Add x86 gas -q option to quiet some x86 gas warnings.
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989, 91, 92, 93, 94, 95, 96, 97, 98, 99, 2000
3 Free Software Foundation.
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /*
23 Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better.
27 */
28
29 #include <ctype.h>
30
31 #include "as.h"
32 #include "subsegs.h"
33 #include "opcode/i386.h"
34
35 #ifndef REGISTER_WARNINGS
36 #define REGISTER_WARNINGS 1
37 #endif
38
39 #ifndef INFER_ADDR_PREFIX
40 #define INFER_ADDR_PREFIX 1
41 #endif
42
43 #ifndef SCALE1_WHEN_NO_INDEX
44 /* Specifying a scale factor besides 1 when there is no index is
45 futile. eg. `mov (%ebx,2),%al' does exactly the same as
46 `mov (%ebx),%al'. To slavishly follow what the programmer
47 specified, set SCALE1_WHEN_NO_INDEX to 0. */
48 #define SCALE1_WHEN_NO_INDEX 1
49 #endif
50
51 #define true 1
52 #define false 0
53
54 static unsigned int mode_from_disp_size PARAMS ((unsigned int));
55 static int fits_in_signed_byte PARAMS ((offsetT));
56 static int fits_in_unsigned_byte PARAMS ((offsetT));
57 static int fits_in_unsigned_word PARAMS ((offsetT));
58 static int fits_in_signed_word PARAMS ((offsetT));
59 static int smallest_imm_type PARAMS ((offsetT));
60 static offsetT offset_in_range PARAMS ((offsetT, int));
61 static int add_prefix PARAMS ((unsigned int));
62 static void set_16bit_code_flag PARAMS ((int));
63 static void set_16bit_gcc_code_flag PARAMS((int));
64 static void set_intel_syntax PARAMS ((int));
65 static void set_cpu_arch PARAMS ((int));
66
67 #ifdef BFD_ASSEMBLER
68 static bfd_reloc_code_real_type reloc
69 PARAMS ((int, int, bfd_reloc_code_real_type));
70 #endif
71
72 /* 'md_assemble ()' gathers together information and puts it into a
73 i386_insn. */
74
75 union i386_op
76 {
77 expressionS *disps;
78 expressionS *imms;
79 const reg_entry *regs;
80 };
81
82 struct _i386_insn
83 {
84 /* TM holds the template for the insn were currently assembling. */
85 template tm;
86
87 /* SUFFIX holds the instruction mnemonic suffix if given.
88 (e.g. 'l' for 'movl') */
89 char suffix;
90
91 /* OPERANDS gives the number of given operands. */
92 unsigned int operands;
93
94 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
95 of given register, displacement, memory operands and immediate
96 operands. */
97 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
98
99 /* TYPES [i] is the type (see above #defines) which tells us how to
100 use OP[i] for the corresponding operand. */
101 unsigned int types[MAX_OPERANDS];
102
103 /* Displacement expression, immediate expression, or register for each
104 operand. */
105 union i386_op op[MAX_OPERANDS];
106
107 /* Relocation type for operand */
108 #ifdef BFD_ASSEMBLER
109 enum bfd_reloc_code_real disp_reloc[MAX_OPERANDS];
110 #else
111 int disp_reloc[MAX_OPERANDS];
112 #endif
113
114 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
115 the base index byte below. */
116 const reg_entry *base_reg;
117 const reg_entry *index_reg;
118 unsigned int log2_scale_factor;
119
120 /* SEG gives the seg_entries of this insn. They are zero unless
121 explicit segment overrides are given. */
122 const seg_entry *seg[2]; /* segments for memory operands (if given) */
123
124 /* PREFIX holds all the given prefix opcodes (usually null).
125 PREFIXES is the number of prefix opcodes. */
126 unsigned int prefixes;
127 unsigned char prefix[MAX_PREFIXES];
128
129 /* RM and SIB are the modrm byte and the sib byte where the
130 addressing modes of this insn are encoded. */
131
132 modrm_byte rm;
133 sib_byte sib;
134 };
135
136 typedef struct _i386_insn i386_insn;
137
138 /* List of chars besides those in app.c:symbol_chars that can start an
139 operand. Used to prevent the scrubber eating vital white-space. */
140 #ifdef LEX_AT
141 const char extra_symbol_chars[] = "*%-(@";
142 #else
143 const char extra_symbol_chars[] = "*%-(";
144 #endif
145
146 /* This array holds the chars that always start a comment. If the
147 pre-processor is disabled, these aren't very useful */
148 #if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && !defined (TE_LINUX) && !defined(TE_FreeBSD))
149 /* Putting '/' here makes it impossible to use the divide operator.
150 However, we need it for compatibility with SVR4 systems. */
151 const char comment_chars[] = "#/";
152 #define PREFIX_SEPARATOR '\\'
153 #else
154 const char comment_chars[] = "#";
155 #define PREFIX_SEPARATOR '/'
156 #endif
157
158 /* This array holds the chars that only start a comment at the beginning of
159 a line. If the line seems to have the form '# 123 filename'
160 .line and .file directives will appear in the pre-processed output */
161 /* Note that input_file.c hand checks for '#' at the beginning of the
162 first line of the input file. This is because the compiler outputs
163 #NO_APP at the beginning of its output. */
164 /* Also note that comments started like this one will always work if
165 '/' isn't otherwise defined. */
166 #if defined (TE_I386AIX) || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) && !defined (TE_LINUX) && !defined(TE_FreeBSD))
167 const char line_comment_chars[] = "";
168 #else
169 const char line_comment_chars[] = "/";
170 #endif
171
172 const char line_separator_chars[] = "";
173
174 /* Chars that can be used to separate mant from exp in floating point nums */
175 const char EXP_CHARS[] = "eE";
176
177 /* Chars that mean this number is a floating point constant */
178 /* As in 0f12.456 */
179 /* or 0d1.2345e12 */
180 const char FLT_CHARS[] = "fFdDxX";
181
182 /* tables for lexical analysis */
183 static char mnemonic_chars[256];
184 static char register_chars[256];
185 static char operand_chars[256];
186 static char identifier_chars[256];
187 static char digit_chars[256];
188
189 /* lexical macros */
190 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
191 #define is_operand_char(x) (operand_chars[(unsigned char) x])
192 #define is_register_char(x) (register_chars[(unsigned char) x])
193 #define is_space_char(x) ((x) == ' ')
194 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
195 #define is_digit_char(x) (digit_chars[(unsigned char) x])
196
197 /* put here all non-digit non-letter charcters that may occur in an operand */
198 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
199
200 /* md_assemble() always leaves the strings it's passed unaltered. To
201 effect this we maintain a stack of saved characters that we've smashed
202 with '\0's (indicating end of strings for various sub-fields of the
203 assembler instruction). */
204 static char save_stack[32];
205 static char *save_stack_p; /* stack pointer */
206 #define END_STRING_AND_SAVE(s) \
207 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
208 #define RESTORE_END_STRING(s) \
209 do { *(s) = *--save_stack_p; } while (0)
210
211 /* The instruction we're assembling. */
212 static i386_insn i;
213
214 /* Possible templates for current insn. */
215 static const templates *current_templates;
216
217 /* Per instruction expressionS buffers: 2 displacements & 2 immediate max. */
218 static expressionS disp_expressions[2], im_expressions[2];
219
220 static int this_operand; /* Current operand we are working on. */
221
222 static int flag_16bit_code; /* 1 if we're writing 16-bit code,
223 0 if 32-bit. */
224
225 static int intel_syntax = 0; /* 1 for intel syntax, 0 if att syntax. */
226
227 static int allow_naked_reg = 0; /* 1 if register prefix % not required */
228
229 static char stackop_size = '\0'; /* Used in 16 bit gcc mode to add an l
230 suffix to call, ret, enter, leave, push,
231 and pop instructions so that gcc has the
232 same stack frame as in 32 bit mode. */
233
234 static int quiet_warnings = 0; /* Non-zero to quieten some warnings. */
235
236 static const char *cpu_arch_name = NULL; /* cpu name */
237
238 static unsigned int cpu_arch_flags = 0; /* cpu feature flags */
239
240 /* Interface to relax_segment.
241 There are 2 relax states for 386 jump insns: one for conditional &
242 one for unconditional jumps. This is because these two types of
243 jumps add different sizes to frags when we're figuring out what
244 sort of jump to choose to reach a given label. */
245
246 /* types */
247 #define COND_JUMP 1 /* conditional jump */
248 #define UNCOND_JUMP 2 /* unconditional jump */
249 /* sizes */
250 #define CODE16 1
251 #define SMALL 0
252 #define SMALL16 (SMALL|CODE16)
253 #define BIG 2
254 #define BIG16 (BIG|CODE16)
255
256 #ifndef INLINE
257 #ifdef __GNUC__
258 #define INLINE __inline__
259 #else
260 #define INLINE
261 #endif
262 #endif
263
264 #define ENCODE_RELAX_STATE(type,size) \
265 ((relax_substateT)((type<<2) | (size)))
266 #define SIZE_FROM_RELAX_STATE(s) \
267 ( (((s) & 0x3) == BIG ? 4 : (((s) & 0x3) == BIG16 ? 2 : 1)) )
268
269 /* This table is used by relax_frag to promote short jumps to long
270 ones where necessary. SMALL (short) jumps may be promoted to BIG
271 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
272 don't allow a short jump in a 32 bit code segment to be promoted to
273 a 16 bit offset jump because it's slower (requires data size
274 prefix), and doesn't work, unless the destination is in the bottom
275 64k of the code segment (The top 16 bits of eip are zeroed). */
276
277 const relax_typeS md_relax_table[] =
278 {
279 /* The fields are:
280 1) most positive reach of this state,
281 2) most negative reach of this state,
282 3) how many bytes this mode will add to the size of the current frag
283 4) which index into the table to try if we can't fit into this one.
284 */
285 {1, 1, 0, 0},
286 {1, 1, 0, 0},
287 {1, 1, 0, 0},
288 {1, 1, 0, 0},
289
290 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
291 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
292 /* dword conditionals adds 4 bytes to frag:
293 1 extra opcode byte, 3 extra displacement bytes. */
294 {0, 0, 4, 0},
295 /* word conditionals add 2 bytes to frag:
296 1 extra opcode byte, 1 extra displacement byte. */
297 {0, 0, 2, 0},
298
299 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
300 {127 + 1, -128 + 1, 0, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
301 /* dword jmp adds 3 bytes to frag:
302 0 extra opcode bytes, 3 extra displacement bytes. */
303 {0, 0, 3, 0},
304 /* word jmp adds 1 byte to frag:
305 0 extra opcode bytes, 1 extra displacement byte. */
306 {0, 0, 1, 0}
307
308 };
309
310 static const arch_entry cpu_arch[] = {
311 {"i8086", Cpu086 },
312 {"i186", Cpu086|Cpu186 },
313 {"i286", Cpu086|Cpu186|Cpu286 },
314 {"i386", Cpu086|Cpu186|Cpu286|Cpu386 },
315 {"i486", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486 },
316 {"i586", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
317 {"i686", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
318 {"pentium", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX },
319 {"pentiumpro",Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuSSE },
320 {"k6", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuMMX|Cpu3dnow },
321 {"athlon", Cpu086|Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|Cpu3dnow },
322 {NULL, 0 }
323 };
324
325
326 void
327 i386_align_code (fragP, count)
328 fragS *fragP;
329 int count;
330 {
331 /* Various efficient no-op patterns for aligning code labels. */
332 /* Note: Don't try to assemble the instructions in the comments. */
333 /* 0L and 0w are not legal */
334 static const char f32_1[] =
335 {0x90}; /* nop */
336 static const char f32_2[] =
337 {0x89,0xf6}; /* movl %esi,%esi */
338 static const char f32_3[] =
339 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
340 static const char f32_4[] =
341 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
342 static const char f32_5[] =
343 {0x90, /* nop */
344 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
345 static const char f32_6[] =
346 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
347 static const char f32_7[] =
348 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
349 static const char f32_8[] =
350 {0x90, /* nop */
351 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
352 static const char f32_9[] =
353 {0x89,0xf6, /* movl %esi,%esi */
354 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
355 static const char f32_10[] =
356 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
357 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
358 static const char f32_11[] =
359 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
360 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
361 static const char f32_12[] =
362 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
363 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
364 static const char f32_13[] =
365 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
366 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
367 static const char f32_14[] =
368 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
369 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
370 static const char f32_15[] =
371 {0xeb,0x0d,0x90,0x90,0x90,0x90,0x90, /* jmp .+15; lotsa nops */
372 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
373 static const char f16_3[] =
374 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
375 static const char f16_4[] =
376 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
377 static const char f16_5[] =
378 {0x90, /* nop */
379 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
380 static const char f16_6[] =
381 {0x89,0xf6, /* mov %si,%si */
382 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
383 static const char f16_7[] =
384 {0x8d,0x74,0x00, /* lea 0(%si),%si */
385 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
386 static const char f16_8[] =
387 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
388 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
389 static const char *const f32_patt[] = {
390 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
391 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14, f32_15
392 };
393 static const char *const f16_patt[] = {
394 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8,
395 f32_15, f32_15, f32_15, f32_15, f32_15, f32_15, f32_15
396 };
397
398 if (count > 0 && count <= 15)
399 {
400 if (flag_16bit_code)
401 {
402 memcpy(fragP->fr_literal + fragP->fr_fix,
403 f16_patt[count - 1], count);
404 if (count > 8) /* adjust jump offset */
405 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
406 }
407 else
408 memcpy(fragP->fr_literal + fragP->fr_fix,
409 f32_patt[count - 1], count);
410 fragP->fr_var = count;
411 }
412 }
413
414 static char *output_invalid PARAMS ((int c));
415 static int i386_operand PARAMS ((char *operand_string));
416 static int i386_intel_operand PARAMS ((char *operand_string, int got_a_float));
417 static const reg_entry *parse_register PARAMS ((char *reg_string,
418 char **end_op));
419
420 #ifndef I386COFF
421 static void s_bss PARAMS ((int));
422 #endif
423
424 symbolS *GOT_symbol; /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */
425
426 static INLINE unsigned int
427 mode_from_disp_size (t)
428 unsigned int t;
429 {
430 return (t & Disp8) ? 1 : (t & (Disp16|Disp32)) ? 2 : 0;
431 }
432
433 static INLINE int
434 fits_in_signed_byte (num)
435 offsetT num;
436 {
437 return (num >= -128) && (num <= 127);
438 } /* fits_in_signed_byte() */
439
440 static INLINE int
441 fits_in_unsigned_byte (num)
442 offsetT num;
443 {
444 return (num & 0xff) == num;
445 } /* fits_in_unsigned_byte() */
446
447 static INLINE int
448 fits_in_unsigned_word (num)
449 offsetT num;
450 {
451 return (num & 0xffff) == num;
452 } /* fits_in_unsigned_word() */
453
454 static INLINE int
455 fits_in_signed_word (num)
456 offsetT num;
457 {
458 return (-32768 <= num) && (num <= 32767);
459 } /* fits_in_signed_word() */
460
461 static int
462 smallest_imm_type (num)
463 offsetT num;
464 {
465 if (cpu_arch_flags != 0
466 && cpu_arch_flags != (Cpu086|Cpu186|Cpu286|Cpu386|Cpu486))
467 {
468 /* This code is disabled on the 486 because all the Imm1 forms
469 in the opcode table are slower on the i486. They're the
470 versions with the implicitly specified single-position
471 displacement, which has another syntax if you really want to
472 use that form. */
473 if (num == 1)
474 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32;
475 }
476 return (fits_in_signed_byte (num)
477 ? (Imm8S | Imm8 | Imm16 | Imm32)
478 : fits_in_unsigned_byte (num)
479 ? (Imm8 | Imm16 | Imm32)
480 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
481 ? (Imm16 | Imm32)
482 : (Imm32));
483 } /* smallest_imm_type() */
484
485 static offsetT
486 offset_in_range (val, size)
487 offsetT val;
488 int size;
489 {
490 addressT mask;
491
492 switch (size)
493 {
494 case 1: mask = ((addressT) 1 << 8) - 1; break;
495 case 2: mask = ((addressT) 1 << 16) - 1; break;
496 case 4: mask = ((addressT) 2 << 31) - 1; break;
497 default: abort();
498 }
499
500 /* If BFD64, sign extend val. */
501 if ((val & ~ (((addressT) 2 << 31) - 1)) == 0)
502 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
503
504 if ((val & ~ mask) != 0 && (val & ~ mask) != ~ mask)
505 {
506 char buf1[40], buf2[40];
507
508 sprint_value (buf1, val);
509 sprint_value (buf2, val & mask);
510 as_warn (_("%s shortened to %s"), buf1, buf2);
511 }
512 return val & mask;
513 }
514
515 /* Returns 0 if attempting to add a prefix where one from the same
516 class already exists, 1 if non rep/repne added, 2 if rep/repne
517 added. */
518 static int
519 add_prefix (prefix)
520 unsigned int prefix;
521 {
522 int ret = 1;
523 int q;
524
525 switch (prefix)
526 {
527 default:
528 abort ();
529
530 case CS_PREFIX_OPCODE:
531 case DS_PREFIX_OPCODE:
532 case ES_PREFIX_OPCODE:
533 case FS_PREFIX_OPCODE:
534 case GS_PREFIX_OPCODE:
535 case SS_PREFIX_OPCODE:
536 q = SEG_PREFIX;
537 break;
538
539 case REPNE_PREFIX_OPCODE:
540 case REPE_PREFIX_OPCODE:
541 ret = 2;
542 /* fall thru */
543 case LOCK_PREFIX_OPCODE:
544 q = LOCKREP_PREFIX;
545 break;
546
547 case FWAIT_OPCODE:
548 q = WAIT_PREFIX;
549 break;
550
551 case ADDR_PREFIX_OPCODE:
552 q = ADDR_PREFIX;
553 break;
554
555 case DATA_PREFIX_OPCODE:
556 q = DATA_PREFIX;
557 break;
558 }
559
560 if (i.prefix[q])
561 {
562 as_bad (_("same type of prefix used twice"));
563 return 0;
564 }
565
566 i.prefixes += 1;
567 i.prefix[q] = prefix;
568 return ret;
569 }
570
571 static void
572 set_16bit_code_flag (new_16bit_code_flag)
573 int new_16bit_code_flag;
574 {
575 flag_16bit_code = new_16bit_code_flag;
576 stackop_size = '\0';
577 }
578
579 static void
580 set_16bit_gcc_code_flag (new_16bit_code_flag)
581 int new_16bit_code_flag;
582 {
583 flag_16bit_code = new_16bit_code_flag;
584 stackop_size = new_16bit_code_flag ? 'l' : '\0';
585 }
586
587 static void
588 set_intel_syntax (syntax_flag)
589 int syntax_flag;
590 {
591 /* Find out if register prefixing is specified. */
592 int ask_naked_reg = 0;
593
594 SKIP_WHITESPACE ();
595 if (! is_end_of_line[(unsigned char) *input_line_pointer])
596 {
597 char *string = input_line_pointer;
598 int e = get_symbol_end ();
599
600 if (strcmp(string, "prefix") == 0)
601 ask_naked_reg = 1;
602 else if (strcmp(string, "noprefix") == 0)
603 ask_naked_reg = -1;
604 else
605 as_bad (_("bad argument to syntax directive."));
606 *input_line_pointer = e;
607 }
608 demand_empty_rest_of_line ();
609
610 intel_syntax = syntax_flag;
611
612 if (ask_naked_reg == 0)
613 {
614 #ifdef BFD_ASSEMBLER
615 allow_naked_reg = (intel_syntax
616 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
617 #else
618 allow_naked_reg = 0; /* conservative default */
619 #endif
620 }
621 else
622 allow_naked_reg = (ask_naked_reg < 0);
623 }
624
625 static void
626 set_cpu_arch (dummy)
627 int dummy ATTRIBUTE_UNUSED;
628 {
629 SKIP_WHITESPACE();
630
631 if (! is_end_of_line[(unsigned char) *input_line_pointer])
632 {
633 char *string = input_line_pointer;
634 int e = get_symbol_end ();
635 int i;
636
637 for (i = 0; cpu_arch[i].name; i++)
638 {
639 if (strcmp (string, cpu_arch[i].name) == 0)
640 {
641 cpu_arch_name = cpu_arch[i].name;
642 cpu_arch_flags = cpu_arch[i].flags;
643 break;
644 }
645 }
646 if (!cpu_arch[i].name)
647 as_bad (_("no such architecture: `%s'"), string);
648
649 *input_line_pointer = e;
650 }
651 else
652 as_bad (_("missing cpu architecture"));
653
654 demand_empty_rest_of_line ();
655 }
656
657 const pseudo_typeS md_pseudo_table[] =
658 {
659 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
660 {"align", s_align_bytes, 0},
661 #else
662 {"align", s_align_ptwo, 0},
663 #endif
664 {"arch", set_cpu_arch, 0},
665 #ifndef I386COFF
666 {"bss", s_bss, 0},
667 #endif
668 {"ffloat", float_cons, 'f'},
669 {"dfloat", float_cons, 'd'},
670 {"tfloat", float_cons, 'x'},
671 {"value", cons, 2},
672 {"noopt", s_ignore, 0},
673 {"optim", s_ignore, 0},
674 {"code16gcc", set_16bit_gcc_code_flag, 1},
675 {"code16", set_16bit_code_flag, 1},
676 {"code32", set_16bit_code_flag, 0},
677 {"intel_syntax", set_intel_syntax, 1},
678 {"att_syntax", set_intel_syntax, 0},
679 {0, 0, 0}
680 };
681
682 /* for interface with expression () */
683 extern char *input_line_pointer;
684
685 /* hash table for instruction mnemonic lookup */
686 static struct hash_control *op_hash;
687 /* hash table for register lookup */
688 static struct hash_control *reg_hash;
689 \f
690
691 void
692 md_begin ()
693 {
694 const char *hash_err;
695
696 /* initialize op_hash hash table */
697 op_hash = hash_new ();
698
699 {
700 register const template *optab;
701 register templates *core_optab;
702
703 optab = i386_optab; /* setup for loop */
704 core_optab = (templates *) xmalloc (sizeof (templates));
705 core_optab->start = optab;
706
707 while (1)
708 {
709 ++optab;
710 if (optab->name == NULL
711 || strcmp (optab->name, (optab - 1)->name) != 0)
712 {
713 /* different name --> ship out current template list;
714 add to hash table; & begin anew */
715 core_optab->end = optab;
716 hash_err = hash_insert (op_hash,
717 (optab - 1)->name,
718 (PTR) core_optab);
719 if (hash_err)
720 {
721 hash_error:
722 as_fatal (_("Internal Error: Can't hash %s: %s"),
723 (optab - 1)->name,
724 hash_err);
725 }
726 if (optab->name == NULL)
727 break;
728 core_optab = (templates *) xmalloc (sizeof (templates));
729 core_optab->start = optab;
730 }
731 }
732 }
733
734 /* initialize reg_hash hash table */
735 reg_hash = hash_new ();
736 {
737 register const reg_entry *regtab;
738
739 for (regtab = i386_regtab;
740 regtab < i386_regtab + sizeof (i386_regtab) / sizeof (i386_regtab[0]);
741 regtab++)
742 {
743 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
744 if (hash_err)
745 goto hash_error;
746 }
747 }
748
749 /* fill in lexical tables: mnemonic_chars, operand_chars. */
750 {
751 register int c;
752 register char *p;
753
754 for (c = 0; c < 256; c++)
755 {
756 if (isdigit (c))
757 {
758 digit_chars[c] = c;
759 mnemonic_chars[c] = c;
760 register_chars[c] = c;
761 operand_chars[c] = c;
762 }
763 else if (islower (c))
764 {
765 mnemonic_chars[c] = c;
766 register_chars[c] = c;
767 operand_chars[c] = c;
768 }
769 else if (isupper (c))
770 {
771 mnemonic_chars[c] = tolower (c);
772 register_chars[c] = mnemonic_chars[c];
773 operand_chars[c] = c;
774 }
775
776 if (isalpha (c) || isdigit (c))
777 identifier_chars[c] = c;
778 else if (c >= 128)
779 {
780 identifier_chars[c] = c;
781 operand_chars[c] = c;
782 }
783 }
784
785 #ifdef LEX_AT
786 identifier_chars['@'] = '@';
787 #endif
788 digit_chars['-'] = '-';
789 identifier_chars['_'] = '_';
790 identifier_chars['.'] = '.';
791
792 for (p = operand_special_chars; *p != '\0'; p++)
793 operand_chars[(unsigned char) *p] = *p;
794 }
795
796 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
797 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
798 {
799 record_alignment (text_section, 2);
800 record_alignment (data_section, 2);
801 record_alignment (bss_section, 2);
802 }
803 #endif
804 }
805
806 void
807 i386_print_statistics (file)
808 FILE *file;
809 {
810 hash_print_statistics (file, "i386 opcode", op_hash);
811 hash_print_statistics (file, "i386 register", reg_hash);
812 }
813 \f
814
815 #ifdef DEBUG386
816
817 /* debugging routines for md_assemble */
818 static void pi PARAMS ((char *, i386_insn *));
819 static void pte PARAMS ((template *));
820 static void pt PARAMS ((unsigned int));
821 static void pe PARAMS ((expressionS *));
822 static void ps PARAMS ((symbolS *));
823
824 static void
825 pi (line, x)
826 char *line;
827 i386_insn *x;
828 {
829 register template *p;
830 int i;
831
832 fprintf (stdout, "%s: template ", line);
833 pte (&x->tm);
834 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x",
835 x->rm.mode, x->rm.reg, x->rm.regmem);
836 fprintf (stdout, " base %x index %x scale %x\n",
837 x->bi.base, x->bi.index, x->bi.scale);
838 for (i = 0; i < x->operands; i++)
839 {
840 fprintf (stdout, " #%d: ", i + 1);
841 pt (x->types[i]);
842 fprintf (stdout, "\n");
843 if (x->types[i]
844 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
845 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
846 if (x->types[i] & Imm)
847 pe (x->op[i].imms);
848 if (x->types[i] & Disp)
849 pe (x->op[i].disps);
850 }
851 }
852
853 static void
854 pte (t)
855 template *t;
856 {
857 int i;
858 fprintf (stdout, " %d operands ", t->operands);
859 fprintf (stdout, "opcode %x ",
860 t->base_opcode);
861 if (t->extension_opcode != None)
862 fprintf (stdout, "ext %x ", t->extension_opcode);
863 if (t->opcode_modifier & D)
864 fprintf (stdout, "D");
865 if (t->opcode_modifier & W)
866 fprintf (stdout, "W");
867 fprintf (stdout, "\n");
868 for (i = 0; i < t->operands; i++)
869 {
870 fprintf (stdout, " #%d type ", i + 1);
871 pt (t->operand_types[i]);
872 fprintf (stdout, "\n");
873 }
874 }
875
876 static void
877 pe (e)
878 expressionS *e;
879 {
880 fprintf (stdout, " operation %d\n", e->X_op);
881 fprintf (stdout, " add_number %ld (%lx)\n",
882 (long) e->X_add_number, (long) e->X_add_number);
883 if (e->X_add_symbol)
884 {
885 fprintf (stdout, " add_symbol ");
886 ps (e->X_add_symbol);
887 fprintf (stdout, "\n");
888 }
889 if (e->X_op_symbol)
890 {
891 fprintf (stdout, " op_symbol ");
892 ps (e->X_op_symbol);
893 fprintf (stdout, "\n");
894 }
895 }
896
897 static void
898 ps (s)
899 symbolS *s;
900 {
901 fprintf (stdout, "%s type %s%s",
902 S_GET_NAME (s),
903 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
904 segment_name (S_GET_SEGMENT (s)));
905 }
906
907 struct type_name
908 {
909 unsigned int mask;
910 char *tname;
911 }
912
913 type_names[] =
914 {
915 { Reg8, "r8" },
916 { Reg16, "r16" },
917 { Reg32, "r32" },
918 { Imm8, "i8" },
919 { Imm8S, "i8s" },
920 { Imm16, "i16" },
921 { Imm32, "i32" },
922 { Imm1, "i1" },
923 { BaseIndex, "BaseIndex" },
924 { Disp8, "d8" },
925 { Disp16, "d16" },
926 { Disp32, "d32" },
927 { InOutPortReg, "InOutPortReg" },
928 { ShiftCount, "ShiftCount" },
929 { Control, "control reg" },
930 { Test, "test reg" },
931 { Debug, "debug reg" },
932 { FloatReg, "FReg" },
933 { FloatAcc, "FAcc" },
934 { SReg2, "SReg2" },
935 { SReg3, "SReg3" },
936 { Acc, "Acc" },
937 { JumpAbsolute, "Jump Absolute" },
938 { RegMMX, "rMMX" },
939 { RegXMM, "rXMM" },
940 { EsSeg, "es" },
941 { 0, "" }
942 };
943
944 static void
945 pt (t)
946 unsigned int t;
947 {
948 register struct type_name *ty;
949
950 if (t == Unknown)
951 {
952 fprintf (stdout, _("Unknown"));
953 }
954 else
955 {
956 for (ty = type_names; ty->mask; ty++)
957 if (t & ty->mask)
958 fprintf (stdout, "%s, ", ty->tname);
959 }
960 fflush (stdout);
961 }
962
963 #endif /* DEBUG386 */
964 \f
965 int
966 tc_i386_force_relocation (fixp)
967 struct fix *fixp;
968 {
969 #ifdef BFD_ASSEMBLER
970 if (fixp->fx_r_type == BFD_RELOC_VTABLE_INHERIT
971 || fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
972 return 1;
973 return 0;
974 #else
975 /* For COFF */
976 return fixp->fx_r_type == 7;
977 #endif
978 }
979
980 #ifdef BFD_ASSEMBLER
981 static bfd_reloc_code_real_type reloc
982 PARAMS ((int, int, bfd_reloc_code_real_type));
983
984 static bfd_reloc_code_real_type
985 reloc (size, pcrel, other)
986 int size;
987 int pcrel;
988 bfd_reloc_code_real_type other;
989 {
990 if (other != NO_RELOC) return other;
991
992 if (pcrel)
993 {
994 switch (size)
995 {
996 case 1: return BFD_RELOC_8_PCREL;
997 case 2: return BFD_RELOC_16_PCREL;
998 case 4: return BFD_RELOC_32_PCREL;
999 }
1000 as_bad (_("can not do %d byte pc-relative relocation"), size);
1001 }
1002 else
1003 {
1004 switch (size)
1005 {
1006 case 1: return BFD_RELOC_8;
1007 case 2: return BFD_RELOC_16;
1008 case 4: return BFD_RELOC_32;
1009 }
1010 as_bad (_("can not do %d byte relocation"), size);
1011 }
1012
1013 return BFD_RELOC_NONE;
1014 }
1015
1016 /*
1017 * Here we decide which fixups can be adjusted to make them relative to
1018 * the beginning of the section instead of the symbol. Basically we need
1019 * to make sure that the dynamic relocations are done correctly, so in
1020 * some cases we force the original symbol to be used.
1021 */
1022 int
1023 tc_i386_fix_adjustable (fixP)
1024 fixS *fixP;
1025 {
1026 #if defined (OBJ_ELF) || defined (TE_PE)
1027 /* Prevent all adjustments to global symbols, or else dynamic
1028 linking will not work correctly. */
1029 if (S_IS_EXTERN (fixP->fx_addsy))
1030 return 0;
1031 if (S_IS_WEAK (fixP->fx_addsy))
1032 return 0;
1033 #endif
1034 /* adjust_reloc_syms doesn't know about the GOT */
1035 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1036 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1037 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1038 || fixP->fx_r_type == BFD_RELOC_RVA
1039 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1040 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1041 return 0;
1042 return 1;
1043 }
1044 #else
1045 #define reloc(SIZE,PCREL,OTHER) 0
1046 #define BFD_RELOC_16 0
1047 #define BFD_RELOC_32 0
1048 #define BFD_RELOC_16_PCREL 0
1049 #define BFD_RELOC_32_PCREL 0
1050 #define BFD_RELOC_386_PLT32 0
1051 #define BFD_RELOC_386_GOT32 0
1052 #define BFD_RELOC_386_GOTOFF 0
1053 #endif
1054
1055 static int
1056 intel_float_operand PARAMS ((char *mnemonic));
1057
1058 static int
1059 intel_float_operand (mnemonic)
1060 char *mnemonic;
1061 {
1062 if (mnemonic[0] == 'f' && mnemonic[1] =='i')
1063 return 2;
1064
1065 if (mnemonic[0] == 'f')
1066 return 1;
1067
1068 return 0;
1069 }
1070
1071 /* This is the guts of the machine-dependent assembler. LINE points to a
1072 machine dependent instruction. This function is supposed to emit
1073 the frags/bytes it assembles to. */
1074
1075 void
1076 md_assemble (line)
1077 char *line;
1078 {
1079 /* Points to template once we've found it. */
1080 const template *t;
1081
1082 /* Count the size of the instruction generated. */
1083 int insn_size = 0;
1084
1085 int j;
1086
1087 char mnemonic[MAX_MNEM_SIZE];
1088
1089 /* Initialize globals. */
1090 memset (&i, '\0', sizeof (i));
1091 for (j = 0; j < MAX_OPERANDS; j++)
1092 i.disp_reloc[j] = NO_RELOC;
1093 memset (disp_expressions, '\0', sizeof (disp_expressions));
1094 memset (im_expressions, '\0', sizeof (im_expressions));
1095 save_stack_p = save_stack; /* reset stack pointer */
1096
1097 /* First parse an instruction mnemonic & call i386_operand for the operands.
1098 We assume that the scrubber has arranged it so that line[0] is the valid
1099 start of a (possibly prefixed) mnemonic. */
1100 {
1101 char *l = line;
1102 char *token_start = l;
1103 char *mnem_p;
1104
1105 /* Non-zero if we found a prefix only acceptable with string insns. */
1106 const char *expecting_string_instruction = NULL;
1107
1108 while (1)
1109 {
1110 mnem_p = mnemonic;
1111 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1112 {
1113 mnem_p++;
1114 if (mnem_p >= mnemonic + sizeof (mnemonic))
1115 {
1116 as_bad (_("no such instruction: `%s'"), token_start);
1117 return;
1118 }
1119 l++;
1120 }
1121 if (!is_space_char (*l)
1122 && *l != END_OF_INSN
1123 && *l != PREFIX_SEPARATOR)
1124 {
1125 as_bad (_("invalid character %s in mnemonic"),
1126 output_invalid (*l));
1127 return;
1128 }
1129 if (token_start == l)
1130 {
1131 if (*l == PREFIX_SEPARATOR)
1132 as_bad (_("expecting prefix; got nothing"));
1133 else
1134 as_bad (_("expecting mnemonic; got nothing"));
1135 return;
1136 }
1137
1138 /* Look up instruction (or prefix) via hash table. */
1139 current_templates = hash_find (op_hash, mnemonic);
1140
1141 if (*l != END_OF_INSN
1142 && (! is_space_char (*l) || l[1] != END_OF_INSN)
1143 && current_templates
1144 && (current_templates->start->opcode_modifier & IsPrefix))
1145 {
1146 /* If we are in 16-bit mode, do not allow addr16 or data16.
1147 Similarly, in 32-bit mode, do not allow addr32 or data32. */
1148 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
1149 && (((current_templates->start->opcode_modifier & Size32) != 0)
1150 ^ flag_16bit_code))
1151 {
1152 as_bad (_("redundant %s prefix"),
1153 current_templates->start->name);
1154 return;
1155 }
1156 /* Add prefix, checking for repeated prefixes. */
1157 switch (add_prefix (current_templates->start->base_opcode))
1158 {
1159 case 0:
1160 return;
1161 case 2:
1162 expecting_string_instruction =
1163 current_templates->start->name;
1164 break;
1165 }
1166 /* Skip past PREFIX_SEPARATOR and reset token_start. */
1167 token_start = ++l;
1168 }
1169 else
1170 break;
1171 }
1172
1173 if (!current_templates)
1174 {
1175 /* See if we can get a match by trimming off a suffix. */
1176 switch (mnem_p[-1])
1177 {
1178 case WORD_MNEM_SUFFIX:
1179 case BYTE_MNEM_SUFFIX:
1180 case SHORT_MNEM_SUFFIX:
1181 case LONG_MNEM_SUFFIX:
1182 i.suffix = mnem_p[-1];
1183 mnem_p[-1] = '\0';
1184 current_templates = hash_find (op_hash, mnemonic);
1185 break;
1186
1187 /* Intel Syntax */
1188 case DWORD_MNEM_SUFFIX:
1189 if (intel_syntax)
1190 {
1191 i.suffix = mnem_p[-1];
1192 mnem_p[-1] = '\0';
1193 current_templates = hash_find (op_hash, mnemonic);
1194 break;
1195 }
1196 }
1197 if (!current_templates)
1198 {
1199 as_bad (_("no such instruction: `%s'"), token_start);
1200 return;
1201 }
1202 }
1203
1204 /* Check if instruction is supported on specified architecture. */
1205 if (cpu_arch_flags != 0)
1206 {
1207 if (current_templates->start->cpu_flags & ~ cpu_arch_flags)
1208 {
1209 as_warn (_("`%s' is not supported on `%s'"),
1210 current_templates->start->name, cpu_arch_name);
1211 }
1212 else if ((Cpu386 & ~ cpu_arch_flags) && !flag_16bit_code)
1213 {
1214 as_warn (_("use .code16 to ensure correct addressing mode"));
1215 }
1216 }
1217
1218 /* check for rep/repne without a string instruction */
1219 if (expecting_string_instruction
1220 && !(current_templates->start->opcode_modifier & IsString))
1221 {
1222 as_bad (_("expecting string instruction after `%s'"),
1223 expecting_string_instruction);
1224 return;
1225 }
1226
1227 /* There may be operands to parse. */
1228 if (*l != END_OF_INSN)
1229 {
1230 /* parse operands */
1231
1232 /* 1 if operand is pending after ','. */
1233 unsigned int expecting_operand = 0;
1234
1235 /* Non-zero if operand parens not balanced. */
1236 unsigned int paren_not_balanced;
1237
1238 do
1239 {
1240 /* skip optional white space before operand */
1241 if (is_space_char (*l))
1242 ++l;
1243 if (!is_operand_char (*l) && *l != END_OF_INSN)
1244 {
1245 as_bad (_("invalid character %s before operand %d"),
1246 output_invalid (*l),
1247 i.operands + 1);
1248 return;
1249 }
1250 token_start = l; /* after white space */
1251 paren_not_balanced = 0;
1252 while (paren_not_balanced || *l != ',')
1253 {
1254 if (*l == END_OF_INSN)
1255 {
1256 if (paren_not_balanced)
1257 {
1258 if (!intel_syntax)
1259 as_bad (_("unbalanced parenthesis in operand %d."),
1260 i.operands + 1);
1261 else
1262 as_bad (_("unbalanced brackets in operand %d."),
1263 i.operands + 1);
1264 return;
1265 }
1266 else
1267 break; /* we are done */
1268 }
1269 else if (!is_operand_char (*l) && !is_space_char (*l))
1270 {
1271 as_bad (_("invalid character %s in operand %d"),
1272 output_invalid (*l),
1273 i.operands + 1);
1274 return;
1275 }
1276 if (!intel_syntax)
1277 {
1278 if (*l == '(')
1279 ++paren_not_balanced;
1280 if (*l == ')')
1281 --paren_not_balanced;
1282 }
1283 else
1284 {
1285 if (*l == '[')
1286 ++paren_not_balanced;
1287 if (*l == ']')
1288 --paren_not_balanced;
1289 }
1290 l++;
1291 }
1292 if (l != token_start)
1293 { /* yes, we've read in another operand */
1294 unsigned int operand_ok;
1295 this_operand = i.operands++;
1296 if (i.operands > MAX_OPERANDS)
1297 {
1298 as_bad (_("spurious operands; (%d operands/instruction max)"),
1299 MAX_OPERANDS);
1300 return;
1301 }
1302 /* now parse operand adding info to 'i' as we go along */
1303 END_STRING_AND_SAVE (l);
1304
1305 if (intel_syntax)
1306 operand_ok = i386_intel_operand (token_start, intel_float_operand (mnemonic));
1307 else
1308 operand_ok = i386_operand (token_start);
1309
1310 RESTORE_END_STRING (l); /* restore old contents */
1311 if (!operand_ok)
1312 return;
1313 }
1314 else
1315 {
1316 if (expecting_operand)
1317 {
1318 expecting_operand_after_comma:
1319 as_bad (_("expecting operand after ','; got nothing"));
1320 return;
1321 }
1322 if (*l == ',')
1323 {
1324 as_bad (_("expecting operand before ','; got nothing"));
1325 return;
1326 }
1327 }
1328
1329 /* now *l must be either ',' or END_OF_INSN */
1330 if (*l == ',')
1331 {
1332 if (*++l == END_OF_INSN)
1333 { /* just skip it, if it's \n complain */
1334 goto expecting_operand_after_comma;
1335 }
1336 expecting_operand = 1;
1337 }
1338 }
1339 while (*l != END_OF_INSN); /* until we get end of insn */
1340 }
1341 }
1342
1343 /* Now we've parsed the mnemonic into a set of templates, and have the
1344 operands at hand.
1345
1346 Next, we find a template that matches the given insn,
1347 making sure the overlap of the given operands types is consistent
1348 with the template operand types. */
1349
1350 #define MATCH(overlap, given, template) \
1351 ((overlap & ~JumpAbsolute) \
1352 && ((given) & (BaseIndex|JumpAbsolute)) == ((overlap) & (BaseIndex|JumpAbsolute)))
1353
1354 /* If given types r0 and r1 are registers they must be of the same type
1355 unless the expected operand type register overlap is null.
1356 Note that Acc in a template matches every size of reg. */
1357 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
1358 ( ((g0) & Reg) == 0 || ((g1) & Reg) == 0 || \
1359 ((g0) & Reg) == ((g1) & Reg) || \
1360 ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
1361
1362 {
1363 register unsigned int overlap0, overlap1;
1364 unsigned int overlap2;
1365 unsigned int found_reverse_match;
1366 int suffix_check;
1367
1368 /* All intel opcodes have reversed operands except for "bound" and
1369 "enter". We also don't reverse intersegment "jmp" and "call"
1370 instructions with 2 immediate operands so that the immediate segment
1371 precedes the offset, as it does when in AT&T mode. "enter" and the
1372 intersegment "jmp" and "call" instructions are the only ones that
1373 have two immediate operands. */
1374 if (intel_syntax && i.operands > 1
1375 && (strcmp (mnemonic, "bound") != 0)
1376 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1377 {
1378 union i386_op temp_op;
1379 unsigned int temp_type;
1380 int xchg1 = 0;
1381 int xchg2 = 0;
1382
1383 if (i.operands == 2)
1384 {
1385 xchg1 = 0;
1386 xchg2 = 1;
1387 }
1388 else if (i.operands == 3)
1389 {
1390 xchg1 = 0;
1391 xchg2 = 2;
1392 }
1393 temp_type = i.types[xchg2];
1394 i.types[xchg2] = i.types[xchg1];
1395 i.types[xchg1] = temp_type;
1396 temp_op = i.op[xchg2];
1397 i.op[xchg2] = i.op[xchg1];
1398 i.op[xchg1] = temp_op;
1399
1400 if (i.mem_operands == 2)
1401 {
1402 const seg_entry *temp_seg;
1403 temp_seg = i.seg[0];
1404 i.seg[0] = i.seg[1];
1405 i.seg[1] = temp_seg;
1406 }
1407 }
1408
1409 if (i.imm_operands)
1410 {
1411 /* Try to ensure constant immediates are represented in the smallest
1412 opcode possible. */
1413 char guess_suffix = 0;
1414 int op;
1415
1416 if (i.suffix)
1417 guess_suffix = i.suffix;
1418 else if (i.reg_operands)
1419 {
1420 /* Figure out a suffix from the last register operand specified.
1421 We can't do this properly yet, ie. excluding InOutPortReg,
1422 but the following works for instructions with immediates.
1423 In any case, we can't set i.suffix yet. */
1424 for (op = i.operands; --op >= 0; )
1425 if (i.types[op] & Reg)
1426 {
1427 if (i.types[op] & Reg8)
1428 guess_suffix = BYTE_MNEM_SUFFIX;
1429 else if (i.types[op] & Reg16)
1430 guess_suffix = WORD_MNEM_SUFFIX;
1431 break;
1432 }
1433 }
1434 else if (flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0))
1435 guess_suffix = WORD_MNEM_SUFFIX;
1436
1437 for (op = i.operands; --op >= 0; )
1438 if ((i.types[op] & Imm)
1439 && i.op[op].imms->X_op == O_constant)
1440 {
1441 /* If a suffix is given, this operand may be shortened. */
1442 switch (guess_suffix)
1443 {
1444 case WORD_MNEM_SUFFIX:
1445 i.types[op] |= Imm16;
1446 break;
1447 case BYTE_MNEM_SUFFIX:
1448 i.types[op] |= Imm16 | Imm8 | Imm8S;
1449 break;
1450 }
1451
1452 /* If this operand is at most 16 bits, convert it to a
1453 signed 16 bit number before trying to see whether it will
1454 fit in an even smaller size. This allows a 16-bit operand
1455 such as $0xffe0 to be recognised as within Imm8S range. */
1456 if ((i.types[op] & Imm16)
1457 && (i.op[op].imms->X_add_number & ~(offsetT)0xffff) == 0)
1458 {
1459 i.op[op].imms->X_add_number =
1460 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
1461 }
1462 i.types[op] |= smallest_imm_type ((long) i.op[op].imms->X_add_number);
1463 }
1464 }
1465
1466 overlap0 = 0;
1467 overlap1 = 0;
1468 overlap2 = 0;
1469 found_reverse_match = 0;
1470 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
1471 ? No_bSuf
1472 : (i.suffix == WORD_MNEM_SUFFIX
1473 ? No_wSuf
1474 : (i.suffix == SHORT_MNEM_SUFFIX
1475 ? No_sSuf
1476 : (i.suffix == LONG_MNEM_SUFFIX
1477 ? No_lSuf
1478 : (i.suffix == DWORD_MNEM_SUFFIX
1479 ? No_dSuf
1480 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX ? No_xSuf : 0))))));
1481
1482 for (t = current_templates->start;
1483 t < current_templates->end;
1484 t++)
1485 {
1486 /* Must have right number of operands. */
1487 if (i.operands != t->operands)
1488 continue;
1489
1490 /* Check the suffix, except for some instructions in intel mode. */
1491 if ((t->opcode_modifier & suffix_check)
1492 && !(intel_syntax
1493 && t->base_opcode == 0xd9
1494 && (t->extension_opcode == 5 /* 0xd9,5 "fldcw" */
1495 || t->extension_opcode == 7))) /* 0xd9,7 "f{n}stcw" */
1496 continue;
1497
1498 else if (!t->operands)
1499 break; /* 0 operands always matches */
1500
1501 overlap0 = i.types[0] & t->operand_types[0];
1502 switch (t->operands)
1503 {
1504 case 1:
1505 if (!MATCH (overlap0, i.types[0], t->operand_types[0]))
1506 continue;
1507 break;
1508 case 2:
1509 case 3:
1510 overlap1 = i.types[1] & t->operand_types[1];
1511 if (!MATCH (overlap0, i.types[0], t->operand_types[0])
1512 || !MATCH (overlap1, i.types[1], t->operand_types[1])
1513 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1514 t->operand_types[0],
1515 overlap1, i.types[1],
1516 t->operand_types[1]))
1517 {
1518
1519 /* check if other direction is valid ... */
1520 if ((t->opcode_modifier & (D|FloatD)) == 0)
1521 continue;
1522
1523 /* try reversing direction of operands */
1524 overlap0 = i.types[0] & t->operand_types[1];
1525 overlap1 = i.types[1] & t->operand_types[0];
1526 if (!MATCH (overlap0, i.types[0], t->operand_types[1])
1527 || !MATCH (overlap1, i.types[1], t->operand_types[0])
1528 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
1529 t->operand_types[1],
1530 overlap1, i.types[1],
1531 t->operand_types[0]))
1532 {
1533 /* does not match either direction */
1534 continue;
1535 }
1536 /* found_reverse_match holds which of D or FloatDR
1537 we've found. */
1538 found_reverse_match = t->opcode_modifier & (D|FloatDR);
1539 break;
1540 }
1541 /* found a forward 2 operand match here */
1542 if (t->operands == 3)
1543 {
1544 /* Here we make use of the fact that there are no
1545 reverse match 3 operand instructions, and all 3
1546 operand instructions only need to be checked for
1547 register consistency between operands 2 and 3. */
1548 overlap2 = i.types[2] & t->operand_types[2];
1549 if (!MATCH (overlap2, i.types[2], t->operand_types[2])
1550 || !CONSISTENT_REGISTER_MATCH (overlap1, i.types[1],
1551 t->operand_types[1],
1552 overlap2, i.types[2],
1553 t->operand_types[2]))
1554
1555 continue;
1556 }
1557 /* found either forward/reverse 2 or 3 operand match here:
1558 slip through to break */
1559 }
1560 break; /* we've found a match; break out of loop */
1561 } /* for (t = ... */
1562 if (t == current_templates->end)
1563 { /* we found no match */
1564 as_bad (_("suffix or operands invalid for `%s'"),
1565 current_templates->start->name);
1566 return;
1567 }
1568
1569 if (!quiet_warnings)
1570 {
1571 if (!intel_syntax
1572 && ((i.types[0] & JumpAbsolute)
1573 != (t->operand_types[0] & JumpAbsolute)))
1574 {
1575 as_warn (_("indirect %s without `*'"), t->name);
1576 }
1577
1578 if ((t->opcode_modifier & (IsPrefix|IgnoreSize))
1579 == (IsPrefix|IgnoreSize))
1580 {
1581 /* Warn them that a data or address size prefix doesn't
1582 affect assembly of the next line of code. */
1583 as_warn (_("stand-alone `%s' prefix"), t->name);
1584 }
1585 }
1586
1587 /* Copy the template we found. */
1588 i.tm = *t;
1589 if (found_reverse_match)
1590 {
1591 /* If we found a reverse match we must alter the opcode
1592 direction bit. found_reverse_match holds bits to change
1593 (different for int & float insns). */
1594
1595 i.tm.base_opcode ^= found_reverse_match;
1596
1597 i.tm.operand_types[0] = t->operand_types[1];
1598 i.tm.operand_types[1] = t->operand_types[0];
1599 }
1600
1601 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1602 if (SYSV386_COMPAT
1603 && intel_syntax
1604 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1605 i.tm.base_opcode ^= FloatR;
1606
1607 if (i.tm.opcode_modifier & FWait)
1608 if (! add_prefix (FWAIT_OPCODE))
1609 return;
1610
1611 /* Check string instruction segment overrides */
1612 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1613 {
1614 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
1615 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
1616 {
1617 if (i.seg[0] != NULL && i.seg[0] != &es)
1618 {
1619 as_bad (_("`%s' operand %d must use `%%es' segment"),
1620 i.tm.name,
1621 mem_op + 1);
1622 return;
1623 }
1624 /* There's only ever one segment override allowed per instruction.
1625 This instruction possibly has a legal segment override on the
1626 second operand, so copy the segment to where non-string
1627 instructions store it, allowing common code. */
1628 i.seg[0] = i.seg[1];
1629 }
1630 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
1631 {
1632 if (i.seg[1] != NULL && i.seg[1] != &es)
1633 {
1634 as_bad (_("`%s' operand %d must use `%%es' segment"),
1635 i.tm.name,
1636 mem_op + 2);
1637 return;
1638 }
1639 }
1640 }
1641
1642 /* If matched instruction specifies an explicit instruction mnemonic
1643 suffix, use it. */
1644 if (i.tm.opcode_modifier & (Size16 | Size32))
1645 {
1646 if (i.tm.opcode_modifier & Size16)
1647 i.suffix = WORD_MNEM_SUFFIX;
1648 else
1649 i.suffix = LONG_MNEM_SUFFIX;
1650 }
1651 else if (i.reg_operands)
1652 {
1653 /* If there's no instruction mnemonic suffix we try to invent one
1654 based on register operands. */
1655 if (!i.suffix)
1656 {
1657 /* We take i.suffix from the last register operand specified,
1658 Destination register type is more significant than source
1659 register type. */
1660 int op;
1661 for (op = i.operands; --op >= 0; )
1662 if ((i.types[op] & Reg)
1663 && !(i.tm.operand_types[op] & InOutPortReg))
1664 {
1665 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
1666 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
1667 LONG_MNEM_SUFFIX);
1668 break;
1669 }
1670 }
1671 else if (i.suffix == BYTE_MNEM_SUFFIX)
1672 {
1673 int op;
1674 for (op = i.operands; --op >= 0; )
1675 {
1676 /* If this is an eight bit register, it's OK. If it's
1677 the 16 or 32 bit version of an eight bit register,
1678 we will just use the low portion, and that's OK too. */
1679 if (i.types[op] & Reg8)
1680 continue;
1681
1682 /* movzx and movsx should not generate this warning. */
1683 if (intel_syntax
1684 && (i.tm.base_opcode == 0xfb7
1685 || i.tm.base_opcode == 0xfb6
1686 || i.tm.base_opcode == 0xfbe
1687 || i.tm.base_opcode == 0xfbf))
1688 continue;
1689
1690 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4
1691 #if 0
1692 /* Check that the template allows eight bit regs
1693 This kills insns such as `orb $1,%edx', which
1694 maybe should be allowed. */
1695 && (i.tm.operand_types[op] & (Reg8|InOutPortReg))
1696 #endif
1697 )
1698 {
1699 #if REGISTER_WARNINGS
1700 if (!quiet_warnings
1701 && (i.tm.operand_types[op] & InOutPortReg) == 0)
1702 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
1703 (i.op[op].regs - (i.types[op] & Reg16 ? 8 : 16))->reg_name,
1704 i.op[op].regs->reg_name,
1705 i.suffix);
1706 #endif
1707 continue;
1708 }
1709 /* Any other register is bad */
1710 if (i.types[op] & (Reg | RegMMX | RegXMM
1711 | SReg2 | SReg3
1712 | Control | Debug | Test
1713 | FloatReg | FloatAcc))
1714 {
1715 as_bad (_("`%%%s' not allowed with `%s%c'"),
1716 i.op[op].regs->reg_name,
1717 i.tm.name,
1718 i.suffix);
1719 return;
1720 }
1721 }
1722 }
1723 else if (i.suffix == LONG_MNEM_SUFFIX)
1724 {
1725 int op;
1726 for (op = i.operands; --op >= 0; )
1727 /* Reject eight bit registers, except where the template
1728 requires them. (eg. movzb) */
1729 if ((i.types[op] & Reg8) != 0
1730 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
1731 {
1732 as_bad (_("`%%%s' not allowed with `%s%c'"),
1733 i.op[op].regs->reg_name,
1734 i.tm.name,
1735 i.suffix);
1736 return;
1737 }
1738 #if REGISTER_WARNINGS
1739 /* Warn if the e prefix on a general reg is missing. */
1740 else if (!quiet_warnings
1741 && (i.types[op] & Reg16) != 0
1742 && (i.tm.operand_types[op] & (Reg32|Acc)) != 0)
1743 {
1744 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
1745 (i.op[op].regs + 8)->reg_name,
1746 i.op[op].regs->reg_name,
1747 i.suffix);
1748 }
1749 #endif
1750 }
1751 else if (i.suffix == WORD_MNEM_SUFFIX)
1752 {
1753 int op;
1754 for (op = i.operands; --op >= 0; )
1755 /* Reject eight bit registers, except where the template
1756 requires them. (eg. movzb) */
1757 if ((i.types[op] & Reg8) != 0
1758 && (i.tm.operand_types[op] & (Reg16|Reg32|Acc)) != 0)
1759 {
1760 as_bad (_("`%%%s' not allowed with `%s%c'"),
1761 i.op[op].regs->reg_name,
1762 i.tm.name,
1763 i.suffix);
1764 return;
1765 }
1766 #if REGISTER_WARNINGS
1767 /* Warn if the e prefix on a general reg is present. */
1768 else if (!quiet_warnings
1769 && (i.types[op] & Reg32) != 0
1770 && (i.tm.operand_types[op] & (Reg16|Acc)) != 0)
1771 {
1772 as_warn (_("using `%%%s' instead of `%%%s' due to `%c' suffix"),
1773 (i.op[op].regs - 8)->reg_name,
1774 i.op[op].regs->reg_name,
1775 i.suffix);
1776 }
1777 #endif
1778 }
1779 else
1780 abort();
1781 }
1782 else if ((i.tm.opcode_modifier & DefaultSize) && !i.suffix)
1783 {
1784 i.suffix = stackop_size;
1785 }
1786
1787 /* Make still unresolved immediate matches conform to size of immediate
1788 given in i.suffix. Note: overlap2 cannot be an immediate! */
1789 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32))
1790 && overlap0 != Imm8 && overlap0 != Imm8S
1791 && overlap0 != Imm16 && overlap0 != Imm32)
1792 {
1793 if (i.suffix)
1794 {
1795 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
1796 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 : Imm32));
1797 }
1798 else if (overlap0 == (Imm16 | Imm32))
1799 {
1800 overlap0 =
1801 (flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32;
1802 }
1803 else
1804 {
1805 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
1806 return;
1807 }
1808 }
1809 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32))
1810 && overlap1 != Imm8 && overlap1 != Imm8S
1811 && overlap1 != Imm16 && overlap1 != Imm32)
1812 {
1813 if (i.suffix)
1814 {
1815 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX ? (Imm8 | Imm8S) :
1816 (i.suffix == WORD_MNEM_SUFFIX ? Imm16 : Imm32));
1817 }
1818 else if (overlap1 == (Imm16 | Imm32))
1819 {
1820 overlap1 =
1821 (flag_16bit_code ^ (i.prefix[DATA_PREFIX] != 0)) ? Imm16 : Imm32;
1822 }
1823 else
1824 {
1825 as_bad (_("no instruction mnemonic suffix given; can't determine immediate size"));
1826 return;
1827 }
1828 }
1829 assert ((overlap2 & Imm) == 0);
1830
1831 i.types[0] = overlap0;
1832 if (overlap0 & ImplicitRegister)
1833 i.reg_operands--;
1834 if (overlap0 & Imm1)
1835 i.imm_operands = 0; /* kludge for shift insns */
1836
1837 i.types[1] = overlap1;
1838 if (overlap1 & ImplicitRegister)
1839 i.reg_operands--;
1840
1841 i.types[2] = overlap2;
1842 if (overlap2 & ImplicitRegister)
1843 i.reg_operands--;
1844
1845 /* Finalize opcode. First, we change the opcode based on the operand
1846 size given by i.suffix: We need not change things for byte insns. */
1847
1848 if (!i.suffix && (i.tm.opcode_modifier & W))
1849 {
1850 as_bad (_("no instruction mnemonic suffix given and no register operands; can't size instruction"));
1851 return;
1852 }
1853
1854 /* For movzx and movsx, need to check the register type */
1855 if (intel_syntax
1856 && (i.tm.base_opcode == 0xfb6 || i.tm.base_opcode == 0xfbe))
1857 if (i.suffix && i.suffix == BYTE_MNEM_SUFFIX)
1858 {
1859 unsigned int prefix = DATA_PREFIX_OPCODE;
1860
1861 if ((i.op[1].regs->reg_type & Reg16) != 0)
1862 if (!add_prefix (prefix))
1863 return;
1864 }
1865
1866 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
1867 {
1868 /* It's not a byte, select word/dword operation. */
1869 if (i.tm.opcode_modifier & W)
1870 {
1871 if (i.tm.opcode_modifier & ShortForm)
1872 i.tm.base_opcode |= 8;
1873 else
1874 i.tm.base_opcode |= 1;
1875 }
1876 /* Now select between word & dword operations via the operand
1877 size prefix, except for instructions that will ignore this
1878 prefix anyway. */
1879 if (((intel_syntax && (i.suffix == DWORD_MNEM_SUFFIX))
1880 || i.suffix == LONG_MNEM_SUFFIX) == flag_16bit_code
1881 && !(i.tm.opcode_modifier & IgnoreSize))
1882 {
1883 unsigned int prefix = DATA_PREFIX_OPCODE;
1884 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
1885 prefix = ADDR_PREFIX_OPCODE;
1886
1887 if (! add_prefix (prefix))
1888 return;
1889 }
1890 /* Size floating point instruction. */
1891 if (i.suffix == LONG_MNEM_SUFFIX
1892 || (intel_syntax && i.suffix == DWORD_MNEM_SUFFIX))
1893 {
1894 if (i.tm.opcode_modifier & FloatMF)
1895 i.tm.base_opcode ^= 4;
1896 }
1897 }
1898
1899 if (i.tm.opcode_modifier & ImmExt)
1900 {
1901 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1902 opcode suffix which is coded in the same place as an 8-bit
1903 immediate field would be. Here we fake an 8-bit immediate
1904 operand from the opcode suffix stored in tm.extension_opcode. */
1905
1906 expressionS *exp;
1907
1908 assert(i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
1909
1910 exp = &im_expressions[i.imm_operands++];
1911 i.op[i.operands].imms = exp;
1912 i.types[i.operands++] = Imm8;
1913 exp->X_op = O_constant;
1914 exp->X_add_number = i.tm.extension_opcode;
1915 i.tm.extension_opcode = None;
1916 }
1917
1918 /* For insns with operands there are more diddles to do to the opcode. */
1919 if (i.operands)
1920 {
1921 /* Default segment register this instruction will use
1922 for memory accesses. 0 means unknown.
1923 This is only for optimizing out unnecessary segment overrides. */
1924 const seg_entry *default_seg = 0;
1925
1926 /* The imul $imm, %reg instruction is converted into
1927 imul $imm, %reg, %reg, and the clr %reg instruction
1928 is converted into xor %reg, %reg. */
1929 if (i.tm.opcode_modifier & regKludge)
1930 {
1931 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
1932 /* Pretend we saw the extra register operand. */
1933 assert (i.op[first_reg_op+1].regs == 0);
1934 i.op[first_reg_op+1].regs = i.op[first_reg_op].regs;
1935 i.types[first_reg_op+1] = i.types[first_reg_op];
1936 i.reg_operands = 2;
1937 }
1938
1939 if (i.tm.opcode_modifier & ShortForm)
1940 {
1941 /* The register or float register operand is in operand 0 or 1. */
1942 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
1943 /* Register goes in low 3 bits of opcode. */
1944 i.tm.base_opcode |= i.op[op].regs->reg_num;
1945 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1946 {
1947 /* Warn about some common errors, but press on regardless.
1948 The first case can be generated by gcc (<= 2.8.1). */
1949 if (i.operands == 2)
1950 {
1951 /* reversed arguments on faddp, fsubp, etc. */
1952 as_warn (_("translating to `%s %%%s,%%%s'"), i.tm.name,
1953 i.op[1].regs->reg_name,
1954 i.op[0].regs->reg_name);
1955 }
1956 else
1957 {
1958 /* extraneous `l' suffix on fp insn */
1959 as_warn (_("translating to `%s %%%s'"), i.tm.name,
1960 i.op[0].regs->reg_name);
1961 }
1962 }
1963 }
1964 else if (i.tm.opcode_modifier & Modrm)
1965 {
1966 /* The opcode is completed (modulo i.tm.extension_opcode which
1967 must be put into the modrm byte).
1968 Now, we make the modrm & index base bytes based on all the
1969 info we've collected. */
1970
1971 /* i.reg_operands MUST be the number of real register operands;
1972 implicit registers do not count. */
1973 if (i.reg_operands == 2)
1974 {
1975 unsigned int source, dest;
1976 source = ((i.types[0]
1977 & (Reg | RegMMX | RegXMM
1978 | SReg2 | SReg3
1979 | Control | Debug | Test))
1980 ? 0 : 1);
1981 dest = source + 1;
1982
1983 i.rm.mode = 3;
1984 /* One of the register operands will be encoded in the
1985 i.tm.reg field, the other in the combined i.tm.mode
1986 and i.tm.regmem fields. If no form of this
1987 instruction supports a memory destination operand,
1988 then we assume the source operand may sometimes be
1989 a memory operand and so we need to store the
1990 destination in the i.rm.reg field. */
1991 if ((i.tm.operand_types[dest] & AnyMem) == 0)
1992 {
1993 i.rm.reg = i.op[dest].regs->reg_num;
1994 i.rm.regmem = i.op[source].regs->reg_num;
1995 }
1996 else
1997 {
1998 i.rm.reg = i.op[source].regs->reg_num;
1999 i.rm.regmem = i.op[dest].regs->reg_num;
2000 }
2001 }
2002 else
2003 { /* if it's not 2 reg operands... */
2004 if (i.mem_operands)
2005 {
2006 unsigned int fake_zero_displacement = 0;
2007 unsigned int op = ((i.types[0] & AnyMem)
2008 ? 0
2009 : (i.types[1] & AnyMem) ? 1 : 2);
2010
2011 default_seg = &ds;
2012
2013 if (! i.base_reg)
2014 {
2015 i.rm.mode = 0;
2016 if (! i.disp_operands)
2017 fake_zero_displacement = 1;
2018 if (! i.index_reg)
2019 {
2020 /* Operand is just <disp> */
2021 if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0))
2022 {
2023 i.rm.regmem = NO_BASE_REGISTER_16;
2024 i.types[op] &= ~Disp;
2025 i.types[op] |= Disp16;
2026 }
2027 else
2028 {
2029 i.rm.regmem = NO_BASE_REGISTER;
2030 i.types[op] &= ~Disp;
2031 i.types[op] |= Disp32;
2032 }
2033 }
2034 else /* ! i.base_reg && i.index_reg */
2035 {
2036 i.sib.index = i.index_reg->reg_num;
2037 i.sib.base = NO_BASE_REGISTER;
2038 i.sib.scale = i.log2_scale_factor;
2039 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2040 i.types[op] &= ~Disp;
2041 i.types[op] |= Disp32; /* Must be 32 bit */
2042 }
2043 }
2044 else if (i.base_reg->reg_type & Reg16)
2045 {
2046 switch (i.base_reg->reg_num)
2047 {
2048 case 3: /* (%bx) */
2049 if (! i.index_reg)
2050 i.rm.regmem = 7;
2051 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
2052 i.rm.regmem = i.index_reg->reg_num - 6;
2053 break;
2054 case 5: /* (%bp) */
2055 default_seg = &ss;
2056 if (! i.index_reg)
2057 {
2058 i.rm.regmem = 6;
2059 if ((i.types[op] & Disp) == 0)
2060 {
2061 /* fake (%bp) into 0(%bp) */
2062 i.types[op] |= Disp8;
2063 fake_zero_displacement = 1;
2064 }
2065 }
2066 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
2067 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
2068 break;
2069 default: /* (%si) -> 4 or (%di) -> 5 */
2070 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
2071 }
2072 i.rm.mode = mode_from_disp_size (i.types[op]);
2073 }
2074 else /* i.base_reg and 32 bit mode */
2075 {
2076 i.rm.regmem = i.base_reg->reg_num;
2077 i.sib.base = i.base_reg->reg_num;
2078 if (i.base_reg->reg_num == EBP_REG_NUM)
2079 {
2080 default_seg = &ss;
2081 if (i.disp_operands == 0)
2082 {
2083 fake_zero_displacement = 1;
2084 i.types[op] |= Disp8;
2085 }
2086 }
2087 else if (i.base_reg->reg_num == ESP_REG_NUM)
2088 {
2089 default_seg = &ss;
2090 }
2091 i.sib.scale = i.log2_scale_factor;
2092 if (! i.index_reg)
2093 {
2094 /* <disp>(%esp) becomes two byte modrm
2095 with no index register. We've already
2096 stored the code for esp in i.rm.regmem
2097 ie. ESCAPE_TO_TWO_BYTE_ADDRESSING. Any
2098 base register besides %esp will not use
2099 the extra modrm byte. */
2100 i.sib.index = NO_INDEX_REGISTER;
2101 #if ! SCALE1_WHEN_NO_INDEX
2102 /* Another case where we force the second
2103 modrm byte. */
2104 if (i.log2_scale_factor)
2105 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2106 #endif
2107 }
2108 else
2109 {
2110 i.sib.index = i.index_reg->reg_num;
2111 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
2112 }
2113 i.rm.mode = mode_from_disp_size (i.types[op]);
2114 }
2115
2116 if (fake_zero_displacement)
2117 {
2118 /* Fakes a zero displacement assuming that i.types[op]
2119 holds the correct displacement size. */
2120 expressionS *exp;
2121
2122 assert (i.op[op].disps == 0);
2123 exp = &disp_expressions[i.disp_operands++];
2124 i.op[op].disps = exp;
2125 exp->X_op = O_constant;
2126 exp->X_add_number = 0;
2127 exp->X_add_symbol = (symbolS *) 0;
2128 exp->X_op_symbol = (symbolS *) 0;
2129 }
2130 }
2131
2132 /* Fill in i.rm.reg or i.rm.regmem field with register
2133 operand (if any) based on i.tm.extension_opcode.
2134 Again, we must be careful to make sure that
2135 segment/control/debug/test/MMX registers are coded
2136 into the i.rm.reg field. */
2137 if (i.reg_operands)
2138 {
2139 unsigned int op =
2140 ((i.types[0]
2141 & (Reg | RegMMX | RegXMM
2142 | SReg2 | SReg3
2143 | Control | Debug | Test))
2144 ? 0
2145 : ((i.types[1]
2146 & (Reg | RegMMX | RegXMM
2147 | SReg2 | SReg3
2148 | Control | Debug | Test))
2149 ? 1
2150 : 2));
2151 /* If there is an extension opcode to put here, the
2152 register number must be put into the regmem field. */
2153 if (i.tm.extension_opcode != None)
2154 i.rm.regmem = i.op[op].regs->reg_num;
2155 else
2156 i.rm.reg = i.op[op].regs->reg_num;
2157
2158 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2
2159 we must set it to 3 to indicate this is a register
2160 operand in the regmem field. */
2161 if (!i.mem_operands)
2162 i.rm.mode = 3;
2163 }
2164
2165 /* Fill in i.rm.reg field with extension opcode (if any). */
2166 if (i.tm.extension_opcode != None)
2167 i.rm.reg = i.tm.extension_opcode;
2168 }
2169 }
2170 else if (i.tm.opcode_modifier & (Seg2ShortForm | Seg3ShortForm))
2171 {
2172 if (i.tm.base_opcode == POP_SEG_SHORT && i.op[0].regs->reg_num == 1)
2173 {
2174 as_bad (_("you can't `pop %%cs'"));
2175 return;
2176 }
2177 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
2178 }
2179 else if ((i.tm.base_opcode & ~(D|W)) == MOV_AX_DISP32)
2180 {
2181 default_seg = &ds;
2182 }
2183 else if ((i.tm.opcode_modifier & IsString) != 0)
2184 {
2185 /* For the string instructions that allow a segment override
2186 on one of their operands, the default segment is ds. */
2187 default_seg = &ds;
2188 }
2189
2190 /* If a segment was explicitly specified,
2191 and the specified segment is not the default,
2192 use an opcode prefix to select it.
2193 If we never figured out what the default segment is,
2194 then default_seg will be zero at this point,
2195 and the specified segment prefix will always be used. */
2196 if ((i.seg[0]) && (i.seg[0] != default_seg))
2197 {
2198 if (! add_prefix (i.seg[0]->seg_prefix))
2199 return;
2200 }
2201 }
2202 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
2203 {
2204 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
2205 as_warn (_("translating to `%sp'"), i.tm.name);
2206 }
2207 }
2208
2209 /* Handle conversion of 'int $3' --> special int3 insn. */
2210 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
2211 {
2212 i.tm.base_opcode = INT3_OPCODE;
2213 i.imm_operands = 0;
2214 }
2215
2216 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
2217 && i.op[0].disps->X_op == O_constant)
2218 {
2219 /* Convert "jmp constant" (and "call constant") to a jump (call) to
2220 the absolute address given by the constant. Since ix86 jumps and
2221 calls are pc relative, we need to generate a reloc. */
2222 i.op[0].disps->X_add_symbol = &abs_symbol;
2223 i.op[0].disps->X_op = O_symbol;
2224 }
2225
2226 /* We are ready to output the insn. */
2227 {
2228 register char *p;
2229
2230 /* Output jumps. */
2231 if (i.tm.opcode_modifier & Jump)
2232 {
2233 int size;
2234 int code16;
2235 int prefix;
2236
2237 code16 = 0;
2238 if (flag_16bit_code)
2239 code16 = CODE16;
2240
2241 prefix = 0;
2242 if (i.prefix[DATA_PREFIX])
2243 {
2244 prefix = 1;
2245 i.prefixes -= 1;
2246 code16 ^= CODE16;
2247 }
2248
2249 size = 4;
2250 if (code16)
2251 size = 2;
2252
2253 if (i.prefixes != 0 && !intel_syntax)
2254 as_warn (_("skipping prefixes on this instruction"));
2255
2256 /* It's always a symbol; End frag & setup for relax.
2257 Make sure there is enough room in this frag for the largest
2258 instruction we may generate in md_convert_frag. This is 2
2259 bytes for the opcode and room for the prefix and largest
2260 displacement. */
2261 frag_grow (prefix + 2 + size);
2262 insn_size += prefix + 1;
2263 /* Prefix and 1 opcode byte go in fr_fix. */
2264 p = frag_more (prefix + 1);
2265 if (prefix)
2266 *p++ = DATA_PREFIX_OPCODE;
2267 *p = i.tm.base_opcode;
2268 /* 1 possible extra opcode + displacement go in fr_var. */
2269 frag_var (rs_machine_dependent,
2270 1 + size,
2271 1,
2272 ((unsigned char) *p == JUMP_PC_RELATIVE
2273 ? ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL) | code16
2274 : ENCODE_RELAX_STATE (COND_JUMP, SMALL) | code16),
2275 i.op[0].disps->X_add_symbol,
2276 i.op[0].disps->X_add_number,
2277 p);
2278 }
2279 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
2280 {
2281 int size;
2282
2283 if (i.tm.opcode_modifier & JumpByte)
2284 {
2285 /* This is a loop or jecxz type instruction. */
2286 size = 1;
2287 if (i.prefix[ADDR_PREFIX])
2288 {
2289 insn_size += 1;
2290 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
2291 i.prefixes -= 1;
2292 }
2293 }
2294 else
2295 {
2296 int code16;
2297
2298 code16 = 0;
2299 if (flag_16bit_code)
2300 code16 = CODE16;
2301
2302 if (i.prefix[DATA_PREFIX])
2303 {
2304 insn_size += 1;
2305 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
2306 i.prefixes -= 1;
2307 code16 ^= CODE16;
2308 }
2309
2310 size = 4;
2311 if (code16)
2312 size = 2;
2313 }
2314
2315 if (i.prefixes != 0 && !intel_syntax)
2316 as_warn (_("skipping prefixes on this instruction"));
2317
2318 if (fits_in_unsigned_byte (i.tm.base_opcode))
2319 {
2320 insn_size += 1 + size;
2321 p = frag_more (1 + size);
2322 }
2323 else
2324 {
2325 /* opcode can be at most two bytes */
2326 insn_size += 2 + size;
2327 p = frag_more (2 + size);
2328 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2329 }
2330 *p++ = i.tm.base_opcode & 0xff;
2331
2332 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2333 i.op[0].disps, 1, reloc (size, 1, i.disp_reloc[0]));
2334 }
2335 else if (i.tm.opcode_modifier & JumpInterSegment)
2336 {
2337 int size;
2338 int prefix;
2339 int code16;
2340
2341 code16 = 0;
2342 if (flag_16bit_code)
2343 code16 = CODE16;
2344
2345 prefix = 0;
2346 if (i.prefix[DATA_PREFIX])
2347 {
2348 prefix = 1;
2349 i.prefixes -= 1;
2350 code16 ^= CODE16;
2351 }
2352
2353 size = 4;
2354 if (code16)
2355 size = 2;
2356
2357 if (i.prefixes != 0 && !intel_syntax)
2358 as_warn (_("skipping prefixes on this instruction"));
2359
2360 insn_size += prefix + 1 + 2 + size; /* 1 opcode; 2 segment; offset */
2361 p = frag_more (prefix + 1 + 2 + size);
2362 if (prefix)
2363 *p++ = DATA_PREFIX_OPCODE;
2364 *p++ = i.tm.base_opcode;
2365 if (i.op[1].imms->X_op == O_constant)
2366 {
2367 offsetT n = i.op[1].imms->X_add_number;
2368
2369 if (size == 2
2370 && !fits_in_unsigned_word (n)
2371 && !fits_in_signed_word (n))
2372 {
2373 as_bad (_("16-bit jump out of range"));
2374 return;
2375 }
2376 md_number_to_chars (p, n, size);
2377 }
2378 else
2379 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2380 i.op[1].imms, 0, reloc (size, 0, i.disp_reloc[0]));
2381 if (i.op[0].imms->X_op != O_constant)
2382 as_bad (_("can't handle non absolute segment in `%s'"),
2383 i.tm.name);
2384 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
2385 }
2386 else
2387 {
2388 /* Output normal instructions here. */
2389 unsigned char *q;
2390
2391 /* The prefix bytes. */
2392 for (q = i.prefix;
2393 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
2394 q++)
2395 {
2396 if (*q)
2397 {
2398 insn_size += 1;
2399 p = frag_more (1);
2400 md_number_to_chars (p, (valueT) *q, 1);
2401 }
2402 }
2403
2404 /* Now the opcode; be careful about word order here! */
2405 if (fits_in_unsigned_byte (i.tm.base_opcode))
2406 {
2407 insn_size += 1;
2408 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
2409 }
2410 else if (fits_in_unsigned_word (i.tm.base_opcode))
2411 {
2412 insn_size += 2;
2413 p = frag_more (2);
2414 /* put out high byte first: can't use md_number_to_chars! */
2415 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2416 *p = i.tm.base_opcode & 0xff;
2417 }
2418 else
2419 { /* opcode is either 3 or 4 bytes */
2420 if (i.tm.base_opcode & 0xff000000)
2421 {
2422 insn_size += 4;
2423 p = frag_more (4);
2424 *p++ = (i.tm.base_opcode >> 24) & 0xff;
2425 }
2426 else
2427 {
2428 insn_size += 3;
2429 p = frag_more (3);
2430 }
2431 *p++ = (i.tm.base_opcode >> 16) & 0xff;
2432 *p++ = (i.tm.base_opcode >> 8) & 0xff;
2433 *p = (i.tm.base_opcode) & 0xff;
2434 }
2435
2436 /* Now the modrm byte and sib byte (if present). */
2437 if (i.tm.opcode_modifier & Modrm)
2438 {
2439 insn_size += 1;
2440 p = frag_more (1);
2441 md_number_to_chars (p,
2442 (valueT) (i.rm.regmem << 0
2443 | i.rm.reg << 3
2444 | i.rm.mode << 6),
2445 1);
2446 /* If i.rm.regmem == ESP (4)
2447 && i.rm.mode != (Register mode)
2448 && not 16 bit
2449 ==> need second modrm byte. */
2450 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
2451 && i.rm.mode != 3
2452 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
2453 {
2454 insn_size += 1;
2455 p = frag_more (1);
2456 md_number_to_chars (p,
2457 (valueT) (i.sib.base << 0
2458 | i.sib.index << 3
2459 | i.sib.scale << 6),
2460 1);
2461 }
2462 }
2463
2464 if (i.disp_operands)
2465 {
2466 register unsigned int n;
2467
2468 for (n = 0; n < i.operands; n++)
2469 {
2470 if (i.types[n] & Disp)
2471 {
2472 if (i.op[n].disps->X_op == O_constant)
2473 {
2474 int size;
2475 offsetT val;
2476
2477 size = 4;
2478 if (i.types[n] & (Disp8 | Disp16))
2479 {
2480 size = 2;
2481 if (i.types[n] & Disp8)
2482 size = 1;
2483 }
2484 val = offset_in_range (i.op[n].disps->X_add_number,
2485 size);
2486 insn_size += size;
2487 p = frag_more (size);
2488 md_number_to_chars (p, val, size);
2489 }
2490 else
2491 {
2492 int size = 4;
2493
2494 if (i.types[n] & Disp16)
2495 size = 2;
2496
2497 insn_size += size;
2498 p = frag_more (size);
2499 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2500 i.op[n].disps, 0,
2501 reloc (size, 0, i.disp_reloc[n]));
2502 }
2503 }
2504 }
2505 } /* end displacement output */
2506
2507 /* output immediate */
2508 if (i.imm_operands)
2509 {
2510 register unsigned int n;
2511
2512 for (n = 0; n < i.operands; n++)
2513 {
2514 if (i.types[n] & Imm)
2515 {
2516 if (i.op[n].imms->X_op == O_constant)
2517 {
2518 int size;
2519 offsetT val;
2520
2521 size = 4;
2522 if (i.types[n] & (Imm8 | Imm8S | Imm16))
2523 {
2524 size = 2;
2525 if (i.types[n] & (Imm8 | Imm8S))
2526 size = 1;
2527 }
2528 val = offset_in_range (i.op[n].imms->X_add_number,
2529 size);
2530 insn_size += size;
2531 p = frag_more (size);
2532 md_number_to_chars (p, val, size);
2533 }
2534 else
2535 { /* not absolute_section */
2536 /* Need a 32-bit fixup (don't support 8bit
2537 non-absolute imms). Try to support other
2538 sizes ... */
2539 #ifdef BFD_ASSEMBLER
2540 enum bfd_reloc_code_real reloc_type;
2541 #else
2542 int reloc_type;
2543 #endif
2544 int size = 4;
2545
2546 if (i.types[n] & Imm16)
2547 size = 2;
2548 else if (i.types[n] & (Imm8 | Imm8S))
2549 size = 1;
2550
2551 insn_size += size;
2552 p = frag_more (size);
2553 reloc_type = reloc (size, 0, i.disp_reloc[0]);
2554 #ifdef BFD_ASSEMBLER
2555 if (reloc_type == BFD_RELOC_32
2556 && GOT_symbol
2557 && GOT_symbol == i.op[n].imms->X_add_symbol
2558 && (i.op[n].imms->X_op == O_symbol
2559 || (i.op[n].imms->X_op == O_add
2560 && ((symbol_get_value_expression
2561 (i.op[n].imms->X_op_symbol)->X_op)
2562 == O_subtract))))
2563 {
2564 reloc_type = BFD_RELOC_386_GOTPC;
2565 i.op[n].imms->X_add_number += 3;
2566 }
2567 #endif
2568 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
2569 i.op[n].imms, 0, reloc_type);
2570 }
2571 }
2572 }
2573 } /* end immediate output */
2574 }
2575
2576 #ifdef DEBUG386
2577 if (flag_debug)
2578 {
2579 pi (line, &i);
2580 }
2581 #endif /* DEBUG386 */
2582 }
2583 }
2584 \f
2585 static int i386_immediate PARAMS ((char *));
2586
2587 static int
2588 i386_immediate (imm_start)
2589 char *imm_start;
2590 {
2591 char *save_input_line_pointer;
2592 segT exp_seg = 0;
2593 expressionS * exp;
2594
2595 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
2596 {
2597 as_bad (_("only 1 or 2 immediate operands are allowed"));
2598 return 0;
2599 }
2600
2601 exp = &im_expressions[i.imm_operands++];
2602 i.op[this_operand].imms = exp;
2603
2604 if (is_space_char (*imm_start))
2605 ++imm_start;
2606
2607 save_input_line_pointer = input_line_pointer;
2608 input_line_pointer = imm_start;
2609
2610 #ifndef LEX_AT
2611 {
2612 /*
2613 * We can have operands of the form
2614 * <symbol>@GOTOFF+<nnn>
2615 * Take the easy way out here and copy everything
2616 * into a temporary buffer...
2617 */
2618 register char *cp;
2619
2620 cp = strchr (input_line_pointer, '@');
2621 if (cp != NULL)
2622 {
2623 char *tmpbuf;
2624 int len = 0;
2625 int first;
2626
2627 /* GOT relocations are not supported in 16 bit mode */
2628 if (flag_16bit_code)
2629 as_bad (_("GOT relocations not supported in 16 bit mode"));
2630
2631 if (GOT_symbol == NULL)
2632 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
2633
2634 if (strncmp (cp + 1, "PLT", 3) == 0)
2635 {
2636 i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32;
2637 len = 3;
2638 }
2639 else if (strncmp (cp + 1, "GOTOFF", 6) == 0)
2640 {
2641 i.disp_reloc[this_operand] = BFD_RELOC_386_GOTOFF;
2642 len = 6;
2643 }
2644 else if (strncmp (cp + 1, "GOT", 3) == 0)
2645 {
2646 i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32;
2647 len = 3;
2648 }
2649 else
2650 as_bad (_("bad reloc specifier in expression"));
2651
2652 /* Replace the relocation token with ' ', so that errors like
2653 foo@GOTOFF1 will be detected. */
2654 first = cp - input_line_pointer;
2655 tmpbuf = (char *) alloca (strlen(input_line_pointer));
2656 memcpy (tmpbuf, input_line_pointer, first);
2657 tmpbuf[first] = ' ';
2658 strcpy (tmpbuf + first + 1, cp + 1 + len);
2659 input_line_pointer = tmpbuf;
2660 }
2661 }
2662 #endif
2663
2664 exp_seg = expression (exp);
2665
2666 SKIP_WHITESPACE ();
2667 if (*input_line_pointer)
2668 as_bad (_("ignoring junk `%s' after expression"), input_line_pointer);
2669
2670 input_line_pointer = save_input_line_pointer;
2671
2672 if (exp->X_op == O_absent || exp->X_op == O_big)
2673 {
2674 /* missing or bad expr becomes absolute 0 */
2675 as_bad (_("missing or invalid immediate expression `%s' taken as 0"),
2676 imm_start);
2677 exp->X_op = O_constant;
2678 exp->X_add_number = 0;
2679 exp->X_add_symbol = (symbolS *) 0;
2680 exp->X_op_symbol = (symbolS *) 0;
2681 }
2682
2683 if (exp->X_op == O_constant)
2684 {
2685 i.types[this_operand] |= Imm32; /* Size it properly later. */
2686 }
2687 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
2688 else if (
2689 #ifdef BFD_ASSEMBLER
2690 OUTPUT_FLAVOR == bfd_target_aout_flavour &&
2691 #endif
2692 exp_seg != text_section
2693 && exp_seg != data_section
2694 && exp_seg != bss_section
2695 && exp_seg != undefined_section
2696 #ifdef BFD_ASSEMBLER
2697 && !bfd_is_com_section (exp_seg)
2698 #endif
2699 )
2700 {
2701 #ifdef BFD_ASSEMBLER
2702 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
2703 #else
2704 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
2705 #endif
2706 return 0;
2707 }
2708 #endif
2709 else
2710 {
2711 /* This is an address. The size of the address will be
2712 determined later, depending on destination register,
2713 suffix, or the default for the section. We exclude
2714 Imm8S here so that `push $foo' and other instructions
2715 with an Imm8S form will use Imm16 or Imm32. */
2716 i.types[this_operand] |= (Imm8 | Imm16 | Imm32);
2717 }
2718
2719 return 1;
2720 }
2721
2722 static int i386_scale PARAMS ((char *));
2723
2724 static int
2725 i386_scale (scale)
2726 char *scale;
2727 {
2728 if (!isdigit (*scale))
2729 goto bad_scale;
2730
2731 switch (*scale)
2732 {
2733 case '0':
2734 case '1':
2735 i.log2_scale_factor = 0;
2736 break;
2737 case '2':
2738 i.log2_scale_factor = 1;
2739 break;
2740 case '4':
2741 i.log2_scale_factor = 2;
2742 break;
2743 case '8':
2744 i.log2_scale_factor = 3;
2745 break;
2746 default:
2747 bad_scale:
2748 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
2749 scale);
2750 return 0;
2751 }
2752 if (i.log2_scale_factor != 0 && ! i.index_reg)
2753 {
2754 as_warn (_("scale factor of %d without an index register"),
2755 1 << i.log2_scale_factor);
2756 #if SCALE1_WHEN_NO_INDEX
2757 i.log2_scale_factor = 0;
2758 #endif
2759 }
2760 return 1;
2761 }
2762
2763 static int i386_displacement PARAMS ((char *, char *));
2764
2765 static int
2766 i386_displacement (disp_start, disp_end)
2767 char *disp_start;
2768 char *disp_end;
2769 {
2770 register expressionS *exp;
2771 segT exp_seg = 0;
2772 char *save_input_line_pointer;
2773 int bigdisp = Disp32;
2774
2775 if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0))
2776 bigdisp = Disp16;
2777 i.types[this_operand] |= bigdisp;
2778
2779 exp = &disp_expressions[i.disp_operands];
2780 i.op[this_operand].disps = exp;
2781 i.disp_operands++;
2782 save_input_line_pointer = input_line_pointer;
2783 input_line_pointer = disp_start;
2784 END_STRING_AND_SAVE (disp_end);
2785
2786 #ifndef GCC_ASM_O_HACK
2787 #define GCC_ASM_O_HACK 0
2788 #endif
2789 #if GCC_ASM_O_HACK
2790 END_STRING_AND_SAVE (disp_end + 1);
2791 if ((i.types[this_operand] & BaseIndex) != 0
2792 && displacement_string_end[-1] == '+')
2793 {
2794 /* This hack is to avoid a warning when using the "o"
2795 constraint within gcc asm statements.
2796 For instance:
2797
2798 #define _set_tssldt_desc(n,addr,limit,type) \
2799 __asm__ __volatile__ ( \
2800 "movw %w2,%0\n\t" \
2801 "movw %w1,2+%0\n\t" \
2802 "rorl $16,%1\n\t" \
2803 "movb %b1,4+%0\n\t" \
2804 "movb %4,5+%0\n\t" \
2805 "movb $0,6+%0\n\t" \
2806 "movb %h1,7+%0\n\t" \
2807 "rorl $16,%1" \
2808 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
2809
2810 This works great except that the output assembler ends
2811 up looking a bit weird if it turns out that there is
2812 no offset. You end up producing code that looks like:
2813
2814 #APP
2815 movw $235,(%eax)
2816 movw %dx,2+(%eax)
2817 rorl $16,%edx
2818 movb %dl,4+(%eax)
2819 movb $137,5+(%eax)
2820 movb $0,6+(%eax)
2821 movb %dh,7+(%eax)
2822 rorl $16,%edx
2823 #NO_APP
2824
2825 So here we provide the missing zero.
2826 */
2827
2828 *displacement_string_end = '0';
2829 }
2830 #endif
2831 #ifndef LEX_AT
2832 {
2833 /*
2834 * We can have operands of the form
2835 * <symbol>@GOTOFF+<nnn>
2836 * Take the easy way out here and copy everything
2837 * into a temporary buffer...
2838 */
2839 register char *cp;
2840
2841 cp = strchr (input_line_pointer, '@');
2842 if (cp != NULL)
2843 {
2844 char *tmpbuf;
2845 int len = 0;
2846 int first;
2847
2848 /* GOT relocations are not supported in 16 bit mode */
2849 if (flag_16bit_code)
2850 as_bad (_("GOT relocations not supported in 16 bit mode"));
2851
2852 if (GOT_symbol == NULL)
2853 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
2854
2855 if (strncmp (cp + 1, "PLT", 3) == 0)
2856 {
2857 i.disp_reloc[this_operand] = BFD_RELOC_386_PLT32;
2858 len = 3;
2859 }
2860 else if (strncmp (cp + 1, "GOTOFF", 6) == 0)
2861 {
2862 i.disp_reloc[this_operand] = BFD_RELOC_386_GOTOFF;
2863 len = 6;
2864 }
2865 else if (strncmp (cp + 1, "GOT", 3) == 0)
2866 {
2867 i.disp_reloc[this_operand] = BFD_RELOC_386_GOT32;
2868 len = 3;
2869 }
2870 else
2871 as_bad (_("bad reloc specifier in expression"));
2872
2873 /* Replace the relocation token with ' ', so that errors like
2874 foo@GOTOFF1 will be detected. */
2875 first = cp - input_line_pointer;
2876 tmpbuf = (char *) alloca (strlen(input_line_pointer));
2877 memcpy (tmpbuf, input_line_pointer, first);
2878 tmpbuf[first] = ' ';
2879 strcpy (tmpbuf + first + 1, cp + 1 + len);
2880 input_line_pointer = tmpbuf;
2881 }
2882 }
2883 #endif
2884
2885 exp_seg = expression (exp);
2886
2887 #ifdef BFD_ASSEMBLER
2888 /* We do this to make sure that the section symbol is in
2889 the symbol table. We will ultimately change the relocation
2890 to be relative to the beginning of the section */
2891 if (i.disp_reloc[this_operand] == BFD_RELOC_386_GOTOFF)
2892 {
2893 if (S_IS_LOCAL(exp->X_add_symbol)
2894 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
2895 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
2896 assert (exp->X_op == O_symbol);
2897 exp->X_op = O_subtract;
2898 exp->X_op_symbol = GOT_symbol;
2899 i.disp_reloc[this_operand] = BFD_RELOC_32;
2900 }
2901 #endif
2902
2903 SKIP_WHITESPACE ();
2904 if (*input_line_pointer)
2905 as_bad (_("ignoring junk `%s' after expression"),
2906 input_line_pointer);
2907 #if GCC_ASM_O_HACK
2908 RESTORE_END_STRING (disp_end + 1);
2909 #endif
2910 RESTORE_END_STRING (disp_end);
2911 input_line_pointer = save_input_line_pointer;
2912
2913 if (exp->X_op == O_absent || exp->X_op == O_big)
2914 {
2915 /* missing or bad expr becomes absolute 0 */
2916 as_bad (_("missing or invalid displacement expression `%s' taken as 0"),
2917 disp_start);
2918 exp->X_op = O_constant;
2919 exp->X_add_number = 0;
2920 exp->X_add_symbol = (symbolS *) 0;
2921 exp->X_op_symbol = (symbolS *) 0;
2922 }
2923
2924 if (exp->X_op == O_constant)
2925 {
2926 if (i.types[this_operand] & Disp16)
2927 {
2928 /* We know this operand is at most 16 bits, so convert to a
2929 signed 16 bit number before trying to see whether it will
2930 fit in an even smaller size. */
2931 exp->X_add_number =
2932 (((exp->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
2933 }
2934 if (fits_in_signed_byte (exp->X_add_number))
2935 i.types[this_operand] |= Disp8;
2936 }
2937 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
2938 else if (
2939 #ifdef BFD_ASSEMBLER
2940 OUTPUT_FLAVOR == bfd_target_aout_flavour &&
2941 #endif
2942 exp_seg != text_section
2943 && exp_seg != data_section
2944 && exp_seg != bss_section
2945 && exp_seg != undefined_section)
2946 {
2947 #ifdef BFD_ASSEMBLER
2948 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
2949 #else
2950 as_bad (_("unimplemented segment type %d in operand"), exp_seg);
2951 #endif
2952 return 0;
2953 }
2954 #endif
2955 return 1;
2956 }
2957
2958 static int i386_operand_modifier PARAMS ((char **, int));
2959
2960 static int
2961 i386_operand_modifier (op_string, got_a_float)
2962 char **op_string;
2963 int got_a_float;
2964 {
2965 if (!strncasecmp (*op_string, "BYTE PTR", 8))
2966 {
2967 i.suffix = BYTE_MNEM_SUFFIX;
2968 *op_string += 8;
2969 return BYTE_PTR;
2970
2971 }
2972 else if (!strncasecmp (*op_string, "WORD PTR", 8))
2973 {
2974 if (got_a_float == 2) /* "fi..." */
2975 i.suffix = SHORT_MNEM_SUFFIX;
2976 else
2977 i.suffix = WORD_MNEM_SUFFIX;
2978 *op_string += 8;
2979 return WORD_PTR;
2980 }
2981
2982 else if (!strncasecmp (*op_string, "DWORD PTR", 9))
2983 {
2984 if (got_a_float == 1) /* "f..." */
2985 i.suffix = SHORT_MNEM_SUFFIX;
2986 else
2987 i.suffix = LONG_MNEM_SUFFIX;
2988 *op_string += 9;
2989 return DWORD_PTR;
2990 }
2991
2992 else if (!strncasecmp (*op_string, "QWORD PTR", 9))
2993 {
2994 i.suffix = DWORD_MNEM_SUFFIX;
2995 *op_string += 9;
2996 return QWORD_PTR;
2997 }
2998
2999 else if (!strncasecmp (*op_string, "XWORD PTR", 9))
3000 {
3001 i.suffix = LONG_DOUBLE_MNEM_SUFFIX;
3002 *op_string += 9;
3003 return XWORD_PTR;
3004 }
3005
3006 else if (!strncasecmp (*op_string, "SHORT", 5))
3007 {
3008 *op_string += 5;
3009 return SHORT;
3010 }
3011
3012 else if (!strncasecmp (*op_string, "OFFSET FLAT:", 12))
3013 {
3014 *op_string += 12;
3015 return OFFSET_FLAT;
3016 }
3017
3018 else if (!strncasecmp (*op_string, "FLAT", 4))
3019 {
3020 *op_string += 4;
3021 return FLAT;
3022 }
3023
3024 else return NONE_FOUND;
3025 }
3026
3027 static char * build_displacement_string PARAMS ((int, char *));
3028
3029 static char *
3030 build_displacement_string (initial_disp, op_string)
3031 int initial_disp;
3032 char *op_string;
3033 {
3034 char *temp_string = (char *) malloc (strlen (op_string) + 1);
3035 char *end_of_operand_string;
3036 char *tc;
3037 char *temp_disp;
3038
3039 temp_string[0] = '\0';
3040 tc = end_of_operand_string = strchr (op_string, '[');
3041 if (initial_disp && !end_of_operand_string)
3042 {
3043 strcpy (temp_string, op_string);
3044 return temp_string;
3045 }
3046
3047 /* Build the whole displacement string */
3048 if (initial_disp)
3049 {
3050 strncpy (temp_string, op_string, end_of_operand_string - op_string);
3051 temp_string[end_of_operand_string - op_string] = '\0';
3052 temp_disp = tc;
3053 }
3054 else
3055 temp_disp = op_string;
3056
3057 while (*temp_disp != '\0')
3058 {
3059 char *end_op;
3060 int add_minus = (*temp_disp == '-');
3061
3062 if (*temp_disp == '+' || *temp_disp == '-' || *temp_disp == '[')
3063 temp_disp++;
3064
3065 if (is_space_char (*temp_disp))
3066 temp_disp++;
3067
3068 /* Don't consider registers */
3069 if ( !((*temp_disp == REGISTER_PREFIX || allow_naked_reg)
3070 && parse_register (temp_disp, &end_op)) )
3071 {
3072 char *string_start = temp_disp;
3073
3074 while (*temp_disp != ']'
3075 && *temp_disp != '+'
3076 && *temp_disp != '-'
3077 && *temp_disp != '*')
3078 ++temp_disp;
3079
3080 if (add_minus)
3081 strcat (temp_string, "-");
3082 else
3083 strcat (temp_string, "+");
3084
3085 strncat (temp_string, string_start, temp_disp - string_start);
3086 if (*temp_disp == '+' || *temp_disp == '-')
3087 --temp_disp;
3088 }
3089
3090 while (*temp_disp != '\0'
3091 && *temp_disp != '+'
3092 && *temp_disp != '-')
3093 ++temp_disp;
3094 }
3095
3096 return temp_string;
3097 }
3098
3099 static int i386_parse_seg PARAMS ((char *));
3100
3101 static int
3102 i386_parse_seg (op_string)
3103 char *op_string;
3104 {
3105 if (is_space_char (*op_string))
3106 ++op_string;
3107
3108 /* Should be one of es, cs, ss, ds fs or gs */
3109 switch (*op_string++)
3110 {
3111 case 'e':
3112 i.seg[i.mem_operands] = &es;
3113 break;
3114 case 'c':
3115 i.seg[i.mem_operands] = &cs;
3116 break;
3117 case 's':
3118 i.seg[i.mem_operands] = &ss;
3119 break;
3120 case 'd':
3121 i.seg[i.mem_operands] = &ds;
3122 break;
3123 case 'f':
3124 i.seg[i.mem_operands] = &fs;
3125 break;
3126 case 'g':
3127 i.seg[i.mem_operands] = &gs;
3128 break;
3129 default:
3130 as_bad (_("bad segment name `%s'"), op_string);
3131 return 0;
3132 }
3133
3134 if (*op_string++ != 's')
3135 {
3136 as_bad (_("bad segment name `%s'"), op_string);
3137 return 0;
3138 }
3139
3140 if (is_space_char (*op_string))
3141 ++op_string;
3142
3143 if (*op_string != ':')
3144 {
3145 as_bad (_("bad segment name `%s'"), op_string);
3146 return 0;
3147 }
3148
3149 return 1;
3150
3151 }
3152
3153 static int i386_index_check PARAMS((const char *));
3154
3155 /* Make sure the memory operand we've been dealt is valid.
3156 Returns 1 on success, 0 on a failure.
3157 */
3158 static int
3159 i386_index_check (operand_string)
3160 const char *operand_string;
3161 {
3162 #if INFER_ADDR_PREFIX
3163 int fudged = 0;
3164
3165 tryprefix:
3166 #endif
3167 if (flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0)
3168 /* 16 bit mode checks */
3169 ? ((i.base_reg
3170 && ((i.base_reg->reg_type & (Reg16|BaseIndex))
3171 != (Reg16|BaseIndex)))
3172 || (i.index_reg
3173 && (((i.index_reg->reg_type & (Reg16|BaseIndex))
3174 != (Reg16|BaseIndex))
3175 || ! (i.base_reg
3176 && i.base_reg->reg_num < 6
3177 && i.index_reg->reg_num >= 6
3178 && i.log2_scale_factor == 0))))
3179 /* 32 bit mode checks */
3180 : ((i.base_reg
3181 && (i.base_reg->reg_type & Reg32) == 0)
3182 || (i.index_reg
3183 && ((i.index_reg->reg_type & (Reg32|BaseIndex))
3184 != (Reg32|BaseIndex)))))
3185 {
3186 #if INFER_ADDR_PREFIX
3187 if (i.prefix[ADDR_PREFIX] == 0 && stackop_size != '\0')
3188 {
3189 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
3190 i.prefixes += 1;
3191 /* Change the size of any displacement too. At most one of
3192 Disp16 or Disp32 is set.
3193 FIXME. There doesn't seem to be any real need for separate
3194 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
3195 Removing them would probably clean up the code quite a lot.
3196 */
3197 if (i.types[this_operand] & (Disp16|Disp32))
3198 i.types[this_operand] ^= (Disp16|Disp32);
3199 fudged = 1;
3200 goto tryprefix;
3201 }
3202 if (fudged)
3203 as_bad (_("`%s' is not a valid base/index expression"),
3204 operand_string);
3205 else
3206 #endif
3207 as_bad (_("`%s' is not a valid %s bit base/index expression"),
3208 operand_string,
3209 flag_16bit_code ^ (i.prefix[ADDR_PREFIX] != 0) ? "16" : "32");
3210 return 0;
3211 }
3212 return 1;
3213 }
3214
3215 static int i386_intel_memory_operand PARAMS ((char *));
3216
3217 static int
3218 i386_intel_memory_operand (operand_string)
3219 char *operand_string;
3220 {
3221 char *op_string = operand_string;
3222 char *end_of_operand_string;
3223
3224 if ((i.mem_operands == 1
3225 && (current_templates->start->opcode_modifier & IsString) == 0)
3226 || i.mem_operands == 2)
3227 {
3228 as_bad (_("too many memory references for `%s'"),
3229 current_templates->start->name);
3230 return 0;
3231 }
3232
3233 /* First check for a segment override. */
3234 if (*op_string != '[')
3235 {
3236 char *end_seg;
3237
3238 end_seg = strchr (op_string, ':');
3239 if (end_seg)
3240 {
3241 if (!i386_parse_seg (op_string))
3242 return 0;
3243 op_string = end_seg + 1;
3244 }
3245 }
3246
3247 /* Look for displacement preceding open bracket */
3248 if (*op_string != '[')
3249 {
3250 char *temp_string;
3251
3252 if (i.disp_operands)
3253 return 0;
3254
3255 temp_string = build_displacement_string (true, op_string);
3256
3257 if (!i386_displacement (temp_string, temp_string + strlen (temp_string)))
3258 {
3259 free (temp_string);
3260 return 0;
3261 }
3262 free (temp_string);
3263
3264 end_of_operand_string = strchr (op_string, '[');
3265 if (!end_of_operand_string)
3266 end_of_operand_string = op_string + strlen (op_string);
3267
3268 if (is_space_char (*end_of_operand_string))
3269 --end_of_operand_string;
3270
3271 op_string = end_of_operand_string;
3272 }
3273
3274 if (*op_string == '[')
3275 {
3276 ++op_string;
3277
3278 /* Pick off each component and figure out where it belongs */
3279
3280 end_of_operand_string = op_string;
3281
3282 while (*op_string != ']')
3283 {
3284 const reg_entry *temp_reg;
3285 char *end_op;
3286 char *temp_string;
3287
3288 while (*end_of_operand_string != '+'
3289 && *end_of_operand_string != '-'
3290 && *end_of_operand_string != '*'
3291 && *end_of_operand_string != ']')
3292 end_of_operand_string++;
3293
3294 temp_string = op_string;
3295 if (*temp_string == '+')
3296 {
3297 ++temp_string;
3298 if (is_space_char (*temp_string))
3299 ++temp_string;
3300 }
3301
3302 if ((*temp_string == REGISTER_PREFIX || allow_naked_reg)
3303 && (temp_reg = parse_register (temp_string, &end_op)) != NULL)
3304 {
3305 if (i.base_reg == NULL)
3306 i.base_reg = temp_reg;
3307 else
3308 i.index_reg = temp_reg;
3309
3310 i.types[this_operand] |= BaseIndex;
3311 }
3312 else if (*temp_string == REGISTER_PREFIX)
3313 {
3314 as_bad (_("bad register name `%s'"), temp_string);
3315 return 0;
3316 }
3317 else if (is_digit_char (*op_string)
3318 || *op_string == '+' || *op_string == '-')
3319 {
3320 char *temp_str;
3321
3322 if (i.disp_operands != 0)
3323 return 0;
3324
3325 temp_string = build_displacement_string (false, op_string);
3326
3327 temp_str = temp_string;
3328 if (*temp_str == '+')
3329 ++temp_str;
3330
3331 if (!i386_displacement (temp_str, temp_str + strlen (temp_str)))
3332 {
3333 free (temp_string);
3334 return 0;
3335 }
3336 free (temp_string);
3337
3338 ++op_string;
3339 end_of_operand_string = op_string;
3340 while (*end_of_operand_string != ']'
3341 && *end_of_operand_string != '+'
3342 && *end_of_operand_string != '-'
3343 && *end_of_operand_string != '*')
3344 ++end_of_operand_string;
3345 }
3346 else if (*op_string == '*')
3347 {
3348 ++op_string;
3349
3350 if (i.base_reg && !i.index_reg)
3351 {
3352 i.index_reg = i.base_reg;
3353 i.base_reg = 0;
3354 }
3355
3356 if (!i386_scale (op_string))
3357 return 0;
3358 }
3359 op_string = end_of_operand_string;
3360 ++end_of_operand_string;
3361 }
3362 }
3363
3364 if (i386_index_check (operand_string) == 0)
3365 return 0;
3366
3367 i.mem_operands++;
3368 return 1;
3369 }
3370
3371 static int
3372 i386_intel_operand (operand_string, got_a_float)
3373 char *operand_string;
3374 int got_a_float;
3375 {
3376 const reg_entry * r;
3377 char *end_op;
3378 char *op_string = operand_string;
3379
3380 int operand_modifier = i386_operand_modifier (&op_string, got_a_float);
3381 if (is_space_char (*op_string))
3382 ++op_string;
3383
3384 switch (operand_modifier)
3385 {
3386 case BYTE_PTR:
3387 case WORD_PTR:
3388 case DWORD_PTR:
3389 case QWORD_PTR:
3390 case XWORD_PTR:
3391 if (!i386_intel_memory_operand (op_string))
3392 return 0;
3393 break;
3394
3395 case FLAT:
3396 case OFFSET_FLAT:
3397 if (!i386_immediate (op_string))
3398 return 0;
3399 break;
3400
3401 case SHORT:
3402 case NONE_FOUND:
3403 /* Should be register or immediate */
3404 if (is_digit_char (*op_string)
3405 && strchr (op_string, '[') == 0)
3406 {
3407 if (!i386_immediate (op_string))
3408 return 0;
3409 }
3410 else if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
3411 && (r = parse_register (op_string, &end_op)) != NULL)
3412 {
3413 /* Check for a segment override by searching for ':' after a
3414 segment register. */
3415 op_string = end_op;
3416 if (is_space_char (*op_string))
3417 ++op_string;
3418 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
3419 {
3420 switch (r->reg_num)
3421 {
3422 case 0:
3423 i.seg[i.mem_operands] = &es;
3424 break;
3425 case 1:
3426 i.seg[i.mem_operands] = &cs;
3427 break;
3428 case 2:
3429 i.seg[i.mem_operands] = &ss;
3430 break;
3431 case 3:
3432 i.seg[i.mem_operands] = &ds;
3433 break;
3434 case 4:
3435 i.seg[i.mem_operands] = &fs;
3436 break;
3437 case 5:
3438 i.seg[i.mem_operands] = &gs;
3439 break;
3440 }
3441
3442 }
3443 i.types[this_operand] |= r->reg_type & ~BaseIndex;
3444 i.op[this_operand].regs = r;
3445 i.reg_operands++;
3446 }
3447 else if (*op_string == REGISTER_PREFIX)
3448 {
3449 as_bad (_("bad register name `%s'"), op_string);
3450 return 0;
3451 }
3452 else if (!i386_intel_memory_operand (op_string))
3453 return 0;
3454
3455 break;
3456 } /* end switch */
3457
3458 return 1;
3459 }
3460
3461 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
3462 on error. */
3463
3464 static int
3465 i386_operand (operand_string)
3466 char *operand_string;
3467 {
3468 const reg_entry *r;
3469 char *end_op;
3470 char *op_string = operand_string;
3471
3472 if (is_space_char (*op_string))
3473 ++op_string;
3474
3475 /* We check for an absolute prefix (differentiating,
3476 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
3477 if (*op_string == ABSOLUTE_PREFIX)
3478 {
3479 ++op_string;
3480 if (is_space_char (*op_string))
3481 ++op_string;
3482 i.types[this_operand] |= JumpAbsolute;
3483 }
3484
3485 /* Check if operand is a register. */
3486 if ((*op_string == REGISTER_PREFIX || allow_naked_reg)
3487 && (r = parse_register (op_string, &end_op)) != NULL)
3488 {
3489 /* Check for a segment override by searching for ':' after a
3490 segment register. */
3491 op_string = end_op;
3492 if (is_space_char (*op_string))
3493 ++op_string;
3494 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
3495 {
3496 switch (r->reg_num)
3497 {
3498 case 0:
3499 i.seg[i.mem_operands] = &es;
3500 break;
3501 case 1:
3502 i.seg[i.mem_operands] = &cs;
3503 break;
3504 case 2:
3505 i.seg[i.mem_operands] = &ss;
3506 break;
3507 case 3:
3508 i.seg[i.mem_operands] = &ds;
3509 break;
3510 case 4:
3511 i.seg[i.mem_operands] = &fs;
3512 break;
3513 case 5:
3514 i.seg[i.mem_operands] = &gs;
3515 break;
3516 }
3517
3518 /* Skip the ':' and whitespace. */
3519 ++op_string;
3520 if (is_space_char (*op_string))
3521 ++op_string;
3522
3523 if (!is_digit_char (*op_string)
3524 && !is_identifier_char (*op_string)
3525 && *op_string != '('
3526 && *op_string != ABSOLUTE_PREFIX)
3527 {
3528 as_bad (_("bad memory operand `%s'"), op_string);
3529 return 0;
3530 }
3531 /* Handle case of %es:*foo. */
3532 if (*op_string == ABSOLUTE_PREFIX)
3533 {
3534 ++op_string;
3535 if (is_space_char (*op_string))
3536 ++op_string;
3537 i.types[this_operand] |= JumpAbsolute;
3538 }
3539 goto do_memory_reference;
3540 }
3541 if (*op_string)
3542 {
3543 as_bad (_("junk `%s' after register"), op_string);
3544 return 0;
3545 }
3546 i.types[this_operand] |= r->reg_type & ~BaseIndex;
3547 i.op[this_operand].regs = r;
3548 i.reg_operands++;
3549 }
3550 else if (*op_string == REGISTER_PREFIX)
3551 {
3552 as_bad (_("bad register name `%s'"), op_string);
3553 return 0;
3554 }
3555 else if (*op_string == IMMEDIATE_PREFIX)
3556 { /* ... or an immediate */
3557 ++op_string;
3558 if (i.types[this_operand] & JumpAbsolute)
3559 {
3560 as_bad (_("immediate operand illegal with absolute jump"));
3561 return 0;
3562 }
3563 if (!i386_immediate (op_string))
3564 return 0;
3565 }
3566 else if (is_digit_char (*op_string)
3567 || is_identifier_char (*op_string)
3568 || *op_string == '(' )
3569 {
3570 /* This is a memory reference of some sort. */
3571 char *base_string;
3572
3573 /* Start and end of displacement string expression (if found). */
3574 char *displacement_string_start;
3575 char *displacement_string_end;
3576
3577 do_memory_reference:
3578 if ((i.mem_operands == 1
3579 && (current_templates->start->opcode_modifier & IsString) == 0)
3580 || i.mem_operands == 2)
3581 {
3582 as_bad (_("too many memory references for `%s'"),
3583 current_templates->start->name);
3584 return 0;
3585 }
3586
3587 /* Check for base index form. We detect the base index form by
3588 looking for an ')' at the end of the operand, searching
3589 for the '(' matching it, and finding a REGISTER_PREFIX or ','
3590 after the '('. */
3591 base_string = op_string + strlen (op_string);
3592
3593 --base_string;
3594 if (is_space_char (*base_string))
3595 --base_string;
3596
3597 /* If we only have a displacement, set-up for it to be parsed later. */
3598 displacement_string_start = op_string;
3599 displacement_string_end = base_string + 1;
3600
3601 if (*base_string == ')')
3602 {
3603 char *temp_string;
3604 unsigned int parens_balanced = 1;
3605 /* We've already checked that the number of left & right ()'s are
3606 equal, so this loop will not be infinite. */
3607 do
3608 {
3609 base_string--;
3610 if (*base_string == ')')
3611 parens_balanced++;
3612 if (*base_string == '(')
3613 parens_balanced--;
3614 }
3615 while (parens_balanced);
3616
3617 temp_string = base_string;
3618
3619 /* Skip past '(' and whitespace. */
3620 ++base_string;
3621 if (is_space_char (*base_string))
3622 ++base_string;
3623
3624 if (*base_string == ','
3625 || ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3626 && (i.base_reg = parse_register (base_string, &end_op)) != NULL))
3627 {
3628 displacement_string_end = temp_string;
3629
3630 i.types[this_operand] |= BaseIndex;
3631
3632 if (i.base_reg)
3633 {
3634 base_string = end_op;
3635 if (is_space_char (*base_string))
3636 ++base_string;
3637 }
3638
3639 /* There may be an index reg or scale factor here. */
3640 if (*base_string == ',')
3641 {
3642 ++base_string;
3643 if (is_space_char (*base_string))
3644 ++base_string;
3645
3646 if ((*base_string == REGISTER_PREFIX || allow_naked_reg)
3647 && (i.index_reg = parse_register (base_string, &end_op)) != NULL)
3648 {
3649 base_string = end_op;
3650 if (is_space_char (*base_string))
3651 ++base_string;
3652 if (*base_string == ',')
3653 {
3654 ++base_string;
3655 if (is_space_char (*base_string))
3656 ++base_string;
3657 }
3658 else if (*base_string != ')' )
3659 {
3660 as_bad (_("expecting `,' or `)' after index register in `%s'"),
3661 operand_string);
3662 return 0;
3663 }
3664 }
3665 else if (*base_string == REGISTER_PREFIX)
3666 {
3667 as_bad (_("bad register name `%s'"), base_string);
3668 return 0;
3669 }
3670
3671 /* Check for scale factor. */
3672 if (isdigit ((unsigned char) *base_string))
3673 {
3674 if (!i386_scale (base_string))
3675 return 0;
3676
3677 ++base_string;
3678 if (is_space_char (*base_string))
3679 ++base_string;
3680 if (*base_string != ')')
3681 {
3682 as_bad (_("expecting `)' after scale factor in `%s'"),
3683 operand_string);
3684 return 0;
3685 }
3686 }
3687 else if (!i.index_reg)
3688 {
3689 as_bad (_("expecting index register or scale factor after `,'; got '%c'"),
3690 *base_string);
3691 return 0;
3692 }
3693 }
3694 else if (*base_string != ')')
3695 {
3696 as_bad (_("expecting `,' or `)' after base register in `%s'"),
3697 operand_string);
3698 return 0;
3699 }
3700 }
3701 else if (*base_string == REGISTER_PREFIX)
3702 {
3703 as_bad (_("bad register name `%s'"), base_string);
3704 return 0;
3705 }
3706 }
3707
3708 /* If there's an expression beginning the operand, parse it,
3709 assuming displacement_string_start and
3710 displacement_string_end are meaningful. */
3711 if (displacement_string_start != displacement_string_end)
3712 {
3713 if (!i386_displacement (displacement_string_start,
3714 displacement_string_end))
3715 return 0;
3716 }
3717
3718 /* Special case for (%dx) while doing input/output op. */
3719 if (i.base_reg
3720 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
3721 && i.index_reg == 0
3722 && i.log2_scale_factor == 0
3723 && i.seg[i.mem_operands] == 0
3724 && (i.types[this_operand] & Disp) == 0)
3725 {
3726 i.types[this_operand] = InOutPortReg;
3727 return 1;
3728 }
3729
3730 if (i386_index_check (operand_string) == 0)
3731 return 0;
3732 i.mem_operands++;
3733 }
3734 else
3735 { /* it's not a memory operand; argh! */
3736 as_bad (_("invalid char %s beginning operand %d `%s'"),
3737 output_invalid (*op_string),
3738 this_operand + 1,
3739 op_string);
3740 return 0;
3741 }
3742 return 1; /* normal return */
3743 }
3744 \f
3745 /*
3746 * md_estimate_size_before_relax()
3747 *
3748 * Called just before relax().
3749 * Any symbol that is now undefined will not become defined.
3750 * Return the correct fr_subtype in the frag.
3751 * Return the initial "guess for fr_var" to caller.
3752 * The guess for fr_var is ACTUALLY the growth beyond fr_fix.
3753 * Whatever we do to grow fr_fix or fr_var contributes to our returned value.
3754 * Although it may not be explicit in the frag, pretend fr_var starts with a
3755 * 0 value.
3756 */
3757 int
3758 md_estimate_size_before_relax (fragP, segment)
3759 register fragS *fragP;
3760 register segT segment;
3761 {
3762 register unsigned char *opcode;
3763 register int old_fr_fix;
3764
3765 old_fr_fix = fragP->fr_fix;
3766 opcode = (unsigned char *) fragP->fr_opcode;
3767 /* We've already got fragP->fr_subtype right; all we have to do is
3768 check for un-relaxable symbols. */
3769 if (S_GET_SEGMENT (fragP->fr_symbol) != segment)
3770 {
3771 /* symbol is undefined in this segment */
3772 int code16 = fragP->fr_subtype & CODE16;
3773 int size = code16 ? 2 : 4;
3774 #ifdef BFD_ASSEMBLER
3775 enum bfd_reloc_code_real reloc_type;
3776 #else
3777 int reloc_type;
3778 #endif
3779
3780 if (GOT_symbol /* Not quite right - we should switch on presence of
3781 @PLT, but I cannot see how to get to that from
3782 here. We should have done this in md_assemble to
3783 really get it right all of the time, but I think it
3784 does not matter that much, as this will be right
3785 most of the time. ERY */
3786 && S_GET_SEGMENT(fragP->fr_symbol) == undefined_section)
3787 reloc_type = BFD_RELOC_386_PLT32;
3788 else if (code16)
3789 reloc_type = BFD_RELOC_16_PCREL;
3790 else
3791 reloc_type = BFD_RELOC_32_PCREL;
3792
3793 switch (opcode[0])
3794 {
3795 case JUMP_PC_RELATIVE: /* make jmp (0xeb) a dword displacement jump */
3796 opcode[0] = 0xe9; /* dword disp jmp */
3797 fragP->fr_fix += size;
3798 fix_new (fragP, old_fr_fix, size,
3799 fragP->fr_symbol,
3800 fragP->fr_offset, 1,
3801 reloc_type);
3802 break;
3803
3804 default:
3805 /* This changes the byte-displacement jump 0x7N
3806 to the dword-displacement jump 0x0f,0x8N. */
3807 opcode[1] = opcode[0] + 0x10;
3808 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
3809 fragP->fr_fix += 1 + size; /* we've added an opcode byte */
3810 fix_new (fragP, old_fr_fix + 1, size,
3811 fragP->fr_symbol,
3812 fragP->fr_offset, 1,
3813 reloc_type);
3814 break;
3815 }
3816 frag_wane (fragP);
3817 }
3818 return (fragP->fr_var + fragP->fr_fix - old_fr_fix);
3819 } /* md_estimate_size_before_relax() */
3820 \f
3821 /*
3822 * md_convert_frag();
3823 *
3824 * Called after relax() is finished.
3825 * In: Address of frag.
3826 * fr_type == rs_machine_dependent.
3827 * fr_subtype is what the address relaxed to.
3828 *
3829 * Out: Any fixSs and constants are set up.
3830 * Caller will turn frag into a ".space 0".
3831 */
3832 #ifndef BFD_ASSEMBLER
3833 void
3834 md_convert_frag (headers, sec, fragP)
3835 object_headers *headers ATTRIBUTE_UNUSED;
3836 segT sec ATTRIBUTE_UNUSED;
3837 register fragS *fragP;
3838 #else
3839 void
3840 md_convert_frag (abfd, sec, fragP)
3841 bfd *abfd ATTRIBUTE_UNUSED;
3842 segT sec ATTRIBUTE_UNUSED;
3843 register fragS *fragP;
3844 #endif
3845 {
3846 register unsigned char *opcode;
3847 unsigned char *where_to_put_displacement = NULL;
3848 offsetT target_address;
3849 offsetT opcode_address;
3850 unsigned int extension = 0;
3851 offsetT displacement_from_opcode_start;
3852
3853 opcode = (unsigned char *) fragP->fr_opcode;
3854
3855 /* Address we want to reach in file space. */
3856 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
3857 #ifdef BFD_ASSEMBLER /* not needed otherwise? */
3858 target_address += symbol_get_frag (fragP->fr_symbol)->fr_address;
3859 #endif
3860
3861 /* Address opcode resides at in file space. */
3862 opcode_address = fragP->fr_address + fragP->fr_fix;
3863
3864 /* Displacement from opcode start to fill into instruction. */
3865 displacement_from_opcode_start = target_address - opcode_address;
3866
3867 switch (fragP->fr_subtype)
3868 {
3869 case ENCODE_RELAX_STATE (COND_JUMP, SMALL):
3870 case ENCODE_RELAX_STATE (COND_JUMP, SMALL16):
3871 case ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL):
3872 case ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL16):
3873 /* don't have to change opcode */
3874 extension = 1; /* 1 opcode + 1 displacement */
3875 where_to_put_displacement = &opcode[1];
3876 break;
3877
3878 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
3879 extension = 5; /* 2 opcode + 4 displacement */
3880 opcode[1] = opcode[0] + 0x10;
3881 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
3882 where_to_put_displacement = &opcode[2];
3883 break;
3884
3885 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
3886 extension = 4; /* 1 opcode + 4 displacement */
3887 opcode[0] = 0xe9;
3888 where_to_put_displacement = &opcode[1];
3889 break;
3890
3891 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
3892 extension = 3; /* 2 opcode + 2 displacement */
3893 opcode[1] = opcode[0] + 0x10;
3894 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
3895 where_to_put_displacement = &opcode[2];
3896 break;
3897
3898 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
3899 extension = 2; /* 1 opcode + 2 displacement */
3900 opcode[0] = 0xe9;
3901 where_to_put_displacement = &opcode[1];
3902 break;
3903
3904 default:
3905 BAD_CASE (fragP->fr_subtype);
3906 break;
3907 }
3908 /* now put displacement after opcode */
3909 md_number_to_chars ((char *) where_to_put_displacement,
3910 (valueT) (displacement_from_opcode_start - extension),
3911 SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
3912 fragP->fr_fix += extension;
3913 }
3914 \f
3915
3916 int md_short_jump_size = 2; /* size of byte displacement jmp */
3917 int md_long_jump_size = 5; /* size of dword displacement jmp */
3918 const int md_reloc_size = 8; /* Size of relocation record */
3919
3920 void
3921 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
3922 char *ptr;
3923 addressT from_addr, to_addr;
3924 fragS *frag ATTRIBUTE_UNUSED;
3925 symbolS *to_symbol ATTRIBUTE_UNUSED;
3926 {
3927 offsetT offset;
3928
3929 offset = to_addr - (from_addr + 2);
3930 md_number_to_chars (ptr, (valueT) 0xeb, 1); /* opcode for byte-disp jump */
3931 md_number_to_chars (ptr + 1, (valueT) offset, 1);
3932 }
3933
3934 void
3935 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
3936 char *ptr;
3937 addressT from_addr, to_addr;
3938 fragS *frag ATTRIBUTE_UNUSED;
3939 symbolS *to_symbol ATTRIBUTE_UNUSED;
3940 {
3941 offsetT offset;
3942
3943 offset = to_addr - (from_addr + 5);
3944 md_number_to_chars (ptr, (valueT) 0xe9, 1);
3945 md_number_to_chars (ptr + 1, (valueT) offset, 4);
3946 }
3947 \f
3948 /* Apply a fixup (fixS) to segment data, once it has been determined
3949 by our caller that we have all the info we need to fix it up.
3950
3951 On the 386, immediates, displacements, and data pointers are all in
3952 the same (little-endian) format, so we don't need to care about which
3953 we are handling. */
3954
3955 int
3956 md_apply_fix3 (fixP, valp, seg)
3957 fixS *fixP; /* The fix we're to put in. */
3958 valueT *valp; /* Pointer to the value of the bits. */
3959 segT seg ATTRIBUTE_UNUSED; /* Segment fix is from. */
3960 {
3961 register char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
3962 valueT value = *valp;
3963
3964 #if defined (BFD_ASSEMBLER) && !defined (TE_Mach)
3965 if (fixP->fx_pcrel)
3966 {
3967 switch (fixP->fx_r_type)
3968 {
3969 default:
3970 break;
3971
3972 case BFD_RELOC_32:
3973 fixP->fx_r_type = BFD_RELOC_32_PCREL;
3974 break;
3975 case BFD_RELOC_16:
3976 fixP->fx_r_type = BFD_RELOC_16_PCREL;
3977 break;
3978 case BFD_RELOC_8:
3979 fixP->fx_r_type = BFD_RELOC_8_PCREL;
3980 break;
3981 }
3982 }
3983
3984 /* This is a hack. There should be a better way to handle this.
3985 This covers for the fact that bfd_install_relocation will
3986 subtract the current location (for partial_inplace, PC relative
3987 relocations); see more below. */
3988 if ((fixP->fx_r_type == BFD_RELOC_32_PCREL
3989 || fixP->fx_r_type == BFD_RELOC_16_PCREL
3990 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
3991 && fixP->fx_addsy)
3992 {
3993 #ifndef OBJ_AOUT
3994 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
3995 #ifdef TE_PE
3996 || OUTPUT_FLAVOR == bfd_target_coff_flavour
3997 #endif
3998 )
3999 value += fixP->fx_where + fixP->fx_frag->fr_address;
4000 #endif
4001 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4002 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
4003 {
4004 segT fseg = S_GET_SEGMENT (fixP->fx_addsy);
4005
4006 if ((fseg == seg
4007 || (symbol_section_p (fixP->fx_addsy)
4008 && fseg != absolute_section))
4009 && ! S_IS_EXTERNAL (fixP->fx_addsy)
4010 && ! S_IS_WEAK (fixP->fx_addsy)
4011 && S_IS_DEFINED (fixP->fx_addsy)
4012 && ! S_IS_COMMON (fixP->fx_addsy))
4013 {
4014 /* Yes, we add the values in twice. This is because
4015 bfd_perform_relocation subtracts them out again. I think
4016 bfd_perform_relocation is broken, but I don't dare change
4017 it. FIXME. */
4018 value += fixP->fx_where + fixP->fx_frag->fr_address;
4019 }
4020 }
4021 #endif
4022 #if defined (OBJ_COFF) && defined (TE_PE)
4023 /* For some reason, the PE format does not store a section
4024 address offset for a PC relative symbol. */
4025 if (S_GET_SEGMENT (fixP->fx_addsy) != seg)
4026 value += md_pcrel_from (fixP);
4027 else if (S_IS_EXTERNAL (fixP->fx_addsy)
4028 || S_IS_WEAK (fixP->fx_addsy))
4029 {
4030 /* We are generating an external relocation for this defined
4031 symbol. We add the address, because
4032 bfd_install_relocation will subtract it. VALUE already
4033 holds the symbol value, because fixup_segment added it
4034 in. We subtract it out, and then we subtract it out
4035 again because bfd_install_relocation will add it in
4036 again. */
4037 value += md_pcrel_from (fixP);
4038 value -= 2 * S_GET_VALUE (fixP->fx_addsy);
4039 }
4040 #endif
4041 }
4042 #ifdef TE_PE
4043 else if (fixP->fx_addsy != NULL
4044 && S_IS_DEFINED (fixP->fx_addsy)
4045 && (S_IS_EXTERNAL (fixP->fx_addsy)
4046 || S_IS_WEAK (fixP->fx_addsy)))
4047 {
4048 /* We are generating an external relocation for this defined
4049 symbol. VALUE already holds the symbol value, and
4050 bfd_install_relocation will add it in again. We don't want
4051 either addition. */
4052 value -= 2 * S_GET_VALUE (fixP->fx_addsy);
4053 }
4054 #endif
4055
4056 /* Fix a few things - the dynamic linker expects certain values here,
4057 and we must not dissappoint it. */
4058 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4059 if (OUTPUT_FLAVOR == bfd_target_elf_flavour
4060 && fixP->fx_addsy)
4061 switch (fixP->fx_r_type) {
4062 case BFD_RELOC_386_PLT32:
4063 /* Make the jump instruction point to the address of the operand. At
4064 runtime we merely add the offset to the actual PLT entry. */
4065 value = -4;
4066 break;
4067 case BFD_RELOC_386_GOTPC:
4068 /*
4069 * This is tough to explain. We end up with this one if we have
4070 * operands that look like "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal
4071 * here is to obtain the absolute address of the GOT, and it is strongly
4072 * preferable from a performance point of view to avoid using a runtime
4073 * relocation for this. The actual sequence of instructions often look
4074 * something like:
4075 *
4076 * call .L66
4077 * .L66:
4078 * popl %ebx
4079 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
4080 *
4081 * The call and pop essentially return the absolute address of
4082 * the label .L66 and store it in %ebx. The linker itself will
4083 * ultimately change the first operand of the addl so that %ebx points to
4084 * the GOT, but to keep things simple, the .o file must have this operand
4085 * set so that it generates not the absolute address of .L66, but the
4086 * absolute address of itself. This allows the linker itself simply
4087 * treat a GOTPC relocation as asking for a pcrel offset to the GOT to be
4088 * added in, and the addend of the relocation is stored in the operand
4089 * field for the instruction itself.
4090 *
4091 * Our job here is to fix the operand so that it would add the correct
4092 * offset so that %ebx would point to itself. The thing that is tricky is
4093 * that .-.L66 will point to the beginning of the instruction, so we need
4094 * to further modify the operand so that it will point to itself.
4095 * There are other cases where you have something like:
4096 *
4097 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
4098 *
4099 * and here no correction would be required. Internally in the assembler
4100 * we treat operands of this form as not being pcrel since the '.' is
4101 * explicitly mentioned, and I wonder whether it would simplify matters
4102 * to do it this way. Who knows. In earlier versions of the PIC patches,
4103 * the pcrel_adjust field was used to store the correction, but since the
4104 * expression is not pcrel, I felt it would be confusing to do it this way.
4105 */
4106 value -= 1;
4107 break;
4108 case BFD_RELOC_386_GOT32:
4109 value = 0; /* Fully resolved at runtime. No addend. */
4110 break;
4111 case BFD_RELOC_386_GOTOFF:
4112 break;
4113
4114 case BFD_RELOC_VTABLE_INHERIT:
4115 case BFD_RELOC_VTABLE_ENTRY:
4116 fixP->fx_done = 0;
4117 return 1;
4118
4119 default:
4120 break;
4121 }
4122 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
4123 *valp = value;
4124 #endif /* defined (BFD_ASSEMBLER) && !defined (TE_Mach) */
4125 md_number_to_chars (p, value, fixP->fx_size);
4126
4127 return 1;
4128 }
4129 \f
4130
4131 #define MAX_LITTLENUMS 6
4132
4133 /* Turn the string pointed to by litP into a floating point constant of type
4134 type, and emit the appropriate bytes. The number of LITTLENUMS emitted
4135 is stored in *sizeP . An error message is returned, or NULL on OK. */
4136 char *
4137 md_atof (type, litP, sizeP)
4138 int type;
4139 char *litP;
4140 int *sizeP;
4141 {
4142 int prec;
4143 LITTLENUM_TYPE words[MAX_LITTLENUMS];
4144 LITTLENUM_TYPE *wordP;
4145 char *t;
4146
4147 switch (type)
4148 {
4149 case 'f':
4150 case 'F':
4151 prec = 2;
4152 break;
4153
4154 case 'd':
4155 case 'D':
4156 prec = 4;
4157 break;
4158
4159 case 'x':
4160 case 'X':
4161 prec = 5;
4162 break;
4163
4164 default:
4165 *sizeP = 0;
4166 return _("Bad call to md_atof ()");
4167 }
4168 t = atof_ieee (input_line_pointer, type, words);
4169 if (t)
4170 input_line_pointer = t;
4171
4172 *sizeP = prec * sizeof (LITTLENUM_TYPE);
4173 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
4174 the bigendian 386. */
4175 for (wordP = words + prec - 1; prec--;)
4176 {
4177 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
4178 litP += sizeof (LITTLENUM_TYPE);
4179 }
4180 return 0;
4181 }
4182 \f
4183 char output_invalid_buf[8];
4184
4185 static char *
4186 output_invalid (c)
4187 int c;
4188 {
4189 if (isprint (c))
4190 sprintf (output_invalid_buf, "'%c'", c);
4191 else
4192 sprintf (output_invalid_buf, "(0x%x)", (unsigned) c);
4193 return output_invalid_buf;
4194 }
4195
4196
4197 /* REG_STRING starts *before* REGISTER_PREFIX. */
4198
4199 static const reg_entry *
4200 parse_register (reg_string, end_op)
4201 char *reg_string;
4202 char **end_op;
4203 {
4204 char *s = reg_string;
4205 char *p;
4206 char reg_name_given[MAX_REG_NAME_SIZE + 1];
4207 const reg_entry *r;
4208
4209 /* Skip possible REGISTER_PREFIX and possible whitespace. */
4210 if (*s == REGISTER_PREFIX)
4211 ++s;
4212
4213 if (is_space_char (*s))
4214 ++s;
4215
4216 p = reg_name_given;
4217 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
4218 {
4219 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
4220 return (const reg_entry *) NULL;
4221 s++;
4222 }
4223
4224 *end_op = s;
4225
4226 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
4227
4228 /* Handle floating point regs, allowing spaces in the (i) part. */
4229 if (r == i386_regtab /* %st is first entry of table */)
4230 {
4231 if (is_space_char (*s))
4232 ++s;
4233 if (*s == '(')
4234 {
4235 ++s;
4236 if (is_space_char (*s))
4237 ++s;
4238 if (*s >= '0' && *s <= '7')
4239 {
4240 r = &i386_float_regtab[*s - '0'];
4241 ++s;
4242 if (is_space_char (*s))
4243 ++s;
4244 if (*s == ')')
4245 {
4246 *end_op = s + 1;
4247 return r;
4248 }
4249 }
4250 /* We have "%st(" then garbage */
4251 return (const reg_entry *) NULL;
4252 }
4253 }
4254
4255 return r;
4256 }
4257 \f
4258 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4259 CONST char *md_shortopts = "kmVQ:sq";
4260 #else
4261 CONST char *md_shortopts = "m";
4262 #endif
4263 struct option md_longopts[] = {
4264 {NULL, no_argument, NULL, 0}
4265 };
4266 size_t md_longopts_size = sizeof (md_longopts);
4267
4268 int
4269 md_parse_option (c, arg)
4270 int c;
4271 char *arg ATTRIBUTE_UNUSED;
4272 {
4273 switch (c)
4274 {
4275 case 'q':
4276 quiet_warnings = 1;
4277 break;
4278
4279 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4280 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
4281 should be emitted or not. FIXME: Not implemented. */
4282 case 'Q':
4283 break;
4284
4285 /* -V: SVR4 argument to print version ID. */
4286 case 'V':
4287 print_version_id ();
4288 break;
4289
4290 /* -k: Ignore for FreeBSD compatibility. */
4291 case 'k':
4292 break;
4293
4294 case 's':
4295 /* -s: On i386 Solaris, this tells the native assembler to use
4296 .stab instead of .stab.excl. We always use .stab anyhow. */
4297 break;
4298 #endif
4299
4300 default:
4301 return 0;
4302 }
4303 return 1;
4304 }
4305
4306 void
4307 md_show_usage (stream)
4308 FILE *stream;
4309 {
4310 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
4311 fprintf (stream, _("\
4312 -Q ignored\n\
4313 -V print assembler version number\n\
4314 -k ignored\n\
4315 -q quieten some warnings\n\
4316 -s ignored\n"));
4317 #else
4318 fprintf (stream, _("\
4319 -q quieten some warnings\n"));
4320 #endif
4321 }
4322
4323 #ifdef BFD_ASSEMBLER
4324 #if ((defined (OBJ_MAYBE_ELF) && defined (OBJ_MAYBE_COFF)) \
4325 || (defined (OBJ_MAYBE_ELF) && defined (OBJ_MAYBE_AOUT)) \
4326 || (defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)))
4327
4328 /* Pick the target format to use. */
4329
4330 const char *
4331 i386_target_format ()
4332 {
4333 switch (OUTPUT_FLAVOR)
4334 {
4335 #ifdef OBJ_MAYBE_AOUT
4336 case bfd_target_aout_flavour:
4337 return AOUT_TARGET_FORMAT;
4338 #endif
4339 #ifdef OBJ_MAYBE_COFF
4340 case bfd_target_coff_flavour:
4341 return "coff-i386";
4342 #endif
4343 #ifdef OBJ_MAYBE_ELF
4344 case bfd_target_elf_flavour:
4345 return "elf32-i386";
4346 #endif
4347 default:
4348 abort ();
4349 return NULL;
4350 }
4351 }
4352
4353 #endif /* OBJ_MAYBE_ more than one */
4354 #endif /* BFD_ASSEMBLER */
4355 \f
4356 symbolS *
4357 md_undefined_symbol (name)
4358 char *name;
4359 {
4360 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
4361 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
4362 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
4363 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
4364 {
4365 if (!GOT_symbol)
4366 {
4367 if (symbol_find (name))
4368 as_bad (_("GOT already in symbol table"));
4369 GOT_symbol = symbol_new (name, undefined_section,
4370 (valueT) 0, &zero_address_frag);
4371 };
4372 return GOT_symbol;
4373 }
4374 return 0;
4375 }
4376
4377 /* Round up a section size to the appropriate boundary. */
4378 valueT
4379 md_section_align (segment, size)
4380 segT segment ATTRIBUTE_UNUSED;
4381 valueT size;
4382 {
4383 #ifdef BFD_ASSEMBLER
4384 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4385 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
4386 {
4387 /* For a.out, force the section size to be aligned. If we don't do
4388 this, BFD will align it for us, but it will not write out the
4389 final bytes of the section. This may be a bug in BFD, but it is
4390 easier to fix it here since that is how the other a.out targets
4391 work. */
4392 int align;
4393
4394 align = bfd_get_section_alignment (stdoutput, segment);
4395 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
4396 }
4397 #endif
4398 #endif
4399
4400 return size;
4401 }
4402
4403 /* On the i386, PC-relative offsets are relative to the start of the
4404 next instruction. That is, the address of the offset, plus its
4405 size, since the offset is always the last part of the insn. */
4406
4407 long
4408 md_pcrel_from (fixP)
4409 fixS *fixP;
4410 {
4411 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
4412 }
4413
4414 #ifndef I386COFF
4415
4416 static void
4417 s_bss (ignore)
4418 int ignore ATTRIBUTE_UNUSED;
4419 {
4420 register int temp;
4421
4422 temp = get_absolute_expression ();
4423 subseg_set (bss_section, (subsegT) temp);
4424 demand_empty_rest_of_line ();
4425 }
4426
4427 #endif
4428
4429
4430 #ifdef BFD_ASSEMBLER
4431
4432 void
4433 i386_validate_fix (fixp)
4434 fixS *fixp;
4435 {
4436 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
4437 {
4438 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
4439 fixp->fx_subsy = 0;
4440 }
4441 }
4442
4443 arelent *
4444 tc_gen_reloc (section, fixp)
4445 asection *section ATTRIBUTE_UNUSED;
4446 fixS *fixp;
4447 {
4448 arelent *rel;
4449 bfd_reloc_code_real_type code;
4450
4451 switch (fixp->fx_r_type)
4452 {
4453 case BFD_RELOC_386_PLT32:
4454 case BFD_RELOC_386_GOT32:
4455 case BFD_RELOC_386_GOTOFF:
4456 case BFD_RELOC_386_GOTPC:
4457 case BFD_RELOC_RVA:
4458 case BFD_RELOC_VTABLE_ENTRY:
4459 case BFD_RELOC_VTABLE_INHERIT:
4460 code = fixp->fx_r_type;
4461 break;
4462 default:
4463 if (fixp->fx_pcrel)
4464 {
4465 switch (fixp->fx_size)
4466 {
4467 default:
4468 as_bad (_("can not do %d byte pc-relative relocation"),
4469 fixp->fx_size);
4470 code = BFD_RELOC_32_PCREL;
4471 break;
4472 case 1: code = BFD_RELOC_8_PCREL; break;
4473 case 2: code = BFD_RELOC_16_PCREL; break;
4474 case 4: code = BFD_RELOC_32_PCREL; break;
4475 }
4476 }
4477 else
4478 {
4479 switch (fixp->fx_size)
4480 {
4481 default:
4482 as_bad (_("can not do %d byte relocation"), fixp->fx_size);
4483 code = BFD_RELOC_32;
4484 break;
4485 case 1: code = BFD_RELOC_8; break;
4486 case 2: code = BFD_RELOC_16; break;
4487 case 4: code = BFD_RELOC_32; break;
4488 }
4489 }
4490 break;
4491 }
4492
4493 if (code == BFD_RELOC_32
4494 && GOT_symbol
4495 && fixp->fx_addsy == GOT_symbol)
4496 code = BFD_RELOC_386_GOTPC;
4497
4498 rel = (arelent *) xmalloc (sizeof (arelent));
4499 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
4500 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
4501
4502 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
4503 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
4504 vtable entry to be used in the relocation's section offset. */
4505 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
4506 rel->address = fixp->fx_offset;
4507
4508 if (fixp->fx_pcrel)
4509 rel->addend = fixp->fx_addnumber;
4510 else
4511 rel->addend = 0;
4512
4513 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
4514 if (rel->howto == NULL)
4515 {
4516 as_bad_where (fixp->fx_file, fixp->fx_line,
4517 _("cannot represent relocation type %s"),
4518 bfd_get_reloc_code_name (code));
4519 /* Set howto to a garbage value so that we can keep going. */
4520 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
4521 assert (rel->howto != NULL);
4522 }
4523
4524 return rel;
4525 }
4526
4527 #else /* ! BFD_ASSEMBLER */
4528
4529 #if (defined(OBJ_AOUT) | defined(OBJ_BOUT))
4530 void
4531 tc_aout_fix_to_chars (where, fixP, segment_address_in_file)
4532 char *where;
4533 fixS *fixP;
4534 relax_addressT segment_address_in_file;
4535 {
4536 /*
4537 * In: length of relocation (or of address) in chars: 1, 2 or 4.
4538 * Out: GNU LD relocation length code: 0, 1, or 2.
4539 */
4540
4541 static const unsigned char nbytes_r_length[] = {42, 0, 1, 42, 2};
4542 long r_symbolnum;
4543
4544 know (fixP->fx_addsy != NULL);
4545
4546 md_number_to_chars (where,
4547 (valueT) (fixP->fx_frag->fr_address
4548 + fixP->fx_where - segment_address_in_file),
4549 4);
4550
4551 r_symbolnum = (S_IS_DEFINED (fixP->fx_addsy)
4552 ? S_GET_TYPE (fixP->fx_addsy)
4553 : fixP->fx_addsy->sy_number);
4554
4555 where[6] = (r_symbolnum >> 16) & 0x0ff;
4556 where[5] = (r_symbolnum >> 8) & 0x0ff;
4557 where[4] = r_symbolnum & 0x0ff;
4558 where[7] = ((((!S_IS_DEFINED (fixP->fx_addsy)) << 3) & 0x08)
4559 | ((nbytes_r_length[fixP->fx_size] << 1) & 0x06)
4560 | (((fixP->fx_pcrel << 0) & 0x01) & 0x0f));
4561 }
4562
4563 #endif /* OBJ_AOUT or OBJ_BOUT */
4564
4565 #if defined (I386COFF)
4566
4567 short
4568 tc_coff_fix2rtype (fixP)
4569 fixS *fixP;
4570 {
4571 if (fixP->fx_r_type == R_IMAGEBASE)
4572 return R_IMAGEBASE;
4573
4574 return (fixP->fx_pcrel ?
4575 (fixP->fx_size == 1 ? R_PCRBYTE :
4576 fixP->fx_size == 2 ? R_PCRWORD :
4577 R_PCRLONG) :
4578 (fixP->fx_size == 1 ? R_RELBYTE :
4579 fixP->fx_size == 2 ? R_RELWORD :
4580 R_DIR32));
4581 }
4582
4583 int
4584 tc_coff_sizemachdep (frag)
4585 fragS *frag;
4586 {
4587 if (frag->fr_next)
4588 return (frag->fr_next->fr_address - frag->fr_address);
4589 else
4590 return 0;
4591 }
4592
4593 #endif /* I386COFF */
4594
4595 #endif /* ! BFD_ASSEMBLER */
4596 \f
4597 /* end of tc-i386.c */
This page took 0.179478 seconds and 5 git commands to generate.