* config/tc-i386.c (lex_got): Don't scan past a comma.
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
29
30 #include "as.h"
31 #include "safe-ctype.h"
32 #include "subsegs.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "elf/x86-64.h"
36
37 #ifndef REGISTER_WARNINGS
38 #define REGISTER_WARNINGS 1
39 #endif
40
41 #ifndef INFER_ADDR_PREFIX
42 #define INFER_ADDR_PREFIX 1
43 #endif
44
45 #ifndef SCALE1_WHEN_NO_INDEX
46 /* Specifying a scale factor besides 1 when there is no index is
47 futile. eg. `mov (%ebx,2),%al' does exactly the same as
48 `mov (%ebx),%al'. To slavishly follow what the programmer
49 specified, set SCALE1_WHEN_NO_INDEX to 0. */
50 #define SCALE1_WHEN_NO_INDEX 1
51 #endif
52
53 #ifndef DEFAULT_ARCH
54 #define DEFAULT_ARCH "i386"
55 #endif
56
57 #ifndef INLINE
58 #if __GNUC__ >= 2
59 #define INLINE __inline__
60 #else
61 #define INLINE
62 #endif
63 #endif
64
65 static void set_code_flag (int);
66 static void set_16bit_gcc_code_flag (int);
67 static void set_intel_syntax (int);
68 static void set_cpu_arch (int);
69 #ifdef TE_PE
70 static void pe_directive_secrel (int);
71 #endif
72 static void signed_cons (int);
73 static char *output_invalid (int c);
74 static int i386_operand (char *);
75 static int i386_intel_operand (char *, int);
76 static const reg_entry *parse_register (char *, char **);
77 static char *parse_insn (char *, char *);
78 static char *parse_operands (char *, const char *);
79 static void swap_operands (void);
80 static void swap_2_operands (int, int);
81 static void optimize_imm (void);
82 static void optimize_disp (void);
83 static int match_template (void);
84 static int check_string (void);
85 static int process_suffix (void);
86 static int check_byte_reg (void);
87 static int check_long_reg (void);
88 static int check_qword_reg (void);
89 static int check_word_reg (void);
90 static int finalize_imm (void);
91 static int process_operands (void);
92 static const seg_entry *build_modrm_byte (void);
93 static void output_insn (void);
94 static void output_imm (fragS *, offsetT);
95 static void output_disp (fragS *, offsetT);
96 #ifndef I386COFF
97 static void s_bss (int);
98 #endif
99 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
100 static void handle_large_common (int small ATTRIBUTE_UNUSED);
101 #endif
102
103 static const char *default_arch = DEFAULT_ARCH;
104
105 /* 'md_assemble ()' gathers together information and puts it into a
106 i386_insn. */
107
108 union i386_op
109 {
110 expressionS *disps;
111 expressionS *imms;
112 const reg_entry *regs;
113 };
114
115 struct _i386_insn
116 {
117 /* TM holds the template for the insn were currently assembling. */
118 template tm;
119
120 /* SUFFIX holds the instruction mnemonic suffix if given.
121 (e.g. 'l' for 'movl') */
122 char suffix;
123
124 /* OPERANDS gives the number of given operands. */
125 unsigned int operands;
126
127 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
128 of given register, displacement, memory operands and immediate
129 operands. */
130 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
131
132 /* TYPES [i] is the type (see above #defines) which tells us how to
133 use OP[i] for the corresponding operand. */
134 unsigned int types[MAX_OPERANDS];
135
136 /* Displacement expression, immediate expression, or register for each
137 operand. */
138 union i386_op op[MAX_OPERANDS];
139
140 /* Flags for operands. */
141 unsigned int flags[MAX_OPERANDS];
142 #define Operand_PCrel 1
143
144 /* Relocation type for operand */
145 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
146
147 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
148 the base index byte below. */
149 const reg_entry *base_reg;
150 const reg_entry *index_reg;
151 unsigned int log2_scale_factor;
152
153 /* SEG gives the seg_entries of this insn. They are zero unless
154 explicit segment overrides are given. */
155 const seg_entry *seg[2];
156
157 /* PREFIX holds all the given prefix opcodes (usually null).
158 PREFIXES is the number of prefix opcodes. */
159 unsigned int prefixes;
160 unsigned char prefix[MAX_PREFIXES];
161
162 /* RM and SIB are the modrm byte and the sib byte where the
163 addressing modes of this insn are encoded. */
164
165 modrm_byte rm;
166 rex_byte rex;
167 sib_byte sib;
168 };
169
170 typedef struct _i386_insn i386_insn;
171
172 /* List of chars besides those in app.c:symbol_chars that can start an
173 operand. Used to prevent the scrubber eating vital white-space. */
174 const char extra_symbol_chars[] = "*%-(["
175 #ifdef LEX_AT
176 "@"
177 #endif
178 #ifdef LEX_QM
179 "?"
180 #endif
181 ;
182
183 #if (defined (TE_I386AIX) \
184 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
185 && !defined (TE_GNU) \
186 && !defined (TE_LINUX) \
187 && !defined (TE_NETWARE) \
188 && !defined (TE_FreeBSD) \
189 && !defined (TE_NetBSD)))
190 /* This array holds the chars that always start a comment. If the
191 pre-processor is disabled, these aren't very useful. The option
192 --divide will remove '/' from this list. */
193 const char *i386_comment_chars = "#/";
194 #define SVR4_COMMENT_CHARS 1
195 #define PREFIX_SEPARATOR '\\'
196
197 #else
198 const char *i386_comment_chars = "#";
199 #define PREFIX_SEPARATOR '/'
200 #endif
201
202 /* This array holds the chars that only start a comment at the beginning of
203 a line. If the line seems to have the form '# 123 filename'
204 .line and .file directives will appear in the pre-processed output.
205 Note that input_file.c hand checks for '#' at the beginning of the
206 first line of the input file. This is because the compiler outputs
207 #NO_APP at the beginning of its output.
208 Also note that comments started like this one will always work if
209 '/' isn't otherwise defined. */
210 const char line_comment_chars[] = "#/";
211
212 const char line_separator_chars[] = ";";
213
214 /* Chars that can be used to separate mant from exp in floating point
215 nums. */
216 const char EXP_CHARS[] = "eE";
217
218 /* Chars that mean this number is a floating point constant
219 As in 0f12.456
220 or 0d1.2345e12. */
221 const char FLT_CHARS[] = "fFdDxX";
222
223 /* Tables for lexical analysis. */
224 static char mnemonic_chars[256];
225 static char register_chars[256];
226 static char operand_chars[256];
227 static char identifier_chars[256];
228 static char digit_chars[256];
229
230 /* Lexical macros. */
231 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
232 #define is_operand_char(x) (operand_chars[(unsigned char) x])
233 #define is_register_char(x) (register_chars[(unsigned char) x])
234 #define is_space_char(x) ((x) == ' ')
235 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
236 #define is_digit_char(x) (digit_chars[(unsigned char) x])
237
238 /* All non-digit non-letter characters that may occur in an operand. */
239 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
240
241 /* md_assemble() always leaves the strings it's passed unaltered. To
242 effect this we maintain a stack of saved characters that we've smashed
243 with '\0's (indicating end of strings for various sub-fields of the
244 assembler instruction). */
245 static char save_stack[32];
246 static char *save_stack_p;
247 #define END_STRING_AND_SAVE(s) \
248 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
249 #define RESTORE_END_STRING(s) \
250 do { *(s) = *--save_stack_p; } while (0)
251
252 /* The instruction we're assembling. */
253 static i386_insn i;
254
255 /* Possible templates for current insn. */
256 static const templates *current_templates;
257
258 /* Per instruction expressionS buffers: max displacements & immediates. */
259 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
260 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
261
262 /* Current operand we are working on. */
263 static int this_operand;
264
265 /* We support four different modes. FLAG_CODE variable is used to distinguish
266 these. */
267
268 enum flag_code {
269 CODE_32BIT,
270 CODE_16BIT,
271 CODE_64BIT };
272 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
273
274 static enum flag_code flag_code;
275 static unsigned int object_64bit;
276 static int use_rela_relocations = 0;
277
278 /* The names used to print error messages. */
279 static const char *flag_code_names[] =
280 {
281 "32",
282 "16",
283 "64"
284 };
285
286 /* 1 for intel syntax,
287 0 if att syntax. */
288 static int intel_syntax = 0;
289
290 /* 1 if register prefix % not required. */
291 static int allow_naked_reg = 0;
292
293 /* Register prefix used for error message. */
294 static const char *register_prefix = "%";
295
296 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
297 leave, push, and pop instructions so that gcc has the same stack
298 frame as in 32 bit mode. */
299 static char stackop_size = '\0';
300
301 /* Non-zero to optimize code alignment. */
302 int optimize_align_code = 1;
303
304 /* Non-zero to quieten some warnings. */
305 static int quiet_warnings = 0;
306
307 /* CPU name. */
308 static const char *cpu_arch_name = NULL;
309 static const char *cpu_sub_arch_name = NULL;
310
311 /* CPU feature flags. */
312 static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
313
314 /* If we have selected a cpu we are generating instructions for. */
315 static int cpu_arch_tune_set = 0;
316
317 /* Cpu we are generating instructions for. */
318 static enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
319
320 /* CPU feature flags of cpu we are generating instructions for. */
321 static unsigned int cpu_arch_tune_flags = 0;
322
323 /* CPU instruction set architecture used. */
324 static enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
325
326 /* CPU feature flags of instruction set architecture used. */
327 static unsigned int cpu_arch_isa_flags = 0;
328
329 /* If set, conditional jumps are not automatically promoted to handle
330 larger than a byte offset. */
331 static unsigned int no_cond_jump_promotion = 0;
332
333 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
334 static symbolS *GOT_symbol;
335
336 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
337 unsigned int x86_dwarf2_return_column;
338
339 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
340 int x86_cie_data_alignment;
341
342 /* Interface to relax_segment.
343 There are 3 major relax states for 386 jump insns because the
344 different types of jumps add different sizes to frags when we're
345 figuring out what sort of jump to choose to reach a given label. */
346
347 /* Types. */
348 #define UNCOND_JUMP 0
349 #define COND_JUMP 1
350 #define COND_JUMP86 2
351
352 /* Sizes. */
353 #define CODE16 1
354 #define SMALL 0
355 #define SMALL16 (SMALL | CODE16)
356 #define BIG 2
357 #define BIG16 (BIG | CODE16)
358
359 #ifndef INLINE
360 #ifdef __GNUC__
361 #define INLINE __inline__
362 #else
363 #define INLINE
364 #endif
365 #endif
366
367 #define ENCODE_RELAX_STATE(type, size) \
368 ((relax_substateT) (((type) << 2) | (size)))
369 #define TYPE_FROM_RELAX_STATE(s) \
370 ((s) >> 2)
371 #define DISP_SIZE_FROM_RELAX_STATE(s) \
372 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
373
374 /* This table is used by relax_frag to promote short jumps to long
375 ones where necessary. SMALL (short) jumps may be promoted to BIG
376 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
377 don't allow a short jump in a 32 bit code segment to be promoted to
378 a 16 bit offset jump because it's slower (requires data size
379 prefix), and doesn't work, unless the destination is in the bottom
380 64k of the code segment (The top 16 bits of eip are zeroed). */
381
382 const relax_typeS md_relax_table[] =
383 {
384 /* The fields are:
385 1) most positive reach of this state,
386 2) most negative reach of this state,
387 3) how many bytes this mode will have in the variable part of the frag
388 4) which index into the table to try if we can't fit into this one. */
389
390 /* UNCOND_JUMP states. */
391 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
392 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
393 /* dword jmp adds 4 bytes to frag:
394 0 extra opcode bytes, 4 displacement bytes. */
395 {0, 0, 4, 0},
396 /* word jmp adds 2 byte2 to frag:
397 0 extra opcode bytes, 2 displacement bytes. */
398 {0, 0, 2, 0},
399
400 /* COND_JUMP states. */
401 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
402 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
403 /* dword conditionals adds 5 bytes to frag:
404 1 extra opcode byte, 4 displacement bytes. */
405 {0, 0, 5, 0},
406 /* word conditionals add 3 bytes to frag:
407 1 extra opcode byte, 2 displacement bytes. */
408 {0, 0, 3, 0},
409
410 /* COND_JUMP86 states. */
411 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
412 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
413 /* dword conditionals adds 5 bytes to frag:
414 1 extra opcode byte, 4 displacement bytes. */
415 {0, 0, 5, 0},
416 /* word conditionals add 4 bytes to frag:
417 1 displacement byte and a 3 byte long branch insn. */
418 {0, 0, 4, 0}
419 };
420
421 static const arch_entry cpu_arch[] =
422 {
423 {"generic32", PROCESSOR_GENERIC32,
424 Cpu186|Cpu286|Cpu386},
425 {"generic64", PROCESSOR_GENERIC64,
426 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
427 |CpuMMX2|CpuSSE|CpuSSE2},
428 {"i8086", PROCESSOR_UNKNOWN,
429 0},
430 {"i186", PROCESSOR_UNKNOWN,
431 Cpu186},
432 {"i286", PROCESSOR_UNKNOWN,
433 Cpu186|Cpu286},
434 {"i386", PROCESSOR_I386,
435 Cpu186|Cpu286|Cpu386},
436 {"i486", PROCESSOR_I486,
437 Cpu186|Cpu286|Cpu386|Cpu486},
438 {"i586", PROCESSOR_PENTIUM,
439 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586},
440 {"i686", PROCESSOR_PENTIUMPRO,
441 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686},
442 {"pentium", PROCESSOR_PENTIUM,
443 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586},
444 {"pentiumpro",PROCESSOR_PENTIUMPRO,
445 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686},
446 {"pentiumii", PROCESSOR_PENTIUMPRO,
447 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX},
448 {"pentiumiii",PROCESSOR_PENTIUMPRO,
449 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuMMX2|CpuSSE},
450 {"pentium4", PROCESSOR_PENTIUM4,
451 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
452 |CpuMMX2|CpuSSE|CpuSSE2},
453 {"prescott", PROCESSOR_NOCONA,
454 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
455 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
456 {"nocona", PROCESSOR_NOCONA,
457 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
458 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
459 {"yonah", PROCESSOR_CORE,
460 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
461 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
462 {"core", PROCESSOR_CORE,
463 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
464 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
465 {"merom", PROCESSOR_CORE2,
466 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
467 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
468 {"core2", PROCESSOR_CORE2,
469 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
470 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
471 {"k6", PROCESSOR_K6,
472 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX},
473 {"k6_2", PROCESSOR_K6,
474 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow},
475 {"athlon", PROCESSOR_ATHLON,
476 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
477 |CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA},
478 {"sledgehammer", PROCESSOR_K8,
479 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
480 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
481 {"opteron", PROCESSOR_K8,
482 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
483 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
484 {"k8", PROCESSOR_K8,
485 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
486 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
487 {"amdfam10", PROCESSOR_AMDFAM10,
488 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuSledgehammer
489 |CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2|CpuSSE3|CpuSSE4a
490 |CpuABM},
491 {".mmx", PROCESSOR_UNKNOWN,
492 CpuMMX},
493 {".sse", PROCESSOR_UNKNOWN,
494 CpuMMX|CpuMMX2|CpuSSE},
495 {".sse2", PROCESSOR_UNKNOWN,
496 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2},
497 {".sse3", PROCESSOR_UNKNOWN,
498 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
499 {".ssse3", PROCESSOR_UNKNOWN,
500 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
501 {".sse4.1", PROCESSOR_UNKNOWN,
502 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3|CpuSSE4_1},
503 {".sse4.2", PROCESSOR_UNKNOWN,
504 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3|CpuSSE4},
505 {".sse4", PROCESSOR_UNKNOWN,
506 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3|CpuSSE4},
507 {".3dnow", PROCESSOR_UNKNOWN,
508 CpuMMX|Cpu3dnow},
509 {".3dnowa", PROCESSOR_UNKNOWN,
510 CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA},
511 {".padlock", PROCESSOR_UNKNOWN,
512 CpuPadLock},
513 {".pacifica", PROCESSOR_UNKNOWN,
514 CpuSVME},
515 {".svme", PROCESSOR_UNKNOWN,
516 CpuSVME},
517 {".sse4a", PROCESSOR_UNKNOWN,
518 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSE4a},
519 {".abm", PROCESSOR_UNKNOWN,
520 CpuABM}
521 };
522
523 const pseudo_typeS md_pseudo_table[] =
524 {
525 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
526 {"align", s_align_bytes, 0},
527 #else
528 {"align", s_align_ptwo, 0},
529 #endif
530 {"arch", set_cpu_arch, 0},
531 #ifndef I386COFF
532 {"bss", s_bss, 0},
533 #endif
534 {"ffloat", float_cons, 'f'},
535 {"dfloat", float_cons, 'd'},
536 {"tfloat", float_cons, 'x'},
537 {"value", cons, 2},
538 {"slong", signed_cons, 4},
539 {"noopt", s_ignore, 0},
540 {"optim", s_ignore, 0},
541 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
542 {"code16", set_code_flag, CODE_16BIT},
543 {"code32", set_code_flag, CODE_32BIT},
544 {"code64", set_code_flag, CODE_64BIT},
545 {"intel_syntax", set_intel_syntax, 1},
546 {"att_syntax", set_intel_syntax, 0},
547 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
548 {"largecomm", handle_large_common, 0},
549 #else
550 {"file", (void (*) (int)) dwarf2_directive_file, 0},
551 {"loc", dwarf2_directive_loc, 0},
552 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
553 #endif
554 #ifdef TE_PE
555 {"secrel32", pe_directive_secrel, 0},
556 #endif
557 {0, 0, 0}
558 };
559
560 /* For interface with expression (). */
561 extern char *input_line_pointer;
562
563 /* Hash table for instruction mnemonic lookup. */
564 static struct hash_control *op_hash;
565
566 /* Hash table for register lookup. */
567 static struct hash_control *reg_hash;
568 \f
569 void
570 i386_align_code (fragS *fragP, int count)
571 {
572 /* Various efficient no-op patterns for aligning code labels.
573 Note: Don't try to assemble the instructions in the comments.
574 0L and 0w are not legal. */
575 static const char f32_1[] =
576 {0x90}; /* nop */
577 static const char f32_2[] =
578 {0x66,0x90}; /* xchg %ax,%ax */
579 static const char f32_3[] =
580 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
581 static const char f32_4[] =
582 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
583 static const char f32_5[] =
584 {0x90, /* nop */
585 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
586 static const char f32_6[] =
587 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
588 static const char f32_7[] =
589 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
590 static const char f32_8[] =
591 {0x90, /* nop */
592 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
593 static const char f32_9[] =
594 {0x89,0xf6, /* movl %esi,%esi */
595 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
596 static const char f32_10[] =
597 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
598 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
599 static const char f32_11[] =
600 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
601 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
602 static const char f32_12[] =
603 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
604 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
605 static const char f32_13[] =
606 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
607 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
608 static const char f32_14[] =
609 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
610 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
611 static const char f16_3[] =
612 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
613 static const char f16_4[] =
614 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
615 static const char f16_5[] =
616 {0x90, /* nop */
617 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
618 static const char f16_6[] =
619 {0x89,0xf6, /* mov %si,%si */
620 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
621 static const char f16_7[] =
622 {0x8d,0x74,0x00, /* lea 0(%si),%si */
623 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
624 static const char f16_8[] =
625 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
626 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
627 static const char jump_31[] =
628 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
629 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
630 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
631 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
632 static const char *const f32_patt[] = {
633 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
634 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
635 };
636 static const char *const f16_patt[] = {
637 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
638 };
639 /* nopl (%[re]ax) */
640 static const char alt_3[] =
641 {0x0f,0x1f,0x00};
642 /* nopl 0(%[re]ax) */
643 static const char alt_4[] =
644 {0x0f,0x1f,0x40,0x00};
645 /* nopl 0(%[re]ax,%[re]ax,1) */
646 static const char alt_5[] =
647 {0x0f,0x1f,0x44,0x00,0x00};
648 /* nopw 0(%[re]ax,%[re]ax,1) */
649 static const char alt_6[] =
650 {0x66,0x0f,0x1f,0x44,0x00,0x00};
651 /* nopl 0L(%[re]ax) */
652 static const char alt_7[] =
653 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
654 /* nopl 0L(%[re]ax,%[re]ax,1) */
655 static const char alt_8[] =
656 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
657 /* nopw 0L(%[re]ax,%[re]ax,1) */
658 static const char alt_9[] =
659 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
660 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
661 static const char alt_10[] =
662 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
663 /* data16
664 nopw %cs:0L(%[re]ax,%[re]ax,1) */
665 static const char alt_long_11[] =
666 {0x66,
667 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
668 /* data16
669 data16
670 nopw %cs:0L(%[re]ax,%[re]ax,1) */
671 static const char alt_long_12[] =
672 {0x66,
673 0x66,
674 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
675 /* data16
676 data16
677 data16
678 nopw %cs:0L(%[re]ax,%[re]ax,1) */
679 static const char alt_long_13[] =
680 {0x66,
681 0x66,
682 0x66,
683 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
684 /* data16
685 data16
686 data16
687 data16
688 nopw %cs:0L(%[re]ax,%[re]ax,1) */
689 static const char alt_long_14[] =
690 {0x66,
691 0x66,
692 0x66,
693 0x66,
694 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
695 /* data16
696 data16
697 data16
698 data16
699 data16
700 nopw %cs:0L(%[re]ax,%[re]ax,1) */
701 static const char alt_long_15[] =
702 {0x66,
703 0x66,
704 0x66,
705 0x66,
706 0x66,
707 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
708 /* nopl 0(%[re]ax,%[re]ax,1)
709 nopw 0(%[re]ax,%[re]ax,1) */
710 static const char alt_short_11[] =
711 {0x0f,0x1f,0x44,0x00,0x00,
712 0x66,0x0f,0x1f,0x44,0x00,0x00};
713 /* nopw 0(%[re]ax,%[re]ax,1)
714 nopw 0(%[re]ax,%[re]ax,1) */
715 static const char alt_short_12[] =
716 {0x66,0x0f,0x1f,0x44,0x00,0x00,
717 0x66,0x0f,0x1f,0x44,0x00,0x00};
718 /* nopw 0(%[re]ax,%[re]ax,1)
719 nopl 0L(%[re]ax) */
720 static const char alt_short_13[] =
721 {0x66,0x0f,0x1f,0x44,0x00,0x00,
722 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
723 /* nopl 0L(%[re]ax)
724 nopl 0L(%[re]ax) */
725 static const char alt_short_14[] =
726 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
727 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
728 /* nopl 0L(%[re]ax)
729 nopl 0L(%[re]ax,%[re]ax,1) */
730 static const char alt_short_15[] =
731 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
732 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
733 static const char *const alt_short_patt[] = {
734 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
735 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
736 alt_short_14, alt_short_15
737 };
738 static const char *const alt_long_patt[] = {
739 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
740 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
741 alt_long_14, alt_long_15
742 };
743
744 /* Only align for at least a positive non-zero boundary. */
745 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
746 return;
747
748 /* We need to decide which NOP sequence to use for 32bit and
749 64bit. When -mtune= is used:
750
751 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
752 PROCESSOR_GENERIC32, f32_patt will be used.
753 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
754 PROCESSOR_CORE, PROCESSOR_CORE2, and PROCESSOR_GENERIC64,
755 alt_long_patt will be used.
756 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
757 PROCESSOR_AMDFAM10, alt_short_patt will be used.
758
759 When -mtune= isn't used, alt_long_patt will be used if
760 cpu_arch_isa_flags has Cpu686. Otherwise, f32_patt will
761 be used.
762
763 When -march= or .arch is used, we can't use anything beyond
764 cpu_arch_isa_flags. */
765
766 if (flag_code == CODE_16BIT)
767 {
768 if (count > 8)
769 {
770 memcpy (fragP->fr_literal + fragP->fr_fix,
771 jump_31, count);
772 /* Adjust jump offset. */
773 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
774 }
775 else
776 memcpy (fragP->fr_literal + fragP->fr_fix,
777 f16_patt[count - 1], count);
778 }
779 else
780 {
781 const char *const *patt = NULL;
782
783 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
784 {
785 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
786 switch (cpu_arch_tune)
787 {
788 case PROCESSOR_UNKNOWN:
789 /* We use cpu_arch_isa_flags to check if we SHOULD
790 optimize for Cpu686. */
791 if ((cpu_arch_isa_flags & Cpu686) != 0)
792 patt = alt_long_patt;
793 else
794 patt = f32_patt;
795 break;
796 case PROCESSOR_PENTIUMPRO:
797 case PROCESSOR_PENTIUM4:
798 case PROCESSOR_NOCONA:
799 case PROCESSOR_CORE:
800 case PROCESSOR_CORE2:
801 case PROCESSOR_GENERIC64:
802 patt = alt_long_patt;
803 break;
804 case PROCESSOR_K6:
805 case PROCESSOR_ATHLON:
806 case PROCESSOR_K8:
807 case PROCESSOR_AMDFAM10:
808 patt = alt_short_patt;
809 break;
810 case PROCESSOR_I386:
811 case PROCESSOR_I486:
812 case PROCESSOR_PENTIUM:
813 case PROCESSOR_GENERIC32:
814 patt = f32_patt;
815 break;
816 }
817 }
818 else
819 {
820 switch (cpu_arch_tune)
821 {
822 case PROCESSOR_UNKNOWN:
823 /* When cpu_arch_isa is net, cpu_arch_tune shouldn't be
824 PROCESSOR_UNKNOWN. */
825 abort ();
826 break;
827
828 case PROCESSOR_I386:
829 case PROCESSOR_I486:
830 case PROCESSOR_PENTIUM:
831 case PROCESSOR_K6:
832 case PROCESSOR_ATHLON:
833 case PROCESSOR_K8:
834 case PROCESSOR_AMDFAM10:
835 case PROCESSOR_GENERIC32:
836 /* We use cpu_arch_isa_flags to check if we CAN optimize
837 for Cpu686. */
838 if ((cpu_arch_isa_flags & Cpu686) != 0)
839 patt = alt_short_patt;
840 else
841 patt = f32_patt;
842 break;
843 case PROCESSOR_PENTIUMPRO:
844 case PROCESSOR_PENTIUM4:
845 case PROCESSOR_NOCONA:
846 case PROCESSOR_CORE:
847 case PROCESSOR_CORE2:
848 if ((cpu_arch_isa_flags & Cpu686) != 0)
849 patt = alt_long_patt;
850 else
851 patt = f32_patt;
852 break;
853 case PROCESSOR_GENERIC64:
854 patt = alt_long_patt;
855 break;
856 }
857 }
858
859 if (patt == f32_patt)
860 {
861 /* If the padding is less than 15 bytes, we use the normal
862 ones. Otherwise, we use a jump instruction and adjust
863 its offset. */
864 if (count < 15)
865 memcpy (fragP->fr_literal + fragP->fr_fix,
866 patt[count - 1], count);
867 else
868 {
869 memcpy (fragP->fr_literal + fragP->fr_fix,
870 jump_31, count);
871 /* Adjust jump offset. */
872 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
873 }
874 }
875 else
876 {
877 /* Maximum length of an instruction is 15 byte. If the
878 padding is greater than 15 bytes and we don't use jump,
879 we have to break it into smaller pieces. */
880 int padding = count;
881 while (padding > 15)
882 {
883 padding -= 15;
884 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
885 patt [14], 15);
886 }
887
888 if (padding)
889 memcpy (fragP->fr_literal + fragP->fr_fix,
890 patt [padding - 1], padding);
891 }
892 }
893 fragP->fr_var = count;
894 }
895
896 static INLINE unsigned int
897 mode_from_disp_size (unsigned int t)
898 {
899 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
900 }
901
902 static INLINE int
903 fits_in_signed_byte (offsetT num)
904 {
905 return (num >= -128) && (num <= 127);
906 }
907
908 static INLINE int
909 fits_in_unsigned_byte (offsetT num)
910 {
911 return (num & 0xff) == num;
912 }
913
914 static INLINE int
915 fits_in_unsigned_word (offsetT num)
916 {
917 return (num & 0xffff) == num;
918 }
919
920 static INLINE int
921 fits_in_signed_word (offsetT num)
922 {
923 return (-32768 <= num) && (num <= 32767);
924 }
925
926 static INLINE int
927 fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
928 {
929 #ifndef BFD64
930 return 1;
931 #else
932 return (!(((offsetT) -1 << 31) & num)
933 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
934 #endif
935 } /* fits_in_signed_long() */
936
937 static INLINE int
938 fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
939 {
940 #ifndef BFD64
941 return 1;
942 #else
943 return (num & (((offsetT) 2 << 31) - 1)) == num;
944 #endif
945 } /* fits_in_unsigned_long() */
946
947 static unsigned int
948 smallest_imm_type (offsetT num)
949 {
950 if (cpu_arch_flags != (Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
951 {
952 /* This code is disabled on the 486 because all the Imm1 forms
953 in the opcode table are slower on the i486. They're the
954 versions with the implicitly specified single-position
955 displacement, which has another syntax if you really want to
956 use that form. */
957 if (num == 1)
958 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
959 }
960 return (fits_in_signed_byte (num)
961 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
962 : fits_in_unsigned_byte (num)
963 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
964 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
965 ? (Imm16 | Imm32 | Imm32S | Imm64)
966 : fits_in_signed_long (num)
967 ? (Imm32 | Imm32S | Imm64)
968 : fits_in_unsigned_long (num)
969 ? (Imm32 | Imm64)
970 : Imm64);
971 }
972
973 static offsetT
974 offset_in_range (offsetT val, int size)
975 {
976 addressT mask;
977
978 switch (size)
979 {
980 case 1: mask = ((addressT) 1 << 8) - 1; break;
981 case 2: mask = ((addressT) 1 << 16) - 1; break;
982 case 4: mask = ((addressT) 2 << 31) - 1; break;
983 #ifdef BFD64
984 case 8: mask = ((addressT) 2 << 63) - 1; break;
985 #endif
986 default: abort ();
987 }
988
989 /* If BFD64, sign extend val. */
990 if (!use_rela_relocations)
991 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
992 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
993
994 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
995 {
996 char buf1[40], buf2[40];
997
998 sprint_value (buf1, val);
999 sprint_value (buf2, val & mask);
1000 as_warn (_("%s shortened to %s"), buf1, buf2);
1001 }
1002 return val & mask;
1003 }
1004
1005 /* Returns 0 if attempting to add a prefix where one from the same
1006 class already exists, 1 if non rep/repne added, 2 if rep/repne
1007 added. */
1008 static int
1009 add_prefix (unsigned int prefix)
1010 {
1011 int ret = 1;
1012 unsigned int q;
1013
1014 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
1015 && flag_code == CODE_64BIT)
1016 {
1017 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
1018 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
1019 && (prefix & (REX_R | REX_X | REX_B))))
1020 ret = 0;
1021 q = REX_PREFIX;
1022 }
1023 else
1024 {
1025 switch (prefix)
1026 {
1027 default:
1028 abort ();
1029
1030 case CS_PREFIX_OPCODE:
1031 case DS_PREFIX_OPCODE:
1032 case ES_PREFIX_OPCODE:
1033 case FS_PREFIX_OPCODE:
1034 case GS_PREFIX_OPCODE:
1035 case SS_PREFIX_OPCODE:
1036 q = SEG_PREFIX;
1037 break;
1038
1039 case REPNE_PREFIX_OPCODE:
1040 case REPE_PREFIX_OPCODE:
1041 ret = 2;
1042 /* fall thru */
1043 case LOCK_PREFIX_OPCODE:
1044 q = LOCKREP_PREFIX;
1045 break;
1046
1047 case FWAIT_OPCODE:
1048 q = WAIT_PREFIX;
1049 break;
1050
1051 case ADDR_PREFIX_OPCODE:
1052 q = ADDR_PREFIX;
1053 break;
1054
1055 case DATA_PREFIX_OPCODE:
1056 q = DATA_PREFIX;
1057 break;
1058 }
1059 if (i.prefix[q] != 0)
1060 ret = 0;
1061 }
1062
1063 if (ret)
1064 {
1065 if (!i.prefix[q])
1066 ++i.prefixes;
1067 i.prefix[q] |= prefix;
1068 }
1069 else
1070 as_bad (_("same type of prefix used twice"));
1071
1072 return ret;
1073 }
1074
1075 static void
1076 set_code_flag (int value)
1077 {
1078 flag_code = value;
1079 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
1080 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
1081 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
1082 {
1083 as_bad (_("64bit mode not supported on this CPU."));
1084 }
1085 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
1086 {
1087 as_bad (_("32bit mode not supported on this CPU."));
1088 }
1089 stackop_size = '\0';
1090 }
1091
1092 static void
1093 set_16bit_gcc_code_flag (int new_code_flag)
1094 {
1095 flag_code = new_code_flag;
1096 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
1097 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
1098 stackop_size = LONG_MNEM_SUFFIX;
1099 }
1100
1101 static void
1102 set_intel_syntax (int syntax_flag)
1103 {
1104 /* Find out if register prefixing is specified. */
1105 int ask_naked_reg = 0;
1106
1107 SKIP_WHITESPACE ();
1108 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1109 {
1110 char *string = input_line_pointer;
1111 int e = get_symbol_end ();
1112
1113 if (strcmp (string, "prefix") == 0)
1114 ask_naked_reg = 1;
1115 else if (strcmp (string, "noprefix") == 0)
1116 ask_naked_reg = -1;
1117 else
1118 as_bad (_("bad argument to syntax directive."));
1119 *input_line_pointer = e;
1120 }
1121 demand_empty_rest_of_line ();
1122
1123 intel_syntax = syntax_flag;
1124
1125 if (ask_naked_reg == 0)
1126 allow_naked_reg = (intel_syntax
1127 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
1128 else
1129 allow_naked_reg = (ask_naked_reg < 0);
1130
1131 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
1132 identifier_chars['$'] = intel_syntax ? '$' : 0;
1133 register_prefix = allow_naked_reg ? "" : "%";
1134 }
1135
1136 static void
1137 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
1138 {
1139 SKIP_WHITESPACE ();
1140
1141 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1142 {
1143 char *string = input_line_pointer;
1144 int e = get_symbol_end ();
1145 unsigned int i;
1146
1147 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
1148 {
1149 if (strcmp (string, cpu_arch[i].name) == 0)
1150 {
1151 if (*string != '.')
1152 {
1153 cpu_arch_name = cpu_arch[i].name;
1154 cpu_sub_arch_name = NULL;
1155 cpu_arch_flags = (cpu_arch[i].flags
1156 | (flag_code == CODE_64BIT
1157 ? Cpu64 : CpuNo64));
1158 cpu_arch_isa = cpu_arch[i].type;
1159 cpu_arch_isa_flags = cpu_arch[i].flags;
1160 if (!cpu_arch_tune_set)
1161 {
1162 cpu_arch_tune = cpu_arch_isa;
1163 cpu_arch_tune_flags = cpu_arch_isa_flags;
1164 }
1165 break;
1166 }
1167 if ((cpu_arch_flags | cpu_arch[i].flags) != cpu_arch_flags)
1168 {
1169 cpu_sub_arch_name = cpu_arch[i].name;
1170 cpu_arch_flags |= cpu_arch[i].flags;
1171 }
1172 *input_line_pointer = e;
1173 demand_empty_rest_of_line ();
1174 return;
1175 }
1176 }
1177 if (i >= ARRAY_SIZE (cpu_arch))
1178 as_bad (_("no such architecture: `%s'"), string);
1179
1180 *input_line_pointer = e;
1181 }
1182 else
1183 as_bad (_("missing cpu architecture"));
1184
1185 no_cond_jump_promotion = 0;
1186 if (*input_line_pointer == ','
1187 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
1188 {
1189 char *string = ++input_line_pointer;
1190 int e = get_symbol_end ();
1191
1192 if (strcmp (string, "nojumps") == 0)
1193 no_cond_jump_promotion = 1;
1194 else if (strcmp (string, "jumps") == 0)
1195 ;
1196 else
1197 as_bad (_("no such architecture modifier: `%s'"), string);
1198
1199 *input_line_pointer = e;
1200 }
1201
1202 demand_empty_rest_of_line ();
1203 }
1204
1205 unsigned long
1206 i386_mach ()
1207 {
1208 if (!strcmp (default_arch, "x86_64"))
1209 return bfd_mach_x86_64;
1210 else if (!strcmp (default_arch, "i386"))
1211 return bfd_mach_i386_i386;
1212 else
1213 as_fatal (_("Unknown architecture"));
1214 }
1215 \f
1216 void
1217 md_begin ()
1218 {
1219 const char *hash_err;
1220
1221 /* Initialize op_hash hash table. */
1222 op_hash = hash_new ();
1223
1224 {
1225 const template *optab;
1226 templates *core_optab;
1227
1228 /* Setup for loop. */
1229 optab = i386_optab;
1230 core_optab = (templates *) xmalloc (sizeof (templates));
1231 core_optab->start = optab;
1232
1233 while (1)
1234 {
1235 ++optab;
1236 if (optab->name == NULL
1237 || strcmp (optab->name, (optab - 1)->name) != 0)
1238 {
1239 /* different name --> ship out current template list;
1240 add to hash table; & begin anew. */
1241 core_optab->end = optab;
1242 hash_err = hash_insert (op_hash,
1243 (optab - 1)->name,
1244 (PTR) core_optab);
1245 if (hash_err)
1246 {
1247 as_fatal (_("Internal Error: Can't hash %s: %s"),
1248 (optab - 1)->name,
1249 hash_err);
1250 }
1251 if (optab->name == NULL)
1252 break;
1253 core_optab = (templates *) xmalloc (sizeof (templates));
1254 core_optab->start = optab;
1255 }
1256 }
1257 }
1258
1259 /* Initialize reg_hash hash table. */
1260 reg_hash = hash_new ();
1261 {
1262 const reg_entry *regtab;
1263 unsigned int regtab_size = i386_regtab_size;
1264
1265 for (regtab = i386_regtab; regtab_size--; regtab++)
1266 {
1267 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
1268 if (hash_err)
1269 as_fatal (_("Internal Error: Can't hash %s: %s"),
1270 regtab->reg_name,
1271 hash_err);
1272 }
1273 }
1274
1275 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
1276 {
1277 int c;
1278 char *p;
1279
1280 for (c = 0; c < 256; c++)
1281 {
1282 if (ISDIGIT (c))
1283 {
1284 digit_chars[c] = c;
1285 mnemonic_chars[c] = c;
1286 register_chars[c] = c;
1287 operand_chars[c] = c;
1288 }
1289 else if (ISLOWER (c))
1290 {
1291 mnemonic_chars[c] = c;
1292 register_chars[c] = c;
1293 operand_chars[c] = c;
1294 }
1295 else if (ISUPPER (c))
1296 {
1297 mnemonic_chars[c] = TOLOWER (c);
1298 register_chars[c] = mnemonic_chars[c];
1299 operand_chars[c] = c;
1300 }
1301
1302 if (ISALPHA (c) || ISDIGIT (c))
1303 identifier_chars[c] = c;
1304 else if (c >= 128)
1305 {
1306 identifier_chars[c] = c;
1307 operand_chars[c] = c;
1308 }
1309 }
1310
1311 #ifdef LEX_AT
1312 identifier_chars['@'] = '@';
1313 #endif
1314 #ifdef LEX_QM
1315 identifier_chars['?'] = '?';
1316 operand_chars['?'] = '?';
1317 #endif
1318 digit_chars['-'] = '-';
1319 mnemonic_chars['-'] = '-';
1320 mnemonic_chars['.'] = '.';
1321 identifier_chars['_'] = '_';
1322 identifier_chars['.'] = '.';
1323
1324 for (p = operand_special_chars; *p != '\0'; p++)
1325 operand_chars[(unsigned char) *p] = *p;
1326 }
1327
1328 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1329 if (IS_ELF)
1330 {
1331 record_alignment (text_section, 2);
1332 record_alignment (data_section, 2);
1333 record_alignment (bss_section, 2);
1334 }
1335 #endif
1336
1337 if (flag_code == CODE_64BIT)
1338 {
1339 x86_dwarf2_return_column = 16;
1340 x86_cie_data_alignment = -8;
1341 }
1342 else
1343 {
1344 x86_dwarf2_return_column = 8;
1345 x86_cie_data_alignment = -4;
1346 }
1347 }
1348
1349 void
1350 i386_print_statistics (FILE *file)
1351 {
1352 hash_print_statistics (file, "i386 opcode", op_hash);
1353 hash_print_statistics (file, "i386 register", reg_hash);
1354 }
1355 \f
1356 #ifdef DEBUG386
1357
1358 /* Debugging routines for md_assemble. */
1359 static void pte (template *);
1360 static void pt (unsigned int);
1361 static void pe (expressionS *);
1362 static void ps (symbolS *);
1363
1364 static void
1365 pi (char *line, i386_insn *x)
1366 {
1367 unsigned int i;
1368
1369 fprintf (stdout, "%s: template ", line);
1370 pte (&x->tm);
1371 fprintf (stdout, " address: base %s index %s scale %x\n",
1372 x->base_reg ? x->base_reg->reg_name : "none",
1373 x->index_reg ? x->index_reg->reg_name : "none",
1374 x->log2_scale_factor);
1375 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
1376 x->rm.mode, x->rm.reg, x->rm.regmem);
1377 fprintf (stdout, " sib: base %x index %x scale %x\n",
1378 x->sib.base, x->sib.index, x->sib.scale);
1379 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
1380 (x->rex & REX_W) != 0,
1381 (x->rex & REX_R) != 0,
1382 (x->rex & REX_X) != 0,
1383 (x->rex & REX_B) != 0);
1384 for (i = 0; i < x->operands; i++)
1385 {
1386 fprintf (stdout, " #%d: ", i + 1);
1387 pt (x->types[i]);
1388 fprintf (stdout, "\n");
1389 if (x->types[i]
1390 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
1391 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
1392 if (x->types[i] & Imm)
1393 pe (x->op[i].imms);
1394 if (x->types[i] & Disp)
1395 pe (x->op[i].disps);
1396 }
1397 }
1398
1399 static void
1400 pte (template *t)
1401 {
1402 unsigned int i;
1403 fprintf (stdout, " %d operands ", t->operands);
1404 fprintf (stdout, "opcode %x ", t->base_opcode);
1405 if (t->extension_opcode != None)
1406 fprintf (stdout, "ext %x ", t->extension_opcode);
1407 if (t->opcode_modifier & D)
1408 fprintf (stdout, "D");
1409 if (t->opcode_modifier & W)
1410 fprintf (stdout, "W");
1411 fprintf (stdout, "\n");
1412 for (i = 0; i < t->operands; i++)
1413 {
1414 fprintf (stdout, " #%d type ", i + 1);
1415 pt (t->operand_types[i]);
1416 fprintf (stdout, "\n");
1417 }
1418 }
1419
1420 static void
1421 pe (expressionS *e)
1422 {
1423 fprintf (stdout, " operation %d\n", e->X_op);
1424 fprintf (stdout, " add_number %ld (%lx)\n",
1425 (long) e->X_add_number, (long) e->X_add_number);
1426 if (e->X_add_symbol)
1427 {
1428 fprintf (stdout, " add_symbol ");
1429 ps (e->X_add_symbol);
1430 fprintf (stdout, "\n");
1431 }
1432 if (e->X_op_symbol)
1433 {
1434 fprintf (stdout, " op_symbol ");
1435 ps (e->X_op_symbol);
1436 fprintf (stdout, "\n");
1437 }
1438 }
1439
1440 static void
1441 ps (symbolS *s)
1442 {
1443 fprintf (stdout, "%s type %s%s",
1444 S_GET_NAME (s),
1445 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1446 segment_name (S_GET_SEGMENT (s)));
1447 }
1448
1449 static struct type_name
1450 {
1451 unsigned int mask;
1452 char *tname;
1453 }
1454 const type_names[] =
1455 {
1456 { Reg8, "r8" },
1457 { Reg16, "r16" },
1458 { Reg32, "r32" },
1459 { Reg64, "r64" },
1460 { Imm8, "i8" },
1461 { Imm8S, "i8s" },
1462 { Imm16, "i16" },
1463 { Imm32, "i32" },
1464 { Imm32S, "i32s" },
1465 { Imm64, "i64" },
1466 { Imm1, "i1" },
1467 { BaseIndex, "BaseIndex" },
1468 { Disp8, "d8" },
1469 { Disp16, "d16" },
1470 { Disp32, "d32" },
1471 { Disp32S, "d32s" },
1472 { Disp64, "d64" },
1473 { InOutPortReg, "InOutPortReg" },
1474 { ShiftCount, "ShiftCount" },
1475 { Control, "control reg" },
1476 { Test, "test reg" },
1477 { Debug, "debug reg" },
1478 { FloatReg, "FReg" },
1479 { FloatAcc, "FAcc" },
1480 { SReg2, "SReg2" },
1481 { SReg3, "SReg3" },
1482 { Acc, "Acc" },
1483 { JumpAbsolute, "Jump Absolute" },
1484 { RegMMX, "rMMX" },
1485 { RegXMM, "rXMM" },
1486 { EsSeg, "es" },
1487 { 0, "" }
1488 };
1489
1490 static void
1491 pt (t)
1492 unsigned int t;
1493 {
1494 const struct type_name *ty;
1495
1496 for (ty = type_names; ty->mask; ty++)
1497 if (t & ty->mask)
1498 fprintf (stdout, "%s, ", ty->tname);
1499 fflush (stdout);
1500 }
1501
1502 #endif /* DEBUG386 */
1503 \f
1504 static bfd_reloc_code_real_type
1505 reloc (unsigned int size,
1506 int pcrel,
1507 int sign,
1508 bfd_reloc_code_real_type other)
1509 {
1510 if (other != NO_RELOC)
1511 {
1512 reloc_howto_type *reloc;
1513
1514 if (size == 8)
1515 switch (other)
1516 {
1517 case BFD_RELOC_X86_64_GOT32:
1518 return BFD_RELOC_X86_64_GOT64;
1519 break;
1520 case BFD_RELOC_X86_64_PLTOFF64:
1521 return BFD_RELOC_X86_64_PLTOFF64;
1522 break;
1523 case BFD_RELOC_X86_64_GOTPC32:
1524 other = BFD_RELOC_X86_64_GOTPC64;
1525 break;
1526 case BFD_RELOC_X86_64_GOTPCREL:
1527 other = BFD_RELOC_X86_64_GOTPCREL64;
1528 break;
1529 case BFD_RELOC_X86_64_TPOFF32:
1530 other = BFD_RELOC_X86_64_TPOFF64;
1531 break;
1532 case BFD_RELOC_X86_64_DTPOFF32:
1533 other = BFD_RELOC_X86_64_DTPOFF64;
1534 break;
1535 default:
1536 break;
1537 }
1538
1539 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
1540 if (size == 4 && flag_code != CODE_64BIT)
1541 sign = -1;
1542
1543 reloc = bfd_reloc_type_lookup (stdoutput, other);
1544 if (!reloc)
1545 as_bad (_("unknown relocation (%u)"), other);
1546 else if (size != bfd_get_reloc_size (reloc))
1547 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
1548 bfd_get_reloc_size (reloc),
1549 size);
1550 else if (pcrel && !reloc->pc_relative)
1551 as_bad (_("non-pc-relative relocation for pc-relative field"));
1552 else if ((reloc->complain_on_overflow == complain_overflow_signed
1553 && !sign)
1554 || (reloc->complain_on_overflow == complain_overflow_unsigned
1555 && sign > 0))
1556 as_bad (_("relocated field and relocation type differ in signedness"));
1557 else
1558 return other;
1559 return NO_RELOC;
1560 }
1561
1562 if (pcrel)
1563 {
1564 if (!sign)
1565 as_bad (_("there are no unsigned pc-relative relocations"));
1566 switch (size)
1567 {
1568 case 1: return BFD_RELOC_8_PCREL;
1569 case 2: return BFD_RELOC_16_PCREL;
1570 case 4: return BFD_RELOC_32_PCREL;
1571 case 8: return BFD_RELOC_64_PCREL;
1572 }
1573 as_bad (_("cannot do %u byte pc-relative relocation"), size);
1574 }
1575 else
1576 {
1577 if (sign > 0)
1578 switch (size)
1579 {
1580 case 4: return BFD_RELOC_X86_64_32S;
1581 }
1582 else
1583 switch (size)
1584 {
1585 case 1: return BFD_RELOC_8;
1586 case 2: return BFD_RELOC_16;
1587 case 4: return BFD_RELOC_32;
1588 case 8: return BFD_RELOC_64;
1589 }
1590 as_bad (_("cannot do %s %u byte relocation"),
1591 sign > 0 ? "signed" : "unsigned", size);
1592 }
1593
1594 abort ();
1595 return BFD_RELOC_NONE;
1596 }
1597
1598 /* Here we decide which fixups can be adjusted to make them relative to
1599 the beginning of the section instead of the symbol. Basically we need
1600 to make sure that the dynamic relocations are done correctly, so in
1601 some cases we force the original symbol to be used. */
1602
1603 int
1604 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
1605 {
1606 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1607 if (!IS_ELF)
1608 return 1;
1609
1610 /* Don't adjust pc-relative references to merge sections in 64-bit
1611 mode. */
1612 if (use_rela_relocations
1613 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1614 && fixP->fx_pcrel)
1615 return 0;
1616
1617 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1618 and changed later by validate_fix. */
1619 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
1620 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
1621 return 0;
1622
1623 /* adjust_reloc_syms doesn't know about the GOT. */
1624 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1625 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1626 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1627 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1628 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1629 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1630 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
1631 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1632 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
1633 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1634 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
1635 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
1636 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
1637 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1638 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1639 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1640 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1641 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1642 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1643 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
1644 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1645 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
1646 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
1647 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
1648 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
1649 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
1650 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1651 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1652 return 0;
1653 #endif
1654 return 1;
1655 }
1656
1657 static int
1658 intel_float_operand (const char *mnemonic)
1659 {
1660 /* Note that the value returned is meaningful only for opcodes with (memory)
1661 operands, hence the code here is free to improperly handle opcodes that
1662 have no operands (for better performance and smaller code). */
1663
1664 if (mnemonic[0] != 'f')
1665 return 0; /* non-math */
1666
1667 switch (mnemonic[1])
1668 {
1669 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
1670 the fs segment override prefix not currently handled because no
1671 call path can make opcodes without operands get here */
1672 case 'i':
1673 return 2 /* integer op */;
1674 case 'l':
1675 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
1676 return 3; /* fldcw/fldenv */
1677 break;
1678 case 'n':
1679 if (mnemonic[2] != 'o' /* fnop */)
1680 return 3; /* non-waiting control op */
1681 break;
1682 case 'r':
1683 if (mnemonic[2] == 's')
1684 return 3; /* frstor/frstpm */
1685 break;
1686 case 's':
1687 if (mnemonic[2] == 'a')
1688 return 3; /* fsave */
1689 if (mnemonic[2] == 't')
1690 {
1691 switch (mnemonic[3])
1692 {
1693 case 'c': /* fstcw */
1694 case 'd': /* fstdw */
1695 case 'e': /* fstenv */
1696 case 's': /* fsts[gw] */
1697 return 3;
1698 }
1699 }
1700 break;
1701 case 'x':
1702 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
1703 return 0; /* fxsave/fxrstor are not really math ops */
1704 break;
1705 }
1706
1707 return 1;
1708 }
1709
1710 /* This is the guts of the machine-dependent assembler. LINE points to a
1711 machine dependent instruction. This function is supposed to emit
1712 the frags/bytes it assembles to. */
1713
1714 void
1715 md_assemble (line)
1716 char *line;
1717 {
1718 int j;
1719 char mnemonic[MAX_MNEM_SIZE];
1720
1721 /* Initialize globals. */
1722 memset (&i, '\0', sizeof (i));
1723 for (j = 0; j < MAX_OPERANDS; j++)
1724 i.reloc[j] = NO_RELOC;
1725 memset (disp_expressions, '\0', sizeof (disp_expressions));
1726 memset (im_expressions, '\0', sizeof (im_expressions));
1727 save_stack_p = save_stack;
1728
1729 /* First parse an instruction mnemonic & call i386_operand for the operands.
1730 We assume that the scrubber has arranged it so that line[0] is the valid
1731 start of a (possibly prefixed) mnemonic. */
1732
1733 line = parse_insn (line, mnemonic);
1734 if (line == NULL)
1735 return;
1736
1737 line = parse_operands (line, mnemonic);
1738 if (line == NULL)
1739 return;
1740
1741 /* The order of the immediates should be reversed
1742 for 2 immediates extrq and insertq instructions */
1743 if ((i.imm_operands == 2)
1744 && ((strcmp (mnemonic, "extrq") == 0)
1745 || (strcmp (mnemonic, "insertq") == 0)))
1746 {
1747 swap_2_operands (0, 1);
1748 /* "extrq" and insertq" are the only two instructions whose operands
1749 have to be reversed even though they have two immediate operands.
1750 */
1751 if (intel_syntax)
1752 swap_operands ();
1753 }
1754
1755 /* Now we've parsed the mnemonic into a set of templates, and have the
1756 operands at hand. */
1757
1758 /* All intel opcodes have reversed operands except for "bound" and
1759 "enter". We also don't reverse intersegment "jmp" and "call"
1760 instructions with 2 immediate operands so that the immediate segment
1761 precedes the offset, as it does when in AT&T mode. */
1762 if (intel_syntax
1763 && i.operands > 1
1764 && (strcmp (mnemonic, "bound") != 0)
1765 && (strcmp (mnemonic, "invlpga") != 0)
1766 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1767 swap_operands ();
1768
1769 if (i.imm_operands)
1770 optimize_imm ();
1771
1772 /* Don't optimize displacement for movabs since it only takes 64bit
1773 displacement. */
1774 if (i.disp_operands
1775 && (flag_code != CODE_64BIT
1776 || strcmp (mnemonic, "movabs") != 0))
1777 optimize_disp ();
1778
1779 /* Next, we find a template that matches the given insn,
1780 making sure the overlap of the given operands types is consistent
1781 with the template operand types. */
1782
1783 if (!match_template ())
1784 return;
1785
1786 if (intel_syntax)
1787 {
1788 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1789 if (SYSV386_COMPAT
1790 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1791 i.tm.base_opcode ^= Opcode_FloatR;
1792
1793 /* Zap movzx and movsx suffix. The suffix may have been set from
1794 "word ptr" or "byte ptr" on the source operand, but we'll use
1795 the suffix later to choose the destination register. */
1796 if ((i.tm.base_opcode & ~9) == 0x0fb6)
1797 {
1798 if (i.reg_operands < 2
1799 && !i.suffix
1800 && (~i.tm.opcode_modifier
1801 & (No_bSuf
1802 | No_wSuf
1803 | No_lSuf
1804 | No_sSuf
1805 | No_xSuf
1806 | No_qSuf)))
1807 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
1808
1809 i.suffix = 0;
1810 }
1811 }
1812
1813 if (i.tm.opcode_modifier & FWait)
1814 if (!add_prefix (FWAIT_OPCODE))
1815 return;
1816
1817 /* Check string instruction segment overrides. */
1818 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1819 {
1820 if (!check_string ())
1821 return;
1822 }
1823
1824 if (!process_suffix ())
1825 return;
1826
1827 /* Make still unresolved immediate matches conform to size of immediate
1828 given in i.suffix. */
1829 if (!finalize_imm ())
1830 return;
1831
1832 if (i.types[0] & Imm1)
1833 i.imm_operands = 0; /* kludge for shift insns. */
1834 if (i.types[0] & ImplicitRegister)
1835 i.reg_operands--;
1836 if (i.types[1] & ImplicitRegister)
1837 i.reg_operands--;
1838 if (i.types[2] & ImplicitRegister)
1839 i.reg_operands--;
1840
1841 if (i.tm.opcode_modifier & ImmExt)
1842 {
1843 expressionS *exp;
1844
1845 if ((i.tm.cpu_flags & CpuSSE3) && i.operands > 0)
1846 {
1847 /* Streaming SIMD extensions 3 Instructions have the fixed
1848 operands with an opcode suffix which is coded in the same
1849 place as an 8-bit immediate field would be. Here we check
1850 those operands and remove them afterwards. */
1851 unsigned int x;
1852
1853 for (x = 0; x < i.operands; x++)
1854 if (i.op[x].regs->reg_num != x)
1855 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1856 register_prefix,
1857 i.op[x].regs->reg_name,
1858 x + 1,
1859 i.tm.name);
1860 i.operands = 0;
1861 }
1862
1863 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1864 opcode suffix which is coded in the same place as an 8-bit
1865 immediate field would be. Here we fake an 8-bit immediate
1866 operand from the opcode suffix stored in tm.extension_opcode. */
1867
1868 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
1869
1870 exp = &im_expressions[i.imm_operands++];
1871 i.op[i.operands].imms = exp;
1872 i.types[i.operands++] = Imm8;
1873 exp->X_op = O_constant;
1874 exp->X_add_number = i.tm.extension_opcode;
1875 i.tm.extension_opcode = None;
1876 }
1877
1878 /* For insns with operands there are more diddles to do to the opcode. */
1879 if (i.operands)
1880 {
1881 if (!process_operands ())
1882 return;
1883 }
1884 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1885 {
1886 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1887 as_warn (_("translating to `%sp'"), i.tm.name);
1888 }
1889
1890 /* Handle conversion of 'int $3' --> special int3 insn. */
1891 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1892 {
1893 i.tm.base_opcode = INT3_OPCODE;
1894 i.imm_operands = 0;
1895 }
1896
1897 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1898 && i.op[0].disps->X_op == O_constant)
1899 {
1900 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1901 the absolute address given by the constant. Since ix86 jumps and
1902 calls are pc relative, we need to generate a reloc. */
1903 i.op[0].disps->X_add_symbol = &abs_symbol;
1904 i.op[0].disps->X_op = O_symbol;
1905 }
1906
1907 if ((i.tm.opcode_modifier & Rex64) != 0)
1908 i.rex |= REX_W;
1909
1910 /* For 8 bit registers we need an empty rex prefix. Also if the
1911 instruction already has a prefix, we need to convert old
1912 registers to new ones. */
1913
1914 if (((i.types[0] & Reg8) != 0
1915 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1916 || ((i.types[1] & Reg8) != 0
1917 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1918 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1919 && i.rex != 0))
1920 {
1921 int x;
1922
1923 i.rex |= REX_OPCODE;
1924 for (x = 0; x < 2; x++)
1925 {
1926 /* Look for 8 bit operand that uses old registers. */
1927 if ((i.types[x] & Reg8) != 0
1928 && (i.op[x].regs->reg_flags & RegRex64) == 0)
1929 {
1930 /* In case it is "hi" register, give up. */
1931 if (i.op[x].regs->reg_num > 3)
1932 as_bad (_("can't encode register '%s%s' in an "
1933 "instruction requiring REX prefix."),
1934 register_prefix, i.op[x].regs->reg_name);
1935
1936 /* Otherwise it is equivalent to the extended register.
1937 Since the encoding doesn't change this is merely
1938 cosmetic cleanup for debug output. */
1939
1940 i.op[x].regs = i.op[x].regs + 8;
1941 }
1942 }
1943 }
1944
1945 if (i.rex != 0)
1946 add_prefix (REX_OPCODE | i.rex);
1947
1948 /* We are ready to output the insn. */
1949 output_insn ();
1950 }
1951
1952 static char *
1953 parse_insn (char *line, char *mnemonic)
1954 {
1955 char *l = line;
1956 char *token_start = l;
1957 char *mnem_p;
1958 int supported;
1959 const template *t;
1960
1961 /* Non-zero if we found a prefix only acceptable with string insns. */
1962 const char *expecting_string_instruction = NULL;
1963
1964 while (1)
1965 {
1966 mnem_p = mnemonic;
1967 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1968 {
1969 mnem_p++;
1970 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
1971 {
1972 as_bad (_("no such instruction: `%s'"), token_start);
1973 return NULL;
1974 }
1975 l++;
1976 }
1977 if (!is_space_char (*l)
1978 && *l != END_OF_INSN
1979 && (intel_syntax
1980 || (*l != PREFIX_SEPARATOR
1981 && *l != ',')))
1982 {
1983 as_bad (_("invalid character %s in mnemonic"),
1984 output_invalid (*l));
1985 return NULL;
1986 }
1987 if (token_start == l)
1988 {
1989 if (!intel_syntax && *l == PREFIX_SEPARATOR)
1990 as_bad (_("expecting prefix; got nothing"));
1991 else
1992 as_bad (_("expecting mnemonic; got nothing"));
1993 return NULL;
1994 }
1995
1996 /* Look up instruction (or prefix) via hash table. */
1997 current_templates = hash_find (op_hash, mnemonic);
1998
1999 if (*l != END_OF_INSN
2000 && (!is_space_char (*l) || l[1] != END_OF_INSN)
2001 && current_templates
2002 && (current_templates->start->opcode_modifier & IsPrefix))
2003 {
2004 if (current_templates->start->cpu_flags
2005 & (flag_code != CODE_64BIT ? Cpu64 : CpuNo64))
2006 {
2007 as_bad ((flag_code != CODE_64BIT
2008 ? _("`%s' is only supported in 64-bit mode")
2009 : _("`%s' is not supported in 64-bit mode")),
2010 current_templates->start->name);
2011 return NULL;
2012 }
2013 /* If we are in 16-bit mode, do not allow addr16 or data16.
2014 Similarly, in 32-bit mode, do not allow addr32 or data32. */
2015 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
2016 && flag_code != CODE_64BIT
2017 && (((current_templates->start->opcode_modifier & Size32) != 0)
2018 ^ (flag_code == CODE_16BIT)))
2019 {
2020 as_bad (_("redundant %s prefix"),
2021 current_templates->start->name);
2022 return NULL;
2023 }
2024 /* Add prefix, checking for repeated prefixes. */
2025 switch (add_prefix (current_templates->start->base_opcode))
2026 {
2027 case 0:
2028 return NULL;
2029 case 2:
2030 expecting_string_instruction = current_templates->start->name;
2031 break;
2032 }
2033 /* Skip past PREFIX_SEPARATOR and reset token_start. */
2034 token_start = ++l;
2035 }
2036 else
2037 break;
2038 }
2039
2040 if (!current_templates)
2041 {
2042 /* See if we can get a match by trimming off a suffix. */
2043 switch (mnem_p[-1])
2044 {
2045 case WORD_MNEM_SUFFIX:
2046 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
2047 i.suffix = SHORT_MNEM_SUFFIX;
2048 else
2049 case BYTE_MNEM_SUFFIX:
2050 case QWORD_MNEM_SUFFIX:
2051 i.suffix = mnem_p[-1];
2052 mnem_p[-1] = '\0';
2053 current_templates = hash_find (op_hash, mnemonic);
2054 break;
2055 case SHORT_MNEM_SUFFIX:
2056 case LONG_MNEM_SUFFIX:
2057 if (!intel_syntax)
2058 {
2059 i.suffix = mnem_p[-1];
2060 mnem_p[-1] = '\0';
2061 current_templates = hash_find (op_hash, mnemonic);
2062 }
2063 break;
2064
2065 /* Intel Syntax. */
2066 case 'd':
2067 if (intel_syntax)
2068 {
2069 if (intel_float_operand (mnemonic) == 1)
2070 i.suffix = SHORT_MNEM_SUFFIX;
2071 else
2072 i.suffix = LONG_MNEM_SUFFIX;
2073 mnem_p[-1] = '\0';
2074 current_templates = hash_find (op_hash, mnemonic);
2075 }
2076 break;
2077 }
2078 if (!current_templates)
2079 {
2080 as_bad (_("no such instruction: `%s'"), token_start);
2081 return NULL;
2082 }
2083 }
2084
2085 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
2086 {
2087 /* Check for a branch hint. We allow ",pt" and ",pn" for
2088 predict taken and predict not taken respectively.
2089 I'm not sure that branch hints actually do anything on loop
2090 and jcxz insns (JumpByte) for current Pentium4 chips. They
2091 may work in the future and it doesn't hurt to accept them
2092 now. */
2093 if (l[0] == ',' && l[1] == 'p')
2094 {
2095 if (l[2] == 't')
2096 {
2097 if (!add_prefix (DS_PREFIX_OPCODE))
2098 return NULL;
2099 l += 3;
2100 }
2101 else if (l[2] == 'n')
2102 {
2103 if (!add_prefix (CS_PREFIX_OPCODE))
2104 return NULL;
2105 l += 3;
2106 }
2107 }
2108 }
2109 /* Any other comma loses. */
2110 if (*l == ',')
2111 {
2112 as_bad (_("invalid character %s in mnemonic"),
2113 output_invalid (*l));
2114 return NULL;
2115 }
2116
2117 /* Check if instruction is supported on specified architecture. */
2118 supported = 0;
2119 for (t = current_templates->start; t < current_templates->end; ++t)
2120 {
2121 if (!((t->cpu_flags & ~(Cpu64 | CpuNo64))
2122 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64))))
2123 supported |= 1;
2124 if (!(t->cpu_flags & (flag_code == CODE_64BIT ? CpuNo64 : Cpu64)))
2125 supported |= 2;
2126 }
2127 if (!(supported & 2))
2128 {
2129 as_bad (flag_code == CODE_64BIT
2130 ? _("`%s' is not supported in 64-bit mode")
2131 : _("`%s' is only supported in 64-bit mode"),
2132 current_templates->start->name);
2133 return NULL;
2134 }
2135 if (!(supported & 1))
2136 {
2137 as_warn (_("`%s' is not supported on `%s%s'"),
2138 current_templates->start->name,
2139 cpu_arch_name,
2140 cpu_sub_arch_name ? cpu_sub_arch_name : "");
2141 }
2142 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
2143 {
2144 as_warn (_("use .code16 to ensure correct addressing mode"));
2145 }
2146
2147 /* Check for rep/repne without a string instruction. */
2148 if (expecting_string_instruction)
2149 {
2150 static templates override;
2151
2152 for (t = current_templates->start; t < current_templates->end; ++t)
2153 if (t->opcode_modifier & IsString)
2154 break;
2155 if (t >= current_templates->end)
2156 {
2157 as_bad (_("expecting string instruction after `%s'"),
2158 expecting_string_instruction);
2159 return NULL;
2160 }
2161 for (override.start = t; t < current_templates->end; ++t)
2162 if (!(t->opcode_modifier & IsString))
2163 break;
2164 override.end = t;
2165 current_templates = &override;
2166 }
2167
2168 return l;
2169 }
2170
2171 static char *
2172 parse_operands (char *l, const char *mnemonic)
2173 {
2174 char *token_start;
2175
2176 /* 1 if operand is pending after ','. */
2177 unsigned int expecting_operand = 0;
2178
2179 /* Non-zero if operand parens not balanced. */
2180 unsigned int paren_not_balanced;
2181
2182 while (*l != END_OF_INSN)
2183 {
2184 /* Skip optional white space before operand. */
2185 if (is_space_char (*l))
2186 ++l;
2187 if (!is_operand_char (*l) && *l != END_OF_INSN)
2188 {
2189 as_bad (_("invalid character %s before operand %d"),
2190 output_invalid (*l),
2191 i.operands + 1);
2192 return NULL;
2193 }
2194 token_start = l; /* after white space */
2195 paren_not_balanced = 0;
2196 while (paren_not_balanced || *l != ',')
2197 {
2198 if (*l == END_OF_INSN)
2199 {
2200 if (paren_not_balanced)
2201 {
2202 if (!intel_syntax)
2203 as_bad (_("unbalanced parenthesis in operand %d."),
2204 i.operands + 1);
2205 else
2206 as_bad (_("unbalanced brackets in operand %d."),
2207 i.operands + 1);
2208 return NULL;
2209 }
2210 else
2211 break; /* we are done */
2212 }
2213 else if (!is_operand_char (*l) && !is_space_char (*l))
2214 {
2215 as_bad (_("invalid character %s in operand %d"),
2216 output_invalid (*l),
2217 i.operands + 1);
2218 return NULL;
2219 }
2220 if (!intel_syntax)
2221 {
2222 if (*l == '(')
2223 ++paren_not_balanced;
2224 if (*l == ')')
2225 --paren_not_balanced;
2226 }
2227 else
2228 {
2229 if (*l == '[')
2230 ++paren_not_balanced;
2231 if (*l == ']')
2232 --paren_not_balanced;
2233 }
2234 l++;
2235 }
2236 if (l != token_start)
2237 { /* Yes, we've read in another operand. */
2238 unsigned int operand_ok;
2239 this_operand = i.operands++;
2240 if (i.operands > MAX_OPERANDS)
2241 {
2242 as_bad (_("spurious operands; (%d operands/instruction max)"),
2243 MAX_OPERANDS);
2244 return NULL;
2245 }
2246 /* Now parse operand adding info to 'i' as we go along. */
2247 END_STRING_AND_SAVE (l);
2248
2249 if (intel_syntax)
2250 operand_ok =
2251 i386_intel_operand (token_start,
2252 intel_float_operand (mnemonic));
2253 else
2254 operand_ok = i386_operand (token_start);
2255
2256 RESTORE_END_STRING (l);
2257 if (!operand_ok)
2258 return NULL;
2259 }
2260 else
2261 {
2262 if (expecting_operand)
2263 {
2264 expecting_operand_after_comma:
2265 as_bad (_("expecting operand after ','; got nothing"));
2266 return NULL;
2267 }
2268 if (*l == ',')
2269 {
2270 as_bad (_("expecting operand before ','; got nothing"));
2271 return NULL;
2272 }
2273 }
2274
2275 /* Now *l must be either ',' or END_OF_INSN. */
2276 if (*l == ',')
2277 {
2278 if (*++l == END_OF_INSN)
2279 {
2280 /* Just skip it, if it's \n complain. */
2281 goto expecting_operand_after_comma;
2282 }
2283 expecting_operand = 1;
2284 }
2285 }
2286 return l;
2287 }
2288
2289 static void
2290 swap_2_operands (int xchg1, int xchg2)
2291 {
2292 union i386_op temp_op;
2293 unsigned int temp_type;
2294 enum bfd_reloc_code_real temp_reloc;
2295
2296 temp_type = i.types[xchg2];
2297 i.types[xchg2] = i.types[xchg1];
2298 i.types[xchg1] = temp_type;
2299 temp_op = i.op[xchg2];
2300 i.op[xchg2] = i.op[xchg1];
2301 i.op[xchg1] = temp_op;
2302 temp_reloc = i.reloc[xchg2];
2303 i.reloc[xchg2] = i.reloc[xchg1];
2304 i.reloc[xchg1] = temp_reloc;
2305 }
2306
2307 static void
2308 swap_operands (void)
2309 {
2310 switch (i.operands)
2311 {
2312 case 4:
2313 swap_2_operands (1, i.operands - 2);
2314 case 3:
2315 case 2:
2316 swap_2_operands (0, i.operands - 1);
2317 break;
2318 default:
2319 abort ();
2320 }
2321
2322 if (i.mem_operands == 2)
2323 {
2324 const seg_entry *temp_seg;
2325 temp_seg = i.seg[0];
2326 i.seg[0] = i.seg[1];
2327 i.seg[1] = temp_seg;
2328 }
2329 }
2330
2331 /* Try to ensure constant immediates are represented in the smallest
2332 opcode possible. */
2333 static void
2334 optimize_imm (void)
2335 {
2336 char guess_suffix = 0;
2337 int op;
2338
2339 if (i.suffix)
2340 guess_suffix = i.suffix;
2341 else if (i.reg_operands)
2342 {
2343 /* Figure out a suffix from the last register operand specified.
2344 We can't do this properly yet, ie. excluding InOutPortReg,
2345 but the following works for instructions with immediates.
2346 In any case, we can't set i.suffix yet. */
2347 for (op = i.operands; --op >= 0;)
2348 if (i.types[op] & Reg)
2349 {
2350 if (i.types[op] & Reg8)
2351 guess_suffix = BYTE_MNEM_SUFFIX;
2352 else if (i.types[op] & Reg16)
2353 guess_suffix = WORD_MNEM_SUFFIX;
2354 else if (i.types[op] & Reg32)
2355 guess_suffix = LONG_MNEM_SUFFIX;
2356 else if (i.types[op] & Reg64)
2357 guess_suffix = QWORD_MNEM_SUFFIX;
2358 break;
2359 }
2360 }
2361 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
2362 guess_suffix = WORD_MNEM_SUFFIX;
2363
2364 for (op = i.operands; --op >= 0;)
2365 if (i.types[op] & Imm)
2366 {
2367 switch (i.op[op].imms->X_op)
2368 {
2369 case O_constant:
2370 /* If a suffix is given, this operand may be shortened. */
2371 switch (guess_suffix)
2372 {
2373 case LONG_MNEM_SUFFIX:
2374 i.types[op] |= Imm32 | Imm64;
2375 break;
2376 case WORD_MNEM_SUFFIX:
2377 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
2378 break;
2379 case BYTE_MNEM_SUFFIX:
2380 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
2381 break;
2382 }
2383
2384 /* If this operand is at most 16 bits, convert it
2385 to a signed 16 bit number before trying to see
2386 whether it will fit in an even smaller size.
2387 This allows a 16-bit operand such as $0xffe0 to
2388 be recognised as within Imm8S range. */
2389 if ((i.types[op] & Imm16)
2390 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
2391 {
2392 i.op[op].imms->X_add_number =
2393 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
2394 }
2395 if ((i.types[op] & Imm32)
2396 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
2397 == 0))
2398 {
2399 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
2400 ^ ((offsetT) 1 << 31))
2401 - ((offsetT) 1 << 31));
2402 }
2403 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
2404
2405 /* We must avoid matching of Imm32 templates when 64bit
2406 only immediate is available. */
2407 if (guess_suffix == QWORD_MNEM_SUFFIX)
2408 i.types[op] &= ~Imm32;
2409 break;
2410
2411 case O_absent:
2412 case O_register:
2413 abort ();
2414
2415 /* Symbols and expressions. */
2416 default:
2417 /* Convert symbolic operand to proper sizes for matching, but don't
2418 prevent matching a set of insns that only supports sizes other
2419 than those matching the insn suffix. */
2420 {
2421 unsigned int mask, allowed = 0;
2422 const template *t;
2423
2424 for (t = current_templates->start;
2425 t < current_templates->end;
2426 ++t)
2427 allowed |= t->operand_types[op];
2428 switch (guess_suffix)
2429 {
2430 case QWORD_MNEM_SUFFIX:
2431 mask = Imm64 | Imm32S;
2432 break;
2433 case LONG_MNEM_SUFFIX:
2434 mask = Imm32;
2435 break;
2436 case WORD_MNEM_SUFFIX:
2437 mask = Imm16;
2438 break;
2439 case BYTE_MNEM_SUFFIX:
2440 mask = Imm8;
2441 break;
2442 default:
2443 mask = 0;
2444 break;
2445 }
2446 if (mask & allowed)
2447 i.types[op] &= mask;
2448 }
2449 break;
2450 }
2451 }
2452 }
2453
2454 /* Try to use the smallest displacement type too. */
2455 static void
2456 optimize_disp (void)
2457 {
2458 int op;
2459
2460 for (op = i.operands; --op >= 0;)
2461 if (i.types[op] & Disp)
2462 {
2463 if (i.op[op].disps->X_op == O_constant)
2464 {
2465 offsetT disp = i.op[op].disps->X_add_number;
2466
2467 if ((i.types[op] & Disp16)
2468 && (disp & ~(offsetT) 0xffff) == 0)
2469 {
2470 /* If this operand is at most 16 bits, convert
2471 to a signed 16 bit number and don't use 64bit
2472 displacement. */
2473 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
2474 i.types[op] &= ~Disp64;
2475 }
2476 if ((i.types[op] & Disp32)
2477 && (disp & ~(((offsetT) 2 << 31) - 1)) == 0)
2478 {
2479 /* If this operand is at most 32 bits, convert
2480 to a signed 32 bit number and don't use 64bit
2481 displacement. */
2482 disp &= (((offsetT) 2 << 31) - 1);
2483 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
2484 i.types[op] &= ~Disp64;
2485 }
2486 if (!disp && (i.types[op] & BaseIndex))
2487 {
2488 i.types[op] &= ~Disp;
2489 i.op[op].disps = 0;
2490 i.disp_operands--;
2491 }
2492 else if (flag_code == CODE_64BIT)
2493 {
2494 if (fits_in_signed_long (disp))
2495 {
2496 i.types[op] &= ~Disp64;
2497 i.types[op] |= Disp32S;
2498 }
2499 if (fits_in_unsigned_long (disp))
2500 i.types[op] |= Disp32;
2501 }
2502 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
2503 && fits_in_signed_byte (disp))
2504 i.types[op] |= Disp8;
2505 }
2506 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
2507 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
2508 {
2509 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
2510 i.op[op].disps, 0, i.reloc[op]);
2511 i.types[op] &= ~Disp;
2512 }
2513 else
2514 /* We only support 64bit displacement on constants. */
2515 i.types[op] &= ~Disp64;
2516 }
2517 }
2518
2519 static int
2520 match_template (void)
2521 {
2522 /* Points to template once we've found it. */
2523 const template *t;
2524 unsigned int overlap0, overlap1, overlap2, overlap3;
2525 unsigned int found_reverse_match;
2526 int suffix_check;
2527 unsigned int operand_types [MAX_OPERANDS];
2528 int addr_prefix_disp;
2529 unsigned int j;
2530
2531 #if MAX_OPERANDS != 4
2532 # error "MAX_OPERANDS must be 4."
2533 #endif
2534
2535 #define MATCH(overlap, given, template) \
2536 ((overlap & ~JumpAbsolute) \
2537 && (((given) & (BaseIndex | JumpAbsolute)) \
2538 == ((overlap) & (BaseIndex | JumpAbsolute))))
2539
2540 /* If given types r0 and r1 are registers they must be of the same type
2541 unless the expected operand type register overlap is null.
2542 Note that Acc in a template matches every size of reg. */
2543 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2544 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2545 || ((g0) & Reg) == ((g1) & Reg) \
2546 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2547
2548 overlap0 = 0;
2549 overlap1 = 0;
2550 overlap2 = 0;
2551 overlap3 = 0;
2552 found_reverse_match = 0;
2553 for (j = 0; j < MAX_OPERANDS; j++)
2554 operand_types [j] = 0;
2555 addr_prefix_disp = -1;
2556 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2557 ? No_bSuf
2558 : (i.suffix == WORD_MNEM_SUFFIX
2559 ? No_wSuf
2560 : (i.suffix == SHORT_MNEM_SUFFIX
2561 ? No_sSuf
2562 : (i.suffix == LONG_MNEM_SUFFIX
2563 ? No_lSuf
2564 : (i.suffix == QWORD_MNEM_SUFFIX
2565 ? No_qSuf
2566 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2567 ? No_xSuf : 0))))));
2568
2569 for (t = current_templates->start; t < current_templates->end; t++)
2570 {
2571 addr_prefix_disp = -1;
2572
2573 /* Must have right number of operands. */
2574 if (i.operands != t->operands)
2575 continue;
2576
2577 /* Check the suffix, except for some instructions in intel mode. */
2578 if ((t->opcode_modifier & suffix_check)
2579 && !(intel_syntax
2580 && (t->opcode_modifier & IgnoreSize)))
2581 continue;
2582
2583 for (j = 0; j < MAX_OPERANDS; j++)
2584 operand_types [j] = t->operand_types [j];
2585
2586 /* In general, don't allow 64-bit operands in 32-bit mode. */
2587 if (i.suffix == QWORD_MNEM_SUFFIX
2588 && flag_code != CODE_64BIT
2589 && (intel_syntax
2590 ? (!(t->opcode_modifier & IgnoreSize)
2591 && !intel_float_operand (t->name))
2592 : intel_float_operand (t->name) != 2)
2593 && (!(operand_types[0] & (RegMMX | RegXMM))
2594 || !(operand_types[t->operands > 1] & (RegMMX | RegXMM)))
2595 && (t->base_opcode != 0x0fc7
2596 || t->extension_opcode != 1 /* cmpxchg8b */))
2597 continue;
2598
2599 /* Do not verify operands when there are none. */
2600 else if (!t->operands)
2601 {
2602 if (t->cpu_flags & ~cpu_arch_flags)
2603 continue;
2604 /* We've found a match; break out of loop. */
2605 break;
2606 }
2607
2608 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
2609 into Disp32/Disp16/Disp32 operand. */
2610 if (i.prefix[ADDR_PREFIX] != 0)
2611 {
2612 unsigned int DispOn = 0, DispOff = 0;
2613
2614 switch (flag_code)
2615 {
2616 case CODE_16BIT:
2617 DispOn = Disp32;
2618 DispOff = Disp16;
2619 break;
2620 case CODE_32BIT:
2621 DispOn = Disp16;
2622 DispOff = Disp32;
2623 break;
2624 case CODE_64BIT:
2625 DispOn = Disp32;
2626 DispOff = Disp64;
2627 break;
2628 }
2629
2630 for (j = 0; j < MAX_OPERANDS; j++)
2631 {
2632 /* There should be only one Disp operand. */
2633 if ((operand_types[j] & DispOff))
2634 {
2635 addr_prefix_disp = j;
2636 operand_types[j] |= DispOn;
2637 operand_types[j] &= ~DispOff;
2638 break;
2639 }
2640 }
2641 }
2642
2643 overlap0 = i.types[0] & operand_types[0];
2644 switch (t->operands)
2645 {
2646 case 1:
2647 if (!MATCH (overlap0, i.types[0], operand_types[0]))
2648 continue;
2649 break;
2650 case 2:
2651 /* xchg %eax, %eax is a special case. It is an aliase for nop
2652 only in 32bit mode and we can use opcode 0x90. In 64bit
2653 mode, we can't use 0x90 for xchg %eax, %eax since it should
2654 zero-extend %eax to %rax. */
2655 if (flag_code == CODE_64BIT
2656 && t->base_opcode == 0x90
2657 && i.types [0] == (Acc | Reg32)
2658 && i.types [1] == (Acc | Reg32))
2659 continue;
2660 case 3:
2661 case 4:
2662 overlap1 = i.types[1] & operand_types[1];
2663 if (!MATCH (overlap0, i.types[0], operand_types[0])
2664 || !MATCH (overlap1, i.types[1], operand_types[1])
2665 /* monitor in SSE3 is a very special case. The first
2666 register and the second register may have different
2667 sizes. The same applies to crc32 in SSE4.2. */
2668 || !((t->base_opcode == 0x0f01
2669 && t->extension_opcode == 0xc8)
2670 || t->base_opcode == 0xf20f38f1
2671 || CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2672 operand_types[0],
2673 overlap1, i.types[1],
2674 operand_types[1])))
2675 {
2676 /* Check if other direction is valid ... */
2677 if ((t->opcode_modifier & (D | FloatD)) == 0)
2678 continue;
2679
2680 /* Try reversing direction of operands. */
2681 overlap0 = i.types[0] & operand_types[1];
2682 overlap1 = i.types[1] & operand_types[0];
2683 if (!MATCH (overlap0, i.types[0], operand_types[1])
2684 || !MATCH (overlap1, i.types[1], operand_types[0])
2685 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2686 operand_types[1],
2687 overlap1, i.types[1],
2688 operand_types[0]))
2689 {
2690 /* Does not match either direction. */
2691 continue;
2692 }
2693 /* found_reverse_match holds which of D or FloatDR
2694 we've found. */
2695 if ((t->opcode_modifier & D))
2696 found_reverse_match = Opcode_D;
2697 else if ((t->opcode_modifier & FloatD))
2698 found_reverse_match = Opcode_FloatD;
2699 else
2700 found_reverse_match = 0;
2701 if ((t->opcode_modifier & FloatR))
2702 found_reverse_match |= Opcode_FloatR;
2703 }
2704 else
2705 {
2706 /* Found a forward 2 operand match here. */
2707 switch (t->operands)
2708 {
2709 case 4:
2710 overlap3 = i.types[3] & operand_types[3];
2711 case 3:
2712 overlap2 = i.types[2] & operand_types[2];
2713 break;
2714 }
2715
2716 switch (t->operands)
2717 {
2718 case 4:
2719 if (!MATCH (overlap3, i.types[3], operand_types[3])
2720 || !CONSISTENT_REGISTER_MATCH (overlap2,
2721 i.types[2],
2722 operand_types[2],
2723 overlap3,
2724 i.types[3],
2725 operand_types[3]))
2726 continue;
2727 case 3:
2728 /* Here we make use of the fact that there are no
2729 reverse match 3 operand instructions, and all 3
2730 operand instructions only need to be checked for
2731 register consistency between operands 2 and 3. */
2732 if (!MATCH (overlap2, i.types[2], operand_types[2])
2733 || !CONSISTENT_REGISTER_MATCH (overlap1,
2734 i.types[1],
2735 operand_types[1],
2736 overlap2,
2737 i.types[2],
2738 operand_types[2]))
2739 continue;
2740 break;
2741 }
2742 }
2743 /* Found either forward/reverse 2, 3 or 4 operand match here:
2744 slip through to break. */
2745 }
2746 if (t->cpu_flags & ~cpu_arch_flags)
2747 {
2748 found_reverse_match = 0;
2749 continue;
2750 }
2751 /* We've found a match; break out of loop. */
2752 break;
2753 }
2754
2755 if (t == current_templates->end)
2756 {
2757 /* We found no match. */
2758 as_bad (_("suffix or operands invalid for `%s'"),
2759 current_templates->start->name);
2760 return 0;
2761 }
2762
2763 if (!quiet_warnings)
2764 {
2765 if (!intel_syntax
2766 && ((i.types[0] & JumpAbsolute)
2767 != (operand_types[0] & JumpAbsolute)))
2768 {
2769 as_warn (_("indirect %s without `*'"), t->name);
2770 }
2771
2772 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2773 == (IsPrefix | IgnoreSize))
2774 {
2775 /* Warn them that a data or address size prefix doesn't
2776 affect assembly of the next line of code. */
2777 as_warn (_("stand-alone `%s' prefix"), t->name);
2778 }
2779 }
2780
2781 /* Copy the template we found. */
2782 i.tm = *t;
2783
2784 if (addr_prefix_disp != -1)
2785 i.tm.operand_types[addr_prefix_disp]
2786 = operand_types[addr_prefix_disp];
2787
2788 if (found_reverse_match)
2789 {
2790 /* If we found a reverse match we must alter the opcode
2791 direction bit. found_reverse_match holds bits to change
2792 (different for int & float insns). */
2793
2794 i.tm.base_opcode ^= found_reverse_match;
2795
2796 i.tm.operand_types[0] = operand_types[1];
2797 i.tm.operand_types[1] = operand_types[0];
2798 }
2799
2800 return 1;
2801 }
2802
2803 static int
2804 check_string (void)
2805 {
2806 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2807 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2808 {
2809 if (i.seg[0] != NULL && i.seg[0] != &es)
2810 {
2811 as_bad (_("`%s' operand %d must use `%%es' segment"),
2812 i.tm.name,
2813 mem_op + 1);
2814 return 0;
2815 }
2816 /* There's only ever one segment override allowed per instruction.
2817 This instruction possibly has a legal segment override on the
2818 second operand, so copy the segment to where non-string
2819 instructions store it, allowing common code. */
2820 i.seg[0] = i.seg[1];
2821 }
2822 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2823 {
2824 if (i.seg[1] != NULL && i.seg[1] != &es)
2825 {
2826 as_bad (_("`%s' operand %d must use `%%es' segment"),
2827 i.tm.name,
2828 mem_op + 2);
2829 return 0;
2830 }
2831 }
2832 return 1;
2833 }
2834
2835 static int
2836 process_suffix (void)
2837 {
2838 /* If matched instruction specifies an explicit instruction mnemonic
2839 suffix, use it. */
2840 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2841 {
2842 if (i.tm.opcode_modifier & Size16)
2843 i.suffix = WORD_MNEM_SUFFIX;
2844 else if (i.tm.opcode_modifier & Size64)
2845 i.suffix = QWORD_MNEM_SUFFIX;
2846 else
2847 i.suffix = LONG_MNEM_SUFFIX;
2848 }
2849 else if (i.reg_operands)
2850 {
2851 /* If there's no instruction mnemonic suffix we try to invent one
2852 based on register operands. */
2853 if (!i.suffix)
2854 {
2855 /* We take i.suffix from the last register operand specified,
2856 Destination register type is more significant than source
2857 register type. crc32 in SSE4.2 prefers source register
2858 type. */
2859 if (i.tm.base_opcode == 0xf20f38f1)
2860 {
2861 if ((i.types[0] & Reg))
2862 i.suffix = ((i.types[0] & Reg16) ? WORD_MNEM_SUFFIX :
2863 LONG_MNEM_SUFFIX);
2864 }
2865 else if (i.tm.base_opcode == 0xf20f38f0)
2866 {
2867 if ((i.types[0] & Reg8))
2868 i.suffix = BYTE_MNEM_SUFFIX;
2869 }
2870
2871 if (!i.suffix)
2872 {
2873 int op;
2874
2875 if (i.tm.base_opcode == 0xf20f38f1
2876 || i.tm.base_opcode == 0xf20f38f0)
2877 {
2878 /* We have to know the operand size for crc32. */
2879 as_bad (_("ambiguous memory operand size for `%s`"),
2880 i.tm.name);
2881 return 0;
2882 }
2883
2884 for (op = i.operands; --op >= 0;)
2885 if ((i.types[op] & Reg)
2886 && !(i.tm.operand_types[op] & InOutPortReg))
2887 {
2888 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2889 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2890 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2891 LONG_MNEM_SUFFIX);
2892 break;
2893 }
2894 }
2895 }
2896 else if (i.suffix == BYTE_MNEM_SUFFIX)
2897 {
2898 if (!check_byte_reg ())
2899 return 0;
2900 }
2901 else if (i.suffix == LONG_MNEM_SUFFIX)
2902 {
2903 if (!check_long_reg ())
2904 return 0;
2905 }
2906 else if (i.suffix == QWORD_MNEM_SUFFIX)
2907 {
2908 if (!check_qword_reg ())
2909 return 0;
2910 }
2911 else if (i.suffix == WORD_MNEM_SUFFIX)
2912 {
2913 if (!check_word_reg ())
2914 return 0;
2915 }
2916 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2917 /* Do nothing if the instruction is going to ignore the prefix. */
2918 ;
2919 else
2920 abort ();
2921 }
2922 else if ((i.tm.opcode_modifier & DefaultSize)
2923 && !i.suffix
2924 /* exclude fldenv/frstor/fsave/fstenv */
2925 && (i.tm.opcode_modifier & No_sSuf))
2926 {
2927 i.suffix = stackop_size;
2928 }
2929 else if (intel_syntax
2930 && !i.suffix
2931 && ((i.tm.operand_types[0] & JumpAbsolute)
2932 || (i.tm.opcode_modifier & (JumpByte|JumpInterSegment))
2933 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
2934 && i.tm.extension_opcode <= 3)))
2935 {
2936 switch (flag_code)
2937 {
2938 case CODE_64BIT:
2939 if (!(i.tm.opcode_modifier & No_qSuf))
2940 {
2941 i.suffix = QWORD_MNEM_SUFFIX;
2942 break;
2943 }
2944 case CODE_32BIT:
2945 if (!(i.tm.opcode_modifier & No_lSuf))
2946 i.suffix = LONG_MNEM_SUFFIX;
2947 break;
2948 case CODE_16BIT:
2949 if (!(i.tm.opcode_modifier & No_wSuf))
2950 i.suffix = WORD_MNEM_SUFFIX;
2951 break;
2952 }
2953 }
2954
2955 if (!i.suffix)
2956 {
2957 if (!intel_syntax)
2958 {
2959 if (i.tm.opcode_modifier & W)
2960 {
2961 as_bad (_("no instruction mnemonic suffix given and "
2962 "no register operands; can't size instruction"));
2963 return 0;
2964 }
2965 }
2966 else
2967 {
2968 unsigned int suffixes = (~i.tm.opcode_modifier
2969 & (No_bSuf
2970 | No_wSuf
2971 | No_lSuf
2972 | No_sSuf
2973 | No_xSuf
2974 | No_qSuf));
2975
2976 if ((i.tm.opcode_modifier & W)
2977 || ((suffixes & (suffixes - 1))
2978 && !(i.tm.opcode_modifier & (DefaultSize | IgnoreSize))))
2979 {
2980 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2981 return 0;
2982 }
2983 }
2984 }
2985
2986 /* Change the opcode based on the operand size given by i.suffix;
2987 We don't need to change things for byte insns. */
2988
2989 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2990 {
2991 /* It's not a byte, select word/dword operation. */
2992 if (i.tm.opcode_modifier & W)
2993 {
2994 if (i.tm.opcode_modifier & ShortForm)
2995 i.tm.base_opcode |= 8;
2996 else
2997 i.tm.base_opcode |= 1;
2998 }
2999
3000 /* Now select between word & dword operations via the operand
3001 size prefix, except for instructions that will ignore this
3002 prefix anyway. */
3003 if (i.tm.base_opcode == 0x0f01 && i.tm.extension_opcode == 0xc8)
3004 {
3005 /* monitor in SSE3 is a very special case. The default size
3006 of AX is the size of mode. The address size override
3007 prefix will change the size of AX. */
3008 if (i.op->regs[0].reg_type &
3009 (flag_code == CODE_32BIT ? Reg16 : Reg32))
3010 if (!add_prefix (ADDR_PREFIX_OPCODE))
3011 return 0;
3012 }
3013 else if (i.suffix != QWORD_MNEM_SUFFIX
3014 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
3015 && !(i.tm.opcode_modifier & (IgnoreSize | FloatMF))
3016 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
3017 || (flag_code == CODE_64BIT
3018 && (i.tm.opcode_modifier & JumpByte))))
3019 {
3020 unsigned int prefix = DATA_PREFIX_OPCODE;
3021
3022 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
3023 prefix = ADDR_PREFIX_OPCODE;
3024
3025 if (!add_prefix (prefix))
3026 return 0;
3027 }
3028
3029 /* Set mode64 for an operand. */
3030 if (i.suffix == QWORD_MNEM_SUFFIX
3031 && flag_code == CODE_64BIT
3032 && (i.tm.opcode_modifier & NoRex64) == 0)
3033 {
3034 /* Special case for xchg %rax,%rax. It is NOP and doesn't
3035 need rex64. */
3036 if (i.operands != 2
3037 || i.types [0] != (Acc | Reg64)
3038 || i.types [1] != (Acc | Reg64)
3039 || i.tm.base_opcode != 0x90)
3040 i.rex |= REX_W;
3041 }
3042
3043 /* Size floating point instruction. */
3044 if (i.suffix == LONG_MNEM_SUFFIX)
3045 if (i.tm.opcode_modifier & FloatMF)
3046 i.tm.base_opcode ^= 4;
3047 }
3048
3049 return 1;
3050 }
3051
3052 static int
3053 check_byte_reg (void)
3054 {
3055 int op;
3056
3057 for (op = i.operands; --op >= 0;)
3058 {
3059 /* If this is an eight bit register, it's OK. If it's the 16 or
3060 32 bit version of an eight bit register, we will just use the
3061 low portion, and that's OK too. */
3062 if (i.types[op] & Reg8)
3063 continue;
3064
3065 /* movzx, movsx, pextrb and pinsrb should not generate this
3066 warning. */
3067 if (intel_syntax
3068 && (i.tm.base_opcode == 0xfb7
3069 || i.tm.base_opcode == 0xfb6
3070 || i.tm.base_opcode == 0x63
3071 || i.tm.base_opcode == 0xfbe
3072 || i.tm.base_opcode == 0xfbf
3073 || i.tm.base_opcode == 0x660f3a14
3074 || i.tm.base_opcode == 0x660f3a20))
3075 continue;
3076
3077 /* crc32 doesn't generate this warning. */
3078 if (i.tm.base_opcode == 0xf20f38f0)
3079 continue;
3080
3081 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4)
3082 {
3083 /* Prohibit these changes in the 64bit mode, since the
3084 lowering is more complicated. */
3085 if (flag_code == CODE_64BIT
3086 && (i.tm.operand_types[op] & InOutPortReg) == 0)
3087 {
3088 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3089 register_prefix, i.op[op].regs->reg_name,
3090 i.suffix);
3091 return 0;
3092 }
3093 #if REGISTER_WARNINGS
3094 if (!quiet_warnings
3095 && (i.tm.operand_types[op] & InOutPortReg) == 0)
3096 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3097 register_prefix,
3098 (i.op[op].regs + (i.types[op] & Reg16
3099 ? REGNAM_AL - REGNAM_AX
3100 : REGNAM_AL - REGNAM_EAX))->reg_name,
3101 register_prefix,
3102 i.op[op].regs->reg_name,
3103 i.suffix);
3104 #endif
3105 continue;
3106 }
3107 /* Any other register is bad. */
3108 if (i.types[op] & (Reg | RegMMX | RegXMM
3109 | SReg2 | SReg3
3110 | Control | Debug | Test
3111 | FloatReg | FloatAcc))
3112 {
3113 as_bad (_("`%s%s' not allowed with `%s%c'"),
3114 register_prefix,
3115 i.op[op].regs->reg_name,
3116 i.tm.name,
3117 i.suffix);
3118 return 0;
3119 }
3120 }
3121 return 1;
3122 }
3123
3124 static int
3125 check_long_reg (void)
3126 {
3127 int op;
3128
3129 for (op = i.operands; --op >= 0;)
3130 /* Reject eight bit registers, except where the template requires
3131 them. (eg. movzb) */
3132 if ((i.types[op] & Reg8) != 0
3133 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3134 {
3135 as_bad (_("`%s%s' not allowed with `%s%c'"),
3136 register_prefix,
3137 i.op[op].regs->reg_name,
3138 i.tm.name,
3139 i.suffix);
3140 return 0;
3141 }
3142 /* Warn if the e prefix on a general reg is missing. */
3143 else if ((!quiet_warnings || flag_code == CODE_64BIT)
3144 && (i.types[op] & Reg16) != 0
3145 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3146 {
3147 /* Prohibit these changes in the 64bit mode, since the
3148 lowering is more complicated. */
3149 if (flag_code == CODE_64BIT)
3150 {
3151 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3152 register_prefix, i.op[op].regs->reg_name,
3153 i.suffix);
3154 return 0;
3155 }
3156 #if REGISTER_WARNINGS
3157 else
3158 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3159 register_prefix,
3160 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
3161 register_prefix,
3162 i.op[op].regs->reg_name,
3163 i.suffix);
3164 #endif
3165 }
3166 /* Warn if the r prefix on a general reg is missing. */
3167 else if ((i.types[op] & Reg64) != 0
3168 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3169 {
3170 if (intel_syntax
3171 && i.tm.base_opcode == 0xf30f2d
3172 && (i.types[0] & RegXMM) == 0)
3173 {
3174 /* cvtss2si converts DWORD memory to Reg64. We want
3175 REX byte. */
3176 i.suffix = QWORD_MNEM_SUFFIX;
3177 }
3178 else
3179 {
3180 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3181 register_prefix, i.op[op].regs->reg_name,
3182 i.suffix);
3183 return 0;
3184 }
3185 }
3186 return 1;
3187 }
3188
3189 static int
3190 check_qword_reg (void)
3191 {
3192 int op;
3193
3194 for (op = i.operands; --op >= 0; )
3195 /* Reject eight bit registers, except where the template requires
3196 them. (eg. movzb) */
3197 if ((i.types[op] & Reg8) != 0
3198 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3199 {
3200 as_bad (_("`%s%s' not allowed with `%s%c'"),
3201 register_prefix,
3202 i.op[op].regs->reg_name,
3203 i.tm.name,
3204 i.suffix);
3205 return 0;
3206 }
3207 /* Warn if the e prefix on a general reg is missing. */
3208 else if ((i.types[op] & (Reg16 | Reg32)) != 0
3209 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3210 {
3211 /* Prohibit these changes in the 64bit mode, since the
3212 lowering is more complicated. */
3213 if (intel_syntax
3214 && i.tm.base_opcode == 0xf20f2d
3215 && (i.types[0] & RegXMM) == 0)
3216 {
3217 /* cvtsd2si converts QWORD memory to Reg32. We don't want
3218 REX byte. */
3219 i.suffix = LONG_MNEM_SUFFIX;
3220 }
3221 else
3222 {
3223 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3224 register_prefix, i.op[op].regs->reg_name,
3225 i.suffix);
3226 return 0;
3227 }
3228 }
3229 return 1;
3230 }
3231
3232 static int
3233 check_word_reg (void)
3234 {
3235 int op;
3236 for (op = i.operands; --op >= 0;)
3237 /* Reject eight bit registers, except where the template requires
3238 them. (eg. movzb) */
3239 if ((i.types[op] & Reg8) != 0
3240 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3241 {
3242 as_bad (_("`%s%s' not allowed with `%s%c'"),
3243 register_prefix,
3244 i.op[op].regs->reg_name,
3245 i.tm.name,
3246 i.suffix);
3247 return 0;
3248 }
3249 /* Warn if the e prefix on a general reg is present. */
3250 else if ((!quiet_warnings || flag_code == CODE_64BIT)
3251 && (i.types[op] & Reg32) != 0
3252 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
3253 {
3254 /* Prohibit these changes in the 64bit mode, since the
3255 lowering is more complicated. */
3256 if (flag_code == CODE_64BIT)
3257 {
3258 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3259 register_prefix, i.op[op].regs->reg_name,
3260 i.suffix);
3261 return 0;
3262 }
3263 else
3264 #if REGISTER_WARNINGS
3265 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3266 register_prefix,
3267 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
3268 register_prefix,
3269 i.op[op].regs->reg_name,
3270 i.suffix);
3271 #endif
3272 }
3273 return 1;
3274 }
3275
3276 static int
3277 finalize_imm (void)
3278 {
3279 unsigned int overlap0, overlap1, overlap2;
3280
3281 overlap0 = i.types[0] & i.tm.operand_types[0];
3282 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64))
3283 && overlap0 != Imm8 && overlap0 != Imm8S
3284 && overlap0 != Imm16 && overlap0 != Imm32S
3285 && overlap0 != Imm32 && overlap0 != Imm64)
3286 {
3287 if (i.suffix)
3288 {
3289 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
3290 ? Imm8 | Imm8S
3291 : (i.suffix == WORD_MNEM_SUFFIX
3292 ? Imm16
3293 : (i.suffix == QWORD_MNEM_SUFFIX
3294 ? Imm64 | Imm32S
3295 : Imm32)));
3296 }
3297 else if (overlap0 == (Imm16 | Imm32S | Imm32)
3298 || overlap0 == (Imm16 | Imm32)
3299 || overlap0 == (Imm16 | Imm32S))
3300 {
3301 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
3302 ? Imm16 : Imm32S);
3303 }
3304 if (overlap0 != Imm8 && overlap0 != Imm8S
3305 && overlap0 != Imm16 && overlap0 != Imm32S
3306 && overlap0 != Imm32 && overlap0 != Imm64)
3307 {
3308 as_bad (_("no instruction mnemonic suffix given; "
3309 "can't determine immediate size"));
3310 return 0;
3311 }
3312 }
3313 i.types[0] = overlap0;
3314
3315 overlap1 = i.types[1] & i.tm.operand_types[1];
3316 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32 | Imm64))
3317 && overlap1 != Imm8 && overlap1 != Imm8S
3318 && overlap1 != Imm16 && overlap1 != Imm32S
3319 && overlap1 != Imm32 && overlap1 != Imm64)
3320 {
3321 if (i.suffix)
3322 {
3323 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
3324 ? Imm8 | Imm8S
3325 : (i.suffix == WORD_MNEM_SUFFIX
3326 ? Imm16
3327 : (i.suffix == QWORD_MNEM_SUFFIX
3328 ? Imm64 | Imm32S
3329 : Imm32)));
3330 }
3331 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
3332 || overlap1 == (Imm16 | Imm32)
3333 || overlap1 == (Imm16 | Imm32S))
3334 {
3335 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
3336 ? Imm16 : Imm32S);
3337 }
3338 if (overlap1 != Imm8 && overlap1 != Imm8S
3339 && overlap1 != Imm16 && overlap1 != Imm32S
3340 && overlap1 != Imm32 && overlap1 != Imm64)
3341 {
3342 as_bad (_("no instruction mnemonic suffix given; "
3343 "can't determine immediate size %x %c"),
3344 overlap1, i.suffix);
3345 return 0;
3346 }
3347 }
3348 i.types[1] = overlap1;
3349
3350 overlap2 = i.types[2] & i.tm.operand_types[2];
3351 assert ((overlap2 & Imm) == 0);
3352 i.types[2] = overlap2;
3353
3354 return 1;
3355 }
3356
3357 static int
3358 process_operands (void)
3359 {
3360 /* Default segment register this instruction will use for memory
3361 accesses. 0 means unknown. This is only for optimizing out
3362 unnecessary segment overrides. */
3363 const seg_entry *default_seg = 0;
3364
3365 /* The imul $imm, %reg instruction is converted into
3366 imul $imm, %reg, %reg, and the clr %reg instruction
3367 is converted into xor %reg, %reg. */
3368 if (i.tm.opcode_modifier & RegKludge)
3369 {
3370 if ((i.tm.cpu_flags & CpuSSE4_1))
3371 {
3372 /* The first operand in instruction blendvpd, blendvps and
3373 pblendvb in SSE4.1 is implicit and must be xmm0. */
3374 assert (i.operands == 3
3375 && i.reg_operands >= 2
3376 && i.types[0] == RegXMM);
3377 if (i.op[0].regs->reg_num != 0)
3378 {
3379 if (intel_syntax)
3380 as_bad (_("the last operand of `%s' must be `%sxmm0'"),
3381 i.tm.name, register_prefix);
3382 else
3383 as_bad (_("the first operand of `%s' must be `%sxmm0'"),
3384 i.tm.name, register_prefix);
3385 return 0;
3386 }
3387 i.op[0] = i.op[1];
3388 i.op[1] = i.op[2];
3389 i.types[0] = i.types[1];
3390 i.types[1] = i.types[2];
3391 i.operands--;
3392 i.reg_operands--;
3393
3394 /* We need to adjust fields in i.tm since they are used by
3395 build_modrm_byte. */
3396 i.tm.operand_types [0] = i.tm.operand_types [1];
3397 i.tm.operand_types [1] = i.tm.operand_types [2];
3398 i.tm.operands--;
3399 }
3400 else
3401 {
3402 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
3403 /* Pretend we saw the extra register operand. */
3404 assert (i.reg_operands == 1
3405 && i.op[first_reg_op + 1].regs == 0);
3406 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
3407 i.types[first_reg_op + 1] = i.types[first_reg_op];
3408 i.operands++;
3409 i.reg_operands++;
3410 }
3411 }
3412
3413 if (i.tm.opcode_modifier & ShortForm)
3414 {
3415 if (i.types[0] & (SReg2 | SReg3))
3416 {
3417 if (i.tm.base_opcode == POP_SEG_SHORT
3418 && i.op[0].regs->reg_num == 1)
3419 {
3420 as_bad (_("you can't `pop %%cs'"));
3421 return 0;
3422 }
3423 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
3424 if ((i.op[0].regs->reg_flags & RegRex) != 0)
3425 i.rex |= REX_B;
3426 }
3427 else
3428 {
3429 /* The register or float register operand is in operand 0 or 1. */
3430 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
3431 /* Register goes in low 3 bits of opcode. */
3432 i.tm.base_opcode |= i.op[op].regs->reg_num;
3433 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3434 i.rex |= REX_B;
3435 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
3436 {
3437 /* Warn about some common errors, but press on regardless.
3438 The first case can be generated by gcc (<= 2.8.1). */
3439 if (i.operands == 2)
3440 {
3441 /* Reversed arguments on faddp, fsubp, etc. */
3442 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
3443 register_prefix, i.op[1].regs->reg_name,
3444 register_prefix, i.op[0].regs->reg_name);
3445 }
3446 else
3447 {
3448 /* Extraneous `l' suffix on fp insn. */
3449 as_warn (_("translating to `%s %s%s'"), i.tm.name,
3450 register_prefix, i.op[0].regs->reg_name);
3451 }
3452 }
3453 }
3454 }
3455 else if (i.tm.opcode_modifier & Modrm)
3456 {
3457 /* The opcode is completed (modulo i.tm.extension_opcode which
3458 must be put into the modrm byte). Now, we make the modrm and
3459 index base bytes based on all the info we've collected. */
3460
3461 default_seg = build_modrm_byte ();
3462 }
3463 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
3464 {
3465 default_seg = &ds;
3466 }
3467 else if ((i.tm.opcode_modifier & IsString) != 0)
3468 {
3469 /* For the string instructions that allow a segment override
3470 on one of their operands, the default segment is ds. */
3471 default_seg = &ds;
3472 }
3473
3474 if ((i.tm.base_opcode == 0x8d /* lea */
3475 || (i.tm.cpu_flags & CpuSVME))
3476 && i.seg[0] && !quiet_warnings)
3477 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
3478
3479 /* If a segment was explicitly specified, and the specified segment
3480 is not the default, use an opcode prefix to select it. If we
3481 never figured out what the default segment is, then default_seg
3482 will be zero at this point, and the specified segment prefix will
3483 always be used. */
3484 if ((i.seg[0]) && (i.seg[0] != default_seg))
3485 {
3486 if (!add_prefix (i.seg[0]->seg_prefix))
3487 return 0;
3488 }
3489 return 1;
3490 }
3491
3492 static const seg_entry *
3493 build_modrm_byte (void)
3494 {
3495 const seg_entry *default_seg = 0;
3496
3497 /* i.reg_operands MUST be the number of real register operands;
3498 implicit registers do not count. */
3499 if (i.reg_operands == 2)
3500 {
3501 unsigned int source, dest;
3502
3503 switch (i.operands)
3504 {
3505 case 2:
3506 source = 0;
3507 break;
3508 case 3:
3509 /* When there are 3 operands, one of them may be immediate,
3510 which may be the first or the last operand. Otherwise,
3511 the first operand must be shift count register (cl). */
3512 assert (i.imm_operands == 1
3513 || (i.imm_operands == 0
3514 && (i.types[0] & ShiftCount)));
3515 source = (i.types[0] & (Imm | ShiftCount)) ? 1 : 0;
3516 break;
3517 case 4:
3518 /* When there are 4 operands, the first two must be immediate
3519 operands. The source operand will be the 3rd one. */
3520 assert (i.imm_operands == 2
3521 && (i.types[0] & Imm)
3522 && (i.types[1] & Imm));
3523 source = 2;
3524 break;
3525 default:
3526 abort ();
3527 }
3528
3529 dest = source + 1;
3530
3531 i.rm.mode = 3;
3532 /* One of the register operands will be encoded in the i.tm.reg
3533 field, the other in the combined i.tm.mode and i.tm.regmem
3534 fields. If no form of this instruction supports a memory
3535 destination operand, then we assume the source operand may
3536 sometimes be a memory operand and so we need to store the
3537 destination in the i.rm.reg field. */
3538 if ((i.tm.operand_types[dest] & (AnyMem | RegMem)) == 0)
3539 {
3540 i.rm.reg = i.op[dest].regs->reg_num;
3541 i.rm.regmem = i.op[source].regs->reg_num;
3542 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
3543 i.rex |= REX_R;
3544 if ((i.op[source].regs->reg_flags & RegRex) != 0)
3545 i.rex |= REX_B;
3546 }
3547 else
3548 {
3549 i.rm.reg = i.op[source].regs->reg_num;
3550 i.rm.regmem = i.op[dest].regs->reg_num;
3551 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
3552 i.rex |= REX_B;
3553 if ((i.op[source].regs->reg_flags & RegRex) != 0)
3554 i.rex |= REX_R;
3555 }
3556 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
3557 {
3558 if (!((i.types[0] | i.types[1]) & Control))
3559 abort ();
3560 i.rex &= ~(REX_R | REX_B);
3561 add_prefix (LOCK_PREFIX_OPCODE);
3562 }
3563 }
3564 else
3565 { /* If it's not 2 reg operands... */
3566 if (i.mem_operands)
3567 {
3568 unsigned int fake_zero_displacement = 0;
3569 unsigned int op;
3570
3571 for (op = 0; op < i.operands; op++)
3572 if ((i.types[op] & AnyMem))
3573 break;
3574 assert (op < i.operands);
3575
3576 default_seg = &ds;
3577
3578 if (i.base_reg == 0)
3579 {
3580 i.rm.mode = 0;
3581 if (!i.disp_operands)
3582 fake_zero_displacement = 1;
3583 if (i.index_reg == 0)
3584 {
3585 /* Operand is just <disp> */
3586 if (flag_code == CODE_64BIT)
3587 {
3588 /* 64bit mode overwrites the 32bit absolute
3589 addressing by RIP relative addressing and
3590 absolute addressing is encoded by one of the
3591 redundant SIB forms. */
3592 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3593 i.sib.base = NO_BASE_REGISTER;
3594 i.sib.index = NO_INDEX_REGISTER;
3595 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
3596 ? Disp32S : Disp32);
3597 }
3598 else if ((flag_code == CODE_16BIT)
3599 ^ (i.prefix[ADDR_PREFIX] != 0))
3600 {
3601 i.rm.regmem = NO_BASE_REGISTER_16;
3602 i.types[op] = Disp16;
3603 }
3604 else
3605 {
3606 i.rm.regmem = NO_BASE_REGISTER;
3607 i.types[op] = Disp32;
3608 }
3609 }
3610 else /* !i.base_reg && i.index_reg */
3611 {
3612 i.sib.index = i.index_reg->reg_num;
3613 i.sib.base = NO_BASE_REGISTER;
3614 i.sib.scale = i.log2_scale_factor;
3615 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3616 i.types[op] &= ~Disp;
3617 if (flag_code != CODE_64BIT)
3618 i.types[op] |= Disp32; /* Must be 32 bit */
3619 else
3620 i.types[op] |= Disp32S;
3621 if ((i.index_reg->reg_flags & RegRex) != 0)
3622 i.rex |= REX_X;
3623 }
3624 }
3625 /* RIP addressing for 64bit mode. */
3626 else if (i.base_reg->reg_type == BaseIndex)
3627 {
3628 i.rm.regmem = NO_BASE_REGISTER;
3629 i.types[op] &= ~ Disp;
3630 i.types[op] |= Disp32S;
3631 i.flags[op] |= Operand_PCrel;
3632 if (! i.disp_operands)
3633 fake_zero_displacement = 1;
3634 }
3635 else if (i.base_reg->reg_type & Reg16)
3636 {
3637 switch (i.base_reg->reg_num)
3638 {
3639 case 3: /* (%bx) */
3640 if (i.index_reg == 0)
3641 i.rm.regmem = 7;
3642 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
3643 i.rm.regmem = i.index_reg->reg_num - 6;
3644 break;
3645 case 5: /* (%bp) */
3646 default_seg = &ss;
3647 if (i.index_reg == 0)
3648 {
3649 i.rm.regmem = 6;
3650 if ((i.types[op] & Disp) == 0)
3651 {
3652 /* fake (%bp) into 0(%bp) */
3653 i.types[op] |= Disp8;
3654 fake_zero_displacement = 1;
3655 }
3656 }
3657 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
3658 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
3659 break;
3660 default: /* (%si) -> 4 or (%di) -> 5 */
3661 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
3662 }
3663 i.rm.mode = mode_from_disp_size (i.types[op]);
3664 }
3665 else /* i.base_reg and 32/64 bit mode */
3666 {
3667 if (flag_code == CODE_64BIT
3668 && (i.types[op] & Disp))
3669 i.types[op] = ((i.types[op] & Disp8)
3670 | (i.prefix[ADDR_PREFIX] == 0
3671 ? Disp32S : Disp32));
3672
3673 i.rm.regmem = i.base_reg->reg_num;
3674 if ((i.base_reg->reg_flags & RegRex) != 0)
3675 i.rex |= REX_B;
3676 i.sib.base = i.base_reg->reg_num;
3677 /* x86-64 ignores REX prefix bit here to avoid decoder
3678 complications. */
3679 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
3680 {
3681 default_seg = &ss;
3682 if (i.disp_operands == 0)
3683 {
3684 fake_zero_displacement = 1;
3685 i.types[op] |= Disp8;
3686 }
3687 }
3688 else if (i.base_reg->reg_num == ESP_REG_NUM)
3689 {
3690 default_seg = &ss;
3691 }
3692 i.sib.scale = i.log2_scale_factor;
3693 if (i.index_reg == 0)
3694 {
3695 /* <disp>(%esp) becomes two byte modrm with no index
3696 register. We've already stored the code for esp
3697 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
3698 Any base register besides %esp will not use the
3699 extra modrm byte. */
3700 i.sib.index = NO_INDEX_REGISTER;
3701 #if !SCALE1_WHEN_NO_INDEX
3702 /* Another case where we force the second modrm byte. */
3703 if (i.log2_scale_factor)
3704 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3705 #endif
3706 }
3707 else
3708 {
3709 i.sib.index = i.index_reg->reg_num;
3710 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3711 if ((i.index_reg->reg_flags & RegRex) != 0)
3712 i.rex |= REX_X;
3713 }
3714
3715 if (i.disp_operands
3716 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
3717 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
3718 i.rm.mode = 0;
3719 else
3720 i.rm.mode = mode_from_disp_size (i.types[op]);
3721 }
3722
3723 if (fake_zero_displacement)
3724 {
3725 /* Fakes a zero displacement assuming that i.types[op]
3726 holds the correct displacement size. */
3727 expressionS *exp;
3728
3729 assert (i.op[op].disps == 0);
3730 exp = &disp_expressions[i.disp_operands++];
3731 i.op[op].disps = exp;
3732 exp->X_op = O_constant;
3733 exp->X_add_number = 0;
3734 exp->X_add_symbol = (symbolS *) 0;
3735 exp->X_op_symbol = (symbolS *) 0;
3736 }
3737 }
3738
3739 /* Fill in i.rm.reg or i.rm.regmem field with register operand
3740 (if any) based on i.tm.extension_opcode. Again, we must be
3741 careful to make sure that segment/control/debug/test/MMX
3742 registers are coded into the i.rm.reg field. */
3743 if (i.reg_operands)
3744 {
3745 unsigned int op;
3746
3747 for (op = 0; op < i.operands; op++)
3748 if ((i.types[op] & (Reg | RegMMX | RegXMM
3749 | SReg2 | SReg3
3750 | Control | Debug | Test)))
3751 break;
3752 assert (op < i.operands);
3753
3754 /* If there is an extension opcode to put here, the register
3755 number must be put into the regmem field. */
3756 if (i.tm.extension_opcode != None)
3757 {
3758 i.rm.regmem = i.op[op].regs->reg_num;
3759 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3760 i.rex |= REX_B;
3761 }
3762 else
3763 {
3764 i.rm.reg = i.op[op].regs->reg_num;
3765 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3766 i.rex |= REX_R;
3767 }
3768
3769 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
3770 must set it to 3 to indicate this is a register operand
3771 in the regmem field. */
3772 if (!i.mem_operands)
3773 i.rm.mode = 3;
3774 }
3775
3776 /* Fill in i.rm.reg field with extension opcode (if any). */
3777 if (i.tm.extension_opcode != None)
3778 i.rm.reg = i.tm.extension_opcode;
3779 }
3780 return default_seg;
3781 }
3782
3783 static void
3784 output_branch (void)
3785 {
3786 char *p;
3787 int code16;
3788 int prefix;
3789 relax_substateT subtype;
3790 symbolS *sym;
3791 offsetT off;
3792
3793 code16 = 0;
3794 if (flag_code == CODE_16BIT)
3795 code16 = CODE16;
3796
3797 prefix = 0;
3798 if (i.prefix[DATA_PREFIX] != 0)
3799 {
3800 prefix = 1;
3801 i.prefixes -= 1;
3802 code16 ^= CODE16;
3803 }
3804 /* Pentium4 branch hints. */
3805 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3806 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3807 {
3808 prefix++;
3809 i.prefixes--;
3810 }
3811 if (i.prefix[REX_PREFIX] != 0)
3812 {
3813 prefix++;
3814 i.prefixes--;
3815 }
3816
3817 if (i.prefixes != 0 && !intel_syntax)
3818 as_warn (_("skipping prefixes on this instruction"));
3819
3820 /* It's always a symbol; End frag & setup for relax.
3821 Make sure there is enough room in this frag for the largest
3822 instruction we may generate in md_convert_frag. This is 2
3823 bytes for the opcode and room for the prefix and largest
3824 displacement. */
3825 frag_grow (prefix + 2 + 4);
3826 /* Prefix and 1 opcode byte go in fr_fix. */
3827 p = frag_more (prefix + 1);
3828 if (i.prefix[DATA_PREFIX] != 0)
3829 *p++ = DATA_PREFIX_OPCODE;
3830 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
3831 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
3832 *p++ = i.prefix[SEG_PREFIX];
3833 if (i.prefix[REX_PREFIX] != 0)
3834 *p++ = i.prefix[REX_PREFIX];
3835 *p = i.tm.base_opcode;
3836
3837 if ((unsigned char) *p == JUMP_PC_RELATIVE)
3838 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
3839 else if ((cpu_arch_flags & Cpu386) != 0)
3840 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3841 else
3842 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3843 subtype |= code16;
3844
3845 sym = i.op[0].disps->X_add_symbol;
3846 off = i.op[0].disps->X_add_number;
3847
3848 if (i.op[0].disps->X_op != O_constant
3849 && i.op[0].disps->X_op != O_symbol)
3850 {
3851 /* Handle complex expressions. */
3852 sym = make_expr_symbol (i.op[0].disps);
3853 off = 0;
3854 }
3855
3856 /* 1 possible extra opcode + 4 byte displacement go in var part.
3857 Pass reloc in fr_var. */
3858 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3859 }
3860
3861 static void
3862 output_jump (void)
3863 {
3864 char *p;
3865 int size;
3866 fixS *fixP;
3867
3868 if (i.tm.opcode_modifier & JumpByte)
3869 {
3870 /* This is a loop or jecxz type instruction. */
3871 size = 1;
3872 if (i.prefix[ADDR_PREFIX] != 0)
3873 {
3874 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3875 i.prefixes -= 1;
3876 }
3877 /* Pentium4 branch hints. */
3878 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3879 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3880 {
3881 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3882 i.prefixes--;
3883 }
3884 }
3885 else
3886 {
3887 int code16;
3888
3889 code16 = 0;
3890 if (flag_code == CODE_16BIT)
3891 code16 = CODE16;
3892
3893 if (i.prefix[DATA_PREFIX] != 0)
3894 {
3895 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3896 i.prefixes -= 1;
3897 code16 ^= CODE16;
3898 }
3899
3900 size = 4;
3901 if (code16)
3902 size = 2;
3903 }
3904
3905 if (i.prefix[REX_PREFIX] != 0)
3906 {
3907 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3908 i.prefixes -= 1;
3909 }
3910
3911 if (i.prefixes != 0 && !intel_syntax)
3912 as_warn (_("skipping prefixes on this instruction"));
3913
3914 p = frag_more (1 + size);
3915 *p++ = i.tm.base_opcode;
3916
3917 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3918 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3919
3920 /* All jumps handled here are signed, but don't use a signed limit
3921 check for 32 and 16 bit jumps as we want to allow wrap around at
3922 4G and 64k respectively. */
3923 if (size == 1)
3924 fixP->fx_signed = 1;
3925 }
3926
3927 static void
3928 output_interseg_jump (void)
3929 {
3930 char *p;
3931 int size;
3932 int prefix;
3933 int code16;
3934
3935 code16 = 0;
3936 if (flag_code == CODE_16BIT)
3937 code16 = CODE16;
3938
3939 prefix = 0;
3940 if (i.prefix[DATA_PREFIX] != 0)
3941 {
3942 prefix = 1;
3943 i.prefixes -= 1;
3944 code16 ^= CODE16;
3945 }
3946 if (i.prefix[REX_PREFIX] != 0)
3947 {
3948 prefix++;
3949 i.prefixes -= 1;
3950 }
3951
3952 size = 4;
3953 if (code16)
3954 size = 2;
3955
3956 if (i.prefixes != 0 && !intel_syntax)
3957 as_warn (_("skipping prefixes on this instruction"));
3958
3959 /* 1 opcode; 2 segment; offset */
3960 p = frag_more (prefix + 1 + 2 + size);
3961
3962 if (i.prefix[DATA_PREFIX] != 0)
3963 *p++ = DATA_PREFIX_OPCODE;
3964
3965 if (i.prefix[REX_PREFIX] != 0)
3966 *p++ = i.prefix[REX_PREFIX];
3967
3968 *p++ = i.tm.base_opcode;
3969 if (i.op[1].imms->X_op == O_constant)
3970 {
3971 offsetT n = i.op[1].imms->X_add_number;
3972
3973 if (size == 2
3974 && !fits_in_unsigned_word (n)
3975 && !fits_in_signed_word (n))
3976 {
3977 as_bad (_("16-bit jump out of range"));
3978 return;
3979 }
3980 md_number_to_chars (p, n, size);
3981 }
3982 else
3983 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3984 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3985 if (i.op[0].imms->X_op != O_constant)
3986 as_bad (_("can't handle non absolute segment in `%s'"),
3987 i.tm.name);
3988 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3989 }
3990
3991 static void
3992 output_insn (void)
3993 {
3994 fragS *insn_start_frag;
3995 offsetT insn_start_off;
3996
3997 /* Tie dwarf2 debug info to the address at the start of the insn.
3998 We can't do this after the insn has been output as the current
3999 frag may have been closed off. eg. by frag_var. */
4000 dwarf2_emit_insn (0);
4001
4002 insn_start_frag = frag_now;
4003 insn_start_off = frag_now_fix ();
4004
4005 /* Output jumps. */
4006 if (i.tm.opcode_modifier & Jump)
4007 output_branch ();
4008 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
4009 output_jump ();
4010 else if (i.tm.opcode_modifier & JumpInterSegment)
4011 output_interseg_jump ();
4012 else
4013 {
4014 /* Output normal instructions here. */
4015 char *p;
4016 unsigned char *q;
4017 unsigned int prefix;
4018
4019 /* All opcodes on i386 have either 1 or 2 bytes. SSSE3 and
4020 SSE4 instructions have 3 bytes. We may use one more higher
4021 byte to specify a prefix the instruction requires. Exclude
4022 instructions which are in both SSE4 and ABM. */
4023 if ((i.tm.cpu_flags & (CpuSSSE3 | CpuSSE4)) != 0
4024 && (i.tm.cpu_flags & CpuABM) == 0)
4025 {
4026 if (i.tm.base_opcode & 0xff000000)
4027 {
4028 prefix = (i.tm.base_opcode >> 24) & 0xff;
4029 goto check_prefix;
4030 }
4031 }
4032 else if ((i.tm.base_opcode & 0xff0000) != 0)
4033 {
4034 prefix = (i.tm.base_opcode >> 16) & 0xff;
4035 if ((i.tm.cpu_flags & CpuPadLock) != 0)
4036 {
4037 check_prefix:
4038 if (prefix != REPE_PREFIX_OPCODE
4039 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
4040 add_prefix (prefix);
4041 }
4042 else
4043 add_prefix (prefix);
4044 }
4045
4046 /* The prefix bytes. */
4047 for (q = i.prefix;
4048 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
4049 q++)
4050 {
4051 if (*q)
4052 {
4053 p = frag_more (1);
4054 md_number_to_chars (p, (valueT) *q, 1);
4055 }
4056 }
4057
4058 /* Now the opcode; be careful about word order here! */
4059 if (fits_in_unsigned_byte (i.tm.base_opcode))
4060 {
4061 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
4062 }
4063 else
4064 {
4065 if ((i.tm.cpu_flags & (CpuSSSE3 | CpuSSE4)) != 0
4066 && (i.tm.cpu_flags & CpuABM) == 0)
4067 {
4068 p = frag_more (3);
4069 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4070 }
4071 else
4072 p = frag_more (2);
4073
4074 /* Put out high byte first: can't use md_number_to_chars! */
4075 *p++ = (i.tm.base_opcode >> 8) & 0xff;
4076 *p = i.tm.base_opcode & 0xff;
4077 }
4078
4079 /* Now the modrm byte and sib byte (if present). */
4080 if (i.tm.opcode_modifier & Modrm)
4081 {
4082 p = frag_more (1);
4083 md_number_to_chars (p,
4084 (valueT) (i.rm.regmem << 0
4085 | i.rm.reg << 3
4086 | i.rm.mode << 6),
4087 1);
4088 /* If i.rm.regmem == ESP (4)
4089 && i.rm.mode != (Register mode)
4090 && not 16 bit
4091 ==> need second modrm byte. */
4092 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
4093 && i.rm.mode != 3
4094 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
4095 {
4096 p = frag_more (1);
4097 md_number_to_chars (p,
4098 (valueT) (i.sib.base << 0
4099 | i.sib.index << 3
4100 | i.sib.scale << 6),
4101 1);
4102 }
4103 }
4104
4105 if (i.disp_operands)
4106 output_disp (insn_start_frag, insn_start_off);
4107
4108 if (i.imm_operands)
4109 output_imm (insn_start_frag, insn_start_off);
4110 }
4111
4112 #ifdef DEBUG386
4113 if (flag_debug)
4114 {
4115 pi ("" /*line*/, &i);
4116 }
4117 #endif /* DEBUG386 */
4118 }
4119
4120 /* Return the size of the displacement operand N. */
4121
4122 static int
4123 disp_size (unsigned int n)
4124 {
4125 int size = 4;
4126 if (i.types[n] & (Disp8 | Disp16 | Disp64))
4127 {
4128 size = 2;
4129 if (i.types[n] & Disp8)
4130 size = 1;
4131 if (i.types[n] & Disp64)
4132 size = 8;
4133 }
4134 return size;
4135 }
4136
4137 /* Return the size of the immediate operand N. */
4138
4139 static int
4140 imm_size (unsigned int n)
4141 {
4142 int size = 4;
4143 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
4144 {
4145 size = 2;
4146 if (i.types[n] & (Imm8 | Imm8S))
4147 size = 1;
4148 if (i.types[n] & Imm64)
4149 size = 8;
4150 }
4151 return size;
4152 }
4153
4154 static void
4155 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
4156 {
4157 char *p;
4158 unsigned int n;
4159
4160 for (n = 0; n < i.operands; n++)
4161 {
4162 if (i.types[n] & Disp)
4163 {
4164 if (i.op[n].disps->X_op == O_constant)
4165 {
4166 int size = disp_size (n);
4167 offsetT val;
4168
4169 val = offset_in_range (i.op[n].disps->X_add_number,
4170 size);
4171 p = frag_more (size);
4172 md_number_to_chars (p, val, size);
4173 }
4174 else
4175 {
4176 enum bfd_reloc_code_real reloc_type;
4177 int size = disp_size (n);
4178 int sign = (i.types[n] & Disp32S) != 0;
4179 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
4180
4181 /* We can't have 8 bit displacement here. */
4182 assert ((i.types[n] & Disp8) == 0);
4183
4184 /* The PC relative address is computed relative
4185 to the instruction boundary, so in case immediate
4186 fields follows, we need to adjust the value. */
4187 if (pcrel && i.imm_operands)
4188 {
4189 unsigned int n1;
4190 int sz = 0;
4191
4192 for (n1 = 0; n1 < i.operands; n1++)
4193 if (i.types[n1] & Imm)
4194 {
4195 /* Only one immediate is allowed for PC
4196 relative address. */
4197 assert (sz == 0);
4198 sz = imm_size (n1);
4199 i.op[n].disps->X_add_number -= sz;
4200 }
4201 /* We should find the immediate. */
4202 assert (sz != 0);
4203 }
4204
4205 p = frag_more (size);
4206 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
4207 if (GOT_symbol
4208 && GOT_symbol == i.op[n].disps->X_add_symbol
4209 && (((reloc_type == BFD_RELOC_32
4210 || reloc_type == BFD_RELOC_X86_64_32S
4211 || (reloc_type == BFD_RELOC_64
4212 && object_64bit))
4213 && (i.op[n].disps->X_op == O_symbol
4214 || (i.op[n].disps->X_op == O_add
4215 && ((symbol_get_value_expression
4216 (i.op[n].disps->X_op_symbol)->X_op)
4217 == O_subtract))))
4218 || reloc_type == BFD_RELOC_32_PCREL))
4219 {
4220 offsetT add;
4221
4222 if (insn_start_frag == frag_now)
4223 add = (p - frag_now->fr_literal) - insn_start_off;
4224 else
4225 {
4226 fragS *fr;
4227
4228 add = insn_start_frag->fr_fix - insn_start_off;
4229 for (fr = insn_start_frag->fr_next;
4230 fr && fr != frag_now; fr = fr->fr_next)
4231 add += fr->fr_fix;
4232 add += p - frag_now->fr_literal;
4233 }
4234
4235 if (!object_64bit)
4236 {
4237 reloc_type = BFD_RELOC_386_GOTPC;
4238 i.op[n].imms->X_add_number += add;
4239 }
4240 else if (reloc_type == BFD_RELOC_64)
4241 reloc_type = BFD_RELOC_X86_64_GOTPC64;
4242 else
4243 /* Don't do the adjustment for x86-64, as there
4244 the pcrel addressing is relative to the _next_
4245 insn, and that is taken care of in other code. */
4246 reloc_type = BFD_RELOC_X86_64_GOTPC32;
4247 }
4248 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
4249 i.op[n].disps, pcrel, reloc_type);
4250 }
4251 }
4252 }
4253 }
4254
4255 static void
4256 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
4257 {
4258 char *p;
4259 unsigned int n;
4260
4261 for (n = 0; n < i.operands; n++)
4262 {
4263 if (i.types[n] & Imm)
4264 {
4265 if (i.op[n].imms->X_op == O_constant)
4266 {
4267 int size = imm_size (n);
4268 offsetT val;
4269
4270 val = offset_in_range (i.op[n].imms->X_add_number,
4271 size);
4272 p = frag_more (size);
4273 md_number_to_chars (p, val, size);
4274 }
4275 else
4276 {
4277 /* Not absolute_section.
4278 Need a 32-bit fixup (don't support 8bit
4279 non-absolute imms). Try to support other
4280 sizes ... */
4281 enum bfd_reloc_code_real reloc_type;
4282 int size = imm_size (n);
4283 int sign;
4284
4285 if ((i.types[n] & (Imm32S))
4286 && (i.suffix == QWORD_MNEM_SUFFIX
4287 || (!i.suffix && (i.tm.opcode_modifier & No_lSuf))))
4288 sign = 1;
4289 else
4290 sign = 0;
4291
4292 p = frag_more (size);
4293 reloc_type = reloc (size, 0, sign, i.reloc[n]);
4294
4295 /* This is tough to explain. We end up with this one if we
4296 * have operands that look like
4297 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
4298 * obtain the absolute address of the GOT, and it is strongly
4299 * preferable from a performance point of view to avoid using
4300 * a runtime relocation for this. The actual sequence of
4301 * instructions often look something like:
4302 *
4303 * call .L66
4304 * .L66:
4305 * popl %ebx
4306 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
4307 *
4308 * The call and pop essentially return the absolute address
4309 * of the label .L66 and store it in %ebx. The linker itself
4310 * will ultimately change the first operand of the addl so
4311 * that %ebx points to the GOT, but to keep things simple, the
4312 * .o file must have this operand set so that it generates not
4313 * the absolute address of .L66, but the absolute address of
4314 * itself. This allows the linker itself simply treat a GOTPC
4315 * relocation as asking for a pcrel offset to the GOT to be
4316 * added in, and the addend of the relocation is stored in the
4317 * operand field for the instruction itself.
4318 *
4319 * Our job here is to fix the operand so that it would add
4320 * the correct offset so that %ebx would point to itself. The
4321 * thing that is tricky is that .-.L66 will point to the
4322 * beginning of the instruction, so we need to further modify
4323 * the operand so that it will point to itself. There are
4324 * other cases where you have something like:
4325 *
4326 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
4327 *
4328 * and here no correction would be required. Internally in
4329 * the assembler we treat operands of this form as not being
4330 * pcrel since the '.' is explicitly mentioned, and I wonder
4331 * whether it would simplify matters to do it this way. Who
4332 * knows. In earlier versions of the PIC patches, the
4333 * pcrel_adjust field was used to store the correction, but
4334 * since the expression is not pcrel, I felt it would be
4335 * confusing to do it this way. */
4336
4337 if ((reloc_type == BFD_RELOC_32
4338 || reloc_type == BFD_RELOC_X86_64_32S
4339 || reloc_type == BFD_RELOC_64)
4340 && GOT_symbol
4341 && GOT_symbol == i.op[n].imms->X_add_symbol
4342 && (i.op[n].imms->X_op == O_symbol
4343 || (i.op[n].imms->X_op == O_add
4344 && ((symbol_get_value_expression
4345 (i.op[n].imms->X_op_symbol)->X_op)
4346 == O_subtract))))
4347 {
4348 offsetT add;
4349
4350 if (insn_start_frag == frag_now)
4351 add = (p - frag_now->fr_literal) - insn_start_off;
4352 else
4353 {
4354 fragS *fr;
4355
4356 add = insn_start_frag->fr_fix - insn_start_off;
4357 for (fr = insn_start_frag->fr_next;
4358 fr && fr != frag_now; fr = fr->fr_next)
4359 add += fr->fr_fix;
4360 add += p - frag_now->fr_literal;
4361 }
4362
4363 if (!object_64bit)
4364 reloc_type = BFD_RELOC_386_GOTPC;
4365 else if (size == 4)
4366 reloc_type = BFD_RELOC_X86_64_GOTPC32;
4367 else if (size == 8)
4368 reloc_type = BFD_RELOC_X86_64_GOTPC64;
4369 i.op[n].imms->X_add_number += add;
4370 }
4371 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
4372 i.op[n].imms, 0, reloc_type);
4373 }
4374 }
4375 }
4376 }
4377 \f
4378 /* x86_cons_fix_new is called via the expression parsing code when a
4379 reloc is needed. We use this hook to get the correct .got reloc. */
4380 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
4381 static int cons_sign = -1;
4382
4383 void
4384 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
4385 expressionS *exp)
4386 {
4387 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
4388
4389 got_reloc = NO_RELOC;
4390
4391 #ifdef TE_PE
4392 if (exp->X_op == O_secrel)
4393 {
4394 exp->X_op = O_symbol;
4395 r = BFD_RELOC_32_SECREL;
4396 }
4397 #endif
4398
4399 fix_new_exp (frag, off, len, exp, 0, r);
4400 }
4401
4402 #if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
4403 # define lex_got(reloc, adjust, types) NULL
4404 #else
4405 /* Parse operands of the form
4406 <symbol>@GOTOFF+<nnn>
4407 and similar .plt or .got references.
4408
4409 If we find one, set up the correct relocation in RELOC and copy the
4410 input string, minus the `@GOTOFF' into a malloc'd buffer for
4411 parsing by the calling routine. Return this buffer, and if ADJUST
4412 is non-null set it to the length of the string we removed from the
4413 input line. Otherwise return NULL. */
4414 static char *
4415 lex_got (enum bfd_reloc_code_real *reloc,
4416 int *adjust,
4417 unsigned int *types)
4418 {
4419 /* Some of the relocations depend on the size of what field is to
4420 be relocated. But in our callers i386_immediate and i386_displacement
4421 we don't yet know the operand size (this will be set by insn
4422 matching). Hence we record the word32 relocation here,
4423 and adjust the reloc according to the real size in reloc(). */
4424 static const struct {
4425 const char *str;
4426 const enum bfd_reloc_code_real rel[2];
4427 const unsigned int types64;
4428 } gotrel[] = {
4429 { "PLTOFF", { 0,
4430 BFD_RELOC_X86_64_PLTOFF64 },
4431 Imm64 },
4432 { "PLT", { BFD_RELOC_386_PLT32,
4433 BFD_RELOC_X86_64_PLT32 },
4434 Imm32 | Imm32S | Disp32 },
4435 { "GOTPLT", { 0,
4436 BFD_RELOC_X86_64_GOTPLT64 },
4437 Imm64 | Disp64 },
4438 { "GOTOFF", { BFD_RELOC_386_GOTOFF,
4439 BFD_RELOC_X86_64_GOTOFF64 },
4440 Imm64 | Disp64 },
4441 { "GOTPCREL", { 0,
4442 BFD_RELOC_X86_64_GOTPCREL },
4443 Imm32 | Imm32S | Disp32 },
4444 { "TLSGD", { BFD_RELOC_386_TLS_GD,
4445 BFD_RELOC_X86_64_TLSGD },
4446 Imm32 | Imm32S | Disp32 },
4447 { "TLSLDM", { BFD_RELOC_386_TLS_LDM,
4448 0 },
4449 0 },
4450 { "TLSLD", { 0,
4451 BFD_RELOC_X86_64_TLSLD },
4452 Imm32 | Imm32S | Disp32 },
4453 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32,
4454 BFD_RELOC_X86_64_GOTTPOFF },
4455 Imm32 | Imm32S | Disp32 },
4456 { "TPOFF", { BFD_RELOC_386_TLS_LE_32,
4457 BFD_RELOC_X86_64_TPOFF32 },
4458 Imm32 | Imm32S | Imm64 | Disp32 | Disp64 },
4459 { "NTPOFF", { BFD_RELOC_386_TLS_LE,
4460 0 },
4461 0 },
4462 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32,
4463 BFD_RELOC_X86_64_DTPOFF32 },
4464 Imm32 | Imm32S | Imm64 | Disp32 | Disp64 },
4465 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE,
4466 0 },
4467 0 },
4468 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE,
4469 0 },
4470 0 },
4471 { "GOT", { BFD_RELOC_386_GOT32,
4472 BFD_RELOC_X86_64_GOT32 },
4473 Imm32 | Imm32S | Disp32 | Imm64 },
4474 { "TLSDESC", { BFD_RELOC_386_TLS_GOTDESC,
4475 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
4476 Imm32 | Imm32S | Disp32 },
4477 { "TLSCALL", { BFD_RELOC_386_TLS_DESC_CALL,
4478 BFD_RELOC_X86_64_TLSDESC_CALL },
4479 Imm32 | Imm32S | Disp32 }
4480 };
4481 char *cp;
4482 unsigned int j;
4483
4484 if (!IS_ELF)
4485 return NULL;
4486
4487 for (cp = input_line_pointer; *cp != '@'; cp++)
4488 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
4489 return NULL;
4490
4491 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
4492 {
4493 int len;
4494
4495 len = strlen (gotrel[j].str);
4496 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
4497 {
4498 if (gotrel[j].rel[object_64bit] != 0)
4499 {
4500 int first, second;
4501 char *tmpbuf, *past_reloc;
4502
4503 *reloc = gotrel[j].rel[object_64bit];
4504 if (adjust)
4505 *adjust = len;
4506
4507 if (types)
4508 {
4509 if (flag_code != CODE_64BIT)
4510 *types = Imm32 | Disp32;
4511 else
4512 *types = gotrel[j].types64;
4513 }
4514
4515 if (GOT_symbol == NULL)
4516 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
4517
4518 /* The length of the first part of our input line. */
4519 first = cp - input_line_pointer;
4520
4521 /* The second part goes from after the reloc token until
4522 (and including) an end_of_line char or comma. */
4523 past_reloc = cp + 1 + len;
4524 cp = past_reloc;
4525 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
4526 ++cp;
4527 second = cp + 1 - past_reloc;
4528
4529 /* Allocate and copy string. The trailing NUL shouldn't
4530 be necessary, but be safe. */
4531 tmpbuf = xmalloc (first + second + 2);
4532 memcpy (tmpbuf, input_line_pointer, first);
4533 if (second != 0 && *past_reloc != ' ')
4534 /* Replace the relocation token with ' ', so that
4535 errors like foo@GOTOFF1 will be detected. */
4536 tmpbuf[first++] = ' ';
4537 memcpy (tmpbuf + first, past_reloc, second);
4538 tmpbuf[first + second] = '\0';
4539 return tmpbuf;
4540 }
4541
4542 as_bad (_("@%s reloc is not supported with %d-bit output format"),
4543 gotrel[j].str, 1 << (5 + object_64bit));
4544 return NULL;
4545 }
4546 }
4547
4548 /* Might be a symbol version string. Don't as_bad here. */
4549 return NULL;
4550 }
4551
4552 void
4553 x86_cons (expressionS *exp, int size)
4554 {
4555 if (size == 4 || (object_64bit && size == 8))
4556 {
4557 /* Handle @GOTOFF and the like in an expression. */
4558 char *save;
4559 char *gotfree_input_line;
4560 int adjust;
4561
4562 save = input_line_pointer;
4563 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
4564 if (gotfree_input_line)
4565 input_line_pointer = gotfree_input_line;
4566
4567 expression (exp);
4568
4569 if (gotfree_input_line)
4570 {
4571 /* expression () has merrily parsed up to the end of line,
4572 or a comma - in the wrong buffer. Transfer how far
4573 input_line_pointer has moved to the right buffer. */
4574 input_line_pointer = (save
4575 + (input_line_pointer - gotfree_input_line)
4576 + adjust);
4577 free (gotfree_input_line);
4578 if (exp->X_op == O_constant
4579 || exp->X_op == O_absent
4580 || exp->X_op == O_illegal
4581 || exp->X_op == O_register
4582 || exp->X_op == O_big)
4583 {
4584 char c = *input_line_pointer;
4585 *input_line_pointer = 0;
4586 as_bad (_("missing or invalid expression `%s'"), save);
4587 *input_line_pointer = c;
4588 }
4589 }
4590 }
4591 else
4592 expression (exp);
4593 }
4594 #endif
4595
4596 static void signed_cons (int size)
4597 {
4598 if (flag_code == CODE_64BIT)
4599 cons_sign = 1;
4600 cons (size);
4601 cons_sign = -1;
4602 }
4603
4604 #ifdef TE_PE
4605 static void
4606 pe_directive_secrel (dummy)
4607 int dummy ATTRIBUTE_UNUSED;
4608 {
4609 expressionS exp;
4610
4611 do
4612 {
4613 expression (&exp);
4614 if (exp.X_op == O_symbol)
4615 exp.X_op = O_secrel;
4616
4617 emit_expr (&exp, 4);
4618 }
4619 while (*input_line_pointer++ == ',');
4620
4621 input_line_pointer--;
4622 demand_empty_rest_of_line ();
4623 }
4624 #endif
4625
4626 static int
4627 i386_immediate (char *imm_start)
4628 {
4629 char *save_input_line_pointer;
4630 char *gotfree_input_line;
4631 segT exp_seg = 0;
4632 expressionS *exp;
4633 unsigned int types = ~0U;
4634
4635 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
4636 {
4637 as_bad (_("at most %d immediate operands are allowed"),
4638 MAX_IMMEDIATE_OPERANDS);
4639 return 0;
4640 }
4641
4642 exp = &im_expressions[i.imm_operands++];
4643 i.op[this_operand].imms = exp;
4644
4645 if (is_space_char (*imm_start))
4646 ++imm_start;
4647
4648 save_input_line_pointer = input_line_pointer;
4649 input_line_pointer = imm_start;
4650
4651 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
4652 if (gotfree_input_line)
4653 input_line_pointer = gotfree_input_line;
4654
4655 exp_seg = expression (exp);
4656
4657 SKIP_WHITESPACE ();
4658 if (*input_line_pointer)
4659 as_bad (_("junk `%s' after expression"), input_line_pointer);
4660
4661 input_line_pointer = save_input_line_pointer;
4662 if (gotfree_input_line)
4663 free (gotfree_input_line);
4664
4665 if (exp->X_op == O_absent
4666 || exp->X_op == O_illegal
4667 || exp->X_op == O_big
4668 || (gotfree_input_line
4669 && (exp->X_op == O_constant
4670 || exp->X_op == O_register)))
4671 {
4672 as_bad (_("missing or invalid immediate expression `%s'"),
4673 imm_start);
4674 return 0;
4675 }
4676 else if (exp->X_op == O_constant)
4677 {
4678 /* Size it properly later. */
4679 i.types[this_operand] |= Imm64;
4680 /* If BFD64, sign extend val. */
4681 if (!use_rela_relocations
4682 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
4683 exp->X_add_number
4684 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
4685 }
4686 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4687 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
4688 && exp_seg != absolute_section
4689 && exp_seg != text_section
4690 && exp_seg != data_section
4691 && exp_seg != bss_section
4692 && exp_seg != undefined_section
4693 && !bfd_is_com_section (exp_seg))
4694 {
4695 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4696 return 0;
4697 }
4698 #endif
4699 else if (!intel_syntax && exp->X_op == O_register)
4700 {
4701 as_bad (_("illegal immediate register operand %s"), imm_start);
4702 return 0;
4703 }
4704 else
4705 {
4706 /* This is an address. The size of the address will be
4707 determined later, depending on destination register,
4708 suffix, or the default for the section. */
4709 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
4710 i.types[this_operand] &= types;
4711 }
4712
4713 return 1;
4714 }
4715
4716 static char *
4717 i386_scale (char *scale)
4718 {
4719 offsetT val;
4720 char *save = input_line_pointer;
4721
4722 input_line_pointer = scale;
4723 val = get_absolute_expression ();
4724
4725 switch (val)
4726 {
4727 case 1:
4728 i.log2_scale_factor = 0;
4729 break;
4730 case 2:
4731 i.log2_scale_factor = 1;
4732 break;
4733 case 4:
4734 i.log2_scale_factor = 2;
4735 break;
4736 case 8:
4737 i.log2_scale_factor = 3;
4738 break;
4739 default:
4740 {
4741 char sep = *input_line_pointer;
4742
4743 *input_line_pointer = '\0';
4744 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
4745 scale);
4746 *input_line_pointer = sep;
4747 input_line_pointer = save;
4748 return NULL;
4749 }
4750 }
4751 if (i.log2_scale_factor != 0 && i.index_reg == 0)
4752 {
4753 as_warn (_("scale factor of %d without an index register"),
4754 1 << i.log2_scale_factor);
4755 #if SCALE1_WHEN_NO_INDEX
4756 i.log2_scale_factor = 0;
4757 #endif
4758 }
4759 scale = input_line_pointer;
4760 input_line_pointer = save;
4761 return scale;
4762 }
4763
4764 static int
4765 i386_displacement (char *disp_start, char *disp_end)
4766 {
4767 expressionS *exp;
4768 segT exp_seg = 0;
4769 char *save_input_line_pointer;
4770 char *gotfree_input_line;
4771 int bigdisp, override;
4772 unsigned int types = Disp;
4773 int ret;
4774
4775 if (i.disp_operands == MAX_MEMORY_OPERANDS)
4776 {
4777 as_bad (_("at most %d displacement operands are allowed"),
4778 MAX_MEMORY_OPERANDS);
4779 return 0;
4780 }
4781
4782 if ((i.types[this_operand] & JumpAbsolute)
4783 || !(current_templates->start->opcode_modifier & (Jump | JumpDword)))
4784 {
4785 bigdisp = Disp32;
4786 override = (i.prefix[ADDR_PREFIX] != 0);
4787 }
4788 else
4789 {
4790 /* For PC-relative branches, the width of the displacement
4791 is dependent upon data size, not address size. */
4792 bigdisp = 0;
4793 override = (i.prefix[DATA_PREFIX] != 0);
4794 }
4795 if (flag_code == CODE_64BIT)
4796 {
4797 if (!bigdisp)
4798 bigdisp = ((override || i.suffix == WORD_MNEM_SUFFIX)
4799 ? Disp16
4800 : Disp32S | Disp32);
4801 else if (!override)
4802 bigdisp = Disp64 | Disp32S | Disp32;
4803 }
4804 else
4805 {
4806 if (!bigdisp)
4807 {
4808 if (!override)
4809 override = (i.suffix == (flag_code != CODE_16BIT
4810 ? WORD_MNEM_SUFFIX
4811 : LONG_MNEM_SUFFIX));
4812 bigdisp = Disp32;
4813 }
4814 if ((flag_code == CODE_16BIT) ^ override)
4815 bigdisp = Disp16;
4816 }
4817 i.types[this_operand] |= bigdisp;
4818
4819 exp = &disp_expressions[i.disp_operands];
4820 i.op[this_operand].disps = exp;
4821 i.disp_operands++;
4822 save_input_line_pointer = input_line_pointer;
4823 input_line_pointer = disp_start;
4824 END_STRING_AND_SAVE (disp_end);
4825
4826 #ifndef GCC_ASM_O_HACK
4827 #define GCC_ASM_O_HACK 0
4828 #endif
4829 #if GCC_ASM_O_HACK
4830 END_STRING_AND_SAVE (disp_end + 1);
4831 if ((i.types[this_operand] & BaseIndex) != 0
4832 && displacement_string_end[-1] == '+')
4833 {
4834 /* This hack is to avoid a warning when using the "o"
4835 constraint within gcc asm statements.
4836 For instance:
4837
4838 #define _set_tssldt_desc(n,addr,limit,type) \
4839 __asm__ __volatile__ ( \
4840 "movw %w2,%0\n\t" \
4841 "movw %w1,2+%0\n\t" \
4842 "rorl $16,%1\n\t" \
4843 "movb %b1,4+%0\n\t" \
4844 "movb %4,5+%0\n\t" \
4845 "movb $0,6+%0\n\t" \
4846 "movb %h1,7+%0\n\t" \
4847 "rorl $16,%1" \
4848 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
4849
4850 This works great except that the output assembler ends
4851 up looking a bit weird if it turns out that there is
4852 no offset. You end up producing code that looks like:
4853
4854 #APP
4855 movw $235,(%eax)
4856 movw %dx,2+(%eax)
4857 rorl $16,%edx
4858 movb %dl,4+(%eax)
4859 movb $137,5+(%eax)
4860 movb $0,6+(%eax)
4861 movb %dh,7+(%eax)
4862 rorl $16,%edx
4863 #NO_APP
4864
4865 So here we provide the missing zero. */
4866
4867 *displacement_string_end = '0';
4868 }
4869 #endif
4870 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
4871 if (gotfree_input_line)
4872 input_line_pointer = gotfree_input_line;
4873
4874 exp_seg = expression (exp);
4875
4876 SKIP_WHITESPACE ();
4877 if (*input_line_pointer)
4878 as_bad (_("junk `%s' after expression"), input_line_pointer);
4879 #if GCC_ASM_O_HACK
4880 RESTORE_END_STRING (disp_end + 1);
4881 #endif
4882 input_line_pointer = save_input_line_pointer;
4883 if (gotfree_input_line)
4884 free (gotfree_input_line);
4885 ret = 1;
4886
4887 /* We do this to make sure that the section symbol is in
4888 the symbol table. We will ultimately change the relocation
4889 to be relative to the beginning of the section. */
4890 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
4891 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4892 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
4893 {
4894 if (exp->X_op != O_symbol)
4895 goto inv_disp;
4896
4897 if (S_IS_LOCAL (exp->X_add_symbol)
4898 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
4899 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
4900 exp->X_op = O_subtract;
4901 exp->X_op_symbol = GOT_symbol;
4902 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
4903 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
4904 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
4905 i.reloc[this_operand] = BFD_RELOC_64;
4906 else
4907 i.reloc[this_operand] = BFD_RELOC_32;
4908 }
4909
4910 else if (exp->X_op == O_absent
4911 || exp->X_op == O_illegal
4912 || exp->X_op == O_big
4913 || (gotfree_input_line
4914 && (exp->X_op == O_constant
4915 || exp->X_op == O_register)))
4916 {
4917 inv_disp:
4918 as_bad (_("missing or invalid displacement expression `%s'"),
4919 disp_start);
4920 ret = 0;
4921 }
4922
4923 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4924 else if (exp->X_op != O_constant
4925 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4926 && exp_seg != absolute_section
4927 && exp_seg != text_section
4928 && exp_seg != data_section
4929 && exp_seg != bss_section
4930 && exp_seg != undefined_section
4931 && !bfd_is_com_section (exp_seg))
4932 {
4933 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4934 ret = 0;
4935 }
4936 #endif
4937
4938 RESTORE_END_STRING (disp_end);
4939
4940 if (!(i.types[this_operand] & ~Disp))
4941 i.types[this_operand] &= types;
4942
4943 return ret;
4944 }
4945
4946 /* Make sure the memory operand we've been dealt is valid.
4947 Return 1 on success, 0 on a failure. */
4948
4949 static int
4950 i386_index_check (const char *operand_string)
4951 {
4952 int ok;
4953 #if INFER_ADDR_PREFIX
4954 int fudged = 0;
4955
4956 tryprefix:
4957 #endif
4958 ok = 1;
4959 if ((current_templates->start->cpu_flags & CpuSVME)
4960 && current_templates->end[-1].operand_types[0] == AnyMem)
4961 {
4962 /* Memory operands of SVME insns are special in that they only allow
4963 rAX as their memory address and ignore any segment override. */
4964 unsigned RegXX;
4965
4966 /* SKINIT is even more restrictive: it always requires EAX. */
4967 if (strcmp (current_templates->start->name, "skinit") == 0)
4968 RegXX = Reg32;
4969 else if (flag_code == CODE_64BIT)
4970 RegXX = i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32;
4971 else
4972 RegXX = ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0)
4973 ? Reg16
4974 : Reg32);
4975 if (!i.base_reg
4976 || !(i.base_reg->reg_type & Acc)
4977 || !(i.base_reg->reg_type & RegXX)
4978 || i.index_reg
4979 || (i.types[0] & Disp))
4980 ok = 0;
4981 }
4982 else if (flag_code == CODE_64BIT)
4983 {
4984 unsigned RegXX = (i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32);
4985
4986 if ((i.base_reg
4987 && ((i.base_reg->reg_type & RegXX) == 0)
4988 && (i.base_reg->reg_type != BaseIndex
4989 || i.index_reg))
4990 || (i.index_reg
4991 && ((i.index_reg->reg_type & (RegXX | BaseIndex))
4992 != (RegXX | BaseIndex))))
4993 ok = 0;
4994 }
4995 else
4996 {
4997 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
4998 {
4999 /* 16bit checks. */
5000 if ((i.base_reg
5001 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
5002 != (Reg16 | BaseIndex)))
5003 || (i.index_reg
5004 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
5005 != (Reg16 | BaseIndex))
5006 || !(i.base_reg
5007 && i.base_reg->reg_num < 6
5008 && i.index_reg->reg_num >= 6
5009 && i.log2_scale_factor == 0))))
5010 ok = 0;
5011 }
5012 else
5013 {
5014 /* 32bit checks. */
5015 if ((i.base_reg
5016 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
5017 || (i.index_reg
5018 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
5019 != (Reg32 | BaseIndex))))
5020 ok = 0;
5021 }
5022 }
5023 if (!ok)
5024 {
5025 #if INFER_ADDR_PREFIX
5026 if (i.prefix[ADDR_PREFIX] == 0)
5027 {
5028 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
5029 i.prefixes += 1;
5030 /* Change the size of any displacement too. At most one of
5031 Disp16 or Disp32 is set.
5032 FIXME. There doesn't seem to be any real need for separate
5033 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
5034 Removing them would probably clean up the code quite a lot. */
5035 if (flag_code != CODE_64BIT
5036 && (i.types[this_operand] & (Disp16 | Disp32)))
5037 i.types[this_operand] ^= (Disp16 | Disp32);
5038 fudged = 1;
5039 goto tryprefix;
5040 }
5041 if (fudged)
5042 as_bad (_("`%s' is not a valid base/index expression"),
5043 operand_string);
5044 else
5045 #endif
5046 as_bad (_("`%s' is not a valid %s bit base/index expression"),
5047 operand_string,
5048 flag_code_names[flag_code]);
5049 }
5050 return ok;
5051 }
5052
5053 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
5054 on error. */
5055
5056 static int
5057 i386_operand (char *operand_string)
5058 {
5059 const reg_entry *r;
5060 char *end_op;
5061 char *op_string = operand_string;
5062
5063 if (is_space_char (*op_string))
5064 ++op_string;
5065
5066 /* We check for an absolute prefix (differentiating,
5067 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
5068 if (*op_string == ABSOLUTE_PREFIX)
5069 {
5070 ++op_string;
5071 if (is_space_char (*op_string))
5072 ++op_string;
5073 i.types[this_operand] |= JumpAbsolute;
5074 }
5075
5076 /* Check if operand is a register. */
5077 if ((r = parse_register (op_string, &end_op)) != NULL)
5078 {
5079 /* Check for a segment override by searching for ':' after a
5080 segment register. */
5081 op_string = end_op;
5082 if (is_space_char (*op_string))
5083 ++op_string;
5084 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
5085 {
5086 switch (r->reg_num)
5087 {
5088 case 0:
5089 i.seg[i.mem_operands] = &es;
5090 break;
5091 case 1:
5092 i.seg[i.mem_operands] = &cs;
5093 break;
5094 case 2:
5095 i.seg[i.mem_operands] = &ss;
5096 break;
5097 case 3:
5098 i.seg[i.mem_operands] = &ds;
5099 break;
5100 case 4:
5101 i.seg[i.mem_operands] = &fs;
5102 break;
5103 case 5:
5104 i.seg[i.mem_operands] = &gs;
5105 break;
5106 }
5107
5108 /* Skip the ':' and whitespace. */
5109 ++op_string;
5110 if (is_space_char (*op_string))
5111 ++op_string;
5112
5113 if (!is_digit_char (*op_string)
5114 && !is_identifier_char (*op_string)
5115 && *op_string != '('
5116 && *op_string != ABSOLUTE_PREFIX)
5117 {
5118 as_bad (_("bad memory operand `%s'"), op_string);
5119 return 0;
5120 }
5121 /* Handle case of %es:*foo. */
5122 if (*op_string == ABSOLUTE_PREFIX)
5123 {
5124 ++op_string;
5125 if (is_space_char (*op_string))
5126 ++op_string;
5127 i.types[this_operand] |= JumpAbsolute;
5128 }
5129 goto do_memory_reference;
5130 }
5131 if (*op_string)
5132 {
5133 as_bad (_("junk `%s' after register"), op_string);
5134 return 0;
5135 }
5136 i.types[this_operand] |= r->reg_type & ~BaseIndex;
5137 i.op[this_operand].regs = r;
5138 i.reg_operands++;
5139 }
5140 else if (*op_string == REGISTER_PREFIX)
5141 {
5142 as_bad (_("bad register name `%s'"), op_string);
5143 return 0;
5144 }
5145 else if (*op_string == IMMEDIATE_PREFIX)
5146 {
5147 ++op_string;
5148 if (i.types[this_operand] & JumpAbsolute)
5149 {
5150 as_bad (_("immediate operand illegal with absolute jump"));
5151 return 0;
5152 }
5153 if (!i386_immediate (op_string))
5154 return 0;
5155 }
5156 else if (is_digit_char (*op_string)
5157 || is_identifier_char (*op_string)
5158 || *op_string == '(')
5159 {
5160 /* This is a memory reference of some sort. */
5161 char *base_string;
5162
5163 /* Start and end of displacement string expression (if found). */
5164 char *displacement_string_start;
5165 char *displacement_string_end;
5166
5167 do_memory_reference:
5168 if ((i.mem_operands == 1
5169 && (current_templates->start->opcode_modifier & IsString) == 0)
5170 || i.mem_operands == 2)
5171 {
5172 as_bad (_("too many memory references for `%s'"),
5173 current_templates->start->name);
5174 return 0;
5175 }
5176
5177 /* Check for base index form. We detect the base index form by
5178 looking for an ')' at the end of the operand, searching
5179 for the '(' matching it, and finding a REGISTER_PREFIX or ','
5180 after the '('. */
5181 base_string = op_string + strlen (op_string);
5182
5183 --base_string;
5184 if (is_space_char (*base_string))
5185 --base_string;
5186
5187 /* If we only have a displacement, set-up for it to be parsed later. */
5188 displacement_string_start = op_string;
5189 displacement_string_end = base_string + 1;
5190
5191 if (*base_string == ')')
5192 {
5193 char *temp_string;
5194 unsigned int parens_balanced = 1;
5195 /* We've already checked that the number of left & right ()'s are
5196 equal, so this loop will not be infinite. */
5197 do
5198 {
5199 base_string--;
5200 if (*base_string == ')')
5201 parens_balanced++;
5202 if (*base_string == '(')
5203 parens_balanced--;
5204 }
5205 while (parens_balanced);
5206
5207 temp_string = base_string;
5208
5209 /* Skip past '(' and whitespace. */
5210 ++base_string;
5211 if (is_space_char (*base_string))
5212 ++base_string;
5213
5214 if (*base_string == ','
5215 || ((i.base_reg = parse_register (base_string, &end_op))
5216 != NULL))
5217 {
5218 displacement_string_end = temp_string;
5219
5220 i.types[this_operand] |= BaseIndex;
5221
5222 if (i.base_reg)
5223 {
5224 base_string = end_op;
5225 if (is_space_char (*base_string))
5226 ++base_string;
5227 }
5228
5229 /* There may be an index reg or scale factor here. */
5230 if (*base_string == ',')
5231 {
5232 ++base_string;
5233 if (is_space_char (*base_string))
5234 ++base_string;
5235
5236 if ((i.index_reg = parse_register (base_string, &end_op))
5237 != NULL)
5238 {
5239 base_string = end_op;
5240 if (is_space_char (*base_string))
5241 ++base_string;
5242 if (*base_string == ',')
5243 {
5244 ++base_string;
5245 if (is_space_char (*base_string))
5246 ++base_string;
5247 }
5248 else if (*base_string != ')')
5249 {
5250 as_bad (_("expecting `,' or `)' "
5251 "after index register in `%s'"),
5252 operand_string);
5253 return 0;
5254 }
5255 }
5256 else if (*base_string == REGISTER_PREFIX)
5257 {
5258 as_bad (_("bad register name `%s'"), base_string);
5259 return 0;
5260 }
5261
5262 /* Check for scale factor. */
5263 if (*base_string != ')')
5264 {
5265 char *end_scale = i386_scale (base_string);
5266
5267 if (!end_scale)
5268 return 0;
5269
5270 base_string = end_scale;
5271 if (is_space_char (*base_string))
5272 ++base_string;
5273 if (*base_string != ')')
5274 {
5275 as_bad (_("expecting `)' "
5276 "after scale factor in `%s'"),
5277 operand_string);
5278 return 0;
5279 }
5280 }
5281 else if (!i.index_reg)
5282 {
5283 as_bad (_("expecting index register or scale factor "
5284 "after `,'; got '%c'"),
5285 *base_string);
5286 return 0;
5287 }
5288 }
5289 else if (*base_string != ')')
5290 {
5291 as_bad (_("expecting `,' or `)' "
5292 "after base register in `%s'"),
5293 operand_string);
5294 return 0;
5295 }
5296 }
5297 else if (*base_string == REGISTER_PREFIX)
5298 {
5299 as_bad (_("bad register name `%s'"), base_string);
5300 return 0;
5301 }
5302 }
5303
5304 /* If there's an expression beginning the operand, parse it,
5305 assuming displacement_string_start and
5306 displacement_string_end are meaningful. */
5307 if (displacement_string_start != displacement_string_end)
5308 {
5309 if (!i386_displacement (displacement_string_start,
5310 displacement_string_end))
5311 return 0;
5312 }
5313
5314 /* Special case for (%dx) while doing input/output op. */
5315 if (i.base_reg
5316 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
5317 && i.index_reg == 0
5318 && i.log2_scale_factor == 0
5319 && i.seg[i.mem_operands] == 0
5320 && (i.types[this_operand] & Disp) == 0)
5321 {
5322 i.types[this_operand] = InOutPortReg;
5323 return 1;
5324 }
5325
5326 if (i386_index_check (operand_string) == 0)
5327 return 0;
5328 i.mem_operands++;
5329 }
5330 else
5331 {
5332 /* It's not a memory operand; argh! */
5333 as_bad (_("invalid char %s beginning operand %d `%s'"),
5334 output_invalid (*op_string),
5335 this_operand + 1,
5336 op_string);
5337 return 0;
5338 }
5339 return 1; /* Normal return. */
5340 }
5341 \f
5342 /* md_estimate_size_before_relax()
5343
5344 Called just before relax() for rs_machine_dependent frags. The x86
5345 assembler uses these frags to handle variable size jump
5346 instructions.
5347
5348 Any symbol that is now undefined will not become defined.
5349 Return the correct fr_subtype in the frag.
5350 Return the initial "guess for variable size of frag" to caller.
5351 The guess is actually the growth beyond the fixed part. Whatever
5352 we do to grow the fixed or variable part contributes to our
5353 returned value. */
5354
5355 int
5356 md_estimate_size_before_relax (fragP, segment)
5357 fragS *fragP;
5358 segT segment;
5359 {
5360 /* We've already got fragP->fr_subtype right; all we have to do is
5361 check for un-relaxable symbols. On an ELF system, we can't relax
5362 an externally visible symbol, because it may be overridden by a
5363 shared library. */
5364 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
5365 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5366 || (IS_ELF
5367 && (S_IS_EXTERNAL (fragP->fr_symbol)
5368 || S_IS_WEAK (fragP->fr_symbol)))
5369 #endif
5370 )
5371 {
5372 /* Symbol is undefined in this segment, or we need to keep a
5373 reloc so that weak symbols can be overridden. */
5374 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
5375 enum bfd_reloc_code_real reloc_type;
5376 unsigned char *opcode;
5377 int old_fr_fix;
5378
5379 if (fragP->fr_var != NO_RELOC)
5380 reloc_type = fragP->fr_var;
5381 else if (size == 2)
5382 reloc_type = BFD_RELOC_16_PCREL;
5383 else
5384 reloc_type = BFD_RELOC_32_PCREL;
5385
5386 old_fr_fix = fragP->fr_fix;
5387 opcode = (unsigned char *) fragP->fr_opcode;
5388
5389 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
5390 {
5391 case UNCOND_JUMP:
5392 /* Make jmp (0xeb) a (d)word displacement jump. */
5393 opcode[0] = 0xe9;
5394 fragP->fr_fix += size;
5395 fix_new (fragP, old_fr_fix, size,
5396 fragP->fr_symbol,
5397 fragP->fr_offset, 1,
5398 reloc_type);
5399 break;
5400
5401 case COND_JUMP86:
5402 if (size == 2
5403 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
5404 {
5405 /* Negate the condition, and branch past an
5406 unconditional jump. */
5407 opcode[0] ^= 1;
5408 opcode[1] = 3;
5409 /* Insert an unconditional jump. */
5410 opcode[2] = 0xe9;
5411 /* We added two extra opcode bytes, and have a two byte
5412 offset. */
5413 fragP->fr_fix += 2 + 2;
5414 fix_new (fragP, old_fr_fix + 2, 2,
5415 fragP->fr_symbol,
5416 fragP->fr_offset, 1,
5417 reloc_type);
5418 break;
5419 }
5420 /* Fall through. */
5421
5422 case COND_JUMP:
5423 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
5424 {
5425 fixS *fixP;
5426
5427 fragP->fr_fix += 1;
5428 fixP = fix_new (fragP, old_fr_fix, 1,
5429 fragP->fr_symbol,
5430 fragP->fr_offset, 1,
5431 BFD_RELOC_8_PCREL);
5432 fixP->fx_signed = 1;
5433 break;
5434 }
5435
5436 /* This changes the byte-displacement jump 0x7N
5437 to the (d)word-displacement jump 0x0f,0x8N. */
5438 opcode[1] = opcode[0] + 0x10;
5439 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5440 /* We've added an opcode byte. */
5441 fragP->fr_fix += 1 + size;
5442 fix_new (fragP, old_fr_fix + 1, size,
5443 fragP->fr_symbol,
5444 fragP->fr_offset, 1,
5445 reloc_type);
5446 break;
5447
5448 default:
5449 BAD_CASE (fragP->fr_subtype);
5450 break;
5451 }
5452 frag_wane (fragP);
5453 return fragP->fr_fix - old_fr_fix;
5454 }
5455
5456 /* Guess size depending on current relax state. Initially the relax
5457 state will correspond to a short jump and we return 1, because
5458 the variable part of the frag (the branch offset) is one byte
5459 long. However, we can relax a section more than once and in that
5460 case we must either set fr_subtype back to the unrelaxed state,
5461 or return the value for the appropriate branch. */
5462 return md_relax_table[fragP->fr_subtype].rlx_length;
5463 }
5464
5465 /* Called after relax() is finished.
5466
5467 In: Address of frag.
5468 fr_type == rs_machine_dependent.
5469 fr_subtype is what the address relaxed to.
5470
5471 Out: Any fixSs and constants are set up.
5472 Caller will turn frag into a ".space 0". */
5473
5474 void
5475 md_convert_frag (abfd, sec, fragP)
5476 bfd *abfd ATTRIBUTE_UNUSED;
5477 segT sec ATTRIBUTE_UNUSED;
5478 fragS *fragP;
5479 {
5480 unsigned char *opcode;
5481 unsigned char *where_to_put_displacement = NULL;
5482 offsetT target_address;
5483 offsetT opcode_address;
5484 unsigned int extension = 0;
5485 offsetT displacement_from_opcode_start;
5486
5487 opcode = (unsigned char *) fragP->fr_opcode;
5488
5489 /* Address we want to reach in file space. */
5490 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
5491
5492 /* Address opcode resides at in file space. */
5493 opcode_address = fragP->fr_address + fragP->fr_fix;
5494
5495 /* Displacement from opcode start to fill into instruction. */
5496 displacement_from_opcode_start = target_address - opcode_address;
5497
5498 if ((fragP->fr_subtype & BIG) == 0)
5499 {
5500 /* Don't have to change opcode. */
5501 extension = 1; /* 1 opcode + 1 displacement */
5502 where_to_put_displacement = &opcode[1];
5503 }
5504 else
5505 {
5506 if (no_cond_jump_promotion
5507 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
5508 as_warn_where (fragP->fr_file, fragP->fr_line,
5509 _("long jump required"));
5510
5511 switch (fragP->fr_subtype)
5512 {
5513 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
5514 extension = 4; /* 1 opcode + 4 displacement */
5515 opcode[0] = 0xe9;
5516 where_to_put_displacement = &opcode[1];
5517 break;
5518
5519 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
5520 extension = 2; /* 1 opcode + 2 displacement */
5521 opcode[0] = 0xe9;
5522 where_to_put_displacement = &opcode[1];
5523 break;
5524
5525 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
5526 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
5527 extension = 5; /* 2 opcode + 4 displacement */
5528 opcode[1] = opcode[0] + 0x10;
5529 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5530 where_to_put_displacement = &opcode[2];
5531 break;
5532
5533 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
5534 extension = 3; /* 2 opcode + 2 displacement */
5535 opcode[1] = opcode[0] + 0x10;
5536 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5537 where_to_put_displacement = &opcode[2];
5538 break;
5539
5540 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
5541 extension = 4;
5542 opcode[0] ^= 1;
5543 opcode[1] = 3;
5544 opcode[2] = 0xe9;
5545 where_to_put_displacement = &opcode[3];
5546 break;
5547
5548 default:
5549 BAD_CASE (fragP->fr_subtype);
5550 break;
5551 }
5552 }
5553
5554 /* If size if less then four we are sure that the operand fits,
5555 but if it's 4, then it could be that the displacement is larger
5556 then -/+ 2GB. */
5557 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
5558 && object_64bit
5559 && ((addressT) (displacement_from_opcode_start - extension
5560 + ((addressT) 1 << 31))
5561 > (((addressT) 2 << 31) - 1)))
5562 {
5563 as_bad_where (fragP->fr_file, fragP->fr_line,
5564 _("jump target out of range"));
5565 /* Make us emit 0. */
5566 displacement_from_opcode_start = extension;
5567 }
5568 /* Now put displacement after opcode. */
5569 md_number_to_chars ((char *) where_to_put_displacement,
5570 (valueT) (displacement_from_opcode_start - extension),
5571 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
5572 fragP->fr_fix += extension;
5573 }
5574 \f
5575 /* Size of byte displacement jmp. */
5576 int md_short_jump_size = 2;
5577
5578 /* Size of dword displacement jmp. */
5579 int md_long_jump_size = 5;
5580
5581 void
5582 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
5583 char *ptr;
5584 addressT from_addr, to_addr;
5585 fragS *frag ATTRIBUTE_UNUSED;
5586 symbolS *to_symbol ATTRIBUTE_UNUSED;
5587 {
5588 offsetT offset;
5589
5590 offset = to_addr - (from_addr + 2);
5591 /* Opcode for byte-disp jump. */
5592 md_number_to_chars (ptr, (valueT) 0xeb, 1);
5593 md_number_to_chars (ptr + 1, (valueT) offset, 1);
5594 }
5595
5596 void
5597 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
5598 char *ptr;
5599 addressT from_addr, to_addr;
5600 fragS *frag ATTRIBUTE_UNUSED;
5601 symbolS *to_symbol ATTRIBUTE_UNUSED;
5602 {
5603 offsetT offset;
5604
5605 offset = to_addr - (from_addr + 5);
5606 md_number_to_chars (ptr, (valueT) 0xe9, 1);
5607 md_number_to_chars (ptr + 1, (valueT) offset, 4);
5608 }
5609 \f
5610 /* Apply a fixup (fixS) to segment data, once it has been determined
5611 by our caller that we have all the info we need to fix it up.
5612
5613 On the 386, immediates, displacements, and data pointers are all in
5614 the same (little-endian) format, so we don't need to care about which
5615 we are handling. */
5616
5617 void
5618 md_apply_fix (fixP, valP, seg)
5619 /* The fix we're to put in. */
5620 fixS *fixP;
5621 /* Pointer to the value of the bits. */
5622 valueT *valP;
5623 /* Segment fix is from. */
5624 segT seg ATTRIBUTE_UNUSED;
5625 {
5626 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
5627 valueT value = *valP;
5628
5629 #if !defined (TE_Mach)
5630 if (fixP->fx_pcrel)
5631 {
5632 switch (fixP->fx_r_type)
5633 {
5634 default:
5635 break;
5636
5637 case BFD_RELOC_64:
5638 fixP->fx_r_type = BFD_RELOC_64_PCREL;
5639 break;
5640 case BFD_RELOC_32:
5641 case BFD_RELOC_X86_64_32S:
5642 fixP->fx_r_type = BFD_RELOC_32_PCREL;
5643 break;
5644 case BFD_RELOC_16:
5645 fixP->fx_r_type = BFD_RELOC_16_PCREL;
5646 break;
5647 case BFD_RELOC_8:
5648 fixP->fx_r_type = BFD_RELOC_8_PCREL;
5649 break;
5650 }
5651 }
5652
5653 if (fixP->fx_addsy != NULL
5654 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
5655 || fixP->fx_r_type == BFD_RELOC_64_PCREL
5656 || fixP->fx_r_type == BFD_RELOC_16_PCREL
5657 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
5658 && !use_rela_relocations)
5659 {
5660 /* This is a hack. There should be a better way to handle this.
5661 This covers for the fact that bfd_install_relocation will
5662 subtract the current location (for partial_inplace, PC relative
5663 relocations); see more below. */
5664 #ifndef OBJ_AOUT
5665 if (IS_ELF
5666 #ifdef TE_PE
5667 || OUTPUT_FLAVOR == bfd_target_coff_flavour
5668 #endif
5669 )
5670 value += fixP->fx_where + fixP->fx_frag->fr_address;
5671 #endif
5672 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5673 if (IS_ELF)
5674 {
5675 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
5676
5677 if ((sym_seg == seg
5678 || (symbol_section_p (fixP->fx_addsy)
5679 && sym_seg != absolute_section))
5680 && !generic_force_reloc (fixP))
5681 {
5682 /* Yes, we add the values in twice. This is because
5683 bfd_install_relocation subtracts them out again. I think
5684 bfd_install_relocation is broken, but I don't dare change
5685 it. FIXME. */
5686 value += fixP->fx_where + fixP->fx_frag->fr_address;
5687 }
5688 }
5689 #endif
5690 #if defined (OBJ_COFF) && defined (TE_PE)
5691 /* For some reason, the PE format does not store a
5692 section address offset for a PC relative symbol. */
5693 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
5694 || S_IS_WEAK (fixP->fx_addsy))
5695 value += md_pcrel_from (fixP);
5696 #endif
5697 }
5698
5699 /* Fix a few things - the dynamic linker expects certain values here,
5700 and we must not disappoint it. */
5701 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5702 if (IS_ELF && fixP->fx_addsy)
5703 switch (fixP->fx_r_type)
5704 {
5705 case BFD_RELOC_386_PLT32:
5706 case BFD_RELOC_X86_64_PLT32:
5707 /* Make the jump instruction point to the address of the operand. At
5708 runtime we merely add the offset to the actual PLT entry. */
5709 value = -4;
5710 break;
5711
5712 case BFD_RELOC_386_TLS_GD:
5713 case BFD_RELOC_386_TLS_LDM:
5714 case BFD_RELOC_386_TLS_IE_32:
5715 case BFD_RELOC_386_TLS_IE:
5716 case BFD_RELOC_386_TLS_GOTIE:
5717 case BFD_RELOC_386_TLS_GOTDESC:
5718 case BFD_RELOC_X86_64_TLSGD:
5719 case BFD_RELOC_X86_64_TLSLD:
5720 case BFD_RELOC_X86_64_GOTTPOFF:
5721 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
5722 value = 0; /* Fully resolved at runtime. No addend. */
5723 /* Fallthrough */
5724 case BFD_RELOC_386_TLS_LE:
5725 case BFD_RELOC_386_TLS_LDO_32:
5726 case BFD_RELOC_386_TLS_LE_32:
5727 case BFD_RELOC_X86_64_DTPOFF32:
5728 case BFD_RELOC_X86_64_DTPOFF64:
5729 case BFD_RELOC_X86_64_TPOFF32:
5730 case BFD_RELOC_X86_64_TPOFF64:
5731 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5732 break;
5733
5734 case BFD_RELOC_386_TLS_DESC_CALL:
5735 case BFD_RELOC_X86_64_TLSDESC_CALL:
5736 value = 0; /* Fully resolved at runtime. No addend. */
5737 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5738 fixP->fx_done = 0;
5739 return;
5740
5741 case BFD_RELOC_386_GOT32:
5742 case BFD_RELOC_X86_64_GOT32:
5743 value = 0; /* Fully resolved at runtime. No addend. */
5744 break;
5745
5746 case BFD_RELOC_VTABLE_INHERIT:
5747 case BFD_RELOC_VTABLE_ENTRY:
5748 fixP->fx_done = 0;
5749 return;
5750
5751 default:
5752 break;
5753 }
5754 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
5755 *valP = value;
5756 #endif /* !defined (TE_Mach) */
5757
5758 /* Are we finished with this relocation now? */
5759 if (fixP->fx_addsy == NULL)
5760 fixP->fx_done = 1;
5761 else if (use_rela_relocations)
5762 {
5763 fixP->fx_no_overflow = 1;
5764 /* Remember value for tc_gen_reloc. */
5765 fixP->fx_addnumber = value;
5766 value = 0;
5767 }
5768
5769 md_number_to_chars (p, value, fixP->fx_size);
5770 }
5771 \f
5772 #define MAX_LITTLENUMS 6
5773
5774 /* Turn the string pointed to by litP into a floating point constant
5775 of type TYPE, and emit the appropriate bytes. The number of
5776 LITTLENUMS emitted is stored in *SIZEP. An error message is
5777 returned, or NULL on OK. */
5778
5779 char *
5780 md_atof (type, litP, sizeP)
5781 int type;
5782 char *litP;
5783 int *sizeP;
5784 {
5785 int prec;
5786 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5787 LITTLENUM_TYPE *wordP;
5788 char *t;
5789
5790 switch (type)
5791 {
5792 case 'f':
5793 case 'F':
5794 prec = 2;
5795 break;
5796
5797 case 'd':
5798 case 'D':
5799 prec = 4;
5800 break;
5801
5802 case 'x':
5803 case 'X':
5804 prec = 5;
5805 break;
5806
5807 default:
5808 *sizeP = 0;
5809 return _("Bad call to md_atof ()");
5810 }
5811 t = atof_ieee (input_line_pointer, type, words);
5812 if (t)
5813 input_line_pointer = t;
5814
5815 *sizeP = prec * sizeof (LITTLENUM_TYPE);
5816 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
5817 the bigendian 386. */
5818 for (wordP = words + prec - 1; prec--;)
5819 {
5820 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
5821 litP += sizeof (LITTLENUM_TYPE);
5822 }
5823 return 0;
5824 }
5825 \f
5826 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
5827
5828 static char *
5829 output_invalid (int c)
5830 {
5831 if (ISPRINT (c))
5832 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
5833 "'%c'", c);
5834 else
5835 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
5836 "(0x%x)", (unsigned char) c);
5837 return output_invalid_buf;
5838 }
5839
5840 /* REG_STRING starts *before* REGISTER_PREFIX. */
5841
5842 static const reg_entry *
5843 parse_real_register (char *reg_string, char **end_op)
5844 {
5845 char *s = reg_string;
5846 char *p;
5847 char reg_name_given[MAX_REG_NAME_SIZE + 1];
5848 const reg_entry *r;
5849
5850 /* Skip possible REGISTER_PREFIX and possible whitespace. */
5851 if (*s == REGISTER_PREFIX)
5852 ++s;
5853
5854 if (is_space_char (*s))
5855 ++s;
5856
5857 p = reg_name_given;
5858 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
5859 {
5860 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
5861 return (const reg_entry *) NULL;
5862 s++;
5863 }
5864
5865 /* For naked regs, make sure that we are not dealing with an identifier.
5866 This prevents confusing an identifier like `eax_var' with register
5867 `eax'. */
5868 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
5869 return (const reg_entry *) NULL;
5870
5871 *end_op = s;
5872
5873 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
5874
5875 /* Handle floating point regs, allowing spaces in the (i) part. */
5876 if (r == i386_regtab /* %st is first entry of table */)
5877 {
5878 if (is_space_char (*s))
5879 ++s;
5880 if (*s == '(')
5881 {
5882 ++s;
5883 if (is_space_char (*s))
5884 ++s;
5885 if (*s >= '0' && *s <= '7')
5886 {
5887 int fpr = *s - '0';
5888 ++s;
5889 if (is_space_char (*s))
5890 ++s;
5891 if (*s == ')')
5892 {
5893 *end_op = s + 1;
5894 r = hash_find (reg_hash, "st(0)");
5895 know (r);
5896 return r + fpr;
5897 }
5898 }
5899 /* We have "%st(" then garbage. */
5900 return (const reg_entry *) NULL;
5901 }
5902 }
5903
5904 if (r != NULL
5905 && ((r->reg_flags & (RegRex64 | RegRex)) | (r->reg_type & Reg64)) != 0
5906 && (r->reg_type != Control || !(cpu_arch_flags & CpuSledgehammer))
5907 && flag_code != CODE_64BIT)
5908 return (const reg_entry *) NULL;
5909
5910 return r;
5911 }
5912
5913 /* REG_STRING starts *before* REGISTER_PREFIX. */
5914
5915 static const reg_entry *
5916 parse_register (char *reg_string, char **end_op)
5917 {
5918 const reg_entry *r;
5919
5920 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
5921 r = parse_real_register (reg_string, end_op);
5922 else
5923 r = NULL;
5924 if (!r)
5925 {
5926 char *save = input_line_pointer;
5927 char c;
5928 symbolS *symbolP;
5929
5930 input_line_pointer = reg_string;
5931 c = get_symbol_end ();
5932 symbolP = symbol_find (reg_string);
5933 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
5934 {
5935 const expressionS *e = symbol_get_value_expression (symbolP);
5936
5937 know (e->X_op == O_register);
5938 know (e->X_add_number >= 0
5939 && (valueT) e->X_add_number < i386_regtab_size);
5940 r = i386_regtab + e->X_add_number;
5941 *end_op = input_line_pointer;
5942 }
5943 *input_line_pointer = c;
5944 input_line_pointer = save;
5945 }
5946 return r;
5947 }
5948
5949 int
5950 i386_parse_name (char *name, expressionS *e, char *nextcharP)
5951 {
5952 const reg_entry *r;
5953 char *end = input_line_pointer;
5954
5955 *end = *nextcharP;
5956 r = parse_register (name, &input_line_pointer);
5957 if (r && end <= input_line_pointer)
5958 {
5959 *nextcharP = *input_line_pointer;
5960 *input_line_pointer = 0;
5961 e->X_op = O_register;
5962 e->X_add_number = r - i386_regtab;
5963 return 1;
5964 }
5965 input_line_pointer = end;
5966 *end = 0;
5967 return 0;
5968 }
5969
5970 void
5971 md_operand (expressionS *e)
5972 {
5973 if (*input_line_pointer == REGISTER_PREFIX)
5974 {
5975 char *end;
5976 const reg_entry *r = parse_real_register (input_line_pointer, &end);
5977
5978 if (r)
5979 {
5980 e->X_op = O_register;
5981 e->X_add_number = r - i386_regtab;
5982 input_line_pointer = end;
5983 }
5984 }
5985 }
5986
5987 \f
5988 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5989 const char *md_shortopts = "kVQ:sqn";
5990 #else
5991 const char *md_shortopts = "qn";
5992 #endif
5993
5994 #define OPTION_32 (OPTION_MD_BASE + 0)
5995 #define OPTION_64 (OPTION_MD_BASE + 1)
5996 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
5997 #define OPTION_MARCH (OPTION_MD_BASE + 3)
5998 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
5999
6000 struct option md_longopts[] =
6001 {
6002 {"32", no_argument, NULL, OPTION_32},
6003 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
6004 {"64", no_argument, NULL, OPTION_64},
6005 #endif
6006 {"divide", no_argument, NULL, OPTION_DIVIDE},
6007 {"march", required_argument, NULL, OPTION_MARCH},
6008 {"mtune", required_argument, NULL, OPTION_MTUNE},
6009 {NULL, no_argument, NULL, 0}
6010 };
6011 size_t md_longopts_size = sizeof (md_longopts);
6012
6013 int
6014 md_parse_option (int c, char *arg)
6015 {
6016 unsigned int i;
6017
6018 switch (c)
6019 {
6020 case 'n':
6021 optimize_align_code = 0;
6022 break;
6023
6024 case 'q':
6025 quiet_warnings = 1;
6026 break;
6027
6028 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6029 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
6030 should be emitted or not. FIXME: Not implemented. */
6031 case 'Q':
6032 break;
6033
6034 /* -V: SVR4 argument to print version ID. */
6035 case 'V':
6036 print_version_id ();
6037 break;
6038
6039 /* -k: Ignore for FreeBSD compatibility. */
6040 case 'k':
6041 break;
6042
6043 case 's':
6044 /* -s: On i386 Solaris, this tells the native assembler to use
6045 .stab instead of .stab.excl. We always use .stab anyhow. */
6046 break;
6047 #endif
6048 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
6049 case OPTION_64:
6050 {
6051 const char **list, **l;
6052
6053 list = bfd_target_list ();
6054 for (l = list; *l != NULL; l++)
6055 if (CONST_STRNEQ (*l, "elf64-x86-64")
6056 || strcmp (*l, "coff-x86-64") == 0
6057 || strcmp (*l, "pe-x86-64") == 0
6058 || strcmp (*l, "pei-x86-64") == 0)
6059 {
6060 default_arch = "x86_64";
6061 break;
6062 }
6063 if (*l == NULL)
6064 as_fatal (_("No compiled in support for x86_64"));
6065 free (list);
6066 }
6067 break;
6068 #endif
6069
6070 case OPTION_32:
6071 default_arch = "i386";
6072 break;
6073
6074 case OPTION_DIVIDE:
6075 #ifdef SVR4_COMMENT_CHARS
6076 {
6077 char *n, *t;
6078 const char *s;
6079
6080 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
6081 t = n;
6082 for (s = i386_comment_chars; *s != '\0'; s++)
6083 if (*s != '/')
6084 *t++ = *s;
6085 *t = '\0';
6086 i386_comment_chars = n;
6087 }
6088 #endif
6089 break;
6090
6091 case OPTION_MARCH:
6092 if (*arg == '.')
6093 as_fatal (_("Invalid -march= option: `%s'"), arg);
6094 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
6095 {
6096 if (strcmp (arg, cpu_arch [i].name) == 0)
6097 {
6098 cpu_arch_isa = cpu_arch[i].type;
6099 cpu_arch_isa_flags = cpu_arch[i].flags;
6100 if (!cpu_arch_tune_set)
6101 {
6102 cpu_arch_tune = cpu_arch_isa;
6103 cpu_arch_tune_flags = cpu_arch_isa_flags;
6104 }
6105 break;
6106 }
6107 }
6108 if (i >= ARRAY_SIZE (cpu_arch))
6109 as_fatal (_("Invalid -march= option: `%s'"), arg);
6110 break;
6111
6112 case OPTION_MTUNE:
6113 if (*arg == '.')
6114 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
6115 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
6116 {
6117 if (strcmp (arg, cpu_arch [i].name) == 0)
6118 {
6119 cpu_arch_tune_set = 1;
6120 cpu_arch_tune = cpu_arch [i].type;
6121 cpu_arch_tune_flags = cpu_arch[i].flags;
6122 break;
6123 }
6124 }
6125 if (i >= ARRAY_SIZE (cpu_arch))
6126 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
6127 break;
6128
6129 default:
6130 return 0;
6131 }
6132 return 1;
6133 }
6134
6135 void
6136 md_show_usage (stream)
6137 FILE *stream;
6138 {
6139 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6140 fprintf (stream, _("\
6141 -Q ignored\n\
6142 -V print assembler version number\n\
6143 -k ignored\n"));
6144 #endif
6145 fprintf (stream, _("\
6146 -n Do not optimize code alignment\n\
6147 -q quieten some warnings\n"));
6148 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6149 fprintf (stream, _("\
6150 -s ignored\n"));
6151 #endif
6152 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
6153 fprintf (stream, _("\
6154 --32/--64 generate 32bit/64bit code\n"));
6155 #endif
6156 #ifdef SVR4_COMMENT_CHARS
6157 fprintf (stream, _("\
6158 --divide do not treat `/' as a comment character\n"));
6159 #else
6160 fprintf (stream, _("\
6161 --divide ignored\n"));
6162 #endif
6163 fprintf (stream, _("\
6164 -march=CPU/-mtune=CPU generate code/optimize for CPU, where CPU is one of:\n\
6165 i386, i486, pentium, pentiumpro, pentium4, nocona,\n\
6166 core, core2, k6, athlon, k8, generic32, generic64\n"));
6167
6168 }
6169
6170 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
6171 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (TE_PEP))
6172
6173 /* Pick the target format to use. */
6174
6175 const char *
6176 i386_target_format (void)
6177 {
6178 if (!strcmp (default_arch, "x86_64"))
6179 {
6180 set_code_flag (CODE_64BIT);
6181 if (cpu_arch_isa_flags == 0)
6182 cpu_arch_isa_flags = Cpu186|Cpu286|Cpu386|Cpu486
6183 |Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2
6184 |CpuSSE|CpuSSE2;
6185 if (cpu_arch_tune_flags == 0)
6186 cpu_arch_tune_flags = Cpu186|Cpu286|Cpu386|Cpu486
6187 |Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2
6188 |CpuSSE|CpuSSE2;
6189 }
6190 else if (!strcmp (default_arch, "i386"))
6191 {
6192 set_code_flag (CODE_32BIT);
6193 if (cpu_arch_isa_flags == 0)
6194 cpu_arch_isa_flags = Cpu186|Cpu286|Cpu386;
6195 if (cpu_arch_tune_flags == 0)
6196 cpu_arch_tune_flags = Cpu186|Cpu286|Cpu386;
6197 }
6198 else
6199 as_fatal (_("Unknown architecture"));
6200 switch (OUTPUT_FLAVOR)
6201 {
6202 #ifdef TE_PEP
6203 case bfd_target_coff_flavour:
6204 return flag_code == CODE_64BIT ? COFF_TARGET_FORMAT : "coff-i386";
6205 break;
6206 #endif
6207 #ifdef OBJ_MAYBE_AOUT
6208 case bfd_target_aout_flavour:
6209 return AOUT_TARGET_FORMAT;
6210 #endif
6211 #ifdef OBJ_MAYBE_COFF
6212 case bfd_target_coff_flavour:
6213 return "coff-i386";
6214 #endif
6215 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
6216 case bfd_target_elf_flavour:
6217 {
6218 if (flag_code == CODE_64BIT)
6219 {
6220 object_64bit = 1;
6221 use_rela_relocations = 1;
6222 }
6223 return flag_code == CODE_64BIT ? ELF_TARGET_FORMAT64 : ELF_TARGET_FORMAT;
6224 }
6225 #endif
6226 default:
6227 abort ();
6228 return NULL;
6229 }
6230 }
6231
6232 #endif /* OBJ_MAYBE_ more than one */
6233
6234 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
6235 void
6236 i386_elf_emit_arch_note (void)
6237 {
6238 if (IS_ELF && cpu_arch_name != NULL)
6239 {
6240 char *p;
6241 asection *seg = now_seg;
6242 subsegT subseg = now_subseg;
6243 Elf_Internal_Note i_note;
6244 Elf_External_Note e_note;
6245 asection *note_secp;
6246 int len;
6247
6248 /* Create the .note section. */
6249 note_secp = subseg_new (".note", 0);
6250 bfd_set_section_flags (stdoutput,
6251 note_secp,
6252 SEC_HAS_CONTENTS | SEC_READONLY);
6253
6254 /* Process the arch string. */
6255 len = strlen (cpu_arch_name);
6256
6257 i_note.namesz = len + 1;
6258 i_note.descsz = 0;
6259 i_note.type = NT_ARCH;
6260 p = frag_more (sizeof (e_note.namesz));
6261 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
6262 p = frag_more (sizeof (e_note.descsz));
6263 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
6264 p = frag_more (sizeof (e_note.type));
6265 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
6266 p = frag_more (len + 1);
6267 strcpy (p, cpu_arch_name);
6268
6269 frag_align (2, 0, 0);
6270
6271 subseg_set (seg, subseg);
6272 }
6273 }
6274 #endif
6275 \f
6276 symbolS *
6277 md_undefined_symbol (name)
6278 char *name;
6279 {
6280 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
6281 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
6282 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
6283 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
6284 {
6285 if (!GOT_symbol)
6286 {
6287 if (symbol_find (name))
6288 as_bad (_("GOT already in symbol table"));
6289 GOT_symbol = symbol_new (name, undefined_section,
6290 (valueT) 0, &zero_address_frag);
6291 };
6292 return GOT_symbol;
6293 }
6294 return 0;
6295 }
6296
6297 /* Round up a section size to the appropriate boundary. */
6298
6299 valueT
6300 md_section_align (segment, size)
6301 segT segment ATTRIBUTE_UNUSED;
6302 valueT size;
6303 {
6304 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6305 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
6306 {
6307 /* For a.out, force the section size to be aligned. If we don't do
6308 this, BFD will align it for us, but it will not write out the
6309 final bytes of the section. This may be a bug in BFD, but it is
6310 easier to fix it here since that is how the other a.out targets
6311 work. */
6312 int align;
6313
6314 align = bfd_get_section_alignment (stdoutput, segment);
6315 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
6316 }
6317 #endif
6318
6319 return size;
6320 }
6321
6322 /* On the i386, PC-relative offsets are relative to the start of the
6323 next instruction. That is, the address of the offset, plus its
6324 size, since the offset is always the last part of the insn. */
6325
6326 long
6327 md_pcrel_from (fixS *fixP)
6328 {
6329 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
6330 }
6331
6332 #ifndef I386COFF
6333
6334 static void
6335 s_bss (int ignore ATTRIBUTE_UNUSED)
6336 {
6337 int temp;
6338
6339 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6340 if (IS_ELF)
6341 obj_elf_section_change_hook ();
6342 #endif
6343 temp = get_absolute_expression ();
6344 subseg_set (bss_section, (subsegT) temp);
6345 demand_empty_rest_of_line ();
6346 }
6347
6348 #endif
6349
6350 void
6351 i386_validate_fix (fixS *fixp)
6352 {
6353 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
6354 {
6355 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
6356 {
6357 if (!object_64bit)
6358 abort ();
6359 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
6360 }
6361 else
6362 {
6363 if (!object_64bit)
6364 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
6365 else
6366 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
6367 }
6368 fixp->fx_subsy = 0;
6369 }
6370 }
6371
6372 arelent *
6373 tc_gen_reloc (section, fixp)
6374 asection *section ATTRIBUTE_UNUSED;
6375 fixS *fixp;
6376 {
6377 arelent *rel;
6378 bfd_reloc_code_real_type code;
6379
6380 switch (fixp->fx_r_type)
6381 {
6382 case BFD_RELOC_X86_64_PLT32:
6383 case BFD_RELOC_X86_64_GOT32:
6384 case BFD_RELOC_X86_64_GOTPCREL:
6385 case BFD_RELOC_386_PLT32:
6386 case BFD_RELOC_386_GOT32:
6387 case BFD_RELOC_386_GOTOFF:
6388 case BFD_RELOC_386_GOTPC:
6389 case BFD_RELOC_386_TLS_GD:
6390 case BFD_RELOC_386_TLS_LDM:
6391 case BFD_RELOC_386_TLS_LDO_32:
6392 case BFD_RELOC_386_TLS_IE_32:
6393 case BFD_RELOC_386_TLS_IE:
6394 case BFD_RELOC_386_TLS_GOTIE:
6395 case BFD_RELOC_386_TLS_LE_32:
6396 case BFD_RELOC_386_TLS_LE:
6397 case BFD_RELOC_386_TLS_GOTDESC:
6398 case BFD_RELOC_386_TLS_DESC_CALL:
6399 case BFD_RELOC_X86_64_TLSGD:
6400 case BFD_RELOC_X86_64_TLSLD:
6401 case BFD_RELOC_X86_64_DTPOFF32:
6402 case BFD_RELOC_X86_64_DTPOFF64:
6403 case BFD_RELOC_X86_64_GOTTPOFF:
6404 case BFD_RELOC_X86_64_TPOFF32:
6405 case BFD_RELOC_X86_64_TPOFF64:
6406 case BFD_RELOC_X86_64_GOTOFF64:
6407 case BFD_RELOC_X86_64_GOTPC32:
6408 case BFD_RELOC_X86_64_GOT64:
6409 case BFD_RELOC_X86_64_GOTPCREL64:
6410 case BFD_RELOC_X86_64_GOTPC64:
6411 case BFD_RELOC_X86_64_GOTPLT64:
6412 case BFD_RELOC_X86_64_PLTOFF64:
6413 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
6414 case BFD_RELOC_X86_64_TLSDESC_CALL:
6415 case BFD_RELOC_RVA:
6416 case BFD_RELOC_VTABLE_ENTRY:
6417 case BFD_RELOC_VTABLE_INHERIT:
6418 #ifdef TE_PE
6419 case BFD_RELOC_32_SECREL:
6420 #endif
6421 code = fixp->fx_r_type;
6422 break;
6423 case BFD_RELOC_X86_64_32S:
6424 if (!fixp->fx_pcrel)
6425 {
6426 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
6427 code = fixp->fx_r_type;
6428 break;
6429 }
6430 default:
6431 if (fixp->fx_pcrel)
6432 {
6433 switch (fixp->fx_size)
6434 {
6435 default:
6436 as_bad_where (fixp->fx_file, fixp->fx_line,
6437 _("can not do %d byte pc-relative relocation"),
6438 fixp->fx_size);
6439 code = BFD_RELOC_32_PCREL;
6440 break;
6441 case 1: code = BFD_RELOC_8_PCREL; break;
6442 case 2: code = BFD_RELOC_16_PCREL; break;
6443 case 4: code = BFD_RELOC_32_PCREL; break;
6444 #ifdef BFD64
6445 case 8: code = BFD_RELOC_64_PCREL; break;
6446 #endif
6447 }
6448 }
6449 else
6450 {
6451 switch (fixp->fx_size)
6452 {
6453 default:
6454 as_bad_where (fixp->fx_file, fixp->fx_line,
6455 _("can not do %d byte relocation"),
6456 fixp->fx_size);
6457 code = BFD_RELOC_32;
6458 break;
6459 case 1: code = BFD_RELOC_8; break;
6460 case 2: code = BFD_RELOC_16; break;
6461 case 4: code = BFD_RELOC_32; break;
6462 #ifdef BFD64
6463 case 8: code = BFD_RELOC_64; break;
6464 #endif
6465 }
6466 }
6467 break;
6468 }
6469
6470 if ((code == BFD_RELOC_32
6471 || code == BFD_RELOC_32_PCREL
6472 || code == BFD_RELOC_X86_64_32S)
6473 && GOT_symbol
6474 && fixp->fx_addsy == GOT_symbol)
6475 {
6476 if (!object_64bit)
6477 code = BFD_RELOC_386_GOTPC;
6478 else
6479 code = BFD_RELOC_X86_64_GOTPC32;
6480 }
6481 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
6482 && GOT_symbol
6483 && fixp->fx_addsy == GOT_symbol)
6484 {
6485 code = BFD_RELOC_X86_64_GOTPC64;
6486 }
6487
6488 rel = (arelent *) xmalloc (sizeof (arelent));
6489 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
6490 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
6491
6492 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
6493
6494 if (!use_rela_relocations)
6495 {
6496 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
6497 vtable entry to be used in the relocation's section offset. */
6498 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
6499 rel->address = fixp->fx_offset;
6500
6501 rel->addend = 0;
6502 }
6503 /* Use the rela in 64bit mode. */
6504 else
6505 {
6506 if (!fixp->fx_pcrel)
6507 rel->addend = fixp->fx_offset;
6508 else
6509 switch (code)
6510 {
6511 case BFD_RELOC_X86_64_PLT32:
6512 case BFD_RELOC_X86_64_GOT32:
6513 case BFD_RELOC_X86_64_GOTPCREL:
6514 case BFD_RELOC_X86_64_TLSGD:
6515 case BFD_RELOC_X86_64_TLSLD:
6516 case BFD_RELOC_X86_64_GOTTPOFF:
6517 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
6518 case BFD_RELOC_X86_64_TLSDESC_CALL:
6519 rel->addend = fixp->fx_offset - fixp->fx_size;
6520 break;
6521 default:
6522 rel->addend = (section->vma
6523 - fixp->fx_size
6524 + fixp->fx_addnumber
6525 + md_pcrel_from (fixp));
6526 break;
6527 }
6528 }
6529
6530 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
6531 if (rel->howto == NULL)
6532 {
6533 as_bad_where (fixp->fx_file, fixp->fx_line,
6534 _("cannot represent relocation type %s"),
6535 bfd_get_reloc_code_name (code));
6536 /* Set howto to a garbage value so that we can keep going. */
6537 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
6538 assert (rel->howto != NULL);
6539 }
6540
6541 return rel;
6542 }
6543
6544 \f
6545 /* Parse operands using Intel syntax. This implements a recursive descent
6546 parser based on the BNF grammar published in Appendix B of the MASM 6.1
6547 Programmer's Guide.
6548
6549 FIXME: We do not recognize the full operand grammar defined in the MASM
6550 documentation. In particular, all the structure/union and
6551 high-level macro operands are missing.
6552
6553 Uppercase words are terminals, lower case words are non-terminals.
6554 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
6555 bars '|' denote choices. Most grammar productions are implemented in
6556 functions called 'intel_<production>'.
6557
6558 Initial production is 'expr'.
6559
6560 addOp + | -
6561
6562 alpha [a-zA-Z]
6563
6564 binOp & | AND | \| | OR | ^ | XOR
6565
6566 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
6567
6568 constant digits [[ radixOverride ]]
6569
6570 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
6571
6572 digits decdigit
6573 | digits decdigit
6574 | digits hexdigit
6575
6576 decdigit [0-9]
6577
6578 e04 e04 addOp e05
6579 | e05
6580
6581 e05 e05 binOp e06
6582 | e06
6583
6584 e06 e06 mulOp e09
6585 | e09
6586
6587 e09 OFFSET e10
6588 | SHORT e10
6589 | + e10
6590 | - e10
6591 | ~ e10
6592 | NOT e10
6593 | e09 PTR e10
6594 | e09 : e10
6595 | e10
6596
6597 e10 e10 [ expr ]
6598 | e11
6599
6600 e11 ( expr )
6601 | [ expr ]
6602 | constant
6603 | dataType
6604 | id
6605 | $
6606 | register
6607
6608 => expr expr cmpOp e04
6609 | e04
6610
6611 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
6612 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
6613
6614 hexdigit a | b | c | d | e | f
6615 | A | B | C | D | E | F
6616
6617 id alpha
6618 | id alpha
6619 | id decdigit
6620
6621 mulOp * | / | % | MOD | << | SHL | >> | SHR
6622
6623 quote " | '
6624
6625 register specialRegister
6626 | gpRegister
6627 | byteRegister
6628
6629 segmentRegister CS | DS | ES | FS | GS | SS
6630
6631 specialRegister CR0 | CR2 | CR3 | CR4
6632 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
6633 | TR3 | TR4 | TR5 | TR6 | TR7
6634
6635 We simplify the grammar in obvious places (e.g., register parsing is
6636 done by calling parse_register) and eliminate immediate left recursion
6637 to implement a recursive-descent parser.
6638
6639 expr e04 expr'
6640
6641 expr' cmpOp e04 expr'
6642 | Empty
6643
6644 e04 e05 e04'
6645
6646 e04' addOp e05 e04'
6647 | Empty
6648
6649 e05 e06 e05'
6650
6651 e05' binOp e06 e05'
6652 | Empty
6653
6654 e06 e09 e06'
6655
6656 e06' mulOp e09 e06'
6657 | Empty
6658
6659 e09 OFFSET e10 e09'
6660 | SHORT e10'
6661 | + e10'
6662 | - e10'
6663 | ~ e10'
6664 | NOT e10'
6665 | e10 e09'
6666
6667 e09' PTR e10 e09'
6668 | : e10 e09'
6669 | Empty
6670
6671 e10 e11 e10'
6672
6673 e10' [ expr ] e10'
6674 | Empty
6675
6676 e11 ( expr )
6677 | [ expr ]
6678 | BYTE
6679 | WORD
6680 | DWORD
6681 | FWORD
6682 | QWORD
6683 | TBYTE
6684 | OWORD
6685 | XMMWORD
6686 | .
6687 | $
6688 | register
6689 | id
6690 | constant */
6691
6692 /* Parsing structure for the intel syntax parser. Used to implement the
6693 semantic actions for the operand grammar. */
6694 struct intel_parser_s
6695 {
6696 char *op_string; /* The string being parsed. */
6697 int got_a_float; /* Whether the operand is a float. */
6698 int op_modifier; /* Operand modifier. */
6699 int is_mem; /* 1 if operand is memory reference. */
6700 int in_offset; /* >=1 if parsing operand of offset. */
6701 int in_bracket; /* >=1 if parsing operand in brackets. */
6702 const reg_entry *reg; /* Last register reference found. */
6703 char *disp; /* Displacement string being built. */
6704 char *next_operand; /* Resume point when splitting operands. */
6705 };
6706
6707 static struct intel_parser_s intel_parser;
6708
6709 /* Token structure for parsing intel syntax. */
6710 struct intel_token
6711 {
6712 int code; /* Token code. */
6713 const reg_entry *reg; /* Register entry for register tokens. */
6714 char *str; /* String representation. */
6715 };
6716
6717 static struct intel_token cur_token, prev_token;
6718
6719 /* Token codes for the intel parser. Since T_SHORT is already used
6720 by COFF, undefine it first to prevent a warning. */
6721 #define T_NIL -1
6722 #define T_CONST 1
6723 #define T_REG 2
6724 #define T_BYTE 3
6725 #define T_WORD 4
6726 #define T_DWORD 5
6727 #define T_FWORD 6
6728 #define T_QWORD 7
6729 #define T_TBYTE 8
6730 #define T_XMMWORD 9
6731 #undef T_SHORT
6732 #define T_SHORT 10
6733 #define T_OFFSET 11
6734 #define T_PTR 12
6735 #define T_ID 13
6736 #define T_SHL 14
6737 #define T_SHR 15
6738
6739 /* Prototypes for intel parser functions. */
6740 static int intel_match_token (int);
6741 static void intel_putback_token (void);
6742 static void intel_get_token (void);
6743 static int intel_expr (void);
6744 static int intel_e04 (void);
6745 static int intel_e05 (void);
6746 static int intel_e06 (void);
6747 static int intel_e09 (void);
6748 static int intel_e10 (void);
6749 static int intel_e11 (void);
6750
6751 static int
6752 i386_intel_operand (char *operand_string, int got_a_float)
6753 {
6754 int ret;
6755 char *p;
6756
6757 p = intel_parser.op_string = xstrdup (operand_string);
6758 intel_parser.disp = (char *) xmalloc (strlen (operand_string) + 1);
6759
6760 for (;;)
6761 {
6762 /* Initialize token holders. */
6763 cur_token.code = prev_token.code = T_NIL;
6764 cur_token.reg = prev_token.reg = NULL;
6765 cur_token.str = prev_token.str = NULL;
6766
6767 /* Initialize parser structure. */
6768 intel_parser.got_a_float = got_a_float;
6769 intel_parser.op_modifier = 0;
6770 intel_parser.is_mem = 0;
6771 intel_parser.in_offset = 0;
6772 intel_parser.in_bracket = 0;
6773 intel_parser.reg = NULL;
6774 intel_parser.disp[0] = '\0';
6775 intel_parser.next_operand = NULL;
6776
6777 /* Read the first token and start the parser. */
6778 intel_get_token ();
6779 ret = intel_expr ();
6780
6781 if (!ret)
6782 break;
6783
6784 if (cur_token.code != T_NIL)
6785 {
6786 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
6787 current_templates->start->name, cur_token.str);
6788 ret = 0;
6789 }
6790 /* If we found a memory reference, hand it over to i386_displacement
6791 to fill in the rest of the operand fields. */
6792 else if (intel_parser.is_mem)
6793 {
6794 if ((i.mem_operands == 1
6795 && (current_templates->start->opcode_modifier & IsString) == 0)
6796 || i.mem_operands == 2)
6797 {
6798 as_bad (_("too many memory references for '%s'"),
6799 current_templates->start->name);
6800 ret = 0;
6801 }
6802 else
6803 {
6804 char *s = intel_parser.disp;
6805 i.mem_operands++;
6806
6807 if (!quiet_warnings && intel_parser.is_mem < 0)
6808 /* See the comments in intel_bracket_expr. */
6809 as_warn (_("Treating `%s' as memory reference"), operand_string);
6810
6811 /* Add the displacement expression. */
6812 if (*s != '\0')
6813 ret = i386_displacement (s, s + strlen (s));
6814 if (ret)
6815 {
6816 /* Swap base and index in 16-bit memory operands like
6817 [si+bx]. Since i386_index_check is also used in AT&T
6818 mode we have to do that here. */
6819 if (i.base_reg
6820 && i.index_reg
6821 && (i.base_reg->reg_type & Reg16)
6822 && (i.index_reg->reg_type & Reg16)
6823 && i.base_reg->reg_num >= 6
6824 && i.index_reg->reg_num < 6)
6825 {
6826 const reg_entry *base = i.index_reg;
6827
6828 i.index_reg = i.base_reg;
6829 i.base_reg = base;
6830 }
6831 ret = i386_index_check (operand_string);
6832 }
6833 }
6834 }
6835
6836 /* Constant and OFFSET expressions are handled by i386_immediate. */
6837 else if ((intel_parser.op_modifier & (1 << T_OFFSET))
6838 || intel_parser.reg == NULL)
6839 ret = i386_immediate (intel_parser.disp);
6840
6841 if (intel_parser.next_operand && this_operand >= MAX_OPERANDS - 1)
6842 ret = 0;
6843 if (!ret || !intel_parser.next_operand)
6844 break;
6845 intel_parser.op_string = intel_parser.next_operand;
6846 this_operand = i.operands++;
6847 }
6848
6849 free (p);
6850 free (intel_parser.disp);
6851
6852 return ret;
6853 }
6854
6855 #define NUM_ADDRESS_REGS (!!i.base_reg + !!i.index_reg)
6856
6857 /* expr e04 expr'
6858
6859 expr' cmpOp e04 expr'
6860 | Empty */
6861 static int
6862 intel_expr (void)
6863 {
6864 /* XXX Implement the comparison operators. */
6865 return intel_e04 ();
6866 }
6867
6868 /* e04 e05 e04'
6869
6870 e04' addOp e05 e04'
6871 | Empty */
6872 static int
6873 intel_e04 (void)
6874 {
6875 int nregs = -1;
6876
6877 for (;;)
6878 {
6879 if (!intel_e05())
6880 return 0;
6881
6882 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6883 i.base_reg = i386_regtab + REGNAM_AL; /* al is invalid as base */
6884
6885 if (cur_token.code == '+')
6886 nregs = -1;
6887 else if (cur_token.code == '-')
6888 nregs = NUM_ADDRESS_REGS;
6889 else
6890 return 1;
6891
6892 strcat (intel_parser.disp, cur_token.str);
6893 intel_match_token (cur_token.code);
6894 }
6895 }
6896
6897 /* e05 e06 e05'
6898
6899 e05' binOp e06 e05'
6900 | Empty */
6901 static int
6902 intel_e05 (void)
6903 {
6904 int nregs = ~NUM_ADDRESS_REGS;
6905
6906 for (;;)
6907 {
6908 if (!intel_e06())
6909 return 0;
6910
6911 if (cur_token.code == '&'
6912 || cur_token.code == '|'
6913 || cur_token.code == '^')
6914 {
6915 char str[2];
6916
6917 str[0] = cur_token.code;
6918 str[1] = 0;
6919 strcat (intel_parser.disp, str);
6920 }
6921 else
6922 break;
6923
6924 intel_match_token (cur_token.code);
6925
6926 if (nregs < 0)
6927 nregs = ~nregs;
6928 }
6929 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6930 i.base_reg = i386_regtab + REGNAM_AL + 1; /* cl is invalid as base */
6931 return 1;
6932 }
6933
6934 /* e06 e09 e06'
6935
6936 e06' mulOp e09 e06'
6937 | Empty */
6938 static int
6939 intel_e06 (void)
6940 {
6941 int nregs = ~NUM_ADDRESS_REGS;
6942
6943 for (;;)
6944 {
6945 if (!intel_e09())
6946 return 0;
6947
6948 if (cur_token.code == '*'
6949 || cur_token.code == '/'
6950 || cur_token.code == '%')
6951 {
6952 char str[2];
6953
6954 str[0] = cur_token.code;
6955 str[1] = 0;
6956 strcat (intel_parser.disp, str);
6957 }
6958 else if (cur_token.code == T_SHL)
6959 strcat (intel_parser.disp, "<<");
6960 else if (cur_token.code == T_SHR)
6961 strcat (intel_parser.disp, ">>");
6962 else
6963 break;
6964
6965 intel_match_token (cur_token.code);
6966
6967 if (nregs < 0)
6968 nregs = ~nregs;
6969 }
6970 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6971 i.base_reg = i386_regtab + REGNAM_AL + 2; /* dl is invalid as base */
6972 return 1;
6973 }
6974
6975 /* e09 OFFSET e09
6976 | SHORT e09
6977 | + e09
6978 | - e09
6979 | ~ e09
6980 | NOT e09
6981 | e10 e09'
6982
6983 e09' PTR e10 e09'
6984 | : e10 e09'
6985 | Empty */
6986 static int
6987 intel_e09 (void)
6988 {
6989 int nregs = ~NUM_ADDRESS_REGS;
6990 int in_offset = 0;
6991
6992 for (;;)
6993 {
6994 /* Don't consume constants here. */
6995 if (cur_token.code == '+' || cur_token.code == '-')
6996 {
6997 /* Need to look one token ahead - if the next token
6998 is a constant, the current token is its sign. */
6999 int next_code;
7000
7001 intel_match_token (cur_token.code);
7002 next_code = cur_token.code;
7003 intel_putback_token ();
7004 if (next_code == T_CONST)
7005 break;
7006 }
7007
7008 /* e09 OFFSET e09 */
7009 if (cur_token.code == T_OFFSET)
7010 {
7011 if (!in_offset++)
7012 ++intel_parser.in_offset;
7013 }
7014
7015 /* e09 SHORT e09 */
7016 else if (cur_token.code == T_SHORT)
7017 intel_parser.op_modifier |= 1 << T_SHORT;
7018
7019 /* e09 + e09 */
7020 else if (cur_token.code == '+')
7021 strcat (intel_parser.disp, "+");
7022
7023 /* e09 - e09
7024 | ~ e09
7025 | NOT e09 */
7026 else if (cur_token.code == '-' || cur_token.code == '~')
7027 {
7028 char str[2];
7029
7030 if (nregs < 0)
7031 nregs = ~nregs;
7032 str[0] = cur_token.code;
7033 str[1] = 0;
7034 strcat (intel_parser.disp, str);
7035 }
7036
7037 /* e09 e10 e09' */
7038 else
7039 break;
7040
7041 intel_match_token (cur_token.code);
7042 }
7043
7044 for (;;)
7045 {
7046 if (!intel_e10 ())
7047 return 0;
7048
7049 /* e09' PTR e10 e09' */
7050 if (cur_token.code == T_PTR)
7051 {
7052 char suffix;
7053
7054 if (prev_token.code == T_BYTE)
7055 suffix = BYTE_MNEM_SUFFIX;
7056
7057 else if (prev_token.code == T_WORD)
7058 {
7059 if (current_templates->start->name[0] == 'l'
7060 && current_templates->start->name[2] == 's'
7061 && current_templates->start->name[3] == 0)
7062 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
7063 else if (intel_parser.got_a_float == 2) /* "fi..." */
7064 suffix = SHORT_MNEM_SUFFIX;
7065 else
7066 suffix = WORD_MNEM_SUFFIX;
7067 }
7068
7069 else if (prev_token.code == T_DWORD)
7070 {
7071 if (current_templates->start->name[0] == 'l'
7072 && current_templates->start->name[2] == 's'
7073 && current_templates->start->name[3] == 0)
7074 suffix = WORD_MNEM_SUFFIX;
7075 else if (flag_code == CODE_16BIT
7076 && (current_templates->start->opcode_modifier
7077 & (Jump | JumpDword)))
7078 suffix = LONG_DOUBLE_MNEM_SUFFIX;
7079 else if (intel_parser.got_a_float == 1) /* "f..." */
7080 suffix = SHORT_MNEM_SUFFIX;
7081 else
7082 suffix = LONG_MNEM_SUFFIX;
7083 }
7084
7085 else if (prev_token.code == T_FWORD)
7086 {
7087 if (current_templates->start->name[0] == 'l'
7088 && current_templates->start->name[2] == 's'
7089 && current_templates->start->name[3] == 0)
7090 suffix = LONG_MNEM_SUFFIX;
7091 else if (!intel_parser.got_a_float)
7092 {
7093 if (flag_code == CODE_16BIT)
7094 add_prefix (DATA_PREFIX_OPCODE);
7095 suffix = LONG_DOUBLE_MNEM_SUFFIX;
7096 }
7097 else
7098 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
7099 }
7100
7101 else if (prev_token.code == T_QWORD)
7102 {
7103 if (intel_parser.got_a_float == 1) /* "f..." */
7104 suffix = LONG_MNEM_SUFFIX;
7105 else
7106 suffix = QWORD_MNEM_SUFFIX;
7107 }
7108
7109 else if (prev_token.code == T_TBYTE)
7110 {
7111 if (intel_parser.got_a_float == 1)
7112 suffix = LONG_DOUBLE_MNEM_SUFFIX;
7113 else
7114 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
7115 }
7116
7117 else if (prev_token.code == T_XMMWORD)
7118 {
7119 /* XXX ignored for now, but accepted since gcc uses it */
7120 suffix = 0;
7121 }
7122
7123 else
7124 {
7125 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
7126 return 0;
7127 }
7128
7129 /* Operands for jump/call using 'ptr' notation denote absolute
7130 addresses. */
7131 if (current_templates->start->opcode_modifier & (Jump | JumpDword))
7132 i.types[this_operand] |= JumpAbsolute;
7133
7134 if (current_templates->start->base_opcode == 0x8d /* lea */)
7135 ;
7136 else if (!i.suffix)
7137 i.suffix = suffix;
7138 else if (i.suffix != suffix)
7139 {
7140 as_bad (_("Conflicting operand modifiers"));
7141 return 0;
7142 }
7143
7144 }
7145
7146 /* e09' : e10 e09' */
7147 else if (cur_token.code == ':')
7148 {
7149 if (prev_token.code != T_REG)
7150 {
7151 /* While {call,jmp} SSSS:OOOO is MASM syntax only when SSSS is a
7152 segment/group identifier (which we don't have), using comma
7153 as the operand separator there is even less consistent, since
7154 there all branches only have a single operand. */
7155 if (this_operand != 0
7156 || intel_parser.in_offset
7157 || intel_parser.in_bracket
7158 || (!(current_templates->start->opcode_modifier
7159 & (Jump|JumpDword|JumpInterSegment))
7160 && !(current_templates->start->operand_types[0]
7161 & JumpAbsolute)))
7162 return intel_match_token (T_NIL);
7163 /* Remember the start of the 2nd operand and terminate 1st
7164 operand here.
7165 XXX This isn't right, yet (when SSSS:OOOO is right operand of
7166 another expression), but it gets at least the simplest case
7167 (a plain number or symbol on the left side) right. */
7168 intel_parser.next_operand = intel_parser.op_string;
7169 *--intel_parser.op_string = '\0';
7170 return intel_match_token (':');
7171 }
7172 }
7173
7174 /* e09' Empty */
7175 else
7176 break;
7177
7178 intel_match_token (cur_token.code);
7179
7180 }
7181
7182 if (in_offset)
7183 {
7184 --intel_parser.in_offset;
7185 if (nregs < 0)
7186 nregs = ~nregs;
7187 if (NUM_ADDRESS_REGS > nregs)
7188 {
7189 as_bad (_("Invalid operand to `OFFSET'"));
7190 return 0;
7191 }
7192 intel_parser.op_modifier |= 1 << T_OFFSET;
7193 }
7194
7195 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
7196 i.base_reg = i386_regtab + REGNAM_AL + 3; /* bl is invalid as base */
7197 return 1;
7198 }
7199
7200 static int
7201 intel_bracket_expr (void)
7202 {
7203 int was_offset = intel_parser.op_modifier & (1 << T_OFFSET);
7204 const char *start = intel_parser.op_string;
7205 int len;
7206
7207 if (i.op[this_operand].regs)
7208 return intel_match_token (T_NIL);
7209
7210 intel_match_token ('[');
7211
7212 /* Mark as a memory operand only if it's not already known to be an
7213 offset expression. If it's an offset expression, we need to keep
7214 the brace in. */
7215 if (!intel_parser.in_offset)
7216 {
7217 ++intel_parser.in_bracket;
7218
7219 /* Operands for jump/call inside brackets denote absolute addresses. */
7220 if (current_templates->start->opcode_modifier & (Jump | JumpDword))
7221 i.types[this_operand] |= JumpAbsolute;
7222
7223 /* Unfortunately gas always diverged from MASM in a respect that can't
7224 be easily fixed without risking to break code sequences likely to be
7225 encountered (the testsuite even check for this): MASM doesn't consider
7226 an expression inside brackets unconditionally as a memory reference.
7227 When that is e.g. a constant, an offset expression, or the sum of the
7228 two, this is still taken as a constant load. gas, however, always
7229 treated these as memory references. As a compromise, we'll try to make
7230 offset expressions inside brackets work the MASM way (since that's
7231 less likely to be found in real world code), but make constants alone
7232 continue to work the traditional gas way. In either case, issue a
7233 warning. */
7234 intel_parser.op_modifier &= ~was_offset;
7235 }
7236 else
7237 strcat (intel_parser.disp, "[");
7238
7239 /* Add a '+' to the displacement string if necessary. */
7240 if (*intel_parser.disp != '\0'
7241 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
7242 strcat (intel_parser.disp, "+");
7243
7244 if (intel_expr ()
7245 && (len = intel_parser.op_string - start - 1,
7246 intel_match_token (']')))
7247 {
7248 /* Preserve brackets when the operand is an offset expression. */
7249 if (intel_parser.in_offset)
7250 strcat (intel_parser.disp, "]");
7251 else
7252 {
7253 --intel_parser.in_bracket;
7254 if (i.base_reg || i.index_reg)
7255 intel_parser.is_mem = 1;
7256 if (!intel_parser.is_mem)
7257 {
7258 if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
7259 /* Defer the warning until all of the operand was parsed. */
7260 intel_parser.is_mem = -1;
7261 else if (!quiet_warnings)
7262 as_warn (_("`[%.*s]' taken to mean just `%.*s'"),
7263 len, start, len, start);
7264 }
7265 }
7266 intel_parser.op_modifier |= was_offset;
7267
7268 return 1;
7269 }
7270 return 0;
7271 }
7272
7273 /* e10 e11 e10'
7274
7275 e10' [ expr ] e10'
7276 | Empty */
7277 static int
7278 intel_e10 (void)
7279 {
7280 if (!intel_e11 ())
7281 return 0;
7282
7283 while (cur_token.code == '[')
7284 {
7285 if (!intel_bracket_expr ())
7286 return 0;
7287 }
7288
7289 return 1;
7290 }
7291
7292 /* e11 ( expr )
7293 | [ expr ]
7294 | BYTE
7295 | WORD
7296 | DWORD
7297 | FWORD
7298 | QWORD
7299 | TBYTE
7300 | OWORD
7301 | XMMWORD
7302 | $
7303 | .
7304 | register
7305 | id
7306 | constant */
7307 static int
7308 intel_e11 (void)
7309 {
7310 switch (cur_token.code)
7311 {
7312 /* e11 ( expr ) */
7313 case '(':
7314 intel_match_token ('(');
7315 strcat (intel_parser.disp, "(");
7316
7317 if (intel_expr () && intel_match_token (')'))
7318 {
7319 strcat (intel_parser.disp, ")");
7320 return 1;
7321 }
7322 return 0;
7323
7324 /* e11 [ expr ] */
7325 case '[':
7326 return intel_bracket_expr ();
7327
7328 /* e11 $
7329 | . */
7330 case '.':
7331 strcat (intel_parser.disp, cur_token.str);
7332 intel_match_token (cur_token.code);
7333
7334 /* Mark as a memory operand only if it's not already known to be an
7335 offset expression. */
7336 if (!intel_parser.in_offset)
7337 intel_parser.is_mem = 1;
7338
7339 return 1;
7340
7341 /* e11 register */
7342 case T_REG:
7343 {
7344 const reg_entry *reg = intel_parser.reg = cur_token.reg;
7345
7346 intel_match_token (T_REG);
7347
7348 /* Check for segment change. */
7349 if (cur_token.code == ':')
7350 {
7351 if (!(reg->reg_type & (SReg2 | SReg3)))
7352 {
7353 as_bad (_("`%s' is not a valid segment register"),
7354 reg->reg_name);
7355 return 0;
7356 }
7357 else if (i.seg[i.mem_operands])
7358 as_warn (_("Extra segment override ignored"));
7359 else
7360 {
7361 if (!intel_parser.in_offset)
7362 intel_parser.is_mem = 1;
7363 switch (reg->reg_num)
7364 {
7365 case 0:
7366 i.seg[i.mem_operands] = &es;
7367 break;
7368 case 1:
7369 i.seg[i.mem_operands] = &cs;
7370 break;
7371 case 2:
7372 i.seg[i.mem_operands] = &ss;
7373 break;
7374 case 3:
7375 i.seg[i.mem_operands] = &ds;
7376 break;
7377 case 4:
7378 i.seg[i.mem_operands] = &fs;
7379 break;
7380 case 5:
7381 i.seg[i.mem_operands] = &gs;
7382 break;
7383 }
7384 }
7385 }
7386
7387 /* Not a segment register. Check for register scaling. */
7388 else if (cur_token.code == '*')
7389 {
7390 if (!intel_parser.in_bracket)
7391 {
7392 as_bad (_("Register scaling only allowed in memory operands"));
7393 return 0;
7394 }
7395
7396 if (reg->reg_type & Reg16) /* Disallow things like [si*1]. */
7397 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
7398 else if (i.index_reg)
7399 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
7400
7401 /* What follows must be a valid scale. */
7402 intel_match_token ('*');
7403 i.index_reg = reg;
7404 i.types[this_operand] |= BaseIndex;
7405
7406 /* Set the scale after setting the register (otherwise,
7407 i386_scale will complain) */
7408 if (cur_token.code == '+' || cur_token.code == '-')
7409 {
7410 char *str, sign = cur_token.code;
7411 intel_match_token (cur_token.code);
7412 if (cur_token.code != T_CONST)
7413 {
7414 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
7415 cur_token.str);
7416 return 0;
7417 }
7418 str = (char *) xmalloc (strlen (cur_token.str) + 2);
7419 strcpy (str + 1, cur_token.str);
7420 *str = sign;
7421 if (!i386_scale (str))
7422 return 0;
7423 free (str);
7424 }
7425 else if (!i386_scale (cur_token.str))
7426 return 0;
7427 intel_match_token (cur_token.code);
7428 }
7429
7430 /* No scaling. If this is a memory operand, the register is either a
7431 base register (first occurrence) or an index register (second
7432 occurrence). */
7433 else if (intel_parser.in_bracket)
7434 {
7435
7436 if (!i.base_reg)
7437 i.base_reg = reg;
7438 else if (!i.index_reg)
7439 i.index_reg = reg;
7440 else
7441 {
7442 as_bad (_("Too many register references in memory operand"));
7443 return 0;
7444 }
7445
7446 i.types[this_operand] |= BaseIndex;
7447 }
7448
7449 /* It's neither base nor index. */
7450 else if (!intel_parser.in_offset && !intel_parser.is_mem)
7451 {
7452 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
7453 i.op[this_operand].regs = reg;
7454 i.reg_operands++;
7455 }
7456 else
7457 {
7458 as_bad (_("Invalid use of register"));
7459 return 0;
7460 }
7461
7462 /* Since registers are not part of the displacement string (except
7463 when we're parsing offset operands), we may need to remove any
7464 preceding '+' from the displacement string. */
7465 if (*intel_parser.disp != '\0'
7466 && !intel_parser.in_offset)
7467 {
7468 char *s = intel_parser.disp;
7469 s += strlen (s) - 1;
7470 if (*s == '+')
7471 *s = '\0';
7472 }
7473
7474 return 1;
7475 }
7476
7477 /* e11 BYTE
7478 | WORD
7479 | DWORD
7480 | FWORD
7481 | QWORD
7482 | TBYTE
7483 | OWORD
7484 | XMMWORD */
7485 case T_BYTE:
7486 case T_WORD:
7487 case T_DWORD:
7488 case T_FWORD:
7489 case T_QWORD:
7490 case T_TBYTE:
7491 case T_XMMWORD:
7492 intel_match_token (cur_token.code);
7493
7494 if (cur_token.code == T_PTR)
7495 return 1;
7496
7497 /* It must have been an identifier. */
7498 intel_putback_token ();
7499 cur_token.code = T_ID;
7500 /* FALLTHRU */
7501
7502 /* e11 id
7503 | constant */
7504 case T_ID:
7505 if (!intel_parser.in_offset && intel_parser.is_mem <= 0)
7506 {
7507 symbolS *symbolP;
7508
7509 /* The identifier represents a memory reference only if it's not
7510 preceded by an offset modifier and if it's not an equate. */
7511 symbolP = symbol_find(cur_token.str);
7512 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
7513 intel_parser.is_mem = 1;
7514 }
7515 /* FALLTHRU */
7516
7517 case T_CONST:
7518 case '-':
7519 case '+':
7520 {
7521 char *save_str, sign = 0;
7522
7523 /* Allow constants that start with `+' or `-'. */
7524 if (cur_token.code == '-' || cur_token.code == '+')
7525 {
7526 sign = cur_token.code;
7527 intel_match_token (cur_token.code);
7528 if (cur_token.code != T_CONST)
7529 {
7530 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
7531 cur_token.str);
7532 return 0;
7533 }
7534 }
7535
7536 save_str = (char *) xmalloc (strlen (cur_token.str) + 2);
7537 strcpy (save_str + !!sign, cur_token.str);
7538 if (sign)
7539 *save_str = sign;
7540
7541 /* Get the next token to check for register scaling. */
7542 intel_match_token (cur_token.code);
7543
7544 /* Check if this constant is a scaling factor for an
7545 index register. */
7546 if (cur_token.code == '*')
7547 {
7548 if (intel_match_token ('*') && cur_token.code == T_REG)
7549 {
7550 const reg_entry *reg = cur_token.reg;
7551
7552 if (!intel_parser.in_bracket)
7553 {
7554 as_bad (_("Register scaling only allowed "
7555 "in memory operands"));
7556 return 0;
7557 }
7558
7559 /* Disallow things like [1*si].
7560 sp and esp are invalid as index. */
7561 if (reg->reg_type & Reg16)
7562 reg = i386_regtab + REGNAM_AX + 4;
7563 else if (i.index_reg)
7564 reg = i386_regtab + REGNAM_EAX + 4;
7565
7566 /* The constant is followed by `* reg', so it must be
7567 a valid scale. */
7568 i.index_reg = reg;
7569 i.types[this_operand] |= BaseIndex;
7570
7571 /* Set the scale after setting the register (otherwise,
7572 i386_scale will complain) */
7573 if (!i386_scale (save_str))
7574 return 0;
7575 intel_match_token (T_REG);
7576
7577 /* Since registers are not part of the displacement
7578 string, we may need to remove any preceding '+' from
7579 the displacement string. */
7580 if (*intel_parser.disp != '\0')
7581 {
7582 char *s = intel_parser.disp;
7583 s += strlen (s) - 1;
7584 if (*s == '+')
7585 *s = '\0';
7586 }
7587
7588 free (save_str);
7589
7590 return 1;
7591 }
7592
7593 /* The constant was not used for register scaling. Since we have
7594 already consumed the token following `*' we now need to put it
7595 back in the stream. */
7596 intel_putback_token ();
7597 }
7598
7599 /* Add the constant to the displacement string. */
7600 strcat (intel_parser.disp, save_str);
7601 free (save_str);
7602
7603 return 1;
7604 }
7605 }
7606
7607 as_bad (_("Unrecognized token '%s'"), cur_token.str);
7608 return 0;
7609 }
7610
7611 /* Match the given token against cur_token. If they match, read the next
7612 token from the operand string. */
7613 static int
7614 intel_match_token (int code)
7615 {
7616 if (cur_token.code == code)
7617 {
7618 intel_get_token ();
7619 return 1;
7620 }
7621 else
7622 {
7623 as_bad (_("Unexpected token `%s'"), cur_token.str);
7624 return 0;
7625 }
7626 }
7627
7628 /* Read a new token from intel_parser.op_string and store it in cur_token. */
7629 static void
7630 intel_get_token (void)
7631 {
7632 char *end_op;
7633 const reg_entry *reg;
7634 struct intel_token new_token;
7635
7636 new_token.code = T_NIL;
7637 new_token.reg = NULL;
7638 new_token.str = NULL;
7639
7640 /* Free the memory allocated to the previous token and move
7641 cur_token to prev_token. */
7642 if (prev_token.str)
7643 free (prev_token.str);
7644
7645 prev_token = cur_token;
7646
7647 /* Skip whitespace. */
7648 while (is_space_char (*intel_parser.op_string))
7649 intel_parser.op_string++;
7650
7651 /* Return an empty token if we find nothing else on the line. */
7652 if (*intel_parser.op_string == '\0')
7653 {
7654 cur_token = new_token;
7655 return;
7656 }
7657
7658 /* The new token cannot be larger than the remainder of the operand
7659 string. */
7660 new_token.str = (char *) xmalloc (strlen (intel_parser.op_string) + 1);
7661 new_token.str[0] = '\0';
7662
7663 if (strchr ("0123456789", *intel_parser.op_string))
7664 {
7665 char *p = new_token.str;
7666 char *q = intel_parser.op_string;
7667 new_token.code = T_CONST;
7668
7669 /* Allow any kind of identifier char to encompass floating point and
7670 hexadecimal numbers. */
7671 while (is_identifier_char (*q))
7672 *p++ = *q++;
7673 *p = '\0';
7674
7675 /* Recognize special symbol names [0-9][bf]. */
7676 if (strlen (intel_parser.op_string) == 2
7677 && (intel_parser.op_string[1] == 'b'
7678 || intel_parser.op_string[1] == 'f'))
7679 new_token.code = T_ID;
7680 }
7681
7682 else if ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL)
7683 {
7684 size_t len = end_op - intel_parser.op_string;
7685
7686 new_token.code = T_REG;
7687 new_token.reg = reg;
7688
7689 memcpy (new_token.str, intel_parser.op_string, len);
7690 new_token.str[len] = '\0';
7691 }
7692
7693 else if (is_identifier_char (*intel_parser.op_string))
7694 {
7695 char *p = new_token.str;
7696 char *q = intel_parser.op_string;
7697
7698 /* A '.' or '$' followed by an identifier char is an identifier.
7699 Otherwise, it's operator '.' followed by an expression. */
7700 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
7701 {
7702 new_token.code = '.';
7703 new_token.str[0] = '.';
7704 new_token.str[1] = '\0';
7705 }
7706 else
7707 {
7708 while (is_identifier_char (*q) || *q == '@')
7709 *p++ = *q++;
7710 *p = '\0';
7711
7712 if (strcasecmp (new_token.str, "NOT") == 0)
7713 new_token.code = '~';
7714
7715 else if (strcasecmp (new_token.str, "MOD") == 0)
7716 new_token.code = '%';
7717
7718 else if (strcasecmp (new_token.str, "AND") == 0)
7719 new_token.code = '&';
7720
7721 else if (strcasecmp (new_token.str, "OR") == 0)
7722 new_token.code = '|';
7723
7724 else if (strcasecmp (new_token.str, "XOR") == 0)
7725 new_token.code = '^';
7726
7727 else if (strcasecmp (new_token.str, "SHL") == 0)
7728 new_token.code = T_SHL;
7729
7730 else if (strcasecmp (new_token.str, "SHR") == 0)
7731 new_token.code = T_SHR;
7732
7733 else if (strcasecmp (new_token.str, "BYTE") == 0)
7734 new_token.code = T_BYTE;
7735
7736 else if (strcasecmp (new_token.str, "WORD") == 0)
7737 new_token.code = T_WORD;
7738
7739 else if (strcasecmp (new_token.str, "DWORD") == 0)
7740 new_token.code = T_DWORD;
7741
7742 else if (strcasecmp (new_token.str, "FWORD") == 0)
7743 new_token.code = T_FWORD;
7744
7745 else if (strcasecmp (new_token.str, "QWORD") == 0)
7746 new_token.code = T_QWORD;
7747
7748 else if (strcasecmp (new_token.str, "TBYTE") == 0
7749 /* XXX remove (gcc still uses it) */
7750 || strcasecmp (new_token.str, "XWORD") == 0)
7751 new_token.code = T_TBYTE;
7752
7753 else if (strcasecmp (new_token.str, "XMMWORD") == 0
7754 || strcasecmp (new_token.str, "OWORD") == 0)
7755 new_token.code = T_XMMWORD;
7756
7757 else if (strcasecmp (new_token.str, "PTR") == 0)
7758 new_token.code = T_PTR;
7759
7760 else if (strcasecmp (new_token.str, "SHORT") == 0)
7761 new_token.code = T_SHORT;
7762
7763 else if (strcasecmp (new_token.str, "OFFSET") == 0)
7764 {
7765 new_token.code = T_OFFSET;
7766
7767 /* ??? This is not mentioned in the MASM grammar but gcc
7768 makes use of it with -mintel-syntax. OFFSET may be
7769 followed by FLAT: */
7770 if (strncasecmp (q, " FLAT:", 6) == 0)
7771 strcat (new_token.str, " FLAT:");
7772 }
7773
7774 /* ??? This is not mentioned in the MASM grammar. */
7775 else if (strcasecmp (new_token.str, "FLAT") == 0)
7776 {
7777 new_token.code = T_OFFSET;
7778 if (*q == ':')
7779 strcat (new_token.str, ":");
7780 else
7781 as_bad (_("`:' expected"));
7782 }
7783
7784 else
7785 new_token.code = T_ID;
7786 }
7787 }
7788
7789 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
7790 {
7791 new_token.code = *intel_parser.op_string;
7792 new_token.str[0] = *intel_parser.op_string;
7793 new_token.str[1] = '\0';
7794 }
7795
7796 else if (strchr ("<>", *intel_parser.op_string)
7797 && *intel_parser.op_string == *(intel_parser.op_string + 1))
7798 {
7799 new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
7800 new_token.str[0] = *intel_parser.op_string;
7801 new_token.str[1] = *intel_parser.op_string;
7802 new_token.str[2] = '\0';
7803 }
7804
7805 else
7806 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
7807
7808 intel_parser.op_string += strlen (new_token.str);
7809 cur_token = new_token;
7810 }
7811
7812 /* Put cur_token back into the token stream and make cur_token point to
7813 prev_token. */
7814 static void
7815 intel_putback_token (void)
7816 {
7817 if (cur_token.code != T_NIL)
7818 {
7819 intel_parser.op_string -= strlen (cur_token.str);
7820 free (cur_token.str);
7821 }
7822 cur_token = prev_token;
7823
7824 /* Forget prev_token. */
7825 prev_token.code = T_NIL;
7826 prev_token.reg = NULL;
7827 prev_token.str = NULL;
7828 }
7829
7830 int
7831 tc_x86_regname_to_dw2regnum (char *regname)
7832 {
7833 unsigned int regnum;
7834 unsigned int regnames_count;
7835 static const char *const regnames_32[] =
7836 {
7837 "eax", "ecx", "edx", "ebx",
7838 "esp", "ebp", "esi", "edi",
7839 "eip", "eflags", NULL,
7840 "st0", "st1", "st2", "st3",
7841 "st4", "st5", "st6", "st7",
7842 NULL, NULL,
7843 "xmm0", "xmm1", "xmm2", "xmm3",
7844 "xmm4", "xmm5", "xmm6", "xmm7",
7845 "mm0", "mm1", "mm2", "mm3",
7846 "mm4", "mm5", "mm6", "mm7",
7847 "fcw", "fsw", "mxcsr",
7848 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
7849 "tr", "ldtr"
7850 };
7851 static const char *const regnames_64[] =
7852 {
7853 "rax", "rdx", "rcx", "rbx",
7854 "rsi", "rdi", "rbp", "rsp",
7855 "r8", "r9", "r10", "r11",
7856 "r12", "r13", "r14", "r15",
7857 "rip",
7858 "xmm0", "xmm1", "xmm2", "xmm3",
7859 "xmm4", "xmm5", "xmm6", "xmm7",
7860 "xmm8", "xmm9", "xmm10", "xmm11",
7861 "xmm12", "xmm13", "xmm14", "xmm15",
7862 "st0", "st1", "st2", "st3",
7863 "st4", "st5", "st6", "st7",
7864 "mm0", "mm1", "mm2", "mm3",
7865 "mm4", "mm5", "mm6", "mm7",
7866 "rflags",
7867 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
7868 "fs.base", "gs.base", NULL, NULL,
7869 "tr", "ldtr",
7870 "mxcsr", "fcw", "fsw"
7871 };
7872 const char *const *regnames;
7873
7874 if (flag_code == CODE_64BIT)
7875 {
7876 regnames = regnames_64;
7877 regnames_count = ARRAY_SIZE (regnames_64);
7878 }
7879 else
7880 {
7881 regnames = regnames_32;
7882 regnames_count = ARRAY_SIZE (regnames_32);
7883 }
7884
7885 for (regnum = 0; regnum < regnames_count; regnum++)
7886 if (regnames[regnum] != NULL
7887 && strcmp (regname, regnames[regnum]) == 0)
7888 return regnum;
7889
7890 return -1;
7891 }
7892
7893 void
7894 tc_x86_frame_initial_instructions (void)
7895 {
7896 static unsigned int sp_regno;
7897
7898 if (!sp_regno)
7899 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
7900 ? "rsp" : "esp");
7901
7902 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
7903 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
7904 }
7905
7906 int
7907 i386_elf_section_type (const char *str, size_t len)
7908 {
7909 if (flag_code == CODE_64BIT
7910 && len == sizeof ("unwind") - 1
7911 && strncmp (str, "unwind", 6) == 0)
7912 return SHT_X86_64_UNWIND;
7913
7914 return -1;
7915 }
7916
7917 #ifdef TE_PE
7918 void
7919 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
7920 {
7921 expressionS expr;
7922
7923 expr.X_op = O_secrel;
7924 expr.X_add_symbol = symbol;
7925 expr.X_add_number = 0;
7926 emit_expr (&expr, size);
7927 }
7928 #endif
7929
7930 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7931 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
7932
7933 int
7934 x86_64_section_letter (int letter, char **ptr_msg)
7935 {
7936 if (flag_code == CODE_64BIT)
7937 {
7938 if (letter == 'l')
7939 return SHF_X86_64_LARGE;
7940
7941 *ptr_msg = _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
7942 }
7943 else
7944 *ptr_msg = _("Bad .section directive: want a,w,x,M,S,G,T in string");
7945 return -1;
7946 }
7947
7948 int
7949 x86_64_section_word (char *str, size_t len)
7950 {
7951 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
7952 return SHF_X86_64_LARGE;
7953
7954 return -1;
7955 }
7956
7957 static void
7958 handle_large_common (int small ATTRIBUTE_UNUSED)
7959 {
7960 if (flag_code != CODE_64BIT)
7961 {
7962 s_comm_internal (0, elf_common_parse);
7963 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
7964 }
7965 else
7966 {
7967 static segT lbss_section;
7968 asection *saved_com_section_ptr = elf_com_section_ptr;
7969 asection *saved_bss_section = bss_section;
7970
7971 if (lbss_section == NULL)
7972 {
7973 flagword applicable;
7974 segT seg = now_seg;
7975 subsegT subseg = now_subseg;
7976
7977 /* The .lbss section is for local .largecomm symbols. */
7978 lbss_section = subseg_new (".lbss", 0);
7979 applicable = bfd_applicable_section_flags (stdoutput);
7980 bfd_set_section_flags (stdoutput, lbss_section,
7981 applicable & SEC_ALLOC);
7982 seg_info (lbss_section)->bss = 1;
7983
7984 subseg_set (seg, subseg);
7985 }
7986
7987 elf_com_section_ptr = &_bfd_elf_large_com_section;
7988 bss_section = lbss_section;
7989
7990 s_comm_internal (0, elf_common_parse);
7991
7992 elf_com_section_ptr = saved_com_section_ptr;
7993 bss_section = saved_bss_section;
7994 }
7995 }
7996 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.183046 seconds and 5 git commands to generate.