Add support for AVX512VL. Add AVX512VL versions of AVX512F instructions.
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2014 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 #define XMMWORD_MNEM_SUFFIX 'x'
85 #define YMMWORD_MNEM_SUFFIX 'y'
86 #define ZMMWORD_MNEM_SUFFIX 'z'
87 /* Intel Syntax. Use a non-ascii letter since since it never appears
88 in instructions. */
89 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
90
91 #define END_OF_INSN '\0'
92
93 /*
94 'templates' is for grouping together 'template' structures for opcodes
95 of the same name. This is only used for storing the insns in the grand
96 ole hash table of insns.
97 The templates themselves start at START and range up to (but not including)
98 END.
99 */
100 typedef struct
101 {
102 const insn_template *start;
103 const insn_template *end;
104 }
105 templates;
106
107 /* 386 operand encoding bytes: see 386 book for details of this. */
108 typedef struct
109 {
110 unsigned int regmem; /* codes register or memory operand */
111 unsigned int reg; /* codes register operand (or extended opcode) */
112 unsigned int mode; /* how to interpret regmem & reg */
113 }
114 modrm_byte;
115
116 /* x86-64 extension prefix. */
117 typedef int rex_byte;
118
119 /* 386 opcode byte to code indirect addressing. */
120 typedef struct
121 {
122 unsigned base;
123 unsigned index;
124 unsigned scale;
125 }
126 sib_byte;
127
128 /* x86 arch names, types and features */
129 typedef struct
130 {
131 const char *name; /* arch name */
132 unsigned int len; /* arch string length */
133 enum processor_type type; /* arch type */
134 i386_cpu_flags flags; /* cpu feature flags */
135 unsigned int skip; /* show_arch should skip this. */
136 unsigned int negated; /* turn off indicated flags. */
137 }
138 arch_entry;
139
140 static void update_code_flag (int, int);
141 static void set_code_flag (int);
142 static void set_16bit_gcc_code_flag (int);
143 static void set_intel_syntax (int);
144 static void set_intel_mnemonic (int);
145 static void set_allow_index_reg (int);
146 static void set_check (int);
147 static void set_cpu_arch (int);
148 #ifdef TE_PE
149 static void pe_directive_secrel (int);
150 #endif
151 static void signed_cons (int);
152 static char *output_invalid (int c);
153 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
154 const char *);
155 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
156 const char *);
157 static int i386_att_operand (char *);
158 static int i386_intel_operand (char *, int);
159 static int i386_intel_simplify (expressionS *);
160 static int i386_intel_parse_name (const char *, expressionS *);
161 static const reg_entry *parse_register (char *, char **);
162 static char *parse_insn (char *, char *);
163 static char *parse_operands (char *, const char *);
164 static void swap_operands (void);
165 static void swap_2_operands (int, int);
166 static void optimize_imm (void);
167 static void optimize_disp (void);
168 static const insn_template *match_template (void);
169 static int check_string (void);
170 static int process_suffix (void);
171 static int check_byte_reg (void);
172 static int check_long_reg (void);
173 static int check_qword_reg (void);
174 static int check_word_reg (void);
175 static int finalize_imm (void);
176 static int process_operands (void);
177 static const seg_entry *build_modrm_byte (void);
178 static void output_insn (void);
179 static void output_imm (fragS *, offsetT);
180 static void output_disp (fragS *, offsetT);
181 #ifndef I386COFF
182 static void s_bss (int);
183 #endif
184 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
185 static void handle_large_common (int small ATTRIBUTE_UNUSED);
186 #endif
187
188 static const char *default_arch = DEFAULT_ARCH;
189
190 /* This struct describes rounding control and SAE in the instruction. */
191 struct RC_Operation
192 {
193 enum rc_type
194 {
195 rne = 0,
196 rd,
197 ru,
198 rz,
199 saeonly
200 } type;
201 int operand;
202 };
203
204 static struct RC_Operation rc_op;
205
206 /* The struct describes masking, applied to OPERAND in the instruction.
207 MASK is a pointer to the corresponding mask register. ZEROING tells
208 whether merging or zeroing mask is used. */
209 struct Mask_Operation
210 {
211 const reg_entry *mask;
212 unsigned int zeroing;
213 /* The operand where this operation is associated. */
214 int operand;
215 };
216
217 static struct Mask_Operation mask_op;
218
219 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
220 broadcast factor. */
221 struct Broadcast_Operation
222 {
223 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
224 int type;
225
226 /* Index of broadcasted operand. */
227 int operand;
228 };
229
230 static struct Broadcast_Operation broadcast_op;
231
232 /* VEX prefix. */
233 typedef struct
234 {
235 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
236 unsigned char bytes[4];
237 unsigned int length;
238 /* Destination or source register specifier. */
239 const reg_entry *register_specifier;
240 } vex_prefix;
241
242 /* 'md_assemble ()' gathers together information and puts it into a
243 i386_insn. */
244
245 union i386_op
246 {
247 expressionS *disps;
248 expressionS *imms;
249 const reg_entry *regs;
250 };
251
252 enum i386_error
253 {
254 operand_size_mismatch,
255 operand_type_mismatch,
256 register_type_mismatch,
257 number_of_operands_mismatch,
258 invalid_instruction_suffix,
259 bad_imm4,
260 old_gcc_only,
261 unsupported_with_intel_mnemonic,
262 unsupported_syntax,
263 unsupported,
264 invalid_vsib_address,
265 invalid_vector_register_set,
266 unsupported_vector_index_register,
267 unsupported_broadcast,
268 broadcast_not_on_src_operand,
269 broadcast_needed,
270 unsupported_masking,
271 mask_not_on_destination,
272 no_default_mask,
273 unsupported_rc_sae,
274 rc_sae_operand_not_last_imm,
275 invalid_register_operand,
276 try_vector_disp8
277 };
278
279 struct _i386_insn
280 {
281 /* TM holds the template for the insn were currently assembling. */
282 insn_template tm;
283
284 /* SUFFIX holds the instruction size suffix for byte, word, dword
285 or qword, if given. */
286 char suffix;
287
288 /* OPERANDS gives the number of given operands. */
289 unsigned int operands;
290
291 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
292 of given register, displacement, memory operands and immediate
293 operands. */
294 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
295
296 /* TYPES [i] is the type (see above #defines) which tells us how to
297 use OP[i] for the corresponding operand. */
298 i386_operand_type types[MAX_OPERANDS];
299
300 /* Displacement expression, immediate expression, or register for each
301 operand. */
302 union i386_op op[MAX_OPERANDS];
303
304 /* Flags for operands. */
305 unsigned int flags[MAX_OPERANDS];
306 #define Operand_PCrel 1
307
308 /* Relocation type for operand */
309 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
310
311 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
312 the base index byte below. */
313 const reg_entry *base_reg;
314 const reg_entry *index_reg;
315 unsigned int log2_scale_factor;
316
317 /* SEG gives the seg_entries of this insn. They are zero unless
318 explicit segment overrides are given. */
319 const seg_entry *seg[2];
320
321 /* PREFIX holds all the given prefix opcodes (usually null).
322 PREFIXES is the number of prefix opcodes. */
323 unsigned int prefixes;
324 unsigned char prefix[MAX_PREFIXES];
325
326 /* RM and SIB are the modrm byte and the sib byte where the
327 addressing modes of this insn are encoded. */
328 modrm_byte rm;
329 rex_byte rex;
330 rex_byte vrex;
331 sib_byte sib;
332 vex_prefix vex;
333
334 /* Masking attributes. */
335 struct Mask_Operation *mask;
336
337 /* Rounding control and SAE attributes. */
338 struct RC_Operation *rounding;
339
340 /* Broadcasting attributes. */
341 struct Broadcast_Operation *broadcast;
342
343 /* Compressed disp8*N attribute. */
344 unsigned int memshift;
345
346 /* Swap operand in encoding. */
347 unsigned int swap_operand;
348
349 /* Prefer 8bit or 32bit displacement in encoding. */
350 enum
351 {
352 disp_encoding_default = 0,
353 disp_encoding_8bit,
354 disp_encoding_32bit
355 } disp_encoding;
356
357 /* REP prefix. */
358 const char *rep_prefix;
359
360 /* HLE prefix. */
361 const char *hle_prefix;
362
363 /* Have BND prefix. */
364 const char *bnd_prefix;
365
366 /* Need VREX to support upper 16 registers. */
367 int need_vrex;
368
369 /* Error message. */
370 enum i386_error error;
371 };
372
373 typedef struct _i386_insn i386_insn;
374
375 /* Link RC type with corresponding string, that'll be looked for in
376 asm. */
377 struct RC_name
378 {
379 enum rc_type type;
380 const char *name;
381 unsigned int len;
382 };
383
384 static const struct RC_name RC_NamesTable[] =
385 {
386 { rne, STRING_COMMA_LEN ("rn-sae") },
387 { rd, STRING_COMMA_LEN ("rd-sae") },
388 { ru, STRING_COMMA_LEN ("ru-sae") },
389 { rz, STRING_COMMA_LEN ("rz-sae") },
390 { saeonly, STRING_COMMA_LEN ("sae") },
391 };
392
393 /* List of chars besides those in app.c:symbol_chars that can start an
394 operand. Used to prevent the scrubber eating vital white-space. */
395 const char extra_symbol_chars[] = "*%-([{"
396 #ifdef LEX_AT
397 "@"
398 #endif
399 #ifdef LEX_QM
400 "?"
401 #endif
402 ;
403
404 #if (defined (TE_I386AIX) \
405 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
406 && !defined (TE_GNU) \
407 && !defined (TE_LINUX) \
408 && !defined (TE_NACL) \
409 && !defined (TE_NETWARE) \
410 && !defined (TE_FreeBSD) \
411 && !defined (TE_DragonFly) \
412 && !defined (TE_NetBSD)))
413 /* This array holds the chars that always start a comment. If the
414 pre-processor is disabled, these aren't very useful. The option
415 --divide will remove '/' from this list. */
416 const char *i386_comment_chars = "#/";
417 #define SVR4_COMMENT_CHARS 1
418 #define PREFIX_SEPARATOR '\\'
419
420 #else
421 const char *i386_comment_chars = "#";
422 #define PREFIX_SEPARATOR '/'
423 #endif
424
425 /* This array holds the chars that only start a comment at the beginning of
426 a line. If the line seems to have the form '# 123 filename'
427 .line and .file directives will appear in the pre-processed output.
428 Note that input_file.c hand checks for '#' at the beginning of the
429 first line of the input file. This is because the compiler outputs
430 #NO_APP at the beginning of its output.
431 Also note that comments started like this one will always work if
432 '/' isn't otherwise defined. */
433 const char line_comment_chars[] = "#/";
434
435 const char line_separator_chars[] = ";";
436
437 /* Chars that can be used to separate mant from exp in floating point
438 nums. */
439 const char EXP_CHARS[] = "eE";
440
441 /* Chars that mean this number is a floating point constant
442 As in 0f12.456
443 or 0d1.2345e12. */
444 const char FLT_CHARS[] = "fFdDxX";
445
446 /* Tables for lexical analysis. */
447 static char mnemonic_chars[256];
448 static char register_chars[256];
449 static char operand_chars[256];
450 static char identifier_chars[256];
451 static char digit_chars[256];
452
453 /* Lexical macros. */
454 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
455 #define is_operand_char(x) (operand_chars[(unsigned char) x])
456 #define is_register_char(x) (register_chars[(unsigned char) x])
457 #define is_space_char(x) ((x) == ' ')
458 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
459 #define is_digit_char(x) (digit_chars[(unsigned char) x])
460
461 /* All non-digit non-letter characters that may occur in an operand. */
462 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
463
464 /* md_assemble() always leaves the strings it's passed unaltered. To
465 effect this we maintain a stack of saved characters that we've smashed
466 with '\0's (indicating end of strings for various sub-fields of the
467 assembler instruction). */
468 static char save_stack[32];
469 static char *save_stack_p;
470 #define END_STRING_AND_SAVE(s) \
471 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
472 #define RESTORE_END_STRING(s) \
473 do { *(s) = *--save_stack_p; } while (0)
474
475 /* The instruction we're assembling. */
476 static i386_insn i;
477
478 /* Possible templates for current insn. */
479 static const templates *current_templates;
480
481 /* Per instruction expressionS buffers: max displacements & immediates. */
482 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
483 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
484
485 /* Current operand we are working on. */
486 static int this_operand = -1;
487
488 /* We support four different modes. FLAG_CODE variable is used to distinguish
489 these. */
490
491 enum flag_code {
492 CODE_32BIT,
493 CODE_16BIT,
494 CODE_64BIT };
495
496 static enum flag_code flag_code;
497 static unsigned int object_64bit;
498 static unsigned int disallow_64bit_reloc;
499 static int use_rela_relocations = 0;
500
501 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
502 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
503 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
504
505 /* The ELF ABI to use. */
506 enum x86_elf_abi
507 {
508 I386_ABI,
509 X86_64_ABI,
510 X86_64_X32_ABI
511 };
512
513 static enum x86_elf_abi x86_elf_abi = I386_ABI;
514 #endif
515
516 #if defined (TE_PE) || defined (TE_PEP)
517 /* Use big object file format. */
518 static int use_big_obj = 0;
519 #endif
520
521 /* 1 for intel syntax,
522 0 if att syntax. */
523 static int intel_syntax = 0;
524
525 /* 1 for intel mnemonic,
526 0 if att mnemonic. */
527 static int intel_mnemonic = !SYSV386_COMPAT;
528
529 /* 1 if support old (<= 2.8.1) versions of gcc. */
530 static int old_gcc = OLDGCC_COMPAT;
531
532 /* 1 if pseudo registers are permitted. */
533 static int allow_pseudo_reg = 0;
534
535 /* 1 if register prefix % not required. */
536 static int allow_naked_reg = 0;
537
538 /* 1 if the assembler should add BND prefix for all control-tranferring
539 instructions supporting it, even if this prefix wasn't specified
540 explicitly. */
541 static int add_bnd_prefix = 0;
542
543 /* 1 if pseudo index register, eiz/riz, is allowed . */
544 static int allow_index_reg = 0;
545
546 static enum check_kind
547 {
548 check_none = 0,
549 check_warning,
550 check_error
551 }
552 sse_check, operand_check = check_warning;
553
554 /* Register prefix used for error message. */
555 static const char *register_prefix = "%";
556
557 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
558 leave, push, and pop instructions so that gcc has the same stack
559 frame as in 32 bit mode. */
560 static char stackop_size = '\0';
561
562 /* Non-zero to optimize code alignment. */
563 int optimize_align_code = 1;
564
565 /* Non-zero to quieten some warnings. */
566 static int quiet_warnings = 0;
567
568 /* CPU name. */
569 static const char *cpu_arch_name = NULL;
570 static char *cpu_sub_arch_name = NULL;
571
572 /* CPU feature flags. */
573 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
574
575 /* If we have selected a cpu we are generating instructions for. */
576 static int cpu_arch_tune_set = 0;
577
578 /* Cpu we are generating instructions for. */
579 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
580
581 /* CPU feature flags of cpu we are generating instructions for. */
582 static i386_cpu_flags cpu_arch_tune_flags;
583
584 /* CPU instruction set architecture used. */
585 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
586
587 /* CPU feature flags of instruction set architecture used. */
588 i386_cpu_flags cpu_arch_isa_flags;
589
590 /* If set, conditional jumps are not automatically promoted to handle
591 larger than a byte offset. */
592 static unsigned int no_cond_jump_promotion = 0;
593
594 /* Encode SSE instructions with VEX prefix. */
595 static unsigned int sse2avx;
596
597 /* Encode scalar AVX instructions with specific vector length. */
598 static enum
599 {
600 vex128 = 0,
601 vex256
602 } avxscalar;
603
604 /* Encode scalar EVEX LIG instructions with specific vector length. */
605 static enum
606 {
607 evexl128 = 0,
608 evexl256,
609 evexl512
610 } evexlig;
611
612 /* Encode EVEX WIG instructions with specific evex.w. */
613 static enum
614 {
615 evexw0 = 0,
616 evexw1
617 } evexwig;
618
619 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
620 static symbolS *GOT_symbol;
621
622 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
623 unsigned int x86_dwarf2_return_column;
624
625 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
626 int x86_cie_data_alignment;
627
628 /* Interface to relax_segment.
629 There are 3 major relax states for 386 jump insns because the
630 different types of jumps add different sizes to frags when we're
631 figuring out what sort of jump to choose to reach a given label. */
632
633 /* Types. */
634 #define UNCOND_JUMP 0
635 #define COND_JUMP 1
636 #define COND_JUMP86 2
637
638 /* Sizes. */
639 #define CODE16 1
640 #define SMALL 0
641 #define SMALL16 (SMALL | CODE16)
642 #define BIG 2
643 #define BIG16 (BIG | CODE16)
644
645 #ifndef INLINE
646 #ifdef __GNUC__
647 #define INLINE __inline__
648 #else
649 #define INLINE
650 #endif
651 #endif
652
653 #define ENCODE_RELAX_STATE(type, size) \
654 ((relax_substateT) (((type) << 2) | (size)))
655 #define TYPE_FROM_RELAX_STATE(s) \
656 ((s) >> 2)
657 #define DISP_SIZE_FROM_RELAX_STATE(s) \
658 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
659
660 /* This table is used by relax_frag to promote short jumps to long
661 ones where necessary. SMALL (short) jumps may be promoted to BIG
662 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
663 don't allow a short jump in a 32 bit code segment to be promoted to
664 a 16 bit offset jump because it's slower (requires data size
665 prefix), and doesn't work, unless the destination is in the bottom
666 64k of the code segment (The top 16 bits of eip are zeroed). */
667
668 const relax_typeS md_relax_table[] =
669 {
670 /* The fields are:
671 1) most positive reach of this state,
672 2) most negative reach of this state,
673 3) how many bytes this mode will have in the variable part of the frag
674 4) which index into the table to try if we can't fit into this one. */
675
676 /* UNCOND_JUMP states. */
677 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
678 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
679 /* dword jmp adds 4 bytes to frag:
680 0 extra opcode bytes, 4 displacement bytes. */
681 {0, 0, 4, 0},
682 /* word jmp adds 2 byte2 to frag:
683 0 extra opcode bytes, 2 displacement bytes. */
684 {0, 0, 2, 0},
685
686 /* COND_JUMP states. */
687 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
688 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
689 /* dword conditionals adds 5 bytes to frag:
690 1 extra opcode byte, 4 displacement bytes. */
691 {0, 0, 5, 0},
692 /* word conditionals add 3 bytes to frag:
693 1 extra opcode byte, 2 displacement bytes. */
694 {0, 0, 3, 0},
695
696 /* COND_JUMP86 states. */
697 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
698 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
699 /* dword conditionals adds 5 bytes to frag:
700 1 extra opcode byte, 4 displacement bytes. */
701 {0, 0, 5, 0},
702 /* word conditionals add 4 bytes to frag:
703 1 displacement byte and a 3 byte long branch insn. */
704 {0, 0, 4, 0}
705 };
706
707 static const arch_entry cpu_arch[] =
708 {
709 /* Do not replace the first two entries - i386_target_format()
710 relies on them being there in this order. */
711 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
712 CPU_GENERIC32_FLAGS, 0, 0 },
713 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
714 CPU_GENERIC64_FLAGS, 0, 0 },
715 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
716 CPU_NONE_FLAGS, 0, 0 },
717 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
718 CPU_I186_FLAGS, 0, 0 },
719 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
720 CPU_I286_FLAGS, 0, 0 },
721 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
722 CPU_I386_FLAGS, 0, 0 },
723 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
724 CPU_I486_FLAGS, 0, 0 },
725 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
726 CPU_I586_FLAGS, 0, 0 },
727 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
728 CPU_I686_FLAGS, 0, 0 },
729 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
730 CPU_I586_FLAGS, 0, 0 },
731 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
732 CPU_PENTIUMPRO_FLAGS, 0, 0 },
733 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
734 CPU_P2_FLAGS, 0, 0 },
735 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
736 CPU_P3_FLAGS, 0, 0 },
737 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
738 CPU_P4_FLAGS, 0, 0 },
739 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
740 CPU_CORE_FLAGS, 0, 0 },
741 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
742 CPU_NOCONA_FLAGS, 0, 0 },
743 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
744 CPU_CORE_FLAGS, 1, 0 },
745 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
746 CPU_CORE_FLAGS, 0, 0 },
747 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
748 CPU_CORE2_FLAGS, 1, 0 },
749 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
750 CPU_CORE2_FLAGS, 0, 0 },
751 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
752 CPU_COREI7_FLAGS, 0, 0 },
753 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
754 CPU_L1OM_FLAGS, 0, 0 },
755 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
756 CPU_K1OM_FLAGS, 0, 0 },
757 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
758 CPU_K6_FLAGS, 0, 0 },
759 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
760 CPU_K6_2_FLAGS, 0, 0 },
761 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
762 CPU_ATHLON_FLAGS, 0, 0 },
763 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
764 CPU_K8_FLAGS, 1, 0 },
765 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
766 CPU_K8_FLAGS, 0, 0 },
767 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
768 CPU_K8_FLAGS, 0, 0 },
769 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
770 CPU_AMDFAM10_FLAGS, 0, 0 },
771 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
772 CPU_BDVER1_FLAGS, 0, 0 },
773 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
774 CPU_BDVER2_FLAGS, 0, 0 },
775 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
776 CPU_BDVER3_FLAGS, 0, 0 },
777 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
778 CPU_BDVER4_FLAGS, 0, 0 },
779 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
780 CPU_BTVER1_FLAGS, 0, 0 },
781 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
782 CPU_BTVER2_FLAGS, 0, 0 },
783 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
784 CPU_8087_FLAGS, 0, 0 },
785 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
786 CPU_287_FLAGS, 0, 0 },
787 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
788 CPU_387_FLAGS, 0, 0 },
789 { STRING_COMMA_LEN (".no87"), PROCESSOR_UNKNOWN,
790 CPU_ANY87_FLAGS, 0, 1 },
791 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
792 CPU_MMX_FLAGS, 0, 0 },
793 { STRING_COMMA_LEN (".nommx"), PROCESSOR_UNKNOWN,
794 CPU_3DNOWA_FLAGS, 0, 1 },
795 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
796 CPU_SSE_FLAGS, 0, 0 },
797 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
798 CPU_SSE2_FLAGS, 0, 0 },
799 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
800 CPU_SSE3_FLAGS, 0, 0 },
801 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
802 CPU_SSSE3_FLAGS, 0, 0 },
803 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
804 CPU_SSE4_1_FLAGS, 0, 0 },
805 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
806 CPU_SSE4_2_FLAGS, 0, 0 },
807 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
808 CPU_SSE4_2_FLAGS, 0, 0 },
809 { STRING_COMMA_LEN (".nosse"), PROCESSOR_UNKNOWN,
810 CPU_ANY_SSE_FLAGS, 0, 1 },
811 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
812 CPU_AVX_FLAGS, 0, 0 },
813 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
814 CPU_AVX2_FLAGS, 0, 0 },
815 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
816 CPU_AVX512F_FLAGS, 0, 0 },
817 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
818 CPU_AVX512CD_FLAGS, 0, 0 },
819 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
820 CPU_AVX512ER_FLAGS, 0, 0 },
821 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
822 CPU_AVX512PF_FLAGS, 0, 0 },
823 { STRING_COMMA_LEN (".noavx"), PROCESSOR_UNKNOWN,
824 CPU_ANY_AVX_FLAGS, 0, 1 },
825 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
826 CPU_VMX_FLAGS, 0, 0 },
827 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
828 CPU_VMFUNC_FLAGS, 0, 0 },
829 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
830 CPU_SMX_FLAGS, 0, 0 },
831 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
832 CPU_XSAVE_FLAGS, 0, 0 },
833 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
834 CPU_XSAVEOPT_FLAGS, 0, 0 },
835 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
836 CPU_AES_FLAGS, 0, 0 },
837 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
838 CPU_PCLMUL_FLAGS, 0, 0 },
839 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
840 CPU_PCLMUL_FLAGS, 1, 0 },
841 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
842 CPU_FSGSBASE_FLAGS, 0, 0 },
843 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
844 CPU_RDRND_FLAGS, 0, 0 },
845 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
846 CPU_F16C_FLAGS, 0, 0 },
847 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
848 CPU_BMI2_FLAGS, 0, 0 },
849 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
850 CPU_FMA_FLAGS, 0, 0 },
851 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
852 CPU_FMA4_FLAGS, 0, 0 },
853 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
854 CPU_XOP_FLAGS, 0, 0 },
855 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
856 CPU_LWP_FLAGS, 0, 0 },
857 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
858 CPU_MOVBE_FLAGS, 0, 0 },
859 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
860 CPU_CX16_FLAGS, 0, 0 },
861 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
862 CPU_EPT_FLAGS, 0, 0 },
863 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
864 CPU_LZCNT_FLAGS, 0, 0 },
865 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
866 CPU_HLE_FLAGS, 0, 0 },
867 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
868 CPU_RTM_FLAGS, 0, 0 },
869 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
870 CPU_INVPCID_FLAGS, 0, 0 },
871 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
872 CPU_CLFLUSH_FLAGS, 0, 0 },
873 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
874 CPU_NOP_FLAGS, 0, 0 },
875 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
876 CPU_SYSCALL_FLAGS, 0, 0 },
877 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
878 CPU_RDTSCP_FLAGS, 0, 0 },
879 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
880 CPU_3DNOW_FLAGS, 0, 0 },
881 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
882 CPU_3DNOWA_FLAGS, 0, 0 },
883 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
884 CPU_PADLOCK_FLAGS, 0, 0 },
885 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
886 CPU_SVME_FLAGS, 1, 0 },
887 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
888 CPU_SVME_FLAGS, 0, 0 },
889 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
890 CPU_SSE4A_FLAGS, 0, 0 },
891 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
892 CPU_ABM_FLAGS, 0, 0 },
893 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
894 CPU_BMI_FLAGS, 0, 0 },
895 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
896 CPU_TBM_FLAGS, 0, 0 },
897 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
898 CPU_ADX_FLAGS, 0, 0 },
899 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
900 CPU_RDSEED_FLAGS, 0, 0 },
901 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
902 CPU_PRFCHW_FLAGS, 0, 0 },
903 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
904 CPU_SMAP_FLAGS, 0, 0 },
905 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
906 CPU_MPX_FLAGS, 0, 0 },
907 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
908 CPU_SHA_FLAGS, 0, 0 },
909 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
910 CPU_CLFLUSHOPT_FLAGS, 0, 0 },
911 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
912 CPU_XSAVEC_FLAGS, 0, 0 },
913 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
914 CPU_XSAVES_FLAGS, 0, 0 },
915 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
916 CPU_PREFETCHWT1_FLAGS, 0, 0 },
917 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
918 CPU_SE1_FLAGS, 0, 0 },
919 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
920 CPU_AVX512VL_FLAGS, 0, 0 },
921 };
922
923 #ifdef I386COFF
924 /* Like s_lcomm_internal in gas/read.c but the alignment string
925 is allowed to be optional. */
926
927 static symbolS *
928 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
929 {
930 addressT align = 0;
931
932 SKIP_WHITESPACE ();
933
934 if (needs_align
935 && *input_line_pointer == ',')
936 {
937 align = parse_align (needs_align - 1);
938
939 if (align == (addressT) -1)
940 return NULL;
941 }
942 else
943 {
944 if (size >= 8)
945 align = 3;
946 else if (size >= 4)
947 align = 2;
948 else if (size >= 2)
949 align = 1;
950 else
951 align = 0;
952 }
953
954 bss_alloc (symbolP, size, align);
955 return symbolP;
956 }
957
958 static void
959 pe_lcomm (int needs_align)
960 {
961 s_comm_internal (needs_align * 2, pe_lcomm_internal);
962 }
963 #endif
964
965 const pseudo_typeS md_pseudo_table[] =
966 {
967 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
968 {"align", s_align_bytes, 0},
969 #else
970 {"align", s_align_ptwo, 0},
971 #endif
972 {"arch", set_cpu_arch, 0},
973 #ifndef I386COFF
974 {"bss", s_bss, 0},
975 #else
976 {"lcomm", pe_lcomm, 1},
977 #endif
978 {"ffloat", float_cons, 'f'},
979 {"dfloat", float_cons, 'd'},
980 {"tfloat", float_cons, 'x'},
981 {"value", cons, 2},
982 {"slong", signed_cons, 4},
983 {"noopt", s_ignore, 0},
984 {"optim", s_ignore, 0},
985 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
986 {"code16", set_code_flag, CODE_16BIT},
987 {"code32", set_code_flag, CODE_32BIT},
988 {"code64", set_code_flag, CODE_64BIT},
989 {"intel_syntax", set_intel_syntax, 1},
990 {"att_syntax", set_intel_syntax, 0},
991 {"intel_mnemonic", set_intel_mnemonic, 1},
992 {"att_mnemonic", set_intel_mnemonic, 0},
993 {"allow_index_reg", set_allow_index_reg, 1},
994 {"disallow_index_reg", set_allow_index_reg, 0},
995 {"sse_check", set_check, 0},
996 {"operand_check", set_check, 1},
997 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
998 {"largecomm", handle_large_common, 0},
999 #else
1000 {"file", (void (*) (int)) dwarf2_directive_file, 0},
1001 {"loc", dwarf2_directive_loc, 0},
1002 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1003 #endif
1004 #ifdef TE_PE
1005 {"secrel32", pe_directive_secrel, 0},
1006 #endif
1007 {0, 0, 0}
1008 };
1009
1010 /* For interface with expression (). */
1011 extern char *input_line_pointer;
1012
1013 /* Hash table for instruction mnemonic lookup. */
1014 static struct hash_control *op_hash;
1015
1016 /* Hash table for register lookup. */
1017 static struct hash_control *reg_hash;
1018 \f
1019 void
1020 i386_align_code (fragS *fragP, int count)
1021 {
1022 /* Various efficient no-op patterns for aligning code labels.
1023 Note: Don't try to assemble the instructions in the comments.
1024 0L and 0w are not legal. */
1025 static const char f32_1[] =
1026 {0x90}; /* nop */
1027 static const char f32_2[] =
1028 {0x66,0x90}; /* xchg %ax,%ax */
1029 static const char f32_3[] =
1030 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1031 static const char f32_4[] =
1032 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1033 static const char f32_5[] =
1034 {0x90, /* nop */
1035 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1036 static const char f32_6[] =
1037 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1038 static const char f32_7[] =
1039 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1040 static const char f32_8[] =
1041 {0x90, /* nop */
1042 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1043 static const char f32_9[] =
1044 {0x89,0xf6, /* movl %esi,%esi */
1045 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1046 static const char f32_10[] =
1047 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1048 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1049 static const char f32_11[] =
1050 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1051 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1052 static const char f32_12[] =
1053 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1054 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1055 static const char f32_13[] =
1056 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1057 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1058 static const char f32_14[] =
1059 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1060 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1061 static const char f16_3[] =
1062 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1063 static const char f16_4[] =
1064 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1065 static const char f16_5[] =
1066 {0x90, /* nop */
1067 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1068 static const char f16_6[] =
1069 {0x89,0xf6, /* mov %si,%si */
1070 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1071 static const char f16_7[] =
1072 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1073 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1074 static const char f16_8[] =
1075 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1076 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1077 static const char jump_31[] =
1078 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1079 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1080 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1081 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1082 static const char *const f32_patt[] = {
1083 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1084 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1085 };
1086 static const char *const f16_patt[] = {
1087 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1088 };
1089 /* nopl (%[re]ax) */
1090 static const char alt_3[] =
1091 {0x0f,0x1f,0x00};
1092 /* nopl 0(%[re]ax) */
1093 static const char alt_4[] =
1094 {0x0f,0x1f,0x40,0x00};
1095 /* nopl 0(%[re]ax,%[re]ax,1) */
1096 static const char alt_5[] =
1097 {0x0f,0x1f,0x44,0x00,0x00};
1098 /* nopw 0(%[re]ax,%[re]ax,1) */
1099 static const char alt_6[] =
1100 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1101 /* nopl 0L(%[re]ax) */
1102 static const char alt_7[] =
1103 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1104 /* nopl 0L(%[re]ax,%[re]ax,1) */
1105 static const char alt_8[] =
1106 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1107 /* nopw 0L(%[re]ax,%[re]ax,1) */
1108 static const char alt_9[] =
1109 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1110 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1111 static const char alt_10[] =
1112 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1113 /* data16
1114 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1115 static const char alt_long_11[] =
1116 {0x66,
1117 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1118 /* data16
1119 data16
1120 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1121 static const char alt_long_12[] =
1122 {0x66,
1123 0x66,
1124 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1125 /* data16
1126 data16
1127 data16
1128 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1129 static const char alt_long_13[] =
1130 {0x66,
1131 0x66,
1132 0x66,
1133 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1134 /* data16
1135 data16
1136 data16
1137 data16
1138 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1139 static const char alt_long_14[] =
1140 {0x66,
1141 0x66,
1142 0x66,
1143 0x66,
1144 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1145 /* data16
1146 data16
1147 data16
1148 data16
1149 data16
1150 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1151 static const char alt_long_15[] =
1152 {0x66,
1153 0x66,
1154 0x66,
1155 0x66,
1156 0x66,
1157 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1158 /* nopl 0(%[re]ax,%[re]ax,1)
1159 nopw 0(%[re]ax,%[re]ax,1) */
1160 static const char alt_short_11[] =
1161 {0x0f,0x1f,0x44,0x00,0x00,
1162 0x66,0x0f,0x1f,0x44,0x00,0x00};
1163 /* nopw 0(%[re]ax,%[re]ax,1)
1164 nopw 0(%[re]ax,%[re]ax,1) */
1165 static const char alt_short_12[] =
1166 {0x66,0x0f,0x1f,0x44,0x00,0x00,
1167 0x66,0x0f,0x1f,0x44,0x00,0x00};
1168 /* nopw 0(%[re]ax,%[re]ax,1)
1169 nopl 0L(%[re]ax) */
1170 static const char alt_short_13[] =
1171 {0x66,0x0f,0x1f,0x44,0x00,0x00,
1172 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1173 /* nopl 0L(%[re]ax)
1174 nopl 0L(%[re]ax) */
1175 static const char alt_short_14[] =
1176 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
1177 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1178 /* nopl 0L(%[re]ax)
1179 nopl 0L(%[re]ax,%[re]ax,1) */
1180 static const char alt_short_15[] =
1181 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
1182 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1183 static const char *const alt_short_patt[] = {
1184 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1185 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
1186 alt_short_14, alt_short_15
1187 };
1188 static const char *const alt_long_patt[] = {
1189 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1190 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
1191 alt_long_14, alt_long_15
1192 };
1193
1194 /* Only align for at least a positive non-zero boundary. */
1195 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1196 return;
1197
1198 /* We need to decide which NOP sequence to use for 32bit and
1199 64bit. When -mtune= is used:
1200
1201 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1202 PROCESSOR_GENERIC32, f32_patt will be used.
1203 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
1204 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_COREI7, and
1205 PROCESSOR_GENERIC64, alt_long_patt will be used.
1206 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
1207 PROCESSOR_AMDFAM10, PROCESSOR_BD and PROCESSOR_BT, alt_short_patt
1208 will be used.
1209
1210 When -mtune= isn't used, alt_long_patt will be used if
1211 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1212 be used.
1213
1214 When -march= or .arch is used, we can't use anything beyond
1215 cpu_arch_isa_flags. */
1216
1217 if (flag_code == CODE_16BIT)
1218 {
1219 if (count > 8)
1220 {
1221 memcpy (fragP->fr_literal + fragP->fr_fix,
1222 jump_31, count);
1223 /* Adjust jump offset. */
1224 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1225 }
1226 else
1227 memcpy (fragP->fr_literal + fragP->fr_fix,
1228 f16_patt[count - 1], count);
1229 }
1230 else
1231 {
1232 const char *const *patt = NULL;
1233
1234 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1235 {
1236 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1237 switch (cpu_arch_tune)
1238 {
1239 case PROCESSOR_UNKNOWN:
1240 /* We use cpu_arch_isa_flags to check if we SHOULD
1241 optimize with nops. */
1242 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1243 patt = alt_long_patt;
1244 else
1245 patt = f32_patt;
1246 break;
1247 case PROCESSOR_PENTIUM4:
1248 case PROCESSOR_NOCONA:
1249 case PROCESSOR_CORE:
1250 case PROCESSOR_CORE2:
1251 case PROCESSOR_COREI7:
1252 case PROCESSOR_L1OM:
1253 case PROCESSOR_K1OM:
1254 case PROCESSOR_GENERIC64:
1255 patt = alt_long_patt;
1256 break;
1257 case PROCESSOR_K6:
1258 case PROCESSOR_ATHLON:
1259 case PROCESSOR_K8:
1260 case PROCESSOR_AMDFAM10:
1261 case PROCESSOR_BD:
1262 case PROCESSOR_BT:
1263 patt = alt_short_patt;
1264 break;
1265 case PROCESSOR_I386:
1266 case PROCESSOR_I486:
1267 case PROCESSOR_PENTIUM:
1268 case PROCESSOR_PENTIUMPRO:
1269 case PROCESSOR_GENERIC32:
1270 patt = f32_patt;
1271 break;
1272 }
1273 }
1274 else
1275 {
1276 switch (fragP->tc_frag_data.tune)
1277 {
1278 case PROCESSOR_UNKNOWN:
1279 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1280 PROCESSOR_UNKNOWN. */
1281 abort ();
1282 break;
1283
1284 case PROCESSOR_I386:
1285 case PROCESSOR_I486:
1286 case PROCESSOR_PENTIUM:
1287 case PROCESSOR_K6:
1288 case PROCESSOR_ATHLON:
1289 case PROCESSOR_K8:
1290 case PROCESSOR_AMDFAM10:
1291 case PROCESSOR_BD:
1292 case PROCESSOR_BT:
1293 case PROCESSOR_GENERIC32:
1294 /* We use cpu_arch_isa_flags to check if we CAN optimize
1295 with nops. */
1296 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1297 patt = alt_short_patt;
1298 else
1299 patt = f32_patt;
1300 break;
1301 case PROCESSOR_PENTIUMPRO:
1302 case PROCESSOR_PENTIUM4:
1303 case PROCESSOR_NOCONA:
1304 case PROCESSOR_CORE:
1305 case PROCESSOR_CORE2:
1306 case PROCESSOR_COREI7:
1307 case PROCESSOR_L1OM:
1308 case PROCESSOR_K1OM:
1309 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1310 patt = alt_long_patt;
1311 else
1312 patt = f32_patt;
1313 break;
1314 case PROCESSOR_GENERIC64:
1315 patt = alt_long_patt;
1316 break;
1317 }
1318 }
1319
1320 if (patt == f32_patt)
1321 {
1322 /* If the padding is less than 15 bytes, we use the normal
1323 ones. Otherwise, we use a jump instruction and adjust
1324 its offset. */
1325 int limit;
1326
1327 /* For 64bit, the limit is 3 bytes. */
1328 if (flag_code == CODE_64BIT
1329 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1330 limit = 3;
1331 else
1332 limit = 15;
1333 if (count < limit)
1334 memcpy (fragP->fr_literal + fragP->fr_fix,
1335 patt[count - 1], count);
1336 else
1337 {
1338 memcpy (fragP->fr_literal + fragP->fr_fix,
1339 jump_31, count);
1340 /* Adjust jump offset. */
1341 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1342 }
1343 }
1344 else
1345 {
1346 /* Maximum length of an instruction is 15 byte. If the
1347 padding is greater than 15 bytes and we don't use jump,
1348 we have to break it into smaller pieces. */
1349 int padding = count;
1350 while (padding > 15)
1351 {
1352 padding -= 15;
1353 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1354 patt [14], 15);
1355 }
1356
1357 if (padding)
1358 memcpy (fragP->fr_literal + fragP->fr_fix,
1359 patt [padding - 1], padding);
1360 }
1361 }
1362 fragP->fr_var = count;
1363 }
1364
1365 static INLINE int
1366 operand_type_all_zero (const union i386_operand_type *x)
1367 {
1368 switch (ARRAY_SIZE(x->array))
1369 {
1370 case 3:
1371 if (x->array[2])
1372 return 0;
1373 case 2:
1374 if (x->array[1])
1375 return 0;
1376 case 1:
1377 return !x->array[0];
1378 default:
1379 abort ();
1380 }
1381 }
1382
1383 static INLINE void
1384 operand_type_set (union i386_operand_type *x, unsigned int v)
1385 {
1386 switch (ARRAY_SIZE(x->array))
1387 {
1388 case 3:
1389 x->array[2] = v;
1390 case 2:
1391 x->array[1] = v;
1392 case 1:
1393 x->array[0] = v;
1394 break;
1395 default:
1396 abort ();
1397 }
1398 }
1399
1400 static INLINE int
1401 operand_type_equal (const union i386_operand_type *x,
1402 const union i386_operand_type *y)
1403 {
1404 switch (ARRAY_SIZE(x->array))
1405 {
1406 case 3:
1407 if (x->array[2] != y->array[2])
1408 return 0;
1409 case 2:
1410 if (x->array[1] != y->array[1])
1411 return 0;
1412 case 1:
1413 return x->array[0] == y->array[0];
1414 break;
1415 default:
1416 abort ();
1417 }
1418 }
1419
1420 static INLINE int
1421 cpu_flags_all_zero (const union i386_cpu_flags *x)
1422 {
1423 switch (ARRAY_SIZE(x->array))
1424 {
1425 case 3:
1426 if (x->array[2])
1427 return 0;
1428 case 2:
1429 if (x->array[1])
1430 return 0;
1431 case 1:
1432 return !x->array[0];
1433 default:
1434 abort ();
1435 }
1436 }
1437
1438 static INLINE void
1439 cpu_flags_set (union i386_cpu_flags *x, unsigned int v)
1440 {
1441 switch (ARRAY_SIZE(x->array))
1442 {
1443 case 3:
1444 x->array[2] = v;
1445 case 2:
1446 x->array[1] = v;
1447 case 1:
1448 x->array[0] = v;
1449 break;
1450 default:
1451 abort ();
1452 }
1453 }
1454
1455 static INLINE int
1456 cpu_flags_equal (const union i386_cpu_flags *x,
1457 const union i386_cpu_flags *y)
1458 {
1459 switch (ARRAY_SIZE(x->array))
1460 {
1461 case 3:
1462 if (x->array[2] != y->array[2])
1463 return 0;
1464 case 2:
1465 if (x->array[1] != y->array[1])
1466 return 0;
1467 case 1:
1468 return x->array[0] == y->array[0];
1469 break;
1470 default:
1471 abort ();
1472 }
1473 }
1474
1475 static INLINE int
1476 cpu_flags_check_cpu64 (i386_cpu_flags f)
1477 {
1478 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1479 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1480 }
1481
1482 static INLINE i386_cpu_flags
1483 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1484 {
1485 switch (ARRAY_SIZE (x.array))
1486 {
1487 case 3:
1488 x.array [2] &= y.array [2];
1489 case 2:
1490 x.array [1] &= y.array [1];
1491 case 1:
1492 x.array [0] &= y.array [0];
1493 break;
1494 default:
1495 abort ();
1496 }
1497 return x;
1498 }
1499
1500 static INLINE i386_cpu_flags
1501 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1502 {
1503 switch (ARRAY_SIZE (x.array))
1504 {
1505 case 3:
1506 x.array [2] |= y.array [2];
1507 case 2:
1508 x.array [1] |= y.array [1];
1509 case 1:
1510 x.array [0] |= y.array [0];
1511 break;
1512 default:
1513 abort ();
1514 }
1515 return x;
1516 }
1517
1518 static INLINE i386_cpu_flags
1519 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1520 {
1521 switch (ARRAY_SIZE (x.array))
1522 {
1523 case 3:
1524 x.array [2] &= ~y.array [2];
1525 case 2:
1526 x.array [1] &= ~y.array [1];
1527 case 1:
1528 x.array [0] &= ~y.array [0];
1529 break;
1530 default:
1531 abort ();
1532 }
1533 return x;
1534 }
1535
1536 #define CPU_FLAGS_ARCH_MATCH 0x1
1537 #define CPU_FLAGS_64BIT_MATCH 0x2
1538 #define CPU_FLAGS_AES_MATCH 0x4
1539 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1540 #define CPU_FLAGS_AVX_MATCH 0x10
1541
1542 #define CPU_FLAGS_32BIT_MATCH \
1543 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1544 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1545 #define CPU_FLAGS_PERFECT_MATCH \
1546 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1547
1548 /* Return CPU flags match bits. */
1549
1550 static int
1551 cpu_flags_match (const insn_template *t)
1552 {
1553 i386_cpu_flags x = t->cpu_flags;
1554 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1555
1556 x.bitfield.cpu64 = 0;
1557 x.bitfield.cpuno64 = 0;
1558
1559 if (cpu_flags_all_zero (&x))
1560 {
1561 /* This instruction is available on all archs. */
1562 match |= CPU_FLAGS_32BIT_MATCH;
1563 }
1564 else
1565 {
1566 /* This instruction is available only on some archs. */
1567 i386_cpu_flags cpu = cpu_arch_flags;
1568
1569 cpu.bitfield.cpu64 = 0;
1570 cpu.bitfield.cpuno64 = 0;
1571 cpu = cpu_flags_and (x, cpu);
1572 if (!cpu_flags_all_zero (&cpu))
1573 {
1574 if (x.bitfield.cpuavx)
1575 {
1576 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1577 if (cpu.bitfield.cpuavx)
1578 {
1579 /* Check SSE2AVX. */
1580 if (!t->opcode_modifier.sse2avx|| sse2avx)
1581 {
1582 match |= (CPU_FLAGS_ARCH_MATCH
1583 | CPU_FLAGS_AVX_MATCH);
1584 /* Check AES. */
1585 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1586 match |= CPU_FLAGS_AES_MATCH;
1587 /* Check PCLMUL. */
1588 if (!x.bitfield.cpupclmul
1589 || cpu.bitfield.cpupclmul)
1590 match |= CPU_FLAGS_PCLMUL_MATCH;
1591 }
1592 }
1593 else
1594 match |= CPU_FLAGS_ARCH_MATCH;
1595 }
1596 else
1597 match |= CPU_FLAGS_32BIT_MATCH;
1598 }
1599 }
1600 return match;
1601 }
1602
1603 static INLINE i386_operand_type
1604 operand_type_and (i386_operand_type x, i386_operand_type y)
1605 {
1606 switch (ARRAY_SIZE (x.array))
1607 {
1608 case 3:
1609 x.array [2] &= y.array [2];
1610 case 2:
1611 x.array [1] &= y.array [1];
1612 case 1:
1613 x.array [0] &= y.array [0];
1614 break;
1615 default:
1616 abort ();
1617 }
1618 return x;
1619 }
1620
1621 static INLINE i386_operand_type
1622 operand_type_or (i386_operand_type x, i386_operand_type y)
1623 {
1624 switch (ARRAY_SIZE (x.array))
1625 {
1626 case 3:
1627 x.array [2] |= y.array [2];
1628 case 2:
1629 x.array [1] |= y.array [1];
1630 case 1:
1631 x.array [0] |= y.array [0];
1632 break;
1633 default:
1634 abort ();
1635 }
1636 return x;
1637 }
1638
1639 static INLINE i386_operand_type
1640 operand_type_xor (i386_operand_type x, i386_operand_type y)
1641 {
1642 switch (ARRAY_SIZE (x.array))
1643 {
1644 case 3:
1645 x.array [2] ^= y.array [2];
1646 case 2:
1647 x.array [1] ^= y.array [1];
1648 case 1:
1649 x.array [0] ^= y.array [0];
1650 break;
1651 default:
1652 abort ();
1653 }
1654 return x;
1655 }
1656
1657 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1658 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1659 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1660 static const i386_operand_type inoutportreg
1661 = OPERAND_TYPE_INOUTPORTREG;
1662 static const i386_operand_type reg16_inoutportreg
1663 = OPERAND_TYPE_REG16_INOUTPORTREG;
1664 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1665 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1666 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1667 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1668 static const i386_operand_type anydisp
1669 = OPERAND_TYPE_ANYDISP;
1670 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1671 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1672 static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1673 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1674 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1675 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1676 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1677 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1678 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1679 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1680 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1681 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1682 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1683 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1684
1685 enum operand_type
1686 {
1687 reg,
1688 imm,
1689 disp,
1690 anymem
1691 };
1692
1693 static INLINE int
1694 operand_type_check (i386_operand_type t, enum operand_type c)
1695 {
1696 switch (c)
1697 {
1698 case reg:
1699 return (t.bitfield.reg8
1700 || t.bitfield.reg16
1701 || t.bitfield.reg32
1702 || t.bitfield.reg64);
1703
1704 case imm:
1705 return (t.bitfield.imm8
1706 || t.bitfield.imm8s
1707 || t.bitfield.imm16
1708 || t.bitfield.imm32
1709 || t.bitfield.imm32s
1710 || t.bitfield.imm64);
1711
1712 case disp:
1713 return (t.bitfield.disp8
1714 || t.bitfield.disp16
1715 || t.bitfield.disp32
1716 || t.bitfield.disp32s
1717 || t.bitfield.disp64);
1718
1719 case anymem:
1720 return (t.bitfield.disp8
1721 || t.bitfield.disp16
1722 || t.bitfield.disp32
1723 || t.bitfield.disp32s
1724 || t.bitfield.disp64
1725 || t.bitfield.baseindex);
1726
1727 default:
1728 abort ();
1729 }
1730
1731 return 0;
1732 }
1733
1734 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1735 operand J for instruction template T. */
1736
1737 static INLINE int
1738 match_reg_size (const insn_template *t, unsigned int j)
1739 {
1740 return !((i.types[j].bitfield.byte
1741 && !t->operand_types[j].bitfield.byte)
1742 || (i.types[j].bitfield.word
1743 && !t->operand_types[j].bitfield.word)
1744 || (i.types[j].bitfield.dword
1745 && !t->operand_types[j].bitfield.dword)
1746 || (i.types[j].bitfield.qword
1747 && !t->operand_types[j].bitfield.qword));
1748 }
1749
1750 /* Return 1 if there is no conflict in any size on operand J for
1751 instruction template T. */
1752
1753 static INLINE int
1754 match_mem_size (const insn_template *t, unsigned int j)
1755 {
1756 return (match_reg_size (t, j)
1757 && !((i.types[j].bitfield.unspecified
1758 && !t->operand_types[j].bitfield.unspecified)
1759 || (i.types[j].bitfield.fword
1760 && !t->operand_types[j].bitfield.fword)
1761 || (i.types[j].bitfield.tbyte
1762 && !t->operand_types[j].bitfield.tbyte)
1763 || (i.types[j].bitfield.xmmword
1764 && !t->operand_types[j].bitfield.xmmword)
1765 || (i.types[j].bitfield.ymmword
1766 && !t->operand_types[j].bitfield.ymmword)
1767 || (i.types[j].bitfield.zmmword
1768 && !t->operand_types[j].bitfield.zmmword)));
1769 }
1770
1771 /* Return 1 if there is no size conflict on any operands for
1772 instruction template T. */
1773
1774 static INLINE int
1775 operand_size_match (const insn_template *t)
1776 {
1777 unsigned int j;
1778 int match = 1;
1779
1780 /* Don't check jump instructions. */
1781 if (t->opcode_modifier.jump
1782 || t->opcode_modifier.jumpbyte
1783 || t->opcode_modifier.jumpdword
1784 || t->opcode_modifier.jumpintersegment)
1785 return match;
1786
1787 /* Check memory and accumulator operand size. */
1788 for (j = 0; j < i.operands; j++)
1789 {
1790 if (t->operand_types[j].bitfield.anysize)
1791 continue;
1792
1793 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1794 {
1795 match = 0;
1796 break;
1797 }
1798
1799 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1800 {
1801 match = 0;
1802 break;
1803 }
1804 }
1805
1806 if (match)
1807 return match;
1808 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1809 {
1810 mismatch:
1811 i.error = operand_size_mismatch;
1812 return 0;
1813 }
1814
1815 /* Check reverse. */
1816 gas_assert (i.operands == 2);
1817
1818 match = 1;
1819 for (j = 0; j < 2; j++)
1820 {
1821 if (t->operand_types[j].bitfield.acc
1822 && !match_reg_size (t, j ? 0 : 1))
1823 goto mismatch;
1824
1825 if (i.types[j].bitfield.mem
1826 && !match_mem_size (t, j ? 0 : 1))
1827 goto mismatch;
1828 }
1829
1830 return match;
1831 }
1832
1833 static INLINE int
1834 operand_type_match (i386_operand_type overlap,
1835 i386_operand_type given)
1836 {
1837 i386_operand_type temp = overlap;
1838
1839 temp.bitfield.jumpabsolute = 0;
1840 temp.bitfield.unspecified = 0;
1841 temp.bitfield.byte = 0;
1842 temp.bitfield.word = 0;
1843 temp.bitfield.dword = 0;
1844 temp.bitfield.fword = 0;
1845 temp.bitfield.qword = 0;
1846 temp.bitfield.tbyte = 0;
1847 temp.bitfield.xmmword = 0;
1848 temp.bitfield.ymmword = 0;
1849 temp.bitfield.zmmword = 0;
1850 if (operand_type_all_zero (&temp))
1851 goto mismatch;
1852
1853 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1854 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1855 return 1;
1856
1857 mismatch:
1858 i.error = operand_type_mismatch;
1859 return 0;
1860 }
1861
1862 /* If given types g0 and g1 are registers they must be of the same type
1863 unless the expected operand type register overlap is null.
1864 Note that Acc in a template matches every size of reg. */
1865
1866 static INLINE int
1867 operand_type_register_match (i386_operand_type m0,
1868 i386_operand_type g0,
1869 i386_operand_type t0,
1870 i386_operand_type m1,
1871 i386_operand_type g1,
1872 i386_operand_type t1)
1873 {
1874 if (!operand_type_check (g0, reg))
1875 return 1;
1876
1877 if (!operand_type_check (g1, reg))
1878 return 1;
1879
1880 if (g0.bitfield.reg8 == g1.bitfield.reg8
1881 && g0.bitfield.reg16 == g1.bitfield.reg16
1882 && g0.bitfield.reg32 == g1.bitfield.reg32
1883 && g0.bitfield.reg64 == g1.bitfield.reg64)
1884 return 1;
1885
1886 if (m0.bitfield.acc)
1887 {
1888 t0.bitfield.reg8 = 1;
1889 t0.bitfield.reg16 = 1;
1890 t0.bitfield.reg32 = 1;
1891 t0.bitfield.reg64 = 1;
1892 }
1893
1894 if (m1.bitfield.acc)
1895 {
1896 t1.bitfield.reg8 = 1;
1897 t1.bitfield.reg16 = 1;
1898 t1.bitfield.reg32 = 1;
1899 t1.bitfield.reg64 = 1;
1900 }
1901
1902 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1903 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1904 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1905 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1906 return 1;
1907
1908 i.error = register_type_mismatch;
1909
1910 return 0;
1911 }
1912
1913 static INLINE unsigned int
1914 register_number (const reg_entry *r)
1915 {
1916 unsigned int nr = r->reg_num;
1917
1918 if (r->reg_flags & RegRex)
1919 nr += 8;
1920
1921 return nr;
1922 }
1923
1924 static INLINE unsigned int
1925 mode_from_disp_size (i386_operand_type t)
1926 {
1927 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
1928 return 1;
1929 else if (t.bitfield.disp16
1930 || t.bitfield.disp32
1931 || t.bitfield.disp32s)
1932 return 2;
1933 else
1934 return 0;
1935 }
1936
1937 static INLINE int
1938 fits_in_signed_byte (offsetT num)
1939 {
1940 return (num >= -128) && (num <= 127);
1941 }
1942
1943 static INLINE int
1944 fits_in_unsigned_byte (offsetT num)
1945 {
1946 return (num & 0xff) == num;
1947 }
1948
1949 static INLINE int
1950 fits_in_unsigned_word (offsetT num)
1951 {
1952 return (num & 0xffff) == num;
1953 }
1954
1955 static INLINE int
1956 fits_in_signed_word (offsetT num)
1957 {
1958 return (-32768 <= num) && (num <= 32767);
1959 }
1960
1961 static INLINE int
1962 fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
1963 {
1964 #ifndef BFD64
1965 return 1;
1966 #else
1967 return (!(((offsetT) -1 << 31) & num)
1968 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
1969 #endif
1970 } /* fits_in_signed_long() */
1971
1972 static INLINE int
1973 fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
1974 {
1975 #ifndef BFD64
1976 return 1;
1977 #else
1978 return (num & (((offsetT) 2 << 31) - 1)) == num;
1979 #endif
1980 } /* fits_in_unsigned_long() */
1981
1982 static INLINE int
1983 fits_in_vec_disp8 (offsetT num)
1984 {
1985 int shift = i.memshift;
1986 unsigned int mask;
1987
1988 if (shift == -1)
1989 abort ();
1990
1991 mask = (1 << shift) - 1;
1992
1993 /* Return 0 if NUM isn't properly aligned. */
1994 if ((num & mask))
1995 return 0;
1996
1997 /* Check if NUM will fit in 8bit after shift. */
1998 return fits_in_signed_byte (num >> shift);
1999 }
2000
2001 static INLINE int
2002 fits_in_imm4 (offsetT num)
2003 {
2004 return (num & 0xf) == num;
2005 }
2006
2007 static i386_operand_type
2008 smallest_imm_type (offsetT num)
2009 {
2010 i386_operand_type t;
2011
2012 operand_type_set (&t, 0);
2013 t.bitfield.imm64 = 1;
2014
2015 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2016 {
2017 /* This code is disabled on the 486 because all the Imm1 forms
2018 in the opcode table are slower on the i486. They're the
2019 versions with the implicitly specified single-position
2020 displacement, which has another syntax if you really want to
2021 use that form. */
2022 t.bitfield.imm1 = 1;
2023 t.bitfield.imm8 = 1;
2024 t.bitfield.imm8s = 1;
2025 t.bitfield.imm16 = 1;
2026 t.bitfield.imm32 = 1;
2027 t.bitfield.imm32s = 1;
2028 }
2029 else if (fits_in_signed_byte (num))
2030 {
2031 t.bitfield.imm8 = 1;
2032 t.bitfield.imm8s = 1;
2033 t.bitfield.imm16 = 1;
2034 t.bitfield.imm32 = 1;
2035 t.bitfield.imm32s = 1;
2036 }
2037 else if (fits_in_unsigned_byte (num))
2038 {
2039 t.bitfield.imm8 = 1;
2040 t.bitfield.imm16 = 1;
2041 t.bitfield.imm32 = 1;
2042 t.bitfield.imm32s = 1;
2043 }
2044 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2045 {
2046 t.bitfield.imm16 = 1;
2047 t.bitfield.imm32 = 1;
2048 t.bitfield.imm32s = 1;
2049 }
2050 else if (fits_in_signed_long (num))
2051 {
2052 t.bitfield.imm32 = 1;
2053 t.bitfield.imm32s = 1;
2054 }
2055 else if (fits_in_unsigned_long (num))
2056 t.bitfield.imm32 = 1;
2057
2058 return t;
2059 }
2060
2061 static offsetT
2062 offset_in_range (offsetT val, int size)
2063 {
2064 addressT mask;
2065
2066 switch (size)
2067 {
2068 case 1: mask = ((addressT) 1 << 8) - 1; break;
2069 case 2: mask = ((addressT) 1 << 16) - 1; break;
2070 case 4: mask = ((addressT) 2 << 31) - 1; break;
2071 #ifdef BFD64
2072 case 8: mask = ((addressT) 2 << 63) - 1; break;
2073 #endif
2074 default: abort ();
2075 }
2076
2077 #ifdef BFD64
2078 /* If BFD64, sign extend val for 32bit address mode. */
2079 if (flag_code != CODE_64BIT
2080 || i.prefix[ADDR_PREFIX])
2081 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2082 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2083 #endif
2084
2085 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2086 {
2087 char buf1[40], buf2[40];
2088
2089 sprint_value (buf1, val);
2090 sprint_value (buf2, val & mask);
2091 as_warn (_("%s shortened to %s"), buf1, buf2);
2092 }
2093 return val & mask;
2094 }
2095
2096 enum PREFIX_GROUP
2097 {
2098 PREFIX_EXIST = 0,
2099 PREFIX_LOCK,
2100 PREFIX_REP,
2101 PREFIX_OTHER
2102 };
2103
2104 /* Returns
2105 a. PREFIX_EXIST if attempting to add a prefix where one from the
2106 same class already exists.
2107 b. PREFIX_LOCK if lock prefix is added.
2108 c. PREFIX_REP if rep/repne prefix is added.
2109 d. PREFIX_OTHER if other prefix is added.
2110 */
2111
2112 static enum PREFIX_GROUP
2113 add_prefix (unsigned int prefix)
2114 {
2115 enum PREFIX_GROUP ret = PREFIX_OTHER;
2116 unsigned int q;
2117
2118 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2119 && flag_code == CODE_64BIT)
2120 {
2121 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2122 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2123 && (prefix & (REX_R | REX_X | REX_B))))
2124 ret = PREFIX_EXIST;
2125 q = REX_PREFIX;
2126 }
2127 else
2128 {
2129 switch (prefix)
2130 {
2131 default:
2132 abort ();
2133
2134 case CS_PREFIX_OPCODE:
2135 case DS_PREFIX_OPCODE:
2136 case ES_PREFIX_OPCODE:
2137 case FS_PREFIX_OPCODE:
2138 case GS_PREFIX_OPCODE:
2139 case SS_PREFIX_OPCODE:
2140 q = SEG_PREFIX;
2141 break;
2142
2143 case REPNE_PREFIX_OPCODE:
2144 case REPE_PREFIX_OPCODE:
2145 q = REP_PREFIX;
2146 ret = PREFIX_REP;
2147 break;
2148
2149 case LOCK_PREFIX_OPCODE:
2150 q = LOCK_PREFIX;
2151 ret = PREFIX_LOCK;
2152 break;
2153
2154 case FWAIT_OPCODE:
2155 q = WAIT_PREFIX;
2156 break;
2157
2158 case ADDR_PREFIX_OPCODE:
2159 q = ADDR_PREFIX;
2160 break;
2161
2162 case DATA_PREFIX_OPCODE:
2163 q = DATA_PREFIX;
2164 break;
2165 }
2166 if (i.prefix[q] != 0)
2167 ret = PREFIX_EXIST;
2168 }
2169
2170 if (ret)
2171 {
2172 if (!i.prefix[q])
2173 ++i.prefixes;
2174 i.prefix[q] |= prefix;
2175 }
2176 else
2177 as_bad (_("same type of prefix used twice"));
2178
2179 return ret;
2180 }
2181
2182 static void
2183 update_code_flag (int value, int check)
2184 {
2185 PRINTF_LIKE ((*as_error));
2186
2187 flag_code = (enum flag_code) value;
2188 if (flag_code == CODE_64BIT)
2189 {
2190 cpu_arch_flags.bitfield.cpu64 = 1;
2191 cpu_arch_flags.bitfield.cpuno64 = 0;
2192 }
2193 else
2194 {
2195 cpu_arch_flags.bitfield.cpu64 = 0;
2196 cpu_arch_flags.bitfield.cpuno64 = 1;
2197 }
2198 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2199 {
2200 if (check)
2201 as_error = as_fatal;
2202 else
2203 as_error = as_bad;
2204 (*as_error) (_("64bit mode not supported on `%s'."),
2205 cpu_arch_name ? cpu_arch_name : default_arch);
2206 }
2207 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2208 {
2209 if (check)
2210 as_error = as_fatal;
2211 else
2212 as_error = as_bad;
2213 (*as_error) (_("32bit mode not supported on `%s'."),
2214 cpu_arch_name ? cpu_arch_name : default_arch);
2215 }
2216 stackop_size = '\0';
2217 }
2218
2219 static void
2220 set_code_flag (int value)
2221 {
2222 update_code_flag (value, 0);
2223 }
2224
2225 static void
2226 set_16bit_gcc_code_flag (int new_code_flag)
2227 {
2228 flag_code = (enum flag_code) new_code_flag;
2229 if (flag_code != CODE_16BIT)
2230 abort ();
2231 cpu_arch_flags.bitfield.cpu64 = 0;
2232 cpu_arch_flags.bitfield.cpuno64 = 1;
2233 stackop_size = LONG_MNEM_SUFFIX;
2234 }
2235
2236 static void
2237 set_intel_syntax (int syntax_flag)
2238 {
2239 /* Find out if register prefixing is specified. */
2240 int ask_naked_reg = 0;
2241
2242 SKIP_WHITESPACE ();
2243 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2244 {
2245 char *string = input_line_pointer;
2246 int e = get_symbol_end ();
2247
2248 if (strcmp (string, "prefix") == 0)
2249 ask_naked_reg = 1;
2250 else if (strcmp (string, "noprefix") == 0)
2251 ask_naked_reg = -1;
2252 else
2253 as_bad (_("bad argument to syntax directive."));
2254 *input_line_pointer = e;
2255 }
2256 demand_empty_rest_of_line ();
2257
2258 intel_syntax = syntax_flag;
2259
2260 if (ask_naked_reg == 0)
2261 allow_naked_reg = (intel_syntax
2262 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2263 else
2264 allow_naked_reg = (ask_naked_reg < 0);
2265
2266 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2267
2268 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2269 identifier_chars['$'] = intel_syntax ? '$' : 0;
2270 register_prefix = allow_naked_reg ? "" : "%";
2271 }
2272
2273 static void
2274 set_intel_mnemonic (int mnemonic_flag)
2275 {
2276 intel_mnemonic = mnemonic_flag;
2277 }
2278
2279 static void
2280 set_allow_index_reg (int flag)
2281 {
2282 allow_index_reg = flag;
2283 }
2284
2285 static void
2286 set_check (int what)
2287 {
2288 enum check_kind *kind;
2289 const char *str;
2290
2291 if (what)
2292 {
2293 kind = &operand_check;
2294 str = "operand";
2295 }
2296 else
2297 {
2298 kind = &sse_check;
2299 str = "sse";
2300 }
2301
2302 SKIP_WHITESPACE ();
2303
2304 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2305 {
2306 char *string = input_line_pointer;
2307 int e = get_symbol_end ();
2308
2309 if (strcmp (string, "none") == 0)
2310 *kind = check_none;
2311 else if (strcmp (string, "warning") == 0)
2312 *kind = check_warning;
2313 else if (strcmp (string, "error") == 0)
2314 *kind = check_error;
2315 else
2316 as_bad (_("bad argument to %s_check directive."), str);
2317 *input_line_pointer = e;
2318 }
2319 else
2320 as_bad (_("missing argument for %s_check directive"), str);
2321
2322 demand_empty_rest_of_line ();
2323 }
2324
2325 static void
2326 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2327 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2328 {
2329 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2330 static const char *arch;
2331
2332 /* Intel LIOM is only supported on ELF. */
2333 if (!IS_ELF)
2334 return;
2335
2336 if (!arch)
2337 {
2338 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2339 use default_arch. */
2340 arch = cpu_arch_name;
2341 if (!arch)
2342 arch = default_arch;
2343 }
2344
2345 /* If we are targeting Intel L1OM, we must enable it. */
2346 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2347 || new_flag.bitfield.cpul1om)
2348 return;
2349
2350 /* If we are targeting Intel K1OM, we must enable it. */
2351 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2352 || new_flag.bitfield.cpuk1om)
2353 return;
2354
2355 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2356 #endif
2357 }
2358
2359 static void
2360 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2361 {
2362 SKIP_WHITESPACE ();
2363
2364 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2365 {
2366 char *string = input_line_pointer;
2367 int e = get_symbol_end ();
2368 unsigned int j;
2369 i386_cpu_flags flags;
2370
2371 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2372 {
2373 if (strcmp (string, cpu_arch[j].name) == 0)
2374 {
2375 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2376
2377 if (*string != '.')
2378 {
2379 cpu_arch_name = cpu_arch[j].name;
2380 cpu_sub_arch_name = NULL;
2381 cpu_arch_flags = cpu_arch[j].flags;
2382 if (flag_code == CODE_64BIT)
2383 {
2384 cpu_arch_flags.bitfield.cpu64 = 1;
2385 cpu_arch_flags.bitfield.cpuno64 = 0;
2386 }
2387 else
2388 {
2389 cpu_arch_flags.bitfield.cpu64 = 0;
2390 cpu_arch_flags.bitfield.cpuno64 = 1;
2391 }
2392 cpu_arch_isa = cpu_arch[j].type;
2393 cpu_arch_isa_flags = cpu_arch[j].flags;
2394 if (!cpu_arch_tune_set)
2395 {
2396 cpu_arch_tune = cpu_arch_isa;
2397 cpu_arch_tune_flags = cpu_arch_isa_flags;
2398 }
2399 break;
2400 }
2401
2402 if (!cpu_arch[j].negated)
2403 flags = cpu_flags_or (cpu_arch_flags,
2404 cpu_arch[j].flags);
2405 else
2406 flags = cpu_flags_and_not (cpu_arch_flags,
2407 cpu_arch[j].flags);
2408 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2409 {
2410 if (cpu_sub_arch_name)
2411 {
2412 char *name = cpu_sub_arch_name;
2413 cpu_sub_arch_name = concat (name,
2414 cpu_arch[j].name,
2415 (const char *) NULL);
2416 free (name);
2417 }
2418 else
2419 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2420 cpu_arch_flags = flags;
2421 cpu_arch_isa_flags = flags;
2422 }
2423 *input_line_pointer = e;
2424 demand_empty_rest_of_line ();
2425 return;
2426 }
2427 }
2428 if (j >= ARRAY_SIZE (cpu_arch))
2429 as_bad (_("no such architecture: `%s'"), string);
2430
2431 *input_line_pointer = e;
2432 }
2433 else
2434 as_bad (_("missing cpu architecture"));
2435
2436 no_cond_jump_promotion = 0;
2437 if (*input_line_pointer == ','
2438 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2439 {
2440 char *string = ++input_line_pointer;
2441 int e = get_symbol_end ();
2442
2443 if (strcmp (string, "nojumps") == 0)
2444 no_cond_jump_promotion = 1;
2445 else if (strcmp (string, "jumps") == 0)
2446 ;
2447 else
2448 as_bad (_("no such architecture modifier: `%s'"), string);
2449
2450 *input_line_pointer = e;
2451 }
2452
2453 demand_empty_rest_of_line ();
2454 }
2455
2456 enum bfd_architecture
2457 i386_arch (void)
2458 {
2459 if (cpu_arch_isa == PROCESSOR_L1OM)
2460 {
2461 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2462 || flag_code != CODE_64BIT)
2463 as_fatal (_("Intel L1OM is 64bit ELF only"));
2464 return bfd_arch_l1om;
2465 }
2466 else if (cpu_arch_isa == PROCESSOR_K1OM)
2467 {
2468 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2469 || flag_code != CODE_64BIT)
2470 as_fatal (_("Intel K1OM is 64bit ELF only"));
2471 return bfd_arch_k1om;
2472 }
2473 else
2474 return bfd_arch_i386;
2475 }
2476
2477 unsigned long
2478 i386_mach (void)
2479 {
2480 if (!strncmp (default_arch, "x86_64", 6))
2481 {
2482 if (cpu_arch_isa == PROCESSOR_L1OM)
2483 {
2484 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2485 || default_arch[6] != '\0')
2486 as_fatal (_("Intel L1OM is 64bit ELF only"));
2487 return bfd_mach_l1om;
2488 }
2489 else if (cpu_arch_isa == PROCESSOR_K1OM)
2490 {
2491 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2492 || default_arch[6] != '\0')
2493 as_fatal (_("Intel K1OM is 64bit ELF only"));
2494 return bfd_mach_k1om;
2495 }
2496 else if (default_arch[6] == '\0')
2497 return bfd_mach_x86_64;
2498 else
2499 return bfd_mach_x64_32;
2500 }
2501 else if (!strcmp (default_arch, "i386"))
2502 return bfd_mach_i386_i386;
2503 else
2504 as_fatal (_("unknown architecture"));
2505 }
2506 \f
2507 void
2508 md_begin (void)
2509 {
2510 const char *hash_err;
2511
2512 /* Initialize op_hash hash table. */
2513 op_hash = hash_new ();
2514
2515 {
2516 const insn_template *optab;
2517 templates *core_optab;
2518
2519 /* Setup for loop. */
2520 optab = i386_optab;
2521 core_optab = (templates *) xmalloc (sizeof (templates));
2522 core_optab->start = optab;
2523
2524 while (1)
2525 {
2526 ++optab;
2527 if (optab->name == NULL
2528 || strcmp (optab->name, (optab - 1)->name) != 0)
2529 {
2530 /* different name --> ship out current template list;
2531 add to hash table; & begin anew. */
2532 core_optab->end = optab;
2533 hash_err = hash_insert (op_hash,
2534 (optab - 1)->name,
2535 (void *) core_optab);
2536 if (hash_err)
2537 {
2538 as_fatal (_("can't hash %s: %s"),
2539 (optab - 1)->name,
2540 hash_err);
2541 }
2542 if (optab->name == NULL)
2543 break;
2544 core_optab = (templates *) xmalloc (sizeof (templates));
2545 core_optab->start = optab;
2546 }
2547 }
2548 }
2549
2550 /* Initialize reg_hash hash table. */
2551 reg_hash = hash_new ();
2552 {
2553 const reg_entry *regtab;
2554 unsigned int regtab_size = i386_regtab_size;
2555
2556 for (regtab = i386_regtab; regtab_size--; regtab++)
2557 {
2558 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2559 if (hash_err)
2560 as_fatal (_("can't hash %s: %s"),
2561 regtab->reg_name,
2562 hash_err);
2563 }
2564 }
2565
2566 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2567 {
2568 int c;
2569 char *p;
2570
2571 for (c = 0; c < 256; c++)
2572 {
2573 if (ISDIGIT (c))
2574 {
2575 digit_chars[c] = c;
2576 mnemonic_chars[c] = c;
2577 register_chars[c] = c;
2578 operand_chars[c] = c;
2579 }
2580 else if (ISLOWER (c))
2581 {
2582 mnemonic_chars[c] = c;
2583 register_chars[c] = c;
2584 operand_chars[c] = c;
2585 }
2586 else if (ISUPPER (c))
2587 {
2588 mnemonic_chars[c] = TOLOWER (c);
2589 register_chars[c] = mnemonic_chars[c];
2590 operand_chars[c] = c;
2591 }
2592 else if (c == '{' || c == '}')
2593 operand_chars[c] = c;
2594
2595 if (ISALPHA (c) || ISDIGIT (c))
2596 identifier_chars[c] = c;
2597 else if (c >= 128)
2598 {
2599 identifier_chars[c] = c;
2600 operand_chars[c] = c;
2601 }
2602 }
2603
2604 #ifdef LEX_AT
2605 identifier_chars['@'] = '@';
2606 #endif
2607 #ifdef LEX_QM
2608 identifier_chars['?'] = '?';
2609 operand_chars['?'] = '?';
2610 #endif
2611 digit_chars['-'] = '-';
2612 mnemonic_chars['_'] = '_';
2613 mnemonic_chars['-'] = '-';
2614 mnemonic_chars['.'] = '.';
2615 identifier_chars['_'] = '_';
2616 identifier_chars['.'] = '.';
2617
2618 for (p = operand_special_chars; *p != '\0'; p++)
2619 operand_chars[(unsigned char) *p] = *p;
2620 }
2621
2622 if (flag_code == CODE_64BIT)
2623 {
2624 #if defined (OBJ_COFF) && defined (TE_PE)
2625 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2626 ? 32 : 16);
2627 #else
2628 x86_dwarf2_return_column = 16;
2629 #endif
2630 x86_cie_data_alignment = -8;
2631 }
2632 else
2633 {
2634 x86_dwarf2_return_column = 8;
2635 x86_cie_data_alignment = -4;
2636 }
2637 }
2638
2639 void
2640 i386_print_statistics (FILE *file)
2641 {
2642 hash_print_statistics (file, "i386 opcode", op_hash);
2643 hash_print_statistics (file, "i386 register", reg_hash);
2644 }
2645 \f
2646 #ifdef DEBUG386
2647
2648 /* Debugging routines for md_assemble. */
2649 static void pte (insn_template *);
2650 static void pt (i386_operand_type);
2651 static void pe (expressionS *);
2652 static void ps (symbolS *);
2653
2654 static void
2655 pi (char *line, i386_insn *x)
2656 {
2657 unsigned int j;
2658
2659 fprintf (stdout, "%s: template ", line);
2660 pte (&x->tm);
2661 fprintf (stdout, " address: base %s index %s scale %x\n",
2662 x->base_reg ? x->base_reg->reg_name : "none",
2663 x->index_reg ? x->index_reg->reg_name : "none",
2664 x->log2_scale_factor);
2665 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2666 x->rm.mode, x->rm.reg, x->rm.regmem);
2667 fprintf (stdout, " sib: base %x index %x scale %x\n",
2668 x->sib.base, x->sib.index, x->sib.scale);
2669 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2670 (x->rex & REX_W) != 0,
2671 (x->rex & REX_R) != 0,
2672 (x->rex & REX_X) != 0,
2673 (x->rex & REX_B) != 0);
2674 for (j = 0; j < x->operands; j++)
2675 {
2676 fprintf (stdout, " #%d: ", j + 1);
2677 pt (x->types[j]);
2678 fprintf (stdout, "\n");
2679 if (x->types[j].bitfield.reg8
2680 || x->types[j].bitfield.reg16
2681 || x->types[j].bitfield.reg32
2682 || x->types[j].bitfield.reg64
2683 || x->types[j].bitfield.regmmx
2684 || x->types[j].bitfield.regxmm
2685 || x->types[j].bitfield.regymm
2686 || x->types[j].bitfield.regzmm
2687 || x->types[j].bitfield.sreg2
2688 || x->types[j].bitfield.sreg3
2689 || x->types[j].bitfield.control
2690 || x->types[j].bitfield.debug
2691 || x->types[j].bitfield.test)
2692 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2693 if (operand_type_check (x->types[j], imm))
2694 pe (x->op[j].imms);
2695 if (operand_type_check (x->types[j], disp))
2696 pe (x->op[j].disps);
2697 }
2698 }
2699
2700 static void
2701 pte (insn_template *t)
2702 {
2703 unsigned int j;
2704 fprintf (stdout, " %d operands ", t->operands);
2705 fprintf (stdout, "opcode %x ", t->base_opcode);
2706 if (t->extension_opcode != None)
2707 fprintf (stdout, "ext %x ", t->extension_opcode);
2708 if (t->opcode_modifier.d)
2709 fprintf (stdout, "D");
2710 if (t->opcode_modifier.w)
2711 fprintf (stdout, "W");
2712 fprintf (stdout, "\n");
2713 for (j = 0; j < t->operands; j++)
2714 {
2715 fprintf (stdout, " #%d type ", j + 1);
2716 pt (t->operand_types[j]);
2717 fprintf (stdout, "\n");
2718 }
2719 }
2720
2721 static void
2722 pe (expressionS *e)
2723 {
2724 fprintf (stdout, " operation %d\n", e->X_op);
2725 fprintf (stdout, " add_number %ld (%lx)\n",
2726 (long) e->X_add_number, (long) e->X_add_number);
2727 if (e->X_add_symbol)
2728 {
2729 fprintf (stdout, " add_symbol ");
2730 ps (e->X_add_symbol);
2731 fprintf (stdout, "\n");
2732 }
2733 if (e->X_op_symbol)
2734 {
2735 fprintf (stdout, " op_symbol ");
2736 ps (e->X_op_symbol);
2737 fprintf (stdout, "\n");
2738 }
2739 }
2740
2741 static void
2742 ps (symbolS *s)
2743 {
2744 fprintf (stdout, "%s type %s%s",
2745 S_GET_NAME (s),
2746 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2747 segment_name (S_GET_SEGMENT (s)));
2748 }
2749
2750 static struct type_name
2751 {
2752 i386_operand_type mask;
2753 const char *name;
2754 }
2755 const type_names[] =
2756 {
2757 { OPERAND_TYPE_REG8, "r8" },
2758 { OPERAND_TYPE_REG16, "r16" },
2759 { OPERAND_TYPE_REG32, "r32" },
2760 { OPERAND_TYPE_REG64, "r64" },
2761 { OPERAND_TYPE_IMM8, "i8" },
2762 { OPERAND_TYPE_IMM8, "i8s" },
2763 { OPERAND_TYPE_IMM16, "i16" },
2764 { OPERAND_TYPE_IMM32, "i32" },
2765 { OPERAND_TYPE_IMM32S, "i32s" },
2766 { OPERAND_TYPE_IMM64, "i64" },
2767 { OPERAND_TYPE_IMM1, "i1" },
2768 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2769 { OPERAND_TYPE_DISP8, "d8" },
2770 { OPERAND_TYPE_DISP16, "d16" },
2771 { OPERAND_TYPE_DISP32, "d32" },
2772 { OPERAND_TYPE_DISP32S, "d32s" },
2773 { OPERAND_TYPE_DISP64, "d64" },
2774 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
2775 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2776 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2777 { OPERAND_TYPE_CONTROL, "control reg" },
2778 { OPERAND_TYPE_TEST, "test reg" },
2779 { OPERAND_TYPE_DEBUG, "debug reg" },
2780 { OPERAND_TYPE_FLOATREG, "FReg" },
2781 { OPERAND_TYPE_FLOATACC, "FAcc" },
2782 { OPERAND_TYPE_SREG2, "SReg2" },
2783 { OPERAND_TYPE_SREG3, "SReg3" },
2784 { OPERAND_TYPE_ACC, "Acc" },
2785 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2786 { OPERAND_TYPE_REGMMX, "rMMX" },
2787 { OPERAND_TYPE_REGXMM, "rXMM" },
2788 { OPERAND_TYPE_REGYMM, "rYMM" },
2789 { OPERAND_TYPE_REGZMM, "rZMM" },
2790 { OPERAND_TYPE_REGMASK, "Mask reg" },
2791 { OPERAND_TYPE_ESSEG, "es" },
2792 };
2793
2794 static void
2795 pt (i386_operand_type t)
2796 {
2797 unsigned int j;
2798 i386_operand_type a;
2799
2800 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2801 {
2802 a = operand_type_and (t, type_names[j].mask);
2803 if (!operand_type_all_zero (&a))
2804 fprintf (stdout, "%s, ", type_names[j].name);
2805 }
2806 fflush (stdout);
2807 }
2808
2809 #endif /* DEBUG386 */
2810 \f
2811 static bfd_reloc_code_real_type
2812 reloc (unsigned int size,
2813 int pcrel,
2814 int sign,
2815 int bnd_prefix,
2816 bfd_reloc_code_real_type other)
2817 {
2818 if (other != NO_RELOC)
2819 {
2820 reloc_howto_type *rel;
2821
2822 if (size == 8)
2823 switch (other)
2824 {
2825 case BFD_RELOC_X86_64_GOT32:
2826 return BFD_RELOC_X86_64_GOT64;
2827 break;
2828 case BFD_RELOC_X86_64_PLTOFF64:
2829 return BFD_RELOC_X86_64_PLTOFF64;
2830 break;
2831 case BFD_RELOC_X86_64_GOTPC32:
2832 other = BFD_RELOC_X86_64_GOTPC64;
2833 break;
2834 case BFD_RELOC_X86_64_GOTPCREL:
2835 other = BFD_RELOC_X86_64_GOTPCREL64;
2836 break;
2837 case BFD_RELOC_X86_64_TPOFF32:
2838 other = BFD_RELOC_X86_64_TPOFF64;
2839 break;
2840 case BFD_RELOC_X86_64_DTPOFF32:
2841 other = BFD_RELOC_X86_64_DTPOFF64;
2842 break;
2843 default:
2844 break;
2845 }
2846
2847 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2848 if (other == BFD_RELOC_SIZE32)
2849 {
2850 if (size == 8)
2851 other = BFD_RELOC_SIZE64;
2852 if (pcrel)
2853 {
2854 as_bad (_("there are no pc-relative size relocations"));
2855 return NO_RELOC;
2856 }
2857 }
2858 #endif
2859
2860 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2861 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
2862 sign = -1;
2863
2864 rel = bfd_reloc_type_lookup (stdoutput, other);
2865 if (!rel)
2866 as_bad (_("unknown relocation (%u)"), other);
2867 else if (size != bfd_get_reloc_size (rel))
2868 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2869 bfd_get_reloc_size (rel),
2870 size);
2871 else if (pcrel && !rel->pc_relative)
2872 as_bad (_("non-pc-relative relocation for pc-relative field"));
2873 else if ((rel->complain_on_overflow == complain_overflow_signed
2874 && !sign)
2875 || (rel->complain_on_overflow == complain_overflow_unsigned
2876 && sign > 0))
2877 as_bad (_("relocated field and relocation type differ in signedness"));
2878 else
2879 return other;
2880 return NO_RELOC;
2881 }
2882
2883 if (pcrel)
2884 {
2885 if (!sign)
2886 as_bad (_("there are no unsigned pc-relative relocations"));
2887 switch (size)
2888 {
2889 case 1: return BFD_RELOC_8_PCREL;
2890 case 2: return BFD_RELOC_16_PCREL;
2891 case 4: return (bnd_prefix && object_64bit
2892 ? BFD_RELOC_X86_64_PC32_BND
2893 : BFD_RELOC_32_PCREL);
2894 case 8: return BFD_RELOC_64_PCREL;
2895 }
2896 as_bad (_("cannot do %u byte pc-relative relocation"), size);
2897 }
2898 else
2899 {
2900 if (sign > 0)
2901 switch (size)
2902 {
2903 case 4: return BFD_RELOC_X86_64_32S;
2904 }
2905 else
2906 switch (size)
2907 {
2908 case 1: return BFD_RELOC_8;
2909 case 2: return BFD_RELOC_16;
2910 case 4: return BFD_RELOC_32;
2911 case 8: return BFD_RELOC_64;
2912 }
2913 as_bad (_("cannot do %s %u byte relocation"),
2914 sign > 0 ? "signed" : "unsigned", size);
2915 }
2916
2917 return NO_RELOC;
2918 }
2919
2920 /* Here we decide which fixups can be adjusted to make them relative to
2921 the beginning of the section instead of the symbol. Basically we need
2922 to make sure that the dynamic relocations are done correctly, so in
2923 some cases we force the original symbol to be used. */
2924
2925 int
2926 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
2927 {
2928 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2929 if (!IS_ELF)
2930 return 1;
2931
2932 /* Don't adjust pc-relative references to merge sections in 64-bit
2933 mode. */
2934 if (use_rela_relocations
2935 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2936 && fixP->fx_pcrel)
2937 return 0;
2938
2939 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2940 and changed later by validate_fix. */
2941 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2942 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2943 return 0;
2944
2945 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
2946 for size relocations. */
2947 if (fixP->fx_r_type == BFD_RELOC_SIZE32
2948 || fixP->fx_r_type == BFD_RELOC_SIZE64
2949 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
2950 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2951 || fixP->fx_r_type == BFD_RELOC_386_GOT32
2952 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2953 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2954 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2955 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
2956 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2957 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
2958 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2959 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
2960 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2961 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
2962 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2963 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
2964 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
2965 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2966 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2967 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
2968 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
2969 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2970 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
2971 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2972 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
2973 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2974 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
2975 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2976 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2977 return 0;
2978 #endif
2979 return 1;
2980 }
2981
2982 static int
2983 intel_float_operand (const char *mnemonic)
2984 {
2985 /* Note that the value returned is meaningful only for opcodes with (memory)
2986 operands, hence the code here is free to improperly handle opcodes that
2987 have no operands (for better performance and smaller code). */
2988
2989 if (mnemonic[0] != 'f')
2990 return 0; /* non-math */
2991
2992 switch (mnemonic[1])
2993 {
2994 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2995 the fs segment override prefix not currently handled because no
2996 call path can make opcodes without operands get here */
2997 case 'i':
2998 return 2 /* integer op */;
2999 case 'l':
3000 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3001 return 3; /* fldcw/fldenv */
3002 break;
3003 case 'n':
3004 if (mnemonic[2] != 'o' /* fnop */)
3005 return 3; /* non-waiting control op */
3006 break;
3007 case 'r':
3008 if (mnemonic[2] == 's')
3009 return 3; /* frstor/frstpm */
3010 break;
3011 case 's':
3012 if (mnemonic[2] == 'a')
3013 return 3; /* fsave */
3014 if (mnemonic[2] == 't')
3015 {
3016 switch (mnemonic[3])
3017 {
3018 case 'c': /* fstcw */
3019 case 'd': /* fstdw */
3020 case 'e': /* fstenv */
3021 case 's': /* fsts[gw] */
3022 return 3;
3023 }
3024 }
3025 break;
3026 case 'x':
3027 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3028 return 0; /* fxsave/fxrstor are not really math ops */
3029 break;
3030 }
3031
3032 return 1;
3033 }
3034
3035 /* Build the VEX prefix. */
3036
3037 static void
3038 build_vex_prefix (const insn_template *t)
3039 {
3040 unsigned int register_specifier;
3041 unsigned int implied_prefix;
3042 unsigned int vector_length;
3043
3044 /* Check register specifier. */
3045 if (i.vex.register_specifier)
3046 {
3047 register_specifier =
3048 ~register_number (i.vex.register_specifier) & 0xf;
3049 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3050 }
3051 else
3052 register_specifier = 0xf;
3053
3054 /* Use 2-byte VEX prefix by swappping destination and source
3055 operand. */
3056 if (!i.swap_operand
3057 && i.operands == i.reg_operands
3058 && i.tm.opcode_modifier.vexopcode == VEX0F
3059 && i.tm.opcode_modifier.s
3060 && i.rex == REX_B)
3061 {
3062 unsigned int xchg = i.operands - 1;
3063 union i386_op temp_op;
3064 i386_operand_type temp_type;
3065
3066 temp_type = i.types[xchg];
3067 i.types[xchg] = i.types[0];
3068 i.types[0] = temp_type;
3069 temp_op = i.op[xchg];
3070 i.op[xchg] = i.op[0];
3071 i.op[0] = temp_op;
3072
3073 gas_assert (i.rm.mode == 3);
3074
3075 i.rex = REX_R;
3076 xchg = i.rm.regmem;
3077 i.rm.regmem = i.rm.reg;
3078 i.rm.reg = xchg;
3079
3080 /* Use the next insn. */
3081 i.tm = t[1];
3082 }
3083
3084 if (i.tm.opcode_modifier.vex == VEXScalar)
3085 vector_length = avxscalar;
3086 else
3087 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
3088
3089 switch ((i.tm.base_opcode >> 8) & 0xff)
3090 {
3091 case 0:
3092 implied_prefix = 0;
3093 break;
3094 case DATA_PREFIX_OPCODE:
3095 implied_prefix = 1;
3096 break;
3097 case REPE_PREFIX_OPCODE:
3098 implied_prefix = 2;
3099 break;
3100 case REPNE_PREFIX_OPCODE:
3101 implied_prefix = 3;
3102 break;
3103 default:
3104 abort ();
3105 }
3106
3107 /* Use 2-byte VEX prefix if possible. */
3108 if (i.tm.opcode_modifier.vexopcode == VEX0F
3109 && i.tm.opcode_modifier.vexw != VEXW1
3110 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3111 {
3112 /* 2-byte VEX prefix. */
3113 unsigned int r;
3114
3115 i.vex.length = 2;
3116 i.vex.bytes[0] = 0xc5;
3117
3118 /* Check the REX.R bit. */
3119 r = (i.rex & REX_R) ? 0 : 1;
3120 i.vex.bytes[1] = (r << 7
3121 | register_specifier << 3
3122 | vector_length << 2
3123 | implied_prefix);
3124 }
3125 else
3126 {
3127 /* 3-byte VEX prefix. */
3128 unsigned int m, w;
3129
3130 i.vex.length = 3;
3131
3132 switch (i.tm.opcode_modifier.vexopcode)
3133 {
3134 case VEX0F:
3135 m = 0x1;
3136 i.vex.bytes[0] = 0xc4;
3137 break;
3138 case VEX0F38:
3139 m = 0x2;
3140 i.vex.bytes[0] = 0xc4;
3141 break;
3142 case VEX0F3A:
3143 m = 0x3;
3144 i.vex.bytes[0] = 0xc4;
3145 break;
3146 case XOP08:
3147 m = 0x8;
3148 i.vex.bytes[0] = 0x8f;
3149 break;
3150 case XOP09:
3151 m = 0x9;
3152 i.vex.bytes[0] = 0x8f;
3153 break;
3154 case XOP0A:
3155 m = 0xa;
3156 i.vex.bytes[0] = 0x8f;
3157 break;
3158 default:
3159 abort ();
3160 }
3161
3162 /* The high 3 bits of the second VEX byte are 1's compliment
3163 of RXB bits from REX. */
3164 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3165
3166 /* Check the REX.W bit. */
3167 w = (i.rex & REX_W) ? 1 : 0;
3168 if (i.tm.opcode_modifier.vexw == VEXW1)
3169 w = 1;
3170
3171 i.vex.bytes[2] = (w << 7
3172 | register_specifier << 3
3173 | vector_length << 2
3174 | implied_prefix);
3175 }
3176 }
3177
3178 /* Build the EVEX prefix. */
3179
3180 static void
3181 build_evex_prefix (void)
3182 {
3183 unsigned int register_specifier;
3184 unsigned int implied_prefix;
3185 unsigned int m, w;
3186 rex_byte vrex_used = 0;
3187
3188 /* Check register specifier. */
3189 if (i.vex.register_specifier)
3190 {
3191 gas_assert ((i.vrex & REX_X) == 0);
3192
3193 register_specifier = i.vex.register_specifier->reg_num;
3194 if ((i.vex.register_specifier->reg_flags & RegRex))
3195 register_specifier += 8;
3196 /* The upper 16 registers are encoded in the fourth byte of the
3197 EVEX prefix. */
3198 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3199 i.vex.bytes[3] = 0x8;
3200 register_specifier = ~register_specifier & 0xf;
3201 }
3202 else
3203 {
3204 register_specifier = 0xf;
3205
3206 /* Encode upper 16 vector index register in the fourth byte of
3207 the EVEX prefix. */
3208 if (!(i.vrex & REX_X))
3209 i.vex.bytes[3] = 0x8;
3210 else
3211 vrex_used |= REX_X;
3212 }
3213
3214 switch ((i.tm.base_opcode >> 8) & 0xff)
3215 {
3216 case 0:
3217 implied_prefix = 0;
3218 break;
3219 case DATA_PREFIX_OPCODE:
3220 implied_prefix = 1;
3221 break;
3222 case REPE_PREFIX_OPCODE:
3223 implied_prefix = 2;
3224 break;
3225 case REPNE_PREFIX_OPCODE:
3226 implied_prefix = 3;
3227 break;
3228 default:
3229 abort ();
3230 }
3231
3232 /* 4 byte EVEX prefix. */
3233 i.vex.length = 4;
3234 i.vex.bytes[0] = 0x62;
3235
3236 /* mmmm bits. */
3237 switch (i.tm.opcode_modifier.vexopcode)
3238 {
3239 case VEX0F:
3240 m = 1;
3241 break;
3242 case VEX0F38:
3243 m = 2;
3244 break;
3245 case VEX0F3A:
3246 m = 3;
3247 break;
3248 default:
3249 abort ();
3250 break;
3251 }
3252
3253 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3254 bits from REX. */
3255 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3256
3257 /* The fifth bit of the second EVEX byte is 1's compliment of the
3258 REX_R bit in VREX. */
3259 if (!(i.vrex & REX_R))
3260 i.vex.bytes[1] |= 0x10;
3261 else
3262 vrex_used |= REX_R;
3263
3264 if ((i.reg_operands + i.imm_operands) == i.operands)
3265 {
3266 /* When all operands are registers, the REX_X bit in REX is not
3267 used. We reuse it to encode the upper 16 registers, which is
3268 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3269 as 1's compliment. */
3270 if ((i.vrex & REX_B))
3271 {
3272 vrex_used |= REX_B;
3273 i.vex.bytes[1] &= ~0x40;
3274 }
3275 }
3276
3277 /* EVEX instructions shouldn't need the REX prefix. */
3278 i.vrex &= ~vrex_used;
3279 gas_assert (i.vrex == 0);
3280
3281 /* Check the REX.W bit. */
3282 w = (i.rex & REX_W) ? 1 : 0;
3283 if (i.tm.opcode_modifier.vexw)
3284 {
3285 if (i.tm.opcode_modifier.vexw == VEXW1)
3286 w = 1;
3287 }
3288 /* If w is not set it means we are dealing with WIG instruction. */
3289 else if (!w)
3290 {
3291 if (evexwig == evexw1)
3292 w = 1;
3293 }
3294
3295 /* Encode the U bit. */
3296 implied_prefix |= 0x4;
3297
3298 /* The third byte of the EVEX prefix. */
3299 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3300
3301 /* The fourth byte of the EVEX prefix. */
3302 /* The zeroing-masking bit. */
3303 if (i.mask && i.mask->zeroing)
3304 i.vex.bytes[3] |= 0x80;
3305
3306 /* Don't always set the broadcast bit if there is no RC. */
3307 if (!i.rounding)
3308 {
3309 /* Encode the vector length. */
3310 unsigned int vec_length;
3311
3312 switch (i.tm.opcode_modifier.evex)
3313 {
3314 case EVEXLIG: /* LL' is ignored */
3315 vec_length = evexlig << 5;
3316 break;
3317 case EVEX128:
3318 vec_length = 0 << 5;
3319 break;
3320 case EVEX256:
3321 vec_length = 1 << 5;
3322 break;
3323 case EVEX512:
3324 vec_length = 2 << 5;
3325 break;
3326 default:
3327 abort ();
3328 break;
3329 }
3330 i.vex.bytes[3] |= vec_length;
3331 /* Encode the broadcast bit. */
3332 if (i.broadcast)
3333 i.vex.bytes[3] |= 0x10;
3334 }
3335 else
3336 {
3337 if (i.rounding->type != saeonly)
3338 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3339 else
3340 i.vex.bytes[3] |= 0x10;
3341 }
3342
3343 if (i.mask && i.mask->mask)
3344 i.vex.bytes[3] |= i.mask->mask->reg_num;
3345 }
3346
3347 static void
3348 process_immext (void)
3349 {
3350 expressionS *exp;
3351
3352 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3353 && i.operands > 0)
3354 {
3355 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3356 with an opcode suffix which is coded in the same place as an
3357 8-bit immediate field would be.
3358 Here we check those operands and remove them afterwards. */
3359 unsigned int x;
3360
3361 for (x = 0; x < i.operands; x++)
3362 if (register_number (i.op[x].regs) != x)
3363 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3364 register_prefix, i.op[x].regs->reg_name, x + 1,
3365 i.tm.name);
3366
3367 i.operands = 0;
3368 }
3369
3370 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3371 which is coded in the same place as an 8-bit immediate field
3372 would be. Here we fake an 8-bit immediate operand from the
3373 opcode suffix stored in tm.extension_opcode.
3374
3375 AVX instructions also use this encoding, for some of
3376 3 argument instructions. */
3377
3378 gas_assert (i.imm_operands <= 1
3379 && (i.operands <= 2
3380 || ((i.tm.opcode_modifier.vex
3381 || i.tm.opcode_modifier.evex)
3382 && i.operands <= 4)));
3383
3384 exp = &im_expressions[i.imm_operands++];
3385 i.op[i.operands].imms = exp;
3386 i.types[i.operands] = imm8;
3387 i.operands++;
3388 exp->X_op = O_constant;
3389 exp->X_add_number = i.tm.extension_opcode;
3390 i.tm.extension_opcode = None;
3391 }
3392
3393
3394 static int
3395 check_hle (void)
3396 {
3397 switch (i.tm.opcode_modifier.hleprefixok)
3398 {
3399 default:
3400 abort ();
3401 case HLEPrefixNone:
3402 as_bad (_("invalid instruction `%s' after `%s'"),
3403 i.tm.name, i.hle_prefix);
3404 return 0;
3405 case HLEPrefixLock:
3406 if (i.prefix[LOCK_PREFIX])
3407 return 1;
3408 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3409 return 0;
3410 case HLEPrefixAny:
3411 return 1;
3412 case HLEPrefixRelease:
3413 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3414 {
3415 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3416 i.tm.name);
3417 return 0;
3418 }
3419 if (i.mem_operands == 0
3420 || !operand_type_check (i.types[i.operands - 1], anymem))
3421 {
3422 as_bad (_("memory destination needed for instruction `%s'"
3423 " after `xrelease'"), i.tm.name);
3424 return 0;
3425 }
3426 return 1;
3427 }
3428 }
3429
3430 /* This is the guts of the machine-dependent assembler. LINE points to a
3431 machine dependent instruction. This function is supposed to emit
3432 the frags/bytes it assembles to. */
3433
3434 void
3435 md_assemble (char *line)
3436 {
3437 unsigned int j;
3438 char mnemonic[MAX_MNEM_SIZE];
3439 const insn_template *t;
3440
3441 /* Initialize globals. */
3442 memset (&i, '\0', sizeof (i));
3443 for (j = 0; j < MAX_OPERANDS; j++)
3444 i.reloc[j] = NO_RELOC;
3445 memset (disp_expressions, '\0', sizeof (disp_expressions));
3446 memset (im_expressions, '\0', sizeof (im_expressions));
3447 save_stack_p = save_stack;
3448
3449 /* First parse an instruction mnemonic & call i386_operand for the operands.
3450 We assume that the scrubber has arranged it so that line[0] is the valid
3451 start of a (possibly prefixed) mnemonic. */
3452
3453 line = parse_insn (line, mnemonic);
3454 if (line == NULL)
3455 return;
3456
3457 line = parse_operands (line, mnemonic);
3458 this_operand = -1;
3459 if (line == NULL)
3460 return;
3461
3462 /* Now we've parsed the mnemonic into a set of templates, and have the
3463 operands at hand. */
3464
3465 /* All intel opcodes have reversed operands except for "bound" and
3466 "enter". We also don't reverse intersegment "jmp" and "call"
3467 instructions with 2 immediate operands so that the immediate segment
3468 precedes the offset, as it does when in AT&T mode. */
3469 if (intel_syntax
3470 && i.operands > 1
3471 && (strcmp (mnemonic, "bound") != 0)
3472 && (strcmp (mnemonic, "invlpga") != 0)
3473 && !(operand_type_check (i.types[0], imm)
3474 && operand_type_check (i.types[1], imm)))
3475 swap_operands ();
3476
3477 /* The order of the immediates should be reversed
3478 for 2 immediates extrq and insertq instructions */
3479 if (i.imm_operands == 2
3480 && (strcmp (mnemonic, "extrq") == 0
3481 || strcmp (mnemonic, "insertq") == 0))
3482 swap_2_operands (0, 1);
3483
3484 if (i.imm_operands)
3485 optimize_imm ();
3486
3487 /* Don't optimize displacement for movabs since it only takes 64bit
3488 displacement. */
3489 if (i.disp_operands
3490 && i.disp_encoding != disp_encoding_32bit
3491 && (flag_code != CODE_64BIT
3492 || strcmp (mnemonic, "movabs") != 0))
3493 optimize_disp ();
3494
3495 /* Next, we find a template that matches the given insn,
3496 making sure the overlap of the given operands types is consistent
3497 with the template operand types. */
3498
3499 if (!(t = match_template ()))
3500 return;
3501
3502 if (sse_check != check_none
3503 && !i.tm.opcode_modifier.noavx
3504 && (i.tm.cpu_flags.bitfield.cpusse
3505 || i.tm.cpu_flags.bitfield.cpusse2
3506 || i.tm.cpu_flags.bitfield.cpusse3
3507 || i.tm.cpu_flags.bitfield.cpussse3
3508 || i.tm.cpu_flags.bitfield.cpusse4_1
3509 || i.tm.cpu_flags.bitfield.cpusse4_2))
3510 {
3511 (sse_check == check_warning
3512 ? as_warn
3513 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3514 }
3515
3516 /* Zap movzx and movsx suffix. The suffix has been set from
3517 "word ptr" or "byte ptr" on the source operand in Intel syntax
3518 or extracted from mnemonic in AT&T syntax. But we'll use
3519 the destination register to choose the suffix for encoding. */
3520 if ((i.tm.base_opcode & ~9) == 0x0fb6)
3521 {
3522 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3523 there is no suffix, the default will be byte extension. */
3524 if (i.reg_operands != 2
3525 && !i.suffix
3526 && intel_syntax)
3527 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3528
3529 i.suffix = 0;
3530 }
3531
3532 if (i.tm.opcode_modifier.fwait)
3533 if (!add_prefix (FWAIT_OPCODE))
3534 return;
3535
3536 /* Check if REP prefix is OK. */
3537 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3538 {
3539 as_bad (_("invalid instruction `%s' after `%s'"),
3540 i.tm.name, i.rep_prefix);
3541 return;
3542 }
3543
3544 /* Check for lock without a lockable instruction. Destination operand
3545 must be memory unless it is xchg (0x86). */
3546 if (i.prefix[LOCK_PREFIX]
3547 && (!i.tm.opcode_modifier.islockable
3548 || i.mem_operands == 0
3549 || (i.tm.base_opcode != 0x86
3550 && !operand_type_check (i.types[i.operands - 1], anymem))))
3551 {
3552 as_bad (_("expecting lockable instruction after `lock'"));
3553 return;
3554 }
3555
3556 /* Check if HLE prefix is OK. */
3557 if (i.hle_prefix && !check_hle ())
3558 return;
3559
3560 /* Check BND prefix. */
3561 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3562 as_bad (_("expecting valid branch instruction after `bnd'"));
3563
3564 if (i.tm.cpu_flags.bitfield.cpumpx
3565 && flag_code == CODE_64BIT
3566 && i.prefix[ADDR_PREFIX])
3567 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3568
3569 /* Insert BND prefix. */
3570 if (add_bnd_prefix
3571 && i.tm.opcode_modifier.bndprefixok
3572 && !i.prefix[BND_PREFIX])
3573 add_prefix (BND_PREFIX_OPCODE);
3574
3575 /* Check string instruction segment overrides. */
3576 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3577 {
3578 if (!check_string ())
3579 return;
3580 i.disp_operands = 0;
3581 }
3582
3583 if (!process_suffix ())
3584 return;
3585
3586 /* Update operand types. */
3587 for (j = 0; j < i.operands; j++)
3588 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3589
3590 /* Make still unresolved immediate matches conform to size of immediate
3591 given in i.suffix. */
3592 if (!finalize_imm ())
3593 return;
3594
3595 if (i.types[0].bitfield.imm1)
3596 i.imm_operands = 0; /* kludge for shift insns. */
3597
3598 /* We only need to check those implicit registers for instructions
3599 with 3 operands or less. */
3600 if (i.operands <= 3)
3601 for (j = 0; j < i.operands; j++)
3602 if (i.types[j].bitfield.inoutportreg
3603 || i.types[j].bitfield.shiftcount
3604 || i.types[j].bitfield.acc
3605 || i.types[j].bitfield.floatacc)
3606 i.reg_operands--;
3607
3608 /* ImmExt should be processed after SSE2AVX. */
3609 if (!i.tm.opcode_modifier.sse2avx
3610 && i.tm.opcode_modifier.immext)
3611 process_immext ();
3612
3613 /* For insns with operands there are more diddles to do to the opcode. */
3614 if (i.operands)
3615 {
3616 if (!process_operands ())
3617 return;
3618 }
3619 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3620 {
3621 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3622 as_warn (_("translating to `%sp'"), i.tm.name);
3623 }
3624
3625 if (i.tm.opcode_modifier.vex)
3626 build_vex_prefix (t);
3627
3628 if (i.tm.opcode_modifier.evex)
3629 build_evex_prefix ();
3630
3631 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3632 instructions may define INT_OPCODE as well, so avoid this corner
3633 case for those instructions that use MODRM. */
3634 if (i.tm.base_opcode == INT_OPCODE
3635 && !i.tm.opcode_modifier.modrm
3636 && i.op[0].imms->X_add_number == 3)
3637 {
3638 i.tm.base_opcode = INT3_OPCODE;
3639 i.imm_operands = 0;
3640 }
3641
3642 if ((i.tm.opcode_modifier.jump
3643 || i.tm.opcode_modifier.jumpbyte
3644 || i.tm.opcode_modifier.jumpdword)
3645 && i.op[0].disps->X_op == O_constant)
3646 {
3647 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3648 the absolute address given by the constant. Since ix86 jumps and
3649 calls are pc relative, we need to generate a reloc. */
3650 i.op[0].disps->X_add_symbol = &abs_symbol;
3651 i.op[0].disps->X_op = O_symbol;
3652 }
3653
3654 if (i.tm.opcode_modifier.rex64)
3655 i.rex |= REX_W;
3656
3657 /* For 8 bit registers we need an empty rex prefix. Also if the
3658 instruction already has a prefix, we need to convert old
3659 registers to new ones. */
3660
3661 if ((i.types[0].bitfield.reg8
3662 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3663 || (i.types[1].bitfield.reg8
3664 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3665 || ((i.types[0].bitfield.reg8
3666 || i.types[1].bitfield.reg8)
3667 && i.rex != 0))
3668 {
3669 int x;
3670
3671 i.rex |= REX_OPCODE;
3672 for (x = 0; x < 2; x++)
3673 {
3674 /* Look for 8 bit operand that uses old registers. */
3675 if (i.types[x].bitfield.reg8
3676 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3677 {
3678 /* In case it is "hi" register, give up. */
3679 if (i.op[x].regs->reg_num > 3)
3680 as_bad (_("can't encode register '%s%s' in an "
3681 "instruction requiring REX prefix."),
3682 register_prefix, i.op[x].regs->reg_name);
3683
3684 /* Otherwise it is equivalent to the extended register.
3685 Since the encoding doesn't change this is merely
3686 cosmetic cleanup for debug output. */
3687
3688 i.op[x].regs = i.op[x].regs + 8;
3689 }
3690 }
3691 }
3692
3693 if (i.rex != 0)
3694 add_prefix (REX_OPCODE | i.rex);
3695
3696 /* We are ready to output the insn. */
3697 output_insn ();
3698 }
3699
3700 static char *
3701 parse_insn (char *line, char *mnemonic)
3702 {
3703 char *l = line;
3704 char *token_start = l;
3705 char *mnem_p;
3706 int supported;
3707 const insn_template *t;
3708 char *dot_p = NULL;
3709
3710 while (1)
3711 {
3712 mnem_p = mnemonic;
3713 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3714 {
3715 if (*mnem_p == '.')
3716 dot_p = mnem_p;
3717 mnem_p++;
3718 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3719 {
3720 as_bad (_("no such instruction: `%s'"), token_start);
3721 return NULL;
3722 }
3723 l++;
3724 }
3725 if (!is_space_char (*l)
3726 && *l != END_OF_INSN
3727 && (intel_syntax
3728 || (*l != PREFIX_SEPARATOR
3729 && *l != ',')))
3730 {
3731 as_bad (_("invalid character %s in mnemonic"),
3732 output_invalid (*l));
3733 return NULL;
3734 }
3735 if (token_start == l)
3736 {
3737 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3738 as_bad (_("expecting prefix; got nothing"));
3739 else
3740 as_bad (_("expecting mnemonic; got nothing"));
3741 return NULL;
3742 }
3743
3744 /* Look up instruction (or prefix) via hash table. */
3745 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3746
3747 if (*l != END_OF_INSN
3748 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3749 && current_templates
3750 && current_templates->start->opcode_modifier.isprefix)
3751 {
3752 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3753 {
3754 as_bad ((flag_code != CODE_64BIT
3755 ? _("`%s' is only supported in 64-bit mode")
3756 : _("`%s' is not supported in 64-bit mode")),
3757 current_templates->start->name);
3758 return NULL;
3759 }
3760 /* If we are in 16-bit mode, do not allow addr16 or data16.
3761 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3762 if ((current_templates->start->opcode_modifier.size16
3763 || current_templates->start->opcode_modifier.size32)
3764 && flag_code != CODE_64BIT
3765 && (current_templates->start->opcode_modifier.size32
3766 ^ (flag_code == CODE_16BIT)))
3767 {
3768 as_bad (_("redundant %s prefix"),
3769 current_templates->start->name);
3770 return NULL;
3771 }
3772 /* Add prefix, checking for repeated prefixes. */
3773 switch (add_prefix (current_templates->start->base_opcode))
3774 {
3775 case PREFIX_EXIST:
3776 return NULL;
3777 case PREFIX_REP:
3778 if (current_templates->start->cpu_flags.bitfield.cpuhle)
3779 i.hle_prefix = current_templates->start->name;
3780 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
3781 i.bnd_prefix = current_templates->start->name;
3782 else
3783 i.rep_prefix = current_templates->start->name;
3784 break;
3785 default:
3786 break;
3787 }
3788 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3789 token_start = ++l;
3790 }
3791 else
3792 break;
3793 }
3794
3795 if (!current_templates)
3796 {
3797 /* Check if we should swap operand or force 32bit displacement in
3798 encoding. */
3799 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3800 i.swap_operand = 1;
3801 else if (mnem_p - 3 == dot_p
3802 && dot_p[1] == 'd'
3803 && dot_p[2] == '8')
3804 i.disp_encoding = disp_encoding_8bit;
3805 else if (mnem_p - 4 == dot_p
3806 && dot_p[1] == 'd'
3807 && dot_p[2] == '3'
3808 && dot_p[3] == '2')
3809 i.disp_encoding = disp_encoding_32bit;
3810 else
3811 goto check_suffix;
3812 mnem_p = dot_p;
3813 *dot_p = '\0';
3814 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3815 }
3816
3817 if (!current_templates)
3818 {
3819 check_suffix:
3820 /* See if we can get a match by trimming off a suffix. */
3821 switch (mnem_p[-1])
3822 {
3823 case WORD_MNEM_SUFFIX:
3824 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3825 i.suffix = SHORT_MNEM_SUFFIX;
3826 else
3827 case BYTE_MNEM_SUFFIX:
3828 case QWORD_MNEM_SUFFIX:
3829 i.suffix = mnem_p[-1];
3830 mnem_p[-1] = '\0';
3831 current_templates = (const templates *) hash_find (op_hash,
3832 mnemonic);
3833 break;
3834 case SHORT_MNEM_SUFFIX:
3835 case LONG_MNEM_SUFFIX:
3836 if (!intel_syntax)
3837 {
3838 i.suffix = mnem_p[-1];
3839 mnem_p[-1] = '\0';
3840 current_templates = (const templates *) hash_find (op_hash,
3841 mnemonic);
3842 }
3843 break;
3844
3845 /* Intel Syntax. */
3846 case 'd':
3847 if (intel_syntax)
3848 {
3849 if (intel_float_operand (mnemonic) == 1)
3850 i.suffix = SHORT_MNEM_SUFFIX;
3851 else
3852 i.suffix = LONG_MNEM_SUFFIX;
3853 mnem_p[-1] = '\0';
3854 current_templates = (const templates *) hash_find (op_hash,
3855 mnemonic);
3856 }
3857 break;
3858 }
3859 if (!current_templates)
3860 {
3861 as_bad (_("no such instruction: `%s'"), token_start);
3862 return NULL;
3863 }
3864 }
3865
3866 if (current_templates->start->opcode_modifier.jump
3867 || current_templates->start->opcode_modifier.jumpbyte)
3868 {
3869 /* Check for a branch hint. We allow ",pt" and ",pn" for
3870 predict taken and predict not taken respectively.
3871 I'm not sure that branch hints actually do anything on loop
3872 and jcxz insns (JumpByte) for current Pentium4 chips. They
3873 may work in the future and it doesn't hurt to accept them
3874 now. */
3875 if (l[0] == ',' && l[1] == 'p')
3876 {
3877 if (l[2] == 't')
3878 {
3879 if (!add_prefix (DS_PREFIX_OPCODE))
3880 return NULL;
3881 l += 3;
3882 }
3883 else if (l[2] == 'n')
3884 {
3885 if (!add_prefix (CS_PREFIX_OPCODE))
3886 return NULL;
3887 l += 3;
3888 }
3889 }
3890 }
3891 /* Any other comma loses. */
3892 if (*l == ',')
3893 {
3894 as_bad (_("invalid character %s in mnemonic"),
3895 output_invalid (*l));
3896 return NULL;
3897 }
3898
3899 /* Check if instruction is supported on specified architecture. */
3900 supported = 0;
3901 for (t = current_templates->start; t < current_templates->end; ++t)
3902 {
3903 supported |= cpu_flags_match (t);
3904 if (supported == CPU_FLAGS_PERFECT_MATCH)
3905 goto skip;
3906 }
3907
3908 if (!(supported & CPU_FLAGS_64BIT_MATCH))
3909 {
3910 as_bad (flag_code == CODE_64BIT
3911 ? _("`%s' is not supported in 64-bit mode")
3912 : _("`%s' is only supported in 64-bit mode"),
3913 current_templates->start->name);
3914 return NULL;
3915 }
3916 if (supported != CPU_FLAGS_PERFECT_MATCH)
3917 {
3918 as_bad (_("`%s' is not supported on `%s%s'"),
3919 current_templates->start->name,
3920 cpu_arch_name ? cpu_arch_name : default_arch,
3921 cpu_sub_arch_name ? cpu_sub_arch_name : "");
3922 return NULL;
3923 }
3924
3925 skip:
3926 if (!cpu_arch_flags.bitfield.cpui386
3927 && (flag_code != CODE_16BIT))
3928 {
3929 as_warn (_("use .code16 to ensure correct addressing mode"));
3930 }
3931
3932 return l;
3933 }
3934
3935 static char *
3936 parse_operands (char *l, const char *mnemonic)
3937 {
3938 char *token_start;
3939
3940 /* 1 if operand is pending after ','. */
3941 unsigned int expecting_operand = 0;
3942
3943 /* Non-zero if operand parens not balanced. */
3944 unsigned int paren_not_balanced;
3945
3946 while (*l != END_OF_INSN)
3947 {
3948 /* Skip optional white space before operand. */
3949 if (is_space_char (*l))
3950 ++l;
3951 if (!is_operand_char (*l) && *l != END_OF_INSN)
3952 {
3953 as_bad (_("invalid character %s before operand %d"),
3954 output_invalid (*l),
3955 i.operands + 1);
3956 return NULL;
3957 }
3958 token_start = l; /* after white space */
3959 paren_not_balanced = 0;
3960 while (paren_not_balanced || *l != ',')
3961 {
3962 if (*l == END_OF_INSN)
3963 {
3964 if (paren_not_balanced)
3965 {
3966 if (!intel_syntax)
3967 as_bad (_("unbalanced parenthesis in operand %d."),
3968 i.operands + 1);
3969 else
3970 as_bad (_("unbalanced brackets in operand %d."),
3971 i.operands + 1);
3972 return NULL;
3973 }
3974 else
3975 break; /* we are done */
3976 }
3977 else if (!is_operand_char (*l) && !is_space_char (*l))
3978 {
3979 as_bad (_("invalid character %s in operand %d"),
3980 output_invalid (*l),
3981 i.operands + 1);
3982 return NULL;
3983 }
3984 if (!intel_syntax)
3985 {
3986 if (*l == '(')
3987 ++paren_not_balanced;
3988 if (*l == ')')
3989 --paren_not_balanced;
3990 }
3991 else
3992 {
3993 if (*l == '[')
3994 ++paren_not_balanced;
3995 if (*l == ']')
3996 --paren_not_balanced;
3997 }
3998 l++;
3999 }
4000 if (l != token_start)
4001 { /* Yes, we've read in another operand. */
4002 unsigned int operand_ok;
4003 this_operand = i.operands++;
4004 i.types[this_operand].bitfield.unspecified = 1;
4005 if (i.operands > MAX_OPERANDS)
4006 {
4007 as_bad (_("spurious operands; (%d operands/instruction max)"),
4008 MAX_OPERANDS);
4009 return NULL;
4010 }
4011 /* Now parse operand adding info to 'i' as we go along. */
4012 END_STRING_AND_SAVE (l);
4013
4014 if (intel_syntax)
4015 operand_ok =
4016 i386_intel_operand (token_start,
4017 intel_float_operand (mnemonic));
4018 else
4019 operand_ok = i386_att_operand (token_start);
4020
4021 RESTORE_END_STRING (l);
4022 if (!operand_ok)
4023 return NULL;
4024 }
4025 else
4026 {
4027 if (expecting_operand)
4028 {
4029 expecting_operand_after_comma:
4030 as_bad (_("expecting operand after ','; got nothing"));
4031 return NULL;
4032 }
4033 if (*l == ',')
4034 {
4035 as_bad (_("expecting operand before ','; got nothing"));
4036 return NULL;
4037 }
4038 }
4039
4040 /* Now *l must be either ',' or END_OF_INSN. */
4041 if (*l == ',')
4042 {
4043 if (*++l == END_OF_INSN)
4044 {
4045 /* Just skip it, if it's \n complain. */
4046 goto expecting_operand_after_comma;
4047 }
4048 expecting_operand = 1;
4049 }
4050 }
4051 return l;
4052 }
4053
4054 static void
4055 swap_2_operands (int xchg1, int xchg2)
4056 {
4057 union i386_op temp_op;
4058 i386_operand_type temp_type;
4059 enum bfd_reloc_code_real temp_reloc;
4060
4061 temp_type = i.types[xchg2];
4062 i.types[xchg2] = i.types[xchg1];
4063 i.types[xchg1] = temp_type;
4064 temp_op = i.op[xchg2];
4065 i.op[xchg2] = i.op[xchg1];
4066 i.op[xchg1] = temp_op;
4067 temp_reloc = i.reloc[xchg2];
4068 i.reloc[xchg2] = i.reloc[xchg1];
4069 i.reloc[xchg1] = temp_reloc;
4070
4071 if (i.mask)
4072 {
4073 if (i.mask->operand == xchg1)
4074 i.mask->operand = xchg2;
4075 else if (i.mask->operand == xchg2)
4076 i.mask->operand = xchg1;
4077 }
4078 if (i.broadcast)
4079 {
4080 if (i.broadcast->operand == xchg1)
4081 i.broadcast->operand = xchg2;
4082 else if (i.broadcast->operand == xchg2)
4083 i.broadcast->operand = xchg1;
4084 }
4085 if (i.rounding)
4086 {
4087 if (i.rounding->operand == xchg1)
4088 i.rounding->operand = xchg2;
4089 else if (i.rounding->operand == xchg2)
4090 i.rounding->operand = xchg1;
4091 }
4092 }
4093
4094 static void
4095 swap_operands (void)
4096 {
4097 switch (i.operands)
4098 {
4099 case 5:
4100 case 4:
4101 swap_2_operands (1, i.operands - 2);
4102 case 3:
4103 case 2:
4104 swap_2_operands (0, i.operands - 1);
4105 break;
4106 default:
4107 abort ();
4108 }
4109
4110 if (i.mem_operands == 2)
4111 {
4112 const seg_entry *temp_seg;
4113 temp_seg = i.seg[0];
4114 i.seg[0] = i.seg[1];
4115 i.seg[1] = temp_seg;
4116 }
4117 }
4118
4119 /* Try to ensure constant immediates are represented in the smallest
4120 opcode possible. */
4121 static void
4122 optimize_imm (void)
4123 {
4124 char guess_suffix = 0;
4125 int op;
4126
4127 if (i.suffix)
4128 guess_suffix = i.suffix;
4129 else if (i.reg_operands)
4130 {
4131 /* Figure out a suffix from the last register operand specified.
4132 We can't do this properly yet, ie. excluding InOutPortReg,
4133 but the following works for instructions with immediates.
4134 In any case, we can't set i.suffix yet. */
4135 for (op = i.operands; --op >= 0;)
4136 if (i.types[op].bitfield.reg8)
4137 {
4138 guess_suffix = BYTE_MNEM_SUFFIX;
4139 break;
4140 }
4141 else if (i.types[op].bitfield.reg16)
4142 {
4143 guess_suffix = WORD_MNEM_SUFFIX;
4144 break;
4145 }
4146 else if (i.types[op].bitfield.reg32)
4147 {
4148 guess_suffix = LONG_MNEM_SUFFIX;
4149 break;
4150 }
4151 else if (i.types[op].bitfield.reg64)
4152 {
4153 guess_suffix = QWORD_MNEM_SUFFIX;
4154 break;
4155 }
4156 }
4157 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4158 guess_suffix = WORD_MNEM_SUFFIX;
4159
4160 for (op = i.operands; --op >= 0;)
4161 if (operand_type_check (i.types[op], imm))
4162 {
4163 switch (i.op[op].imms->X_op)
4164 {
4165 case O_constant:
4166 /* If a suffix is given, this operand may be shortened. */
4167 switch (guess_suffix)
4168 {
4169 case LONG_MNEM_SUFFIX:
4170 i.types[op].bitfield.imm32 = 1;
4171 i.types[op].bitfield.imm64 = 1;
4172 break;
4173 case WORD_MNEM_SUFFIX:
4174 i.types[op].bitfield.imm16 = 1;
4175 i.types[op].bitfield.imm32 = 1;
4176 i.types[op].bitfield.imm32s = 1;
4177 i.types[op].bitfield.imm64 = 1;
4178 break;
4179 case BYTE_MNEM_SUFFIX:
4180 i.types[op].bitfield.imm8 = 1;
4181 i.types[op].bitfield.imm8s = 1;
4182 i.types[op].bitfield.imm16 = 1;
4183 i.types[op].bitfield.imm32 = 1;
4184 i.types[op].bitfield.imm32s = 1;
4185 i.types[op].bitfield.imm64 = 1;
4186 break;
4187 }
4188
4189 /* If this operand is at most 16 bits, convert it
4190 to a signed 16 bit number before trying to see
4191 whether it will fit in an even smaller size.
4192 This allows a 16-bit operand such as $0xffe0 to
4193 be recognised as within Imm8S range. */
4194 if ((i.types[op].bitfield.imm16)
4195 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4196 {
4197 i.op[op].imms->X_add_number =
4198 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4199 }
4200 if ((i.types[op].bitfield.imm32)
4201 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4202 == 0))
4203 {
4204 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4205 ^ ((offsetT) 1 << 31))
4206 - ((offsetT) 1 << 31));
4207 }
4208 i.types[op]
4209 = operand_type_or (i.types[op],
4210 smallest_imm_type (i.op[op].imms->X_add_number));
4211
4212 /* We must avoid matching of Imm32 templates when 64bit
4213 only immediate is available. */
4214 if (guess_suffix == QWORD_MNEM_SUFFIX)
4215 i.types[op].bitfield.imm32 = 0;
4216 break;
4217
4218 case O_absent:
4219 case O_register:
4220 abort ();
4221
4222 /* Symbols and expressions. */
4223 default:
4224 /* Convert symbolic operand to proper sizes for matching, but don't
4225 prevent matching a set of insns that only supports sizes other
4226 than those matching the insn suffix. */
4227 {
4228 i386_operand_type mask, allowed;
4229 const insn_template *t;
4230
4231 operand_type_set (&mask, 0);
4232 operand_type_set (&allowed, 0);
4233
4234 for (t = current_templates->start;
4235 t < current_templates->end;
4236 ++t)
4237 allowed = operand_type_or (allowed,
4238 t->operand_types[op]);
4239 switch (guess_suffix)
4240 {
4241 case QWORD_MNEM_SUFFIX:
4242 mask.bitfield.imm64 = 1;
4243 mask.bitfield.imm32s = 1;
4244 break;
4245 case LONG_MNEM_SUFFIX:
4246 mask.bitfield.imm32 = 1;
4247 break;
4248 case WORD_MNEM_SUFFIX:
4249 mask.bitfield.imm16 = 1;
4250 break;
4251 case BYTE_MNEM_SUFFIX:
4252 mask.bitfield.imm8 = 1;
4253 break;
4254 default:
4255 break;
4256 }
4257 allowed = operand_type_and (mask, allowed);
4258 if (!operand_type_all_zero (&allowed))
4259 i.types[op] = operand_type_and (i.types[op], mask);
4260 }
4261 break;
4262 }
4263 }
4264 }
4265
4266 /* Try to use the smallest displacement type too. */
4267 static void
4268 optimize_disp (void)
4269 {
4270 int op;
4271
4272 for (op = i.operands; --op >= 0;)
4273 if (operand_type_check (i.types[op], disp))
4274 {
4275 if (i.op[op].disps->X_op == O_constant)
4276 {
4277 offsetT op_disp = i.op[op].disps->X_add_number;
4278
4279 if (i.types[op].bitfield.disp16
4280 && (op_disp & ~(offsetT) 0xffff) == 0)
4281 {
4282 /* If this operand is at most 16 bits, convert
4283 to a signed 16 bit number and don't use 64bit
4284 displacement. */
4285 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4286 i.types[op].bitfield.disp64 = 0;
4287 }
4288 if (i.types[op].bitfield.disp32
4289 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4290 {
4291 /* If this operand is at most 32 bits, convert
4292 to a signed 32 bit number and don't use 64bit
4293 displacement. */
4294 op_disp &= (((offsetT) 2 << 31) - 1);
4295 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4296 i.types[op].bitfield.disp64 = 0;
4297 }
4298 if (!op_disp && i.types[op].bitfield.baseindex)
4299 {
4300 i.types[op].bitfield.disp8 = 0;
4301 i.types[op].bitfield.disp16 = 0;
4302 i.types[op].bitfield.disp32 = 0;
4303 i.types[op].bitfield.disp32s = 0;
4304 i.types[op].bitfield.disp64 = 0;
4305 i.op[op].disps = 0;
4306 i.disp_operands--;
4307 }
4308 else if (flag_code == CODE_64BIT)
4309 {
4310 if (fits_in_signed_long (op_disp))
4311 {
4312 i.types[op].bitfield.disp64 = 0;
4313 i.types[op].bitfield.disp32s = 1;
4314 }
4315 if (i.prefix[ADDR_PREFIX]
4316 && fits_in_unsigned_long (op_disp))
4317 i.types[op].bitfield.disp32 = 1;
4318 }
4319 if ((i.types[op].bitfield.disp32
4320 || i.types[op].bitfield.disp32s
4321 || i.types[op].bitfield.disp16)
4322 && fits_in_signed_byte (op_disp))
4323 i.types[op].bitfield.disp8 = 1;
4324 }
4325 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4326 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4327 {
4328 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4329 i.op[op].disps, 0, i.reloc[op]);
4330 i.types[op].bitfield.disp8 = 0;
4331 i.types[op].bitfield.disp16 = 0;
4332 i.types[op].bitfield.disp32 = 0;
4333 i.types[op].bitfield.disp32s = 0;
4334 i.types[op].bitfield.disp64 = 0;
4335 }
4336 else
4337 /* We only support 64bit displacement on constants. */
4338 i.types[op].bitfield.disp64 = 0;
4339 }
4340 }
4341
4342 /* Check if operands are valid for the instruction. */
4343
4344 static int
4345 check_VecOperands (const insn_template *t)
4346 {
4347 unsigned int op;
4348
4349 /* Without VSIB byte, we can't have a vector register for index. */
4350 if (!t->opcode_modifier.vecsib
4351 && i.index_reg
4352 && (i.index_reg->reg_type.bitfield.regxmm
4353 || i.index_reg->reg_type.bitfield.regymm
4354 || i.index_reg->reg_type.bitfield.regzmm))
4355 {
4356 i.error = unsupported_vector_index_register;
4357 return 1;
4358 }
4359
4360 /* Check if default mask is allowed. */
4361 if (t->opcode_modifier.nodefmask
4362 && (!i.mask || i.mask->mask->reg_num == 0))
4363 {
4364 i.error = no_default_mask;
4365 return 1;
4366 }
4367
4368 /* For VSIB byte, we need a vector register for index, and all vector
4369 registers must be distinct. */
4370 if (t->opcode_modifier.vecsib)
4371 {
4372 if (!i.index_reg
4373 || !((t->opcode_modifier.vecsib == VecSIB128
4374 && i.index_reg->reg_type.bitfield.regxmm)
4375 || (t->opcode_modifier.vecsib == VecSIB256
4376 && i.index_reg->reg_type.bitfield.regymm)
4377 || (t->opcode_modifier.vecsib == VecSIB512
4378 && i.index_reg->reg_type.bitfield.regzmm)))
4379 {
4380 i.error = invalid_vsib_address;
4381 return 1;
4382 }
4383
4384 gas_assert (i.reg_operands == 2 || i.mask);
4385 if (i.reg_operands == 2 && !i.mask)
4386 {
4387 gas_assert (i.types[0].bitfield.regxmm
4388 || i.types[0].bitfield.regymm);
4389 gas_assert (i.types[2].bitfield.regxmm
4390 || i.types[2].bitfield.regymm);
4391 if (operand_check == check_none)
4392 return 0;
4393 if (register_number (i.op[0].regs)
4394 != register_number (i.index_reg)
4395 && register_number (i.op[2].regs)
4396 != register_number (i.index_reg)
4397 && register_number (i.op[0].regs)
4398 != register_number (i.op[2].regs))
4399 return 0;
4400 if (operand_check == check_error)
4401 {
4402 i.error = invalid_vector_register_set;
4403 return 1;
4404 }
4405 as_warn (_("mask, index, and destination registers should be distinct"));
4406 }
4407 else if (i.reg_operands == 1 && i.mask)
4408 {
4409 if ((i.types[1].bitfield.regymm
4410 || i.types[1].bitfield.regzmm)
4411 && (register_number (i.op[1].regs)
4412 == register_number (i.index_reg)))
4413 {
4414 if (operand_check == check_error)
4415 {
4416 i.error = invalid_vector_register_set;
4417 return 1;
4418 }
4419 if (operand_check != check_none)
4420 as_warn (_("index and destination registers should be distinct"));
4421 }
4422 }
4423 }
4424
4425 /* Check if broadcast is supported by the instruction and is applied
4426 to the memory operand. */
4427 if (i.broadcast)
4428 {
4429 int broadcasted_opnd_size;
4430
4431 /* Check if specified broadcast is supported in this instruction,
4432 and it's applied to memory operand of DWORD or QWORD type,
4433 depending on VecESize. */
4434 if (i.broadcast->type != t->opcode_modifier.broadcast
4435 || !i.types[i.broadcast->operand].bitfield.mem
4436 || (t->opcode_modifier.vecesize == 0
4437 && !i.types[i.broadcast->operand].bitfield.dword
4438 && !i.types[i.broadcast->operand].bitfield.unspecified)
4439 || (t->opcode_modifier.vecesize == 1
4440 && !i.types[i.broadcast->operand].bitfield.qword
4441 && !i.types[i.broadcast->operand].bitfield.unspecified))
4442 goto bad_broadcast;
4443
4444 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4445 if (i.broadcast->type == BROADCAST_1TO16)
4446 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4447 else if (i.broadcast->type == BROADCAST_1TO8)
4448 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
4449 else if (i.broadcast->type == BROADCAST_1TO4)
4450 broadcasted_opnd_size <<= 2; /* Broadcast 1to4. */
4451 else if (i.broadcast->type == BROADCAST_1TO2)
4452 broadcasted_opnd_size <<= 1; /* Broadcast 1to2. */
4453 else
4454 goto bad_broadcast;
4455
4456 if ((broadcasted_opnd_size == 256
4457 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4458 || (broadcasted_opnd_size == 512
4459 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4460 {
4461 bad_broadcast:
4462 i.error = unsupported_broadcast;
4463 return 1;
4464 }
4465 }
4466 /* If broadcast is supported in this instruction, we need to check if
4467 operand of one-element size isn't specified without broadcast. */
4468 else if (t->opcode_modifier.broadcast && i.mem_operands)
4469 {
4470 /* Find memory operand. */
4471 for (op = 0; op < i.operands; op++)
4472 if (operand_type_check (i.types[op], anymem))
4473 break;
4474 gas_assert (op < i.operands);
4475 /* Check size of the memory operand. */
4476 if ((t->opcode_modifier.vecesize == 0
4477 && i.types[op].bitfield.dword)
4478 || (t->opcode_modifier.vecesize == 1
4479 && i.types[op].bitfield.qword))
4480 {
4481 i.error = broadcast_needed;
4482 return 1;
4483 }
4484 }
4485
4486 /* Check if requested masking is supported. */
4487 if (i.mask
4488 && (!t->opcode_modifier.masking
4489 || (i.mask->zeroing
4490 && t->opcode_modifier.masking == MERGING_MASKING)))
4491 {
4492 i.error = unsupported_masking;
4493 return 1;
4494 }
4495
4496 /* Check if masking is applied to dest operand. */
4497 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4498 {
4499 i.error = mask_not_on_destination;
4500 return 1;
4501 }
4502
4503 /* Check RC/SAE. */
4504 if (i.rounding)
4505 {
4506 if ((i.rounding->type != saeonly
4507 && !t->opcode_modifier.staticrounding)
4508 || (i.rounding->type == saeonly
4509 && (t->opcode_modifier.staticrounding
4510 || !t->opcode_modifier.sae)))
4511 {
4512 i.error = unsupported_rc_sae;
4513 return 1;
4514 }
4515 /* If the instruction has several immediate operands and one of
4516 them is rounding, the rounding operand should be the last
4517 immediate operand. */
4518 if (i.imm_operands > 1
4519 && i.rounding->operand != (int) (i.imm_operands - 1))
4520 {
4521 i.error = rc_sae_operand_not_last_imm;
4522 return 1;
4523 }
4524 }
4525
4526 /* Check vector Disp8 operand. */
4527 if (t->opcode_modifier.disp8memshift)
4528 {
4529 if (i.broadcast)
4530 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4531 else
4532 i.memshift = t->opcode_modifier.disp8memshift;
4533
4534 for (op = 0; op < i.operands; op++)
4535 if (operand_type_check (i.types[op], disp)
4536 && i.op[op].disps->X_op == O_constant)
4537 {
4538 offsetT value = i.op[op].disps->X_add_number;
4539 int vec_disp8_ok = fits_in_vec_disp8 (value);
4540 if (t->operand_types [op].bitfield.vec_disp8)
4541 {
4542 if (vec_disp8_ok)
4543 i.types[op].bitfield.vec_disp8 = 1;
4544 else
4545 {
4546 /* Vector insn can only have Vec_Disp8/Disp32 in
4547 32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4548 mode. */
4549 i.types[op].bitfield.disp8 = 0;
4550 if (flag_code != CODE_16BIT)
4551 i.types[op].bitfield.disp16 = 0;
4552 }
4553 }
4554 else if (flag_code != CODE_16BIT)
4555 {
4556 /* One form of this instruction supports vector Disp8.
4557 Try vector Disp8 if we need to use Disp32. */
4558 if (vec_disp8_ok && !fits_in_signed_byte (value))
4559 {
4560 i.error = try_vector_disp8;
4561 return 1;
4562 }
4563 }
4564 }
4565 }
4566 else
4567 i.memshift = -1;
4568
4569 return 0;
4570 }
4571
4572 /* Check if operands are valid for the instruction. Update VEX
4573 operand types. */
4574
4575 static int
4576 VEX_check_operands (const insn_template *t)
4577 {
4578 /* VREX is only valid with EVEX prefix. */
4579 if (i.need_vrex && !t->opcode_modifier.evex)
4580 {
4581 i.error = invalid_register_operand;
4582 return 1;
4583 }
4584
4585 if (!t->opcode_modifier.vex)
4586 return 0;
4587
4588 /* Only check VEX_Imm4, which must be the first operand. */
4589 if (t->operand_types[0].bitfield.vec_imm4)
4590 {
4591 if (i.op[0].imms->X_op != O_constant
4592 || !fits_in_imm4 (i.op[0].imms->X_add_number))
4593 {
4594 i.error = bad_imm4;
4595 return 1;
4596 }
4597
4598 /* Turn off Imm8 so that update_imm won't complain. */
4599 i.types[0] = vec_imm4;
4600 }
4601
4602 return 0;
4603 }
4604
4605 static const insn_template *
4606 match_template (void)
4607 {
4608 /* Points to template once we've found it. */
4609 const insn_template *t;
4610 i386_operand_type overlap0, overlap1, overlap2, overlap3;
4611 i386_operand_type overlap4;
4612 unsigned int found_reverse_match;
4613 i386_opcode_modifier suffix_check;
4614 i386_operand_type operand_types [MAX_OPERANDS];
4615 int addr_prefix_disp;
4616 unsigned int j;
4617 unsigned int found_cpu_match;
4618 unsigned int check_register;
4619 enum i386_error specific_error = 0;
4620
4621 #if MAX_OPERANDS != 5
4622 # error "MAX_OPERANDS must be 5."
4623 #endif
4624
4625 found_reverse_match = 0;
4626 addr_prefix_disp = -1;
4627
4628 memset (&suffix_check, 0, sizeof (suffix_check));
4629 if (i.suffix == BYTE_MNEM_SUFFIX)
4630 suffix_check.no_bsuf = 1;
4631 else if (i.suffix == WORD_MNEM_SUFFIX)
4632 suffix_check.no_wsuf = 1;
4633 else if (i.suffix == SHORT_MNEM_SUFFIX)
4634 suffix_check.no_ssuf = 1;
4635 else if (i.suffix == LONG_MNEM_SUFFIX)
4636 suffix_check.no_lsuf = 1;
4637 else if (i.suffix == QWORD_MNEM_SUFFIX)
4638 suffix_check.no_qsuf = 1;
4639 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
4640 suffix_check.no_ldsuf = 1;
4641
4642 /* Must have right number of operands. */
4643 i.error = number_of_operands_mismatch;
4644
4645 for (t = current_templates->start; t < current_templates->end; t++)
4646 {
4647 addr_prefix_disp = -1;
4648
4649 if (i.operands != t->operands)
4650 continue;
4651
4652 /* Check processor support. */
4653 i.error = unsupported;
4654 found_cpu_match = (cpu_flags_match (t)
4655 == CPU_FLAGS_PERFECT_MATCH);
4656 if (!found_cpu_match)
4657 continue;
4658
4659 /* Check old gcc support. */
4660 i.error = old_gcc_only;
4661 if (!old_gcc && t->opcode_modifier.oldgcc)
4662 continue;
4663
4664 /* Check AT&T mnemonic. */
4665 i.error = unsupported_with_intel_mnemonic;
4666 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
4667 continue;
4668
4669 /* Check AT&T/Intel syntax. */
4670 i.error = unsupported_syntax;
4671 if ((intel_syntax && t->opcode_modifier.attsyntax)
4672 || (!intel_syntax && t->opcode_modifier.intelsyntax))
4673 continue;
4674
4675 /* Check the suffix, except for some instructions in intel mode. */
4676 i.error = invalid_instruction_suffix;
4677 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4678 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4679 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4680 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4681 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4682 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4683 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
4684 continue;
4685
4686 if (!operand_size_match (t))
4687 continue;
4688
4689 for (j = 0; j < MAX_OPERANDS; j++)
4690 operand_types[j] = t->operand_types[j];
4691
4692 /* In general, don't allow 64-bit operands in 32-bit mode. */
4693 if (i.suffix == QWORD_MNEM_SUFFIX
4694 && flag_code != CODE_64BIT
4695 && (intel_syntax
4696 ? (!t->opcode_modifier.ignoresize
4697 && !intel_float_operand (t->name))
4698 : intel_float_operand (t->name) != 2)
4699 && ((!operand_types[0].bitfield.regmmx
4700 && !operand_types[0].bitfield.regxmm
4701 && !operand_types[0].bitfield.regymm
4702 && !operand_types[0].bitfield.regzmm)
4703 || (!operand_types[t->operands > 1].bitfield.regmmx
4704 && !!operand_types[t->operands > 1].bitfield.regxmm
4705 && !!operand_types[t->operands > 1].bitfield.regymm
4706 && !!operand_types[t->operands > 1].bitfield.regzmm))
4707 && (t->base_opcode != 0x0fc7
4708 || t->extension_opcode != 1 /* cmpxchg8b */))
4709 continue;
4710
4711 /* In general, don't allow 32-bit operands on pre-386. */
4712 else if (i.suffix == LONG_MNEM_SUFFIX
4713 && !cpu_arch_flags.bitfield.cpui386
4714 && (intel_syntax
4715 ? (!t->opcode_modifier.ignoresize
4716 && !intel_float_operand (t->name))
4717 : intel_float_operand (t->name) != 2)
4718 && ((!operand_types[0].bitfield.regmmx
4719 && !operand_types[0].bitfield.regxmm)
4720 || (!operand_types[t->operands > 1].bitfield.regmmx
4721 && !!operand_types[t->operands > 1].bitfield.regxmm)))
4722 continue;
4723
4724 /* Do not verify operands when there are none. */
4725 else
4726 {
4727 if (!t->operands)
4728 /* We've found a match; break out of loop. */
4729 break;
4730 }
4731
4732 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
4733 into Disp32/Disp16/Disp32 operand. */
4734 if (i.prefix[ADDR_PREFIX] != 0)
4735 {
4736 /* There should be only one Disp operand. */
4737 switch (flag_code)
4738 {
4739 case CODE_16BIT:
4740 for (j = 0; j < MAX_OPERANDS; j++)
4741 {
4742 if (operand_types[j].bitfield.disp16)
4743 {
4744 addr_prefix_disp = j;
4745 operand_types[j].bitfield.disp32 = 1;
4746 operand_types[j].bitfield.disp16 = 0;
4747 break;
4748 }
4749 }
4750 break;
4751 case CODE_32BIT:
4752 for (j = 0; j < MAX_OPERANDS; j++)
4753 {
4754 if (operand_types[j].bitfield.disp32)
4755 {
4756 addr_prefix_disp = j;
4757 operand_types[j].bitfield.disp32 = 0;
4758 operand_types[j].bitfield.disp16 = 1;
4759 break;
4760 }
4761 }
4762 break;
4763 case CODE_64BIT:
4764 for (j = 0; j < MAX_OPERANDS; j++)
4765 {
4766 if (operand_types[j].bitfield.disp64)
4767 {
4768 addr_prefix_disp = j;
4769 operand_types[j].bitfield.disp64 = 0;
4770 operand_types[j].bitfield.disp32 = 1;
4771 break;
4772 }
4773 }
4774 break;
4775 }
4776 }
4777
4778 /* We check register size if needed. */
4779 check_register = t->opcode_modifier.checkregsize;
4780 overlap0 = operand_type_and (i.types[0], operand_types[0]);
4781 switch (t->operands)
4782 {
4783 case 1:
4784 if (!operand_type_match (overlap0, i.types[0]))
4785 continue;
4786 break;
4787 case 2:
4788 /* xchg %eax, %eax is a special case. It is an aliase for nop
4789 only in 32bit mode and we can use opcode 0x90. In 64bit
4790 mode, we can't use 0x90 for xchg %eax, %eax since it should
4791 zero-extend %eax to %rax. */
4792 if (flag_code == CODE_64BIT
4793 && t->base_opcode == 0x90
4794 && operand_type_equal (&i.types [0], &acc32)
4795 && operand_type_equal (&i.types [1], &acc32))
4796 continue;
4797 if (i.swap_operand)
4798 {
4799 /* If we swap operand in encoding, we either match
4800 the next one or reverse direction of operands. */
4801 if (t->opcode_modifier.s)
4802 continue;
4803 else if (t->opcode_modifier.d)
4804 goto check_reverse;
4805 }
4806
4807 case 3:
4808 /* If we swap operand in encoding, we match the next one. */
4809 if (i.swap_operand && t->opcode_modifier.s)
4810 continue;
4811 case 4:
4812 case 5:
4813 overlap1 = operand_type_and (i.types[1], operand_types[1]);
4814 if (!operand_type_match (overlap0, i.types[0])
4815 || !operand_type_match (overlap1, i.types[1])
4816 || (check_register
4817 && !operand_type_register_match (overlap0, i.types[0],
4818 operand_types[0],
4819 overlap1, i.types[1],
4820 operand_types[1])))
4821 {
4822 /* Check if other direction is valid ... */
4823 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
4824 continue;
4825
4826 check_reverse:
4827 /* Try reversing direction of operands. */
4828 overlap0 = operand_type_and (i.types[0], operand_types[1]);
4829 overlap1 = operand_type_and (i.types[1], operand_types[0]);
4830 if (!operand_type_match (overlap0, i.types[0])
4831 || !operand_type_match (overlap1, i.types[1])
4832 || (check_register
4833 && !operand_type_register_match (overlap0,
4834 i.types[0],
4835 operand_types[1],
4836 overlap1,
4837 i.types[1],
4838 operand_types[0])))
4839 {
4840 /* Does not match either direction. */
4841 continue;
4842 }
4843 /* found_reverse_match holds which of D or FloatDR
4844 we've found. */
4845 if (t->opcode_modifier.d)
4846 found_reverse_match = Opcode_D;
4847 else if (t->opcode_modifier.floatd)
4848 found_reverse_match = Opcode_FloatD;
4849 else
4850 found_reverse_match = 0;
4851 if (t->opcode_modifier.floatr)
4852 found_reverse_match |= Opcode_FloatR;
4853 }
4854 else
4855 {
4856 /* Found a forward 2 operand match here. */
4857 switch (t->operands)
4858 {
4859 case 5:
4860 overlap4 = operand_type_and (i.types[4],
4861 operand_types[4]);
4862 case 4:
4863 overlap3 = operand_type_and (i.types[3],
4864 operand_types[3]);
4865 case 3:
4866 overlap2 = operand_type_and (i.types[2],
4867 operand_types[2]);
4868 break;
4869 }
4870
4871 switch (t->operands)
4872 {
4873 case 5:
4874 if (!operand_type_match (overlap4, i.types[4])
4875 || !operand_type_register_match (overlap3,
4876 i.types[3],
4877 operand_types[3],
4878 overlap4,
4879 i.types[4],
4880 operand_types[4]))
4881 continue;
4882 case 4:
4883 if (!operand_type_match (overlap3, i.types[3])
4884 || (check_register
4885 && !operand_type_register_match (overlap2,
4886 i.types[2],
4887 operand_types[2],
4888 overlap3,
4889 i.types[3],
4890 operand_types[3])))
4891 continue;
4892 case 3:
4893 /* Here we make use of the fact that there are no
4894 reverse match 3 operand instructions, and all 3
4895 operand instructions only need to be checked for
4896 register consistency between operands 2 and 3. */
4897 if (!operand_type_match (overlap2, i.types[2])
4898 || (check_register
4899 && !operand_type_register_match (overlap1,
4900 i.types[1],
4901 operand_types[1],
4902 overlap2,
4903 i.types[2],
4904 operand_types[2])))
4905 continue;
4906 break;
4907 }
4908 }
4909 /* Found either forward/reverse 2, 3 or 4 operand match here:
4910 slip through to break. */
4911 }
4912 if (!found_cpu_match)
4913 {
4914 found_reverse_match = 0;
4915 continue;
4916 }
4917
4918 /* Check if vector and VEX operands are valid. */
4919 if (check_VecOperands (t) || VEX_check_operands (t))
4920 {
4921 specific_error = i.error;
4922 continue;
4923 }
4924
4925 /* We've found a match; break out of loop. */
4926 break;
4927 }
4928
4929 if (t == current_templates->end)
4930 {
4931 /* We found no match. */
4932 const char *err_msg;
4933 switch (specific_error ? specific_error : i.error)
4934 {
4935 default:
4936 abort ();
4937 case operand_size_mismatch:
4938 err_msg = _("operand size mismatch");
4939 break;
4940 case operand_type_mismatch:
4941 err_msg = _("operand type mismatch");
4942 break;
4943 case register_type_mismatch:
4944 err_msg = _("register type mismatch");
4945 break;
4946 case number_of_operands_mismatch:
4947 err_msg = _("number of operands mismatch");
4948 break;
4949 case invalid_instruction_suffix:
4950 err_msg = _("invalid instruction suffix");
4951 break;
4952 case bad_imm4:
4953 err_msg = _("constant doesn't fit in 4 bits");
4954 break;
4955 case old_gcc_only:
4956 err_msg = _("only supported with old gcc");
4957 break;
4958 case unsupported_with_intel_mnemonic:
4959 err_msg = _("unsupported with Intel mnemonic");
4960 break;
4961 case unsupported_syntax:
4962 err_msg = _("unsupported syntax");
4963 break;
4964 case unsupported:
4965 as_bad (_("unsupported instruction `%s'"),
4966 current_templates->start->name);
4967 return NULL;
4968 case invalid_vsib_address:
4969 err_msg = _("invalid VSIB address");
4970 break;
4971 case invalid_vector_register_set:
4972 err_msg = _("mask, index, and destination registers must be distinct");
4973 break;
4974 case unsupported_vector_index_register:
4975 err_msg = _("unsupported vector index register");
4976 break;
4977 case unsupported_broadcast:
4978 err_msg = _("unsupported broadcast");
4979 break;
4980 case broadcast_not_on_src_operand:
4981 err_msg = _("broadcast not on source memory operand");
4982 break;
4983 case broadcast_needed:
4984 err_msg = _("broadcast is needed for operand of such type");
4985 break;
4986 case unsupported_masking:
4987 err_msg = _("unsupported masking");
4988 break;
4989 case mask_not_on_destination:
4990 err_msg = _("mask not on destination operand");
4991 break;
4992 case no_default_mask:
4993 err_msg = _("default mask isn't allowed");
4994 break;
4995 case unsupported_rc_sae:
4996 err_msg = _("unsupported static rounding/sae");
4997 break;
4998 case rc_sae_operand_not_last_imm:
4999 if (intel_syntax)
5000 err_msg = _("RC/SAE operand must precede immediate operands");
5001 else
5002 err_msg = _("RC/SAE operand must follow immediate operands");
5003 break;
5004 case invalid_register_operand:
5005 err_msg = _("invalid register operand");
5006 break;
5007 }
5008 as_bad (_("%s for `%s'"), err_msg,
5009 current_templates->start->name);
5010 return NULL;
5011 }
5012
5013 if (!quiet_warnings)
5014 {
5015 if (!intel_syntax
5016 && (i.types[0].bitfield.jumpabsolute
5017 != operand_types[0].bitfield.jumpabsolute))
5018 {
5019 as_warn (_("indirect %s without `*'"), t->name);
5020 }
5021
5022 if (t->opcode_modifier.isprefix
5023 && t->opcode_modifier.ignoresize)
5024 {
5025 /* Warn them that a data or address size prefix doesn't
5026 affect assembly of the next line of code. */
5027 as_warn (_("stand-alone `%s' prefix"), t->name);
5028 }
5029 }
5030
5031 /* Copy the template we found. */
5032 i.tm = *t;
5033
5034 if (addr_prefix_disp != -1)
5035 i.tm.operand_types[addr_prefix_disp]
5036 = operand_types[addr_prefix_disp];
5037
5038 if (found_reverse_match)
5039 {
5040 /* If we found a reverse match we must alter the opcode
5041 direction bit. found_reverse_match holds bits to change
5042 (different for int & float insns). */
5043
5044 i.tm.base_opcode ^= found_reverse_match;
5045
5046 i.tm.operand_types[0] = operand_types[1];
5047 i.tm.operand_types[1] = operand_types[0];
5048 }
5049
5050 return t;
5051 }
5052
5053 static int
5054 check_string (void)
5055 {
5056 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5057 if (i.tm.operand_types[mem_op].bitfield.esseg)
5058 {
5059 if (i.seg[0] != NULL && i.seg[0] != &es)
5060 {
5061 as_bad (_("`%s' operand %d must use `%ses' segment"),
5062 i.tm.name,
5063 mem_op + 1,
5064 register_prefix);
5065 return 0;
5066 }
5067 /* There's only ever one segment override allowed per instruction.
5068 This instruction possibly has a legal segment override on the
5069 second operand, so copy the segment to where non-string
5070 instructions store it, allowing common code. */
5071 i.seg[0] = i.seg[1];
5072 }
5073 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5074 {
5075 if (i.seg[1] != NULL && i.seg[1] != &es)
5076 {
5077 as_bad (_("`%s' operand %d must use `%ses' segment"),
5078 i.tm.name,
5079 mem_op + 2,
5080 register_prefix);
5081 return 0;
5082 }
5083 }
5084 return 1;
5085 }
5086
5087 static int
5088 process_suffix (void)
5089 {
5090 /* If matched instruction specifies an explicit instruction mnemonic
5091 suffix, use it. */
5092 if (i.tm.opcode_modifier.size16)
5093 i.suffix = WORD_MNEM_SUFFIX;
5094 else if (i.tm.opcode_modifier.size32)
5095 i.suffix = LONG_MNEM_SUFFIX;
5096 else if (i.tm.opcode_modifier.size64)
5097 i.suffix = QWORD_MNEM_SUFFIX;
5098 else if (i.reg_operands)
5099 {
5100 /* If there's no instruction mnemonic suffix we try to invent one
5101 based on register operands. */
5102 if (!i.suffix)
5103 {
5104 /* We take i.suffix from the last register operand specified,
5105 Destination register type is more significant than source
5106 register type. crc32 in SSE4.2 prefers source register
5107 type. */
5108 if (i.tm.base_opcode == 0xf20f38f1)
5109 {
5110 if (i.types[0].bitfield.reg16)
5111 i.suffix = WORD_MNEM_SUFFIX;
5112 else if (i.types[0].bitfield.reg32)
5113 i.suffix = LONG_MNEM_SUFFIX;
5114 else if (i.types[0].bitfield.reg64)
5115 i.suffix = QWORD_MNEM_SUFFIX;
5116 }
5117 else if (i.tm.base_opcode == 0xf20f38f0)
5118 {
5119 if (i.types[0].bitfield.reg8)
5120 i.suffix = BYTE_MNEM_SUFFIX;
5121 }
5122
5123 if (!i.suffix)
5124 {
5125 int op;
5126
5127 if (i.tm.base_opcode == 0xf20f38f1
5128 || i.tm.base_opcode == 0xf20f38f0)
5129 {
5130 /* We have to know the operand size for crc32. */
5131 as_bad (_("ambiguous memory operand size for `%s`"),
5132 i.tm.name);
5133 return 0;
5134 }
5135
5136 for (op = i.operands; --op >= 0;)
5137 if (!i.tm.operand_types[op].bitfield.inoutportreg)
5138 {
5139 if (i.types[op].bitfield.reg8)
5140 {
5141 i.suffix = BYTE_MNEM_SUFFIX;
5142 break;
5143 }
5144 else if (i.types[op].bitfield.reg16)
5145 {
5146 i.suffix = WORD_MNEM_SUFFIX;
5147 break;
5148 }
5149 else if (i.types[op].bitfield.reg32)
5150 {
5151 i.suffix = LONG_MNEM_SUFFIX;
5152 break;
5153 }
5154 else if (i.types[op].bitfield.reg64)
5155 {
5156 i.suffix = QWORD_MNEM_SUFFIX;
5157 break;
5158 }
5159 }
5160 }
5161 }
5162 else if (i.suffix == BYTE_MNEM_SUFFIX)
5163 {
5164 if (intel_syntax
5165 && i.tm.opcode_modifier.ignoresize
5166 && i.tm.opcode_modifier.no_bsuf)
5167 i.suffix = 0;
5168 else if (!check_byte_reg ())
5169 return 0;
5170 }
5171 else if (i.suffix == LONG_MNEM_SUFFIX)
5172 {
5173 if (intel_syntax
5174 && i.tm.opcode_modifier.ignoresize
5175 && i.tm.opcode_modifier.no_lsuf)
5176 i.suffix = 0;
5177 else if (!check_long_reg ())
5178 return 0;
5179 }
5180 else if (i.suffix == QWORD_MNEM_SUFFIX)
5181 {
5182 if (intel_syntax
5183 && i.tm.opcode_modifier.ignoresize
5184 && i.tm.opcode_modifier.no_qsuf)
5185 i.suffix = 0;
5186 else if (!check_qword_reg ())
5187 return 0;
5188 }
5189 else if (i.suffix == WORD_MNEM_SUFFIX)
5190 {
5191 if (intel_syntax
5192 && i.tm.opcode_modifier.ignoresize
5193 && i.tm.opcode_modifier.no_wsuf)
5194 i.suffix = 0;
5195 else if (!check_word_reg ())
5196 return 0;
5197 }
5198 else if (i.suffix == XMMWORD_MNEM_SUFFIX
5199 || i.suffix == YMMWORD_MNEM_SUFFIX
5200 || i.suffix == ZMMWORD_MNEM_SUFFIX)
5201 {
5202 /* Skip if the instruction has x/y/z suffix. match_template
5203 should check if it is a valid suffix. */
5204 }
5205 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5206 /* Do nothing if the instruction is going to ignore the prefix. */
5207 ;
5208 else
5209 abort ();
5210 }
5211 else if (i.tm.opcode_modifier.defaultsize
5212 && !i.suffix
5213 /* exclude fldenv/frstor/fsave/fstenv */
5214 && i.tm.opcode_modifier.no_ssuf)
5215 {
5216 i.suffix = stackop_size;
5217 }
5218 else if (intel_syntax
5219 && !i.suffix
5220 && (i.tm.operand_types[0].bitfield.jumpabsolute
5221 || i.tm.opcode_modifier.jumpbyte
5222 || i.tm.opcode_modifier.jumpintersegment
5223 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5224 && i.tm.extension_opcode <= 3)))
5225 {
5226 switch (flag_code)
5227 {
5228 case CODE_64BIT:
5229 if (!i.tm.opcode_modifier.no_qsuf)
5230 {
5231 i.suffix = QWORD_MNEM_SUFFIX;
5232 break;
5233 }
5234 case CODE_32BIT:
5235 if (!i.tm.opcode_modifier.no_lsuf)
5236 i.suffix = LONG_MNEM_SUFFIX;
5237 break;
5238 case CODE_16BIT:
5239 if (!i.tm.opcode_modifier.no_wsuf)
5240 i.suffix = WORD_MNEM_SUFFIX;
5241 break;
5242 }
5243 }
5244
5245 if (!i.suffix)
5246 {
5247 if (!intel_syntax)
5248 {
5249 if (i.tm.opcode_modifier.w)
5250 {
5251 as_bad (_("no instruction mnemonic suffix given and "
5252 "no register operands; can't size instruction"));
5253 return 0;
5254 }
5255 }
5256 else
5257 {
5258 unsigned int suffixes;
5259
5260 suffixes = !i.tm.opcode_modifier.no_bsuf;
5261 if (!i.tm.opcode_modifier.no_wsuf)
5262 suffixes |= 1 << 1;
5263 if (!i.tm.opcode_modifier.no_lsuf)
5264 suffixes |= 1 << 2;
5265 if (!i.tm.opcode_modifier.no_ldsuf)
5266 suffixes |= 1 << 3;
5267 if (!i.tm.opcode_modifier.no_ssuf)
5268 suffixes |= 1 << 4;
5269 if (!i.tm.opcode_modifier.no_qsuf)
5270 suffixes |= 1 << 5;
5271
5272 /* There are more than suffix matches. */
5273 if (i.tm.opcode_modifier.w
5274 || ((suffixes & (suffixes - 1))
5275 && !i.tm.opcode_modifier.defaultsize
5276 && !i.tm.opcode_modifier.ignoresize))
5277 {
5278 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5279 return 0;
5280 }
5281 }
5282 }
5283
5284 /* Change the opcode based on the operand size given by i.suffix;
5285 We don't need to change things for byte insns. */
5286
5287 if (i.suffix
5288 && i.suffix != BYTE_MNEM_SUFFIX
5289 && i.suffix != XMMWORD_MNEM_SUFFIX
5290 && i.suffix != YMMWORD_MNEM_SUFFIX
5291 && i.suffix != ZMMWORD_MNEM_SUFFIX)
5292 {
5293 /* It's not a byte, select word/dword operation. */
5294 if (i.tm.opcode_modifier.w)
5295 {
5296 if (i.tm.opcode_modifier.shortform)
5297 i.tm.base_opcode |= 8;
5298 else
5299 i.tm.base_opcode |= 1;
5300 }
5301
5302 /* Now select between word & dword operations via the operand
5303 size prefix, except for instructions that will ignore this
5304 prefix anyway. */
5305 if (i.tm.opcode_modifier.addrprefixop0)
5306 {
5307 /* The address size override prefix changes the size of the
5308 first operand. */
5309 if ((flag_code == CODE_32BIT
5310 && i.op->regs[0].reg_type.bitfield.reg16)
5311 || (flag_code != CODE_32BIT
5312 && i.op->regs[0].reg_type.bitfield.reg32))
5313 if (!add_prefix (ADDR_PREFIX_OPCODE))
5314 return 0;
5315 }
5316 else if (i.suffix != QWORD_MNEM_SUFFIX
5317 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
5318 && !i.tm.opcode_modifier.ignoresize
5319 && !i.tm.opcode_modifier.floatmf
5320 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5321 || (flag_code == CODE_64BIT
5322 && i.tm.opcode_modifier.jumpbyte)))
5323 {
5324 unsigned int prefix = DATA_PREFIX_OPCODE;
5325
5326 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5327 prefix = ADDR_PREFIX_OPCODE;
5328
5329 if (!add_prefix (prefix))
5330 return 0;
5331 }
5332
5333 /* Set mode64 for an operand. */
5334 if (i.suffix == QWORD_MNEM_SUFFIX
5335 && flag_code == CODE_64BIT
5336 && !i.tm.opcode_modifier.norex64)
5337 {
5338 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5339 need rex64. cmpxchg8b is also a special case. */
5340 if (! (i.operands == 2
5341 && i.tm.base_opcode == 0x90
5342 && i.tm.extension_opcode == None
5343 && operand_type_equal (&i.types [0], &acc64)
5344 && operand_type_equal (&i.types [1], &acc64))
5345 && ! (i.operands == 1
5346 && i.tm.base_opcode == 0xfc7
5347 && i.tm.extension_opcode == 1
5348 && !operand_type_check (i.types [0], reg)
5349 && operand_type_check (i.types [0], anymem)))
5350 i.rex |= REX_W;
5351 }
5352
5353 /* Size floating point instruction. */
5354 if (i.suffix == LONG_MNEM_SUFFIX)
5355 if (i.tm.opcode_modifier.floatmf)
5356 i.tm.base_opcode ^= 4;
5357 }
5358
5359 return 1;
5360 }
5361
5362 static int
5363 check_byte_reg (void)
5364 {
5365 int op;
5366
5367 for (op = i.operands; --op >= 0;)
5368 {
5369 /* If this is an eight bit register, it's OK. If it's the 16 or
5370 32 bit version of an eight bit register, we will just use the
5371 low portion, and that's OK too. */
5372 if (i.types[op].bitfield.reg8)
5373 continue;
5374
5375 /* I/O port address operands are OK too. */
5376 if (i.tm.operand_types[op].bitfield.inoutportreg)
5377 continue;
5378
5379 /* crc32 doesn't generate this warning. */
5380 if (i.tm.base_opcode == 0xf20f38f0)
5381 continue;
5382
5383 if ((i.types[op].bitfield.reg16
5384 || i.types[op].bitfield.reg32
5385 || i.types[op].bitfield.reg64)
5386 && i.op[op].regs->reg_num < 4
5387 /* Prohibit these changes in 64bit mode, since the lowering
5388 would be more complicated. */
5389 && flag_code != CODE_64BIT)
5390 {
5391 #if REGISTER_WARNINGS
5392 if (!quiet_warnings)
5393 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5394 register_prefix,
5395 (i.op[op].regs + (i.types[op].bitfield.reg16
5396 ? REGNAM_AL - REGNAM_AX
5397 : REGNAM_AL - REGNAM_EAX))->reg_name,
5398 register_prefix,
5399 i.op[op].regs->reg_name,
5400 i.suffix);
5401 #endif
5402 continue;
5403 }
5404 /* Any other register is bad. */
5405 if (i.types[op].bitfield.reg16
5406 || i.types[op].bitfield.reg32
5407 || i.types[op].bitfield.reg64
5408 || i.types[op].bitfield.regmmx
5409 || i.types[op].bitfield.regxmm
5410 || i.types[op].bitfield.regymm
5411 || i.types[op].bitfield.regzmm
5412 || i.types[op].bitfield.sreg2
5413 || i.types[op].bitfield.sreg3
5414 || i.types[op].bitfield.control
5415 || i.types[op].bitfield.debug
5416 || i.types[op].bitfield.test
5417 || i.types[op].bitfield.floatreg
5418 || i.types[op].bitfield.floatacc)
5419 {
5420 as_bad (_("`%s%s' not allowed with `%s%c'"),
5421 register_prefix,
5422 i.op[op].regs->reg_name,
5423 i.tm.name,
5424 i.suffix);
5425 return 0;
5426 }
5427 }
5428 return 1;
5429 }
5430
5431 static int
5432 check_long_reg (void)
5433 {
5434 int op;
5435
5436 for (op = i.operands; --op >= 0;)
5437 /* Reject eight bit registers, except where the template requires
5438 them. (eg. movzb) */
5439 if (i.types[op].bitfield.reg8
5440 && (i.tm.operand_types[op].bitfield.reg16
5441 || i.tm.operand_types[op].bitfield.reg32
5442 || i.tm.operand_types[op].bitfield.acc))
5443 {
5444 as_bad (_("`%s%s' not allowed with `%s%c'"),
5445 register_prefix,
5446 i.op[op].regs->reg_name,
5447 i.tm.name,
5448 i.suffix);
5449 return 0;
5450 }
5451 /* Warn if the e prefix on a general reg is missing. */
5452 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5453 && i.types[op].bitfield.reg16
5454 && (i.tm.operand_types[op].bitfield.reg32
5455 || i.tm.operand_types[op].bitfield.acc))
5456 {
5457 /* Prohibit these changes in the 64bit mode, since the
5458 lowering is more complicated. */
5459 if (flag_code == CODE_64BIT)
5460 {
5461 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5462 register_prefix, i.op[op].regs->reg_name,
5463 i.suffix);
5464 return 0;
5465 }
5466 #if REGISTER_WARNINGS
5467 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5468 register_prefix,
5469 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5470 register_prefix, i.op[op].regs->reg_name, i.suffix);
5471 #endif
5472 }
5473 /* Warn if the r prefix on a general reg is present. */
5474 else if (i.types[op].bitfield.reg64
5475 && (i.tm.operand_types[op].bitfield.reg32
5476 || i.tm.operand_types[op].bitfield.acc))
5477 {
5478 if (intel_syntax
5479 && i.tm.opcode_modifier.toqword
5480 && !i.types[0].bitfield.regxmm)
5481 {
5482 /* Convert to QWORD. We want REX byte. */
5483 i.suffix = QWORD_MNEM_SUFFIX;
5484 }
5485 else
5486 {
5487 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5488 register_prefix, i.op[op].regs->reg_name,
5489 i.suffix);
5490 return 0;
5491 }
5492 }
5493 return 1;
5494 }
5495
5496 static int
5497 check_qword_reg (void)
5498 {
5499 int op;
5500
5501 for (op = i.operands; --op >= 0; )
5502 /* Reject eight bit registers, except where the template requires
5503 them. (eg. movzb) */
5504 if (i.types[op].bitfield.reg8
5505 && (i.tm.operand_types[op].bitfield.reg16
5506 || i.tm.operand_types[op].bitfield.reg32
5507 || i.tm.operand_types[op].bitfield.acc))
5508 {
5509 as_bad (_("`%s%s' not allowed with `%s%c'"),
5510 register_prefix,
5511 i.op[op].regs->reg_name,
5512 i.tm.name,
5513 i.suffix);
5514 return 0;
5515 }
5516 /* Warn if the r prefix on a general reg is missing. */
5517 else if ((i.types[op].bitfield.reg16
5518 || i.types[op].bitfield.reg32)
5519 && (i.tm.operand_types[op].bitfield.reg32
5520 || i.tm.operand_types[op].bitfield.acc))
5521 {
5522 /* Prohibit these changes in the 64bit mode, since the
5523 lowering is more complicated. */
5524 if (intel_syntax
5525 && i.tm.opcode_modifier.todword
5526 && !i.types[0].bitfield.regxmm)
5527 {
5528 /* Convert to DWORD. We don't want REX byte. */
5529 i.suffix = LONG_MNEM_SUFFIX;
5530 }
5531 else
5532 {
5533 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5534 register_prefix, i.op[op].regs->reg_name,
5535 i.suffix);
5536 return 0;
5537 }
5538 }
5539 return 1;
5540 }
5541
5542 static int
5543 check_word_reg (void)
5544 {
5545 int op;
5546 for (op = i.operands; --op >= 0;)
5547 /* Reject eight bit registers, except where the template requires
5548 them. (eg. movzb) */
5549 if (i.types[op].bitfield.reg8
5550 && (i.tm.operand_types[op].bitfield.reg16
5551 || i.tm.operand_types[op].bitfield.reg32
5552 || i.tm.operand_types[op].bitfield.acc))
5553 {
5554 as_bad (_("`%s%s' not allowed with `%s%c'"),
5555 register_prefix,
5556 i.op[op].regs->reg_name,
5557 i.tm.name,
5558 i.suffix);
5559 return 0;
5560 }
5561 /* Warn if the e or r prefix on a general reg is present. */
5562 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5563 && (i.types[op].bitfield.reg32
5564 || i.types[op].bitfield.reg64)
5565 && (i.tm.operand_types[op].bitfield.reg16
5566 || i.tm.operand_types[op].bitfield.acc))
5567 {
5568 /* Prohibit these changes in the 64bit mode, since the
5569 lowering is more complicated. */
5570 if (flag_code == CODE_64BIT)
5571 {
5572 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5573 register_prefix, i.op[op].regs->reg_name,
5574 i.suffix);
5575 return 0;
5576 }
5577 #if REGISTER_WARNINGS
5578 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5579 register_prefix,
5580 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5581 register_prefix, i.op[op].regs->reg_name, i.suffix);
5582 #endif
5583 }
5584 return 1;
5585 }
5586
5587 static int
5588 update_imm (unsigned int j)
5589 {
5590 i386_operand_type overlap = i.types[j];
5591 if ((overlap.bitfield.imm8
5592 || overlap.bitfield.imm8s
5593 || overlap.bitfield.imm16
5594 || overlap.bitfield.imm32
5595 || overlap.bitfield.imm32s
5596 || overlap.bitfield.imm64)
5597 && !operand_type_equal (&overlap, &imm8)
5598 && !operand_type_equal (&overlap, &imm8s)
5599 && !operand_type_equal (&overlap, &imm16)
5600 && !operand_type_equal (&overlap, &imm32)
5601 && !operand_type_equal (&overlap, &imm32s)
5602 && !operand_type_equal (&overlap, &imm64))
5603 {
5604 if (i.suffix)
5605 {
5606 i386_operand_type temp;
5607
5608 operand_type_set (&temp, 0);
5609 if (i.suffix == BYTE_MNEM_SUFFIX)
5610 {
5611 temp.bitfield.imm8 = overlap.bitfield.imm8;
5612 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5613 }
5614 else if (i.suffix == WORD_MNEM_SUFFIX)
5615 temp.bitfield.imm16 = overlap.bitfield.imm16;
5616 else if (i.suffix == QWORD_MNEM_SUFFIX)
5617 {
5618 temp.bitfield.imm64 = overlap.bitfield.imm64;
5619 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5620 }
5621 else
5622 temp.bitfield.imm32 = overlap.bitfield.imm32;
5623 overlap = temp;
5624 }
5625 else if (operand_type_equal (&overlap, &imm16_32_32s)
5626 || operand_type_equal (&overlap, &imm16_32)
5627 || operand_type_equal (&overlap, &imm16_32s))
5628 {
5629 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5630 overlap = imm16;
5631 else
5632 overlap = imm32s;
5633 }
5634 if (!operand_type_equal (&overlap, &imm8)
5635 && !operand_type_equal (&overlap, &imm8s)
5636 && !operand_type_equal (&overlap, &imm16)
5637 && !operand_type_equal (&overlap, &imm32)
5638 && !operand_type_equal (&overlap, &imm32s)
5639 && !operand_type_equal (&overlap, &imm64))
5640 {
5641 as_bad (_("no instruction mnemonic suffix given; "
5642 "can't determine immediate size"));
5643 return 0;
5644 }
5645 }
5646 i.types[j] = overlap;
5647
5648 return 1;
5649 }
5650
5651 static int
5652 finalize_imm (void)
5653 {
5654 unsigned int j, n;
5655
5656 /* Update the first 2 immediate operands. */
5657 n = i.operands > 2 ? 2 : i.operands;
5658 if (n)
5659 {
5660 for (j = 0; j < n; j++)
5661 if (update_imm (j) == 0)
5662 return 0;
5663
5664 /* The 3rd operand can't be immediate operand. */
5665 gas_assert (operand_type_check (i.types[2], imm) == 0);
5666 }
5667
5668 return 1;
5669 }
5670
5671 static int
5672 bad_implicit_operand (int xmm)
5673 {
5674 const char *ireg = xmm ? "xmm0" : "ymm0";
5675
5676 if (intel_syntax)
5677 as_bad (_("the last operand of `%s' must be `%s%s'"),
5678 i.tm.name, register_prefix, ireg);
5679 else
5680 as_bad (_("the first operand of `%s' must be `%s%s'"),
5681 i.tm.name, register_prefix, ireg);
5682 return 0;
5683 }
5684
5685 static int
5686 process_operands (void)
5687 {
5688 /* Default segment register this instruction will use for memory
5689 accesses. 0 means unknown. This is only for optimizing out
5690 unnecessary segment overrides. */
5691 const seg_entry *default_seg = 0;
5692
5693 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
5694 {
5695 unsigned int dupl = i.operands;
5696 unsigned int dest = dupl - 1;
5697 unsigned int j;
5698
5699 /* The destination must be an xmm register. */
5700 gas_assert (i.reg_operands
5701 && MAX_OPERANDS > dupl
5702 && operand_type_equal (&i.types[dest], &regxmm));
5703
5704 if (i.tm.opcode_modifier.firstxmm0)
5705 {
5706 /* The first operand is implicit and must be xmm0. */
5707 gas_assert (operand_type_equal (&i.types[0], &regxmm));
5708 if (register_number (i.op[0].regs) != 0)
5709 return bad_implicit_operand (1);
5710
5711 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
5712 {
5713 /* Keep xmm0 for instructions with VEX prefix and 3
5714 sources. */
5715 goto duplicate;
5716 }
5717 else
5718 {
5719 /* We remove the first xmm0 and keep the number of
5720 operands unchanged, which in fact duplicates the
5721 destination. */
5722 for (j = 1; j < i.operands; j++)
5723 {
5724 i.op[j - 1] = i.op[j];
5725 i.types[j - 1] = i.types[j];
5726 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
5727 }
5728 }
5729 }
5730 else if (i.tm.opcode_modifier.implicit1stxmm0)
5731 {
5732 gas_assert ((MAX_OPERANDS - 1) > dupl
5733 && (i.tm.opcode_modifier.vexsources
5734 == VEX3SOURCES));
5735
5736 /* Add the implicit xmm0 for instructions with VEX prefix
5737 and 3 sources. */
5738 for (j = i.operands; j > 0; j--)
5739 {
5740 i.op[j] = i.op[j - 1];
5741 i.types[j] = i.types[j - 1];
5742 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
5743 }
5744 i.op[0].regs
5745 = (const reg_entry *) hash_find (reg_hash, "xmm0");
5746 i.types[0] = regxmm;
5747 i.tm.operand_types[0] = regxmm;
5748
5749 i.operands += 2;
5750 i.reg_operands += 2;
5751 i.tm.operands += 2;
5752
5753 dupl++;
5754 dest++;
5755 i.op[dupl] = i.op[dest];
5756 i.types[dupl] = i.types[dest];
5757 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5758 }
5759 else
5760 {
5761 duplicate:
5762 i.operands++;
5763 i.reg_operands++;
5764 i.tm.operands++;
5765
5766 i.op[dupl] = i.op[dest];
5767 i.types[dupl] = i.types[dest];
5768 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5769 }
5770
5771 if (i.tm.opcode_modifier.immext)
5772 process_immext ();
5773 }
5774 else if (i.tm.opcode_modifier.firstxmm0)
5775 {
5776 unsigned int j;
5777
5778 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
5779 gas_assert (i.reg_operands
5780 && (operand_type_equal (&i.types[0], &regxmm)
5781 || operand_type_equal (&i.types[0], &regymm)
5782 || operand_type_equal (&i.types[0], &regzmm)));
5783 if (register_number (i.op[0].regs) != 0)
5784 return bad_implicit_operand (i.types[0].bitfield.regxmm);
5785
5786 for (j = 1; j < i.operands; j++)
5787 {
5788 i.op[j - 1] = i.op[j];
5789 i.types[j - 1] = i.types[j];
5790
5791 /* We need to adjust fields in i.tm since they are used by
5792 build_modrm_byte. */
5793 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
5794 }
5795
5796 i.operands--;
5797 i.reg_operands--;
5798 i.tm.operands--;
5799 }
5800 else if (i.tm.opcode_modifier.regkludge)
5801 {
5802 /* The imul $imm, %reg instruction is converted into
5803 imul $imm, %reg, %reg, and the clr %reg instruction
5804 is converted into xor %reg, %reg. */
5805
5806 unsigned int first_reg_op;
5807
5808 if (operand_type_check (i.types[0], reg))
5809 first_reg_op = 0;
5810 else
5811 first_reg_op = 1;
5812 /* Pretend we saw the extra register operand. */
5813 gas_assert (i.reg_operands == 1
5814 && i.op[first_reg_op + 1].regs == 0);
5815 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
5816 i.types[first_reg_op + 1] = i.types[first_reg_op];
5817 i.operands++;
5818 i.reg_operands++;
5819 }
5820
5821 if (i.tm.opcode_modifier.shortform)
5822 {
5823 if (i.types[0].bitfield.sreg2
5824 || i.types[0].bitfield.sreg3)
5825 {
5826 if (i.tm.base_opcode == POP_SEG_SHORT
5827 && i.op[0].regs->reg_num == 1)
5828 {
5829 as_bad (_("you can't `pop %scs'"), register_prefix);
5830 return 0;
5831 }
5832 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
5833 if ((i.op[0].regs->reg_flags & RegRex) != 0)
5834 i.rex |= REX_B;
5835 }
5836 else
5837 {
5838 /* The register or float register operand is in operand
5839 0 or 1. */
5840 unsigned int op;
5841
5842 if (i.types[0].bitfield.floatreg
5843 || operand_type_check (i.types[0], reg))
5844 op = 0;
5845 else
5846 op = 1;
5847 /* Register goes in low 3 bits of opcode. */
5848 i.tm.base_opcode |= i.op[op].regs->reg_num;
5849 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5850 i.rex |= REX_B;
5851 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
5852 {
5853 /* Warn about some common errors, but press on regardless.
5854 The first case can be generated by gcc (<= 2.8.1). */
5855 if (i.operands == 2)
5856 {
5857 /* Reversed arguments on faddp, fsubp, etc. */
5858 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
5859 register_prefix, i.op[!intel_syntax].regs->reg_name,
5860 register_prefix, i.op[intel_syntax].regs->reg_name);
5861 }
5862 else
5863 {
5864 /* Extraneous `l' suffix on fp insn. */
5865 as_warn (_("translating to `%s %s%s'"), i.tm.name,
5866 register_prefix, i.op[0].regs->reg_name);
5867 }
5868 }
5869 }
5870 }
5871 else if (i.tm.opcode_modifier.modrm)
5872 {
5873 /* The opcode is completed (modulo i.tm.extension_opcode which
5874 must be put into the modrm byte). Now, we make the modrm and
5875 index base bytes based on all the info we've collected. */
5876
5877 default_seg = build_modrm_byte ();
5878 }
5879 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
5880 {
5881 default_seg = &ds;
5882 }
5883 else if (i.tm.opcode_modifier.isstring)
5884 {
5885 /* For the string instructions that allow a segment override
5886 on one of their operands, the default segment is ds. */
5887 default_seg = &ds;
5888 }
5889
5890 if (i.tm.base_opcode == 0x8d /* lea */
5891 && i.seg[0]
5892 && !quiet_warnings)
5893 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
5894
5895 /* If a segment was explicitly specified, and the specified segment
5896 is not the default, use an opcode prefix to select it. If we
5897 never figured out what the default segment is, then default_seg
5898 will be zero at this point, and the specified segment prefix will
5899 always be used. */
5900 if ((i.seg[0]) && (i.seg[0] != default_seg))
5901 {
5902 if (!add_prefix (i.seg[0]->seg_prefix))
5903 return 0;
5904 }
5905 return 1;
5906 }
5907
5908 static const seg_entry *
5909 build_modrm_byte (void)
5910 {
5911 const seg_entry *default_seg = 0;
5912 unsigned int source, dest;
5913 int vex_3_sources;
5914
5915 /* The first operand of instructions with VEX prefix and 3 sources
5916 must be VEX_Imm4. */
5917 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
5918 if (vex_3_sources)
5919 {
5920 unsigned int nds, reg_slot;
5921 expressionS *exp;
5922
5923 if (i.tm.opcode_modifier.veximmext
5924 && i.tm.opcode_modifier.immext)
5925 {
5926 dest = i.operands - 2;
5927 gas_assert (dest == 3);
5928 }
5929 else
5930 dest = i.operands - 1;
5931 nds = dest - 1;
5932
5933 /* There are 2 kinds of instructions:
5934 1. 5 operands: 4 register operands or 3 register operands
5935 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
5936 VexW0 or VexW1. The destination must be either XMM, YMM or
5937 ZMM register.
5938 2. 4 operands: 4 register operands or 3 register operands
5939 plus 1 memory operand, VexXDS, and VexImmExt */
5940 gas_assert ((i.reg_operands == 4
5941 || (i.reg_operands == 3 && i.mem_operands == 1))
5942 && i.tm.opcode_modifier.vexvvvv == VEXXDS
5943 && (i.tm.opcode_modifier.veximmext
5944 || (i.imm_operands == 1
5945 && i.types[0].bitfield.vec_imm4
5946 && (i.tm.opcode_modifier.vexw == VEXW0
5947 || i.tm.opcode_modifier.vexw == VEXW1)
5948 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
5949 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
5950 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
5951
5952 if (i.imm_operands == 0)
5953 {
5954 /* When there is no immediate operand, generate an 8bit
5955 immediate operand to encode the first operand. */
5956 exp = &im_expressions[i.imm_operands++];
5957 i.op[i.operands].imms = exp;
5958 i.types[i.operands] = imm8;
5959 i.operands++;
5960 /* If VexW1 is set, the first operand is the source and
5961 the second operand is encoded in the immediate operand. */
5962 if (i.tm.opcode_modifier.vexw == VEXW1)
5963 {
5964 source = 0;
5965 reg_slot = 1;
5966 }
5967 else
5968 {
5969 source = 1;
5970 reg_slot = 0;
5971 }
5972
5973 /* FMA swaps REG and NDS. */
5974 if (i.tm.cpu_flags.bitfield.cpufma)
5975 {
5976 unsigned int tmp;
5977 tmp = reg_slot;
5978 reg_slot = nds;
5979 nds = tmp;
5980 }
5981
5982 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
5983 &regxmm)
5984 || operand_type_equal (&i.tm.operand_types[reg_slot],
5985 &regymm)
5986 || operand_type_equal (&i.tm.operand_types[reg_slot],
5987 &regzmm));
5988 exp->X_op = O_constant;
5989 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
5990 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
5991 }
5992 else
5993 {
5994 unsigned int imm_slot;
5995
5996 if (i.tm.opcode_modifier.vexw == VEXW0)
5997 {
5998 /* If VexW0 is set, the third operand is the source and
5999 the second operand is encoded in the immediate
6000 operand. */
6001 source = 2;
6002 reg_slot = 1;
6003 }
6004 else
6005 {
6006 /* VexW1 is set, the second operand is the source and
6007 the third operand is encoded in the immediate
6008 operand. */
6009 source = 1;
6010 reg_slot = 2;
6011 }
6012
6013 if (i.tm.opcode_modifier.immext)
6014 {
6015 /* When ImmExt is set, the immdiate byte is the last
6016 operand. */
6017 imm_slot = i.operands - 1;
6018 source--;
6019 reg_slot--;
6020 }
6021 else
6022 {
6023 imm_slot = 0;
6024
6025 /* Turn on Imm8 so that output_imm will generate it. */
6026 i.types[imm_slot].bitfield.imm8 = 1;
6027 }
6028
6029 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6030 &regxmm)
6031 || operand_type_equal (&i.tm.operand_types[reg_slot],
6032 &regymm)
6033 || operand_type_equal (&i.tm.operand_types[reg_slot],
6034 &regzmm));
6035 i.op[imm_slot].imms->X_add_number
6036 |= register_number (i.op[reg_slot].regs) << 4;
6037 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6038 }
6039
6040 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6041 || operand_type_equal (&i.tm.operand_types[nds],
6042 &regymm)
6043 || operand_type_equal (&i.tm.operand_types[nds],
6044 &regzmm));
6045 i.vex.register_specifier = i.op[nds].regs;
6046 }
6047 else
6048 source = dest = 0;
6049
6050 /* i.reg_operands MUST be the number of real register operands;
6051 implicit registers do not count. If there are 3 register
6052 operands, it must be a instruction with VexNDS. For a
6053 instruction with VexNDD, the destination register is encoded
6054 in VEX prefix. If there are 4 register operands, it must be
6055 a instruction with VEX prefix and 3 sources. */
6056 if (i.mem_operands == 0
6057 && ((i.reg_operands == 2
6058 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6059 || (i.reg_operands == 3
6060 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6061 || (i.reg_operands == 4 && vex_3_sources)))
6062 {
6063 switch (i.operands)
6064 {
6065 case 2:
6066 source = 0;
6067 break;
6068 case 3:
6069 /* When there are 3 operands, one of them may be immediate,
6070 which may be the first or the last operand. Otherwise,
6071 the first operand must be shift count register (cl) or it
6072 is an instruction with VexNDS. */
6073 gas_assert (i.imm_operands == 1
6074 || (i.imm_operands == 0
6075 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6076 || i.types[0].bitfield.shiftcount)));
6077 if (operand_type_check (i.types[0], imm)
6078 || i.types[0].bitfield.shiftcount)
6079 source = 1;
6080 else
6081 source = 0;
6082 break;
6083 case 4:
6084 /* When there are 4 operands, the first two must be 8bit
6085 immediate operands. The source operand will be the 3rd
6086 one.
6087
6088 For instructions with VexNDS, if the first operand
6089 an imm8, the source operand is the 2nd one. If the last
6090 operand is imm8, the source operand is the first one. */
6091 gas_assert ((i.imm_operands == 2
6092 && i.types[0].bitfield.imm8
6093 && i.types[1].bitfield.imm8)
6094 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6095 && i.imm_operands == 1
6096 && (i.types[0].bitfield.imm8
6097 || i.types[i.operands - 1].bitfield.imm8
6098 || i.rounding)));
6099 if (i.imm_operands == 2)
6100 source = 2;
6101 else
6102 {
6103 if (i.types[0].bitfield.imm8)
6104 source = 1;
6105 else
6106 source = 0;
6107 }
6108 break;
6109 case 5:
6110 if (i.tm.opcode_modifier.evex)
6111 {
6112 /* For EVEX instructions, when there are 5 operands, the
6113 first one must be immediate operand. If the second one
6114 is immediate operand, the source operand is the 3th
6115 one. If the last one is immediate operand, the source
6116 operand is the 2nd one. */
6117 gas_assert (i.imm_operands == 2
6118 && i.tm.opcode_modifier.sae
6119 && operand_type_check (i.types[0], imm));
6120 if (operand_type_check (i.types[1], imm))
6121 source = 2;
6122 else if (operand_type_check (i.types[4], imm))
6123 source = 1;
6124 else
6125 abort ();
6126 }
6127 break;
6128 default:
6129 abort ();
6130 }
6131
6132 if (!vex_3_sources)
6133 {
6134 dest = source + 1;
6135
6136 /* RC/SAE operand could be between DEST and SRC. That happens
6137 when one operand is GPR and the other one is XMM/YMM/ZMM
6138 register. */
6139 if (i.rounding && i.rounding->operand == (int) dest)
6140 dest++;
6141
6142 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6143 {
6144 /* For instructions with VexNDS, the register-only source
6145 operand must be 32/64bit integer, XMM, YMM or ZMM
6146 register. It is encoded in VEX prefix. We need to
6147 clear RegMem bit before calling operand_type_equal. */
6148
6149 i386_operand_type op;
6150 unsigned int vvvv;
6151
6152 /* Check register-only source operand when two source
6153 operands are swapped. */
6154 if (!i.tm.operand_types[source].bitfield.baseindex
6155 && i.tm.operand_types[dest].bitfield.baseindex)
6156 {
6157 vvvv = source;
6158 source = dest;
6159 }
6160 else
6161 vvvv = dest;
6162
6163 op = i.tm.operand_types[vvvv];
6164 op.bitfield.regmem = 0;
6165 if ((dest + 1) >= i.operands
6166 || (op.bitfield.reg32 != 1
6167 && !op.bitfield.reg64 != 1
6168 && !operand_type_equal (&op, &regxmm)
6169 && !operand_type_equal (&op, &regymm)
6170 && !operand_type_equal (&op, &regzmm)
6171 && !operand_type_equal (&op, &regmask)))
6172 abort ();
6173 i.vex.register_specifier = i.op[vvvv].regs;
6174 dest++;
6175 }
6176 }
6177
6178 i.rm.mode = 3;
6179 /* One of the register operands will be encoded in the i.tm.reg
6180 field, the other in the combined i.tm.mode and i.tm.regmem
6181 fields. If no form of this instruction supports a memory
6182 destination operand, then we assume the source operand may
6183 sometimes be a memory operand and so we need to store the
6184 destination in the i.rm.reg field. */
6185 if (!i.tm.operand_types[dest].bitfield.regmem
6186 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6187 {
6188 i.rm.reg = i.op[dest].regs->reg_num;
6189 i.rm.regmem = i.op[source].regs->reg_num;
6190 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6191 i.rex |= REX_R;
6192 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6193 i.vrex |= REX_R;
6194 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6195 i.rex |= REX_B;
6196 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6197 i.vrex |= REX_B;
6198 }
6199 else
6200 {
6201 i.rm.reg = i.op[source].regs->reg_num;
6202 i.rm.regmem = i.op[dest].regs->reg_num;
6203 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6204 i.rex |= REX_B;
6205 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6206 i.vrex |= REX_B;
6207 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6208 i.rex |= REX_R;
6209 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6210 i.vrex |= REX_R;
6211 }
6212 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6213 {
6214 if (!i.types[0].bitfield.control
6215 && !i.types[1].bitfield.control)
6216 abort ();
6217 i.rex &= ~(REX_R | REX_B);
6218 add_prefix (LOCK_PREFIX_OPCODE);
6219 }
6220 }
6221 else
6222 { /* If it's not 2 reg operands... */
6223 unsigned int mem;
6224
6225 if (i.mem_operands)
6226 {
6227 unsigned int fake_zero_displacement = 0;
6228 unsigned int op;
6229
6230 for (op = 0; op < i.operands; op++)
6231 if (operand_type_check (i.types[op], anymem))
6232 break;
6233 gas_assert (op < i.operands);
6234
6235 if (i.tm.opcode_modifier.vecsib)
6236 {
6237 if (i.index_reg->reg_num == RegEiz
6238 || i.index_reg->reg_num == RegRiz)
6239 abort ();
6240
6241 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6242 if (!i.base_reg)
6243 {
6244 i.sib.base = NO_BASE_REGISTER;
6245 i.sib.scale = i.log2_scale_factor;
6246 /* No Vec_Disp8 if there is no base. */
6247 i.types[op].bitfield.vec_disp8 = 0;
6248 i.types[op].bitfield.disp8 = 0;
6249 i.types[op].bitfield.disp16 = 0;
6250 i.types[op].bitfield.disp64 = 0;
6251 if (flag_code != CODE_64BIT)
6252 {
6253 /* Must be 32 bit */
6254 i.types[op].bitfield.disp32 = 1;
6255 i.types[op].bitfield.disp32s = 0;
6256 }
6257 else
6258 {
6259 i.types[op].bitfield.disp32 = 0;
6260 i.types[op].bitfield.disp32s = 1;
6261 }
6262 }
6263 i.sib.index = i.index_reg->reg_num;
6264 if ((i.index_reg->reg_flags & RegRex) != 0)
6265 i.rex |= REX_X;
6266 if ((i.index_reg->reg_flags & RegVRex) != 0)
6267 i.vrex |= REX_X;
6268 }
6269
6270 default_seg = &ds;
6271
6272 if (i.base_reg == 0)
6273 {
6274 i.rm.mode = 0;
6275 if (!i.disp_operands)
6276 {
6277 fake_zero_displacement = 1;
6278 /* Instructions with VSIB byte need 32bit displacement
6279 if there is no base register. */
6280 if (i.tm.opcode_modifier.vecsib)
6281 i.types[op].bitfield.disp32 = 1;
6282 }
6283 if (i.index_reg == 0)
6284 {
6285 gas_assert (!i.tm.opcode_modifier.vecsib);
6286 /* Operand is just <disp> */
6287 if (flag_code == CODE_64BIT)
6288 {
6289 /* 64bit mode overwrites the 32bit absolute
6290 addressing by RIP relative addressing and
6291 absolute addressing is encoded by one of the
6292 redundant SIB forms. */
6293 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6294 i.sib.base = NO_BASE_REGISTER;
6295 i.sib.index = NO_INDEX_REGISTER;
6296 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
6297 ? disp32s : disp32);
6298 }
6299 else if ((flag_code == CODE_16BIT)
6300 ^ (i.prefix[ADDR_PREFIX] != 0))
6301 {
6302 i.rm.regmem = NO_BASE_REGISTER_16;
6303 i.types[op] = disp16;
6304 }
6305 else
6306 {
6307 i.rm.regmem = NO_BASE_REGISTER;
6308 i.types[op] = disp32;
6309 }
6310 }
6311 else if (!i.tm.opcode_modifier.vecsib)
6312 {
6313 /* !i.base_reg && i.index_reg */
6314 if (i.index_reg->reg_num == RegEiz
6315 || i.index_reg->reg_num == RegRiz)
6316 i.sib.index = NO_INDEX_REGISTER;
6317 else
6318 i.sib.index = i.index_reg->reg_num;
6319 i.sib.base = NO_BASE_REGISTER;
6320 i.sib.scale = i.log2_scale_factor;
6321 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6322 /* No Vec_Disp8 if there is no base. */
6323 i.types[op].bitfield.vec_disp8 = 0;
6324 i.types[op].bitfield.disp8 = 0;
6325 i.types[op].bitfield.disp16 = 0;
6326 i.types[op].bitfield.disp64 = 0;
6327 if (flag_code != CODE_64BIT)
6328 {
6329 /* Must be 32 bit */
6330 i.types[op].bitfield.disp32 = 1;
6331 i.types[op].bitfield.disp32s = 0;
6332 }
6333 else
6334 {
6335 i.types[op].bitfield.disp32 = 0;
6336 i.types[op].bitfield.disp32s = 1;
6337 }
6338 if ((i.index_reg->reg_flags & RegRex) != 0)
6339 i.rex |= REX_X;
6340 }
6341 }
6342 /* RIP addressing for 64bit mode. */
6343 else if (i.base_reg->reg_num == RegRip ||
6344 i.base_reg->reg_num == RegEip)
6345 {
6346 gas_assert (!i.tm.opcode_modifier.vecsib);
6347 i.rm.regmem = NO_BASE_REGISTER;
6348 i.types[op].bitfield.disp8 = 0;
6349 i.types[op].bitfield.disp16 = 0;
6350 i.types[op].bitfield.disp32 = 0;
6351 i.types[op].bitfield.disp32s = 1;
6352 i.types[op].bitfield.disp64 = 0;
6353 i.types[op].bitfield.vec_disp8 = 0;
6354 i.flags[op] |= Operand_PCrel;
6355 if (! i.disp_operands)
6356 fake_zero_displacement = 1;
6357 }
6358 else if (i.base_reg->reg_type.bitfield.reg16)
6359 {
6360 gas_assert (!i.tm.opcode_modifier.vecsib);
6361 switch (i.base_reg->reg_num)
6362 {
6363 case 3: /* (%bx) */
6364 if (i.index_reg == 0)
6365 i.rm.regmem = 7;
6366 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6367 i.rm.regmem = i.index_reg->reg_num - 6;
6368 break;
6369 case 5: /* (%bp) */
6370 default_seg = &ss;
6371 if (i.index_reg == 0)
6372 {
6373 i.rm.regmem = 6;
6374 if (operand_type_check (i.types[op], disp) == 0)
6375 {
6376 /* fake (%bp) into 0(%bp) */
6377 if (i.tm.operand_types[op].bitfield.vec_disp8)
6378 i.types[op].bitfield.vec_disp8 = 1;
6379 else
6380 i.types[op].bitfield.disp8 = 1;
6381 fake_zero_displacement = 1;
6382 }
6383 }
6384 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6385 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6386 break;
6387 default: /* (%si) -> 4 or (%di) -> 5 */
6388 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6389 }
6390 i.rm.mode = mode_from_disp_size (i.types[op]);
6391 }
6392 else /* i.base_reg and 32/64 bit mode */
6393 {
6394 if (flag_code == CODE_64BIT
6395 && operand_type_check (i.types[op], disp))
6396 {
6397 i386_operand_type temp;
6398 operand_type_set (&temp, 0);
6399 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6400 temp.bitfield.vec_disp8
6401 = i.types[op].bitfield.vec_disp8;
6402 i.types[op] = temp;
6403 if (i.prefix[ADDR_PREFIX] == 0)
6404 i.types[op].bitfield.disp32s = 1;
6405 else
6406 i.types[op].bitfield.disp32 = 1;
6407 }
6408
6409 if (!i.tm.opcode_modifier.vecsib)
6410 i.rm.regmem = i.base_reg->reg_num;
6411 if ((i.base_reg->reg_flags & RegRex) != 0)
6412 i.rex |= REX_B;
6413 i.sib.base = i.base_reg->reg_num;
6414 /* x86-64 ignores REX prefix bit here to avoid decoder
6415 complications. */
6416 if (!(i.base_reg->reg_flags & RegRex)
6417 && (i.base_reg->reg_num == EBP_REG_NUM
6418 || i.base_reg->reg_num == ESP_REG_NUM))
6419 default_seg = &ss;
6420 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6421 {
6422 fake_zero_displacement = 1;
6423 if (i.tm.operand_types [op].bitfield.vec_disp8)
6424 i.types[op].bitfield.vec_disp8 = 1;
6425 else
6426 i.types[op].bitfield.disp8 = 1;
6427 }
6428 i.sib.scale = i.log2_scale_factor;
6429 if (i.index_reg == 0)
6430 {
6431 gas_assert (!i.tm.opcode_modifier.vecsib);
6432 /* <disp>(%esp) becomes two byte modrm with no index
6433 register. We've already stored the code for esp
6434 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6435 Any base register besides %esp will not use the
6436 extra modrm byte. */
6437 i.sib.index = NO_INDEX_REGISTER;
6438 }
6439 else if (!i.tm.opcode_modifier.vecsib)
6440 {
6441 if (i.index_reg->reg_num == RegEiz
6442 || i.index_reg->reg_num == RegRiz)
6443 i.sib.index = NO_INDEX_REGISTER;
6444 else
6445 i.sib.index = i.index_reg->reg_num;
6446 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6447 if ((i.index_reg->reg_flags & RegRex) != 0)
6448 i.rex |= REX_X;
6449 }
6450
6451 if (i.disp_operands
6452 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6453 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6454 i.rm.mode = 0;
6455 else
6456 {
6457 if (!fake_zero_displacement
6458 && !i.disp_operands
6459 && i.disp_encoding)
6460 {
6461 fake_zero_displacement = 1;
6462 if (i.disp_encoding == disp_encoding_8bit)
6463 i.types[op].bitfield.disp8 = 1;
6464 else
6465 i.types[op].bitfield.disp32 = 1;
6466 }
6467 i.rm.mode = mode_from_disp_size (i.types[op]);
6468 }
6469 }
6470
6471 if (fake_zero_displacement)
6472 {
6473 /* Fakes a zero displacement assuming that i.types[op]
6474 holds the correct displacement size. */
6475 expressionS *exp;
6476
6477 gas_assert (i.op[op].disps == 0);
6478 exp = &disp_expressions[i.disp_operands++];
6479 i.op[op].disps = exp;
6480 exp->X_op = O_constant;
6481 exp->X_add_number = 0;
6482 exp->X_add_symbol = (symbolS *) 0;
6483 exp->X_op_symbol = (symbolS *) 0;
6484 }
6485
6486 mem = op;
6487 }
6488 else
6489 mem = ~0;
6490
6491 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
6492 {
6493 if (operand_type_check (i.types[0], imm))
6494 i.vex.register_specifier = NULL;
6495 else
6496 {
6497 /* VEX.vvvv encodes one of the sources when the first
6498 operand is not an immediate. */
6499 if (i.tm.opcode_modifier.vexw == VEXW0)
6500 i.vex.register_specifier = i.op[0].regs;
6501 else
6502 i.vex.register_specifier = i.op[1].regs;
6503 }
6504
6505 /* Destination is a XMM register encoded in the ModRM.reg
6506 and VEX.R bit. */
6507 i.rm.reg = i.op[2].regs->reg_num;
6508 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6509 i.rex |= REX_R;
6510
6511 /* ModRM.rm and VEX.B encodes the other source. */
6512 if (!i.mem_operands)
6513 {
6514 i.rm.mode = 3;
6515
6516 if (i.tm.opcode_modifier.vexw == VEXW0)
6517 i.rm.regmem = i.op[1].regs->reg_num;
6518 else
6519 i.rm.regmem = i.op[0].regs->reg_num;
6520
6521 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6522 i.rex |= REX_B;
6523 }
6524 }
6525 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
6526 {
6527 i.vex.register_specifier = i.op[2].regs;
6528 if (!i.mem_operands)
6529 {
6530 i.rm.mode = 3;
6531 i.rm.regmem = i.op[1].regs->reg_num;
6532 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6533 i.rex |= REX_B;
6534 }
6535 }
6536 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6537 (if any) based on i.tm.extension_opcode. Again, we must be
6538 careful to make sure that segment/control/debug/test/MMX
6539 registers are coded into the i.rm.reg field. */
6540 else if (i.reg_operands)
6541 {
6542 unsigned int op;
6543 unsigned int vex_reg = ~0;
6544
6545 for (op = 0; op < i.operands; op++)
6546 if (i.types[op].bitfield.reg8
6547 || i.types[op].bitfield.reg16
6548 || i.types[op].bitfield.reg32
6549 || i.types[op].bitfield.reg64
6550 || i.types[op].bitfield.regmmx
6551 || i.types[op].bitfield.regxmm
6552 || i.types[op].bitfield.regymm
6553 || i.types[op].bitfield.regbnd
6554 || i.types[op].bitfield.regzmm
6555 || i.types[op].bitfield.regmask
6556 || i.types[op].bitfield.sreg2
6557 || i.types[op].bitfield.sreg3
6558 || i.types[op].bitfield.control
6559 || i.types[op].bitfield.debug
6560 || i.types[op].bitfield.test)
6561 break;
6562
6563 if (vex_3_sources)
6564 op = dest;
6565 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6566 {
6567 /* For instructions with VexNDS, the register-only
6568 source operand is encoded in VEX prefix. */
6569 gas_assert (mem != (unsigned int) ~0);
6570
6571 if (op > mem)
6572 {
6573 vex_reg = op++;
6574 gas_assert (op < i.operands);
6575 }
6576 else
6577 {
6578 /* Check register-only source operand when two source
6579 operands are swapped. */
6580 if (!i.tm.operand_types[op].bitfield.baseindex
6581 && i.tm.operand_types[op + 1].bitfield.baseindex)
6582 {
6583 vex_reg = op;
6584 op += 2;
6585 gas_assert (mem == (vex_reg + 1)
6586 && op < i.operands);
6587 }
6588 else
6589 {
6590 vex_reg = op + 1;
6591 gas_assert (vex_reg < i.operands);
6592 }
6593 }
6594 }
6595 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
6596 {
6597 /* For instructions with VexNDD, the register destination
6598 is encoded in VEX prefix. */
6599 if (i.mem_operands == 0)
6600 {
6601 /* There is no memory operand. */
6602 gas_assert ((op + 2) == i.operands);
6603 vex_reg = op + 1;
6604 }
6605 else
6606 {
6607 /* There are only 2 operands. */
6608 gas_assert (op < 2 && i.operands == 2);
6609 vex_reg = 1;
6610 }
6611 }
6612 else
6613 gas_assert (op < i.operands);
6614
6615 if (vex_reg != (unsigned int) ~0)
6616 {
6617 i386_operand_type *type = &i.tm.operand_types[vex_reg];
6618
6619 if (type->bitfield.reg32 != 1
6620 && type->bitfield.reg64 != 1
6621 && !operand_type_equal (type, &regxmm)
6622 && !operand_type_equal (type, &regymm)
6623 && !operand_type_equal (type, &regzmm)
6624 && !operand_type_equal (type, &regmask))
6625 abort ();
6626
6627 i.vex.register_specifier = i.op[vex_reg].regs;
6628 }
6629
6630 /* Don't set OP operand twice. */
6631 if (vex_reg != op)
6632 {
6633 /* If there is an extension opcode to put here, the
6634 register number must be put into the regmem field. */
6635 if (i.tm.extension_opcode != None)
6636 {
6637 i.rm.regmem = i.op[op].regs->reg_num;
6638 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6639 i.rex |= REX_B;
6640 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6641 i.vrex |= REX_B;
6642 }
6643 else
6644 {
6645 i.rm.reg = i.op[op].regs->reg_num;
6646 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6647 i.rex |= REX_R;
6648 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6649 i.vrex |= REX_R;
6650 }
6651 }
6652
6653 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6654 must set it to 3 to indicate this is a register operand
6655 in the regmem field. */
6656 if (!i.mem_operands)
6657 i.rm.mode = 3;
6658 }
6659
6660 /* Fill in i.rm.reg field with extension opcode (if any). */
6661 if (i.tm.extension_opcode != None)
6662 i.rm.reg = i.tm.extension_opcode;
6663 }
6664 return default_seg;
6665 }
6666
6667 static void
6668 output_branch (void)
6669 {
6670 char *p;
6671 int size;
6672 int code16;
6673 int prefix;
6674 relax_substateT subtype;
6675 symbolS *sym;
6676 offsetT off;
6677
6678 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
6679 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
6680
6681 prefix = 0;
6682 if (i.prefix[DATA_PREFIX] != 0)
6683 {
6684 prefix = 1;
6685 i.prefixes -= 1;
6686 code16 ^= CODE16;
6687 }
6688 /* Pentium4 branch hints. */
6689 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6690 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6691 {
6692 prefix++;
6693 i.prefixes--;
6694 }
6695 if (i.prefix[REX_PREFIX] != 0)
6696 {
6697 prefix++;
6698 i.prefixes--;
6699 }
6700
6701 /* BND prefixed jump. */
6702 if (i.prefix[BND_PREFIX] != 0)
6703 {
6704 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6705 i.prefixes -= 1;
6706 }
6707
6708 if (i.prefixes != 0 && !intel_syntax)
6709 as_warn (_("skipping prefixes on this instruction"));
6710
6711 /* It's always a symbol; End frag & setup for relax.
6712 Make sure there is enough room in this frag for the largest
6713 instruction we may generate in md_convert_frag. This is 2
6714 bytes for the opcode and room for the prefix and largest
6715 displacement. */
6716 frag_grow (prefix + 2 + 4);
6717 /* Prefix and 1 opcode byte go in fr_fix. */
6718 p = frag_more (prefix + 1);
6719 if (i.prefix[DATA_PREFIX] != 0)
6720 *p++ = DATA_PREFIX_OPCODE;
6721 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
6722 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
6723 *p++ = i.prefix[SEG_PREFIX];
6724 if (i.prefix[REX_PREFIX] != 0)
6725 *p++ = i.prefix[REX_PREFIX];
6726 *p = i.tm.base_opcode;
6727
6728 if ((unsigned char) *p == JUMP_PC_RELATIVE)
6729 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
6730 else if (cpu_arch_flags.bitfield.cpui386)
6731 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
6732 else
6733 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
6734 subtype |= code16;
6735
6736 sym = i.op[0].disps->X_add_symbol;
6737 off = i.op[0].disps->X_add_number;
6738
6739 if (i.op[0].disps->X_op != O_constant
6740 && i.op[0].disps->X_op != O_symbol)
6741 {
6742 /* Handle complex expressions. */
6743 sym = make_expr_symbol (i.op[0].disps);
6744 off = 0;
6745 }
6746
6747 /* 1 possible extra opcode + 4 byte displacement go in var part.
6748 Pass reloc in fr_var. */
6749 frag_var (rs_machine_dependent, 5,
6750 ((!object_64bit
6751 || i.reloc[0] != NO_RELOC
6752 || (i.bnd_prefix == NULL && !add_bnd_prefix))
6753 ? i.reloc[0]
6754 : BFD_RELOC_X86_64_PC32_BND),
6755 subtype, sym, off, p);
6756 }
6757
6758 static void
6759 output_jump (void)
6760 {
6761 char *p;
6762 int size;
6763 fixS *fixP;
6764
6765 if (i.tm.opcode_modifier.jumpbyte)
6766 {
6767 /* This is a loop or jecxz type instruction. */
6768 size = 1;
6769 if (i.prefix[ADDR_PREFIX] != 0)
6770 {
6771 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
6772 i.prefixes -= 1;
6773 }
6774 /* Pentium4 branch hints. */
6775 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6776 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6777 {
6778 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
6779 i.prefixes--;
6780 }
6781 }
6782 else
6783 {
6784 int code16;
6785
6786 code16 = 0;
6787 if (flag_code == CODE_16BIT)
6788 code16 = CODE16;
6789
6790 if (i.prefix[DATA_PREFIX] != 0)
6791 {
6792 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
6793 i.prefixes -= 1;
6794 code16 ^= CODE16;
6795 }
6796
6797 size = 4;
6798 if (code16)
6799 size = 2;
6800 }
6801
6802 if (i.prefix[REX_PREFIX] != 0)
6803 {
6804 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
6805 i.prefixes -= 1;
6806 }
6807
6808 /* BND prefixed jump. */
6809 if (i.prefix[BND_PREFIX] != 0)
6810 {
6811 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6812 i.prefixes -= 1;
6813 }
6814
6815 if (i.prefixes != 0 && !intel_syntax)
6816 as_warn (_("skipping prefixes on this instruction"));
6817
6818 p = frag_more (i.tm.opcode_length + size);
6819 switch (i.tm.opcode_length)
6820 {
6821 case 2:
6822 *p++ = i.tm.base_opcode >> 8;
6823 case 1:
6824 *p++ = i.tm.base_opcode;
6825 break;
6826 default:
6827 abort ();
6828 }
6829
6830 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6831 i.op[0].disps, 1, reloc (size, 1, 1,
6832 (i.bnd_prefix != NULL
6833 || add_bnd_prefix),
6834 i.reloc[0]));
6835
6836 /* All jumps handled here are signed, but don't use a signed limit
6837 check for 32 and 16 bit jumps as we want to allow wrap around at
6838 4G and 64k respectively. */
6839 if (size == 1)
6840 fixP->fx_signed = 1;
6841 }
6842
6843 static void
6844 output_interseg_jump (void)
6845 {
6846 char *p;
6847 int size;
6848 int prefix;
6849 int code16;
6850
6851 code16 = 0;
6852 if (flag_code == CODE_16BIT)
6853 code16 = CODE16;
6854
6855 prefix = 0;
6856 if (i.prefix[DATA_PREFIX] != 0)
6857 {
6858 prefix = 1;
6859 i.prefixes -= 1;
6860 code16 ^= CODE16;
6861 }
6862 if (i.prefix[REX_PREFIX] != 0)
6863 {
6864 prefix++;
6865 i.prefixes -= 1;
6866 }
6867
6868 size = 4;
6869 if (code16)
6870 size = 2;
6871
6872 if (i.prefixes != 0 && !intel_syntax)
6873 as_warn (_("skipping prefixes on this instruction"));
6874
6875 /* 1 opcode; 2 segment; offset */
6876 p = frag_more (prefix + 1 + 2 + size);
6877
6878 if (i.prefix[DATA_PREFIX] != 0)
6879 *p++ = DATA_PREFIX_OPCODE;
6880
6881 if (i.prefix[REX_PREFIX] != 0)
6882 *p++ = i.prefix[REX_PREFIX];
6883
6884 *p++ = i.tm.base_opcode;
6885 if (i.op[1].imms->X_op == O_constant)
6886 {
6887 offsetT n = i.op[1].imms->X_add_number;
6888
6889 if (size == 2
6890 && !fits_in_unsigned_word (n)
6891 && !fits_in_signed_word (n))
6892 {
6893 as_bad (_("16-bit jump out of range"));
6894 return;
6895 }
6896 md_number_to_chars (p, n, size);
6897 }
6898 else
6899 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6900 i.op[1].imms, 0, reloc (size, 0, 0, 0, i.reloc[1]));
6901 if (i.op[0].imms->X_op != O_constant)
6902 as_bad (_("can't handle non absolute segment in `%s'"),
6903 i.tm.name);
6904 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
6905 }
6906
6907 static void
6908 output_insn (void)
6909 {
6910 fragS *insn_start_frag;
6911 offsetT insn_start_off;
6912
6913 /* Tie dwarf2 debug info to the address at the start of the insn.
6914 We can't do this after the insn has been output as the current
6915 frag may have been closed off. eg. by frag_var. */
6916 dwarf2_emit_insn (0);
6917
6918 insn_start_frag = frag_now;
6919 insn_start_off = frag_now_fix ();
6920
6921 /* Output jumps. */
6922 if (i.tm.opcode_modifier.jump)
6923 output_branch ();
6924 else if (i.tm.opcode_modifier.jumpbyte
6925 || i.tm.opcode_modifier.jumpdword)
6926 output_jump ();
6927 else if (i.tm.opcode_modifier.jumpintersegment)
6928 output_interseg_jump ();
6929 else
6930 {
6931 /* Output normal instructions here. */
6932 char *p;
6933 unsigned char *q;
6934 unsigned int j;
6935 unsigned int prefix;
6936
6937 /* Since the VEX/EVEX prefix contains the implicit prefix, we
6938 don't need the explicit prefix. */
6939 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
6940 {
6941 switch (i.tm.opcode_length)
6942 {
6943 case 3:
6944 if (i.tm.base_opcode & 0xff000000)
6945 {
6946 prefix = (i.tm.base_opcode >> 24) & 0xff;
6947 goto check_prefix;
6948 }
6949 break;
6950 case 2:
6951 if ((i.tm.base_opcode & 0xff0000) != 0)
6952 {
6953 prefix = (i.tm.base_opcode >> 16) & 0xff;
6954 if (i.tm.cpu_flags.bitfield.cpupadlock)
6955 {
6956 check_prefix:
6957 if (prefix != REPE_PREFIX_OPCODE
6958 || (i.prefix[REP_PREFIX]
6959 != REPE_PREFIX_OPCODE))
6960 add_prefix (prefix);
6961 }
6962 else
6963 add_prefix (prefix);
6964 }
6965 break;
6966 case 1:
6967 break;
6968 default:
6969 abort ();
6970 }
6971
6972 /* The prefix bytes. */
6973 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
6974 if (*q)
6975 FRAG_APPEND_1_CHAR (*q);
6976 }
6977 else
6978 {
6979 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
6980 if (*q)
6981 switch (j)
6982 {
6983 case REX_PREFIX:
6984 /* REX byte is encoded in VEX prefix. */
6985 break;
6986 case SEG_PREFIX:
6987 case ADDR_PREFIX:
6988 FRAG_APPEND_1_CHAR (*q);
6989 break;
6990 default:
6991 /* There should be no other prefixes for instructions
6992 with VEX prefix. */
6993 abort ();
6994 }
6995
6996 /* For EVEX instructions i.vrex should become 0 after
6997 build_evex_prefix. For VEX instructions upper 16 registers
6998 aren't available, so VREX should be 0. */
6999 if (i.vrex)
7000 abort ();
7001 /* Now the VEX prefix. */
7002 p = frag_more (i.vex.length);
7003 for (j = 0; j < i.vex.length; j++)
7004 p[j] = i.vex.bytes[j];
7005 }
7006
7007 /* Now the opcode; be careful about word order here! */
7008 if (i.tm.opcode_length == 1)
7009 {
7010 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7011 }
7012 else
7013 {
7014 switch (i.tm.opcode_length)
7015 {
7016 case 4:
7017 p = frag_more (4);
7018 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7019 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7020 break;
7021 case 3:
7022 p = frag_more (3);
7023 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7024 break;
7025 case 2:
7026 p = frag_more (2);
7027 break;
7028 default:
7029 abort ();
7030 break;
7031 }
7032
7033 /* Put out high byte first: can't use md_number_to_chars! */
7034 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7035 *p = i.tm.base_opcode & 0xff;
7036 }
7037
7038 /* Now the modrm byte and sib byte (if present). */
7039 if (i.tm.opcode_modifier.modrm)
7040 {
7041 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7042 | i.rm.reg << 3
7043 | i.rm.mode << 6));
7044 /* If i.rm.regmem == ESP (4)
7045 && i.rm.mode != (Register mode)
7046 && not 16 bit
7047 ==> need second modrm byte. */
7048 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7049 && i.rm.mode != 3
7050 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
7051 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7052 | i.sib.index << 3
7053 | i.sib.scale << 6));
7054 }
7055
7056 if (i.disp_operands)
7057 output_disp (insn_start_frag, insn_start_off);
7058
7059 if (i.imm_operands)
7060 output_imm (insn_start_frag, insn_start_off);
7061 }
7062
7063 #ifdef DEBUG386
7064 if (flag_debug)
7065 {
7066 pi ("" /*line*/, &i);
7067 }
7068 #endif /* DEBUG386 */
7069 }
7070
7071 /* Return the size of the displacement operand N. */
7072
7073 static int
7074 disp_size (unsigned int n)
7075 {
7076 int size = 4;
7077
7078 /* Vec_Disp8 has to be 8bit. */
7079 if (i.types[n].bitfield.vec_disp8)
7080 size = 1;
7081 else if (i.types[n].bitfield.disp64)
7082 size = 8;
7083 else if (i.types[n].bitfield.disp8)
7084 size = 1;
7085 else if (i.types[n].bitfield.disp16)
7086 size = 2;
7087 return size;
7088 }
7089
7090 /* Return the size of the immediate operand N. */
7091
7092 static int
7093 imm_size (unsigned int n)
7094 {
7095 int size = 4;
7096 if (i.types[n].bitfield.imm64)
7097 size = 8;
7098 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7099 size = 1;
7100 else if (i.types[n].bitfield.imm16)
7101 size = 2;
7102 return size;
7103 }
7104
7105 static void
7106 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7107 {
7108 char *p;
7109 unsigned int n;
7110
7111 for (n = 0; n < i.operands; n++)
7112 {
7113 if (i.types[n].bitfield.vec_disp8
7114 || operand_type_check (i.types[n], disp))
7115 {
7116 if (i.op[n].disps->X_op == O_constant)
7117 {
7118 int size = disp_size (n);
7119 offsetT val = i.op[n].disps->X_add_number;
7120
7121 if (i.types[n].bitfield.vec_disp8)
7122 val >>= i.memshift;
7123 val = offset_in_range (val, size);
7124 p = frag_more (size);
7125 md_number_to_chars (p, val, size);
7126 }
7127 else
7128 {
7129 enum bfd_reloc_code_real reloc_type;
7130 int size = disp_size (n);
7131 int sign = i.types[n].bitfield.disp32s;
7132 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7133
7134 /* We can't have 8 bit displacement here. */
7135 gas_assert (!i.types[n].bitfield.disp8);
7136
7137 /* The PC relative address is computed relative
7138 to the instruction boundary, so in case immediate
7139 fields follows, we need to adjust the value. */
7140 if (pcrel && i.imm_operands)
7141 {
7142 unsigned int n1;
7143 int sz = 0;
7144
7145 for (n1 = 0; n1 < i.operands; n1++)
7146 if (operand_type_check (i.types[n1], imm))
7147 {
7148 /* Only one immediate is allowed for PC
7149 relative address. */
7150 gas_assert (sz == 0);
7151 sz = imm_size (n1);
7152 i.op[n].disps->X_add_number -= sz;
7153 }
7154 /* We should find the immediate. */
7155 gas_assert (sz != 0);
7156 }
7157
7158 p = frag_more (size);
7159 reloc_type = reloc (size, pcrel, sign,
7160 (i.bnd_prefix != NULL
7161 || add_bnd_prefix),
7162 i.reloc[n]);
7163 if (GOT_symbol
7164 && GOT_symbol == i.op[n].disps->X_add_symbol
7165 && (((reloc_type == BFD_RELOC_32
7166 || reloc_type == BFD_RELOC_X86_64_32S
7167 || (reloc_type == BFD_RELOC_64
7168 && object_64bit))
7169 && (i.op[n].disps->X_op == O_symbol
7170 || (i.op[n].disps->X_op == O_add
7171 && ((symbol_get_value_expression
7172 (i.op[n].disps->X_op_symbol)->X_op)
7173 == O_subtract))))
7174 || reloc_type == BFD_RELOC_32_PCREL))
7175 {
7176 offsetT add;
7177
7178 if (insn_start_frag == frag_now)
7179 add = (p - frag_now->fr_literal) - insn_start_off;
7180 else
7181 {
7182 fragS *fr;
7183
7184 add = insn_start_frag->fr_fix - insn_start_off;
7185 for (fr = insn_start_frag->fr_next;
7186 fr && fr != frag_now; fr = fr->fr_next)
7187 add += fr->fr_fix;
7188 add += p - frag_now->fr_literal;
7189 }
7190
7191 if (!object_64bit)
7192 {
7193 reloc_type = BFD_RELOC_386_GOTPC;
7194 i.op[n].imms->X_add_number += add;
7195 }
7196 else if (reloc_type == BFD_RELOC_64)
7197 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7198 else
7199 /* Don't do the adjustment for x86-64, as there
7200 the pcrel addressing is relative to the _next_
7201 insn, and that is taken care of in other code. */
7202 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7203 }
7204 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7205 i.op[n].disps, pcrel, reloc_type);
7206 }
7207 }
7208 }
7209 }
7210
7211 static void
7212 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7213 {
7214 char *p;
7215 unsigned int n;
7216
7217 for (n = 0; n < i.operands; n++)
7218 {
7219 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7220 if (i.rounding && (int) n == i.rounding->operand)
7221 continue;
7222
7223 if (operand_type_check (i.types[n], imm))
7224 {
7225 if (i.op[n].imms->X_op == O_constant)
7226 {
7227 int size = imm_size (n);
7228 offsetT val;
7229
7230 val = offset_in_range (i.op[n].imms->X_add_number,
7231 size);
7232 p = frag_more (size);
7233 md_number_to_chars (p, val, size);
7234 }
7235 else
7236 {
7237 /* Not absolute_section.
7238 Need a 32-bit fixup (don't support 8bit
7239 non-absolute imms). Try to support other
7240 sizes ... */
7241 enum bfd_reloc_code_real reloc_type;
7242 int size = imm_size (n);
7243 int sign;
7244
7245 if (i.types[n].bitfield.imm32s
7246 && (i.suffix == QWORD_MNEM_SUFFIX
7247 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7248 sign = 1;
7249 else
7250 sign = 0;
7251
7252 p = frag_more (size);
7253 reloc_type = reloc (size, 0, sign, 0, i.reloc[n]);
7254
7255 /* This is tough to explain. We end up with this one if we
7256 * have operands that look like
7257 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7258 * obtain the absolute address of the GOT, and it is strongly
7259 * preferable from a performance point of view to avoid using
7260 * a runtime relocation for this. The actual sequence of
7261 * instructions often look something like:
7262 *
7263 * call .L66
7264 * .L66:
7265 * popl %ebx
7266 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7267 *
7268 * The call and pop essentially return the absolute address
7269 * of the label .L66 and store it in %ebx. The linker itself
7270 * will ultimately change the first operand of the addl so
7271 * that %ebx points to the GOT, but to keep things simple, the
7272 * .o file must have this operand set so that it generates not
7273 * the absolute address of .L66, but the absolute address of
7274 * itself. This allows the linker itself simply treat a GOTPC
7275 * relocation as asking for a pcrel offset to the GOT to be
7276 * added in, and the addend of the relocation is stored in the
7277 * operand field for the instruction itself.
7278 *
7279 * Our job here is to fix the operand so that it would add
7280 * the correct offset so that %ebx would point to itself. The
7281 * thing that is tricky is that .-.L66 will point to the
7282 * beginning of the instruction, so we need to further modify
7283 * the operand so that it will point to itself. There are
7284 * other cases where you have something like:
7285 *
7286 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7287 *
7288 * and here no correction would be required. Internally in
7289 * the assembler we treat operands of this form as not being
7290 * pcrel since the '.' is explicitly mentioned, and I wonder
7291 * whether it would simplify matters to do it this way. Who
7292 * knows. In earlier versions of the PIC patches, the
7293 * pcrel_adjust field was used to store the correction, but
7294 * since the expression is not pcrel, I felt it would be
7295 * confusing to do it this way. */
7296
7297 if ((reloc_type == BFD_RELOC_32
7298 || reloc_type == BFD_RELOC_X86_64_32S
7299 || reloc_type == BFD_RELOC_64)
7300 && GOT_symbol
7301 && GOT_symbol == i.op[n].imms->X_add_symbol
7302 && (i.op[n].imms->X_op == O_symbol
7303 || (i.op[n].imms->X_op == O_add
7304 && ((symbol_get_value_expression
7305 (i.op[n].imms->X_op_symbol)->X_op)
7306 == O_subtract))))
7307 {
7308 offsetT add;
7309
7310 if (insn_start_frag == frag_now)
7311 add = (p - frag_now->fr_literal) - insn_start_off;
7312 else
7313 {
7314 fragS *fr;
7315
7316 add = insn_start_frag->fr_fix - insn_start_off;
7317 for (fr = insn_start_frag->fr_next;
7318 fr && fr != frag_now; fr = fr->fr_next)
7319 add += fr->fr_fix;
7320 add += p - frag_now->fr_literal;
7321 }
7322
7323 if (!object_64bit)
7324 reloc_type = BFD_RELOC_386_GOTPC;
7325 else if (size == 4)
7326 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7327 else if (size == 8)
7328 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7329 i.op[n].imms->X_add_number += add;
7330 }
7331 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7332 i.op[n].imms, 0, reloc_type);
7333 }
7334 }
7335 }
7336 }
7337 \f
7338 /* x86_cons_fix_new is called via the expression parsing code when a
7339 reloc is needed. We use this hook to get the correct .got reloc. */
7340 static int cons_sign = -1;
7341
7342 void
7343 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
7344 expressionS *exp, bfd_reloc_code_real_type r)
7345 {
7346 r = reloc (len, 0, cons_sign, 0, r);
7347
7348 #ifdef TE_PE
7349 if (exp->X_op == O_secrel)
7350 {
7351 exp->X_op = O_symbol;
7352 r = BFD_RELOC_32_SECREL;
7353 }
7354 #endif
7355
7356 fix_new_exp (frag, off, len, exp, 0, r);
7357 }
7358
7359 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7360 purpose of the `.dc.a' internal pseudo-op. */
7361
7362 int
7363 x86_address_bytes (void)
7364 {
7365 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7366 return 4;
7367 return stdoutput->arch_info->bits_per_address / 8;
7368 }
7369
7370 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7371 || defined (LEX_AT)
7372 # define lex_got(reloc, adjust, types, bnd_prefix) NULL
7373 #else
7374 /* Parse operands of the form
7375 <symbol>@GOTOFF+<nnn>
7376 and similar .plt or .got references.
7377
7378 If we find one, set up the correct relocation in RELOC and copy the
7379 input string, minus the `@GOTOFF' into a malloc'd buffer for
7380 parsing by the calling routine. Return this buffer, and if ADJUST
7381 is non-null set it to the length of the string we removed from the
7382 input line. Otherwise return NULL. */
7383 static char *
7384 lex_got (enum bfd_reloc_code_real *rel,
7385 int *adjust,
7386 i386_operand_type *types,
7387 int bnd_prefix)
7388 {
7389 /* Some of the relocations depend on the size of what field is to
7390 be relocated. But in our callers i386_immediate and i386_displacement
7391 we don't yet know the operand size (this will be set by insn
7392 matching). Hence we record the word32 relocation here,
7393 and adjust the reloc according to the real size in reloc(). */
7394 static const struct {
7395 const char *str;
7396 int len;
7397 const enum bfd_reloc_code_real rel[2];
7398 const i386_operand_type types64;
7399 } gotrel[] = {
7400 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7401 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7402 BFD_RELOC_SIZE32 },
7403 OPERAND_TYPE_IMM32_64 },
7404 #endif
7405 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7406 BFD_RELOC_X86_64_PLTOFF64 },
7407 OPERAND_TYPE_IMM64 },
7408 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7409 BFD_RELOC_X86_64_PLT32 },
7410 OPERAND_TYPE_IMM32_32S_DISP32 },
7411 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7412 BFD_RELOC_X86_64_GOTPLT64 },
7413 OPERAND_TYPE_IMM64_DISP64 },
7414 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7415 BFD_RELOC_X86_64_GOTOFF64 },
7416 OPERAND_TYPE_IMM64_DISP64 },
7417 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7418 BFD_RELOC_X86_64_GOTPCREL },
7419 OPERAND_TYPE_IMM32_32S_DISP32 },
7420 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7421 BFD_RELOC_X86_64_TLSGD },
7422 OPERAND_TYPE_IMM32_32S_DISP32 },
7423 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7424 _dummy_first_bfd_reloc_code_real },
7425 OPERAND_TYPE_NONE },
7426 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7427 BFD_RELOC_X86_64_TLSLD },
7428 OPERAND_TYPE_IMM32_32S_DISP32 },
7429 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7430 BFD_RELOC_X86_64_GOTTPOFF },
7431 OPERAND_TYPE_IMM32_32S_DISP32 },
7432 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7433 BFD_RELOC_X86_64_TPOFF32 },
7434 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7435 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7436 _dummy_first_bfd_reloc_code_real },
7437 OPERAND_TYPE_NONE },
7438 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7439 BFD_RELOC_X86_64_DTPOFF32 },
7440 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7441 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7442 _dummy_first_bfd_reloc_code_real },
7443 OPERAND_TYPE_NONE },
7444 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7445 _dummy_first_bfd_reloc_code_real },
7446 OPERAND_TYPE_NONE },
7447 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7448 BFD_RELOC_X86_64_GOT32 },
7449 OPERAND_TYPE_IMM32_32S_64_DISP32 },
7450 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7451 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
7452 OPERAND_TYPE_IMM32_32S_DISP32 },
7453 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7454 BFD_RELOC_X86_64_TLSDESC_CALL },
7455 OPERAND_TYPE_IMM32_32S_DISP32 },
7456 };
7457 char *cp;
7458 unsigned int j;
7459
7460 #if defined (OBJ_MAYBE_ELF)
7461 if (!IS_ELF)
7462 return NULL;
7463 #endif
7464
7465 for (cp = input_line_pointer; *cp != '@'; cp++)
7466 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7467 return NULL;
7468
7469 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7470 {
7471 int len = gotrel[j].len;
7472 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7473 {
7474 if (gotrel[j].rel[object_64bit] != 0)
7475 {
7476 int first, second;
7477 char *tmpbuf, *past_reloc;
7478
7479 *rel = gotrel[j].rel[object_64bit];
7480
7481 if (types)
7482 {
7483 if (flag_code != CODE_64BIT)
7484 {
7485 types->bitfield.imm32 = 1;
7486 types->bitfield.disp32 = 1;
7487 }
7488 else
7489 *types = gotrel[j].types64;
7490 }
7491
7492 if (j != 0 && GOT_symbol == NULL)
7493 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7494
7495 /* The length of the first part of our input line. */
7496 first = cp - input_line_pointer;
7497
7498 /* The second part goes from after the reloc token until
7499 (and including) an end_of_line char or comma. */
7500 past_reloc = cp + 1 + len;
7501 cp = past_reloc;
7502 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7503 ++cp;
7504 second = cp + 1 - past_reloc;
7505
7506 /* Allocate and copy string. The trailing NUL shouldn't
7507 be necessary, but be safe. */
7508 tmpbuf = (char *) xmalloc (first + second + 2);
7509 memcpy (tmpbuf, input_line_pointer, first);
7510 if (second != 0 && *past_reloc != ' ')
7511 /* Replace the relocation token with ' ', so that
7512 errors like foo@GOTOFF1 will be detected. */
7513 tmpbuf[first++] = ' ';
7514 else
7515 /* Increment length by 1 if the relocation token is
7516 removed. */
7517 len++;
7518 if (adjust)
7519 *adjust = len;
7520 memcpy (tmpbuf + first, past_reloc, second);
7521 tmpbuf[first + second] = '\0';
7522 if (bnd_prefix && *rel == BFD_RELOC_X86_64_PLT32)
7523 *rel = BFD_RELOC_X86_64_PLT32_BND;
7524 return tmpbuf;
7525 }
7526
7527 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7528 gotrel[j].str, 1 << (5 + object_64bit));
7529 return NULL;
7530 }
7531 }
7532
7533 /* Might be a symbol version string. Don't as_bad here. */
7534 return NULL;
7535 }
7536 #endif
7537
7538 #ifdef TE_PE
7539 #ifdef lex_got
7540 #undef lex_got
7541 #endif
7542 /* Parse operands of the form
7543 <symbol>@SECREL32+<nnn>
7544
7545 If we find one, set up the correct relocation in RELOC and copy the
7546 input string, minus the `@SECREL32' into a malloc'd buffer for
7547 parsing by the calling routine. Return this buffer, and if ADJUST
7548 is non-null set it to the length of the string we removed from the
7549 input line. Otherwise return NULL.
7550
7551 This function is copied from the ELF version above adjusted for PE targets. */
7552
7553 static char *
7554 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7555 int *adjust ATTRIBUTE_UNUSED,
7556 i386_operand_type *types,
7557 int bnd_prefix ATTRIBUTE_UNUSED)
7558 {
7559 static const struct
7560 {
7561 const char *str;
7562 int len;
7563 const enum bfd_reloc_code_real rel[2];
7564 const i386_operand_type types64;
7565 }
7566 gotrel[] =
7567 {
7568 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7569 BFD_RELOC_32_SECREL },
7570 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7571 };
7572
7573 char *cp;
7574 unsigned j;
7575
7576 for (cp = input_line_pointer; *cp != '@'; cp++)
7577 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7578 return NULL;
7579
7580 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7581 {
7582 int len = gotrel[j].len;
7583
7584 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7585 {
7586 if (gotrel[j].rel[object_64bit] != 0)
7587 {
7588 int first, second;
7589 char *tmpbuf, *past_reloc;
7590
7591 *rel = gotrel[j].rel[object_64bit];
7592 if (adjust)
7593 *adjust = len;
7594
7595 if (types)
7596 {
7597 if (flag_code != CODE_64BIT)
7598 {
7599 types->bitfield.imm32 = 1;
7600 types->bitfield.disp32 = 1;
7601 }
7602 else
7603 *types = gotrel[j].types64;
7604 }
7605
7606 /* The length of the first part of our input line. */
7607 first = cp - input_line_pointer;
7608
7609 /* The second part goes from after the reloc token until
7610 (and including) an end_of_line char or comma. */
7611 past_reloc = cp + 1 + len;
7612 cp = past_reloc;
7613 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7614 ++cp;
7615 second = cp + 1 - past_reloc;
7616
7617 /* Allocate and copy string. The trailing NUL shouldn't
7618 be necessary, but be safe. */
7619 tmpbuf = (char *) xmalloc (first + second + 2);
7620 memcpy (tmpbuf, input_line_pointer, first);
7621 if (second != 0 && *past_reloc != ' ')
7622 /* Replace the relocation token with ' ', so that
7623 errors like foo@SECLREL321 will be detected. */
7624 tmpbuf[first++] = ' ';
7625 memcpy (tmpbuf + first, past_reloc, second);
7626 tmpbuf[first + second] = '\0';
7627 return tmpbuf;
7628 }
7629
7630 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7631 gotrel[j].str, 1 << (5 + object_64bit));
7632 return NULL;
7633 }
7634 }
7635
7636 /* Might be a symbol version string. Don't as_bad here. */
7637 return NULL;
7638 }
7639
7640 #endif /* TE_PE */
7641
7642 bfd_reloc_code_real_type
7643 x86_cons (expressionS *exp, int size)
7644 {
7645 bfd_reloc_code_real_type got_reloc = NO_RELOC;
7646
7647 intel_syntax = -intel_syntax;
7648
7649 exp->X_md = 0;
7650 if (size == 4 || (object_64bit && size == 8))
7651 {
7652 /* Handle @GOTOFF and the like in an expression. */
7653 char *save;
7654 char *gotfree_input_line;
7655 int adjust = 0;
7656
7657 save = input_line_pointer;
7658 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL, 0);
7659 if (gotfree_input_line)
7660 input_line_pointer = gotfree_input_line;
7661
7662 expression (exp);
7663
7664 if (gotfree_input_line)
7665 {
7666 /* expression () has merrily parsed up to the end of line,
7667 or a comma - in the wrong buffer. Transfer how far
7668 input_line_pointer has moved to the right buffer. */
7669 input_line_pointer = (save
7670 + (input_line_pointer - gotfree_input_line)
7671 + adjust);
7672 free (gotfree_input_line);
7673 if (exp->X_op == O_constant
7674 || exp->X_op == O_absent
7675 || exp->X_op == O_illegal
7676 || exp->X_op == O_register
7677 || exp->X_op == O_big)
7678 {
7679 char c = *input_line_pointer;
7680 *input_line_pointer = 0;
7681 as_bad (_("missing or invalid expression `%s'"), save);
7682 *input_line_pointer = c;
7683 }
7684 }
7685 }
7686 else
7687 expression (exp);
7688
7689 intel_syntax = -intel_syntax;
7690
7691 if (intel_syntax)
7692 i386_intel_simplify (exp);
7693
7694 return got_reloc;
7695 }
7696
7697 static void
7698 signed_cons (int size)
7699 {
7700 if (flag_code == CODE_64BIT)
7701 cons_sign = 1;
7702 cons (size);
7703 cons_sign = -1;
7704 }
7705
7706 #ifdef TE_PE
7707 static void
7708 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
7709 {
7710 expressionS exp;
7711
7712 do
7713 {
7714 expression (&exp);
7715 if (exp.X_op == O_symbol)
7716 exp.X_op = O_secrel;
7717
7718 emit_expr (&exp, 4);
7719 }
7720 while (*input_line_pointer++ == ',');
7721
7722 input_line_pointer--;
7723 demand_empty_rest_of_line ();
7724 }
7725 #endif
7726
7727 /* Handle Vector operations. */
7728
7729 static char *
7730 check_VecOperations (char *op_string, char *op_end)
7731 {
7732 const reg_entry *mask;
7733 const char *saved;
7734 char *end_op;
7735
7736 while (*op_string
7737 && (op_end == NULL || op_string < op_end))
7738 {
7739 saved = op_string;
7740 if (*op_string == '{')
7741 {
7742 op_string++;
7743
7744 /* Check broadcasts. */
7745 if (strncmp (op_string, "1to", 3) == 0)
7746 {
7747 int bcst_type;
7748
7749 if (i.broadcast)
7750 goto duplicated_vec_op;
7751
7752 op_string += 3;
7753 if (*op_string == '8')
7754 bcst_type = BROADCAST_1TO8;
7755 else if (*op_string == '4')
7756 bcst_type = BROADCAST_1TO4;
7757 else if (*op_string == '2')
7758 bcst_type = BROADCAST_1TO2;
7759 else if (*op_string == '1'
7760 && *(op_string+1) == '6')
7761 {
7762 bcst_type = BROADCAST_1TO16;
7763 op_string++;
7764 }
7765 else
7766 {
7767 as_bad (_("Unsupported broadcast: `%s'"), saved);
7768 return NULL;
7769 }
7770 op_string++;
7771
7772 broadcast_op.type = bcst_type;
7773 broadcast_op.operand = this_operand;
7774 i.broadcast = &broadcast_op;
7775 }
7776 /* Check masking operation. */
7777 else if ((mask = parse_register (op_string, &end_op)) != NULL)
7778 {
7779 /* k0 can't be used for write mask. */
7780 if (mask->reg_num == 0)
7781 {
7782 as_bad (_("`%s' can't be used for write mask"),
7783 op_string);
7784 return NULL;
7785 }
7786
7787 if (!i.mask)
7788 {
7789 mask_op.mask = mask;
7790 mask_op.zeroing = 0;
7791 mask_op.operand = this_operand;
7792 i.mask = &mask_op;
7793 }
7794 else
7795 {
7796 if (i.mask->mask)
7797 goto duplicated_vec_op;
7798
7799 i.mask->mask = mask;
7800
7801 /* Only "{z}" is allowed here. No need to check
7802 zeroing mask explicitly. */
7803 if (i.mask->operand != this_operand)
7804 {
7805 as_bad (_("invalid write mask `%s'"), saved);
7806 return NULL;
7807 }
7808 }
7809
7810 op_string = end_op;
7811 }
7812 /* Check zeroing-flag for masking operation. */
7813 else if (*op_string == 'z')
7814 {
7815 if (!i.mask)
7816 {
7817 mask_op.mask = NULL;
7818 mask_op.zeroing = 1;
7819 mask_op.operand = this_operand;
7820 i.mask = &mask_op;
7821 }
7822 else
7823 {
7824 if (i.mask->zeroing)
7825 {
7826 duplicated_vec_op:
7827 as_bad (_("duplicated `%s'"), saved);
7828 return NULL;
7829 }
7830
7831 i.mask->zeroing = 1;
7832
7833 /* Only "{%k}" is allowed here. No need to check mask
7834 register explicitly. */
7835 if (i.mask->operand != this_operand)
7836 {
7837 as_bad (_("invalid zeroing-masking `%s'"),
7838 saved);
7839 return NULL;
7840 }
7841 }
7842
7843 op_string++;
7844 }
7845 else
7846 goto unknown_vec_op;
7847
7848 if (*op_string != '}')
7849 {
7850 as_bad (_("missing `}' in `%s'"), saved);
7851 return NULL;
7852 }
7853 op_string++;
7854 continue;
7855 }
7856 unknown_vec_op:
7857 /* We don't know this one. */
7858 as_bad (_("unknown vector operation: `%s'"), saved);
7859 return NULL;
7860 }
7861
7862 return op_string;
7863 }
7864
7865 static int
7866 i386_immediate (char *imm_start)
7867 {
7868 char *save_input_line_pointer;
7869 char *gotfree_input_line;
7870 segT exp_seg = 0;
7871 expressionS *exp;
7872 i386_operand_type types;
7873
7874 operand_type_set (&types, ~0);
7875
7876 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
7877 {
7878 as_bad (_("at most %d immediate operands are allowed"),
7879 MAX_IMMEDIATE_OPERANDS);
7880 return 0;
7881 }
7882
7883 exp = &im_expressions[i.imm_operands++];
7884 i.op[this_operand].imms = exp;
7885
7886 if (is_space_char (*imm_start))
7887 ++imm_start;
7888
7889 save_input_line_pointer = input_line_pointer;
7890 input_line_pointer = imm_start;
7891
7892 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types,
7893 (i.bnd_prefix != NULL
7894 || add_bnd_prefix));
7895 if (gotfree_input_line)
7896 input_line_pointer = gotfree_input_line;
7897
7898 exp_seg = expression (exp);
7899
7900 SKIP_WHITESPACE ();
7901
7902 /* Handle vector operations. */
7903 if (*input_line_pointer == '{')
7904 {
7905 input_line_pointer = check_VecOperations (input_line_pointer,
7906 NULL);
7907 if (input_line_pointer == NULL)
7908 return 0;
7909 }
7910
7911 if (*input_line_pointer)
7912 as_bad (_("junk `%s' after expression"), input_line_pointer);
7913
7914 input_line_pointer = save_input_line_pointer;
7915 if (gotfree_input_line)
7916 {
7917 free (gotfree_input_line);
7918
7919 if (exp->X_op == O_constant || exp->X_op == O_register)
7920 exp->X_op = O_illegal;
7921 }
7922
7923 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
7924 }
7925
7926 static int
7927 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
7928 i386_operand_type types, const char *imm_start)
7929 {
7930 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
7931 {
7932 if (imm_start)
7933 as_bad (_("missing or invalid immediate expression `%s'"),
7934 imm_start);
7935 return 0;
7936 }
7937 else if (exp->X_op == O_constant)
7938 {
7939 /* Size it properly later. */
7940 i.types[this_operand].bitfield.imm64 = 1;
7941 /* If not 64bit, sign extend val. */
7942 if (flag_code != CODE_64BIT
7943 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
7944 exp->X_add_number
7945 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
7946 }
7947 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
7948 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
7949 && exp_seg != absolute_section
7950 && exp_seg != text_section
7951 && exp_seg != data_section
7952 && exp_seg != bss_section
7953 && exp_seg != undefined_section
7954 && !bfd_is_com_section (exp_seg))
7955 {
7956 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
7957 return 0;
7958 }
7959 #endif
7960 else if (!intel_syntax && exp->X_op == O_register)
7961 {
7962 if (imm_start)
7963 as_bad (_("illegal immediate register operand %s"), imm_start);
7964 return 0;
7965 }
7966 else
7967 {
7968 /* This is an address. The size of the address will be
7969 determined later, depending on destination register,
7970 suffix, or the default for the section. */
7971 i.types[this_operand].bitfield.imm8 = 1;
7972 i.types[this_operand].bitfield.imm16 = 1;
7973 i.types[this_operand].bitfield.imm32 = 1;
7974 i.types[this_operand].bitfield.imm32s = 1;
7975 i.types[this_operand].bitfield.imm64 = 1;
7976 i.types[this_operand] = operand_type_and (i.types[this_operand],
7977 types);
7978 }
7979
7980 return 1;
7981 }
7982
7983 static char *
7984 i386_scale (char *scale)
7985 {
7986 offsetT val;
7987 char *save = input_line_pointer;
7988
7989 input_line_pointer = scale;
7990 val = get_absolute_expression ();
7991
7992 switch (val)
7993 {
7994 case 1:
7995 i.log2_scale_factor = 0;
7996 break;
7997 case 2:
7998 i.log2_scale_factor = 1;
7999 break;
8000 case 4:
8001 i.log2_scale_factor = 2;
8002 break;
8003 case 8:
8004 i.log2_scale_factor = 3;
8005 break;
8006 default:
8007 {
8008 char sep = *input_line_pointer;
8009
8010 *input_line_pointer = '\0';
8011 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8012 scale);
8013 *input_line_pointer = sep;
8014 input_line_pointer = save;
8015 return NULL;
8016 }
8017 }
8018 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8019 {
8020 as_warn (_("scale factor of %d without an index register"),
8021 1 << i.log2_scale_factor);
8022 i.log2_scale_factor = 0;
8023 }
8024 scale = input_line_pointer;
8025 input_line_pointer = save;
8026 return scale;
8027 }
8028
8029 static int
8030 i386_displacement (char *disp_start, char *disp_end)
8031 {
8032 expressionS *exp;
8033 segT exp_seg = 0;
8034 char *save_input_line_pointer;
8035 char *gotfree_input_line;
8036 int override;
8037 i386_operand_type bigdisp, types = anydisp;
8038 int ret;
8039
8040 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8041 {
8042 as_bad (_("at most %d displacement operands are allowed"),
8043 MAX_MEMORY_OPERANDS);
8044 return 0;
8045 }
8046
8047 operand_type_set (&bigdisp, 0);
8048 if ((i.types[this_operand].bitfield.jumpabsolute)
8049 || (!current_templates->start->opcode_modifier.jump
8050 && !current_templates->start->opcode_modifier.jumpdword))
8051 {
8052 bigdisp.bitfield.disp32 = 1;
8053 override = (i.prefix[ADDR_PREFIX] != 0);
8054 if (flag_code == CODE_64BIT)
8055 {
8056 if (!override)
8057 {
8058 bigdisp.bitfield.disp32s = 1;
8059 bigdisp.bitfield.disp64 = 1;
8060 }
8061 }
8062 else if ((flag_code == CODE_16BIT) ^ override)
8063 {
8064 bigdisp.bitfield.disp32 = 0;
8065 bigdisp.bitfield.disp16 = 1;
8066 }
8067 }
8068 else
8069 {
8070 /* For PC-relative branches, the width of the displacement
8071 is dependent upon data size, not address size. */
8072 override = (i.prefix[DATA_PREFIX] != 0);
8073 if (flag_code == CODE_64BIT)
8074 {
8075 if (override || i.suffix == WORD_MNEM_SUFFIX)
8076 bigdisp.bitfield.disp16 = 1;
8077 else
8078 {
8079 bigdisp.bitfield.disp32 = 1;
8080 bigdisp.bitfield.disp32s = 1;
8081 }
8082 }
8083 else
8084 {
8085 if (!override)
8086 override = (i.suffix == (flag_code != CODE_16BIT
8087 ? WORD_MNEM_SUFFIX
8088 : LONG_MNEM_SUFFIX));
8089 bigdisp.bitfield.disp32 = 1;
8090 if ((flag_code == CODE_16BIT) ^ override)
8091 {
8092 bigdisp.bitfield.disp32 = 0;
8093 bigdisp.bitfield.disp16 = 1;
8094 }
8095 }
8096 }
8097 i.types[this_operand] = operand_type_or (i.types[this_operand],
8098 bigdisp);
8099
8100 exp = &disp_expressions[i.disp_operands];
8101 i.op[this_operand].disps = exp;
8102 i.disp_operands++;
8103 save_input_line_pointer = input_line_pointer;
8104 input_line_pointer = disp_start;
8105 END_STRING_AND_SAVE (disp_end);
8106
8107 #ifndef GCC_ASM_O_HACK
8108 #define GCC_ASM_O_HACK 0
8109 #endif
8110 #if GCC_ASM_O_HACK
8111 END_STRING_AND_SAVE (disp_end + 1);
8112 if (i.types[this_operand].bitfield.baseIndex
8113 && displacement_string_end[-1] == '+')
8114 {
8115 /* This hack is to avoid a warning when using the "o"
8116 constraint within gcc asm statements.
8117 For instance:
8118
8119 #define _set_tssldt_desc(n,addr,limit,type) \
8120 __asm__ __volatile__ ( \
8121 "movw %w2,%0\n\t" \
8122 "movw %w1,2+%0\n\t" \
8123 "rorl $16,%1\n\t" \
8124 "movb %b1,4+%0\n\t" \
8125 "movb %4,5+%0\n\t" \
8126 "movb $0,6+%0\n\t" \
8127 "movb %h1,7+%0\n\t" \
8128 "rorl $16,%1" \
8129 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8130
8131 This works great except that the output assembler ends
8132 up looking a bit weird if it turns out that there is
8133 no offset. You end up producing code that looks like:
8134
8135 #APP
8136 movw $235,(%eax)
8137 movw %dx,2+(%eax)
8138 rorl $16,%edx
8139 movb %dl,4+(%eax)
8140 movb $137,5+(%eax)
8141 movb $0,6+(%eax)
8142 movb %dh,7+(%eax)
8143 rorl $16,%edx
8144 #NO_APP
8145
8146 So here we provide the missing zero. */
8147
8148 *displacement_string_end = '0';
8149 }
8150 #endif
8151 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types,
8152 (i.bnd_prefix != NULL
8153 || add_bnd_prefix));
8154 if (gotfree_input_line)
8155 input_line_pointer = gotfree_input_line;
8156
8157 exp_seg = expression (exp);
8158
8159 SKIP_WHITESPACE ();
8160 if (*input_line_pointer)
8161 as_bad (_("junk `%s' after expression"), input_line_pointer);
8162 #if GCC_ASM_O_HACK
8163 RESTORE_END_STRING (disp_end + 1);
8164 #endif
8165 input_line_pointer = save_input_line_pointer;
8166 if (gotfree_input_line)
8167 {
8168 free (gotfree_input_line);
8169
8170 if (exp->X_op == O_constant || exp->X_op == O_register)
8171 exp->X_op = O_illegal;
8172 }
8173
8174 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8175
8176 RESTORE_END_STRING (disp_end);
8177
8178 return ret;
8179 }
8180
8181 static int
8182 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8183 i386_operand_type types, const char *disp_start)
8184 {
8185 i386_operand_type bigdisp;
8186 int ret = 1;
8187
8188 /* We do this to make sure that the section symbol is in
8189 the symbol table. We will ultimately change the relocation
8190 to be relative to the beginning of the section. */
8191 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8192 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8193 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8194 {
8195 if (exp->X_op != O_symbol)
8196 goto inv_disp;
8197
8198 if (S_IS_LOCAL (exp->X_add_symbol)
8199 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8200 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8201 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8202 exp->X_op = O_subtract;
8203 exp->X_op_symbol = GOT_symbol;
8204 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8205 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8206 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8207 i.reloc[this_operand] = BFD_RELOC_64;
8208 else
8209 i.reloc[this_operand] = BFD_RELOC_32;
8210 }
8211
8212 else if (exp->X_op == O_absent
8213 || exp->X_op == O_illegal
8214 || exp->X_op == O_big)
8215 {
8216 inv_disp:
8217 as_bad (_("missing or invalid displacement expression `%s'"),
8218 disp_start);
8219 ret = 0;
8220 }
8221
8222 else if (flag_code == CODE_64BIT
8223 && !i.prefix[ADDR_PREFIX]
8224 && exp->X_op == O_constant)
8225 {
8226 /* Since displacement is signed extended to 64bit, don't allow
8227 disp32 and turn off disp32s if they are out of range. */
8228 i.types[this_operand].bitfield.disp32 = 0;
8229 if (!fits_in_signed_long (exp->X_add_number))
8230 {
8231 i.types[this_operand].bitfield.disp32s = 0;
8232 if (i.types[this_operand].bitfield.baseindex)
8233 {
8234 as_bad (_("0x%lx out range of signed 32bit displacement"),
8235 (long) exp->X_add_number);
8236 ret = 0;
8237 }
8238 }
8239 }
8240
8241 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8242 else if (exp->X_op != O_constant
8243 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8244 && exp_seg != absolute_section
8245 && exp_seg != text_section
8246 && exp_seg != data_section
8247 && exp_seg != bss_section
8248 && exp_seg != undefined_section
8249 && !bfd_is_com_section (exp_seg))
8250 {
8251 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8252 ret = 0;
8253 }
8254 #endif
8255
8256 /* Check if this is a displacement only operand. */
8257 bigdisp = i.types[this_operand];
8258 bigdisp.bitfield.disp8 = 0;
8259 bigdisp.bitfield.disp16 = 0;
8260 bigdisp.bitfield.disp32 = 0;
8261 bigdisp.bitfield.disp32s = 0;
8262 bigdisp.bitfield.disp64 = 0;
8263 if (operand_type_all_zero (&bigdisp))
8264 i.types[this_operand] = operand_type_and (i.types[this_operand],
8265 types);
8266
8267 return ret;
8268 }
8269
8270 /* Make sure the memory operand we've been dealt is valid.
8271 Return 1 on success, 0 on a failure. */
8272
8273 static int
8274 i386_index_check (const char *operand_string)
8275 {
8276 const char *kind = "base/index";
8277 enum flag_code addr_mode;
8278
8279 if (i.prefix[ADDR_PREFIX])
8280 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8281 else
8282 {
8283 addr_mode = flag_code;
8284
8285 #if INFER_ADDR_PREFIX
8286 if (i.mem_operands == 0)
8287 {
8288 /* Infer address prefix from the first memory operand. */
8289 const reg_entry *addr_reg = i.base_reg;
8290
8291 if (addr_reg == NULL)
8292 addr_reg = i.index_reg;
8293
8294 if (addr_reg)
8295 {
8296 if (addr_reg->reg_num == RegEip
8297 || addr_reg->reg_num == RegEiz
8298 || addr_reg->reg_type.bitfield.reg32)
8299 addr_mode = CODE_32BIT;
8300 else if (flag_code != CODE_64BIT
8301 && addr_reg->reg_type.bitfield.reg16)
8302 addr_mode = CODE_16BIT;
8303
8304 if (addr_mode != flag_code)
8305 {
8306 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8307 i.prefixes += 1;
8308 /* Change the size of any displacement too. At most one
8309 of Disp16 or Disp32 is set.
8310 FIXME. There doesn't seem to be any real need for
8311 separate Disp16 and Disp32 flags. The same goes for
8312 Imm16 and Imm32. Removing them would probably clean
8313 up the code quite a lot. */
8314 if (flag_code != CODE_64BIT
8315 && (i.types[this_operand].bitfield.disp16
8316 || i.types[this_operand].bitfield.disp32))
8317 i.types[this_operand]
8318 = operand_type_xor (i.types[this_operand], disp16_32);
8319 }
8320 }
8321 }
8322 #endif
8323 }
8324
8325 if (current_templates->start->opcode_modifier.isstring
8326 && !current_templates->start->opcode_modifier.immext
8327 && (current_templates->end[-1].opcode_modifier.isstring
8328 || i.mem_operands))
8329 {
8330 /* Memory operands of string insns are special in that they only allow
8331 a single register (rDI, rSI, or rBX) as their memory address. */
8332 const reg_entry *expected_reg;
8333 static const char *di_si[][2] =
8334 {
8335 { "esi", "edi" },
8336 { "si", "di" },
8337 { "rsi", "rdi" }
8338 };
8339 static const char *bx[] = { "ebx", "bx", "rbx" };
8340
8341 kind = "string address";
8342
8343 if (current_templates->start->opcode_modifier.w)
8344 {
8345 i386_operand_type type = current_templates->end[-1].operand_types[0];
8346
8347 if (!type.bitfield.baseindex
8348 || ((!i.mem_operands != !intel_syntax)
8349 && current_templates->end[-1].operand_types[1]
8350 .bitfield.baseindex))
8351 type = current_templates->end[-1].operand_types[1];
8352 expected_reg = hash_find (reg_hash,
8353 di_si[addr_mode][type.bitfield.esseg]);
8354
8355 }
8356 else
8357 expected_reg = hash_find (reg_hash, bx[addr_mode]);
8358
8359 if (i.base_reg != expected_reg
8360 || i.index_reg
8361 || operand_type_check (i.types[this_operand], disp))
8362 {
8363 /* The second memory operand must have the same size as
8364 the first one. */
8365 if (i.mem_operands
8366 && i.base_reg
8367 && !((addr_mode == CODE_64BIT
8368 && i.base_reg->reg_type.bitfield.reg64)
8369 || (addr_mode == CODE_32BIT
8370 ? i.base_reg->reg_type.bitfield.reg32
8371 : i.base_reg->reg_type.bitfield.reg16)))
8372 goto bad_address;
8373
8374 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8375 operand_string,
8376 intel_syntax ? '[' : '(',
8377 register_prefix,
8378 expected_reg->reg_name,
8379 intel_syntax ? ']' : ')');
8380 return 1;
8381 }
8382 else
8383 return 1;
8384
8385 bad_address:
8386 as_bad (_("`%s' is not a valid %s expression"),
8387 operand_string, kind);
8388 return 0;
8389 }
8390 else
8391 {
8392 if (addr_mode != CODE_16BIT)
8393 {
8394 /* 32-bit/64-bit checks. */
8395 if ((i.base_reg
8396 && (addr_mode == CODE_64BIT
8397 ? !i.base_reg->reg_type.bitfield.reg64
8398 : !i.base_reg->reg_type.bitfield.reg32)
8399 && (i.index_reg
8400 || (i.base_reg->reg_num
8401 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8402 || (i.index_reg
8403 && !i.index_reg->reg_type.bitfield.regxmm
8404 && !i.index_reg->reg_type.bitfield.regymm
8405 && !i.index_reg->reg_type.bitfield.regzmm
8406 && ((addr_mode == CODE_64BIT
8407 ? !(i.index_reg->reg_type.bitfield.reg64
8408 || i.index_reg->reg_num == RegRiz)
8409 : !(i.index_reg->reg_type.bitfield.reg32
8410 || i.index_reg->reg_num == RegEiz))
8411 || !i.index_reg->reg_type.bitfield.baseindex)))
8412 goto bad_address;
8413 }
8414 else
8415 {
8416 /* 16-bit checks. */
8417 if ((i.base_reg
8418 && (!i.base_reg->reg_type.bitfield.reg16
8419 || !i.base_reg->reg_type.bitfield.baseindex))
8420 || (i.index_reg
8421 && (!i.index_reg->reg_type.bitfield.reg16
8422 || !i.index_reg->reg_type.bitfield.baseindex
8423 || !(i.base_reg
8424 && i.base_reg->reg_num < 6
8425 && i.index_reg->reg_num >= 6
8426 && i.log2_scale_factor == 0))))
8427 goto bad_address;
8428 }
8429 }
8430 return 1;
8431 }
8432
8433 /* Handle vector immediates. */
8434
8435 static int
8436 RC_SAE_immediate (const char *imm_start)
8437 {
8438 unsigned int match_found, j;
8439 const char *pstr = imm_start;
8440 expressionS *exp;
8441
8442 if (*pstr != '{')
8443 return 0;
8444
8445 pstr++;
8446 match_found = 0;
8447 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8448 {
8449 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8450 {
8451 if (!i.rounding)
8452 {
8453 rc_op.type = RC_NamesTable[j].type;
8454 rc_op.operand = this_operand;
8455 i.rounding = &rc_op;
8456 }
8457 else
8458 {
8459 as_bad (_("duplicated `%s'"), imm_start);
8460 return 0;
8461 }
8462 pstr += RC_NamesTable[j].len;
8463 match_found = 1;
8464 break;
8465 }
8466 }
8467 if (!match_found)
8468 return 0;
8469
8470 if (*pstr++ != '}')
8471 {
8472 as_bad (_("Missing '}': '%s'"), imm_start);
8473 return 0;
8474 }
8475 /* RC/SAE immediate string should contain nothing more. */;
8476 if (*pstr != 0)
8477 {
8478 as_bad (_("Junk after '}': '%s'"), imm_start);
8479 return 0;
8480 }
8481
8482 exp = &im_expressions[i.imm_operands++];
8483 i.op[this_operand].imms = exp;
8484
8485 exp->X_op = O_constant;
8486 exp->X_add_number = 0;
8487 exp->X_add_symbol = (symbolS *) 0;
8488 exp->X_op_symbol = (symbolS *) 0;
8489
8490 i.types[this_operand].bitfield.imm8 = 1;
8491 return 1;
8492 }
8493
8494 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
8495 on error. */
8496
8497 static int
8498 i386_att_operand (char *operand_string)
8499 {
8500 const reg_entry *r;
8501 char *end_op;
8502 char *op_string = operand_string;
8503
8504 if (is_space_char (*op_string))
8505 ++op_string;
8506
8507 /* We check for an absolute prefix (differentiating,
8508 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
8509 if (*op_string == ABSOLUTE_PREFIX)
8510 {
8511 ++op_string;
8512 if (is_space_char (*op_string))
8513 ++op_string;
8514 i.types[this_operand].bitfield.jumpabsolute = 1;
8515 }
8516
8517 /* Check if operand is a register. */
8518 if ((r = parse_register (op_string, &end_op)) != NULL)
8519 {
8520 i386_operand_type temp;
8521
8522 /* Check for a segment override by searching for ':' after a
8523 segment register. */
8524 op_string = end_op;
8525 if (is_space_char (*op_string))
8526 ++op_string;
8527 if (*op_string == ':'
8528 && (r->reg_type.bitfield.sreg2
8529 || r->reg_type.bitfield.sreg3))
8530 {
8531 switch (r->reg_num)
8532 {
8533 case 0:
8534 i.seg[i.mem_operands] = &es;
8535 break;
8536 case 1:
8537 i.seg[i.mem_operands] = &cs;
8538 break;
8539 case 2:
8540 i.seg[i.mem_operands] = &ss;
8541 break;
8542 case 3:
8543 i.seg[i.mem_operands] = &ds;
8544 break;
8545 case 4:
8546 i.seg[i.mem_operands] = &fs;
8547 break;
8548 case 5:
8549 i.seg[i.mem_operands] = &gs;
8550 break;
8551 }
8552
8553 /* Skip the ':' and whitespace. */
8554 ++op_string;
8555 if (is_space_char (*op_string))
8556 ++op_string;
8557
8558 if (!is_digit_char (*op_string)
8559 && !is_identifier_char (*op_string)
8560 && *op_string != '('
8561 && *op_string != ABSOLUTE_PREFIX)
8562 {
8563 as_bad (_("bad memory operand `%s'"), op_string);
8564 return 0;
8565 }
8566 /* Handle case of %es:*foo. */
8567 if (*op_string == ABSOLUTE_PREFIX)
8568 {
8569 ++op_string;
8570 if (is_space_char (*op_string))
8571 ++op_string;
8572 i.types[this_operand].bitfield.jumpabsolute = 1;
8573 }
8574 goto do_memory_reference;
8575 }
8576
8577 /* Handle vector operations. */
8578 if (*op_string == '{')
8579 {
8580 op_string = check_VecOperations (op_string, NULL);
8581 if (op_string == NULL)
8582 return 0;
8583 }
8584
8585 if (*op_string)
8586 {
8587 as_bad (_("junk `%s' after register"), op_string);
8588 return 0;
8589 }
8590 temp = r->reg_type;
8591 temp.bitfield.baseindex = 0;
8592 i.types[this_operand] = operand_type_or (i.types[this_operand],
8593 temp);
8594 i.types[this_operand].bitfield.unspecified = 0;
8595 i.op[this_operand].regs = r;
8596 i.reg_operands++;
8597 }
8598 else if (*op_string == REGISTER_PREFIX)
8599 {
8600 as_bad (_("bad register name `%s'"), op_string);
8601 return 0;
8602 }
8603 else if (*op_string == IMMEDIATE_PREFIX)
8604 {
8605 ++op_string;
8606 if (i.types[this_operand].bitfield.jumpabsolute)
8607 {
8608 as_bad (_("immediate operand illegal with absolute jump"));
8609 return 0;
8610 }
8611 if (!i386_immediate (op_string))
8612 return 0;
8613 }
8614 else if (RC_SAE_immediate (operand_string))
8615 {
8616 /* If it is a RC or SAE immediate, do nothing. */
8617 ;
8618 }
8619 else if (is_digit_char (*op_string)
8620 || is_identifier_char (*op_string)
8621 || *op_string == '(')
8622 {
8623 /* This is a memory reference of some sort. */
8624 char *base_string;
8625
8626 /* Start and end of displacement string expression (if found). */
8627 char *displacement_string_start;
8628 char *displacement_string_end;
8629 char *vop_start;
8630
8631 do_memory_reference:
8632 if ((i.mem_operands == 1
8633 && !current_templates->start->opcode_modifier.isstring)
8634 || i.mem_operands == 2)
8635 {
8636 as_bad (_("too many memory references for `%s'"),
8637 current_templates->start->name);
8638 return 0;
8639 }
8640
8641 /* Check for base index form. We detect the base index form by
8642 looking for an ')' at the end of the operand, searching
8643 for the '(' matching it, and finding a REGISTER_PREFIX or ','
8644 after the '('. */
8645 base_string = op_string + strlen (op_string);
8646
8647 /* Handle vector operations. */
8648 vop_start = strchr (op_string, '{');
8649 if (vop_start && vop_start < base_string)
8650 {
8651 if (check_VecOperations (vop_start, base_string) == NULL)
8652 return 0;
8653 base_string = vop_start;
8654 }
8655
8656 --base_string;
8657 if (is_space_char (*base_string))
8658 --base_string;
8659
8660 /* If we only have a displacement, set-up for it to be parsed later. */
8661 displacement_string_start = op_string;
8662 displacement_string_end = base_string + 1;
8663
8664 if (*base_string == ')')
8665 {
8666 char *temp_string;
8667 unsigned int parens_balanced = 1;
8668 /* We've already checked that the number of left & right ()'s are
8669 equal, so this loop will not be infinite. */
8670 do
8671 {
8672 base_string--;
8673 if (*base_string == ')')
8674 parens_balanced++;
8675 if (*base_string == '(')
8676 parens_balanced--;
8677 }
8678 while (parens_balanced);
8679
8680 temp_string = base_string;
8681
8682 /* Skip past '(' and whitespace. */
8683 ++base_string;
8684 if (is_space_char (*base_string))
8685 ++base_string;
8686
8687 if (*base_string == ','
8688 || ((i.base_reg = parse_register (base_string, &end_op))
8689 != NULL))
8690 {
8691 displacement_string_end = temp_string;
8692
8693 i.types[this_operand].bitfield.baseindex = 1;
8694
8695 if (i.base_reg)
8696 {
8697 base_string = end_op;
8698 if (is_space_char (*base_string))
8699 ++base_string;
8700 }
8701
8702 /* There may be an index reg or scale factor here. */
8703 if (*base_string == ',')
8704 {
8705 ++base_string;
8706 if (is_space_char (*base_string))
8707 ++base_string;
8708
8709 if ((i.index_reg = parse_register (base_string, &end_op))
8710 != NULL)
8711 {
8712 base_string = end_op;
8713 if (is_space_char (*base_string))
8714 ++base_string;
8715 if (*base_string == ',')
8716 {
8717 ++base_string;
8718 if (is_space_char (*base_string))
8719 ++base_string;
8720 }
8721 else if (*base_string != ')')
8722 {
8723 as_bad (_("expecting `,' or `)' "
8724 "after index register in `%s'"),
8725 operand_string);
8726 return 0;
8727 }
8728 }
8729 else if (*base_string == REGISTER_PREFIX)
8730 {
8731 end_op = strchr (base_string, ',');
8732 if (end_op)
8733 *end_op = '\0';
8734 as_bad (_("bad register name `%s'"), base_string);
8735 return 0;
8736 }
8737
8738 /* Check for scale factor. */
8739 if (*base_string != ')')
8740 {
8741 char *end_scale = i386_scale (base_string);
8742
8743 if (!end_scale)
8744 return 0;
8745
8746 base_string = end_scale;
8747 if (is_space_char (*base_string))
8748 ++base_string;
8749 if (*base_string != ')')
8750 {
8751 as_bad (_("expecting `)' "
8752 "after scale factor in `%s'"),
8753 operand_string);
8754 return 0;
8755 }
8756 }
8757 else if (!i.index_reg)
8758 {
8759 as_bad (_("expecting index register or scale factor "
8760 "after `,'; got '%c'"),
8761 *base_string);
8762 return 0;
8763 }
8764 }
8765 else if (*base_string != ')')
8766 {
8767 as_bad (_("expecting `,' or `)' "
8768 "after base register in `%s'"),
8769 operand_string);
8770 return 0;
8771 }
8772 }
8773 else if (*base_string == REGISTER_PREFIX)
8774 {
8775 end_op = strchr (base_string, ',');
8776 if (end_op)
8777 *end_op = '\0';
8778 as_bad (_("bad register name `%s'"), base_string);
8779 return 0;
8780 }
8781 }
8782
8783 /* If there's an expression beginning the operand, parse it,
8784 assuming displacement_string_start and
8785 displacement_string_end are meaningful. */
8786 if (displacement_string_start != displacement_string_end)
8787 {
8788 if (!i386_displacement (displacement_string_start,
8789 displacement_string_end))
8790 return 0;
8791 }
8792
8793 /* Special case for (%dx) while doing input/output op. */
8794 if (i.base_reg
8795 && operand_type_equal (&i.base_reg->reg_type,
8796 &reg16_inoutportreg)
8797 && i.index_reg == 0
8798 && i.log2_scale_factor == 0
8799 && i.seg[i.mem_operands] == 0
8800 && !operand_type_check (i.types[this_operand], disp))
8801 {
8802 i.types[this_operand] = inoutportreg;
8803 return 1;
8804 }
8805
8806 if (i386_index_check (operand_string) == 0)
8807 return 0;
8808 i.types[this_operand].bitfield.mem = 1;
8809 i.mem_operands++;
8810 }
8811 else
8812 {
8813 /* It's not a memory operand; argh! */
8814 as_bad (_("invalid char %s beginning operand %d `%s'"),
8815 output_invalid (*op_string),
8816 this_operand + 1,
8817 op_string);
8818 return 0;
8819 }
8820 return 1; /* Normal return. */
8821 }
8822 \f
8823 /* Calculate the maximum variable size (i.e., excluding fr_fix)
8824 that an rs_machine_dependent frag may reach. */
8825
8826 unsigned int
8827 i386_frag_max_var (fragS *frag)
8828 {
8829 /* The only relaxable frags are for jumps.
8830 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
8831 gas_assert (frag->fr_type == rs_machine_dependent);
8832 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
8833 }
8834
8835 /* md_estimate_size_before_relax()
8836
8837 Called just before relax() for rs_machine_dependent frags. The x86
8838 assembler uses these frags to handle variable size jump
8839 instructions.
8840
8841 Any symbol that is now undefined will not become defined.
8842 Return the correct fr_subtype in the frag.
8843 Return the initial "guess for variable size of frag" to caller.
8844 The guess is actually the growth beyond the fixed part. Whatever
8845 we do to grow the fixed or variable part contributes to our
8846 returned value. */
8847
8848 int
8849 md_estimate_size_before_relax (fragS *fragP, segT segment)
8850 {
8851 /* We've already got fragP->fr_subtype right; all we have to do is
8852 check for un-relaxable symbols. On an ELF system, we can't relax
8853 an externally visible symbol, because it may be overridden by a
8854 shared library. */
8855 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
8856 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8857 || (IS_ELF
8858 && (S_IS_EXTERNAL (fragP->fr_symbol)
8859 || S_IS_WEAK (fragP->fr_symbol)
8860 || ((symbol_get_bfdsym (fragP->fr_symbol)->flags
8861 & BSF_GNU_INDIRECT_FUNCTION))))
8862 #endif
8863 #if defined (OBJ_COFF) && defined (TE_PE)
8864 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
8865 && S_IS_WEAK (fragP->fr_symbol))
8866 #endif
8867 )
8868 {
8869 /* Symbol is undefined in this segment, or we need to keep a
8870 reloc so that weak symbols can be overridden. */
8871 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
8872 enum bfd_reloc_code_real reloc_type;
8873 unsigned char *opcode;
8874 int old_fr_fix;
8875
8876 if (fragP->fr_var != NO_RELOC)
8877 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
8878 else if (size == 2)
8879 reloc_type = BFD_RELOC_16_PCREL;
8880 else
8881 reloc_type = BFD_RELOC_32_PCREL;
8882
8883 old_fr_fix = fragP->fr_fix;
8884 opcode = (unsigned char *) fragP->fr_opcode;
8885
8886 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
8887 {
8888 case UNCOND_JUMP:
8889 /* Make jmp (0xeb) a (d)word displacement jump. */
8890 opcode[0] = 0xe9;
8891 fragP->fr_fix += size;
8892 fix_new (fragP, old_fr_fix, size,
8893 fragP->fr_symbol,
8894 fragP->fr_offset, 1,
8895 reloc_type);
8896 break;
8897
8898 case COND_JUMP86:
8899 if (size == 2
8900 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
8901 {
8902 /* Negate the condition, and branch past an
8903 unconditional jump. */
8904 opcode[0] ^= 1;
8905 opcode[1] = 3;
8906 /* Insert an unconditional jump. */
8907 opcode[2] = 0xe9;
8908 /* We added two extra opcode bytes, and have a two byte
8909 offset. */
8910 fragP->fr_fix += 2 + 2;
8911 fix_new (fragP, old_fr_fix + 2, 2,
8912 fragP->fr_symbol,
8913 fragP->fr_offset, 1,
8914 reloc_type);
8915 break;
8916 }
8917 /* Fall through. */
8918
8919 case COND_JUMP:
8920 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
8921 {
8922 fixS *fixP;
8923
8924 fragP->fr_fix += 1;
8925 fixP = fix_new (fragP, old_fr_fix, 1,
8926 fragP->fr_symbol,
8927 fragP->fr_offset, 1,
8928 BFD_RELOC_8_PCREL);
8929 fixP->fx_signed = 1;
8930 break;
8931 }
8932
8933 /* This changes the byte-displacement jump 0x7N
8934 to the (d)word-displacement jump 0x0f,0x8N. */
8935 opcode[1] = opcode[0] + 0x10;
8936 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
8937 /* We've added an opcode byte. */
8938 fragP->fr_fix += 1 + size;
8939 fix_new (fragP, old_fr_fix + 1, size,
8940 fragP->fr_symbol,
8941 fragP->fr_offset, 1,
8942 reloc_type);
8943 break;
8944
8945 default:
8946 BAD_CASE (fragP->fr_subtype);
8947 break;
8948 }
8949 frag_wane (fragP);
8950 return fragP->fr_fix - old_fr_fix;
8951 }
8952
8953 /* Guess size depending on current relax state. Initially the relax
8954 state will correspond to a short jump and we return 1, because
8955 the variable part of the frag (the branch offset) is one byte
8956 long. However, we can relax a section more than once and in that
8957 case we must either set fr_subtype back to the unrelaxed state,
8958 or return the value for the appropriate branch. */
8959 return md_relax_table[fragP->fr_subtype].rlx_length;
8960 }
8961
8962 /* Called after relax() is finished.
8963
8964 In: Address of frag.
8965 fr_type == rs_machine_dependent.
8966 fr_subtype is what the address relaxed to.
8967
8968 Out: Any fixSs and constants are set up.
8969 Caller will turn frag into a ".space 0". */
8970
8971 void
8972 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
8973 fragS *fragP)
8974 {
8975 unsigned char *opcode;
8976 unsigned char *where_to_put_displacement = NULL;
8977 offsetT target_address;
8978 offsetT opcode_address;
8979 unsigned int extension = 0;
8980 offsetT displacement_from_opcode_start;
8981
8982 opcode = (unsigned char *) fragP->fr_opcode;
8983
8984 /* Address we want to reach in file space. */
8985 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
8986
8987 /* Address opcode resides at in file space. */
8988 opcode_address = fragP->fr_address + fragP->fr_fix;
8989
8990 /* Displacement from opcode start to fill into instruction. */
8991 displacement_from_opcode_start = target_address - opcode_address;
8992
8993 if ((fragP->fr_subtype & BIG) == 0)
8994 {
8995 /* Don't have to change opcode. */
8996 extension = 1; /* 1 opcode + 1 displacement */
8997 where_to_put_displacement = &opcode[1];
8998 }
8999 else
9000 {
9001 if (no_cond_jump_promotion
9002 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
9003 as_warn_where (fragP->fr_file, fragP->fr_line,
9004 _("long jump required"));
9005
9006 switch (fragP->fr_subtype)
9007 {
9008 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
9009 extension = 4; /* 1 opcode + 4 displacement */
9010 opcode[0] = 0xe9;
9011 where_to_put_displacement = &opcode[1];
9012 break;
9013
9014 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
9015 extension = 2; /* 1 opcode + 2 displacement */
9016 opcode[0] = 0xe9;
9017 where_to_put_displacement = &opcode[1];
9018 break;
9019
9020 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
9021 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
9022 extension = 5; /* 2 opcode + 4 displacement */
9023 opcode[1] = opcode[0] + 0x10;
9024 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9025 where_to_put_displacement = &opcode[2];
9026 break;
9027
9028 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
9029 extension = 3; /* 2 opcode + 2 displacement */
9030 opcode[1] = opcode[0] + 0x10;
9031 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9032 where_to_put_displacement = &opcode[2];
9033 break;
9034
9035 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9036 extension = 4;
9037 opcode[0] ^= 1;
9038 opcode[1] = 3;
9039 opcode[2] = 0xe9;
9040 where_to_put_displacement = &opcode[3];
9041 break;
9042
9043 default:
9044 BAD_CASE (fragP->fr_subtype);
9045 break;
9046 }
9047 }
9048
9049 /* If size if less then four we are sure that the operand fits,
9050 but if it's 4, then it could be that the displacement is larger
9051 then -/+ 2GB. */
9052 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9053 && object_64bit
9054 && ((addressT) (displacement_from_opcode_start - extension
9055 + ((addressT) 1 << 31))
9056 > (((addressT) 2 << 31) - 1)))
9057 {
9058 as_bad_where (fragP->fr_file, fragP->fr_line,
9059 _("jump target out of range"));
9060 /* Make us emit 0. */
9061 displacement_from_opcode_start = extension;
9062 }
9063 /* Now put displacement after opcode. */
9064 md_number_to_chars ((char *) where_to_put_displacement,
9065 (valueT) (displacement_from_opcode_start - extension),
9066 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9067 fragP->fr_fix += extension;
9068 }
9069 \f
9070 /* Apply a fixup (fixP) to segment data, once it has been determined
9071 by our caller that we have all the info we need to fix it up.
9072
9073 Parameter valP is the pointer to the value of the bits.
9074
9075 On the 386, immediates, displacements, and data pointers are all in
9076 the same (little-endian) format, so we don't need to care about which
9077 we are handling. */
9078
9079 void
9080 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9081 {
9082 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9083 valueT value = *valP;
9084
9085 #if !defined (TE_Mach)
9086 if (fixP->fx_pcrel)
9087 {
9088 switch (fixP->fx_r_type)
9089 {
9090 default:
9091 break;
9092
9093 case BFD_RELOC_64:
9094 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9095 break;
9096 case BFD_RELOC_32:
9097 case BFD_RELOC_X86_64_32S:
9098 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9099 break;
9100 case BFD_RELOC_16:
9101 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9102 break;
9103 case BFD_RELOC_8:
9104 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9105 break;
9106 }
9107 }
9108
9109 if (fixP->fx_addsy != NULL
9110 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9111 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9112 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9113 || fixP->fx_r_type == BFD_RELOC_8_PCREL
9114 || fixP->fx_r_type == BFD_RELOC_X86_64_PC32_BND)
9115 && !use_rela_relocations)
9116 {
9117 /* This is a hack. There should be a better way to handle this.
9118 This covers for the fact that bfd_install_relocation will
9119 subtract the current location (for partial_inplace, PC relative
9120 relocations); see more below. */
9121 #ifndef OBJ_AOUT
9122 if (IS_ELF
9123 #ifdef TE_PE
9124 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9125 #endif
9126 )
9127 value += fixP->fx_where + fixP->fx_frag->fr_address;
9128 #endif
9129 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9130 if (IS_ELF)
9131 {
9132 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9133
9134 if ((sym_seg == seg
9135 || (symbol_section_p (fixP->fx_addsy)
9136 && sym_seg != absolute_section))
9137 && !generic_force_reloc (fixP))
9138 {
9139 /* Yes, we add the values in twice. This is because
9140 bfd_install_relocation subtracts them out again. I think
9141 bfd_install_relocation is broken, but I don't dare change
9142 it. FIXME. */
9143 value += fixP->fx_where + fixP->fx_frag->fr_address;
9144 }
9145 }
9146 #endif
9147 #if defined (OBJ_COFF) && defined (TE_PE)
9148 /* For some reason, the PE format does not store a
9149 section address offset for a PC relative symbol. */
9150 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9151 || S_IS_WEAK (fixP->fx_addsy))
9152 value += md_pcrel_from (fixP);
9153 #endif
9154 }
9155 #if defined (OBJ_COFF) && defined (TE_PE)
9156 if (fixP->fx_addsy != NULL
9157 && S_IS_WEAK (fixP->fx_addsy)
9158 /* PR 16858: Do not modify weak function references. */
9159 && ! fixP->fx_pcrel)
9160 {
9161 #if !defined (TE_PEP)
9162 /* For x86 PE weak function symbols are neither PC-relative
9163 nor do they set S_IS_FUNCTION. So the only reliable way
9164 to detect them is to check the flags of their containing
9165 section. */
9166 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
9167 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
9168 ;
9169 else
9170 #endif
9171 value -= S_GET_VALUE (fixP->fx_addsy);
9172 }
9173 #endif
9174
9175 /* Fix a few things - the dynamic linker expects certain values here,
9176 and we must not disappoint it. */
9177 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9178 if (IS_ELF && fixP->fx_addsy)
9179 switch (fixP->fx_r_type)
9180 {
9181 case BFD_RELOC_386_PLT32:
9182 case BFD_RELOC_X86_64_PLT32:
9183 case BFD_RELOC_X86_64_PLT32_BND:
9184 /* Make the jump instruction point to the address of the operand. At
9185 runtime we merely add the offset to the actual PLT entry. */
9186 value = -4;
9187 break;
9188
9189 case BFD_RELOC_386_TLS_GD:
9190 case BFD_RELOC_386_TLS_LDM:
9191 case BFD_RELOC_386_TLS_IE_32:
9192 case BFD_RELOC_386_TLS_IE:
9193 case BFD_RELOC_386_TLS_GOTIE:
9194 case BFD_RELOC_386_TLS_GOTDESC:
9195 case BFD_RELOC_X86_64_TLSGD:
9196 case BFD_RELOC_X86_64_TLSLD:
9197 case BFD_RELOC_X86_64_GOTTPOFF:
9198 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9199 value = 0; /* Fully resolved at runtime. No addend. */
9200 /* Fallthrough */
9201 case BFD_RELOC_386_TLS_LE:
9202 case BFD_RELOC_386_TLS_LDO_32:
9203 case BFD_RELOC_386_TLS_LE_32:
9204 case BFD_RELOC_X86_64_DTPOFF32:
9205 case BFD_RELOC_X86_64_DTPOFF64:
9206 case BFD_RELOC_X86_64_TPOFF32:
9207 case BFD_RELOC_X86_64_TPOFF64:
9208 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9209 break;
9210
9211 case BFD_RELOC_386_TLS_DESC_CALL:
9212 case BFD_RELOC_X86_64_TLSDESC_CALL:
9213 value = 0; /* Fully resolved at runtime. No addend. */
9214 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9215 fixP->fx_done = 0;
9216 return;
9217
9218 case BFD_RELOC_386_GOT32:
9219 case BFD_RELOC_X86_64_GOT32:
9220 value = 0; /* Fully resolved at runtime. No addend. */
9221 break;
9222
9223 case BFD_RELOC_VTABLE_INHERIT:
9224 case BFD_RELOC_VTABLE_ENTRY:
9225 fixP->fx_done = 0;
9226 return;
9227
9228 default:
9229 break;
9230 }
9231 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
9232 *valP = value;
9233 #endif /* !defined (TE_Mach) */
9234
9235 /* Are we finished with this relocation now? */
9236 if (fixP->fx_addsy == NULL)
9237 fixP->fx_done = 1;
9238 #if defined (OBJ_COFF) && defined (TE_PE)
9239 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9240 {
9241 fixP->fx_done = 0;
9242 /* Remember value for tc_gen_reloc. */
9243 fixP->fx_addnumber = value;
9244 /* Clear out the frag for now. */
9245 value = 0;
9246 }
9247 #endif
9248 else if (use_rela_relocations)
9249 {
9250 fixP->fx_no_overflow = 1;
9251 /* Remember value for tc_gen_reloc. */
9252 fixP->fx_addnumber = value;
9253 value = 0;
9254 }
9255
9256 md_number_to_chars (p, value, fixP->fx_size);
9257 }
9258 \f
9259 char *
9260 md_atof (int type, char *litP, int *sizeP)
9261 {
9262 /* This outputs the LITTLENUMs in REVERSE order;
9263 in accord with the bigendian 386. */
9264 return ieee_md_atof (type, litP, sizeP, FALSE);
9265 }
9266 \f
9267 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
9268
9269 static char *
9270 output_invalid (int c)
9271 {
9272 if (ISPRINT (c))
9273 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9274 "'%c'", c);
9275 else
9276 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9277 "(0x%x)", (unsigned char) c);
9278 return output_invalid_buf;
9279 }
9280
9281 /* REG_STRING starts *before* REGISTER_PREFIX. */
9282
9283 static const reg_entry *
9284 parse_real_register (char *reg_string, char **end_op)
9285 {
9286 char *s = reg_string;
9287 char *p;
9288 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9289 const reg_entry *r;
9290
9291 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9292 if (*s == REGISTER_PREFIX)
9293 ++s;
9294
9295 if (is_space_char (*s))
9296 ++s;
9297
9298 p = reg_name_given;
9299 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
9300 {
9301 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
9302 return (const reg_entry *) NULL;
9303 s++;
9304 }
9305
9306 /* For naked regs, make sure that we are not dealing with an identifier.
9307 This prevents confusing an identifier like `eax_var' with register
9308 `eax'. */
9309 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9310 return (const reg_entry *) NULL;
9311
9312 *end_op = s;
9313
9314 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9315
9316 /* Handle floating point regs, allowing spaces in the (i) part. */
9317 if (r == i386_regtab /* %st is first entry of table */)
9318 {
9319 if (is_space_char (*s))
9320 ++s;
9321 if (*s == '(')
9322 {
9323 ++s;
9324 if (is_space_char (*s))
9325 ++s;
9326 if (*s >= '0' && *s <= '7')
9327 {
9328 int fpr = *s - '0';
9329 ++s;
9330 if (is_space_char (*s))
9331 ++s;
9332 if (*s == ')')
9333 {
9334 *end_op = s + 1;
9335 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
9336 know (r);
9337 return r + fpr;
9338 }
9339 }
9340 /* We have "%st(" then garbage. */
9341 return (const reg_entry *) NULL;
9342 }
9343 }
9344
9345 if (r == NULL || allow_pseudo_reg)
9346 return r;
9347
9348 if (operand_type_all_zero (&r->reg_type))
9349 return (const reg_entry *) NULL;
9350
9351 if ((r->reg_type.bitfield.reg32
9352 || r->reg_type.bitfield.sreg3
9353 || r->reg_type.bitfield.control
9354 || r->reg_type.bitfield.debug
9355 || r->reg_type.bitfield.test)
9356 && !cpu_arch_flags.bitfield.cpui386)
9357 return (const reg_entry *) NULL;
9358
9359 if (r->reg_type.bitfield.floatreg
9360 && !cpu_arch_flags.bitfield.cpu8087
9361 && !cpu_arch_flags.bitfield.cpu287
9362 && !cpu_arch_flags.bitfield.cpu387)
9363 return (const reg_entry *) NULL;
9364
9365 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
9366 return (const reg_entry *) NULL;
9367
9368 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
9369 return (const reg_entry *) NULL;
9370
9371 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
9372 return (const reg_entry *) NULL;
9373
9374 if ((r->reg_type.bitfield.regzmm || r->reg_type.bitfield.regmask)
9375 && !cpu_arch_flags.bitfield.cpuavx512f)
9376 return (const reg_entry *) NULL;
9377
9378 /* Don't allow fake index register unless allow_index_reg isn't 0. */
9379 if (!allow_index_reg
9380 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9381 return (const reg_entry *) NULL;
9382
9383 /* Upper 16 vector register is only available with VREX in 64bit
9384 mode. */
9385 if ((r->reg_flags & RegVRex))
9386 {
9387 if (!cpu_arch_flags.bitfield.cpuvrex
9388 || flag_code != CODE_64BIT)
9389 return (const reg_entry *) NULL;
9390
9391 i.need_vrex = 1;
9392 }
9393
9394 if (((r->reg_flags & (RegRex64 | RegRex))
9395 || r->reg_type.bitfield.reg64)
9396 && (!cpu_arch_flags.bitfield.cpulm
9397 || !operand_type_equal (&r->reg_type, &control))
9398 && flag_code != CODE_64BIT)
9399 return (const reg_entry *) NULL;
9400
9401 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9402 return (const reg_entry *) NULL;
9403
9404 return r;
9405 }
9406
9407 /* REG_STRING starts *before* REGISTER_PREFIX. */
9408
9409 static const reg_entry *
9410 parse_register (char *reg_string, char **end_op)
9411 {
9412 const reg_entry *r;
9413
9414 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9415 r = parse_real_register (reg_string, end_op);
9416 else
9417 r = NULL;
9418 if (!r)
9419 {
9420 char *save = input_line_pointer;
9421 char c;
9422 symbolS *symbolP;
9423
9424 input_line_pointer = reg_string;
9425 c = get_symbol_end ();
9426 symbolP = symbol_find (reg_string);
9427 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9428 {
9429 const expressionS *e = symbol_get_value_expression (symbolP);
9430
9431 know (e->X_op == O_register);
9432 know (e->X_add_number >= 0
9433 && (valueT) e->X_add_number < i386_regtab_size);
9434 r = i386_regtab + e->X_add_number;
9435 if ((r->reg_flags & RegVRex))
9436 i.need_vrex = 1;
9437 *end_op = input_line_pointer;
9438 }
9439 *input_line_pointer = c;
9440 input_line_pointer = save;
9441 }
9442 return r;
9443 }
9444
9445 int
9446 i386_parse_name (char *name, expressionS *e, char *nextcharP)
9447 {
9448 const reg_entry *r;
9449 char *end = input_line_pointer;
9450
9451 *end = *nextcharP;
9452 r = parse_register (name, &input_line_pointer);
9453 if (r && end <= input_line_pointer)
9454 {
9455 *nextcharP = *input_line_pointer;
9456 *input_line_pointer = 0;
9457 e->X_op = O_register;
9458 e->X_add_number = r - i386_regtab;
9459 return 1;
9460 }
9461 input_line_pointer = end;
9462 *end = 0;
9463 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
9464 }
9465
9466 void
9467 md_operand (expressionS *e)
9468 {
9469 char *end;
9470 const reg_entry *r;
9471
9472 switch (*input_line_pointer)
9473 {
9474 case REGISTER_PREFIX:
9475 r = parse_real_register (input_line_pointer, &end);
9476 if (r)
9477 {
9478 e->X_op = O_register;
9479 e->X_add_number = r - i386_regtab;
9480 input_line_pointer = end;
9481 }
9482 break;
9483
9484 case '[':
9485 gas_assert (intel_syntax);
9486 end = input_line_pointer++;
9487 expression (e);
9488 if (*input_line_pointer == ']')
9489 {
9490 ++input_line_pointer;
9491 e->X_op_symbol = make_expr_symbol (e);
9492 e->X_add_symbol = NULL;
9493 e->X_add_number = 0;
9494 e->X_op = O_index;
9495 }
9496 else
9497 {
9498 e->X_op = O_absent;
9499 input_line_pointer = end;
9500 }
9501 break;
9502 }
9503 }
9504
9505 \f
9506 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9507 const char *md_shortopts = "kVQ:sqn";
9508 #else
9509 const char *md_shortopts = "qn";
9510 #endif
9511
9512 #define OPTION_32 (OPTION_MD_BASE + 0)
9513 #define OPTION_64 (OPTION_MD_BASE + 1)
9514 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9515 #define OPTION_MARCH (OPTION_MD_BASE + 3)
9516 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
9517 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9518 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9519 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9520 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9521 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
9522 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
9523 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
9524 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9525 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9526 #define OPTION_X32 (OPTION_MD_BASE + 14)
9527 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
9528 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9529 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
9530 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
9531
9532 struct option md_longopts[] =
9533 {
9534 {"32", no_argument, NULL, OPTION_32},
9535 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9536 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9537 {"64", no_argument, NULL, OPTION_64},
9538 #endif
9539 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9540 {"x32", no_argument, NULL, OPTION_X32},
9541 #endif
9542 {"divide", no_argument, NULL, OPTION_DIVIDE},
9543 {"march", required_argument, NULL, OPTION_MARCH},
9544 {"mtune", required_argument, NULL, OPTION_MTUNE},
9545 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
9546 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
9547 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
9548 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
9549 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
9550 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
9551 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
9552 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
9553 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
9554 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
9555 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
9556 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
9557 # if defined (TE_PE) || defined (TE_PEP)
9558 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
9559 #endif
9560 {NULL, no_argument, NULL, 0}
9561 };
9562 size_t md_longopts_size = sizeof (md_longopts);
9563
9564 int
9565 md_parse_option (int c, char *arg)
9566 {
9567 unsigned int j;
9568 char *arch, *next;
9569
9570 switch (c)
9571 {
9572 case 'n':
9573 optimize_align_code = 0;
9574 break;
9575
9576 case 'q':
9577 quiet_warnings = 1;
9578 break;
9579
9580 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9581 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
9582 should be emitted or not. FIXME: Not implemented. */
9583 case 'Q':
9584 break;
9585
9586 /* -V: SVR4 argument to print version ID. */
9587 case 'V':
9588 print_version_id ();
9589 break;
9590
9591 /* -k: Ignore for FreeBSD compatibility. */
9592 case 'k':
9593 break;
9594
9595 case 's':
9596 /* -s: On i386 Solaris, this tells the native assembler to use
9597 .stab instead of .stab.excl. We always use .stab anyhow. */
9598 break;
9599 #endif
9600 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9601 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9602 case OPTION_64:
9603 {
9604 const char **list, **l;
9605
9606 list = bfd_target_list ();
9607 for (l = list; *l != NULL; l++)
9608 if (CONST_STRNEQ (*l, "elf64-x86-64")
9609 || strcmp (*l, "coff-x86-64") == 0
9610 || strcmp (*l, "pe-x86-64") == 0
9611 || strcmp (*l, "pei-x86-64") == 0
9612 || strcmp (*l, "mach-o-x86-64") == 0)
9613 {
9614 default_arch = "x86_64";
9615 break;
9616 }
9617 if (*l == NULL)
9618 as_fatal (_("no compiled in support for x86_64"));
9619 free (list);
9620 }
9621 break;
9622 #endif
9623
9624 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9625 case OPTION_X32:
9626 if (IS_ELF)
9627 {
9628 const char **list, **l;
9629
9630 list = bfd_target_list ();
9631 for (l = list; *l != NULL; l++)
9632 if (CONST_STRNEQ (*l, "elf32-x86-64"))
9633 {
9634 default_arch = "x86_64:32";
9635 break;
9636 }
9637 if (*l == NULL)
9638 as_fatal (_("no compiled in support for 32bit x86_64"));
9639 free (list);
9640 }
9641 else
9642 as_fatal (_("32bit x86_64 is only supported for ELF"));
9643 break;
9644 #endif
9645
9646 case OPTION_32:
9647 default_arch = "i386";
9648 break;
9649
9650 case OPTION_DIVIDE:
9651 #ifdef SVR4_COMMENT_CHARS
9652 {
9653 char *n, *t;
9654 const char *s;
9655
9656 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
9657 t = n;
9658 for (s = i386_comment_chars; *s != '\0'; s++)
9659 if (*s != '/')
9660 *t++ = *s;
9661 *t = '\0';
9662 i386_comment_chars = n;
9663 }
9664 #endif
9665 break;
9666
9667 case OPTION_MARCH:
9668 arch = xstrdup (arg);
9669 do
9670 {
9671 if (*arch == '.')
9672 as_fatal (_("invalid -march= option: `%s'"), arg);
9673 next = strchr (arch, '+');
9674 if (next)
9675 *next++ = '\0';
9676 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9677 {
9678 if (strcmp (arch, cpu_arch [j].name) == 0)
9679 {
9680 /* Processor. */
9681 if (! cpu_arch[j].flags.bitfield.cpui386)
9682 continue;
9683
9684 cpu_arch_name = cpu_arch[j].name;
9685 cpu_sub_arch_name = NULL;
9686 cpu_arch_flags = cpu_arch[j].flags;
9687 cpu_arch_isa = cpu_arch[j].type;
9688 cpu_arch_isa_flags = cpu_arch[j].flags;
9689 if (!cpu_arch_tune_set)
9690 {
9691 cpu_arch_tune = cpu_arch_isa;
9692 cpu_arch_tune_flags = cpu_arch_isa_flags;
9693 }
9694 break;
9695 }
9696 else if (*cpu_arch [j].name == '.'
9697 && strcmp (arch, cpu_arch [j].name + 1) == 0)
9698 {
9699 /* ISA entension. */
9700 i386_cpu_flags flags;
9701
9702 if (!cpu_arch[j].negated)
9703 flags = cpu_flags_or (cpu_arch_flags,
9704 cpu_arch[j].flags);
9705 else
9706 flags = cpu_flags_and_not (cpu_arch_flags,
9707 cpu_arch[j].flags);
9708 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
9709 {
9710 if (cpu_sub_arch_name)
9711 {
9712 char *name = cpu_sub_arch_name;
9713 cpu_sub_arch_name = concat (name,
9714 cpu_arch[j].name,
9715 (const char *) NULL);
9716 free (name);
9717 }
9718 else
9719 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
9720 cpu_arch_flags = flags;
9721 cpu_arch_isa_flags = flags;
9722 }
9723 break;
9724 }
9725 }
9726
9727 if (j >= ARRAY_SIZE (cpu_arch))
9728 as_fatal (_("invalid -march= option: `%s'"), arg);
9729
9730 arch = next;
9731 }
9732 while (next != NULL );
9733 break;
9734
9735 case OPTION_MTUNE:
9736 if (*arg == '.')
9737 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9738 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9739 {
9740 if (strcmp (arg, cpu_arch [j].name) == 0)
9741 {
9742 cpu_arch_tune_set = 1;
9743 cpu_arch_tune = cpu_arch [j].type;
9744 cpu_arch_tune_flags = cpu_arch[j].flags;
9745 break;
9746 }
9747 }
9748 if (j >= ARRAY_SIZE (cpu_arch))
9749 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9750 break;
9751
9752 case OPTION_MMNEMONIC:
9753 if (strcasecmp (arg, "att") == 0)
9754 intel_mnemonic = 0;
9755 else if (strcasecmp (arg, "intel") == 0)
9756 intel_mnemonic = 1;
9757 else
9758 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
9759 break;
9760
9761 case OPTION_MSYNTAX:
9762 if (strcasecmp (arg, "att") == 0)
9763 intel_syntax = 0;
9764 else if (strcasecmp (arg, "intel") == 0)
9765 intel_syntax = 1;
9766 else
9767 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
9768 break;
9769
9770 case OPTION_MINDEX_REG:
9771 allow_index_reg = 1;
9772 break;
9773
9774 case OPTION_MNAKED_REG:
9775 allow_naked_reg = 1;
9776 break;
9777
9778 case OPTION_MOLD_GCC:
9779 old_gcc = 1;
9780 break;
9781
9782 case OPTION_MSSE2AVX:
9783 sse2avx = 1;
9784 break;
9785
9786 case OPTION_MSSE_CHECK:
9787 if (strcasecmp (arg, "error") == 0)
9788 sse_check = check_error;
9789 else if (strcasecmp (arg, "warning") == 0)
9790 sse_check = check_warning;
9791 else if (strcasecmp (arg, "none") == 0)
9792 sse_check = check_none;
9793 else
9794 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
9795 break;
9796
9797 case OPTION_MOPERAND_CHECK:
9798 if (strcasecmp (arg, "error") == 0)
9799 operand_check = check_error;
9800 else if (strcasecmp (arg, "warning") == 0)
9801 operand_check = check_warning;
9802 else if (strcasecmp (arg, "none") == 0)
9803 operand_check = check_none;
9804 else
9805 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
9806 break;
9807
9808 case OPTION_MAVXSCALAR:
9809 if (strcasecmp (arg, "128") == 0)
9810 avxscalar = vex128;
9811 else if (strcasecmp (arg, "256") == 0)
9812 avxscalar = vex256;
9813 else
9814 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
9815 break;
9816
9817 case OPTION_MADD_BND_PREFIX:
9818 add_bnd_prefix = 1;
9819 break;
9820
9821 case OPTION_MEVEXLIG:
9822 if (strcmp (arg, "128") == 0)
9823 evexlig = evexl128;
9824 else if (strcmp (arg, "256") == 0)
9825 evexlig = evexl256;
9826 else if (strcmp (arg, "512") == 0)
9827 evexlig = evexl512;
9828 else
9829 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
9830 break;
9831
9832 case OPTION_MEVEXWIG:
9833 if (strcmp (arg, "0") == 0)
9834 evexwig = evexw0;
9835 else if (strcmp (arg, "1") == 0)
9836 evexwig = evexw1;
9837 else
9838 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
9839 break;
9840
9841 # if defined (TE_PE) || defined (TE_PEP)
9842 case OPTION_MBIG_OBJ:
9843 use_big_obj = 1;
9844 break;
9845 #endif
9846
9847 default:
9848 return 0;
9849 }
9850 return 1;
9851 }
9852
9853 #define MESSAGE_TEMPLATE \
9854 " "
9855
9856 static void
9857 show_arch (FILE *stream, int ext, int check)
9858 {
9859 static char message[] = MESSAGE_TEMPLATE;
9860 char *start = message + 27;
9861 char *p;
9862 int size = sizeof (MESSAGE_TEMPLATE);
9863 int left;
9864 const char *name;
9865 int len;
9866 unsigned int j;
9867
9868 p = start;
9869 left = size - (start - message);
9870 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9871 {
9872 /* Should it be skipped? */
9873 if (cpu_arch [j].skip)
9874 continue;
9875
9876 name = cpu_arch [j].name;
9877 len = cpu_arch [j].len;
9878 if (*name == '.')
9879 {
9880 /* It is an extension. Skip if we aren't asked to show it. */
9881 if (ext)
9882 {
9883 name++;
9884 len--;
9885 }
9886 else
9887 continue;
9888 }
9889 else if (ext)
9890 {
9891 /* It is an processor. Skip if we show only extension. */
9892 continue;
9893 }
9894 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
9895 {
9896 /* It is an impossible processor - skip. */
9897 continue;
9898 }
9899
9900 /* Reserve 2 spaces for ", " or ",\0" */
9901 left -= len + 2;
9902
9903 /* Check if there is any room. */
9904 if (left >= 0)
9905 {
9906 if (p != start)
9907 {
9908 *p++ = ',';
9909 *p++ = ' ';
9910 }
9911 p = mempcpy (p, name, len);
9912 }
9913 else
9914 {
9915 /* Output the current message now and start a new one. */
9916 *p++ = ',';
9917 *p = '\0';
9918 fprintf (stream, "%s\n", message);
9919 p = start;
9920 left = size - (start - message) - len - 2;
9921
9922 gas_assert (left >= 0);
9923
9924 p = mempcpy (p, name, len);
9925 }
9926 }
9927
9928 *p = '\0';
9929 fprintf (stream, "%s\n", message);
9930 }
9931
9932 void
9933 md_show_usage (FILE *stream)
9934 {
9935 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9936 fprintf (stream, _("\
9937 -Q ignored\n\
9938 -V print assembler version number\n\
9939 -k ignored\n"));
9940 #endif
9941 fprintf (stream, _("\
9942 -n Do not optimize code alignment\n\
9943 -q quieten some warnings\n"));
9944 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9945 fprintf (stream, _("\
9946 -s ignored\n"));
9947 #endif
9948 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9949 || defined (TE_PE) || defined (TE_PEP))
9950 fprintf (stream, _("\
9951 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
9952 #endif
9953 #ifdef SVR4_COMMENT_CHARS
9954 fprintf (stream, _("\
9955 --divide do not treat `/' as a comment character\n"));
9956 #else
9957 fprintf (stream, _("\
9958 --divide ignored\n"));
9959 #endif
9960 fprintf (stream, _("\
9961 -march=CPU[,+EXTENSION...]\n\
9962 generate code for CPU and EXTENSION, CPU is one of:\n"));
9963 show_arch (stream, 0, 1);
9964 fprintf (stream, _("\
9965 EXTENSION is combination of:\n"));
9966 show_arch (stream, 1, 0);
9967 fprintf (stream, _("\
9968 -mtune=CPU optimize for CPU, CPU is one of:\n"));
9969 show_arch (stream, 0, 0);
9970 fprintf (stream, _("\
9971 -msse2avx encode SSE instructions with VEX prefix\n"));
9972 fprintf (stream, _("\
9973 -msse-check=[none|error|warning]\n\
9974 check SSE instructions\n"));
9975 fprintf (stream, _("\
9976 -moperand-check=[none|error|warning]\n\
9977 check operand combinations for validity\n"));
9978 fprintf (stream, _("\
9979 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
9980 length\n"));
9981 fprintf (stream, _("\
9982 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
9983 length\n"));
9984 fprintf (stream, _("\
9985 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
9986 for EVEX.W bit ignored instructions\n"));
9987 fprintf (stream, _("\
9988 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
9989 fprintf (stream, _("\
9990 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
9991 fprintf (stream, _("\
9992 -mindex-reg support pseudo index registers\n"));
9993 fprintf (stream, _("\
9994 -mnaked-reg don't require `%%' prefix for registers\n"));
9995 fprintf (stream, _("\
9996 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
9997 fprintf (stream, _("\
9998 -madd-bnd-prefix add BND prefix for all valid branches\n"));
9999 # if defined (TE_PE) || defined (TE_PEP)
10000 fprintf (stream, _("\
10001 -mbig-obj generate big object files\n"));
10002 #endif
10003 }
10004
10005 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
10006 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10007 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10008
10009 /* Pick the target format to use. */
10010
10011 const char *
10012 i386_target_format (void)
10013 {
10014 if (!strncmp (default_arch, "x86_64", 6))
10015 {
10016 update_code_flag (CODE_64BIT, 1);
10017 if (default_arch[6] == '\0')
10018 x86_elf_abi = X86_64_ABI;
10019 else
10020 x86_elf_abi = X86_64_X32_ABI;
10021 }
10022 else if (!strcmp (default_arch, "i386"))
10023 update_code_flag (CODE_32BIT, 1);
10024 else
10025 as_fatal (_("unknown architecture"));
10026
10027 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
10028 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10029 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
10030 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
10031
10032 switch (OUTPUT_FLAVOR)
10033 {
10034 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
10035 case bfd_target_aout_flavour:
10036 return AOUT_TARGET_FORMAT;
10037 #endif
10038 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
10039 # if defined (TE_PE) || defined (TE_PEP)
10040 case bfd_target_coff_flavour:
10041 if (flag_code == CODE_64BIT)
10042 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
10043 else
10044 return "pe-i386";
10045 # elif defined (TE_GO32)
10046 case bfd_target_coff_flavour:
10047 return "coff-go32";
10048 # else
10049 case bfd_target_coff_flavour:
10050 return "coff-i386";
10051 # endif
10052 #endif
10053 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10054 case bfd_target_elf_flavour:
10055 {
10056 const char *format;
10057
10058 switch (x86_elf_abi)
10059 {
10060 default:
10061 format = ELF_TARGET_FORMAT;
10062 break;
10063 case X86_64_ABI:
10064 use_rela_relocations = 1;
10065 object_64bit = 1;
10066 format = ELF_TARGET_FORMAT64;
10067 break;
10068 case X86_64_X32_ABI:
10069 use_rela_relocations = 1;
10070 object_64bit = 1;
10071 disallow_64bit_reloc = 1;
10072 format = ELF_TARGET_FORMAT32;
10073 break;
10074 }
10075 if (cpu_arch_isa == PROCESSOR_L1OM)
10076 {
10077 if (x86_elf_abi != X86_64_ABI)
10078 as_fatal (_("Intel L1OM is 64bit only"));
10079 return ELF_TARGET_L1OM_FORMAT;
10080 }
10081 if (cpu_arch_isa == PROCESSOR_K1OM)
10082 {
10083 if (x86_elf_abi != X86_64_ABI)
10084 as_fatal (_("Intel K1OM is 64bit only"));
10085 return ELF_TARGET_K1OM_FORMAT;
10086 }
10087 else
10088 return format;
10089 }
10090 #endif
10091 #if defined (OBJ_MACH_O)
10092 case bfd_target_mach_o_flavour:
10093 if (flag_code == CODE_64BIT)
10094 {
10095 use_rela_relocations = 1;
10096 object_64bit = 1;
10097 return "mach-o-x86-64";
10098 }
10099 else
10100 return "mach-o-i386";
10101 #endif
10102 default:
10103 abort ();
10104 return NULL;
10105 }
10106 }
10107
10108 #endif /* OBJ_MAYBE_ more than one */
10109
10110 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
10111 void
10112 i386_elf_emit_arch_note (void)
10113 {
10114 if (IS_ELF && cpu_arch_name != NULL)
10115 {
10116 char *p;
10117 asection *seg = now_seg;
10118 subsegT subseg = now_subseg;
10119 Elf_Internal_Note i_note;
10120 Elf_External_Note e_note;
10121 asection *note_secp;
10122 int len;
10123
10124 /* Create the .note section. */
10125 note_secp = subseg_new (".note", 0);
10126 bfd_set_section_flags (stdoutput,
10127 note_secp,
10128 SEC_HAS_CONTENTS | SEC_READONLY);
10129
10130 /* Process the arch string. */
10131 len = strlen (cpu_arch_name);
10132
10133 i_note.namesz = len + 1;
10134 i_note.descsz = 0;
10135 i_note.type = NT_ARCH;
10136 p = frag_more (sizeof (e_note.namesz));
10137 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
10138 p = frag_more (sizeof (e_note.descsz));
10139 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
10140 p = frag_more (sizeof (e_note.type));
10141 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
10142 p = frag_more (len + 1);
10143 strcpy (p, cpu_arch_name);
10144
10145 frag_align (2, 0, 0);
10146
10147 subseg_set (seg, subseg);
10148 }
10149 }
10150 #endif
10151 \f
10152 symbolS *
10153 md_undefined_symbol (char *name)
10154 {
10155 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10156 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10157 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10158 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
10159 {
10160 if (!GOT_symbol)
10161 {
10162 if (symbol_find (name))
10163 as_bad (_("GOT already in symbol table"));
10164 GOT_symbol = symbol_new (name, undefined_section,
10165 (valueT) 0, &zero_address_frag);
10166 };
10167 return GOT_symbol;
10168 }
10169 return 0;
10170 }
10171
10172 /* Round up a section size to the appropriate boundary. */
10173
10174 valueT
10175 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
10176 {
10177 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10178 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10179 {
10180 /* For a.out, force the section size to be aligned. If we don't do
10181 this, BFD will align it for us, but it will not write out the
10182 final bytes of the section. This may be a bug in BFD, but it is
10183 easier to fix it here since that is how the other a.out targets
10184 work. */
10185 int align;
10186
10187 align = bfd_get_section_alignment (stdoutput, segment);
10188 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
10189 }
10190 #endif
10191
10192 return size;
10193 }
10194
10195 /* On the i386, PC-relative offsets are relative to the start of the
10196 next instruction. That is, the address of the offset, plus its
10197 size, since the offset is always the last part of the insn. */
10198
10199 long
10200 md_pcrel_from (fixS *fixP)
10201 {
10202 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10203 }
10204
10205 #ifndef I386COFF
10206
10207 static void
10208 s_bss (int ignore ATTRIBUTE_UNUSED)
10209 {
10210 int temp;
10211
10212 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10213 if (IS_ELF)
10214 obj_elf_section_change_hook ();
10215 #endif
10216 temp = get_absolute_expression ();
10217 subseg_set (bss_section, (subsegT) temp);
10218 demand_empty_rest_of_line ();
10219 }
10220
10221 #endif
10222
10223 void
10224 i386_validate_fix (fixS *fixp)
10225 {
10226 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
10227 {
10228 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10229 {
10230 if (!object_64bit)
10231 abort ();
10232 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10233 }
10234 else
10235 {
10236 if (!object_64bit)
10237 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10238 else
10239 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10240 }
10241 fixp->fx_subsy = 0;
10242 }
10243 }
10244
10245 arelent *
10246 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
10247 {
10248 arelent *rel;
10249 bfd_reloc_code_real_type code;
10250
10251 switch (fixp->fx_r_type)
10252 {
10253 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10254 case BFD_RELOC_SIZE32:
10255 case BFD_RELOC_SIZE64:
10256 if (S_IS_DEFINED (fixp->fx_addsy)
10257 && !S_IS_EXTERNAL (fixp->fx_addsy))
10258 {
10259 /* Resolve size relocation against local symbol to size of
10260 the symbol plus addend. */
10261 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10262 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10263 && !fits_in_unsigned_long (value))
10264 as_bad_where (fixp->fx_file, fixp->fx_line,
10265 _("symbol size computation overflow"));
10266 fixp->fx_addsy = NULL;
10267 fixp->fx_subsy = NULL;
10268 md_apply_fix (fixp, (valueT *) &value, NULL);
10269 return NULL;
10270 }
10271 #endif
10272
10273 case BFD_RELOC_X86_64_PLT32:
10274 case BFD_RELOC_X86_64_PLT32_BND:
10275 case BFD_RELOC_X86_64_GOT32:
10276 case BFD_RELOC_X86_64_GOTPCREL:
10277 case BFD_RELOC_386_PLT32:
10278 case BFD_RELOC_386_GOT32:
10279 case BFD_RELOC_386_GOTOFF:
10280 case BFD_RELOC_386_GOTPC:
10281 case BFD_RELOC_386_TLS_GD:
10282 case BFD_RELOC_386_TLS_LDM:
10283 case BFD_RELOC_386_TLS_LDO_32:
10284 case BFD_RELOC_386_TLS_IE_32:
10285 case BFD_RELOC_386_TLS_IE:
10286 case BFD_RELOC_386_TLS_GOTIE:
10287 case BFD_RELOC_386_TLS_LE_32:
10288 case BFD_RELOC_386_TLS_LE:
10289 case BFD_RELOC_386_TLS_GOTDESC:
10290 case BFD_RELOC_386_TLS_DESC_CALL:
10291 case BFD_RELOC_X86_64_TLSGD:
10292 case BFD_RELOC_X86_64_TLSLD:
10293 case BFD_RELOC_X86_64_DTPOFF32:
10294 case BFD_RELOC_X86_64_DTPOFF64:
10295 case BFD_RELOC_X86_64_GOTTPOFF:
10296 case BFD_RELOC_X86_64_TPOFF32:
10297 case BFD_RELOC_X86_64_TPOFF64:
10298 case BFD_RELOC_X86_64_GOTOFF64:
10299 case BFD_RELOC_X86_64_GOTPC32:
10300 case BFD_RELOC_X86_64_GOT64:
10301 case BFD_RELOC_X86_64_GOTPCREL64:
10302 case BFD_RELOC_X86_64_GOTPC64:
10303 case BFD_RELOC_X86_64_GOTPLT64:
10304 case BFD_RELOC_X86_64_PLTOFF64:
10305 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10306 case BFD_RELOC_X86_64_TLSDESC_CALL:
10307 case BFD_RELOC_RVA:
10308 case BFD_RELOC_VTABLE_ENTRY:
10309 case BFD_RELOC_VTABLE_INHERIT:
10310 #ifdef TE_PE
10311 case BFD_RELOC_32_SECREL:
10312 #endif
10313 code = fixp->fx_r_type;
10314 break;
10315 case BFD_RELOC_X86_64_32S:
10316 if (!fixp->fx_pcrel)
10317 {
10318 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10319 code = fixp->fx_r_type;
10320 break;
10321 }
10322 default:
10323 if (fixp->fx_pcrel)
10324 {
10325 switch (fixp->fx_size)
10326 {
10327 default:
10328 as_bad_where (fixp->fx_file, fixp->fx_line,
10329 _("can not do %d byte pc-relative relocation"),
10330 fixp->fx_size);
10331 code = BFD_RELOC_32_PCREL;
10332 break;
10333 case 1: code = BFD_RELOC_8_PCREL; break;
10334 case 2: code = BFD_RELOC_16_PCREL; break;
10335 case 4:
10336 code = (fixp->fx_r_type == BFD_RELOC_X86_64_PC32_BND
10337 ? fixp-> fx_r_type : BFD_RELOC_32_PCREL);
10338 break;
10339 #ifdef BFD64
10340 case 8: code = BFD_RELOC_64_PCREL; break;
10341 #endif
10342 }
10343 }
10344 else
10345 {
10346 switch (fixp->fx_size)
10347 {
10348 default:
10349 as_bad_where (fixp->fx_file, fixp->fx_line,
10350 _("can not do %d byte relocation"),
10351 fixp->fx_size);
10352 code = BFD_RELOC_32;
10353 break;
10354 case 1: code = BFD_RELOC_8; break;
10355 case 2: code = BFD_RELOC_16; break;
10356 case 4: code = BFD_RELOC_32; break;
10357 #ifdef BFD64
10358 case 8: code = BFD_RELOC_64; break;
10359 #endif
10360 }
10361 }
10362 break;
10363 }
10364
10365 if ((code == BFD_RELOC_32
10366 || code == BFD_RELOC_32_PCREL
10367 || code == BFD_RELOC_X86_64_32S)
10368 && GOT_symbol
10369 && fixp->fx_addsy == GOT_symbol)
10370 {
10371 if (!object_64bit)
10372 code = BFD_RELOC_386_GOTPC;
10373 else
10374 code = BFD_RELOC_X86_64_GOTPC32;
10375 }
10376 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10377 && GOT_symbol
10378 && fixp->fx_addsy == GOT_symbol)
10379 {
10380 code = BFD_RELOC_X86_64_GOTPC64;
10381 }
10382
10383 rel = (arelent *) xmalloc (sizeof (arelent));
10384 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
10385 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10386
10387 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
10388
10389 if (!use_rela_relocations)
10390 {
10391 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10392 vtable entry to be used in the relocation's section offset. */
10393 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10394 rel->address = fixp->fx_offset;
10395 #if defined (OBJ_COFF) && defined (TE_PE)
10396 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10397 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10398 else
10399 #endif
10400 rel->addend = 0;
10401 }
10402 /* Use the rela in 64bit mode. */
10403 else
10404 {
10405 if (disallow_64bit_reloc)
10406 switch (code)
10407 {
10408 case BFD_RELOC_X86_64_DTPOFF64:
10409 case BFD_RELOC_X86_64_TPOFF64:
10410 case BFD_RELOC_64_PCREL:
10411 case BFD_RELOC_X86_64_GOTOFF64:
10412 case BFD_RELOC_X86_64_GOT64:
10413 case BFD_RELOC_X86_64_GOTPCREL64:
10414 case BFD_RELOC_X86_64_GOTPC64:
10415 case BFD_RELOC_X86_64_GOTPLT64:
10416 case BFD_RELOC_X86_64_PLTOFF64:
10417 as_bad_where (fixp->fx_file, fixp->fx_line,
10418 _("cannot represent relocation type %s in x32 mode"),
10419 bfd_get_reloc_code_name (code));
10420 break;
10421 default:
10422 break;
10423 }
10424
10425 if (!fixp->fx_pcrel)
10426 rel->addend = fixp->fx_offset;
10427 else
10428 switch (code)
10429 {
10430 case BFD_RELOC_X86_64_PLT32:
10431 case BFD_RELOC_X86_64_PLT32_BND:
10432 case BFD_RELOC_X86_64_GOT32:
10433 case BFD_RELOC_X86_64_GOTPCREL:
10434 case BFD_RELOC_X86_64_TLSGD:
10435 case BFD_RELOC_X86_64_TLSLD:
10436 case BFD_RELOC_X86_64_GOTTPOFF:
10437 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10438 case BFD_RELOC_X86_64_TLSDESC_CALL:
10439 rel->addend = fixp->fx_offset - fixp->fx_size;
10440 break;
10441 default:
10442 rel->addend = (section->vma
10443 - fixp->fx_size
10444 + fixp->fx_addnumber
10445 + md_pcrel_from (fixp));
10446 break;
10447 }
10448 }
10449
10450 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
10451 if (rel->howto == NULL)
10452 {
10453 as_bad_where (fixp->fx_file, fixp->fx_line,
10454 _("cannot represent relocation type %s"),
10455 bfd_get_reloc_code_name (code));
10456 /* Set howto to a garbage value so that we can keep going. */
10457 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
10458 gas_assert (rel->howto != NULL);
10459 }
10460
10461 return rel;
10462 }
10463
10464 #include "tc-i386-intel.c"
10465
10466 void
10467 tc_x86_parse_to_dw2regnum (expressionS *exp)
10468 {
10469 int saved_naked_reg;
10470 char saved_register_dot;
10471
10472 saved_naked_reg = allow_naked_reg;
10473 allow_naked_reg = 1;
10474 saved_register_dot = register_chars['.'];
10475 register_chars['.'] = '.';
10476 allow_pseudo_reg = 1;
10477 expression_and_evaluate (exp);
10478 allow_pseudo_reg = 0;
10479 register_chars['.'] = saved_register_dot;
10480 allow_naked_reg = saved_naked_reg;
10481
10482 if (exp->X_op == O_register && exp->X_add_number >= 0)
10483 {
10484 if ((addressT) exp->X_add_number < i386_regtab_size)
10485 {
10486 exp->X_op = O_constant;
10487 exp->X_add_number = i386_regtab[exp->X_add_number]
10488 .dw2_regnum[flag_code >> 1];
10489 }
10490 else
10491 exp->X_op = O_illegal;
10492 }
10493 }
10494
10495 void
10496 tc_x86_frame_initial_instructions (void)
10497 {
10498 static unsigned int sp_regno[2];
10499
10500 if (!sp_regno[flag_code >> 1])
10501 {
10502 char *saved_input = input_line_pointer;
10503 char sp[][4] = {"esp", "rsp"};
10504 expressionS exp;
10505
10506 input_line_pointer = sp[flag_code >> 1];
10507 tc_x86_parse_to_dw2regnum (&exp);
10508 gas_assert (exp.X_op == O_constant);
10509 sp_regno[flag_code >> 1] = exp.X_add_number;
10510 input_line_pointer = saved_input;
10511 }
10512
10513 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
10514 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
10515 }
10516
10517 int
10518 x86_dwarf2_addr_size (void)
10519 {
10520 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10521 if (x86_elf_abi == X86_64_X32_ABI)
10522 return 4;
10523 #endif
10524 return bfd_arch_bits_per_address (stdoutput) / 8;
10525 }
10526
10527 int
10528 i386_elf_section_type (const char *str, size_t len)
10529 {
10530 if (flag_code == CODE_64BIT
10531 && len == sizeof ("unwind") - 1
10532 && strncmp (str, "unwind", 6) == 0)
10533 return SHT_X86_64_UNWIND;
10534
10535 return -1;
10536 }
10537
10538 #ifdef TE_SOLARIS
10539 void
10540 i386_solaris_fix_up_eh_frame (segT sec)
10541 {
10542 if (flag_code == CODE_64BIT)
10543 elf_section_type (sec) = SHT_X86_64_UNWIND;
10544 }
10545 #endif
10546
10547 #ifdef TE_PE
10548 void
10549 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10550 {
10551 expressionS exp;
10552
10553 exp.X_op = O_secrel;
10554 exp.X_add_symbol = symbol;
10555 exp.X_add_number = 0;
10556 emit_expr (&exp, size);
10557 }
10558 #endif
10559
10560 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10561 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
10562
10563 bfd_vma
10564 x86_64_section_letter (int letter, char **ptr_msg)
10565 {
10566 if (flag_code == CODE_64BIT)
10567 {
10568 if (letter == 'l')
10569 return SHF_X86_64_LARGE;
10570
10571 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
10572 }
10573 else
10574 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
10575 return -1;
10576 }
10577
10578 bfd_vma
10579 x86_64_section_word (char *str, size_t len)
10580 {
10581 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
10582 return SHF_X86_64_LARGE;
10583
10584 return -1;
10585 }
10586
10587 static void
10588 handle_large_common (int small ATTRIBUTE_UNUSED)
10589 {
10590 if (flag_code != CODE_64BIT)
10591 {
10592 s_comm_internal (0, elf_common_parse);
10593 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
10594 }
10595 else
10596 {
10597 static segT lbss_section;
10598 asection *saved_com_section_ptr = elf_com_section_ptr;
10599 asection *saved_bss_section = bss_section;
10600
10601 if (lbss_section == NULL)
10602 {
10603 flagword applicable;
10604 segT seg = now_seg;
10605 subsegT subseg = now_subseg;
10606
10607 /* The .lbss section is for local .largecomm symbols. */
10608 lbss_section = subseg_new (".lbss", 0);
10609 applicable = bfd_applicable_section_flags (stdoutput);
10610 bfd_set_section_flags (stdoutput, lbss_section,
10611 applicable & SEC_ALLOC);
10612 seg_info (lbss_section)->bss = 1;
10613
10614 subseg_set (seg, subseg);
10615 }
10616
10617 elf_com_section_ptr = &_bfd_elf_large_com_section;
10618 bss_section = lbss_section;
10619
10620 s_comm_internal (0, elf_common_parse);
10621
10622 elf_com_section_ptr = saved_com_section_ptr;
10623 bss_section = saved_bss_section;
10624 }
10625 }
10626 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.395475 seconds and 5 git commands to generate.