gas:
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989, 91, 92, 93, 94, 95, 96, 97, 98, 99, 2000
3 Free Software Foundation, Inc.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* Intel 80386 machine specific gas.
23 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
24 Bugs & suggestions are completely welcome. This is free software.
25 Please help us make it better. */
26
27 #include <ctype.h>
28
29 #include "as.h"
30 #include "subsegs.h"
31 #include "opcode/i386.h"
32
33 #ifndef REGISTER_WARNINGS
34 #define REGISTER_WARNINGS 1
35 #endif
36
37 #ifndef INFER_ADDR_PREFIX
38 #define INFER_ADDR_PREFIX 1
39 #endif
40
41 #ifndef SCALE1_WHEN_NO_INDEX
42 /* Specifying a scale factor besides 1 when there is no index is
43 futile. eg. `mov (%ebx,2),%al' does exactly the same as
44 `mov (%ebx),%al'. To slavishly follow what the programmer
45 specified, set SCALE1_WHEN_NO_INDEX to 0. */
46 #define SCALE1_WHEN_NO_INDEX 1
47 #endif
48
49 #define true 1
50 #define false 0
51
52 static unsigned int mode_from_disp_size PARAMS ((unsigned int));
53 static int fits_in_signed_byte PARAMS ((offsetT));
54 static int fits_in_unsigned_byte PARAMS ((offsetT));
55 static int fits_in_unsigned_word PARAMS ((offsetT));
56 static int fits_in_signed_word PARAMS ((offsetT));
57 static int smallest_imm_type PARAMS ((offsetT));
58 static offsetT offset_in_range PARAMS ((offsetT, int));
59 static int add_prefix PARAMS ((unsigned int));
60 static void set_16bit_code_flag PARAMS ((int));
61 static void set_16bit_gcc_code_flag PARAMS ((int));
62 static void set_intel_syntax PARAMS ((int));
63 static void set_cpu_arch PARAMS ((int));
64
65 #ifdef BFD_ASSEMBLER
66 static bfd_reloc_code_real_type reloc
67 PARAMS ((int, int, bfd_reloc_code_real_type));
68 #endif
69
70 /* 'md_assemble ()' gathers together information and puts it into a
71 i386_insn. */
72
73 union i386_op
74 {
75 expressionS *disps;
76 expressionS *imms;
77 const reg_entry *regs;
78 };
79
80 struct _i386_insn
81 {
82 /* TM holds the template for the insn were currently assembling. */
83 template tm;
84
85 /* SUFFIX holds the instruction mnemonic suffix if given.
86 (e.g. 'l' for 'movl') */
87 char suffix;
88
89 /* OPERANDS gives the number of given operands. */
90 unsigned int operands;
91
92 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
93 of given register, displacement, memory operands and immediate
94 operands. */
95 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
96
97 /* TYPES [i] is the type (see above #defines) which tells us how to
98 use OP[i] for the corresponding operand. */
99 unsigned int types[MAX_OPERANDS];
100
101 /* Displacement expression, immediate expression, or register for each
102 operand. */
103 union i386_op op[MAX_OPERANDS];
104
105 /* Relocation type for operand */
106 #ifdef BFD_ASSEMBLER
107 enum bfd_reloc_code_real disp_reloc[MAX_OPERANDS];
108 #else
109 int disp_reloc[MAX_OPERANDS];
110 #endif
111
112 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
113 the base index byte below. */
114 const reg_entry *base_reg;
115 const reg_entry *index_reg;
116 unsigned int log2_scale_factor;
117
118 /* SEG gives the seg_entries of this insn. They are zero unless
119 explicit segment overrides are given. */
120 const seg_entry *seg[2];
121
122 /* PREFIX holds all the given prefix opcodes (usually null).
123 PREFIXES is the number of prefix opcodes. */
124 unsigned int prefixes;
125 unsigned char prefix[MAX_PREFIXES];
126
127 /* RM and SIB are the modrm byte and the sib byte where the
128 addressing modes of this insn are encoded. */
129
130 modrm_byte rm;
131 sib_byte sib;
132 };
133
134 typedef struct _i386_insn i386_insn;
135
136 /* List of chars besides those in app.c:symbol_chars that can start an
137 operand. Used to prevent the scrubber eating vital white-space. */
138 #ifdef LEX_AT
139 const char extra_symbol_chars[] = "*%-(@";
140 #else
141 const char extra_symbol_chars[] = "*%-(";
142 #endif
143
144 /* This array holds the chars that always start a comment. If the
145 pre-processor is disabled, these aren't very useful. */
146 #if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD))
147 /* Putting '/' here makes it impossible to use the divide operator.
148 However, we need it for compatibility with SVR4 systems. */
149 const char comment_chars[] = "#/";
150 #define PREFIX_SEPARATOR '\\'
151 #else
152 const char comment_chars[] = "#";
153 #define PREFIX_SEPARATOR '/'
154 #endif
155
156 /* This array holds the chars that only start a comment at the beginning of
157 a line. If the line seems to have the form '# 123 filename'
158 .line and .file directives will appear in the pre-processed output.
159 Note that input_file.c hand checks for '#' at the beginning of the
160 first line of the input file. This is because the compiler outputs
161 #NO_APP at the beginning of its output.
162 Also note that comments started like this one will always work if
163 '/' isn't otherwise defined. */
164 #if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && ! defined (TE_LINUX) && !defined(TE_FreeBSD))
165 const char line_comment_chars[] = "";
166 #else
167 const char line_comment_chars[] = "/";
168 #endif
169
170 const char line_separator_chars[] = ";";
171
172 /* Chars that can be used to separate mant from exp in floating point
173 nums. */
174 const char EXP_CHARS[] = "eE";
175
176 /* Chars that mean this number is a floating point constant
177 As in 0f12.456
178 or 0d1.2345e12. */
179 const char FLT_CHARS[] = "fFdDxX";
180
181 /* Tables for lexical analysis. */
182 static char mnemonic_chars[256];
183 static char register_chars[256];
184 static char operand_chars[256];
185 static char identifier_chars[256];
186 static char digit_chars[256];
187
188 /* Lexical macros. */
189 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
190 #define is_operand_char(x) (operand_chars[(unsigned char) x])
191 #define is_register_char(x) (register_chars[(unsigned char) x])
192 #define is_space_char(x) ((x) == ' ')
193 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
194 #define is_digit_char(x) (digit_chars[(unsigned char) x])
195
196 /* All non-digit non-letter charcters that may occur in an operand. */
197 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
198
199 /* md_assemble() always leaves the strings it's passed unaltered. To
200 effect this we maintain a stack of saved characters that we've smashed
201 with '\0's (indicating end of strings for various sub-fields of the
202 assembler instruction). */
203 static char save_stack[32];
204 static char *save_stack_p;
205 #define END_STRING_AND_SAVE(s) \
206 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
207 #define RESTORE_END_STRING(s) \
208 do { *(s) = *--save_stack_p; } while (0)
209
210 /* The instruction we're assembling. */
211 static i386_insn i;
212
213 /* Possible templates for current insn. */
214 static const templates *current_templates;
215
216 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
217 static expressionS disp_expressions[2], im_expressions[2];
218
219 /* Current operand we are working on. */
220 static int this_operand;
221
222 /* 1 if we're writing 16-bit code,
223 0 if 32-bit. */
224 static int flag_16bit_code;
225
226 /* 1 for intel syntax,
227 0 if att syntax. */
228 static int intel_syntax = 0;
229
230 /* 1 if register prefix % not required. */
231 static int allow_naked_reg = 0;
232
233 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
234 leave, push, and pop instructions so that gcc has the same stack
235 frame as in 32 bit mode. */
236 static char stackop_size = '\0';
237
238 /* Non-zero to quieten some warnings. */
239 static int quiet_warnings = 0;
240
241 /* CPU name. */
242 static const char *cpu_arch_name = NULL;
243
244 /* CPU feature flags. */
245 static unsigned int cpu_arch_flags = 0;
246
247 /* Interface to relax_segment.
248 There are 2 relax states for 386 jump insns: one for conditional &
249 one for unconditional jumps. This is because these two types of
250 jumps add different sizes to frags when we're figuring out what
251 sort of jump to choose to reach a given label. */
252
253 /* Types. */
254 #define COND_JUMP 1
255 #define UNCOND_JUMP 2
256 /* Sizes. */
257 #define CODE16 1
258 #define SMALL 0
259 #define SMALL16 (SMALL|CODE16)
260 #define BIG 2
261 #define BIG16 (BIG|CODE16)
262
263 #ifndef INLINE
264 #ifdef __GNUC__
265 #define INLINE __inline__
266 #else
267 #define INLINE
268 #endif
269 #endif
270
271 #define ENCODE_RELAX_STATE(type,size) \
272 ((relax_substateT)((type<<2) | (size)))
273 #define SIZE_FROM_RELAX_STATE(s) \
274 ( (((s) & 0x3) == BIG ? 4 : (((s) & 0x3) == BIG16 ? 2 : 1)) )
275
276 /* This table is used by relax_frag to promote short jumps to long
277 ones where necessary. SMALL (short) jumps may be promoted to BIG
278 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
279 don't allow a short jump in a 32 bit code segment to be promoted to
280 a 16 bit offset jump because it's slower (requires data size
281 prefix), and doesn't work, unless the destination is in the bottom
282 64k of the code segment (The top 16 bits of eip are zeroed). */
283
284 const relax_typeS md_relax_table[] =
285 {
286 /* The fields are:
287 1) most positive reach of this state,
288 2) most negative reach of this state,
289 3) how many bytes this mode will add to the size of the current frag
290 4) which index into the table to try if we can't fit into this one. */
291 {1, 1, 0, 0},
292 {1, 1, 0, 0},
293 {1, 1, 0, 0},
294 {1, 1, 0, 0},
295
296 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
297 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
298 /* dword conditionals adds 4 bytes to frag:
299 1 extra opcode byte, 3 extra displacement bytes. */
300 {0, 0, 4, 0},
301 /* word conditionals add 2 bytes to frag:
302 1 extra opcode byte, 1 extra displacement byte. */
303 {0, 0, 2, 0},
304
305 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
306 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
307 /* dword jmp adds 3 bytes to frag:
308 0 extra opcode bytes, 3 extra displacement bytes. */
309 {0, 0, 3, 0},
310 /* word jmp adds 1 byte to frag:
311 0 extra opcode bytes, 1 extra displacement byte. */
312 {0, 0, 1, 0}
313
314 };
315
316 static const arch_entry cpu_arch[] = {
317 {"i8086", Cpu086 },
318 {"i186", Cpu086|Cpu186 },
319 {"i286", Cpu086|Cpu186|Cpu286 },
320 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
321 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
322 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
323 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
324 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
325 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
326 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX|Cpu3dnow },
327 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|Cpu3dnow },
328 {NULL, 0 }
329 };
330
331 void
332 i386_align_code (fragP, count)
333 fragS *fragP;
334 int count;
335 {
336 /* Various efficient no-op patterns for aligning code labels.
337 Note: Don't try to assemble the instructions in the comments.
338 0L and 0w are not legal. */
339 static const char f32_1[] =
340 {0x90}; /* nop */
341 static const char f32_2[] =
342 {0x89,0xf6}; /* movl %esi,%esi */
343 static const char f32_3[] =
344 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
345 static const char f32_4[] =
346 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
347 static const char f32_5[] =
348 {0x90, /* nop */
349 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
350 static const char f32_6[] =
351 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
352 static const char f32_7[] =
353 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
354 static const char f32_8[] =
355 {0x90, /* nop */
356 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
357 static const char f32_9[] =
358 {0x89,0xf6, /* movl %esi,%esi */
359 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
360 static const char f32_10[] =
361 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
362 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
363 static const char f32_11[] =
364 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
365 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
366 static const char f32_12[] =
367 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
368 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
369 static const char f32_13[] =
370 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
371 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
372 static const char f32_14[] =
373 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
374 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
375 static const char f32_15[] =
376 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
377 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
378 static const char f16_3[] =
379 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
380 static const char f16_4[] =
381 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
382 static const char f16_5[] =
383 {0x90, /* nop */
384 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
385 static const char f16_6[] =
386 {0x89,0xf6, /* mov %si,%si */
387 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
388 static const char f16_7[] =
389 {0x8d,0x74,0x00, /* lea 0(%si),%si */
390 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
391 static const char f16_8[] =
392 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
393 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
394 static const char *const f32_patt[] = {
395 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
396 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
397 };
398 static const char *const f16_patt[] = {
399 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
400 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
401 };
402
403 if (count > 0 && count <= 15)
404 {
405 if (flag_16bit_code)
406 {
407 memcpy (fragP->fr_literal + fragP->fr_fix,
408 f16_patt[count - 1], count);
409 if (count > 8)
410 /* Adjust jump offset. */
411 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
412 }
413 else
414 memcpy (fragP->fr_literal + fragP->fr_fix,
415 f32_patt[count - 1], count);
416 fragP->fr_var = count;
417 }
418 }
419
420 static char *output_invalid PARAMS ((int c));
421 static int i386_operand PARAMS ((char *operand_string));
422 static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
423 static const reg_entry *parse_register PARAMS ((char *reg_string,
424 char **end_op));
425
426 #ifndef I386COFF
427 static void s_bss PARAMS ((int));
428 #endif
429
430 symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
431
432 static INLINE unsigned int
433 mode_from_disp_size (t)
434 unsigned int t;
435 {
436 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32)) ? 2 : 0;
437 }
438
439 static INLINE int
440 fits_in_signed_byte (num)
441 offsetT num;
442 {
443 return (num >= -128) && (num <= 127);
444 }
445
446 static INLINE int
447 fits_in_unsigned_byte (num)
448 offsetT num;
449 {
450 return (num & 0xff) == num;
451 }
452
453 static INLINE int
454 fits_in_unsigned_word (num)
455 offsetT num;
456 {
457 return (num & 0xffff) == num;
458 }
459
460 static INLINE int
461 fits_in_signed_word (num)
462 offsetT num;
463 {
464 return (-32768 <= num) && (num <= 32767);
465 }
466
467 static int
468 smallest_imm_type (num)
469 offsetT num;
470 {
471 if (cpu_arch_flags != 0
472 && cpu_arch_flags != (Cpu086 | Cpu186 | Cpu286 | Cpu386 | Cpu486))
473 {
474 /* This code is disabled on the 486 because all the Imm1 forms
475 in the opcode table are slower on the i486. They're the
476 versions with the implicitly specified single-position
477 displacement, which has another syntax if you really want to
478 use that form. */
479 if (num == 1)
480 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32;
481 }
482 return (fits_in_signed_byte (num)
483 ? (Imm8S | Imm8 | Imm16 | Imm32)
484 : fits_in_unsigned_byte (num)
485 ? (Imm8 | Imm16 | Imm32)
486 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
487 ? (Imm16 | Imm32)
488 : (Imm32));
489 }
490
491 static offsetT
492 offset_in_range (val, size)
493 offsetT val;
494 int size;
495 {
496 addressT mask;
497
498 switch (size)
499 {
500 case 1: mask = ((addressT) 1 << 8) - 1; break;
501 case 2: mask = ((addressT) 1 << 16) - 1; break;
502 case 4: mask = ((addressT) 2 << 31) - 1; break;
503 default: abort ();
504 }
505
506 /* If BFD64, sign extend val. */
507 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
508 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
509
510 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
511 {
512 char buf1[40], buf2[40];
513
514 sprint_value (buf1, val);
515 sprint_value (buf2, val & mask);
516 as_warn (_("%s shortened to %s"), buf1, buf2);
517 }
518 return val & mask;
519 }
520
521 /* Returns 0 if attempting to add a prefix where one from the same
522 class already exists, 1 if non rep/repne added, 2 if rep/repne
523 added. */
524 static int
525 add_prefix (prefix)
526 unsigned int prefix;
527 {
528 int ret = 1;
529 int q;
530
531 switch (prefix)
532 {
533 default:
534 abort ();
535
536 case CS_PREFIX_OPCODE:
537 case DS_PREFIX_OPCODE:
538 case ES_PREFIX_OPCODE:
539 case FS_PREFIX_OPCODE:
540 case GS_PREFIX_OPCODE:
541 case SS_PREFIX_OPCODE:
542 q = SEG_PREFIX;
543 break;
544
545 case REPNE_PREFIX_OPCODE:
546 case REPE_PREFIX_OPCODE:
547 ret = 2;
548 /* fall thru */
549 case LOCK_PREFIX_OPCODE:
550 q = LOCKREP_PREFIX;
551 break;
552
553 case FWAIT_OPCODE:
554 q = WAIT_PREFIX;
555 break;
556
557 case ADDR_PREFIX_OPCODE:
558 q = ADDR_PREFIX;
559 break;
560
561 case DATA_PREFIX_OPCODE:
562 q = DATA_PREFIX;
563 break;
564 }
565
566 if (i.prefix[q])
567 {
568 as_bad (_("same type of prefix used twice"));
569 return 0;
570 }
571
572 i.prefixes += 1;
573 i.prefix[q] = prefix;
574 return ret;
575 }
576
577 static void
578 set_16bit_code_flag (new_16bit_code_flag)
579 int new_16bit_code_flag;
580 {
581 flag_16bit_code = new_16bit_code_flag;
582 stackop_size = '\0';
583 }
584
585 static void
586 set_16bit_gcc_code_flag (new_16bit_code_flag)
587 int new_16bit_code_flag;
588 {
589 flag_16bit_code = new_16bit_code_flag;
590 stackop_size = new_16bit_code_flag ? 'l' : '\0';
591 }
592
593 static void
594 set_intel_syntax (syntax_flag)
595 int syntax_flag;
596 {
597 /* Find out if register prefixing is specified. */
598 int ask_naked_reg = 0;
599
600 SKIP_WHITESPACE ();
601 if (! is_end_of_line[(unsigned char) *input_line_pointer])
602 {
603 char *string = input_line_pointer;
604 int e = get_symbol_end ();
605
606 if (strcmp (string, "prefix") == 0)
607 ask_naked_reg = 1;
608 else if (strcmp (string, "noprefix") == 0)
609 ask_naked_reg = -1;
610 else
611 as_bad (_("bad argument to syntax directive."));
612 *input_line_pointer = e;
613 }
614 demand_empty_rest_of_line ();
615
616 intel_syntax = syntax_flag;
617
618 if (ask_naked_reg == 0)
619 {
620 #ifdef BFD_ASSEMBLER
621 allow_naked_reg = (intel_syntax
622 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
623 #else
624 /* Conservative default. */
625 allow_naked_reg = 0;
626 #endif
627 }
628 else
629 allow_naked_reg = (ask_naked_reg < 0);
630 }
631
632 static void
633 set_cpu_arch (dummy)
634 int dummy ATTRIBUTE_UNUSED;
635 {
636 SKIP_WHITESPACE ();
637
638 if (! is_end_of_line[(unsigned char) *input_line_pointer])
639 {
640 char *string = input_line_pointer;
641 int e = get_symbol_end ();
642 int i;
643
644 for (i = 0; cpu_arch[i].name; i++)
645 {
646 if (strcmp (string, cpu_arch[i].name) == 0)
647 {
648 cpu_arch_name = cpu_arch[i].name;
649 cpu_arch_flags = cpu_arch[i].flags;
650 break;
651 }
652 }
653 if (!cpu_arch[i].name)
654 as_bad (_("no such architecture: `%s'"), string);
655
656 *input_line_pointer = e;
657 }
658 else
659 as_bad (_("missing cpu architecture"));
660
661 demand_empty_rest_of_line ();
662 }
663
664 const pseudo_typeS md_pseudo_table[] =
665 {
666 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
667 {"align", s_align_bytes, 0},
668 #else
669 {"align", s_align_ptwo, 0},
670 #endif
671 {"arch", set_cpu_arch, 0},
672 #ifndef I386COFF
673 {"bss", s_bss, 0},
674 #endif
675 {"ffloat", float_cons, 'f'},
676 {"dfloat", float_cons, 'd'},
677 {"tfloat", float_cons, 'x'},
678 {"value", cons, 2},
679 {"noopt", s_ignore, 0},
680 {"optim", s_ignore, 0},
681 {"code16gcc", set_16bit_gcc_code_flag, 1},
682 {"code16", set_16bit_code_flag, 1},
683 {"code32", set_16bit_code_flag, 0},
684 {"intel_syntax", set_intel_syntax, 1},
685 {"att_syntax", set_intel_syntax, 0},
686 {0, 0, 0}
687 };
688
689 /* For interface with expression (). */
690 extern char *input_line_pointer;
691
692 /* Hash table for instruction mnemonic lookup. */
693 static struct hash_control *op_hash;
694
695 /* Hash table for register lookup. */
696 static struct hash_control *reg_hash;
697 \f
698 void
699 md_begin ()
700 {
701 const char *hash_err;
702
703 /* Initialize op_hash hash table. */
704 op_hash = hash_new ();
705
706 {
707 register const template *optab;
708 register templates *core_optab;
709
710 /* Setup for loop. */
711 optab = i386_optab;
712 core_optab = (templates *) xmalloc (sizeof (templates));
713 core_optab->start = optab;
714
715 while (1)
716 {
717 ++optab;
718 if (optab->name == NULL
719 || strcmp (optab->name, (optab - 1)->name) != 0)
720 {
721 /* different name --> ship out current template list;
722 add to hash table; & begin anew. */
723 core_optab->end = optab;
724 hash_err = hash_insert (op_hash,
725 (optab - 1)->name,
726 (PTR) core_optab);
727 if (hash_err)
728 {
729 hash_error:
730 as_fatal (_("Internal Error: Can't hash %s: %s"),
731 (optab - 1)->name,
732 hash_err);
733 }
734 if (optab->name == NULL)
735 break;
736 core_optab = (templates *) xmalloc (sizeof (templates));
737 core_optab->start = optab;
738 }
739 }
740 }
741
742 /* Initialize reg_hash hash table. */
743 reg_hash = hash_new ();
744 {
745 register const reg_entry *regtab;
746
747 for (regtab = i386_regtab;
748 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
749 regtab++)
750 {
751 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
752 if (hash_err)
753 goto hash_error;
754 }
755 }
756
757 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
758 {
759 register int c;
760 register char *p;
761
762 for (c = 0; c < 256; c++)
763 {
764 if (isdigit (c))
765 {
766 digit_chars[c] = c;
767 mnemonic_chars[c] = c;
768 register_chars[c] = c;
769 operand_chars[c] = c;
770 }
771 else if (islower (c))
772 {
773 mnemonic_chars[c] = c;
774 register_chars[c] = c;
775 operand_chars[c] = c;
776 }
777 else if (isupper (c))
778 {
779 mnemonic_chars[c] = tolower (c);
780 register_chars[c] = mnemonic_chars[c];
781 operand_chars[c] = c;
782 }
783
784 if (isalpha (c) || isdigit (c))
785 identifier_chars[c] = c;
786 else if (c >= 128)
787 {
788 identifier_chars[c] = c;
789 operand_chars[c] = c;
790 }
791 }
792
793 #ifdef LEX_AT
794 identifier_chars['@'] = '@';
795 #endif
796 digit_chars['-'] = '-';
797 identifier_chars['_'] = '_';
798 identifier_chars['.'] = '.';
799
800 for (p = operand_special_chars; *p != '\0'; p++)
801 operand_chars[(unsigned char) *p] = *p;
802 }
803
804 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
805 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
806 {
807 record_alignment (text_section, 2);
808 record_alignment (data_section, 2);
809 record_alignment (bss_section, 2);
810 }
811 #endif
812 }
813
814 void
815 i386_print_statistics (file)
816 FILE *file;
817 {
818 hash_print_statistics (file, "i386 opcode", op_hash);
819 hash_print_statistics (file, "i386 register", reg_hash);
820 }
821 \f
822 #ifdef DEBUG386
823
824 /* Debugging routines for md_assemble. */
825 static void pi PARAMS ((char *, i386_insn *));
826 static void pte PARAMS ((template *));
827 static void pt PARAMS ((unsigned int));
828 static void pe PARAMS ((expressionS *));
829 static void ps PARAMS ((symbolS *));
830
831 static void
832 pi (line, x)
833 char *line;
834 i386_insn *x;
835 {
836 register template *p;
837 int i;
838
839 fprintf (stdout, "%s: template ", line);
840 pte (&x->tm);
841 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x",
842 x->rm.mode, x->rm.reg, x->rm.regmem);
843 fprintf (stdout, " base %x index %x scale %x\n",
844 x->bi.base, x->bi.index, x->bi.scale);
845 for (i = 0; i < x->operands; i++)
846 {
847 fprintf (stdout, " #%d: ", i + 1);
848 pt (x->types[i]);
849 fprintf (stdout, "\n");
850 if (x->types[i]
851 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
852 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
853 if (x->types[i] & Imm)
854 pe (x->op[i].imms);
855 if (x->types[i] & Disp)
856 pe (x->op[i].disps);
857 }
858 }
859
860 static void
861 pte (t)
862 template *t;
863 {
864 int i;
865 fprintf (stdout, " %d operands ", t->operands);
866 fprintf (stdout, "opcode %x ", t->base_opcode);
867 if (t->extension_opcode != None)
868 fprintf (stdout, "ext %x ", t->extension_opcode);
869 if (t->opcode_modifier & D)
870 fprintf (stdout, "D");
871 if (t->opcode_modifier & W)
872 fprintf (stdout, "W");
873 fprintf (stdout, "\n");
874 for (i = 0; i < t->operands; i++)
875 {
876 fprintf (stdout, " #%d type ", i + 1);
877 pt (t->operand_types[i]);
878 fprintf (stdout, "\n");
879 }
880 }
881
882 static void
883 pe (e)
884 expressionS *e;
885 {
886 fprintf (stdout, " operation %d\n", e->X_op);
887 fprintf (stdout, " add_number %ld (%lx)\n",
888 (long) e->X_add_number, (long) e->X_add_number);
889 if (e->X_add_symbol)
890 {
891 fprintf (stdout, " add_symbol ");
892 ps (e->X_add_symbol);
893 fprintf (stdout, "\n");
894 }
895 if (e->X_op_symbol)
896 {
897 fprintf (stdout, " op_symbol ");
898 ps (e->X_op_symbol);
899 fprintf (stdout, "\n");
900 }
901 }
902
903 static void
904 ps (s)
905 symbolS *s;
906 {
907 fprintf (stdout, "%s type %s%s",
908 S_GET_NAME (s),
909 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
910 segment_name (S_GET_SEGMENT (s)));
911 }
912
913 struct type_name
914 {
915 unsigned int mask;
916 char *tname;
917 }
918
919 type_names[] =
920 {
921 { Reg8, "r8" },
922 { Reg16, "r16" },
923 { Reg32, "r32" },
924 { Imm8, "i8" },
925 { Imm8S, "i8s" },
926 { Imm16, "i16" },
927 { Imm32, "i32" },
928 { Imm1, "i1" },
929 { BaseIndex, "BaseIndex" },
930 { Disp8, "d8" },
931 { Disp16, "d16" },
932 { Disp32, "d32" },
933 { InOutPortReg, "InOutPortReg" },
934 { ShiftCount, "ShiftCount" },
935 { Control, "control reg" },
936 { Test, "test reg" },
937 { Debug, "debug reg" },
938 { FloatReg, "FReg" },
939 { FloatAcc, "FAcc" },
940 { SReg2, "SReg2" },
941 { SReg3, "SReg3" },
942 { Acc, "Acc" },
943 { JumpAbsolute, "Jump Absolute" },
944 { RegMMX, "rMMX" },
945 { RegXMM, "rXMM" },
946 { EsSeg, "es" },
947 { 0, "" }
948 };
949
950 static void
951 pt (t)
952 unsigned int t;
953 {
954 register struct type_name *ty;
955
956 if (t == Unknown)
957 {
958 fprintf (stdout, _("Unknown"));
959 }
960 else
961 {
962 for (ty = type_names; ty->mask; ty++)
963 if (t & ty->mask)
964 fprintf (stdout, "%s, ", ty->tname);
965 }
966 fflush (stdout);
967 }
968
969 #endif /* DEBUG386 */
970 \f
971 int
972 tc_i386_force_relocation (fixp)
973 struct fix *fixp;
974 {
975 #ifdef BFD_ASSEMBLER
976 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
977 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
978 return 1;
979 return 0;
980 #else
981 /* For COFF. */
982 return fixp->fx_r_type == 7;
983 #endif
984 }
985
986 #ifdef BFD_ASSEMBLER
987 static bfd_reloc_code_real_type reloc
988 PARAMS ((int, int, bfd_reloc_code_real_type));
989
990 static bfd_reloc_code_real_type
991 reloc (size, pcrel, other)
992 int size;
993 int pcrel;
994 bfd_reloc_code_real_type other;
995 {
996 if (other != NO_RELOC)
997 return other;
998
999 if (pcrel)
1000 {
1001 switch (size)
1002 {
1003 case 1: return BFD_RELOC_8_PCREL;
1004 case 2: return BFD_RELOC_16_PCREL;
1005 case 4: return BFD_RELOC_32_PCREL;
1006 }
1007 as_bad (_("can not do %d byte pc-relative relocation"), size);
1008 }
1009 else
1010 {
1011 switch (size)
1012 {
1013 case 1: return BFD_RELOC_8;
1014 case 2: return BFD_RELOC_16;
1015 case 4: return BFD_RELOC_32;
1016 }
1017 as_bad (_("can not do %d byte relocation"), size);
1018 }
1019
1020 return BFD_RELOC_NONE;
1021 }
1022
1023 /* Here we decide which fixups can be adjusted to make them relative to
1024 the beginning of the section instead of the symbol. Basically we need
1025 to make sure that the dynamic relocations are done correctly, so in
1026 some cases we force the original symbol to be used. */
1027
1028 int
1029 tc_i386_fix_adjustable (fixP)
1030 fixS *fixP;
1031 {
1032 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1033 /* Prevent all adjustments to global symbols, or else dynamic
1034 linking will not work correctly. */
1035 if (S_IS_EXTERNAL (fixP->fx_addsy)
1036 || S_IS_WEAK (fixP->fx_addsy))
1037 return 0;
1038 #endif
1039 /* adjust_reloc_syms doesn't know about the GOT. */
1040 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1041 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1042 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1043 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1044 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1045 return 0;
1046 return 1;
1047 }
1048 #else
1049 #define reloc(SIZE,PCREL,OTHER) 0
1050 #define BFD_RELOC_16 0
1051 #define BFD_RELOC_32 0
1052 #define BFD_RELOC_16_PCREL 0
1053 #define BFD_RELOC_32_PCREL 0
1054 #define BFD_RELOC_386_PLT32 0
1055 #define BFD_RELOC_386_GOT32 0
1056 #define BFD_RELOC_386_GOTOFF 0
1057 #endif
1058
1059 static int intel_float_operand PARAMS ((char *mnemonic));
1060
1061 static int
1062 intel_float_operand (mnemonic)
1063 char *mnemonic;
1064 {
1065 if (mnemonic[0] == 'f' && mnemonic[1] == 'i')
1066 return 2;
1067
1068 if (mnemonic[0] == 'f')
1069 return 1;
1070
1071 return 0;
1072 }
1073
1074 /* This is the guts of the machine-dependent assembler. LINE points to a
1075 machine dependent instruction. This function is supposed to emit
1076 the frags/bytes it assembles to. */
1077
1078 void
1079 md_assemble (line)
1080 char *line;
1081 {
1082 /* Points to template once we've found it. */
1083 const template *t;
1084
1085 /* Count the size of the instruction generated. */
1086 int insn_size = 0;
1087
1088 int j;
1089
1090 char mnemonic[MAX_MNEM_SIZE];
1091
1092 /* Initialize globals. */
1093 memset (&i, '\0', sizeof (i));
1094 for (j = 0; j < MAX_OPERANDS; j++)
1095 i.disp_reloc[j] = NO_RELOC;
1096 memset (disp_expressions, '\0', sizeof (disp_expressions));
1097 memset (im_expressions, '\0', sizeof (im_expressions));
1098 save_stack_p = save_stack;
1099
1100 /* First parse an instruction mnemonic & call i386_operand for the operands.
1101 We assume that the scrubber has arranged it so that line[0] is the valid
1102 start of a (possibly prefixed) mnemonic. */
1103 {
1104 char *l = line;
1105 char *token_start = l;
1106 char *mnem_p;
1107
1108 /* Non-zero if we found a prefix only acceptable with string insns. */
1109 const char *expecting_string_instruction = NULL;
1110
1111 while (1)
1112 {
1113 mnem_p = mnemonic;
1114 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1115 {
1116 mnem_p++;
1117 if (mnem_p >= mnemonic + sizeof (mnemonic))
1118 {
1119 as_bad (_("no such instruction: `%s'"), token_start);
1120 return;
1121 }
1122 l++;
1123 }
1124 if (!is_space_char (*l)
1125 && *l != END_OF_INSN
1126 && *l != PREFIX_SEPARATOR)
1127 {
1128 as_bad (_("invalid character %s in mnemonic"),
1129 output_invalid (*l));
1130 return;
1131 }
1132 if (token_start == l)
1133 {
1134 if (*l == PREFIX_SEPARATOR)
1135 as_bad (_("expecting prefix; got nothing"));
1136 else
1137 as_bad (_("expecting mnemonic; got nothing"));
1138 return;
1139 }
1140
1141 /* Look up instruction (or prefix) via hash table. */
1142 current_templates = hash_find (op_hash, mnemonic);
1143
1144 if (*l != END_OF_INSN
1145 && (! is_space_char (*l) || l[1] != END_OF_INSN)
1146 && current_templates
1147 && (current_templates->start->opcode_modifier & IsPrefix))
1148 {
1149 /* If we are in 16-bit mode, do not allow addr16 or data16.
1150 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1151 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1152 && (((current_templates->start->opcode_modifier & Size32) != 0)
1153 ^ flag_16bit_code))
1154 {
1155 as_bad (_("redundant %s prefix"),
1156 current_templates->start->name);
1157 return;
1158 }
1159 /* Add prefix, checking for repeated prefixes. */
1160 switch (add_prefix (current_templates->start->base_opcode))
1161 {
1162 case 0:
1163 return;
1164 case 2:
1165 expecting_string_instruction = current_templates->start->name;
1166 break;
1167 }
1168 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1169 token_start = ++l;
1170 }
1171 else
1172 break;
1173 }
1174
1175 if (!current_templates)
1176 {
1177 /* See if we can get a match by trimming off a suffix. */
1178 switch (mnem_p[-1])
1179 {
1180 case WORD_MNEM_SUFFIX:
1181 case BYTE_MNEM_SUFFIX:
1182 case SHORT_MNEM_SUFFIX:
1183 case LONG_MNEM_SUFFIX:
1184 i.suffix = mnem_p[-1];
1185 mnem_p[-1] = '\0';
1186 current_templates = hash_find (op_hash, mnemonic);
1187 break;
1188
1189 /* Intel Syntax. */
1190 case DWORD_MNEM_SUFFIX:
1191 if (intel_syntax)
1192 {
1193 i.suffix = mnem_p[-1];
1194 mnem_p[-1] = '\0';
1195 current_templates = hash_find (op_hash, mnemonic);
1196 break;
1197 }
1198 }
1199 if (!current_templates)
1200 {
1201 as_bad (_("no such instruction: `%s'"), token_start);
1202 return;
1203 }
1204 }
1205
1206 /* Check if instruction is supported on specified architecture. */
1207 if (cpu_arch_flags != 0)
1208 {
1209 if (current_templates->start->cpu_flags & ~cpu_arch_flags)
1210 {
1211 as_warn (_("`%s' is not supported on `%s'"),
1212 current_templates->start->name, cpu_arch_name);
1213 }
1214 else if ((Cpu386 & ~cpu_arch_flags) && !flag_16bit_code)
1215 {
1216 as_warn (_("use .code16 to ensure correct addressing mode"));
1217 }
1218 }
1219
1220 /* Check for rep/repne without a string instruction. */
1221 if (expecting_string_instruction
1222 && !(current_templates->start->opcode_modifier & IsString))
1223 {
1224 as_bad (_("expecting string instruction after `%s'"),
1225 expecting_string_instruction);
1226 return;
1227 }
1228
1229 /* There may be operands to parse. */
1230 if (*l != END_OF_INSN)
1231 {
1232 /* 1 if operand is pending after ','. */
1233 unsigned int expecting_operand = 0;
1234
1235 /* Non-zero if operand parens not balanced. */
1236 unsigned int paren_not_balanced;
1237
1238 do
1239 {
1240 /* Skip optional white space before operand. */
1241 if (is_space_char (*l))
1242 ++l;
1243 if (!is_operand_char (*l) && *l != END_OF_INSN)
1244 {
1245 as_bad (_("invalid character %s before operand %d"),
1246 output_invalid (*l),
1247 i.operands + 1);
1248 return;
1249 }
1250 token_start = l; /* after white space */
1251 paren_not_balanced = 0;
1252 while (paren_not_balanced || *l != ',')
1253 {
1254 if (*l == END_OF_INSN)
1255 {
1256 if (paren_not_balanced)
1257 {
1258 if (!intel_syntax)
1259 as_bad (_("unbalanced parenthesis in operand %d."),
1260 i.operands + 1);
1261 else
1262 as_bad (_("unbalanced brackets in operand %d."),
1263 i.operands + 1);
1264 return;
1265 }
1266 else
1267 break; /* we are done */
1268 }
1269 else if (!is_operand_char (*l) && !is_space_char (*l))
1270 {
1271 as_bad (_("invalid character %s in operand %d"),
1272 output_invalid (*l),
1273 i.operands + 1);
1274 return;
1275 }
1276 if (!intel_syntax)
1277 {
1278 if (*l == '(')
1279 ++paren_not_balanced;
1280 if (*l == ')')
1281 --paren_not_balanced;
1282 }
1283 else
1284 {
1285 if (*l == '[')
1286 ++paren_not_balanced;
1287 if (*l == ']')
1288 --paren_not_balanced;
1289 }
1290 l++;
1291 }
1292 if (l != token_start)
1293 { /* Yes, we've read in another operand. */
1294 unsigned int operand_ok;
1295 this_operand = i.operands++;
1296 if (i.operands > MAX_OPERANDS)
1297 {
1298 as_bad (_("spurious operands; (%d operands/instruction max)"),
1299 MAX_OPERANDS);
1300 return;
1301 }
1302 /* Now parse operand adding info to 'i' as we go along. */
1303 END_STRING_AND_SAVE (l);
1304
1305 if (intel_syntax)
1306 operand_ok =
1307 i386_intel_operand (token_start,
1308 intel_float_operand (mnemonic));
1309 else
1310 operand_ok = i386_operand (token_start);
1311
1312 RESTORE_END_STRING (l);
1313 if (!operand_ok)
1314 return;
1315 }
1316 else
1317 {
1318 if (expecting_operand)
1319 {
1320 expecting_operand_after_comma:
1321 as_bad (_("expecting operand after ','; got nothing"));
1322 return;
1323 }
1324 if (*l == ',')
1325 {
1326 as_bad (_("expecting operand before ','; got nothing"));
1327 return;
1328 }
1329 }
1330
1331 /* Now *l must be either ',' or END_OF_INSN. */
1332 if (*l == ',')
1333 {
1334 if (*++l == END_OF_INSN)
1335 {
1336 /* Just skip it, if it's \n complain. */
1337 goto expecting_operand_after_comma;
1338 }
1339 expecting_operand = 1;
1340 }
1341 }
1342 while (*l != END_OF_INSN);
1343 }
1344 }
1345
1346 /* Now we've parsed the mnemonic into a set of templates, and have the
1347 operands at hand.
1348
1349 Next, we find a template that matches the given insn,
1350 making sure the overlap of the given operands types is consistent
1351 with the template operand types. */
1352
1353 #define MATCH(overlap, given, template) \
1354 ((overlap & ~JumpAbsolute) \
1355 && ((given) & (BaseIndex|JumpAbsolute)) == ((overlap) & (BaseIndex|JumpAbsolute)))
1356
1357 /* If given types r0 and r1 are registers they must be of the same type
1358 unless the expected operand type register overlap is null.
1359 Note that Acc in a template matches every size of reg. */
1360 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
1361 ( ((g0) & Reg) == 0 || ((g1) & Reg) == 0 || \
1362 ((g0) & Reg) == ((g1) & Reg) || \
1363 ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
1364
1365 {
1366 register unsigned int overlap0, overlap1;
1367 unsigned int overlap2;
1368 unsigned int found_reverse_match;
1369 int suffix_check;
1370
1371 /* All intel opcodes have reversed operands except for "bound" and
1372 "enter". We also don't reverse intersegment "jmp" and "call"
1373 instructions with 2 immediate operands so that the immediate segment
1374 precedes the offset, as it does when in AT&T mode. "enter" and the
1375 intersegment "jmp" and "call" instructions are the only ones that
1376 have two immediate operands. */
1377 if (intel_syntax && i.operands > 1
1378 && (strcmp (mnemonic, "bound") != 0)
1379 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1380 {
1381 union i386_op temp_op;
1382 unsigned int temp_type;
1383 int xchg1 = 0;
1384 int xchg2 = 0;
1385
1386 if (i.operands == 2)
1387 {
1388 xchg1 = 0;
1389 xchg2 = 1;
1390 }
1391 else if (i.operands == 3)
1392 {
1393 xchg1 = 0;
1394 xchg2 = 2;
1395 }
1396 temp_type = i.types[xchg2];
1397 i.types[xchg2] = i.types[xchg1];
1398 i.types[xchg1] = temp_type;
1399 temp_op = i.op[xchg2];
1400 i.op[xchg2] = i.op[xchg1];
1401 i.op[xchg1] = temp_op;
1402
1403 if (i.mem_operands == 2)
1404 {
1405 const seg_entry *temp_seg;
1406 temp_seg = i.seg[0];
1407 i.seg[0] = i.seg[1];
1408 i.seg[1] = temp_seg;
1409 }
1410 }
1411
1412 if (i.imm_operands)
1413 {
1414 /* Try to ensure constant immediates are represented in the smallest
1415 opcode possible. */
1416 char guess_suffix = 0;
1417 int op;
1418
1419 if (i.suffix)
1420 guess_suffix = i.suffix;
1421 else if (i.reg_operands)
1422 {
1423 /* Figure out a suffix from the last register operand specified.
1424 We can't do this properly yet, ie. excluding InOutPortReg,
1425 but the following works for instructions with immediates.
1426 In any case, we can't set i.suffix yet. */
1427 for (op = i.operands; --op >= 0;)
1428 if (i.types[op] & Reg)
1429 {
1430 if (i.types[op] & Reg8)
1431 guess_suffix = BYTE_MNEM_SUFFIX;
1432 else if (i.types[op] & Reg16)
1433 guess_suffix = WORD_MNEM_SUFFIX;
1434 break;
1435 }
1436 }
1437 else if (flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0))
1438 guess_suffix = WORD_MNEM_SUFFIX;
1439
1440 for (op = i.operands; --op >= 0;)
1441 if ((i.types[op] & Imm)
1442 && i.op[op].imms->X_op == O_constant)
1443 {
1444 /* If a suffix is given, this operand may be shortened. */
1445 switch (guess_suffix)
1446 {
1447 case WORD_MNEM_SUFFIX:
1448 i.types[op] |= Imm16;
1449 break;
1450 case BYTE_MNEM_SUFFIX:
1451 i.types[op] |= Imm16 | Imm8 | Imm8S;
1452 break;
1453 }
1454
1455 /* If this operand is at most 16 bits, convert it to a
1456 signed 16 bit number before trying to see whether it will
1457 fit in an even smaller size. This allows a 16-bit operand
1458 such as $0xffe0 to be recognised as within Imm8S range. */
1459 if ((i.types[op] & Imm16)
1460 && (i.op[op].imms->X_add_number & ~(offsetT)0xffff) == 0)
1461 {
1462 i.op[op].imms->X_add_number =
1463 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1464 }
1465 i.types[op] |= smallest_imm_type ((long) i.op[op].imms->X_add_number);
1466 }
1467 }
1468
1469 if (i.disp_operands)
1470 {
1471 /* Try to use the smallest displacement type too. */
1472 int op;
1473
1474 for (op = i.operands; --op >= 0;)
1475 if ((i.types[op] & Disp)
1476 && i.op[op].imms->X_op == O_constant)
1477 {
1478 offsetT disp = i.op[op].disps->X_add_number;
1479
1480 if (i.types[op] & Disp16)
1481 {
1482 /* We know this operand is at most 16 bits, so
1483 convert to a signed 16 bit number before trying
1484 to see whether it will fit in an even smaller
1485 size. */
1486
1487 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
1488 }
1489 if (fits_in_signed_byte (disp))
1490 i.types[op] |= Disp8;
1491 }
1492 }
1493
1494 overlap0 = 0;
1495 overlap1 = 0;
1496 overlap2 = 0;
1497 found_reverse_match = 0;
1498 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
1499 ? No_bSuf
1500 : (i.suffix == WORD_MNEM_SUFFIX
1501 ? No_wSuf
1502 : (i.suffix == SHORT_MNEM_SUFFIX
1503 ? No_sSuf
1504 : (i.suffix == LONG_MNEM_SUFFIX
1505 ? No_lSuf
1506 : (i.suffix == DWORD_MNEM_SUFFIX
1507 ? No_dSuf
1508 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX ? No_xSuf : 0))))));
1509
1510 for (t = current_templates->start;
1511 t < current_templates->end;
1512 t++)
1513 {
1514 /* Must have right number of operands. */
1515 if (i.operands != t->operands)
1516 continue;
1517
1518 /* Check the suffix, except for some instructions in intel mode. */
1519 if ((t->opcode_modifier & suffix_check)
1520 && !(intel_syntax
1521 && (t->opcode_modifier & IgnoreSize))
1522 && !(intel_syntax
1523 && t->base_opcode == 0xd9
1524 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
1525 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
1526 continue;
1527
1528 else if (!t->operands)
1529 /* 0 operands always matches. */
1530 break;
1531
1532 overlap0 = i.types[0] & t->operand_types[0];
1533 switch (t->operands)
1534 {
1535 case 1:
1536 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
1537 continue;
1538 break;
1539 case 2:
1540 case 3:
1541 overlap1 = i.types[1] & t->operand_types[1];
1542 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
1543 || !MATCH (overlap1, i.types[1], t->operand_types[1])
1544 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1545 t->operand_types[0],
1546 overlap1, i.types[1],
1547 t->operand_types[1]))
1548 {
1549 /* Check if other direction is valid ... */
1550 if ((t->opcode_modifier & (D|FloatD)) == 0)
1551 continue;
1552
1553 /* Try reversing direction of operands. */
1554 overlap0 = i.types[0] & t->operand_types[1];
1555 overlap1 = i.types[1] & t->operand_types[0];
1556 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
1557 || !MATCH (overlap1, i.types[1], t->operand_types[0])
1558 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1559 t->operand_types[1],
1560 overlap1, i.types[1],
1561 t->operand_types[0]))
1562 {
1563 /* Does not match either direction. */
1564 continue;
1565 }
1566 /* found_reverse_match holds which of D or FloatDR
1567 we've found. */
1568 found_reverse_match = t->opcode_modifier & (D|FloatDR);
1569 break;
1570 }
1571 /* Found a forward 2 operand match here. */
1572 if (t->operands == 3)
1573 {
1574 /* Here we make use of the fact that there are no
1575 reverse match 3 operand instructions, and all 3
1576 operand instructions only need to be checked for
1577 register consistency between operands 2 and 3. */
1578 overlap2 = i.types[2] & t->operand_types[2];
1579 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
1580 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
1581 t->operand_types[1],
1582 overlap2, i.types[2],
1583 t->operand_types[2]))
1584
1585 continue;
1586 }
1587 /* Found either forward/reverse 2 or 3 operand match here:
1588 slip through to break. */
1589 }
1590 /* We've found a match; break out of loop. */
1591 break;
1592 }
1593 if (t == current_templates->end)
1594 {
1595 /* We found no match. */
1596 as_bad (_("suffix or operands invalid for `%s'"),
1597 current_templates->start->name);
1598 return;
1599 }
1600
1601 if (!quiet_warnings)
1602 {
1603 if (!intel_syntax
1604 && ((i.types[0] & JumpAbsolute)
1605 != (t->operand_types[0] & JumpAbsolute)))
1606 {
1607 as_warn (_("indirect %s without `*'"), t->name);
1608 }
1609
1610 if ((t->opcode_modifier & (IsPrefix|IgnoreSize))
1611 == (IsPrefix|IgnoreSize))
1612 {
1613 /* Warn them that a data or address size prefix doesn't
1614 affect assembly of the next line of code. */
1615 as_warn (_("stand-alone `%s' prefix"), t->name);
1616 }
1617 }
1618
1619 /* Copy the template we found. */
1620 i.tm = *t;
1621 if (found_reverse_match)
1622 {
1623 /* If we found a reverse match we must alter the opcode
1624 direction bit. found_reverse_match holds bits to change
1625 (different for int & float insns). */
1626
1627 i.tm.base_opcode ^= found_reverse_match;
1628
1629 i.tm.operand_types[0] = t->operand_types[1];
1630 i.tm.operand_types[1] = t->operand_types[0];
1631 }
1632
1633 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1634 if (SYSV386_COMPAT
1635 && intel_syntax
1636 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1637 i.tm.base_opcode ^= FloatR;
1638
1639 if (i.tm.opcode_modifier & FWait)
1640 if (! add_prefix (FWAIT_OPCODE))
1641 return;
1642
1643 /* Check string instruction segment overrides. */
1644 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1645 {
1646 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
1647 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
1648 {
1649 if (i.seg[0] != NULL && i.seg[0] != &es)
1650 {
1651 as_bad (_("`%s' operand %d must use `%%es' segment"),
1652 i.tm.name,
1653 mem_op + 1);
1654 return;
1655 }
1656 /* There's only ever one segment override allowed per instruction.
1657 This instruction possibly has a legal segment override on the
1658 second operand, so copy the segment to where non-string
1659 instructions store it, allowing common code. */
1660 i.seg[0] = i.seg[1];
1661 }
1662 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
1663 {
1664 if (i.seg[1] != NULL && i.seg[1] != &es)
1665 {
1666 as_bad (_("`%s' operand %d must use `%%es' segment"),
1667 i.tm.name,
1668 mem_op + 2);
1669 return;
1670 }
1671 }
1672 }
1673
1674 /* If matched instruction specifies an explicit instruction mnemonic
1675 suffix, use it. */
1676 if (i.tm.opcode_modifier & (Size16 | Size32))
1677 {
1678 if (i.tm.opcode_modifier & Size16)
1679 i.suffix = WORD_MNEM_SUFFIX;
1680 else
1681 i.suffix = LONG_MNEM_SUFFIX;
1682 }
1683 else if (i.reg_operands)
1684 {
1685 /* If there's no instruction mnemonic suffix we try to invent one
1686 based on register operands. */
1687 if (!i.suffix)
1688 {
1689 /* We take i.suffix from the last register operand specified,
1690 Destination register type is more significant than source
1691 register type. */
1692 int op;
1693 for (op = i.operands; --op >= 0;)
1694 if ((i.types[op] & Reg)
1695 && !(i.tm.operand_types[op] & InOutPortReg))
1696 {
1697 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
1698 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
1699 LONG_MNEM_SUFFIX);
1700 break;
1701 }
1702 }
1703 else if (i.suffix == BYTE_MNEM_SUFFIX)
1704 {
1705 int op;
1706 for (op = i.operands; --op >= 0;)
1707 {
1708 /* If this is an eight bit register, it's OK. If it's
1709 the 16 or 32 bit version of an eight bit register,
1710 we will just use the low portion, and that's OK too. */
1711 if (i.types[op] & Reg8)
1712 continue;
1713
1714 /* movzx and movsx should not generate this warning. */
1715 if (intel_syntax
1716 && (i.tm.base_opcode == 0xfb7
1717 || i.tm.base_opcode == 0xfb6
1718 || i.tm.base_opcode == 0xfbe
1719 || i.tm.base_opcode == 0xfbf))
1720 continue;
1721
1722 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
1723 #if 0
1724 /* Check that the template allows eight bit regs
1725 This kills insns such as `orb $1,%edx', which
1726 maybe should be allowed. */
1727 && (i.tm.operand_types[op] & (Reg8|InOutPortReg))
1728 #endif
1729 )
1730 {
1731 #if REGISTER_WARNINGS
1732 if (!quiet_warnings
1733 && (i.tm.operand_types[op] & InOutPortReg) == 0)
1734 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
1735 (i.op[op].regs - (i.types[op] & Reg16 ? 8 : 16))->reg_name,
1736 i.op[op].regs->reg_name,
1737 i.suffix);
1738 #endif
1739 continue;
1740 }
1741 /* Any other register is bad. */
1742 if (i.types[op] & (Reg | RegMMX | RegXMM
1743 | SReg2 | SReg3
1744 | Control | Debug | Test
1745 | FloatReg | FloatAcc))
1746 {
1747 as_bad (_("`%%%s' not allowed with `%s%c'"),
1748 i.op[op].regs->reg_name,
1749 i.tm.name,
1750 i.suffix);
1751 return;
1752 }
1753 }
1754 }
1755 else if (i.suffix == LONG_MNEM_SUFFIX)
1756 {
1757 int op;
1758
1759 for (op = i.operands; --op >= 0;)
1760 /* Reject eight bit registers, except where the template
1761 requires them. (eg. movzb) */
1762 if ((i.types[op] & Reg8) != 0
1763 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
1764 {
1765 as_bad (_("`%%%s' not allowed with `%s%c'"),
1766 i.op[op].regs->reg_name,
1767 i.tm.name,
1768 i.suffix);
1769 return;
1770 }
1771 #if REGISTER_WARNINGS
1772 /* Warn if the e prefix on a general reg is missing. */
1773 else if (!quiet_warnings
1774 && (i.types[op] & Reg16) != 0
1775 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
1776 {
1777 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
1778 (i.op[op].regs + 8)->reg_name,
1779 i.op[op].regs->reg_name,
1780 i.suffix);
1781 }
1782 #endif
1783 }
1784 else if (i.suffix == WORD_MNEM_SUFFIX)
1785 {
1786 int op;
1787 for (op = i.operands; --op >= 0;)
1788 /* Reject eight bit registers, except where the template
1789 requires them. (eg. movzb) */
1790 if ((i.types[op] & Reg8) != 0
1791 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
1792 {
1793 as_bad (_("`%%%s' not allowed with `%s%c'"),
1794 i.op[op].regs->reg_name,
1795 i.tm.name,
1796 i.suffix);
1797 return;
1798 }
1799 #if REGISTER_WARNINGS
1800 /* Warn if the e prefix on a general reg is present. */
1801 else if (!quiet_warnings
1802 && (i.types[op] & Reg32) != 0
1803 && (i.tm.operand_types[op] & (Reg16|Acc)) != 0)
1804 {
1805 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
1806 (i.op[op].regs - 8)->reg_name,
1807 i.op[op].regs->reg_name,
1808 i.suffix);
1809 }
1810 #endif
1811 }
1812 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
1813 /* Do nothing if the instruction is going to ignore the prefix. */
1814 ;
1815 else
1816 abort ();
1817 }
1818 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
1819 {
1820 i.suffix = stackop_size;
1821 }
1822
1823 /* Make still unresolved immediate matches conform to size of immediate
1824 given in i.suffix. Note: overlap2 cannot be an immediate! */
1825 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32))
1826 && overlap0 != Imm8 && overlap0 != Imm8S
1827 && overlap0 != Imm16 && overlap0 != Imm32)
1828 {
1829 if (i.suffix)
1830 {
1831 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
1832 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 : Imm32));
1833 }
1834 else if (overlap0 == (Imm16 | Imm32))
1835 {
1836 overlap0 =
1837 (flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32;
1838 }
1839 else
1840 {
1841 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
1842 return;
1843 }
1844 }
1845 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32))
1846 && overlap1 != Imm8 && overlap1 != Imm8S
1847 && overlap1 != Imm16 && overlap1 != Imm32)
1848 {
1849 if (i.suffix)
1850 {
1851 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
1852 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 : Imm32));
1853 }
1854 else if (overlap1 == (Imm16 | Imm32))
1855 {
1856 overlap1 =
1857 (flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32;
1858 }
1859 else
1860 {
1861 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
1862 return;
1863 }
1864 }
1865 assert ((overlap2 & Imm) == 0);
1866
1867 i.types[0] = overlap0;
1868 if (overlap0 & ImplicitRegister)
1869 i.reg_operands--;
1870 if (overlap0 & Imm1)
1871 i.imm_operands = 0; /* kludge for shift insns. */
1872
1873 i.types[1] = overlap1;
1874 if (overlap1 & ImplicitRegister)
1875 i.reg_operands--;
1876
1877 i.types[2] = overlap2;
1878 if (overlap2 & ImplicitRegister)
1879 i.reg_operands--;
1880
1881 /* Finalize opcode. First, we change the opcode based on the operand
1882 size given by i.suffix: We need not change things for byte insns. */
1883
1884 if (!i.suffix && (i.tm.opcode_modifier & W))
1885 {
1886 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
1887 return;
1888 }
1889
1890 /* For movzx and movsx, need to check the register type. */
1891 if (intel_syntax
1892 && (i.tm.base_opcode == 0xfb6 || i.tm.base_opcode == 0xfbe))
1893 if (i.suffix && i.suffix == BYTE_MNEM_SUFFIX)
1894 {
1895 unsigned int prefix = DATA_PREFIX_OPCODE;
1896
1897 if ((i.op[1].regs->reg_type & Reg16) != 0)
1898 if (!add_prefix (prefix))
1899 return;
1900 }
1901
1902 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
1903 {
1904 /* It's not a byte, select word/dword operation. */
1905 if (i.tm.opcode_modifier & W)
1906 {
1907 if (i.tm.opcode_modifier & ShortForm)
1908 i.tm.base_opcode |= 8;
1909 else
1910 i.tm.base_opcode |= 1;
1911 }
1912 /* Now select between word & dword operations via the operand
1913 size prefix, except for instructions that will ignore this
1914 prefix anyway. */
1915 if (((intel_syntax && (i.suffix == DWORD_MNEM_SUFFIX))
1916 || i.suffix == LONG_MNEM_SUFFIX) == flag_16bit_code
1917 && !(i.tm.opcode_modifier & IgnoreSize))
1918 {
1919 unsigned int prefix = DATA_PREFIX_OPCODE;
1920 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
1921 prefix = ADDR_PREFIX_OPCODE;
1922
1923 if (! add_prefix (prefix))
1924 return;
1925 }
1926 /* Size floating point instruction. */
1927 if (i.suffix == LONG_MNEM_SUFFIX
1928 || (intel_syntax && i.suffix == DWORD_MNEM_SUFFIX))
1929 {
1930 if (i.tm.opcode_modifier & FloatMF)
1931 i.tm.base_opcode ^= 4;
1932 }
1933 }
1934
1935 if (i.tm.opcode_modifier & ImmExt)
1936 {
1937 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1938 opcode suffix which is coded in the same place as an 8-bit
1939 immediate field would be. Here we fake an 8-bit immediate
1940 operand from the opcode suffix stored in tm.extension_opcode. */
1941
1942 expressionS *exp;
1943
1944 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
1945
1946 exp = &im_expressions[i.imm_operands++];
1947 i.op[i.operands].imms = exp;
1948 i.types[i.operands++] = Imm8;
1949 exp->X_op = O_constant;
1950 exp->X_add_number = i.tm.extension_opcode;
1951 i.tm.extension_opcode = None;
1952 }
1953
1954 /* For insns with operands there are more diddles to do to the opcode. */
1955 if (i.operands)
1956 {
1957 /* Default segment register this instruction will use
1958 for memory accesses. 0 means unknown.
1959 This is only for optimizing out unnecessary segment overrides. */
1960 const seg_entry *default_seg = 0;
1961
1962 /* The imul $imm, %reg instruction is converted into
1963 imul $imm, %reg, %reg, and the clr %reg instruction
1964 is converted into xor %reg, %reg. */
1965 if (i.tm.opcode_modifier & regKludge)
1966 {
1967 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
1968 /* Pretend we saw the extra register operand. */
1969 assert (i.op[first_reg_op + 1].regs == 0);
1970 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
1971 i.types[first_reg_op + 1] = i.types[first_reg_op];
1972 i.reg_operands = 2;
1973 }
1974
1975 if (i.tm.opcode_modifier & ShortForm)
1976 {
1977 /* The register or float register operand is in operand 0 or 1. */
1978 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
1979 /* Register goes in low 3 bits of opcode. */
1980 i.tm.base_opcode |= i.op[op].regs->reg_num;
1981 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1982 {
1983 /* Warn about some common errors, but press on regardless.
1984 The first case can be generated by gcc (<= 2.8.1). */
1985 if (i.operands == 2)
1986 {
1987 /* Reversed arguments on faddp, fsubp, etc. */
1988 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
1989 i.op[1].regs->reg_name,
1990 i.op[0].regs->reg_name);
1991 }
1992 else
1993 {
1994 /* Extraneous `l' suffix on fp insn. */
1995 as_warn (_("translating to `%s %%%s'"), i.tm.name,
1996 i.op[0].regs->reg_name);
1997 }
1998 }
1999 }
2000 else if (i.tm.opcode_modifier & Modrm)
2001 {
2002 /* The opcode is completed (modulo i.tm.extension_opcode which
2003 must be put into the modrm byte).
2004 Now, we make the modrm & index base bytes based on all the
2005 info we've collected. */
2006
2007 /* i.reg_operands MUST be the number of real register operands;
2008 implicit registers do not count. */
2009 if (i.reg_operands == 2)
2010 {
2011 unsigned int source, dest;
2012 source = ((i.types[0]
2013 & (Reg | RegMMX | RegXMM
2014 | SReg2 | SReg3
2015 | Control | Debug | Test))
2016 ? 0 : 1);
2017 dest = source + 1;
2018
2019 i.rm.mode = 3;
2020 /* One of the register operands will be encoded in the
2021 i.tm.reg field, the other in the combined i.tm.mode
2022 and i.tm.regmem fields. If no form of this
2023 instruction supports a memory destination operand,
2024 then we assume the source operand may sometimes be
2025 a memory operand and so we need to store the
2026 destination in the i.rm.reg field. */
2027 if ((i.tm.operand_types[dest] & AnyMem) == 0)
2028 {
2029 i.rm.reg = i.op[dest].regs->reg_num;
2030 i.rm.regmem = i.op[source].regs->reg_num;
2031 }
2032 else
2033 {
2034 i.rm.reg = i.op[source].regs->reg_num;
2035 i.rm.regmem = i.op[dest].regs->reg_num;
2036 }
2037 }
2038 else
2039 { /* If it's not 2 reg operands... */
2040 if (i.mem_operands)
2041 {
2042 unsigned int fake_zero_displacement = 0;
2043 unsigned int op = ((i.types[0] & AnyMem)
2044 ? 0
2045 : (i.types[1] & AnyMem) ? 1 : 2);
2046
2047 default_seg = &ds;
2048
2049 if (! i.base_reg)
2050 {
2051 i.rm.mode = 0;
2052 if (! i.disp_operands)
2053 fake_zero_displacement = 1;
2054 if (! i.index_reg)
2055 {
2056 /* Operand is just <disp> */
2057 if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0))
2058 {
2059 i.rm.regmem = NO_BASE_REGISTER_16;
2060 i.types[op] &= ~Disp;
2061 i.types[op] |= Disp16;
2062 }
2063 else
2064 {
2065 i.rm.regmem = NO_BASE_REGISTER;
2066 i.types[op] &= ~Disp;
2067 i.types[op] |= Disp32;
2068 }
2069 }
2070 else /* ! i.base_reg && i.index_reg */
2071 {
2072 i.sib.index = i.index_reg->reg_num;
2073 i.sib.base = NO_BASE_REGISTER;
2074 i.sib.scale = i.log2_scale_factor;
2075 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2076 i.types[op] &= ~Disp;
2077 i.types[op] |= Disp32; /* Must be 32 bit. */
2078 }
2079 }
2080 else if (i.base_reg->reg_type & Reg16)
2081 {
2082 switch (i.base_reg->reg_num)
2083 {
2084 case 3: /* (%bx) */
2085 if (! i.index_reg)
2086 i.rm.regmem = 7;
2087 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2088 i.rm.regmem = i.index_reg->reg_num - 6;
2089 break;
2090 case 5: /* (%bp) */
2091 default_seg = &ss;
2092 if (! i.index_reg)
2093 {
2094 i.rm.regmem = 6;
2095 if ((i.types[op] & Disp) == 0)
2096 {
2097 /* fake (%bp) into 0(%bp) */
2098 i.types[op] |= Disp8;
2099 fake_zero_displacement = 1;
2100 }
2101 }
2102 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2103 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2104 break;
2105 default: /* (%si) -> 4 or (%di) -> 5 */
2106 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2107 }
2108 i.rm.mode = mode_from_disp_size (i.types[op]);
2109 }
2110 else /* i.base_reg and 32 bit mode */
2111 {
2112 i.rm.regmem = i.base_reg->reg_num;
2113 i.sib.base = i.base_reg->reg_num;
2114 if (i.base_reg->reg_num == EBP_REG_NUM)
2115 {
2116 default_seg = &ss;
2117 if (i.disp_operands == 0)
2118 {
2119 fake_zero_displacement = 1;
2120 i.types[op] |= Disp8;
2121 }
2122 }
2123 else if (i.base_reg->reg_num == ESP_REG_NUM)
2124 {
2125 default_seg = &ss;
2126 }
2127 i.sib.scale = i.log2_scale_factor;
2128 if (! i.index_reg)
2129 {
2130 /* <disp>(%esp) becomes two byte modrm
2131 with no index register. We've already
2132 stored the code for esp in i.rm.regmem
2133 ie. ESCAPE_TO_TWO_BYTE_ADDRESSING. Any
2134 base register besides %esp will not use
2135 the extra modrm byte. */
2136 i.sib.index = NO_INDEX_REGISTER;
2137 #if ! SCALE1_WHEN_NO_INDEX
2138 /* Another case where we force the second
2139 modrm byte. */
2140 if (i.log2_scale_factor)
2141 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2142 #endif
2143 }
2144 else
2145 {
2146 i.sib.index = i.index_reg->reg_num;
2147 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2148 }
2149 i.rm.mode = mode_from_disp_size (i.types[op]);
2150 }
2151
2152 if (fake_zero_displacement)
2153 {
2154 /* Fakes a zero displacement assuming that i.types[op]
2155 holds the correct displacement size. */
2156 expressionS *exp;
2157
2158 assert (i.op[op].disps == 0);
2159 exp = &disp_expressions[i.disp_operands++];
2160 i.op[op].disps = exp;
2161 exp->X_op = O_constant;
2162 exp->X_add_number = 0;
2163 exp->X_add_symbol = (symbolS *) 0;
2164 exp->X_op_symbol = (symbolS *) 0;
2165 }
2166 }
2167
2168 /* Fill in i.rm.reg or i.rm.regmem field with register
2169 operand (if any) based on i.tm.extension_opcode.
2170 Again, we must be careful to make sure that
2171 segment/control/debug/test/MMX registers are coded
2172 into the i.rm.reg field. */
2173 if (i.reg_operands)
2174 {
2175 unsigned int op =
2176 ((i.types[0]
2177 & (Reg | RegMMX | RegXMM
2178 | SReg2 | SReg3
2179 | Control | Debug | Test))
2180 ? 0
2181 : ((i.types[1]
2182 & (Reg | RegMMX | RegXMM
2183 | SReg2 | SReg3
2184 | Control | Debug | Test))
2185 ? 1
2186 : 2));
2187 /* If there is an extension opcode to put here, the
2188 register number must be put into the regmem field. */
2189 if (i.tm.extension_opcode != None)
2190 i.rm.regmem = i.op[op].regs->reg_num;
2191 else
2192 i.rm.reg = i.op[op].regs->reg_num;
2193
2194 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2
2195 we must set it to 3 to indicate this is a register
2196 operand in the regmem field. */
2197 if (!i.mem_operands)
2198 i.rm.mode = 3;
2199 }
2200
2201 /* Fill in i.rm.reg field with extension opcode (if any). */
2202 if (i.tm.extension_opcode != None)
2203 i.rm.reg = i.tm.extension_opcode;
2204 }
2205 }
2206 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2207 {
2208 if (i.tm.base_opcode == POP_SEG_SHORT
2209 && i.op[0].regs->reg_num == 1)
2210 {
2211 as_bad (_("you can't `pop %%cs'"));
2212 return;
2213 }
2214 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2215 }
2216 else if ((i.tm.base_opcode & ~(D|W)) == MOV_AX_DISP32)
2217 {
2218 default_seg = &ds;
2219 }
2220 else if ((i.tm.opcode_modifier & IsString) != 0)
2221 {
2222 /* For the string instructions that allow a segment override
2223 on one of their operands, the default segment is ds. */
2224 default_seg = &ds;
2225 }
2226
2227 /* If a segment was explicitly specified,
2228 and the specified segment is not the default,
2229 use an opcode prefix to select it.
2230 If we never figured out what the default segment is,
2231 then default_seg will be zero at this point,
2232 and the specified segment prefix will always be used. */
2233 if ((i.seg[0]) && (i.seg[0] != default_seg))
2234 {
2235 if (! add_prefix (i.seg[0]->seg_prefix))
2236 return;
2237 }
2238 }
2239 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2240 {
2241 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2242 as_warn (_("translating to `%sp'"), i.tm.name);
2243 }
2244 }
2245
2246 /* Handle conversion of 'int $3' --> special int3 insn. */
2247 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
2248 {
2249 i.tm.base_opcode = INT3_OPCODE;
2250 i.imm_operands = 0;
2251 }
2252
2253 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
2254 && i.op[0].disps->X_op == O_constant)
2255 {
2256 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2257 the absolute address given by the constant. Since ix86 jumps and
2258 calls are pc relative, we need to generate a reloc. */
2259 i.op[0].disps->X_add_symbol = &abs_symbol;
2260 i.op[0].disps->X_op = O_symbol;
2261 }
2262
2263 /* We are ready to output the insn. */
2264 {
2265 register char *p;
2266
2267 /* Output jumps. */
2268 if (i.tm.opcode_modifier & Jump)
2269 {
2270 int size;
2271 int code16;
2272 int prefix;
2273
2274 code16 = 0;
2275 if (flag_16bit_code)
2276 code16 = CODE16;
2277
2278 prefix = 0;
2279 if (i.prefix[DATA_PREFIX])
2280 {
2281 prefix = 1;
2282 i.prefixes -= 1;
2283 code16 ^= CODE16;
2284 }
2285
2286 size = 4;
2287 if (code16)
2288 size = 2;
2289
2290 if (i.prefixes != 0 && !intel_syntax)
2291 as_warn (_("skipping prefixes on this instruction"));
2292
2293 /* It's always a symbol; End frag & setup for relax.
2294 Make sure there is enough room in this frag for the largest
2295 instruction we may generate in md_convert_frag. This is 2
2296 bytes for the opcode and room for the prefix and largest
2297 displacement. */
2298 frag_grow (prefix + 2 + size);
2299 insn_size += prefix + 1;
2300 /* Prefix and 1 opcode byte go in fr_fix. */
2301 p = frag_more (prefix + 1);
2302 if (prefix)
2303 *p++ = DATA_PREFIX_OPCODE;
2304 *p = i.tm.base_opcode;
2305 /* 1 possible extra opcode + displacement go in var part.
2306 Pass reloc in fr_var. */
2307 frag_var (rs_machine_dependent,
2308 1 + size,
2309 i.disp_reloc[0],
2310 ((unsigned char) *p == JUMP_PC_RELATIVE
2311 ? ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL) | code16
2312 : ENCODE_RELAX_STATE (COND_JUMP, SMALL) | code16),
2313 i.op[0].disps->X_add_symbol,
2314 i.op[0].disps->X_add_number,
2315 p);
2316 }
2317 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
2318 {
2319 int size;
2320
2321 if (i.tm.opcode_modifier & JumpByte)
2322 {
2323 /* This is a loop or jecxz type instruction. */
2324 size = 1;
2325 if (i.prefix[ADDR_PREFIX])
2326 {
2327 insn_size += 1;
2328 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
2329 i.prefixes -= 1;
2330 }
2331 }
2332 else
2333 {
2334 int code16;
2335
2336 code16 = 0;
2337 if (flag_16bit_code)
2338 code16 = CODE16;
2339
2340 if (i.prefix[DATA_PREFIX])
2341 {
2342 insn_size += 1;
2343 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
2344 i.prefixes -= 1;
2345 code16 ^= CODE16;
2346 }
2347
2348 size = 4;
2349 if (code16)
2350 size = 2;
2351 }
2352
2353 if (i.prefixes != 0 && !intel_syntax)
2354 as_warn (_("skipping prefixes on this instruction"));
2355
2356 if (fits_in_unsigned_byte (i.tm.base_opcode))
2357 {
2358 insn_size += 1 + size;
2359 p = frag_more (1 + size);
2360 }
2361 else
2362 {
2363 /* Opcode can be at most two bytes. */
2364 insn_size += 2 + size;
2365 p = frag_more (2 + size);
2366 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2367 }
2368 *p++ = i.tm.base_opcode & 0xff;
2369
2370 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2371 i.op[0].disps, 1, reloc (size, 1, i.disp_reloc[0]));
2372 }
2373 else if (i.tm.opcode_modifier & JumpInterSegment)
2374 {
2375 int size;
2376 int prefix;
2377 int code16;
2378
2379 code16 = 0;
2380 if (flag_16bit_code)
2381 code16 = CODE16;
2382
2383 prefix = 0;
2384 if (i.prefix[DATA_PREFIX])
2385 {
2386 prefix = 1;
2387 i.prefixes -= 1;
2388 code16 ^= CODE16;
2389 }
2390
2391 size = 4;
2392 if (code16)
2393 size = 2;
2394
2395 if (i.prefixes != 0 && !intel_syntax)
2396 as_warn (_("skipping prefixes on this instruction"));
2397
2398 /* 1 opcode; 2 segment; offset */
2399 insn_size += prefix + 1 + 2 + size;
2400 p = frag_more (prefix + 1 + 2 + size);
2401 if (prefix)
2402 *p++ = DATA_PREFIX_OPCODE;
2403 *p++ = i.tm.base_opcode;
2404 if (i.op[1].imms->X_op == O_constant)
2405 {
2406 offsetT n = i.op[1].imms->X_add_number;
2407
2408 if (size == 2
2409 && !fits_in_unsigned_word (n)
2410 && !fits_in_signed_word (n))
2411 {
2412 as_bad (_("16-bit jump out of range"));
2413 return;
2414 }
2415 md_number_to_chars (p, n, size);
2416 }
2417 else
2418 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2419 i.op[1].imms, 0, reloc (size, 0, i.disp_reloc[0]));
2420 if (i.op[0].imms->X_op != O_constant)
2421 as_bad (_("can't handle non absolute segment in `%s'"),
2422 i.tm.name);
2423 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
2424 }
2425 else
2426 {
2427 /* Output normal instructions here. */
2428 unsigned char *q;
2429
2430 /* The prefix bytes. */
2431 for (q = i.prefix;
2432 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
2433 q++)
2434 {
2435 if (*q)
2436 {
2437 insn_size += 1;
2438 p = frag_more (1);
2439 md_number_to_chars (p, (valueT) *q, 1);
2440 }
2441 }
2442
2443 /* Now the opcode; be careful about word order here! */
2444 if (fits_in_unsigned_byte (i.tm.base_opcode))
2445 {
2446 insn_size += 1;
2447 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
2448 }
2449 else if (fits_in_unsigned_word (i.tm.base_opcode))
2450 {
2451 insn_size += 2;
2452 p = frag_more (2);
2453 /* Put out high byte first: can't use md_number_to_chars! */
2454 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2455 *p = i.tm.base_opcode & 0xff;
2456 }
2457 else
2458 { /* Opcode is either 3 or 4 bytes. */
2459 if (i.tm.base_opcode & 0xff000000)
2460 {
2461 insn_size += 4;
2462 p = frag_more (4);
2463 *p++ = (i.tm.base_opcode >> 24) & 0xff;
2464 }
2465 else
2466 {
2467 insn_size += 3;
2468 p = frag_more (3);
2469 }
2470 *p++ = (i.tm.base_opcode >> 16) & 0xff;
2471 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2472 *p = (i.tm.base_opcode) & 0xff;
2473 }
2474
2475 /* Now the modrm byte and sib byte (if present). */
2476 if (i.tm.opcode_modifier & Modrm)
2477 {
2478 insn_size += 1;
2479 p = frag_more (1);
2480 md_number_to_chars (p,
2481 (valueT) (i.rm.regmem << 0
2482 | i.rm.reg << 3
2483 | i.rm.mode << 6),
2484 1);
2485 /* If i.rm.regmem == ESP (4)
2486 && i.rm.mode != (Register mode)
2487 && not 16 bit
2488 ==> need second modrm byte. */
2489 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
2490 && i.rm.mode != 3
2491 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
2492 {
2493 insn_size += 1;
2494 p = frag_more (1);
2495 md_number_to_chars (p,
2496 (valueT) (i.sib.base << 0
2497 | i.sib.index << 3
2498 | i.sib.scale << 6),
2499 1);
2500 }
2501 }
2502
2503 if (i.disp_operands)
2504 {
2505 register unsigned int n;
2506
2507 for (n = 0; n < i.operands; n++)
2508 {
2509 if (i.types[n] & Disp)
2510 {
2511 if (i.op[n].disps->X_op == O_constant)
2512 {
2513 int size;
2514 offsetT val;
2515
2516 size = 4;
2517 if (i.types[n] & (Disp8 | Disp16))
2518 {
2519 size = 2;
2520 if (i.types[n] & Disp8)
2521 size = 1;
2522 }
2523 val = offset_in_range (i.op[n].disps->X_add_number,
2524 size);
2525 insn_size += size;
2526 p = frag_more (size);
2527 md_number_to_chars (p, val, size);
2528 }
2529 else
2530 {
2531 int size = 4;
2532
2533 if (i.types[n] & Disp16)
2534 size = 2;
2535
2536 insn_size += size;
2537 p = frag_more (size);
2538 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2539 i.op[n].disps, 0,
2540 reloc (size, 0, i.disp_reloc[n]));
2541 }
2542 }
2543 }
2544 }
2545
2546 /* Output immediate. */
2547 if (i.imm_operands)
2548 {
2549 register unsigned int n;
2550
2551 for (n = 0; n < i.operands; n++)
2552 {
2553 if (i.types[n] & Imm)
2554 {
2555 if (i.op[n].imms->X_op == O_constant)
2556 {
2557 int size;
2558 offsetT val;
2559
2560 size = 4;
2561 if (i.types[n] & (Imm8 | Imm8S | Imm16))
2562 {
2563 size = 2;
2564 if (i.types[n] & (Imm8 | Imm8S))
2565 size = 1;
2566 }
2567 val = offset_in_range (i.op[n].imms->X_add_number,
2568 size);
2569 insn_size += size;
2570 p = frag_more (size);
2571 md_number_to_chars (p, val, size);
2572 }
2573 else
2574 {
2575 /* Not absolute_section.
2576 Need a 32-bit fixup (don't support 8bit
2577 non-absolute imms). Try to support other
2578 sizes ... */
2579 #ifdef BFD_ASSEMBLER
2580 enum bfd_reloc_code_real reloc_type;
2581 #else
2582 int reloc_type;
2583 #endif
2584 int size = 4;
2585
2586 if (i.types[n] & Imm16)
2587 size = 2;
2588 else if (i.types[n] & (Imm8 | Imm8S))
2589 size = 1;
2590
2591 insn_size += size;
2592 p = frag_more (size);
2593 reloc_type = reloc (size, 0, i.disp_reloc[0]);
2594 #ifdef BFD_ASSEMBLER
2595 if (reloc_type == BFD_RELOC_32
2596 && GOT_symbol
2597 && GOT_symbol == i.op[n].imms->X_add_symbol
2598 && (i.op[n].imms->X_op == O_symbol
2599 || (i.op[n].imms->X_op == O_add
2600 && ((symbol_get_value_expression
2601 (i.op[n].imms->X_op_symbol)->X_op)
2602 == O_subtract))))
2603 {
2604 reloc_type = BFD_RELOC_386_GOTPC;
2605 i.op[n].imms->X_add_number += 3;
2606 }
2607 #endif
2608 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2609 i.op[n].imms, 0, reloc_type);
2610 }
2611 }
2612 }
2613 }
2614 }
2615
2616 #ifdef DEBUG386
2617 if (flag_debug)
2618 {
2619 pi (line, &i);
2620 }
2621 #endif /* DEBUG386 */
2622 }
2623 }
2624 \f
2625 static int i386_immediate PARAMS ((char *));
2626
2627 static int
2628 i386_immediate (imm_start)
2629 char *imm_start;
2630 {
2631 char *save_input_line_pointer;
2632 segT exp_seg = 0;
2633 expressionS *exp;
2634
2635 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
2636 {
2637 as_bad (_("only 1 or 2 immediate operands are allowed"));
2638 return 0;
2639 }
2640
2641 exp = &im_expressions[i.imm_operands++];
2642 i.op[this_operand].imms = exp;
2643
2644 if (is_space_char (*imm_start))
2645 ++imm_start;
2646
2647 save_input_line_pointer = input_line_pointer;
2648 input_line_pointer = imm_start;
2649
2650 #ifndef LEX_AT
2651 {
2652 /* We can have operands of the form
2653 <symbol>@GOTOFF+<nnn>
2654 Take the easy way out here and copy everything
2655 into a temporary buffer... */
2656 register char *cp;
2657
2658 cp = strchr (input_line_pointer, '@');
2659 if (cp != NULL)
2660 {
2661 char *tmpbuf;
2662 int len = 0;
2663 int first;
2664
2665 /* GOT relocations are not supported in 16 bit mode. */
2666 if (flag_16bit_code)
2667 as_bad (_("GOT relocations not supported in 16 bit mode"));
2668
2669 if (GOT_symbol == NULL)
2670 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
2671
2672 if (strncmp (cp + 1, "PLT", 3) == 0)
2673 {
2674 i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32;
2675 len = 3;
2676 }
2677 else if (strncmp (cp + 1, "GOTOFF", 6) == 0)
2678 {
2679 i.disp_reloc[this_operand] = BFD_RELOC_386_GOTOFF;
2680 len = 6;
2681 }
2682 else if (strncmp (cp + 1, "GOT", 3) == 0)
2683 {
2684 i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32;
2685 len = 3;
2686 }
2687 else
2688 as_bad (_("bad reloc specifier in expression"));
2689
2690 /* Replace the relocation token with ' ', so that errors like
2691 foo@GOTOFF1 will be detected. */
2692 first = cp - input_line_pointer;
2693 tmpbuf = (char *) alloca (strlen (input_line_pointer));
2694 memcpy (tmpbuf, input_line_pointer, first);
2695 tmpbuf[first] = ' ';
2696 strcpy (tmpbuf + first + 1, cp + 1 + len);
2697 input_line_pointer = tmpbuf;
2698 }
2699 }
2700 #endif
2701
2702 exp_seg = expression (exp);
2703
2704 SKIP_WHITESPACE ();
2705 if (*input_line_pointer)
2706 as_bad (_("ignoring junk `%s' after expression"), input_line_pointer);
2707
2708 input_line_pointer = save_input_line_pointer;
2709
2710 if (exp->X_op == O_absent || exp->X_op == O_big)
2711 {
2712 /* Missing or bad expr becomes absolute 0. */
2713 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
2714 imm_start);
2715 exp->X_op = O_constant;
2716 exp->X_add_number = 0;
2717 exp->X_add_symbol = (symbolS *) 0;
2718 exp->X_op_symbol = (symbolS *) 0;
2719 }
2720
2721 if (exp->X_op == O_constant)
2722 {
2723 /* Size it properly later. */
2724 i.types[this_operand] |= Imm32;
2725 }
2726 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
2727 else if (1
2728 #ifdef BFD_ASSEMBLER
2729 && OUTPUT_FLAVOR == bfd_target_aout_flavour
2730 #endif
2731 && exp_seg != text_section
2732 && exp_seg != data_section
2733 && exp_seg != bss_section
2734 && exp_seg != undefined_section
2735 #ifdef BFD_ASSEMBLER
2736 && !bfd_is_com_section (exp_seg)
2737 #endif
2738 )
2739 {
2740 #ifdef BFD_ASSEMBLER
2741 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
2742 #else
2743 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
2744 #endif
2745 return 0;
2746 }
2747 #endif
2748 else
2749 {
2750 /* This is an address. The size of the address will be
2751 determined later, depending on destination register,
2752 suffix, or the default for the section. We exclude
2753 Imm8S here so that `push $foo' and other instructions
2754 with an Imm8S form will use Imm16 or Imm32. */
2755 i.types[this_operand] |= (Imm8 | Imm16 | Imm32);
2756 }
2757
2758 return 1;
2759 }
2760
2761 static int i386_scale PARAMS ((char *));
2762
2763 static int
2764 i386_scale (scale)
2765 char *scale;
2766 {
2767 if (!isdigit (*scale))
2768 goto bad_scale;
2769
2770 switch (*scale)
2771 {
2772 case '0':
2773 case '1':
2774 i.log2_scale_factor = 0;
2775 break;
2776 case '2':
2777 i.log2_scale_factor = 1;
2778 break;
2779 case '4':
2780 i.log2_scale_factor = 2;
2781 break;
2782 case '8':
2783 i.log2_scale_factor = 3;
2784 break;
2785 default:
2786 bad_scale:
2787 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
2788 scale);
2789 return 0;
2790 }
2791 if (i.log2_scale_factor != 0 && ! i.index_reg)
2792 {
2793 as_warn (_("scale factor of %d without an index register"),
2794 1 << i.log2_scale_factor);
2795 #if SCALE1_WHEN_NO_INDEX
2796 i.log2_scale_factor = 0;
2797 #endif
2798 }
2799 return 1;
2800 }
2801
2802 static int i386_displacement PARAMS ((char *, char *));
2803
2804 static int
2805 i386_displacement (disp_start, disp_end)
2806 char *disp_start;
2807 char *disp_end;
2808 {
2809 register expressionS *exp;
2810 segT exp_seg = 0;
2811 char *save_input_line_pointer;
2812 int bigdisp = Disp32;
2813
2814 if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0))
2815 bigdisp = Disp16;
2816 i.types[this_operand] |= bigdisp;
2817
2818 exp = &disp_expressions[i.disp_operands];
2819 i.op[this_operand].disps = exp;
2820 i.disp_operands++;
2821 save_input_line_pointer = input_line_pointer;
2822 input_line_pointer = disp_start;
2823 END_STRING_AND_SAVE (disp_end);
2824
2825 #ifndef GCC_ASM_O_HACK
2826 #define GCC_ASM_O_HACK 0
2827 #endif
2828 #if GCC_ASM_O_HACK
2829 END_STRING_AND_SAVE (disp_end + 1);
2830 if ((i.types[this_operand] & BaseIndex) != 0
2831 && displacement_string_end[-1] == '+')
2832 {
2833 /* This hack is to avoid a warning when using the "o"
2834 constraint within gcc asm statements.
2835 For instance:
2836
2837 #define _set_tssldt_desc(n,addr,limit,type) \
2838 __asm__ __volatile__ ( \
2839 "movw %w2,%0\n\t" \
2840 "movw %w1,2+%0\n\t" \
2841 "rorl $16,%1\n\t" \
2842 "movb %b1,4+%0\n\t" \
2843 "movb %4,5+%0\n\t" \
2844 "movb $0,6+%0\n\t" \
2845 "movb %h1,7+%0\n\t" \
2846 "rorl $16,%1" \
2847 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
2848
2849 This works great except that the output assembler ends
2850 up looking a bit weird if it turns out that there is
2851 no offset. You end up producing code that looks like:
2852
2853 #APP
2854 movw $235,(%eax)
2855 movw %dx,2+(%eax)
2856 rorl $16,%edx
2857 movb %dl,4+(%eax)
2858 movb $137,5+(%eax)
2859 movb $0,6+(%eax)
2860 movb %dh,7+(%eax)
2861 rorl $16,%edx
2862 #NO_APP
2863
2864 So here we provide the missing zero. */
2865
2866 *displacement_string_end = '0';
2867 }
2868 #endif
2869 #ifndef LEX_AT
2870 {
2871 /* We can have operands of the form
2872 <symbol>@GOTOFF+<nnn>
2873 Take the easy way out here and copy everything
2874 into a temporary buffer... */
2875 register char *cp;
2876
2877 cp = strchr (input_line_pointer, '@');
2878 if (cp != NULL)
2879 {
2880 char *tmpbuf;
2881 int len = 0;
2882 int first;
2883
2884 /* GOT relocations are not supported in 16 bit mode. */
2885 if (flag_16bit_code)
2886 as_bad (_("GOT relocations not supported in 16 bit mode"));
2887
2888 if (GOT_symbol == NULL)
2889 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
2890
2891 if (strncmp (cp + 1, "PLT", 3) == 0)
2892 {
2893 i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32;
2894 len = 3;
2895 }
2896 else if (strncmp (cp + 1, "GOTOFF", 6) == 0)
2897 {
2898 i.disp_reloc[this_operand] = BFD_RELOC_386_GOTOFF;
2899 len = 6;
2900 }
2901 else if (strncmp (cp + 1, "GOT", 3) == 0)
2902 {
2903 i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32;
2904 len = 3;
2905 }
2906 else
2907 as_bad (_("bad reloc specifier in expression"));
2908
2909 /* Replace the relocation token with ' ', so that errors like
2910 foo@GOTOFF1 will be detected. */
2911 first = cp - input_line_pointer;
2912 tmpbuf = (char *) alloca (strlen (input_line_pointer));
2913 memcpy (tmpbuf, input_line_pointer, first);
2914 tmpbuf[first] = ' ';
2915 strcpy (tmpbuf + first + 1, cp + 1 + len);
2916 input_line_pointer = tmpbuf;
2917 }
2918 }
2919 #endif
2920
2921 exp_seg = expression (exp);
2922
2923 #ifdef BFD_ASSEMBLER
2924 /* We do this to make sure that the section symbol is in
2925 the symbol table. We will ultimately change the relocation
2926 to be relative to the beginning of the section. */
2927 if (i.disp_reloc[this_operand] == BFD_RELOC_386_GOTOFF)
2928 {
2929 if (S_IS_LOCAL(exp->X_add_symbol)
2930 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
2931 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
2932 assert (exp->X_op == O_symbol);
2933 exp->X_op = O_subtract;
2934 exp->X_op_symbol = GOT_symbol;
2935 i.disp_reloc[this_operand] = BFD_RELOC_32;
2936 }
2937 #endif
2938
2939 SKIP_WHITESPACE ();
2940 if (*input_line_pointer)
2941 as_bad (_("ignoring junk `%s' after expression"),
2942 input_line_pointer);
2943 #if GCC_ASM_O_HACK
2944 RESTORE_END_STRING (disp_end + 1);
2945 #endif
2946 RESTORE_END_STRING (disp_end);
2947 input_line_pointer = save_input_line_pointer;
2948
2949 if (exp->X_op == O_absent || exp->X_op == O_big)
2950 {
2951 /* Missing or bad expr becomes absolute 0. */
2952 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
2953 disp_start);
2954 exp->X_op = O_constant;
2955 exp->X_add_number = 0;
2956 exp->X_add_symbol = (symbolS *) 0;
2957 exp->X_op_symbol = (symbolS *) 0;
2958 }
2959
2960 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
2961 if (exp->X_op != O_constant
2962 #ifdef BFD_ASSEMBLER
2963 && OUTPUT_FLAVOR == bfd_target_aout_flavour
2964 #endif
2965 && exp_seg != text_section
2966 && exp_seg != data_section
2967 && exp_seg != bss_section
2968 && exp_seg != undefined_section)
2969 {
2970 #ifdef BFD_ASSEMBLER
2971 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
2972 #else
2973 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
2974 #endif
2975 return 0;
2976 }
2977 #endif
2978 return 1;
2979 }
2980
2981 static int i386_operand_modifier PARAMS ((char **, int));
2982
2983 static int
2984 i386_operand_modifier (op_string, got_a_float)
2985 char **op_string;
2986 int got_a_float;
2987 {
2988 if (!strncasecmp (*op_string, "BYTE PTR", 8))
2989 {
2990 i.suffix = BYTE_MNEM_SUFFIX;
2991 *op_string += 8;
2992 return BYTE_PTR;
2993
2994 }
2995 else if (!strncasecmp (*op_string, "WORD PTR", 8))
2996 {
2997 if (got_a_float == 2) /* "fi..." */
2998 i.suffix = SHORT_MNEM_SUFFIX;
2999 else
3000 i.suffix = WORD_MNEM_SUFFIX;
3001 *op_string += 8;
3002 return WORD_PTR;
3003 }
3004
3005 else if (!strncasecmp (*op_string, "DWORD PTR", 9))
3006 {
3007 if (got_a_float == 1) /* "f..." */
3008 i.suffix = SHORT_MNEM_SUFFIX;
3009 else
3010 i.suffix = LONG_MNEM_SUFFIX;
3011 *op_string += 9;
3012 return DWORD_PTR;
3013 }
3014
3015 else if (!strncasecmp (*op_string, "QWORD PTR", 9))
3016 {
3017 i.suffix = DWORD_MNEM_SUFFIX;
3018 *op_string += 9;
3019 return QWORD_PTR;
3020 }
3021
3022 else if (!strncasecmp (*op_string, "XWORD PTR", 9))
3023 {
3024 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
3025 *op_string += 9;
3026 return XWORD_PTR;
3027 }
3028
3029 /* Compare with space separator to avoid confusing identifier `short_var'
3030 with attribute `short'. */
3031 else if (!strncasecmp (*op_string, "SHORT ", 6))
3032 {
3033 *op_string += 5;
3034 return SHORT;
3035 }
3036
3037 else if (!strncasecmp (*op_string, "OFFSET FLAT:", 12))
3038 {
3039 *op_string += 12;
3040 return OFFSET_FLAT;
3041 }
3042
3043 /* Compare with space separator to avoid confusing identifier `flat_var'
3044 with attribute `flat'. */
3045 else if (!strncasecmp (*op_string, "FLAT ", 5))
3046 {
3047 *op_string += 4;
3048 return FLAT;
3049 }
3050
3051 else return NONE_FOUND;
3052 }
3053
3054 static char * build_displacement_string PARAMS ((int, char *));
3055
3056 static char *
3057 build_displacement_string (initial_disp, op_string)
3058 int initial_disp;
3059 char *op_string;
3060 {
3061 char *temp_string = (char *) malloc (strlen (op_string) + 1);
3062 char *end_of_operand_string;
3063 char *tc;
3064 char *temp_disp;
3065
3066 temp_string[0] = '\0';
3067 tc = end_of_operand_string = strchr (op_string, '[');
3068 if (initial_disp && !end_of_operand_string)
3069 {
3070 strcpy (temp_string, op_string);
3071 return temp_string;
3072 }
3073
3074 /* Build the whole displacement string. */
3075 if (initial_disp)
3076 {
3077 strncpy (temp_string, op_string, end_of_operand_string - op_string);
3078 temp_string[end_of_operand_string - op_string] = '\0';
3079 temp_disp = tc;
3080 }
3081 else
3082 temp_disp = op_string;
3083
3084 while (*temp_disp != '\0')
3085 {
3086 char *end_op;
3087 int add_minus = (*temp_disp == '-');
3088
3089 if (*temp_disp == '+' || *temp_disp == '-' || *temp_disp == '[')
3090 temp_disp++;
3091
3092 if (is_space_char (*temp_disp))
3093 temp_disp++;
3094
3095 /* Don't consider registers. */
3096 if ( !((*temp_disp == REGISTER_PREFIX || allow_naked_reg)
3097 && parse_register (temp_disp, &end_op)) )
3098 {
3099 char *string_start = temp_disp;
3100
3101 while (*temp_disp != ']'
3102 && *temp_disp != '+'
3103 && *temp_disp != '-'
3104 && *temp_disp != '*')
3105 ++temp_disp;
3106
3107 if (add_minus)
3108 strcat (temp_string, "-");
3109 else
3110 strcat (temp_string, "+");
3111
3112 strncat (temp_string, string_start, temp_disp - string_start);
3113 if (*temp_disp == '+' || *temp_disp == '-')
3114 --temp_disp;
3115 }
3116
3117 while (*temp_disp != '\0'
3118 && *temp_disp != '+'
3119 && *temp_disp != '-')
3120 ++temp_disp;
3121 }
3122
3123 return temp_string;
3124 }
3125
3126 static int i386_parse_seg PARAMS ((char *));
3127
3128 static int
3129 i386_parse_seg (op_string)
3130 char *op_string;
3131 {
3132 if (is_space_char (*op_string))
3133 ++op_string;
3134
3135 /* Should be one of es, cs, ss, ds fs or gs. */
3136 switch (*op_string++)
3137 {
3138 case 'e':
3139 i.seg[i.mem_operands] = &es;
3140 break;
3141 case 'c':
3142 i.seg[i.mem_operands] = &cs;
3143 break;
3144 case 's':
3145 i.seg[i.mem_operands] = &ss;
3146 break;
3147 case 'd':
3148 i.seg[i.mem_operands] = &ds;
3149 break;
3150 case 'f':
3151 i.seg[i.mem_operands] = &fs;
3152 break;
3153 case 'g':
3154 i.seg[i.mem_operands] = &gs;
3155 break;
3156 default:
3157 as_bad (_("bad segment name `%s'"), op_string);
3158 return 0;
3159 }
3160
3161 if (*op_string++ != 's')
3162 {
3163 as_bad (_("bad segment name `%s'"), op_string);
3164 return 0;
3165 }
3166
3167 if (is_space_char (*op_string))
3168 ++op_string;
3169
3170 if (*op_string != ':')
3171 {
3172 as_bad (_("bad segment name `%s'"), op_string);
3173 return 0;
3174 }
3175
3176 return 1;
3177
3178 }
3179
3180 static int i386_index_check PARAMS((const char *));
3181
3182 /* Make sure the memory operand we've been dealt is valid.
3183 Return 1 on success, 0 on a failure. */
3184
3185 static int
3186 i386_index_check (operand_string)
3187 const char *operand_string;
3188 {
3189 #if INFER_ADDR_PREFIX
3190 int fudged = 0;
3191
3192 tryprefix:
3193 #endif
3194 if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0)
3195 /* 16 bit mode checks. */
3196 ? ((i.base_reg
3197 && ((i.base_reg->reg_type & (Reg16|BaseIndex))
3198 != (Reg16|BaseIndex)))
3199 || (i.index_reg
3200 && (((i.index_reg->reg_type & (Reg16|BaseIndex))
3201 != (Reg16|BaseIndex))
3202 || ! (i.base_reg
3203 && i.base_reg->reg_num < 6
3204 && i.index_reg->reg_num >= 6
3205 && i.log2_scale_factor == 0))))
3206 /* 32 bit mode checks. */
3207 : ((i.base_reg
3208 && (i.base_reg->reg_type & Reg32) == 0)
3209 || (i.index_reg
3210 && ((i.index_reg->reg_type & (Reg32|BaseIndex))
3211 != (Reg32|BaseIndex)))))
3212 {
3213 #if INFER_ADDR_PREFIX
3214 if (i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
3215 {
3216 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
3217 i.prefixes += 1;
3218 /* Change the size of any displacement too. At most one of
3219 Disp16 or Disp32 is set.
3220 FIXME. There doesn't seem to be any real need for separate
3221 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
3222 Removing them would probably clean up the code quite a lot. */
3223 if (i.types[this_operand] & (Disp16|Disp32))
3224 i.types[this_operand] ^= (Disp16|Disp32);
3225 fudged = 1;
3226 goto tryprefix;
3227 }
3228 if (fudged)
3229 as_bad (_("`%s' is not a valid base/index expression"),
3230 operand_string);
3231 else
3232 #endif
3233 as_bad (_("`%s' is not a valid %s bit base/index expression"),
3234 operand_string,
3235 flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0) ? "16" : "32");
3236 return 0;
3237 }
3238 return 1;
3239 }
3240
3241 static int i386_intel_memory_operand PARAMS ((char *));
3242
3243 static int
3244 i386_intel_memory_operand (operand_string)
3245 char *operand_string;
3246 {
3247 char *op_string = operand_string;
3248 char *end_of_operand_string;
3249
3250 if ((i.mem_operands == 1
3251 && (current_templates->start->opcode_modifier & IsString) == 0)
3252 || i.mem_operands == 2)
3253 {
3254 as_bad (_("too many memory references for `%s'"),
3255 current_templates->start->name);
3256 return 0;
3257 }
3258
3259 /* First check for a segment override. */
3260 if (*op_string != '[')
3261 {
3262 char *end_seg;
3263
3264 end_seg = strchr (op_string, ':');
3265 if (end_seg)
3266 {
3267 if (!i386_parse_seg (op_string))
3268 return 0;
3269 op_string = end_seg + 1;
3270 }
3271 }
3272
3273 /* Look for displacement preceding open bracket. */
3274 if (*op_string != '[')
3275 {
3276 char *temp_string;
3277
3278 if (i.disp_operands)
3279 return 0;
3280
3281 temp_string = build_displacement_string (true, op_string);
3282
3283 if (!i386_displacement (temp_string, temp_string + strlen (temp_string)))
3284 {
3285 free (temp_string);
3286 return 0;
3287 }
3288 free (temp_string);
3289
3290 end_of_operand_string = strchr (op_string, '[');
3291 if (!end_of_operand_string)
3292 end_of_operand_string = op_string + strlen (op_string);
3293
3294 if (is_space_char (*end_of_operand_string))
3295 --end_of_operand_string;
3296
3297 op_string = end_of_operand_string;
3298 }
3299
3300 if (*op_string == '[')
3301 {
3302 ++op_string;
3303
3304 /* Pick off each component and figure out where it belongs. */
3305
3306 end_of_operand_string = op_string;
3307
3308 while (*op_string != ']')
3309 {
3310 const reg_entry *temp_reg;
3311 char *end_op;
3312 char *temp_string;
3313
3314 while (*end_of_operand_string != '+'
3315 && *end_of_operand_string != '-'
3316 && *end_of_operand_string != '*'
3317 && *end_of_operand_string != ']')
3318 end_of_operand_string++;
3319
3320 temp_string = op_string;
3321 if (*temp_string == '+')
3322 {
3323 ++temp_string;
3324 if (is_space_char (*temp_string))
3325 ++temp_string;
3326 }
3327
3328 if ((*temp_string == REGISTER_PREFIX || allow_naked_reg)
3329 && (temp_reg = parse_register (temp_string, &end_op)) != NULL)
3330 {
3331 if (i.base_reg == NULL)
3332 i.base_reg = temp_reg;
3333 else
3334 i.index_reg = temp_reg;
3335
3336 i.types[this_operand] |= BaseIndex;
3337 }
3338 else if (*temp_string == REGISTER_PREFIX)
3339 {
3340 as_bad (_("bad register name `%s'"), temp_string);
3341 return 0;
3342 }
3343 else if (is_digit_char (*op_string)
3344 || *op_string == '+' || *op_string == '-')
3345 {
3346 char *temp_str;
3347
3348 if (i.disp_operands != 0)
3349 return 0;
3350
3351 temp_string = build_displacement_string (false, op_string);
3352
3353 temp_str = temp_string;
3354 if (*temp_str == '+')
3355 ++temp_str;
3356
3357 if (!i386_displacement (temp_str, temp_str + strlen (temp_str)))
3358 {
3359 free (temp_string);
3360 return 0;
3361 }
3362 free (temp_string);
3363
3364 ++op_string;
3365 end_of_operand_string = op_string;
3366 while (*end_of_operand_string != ']'
3367 && *end_of_operand_string != '+'
3368 && *end_of_operand_string != '-'
3369 && *end_of_operand_string != '*')
3370 ++end_of_operand_string;
3371 }
3372 else if (*op_string == '*')
3373 {
3374 ++op_string;
3375
3376 if (i.base_reg && !i.index_reg)
3377 {
3378 i.index_reg = i.base_reg;
3379 i.base_reg = 0;
3380 }
3381
3382 if (!i386_scale (op_string))
3383 return 0;
3384 }
3385 op_string = end_of_operand_string;
3386 ++end_of_operand_string;
3387 }
3388 }
3389
3390 if (i386_index_check (operand_string) == 0)
3391 return 0;
3392
3393 i.mem_operands++;
3394 return 1;
3395 }
3396
3397 static int
3398 i386_intel_operand (operand_string, got_a_float)
3399 char *operand_string;
3400 int got_a_float;
3401 {
3402 const reg_entry *r;
3403 char *end_op;
3404 char *op_string = operand_string;
3405
3406 int operand_modifier = i386_operand_modifier (&op_string, got_a_float);
3407 if (is_space_char (*op_string))
3408 ++op_string;
3409
3410 switch (operand_modifier)
3411 {
3412 case BYTE_PTR:
3413 case WORD_PTR:
3414 case DWORD_PTR:
3415 case QWORD_PTR:
3416 case XWORD_PTR:
3417 if (!i386_intel_memory_operand (op_string))
3418 return 0;
3419 break;
3420
3421 case FLAT:
3422 case OFFSET_FLAT:
3423 if (!i386_immediate (op_string))
3424 return 0;
3425 break;
3426
3427 case SHORT:
3428 case NONE_FOUND:
3429 /* Should be register or immediate. */
3430 if (is_digit_char (*op_string)
3431 && strchr (op_string, '[') == 0)
3432 {
3433 if (!i386_immediate (op_string))
3434 return 0;
3435 }
3436 else if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
3437 && (r = parse_register (op_string, &end_op)) != NULL)
3438 {
3439 /* Check for a segment override by searching for ':' after a
3440 segment register. */
3441 op_string = end_op;
3442 if (is_space_char (*op_string))
3443 ++op_string;
3444 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
3445 {
3446 switch (r->reg_num)
3447 {
3448 case 0:
3449 i.seg[i.mem_operands] = &es;
3450 break;
3451 case 1:
3452 i.seg[i.mem_operands] = &cs;
3453 break;
3454 case 2:
3455 i.seg[i.mem_operands] = &ss;
3456 break;
3457 case 3:
3458 i.seg[i.mem_operands] = &ds;
3459 break;
3460 case 4:
3461 i.seg[i.mem_operands] = &fs;
3462 break;
3463 case 5:
3464 i.seg[i.mem_operands] = &gs;
3465 break;
3466 }
3467
3468 }
3469 i.types[this_operand] |= r->reg_type & ~BaseIndex;
3470 i.op[this_operand].regs = r;
3471 i.reg_operands++;
3472 }
3473 else if (*op_string == REGISTER_PREFIX)
3474 {
3475 as_bad (_("bad register name `%s'"), op_string);
3476 return 0;
3477 }
3478 else if (!i386_intel_memory_operand (op_string))
3479 return 0;
3480
3481 break;
3482 }
3483
3484 return 1;
3485 }
3486
3487 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
3488 on error. */
3489
3490 static int
3491 i386_operand (operand_string)
3492 char *operand_string;
3493 {
3494 const reg_entry *r;
3495 char *end_op;
3496 char *op_string = operand_string;
3497
3498 if (is_space_char (*op_string))
3499 ++op_string;
3500
3501 /* We check for an absolute prefix (differentiating,
3502 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
3503 if (*op_string == ABSOLUTE_PREFIX)
3504 {
3505 ++op_string;
3506 if (is_space_char (*op_string))
3507 ++op_string;
3508 i.types[this_operand] |= JumpAbsolute;
3509 }
3510
3511 /* Check if operand is a register. */
3512 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
3513 && (r = parse_register (op_string, &end_op)) != NULL)
3514 {
3515 /* Check for a segment override by searching for ':' after a
3516 segment register. */
3517 op_string = end_op;
3518 if (is_space_char (*op_string))
3519 ++op_string;
3520 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
3521 {
3522 switch (r->reg_num)
3523 {
3524 case 0:
3525 i.seg[i.mem_operands] = &es;
3526 break;
3527 case 1:
3528 i.seg[i.mem_operands] = &cs;
3529 break;
3530 case 2:
3531 i.seg[i.mem_operands] = &ss;
3532 break;
3533 case 3:
3534 i.seg[i.mem_operands] = &ds;
3535 break;
3536 case 4:
3537 i.seg[i.mem_operands] = &fs;
3538 break;
3539 case 5:
3540 i.seg[i.mem_operands] = &gs;
3541 break;
3542 }
3543
3544 /* Skip the ':' and whitespace. */
3545 ++op_string;
3546 if (is_space_char (*op_string))
3547 ++op_string;
3548
3549 if (!is_digit_char (*op_string)
3550 && !is_identifier_char (*op_string)
3551 && *op_string != '('
3552 && *op_string != ABSOLUTE_PREFIX)
3553 {
3554 as_bad (_("bad memory operand `%s'"), op_string);
3555 return 0;
3556 }
3557 /* Handle case of %es:*foo. */
3558 if (*op_string == ABSOLUTE_PREFIX)
3559 {
3560 ++op_string;
3561 if (is_space_char (*op_string))
3562 ++op_string;
3563 i.types[this_operand] |= JumpAbsolute;
3564 }
3565 goto do_memory_reference;
3566 }
3567 if (*op_string)
3568 {
3569 as_bad (_("junk `%s' after register"), op_string);
3570 return 0;
3571 }
3572 i.types[this_operand] |= r->reg_type & ~BaseIndex;
3573 i.op[this_operand].regs = r;
3574 i.reg_operands++;
3575 }
3576 else if (*op_string == REGISTER_PREFIX)
3577 {
3578 as_bad (_("bad register name `%s'"), op_string);
3579 return 0;
3580 }
3581 else if (*op_string == IMMEDIATE_PREFIX)
3582 {
3583 ++op_string;
3584 if (i.types[this_operand] & JumpAbsolute)
3585 {
3586 as_bad (_("immediate operand illegal with absolute jump"));
3587 return 0;
3588 }
3589 if (!i386_immediate (op_string))
3590 return 0;
3591 }
3592 else if (is_digit_char (*op_string)
3593 || is_identifier_char (*op_string)
3594 || *op_string == '(' )
3595 {
3596 /* This is a memory reference of some sort. */
3597 char *base_string;
3598
3599 /* Start and end of displacement string expression (if found). */
3600 char *displacement_string_start;
3601 char *displacement_string_end;
3602
3603 do_memory_reference:
3604 if ((i.mem_operands == 1
3605 && (current_templates->start->opcode_modifier & IsString) == 0)
3606 || i.mem_operands == 2)
3607 {
3608 as_bad (_("too many memory references for `%s'"),
3609 current_templates->start->name);
3610 return 0;
3611 }
3612
3613 /* Check for base index form. We detect the base index form by
3614 looking for an ')' at the end of the operand, searching
3615 for the '(' matching it, and finding a REGISTER_PREFIX or ','
3616 after the '('. */
3617 base_string = op_string + strlen (op_string);
3618
3619 --base_string;
3620 if (is_space_char (*base_string))
3621 --base_string;
3622
3623 /* If we only have a displacement, set-up for it to be parsed later. */
3624 displacement_string_start = op_string;
3625 displacement_string_end = base_string + 1;
3626
3627 if (*base_string == ')')
3628 {
3629 char *temp_string;
3630 unsigned int parens_balanced = 1;
3631 /* We've already checked that the number of left & right ()'s are
3632 equal, so this loop will not be infinite. */
3633 do
3634 {
3635 base_string--;
3636 if (*base_string == ')')
3637 parens_balanced++;
3638 if (*base_string == '(')
3639 parens_balanced--;
3640 }
3641 while (parens_balanced);
3642
3643 temp_string = base_string;
3644
3645 /* Skip past '(' and whitespace. */
3646 ++base_string;
3647 if (is_space_char (*base_string))
3648 ++base_string;
3649
3650 if (*base_string == ','
3651 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3652 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
3653 {
3654 displacement_string_end = temp_string;
3655
3656 i.types[this_operand] |= BaseIndex;
3657
3658 if (i.base_reg)
3659 {
3660 base_string = end_op;
3661 if (is_space_char (*base_string))
3662 ++base_string;
3663 }
3664
3665 /* There may be an index reg or scale factor here. */
3666 if (*base_string == ',')
3667 {
3668 ++base_string;
3669 if (is_space_char (*base_string))
3670 ++base_string;
3671
3672 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3673 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
3674 {
3675 base_string = end_op;
3676 if (is_space_char (*base_string))
3677 ++base_string;
3678 if (*base_string == ',')
3679 {
3680 ++base_string;
3681 if (is_space_char (*base_string))
3682 ++base_string;
3683 }
3684 else if (*base_string != ')' )
3685 {
3686 as_bad (_("expecting `,' or `)' after index register in `%s'"),
3687 operand_string);
3688 return 0;
3689 }
3690 }
3691 else if (*base_string == REGISTER_PREFIX)
3692 {
3693 as_bad (_("bad register name `%s'"), base_string);
3694 return 0;
3695 }
3696
3697 /* Check for scale factor. */
3698 if (isdigit ((unsigned char) *base_string))
3699 {
3700 if (!i386_scale (base_string))
3701 return 0;
3702
3703 ++base_string;
3704 if (is_space_char (*base_string))
3705 ++base_string;
3706 if (*base_string != ')')
3707 {
3708 as_bad (_("expecting `)' after scale factor in `%s'"),
3709 operand_string);
3710 return 0;
3711 }
3712 }
3713 else if (!i.index_reg)
3714 {
3715 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
3716 *base_string);
3717 return 0;
3718 }
3719 }
3720 else if (*base_string != ')')
3721 {
3722 as_bad (_("expecting `,' or `)' after base register in `%s'"),
3723 operand_string);
3724 return 0;
3725 }
3726 }
3727 else if (*base_string == REGISTER_PREFIX)
3728 {
3729 as_bad (_("bad register name `%s'"), base_string);
3730 return 0;
3731 }
3732 }
3733
3734 /* If there's an expression beginning the operand, parse it,
3735 assuming displacement_string_start and
3736 displacement_string_end are meaningful. */
3737 if (displacement_string_start != displacement_string_end)
3738 {
3739 if (!i386_displacement (displacement_string_start,
3740 displacement_string_end))
3741 return 0;
3742 }
3743
3744 /* Special case for (%dx) while doing input/output op. */
3745 if (i.base_reg
3746 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
3747 && i.index_reg == 0
3748 && i.log2_scale_factor == 0
3749 && i.seg[i.mem_operands] == 0
3750 && (i.types[this_operand] & Disp) == 0)
3751 {
3752 i.types[this_operand] = InOutPortReg;
3753 return 1;
3754 }
3755
3756 if (i386_index_check (operand_string) == 0)
3757 return 0;
3758 i.mem_operands++;
3759 }
3760 else
3761 {
3762 /* It's not a memory operand; argh! */
3763 as_bad (_("invalid char %s beginning operand %d `%s'"),
3764 output_invalid (*op_string),
3765 this_operand + 1,
3766 op_string);
3767 return 0;
3768 }
3769 return 1; /* Normal return. */
3770 }
3771 \f
3772 /* md_estimate_size_before_relax()
3773
3774 Called just before relax() for rs_machine_dependent frags. The x86
3775 assembler uses these frags to handle variable size jump
3776 instructions.
3777
3778 Any symbol that is now undefined will not become defined.
3779 Return the correct fr_subtype in the frag.
3780 Return the initial "guess for variable size of frag" to caller.
3781 The guess is actually the growth beyond the fixed part. Whatever
3782 we do to grow the fixed or variable part contributes to our
3783 returned value. */
3784
3785 int
3786 md_estimate_size_before_relax (fragP, segment)
3787 register fragS *fragP;
3788 register segT segment;
3789 {
3790 /* We've already got fragP->fr_subtype right; all we have to do is
3791 check for un-relaxable symbols. On an ELF system, we can't relax
3792 an externally visible symbol, because it may be overridden by a
3793 shared library. */
3794 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
3795 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3796 || S_IS_EXTERNAL (fragP->fr_symbol)
3797 || S_IS_WEAK (fragP->fr_symbol)
3798 #endif
3799 )
3800 {
3801 /* Symbol is undefined in this segment, or we need to keep a
3802 reloc so that weak symbols can be overridden. */
3803 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
3804 #ifdef BFD_ASSEMBLER
3805 enum bfd_reloc_code_real reloc_type;
3806 #else
3807 int reloc_type;
3808 #endif
3809 unsigned char *opcode;
3810 int old_fr_fix;
3811
3812 if (fragP->fr_var != NO_RELOC)
3813 reloc_type = fragP->fr_var;
3814 else if (size == 2)
3815 reloc_type = BFD_RELOC_16_PCREL;
3816 else
3817 reloc_type = BFD_RELOC_32_PCREL;
3818
3819 old_fr_fix = fragP->fr_fix;
3820 opcode = (unsigned char *) fragP->fr_opcode;
3821
3822 switch (opcode[0])
3823 {
3824 case JUMP_PC_RELATIVE:
3825 /* Make jmp (0xeb) a dword displacement jump. */
3826 opcode[0] = 0xe9;
3827 fragP->fr_fix += size;
3828 fix_new (fragP, old_fr_fix, size,
3829 fragP->fr_symbol,
3830 fragP->fr_offset, 1,
3831 reloc_type);
3832 break;
3833
3834 default:
3835 /* This changes the byte-displacement jump 0x7N
3836 to the dword-displacement jump 0x0f,0x8N. */
3837 opcode[1] = opcode[0] + 0x10;
3838 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
3839 /* We've added an opcode byte. */
3840 fragP->fr_fix += 1 + size;
3841 fix_new (fragP, old_fr_fix + 1, size,
3842 fragP->fr_symbol,
3843 fragP->fr_offset, 1,
3844 reloc_type);
3845 break;
3846 }
3847 frag_wane (fragP);
3848 return fragP->fr_fix - old_fr_fix;
3849 }
3850 /* Guess a short jump. */
3851 return 1;
3852 }
3853
3854 /* Called after relax() is finished.
3855
3856 In: Address of frag.
3857 fr_type == rs_machine_dependent.
3858 fr_subtype is what the address relaxed to.
3859
3860 Out: Any fixSs and constants are set up.
3861 Caller will turn frag into a ".space 0". */
3862
3863 #ifndef BFD_ASSEMBLER
3864 void
3865 md_convert_frag (headers, sec, fragP)
3866 object_headers *headers ATTRIBUTE_UNUSED;
3867 segT sec ATTRIBUTE_UNUSED;
3868 register fragS *fragP;
3869 #else
3870 void
3871 md_convert_frag (abfd, sec, fragP)
3872 bfd *abfd ATTRIBUTE_UNUSED;
3873 segT sec ATTRIBUTE_UNUSED;
3874 register fragS *fragP;
3875 #endif
3876 {
3877 register unsigned char *opcode;
3878 unsigned char *where_to_put_displacement = NULL;
3879 offsetT target_address;
3880 offsetT opcode_address;
3881 unsigned int extension = 0;
3882 offsetT displacement_from_opcode_start;
3883
3884 opcode = (unsigned char *) fragP->fr_opcode;
3885
3886 /* Address we want to reach in file space. */
3887 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
3888 #ifdef BFD_ASSEMBLER
3889 /* Not needed otherwise? */
3890 target_address += symbol_get_frag (fragP->fr_symbol)->fr_address;
3891 #endif
3892
3893 /* Address opcode resides at in file space. */
3894 opcode_address = fragP->fr_address + fragP->fr_fix;
3895
3896 /* Displacement from opcode start to fill into instruction. */
3897 displacement_from_opcode_start = target_address - opcode_address;
3898
3899 switch (fragP->fr_subtype)
3900 {
3901 case ENCODE_RELAX_STATE (COND_JUMP, SMALL):
3902 case ENCODE_RELAX_STATE (COND_JUMP, SMALL16):
3903 case ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL):
3904 case ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL16):
3905 /* Don't have to change opcode. */
3906 extension = 1; /* 1 opcode + 1 displacement */
3907 where_to_put_displacement = &opcode[1];
3908 break;
3909
3910 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
3911 extension = 5; /* 2 opcode + 4 displacement */
3912 opcode[1] = opcode[0] + 0x10;
3913 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
3914 where_to_put_displacement = &opcode[2];
3915 break;
3916
3917 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
3918 extension = 4; /* 1 opcode + 4 displacement */
3919 opcode[0] = 0xe9;
3920 where_to_put_displacement = &opcode[1];
3921 break;
3922
3923 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
3924 extension = 3; /* 2 opcode + 2 displacement */
3925 opcode[1] = opcode[0] + 0x10;
3926 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
3927 where_to_put_displacement = &opcode[2];
3928 break;
3929
3930 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
3931 extension = 2; /* 1 opcode + 2 displacement */
3932 opcode[0] = 0xe9;
3933 where_to_put_displacement = &opcode[1];
3934 break;
3935
3936 default:
3937 BAD_CASE (fragP->fr_subtype);
3938 break;
3939 }
3940 /* Now put displacement after opcode. */
3941 md_number_to_chars ((char *) where_to_put_displacement,
3942 (valueT) (displacement_from_opcode_start - extension),
3943 SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
3944 fragP->fr_fix += extension;
3945 }
3946 \f
3947 /* Size of byte displacement jmp. */
3948 int md_short_jump_size = 2;
3949
3950 /* Size of dword displacement jmp. */
3951 int md_long_jump_size = 5;
3952
3953 /* Size of relocation record. */
3954 const int md_reloc_size = 8;
3955
3956 void
3957 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
3958 char *ptr;
3959 addressT from_addr, to_addr;
3960 fragS *frag ATTRIBUTE_UNUSED;
3961 symbolS *to_symbol ATTRIBUTE_UNUSED;
3962 {
3963 offsetT offset;
3964
3965 offset = to_addr - (from_addr + 2);
3966 /* Opcode for byte-disp jump. */
3967 md_number_to_chars (ptr, (valueT) 0xeb, 1);
3968 md_number_to_chars (ptr + 1, (valueT) offset, 1);
3969 }
3970
3971 void
3972 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
3973 char *ptr;
3974 addressT from_addr, to_addr;
3975 fragS *frag ATTRIBUTE_UNUSED;
3976 symbolS *to_symbol ATTRIBUTE_UNUSED;
3977 {
3978 offsetT offset;
3979
3980 offset = to_addr - (from_addr + 5);
3981 md_number_to_chars (ptr, (valueT) 0xe9, 1);
3982 md_number_to_chars (ptr + 1, (valueT) offset, 4);
3983 }
3984 \f
3985 /* Apply a fixup (fixS) to segment data, once it has been determined
3986 by our caller that we have all the info we need to fix it up.
3987
3988 On the 386, immediates, displacements, and data pointers are all in
3989 the same (little-endian) format, so we don't need to care about which
3990 we are handling. */
3991
3992 int
3993 md_apply_fix3 (fixP, valp, seg)
3994 /* The fix we're to put in. */
3995 fixS *fixP;
3996
3997 /* Pointer to the value of the bits. */
3998 valueT *valp;
3999
4000 /* Segment fix is from. */
4001 segT seg ATTRIBUTE_UNUSED;
4002 {
4003 register char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
4004 valueT value = *valp;
4005
4006 #if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
4007 if (fixP->fx_pcrel)
4008 {
4009 switch (fixP->fx_r_type)
4010 {
4011 default:
4012 break;
4013
4014 case BFD_RELOC_32:
4015 fixP->fx_r_type = BFD_RELOC_32_PCREL;
4016 break;
4017 case BFD_RELOC_16:
4018 fixP->fx_r_type = BFD_RELOC_16_PCREL;
4019 break;
4020 case BFD_RELOC_8:
4021 fixP->fx_r_type = BFD_RELOC_8_PCREL;
4022 break;
4023 }
4024 }
4025
4026 /* This is a hack. There should be a better way to handle this.
4027 This covers for the fact that bfd_install_relocation will
4028 subtract the current location (for partial_inplace, PC relative
4029 relocations); see more below. */
4030 if ((fixP->fx_r_type == BFD_RELOC_32_PCREL
4031 || fixP->fx_r_type == BFD_RELOC_16_PCREL
4032 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
4033 && fixP->fx_addsy)
4034 {
4035 #ifndef OBJ_AOUT
4036 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4037 #ifdef TE_PE
4038 || OUTPUT_FLAVOR == bfd_target_coff_flavour
4039 #endif
4040 )
4041 value += fixP->fx_where + fixP->fx_frag->fr_address;
4042 #endif
4043 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4044 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
4045 {
4046 segT fseg = S_GET_SEGMENT (fixP->fx_addsy);
4047
4048 if ((fseg == seg
4049 || (symbol_section_p (fixP->fx_addsy)
4050 && fseg != absolute_section))
4051 && ! S_IS_EXTERNAL (fixP->fx_addsy)
4052 && ! S_IS_WEAK (fixP->fx_addsy)
4053 && S_IS_DEFINED (fixP->fx_addsy)
4054 && ! S_IS_COMMON (fixP->fx_addsy))
4055 {
4056 /* Yes, we add the values in twice. This is because
4057 bfd_perform_relocation subtracts them out again. I think
4058 bfd_perform_relocation is broken, but I don't dare change
4059 it. FIXME. */
4060 value += fixP->fx_where + fixP->fx_frag->fr_address;
4061 }
4062 }
4063 #endif
4064 #if defined (OBJ_COFF) && defined (TE_PE)
4065 /* For some reason, the PE format does not store a section
4066 address offset for a PC relative symbol. */
4067 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4068 value += md_pcrel_from (fixP);
4069 #endif
4070 }
4071
4072 /* Fix a few things - the dynamic linker expects certain values here,
4073 and we must not dissappoint it. */
4074 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4075 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4076 && fixP->fx_addsy)
4077 switch (fixP->fx_r_type)
4078 {
4079 case BFD_RELOC_386_PLT32:
4080 /* Make the jump instruction point to the address of the operand. At
4081 runtime we merely add the offset to the actual PLT entry. */
4082 value = -4;
4083 break;
4084 case BFD_RELOC_386_GOTPC:
4085
4086 /* This is tough to explain. We end up with this one if we have
4087 * operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal
4088 * here is to obtain the absolute address of the GOT, and it is strongly
4089 * preferable from a performance point of view to avoid using a runtime
4090 * relocation for this. The actual sequence of instructions often look
4091 * something like:
4092 *
4093 * call .L66
4094 * .L66:
4095 * popl %ebx
4096 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
4097 *
4098 * The call and pop essentially return the absolute address of
4099 * the label .L66 and store it in %ebx. The linker itself will
4100 * ultimately change the first operand of the addl so that %ebx points to
4101 * the GOT, but to keep things simple, the .o file must have this operand
4102 * set so that it generates not the absolute address of .L66, but the
4103 * absolute address of itself. This allows the linker itself simply
4104 * treat a GOTPC relocation as asking for a pcrel offset to the GOT to be
4105 * added in, and the addend of the relocation is stored in the operand
4106 * field for the instruction itself.
4107 *
4108 * Our job here is to fix the operand so that it would add the correct
4109 * offset so that %ebx would point to itself. The thing that is tricky is
4110 * that .-.L66 will point to the beginning of the instruction, so we need
4111 * to further modify the operand so that it will point to itself.
4112 * There are other cases where you have something like:
4113 *
4114 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
4115 *
4116 * and here no correction would be required. Internally in the assembler
4117 * we treat operands of this form as not being pcrel since the '.' is
4118 * explicitly mentioned, and I wonder whether it would simplify matters
4119 * to do it this way. Who knows. In earlier versions of the PIC patches,
4120 * the pcrel_adjust field was used to store the correction, but since the
4121 * expression is not pcrel, I felt it would be confusing to do it this
4122 * way. */
4123
4124 value -= 1;
4125 break;
4126 case BFD_RELOC_386_GOT32:
4127 value = 0; /* Fully resolved at runtime. No addend. */
4128 break;
4129 case BFD_RELOC_386_GOTOFF:
4130 break;
4131
4132 case BFD_RELOC_VTABLE_INHERIT:
4133 case BFD_RELOC_VTABLE_ENTRY:
4134 fixP->fx_done = 0;
4135 return 1;
4136
4137 default:
4138 break;
4139 }
4140 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
4141 *valp = value;
4142 #endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
4143 md_number_to_chars (p, value, fixP->fx_size);
4144
4145 return 1;
4146 }
4147 \f
4148 #define MAX_LITTLENUMS 6
4149
4150 /* Turn the string pointed to by litP into a floating point constant
4151 of type TYPE, and emit the appropriate bytes. The number of
4152 LITTLENUMS emitted is stored in *SIZEP. An error message is
4153 returned, or NULL on OK. */
4154
4155 char *
4156 md_atof (type, litP, sizeP)
4157 int type;
4158 char *litP;
4159 int *sizeP;
4160 {
4161 int prec;
4162 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4163 LITTLENUM_TYPE *wordP;
4164 char *t;
4165
4166 switch (type)
4167 {
4168 case 'f':
4169 case 'F':
4170 prec = 2;
4171 break;
4172
4173 case 'd':
4174 case 'D':
4175 prec = 4;
4176 break;
4177
4178 case 'x':
4179 case 'X':
4180 prec = 5;
4181 break;
4182
4183 default:
4184 *sizeP = 0;
4185 return _("Bad call to md_atof ()");
4186 }
4187 t = atof_ieee (input_line_pointer, type, words);
4188 if (t)
4189 input_line_pointer = t;
4190
4191 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4192 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4193 the bigendian 386. */
4194 for (wordP = words + prec - 1; prec--;)
4195 {
4196 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4197 litP += sizeof (LITTLENUM_TYPE);
4198 }
4199 return 0;
4200 }
4201 \f
4202 char output_invalid_buf[8];
4203
4204 static char *
4205 output_invalid (c)
4206 int c;
4207 {
4208 if (isprint (c))
4209 sprintf (output_invalid_buf, "'%c'", c);
4210 else
4211 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4212 return output_invalid_buf;
4213 }
4214
4215 /* REG_STRING starts *before* REGISTER_PREFIX. */
4216
4217 static const reg_entry *
4218 parse_register (reg_string, end_op)
4219 char *reg_string;
4220 char **end_op;
4221 {
4222 char *s = reg_string;
4223 char *p;
4224 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4225 const reg_entry *r;
4226
4227 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4228 if (*s == REGISTER_PREFIX)
4229 ++s;
4230
4231 if (is_space_char (*s))
4232 ++s;
4233
4234 p = reg_name_given;
4235 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
4236 {
4237 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
4238 return (const reg_entry *) NULL;
4239 s++;
4240 }
4241
4242 /* For naked regs, make sure that we are not dealing with an identifier.
4243 This prevents confusing an identifier like `eax_var' with register
4244 `eax'. */
4245 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
4246 return (const reg_entry *) NULL;
4247
4248 *end_op = s;
4249
4250 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4251
4252 /* Handle floating point regs, allowing spaces in the (i) part. */
4253 if (r == i386_regtab /* %st is first entry of table */)
4254 {
4255 if (is_space_char (*s))
4256 ++s;
4257 if (*s == '(')
4258 {
4259 ++s;
4260 if (is_space_char (*s))
4261 ++s;
4262 if (*s >= '0' && *s <= '7')
4263 {
4264 r = &i386_float_regtab[*s - '0'];
4265 ++s;
4266 if (is_space_char (*s))
4267 ++s;
4268 if (*s == ')')
4269 {
4270 *end_op = s + 1;
4271 return r;
4272 }
4273 }
4274 /* We have "%st(" then garbage. */
4275 return (const reg_entry *) NULL;
4276 }
4277 }
4278
4279 return r;
4280 }
4281 \f
4282 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4283 const char *md_shortopts = "kVQ:sq";
4284 #else
4285 const char *md_shortopts = "q";
4286 #endif
4287 struct option md_longopts[] = {
4288 {NULL, no_argument, NULL, 0}
4289 };
4290 size_t md_longopts_size = sizeof (md_longopts);
4291
4292 int
4293 md_parse_option (c, arg)
4294 int c;
4295 char *arg ATTRIBUTE_UNUSED;
4296 {
4297 switch (c)
4298 {
4299 case 'q':
4300 quiet_warnings = 1;
4301 break;
4302
4303 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4304 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4305 should be emitted or not. FIXME: Not implemented. */
4306 case 'Q':
4307 break;
4308
4309 /* -V: SVR4 argument to print version ID. */
4310 case 'V':
4311 print_version_id ();
4312 break;
4313
4314 /* -k: Ignore for FreeBSD compatibility. */
4315 case 'k':
4316 break;
4317
4318 case 's':
4319 /* -s: On i386 Solaris, this tells the native assembler to use
4320 .stab instead of .stab.excl. We always use .stab anyhow. */
4321 break;
4322 #endif
4323
4324 default:
4325 return 0;
4326 }
4327 return 1;
4328 }
4329
4330 void
4331 md_show_usage (stream)
4332 FILE *stream;
4333 {
4334 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4335 fprintf (stream, _("\
4336 -Q ignored\n\
4337 -V print assembler version number\n\
4338 -k ignored\n\
4339 -q quieten some warnings\n\
4340 -s ignored\n"));
4341 #else
4342 fprintf (stream, _("\
4343 -q quieten some warnings\n"));
4344 #endif
4345 }
4346
4347 #ifdef BFD_ASSEMBLER
4348 #if ((defined (OBJ_MAYBE_ELF) && defined (OBJ_MAYBE_COFF)) \
4349 || (defined (OBJ_MAYBE_ELF) && defined (OBJ_MAYBE_AOUT)) \
4350 || (defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)))
4351
4352 /* Pick the target format to use. */
4353
4354 const char *
4355 i386_target_format ()
4356 {
4357 switch (OUTPUT_FLAVOR)
4358 {
4359 #ifdef OBJ_MAYBE_AOUT
4360 case bfd_target_aout_flavour:
4361 return AOUT_TARGET_FORMAT;
4362 #endif
4363 #ifdef OBJ_MAYBE_COFF
4364 case bfd_target_coff_flavour:
4365 return "coff-i386";
4366 #endif
4367 #ifdef OBJ_MAYBE_ELF
4368 case bfd_target_elf_flavour:
4369 return "elf32-i386";
4370 #endif
4371 default:
4372 abort ();
4373 return NULL;
4374 }
4375 }
4376
4377 #endif /* OBJ_MAYBE_ more than one */
4378 #endif /* BFD_ASSEMBLER */
4379 \f
4380 symbolS *
4381 md_undefined_symbol (name)
4382 char *name;
4383 {
4384 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
4385 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
4386 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
4387 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
4388 {
4389 if (!GOT_symbol)
4390 {
4391 if (symbol_find (name))
4392 as_bad (_("GOT already in symbol table"));
4393 GOT_symbol = symbol_new (name, undefined_section,
4394 (valueT) 0, &zero_address_frag);
4395 };
4396 return GOT_symbol;
4397 }
4398 return 0;
4399 }
4400
4401 /* Round up a section size to the appropriate boundary. */
4402
4403 valueT
4404 md_section_align (segment, size)
4405 segT segment ATTRIBUTE_UNUSED;
4406 valueT size;
4407 {
4408 #ifdef BFD_ASSEMBLER
4409 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4410 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
4411 {
4412 /* For a.out, force the section size to be aligned. If we don't do
4413 this, BFD will align it for us, but it will not write out the
4414 final bytes of the section. This may be a bug in BFD, but it is
4415 easier to fix it here since that is how the other a.out targets
4416 work. */
4417 int align;
4418
4419 align = bfd_get_section_alignment (stdoutput, segment);
4420 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
4421 }
4422 #endif
4423 #endif
4424
4425 return size;
4426 }
4427
4428 /* On the i386, PC-relative offsets are relative to the start of the
4429 next instruction. That is, the address of the offset, plus its
4430 size, since the offset is always the last part of the insn. */
4431
4432 long
4433 md_pcrel_from (fixP)
4434 fixS *fixP;
4435 {
4436 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
4437 }
4438
4439 #ifndef I386COFF
4440
4441 static void
4442 s_bss (ignore)
4443 int ignore ATTRIBUTE_UNUSED;
4444 {
4445 register int temp;
4446
4447 temp = get_absolute_expression ();
4448 subseg_set (bss_section, (subsegT) temp);
4449 demand_empty_rest_of_line ();
4450 }
4451
4452 #endif
4453
4454 #ifdef BFD_ASSEMBLER
4455
4456 void
4457 i386_validate_fix (fixp)
4458 fixS *fixp;
4459 {
4460 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
4461 {
4462 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
4463 fixp->fx_subsy = 0;
4464 }
4465 }
4466
4467 arelent *
4468 tc_gen_reloc (section, fixp)
4469 asection *section ATTRIBUTE_UNUSED;
4470 fixS *fixp;
4471 {
4472 arelent *rel;
4473 bfd_reloc_code_real_type code;
4474
4475 switch (fixp->fx_r_type)
4476 {
4477 case BFD_RELOC_386_PLT32:
4478 case BFD_RELOC_386_GOT32:
4479 case BFD_RELOC_386_GOTOFF:
4480 case BFD_RELOC_386_GOTPC:
4481 case BFD_RELOC_RVA:
4482 case BFD_RELOC_VTABLE_ENTRY:
4483 case BFD_RELOC_VTABLE_INHERIT:
4484 code = fixp->fx_r_type;
4485 break;
4486 default:
4487 if (fixp->fx_pcrel)
4488 {
4489 switch (fixp->fx_size)
4490 {
4491 default:
4492 as_bad (_("can not do %d byte pc-relative relocation"),
4493 fixp->fx_size);
4494 code = BFD_RELOC_32_PCREL;
4495 break;
4496 case 1: code = BFD_RELOC_8_PCREL; break;
4497 case 2: code = BFD_RELOC_16_PCREL; break;
4498 case 4: code = BFD_RELOC_32_PCREL; break;
4499 }
4500 }
4501 else
4502 {
4503 switch (fixp->fx_size)
4504 {
4505 default:
4506 as_bad (_("can not do %d byte relocation"), fixp->fx_size);
4507 code = BFD_RELOC_32;
4508 break;
4509 case 1: code = BFD_RELOC_8; break;
4510 case 2: code = BFD_RELOC_16; break;
4511 case 4: code = BFD_RELOC_32; break;
4512 }
4513 }
4514 break;
4515 }
4516
4517 if (code == BFD_RELOC_32
4518 && GOT_symbol
4519 && fixp->fx_addsy == GOT_symbol)
4520 code = BFD_RELOC_386_GOTPC;
4521
4522 rel = (arelent *) xmalloc (sizeof (arelent));
4523 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
4524 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
4525
4526 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
4527 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
4528 vtable entry to be used in the relocation's section offset. */
4529 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
4530 rel->address = fixp->fx_offset;
4531
4532 if (fixp->fx_pcrel)
4533 rel->addend = fixp->fx_addnumber;
4534 else
4535 rel->addend = 0;
4536
4537 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
4538 if (rel->howto == NULL)
4539 {
4540 as_bad_where (fixp->fx_file, fixp->fx_line,
4541 _("cannot represent relocation type %s"),
4542 bfd_get_reloc_code_name (code));
4543 /* Set howto to a garbage value so that we can keep going. */
4544 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
4545 assert (rel->howto != NULL);
4546 }
4547
4548 return rel;
4549 }
4550
4551 #else /* ! BFD_ASSEMBLER */
4552
4553 #if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
4554 void
4555 tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
4556 char *where;
4557 fixS *fixP;
4558 relax_addressT segment_address_in_file;
4559 {
4560 /* In: length of relocation (or of address) in chars: 1, 2 or 4.
4561 Out: GNU LD relocation length code: 0, 1, or 2. */
4562
4563 static const unsigned char nbytes_r_length[] = { 42, 0, 1, 42, 2 };
4564 long r_symbolnum;
4565
4566 know (fixP->fx_addsy != NULL);
4567
4568 md_number_to_chars (where,
4569 (valueT) (fixP->fx_frag->fr_address
4570 + fixP->fx_where - segment_address_in_file),
4571 4);
4572
4573 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
4574 ? S_GET_TYPE (fixP->fx_addsy)
4575 : fixP->fx_addsy->sy_number);
4576
4577 where[6] = (r_symbolnum >> 16) & 0x0ff;
4578 where[5] = (r_symbolnum >> 8) & 0x0ff;
4579 where[4] = r_symbolnum & 0x0ff;
4580 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
4581 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
4582 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
4583 }
4584
4585 #endif /* OBJ_AOUT or OBJ_BOUT. */
4586
4587 #if defined (I386COFF)
4588
4589 short
4590 tc_coff_fix2rtype (fixP)
4591 fixS *fixP;
4592 {
4593 if (fixP->fx_r_type == R_IMAGEBASE)
4594 return R_IMAGEBASE;
4595
4596 return (fixP->fx_pcrel ?
4597 (fixP->fx_size == 1 ? R_PCRBYTE :
4598 fixP->fx_size == 2 ? R_PCRWORD :
4599 R_PCRLONG) :
4600 (fixP->fx_size == 1 ? R_RELBYTE :
4601 fixP->fx_size == 2 ? R_RELWORD :
4602 R_DIR32));
4603 }
4604
4605 int
4606 tc_coff_sizemachdep (frag)
4607 fragS *frag;
4608 {
4609 if (frag->fr_next)
4610 return (frag->fr_next->fr_address - frag->fr_address);
4611 else
4612 return 0;
4613 }
4614
4615 #endif /* I386COFF */
4616
4617 #endif /* ! BFD_ASSEMBLER */
This page took 0.119777 seconds and 5 git commands to generate.