
1213 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1214 CPU_CLDEMOTE_FLAGS, 0 },
1215 { STRING_COMMA_LEN (".amx_int8"), PROCESSOR_UNKNOWN,
1216 CPU_AMX_INT8_FLAGS, 0 },
1217 { STRING_COMMA_LEN (".amx_bf16"), PROCESSOR_UNKNOWN,
1218 CPU_AMX_BF16_FLAGS, 0 },
1219 { STRING_COMMA_LEN (".amx_tile"), PROCESSOR_UNKNOWN,
1220 CPU_AMX_TILE_FLAGS, 0 },
1221 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1222 CPU_MOVDIRI_FLAGS, 0 },
1223 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1224 CPU_MOVDIR64B_FLAGS, 0 },
1225 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1226 CPU_AVX512_BF16_FLAGS, 0 },
1227 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1228 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1229 { STRING_COMMA_LEN (".tdx"), PROCESSOR_UNKNOWN,
1230 CPU_TDX_FLAGS, 0 },
1231 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1232 CPU_ENQCMD_FLAGS, 0 },
1233 { STRING_COMMA_LEN (".serialize"), PROCESSOR_UNKNOWN,
1234 CPU_SERIALIZE_FLAGS, 0 },
1235 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1236 CPU_RDPRU_FLAGS, 0 },
1237 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1238 CPU_MCOMMIT_FLAGS, 0 },
1239 { STRING_COMMA_LEN (".sev_es"), PROCESSOR_UNKNOWN,
1240 CPU_SEV_ES_FLAGS, 0 },
1241 { STRING_COMMA_LEN (".tsxldtrk"), PROCESSOR_UNKNOWN,
1242 CPU_TSXLDTRK_FLAGS, 0 },
1243 { STRING_COMMA_LEN (".kl"), PROCESSOR_UNKNOWN,
1244 CPU_KL_FLAGS, 0 },
1245 { STRING_COMMA_LEN (".widekl"), PROCESSOR_UNKNOWN,
1246 CPU_WIDEKL_FLAGS, 0 },
1247 { STRING_COMMA_LEN (".uintr"), PROCESSOR_UNKNOWN,
1248 CPU_UINTR_FLAGS, 0 },
1249 { STRING_COMMA_LEN (".hreset"), PROCESSOR_UNKNOWN,
1250 CPU_HRESET_FLAGS, 0 },
1251 };
1252
1253 static const noarch_entry cpu_noarch[] =
1254 {
1255 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1256 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1257 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1258 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1259 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1260 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1261 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1262 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1263 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1264 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1265 { STRING_COMMA_LEN ("nosse4a"), CPU_ANY_SSE4A_FLAGS },
1266 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1267 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1268 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1269 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1270 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1271 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1272 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1273 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1274 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1275 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1276 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1277 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1278 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1279 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1280 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1281 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1282 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1283 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1284 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1285 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1286 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1287 { STRING_COMMA_LEN ("noavx_vnni"), CPU_ANY_AVX_VNNI_FLAGS },
1288 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1289 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1290 { STRING_COMMA_LEN ("noamx_int8"), CPU_ANY_AMX_INT8_FLAGS },
1291 { STRING_COMMA_LEN ("noamx_bf16"), CPU_ANY_AMX_BF16_FLAGS },
1292 { STRING_COMMA_LEN ("noamx_tile"), CPU_ANY_AMX_TILE_FLAGS },
1293 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1294 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1295 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1296 { STRING_COMMA_LEN ("noavx512_vp2intersect"),
1297 CPU_ANY_AVX512_VP2INTERSECT_FLAGS },
1298 { STRING_COMMA_LEN ("notdx"), CPU_ANY_TDX_FLAGS },
1299 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1300 { STRING_COMMA_LEN ("noserialize"), CPU_ANY_SERIALIZE_FLAGS },
1301 { STRING_COMMA_LEN ("notsxldtrk"), CPU_ANY_TSXLDTRK_FLAGS },
1302 { STRING_COMMA_LEN ("nokl"), CPU_ANY_KL_FLAGS },
1303 { STRING_COMMA_LEN ("nowidekl"), CPU_ANY_WIDEKL_FLAGS },
1304 { STRING_COMMA_LEN ("nouintr"), CPU_ANY_UINTR_FLAGS },
1305 { STRING_COMMA_LEN ("nohreset"), CPU_ANY_HRESET_FLAGS },
1306 };
1307
1308 #ifdef I386COFF
1309 /* Like s_lcomm_internal in gas/read.c but the alignment string
1310 is allowed to be optional. */
1311
1312 static symbolS *
1313 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1314 {
1315 addressT align = 0;
1316
1317 SKIP_WHITESPACE ();
1318
1319 if (needs_align
1320 && *input_line_pointer == ',')
1321 {
1322 align = parse_align (needs_align - 1);
1323
1324 if (align == (addressT) -1)
1325 return NULL;
1326 }
1327 else
1328 {
1329 if (size >= 8)
1330 align = 3;
1331 else if (size >= 4)
1332 align = 2;
1333 else if (size >= 2)
1334 align = 1;
1335 else
1336 align = 0;
1337 }
1338
1339 bss_alloc (symbolP, size, align);
1340 return symbolP;
1341 }
1342
1343 static void
1344 pe_lcomm (int needs_align)
1345 {
1346 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1347 }
1348 #endif
1349
1350 const pseudo_typeS md_pseudo_table[] =
1351 {
1352 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1353 {"align", s_align_bytes, 0},
1354 #else
1355 {"align", s_align_ptwo, 0},
1356 #endif
1357 {"arch", set_cpu_arch, 0},
1358 #ifndef I386COFF
1359 {"bss", s_bss, 0},
1360 #else
1361 {"lcomm", pe_lcomm, 1},
1362 #endif
1363 {"ffloat", float_cons, 'f'},
1364 {"dfloat", float_cons, 'd'},
1365 {"tfloat", float_cons, 'x'},
1366 {"value", cons, 2},
1367 {"slong", signed_cons, 4},
1368 {"noopt", s_ignore, 0},
1369 {"optim", s_ignore, 0},
1370 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1371 {"code16", set_code_flag, CODE_16BIT},
1372 {"code32", set_code_flag, CODE_32BIT},
1373 #ifdef BFD64
1374 {"code64", set_code_flag, CODE_64BIT},
1375 #endif
1376 {"intel_syntax", set_intel_syntax, 1},
1377 {"att_syntax", set_intel_syntax, 0},
1378 {"intel_mnemonic", set_intel_mnemonic, 1},
1379 {"att_mnemonic", set_intel_mnemonic, 0},
1380 {"allow_index_reg", set_allow_index_reg, 1},
1381 {"disallow_index_reg", set_allow_index_reg, 0},
1382 {"sse_check", set_check, 0},
1383 {"operand_check", set_check, 1},
1384 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1385 {"largecomm", handle_large_common, 0},
1386 #else
1387 {"file", dwarf2_directive_file, 0},
1388 {"loc", dwarf2_directive_loc, 0},
1389 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1390 #endif
1391 #ifdef TE_PE
1392 {"secrel32", pe_directive_secrel, 0},
1393 #endif
1394 {0, 0, 0}
1395 };
1396
1397 /* For interface with expression (). */
1398 extern char *input_line_pointer;
1399
1400 /* Hash table for instruction mnemonic lookup. */
1401 static htab_t op_hash;
1402
1403 /* Hash table for register lookup. */
1404 static htab_t reg_hash;
1405 \f
1406 /* Various efficient no-op patterns for aligning code labels.
1407 Note: Don't try to assemble the instructions in the comments.
1408 0L and 0w are not legal. */
1409 static const unsigned char f32_1[] =
1410 {0x90}; /* nop */
1411 static const unsigned char f32_2[] =
1412 {0x66,0x90}; /* xchg %ax,%ax */
1413 static const unsigned char f32_3[] =
1414 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1415 static const unsigned char f32_4[] =
1416 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1417 static const unsigned char f32_6[] =
1418 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1419 static const unsigned char f32_7[] =
1420 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1421 static const unsigned char f16_3[] =
1422 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1423 static const unsigned char f16_4[] =
1424 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1425 static const unsigned char jump_disp8[] =
1426 {0xeb}; /* jmp disp8 */
1427 static const unsigned char jump32_disp32[] =
1428 {0xe9}; /* jmp disp32 */
1429 static const unsigned char jump16_disp32[] =
1430 {0x66,0xe9}; /* jmp disp32 */
1431 /* 32-bit NOPs patterns. */
1432 static const unsigned char *const f32_patt[] = {
1433 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1434 };
1435 /* 16-bit NOPs patterns. */
1436 static const unsigned char *const f16_patt[] = {
1437 f32_1, f32_2, f16_3, f16_4
1438 };
1439 /* nopl (%[re]ax) */
1440 static const unsigned char alt_3[] =
1441 {0x0f,0x1f,0x00};
1442 /* nopl 0(%[re]ax) */
1443 static const unsigned char alt_4[] =
1444 {0x0f,0x1f,0x40,0x00};
1445 /* nopl 0(%[re]ax,%[re]ax,1) */
1446 static const unsigned char alt_5[] =
1447 {0x0f,0x1f,0x44,0x00,0x00};
1448 /* nopw 0(%[re]ax,%[re]ax,1) */
1449 static const unsigned char alt_6[] =
1450 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1451 /* nopl 0L(%[re]ax) */
1452 static const unsigned char alt_7[] =
1453 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1454 /* nopl 0L(%[re]ax,%[re]ax,1) */
1455 static const unsigned char alt_8[] =
1456 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1457 /* nopw 0L(%[re]ax,%[re]ax,1) */
1458 static const unsigned char alt_9[] =
1459 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1460 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1461 static const unsigned char alt_10[] =
1462 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1463 /* data16 nopw %cs:0L(%eax,%eax,1) */
1464 static const unsigned char alt_11[] =
1465 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1466 /* 32-bit and 64-bit NOPs patterns. */
1467 static const unsigned char *const alt_patt[] = {
1468 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1469 alt_9, alt_10, alt_11
1470 };
1471
1472 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1473 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1474
1475 static void
1476 i386_output_nops (char *where, const unsigned char *const *patt,
1477 int count, int max_single_nop_size)
1478
1479 {
1480 /* Place the longer NOP first. */
1481 int last;
1482 int offset;
1483 const unsigned char *nops;
1484
1485 if (max_single_nop_size < 1)
1486 {
1487 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1488 max_single_nop_size);
1489 return;
1490 }
1491
1492 nops = patt[max_single_nop_size - 1];
1493
1494 /* Use the smaller one if the requsted one isn't available. */
1495 if (nops == NULL)
1496 {
1497 max_single_nop_size--;
1498 nops = patt[max_single_nop_size - 1];
1499 }
1500
1501 last = count % max_single_nop_size;
1502
1503 count -= last;
1504 for (offset = 0; offset < count; offset += max_single_nop_size)
1505 memcpy (where + offset, nops, max_single_nop_size);
1506
1507 if (last)
1508 {
1509 nops = patt[last - 1];
1510 if (nops == NULL)
1511 {
1512 /* Use the smaller one plus one-byte NOP if the needed one
1513 isn't available. */
1514 last--;
1515 nops = patt[last - 1];
1516 memcpy (where + offset, nops, last);
1517 where[offset + last] = *patt[0];
1518 }
1519 else
1520 memcpy (where + offset, nops, last);
1521 }
1522 }
1523
1524 static INLINE int
1525 fits_in_imm7 (offsetT num)
1526 {
1527 return (num & 0x7f) == num;
1528 }
1529
1530 static INLINE int
1531 fits_in_imm31 (offsetT num)
1532 {
1533 return (num & 0x7fffffff) == num;
1534 }
1535
1536 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1537 single NOP instruction LIMIT. */
1538
1539 void
1540 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1541 {
1542 const unsigned char *const *patt = NULL;
1543 int max_single_nop_size;
1544 /* Maximum number of NOPs before switching to jump over NOPs. */
1545 int max_number_of_nops;
1546
1547 switch (fragP->fr_type)
1548 {
1549 case rs_fill_nop:
1550 case rs_align_code:
1551 break;
1552 case rs_machine_dependent:
1553 /* Allow NOP padding for jumps and calls. */
1554 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1555 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1556 break;
1557 /* Fall through. */
1558 default:
1559 return;
1560 }
1561
1562 /* We need to decide which NOP sequence to use for 32bit and
1563 64bit. When -mtune= is used:
1564
1565 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1566 PROCESSOR_GENERIC32, f32_patt will be used.
1567 2. For the rest, alt_patt will be used.
1568
1569 When -mtune= isn't used, alt_patt will be used if
1570 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1571 be used.
1572
1573 When -march= or .arch is used, we can't use anything beyond
1574 cpu_arch_isa_flags. */
1575
1576 if (flag_code == CODE_16BIT)
1577 {
1578 patt = f16_patt;
1579 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1580 /* Limit number of NOPs to 2 in 16-bit mode. */
1581 max_number_of_nops = 2;
1582 }
1583 else
1584 {
1585 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1586 {
1587 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1588 switch (cpu_arch_tune)
1589 {
1590 case PROCESSOR_UNKNOWN:
1591 /* We use cpu_arch_isa_flags to check if we SHOULD
1592 optimize with nops. */
1593 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1594 patt = alt_patt;
1595 else
1596 patt = f32_patt;
1597 break;
1598 case PROCESSOR_PENTIUM4:
1599 case PROCESSOR_NOCONA:
1600 case PROCESSOR_CORE:
1601 case PROCESSOR_CORE2:
1602 case PROCESSOR_COREI7:
1603 case PROCESSOR_L1OM:
1604 case PROCESSOR_K1OM:
1605 case PROCESSOR_GENERIC64:
1606 case PROCESSOR_K6:
1607 case PROCESSOR_ATHLON:
1608 case PROCESSOR_K8:
1609 case PROCESSOR_AMDFAM10:
1610 case PROCESSOR_BD:
1611 case PROCESSOR_ZNVER:
1612 case PROCESSOR_BT:
1613 patt = alt_patt;
1614 break;
1615 case PROCESSOR_I386:
1616 case PROCESSOR_I486:
1617 case PROCESSOR_PENTIUM:
1618 case PROCESSOR_PENTIUMPRO:
1619 case PROCESSOR_IAMCU:
1620 case PROCESSOR_GENERIC32:
1621 patt = f32_patt;
1622 break;
1623 }
1624 }
1625 else
1626 {
1627 switch (fragP->tc_frag_data.tune)
1628 {
1629 case PROCESSOR_UNKNOWN:
1630 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1631 PROCESSOR_UNKNOWN. */
1632 abort ();
1633 break;
1634
1635 case PROCESSOR_I386:
1636 case PROCESSOR_I486:
1637 case PROCESSOR_PENTIUM:
1638 case PROCESSOR_IAMCU:
1639 case PROCESSOR_K6:
1640 case PROCESSOR_ATHLON:
1641 case PROCESSOR_K8:
1642 case PROCESSOR_AMDFAM10:
1643 case PROCESSOR_BD:
1644 case PROCESSOR_ZNVER:
1645 case PROCESSOR_BT:
1646 case PROCESSOR_GENERIC32:
1647 /* We use cpu_arch_isa_flags to check if we CAN optimize
1648 with nops. */
1649 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1650 patt = alt_patt;
1651 else
1652 patt = f32_patt;
1653 break;
1654 case PROCESSOR_PENTIUMPRO:
1655 case PROCESSOR_PENTIUM4:
1656 case PROCESSOR_NOCONA:
1657 case PROCESSOR_CORE:
1658 case PROCESSOR_CORE2:
1659 case PROCESSOR_COREI7:
1660 case PROCESSOR_L1OM:
1661 case PROCESSOR_K1OM:
1662 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1663 patt = alt_patt;
1664 else
1665 patt = f32_patt;
1666 break;
1667 case PROCESSOR_GENERIC64:
1668 patt = alt_patt;
1669 break;
1670 }
1671 }
1672
1673 if (patt == f32_patt)
1674 {
1675 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1676 /* Limit number of NOPs to 2 for older processors. */
1677 max_number_of_nops = 2;
1678 }
1679 else
1680 {
1681 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1682 /* Limit number of NOPs to 7 for newer processors. */
1683 max_number_of_nops = 7;
1684 }
1685 }
1686
1687 if (limit == 0)
1688 limit = max_single_nop_size;
1689
1690 if (fragP->fr_type == rs_fill_nop)
1691 {
1692 /* Output NOPs for .nop directive. */
1693 if (limit > max_single_nop_size)
1694 {
1695 as_bad_where (fragP->fr_file, fragP->fr_line,
1696 _("invalid single nop size: %d "
1697 "(expect within [0, %d])"),
1698 limit, max_single_nop_size);
1699 return;
1700 }
1701 }
1702 else if (fragP->fr_type != rs_machine_dependent)
1703 fragP->fr_var = count;
1704
1705 if ((count / max_single_nop_size) > max_number_of_nops)
1706 {
1707 /* Generate jump over NOPs. */
1708 offsetT disp = count - 2;
1709 if (fits_in_imm7 (disp))
1710 {
1711 /* Use "jmp disp8" if possible. */
1712 count = disp;
1713 where[0] = jump_disp8[0];
1714 where[1] = count;
1715 where += 2;
1716 }
1717 else
1718 {
1719 unsigned int size_of_jump;
1720
1721 if (flag_code == CODE_16BIT)
1722 {
1723 where[0] = jump16_disp32[0];
1724 where[1] = jump16_disp32[1];
1725 size_of_jump = 2;
1726 }
1727 else
1728 {
1729 where[0] = jump32_disp32[0];
1730 size_of_jump = 1;
1731 }
1732
1733 count -= size_of_jump + 4;
1734 if (!fits_in_imm31 (count))
1735 {
1736 as_bad_where (fragP->fr_file, fragP->fr_line,
1737 _("jump over nop padding out of range"));
1738 return;
1739 }
1740
1741 md_number_to_chars (where + size_of_jump, count, 4);
1742 where += size_of_jump + 4;
1743 }
1744 }
1745
1746 /* Generate multiple NOPs. */
1747 i386_output_nops (where, patt, count, limit);
1748 }
1749
1750 static INLINE int
1751 operand_type_all_zero (const union i386_operand_type *x)
1752 {
1753 switch (ARRAY_SIZE(x->array))
1754 {
1755 case 3:
1756 if (x->array[2])
1757 return 0;
1758 /* Fall through. */
1759 case 2:
1760 if (x->array[1])
1761 return 0;
1762 /* Fall through. */
1763 case 1:
1764 return !x->array[0];
1765 default:
1766 abort ();
1767 }
1768 }
1769
1770 static INLINE void
1771 operand_type_set (union i386_operand_type *x, unsigned int v)
1772 {
1773 switch (ARRAY_SIZE(x->array))
1774 {
1775 case 3:
1776 x->array[2] = v;
1777 /* Fall through. */
1778 case 2:
1779 x->array[1] = v;
1780 /* Fall through. */
1781 case 1:
1782 x->array[0] = v;
1783 /* Fall through. */
1784 break;
1785 default:
1786 abort ();
1787 }
1788
1789 x->bitfield.class = ClassNone;
1790 x->bitfield.instance = InstanceNone;
1791 }
1792
1793 static INLINE int
1794 operand_type_equal (const union i386_operand_type *x,
1795 const union i386_operand_type *y)
1796 {
1797 switch (ARRAY_SIZE(x->array))
1798 {
1799 case 3:
1800 if (x->array[2] != y->array[2])
1801 return 0;
1802 /* Fall through. */
1803 case 2:
1804 if (x->array[1] != y->array[1])
1805 return 0;
1806 /* Fall through. */
1807 case 1:
1808 return x->array[0] == y->array[0];
1809 break;
1810 default:
1811 abort ();
1812 }
1813 }
1814
1815 static INLINE int
1816 cpu_flags_all_zero (const union i386_cpu_flags *x)
1817 {
1818 switch (ARRAY_SIZE(x->array))
1819 {
1820 case 4:
1821 if (x->array[3])
1822 return 0;
1823 /* Fall through. */
1824 case 3:
1825 if (x->array[2])
1826 return 0;
1827 /* Fall through. */
1828 case 2:
1829 if (x->array[1])
1830 return 0;
1831 /* Fall through. */
1832 case 1:
1833 return !x->array[0];
1834 default:
1835 abort ();
1836 }
1837 }
1838
1839 static INLINE int
1840 cpu_flags_equal (const union i386_cpu_flags *x,
1841 const union i386_cpu_flags *y)
1842 {
1843 switch (ARRAY_SIZE(x->array))
1844 {
1845 case 4:
1846 if (x->array[3] != y->array[3])
1847 return 0;
1848 /* Fall through. */
1849 case 3:
1850 if (x->array[2] != y->array[2])
1851 return 0;
1852 /* Fall through. */
1853 case 2:
1854 if (x->array[1] != y->array[1])
1855 return 0;
1856 /* Fall through. */
1857 case 1:
1858 return x->array[0] == y->array[0];
1859 break;
1860 default:
1861 abort ();
1862 }
1863 }
1864
1865 static INLINE int
1866 cpu_flags_check_cpu64 (i386_cpu_flags f)
1867 {
1868 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1869 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1870 }
1871
1872 static INLINE i386_cpu_flags
1873 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1874 {
1875 switch (ARRAY_SIZE (x.array))
1876 {
1877 case 4:
1878 x.array [3] &= y.array [3];
1879 /* Fall through. */
1880 case 3:
1881 x.array [2] &= y.array [2];
1882 /* Fall through. */
1883 case 2:
1884 x.array [1] &= y.array [1];
1885 /* Fall through. */
1886 case 1:
1887 x.array [0] &= y.array [0];
1888 break;
1889 default:
1890 abort ();
1891 }
1892 return x;
1893 }
1894
1895 static INLINE i386_cpu_flags
1896 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1897 {
1898 switch (ARRAY_SIZE (x.array))
1899 {
1900 case 4:
1901 x.array [3] |= y.array [3];
1902 /* Fall through. */
1903 case 3:
1904 x.array [2] |= y.array [2];
1905 /* Fall through. */
1906 case 2:
1907 x.array [1] |= y.array [1];
1908 /* Fall through. */
1909 case 1:
1910 x.array [0] |= y.array [0];
1911 break;
1912 default:
1913 abort ();
1914 }
1915 return x;
1916 }
1917
1918 static INLINE i386_cpu_flags
1919 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1920 {
1921 switch (ARRAY_SIZE (x.array))
1922 {
1923 case 4:
1924 x.array [3] &= ~y.array [3];
1925 /* Fall through. */
1926 case 3:
1927 x.array [2] &= ~y.array [2];
1928 /* Fall through. */
1929 case 2:
1930 x.array [1] &= ~y.array [1];
1931 /* Fall through. */
1932 case 1:
1933 x.array [0] &= ~y.array [0];
1934 break;
1935 default:
1936 abort ();
1937 }
1938 return x;
1939 }
1940
1941 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
1942
1943 #define CPU_FLAGS_ARCH_MATCH 0x1
1944 #define CPU_FLAGS_64BIT_MATCH 0x2
1945
1946 #define CPU_FLAGS_PERFECT_MATCH \
1947 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1948
1949 /* Return CPU flags match bits. */
1950
1951 static int
1952 cpu_flags_match (const insn_template *t)
1953 {
1954 i386_cpu_flags x = t->cpu_flags;
1955 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1956
1957 x.bitfield.cpu64 = 0;
1958 x.bitfield.cpuno64 = 0;
1959
1960 if (cpu_flags_all_zero (&x))
1961 {
1962 /* This instruction is available on all archs. */
1963 match |= CPU_FLAGS_ARCH_MATCH;
1964 }
1965 else
1966 {
1967 /* This instruction is available only on some archs. */
1968 i386_cpu_flags cpu = cpu_arch_flags;
1969
1970 /* AVX512VL is no standalone feature - match it and then strip it. */
1971 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1972 return match;
1973 x.bitfield.cpuavx512vl = 0;
1974
1975 cpu = cpu_flags_and (x, cpu);
1976 if (!cpu_flags_all_zero (&cpu))
1977 {
1978 if (x.bitfield.cpuavx)
1979 {
1980 /* We need to check a few extra flags with AVX. */
1981 if (cpu.bitfield.cpuavx
1982 && (!t->opcode_modifier.sse2avx
1983 || (sse2avx && !i.prefix[DATA_PREFIX]))
1984 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1985 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1986 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1987 match |= CPU_FLAGS_ARCH_MATCH;
1988 }
1989 else if (x.bitfield.cpuavx512f)
1990 {
1991 /* We need to check a few extra flags with AVX512F. */
1992 if (cpu.bitfield.cpuavx512f
1993 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1994 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1995 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1996 match |= CPU_FLAGS_ARCH_MATCH;
1997 }
1998 else
1999 match |= CPU_FLAGS_ARCH_MATCH;
2000 }
2001 }
2002 return match;
2003 }
2004
2005 static INLINE i386_operand_type
2006 operand_type_and (i386_operand_type x, i386_operand_type y)
2007 {
2008 if (x.bitfield.class != y.bitfield.class)
2009 x.bitfield.class = ClassNone;
2010 if (x.bitfield.instance != y.bitfield.instance)
2011 x.bitfield.instance = InstanceNone;
2012
2013 switch (ARRAY_SIZE (x.array))
2014 {
2015 case 3:
2016 x.array [2] &= y.array [2];
2017 /* Fall through. */
2018 case 2:
2019 x.array [1] &= y.array [1];
2020 /* Fall through. */
2021 case 1:
2022 x.array [0] &= y.array [0];
2023 break;
2024 default:
2025 abort ();
2026 }
2027 return x;
2028 }
2029
2030 static INLINE i386_operand_type
2031 operand_type_and_not (i386_operand_type x, i386_operand_type y)
2032 {
2033 gas_assert (y.bitfield.class == ClassNone);
2034 gas_assert (y.bitfield.instance == InstanceNone);
2035
2036 switch (ARRAY_SIZE (x.array))
2037 {
2038 case 3:
2039 x.array [2] &= ~y.array [2];
2040 /* Fall through. */
2041 case 2:
2042 x.array [1] &= ~y.array [1];
2043 /* Fall through. */
2044 case 1:
2045 x.array [0] &= ~y.array [0];
2046 break;
2047 default:
2048 abort ();
2049 }
2050 return x;
2051 }
2052
2053 static INLINE i386_operand_type
2054 operand_type_or (i386_operand_type x, i386_operand_type y)
2055 {
2056 gas_assert (x.bitfield.class == ClassNone ||
2057 y.bitfield.class == ClassNone ||
2058 x.bitfield.class == y.bitfield.class);
2059 gas_assert (x.bitfield.instance == InstanceNone ||
2060 y.bitfield.instance == InstanceNone ||
2061 x.bitfield.instance == y.bitfield.instance);
2062
2063 switch (ARRAY_SIZE (x.array))
2064 {
2065 case 3:
2066 x.array [2] |= y.array [2];
2067 /* Fall through. */
2068 case 2:
2069 x.array [1] |= y.array [1];
2070 /* Fall through. */
2071 case 1:
2072 x.array [0] |= y.array [0];
2073 break;
2074 default:
2075 abort ();
2076 }
2077 return x;
2078 }
2079
2080 static INLINE i386_operand_type
2081 operand_type_xor (i386_operand_type x, i386_operand_type y)
2082 {
2083 gas_assert (y.bitfield.class == ClassNone);
2084 gas_assert (y.bitfield.instance == InstanceNone);
2085
2086 switch (ARRAY_SIZE (x.array))
2087 {
2088 case 3:
2089 x.array [2] ^= y.array [2];
2090 /* Fall through. */
2091 case 2:
2092 x.array [1] ^= y.array [1];
2093 /* Fall through. */
2094 case 1:
2095 x.array [0] ^= y.array [0];
2096 break;
2097 default:
2098 abort ();
2099 }
2100 return x;
2101 }
2102
2103 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2104 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2105 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2106 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
2107 static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2108 static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
2109 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
2110 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
2111 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2112 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2113 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2114 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2115 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2116 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2117 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2118 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2119 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2120
2121 enum operand_type
2122 {
2123 reg,
2124 imm,
2125 disp,
2126 anymem
2127 };
2128
2129 static INLINE int
2130 operand_type_check (i386_operand_type t, enum operand_type c)
2131 {
2132 switch (c)
2133 {
2134 case reg:
2135 return t.bitfield.class == Reg;
2136
2137 case imm:
2138 return (t.bitfield.imm8
2139 || t.bitfield.imm8s
2140 || t.bitfield.imm16
2141 || t.bitfield.imm32
2142 || t.bitfield.imm32s
2143 || t.bitfield.imm64);
2144
2145 case disp:
2146 return (t.bitfield.disp8
2147 || t.bitfield.disp16
2148 || t.bitfield.disp32
2149 || t.bitfield.disp32s
2150 || t.bitfield.disp64);
2151
2152 case anymem:
2153 return (t.bitfield.disp8
2154 || t.bitfield.disp16
2155 || t.bitfield.disp32
2156 || t.bitfield.disp32s
2157 || t.bitfield.disp64
2158 || t.bitfield.baseindex);
2159
2160 default:
2161 abort ();
2162 }
2163
2164 return 0;
2165 }
2166
2167 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2168 between operand GIVEN and opeand WANTED for instruction template T. */
2169
2170 static INLINE int
2171 match_operand_size (const insn_template *t, unsigned int wanted,
2172 unsigned int given)
2173 {
2174 return !((i.types[given].bitfield.byte
2175 && !t->operand_types[wanted].bitfield.byte)
2176 || (i.types[given].bitfield.word
2177 && !t->operand_types[wanted].bitfield.word)
2178 || (i.types[given].bitfield.dword
2179 && !t->operand_types[wanted].bitfield.dword)
2180 || (i.types[given].bitfield.qword
2181 && !t->operand_types[wanted].bitfield.qword)
2182 || (i.types[given].bitfield.tbyte
2183 && !t->operand_types[wanted].bitfield.tbyte));
2184 }
2185
2186 /* Return 1 if there is no conflict in SIMD register between operand
2187 GIVEN and opeand WANTED for instruction template T. */
2188
2189 static INLINE int
2190 match_simd_size (const insn_template *t, unsigned int wanted,
2191 unsigned int given)
2192 {
2193 return !((i.types[given].bitfield.xmmword
2194 && !t->operand_types[wanted].bitfield.xmmword)
2195 || (i.types[given].bitfield.ymmword
2196 && !t->operand_types[wanted].bitfield.ymmword)
2197 || (i.types[given].bitfield.zmmword
2198 && !t->operand_types[wanted].bitfield.zmmword)
2199 || (i.types[given].bitfield.tmmword
2200 && !t->operand_types[wanted].bitfield.tmmword));
2201 }
2202
2203 /* Return 1 if there is no conflict in any size between operand GIVEN
2204 and opeand WANTED for instruction template T. */
2205
2206 static INLINE int
2207 match_mem_size (const insn_template *t, unsigned int wanted,
2208 unsigned int given)
2209 {
2210 return (match_operand_size (t, wanted, given)
2211 && !((i.types[given].bitfield.unspecified
2212 && !i.broadcast
2213 && !t->operand_types[wanted].bitfield.unspecified)
2214 || (i.types[given].bitfield.fword
2215 && !t->operand_types[wanted].bitfield.fword)
2216 /* For scalar opcode templates to allow register and memory
2217 operands at the same time, some special casing is needed
2218 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2219 down-conversion vpmov*. */
2220 || ((t->operand_types[wanted].bitfield.class == RegSIMD
2221 && t->operand_types[wanted].bitfield.byte
2222 + t->operand_types[wanted].bitfield.word
2223 + t->operand_types[wanted].bitfield.dword
2224 + t->operand_types[wanted].bitfield.qword
2225 > !!t->opcode_modifier.broadcast)
2226 ? (i.types[given].bitfield.xmmword
2227 || i.types[given].bitfield.ymmword
2228 || i.types[given].bitfield.zmmword)
2229 : !match_simd_size(t, wanted, given))));
2230 }
2231
2232 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2233 operands for instruction template T, and it has MATCH_REVERSE set if there
2234 is no size conflict on any operands for the template with operands reversed
2235 (and the template allows for reversing in the first place). */
2236
2237 #define MATCH_STRAIGHT 1
2238 #define MATCH_REVERSE 2
2239
2240 static INLINE unsigned int
2241 operand_size_match (const insn_template *t)
2242 {
2243 unsigned int j, match = MATCH_STRAIGHT;
2244
2245 /* Don't check non-absolute jump instructions. */
2246 if (t->opcode_modifier.jump
2247 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
2248 return match;
2249
2250 /* Check memory and accumulator operand size. */
2251 for (j = 0; j < i.operands; j++)
2252 {
2253 if (i.types[j].bitfield.class != Reg
2254 && i.types[j].bitfield.class != RegSIMD
2255 && t->opcode_modifier.anysize)
2256 continue;
2257
2258 if (t->operand_types[j].bitfield.class == Reg
2259 && !match_operand_size (t, j, j))
2260 {
2261 match = 0;
2262 break;
2263 }
2264
2265 if (t->operand_types[j].bitfield.class == RegSIMD
2266 && !match_simd_size (t, j, j))
2267 {
2268 match = 0;
2269 break;
2270 }
2271
2272 if (t->operand_types[j].bitfield.instance == Accum
2273 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2274 {
2275 match = 0;
2276 break;
2277 }
2278
2279 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2280 {
2281 match = 0;
2282 break;
2283 }
2284 }
2285
2286 if (!t->opcode_modifier.d)
2287 {
2288 mismatch:
2289 if (!match)
2290 i.error = operand_size_mismatch;
2291 return match;
2292 }
2293
2294 /* Check reverse. */
2295 gas_assert (i.operands >= 2 && i.operands <= 3);
2296
2297 for (j = 0; j < i.operands; j++)
2298 {
2299 unsigned int given = i.operands - j - 1;
2300
2301 if (t->operand_types[j].bitfield.class == Reg
2302 && !match_operand_size (t, j, given))
2303 goto mismatch;
2304
2305 if (t->operand_types[j].bitfield.class == RegSIMD
2306 && !match_simd_size (t, j, given))
2307 goto mismatch;
2308
2309 if (t->operand_types[j].bitfield.instance == Accum
2310 && (!match_operand_size (t, j, given)
2311 || !match_simd_size (t, j, given)))
2312 goto mismatch;
2313
2314 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2315 goto mismatch;
2316 }
2317
2318 return match | MATCH_REVERSE;
2319 }
2320
2321 static INLINE int
2322 operand_type_match (i386_operand_type overlap,
2323 i386_operand_type given)
2324 {
2325 i386_operand_type temp = overlap;
2326
2327 temp.bitfield.unspecified = 0;
2328 temp.bitfield.byte = 0;
2329 temp.bitfield.word = 0;
2330 temp.bitfield.dword = 0;
2331 temp.bitfield.fword = 0;
2332 temp.bitfield.qword = 0;
2333 temp.bitfield.tbyte = 0;
2334 temp.bitfield.xmmword = 0;
2335 temp.bitfield.ymmword = 0;
2336 temp.bitfield.zmmword = 0;
2337 temp.bitfield.tmmword = 0;
2338 if (operand_type_all_zero (&temp))
2339 goto mismatch;
2340
2341 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
2342 return 1;
2343
2344 mismatch:
2345 i.error = operand_type_mismatch;
2346 return 0;
2347 }
2348
2349 /* If given types g0 and g1 are registers they must be of the same type
2350 unless the expected operand type register overlap is null.
2351 Some Intel syntax memory operand size checking also happens here. */
2352
2353 static INLINE int
2354 operand_type_register_match (i386_operand_type g0,
2355 i386_operand_type t0,
2356 i386_operand_type g1,
2357 i386_operand_type t1)
2358 {
2359 if (g0.bitfield.class != Reg
2360 && g0.bitfield.class != RegSIMD
2361 && (!operand_type_check (g0, anymem)
2362 || g0.bitfield.unspecified
2363 || (t0.bitfield.class != Reg
2364 && t0.bitfield.class != RegSIMD)))
2365 return 1;
2366
2367 if (g1.bitfield.class != Reg
2368 && g1.bitfield.class != RegSIMD
2369 && (!operand_type_check (g1, anymem)
2370 || g1.bitfield.unspecified
2371 || (t1.bitfield.class != Reg
2372 && t1.bitfield.class != RegSIMD)))
2373 return 1;
2374
2375 if (g0.bitfield.byte == g1.bitfield.byte
2376 && g0.bitfield.word == g1.bitfield.word
2377 && g0.bitfield.dword == g1.bitfield.dword
2378 && g0.bitfield.qword == g1.bitfield.qword
2379 && g0.bitfield.xmmword == g1.bitfield.xmmword
2380 && g0.bitfield.ymmword == g1.bitfield.ymmword
2381 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2382 return 1;
2383
2384 if (!(t0.bitfield.byte & t1.bitfield.byte)
2385 && !(t0.bitfield.word & t1.bitfield.word)
2386 && !(t0.bitfield.dword & t1.bitfield.dword)
2387 && !(t0.bitfield.qword & t1.bitfield.qword)
2388 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2389 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2390 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2391 return 1;
2392
2393 i.error = register_type_mismatch;
2394
2395 return 0;
2396 }
2397
2398 static INLINE unsigned int
2399 register_number (const reg_entry *r)
2400 {
2401 unsigned int nr = r->reg_num;
2402
2403 if (r->reg_flags & RegRex)
2404 nr += 8;
2405
2406 if (r->reg_flags & RegVRex)
2407 nr += 16;
2408
2409 return nr;
2410 }
2411
2412 static INLINE unsigned int
2413 mode_from_disp_size (i386_operand_type t)
2414 {
2415 if (t.bitfield.disp8)
2416 return 1;
2417 else if (t.bitfield.disp16
2418 || t.bitfield.disp32
2419 || t.bitfield.disp32s)
2420 return 2;
2421 else
2422 return 0;
2423 }
2424
2425 static INLINE int
2426 fits_in_signed_byte (addressT num)
2427 {
2428 return num + 0x80 <= 0xff;
2429 }
2430
2431 static INLINE int
2432 fits_in_unsigned_byte (addressT num)
2433 {
2434 return num <= 0xff;
2435 }
2436
2437 static INLINE int
2438 fits_in_unsigned_word (addressT num)
2439 {
2440 return num <= 0xffff;
2441 }
2442
2443 static INLINE int
2444 fits_in_signed_word (addressT num)
2445 {
2446 return num + 0x8000 <= 0xffff;
2447 }
2448
2449 static INLINE int
2450 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2451 {
2452 #ifndef BFD64
2453 return 1;
2454 #else
2455 return num + 0x80000000 <= 0xffffffff;
2456 #endif
2457 } /* fits_in_signed_long() */
2458
2459 static INLINE int
2460 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2461 {
2462 #ifndef BFD64
2463 return 1;
2464 #else
2465 return num <= 0xffffffff;
2466 #endif
2467 } /* fits_in_unsigned_long() */
2468
2469 static INLINE int
2470 fits_in_disp8 (offsetT num)
2471 {
2472 int shift = i.memshift;
2473 unsigned int mask;
2474
2475 if (shift == -1)
2476 abort ();
2477
2478 mask = (1 << shift) - 1;
2479
2480 /* Return 0 if NUM isn't properly aligned. */
2481 if ((num & mask))
2482 return 0;
2483
2484 /* Check if NUM will fit in 8bit after shift. */
2485 return fits_in_signed_byte (num >> shift);
2486 }
2487
2488 static INLINE int
2489 fits_in_imm4 (offsetT num)
2490 {
2491 return (num & 0xf) == num;
2492 }
2493
2494 static i386_operand_type
2495 smallest_imm_type (offsetT num)
2496 {
2497 i386_operand_type t;
2498
2499 operand_type_set (&t, 0);
2500 t.bitfield.imm64 = 1;
2501
2502 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2503 {
2504 /* This code is disabled on the 486 because all the Imm1 forms
2505 in the opcode table are slower on the i486. They're the
2506 versions with the implicitly specified single-position
2507 displacement, which has another syntax if you really want to
2508 use that form. */
2509 t.bitfield.imm1 = 1;
2510 t.bitfield.imm8 = 1;
2511 t.bitfield.imm8s = 1;
2512 t.bitfield.imm16 = 1;
2513 t.bitfield.imm32 = 1;
2514 t.bitfield.imm32s = 1;
2515 }
2516 else if (fits_in_signed_byte (num))
2517 {
2518 t.bitfield.imm8 = 1;
2519 t.bitfield.imm8s = 1;
2520 t.bitfield.imm16 = 1;
2521 t.bitfield.imm32 = 1;
2522 t.bitfield.imm32s = 1;
2523 }
2524 else if (fits_in_unsigned_byte (num))
2525 {
2526 t.bitfield.imm8 = 1;
2527 t.bitfield.imm16 = 1;
2528 t.bitfield.imm32 = 1;
2529 t.bitfield.imm32s = 1;
2530 }
2531 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2532 {
2533 t.bitfield.imm16 = 1;
2534 t.bitfield.imm32 = 1;
2535 t.bitfield.imm32s = 1;
2536 }
2537 else if (fits_in_signed_long (num))
2538 {
2539 t.bitfield.imm32 = 1;
2540 t.bitfield.imm32s = 1;
2541 }
2542 else if (fits_in_unsigned_long (num))
2543 t.bitfield.imm32 = 1;
2544
2545 return t;
2546 }
2547
2548 static offsetT
2549 offset_in_range (offsetT val, int size)
2550 {
2551 addressT mask;
2552
2553 switch (size)
2554 {
2555 case 1: mask = ((addressT) 1 << 8) - 1; break;
2556 case 2: mask = ((addressT) 1 << 16) - 1; break;
2557 case 4: mask = ((addressT) 2 << 31) - 1; break;
2558 #ifdef BFD64
2559 case 8: mask = ((addressT) 2 << 63) - 1; break;
2560 #endif
2561 default: abort ();
2562 }
2563
2564 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2565 {
2566 char buf1[40], buf2[40];
2567
2568 sprint_value (buf1, val);
2569 sprint_value (buf2, val & mask);
2570 as_warn (_("%s shortened to %s"), buf1, buf2);
2571 }
2572 return val & mask;
2573 }
2574
2575 enum PREFIX_GROUP
2576 {
2577 PREFIX_EXIST = 0,
2578 PREFIX_LOCK,
2579 PREFIX_REP,
2580 PREFIX_DS,
2581 PREFIX_OTHER
2582 };
2583
2584 /* Returns
2585 a. PREFIX_EXIST if attempting to add a prefix where one from the
2586 same class already exists.
2587 b. PREFIX_LOCK if lock prefix is added.
2588 c. PREFIX_REP if rep/repne prefix is added.
2589 d. PREFIX_DS if ds prefix is added.
2590 e. PREFIX_OTHER if other prefix is added.
2591 */
2592
2593 static enum PREFIX_GROUP
2594 add_prefix (unsigned int prefix)
2595 {
2596 enum PREFIX_GROUP ret = PREFIX_OTHER;
2597 unsigned int q;
2598
2599 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2600 && flag_code == CODE_64BIT)
2601 {
2602 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2603 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2604 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2605 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2606 ret = PREFIX_EXIST;
2607 q = REX_PREFIX;
2608 }
2609 else
2610 {
2611 switch (prefix)
2612 {
2613 default:
2614 abort ();
2615
2616 case DS_PREFIX_OPCODE:
2617 ret = PREFIX_DS;
2618 /* Fall through. */
2619 case CS_PREFIX_OPCODE:
2620 case ES_PREFIX_OPCODE:
2621 case FS_PREFIX_OPCODE:
2622 case GS_PREFIX_OPCODE:
2623 case SS_PREFIX_OPCODE:
2624 q = SEG_PREFIX;
2625 break;
2626
2627 case REPNE_PREFIX_OPCODE:
2628 case REPE_PREFIX_OPCODE:
2629 q = REP_PREFIX;
2630 ret = PREFIX_REP;
2631 break;
2632
2633 case LOCK_PREFIX_OPCODE:
2634 q = LOCK_PREFIX;
2635 ret = PREFIX_LOCK;
2636 break;
2637
2638 case FWAIT_OPCODE:
2639 q = WAIT_PREFIX;
2640 break;
2641
2642 case ADDR_PREFIX_OPCODE:
2643 q = ADDR_PREFIX;
2644 break;
2645
2646 case DATA_PREFIX_OPCODE:
2647 q = DATA_PREFIX;
2648 break;
2649 }
2650 if (i.prefix[q] != 0)
2651 ret = PREFIX_EXIST;
2652 }
2653
2654 if (ret)
2655 {
2656 if (!i.prefix[q])
2657 ++i.prefixes;
2658 i.prefix[q] |= prefix;
2659 }
2660 else
2661 as_bad (_("same type of prefix used twice"));
2662
2663 return ret;
2664 }
2665
2666 static void
2667 update_code_flag (int value, int check)
2668 {
2669 PRINTF_LIKE ((*as_error));
2670
2671 flag_code = (enum flag_code) value;
2672 if (flag_code == CODE_64BIT)
2673 {
2674 cpu_arch_flags.bitfield.cpu64 = 1;
2675 cpu_arch_flags.bitfield.cpuno64 = 0;
2676 }
2677 else
2678 {
2679 cpu_arch_flags.bitfield.cpu64 = 0;
2680 cpu_arch_flags.bitfield.cpuno64 = 1;
2681 }
2682 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2683 {
2684 if (check)
2685 as_error = as_fatal;
2686 else
2687 as_error = as_bad;
2688 (*as_error) (_("64bit mode not supported on `%s'."),
2689 cpu_arch_name ? cpu_arch_name : default_arch);
2690 }
2691 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2692 {
2693 if (check)
2694 as_error = as_fatal;
2695 else
2696 as_error = as_bad;
2697 (*as_error) (_("32bit mode not supported on `%s'."),
2698 cpu_arch_name ? cpu_arch_name : default_arch);
2699 }
2700 stackop_size = '\0';
2701 }
2702
2703 static void
2704 set_code_flag (int value)
2705 {
2706 update_code_flag (value, 0);
2707 }
2708
2709 static void
2710 set_16bit_gcc_code_flag (int new_code_flag)
2711 {
2712 flag_code = (enum flag_code) new_code_flag;
2713 if (flag_code != CODE_16BIT)
2714 abort ();
2715 cpu_arch_flags.bitfield.cpu64 = 0;
2716 cpu_arch_flags.bitfield.cpuno64 = 1;
2717 stackop_size = LONG_MNEM_SUFFIX;
2718 }
2719
2720 static void
2721 set_intel_syntax (int syntax_flag)
2722 {
2723 /* Find out if register prefixing is specified. */
2724 int ask_naked_reg = 0;
2725
2726 SKIP_WHITESPACE ();
2727 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2728 {
2729 char *string;
2730 int e = get_symbol_name (&string);
2731
2732 if (strcmp (string, "prefix") == 0)
2733 ask_naked_reg = 1;
2734 else if (strcmp (string, "noprefix") == 0)
2735 ask_naked_reg = -1;
2736 else
2737 as_bad (_("bad argument to syntax directive."));
2738 (void) restore_line_pointer (e);
2739 }
2740 demand_empty_rest_of_line ();
2741
2742 intel_syntax = syntax_flag;
2743
2744 if (ask_naked_reg == 0)
2745 allow_naked_reg = (intel_syntax
2746 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2747 else
2748 allow_naked_reg = (ask_naked_reg < 0);
2749
2750 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2751
2752 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2753 identifier_chars['$'] = intel_syntax ? '$' : 0;
2754 register_prefix = allow_naked_reg ? "" : "%";
2755 }
2756
2757 static void
2758 set_intel_mnemonic (int mnemonic_flag)
2759 {
2760 intel_mnemonic = mnemonic_flag;
2761 }
2762
2763 static void
2764 set_allow_index_reg (int flag)
2765 {
2766 allow_index_reg = flag;
2767 }
2768
2769 static void
2770 set_check (int what)
2771 {
2772 enum check_kind *kind;
2773 const char *str;
2774
2775 if (what)
2776 {
2777 kind = &operand_check;
2778 str = "operand";
2779 }
2780 else
2781 {
2782 kind = &sse_check;
2783 str = "sse";
2784 }
2785
2786 SKIP_WHITESPACE ();
2787
2788 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2789 {
2790 char *string;
2791 int e = get_symbol_name (&string);
2792
2793 if (strcmp (string, "none") == 0)
2794 *kind = check_none;
2795 else if (strcmp (string, "warning") == 0)
2796 *kind = check_warning;
2797 else if (strcmp (string, "error") == 0)
2798 *kind = check_error;
2799 else
2800 as_bad (_("bad argument to %s_check directive."), str);
2801 (void) restore_line_pointer (e);
2802 }
2803 else
2804 as_bad (_("missing argument for %s_check directive"), str);
2805
2806 demand_empty_rest_of_line ();
2807 }
2808
2809 static void
2810 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2811 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2812 {
2813 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2814 static const char *arch;
2815
2816 /* Intel LIOM is only supported on ELF. */
2817 if (!IS_ELF)
2818 return;
2819
2820 if (!arch)
2821 {
2822 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2823 use default_arch. */
2824 arch = cpu_arch_name;
2825 if (!arch)
2826 arch = default_arch;
2827 }
2828
2829 /* If we are targeting Intel MCU, we must enable it. */
2830 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2831 || new_flag.bitfield.cpuiamcu)
2832 return;
2833
2834 /* If we are targeting Intel L1OM, we must enable it. */
2835 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2836 || new_flag.bitfield.cpul1om)
2837 return;
2838
2839 /* If we are targeting Intel K1OM, we must enable it. */
2840 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2841 || new_flag.bitfield.cpuk1om)
2842 return;
2843
2844 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2845 #endif
2846 }
2847
2848 static void
2849 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2850 {
2851 SKIP_WHITESPACE ();
2852
2853 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2854 {
2855 char *string;
2856 int e = get_symbol_name (&string);
2857 unsigned int j;
2858 i386_cpu_flags flags;
2859
2860 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2861 {
2862 if (strcmp (string, cpu_arch[j].name) == 0)
2863 {
2864 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2865
2866 if (*string != '.')
2867 {
2868 cpu_arch_name = cpu_arch[j].name;
2869 cpu_sub_arch_name = NULL;
2870 cpu_arch_flags = cpu_arch[j].flags;
2871 if (flag_code == CODE_64BIT)
2872 {
2873 cpu_arch_flags.bitfield.cpu64 = 1;
2874 cpu_arch_flags.bitfield.cpuno64 = 0;
2875 }
2876 else
2877 {
2878 cpu_arch_flags.bitfield.cpu64 = 0;
2879 cpu_arch_flags.bitfield.cpuno64 = 1;
2880 }
2881 cpu_arch_isa = cpu_arch[j].type;
2882 cpu_arch_isa_flags = cpu_arch[j].flags;
2883 if (!cpu_arch_tune_set)
2884 {
2885 cpu_arch_tune = cpu_arch_isa;
2886 cpu_arch_tune_flags = cpu_arch_isa_flags;
2887 }
2888 break;
2889 }
2890
2891 flags = cpu_flags_or (cpu_arch_flags,
2892 cpu_arch[j].flags);
2893
2894 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2895 {
2896 if (cpu_sub_arch_name)
2897 {
2898 char *name = cpu_sub_arch_name;
2899 cpu_sub_arch_name = concat (name,
2900 cpu_arch[j].name,
2901 (const char *) NULL);
2902 free (name);
2903 }
2904 else
2905 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2906 cpu_arch_flags = flags;
2907 cpu_arch_isa_flags = flags;
2908 }
2909 else
2910 cpu_arch_isa_flags
2911 = cpu_flags_or (cpu_arch_isa_flags,
2912 cpu_arch[j].flags);
2913 (void) restore_line_pointer (e);
2914 demand_empty_rest_of_line ();
2915 return;
2916 }
2917 }
2918
2919 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2920 {
2921 /* Disable an ISA extension. */
2922 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2923 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2924 {
2925 flags = cpu_flags_and_not (cpu_arch_flags,
2926 cpu_noarch[j].flags);
2927 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2928 {
2929 if (cpu_sub_arch_name)
2930 {
2931 char *name = cpu_sub_arch_name;
2932 cpu_sub_arch_name = concat (name, string,
2933 (const char *) NULL);
2934 free (name);
2935 }
2936 else
2937 cpu_sub_arch_name = xstrdup (string);
2938 cpu_arch_flags = flags;
2939 cpu_arch_isa_flags = flags;
2940 }
2941 (void) restore_line_pointer (e);
2942 demand_empty_rest_of_line ();
2943 return;
2944 }
2945
2946 j = ARRAY_SIZE (cpu_arch);
2947 }
2948
2949 if (j >= ARRAY_SIZE (cpu_arch))
2950 as_bad (_("no such architecture: `%s'"), string);
2951
2952 *input_line_pointer = e;
2953 }
2954 else
2955 as_bad (_("missing cpu architecture"));
2956
2957 no_cond_jump_promotion = 0;
2958 if (*input_line_pointer == ','
2959 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2960 {
2961 char *string;
2962 char e;
2963
2964 ++input_line_pointer;
2965 e = get_symbol_name (&string);
2966
2967 if (strcmp (string, "nojumps") == 0)
2968 no_cond_jump_promotion = 1;
2969 else if (strcmp (string, "jumps") == 0)
2970 ;
2971 else
2972 as_bad (_("no such architecture modifier: `%s'"), string);
2973
2974 (void) restore_line_pointer (e);
2975 }
2976
2977 demand_empty_rest_of_line ();
2978 }
2979
2980 enum bfd_architecture
2981 i386_arch (void)
2982 {
2983 if (cpu_arch_isa == PROCESSOR_L1OM)
2984 {
2985 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2986 || flag_code != CODE_64BIT)
2987 as_fatal (_("Intel L1OM is 64bit ELF only"));
2988 return bfd_arch_l1om;
2989 }
2990 else if (cpu_arch_isa == PROCESSOR_K1OM)
2991 {
2992 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2993 || flag_code != CODE_64BIT)
2994 as_fatal (_("Intel K1OM is 64bit ELF only"));
2995 return bfd_arch_k1om;
2996 }
2997 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2998 {
2999 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
3000 || flag_code == CODE_64BIT)
3001 as_fatal (_("Intel MCU is 32bit ELF only"));
3002 return bfd_arch_iamcu;
3003 }
3004 else
3005 return bfd_arch_i386;
3006 }
3007
3008 unsigned long
3009 i386_mach (void)
3010 {
3011 if (!strncmp (default_arch, "x86_64", 6))
3012 {
3013 if (cpu_arch_isa == PROCESSOR_L1OM)
3014 {
3015 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
3016 || default_arch[6] != '\0')
3017 as_fatal (_("Intel L1OM is 64bit ELF only"));
3018 return bfd_mach_l1om;
3019 }
3020 else if (cpu_arch_isa == PROCESSOR_K1OM)
3021 {
3022 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
3023 || default_arch[6] != '\0')
3024 as_fatal (_("Intel K1OM is 64bit ELF only"));
3025 return bfd_mach_k1om;
3026 }
3027 else if (default_arch[6] == '\0')
3028 return bfd_mach_x86_64;
3029 else
3030 return bfd_mach_x64_32;
3031 }
3032 else if (!strcmp (default_arch, "i386")
3033 || !strcmp (default_arch, "iamcu"))
3034 {
3035 if (cpu_arch_isa == PROCESSOR_IAMCU)
3036 {
3037 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
3038 as_fatal (_("Intel MCU is 32bit ELF only"));
3039 return bfd_mach_i386_iamcu;
3040 }
3041 else
3042 return bfd_mach_i386_i386;
3043 }
3044 else
3045 as_fatal (_("unknown architecture"));
3046 }
3047 \f
3048 void
3049 md_begin (void)
3050 {
3051 /* Support pseudo prefixes like {disp32}. */
3052 lex_type ['{'] = LEX_BEGIN_NAME;
3053
3054 /* Initialize op_hash hash table. */
3055 op_hash = str_htab_create ();
3056
3057 {
3058 const insn_template *optab;
3059 templates *core_optab;
3060
3061 /* Setup for loop. */
3062 optab = i386_optab;
3063 core_optab = XNEW (templates);
3064 core_optab->start = optab;
3065
3066 while (1)
3067 {
3068 ++optab;
3069 if (optab->name == NULL
3070 || strcmp (optab->name, (optab - 1)->name) != 0)
3071 {
3072 /* different name --> ship out current template list;
3073 add to hash table; & begin anew. */
3074 core_optab->end = optab;
3075 if (str_hash_insert (op_hash, (optab - 1)->name, core_optab, 0))
3076 as_fatal (_("duplicate %s"), (optab - 1)->name);
3077
3078 if (optab->name == NULL)
3079 break;
3080 core_optab = XNEW (templates);
3081 core_optab->start = optab;
3082 }
3083 }
3084 }
3085
3086 /* Initialize reg_hash hash table. */
3087 reg_hash = str_htab_create ();
3088 {
3089 const reg_entry *regtab;
3090 unsigned int regtab_size = i386_regtab_size;
3091
3092 for (regtab = i386_regtab; regtab_size--; regtab++)
3093 if (str_hash_insert (reg_hash, regtab->reg_name, regtab, 0) != NULL)
3094 as_fatal (_("duplicate %s"), regtab->reg_name);
3095 }
3096
3097 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
3098 {
3099 int c;
3100 char *p;
3101
3102 for (c = 0; c < 256; c++)
3103 {
3104 if (ISDIGIT (c))
3105 {
3106 digit_chars[c] = c;
3107 mnemonic_chars[c] = c;
3108 register_chars[c] = c;
3109 operand_chars[c] = c;
3110 }
3111 else if (ISLOWER (c))
3112 {
3113 mnemonic_chars[c] = c;
3114 register_chars[c] = c;
3115 operand_chars[c] = c;
3116 }
3117 else if (ISUPPER (c))
3118 {
3119 mnemonic_chars[c] = TOLOWER (c);
3120 register_chars[c] = mnemonic_chars[c];
3121 operand_chars[c] = c;
3122 }
3123 else if (c == '{' || c == '}')
3124 {
3125 mnemonic_chars[c] = c;
3126 operand_chars[c] = c;
3127 }
3128 #ifdef SVR4_COMMENT_CHARS
3129 else if (c == '\\' && strchr (i386_comment_chars, '/'))
3130 operand_chars[c] = c;
3131 #endif
3132
3133 if (ISALPHA (c) || ISDIGIT (c))
3134 identifier_chars[c] = c;
3135 else if (c >= 128)
3136 {
3137 identifier_chars[c] = c;
3138 operand_chars[c] = c;
3139 }
3140 }
3141
3142 #ifdef LEX_AT
3143 identifier_chars['@'] = '@';
3144 #endif
3145 #ifdef LEX_QM
3146 identifier_chars['?'] = '?';
3147 operand_chars['?'] = '?';
3148 #endif
3149 digit_chars['-'] = '-';
3150 mnemonic_chars['_'] = '_';
3151 mnemonic_chars['-'] = '-';
3152 mnemonic_chars['.'] = '.';
3153 identifier_chars['_'] = '_';
3154 identifier_chars['.'] = '.';
3155
3156 for (p = operand_special_chars; *p != '\0'; p++)
3157 operand_chars[(unsigned char) *p] = *p;
3158 }
3159
3160 if (flag_code == CODE_64BIT)
3161 {
3162 #if defined (OBJ_COFF) && defined (TE_PE)
3163 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3164 ? 32 : 16);
3165 #else
3166 x86_dwarf2_return_column = 16;
3167 #endif
3168 x86_cie_data_alignment = -8;
3169 }
3170 else
3171 {
3172 x86_dwarf2_return_column = 8;
3173 x86_cie_data_alignment = -4;
3174 }
3175
3176 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3177 can be turned into BRANCH_PREFIX frag. */
3178 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3179 abort ();
3180 }
3181
3182 void
3183 i386_print_statistics (FILE *file)
3184 {
3185 htab_print_statistics (file, "i386 opcode", op_hash);
3186 htab_print_statistics (file, "i386 register", reg_hash);
3187 }
3188 \f
3189 #ifdef DEBUG386
3190
3191 /* Debugging routines for md_assemble. */
3192 static void pte (insn_template *);
3193 static void pt (i386_operand_type);
3194 static void pe (expressionS *);
3195 static void ps (symbolS *);
3196
3197 static void
3198 pi (const char *line, i386_insn *x)
3199 {
3200 unsigned int j;
3201
3202 fprintf (stdout, "%s: template ", line);
3203 pte (&x->tm);
3204 fprintf (stdout, " address: base %s index %s scale %x\n",
3205 x->base_reg ? x->base_reg->reg_name : "none",
3206 x->index_reg ? x->index_reg->reg_name : "none",
3207 x->log2_scale_factor);
3208 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3209 x->rm.mode, x->rm.reg, x->rm.regmem);
3210 fprintf (stdout, " sib: base %x index %x scale %x\n",
3211 x->sib.base, x->sib.index, x->sib.scale);
3212 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3213 (x->rex & REX_W) != 0,
3214 (x->rex & REX_R) != 0,
3215 (x->rex & REX_X) != 0,
3216 (x->rex & REX_B) != 0);
3217 for (j = 0; j < x->operands; j++)
3218 {
3219 fprintf (stdout, " #%d: ", j + 1);
3220 pt (x->types[j]);
3221 fprintf (stdout, "\n");
3222 if (x->types[j].bitfield.class == Reg
3223 || x->types[j].bitfield.class == RegMMX
3224 || x->types[j].bitfield.class == RegSIMD
3225 || x->types[j].bitfield.class == RegMask
3226 || x->types[j].bitfield.class == SReg
3227 || x->types[j].bitfield.class == RegCR
3228 || x->types[j].bitfield.class == RegDR
3229 || x->types[j].bitfield.class == RegTR
3230 || x->types[j].bitfield.class == RegBND)
3231 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3232 if (operand_type_check (x->types[j], imm))
3233 pe (x->op[j].imms);
3234 if (operand_type_check (x->types[j], disp))
3235 pe (x->op[j].disps);
3236 }
3237 }
3238
3239 static void
3240 pte (insn_template *t)
3241 {
3242 unsigned int j;
3243 fprintf (stdout, " %d operands ", t->operands);
3244 fprintf (stdout, "opcode %x ", t->base_opcode);
3245 if (t->extension_opcode != None)
3246 fprintf (stdout, "ext %x ", t->extension_opcode);
3247 if (t->opcode_modifier.d)
3248 fprintf (stdout, "D");
3249 if (t->opcode_modifier.w)
3250 fprintf (stdout, "W");
3251 fprintf (stdout, "\n");
3252 for (j = 0; j < t->operands; j++)
3253 {
3254 fprintf (stdout, " #%d type ", j + 1);
3255 pt (t->operand_types[j]);
3256 fprintf (stdout, "\n");
3257 }
3258 }
3259
3260 static void
3261 pe (expressionS *e)
3262 {
3263 fprintf (stdout, " operation %d\n", e->X_op);
3264 fprintf (stdout, " add_number %ld (%lx)\n",
3265 (long) e->X_add_number, (long) e->X_add_number);
3266 if (e->X_add_symbol)
3267 {
3268 fprintf (stdout, " add_symbol ");
3269 ps (e->X_add_symbol);
3270 fprintf (stdout, "\n");
3271 }
3272 if (e->X_op_symbol)
3273 {
3274 fprintf (stdout, " op_symbol ");
3275 ps (e->X_op_symbol);
3276 fprintf (stdout, "\n");
3277 }
3278 }
3279
3280 static void
3281 ps (symbolS *s)
3282 {
3283 fprintf (stdout, "%s type %s%s",
3284 S_GET_NAME (s),
3285 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3286 segment_name (S_GET_SEGMENT (s)));
3287 }
3288
3289 static struct type_name
3290 {
3291 i386_operand_type mask;
3292 const char *name;
3293 }
3294 const type_names[] =
3295 {
3296 { OPERAND_TYPE_REG8, "r8" },
3297 { OPERAND_TYPE_REG16, "r16" },
3298 { OPERAND_TYPE_REG32, "r32" },
3299 { OPERAND_TYPE_REG64, "r64" },
3300 { OPERAND_TYPE_ACC8, "acc8" },
3301 { OPERAND_TYPE_ACC16, "acc16" },
3302 { OPERAND_TYPE_ACC32, "acc32" },
3303 { OPERAND_TYPE_ACC64, "acc64" },
3304 { OPERAND_TYPE_IMM8, "i8" },
3305 { OPERAND_TYPE_IMM8, "i8s" },
3306 { OPERAND_TYPE_IMM16, "i16" },
3307 { OPERAND_TYPE_IMM32, "i32" },
3308 { OPERAND_TYPE_IMM32S, "i32s" },
3309 { OPERAND_TYPE_IMM64, "i64" },
3310 { OPERAND_TYPE_IMM1, "i1" },
3311 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3312 { OPERAND_TYPE_DISP8, "d8" },
3313 { OPERAND_TYPE_DISP16, "d16" },
3314 { OPERAND_TYPE_DISP32, "d32" },
3315 { OPERAND_TYPE_DISP32S, "d32s" },
3316 { OPERAND_TYPE_DISP64, "d64" },
3317 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3318 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3319 { OPERAND_TYPE_CONTROL, "control reg" },
3320 { OPERAND_TYPE_TEST, "test reg" },
3321 { OPERAND_TYPE_DEBUG, "debug reg" },
3322 { OPERAND_TYPE_FLOATREG, "FReg" },
3323 { OPERAND_TYPE_FLOATACC, "FAcc" },
3324 { OPERAND_TYPE_SREG, "SReg" },
3325 { OPERAND_TYPE_REGMMX, "rMMX" },
3326 { OPERAND_TYPE_REGXMM, "rXMM" },
3327 { OPERAND_TYPE_REGYMM, "rYMM" },
3328 { OPERAND_TYPE_REGZMM, "rZMM" },
3329 { OPERAND_TYPE_REGTMM, "rTMM" },
3330 { OPERAND_TYPE_REGMASK, "Mask reg" },
3331 };
3332
3333 static void
3334 pt (i386_operand_type t)
3335 {
3336 unsigned int j;
3337 i386_operand_type a;
3338
3339 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3340 {
3341 a = operand_type_and (t, type_names[j].mask);
3342 if (operand_type_equal (&a, &type_names[j].mask))
3343 fprintf (stdout, "%s, ", type_names[j].name);
3344 }
3345 fflush (stdout);
3346 }
3347
3348 #endif /* DEBUG386 */
3349 \f
3350 static bfd_reloc_code_real_type
3351 reloc (unsigned int size,
3352 int pcrel,
3353 int sign,
3354 bfd_reloc_code_real_type other)
3355 {
3356 if (other != NO_RELOC)
3357 {
3358 reloc_howto_type *rel;
3359
3360 if (size == 8)
3361 switch (other)
3362 {
3363 case BFD_RELOC_X86_64_GOT32:
3364 return BFD_RELOC_X86_64_GOT64;
3365 break;
3366 case BFD_RELOC_X86_64_GOTPLT64:
3367 return BFD_RELOC_X86_64_GOTPLT64;
3368 break;
3369 case BFD_RELOC_X86_64_PLTOFF64:
3370 return BFD_RELOC_X86_64_PLTOFF64;
3371 break;
3372 case BFD_RELOC_X86_64_GOTPC32:
3373 other = BFD_RELOC_X86_64_GOTPC64;
3374 break;
3375 case BFD_RELOC_X86_64_GOTPCREL:
3376 other = BFD_RELOC_X86_64_GOTPCREL64;
3377 break;
3378 case BFD_RELOC_X86_64_TPOFF32:
3379 other = BFD_RELOC_X86_64_TPOFF64;
3380 break;
3381 case BFD_RELOC_X86_64_DTPOFF32:
3382 other = BFD_RELOC_X86_64_DTPOFF64;
3383 break;
3384 default:
3385 break;
3386 }
3387
3388 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3389 if (other == BFD_RELOC_SIZE32)
3390 {
3391 if (size == 8)
3392 other = BFD_RELOC_SIZE64;
3393 if (pcrel)
3394 {
3395 as_bad (_("there are no pc-relative size relocations"));
3396 return NO_RELOC;
3397 }
3398 }
3399 #endif
3400
3401 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3402 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3403 sign = -1;
3404
3405 rel = bfd_reloc_type_lookup (stdoutput, other);
3406 if (!rel)
3407 as_bad (_("unknown relocation (%u)"), other);
3408 else if (size != bfd_get_reloc_size (rel))
3409 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3410 bfd_get_reloc_size (rel),
3411 size);
3412 else if (pcrel && !rel->pc_relative)
3413 as_bad (_("non-pc-relative relocation for pc-relative field"));
3414 else if ((rel->complain_on_overflow == complain_overflow_signed
3415 && !sign)
3416 || (rel->complain_on_overflow == complain_overflow_unsigned
3417 && sign > 0))
3418 as_bad (_("relocated field and relocation type differ in signedness"));
3419 else
3420 return other;
3421 return NO_RELOC;
3422 }
3423
3424 if (pcrel)
3425 {
3426 if (!sign)
3427 as_bad (_("there are no unsigned pc-relative relocations"));
3428 switch (size)
3429 {
3430 case 1: return BFD_RELOC_8_PCREL;
3431 case 2: return BFD_RELOC_16_PCREL;
3432 case 4: return BFD_RELOC_32_PCREL;
3433 case 8: return BFD_RELOC_64_PCREL;
3434 }
3435 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3436 }
3437 else
3438 {
3439 if (sign > 0)
3440 switch (size)
3441 {
3442 case 4: return BFD_RELOC_X86_64_32S;
3443 }
3444 else
3445 switch (size)
3446 {
3447 case 1: return BFD_RELOC_8;
3448 case 2: return BFD_RELOC_16;
3449 case 4: return BFD_RELOC_32;
3450 case 8: return BFD_RELOC_64;
3451 }
3452 as_bad (_("cannot do %s %u byte relocation"),
3453 sign > 0 ? "signed" : "unsigned", size);
3454 }
3455
3456 return NO_RELOC;
3457 }
3458
3459 /* Here we decide which fixups can be adjusted to make them relative to
3460 the beginning of the section instead of the symbol. Basically we need
3461 to make sure that the dynamic relocations are done correctly, so in
3462 some cases we force the original symbol to be used. */
3463
3464 int
3465 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3466 {
3467 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3468 if (!IS_ELF)
3469 return 1;
3470
3471 /* Don't adjust pc-relative references to merge sections in 64-bit
3472 mode. */
3473 if (use_rela_relocations
3474 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3475 && fixP->fx_pcrel)
3476 return 0;
3477
3478 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3479 and changed later by validate_fix. */
3480 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3481 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3482 return 0;
3483
3484 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3485 for size relocations. */
3486 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3487 || fixP->fx_r_type == BFD_RELOC_SIZE64
3488 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3489 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3490 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3491 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3492 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3493 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3494 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3495 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3496 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3497 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3498 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3499 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3500 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3501 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3502 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3503 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3504 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3505 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3506 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3507 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3508 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3509 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3510 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3511 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3512 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3513 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3514 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3515 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3516 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3517 return 0;
3518 #endif
3519 return 1;
3520 }
3521
3522 static int
3523 intel_float_operand (const char *mnemonic)
3524 {
3525 /* Note that the value returned is meaningful only for opcodes with (memory)
3526 operands, hence the code here is free to improperly handle opcodes that
3527 have no operands (for better performance and smaller code). */
3528
3529 if (mnemonic[0] != 'f')
3530 return 0; /* non-math */
3531
3532 switch (mnemonic[1])
3533 {
3534 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3535 the fs segment override prefix not currently handled because no
3536 call path can make opcodes without operands get here */
3537 case 'i':
3538 return 2 /* integer op */;
3539 case 'l':
3540 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3541 return 3; /* fldcw/fldenv */
3542 break;
3543 case 'n':
3544 if (mnemonic[2] != 'o' /* fnop */)
3545 return 3; /* non-waiting control op */
3546 break;
3547 case 'r':
3548 if (mnemonic[2] == 's')
3549 return 3; /* frstor/frstpm */
3550 break;
3551 case 's':
3552 if (mnemonic[2] == 'a')
3553 return 3; /* fsave */
3554 if (mnemonic[2] == 't')
3555 {
3556 switch (mnemonic[3])
3557 {
3558 case 'c': /* fstcw */
3559 case 'd': /* fstdw */
3560 case 'e': /* fstenv */
3561 case 's': /* fsts[gw] */
3562 return 3;
3563 }
3564 }
3565 break;
3566 case 'x':
3567 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3568 return 0; /* fxsave/fxrstor are not really math ops */
3569 break;
3570 }
3571
3572 return 1;
3573 }
3574
3575 /* Build the VEX prefix. */
3576
3577 static void
3578 build_vex_prefix (const insn_template *t)
3579 {
3580 unsigned int register_specifier;
3581 unsigned int implied_prefix;
3582 unsigned int vector_length;
3583 unsigned int w;
3584
3585 /* Check register specifier. */
3586 if (i.vex.register_specifier)
3587 {
3588 register_specifier =
3589 ~register_number (i.vex.register_specifier) & 0xf;
3590 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3591 }
3592 else
3593 register_specifier = 0xf;
3594
3595 /* Use 2-byte VEX prefix by swapping destination and source operand
3596 if there are more than 1 register operand. */
3597 if (i.reg_operands > 1
3598 && i.vec_encoding != vex_encoding_vex3
3599 && i.dir_encoding == dir_encoding_default
3600 && i.operands == i.reg_operands
3601 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3602 && i.tm.opcode_modifier.opcodeprefix == VEX0F
3603 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3604 && i.rex == REX_B)
3605 {
3606 unsigned int xchg = i.operands - 1;
3607 union i386_op temp_op;
3608 i386_operand_type temp_type;
3609
3610 temp_type = i.types[xchg];
3611 i.types[xchg] = i.types[0];
3612 i.types[0] = temp_type;
3613 temp_op = i.op[xchg];
3614 i.op[xchg] = i.op[0];
3615 i.op[0] = temp_op;
3616
3617 gas_assert (i.rm.mode == 3);
3618
3619 i.rex = REX_R;
3620 xchg = i.rm.regmem;
3621 i.rm.regmem = i.rm.reg;
3622 i.rm.reg = xchg;
3623
3624 if (i.tm.opcode_modifier.d)
3625 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3626 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3627 else /* Use the next insn. */
3628 i.tm = t[1];
3629 }
3630
3631 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3632 are no memory operands and at least 3 register ones. */
3633 if (i.reg_operands >= 3
3634 && i.vec_encoding != vex_encoding_vex3
3635 && i.reg_operands == i.operands - i.imm_operands
3636 && i.tm.opcode_modifier.vex
3637 && i.tm.opcode_modifier.commutative
3638 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3639 && i.rex == REX_B
3640 && i.vex.register_specifier
3641 && !(i.vex.register_specifier->reg_flags & RegRex))
3642 {
3643 unsigned int xchg = i.operands - i.reg_operands;
3644 union i386_op temp_op;
3645 i386_operand_type temp_type;
3646
3647 gas_assert (i.tm.opcode_modifier.opcodeprefix == VEX0F);
3648 gas_assert (!i.tm.opcode_modifier.sae);
3649 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3650 &i.types[i.operands - 3]));
3651 gas_assert (i.rm.mode == 3);
3652
3653 temp_type = i.types[xchg];
3654 i.types[xchg] = i.types[xchg + 1];
3655 i.types[xchg + 1] = temp_type;
3656 temp_op = i.op[xchg];
3657 i.op[xchg] = i.op[xchg + 1];
3658 i.op[xchg + 1] = temp_op;
3659
3660 i.rex = 0;
3661 xchg = i.rm.regmem | 8;
3662 i.rm.regmem = ~register_specifier & 0xf;
3663 gas_assert (!(i.rm.regmem & 8));
3664 i.vex.register_specifier += xchg - i.rm.regmem;
3665 register_specifier = ~xchg & 0xf;
3666 }
3667
3668 if (i.tm.opcode_modifier.vex == VEXScalar)
3669 vector_length = avxscalar;
3670 else if (i.tm.opcode_modifier.vex == VEX256)
3671 vector_length = 1;
3672 else
3673 {
3674 unsigned int op;
3675
3676 /* Determine vector length from the last multi-length vector
3677 operand. */
3678 vector_length = 0;
3679 for (op = t->operands; op--;)
3680 if (t->operand_types[op].bitfield.xmmword
3681 && t->operand_types[op].bitfield.ymmword
3682 && i.types[op].bitfield.ymmword)
3683 {
3684 vector_length = 1;
3685 break;
3686 }
3687 }
3688
3689 switch ((i.tm.base_opcode >> (i.tm.opcode_length << 3)) & 0xff)
3690 {
3691 case 0:
3692 implied_prefix = 0;
3693 break;
3694 case DATA_PREFIX_OPCODE:
3695 implied_prefix = 1;
3696 break;
3697 case REPE_PREFIX_OPCODE:
3698 implied_prefix = 2;
3699 break;
3700 case REPNE_PREFIX_OPCODE:
3701 implied_prefix = 3;
3702 break;
3703 default:
3704 abort ();
3705 }
3706
3707 /* Check the REX.W bit and VEXW. */
3708 if (i.tm.opcode_modifier.vexw == VEXWIG)
3709 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3710 else if (i.tm.opcode_modifier.vexw)
3711 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3712 else
3713 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3714
3715 /* Use 2-byte VEX prefix if possible. */
3716 if (w == 0
3717 && i.vec_encoding != vex_encoding_vex3
3718 && i.tm.opcode_modifier.opcodeprefix == VEX0F
3719 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3720 {
3721 /* 2-byte VEX prefix. */
3722 unsigned int r;
3723
3724 i.vex.length = 2;
3725 i.vex.bytes[0] = 0xc5;
3726
3727 /* Check the REX.R bit. */
3728 r = (i.rex & REX_R) ? 0 : 1;
3729 i.vex.bytes[1] = (r << 7
3730 | register_specifier << 3
3731 | vector_length << 2
3732 | implied_prefix);
3733 }
3734 else
3735 {
3736 /* 3-byte VEX prefix. */
3737 unsigned int m;
3738
3739 i.vex.length = 3;
3740
3741 switch (i.tm.opcode_modifier.opcodeprefix)
3742 {
3743 case VEX0F:
3744 m = 0x1;
3745 i.vex.bytes[0] = 0xc4;
3746 break;
3747 case VEX0F38:
3748 m = 0x2;
3749 i.vex.bytes[0] = 0xc4;
3750 break;
3751 case VEX0F3A:
3752 m = 0x3;
3753 i.vex.bytes[0] = 0xc4;
3754 break;
3755 case XOP08:
3756 m = 0x8;
3757 i.vex.bytes[0] = 0x8f;
3758 break;
3759 case XOP09:
3760 m = 0x9;
3761 i.vex.bytes[0] = 0x8f;
3762 break;
3763 case XOP0A:
3764 m = 0xa;
3765 i.vex.bytes[0] = 0x8f;
3766 break;
3767 default:
3768 abort ();
3769 }
3770
3771 /* The high 3 bits of the second VEX byte are 1's compliment
3772 of RXB bits from REX. */
3773 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3774
3775 i.vex.bytes[2] = (w << 7
3776 | register_specifier << 3
3777 | vector_length << 2
3778 | implied_prefix);
3779 }
3780 }
3781
3782 static INLINE bfd_boolean
3783 is_evex_encoding (const insn_template *t)
3784 {
3785 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3786 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3787 || t->opcode_modifier.sae;
3788 }
3789
3790 static INLINE bfd_boolean
3791 is_any_vex_encoding (const insn_template *t)
3792 {
3793 return t->opcode_modifier.vex || is_evex_encoding (t);
3794 }
3795
3796 /* Build the EVEX prefix. */
3797
3798 static void
3799 build_evex_prefix (void)
3800 {
3801 unsigned int register_specifier;
3802 unsigned int implied_prefix;
3803 unsigned int m, w;
3804 rex_byte vrex_used = 0;
3805
3806 /* Check register specifier. */
3807 if (i.vex.register_specifier)
3808 {
3809 gas_assert ((i.vrex & REX_X) == 0);
3810
3811 register_specifier = i.vex.register_specifier->reg_num;
3812 if ((i.vex.register_specifier->reg_flags & RegRex))
3813 register_specifier += 8;
3814 /* The upper 16 registers are encoded in the fourth byte of the
3815 EVEX prefix. */
3816 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3817 i.vex.bytes[3] = 0x8;
3818 register_specifier = ~register_specifier & 0xf;
3819 }
3820 else
3821 {
3822 register_specifier = 0xf;
3823
3824 /* Encode upper 16 vector index register in the fourth byte of
3825 the EVEX prefix. */
3826 if (!(i.vrex & REX_X))
3827 i.vex.bytes[3] = 0x8;
3828 else
3829 vrex_used |= REX_X;
3830 }
3831
3832 switch ((i.tm.base_opcode >> 8) & 0xff)
3833 {
3834 case 0:
3835 implied_prefix = 0;
3836 break;
3837 case DATA_PREFIX_OPCODE:
3838 implied_prefix = 1;
3839 break;
3840 case REPE_PREFIX_OPCODE:
3841 implied_prefix = 2;
3842 break;
3843 case REPNE_PREFIX_OPCODE:
3844 implied_prefix = 3;
3845 break;
3846 default:
3847 abort ();
3848 }
3849
3850 /* 4 byte EVEX prefix. */
3851 i.vex.length = 4;
3852 i.vex.bytes[0] = 0x62;
3853
3854 /* mmmm bits. */
3855 switch (i.tm.opcode_modifier.opcodeprefix)
3856 {
3857 case VEX0F:
3858 m = 1;
3859 break;
3860 case VEX0F38:
3861 m = 2;
3862 break;
3863 case VEX0F3A:
3864 m = 3;
3865 break;
3866 default:
3867 abort ();
3868 break;
3869 }
3870
3871 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3872 bits from REX. */
3873 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3874
3875 /* The fifth bit of the second EVEX byte is 1's compliment of the
3876 REX_R bit in VREX. */
3877 if (!(i.vrex & REX_R))
3878 i.vex.bytes[1] |= 0x10;
3879 else
3880 vrex_used |= REX_R;
3881
3882 if ((i.reg_operands + i.imm_operands) == i.operands)
3883 {
3884 /* When all operands are registers, the REX_X bit in REX is not
3885 used. We reuse it to encode the upper 16 registers, which is
3886 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3887 as 1's compliment. */
3888 if ((i.vrex & REX_B))
3889 {
3890 vrex_used |= REX_B;
3891 i.vex.bytes[1] &= ~0x40;
3892 }
3893 }
3894
3895 /* EVEX instructions shouldn't need the REX prefix. */
3896 i.vrex &= ~vrex_used;
3897 gas_assert (i.vrex == 0);
3898
3899 /* Check the REX.W bit and VEXW. */
3900 if (i.tm.opcode_modifier.vexw == VEXWIG)
3901 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3902 else if (i.tm.opcode_modifier.vexw)
3903 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3904 else
3905 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3906
3907 /* Encode the U bit. */
3908 implied_prefix |= 0x4;
3909
3910 /* The third byte of the EVEX prefix. */
3911 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3912
3913 /* The fourth byte of the EVEX prefix. */
3914 /* The zeroing-masking bit. */
3915 if (i.mask && i.mask->zeroing)
3916 i.vex.bytes[3] |= 0x80;
3917
3918 /* Don't always set the broadcast bit if there is no RC. */
3919 if (!i.rounding)
3920 {
3921 /* Encode the vector length. */
3922 unsigned int vec_length;
3923
3924 if (!i.tm.opcode_modifier.evex
3925 || i.tm.opcode_modifier.evex == EVEXDYN)
3926 {
3927 unsigned int op;
3928
3929 /* Determine vector length from the last multi-length vector
3930 operand. */
3931 for (op = i.operands; op--;)
3932 if (i.tm.operand_types[op].bitfield.xmmword
3933 + i.tm.operand_types[op].bitfield.ymmword
3934 + i.tm.operand_types[op].bitfield.zmmword > 1)
3935 {
3936 if (i.types[op].bitfield.zmmword)
3937 {
3938 i.tm.opcode_modifier.evex = EVEX512;
3939 break;
3940 }
3941 else if (i.types[op].bitfield.ymmword)
3942 {
3943 i.tm.opcode_modifier.evex = EVEX256;
3944 break;
3945 }
3946 else if (i.types[op].bitfield.xmmword)
3947 {
3948 i.tm.opcode_modifier.evex = EVEX128;
3949 break;
3950 }
3951 else if (i.broadcast && (int) op == i.broadcast->operand)
3952 {
3953 switch (i.broadcast->bytes)
3954 {
3955 case 64:
3956 i.tm.opcode_modifier.evex = EVEX512;
3957 break;
3958 case 32:
3959 i.tm.opcode_modifier.evex = EVEX256;
3960 break;
3961 case 16:
3962 i.tm.opcode_modifier.evex = EVEX128;
3963 break;
3964 default:
3965 abort ();
3966 }
3967 break;
3968 }
3969 }
3970
3971 if (op >= MAX_OPERANDS)
3972 abort ();
3973 }
3974
3975 switch (i.tm.opcode_modifier.evex)
3976 {
3977 case EVEXLIG: /* LL' is ignored */
3978 vec_length = evexlig << 5;
3979 break;
3980 case EVEX128:
3981 vec_length = 0 << 5;
3982 break;
3983 case EVEX256:
3984 vec_length = 1 << 5;
3985 break;
3986 case EVEX512:
3987 vec_length = 2 << 5;
3988 break;
3989 default:
3990 abort ();
3991 break;
3992 }
3993 i.vex.bytes[3] |= vec_length;
3994 /* Encode the broadcast bit. */
3995 if (i.broadcast)
3996 i.vex.bytes[3] |= 0x10;
3997 }
3998 else
3999 {
4000 if (i.rounding->type != saeonly)
4001 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
4002 else
4003 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
4004 }
4005
4006 if (i.mask && i.mask->mask)
4007 i.vex.bytes[3] |= i.mask->mask->reg_num;
4008 }
4009
4010 static void
4011 process_immext (void)
4012 {
4013 expressionS *exp;
4014
4015 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
4016 which is coded in the same place as an 8-bit immediate field
4017 would be. Here we fake an 8-bit immediate operand from the
4018 opcode suffix stored in tm.extension_opcode.
4019
4020 AVX instructions also use this encoding, for some of
4021 3 argument instructions. */
4022
4023 gas_assert (i.imm_operands <= 1
4024 && (i.operands <= 2
4025 || (is_any_vex_encoding (&i.tm)
4026 && i.operands <= 4)));
4027
4028 exp = &im_expressions[i.imm_operands++];
4029 i.op[i.operands].imms = exp;
4030 i.types[i.operands] = imm8;
4031 i.operands++;
4032 exp->X_op = O_constant;
4033 exp->X_add_number = i.tm.extension_opcode;
4034 i.tm.extension_opcode = None;
4035 }
4036
4037
4038 static int
4039 check_hle (void)
4040 {
4041 switch (i.tm.opcode_modifier.hleprefixok)
4042 {
4043 default:
4044 abort ();
4045 case HLEPrefixNone:
4046 as_bad (_("invalid instruction `%s' after `%s'"),
4047 i.tm.name, i.hle_prefix);
4048 return 0;
4049 case HLEPrefixLock:
4050 if (i.prefix[LOCK_PREFIX])
4051 return 1;
4052 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
4053 return 0;
4054 case HLEPrefixAny:
4055 return 1;
4056 case HLEPrefixRelease:
4057 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
4058 {
4059 as_bad (_("instruction `%s' after `xacquire' not allowed"),
4060 i.tm.name);
4061 return 0;
4062 }
4063 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
4064 {
4065 as_bad (_("memory destination needed for instruction `%s'"
4066 " after `xrelease'"), i.tm.name);
4067 return 0;
4068 }
4069 return 1;
4070 }
4071 }
4072
4073 /* Try the shortest encoding by shortening operand size. */
4074
4075 static void
4076 optimize_encoding (void)
4077 {
4078 unsigned int j;
4079
4080 if (optimize_for_space
4081 && !is_any_vex_encoding (&i.tm)
4082 && i.reg_operands == 1
4083 && i.imm_operands == 1
4084 && !i.types[1].bitfield.byte
4085 && i.op[0].imms->X_op == O_constant
4086 && fits_in_imm7 (i.op[0].imms->X_add_number)
4087 && (i.tm.base_opcode == 0xa8
4088 || (i.tm.base_opcode == 0xf6
4089 && i.tm.extension_opcode == 0x0)))
4090 {
4091 /* Optimize: -Os:
4092 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4093 */
4094 unsigned int base_regnum = i.op[1].regs->reg_num;
4095 if (flag_code == CODE_64BIT || base_regnum < 4)
4096 {
4097 i.types[1].bitfield.byte = 1;
4098 /* Ignore the suffix. */
4099 i.suffix = 0;
4100 /* Convert to byte registers. */
4101 if (i.types[1].bitfield.word)
4102 j = 16;
4103 else if (i.types[1].bitfield.dword)
4104 j = 32;
4105 else
4106 j = 48;
4107 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4108 j += 8;
4109 i.op[1].regs -= j;
4110 }
4111 }
4112 else if (flag_code == CODE_64BIT
4113 && !is_any_vex_encoding (&i.tm)
4114 && ((i.types[1].bitfield.qword
4115 && i.reg_operands == 1
4116 && i.imm_operands == 1
4117 && i.op[0].imms->X_op == O_constant
4118 && ((i.tm.base_opcode == 0xb8
4119 && i.tm.extension_opcode == None
4120 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4121 || (fits_in_imm31 (i.op[0].imms->X_add_number)
4122 && ((i.tm.base_opcode == 0x24
4123 || i.tm.base_opcode == 0xa8)
4124 || (i.tm.base_opcode == 0x80
4125 && i.tm.extension_opcode == 0x4)
4126 || ((i.tm.base_opcode == 0xf6
4127 || (i.tm.base_opcode | 1) == 0xc7)
4128 && i.tm.extension_opcode == 0x0)))
4129 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4130 && i.tm.base_opcode == 0x83
4131 && i.tm.extension_opcode == 0x4)))
4132 || (i.types[0].bitfield.qword
4133 && ((i.reg_operands == 2
4134 && i.op[0].regs == i.op[1].regs
4135 && (i.tm.base_opcode == 0x30
4136 || i.tm.base_opcode == 0x28))
4137 || (i.reg_operands == 1
4138 && i.operands == 1
4139 && i.tm.base_opcode == 0x30)))))
4140 {
4141 /* Optimize: -O:
4142 andq $imm31, %r64 -> andl $imm31, %r32
4143 andq $imm7, %r64 -> andl $imm7, %r32
4144 testq $imm31, %r64 -> testl $imm31, %r32
4145 xorq %r64, %r64 -> xorl %r32, %r32
4146 subq %r64, %r64 -> subl %r32, %r32
4147 movq $imm31, %r64 -> movl $imm31, %r32
4148 movq $imm32, %r64 -> movl $imm32, %r32
4149 */
4150 i.tm.opcode_modifier.norex64 = 1;
4151 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
4152 {
4153 /* Handle
4154 movq $imm31, %r64 -> movl $imm31, %r32
4155 movq $imm32, %r64 -> movl $imm32, %r32
4156 */
4157 i.tm.operand_types[0].bitfield.imm32 = 1;
4158 i.tm.operand_types[0].bitfield.imm32s = 0;
4159 i.tm.operand_types[0].bitfield.imm64 = 0;
4160 i.types[0].bitfield.imm32 = 1;
4161 i.types[0].bitfield.imm32s = 0;
4162 i.types[0].bitfield.imm64 = 0;
4163 i.types[1].bitfield.dword = 1;
4164 i.types[1].bitfield.qword = 0;
4165 if ((i.tm.base_opcode | 1) == 0xc7)
4166 {
4167 /* Handle
4168 movq $imm31, %r64 -> movl $imm31, %r32
4169 */
4170 i.tm.base_opcode = 0xb8;
4171 i.tm.extension_opcode = None;
4172 i.tm.opcode_modifier.w = 0;
4173 i.tm.opcode_modifier.modrm = 0;
4174 }
4175 }
4176 }
4177 else if (optimize > 1
4178 && !optimize_for_space
4179 && !is_any_vex_encoding (&i.tm)
4180 && i.reg_operands == 2
4181 && i.op[0].regs == i.op[1].regs
4182 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4183 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4184 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4185 {
4186 /* Optimize: -O2:
4187 andb %rN, %rN -> testb %rN, %rN
4188 andw %rN, %rN -> testw %rN, %rN
4189 andq %rN, %rN -> testq %rN, %rN
4190 orb %rN, %rN -> testb %rN, %rN
4191 orw %rN, %rN -> testw %rN, %rN
4192 orq %rN, %rN -> testq %rN, %rN
4193
4194 and outside of 64-bit mode
4195
4196 andl %rN, %rN -> testl %rN, %rN
4197 orl %rN, %rN -> testl %rN, %rN
4198 */
4199 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4200 }
4201 else if (i.reg_operands == 3
4202 && i.op[0].regs == i.op[1].regs
4203 && !i.types[2].bitfield.xmmword
4204 && (i.tm.opcode_modifier.vex
4205 || ((!i.mask || i.mask->zeroing)
4206 && !i.rounding
4207 && is_evex_encoding (&i.tm)
4208 && (i.vec_encoding != vex_encoding_evex
4209 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4210 || i.tm.cpu_flags.bitfield.cpuavx512vl
4211 || (i.tm.operand_types[2].bitfield.zmmword
4212 && i.types[2].bitfield.ymmword))))
4213 && ((i.tm.base_opcode == 0x55
4214 || i.tm.base_opcode == 0x6655
4215 || i.tm.base_opcode == 0x66df
4216 || i.tm.base_opcode == 0x57
4217 || i.tm.base_opcode == 0x6657
4218 || i.tm.base_opcode == 0x66ef
4219 || i.tm.base_opcode == 0x66f8
4220 || i.tm.base_opcode == 0x66f9
4221 || i.tm.base_opcode == 0x66fa
4222 || i.tm.base_opcode == 0x66fb
4223 || i.tm.base_opcode == 0x42
4224 || i.tm.base_opcode == 0x6642
4225 || i.tm.base_opcode == 0x47
4226 || i.tm.base_opcode == 0x6647)
4227 && i.tm.extension_opcode == None))
4228 {
4229 /* Optimize: -O1:
4230 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4231 vpsubq and vpsubw:
4232 EVEX VOP %zmmM, %zmmM, %zmmN
4233 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4234 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4235 EVEX VOP %ymmM, %ymmM, %ymmN
4236 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4237 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4238 VEX VOP %ymmM, %ymmM, %ymmN
4239 -> VEX VOP %xmmM, %xmmM, %xmmN
4240 VOP, one of vpandn and vpxor:
4241 VEX VOP %ymmM, %ymmM, %ymmN
4242 -> VEX VOP %xmmM, %xmmM, %xmmN
4243 VOP, one of vpandnd and vpandnq:
4244 EVEX VOP %zmmM, %zmmM, %zmmN
4245 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4246 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4247 EVEX VOP %ymmM, %ymmM, %ymmN
4248 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4249 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4250 VOP, one of vpxord and vpxorq:
4251 EVEX VOP %zmmM, %zmmM, %zmmN
4252 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4253 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4254 EVEX VOP %ymmM, %ymmM, %ymmN
4255 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4256 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4257 VOP, one of kxord and kxorq:
4258 VEX VOP %kM, %kM, %kN
4259 -> VEX kxorw %kM, %kM, %kN
4260 VOP, one of kandnd and kandnq:
4261 VEX VOP %kM, %kM, %kN
4262 -> VEX kandnw %kM, %kM, %kN
4263 */
4264 if (is_evex_encoding (&i.tm))
4265 {
4266 if (i.vec_encoding != vex_encoding_evex)
4267 {
4268 i.tm.opcode_modifier.vex = VEX128;
4269 i.tm.opcode_modifier.vexw = VEXW0;
4270 i.tm.opcode_modifier.evex = 0;
4271 }
4272 else if (optimize > 1)
4273 i.tm.opcode_modifier.evex = EVEX128;
4274 else
4275 return;
4276 }
4277 else if (i.tm.operand_types[0].bitfield.class == RegMask)
4278 {
4279 i.tm.base_opcode &= 0xff;
4280 i.tm.opcode_modifier.vexw = VEXW0;
4281 }
4282 else
4283 i.tm.opcode_modifier.vex = VEX128;
4284
4285 if (i.tm.opcode_modifier.vex)
4286 for (j = 0; j < 3; j++)
4287 {
4288 i.types[j].bitfield.xmmword = 1;
4289 i.types[j].bitfield.ymmword = 0;
4290 }
4291 }
4292 else if (i.vec_encoding != vex_encoding_evex
4293 && !i.types[0].bitfield.zmmword
4294 && !i.types[1].bitfield.zmmword
4295 && !i.mask
4296 && !i.broadcast
4297 && is_evex_encoding (&i.tm)
4298 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4299 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4300 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4301 || (i.tm.base_opcode & ~4) == 0x66db
4302 || (i.tm.base_opcode & ~4) == 0x66eb)
4303 && i.tm.extension_opcode == None)
4304 {
4305 /* Optimize: -O1:
4306 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4307 vmovdqu32 and vmovdqu64:
4308 EVEX VOP %xmmM, %xmmN
4309 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4310 EVEX VOP %ymmM, %ymmN
4311 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4312 EVEX VOP %xmmM, mem
4313 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4314 EVEX VOP %ymmM, mem
4315 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4316 EVEX VOP mem, %xmmN
4317 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4318 EVEX VOP mem, %ymmN
4319 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4320 VOP, one of vpand, vpandn, vpor, vpxor:
4321 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4322 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4323 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4324 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4325 EVEX VOP{d,q} mem, %xmmM, %xmmN
4326 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4327 EVEX VOP{d,q} mem, %ymmM, %ymmN
4328 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4329 */
4330 for (j = 0; j < i.operands; j++)
4331 if (operand_type_check (i.types[j], disp)
4332 && i.op[j].disps->X_op == O_constant)
4333 {
4334 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4335 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4336 bytes, we choose EVEX Disp8 over VEX Disp32. */
4337 int evex_disp8, vex_disp8;
4338 unsigned int memshift = i.memshift;
4339 offsetT n = i.op[j].disps->X_add_number;
4340
4341 evex_disp8 = fits_in_disp8 (n);
4342 i.memshift = 0;
4343 vex_disp8 = fits_in_disp8 (n);
4344 if (evex_disp8 != vex_disp8)
4345 {
4346 i.memshift = memshift;
4347 return;
4348 }
4349
4350 i.types[j].bitfield.disp8 = vex_disp8;
4351 break;
4352 }
4353 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4354 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4355 i.tm.opcode_modifier.vex
4356 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4357 i.tm.opcode_modifier.vexw = VEXW0;
4358 /* VPAND, VPOR, and VPXOR are commutative. */
4359 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4360 i.tm.opcode_modifier.commutative = 1;
4361 i.tm.opcode_modifier.evex = 0;
4362 i.tm.opcode_modifier.masking = 0;
4363 i.tm.opcode_modifier.broadcast = 0;
4364 i.tm.opcode_modifier.disp8memshift = 0;
4365 i.memshift = 0;
4366 if (j < i.operands)
4367 i.types[j].bitfield.disp8
4368 = fits_in_disp8 (i.op[j].disps->X_add_number);
4369 }
4370 }
4371
4372 /* Return non-zero for load instruction. */
4373
4374 static int
4375 load_insn_p (void)
4376 {
4377 unsigned int dest;
4378 int any_vex_p = is_any_vex_encoding (&i.tm);
4379 unsigned int base_opcode = i.tm.base_opcode | 1;
4380
4381 if (!any_vex_p)
4382 {
4383 /* Anysize insns: lea, invlpg, clflush, prefetchnta, prefetcht0,
4384 prefetcht1, prefetcht2, prefetchtw, bndmk, bndcl, bndcu, bndcn,
4385 bndstx, bndldx, prefetchwt1, clflushopt, clwb, cldemote. */
4386 if (i.tm.opcode_modifier.anysize)
4387 return 0;
4388
4389 /* pop, popf, popa. */
4390 if (strcmp (i.tm.name, "pop") == 0
4391 || i.tm.base_opcode == 0x9d
4392 || i.tm.base_opcode == 0x61)
4393 return 1;
4394
4395 /* movs, cmps, lods, scas. */
4396 if ((i.tm.base_opcode | 0xb) == 0xaf)
4397 return 1;
4398
4399 /* outs, xlatb. */
4400 if (base_opcode == 0x6f
4401 || i.tm.base_opcode == 0xd7)
4402 return 1;
4403 /* NB: For AMD-specific insns with implicit memory operands,
4404 they're intentionally not covered. */
4405 }
4406
4407 /* No memory operand. */
4408 if (!i.mem_operands)
4409 return 0;
4410
4411 if (any_vex_p)
4412 {
4413 /* vldmxcsr. */
4414 if (i.tm.base_opcode == 0xae
4415 && i.tm.opcode_modifier.vex
4416 && i.tm.opcode_modifier.opcodeprefix == VEX0F
4417 && i.tm.extension_opcode == 2)
4418 return 1;
4419 }
4420 else
4421 {
4422 /* test, not, neg, mul, imul, div, idiv. */
4423 if ((i.tm.base_opcode == 0xf6 || i.tm.base_opcode == 0xf7)
4424 && i.tm.extension_opcode != 1)
4425 return 1;
4426
4427 /* inc, dec. */
4428 if (base_opcode == 0xff && i.tm.extension_opcode <= 1)
4429 return 1;
4430
4431 /* add, or, adc, sbb, and, sub, xor, cmp. */
4432 if (i.tm.base_opcode >= 0x80 && i.tm.base_opcode <= 0x83)
4433 return 1;
4434
4435 /* bt, bts, btr, btc. */
4436 if (i.tm.base_opcode == 0xfba
4437 && (i.tm.extension_opcode >= 4 && i.tm.extension_opcode <= 7))
4438 return 1;
4439
4440 /* rol, ror, rcl, rcr, shl/sal, shr, sar. */
4441 if ((base_opcode == 0xc1
4442 || (i.tm.base_opcode >= 0xd0 && i.tm.base_opcode <= 0xd3))
4443 && i.tm.extension_opcode != 6)
4444 return 1;
4445
4446 /* cmpxchg8b, cmpxchg16b, xrstors. */
4447 if (i.tm.base_opcode == 0xfc7
4448 && i.tm.opcode_modifier.opcodeprefix == 0
4449 && (i.tm.extension_opcode == 1 || i.tm.extension_opcode == 3))
4450 return 1;
4451
4452 /* fxrstor, ldmxcsr, xrstor. */
4453 if (i.tm.base_opcode == 0xfae
4454 && (i.tm.extension_opcode == 1
4455 || i.tm.extension_opcode == 2
4456 || i.tm.extension_opcode == 5))
4457 return 1;
4458
4459 /* lgdt, lidt, lmsw. */
4460 if (i.tm.base_opcode == 0xf01
4461 && (i.tm.extension_opcode == 2
4462 || i.tm.extension_opcode == 3
4463 || i.tm.extension_opcode == 6))
4464 return 1;
4465
4466 /* vmptrld */
4467 if (i.tm.base_opcode == 0xfc7
4468 && i.tm.opcode_modifier.opcodeprefix == 0
4469 && i.tm.extension_opcode == 6)
4470 return 1;
4471
4472 /* Check for x87 instructions. */
4473 if (i.tm.base_opcode >= 0xd8 && i.tm.base_opcode <= 0xdf)
4474 {
4475 /* Skip fst, fstp, fstenv, fstcw. */
4476 if (i.tm.base_opcode == 0xd9
4477 && (i.tm.extension_opcode == 2
4478 || i.tm.extension_opcode == 3
4479 || i.tm.extension_opcode == 6
4480 || i.tm.extension_opcode == 7))
4481 return 0;
4482
4483 /* Skip fisttp, fist, fistp, fstp. */
4484 if (i.tm.base_opcode == 0xdb
4485 && (i.tm.extension_opcode == 1
4486 || i.tm.extension_opcode == 2
4487 || i.tm.extension_opcode == 3
4488 || i.tm.extension_opcode == 7))
4489 return 0;
4490
4491 /* Skip fisttp, fst, fstp, fsave, fstsw. */
4492 if (i.tm.base_opcode == 0xdd
4493 && (i.tm.extension_opcode == 1
4494 || i.tm.extension_opcode == 2
4495 || i.tm.extension_opcode == 3
4496 || i.tm.extension_opcode == 6
4497 || i.tm.extension_opcode == 7))
4498 return 0;
4499
4500 /* Skip fisttp, fist, fistp, fbstp, fistp. */
4501 if (i.tm.base_opcode == 0xdf
4502 && (i.tm.extension_opcode == 1
4503 || i.tm.extension_opcode == 2
4504 || i.tm.extension_opcode == 3
4505 || i.tm.extension_opcode == 6
4506 || i.tm.extension_opcode == 7))
4507 return 0;
4508
4509 return 1;
4510 }
4511 }
4512
4513 dest = i.operands - 1;
4514
4515 /* Check fake imm8 operand and 3 source operands. */
4516 if ((i.tm.opcode_modifier.immext
4517 || i.tm.opcode_modifier.vexsources == VEX3SOURCES)
4518 && i.types[dest].bitfield.imm8)
4519 dest--;
4520
4521 /* add, or, adc, sbb, and, sub, xor, cmp, test, xchg, xadd */
4522 if (!any_vex_p
4523 && (base_opcode == 0x1
4524 || base_opcode == 0x9
4525 || base_opcode == 0x11
4526 || base_opcode == 0x19
4527 || base_opcode == 0x21
4528 || base_opcode == 0x29
4529 || base_opcode == 0x31
4530 || base_opcode == 0x39
4531 || (i.tm.base_opcode >= 0x84 && i.tm.base_opcode <= 0x87)
4532 || base_opcode == 0xfc1))
4533 return 1;
4534
4535 /* Check for load instruction. */
4536 return (i.types[dest].bitfield.class != ClassNone
4537 || i.types[dest].bitfield.instance == Accum);
4538 }
4539
4540 /* Output lfence, 0xfaee8, after instruction. */
4541
4542 static void
4543 insert_lfence_after (void)
4544 {
4545 if (lfence_after_load && load_insn_p ())
4546 {
4547 /* There are also two REP string instructions that require
4548 special treatment. Specifically, the compare string (CMPS)
4549 and scan string (SCAS) instructions set EFLAGS in a manner
4550 that depends on the data being compared/scanned. When used
4551 with a REP prefix, the number of iterations may therefore
4552 vary depending on this data. If the data is a program secret
4553 chosen by the adversary using an LVI method,
4554 then this data-dependent behavior may leak some aspect
4555 of the secret. */
4556 if (((i.tm.base_opcode | 0x1) == 0xa7
4557 || (i.tm.base_opcode | 0x1) == 0xaf)
4558 && i.prefix[REP_PREFIX])
4559 {
4560 as_warn (_("`%s` changes flags which would affect control flow behavior"),
4561 i.tm.name);
4562 }
4563 char *p = frag_more (3);
4564 *p++ = 0xf;
4565 *p++ = 0xae;
4566 *p = 0xe8;
4567 }
4568 }
4569
4570 /* Output lfence, 0xfaee8, before instruction. */
4571
4572 static void
4573 insert_lfence_before (void)
4574 {
4575 char *p;
4576
4577 if (is_any_vex_encoding (&i.tm))
4578 return;
4579
4580 if (i.tm.base_opcode == 0xff
4581 && (i.tm.extension_opcode == 2 || i.tm.extension_opcode == 4))
4582 {
4583 /* Insert lfence before indirect branch if needed. */
4584
4585 if (lfence_before_indirect_branch == lfence_branch_none)
4586 return;
4587
4588 if (i.operands != 1)
4589 abort ();
4590
4591 if (i.reg_operands == 1)
4592 {
4593 /* Indirect branch via register. Don't insert lfence with
4594 -mlfence-after-load=yes. */
4595 if (lfence_after_load
4596 || lfence_before_indirect_branch == lfence_branch_memory)
4597 return;
4598 }
4599 else if (i.mem_operands == 1
4600 && lfence_before_indirect_branch != lfence_branch_register)
4601 {
4602 as_warn (_("indirect `%s` with memory operand should be avoided"),
4603 i.tm.name);
4604 return;
4605 }
4606 else
4607 return;
4608
4609 if (last_insn.kind != last_insn_other
4610 && last_insn.seg == now_seg)
4611 {
4612 as_warn_where (last_insn.file, last_insn.line,
4613 _("`%s` skips -mlfence-before-indirect-branch on `%s`"),
4614 last_insn.name, i.tm.name);
4615 return;
4616 }
4617
4618 p = frag_more (3);
4619 *p++ = 0xf;
4620 *p++ = 0xae;
4621 *p = 0xe8;
4622 return;
4623 }
4624
4625 /* Output or/not/shl and lfence before near ret. */
4626 if (lfence_before_ret != lfence_before_ret_none
4627 && (i.tm.base_opcode == 0xc2
4628 || i.tm.base_opcode == 0xc3))
4629 {
4630 if (last_insn.kind != last_insn_other
4631 && last_insn.seg == now_seg)
4632 {
4633 as_warn_where (last_insn.file, last_insn.line,
4634 _("`%s` skips -mlfence-before-ret on `%s`"),
4635 last_insn.name, i.tm.name);
4636 return;
4637 }
4638
4639 /* Near ret ingore operand size override under CPU64. */
4640 char prefix = flag_code == CODE_64BIT
4641 ? 0x48
4642 : i.prefix[DATA_PREFIX] ? 0x66 : 0x0;
4643
4644 if (lfence_before_ret == lfence_before_ret_not)
4645 {
4646 /* not: 0xf71424, may add prefix
4647 for operand size override or 64-bit code. */
4648 p = frag_more ((prefix ? 2 : 0) + 6 + 3);
4649 if (prefix)
4650 *p++ = prefix;
4651 *p++ = 0xf7;
4652 *p++ = 0x14;
4653 *p++ = 0x24;
4654 if (prefix)
4655 *p++ = prefix;
4656 *p++ = 0xf7;
4657 *p++ = 0x14;
4658 *p++ = 0x24;
4659 }
4660 else
4661 {
4662 p = frag_more ((prefix ? 1 : 0) + 4 + 3);
4663 if (prefix)
4664 *p++ = prefix;
4665 if (lfence_before_ret == lfence_before_ret_or)
4666 {
4667 /* or: 0x830c2400, may add prefix
4668 for operand size override or 64-bit code. */
4669 *p++ = 0x83;
4670 *p++ = 0x0c;
4671 }
4672 else
4673 {
4674 /* shl: 0xc1242400, may add prefix
4675 for operand size override or 64-bit code. */
4676 *p++ = 0xc1;
4677 *p++ = 0x24;
4678 }
4679
4680 *p++ = 0x24;
4681 *p++ = 0x0;
4682 }
4683
4684 *p++ = 0xf;
4685 *p++ = 0xae;
4686 *p = 0xe8;
4687 }
4688 }
4689
4690 /* This is the guts of the machine-dependent assembler. LINE points to a
4691 machine dependent instruction. This function is supposed to emit
4692 the frags/bytes it assembles to. */
4693
4694 void
4695 md_assemble (char *line)
4696 {
4697 unsigned int j;
4698 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4699 const insn_template *t;
4700
4701 /* Initialize globals. */
4702 memset (&i, '\0', sizeof (i));
4703 for (j = 0; j < MAX_OPERANDS; j++)
4704 i.reloc[j] = NO_RELOC;
4705 memset (disp_expressions, '\0', sizeof (disp_expressions));
4706 memset (im_expressions, '\0', sizeof (im_expressions));
4707 save_stack_p = save_stack;
4708
4709 /* First parse an instruction mnemonic & call i386_operand for the operands.
4710 We assume that the scrubber has arranged it so that line[0] is the valid
4711 start of a (possibly prefixed) mnemonic. */
4712
4713 line = parse_insn (line, mnemonic);
4714 if (line == NULL)
4715 return;
4716 mnem_suffix = i.suffix;
4717
4718 line = parse_operands (line, mnemonic);
4719 this_operand = -1;
4720 xfree (i.memop1_string);
4721 i.memop1_string = NULL;
4722 if (line == NULL)
4723 return;
4724
4725 /* Now we've parsed the mnemonic into a set of templates, and have the
4726 operands at hand. */
4727
4728 /* All Intel opcodes have reversed operands except for "bound", "enter",
4729 "monitor*", "mwait*", "tpause", and "umwait". We also don't reverse
4730 intersegment "jmp" and "call" instructions with 2 immediate operands so
4731 that the immediate segment precedes the offset, as it does when in AT&T
4732 mode. */
4733 if (intel_syntax
4734 && i.operands > 1
4735 && (strcmp (mnemonic, "bound") != 0)
4736 && (strcmp (mnemonic, "invlpga") != 0)
4737 && (strncmp (mnemonic, "monitor", 7) != 0)
4738 && (strncmp (mnemonic, "mwait", 5) != 0)
4739 && (strcmp (mnemonic, "tpause") != 0)
4740 && (strcmp (mnemonic, "umwait") != 0)
4741 && !(operand_type_check (i.types[0], imm)
4742 && operand_type_check (i.types[1], imm)))
4743 swap_operands ();
4744
4745 /* The order of the immediates should be reversed
4746 for 2 immediates extrq and insertq instructions */
4747 if (i.imm_operands == 2
4748 && (strcmp (mnemonic, "extrq") == 0
4749 || strcmp (mnemonic, "insertq") == 0))
4750 swap_2_operands (0, 1);
4751
4752 if (i.imm_operands)
4753 optimize_imm ();
4754
4755 /* Don't optimize displacement for movabs since it only takes 64bit
4756 displacement. */
4757 if (i.disp_operands
4758 && i.disp_encoding != disp_encoding_32bit
4759 && (flag_code != CODE_64BIT
4760 || strcmp (mnemonic, "movabs") != 0))
4761 optimize_disp ();
4762
4763 /* Next, we find a template that matches the given insn,
4764 making sure the overlap of the given operands types is consistent
4765 with the template operand types. */
4766
4767 if (!(t = match_template (mnem_suffix)))
4768 return;
4769
4770 if (sse_check != check_none
4771 && !i.tm.opcode_modifier.noavx
4772 && !i.tm.cpu_flags.bitfield.cpuavx
4773 && !i.tm.cpu_flags.bitfield.cpuavx512f
4774 && (i.tm.cpu_flags.bitfield.cpusse
4775 || i.tm.cpu_flags.bitfield.cpusse2
4776 || i.tm.cpu_flags.bitfield.cpusse3
4777 || i.tm.cpu_flags.bitfield.cpussse3
4778 || i.tm.cpu_flags.bitfield.cpusse4_1
4779 || i.tm.cpu_flags.bitfield.cpusse4_2
4780 || i.tm.cpu_flags.bitfield.cpupclmul
4781 || i.tm.cpu_flags.bitfield.cpuaes
4782 || i.tm.cpu_flags.bitfield.cpusha
4783 || i.tm.cpu_flags.bitfield.cpugfni))
4784 {
4785 (sse_check == check_warning
4786 ? as_warn
4787 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4788 }
4789
4790 if (i.tm.opcode_modifier.fwait)
4791 if (!add_prefix (FWAIT_OPCODE))
4792 return;
4793
4794 /* Check if REP prefix is OK. */
4795 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4796 {
4797 as_bad (_("invalid instruction `%s' after `%s'"),
4798 i.tm.name, i.rep_prefix);
4799 return;
4800 }
4801
4802 /* Check for lock without a lockable instruction. Destination operand
4803 must be memory unless it is xchg (0x86). */
4804 if (i.prefix[LOCK_PREFIX]
4805 && (!i.tm.opcode_modifier.islockable
4806 || i.mem_operands == 0
4807 || (i.tm.base_opcode != 0x86
4808 && !(i.flags[i.operands - 1] & Operand_Mem))))
4809 {
4810 as_bad (_("expecting lockable instruction after `lock'"));
4811 return;
4812 }
4813
4814 /* Check for data size prefix on VEX/XOP/EVEX encoded and SIMD insns. */
4815 if (i.prefix[DATA_PREFIX]
4816 && (is_any_vex_encoding (&i.tm)
4817 || i.tm.operand_types[i.imm_operands].bitfield.class >= RegMMX
4818 || i.tm.operand_types[i.imm_operands + 1].bitfield.class >= RegMMX))
4819 {
4820 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4821 return;
4822 }
4823
4824 /* Check if HLE prefix is OK. */
4825 if (i.hle_prefix && !check_hle ())
4826 return;
4827
4828 /* Check BND prefix. */
4829 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4830 as_bad (_("expecting valid branch instruction after `bnd'"));
4831
4832 /* Check NOTRACK prefix. */
4833 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4834 as_bad (_("expecting indirect branch instruction after `notrack'"));
4835
4836 if (i.tm.cpu_flags.bitfield.cpumpx)
4837 {
4838 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4839 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4840 else if (flag_code != CODE_16BIT
4841 ? i.prefix[ADDR_PREFIX]
4842 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4843 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4844 }
4845
4846 /* Insert BND prefix. */
4847 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4848 {
4849 if (!i.prefix[BND_PREFIX])
4850 add_prefix (BND_PREFIX_OPCODE);
4851 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4852 {
4853 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4854 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4855 }
4856 }
4857
4858 /* Check string instruction segment overrides. */
4859 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
4860 {
4861 gas_assert (i.mem_operands);
4862 if (!check_string ())
4863 return;
4864 i.disp_operands = 0;
4865 }
4866
4867 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4868 optimize_encoding ();
4869
4870 if (!process_suffix ())
4871 return;
4872
4873 /* Update operand types and check extended states. */
4874 for (j = 0; j < i.operands; j++)
4875 {
4876 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4877 switch (i.types[j].bitfield.class)
4878 {
4879 default:
4880 break;
4881 case RegMMX:
4882 i.xstate |= xstate_mmx;
4883 break;
4884 case RegMask:
4885 i.xstate |= xstate_mask;
4886 break;
4887 case RegSIMD:
4888 if (i.types[j].bitfield.tmmword)
4889 i.xstate |= xstate_tmm;
4890 else if (i.types[j].bitfield.zmmword)
4891 i.xstate |= xstate_zmm;
4892 else if (i.types[j].bitfield.ymmword)
4893 i.xstate |= xstate_ymm;
4894 else if (i.types[j].bitfield.xmmword)
4895 i.xstate |= xstate_xmm;
4896 break;
4897 }
4898 }
4899
4900 /* Make still unresolved immediate matches conform to size of immediate
4901 given in i.suffix. */
4902 if (!finalize_imm ())
4903 return;
4904
4905 if (i.types[0].bitfield.imm1)
4906 i.imm_operands = 0; /* kludge for shift insns. */
4907
4908 /* We only need to check those implicit registers for instructions
4909 with 3 operands or less. */
4910 if (i.operands <= 3)
4911 for (j = 0; j < i.operands; j++)
4912 if (i.types[j].bitfield.instance != InstanceNone
4913 && !i.types[j].bitfield.xmmword)
4914 i.reg_operands--;
4915
4916 /* For insns with operands there are more diddles to do to the opcode. */
4917 if (i.operands)
4918 {
4919 if (!process_operands ())
4920 return;
4921 }
4922 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4923 {
4924 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4925 as_warn (_("translating to `%sp'"), i.tm.name);
4926 }
4927
4928 if (is_any_vex_encoding (&i.tm))
4929 {
4930 if (!cpu_arch_flags.bitfield.cpui286)
4931 {
4932 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4933 i.tm.name);
4934 return;
4935 }
4936
4937 /* Check for explicit REX prefix. */
4938 if (i.prefix[REX_PREFIX] || i.rex_encoding)
4939 {
4940 as_bad (_("REX prefix invalid with `%s'"), i.tm.name);
4941 return;
4942 }
4943
4944 if (i.tm.opcode_modifier.vex)
4945 build_vex_prefix (t);
4946 else
4947 build_evex_prefix ();
4948
4949 /* The individual REX.RXBW bits got consumed. */
4950 i.rex &= REX_OPCODE;
4951 }
4952
4953 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4954 instructions may define INT_OPCODE as well, so avoid this corner
4955 case for those instructions that use MODRM. */
4956 if (i.tm.base_opcode == INT_OPCODE
4957 && !i.tm.opcode_modifier.modrm
4958 && i.op[0].imms->X_add_number == 3)
4959 {
4960 i.tm.base_opcode = INT3_OPCODE;
4961 i.imm_operands = 0;
4962 }
4963
4964 if ((i.tm.opcode_modifier.jump == JUMP
4965 || i.tm.opcode_modifier.jump == JUMP_BYTE
4966 || i.tm.opcode_modifier.jump == JUMP_DWORD)
4967 && i.op[0].disps->X_op == O_constant)
4968 {
4969 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4970 the absolute address given by the constant. Since ix86 jumps and
4971 calls are pc relative, we need to generate a reloc. */
4972 i.op[0].disps->X_add_symbol = &abs_symbol;
4973 i.op[0].disps->X_op = O_symbol;
4974 }
4975
4976 /* For 8 bit registers we need an empty rex prefix. Also if the
4977 instruction already has a prefix, we need to convert old
4978 registers to new ones. */
4979
4980 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
4981 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4982 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
4983 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4984 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4985 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
4986 && i.rex != 0))
4987 {
4988 int x;
4989
4990 i.rex |= REX_OPCODE;
4991 for (x = 0; x < 2; x++)
4992 {
4993 /* Look for 8 bit operand that uses old registers. */
4994 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
4995 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4996 {
4997 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4998 /* In case it is "hi" register, give up. */
4999 if (i.op[x].regs->reg_num > 3)
5000 as_bad (_("can't encode register '%s%s' in an "
5001 "instruction requiring REX prefix."),
5002 register_prefix, i.op[x].regs->reg_name);
5003
5004 /* Otherwise it is equivalent to the extended register.
5005 Since the encoding doesn't change this is merely
5006 cosmetic cleanup for debug output. */
5007
5008 i.op[x].regs = i.op[x].regs + 8;
5009 }
5010 }
5011 }
5012
5013 if (i.rex == 0 && i.rex_encoding)
5014 {
5015 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
5016 that uses legacy register. If it is "hi" register, don't add
5017 the REX_OPCODE byte. */
5018 int x;
5019 for (x = 0; x < 2; x++)
5020 if (i.types[x].bitfield.class == Reg
5021 && i.types[x].bitfield.byte
5022 && (i.op[x].regs->reg_flags & RegRex64) == 0
5023 && i.op[x].regs->reg_num > 3)
5024 {
5025 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
5026 i.rex_encoding = FALSE;
5027 break;
5028 }
5029
5030 if (i.rex_encoding)
5031 i.rex = REX_OPCODE;
5032 }
5033
5034 if (i.rex != 0)
5035 add_prefix (REX_OPCODE | i.rex);
5036
5037 insert_lfence_before ();
5038
5039 /* We are ready to output the insn. */
5040 output_insn ();
5041
5042 insert_lfence_after ();
5043
5044 last_insn.seg = now_seg;
5045
5046 if (i.tm.opcode_modifier.isprefix)
5047 {
5048 last_insn.kind = last_insn_prefix;
5049 last_insn.name = i.tm.name;
5050 last_insn.file = as_where (&last_insn.line);
5051 }
5052 else
5053 last_insn.kind = last_insn_other;
5054 }
5055
5056 static char *
5057 parse_insn (char *line, char *mnemonic)
5058 {
5059 char *l = line;
5060 char *token_start = l;
5061 char *mnem_p;
5062 int supported;
5063 const insn_template *t;
5064 char *dot_p = NULL;
5065
5066 while (1)
5067 {
5068 mnem_p = mnemonic;
5069 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
5070 {
5071 if (*mnem_p == '.')
5072 dot_p = mnem_p;
5073 mnem_p++;
5074 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
5075 {
5076 as_bad (_("no such instruction: `%s'"), token_start);
5077 return NULL;
5078 }
5079 l++;
5080 }
5081 if (!is_space_char (*l)
5082 && *l != END_OF_INSN
5083 && (intel_syntax
5084 || (*l != PREFIX_SEPARATOR
5085 && *l != ',')))
5086 {
5087 as_bad (_("invalid character %s in mnemonic"),
5088 output_invalid (*l));
5089 return NULL;
5090 }
5091 if (token_start == l)
5092 {
5093 if (!intel_syntax && *l == PREFIX_SEPARATOR)
5094 as_bad (_("expecting prefix; got nothing"));
5095 else
5096 as_bad (_("expecting mnemonic; got nothing"));
5097 return NULL;
5098 }
5099
5100 /* Look up instruction (or prefix) via hash table. */
5101 current_templates = (const templates *) str_hash_find (op_hash, mnemonic);
5102
5103 if (*l != END_OF_INSN
5104 && (!is_space_char (*l) || l[1] != END_OF_INSN)
5105 && current_templates
5106 && current_templates->start->opcode_modifier.isprefix)
5107 {
5108 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
5109 {
5110 as_bad ((flag_code != CODE_64BIT
5111 ? _("`%s' is only supported in 64-bit mode")
5112 : _("`%s' is not supported in 64-bit mode")),
5113 current_templates->start->name);
5114 return NULL;
5115 }
5116 /* If we are in 16-bit mode, do not allow addr16 or data16.
5117 Similarly, in 32-bit mode, do not allow addr32 or data32. */
5118 if ((current_templates->start->opcode_modifier.size == SIZE16
5119 || current_templates->start->opcode_modifier.size == SIZE32)
5120 && flag_code != CODE_64BIT
5121 && ((current_templates->start->opcode_modifier.size == SIZE32)
5122 ^ (flag_code == CODE_16BIT)))
5123 {
5124 as_bad (_("redundant %s prefix"),
5125 current_templates->start->name);
5126 return NULL;
5127 }
5128 if (current_templates->start->opcode_length == 0)
5129 {
5130 /* Handle pseudo prefixes. */
5131 switch (current_templates->start->base_opcode)
5132 {
5133 case Prefix_Disp8:
5134 /* {disp8} */
5135 i.disp_encoding = disp_encoding_8bit;
5136 break;
5137 case Prefix_Disp16:
5138 /* {disp16} */
5139 i.disp_encoding = disp_encoding_16bit;
5140 break;
5141 case Prefix_Disp32:
5142 /* {disp32} */
5143 i.disp_encoding = disp_encoding_32bit;
5144 break;
5145 case Prefix_Load:
5146 /* {load} */
5147 i.dir_encoding = dir_encoding_load;
5148 break;
5149 case Prefix_Store:
5150 /* {store} */
5151 i.dir_encoding = dir_encoding_store;
5152 break;
5153 case Prefix_VEX:
5154 /* {vex} */
5155 i.vec_encoding = vex_encoding_vex;
5156 break;
5157 case Prefix_VEX3:
5158 /* {vex3} */
5159 i.vec_encoding = vex_encoding_vex3;
5160 break;
5161 case Prefix_EVEX:
5162 /* {evex} */
5163 i.vec_encoding = vex_encoding_evex;
5164 break;
5165 case Prefix_REX:
5166 /* {rex} */
5167 i.rex_encoding = TRUE;
5168 break;
5169 case Prefix_NoOptimize:
5170 /* {nooptimize} */
5171 i.no_optimize = TRUE;
5172 break;
5173 default:
5174 abort ();
5175 }
5176 }
5177 else
5178 {
5179 /* Add prefix, checking for repeated prefixes. */
5180 switch (add_prefix (current_templates->start->base_opcode))
5181 {
5182 case PREFIX_EXIST:
5183 return NULL;
5184 case PREFIX_DS:
5185 if (current_templates->start->cpu_flags.bitfield.cpuibt)
5186 i.notrack_prefix = current_templates->start->name;
5187 break;
5188 case PREFIX_REP:
5189 if (current_templates->start->cpu_flags.bitfield.cpuhle)
5190 i.hle_prefix = current_templates->start->name;
5191 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
5192 i.bnd_prefix = current_templates->start->name;
5193 else
5194 i.rep_prefix = current_templates->start->name;
5195 break;
5196 default:
5197 break;
5198 }
5199 }
5200 /* Skip past PREFIX_SEPARATOR and reset token_start. */
5201 token_start = ++l;
5202 }
5203 else
5204 break;
5205 }
5206
5207 if (!current_templates)
5208 {
5209 /* Deprecated functionality (new code should use pseudo-prefixes instead):
5210 Check if we should swap operand or force 32bit displacement in
5211 encoding. */
5212 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
5213 i.dir_encoding = dir_encoding_swap;
5214 else if (mnem_p - 3 == dot_p
5215 && dot_p[1] == 'd'
5216 && dot_p[2] == '8')
5217 i.disp_encoding = disp_encoding_8bit;
5218 else if (mnem_p - 4 == dot_p
5219 && dot_p[1] == 'd'
5220 && dot_p[2] == '3'
5221 && dot_p[3] == '2')
5222 i.disp_encoding = disp_encoding_32bit;
5223 else
5224 goto check_suffix;
5225 mnem_p = dot_p;
5226 *dot_p = '\0';
5227 current_templates = (const templates *) str_hash_find (op_hash, mnemonic);
5228 }
5229
5230 if (!current_templates)
5231 {
5232 check_suffix:
5233 if (mnem_p > mnemonic)
5234 {
5235 /* See if we can get a match by trimming off a suffix. */
5236 switch (mnem_p[-1])
5237 {
5238 case WORD_MNEM_SUFFIX:
5239 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
5240 i.suffix = SHORT_MNEM_SUFFIX;
5241 else
5242 /* Fall through. */
5243 case BYTE_MNEM_SUFFIX:
5244 case QWORD_MNEM_SUFFIX:
5245 i.suffix = mnem_p[-1];
5246 mnem_p[-1] = '\0';
5247 current_templates
5248 = (const templates *) str_hash_find (op_hash, mnemonic);
5249 break;
5250 case SHORT_MNEM_SUFFIX:
5251 case LONG_MNEM_SUFFIX:
5252 if (!intel_syntax)
5253 {
5254 i.suffix = mnem_p[-1];
5255 mnem_p[-1] = '\0';
5256 current_templates
5257 = (const templates *) str_hash_find (op_hash, mnemonic);
5258 }
5259 break;
5260
5261 /* Intel Syntax. */
5262 case 'd':
5263 if (intel_syntax)
5264 {
5265 if (intel_float_operand (mnemonic) == 1)
5266 i.suffix = SHORT_MNEM_SUFFIX;
5267 else
5268 i.suffix = LONG_MNEM_SUFFIX;
5269 mnem_p[-1] = '\0';
5270 current_templates
5271 = (const templates *) str_hash_find (op_hash, mnemonic);
5272 }
5273 break;
5274 }
5275 }
5276
5277 if (!current_templates)
5278 {
5279 as_bad (_("no such instruction: `%s'"), token_start);
5280 return NULL;
5281 }
5282 }
5283
5284 if (current_templates->start->opcode_modifier.jump == JUMP
5285 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
5286 {
5287 /* Check for a branch hint. We allow ",pt" and ",pn" for
5288 predict taken and predict not taken respectively.
5289 I'm not sure that branch hints actually do anything on loop
5290 and jcxz insns (JumpByte) for current Pentium4 chips. They
5291 may work in the future and it doesn't hurt to accept them
5292 now. */
5293 if (l[0] == ',' && l[1] == 'p')
5294 {
5295 if (l[2] == 't')
5296 {
5297 if (!add_prefix (DS_PREFIX_OPCODE))
5298 return NULL;
5299 l += 3;
5300 }
5301 else if (l[2] == 'n')
5302 {
5303 if (!add_prefix (CS_PREFIX_OPCODE))
5304 return NULL;
5305 l += 3;
5306 }
5307 }
5308 }
5309 /* Any other comma loses. */
5310 if (*l == ',')
5311 {
5312 as_bad (_("invalid character %s in mnemonic"),
5313 output_invalid (*l));
5314 return NULL;
5315 }
5316
5317 /* Check if instruction is supported on specified architecture. */
5318 supported = 0;
5319 for (t = current_templates->start; t < current_templates->end; ++t)
5320 {
5321 supported |= cpu_flags_match (t);
5322 if (supported == CPU_FLAGS_PERFECT_MATCH)
5323 {
5324 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
5325 as_warn (_("use .code16 to ensure correct addressing mode"));
5326
5327 return l;
5328 }
5329 }
5330
5331 if (!(supported & CPU_FLAGS_64BIT_MATCH))
5332 as_bad (flag_code == CODE_64BIT
5333 ? _("`%s' is not supported in 64-bit mode")
5334 : _("`%s' is only supported in 64-bit mode"),
5335 current_templates->start->name);
5336 else
5337 as_bad (_("`%s' is not supported on `%s%s'"),
5338 current_templates->start->name,
5339 cpu_arch_name ? cpu_arch_name : default_arch,
5340 cpu_sub_arch_name ? cpu_sub_arch_name : "");
5341
5342 return NULL;
5343 }
5344
5345 static char *
5346 parse_operands (char *l, const char *mnemonic)
5347 {
5348 char *token_start;
5349
5350 /* 1 if operand is pending after ','. */
5351 unsigned int expecting_operand = 0;
5352
5353 /* Non-zero if operand parens not balanced. */
5354 unsigned int paren_not_balanced;
5355
5356 while (*l != END_OF_INSN)
5357 {
5358 /* Skip optional white space before operand. */
5359 if (is_space_char (*l))
5360 ++l;
5361 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
5362 {
5363 as_bad (_("invalid character %s before operand %d"),
5364 output_invalid (*l),
5365 i.operands + 1);
5366 return NULL;
5367 }
5368 token_start = l; /* After white space. */
5369 paren_not_balanced = 0;
5370 while (paren_not_balanced || *l != ',')
5371 {
5372 if (*l == END_OF_INSN)
5373 {
5374 if (paren_not_balanced)
5375 {
5376 if (!intel_syntax)
5377 as_bad (_("unbalanced parenthesis in operand %d."),
5378 i.operands + 1);
5379 else
5380 as_bad (_("unbalanced brackets in operand %d."),
5381 i.operands + 1);
5382 return NULL;
5383 }
5384 else
5385 break; /* we are done */
5386 }
5387 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
5388 {
5389 as_bad (_("invalid character %s in operand %d"),
5390 output_invalid (*l),
5391 i.operands + 1);
5392 return NULL;
5393 }
5394 if (!intel_syntax)
5395 {
5396 if (*l == '(')
5397 ++paren_not_balanced;
5398 if (*l == ')')
5399 --paren_not_balanced;
5400 }
5401 else
5402 {
5403 if (*l == '[')
5404 ++paren_not_balanced;
5405 if (*l == ']')
5406 --paren_not_balanced;
5407 }
5408 l++;
5409 }
5410 if (l != token_start)
5411 { /* Yes, we've read in another operand. */
5412 unsigned int operand_ok;
5413 this_operand = i.operands++;
5414 if (i.operands > MAX_OPERANDS)
5415 {
5416 as_bad (_("spurious operands; (%d operands/instruction max)"),
5417 MAX_OPERANDS);
5418 return NULL;
5419 }
5420 i.types[this_operand].bitfield.unspecified = 1;
5421 /* Now parse operand adding info to 'i' as we go along. */
5422 END_STRING_AND_SAVE (l);
5423
5424 if (i.mem_operands > 1)
5425 {
5426 as_bad (_("too many memory references for `%s'"),
5427 mnemonic);
5428 return 0;
5429 }
5430
5431 if (intel_syntax)
5432 operand_ok =
5433 i386_intel_operand (token_start,
5434 intel_float_operand (mnemonic));
5435 else
5436 operand_ok = i386_att_operand (token_start);
5437
5438 RESTORE_END_STRING (l);
5439 if (!operand_ok)
5440 return NULL;
5441 }
5442 else
5443 {
5444 if (expecting_operand)
5445 {
5446 expecting_operand_after_comma:
5447 as_bad (_("expecting operand after ','; got nothing"));
5448 return NULL;
5449 }
5450 if (*l == ',')
5451 {
5452 as_bad (_("expecting operand before ','; got nothing"));
5453 return NULL;
5454 }
5455 }
5456
5457 /* Now *l must be either ',' or END_OF_INSN. */
5458 if (*l == ',')
5459 {
5460 if (*++l == END_OF_INSN)
5461 {
5462 /* Just skip it, if it's \n complain. */
5463 goto expecting_operand_after_comma;
5464 }
5465 expecting_operand = 1;
5466 }
5467 }
5468 return l;
5469 }
5470
5471 static void
5472 swap_2_operands (int xchg1, int xchg2)
5473 {
5474 union i386_op temp_op;
5475 i386_operand_type temp_type;
5476 unsigned int temp_flags;
5477 enum bfd_reloc_code_real temp_reloc;
5478
5479 temp_type = i.types[xchg2];
5480 i.types[xchg2] = i.types[xchg1];
5481 i.types[xchg1] = temp_type;
5482
5483 temp_flags = i.flags[xchg2];
5484 i.flags[xchg2] = i.flags[xchg1];
5485 i.flags[xchg1] = temp_flags;
5486
5487 temp_op = i.op[xchg2];
5488 i.op[xchg2] = i.op[xchg1];
5489 i.op[xchg1] = temp_op;
5490
5491 temp_reloc = i.reloc[xchg2];
5492 i.reloc[xchg2] = i.reloc[xchg1];
5493 i.reloc[xchg1] = temp_reloc;
5494
5495 if (i.mask)
5496 {
5497 if (i.mask->operand == xchg1)
5498 i.mask->operand = xchg2;
5499 else if (i.mask->operand == xchg2)
5500 i.mask->operand = xchg1;
5501 }
5502 if (i.broadcast)
5503 {
5504 if (i.broadcast->operand == xchg1)
5505 i.broadcast->operand = xchg2;
5506 else if (i.broadcast->operand == xchg2)
5507 i.broadcast->operand = xchg1;
5508 }
5509 if (i.rounding)
5510 {
5511 if (i.rounding->operand == xchg1)
5512 i.rounding->operand = xchg2;
5513 else if (i.rounding->operand == xchg2)
5514 i.rounding->operand = xchg1;
5515 }
5516 }
5517
5518 static void
5519 swap_operands (void)
5520 {
5521 switch (i.operands)
5522 {
5523 case 5:
5524 case 4:
5525 swap_2_operands (1, i.operands - 2);
5526 /* Fall through. */
5527 case 3:
5528 case 2:
5529 swap_2_operands (0, i.operands - 1);
5530 break;
5531 default:
5532 abort ();
5533 }
5534
5535 if (i.mem_operands == 2)
5536 {
5537 const seg_entry *temp_seg;
5538 temp_seg = i.seg[0];
5539 i.seg[0] = i.seg[1];
5540 i.seg[1] = temp_seg;
5541 }
5542 }
5543
5544 /* Try to ensure constant immediates are represented in the smallest
5545 opcode possible. */
5546 static void
5547 optimize_imm (void)
5548 {
5549 char guess_suffix = 0;
5550 int op;
5551
5552 if (i.suffix)
5553 guess_suffix = i.suffix;
5554 else if (i.reg_operands)
5555 {
5556 /* Figure out a suffix from the last register operand specified.
5557 We can't do this properly yet, i.e. excluding special register
5558 instances, but the following works for instructions with
5559 immediates. In any case, we can't set i.suffix yet. */
5560 for (op = i.operands; --op >= 0;)
5561 if (i.types[op].bitfield.class != Reg)
5562 continue;
5563 else if (i.types[op].bitfield.byte)
5564 {
5565 guess_suffix = BYTE_MNEM_SUFFIX;
5566 break;
5567 }
5568 else if (i.types[op].bitfield.word)
5569 {
5570 guess_suffix = WORD_MNEM_SUFFIX;
5571 break;
5572 }
5573 else if (i.types[op].bitfield.dword)
5574 {
5575 guess_suffix = LONG_MNEM_SUFFIX;
5576 break;
5577 }
5578 else if (i.types[op].bitfield.qword)
5579 {
5580 guess_suffix = QWORD_MNEM_SUFFIX;
5581 break;
5582 }
5583 }
5584 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5585 guess_suffix = WORD_MNEM_SUFFIX;
5586
5587 for (op = i.operands; --op >= 0;)
5588 if (operand_type_check (i.types[op], imm))
5589 {
5590 switch (i.op[op].imms->X_op)
5591 {
5592 case O_constant:
5593 /* If a suffix is given, this operand may be shortened. */
5594 switch (guess_suffix)
5595 {
5596 case LONG_MNEM_SUFFIX:
5597 i.types[op].bitfield.imm32 = 1;
5598 i.types[op].bitfield.imm64 = 1;
5599 break;
5600 case WORD_MNEM_SUFFIX:
5601 i.types[op].bitfield.imm16 = 1;
5602 i.types[op].bitfield.imm32 = 1;
5603 i.types[op].bitfield.imm32s = 1;
5604 i.types[op].bitfield.imm64 = 1;
5605 break;
5606 case BYTE_MNEM_SUFFIX:
5607 i.types[op].bitfield.imm8 = 1;
5608 i.types[op].bitfield.imm8s = 1;
5609 i.types[op].bitfield.imm16 = 1;
5610 i.types[op].bitfield.imm32 = 1;
5611 i.types[op].bitfield.imm32s = 1;
5612 i.types[op].bitfield.imm64 = 1;
5613 break;
5614 }
5615
5616 /* If this operand is at most 16 bits, convert it
5617 to a signed 16 bit number before trying to see
5618 whether it will fit in an even smaller size.
5619 This allows a 16-bit operand such as $0xffe0 to
5620 be recognised as within Imm8S range. */
5621 if ((i.types[op].bitfield.imm16)
5622 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5623 {
5624 i.op[op].imms->X_add_number =
5625 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5626 }
5627 #ifdef BFD64
5628 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5629 if ((i.types[op].bitfield.imm32)
5630 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5631 == 0))
5632 {
5633 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5634 ^ ((offsetT) 1 << 31))
5635 - ((offsetT) 1 << 31));
5636 }
5637 #endif
5638 i.types[op]
5639 = operand_type_or (i.types[op],
5640 smallest_imm_type (i.op[op].imms->X_add_number));
5641
5642 /* We must avoid matching of Imm32 templates when 64bit
5643 only immediate is available. */
5644 if (guess_suffix == QWORD_MNEM_SUFFIX)
5645 i.types[op].bitfield.imm32 = 0;
5646 break;
5647
5648 case O_absent:
5649 case O_register:
5650 abort ();
5651
5652 /* Symbols and expressions. */
5653 default:
5654 /* Convert symbolic operand to proper sizes for matching, but don't
5655 prevent matching a set of insns that only supports sizes other
5656 than those matching the insn suffix. */
5657 {
5658 i386_operand_type mask, allowed;
5659 const insn_template *t;
5660
5661 operand_type_set (&mask, 0);
5662 operand_type_set (&allowed, 0);
5663
5664 for (t = current_templates->start;
5665 t < current_templates->end;
5666 ++t)
5667 {
5668 allowed = operand_type_or (allowed, t->operand_types[op]);
5669 allowed = operand_type_and (allowed, anyimm);
5670 }
5671 switch (guess_suffix)
5672 {
5673 case QWORD_MNEM_SUFFIX:
5674 mask.bitfield.imm64 = 1;
5675 mask.bitfield.imm32s = 1;
5676 break;
5677 case LONG_MNEM_SUFFIX:
5678 mask.bitfield.imm32 = 1;
5679 break;
5680 case WORD_MNEM_SUFFIX:
5681 mask.bitfield.imm16 = 1;
5682 break;
5683 case BYTE_MNEM_SUFFIX:
5684 mask.bitfield.imm8 = 1;
5685 break;
5686 default:
5687 break;
5688 }
5689 allowed = operand_type_and (mask, allowed);
5690 if (!operand_type_all_zero (&allowed))
5691 i.types[op] = operand_type_and (i.types[op], mask);
5692 }
5693 break;
5694 }
5695 }
5696 }
5697
5698 /* Try to use the smallest displacement type too. */
5699 static void
5700 optimize_disp (void)
5701 {
5702 int op;
5703
5704 for (op = i.operands; --op >= 0;)
5705 if (operand_type_check (i.types[op], disp))
5706 {
5707 if (i.op[op].disps->X_op == O_constant)
5708 {
5709 offsetT op_disp = i.op[op].disps->X_add_number;
5710
5711 if (i.types[op].bitfield.disp16
5712 && (op_disp & ~(offsetT) 0xffff) == 0)
5713 {
5714 /* If this operand is at most 16 bits, convert
5715 to a signed 16 bit number and don't use 64bit
5716 displacement. */
5717 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5718 i.types[op].bitfield.disp64 = 0;
5719 }
5720 #ifdef BFD64
5721 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5722 if (i.types[op].bitfield.disp32
5723 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5724 {
5725 /* If this operand is at most 32 bits, convert
5726 to a signed 32 bit number and don't use 64bit
5727 displacement. */
5728 op_disp &= (((offsetT) 2 << 31) - 1);
5729 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5730 i.types[op].bitfield.disp64 = 0;
5731 }
5732 #endif
5733 if (!op_disp && i.types[op].bitfield.baseindex)
5734 {
5735 i.types[op].bitfield.disp8 = 0;
5736 i.types[op].bitfield.disp16 = 0;
5737 i.types[op].bitfield.disp32 = 0;
5738 i.types[op].bitfield.disp32s = 0;
5739 i.types[op].bitfield.disp64 = 0;
5740 i.op[op].disps = 0;
5741 i.disp_operands--;
5742 }
5743 else if (flag_code == CODE_64BIT)
5744 {
5745 if (fits_in_signed_long (op_disp))
5746 {
5747 i.types[op].bitfield.disp64 = 0;
5748 i.types[op].bitfield.disp32s = 1;
5749 }
5750 if (i.prefix[ADDR_PREFIX]
5751 && fits_in_unsigned_long (op_disp))
5752 i.types[op].bitfield.disp32 = 1;
5753 }
5754 if ((i.types[op].bitfield.disp32
5755 || i.types[op].bitfield.disp32s
5756 || i.types[op].bitfield.disp16)
5757 && fits_in_disp8 (op_disp))
5758 i.types[op].bitfield.disp8 = 1;
5759 }
5760 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5761 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5762 {
5763 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5764 i.op[op].disps, 0, i.reloc[op]);
5765 i.types[op].bitfield.disp8 = 0;
5766 i.types[op].bitfield.disp16 = 0;
5767 i.types[op].bitfield.disp32 = 0;
5768 i.types[op].bitfield.disp32s = 0;
5769 i.types[op].bitfield.disp64 = 0;
5770 }
5771 else
5772 /* We only support 64bit displacement on constants. */
5773 i.types[op].bitfield.disp64 = 0;
5774 }
5775 }
5776
5777 /* Return 1 if there is a match in broadcast bytes between operand
5778 GIVEN and instruction template T. */
5779
5780 static INLINE int
5781 match_broadcast_size (const insn_template *t, unsigned int given)
5782 {
5783 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5784 && i.types[given].bitfield.byte)
5785 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5786 && i.types[given].bitfield.word)
5787 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5788 && i.types[given].bitfield.dword)
5789 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5790 && i.types[given].bitfield.qword));
5791 }
5792
5793 /* Check if operands are valid for the instruction. */
5794
5795 static int
5796 check_VecOperands (const insn_template *t)
5797 {
5798 unsigned int op;
5799 i386_cpu_flags cpu;
5800
5801 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5802 any one operand are implicity requiring AVX512VL support if the actual
5803 operand size is YMMword or XMMword. Since this function runs after
5804 template matching, there's no need to check for YMMword/XMMword in
5805 the template. */
5806 cpu = cpu_flags_and (t->cpu_flags, avx512);
5807 if (!cpu_flags_all_zero (&cpu)
5808 && !t->cpu_flags.bitfield.cpuavx512vl
5809 && !cpu_arch_flags.bitfield.cpuavx512vl)
5810 {
5811 for (op = 0; op < t->operands; ++op)
5812 {
5813 if (t->operand_types[op].bitfield.zmmword
5814 && (i.types[op].bitfield.ymmword
5815 || i.types[op].bitfield.xmmword))
5816 {
5817 i.error = unsupported;
5818 return 1;
5819 }
5820 }
5821 }
5822
5823 /* Without VSIB byte, we can't have a vector register for index. */
5824 if (!t->opcode_modifier.sib
5825 && i.index_reg
5826 && (i.index_reg->reg_type.bitfield.xmmword
5827 || i.index_reg->reg_type.bitfield.ymmword
5828 || i.index_reg->reg_type.bitfield.zmmword))
5829 {
5830 i.error = unsupported_vector_index_register;
5831 return 1;
5832 }
5833
5834 /* Check if default mask is allowed. */
5835 if (t->opcode_modifier.nodefmask
5836 && (!i.mask || i.mask->mask->reg_num == 0))
5837 {
5838 i.error = no_default_mask;
5839 return 1;
5840 }
5841
5842 /* For VSIB byte, we need a vector register for index, and all vector
5843 registers must be distinct. */
5844 if (t->opcode_modifier.sib && t->opcode_modifier.sib != SIBMEM)
5845 {
5846 if (!i.index_reg
5847 || !((t->opcode_modifier.sib == VECSIB128
5848 && i.index_reg->reg_type.bitfield.xmmword)
5849 || (t->opcode_modifier.sib == VECSIB256
5850 && i.index_reg->reg_type.bitfield.ymmword)
5851 || (t->opcode_modifier.sib == VECSIB512
5852 && i.index_reg->reg_type.bitfield.zmmword)))
5853 {
5854 i.error = invalid_vsib_address;
5855 return 1;
5856 }
5857
5858 gas_assert (i.reg_operands == 2 || i.mask);
5859 if (i.reg_operands == 2 && !i.mask)
5860 {
5861 gas_assert (i.types[0].bitfield.class == RegSIMD);
5862 gas_assert (i.types[0].bitfield.xmmword
5863 || i.types[0].bitfield.ymmword);
5864 gas_assert (i.types[2].bitfield.class == RegSIMD);
5865 gas_assert (i.types[2].bitfield.xmmword
5866 || i.types[2].bitfield.ymmword);
5867 if (operand_check == check_none)
5868 return 0;
5869 if (register_number (i.op[0].regs)
5870 != register_number (i.index_reg)
5871 && register_number (i.op[2].regs)
5872 != register_number (i.index_reg)
5873 && register_number (i.op[0].regs)
5874 != register_number (i.op[2].regs))
5875 return 0;
5876 if (operand_check == check_error)
5877 {
5878 i.error = invalid_vector_register_set;
5879 return 1;
5880 }
5881 as_warn (_("mask, index, and destination registers should be distinct"));
5882 }
5883 else if (i.reg_operands == 1 && i.mask)
5884 {
5885 if (i.types[1].bitfield.class == RegSIMD
5886 && (i.types[1].bitfield.xmmword
5887 || i.types[1].bitfield.ymmword
5888 || i.types[1].bitfield.zmmword)
5889 && (register_number (i.op[1].regs)
5890 == register_number (i.index_reg)))
5891 {
5892 if (operand_check == check_error)
5893 {
5894 i.error = invalid_vector_register_set;
5895 return 1;
5896 }
5897 if (operand_check != check_none)
5898 as_warn (_("index and destination registers should be distinct"));
5899 }
5900 }
5901 }
5902
5903 /* For AMX instructions with three tmmword operands, all tmmword operand must be
5904 distinct */
5905 if (t->operand_types[0].bitfield.tmmword
5906 && i.reg_operands == 3)
5907 {
5908 if (register_number (i.op[0].regs)
5909 == register_number (i.op[1].regs)
5910 || register_number (i.op[0].regs)
5911 == register_number (i.op[2].regs)
5912 || register_number (i.op[1].regs)
5913 == register_number (i.op[2].regs))
5914 {
5915 i.error = invalid_tmm_register_set;
5916 return 1;
5917 }
5918 }
5919
5920 /* Check if broadcast is supported by the instruction and is applied
5921 to the memory operand. */
5922 if (i.broadcast)
5923 {
5924 i386_operand_type type, overlap;
5925
5926 /* Check if specified broadcast is supported in this instruction,
5927 and its broadcast bytes match the memory operand. */
5928 op = i.broadcast->operand;
5929 if (!t->opcode_modifier.broadcast
5930 || !(i.flags[op] & Operand_Mem)
5931 || (!i.types[op].bitfield.unspecified
5932 && !match_broadcast_size (t, op)))
5933 {
5934 bad_broadcast:
5935 i.error = unsupported_broadcast;
5936 return 1;
5937 }
5938
5939 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5940 * i.broadcast->type);
5941 operand_type_set (&type, 0);
5942 switch (i.broadcast->bytes)
5943 {
5944 case 2:
5945 type.bitfield.word = 1;
5946 break;
5947 case 4:
5948 type.bitfield.dword = 1;
5949 break;
5950 case 8:
5951 type.bitfield.qword = 1;
5952 break;
5953 case 16:
5954 type.bitfield.xmmword = 1;
5955 break;
5956 case 32:
5957 type.bitfield.ymmword = 1;
5958 break;
5959 case 64:
5960 type.bitfield.zmmword = 1;
5961 break;
5962 default:
5963 goto bad_broadcast;
5964 }
5965
5966 overlap = operand_type_and (type, t->operand_types[op]);
5967 if (t->operand_types[op].bitfield.class == RegSIMD
5968 && t->operand_types[op].bitfield.byte
5969 + t->operand_types[op].bitfield.word
5970 + t->operand_types[op].bitfield.dword
5971 + t->operand_types[op].bitfield.qword > 1)
5972 {
5973 overlap.bitfield.xmmword = 0;
5974 overlap.bitfield.ymmword = 0;
5975 overlap.bitfield.zmmword = 0;
5976 }
5977 if (operand_type_all_zero (&overlap))
5978 goto bad_broadcast;
5979
5980 if (t->opcode_modifier.checkregsize)
5981 {
5982 unsigned int j;
5983
5984 type.bitfield.baseindex = 1;
5985 for (j = 0; j < i.operands; ++j)
5986 {
5987 if (j != op
5988 && !operand_type_register_match(i.types[j],
5989 t->operand_types[j],
5990 type,
5991 t->operand_types[op]))
5992 goto bad_broadcast;
5993 }
5994 }
5995 }
5996 /* If broadcast is supported in this instruction, we need to check if
5997 operand of one-element size isn't specified without broadcast. */
5998 else if (t->opcode_modifier.broadcast && i.mem_operands)
5999 {
6000 /* Find memory operand. */
6001 for (op = 0; op < i.operands; op++)
6002 if (i.flags[op] & Operand_Mem)
6003 break;
6004 gas_assert (op < i.operands);
6005 /* Check size of the memory operand. */
6006 if (match_broadcast_size (t, op))
6007 {
6008 i.error = broadcast_needed;
6009 return 1;
6010 }
6011 }
6012 else
6013 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
6014
6015 /* Check if requested masking is supported. */
6016 if (i.mask)
6017 {
6018 switch (t->opcode_modifier.masking)
6019 {
6020 case BOTH_MASKING:
6021 break;
6022 case MERGING_MASKING:
6023 if (i.mask->zeroing)
6024 {
6025 case 0:
6026 i.error = unsupported_masking;
6027 return 1;
6028 }
6029 break;
6030 case DYNAMIC_MASKING:
6031 /* Memory destinations allow only merging masking. */
6032 if (i.mask->zeroing && i.mem_operands)
6033 {
6034 /* Find memory operand. */
6035 for (op = 0; op < i.operands; op++)
6036 if (i.flags[op] & Operand_Mem)
6037 break;
6038 gas_assert (op < i.operands);
6039 if (op == i.operands - 1)
6040 {
6041 i.error = unsupported_masking;
6042 return 1;
6043 }
6044 }
6045 break;
6046 default:
6047 abort ();
6048 }
6049 }
6050
6051 /* Check if masking is applied to dest operand. */
6052 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
6053 {
6054 i.error = mask_not_on_destination;
6055 return 1;
6056 }
6057
6058 /* Check RC/SAE. */
6059 if (i.rounding)
6060 {
6061 if (!t->opcode_modifier.sae
6062 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
6063 {
6064 i.error = unsupported_rc_sae;
6065 return 1;
6066 }
6067 /* If the instruction has several immediate operands and one of
6068 them is rounding, the rounding operand should be the last
6069 immediate operand. */
6070 if (i.imm_operands > 1
6071 && i.rounding->operand != (int) (i.imm_operands - 1))
6072 {
6073 i.error = rc_sae_operand_not_last_imm;
6074 return 1;
6075 }
6076 }
6077
6078 /* Check the special Imm4 cases; must be the first operand. */
6079 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
6080 {
6081 if (i.op[0].imms->X_op != O_constant
6082 || !fits_in_imm4 (i.op[0].imms->X_add_number))
6083 {
6084 i.error = bad_imm4;
6085 return 1;
6086 }
6087
6088 /* Turn off Imm<N> so that update_imm won't complain. */
6089 operand_type_set (&i.types[0], 0);
6090 }
6091
6092 /* Check vector Disp8 operand. */
6093 if (t->opcode_modifier.disp8memshift
6094 && i.disp_encoding != disp_encoding_32bit)
6095 {
6096 if (i.broadcast)
6097 i.memshift = t->opcode_modifier.broadcast - 1;
6098 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
6099 i.memshift = t->opcode_modifier.disp8memshift;
6100 else
6101 {
6102 const i386_operand_type *type = NULL;
6103
6104 i.memshift = 0;
6105 for (op = 0; op < i.operands; op++)
6106 if (i.flags[op] & Operand_Mem)
6107 {
6108 if (t->opcode_modifier.evex == EVEXLIG)
6109 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
6110 else if (t->operand_types[op].bitfield.xmmword
6111 + t->operand_types[op].bitfield.ymmword
6112 + t->operand_types[op].bitfield.zmmword <= 1)
6113 type = &t->operand_types[op];
6114 else if (!i.types[op].bitfield.unspecified)
6115 type = &i.types[op];
6116 }
6117 else if (i.types[op].bitfield.class == RegSIMD
6118 && t->opcode_modifier.evex != EVEXLIG)
6119 {
6120 if (i.types[op].bitfield.zmmword)
6121 i.memshift = 6;
6122 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
6123 i.memshift = 5;
6124 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
6125 i.memshift = 4;
6126 }
6127
6128 if (type)
6129 {
6130 if (type->bitfield.zmmword)
6131 i.memshift = 6;
6132 else if (type->bitfield.ymmword)
6133 i.memshift = 5;
6134 else if (type->bitfield.xmmword)
6135 i.memshift = 4;
6136 }
6137
6138 /* For the check in fits_in_disp8(). */
6139 if (i.memshift == 0)
6140 i.memshift = -1;
6141 }
6142
6143 for (op = 0; op < i.operands; op++)
6144 if (operand_type_check (i.types[op], disp)
6145 && i.op[op].disps->X_op == O_constant)
6146 {
6147 if (fits_in_disp8 (i.op[op].disps->X_add_number))
6148 {
6149 i.types[op].bitfield.disp8 = 1;
6150 return 0;
6151 }
6152 i.types[op].bitfield.disp8 = 0;
6153 }
6154 }
6155
6156 i.memshift = 0;
6157
6158 return 0;
6159 }
6160
6161 /* Check if encoding requirements are met by the instruction. */
6162
6163 static int
6164 VEX_check_encoding (const insn_template *t)
6165 {
6166 if (i.vec_encoding == vex_encoding_error)
6167 {
6168 i.error = unsupported;
6169 return 1;
6170 }
6171
6172 if (i.vec_encoding == vex_encoding_evex)
6173 {
6174 /* This instruction must be encoded with EVEX prefix. */
6175 if (!is_evex_encoding (t))
6176 {
6177 i.error = unsupported;
6178 return 1;
6179 }
6180 return 0;
6181 }
6182
6183 if (!t->opcode_modifier.vex)
6184 {
6185 /* This instruction template doesn't have VEX prefix. */
6186 if (i.vec_encoding != vex_encoding_default)
6187 {
6188 i.error = unsupported;
6189 return 1;
6190 }
6191 return 0;
6192 }
6193
6194 return 0;
6195 }
6196
6197 static const insn_template *
6198 match_template (char mnem_suffix)
6199 {
6200 /* Points to template once we've found it. */
6201 const insn_template *t;
6202 i386_operand_type overlap0, overlap1, overlap2, overlap3;
6203 i386_operand_type overlap4;
6204 unsigned int found_reverse_match;
6205 i386_opcode_modifier suffix_check;
6206 i386_operand_type operand_types [MAX_OPERANDS];
6207 int addr_prefix_disp;
6208 unsigned int j, size_match, check_register;
6209 enum i386_error specific_error = 0;
6210
6211 #if MAX_OPERANDS != 5
6212 # error "MAX_OPERANDS must be 5."
6213 #endif
6214
6215 found_reverse_match = 0;
6216 addr_prefix_disp = -1;
6217
6218 /* Prepare for mnemonic suffix check. */
6219 memset (&suffix_check, 0, sizeof (suffix_check));
6220 switch (mnem_suffix)
6221 {
6222 case BYTE_MNEM_SUFFIX:
6223 suffix_check.no_bsuf = 1;
6224 break;
6225 case WORD_MNEM_SUFFIX:
6226 suffix_check.no_wsuf = 1;
6227 break;
6228 case SHORT_MNEM_SUFFIX:
6229 suffix_check.no_ssuf = 1;
6230 break;
6231 case LONG_MNEM_SUFFIX:
6232 suffix_check.no_lsuf = 1;
6233 break;
6234 case QWORD_MNEM_SUFFIX:
6235 suffix_check.no_qsuf = 1;
6236 break;
6237 default:
6238 /* NB: In Intel syntax, normally we can check for memory operand
6239 size when there is no mnemonic suffix. But jmp and call have
6240 2 different encodings with Dword memory operand size, one with
6241 No_ldSuf and the other without. i.suffix is set to
6242 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
6243 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
6244 suffix_check.no_ldsuf = 1;
6245 }
6246
6247 /* Must have right number of operands. */
6248 i.error = number_of_operands_mismatch;
6249
6250 for (t = current_templates->start; t < current_templates->end; t++)
6251 {
6252 addr_prefix_disp = -1;
6253 found_reverse_match = 0;
6254
6255 if (i.operands != t->operands)
6256 continue;
6257
6258 /* Check processor support. */
6259 i.error = unsupported;
6260 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
6261 continue;
6262
6263 /* Check Pseudo Prefix. */
6264 i.error = unsupported;
6265 if (t->opcode_modifier.pseudovexprefix
6266 && !(i.vec_encoding == vex_encoding_vex
6267 || i.vec_encoding == vex_encoding_vex3))
6268 continue;
6269
6270 /* Check AT&T mnemonic. */
6271 i.error = unsupported_with_intel_mnemonic;
6272 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
6273 continue;
6274
6275 /* Check AT&T/Intel syntax. */
6276 i.error = unsupported_syntax;
6277 if ((intel_syntax && t->opcode_modifier.attsyntax)
6278 || (!intel_syntax && t->opcode_modifier.intelsyntax))
6279 continue;
6280
6281 /* Check Intel64/AMD64 ISA. */
6282 switch (isa64)
6283 {
6284 default:
6285 /* Default: Don't accept Intel64. */
6286 if (t->opcode_modifier.isa64 == INTEL64)
6287 continue;
6288 break;
6289 case amd64:
6290 /* -mamd64: Don't accept Intel64 and Intel64 only. */
6291 if (t->opcode_modifier.isa64 >= INTEL64)
6292 continue;
6293 break;
6294 case intel64:
6295 /* -mintel64: Don't accept AMD64. */
6296 if (t->opcode_modifier.isa64 == AMD64 && flag_code == CODE_64BIT)
6297 continue;
6298 break;
6299 }
6300
6301 /* Check the suffix. */
6302 i.error = invalid_instruction_suffix;
6303 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
6304 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
6305 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
6306 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
6307 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
6308 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
6309 continue;
6310
6311 size_match = operand_size_match (t);
6312 if (!size_match)
6313 continue;
6314
6315 /* This is intentionally not
6316
6317 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
6318
6319 as the case of a missing * on the operand is accepted (perhaps with
6320 a warning, issued further down). */
6321 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
6322 {
6323 i.error = operand_type_mismatch;
6324 continue;
6325 }
6326
6327 for (j = 0; j < MAX_OPERANDS; j++)
6328 operand_types[j] = t->operand_types[j];
6329
6330 /* In general, don't allow
6331 - 64-bit operands outside of 64-bit mode,
6332 - 32-bit operands on pre-386. */
6333 j = i.imm_operands + (t->operands > i.imm_operands + 1);
6334 if (((i.suffix == QWORD_MNEM_SUFFIX
6335 && flag_code != CODE_64BIT
6336 && !(t->base_opcode == 0xfc7
6337 && i.tm.opcode_modifier.opcodeprefix == 0
6338 && t->extension_opcode == 1) /* cmpxchg8b */)
6339 || (i.suffix == LONG_MNEM_SUFFIX
6340 && !cpu_arch_flags.bitfield.cpui386))
6341 && (intel_syntax
6342 ? (t->opcode_modifier.mnemonicsize != IGNORESIZE
6343 && !intel_float_operand (t->name))
6344 : intel_float_operand (t->name) != 2)
6345 && (t->operands == i.imm_operands
6346 || (operand_types[i.imm_operands].bitfield.class != RegMMX
6347 && operand_types[i.imm_operands].bitfield.class != RegSIMD
6348 && operand_types[i.imm_operands].bitfield.class != RegMask)
6349 || (operand_types[j].bitfield.class != RegMMX
6350 && operand_types[j].bitfield.class != RegSIMD
6351 && operand_types[j].bitfield.class != RegMask))
6352 && !t->opcode_modifier.sib)
6353 continue;
6354
6355 /* Do not verify operands when there are none. */
6356 if (!t->operands)
6357 {
6358 if (VEX_check_encoding (t))
6359 {
6360 specific_error = i.error;
6361 continue;
6362 }
6363
6364 /* We've found a match; break out of loop. */
6365 break;
6366 }
6367
6368 if (!t->opcode_modifier.jump
6369 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
6370 {
6371 /* There should be only one Disp operand. */
6372 for (j = 0; j < MAX_OPERANDS; j++)
6373 if (operand_type_check (operand_types[j], disp))
6374 break;
6375 if (j < MAX_OPERANDS)
6376 {
6377 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
6378
6379 addr_prefix_disp = j;
6380
6381 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
6382 operand into Disp32/Disp32/Disp16/Disp32 operand. */
6383 switch (flag_code)
6384 {
6385 case CODE_16BIT:
6386 override = !override;
6387 /* Fall through. */
6388 case CODE_32BIT:
6389 if (operand_types[j].bitfield.disp32
6390 && operand_types[j].bitfield.disp16)
6391 {
6392 operand_types[j].bitfield.disp16 = override;
6393 operand_types[j].bitfield.disp32 = !override;
6394 }
6395 operand_types[j].bitfield.disp32s = 0;
6396 operand_types[j].bitfield.disp64 = 0;
6397 break;
6398
6399 case CODE_64BIT:
6400 if (operand_types[j].bitfield.disp32s
6401 || operand_types[j].bitfield.disp64)
6402 {
6403 operand_types[j].bitfield.disp64 &= !override;
6404 operand_types[j].bitfield.disp32s &= !override;
6405 operand_types[j].bitfield.disp32 = override;
6406 }
6407 operand_types[j].bitfield.disp16 = 0;
6408 break;
6409 }
6410 }
6411 }
6412
6413 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
6414 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
6415 continue;
6416
6417 /* We check register size if needed. */
6418 if (t->opcode_modifier.checkregsize)
6419 {
6420 check_register = (1 << t->operands) - 1;
6421 if (i.broadcast)
6422 check_register &= ~(1 << i.broadcast->operand);
6423 }
6424 else
6425 check_register = 0;
6426
6427 overlap0 = operand_type_and (i.types[0], operand_types[0]);
6428 switch (t->operands)
6429 {
6430 case 1:
6431 if (!operand_type_match (overlap0, i.types[0]))
6432 continue;
6433 break;
6434 case 2:
6435 /* xchg %eax, %eax is a special case. It is an alias for nop
6436 only in 32bit mode and we can use opcode 0x90. In 64bit
6437 mode, we can't use 0x90 for xchg %eax, %eax since it should
6438 zero-extend %eax to %rax. */
6439 if (flag_code == CODE_64BIT
6440 && t->base_opcode == 0x90
6441 && i.types[0].bitfield.instance == Accum
6442 && i.types[0].bitfield.dword
6443 && i.types[1].bitfield.instance == Accum
6444 && i.types[1].bitfield.dword)
6445 continue;
6446 /* xrelease mov %eax, <disp> is another special case. It must not
6447 match the accumulator-only encoding of mov. */
6448 if (flag_code != CODE_64BIT
6449 && i.hle_prefix
6450 && t->base_opcode == 0xa0
6451 && i.types[0].bitfield.instance == Accum
6452 && (i.flags[1] & Operand_Mem))
6453 continue;
6454 /* Fall through. */
6455
6456 case 3:
6457 if (!(size_match & MATCH_STRAIGHT))
6458 goto check_reverse;
6459 /* Reverse direction of operands if swapping is possible in the first
6460 place (operands need to be symmetric) and
6461 - the load form is requested, and the template is a store form,
6462 - the store form is requested, and the template is a load form,
6463 - the non-default (swapped) form is requested. */
6464 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
6465 if (t->opcode_modifier.d && i.reg_operands == i.operands
6466 && !operand_type_all_zero (&overlap1))
6467 switch (i.dir_encoding)
6468 {
6469 case dir_encoding_load:
6470 if (operand_type_check (operand_types[i.operands - 1], anymem)
6471 || t->opcode_modifier.regmem)
6472 goto check_reverse;
6473 break;
6474
6475 case dir_encoding_store:
6476 if (!operand_type_check (operand_types[i.operands - 1], anymem)
6477 && !t->opcode_modifier.regmem)
6478 goto check_reverse;
6479 break;
6480
6481 case dir_encoding_swap:
6482 goto check_reverse;
6483
6484 case dir_encoding_default:
6485 break;
6486 }
6487 /* If we want store form, we skip the current load. */
6488 if ((i.dir_encoding == dir_encoding_store
6489 || i.dir_encoding == dir_encoding_swap)
6490 && i.mem_operands == 0
6491 && t->opcode_modifier.load)
6492 continue;
6493 /* Fall through. */
6494 case 4:
6495 case 5:
6496 overlap1 = operand_type_and (i.types[1], operand_types[1]);
6497 if (!operand_type_match (overlap0, i.types[0])
6498 || !operand_type_match (overlap1, i.types[1])
6499 || ((check_register & 3) == 3
6500 && !operand_type_register_match (i.types[0],
6501 operand_types[0],
6502 i.types[1],
6503 operand_types[1])))
6504 {
6505 /* Check if other direction is valid ... */
6506 if (!t->opcode_modifier.d)
6507 continue;
6508
6509 check_reverse:
6510 if (!(size_match & MATCH_REVERSE))
6511 continue;
6512 /* Try reversing direction of operands. */
6513 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6514 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
6515 if (!operand_type_match (overlap0, i.types[0])
6516 || !operand_type_match (overlap1, i.types[i.operands - 1])
6517 || (check_register
6518 && !operand_type_register_match (i.types[0],
6519 operand_types[i.operands - 1],
6520 i.types[i.operands - 1],
6521 operand_types[0])))
6522 {
6523 /* Does not match either direction. */
6524 continue;
6525 }
6526 /* found_reverse_match holds which of D or FloatR
6527 we've found. */
6528 if (!t->opcode_modifier.d)
6529 found_reverse_match = 0;
6530 else if (operand_types[0].bitfield.tbyte)
6531 found_reverse_match = Opcode_FloatD;
6532 else if (operand_types[0].bitfield.xmmword
6533 || operand_types[i.operands - 1].bitfield.xmmword
6534 || operand_types[0].bitfield.class == RegMMX
6535 || operand_types[i.operands - 1].bitfield.class == RegMMX
6536 || is_any_vex_encoding(t))
6537 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6538 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
6539 else
6540 found_reverse_match = Opcode_D;
6541 if (t->opcode_modifier.floatr)
6542 found_reverse_match |= Opcode_FloatR;
6543 }
6544 else
6545 {
6546 /* Found a forward 2 operand match here. */
6547 switch (t->operands)
6548 {
6549 case 5:
6550 overlap4 = operand_type_and (i.types[4],
6551 operand_types[4]);
6552 /* Fall through. */
6553 case 4:
6554 overlap3 = operand_type_and (i.types[3],
6555 operand_types[3]);
6556 /* Fall through. */
6557 case 3:
6558 overlap2 = operand_type_and (i.types[2],
6559 operand_types[2]);
6560 break;
6561 }
6562
6563 switch (t->operands)
6564 {
6565 case 5:
6566 if (!operand_type_match (overlap4, i.types[4])
6567 || !operand_type_register_match (i.types[3],
6568 operand_types[3],
6569 i.types[4],
6570 operand_types[4]))
6571 continue;
6572 /* Fall through. */
6573 case 4:
6574 if (!operand_type_match (overlap3, i.types[3])
6575 || ((check_register & 0xa) == 0xa
6576 && !operand_type_register_match (i.types[1],
6577 operand_types[1],
6578 i.types[3],
6579 operand_types[3]))
6580 || ((check_register & 0xc) == 0xc
6581 && !operand_type_register_match (i.types[2],
6582 operand_types[2],
6583 i.types[3],
6584 operand_types[3])))
6585 continue;
6586 /* Fall through. */
6587 case 3:
6588 /* Here we make use of the fact that there are no
6589 reverse match 3 operand instructions. */
6590 if (!operand_type_match (overlap2, i.types[2])
6591 || ((check_register & 5) == 5
6592 && !operand_type_register_match (i.types[0],
6593 operand_types[0],
6594 i.types[2],
6595 operand_types[2]))
6596 || ((check_register & 6) == 6
6597 && !operand_type_register_match (i.types[1],
6598 operand_types[1],
6599 i.types[2],
6600 operand_types[2])))
6601 continue;
6602 break;
6603 }
6604 }
6605 /* Found either forward/reverse 2, 3 or 4 operand match here:
6606 slip through to break. */
6607 }
6608
6609 /* Check if vector operands are valid. */
6610 if (check_VecOperands (t))
6611 {
6612 specific_error = i.error;
6613 continue;
6614 }
6615
6616 /* Check if VEX/EVEX encoding requirements can be satisfied. */
6617 if (VEX_check_encoding (t))
6618 {
6619 specific_error = i.error;
6620 continue;
6621 }
6622
6623 /* We've found a match; break out of loop. */
6624 break;
6625 }
6626
6627 if (t == current_templates->end)
6628 {
6629 /* We found no match. */
6630 const char *err_msg;
6631 switch (specific_error ? specific_error : i.error)
6632 {
6633 default:
6634 abort ();
6635 case operand_size_mismatch:
6636 err_msg = _("operand size mismatch");
6637 break;
6638 case operand_type_mismatch:
6639 err_msg = _("operand type mismatch");
6640 break;
6641 case register_type_mismatch:
6642 err_msg = _("register type mismatch");
6643 break;
6644 case number_of_operands_mismatch:
6645 err_msg = _("number of operands mismatch");
6646 break;
6647 case invalid_instruction_suffix:
6648 err_msg = _("invalid instruction suffix");
6649 break;
6650 case bad_imm4:
6651 err_msg = _("constant doesn't fit in 4 bits");
6652 break;
6653 case unsupported_with_intel_mnemonic:
6654 err_msg = _("unsupported with Intel mnemonic");
6655 break;
6656 case unsupported_syntax:
6657 err_msg = _("unsupported syntax");
6658 break;
6659 case unsupported:
6660 as_bad (_("unsupported instruction `%s'"),
6661 current_templates->start->name);
6662 return NULL;
6663 case invalid_sib_address:
6664 err_msg = _("invalid SIB address");
6665 break;
6666 case invalid_vsib_address:
6667 err_msg = _("invalid VSIB address");
6668 break;
6669 case invalid_vector_register_set:
6670 err_msg = _("mask, index, and destination registers must be distinct");
6671 break;
6672 case invalid_tmm_register_set:
6673 err_msg = _("all tmm registers must be distinct");
6674 break;
6675 case unsupported_vector_index_register:
6676 err_msg = _("unsupported vector index register");
6677 break;
6678 case unsupported_broadcast:
6679 err_msg = _("unsupported broadcast");
6680 break;
6681 case broadcast_needed:
6682 err_msg = _("broadcast is needed for operand of such type");
6683 break;
6684 case unsupported_masking:
6685 err_msg = _("unsupported masking");
6686 break;
6687 case mask_not_on_destination:
6688 err_msg = _("mask not on destination operand");
6689 break;
6690 case no_default_mask:
6691 err_msg = _("default mask isn't allowed");
6692 break;
6693 case unsupported_rc_sae:
6694 err_msg = _("unsupported static rounding/sae");
6695 break;
6696 case rc_sae_operand_not_last_imm:
6697 if (intel_syntax)
6698 err_msg = _("RC/SAE operand must precede immediate operands");
6699 else
6700 err_msg = _("RC/SAE operand must follow immediate operands");
6701 break;
6702 case invalid_register_operand:
6703 err_msg = _("invalid register operand");
6704 break;
6705 }
6706 as_bad (_("%s for `%s'"), err_msg,
6707 current_templates->start->name);
6708 return NULL;
6709 }
6710
6711 if (!quiet_warnings)
6712 {
6713 if (!intel_syntax
6714 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6715 as_warn (_("indirect %s without `*'"), t->name);
6716
6717 if (t->opcode_modifier.isprefix
6718 && t->opcode_modifier.mnemonicsize == IGNORESIZE)
6719 {
6720 /* Warn them that a data or address size prefix doesn't
6721 affect assembly of the next line of code. */
6722 as_warn (_("stand-alone `%s' prefix"), t->name);
6723 }
6724 }
6725
6726 /* Copy the template we found. */
6727 i.tm = *t;
6728
6729 if (addr_prefix_disp != -1)
6730 i.tm.operand_types[addr_prefix_disp]
6731 = operand_types[addr_prefix_disp];
6732
6733 if (found_reverse_match)
6734 {
6735 /* If we found a reverse match we must alter the opcode direction
6736 bit and clear/flip the regmem modifier one. found_reverse_match
6737 holds bits to change (different for int & float insns). */
6738
6739 i.tm.base_opcode ^= found_reverse_match;
6740
6741 i.tm.operand_types[0] = operand_types[i.operands - 1];
6742 i.tm.operand_types[i.operands - 1] = operand_types[0];
6743
6744 /* Certain SIMD insns have their load forms specified in the opcode
6745 table, and hence we need to _set_ RegMem instead of clearing it.
6746 We need to avoid setting the bit though on insns like KMOVW. */
6747 i.tm.opcode_modifier.regmem
6748 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6749 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6750 && !i.tm.opcode_modifier.regmem;
6751 }
6752
6753 return t;
6754 }
6755
6756 static int
6757 check_string (void)
6758 {
6759 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6760 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
6761
6762 if (i.seg[op] != NULL && i.seg[op] != &es)
6763 {
6764 as_bad (_("`%s' operand %u must use `%ses' segment"),
6765 i.tm.name,
6766 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6767 register_prefix);
6768 return 0;
6769 }
6770
6771 /* There's only ever one segment override allowed per instruction.
6772 This instruction possibly has a legal segment override on the
6773 second operand, so copy the segment to where non-string
6774 instructions store it, allowing common code. */
6775 i.seg[op] = i.seg[1];
6776
6777 return 1;
6778 }
6779
6780 static int
6781 process_suffix (void)
6782 {
6783 bfd_boolean is_crc32 = FALSE;
6784
6785 /* If matched instruction specifies an explicit instruction mnemonic
6786 suffix, use it. */
6787 if (i.tm.opcode_modifier.size == SIZE16)
6788 i.suffix = WORD_MNEM_SUFFIX;
6789 else if (i.tm.opcode_modifier.size == SIZE32)
6790 i.suffix = LONG_MNEM_SUFFIX;
6791 else if (i.tm.opcode_modifier.size == SIZE64)
6792 i.suffix = QWORD_MNEM_SUFFIX;
6793 else if (i.reg_operands
6794 && (i.operands > 1 || i.types[0].bitfield.class == Reg)
6795 && !i.tm.opcode_modifier.addrprefixopreg)
6796 {
6797 unsigned int numop = i.operands;
6798 /* CRC32 */
6799 is_crc32 = (i.tm.base_opcode == 0xf38f0
6800 && i.tm.opcode_modifier.opcodeprefix == PREFIX_0XF2);
6801
6802 /* movsx/movzx want only their source operand considered here, for the
6803 ambiguity checking below. The suffix will be replaced afterwards
6804 to represent the destination (register). */
6805 if (((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w)
6806 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
6807 --i.operands;
6808
6809 /* crc32 needs REX.W set regardless of suffix / source operand size. */
6810 if (is_crc32 && i.tm.operand_types[1].bitfield.qword)
6811 i.rex |= REX_W;
6812
6813 /* If there's no instruction mnemonic suffix we try to invent one
6814 based on GPR operands. */
6815 if (!i.suffix)
6816 {
6817 /* We take i.suffix from the last register operand specified,
6818 Destination register type is more significant than source
6819 register type. crc32 in SSE4.2 prefers source register
6820 type. */
6821 unsigned int op = is_crc32 ? 1 : i.operands;
6822
6823 while (op--)
6824 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6825 || i.tm.operand_types[op].bitfield.instance == Accum)
6826 {
6827 if (i.types[op].bitfield.class != Reg)
6828 continue;
6829 if (i.types[op].bitfield.byte)
6830 i.suffix = BYTE_MNEM_SUFFIX;
6831 else if (i.types[op].bitfield.word)
6832 i.suffix = WORD_MNEM_SUFFIX;
6833 else if (i.types[op].bitfield.dword)
6834 i.suffix = LONG_MNEM_SUFFIX;
6835 else if (i.types[op].bitfield.qword)
6836 i.suffix = QWORD_MNEM_SUFFIX;
6837 else
6838 continue;
6839 break;
6840 }
6841
6842 /* As an exception, movsx/movzx silently default to a byte source
6843 in AT&T mode. */
6844 if ((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w
6845 && !i.suffix && !intel_syntax)
6846 i.suffix = BYTE_MNEM_SUFFIX;
6847 }
6848 else if (i.suffix == BYTE_MNEM_SUFFIX)
6849 {
6850 if (intel_syntax
6851 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6852 && i.tm.opcode_modifier.no_bsuf)
6853 i.suffix = 0;
6854 else if (!check_byte_reg ())
6855 return 0;
6856 }
6857 else if (i.suffix == LONG_MNEM_SUFFIX)
6858 {
6859 if (intel_syntax
6860 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6861 && i.tm.opcode_modifier.no_lsuf
6862 && !i.tm.opcode_modifier.todword
6863 && !i.tm.opcode_modifier.toqword)
6864 i.suffix = 0;
6865 else if (!check_long_reg ())
6866 return 0;
6867 }
6868 else if (i.suffix == QWORD_MNEM_SUFFIX)
6869 {
6870 if (intel_syntax
6871 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6872 && i.tm.opcode_modifier.no_qsuf
6873 && !i.tm.opcode_modifier.todword
6874 && !i.tm.opcode_modifier.toqword)
6875 i.suffix = 0;
6876 else if (!check_qword_reg ())
6877 return 0;
6878 }
6879 else if (i.suffix == WORD_MNEM_SUFFIX)
6880 {
6881 if (intel_syntax
6882 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6883 && i.tm.opcode_modifier.no_wsuf)
6884 i.suffix = 0;
6885 else if (!check_word_reg ())
6886 return 0;
6887 }
6888 else if (intel_syntax
6889 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE)
6890 /* Do nothing if the instruction is going to ignore the prefix. */
6891 ;
6892 else
6893 abort ();
6894
6895 /* Undo the movsx/movzx change done above. */
6896 i.operands = numop;
6897 }
6898 else if (i.tm.opcode_modifier.mnemonicsize == DEFAULTSIZE
6899 && !i.suffix)
6900 {
6901 i.suffix = stackop_size;
6902 if (stackop_size == LONG_MNEM_SUFFIX)
6903 {
6904 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6905 .code16gcc directive to support 16-bit mode with
6906 32-bit address. For IRET without a suffix, generate
6907 16-bit IRET (opcode 0xcf) to return from an interrupt
6908 handler. */
6909 if (i.tm.base_opcode == 0xcf)
6910 {
6911 i.suffix = WORD_MNEM_SUFFIX;
6912 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6913 }
6914 /* Warn about changed behavior for segment register push/pop. */
6915 else if ((i.tm.base_opcode | 1) == 0x07)
6916 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6917 i.tm.name);
6918 }
6919 }
6920 else if (!i.suffix
6921 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6922 || i.tm.opcode_modifier.jump == JUMP_BYTE
6923 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
6924 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6925 && i.tm.extension_opcode <= 3)))
6926 {
6927 switch (flag_code)
6928 {
6929 case CODE_64BIT:
6930 if (!i.tm.opcode_modifier.no_qsuf)
6931 {
6932 if (i.tm.opcode_modifier.jump == JUMP_BYTE
6933 || i.tm.opcode_modifier.no_lsuf)
6934 i.suffix = QWORD_MNEM_SUFFIX;
6935 break;
6936 }
6937 /* Fall through. */
6938 case CODE_32BIT:
6939 if (!i.tm.opcode_modifier.no_lsuf)
6940 i.suffix = LONG_MNEM_SUFFIX;
6941 break;
6942 case CODE_16BIT:
6943 if (!i.tm.opcode_modifier.no_wsuf)
6944 i.suffix = WORD_MNEM_SUFFIX;
6945 break;
6946 }
6947 }
6948
6949 if (!i.suffix
6950 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
6951 /* Also cover lret/retf/iret in 64-bit mode. */
6952 || (flag_code == CODE_64BIT
6953 && !i.tm.opcode_modifier.no_lsuf
6954 && !i.tm.opcode_modifier.no_qsuf))
6955 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
6956 /* Explicit sizing prefixes are assumed to disambiguate insns. */
6957 && !i.prefix[DATA_PREFIX] && !(i.prefix[REX_PREFIX] & REX_W)
6958 /* Accept FLDENV et al without suffix. */
6959 && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
6960 {
6961 unsigned int suffixes, evex = 0;
6962
6963 suffixes = !i.tm.opcode_modifier.no_bsuf;
6964 if (!i.tm.opcode_modifier.no_wsuf)
6965 suffixes |= 1 << 1;
6966 if (!i.tm.opcode_modifier.no_lsuf)
6967 suffixes |= 1 << 2;
6968 if (!i.tm.opcode_modifier.no_ldsuf)
6969 suffixes |= 1 << 3;
6970 if (!i.tm.opcode_modifier.no_ssuf)
6971 suffixes |= 1 << 4;
6972 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6973 suffixes |= 1 << 5;
6974
6975 /* For [XYZ]MMWORD operands inspect operand sizes. While generally
6976 also suitable for AT&T syntax mode, it was requested that this be
6977 restricted to just Intel syntax. */
6978 if (intel_syntax && is_any_vex_encoding (&i.tm) && !i.broadcast)
6979 {
6980 unsigned int op;
6981
6982 for (op = 0; op < i.tm.operands; ++op)
6983 {
6984 if (is_evex_encoding (&i.tm)
6985 && !cpu_arch_flags.bitfield.cpuavx512vl)
6986 {
6987 if (i.tm.operand_types[op].bitfield.ymmword)
6988 i.tm.operand_types[op].bitfield.xmmword = 0;
6989 if (i.tm.operand_types[op].bitfield.zmmword)
6990 i.tm.operand_types[op].bitfield.ymmword = 0;
6991 if (!i.tm.opcode_modifier.evex
6992 || i.tm.opcode_modifier.evex == EVEXDYN)
6993 i.tm.opcode_modifier.evex = EVEX512;
6994 }
6995
6996 if (i.tm.operand_types[op].bitfield.xmmword
6997 + i.tm.operand_types[op].bitfield.ymmword
6998 + i.tm.operand_types[op].bitfield.zmmword < 2)
6999 continue;
7000
7001 /* Any properly sized operand disambiguates the insn. */
7002 if (i.types[op].bitfield.xmmword
7003 || i.types[op].bitfield.ymmword
7004 || i.types[op].bitfield.zmmword)
7005 {
7006 suffixes &= ~(7 << 6);
7007 evex = 0;
7008 break;
7009 }
7010
7011 if ((i.flags[op] & Operand_Mem)
7012 && i.tm.operand_types[op].bitfield.unspecified)
7013 {
7014 if (i.tm.operand_types[op].bitfield.xmmword)
7015 suffixes |= 1 << 6;
7016 if (i.tm.operand_types[op].bitfield.ymmword)
7017 suffixes |= 1 << 7;
7018 if (i.tm.operand_types[op].bitfield.zmmword)
7019 suffixes |= 1 << 8;
7020 if (is_evex_encoding (&i.tm))
7021 evex = EVEX512;
7022 }
7023 }
7024 }
7025
7026 /* Are multiple suffixes / operand sizes allowed? */
7027 if (suffixes & (suffixes - 1))
7028 {
7029 if (intel_syntax
7030 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
7031 || operand_check == check_error))
7032 {
7033 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
7034 return 0;
7035 }
7036 if (operand_check == check_error)
7037 {
7038 as_bad (_("no instruction mnemonic suffix given and "
7039 "no register operands; can't size `%s'"), i.tm.name);
7040 return 0;
7041 }
7042 if (operand_check == check_warning)
7043 as_warn (_("%s; using default for `%s'"),
7044 intel_syntax
7045 ? _("ambiguous operand size")
7046 : _("no instruction mnemonic suffix given and "
7047 "no register operands"),
7048 i.tm.name);
7049
7050 if (i.tm.opcode_modifier.floatmf)
7051 i.suffix = SHORT_MNEM_SUFFIX;
7052 else if ((i.tm.base_opcode | 8) == 0xfbe
7053 || (i.tm.base_opcode == 0x63
7054 && i.tm.cpu_flags.bitfield.cpu64))
7055 /* handled below */;
7056 else if (evex)
7057 i.tm.opcode_modifier.evex = evex;
7058 else if (flag_code == CODE_16BIT)
7059 i.suffix = WORD_MNEM_SUFFIX;
7060 else if (!i.tm.opcode_modifier.no_lsuf)
7061 i.suffix = LONG_MNEM_SUFFIX;
7062 else
7063 i.suffix = QWORD_MNEM_SUFFIX;
7064 }
7065 }
7066
7067 if ((i.tm.base_opcode | 8) == 0xfbe
7068 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
7069 {
7070 /* In Intel syntax, movsx/movzx must have a "suffix" (checked above).
7071 In AT&T syntax, if there is no suffix (warned about above), the default
7072 will be byte extension. */
7073 if (i.tm.opcode_modifier.w && i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
7074 i.tm.base_opcode |= 1;
7075
7076 /* For further processing, the suffix should represent the destination
7077 (register). This is already the case when one was used with
7078 mov[sz][bw]*, but we need to replace it for mov[sz]x, or if there was
7079 no suffix to begin with. */
7080 if (i.tm.opcode_modifier.w || i.tm.base_opcode == 0x63 || !i.suffix)
7081 {
7082 if (i.types[1].bitfield.word)
7083 i.suffix = WORD_MNEM_SUFFIX;
7084 else if (i.types[1].bitfield.qword)
7085 i.suffix = QWORD_MNEM_SUFFIX;
7086 else
7087 i.suffix = LONG_MNEM_SUFFIX;
7088
7089 i.tm.opcode_modifier.w = 0;
7090 }
7091 }
7092
7093 if (!i.tm.opcode_modifier.modrm && i.reg_operands && i.tm.operands < 3)
7094 i.short_form = (i.tm.operand_types[0].bitfield.class == Reg)
7095 != (i.tm.operand_types[1].bitfield.class == Reg);
7096
7097 /* Change the opcode based on the operand size given by i.suffix. */
7098 switch (i.suffix)
7099 {
7100 /* Size floating point instruction. */
7101 case LONG_MNEM_SUFFIX:
7102 if (i.tm.opcode_modifier.floatmf)
7103 {
7104 i.tm.base_opcode ^= 4;
7105 break;
7106 }
7107 /* fall through */
7108 case WORD_MNEM_SUFFIX:
7109 case QWORD_MNEM_SUFFIX:
7110 /* It's not a byte, select word/dword operation. */
7111 if (i.tm.opcode_modifier.w)
7112 {
7113 if (i.short_form)
7114 i.tm.base_opcode |= 8;
7115 else
7116 i.tm.base_opcode |= 1;
7117 }
7118 /* fall through */
7119 case SHORT_MNEM_SUFFIX:
7120 /* Now select between word & dword operations via the operand
7121 size prefix, except for instructions that will ignore this
7122 prefix anyway. */
7123 if (i.suffix != QWORD_MNEM_SUFFIX
7124 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
7125 && !i.tm.opcode_modifier.floatmf
7126 && !is_any_vex_encoding (&i.tm)
7127 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
7128 || (flag_code == CODE_64BIT
7129 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
7130 {
7131 unsigned int prefix = DATA_PREFIX_OPCODE;
7132
7133 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
7134 prefix = ADDR_PREFIX_OPCODE;
7135
7136 if (!add_prefix (prefix))
7137 return 0;
7138 }
7139
7140 /* Set mode64 for an operand. */
7141 if (i.suffix == QWORD_MNEM_SUFFIX
7142 && flag_code == CODE_64BIT
7143 && !i.tm.opcode_modifier.norex64
7144 && !i.tm.opcode_modifier.vexw
7145 /* Special case for xchg %rax,%rax. It is NOP and doesn't
7146 need rex64. */
7147 && ! (i.operands == 2
7148 && i.tm.base_opcode == 0x90
7149 && i.tm.extension_opcode == None
7150 && i.types[0].bitfield.instance == Accum
7151 && i.types[0].bitfield.qword
7152 && i.types[1].bitfield.instance == Accum
7153 && i.types[1].bitfield.qword))
7154 i.rex |= REX_W;
7155
7156 break;
7157
7158 case 0:
7159 /* Select word/dword/qword operation with explict data sizing prefix
7160 when there are no suitable register operands. */
7161 if (i.tm.opcode_modifier.w
7162 && (i.prefix[DATA_PREFIX] || (i.prefix[REX_PREFIX] & REX_W))
7163 && (!i.reg_operands
7164 || (i.reg_operands == 1
7165 /* ShiftCount */
7166 && (i.tm.operand_types[0].bitfield.instance == RegC
7167 /* InOutPortReg */
7168 || i.tm.operand_types[0].bitfield.instance == RegD
7169 || i.tm.operand_types[1].bitfield.instance == RegD
7170 /* CRC32 */
7171 || is_crc32))))
7172 i.tm.base_opcode |= 1;
7173 break;
7174 }
7175
7176 if (i.tm.opcode_modifier.addrprefixopreg)
7177 {
7178 gas_assert (!i.suffix);
7179 gas_assert (i.reg_operands);
7180
7181 if (i.tm.operand_types[0].bitfield.instance == Accum
7182 || i.operands == 1)
7183 {
7184 /* The address size override prefix changes the size of the
7185 first operand. */
7186 if (flag_code == CODE_64BIT
7187 && i.op[0].regs->reg_type.bitfield.word)
7188 {
7189 as_bad (_("16-bit addressing unavailable for `%s'"),
7190 i.tm.name);
7191 return 0;
7192 }
7193
7194 if ((flag_code == CODE_32BIT
7195 ? i.op[0].regs->reg_type.bitfield.word
7196 : i.op[0].regs->reg_type.bitfield.dword)
7197 && !add_prefix (ADDR_PREFIX_OPCODE))
7198 return 0;
7199 }
7200 else
7201 {
7202 /* Check invalid register operand when the address size override
7203 prefix changes the size of register operands. */
7204 unsigned int op;
7205 enum { need_word, need_dword, need_qword } need;
7206
7207 /* Check the register operand for the address size prefix if
7208 the memory operand has no real registers, like symbol, DISP
7209 or symbol(%rip). */
7210 if (i.mem_operands == 1
7211 && i.reg_operands == 1
7212 && i.operands == 2
7213 && i.types[1].bitfield.class == Reg
7214 && (flag_code == CODE_32BIT
7215 ? i.op[1].regs->reg_type.bitfield.word
7216 : i.op[1].regs->reg_type.bitfield.dword)
7217 && ((i.base_reg == NULL && i.index_reg == NULL)
7218 || (i.base_reg
7219 && i.base_reg->reg_num == RegIP
7220 && i.base_reg->reg_type.bitfield.qword))
7221 && !add_prefix (ADDR_PREFIX_OPCODE))
7222 return 0;
7223
7224 if (flag_code == CODE_32BIT)
7225 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
7226 else if (i.prefix[ADDR_PREFIX])
7227 need = need_dword;
7228 else
7229 need = flag_code == CODE_64BIT ? need_qword : need_word;
7230
7231 for (op = 0; op < i.operands; op++)
7232 {
7233 if (i.types[op].bitfield.class != Reg)
7234 continue;
7235
7236 switch (need)
7237 {
7238 case need_word:
7239 if (i.op[op].regs->reg_type.bitfield.word)
7240 continue;
7241 break;
7242 case need_dword:
7243 if (i.op[op].regs->reg_type.bitfield.dword)
7244 continue;
7245 break;
7246 case need_qword:
7247 if (i.op[op].regs->reg_type.bitfield.qword)
7248 continue;
7249 break;
7250 }
7251
7252 as_bad (_("invalid register operand size for `%s'"),
7253 i.tm.name);
7254 return 0;
7255 }
7256 }
7257 }
7258
7259 return 1;
7260 }
7261
7262 static int
7263 check_byte_reg (void)
7264 {
7265 int op;
7266
7267 for (op = i.operands; --op >= 0;)
7268 {
7269 /* Skip non-register operands. */
7270 if (i.types[op].bitfield.class != Reg)
7271 continue;
7272
7273 /* If this is an eight bit register, it's OK. If it's the 16 or
7274 32 bit version of an eight bit register, we will just use the
7275 low portion, and that's OK too. */
7276 if (i.types[op].bitfield.byte)
7277 continue;
7278
7279 /* I/O port address operands are OK too. */
7280 if (i.tm.operand_types[op].bitfield.instance == RegD
7281 && i.tm.operand_types[op].bitfield.word)
7282 continue;
7283
7284 /* crc32 only wants its source operand checked here. */
7285 if (i.tm.base_opcode == 0xf38f0
7286 && i.tm.opcode_modifier.opcodeprefix == PREFIX_0XF2
7287 && op != 0)
7288 continue;
7289
7290 /* Any other register is bad. */
7291 as_bad (_("`%s%s' not allowed with `%s%c'"),
7292 register_prefix, i.op[op].regs->reg_name,
7293 i.tm.name, i.suffix);
7294 return 0;
7295 }
7296 return 1;
7297 }
7298
7299 static int
7300 check_long_reg (void)
7301 {
7302 int op;
7303
7304 for (op = i.operands; --op >= 0;)
7305 /* Skip non-register operands. */
7306 if (i.types[op].bitfield.class != Reg)
7307 continue;
7308 /* Reject eight bit registers, except where the template requires
7309 them. (eg. movzb) */
7310 else if (i.types[op].bitfield.byte
7311 && (i.tm.operand_types[op].bitfield.class == Reg
7312 || i.tm.operand_types[op].bitfield.instance == Accum)
7313 && (i.tm.operand_types[op].bitfield.word
7314 || i.tm.operand_types[op].bitfield.dword))
7315 {
7316 as_bad (_("`%s%s' not allowed with `%s%c'"),
7317 register_prefix,
7318 i.op[op].regs->reg_name,
7319 i.tm.name,
7320 i.suffix);
7321 return 0;
7322 }
7323 /* Error if the e prefix on a general reg is missing. */
7324 else if (i.types[op].bitfield.word
7325 && (i.tm.operand_types[op].bitfield.class == Reg
7326 || i.tm.operand_types[op].bitfield.instance == Accum)
7327 && i.tm.operand_types[op].bitfield.dword)
7328 {
7329 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7330 register_prefix, i.op[op].regs->reg_name,
7331 i.suffix);
7332 return 0;
7333 }
7334 /* Warn if the r prefix on a general reg is present. */
7335 else if (i.types[op].bitfield.qword
7336 && (i.tm.operand_types[op].bitfield.class == Reg
7337 || i.tm.operand_types[op].bitfield.instance == Accum)
7338 && i.tm.operand_types[op].bitfield.dword)
7339 {
7340 if (intel_syntax
7341 && i.tm.opcode_modifier.toqword
7342 && i.types[0].bitfield.class != RegSIMD)
7343 {
7344 /* Convert to QWORD. We want REX byte. */
7345 i.suffix = QWORD_MNEM_SUFFIX;
7346 }
7347 else
7348 {
7349 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7350 register_prefix, i.op[op].regs->reg_name,
7351 i.suffix);
7352 return 0;
7353 }
7354 }
7355 return 1;
7356 }
7357
7358 static int
7359 check_qword_reg (void)
7360 {
7361 int op;
7362
7363 for (op = i.operands; --op >= 0; )
7364 /* Skip non-register operands. */
7365 if (i.types[op].bitfield.class != Reg)
7366 continue;
7367 /* Reject eight bit registers, except where the template requires
7368 them. (eg. movzb) */
7369 else if (i.types[op].bitfield.byte
7370 && (i.tm.operand_types[op].bitfield.class == Reg
7371 || i.tm.operand_types[op].bitfield.instance == Accum)
7372 && (i.tm.operand_types[op].bitfield.word
7373 || i.tm.operand_types[op].bitfield.dword))
7374 {
7375 as_bad (_("`%s%s' not allowed with `%s%c'"),
7376 register_prefix,
7377 i.op[op].regs->reg_name,
7378 i.tm.name,
7379 i.suffix);
7380 return 0;
7381 }
7382 /* Warn if the r prefix on a general reg is missing. */
7383 else if ((i.types[op].bitfield.word
7384 || i.types[op].bitfield.dword)
7385 && (i.tm.operand_types[op].bitfield.class == Reg
7386 || i.tm.operand_types[op].bitfield.instance == Accum)
7387 && i.tm.operand_types[op].bitfield.qword)
7388 {
7389 /* Prohibit these changes in the 64bit mode, since the
7390 lowering is more complicated. */
7391 if (intel_syntax
7392 && i.tm.opcode_modifier.todword
7393 && i.types[0].bitfield.class != RegSIMD)
7394 {
7395 /* Convert to DWORD. We don't want REX byte. */
7396 i.suffix = LONG_MNEM_SUFFIX;
7397 }
7398 else
7399 {
7400 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7401 register_prefix, i.op[op].regs->reg_name,
7402 i.suffix);
7403 return 0;
7404 }
7405 }
7406 return 1;
7407 }
7408
7409 static int
7410 check_word_reg (void)
7411 {
7412 int op;
7413 for (op = i.operands; --op >= 0;)
7414 /* Skip non-register operands. */
7415 if (i.types[op].bitfield.class != Reg)
7416 continue;
7417 /* Reject eight bit registers, except where the template requires
7418 them. (eg. movzb) */
7419 else if (i.types[op].bitfield.byte
7420 && (i.tm.operand_types[op].bitfield.class == Reg
7421 || i.tm.operand_types[op].bitfield.instance == Accum)
7422 && (i.tm.operand_types[op].bitfield.word
7423 || i.tm.operand_types[op].bitfield.dword))
7424 {
7425 as_bad (_("`%s%s' not allowed with `%s%c'"),
7426 register_prefix,
7427 i.op[op].regs->reg_name,
7428 i.tm.name,
7429 i.suffix);
7430 return 0;
7431 }
7432 /* Error if the e or r prefix on a general reg is present. */
7433 else if ((i.types[op].bitfield.dword
7434 || i.types[op].bitfield.qword)
7435 && (i.tm.operand_types[op].bitfield.class == Reg
7436 || i.tm.operand_types[op].bitfield.instance == Accum)
7437 && i.tm.operand_types[op].bitfield.word)
7438 {
7439 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7440 register_prefix, i.op[op].regs->reg_name,
7441 i.suffix);
7442 return 0;
7443 }
7444 return 1;
7445 }
7446
7447 static int
7448 update_imm (unsigned int j)
7449 {
7450 i386_operand_type overlap = i.types[j];
7451 if ((overlap.bitfield.imm8
7452 || overlap.bitfield.imm8s
7453 || overlap.bitfield.imm16
7454 || overlap.bitfield.imm32
7455 || overlap.bitfield.imm32s
7456 || overlap.bitfield.imm64)
7457 && !operand_type_equal (&overlap, &imm8)
7458 && !operand_type_equal (&overlap, &imm8s)
7459 && !operand_type_equal (&overlap, &imm16)
7460 && !operand_type_equal (&overlap, &imm32)
7461 && !operand_type_equal (&overlap, &imm32s)
7462 && !operand_type_equal (&overlap, &imm64))
7463 {
7464 if (i.suffix)
7465 {
7466 i386_operand_type temp;
7467
7468 operand_type_set (&temp, 0);
7469 if (i.suffix == BYTE_MNEM_SUFFIX)
7470 {
7471 temp.bitfield.imm8 = overlap.bitfield.imm8;
7472 temp.bitfield.imm8s = overlap.bitfield.imm8s;
7473 }
7474 else if (i.suffix == WORD_MNEM_SUFFIX)
7475 temp.bitfield.imm16 = overlap.bitfield.imm16;
7476 else if (i.suffix == QWORD_MNEM_SUFFIX)
7477 {
7478 temp.bitfield.imm64 = overlap.bitfield.imm64;
7479 temp.bitfield.imm32s = overlap.bitfield.imm32s;
7480 }
7481 else
7482 temp.bitfield.imm32 = overlap.bitfield.imm32;
7483 overlap = temp;
7484 }
7485 else if (operand_type_equal (&overlap, &imm16_32_32s)
7486 || operand_type_equal (&overlap, &imm16_32)
7487 || operand_type_equal (&overlap, &imm16_32s))
7488 {
7489 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
7490 overlap = imm16;
7491 else
7492 overlap = imm32s;
7493 }
7494 else if (i.prefix[REX_PREFIX] & REX_W)
7495 overlap = operand_type_and (overlap, imm32s);
7496 else if (i.prefix[DATA_PREFIX])
7497 overlap = operand_type_and (overlap,
7498 flag_code != CODE_16BIT ? imm16 : imm32);
7499 if (!operand_type_equal (&overlap, &imm8)
7500 && !operand_type_equal (&overlap, &imm8s)
7501 && !operand_type_equal (&overlap, &imm16)
7502 && !operand_type_equal (&overlap, &imm32)
7503 && !operand_type_equal (&overlap, &imm32s)
7504 && !operand_type_equal (&overlap, &imm64))
7505 {
7506 as_bad (_("no instruction mnemonic suffix given; "
7507 "can't determine immediate size"));
7508 return 0;
7509 }
7510 }
7511 i.types[j] = overlap;
7512
7513 return 1;
7514 }
7515
7516 static int
7517 finalize_imm (void)
7518 {
7519 unsigned int j, n;
7520
7521 /* Update the first 2 immediate operands. */
7522 n = i.operands > 2 ? 2 : i.operands;
7523 if (n)
7524 {
7525 for (j = 0; j < n; j++)
7526 if (update_imm (j) == 0)
7527 return 0;
7528
7529 /* The 3rd operand can't be immediate operand. */
7530 gas_assert (operand_type_check (i.types[2], imm) == 0);
7531 }
7532
7533 return 1;
7534 }
7535
7536 static int
7537 process_operands (void)
7538 {
7539 /* Default segment register this instruction will use for memory
7540 accesses. 0 means unknown. This is only for optimizing out
7541 unnecessary segment overrides. */
7542 const seg_entry *default_seg = 0;
7543
7544 if (i.tm.opcode_modifier.sse2avx)
7545 {
7546 /* Legacy encoded insns allow explicit REX prefixes, so these prefixes
7547 need converting. */
7548 i.rex |= i.prefix[REX_PREFIX] & (REX_W | REX_R | REX_X | REX_B);
7549 i.prefix[REX_PREFIX] = 0;
7550 i.rex_encoding = 0;
7551 }
7552 /* ImmExt should be processed after SSE2AVX. */
7553 else if (i.tm.opcode_modifier.immext)
7554 process_immext ();
7555
7556 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
7557 {
7558 unsigned int dupl = i.operands;
7559 unsigned int dest = dupl - 1;
7560 unsigned int j;
7561
7562 /* The destination must be an xmm register. */
7563 gas_assert (i.reg_operands
7564 && MAX_OPERANDS > dupl
7565 && operand_type_equal (&i.types[dest], &regxmm));
7566
7567 if (i.tm.operand_types[0].bitfield.instance == Accum
7568 && i.tm.operand_types[0].bitfield.xmmword)
7569 {
7570 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
7571 {
7572 /* Keep xmm0 for instructions with VEX prefix and 3
7573 sources. */
7574 i.tm.operand_types[0].bitfield.instance = InstanceNone;
7575 i.tm.operand_types[0].bitfield.class = RegSIMD;
7576 goto duplicate;
7577 }
7578 else
7579 {
7580 /* We remove the first xmm0 and keep the number of
7581 operands unchanged, which in fact duplicates the
7582 destination. */
7583 for (j = 1; j < i.operands; j++)
7584 {
7585 i.op[j - 1] = i.op[j];
7586 i.types[j - 1] = i.types[j];
7587 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
7588 i.flags[j - 1] = i.flags[j];
7589 }
7590 }
7591 }
7592 else if (i.tm.opcode_modifier.implicit1stxmm0)
7593 {
7594 gas_assert ((MAX_OPERANDS - 1) > dupl
7595 && (i.tm.opcode_modifier.vexsources
7596 == VEX3SOURCES));
7597
7598 /* Add the implicit xmm0 for instructions with VEX prefix
7599 and 3 sources. */
7600 for (j = i.operands; j > 0; j--)
7601 {
7602 i.op[j] = i.op[j - 1];
7603 i.types[j] = i.types[j - 1];
7604 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
7605 i.flags[j] = i.flags[j - 1];
7606 }
7607 i.op[0].regs
7608 = (const reg_entry *) str_hash_find (reg_hash, "xmm0");
7609 i.types[0] = regxmm;
7610 i.tm.operand_types[0] = regxmm;
7611
7612 i.operands += 2;
7613 i.reg_operands += 2;
7614 i.tm.operands += 2;
7615
7616 dupl++;
7617 dest++;
7618 i.op[dupl] = i.op[dest];
7619 i.types[dupl] = i.types[dest];
7620 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7621 i.flags[dupl] = i.flags[dest];
7622 }
7623 else
7624 {
7625 duplicate:
7626 i.operands++;
7627 i.reg_operands++;
7628 i.tm.operands++;
7629
7630 i.op[dupl] = i.op[dest];
7631 i.types[dupl] = i.types[dest];
7632 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7633 i.flags[dupl] = i.flags[dest];
7634 }
7635
7636 if (i.tm.opcode_modifier.immext)
7637 process_immext ();
7638 }
7639 else if (i.tm.operand_types[0].bitfield.instance == Accum
7640 && i.tm.operand_types[0].bitfield.xmmword)
7641 {
7642 unsigned int j;
7643
7644 for (j = 1; j < i.operands; j++)
7645 {
7646 i.op[j - 1] = i.op[j];
7647 i.types[j - 1] = i.types[j];
7648
7649 /* We need to adjust fields in i.tm since they are used by
7650 build_modrm_byte. */
7651 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
7652
7653 i.flags[j - 1] = i.flags[j];
7654 }
7655
7656 i.operands--;
7657 i.reg_operands--;
7658 i.tm.operands--;
7659 }
7660 else if (i.tm.opcode_modifier.implicitquadgroup)
7661 {
7662 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7663
7664 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
7665 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
7666 regnum = register_number (i.op[1].regs);
7667 first_reg_in_group = regnum & ~3;
7668 last_reg_in_group = first_reg_in_group + 3;
7669 if (regnum != first_reg_in_group)
7670 as_warn (_("source register `%s%s' implicitly denotes"
7671 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7672 register_prefix, i.op[1].regs->reg_name,
7673 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7674 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7675 i.tm.name);
7676 }
7677 else if (i.tm.opcode_modifier.regkludge)
7678 {
7679 /* The imul $imm, %reg instruction is converted into
7680 imul $imm, %reg, %reg, and the clr %reg instruction
7681 is converted into xor %reg, %reg. */
7682
7683 unsigned int first_reg_op;
7684
7685 if (operand_type_check (i.types[0], reg))
7686 first_reg_op = 0;
7687 else
7688 first_reg_op = 1;
7689 /* Pretend we saw the extra register operand. */
7690 gas_assert (i.reg_operands == 1
7691 && i.op[first_reg_op + 1].regs == 0);
7692 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7693 i.types[first_reg_op + 1] = i.types[first_reg_op];
7694 i.operands++;
7695 i.reg_operands++;
7696 }
7697
7698 if (i.tm.opcode_modifier.modrm)
7699 {
7700 /* The opcode is completed (modulo i.tm.extension_opcode which
7701 must be put into the modrm byte). Now, we make the modrm and
7702 index base bytes based on all the info we've collected. */
7703
7704 default_seg = build_modrm_byte ();
7705 }
7706 else if (i.types[0].bitfield.class == SReg)
7707 {
7708 if (flag_code != CODE_64BIT
7709 ? i.tm.base_opcode == POP_SEG_SHORT
7710 && i.op[0].regs->reg_num == 1
7711 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7712 && i.op[0].regs->reg_num < 4)
7713 {
7714 as_bad (_("you can't `%s %s%s'"),
7715 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7716 return 0;
7717 }
7718 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7719 {
7720 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7721 i.tm.opcode_length = 2;
7722 }
7723 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7724 }
7725 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7726 {
7727 default_seg = &ds;
7728 }
7729 else if (i.tm.opcode_modifier.isstring)
7730 {
7731 /* For the string instructions that allow a segment override
7732 on one of their operands, the default segment is ds. */
7733 default_seg = &ds;
7734 }
7735 else if (i.short_form)
7736 {
7737 /* The register or float register operand is in operand
7738 0 or 1. */
7739 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
7740
7741 /* Register goes in low 3 bits of opcode. */
7742 i.tm.base_opcode |= i.op[op].regs->reg_num;
7743 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7744 i.rex |= REX_B;
7745 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7746 {
7747 /* Warn about some common errors, but press on regardless.
7748 The first case can be generated by gcc (<= 2.8.1). */
7749 if (i.operands == 2)
7750 {
7751 /* Reversed arguments on faddp, fsubp, etc. */
7752 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7753 register_prefix, i.op[!intel_syntax].regs->reg_name,
7754 register_prefix, i.op[intel_syntax].regs->reg_name);
7755 }
7756 else
7757 {
7758 /* Extraneous `l' suffix on fp insn. */
7759 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7760 register_prefix, i.op[0].regs->reg_name);
7761 }
7762 }
7763 }
7764
7765 if ((i.seg[0] || i.prefix[SEG_PREFIX])
7766 && i.tm.base_opcode == 0x8d /* lea */
7767 && !is_any_vex_encoding(&i.tm))
7768 {
7769 if (!quiet_warnings)
7770 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7771 if (optimize)
7772 {
7773 i.seg[0] = NULL;
7774 i.prefix[SEG_PREFIX] = 0;
7775 }
7776 }
7777
7778 /* If a segment was explicitly specified, and the specified segment
7779 is neither the default nor the one already recorded from a prefix,
7780 use an opcode prefix to select it. If we never figured out what
7781 the default segment is, then default_seg will be zero at this
7782 point, and the specified segment prefix will always be used. */
7783 if (i.seg[0]
7784 && i.seg[0] != default_seg
7785 && i.seg[0]->seg_prefix != i.prefix[SEG_PREFIX])
7786 {
7787 if (!add_prefix (i.seg[0]->seg_prefix))
7788 return 0;
7789 }
7790 return 1;
7791 }
7792
7793 static INLINE void set_rex_vrex (const reg_entry *r, unsigned int rex_bit,
7794 bfd_boolean do_sse2avx)
7795 {
7796 if (r->reg_flags & RegRex)
7797 {
7798 if (i.rex & rex_bit)
7799 as_bad (_("same type of prefix used twice"));
7800 i.rex |= rex_bit;
7801 }
7802 else if (do_sse2avx && (i.rex & rex_bit) && i.vex.register_specifier)
7803 {
7804 gas_assert (i.vex.register_specifier == r);
7805 i.vex.register_specifier += 8;
7806 }
7807
7808 if (r->reg_flags & RegVRex)
7809 i.vrex |= rex_bit;
7810 }
7811
7812 static const seg_entry *
7813 build_modrm_byte (void)
7814 {
7815 const seg_entry *default_seg = 0;
7816 unsigned int source, dest;
7817 int vex_3_sources;
7818
7819 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7820 if (vex_3_sources)
7821 {
7822 unsigned int nds, reg_slot;
7823 expressionS *exp;
7824
7825 dest = i.operands - 1;
7826 nds = dest - 1;
7827
7828 /* There are 2 kinds of instructions:
7829 1. 5 operands: 4 register operands or 3 register operands
7830 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7831 VexW0 or VexW1. The destination must be either XMM, YMM or
7832 ZMM register.
7833 2. 4 operands: 4 register operands or 3 register operands
7834 plus 1 memory operand, with VexXDS. */
7835 gas_assert ((i.reg_operands == 4
7836 || (i.reg_operands == 3 && i.mem_operands == 1))
7837 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7838 && i.tm.opcode_modifier.vexw
7839 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
7840
7841 /* If VexW1 is set, the first non-immediate operand is the source and
7842 the second non-immediate one is encoded in the immediate operand. */
7843 if (i.tm.opcode_modifier.vexw == VEXW1)
7844 {
7845 source = i.imm_operands;
7846 reg_slot = i.imm_operands + 1;
7847 }
7848 else
7849 {
7850 source = i.imm_operands + 1;
7851 reg_slot = i.imm_operands;
7852 }
7853
7854 if (i.imm_operands == 0)
7855 {
7856 /* When there is no immediate operand, generate an 8bit
7857 immediate operand to encode the first operand. */
7858 exp = &im_expressions[i.imm_operands++];
7859 i.op[i.operands].imms = exp;
7860 i.types[i.operands] = imm8;
7861 i.operands++;
7862
7863 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7864 exp->X_op = O_constant;
7865 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7866 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7867 }
7868 else
7869 {
7870 gas_assert (i.imm_operands == 1);
7871 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7872 gas_assert (!i.tm.opcode_modifier.immext);
7873
7874 /* Turn on Imm8 again so that output_imm will generate it. */
7875 i.types[0].bitfield.imm8 = 1;
7876
7877 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7878 i.op[0].imms->X_add_number
7879 |= register_number (i.op[reg_slot].regs) << 4;
7880 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7881 }
7882
7883 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
7884 i.vex.register_specifier = i.op[nds].regs;
7885 }
7886 else
7887 source = dest = 0;
7888
7889 /* i.reg_operands MUST be the number of real register operands;
7890 implicit registers do not count. If there are 3 register
7891 operands, it must be a instruction with VexNDS. For a
7892 instruction with VexNDD, the destination register is encoded
7893 in VEX prefix. If there are 4 register operands, it must be
7894 a instruction with VEX prefix and 3 sources. */
7895 if (i.mem_operands == 0
7896 && ((i.reg_operands == 2
7897 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7898 || (i.reg_operands == 3
7899 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7900 || (i.reg_operands == 4 && vex_3_sources)))
7901 {
7902 switch (i.operands)
7903 {
7904 case 2:
7905 source = 0;
7906 break;
7907 case 3:
7908 /* When there are 3 operands, one of them may be immediate,
7909 which may be the first or the last operand. Otherwise,
7910 the first operand must be shift count register (cl) or it
7911 is an instruction with VexNDS. */
7912 gas_assert (i.imm_operands == 1
7913 || (i.imm_operands == 0
7914 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7915 || (i.types[0].bitfield.instance == RegC
7916 && i.types[0].bitfield.byte))));
7917 if (operand_type_check (i.types[0], imm)
7918 || (i.types[0].bitfield.instance == RegC
7919 && i.types[0].bitfield.byte))
7920 source = 1;
7921 else
7922 source = 0;
7923 break;
7924 case 4:
7925 /* When there are 4 operands, the first two must be 8bit
7926 immediate operands. The source operand will be the 3rd
7927 one.
7928
7929 For instructions with VexNDS, if the first operand
7930 an imm8, the source operand is the 2nd one. If the last
7931 operand is imm8, the source operand is the first one. */
7932 gas_assert ((i.imm_operands == 2
7933 && i.types[0].bitfield.imm8
7934 && i.types[1].bitfield.imm8)
7935 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7936 && i.imm_operands == 1
7937 && (i.types[0].bitfield.imm8
7938 || i.types[i.operands - 1].bitfield.imm8
7939 || i.rounding)));
7940 if (i.imm_operands == 2)
7941 source = 2;
7942 else
7943 {
7944 if (i.types[0].bitfield.imm8)
7945 source = 1;
7946 else
7947 source = 0;
7948 }
7949 break;
7950 case 5:
7951 if (is_evex_encoding (&i.tm))
7952 {
7953 /* For EVEX instructions, when there are 5 operands, the
7954 first one must be immediate operand. If the second one
7955 is immediate operand, the source operand is the 3th
7956 one. If the last one is immediate operand, the source
7957 operand is the 2nd one. */
7958 gas_assert (i.imm_operands == 2
7959 && i.tm.opcode_modifier.sae
7960 && operand_type_check (i.types[0], imm));
7961 if (operand_type_check (i.types[1], imm))
7962 source = 2;
7963 else if (operand_type_check (i.types[4], imm))
7964 source = 1;
7965 else
7966 abort ();
7967 }
7968 break;
7969 default:
7970 abort ();
7971 }
7972
7973 if (!vex_3_sources)
7974 {
7975 dest = source + 1;
7976
7977 /* RC/SAE operand could be between DEST and SRC. That happens
7978 when one operand is GPR and the other one is XMM/YMM/ZMM
7979 register. */
7980 if (i.rounding && i.rounding->operand == (int) dest)
7981 dest++;
7982
7983 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7984 {
7985 /* For instructions with VexNDS, the register-only source
7986 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7987 register. It is encoded in VEX prefix. */
7988
7989 i386_operand_type op;
7990 unsigned int vvvv;
7991
7992 /* Swap two source operands if needed. */
7993 if (i.tm.opcode_modifier.swapsources)
7994 {
7995 vvvv = source;
7996 source = dest;
7997 }
7998 else
7999 vvvv = dest;
8000
8001 op = i.tm.operand_types[vvvv];
8002 if ((dest + 1) >= i.operands
8003 || ((op.bitfield.class != Reg
8004 || (!op.bitfield.dword && !op.bitfield.qword))
8005 && op.bitfield.class != RegSIMD
8006 && !operand_type_equal (&op, &regmask)))
8007 abort ();
8008 i.vex.register_specifier = i.op[vvvv].regs;
8009 dest++;
8010 }
8011 }
8012
8013 i.rm.mode = 3;
8014 /* One of the register operands will be encoded in the i.rm.reg
8015 field, the other in the combined i.rm.mode and i.rm.regmem
8016 fields. If no form of this instruction supports a memory
8017 destination operand, then we assume the source operand may
8018 sometimes be a memory operand and so we need to store the
8019 destination in the i.rm.reg field. */
8020 if (!i.tm.opcode_modifier.regmem
8021 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
8022 {
8023 i.rm.reg = i.op[dest].regs->reg_num;
8024 i.rm.regmem = i.op[source].regs->reg_num;
8025 set_rex_vrex (i.op[dest].regs, REX_R, i.tm.opcode_modifier.sse2avx);
8026 set_rex_vrex (i.op[source].regs, REX_B, FALSE);
8027 }
8028 else
8029 {
8030 i.rm.reg = i.op[source].regs->reg_num;
8031 i.rm.regmem = i.op[dest].regs->reg_num;
8032 set_rex_vrex (i.op[dest].regs, REX_B, i.tm.opcode_modifier.sse2avx);
8033 set_rex_vrex (i.op[source].regs, REX_R, FALSE);
8034 }
8035 if (flag_code != CODE_64BIT && (i.rex & REX_R))
8036 {
8037 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
8038 abort ();
8039 i.rex &= ~REX_R;
8040 add_prefix (LOCK_PREFIX_OPCODE);
8041 }
8042 }
8043 else
8044 { /* If it's not 2 reg operands... */
8045 unsigned int mem;
8046
8047 if (i.mem_operands)
8048 {
8049 unsigned int fake_zero_displacement = 0;
8050 unsigned int op;
8051
8052 for (op = 0; op < i.operands; op++)
8053 if (i.flags[op] & Operand_Mem)
8054 break;
8055 gas_assert (op < i.operands);
8056
8057 if (i.tm.opcode_modifier.sib)
8058 {
8059 /* The index register of VSIB shouldn't be RegIZ. */
8060 if (i.tm.opcode_modifier.sib != SIBMEM
8061 && i.index_reg->reg_num == RegIZ)
8062 abort ();
8063
8064 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8065 if (!i.base_reg)
8066 {
8067 i.sib.base = NO_BASE_REGISTER;
8068 i.sib.scale = i.log2_scale_factor;
8069 i.types[op].bitfield.disp8 = 0;
8070 i.types[op].bitfield.disp16 = 0;
8071 i.types[op].bitfield.disp64 = 0;
8072 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
8073 {
8074 /* Must be 32 bit */
8075 i.types[op].bitfield.disp32 = 1;
8076 i.types[op].bitfield.disp32s = 0;
8077 }
8078 else
8079 {
8080 i.types[op].bitfield.disp32 = 0;
8081 i.types[op].bitfield.disp32s = 1;
8082 }
8083 }
8084
8085 /* Since the mandatory SIB always has index register, so
8086 the code logic remains unchanged. The non-mandatory SIB
8087 without index register is allowed and will be handled
8088 later. */
8089 if (i.index_reg)
8090 {
8091 if (i.index_reg->reg_num == RegIZ)
8092 i.sib.index = NO_INDEX_REGISTER;
8093 else
8094 i.sib.index = i.index_reg->reg_num;
8095 set_rex_vrex (i.index_reg, REX_X, FALSE);
8096 }
8097 }
8098
8099 default_seg = &ds;
8100
8101 if (i.base_reg == 0)
8102 {
8103 i.rm.mode = 0;
8104 if (!i.disp_operands)
8105 fake_zero_displacement = 1;
8106 if (i.index_reg == 0)
8107 {
8108 i386_operand_type newdisp;
8109
8110 /* Both check for VSIB and mandatory non-vector SIB. */
8111 gas_assert (!i.tm.opcode_modifier.sib
8112 || i.tm.opcode_modifier.sib == SIBMEM);
8113 /* Operand is just <disp> */
8114 if (flag_code == CODE_64BIT)
8115 {
8116 /* 64bit mode overwrites the 32bit absolute
8117 addressing by RIP relative addressing and
8118 absolute addressing is encoded by one of the
8119 redundant SIB forms. */
8120 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8121 i.sib.base = NO_BASE_REGISTER;
8122 i.sib.index = NO_INDEX_REGISTER;
8123 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
8124 }
8125 else if ((flag_code == CODE_16BIT)
8126 ^ (i.prefix[ADDR_PREFIX] != 0))
8127 {
8128 i.rm.regmem = NO_BASE_REGISTER_16;
8129 newdisp = disp16;
8130 }
8131 else
8132 {
8133 i.rm.regmem = NO_BASE_REGISTER;
8134 newdisp = disp32;
8135 }
8136 i.types[op] = operand_type_and_not (i.types[op], anydisp);
8137 i.types[op] = operand_type_or (i.types[op], newdisp);
8138 }
8139 else if (!i.tm.opcode_modifier.sib)
8140 {
8141 /* !i.base_reg && i.index_reg */
8142 if (i.index_reg->reg_num == RegIZ)
8143 i.sib.index = NO_INDEX_REGISTER;
8144 else
8145 i.sib.index = i.index_reg->reg_num;
8146 i.sib.base = NO_BASE_REGISTER;
8147 i.sib.scale = i.log2_scale_factor;
8148 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8149 i.types[op].bitfield.disp8 = 0;
8150 i.types[op].bitfield.disp16 = 0;
8151 i.types[op].bitfield.disp64 = 0;
8152 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
8153 {
8154 /* Must be 32 bit */
8155 i.types[op].bitfield.disp32 = 1;
8156 i.types[op].bitfield.disp32s = 0;
8157 }
8158 else
8159 {
8160 i.types[op].bitfield.disp32 = 0;
8161 i.types[op].bitfield.disp32s = 1;
8162 }
8163 if ((i.index_reg->reg_flags & RegRex) != 0)
8164 i.rex |= REX_X;
8165 }
8166 }
8167 /* RIP addressing for 64bit mode. */
8168 else if (i.base_reg->reg_num == RegIP)
8169 {
8170 gas_assert (!i.tm.opcode_modifier.sib);
8171 i.rm.regmem = NO_BASE_REGISTER;
8172 i.types[op].bitfield.disp8 = 0;
8173 i.types[op].bitfield.disp16 = 0;
8174 i.types[op].bitfield.disp32 = 0;
8175 i.types[op].bitfield.disp32s = 1;
8176 i.types[op].bitfield.disp64 = 0;
8177 i.flags[op] |= Operand_PCrel;
8178 if (! i.disp_operands)
8179 fake_zero_displacement = 1;
8180 }
8181 else if (i.base_reg->reg_type.bitfield.word)
8182 {
8183 gas_assert (!i.tm.opcode_modifier.sib);
8184 switch (i.base_reg->reg_num)
8185 {
8186 case 3: /* (%bx) */
8187 if (i.index_reg == 0)
8188 i.rm.regmem = 7;
8189 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
8190 i.rm.regmem = i.index_reg->reg_num - 6;
8191 break;
8192 case 5: /* (%bp) */
8193 default_seg = &ss;
8194 if (i.index_reg == 0)
8195 {
8196 i.rm.regmem = 6;
8197 if (operand_type_check (i.types[op], disp) == 0)
8198 {
8199 /* fake (%bp) into 0(%bp) */
8200 if (i.disp_encoding == disp_encoding_16bit)
8201 i.types[op].bitfield.disp16 = 1;
8202 else
8203 i.types[op].bitfield.disp8 = 1;
8204 fake_zero_displacement = 1;
8205 }
8206 }
8207 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
8208 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
8209 break;
8210 default: /* (%si) -> 4 or (%di) -> 5 */
8211 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
8212 }
8213 if (!fake_zero_displacement
8214 && !i.disp_operands
8215 && i.disp_encoding)
8216 {
8217 fake_zero_displacement = 1;
8218 if (i.disp_encoding == disp_encoding_8bit)
8219 i.types[op].bitfield.disp8 = 1;
8220 else
8221 i.types[op].bitfield.disp16 = 1;
8222 }
8223 i.rm.mode = mode_from_disp_size (i.types[op]);
8224 }
8225 else /* i.base_reg and 32/64 bit mode */
8226 {
8227 if (flag_code == CODE_64BIT
8228 && operand_type_check (i.types[op], disp))
8229 {
8230 i.types[op].bitfield.disp16 = 0;
8231 i.types[op].bitfield.disp64 = 0;
8232 if (i.prefix[ADDR_PREFIX] == 0)
8233 {
8234 i.types[op].bitfield.disp32 = 0;
8235 i.types[op].bitfield.disp32s = 1;
8236 }
8237 else
8238 {
8239 i.types[op].bitfield.disp32 = 1;
8240 i.types[op].bitfield.disp32s = 0;
8241 }
8242 }
8243
8244 if (!i.tm.opcode_modifier.sib)
8245 i.rm.regmem = i.base_reg->reg_num;
8246 if ((i.base_reg->reg_flags & RegRex) != 0)
8247 i.rex |= REX_B;
8248 i.sib.base = i.base_reg->reg_num;
8249 /* x86-64 ignores REX prefix bit here to avoid decoder
8250 complications. */
8251 if (!(i.base_reg->reg_flags & RegRex)
8252 && (i.base_reg->reg_num == EBP_REG_NUM
8253 || i.base_reg->reg_num == ESP_REG_NUM))
8254 default_seg = &ss;
8255 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
8256 {
8257 fake_zero_displacement = 1;
8258 if (i.disp_encoding == disp_encoding_32bit)
8259 i.types[op].bitfield.disp32 = 1;
8260 else
8261 i.types[op].bitfield.disp8 = 1;
8262 }
8263 i.sib.scale = i.log2_scale_factor;
8264 if (i.index_reg == 0)
8265 {
8266 /* Only check for VSIB. */
8267 gas_assert (i.tm.opcode_modifier.sib != VECSIB128
8268 && i.tm.opcode_modifier.sib != VECSIB256
8269 && i.tm.opcode_modifier.sib != VECSIB512);
8270
8271 /* <disp>(%esp) becomes two byte modrm with no index
8272 register. We've already stored the code for esp
8273 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
8274 Any base register besides %esp will not use the
8275 extra modrm byte. */
8276 i.sib.index = NO_INDEX_REGISTER;
8277 }
8278 else if (!i.tm.opcode_modifier.sib)
8279 {
8280 if (i.index_reg->reg_num == RegIZ)
8281 i.sib.index = NO_INDEX_REGISTER;
8282 else
8283 i.sib.index = i.index_reg->reg_num;
8284 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8285 if ((i.index_reg->reg_flags & RegRex) != 0)
8286 i.rex |= REX_X;
8287 }
8288
8289 if (i.disp_operands
8290 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
8291 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
8292 i.rm.mode = 0;
8293 else
8294 {
8295 if (!fake_zero_displacement
8296 && !i.disp_operands
8297 && i.disp_encoding)
8298 {
8299 fake_zero_displacement = 1;
8300 if (i.disp_encoding == disp_encoding_8bit)
8301 i.types[op].bitfield.disp8 = 1;
8302 else
8303 i.types[op].bitfield.disp32 = 1;
8304 }
8305 i.rm.mode = mode_from_disp_size (i.types[op]);
8306 }
8307 }
8308
8309 if (fake_zero_displacement)
8310 {
8311 /* Fakes a zero displacement assuming that i.types[op]
8312 holds the correct displacement size. */
8313 expressionS *exp;
8314
8315 gas_assert (i.op[op].disps == 0);
8316 exp = &disp_expressions[i.disp_operands++];
8317 i.op[op].disps = exp;
8318 exp->X_op = O_constant;
8319 exp->X_add_number = 0;
8320 exp->X_add_symbol = (symbolS *) 0;
8321 exp->X_op_symbol = (symbolS *) 0;
8322 }
8323
8324 mem = op;
8325 }
8326 else
8327 mem = ~0;
8328
8329 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
8330 {
8331 if (operand_type_check (i.types[0], imm))
8332 i.vex.register_specifier = NULL;
8333 else
8334 {
8335 /* VEX.vvvv encodes one of the sources when the first
8336 operand is not an immediate. */
8337 if (i.tm.opcode_modifier.vexw == VEXW0)
8338 i.vex.register_specifier = i.op[0].regs;
8339 else
8340 i.vex.register_specifier = i.op[1].regs;
8341 }
8342
8343 /* Destination is a XMM register encoded in the ModRM.reg
8344 and VEX.R bit. */
8345 i.rm.reg = i.op[2].regs->reg_num;
8346 if ((i.op[2].regs->reg_flags & RegRex) != 0)
8347 i.rex |= REX_R;
8348
8349 /* ModRM.rm and VEX.B encodes the other source. */
8350 if (!i.mem_operands)
8351 {
8352 i.rm.mode = 3;
8353
8354 if (i.tm.opcode_modifier.vexw == VEXW0)
8355 i.rm.regmem = i.op[1].regs->reg_num;
8356 else
8357 i.rm.regmem = i.op[0].regs->reg_num;
8358
8359 if ((i.op[1].regs->reg_flags & RegRex) != 0)
8360 i.rex |= REX_B;
8361 }
8362 }
8363 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
8364 {
8365 i.vex.register_specifier = i.op[2].regs;
8366 if (!i.mem_operands)
8367 {
8368 i.rm.mode = 3;
8369 i.rm.regmem = i.op[1].regs->reg_num;
8370 if ((i.op[1].regs->reg_flags & RegRex) != 0)
8371 i.rex |= REX_B;
8372 }
8373 }
8374 /* Fill in i.rm.reg or i.rm.regmem field with register operand
8375 (if any) based on i.tm.extension_opcode. Again, we must be
8376 careful to make sure that segment/control/debug/test/MMX
8377 registers are coded into the i.rm.reg field. */
8378 else if (i.reg_operands)
8379 {
8380 unsigned int op;
8381 unsigned int vex_reg = ~0;
8382
8383 for (op = 0; op < i.operands; op++)
8384 if (i.types[op].bitfield.class == Reg
8385 || i.types[op].bitfield.class == RegBND
8386 || i.types[op].bitfield.class == RegMask
8387 || i.types[op].bitfield.class == SReg
8388 || i.types[op].bitfield.class == RegCR
8389 || i.types[op].bitfield.class == RegDR
8390 || i.types[op].bitfield.class == RegTR
8391 || i.types[op].bitfield.class == RegSIMD
8392 || i.types[op].bitfield.class == RegMMX)
8393 break;
8394
8395 if (vex_3_sources)
8396 op = dest;
8397 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
8398 {
8399 /* For instructions with VexNDS, the register-only
8400 source operand is encoded in VEX prefix. */
8401 gas_assert (mem != (unsigned int) ~0);
8402
8403 if (op > mem)
8404 {
8405 vex_reg = op++;
8406 gas_assert (op < i.operands);
8407 }
8408 else
8409 {
8410 /* Check register-only source operand when two source
8411 operands are swapped. */
8412 if (!i.tm.operand_types[op].bitfield.baseindex
8413 && i.tm.operand_types[op + 1].bitfield.baseindex)
8414 {
8415 vex_reg = op;
8416 op += 2;
8417 gas_assert (mem == (vex_reg + 1)
8418 && op < i.operands);
8419 }
8420 else
8421 {
8422 vex_reg = op + 1;
8423 gas_assert (vex_reg < i.operands);
8424 }
8425 }
8426 }
8427 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
8428 {
8429 /* For instructions with VexNDD, the register destination
8430 is encoded in VEX prefix. */
8431 if (i.mem_operands == 0)
8432 {
8433 /* There is no memory operand. */
8434 gas_assert ((op + 2) == i.operands);
8435 vex_reg = op + 1;
8436 }
8437 else
8438 {
8439 /* There are only 2 non-immediate operands. */
8440 gas_assert (op < i.imm_operands + 2
8441 && i.operands == i.imm_operands + 2);
8442 vex_reg = i.imm_operands + 1;
8443 }
8444 }
8445 else
8446 gas_assert (op < i.operands);
8447
8448 if (vex_reg != (unsigned int) ~0)
8449 {
8450 i386_operand_type *type = &i.tm.operand_types[vex_reg];
8451
8452 if ((type->bitfield.class != Reg
8453 || (!type->bitfield.dword && !type->bitfield.qword))
8454 && type->bitfield.class != RegSIMD
8455 && !operand_type_equal (type, &regmask))
8456 abort ();
8457
8458 i.vex.register_specifier = i.op[vex_reg].regs;
8459 }
8460
8461 /* Don't set OP operand twice. */
8462 if (vex_reg != op)
8463 {
8464 /* If there is an extension opcode to put here, the
8465 register number must be put into the regmem field. */
8466 if (i.tm.extension_opcode != None)
8467 {
8468 i.rm.regmem = i.op[op].regs->reg_num;
8469 set_rex_vrex (i.op[op].regs, REX_B,
8470 i.tm.opcode_modifier.sse2avx);
8471 }
8472 else
8473 {
8474 i.rm.reg = i.op[op].regs->reg_num;
8475 set_rex_vrex (i.op[op].regs, REX_R,
8476 i.tm.opcode_modifier.sse2avx);
8477 }
8478 }
8479
8480 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
8481 must set it to 3 to indicate this is a register operand
8482 in the regmem field. */
8483 if (!i.mem_operands)
8484 i.rm.mode = 3;
8485 }
8486
8487 /* Fill in i.rm.reg field with extension opcode (if any). */
8488 if (i.tm.extension_opcode != None)
8489 i.rm.reg = i.tm.extension_opcode;
8490 }
8491 return default_seg;
8492 }
8493
8494 static INLINE void
8495 frag_opcode_byte (unsigned char byte)
8496 {
8497 if (now_seg != absolute_section)
8498 FRAG_APPEND_1_CHAR (byte);
8499 else
8500 ++abs_section_offset;
8501 }
8502
8503 static unsigned int
8504 flip_code16 (unsigned int code16)
8505 {
8506 gas_assert (i.tm.operands == 1);
8507
8508 return !(i.prefix[REX_PREFIX] & REX_W)
8509 && (code16 ? i.tm.operand_types[0].bitfield.disp32
8510 || i.tm.operand_types[0].bitfield.disp32s
8511 : i.tm.operand_types[0].bitfield.disp16)
8512 ? CODE16 : 0;
8513 }
8514
8515 static void
8516 output_branch (void)
8517 {
8518 char *p;
8519 int size;
8520 int code16;
8521 int prefix;
8522 relax_substateT subtype;
8523 symbolS *sym;
8524 offsetT off;
8525
8526 if (now_seg == absolute_section)
8527 {
8528 as_bad (_("relaxable branches not supported in absolute section"));
8529 return;
8530 }
8531
8532 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
8533 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
8534
8535 prefix = 0;
8536 if (i.prefix[DATA_PREFIX] != 0)
8537 {
8538 prefix = 1;
8539 i.prefixes -= 1;
8540 code16 ^= flip_code16(code16);
8541 }
8542 /* Pentium4 branch hints. */
8543 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8544 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8545 {
8546 prefix++;
8547 i.prefixes--;
8548 }
8549 if (i.prefix[REX_PREFIX] != 0)
8550 {
8551 prefix++;
8552 i.prefixes--;
8553 }
8554
8555 /* BND prefixed jump. */
8556 if (i.prefix[BND_PREFIX] != 0)
8557 {
8558 prefix++;
8559 i.prefixes--;
8560 }
8561
8562 if (i.prefixes != 0)
8563 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8564
8565 /* It's always a symbol; End frag & setup for relax.
8566 Make sure there is enough room in this frag for the largest
8567 instruction we may generate in md_convert_frag. This is 2
8568 bytes for the opcode and room for the prefix and largest
8569 displacement. */
8570 frag_grow (prefix + 2 + 4);
8571 /* Prefix and 1 opcode byte go in fr_fix. */
8572 p = frag_more (prefix + 1);
8573 if (i.prefix[DATA_PREFIX] != 0)
8574 *p++ = DATA_PREFIX_OPCODE;
8575 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
8576 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
8577 *p++ = i.prefix[SEG_PREFIX];
8578 if (i.prefix[BND_PREFIX] != 0)
8579 *p++ = BND_PREFIX_OPCODE;
8580 if (i.prefix[REX_PREFIX] != 0)
8581 *p++ = i.prefix[REX_PREFIX];
8582 *p = i.tm.base_opcode;
8583
8584 if ((unsigned char) *p == JUMP_PC_RELATIVE)
8585 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
8586 else if (cpu_arch_flags.bitfield.cpui386)
8587 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
8588 else
8589 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
8590 subtype |= code16;
8591
8592 sym = i.op[0].disps->X_add_symbol;
8593 off = i.op[0].disps->X_add_number;
8594
8595 if (i.op[0].disps->X_op != O_constant
8596 && i.op[0].disps->X_op != O_symbol)
8597 {
8598 /* Handle complex expressions. */
8599 sym = make_expr_symbol (i.op[0].disps);
8600 off = 0;
8601 }
8602
8603 /* 1 possible extra opcode + 4 byte displacement go in var part.
8604 Pass reloc in fr_var. */
8605 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
8606 }
8607
8608 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8609 /* Return TRUE iff PLT32 relocation should be used for branching to
8610 symbol S. */
8611
8612 static bfd_boolean
8613 need_plt32_p (symbolS *s)
8614 {
8615 /* PLT32 relocation is ELF only. */
8616 if (!IS_ELF)
8617 return FALSE;
8618
8619 #ifdef TE_SOLARIS
8620 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
8621 krtld support it. */
8622 return FALSE;
8623 #endif
8624
8625 /* Since there is no need to prepare for PLT branch on x86-64, we
8626 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
8627 be used as a marker for 32-bit PC-relative branches. */
8628 if (!object_64bit)
8629 return FALSE;
8630
8631 /* Weak or undefined symbol need PLT32 relocation. */
8632 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
8633 return TRUE;
8634
8635 /* Non-global symbol doesn't need PLT32 relocation. */
8636 if (! S_IS_EXTERNAL (s))
8637 return FALSE;
8638
8639 /* Other global symbols need PLT32 relocation. NB: Symbol with
8640 non-default visibilities are treated as normal global symbol
8641 so that PLT32 relocation can be used as a marker for 32-bit
8642 PC-relative branches. It is useful for linker relaxation. */
8643 return TRUE;
8644 }
8645 #endif
8646
8647 static void
8648 output_jump (void)
8649 {
8650 char *p;
8651 int size;
8652 fixS *fixP;
8653 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
8654
8655 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
8656 {
8657 /* This is a loop or jecxz type instruction. */
8658 size = 1;
8659 if (i.prefix[ADDR_PREFIX] != 0)
8660 {
8661 frag_opcode_byte (ADDR_PREFIX_OPCODE);
8662 i.prefixes -= 1;
8663 }
8664 /* Pentium4 branch hints. */
8665 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8666 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8667 {
8668 frag_opcode_byte (i.prefix[SEG_PREFIX]);
8669 i.prefixes--;
8670 }
8671 }
8672 else
8673 {
8674 int code16;
8675
8676 code16 = 0;
8677 if (flag_code == CODE_16BIT)
8678 code16 = CODE16;
8679
8680 if (i.prefix[DATA_PREFIX] != 0)
8681 {
8682 frag_opcode_byte (DATA_PREFIX_OPCODE);
8683 i.prefixes -= 1;
8684 code16 ^= flip_code16(code16);
8685 }
8686
8687 size = 4;
8688 if (code16)
8689 size = 2;
8690 }
8691
8692 /* BND prefixed jump. */
8693 if (i.prefix[BND_PREFIX] != 0)
8694 {
8695 frag_opcode_byte (i.prefix[BND_PREFIX]);
8696 i.prefixes -= 1;
8697 }
8698
8699 if (i.prefix[REX_PREFIX] != 0)
8700 {
8701 frag_opcode_byte (i.prefix[REX_PREFIX]);
8702 i.prefixes -= 1;
8703 }
8704
8705 if (i.prefixes != 0)
8706 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8707
8708 if (now_seg == absolute_section)
8709 {
8710 abs_section_offset += i.tm.opcode_length + size;
8711 return;
8712 }
8713
8714 p = frag_more (i.tm.opcode_length + size);
8715 switch (i.tm.opcode_length)
8716 {
8717 case 2:
8718 *p++ = i.tm.base_opcode >> 8;
8719 /* Fall through. */
8720 case 1:
8721 *p++ = i.tm.base_opcode;
8722 break;
8723 default:
8724 abort ();
8725 }
8726
8727 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8728 if (size == 4
8729 && jump_reloc == NO_RELOC
8730 && need_plt32_p (i.op[0].disps->X_add_symbol))
8731 jump_reloc = BFD_RELOC_X86_64_PLT32;
8732 #endif
8733
8734 jump_reloc = reloc (size, 1, 1, jump_reloc);
8735
8736 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8737 i.op[0].disps, 1, jump_reloc);
8738
8739 /* All jumps handled here are signed, but don't use a signed limit
8740 check for 32 and 16 bit jumps as we want to allow wrap around at
8741 4G and 64k respectively. */
8742 if (size == 1)
8743 fixP->fx_signed = 1;
8744 }
8745
8746 static void
8747 output_interseg_jump (void)
8748 {
8749 char *p;
8750 int size;
8751 int prefix;
8752 int code16;
8753
8754 code16 = 0;
8755 if (flag_code == CODE_16BIT)
8756 code16 = CODE16;
8757
8758 prefix = 0;
8759 if (i.prefix[DATA_PREFIX] != 0)
8760 {
8761 prefix = 1;
8762 i.prefixes -= 1;
8763 code16 ^= CODE16;
8764 }
8765
8766 gas_assert (!i.prefix[REX_PREFIX]);
8767
8768 size = 4;
8769 if (code16)
8770 size = 2;
8771
8772 if (i.prefixes != 0)
8773 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8774
8775 if (now_seg == absolute_section)
8776 {
8777 abs_section_offset += prefix + 1 + 2 + size;
8778 return;
8779 }
8780
8781 /* 1 opcode; 2 segment; offset */
8782 p = frag_more (prefix + 1 + 2 + size);
8783
8784 if (i.prefix[DATA_PREFIX] != 0)
8785 *p++ = DATA_PREFIX_OPCODE;
8786
8787 if (i.prefix[REX_PREFIX] != 0)
8788 *p++ = i.prefix[REX_PREFIX];
8789
8790 *p++ = i.tm.base_opcode;
8791 if (i.op[1].imms->X_op == O_constant)
8792 {
8793 offsetT n = i.op[1].imms->X_add_number;
8794
8795 if (size == 2
8796 && !fits_in_unsigned_word (n)
8797 && !fits_in_signed_word (n))
8798 {
8799 as_bad (_("16-bit jump out of range"));
8800 return;
8801 }
8802 md_number_to_chars (p, n, size);
8803 }
8804 else
8805 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8806 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8807
8808 p += size;
8809 if (i.op[0].imms->X_op == O_constant)
8810 md_number_to_chars (p, (valueT) i.op[0].imms->X_add_number, 2);
8811 else
8812 fix_new_exp (frag_now, p - frag_now->fr_literal, 2,
8813 i.op[0].imms, 0, reloc (2, 0, 0, i.reloc[0]));
8814 }
8815
8816 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8817 void
8818 x86_cleanup (void)
8819 {
8820 char *p;
8821 asection *seg = now_seg;
8822 subsegT subseg = now_subseg;
8823 asection *sec;
8824 unsigned int alignment, align_size_1;
8825 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8826 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8827 unsigned int padding;
8828
8829 if (!IS_ELF || !x86_used_note)
8830 return;
8831
8832 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8833
8834 /* The .note.gnu.property section layout:
8835
8836 Field Length Contents
8837 ---- ---- ----
8838 n_namsz 4 4
8839 n_descsz 4 The note descriptor size
8840 n_type 4 NT_GNU_PROPERTY_TYPE_0
8841 n_name 4 "GNU"
8842 n_desc n_descsz The program property array
8843 .... .... ....
8844 */
8845
8846 /* Create the .note.gnu.property section. */
8847 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8848 bfd_set_section_flags (sec,
8849 (SEC_ALLOC
8850 | SEC_LOAD
8851 | SEC_DATA
8852 | SEC_HAS_CONTENTS
8853 | SEC_READONLY));
8854
8855 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8856 {
8857 align_size_1 = 7;
8858 alignment = 3;
8859 }
8860 else
8861 {
8862 align_size_1 = 3;
8863 alignment = 2;
8864 }
8865
8866 bfd_set_section_alignment (sec, alignment);
8867 elf_section_type (sec) = SHT_NOTE;
8868
8869 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8870 + 4-byte data */
8871 isa_1_descsz_raw = 4 + 4 + 4;
8872 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8873 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8874
8875 feature_2_descsz_raw = isa_1_descsz;
8876 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8877 + 4-byte data */
8878 feature_2_descsz_raw += 4 + 4 + 4;
8879 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8880 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8881 & ~align_size_1);
8882
8883 descsz = feature_2_descsz;
8884 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8885 p = frag_more (4 + 4 + 4 + 4 + descsz);
8886
8887 /* Write n_namsz. */
8888 md_number_to_chars (p, (valueT) 4, 4);
8889
8890 /* Write n_descsz. */
8891 md_number_to_chars (p + 4, (valueT) descsz, 4);
8892
8893 /* Write n_type. */
8894 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8895
8896 /* Write n_name. */
8897 memcpy (p + 4 * 3, "GNU", 4);
8898
8899 /* Write 4-byte type. */
8900 md_number_to_chars (p + 4 * 4,
8901 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8902
8903 /* Write 4-byte data size. */
8904 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8905
8906 /* Write 4-byte data. */
8907 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8908
8909 /* Zero out paddings. */
8910 padding = isa_1_descsz - isa_1_descsz_raw;
8911 if (padding)
8912 memset (p + 4 * 7, 0, padding);
8913
8914 /* Write 4-byte type. */
8915 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8916 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8917
8918 /* Write 4-byte data size. */
8919 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8920
8921 /* Write 4-byte data. */
8922 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8923 (valueT) x86_feature_2_used, 4);
8924
8925 /* Zero out paddings. */
8926 padding = feature_2_descsz - feature_2_descsz_raw;
8927 if (padding)
8928 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8929
8930 /* We probably can't restore the current segment, for there likely
8931 isn't one yet... */
8932 if (seg && subseg)
8933 subseg_set (seg, subseg);
8934 }
8935 #endif
8936
8937 static unsigned int
8938 encoding_length (const fragS *start_frag, offsetT start_off,
8939 const char *frag_now_ptr)
8940 {
8941 unsigned int len = 0;
8942
8943 if (start_frag != frag_now)
8944 {
8945 const fragS *fr = start_frag;
8946
8947 do {
8948 len += fr->fr_fix;
8949 fr = fr->fr_next;
8950 } while (fr && fr != frag_now);
8951 }
8952
8953 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8954 }
8955
8956 /* Return 1 for test, and, cmp, add, sub, inc and dec which may
8957 be macro-fused with conditional jumps.
8958 NB: If TEST/AND/CMP/ADD/SUB/INC/DEC is of RIP relative address,
8959 or is one of the following format:
8960
8961 cmp m, imm
8962 add m, imm
8963 sub m, imm
8964 test m, imm
8965 and m, imm
8966 inc m
8967 dec m
8968
8969 it is unfusible. */
8970
8971 static int
8972 maybe_fused_with_jcc_p (enum mf_cmp_kind* mf_cmp_p)
8973 {
8974 /* No RIP address. */
8975 if (i.base_reg && i.base_reg->reg_num == RegIP)
8976 return 0;
8977
8978 /* No VEX/EVEX encoding. */
8979 if (is_any_vex_encoding (&i.tm))
8980 return 0;
8981
8982 /* add, sub without add/sub m, imm. */
8983 if (i.tm.base_opcode <= 5
8984 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8985 || ((i.tm.base_opcode | 3) == 0x83
8986 && (i.tm.extension_opcode == 0x5
8987 || i.tm.extension_opcode == 0x0)))
8988 {
8989 *mf_cmp_p = mf_cmp_alu_cmp;
8990 return !(i.mem_operands && i.imm_operands);
8991 }
8992
8993 /* and without and m, imm. */
8994 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8995 || ((i.tm.base_opcode | 3) == 0x83
8996 && i.tm.extension_opcode == 0x4))
8997 {
8998 *mf_cmp_p = mf_cmp_test_and;
8999 return !(i.mem_operands && i.imm_operands);
9000 }
9001
9002 /* test without test m imm. */
9003 if ((i.tm.base_opcode | 1) == 0x85
9004 || (i.tm.base_opcode | 1) == 0xa9
9005 || ((i.tm.base_opcode | 1) == 0xf7
9006 && i.tm.extension_opcode == 0))
9007 {
9008 *mf_cmp_p = mf_cmp_test_and;
9009 return !(i.mem_operands && i.imm_operands);
9010 }
9011
9012 /* cmp without cmp m, imm. */
9013 if ((i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
9014 || ((i.tm.base_opcode | 3) == 0x83
9015 && (i.tm.extension_opcode == 0x7)))
9016 {
9017 *mf_cmp_p = mf_cmp_alu_cmp;
9018 return !(i.mem_operands && i.imm_operands);
9019 }
9020
9021 /* inc, dec without inc/dec m. */
9022 if ((i.tm.cpu_flags.bitfield.cpuno64
9023 && (i.tm.base_opcode | 0xf) == 0x4f)
9024 || ((i.tm.base_opcode | 1) == 0xff
9025 && i.tm.extension_opcode <= 0x1))
9026 {
9027 *mf_cmp_p = mf_cmp_incdec;
9028 return !i.mem_operands;
9029 }
9030
9031 return 0;
9032 }
9033
9034 /* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
9035
9036 static int
9037 add_fused_jcc_padding_frag_p (enum mf_cmp_kind* mf_cmp_p)
9038 {
9039 /* NB: Don't work with COND_JUMP86 without i386. */
9040 if (!align_branch_power
9041 || now_seg == absolute_section
9042 || !cpu_arch_flags.bitfield.cpui386
9043 || !(align_branch & align_branch_fused_bit))
9044 return 0;
9045
9046 if (maybe_fused_with_jcc_p (mf_cmp_p))
9047 {
9048 if (last_insn.kind == last_insn_other
9049 || last_insn.seg != now_seg)
9050 return 1;
9051 if (flag_debug)
9052 as_warn_where (last_insn.file, last_insn.line,
9053 _("`%s` skips -malign-branch-boundary on `%s`"),
9054 last_insn.name, i.tm.name);
9055 }
9056
9057 return 0;
9058 }
9059
9060 /* Return 1 if a BRANCH_PREFIX frag should be generated. */
9061
9062 static int
9063 add_branch_prefix_frag_p (void)
9064 {
9065 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
9066 to PadLock instructions since they include prefixes in opcode. */
9067 if (!align_branch_power
9068 || !align_branch_prefix_size
9069 || now_seg == absolute_section
9070 || i.tm.cpu_flags.bitfield.cpupadlock
9071 || !cpu_arch_flags.bitfield.cpui386)
9072 return 0;
9073
9074 /* Don't add prefix if it is a prefix or there is no operand in case
9075 that segment prefix is special. */
9076 if (!i.operands || i.tm.opcode_modifier.isprefix)
9077 return 0;
9078
9079 if (last_insn.kind == last_insn_other
9080 || last_insn.seg != now_seg)
9081 return 1;
9082
9083 if (flag_debug)
9084 as_warn_where (last_insn.file, last_insn.line,
9085 _("`%s` skips -malign-branch-boundary on `%s`"),
9086 last_insn.name, i.tm.name);
9087
9088 return 0;
9089 }
9090
9091 /* Return 1 if a BRANCH_PADDING frag should be generated. */
9092
9093 static int
9094 add_branch_padding_frag_p (enum align_branch_kind *branch_p,
9095 enum mf_jcc_kind *mf_jcc_p)
9096 {
9097 int add_padding;
9098
9099 /* NB: Don't work with COND_JUMP86 without i386. */
9100 if (!align_branch_power
9101 || now_seg == absolute_section
9102 || !cpu_arch_flags.bitfield.cpui386)
9103 return 0;
9104
9105 add_padding = 0;
9106
9107 /* Check for jcc and direct jmp. */
9108 if (i.tm.opcode_modifier.jump == JUMP)
9109 {
9110 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
9111 {
9112 *branch_p = align_branch_jmp;
9113 add_padding = align_branch & align_branch_jmp_bit;
9114 }
9115 else
9116 {
9117 /* Because J<cc> and JN<cc> share same group in macro-fusible table,
9118 igore the lowest bit. */
9119 *mf_jcc_p = (i.tm.base_opcode & 0x0e) >> 1;
9120 *branch_p = align_branch_jcc;
9121 if ((align_branch & align_branch_jcc_bit))
9122 add_padding = 1;
9123 }
9124 }
9125 else if (is_any_vex_encoding (&i.tm))
9126 return 0;
9127 else if ((i.tm.base_opcode | 1) == 0xc3)
9128 {
9129 /* Near ret. */
9130 *branch_p = align_branch_ret;
9131 if ((align_branch & align_branch_ret_bit))
9132 add_padding = 1;
9133 }
9134 else
9135 {
9136 /* Check for indirect jmp, direct and indirect calls. */
9137 if (i.tm.base_opcode == 0xe8)
9138 {
9139 /* Direct call. */
9140 *branch_p = align_branch_call;
9141 if ((align_branch & align_branch_call_bit))
9142 add_padding = 1;
9143 }
9144 else if (i.tm.base_opcode == 0xff
9145 && (i.tm.extension_opcode == 2
9146 || i.tm.extension_opcode == 4))
9147 {
9148 /* Indirect call and jmp. */
9149 *branch_p = align_branch_indirect;
9150 if ((align_branch & align_branch_indirect_bit))
9151 add_padding = 1;
9152 }
9153
9154 if (add_padding
9155 && i.disp_operands
9156 && tls_get_addr
9157 && (i.op[0].disps->X_op == O_symbol
9158 || (i.op[0].disps->X_op == O_subtract
9159 && i.op[0].disps->X_op_symbol == GOT_symbol)))
9160 {
9161 symbolS *s = i.op[0].disps->X_add_symbol;
9162 /* No padding to call to global or undefined tls_get_addr. */
9163 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
9164 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
9165 return 0;
9166 }
9167 }
9168
9169 if (add_padding
9170 && last_insn.kind != last_insn_other
9171 && last_insn.seg == now_seg)
9172 {
9173 if (flag_debug)
9174 as_warn_where (last_insn.file, last_insn.line,
9175 _("`%s` skips -malign-branch-boundary on `%s`"),
9176 last_insn.name, i.tm.name);
9177 return 0;
9178 }
9179
9180 return add_padding;
9181 }
9182
9183 static void
9184 output_insn (void)
9185 {
9186 fragS *insn_start_frag;
9187 offsetT insn_start_off;
9188 fragS *fragP = NULL;
9189 enum align_branch_kind branch = align_branch_none;
9190 /* The initializer is arbitrary just to avoid uninitialized error.
9191 it's actually either assigned in add_branch_padding_frag_p
9192 or never be used. */
9193 enum mf_jcc_kind mf_jcc = mf_jcc_jo;
9194
9195 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9196 if (IS_ELF && x86_used_note && now_seg != absolute_section)
9197 {
9198 if ((i.xstate & xstate_tmm) == xstate_tmm
9199 || i.tm.cpu_flags.bitfield.cpuamx_tile)
9200 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_TMM;
9201
9202 if (i.tm.cpu_flags.bitfield.cpusse3
9203 || i.tm.cpu_flags.bitfield.cpussse3
9204 || i.tm.cpu_flags.bitfield.cpusse4_1
9205 || i.tm.cpu_flags.bitfield.cpusse4_2
9206 || i.tm.cpu_flags.bitfield.cpucx16
9207 || i.tm.cpu_flags.bitfield.cpupopcnt
9208 /* LAHF-SAHF insns in 64-bit mode. */
9209 || (flag_code == CODE_64BIT
9210 && (i.tm.base_opcode | 1) == 0x9f))
9211 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_V2;
9212 if (i.tm.cpu_flags.bitfield.cpuavx
9213 || i.tm.cpu_flags.bitfield.cpuavx2
9214 /* Any VEX encoded insns execpt for CpuAVX512F, CpuAVX512BW,
9215 CpuAVX512DQ, LPW, TBM and AMX. */
9216 || (i.tm.opcode_modifier.vex
9217 && !i.tm.cpu_flags.bitfield.cpuavx512f
9218 && !i.tm.cpu_flags.bitfield.cpuavx512bw
9219 && !i.tm.cpu_flags.bitfield.cpuavx512dq
9220 && !i.tm.cpu_flags.bitfield.cpulwp
9221 && !i.tm.cpu_flags.bitfield.cputbm
9222 && !(x86_feature_2_used & GNU_PROPERTY_X86_FEATURE_2_TMM))
9223 || i.tm.cpu_flags.bitfield.cpuf16c
9224 || i.tm.cpu_flags.bitfield.cpufma
9225 || i.tm.cpu_flags.bitfield.cpulzcnt
9226 || i.tm.cpu_flags.bitfield.cpumovbe
9227 || i.tm.cpu_flags.bitfield.cpuxsave
9228 || i.tm.cpu_flags.bitfield.cpuxsavec
9229 || i.tm.cpu_flags.bitfield.cpuxsaveopt
9230 || i.tm.cpu_flags.bitfield.cpuxsaves)
9231 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_V3;
9232 if (i.tm.cpu_flags.bitfield.cpuavx512f
9233 || i.tm.cpu_flags.bitfield.cpuavx512bw
9234 || i.tm.cpu_flags.bitfield.cpuavx512dq
9235 || i.tm.cpu_flags.bitfield.cpuavx512vl
9236 /* Any EVEX encoded insns except for AVX512ER, AVX512PF and
9237 VNNIW. */
9238 || (i.tm.opcode_modifier.evex
9239 && !i.tm.cpu_flags.bitfield.cpuavx512er
9240 && !i.tm.cpu_flags.bitfield.cpuavx512pf
9241 && !i.tm.cpu_flags.bitfield.cpuavx512_4vnniw))
9242 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_V4;
9243
9244 if (i.tm.cpu_flags.bitfield.cpu8087
9245 || i.tm.cpu_flags.bitfield.cpu287
9246 || i.tm.cpu_flags.bitfield.cpu387
9247 || i.tm.cpu_flags.bitfield.cpu687
9248 || i.tm.cpu_flags.bitfield.cpufisttp)
9249 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
9250 if ((i.xstate & xstate_mmx)
9251 || i.tm.base_opcode == 0xf77 /* emms */
9252 || i.tm.base_opcode == 0xf0e /* femms */)
9253 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
9254 if (i.index_reg)
9255 {
9256 if (i.index_reg->reg_type.bitfield.zmmword)
9257 i.xstate |= xstate_zmm;
9258 else if (i.index_reg->reg_type.bitfield.ymmword)
9259 i.xstate |= xstate_ymm;
9260 else if (i.index_reg->reg_type.bitfield.xmmword)
9261 i.xstate |= xstate_xmm;
9262 }
9263 if ((i.xstate & xstate_xmm)
9264 || i.tm.cpu_flags.bitfield.cpuwidekl
9265 || i.tm.cpu_flags.bitfield.cpukl)
9266 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
9267 if ((i.xstate & xstate_ymm) == xstate_ymm)
9268 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
9269 if ((i.xstate & xstate_zmm) == xstate_zmm)
9270 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
9271 if (i.mask || (i.xstate & xstate_mask) == xstate_mask)
9272 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MASK;
9273 if (i.tm.cpu_flags.bitfield.cpufxsr)
9274 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
9275 if (i.tm.cpu_flags.bitfield.cpuxsave)
9276 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
9277 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
9278 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
9279 if (i.tm.cpu_flags.bitfield.cpuxsavec)
9280 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
9281 }
9282 #endif
9283
9284 /* Tie dwarf2 debug info to the address at the start of the insn.
9285 We can't do this after the insn has been output as the current
9286 frag may have been closed off. eg. by frag_var. */
9287 dwarf2_emit_insn (0);
9288
9289 insn_start_frag = frag_now;
9290 insn_start_off = frag_now_fix ();
9291
9292 if (add_branch_padding_frag_p (&branch, &mf_jcc))
9293 {
9294 char *p;
9295 /* Branch can be 8 bytes. Leave some room for prefixes. */
9296 unsigned int max_branch_padding_size = 14;
9297
9298 /* Align section to boundary. */
9299 record_alignment (now_seg, align_branch_power);
9300
9301 /* Make room for padding. */
9302 frag_grow (max_branch_padding_size);
9303
9304 /* Start of the padding. */
9305 p = frag_more (0);
9306
9307 fragP = frag_now;
9308
9309 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
9310 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
9311 NULL, 0, p);
9312
9313 fragP->tc_frag_data.mf_type = mf_jcc;
9314 fragP->tc_frag_data.branch_type = branch;
9315 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
9316 }
9317
9318 /* Output jumps. */
9319 if (i.tm.opcode_modifier.jump == JUMP)
9320 output_branch ();
9321 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
9322 || i.tm.opcode_modifier.jump == JUMP_DWORD)
9323 output_jump ();
9324 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
9325 output_interseg_jump ();
9326 else
9327 {
9328 /* Output normal instructions here. */
9329 char *p;
9330 unsigned char *q;
9331 unsigned int j;
9332 enum mf_cmp_kind mf_cmp;
9333
9334 if (avoid_fence
9335 && (i.tm.base_opcode == 0xfaee8
9336 || i.tm.base_opcode == 0xfaef0
9337 || i.tm.base_opcode == 0xfaef8))
9338 {
9339 /* Encode lfence, mfence, and sfence as
9340 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
9341 if (now_seg != absolute_section)
9342 {
9343 offsetT val = 0x240483f0ULL;
9344
9345 p = frag_more (5);
9346 md_number_to_chars (p, val, 5);
9347 }
9348 else
9349 abs_section_offset += 5;
9350 return;
9351 }
9352
9353 /* Some processors fail on LOCK prefix. This options makes
9354 assembler ignore LOCK prefix and serves as a workaround. */
9355 if (omit_lock_prefix)
9356 {
9357 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
9358 return;
9359 i.prefix[LOCK_PREFIX] = 0;
9360 }
9361
9362 if (branch)
9363 /* Skip if this is a branch. */
9364 ;
9365 else if (add_fused_jcc_padding_frag_p (&mf_cmp))
9366 {
9367 /* Make room for padding. */
9368 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
9369 p = frag_more (0);
9370
9371 fragP = frag_now;
9372
9373 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
9374 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
9375 NULL, 0, p);
9376
9377 fragP->tc_frag_data.mf_type = mf_cmp;
9378 fragP->tc_frag_data.branch_type = align_branch_fused;
9379 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
9380 }
9381 else if (add_branch_prefix_frag_p ())
9382 {
9383 unsigned int max_prefix_size = align_branch_prefix_size;
9384
9385 /* Make room for padding. */
9386 frag_grow (max_prefix_size);
9387 p = frag_more (0);
9388
9389 fragP = frag_now;
9390
9391 frag_var (rs_machine_dependent, max_prefix_size, 0,
9392 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
9393 NULL, 0, p);
9394
9395 fragP->tc_frag_data.max_bytes = max_prefix_size;
9396 }
9397
9398 /* Since the VEX/EVEX prefix contains the implicit prefix, we
9399 don't need the explicit prefix. */
9400 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
9401 {
9402 switch (i.tm.opcode_modifier.opcodeprefix)
9403 {
9404 case PREFIX_0X66:
9405 add_prefix (0x66);
9406 break;
9407 case PREFIX_0XF2:
9408 add_prefix (0xf2);
9409 break;
9410 case PREFIX_0XF3:
9411 if (!i.tm.cpu_flags.bitfield.cpupadlock
9412 || (i.prefix[REP_PREFIX] != 0xf3))
9413 add_prefix (0xf3);
9414 break;
9415 case PREFIX_NONE:
9416 switch (i.tm.opcode_length)
9417 {
9418 case 3:
9419 case 2:
9420 case 1:
9421 break;
9422 case 0:
9423 /* Check for pseudo prefixes. */
9424 as_bad_where (insn_start_frag->fr_file,
9425 insn_start_frag->fr_line,
9426 _("pseudo prefix without instruction"));
9427 return;
9428 default:
9429 abort ();
9430 }
9431 break;
9432 default:
9433 abort ();
9434 }
9435
9436 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
9437 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
9438 R_X86_64_GOTTPOFF relocation so that linker can safely
9439 perform IE->LE optimization. A dummy REX_OPCODE prefix
9440 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
9441 relocation for GDesc -> IE/LE optimization. */
9442 if (x86_elf_abi == X86_64_X32_ABI
9443 && i.operands == 2
9444 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
9445 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
9446 && i.prefix[REX_PREFIX] == 0)
9447 add_prefix (REX_OPCODE);
9448 #endif
9449
9450 /* The prefix bytes. */
9451 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
9452 if (*q)
9453 frag_opcode_byte (*q);
9454 }
9455 else
9456 {
9457 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
9458 if (*q)
9459 switch (j)
9460 {
9461 case SEG_PREFIX:
9462 case ADDR_PREFIX:
9463 frag_opcode_byte (*q);
9464 break;
9465 default:
9466 /* There should be no other prefixes for instructions
9467 with VEX prefix. */
9468 abort ();
9469 }
9470
9471 /* For EVEX instructions i.vrex should become 0 after
9472 build_evex_prefix. For VEX instructions upper 16 registers
9473 aren't available, so VREX should be 0. */
9474 if (i.vrex)
9475 abort ();
9476 /* Now the VEX prefix. */
9477 if (now_seg != absolute_section)
9478 {
9479 p = frag_more (i.vex.length);
9480 for (j = 0; j < i.vex.length; j++)
9481 p[j] = i.vex.bytes[j];
9482 }
9483 else
9484 abs_section_offset += i.vex.length;
9485 }
9486
9487 /* Now the opcode; be careful about word order here! */
9488 if (now_seg == absolute_section)
9489 abs_section_offset += i.tm.opcode_length;
9490 else if (i.tm.opcode_length == 1)
9491 {
9492 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
9493 }
9494 else
9495 {
9496 switch (i.tm.opcode_length)
9497 {
9498 case 4:
9499 p = frag_more (4);
9500 *p++ = (i.tm.base_opcode >> 24) & 0xff;
9501 *p++ = (i.tm.base_opcode >> 16) & 0xff;
9502 break;
9503 case 3:
9504 p = frag_more (3);
9505 *p++ = (i.tm.base_opcode >> 16) & 0xff;
9506 break;
9507 case 2:
9508 p = frag_more (2);
9509 break;
9510 default:
9511 abort ();
9512 break;
9513 }
9514
9515 /* Put out high byte first: can't use md_number_to_chars! */
9516 *p++ = (i.tm.base_opcode >> 8) & 0xff;
9517 *p = i.tm.base_opcode & 0xff;
9518 }
9519
9520 /* Now the modrm byte and sib byte (if present). */
9521 if (i.tm.opcode_modifier.modrm)
9522 {
9523 frag_opcode_byte ((i.rm.regmem << 0)
9524 | (i.rm.reg << 3)
9525 | (i.rm.mode << 6));
9526 /* If i.rm.regmem == ESP (4)
9527 && i.rm.mode != (Register mode)
9528 && not 16 bit
9529 ==> need second modrm byte. */
9530 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
9531 && i.rm.mode != 3
9532 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
9533 frag_opcode_byte ((i.sib.base << 0)
9534 | (i.sib.index << 3)
9535 | (i.sib.scale << 6));
9536 }
9537
9538 if (i.disp_operands)
9539 output_disp (insn_start_frag, insn_start_off);
9540
9541 if (i.imm_operands)
9542 output_imm (insn_start_frag, insn_start_off);
9543
9544 /*
9545 * frag_now_fix () returning plain abs_section_offset when we're in the
9546 * absolute section, and abs_section_offset not getting updated as data
9547 * gets added to the frag breaks the logic below.
9548 */
9549 if (now_seg != absolute_section)
9550 {
9551 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
9552 if (j > 15)
9553 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
9554 j);
9555 else if (fragP)
9556 {
9557 /* NB: Don't add prefix with GOTPC relocation since
9558 output_disp() above depends on the fixed encoding
9559 length. Can't add prefix with TLS relocation since
9560 it breaks TLS linker optimization. */
9561 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
9562 /* Prefix count on the current instruction. */
9563 unsigned int count = i.vex.length;
9564 unsigned int k;
9565 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
9566 /* REX byte is encoded in VEX/EVEX prefix. */
9567 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
9568 count++;
9569
9570 /* Count prefixes for extended opcode maps. */
9571 if (!i.vex.length)
9572 switch (i.tm.opcode_length)
9573 {
9574 case 3:
9575 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
9576 {
9577 count++;
9578 switch ((i.tm.base_opcode >> 8) & 0xff)
9579 {
9580 case 0x38:
9581 case 0x3a:
9582 count++;
9583 break;
9584 default:
9585 break;
9586 }
9587 }
9588 break;
9589 case 2:
9590 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
9591 count++;
9592 break;
9593 case 1:
9594 break;
9595 default:
9596 abort ();
9597 }
9598
9599 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
9600 == BRANCH_PREFIX)
9601 {
9602 /* Set the maximum prefix size in BRANCH_PREFIX
9603 frag. */
9604 if (fragP->tc_frag_data.max_bytes > max)
9605 fragP->tc_frag_data.max_bytes = max;
9606 if (fragP->tc_frag_data.max_bytes > count)
9607 fragP->tc_frag_data.max_bytes -= count;
9608 else
9609 fragP->tc_frag_data.max_bytes = 0;
9610 }
9611 else
9612 {
9613 /* Remember the maximum prefix size in FUSED_JCC_PADDING
9614 frag. */
9615 unsigned int max_prefix_size;
9616 if (align_branch_prefix_size > max)
9617 max_prefix_size = max;
9618 else
9619 max_prefix_size = align_branch_prefix_size;
9620 if (max_prefix_size > count)
9621 fragP->tc_frag_data.max_prefix_length
9622 = max_prefix_size - count;
9623 }
9624
9625 /* Use existing segment prefix if possible. Use CS
9626 segment prefix in 64-bit mode. In 32-bit mode, use SS
9627 segment prefix with ESP/EBP base register and use DS
9628 segment prefix without ESP/EBP base register. */
9629 if (i.prefix[SEG_PREFIX])
9630 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
9631 else if (flag_code == CODE_64BIT)
9632 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
9633 else if (i.base_reg
9634 && (i.base_reg->reg_num == 4
9635 || i.base_reg->reg_num == 5))
9636 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
9637 else
9638 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
9639 }
9640 }
9641 }
9642
9643 /* NB: Don't work with COND_JUMP86 without i386. */
9644 if (align_branch_power
9645 && now_seg != absolute_section
9646 && cpu_arch_flags.bitfield.cpui386)
9647 {
9648 /* Terminate each frag so that we can add prefix and check for
9649 fused jcc. */
9650 frag_wane (frag_now);
9651 frag_new (0);
9652 }
9653
9654 #ifdef DEBUG386
9655 if (flag_debug)
9656 {
9657 pi ("" /*line*/, &i);
9658 }
9659 #endif /* DEBUG386 */
9660 }
9661
9662 /* Return the size of the displacement operand N. */
9663
9664 static int
9665 disp_size (unsigned int n)
9666 {
9667 int size = 4;
9668
9669 if (i.types[n].bitfield.disp64)
9670 size = 8;
9671 else if (i.types[n].bitfield.disp8)
9672 size = 1;
9673 else if (i.types[n].bitfield.disp16)
9674 size = 2;
9675 return size;
9676 }
9677
9678 /* Return the size of the immediate operand N. */
9679
9680 static int
9681 imm_size (unsigned int n)
9682 {
9683 int size = 4;
9684 if (i.types[n].bitfield.imm64)
9685 size = 8;
9686 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
9687 size = 1;
9688 else if (i.types[n].bitfield.imm16)
9689 size = 2;
9690 return size;
9691 }
9692
9693 static void
9694 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
9695 {
9696 char *p;
9697 unsigned int n;
9698
9699 for (n = 0; n < i.operands; n++)
9700 {
9701 if (operand_type_check (i.types[n], disp))
9702 {
9703 int size = disp_size (n);
9704
9705 if (now_seg == absolute_section)
9706 abs_section_offset += size;
9707 else if (i.op[n].disps->X_op == O_constant)
9708 {
9709 offsetT val = i.op[n].disps->X_add_number;
9710
9711 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
9712 size);
9713 p = frag_more (size);
9714 md_number_to_chars (p, val, size);
9715 }
9716 else
9717 {
9718 enum bfd_reloc_code_real reloc_type;
9719 int sign = i.types[n].bitfield.disp32s;
9720 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
9721 fixS *fixP;
9722
9723 /* We can't have 8 bit displacement here. */
9724 gas_assert (!i.types[n].bitfield.disp8);
9725
9726 /* The PC relative address is computed relative
9727 to the instruction boundary, so in case immediate
9728 fields follows, we need to adjust the value. */
9729 if (pcrel && i.imm_operands)
9730 {
9731 unsigned int n1;
9732 int sz = 0;
9733
9734 for (n1 = 0; n1 < i.operands; n1++)
9735 if (operand_type_check (i.types[n1], imm))
9736 {
9737 /* Only one immediate is allowed for PC
9738 relative address. */
9739 gas_assert (sz == 0);
9740 sz = imm_size (n1);
9741 i.op[n].disps->X_add_number -= sz;
9742 }
9743 /* We should find the immediate. */
9744 gas_assert (sz != 0);
9745 }
9746
9747 p = frag_more (size);
9748 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
9749 if (GOT_symbol
9750 && GOT_symbol == i.op[n].disps->X_add_symbol
9751 && (((reloc_type == BFD_RELOC_32
9752 || reloc_type == BFD_RELOC_X86_64_32S
9753 || (reloc_type == BFD_RELOC_64
9754 && object_64bit))
9755 && (i.op[n].disps->X_op == O_symbol
9756 || (i.op[n].disps->X_op == O_add
9757 && ((symbol_get_value_expression
9758 (i.op[n].disps->X_op_symbol)->X_op)
9759 == O_subtract))))
9760 || reloc_type == BFD_RELOC_32_PCREL))
9761 {
9762 if (!object_64bit)
9763 {
9764 reloc_type = BFD_RELOC_386_GOTPC;
9765 i.has_gotpc_tls_reloc = TRUE;
9766 i.op[n].imms->X_add_number +=
9767 encoding_length (insn_start_frag, insn_start_off, p);
9768 }
9769 else if (reloc_type == BFD_RELOC_64)
9770 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9771 else
9772 /* Don't do the adjustment for x86-64, as there
9773 the pcrel addressing is relative to the _next_
9774 insn, and that is taken care of in other code. */
9775 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9776 }
9777 else if (align_branch_power)
9778 {
9779 switch (reloc_type)
9780 {
9781 case BFD_RELOC_386_TLS_GD:
9782 case BFD_RELOC_386_TLS_LDM:
9783 case BFD_RELOC_386_TLS_IE:
9784 case BFD_RELOC_386_TLS_IE_32:
9785 case BFD_RELOC_386_TLS_GOTIE:
9786 case BFD_RELOC_386_TLS_GOTDESC:
9787 case BFD_RELOC_386_TLS_DESC_CALL:
9788 case BFD_RELOC_X86_64_TLSGD:
9789 case BFD_RELOC_X86_64_TLSLD:
9790 case BFD_RELOC_X86_64_GOTTPOFF:
9791 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9792 case BFD_RELOC_X86_64_TLSDESC_CALL:
9793 i.has_gotpc_tls_reloc = TRUE;
9794 default:
9795 break;
9796 }
9797 }
9798 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9799 size, i.op[n].disps, pcrel,
9800 reloc_type);
9801 /* Check for "call/jmp *mem", "mov mem, %reg",
9802 "test %reg, mem" and "binop mem, %reg" where binop
9803 is one of adc, add, and, cmp, or, sbb, sub, xor
9804 instructions without data prefix. Always generate
9805 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9806 if (i.prefix[DATA_PREFIX] == 0
9807 && (generate_relax_relocations
9808 || (!object_64bit
9809 && i.rm.mode == 0
9810 && i.rm.regmem == 5))
9811 && (i.rm.mode == 2
9812 || (i.rm.mode == 0 && i.rm.regmem == 5))
9813 && !is_any_vex_encoding(&i.tm)
9814 && ((i.operands == 1
9815 && i.tm.base_opcode == 0xff
9816 && (i.rm.reg == 2 || i.rm.reg == 4))
9817 || (i.operands == 2
9818 && (i.tm.base_opcode == 0x8b
9819 || i.tm.base_opcode == 0x85
9820 || (i.tm.base_opcode & ~0x38) == 0x03))))
9821 {
9822 if (object_64bit)
9823 {
9824 fixP->fx_tcbit = i.rex != 0;
9825 if (i.base_reg
9826 && (i.base_reg->reg_num == RegIP))
9827 fixP->fx_tcbit2 = 1;
9828 }
9829 else
9830 fixP->fx_tcbit2 = 1;
9831 }
9832 }
9833 }
9834 }
9835 }
9836
9837 static void
9838 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
9839 {
9840 char *p;
9841 unsigned int n;
9842
9843 for (n = 0; n < i.operands; n++)
9844 {
9845 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9846 if (i.rounding && (int) n == i.rounding->operand)
9847 continue;
9848
9849 if (operand_type_check (i.types[n], imm))
9850 {
9851 int size = imm_size (n);
9852
9853 if (now_seg == absolute_section)
9854 abs_section_offset += size;
9855 else if (i.op[n].imms->X_op == O_constant)
9856 {
9857 offsetT val;
9858
9859 val = offset_in_range (i.op[n].imms->X_add_number,
9860 size);
9861 p = frag_more (size);
9862 md_number_to_chars (p, val, size);
9863 }
9864 else
9865 {
9866 /* Not absolute_section.
9867 Need a 32-bit fixup (don't support 8bit
9868 non-absolute imms). Try to support other
9869 sizes ... */
9870 enum bfd_reloc_code_real reloc_type;
9871 int sign;
9872
9873 if (i.types[n].bitfield.imm32s
9874 && (i.suffix == QWORD_MNEM_SUFFIX
9875 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
9876 sign = 1;
9877 else
9878 sign = 0;
9879
9880 p = frag_more (size);
9881 reloc_type = reloc (size, 0, sign, i.reloc[n]);
9882
9883 /* This is tough to explain. We end up with this one if we
9884 * have operands that look like
9885 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9886 * obtain the absolute address of the GOT, and it is strongly
9887 * preferable from a performance point of view to avoid using
9888 * a runtime relocation for this. The actual sequence of
9889 * instructions often look something like:
9890 *
9891 * call .L66
9892 * .L66:
9893 * popl %ebx
9894 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9895 *
9896 * The call and pop essentially return the absolute address
9897 * of the label .L66 and store it in %ebx. The linker itself
9898 * will ultimately change the first operand of the addl so
9899 * that %ebx points to the GOT, but to keep things simple, the
9900 * .o file must have this operand set so that it generates not
9901 * the absolute address of .L66, but the absolute address of
9902 * itself. This allows the linker itself simply treat a GOTPC
9903 * relocation as asking for a pcrel offset to the GOT to be
9904 * added in, and the addend of the relocation is stored in the
9905 * operand field for the instruction itself.
9906 *
9907 * Our job here is to fix the operand so that it would add
9908 * the correct offset so that %ebx would point to itself. The
9909 * thing that is tricky is that .-.L66 will point to the
9910 * beginning of the instruction, so we need to further modify
9911 * the operand so that it will point to itself. There are
9912 * other cases where you have something like:
9913 *
9914 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9915 *
9916 * and here no correction would be required. Internally in
9917 * the assembler we treat operands of this form as not being
9918 * pcrel since the '.' is explicitly mentioned, and I wonder
9919 * whether it would simplify matters to do it this way. Who
9920 * knows. In earlier versions of the PIC patches, the
9921 * pcrel_adjust field was used to store the correction, but
9922 * since the expression is not pcrel, I felt it would be
9923 * confusing to do it this way. */
9924
9925 if ((reloc_type == BFD_RELOC_32
9926 || reloc_type == BFD_RELOC_X86_64_32S
9927 || reloc_type == BFD_RELOC_64)
9928 && GOT_symbol
9929 && GOT_symbol == i.op[n].imms->X_add_symbol
9930 && (i.op[n].imms->X_op == O_symbol
9931 || (i.op[n].imms->X_op == O_add
9932 && ((symbol_get_value_expression
9933 (i.op[n].imms->X_op_symbol)->X_op)
9934 == O_subtract))))
9935 {
9936 if (!object_64bit)
9937 reloc_type = BFD_RELOC_386_GOTPC;
9938 else if (size == 4)
9939 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9940 else if (size == 8)
9941 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9942 i.has_gotpc_tls_reloc = TRUE;
9943 i.op[n].imms->X_add_number +=
9944 encoding_length (insn_start_frag, insn_start_off, p);
9945 }
9946 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9947 i.op[n].imms, 0, reloc_type);
9948 }
9949 }
9950 }
9951 }
9952 \f
9953 /* x86_cons_fix_new is called via the expression parsing code when a
9954 reloc is needed. We use this hook to get the correct .got reloc. */
9955 static int cons_sign = -1;
9956
9957 void
9958 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
9959 expressionS *exp, bfd_reloc_code_real_type r)
9960 {
9961 r = reloc (len, 0, cons_sign, r);
9962
9963 #ifdef TE_PE
9964 if (exp->X_op == O_secrel)
9965 {
9966 exp->X_op = O_symbol;
9967 r = BFD_RELOC_32_SECREL;
9968 }
9969 #endif
9970
9971 fix_new_exp (frag, off, len, exp, 0, r);
9972 }
9973
9974 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9975 purpose of the `.dc.a' internal pseudo-op. */
9976
9977 int
9978 x86_address_bytes (void)
9979 {
9980 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9981 return 4;
9982 return stdoutput->arch_info->bits_per_address / 8;
9983 }
9984
9985 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9986 || defined (LEX_AT)
9987 # define lex_got(reloc, adjust, types) NULL
9988 #else
9989 /* Parse operands of the form
9990 <symbol>@GOTOFF+<nnn>
9991 and similar .plt or .got references.
9992
9993 If we find one, set up the correct relocation in RELOC and copy the
9994 input string, minus the `@GOTOFF' into a malloc'd buffer for
9995 parsing by the calling routine. Return this buffer, and if ADJUST
9996 is non-null set it to the length of the string we removed from the
9997 input line. Otherwise return NULL. */
9998 static char *
9999 lex_got (enum bfd_reloc_code_real *rel,
10000 int *adjust,
10001 i386_operand_type *types)
10002 {
10003 /* Some of the relocations depend on the size of what field is to
10004 be relocated. But in our callers i386_immediate and i386_displacement
10005 we don't yet know the operand size (this will be set by insn
10006 matching). Hence we record the word32 relocation here,
10007 and adjust the reloc according to the real size in reloc(). */
10008 static const struct {
10009 const char *str;
10010 int len;
10011 const enum bfd_reloc_code_real rel[2];
10012 const i386_operand_type types64;
10013 } gotrel[] = {
10014 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10015 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
10016 BFD_RELOC_SIZE32 },
10017 OPERAND_TYPE_IMM32_64 },
10018 #endif
10019 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
10020 BFD_RELOC_X86_64_PLTOFF64 },
10021 OPERAND_TYPE_IMM64 },
10022 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
10023 BFD_RELOC_X86_64_PLT32 },
10024 OPERAND_TYPE_IMM32_32S_DISP32 },
10025 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
10026 BFD_RELOC_X86_64_GOTPLT64 },
10027 OPERAND_TYPE_IMM64_DISP64 },
10028 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
10029 BFD_RELOC_X86_64_GOTOFF64 },
10030 OPERAND_TYPE_IMM64_DISP64 },
10031 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
10032 BFD_RELOC_X86_64_GOTPCREL },
10033 OPERAND_TYPE_IMM32_32S_DISP32 },
10034 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
10035 BFD_RELOC_X86_64_TLSGD },
10036 OPERAND_TYPE_IMM32_32S_DISP32 },
10037 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
10038 _dummy_first_bfd_reloc_code_real },
10039 OPERAND_TYPE_NONE },
10040 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
10041 BFD_RELOC_X86_64_TLSLD },
10042 OPERAND_TYPE_IMM32_32S_DISP32 },
10043 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
10044 BFD_RELOC_X86_64_GOTTPOFF },
10045 OPERAND_TYPE_IMM32_32S_DISP32 },
10046 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
10047 BFD_RELOC_X86_64_TPOFF32 },
10048 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
10049 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
10050 _dummy_first_bfd_reloc_code_real },
10051 OPERAND_TYPE_NONE },
10052 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
10053 BFD_RELOC_X86_64_DTPOFF32 },
10054 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
10055 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
10056 _dummy_first_bfd_reloc_code_real },
10057 OPERAND_TYPE_NONE },
10058 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
10059 _dummy_first_bfd_reloc_code_real },
10060 OPERAND_TYPE_NONE },
10061 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
10062 BFD_RELOC_X86_64_GOT32 },
10063 OPERAND_TYPE_IMM32_32S_64_DISP32 },
10064 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
10065 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
10066 OPERAND_TYPE_IMM32_32S_DISP32 },
10067 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
10068 BFD_RELOC_X86_64_TLSDESC_CALL },
10069 OPERAND_TYPE_IMM32_32S_DISP32 },
10070 };
10071 char *cp;
10072 unsigned int j;
10073
10074 #if defined (OBJ_MAYBE_ELF)
10075 if (!IS_ELF)
10076 return NULL;
10077 #endif
10078
10079 for (cp = input_line_pointer; *cp != '@'; cp++)
10080 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
10081 return NULL;
10082
10083 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
10084 {
10085 int len = gotrel[j].len;
10086 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
10087 {
10088 if (gotrel[j].rel[object_64bit] != 0)
10089 {
10090 int first, second;
10091 char *tmpbuf, *past_reloc;
10092
10093 *rel = gotrel[j].rel[object_64bit];
10094
10095 if (types)
10096 {
10097 if (flag_code != CODE_64BIT)
10098 {
10099 types->bitfield.imm32 = 1;
10100 types->bitfield.disp32 = 1;
10101 }
10102 else
10103 *types = gotrel[j].types64;
10104 }
10105
10106 if (j != 0 && GOT_symbol == NULL)
10107 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
10108
10109 /* The length of the first part of our input line. */
10110 first = cp - input_line_pointer;
10111
10112 /* The second part goes from after the reloc token until
10113 (and including) an end_of_line char or comma. */
10114 past_reloc = cp + 1 + len;
10115 cp = past_reloc;
10116 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
10117 ++cp;
10118 second = cp + 1 - past_reloc;
10119
10120 /* Allocate and copy string. The trailing NUL shouldn't
10121 be necessary, but be safe. */
10122 tmpbuf = XNEWVEC (char, first + second + 2);
10123 memcpy (tmpbuf, input_line_pointer, first);
10124 if (second != 0 && *past_reloc != ' ')
10125 /* Replace the relocation token with ' ', so that
10126 errors like foo@GOTOFF1 will be detected. */
10127 tmpbuf[first++] = ' ';
10128 else
10129 /* Increment length by 1 if the relocation token is
10130 removed. */
10131 len++;
10132 if (adjust)
10133 *adjust = len;
10134 memcpy (tmpbuf + first, past_reloc, second);
10135 tmpbuf[first + second] = '\0';
10136 return tmpbuf;
10137 }
10138
10139 as_bad (_("@%s reloc is not supported with %d-bit output format"),
10140 gotrel[j].str, 1 << (5 + object_64bit));
10141 return NULL;
10142 }
10143 }
10144
10145 /* Might be a symbol version string. Don't as_bad here. */
10146 return NULL;
10147 }
10148 #endif
10149
10150 #ifdef TE_PE
10151 #ifdef lex_got
10152 #undef lex_got
10153 #endif
10154 /* Parse operands of the form
10155 <symbol>@SECREL32+<nnn>
10156
10157 If we find one, set up the correct relocation in RELOC and copy the
10158 input string, minus the `@SECREL32' into a malloc'd buffer for
10159 parsing by the calling routine. Return this buffer, and if ADJUST
10160 is non-null set it to the length of the string we removed from the
10161 input line. Otherwise return NULL.
10162
10163 This function is copied from the ELF version above adjusted for PE targets. */
10164
10165 static char *
10166 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
10167 int *adjust ATTRIBUTE_UNUSED,
10168 i386_operand_type *types)
10169 {
10170 static const struct
10171 {
10172 const char *str;
10173 int len;
10174 const enum bfd_reloc_code_real rel[2];
10175 const i386_operand_type types64;
10176 }
10177 gotrel[] =
10178 {
10179 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
10180 BFD_RELOC_32_SECREL },
10181 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
10182 };
10183
10184 char *cp;
10185 unsigned j;
10186
10187 for (cp = input_line_pointer; *cp != '@'; cp++)
10188 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
10189 return NULL;
10190
10191 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
10192 {
10193 int len = gotrel[j].len;
10194
10195 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
10196 {
10197 if (gotrel[j].rel[object_64bit] != 0)
10198 {
10199 int first, second;
10200 char *tmpbuf, *past_reloc;
10201
10202 *rel = gotrel[j].rel[object_64bit];
10203 if (adjust)
10204 *adjust = len;
10205
10206 if (types)
10207 {
10208 if (flag_code != CODE_64BIT)
10209 {
10210 types->bitfield.imm32 = 1;
10211 types->bitfield.disp32 = 1;
10212 }
10213 else
10214 *types = gotrel[j].types64;
10215 }
10216
10217 /* The length of the first part of our input line. */
10218 first = cp - input_line_pointer;
10219
10220 /* The second part goes from after the reloc token until
10221 (and including) an end_of_line char or comma. */
10222 past_reloc = cp + 1 + len;
10223 cp = past_reloc;
10224 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
10225 ++cp;
10226 second = cp + 1 - past_reloc;
10227
10228 /* Allocate and copy string. The trailing NUL shouldn't
10229 be necessary, but be safe. */
10230 tmpbuf = XNEWVEC (char, first + second + 2);
10231 memcpy (tmpbuf, input_line_pointer, first);
10232 if (second != 0 && *past_reloc != ' ')
10233 /* Replace the relocation token with ' ', so that
10234 errors like foo@SECLREL321 will be detected. */
10235 tmpbuf[first++] = ' ';
10236 memcpy (tmpbuf + first, past_reloc, second);
10237 tmpbuf[first + second] = '\0';
10238 return tmpbuf;
10239 }
10240
10241 as_bad (_("@%s reloc is not supported with %d-bit output format"),
10242 gotrel[j].str, 1 << (5 + object_64bit));
10243 return NULL;
10244 }
10245 }
10246
10247 /* Might be a symbol version string. Don't as_bad here. */
10248 return NULL;
10249 }
10250
10251 #endif /* TE_PE */
10252
10253 bfd_reloc_code_real_type
10254 x86_cons (expressionS *exp, int size)
10255 {
10256 bfd_reloc_code_real_type got_reloc = NO_RELOC;
10257
10258 intel_syntax = -intel_syntax;
10259
10260 exp->X_md = 0;
10261 if (size == 4 || (object_64bit && size == 8))
10262 {
10263 /* Handle @GOTOFF and the like in an expression. */
10264 char *save;
10265 char *gotfree_input_line;
10266 int adjust = 0;
10267
10268 save = input_line_pointer;
10269 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
10270 if (gotfree_input_line)
10271 input_line_pointer = gotfree_input_line;
10272
10273 expression (exp);
10274
10275 if (gotfree_input_line)
10276 {
10277 /* expression () has merrily parsed up to the end of line,
10278 or a comma - in the wrong buffer. Transfer how far
10279 input_line_pointer has moved to the right buffer. */
10280 input_line_pointer = (save
10281 + (input_line_pointer - gotfree_input_line)
10282 + adjust);
10283 free (gotfree_input_line);
10284 if (exp->X_op == O_constant
10285 || exp->X_op == O_absent
10286 || exp->X_op == O_illegal
10287 || exp->X_op == O_register
10288 || exp->X_op == O_big)
10289 {
10290 char c = *input_line_pointer;
10291 *input_line_pointer = 0;
10292 as_bad (_("missing or invalid expression `%s'"), save);
10293 *input_line_pointer = c;
10294 }
10295 else if ((got_reloc == BFD_RELOC_386_PLT32
10296 || got_reloc == BFD_RELOC_X86_64_PLT32)
10297 && exp->X_op != O_symbol)
10298 {
10299 char c = *input_line_pointer;
10300 *input_line_pointer = 0;
10301 as_bad (_("invalid PLT expression `%s'"), save);
10302 *input_line_pointer = c;
10303 }
10304 }
10305 }
10306 else
10307 expression (exp);
10308
10309 intel_syntax = -intel_syntax;
10310
10311 if (intel_syntax)
10312 i386_intel_simplify (exp);
10313
10314 return got_reloc;
10315 }
10316
10317 static void
10318 signed_cons (int size)
10319 {
10320 if (flag_code == CODE_64BIT)
10321 cons_sign = 1;
10322 cons (size);
10323 cons_sign = -1;
10324 }
10325
10326 #ifdef TE_PE
10327 static void
10328 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
10329 {
10330 expressionS exp;
10331
10332 do
10333 {
10334 expression (&exp);
10335 if (exp.X_op == O_symbol)
10336 exp.X_op = O_secrel;
10337
10338 emit_expr (&exp, 4);
10339 }
10340 while (*input_line_pointer++ == ',');
10341
10342 input_line_pointer--;
10343 demand_empty_rest_of_line ();
10344 }
10345 #endif
10346
10347 /* Handle Vector operations. */
10348
10349 static char *
10350 check_VecOperations (char *op_string, char *op_end)
10351 {
10352 const reg_entry *mask;
10353 const char *saved;
10354 char *end_op;
10355
10356 while (*op_string
10357 && (op_end == NULL || op_string < op_end))
10358 {
10359 saved = op_string;
10360 if (*op_string == '{')
10361 {
10362 op_string++;
10363
10364 /* Check broadcasts. */
10365 if (strncmp (op_string, "1to", 3) == 0)
10366 {
10367 int bcst_type;
10368
10369 if (i.broadcast)
10370 goto duplicated_vec_op;
10371
10372 op_string += 3;
10373 if (*op_string == '8')
10374 bcst_type = 8;
10375 else if (*op_string == '4')
10376 bcst_type = 4;
10377 else if (*op_string == '2')
10378 bcst_type = 2;
10379 else if (*op_string == '1'
10380 && *(op_string+1) == '6')
10381 {
10382 bcst_type = 16;
10383 op_string++;
10384 }
10385 else
10386 {
10387 as_bad (_("Unsupported broadcast: `%s'"), saved);
10388 return NULL;
10389 }
10390 op_string++;
10391
10392 broadcast_op.type = bcst_type;
10393 broadcast_op.operand = this_operand;
10394 broadcast_op.bytes = 0;
10395 i.broadcast = &broadcast_op;
10396 }
10397 /* Check masking operation. */
10398 else if ((mask = parse_register (op_string, &end_op)) != NULL)
10399 {
10400 if (mask == &bad_reg)
10401 return NULL;
10402
10403 /* k0 can't be used for write mask. */
10404 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
10405 {
10406 as_bad (_("`%s%s' can't be used for write mask"),
10407 register_prefix, mask->reg_name);
10408 return NULL;
10409 }
10410
10411 if (!i.mask)
10412 {
10413 mask_op.mask = mask;
10414 mask_op.zeroing = 0;
10415 mask_op.operand = this_operand;
10416 i.mask = &mask_op;
10417 }
10418 else
10419 {
10420 if (i.mask->mask)
10421 goto duplicated_vec_op;
10422
10423 i.mask->mask = mask;
10424
10425 /* Only "{z}" is allowed here. No need to check
10426 zeroing mask explicitly. */
10427 if (i.mask->operand != this_operand)
10428 {
10429 as_bad (_("invalid write mask `%s'"), saved);
10430 return NULL;
10431 }
10432 }
10433
10434 op_string = end_op;
10435 }
10436 /* Check zeroing-flag for masking operation. */
10437 else if (*op_string == 'z')
10438 {
10439 if (!i.mask)
10440 {
10441 mask_op.mask = NULL;
10442 mask_op.zeroing = 1;
10443 mask_op.operand = this_operand;
10444 i.mask = &mask_op;
10445 }
10446 else
10447 {
10448 if (i.mask->zeroing)
10449 {
10450 duplicated_vec_op:
10451 as_bad (_("duplicated `%s'"), saved);
10452 return NULL;
10453 }
10454
10455 i.mask->zeroing = 1;
10456
10457 /* Only "{%k}" is allowed here. No need to check mask
10458 register explicitly. */
10459 if (i.mask->operand != this_operand)
10460 {
10461 as_bad (_("invalid zeroing-masking `%s'"),
10462 saved);
10463 return NULL;
10464 }
10465 }
10466
10467 op_string++;
10468 }
10469 else
10470 goto unknown_vec_op;
10471
10472 if (*op_string != '}')
10473 {
10474 as_bad (_("missing `}' in `%s'"), saved);
10475 return NULL;
10476 }
10477 op_string++;
10478
10479 /* Strip whitespace since the addition of pseudo prefixes
10480 changed how the scrubber treats '{'. */
10481 if (is_space_char (*op_string))
10482 ++op_string;
10483
10484 continue;
10485 }
10486 unknown_vec_op:
10487 /* We don't know this one. */
10488 as_bad (_("unknown vector operation: `%s'"), saved);
10489 return NULL;
10490 }
10491
10492 if (i.mask && i.mask->zeroing && !i.mask->mask)
10493 {
10494 as_bad (_("zeroing-masking only allowed with write mask"));
10495 return NULL;
10496 }
10497
10498 return op_string;
10499 }
10500
10501 static int
10502 i386_immediate (char *imm_start)
10503 {
10504 char *save_input_line_pointer;
10505 char *gotfree_input_line;
10506 segT exp_seg = 0;
10507 expressionS *exp;
10508 i386_operand_type types;
10509
10510 operand_type_set (&types, ~0);
10511
10512 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
10513 {
10514 as_bad (_("at most %d immediate operands are allowed"),
10515 MAX_IMMEDIATE_OPERANDS);
10516 return 0;
10517 }
10518
10519 exp = &im_expressions[i.imm_operands++];
10520 i.op[this_operand].imms = exp;
10521
10522 if (is_space_char (*imm_start))
10523 ++imm_start;
10524
10525 save_input_line_pointer = input_line_pointer;
10526 input_line_pointer = imm_start;
10527
10528 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10529 if (gotfree_input_line)
10530 input_line_pointer = gotfree_input_line;
10531
10532 exp_seg = expression (exp);
10533
10534 SKIP_WHITESPACE ();
10535
10536 /* Handle vector operations. */
10537 if (*input_line_pointer == '{')
10538 {
10539 input_line_pointer = check_VecOperations (input_line_pointer,
10540 NULL);
10541 if (input_line_pointer == NULL)
10542 return 0;
10543 }
10544
10545 if (*input_line_pointer)
10546 as_bad (_("junk `%s' after expression"), input_line_pointer);
10547
10548 input_line_pointer = save_input_line_pointer;
10549 if (gotfree_input_line)
10550 {
10551 free (gotfree_input_line);
10552
10553 if (exp->X_op == O_constant || exp->X_op == O_register)
10554 exp->X_op = O_illegal;
10555 }
10556
10557 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
10558 }
10559
10560 static int
10561 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10562 i386_operand_type types, const char *imm_start)
10563 {
10564 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
10565 {
10566 if (imm_start)
10567 as_bad (_("missing or invalid immediate expression `%s'"),
10568 imm_start);
10569 return 0;
10570 }
10571 else if (exp->X_op == O_constant)
10572 {
10573 /* Size it properly later. */
10574 i.types[this_operand].bitfield.imm64 = 1;
10575 /* If not 64bit, sign extend val. */
10576 if (flag_code != CODE_64BIT
10577 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
10578 exp->X_add_number
10579 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
10580 }
10581 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10582 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
10583 && exp_seg != absolute_section
10584 && exp_seg != text_section
10585 && exp_seg != data_section
10586 && exp_seg != bss_section
10587 && exp_seg != undefined_section
10588 && !bfd_is_com_section (exp_seg))
10589 {
10590 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10591 return 0;
10592 }
10593 #endif
10594 else if (!intel_syntax && exp_seg == reg_section)
10595 {
10596 if (imm_start)
10597 as_bad (_("illegal immediate register operand %s"), imm_start);
10598 return 0;
10599 }
10600 else
10601 {
10602 /* This is an address. The size of the address will be
10603 determined later, depending on destination register,
10604 suffix, or the default for the section. */
10605 i.types[this_operand].bitfield.imm8 = 1;
10606 i.types[this_operand].bitfield.imm16 = 1;
10607 i.types[this_operand].bitfield.imm32 = 1;
10608 i.types[this_operand].bitfield.imm32s = 1;
10609 i.types[this_operand].bitfield.imm64 = 1;
10610 i.types[this_operand] = operand_type_and (i.types[this_operand],
10611 types);
10612 }
10613
10614 return 1;
10615 }
10616
10617 static char *
10618 i386_scale (char *scale)
10619 {
10620 offsetT val;
10621 char *save = input_line_pointer;
10622
10623 input_line_pointer = scale;
10624 val = get_absolute_expression ();
10625
10626 switch (val)
10627 {
10628 case 1:
10629 i.log2_scale_factor = 0;
10630 break;
10631 case 2:
10632 i.log2_scale_factor = 1;
10633 break;
10634 case 4:
10635 i.log2_scale_factor = 2;
10636 break;
10637 case 8:
10638 i.log2_scale_factor = 3;
10639 break;
10640 default:
10641 {
10642 char sep = *input_line_pointer;
10643
10644 *input_line_pointer = '\0';
10645 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
10646 scale);
10647 *input_line_pointer = sep;
10648 input_line_pointer = save;
10649 return NULL;
10650 }
10651 }
10652 if (i.log2_scale_factor != 0 && i.index_reg == 0)
10653 {
10654 as_warn (_("scale factor of %d without an index register"),
10655 1 << i.log2_scale_factor);
10656 i.log2_scale_factor = 0;
10657 }
10658 scale = input_line_pointer;
10659 input_line_pointer = save;
10660 return scale;
10661 }
10662
10663 static int
10664 i386_displacement (char *disp_start, char *disp_end)
10665 {
10666 expressionS *exp;
10667 segT exp_seg = 0;
10668 char *save_input_line_pointer;
10669 char *gotfree_input_line;
10670 int override;
10671 i386_operand_type bigdisp, types = anydisp;
10672 int ret;
10673
10674 if (i.disp_operands == MAX_MEMORY_OPERANDS)
10675 {
10676 as_bad (_("at most %d displacement operands are allowed"),
10677 MAX_MEMORY_OPERANDS);
10678 return 0;
10679 }
10680
10681 operand_type_set (&bigdisp, 0);
10682 if (i.jumpabsolute
10683 || i.types[this_operand].bitfield.baseindex
10684 || (current_templates->start->opcode_modifier.jump != JUMP
10685 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
10686 {
10687 i386_addressing_mode ();
10688 override = (i.prefix[ADDR_PREFIX] != 0);
10689 if (flag_code == CODE_64BIT)
10690 {
10691 if (!override)
10692 {
10693 bigdisp.bitfield.disp32s = 1;
10694 bigdisp.bitfield.disp64 = 1;
10695 }
10696 else
10697 bigdisp.bitfield.disp32 = 1;
10698 }
10699 else if ((flag_code == CODE_16BIT) ^ override)
10700 bigdisp.bitfield.disp16 = 1;
10701 else
10702 bigdisp.bitfield.disp32 = 1;
10703 }
10704 else
10705 {
10706 /* For PC-relative branches, the width of the displacement may be
10707 dependent upon data size, but is never dependent upon address size.
10708 Also make sure to not unintentionally match against a non-PC-relative
10709 branch template. */
10710 static templates aux_templates;
10711 const insn_template *t = current_templates->start;
10712 bfd_boolean has_intel64 = FALSE;
10713
10714 aux_templates.start = t;
10715 while (++t < current_templates->end)
10716 {
10717 if (t->opcode_modifier.jump
10718 != current_templates->start->opcode_modifier.jump)
10719 break;
10720 if ((t->opcode_modifier.isa64 >= INTEL64))
10721 has_intel64 = TRUE;
10722 }
10723 if (t < current_templates->end)
10724 {
10725 aux_templates.end = t;
10726 current_templates = &aux_templates;
10727 }
10728
10729 override = (i.prefix[DATA_PREFIX] != 0);
10730 if (flag_code == CODE_64BIT)
10731 {
10732 if ((override || i.suffix == WORD_MNEM_SUFFIX)
10733 && (!intel64 || !has_intel64))
10734 bigdisp.bitfield.disp16 = 1;
10735 else
10736 bigdisp.bitfield.disp32s = 1;
10737 }
10738 else
10739 {
10740 if (!override)
10741 override = (i.suffix == (flag_code != CODE_16BIT
10742 ? WORD_MNEM_SUFFIX
10743 : LONG_MNEM_SUFFIX));
10744 bigdisp.bitfield.disp32 = 1;
10745 if ((flag_code == CODE_16BIT) ^ override)
10746 {
10747 bigdisp.bitfield.disp32 = 0;
10748 bigdisp.bitfield.disp16 = 1;
10749 }
10750 }
10751 }
10752 i.types[this_operand] = operand_type_or (i.types[this_operand],
10753 bigdisp);
10754
10755 exp = &disp_expressions[i.disp_operands];
10756 i.op[this_operand].disps = exp;
10757 i.disp_operands++;
10758 save_input_line_pointer = input_line_pointer;
10759 input_line_pointer = disp_start;
10760 END_STRING_AND_SAVE (disp_end);
10761
10762 #ifndef GCC_ASM_O_HACK
10763 #define GCC_ASM_O_HACK 0
10764 #endif
10765 #if GCC_ASM_O_HACK
10766 END_STRING_AND_SAVE (disp_end + 1);
10767 if (i.types[this_operand].bitfield.baseIndex
10768 && displacement_string_end[-1] == '+')
10769 {
10770 /* This hack is to avoid a warning when using the "o"
10771 constraint within gcc asm statements.
10772 For instance:
10773
10774 #define _set_tssldt_desc(n,addr,limit,type) \
10775 __asm__ __volatile__ ( \
10776 "movw %w2,%0\n\t" \
10777 "movw %w1,2+%0\n\t" \
10778 "rorl $16,%1\n\t" \
10779 "movb %b1,4+%0\n\t" \
10780 "movb %4,5+%0\n\t" \
10781 "movb $0,6+%0\n\t" \
10782 "movb %h1,7+%0\n\t" \
10783 "rorl $16,%1" \
10784 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10785
10786 This works great except that the output assembler ends
10787 up looking a bit weird if it turns out that there is
10788 no offset. You end up producing code that looks like:
10789
10790 #APP
10791 movw $235,(%eax)
10792 movw %dx,2+(%eax)
10793 rorl $16,%edx
10794 movb %dl,4+(%eax)
10795 movb $137,5+(%eax)
10796 movb $0,6+(%eax)
10797 movb %dh,7+(%eax)
10798 rorl $16,%edx
10799 #NO_APP
10800
10801 So here we provide the missing zero. */
10802
10803 *displacement_string_end = '0';
10804 }
10805 #endif
10806 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10807 if (gotfree_input_line)
10808 input_line_pointer = gotfree_input_line;
10809
10810 exp_seg = expression (exp);
10811
10812 SKIP_WHITESPACE ();
10813 if (*input_line_pointer)
10814 as_bad (_("junk `%s' after expression"), input_line_pointer);
10815 #if GCC_ASM_O_HACK
10816 RESTORE_END_STRING (disp_end + 1);
10817 #endif
10818 input_line_pointer = save_input_line_pointer;
10819 if (gotfree_input_line)
10820 {
10821 free (gotfree_input_line);
10822
10823 if (exp->X_op == O_constant || exp->X_op == O_register)
10824 exp->X_op = O_illegal;
10825 }
10826
10827 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10828
10829 RESTORE_END_STRING (disp_end);
10830
10831 return ret;
10832 }
10833
10834 static int
10835 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10836 i386_operand_type types, const char *disp_start)
10837 {
10838 i386_operand_type bigdisp;
10839 int ret = 1;
10840
10841 /* We do this to make sure that the section symbol is in
10842 the symbol table. We will ultimately change the relocation
10843 to be relative to the beginning of the section. */
10844 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
10845 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10846 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10847 {
10848 if (exp->X_op != O_symbol)
10849 goto inv_disp;
10850
10851 if (S_IS_LOCAL (exp->X_add_symbol)
10852 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10853 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
10854 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
10855 exp->X_op = O_subtract;
10856 exp->X_op_symbol = GOT_symbol;
10857 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
10858 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
10859 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10860 i.reloc[this_operand] = BFD_RELOC_64;
10861 else
10862 i.reloc[this_operand] = BFD_RELOC_32;
10863 }
10864
10865 else if (exp->X_op == O_absent
10866 || exp->X_op == O_illegal
10867 || exp->X_op == O_big)
10868 {
10869 inv_disp:
10870 as_bad (_("missing or invalid displacement expression `%s'"),
10871 disp_start);
10872 ret = 0;
10873 }
10874
10875 else if (flag_code == CODE_64BIT
10876 && !i.prefix[ADDR_PREFIX]
10877 && exp->X_op == O_constant)
10878 {
10879 /* Since displacement is signed extended to 64bit, don't allow
10880 disp32 and turn off disp32s if they are out of range. */
10881 i.types[this_operand].bitfield.disp32 = 0;
10882 if (!fits_in_signed_long (exp->X_add_number))
10883 {
10884 i.types[this_operand].bitfield.disp32s = 0;
10885 if (i.types[this_operand].bitfield.baseindex)
10886 {
10887 as_bad (_("0x%lx out range of signed 32bit displacement"),
10888 (long) exp->X_add_number);
10889 ret = 0;
10890 }
10891 }
10892 }
10893
10894 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10895 else if (exp->X_op != O_constant
10896 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10897 && exp_seg != absolute_section
10898 && exp_seg != text_section
10899 && exp_seg != data_section
10900 && exp_seg != bss_section
10901 && exp_seg != undefined_section
10902 && !bfd_is_com_section (exp_seg))
10903 {
10904 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10905 ret = 0;
10906 }
10907 #endif
10908
10909 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10910 /* Constants get taken care of by optimize_disp(). */
10911 && exp->X_op != O_constant)
10912 i.types[this_operand].bitfield.disp8 = 1;
10913
10914 /* Check if this is a displacement only operand. */
10915 bigdisp = i.types[this_operand];
10916 bigdisp.bitfield.disp8 = 0;
10917 bigdisp.bitfield.disp16 = 0;
10918 bigdisp.bitfield.disp32 = 0;
10919 bigdisp.bitfield.disp32s = 0;
10920 bigdisp.bitfield.disp64 = 0;
10921 if (operand_type_all_zero (&bigdisp))
10922 i.types[this_operand] = operand_type_and (i.types[this_operand],
10923 types);
10924
10925 return ret;
10926 }
10927
10928 /* Return the active addressing mode, taking address override and
10929 registers forming the address into consideration. Update the
10930 address override prefix if necessary. */
10931
10932 static enum flag_code
10933 i386_addressing_mode (void)
10934 {
10935 enum flag_code addr_mode;
10936
10937 if (i.prefix[ADDR_PREFIX])
10938 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10939 else if (flag_code == CODE_16BIT
10940 && current_templates->start->cpu_flags.bitfield.cpumpx
10941 /* Avoid replacing the "16-bit addressing not allowed" diagnostic
10942 from md_assemble() by "is not a valid base/index expression"
10943 when there is a base and/or index. */
10944 && !i.types[this_operand].bitfield.baseindex)
10945 {
10946 /* MPX insn memory operands with neither base nor index must be forced
10947 to use 32-bit addressing in 16-bit mode. */
10948 addr_mode = CODE_32BIT;
10949 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10950 ++i.prefixes;
10951 gas_assert (!i.types[this_operand].bitfield.disp16);
10952 gas_assert (!i.types[this_operand].bitfield.disp32);
10953 }
10954 else
10955 {
10956 addr_mode = flag_code;
10957
10958 #if INFER_ADDR_PREFIX
10959 if (i.mem_operands == 0)
10960 {
10961 /* Infer address prefix from the first memory operand. */
10962 const reg_entry *addr_reg = i.base_reg;
10963
10964 if (addr_reg == NULL)
10965 addr_reg = i.index_reg;
10966
10967 if (addr_reg)
10968 {
10969 if (addr_reg->reg_type.bitfield.dword)
10970 addr_mode = CODE_32BIT;
10971 else if (flag_code != CODE_64BIT
10972 && addr_reg->reg_type.bitfield.word)
10973 addr_mode = CODE_16BIT;
10974
10975 if (addr_mode != flag_code)
10976 {
10977 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10978 i.prefixes += 1;
10979 /* Change the size of any displacement too. At most one
10980 of Disp16 or Disp32 is set.
10981 FIXME. There doesn't seem to be any real need for
10982 separate Disp16 and Disp32 flags. The same goes for
10983 Imm16 and Imm32. Removing them would probably clean
10984 up the code quite a lot. */
10985 if (flag_code != CODE_64BIT
10986 && (i.types[this_operand].bitfield.disp16
10987 || i.types[this_operand].bitfield.disp32))
10988 i.types[this_operand]
10989 = operand_type_xor (i.types[this_operand], disp16_32);
10990 }
10991 }
10992 }
10993 #endif
10994 }
10995
10996 return addr_mode;
10997 }
10998
10999 /* Make sure the memory operand we've been dealt is valid.
11000 Return 1 on success, 0 on a failure. */
11001
11002 static int
11003 i386_index_check (const char *operand_string)
11004 {
11005 const char *kind = "base/index";
11006 enum flag_code addr_mode = i386_addressing_mode ();
11007
11008 if (current_templates->start->opcode_modifier.isstring
11009 && !current_templates->start->cpu_flags.bitfield.cpupadlock
11010 && (current_templates->end[-1].opcode_modifier.isstring
11011 || i.mem_operands))
11012 {
11013 /* Memory operands of string insns are special in that they only allow
11014 a single register (rDI, rSI, or rBX) as their memory address. */
11015 const reg_entry *expected_reg;
11016 static const char *di_si[][2] =
11017 {
11018 { "esi", "edi" },
11019 { "si", "di" },
11020 { "rsi", "rdi" }
11021 };
11022 static const char *bx[] = { "ebx", "bx", "rbx" };
11023
11024 kind = "string address";
11025
11026 if (current_templates->start->opcode_modifier.repprefixok)
11027 {
11028 int es_op = current_templates->end[-1].opcode_modifier.isstring
11029 - IS_STRING_ES_OP0;
11030 int op = 0;
11031
11032 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
11033 || ((!i.mem_operands != !intel_syntax)
11034 && current_templates->end[-1].operand_types[1]
11035 .bitfield.baseindex))
11036 op = 1;
11037 expected_reg
11038 = (const reg_entry *) str_hash_find (reg_hash,
11039 di_si[addr_mode][op == es_op]);
11040 }
11041 else
11042 expected_reg
11043 = (const reg_entry *)str_hash_find (reg_hash, bx[addr_mode]);
11044
11045 if (i.base_reg != expected_reg
11046 || i.index_reg
11047 || operand_type_check (i.types[this_operand], disp))
11048 {
11049 /* The second memory operand must have the same size as
11050 the first one. */
11051 if (i.mem_operands
11052 && i.base_reg
11053 && !((addr_mode == CODE_64BIT
11054 && i.base_reg->reg_type.bitfield.qword)
11055 || (addr_mode == CODE_32BIT
11056 ? i.base_reg->reg_type.bitfield.dword
11057 : i.base_reg->reg_type.bitfield.word)))
11058 goto bad_address;
11059
11060 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
11061 operand_string,
11062 intel_syntax ? '[' : '(',
11063 register_prefix,
11064 expected_reg->reg_name,
11065 intel_syntax ? ']' : ')');
11066 return 1;
11067 }
11068 else
11069 return 1;
11070
11071 bad_address:
11072 as_bad (_("`%s' is not a valid %s expression"),
11073 operand_string, kind);
11074 return 0;
11075 }
11076 else
11077 {
11078 if (addr_mode != CODE_16BIT)
11079 {
11080 /* 32-bit/64-bit checks. */
11081 if (i.disp_encoding == disp_encoding_16bit)
11082 {
11083 bad_disp:
11084 as_bad (_("invalid `%s' prefix"),
11085 addr_mode == CODE_16BIT ? "{disp32}" : "{disp16}");
11086 return 0;
11087 }
11088
11089 if ((i.base_reg
11090 && ((addr_mode == CODE_64BIT
11091 ? !i.base_reg->reg_type.bitfield.qword
11092 : !i.base_reg->reg_type.bitfield.dword)
11093 || (i.index_reg && i.base_reg->reg_num == RegIP)
11094 || i.base_reg->reg_num == RegIZ))
11095 || (i.index_reg
11096 && !i.index_reg->reg_type.bitfield.xmmword
11097 && !i.index_reg->reg_type.bitfield.ymmword
11098 && !i.index_reg->reg_type.bitfield.zmmword
11099 && ((addr_mode == CODE_64BIT
11100 ? !i.index_reg->reg_type.bitfield.qword
11101 : !i.index_reg->reg_type.bitfield.dword)
11102 || !i.index_reg->reg_type.bitfield.baseindex)))
11103 goto bad_address;
11104
11105 /* bndmk, bndldx, bndstx and mandatory non-vector SIB have special restrictions. */
11106 if (current_templates->start->base_opcode == 0xf30f1b
11107 || (current_templates->start->base_opcode & ~1) == 0x0f1a
11108 || current_templates->start->opcode_modifier.sib == SIBMEM)
11109 {
11110 /* They cannot use RIP-relative addressing. */
11111 if (i.base_reg && i.base_reg->reg_num == RegIP)
11112 {
11113 as_bad (_("`%s' cannot be used here"), operand_string);
11114 return 0;
11115 }
11116
11117 /* bndldx and bndstx ignore their scale factor. */
11118 if ((current_templates->start->base_opcode & ~1) == 0x0f1a
11119 && i.log2_scale_factor)
11120 as_warn (_("register scaling is being ignored here"));
11121 }
11122 }
11123 else
11124 {
11125 /* 16-bit checks. */
11126 if (i.disp_encoding == disp_encoding_32bit)
11127 goto bad_disp;
11128
11129 if ((i.base_reg
11130 && (!i.base_reg->reg_type.bitfield.word
11131 || !i.base_reg->reg_type.bitfield.baseindex))
11132 || (i.index_reg
11133 && (!i.index_reg->reg_type.bitfield.word
11134 || !i.index_reg->reg_type.bitfield.baseindex
11135 || !(i.base_reg
11136 && i.base_reg->reg_num < 6
11137 && i.index_reg->reg_num >= 6
11138 && i.log2_scale_factor == 0))))
11139 goto bad_address;
11140 }
11141 }
11142 return 1;
11143 }
11144
11145 /* Handle vector immediates. */
11146
11147 static int
11148 RC_SAE_immediate (const char *imm_start)
11149 {
11150 unsigned int match_found, j;
11151 const char *pstr = imm_start;
11152 expressionS *exp;
11153
11154 if (*pstr != '{')
11155 return 0;
11156
11157 pstr++;
11158 match_found = 0;
11159 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
11160 {
11161 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
11162 {
11163 if (!i.rounding)
11164 {
11165 rc_op.type = RC_NamesTable[j].type;
11166 rc_op.operand = this_operand;
11167 i.rounding = &rc_op;
11168 }
11169 else
11170 {
11171 as_bad (_("duplicated `%s'"), imm_start);
11172 return 0;
11173 }
11174 pstr += RC_NamesTable[j].len;
11175 match_found = 1;
11176 break;
11177 }
11178 }
11179 if (!match_found)
11180 return 0;
11181
11182 if (*pstr++ != '}')
11183 {
11184 as_bad (_("Missing '}': '%s'"), imm_start);
11185 return 0;
11186 }
11187 /* RC/SAE immediate string should contain nothing more. */;
11188 if (*pstr != 0)
11189 {
11190 as_bad (_("Junk after '}': '%s'"), imm_start);
11191 return 0;
11192 }
11193
11194 exp = &im_expressions[i.imm_operands++];
11195 i.op[this_operand].imms = exp;
11196
11197 exp->X_op = O_constant;
11198 exp->X_add_number = 0;
11199 exp->X_add_symbol = (symbolS *) 0;
11200 exp->X_op_symbol = (symbolS *) 0;
11201
11202 i.types[this_operand].bitfield.imm8 = 1;
11203 return 1;
11204 }
11205
11206 /* Only string instructions can have a second memory operand, so
11207 reduce current_templates to just those if it contains any. */
11208 static int
11209 maybe_adjust_templates (void)
11210 {
11211 const insn_template *t;
11212
11213 gas_assert (i.mem_operands == 1);
11214
11215 for (t = current_templates->start; t < current_templates->end; ++t)
11216 if (t->opcode_modifier.isstring)
11217 break;
11218
11219 if (t < current_templates->end)
11220 {
11221 static templates aux_templates;
11222 bfd_boolean recheck;
11223
11224 aux_templates.start = t;
11225 for (; t < current_templates->end; ++t)
11226 if (!t->opcode_modifier.isstring)
11227 break;
11228 aux_templates.end = t;
11229
11230 /* Determine whether to re-check the first memory operand. */
11231 recheck = (aux_templates.start != current_templates->start
11232 || t != current_templates->end);
11233
11234 current_templates = &aux_templates;
11235
11236 if (recheck)
11237 {
11238 i.mem_operands = 0;
11239 if (i.memop1_string != NULL
11240 && i386_index_check (i.memop1_string) == 0)
11241 return 0;
11242 i.mem_operands = 1;
11243 }
11244 }
11245
11246 return 1;
11247 }
11248
11249 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
11250 on error. */
11251
11252 static int
11253 i386_att_operand (char *operand_string)
11254 {
11255 const reg_entry *r;
11256 char *end_op;
11257 char *op_string = operand_string;
11258
11259 if (is_space_char (*op_string))
11260 ++op_string;
11261
11262 /* We check for an absolute prefix (differentiating,
11263 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
11264 if (*op_string == ABSOLUTE_PREFIX)
11265 {
11266 ++op_string;
11267 if (is_space_char (*op_string))
11268 ++op_string;
11269 i.jumpabsolute = TRUE;
11270 }
11271
11272 /* Check if operand is a register. */
11273 if ((r = parse_register (op_string, &end_op)) != NULL)
11274 {
11275 i386_operand_type temp;
11276
11277 if (r == &bad_reg)
11278 return 0;
11279
11280 /* Check for a segment override by searching for ':' after a
11281 segment register. */
11282 op_string = end_op;
11283 if (is_space_char (*op_string))
11284 ++op_string;
11285 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
11286 {
11287 switch (r->reg_num)
11288 {
11289 case 0:
11290 i.seg[i.mem_operands] = &es;
11291 break;
11292 case 1:
11293 i.seg[i.mem_operands] = &cs;
11294 break;
11295 case 2:
11296 i.seg[i.mem_operands] = &ss;
11297 break;
11298 case 3:
11299 i.seg[i.mem_operands] = &ds;
11300 break;
11301 case 4:
11302 i.seg[i.mem_operands] = &fs;
11303 break;
11304 case 5:
11305 i.seg[i.mem_operands] = &gs;
11306 break;
11307 }
11308
11309 /* Skip the ':' and whitespace. */
11310 ++op_string;
11311 if (is_space_char (*op_string))
11312 ++op_string;
11313
11314 if (!is_digit_char (*op_string)
11315 && !is_identifier_char (*op_string)
11316 && *op_string != '('
11317 && *op_string != ABSOLUTE_PREFIX)
11318 {
11319 as_bad (_("bad memory operand `%s'"), op_string);
11320 return 0;
11321 }
11322 /* Handle case of %es:*foo. */
11323 if (*op_string == ABSOLUTE_PREFIX)
11324 {
11325 ++op_string;
11326 if (is_space_char (*op_string))
11327 ++op_string;
11328 i.jumpabsolute = TRUE;
11329 }
11330 goto do_memory_reference;
11331 }
11332
11333 /* Handle vector operations. */
11334 if (*op_string == '{')
11335 {
11336 op_string = check_VecOperations (op_string, NULL);
11337 if (op_string == NULL)
11338 return 0;
11339 }
11340
11341 if (*op_string)
11342 {
11343 as_bad (_("junk `%s' after register"), op_string);
11344 return 0;
11345 }
11346 temp = r->reg_type;
11347 temp.bitfield.baseindex = 0;
11348 i.types[this_operand] = operand_type_or (i.types[this_operand],
11349 temp);
11350 i.types[this_operand].bitfield.unspecified = 0;
11351 i.op[this_operand].regs = r;
11352 i.reg_operands++;
11353 }
11354 else if (*op_string == REGISTER_PREFIX)
11355 {
11356 as_bad (_("bad register name `%s'"), op_string);
11357 return 0;
11358 }
11359 else if (*op_string == IMMEDIATE_PREFIX)
11360 {
11361 ++op_string;
11362 if (i.jumpabsolute)
11363 {
11364 as_bad (_("immediate operand illegal with absolute jump"));
11365 return 0;
11366 }
11367 if (!i386_immediate (op_string))
11368 return 0;
11369 }
11370 else if (RC_SAE_immediate (operand_string))
11371 {
11372 /* If it is a RC or SAE immediate, do nothing. */
11373 ;
11374 }
11375 else if (is_digit_char (*op_string)
11376 || is_identifier_char (*op_string)
11377 || *op_string == '"'
11378 || *op_string == '(')
11379 {
11380 /* This is a memory reference of some sort. */
11381 char *base_string;
11382
11383 /* Start and end of displacement string expression (if found). */
11384 char *displacement_string_start;
11385 char *displacement_string_end;
11386 char *vop_start;
11387
11388 do_memory_reference:
11389 if (i.mem_operands == 1 && !maybe_adjust_templates ())
11390 return 0;
11391 if ((i.mem_operands == 1
11392 && !current_templates->start->opcode_modifier.isstring)
11393 || i.mem_operands == 2)
11394 {
11395 as_bad (_("too many memory references for `%s'"),
11396 current_templates->start->name);
11397 return 0;
11398 }
11399
11400 /* Check for base index form. We detect the base index form by
11401 looking for an ')' at the end of the operand, searching
11402 for the '(' matching it, and finding a REGISTER_PREFIX or ','
11403 after the '('. */
11404 base_string = op_string + strlen (op_string);
11405
11406 /* Handle vector operations. */
11407 vop_start = strchr (op_string, '{');
11408 if (vop_start && vop_start < base_string)
11409 {
11410 if (check_VecOperations (vop_start, base_string) == NULL)
11411 return 0;
11412 base_string = vop_start;
11413 }
11414
11415 --base_string;
11416 if (is_space_char (*base_string))
11417 --base_string;
11418
11419 /* If we only have a displacement, set-up for it to be parsed later. */
11420 displacement_string_start = op_string;
11421 displacement_string_end = base_string + 1;
11422
11423 if (*base_string == ')')
11424 {
11425 char *temp_string;
11426 unsigned int parens_balanced = 1;
11427 /* We've already checked that the number of left & right ()'s are
11428 equal, so this loop will not be infinite. */
11429 do
11430 {
11431 base_string--;
11432 if (*base_string == ')')
11433 parens_balanced++;
11434 if (*base_string == '(')
11435 parens_balanced--;
11436 }
11437 while (parens_balanced);
11438
11439 temp_string = base_string;
11440
11441 /* Skip past '(' and whitespace. */
11442 ++base_string;
11443 if (is_space_char (*base_string))
11444 ++base_string;
11445
11446 if (*base_string == ','
11447 || ((i.base_reg = parse_register (base_string, &end_op))
11448 != NULL))
11449 {
11450 displacement_string_end = temp_string;
11451
11452 i.types[this_operand].bitfield.baseindex = 1;
11453
11454 if (i.base_reg)
11455 {
11456 if (i.base_reg == &bad_reg)
11457 return 0;
11458 base_string = end_op;
11459 if (is_space_char (*base_string))
11460 ++base_string;
11461 }
11462
11463 /* There may be an index reg or scale factor here. */
11464 if (*base_string == ',')
11465 {
11466 ++base_string;
11467 if (is_space_char (*base_string))
11468 ++base_string;
11469
11470 if ((i.index_reg = parse_register (base_string, &end_op))
11471 != NULL)
11472 {
11473 if (i.index_reg == &bad_reg)
11474 return 0;
11475 base_string = end_op;
11476 if (is_space_char (*base_string))
11477 ++base_string;
11478 if (*base_string == ',')
11479 {
11480 ++base_string;
11481 if (is_space_char (*base_string))
11482 ++base_string;
11483 }
11484 else if (*base_string != ')')
11485 {
11486 as_bad (_("expecting `,' or `)' "
11487 "after index register in `%s'"),
11488 operand_string);
11489 return 0;
11490 }
11491 }
11492 else if (*base_string == REGISTER_PREFIX)
11493 {
11494 end_op = strchr (base_string, ',');
11495 if (end_op)
11496 *end_op = '\0';
11497 as_bad (_("bad register name `%s'"), base_string);
11498 return 0;
11499 }
11500
11501 /* Check for scale factor. */
11502 if (*base_string != ')')
11503 {
11504 char *end_scale = i386_scale (base_string);
11505
11506 if (!end_scale)
11507 return 0;
11508
11509 base_string = end_scale;
11510 if (is_space_char (*base_string))
11511 ++base_string;
11512 if (*base_string != ')')
11513 {
11514 as_bad (_("expecting `)' "
11515 "after scale factor in `%s'"),
11516 operand_string);
11517 return 0;
11518 }
11519 }
11520 else if (!i.index_reg)
11521 {
11522 as_bad (_("expecting index register or scale factor "
11523 "after `,'; got '%c'"),
11524 *base_string);
11525 return 0;
11526 }
11527 }
11528 else if (*base_string != ')')
11529 {
11530 as_bad (_("expecting `,' or `)' "
11531 "after base register in `%s'"),
11532 operand_string);
11533 return 0;
11534 }
11535 }
11536 else if (*base_string == REGISTER_PREFIX)
11537 {
11538 end_op = strchr (base_string, ',');
11539 if (end_op)
11540 *end_op = '\0';
11541 as_bad (_("bad register name `%s'"), base_string);
11542 return 0;
11543 }
11544 }
11545
11546 /* If there's an expression beginning the operand, parse it,
11547 assuming displacement_string_start and
11548 displacement_string_end are meaningful. */
11549 if (displacement_string_start != displacement_string_end)
11550 {
11551 if (!i386_displacement (displacement_string_start,
11552 displacement_string_end))
11553 return 0;
11554 }
11555
11556 /* Special case for (%dx) while doing input/output op. */
11557 if (i.base_reg
11558 && i.base_reg->reg_type.bitfield.instance == RegD
11559 && i.base_reg->reg_type.bitfield.word
11560 && i.index_reg == 0
11561 && i.log2_scale_factor == 0
11562 && i.seg[i.mem_operands] == 0
11563 && !operand_type_check (i.types[this_operand], disp))
11564 {
11565 i.types[this_operand] = i.base_reg->reg_type;
11566 return 1;
11567 }
11568
11569 if (i386_index_check (operand_string) == 0)
11570 return 0;
11571 i.flags[this_operand] |= Operand_Mem;
11572 if (i.mem_operands == 0)
11573 i.memop1_string = xstrdup (operand_string);
11574 i.mem_operands++;
11575 }
11576 else
11577 {
11578 /* It's not a memory operand; argh! */
11579 as_bad (_("invalid char %s beginning operand %d `%s'"),
11580 output_invalid (*op_string),
11581 this_operand + 1,
11582 op_string);
11583 return 0;
11584 }
11585 return 1; /* Normal return. */
11586 }
11587 \f
11588 /* Calculate the maximum variable size (i.e., excluding fr_fix)
11589 that an rs_machine_dependent frag may reach. */
11590
11591 unsigned int
11592 i386_frag_max_var (fragS *frag)
11593 {
11594 /* The only relaxable frags are for jumps.
11595 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
11596 gas_assert (frag->fr_type == rs_machine_dependent);
11597 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
11598 }
11599
11600 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11601 static int
11602 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
11603 {
11604 /* STT_GNU_IFUNC symbol must go through PLT. */
11605 if ((symbol_get_bfdsym (fr_symbol)->flags
11606 & BSF_GNU_INDIRECT_FUNCTION) != 0)
11607 return 0;
11608
11609 if (!S_IS_EXTERNAL (fr_symbol))
11610 /* Symbol may be weak or local. */
11611 return !S_IS_WEAK (fr_symbol);
11612
11613 /* Global symbols with non-default visibility can't be preempted. */
11614 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
11615 return 1;
11616
11617 if (fr_var != NO_RELOC)
11618 switch ((enum bfd_reloc_code_real) fr_var)
11619 {
11620 case BFD_RELOC_386_PLT32:
11621 case BFD_RELOC_X86_64_PLT32:
11622 /* Symbol with PLT relocation may be preempted. */
11623 return 0;
11624 default:
11625 abort ();
11626 }
11627
11628 /* Global symbols with default visibility in a shared library may be
11629 preempted by another definition. */
11630 return !shared;
11631 }
11632 #endif
11633
11634 /* Table 3-2. Macro-Fusible Instructions in Haswell Microarchitecture
11635 Note also work for Skylake and Cascadelake.
11636 ---------------------------------------------------------------------
11637 | JCC | ADD/SUB/CMP | INC/DEC | TEST/AND |
11638 | ------ | ----------- | ------- | -------- |
11639 | Jo | N | N | Y |
11640 | Jno | N | N | Y |
11641 | Jc/Jb | Y | N | Y |
11642 | Jae/Jnb | Y | N | Y |
11643 | Je/Jz | Y | Y | Y |
11644 | Jne/Jnz | Y | Y | Y |
11645 | Jna/Jbe | Y | N | Y |
11646 | Ja/Jnbe | Y | N | Y |
11647 | Js | N | N | Y |
11648 | Jns | N | N | Y |
11649 | Jp/Jpe | N | N | Y |
11650 | Jnp/Jpo | N | N | Y |
11651 | Jl/Jnge | Y | Y | Y |
11652 | Jge/Jnl | Y | Y | Y |
11653 | Jle/Jng | Y | Y | Y |
11654 | Jg/Jnle | Y | Y | Y |
11655 --------------------------------------------------------------------- */
11656 static int
11657 i386_macro_fusible_p (enum mf_cmp_kind mf_cmp, enum mf_jcc_kind mf_jcc)
11658 {
11659 if (mf_cmp == mf_cmp_alu_cmp)
11660 return ((mf_jcc >= mf_jcc_jc && mf_jcc <= mf_jcc_jna)
11661 || mf_jcc == mf_jcc_jl || mf_jcc == mf_jcc_jle);
11662 if (mf_cmp == mf_cmp_incdec)
11663 return (mf_jcc == mf_jcc_je || mf_jcc == mf_jcc_jl
11664 || mf_jcc == mf_jcc_jle);
11665 if (mf_cmp == mf_cmp_test_and)
11666 return 1;
11667 return 0;
11668 }
11669
11670 /* Return the next non-empty frag. */
11671
11672 static fragS *
11673 i386_next_non_empty_frag (fragS *fragP)
11674 {
11675 /* There may be a frag with a ".fill 0" when there is no room in
11676 the current frag for frag_grow in output_insn. */
11677 for (fragP = fragP->fr_next;
11678 (fragP != NULL
11679 && fragP->fr_type == rs_fill
11680 && fragP->fr_fix == 0);
11681 fragP = fragP->fr_next)
11682 ;
11683 return fragP;
11684 }
11685
11686 /* Return the next jcc frag after BRANCH_PADDING. */
11687
11688 static fragS *
11689 i386_next_fusible_jcc_frag (fragS *maybe_cmp_fragP, fragS *pad_fragP)
11690 {
11691 fragS *branch_fragP;
11692 if (!pad_fragP)
11693 return NULL;
11694
11695 if (pad_fragP->fr_type == rs_machine_dependent
11696 && (TYPE_FROM_RELAX_STATE (pad_fragP->fr_subtype)
11697 == BRANCH_PADDING))
11698 {
11699 branch_fragP = i386_next_non_empty_frag (pad_fragP);
11700 if (branch_fragP->fr_type != rs_machine_dependent)
11701 return NULL;
11702 if (TYPE_FROM_RELAX_STATE (branch_fragP->fr_subtype) == COND_JUMP
11703 && i386_macro_fusible_p (maybe_cmp_fragP->tc_frag_data.mf_type,
11704 pad_fragP->tc_frag_data.mf_type))
11705 return branch_fragP;
11706 }
11707
11708 return NULL;
11709 }
11710
11711 /* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
11712
11713 static void
11714 i386_classify_machine_dependent_frag (fragS *fragP)
11715 {
11716 fragS *cmp_fragP;
11717 fragS *pad_fragP;
11718 fragS *branch_fragP;
11719 fragS *next_fragP;
11720 unsigned int max_prefix_length;
11721
11722 if (fragP->tc_frag_data.classified)
11723 return;
11724
11725 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
11726 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
11727 for (next_fragP = fragP;
11728 next_fragP != NULL;
11729 next_fragP = next_fragP->fr_next)
11730 {
11731 next_fragP->tc_frag_data.classified = 1;
11732 if (next_fragP->fr_type == rs_machine_dependent)
11733 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
11734 {
11735 case BRANCH_PADDING:
11736 /* The BRANCH_PADDING frag must be followed by a branch
11737 frag. */
11738 branch_fragP = i386_next_non_empty_frag (next_fragP);
11739 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11740 break;
11741 case FUSED_JCC_PADDING:
11742 /* Check if this is a fused jcc:
11743 FUSED_JCC_PADDING
11744 CMP like instruction
11745 BRANCH_PADDING
11746 COND_JUMP
11747 */
11748 cmp_fragP = i386_next_non_empty_frag (next_fragP);
11749 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
11750 branch_fragP = i386_next_fusible_jcc_frag (next_fragP, pad_fragP);
11751 if (branch_fragP)
11752 {
11753 /* The BRANCH_PADDING frag is merged with the
11754 FUSED_JCC_PADDING frag. */
11755 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11756 /* CMP like instruction size. */
11757 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
11758 frag_wane (pad_fragP);
11759 /* Skip to branch_fragP. */
11760 next_fragP = branch_fragP;
11761 }
11762 else if (next_fragP->tc_frag_data.max_prefix_length)
11763 {
11764 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
11765 a fused jcc. */
11766 next_fragP->fr_subtype
11767 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
11768 next_fragP->tc_frag_data.max_bytes
11769 = next_fragP->tc_frag_data.max_prefix_length;
11770 /* This will be updated in the BRANCH_PREFIX scan. */
11771 next_fragP->tc_frag_data.max_prefix_length = 0;
11772 }
11773 else
11774 frag_wane (next_fragP);
11775 break;
11776 }
11777 }
11778
11779 /* Stop if there is no BRANCH_PREFIX. */
11780 if (!align_branch_prefix_size)
11781 return;
11782
11783 /* Scan for BRANCH_PREFIX. */
11784 for (; fragP != NULL; fragP = fragP->fr_next)
11785 {
11786 if (fragP->fr_type != rs_machine_dependent
11787 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11788 != BRANCH_PREFIX))
11789 continue;
11790
11791 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
11792 COND_JUMP_PREFIX. */
11793 max_prefix_length = 0;
11794 for (next_fragP = fragP;
11795 next_fragP != NULL;
11796 next_fragP = next_fragP->fr_next)
11797 {
11798 if (next_fragP->fr_type == rs_fill)
11799 /* Skip rs_fill frags. */
11800 continue;
11801 else if (next_fragP->fr_type != rs_machine_dependent)
11802 /* Stop for all other frags. */
11803 break;
11804
11805 /* rs_machine_dependent frags. */
11806 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11807 == BRANCH_PREFIX)
11808 {
11809 /* Count BRANCH_PREFIX frags. */
11810 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
11811 {
11812 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
11813 frag_wane (next_fragP);
11814 }
11815 else
11816 max_prefix_length
11817 += next_fragP->tc_frag_data.max_bytes;
11818 }
11819 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11820 == BRANCH_PADDING)
11821 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11822 == FUSED_JCC_PADDING))
11823 {
11824 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
11825 fragP->tc_frag_data.u.padding_fragP = next_fragP;
11826 break;
11827 }
11828 else
11829 /* Stop for other rs_machine_dependent frags. */
11830 break;
11831 }
11832
11833 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11834
11835 /* Skip to the next frag. */
11836 fragP = next_fragP;
11837 }
11838 }
11839
11840 /* Compute padding size for
11841
11842 FUSED_JCC_PADDING
11843 CMP like instruction
11844 BRANCH_PADDING
11845 COND_JUMP/UNCOND_JUMP
11846
11847 or
11848
11849 BRANCH_PADDING
11850 COND_JUMP/UNCOND_JUMP
11851 */
11852
11853 static int
11854 i386_branch_padding_size (fragS *fragP, offsetT address)
11855 {
11856 unsigned int offset, size, padding_size;
11857 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11858
11859 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11860 if (!address)
11861 address = fragP->fr_address;
11862 address += fragP->fr_fix;
11863
11864 /* CMP like instrunction size. */
11865 size = fragP->tc_frag_data.cmp_size;
11866
11867 /* The base size of the branch frag. */
11868 size += branch_fragP->fr_fix;
11869
11870 /* Add opcode and displacement bytes for the rs_machine_dependent
11871 branch frag. */
11872 if (branch_fragP->fr_type == rs_machine_dependent)
11873 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11874
11875 /* Check if branch is within boundary and doesn't end at the last
11876 byte. */
11877 offset = address & ((1U << align_branch_power) - 1);
11878 if ((offset + size) >= (1U << align_branch_power))
11879 /* Padding needed to avoid crossing boundary. */
11880 padding_size = (1U << align_branch_power) - offset;
11881 else
11882 /* No padding needed. */
11883 padding_size = 0;
11884
11885 /* The return value may be saved in tc_frag_data.length which is
11886 unsigned byte. */
11887 if (!fits_in_unsigned_byte (padding_size))
11888 abort ();
11889
11890 return padding_size;
11891 }
11892
11893 /* i386_generic_table_relax_frag()
11894
11895 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11896 grow/shrink padding to align branch frags. Hand others to
11897 relax_frag(). */
11898
11899 long
11900 i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11901 {
11902 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11903 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11904 {
11905 long padding_size = i386_branch_padding_size (fragP, 0);
11906 long grow = padding_size - fragP->tc_frag_data.length;
11907
11908 /* When the BRANCH_PREFIX frag is used, the computed address
11909 must match the actual address and there should be no padding. */
11910 if (fragP->tc_frag_data.padding_address
11911 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11912 || padding_size))
11913 abort ();
11914
11915 /* Update the padding size. */
11916 if (grow)
11917 fragP->tc_frag_data.length = padding_size;
11918
11919 return grow;
11920 }
11921 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11922 {
11923 fragS *padding_fragP, *next_fragP;
11924 long padding_size, left_size, last_size;
11925
11926 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11927 if (!padding_fragP)
11928 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11929 return (fragP->tc_frag_data.length
11930 - fragP->tc_frag_data.last_length);
11931
11932 /* Compute the relative address of the padding frag in the very
11933 first time where the BRANCH_PREFIX frag sizes are zero. */
11934 if (!fragP->tc_frag_data.padding_address)
11935 fragP->tc_frag_data.padding_address
11936 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11937
11938 /* First update the last length from the previous interation. */
11939 left_size = fragP->tc_frag_data.prefix_length;
11940 for (next_fragP = fragP;
11941 next_fragP != padding_fragP;
11942 next_fragP = next_fragP->fr_next)
11943 if (next_fragP->fr_type == rs_machine_dependent
11944 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11945 == BRANCH_PREFIX))
11946 {
11947 if (left_size)
11948 {
11949 int max = next_fragP->tc_frag_data.max_bytes;
11950 if (max)
11951 {
11952 int size;
11953 if (max > left_size)
11954 size = left_size;
11955 else
11956 size = max;
11957 left_size -= size;
11958 next_fragP->tc_frag_data.last_length = size;
11959 }
11960 }
11961 else
11962 next_fragP->tc_frag_data.last_length = 0;
11963 }
11964
11965 /* Check the padding size for the padding frag. */
11966 padding_size = i386_branch_padding_size
11967 (padding_fragP, (fragP->fr_address
11968 + fragP->tc_frag_data.padding_address));
11969
11970 last_size = fragP->tc_frag_data.prefix_length;
11971 /* Check if there is change from the last interation. */
11972 if (padding_size == last_size)
11973 {
11974 /* Update the expected address of the padding frag. */
11975 padding_fragP->tc_frag_data.padding_address
11976 = (fragP->fr_address + padding_size
11977 + fragP->tc_frag_data.padding_address);
11978 return 0;
11979 }
11980
11981 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11982 {
11983 /* No padding if there is no sufficient room. Clear the
11984 expected address of the padding frag. */
11985 padding_fragP->tc_frag_data.padding_address = 0;
11986 padding_size = 0;
11987 }
11988 else
11989 /* Store the expected address of the padding frag. */
11990 padding_fragP->tc_frag_data.padding_address
11991 = (fragP->fr_address + padding_size
11992 + fragP->tc_frag_data.padding_address);
11993
11994 fragP->tc_frag_data.prefix_length = padding_size;
11995
11996 /* Update the length for the current interation. */
11997 left_size = padding_size;
11998 for (next_fragP = fragP;
11999 next_fragP != padding_fragP;
12000 next_fragP = next_fragP->fr_next)
12001 if (next_fragP->fr_type == rs_machine_dependent
12002 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
12003 == BRANCH_PREFIX))
12004 {
12005 if (left_size)
12006 {
12007 int max = next_fragP->tc_frag_data.max_bytes;
12008 if (max)
12009 {
12010 int size;
12011 if (max > left_size)
12012 size = left_size;
12013 else
12014 size = max;
12015 left_size -= size;
12016 next_fragP->tc_frag_data.length = size;
12017 }
12018 }
12019 else
12020 next_fragP->tc_frag_data.length = 0;
12021 }
12022
12023 return (fragP->tc_frag_data.length
12024 - fragP->tc_frag_data.last_length);
12025 }
12026 return relax_frag (segment, fragP, stretch);
12027 }
12028
12029 /* md_estimate_size_before_relax()
12030
12031 Called just before relax() for rs_machine_dependent frags. The x86
12032 assembler uses these frags to handle variable size jump
12033 instructions.
12034
12035 Any symbol that is now undefined will not become defined.
12036 Return the correct fr_subtype in the frag.
12037 Return the initial "guess for variable size of frag" to caller.
12038 The guess is actually the growth beyond the fixed part. Whatever
12039 we do to grow the fixed or variable part contributes to our
12040 returned value. */
12041
12042 int
12043 md_estimate_size_before_relax (fragS *fragP, segT segment)
12044 {
12045 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
12046 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
12047 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
12048 {
12049 i386_classify_machine_dependent_frag (fragP);
12050 return fragP->tc_frag_data.length;
12051 }
12052
12053 /* We've already got fragP->fr_subtype right; all we have to do is
12054 check for un-relaxable symbols. On an ELF system, we can't relax
12055 an externally visible symbol, because it may be overridden by a
12056 shared library. */
12057 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
12058 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12059 || (IS_ELF
12060 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
12061 fragP->fr_var))
12062 #endif
12063 #if defined (OBJ_COFF) && defined (TE_PE)
12064 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
12065 && S_IS_WEAK (fragP->fr_symbol))
12066 #endif
12067 )
12068 {
12069 /* Symbol is undefined in this segment, or we need to keep a
12070 reloc so that weak symbols can be overridden. */
12071 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
12072 enum bfd_reloc_code_real reloc_type;
12073 unsigned char *opcode;
12074 int old_fr_fix;
12075
12076 if (fragP->fr_var != NO_RELOC)
12077 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
12078 else if (size == 2)
12079 reloc_type = BFD_RELOC_16_PCREL;
12080 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12081 else if (need_plt32_p (fragP->fr_symbol))
12082 reloc_type = BFD_RELOC_X86_64_PLT32;
12083 #endif
12084 else
12085 reloc_type = BFD_RELOC_32_PCREL;
12086
12087 old_fr_fix = fragP->fr_fix;
12088 opcode = (unsigned char *) fragP->fr_opcode;
12089
12090 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
12091 {
12092 case UNCOND_JUMP:
12093 /* Make jmp (0xeb) a (d)word displacement jump. */
12094 opcode[0] = 0xe9;
12095 fragP->fr_fix += size;
12096 fix_new (fragP, old_fr_fix, size,
12097 fragP->fr_symbol,
12098 fragP->fr_offset, 1,
12099 reloc_type);
12100 break;
12101
12102 case COND_JUMP86:
12103 if (size == 2
12104 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
12105 {
12106 /* Negate the condition, and branch past an
12107 unconditional jump. */
12108 opcode[0] ^= 1;
12109 opcode[1] = 3;
12110 /* Insert an unconditional jump. */
12111 opcode[2] = 0xe9;
12112 /* We added two extra opcode bytes, and have a two byte
12113 offset. */
12114 fragP->fr_fix += 2 + 2;
12115 fix_new (fragP, old_fr_fix + 2, 2,
12116 fragP->fr_symbol,
12117 fragP->fr_offset, 1,
12118 reloc_type);
12119 break;
12120 }
12121 /* Fall through. */
12122
12123 case COND_JUMP:
12124 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
12125 {
12126 fixS *fixP;
12127
12128 fragP->fr_fix += 1;
12129 fixP = fix_new (fragP, old_fr_fix, 1,
12130 fragP->fr_symbol,
12131 fragP->fr_offset, 1,
12132 BFD_RELOC_8_PCREL);
12133 fixP->fx_signed = 1;
12134 break;
12135 }
12136
12137 /* This changes the byte-displacement jump 0x7N
12138 to the (d)word-displacement jump 0x0f,0x8N. */
12139 opcode[1] = opcode[0] + 0x10;
12140 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
12141 /* We've added an opcode byte. */
12142 fragP->fr_fix += 1 + size;
12143 fix_new (fragP, old_fr_fix + 1, size,
12144 fragP->fr_symbol,
12145 fragP->fr_offset, 1,
12146 reloc_type);
12147 break;
12148
12149 default:
12150 BAD_CASE (fragP->fr_subtype);
12151 break;
12152 }
12153 frag_wane (fragP);
12154 return fragP->fr_fix - old_fr_fix;
12155 }
12156
12157 /* Guess size depending on current relax state. Initially the relax
12158 state will correspond to a short jump and we return 1, because
12159 the variable part of the frag (the branch offset) is one byte
12160 long. However, we can relax a section more than once and in that
12161 case we must either set fr_subtype back to the unrelaxed state,
12162 or return the value for the appropriate branch. */
12163 return md_relax_table[fragP->fr_subtype].rlx_length;
12164 }
12165
12166 /* Called after relax() is finished.
12167
12168 In: Address of frag.
12169 fr_type == rs_machine_dependent.
12170 fr_subtype is what the address relaxed to.
12171
12172 Out: Any fixSs and constants are set up.
12173 Caller will turn frag into a ".space 0". */
12174
12175 void
12176 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
12177 fragS *fragP)
12178 {
12179 unsigned char *opcode;
12180 unsigned char *where_to_put_displacement = NULL;
12181 offsetT target_address;
12182 offsetT opcode_address;
12183 unsigned int extension = 0;
12184 offsetT displacement_from_opcode_start;
12185
12186 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
12187 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
12188 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
12189 {
12190 /* Generate nop padding. */
12191 unsigned int size = fragP->tc_frag_data.length;
12192 if (size)
12193 {
12194 if (size > fragP->tc_frag_data.max_bytes)
12195 abort ();
12196
12197 if (flag_debug)
12198 {
12199 const char *msg;
12200 const char *branch = "branch";
12201 const char *prefix = "";
12202 fragS *padding_fragP;
12203 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
12204 == BRANCH_PREFIX)
12205 {
12206 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
12207 switch (fragP->tc_frag_data.default_prefix)
12208 {
12209 default:
12210 abort ();
12211 break;
12212 case CS_PREFIX_OPCODE:
12213 prefix = " cs";
12214 break;
12215 case DS_PREFIX_OPCODE:
12216 prefix = " ds";
12217 break;
12218 case ES_PREFIX_OPCODE:
12219 prefix = " es";
12220 break;
12221 case FS_PREFIX_OPCODE:
12222 prefix = " fs";
12223 break;
12224 case GS_PREFIX_OPCODE:
12225 prefix = " gs";
12226 break;
12227 case SS_PREFIX_OPCODE:
12228 prefix = " ss";
12229 break;
12230 }
12231 if (padding_fragP)
12232 msg = _("%s:%u: add %d%s at 0x%llx to align "
12233 "%s within %d-byte boundary\n");
12234 else
12235 msg = _("%s:%u: add additional %d%s at 0x%llx to "
12236 "align %s within %d-byte boundary\n");
12237 }
12238 else
12239 {
12240 padding_fragP = fragP;
12241 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
12242 "%s within %d-byte boundary\n");
12243 }
12244
12245 if (padding_fragP)
12246 switch (padding_fragP->tc_frag_data.branch_type)
12247 {
12248 case align_branch_jcc:
12249 branch = "jcc";
12250 break;
12251 case align_branch_fused:
12252 branch = "fused jcc";
12253 break;
12254 case align_branch_jmp:
12255 branch = "jmp";
12256 break;
12257 case align_branch_call:
12258 branch = "call";
12259 break;
12260 case align_branch_indirect:
12261 branch = "indiret branch";
12262 break;
12263 case align_branch_ret:
12264 branch = "ret";
12265 break;
12266 default:
12267 break;
12268 }
12269
12270 fprintf (stdout, msg,
12271 fragP->fr_file, fragP->fr_line, size, prefix,
12272 (long long) fragP->fr_address, branch,
12273 1 << align_branch_power);
12274 }
12275 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
12276 memset (fragP->fr_opcode,
12277 fragP->tc_frag_data.default_prefix, size);
12278 else
12279 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
12280 size, 0);
12281 fragP->fr_fix += size;
12282 }
12283 return;
12284 }
12285
12286 opcode = (unsigned char *) fragP->fr_opcode;
12287
12288 /* Address we want to reach in file space. */
12289 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
12290
12291 /* Address opcode resides at in file space. */
12292 opcode_address = fragP->fr_address + fragP->fr_fix;
12293
12294 /* Displacement from opcode start to fill into instruction. */
12295 displacement_from_opcode_start = target_address - opcode_address;
12296
12297 if ((fragP->fr_subtype & BIG) == 0)
12298 {
12299 /* Don't have to change opcode. */
12300 extension = 1; /* 1 opcode + 1 displacement */
12301 where_to_put_displacement = &opcode[1];
12302 }
12303 else
12304 {
12305 if (no_cond_jump_promotion
12306 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
12307 as_warn_where (fragP->fr_file, fragP->fr_line,
12308 _("long jump required"));
12309
12310 switch (fragP->fr_subtype)
12311 {
12312 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
12313 extension = 4; /* 1 opcode + 4 displacement */
12314 opcode[0] = 0xe9;
12315 where_to_put_displacement = &opcode[1];
12316 break;
12317
12318 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
12319 extension = 2; /* 1 opcode + 2 displacement */
12320 opcode[0] = 0xe9;
12321 where_to_put_displacement = &opcode[1];
12322 break;
12323
12324 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
12325 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
12326 extension = 5; /* 2 opcode + 4 displacement */
12327 opcode[1] = opcode[0] + 0x10;
12328 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
12329 where_to_put_displacement = &opcode[2];
12330 break;
12331
12332 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
12333 extension = 3; /* 2 opcode + 2 displacement */
12334 opcode[1] = opcode[0] + 0x10;
12335 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
12336 where_to_put_displacement = &opcode[2];
12337 break;
12338
12339 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
12340 extension = 4;
12341 opcode[0] ^= 1;
12342 opcode[1] = 3;
12343 opcode[2] = 0xe9;
12344 where_to_put_displacement = &opcode[3];
12345 break;
12346
12347 default:
12348 BAD_CASE (fragP->fr_subtype);
12349 break;
12350 }
12351 }
12352
12353 /* If size if less then four we are sure that the operand fits,
12354 but if it's 4, then it could be that the displacement is larger
12355 then -/+ 2GB. */
12356 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
12357 && object_64bit
12358 && ((addressT) (displacement_from_opcode_start - extension
12359 + ((addressT) 1 << 31))
12360 > (((addressT) 2 << 31) - 1)))
12361 {
12362 as_bad_where (fragP->fr_file, fragP->fr_line,
12363 _("jump target out of range"));
12364 /* Make us emit 0. */
12365 displacement_from_opcode_start = extension;
12366 }
12367 /* Now put displacement after opcode. */
12368 md_number_to_chars ((char *) where_to_put_displacement,
12369 (valueT) (displacement_from_opcode_start - extension),
12370 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
12371 fragP->fr_fix += extension;
12372 }
12373 \f
12374 /* Apply a fixup (fixP) to segment data, once it has been determined
12375 by our caller that we have all the info we need to fix it up.
12376
12377 Parameter valP is the pointer to the value of the bits.
12378
12379 On the 386, immediates, displacements, and data pointers are all in
12380 the same (little-endian) format, so we don't need to care about which
12381 we are handling. */
12382
12383 void
12384 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
12385 {
12386 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
12387 valueT value = *valP;
12388
12389 #if !defined (TE_Mach)
12390 if (fixP->fx_pcrel)
12391 {
12392 switch (fixP->fx_r_type)
12393 {
12394 default:
12395 break;
12396
12397 case BFD_RELOC_64:
12398 fixP->fx_r_type = BFD_RELOC_64_PCREL;
12399 break;
12400 case BFD_RELOC_32:
12401 case BFD_RELOC_X86_64_32S:
12402 fixP->fx_r_type = BFD_RELOC_32_PCREL;
12403 break;
12404 case BFD_RELOC_16:
12405 fixP->fx_r_type = BFD_RELOC_16_PCREL;
12406 break;
12407 case BFD_RELOC_8:
12408 fixP->fx_r_type = BFD_RELOC_8_PCREL;
12409 break;
12410 }
12411 }
12412
12413 if (fixP->fx_addsy != NULL
12414 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
12415 || fixP->fx_r_type == BFD_RELOC_64_PCREL
12416 || fixP->fx_r_type == BFD_RELOC_16_PCREL
12417 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
12418 && !use_rela_relocations)
12419 {
12420 /* This is a hack. There should be a better way to handle this.
12421 This covers for the fact that bfd_install_relocation will
12422 subtract the current location (for partial_inplace, PC relative
12423 relocations); see more below. */
12424 #ifndef OBJ_AOUT
12425 if (IS_ELF
12426 #ifdef TE_PE
12427 || OUTPUT_FLAVOR == bfd_target_coff_flavour
12428 #endif
12429 )
12430 value += fixP->fx_where + fixP->fx_frag->fr_address;
12431 #endif
12432 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12433 if (IS_ELF)
12434 {
12435 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
12436
12437 if ((sym_seg == seg
12438 || (symbol_section_p (fixP->fx_addsy)
12439 && sym_seg != absolute_section))
12440 && !generic_force_reloc (fixP))
12441 {
12442 /* Yes, we add the values in twice. This is because
12443 bfd_install_relocation subtracts them out again. I think
12444 bfd_install_relocation is broken, but I don't dare change
12445 it. FIXME. */
12446 value += fixP->fx_where + fixP->fx_frag->fr_address;
12447 }
12448 }
12449 #endif
12450 #if defined (OBJ_COFF) && defined (TE_PE)
12451 /* For some reason, the PE format does not store a
12452 section address offset for a PC relative symbol. */
12453 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
12454 || S_IS_WEAK (fixP->fx_addsy))
12455 value += md_pcrel_from (fixP);
12456 #endif
12457 }
12458 #if defined (OBJ_COFF) && defined (TE_PE)
12459 if (fixP->fx_addsy != NULL
12460 && S_IS_WEAK (fixP->fx_addsy)
12461 /* PR 16858: Do not modify weak function references. */
12462 && ! fixP->fx_pcrel)
12463 {
12464 #if !defined (TE_PEP)
12465 /* For x86 PE weak function symbols are neither PC-relative
12466 nor do they set S_IS_FUNCTION. So the only reliable way
12467 to detect them is to check the flags of their containing
12468 section. */
12469 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
12470 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
12471 ;
12472 else
12473 #endif
12474 value -= S_GET_VALUE (fixP->fx_addsy);
12475 }
12476 #endif
12477
12478 /* Fix a few things - the dynamic linker expects certain values here,
12479 and we must not disappoint it. */
12480 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12481 if (IS_ELF && fixP->fx_addsy)
12482 switch (fixP->fx_r_type)
12483 {
12484 case BFD_RELOC_386_PLT32:
12485 case BFD_RELOC_X86_64_PLT32:
12486 /* Make the jump instruction point to the address of the operand.
12487 At runtime we merely add the offset to the actual PLT entry.
12488 NB: Subtract the offset size only for jump instructions. */
12489 if (fixP->fx_pcrel)
12490 value = -4;
12491 break;
12492
12493 case BFD_RELOC_386_TLS_GD:
12494 case BFD_RELOC_386_TLS_LDM:
12495 case BFD_RELOC_386_TLS_IE_32:
12496 case BFD_RELOC_386_TLS_IE:
12497 case BFD_RELOC_386_TLS_GOTIE:
12498 case BFD_RELOC_386_TLS_GOTDESC:
12499 case BFD_RELOC_X86_64_TLSGD:
12500 case BFD_RELOC_X86_64_TLSLD:
12501 case BFD_RELOC_X86_64_GOTTPOFF:
12502 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12503 value = 0; /* Fully resolved at runtime. No addend. */
12504 /* Fallthrough */
12505 case BFD_RELOC_386_TLS_LE:
12506 case BFD_RELOC_386_TLS_LDO_32:
12507 case BFD_RELOC_386_TLS_LE_32:
12508 case BFD_RELOC_X86_64_DTPOFF32:
12509 case BFD_RELOC_X86_64_DTPOFF64:
12510 case BFD_RELOC_X86_64_TPOFF32:
12511 case BFD_RELOC_X86_64_TPOFF64:
12512 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12513 break;
12514
12515 case BFD_RELOC_386_TLS_DESC_CALL:
12516 case BFD_RELOC_X86_64_TLSDESC_CALL:
12517 value = 0; /* Fully resolved at runtime. No addend. */
12518 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12519 fixP->fx_done = 0;
12520 return;
12521
12522 case BFD_RELOC_VTABLE_INHERIT:
12523 case BFD_RELOC_VTABLE_ENTRY:
12524 fixP->fx_done = 0;
12525 return;
12526
12527 default:
12528 break;
12529 }
12530 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
12531 *valP = value;
12532 #endif /* !defined (TE_Mach) */
12533
12534 /* Are we finished with this relocation now? */
12535 if (fixP->fx_addsy == NULL)
12536 fixP->fx_done = 1;
12537 #if defined (OBJ_COFF) && defined (TE_PE)
12538 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
12539 {
12540 fixP->fx_done = 0;
12541 /* Remember value for tc_gen_reloc. */
12542 fixP->fx_addnumber = value;
12543 /* Clear out the frag for now. */
12544 value = 0;
12545 }
12546 #endif
12547 else if (use_rela_relocations)
12548 {
12549 fixP->fx_no_overflow = 1;
12550 /* Remember value for tc_gen_reloc. */
12551 fixP->fx_addnumber = value;
12552 value = 0;
12553 }
12554
12555 md_number_to_chars (p, value, fixP->fx_size);
12556 }
12557 \f
12558 const char *
12559 md_atof (int type, char *litP, int *sizeP)
12560 {
12561 /* This outputs the LITTLENUMs in REVERSE order;
12562 in accord with the bigendian 386. */
12563 return ieee_md_atof (type, litP, sizeP, FALSE);
12564 }
12565 \f
12566 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
12567
12568 static char *
12569 output_invalid (int c)
12570 {
12571 if (ISPRINT (c))
12572 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
12573 "'%c'", c);
12574 else
12575 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
12576 "(0x%x)", (unsigned char) c);
12577 return output_invalid_buf;
12578 }
12579
12580 /* Verify that @r can be used in the current context. */
12581
12582 static bfd_boolean check_register (const reg_entry *r)
12583 {
12584 if (allow_pseudo_reg)
12585 return TRUE;
12586
12587 if (operand_type_all_zero (&r->reg_type))
12588 return FALSE;
12589
12590 if ((r->reg_type.bitfield.dword
12591 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
12592 || r->reg_type.bitfield.class == RegCR
12593 || r->reg_type.bitfield.class == RegDR)
12594 && !cpu_arch_flags.bitfield.cpui386)
12595 return FALSE;
12596
12597 if (r->reg_type.bitfield.class == RegTR
12598 && (flag_code == CODE_64BIT
12599 || !cpu_arch_flags.bitfield.cpui386
12600 || cpu_arch_isa_flags.bitfield.cpui586
12601 || cpu_arch_isa_flags.bitfield.cpui686))
12602 return FALSE;
12603
12604 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
12605 return FALSE;
12606
12607 if (!cpu_arch_flags.bitfield.cpuavx512f)
12608 {
12609 if (r->reg_type.bitfield.zmmword
12610 || r->reg_type.bitfield.class == RegMask)
12611 return FALSE;
12612
12613 if (!cpu_arch_flags.bitfield.cpuavx)
12614 {
12615 if (r->reg_type.bitfield.ymmword)
12616 return FALSE;
12617
12618 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
12619 return FALSE;
12620 }
12621 }
12622
12623 if (r->reg_type.bitfield.tmmword
12624 && (!cpu_arch_flags.bitfield.cpuamx_tile
12625 || flag_code != CODE_64BIT))
12626 return FALSE;
12627
12628 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
12629 return FALSE;
12630
12631 /* Don't allow fake index register unless allow_index_reg isn't 0. */
12632 if (!allow_index_reg && r->reg_num == RegIZ)
12633 return FALSE;
12634
12635 /* Upper 16 vector registers are only available with VREX in 64bit
12636 mode, and require EVEX encoding. */
12637 if (r->reg_flags & RegVRex)
12638 {
12639 if (!cpu_arch_flags.bitfield.cpuavx512f
12640 || flag_code != CODE_64BIT)
12641 return FALSE;
12642
12643 if (i.vec_encoding == vex_encoding_default)
12644 i.vec_encoding = vex_encoding_evex;
12645 else if (i.vec_encoding != vex_encoding_evex)
12646 i.vec_encoding = vex_encoding_error;
12647 }
12648
12649 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
12650 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
12651 && flag_code != CODE_64BIT)
12652 return FALSE;
12653
12654 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
12655 && !intel_syntax)
12656 return FALSE;
12657
12658 return TRUE;
12659 }
12660
12661 /* REG_STRING starts *before* REGISTER_PREFIX. */
12662
12663 static const reg_entry *
12664 parse_real_register (char *reg_string, char **end_op)
12665 {
12666 char *s = reg_string;
12667 char *p;
12668 char reg_name_given[MAX_REG_NAME_SIZE + 1];
12669 const reg_entry *r;
12670
12671 /* Skip possible REGISTER_PREFIX and possible whitespace. */
12672 if (*s == REGISTER_PREFIX)
12673 ++s;
12674
12675 if (is_space_char (*s))
12676 ++s;
12677
12678 p = reg_name_given;
12679 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
12680 {
12681 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
12682 return (const reg_entry *) NULL;
12683 s++;
12684 }
12685
12686 /* For naked regs, make sure that we are not dealing with an identifier.
12687 This prevents confusing an identifier like `eax_var' with register
12688 `eax'. */
12689 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
12690 return (const reg_entry *) NULL;
12691
12692 *end_op = s;
12693
12694 r = (const reg_entry *) str_hash_find (reg_hash, reg_name_given);
12695
12696 /* Handle floating point regs, allowing spaces in the (i) part. */
12697 if (r == i386_regtab /* %st is first entry of table */)
12698 {
12699 if (!cpu_arch_flags.bitfield.cpu8087
12700 && !cpu_arch_flags.bitfield.cpu287
12701 && !cpu_arch_flags.bitfield.cpu387
12702 && !allow_pseudo_reg)
12703 return (const reg_entry *) NULL;
12704
12705 if (is_space_char (*s))
12706 ++s;
12707 if (*s == '(')
12708 {
12709 ++s;
12710 if (is_space_char (*s))
12711 ++s;
12712 if (*s >= '0' && *s <= '7')
12713 {
12714 int fpr = *s - '0';
12715 ++s;
12716 if (is_space_char (*s))
12717 ++s;
12718 if (*s == ')')
12719 {
12720 *end_op = s + 1;
12721 r = (const reg_entry *) str_hash_find (reg_hash, "st(0)");
12722 know (r);
12723 return r + fpr;
12724 }
12725 }
12726 /* We have "%st(" then garbage. */
12727 return (const reg_entry *) NULL;
12728 }
12729 }
12730
12731 return r && check_register (r) ? r : NULL;
12732 }
12733
12734 /* REG_STRING starts *before* REGISTER_PREFIX. */
12735
12736 static const reg_entry *
12737 parse_register (char *reg_string, char **end_op)
12738 {
12739 const reg_entry *r;
12740
12741 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
12742 r = parse_real_register (reg_string, end_op);
12743 else
12744 r = NULL;
12745 if (!r)
12746 {
12747 char *save = input_line_pointer;
12748 char c;
12749 symbolS *symbolP;
12750
12751 input_line_pointer = reg_string;
12752 c = get_symbol_name (&reg_string);
12753 symbolP = symbol_find (reg_string);
12754 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
12755 {
12756 const expressionS *e = symbol_get_value_expression (symbolP);
12757
12758 know (e->X_op == O_register);
12759 know (e->X_add_number >= 0
12760 && (valueT) e->X_add_number < i386_regtab_size);
12761 r = i386_regtab + e->X_add_number;
12762 if (!check_register (r))
12763 {
12764 as_bad (_("register '%s%s' cannot be used here"),
12765 register_prefix, r->reg_name);
12766 r = &bad_reg;
12767 }
12768 *end_op = input_line_pointer;
12769 }
12770 *input_line_pointer = c;
12771 input_line_pointer = save;
12772 }
12773 return r;
12774 }
12775
12776 int
12777 i386_parse_name (char *name, expressionS *e, char *nextcharP)
12778 {
12779 const reg_entry *r;
12780 char *end = input_line_pointer;
12781
12782 *end = *nextcharP;
12783 r = parse_register (name, &input_line_pointer);
12784 if (r && end <= input_line_pointer)
12785 {
12786 *nextcharP = *input_line_pointer;
12787 *input_line_pointer = 0;
12788 if (r != &bad_reg)
12789 {
12790 e->X_op = O_register;
12791 e->X_add_number = r - i386_regtab;
12792 }
12793 else
12794 e->X_op = O_illegal;
12795 return 1;
12796 }
12797 input_line_pointer = end;
12798 *end = 0;
12799 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
12800 }
12801
12802 void
12803 md_operand (expressionS *e)
12804 {
12805 char *end;
12806 const reg_entry *r;
12807
12808 switch (*input_line_pointer)
12809 {
12810 case REGISTER_PREFIX:
12811 r = parse_real_register (input_line_pointer, &end);
12812 if (r)
12813 {
12814 e->X_op = O_register;
12815 e->X_add_number = r - i386_regtab;
12816 input_line_pointer = end;
12817 }
12818 break;
12819
12820 case '[':
12821 gas_assert (intel_syntax);
12822 end = input_line_pointer++;
12823 expression (e);
12824 if (*input_line_pointer == ']')
12825 {
12826 ++input_line_pointer;
12827 e->X_op_symbol = make_expr_symbol (e);
12828 e->X_add_symbol = NULL;
12829 e->X_add_number = 0;
12830 e->X_op = O_index;
12831 }
12832 else
12833 {
12834 e->X_op = O_absent;
12835 input_line_pointer = end;
12836 }
12837 break;
12838 }
12839 }
12840
12841 \f
12842 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12843 const char *md_shortopts = "kVQ:sqnO::";
12844 #else
12845 const char *md_shortopts = "qnO::";
12846 #endif
12847
12848 #define OPTION_32 (OPTION_MD_BASE + 0)
12849 #define OPTION_64 (OPTION_MD_BASE + 1)
12850 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
12851 #define OPTION_MARCH (OPTION_MD_BASE + 3)
12852 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
12853 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
12854 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
12855 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
12856 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
12857 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
12858 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
12859 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
12860 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
12861 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12862 #define OPTION_X32 (OPTION_MD_BASE + 14)
12863 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
12864 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12865 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
12866 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
12867 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
12868 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
12869 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
12870 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12871 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
12872 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
12873 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
12874 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
12875 #define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12876 #define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12877 #define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
12878 #define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
12879 #define OPTION_MLFENCE_AFTER_LOAD (OPTION_MD_BASE + 31)
12880 #define OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH (OPTION_MD_BASE + 32)
12881 #define OPTION_MLFENCE_BEFORE_RET (OPTION_MD_BASE + 33)
12882
12883 struct option md_longopts[] =
12884 {
12885 {"32", no_argument, NULL, OPTION_32},
12886 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12887 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12888 {"64", no_argument, NULL, OPTION_64},
12889 #endif
12890 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12891 {"x32", no_argument, NULL, OPTION_X32},
12892 {"mshared", no_argument, NULL, OPTION_MSHARED},
12893 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
12894 #endif
12895 {"divide", no_argument, NULL, OPTION_DIVIDE},
12896 {"march", required_argument, NULL, OPTION_MARCH},
12897 {"mtune", required_argument, NULL, OPTION_MTUNE},
12898 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12899 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12900 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12901 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
12902 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
12903 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
12904 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
12905 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
12906 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
12907 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
12908 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12909 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
12910 # if defined (TE_PE) || defined (TE_PEP)
12911 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12912 #endif
12913 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
12914 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
12915 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
12916 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
12917 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12918 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12919 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
12920 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
12921 {"mlfence-after-load", required_argument, NULL, OPTION_MLFENCE_AFTER_LOAD},
12922 {"mlfence-before-indirect-branch", required_argument, NULL,
12923 OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH},
12924 {"mlfence-before-ret", required_argument, NULL, OPTION_MLFENCE_BEFORE_RET},
12925 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12926 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
12927 {NULL, no_argument, NULL, 0}
12928 };
12929 size_t md_longopts_size = sizeof (md_longopts);
12930
12931 int
12932 md_parse_option (int c, const char *arg)
12933 {
12934 unsigned int j;
12935 char *arch, *next, *saved, *type;
12936
12937 switch (c)
12938 {
12939 case 'n':
12940 optimize_align_code = 0;
12941 break;
12942
12943 case 'q':
12944 quiet_warnings = 1;
12945 break;
12946
12947 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12948 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12949 should be emitted or not. FIXME: Not implemented. */
12950 case 'Q':
12951 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12952 return 0;
12953 break;
12954
12955 /* -V: SVR4 argument to print version ID. */
12956 case 'V':
12957 print_version_id ();
12958 break;
12959
12960 /* -k: Ignore for FreeBSD compatibility. */
12961 case 'k':
12962 break;
12963
12964 case 's':
12965 /* -s: On i386 Solaris, this tells the native assembler to use
12966 .stab instead of .stab.excl. We always use .stab anyhow. */
12967 break;
12968
12969 case OPTION_MSHARED:
12970 shared = 1;
12971 break;
12972
12973 case OPTION_X86_USED_NOTE:
12974 if (strcasecmp (arg, "yes") == 0)
12975 x86_used_note = 1;
12976 else if (strcasecmp (arg, "no") == 0)
12977 x86_used_note = 0;
12978 else
12979 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12980 break;
12981
12982
12983 #endif
12984 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12985 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12986 case OPTION_64:
12987 {
12988 const char **list, **l;
12989
12990 list = bfd_target_list ();
12991 for (l = list; *l != NULL; l++)
12992 if (CONST_STRNEQ (*l, "elf64-x86-64")
12993 || strcmp (*l, "coff-x86-64") == 0
12994 || strcmp (*l, "pe-x86-64") == 0
12995 || strcmp (*l, "pei-x86-64") == 0
12996 || strcmp (*l, "mach-o-x86-64") == 0)
12997 {
12998 default_arch = "x86_64";
12999 break;
13000 }
13001 if (*l == NULL)
13002 as_fatal (_("no compiled in support for x86_64"));
13003 free (list);
13004 }
13005 break;
13006 #endif
13007
13008 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13009 case OPTION_X32:
13010 if (IS_ELF)
13011 {
13012 const char **list, **l;
13013
13014 list = bfd_target_list ();
13015 for (l = list; *l != NULL; l++)
13016 if (CONST_STRNEQ (*l, "elf32-x86-64"))
13017 {
13018 default_arch = "x86_64:32";
13019 break;
13020 }
13021 if (*l == NULL)
13022 as_fatal (_("no compiled in support for 32bit x86_64"));
13023 free (list);
13024 }
13025 else
13026 as_fatal (_("32bit x86_64 is only supported for ELF"));
13027 break;
13028 #endif
13029
13030 case OPTION_32:
13031 default_arch = "i386";
13032 break;
13033
13034 case OPTION_DIVIDE:
13035 #ifdef SVR4_COMMENT_CHARS
13036 {
13037 char *n, *t;
13038 const char *s;
13039
13040 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
13041 t = n;
13042 for (s = i386_comment_chars; *s != '\0'; s++)
13043 if (*s != '/')
13044 *t++ = *s;
13045 *t = '\0';
13046 i386_comment_chars = n;
13047 }
13048 #endif
13049 break;
13050
13051 case OPTION_MARCH:
13052 saved = xstrdup (arg);
13053 arch = saved;
13054 /* Allow -march=+nosse. */
13055 if (*arch == '+')
13056 arch++;
13057 do
13058 {
13059 if (*arch == '.')
13060 as_fatal (_("invalid -march= option: `%s'"), arg);
13061 next = strchr (arch, '+');
13062 if (next)
13063 *next++ = '\0';
13064 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
13065 {
13066 if (strcmp (arch, cpu_arch [j].name) == 0)
13067 {
13068 /* Processor. */
13069 if (! cpu_arch[j].flags.bitfield.cpui386)
13070 continue;
13071
13072 cpu_arch_name = cpu_arch[j].name;
13073 cpu_sub_arch_name = NULL;
13074 cpu_arch_flags = cpu_arch[j].flags;
13075 cpu_arch_isa = cpu_arch[j].type;
13076 cpu_arch_isa_flags = cpu_arch[j].flags;
13077 if (!cpu_arch_tune_set)
13078 {
13079 cpu_arch_tune = cpu_arch_isa;
13080 cpu_arch_tune_flags = cpu_arch_isa_flags;
13081 }
13082 break;
13083 }
13084 else if (*cpu_arch [j].name == '.'
13085 && strcmp (arch, cpu_arch [j].name + 1) == 0)
13086 {
13087 /* ISA extension. */
13088 i386_cpu_flags flags;
13089
13090 flags = cpu_flags_or (cpu_arch_flags,
13091 cpu_arch[j].flags);
13092
13093 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
13094 {
13095 if (cpu_sub_arch_name)
13096 {
13097 char *name = cpu_sub_arch_name;
13098 cpu_sub_arch_name = concat (name,
13099 cpu_arch[j].name,
13100 (const char *) NULL);
13101 free (name);
13102 }
13103 else
13104 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
13105 cpu_arch_flags = flags;
13106 cpu_arch_isa_flags = flags;
13107 }
13108 else
13109 cpu_arch_isa_flags
13110 = cpu_flags_or (cpu_arch_isa_flags,
13111 cpu_arch[j].flags);
13112 break;
13113 }
13114 }
13115
13116 if (j >= ARRAY_SIZE (cpu_arch))
13117 {
13118 /* Disable an ISA extension. */
13119 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
13120 if (strcmp (arch, cpu_noarch [j].name) == 0)
13121 {
13122 i386_cpu_flags flags;
13123
13124 flags = cpu_flags_and_not (cpu_arch_flags,
13125 cpu_noarch[j].flags);
13126 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
13127 {
13128 if (cpu_sub_arch_name)
13129 {
13130 char *name = cpu_sub_arch_name;
13131 cpu_sub_arch_name = concat (arch,
13132 (const char *) NULL);
13133 free (name);
13134 }
13135 else
13136 cpu_sub_arch_name = xstrdup (arch);
13137 cpu_arch_flags = flags;
13138 cpu_arch_isa_flags = flags;
13139 }
13140 break;
13141 }
13142
13143 if (j >= ARRAY_SIZE (cpu_noarch))
13144 j = ARRAY_SIZE (cpu_arch);
13145 }
13146
13147 if (j >= ARRAY_SIZE (cpu_arch))
13148 as_fatal (_("invalid -march= option: `%s'"), arg);
13149
13150 arch = next;
13151 }
13152 while (next != NULL);
13153 free (saved);
13154 break;
13155
13156 case OPTION_MTUNE:
13157 if (*arg == '.')
13158 as_fatal (_("invalid -mtune= option: `%s'"), arg);
13159 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
13160 {
13161 if (strcmp (arg, cpu_arch [j].name) == 0)
13162 {
13163 cpu_arch_tune_set = 1;
13164 cpu_arch_tune = cpu_arch [j].type;
13165 cpu_arch_tune_flags = cpu_arch[j].flags;
13166 break;
13167 }
13168 }
13169 if (j >= ARRAY_SIZE (cpu_arch))
13170 as_fatal (_("invalid -mtune= option: `%s'"), arg);
13171 break;
13172
13173 case OPTION_MMNEMONIC:
13174 if (strcasecmp (arg, "att") == 0)
13175 intel_mnemonic = 0;
13176 else if (strcasecmp (arg, "intel") == 0)
13177 intel_mnemonic = 1;
13178 else
13179 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
13180 break;
13181
13182 case OPTION_MSYNTAX:
13183 if (strcasecmp (arg, "att") == 0)
13184 intel_syntax = 0;
13185 else if (strcasecmp (arg, "intel") == 0)
13186 intel_syntax = 1;
13187 else
13188 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
13189 break;
13190
13191 case OPTION_MINDEX_REG:
13192 allow_index_reg = 1;
13193 break;
13194
13195 case OPTION_MNAKED_REG:
13196 allow_naked_reg = 1;
13197 break;
13198
13199 case OPTION_MSSE2AVX:
13200 sse2avx = 1;
13201 break;
13202
13203 case OPTION_MSSE_CHECK:
13204 if (strcasecmp (arg, "error") == 0)
13205 sse_check = check_error;
13206 else if (strcasecmp (arg, "warning") == 0)
13207 sse_check = check_warning;
13208 else if (strcasecmp (arg, "none") == 0)
13209 sse_check = check_none;
13210 else
13211 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
13212 break;
13213
13214 case OPTION_MOPERAND_CHECK:
13215 if (strcasecmp (arg, "error") == 0)
13216 operand_check = check_error;
13217 else if (strcasecmp (arg, "warning") == 0)
13218 operand_check = check_warning;
13219 else if (strcasecmp (arg, "none") == 0)
13220 operand_check = check_none;
13221 else
13222 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
13223 break;
13224
13225 case OPTION_MAVXSCALAR:
13226 if (strcasecmp (arg, "128") == 0)
13227 avxscalar = vex128;
13228 else if (strcasecmp (arg, "256") == 0)
13229 avxscalar = vex256;
13230 else
13231 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
13232 break;
13233
13234 case OPTION_MVEXWIG:
13235 if (strcmp (arg, "0") == 0)
13236 vexwig = vexw0;
13237 else if (strcmp (arg, "1") == 0)
13238 vexwig = vexw1;
13239 else
13240 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
13241 break;
13242
13243 case OPTION_MADD_BND_PREFIX:
13244 add_bnd_prefix = 1;
13245 break;
13246
13247 case OPTION_MEVEXLIG:
13248 if (strcmp (arg, "128") == 0)
13249 evexlig = evexl128;
13250 else if (strcmp (arg, "256") == 0)
13251 evexlig = evexl256;
13252 else if (strcmp (arg, "512") == 0)
13253 evexlig = evexl512;
13254 else
13255 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
13256 break;
13257
13258 case OPTION_MEVEXRCIG:
13259 if (strcmp (arg, "rne") == 0)
13260 evexrcig = rne;
13261 else if (strcmp (arg, "rd") == 0)
13262 evexrcig = rd;
13263 else if (strcmp (arg, "ru") == 0)
13264 evexrcig = ru;
13265 else if (strcmp (arg, "rz") == 0)
13266 evexrcig = rz;
13267 else
13268 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
13269 break;
13270
13271 case OPTION_MEVEXWIG:
13272 if (strcmp (arg, "0") == 0)
13273 evexwig = evexw0;
13274 else if (strcmp (arg, "1") == 0)
13275 evexwig = evexw1;
13276 else
13277 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
13278 break;
13279
13280 # if defined (TE_PE) || defined (TE_PEP)
13281 case OPTION_MBIG_OBJ:
13282 use_big_obj = 1;
13283 break;
13284 #endif
13285
13286 case OPTION_MOMIT_LOCK_PREFIX:
13287 if (strcasecmp (arg, "yes") == 0)
13288 omit_lock_prefix = 1;
13289 else if (strcasecmp (arg, "no") == 0)
13290 omit_lock_prefix = 0;
13291 else
13292 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
13293 break;
13294
13295 case OPTION_MFENCE_AS_LOCK_ADD:
13296 if (strcasecmp (arg, "yes") == 0)
13297 avoid_fence = 1;
13298 else if (strcasecmp (arg, "no") == 0)
13299 avoid_fence = 0;
13300 else
13301 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
13302 break;
13303
13304 case OPTION_MLFENCE_AFTER_LOAD:
13305 if (strcasecmp (arg, "yes") == 0)
13306 lfence_after_load = 1;
13307 else if (strcasecmp (arg, "no") == 0)
13308 lfence_after_load = 0;
13309 else
13310 as_fatal (_("invalid -mlfence-after-load= option: `%s'"), arg);
13311 break;
13312
13313 case OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH:
13314 if (strcasecmp (arg, "all") == 0)
13315 {
13316 lfence_before_indirect_branch = lfence_branch_all;
13317 if (lfence_before_ret == lfence_before_ret_none)
13318 lfence_before_ret = lfence_before_ret_shl;
13319 }
13320 else if (strcasecmp (arg, "memory") == 0)
13321 lfence_before_indirect_branch = lfence_branch_memory;
13322 else if (strcasecmp (arg, "register") == 0)
13323 lfence_before_indirect_branch = lfence_branch_register;
13324 else if (strcasecmp (arg, "none") == 0)
13325 lfence_before_indirect_branch = lfence_branch_none;
13326 else
13327 as_fatal (_("invalid -mlfence-before-indirect-branch= option: `%s'"),
13328 arg);
13329 break;
13330
13331 case OPTION_MLFENCE_BEFORE_RET:
13332 if (strcasecmp (arg, "or") == 0)
13333 lfence_before_ret = lfence_before_ret_or;
13334 else if (strcasecmp (arg, "not") == 0)
13335 lfence_before_ret = lfence_before_ret_not;
13336 else if (strcasecmp (arg, "shl") == 0 || strcasecmp (arg, "yes") == 0)
13337 lfence_before_ret = lfence_before_ret_shl;
13338 else if (strcasecmp (arg, "none") == 0)
13339 lfence_before_ret = lfence_before_ret_none;
13340 else
13341 as_fatal (_("invalid -mlfence-before-ret= option: `%s'"),
13342 arg);
13343 break;
13344
13345 case OPTION_MRELAX_RELOCATIONS:
13346 if (strcasecmp (arg, "yes") == 0)
13347 generate_relax_relocations = 1;
13348 else if (strcasecmp (arg, "no") == 0)
13349 generate_relax_relocations = 0;
13350 else
13351 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
13352 break;
13353
13354 case OPTION_MALIGN_BRANCH_BOUNDARY:
13355 {
13356 char *end;
13357 long int align = strtoul (arg, &end, 0);
13358 if (*end == '\0')
13359 {
13360 if (align == 0)
13361 {
13362 align_branch_power = 0;
13363 break;
13364 }
13365 else if (align >= 16)
13366 {
13367 int align_power;
13368 for (align_power = 0;
13369 (align & 1) == 0;
13370 align >>= 1, align_power++)
13371 continue;
13372 /* Limit alignment power to 31. */
13373 if (align == 1 && align_power < 32)
13374 {
13375 align_branch_power = align_power;
13376 break;
13377 }
13378 }
13379 }
13380 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
13381 }
13382 break;
13383
13384 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
13385 {
13386 char *end;
13387 int align = strtoul (arg, &end, 0);
13388 /* Some processors only support 5 prefixes. */
13389 if (*end == '\0' && align >= 0 && align < 6)
13390 {
13391 align_branch_prefix_size = align;
13392 break;
13393 }
13394 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
13395 arg);
13396 }
13397 break;
13398
13399 case OPTION_MALIGN_BRANCH:
13400 align_branch = 0;
13401 saved = xstrdup (arg);
13402 type = saved;
13403 do
13404 {
13405 next = strchr (type, '+');
13406 if (next)
13407 *next++ = '\0';
13408 if (strcasecmp (type, "jcc") == 0)
13409 align_branch |= align_branch_jcc_bit;
13410 else if (strcasecmp (type, "fused") == 0)
13411 align_branch |= align_branch_fused_bit;
13412 else if (strcasecmp (type, "jmp") == 0)
13413 align_branch |= align_branch_jmp_bit;
13414 else if (strcasecmp (type, "call") == 0)
13415 align_branch |= align_branch_call_bit;
13416 else if (strcasecmp (type, "ret") == 0)
13417 align_branch |= align_branch_ret_bit;
13418 else if (strcasecmp (type, "indirect") == 0)
13419 align_branch |= align_branch_indirect_bit;
13420 else
13421 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
13422 type = next;
13423 }
13424 while (next != NULL);
13425 free (saved);
13426 break;
13427
13428 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
13429 align_branch_power = 5;
13430 align_branch_prefix_size = 5;
13431 align_branch = (align_branch_jcc_bit
13432 | align_branch_fused_bit
13433 | align_branch_jmp_bit);
13434 break;
13435
13436 case OPTION_MAMD64:
13437 isa64 = amd64;
13438 break;
13439
13440 case OPTION_MINTEL64:
13441 isa64 = intel64;
13442 break;
13443
13444 case 'O':
13445 if (arg == NULL)
13446 {
13447 optimize = 1;
13448 /* Turn off -Os. */
13449 optimize_for_space = 0;
13450 }
13451 else if (*arg == 's')
13452 {
13453 optimize_for_space = 1;
13454 /* Turn on all encoding optimizations. */
13455 optimize = INT_MAX;
13456 }
13457 else
13458 {
13459 optimize = atoi (arg);
13460 /* Turn off -Os. */
13461 optimize_for_space = 0;
13462 }
13463 break;
13464
13465 default:
13466 return 0;
13467 }
13468 return 1;
13469 }
13470
13471 #define MESSAGE_TEMPLATE \
13472 " "
13473
13474 static char *
13475 output_message (FILE *stream, char *p, char *message, char *start,
13476 int *left_p, const char *name, int len)
13477 {
13478 int size = sizeof (MESSAGE_TEMPLATE);
13479 int left = *left_p;
13480
13481 /* Reserve 2 spaces for ", " or ",\0" */
13482 left -= len + 2;
13483
13484 /* Check if there is any room. */
13485 if (left >= 0)
13486 {
13487 if (p != start)
13488 {
13489 *p++ = ',';
13490 *p++ = ' ';
13491 }
13492 p = mempcpy (p, name, len);
13493 }
13494 else
13495 {
13496 /* Output the current message now and start a new one. */
13497 *p++ = ',';
13498 *p = '\0';
13499 fprintf (stream, "%s\n", message);
13500 p = start;
13501 left = size - (start - message) - len - 2;
13502
13503 gas_assert (left >= 0);
13504
13505 p = mempcpy (p, name, len);
13506 }
13507
13508 *left_p = left;
13509 return p;
13510 }
13511
13512 static void
13513 show_arch (FILE *stream, int ext, int check)
13514 {
13515 static char message[] = MESSAGE_TEMPLATE;
13516 char *start = message + 27;
13517 char *p;
13518 int size = sizeof (MESSAGE_TEMPLATE);
13519 int left;
13520 const char *name;
13521 int len;
13522 unsigned int j;
13523
13524 p = start;
13525 left = size - (start - message);
13526 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
13527 {
13528 /* Should it be skipped? */
13529 if (cpu_arch [j].skip)
13530 continue;
13531
13532 name = cpu_arch [j].name;
13533 len = cpu_arch [j].len;
13534 if (*name == '.')
13535 {
13536 /* It is an extension. Skip if we aren't asked to show it. */
13537 if (ext)
13538 {
13539 name++;
13540 len--;
13541 }
13542 else
13543 continue;
13544 }
13545 else if (ext)
13546 {
13547 /* It is an processor. Skip if we show only extension. */
13548 continue;
13549 }
13550 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
13551 {
13552 /* It is an impossible processor - skip. */
13553 continue;
13554 }
13555
13556 p = output_message (stream, p, message, start, &left, name, len);
13557 }
13558
13559 /* Display disabled extensions. */
13560 if (ext)
13561 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
13562 {
13563 name = cpu_noarch [j].name;
13564 len = cpu_noarch [j].len;
13565 p = output_message (stream, p, message, start, &left, name,
13566 len);
13567 }
13568
13569 *p = '\0';
13570 fprintf (stream, "%s\n", message);
13571 }
13572
13573 void
13574 md_show_usage (FILE *stream)
13575 {
13576 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13577 fprintf (stream, _("\
13578 -Qy, -Qn ignored\n\
13579 -V print assembler version number\n\
13580 -k ignored\n"));
13581 #endif
13582 fprintf (stream, _("\
13583 -n Do not optimize code alignment\n\
13584 -q quieten some warnings\n"));
13585 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13586 fprintf (stream, _("\
13587 -s ignored\n"));
13588 #endif
13589 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
13590 || defined (TE_PE) || defined (TE_PEP))
13591 fprintf (stream, _("\
13592 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
13593 #endif
13594 #ifdef SVR4_COMMENT_CHARS
13595 fprintf (stream, _("\
13596 --divide do not treat `/' as a comment character\n"));
13597 #else
13598 fprintf (stream, _("\
13599 --divide ignored\n"));
13600 #endif
13601 fprintf (stream, _("\
13602 -march=CPU[,+EXTENSION...]\n\
13603 generate code for CPU and EXTENSION, CPU is one of:\n"));
13604 show_arch (stream, 0, 1);
13605 fprintf (stream, _("\
13606 EXTENSION is combination of:\n"));
13607 show_arch (stream, 1, 0);
13608 fprintf (stream, _("\
13609 -mtune=CPU optimize for CPU, CPU is one of:\n"));
13610 show_arch (stream, 0, 0);
13611 fprintf (stream, _("\
13612 -msse2avx encode SSE instructions with VEX prefix\n"));
13613 fprintf (stream, _("\
13614 -msse-check=[none|error|warning] (default: warning)\n\
13615 check SSE instructions\n"));
13616 fprintf (stream, _("\
13617 -moperand-check=[none|error|warning] (default: warning)\n\
13618 check operand combinations for validity\n"));
13619 fprintf (stream, _("\
13620 -mavxscalar=[128|256] (default: 128)\n\
13621 encode scalar AVX instructions with specific vector\n\
13622 length\n"));
13623 fprintf (stream, _("\
13624 -mvexwig=[0|1] (default: 0)\n\
13625 encode VEX instructions with specific VEX.W value\n\
13626 for VEX.W bit ignored instructions\n"));
13627 fprintf (stream, _("\
13628 -mevexlig=[128|256|512] (default: 128)\n\
13629 encode scalar EVEX instructions with specific vector\n\
13630 length\n"));
13631 fprintf (stream, _("\
13632 -mevexwig=[0|1] (default: 0)\n\
13633 encode EVEX instructions with specific EVEX.W value\n\
13634 for EVEX.W bit ignored instructions\n"));
13635 fprintf (stream, _("\
13636 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
13637 encode EVEX instructions with specific EVEX.RC value\n\
13638 for SAE-only ignored instructions\n"));
13639 fprintf (stream, _("\
13640 -mmnemonic=[att|intel] "));
13641 if (SYSV386_COMPAT)
13642 fprintf (stream, _("(default: att)\n"));
13643 else
13644 fprintf (stream, _("(default: intel)\n"));
13645 fprintf (stream, _("\
13646 use AT&T/Intel mnemonic\n"));
13647 fprintf (stream, _("\
13648 -msyntax=[att|intel] (default: att)\n\
13649 use AT&T/Intel syntax\n"));
13650 fprintf (stream, _("\
13651 -mindex-reg support pseudo index registers\n"));
13652 fprintf (stream, _("\
13653 -mnaked-reg don't require `%%' prefix for registers\n"));
13654 fprintf (stream, _("\
13655 -madd-bnd-prefix add BND prefix for all valid branches\n"));
13656 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13657 fprintf (stream, _("\
13658 -mshared disable branch optimization for shared code\n"));
13659 fprintf (stream, _("\
13660 -mx86-used-note=[no|yes] "));
13661 if (DEFAULT_X86_USED_NOTE)
13662 fprintf (stream, _("(default: yes)\n"));
13663 else
13664 fprintf (stream, _("(default: no)\n"));
13665 fprintf (stream, _("\
13666 generate x86 used ISA and feature properties\n"));
13667 #endif
13668 #if defined (TE_PE) || defined (TE_PEP)
13669 fprintf (stream, _("\
13670 -mbig-obj generate big object files\n"));
13671 #endif
13672 fprintf (stream, _("\
13673 -momit-lock-prefix=[no|yes] (default: no)\n\
13674 strip all lock prefixes\n"));
13675 fprintf (stream, _("\
13676 -mfence-as-lock-add=[no|yes] (default: no)\n\
13677 encode lfence, mfence and sfence as\n\
13678 lock addl $0x0, (%%{re}sp)\n"));
13679 fprintf (stream, _("\
13680 -mrelax-relocations=[no|yes] "));
13681 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
13682 fprintf (stream, _("(default: yes)\n"));
13683 else
13684 fprintf (stream, _("(default: no)\n"));
13685 fprintf (stream, _("\
13686 generate relax relocations\n"));
13687 fprintf (stream, _("\
13688 -malign-branch-boundary=NUM (default: 0)\n\
13689 align branches within NUM byte boundary\n"));
13690 fprintf (stream, _("\
13691 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
13692 TYPE is combination of jcc, fused, jmp, call, ret,\n\
13693 indirect\n\
13694 specify types of branches to align\n"));
13695 fprintf (stream, _("\
13696 -malign-branch-prefix-size=NUM (default: 5)\n\
13697 align branches with NUM prefixes per instruction\n"));
13698 fprintf (stream, _("\
13699 -mbranches-within-32B-boundaries\n\
13700 align branches within 32 byte boundary\n"));
13701 fprintf (stream, _("\
13702 -mlfence-after-load=[no|yes] (default: no)\n\
13703 generate lfence after load\n"));
13704 fprintf (stream, _("\
13705 -mlfence-before-indirect-branch=[none|all|register|memory] (default: none)\n\
13706 generate lfence before indirect near branch\n"));
13707 fprintf (stream, _("\
13708 -mlfence-before-ret=[none|or|not|shl|yes] (default: none)\n\
13709 generate lfence before ret\n"));
13710 fprintf (stream, _("\
13711 -mamd64 accept only AMD64 ISA [default]\n"));
13712 fprintf (stream, _("\
13713 -mintel64 accept only Intel64 ISA\n"));
13714 }
13715
13716 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
13717 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
13718 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
13719
13720 /* Pick the target format to use. */
13721
13722 const char *
13723 i386_target_format (void)
13724 {
13725 if (!strncmp (default_arch, "x86_64", 6))
13726 {
13727 update_code_flag (CODE_64BIT, 1);
13728 if (default_arch[6] == '\0')
13729 x86_elf_abi = X86_64_ABI;
13730 else
13731 x86_elf_abi = X86_64_X32_ABI;
13732 }
13733 else if (!strcmp (default_arch, "i386"))
13734 update_code_flag (CODE_32BIT, 1);
13735 else if (!strcmp (default_arch, "iamcu"))
13736 {
13737 update_code_flag (CODE_32BIT, 1);
13738 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
13739 {
13740 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
13741 cpu_arch_name = "iamcu";
13742 cpu_sub_arch_name = NULL;
13743 cpu_arch_flags = iamcu_flags;
13744 cpu_arch_isa = PROCESSOR_IAMCU;
13745 cpu_arch_isa_flags = iamcu_flags;
13746 if (!cpu_arch_tune_set)
13747 {
13748 cpu_arch_tune = cpu_arch_isa;
13749 cpu_arch_tune_flags = cpu_arch_isa_flags;
13750 }
13751 }
13752 else if (cpu_arch_isa != PROCESSOR_IAMCU)
13753 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
13754 cpu_arch_name);
13755 }
13756 else
13757 as_fatal (_("unknown architecture"));
13758
13759 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
13760 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13761 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
13762 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13763
13764 switch (OUTPUT_FLAVOR)
13765 {
13766 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
13767 case bfd_target_aout_flavour:
13768 return AOUT_TARGET_FORMAT;
13769 #endif
13770 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
13771 # if defined (TE_PE) || defined (TE_PEP)
13772 case bfd_target_coff_flavour:
13773 if (flag_code == CODE_64BIT)
13774 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
13775 else
13776 return use_big_obj ? "pe-bigobj-i386" : "pe-i386";
13777 # elif defined (TE_GO32)
13778 case bfd_target_coff_flavour:
13779 return "coff-go32";
13780 # else
13781 case bfd_target_coff_flavour:
13782 return "coff-i386";
13783 # endif
13784 #endif
13785 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13786 case bfd_target_elf_flavour:
13787 {
13788 const char *format;
13789
13790 switch (x86_elf_abi)
13791 {
13792 default:
13793 format = ELF_TARGET_FORMAT;
13794 #ifndef TE_SOLARIS
13795 tls_get_addr = "___tls_get_addr";
13796 #endif
13797 break;
13798 case X86_64_ABI:
13799 use_rela_relocations = 1;
13800 object_64bit = 1;
13801 #ifndef TE_SOLARIS
13802 tls_get_addr = "__tls_get_addr";
13803 #endif
13804 format = ELF_TARGET_FORMAT64;
13805 break;
13806 case X86_64_X32_ABI:
13807 use_rela_relocations = 1;
13808 object_64bit = 1;
13809 #ifndef TE_SOLARIS
13810 tls_get_addr = "__tls_get_addr";
13811 #endif
13812 disallow_64bit_reloc = 1;
13813 format = ELF_TARGET_FORMAT32;
13814 break;
13815 }
13816 if (cpu_arch_isa == PROCESSOR_L1OM)
13817 {
13818 if (x86_elf_abi != X86_64_ABI)
13819 as_fatal (_("Intel L1OM is 64bit only"));
13820 return ELF_TARGET_L1OM_FORMAT;
13821 }
13822 else if (cpu_arch_isa == PROCESSOR_K1OM)
13823 {
13824 if (x86_elf_abi != X86_64_ABI)
13825 as_fatal (_("Intel K1OM is 64bit only"));
13826 return ELF_TARGET_K1OM_FORMAT;
13827 }
13828 else if (cpu_arch_isa == PROCESSOR_IAMCU)
13829 {
13830 if (x86_elf_abi != I386_ABI)
13831 as_fatal (_("Intel MCU is 32bit only"));
13832 return ELF_TARGET_IAMCU_FORMAT;
13833 }
13834 else
13835 return format;
13836 }
13837 #endif
13838 #if defined (OBJ_MACH_O)
13839 case bfd_target_mach_o_flavour:
13840 if (flag_code == CODE_64BIT)
13841 {
13842 use_rela_relocations = 1;
13843 object_64bit = 1;
13844 return "mach-o-x86-64";
13845 }
13846 else
13847 return "mach-o-i386";
13848 #endif
13849 default:
13850 abort ();
13851 return NULL;
13852 }
13853 }
13854
13855 #endif /* OBJ_MAYBE_ more than one */
13856 \f
13857 symbolS *
13858 md_undefined_symbol (char *name)
13859 {
13860 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
13861 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
13862 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
13863 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
13864 {
13865 if (!GOT_symbol)
13866 {
13867 if (symbol_find (name))
13868 as_bad (_("GOT already in symbol table"));
13869 GOT_symbol = symbol_new (name, undefined_section,
13870 &zero_address_frag, 0);
13871 };
13872 return GOT_symbol;
13873 }
13874 return 0;
13875 }
13876
13877 /* Round up a section size to the appropriate boundary. */
13878
13879 valueT
13880 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
13881 {
13882 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
13883 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
13884 {
13885 /* For a.out, force the section size to be aligned. If we don't do
13886 this, BFD will align it for us, but it will not write out the
13887 final bytes of the section. This may be a bug in BFD, but it is
13888 easier to fix it here since that is how the other a.out targets
13889 work. */
13890 int align;
13891
13892 align = bfd_section_alignment (segment);
13893 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
13894 }
13895 #endif
13896
13897 return size;
13898 }
13899
13900 /* On the i386, PC-relative offsets are relative to the start of the
13901 next instruction. That is, the address of the offset, plus its
13902 size, since the offset is always the last part of the insn. */
13903
13904 long
13905 md_pcrel_from (fixS *fixP)
13906 {
13907 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
13908 }
13909
13910 #ifndef I386COFF
13911
13912 static void
13913 s_bss (int ignore ATTRIBUTE_UNUSED)
13914 {
13915 int temp;
13916
13917 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13918 if (IS_ELF)
13919 obj_elf_section_change_hook ();
13920 #endif
13921 temp = get_absolute_expression ();
13922 subseg_set (bss_section, (subsegT) temp);
13923 demand_empty_rest_of_line ();
13924 }
13925
13926 #endif
13927
13928 /* Remember constant directive. */
13929
13930 void
13931 i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13932 {
13933 if (last_insn.kind != last_insn_directive
13934 && (bfd_section_flags (now_seg) & SEC_CODE))
13935 {
13936 last_insn.seg = now_seg;
13937 last_insn.kind = last_insn_directive;
13938 last_insn.name = "constant directive";
13939 last_insn.file = as_where (&last_insn.line);
13940 if (lfence_before_ret != lfence_before_ret_none)
13941 {
13942 if (lfence_before_indirect_branch != lfence_branch_none)
13943 as_warn (_("constant directive skips -mlfence-before-ret "
13944 "and -mlfence-before-indirect-branch"));
13945 else
13946 as_warn (_("constant directive skips -mlfence-before-ret"));
13947 }
13948 else if (lfence_before_indirect_branch != lfence_branch_none)
13949 as_warn (_("constant directive skips -mlfence-before-indirect-branch"));
13950 }
13951 }
13952
13953 void
13954 i386_validate_fix (fixS *fixp)
13955 {
13956 if (fixp->fx_subsy)
13957 {
13958 if (fixp->fx_subsy == GOT_symbol)
13959 {
13960 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13961 {
13962 if (!object_64bit)
13963 abort ();
13964 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13965 if (fixp->fx_tcbit2)
13966 fixp->fx_r_type = (fixp->fx_tcbit
13967 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13968 : BFD_RELOC_X86_64_GOTPCRELX);
13969 else
13970 #endif
13971 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13972 }
13973 else
13974 {
13975 if (!object_64bit)
13976 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13977 else
13978 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13979 }
13980 fixp->fx_subsy = 0;
13981 }
13982 }
13983 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13984 else
13985 {
13986 /* NB: Commit 292676c1 resolved PLT32 reloc aganst local symbol
13987 to section. Since PLT32 relocation must be against symbols,
13988 turn such PLT32 relocation into PC32 relocation. */
13989 if (fixp->fx_addsy
13990 && (fixp->fx_r_type == BFD_RELOC_386_PLT32
13991 || fixp->fx_r_type == BFD_RELOC_X86_64_PLT32)
13992 && symbol_section_p (fixp->fx_addsy))
13993 fixp->fx_r_type = BFD_RELOC_32_PCREL;
13994 if (!object_64bit)
13995 {
13996 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13997 && fixp->fx_tcbit2)
13998 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13999 }
14000 }
14001 #endif
14002 }
14003
14004 arelent *
14005 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
14006 {
14007 arelent *rel;
14008 bfd_reloc_code_real_type code;
14009
14010 switch (fixp->fx_r_type)
14011 {
14012 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14013 case BFD_RELOC_SIZE32:
14014 case BFD_RELOC_SIZE64:
14015 if (S_IS_DEFINED (fixp->fx_addsy)
14016 && !S_IS_EXTERNAL (fixp->fx_addsy))
14017 {
14018 /* Resolve size relocation against local symbol to size of
14019 the symbol plus addend. */
14020 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
14021 if (fixp->fx_r_type == BFD_RELOC_SIZE32
14022 && !fits_in_unsigned_long (value))
14023 as_bad_where (fixp->fx_file, fixp->fx_line,
14024 _("symbol size computation overflow"));
14025 fixp->fx_addsy = NULL;
14026 fixp->fx_subsy = NULL;
14027 md_apply_fix (fixp, (valueT *) &value, NULL);
14028 return NULL;
14029 }
14030 #endif
14031 /* Fall through. */
14032
14033 case BFD_RELOC_X86_64_PLT32:
14034 case BFD_RELOC_X86_64_GOT32:
14035 case BFD_RELOC_X86_64_GOTPCREL:
14036 case BFD_RELOC_X86_64_GOTPCRELX:
14037 case BFD_RELOC_X86_64_REX_GOTPCRELX:
14038 case BFD_RELOC_386_PLT32:
14039 case BFD_RELOC_386_GOT32:
14040 case BFD_RELOC_386_GOT32X:
14041 case BFD_RELOC_386_GOTOFF:
14042 case BFD_RELOC_386_GOTPC:
14043 case BFD_RELOC_386_TLS_GD:
14044 case BFD_RELOC_386_TLS_LDM:
14045 case BFD_RELOC_386_TLS_LDO_32:
14046 case BFD_RELOC_386_TLS_IE_32:
14047 case BFD_RELOC_386_TLS_IE:
14048 case BFD_RELOC_386_TLS_GOTIE:
14049 case BFD_RELOC_386_TLS_LE_32:
14050 case BFD_RELOC_386_TLS_LE:
14051 case BFD_RELOC_386_TLS_GOTDESC:
14052 case BFD_RELOC_386_TLS_DESC_CALL:
14053 case BFD_RELOC_X86_64_TLSGD:
14054 case BFD_RELOC_X86_64_TLSLD:
14055 case BFD_RELOC_X86_64_DTPOFF32:
14056 case BFD_RELOC_X86_64_DTPOFF64:
14057 case BFD_RELOC_X86_64_GOTTPOFF:
14058 case BFD_RELOC_X86_64_TPOFF32:
14059 case BFD_RELOC_X86_64_TPOFF64:
14060 case BFD_RELOC_X86_64_GOTOFF64:
14061 case BFD_RELOC_X86_64_GOTPC32:
14062 case BFD_RELOC_X86_64_GOT64:
14063 case BFD_RELOC_X86_64_GOTPCREL64:
14064 case BFD_RELOC_X86_64_GOTPC64:
14065 case BFD_RELOC_X86_64_GOTPLT64:
14066 case BFD_RELOC_X86_64_PLTOFF64:
14067 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
14068 case BFD_RELOC_X86_64_TLSDESC_CALL:
14069 case BFD_RELOC_RVA:
14070 case BFD_RELOC_VTABLE_ENTRY:
14071 case BFD_RELOC_VTABLE_INHERIT:
14072 #ifdef TE_PE
14073 case BFD_RELOC_32_SECREL:
14074 #endif
14075 code = fixp->fx_r_type;
14076 break;
14077 case BFD_RELOC_X86_64_32S:
14078 if (!fixp->fx_pcrel)
14079 {
14080 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
14081 code = fixp->fx_r_type;
14082 break;
14083 }
14084 /* Fall through. */
14085 default:
14086 if (fixp->fx_pcrel)
14087 {
14088 switch (fixp->fx_size)
14089 {
14090 default:
14091 as_bad_where (fixp->fx_file, fixp->fx_line,
14092 _("can not do %d byte pc-relative relocation"),
14093 fixp->fx_size);
14094 code = BFD_RELOC_32_PCREL;
14095 break;
14096 case 1: code = BFD_RELOC_8_PCREL; break;
14097 case 2: code = BFD_RELOC_16_PCREL; break;
14098 case 4: code = BFD_RELOC_32_PCREL; break;
14099 #ifdef BFD64
14100 case 8: code = BFD_RELOC_64_PCREL; break;
14101 #endif
14102 }
14103 }
14104 else
14105 {
14106 switch (fixp->fx_size)
14107 {
14108 default:
14109 as_bad_where (fixp->fx_file, fixp->fx_line,
14110 _("can not do %d byte relocation"),
14111 fixp->fx_size);
14112 code = BFD_RELOC_32;
14113 break;
14114 case 1: code = BFD_RELOC_8; break;
14115 case 2: code = BFD_RELOC_16; break;
14116 case 4: code = BFD_RELOC_32; break;
14117 #ifdef BFD64
14118 case 8: code = BFD_RELOC_64; break;
14119 #endif
14120 }
14121 }
14122 break;
14123 }
14124
14125 if ((code == BFD_RELOC_32
14126 || code == BFD_RELOC_32_PCREL
14127 || code == BFD_RELOC_X86_64_32S)
14128 && GOT_symbol
14129 && fixp->fx_addsy == GOT_symbol)
14130 {
14131 if (!object_64bit)
14132 code = BFD_RELOC_386_GOTPC;
14133 else
14134 code = BFD_RELOC_X86_64_GOTPC32;
14135 }
14136 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
14137 && GOT_symbol
14138 && fixp->fx_addsy == GOT_symbol)
14139 {
14140 code = BFD_RELOC_X86_64_GOTPC64;
14141 }
14142
14143 rel = XNEW (arelent);
14144 rel->sym_ptr_ptr = XNEW (asymbol *);
14145 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
14146
14147 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
14148
14149 if (!use_rela_relocations)
14150 {
14151 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
14152 vtable entry to be used in the relocation's section offset. */
14153 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14154 rel->address = fixp->fx_offset;
14155 #if defined (OBJ_COFF) && defined (TE_PE)
14156 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
14157 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
14158 else
14159 #endif
14160 rel->addend = 0;
14161 }
14162 /* Use the rela in 64bit mode. */
14163 else
14164 {
14165 if (disallow_64bit_reloc)
14166 switch (code)
14167 {
14168 case BFD_RELOC_X86_64_DTPOFF64:
14169 case BFD_RELOC_X86_64_TPOFF64:
14170 case BFD_RELOC_64_PCREL:
14171 case BFD_RELOC_X86_64_GOTOFF64:
14172 case BFD_RELOC_X86_64_GOT64:
14173 case BFD_RELOC_X86_64_GOTPCREL64:
14174 case BFD_RELOC_X86_64_GOTPC64:
14175 case BFD_RELOC_X86_64_GOTPLT64:
14176 case BFD_RELOC_X86_64_PLTOFF64:
14177 as_bad_where (fixp->fx_file, fixp->fx_line,
14178 _("cannot represent relocation type %s in x32 mode"),
14179 bfd_get_reloc_code_name (code));
14180 break;
14181 default:
14182 break;
14183 }
14184
14185 if (!fixp->fx_pcrel)
14186 rel->addend = fixp->fx_offset;
14187 else
14188 switch (code)
14189 {
14190 case BFD_RELOC_X86_64_PLT32:
14191 case BFD_RELOC_X86_64_GOT32:
14192 case BFD_RELOC_X86_64_GOTPCREL:
14193 case BFD_RELOC_X86_64_GOTPCRELX:
14194 case BFD_RELOC_X86_64_REX_GOTPCRELX:
14195 case BFD_RELOC_X86_64_TLSGD:
14196 case BFD_RELOC_X86_64_TLSLD:
14197 case BFD_RELOC_X86_64_GOTTPOFF:
14198 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
14199 case BFD_RELOC_X86_64_TLSDESC_CALL:
14200 rel->addend = fixp->fx_offset - fixp->fx_size;
14201 break;
14202 default:
14203 rel->addend = (section->vma
14204 - fixp->fx_size
14205 + fixp->fx_addnumber
14206 + md_pcrel_from (fixp));
14207 break;
14208 }
14209 }
14210
14211 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
14212 if (rel->howto == NULL)
14213 {
14214 as_bad_where (fixp->fx_file, fixp->fx_line,
14215 _("cannot represent relocation type %s"),
14216 bfd_get_reloc_code_name (code));
14217 /* Set howto to a garbage value so that we can keep going. */
14218 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
14219 gas_assert (rel->howto != NULL);
14220 }
14221
14222 return rel;
14223 }
14224
14225 #include "tc-i386-intel.c"
14226
14227 void
14228 tc_x86_parse_to_dw2regnum (expressionS *exp)
14229 {
14230 int saved_naked_reg;
14231 char saved_register_dot;
14232
14233 saved_naked_reg = allow_naked_reg;
14234 allow_naked_reg = 1;
14235 saved_register_dot = register_chars['.'];
14236 register_chars['.'] = '.';
14237 allow_pseudo_reg = 1;
14238 expression_and_evaluate (exp);
14239 allow_pseudo_reg = 0;
14240 register_chars['.'] = saved_register_dot;
14241 allow_naked_reg = saved_naked_reg;
14242
14243 if (exp->X_op == O_register && exp->X_add_number >= 0)
14244 {
14245 if ((addressT) exp->X_add_number < i386_regtab_size)
14246 {
14247 exp->X_op = O_constant;
14248 exp->X_add_number = i386_regtab[exp->X_add_number]
14249 .dw2_regnum[flag_code >> 1];
14250 }
14251 else
14252 exp->X_op = O_illegal;
14253 }
14254 }
14255
14256 void
14257 tc_x86_frame_initial_instructions (void)
14258 {
14259 static unsigned int sp_regno[2];
14260
14261 if (!sp_regno[flag_code >> 1])
14262 {
14263 char *saved_input = input_line_pointer;
14264 char sp[][4] = {"esp", "rsp"};
14265 expressionS exp;
14266
14267 input_line_pointer = sp[flag_code >> 1];
14268 tc_x86_parse_to_dw2regnum (&exp);
14269 gas_assert (exp.X_op == O_constant);
14270 sp_regno[flag_code >> 1] = exp.X_add_number;
14271 input_line_pointer = saved_input;
14272 }
14273
14274 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
14275 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
14276 }
14277
14278 int
14279 x86_dwarf2_addr_size (void)
14280 {
14281 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
14282 if (x86_elf_abi == X86_64_X32_ABI)
14283 return 4;
14284 #endif
14285 return bfd_arch_bits_per_address (stdoutput) / 8;
14286 }
14287
14288 int
14289 i386_elf_section_type (const char *str, size_t len)
14290 {
14291 if (flag_code == CODE_64BIT
14292 && len == sizeof ("unwind") - 1
14293 && strncmp (str, "unwind", 6) == 0)
14294 return SHT_X86_64_UNWIND;
14295
14296 return -1;
14297 }
14298
14299 #ifdef TE_SOLARIS
14300 void
14301 i386_solaris_fix_up_eh_frame (segT sec)
14302 {
14303 if (flag_code == CODE_64BIT)
14304 elf_section_type (sec) = SHT_X86_64_UNWIND;
14305 }
14306 #endif
14307
14308 #ifdef TE_PE
14309 void
14310 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
14311 {
14312 expressionS exp;
14313
14314 exp.X_op = O_secrel;
14315 exp.X_add_symbol = symbol;
14316 exp.X_add_number = 0;
14317 emit_expr (&exp, size);
14318 }
14319 #endif
14320
14321 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14322 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
14323
14324 bfd_vma
14325 x86_64_section_letter (int letter, const char **ptr_msg)
14326 {
14327 if (flag_code == CODE_64BIT)
14328 {
14329 if (letter == 'l')
14330 return SHF_X86_64_LARGE;
14331
14332 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
14333 }
14334 else
14335 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
14336 return -1;
14337 }
14338
14339 bfd_vma
14340 x86_64_section_word (char *str, size_t len)
14341 {
14342 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
14343 return SHF_X86_64_LARGE;
14344
14345 return -1;
14346 }
14347
14348 static void
14349 handle_large_common (int small ATTRIBUTE_UNUSED)
14350 {
14351 if (flag_code != CODE_64BIT)
14352 {
14353 s_comm_internal (0, elf_common_parse);
14354 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
14355 }
14356 else
14357 {
14358 static segT lbss_section;
14359 asection *saved_com_section_ptr = elf_com_section_ptr;
14360 asection *saved_bss_section = bss_section;
14361
14362 if (lbss_section == NULL)
14363 {
14364 flagword applicable;
14365 segT seg = now_seg;
14366 subsegT subseg = now_subseg;
14367
14368 /* The .lbss section is for local .largecomm symbols. */
14369 lbss_section = subseg_new (".lbss", 0);
14370 applicable = bfd_applicable_section_flags (stdoutput);
14371 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
14372 seg_info (lbss_section)->bss = 1;
14373
14374 subseg_set (seg, subseg);
14375 }
14376
14377 elf_com_section_ptr = &_bfd_elf_large_com_section;
14378 bss_section = lbss_section;
14379
14380 s_comm_internal (0, elf_common_parse);
14381
14382 elf_com_section_ptr = saved_com_section_ptr;
14383 bss_section = saved_bss_section;
14384 }
14385 }
14386 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.311046 seconds and 5 git commands to generate.