x86: Update register operand check for AddrPrefixOpReg
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2020 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifdef HAVE_LIMITS_H
37 #include <limits.h>
38 #else
39 #ifdef HAVE_SYS_PARAM_H
40 #include <sys/param.h>
41 #endif
42 #ifndef INT_MAX
43 #define INT_MAX (int) (((unsigned) (-1)) >> 1)
44 #endif
45 #endif
46
47 #ifndef INFER_ADDR_PREFIX
48 #define INFER_ADDR_PREFIX 1
49 #endif
50
51 #ifndef DEFAULT_ARCH
52 #define DEFAULT_ARCH "i386"
53 #endif
54
55 #ifndef INLINE
56 #if __GNUC__ >= 2
57 #define INLINE __inline__
58 #else
59 #define INLINE
60 #endif
61 #endif
62
63 /* Prefixes will be emitted in the order defined below.
64 WAIT_PREFIX must be the first prefix since FWAIT is really is an
65 instruction, and so must come before any prefixes.
66 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
67 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
68 #define WAIT_PREFIX 0
69 #define SEG_PREFIX 1
70 #define ADDR_PREFIX 2
71 #define DATA_PREFIX 3
72 #define REP_PREFIX 4
73 #define HLE_PREFIX REP_PREFIX
74 #define BND_PREFIX REP_PREFIX
75 #define LOCK_PREFIX 5
76 #define REX_PREFIX 6 /* must come last. */
77 #define MAX_PREFIXES 7 /* max prefixes per opcode */
78
79 /* we define the syntax here (modulo base,index,scale syntax) */
80 #define REGISTER_PREFIX '%'
81 #define IMMEDIATE_PREFIX '$'
82 #define ABSOLUTE_PREFIX '*'
83
84 /* these are the instruction mnemonic suffixes in AT&T syntax or
85 memory operand size in Intel syntax. */
86 #define WORD_MNEM_SUFFIX 'w'
87 #define BYTE_MNEM_SUFFIX 'b'
88 #define SHORT_MNEM_SUFFIX 's'
89 #define LONG_MNEM_SUFFIX 'l'
90 #define QWORD_MNEM_SUFFIX 'q'
91 /* Intel Syntax. Use a non-ascii letter since since it never appears
92 in instructions. */
93 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
94
95 #define END_OF_INSN '\0'
96
97 /* This matches the C -> StaticRounding alias in the opcode table. */
98 #define commutative staticrounding
99
100 /*
101 'templates' is for grouping together 'template' structures for opcodes
102 of the same name. This is only used for storing the insns in the grand
103 ole hash table of insns.
104 The templates themselves start at START and range up to (but not including)
105 END.
106 */
107 typedef struct
108 {
109 const insn_template *start;
110 const insn_template *end;
111 }
112 templates;
113
114 /* 386 operand encoding bytes: see 386 book for details of this. */
115 typedef struct
116 {
117 unsigned int regmem; /* codes register or memory operand */
118 unsigned int reg; /* codes register operand (or extended opcode) */
119 unsigned int mode; /* how to interpret regmem & reg */
120 }
121 modrm_byte;
122
123 /* x86-64 extension prefix. */
124 typedef int rex_byte;
125
126 /* 386 opcode byte to code indirect addressing. */
127 typedef struct
128 {
129 unsigned base;
130 unsigned index;
131 unsigned scale;
132 }
133 sib_byte;
134
135 /* x86 arch names, types and features */
136 typedef struct
137 {
138 const char *name; /* arch name */
139 unsigned int len; /* arch string length */
140 enum processor_type type; /* arch type */
141 i386_cpu_flags flags; /* cpu feature flags */
142 unsigned int skip; /* show_arch should skip this. */
143 }
144 arch_entry;
145
146 /* Used to turn off indicated flags. */
147 typedef struct
148 {
149 const char *name; /* arch name */
150 unsigned int len; /* arch string length */
151 i386_cpu_flags flags; /* cpu feature flags */
152 }
153 noarch_entry;
154
155 static void update_code_flag (int, int);
156 static void set_code_flag (int);
157 static void set_16bit_gcc_code_flag (int);
158 static void set_intel_syntax (int);
159 static void set_intel_mnemonic (int);
160 static void set_allow_index_reg (int);
161 static void set_check (int);
162 static void set_cpu_arch (int);
163 #ifdef TE_PE
164 static void pe_directive_secrel (int);
165 #endif
166 static void signed_cons (int);
167 static char *output_invalid (int c);
168 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
169 const char *);
170 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
171 const char *);
172 static int i386_att_operand (char *);
173 static int i386_intel_operand (char *, int);
174 static int i386_intel_simplify (expressionS *);
175 static int i386_intel_parse_name (const char *, expressionS *);
176 static const reg_entry *parse_register (char *, char **);
177 static char *parse_insn (char *, char *);
178 static char *parse_operands (char *, const char *);
179 static void swap_operands (void);
180 static void swap_2_operands (int, int);
181 static enum flag_code i386_addressing_mode (void);
182 static void optimize_imm (void);
183 static void optimize_disp (void);
184 static const insn_template *match_template (char);
185 static int check_string (void);
186 static int process_suffix (void);
187 static int check_byte_reg (void);
188 static int check_long_reg (void);
189 static int check_qword_reg (void);
190 static int check_word_reg (void);
191 static int finalize_imm (void);
192 static int process_operands (void);
193 static const seg_entry *build_modrm_byte (void);
194 static void output_insn (void);
195 static void output_imm (fragS *, offsetT);
196 static void output_disp (fragS *, offsetT);
197 #ifndef I386COFF
198 static void s_bss (int);
199 #endif
200 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
201 static void handle_large_common (int small ATTRIBUTE_UNUSED);
202
203 /* GNU_PROPERTY_X86_ISA_1_USED. */
204 static unsigned int x86_isa_1_used;
205 /* GNU_PROPERTY_X86_FEATURE_2_USED. */
206 static unsigned int x86_feature_2_used;
207 /* Generate x86 used ISA and feature properties. */
208 static unsigned int x86_used_note = DEFAULT_X86_USED_NOTE;
209 #endif
210
211 static const char *default_arch = DEFAULT_ARCH;
212
213 /* parse_register() returns this when a register alias cannot be used. */
214 static const reg_entry bad_reg = { "<bad>", OPERAND_TYPE_NONE, 0, 0,
215 { Dw2Inval, Dw2Inval } };
216
217 /* This struct describes rounding control and SAE in the instruction. */
218 struct RC_Operation
219 {
220 enum rc_type
221 {
222 rne = 0,
223 rd,
224 ru,
225 rz,
226 saeonly
227 } type;
228 int operand;
229 };
230
231 static struct RC_Operation rc_op;
232
233 /* The struct describes masking, applied to OPERAND in the instruction.
234 MASK is a pointer to the corresponding mask register. ZEROING tells
235 whether merging or zeroing mask is used. */
236 struct Mask_Operation
237 {
238 const reg_entry *mask;
239 unsigned int zeroing;
240 /* The operand where this operation is associated. */
241 int operand;
242 };
243
244 static struct Mask_Operation mask_op;
245
246 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
247 broadcast factor. */
248 struct Broadcast_Operation
249 {
250 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
251 int type;
252
253 /* Index of broadcasted operand. */
254 int operand;
255
256 /* Number of bytes to broadcast. */
257 int bytes;
258 };
259
260 static struct Broadcast_Operation broadcast_op;
261
262 /* VEX prefix. */
263 typedef struct
264 {
265 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
266 unsigned char bytes[4];
267 unsigned int length;
268 /* Destination or source register specifier. */
269 const reg_entry *register_specifier;
270 } vex_prefix;
271
272 /* 'md_assemble ()' gathers together information and puts it into a
273 i386_insn. */
274
275 union i386_op
276 {
277 expressionS *disps;
278 expressionS *imms;
279 const reg_entry *regs;
280 };
281
282 enum i386_error
283 {
284 operand_size_mismatch,
285 operand_type_mismatch,
286 register_type_mismatch,
287 number_of_operands_mismatch,
288 invalid_instruction_suffix,
289 bad_imm4,
290 unsupported_with_intel_mnemonic,
291 unsupported_syntax,
292 unsupported,
293 invalid_sib_address,
294 invalid_vsib_address,
295 invalid_vector_register_set,
296 invalid_tmm_register_set,
297 unsupported_vector_index_register,
298 unsupported_broadcast,
299 broadcast_needed,
300 unsupported_masking,
301 mask_not_on_destination,
302 no_default_mask,
303 unsupported_rc_sae,
304 rc_sae_operand_not_last_imm,
305 invalid_register_operand,
306 };
307
308 struct _i386_insn
309 {
310 /* TM holds the template for the insn were currently assembling. */
311 insn_template tm;
312
313 /* SUFFIX holds the instruction size suffix for byte, word, dword
314 or qword, if given. */
315 char suffix;
316
317 /* OPERANDS gives the number of given operands. */
318 unsigned int operands;
319
320 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
321 of given register, displacement, memory operands and immediate
322 operands. */
323 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
324
325 /* TYPES [i] is the type (see above #defines) which tells us how to
326 use OP[i] for the corresponding operand. */
327 i386_operand_type types[MAX_OPERANDS];
328
329 /* Displacement expression, immediate expression, or register for each
330 operand. */
331 union i386_op op[MAX_OPERANDS];
332
333 /* Flags for operands. */
334 unsigned int flags[MAX_OPERANDS];
335 #define Operand_PCrel 1
336 #define Operand_Mem 2
337
338 /* Relocation type for operand */
339 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
340
341 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
342 the base index byte below. */
343 const reg_entry *base_reg;
344 const reg_entry *index_reg;
345 unsigned int log2_scale_factor;
346
347 /* SEG gives the seg_entries of this insn. They are zero unless
348 explicit segment overrides are given. */
349 const seg_entry *seg[2];
350
351 /* Copied first memory operand string, for re-checking. */
352 char *memop1_string;
353
354 /* PREFIX holds all the given prefix opcodes (usually null).
355 PREFIXES is the number of prefix opcodes. */
356 unsigned int prefixes;
357 unsigned char prefix[MAX_PREFIXES];
358
359 /* Register is in low 3 bits of opcode. */
360 bfd_boolean short_form;
361
362 /* The operand to a branch insn indicates an absolute branch. */
363 bfd_boolean jumpabsolute;
364
365 /* Extended states. */
366 enum
367 {
368 /* Use MMX state. */
369 xstate_mmx = 1 << 0,
370 /* Use XMM state. */
371 xstate_xmm = 1 << 1,
372 /* Use YMM state. */
373 xstate_ymm = 1 << 2 | xstate_xmm,
374 /* Use ZMM state. */
375 xstate_zmm = 1 << 3 | xstate_ymm,
376 /* Use TMM state. */
377 xstate_tmm = 1 << 4
378 } xstate;
379
380 /* Has GOTPC or TLS relocation. */
381 bfd_boolean has_gotpc_tls_reloc;
382
383 /* RM and SIB are the modrm byte and the sib byte where the
384 addressing modes of this insn are encoded. */
385 modrm_byte rm;
386 rex_byte rex;
387 rex_byte vrex;
388 sib_byte sib;
389 vex_prefix vex;
390
391 /* Masking attributes. */
392 struct Mask_Operation *mask;
393
394 /* Rounding control and SAE attributes. */
395 struct RC_Operation *rounding;
396
397 /* Broadcasting attributes. */
398 struct Broadcast_Operation *broadcast;
399
400 /* Compressed disp8*N attribute. */
401 unsigned int memshift;
402
403 /* Prefer load or store in encoding. */
404 enum
405 {
406 dir_encoding_default = 0,
407 dir_encoding_load,
408 dir_encoding_store,
409 dir_encoding_swap
410 } dir_encoding;
411
412 /* Prefer 8bit, 16bit, 32bit displacement in encoding. */
413 enum
414 {
415 disp_encoding_default = 0,
416 disp_encoding_8bit,
417 disp_encoding_16bit,
418 disp_encoding_32bit
419 } disp_encoding;
420
421 /* Prefer the REX byte in encoding. */
422 bfd_boolean rex_encoding;
423
424 /* Disable instruction size optimization. */
425 bfd_boolean no_optimize;
426
427 /* How to encode vector instructions. */
428 enum
429 {
430 vex_encoding_default = 0,
431 vex_encoding_vex,
432 vex_encoding_vex3,
433 vex_encoding_evex,
434 vex_encoding_error
435 } vec_encoding;
436
437 /* REP prefix. */
438 const char *rep_prefix;
439
440 /* HLE prefix. */
441 const char *hle_prefix;
442
443 /* Have BND prefix. */
444 const char *bnd_prefix;
445
446 /* Have NOTRACK prefix. */
447 const char *notrack_prefix;
448
449 /* Error message. */
450 enum i386_error error;
451 };
452
453 typedef struct _i386_insn i386_insn;
454
455 /* Link RC type with corresponding string, that'll be looked for in
456 asm. */
457 struct RC_name
458 {
459 enum rc_type type;
460 const char *name;
461 unsigned int len;
462 };
463
464 static const struct RC_name RC_NamesTable[] =
465 {
466 { rne, STRING_COMMA_LEN ("rn-sae") },
467 { rd, STRING_COMMA_LEN ("rd-sae") },
468 { ru, STRING_COMMA_LEN ("ru-sae") },
469 { rz, STRING_COMMA_LEN ("rz-sae") },
470 { saeonly, STRING_COMMA_LEN ("sae") },
471 };
472
473 /* List of chars besides those in app.c:symbol_chars that can start an
474 operand. Used to prevent the scrubber eating vital white-space. */
475 const char extra_symbol_chars[] = "*%-([{}"
476 #ifdef LEX_AT
477 "@"
478 #endif
479 #ifdef LEX_QM
480 "?"
481 #endif
482 ;
483
484 #if ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
485 && !defined (TE_GNU) \
486 && !defined (TE_LINUX) \
487 && !defined (TE_FreeBSD) \
488 && !defined (TE_DragonFly) \
489 && !defined (TE_NetBSD))
490 /* This array holds the chars that always start a comment. If the
491 pre-processor is disabled, these aren't very useful. The option
492 --divide will remove '/' from this list. */
493 const char *i386_comment_chars = "#/";
494 #define SVR4_COMMENT_CHARS 1
495 #define PREFIX_SEPARATOR '\\'
496
497 #else
498 const char *i386_comment_chars = "#";
499 #define PREFIX_SEPARATOR '/'
500 #endif
501
502 /* This array holds the chars that only start a comment at the beginning of
503 a line. If the line seems to have the form '# 123 filename'
504 .line and .file directives will appear in the pre-processed output.
505 Note that input_file.c hand checks for '#' at the beginning of the
506 first line of the input file. This is because the compiler outputs
507 #NO_APP at the beginning of its output.
508 Also note that comments started like this one will always work if
509 '/' isn't otherwise defined. */
510 const char line_comment_chars[] = "#/";
511
512 const char line_separator_chars[] = ";";
513
514 /* Chars that can be used to separate mant from exp in floating point
515 nums. */
516 const char EXP_CHARS[] = "eE";
517
518 /* Chars that mean this number is a floating point constant
519 As in 0f12.456
520 or 0d1.2345e12. */
521 const char FLT_CHARS[] = "fFdDxX";
522
523 /* Tables for lexical analysis. */
524 static char mnemonic_chars[256];
525 static char register_chars[256];
526 static char operand_chars[256];
527 static char identifier_chars[256];
528 static char digit_chars[256];
529
530 /* Lexical macros. */
531 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
532 #define is_operand_char(x) (operand_chars[(unsigned char) x])
533 #define is_register_char(x) (register_chars[(unsigned char) x])
534 #define is_space_char(x) ((x) == ' ')
535 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
536 #define is_digit_char(x) (digit_chars[(unsigned char) x])
537
538 /* All non-digit non-letter characters that may occur in an operand. */
539 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
540
541 /* md_assemble() always leaves the strings it's passed unaltered. To
542 effect this we maintain a stack of saved characters that we've smashed
543 with '\0's (indicating end of strings for various sub-fields of the
544 assembler instruction). */
545 static char save_stack[32];
546 static char *save_stack_p;
547 #define END_STRING_AND_SAVE(s) \
548 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
549 #define RESTORE_END_STRING(s) \
550 do { *(s) = *--save_stack_p; } while (0)
551
552 /* The instruction we're assembling. */
553 static i386_insn i;
554
555 /* Possible templates for current insn. */
556 static const templates *current_templates;
557
558 /* Per instruction expressionS buffers: max displacements & immediates. */
559 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
560 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
561
562 /* Current operand we are working on. */
563 static int this_operand = -1;
564
565 /* We support four different modes. FLAG_CODE variable is used to distinguish
566 these. */
567
568 enum flag_code {
569 CODE_32BIT,
570 CODE_16BIT,
571 CODE_64BIT };
572
573 static enum flag_code flag_code;
574 static unsigned int object_64bit;
575 static unsigned int disallow_64bit_reloc;
576 static int use_rela_relocations = 0;
577 /* __tls_get_addr/___tls_get_addr symbol for TLS. */
578 static const char *tls_get_addr;
579
580 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
581 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
582 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
583
584 /* The ELF ABI to use. */
585 enum x86_elf_abi
586 {
587 I386_ABI,
588 X86_64_ABI,
589 X86_64_X32_ABI
590 };
591
592 static enum x86_elf_abi x86_elf_abi = I386_ABI;
593 #endif
594
595 #if defined (TE_PE) || defined (TE_PEP)
596 /* Use big object file format. */
597 static int use_big_obj = 0;
598 #endif
599
600 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
601 /* 1 if generating code for a shared library. */
602 static int shared = 0;
603 #endif
604
605 /* 1 for intel syntax,
606 0 if att syntax. */
607 static int intel_syntax = 0;
608
609 static enum x86_64_isa
610 {
611 amd64 = 1, /* AMD64 ISA. */
612 intel64 /* Intel64 ISA. */
613 } isa64;
614
615 /* 1 for intel mnemonic,
616 0 if att mnemonic. */
617 static int intel_mnemonic = !SYSV386_COMPAT;
618
619 /* 1 if pseudo registers are permitted. */
620 static int allow_pseudo_reg = 0;
621
622 /* 1 if register prefix % not required. */
623 static int allow_naked_reg = 0;
624
625 /* 1 if the assembler should add BND prefix for all control-transferring
626 instructions supporting it, even if this prefix wasn't specified
627 explicitly. */
628 static int add_bnd_prefix = 0;
629
630 /* 1 if pseudo index register, eiz/riz, is allowed . */
631 static int allow_index_reg = 0;
632
633 /* 1 if the assembler should ignore LOCK prefix, even if it was
634 specified explicitly. */
635 static int omit_lock_prefix = 0;
636
637 /* 1 if the assembler should encode lfence, mfence, and sfence as
638 "lock addl $0, (%{re}sp)". */
639 static int avoid_fence = 0;
640
641 /* 1 if lfence should be inserted after every load. */
642 static int lfence_after_load = 0;
643
644 /* Non-zero if lfence should be inserted before indirect branch. */
645 static enum lfence_before_indirect_branch_kind
646 {
647 lfence_branch_none = 0,
648 lfence_branch_register,
649 lfence_branch_memory,
650 lfence_branch_all
651 }
652 lfence_before_indirect_branch;
653
654 /* Non-zero if lfence should be inserted before ret. */
655 static enum lfence_before_ret_kind
656 {
657 lfence_before_ret_none = 0,
658 lfence_before_ret_not,
659 lfence_before_ret_or,
660 lfence_before_ret_shl
661 }
662 lfence_before_ret;
663
664 /* Types of previous instruction is .byte or prefix. */
665 static struct
666 {
667 segT seg;
668 const char *file;
669 const char *name;
670 unsigned int line;
671 enum last_insn_kind
672 {
673 last_insn_other = 0,
674 last_insn_directive,
675 last_insn_prefix
676 } kind;
677 } last_insn;
678
679 /* 1 if the assembler should generate relax relocations. */
680
681 static int generate_relax_relocations
682 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
683
684 static enum check_kind
685 {
686 check_none = 0,
687 check_warning,
688 check_error
689 }
690 sse_check, operand_check = check_warning;
691
692 /* Non-zero if branches should be aligned within power of 2 boundary. */
693 static int align_branch_power = 0;
694
695 /* Types of branches to align. */
696 enum align_branch_kind
697 {
698 align_branch_none = 0,
699 align_branch_jcc = 1,
700 align_branch_fused = 2,
701 align_branch_jmp = 3,
702 align_branch_call = 4,
703 align_branch_indirect = 5,
704 align_branch_ret = 6
705 };
706
707 /* Type bits of branches to align. */
708 enum align_branch_bit
709 {
710 align_branch_jcc_bit = 1 << align_branch_jcc,
711 align_branch_fused_bit = 1 << align_branch_fused,
712 align_branch_jmp_bit = 1 << align_branch_jmp,
713 align_branch_call_bit = 1 << align_branch_call,
714 align_branch_indirect_bit = 1 << align_branch_indirect,
715 align_branch_ret_bit = 1 << align_branch_ret
716 };
717
718 static unsigned int align_branch = (align_branch_jcc_bit
719 | align_branch_fused_bit
720 | align_branch_jmp_bit);
721
722 /* Types of condition jump used by macro-fusion. */
723 enum mf_jcc_kind
724 {
725 mf_jcc_jo = 0, /* base opcode 0x70 */
726 mf_jcc_jc, /* base opcode 0x72 */
727 mf_jcc_je, /* base opcode 0x74 */
728 mf_jcc_jna, /* base opcode 0x76 */
729 mf_jcc_js, /* base opcode 0x78 */
730 mf_jcc_jp, /* base opcode 0x7a */
731 mf_jcc_jl, /* base opcode 0x7c */
732 mf_jcc_jle, /* base opcode 0x7e */
733 };
734
735 /* Types of compare flag-modifying insntructions used by macro-fusion. */
736 enum mf_cmp_kind
737 {
738 mf_cmp_test_and, /* test/cmp */
739 mf_cmp_alu_cmp, /* add/sub/cmp */
740 mf_cmp_incdec /* inc/dec */
741 };
742
743 /* The maximum padding size for fused jcc. CMP like instruction can
744 be 9 bytes and jcc can be 6 bytes. Leave room just in case for
745 prefixes. */
746 #define MAX_FUSED_JCC_PADDING_SIZE 20
747
748 /* The maximum number of prefixes added for an instruction. */
749 static unsigned int align_branch_prefix_size = 5;
750
751 /* Optimization:
752 1. Clear the REX_W bit with register operand if possible.
753 2. Above plus use 128bit vector instruction to clear the full vector
754 register.
755 */
756 static int optimize = 0;
757
758 /* Optimization:
759 1. Clear the REX_W bit with register operand if possible.
760 2. Above plus use 128bit vector instruction to clear the full vector
761 register.
762 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
763 "testb $imm7,%r8".
764 */
765 static int optimize_for_space = 0;
766
767 /* Register prefix used for error message. */
768 static const char *register_prefix = "%";
769
770 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
771 leave, push, and pop instructions so that gcc has the same stack
772 frame as in 32 bit mode. */
773 static char stackop_size = '\0';
774
775 /* Non-zero to optimize code alignment. */
776 int optimize_align_code = 1;
777
778 /* Non-zero to quieten some warnings. */
779 static int quiet_warnings = 0;
780
781 /* CPU name. */
782 static const char *cpu_arch_name = NULL;
783 static char *cpu_sub_arch_name = NULL;
784
785 /* CPU feature flags. */
786 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
787
788 /* If we have selected a cpu we are generating instructions for. */
789 static int cpu_arch_tune_set = 0;
790
791 /* Cpu we are generating instructions for. */
792 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
793
794 /* CPU feature flags of cpu we are generating instructions for. */
795 static i386_cpu_flags cpu_arch_tune_flags;
796
797 /* CPU instruction set architecture used. */
798 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
799
800 /* CPU feature flags of instruction set architecture used. */
801 i386_cpu_flags cpu_arch_isa_flags;
802
803 /* If set, conditional jumps are not automatically promoted to handle
804 larger than a byte offset. */
805 static unsigned int no_cond_jump_promotion = 0;
806
807 /* Encode SSE instructions with VEX prefix. */
808 static unsigned int sse2avx;
809
810 /* Encode scalar AVX instructions with specific vector length. */
811 static enum
812 {
813 vex128 = 0,
814 vex256
815 } avxscalar;
816
817 /* Encode VEX WIG instructions with specific vex.w. */
818 static enum
819 {
820 vexw0 = 0,
821 vexw1
822 } vexwig;
823
824 /* Encode scalar EVEX LIG instructions with specific vector length. */
825 static enum
826 {
827 evexl128 = 0,
828 evexl256,
829 evexl512
830 } evexlig;
831
832 /* Encode EVEX WIG instructions with specific evex.w. */
833 static enum
834 {
835 evexw0 = 0,
836 evexw1
837 } evexwig;
838
839 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
840 static enum rc_type evexrcig = rne;
841
842 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
843 static symbolS *GOT_symbol;
844
845 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
846 unsigned int x86_dwarf2_return_column;
847
848 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
849 int x86_cie_data_alignment;
850
851 /* Interface to relax_segment.
852 There are 3 major relax states for 386 jump insns because the
853 different types of jumps add different sizes to frags when we're
854 figuring out what sort of jump to choose to reach a given label.
855
856 BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING are used to align
857 branches which are handled by md_estimate_size_before_relax() and
858 i386_generic_table_relax_frag(). */
859
860 /* Types. */
861 #define UNCOND_JUMP 0
862 #define COND_JUMP 1
863 #define COND_JUMP86 2
864 #define BRANCH_PADDING 3
865 #define BRANCH_PREFIX 4
866 #define FUSED_JCC_PADDING 5
867
868 /* Sizes. */
869 #define CODE16 1
870 #define SMALL 0
871 #define SMALL16 (SMALL | CODE16)
872 #define BIG 2
873 #define BIG16 (BIG | CODE16)
874
875 #ifndef INLINE
876 #ifdef __GNUC__
877 #define INLINE __inline__
878 #else
879 #define INLINE
880 #endif
881 #endif
882
883 #define ENCODE_RELAX_STATE(type, size) \
884 ((relax_substateT) (((type) << 2) | (size)))
885 #define TYPE_FROM_RELAX_STATE(s) \
886 ((s) >> 2)
887 #define DISP_SIZE_FROM_RELAX_STATE(s) \
888 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
889
890 /* This table is used by relax_frag to promote short jumps to long
891 ones where necessary. SMALL (short) jumps may be promoted to BIG
892 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
893 don't allow a short jump in a 32 bit code segment to be promoted to
894 a 16 bit offset jump because it's slower (requires data size
895 prefix), and doesn't work, unless the destination is in the bottom
896 64k of the code segment (The top 16 bits of eip are zeroed). */
897
898 const relax_typeS md_relax_table[] =
899 {
900 /* The fields are:
901 1) most positive reach of this state,
902 2) most negative reach of this state,
903 3) how many bytes this mode will have in the variable part of the frag
904 4) which index into the table to try if we can't fit into this one. */
905
906 /* UNCOND_JUMP states. */
907 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
908 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
909 /* dword jmp adds 4 bytes to frag:
910 0 extra opcode bytes, 4 displacement bytes. */
911 {0, 0, 4, 0},
912 /* word jmp adds 2 byte2 to frag:
913 0 extra opcode bytes, 2 displacement bytes. */
914 {0, 0, 2, 0},
915
916 /* COND_JUMP states. */
917 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
918 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
919 /* dword conditionals adds 5 bytes to frag:
920 1 extra opcode byte, 4 displacement bytes. */
921 {0, 0, 5, 0},
922 /* word conditionals add 3 bytes to frag:
923 1 extra opcode byte, 2 displacement bytes. */
924 {0, 0, 3, 0},
925
926 /* COND_JUMP86 states. */
927 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
928 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
929 /* dword conditionals adds 5 bytes to frag:
930 1 extra opcode byte, 4 displacement bytes. */
931 {0, 0, 5, 0},
932 /* word conditionals add 4 bytes to frag:
933 1 displacement byte and a 3 byte long branch insn. */
934 {0, 0, 4, 0}
935 };
936
937 static const arch_entry cpu_arch[] =
938 {
939 /* Do not replace the first two entries - i386_target_format()
940 relies on them being there in this order. */
941 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
942 CPU_GENERIC32_FLAGS, 0 },
943 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
944 CPU_GENERIC64_FLAGS, 0 },
945 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
946 CPU_NONE_FLAGS, 0 },
947 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
948 CPU_I186_FLAGS, 0 },
949 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
950 CPU_I286_FLAGS, 0 },
951 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
952 CPU_I386_FLAGS, 0 },
953 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
954 CPU_I486_FLAGS, 0 },
955 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
956 CPU_I586_FLAGS, 0 },
957 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
958 CPU_I686_FLAGS, 0 },
959 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
960 CPU_I586_FLAGS, 0 },
961 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
962 CPU_PENTIUMPRO_FLAGS, 0 },
963 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
964 CPU_P2_FLAGS, 0 },
965 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
966 CPU_P3_FLAGS, 0 },
967 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
968 CPU_P4_FLAGS, 0 },
969 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
970 CPU_CORE_FLAGS, 0 },
971 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
972 CPU_NOCONA_FLAGS, 0 },
973 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
974 CPU_CORE_FLAGS, 1 },
975 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
976 CPU_CORE_FLAGS, 0 },
977 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
978 CPU_CORE2_FLAGS, 1 },
979 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
980 CPU_CORE2_FLAGS, 0 },
981 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
982 CPU_COREI7_FLAGS, 0 },
983 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
984 CPU_L1OM_FLAGS, 0 },
985 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
986 CPU_K1OM_FLAGS, 0 },
987 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
988 CPU_IAMCU_FLAGS, 0 },
989 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
990 CPU_K6_FLAGS, 0 },
991 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
992 CPU_K6_2_FLAGS, 0 },
993 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
994 CPU_ATHLON_FLAGS, 0 },
995 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
996 CPU_K8_FLAGS, 1 },
997 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
998 CPU_K8_FLAGS, 0 },
999 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
1000 CPU_K8_FLAGS, 0 },
1001 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
1002 CPU_AMDFAM10_FLAGS, 0 },
1003 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
1004 CPU_BDVER1_FLAGS, 0 },
1005 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
1006 CPU_BDVER2_FLAGS, 0 },
1007 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
1008 CPU_BDVER3_FLAGS, 0 },
1009 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
1010 CPU_BDVER4_FLAGS, 0 },
1011 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
1012 CPU_ZNVER1_FLAGS, 0 },
1013 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
1014 CPU_ZNVER2_FLAGS, 0 },
1015 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
1016 CPU_BTVER1_FLAGS, 0 },
1017 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
1018 CPU_BTVER2_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
1020 CPU_8087_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
1022 CPU_287_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
1024 CPU_387_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
1026 CPU_687_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".cmov"), PROCESSOR_UNKNOWN,
1028 CPU_CMOV_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".fxsr"), PROCESSOR_UNKNOWN,
1030 CPU_FXSR_FLAGS, 0 },
1031 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
1032 CPU_MMX_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
1034 CPU_SSE_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
1036 CPU_SSE2_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
1038 CPU_SSE3_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1040 CPU_SSE4A_FLAGS, 0 },
1041 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
1042 CPU_SSSE3_FLAGS, 0 },
1043 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
1044 CPU_SSE4_1_FLAGS, 0 },
1045 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
1046 CPU_SSE4_2_FLAGS, 0 },
1047 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
1048 CPU_SSE4_2_FLAGS, 0 },
1049 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
1050 CPU_AVX_FLAGS, 0 },
1051 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
1052 CPU_AVX2_FLAGS, 0 },
1053 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
1054 CPU_AVX512F_FLAGS, 0 },
1055 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
1056 CPU_AVX512CD_FLAGS, 0 },
1057 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
1058 CPU_AVX512ER_FLAGS, 0 },
1059 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
1060 CPU_AVX512PF_FLAGS, 0 },
1061 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
1062 CPU_AVX512DQ_FLAGS, 0 },
1063 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
1064 CPU_AVX512BW_FLAGS, 0 },
1065 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
1066 CPU_AVX512VL_FLAGS, 0 },
1067 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
1068 CPU_VMX_FLAGS, 0 },
1069 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
1070 CPU_VMFUNC_FLAGS, 0 },
1071 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
1072 CPU_SMX_FLAGS, 0 },
1073 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
1074 CPU_XSAVE_FLAGS, 0 },
1075 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
1076 CPU_XSAVEOPT_FLAGS, 0 },
1077 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
1078 CPU_XSAVEC_FLAGS, 0 },
1079 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
1080 CPU_XSAVES_FLAGS, 0 },
1081 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
1082 CPU_AES_FLAGS, 0 },
1083 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
1084 CPU_PCLMUL_FLAGS, 0 },
1085 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
1086 CPU_PCLMUL_FLAGS, 1 },
1087 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
1088 CPU_FSGSBASE_FLAGS, 0 },
1089 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
1090 CPU_RDRND_FLAGS, 0 },
1091 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
1092 CPU_F16C_FLAGS, 0 },
1093 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
1094 CPU_BMI2_FLAGS, 0 },
1095 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
1096 CPU_FMA_FLAGS, 0 },
1097 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
1098 CPU_FMA4_FLAGS, 0 },
1099 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
1100 CPU_XOP_FLAGS, 0 },
1101 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
1102 CPU_LWP_FLAGS, 0 },
1103 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
1104 CPU_MOVBE_FLAGS, 0 },
1105 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
1106 CPU_CX16_FLAGS, 0 },
1107 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
1108 CPU_EPT_FLAGS, 0 },
1109 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
1110 CPU_LZCNT_FLAGS, 0 },
1111 { STRING_COMMA_LEN (".popcnt"), PROCESSOR_UNKNOWN,
1112 CPU_POPCNT_FLAGS, 0 },
1113 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
1114 CPU_HLE_FLAGS, 0 },
1115 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
1116 CPU_RTM_FLAGS, 0 },
1117 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
1118 CPU_INVPCID_FLAGS, 0 },
1119 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
1120 CPU_CLFLUSH_FLAGS, 0 },
1121 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
1122 CPU_NOP_FLAGS, 0 },
1123 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
1124 CPU_SYSCALL_FLAGS, 0 },
1125 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
1126 CPU_RDTSCP_FLAGS, 0 },
1127 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
1128 CPU_3DNOW_FLAGS, 0 },
1129 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
1130 CPU_3DNOWA_FLAGS, 0 },
1131 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
1132 CPU_PADLOCK_FLAGS, 0 },
1133 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
1134 CPU_SVME_FLAGS, 1 },
1135 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
1136 CPU_SVME_FLAGS, 0 },
1137 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
1138 CPU_SSE4A_FLAGS, 0 },
1139 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
1140 CPU_ABM_FLAGS, 0 },
1141 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
1142 CPU_BMI_FLAGS, 0 },
1143 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
1144 CPU_TBM_FLAGS, 0 },
1145 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
1146 CPU_ADX_FLAGS, 0 },
1147 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
1148 CPU_RDSEED_FLAGS, 0 },
1149 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
1150 CPU_PRFCHW_FLAGS, 0 },
1151 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
1152 CPU_SMAP_FLAGS, 0 },
1153 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
1154 CPU_MPX_FLAGS, 0 },
1155 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
1156 CPU_SHA_FLAGS, 0 },
1157 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
1158 CPU_CLFLUSHOPT_FLAGS, 0 },
1159 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
1160 CPU_PREFETCHWT1_FLAGS, 0 },
1161 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
1162 CPU_SE1_FLAGS, 0 },
1163 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
1164 CPU_CLWB_FLAGS, 0 },
1165 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
1166 CPU_AVX512IFMA_FLAGS, 0 },
1167 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
1168 CPU_AVX512VBMI_FLAGS, 0 },
1169 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
1170 CPU_AVX512_4FMAPS_FLAGS, 0 },
1171 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1172 CPU_AVX512_4VNNIW_FLAGS, 0 },
1173 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1174 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1175 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1176 CPU_AVX512_VBMI2_FLAGS, 0 },
1177 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1178 CPU_AVX512_VNNI_FLAGS, 0 },
1179 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1180 CPU_AVX512_BITALG_FLAGS, 0 },
1181 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1182 CPU_CLZERO_FLAGS, 0 },
1183 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1184 CPU_MWAITX_FLAGS, 0 },
1185 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1186 CPU_OSPKE_FLAGS, 0 },
1187 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1188 CPU_RDPID_FLAGS, 0 },
1189 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1190 CPU_PTWRITE_FLAGS, 0 },
1191 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1192 CPU_IBT_FLAGS, 0 },
1193 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1194 CPU_SHSTK_FLAGS, 0 },
1195 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1196 CPU_GFNI_FLAGS, 0 },
1197 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1198 CPU_VAES_FLAGS, 0 },
1199 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1200 CPU_VPCLMULQDQ_FLAGS, 0 },
1201 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1202 CPU_WBNOINVD_FLAGS, 0 },
1203 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1204 CPU_PCONFIG_FLAGS, 0 },
1205 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1206 CPU_WAITPKG_FLAGS, 0 },
1207 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1208 CPU_CLDEMOTE_FLAGS, 0 },
1209 { STRING_COMMA_LEN (".amx_int8"), PROCESSOR_UNKNOWN,
1210 CPU_AMX_INT8_FLAGS, 0 },
1211 { STRING_COMMA_LEN (".amx_bf16"), PROCESSOR_UNKNOWN,
1212 CPU_AMX_BF16_FLAGS, 0 },
1213 { STRING_COMMA_LEN (".amx_tile"), PROCESSOR_UNKNOWN,
1214 CPU_AMX_TILE_FLAGS, 0 },
1215 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1216 CPU_MOVDIRI_FLAGS, 0 },
1217 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1218 CPU_MOVDIR64B_FLAGS, 0 },
1219 { STRING_COMMA_LEN (".avx512_bf16"), PROCESSOR_UNKNOWN,
1220 CPU_AVX512_BF16_FLAGS, 0 },
1221 { STRING_COMMA_LEN (".avx512_vp2intersect"), PROCESSOR_UNKNOWN,
1222 CPU_AVX512_VP2INTERSECT_FLAGS, 0 },
1223 { STRING_COMMA_LEN (".tdx"), PROCESSOR_UNKNOWN,
1224 CPU_TDX_FLAGS, 0 },
1225 { STRING_COMMA_LEN (".enqcmd"), PROCESSOR_UNKNOWN,
1226 CPU_ENQCMD_FLAGS, 0 },
1227 { STRING_COMMA_LEN (".serialize"), PROCESSOR_UNKNOWN,
1228 CPU_SERIALIZE_FLAGS, 0 },
1229 { STRING_COMMA_LEN (".rdpru"), PROCESSOR_UNKNOWN,
1230 CPU_RDPRU_FLAGS, 0 },
1231 { STRING_COMMA_LEN (".mcommit"), PROCESSOR_UNKNOWN,
1232 CPU_MCOMMIT_FLAGS, 0 },
1233 { STRING_COMMA_LEN (".sev_es"), PROCESSOR_UNKNOWN,
1234 CPU_SEV_ES_FLAGS, 0 },
1235 { STRING_COMMA_LEN (".tsxldtrk"), PROCESSOR_UNKNOWN,
1236 CPU_TSXLDTRK_FLAGS, 0 },
1237 { STRING_COMMA_LEN (".kl"), PROCESSOR_UNKNOWN,
1238 CPU_KL_FLAGS, 0 },
1239 { STRING_COMMA_LEN (".widekl"), PROCESSOR_UNKNOWN,
1240 CPU_WIDEKL_FLAGS, 0 },
1241 };
1242
1243 static const noarch_entry cpu_noarch[] =
1244 {
1245 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1246 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1247 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1248 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1249 { STRING_COMMA_LEN ("nocmov"), CPU_ANY_CMOV_FLAGS },
1250 { STRING_COMMA_LEN ("nofxsr"), CPU_ANY_FXSR_FLAGS },
1251 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1252 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1253 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1254 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1255 { STRING_COMMA_LEN ("nosse4a"), CPU_ANY_SSE4A_FLAGS },
1256 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1257 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1258 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1259 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1260 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1261 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1262 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1263 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1264 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1265 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1266 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1267 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1268 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1269 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1270 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1271 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1272 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1273 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1274 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1275 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1276 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1277 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1278 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1279 { STRING_COMMA_LEN ("noamx_int8"), CPU_ANY_AMX_INT8_FLAGS },
1280 { STRING_COMMA_LEN ("noamx_bf16"), CPU_ANY_AMX_BF16_FLAGS },
1281 { STRING_COMMA_LEN ("noamx_tile"), CPU_ANY_AMX_TILE_FLAGS },
1282 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1283 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1284 { STRING_COMMA_LEN ("noavx512_bf16"), CPU_ANY_AVX512_BF16_FLAGS },
1285 { STRING_COMMA_LEN ("noavx512_vp2intersect"),
1286 CPU_ANY_AVX512_VP2INTERSECT_FLAGS },
1287 { STRING_COMMA_LEN ("notdx"), CPU_ANY_TDX_FLAGS },
1288 { STRING_COMMA_LEN ("noenqcmd"), CPU_ANY_ENQCMD_FLAGS },
1289 { STRING_COMMA_LEN ("noserialize"), CPU_ANY_SERIALIZE_FLAGS },
1290 { STRING_COMMA_LEN ("notsxldtrk"), CPU_ANY_TSXLDTRK_FLAGS },
1291 { STRING_COMMA_LEN ("nokl"), CPU_ANY_KL_FLAGS },
1292 { STRING_COMMA_LEN ("nowidekl"), CPU_ANY_WIDEKL_FLAGS },
1293 };
1294
1295 #ifdef I386COFF
1296 /* Like s_lcomm_internal in gas/read.c but the alignment string
1297 is allowed to be optional. */
1298
1299 static symbolS *
1300 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1301 {
1302 addressT align = 0;
1303
1304 SKIP_WHITESPACE ();
1305
1306 if (needs_align
1307 && *input_line_pointer == ',')
1308 {
1309 align = parse_align (needs_align - 1);
1310
1311 if (align == (addressT) -1)
1312 return NULL;
1313 }
1314 else
1315 {
1316 if (size >= 8)
1317 align = 3;
1318 else if (size >= 4)
1319 align = 2;
1320 else if (size >= 2)
1321 align = 1;
1322 else
1323 align = 0;
1324 }
1325
1326 bss_alloc (symbolP, size, align);
1327 return symbolP;
1328 }
1329
1330 static void
1331 pe_lcomm (int needs_align)
1332 {
1333 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1334 }
1335 #endif
1336
1337 const pseudo_typeS md_pseudo_table[] =
1338 {
1339 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1340 {"align", s_align_bytes, 0},
1341 #else
1342 {"align", s_align_ptwo, 0},
1343 #endif
1344 {"arch", set_cpu_arch, 0},
1345 #ifndef I386COFF
1346 {"bss", s_bss, 0},
1347 #else
1348 {"lcomm", pe_lcomm, 1},
1349 #endif
1350 {"ffloat", float_cons, 'f'},
1351 {"dfloat", float_cons, 'd'},
1352 {"tfloat", float_cons, 'x'},
1353 {"value", cons, 2},
1354 {"slong", signed_cons, 4},
1355 {"noopt", s_ignore, 0},
1356 {"optim", s_ignore, 0},
1357 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1358 {"code16", set_code_flag, CODE_16BIT},
1359 {"code32", set_code_flag, CODE_32BIT},
1360 #ifdef BFD64
1361 {"code64", set_code_flag, CODE_64BIT},
1362 #endif
1363 {"intel_syntax", set_intel_syntax, 1},
1364 {"att_syntax", set_intel_syntax, 0},
1365 {"intel_mnemonic", set_intel_mnemonic, 1},
1366 {"att_mnemonic", set_intel_mnemonic, 0},
1367 {"allow_index_reg", set_allow_index_reg, 1},
1368 {"disallow_index_reg", set_allow_index_reg, 0},
1369 {"sse_check", set_check, 0},
1370 {"operand_check", set_check, 1},
1371 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1372 {"largecomm", handle_large_common, 0},
1373 #else
1374 {"file", dwarf2_directive_file, 0},
1375 {"loc", dwarf2_directive_loc, 0},
1376 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1377 #endif
1378 #ifdef TE_PE
1379 {"secrel32", pe_directive_secrel, 0},
1380 #endif
1381 {0, 0, 0}
1382 };
1383
1384 /* For interface with expression (). */
1385 extern char *input_line_pointer;
1386
1387 /* Hash table for instruction mnemonic lookup. */
1388 static htab_t op_hash;
1389
1390 /* Hash table for register lookup. */
1391 static htab_t reg_hash;
1392 \f
1393 /* Various efficient no-op patterns for aligning code labels.
1394 Note: Don't try to assemble the instructions in the comments.
1395 0L and 0w are not legal. */
1396 static const unsigned char f32_1[] =
1397 {0x90}; /* nop */
1398 static const unsigned char f32_2[] =
1399 {0x66,0x90}; /* xchg %ax,%ax */
1400 static const unsigned char f32_3[] =
1401 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1402 static const unsigned char f32_4[] =
1403 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1404 static const unsigned char f32_6[] =
1405 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1406 static const unsigned char f32_7[] =
1407 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1408 static const unsigned char f16_3[] =
1409 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1410 static const unsigned char f16_4[] =
1411 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1412 static const unsigned char jump_disp8[] =
1413 {0xeb}; /* jmp disp8 */
1414 static const unsigned char jump32_disp32[] =
1415 {0xe9}; /* jmp disp32 */
1416 static const unsigned char jump16_disp32[] =
1417 {0x66,0xe9}; /* jmp disp32 */
1418 /* 32-bit NOPs patterns. */
1419 static const unsigned char *const f32_patt[] = {
1420 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1421 };
1422 /* 16-bit NOPs patterns. */
1423 static const unsigned char *const f16_patt[] = {
1424 f32_1, f32_2, f16_3, f16_4
1425 };
1426 /* nopl (%[re]ax) */
1427 static const unsigned char alt_3[] =
1428 {0x0f,0x1f,0x00};
1429 /* nopl 0(%[re]ax) */
1430 static const unsigned char alt_4[] =
1431 {0x0f,0x1f,0x40,0x00};
1432 /* nopl 0(%[re]ax,%[re]ax,1) */
1433 static const unsigned char alt_5[] =
1434 {0x0f,0x1f,0x44,0x00,0x00};
1435 /* nopw 0(%[re]ax,%[re]ax,1) */
1436 static const unsigned char alt_6[] =
1437 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1438 /* nopl 0L(%[re]ax) */
1439 static const unsigned char alt_7[] =
1440 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1441 /* nopl 0L(%[re]ax,%[re]ax,1) */
1442 static const unsigned char alt_8[] =
1443 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1444 /* nopw 0L(%[re]ax,%[re]ax,1) */
1445 static const unsigned char alt_9[] =
1446 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1447 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1448 static const unsigned char alt_10[] =
1449 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1450 /* data16 nopw %cs:0L(%eax,%eax,1) */
1451 static const unsigned char alt_11[] =
1452 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1453 /* 32-bit and 64-bit NOPs patterns. */
1454 static const unsigned char *const alt_patt[] = {
1455 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1456 alt_9, alt_10, alt_11
1457 };
1458
1459 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1460 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1461
1462 static void
1463 i386_output_nops (char *where, const unsigned char *const *patt,
1464 int count, int max_single_nop_size)
1465
1466 {
1467 /* Place the longer NOP first. */
1468 int last;
1469 int offset;
1470 const unsigned char *nops;
1471
1472 if (max_single_nop_size < 1)
1473 {
1474 as_fatal (_("i386_output_nops called to generate nops of at most %d bytes!"),
1475 max_single_nop_size);
1476 return;
1477 }
1478
1479 nops = patt[max_single_nop_size - 1];
1480
1481 /* Use the smaller one if the requsted one isn't available. */
1482 if (nops == NULL)
1483 {
1484 max_single_nop_size--;
1485 nops = patt[max_single_nop_size - 1];
1486 }
1487
1488 last = count % max_single_nop_size;
1489
1490 count -= last;
1491 for (offset = 0; offset < count; offset += max_single_nop_size)
1492 memcpy (where + offset, nops, max_single_nop_size);
1493
1494 if (last)
1495 {
1496 nops = patt[last - 1];
1497 if (nops == NULL)
1498 {
1499 /* Use the smaller one plus one-byte NOP if the needed one
1500 isn't available. */
1501 last--;
1502 nops = patt[last - 1];
1503 memcpy (where + offset, nops, last);
1504 where[offset + last] = *patt[0];
1505 }
1506 else
1507 memcpy (where + offset, nops, last);
1508 }
1509 }
1510
1511 static INLINE int
1512 fits_in_imm7 (offsetT num)
1513 {
1514 return (num & 0x7f) == num;
1515 }
1516
1517 static INLINE int
1518 fits_in_imm31 (offsetT num)
1519 {
1520 return (num & 0x7fffffff) == num;
1521 }
1522
1523 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1524 single NOP instruction LIMIT. */
1525
1526 void
1527 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1528 {
1529 const unsigned char *const *patt = NULL;
1530 int max_single_nop_size;
1531 /* Maximum number of NOPs before switching to jump over NOPs. */
1532 int max_number_of_nops;
1533
1534 switch (fragP->fr_type)
1535 {
1536 case rs_fill_nop:
1537 case rs_align_code:
1538 break;
1539 case rs_machine_dependent:
1540 /* Allow NOP padding for jumps and calls. */
1541 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
1542 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
1543 break;
1544 /* Fall through. */
1545 default:
1546 return;
1547 }
1548
1549 /* We need to decide which NOP sequence to use for 32bit and
1550 64bit. When -mtune= is used:
1551
1552 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1553 PROCESSOR_GENERIC32, f32_patt will be used.
1554 2. For the rest, alt_patt will be used.
1555
1556 When -mtune= isn't used, alt_patt will be used if
1557 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1558 be used.
1559
1560 When -march= or .arch is used, we can't use anything beyond
1561 cpu_arch_isa_flags. */
1562
1563 if (flag_code == CODE_16BIT)
1564 {
1565 patt = f16_patt;
1566 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1567 /* Limit number of NOPs to 2 in 16-bit mode. */
1568 max_number_of_nops = 2;
1569 }
1570 else
1571 {
1572 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1573 {
1574 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1575 switch (cpu_arch_tune)
1576 {
1577 case PROCESSOR_UNKNOWN:
1578 /* We use cpu_arch_isa_flags to check if we SHOULD
1579 optimize with nops. */
1580 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1581 patt = alt_patt;
1582 else
1583 patt = f32_patt;
1584 break;
1585 case PROCESSOR_PENTIUM4:
1586 case PROCESSOR_NOCONA:
1587 case PROCESSOR_CORE:
1588 case PROCESSOR_CORE2:
1589 case PROCESSOR_COREI7:
1590 case PROCESSOR_L1OM:
1591 case PROCESSOR_K1OM:
1592 case PROCESSOR_GENERIC64:
1593 case PROCESSOR_K6:
1594 case PROCESSOR_ATHLON:
1595 case PROCESSOR_K8:
1596 case PROCESSOR_AMDFAM10:
1597 case PROCESSOR_BD:
1598 case PROCESSOR_ZNVER:
1599 case PROCESSOR_BT:
1600 patt = alt_patt;
1601 break;
1602 case PROCESSOR_I386:
1603 case PROCESSOR_I486:
1604 case PROCESSOR_PENTIUM:
1605 case PROCESSOR_PENTIUMPRO:
1606 case PROCESSOR_IAMCU:
1607 case PROCESSOR_GENERIC32:
1608 patt = f32_patt;
1609 break;
1610 }
1611 }
1612 else
1613 {
1614 switch (fragP->tc_frag_data.tune)
1615 {
1616 case PROCESSOR_UNKNOWN:
1617 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1618 PROCESSOR_UNKNOWN. */
1619 abort ();
1620 break;
1621
1622 case PROCESSOR_I386:
1623 case PROCESSOR_I486:
1624 case PROCESSOR_PENTIUM:
1625 case PROCESSOR_IAMCU:
1626 case PROCESSOR_K6:
1627 case PROCESSOR_ATHLON:
1628 case PROCESSOR_K8:
1629 case PROCESSOR_AMDFAM10:
1630 case PROCESSOR_BD:
1631 case PROCESSOR_ZNVER:
1632 case PROCESSOR_BT:
1633 case PROCESSOR_GENERIC32:
1634 /* We use cpu_arch_isa_flags to check if we CAN optimize
1635 with nops. */
1636 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1637 patt = alt_patt;
1638 else
1639 patt = f32_patt;
1640 break;
1641 case PROCESSOR_PENTIUMPRO:
1642 case PROCESSOR_PENTIUM4:
1643 case PROCESSOR_NOCONA:
1644 case PROCESSOR_CORE:
1645 case PROCESSOR_CORE2:
1646 case PROCESSOR_COREI7:
1647 case PROCESSOR_L1OM:
1648 case PROCESSOR_K1OM:
1649 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1650 patt = alt_patt;
1651 else
1652 patt = f32_patt;
1653 break;
1654 case PROCESSOR_GENERIC64:
1655 patt = alt_patt;
1656 break;
1657 }
1658 }
1659
1660 if (patt == f32_patt)
1661 {
1662 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1663 /* Limit number of NOPs to 2 for older processors. */
1664 max_number_of_nops = 2;
1665 }
1666 else
1667 {
1668 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1669 /* Limit number of NOPs to 7 for newer processors. */
1670 max_number_of_nops = 7;
1671 }
1672 }
1673
1674 if (limit == 0)
1675 limit = max_single_nop_size;
1676
1677 if (fragP->fr_type == rs_fill_nop)
1678 {
1679 /* Output NOPs for .nop directive. */
1680 if (limit > max_single_nop_size)
1681 {
1682 as_bad_where (fragP->fr_file, fragP->fr_line,
1683 _("invalid single nop size: %d "
1684 "(expect within [0, %d])"),
1685 limit, max_single_nop_size);
1686 return;
1687 }
1688 }
1689 else if (fragP->fr_type != rs_machine_dependent)
1690 fragP->fr_var = count;
1691
1692 if ((count / max_single_nop_size) > max_number_of_nops)
1693 {
1694 /* Generate jump over NOPs. */
1695 offsetT disp = count - 2;
1696 if (fits_in_imm7 (disp))
1697 {
1698 /* Use "jmp disp8" if possible. */
1699 count = disp;
1700 where[0] = jump_disp8[0];
1701 where[1] = count;
1702 where += 2;
1703 }
1704 else
1705 {
1706 unsigned int size_of_jump;
1707
1708 if (flag_code == CODE_16BIT)
1709 {
1710 where[0] = jump16_disp32[0];
1711 where[1] = jump16_disp32[1];
1712 size_of_jump = 2;
1713 }
1714 else
1715 {
1716 where[0] = jump32_disp32[0];
1717 size_of_jump = 1;
1718 }
1719
1720 count -= size_of_jump + 4;
1721 if (!fits_in_imm31 (count))
1722 {
1723 as_bad_where (fragP->fr_file, fragP->fr_line,
1724 _("jump over nop padding out of range"));
1725 return;
1726 }
1727
1728 md_number_to_chars (where + size_of_jump, count, 4);
1729 where += size_of_jump + 4;
1730 }
1731 }
1732
1733 /* Generate multiple NOPs. */
1734 i386_output_nops (where, patt, count, limit);
1735 }
1736
1737 static INLINE int
1738 operand_type_all_zero (const union i386_operand_type *x)
1739 {
1740 switch (ARRAY_SIZE(x->array))
1741 {
1742 case 3:
1743 if (x->array[2])
1744 return 0;
1745 /* Fall through. */
1746 case 2:
1747 if (x->array[1])
1748 return 0;
1749 /* Fall through. */
1750 case 1:
1751 return !x->array[0];
1752 default:
1753 abort ();
1754 }
1755 }
1756
1757 static INLINE void
1758 operand_type_set (union i386_operand_type *x, unsigned int v)
1759 {
1760 switch (ARRAY_SIZE(x->array))
1761 {
1762 case 3:
1763 x->array[2] = v;
1764 /* Fall through. */
1765 case 2:
1766 x->array[1] = v;
1767 /* Fall through. */
1768 case 1:
1769 x->array[0] = v;
1770 /* Fall through. */
1771 break;
1772 default:
1773 abort ();
1774 }
1775
1776 x->bitfield.class = ClassNone;
1777 x->bitfield.instance = InstanceNone;
1778 }
1779
1780 static INLINE int
1781 operand_type_equal (const union i386_operand_type *x,
1782 const union i386_operand_type *y)
1783 {
1784 switch (ARRAY_SIZE(x->array))
1785 {
1786 case 3:
1787 if (x->array[2] != y->array[2])
1788 return 0;
1789 /* Fall through. */
1790 case 2:
1791 if (x->array[1] != y->array[1])
1792 return 0;
1793 /* Fall through. */
1794 case 1:
1795 return x->array[0] == y->array[0];
1796 break;
1797 default:
1798 abort ();
1799 }
1800 }
1801
1802 static INLINE int
1803 cpu_flags_all_zero (const union i386_cpu_flags *x)
1804 {
1805 switch (ARRAY_SIZE(x->array))
1806 {
1807 case 4:
1808 if (x->array[3])
1809 return 0;
1810 /* Fall through. */
1811 case 3:
1812 if (x->array[2])
1813 return 0;
1814 /* Fall through. */
1815 case 2:
1816 if (x->array[1])
1817 return 0;
1818 /* Fall through. */
1819 case 1:
1820 return !x->array[0];
1821 default:
1822 abort ();
1823 }
1824 }
1825
1826 static INLINE int
1827 cpu_flags_equal (const union i386_cpu_flags *x,
1828 const union i386_cpu_flags *y)
1829 {
1830 switch (ARRAY_SIZE(x->array))
1831 {
1832 case 4:
1833 if (x->array[3] != y->array[3])
1834 return 0;
1835 /* Fall through. */
1836 case 3:
1837 if (x->array[2] != y->array[2])
1838 return 0;
1839 /* Fall through. */
1840 case 2:
1841 if (x->array[1] != y->array[1])
1842 return 0;
1843 /* Fall through. */
1844 case 1:
1845 return x->array[0] == y->array[0];
1846 break;
1847 default:
1848 abort ();
1849 }
1850 }
1851
1852 static INLINE int
1853 cpu_flags_check_cpu64 (i386_cpu_flags f)
1854 {
1855 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1856 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1857 }
1858
1859 static INLINE i386_cpu_flags
1860 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1861 {
1862 switch (ARRAY_SIZE (x.array))
1863 {
1864 case 4:
1865 x.array [3] &= y.array [3];
1866 /* Fall through. */
1867 case 3:
1868 x.array [2] &= y.array [2];
1869 /* Fall through. */
1870 case 2:
1871 x.array [1] &= y.array [1];
1872 /* Fall through. */
1873 case 1:
1874 x.array [0] &= y.array [0];
1875 break;
1876 default:
1877 abort ();
1878 }
1879 return x;
1880 }
1881
1882 static INLINE i386_cpu_flags
1883 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1884 {
1885 switch (ARRAY_SIZE (x.array))
1886 {
1887 case 4:
1888 x.array [3] |= y.array [3];
1889 /* Fall through. */
1890 case 3:
1891 x.array [2] |= y.array [2];
1892 /* Fall through. */
1893 case 2:
1894 x.array [1] |= y.array [1];
1895 /* Fall through. */
1896 case 1:
1897 x.array [0] |= y.array [0];
1898 break;
1899 default:
1900 abort ();
1901 }
1902 return x;
1903 }
1904
1905 static INLINE i386_cpu_flags
1906 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1907 {
1908 switch (ARRAY_SIZE (x.array))
1909 {
1910 case 4:
1911 x.array [3] &= ~y.array [3];
1912 /* Fall through. */
1913 case 3:
1914 x.array [2] &= ~y.array [2];
1915 /* Fall through. */
1916 case 2:
1917 x.array [1] &= ~y.array [1];
1918 /* Fall through. */
1919 case 1:
1920 x.array [0] &= ~y.array [0];
1921 break;
1922 default:
1923 abort ();
1924 }
1925 return x;
1926 }
1927
1928 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
1929
1930 #define CPU_FLAGS_ARCH_MATCH 0x1
1931 #define CPU_FLAGS_64BIT_MATCH 0x2
1932
1933 #define CPU_FLAGS_PERFECT_MATCH \
1934 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1935
1936 /* Return CPU flags match bits. */
1937
1938 static int
1939 cpu_flags_match (const insn_template *t)
1940 {
1941 i386_cpu_flags x = t->cpu_flags;
1942 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1943
1944 x.bitfield.cpu64 = 0;
1945 x.bitfield.cpuno64 = 0;
1946
1947 if (cpu_flags_all_zero (&x))
1948 {
1949 /* This instruction is available on all archs. */
1950 match |= CPU_FLAGS_ARCH_MATCH;
1951 }
1952 else
1953 {
1954 /* This instruction is available only on some archs. */
1955 i386_cpu_flags cpu = cpu_arch_flags;
1956
1957 /* AVX512VL is no standalone feature - match it and then strip it. */
1958 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1959 return match;
1960 x.bitfield.cpuavx512vl = 0;
1961
1962 cpu = cpu_flags_and (x, cpu);
1963 if (!cpu_flags_all_zero (&cpu))
1964 {
1965 if (x.bitfield.cpuavx)
1966 {
1967 /* We need to check a few extra flags with AVX. */
1968 if (cpu.bitfield.cpuavx
1969 && (!t->opcode_modifier.sse2avx
1970 || (sse2avx && !i.prefix[DATA_PREFIX]))
1971 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1972 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1973 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1974 match |= CPU_FLAGS_ARCH_MATCH;
1975 }
1976 else if (x.bitfield.cpuavx512f)
1977 {
1978 /* We need to check a few extra flags with AVX512F. */
1979 if (cpu.bitfield.cpuavx512f
1980 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1981 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1982 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1983 match |= CPU_FLAGS_ARCH_MATCH;
1984 }
1985 else
1986 match |= CPU_FLAGS_ARCH_MATCH;
1987 }
1988 }
1989 return match;
1990 }
1991
1992 static INLINE i386_operand_type
1993 operand_type_and (i386_operand_type x, i386_operand_type y)
1994 {
1995 if (x.bitfield.class != y.bitfield.class)
1996 x.bitfield.class = ClassNone;
1997 if (x.bitfield.instance != y.bitfield.instance)
1998 x.bitfield.instance = InstanceNone;
1999
2000 switch (ARRAY_SIZE (x.array))
2001 {
2002 case 3:
2003 x.array [2] &= y.array [2];
2004 /* Fall through. */
2005 case 2:
2006 x.array [1] &= y.array [1];
2007 /* Fall through. */
2008 case 1:
2009 x.array [0] &= y.array [0];
2010 break;
2011 default:
2012 abort ();
2013 }
2014 return x;
2015 }
2016
2017 static INLINE i386_operand_type
2018 operand_type_and_not (i386_operand_type x, i386_operand_type y)
2019 {
2020 gas_assert (y.bitfield.class == ClassNone);
2021 gas_assert (y.bitfield.instance == InstanceNone);
2022
2023 switch (ARRAY_SIZE (x.array))
2024 {
2025 case 3:
2026 x.array [2] &= ~y.array [2];
2027 /* Fall through. */
2028 case 2:
2029 x.array [1] &= ~y.array [1];
2030 /* Fall through. */
2031 case 1:
2032 x.array [0] &= ~y.array [0];
2033 break;
2034 default:
2035 abort ();
2036 }
2037 return x;
2038 }
2039
2040 static INLINE i386_operand_type
2041 operand_type_or (i386_operand_type x, i386_operand_type y)
2042 {
2043 gas_assert (x.bitfield.class == ClassNone ||
2044 y.bitfield.class == ClassNone ||
2045 x.bitfield.class == y.bitfield.class);
2046 gas_assert (x.bitfield.instance == InstanceNone ||
2047 y.bitfield.instance == InstanceNone ||
2048 x.bitfield.instance == y.bitfield.instance);
2049
2050 switch (ARRAY_SIZE (x.array))
2051 {
2052 case 3:
2053 x.array [2] |= y.array [2];
2054 /* Fall through. */
2055 case 2:
2056 x.array [1] |= y.array [1];
2057 /* Fall through. */
2058 case 1:
2059 x.array [0] |= y.array [0];
2060 break;
2061 default:
2062 abort ();
2063 }
2064 return x;
2065 }
2066
2067 static INLINE i386_operand_type
2068 operand_type_xor (i386_operand_type x, i386_operand_type y)
2069 {
2070 gas_assert (y.bitfield.class == ClassNone);
2071 gas_assert (y.bitfield.instance == InstanceNone);
2072
2073 switch (ARRAY_SIZE (x.array))
2074 {
2075 case 3:
2076 x.array [2] ^= y.array [2];
2077 /* Fall through. */
2078 case 2:
2079 x.array [1] ^= y.array [1];
2080 /* Fall through. */
2081 case 1:
2082 x.array [0] ^= y.array [0];
2083 break;
2084 default:
2085 abort ();
2086 }
2087 return x;
2088 }
2089
2090 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
2091 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
2092 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
2093 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
2094 static const i386_operand_type anydisp = OPERAND_TYPE_ANYDISP;
2095 static const i386_operand_type anyimm = OPERAND_TYPE_ANYIMM;
2096 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
2097 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
2098 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
2099 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
2100 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
2101 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
2102 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
2103 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
2104 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
2105 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
2106 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
2107
2108 enum operand_type
2109 {
2110 reg,
2111 imm,
2112 disp,
2113 anymem
2114 };
2115
2116 static INLINE int
2117 operand_type_check (i386_operand_type t, enum operand_type c)
2118 {
2119 switch (c)
2120 {
2121 case reg:
2122 return t.bitfield.class == Reg;
2123
2124 case imm:
2125 return (t.bitfield.imm8
2126 || t.bitfield.imm8s
2127 || t.bitfield.imm16
2128 || t.bitfield.imm32
2129 || t.bitfield.imm32s
2130 || t.bitfield.imm64);
2131
2132 case disp:
2133 return (t.bitfield.disp8
2134 || t.bitfield.disp16
2135 || t.bitfield.disp32
2136 || t.bitfield.disp32s
2137 || t.bitfield.disp64);
2138
2139 case anymem:
2140 return (t.bitfield.disp8
2141 || t.bitfield.disp16
2142 || t.bitfield.disp32
2143 || t.bitfield.disp32s
2144 || t.bitfield.disp64
2145 || t.bitfield.baseindex);
2146
2147 default:
2148 abort ();
2149 }
2150
2151 return 0;
2152 }
2153
2154 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
2155 between operand GIVEN and opeand WANTED for instruction template T. */
2156
2157 static INLINE int
2158 match_operand_size (const insn_template *t, unsigned int wanted,
2159 unsigned int given)
2160 {
2161 return !((i.types[given].bitfield.byte
2162 && !t->operand_types[wanted].bitfield.byte)
2163 || (i.types[given].bitfield.word
2164 && !t->operand_types[wanted].bitfield.word)
2165 || (i.types[given].bitfield.dword
2166 && !t->operand_types[wanted].bitfield.dword)
2167 || (i.types[given].bitfield.qword
2168 && !t->operand_types[wanted].bitfield.qword)
2169 || (i.types[given].bitfield.tbyte
2170 && !t->operand_types[wanted].bitfield.tbyte));
2171 }
2172
2173 /* Return 1 if there is no conflict in SIMD register between operand
2174 GIVEN and opeand WANTED for instruction template T. */
2175
2176 static INLINE int
2177 match_simd_size (const insn_template *t, unsigned int wanted,
2178 unsigned int given)
2179 {
2180 return !((i.types[given].bitfield.xmmword
2181 && !t->operand_types[wanted].bitfield.xmmword)
2182 || (i.types[given].bitfield.ymmword
2183 && !t->operand_types[wanted].bitfield.ymmword)
2184 || (i.types[given].bitfield.zmmword
2185 && !t->operand_types[wanted].bitfield.zmmword)
2186 || (i.types[given].bitfield.tmmword
2187 && !t->operand_types[wanted].bitfield.tmmword));
2188 }
2189
2190 /* Return 1 if there is no conflict in any size between operand GIVEN
2191 and opeand WANTED for instruction template T. */
2192
2193 static INLINE int
2194 match_mem_size (const insn_template *t, unsigned int wanted,
2195 unsigned int given)
2196 {
2197 return (match_operand_size (t, wanted, given)
2198 && !((i.types[given].bitfield.unspecified
2199 && !i.broadcast
2200 && !t->operand_types[wanted].bitfield.unspecified)
2201 || (i.types[given].bitfield.fword
2202 && !t->operand_types[wanted].bitfield.fword)
2203 /* For scalar opcode templates to allow register and memory
2204 operands at the same time, some special casing is needed
2205 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
2206 down-conversion vpmov*. */
2207 || ((t->operand_types[wanted].bitfield.class == RegSIMD
2208 && t->operand_types[wanted].bitfield.byte
2209 + t->operand_types[wanted].bitfield.word
2210 + t->operand_types[wanted].bitfield.dword
2211 + t->operand_types[wanted].bitfield.qword
2212 > !!t->opcode_modifier.broadcast)
2213 ? (i.types[given].bitfield.xmmword
2214 || i.types[given].bitfield.ymmword
2215 || i.types[given].bitfield.zmmword)
2216 : !match_simd_size(t, wanted, given))));
2217 }
2218
2219 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
2220 operands for instruction template T, and it has MATCH_REVERSE set if there
2221 is no size conflict on any operands for the template with operands reversed
2222 (and the template allows for reversing in the first place). */
2223
2224 #define MATCH_STRAIGHT 1
2225 #define MATCH_REVERSE 2
2226
2227 static INLINE unsigned int
2228 operand_size_match (const insn_template *t)
2229 {
2230 unsigned int j, match = MATCH_STRAIGHT;
2231
2232 /* Don't check non-absolute jump instructions. */
2233 if (t->opcode_modifier.jump
2234 && t->opcode_modifier.jump != JUMP_ABSOLUTE)
2235 return match;
2236
2237 /* Check memory and accumulator operand size. */
2238 for (j = 0; j < i.operands; j++)
2239 {
2240 if (i.types[j].bitfield.class != Reg
2241 && i.types[j].bitfield.class != RegSIMD
2242 && t->opcode_modifier.anysize)
2243 continue;
2244
2245 if (t->operand_types[j].bitfield.class == Reg
2246 && !match_operand_size (t, j, j))
2247 {
2248 match = 0;
2249 break;
2250 }
2251
2252 if (t->operand_types[j].bitfield.class == RegSIMD
2253 && !match_simd_size (t, j, j))
2254 {
2255 match = 0;
2256 break;
2257 }
2258
2259 if (t->operand_types[j].bitfield.instance == Accum
2260 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2261 {
2262 match = 0;
2263 break;
2264 }
2265
2266 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2267 {
2268 match = 0;
2269 break;
2270 }
2271 }
2272
2273 if (!t->opcode_modifier.d)
2274 {
2275 mismatch:
2276 if (!match)
2277 i.error = operand_size_mismatch;
2278 return match;
2279 }
2280
2281 /* Check reverse. */
2282 gas_assert (i.operands >= 2 && i.operands <= 3);
2283
2284 for (j = 0; j < i.operands; j++)
2285 {
2286 unsigned int given = i.operands - j - 1;
2287
2288 if (t->operand_types[j].bitfield.class == Reg
2289 && !match_operand_size (t, j, given))
2290 goto mismatch;
2291
2292 if (t->operand_types[j].bitfield.class == RegSIMD
2293 && !match_simd_size (t, j, given))
2294 goto mismatch;
2295
2296 if (t->operand_types[j].bitfield.instance == Accum
2297 && (!match_operand_size (t, j, given)
2298 || !match_simd_size (t, j, given)))
2299 goto mismatch;
2300
2301 if ((i.flags[given] & Operand_Mem) && !match_mem_size (t, j, given))
2302 goto mismatch;
2303 }
2304
2305 return match | MATCH_REVERSE;
2306 }
2307
2308 static INLINE int
2309 operand_type_match (i386_operand_type overlap,
2310 i386_operand_type given)
2311 {
2312 i386_operand_type temp = overlap;
2313
2314 temp.bitfield.unspecified = 0;
2315 temp.bitfield.byte = 0;
2316 temp.bitfield.word = 0;
2317 temp.bitfield.dword = 0;
2318 temp.bitfield.fword = 0;
2319 temp.bitfield.qword = 0;
2320 temp.bitfield.tbyte = 0;
2321 temp.bitfield.xmmword = 0;
2322 temp.bitfield.ymmword = 0;
2323 temp.bitfield.zmmword = 0;
2324 temp.bitfield.tmmword = 0;
2325 if (operand_type_all_zero (&temp))
2326 goto mismatch;
2327
2328 if (given.bitfield.baseindex == overlap.bitfield.baseindex)
2329 return 1;
2330
2331 mismatch:
2332 i.error = operand_type_mismatch;
2333 return 0;
2334 }
2335
2336 /* If given types g0 and g1 are registers they must be of the same type
2337 unless the expected operand type register overlap is null.
2338 Some Intel syntax memory operand size checking also happens here. */
2339
2340 static INLINE int
2341 operand_type_register_match (i386_operand_type g0,
2342 i386_operand_type t0,
2343 i386_operand_type g1,
2344 i386_operand_type t1)
2345 {
2346 if (g0.bitfield.class != Reg
2347 && g0.bitfield.class != RegSIMD
2348 && (!operand_type_check (g0, anymem)
2349 || g0.bitfield.unspecified
2350 || (t0.bitfield.class != Reg
2351 && t0.bitfield.class != RegSIMD)))
2352 return 1;
2353
2354 if (g1.bitfield.class != Reg
2355 && g1.bitfield.class != RegSIMD
2356 && (!operand_type_check (g1, anymem)
2357 || g1.bitfield.unspecified
2358 || (t1.bitfield.class != Reg
2359 && t1.bitfield.class != RegSIMD)))
2360 return 1;
2361
2362 if (g0.bitfield.byte == g1.bitfield.byte
2363 && g0.bitfield.word == g1.bitfield.word
2364 && g0.bitfield.dword == g1.bitfield.dword
2365 && g0.bitfield.qword == g1.bitfield.qword
2366 && g0.bitfield.xmmword == g1.bitfield.xmmword
2367 && g0.bitfield.ymmword == g1.bitfield.ymmword
2368 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2369 return 1;
2370
2371 if (!(t0.bitfield.byte & t1.bitfield.byte)
2372 && !(t0.bitfield.word & t1.bitfield.word)
2373 && !(t0.bitfield.dword & t1.bitfield.dword)
2374 && !(t0.bitfield.qword & t1.bitfield.qword)
2375 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2376 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2377 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2378 return 1;
2379
2380 i.error = register_type_mismatch;
2381
2382 return 0;
2383 }
2384
2385 static INLINE unsigned int
2386 register_number (const reg_entry *r)
2387 {
2388 unsigned int nr = r->reg_num;
2389
2390 if (r->reg_flags & RegRex)
2391 nr += 8;
2392
2393 if (r->reg_flags & RegVRex)
2394 nr += 16;
2395
2396 return nr;
2397 }
2398
2399 static INLINE unsigned int
2400 mode_from_disp_size (i386_operand_type t)
2401 {
2402 if (t.bitfield.disp8)
2403 return 1;
2404 else if (t.bitfield.disp16
2405 || t.bitfield.disp32
2406 || t.bitfield.disp32s)
2407 return 2;
2408 else
2409 return 0;
2410 }
2411
2412 static INLINE int
2413 fits_in_signed_byte (addressT num)
2414 {
2415 return num + 0x80 <= 0xff;
2416 }
2417
2418 static INLINE int
2419 fits_in_unsigned_byte (addressT num)
2420 {
2421 return num <= 0xff;
2422 }
2423
2424 static INLINE int
2425 fits_in_unsigned_word (addressT num)
2426 {
2427 return num <= 0xffff;
2428 }
2429
2430 static INLINE int
2431 fits_in_signed_word (addressT num)
2432 {
2433 return num + 0x8000 <= 0xffff;
2434 }
2435
2436 static INLINE int
2437 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2438 {
2439 #ifndef BFD64
2440 return 1;
2441 #else
2442 return num + 0x80000000 <= 0xffffffff;
2443 #endif
2444 } /* fits_in_signed_long() */
2445
2446 static INLINE int
2447 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2448 {
2449 #ifndef BFD64
2450 return 1;
2451 #else
2452 return num <= 0xffffffff;
2453 #endif
2454 } /* fits_in_unsigned_long() */
2455
2456 static INLINE int
2457 fits_in_disp8 (offsetT num)
2458 {
2459 int shift = i.memshift;
2460 unsigned int mask;
2461
2462 if (shift == -1)
2463 abort ();
2464
2465 mask = (1 << shift) - 1;
2466
2467 /* Return 0 if NUM isn't properly aligned. */
2468 if ((num & mask))
2469 return 0;
2470
2471 /* Check if NUM will fit in 8bit after shift. */
2472 return fits_in_signed_byte (num >> shift);
2473 }
2474
2475 static INLINE int
2476 fits_in_imm4 (offsetT num)
2477 {
2478 return (num & 0xf) == num;
2479 }
2480
2481 static i386_operand_type
2482 smallest_imm_type (offsetT num)
2483 {
2484 i386_operand_type t;
2485
2486 operand_type_set (&t, 0);
2487 t.bitfield.imm64 = 1;
2488
2489 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2490 {
2491 /* This code is disabled on the 486 because all the Imm1 forms
2492 in the opcode table are slower on the i486. They're the
2493 versions with the implicitly specified single-position
2494 displacement, which has another syntax if you really want to
2495 use that form. */
2496 t.bitfield.imm1 = 1;
2497 t.bitfield.imm8 = 1;
2498 t.bitfield.imm8s = 1;
2499 t.bitfield.imm16 = 1;
2500 t.bitfield.imm32 = 1;
2501 t.bitfield.imm32s = 1;
2502 }
2503 else if (fits_in_signed_byte (num))
2504 {
2505 t.bitfield.imm8 = 1;
2506 t.bitfield.imm8s = 1;
2507 t.bitfield.imm16 = 1;
2508 t.bitfield.imm32 = 1;
2509 t.bitfield.imm32s = 1;
2510 }
2511 else if (fits_in_unsigned_byte (num))
2512 {
2513 t.bitfield.imm8 = 1;
2514 t.bitfield.imm16 = 1;
2515 t.bitfield.imm32 = 1;
2516 t.bitfield.imm32s = 1;
2517 }
2518 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2519 {
2520 t.bitfield.imm16 = 1;
2521 t.bitfield.imm32 = 1;
2522 t.bitfield.imm32s = 1;
2523 }
2524 else if (fits_in_signed_long (num))
2525 {
2526 t.bitfield.imm32 = 1;
2527 t.bitfield.imm32s = 1;
2528 }
2529 else if (fits_in_unsigned_long (num))
2530 t.bitfield.imm32 = 1;
2531
2532 return t;
2533 }
2534
2535 static offsetT
2536 offset_in_range (offsetT val, int size)
2537 {
2538 addressT mask;
2539
2540 switch (size)
2541 {
2542 case 1: mask = ((addressT) 1 << 8) - 1; break;
2543 case 2: mask = ((addressT) 1 << 16) - 1; break;
2544 case 4: mask = ((addressT) 2 << 31) - 1; break;
2545 #ifdef BFD64
2546 case 8: mask = ((addressT) 2 << 63) - 1; break;
2547 #endif
2548 default: abort ();
2549 }
2550
2551 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2552 {
2553 char buf1[40], buf2[40];
2554
2555 sprint_value (buf1, val);
2556 sprint_value (buf2, val & mask);
2557 as_warn (_("%s shortened to %s"), buf1, buf2);
2558 }
2559 return val & mask;
2560 }
2561
2562 enum PREFIX_GROUP
2563 {
2564 PREFIX_EXIST = 0,
2565 PREFIX_LOCK,
2566 PREFIX_REP,
2567 PREFIX_DS,
2568 PREFIX_OTHER
2569 };
2570
2571 /* Returns
2572 a. PREFIX_EXIST if attempting to add a prefix where one from the
2573 same class already exists.
2574 b. PREFIX_LOCK if lock prefix is added.
2575 c. PREFIX_REP if rep/repne prefix is added.
2576 d. PREFIX_DS if ds prefix is added.
2577 e. PREFIX_OTHER if other prefix is added.
2578 */
2579
2580 static enum PREFIX_GROUP
2581 add_prefix (unsigned int prefix)
2582 {
2583 enum PREFIX_GROUP ret = PREFIX_OTHER;
2584 unsigned int q;
2585
2586 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2587 && flag_code == CODE_64BIT)
2588 {
2589 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2590 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2591 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2592 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2593 ret = PREFIX_EXIST;
2594 q = REX_PREFIX;
2595 }
2596 else
2597 {
2598 switch (prefix)
2599 {
2600 default:
2601 abort ();
2602
2603 case DS_PREFIX_OPCODE:
2604 ret = PREFIX_DS;
2605 /* Fall through. */
2606 case CS_PREFIX_OPCODE:
2607 case ES_PREFIX_OPCODE:
2608 case FS_PREFIX_OPCODE:
2609 case GS_PREFIX_OPCODE:
2610 case SS_PREFIX_OPCODE:
2611 q = SEG_PREFIX;
2612 break;
2613
2614 case REPNE_PREFIX_OPCODE:
2615 case REPE_PREFIX_OPCODE:
2616 q = REP_PREFIX;
2617 ret = PREFIX_REP;
2618 break;
2619
2620 case LOCK_PREFIX_OPCODE:
2621 q = LOCK_PREFIX;
2622 ret = PREFIX_LOCK;
2623 break;
2624
2625 case FWAIT_OPCODE:
2626 q = WAIT_PREFIX;
2627 break;
2628
2629 case ADDR_PREFIX_OPCODE:
2630 q = ADDR_PREFIX;
2631 break;
2632
2633 case DATA_PREFIX_OPCODE:
2634 q = DATA_PREFIX;
2635 break;
2636 }
2637 if (i.prefix[q] != 0)
2638 ret = PREFIX_EXIST;
2639 }
2640
2641 if (ret)
2642 {
2643 if (!i.prefix[q])
2644 ++i.prefixes;
2645 i.prefix[q] |= prefix;
2646 }
2647 else
2648 as_bad (_("same type of prefix used twice"));
2649
2650 return ret;
2651 }
2652
2653 static void
2654 update_code_flag (int value, int check)
2655 {
2656 PRINTF_LIKE ((*as_error));
2657
2658 flag_code = (enum flag_code) value;
2659 if (flag_code == CODE_64BIT)
2660 {
2661 cpu_arch_flags.bitfield.cpu64 = 1;
2662 cpu_arch_flags.bitfield.cpuno64 = 0;
2663 }
2664 else
2665 {
2666 cpu_arch_flags.bitfield.cpu64 = 0;
2667 cpu_arch_flags.bitfield.cpuno64 = 1;
2668 }
2669 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2670 {
2671 if (check)
2672 as_error = as_fatal;
2673 else
2674 as_error = as_bad;
2675 (*as_error) (_("64bit mode not supported on `%s'."),
2676 cpu_arch_name ? cpu_arch_name : default_arch);
2677 }
2678 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2679 {
2680 if (check)
2681 as_error = as_fatal;
2682 else
2683 as_error = as_bad;
2684 (*as_error) (_("32bit mode not supported on `%s'."),
2685 cpu_arch_name ? cpu_arch_name : default_arch);
2686 }
2687 stackop_size = '\0';
2688 }
2689
2690 static void
2691 set_code_flag (int value)
2692 {
2693 update_code_flag (value, 0);
2694 }
2695
2696 static void
2697 set_16bit_gcc_code_flag (int new_code_flag)
2698 {
2699 flag_code = (enum flag_code) new_code_flag;
2700 if (flag_code != CODE_16BIT)
2701 abort ();
2702 cpu_arch_flags.bitfield.cpu64 = 0;
2703 cpu_arch_flags.bitfield.cpuno64 = 1;
2704 stackop_size = LONG_MNEM_SUFFIX;
2705 }
2706
2707 static void
2708 set_intel_syntax (int syntax_flag)
2709 {
2710 /* Find out if register prefixing is specified. */
2711 int ask_naked_reg = 0;
2712
2713 SKIP_WHITESPACE ();
2714 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2715 {
2716 char *string;
2717 int e = get_symbol_name (&string);
2718
2719 if (strcmp (string, "prefix") == 0)
2720 ask_naked_reg = 1;
2721 else if (strcmp (string, "noprefix") == 0)
2722 ask_naked_reg = -1;
2723 else
2724 as_bad (_("bad argument to syntax directive."));
2725 (void) restore_line_pointer (e);
2726 }
2727 demand_empty_rest_of_line ();
2728
2729 intel_syntax = syntax_flag;
2730
2731 if (ask_naked_reg == 0)
2732 allow_naked_reg = (intel_syntax
2733 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2734 else
2735 allow_naked_reg = (ask_naked_reg < 0);
2736
2737 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2738
2739 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2740 identifier_chars['$'] = intel_syntax ? '$' : 0;
2741 register_prefix = allow_naked_reg ? "" : "%";
2742 }
2743
2744 static void
2745 set_intel_mnemonic (int mnemonic_flag)
2746 {
2747 intel_mnemonic = mnemonic_flag;
2748 }
2749
2750 static void
2751 set_allow_index_reg (int flag)
2752 {
2753 allow_index_reg = flag;
2754 }
2755
2756 static void
2757 set_check (int what)
2758 {
2759 enum check_kind *kind;
2760 const char *str;
2761
2762 if (what)
2763 {
2764 kind = &operand_check;
2765 str = "operand";
2766 }
2767 else
2768 {
2769 kind = &sse_check;
2770 str = "sse";
2771 }
2772
2773 SKIP_WHITESPACE ();
2774
2775 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2776 {
2777 char *string;
2778 int e = get_symbol_name (&string);
2779
2780 if (strcmp (string, "none") == 0)
2781 *kind = check_none;
2782 else if (strcmp (string, "warning") == 0)
2783 *kind = check_warning;
2784 else if (strcmp (string, "error") == 0)
2785 *kind = check_error;
2786 else
2787 as_bad (_("bad argument to %s_check directive."), str);
2788 (void) restore_line_pointer (e);
2789 }
2790 else
2791 as_bad (_("missing argument for %s_check directive"), str);
2792
2793 demand_empty_rest_of_line ();
2794 }
2795
2796 static void
2797 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2798 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2799 {
2800 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2801 static const char *arch;
2802
2803 /* Intel LIOM is only supported on ELF. */
2804 if (!IS_ELF)
2805 return;
2806
2807 if (!arch)
2808 {
2809 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2810 use default_arch. */
2811 arch = cpu_arch_name;
2812 if (!arch)
2813 arch = default_arch;
2814 }
2815
2816 /* If we are targeting Intel MCU, we must enable it. */
2817 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2818 || new_flag.bitfield.cpuiamcu)
2819 return;
2820
2821 /* If we are targeting Intel L1OM, we must enable it. */
2822 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2823 || new_flag.bitfield.cpul1om)
2824 return;
2825
2826 /* If we are targeting Intel K1OM, we must enable it. */
2827 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2828 || new_flag.bitfield.cpuk1om)
2829 return;
2830
2831 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2832 #endif
2833 }
2834
2835 static void
2836 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2837 {
2838 SKIP_WHITESPACE ();
2839
2840 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2841 {
2842 char *string;
2843 int e = get_symbol_name (&string);
2844 unsigned int j;
2845 i386_cpu_flags flags;
2846
2847 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2848 {
2849 if (strcmp (string, cpu_arch[j].name) == 0)
2850 {
2851 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2852
2853 if (*string != '.')
2854 {
2855 cpu_arch_name = cpu_arch[j].name;
2856 cpu_sub_arch_name = NULL;
2857 cpu_arch_flags = cpu_arch[j].flags;
2858 if (flag_code == CODE_64BIT)
2859 {
2860 cpu_arch_flags.bitfield.cpu64 = 1;
2861 cpu_arch_flags.bitfield.cpuno64 = 0;
2862 }
2863 else
2864 {
2865 cpu_arch_flags.bitfield.cpu64 = 0;
2866 cpu_arch_flags.bitfield.cpuno64 = 1;
2867 }
2868 cpu_arch_isa = cpu_arch[j].type;
2869 cpu_arch_isa_flags = cpu_arch[j].flags;
2870 if (!cpu_arch_tune_set)
2871 {
2872 cpu_arch_tune = cpu_arch_isa;
2873 cpu_arch_tune_flags = cpu_arch_isa_flags;
2874 }
2875 break;
2876 }
2877
2878 flags = cpu_flags_or (cpu_arch_flags,
2879 cpu_arch[j].flags);
2880
2881 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2882 {
2883 if (cpu_sub_arch_name)
2884 {
2885 char *name = cpu_sub_arch_name;
2886 cpu_sub_arch_name = concat (name,
2887 cpu_arch[j].name,
2888 (const char *) NULL);
2889 free (name);
2890 }
2891 else
2892 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2893 cpu_arch_flags = flags;
2894 cpu_arch_isa_flags = flags;
2895 }
2896 else
2897 cpu_arch_isa_flags
2898 = cpu_flags_or (cpu_arch_isa_flags,
2899 cpu_arch[j].flags);
2900 (void) restore_line_pointer (e);
2901 demand_empty_rest_of_line ();
2902 return;
2903 }
2904 }
2905
2906 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2907 {
2908 /* Disable an ISA extension. */
2909 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2910 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2911 {
2912 flags = cpu_flags_and_not (cpu_arch_flags,
2913 cpu_noarch[j].flags);
2914 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2915 {
2916 if (cpu_sub_arch_name)
2917 {
2918 char *name = cpu_sub_arch_name;
2919 cpu_sub_arch_name = concat (name, string,
2920 (const char *) NULL);
2921 free (name);
2922 }
2923 else
2924 cpu_sub_arch_name = xstrdup (string);
2925 cpu_arch_flags = flags;
2926 cpu_arch_isa_flags = flags;
2927 }
2928 (void) restore_line_pointer (e);
2929 demand_empty_rest_of_line ();
2930 return;
2931 }
2932
2933 j = ARRAY_SIZE (cpu_arch);
2934 }
2935
2936 if (j >= ARRAY_SIZE (cpu_arch))
2937 as_bad (_("no such architecture: `%s'"), string);
2938
2939 *input_line_pointer = e;
2940 }
2941 else
2942 as_bad (_("missing cpu architecture"));
2943
2944 no_cond_jump_promotion = 0;
2945 if (*input_line_pointer == ','
2946 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2947 {
2948 char *string;
2949 char e;
2950
2951 ++input_line_pointer;
2952 e = get_symbol_name (&string);
2953
2954 if (strcmp (string, "nojumps") == 0)
2955 no_cond_jump_promotion = 1;
2956 else if (strcmp (string, "jumps") == 0)
2957 ;
2958 else
2959 as_bad (_("no such architecture modifier: `%s'"), string);
2960
2961 (void) restore_line_pointer (e);
2962 }
2963
2964 demand_empty_rest_of_line ();
2965 }
2966
2967 enum bfd_architecture
2968 i386_arch (void)
2969 {
2970 if (cpu_arch_isa == PROCESSOR_L1OM)
2971 {
2972 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2973 || flag_code != CODE_64BIT)
2974 as_fatal (_("Intel L1OM is 64bit ELF only"));
2975 return bfd_arch_l1om;
2976 }
2977 else if (cpu_arch_isa == PROCESSOR_K1OM)
2978 {
2979 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2980 || flag_code != CODE_64BIT)
2981 as_fatal (_("Intel K1OM is 64bit ELF only"));
2982 return bfd_arch_k1om;
2983 }
2984 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2985 {
2986 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2987 || flag_code == CODE_64BIT)
2988 as_fatal (_("Intel MCU is 32bit ELF only"));
2989 return bfd_arch_iamcu;
2990 }
2991 else
2992 return bfd_arch_i386;
2993 }
2994
2995 unsigned long
2996 i386_mach (void)
2997 {
2998 if (!strncmp (default_arch, "x86_64", 6))
2999 {
3000 if (cpu_arch_isa == PROCESSOR_L1OM)
3001 {
3002 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
3003 || default_arch[6] != '\0')
3004 as_fatal (_("Intel L1OM is 64bit ELF only"));
3005 return bfd_mach_l1om;
3006 }
3007 else if (cpu_arch_isa == PROCESSOR_K1OM)
3008 {
3009 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
3010 || default_arch[6] != '\0')
3011 as_fatal (_("Intel K1OM is 64bit ELF only"));
3012 return bfd_mach_k1om;
3013 }
3014 else if (default_arch[6] == '\0')
3015 return bfd_mach_x86_64;
3016 else
3017 return bfd_mach_x64_32;
3018 }
3019 else if (!strcmp (default_arch, "i386")
3020 || !strcmp (default_arch, "iamcu"))
3021 {
3022 if (cpu_arch_isa == PROCESSOR_IAMCU)
3023 {
3024 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
3025 as_fatal (_("Intel MCU is 32bit ELF only"));
3026 return bfd_mach_i386_iamcu;
3027 }
3028 else
3029 return bfd_mach_i386_i386;
3030 }
3031 else
3032 as_fatal (_("unknown architecture"));
3033 }
3034 \f
3035 void
3036 md_begin (void)
3037 {
3038 /* Support pseudo prefixes like {disp32}. */
3039 lex_type ['{'] = LEX_BEGIN_NAME;
3040
3041 /* Initialize op_hash hash table. */
3042 op_hash = str_htab_create ();
3043
3044 {
3045 const insn_template *optab;
3046 templates *core_optab;
3047
3048 /* Setup for loop. */
3049 optab = i386_optab;
3050 core_optab = XNEW (templates);
3051 core_optab->start = optab;
3052
3053 while (1)
3054 {
3055 ++optab;
3056 if (optab->name == NULL
3057 || strcmp (optab->name, (optab - 1)->name) != 0)
3058 {
3059 /* different name --> ship out current template list;
3060 add to hash table; & begin anew. */
3061 core_optab->end = optab;
3062 if (str_hash_insert (op_hash, (optab - 1)->name, core_optab, 0))
3063 as_fatal (_("duplicate %s"), (optab - 1)->name);
3064
3065 if (optab->name == NULL)
3066 break;
3067 core_optab = XNEW (templates);
3068 core_optab->start = optab;
3069 }
3070 }
3071 }
3072
3073 /* Initialize reg_hash hash table. */
3074 reg_hash = str_htab_create ();
3075 {
3076 const reg_entry *regtab;
3077 unsigned int regtab_size = i386_regtab_size;
3078
3079 for (regtab = i386_regtab; regtab_size--; regtab++)
3080 if (str_hash_insert (reg_hash, regtab->reg_name, regtab, 0) != NULL)
3081 as_fatal (_("duplicate %s"), regtab->reg_name);
3082 }
3083
3084 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
3085 {
3086 int c;
3087 char *p;
3088
3089 for (c = 0; c < 256; c++)
3090 {
3091 if (ISDIGIT (c))
3092 {
3093 digit_chars[c] = c;
3094 mnemonic_chars[c] = c;
3095 register_chars[c] = c;
3096 operand_chars[c] = c;
3097 }
3098 else if (ISLOWER (c))
3099 {
3100 mnemonic_chars[c] = c;
3101 register_chars[c] = c;
3102 operand_chars[c] = c;
3103 }
3104 else if (ISUPPER (c))
3105 {
3106 mnemonic_chars[c] = TOLOWER (c);
3107 register_chars[c] = mnemonic_chars[c];
3108 operand_chars[c] = c;
3109 }
3110 else if (c == '{' || c == '}')
3111 {
3112 mnemonic_chars[c] = c;
3113 operand_chars[c] = c;
3114 }
3115 #ifdef SVR4_COMMENT_CHARS
3116 else if (c == '\\' && strchr (i386_comment_chars, '/'))
3117 operand_chars[c] = c;
3118 #endif
3119
3120 if (ISALPHA (c) || ISDIGIT (c))
3121 identifier_chars[c] = c;
3122 else if (c >= 128)
3123 {
3124 identifier_chars[c] = c;
3125 operand_chars[c] = c;
3126 }
3127 }
3128
3129 #ifdef LEX_AT
3130 identifier_chars['@'] = '@';
3131 #endif
3132 #ifdef LEX_QM
3133 identifier_chars['?'] = '?';
3134 operand_chars['?'] = '?';
3135 #endif
3136 digit_chars['-'] = '-';
3137 mnemonic_chars['_'] = '_';
3138 mnemonic_chars['-'] = '-';
3139 mnemonic_chars['.'] = '.';
3140 identifier_chars['_'] = '_';
3141 identifier_chars['.'] = '.';
3142
3143 for (p = operand_special_chars; *p != '\0'; p++)
3144 operand_chars[(unsigned char) *p] = *p;
3145 }
3146
3147 if (flag_code == CODE_64BIT)
3148 {
3149 #if defined (OBJ_COFF) && defined (TE_PE)
3150 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
3151 ? 32 : 16);
3152 #else
3153 x86_dwarf2_return_column = 16;
3154 #endif
3155 x86_cie_data_alignment = -8;
3156 }
3157 else
3158 {
3159 x86_dwarf2_return_column = 8;
3160 x86_cie_data_alignment = -4;
3161 }
3162
3163 /* NB: FUSED_JCC_PADDING frag must have sufficient room so that it
3164 can be turned into BRANCH_PREFIX frag. */
3165 if (align_branch_prefix_size > MAX_FUSED_JCC_PADDING_SIZE)
3166 abort ();
3167 }
3168
3169 void
3170 i386_print_statistics (FILE *file)
3171 {
3172 htab_print_statistics (file, "i386 opcode", op_hash);
3173 htab_print_statistics (file, "i386 register", reg_hash);
3174 }
3175 \f
3176 #ifdef DEBUG386
3177
3178 /* Debugging routines for md_assemble. */
3179 static void pte (insn_template *);
3180 static void pt (i386_operand_type);
3181 static void pe (expressionS *);
3182 static void ps (symbolS *);
3183
3184 static void
3185 pi (const char *line, i386_insn *x)
3186 {
3187 unsigned int j;
3188
3189 fprintf (stdout, "%s: template ", line);
3190 pte (&x->tm);
3191 fprintf (stdout, " address: base %s index %s scale %x\n",
3192 x->base_reg ? x->base_reg->reg_name : "none",
3193 x->index_reg ? x->index_reg->reg_name : "none",
3194 x->log2_scale_factor);
3195 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
3196 x->rm.mode, x->rm.reg, x->rm.regmem);
3197 fprintf (stdout, " sib: base %x index %x scale %x\n",
3198 x->sib.base, x->sib.index, x->sib.scale);
3199 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
3200 (x->rex & REX_W) != 0,
3201 (x->rex & REX_R) != 0,
3202 (x->rex & REX_X) != 0,
3203 (x->rex & REX_B) != 0);
3204 for (j = 0; j < x->operands; j++)
3205 {
3206 fprintf (stdout, " #%d: ", j + 1);
3207 pt (x->types[j]);
3208 fprintf (stdout, "\n");
3209 if (x->types[j].bitfield.class == Reg
3210 || x->types[j].bitfield.class == RegMMX
3211 || x->types[j].bitfield.class == RegSIMD
3212 || x->types[j].bitfield.class == RegMask
3213 || x->types[j].bitfield.class == SReg
3214 || x->types[j].bitfield.class == RegCR
3215 || x->types[j].bitfield.class == RegDR
3216 || x->types[j].bitfield.class == RegTR
3217 || x->types[j].bitfield.class == RegBND)
3218 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
3219 if (operand_type_check (x->types[j], imm))
3220 pe (x->op[j].imms);
3221 if (operand_type_check (x->types[j], disp))
3222 pe (x->op[j].disps);
3223 }
3224 }
3225
3226 static void
3227 pte (insn_template *t)
3228 {
3229 unsigned int j;
3230 fprintf (stdout, " %d operands ", t->operands);
3231 fprintf (stdout, "opcode %x ", t->base_opcode);
3232 if (t->extension_opcode != None)
3233 fprintf (stdout, "ext %x ", t->extension_opcode);
3234 if (t->opcode_modifier.d)
3235 fprintf (stdout, "D");
3236 if (t->opcode_modifier.w)
3237 fprintf (stdout, "W");
3238 fprintf (stdout, "\n");
3239 for (j = 0; j < t->operands; j++)
3240 {
3241 fprintf (stdout, " #%d type ", j + 1);
3242 pt (t->operand_types[j]);
3243 fprintf (stdout, "\n");
3244 }
3245 }
3246
3247 static void
3248 pe (expressionS *e)
3249 {
3250 fprintf (stdout, " operation %d\n", e->X_op);
3251 fprintf (stdout, " add_number %ld (%lx)\n",
3252 (long) e->X_add_number, (long) e->X_add_number);
3253 if (e->X_add_symbol)
3254 {
3255 fprintf (stdout, " add_symbol ");
3256 ps (e->X_add_symbol);
3257 fprintf (stdout, "\n");
3258 }
3259 if (e->X_op_symbol)
3260 {
3261 fprintf (stdout, " op_symbol ");
3262 ps (e->X_op_symbol);
3263 fprintf (stdout, "\n");
3264 }
3265 }
3266
3267 static void
3268 ps (symbolS *s)
3269 {
3270 fprintf (stdout, "%s type %s%s",
3271 S_GET_NAME (s),
3272 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3273 segment_name (S_GET_SEGMENT (s)));
3274 }
3275
3276 static struct type_name
3277 {
3278 i386_operand_type mask;
3279 const char *name;
3280 }
3281 const type_names[] =
3282 {
3283 { OPERAND_TYPE_REG8, "r8" },
3284 { OPERAND_TYPE_REG16, "r16" },
3285 { OPERAND_TYPE_REG32, "r32" },
3286 { OPERAND_TYPE_REG64, "r64" },
3287 { OPERAND_TYPE_ACC8, "acc8" },
3288 { OPERAND_TYPE_ACC16, "acc16" },
3289 { OPERAND_TYPE_ACC32, "acc32" },
3290 { OPERAND_TYPE_ACC64, "acc64" },
3291 { OPERAND_TYPE_IMM8, "i8" },
3292 { OPERAND_TYPE_IMM8, "i8s" },
3293 { OPERAND_TYPE_IMM16, "i16" },
3294 { OPERAND_TYPE_IMM32, "i32" },
3295 { OPERAND_TYPE_IMM32S, "i32s" },
3296 { OPERAND_TYPE_IMM64, "i64" },
3297 { OPERAND_TYPE_IMM1, "i1" },
3298 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3299 { OPERAND_TYPE_DISP8, "d8" },
3300 { OPERAND_TYPE_DISP16, "d16" },
3301 { OPERAND_TYPE_DISP32, "d32" },
3302 { OPERAND_TYPE_DISP32S, "d32s" },
3303 { OPERAND_TYPE_DISP64, "d64" },
3304 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3305 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3306 { OPERAND_TYPE_CONTROL, "control reg" },
3307 { OPERAND_TYPE_TEST, "test reg" },
3308 { OPERAND_TYPE_DEBUG, "debug reg" },
3309 { OPERAND_TYPE_FLOATREG, "FReg" },
3310 { OPERAND_TYPE_FLOATACC, "FAcc" },
3311 { OPERAND_TYPE_SREG, "SReg" },
3312 { OPERAND_TYPE_REGMMX, "rMMX" },
3313 { OPERAND_TYPE_REGXMM, "rXMM" },
3314 { OPERAND_TYPE_REGYMM, "rYMM" },
3315 { OPERAND_TYPE_REGZMM, "rZMM" },
3316 { OPERAND_TYPE_REGTMM, "rTMM" },
3317 { OPERAND_TYPE_REGMASK, "Mask reg" },
3318 };
3319
3320 static void
3321 pt (i386_operand_type t)
3322 {
3323 unsigned int j;
3324 i386_operand_type a;
3325
3326 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3327 {
3328 a = operand_type_and (t, type_names[j].mask);
3329 if (operand_type_equal (&a, &type_names[j].mask))
3330 fprintf (stdout, "%s, ", type_names[j].name);
3331 }
3332 fflush (stdout);
3333 }
3334
3335 #endif /* DEBUG386 */
3336 \f
3337 static bfd_reloc_code_real_type
3338 reloc (unsigned int size,
3339 int pcrel,
3340 int sign,
3341 bfd_reloc_code_real_type other)
3342 {
3343 if (other != NO_RELOC)
3344 {
3345 reloc_howto_type *rel;
3346
3347 if (size == 8)
3348 switch (other)
3349 {
3350 case BFD_RELOC_X86_64_GOT32:
3351 return BFD_RELOC_X86_64_GOT64;
3352 break;
3353 case BFD_RELOC_X86_64_GOTPLT64:
3354 return BFD_RELOC_X86_64_GOTPLT64;
3355 break;
3356 case BFD_RELOC_X86_64_PLTOFF64:
3357 return BFD_RELOC_X86_64_PLTOFF64;
3358 break;
3359 case BFD_RELOC_X86_64_GOTPC32:
3360 other = BFD_RELOC_X86_64_GOTPC64;
3361 break;
3362 case BFD_RELOC_X86_64_GOTPCREL:
3363 other = BFD_RELOC_X86_64_GOTPCREL64;
3364 break;
3365 case BFD_RELOC_X86_64_TPOFF32:
3366 other = BFD_RELOC_X86_64_TPOFF64;
3367 break;
3368 case BFD_RELOC_X86_64_DTPOFF32:
3369 other = BFD_RELOC_X86_64_DTPOFF64;
3370 break;
3371 default:
3372 break;
3373 }
3374
3375 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3376 if (other == BFD_RELOC_SIZE32)
3377 {
3378 if (size == 8)
3379 other = BFD_RELOC_SIZE64;
3380 if (pcrel)
3381 {
3382 as_bad (_("there are no pc-relative size relocations"));
3383 return NO_RELOC;
3384 }
3385 }
3386 #endif
3387
3388 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3389 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3390 sign = -1;
3391
3392 rel = bfd_reloc_type_lookup (stdoutput, other);
3393 if (!rel)
3394 as_bad (_("unknown relocation (%u)"), other);
3395 else if (size != bfd_get_reloc_size (rel))
3396 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3397 bfd_get_reloc_size (rel),
3398 size);
3399 else if (pcrel && !rel->pc_relative)
3400 as_bad (_("non-pc-relative relocation for pc-relative field"));
3401 else if ((rel->complain_on_overflow == complain_overflow_signed
3402 && !sign)
3403 || (rel->complain_on_overflow == complain_overflow_unsigned
3404 && sign > 0))
3405 as_bad (_("relocated field and relocation type differ in signedness"));
3406 else
3407 return other;
3408 return NO_RELOC;
3409 }
3410
3411 if (pcrel)
3412 {
3413 if (!sign)
3414 as_bad (_("there are no unsigned pc-relative relocations"));
3415 switch (size)
3416 {
3417 case 1: return BFD_RELOC_8_PCREL;
3418 case 2: return BFD_RELOC_16_PCREL;
3419 case 4: return BFD_RELOC_32_PCREL;
3420 case 8: return BFD_RELOC_64_PCREL;
3421 }
3422 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3423 }
3424 else
3425 {
3426 if (sign > 0)
3427 switch (size)
3428 {
3429 case 4: return BFD_RELOC_X86_64_32S;
3430 }
3431 else
3432 switch (size)
3433 {
3434 case 1: return BFD_RELOC_8;
3435 case 2: return BFD_RELOC_16;
3436 case 4: return BFD_RELOC_32;
3437 case 8: return BFD_RELOC_64;
3438 }
3439 as_bad (_("cannot do %s %u byte relocation"),
3440 sign > 0 ? "signed" : "unsigned", size);
3441 }
3442
3443 return NO_RELOC;
3444 }
3445
3446 /* Here we decide which fixups can be adjusted to make them relative to
3447 the beginning of the section instead of the symbol. Basically we need
3448 to make sure that the dynamic relocations are done correctly, so in
3449 some cases we force the original symbol to be used. */
3450
3451 int
3452 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3453 {
3454 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3455 if (!IS_ELF)
3456 return 1;
3457
3458 /* Don't adjust pc-relative references to merge sections in 64-bit
3459 mode. */
3460 if (use_rela_relocations
3461 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3462 && fixP->fx_pcrel)
3463 return 0;
3464
3465 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3466 and changed later by validate_fix. */
3467 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3468 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3469 return 0;
3470
3471 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3472 for size relocations. */
3473 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3474 || fixP->fx_r_type == BFD_RELOC_SIZE64
3475 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3476 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3477 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3478 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3479 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3480 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3481 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3482 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3483 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3484 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3485 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3486 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3487 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3488 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3489 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3490 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3491 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3492 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3493 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3494 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3495 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3496 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3497 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3498 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3499 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3500 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3501 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3502 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3503 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3504 return 0;
3505 #endif
3506 return 1;
3507 }
3508
3509 static int
3510 intel_float_operand (const char *mnemonic)
3511 {
3512 /* Note that the value returned is meaningful only for opcodes with (memory)
3513 operands, hence the code here is free to improperly handle opcodes that
3514 have no operands (for better performance and smaller code). */
3515
3516 if (mnemonic[0] != 'f')
3517 return 0; /* non-math */
3518
3519 switch (mnemonic[1])
3520 {
3521 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3522 the fs segment override prefix not currently handled because no
3523 call path can make opcodes without operands get here */
3524 case 'i':
3525 return 2 /* integer op */;
3526 case 'l':
3527 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3528 return 3; /* fldcw/fldenv */
3529 break;
3530 case 'n':
3531 if (mnemonic[2] != 'o' /* fnop */)
3532 return 3; /* non-waiting control op */
3533 break;
3534 case 'r':
3535 if (mnemonic[2] == 's')
3536 return 3; /* frstor/frstpm */
3537 break;
3538 case 's':
3539 if (mnemonic[2] == 'a')
3540 return 3; /* fsave */
3541 if (mnemonic[2] == 't')
3542 {
3543 switch (mnemonic[3])
3544 {
3545 case 'c': /* fstcw */
3546 case 'd': /* fstdw */
3547 case 'e': /* fstenv */
3548 case 's': /* fsts[gw] */
3549 return 3;
3550 }
3551 }
3552 break;
3553 case 'x':
3554 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3555 return 0; /* fxsave/fxrstor are not really math ops */
3556 break;
3557 }
3558
3559 return 1;
3560 }
3561
3562 /* Build the VEX prefix. */
3563
3564 static void
3565 build_vex_prefix (const insn_template *t)
3566 {
3567 unsigned int register_specifier;
3568 unsigned int implied_prefix;
3569 unsigned int vector_length;
3570 unsigned int w;
3571
3572 /* Check register specifier. */
3573 if (i.vex.register_specifier)
3574 {
3575 register_specifier =
3576 ~register_number (i.vex.register_specifier) & 0xf;
3577 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3578 }
3579 else
3580 register_specifier = 0xf;
3581
3582 /* Use 2-byte VEX prefix by swapping destination and source operand
3583 if there are more than 1 register operand. */
3584 if (i.reg_operands > 1
3585 && i.vec_encoding != vex_encoding_vex3
3586 && i.dir_encoding == dir_encoding_default
3587 && i.operands == i.reg_operands
3588 && operand_type_equal (&i.types[0], &i.types[i.operands - 1])
3589 && i.tm.opcode_modifier.vexopcode == VEX0F
3590 && (i.tm.opcode_modifier.load || i.tm.opcode_modifier.d)
3591 && i.rex == REX_B)
3592 {
3593 unsigned int xchg = i.operands - 1;
3594 union i386_op temp_op;
3595 i386_operand_type temp_type;
3596
3597 temp_type = i.types[xchg];
3598 i.types[xchg] = i.types[0];
3599 i.types[0] = temp_type;
3600 temp_op = i.op[xchg];
3601 i.op[xchg] = i.op[0];
3602 i.op[0] = temp_op;
3603
3604 gas_assert (i.rm.mode == 3);
3605
3606 i.rex = REX_R;
3607 xchg = i.rm.regmem;
3608 i.rm.regmem = i.rm.reg;
3609 i.rm.reg = xchg;
3610
3611 if (i.tm.opcode_modifier.d)
3612 i.tm.base_opcode ^= (i.tm.base_opcode & 0xee) != 0x6e
3613 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
3614 else /* Use the next insn. */
3615 i.tm = t[1];
3616 }
3617
3618 /* Use 2-byte VEX prefix by swapping commutative source operands if there
3619 are no memory operands and at least 3 register ones. */
3620 if (i.reg_operands >= 3
3621 && i.vec_encoding != vex_encoding_vex3
3622 && i.reg_operands == i.operands - i.imm_operands
3623 && i.tm.opcode_modifier.vex
3624 && i.tm.opcode_modifier.commutative
3625 && (i.tm.opcode_modifier.sse2avx || optimize > 1)
3626 && i.rex == REX_B
3627 && i.vex.register_specifier
3628 && !(i.vex.register_specifier->reg_flags & RegRex))
3629 {
3630 unsigned int xchg = i.operands - i.reg_operands;
3631 union i386_op temp_op;
3632 i386_operand_type temp_type;
3633
3634 gas_assert (i.tm.opcode_modifier.vexopcode == VEX0F);
3635 gas_assert (!i.tm.opcode_modifier.sae);
3636 gas_assert (operand_type_equal (&i.types[i.operands - 2],
3637 &i.types[i.operands - 3]));
3638 gas_assert (i.rm.mode == 3);
3639
3640 temp_type = i.types[xchg];
3641 i.types[xchg] = i.types[xchg + 1];
3642 i.types[xchg + 1] = temp_type;
3643 temp_op = i.op[xchg];
3644 i.op[xchg] = i.op[xchg + 1];
3645 i.op[xchg + 1] = temp_op;
3646
3647 i.rex = 0;
3648 xchg = i.rm.regmem | 8;
3649 i.rm.regmem = ~register_specifier & 0xf;
3650 gas_assert (!(i.rm.regmem & 8));
3651 i.vex.register_specifier += xchg - i.rm.regmem;
3652 register_specifier = ~xchg & 0xf;
3653 }
3654
3655 if (i.tm.opcode_modifier.vex == VEXScalar)
3656 vector_length = avxscalar;
3657 else if (i.tm.opcode_modifier.vex == VEX256)
3658 vector_length = 1;
3659 else
3660 {
3661 unsigned int op;
3662
3663 /* Determine vector length from the last multi-length vector
3664 operand. */
3665 vector_length = 0;
3666 for (op = t->operands; op--;)
3667 if (t->operand_types[op].bitfield.xmmword
3668 && t->operand_types[op].bitfield.ymmword
3669 && i.types[op].bitfield.ymmword)
3670 {
3671 vector_length = 1;
3672 break;
3673 }
3674 }
3675
3676 switch ((i.tm.base_opcode >> (i.tm.opcode_length << 3)) & 0xff)
3677 {
3678 case 0:
3679 implied_prefix = 0;
3680 break;
3681 case DATA_PREFIX_OPCODE:
3682 implied_prefix = 1;
3683 break;
3684 case REPE_PREFIX_OPCODE:
3685 implied_prefix = 2;
3686 break;
3687 case REPNE_PREFIX_OPCODE:
3688 implied_prefix = 3;
3689 break;
3690 default:
3691 abort ();
3692 }
3693
3694 /* Check the REX.W bit and VEXW. */
3695 if (i.tm.opcode_modifier.vexw == VEXWIG)
3696 w = (vexwig == vexw1 || (i.rex & REX_W)) ? 1 : 0;
3697 else if (i.tm.opcode_modifier.vexw)
3698 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3699 else
3700 w = (flag_code == CODE_64BIT ? i.rex & REX_W : vexwig == vexw1) ? 1 : 0;
3701
3702 /* Use 2-byte VEX prefix if possible. */
3703 if (w == 0
3704 && i.vec_encoding != vex_encoding_vex3
3705 && i.tm.opcode_modifier.vexopcode == VEX0F
3706 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3707 {
3708 /* 2-byte VEX prefix. */
3709 unsigned int r;
3710
3711 i.vex.length = 2;
3712 i.vex.bytes[0] = 0xc5;
3713
3714 /* Check the REX.R bit. */
3715 r = (i.rex & REX_R) ? 0 : 1;
3716 i.vex.bytes[1] = (r << 7
3717 | register_specifier << 3
3718 | vector_length << 2
3719 | implied_prefix);
3720 }
3721 else
3722 {
3723 /* 3-byte VEX prefix. */
3724 unsigned int m;
3725
3726 i.vex.length = 3;
3727
3728 switch (i.tm.opcode_modifier.vexopcode)
3729 {
3730 case VEX0F:
3731 m = 0x1;
3732 i.vex.bytes[0] = 0xc4;
3733 break;
3734 case VEX0F38:
3735 m = 0x2;
3736 i.vex.bytes[0] = 0xc4;
3737 break;
3738 case VEX0F3A:
3739 m = 0x3;
3740 i.vex.bytes[0] = 0xc4;
3741 break;
3742 case XOP08:
3743 m = 0x8;
3744 i.vex.bytes[0] = 0x8f;
3745 break;
3746 case XOP09:
3747 m = 0x9;
3748 i.vex.bytes[0] = 0x8f;
3749 break;
3750 case XOP0A:
3751 m = 0xa;
3752 i.vex.bytes[0] = 0x8f;
3753 break;
3754 default:
3755 abort ();
3756 }
3757
3758 /* The high 3 bits of the second VEX byte are 1's compliment
3759 of RXB bits from REX. */
3760 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3761
3762 i.vex.bytes[2] = (w << 7
3763 | register_specifier << 3
3764 | vector_length << 2
3765 | implied_prefix);
3766 }
3767 }
3768
3769 static INLINE bfd_boolean
3770 is_evex_encoding (const insn_template *t)
3771 {
3772 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3773 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3774 || t->opcode_modifier.sae;
3775 }
3776
3777 static INLINE bfd_boolean
3778 is_any_vex_encoding (const insn_template *t)
3779 {
3780 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3781 || is_evex_encoding (t);
3782 }
3783
3784 /* Build the EVEX prefix. */
3785
3786 static void
3787 build_evex_prefix (void)
3788 {
3789 unsigned int register_specifier;
3790 unsigned int implied_prefix;
3791 unsigned int m, w;
3792 rex_byte vrex_used = 0;
3793
3794 /* Check register specifier. */
3795 if (i.vex.register_specifier)
3796 {
3797 gas_assert ((i.vrex & REX_X) == 0);
3798
3799 register_specifier = i.vex.register_specifier->reg_num;
3800 if ((i.vex.register_specifier->reg_flags & RegRex))
3801 register_specifier += 8;
3802 /* The upper 16 registers are encoded in the fourth byte of the
3803 EVEX prefix. */
3804 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3805 i.vex.bytes[3] = 0x8;
3806 register_specifier = ~register_specifier & 0xf;
3807 }
3808 else
3809 {
3810 register_specifier = 0xf;
3811
3812 /* Encode upper 16 vector index register in the fourth byte of
3813 the EVEX prefix. */
3814 if (!(i.vrex & REX_X))
3815 i.vex.bytes[3] = 0x8;
3816 else
3817 vrex_used |= REX_X;
3818 }
3819
3820 switch ((i.tm.base_opcode >> 8) & 0xff)
3821 {
3822 case 0:
3823 implied_prefix = 0;
3824 break;
3825 case DATA_PREFIX_OPCODE:
3826 implied_prefix = 1;
3827 break;
3828 case REPE_PREFIX_OPCODE:
3829 implied_prefix = 2;
3830 break;
3831 case REPNE_PREFIX_OPCODE:
3832 implied_prefix = 3;
3833 break;
3834 default:
3835 abort ();
3836 }
3837
3838 /* 4 byte EVEX prefix. */
3839 i.vex.length = 4;
3840 i.vex.bytes[0] = 0x62;
3841
3842 /* mmmm bits. */
3843 switch (i.tm.opcode_modifier.vexopcode)
3844 {
3845 case VEX0F:
3846 m = 1;
3847 break;
3848 case VEX0F38:
3849 m = 2;
3850 break;
3851 case VEX0F3A:
3852 m = 3;
3853 break;
3854 default:
3855 abort ();
3856 break;
3857 }
3858
3859 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3860 bits from REX. */
3861 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3862
3863 /* The fifth bit of the second EVEX byte is 1's compliment of the
3864 REX_R bit in VREX. */
3865 if (!(i.vrex & REX_R))
3866 i.vex.bytes[1] |= 0x10;
3867 else
3868 vrex_used |= REX_R;
3869
3870 if ((i.reg_operands + i.imm_operands) == i.operands)
3871 {
3872 /* When all operands are registers, the REX_X bit in REX is not
3873 used. We reuse it to encode the upper 16 registers, which is
3874 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3875 as 1's compliment. */
3876 if ((i.vrex & REX_B))
3877 {
3878 vrex_used |= REX_B;
3879 i.vex.bytes[1] &= ~0x40;
3880 }
3881 }
3882
3883 /* EVEX instructions shouldn't need the REX prefix. */
3884 i.vrex &= ~vrex_used;
3885 gas_assert (i.vrex == 0);
3886
3887 /* Check the REX.W bit and VEXW. */
3888 if (i.tm.opcode_modifier.vexw == VEXWIG)
3889 w = (evexwig == evexw1 || (i.rex & REX_W)) ? 1 : 0;
3890 else if (i.tm.opcode_modifier.vexw)
3891 w = i.tm.opcode_modifier.vexw == VEXW1 ? 1 : 0;
3892 else
3893 w = (flag_code == CODE_64BIT ? i.rex & REX_W : evexwig == evexw1) ? 1 : 0;
3894
3895 /* Encode the U bit. */
3896 implied_prefix |= 0x4;
3897
3898 /* The third byte of the EVEX prefix. */
3899 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3900
3901 /* The fourth byte of the EVEX prefix. */
3902 /* The zeroing-masking bit. */
3903 if (i.mask && i.mask->zeroing)
3904 i.vex.bytes[3] |= 0x80;
3905
3906 /* Don't always set the broadcast bit if there is no RC. */
3907 if (!i.rounding)
3908 {
3909 /* Encode the vector length. */
3910 unsigned int vec_length;
3911
3912 if (!i.tm.opcode_modifier.evex
3913 || i.tm.opcode_modifier.evex == EVEXDYN)
3914 {
3915 unsigned int op;
3916
3917 /* Determine vector length from the last multi-length vector
3918 operand. */
3919 for (op = i.operands; op--;)
3920 if (i.tm.operand_types[op].bitfield.xmmword
3921 + i.tm.operand_types[op].bitfield.ymmword
3922 + i.tm.operand_types[op].bitfield.zmmword > 1)
3923 {
3924 if (i.types[op].bitfield.zmmword)
3925 {
3926 i.tm.opcode_modifier.evex = EVEX512;
3927 break;
3928 }
3929 else if (i.types[op].bitfield.ymmword)
3930 {
3931 i.tm.opcode_modifier.evex = EVEX256;
3932 break;
3933 }
3934 else if (i.types[op].bitfield.xmmword)
3935 {
3936 i.tm.opcode_modifier.evex = EVEX128;
3937 break;
3938 }
3939 else if (i.broadcast && (int) op == i.broadcast->operand)
3940 {
3941 switch (i.broadcast->bytes)
3942 {
3943 case 64:
3944 i.tm.opcode_modifier.evex = EVEX512;
3945 break;
3946 case 32:
3947 i.tm.opcode_modifier.evex = EVEX256;
3948 break;
3949 case 16:
3950 i.tm.opcode_modifier.evex = EVEX128;
3951 break;
3952 default:
3953 abort ();
3954 }
3955 break;
3956 }
3957 }
3958
3959 if (op >= MAX_OPERANDS)
3960 abort ();
3961 }
3962
3963 switch (i.tm.opcode_modifier.evex)
3964 {
3965 case EVEXLIG: /* LL' is ignored */
3966 vec_length = evexlig << 5;
3967 break;
3968 case EVEX128:
3969 vec_length = 0 << 5;
3970 break;
3971 case EVEX256:
3972 vec_length = 1 << 5;
3973 break;
3974 case EVEX512:
3975 vec_length = 2 << 5;
3976 break;
3977 default:
3978 abort ();
3979 break;
3980 }
3981 i.vex.bytes[3] |= vec_length;
3982 /* Encode the broadcast bit. */
3983 if (i.broadcast)
3984 i.vex.bytes[3] |= 0x10;
3985 }
3986 else
3987 {
3988 if (i.rounding->type != saeonly)
3989 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3990 else
3991 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3992 }
3993
3994 if (i.mask && i.mask->mask)
3995 i.vex.bytes[3] |= i.mask->mask->reg_num;
3996 }
3997
3998 static void
3999 process_immext (void)
4000 {
4001 expressionS *exp;
4002
4003 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
4004 which is coded in the same place as an 8-bit immediate field
4005 would be. Here we fake an 8-bit immediate operand from the
4006 opcode suffix stored in tm.extension_opcode.
4007
4008 AVX instructions also use this encoding, for some of
4009 3 argument instructions. */
4010
4011 gas_assert (i.imm_operands <= 1
4012 && (i.operands <= 2
4013 || (is_any_vex_encoding (&i.tm)
4014 && i.operands <= 4)));
4015
4016 exp = &im_expressions[i.imm_operands++];
4017 i.op[i.operands].imms = exp;
4018 i.types[i.operands] = imm8;
4019 i.operands++;
4020 exp->X_op = O_constant;
4021 exp->X_add_number = i.tm.extension_opcode;
4022 i.tm.extension_opcode = None;
4023 }
4024
4025
4026 static int
4027 check_hle (void)
4028 {
4029 switch (i.tm.opcode_modifier.hleprefixok)
4030 {
4031 default:
4032 abort ();
4033 case HLEPrefixNone:
4034 as_bad (_("invalid instruction `%s' after `%s'"),
4035 i.tm.name, i.hle_prefix);
4036 return 0;
4037 case HLEPrefixLock:
4038 if (i.prefix[LOCK_PREFIX])
4039 return 1;
4040 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
4041 return 0;
4042 case HLEPrefixAny:
4043 return 1;
4044 case HLEPrefixRelease:
4045 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
4046 {
4047 as_bad (_("instruction `%s' after `xacquire' not allowed"),
4048 i.tm.name);
4049 return 0;
4050 }
4051 if (i.mem_operands == 0 || !(i.flags[i.operands - 1] & Operand_Mem))
4052 {
4053 as_bad (_("memory destination needed for instruction `%s'"
4054 " after `xrelease'"), i.tm.name);
4055 return 0;
4056 }
4057 return 1;
4058 }
4059 }
4060
4061 /* Try the shortest encoding by shortening operand size. */
4062
4063 static void
4064 optimize_encoding (void)
4065 {
4066 unsigned int j;
4067
4068 if (optimize_for_space
4069 && !is_any_vex_encoding (&i.tm)
4070 && i.reg_operands == 1
4071 && i.imm_operands == 1
4072 && !i.types[1].bitfield.byte
4073 && i.op[0].imms->X_op == O_constant
4074 && fits_in_imm7 (i.op[0].imms->X_add_number)
4075 && (i.tm.base_opcode == 0xa8
4076 || (i.tm.base_opcode == 0xf6
4077 && i.tm.extension_opcode == 0x0)))
4078 {
4079 /* Optimize: -Os:
4080 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
4081 */
4082 unsigned int base_regnum = i.op[1].regs->reg_num;
4083 if (flag_code == CODE_64BIT || base_regnum < 4)
4084 {
4085 i.types[1].bitfield.byte = 1;
4086 /* Ignore the suffix. */
4087 i.suffix = 0;
4088 /* Convert to byte registers. */
4089 if (i.types[1].bitfield.word)
4090 j = 16;
4091 else if (i.types[1].bitfield.dword)
4092 j = 32;
4093 else
4094 j = 48;
4095 if (!(i.op[1].regs->reg_flags & RegRex) && base_regnum < 4)
4096 j += 8;
4097 i.op[1].regs -= j;
4098 }
4099 }
4100 else if (flag_code == CODE_64BIT
4101 && !is_any_vex_encoding (&i.tm)
4102 && ((i.types[1].bitfield.qword
4103 && i.reg_operands == 1
4104 && i.imm_operands == 1
4105 && i.op[0].imms->X_op == O_constant
4106 && ((i.tm.base_opcode == 0xb8
4107 && i.tm.extension_opcode == None
4108 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
4109 || (fits_in_imm31 (i.op[0].imms->X_add_number)
4110 && ((i.tm.base_opcode == 0x24
4111 || i.tm.base_opcode == 0xa8)
4112 || (i.tm.base_opcode == 0x80
4113 && i.tm.extension_opcode == 0x4)
4114 || ((i.tm.base_opcode == 0xf6
4115 || (i.tm.base_opcode | 1) == 0xc7)
4116 && i.tm.extension_opcode == 0x0)))
4117 || (fits_in_imm7 (i.op[0].imms->X_add_number)
4118 && i.tm.base_opcode == 0x83
4119 && i.tm.extension_opcode == 0x4)))
4120 || (i.types[0].bitfield.qword
4121 && ((i.reg_operands == 2
4122 && i.op[0].regs == i.op[1].regs
4123 && (i.tm.base_opcode == 0x30
4124 || i.tm.base_opcode == 0x28))
4125 || (i.reg_operands == 1
4126 && i.operands == 1
4127 && i.tm.base_opcode == 0x30)))))
4128 {
4129 /* Optimize: -O:
4130 andq $imm31, %r64 -> andl $imm31, %r32
4131 andq $imm7, %r64 -> andl $imm7, %r32
4132 testq $imm31, %r64 -> testl $imm31, %r32
4133 xorq %r64, %r64 -> xorl %r32, %r32
4134 subq %r64, %r64 -> subl %r32, %r32
4135 movq $imm31, %r64 -> movl $imm31, %r32
4136 movq $imm32, %r64 -> movl $imm32, %r32
4137 */
4138 i.tm.opcode_modifier.norex64 = 1;
4139 if (i.tm.base_opcode == 0xb8 || (i.tm.base_opcode | 1) == 0xc7)
4140 {
4141 /* Handle
4142 movq $imm31, %r64 -> movl $imm31, %r32
4143 movq $imm32, %r64 -> movl $imm32, %r32
4144 */
4145 i.tm.operand_types[0].bitfield.imm32 = 1;
4146 i.tm.operand_types[0].bitfield.imm32s = 0;
4147 i.tm.operand_types[0].bitfield.imm64 = 0;
4148 i.types[0].bitfield.imm32 = 1;
4149 i.types[0].bitfield.imm32s = 0;
4150 i.types[0].bitfield.imm64 = 0;
4151 i.types[1].bitfield.dword = 1;
4152 i.types[1].bitfield.qword = 0;
4153 if ((i.tm.base_opcode | 1) == 0xc7)
4154 {
4155 /* Handle
4156 movq $imm31, %r64 -> movl $imm31, %r32
4157 */
4158 i.tm.base_opcode = 0xb8;
4159 i.tm.extension_opcode = None;
4160 i.tm.opcode_modifier.w = 0;
4161 i.tm.opcode_modifier.modrm = 0;
4162 }
4163 }
4164 }
4165 else if (optimize > 1
4166 && !optimize_for_space
4167 && !is_any_vex_encoding (&i.tm)
4168 && i.reg_operands == 2
4169 && i.op[0].regs == i.op[1].regs
4170 && ((i.tm.base_opcode & ~(Opcode_D | 1)) == 0x8
4171 || (i.tm.base_opcode & ~(Opcode_D | 1)) == 0x20)
4172 && (flag_code != CODE_64BIT || !i.types[0].bitfield.dword))
4173 {
4174 /* Optimize: -O2:
4175 andb %rN, %rN -> testb %rN, %rN
4176 andw %rN, %rN -> testw %rN, %rN
4177 andq %rN, %rN -> testq %rN, %rN
4178 orb %rN, %rN -> testb %rN, %rN
4179 orw %rN, %rN -> testw %rN, %rN
4180 orq %rN, %rN -> testq %rN, %rN
4181
4182 and outside of 64-bit mode
4183
4184 andl %rN, %rN -> testl %rN, %rN
4185 orl %rN, %rN -> testl %rN, %rN
4186 */
4187 i.tm.base_opcode = 0x84 | (i.tm.base_opcode & 1);
4188 }
4189 else if (i.reg_operands == 3
4190 && i.op[0].regs == i.op[1].regs
4191 && !i.types[2].bitfield.xmmword
4192 && (i.tm.opcode_modifier.vex
4193 || ((!i.mask || i.mask->zeroing)
4194 && !i.rounding
4195 && is_evex_encoding (&i.tm)
4196 && (i.vec_encoding != vex_encoding_evex
4197 || cpu_arch_isa_flags.bitfield.cpuavx512vl
4198 || i.tm.cpu_flags.bitfield.cpuavx512vl
4199 || (i.tm.operand_types[2].bitfield.zmmword
4200 && i.types[2].bitfield.ymmword))))
4201 && ((i.tm.base_opcode == 0x55
4202 || i.tm.base_opcode == 0x6655
4203 || i.tm.base_opcode == 0x66df
4204 || i.tm.base_opcode == 0x57
4205 || i.tm.base_opcode == 0x6657
4206 || i.tm.base_opcode == 0x66ef
4207 || i.tm.base_opcode == 0x66f8
4208 || i.tm.base_opcode == 0x66f9
4209 || i.tm.base_opcode == 0x66fa
4210 || i.tm.base_opcode == 0x66fb
4211 || i.tm.base_opcode == 0x42
4212 || i.tm.base_opcode == 0x6642
4213 || i.tm.base_opcode == 0x47
4214 || i.tm.base_opcode == 0x6647)
4215 && i.tm.extension_opcode == None))
4216 {
4217 /* Optimize: -O1:
4218 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
4219 vpsubq and vpsubw:
4220 EVEX VOP %zmmM, %zmmM, %zmmN
4221 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4222 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4223 EVEX VOP %ymmM, %ymmM, %ymmN
4224 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
4225 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4226 VEX VOP %ymmM, %ymmM, %ymmN
4227 -> VEX VOP %xmmM, %xmmM, %xmmN
4228 VOP, one of vpandn and vpxor:
4229 VEX VOP %ymmM, %ymmM, %ymmN
4230 -> VEX VOP %xmmM, %xmmM, %xmmN
4231 VOP, one of vpandnd and vpandnq:
4232 EVEX VOP %zmmM, %zmmM, %zmmN
4233 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4234 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4235 EVEX VOP %ymmM, %ymmM, %ymmN
4236 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
4237 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4238 VOP, one of vpxord and vpxorq:
4239 EVEX VOP %zmmM, %zmmM, %zmmN
4240 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4241 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4242 EVEX VOP %ymmM, %ymmM, %ymmN
4243 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
4244 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16) (-O2)
4245 VOP, one of kxord and kxorq:
4246 VEX VOP %kM, %kM, %kN
4247 -> VEX kxorw %kM, %kM, %kN
4248 VOP, one of kandnd and kandnq:
4249 VEX VOP %kM, %kM, %kN
4250 -> VEX kandnw %kM, %kM, %kN
4251 */
4252 if (is_evex_encoding (&i.tm))
4253 {
4254 if (i.vec_encoding != vex_encoding_evex)
4255 {
4256 i.tm.opcode_modifier.vex = VEX128;
4257 i.tm.opcode_modifier.vexw = VEXW0;
4258 i.tm.opcode_modifier.evex = 0;
4259 }
4260 else if (optimize > 1)
4261 i.tm.opcode_modifier.evex = EVEX128;
4262 else
4263 return;
4264 }
4265 else if (i.tm.operand_types[0].bitfield.class == RegMask)
4266 {
4267 i.tm.base_opcode &= 0xff;
4268 i.tm.opcode_modifier.vexw = VEXW0;
4269 }
4270 else
4271 i.tm.opcode_modifier.vex = VEX128;
4272
4273 if (i.tm.opcode_modifier.vex)
4274 for (j = 0; j < 3; j++)
4275 {
4276 i.types[j].bitfield.xmmword = 1;
4277 i.types[j].bitfield.ymmword = 0;
4278 }
4279 }
4280 else if (i.vec_encoding != vex_encoding_evex
4281 && !i.types[0].bitfield.zmmword
4282 && !i.types[1].bitfield.zmmword
4283 && !i.mask
4284 && !i.broadcast
4285 && is_evex_encoding (&i.tm)
4286 && ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0x666f
4287 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf36f
4288 || (i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f
4289 || (i.tm.base_opcode & ~4) == 0x66db
4290 || (i.tm.base_opcode & ~4) == 0x66eb)
4291 && i.tm.extension_opcode == None)
4292 {
4293 /* Optimize: -O1:
4294 VOP, one of vmovdqa32, vmovdqa64, vmovdqu8, vmovdqu16,
4295 vmovdqu32 and vmovdqu64:
4296 EVEX VOP %xmmM, %xmmN
4297 -> VEX vmovdqa|vmovdqu %xmmM, %xmmN (M and N < 16)
4298 EVEX VOP %ymmM, %ymmN
4299 -> VEX vmovdqa|vmovdqu %ymmM, %ymmN (M and N < 16)
4300 EVEX VOP %xmmM, mem
4301 -> VEX vmovdqa|vmovdqu %xmmM, mem (M < 16)
4302 EVEX VOP %ymmM, mem
4303 -> VEX vmovdqa|vmovdqu %ymmM, mem (M < 16)
4304 EVEX VOP mem, %xmmN
4305 -> VEX mvmovdqa|vmovdquem, %xmmN (N < 16)
4306 EVEX VOP mem, %ymmN
4307 -> VEX vmovdqa|vmovdqu mem, %ymmN (N < 16)
4308 VOP, one of vpand, vpandn, vpor, vpxor:
4309 EVEX VOP{d,q} %xmmL, %xmmM, %xmmN
4310 -> VEX VOP %xmmL, %xmmM, %xmmN (L, M, and N < 16)
4311 EVEX VOP{d,q} %ymmL, %ymmM, %ymmN
4312 -> VEX VOP %ymmL, %ymmM, %ymmN (L, M, and N < 16)
4313 EVEX VOP{d,q} mem, %xmmM, %xmmN
4314 -> VEX VOP mem, %xmmM, %xmmN (M and N < 16)
4315 EVEX VOP{d,q} mem, %ymmM, %ymmN
4316 -> VEX VOP mem, %ymmM, %ymmN (M and N < 16)
4317 */
4318 for (j = 0; j < i.operands; j++)
4319 if (operand_type_check (i.types[j], disp)
4320 && i.op[j].disps->X_op == O_constant)
4321 {
4322 /* Since the VEX prefix has 2 or 3 bytes, the EVEX prefix
4323 has 4 bytes, EVEX Disp8 has 1 byte and VEX Disp32 has 4
4324 bytes, we choose EVEX Disp8 over VEX Disp32. */
4325 int evex_disp8, vex_disp8;
4326 unsigned int memshift = i.memshift;
4327 offsetT n = i.op[j].disps->X_add_number;
4328
4329 evex_disp8 = fits_in_disp8 (n);
4330 i.memshift = 0;
4331 vex_disp8 = fits_in_disp8 (n);
4332 if (evex_disp8 != vex_disp8)
4333 {
4334 i.memshift = memshift;
4335 return;
4336 }
4337
4338 i.types[j].bitfield.disp8 = vex_disp8;
4339 break;
4340 }
4341 if ((i.tm.base_opcode & ~Opcode_SIMD_IntD) == 0xf26f)
4342 i.tm.base_opcode ^= 0xf36f ^ 0xf26f;
4343 i.tm.opcode_modifier.vex
4344 = i.types[0].bitfield.ymmword ? VEX256 : VEX128;
4345 i.tm.opcode_modifier.vexw = VEXW0;
4346 /* VPAND, VPOR, and VPXOR are commutative. */
4347 if (i.reg_operands == 3 && i.tm.base_opcode != 0x66df)
4348 i.tm.opcode_modifier.commutative = 1;
4349 i.tm.opcode_modifier.evex = 0;
4350 i.tm.opcode_modifier.masking = 0;
4351 i.tm.opcode_modifier.broadcast = 0;
4352 i.tm.opcode_modifier.disp8memshift = 0;
4353 i.memshift = 0;
4354 if (j < i.operands)
4355 i.types[j].bitfield.disp8
4356 = fits_in_disp8 (i.op[j].disps->X_add_number);
4357 }
4358 }
4359
4360 /* Return non-zero for load instruction. */
4361
4362 static int
4363 load_insn_p (void)
4364 {
4365 unsigned int dest;
4366 int any_vex_p = is_any_vex_encoding (&i.tm);
4367 unsigned int base_opcode = i.tm.base_opcode | 1;
4368
4369 if (!any_vex_p)
4370 {
4371 /* Anysize insns: lea, invlpg, clflush, prefetchnta, prefetcht0,
4372 prefetcht1, prefetcht2, prefetchtw, bndmk, bndcl, bndcu, bndcn,
4373 bndstx, bndldx, prefetchwt1, clflushopt, clwb, cldemote. */
4374 if (i.tm.opcode_modifier.anysize)
4375 return 0;
4376
4377 /* pop, popf, popa. */
4378 if (strcmp (i.tm.name, "pop") == 0
4379 || i.tm.base_opcode == 0x9d
4380 || i.tm.base_opcode == 0x61)
4381 return 1;
4382
4383 /* movs, cmps, lods, scas. */
4384 if ((i.tm.base_opcode | 0xb) == 0xaf)
4385 return 1;
4386
4387 /* outs, xlatb. */
4388 if (base_opcode == 0x6f
4389 || i.tm.base_opcode == 0xd7)
4390 return 1;
4391 /* NB: For AMD-specific insns with implicit memory operands,
4392 they're intentionally not covered. */
4393 }
4394
4395 /* No memory operand. */
4396 if (!i.mem_operands)
4397 return 0;
4398
4399 if (any_vex_p)
4400 {
4401 /* vldmxcsr. */
4402 if (i.tm.base_opcode == 0xae
4403 && i.tm.opcode_modifier.vex
4404 && i.tm.opcode_modifier.vexopcode == VEX0F
4405 && i.tm.extension_opcode == 2)
4406 return 1;
4407 }
4408 else
4409 {
4410 /* test, not, neg, mul, imul, div, idiv. */
4411 if ((i.tm.base_opcode == 0xf6 || i.tm.base_opcode == 0xf7)
4412 && i.tm.extension_opcode != 1)
4413 return 1;
4414
4415 /* inc, dec. */
4416 if (base_opcode == 0xff && i.tm.extension_opcode <= 1)
4417 return 1;
4418
4419 /* add, or, adc, sbb, and, sub, xor, cmp. */
4420 if (i.tm.base_opcode >= 0x80 && i.tm.base_opcode <= 0x83)
4421 return 1;
4422
4423 /* bt, bts, btr, btc. */
4424 if (i.tm.base_opcode == 0xfba
4425 && (i.tm.extension_opcode >= 4 && i.tm.extension_opcode <= 7))
4426 return 1;
4427
4428 /* rol, ror, rcl, rcr, shl/sal, shr, sar. */
4429 if ((base_opcode == 0xc1
4430 || (i.tm.base_opcode >= 0xd0 && i.tm.base_opcode <= 0xd3))
4431 && i.tm.extension_opcode != 6)
4432 return 1;
4433
4434 /* cmpxchg8b, cmpxchg16b, xrstors. */
4435 if (i.tm.base_opcode == 0xfc7
4436 && (i.tm.extension_opcode == 1 || i.tm.extension_opcode == 3))
4437 return 1;
4438
4439 /* fxrstor, ldmxcsr, xrstor. */
4440 if (i.tm.base_opcode == 0xfae
4441 && (i.tm.extension_opcode == 1
4442 || i.tm.extension_opcode == 2
4443 || i.tm.extension_opcode == 5))
4444 return 1;
4445
4446 /* lgdt, lidt, lmsw. */
4447 if (i.tm.base_opcode == 0xf01
4448 && (i.tm.extension_opcode == 2
4449 || i.tm.extension_opcode == 3
4450 || i.tm.extension_opcode == 6))
4451 return 1;
4452
4453 /* vmptrld */
4454 if (i.tm.base_opcode == 0xfc7
4455 && i.tm.extension_opcode == 6)
4456 return 1;
4457
4458 /* Check for x87 instructions. */
4459 if (i.tm.base_opcode >= 0xd8 && i.tm.base_opcode <= 0xdf)
4460 {
4461 /* Skip fst, fstp, fstenv, fstcw. */
4462 if (i.tm.base_opcode == 0xd9
4463 && (i.tm.extension_opcode == 2
4464 || i.tm.extension_opcode == 3
4465 || i.tm.extension_opcode == 6
4466 || i.tm.extension_opcode == 7))
4467 return 0;
4468
4469 /* Skip fisttp, fist, fistp, fstp. */
4470 if (i.tm.base_opcode == 0xdb
4471 && (i.tm.extension_opcode == 1
4472 || i.tm.extension_opcode == 2
4473 || i.tm.extension_opcode == 3
4474 || i.tm.extension_opcode == 7))
4475 return 0;
4476
4477 /* Skip fisttp, fst, fstp, fsave, fstsw. */
4478 if (i.tm.base_opcode == 0xdd
4479 && (i.tm.extension_opcode == 1
4480 || i.tm.extension_opcode == 2
4481 || i.tm.extension_opcode == 3
4482 || i.tm.extension_opcode == 6
4483 || i.tm.extension_opcode == 7))
4484 return 0;
4485
4486 /* Skip fisttp, fist, fistp, fbstp, fistp. */
4487 if (i.tm.base_opcode == 0xdf
4488 && (i.tm.extension_opcode == 1
4489 || i.tm.extension_opcode == 2
4490 || i.tm.extension_opcode == 3
4491 || i.tm.extension_opcode == 6
4492 || i.tm.extension_opcode == 7))
4493 return 0;
4494
4495 return 1;
4496 }
4497 }
4498
4499 dest = i.operands - 1;
4500
4501 /* Check fake imm8 operand and 3 source operands. */
4502 if ((i.tm.opcode_modifier.immext
4503 || i.tm.opcode_modifier.vexsources == VEX3SOURCES)
4504 && i.types[dest].bitfield.imm8)
4505 dest--;
4506
4507 /* add, or, adc, sbb, and, sub, xor, cmp, test, xchg, xadd */
4508 if (!any_vex_p
4509 && (base_opcode == 0x1
4510 || base_opcode == 0x9
4511 || base_opcode == 0x11
4512 || base_opcode == 0x19
4513 || base_opcode == 0x21
4514 || base_opcode == 0x29
4515 || base_opcode == 0x31
4516 || base_opcode == 0x39
4517 || (i.tm.base_opcode >= 0x84 && i.tm.base_opcode <= 0x87)
4518 || base_opcode == 0xfc1))
4519 return 1;
4520
4521 /* Check for load instruction. */
4522 return (i.types[dest].bitfield.class != ClassNone
4523 || i.types[dest].bitfield.instance == Accum);
4524 }
4525
4526 /* Output lfence, 0xfaee8, after instruction. */
4527
4528 static void
4529 insert_lfence_after (void)
4530 {
4531 if (lfence_after_load && load_insn_p ())
4532 {
4533 /* There are also two REP string instructions that require
4534 special treatment. Specifically, the compare string (CMPS)
4535 and scan string (SCAS) instructions set EFLAGS in a manner
4536 that depends on the data being compared/scanned. When used
4537 with a REP prefix, the number of iterations may therefore
4538 vary depending on this data. If the data is a program secret
4539 chosen by the adversary using an LVI method,
4540 then this data-dependent behavior may leak some aspect
4541 of the secret. */
4542 if (((i.tm.base_opcode | 0x1) == 0xa7
4543 || (i.tm.base_opcode | 0x1) == 0xaf)
4544 && i.prefix[REP_PREFIX])
4545 {
4546 as_warn (_("`%s` changes flags which would affect control flow behavior"),
4547 i.tm.name);
4548 }
4549 char *p = frag_more (3);
4550 *p++ = 0xf;
4551 *p++ = 0xae;
4552 *p = 0xe8;
4553 }
4554 }
4555
4556 /* Output lfence, 0xfaee8, before instruction. */
4557
4558 static void
4559 insert_lfence_before (void)
4560 {
4561 char *p;
4562
4563 if (is_any_vex_encoding (&i.tm))
4564 return;
4565
4566 if (i.tm.base_opcode == 0xff
4567 && (i.tm.extension_opcode == 2 || i.tm.extension_opcode == 4))
4568 {
4569 /* Insert lfence before indirect branch if needed. */
4570
4571 if (lfence_before_indirect_branch == lfence_branch_none)
4572 return;
4573
4574 if (i.operands != 1)
4575 abort ();
4576
4577 if (i.reg_operands == 1)
4578 {
4579 /* Indirect branch via register. Don't insert lfence with
4580 -mlfence-after-load=yes. */
4581 if (lfence_after_load
4582 || lfence_before_indirect_branch == lfence_branch_memory)
4583 return;
4584 }
4585 else if (i.mem_operands == 1
4586 && lfence_before_indirect_branch != lfence_branch_register)
4587 {
4588 as_warn (_("indirect `%s` with memory operand should be avoided"),
4589 i.tm.name);
4590 return;
4591 }
4592 else
4593 return;
4594
4595 if (last_insn.kind != last_insn_other
4596 && last_insn.seg == now_seg)
4597 {
4598 as_warn_where (last_insn.file, last_insn.line,
4599 _("`%s` skips -mlfence-before-indirect-branch on `%s`"),
4600 last_insn.name, i.tm.name);
4601 return;
4602 }
4603
4604 p = frag_more (3);
4605 *p++ = 0xf;
4606 *p++ = 0xae;
4607 *p = 0xe8;
4608 return;
4609 }
4610
4611 /* Output or/not/shl and lfence before near ret. */
4612 if (lfence_before_ret != lfence_before_ret_none
4613 && (i.tm.base_opcode == 0xc2
4614 || i.tm.base_opcode == 0xc3))
4615 {
4616 if (last_insn.kind != last_insn_other
4617 && last_insn.seg == now_seg)
4618 {
4619 as_warn_where (last_insn.file, last_insn.line,
4620 _("`%s` skips -mlfence-before-ret on `%s`"),
4621 last_insn.name, i.tm.name);
4622 return;
4623 }
4624
4625 /* Near ret ingore operand size override under CPU64. */
4626 char prefix = flag_code == CODE_64BIT
4627 ? 0x48
4628 : i.prefix[DATA_PREFIX] ? 0x66 : 0x0;
4629
4630 if (lfence_before_ret == lfence_before_ret_not)
4631 {
4632 /* not: 0xf71424, may add prefix
4633 for operand size override or 64-bit code. */
4634 p = frag_more ((prefix ? 2 : 0) + 6 + 3);
4635 if (prefix)
4636 *p++ = prefix;
4637 *p++ = 0xf7;
4638 *p++ = 0x14;
4639 *p++ = 0x24;
4640 if (prefix)
4641 *p++ = prefix;
4642 *p++ = 0xf7;
4643 *p++ = 0x14;
4644 *p++ = 0x24;
4645 }
4646 else
4647 {
4648 p = frag_more ((prefix ? 1 : 0) + 4 + 3);
4649 if (prefix)
4650 *p++ = prefix;
4651 if (lfence_before_ret == lfence_before_ret_or)
4652 {
4653 /* or: 0x830c2400, may add prefix
4654 for operand size override or 64-bit code. */
4655 *p++ = 0x83;
4656 *p++ = 0x0c;
4657 }
4658 else
4659 {
4660 /* shl: 0xc1242400, may add prefix
4661 for operand size override or 64-bit code. */
4662 *p++ = 0xc1;
4663 *p++ = 0x24;
4664 }
4665
4666 *p++ = 0x24;
4667 *p++ = 0x0;
4668 }
4669
4670 *p++ = 0xf;
4671 *p++ = 0xae;
4672 *p = 0xe8;
4673 }
4674 }
4675
4676 /* This is the guts of the machine-dependent assembler. LINE points to a
4677 machine dependent instruction. This function is supposed to emit
4678 the frags/bytes it assembles to. */
4679
4680 void
4681 md_assemble (char *line)
4682 {
4683 unsigned int j;
4684 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4685 const insn_template *t;
4686
4687 /* Initialize globals. */
4688 memset (&i, '\0', sizeof (i));
4689 for (j = 0; j < MAX_OPERANDS; j++)
4690 i.reloc[j] = NO_RELOC;
4691 memset (disp_expressions, '\0', sizeof (disp_expressions));
4692 memset (im_expressions, '\0', sizeof (im_expressions));
4693 save_stack_p = save_stack;
4694
4695 /* First parse an instruction mnemonic & call i386_operand for the operands.
4696 We assume that the scrubber has arranged it so that line[0] is the valid
4697 start of a (possibly prefixed) mnemonic. */
4698
4699 line = parse_insn (line, mnemonic);
4700 if (line == NULL)
4701 return;
4702 mnem_suffix = i.suffix;
4703
4704 line = parse_operands (line, mnemonic);
4705 this_operand = -1;
4706 xfree (i.memop1_string);
4707 i.memop1_string = NULL;
4708 if (line == NULL)
4709 return;
4710
4711 /* Now we've parsed the mnemonic into a set of templates, and have the
4712 operands at hand. */
4713
4714 /* All Intel opcodes have reversed operands except for "bound", "enter",
4715 "monitor*", "mwait*", "tpause", and "umwait". We also don't reverse
4716 intersegment "jmp" and "call" instructions with 2 immediate operands so
4717 that the immediate segment precedes the offset, as it does when in AT&T
4718 mode. */
4719 if (intel_syntax
4720 && i.operands > 1
4721 && (strcmp (mnemonic, "bound") != 0)
4722 && (strcmp (mnemonic, "invlpga") != 0)
4723 && (strncmp (mnemonic, "monitor", 7) != 0)
4724 && (strncmp (mnemonic, "mwait", 5) != 0)
4725 && (strcmp (mnemonic, "tpause") != 0)
4726 && (strcmp (mnemonic, "umwait") != 0)
4727 && !(operand_type_check (i.types[0], imm)
4728 && operand_type_check (i.types[1], imm)))
4729 swap_operands ();
4730
4731 /* The order of the immediates should be reversed
4732 for 2 immediates extrq and insertq instructions */
4733 if (i.imm_operands == 2
4734 && (strcmp (mnemonic, "extrq") == 0
4735 || strcmp (mnemonic, "insertq") == 0))
4736 swap_2_operands (0, 1);
4737
4738 if (i.imm_operands)
4739 optimize_imm ();
4740
4741 /* Don't optimize displacement for movabs since it only takes 64bit
4742 displacement. */
4743 if (i.disp_operands
4744 && i.disp_encoding != disp_encoding_32bit
4745 && (flag_code != CODE_64BIT
4746 || strcmp (mnemonic, "movabs") != 0))
4747 optimize_disp ();
4748
4749 /* Next, we find a template that matches the given insn,
4750 making sure the overlap of the given operands types is consistent
4751 with the template operand types. */
4752
4753 if (!(t = match_template (mnem_suffix)))
4754 return;
4755
4756 if (sse_check != check_none
4757 && !i.tm.opcode_modifier.noavx
4758 && !i.tm.cpu_flags.bitfield.cpuavx
4759 && !i.tm.cpu_flags.bitfield.cpuavx512f
4760 && (i.tm.cpu_flags.bitfield.cpusse
4761 || i.tm.cpu_flags.bitfield.cpusse2
4762 || i.tm.cpu_flags.bitfield.cpusse3
4763 || i.tm.cpu_flags.bitfield.cpussse3
4764 || i.tm.cpu_flags.bitfield.cpusse4_1
4765 || i.tm.cpu_flags.bitfield.cpusse4_2
4766 || i.tm.cpu_flags.bitfield.cpupclmul
4767 || i.tm.cpu_flags.bitfield.cpuaes
4768 || i.tm.cpu_flags.bitfield.cpusha
4769 || i.tm.cpu_flags.bitfield.cpugfni))
4770 {
4771 (sse_check == check_warning
4772 ? as_warn
4773 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4774 }
4775
4776 if (i.tm.opcode_modifier.fwait)
4777 if (!add_prefix (FWAIT_OPCODE))
4778 return;
4779
4780 /* Check if REP prefix is OK. */
4781 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4782 {
4783 as_bad (_("invalid instruction `%s' after `%s'"),
4784 i.tm.name, i.rep_prefix);
4785 return;
4786 }
4787
4788 /* Check for lock without a lockable instruction. Destination operand
4789 must be memory unless it is xchg (0x86). */
4790 if (i.prefix[LOCK_PREFIX]
4791 && (!i.tm.opcode_modifier.islockable
4792 || i.mem_operands == 0
4793 || (i.tm.base_opcode != 0x86
4794 && !(i.flags[i.operands - 1] & Operand_Mem))))
4795 {
4796 as_bad (_("expecting lockable instruction after `lock'"));
4797 return;
4798 }
4799
4800 /* Check for data size prefix on VEX/XOP/EVEX encoded and SIMD insns. */
4801 if (i.prefix[DATA_PREFIX]
4802 && (is_any_vex_encoding (&i.tm)
4803 || i.tm.operand_types[i.imm_operands].bitfield.class >= RegMMX
4804 || i.tm.operand_types[i.imm_operands + 1].bitfield.class >= RegMMX))
4805 {
4806 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4807 return;
4808 }
4809
4810 /* Check if HLE prefix is OK. */
4811 if (i.hle_prefix && !check_hle ())
4812 return;
4813
4814 /* Check BND prefix. */
4815 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4816 as_bad (_("expecting valid branch instruction after `bnd'"));
4817
4818 /* Check NOTRACK prefix. */
4819 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4820 as_bad (_("expecting indirect branch instruction after `notrack'"));
4821
4822 if (i.tm.cpu_flags.bitfield.cpumpx)
4823 {
4824 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4825 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4826 else if (flag_code != CODE_16BIT
4827 ? i.prefix[ADDR_PREFIX]
4828 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4829 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4830 }
4831
4832 /* Insert BND prefix. */
4833 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4834 {
4835 if (!i.prefix[BND_PREFIX])
4836 add_prefix (BND_PREFIX_OPCODE);
4837 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4838 {
4839 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4840 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4841 }
4842 }
4843
4844 /* Check string instruction segment overrides. */
4845 if (i.tm.opcode_modifier.isstring >= IS_STRING_ES_OP0)
4846 {
4847 gas_assert (i.mem_operands);
4848 if (!check_string ())
4849 return;
4850 i.disp_operands = 0;
4851 }
4852
4853 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4854 optimize_encoding ();
4855
4856 if (!process_suffix ())
4857 return;
4858
4859 /* Update operand types and check extended states. */
4860 for (j = 0; j < i.operands; j++)
4861 {
4862 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4863 switch (i.tm.operand_types[j].bitfield.class)
4864 {
4865 default:
4866 break;
4867 case RegMMX:
4868 i.xstate |= xstate_mmx;
4869 break;
4870 case RegMask:
4871 i.xstate |= xstate_zmm;
4872 break;
4873 case RegSIMD:
4874 if (i.tm.operand_types[j].bitfield.tmmword)
4875 i.xstate |= xstate_tmm;
4876 else if (i.tm.operand_types[j].bitfield.zmmword)
4877 i.xstate |= xstate_zmm;
4878 else if (i.tm.operand_types[j].bitfield.ymmword)
4879 i.xstate |= xstate_ymm;
4880 else if (i.tm.operand_types[j].bitfield.xmmword)
4881 i.xstate |= xstate_xmm;
4882 break;
4883 }
4884 }
4885
4886 /* Make still unresolved immediate matches conform to size of immediate
4887 given in i.suffix. */
4888 if (!finalize_imm ())
4889 return;
4890
4891 if (i.types[0].bitfield.imm1)
4892 i.imm_operands = 0; /* kludge for shift insns. */
4893
4894 /* We only need to check those implicit registers for instructions
4895 with 3 operands or less. */
4896 if (i.operands <= 3)
4897 for (j = 0; j < i.operands; j++)
4898 if (i.types[j].bitfield.instance != InstanceNone
4899 && !i.types[j].bitfield.xmmword)
4900 i.reg_operands--;
4901
4902 /* For insns with operands there are more diddles to do to the opcode. */
4903 if (i.operands)
4904 {
4905 if (!process_operands ())
4906 return;
4907 }
4908 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4909 {
4910 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4911 as_warn (_("translating to `%sp'"), i.tm.name);
4912 }
4913
4914 if (is_any_vex_encoding (&i.tm))
4915 {
4916 if (!cpu_arch_flags.bitfield.cpui286)
4917 {
4918 as_bad (_("instruction `%s' isn't supported outside of protected mode."),
4919 i.tm.name);
4920 return;
4921 }
4922
4923 /* Check for explicit REX prefix. */
4924 if (i.prefix[REX_PREFIX] || i.rex_encoding)
4925 {
4926 as_bad (_("REX prefix invalid with `%s'"), i.tm.name);
4927 return;
4928 }
4929
4930 if (i.tm.opcode_modifier.vex)
4931 build_vex_prefix (t);
4932 else
4933 build_evex_prefix ();
4934
4935 /* The individual REX.RXBW bits got consumed. */
4936 i.rex &= REX_OPCODE;
4937 }
4938
4939 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4940 instructions may define INT_OPCODE as well, so avoid this corner
4941 case for those instructions that use MODRM. */
4942 if (i.tm.base_opcode == INT_OPCODE
4943 && !i.tm.opcode_modifier.modrm
4944 && i.op[0].imms->X_add_number == 3)
4945 {
4946 i.tm.base_opcode = INT3_OPCODE;
4947 i.imm_operands = 0;
4948 }
4949
4950 if ((i.tm.opcode_modifier.jump == JUMP
4951 || i.tm.opcode_modifier.jump == JUMP_BYTE
4952 || i.tm.opcode_modifier.jump == JUMP_DWORD)
4953 && i.op[0].disps->X_op == O_constant)
4954 {
4955 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4956 the absolute address given by the constant. Since ix86 jumps and
4957 calls are pc relative, we need to generate a reloc. */
4958 i.op[0].disps->X_add_symbol = &abs_symbol;
4959 i.op[0].disps->X_op = O_symbol;
4960 }
4961
4962 /* For 8 bit registers we need an empty rex prefix. Also if the
4963 instruction already has a prefix, we need to convert old
4964 registers to new ones. */
4965
4966 if ((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte
4967 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4968 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte
4969 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4970 || (((i.types[0].bitfield.class == Reg && i.types[0].bitfield.byte)
4971 || (i.types[1].bitfield.class == Reg && i.types[1].bitfield.byte))
4972 && i.rex != 0))
4973 {
4974 int x;
4975
4976 i.rex |= REX_OPCODE;
4977 for (x = 0; x < 2; x++)
4978 {
4979 /* Look for 8 bit operand that uses old registers. */
4980 if (i.types[x].bitfield.class == Reg && i.types[x].bitfield.byte
4981 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4982 {
4983 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
4984 /* In case it is "hi" register, give up. */
4985 if (i.op[x].regs->reg_num > 3)
4986 as_bad (_("can't encode register '%s%s' in an "
4987 "instruction requiring REX prefix."),
4988 register_prefix, i.op[x].regs->reg_name);
4989
4990 /* Otherwise it is equivalent to the extended register.
4991 Since the encoding doesn't change this is merely
4992 cosmetic cleanup for debug output. */
4993
4994 i.op[x].regs = i.op[x].regs + 8;
4995 }
4996 }
4997 }
4998
4999 if (i.rex == 0 && i.rex_encoding)
5000 {
5001 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
5002 that uses legacy register. If it is "hi" register, don't add
5003 the REX_OPCODE byte. */
5004 int x;
5005 for (x = 0; x < 2; x++)
5006 if (i.types[x].bitfield.class == Reg
5007 && i.types[x].bitfield.byte
5008 && (i.op[x].regs->reg_flags & RegRex64) == 0
5009 && i.op[x].regs->reg_num > 3)
5010 {
5011 gas_assert (!(i.op[x].regs->reg_flags & RegRex));
5012 i.rex_encoding = FALSE;
5013 break;
5014 }
5015
5016 if (i.rex_encoding)
5017 i.rex = REX_OPCODE;
5018 }
5019
5020 if (i.rex != 0)
5021 add_prefix (REX_OPCODE | i.rex);
5022
5023 insert_lfence_before ();
5024
5025 /* We are ready to output the insn. */
5026 output_insn ();
5027
5028 insert_lfence_after ();
5029
5030 last_insn.seg = now_seg;
5031
5032 if (i.tm.opcode_modifier.isprefix)
5033 {
5034 last_insn.kind = last_insn_prefix;
5035 last_insn.name = i.tm.name;
5036 last_insn.file = as_where (&last_insn.line);
5037 }
5038 else
5039 last_insn.kind = last_insn_other;
5040 }
5041
5042 static char *
5043 parse_insn (char *line, char *mnemonic)
5044 {
5045 char *l = line;
5046 char *token_start = l;
5047 char *mnem_p;
5048 int supported;
5049 const insn_template *t;
5050 char *dot_p = NULL;
5051
5052 while (1)
5053 {
5054 mnem_p = mnemonic;
5055 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
5056 {
5057 if (*mnem_p == '.')
5058 dot_p = mnem_p;
5059 mnem_p++;
5060 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
5061 {
5062 as_bad (_("no such instruction: `%s'"), token_start);
5063 return NULL;
5064 }
5065 l++;
5066 }
5067 if (!is_space_char (*l)
5068 && *l != END_OF_INSN
5069 && (intel_syntax
5070 || (*l != PREFIX_SEPARATOR
5071 && *l != ',')))
5072 {
5073 as_bad (_("invalid character %s in mnemonic"),
5074 output_invalid (*l));
5075 return NULL;
5076 }
5077 if (token_start == l)
5078 {
5079 if (!intel_syntax && *l == PREFIX_SEPARATOR)
5080 as_bad (_("expecting prefix; got nothing"));
5081 else
5082 as_bad (_("expecting mnemonic; got nothing"));
5083 return NULL;
5084 }
5085
5086 /* Look up instruction (or prefix) via hash table. */
5087 current_templates = (const templates *) str_hash_find (op_hash, mnemonic);
5088
5089 if (*l != END_OF_INSN
5090 && (!is_space_char (*l) || l[1] != END_OF_INSN)
5091 && current_templates
5092 && current_templates->start->opcode_modifier.isprefix)
5093 {
5094 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
5095 {
5096 as_bad ((flag_code != CODE_64BIT
5097 ? _("`%s' is only supported in 64-bit mode")
5098 : _("`%s' is not supported in 64-bit mode")),
5099 current_templates->start->name);
5100 return NULL;
5101 }
5102 /* If we are in 16-bit mode, do not allow addr16 or data16.
5103 Similarly, in 32-bit mode, do not allow addr32 or data32. */
5104 if ((current_templates->start->opcode_modifier.size == SIZE16
5105 || current_templates->start->opcode_modifier.size == SIZE32)
5106 && flag_code != CODE_64BIT
5107 && ((current_templates->start->opcode_modifier.size == SIZE32)
5108 ^ (flag_code == CODE_16BIT)))
5109 {
5110 as_bad (_("redundant %s prefix"),
5111 current_templates->start->name);
5112 return NULL;
5113 }
5114 if (current_templates->start->opcode_length == 0)
5115 {
5116 /* Handle pseudo prefixes. */
5117 switch (current_templates->start->base_opcode)
5118 {
5119 case Prefix_Disp8:
5120 /* {disp8} */
5121 i.disp_encoding = disp_encoding_8bit;
5122 break;
5123 case Prefix_Disp16:
5124 /* {disp16} */
5125 i.disp_encoding = disp_encoding_16bit;
5126 break;
5127 case Prefix_Disp32:
5128 /* {disp32} */
5129 i.disp_encoding = disp_encoding_32bit;
5130 break;
5131 case Prefix_Load:
5132 /* {load} */
5133 i.dir_encoding = dir_encoding_load;
5134 break;
5135 case Prefix_Store:
5136 /* {store} */
5137 i.dir_encoding = dir_encoding_store;
5138 break;
5139 case Prefix_VEX:
5140 /* {vex} */
5141 i.vec_encoding = vex_encoding_vex;
5142 break;
5143 case Prefix_VEX3:
5144 /* {vex3} */
5145 i.vec_encoding = vex_encoding_vex3;
5146 break;
5147 case Prefix_EVEX:
5148 /* {evex} */
5149 i.vec_encoding = vex_encoding_evex;
5150 break;
5151 case Prefix_REX:
5152 /* {rex} */
5153 i.rex_encoding = TRUE;
5154 break;
5155 case Prefix_NoOptimize:
5156 /* {nooptimize} */
5157 i.no_optimize = TRUE;
5158 break;
5159 default:
5160 abort ();
5161 }
5162 }
5163 else
5164 {
5165 /* Add prefix, checking for repeated prefixes. */
5166 switch (add_prefix (current_templates->start->base_opcode))
5167 {
5168 case PREFIX_EXIST:
5169 return NULL;
5170 case PREFIX_DS:
5171 if (current_templates->start->cpu_flags.bitfield.cpuibt)
5172 i.notrack_prefix = current_templates->start->name;
5173 break;
5174 case PREFIX_REP:
5175 if (current_templates->start->cpu_flags.bitfield.cpuhle)
5176 i.hle_prefix = current_templates->start->name;
5177 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
5178 i.bnd_prefix = current_templates->start->name;
5179 else
5180 i.rep_prefix = current_templates->start->name;
5181 break;
5182 default:
5183 break;
5184 }
5185 }
5186 /* Skip past PREFIX_SEPARATOR and reset token_start. */
5187 token_start = ++l;
5188 }
5189 else
5190 break;
5191 }
5192
5193 if (!current_templates)
5194 {
5195 /* Deprecated functionality (new code should use pseudo-prefixes instead):
5196 Check if we should swap operand or force 32bit displacement in
5197 encoding. */
5198 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
5199 i.dir_encoding = dir_encoding_swap;
5200 else if (mnem_p - 3 == dot_p
5201 && dot_p[1] == 'd'
5202 && dot_p[2] == '8')
5203 i.disp_encoding = disp_encoding_8bit;
5204 else if (mnem_p - 4 == dot_p
5205 && dot_p[1] == 'd'
5206 && dot_p[2] == '3'
5207 && dot_p[3] == '2')
5208 i.disp_encoding = disp_encoding_32bit;
5209 else
5210 goto check_suffix;
5211 mnem_p = dot_p;
5212 *dot_p = '\0';
5213 current_templates = (const templates *) str_hash_find (op_hash, mnemonic);
5214 }
5215
5216 if (!current_templates)
5217 {
5218 check_suffix:
5219 if (mnem_p > mnemonic)
5220 {
5221 /* See if we can get a match by trimming off a suffix. */
5222 switch (mnem_p[-1])
5223 {
5224 case WORD_MNEM_SUFFIX:
5225 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
5226 i.suffix = SHORT_MNEM_SUFFIX;
5227 else
5228 /* Fall through. */
5229 case BYTE_MNEM_SUFFIX:
5230 case QWORD_MNEM_SUFFIX:
5231 i.suffix = mnem_p[-1];
5232 mnem_p[-1] = '\0';
5233 current_templates
5234 = (const templates *) str_hash_find (op_hash, mnemonic);
5235 break;
5236 case SHORT_MNEM_SUFFIX:
5237 case LONG_MNEM_SUFFIX:
5238 if (!intel_syntax)
5239 {
5240 i.suffix = mnem_p[-1];
5241 mnem_p[-1] = '\0';
5242 current_templates
5243 = (const templates *) str_hash_find (op_hash, mnemonic);
5244 }
5245 break;
5246
5247 /* Intel Syntax. */
5248 case 'd':
5249 if (intel_syntax)
5250 {
5251 if (intel_float_operand (mnemonic) == 1)
5252 i.suffix = SHORT_MNEM_SUFFIX;
5253 else
5254 i.suffix = LONG_MNEM_SUFFIX;
5255 mnem_p[-1] = '\0';
5256 current_templates
5257 = (const templates *) str_hash_find (op_hash, mnemonic);
5258 }
5259 break;
5260 }
5261 }
5262
5263 if (!current_templates)
5264 {
5265 as_bad (_("no such instruction: `%s'"), token_start);
5266 return NULL;
5267 }
5268 }
5269
5270 if (current_templates->start->opcode_modifier.jump == JUMP
5271 || current_templates->start->opcode_modifier.jump == JUMP_BYTE)
5272 {
5273 /* Check for a branch hint. We allow ",pt" and ",pn" for
5274 predict taken and predict not taken respectively.
5275 I'm not sure that branch hints actually do anything on loop
5276 and jcxz insns (JumpByte) for current Pentium4 chips. They
5277 may work in the future and it doesn't hurt to accept them
5278 now. */
5279 if (l[0] == ',' && l[1] == 'p')
5280 {
5281 if (l[2] == 't')
5282 {
5283 if (!add_prefix (DS_PREFIX_OPCODE))
5284 return NULL;
5285 l += 3;
5286 }
5287 else if (l[2] == 'n')
5288 {
5289 if (!add_prefix (CS_PREFIX_OPCODE))
5290 return NULL;
5291 l += 3;
5292 }
5293 }
5294 }
5295 /* Any other comma loses. */
5296 if (*l == ',')
5297 {
5298 as_bad (_("invalid character %s in mnemonic"),
5299 output_invalid (*l));
5300 return NULL;
5301 }
5302
5303 /* Check if instruction is supported on specified architecture. */
5304 supported = 0;
5305 for (t = current_templates->start; t < current_templates->end; ++t)
5306 {
5307 supported |= cpu_flags_match (t);
5308 if (supported == CPU_FLAGS_PERFECT_MATCH)
5309 {
5310 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
5311 as_warn (_("use .code16 to ensure correct addressing mode"));
5312
5313 return l;
5314 }
5315 }
5316
5317 if (!(supported & CPU_FLAGS_64BIT_MATCH))
5318 as_bad (flag_code == CODE_64BIT
5319 ? _("`%s' is not supported in 64-bit mode")
5320 : _("`%s' is only supported in 64-bit mode"),
5321 current_templates->start->name);
5322 else
5323 as_bad (_("`%s' is not supported on `%s%s'"),
5324 current_templates->start->name,
5325 cpu_arch_name ? cpu_arch_name : default_arch,
5326 cpu_sub_arch_name ? cpu_sub_arch_name : "");
5327
5328 return NULL;
5329 }
5330
5331 static char *
5332 parse_operands (char *l, const char *mnemonic)
5333 {
5334 char *token_start;
5335
5336 /* 1 if operand is pending after ','. */
5337 unsigned int expecting_operand = 0;
5338
5339 /* Non-zero if operand parens not balanced. */
5340 unsigned int paren_not_balanced;
5341
5342 while (*l != END_OF_INSN)
5343 {
5344 /* Skip optional white space before operand. */
5345 if (is_space_char (*l))
5346 ++l;
5347 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
5348 {
5349 as_bad (_("invalid character %s before operand %d"),
5350 output_invalid (*l),
5351 i.operands + 1);
5352 return NULL;
5353 }
5354 token_start = l; /* After white space. */
5355 paren_not_balanced = 0;
5356 while (paren_not_balanced || *l != ',')
5357 {
5358 if (*l == END_OF_INSN)
5359 {
5360 if (paren_not_balanced)
5361 {
5362 if (!intel_syntax)
5363 as_bad (_("unbalanced parenthesis in operand %d."),
5364 i.operands + 1);
5365 else
5366 as_bad (_("unbalanced brackets in operand %d."),
5367 i.operands + 1);
5368 return NULL;
5369 }
5370 else
5371 break; /* we are done */
5372 }
5373 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
5374 {
5375 as_bad (_("invalid character %s in operand %d"),
5376 output_invalid (*l),
5377 i.operands + 1);
5378 return NULL;
5379 }
5380 if (!intel_syntax)
5381 {
5382 if (*l == '(')
5383 ++paren_not_balanced;
5384 if (*l == ')')
5385 --paren_not_balanced;
5386 }
5387 else
5388 {
5389 if (*l == '[')
5390 ++paren_not_balanced;
5391 if (*l == ']')
5392 --paren_not_balanced;
5393 }
5394 l++;
5395 }
5396 if (l != token_start)
5397 { /* Yes, we've read in another operand. */
5398 unsigned int operand_ok;
5399 this_operand = i.operands++;
5400 if (i.operands > MAX_OPERANDS)
5401 {
5402 as_bad (_("spurious operands; (%d operands/instruction max)"),
5403 MAX_OPERANDS);
5404 return NULL;
5405 }
5406 i.types[this_operand].bitfield.unspecified = 1;
5407 /* Now parse operand adding info to 'i' as we go along. */
5408 END_STRING_AND_SAVE (l);
5409
5410 if (i.mem_operands > 1)
5411 {
5412 as_bad (_("too many memory references for `%s'"),
5413 mnemonic);
5414 return 0;
5415 }
5416
5417 if (intel_syntax)
5418 operand_ok =
5419 i386_intel_operand (token_start,
5420 intel_float_operand (mnemonic));
5421 else
5422 operand_ok = i386_att_operand (token_start);
5423
5424 RESTORE_END_STRING (l);
5425 if (!operand_ok)
5426 return NULL;
5427 }
5428 else
5429 {
5430 if (expecting_operand)
5431 {
5432 expecting_operand_after_comma:
5433 as_bad (_("expecting operand after ','; got nothing"));
5434 return NULL;
5435 }
5436 if (*l == ',')
5437 {
5438 as_bad (_("expecting operand before ','; got nothing"));
5439 return NULL;
5440 }
5441 }
5442
5443 /* Now *l must be either ',' or END_OF_INSN. */
5444 if (*l == ',')
5445 {
5446 if (*++l == END_OF_INSN)
5447 {
5448 /* Just skip it, if it's \n complain. */
5449 goto expecting_operand_after_comma;
5450 }
5451 expecting_operand = 1;
5452 }
5453 }
5454 return l;
5455 }
5456
5457 static void
5458 swap_2_operands (int xchg1, int xchg2)
5459 {
5460 union i386_op temp_op;
5461 i386_operand_type temp_type;
5462 unsigned int temp_flags;
5463 enum bfd_reloc_code_real temp_reloc;
5464
5465 temp_type = i.types[xchg2];
5466 i.types[xchg2] = i.types[xchg1];
5467 i.types[xchg1] = temp_type;
5468
5469 temp_flags = i.flags[xchg2];
5470 i.flags[xchg2] = i.flags[xchg1];
5471 i.flags[xchg1] = temp_flags;
5472
5473 temp_op = i.op[xchg2];
5474 i.op[xchg2] = i.op[xchg1];
5475 i.op[xchg1] = temp_op;
5476
5477 temp_reloc = i.reloc[xchg2];
5478 i.reloc[xchg2] = i.reloc[xchg1];
5479 i.reloc[xchg1] = temp_reloc;
5480
5481 if (i.mask)
5482 {
5483 if (i.mask->operand == xchg1)
5484 i.mask->operand = xchg2;
5485 else if (i.mask->operand == xchg2)
5486 i.mask->operand = xchg1;
5487 }
5488 if (i.broadcast)
5489 {
5490 if (i.broadcast->operand == xchg1)
5491 i.broadcast->operand = xchg2;
5492 else if (i.broadcast->operand == xchg2)
5493 i.broadcast->operand = xchg1;
5494 }
5495 if (i.rounding)
5496 {
5497 if (i.rounding->operand == xchg1)
5498 i.rounding->operand = xchg2;
5499 else if (i.rounding->operand == xchg2)
5500 i.rounding->operand = xchg1;
5501 }
5502 }
5503
5504 static void
5505 swap_operands (void)
5506 {
5507 switch (i.operands)
5508 {
5509 case 5:
5510 case 4:
5511 swap_2_operands (1, i.operands - 2);
5512 /* Fall through. */
5513 case 3:
5514 case 2:
5515 swap_2_operands (0, i.operands - 1);
5516 break;
5517 default:
5518 abort ();
5519 }
5520
5521 if (i.mem_operands == 2)
5522 {
5523 const seg_entry *temp_seg;
5524 temp_seg = i.seg[0];
5525 i.seg[0] = i.seg[1];
5526 i.seg[1] = temp_seg;
5527 }
5528 }
5529
5530 /* Try to ensure constant immediates are represented in the smallest
5531 opcode possible. */
5532 static void
5533 optimize_imm (void)
5534 {
5535 char guess_suffix = 0;
5536 int op;
5537
5538 if (i.suffix)
5539 guess_suffix = i.suffix;
5540 else if (i.reg_operands)
5541 {
5542 /* Figure out a suffix from the last register operand specified.
5543 We can't do this properly yet, i.e. excluding special register
5544 instances, but the following works for instructions with
5545 immediates. In any case, we can't set i.suffix yet. */
5546 for (op = i.operands; --op >= 0;)
5547 if (i.types[op].bitfield.class != Reg)
5548 continue;
5549 else if (i.types[op].bitfield.byte)
5550 {
5551 guess_suffix = BYTE_MNEM_SUFFIX;
5552 break;
5553 }
5554 else if (i.types[op].bitfield.word)
5555 {
5556 guess_suffix = WORD_MNEM_SUFFIX;
5557 break;
5558 }
5559 else if (i.types[op].bitfield.dword)
5560 {
5561 guess_suffix = LONG_MNEM_SUFFIX;
5562 break;
5563 }
5564 else if (i.types[op].bitfield.qword)
5565 {
5566 guess_suffix = QWORD_MNEM_SUFFIX;
5567 break;
5568 }
5569 }
5570 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5571 guess_suffix = WORD_MNEM_SUFFIX;
5572
5573 for (op = i.operands; --op >= 0;)
5574 if (operand_type_check (i.types[op], imm))
5575 {
5576 switch (i.op[op].imms->X_op)
5577 {
5578 case O_constant:
5579 /* If a suffix is given, this operand may be shortened. */
5580 switch (guess_suffix)
5581 {
5582 case LONG_MNEM_SUFFIX:
5583 i.types[op].bitfield.imm32 = 1;
5584 i.types[op].bitfield.imm64 = 1;
5585 break;
5586 case WORD_MNEM_SUFFIX:
5587 i.types[op].bitfield.imm16 = 1;
5588 i.types[op].bitfield.imm32 = 1;
5589 i.types[op].bitfield.imm32s = 1;
5590 i.types[op].bitfield.imm64 = 1;
5591 break;
5592 case BYTE_MNEM_SUFFIX:
5593 i.types[op].bitfield.imm8 = 1;
5594 i.types[op].bitfield.imm8s = 1;
5595 i.types[op].bitfield.imm16 = 1;
5596 i.types[op].bitfield.imm32 = 1;
5597 i.types[op].bitfield.imm32s = 1;
5598 i.types[op].bitfield.imm64 = 1;
5599 break;
5600 }
5601
5602 /* If this operand is at most 16 bits, convert it
5603 to a signed 16 bit number before trying to see
5604 whether it will fit in an even smaller size.
5605 This allows a 16-bit operand such as $0xffe0 to
5606 be recognised as within Imm8S range. */
5607 if ((i.types[op].bitfield.imm16)
5608 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
5609 {
5610 i.op[op].imms->X_add_number =
5611 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
5612 }
5613 #ifdef BFD64
5614 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
5615 if ((i.types[op].bitfield.imm32)
5616 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
5617 == 0))
5618 {
5619 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
5620 ^ ((offsetT) 1 << 31))
5621 - ((offsetT) 1 << 31));
5622 }
5623 #endif
5624 i.types[op]
5625 = operand_type_or (i.types[op],
5626 smallest_imm_type (i.op[op].imms->X_add_number));
5627
5628 /* We must avoid matching of Imm32 templates when 64bit
5629 only immediate is available. */
5630 if (guess_suffix == QWORD_MNEM_SUFFIX)
5631 i.types[op].bitfield.imm32 = 0;
5632 break;
5633
5634 case O_absent:
5635 case O_register:
5636 abort ();
5637
5638 /* Symbols and expressions. */
5639 default:
5640 /* Convert symbolic operand to proper sizes for matching, but don't
5641 prevent matching a set of insns that only supports sizes other
5642 than those matching the insn suffix. */
5643 {
5644 i386_operand_type mask, allowed;
5645 const insn_template *t;
5646
5647 operand_type_set (&mask, 0);
5648 operand_type_set (&allowed, 0);
5649
5650 for (t = current_templates->start;
5651 t < current_templates->end;
5652 ++t)
5653 {
5654 allowed = operand_type_or (allowed, t->operand_types[op]);
5655 allowed = operand_type_and (allowed, anyimm);
5656 }
5657 switch (guess_suffix)
5658 {
5659 case QWORD_MNEM_SUFFIX:
5660 mask.bitfield.imm64 = 1;
5661 mask.bitfield.imm32s = 1;
5662 break;
5663 case LONG_MNEM_SUFFIX:
5664 mask.bitfield.imm32 = 1;
5665 break;
5666 case WORD_MNEM_SUFFIX:
5667 mask.bitfield.imm16 = 1;
5668 break;
5669 case BYTE_MNEM_SUFFIX:
5670 mask.bitfield.imm8 = 1;
5671 break;
5672 default:
5673 break;
5674 }
5675 allowed = operand_type_and (mask, allowed);
5676 if (!operand_type_all_zero (&allowed))
5677 i.types[op] = operand_type_and (i.types[op], mask);
5678 }
5679 break;
5680 }
5681 }
5682 }
5683
5684 /* Try to use the smallest displacement type too. */
5685 static void
5686 optimize_disp (void)
5687 {
5688 int op;
5689
5690 for (op = i.operands; --op >= 0;)
5691 if (operand_type_check (i.types[op], disp))
5692 {
5693 if (i.op[op].disps->X_op == O_constant)
5694 {
5695 offsetT op_disp = i.op[op].disps->X_add_number;
5696
5697 if (i.types[op].bitfield.disp16
5698 && (op_disp & ~(offsetT) 0xffff) == 0)
5699 {
5700 /* If this operand is at most 16 bits, convert
5701 to a signed 16 bit number and don't use 64bit
5702 displacement. */
5703 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
5704 i.types[op].bitfield.disp64 = 0;
5705 }
5706 #ifdef BFD64
5707 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
5708 if (i.types[op].bitfield.disp32
5709 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5710 {
5711 /* If this operand is at most 32 bits, convert
5712 to a signed 32 bit number and don't use 64bit
5713 displacement. */
5714 op_disp &= (((offsetT) 2 << 31) - 1);
5715 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5716 i.types[op].bitfield.disp64 = 0;
5717 }
5718 #endif
5719 if (!op_disp && i.types[op].bitfield.baseindex)
5720 {
5721 i.types[op].bitfield.disp8 = 0;
5722 i.types[op].bitfield.disp16 = 0;
5723 i.types[op].bitfield.disp32 = 0;
5724 i.types[op].bitfield.disp32s = 0;
5725 i.types[op].bitfield.disp64 = 0;
5726 i.op[op].disps = 0;
5727 i.disp_operands--;
5728 }
5729 else if (flag_code == CODE_64BIT)
5730 {
5731 if (fits_in_signed_long (op_disp))
5732 {
5733 i.types[op].bitfield.disp64 = 0;
5734 i.types[op].bitfield.disp32s = 1;
5735 }
5736 if (i.prefix[ADDR_PREFIX]
5737 && fits_in_unsigned_long (op_disp))
5738 i.types[op].bitfield.disp32 = 1;
5739 }
5740 if ((i.types[op].bitfield.disp32
5741 || i.types[op].bitfield.disp32s
5742 || i.types[op].bitfield.disp16)
5743 && fits_in_disp8 (op_disp))
5744 i.types[op].bitfield.disp8 = 1;
5745 }
5746 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5747 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5748 {
5749 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5750 i.op[op].disps, 0, i.reloc[op]);
5751 i.types[op].bitfield.disp8 = 0;
5752 i.types[op].bitfield.disp16 = 0;
5753 i.types[op].bitfield.disp32 = 0;
5754 i.types[op].bitfield.disp32s = 0;
5755 i.types[op].bitfield.disp64 = 0;
5756 }
5757 else
5758 /* We only support 64bit displacement on constants. */
5759 i.types[op].bitfield.disp64 = 0;
5760 }
5761 }
5762
5763 /* Return 1 if there is a match in broadcast bytes between operand
5764 GIVEN and instruction template T. */
5765
5766 static INLINE int
5767 match_broadcast_size (const insn_template *t, unsigned int given)
5768 {
5769 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5770 && i.types[given].bitfield.byte)
5771 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5772 && i.types[given].bitfield.word)
5773 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5774 && i.types[given].bitfield.dword)
5775 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5776 && i.types[given].bitfield.qword));
5777 }
5778
5779 /* Check if operands are valid for the instruction. */
5780
5781 static int
5782 check_VecOperands (const insn_template *t)
5783 {
5784 unsigned int op;
5785 i386_cpu_flags cpu;
5786
5787 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5788 any one operand are implicity requiring AVX512VL support if the actual
5789 operand size is YMMword or XMMword. Since this function runs after
5790 template matching, there's no need to check for YMMword/XMMword in
5791 the template. */
5792 cpu = cpu_flags_and (t->cpu_flags, avx512);
5793 if (!cpu_flags_all_zero (&cpu)
5794 && !t->cpu_flags.bitfield.cpuavx512vl
5795 && !cpu_arch_flags.bitfield.cpuavx512vl)
5796 {
5797 for (op = 0; op < t->operands; ++op)
5798 {
5799 if (t->operand_types[op].bitfield.zmmword
5800 && (i.types[op].bitfield.ymmword
5801 || i.types[op].bitfield.xmmword))
5802 {
5803 i.error = unsupported;
5804 return 1;
5805 }
5806 }
5807 }
5808
5809 /* Without VSIB byte, we can't have a vector register for index. */
5810 if (!t->opcode_modifier.sib
5811 && i.index_reg
5812 && (i.index_reg->reg_type.bitfield.xmmword
5813 || i.index_reg->reg_type.bitfield.ymmword
5814 || i.index_reg->reg_type.bitfield.zmmword))
5815 {
5816 i.error = unsupported_vector_index_register;
5817 return 1;
5818 }
5819
5820 /* Check if default mask is allowed. */
5821 if (t->opcode_modifier.nodefmask
5822 && (!i.mask || i.mask->mask->reg_num == 0))
5823 {
5824 i.error = no_default_mask;
5825 return 1;
5826 }
5827
5828 /* For VSIB byte, we need a vector register for index, and all vector
5829 registers must be distinct. */
5830 if (t->opcode_modifier.sib && t->opcode_modifier.sib != SIBMEM)
5831 {
5832 if (!i.index_reg
5833 || !((t->opcode_modifier.sib == VECSIB128
5834 && i.index_reg->reg_type.bitfield.xmmword)
5835 || (t->opcode_modifier.sib == VECSIB256
5836 && i.index_reg->reg_type.bitfield.ymmword)
5837 || (t->opcode_modifier.sib == VECSIB512
5838 && i.index_reg->reg_type.bitfield.zmmword)))
5839 {
5840 i.error = invalid_vsib_address;
5841 return 1;
5842 }
5843
5844 gas_assert (i.reg_operands == 2 || i.mask);
5845 if (i.reg_operands == 2 && !i.mask)
5846 {
5847 gas_assert (i.types[0].bitfield.class == RegSIMD);
5848 gas_assert (i.types[0].bitfield.xmmword
5849 || i.types[0].bitfield.ymmword);
5850 gas_assert (i.types[2].bitfield.class == RegSIMD);
5851 gas_assert (i.types[2].bitfield.xmmword
5852 || i.types[2].bitfield.ymmword);
5853 if (operand_check == check_none)
5854 return 0;
5855 if (register_number (i.op[0].regs)
5856 != register_number (i.index_reg)
5857 && register_number (i.op[2].regs)
5858 != register_number (i.index_reg)
5859 && register_number (i.op[0].regs)
5860 != register_number (i.op[2].regs))
5861 return 0;
5862 if (operand_check == check_error)
5863 {
5864 i.error = invalid_vector_register_set;
5865 return 1;
5866 }
5867 as_warn (_("mask, index, and destination registers should be distinct"));
5868 }
5869 else if (i.reg_operands == 1 && i.mask)
5870 {
5871 if (i.types[1].bitfield.class == RegSIMD
5872 && (i.types[1].bitfield.xmmword
5873 || i.types[1].bitfield.ymmword
5874 || i.types[1].bitfield.zmmword)
5875 && (register_number (i.op[1].regs)
5876 == register_number (i.index_reg)))
5877 {
5878 if (operand_check == check_error)
5879 {
5880 i.error = invalid_vector_register_set;
5881 return 1;
5882 }
5883 if (operand_check != check_none)
5884 as_warn (_("index and destination registers should be distinct"));
5885 }
5886 }
5887 }
5888
5889 /* For AMX instructions with three tmmword operands, all tmmword operand must be
5890 distinct */
5891 if (t->operand_types[0].bitfield.tmmword
5892 && i.reg_operands == 3)
5893 {
5894 if (register_number (i.op[0].regs)
5895 == register_number (i.op[1].regs)
5896 || register_number (i.op[0].regs)
5897 == register_number (i.op[2].regs)
5898 || register_number (i.op[1].regs)
5899 == register_number (i.op[2].regs))
5900 {
5901 i.error = invalid_tmm_register_set;
5902 return 1;
5903 }
5904 }
5905
5906 /* Check if broadcast is supported by the instruction and is applied
5907 to the memory operand. */
5908 if (i.broadcast)
5909 {
5910 i386_operand_type type, overlap;
5911
5912 /* Check if specified broadcast is supported in this instruction,
5913 and its broadcast bytes match the memory operand. */
5914 op = i.broadcast->operand;
5915 if (!t->opcode_modifier.broadcast
5916 || !(i.flags[op] & Operand_Mem)
5917 || (!i.types[op].bitfield.unspecified
5918 && !match_broadcast_size (t, op)))
5919 {
5920 bad_broadcast:
5921 i.error = unsupported_broadcast;
5922 return 1;
5923 }
5924
5925 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5926 * i.broadcast->type);
5927 operand_type_set (&type, 0);
5928 switch (i.broadcast->bytes)
5929 {
5930 case 2:
5931 type.bitfield.word = 1;
5932 break;
5933 case 4:
5934 type.bitfield.dword = 1;
5935 break;
5936 case 8:
5937 type.bitfield.qword = 1;
5938 break;
5939 case 16:
5940 type.bitfield.xmmword = 1;
5941 break;
5942 case 32:
5943 type.bitfield.ymmword = 1;
5944 break;
5945 case 64:
5946 type.bitfield.zmmword = 1;
5947 break;
5948 default:
5949 goto bad_broadcast;
5950 }
5951
5952 overlap = operand_type_and (type, t->operand_types[op]);
5953 if (t->operand_types[op].bitfield.class == RegSIMD
5954 && t->operand_types[op].bitfield.byte
5955 + t->operand_types[op].bitfield.word
5956 + t->operand_types[op].bitfield.dword
5957 + t->operand_types[op].bitfield.qword > 1)
5958 {
5959 overlap.bitfield.xmmword = 0;
5960 overlap.bitfield.ymmword = 0;
5961 overlap.bitfield.zmmword = 0;
5962 }
5963 if (operand_type_all_zero (&overlap))
5964 goto bad_broadcast;
5965
5966 if (t->opcode_modifier.checkregsize)
5967 {
5968 unsigned int j;
5969
5970 type.bitfield.baseindex = 1;
5971 for (j = 0; j < i.operands; ++j)
5972 {
5973 if (j != op
5974 && !operand_type_register_match(i.types[j],
5975 t->operand_types[j],
5976 type,
5977 t->operand_types[op]))
5978 goto bad_broadcast;
5979 }
5980 }
5981 }
5982 /* If broadcast is supported in this instruction, we need to check if
5983 operand of one-element size isn't specified without broadcast. */
5984 else if (t->opcode_modifier.broadcast && i.mem_operands)
5985 {
5986 /* Find memory operand. */
5987 for (op = 0; op < i.operands; op++)
5988 if (i.flags[op] & Operand_Mem)
5989 break;
5990 gas_assert (op < i.operands);
5991 /* Check size of the memory operand. */
5992 if (match_broadcast_size (t, op))
5993 {
5994 i.error = broadcast_needed;
5995 return 1;
5996 }
5997 }
5998 else
5999 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
6000
6001 /* Check if requested masking is supported. */
6002 if (i.mask)
6003 {
6004 switch (t->opcode_modifier.masking)
6005 {
6006 case BOTH_MASKING:
6007 break;
6008 case MERGING_MASKING:
6009 if (i.mask->zeroing)
6010 {
6011 case 0:
6012 i.error = unsupported_masking;
6013 return 1;
6014 }
6015 break;
6016 case DYNAMIC_MASKING:
6017 /* Memory destinations allow only merging masking. */
6018 if (i.mask->zeroing && i.mem_operands)
6019 {
6020 /* Find memory operand. */
6021 for (op = 0; op < i.operands; op++)
6022 if (i.flags[op] & Operand_Mem)
6023 break;
6024 gas_assert (op < i.operands);
6025 if (op == i.operands - 1)
6026 {
6027 i.error = unsupported_masking;
6028 return 1;
6029 }
6030 }
6031 break;
6032 default:
6033 abort ();
6034 }
6035 }
6036
6037 /* Check if masking is applied to dest operand. */
6038 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
6039 {
6040 i.error = mask_not_on_destination;
6041 return 1;
6042 }
6043
6044 /* Check RC/SAE. */
6045 if (i.rounding)
6046 {
6047 if (!t->opcode_modifier.sae
6048 || (i.rounding->type != saeonly && !t->opcode_modifier.staticrounding))
6049 {
6050 i.error = unsupported_rc_sae;
6051 return 1;
6052 }
6053 /* If the instruction has several immediate operands and one of
6054 them is rounding, the rounding operand should be the last
6055 immediate operand. */
6056 if (i.imm_operands > 1
6057 && i.rounding->operand != (int) (i.imm_operands - 1))
6058 {
6059 i.error = rc_sae_operand_not_last_imm;
6060 return 1;
6061 }
6062 }
6063
6064 /* Check the special Imm4 cases; must be the first operand. */
6065 if (t->cpu_flags.bitfield.cpuxop && t->operands == 5)
6066 {
6067 if (i.op[0].imms->X_op != O_constant
6068 || !fits_in_imm4 (i.op[0].imms->X_add_number))
6069 {
6070 i.error = bad_imm4;
6071 return 1;
6072 }
6073
6074 /* Turn off Imm<N> so that update_imm won't complain. */
6075 operand_type_set (&i.types[0], 0);
6076 }
6077
6078 /* Check vector Disp8 operand. */
6079 if (t->opcode_modifier.disp8memshift
6080 && i.disp_encoding != disp_encoding_32bit)
6081 {
6082 if (i.broadcast)
6083 i.memshift = t->opcode_modifier.broadcast - 1;
6084 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
6085 i.memshift = t->opcode_modifier.disp8memshift;
6086 else
6087 {
6088 const i386_operand_type *type = NULL;
6089
6090 i.memshift = 0;
6091 for (op = 0; op < i.operands; op++)
6092 if (i.flags[op] & Operand_Mem)
6093 {
6094 if (t->opcode_modifier.evex == EVEXLIG)
6095 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
6096 else if (t->operand_types[op].bitfield.xmmword
6097 + t->operand_types[op].bitfield.ymmword
6098 + t->operand_types[op].bitfield.zmmword <= 1)
6099 type = &t->operand_types[op];
6100 else if (!i.types[op].bitfield.unspecified)
6101 type = &i.types[op];
6102 }
6103 else if (i.types[op].bitfield.class == RegSIMD
6104 && t->opcode_modifier.evex != EVEXLIG)
6105 {
6106 if (i.types[op].bitfield.zmmword)
6107 i.memshift = 6;
6108 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
6109 i.memshift = 5;
6110 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
6111 i.memshift = 4;
6112 }
6113
6114 if (type)
6115 {
6116 if (type->bitfield.zmmword)
6117 i.memshift = 6;
6118 else if (type->bitfield.ymmword)
6119 i.memshift = 5;
6120 else if (type->bitfield.xmmword)
6121 i.memshift = 4;
6122 }
6123
6124 /* For the check in fits_in_disp8(). */
6125 if (i.memshift == 0)
6126 i.memshift = -1;
6127 }
6128
6129 for (op = 0; op < i.operands; op++)
6130 if (operand_type_check (i.types[op], disp)
6131 && i.op[op].disps->X_op == O_constant)
6132 {
6133 if (fits_in_disp8 (i.op[op].disps->X_add_number))
6134 {
6135 i.types[op].bitfield.disp8 = 1;
6136 return 0;
6137 }
6138 i.types[op].bitfield.disp8 = 0;
6139 }
6140 }
6141
6142 i.memshift = 0;
6143
6144 return 0;
6145 }
6146
6147 /* Check if encoding requirements are met by the instruction. */
6148
6149 static int
6150 VEX_check_encoding (const insn_template *t)
6151 {
6152 if (i.vec_encoding == vex_encoding_error)
6153 {
6154 i.error = unsupported;
6155 return 1;
6156 }
6157
6158 if (i.vec_encoding == vex_encoding_evex)
6159 {
6160 /* This instruction must be encoded with EVEX prefix. */
6161 if (!is_evex_encoding (t))
6162 {
6163 i.error = unsupported;
6164 return 1;
6165 }
6166 return 0;
6167 }
6168
6169 if (!t->opcode_modifier.vex)
6170 {
6171 /* This instruction template doesn't have VEX prefix. */
6172 if (i.vec_encoding != vex_encoding_default)
6173 {
6174 i.error = unsupported;
6175 return 1;
6176 }
6177 return 0;
6178 }
6179
6180 return 0;
6181 }
6182
6183 static const insn_template *
6184 match_template (char mnem_suffix)
6185 {
6186 /* Points to template once we've found it. */
6187 const insn_template *t;
6188 i386_operand_type overlap0, overlap1, overlap2, overlap3;
6189 i386_operand_type overlap4;
6190 unsigned int found_reverse_match;
6191 i386_opcode_modifier suffix_check;
6192 i386_operand_type operand_types [MAX_OPERANDS];
6193 int addr_prefix_disp;
6194 unsigned int j, size_match, check_register;
6195 enum i386_error specific_error = 0;
6196
6197 #if MAX_OPERANDS != 5
6198 # error "MAX_OPERANDS must be 5."
6199 #endif
6200
6201 found_reverse_match = 0;
6202 addr_prefix_disp = -1;
6203
6204 /* Prepare for mnemonic suffix check. */
6205 memset (&suffix_check, 0, sizeof (suffix_check));
6206 switch (mnem_suffix)
6207 {
6208 case BYTE_MNEM_SUFFIX:
6209 suffix_check.no_bsuf = 1;
6210 break;
6211 case WORD_MNEM_SUFFIX:
6212 suffix_check.no_wsuf = 1;
6213 break;
6214 case SHORT_MNEM_SUFFIX:
6215 suffix_check.no_ssuf = 1;
6216 break;
6217 case LONG_MNEM_SUFFIX:
6218 suffix_check.no_lsuf = 1;
6219 break;
6220 case QWORD_MNEM_SUFFIX:
6221 suffix_check.no_qsuf = 1;
6222 break;
6223 default:
6224 /* NB: In Intel syntax, normally we can check for memory operand
6225 size when there is no mnemonic suffix. But jmp and call have
6226 2 different encodings with Dword memory operand size, one with
6227 No_ldSuf and the other without. i.suffix is set to
6228 LONG_DOUBLE_MNEM_SUFFIX to skip the one with No_ldSuf. */
6229 if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
6230 suffix_check.no_ldsuf = 1;
6231 }
6232
6233 /* Must have right number of operands. */
6234 i.error = number_of_operands_mismatch;
6235
6236 for (t = current_templates->start; t < current_templates->end; t++)
6237 {
6238 addr_prefix_disp = -1;
6239 found_reverse_match = 0;
6240
6241 if (i.operands != t->operands)
6242 continue;
6243
6244 /* Check processor support. */
6245 i.error = unsupported;
6246 if (cpu_flags_match (t) != CPU_FLAGS_PERFECT_MATCH)
6247 continue;
6248
6249 /* Check AT&T mnemonic. */
6250 i.error = unsupported_with_intel_mnemonic;
6251 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
6252 continue;
6253
6254 /* Check AT&T/Intel syntax. */
6255 i.error = unsupported_syntax;
6256 if ((intel_syntax && t->opcode_modifier.attsyntax)
6257 || (!intel_syntax && t->opcode_modifier.intelsyntax))
6258 continue;
6259
6260 /* Check Intel64/AMD64 ISA. */
6261 switch (isa64)
6262 {
6263 default:
6264 /* Default: Don't accept Intel64. */
6265 if (t->opcode_modifier.isa64 == INTEL64)
6266 continue;
6267 break;
6268 case amd64:
6269 /* -mamd64: Don't accept Intel64 and Intel64 only. */
6270 if (t->opcode_modifier.isa64 >= INTEL64)
6271 continue;
6272 break;
6273 case intel64:
6274 /* -mintel64: Don't accept AMD64. */
6275 if (t->opcode_modifier.isa64 == AMD64 && flag_code == CODE_64BIT)
6276 continue;
6277 break;
6278 }
6279
6280 /* Check the suffix. */
6281 i.error = invalid_instruction_suffix;
6282 if ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
6283 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
6284 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
6285 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
6286 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
6287 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf))
6288 continue;
6289
6290 size_match = operand_size_match (t);
6291 if (!size_match)
6292 continue;
6293
6294 /* This is intentionally not
6295
6296 if (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE))
6297
6298 as the case of a missing * on the operand is accepted (perhaps with
6299 a warning, issued further down). */
6300 if (i.jumpabsolute && t->opcode_modifier.jump != JUMP_ABSOLUTE)
6301 {
6302 i.error = operand_type_mismatch;
6303 continue;
6304 }
6305
6306 for (j = 0; j < MAX_OPERANDS; j++)
6307 operand_types[j] = t->operand_types[j];
6308
6309 /* In general, don't allow
6310 - 64-bit operands outside of 64-bit mode,
6311 - 32-bit operands on pre-386. */
6312 j = i.imm_operands + (t->operands > i.imm_operands + 1);
6313 if (((i.suffix == QWORD_MNEM_SUFFIX
6314 && flag_code != CODE_64BIT
6315 && (t->base_opcode != 0x0fc7
6316 || t->extension_opcode != 1 /* cmpxchg8b */))
6317 || (i.suffix == LONG_MNEM_SUFFIX
6318 && !cpu_arch_flags.bitfield.cpui386))
6319 && (intel_syntax
6320 ? (t->opcode_modifier.mnemonicsize != IGNORESIZE
6321 && !intel_float_operand (t->name))
6322 : intel_float_operand (t->name) != 2)
6323 && (t->operands == i.imm_operands
6324 || (operand_types[i.imm_operands].bitfield.class != RegMMX
6325 && operand_types[i.imm_operands].bitfield.class != RegSIMD
6326 && operand_types[i.imm_operands].bitfield.class != RegMask)
6327 || (operand_types[j].bitfield.class != RegMMX
6328 && operand_types[j].bitfield.class != RegSIMD
6329 && operand_types[j].bitfield.class != RegMask))
6330 && !t->opcode_modifier.sib)
6331 continue;
6332
6333 /* Do not verify operands when there are none. */
6334 if (!t->operands)
6335 {
6336 if (VEX_check_encoding (t))
6337 {
6338 specific_error = i.error;
6339 continue;
6340 }
6341
6342 /* We've found a match; break out of loop. */
6343 break;
6344 }
6345
6346 if (!t->opcode_modifier.jump
6347 || t->opcode_modifier.jump == JUMP_ABSOLUTE)
6348 {
6349 /* There should be only one Disp operand. */
6350 for (j = 0; j < MAX_OPERANDS; j++)
6351 if (operand_type_check (operand_types[j], disp))
6352 break;
6353 if (j < MAX_OPERANDS)
6354 {
6355 bfd_boolean override = (i.prefix[ADDR_PREFIX] != 0);
6356
6357 addr_prefix_disp = j;
6358
6359 /* Address size prefix will turn Disp64/Disp32S/Disp32/Disp16
6360 operand into Disp32/Disp32/Disp16/Disp32 operand. */
6361 switch (flag_code)
6362 {
6363 case CODE_16BIT:
6364 override = !override;
6365 /* Fall through. */
6366 case CODE_32BIT:
6367 if (operand_types[j].bitfield.disp32
6368 && operand_types[j].bitfield.disp16)
6369 {
6370 operand_types[j].bitfield.disp16 = override;
6371 operand_types[j].bitfield.disp32 = !override;
6372 }
6373 operand_types[j].bitfield.disp32s = 0;
6374 operand_types[j].bitfield.disp64 = 0;
6375 break;
6376
6377 case CODE_64BIT:
6378 if (operand_types[j].bitfield.disp32s
6379 || operand_types[j].bitfield.disp64)
6380 {
6381 operand_types[j].bitfield.disp64 &= !override;
6382 operand_types[j].bitfield.disp32s &= !override;
6383 operand_types[j].bitfield.disp32 = override;
6384 }
6385 operand_types[j].bitfield.disp16 = 0;
6386 break;
6387 }
6388 }
6389 }
6390
6391 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
6392 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
6393 continue;
6394
6395 /* We check register size if needed. */
6396 if (t->opcode_modifier.checkregsize)
6397 {
6398 check_register = (1 << t->operands) - 1;
6399 if (i.broadcast)
6400 check_register &= ~(1 << i.broadcast->operand);
6401 }
6402 else
6403 check_register = 0;
6404
6405 overlap0 = operand_type_and (i.types[0], operand_types[0]);
6406 switch (t->operands)
6407 {
6408 case 1:
6409 if (!operand_type_match (overlap0, i.types[0]))
6410 continue;
6411 break;
6412 case 2:
6413 /* xchg %eax, %eax is a special case. It is an alias for nop
6414 only in 32bit mode and we can use opcode 0x90. In 64bit
6415 mode, we can't use 0x90 for xchg %eax, %eax since it should
6416 zero-extend %eax to %rax. */
6417 if (flag_code == CODE_64BIT
6418 && t->base_opcode == 0x90
6419 && i.types[0].bitfield.instance == Accum
6420 && i.types[0].bitfield.dword
6421 && i.types[1].bitfield.instance == Accum
6422 && i.types[1].bitfield.dword)
6423 continue;
6424 /* xrelease mov %eax, <disp> is another special case. It must not
6425 match the accumulator-only encoding of mov. */
6426 if (flag_code != CODE_64BIT
6427 && i.hle_prefix
6428 && t->base_opcode == 0xa0
6429 && i.types[0].bitfield.instance == Accum
6430 && (i.flags[1] & Operand_Mem))
6431 continue;
6432 /* Fall through. */
6433
6434 case 3:
6435 if (!(size_match & MATCH_STRAIGHT))
6436 goto check_reverse;
6437 /* Reverse direction of operands if swapping is possible in the first
6438 place (operands need to be symmetric) and
6439 - the load form is requested, and the template is a store form,
6440 - the store form is requested, and the template is a load form,
6441 - the non-default (swapped) form is requested. */
6442 overlap1 = operand_type_and (operand_types[0], operand_types[1]);
6443 if (t->opcode_modifier.d && i.reg_operands == i.operands
6444 && !operand_type_all_zero (&overlap1))
6445 switch (i.dir_encoding)
6446 {
6447 case dir_encoding_load:
6448 if (operand_type_check (operand_types[i.operands - 1], anymem)
6449 || t->opcode_modifier.regmem)
6450 goto check_reverse;
6451 break;
6452
6453 case dir_encoding_store:
6454 if (!operand_type_check (operand_types[i.operands - 1], anymem)
6455 && !t->opcode_modifier.regmem)
6456 goto check_reverse;
6457 break;
6458
6459 case dir_encoding_swap:
6460 goto check_reverse;
6461
6462 case dir_encoding_default:
6463 break;
6464 }
6465 /* If we want store form, we skip the current load. */
6466 if ((i.dir_encoding == dir_encoding_store
6467 || i.dir_encoding == dir_encoding_swap)
6468 && i.mem_operands == 0
6469 && t->opcode_modifier.load)
6470 continue;
6471 /* Fall through. */
6472 case 4:
6473 case 5:
6474 overlap1 = operand_type_and (i.types[1], operand_types[1]);
6475 if (!operand_type_match (overlap0, i.types[0])
6476 || !operand_type_match (overlap1, i.types[1])
6477 || ((check_register & 3) == 3
6478 && !operand_type_register_match (i.types[0],
6479 operand_types[0],
6480 i.types[1],
6481 operand_types[1])))
6482 {
6483 /* Check if other direction is valid ... */
6484 if (!t->opcode_modifier.d)
6485 continue;
6486
6487 check_reverse:
6488 if (!(size_match & MATCH_REVERSE))
6489 continue;
6490 /* Try reversing direction of operands. */
6491 overlap0 = operand_type_and (i.types[0], operand_types[i.operands - 1]);
6492 overlap1 = operand_type_and (i.types[i.operands - 1], operand_types[0]);
6493 if (!operand_type_match (overlap0, i.types[0])
6494 || !operand_type_match (overlap1, i.types[i.operands - 1])
6495 || (check_register
6496 && !operand_type_register_match (i.types[0],
6497 operand_types[i.operands - 1],
6498 i.types[i.operands - 1],
6499 operand_types[0])))
6500 {
6501 /* Does not match either direction. */
6502 continue;
6503 }
6504 /* found_reverse_match holds which of D or FloatR
6505 we've found. */
6506 if (!t->opcode_modifier.d)
6507 found_reverse_match = 0;
6508 else if (operand_types[0].bitfield.tbyte)
6509 found_reverse_match = Opcode_FloatD;
6510 else if (operand_types[0].bitfield.xmmword
6511 || operand_types[i.operands - 1].bitfield.xmmword
6512 || operand_types[0].bitfield.class == RegMMX
6513 || operand_types[i.operands - 1].bitfield.class == RegMMX
6514 || is_any_vex_encoding(t))
6515 found_reverse_match = (t->base_opcode & 0xee) != 0x6e
6516 ? Opcode_SIMD_FloatD : Opcode_SIMD_IntD;
6517 else
6518 found_reverse_match = Opcode_D;
6519 if (t->opcode_modifier.floatr)
6520 found_reverse_match |= Opcode_FloatR;
6521 }
6522 else
6523 {
6524 /* Found a forward 2 operand match here. */
6525 switch (t->operands)
6526 {
6527 case 5:
6528 overlap4 = operand_type_and (i.types[4],
6529 operand_types[4]);
6530 /* Fall through. */
6531 case 4:
6532 overlap3 = operand_type_and (i.types[3],
6533 operand_types[3]);
6534 /* Fall through. */
6535 case 3:
6536 overlap2 = operand_type_and (i.types[2],
6537 operand_types[2]);
6538 break;
6539 }
6540
6541 switch (t->operands)
6542 {
6543 case 5:
6544 if (!operand_type_match (overlap4, i.types[4])
6545 || !operand_type_register_match (i.types[3],
6546 operand_types[3],
6547 i.types[4],
6548 operand_types[4]))
6549 continue;
6550 /* Fall through. */
6551 case 4:
6552 if (!operand_type_match (overlap3, i.types[3])
6553 || ((check_register & 0xa) == 0xa
6554 && !operand_type_register_match (i.types[1],
6555 operand_types[1],
6556 i.types[3],
6557 operand_types[3]))
6558 || ((check_register & 0xc) == 0xc
6559 && !operand_type_register_match (i.types[2],
6560 operand_types[2],
6561 i.types[3],
6562 operand_types[3])))
6563 continue;
6564 /* Fall through. */
6565 case 3:
6566 /* Here we make use of the fact that there are no
6567 reverse match 3 operand instructions. */
6568 if (!operand_type_match (overlap2, i.types[2])
6569 || ((check_register & 5) == 5
6570 && !operand_type_register_match (i.types[0],
6571 operand_types[0],
6572 i.types[2],
6573 operand_types[2]))
6574 || ((check_register & 6) == 6
6575 && !operand_type_register_match (i.types[1],
6576 operand_types[1],
6577 i.types[2],
6578 operand_types[2])))
6579 continue;
6580 break;
6581 }
6582 }
6583 /* Found either forward/reverse 2, 3 or 4 operand match here:
6584 slip through to break. */
6585 }
6586
6587 /* Check if vector operands are valid. */
6588 if (check_VecOperands (t))
6589 {
6590 specific_error = i.error;
6591 continue;
6592 }
6593
6594 /* Check if VEX/EVEX encoding requirements can be satisfied. */
6595 if (VEX_check_encoding (t))
6596 {
6597 specific_error = i.error;
6598 continue;
6599 }
6600
6601 /* We've found a match; break out of loop. */
6602 break;
6603 }
6604
6605 if (t == current_templates->end)
6606 {
6607 /* We found no match. */
6608 const char *err_msg;
6609 switch (specific_error ? specific_error : i.error)
6610 {
6611 default:
6612 abort ();
6613 case operand_size_mismatch:
6614 err_msg = _("operand size mismatch");
6615 break;
6616 case operand_type_mismatch:
6617 err_msg = _("operand type mismatch");
6618 break;
6619 case register_type_mismatch:
6620 err_msg = _("register type mismatch");
6621 break;
6622 case number_of_operands_mismatch:
6623 err_msg = _("number of operands mismatch");
6624 break;
6625 case invalid_instruction_suffix:
6626 err_msg = _("invalid instruction suffix");
6627 break;
6628 case bad_imm4:
6629 err_msg = _("constant doesn't fit in 4 bits");
6630 break;
6631 case unsupported_with_intel_mnemonic:
6632 err_msg = _("unsupported with Intel mnemonic");
6633 break;
6634 case unsupported_syntax:
6635 err_msg = _("unsupported syntax");
6636 break;
6637 case unsupported:
6638 as_bad (_("unsupported instruction `%s'"),
6639 current_templates->start->name);
6640 return NULL;
6641 case invalid_sib_address:
6642 err_msg = _("invalid SIB address");
6643 break;
6644 case invalid_vsib_address:
6645 err_msg = _("invalid VSIB address");
6646 break;
6647 case invalid_vector_register_set:
6648 err_msg = _("mask, index, and destination registers must be distinct");
6649 break;
6650 case invalid_tmm_register_set:
6651 err_msg = _("all tmm registers must be distinct");
6652 break;
6653 case unsupported_vector_index_register:
6654 err_msg = _("unsupported vector index register");
6655 break;
6656 case unsupported_broadcast:
6657 err_msg = _("unsupported broadcast");
6658 break;
6659 case broadcast_needed:
6660 err_msg = _("broadcast is needed for operand of such type");
6661 break;
6662 case unsupported_masking:
6663 err_msg = _("unsupported masking");
6664 break;
6665 case mask_not_on_destination:
6666 err_msg = _("mask not on destination operand");
6667 break;
6668 case no_default_mask:
6669 err_msg = _("default mask isn't allowed");
6670 break;
6671 case unsupported_rc_sae:
6672 err_msg = _("unsupported static rounding/sae");
6673 break;
6674 case rc_sae_operand_not_last_imm:
6675 if (intel_syntax)
6676 err_msg = _("RC/SAE operand must precede immediate operands");
6677 else
6678 err_msg = _("RC/SAE operand must follow immediate operands");
6679 break;
6680 case invalid_register_operand:
6681 err_msg = _("invalid register operand");
6682 break;
6683 }
6684 as_bad (_("%s for `%s'"), err_msg,
6685 current_templates->start->name);
6686 return NULL;
6687 }
6688
6689 if (!quiet_warnings)
6690 {
6691 if (!intel_syntax
6692 && (i.jumpabsolute != (t->opcode_modifier.jump == JUMP_ABSOLUTE)))
6693 as_warn (_("indirect %s without `*'"), t->name);
6694
6695 if (t->opcode_modifier.isprefix
6696 && t->opcode_modifier.mnemonicsize == IGNORESIZE)
6697 {
6698 /* Warn them that a data or address size prefix doesn't
6699 affect assembly of the next line of code. */
6700 as_warn (_("stand-alone `%s' prefix"), t->name);
6701 }
6702 }
6703
6704 /* Copy the template we found. */
6705 i.tm = *t;
6706
6707 if (addr_prefix_disp != -1)
6708 i.tm.operand_types[addr_prefix_disp]
6709 = operand_types[addr_prefix_disp];
6710
6711 if (found_reverse_match)
6712 {
6713 /* If we found a reverse match we must alter the opcode direction
6714 bit and clear/flip the regmem modifier one. found_reverse_match
6715 holds bits to change (different for int & float insns). */
6716
6717 i.tm.base_opcode ^= found_reverse_match;
6718
6719 i.tm.operand_types[0] = operand_types[i.operands - 1];
6720 i.tm.operand_types[i.operands - 1] = operand_types[0];
6721
6722 /* Certain SIMD insns have their load forms specified in the opcode
6723 table, and hence we need to _set_ RegMem instead of clearing it.
6724 We need to avoid setting the bit though on insns like KMOVW. */
6725 i.tm.opcode_modifier.regmem
6726 = i.tm.opcode_modifier.modrm && i.tm.opcode_modifier.d
6727 && i.tm.operands > 2U - i.tm.opcode_modifier.sse2avx
6728 && !i.tm.opcode_modifier.regmem;
6729 }
6730
6731 return t;
6732 }
6733
6734 static int
6735 check_string (void)
6736 {
6737 unsigned int es_op = i.tm.opcode_modifier.isstring - IS_STRING_ES_OP0;
6738 unsigned int op = i.tm.operand_types[0].bitfield.baseindex ? es_op : 0;
6739
6740 if (i.seg[op] != NULL && i.seg[op] != &es)
6741 {
6742 as_bad (_("`%s' operand %u must use `%ses' segment"),
6743 i.tm.name,
6744 intel_syntax ? i.tm.operands - es_op : es_op + 1,
6745 register_prefix);
6746 return 0;
6747 }
6748
6749 /* There's only ever one segment override allowed per instruction.
6750 This instruction possibly has a legal segment override on the
6751 second operand, so copy the segment to where non-string
6752 instructions store it, allowing common code. */
6753 i.seg[op] = i.seg[1];
6754
6755 return 1;
6756 }
6757
6758 static int
6759 process_suffix (void)
6760 {
6761 /* If matched instruction specifies an explicit instruction mnemonic
6762 suffix, use it. */
6763 if (i.tm.opcode_modifier.size == SIZE16)
6764 i.suffix = WORD_MNEM_SUFFIX;
6765 else if (i.tm.opcode_modifier.size == SIZE32)
6766 i.suffix = LONG_MNEM_SUFFIX;
6767 else if (i.tm.opcode_modifier.size == SIZE64)
6768 i.suffix = QWORD_MNEM_SUFFIX;
6769 else if (i.reg_operands
6770 && (i.operands > 1 || i.types[0].bitfield.class == Reg)
6771 && !i.tm.opcode_modifier.addrprefixopreg)
6772 {
6773 unsigned int numop = i.operands;
6774
6775 /* movsx/movzx want only their source operand considered here, for the
6776 ambiguity checking below. The suffix will be replaced afterwards
6777 to represent the destination (register). */
6778 if (((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w)
6779 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
6780 --i.operands;
6781
6782 /* crc32 needs REX.W set regardless of suffix / source operand size. */
6783 if (i.tm.base_opcode == 0xf20f38f0
6784 && i.tm.operand_types[1].bitfield.qword)
6785 i.rex |= REX_W;
6786
6787 /* If there's no instruction mnemonic suffix we try to invent one
6788 based on GPR operands. */
6789 if (!i.suffix)
6790 {
6791 /* We take i.suffix from the last register operand specified,
6792 Destination register type is more significant than source
6793 register type. crc32 in SSE4.2 prefers source register
6794 type. */
6795 unsigned int op = i.tm.base_opcode != 0xf20f38f0 ? i.operands : 1;
6796
6797 while (op--)
6798 if (i.tm.operand_types[op].bitfield.instance == InstanceNone
6799 || i.tm.operand_types[op].bitfield.instance == Accum)
6800 {
6801 if (i.types[op].bitfield.class != Reg)
6802 continue;
6803 if (i.types[op].bitfield.byte)
6804 i.suffix = BYTE_MNEM_SUFFIX;
6805 else if (i.types[op].bitfield.word)
6806 i.suffix = WORD_MNEM_SUFFIX;
6807 else if (i.types[op].bitfield.dword)
6808 i.suffix = LONG_MNEM_SUFFIX;
6809 else if (i.types[op].bitfield.qword)
6810 i.suffix = QWORD_MNEM_SUFFIX;
6811 else
6812 continue;
6813 break;
6814 }
6815
6816 /* As an exception, movsx/movzx silently default to a byte source
6817 in AT&T mode. */
6818 if ((i.tm.base_opcode | 8) == 0xfbe && i.tm.opcode_modifier.w
6819 && !i.suffix && !intel_syntax)
6820 i.suffix = BYTE_MNEM_SUFFIX;
6821 }
6822 else if (i.suffix == BYTE_MNEM_SUFFIX)
6823 {
6824 if (intel_syntax
6825 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6826 && i.tm.opcode_modifier.no_bsuf)
6827 i.suffix = 0;
6828 else if (!check_byte_reg ())
6829 return 0;
6830 }
6831 else if (i.suffix == LONG_MNEM_SUFFIX)
6832 {
6833 if (intel_syntax
6834 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6835 && i.tm.opcode_modifier.no_lsuf
6836 && !i.tm.opcode_modifier.todword
6837 && !i.tm.opcode_modifier.toqword)
6838 i.suffix = 0;
6839 else if (!check_long_reg ())
6840 return 0;
6841 }
6842 else if (i.suffix == QWORD_MNEM_SUFFIX)
6843 {
6844 if (intel_syntax
6845 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6846 && i.tm.opcode_modifier.no_qsuf
6847 && !i.tm.opcode_modifier.todword
6848 && !i.tm.opcode_modifier.toqword)
6849 i.suffix = 0;
6850 else if (!check_qword_reg ())
6851 return 0;
6852 }
6853 else if (i.suffix == WORD_MNEM_SUFFIX)
6854 {
6855 if (intel_syntax
6856 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE
6857 && i.tm.opcode_modifier.no_wsuf)
6858 i.suffix = 0;
6859 else if (!check_word_reg ())
6860 return 0;
6861 }
6862 else if (intel_syntax
6863 && i.tm.opcode_modifier.mnemonicsize == IGNORESIZE)
6864 /* Do nothing if the instruction is going to ignore the prefix. */
6865 ;
6866 else
6867 abort ();
6868
6869 /* Undo the movsx/movzx change done above. */
6870 i.operands = numop;
6871 }
6872 else if (i.tm.opcode_modifier.mnemonicsize == DEFAULTSIZE
6873 && !i.suffix)
6874 {
6875 i.suffix = stackop_size;
6876 if (stackop_size == LONG_MNEM_SUFFIX)
6877 {
6878 /* stackop_size is set to LONG_MNEM_SUFFIX for the
6879 .code16gcc directive to support 16-bit mode with
6880 32-bit address. For IRET without a suffix, generate
6881 16-bit IRET (opcode 0xcf) to return from an interrupt
6882 handler. */
6883 if (i.tm.base_opcode == 0xcf)
6884 {
6885 i.suffix = WORD_MNEM_SUFFIX;
6886 as_warn (_("generating 16-bit `iret' for .code16gcc directive"));
6887 }
6888 /* Warn about changed behavior for segment register push/pop. */
6889 else if ((i.tm.base_opcode | 1) == 0x07)
6890 as_warn (_("generating 32-bit `%s', unlike earlier gas versions"),
6891 i.tm.name);
6892 }
6893 }
6894 else if (!i.suffix
6895 && (i.tm.opcode_modifier.jump == JUMP_ABSOLUTE
6896 || i.tm.opcode_modifier.jump == JUMP_BYTE
6897 || i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT
6898 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6899 && i.tm.extension_opcode <= 3)))
6900 {
6901 switch (flag_code)
6902 {
6903 case CODE_64BIT:
6904 if (!i.tm.opcode_modifier.no_qsuf)
6905 {
6906 if (i.tm.opcode_modifier.jump == JUMP_BYTE
6907 || i.tm.opcode_modifier.no_lsuf)
6908 i.suffix = QWORD_MNEM_SUFFIX;
6909 break;
6910 }
6911 /* Fall through. */
6912 case CODE_32BIT:
6913 if (!i.tm.opcode_modifier.no_lsuf)
6914 i.suffix = LONG_MNEM_SUFFIX;
6915 break;
6916 case CODE_16BIT:
6917 if (!i.tm.opcode_modifier.no_wsuf)
6918 i.suffix = WORD_MNEM_SUFFIX;
6919 break;
6920 }
6921 }
6922
6923 if (!i.suffix
6924 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
6925 /* Also cover lret/retf/iret in 64-bit mode. */
6926 || (flag_code == CODE_64BIT
6927 && !i.tm.opcode_modifier.no_lsuf
6928 && !i.tm.opcode_modifier.no_qsuf))
6929 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
6930 /* Explicit sizing prefixes are assumed to disambiguate insns. */
6931 && !i.prefix[DATA_PREFIX] && !(i.prefix[REX_PREFIX] & REX_W)
6932 /* Accept FLDENV et al without suffix. */
6933 && (i.tm.opcode_modifier.no_ssuf || i.tm.opcode_modifier.floatmf))
6934 {
6935 unsigned int suffixes, evex = 0;
6936
6937 suffixes = !i.tm.opcode_modifier.no_bsuf;
6938 if (!i.tm.opcode_modifier.no_wsuf)
6939 suffixes |= 1 << 1;
6940 if (!i.tm.opcode_modifier.no_lsuf)
6941 suffixes |= 1 << 2;
6942 if (!i.tm.opcode_modifier.no_ldsuf)
6943 suffixes |= 1 << 3;
6944 if (!i.tm.opcode_modifier.no_ssuf)
6945 suffixes |= 1 << 4;
6946 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6947 suffixes |= 1 << 5;
6948
6949 /* For [XYZ]MMWORD operands inspect operand sizes. While generally
6950 also suitable for AT&T syntax mode, it was requested that this be
6951 restricted to just Intel syntax. */
6952 if (intel_syntax && is_any_vex_encoding (&i.tm) && !i.broadcast)
6953 {
6954 unsigned int op;
6955
6956 for (op = 0; op < i.tm.operands; ++op)
6957 {
6958 if (is_evex_encoding (&i.tm)
6959 && !cpu_arch_flags.bitfield.cpuavx512vl)
6960 {
6961 if (i.tm.operand_types[op].bitfield.ymmword)
6962 i.tm.operand_types[op].bitfield.xmmword = 0;
6963 if (i.tm.operand_types[op].bitfield.zmmword)
6964 i.tm.operand_types[op].bitfield.ymmword = 0;
6965 if (!i.tm.opcode_modifier.evex
6966 || i.tm.opcode_modifier.evex == EVEXDYN)
6967 i.tm.opcode_modifier.evex = EVEX512;
6968 }
6969
6970 if (i.tm.operand_types[op].bitfield.xmmword
6971 + i.tm.operand_types[op].bitfield.ymmword
6972 + i.tm.operand_types[op].bitfield.zmmword < 2)
6973 continue;
6974
6975 /* Any properly sized operand disambiguates the insn. */
6976 if (i.types[op].bitfield.xmmword
6977 || i.types[op].bitfield.ymmword
6978 || i.types[op].bitfield.zmmword)
6979 {
6980 suffixes &= ~(7 << 6);
6981 evex = 0;
6982 break;
6983 }
6984
6985 if ((i.flags[op] & Operand_Mem)
6986 && i.tm.operand_types[op].bitfield.unspecified)
6987 {
6988 if (i.tm.operand_types[op].bitfield.xmmword)
6989 suffixes |= 1 << 6;
6990 if (i.tm.operand_types[op].bitfield.ymmword)
6991 suffixes |= 1 << 7;
6992 if (i.tm.operand_types[op].bitfield.zmmword)
6993 suffixes |= 1 << 8;
6994 if (is_evex_encoding (&i.tm))
6995 evex = EVEX512;
6996 }
6997 }
6998 }
6999
7000 /* Are multiple suffixes / operand sizes allowed? */
7001 if (suffixes & (suffixes - 1))
7002 {
7003 if (intel_syntax
7004 && (i.tm.opcode_modifier.mnemonicsize != DEFAULTSIZE
7005 || operand_check == check_error))
7006 {
7007 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
7008 return 0;
7009 }
7010 if (operand_check == check_error)
7011 {
7012 as_bad (_("no instruction mnemonic suffix given and "
7013 "no register operands; can't size `%s'"), i.tm.name);
7014 return 0;
7015 }
7016 if (operand_check == check_warning)
7017 as_warn (_("%s; using default for `%s'"),
7018 intel_syntax
7019 ? _("ambiguous operand size")
7020 : _("no instruction mnemonic suffix given and "
7021 "no register operands"),
7022 i.tm.name);
7023
7024 if (i.tm.opcode_modifier.floatmf)
7025 i.suffix = SHORT_MNEM_SUFFIX;
7026 else if ((i.tm.base_opcode | 8) == 0xfbe
7027 || (i.tm.base_opcode == 0x63
7028 && i.tm.cpu_flags.bitfield.cpu64))
7029 /* handled below */;
7030 else if (evex)
7031 i.tm.opcode_modifier.evex = evex;
7032 else if (flag_code == CODE_16BIT)
7033 i.suffix = WORD_MNEM_SUFFIX;
7034 else if (!i.tm.opcode_modifier.no_lsuf)
7035 i.suffix = LONG_MNEM_SUFFIX;
7036 else
7037 i.suffix = QWORD_MNEM_SUFFIX;
7038 }
7039 }
7040
7041 if ((i.tm.base_opcode | 8) == 0xfbe
7042 || (i.tm.base_opcode == 0x63 && i.tm.cpu_flags.bitfield.cpu64))
7043 {
7044 /* In Intel syntax, movsx/movzx must have a "suffix" (checked above).
7045 In AT&T syntax, if there is no suffix (warned about above), the default
7046 will be byte extension. */
7047 if (i.tm.opcode_modifier.w && i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
7048 i.tm.base_opcode |= 1;
7049
7050 /* For further processing, the suffix should represent the destination
7051 (register). This is already the case when one was used with
7052 mov[sz][bw]*, but we need to replace it for mov[sz]x, or if there was
7053 no suffix to begin with. */
7054 if (i.tm.opcode_modifier.w || i.tm.base_opcode == 0x63 || !i.suffix)
7055 {
7056 if (i.types[1].bitfield.word)
7057 i.suffix = WORD_MNEM_SUFFIX;
7058 else if (i.types[1].bitfield.qword)
7059 i.suffix = QWORD_MNEM_SUFFIX;
7060 else
7061 i.suffix = LONG_MNEM_SUFFIX;
7062
7063 i.tm.opcode_modifier.w = 0;
7064 }
7065 }
7066
7067 if (!i.tm.opcode_modifier.modrm && i.reg_operands && i.tm.operands < 3)
7068 i.short_form = (i.tm.operand_types[0].bitfield.class == Reg)
7069 != (i.tm.operand_types[1].bitfield.class == Reg);
7070
7071 /* Change the opcode based on the operand size given by i.suffix. */
7072 switch (i.suffix)
7073 {
7074 /* Size floating point instruction. */
7075 case LONG_MNEM_SUFFIX:
7076 if (i.tm.opcode_modifier.floatmf)
7077 {
7078 i.tm.base_opcode ^= 4;
7079 break;
7080 }
7081 /* fall through */
7082 case WORD_MNEM_SUFFIX:
7083 case QWORD_MNEM_SUFFIX:
7084 /* It's not a byte, select word/dword operation. */
7085 if (i.tm.opcode_modifier.w)
7086 {
7087 if (i.short_form)
7088 i.tm.base_opcode |= 8;
7089 else
7090 i.tm.base_opcode |= 1;
7091 }
7092 /* fall through */
7093 case SHORT_MNEM_SUFFIX:
7094 /* Now select between word & dword operations via the operand
7095 size prefix, except for instructions that will ignore this
7096 prefix anyway. */
7097 if (i.suffix != QWORD_MNEM_SUFFIX
7098 && i.tm.opcode_modifier.mnemonicsize != IGNORESIZE
7099 && !i.tm.opcode_modifier.floatmf
7100 && !is_any_vex_encoding (&i.tm)
7101 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
7102 || (flag_code == CODE_64BIT
7103 && i.tm.opcode_modifier.jump == JUMP_BYTE)))
7104 {
7105 unsigned int prefix = DATA_PREFIX_OPCODE;
7106
7107 if (i.tm.opcode_modifier.jump == JUMP_BYTE) /* jcxz, loop */
7108 prefix = ADDR_PREFIX_OPCODE;
7109
7110 if (!add_prefix (prefix))
7111 return 0;
7112 }
7113
7114 /* Set mode64 for an operand. */
7115 if (i.suffix == QWORD_MNEM_SUFFIX
7116 && flag_code == CODE_64BIT
7117 && !i.tm.opcode_modifier.norex64
7118 && !i.tm.opcode_modifier.vexw
7119 /* Special case for xchg %rax,%rax. It is NOP and doesn't
7120 need rex64. */
7121 && ! (i.operands == 2
7122 && i.tm.base_opcode == 0x90
7123 && i.tm.extension_opcode == None
7124 && i.types[0].bitfield.instance == Accum
7125 && i.types[0].bitfield.qword
7126 && i.types[1].bitfield.instance == Accum
7127 && i.types[1].bitfield.qword))
7128 i.rex |= REX_W;
7129
7130 break;
7131
7132 case 0:
7133 /* Select word/dword/qword operation with explict data sizing prefix
7134 when there are no suitable register operands. */
7135 if (i.tm.opcode_modifier.w
7136 && (i.prefix[DATA_PREFIX] || (i.prefix[REX_PREFIX] & REX_W))
7137 && (!i.reg_operands
7138 || (i.reg_operands == 1
7139 /* ShiftCount */
7140 && (i.tm.operand_types[0].bitfield.instance == RegC
7141 /* InOutPortReg */
7142 || i.tm.operand_types[0].bitfield.instance == RegD
7143 || i.tm.operand_types[1].bitfield.instance == RegD
7144 /* CRC32 */
7145 || i.tm.base_opcode == 0xf20f38f0))))
7146 i.tm.base_opcode |= 1;
7147 break;
7148 }
7149
7150 if (i.tm.opcode_modifier.addrprefixopreg)
7151 {
7152 gas_assert (!i.suffix);
7153 gas_assert (i.reg_operands);
7154
7155 if (i.tm.operand_types[0].bitfield.instance == Accum
7156 || i.operands == 1)
7157 {
7158 /* The address size override prefix changes the size of the
7159 first operand. */
7160 if (flag_code == CODE_64BIT
7161 && i.op[0].regs->reg_type.bitfield.word)
7162 {
7163 as_bad (_("16-bit addressing unavailable for `%s'"),
7164 i.tm.name);
7165 return 0;
7166 }
7167
7168 if ((flag_code == CODE_32BIT
7169 ? i.op[0].regs->reg_type.bitfield.word
7170 : i.op[0].regs->reg_type.bitfield.dword)
7171 && !add_prefix (ADDR_PREFIX_OPCODE))
7172 return 0;
7173 }
7174 else
7175 {
7176 /* Check invalid register operand when the address size override
7177 prefix changes the size of register operands. */
7178 unsigned int op;
7179 enum { need_word, need_dword, need_qword } need;
7180
7181 /* Check the register operand for the address size prefix if
7182 the memory operand has no real registers, like symbol, DISP
7183 or symbol(%rip). */
7184 if (i.mem_operands == 1
7185 && i.reg_operands == 1
7186 && i.operands == 2
7187 && i.types[1].bitfield.class == Reg
7188 && (flag_code == CODE_32BIT
7189 ? i.op[1].regs->reg_type.bitfield.word
7190 : i.op[1].regs->reg_type.bitfield.dword)
7191 && ((i.base_reg == NULL && i.index_reg == NULL)
7192 || (i.base_reg
7193 && i.base_reg->reg_num == RegIP
7194 && i.base_reg->reg_type.bitfield.qword))
7195 && !add_prefix (ADDR_PREFIX_OPCODE))
7196 return 0;
7197
7198 if (flag_code == CODE_32BIT)
7199 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
7200 else if (i.prefix[ADDR_PREFIX])
7201 need = need_dword;
7202 else
7203 need = flag_code == CODE_64BIT ? need_qword : need_word;
7204
7205 for (op = 0; op < i.operands; op++)
7206 {
7207 if (i.types[op].bitfield.class != Reg)
7208 continue;
7209
7210 switch (need)
7211 {
7212 case need_word:
7213 if (i.op[op].regs->reg_type.bitfield.word)
7214 continue;
7215 break;
7216 case need_dword:
7217 if (i.op[op].regs->reg_type.bitfield.dword)
7218 continue;
7219 break;
7220 case need_qword:
7221 if (i.op[op].regs->reg_type.bitfield.qword)
7222 continue;
7223 break;
7224 }
7225
7226 as_bad (_("invalid register operand size for `%s'"),
7227 i.tm.name);
7228 return 0;
7229 }
7230 }
7231 }
7232
7233 return 1;
7234 }
7235
7236 static int
7237 check_byte_reg (void)
7238 {
7239 int op;
7240
7241 for (op = i.operands; --op >= 0;)
7242 {
7243 /* Skip non-register operands. */
7244 if (i.types[op].bitfield.class != Reg)
7245 continue;
7246
7247 /* If this is an eight bit register, it's OK. If it's the 16 or
7248 32 bit version of an eight bit register, we will just use the
7249 low portion, and that's OK too. */
7250 if (i.types[op].bitfield.byte)
7251 continue;
7252
7253 /* I/O port address operands are OK too. */
7254 if (i.tm.operand_types[op].bitfield.instance == RegD
7255 && i.tm.operand_types[op].bitfield.word)
7256 continue;
7257
7258 /* crc32 only wants its source operand checked here. */
7259 if (i.tm.base_opcode == 0xf20f38f0 && op)
7260 continue;
7261
7262 /* Any other register is bad. */
7263 as_bad (_("`%s%s' not allowed with `%s%c'"),
7264 register_prefix, i.op[op].regs->reg_name,
7265 i.tm.name, i.suffix);
7266 return 0;
7267 }
7268 return 1;
7269 }
7270
7271 static int
7272 check_long_reg (void)
7273 {
7274 int op;
7275
7276 for (op = i.operands; --op >= 0;)
7277 /* Skip non-register operands. */
7278 if (i.types[op].bitfield.class != Reg)
7279 continue;
7280 /* Reject eight bit registers, except where the template requires
7281 them. (eg. movzb) */
7282 else if (i.types[op].bitfield.byte
7283 && (i.tm.operand_types[op].bitfield.class == Reg
7284 || i.tm.operand_types[op].bitfield.instance == Accum)
7285 && (i.tm.operand_types[op].bitfield.word
7286 || i.tm.operand_types[op].bitfield.dword))
7287 {
7288 as_bad (_("`%s%s' not allowed with `%s%c'"),
7289 register_prefix,
7290 i.op[op].regs->reg_name,
7291 i.tm.name,
7292 i.suffix);
7293 return 0;
7294 }
7295 /* Error if the e prefix on a general reg is missing. */
7296 else if (i.types[op].bitfield.word
7297 && (i.tm.operand_types[op].bitfield.class == Reg
7298 || i.tm.operand_types[op].bitfield.instance == Accum)
7299 && i.tm.operand_types[op].bitfield.dword)
7300 {
7301 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7302 register_prefix, i.op[op].regs->reg_name,
7303 i.suffix);
7304 return 0;
7305 }
7306 /* Warn if the r prefix on a general reg is present. */
7307 else if (i.types[op].bitfield.qword
7308 && (i.tm.operand_types[op].bitfield.class == Reg
7309 || i.tm.operand_types[op].bitfield.instance == Accum)
7310 && i.tm.operand_types[op].bitfield.dword)
7311 {
7312 if (intel_syntax
7313 && i.tm.opcode_modifier.toqword
7314 && i.types[0].bitfield.class != RegSIMD)
7315 {
7316 /* Convert to QWORD. We want REX byte. */
7317 i.suffix = QWORD_MNEM_SUFFIX;
7318 }
7319 else
7320 {
7321 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7322 register_prefix, i.op[op].regs->reg_name,
7323 i.suffix);
7324 return 0;
7325 }
7326 }
7327 return 1;
7328 }
7329
7330 static int
7331 check_qword_reg (void)
7332 {
7333 int op;
7334
7335 for (op = i.operands; --op >= 0; )
7336 /* Skip non-register operands. */
7337 if (i.types[op].bitfield.class != Reg)
7338 continue;
7339 /* Reject eight bit registers, except where the template requires
7340 them. (eg. movzb) */
7341 else if (i.types[op].bitfield.byte
7342 && (i.tm.operand_types[op].bitfield.class == Reg
7343 || i.tm.operand_types[op].bitfield.instance == Accum)
7344 && (i.tm.operand_types[op].bitfield.word
7345 || i.tm.operand_types[op].bitfield.dword))
7346 {
7347 as_bad (_("`%s%s' not allowed with `%s%c'"),
7348 register_prefix,
7349 i.op[op].regs->reg_name,
7350 i.tm.name,
7351 i.suffix);
7352 return 0;
7353 }
7354 /* Warn if the r prefix on a general reg is missing. */
7355 else if ((i.types[op].bitfield.word
7356 || i.types[op].bitfield.dword)
7357 && (i.tm.operand_types[op].bitfield.class == Reg
7358 || i.tm.operand_types[op].bitfield.instance == Accum)
7359 && i.tm.operand_types[op].bitfield.qword)
7360 {
7361 /* Prohibit these changes in the 64bit mode, since the
7362 lowering is more complicated. */
7363 if (intel_syntax
7364 && i.tm.opcode_modifier.todword
7365 && i.types[0].bitfield.class != RegSIMD)
7366 {
7367 /* Convert to DWORD. We don't want REX byte. */
7368 i.suffix = LONG_MNEM_SUFFIX;
7369 }
7370 else
7371 {
7372 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7373 register_prefix, i.op[op].regs->reg_name,
7374 i.suffix);
7375 return 0;
7376 }
7377 }
7378 return 1;
7379 }
7380
7381 static int
7382 check_word_reg (void)
7383 {
7384 int op;
7385 for (op = i.operands; --op >= 0;)
7386 /* Skip non-register operands. */
7387 if (i.types[op].bitfield.class != Reg)
7388 continue;
7389 /* Reject eight bit registers, except where the template requires
7390 them. (eg. movzb) */
7391 else if (i.types[op].bitfield.byte
7392 && (i.tm.operand_types[op].bitfield.class == Reg
7393 || i.tm.operand_types[op].bitfield.instance == Accum)
7394 && (i.tm.operand_types[op].bitfield.word
7395 || i.tm.operand_types[op].bitfield.dword))
7396 {
7397 as_bad (_("`%s%s' not allowed with `%s%c'"),
7398 register_prefix,
7399 i.op[op].regs->reg_name,
7400 i.tm.name,
7401 i.suffix);
7402 return 0;
7403 }
7404 /* Error if the e or r prefix on a general reg is present. */
7405 else if ((i.types[op].bitfield.dword
7406 || i.types[op].bitfield.qword)
7407 && (i.tm.operand_types[op].bitfield.class == Reg
7408 || i.tm.operand_types[op].bitfield.instance == Accum)
7409 && i.tm.operand_types[op].bitfield.word)
7410 {
7411 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
7412 register_prefix, i.op[op].regs->reg_name,
7413 i.suffix);
7414 return 0;
7415 }
7416 return 1;
7417 }
7418
7419 static int
7420 update_imm (unsigned int j)
7421 {
7422 i386_operand_type overlap = i.types[j];
7423 if ((overlap.bitfield.imm8
7424 || overlap.bitfield.imm8s
7425 || overlap.bitfield.imm16
7426 || overlap.bitfield.imm32
7427 || overlap.bitfield.imm32s
7428 || overlap.bitfield.imm64)
7429 && !operand_type_equal (&overlap, &imm8)
7430 && !operand_type_equal (&overlap, &imm8s)
7431 && !operand_type_equal (&overlap, &imm16)
7432 && !operand_type_equal (&overlap, &imm32)
7433 && !operand_type_equal (&overlap, &imm32s)
7434 && !operand_type_equal (&overlap, &imm64))
7435 {
7436 if (i.suffix)
7437 {
7438 i386_operand_type temp;
7439
7440 operand_type_set (&temp, 0);
7441 if (i.suffix == BYTE_MNEM_SUFFIX)
7442 {
7443 temp.bitfield.imm8 = overlap.bitfield.imm8;
7444 temp.bitfield.imm8s = overlap.bitfield.imm8s;
7445 }
7446 else if (i.suffix == WORD_MNEM_SUFFIX)
7447 temp.bitfield.imm16 = overlap.bitfield.imm16;
7448 else if (i.suffix == QWORD_MNEM_SUFFIX)
7449 {
7450 temp.bitfield.imm64 = overlap.bitfield.imm64;
7451 temp.bitfield.imm32s = overlap.bitfield.imm32s;
7452 }
7453 else
7454 temp.bitfield.imm32 = overlap.bitfield.imm32;
7455 overlap = temp;
7456 }
7457 else if (operand_type_equal (&overlap, &imm16_32_32s)
7458 || operand_type_equal (&overlap, &imm16_32)
7459 || operand_type_equal (&overlap, &imm16_32s))
7460 {
7461 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
7462 overlap = imm16;
7463 else
7464 overlap = imm32s;
7465 }
7466 else if (i.prefix[REX_PREFIX] & REX_W)
7467 overlap = operand_type_and (overlap, imm32s);
7468 else if (i.prefix[DATA_PREFIX])
7469 overlap = operand_type_and (overlap,
7470 flag_code != CODE_16BIT ? imm16 : imm32);
7471 if (!operand_type_equal (&overlap, &imm8)
7472 && !operand_type_equal (&overlap, &imm8s)
7473 && !operand_type_equal (&overlap, &imm16)
7474 && !operand_type_equal (&overlap, &imm32)
7475 && !operand_type_equal (&overlap, &imm32s)
7476 && !operand_type_equal (&overlap, &imm64))
7477 {
7478 as_bad (_("no instruction mnemonic suffix given; "
7479 "can't determine immediate size"));
7480 return 0;
7481 }
7482 }
7483 i.types[j] = overlap;
7484
7485 return 1;
7486 }
7487
7488 static int
7489 finalize_imm (void)
7490 {
7491 unsigned int j, n;
7492
7493 /* Update the first 2 immediate operands. */
7494 n = i.operands > 2 ? 2 : i.operands;
7495 if (n)
7496 {
7497 for (j = 0; j < n; j++)
7498 if (update_imm (j) == 0)
7499 return 0;
7500
7501 /* The 3rd operand can't be immediate operand. */
7502 gas_assert (operand_type_check (i.types[2], imm) == 0);
7503 }
7504
7505 return 1;
7506 }
7507
7508 static int
7509 process_operands (void)
7510 {
7511 /* Default segment register this instruction will use for memory
7512 accesses. 0 means unknown. This is only for optimizing out
7513 unnecessary segment overrides. */
7514 const seg_entry *default_seg = 0;
7515
7516 if (i.tm.opcode_modifier.sse2avx)
7517 {
7518 /* Legacy encoded insns allow explicit REX prefixes, so these prefixes
7519 need converting. */
7520 i.rex |= i.prefix[REX_PREFIX] & (REX_W | REX_R | REX_X | REX_B);
7521 i.prefix[REX_PREFIX] = 0;
7522 i.rex_encoding = 0;
7523 }
7524 /* ImmExt should be processed after SSE2AVX. */
7525 else if (i.tm.opcode_modifier.immext)
7526 process_immext ();
7527
7528 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
7529 {
7530 unsigned int dupl = i.operands;
7531 unsigned int dest = dupl - 1;
7532 unsigned int j;
7533
7534 /* The destination must be an xmm register. */
7535 gas_assert (i.reg_operands
7536 && MAX_OPERANDS > dupl
7537 && operand_type_equal (&i.types[dest], &regxmm));
7538
7539 if (i.tm.operand_types[0].bitfield.instance == Accum
7540 && i.tm.operand_types[0].bitfield.xmmword)
7541 {
7542 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
7543 {
7544 /* Keep xmm0 for instructions with VEX prefix and 3
7545 sources. */
7546 i.tm.operand_types[0].bitfield.instance = InstanceNone;
7547 i.tm.operand_types[0].bitfield.class = RegSIMD;
7548 goto duplicate;
7549 }
7550 else
7551 {
7552 /* We remove the first xmm0 and keep the number of
7553 operands unchanged, which in fact duplicates the
7554 destination. */
7555 for (j = 1; j < i.operands; j++)
7556 {
7557 i.op[j - 1] = i.op[j];
7558 i.types[j - 1] = i.types[j];
7559 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
7560 i.flags[j - 1] = i.flags[j];
7561 }
7562 }
7563 }
7564 else if (i.tm.opcode_modifier.implicit1stxmm0)
7565 {
7566 gas_assert ((MAX_OPERANDS - 1) > dupl
7567 && (i.tm.opcode_modifier.vexsources
7568 == VEX3SOURCES));
7569
7570 /* Add the implicit xmm0 for instructions with VEX prefix
7571 and 3 sources. */
7572 for (j = i.operands; j > 0; j--)
7573 {
7574 i.op[j] = i.op[j - 1];
7575 i.types[j] = i.types[j - 1];
7576 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
7577 i.flags[j] = i.flags[j - 1];
7578 }
7579 i.op[0].regs
7580 = (const reg_entry *) str_hash_find (reg_hash, "xmm0");
7581 i.types[0] = regxmm;
7582 i.tm.operand_types[0] = regxmm;
7583
7584 i.operands += 2;
7585 i.reg_operands += 2;
7586 i.tm.operands += 2;
7587
7588 dupl++;
7589 dest++;
7590 i.op[dupl] = i.op[dest];
7591 i.types[dupl] = i.types[dest];
7592 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7593 i.flags[dupl] = i.flags[dest];
7594 }
7595 else
7596 {
7597 duplicate:
7598 i.operands++;
7599 i.reg_operands++;
7600 i.tm.operands++;
7601
7602 i.op[dupl] = i.op[dest];
7603 i.types[dupl] = i.types[dest];
7604 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
7605 i.flags[dupl] = i.flags[dest];
7606 }
7607
7608 if (i.tm.opcode_modifier.immext)
7609 process_immext ();
7610 }
7611 else if (i.tm.operand_types[0].bitfield.instance == Accum
7612 && i.tm.operand_types[0].bitfield.xmmword)
7613 {
7614 unsigned int j;
7615
7616 for (j = 1; j < i.operands; j++)
7617 {
7618 i.op[j - 1] = i.op[j];
7619 i.types[j - 1] = i.types[j];
7620
7621 /* We need to adjust fields in i.tm since they are used by
7622 build_modrm_byte. */
7623 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
7624
7625 i.flags[j - 1] = i.flags[j];
7626 }
7627
7628 i.operands--;
7629 i.reg_operands--;
7630 i.tm.operands--;
7631 }
7632 else if (i.tm.opcode_modifier.implicitquadgroup)
7633 {
7634 unsigned int regnum, first_reg_in_group, last_reg_in_group;
7635
7636 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
7637 gas_assert (i.operands >= 2 && i.types[1].bitfield.class == RegSIMD);
7638 regnum = register_number (i.op[1].regs);
7639 first_reg_in_group = regnum & ~3;
7640 last_reg_in_group = first_reg_in_group + 3;
7641 if (regnum != first_reg_in_group)
7642 as_warn (_("source register `%s%s' implicitly denotes"
7643 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
7644 register_prefix, i.op[1].regs->reg_name,
7645 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
7646 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
7647 i.tm.name);
7648 }
7649 else if (i.tm.opcode_modifier.regkludge)
7650 {
7651 /* The imul $imm, %reg instruction is converted into
7652 imul $imm, %reg, %reg, and the clr %reg instruction
7653 is converted into xor %reg, %reg. */
7654
7655 unsigned int first_reg_op;
7656
7657 if (operand_type_check (i.types[0], reg))
7658 first_reg_op = 0;
7659 else
7660 first_reg_op = 1;
7661 /* Pretend we saw the extra register operand. */
7662 gas_assert (i.reg_operands == 1
7663 && i.op[first_reg_op + 1].regs == 0);
7664 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
7665 i.types[first_reg_op + 1] = i.types[first_reg_op];
7666 i.operands++;
7667 i.reg_operands++;
7668 }
7669
7670 if (i.tm.opcode_modifier.modrm)
7671 {
7672 /* The opcode is completed (modulo i.tm.extension_opcode which
7673 must be put into the modrm byte). Now, we make the modrm and
7674 index base bytes based on all the info we've collected. */
7675
7676 default_seg = build_modrm_byte ();
7677 }
7678 else if (i.types[0].bitfield.class == SReg)
7679 {
7680 if (flag_code != CODE_64BIT
7681 ? i.tm.base_opcode == POP_SEG_SHORT
7682 && i.op[0].regs->reg_num == 1
7683 : (i.tm.base_opcode | 1) == POP_SEG386_SHORT
7684 && i.op[0].regs->reg_num < 4)
7685 {
7686 as_bad (_("you can't `%s %s%s'"),
7687 i.tm.name, register_prefix, i.op[0].regs->reg_name);
7688 return 0;
7689 }
7690 if ( i.op[0].regs->reg_num > 3 && i.tm.opcode_length == 1 )
7691 {
7692 i.tm.base_opcode ^= POP_SEG_SHORT ^ POP_SEG386_SHORT;
7693 i.tm.opcode_length = 2;
7694 }
7695 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
7696 }
7697 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
7698 {
7699 default_seg = &ds;
7700 }
7701 else if (i.tm.opcode_modifier.isstring)
7702 {
7703 /* For the string instructions that allow a segment override
7704 on one of their operands, the default segment is ds. */
7705 default_seg = &ds;
7706 }
7707 else if (i.short_form)
7708 {
7709 /* The register or float register operand is in operand
7710 0 or 1. */
7711 unsigned int op = i.tm.operand_types[0].bitfield.class != Reg;
7712
7713 /* Register goes in low 3 bits of opcode. */
7714 i.tm.base_opcode |= i.op[op].regs->reg_num;
7715 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7716 i.rex |= REX_B;
7717 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
7718 {
7719 /* Warn about some common errors, but press on regardless.
7720 The first case can be generated by gcc (<= 2.8.1). */
7721 if (i.operands == 2)
7722 {
7723 /* Reversed arguments on faddp, fsubp, etc. */
7724 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
7725 register_prefix, i.op[!intel_syntax].regs->reg_name,
7726 register_prefix, i.op[intel_syntax].regs->reg_name);
7727 }
7728 else
7729 {
7730 /* Extraneous `l' suffix on fp insn. */
7731 as_warn (_("translating to `%s %s%s'"), i.tm.name,
7732 register_prefix, i.op[0].regs->reg_name);
7733 }
7734 }
7735 }
7736
7737 if ((i.seg[0] || i.prefix[SEG_PREFIX])
7738 && i.tm.base_opcode == 0x8d /* lea */
7739 && !is_any_vex_encoding(&i.tm))
7740 {
7741 if (!quiet_warnings)
7742 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
7743 if (optimize)
7744 {
7745 i.seg[0] = NULL;
7746 i.prefix[SEG_PREFIX] = 0;
7747 }
7748 }
7749
7750 /* If a segment was explicitly specified, and the specified segment
7751 is neither the default nor the one already recorded from a prefix,
7752 use an opcode prefix to select it. If we never figured out what
7753 the default segment is, then default_seg will be zero at this
7754 point, and the specified segment prefix will always be used. */
7755 if (i.seg[0]
7756 && i.seg[0] != default_seg
7757 && i.seg[0]->seg_prefix != i.prefix[SEG_PREFIX])
7758 {
7759 if (!add_prefix (i.seg[0]->seg_prefix))
7760 return 0;
7761 }
7762 return 1;
7763 }
7764
7765 static INLINE void set_rex_vrex (const reg_entry *r, unsigned int rex_bit,
7766 bfd_boolean do_sse2avx)
7767 {
7768 if (r->reg_flags & RegRex)
7769 {
7770 if (i.rex & rex_bit)
7771 as_bad (_("same type of prefix used twice"));
7772 i.rex |= rex_bit;
7773 }
7774 else if (do_sse2avx && (i.rex & rex_bit) && i.vex.register_specifier)
7775 {
7776 gas_assert (i.vex.register_specifier == r);
7777 i.vex.register_specifier += 8;
7778 }
7779
7780 if (r->reg_flags & RegVRex)
7781 i.vrex |= rex_bit;
7782 }
7783
7784 static const seg_entry *
7785 build_modrm_byte (void)
7786 {
7787 const seg_entry *default_seg = 0;
7788 unsigned int source, dest;
7789 int vex_3_sources;
7790
7791 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
7792 if (vex_3_sources)
7793 {
7794 unsigned int nds, reg_slot;
7795 expressionS *exp;
7796
7797 dest = i.operands - 1;
7798 nds = dest - 1;
7799
7800 /* There are 2 kinds of instructions:
7801 1. 5 operands: 4 register operands or 3 register operands
7802 plus 1 memory operand plus one Imm4 operand, VexXDS, and
7803 VexW0 or VexW1. The destination must be either XMM, YMM or
7804 ZMM register.
7805 2. 4 operands: 4 register operands or 3 register operands
7806 plus 1 memory operand, with VexXDS. */
7807 gas_assert ((i.reg_operands == 4
7808 || (i.reg_operands == 3 && i.mem_operands == 1))
7809 && i.tm.opcode_modifier.vexvvvv == VEXXDS
7810 && i.tm.opcode_modifier.vexw
7811 && i.tm.operand_types[dest].bitfield.class == RegSIMD);
7812
7813 /* If VexW1 is set, the first non-immediate operand is the source and
7814 the second non-immediate one is encoded in the immediate operand. */
7815 if (i.tm.opcode_modifier.vexw == VEXW1)
7816 {
7817 source = i.imm_operands;
7818 reg_slot = i.imm_operands + 1;
7819 }
7820 else
7821 {
7822 source = i.imm_operands + 1;
7823 reg_slot = i.imm_operands;
7824 }
7825
7826 if (i.imm_operands == 0)
7827 {
7828 /* When there is no immediate operand, generate an 8bit
7829 immediate operand to encode the first operand. */
7830 exp = &im_expressions[i.imm_operands++];
7831 i.op[i.operands].imms = exp;
7832 i.types[i.operands] = imm8;
7833 i.operands++;
7834
7835 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7836 exp->X_op = O_constant;
7837 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
7838 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7839 }
7840 else
7841 {
7842 gas_assert (i.imm_operands == 1);
7843 gas_assert (fits_in_imm4 (i.op[0].imms->X_add_number));
7844 gas_assert (!i.tm.opcode_modifier.immext);
7845
7846 /* Turn on Imm8 again so that output_imm will generate it. */
7847 i.types[0].bitfield.imm8 = 1;
7848
7849 gas_assert (i.tm.operand_types[reg_slot].bitfield.class == RegSIMD);
7850 i.op[0].imms->X_add_number
7851 |= register_number (i.op[reg_slot].regs) << 4;
7852 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
7853 }
7854
7855 gas_assert (i.tm.operand_types[nds].bitfield.class == RegSIMD);
7856 i.vex.register_specifier = i.op[nds].regs;
7857 }
7858 else
7859 source = dest = 0;
7860
7861 /* i.reg_operands MUST be the number of real register operands;
7862 implicit registers do not count. If there are 3 register
7863 operands, it must be a instruction with VexNDS. For a
7864 instruction with VexNDD, the destination register is encoded
7865 in VEX prefix. If there are 4 register operands, it must be
7866 a instruction with VEX prefix and 3 sources. */
7867 if (i.mem_operands == 0
7868 && ((i.reg_operands == 2
7869 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
7870 || (i.reg_operands == 3
7871 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
7872 || (i.reg_operands == 4 && vex_3_sources)))
7873 {
7874 switch (i.operands)
7875 {
7876 case 2:
7877 source = 0;
7878 break;
7879 case 3:
7880 /* When there are 3 operands, one of them may be immediate,
7881 which may be the first or the last operand. Otherwise,
7882 the first operand must be shift count register (cl) or it
7883 is an instruction with VexNDS. */
7884 gas_assert (i.imm_operands == 1
7885 || (i.imm_operands == 0
7886 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
7887 || (i.types[0].bitfield.instance == RegC
7888 && i.types[0].bitfield.byte))));
7889 if (operand_type_check (i.types[0], imm)
7890 || (i.types[0].bitfield.instance == RegC
7891 && i.types[0].bitfield.byte))
7892 source = 1;
7893 else
7894 source = 0;
7895 break;
7896 case 4:
7897 /* When there are 4 operands, the first two must be 8bit
7898 immediate operands. The source operand will be the 3rd
7899 one.
7900
7901 For instructions with VexNDS, if the first operand
7902 an imm8, the source operand is the 2nd one. If the last
7903 operand is imm8, the source operand is the first one. */
7904 gas_assert ((i.imm_operands == 2
7905 && i.types[0].bitfield.imm8
7906 && i.types[1].bitfield.imm8)
7907 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
7908 && i.imm_operands == 1
7909 && (i.types[0].bitfield.imm8
7910 || i.types[i.operands - 1].bitfield.imm8
7911 || i.rounding)));
7912 if (i.imm_operands == 2)
7913 source = 2;
7914 else
7915 {
7916 if (i.types[0].bitfield.imm8)
7917 source = 1;
7918 else
7919 source = 0;
7920 }
7921 break;
7922 case 5:
7923 if (is_evex_encoding (&i.tm))
7924 {
7925 /* For EVEX instructions, when there are 5 operands, the
7926 first one must be immediate operand. If the second one
7927 is immediate operand, the source operand is the 3th
7928 one. If the last one is immediate operand, the source
7929 operand is the 2nd one. */
7930 gas_assert (i.imm_operands == 2
7931 && i.tm.opcode_modifier.sae
7932 && operand_type_check (i.types[0], imm));
7933 if (operand_type_check (i.types[1], imm))
7934 source = 2;
7935 else if (operand_type_check (i.types[4], imm))
7936 source = 1;
7937 else
7938 abort ();
7939 }
7940 break;
7941 default:
7942 abort ();
7943 }
7944
7945 if (!vex_3_sources)
7946 {
7947 dest = source + 1;
7948
7949 /* RC/SAE operand could be between DEST and SRC. That happens
7950 when one operand is GPR and the other one is XMM/YMM/ZMM
7951 register. */
7952 if (i.rounding && i.rounding->operand == (int) dest)
7953 dest++;
7954
7955 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7956 {
7957 /* For instructions with VexNDS, the register-only source
7958 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7959 register. It is encoded in VEX prefix. */
7960
7961 i386_operand_type op;
7962 unsigned int vvvv;
7963
7964 /* Swap two source operands if needed. */
7965 if (i.tm.opcode_modifier.swapsources)
7966 {
7967 vvvv = source;
7968 source = dest;
7969 }
7970 else
7971 vvvv = dest;
7972
7973 op = i.tm.operand_types[vvvv];
7974 if ((dest + 1) >= i.operands
7975 || ((op.bitfield.class != Reg
7976 || (!op.bitfield.dword && !op.bitfield.qword))
7977 && op.bitfield.class != RegSIMD
7978 && !operand_type_equal (&op, &regmask)))
7979 abort ();
7980 i.vex.register_specifier = i.op[vvvv].regs;
7981 dest++;
7982 }
7983 }
7984
7985 i.rm.mode = 3;
7986 /* One of the register operands will be encoded in the i.rm.reg
7987 field, the other in the combined i.rm.mode and i.rm.regmem
7988 fields. If no form of this instruction supports a memory
7989 destination operand, then we assume the source operand may
7990 sometimes be a memory operand and so we need to store the
7991 destination in the i.rm.reg field. */
7992 if (!i.tm.opcode_modifier.regmem
7993 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7994 {
7995 i.rm.reg = i.op[dest].regs->reg_num;
7996 i.rm.regmem = i.op[source].regs->reg_num;
7997 set_rex_vrex (i.op[dest].regs, REX_R, i.tm.opcode_modifier.sse2avx);
7998 set_rex_vrex (i.op[source].regs, REX_B, FALSE);
7999 }
8000 else
8001 {
8002 i.rm.reg = i.op[source].regs->reg_num;
8003 i.rm.regmem = i.op[dest].regs->reg_num;
8004 set_rex_vrex (i.op[dest].regs, REX_B, i.tm.opcode_modifier.sse2avx);
8005 set_rex_vrex (i.op[source].regs, REX_R, FALSE);
8006 }
8007 if (flag_code != CODE_64BIT && (i.rex & REX_R))
8008 {
8009 if (i.types[!i.tm.opcode_modifier.regmem].bitfield.class != RegCR)
8010 abort ();
8011 i.rex &= ~REX_R;
8012 add_prefix (LOCK_PREFIX_OPCODE);
8013 }
8014 }
8015 else
8016 { /* If it's not 2 reg operands... */
8017 unsigned int mem;
8018
8019 if (i.mem_operands)
8020 {
8021 unsigned int fake_zero_displacement = 0;
8022 unsigned int op;
8023
8024 for (op = 0; op < i.operands; op++)
8025 if (i.flags[op] & Operand_Mem)
8026 break;
8027 gas_assert (op < i.operands);
8028
8029 if (i.tm.opcode_modifier.sib)
8030 {
8031 /* The index register of VSIB shouldn't be RegIZ. */
8032 if (i.tm.opcode_modifier.sib != SIBMEM
8033 && i.index_reg->reg_num == RegIZ)
8034 abort ();
8035
8036 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8037 if (!i.base_reg)
8038 {
8039 i.sib.base = NO_BASE_REGISTER;
8040 i.sib.scale = i.log2_scale_factor;
8041 i.types[op].bitfield.disp8 = 0;
8042 i.types[op].bitfield.disp16 = 0;
8043 i.types[op].bitfield.disp64 = 0;
8044 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
8045 {
8046 /* Must be 32 bit */
8047 i.types[op].bitfield.disp32 = 1;
8048 i.types[op].bitfield.disp32s = 0;
8049 }
8050 else
8051 {
8052 i.types[op].bitfield.disp32 = 0;
8053 i.types[op].bitfield.disp32s = 1;
8054 }
8055 }
8056
8057 /* Since the mandatory SIB always has index register, so
8058 the code logic remains unchanged. The non-mandatory SIB
8059 without index register is allowed and will be handled
8060 later. */
8061 if (i.index_reg)
8062 {
8063 if (i.index_reg->reg_num == RegIZ)
8064 i.sib.index = NO_INDEX_REGISTER;
8065 else
8066 i.sib.index = i.index_reg->reg_num;
8067 set_rex_vrex (i.index_reg, REX_X, FALSE);
8068 }
8069 }
8070
8071 default_seg = &ds;
8072
8073 if (i.base_reg == 0)
8074 {
8075 i.rm.mode = 0;
8076 if (!i.disp_operands)
8077 fake_zero_displacement = 1;
8078 if (i.index_reg == 0)
8079 {
8080 i386_operand_type newdisp;
8081
8082 /* Both check for VSIB and mandatory non-vector SIB. */
8083 gas_assert (!i.tm.opcode_modifier.sib
8084 || i.tm.opcode_modifier.sib == SIBMEM);
8085 /* Operand is just <disp> */
8086 if (flag_code == CODE_64BIT)
8087 {
8088 /* 64bit mode overwrites the 32bit absolute
8089 addressing by RIP relative addressing and
8090 absolute addressing is encoded by one of the
8091 redundant SIB forms. */
8092 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8093 i.sib.base = NO_BASE_REGISTER;
8094 i.sib.index = NO_INDEX_REGISTER;
8095 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
8096 }
8097 else if ((flag_code == CODE_16BIT)
8098 ^ (i.prefix[ADDR_PREFIX] != 0))
8099 {
8100 i.rm.regmem = NO_BASE_REGISTER_16;
8101 newdisp = disp16;
8102 }
8103 else
8104 {
8105 i.rm.regmem = NO_BASE_REGISTER;
8106 newdisp = disp32;
8107 }
8108 i.types[op] = operand_type_and_not (i.types[op], anydisp);
8109 i.types[op] = operand_type_or (i.types[op], newdisp);
8110 }
8111 else if (!i.tm.opcode_modifier.sib)
8112 {
8113 /* !i.base_reg && i.index_reg */
8114 if (i.index_reg->reg_num == RegIZ)
8115 i.sib.index = NO_INDEX_REGISTER;
8116 else
8117 i.sib.index = i.index_reg->reg_num;
8118 i.sib.base = NO_BASE_REGISTER;
8119 i.sib.scale = i.log2_scale_factor;
8120 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8121 i.types[op].bitfield.disp8 = 0;
8122 i.types[op].bitfield.disp16 = 0;
8123 i.types[op].bitfield.disp64 = 0;
8124 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
8125 {
8126 /* Must be 32 bit */
8127 i.types[op].bitfield.disp32 = 1;
8128 i.types[op].bitfield.disp32s = 0;
8129 }
8130 else
8131 {
8132 i.types[op].bitfield.disp32 = 0;
8133 i.types[op].bitfield.disp32s = 1;
8134 }
8135 if ((i.index_reg->reg_flags & RegRex) != 0)
8136 i.rex |= REX_X;
8137 }
8138 }
8139 /* RIP addressing for 64bit mode. */
8140 else if (i.base_reg->reg_num == RegIP)
8141 {
8142 gas_assert (!i.tm.opcode_modifier.sib);
8143 i.rm.regmem = NO_BASE_REGISTER;
8144 i.types[op].bitfield.disp8 = 0;
8145 i.types[op].bitfield.disp16 = 0;
8146 i.types[op].bitfield.disp32 = 0;
8147 i.types[op].bitfield.disp32s = 1;
8148 i.types[op].bitfield.disp64 = 0;
8149 i.flags[op] |= Operand_PCrel;
8150 if (! i.disp_operands)
8151 fake_zero_displacement = 1;
8152 }
8153 else if (i.base_reg->reg_type.bitfield.word)
8154 {
8155 gas_assert (!i.tm.opcode_modifier.sib);
8156 switch (i.base_reg->reg_num)
8157 {
8158 case 3: /* (%bx) */
8159 if (i.index_reg == 0)
8160 i.rm.regmem = 7;
8161 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
8162 i.rm.regmem = i.index_reg->reg_num - 6;
8163 break;
8164 case 5: /* (%bp) */
8165 default_seg = &ss;
8166 if (i.index_reg == 0)
8167 {
8168 i.rm.regmem = 6;
8169 if (operand_type_check (i.types[op], disp) == 0)
8170 {
8171 /* fake (%bp) into 0(%bp) */
8172 if (i.disp_encoding == disp_encoding_16bit)
8173 i.types[op].bitfield.disp16 = 1;
8174 else
8175 i.types[op].bitfield.disp8 = 1;
8176 fake_zero_displacement = 1;
8177 }
8178 }
8179 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
8180 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
8181 break;
8182 default: /* (%si) -> 4 or (%di) -> 5 */
8183 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
8184 }
8185 if (!fake_zero_displacement
8186 && !i.disp_operands
8187 && i.disp_encoding)
8188 {
8189 fake_zero_displacement = 1;
8190 if (i.disp_encoding == disp_encoding_8bit)
8191 i.types[op].bitfield.disp8 = 1;
8192 else
8193 i.types[op].bitfield.disp16 = 1;
8194 }
8195 i.rm.mode = mode_from_disp_size (i.types[op]);
8196 }
8197 else /* i.base_reg and 32/64 bit mode */
8198 {
8199 if (flag_code == CODE_64BIT
8200 && operand_type_check (i.types[op], disp))
8201 {
8202 i.types[op].bitfield.disp16 = 0;
8203 i.types[op].bitfield.disp64 = 0;
8204 if (i.prefix[ADDR_PREFIX] == 0)
8205 {
8206 i.types[op].bitfield.disp32 = 0;
8207 i.types[op].bitfield.disp32s = 1;
8208 }
8209 else
8210 {
8211 i.types[op].bitfield.disp32 = 1;
8212 i.types[op].bitfield.disp32s = 0;
8213 }
8214 }
8215
8216 if (!i.tm.opcode_modifier.sib)
8217 i.rm.regmem = i.base_reg->reg_num;
8218 if ((i.base_reg->reg_flags & RegRex) != 0)
8219 i.rex |= REX_B;
8220 i.sib.base = i.base_reg->reg_num;
8221 /* x86-64 ignores REX prefix bit here to avoid decoder
8222 complications. */
8223 if (!(i.base_reg->reg_flags & RegRex)
8224 && (i.base_reg->reg_num == EBP_REG_NUM
8225 || i.base_reg->reg_num == ESP_REG_NUM))
8226 default_seg = &ss;
8227 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
8228 {
8229 fake_zero_displacement = 1;
8230 if (i.disp_encoding == disp_encoding_32bit)
8231 i.types[op].bitfield.disp32 = 1;
8232 else
8233 i.types[op].bitfield.disp8 = 1;
8234 }
8235 i.sib.scale = i.log2_scale_factor;
8236 if (i.index_reg == 0)
8237 {
8238 /* Only check for VSIB. */
8239 gas_assert (i.tm.opcode_modifier.sib != VECSIB128
8240 && i.tm.opcode_modifier.sib != VECSIB256
8241 && i.tm.opcode_modifier.sib != VECSIB512);
8242
8243 /* <disp>(%esp) becomes two byte modrm with no index
8244 register. We've already stored the code for esp
8245 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
8246 Any base register besides %esp will not use the
8247 extra modrm byte. */
8248 i.sib.index = NO_INDEX_REGISTER;
8249 }
8250 else if (!i.tm.opcode_modifier.sib)
8251 {
8252 if (i.index_reg->reg_num == RegIZ)
8253 i.sib.index = NO_INDEX_REGISTER;
8254 else
8255 i.sib.index = i.index_reg->reg_num;
8256 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
8257 if ((i.index_reg->reg_flags & RegRex) != 0)
8258 i.rex |= REX_X;
8259 }
8260
8261 if (i.disp_operands
8262 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
8263 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
8264 i.rm.mode = 0;
8265 else
8266 {
8267 if (!fake_zero_displacement
8268 && !i.disp_operands
8269 && i.disp_encoding)
8270 {
8271 fake_zero_displacement = 1;
8272 if (i.disp_encoding == disp_encoding_8bit)
8273 i.types[op].bitfield.disp8 = 1;
8274 else
8275 i.types[op].bitfield.disp32 = 1;
8276 }
8277 i.rm.mode = mode_from_disp_size (i.types[op]);
8278 }
8279 }
8280
8281 if (fake_zero_displacement)
8282 {
8283 /* Fakes a zero displacement assuming that i.types[op]
8284 holds the correct displacement size. */
8285 expressionS *exp;
8286
8287 gas_assert (i.op[op].disps == 0);
8288 exp = &disp_expressions[i.disp_operands++];
8289 i.op[op].disps = exp;
8290 exp->X_op = O_constant;
8291 exp->X_add_number = 0;
8292 exp->X_add_symbol = (symbolS *) 0;
8293 exp->X_op_symbol = (symbolS *) 0;
8294 }
8295
8296 mem = op;
8297 }
8298 else
8299 mem = ~0;
8300
8301 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
8302 {
8303 if (operand_type_check (i.types[0], imm))
8304 i.vex.register_specifier = NULL;
8305 else
8306 {
8307 /* VEX.vvvv encodes one of the sources when the first
8308 operand is not an immediate. */
8309 if (i.tm.opcode_modifier.vexw == VEXW0)
8310 i.vex.register_specifier = i.op[0].regs;
8311 else
8312 i.vex.register_specifier = i.op[1].regs;
8313 }
8314
8315 /* Destination is a XMM register encoded in the ModRM.reg
8316 and VEX.R bit. */
8317 i.rm.reg = i.op[2].regs->reg_num;
8318 if ((i.op[2].regs->reg_flags & RegRex) != 0)
8319 i.rex |= REX_R;
8320
8321 /* ModRM.rm and VEX.B encodes the other source. */
8322 if (!i.mem_operands)
8323 {
8324 i.rm.mode = 3;
8325
8326 if (i.tm.opcode_modifier.vexw == VEXW0)
8327 i.rm.regmem = i.op[1].regs->reg_num;
8328 else
8329 i.rm.regmem = i.op[0].regs->reg_num;
8330
8331 if ((i.op[1].regs->reg_flags & RegRex) != 0)
8332 i.rex |= REX_B;
8333 }
8334 }
8335 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
8336 {
8337 i.vex.register_specifier = i.op[2].regs;
8338 if (!i.mem_operands)
8339 {
8340 i.rm.mode = 3;
8341 i.rm.regmem = i.op[1].regs->reg_num;
8342 if ((i.op[1].regs->reg_flags & RegRex) != 0)
8343 i.rex |= REX_B;
8344 }
8345 }
8346 /* Fill in i.rm.reg or i.rm.regmem field with register operand
8347 (if any) based on i.tm.extension_opcode. Again, we must be
8348 careful to make sure that segment/control/debug/test/MMX
8349 registers are coded into the i.rm.reg field. */
8350 else if (i.reg_operands)
8351 {
8352 unsigned int op;
8353 unsigned int vex_reg = ~0;
8354
8355 for (op = 0; op < i.operands; op++)
8356 if (i.types[op].bitfield.class == Reg
8357 || i.types[op].bitfield.class == RegBND
8358 || i.types[op].bitfield.class == RegMask
8359 || i.types[op].bitfield.class == SReg
8360 || i.types[op].bitfield.class == RegCR
8361 || i.types[op].bitfield.class == RegDR
8362 || i.types[op].bitfield.class == RegTR
8363 || i.types[op].bitfield.class == RegSIMD
8364 || i.types[op].bitfield.class == RegMMX)
8365 break;
8366
8367 if (vex_3_sources)
8368 op = dest;
8369 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
8370 {
8371 /* For instructions with VexNDS, the register-only
8372 source operand is encoded in VEX prefix. */
8373 gas_assert (mem != (unsigned int) ~0);
8374
8375 if (op > mem)
8376 {
8377 vex_reg = op++;
8378 gas_assert (op < i.operands);
8379 }
8380 else
8381 {
8382 /* Check register-only source operand when two source
8383 operands are swapped. */
8384 if (!i.tm.operand_types[op].bitfield.baseindex
8385 && i.tm.operand_types[op + 1].bitfield.baseindex)
8386 {
8387 vex_reg = op;
8388 op += 2;
8389 gas_assert (mem == (vex_reg + 1)
8390 && op < i.operands);
8391 }
8392 else
8393 {
8394 vex_reg = op + 1;
8395 gas_assert (vex_reg < i.operands);
8396 }
8397 }
8398 }
8399 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
8400 {
8401 /* For instructions with VexNDD, the register destination
8402 is encoded in VEX prefix. */
8403 if (i.mem_operands == 0)
8404 {
8405 /* There is no memory operand. */
8406 gas_assert ((op + 2) == i.operands);
8407 vex_reg = op + 1;
8408 }
8409 else
8410 {
8411 /* There are only 2 non-immediate operands. */
8412 gas_assert (op < i.imm_operands + 2
8413 && i.operands == i.imm_operands + 2);
8414 vex_reg = i.imm_operands + 1;
8415 }
8416 }
8417 else
8418 gas_assert (op < i.operands);
8419
8420 if (vex_reg != (unsigned int) ~0)
8421 {
8422 i386_operand_type *type = &i.tm.operand_types[vex_reg];
8423
8424 if ((type->bitfield.class != Reg
8425 || (!type->bitfield.dword && !type->bitfield.qword))
8426 && type->bitfield.class != RegSIMD
8427 && !operand_type_equal (type, &regmask))
8428 abort ();
8429
8430 i.vex.register_specifier = i.op[vex_reg].regs;
8431 }
8432
8433 /* Don't set OP operand twice. */
8434 if (vex_reg != op)
8435 {
8436 /* If there is an extension opcode to put here, the
8437 register number must be put into the regmem field. */
8438 if (i.tm.extension_opcode != None)
8439 {
8440 i.rm.regmem = i.op[op].regs->reg_num;
8441 set_rex_vrex (i.op[op].regs, REX_B,
8442 i.tm.opcode_modifier.sse2avx);
8443 }
8444 else
8445 {
8446 i.rm.reg = i.op[op].regs->reg_num;
8447 set_rex_vrex (i.op[op].regs, REX_R,
8448 i.tm.opcode_modifier.sse2avx);
8449 }
8450 }
8451
8452 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
8453 must set it to 3 to indicate this is a register operand
8454 in the regmem field. */
8455 if (!i.mem_operands)
8456 i.rm.mode = 3;
8457 }
8458
8459 /* Fill in i.rm.reg field with extension opcode (if any). */
8460 if (i.tm.extension_opcode != None)
8461 i.rm.reg = i.tm.extension_opcode;
8462 }
8463 return default_seg;
8464 }
8465
8466 static INLINE void
8467 frag_opcode_byte (unsigned char byte)
8468 {
8469 if (now_seg != absolute_section)
8470 FRAG_APPEND_1_CHAR (byte);
8471 else
8472 ++abs_section_offset;
8473 }
8474
8475 static unsigned int
8476 flip_code16 (unsigned int code16)
8477 {
8478 gas_assert (i.tm.operands == 1);
8479
8480 return !(i.prefix[REX_PREFIX] & REX_W)
8481 && (code16 ? i.tm.operand_types[0].bitfield.disp32
8482 || i.tm.operand_types[0].bitfield.disp32s
8483 : i.tm.operand_types[0].bitfield.disp16)
8484 ? CODE16 : 0;
8485 }
8486
8487 static void
8488 output_branch (void)
8489 {
8490 char *p;
8491 int size;
8492 int code16;
8493 int prefix;
8494 relax_substateT subtype;
8495 symbolS *sym;
8496 offsetT off;
8497
8498 if (now_seg == absolute_section)
8499 {
8500 as_bad (_("relaxable branches not supported in absolute section"));
8501 return;
8502 }
8503
8504 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
8505 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
8506
8507 prefix = 0;
8508 if (i.prefix[DATA_PREFIX] != 0)
8509 {
8510 prefix = 1;
8511 i.prefixes -= 1;
8512 code16 ^= flip_code16(code16);
8513 }
8514 /* Pentium4 branch hints. */
8515 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8516 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8517 {
8518 prefix++;
8519 i.prefixes--;
8520 }
8521 if (i.prefix[REX_PREFIX] != 0)
8522 {
8523 prefix++;
8524 i.prefixes--;
8525 }
8526
8527 /* BND prefixed jump. */
8528 if (i.prefix[BND_PREFIX] != 0)
8529 {
8530 prefix++;
8531 i.prefixes--;
8532 }
8533
8534 if (i.prefixes != 0)
8535 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8536
8537 /* It's always a symbol; End frag & setup for relax.
8538 Make sure there is enough room in this frag for the largest
8539 instruction we may generate in md_convert_frag. This is 2
8540 bytes for the opcode and room for the prefix and largest
8541 displacement. */
8542 frag_grow (prefix + 2 + 4);
8543 /* Prefix and 1 opcode byte go in fr_fix. */
8544 p = frag_more (prefix + 1);
8545 if (i.prefix[DATA_PREFIX] != 0)
8546 *p++ = DATA_PREFIX_OPCODE;
8547 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
8548 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
8549 *p++ = i.prefix[SEG_PREFIX];
8550 if (i.prefix[BND_PREFIX] != 0)
8551 *p++ = BND_PREFIX_OPCODE;
8552 if (i.prefix[REX_PREFIX] != 0)
8553 *p++ = i.prefix[REX_PREFIX];
8554 *p = i.tm.base_opcode;
8555
8556 if ((unsigned char) *p == JUMP_PC_RELATIVE)
8557 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
8558 else if (cpu_arch_flags.bitfield.cpui386)
8559 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
8560 else
8561 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
8562 subtype |= code16;
8563
8564 sym = i.op[0].disps->X_add_symbol;
8565 off = i.op[0].disps->X_add_number;
8566
8567 if (i.op[0].disps->X_op != O_constant
8568 && i.op[0].disps->X_op != O_symbol)
8569 {
8570 /* Handle complex expressions. */
8571 sym = make_expr_symbol (i.op[0].disps);
8572 off = 0;
8573 }
8574
8575 /* 1 possible extra opcode + 4 byte displacement go in var part.
8576 Pass reloc in fr_var. */
8577 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
8578 }
8579
8580 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8581 /* Return TRUE iff PLT32 relocation should be used for branching to
8582 symbol S. */
8583
8584 static bfd_boolean
8585 need_plt32_p (symbolS *s)
8586 {
8587 /* PLT32 relocation is ELF only. */
8588 if (!IS_ELF)
8589 return FALSE;
8590
8591 #ifdef TE_SOLARIS
8592 /* Don't emit PLT32 relocation on Solaris: neither native linker nor
8593 krtld support it. */
8594 return FALSE;
8595 #endif
8596
8597 /* Since there is no need to prepare for PLT branch on x86-64, we
8598 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
8599 be used as a marker for 32-bit PC-relative branches. */
8600 if (!object_64bit)
8601 return FALSE;
8602
8603 /* Weak or undefined symbol need PLT32 relocation. */
8604 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
8605 return TRUE;
8606
8607 /* Non-global symbol doesn't need PLT32 relocation. */
8608 if (! S_IS_EXTERNAL (s))
8609 return FALSE;
8610
8611 /* Other global symbols need PLT32 relocation. NB: Symbol with
8612 non-default visibilities are treated as normal global symbol
8613 so that PLT32 relocation can be used as a marker for 32-bit
8614 PC-relative branches. It is useful for linker relaxation. */
8615 return TRUE;
8616 }
8617 #endif
8618
8619 static void
8620 output_jump (void)
8621 {
8622 char *p;
8623 int size;
8624 fixS *fixP;
8625 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
8626
8627 if (i.tm.opcode_modifier.jump == JUMP_BYTE)
8628 {
8629 /* This is a loop or jecxz type instruction. */
8630 size = 1;
8631 if (i.prefix[ADDR_PREFIX] != 0)
8632 {
8633 frag_opcode_byte (ADDR_PREFIX_OPCODE);
8634 i.prefixes -= 1;
8635 }
8636 /* Pentium4 branch hints. */
8637 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
8638 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
8639 {
8640 frag_opcode_byte (i.prefix[SEG_PREFIX]);
8641 i.prefixes--;
8642 }
8643 }
8644 else
8645 {
8646 int code16;
8647
8648 code16 = 0;
8649 if (flag_code == CODE_16BIT)
8650 code16 = CODE16;
8651
8652 if (i.prefix[DATA_PREFIX] != 0)
8653 {
8654 frag_opcode_byte (DATA_PREFIX_OPCODE);
8655 i.prefixes -= 1;
8656 code16 ^= flip_code16(code16);
8657 }
8658
8659 size = 4;
8660 if (code16)
8661 size = 2;
8662 }
8663
8664 /* BND prefixed jump. */
8665 if (i.prefix[BND_PREFIX] != 0)
8666 {
8667 frag_opcode_byte (i.prefix[BND_PREFIX]);
8668 i.prefixes -= 1;
8669 }
8670
8671 if (i.prefix[REX_PREFIX] != 0)
8672 {
8673 frag_opcode_byte (i.prefix[REX_PREFIX]);
8674 i.prefixes -= 1;
8675 }
8676
8677 if (i.prefixes != 0)
8678 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8679
8680 if (now_seg == absolute_section)
8681 {
8682 abs_section_offset += i.tm.opcode_length + size;
8683 return;
8684 }
8685
8686 p = frag_more (i.tm.opcode_length + size);
8687 switch (i.tm.opcode_length)
8688 {
8689 case 2:
8690 *p++ = i.tm.base_opcode >> 8;
8691 /* Fall through. */
8692 case 1:
8693 *p++ = i.tm.base_opcode;
8694 break;
8695 default:
8696 abort ();
8697 }
8698
8699 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8700 if (size == 4
8701 && jump_reloc == NO_RELOC
8702 && need_plt32_p (i.op[0].disps->X_add_symbol))
8703 jump_reloc = BFD_RELOC_X86_64_PLT32;
8704 #endif
8705
8706 jump_reloc = reloc (size, 1, 1, jump_reloc);
8707
8708 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8709 i.op[0].disps, 1, jump_reloc);
8710
8711 /* All jumps handled here are signed, but don't use a signed limit
8712 check for 32 and 16 bit jumps as we want to allow wrap around at
8713 4G and 64k respectively. */
8714 if (size == 1)
8715 fixP->fx_signed = 1;
8716 }
8717
8718 static void
8719 output_interseg_jump (void)
8720 {
8721 char *p;
8722 int size;
8723 int prefix;
8724 int code16;
8725
8726 code16 = 0;
8727 if (flag_code == CODE_16BIT)
8728 code16 = CODE16;
8729
8730 prefix = 0;
8731 if (i.prefix[DATA_PREFIX] != 0)
8732 {
8733 prefix = 1;
8734 i.prefixes -= 1;
8735 code16 ^= CODE16;
8736 }
8737
8738 gas_assert (!i.prefix[REX_PREFIX]);
8739
8740 size = 4;
8741 if (code16)
8742 size = 2;
8743
8744 if (i.prefixes != 0)
8745 as_warn (_("skipping prefixes on `%s'"), i.tm.name);
8746
8747 if (now_seg == absolute_section)
8748 {
8749 abs_section_offset += prefix + 1 + 2 + size;
8750 return;
8751 }
8752
8753 /* 1 opcode; 2 segment; offset */
8754 p = frag_more (prefix + 1 + 2 + size);
8755
8756 if (i.prefix[DATA_PREFIX] != 0)
8757 *p++ = DATA_PREFIX_OPCODE;
8758
8759 if (i.prefix[REX_PREFIX] != 0)
8760 *p++ = i.prefix[REX_PREFIX];
8761
8762 *p++ = i.tm.base_opcode;
8763 if (i.op[1].imms->X_op == O_constant)
8764 {
8765 offsetT n = i.op[1].imms->X_add_number;
8766
8767 if (size == 2
8768 && !fits_in_unsigned_word (n)
8769 && !fits_in_signed_word (n))
8770 {
8771 as_bad (_("16-bit jump out of range"));
8772 return;
8773 }
8774 md_number_to_chars (p, n, size);
8775 }
8776 else
8777 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8778 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
8779 if (i.op[0].imms->X_op != O_constant)
8780 as_bad (_("can't handle non absolute segment in `%s'"),
8781 i.tm.name);
8782 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
8783 }
8784
8785 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8786 void
8787 x86_cleanup (void)
8788 {
8789 char *p;
8790 asection *seg = now_seg;
8791 subsegT subseg = now_subseg;
8792 asection *sec;
8793 unsigned int alignment, align_size_1;
8794 unsigned int isa_1_descsz, feature_2_descsz, descsz;
8795 unsigned int isa_1_descsz_raw, feature_2_descsz_raw;
8796 unsigned int padding;
8797
8798 if (!IS_ELF || !x86_used_note)
8799 return;
8800
8801 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X86;
8802
8803 /* The .note.gnu.property section layout:
8804
8805 Field Length Contents
8806 ---- ---- ----
8807 n_namsz 4 4
8808 n_descsz 4 The note descriptor size
8809 n_type 4 NT_GNU_PROPERTY_TYPE_0
8810 n_name 4 "GNU"
8811 n_desc n_descsz The program property array
8812 .... .... ....
8813 */
8814
8815 /* Create the .note.gnu.property section. */
8816 sec = subseg_new (NOTE_GNU_PROPERTY_SECTION_NAME, 0);
8817 bfd_set_section_flags (sec,
8818 (SEC_ALLOC
8819 | SEC_LOAD
8820 | SEC_DATA
8821 | SEC_HAS_CONTENTS
8822 | SEC_READONLY));
8823
8824 if (get_elf_backend_data (stdoutput)->s->elfclass == ELFCLASS64)
8825 {
8826 align_size_1 = 7;
8827 alignment = 3;
8828 }
8829 else
8830 {
8831 align_size_1 = 3;
8832 alignment = 2;
8833 }
8834
8835 bfd_set_section_alignment (sec, alignment);
8836 elf_section_type (sec) = SHT_NOTE;
8837
8838 /* GNU_PROPERTY_X86_ISA_1_USED: 4-byte type + 4-byte data size
8839 + 4-byte data */
8840 isa_1_descsz_raw = 4 + 4 + 4;
8841 /* Align GNU_PROPERTY_X86_ISA_1_USED. */
8842 isa_1_descsz = (isa_1_descsz_raw + align_size_1) & ~align_size_1;
8843
8844 feature_2_descsz_raw = isa_1_descsz;
8845 /* GNU_PROPERTY_X86_FEATURE_2_USED: 4-byte type + 4-byte data size
8846 + 4-byte data */
8847 feature_2_descsz_raw += 4 + 4 + 4;
8848 /* Align GNU_PROPERTY_X86_FEATURE_2_USED. */
8849 feature_2_descsz = ((feature_2_descsz_raw + align_size_1)
8850 & ~align_size_1);
8851
8852 descsz = feature_2_descsz;
8853 /* Section size: n_namsz + n_descsz + n_type + n_name + n_descsz. */
8854 p = frag_more (4 + 4 + 4 + 4 + descsz);
8855
8856 /* Write n_namsz. */
8857 md_number_to_chars (p, (valueT) 4, 4);
8858
8859 /* Write n_descsz. */
8860 md_number_to_chars (p + 4, (valueT) descsz, 4);
8861
8862 /* Write n_type. */
8863 md_number_to_chars (p + 4 * 2, (valueT) NT_GNU_PROPERTY_TYPE_0, 4);
8864
8865 /* Write n_name. */
8866 memcpy (p + 4 * 3, "GNU", 4);
8867
8868 /* Write 4-byte type. */
8869 md_number_to_chars (p + 4 * 4,
8870 (valueT) GNU_PROPERTY_X86_ISA_1_USED, 4);
8871
8872 /* Write 4-byte data size. */
8873 md_number_to_chars (p + 4 * 5, (valueT) 4, 4);
8874
8875 /* Write 4-byte data. */
8876 md_number_to_chars (p + 4 * 6, (valueT) x86_isa_1_used, 4);
8877
8878 /* Zero out paddings. */
8879 padding = isa_1_descsz - isa_1_descsz_raw;
8880 if (padding)
8881 memset (p + 4 * 7, 0, padding);
8882
8883 /* Write 4-byte type. */
8884 md_number_to_chars (p + isa_1_descsz + 4 * 4,
8885 (valueT) GNU_PROPERTY_X86_FEATURE_2_USED, 4);
8886
8887 /* Write 4-byte data size. */
8888 md_number_to_chars (p + isa_1_descsz + 4 * 5, (valueT) 4, 4);
8889
8890 /* Write 4-byte data. */
8891 md_number_to_chars (p + isa_1_descsz + 4 * 6,
8892 (valueT) x86_feature_2_used, 4);
8893
8894 /* Zero out paddings. */
8895 padding = feature_2_descsz - feature_2_descsz_raw;
8896 if (padding)
8897 memset (p + isa_1_descsz + 4 * 7, 0, padding);
8898
8899 /* We probably can't restore the current segment, for there likely
8900 isn't one yet... */
8901 if (seg && subseg)
8902 subseg_set (seg, subseg);
8903 }
8904 #endif
8905
8906 static unsigned int
8907 encoding_length (const fragS *start_frag, offsetT start_off,
8908 const char *frag_now_ptr)
8909 {
8910 unsigned int len = 0;
8911
8912 if (start_frag != frag_now)
8913 {
8914 const fragS *fr = start_frag;
8915
8916 do {
8917 len += fr->fr_fix;
8918 fr = fr->fr_next;
8919 } while (fr && fr != frag_now);
8920 }
8921
8922 return len - start_off + (frag_now_ptr - frag_now->fr_literal);
8923 }
8924
8925 /* Return 1 for test, and, cmp, add, sub, inc and dec which may
8926 be macro-fused with conditional jumps.
8927 NB: If TEST/AND/CMP/ADD/SUB/INC/DEC is of RIP relative address,
8928 or is one of the following format:
8929
8930 cmp m, imm
8931 add m, imm
8932 sub m, imm
8933 test m, imm
8934 and m, imm
8935 inc m
8936 dec m
8937
8938 it is unfusible. */
8939
8940 static int
8941 maybe_fused_with_jcc_p (enum mf_cmp_kind* mf_cmp_p)
8942 {
8943 /* No RIP address. */
8944 if (i.base_reg && i.base_reg->reg_num == RegIP)
8945 return 0;
8946
8947 /* No VEX/EVEX encoding. */
8948 if (is_any_vex_encoding (&i.tm))
8949 return 0;
8950
8951 /* add, sub without add/sub m, imm. */
8952 if (i.tm.base_opcode <= 5
8953 || (i.tm.base_opcode >= 0x28 && i.tm.base_opcode <= 0x2d)
8954 || ((i.tm.base_opcode | 3) == 0x83
8955 && (i.tm.extension_opcode == 0x5
8956 || i.tm.extension_opcode == 0x0)))
8957 {
8958 *mf_cmp_p = mf_cmp_alu_cmp;
8959 return !(i.mem_operands && i.imm_operands);
8960 }
8961
8962 /* and without and m, imm. */
8963 if ((i.tm.base_opcode >= 0x20 && i.tm.base_opcode <= 0x25)
8964 || ((i.tm.base_opcode | 3) == 0x83
8965 && i.tm.extension_opcode == 0x4))
8966 {
8967 *mf_cmp_p = mf_cmp_test_and;
8968 return !(i.mem_operands && i.imm_operands);
8969 }
8970
8971 /* test without test m imm. */
8972 if ((i.tm.base_opcode | 1) == 0x85
8973 || (i.tm.base_opcode | 1) == 0xa9
8974 || ((i.tm.base_opcode | 1) == 0xf7
8975 && i.tm.extension_opcode == 0))
8976 {
8977 *mf_cmp_p = mf_cmp_test_and;
8978 return !(i.mem_operands && i.imm_operands);
8979 }
8980
8981 /* cmp without cmp m, imm. */
8982 if ((i.tm.base_opcode >= 0x38 && i.tm.base_opcode <= 0x3d)
8983 || ((i.tm.base_opcode | 3) == 0x83
8984 && (i.tm.extension_opcode == 0x7)))
8985 {
8986 *mf_cmp_p = mf_cmp_alu_cmp;
8987 return !(i.mem_operands && i.imm_operands);
8988 }
8989
8990 /* inc, dec without inc/dec m. */
8991 if ((i.tm.cpu_flags.bitfield.cpuno64
8992 && (i.tm.base_opcode | 0xf) == 0x4f)
8993 || ((i.tm.base_opcode | 1) == 0xff
8994 && i.tm.extension_opcode <= 0x1))
8995 {
8996 *mf_cmp_p = mf_cmp_incdec;
8997 return !i.mem_operands;
8998 }
8999
9000 return 0;
9001 }
9002
9003 /* Return 1 if a FUSED_JCC_PADDING frag should be generated. */
9004
9005 static int
9006 add_fused_jcc_padding_frag_p (enum mf_cmp_kind* mf_cmp_p)
9007 {
9008 /* NB: Don't work with COND_JUMP86 without i386. */
9009 if (!align_branch_power
9010 || now_seg == absolute_section
9011 || !cpu_arch_flags.bitfield.cpui386
9012 || !(align_branch & align_branch_fused_bit))
9013 return 0;
9014
9015 if (maybe_fused_with_jcc_p (mf_cmp_p))
9016 {
9017 if (last_insn.kind == last_insn_other
9018 || last_insn.seg != now_seg)
9019 return 1;
9020 if (flag_debug)
9021 as_warn_where (last_insn.file, last_insn.line,
9022 _("`%s` skips -malign-branch-boundary on `%s`"),
9023 last_insn.name, i.tm.name);
9024 }
9025
9026 return 0;
9027 }
9028
9029 /* Return 1 if a BRANCH_PREFIX frag should be generated. */
9030
9031 static int
9032 add_branch_prefix_frag_p (void)
9033 {
9034 /* NB: Don't work with COND_JUMP86 without i386. Don't add prefix
9035 to PadLock instructions since they include prefixes in opcode. */
9036 if (!align_branch_power
9037 || !align_branch_prefix_size
9038 || now_seg == absolute_section
9039 || i.tm.cpu_flags.bitfield.cpupadlock
9040 || !cpu_arch_flags.bitfield.cpui386)
9041 return 0;
9042
9043 /* Don't add prefix if it is a prefix or there is no operand in case
9044 that segment prefix is special. */
9045 if (!i.operands || i.tm.opcode_modifier.isprefix)
9046 return 0;
9047
9048 if (last_insn.kind == last_insn_other
9049 || last_insn.seg != now_seg)
9050 return 1;
9051
9052 if (flag_debug)
9053 as_warn_where (last_insn.file, last_insn.line,
9054 _("`%s` skips -malign-branch-boundary on `%s`"),
9055 last_insn.name, i.tm.name);
9056
9057 return 0;
9058 }
9059
9060 /* Return 1 if a BRANCH_PADDING frag should be generated. */
9061
9062 static int
9063 add_branch_padding_frag_p (enum align_branch_kind *branch_p,
9064 enum mf_jcc_kind *mf_jcc_p)
9065 {
9066 int add_padding;
9067
9068 /* NB: Don't work with COND_JUMP86 without i386. */
9069 if (!align_branch_power
9070 || now_seg == absolute_section
9071 || !cpu_arch_flags.bitfield.cpui386)
9072 return 0;
9073
9074 add_padding = 0;
9075
9076 /* Check for jcc and direct jmp. */
9077 if (i.tm.opcode_modifier.jump == JUMP)
9078 {
9079 if (i.tm.base_opcode == JUMP_PC_RELATIVE)
9080 {
9081 *branch_p = align_branch_jmp;
9082 add_padding = align_branch & align_branch_jmp_bit;
9083 }
9084 else
9085 {
9086 /* Because J<cc> and JN<cc> share same group in macro-fusible table,
9087 igore the lowest bit. */
9088 *mf_jcc_p = (i.tm.base_opcode & 0x0e) >> 1;
9089 *branch_p = align_branch_jcc;
9090 if ((align_branch & align_branch_jcc_bit))
9091 add_padding = 1;
9092 }
9093 }
9094 else if (is_any_vex_encoding (&i.tm))
9095 return 0;
9096 else if ((i.tm.base_opcode | 1) == 0xc3)
9097 {
9098 /* Near ret. */
9099 *branch_p = align_branch_ret;
9100 if ((align_branch & align_branch_ret_bit))
9101 add_padding = 1;
9102 }
9103 else
9104 {
9105 /* Check for indirect jmp, direct and indirect calls. */
9106 if (i.tm.base_opcode == 0xe8)
9107 {
9108 /* Direct call. */
9109 *branch_p = align_branch_call;
9110 if ((align_branch & align_branch_call_bit))
9111 add_padding = 1;
9112 }
9113 else if (i.tm.base_opcode == 0xff
9114 && (i.tm.extension_opcode == 2
9115 || i.tm.extension_opcode == 4))
9116 {
9117 /* Indirect call and jmp. */
9118 *branch_p = align_branch_indirect;
9119 if ((align_branch & align_branch_indirect_bit))
9120 add_padding = 1;
9121 }
9122
9123 if (add_padding
9124 && i.disp_operands
9125 && tls_get_addr
9126 && (i.op[0].disps->X_op == O_symbol
9127 || (i.op[0].disps->X_op == O_subtract
9128 && i.op[0].disps->X_op_symbol == GOT_symbol)))
9129 {
9130 symbolS *s = i.op[0].disps->X_add_symbol;
9131 /* No padding to call to global or undefined tls_get_addr. */
9132 if ((S_IS_EXTERNAL (s) || !S_IS_DEFINED (s))
9133 && strcmp (S_GET_NAME (s), tls_get_addr) == 0)
9134 return 0;
9135 }
9136 }
9137
9138 if (add_padding
9139 && last_insn.kind != last_insn_other
9140 && last_insn.seg == now_seg)
9141 {
9142 if (flag_debug)
9143 as_warn_where (last_insn.file, last_insn.line,
9144 _("`%s` skips -malign-branch-boundary on `%s`"),
9145 last_insn.name, i.tm.name);
9146 return 0;
9147 }
9148
9149 return add_padding;
9150 }
9151
9152 static void
9153 output_insn (void)
9154 {
9155 fragS *insn_start_frag;
9156 offsetT insn_start_off;
9157 fragS *fragP = NULL;
9158 enum align_branch_kind branch = align_branch_none;
9159 /* The initializer is arbitrary just to avoid uninitialized error.
9160 it's actually either assigned in add_branch_padding_frag_p
9161 or never be used. */
9162 enum mf_jcc_kind mf_jcc = mf_jcc_jo;
9163
9164 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9165 if (IS_ELF && x86_used_note && now_seg != absolute_section)
9166 {
9167 if (i.tm.cpu_flags.bitfield.cpucmov)
9168 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_CMOV;
9169 if (i.tm.cpu_flags.bitfield.cpusse)
9170 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE;
9171 if (i.tm.cpu_flags.bitfield.cpusse2)
9172 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE2;
9173 if (i.tm.cpu_flags.bitfield.cpusse3)
9174 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE3;
9175 if (i.tm.cpu_flags.bitfield.cpussse3)
9176 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSSE3;
9177 if (i.tm.cpu_flags.bitfield.cpusse4_1)
9178 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_1;
9179 if (i.tm.cpu_flags.bitfield.cpusse4_2)
9180 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_SSE4_2;
9181 if (i.tm.cpu_flags.bitfield.cpuavx)
9182 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX;
9183 if (i.tm.cpu_flags.bitfield.cpuavx2)
9184 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX2;
9185 if (i.tm.cpu_flags.bitfield.cpufma)
9186 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_FMA;
9187 if (i.tm.cpu_flags.bitfield.cpuavx512f)
9188 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512F;
9189 if (i.tm.cpu_flags.bitfield.cpuavx512cd)
9190 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512CD;
9191 if (i.tm.cpu_flags.bitfield.cpuavx512er)
9192 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512ER;
9193 if (i.tm.cpu_flags.bitfield.cpuavx512pf)
9194 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512PF;
9195 if (i.tm.cpu_flags.bitfield.cpuavx512vl)
9196 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512VL;
9197 if (i.tm.cpu_flags.bitfield.cpuavx512dq)
9198 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512DQ;
9199 if (i.tm.cpu_flags.bitfield.cpuavx512bw)
9200 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512BW;
9201 if (i.tm.cpu_flags.bitfield.cpuavx512_4fmaps)
9202 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4FMAPS;
9203 if (i.tm.cpu_flags.bitfield.cpuavx512_4vnniw)
9204 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_4VNNIW;
9205 if (i.tm.cpu_flags.bitfield.cpuavx512_bitalg)
9206 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BITALG;
9207 if (i.tm.cpu_flags.bitfield.cpuavx512ifma)
9208 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_IFMA;
9209 if (i.tm.cpu_flags.bitfield.cpuavx512vbmi)
9210 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI;
9211 if (i.tm.cpu_flags.bitfield.cpuavx512_vbmi2)
9212 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VBMI2;
9213 if (i.tm.cpu_flags.bitfield.cpuavx512_vnni)
9214 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_VNNI;
9215 if (i.tm.cpu_flags.bitfield.cpuavx512_bf16)
9216 x86_isa_1_used |= GNU_PROPERTY_X86_ISA_1_AVX512_BF16;
9217
9218 if (i.tm.cpu_flags.bitfield.cpu8087
9219 || i.tm.cpu_flags.bitfield.cpu287
9220 || i.tm.cpu_flags.bitfield.cpu387
9221 || i.tm.cpu_flags.bitfield.cpu687
9222 || i.tm.cpu_flags.bitfield.cpufisttp)
9223 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_X87;
9224 if ((i.xstate & xstate_mmx)
9225 || i.tm.base_opcode == 0xf77 /* emms */
9226 || i.tm.base_opcode == 0xf0e /* femms */)
9227 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_MMX;
9228 if ((i.xstate & xstate_xmm)
9229 || i.tm.cpu_flags.bitfield.cpuwidekl
9230 || i.tm.cpu_flags.bitfield.cpukl)
9231 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XMM;
9232 if ((i.xstate & xstate_ymm) == xstate_ymm)
9233 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_YMM;
9234 if ((i.xstate & xstate_zmm) == xstate_zmm)
9235 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_ZMM;
9236 if (i.tm.cpu_flags.bitfield.cpufxsr)
9237 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_FXSR;
9238 if (i.tm.cpu_flags.bitfield.cpuxsave)
9239 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVE;
9240 if (i.tm.cpu_flags.bitfield.cpuxsaveopt)
9241 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT;
9242 if (i.tm.cpu_flags.bitfield.cpuxsavec)
9243 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_XSAVEC;
9244
9245 if ((i.xstate & xstate_tmm) == xstate_tmm
9246 || i.tm.cpu_flags.bitfield.cpuamx_tile)
9247 x86_feature_2_used |= GNU_PROPERTY_X86_FEATURE_2_TMM;
9248 }
9249 #endif
9250
9251 /* Tie dwarf2 debug info to the address at the start of the insn.
9252 We can't do this after the insn has been output as the current
9253 frag may have been closed off. eg. by frag_var. */
9254 dwarf2_emit_insn (0);
9255
9256 insn_start_frag = frag_now;
9257 insn_start_off = frag_now_fix ();
9258
9259 if (add_branch_padding_frag_p (&branch, &mf_jcc))
9260 {
9261 char *p;
9262 /* Branch can be 8 bytes. Leave some room for prefixes. */
9263 unsigned int max_branch_padding_size = 14;
9264
9265 /* Align section to boundary. */
9266 record_alignment (now_seg, align_branch_power);
9267
9268 /* Make room for padding. */
9269 frag_grow (max_branch_padding_size);
9270
9271 /* Start of the padding. */
9272 p = frag_more (0);
9273
9274 fragP = frag_now;
9275
9276 frag_var (rs_machine_dependent, max_branch_padding_size, 0,
9277 ENCODE_RELAX_STATE (BRANCH_PADDING, 0),
9278 NULL, 0, p);
9279
9280 fragP->tc_frag_data.mf_type = mf_jcc;
9281 fragP->tc_frag_data.branch_type = branch;
9282 fragP->tc_frag_data.max_bytes = max_branch_padding_size;
9283 }
9284
9285 /* Output jumps. */
9286 if (i.tm.opcode_modifier.jump == JUMP)
9287 output_branch ();
9288 else if (i.tm.opcode_modifier.jump == JUMP_BYTE
9289 || i.tm.opcode_modifier.jump == JUMP_DWORD)
9290 output_jump ();
9291 else if (i.tm.opcode_modifier.jump == JUMP_INTERSEGMENT)
9292 output_interseg_jump ();
9293 else
9294 {
9295 /* Output normal instructions here. */
9296 char *p;
9297 unsigned char *q;
9298 unsigned int j;
9299 unsigned int prefix;
9300 enum mf_cmp_kind mf_cmp;
9301
9302 if (avoid_fence
9303 && (i.tm.base_opcode == 0xfaee8
9304 || i.tm.base_opcode == 0xfaef0
9305 || i.tm.base_opcode == 0xfaef8))
9306 {
9307 /* Encode lfence, mfence, and sfence as
9308 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
9309 if (now_seg != absolute_section)
9310 {
9311 offsetT val = 0x240483f0ULL;
9312
9313 p = frag_more (5);
9314 md_number_to_chars (p, val, 5);
9315 }
9316 else
9317 abs_section_offset += 5;
9318 return;
9319 }
9320
9321 /* Some processors fail on LOCK prefix. This options makes
9322 assembler ignore LOCK prefix and serves as a workaround. */
9323 if (omit_lock_prefix)
9324 {
9325 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
9326 return;
9327 i.prefix[LOCK_PREFIX] = 0;
9328 }
9329
9330 if (branch)
9331 /* Skip if this is a branch. */
9332 ;
9333 else if (add_fused_jcc_padding_frag_p (&mf_cmp))
9334 {
9335 /* Make room for padding. */
9336 frag_grow (MAX_FUSED_JCC_PADDING_SIZE);
9337 p = frag_more (0);
9338
9339 fragP = frag_now;
9340
9341 frag_var (rs_machine_dependent, MAX_FUSED_JCC_PADDING_SIZE, 0,
9342 ENCODE_RELAX_STATE (FUSED_JCC_PADDING, 0),
9343 NULL, 0, p);
9344
9345 fragP->tc_frag_data.mf_type = mf_cmp;
9346 fragP->tc_frag_data.branch_type = align_branch_fused;
9347 fragP->tc_frag_data.max_bytes = MAX_FUSED_JCC_PADDING_SIZE;
9348 }
9349 else if (add_branch_prefix_frag_p ())
9350 {
9351 unsigned int max_prefix_size = align_branch_prefix_size;
9352
9353 /* Make room for padding. */
9354 frag_grow (max_prefix_size);
9355 p = frag_more (0);
9356
9357 fragP = frag_now;
9358
9359 frag_var (rs_machine_dependent, max_prefix_size, 0,
9360 ENCODE_RELAX_STATE (BRANCH_PREFIX, 0),
9361 NULL, 0, p);
9362
9363 fragP->tc_frag_data.max_bytes = max_prefix_size;
9364 }
9365
9366 /* Since the VEX/EVEX prefix contains the implicit prefix, we
9367 don't need the explicit prefix. */
9368 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
9369 {
9370 switch (i.tm.opcode_length)
9371 {
9372 case 3:
9373 if (i.tm.base_opcode & 0xff000000)
9374 {
9375 prefix = (i.tm.base_opcode >> 24) & 0xff;
9376 if (!i.tm.cpu_flags.bitfield.cpupadlock
9377 || prefix != REPE_PREFIX_OPCODE
9378 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
9379 add_prefix (prefix);
9380 }
9381 break;
9382 case 2:
9383 if ((i.tm.base_opcode & 0xff0000) != 0)
9384 {
9385 prefix = (i.tm.base_opcode >> 16) & 0xff;
9386 add_prefix (prefix);
9387 }
9388 break;
9389 case 1:
9390 break;
9391 case 0:
9392 /* Check for pseudo prefixes. */
9393 as_bad_where (insn_start_frag->fr_file,
9394 insn_start_frag->fr_line,
9395 _("pseudo prefix without instruction"));
9396 return;
9397 default:
9398 abort ();
9399 }
9400
9401 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
9402 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
9403 R_X86_64_GOTTPOFF relocation so that linker can safely
9404 perform IE->LE optimization. A dummy REX_OPCODE prefix
9405 is also needed for lea with R_X86_64_GOTPC32_TLSDESC
9406 relocation for GDesc -> IE/LE optimization. */
9407 if (x86_elf_abi == X86_64_X32_ABI
9408 && i.operands == 2
9409 && (i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
9410 || i.reloc[0] == BFD_RELOC_X86_64_GOTPC32_TLSDESC)
9411 && i.prefix[REX_PREFIX] == 0)
9412 add_prefix (REX_OPCODE);
9413 #endif
9414
9415 /* The prefix bytes. */
9416 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
9417 if (*q)
9418 frag_opcode_byte (*q);
9419 }
9420 else
9421 {
9422 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
9423 if (*q)
9424 switch (j)
9425 {
9426 case SEG_PREFIX:
9427 case ADDR_PREFIX:
9428 frag_opcode_byte (*q);
9429 break;
9430 default:
9431 /* There should be no other prefixes for instructions
9432 with VEX prefix. */
9433 abort ();
9434 }
9435
9436 /* For EVEX instructions i.vrex should become 0 after
9437 build_evex_prefix. For VEX instructions upper 16 registers
9438 aren't available, so VREX should be 0. */
9439 if (i.vrex)
9440 abort ();
9441 /* Now the VEX prefix. */
9442 if (now_seg != absolute_section)
9443 {
9444 p = frag_more (i.vex.length);
9445 for (j = 0; j < i.vex.length; j++)
9446 p[j] = i.vex.bytes[j];
9447 }
9448 else
9449 abs_section_offset += i.vex.length;
9450 }
9451
9452 /* Now the opcode; be careful about word order here! */
9453 if (now_seg == absolute_section)
9454 abs_section_offset += i.tm.opcode_length;
9455 else if (i.tm.opcode_length == 1)
9456 {
9457 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
9458 }
9459 else
9460 {
9461 switch (i.tm.opcode_length)
9462 {
9463 case 4:
9464 p = frag_more (4);
9465 *p++ = (i.tm.base_opcode >> 24) & 0xff;
9466 *p++ = (i.tm.base_opcode >> 16) & 0xff;
9467 break;
9468 case 3:
9469 p = frag_more (3);
9470 *p++ = (i.tm.base_opcode >> 16) & 0xff;
9471 break;
9472 case 2:
9473 p = frag_more (2);
9474 break;
9475 default:
9476 abort ();
9477 break;
9478 }
9479
9480 /* Put out high byte first: can't use md_number_to_chars! */
9481 *p++ = (i.tm.base_opcode >> 8) & 0xff;
9482 *p = i.tm.base_opcode & 0xff;
9483 }
9484
9485 /* Now the modrm byte and sib byte (if present). */
9486 if (i.tm.opcode_modifier.modrm)
9487 {
9488 frag_opcode_byte ((i.rm.regmem << 0)
9489 | (i.rm.reg << 3)
9490 | (i.rm.mode << 6));
9491 /* If i.rm.regmem == ESP (4)
9492 && i.rm.mode != (Register mode)
9493 && not 16 bit
9494 ==> need second modrm byte. */
9495 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
9496 && i.rm.mode != 3
9497 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
9498 frag_opcode_byte ((i.sib.base << 0)
9499 | (i.sib.index << 3)
9500 | (i.sib.scale << 6));
9501 }
9502
9503 if (i.disp_operands)
9504 output_disp (insn_start_frag, insn_start_off);
9505
9506 if (i.imm_operands)
9507 output_imm (insn_start_frag, insn_start_off);
9508
9509 /*
9510 * frag_now_fix () returning plain abs_section_offset when we're in the
9511 * absolute section, and abs_section_offset not getting updated as data
9512 * gets added to the frag breaks the logic below.
9513 */
9514 if (now_seg != absolute_section)
9515 {
9516 j = encoding_length (insn_start_frag, insn_start_off, frag_more (0));
9517 if (j > 15)
9518 as_warn (_("instruction length of %u bytes exceeds the limit of 15"),
9519 j);
9520 else if (fragP)
9521 {
9522 /* NB: Don't add prefix with GOTPC relocation since
9523 output_disp() above depends on the fixed encoding
9524 length. Can't add prefix with TLS relocation since
9525 it breaks TLS linker optimization. */
9526 unsigned int max = i.has_gotpc_tls_reloc ? 0 : 15 - j;
9527 /* Prefix count on the current instruction. */
9528 unsigned int count = i.vex.length;
9529 unsigned int k;
9530 for (k = 0; k < ARRAY_SIZE (i.prefix); k++)
9531 /* REX byte is encoded in VEX/EVEX prefix. */
9532 if (i.prefix[k] && (k != REX_PREFIX || !i.vex.length))
9533 count++;
9534
9535 /* Count prefixes for extended opcode maps. */
9536 if (!i.vex.length)
9537 switch (i.tm.opcode_length)
9538 {
9539 case 3:
9540 if (((i.tm.base_opcode >> 16) & 0xff) == 0xf)
9541 {
9542 count++;
9543 switch ((i.tm.base_opcode >> 8) & 0xff)
9544 {
9545 case 0x38:
9546 case 0x3a:
9547 count++;
9548 break;
9549 default:
9550 break;
9551 }
9552 }
9553 break;
9554 case 2:
9555 if (((i.tm.base_opcode >> 8) & 0xff) == 0xf)
9556 count++;
9557 break;
9558 case 1:
9559 break;
9560 default:
9561 abort ();
9562 }
9563
9564 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
9565 == BRANCH_PREFIX)
9566 {
9567 /* Set the maximum prefix size in BRANCH_PREFIX
9568 frag. */
9569 if (fragP->tc_frag_data.max_bytes > max)
9570 fragP->tc_frag_data.max_bytes = max;
9571 if (fragP->tc_frag_data.max_bytes > count)
9572 fragP->tc_frag_data.max_bytes -= count;
9573 else
9574 fragP->tc_frag_data.max_bytes = 0;
9575 }
9576 else
9577 {
9578 /* Remember the maximum prefix size in FUSED_JCC_PADDING
9579 frag. */
9580 unsigned int max_prefix_size;
9581 if (align_branch_prefix_size > max)
9582 max_prefix_size = max;
9583 else
9584 max_prefix_size = align_branch_prefix_size;
9585 if (max_prefix_size > count)
9586 fragP->tc_frag_data.max_prefix_length
9587 = max_prefix_size - count;
9588 }
9589
9590 /* Use existing segment prefix if possible. Use CS
9591 segment prefix in 64-bit mode. In 32-bit mode, use SS
9592 segment prefix with ESP/EBP base register and use DS
9593 segment prefix without ESP/EBP base register. */
9594 if (i.prefix[SEG_PREFIX])
9595 fragP->tc_frag_data.default_prefix = i.prefix[SEG_PREFIX];
9596 else if (flag_code == CODE_64BIT)
9597 fragP->tc_frag_data.default_prefix = CS_PREFIX_OPCODE;
9598 else if (i.base_reg
9599 && (i.base_reg->reg_num == 4
9600 || i.base_reg->reg_num == 5))
9601 fragP->tc_frag_data.default_prefix = SS_PREFIX_OPCODE;
9602 else
9603 fragP->tc_frag_data.default_prefix = DS_PREFIX_OPCODE;
9604 }
9605 }
9606 }
9607
9608 /* NB: Don't work with COND_JUMP86 without i386. */
9609 if (align_branch_power
9610 && now_seg != absolute_section
9611 && cpu_arch_flags.bitfield.cpui386)
9612 {
9613 /* Terminate each frag so that we can add prefix and check for
9614 fused jcc. */
9615 frag_wane (frag_now);
9616 frag_new (0);
9617 }
9618
9619 #ifdef DEBUG386
9620 if (flag_debug)
9621 {
9622 pi ("" /*line*/, &i);
9623 }
9624 #endif /* DEBUG386 */
9625 }
9626
9627 /* Return the size of the displacement operand N. */
9628
9629 static int
9630 disp_size (unsigned int n)
9631 {
9632 int size = 4;
9633
9634 if (i.types[n].bitfield.disp64)
9635 size = 8;
9636 else if (i.types[n].bitfield.disp8)
9637 size = 1;
9638 else if (i.types[n].bitfield.disp16)
9639 size = 2;
9640 return size;
9641 }
9642
9643 /* Return the size of the immediate operand N. */
9644
9645 static int
9646 imm_size (unsigned int n)
9647 {
9648 int size = 4;
9649 if (i.types[n].bitfield.imm64)
9650 size = 8;
9651 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
9652 size = 1;
9653 else if (i.types[n].bitfield.imm16)
9654 size = 2;
9655 return size;
9656 }
9657
9658 static void
9659 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
9660 {
9661 char *p;
9662 unsigned int n;
9663
9664 for (n = 0; n < i.operands; n++)
9665 {
9666 if (operand_type_check (i.types[n], disp))
9667 {
9668 int size = disp_size (n);
9669
9670 if (now_seg == absolute_section)
9671 abs_section_offset += size;
9672 else if (i.op[n].disps->X_op == O_constant)
9673 {
9674 offsetT val = i.op[n].disps->X_add_number;
9675
9676 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
9677 size);
9678 p = frag_more (size);
9679 md_number_to_chars (p, val, size);
9680 }
9681 else
9682 {
9683 enum bfd_reloc_code_real reloc_type;
9684 int sign = i.types[n].bitfield.disp32s;
9685 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
9686 fixS *fixP;
9687
9688 /* We can't have 8 bit displacement here. */
9689 gas_assert (!i.types[n].bitfield.disp8);
9690
9691 /* The PC relative address is computed relative
9692 to the instruction boundary, so in case immediate
9693 fields follows, we need to adjust the value. */
9694 if (pcrel && i.imm_operands)
9695 {
9696 unsigned int n1;
9697 int sz = 0;
9698
9699 for (n1 = 0; n1 < i.operands; n1++)
9700 if (operand_type_check (i.types[n1], imm))
9701 {
9702 /* Only one immediate is allowed for PC
9703 relative address. */
9704 gas_assert (sz == 0);
9705 sz = imm_size (n1);
9706 i.op[n].disps->X_add_number -= sz;
9707 }
9708 /* We should find the immediate. */
9709 gas_assert (sz != 0);
9710 }
9711
9712 p = frag_more (size);
9713 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
9714 if (GOT_symbol
9715 && GOT_symbol == i.op[n].disps->X_add_symbol
9716 && (((reloc_type == BFD_RELOC_32
9717 || reloc_type == BFD_RELOC_X86_64_32S
9718 || (reloc_type == BFD_RELOC_64
9719 && object_64bit))
9720 && (i.op[n].disps->X_op == O_symbol
9721 || (i.op[n].disps->X_op == O_add
9722 && ((symbol_get_value_expression
9723 (i.op[n].disps->X_op_symbol)->X_op)
9724 == O_subtract))))
9725 || reloc_type == BFD_RELOC_32_PCREL))
9726 {
9727 if (!object_64bit)
9728 {
9729 reloc_type = BFD_RELOC_386_GOTPC;
9730 i.has_gotpc_tls_reloc = TRUE;
9731 i.op[n].imms->X_add_number +=
9732 encoding_length (insn_start_frag, insn_start_off, p);
9733 }
9734 else if (reloc_type == BFD_RELOC_64)
9735 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9736 else
9737 /* Don't do the adjustment for x86-64, as there
9738 the pcrel addressing is relative to the _next_
9739 insn, and that is taken care of in other code. */
9740 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9741 }
9742 else if (align_branch_power)
9743 {
9744 switch (reloc_type)
9745 {
9746 case BFD_RELOC_386_TLS_GD:
9747 case BFD_RELOC_386_TLS_LDM:
9748 case BFD_RELOC_386_TLS_IE:
9749 case BFD_RELOC_386_TLS_IE_32:
9750 case BFD_RELOC_386_TLS_GOTIE:
9751 case BFD_RELOC_386_TLS_GOTDESC:
9752 case BFD_RELOC_386_TLS_DESC_CALL:
9753 case BFD_RELOC_X86_64_TLSGD:
9754 case BFD_RELOC_X86_64_TLSLD:
9755 case BFD_RELOC_X86_64_GOTTPOFF:
9756 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9757 case BFD_RELOC_X86_64_TLSDESC_CALL:
9758 i.has_gotpc_tls_reloc = TRUE;
9759 default:
9760 break;
9761 }
9762 }
9763 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
9764 size, i.op[n].disps, pcrel,
9765 reloc_type);
9766 /* Check for "call/jmp *mem", "mov mem, %reg",
9767 "test %reg, mem" and "binop mem, %reg" where binop
9768 is one of adc, add, and, cmp, or, sbb, sub, xor
9769 instructions without data prefix. Always generate
9770 R_386_GOT32X for "sym*GOT" operand in 32-bit mode. */
9771 if (i.prefix[DATA_PREFIX] == 0
9772 && (generate_relax_relocations
9773 || (!object_64bit
9774 && i.rm.mode == 0
9775 && i.rm.regmem == 5))
9776 && (i.rm.mode == 2
9777 || (i.rm.mode == 0 && i.rm.regmem == 5))
9778 && !is_any_vex_encoding(&i.tm)
9779 && ((i.operands == 1
9780 && i.tm.base_opcode == 0xff
9781 && (i.rm.reg == 2 || i.rm.reg == 4))
9782 || (i.operands == 2
9783 && (i.tm.base_opcode == 0x8b
9784 || i.tm.base_opcode == 0x85
9785 || (i.tm.base_opcode & ~0x38) == 0x03))))
9786 {
9787 if (object_64bit)
9788 {
9789 fixP->fx_tcbit = i.rex != 0;
9790 if (i.base_reg
9791 && (i.base_reg->reg_num == RegIP))
9792 fixP->fx_tcbit2 = 1;
9793 }
9794 else
9795 fixP->fx_tcbit2 = 1;
9796 }
9797 }
9798 }
9799 }
9800 }
9801
9802 static void
9803 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
9804 {
9805 char *p;
9806 unsigned int n;
9807
9808 for (n = 0; n < i.operands; n++)
9809 {
9810 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
9811 if (i.rounding && (int) n == i.rounding->operand)
9812 continue;
9813
9814 if (operand_type_check (i.types[n], imm))
9815 {
9816 int size = imm_size (n);
9817
9818 if (now_seg == absolute_section)
9819 abs_section_offset += size;
9820 else if (i.op[n].imms->X_op == O_constant)
9821 {
9822 offsetT val;
9823
9824 val = offset_in_range (i.op[n].imms->X_add_number,
9825 size);
9826 p = frag_more (size);
9827 md_number_to_chars (p, val, size);
9828 }
9829 else
9830 {
9831 /* Not absolute_section.
9832 Need a 32-bit fixup (don't support 8bit
9833 non-absolute imms). Try to support other
9834 sizes ... */
9835 enum bfd_reloc_code_real reloc_type;
9836 int sign;
9837
9838 if (i.types[n].bitfield.imm32s
9839 && (i.suffix == QWORD_MNEM_SUFFIX
9840 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
9841 sign = 1;
9842 else
9843 sign = 0;
9844
9845 p = frag_more (size);
9846 reloc_type = reloc (size, 0, sign, i.reloc[n]);
9847
9848 /* This is tough to explain. We end up with this one if we
9849 * have operands that look like
9850 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
9851 * obtain the absolute address of the GOT, and it is strongly
9852 * preferable from a performance point of view to avoid using
9853 * a runtime relocation for this. The actual sequence of
9854 * instructions often look something like:
9855 *
9856 * call .L66
9857 * .L66:
9858 * popl %ebx
9859 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
9860 *
9861 * The call and pop essentially return the absolute address
9862 * of the label .L66 and store it in %ebx. The linker itself
9863 * will ultimately change the first operand of the addl so
9864 * that %ebx points to the GOT, but to keep things simple, the
9865 * .o file must have this operand set so that it generates not
9866 * the absolute address of .L66, but the absolute address of
9867 * itself. This allows the linker itself simply treat a GOTPC
9868 * relocation as asking for a pcrel offset to the GOT to be
9869 * added in, and the addend of the relocation is stored in the
9870 * operand field for the instruction itself.
9871 *
9872 * Our job here is to fix the operand so that it would add
9873 * the correct offset so that %ebx would point to itself. The
9874 * thing that is tricky is that .-.L66 will point to the
9875 * beginning of the instruction, so we need to further modify
9876 * the operand so that it will point to itself. There are
9877 * other cases where you have something like:
9878 *
9879 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
9880 *
9881 * and here no correction would be required. Internally in
9882 * the assembler we treat operands of this form as not being
9883 * pcrel since the '.' is explicitly mentioned, and I wonder
9884 * whether it would simplify matters to do it this way. Who
9885 * knows. In earlier versions of the PIC patches, the
9886 * pcrel_adjust field was used to store the correction, but
9887 * since the expression is not pcrel, I felt it would be
9888 * confusing to do it this way. */
9889
9890 if ((reloc_type == BFD_RELOC_32
9891 || reloc_type == BFD_RELOC_X86_64_32S
9892 || reloc_type == BFD_RELOC_64)
9893 && GOT_symbol
9894 && GOT_symbol == i.op[n].imms->X_add_symbol
9895 && (i.op[n].imms->X_op == O_symbol
9896 || (i.op[n].imms->X_op == O_add
9897 && ((symbol_get_value_expression
9898 (i.op[n].imms->X_op_symbol)->X_op)
9899 == O_subtract))))
9900 {
9901 if (!object_64bit)
9902 reloc_type = BFD_RELOC_386_GOTPC;
9903 else if (size == 4)
9904 reloc_type = BFD_RELOC_X86_64_GOTPC32;
9905 else if (size == 8)
9906 reloc_type = BFD_RELOC_X86_64_GOTPC64;
9907 i.has_gotpc_tls_reloc = TRUE;
9908 i.op[n].imms->X_add_number +=
9909 encoding_length (insn_start_frag, insn_start_off, p);
9910 }
9911 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
9912 i.op[n].imms, 0, reloc_type);
9913 }
9914 }
9915 }
9916 }
9917 \f
9918 /* x86_cons_fix_new is called via the expression parsing code when a
9919 reloc is needed. We use this hook to get the correct .got reloc. */
9920 static int cons_sign = -1;
9921
9922 void
9923 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
9924 expressionS *exp, bfd_reloc_code_real_type r)
9925 {
9926 r = reloc (len, 0, cons_sign, r);
9927
9928 #ifdef TE_PE
9929 if (exp->X_op == O_secrel)
9930 {
9931 exp->X_op = O_symbol;
9932 r = BFD_RELOC_32_SECREL;
9933 }
9934 #endif
9935
9936 fix_new_exp (frag, off, len, exp, 0, r);
9937 }
9938
9939 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
9940 purpose of the `.dc.a' internal pseudo-op. */
9941
9942 int
9943 x86_address_bytes (void)
9944 {
9945 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
9946 return 4;
9947 return stdoutput->arch_info->bits_per_address / 8;
9948 }
9949
9950 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
9951 || defined (LEX_AT)
9952 # define lex_got(reloc, adjust, types) NULL
9953 #else
9954 /* Parse operands of the form
9955 <symbol>@GOTOFF+<nnn>
9956 and similar .plt or .got references.
9957
9958 If we find one, set up the correct relocation in RELOC and copy the
9959 input string, minus the `@GOTOFF' into a malloc'd buffer for
9960 parsing by the calling routine. Return this buffer, and if ADJUST
9961 is non-null set it to the length of the string we removed from the
9962 input line. Otherwise return NULL. */
9963 static char *
9964 lex_got (enum bfd_reloc_code_real *rel,
9965 int *adjust,
9966 i386_operand_type *types)
9967 {
9968 /* Some of the relocations depend on the size of what field is to
9969 be relocated. But in our callers i386_immediate and i386_displacement
9970 we don't yet know the operand size (this will be set by insn
9971 matching). Hence we record the word32 relocation here,
9972 and adjust the reloc according to the real size in reloc(). */
9973 static const struct {
9974 const char *str;
9975 int len;
9976 const enum bfd_reloc_code_real rel[2];
9977 const i386_operand_type types64;
9978 } gotrel[] = {
9979 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9980 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
9981 BFD_RELOC_SIZE32 },
9982 OPERAND_TYPE_IMM32_64 },
9983 #endif
9984 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
9985 BFD_RELOC_X86_64_PLTOFF64 },
9986 OPERAND_TYPE_IMM64 },
9987 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
9988 BFD_RELOC_X86_64_PLT32 },
9989 OPERAND_TYPE_IMM32_32S_DISP32 },
9990 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
9991 BFD_RELOC_X86_64_GOTPLT64 },
9992 OPERAND_TYPE_IMM64_DISP64 },
9993 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
9994 BFD_RELOC_X86_64_GOTOFF64 },
9995 OPERAND_TYPE_IMM64_DISP64 },
9996 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
9997 BFD_RELOC_X86_64_GOTPCREL },
9998 OPERAND_TYPE_IMM32_32S_DISP32 },
9999 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
10000 BFD_RELOC_X86_64_TLSGD },
10001 OPERAND_TYPE_IMM32_32S_DISP32 },
10002 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
10003 _dummy_first_bfd_reloc_code_real },
10004 OPERAND_TYPE_NONE },
10005 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
10006 BFD_RELOC_X86_64_TLSLD },
10007 OPERAND_TYPE_IMM32_32S_DISP32 },
10008 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
10009 BFD_RELOC_X86_64_GOTTPOFF },
10010 OPERAND_TYPE_IMM32_32S_DISP32 },
10011 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
10012 BFD_RELOC_X86_64_TPOFF32 },
10013 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
10014 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
10015 _dummy_first_bfd_reloc_code_real },
10016 OPERAND_TYPE_NONE },
10017 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
10018 BFD_RELOC_X86_64_DTPOFF32 },
10019 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
10020 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
10021 _dummy_first_bfd_reloc_code_real },
10022 OPERAND_TYPE_NONE },
10023 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
10024 _dummy_first_bfd_reloc_code_real },
10025 OPERAND_TYPE_NONE },
10026 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
10027 BFD_RELOC_X86_64_GOT32 },
10028 OPERAND_TYPE_IMM32_32S_64_DISP32 },
10029 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
10030 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
10031 OPERAND_TYPE_IMM32_32S_DISP32 },
10032 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
10033 BFD_RELOC_X86_64_TLSDESC_CALL },
10034 OPERAND_TYPE_IMM32_32S_DISP32 },
10035 };
10036 char *cp;
10037 unsigned int j;
10038
10039 #if defined (OBJ_MAYBE_ELF)
10040 if (!IS_ELF)
10041 return NULL;
10042 #endif
10043
10044 for (cp = input_line_pointer; *cp != '@'; cp++)
10045 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
10046 return NULL;
10047
10048 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
10049 {
10050 int len = gotrel[j].len;
10051 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
10052 {
10053 if (gotrel[j].rel[object_64bit] != 0)
10054 {
10055 int first, second;
10056 char *tmpbuf, *past_reloc;
10057
10058 *rel = gotrel[j].rel[object_64bit];
10059
10060 if (types)
10061 {
10062 if (flag_code != CODE_64BIT)
10063 {
10064 types->bitfield.imm32 = 1;
10065 types->bitfield.disp32 = 1;
10066 }
10067 else
10068 *types = gotrel[j].types64;
10069 }
10070
10071 if (j != 0 && GOT_symbol == NULL)
10072 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
10073
10074 /* The length of the first part of our input line. */
10075 first = cp - input_line_pointer;
10076
10077 /* The second part goes from after the reloc token until
10078 (and including) an end_of_line char or comma. */
10079 past_reloc = cp + 1 + len;
10080 cp = past_reloc;
10081 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
10082 ++cp;
10083 second = cp + 1 - past_reloc;
10084
10085 /* Allocate and copy string. The trailing NUL shouldn't
10086 be necessary, but be safe. */
10087 tmpbuf = XNEWVEC (char, first + second + 2);
10088 memcpy (tmpbuf, input_line_pointer, first);
10089 if (second != 0 && *past_reloc != ' ')
10090 /* Replace the relocation token with ' ', so that
10091 errors like foo@GOTOFF1 will be detected. */
10092 tmpbuf[first++] = ' ';
10093 else
10094 /* Increment length by 1 if the relocation token is
10095 removed. */
10096 len++;
10097 if (adjust)
10098 *adjust = len;
10099 memcpy (tmpbuf + first, past_reloc, second);
10100 tmpbuf[first + second] = '\0';
10101 return tmpbuf;
10102 }
10103
10104 as_bad (_("@%s reloc is not supported with %d-bit output format"),
10105 gotrel[j].str, 1 << (5 + object_64bit));
10106 return NULL;
10107 }
10108 }
10109
10110 /* Might be a symbol version string. Don't as_bad here. */
10111 return NULL;
10112 }
10113 #endif
10114
10115 #ifdef TE_PE
10116 #ifdef lex_got
10117 #undef lex_got
10118 #endif
10119 /* Parse operands of the form
10120 <symbol>@SECREL32+<nnn>
10121
10122 If we find one, set up the correct relocation in RELOC and copy the
10123 input string, minus the `@SECREL32' into a malloc'd buffer for
10124 parsing by the calling routine. Return this buffer, and if ADJUST
10125 is non-null set it to the length of the string we removed from the
10126 input line. Otherwise return NULL.
10127
10128 This function is copied from the ELF version above adjusted for PE targets. */
10129
10130 static char *
10131 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
10132 int *adjust ATTRIBUTE_UNUSED,
10133 i386_operand_type *types)
10134 {
10135 static const struct
10136 {
10137 const char *str;
10138 int len;
10139 const enum bfd_reloc_code_real rel[2];
10140 const i386_operand_type types64;
10141 }
10142 gotrel[] =
10143 {
10144 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
10145 BFD_RELOC_32_SECREL },
10146 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
10147 };
10148
10149 char *cp;
10150 unsigned j;
10151
10152 for (cp = input_line_pointer; *cp != '@'; cp++)
10153 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
10154 return NULL;
10155
10156 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
10157 {
10158 int len = gotrel[j].len;
10159
10160 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
10161 {
10162 if (gotrel[j].rel[object_64bit] != 0)
10163 {
10164 int first, second;
10165 char *tmpbuf, *past_reloc;
10166
10167 *rel = gotrel[j].rel[object_64bit];
10168 if (adjust)
10169 *adjust = len;
10170
10171 if (types)
10172 {
10173 if (flag_code != CODE_64BIT)
10174 {
10175 types->bitfield.imm32 = 1;
10176 types->bitfield.disp32 = 1;
10177 }
10178 else
10179 *types = gotrel[j].types64;
10180 }
10181
10182 /* The length of the first part of our input line. */
10183 first = cp - input_line_pointer;
10184
10185 /* The second part goes from after the reloc token until
10186 (and including) an end_of_line char or comma. */
10187 past_reloc = cp + 1 + len;
10188 cp = past_reloc;
10189 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
10190 ++cp;
10191 second = cp + 1 - past_reloc;
10192
10193 /* Allocate and copy string. The trailing NUL shouldn't
10194 be necessary, but be safe. */
10195 tmpbuf = XNEWVEC (char, first + second + 2);
10196 memcpy (tmpbuf, input_line_pointer, first);
10197 if (second != 0 && *past_reloc != ' ')
10198 /* Replace the relocation token with ' ', so that
10199 errors like foo@SECLREL321 will be detected. */
10200 tmpbuf[first++] = ' ';
10201 memcpy (tmpbuf + first, past_reloc, second);
10202 tmpbuf[first + second] = '\0';
10203 return tmpbuf;
10204 }
10205
10206 as_bad (_("@%s reloc is not supported with %d-bit output format"),
10207 gotrel[j].str, 1 << (5 + object_64bit));
10208 return NULL;
10209 }
10210 }
10211
10212 /* Might be a symbol version string. Don't as_bad here. */
10213 return NULL;
10214 }
10215
10216 #endif /* TE_PE */
10217
10218 bfd_reloc_code_real_type
10219 x86_cons (expressionS *exp, int size)
10220 {
10221 bfd_reloc_code_real_type got_reloc = NO_RELOC;
10222
10223 intel_syntax = -intel_syntax;
10224
10225 exp->X_md = 0;
10226 if (size == 4 || (object_64bit && size == 8))
10227 {
10228 /* Handle @GOTOFF and the like in an expression. */
10229 char *save;
10230 char *gotfree_input_line;
10231 int adjust = 0;
10232
10233 save = input_line_pointer;
10234 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
10235 if (gotfree_input_line)
10236 input_line_pointer = gotfree_input_line;
10237
10238 expression (exp);
10239
10240 if (gotfree_input_line)
10241 {
10242 /* expression () has merrily parsed up to the end of line,
10243 or a comma - in the wrong buffer. Transfer how far
10244 input_line_pointer has moved to the right buffer. */
10245 input_line_pointer = (save
10246 + (input_line_pointer - gotfree_input_line)
10247 + adjust);
10248 free (gotfree_input_line);
10249 if (exp->X_op == O_constant
10250 || exp->X_op == O_absent
10251 || exp->X_op == O_illegal
10252 || exp->X_op == O_register
10253 || exp->X_op == O_big)
10254 {
10255 char c = *input_line_pointer;
10256 *input_line_pointer = 0;
10257 as_bad (_("missing or invalid expression `%s'"), save);
10258 *input_line_pointer = c;
10259 }
10260 else if ((got_reloc == BFD_RELOC_386_PLT32
10261 || got_reloc == BFD_RELOC_X86_64_PLT32)
10262 && exp->X_op != O_symbol)
10263 {
10264 char c = *input_line_pointer;
10265 *input_line_pointer = 0;
10266 as_bad (_("invalid PLT expression `%s'"), save);
10267 *input_line_pointer = c;
10268 }
10269 }
10270 }
10271 else
10272 expression (exp);
10273
10274 intel_syntax = -intel_syntax;
10275
10276 if (intel_syntax)
10277 i386_intel_simplify (exp);
10278
10279 return got_reloc;
10280 }
10281
10282 static void
10283 signed_cons (int size)
10284 {
10285 if (flag_code == CODE_64BIT)
10286 cons_sign = 1;
10287 cons (size);
10288 cons_sign = -1;
10289 }
10290
10291 #ifdef TE_PE
10292 static void
10293 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
10294 {
10295 expressionS exp;
10296
10297 do
10298 {
10299 expression (&exp);
10300 if (exp.X_op == O_symbol)
10301 exp.X_op = O_secrel;
10302
10303 emit_expr (&exp, 4);
10304 }
10305 while (*input_line_pointer++ == ',');
10306
10307 input_line_pointer--;
10308 demand_empty_rest_of_line ();
10309 }
10310 #endif
10311
10312 /* Handle Vector operations. */
10313
10314 static char *
10315 check_VecOperations (char *op_string, char *op_end)
10316 {
10317 const reg_entry *mask;
10318 const char *saved;
10319 char *end_op;
10320
10321 while (*op_string
10322 && (op_end == NULL || op_string < op_end))
10323 {
10324 saved = op_string;
10325 if (*op_string == '{')
10326 {
10327 op_string++;
10328
10329 /* Check broadcasts. */
10330 if (strncmp (op_string, "1to", 3) == 0)
10331 {
10332 int bcst_type;
10333
10334 if (i.broadcast)
10335 goto duplicated_vec_op;
10336
10337 op_string += 3;
10338 if (*op_string == '8')
10339 bcst_type = 8;
10340 else if (*op_string == '4')
10341 bcst_type = 4;
10342 else if (*op_string == '2')
10343 bcst_type = 2;
10344 else if (*op_string == '1'
10345 && *(op_string+1) == '6')
10346 {
10347 bcst_type = 16;
10348 op_string++;
10349 }
10350 else
10351 {
10352 as_bad (_("Unsupported broadcast: `%s'"), saved);
10353 return NULL;
10354 }
10355 op_string++;
10356
10357 broadcast_op.type = bcst_type;
10358 broadcast_op.operand = this_operand;
10359 broadcast_op.bytes = 0;
10360 i.broadcast = &broadcast_op;
10361 }
10362 /* Check masking operation. */
10363 else if ((mask = parse_register (op_string, &end_op)) != NULL)
10364 {
10365 if (mask == &bad_reg)
10366 return NULL;
10367
10368 /* k0 can't be used for write mask. */
10369 if (mask->reg_type.bitfield.class != RegMask || !mask->reg_num)
10370 {
10371 as_bad (_("`%s%s' can't be used for write mask"),
10372 register_prefix, mask->reg_name);
10373 return NULL;
10374 }
10375
10376 if (!i.mask)
10377 {
10378 mask_op.mask = mask;
10379 mask_op.zeroing = 0;
10380 mask_op.operand = this_operand;
10381 i.mask = &mask_op;
10382 }
10383 else
10384 {
10385 if (i.mask->mask)
10386 goto duplicated_vec_op;
10387
10388 i.mask->mask = mask;
10389
10390 /* Only "{z}" is allowed here. No need to check
10391 zeroing mask explicitly. */
10392 if (i.mask->operand != this_operand)
10393 {
10394 as_bad (_("invalid write mask `%s'"), saved);
10395 return NULL;
10396 }
10397 }
10398
10399 op_string = end_op;
10400 }
10401 /* Check zeroing-flag for masking operation. */
10402 else if (*op_string == 'z')
10403 {
10404 if (!i.mask)
10405 {
10406 mask_op.mask = NULL;
10407 mask_op.zeroing = 1;
10408 mask_op.operand = this_operand;
10409 i.mask = &mask_op;
10410 }
10411 else
10412 {
10413 if (i.mask->zeroing)
10414 {
10415 duplicated_vec_op:
10416 as_bad (_("duplicated `%s'"), saved);
10417 return NULL;
10418 }
10419
10420 i.mask->zeroing = 1;
10421
10422 /* Only "{%k}" is allowed here. No need to check mask
10423 register explicitly. */
10424 if (i.mask->operand != this_operand)
10425 {
10426 as_bad (_("invalid zeroing-masking `%s'"),
10427 saved);
10428 return NULL;
10429 }
10430 }
10431
10432 op_string++;
10433 }
10434 else
10435 goto unknown_vec_op;
10436
10437 if (*op_string != '}')
10438 {
10439 as_bad (_("missing `}' in `%s'"), saved);
10440 return NULL;
10441 }
10442 op_string++;
10443
10444 /* Strip whitespace since the addition of pseudo prefixes
10445 changed how the scrubber treats '{'. */
10446 if (is_space_char (*op_string))
10447 ++op_string;
10448
10449 continue;
10450 }
10451 unknown_vec_op:
10452 /* We don't know this one. */
10453 as_bad (_("unknown vector operation: `%s'"), saved);
10454 return NULL;
10455 }
10456
10457 if (i.mask && i.mask->zeroing && !i.mask->mask)
10458 {
10459 as_bad (_("zeroing-masking only allowed with write mask"));
10460 return NULL;
10461 }
10462
10463 return op_string;
10464 }
10465
10466 static int
10467 i386_immediate (char *imm_start)
10468 {
10469 char *save_input_line_pointer;
10470 char *gotfree_input_line;
10471 segT exp_seg = 0;
10472 expressionS *exp;
10473 i386_operand_type types;
10474
10475 operand_type_set (&types, ~0);
10476
10477 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
10478 {
10479 as_bad (_("at most %d immediate operands are allowed"),
10480 MAX_IMMEDIATE_OPERANDS);
10481 return 0;
10482 }
10483
10484 exp = &im_expressions[i.imm_operands++];
10485 i.op[this_operand].imms = exp;
10486
10487 if (is_space_char (*imm_start))
10488 ++imm_start;
10489
10490 save_input_line_pointer = input_line_pointer;
10491 input_line_pointer = imm_start;
10492
10493 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10494 if (gotfree_input_line)
10495 input_line_pointer = gotfree_input_line;
10496
10497 exp_seg = expression (exp);
10498
10499 SKIP_WHITESPACE ();
10500
10501 /* Handle vector operations. */
10502 if (*input_line_pointer == '{')
10503 {
10504 input_line_pointer = check_VecOperations (input_line_pointer,
10505 NULL);
10506 if (input_line_pointer == NULL)
10507 return 0;
10508 }
10509
10510 if (*input_line_pointer)
10511 as_bad (_("junk `%s' after expression"), input_line_pointer);
10512
10513 input_line_pointer = save_input_line_pointer;
10514 if (gotfree_input_line)
10515 {
10516 free (gotfree_input_line);
10517
10518 if (exp->X_op == O_constant || exp->X_op == O_register)
10519 exp->X_op = O_illegal;
10520 }
10521
10522 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
10523 }
10524
10525 static int
10526 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10527 i386_operand_type types, const char *imm_start)
10528 {
10529 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
10530 {
10531 if (imm_start)
10532 as_bad (_("missing or invalid immediate expression `%s'"),
10533 imm_start);
10534 return 0;
10535 }
10536 else if (exp->X_op == O_constant)
10537 {
10538 /* Size it properly later. */
10539 i.types[this_operand].bitfield.imm64 = 1;
10540 /* If not 64bit, sign extend val. */
10541 if (flag_code != CODE_64BIT
10542 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
10543 exp->X_add_number
10544 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
10545 }
10546 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10547 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
10548 && exp_seg != absolute_section
10549 && exp_seg != text_section
10550 && exp_seg != data_section
10551 && exp_seg != bss_section
10552 && exp_seg != undefined_section
10553 && !bfd_is_com_section (exp_seg))
10554 {
10555 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10556 return 0;
10557 }
10558 #endif
10559 else if (!intel_syntax && exp_seg == reg_section)
10560 {
10561 if (imm_start)
10562 as_bad (_("illegal immediate register operand %s"), imm_start);
10563 return 0;
10564 }
10565 else
10566 {
10567 /* This is an address. The size of the address will be
10568 determined later, depending on destination register,
10569 suffix, or the default for the section. */
10570 i.types[this_operand].bitfield.imm8 = 1;
10571 i.types[this_operand].bitfield.imm16 = 1;
10572 i.types[this_operand].bitfield.imm32 = 1;
10573 i.types[this_operand].bitfield.imm32s = 1;
10574 i.types[this_operand].bitfield.imm64 = 1;
10575 i.types[this_operand] = operand_type_and (i.types[this_operand],
10576 types);
10577 }
10578
10579 return 1;
10580 }
10581
10582 static char *
10583 i386_scale (char *scale)
10584 {
10585 offsetT val;
10586 char *save = input_line_pointer;
10587
10588 input_line_pointer = scale;
10589 val = get_absolute_expression ();
10590
10591 switch (val)
10592 {
10593 case 1:
10594 i.log2_scale_factor = 0;
10595 break;
10596 case 2:
10597 i.log2_scale_factor = 1;
10598 break;
10599 case 4:
10600 i.log2_scale_factor = 2;
10601 break;
10602 case 8:
10603 i.log2_scale_factor = 3;
10604 break;
10605 default:
10606 {
10607 char sep = *input_line_pointer;
10608
10609 *input_line_pointer = '\0';
10610 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
10611 scale);
10612 *input_line_pointer = sep;
10613 input_line_pointer = save;
10614 return NULL;
10615 }
10616 }
10617 if (i.log2_scale_factor != 0 && i.index_reg == 0)
10618 {
10619 as_warn (_("scale factor of %d without an index register"),
10620 1 << i.log2_scale_factor);
10621 i.log2_scale_factor = 0;
10622 }
10623 scale = input_line_pointer;
10624 input_line_pointer = save;
10625 return scale;
10626 }
10627
10628 static int
10629 i386_displacement (char *disp_start, char *disp_end)
10630 {
10631 expressionS *exp;
10632 segT exp_seg = 0;
10633 char *save_input_line_pointer;
10634 char *gotfree_input_line;
10635 int override;
10636 i386_operand_type bigdisp, types = anydisp;
10637 int ret;
10638
10639 if (i.disp_operands == MAX_MEMORY_OPERANDS)
10640 {
10641 as_bad (_("at most %d displacement operands are allowed"),
10642 MAX_MEMORY_OPERANDS);
10643 return 0;
10644 }
10645
10646 operand_type_set (&bigdisp, 0);
10647 if (i.jumpabsolute
10648 || i.types[this_operand].bitfield.baseindex
10649 || (current_templates->start->opcode_modifier.jump != JUMP
10650 && current_templates->start->opcode_modifier.jump != JUMP_DWORD))
10651 {
10652 i386_addressing_mode ();
10653 override = (i.prefix[ADDR_PREFIX] != 0);
10654 if (flag_code == CODE_64BIT)
10655 {
10656 if (!override)
10657 {
10658 bigdisp.bitfield.disp32s = 1;
10659 bigdisp.bitfield.disp64 = 1;
10660 }
10661 else
10662 bigdisp.bitfield.disp32 = 1;
10663 }
10664 else if ((flag_code == CODE_16BIT) ^ override)
10665 bigdisp.bitfield.disp16 = 1;
10666 else
10667 bigdisp.bitfield.disp32 = 1;
10668 }
10669 else
10670 {
10671 /* For PC-relative branches, the width of the displacement may be
10672 dependent upon data size, but is never dependent upon address size.
10673 Also make sure to not unintentionally match against a non-PC-relative
10674 branch template. */
10675 static templates aux_templates;
10676 const insn_template *t = current_templates->start;
10677 bfd_boolean has_intel64 = FALSE;
10678
10679 aux_templates.start = t;
10680 while (++t < current_templates->end)
10681 {
10682 if (t->opcode_modifier.jump
10683 != current_templates->start->opcode_modifier.jump)
10684 break;
10685 if ((t->opcode_modifier.isa64 >= INTEL64))
10686 has_intel64 = TRUE;
10687 }
10688 if (t < current_templates->end)
10689 {
10690 aux_templates.end = t;
10691 current_templates = &aux_templates;
10692 }
10693
10694 override = (i.prefix[DATA_PREFIX] != 0);
10695 if (flag_code == CODE_64BIT)
10696 {
10697 if ((override || i.suffix == WORD_MNEM_SUFFIX)
10698 && (!intel64 || !has_intel64))
10699 bigdisp.bitfield.disp16 = 1;
10700 else
10701 bigdisp.bitfield.disp32s = 1;
10702 }
10703 else
10704 {
10705 if (!override)
10706 override = (i.suffix == (flag_code != CODE_16BIT
10707 ? WORD_MNEM_SUFFIX
10708 : LONG_MNEM_SUFFIX));
10709 bigdisp.bitfield.disp32 = 1;
10710 if ((flag_code == CODE_16BIT) ^ override)
10711 {
10712 bigdisp.bitfield.disp32 = 0;
10713 bigdisp.bitfield.disp16 = 1;
10714 }
10715 }
10716 }
10717 i.types[this_operand] = operand_type_or (i.types[this_operand],
10718 bigdisp);
10719
10720 exp = &disp_expressions[i.disp_operands];
10721 i.op[this_operand].disps = exp;
10722 i.disp_operands++;
10723 save_input_line_pointer = input_line_pointer;
10724 input_line_pointer = disp_start;
10725 END_STRING_AND_SAVE (disp_end);
10726
10727 #ifndef GCC_ASM_O_HACK
10728 #define GCC_ASM_O_HACK 0
10729 #endif
10730 #if GCC_ASM_O_HACK
10731 END_STRING_AND_SAVE (disp_end + 1);
10732 if (i.types[this_operand].bitfield.baseIndex
10733 && displacement_string_end[-1] == '+')
10734 {
10735 /* This hack is to avoid a warning when using the "o"
10736 constraint within gcc asm statements.
10737 For instance:
10738
10739 #define _set_tssldt_desc(n,addr,limit,type) \
10740 __asm__ __volatile__ ( \
10741 "movw %w2,%0\n\t" \
10742 "movw %w1,2+%0\n\t" \
10743 "rorl $16,%1\n\t" \
10744 "movb %b1,4+%0\n\t" \
10745 "movb %4,5+%0\n\t" \
10746 "movb $0,6+%0\n\t" \
10747 "movb %h1,7+%0\n\t" \
10748 "rorl $16,%1" \
10749 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
10750
10751 This works great except that the output assembler ends
10752 up looking a bit weird if it turns out that there is
10753 no offset. You end up producing code that looks like:
10754
10755 #APP
10756 movw $235,(%eax)
10757 movw %dx,2+(%eax)
10758 rorl $16,%edx
10759 movb %dl,4+(%eax)
10760 movb $137,5+(%eax)
10761 movb $0,6+(%eax)
10762 movb %dh,7+(%eax)
10763 rorl $16,%edx
10764 #NO_APP
10765
10766 So here we provide the missing zero. */
10767
10768 *displacement_string_end = '0';
10769 }
10770 #endif
10771 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
10772 if (gotfree_input_line)
10773 input_line_pointer = gotfree_input_line;
10774
10775 exp_seg = expression (exp);
10776
10777 SKIP_WHITESPACE ();
10778 if (*input_line_pointer)
10779 as_bad (_("junk `%s' after expression"), input_line_pointer);
10780 #if GCC_ASM_O_HACK
10781 RESTORE_END_STRING (disp_end + 1);
10782 #endif
10783 input_line_pointer = save_input_line_pointer;
10784 if (gotfree_input_line)
10785 {
10786 free (gotfree_input_line);
10787
10788 if (exp->X_op == O_constant || exp->X_op == O_register)
10789 exp->X_op = O_illegal;
10790 }
10791
10792 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
10793
10794 RESTORE_END_STRING (disp_end);
10795
10796 return ret;
10797 }
10798
10799 static int
10800 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
10801 i386_operand_type types, const char *disp_start)
10802 {
10803 i386_operand_type bigdisp;
10804 int ret = 1;
10805
10806 /* We do this to make sure that the section symbol is in
10807 the symbol table. We will ultimately change the relocation
10808 to be relative to the beginning of the section. */
10809 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
10810 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
10811 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10812 {
10813 if (exp->X_op != O_symbol)
10814 goto inv_disp;
10815
10816 if (S_IS_LOCAL (exp->X_add_symbol)
10817 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
10818 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
10819 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
10820 exp->X_op = O_subtract;
10821 exp->X_op_symbol = GOT_symbol;
10822 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
10823 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
10824 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
10825 i.reloc[this_operand] = BFD_RELOC_64;
10826 else
10827 i.reloc[this_operand] = BFD_RELOC_32;
10828 }
10829
10830 else if (exp->X_op == O_absent
10831 || exp->X_op == O_illegal
10832 || exp->X_op == O_big)
10833 {
10834 inv_disp:
10835 as_bad (_("missing or invalid displacement expression `%s'"),
10836 disp_start);
10837 ret = 0;
10838 }
10839
10840 else if (flag_code == CODE_64BIT
10841 && !i.prefix[ADDR_PREFIX]
10842 && exp->X_op == O_constant)
10843 {
10844 /* Since displacement is signed extended to 64bit, don't allow
10845 disp32 and turn off disp32s if they are out of range. */
10846 i.types[this_operand].bitfield.disp32 = 0;
10847 if (!fits_in_signed_long (exp->X_add_number))
10848 {
10849 i.types[this_operand].bitfield.disp32s = 0;
10850 if (i.types[this_operand].bitfield.baseindex)
10851 {
10852 as_bad (_("0x%lx out range of signed 32bit displacement"),
10853 (long) exp->X_add_number);
10854 ret = 0;
10855 }
10856 }
10857 }
10858
10859 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10860 else if (exp->X_op != O_constant
10861 && OUTPUT_FLAVOR == bfd_target_aout_flavour
10862 && exp_seg != absolute_section
10863 && exp_seg != text_section
10864 && exp_seg != data_section
10865 && exp_seg != bss_section
10866 && exp_seg != undefined_section
10867 && !bfd_is_com_section (exp_seg))
10868 {
10869 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
10870 ret = 0;
10871 }
10872 #endif
10873
10874 if (current_templates->start->opcode_modifier.jump == JUMP_BYTE
10875 /* Constants get taken care of by optimize_disp(). */
10876 && exp->X_op != O_constant)
10877 i.types[this_operand].bitfield.disp8 = 1;
10878
10879 /* Check if this is a displacement only operand. */
10880 bigdisp = i.types[this_operand];
10881 bigdisp.bitfield.disp8 = 0;
10882 bigdisp.bitfield.disp16 = 0;
10883 bigdisp.bitfield.disp32 = 0;
10884 bigdisp.bitfield.disp32s = 0;
10885 bigdisp.bitfield.disp64 = 0;
10886 if (operand_type_all_zero (&bigdisp))
10887 i.types[this_operand] = operand_type_and (i.types[this_operand],
10888 types);
10889
10890 return ret;
10891 }
10892
10893 /* Return the active addressing mode, taking address override and
10894 registers forming the address into consideration. Update the
10895 address override prefix if necessary. */
10896
10897 static enum flag_code
10898 i386_addressing_mode (void)
10899 {
10900 enum flag_code addr_mode;
10901
10902 if (i.prefix[ADDR_PREFIX])
10903 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
10904 else if (flag_code == CODE_16BIT
10905 && current_templates->start->cpu_flags.bitfield.cpumpx
10906 /* Avoid replacing the "16-bit addressing not allowed" diagnostic
10907 from md_assemble() by "is not a valid base/index expression"
10908 when there is a base and/or index. */
10909 && !i.types[this_operand].bitfield.baseindex)
10910 {
10911 /* MPX insn memory operands with neither base nor index must be forced
10912 to use 32-bit addressing in 16-bit mode. */
10913 addr_mode = CODE_32BIT;
10914 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10915 ++i.prefixes;
10916 gas_assert (!i.types[this_operand].bitfield.disp16);
10917 gas_assert (!i.types[this_operand].bitfield.disp32);
10918 }
10919 else
10920 {
10921 addr_mode = flag_code;
10922
10923 #if INFER_ADDR_PREFIX
10924 if (i.mem_operands == 0)
10925 {
10926 /* Infer address prefix from the first memory operand. */
10927 const reg_entry *addr_reg = i.base_reg;
10928
10929 if (addr_reg == NULL)
10930 addr_reg = i.index_reg;
10931
10932 if (addr_reg)
10933 {
10934 if (addr_reg->reg_type.bitfield.dword)
10935 addr_mode = CODE_32BIT;
10936 else if (flag_code != CODE_64BIT
10937 && addr_reg->reg_type.bitfield.word)
10938 addr_mode = CODE_16BIT;
10939
10940 if (addr_mode != flag_code)
10941 {
10942 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
10943 i.prefixes += 1;
10944 /* Change the size of any displacement too. At most one
10945 of Disp16 or Disp32 is set.
10946 FIXME. There doesn't seem to be any real need for
10947 separate Disp16 and Disp32 flags. The same goes for
10948 Imm16 and Imm32. Removing them would probably clean
10949 up the code quite a lot. */
10950 if (flag_code != CODE_64BIT
10951 && (i.types[this_operand].bitfield.disp16
10952 || i.types[this_operand].bitfield.disp32))
10953 i.types[this_operand]
10954 = operand_type_xor (i.types[this_operand], disp16_32);
10955 }
10956 }
10957 }
10958 #endif
10959 }
10960
10961 return addr_mode;
10962 }
10963
10964 /* Make sure the memory operand we've been dealt is valid.
10965 Return 1 on success, 0 on a failure. */
10966
10967 static int
10968 i386_index_check (const char *operand_string)
10969 {
10970 const char *kind = "base/index";
10971 enum flag_code addr_mode = i386_addressing_mode ();
10972
10973 if (current_templates->start->opcode_modifier.isstring
10974 && !current_templates->start->cpu_flags.bitfield.cpupadlock
10975 && (current_templates->end[-1].opcode_modifier.isstring
10976 || i.mem_operands))
10977 {
10978 /* Memory operands of string insns are special in that they only allow
10979 a single register (rDI, rSI, or rBX) as their memory address. */
10980 const reg_entry *expected_reg;
10981 static const char *di_si[][2] =
10982 {
10983 { "esi", "edi" },
10984 { "si", "di" },
10985 { "rsi", "rdi" }
10986 };
10987 static const char *bx[] = { "ebx", "bx", "rbx" };
10988
10989 kind = "string address";
10990
10991 if (current_templates->start->opcode_modifier.repprefixok)
10992 {
10993 int es_op = current_templates->end[-1].opcode_modifier.isstring
10994 - IS_STRING_ES_OP0;
10995 int op = 0;
10996
10997 if (!current_templates->end[-1].operand_types[0].bitfield.baseindex
10998 || ((!i.mem_operands != !intel_syntax)
10999 && current_templates->end[-1].operand_types[1]
11000 .bitfield.baseindex))
11001 op = 1;
11002 expected_reg
11003 = (const reg_entry *) str_hash_find (reg_hash,
11004 di_si[addr_mode][op == es_op]);
11005 }
11006 else
11007 expected_reg
11008 = (const reg_entry *)str_hash_find (reg_hash, bx[addr_mode]);
11009
11010 if (i.base_reg != expected_reg
11011 || i.index_reg
11012 || operand_type_check (i.types[this_operand], disp))
11013 {
11014 /* The second memory operand must have the same size as
11015 the first one. */
11016 if (i.mem_operands
11017 && i.base_reg
11018 && !((addr_mode == CODE_64BIT
11019 && i.base_reg->reg_type.bitfield.qword)
11020 || (addr_mode == CODE_32BIT
11021 ? i.base_reg->reg_type.bitfield.dword
11022 : i.base_reg->reg_type.bitfield.word)))
11023 goto bad_address;
11024
11025 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
11026 operand_string,
11027 intel_syntax ? '[' : '(',
11028 register_prefix,
11029 expected_reg->reg_name,
11030 intel_syntax ? ']' : ')');
11031 return 1;
11032 }
11033 else
11034 return 1;
11035
11036 bad_address:
11037 as_bad (_("`%s' is not a valid %s expression"),
11038 operand_string, kind);
11039 return 0;
11040 }
11041 else
11042 {
11043 if (addr_mode != CODE_16BIT)
11044 {
11045 /* 32-bit/64-bit checks. */
11046 if (i.disp_encoding == disp_encoding_16bit)
11047 {
11048 bad_disp:
11049 as_bad (_("invalid `%s' prefix"),
11050 addr_mode == CODE_16BIT ? "{disp32}" : "{disp16}");
11051 return 0;
11052 }
11053
11054 if ((i.base_reg
11055 && ((addr_mode == CODE_64BIT
11056 ? !i.base_reg->reg_type.bitfield.qword
11057 : !i.base_reg->reg_type.bitfield.dword)
11058 || (i.index_reg && i.base_reg->reg_num == RegIP)
11059 || i.base_reg->reg_num == RegIZ))
11060 || (i.index_reg
11061 && !i.index_reg->reg_type.bitfield.xmmword
11062 && !i.index_reg->reg_type.bitfield.ymmword
11063 && !i.index_reg->reg_type.bitfield.zmmword
11064 && ((addr_mode == CODE_64BIT
11065 ? !i.index_reg->reg_type.bitfield.qword
11066 : !i.index_reg->reg_type.bitfield.dword)
11067 || !i.index_reg->reg_type.bitfield.baseindex)))
11068 goto bad_address;
11069
11070 /* bndmk, bndldx, bndstx and mandatory non-vector SIB have special restrictions. */
11071 if (current_templates->start->base_opcode == 0xf30f1b
11072 || (current_templates->start->base_opcode & ~1) == 0x0f1a
11073 || current_templates->start->opcode_modifier.sib == SIBMEM)
11074 {
11075 /* They cannot use RIP-relative addressing. */
11076 if (i.base_reg && i.base_reg->reg_num == RegIP)
11077 {
11078 as_bad (_("`%s' cannot be used here"), operand_string);
11079 return 0;
11080 }
11081
11082 /* bndldx and bndstx ignore their scale factor. */
11083 if ((current_templates->start->base_opcode & ~1) == 0x0f1a
11084 && i.log2_scale_factor)
11085 as_warn (_("register scaling is being ignored here"));
11086 }
11087 }
11088 else
11089 {
11090 /* 16-bit checks. */
11091 if (i.disp_encoding == disp_encoding_32bit)
11092 goto bad_disp;
11093
11094 if ((i.base_reg
11095 && (!i.base_reg->reg_type.bitfield.word
11096 || !i.base_reg->reg_type.bitfield.baseindex))
11097 || (i.index_reg
11098 && (!i.index_reg->reg_type.bitfield.word
11099 || !i.index_reg->reg_type.bitfield.baseindex
11100 || !(i.base_reg
11101 && i.base_reg->reg_num < 6
11102 && i.index_reg->reg_num >= 6
11103 && i.log2_scale_factor == 0))))
11104 goto bad_address;
11105 }
11106 }
11107 return 1;
11108 }
11109
11110 /* Handle vector immediates. */
11111
11112 static int
11113 RC_SAE_immediate (const char *imm_start)
11114 {
11115 unsigned int match_found, j;
11116 const char *pstr = imm_start;
11117 expressionS *exp;
11118
11119 if (*pstr != '{')
11120 return 0;
11121
11122 pstr++;
11123 match_found = 0;
11124 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
11125 {
11126 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
11127 {
11128 if (!i.rounding)
11129 {
11130 rc_op.type = RC_NamesTable[j].type;
11131 rc_op.operand = this_operand;
11132 i.rounding = &rc_op;
11133 }
11134 else
11135 {
11136 as_bad (_("duplicated `%s'"), imm_start);
11137 return 0;
11138 }
11139 pstr += RC_NamesTable[j].len;
11140 match_found = 1;
11141 break;
11142 }
11143 }
11144 if (!match_found)
11145 return 0;
11146
11147 if (*pstr++ != '}')
11148 {
11149 as_bad (_("Missing '}': '%s'"), imm_start);
11150 return 0;
11151 }
11152 /* RC/SAE immediate string should contain nothing more. */;
11153 if (*pstr != 0)
11154 {
11155 as_bad (_("Junk after '}': '%s'"), imm_start);
11156 return 0;
11157 }
11158
11159 exp = &im_expressions[i.imm_operands++];
11160 i.op[this_operand].imms = exp;
11161
11162 exp->X_op = O_constant;
11163 exp->X_add_number = 0;
11164 exp->X_add_symbol = (symbolS *) 0;
11165 exp->X_op_symbol = (symbolS *) 0;
11166
11167 i.types[this_operand].bitfield.imm8 = 1;
11168 return 1;
11169 }
11170
11171 /* Only string instructions can have a second memory operand, so
11172 reduce current_templates to just those if it contains any. */
11173 static int
11174 maybe_adjust_templates (void)
11175 {
11176 const insn_template *t;
11177
11178 gas_assert (i.mem_operands == 1);
11179
11180 for (t = current_templates->start; t < current_templates->end; ++t)
11181 if (t->opcode_modifier.isstring)
11182 break;
11183
11184 if (t < current_templates->end)
11185 {
11186 static templates aux_templates;
11187 bfd_boolean recheck;
11188
11189 aux_templates.start = t;
11190 for (; t < current_templates->end; ++t)
11191 if (!t->opcode_modifier.isstring)
11192 break;
11193 aux_templates.end = t;
11194
11195 /* Determine whether to re-check the first memory operand. */
11196 recheck = (aux_templates.start != current_templates->start
11197 || t != current_templates->end);
11198
11199 current_templates = &aux_templates;
11200
11201 if (recheck)
11202 {
11203 i.mem_operands = 0;
11204 if (i.memop1_string != NULL
11205 && i386_index_check (i.memop1_string) == 0)
11206 return 0;
11207 i.mem_operands = 1;
11208 }
11209 }
11210
11211 return 1;
11212 }
11213
11214 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
11215 on error. */
11216
11217 static int
11218 i386_att_operand (char *operand_string)
11219 {
11220 const reg_entry *r;
11221 char *end_op;
11222 char *op_string = operand_string;
11223
11224 if (is_space_char (*op_string))
11225 ++op_string;
11226
11227 /* We check for an absolute prefix (differentiating,
11228 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
11229 if (*op_string == ABSOLUTE_PREFIX)
11230 {
11231 ++op_string;
11232 if (is_space_char (*op_string))
11233 ++op_string;
11234 i.jumpabsolute = TRUE;
11235 }
11236
11237 /* Check if operand is a register. */
11238 if ((r = parse_register (op_string, &end_op)) != NULL)
11239 {
11240 i386_operand_type temp;
11241
11242 if (r == &bad_reg)
11243 return 0;
11244
11245 /* Check for a segment override by searching for ':' after a
11246 segment register. */
11247 op_string = end_op;
11248 if (is_space_char (*op_string))
11249 ++op_string;
11250 if (*op_string == ':' && r->reg_type.bitfield.class == SReg)
11251 {
11252 switch (r->reg_num)
11253 {
11254 case 0:
11255 i.seg[i.mem_operands] = &es;
11256 break;
11257 case 1:
11258 i.seg[i.mem_operands] = &cs;
11259 break;
11260 case 2:
11261 i.seg[i.mem_operands] = &ss;
11262 break;
11263 case 3:
11264 i.seg[i.mem_operands] = &ds;
11265 break;
11266 case 4:
11267 i.seg[i.mem_operands] = &fs;
11268 break;
11269 case 5:
11270 i.seg[i.mem_operands] = &gs;
11271 break;
11272 }
11273
11274 /* Skip the ':' and whitespace. */
11275 ++op_string;
11276 if (is_space_char (*op_string))
11277 ++op_string;
11278
11279 if (!is_digit_char (*op_string)
11280 && !is_identifier_char (*op_string)
11281 && *op_string != '('
11282 && *op_string != ABSOLUTE_PREFIX)
11283 {
11284 as_bad (_("bad memory operand `%s'"), op_string);
11285 return 0;
11286 }
11287 /* Handle case of %es:*foo. */
11288 if (*op_string == ABSOLUTE_PREFIX)
11289 {
11290 ++op_string;
11291 if (is_space_char (*op_string))
11292 ++op_string;
11293 i.jumpabsolute = TRUE;
11294 }
11295 goto do_memory_reference;
11296 }
11297
11298 /* Handle vector operations. */
11299 if (*op_string == '{')
11300 {
11301 op_string = check_VecOperations (op_string, NULL);
11302 if (op_string == NULL)
11303 return 0;
11304 }
11305
11306 if (*op_string)
11307 {
11308 as_bad (_("junk `%s' after register"), op_string);
11309 return 0;
11310 }
11311 temp = r->reg_type;
11312 temp.bitfield.baseindex = 0;
11313 i.types[this_operand] = operand_type_or (i.types[this_operand],
11314 temp);
11315 i.types[this_operand].bitfield.unspecified = 0;
11316 i.op[this_operand].regs = r;
11317 i.reg_operands++;
11318 }
11319 else if (*op_string == REGISTER_PREFIX)
11320 {
11321 as_bad (_("bad register name `%s'"), op_string);
11322 return 0;
11323 }
11324 else if (*op_string == IMMEDIATE_PREFIX)
11325 {
11326 ++op_string;
11327 if (i.jumpabsolute)
11328 {
11329 as_bad (_("immediate operand illegal with absolute jump"));
11330 return 0;
11331 }
11332 if (!i386_immediate (op_string))
11333 return 0;
11334 }
11335 else if (RC_SAE_immediate (operand_string))
11336 {
11337 /* If it is a RC or SAE immediate, do nothing. */
11338 ;
11339 }
11340 else if (is_digit_char (*op_string)
11341 || is_identifier_char (*op_string)
11342 || *op_string == '"'
11343 || *op_string == '(')
11344 {
11345 /* This is a memory reference of some sort. */
11346 char *base_string;
11347
11348 /* Start and end of displacement string expression (if found). */
11349 char *displacement_string_start;
11350 char *displacement_string_end;
11351 char *vop_start;
11352
11353 do_memory_reference:
11354 if (i.mem_operands == 1 && !maybe_adjust_templates ())
11355 return 0;
11356 if ((i.mem_operands == 1
11357 && !current_templates->start->opcode_modifier.isstring)
11358 || i.mem_operands == 2)
11359 {
11360 as_bad (_("too many memory references for `%s'"),
11361 current_templates->start->name);
11362 return 0;
11363 }
11364
11365 /* Check for base index form. We detect the base index form by
11366 looking for an ')' at the end of the operand, searching
11367 for the '(' matching it, and finding a REGISTER_PREFIX or ','
11368 after the '('. */
11369 base_string = op_string + strlen (op_string);
11370
11371 /* Handle vector operations. */
11372 vop_start = strchr (op_string, '{');
11373 if (vop_start && vop_start < base_string)
11374 {
11375 if (check_VecOperations (vop_start, base_string) == NULL)
11376 return 0;
11377 base_string = vop_start;
11378 }
11379
11380 --base_string;
11381 if (is_space_char (*base_string))
11382 --base_string;
11383
11384 /* If we only have a displacement, set-up for it to be parsed later. */
11385 displacement_string_start = op_string;
11386 displacement_string_end = base_string + 1;
11387
11388 if (*base_string == ')')
11389 {
11390 char *temp_string;
11391 unsigned int parens_balanced = 1;
11392 /* We've already checked that the number of left & right ()'s are
11393 equal, so this loop will not be infinite. */
11394 do
11395 {
11396 base_string--;
11397 if (*base_string == ')')
11398 parens_balanced++;
11399 if (*base_string == '(')
11400 parens_balanced--;
11401 }
11402 while (parens_balanced);
11403
11404 temp_string = base_string;
11405
11406 /* Skip past '(' and whitespace. */
11407 ++base_string;
11408 if (is_space_char (*base_string))
11409 ++base_string;
11410
11411 if (*base_string == ','
11412 || ((i.base_reg = parse_register (base_string, &end_op))
11413 != NULL))
11414 {
11415 displacement_string_end = temp_string;
11416
11417 i.types[this_operand].bitfield.baseindex = 1;
11418
11419 if (i.base_reg)
11420 {
11421 if (i.base_reg == &bad_reg)
11422 return 0;
11423 base_string = end_op;
11424 if (is_space_char (*base_string))
11425 ++base_string;
11426 }
11427
11428 /* There may be an index reg or scale factor here. */
11429 if (*base_string == ',')
11430 {
11431 ++base_string;
11432 if (is_space_char (*base_string))
11433 ++base_string;
11434
11435 if ((i.index_reg = parse_register (base_string, &end_op))
11436 != NULL)
11437 {
11438 if (i.index_reg == &bad_reg)
11439 return 0;
11440 base_string = end_op;
11441 if (is_space_char (*base_string))
11442 ++base_string;
11443 if (*base_string == ',')
11444 {
11445 ++base_string;
11446 if (is_space_char (*base_string))
11447 ++base_string;
11448 }
11449 else if (*base_string != ')')
11450 {
11451 as_bad (_("expecting `,' or `)' "
11452 "after index register in `%s'"),
11453 operand_string);
11454 return 0;
11455 }
11456 }
11457 else if (*base_string == REGISTER_PREFIX)
11458 {
11459 end_op = strchr (base_string, ',');
11460 if (end_op)
11461 *end_op = '\0';
11462 as_bad (_("bad register name `%s'"), base_string);
11463 return 0;
11464 }
11465
11466 /* Check for scale factor. */
11467 if (*base_string != ')')
11468 {
11469 char *end_scale = i386_scale (base_string);
11470
11471 if (!end_scale)
11472 return 0;
11473
11474 base_string = end_scale;
11475 if (is_space_char (*base_string))
11476 ++base_string;
11477 if (*base_string != ')')
11478 {
11479 as_bad (_("expecting `)' "
11480 "after scale factor in `%s'"),
11481 operand_string);
11482 return 0;
11483 }
11484 }
11485 else if (!i.index_reg)
11486 {
11487 as_bad (_("expecting index register or scale factor "
11488 "after `,'; got '%c'"),
11489 *base_string);
11490 return 0;
11491 }
11492 }
11493 else if (*base_string != ')')
11494 {
11495 as_bad (_("expecting `,' or `)' "
11496 "after base register in `%s'"),
11497 operand_string);
11498 return 0;
11499 }
11500 }
11501 else if (*base_string == REGISTER_PREFIX)
11502 {
11503 end_op = strchr (base_string, ',');
11504 if (end_op)
11505 *end_op = '\0';
11506 as_bad (_("bad register name `%s'"), base_string);
11507 return 0;
11508 }
11509 }
11510
11511 /* If there's an expression beginning the operand, parse it,
11512 assuming displacement_string_start and
11513 displacement_string_end are meaningful. */
11514 if (displacement_string_start != displacement_string_end)
11515 {
11516 if (!i386_displacement (displacement_string_start,
11517 displacement_string_end))
11518 return 0;
11519 }
11520
11521 /* Special case for (%dx) while doing input/output op. */
11522 if (i.base_reg
11523 && i.base_reg->reg_type.bitfield.instance == RegD
11524 && i.base_reg->reg_type.bitfield.word
11525 && i.index_reg == 0
11526 && i.log2_scale_factor == 0
11527 && i.seg[i.mem_operands] == 0
11528 && !operand_type_check (i.types[this_operand], disp))
11529 {
11530 i.types[this_operand] = i.base_reg->reg_type;
11531 return 1;
11532 }
11533
11534 if (i386_index_check (operand_string) == 0)
11535 return 0;
11536 i.flags[this_operand] |= Operand_Mem;
11537 if (i.mem_operands == 0)
11538 i.memop1_string = xstrdup (operand_string);
11539 i.mem_operands++;
11540 }
11541 else
11542 {
11543 /* It's not a memory operand; argh! */
11544 as_bad (_("invalid char %s beginning operand %d `%s'"),
11545 output_invalid (*op_string),
11546 this_operand + 1,
11547 op_string);
11548 return 0;
11549 }
11550 return 1; /* Normal return. */
11551 }
11552 \f
11553 /* Calculate the maximum variable size (i.e., excluding fr_fix)
11554 that an rs_machine_dependent frag may reach. */
11555
11556 unsigned int
11557 i386_frag_max_var (fragS *frag)
11558 {
11559 /* The only relaxable frags are for jumps.
11560 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
11561 gas_assert (frag->fr_type == rs_machine_dependent);
11562 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
11563 }
11564
11565 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11566 static int
11567 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
11568 {
11569 /* STT_GNU_IFUNC symbol must go through PLT. */
11570 if ((symbol_get_bfdsym (fr_symbol)->flags
11571 & BSF_GNU_INDIRECT_FUNCTION) != 0)
11572 return 0;
11573
11574 if (!S_IS_EXTERNAL (fr_symbol))
11575 /* Symbol may be weak or local. */
11576 return !S_IS_WEAK (fr_symbol);
11577
11578 /* Global symbols with non-default visibility can't be preempted. */
11579 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
11580 return 1;
11581
11582 if (fr_var != NO_RELOC)
11583 switch ((enum bfd_reloc_code_real) fr_var)
11584 {
11585 case BFD_RELOC_386_PLT32:
11586 case BFD_RELOC_X86_64_PLT32:
11587 /* Symbol with PLT relocation may be preempted. */
11588 return 0;
11589 default:
11590 abort ();
11591 }
11592
11593 /* Global symbols with default visibility in a shared library may be
11594 preempted by another definition. */
11595 return !shared;
11596 }
11597 #endif
11598
11599 /* Table 3-2. Macro-Fusible Instructions in Haswell Microarchitecture
11600 Note also work for Skylake and Cascadelake.
11601 ---------------------------------------------------------------------
11602 | JCC | ADD/SUB/CMP | INC/DEC | TEST/AND |
11603 | ------ | ----------- | ------- | -------- |
11604 | Jo | N | N | Y |
11605 | Jno | N | N | Y |
11606 | Jc/Jb | Y | N | Y |
11607 | Jae/Jnb | Y | N | Y |
11608 | Je/Jz | Y | Y | Y |
11609 | Jne/Jnz | Y | Y | Y |
11610 | Jna/Jbe | Y | N | Y |
11611 | Ja/Jnbe | Y | N | Y |
11612 | Js | N | N | Y |
11613 | Jns | N | N | Y |
11614 | Jp/Jpe | N | N | Y |
11615 | Jnp/Jpo | N | N | Y |
11616 | Jl/Jnge | Y | Y | Y |
11617 | Jge/Jnl | Y | Y | Y |
11618 | Jle/Jng | Y | Y | Y |
11619 | Jg/Jnle | Y | Y | Y |
11620 --------------------------------------------------------------------- */
11621 static int
11622 i386_macro_fusible_p (enum mf_cmp_kind mf_cmp, enum mf_jcc_kind mf_jcc)
11623 {
11624 if (mf_cmp == mf_cmp_alu_cmp)
11625 return ((mf_jcc >= mf_jcc_jc && mf_jcc <= mf_jcc_jna)
11626 || mf_jcc == mf_jcc_jl || mf_jcc == mf_jcc_jle);
11627 if (mf_cmp == mf_cmp_incdec)
11628 return (mf_jcc == mf_jcc_je || mf_jcc == mf_jcc_jl
11629 || mf_jcc == mf_jcc_jle);
11630 if (mf_cmp == mf_cmp_test_and)
11631 return 1;
11632 return 0;
11633 }
11634
11635 /* Return the next non-empty frag. */
11636
11637 static fragS *
11638 i386_next_non_empty_frag (fragS *fragP)
11639 {
11640 /* There may be a frag with a ".fill 0" when there is no room in
11641 the current frag for frag_grow in output_insn. */
11642 for (fragP = fragP->fr_next;
11643 (fragP != NULL
11644 && fragP->fr_type == rs_fill
11645 && fragP->fr_fix == 0);
11646 fragP = fragP->fr_next)
11647 ;
11648 return fragP;
11649 }
11650
11651 /* Return the next jcc frag after BRANCH_PADDING. */
11652
11653 static fragS *
11654 i386_next_fusible_jcc_frag (fragS *maybe_cmp_fragP, fragS *pad_fragP)
11655 {
11656 fragS *branch_fragP;
11657 if (!pad_fragP)
11658 return NULL;
11659
11660 if (pad_fragP->fr_type == rs_machine_dependent
11661 && (TYPE_FROM_RELAX_STATE (pad_fragP->fr_subtype)
11662 == BRANCH_PADDING))
11663 {
11664 branch_fragP = i386_next_non_empty_frag (pad_fragP);
11665 if (branch_fragP->fr_type != rs_machine_dependent)
11666 return NULL;
11667 if (TYPE_FROM_RELAX_STATE (branch_fragP->fr_subtype) == COND_JUMP
11668 && i386_macro_fusible_p (maybe_cmp_fragP->tc_frag_data.mf_type,
11669 pad_fragP->tc_frag_data.mf_type))
11670 return branch_fragP;
11671 }
11672
11673 return NULL;
11674 }
11675
11676 /* Classify BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags. */
11677
11678 static void
11679 i386_classify_machine_dependent_frag (fragS *fragP)
11680 {
11681 fragS *cmp_fragP;
11682 fragS *pad_fragP;
11683 fragS *branch_fragP;
11684 fragS *next_fragP;
11685 unsigned int max_prefix_length;
11686
11687 if (fragP->tc_frag_data.classified)
11688 return;
11689
11690 /* First scan for BRANCH_PADDING and FUSED_JCC_PADDING. Convert
11691 FUSED_JCC_PADDING and merge BRANCH_PADDING. */
11692 for (next_fragP = fragP;
11693 next_fragP != NULL;
11694 next_fragP = next_fragP->fr_next)
11695 {
11696 next_fragP->tc_frag_data.classified = 1;
11697 if (next_fragP->fr_type == rs_machine_dependent)
11698 switch (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype))
11699 {
11700 case BRANCH_PADDING:
11701 /* The BRANCH_PADDING frag must be followed by a branch
11702 frag. */
11703 branch_fragP = i386_next_non_empty_frag (next_fragP);
11704 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11705 break;
11706 case FUSED_JCC_PADDING:
11707 /* Check if this is a fused jcc:
11708 FUSED_JCC_PADDING
11709 CMP like instruction
11710 BRANCH_PADDING
11711 COND_JUMP
11712 */
11713 cmp_fragP = i386_next_non_empty_frag (next_fragP);
11714 pad_fragP = i386_next_non_empty_frag (cmp_fragP);
11715 branch_fragP = i386_next_fusible_jcc_frag (next_fragP, pad_fragP);
11716 if (branch_fragP)
11717 {
11718 /* The BRANCH_PADDING frag is merged with the
11719 FUSED_JCC_PADDING frag. */
11720 next_fragP->tc_frag_data.u.branch_fragP = branch_fragP;
11721 /* CMP like instruction size. */
11722 next_fragP->tc_frag_data.cmp_size = cmp_fragP->fr_fix;
11723 frag_wane (pad_fragP);
11724 /* Skip to branch_fragP. */
11725 next_fragP = branch_fragP;
11726 }
11727 else if (next_fragP->tc_frag_data.max_prefix_length)
11728 {
11729 /* Turn FUSED_JCC_PADDING into BRANCH_PREFIX if it isn't
11730 a fused jcc. */
11731 next_fragP->fr_subtype
11732 = ENCODE_RELAX_STATE (BRANCH_PREFIX, 0);
11733 next_fragP->tc_frag_data.max_bytes
11734 = next_fragP->tc_frag_data.max_prefix_length;
11735 /* This will be updated in the BRANCH_PREFIX scan. */
11736 next_fragP->tc_frag_data.max_prefix_length = 0;
11737 }
11738 else
11739 frag_wane (next_fragP);
11740 break;
11741 }
11742 }
11743
11744 /* Stop if there is no BRANCH_PREFIX. */
11745 if (!align_branch_prefix_size)
11746 return;
11747
11748 /* Scan for BRANCH_PREFIX. */
11749 for (; fragP != NULL; fragP = fragP->fr_next)
11750 {
11751 if (fragP->fr_type != rs_machine_dependent
11752 || (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
11753 != BRANCH_PREFIX))
11754 continue;
11755
11756 /* Count all BRANCH_PREFIX frags before BRANCH_PADDING and
11757 COND_JUMP_PREFIX. */
11758 max_prefix_length = 0;
11759 for (next_fragP = fragP;
11760 next_fragP != NULL;
11761 next_fragP = next_fragP->fr_next)
11762 {
11763 if (next_fragP->fr_type == rs_fill)
11764 /* Skip rs_fill frags. */
11765 continue;
11766 else if (next_fragP->fr_type != rs_machine_dependent)
11767 /* Stop for all other frags. */
11768 break;
11769
11770 /* rs_machine_dependent frags. */
11771 if (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11772 == BRANCH_PREFIX)
11773 {
11774 /* Count BRANCH_PREFIX frags. */
11775 if (max_prefix_length >= MAX_FUSED_JCC_PADDING_SIZE)
11776 {
11777 max_prefix_length = MAX_FUSED_JCC_PADDING_SIZE;
11778 frag_wane (next_fragP);
11779 }
11780 else
11781 max_prefix_length
11782 += next_fragP->tc_frag_data.max_bytes;
11783 }
11784 else if ((TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11785 == BRANCH_PADDING)
11786 || (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11787 == FUSED_JCC_PADDING))
11788 {
11789 /* Stop at BRANCH_PADDING and FUSED_JCC_PADDING. */
11790 fragP->tc_frag_data.u.padding_fragP = next_fragP;
11791 break;
11792 }
11793 else
11794 /* Stop for other rs_machine_dependent frags. */
11795 break;
11796 }
11797
11798 fragP->tc_frag_data.max_prefix_length = max_prefix_length;
11799
11800 /* Skip to the next frag. */
11801 fragP = next_fragP;
11802 }
11803 }
11804
11805 /* Compute padding size for
11806
11807 FUSED_JCC_PADDING
11808 CMP like instruction
11809 BRANCH_PADDING
11810 COND_JUMP/UNCOND_JUMP
11811
11812 or
11813
11814 BRANCH_PADDING
11815 COND_JUMP/UNCOND_JUMP
11816 */
11817
11818 static int
11819 i386_branch_padding_size (fragS *fragP, offsetT address)
11820 {
11821 unsigned int offset, size, padding_size;
11822 fragS *branch_fragP = fragP->tc_frag_data.u.branch_fragP;
11823
11824 /* The start address of the BRANCH_PADDING or FUSED_JCC_PADDING frag. */
11825 if (!address)
11826 address = fragP->fr_address;
11827 address += fragP->fr_fix;
11828
11829 /* CMP like instrunction size. */
11830 size = fragP->tc_frag_data.cmp_size;
11831
11832 /* The base size of the branch frag. */
11833 size += branch_fragP->fr_fix;
11834
11835 /* Add opcode and displacement bytes for the rs_machine_dependent
11836 branch frag. */
11837 if (branch_fragP->fr_type == rs_machine_dependent)
11838 size += md_relax_table[branch_fragP->fr_subtype].rlx_length;
11839
11840 /* Check if branch is within boundary and doesn't end at the last
11841 byte. */
11842 offset = address & ((1U << align_branch_power) - 1);
11843 if ((offset + size) >= (1U << align_branch_power))
11844 /* Padding needed to avoid crossing boundary. */
11845 padding_size = (1U << align_branch_power) - offset;
11846 else
11847 /* No padding needed. */
11848 padding_size = 0;
11849
11850 /* The return value may be saved in tc_frag_data.length which is
11851 unsigned byte. */
11852 if (!fits_in_unsigned_byte (padding_size))
11853 abort ();
11854
11855 return padding_size;
11856 }
11857
11858 /* i386_generic_table_relax_frag()
11859
11860 Handle BRANCH_PADDING, BRANCH_PREFIX and FUSED_JCC_PADDING frags to
11861 grow/shrink padding to align branch frags. Hand others to
11862 relax_frag(). */
11863
11864 long
11865 i386_generic_table_relax_frag (segT segment, fragS *fragP, long stretch)
11866 {
11867 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
11868 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
11869 {
11870 long padding_size = i386_branch_padding_size (fragP, 0);
11871 long grow = padding_size - fragP->tc_frag_data.length;
11872
11873 /* When the BRANCH_PREFIX frag is used, the computed address
11874 must match the actual address and there should be no padding. */
11875 if (fragP->tc_frag_data.padding_address
11876 && (fragP->tc_frag_data.padding_address != fragP->fr_address
11877 || padding_size))
11878 abort ();
11879
11880 /* Update the padding size. */
11881 if (grow)
11882 fragP->tc_frag_data.length = padding_size;
11883
11884 return grow;
11885 }
11886 else if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
11887 {
11888 fragS *padding_fragP, *next_fragP;
11889 long padding_size, left_size, last_size;
11890
11891 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
11892 if (!padding_fragP)
11893 /* Use the padding set by the leading BRANCH_PREFIX frag. */
11894 return (fragP->tc_frag_data.length
11895 - fragP->tc_frag_data.last_length);
11896
11897 /* Compute the relative address of the padding frag in the very
11898 first time where the BRANCH_PREFIX frag sizes are zero. */
11899 if (!fragP->tc_frag_data.padding_address)
11900 fragP->tc_frag_data.padding_address
11901 = padding_fragP->fr_address - (fragP->fr_address - stretch);
11902
11903 /* First update the last length from the previous interation. */
11904 left_size = fragP->tc_frag_data.prefix_length;
11905 for (next_fragP = fragP;
11906 next_fragP != padding_fragP;
11907 next_fragP = next_fragP->fr_next)
11908 if (next_fragP->fr_type == rs_machine_dependent
11909 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11910 == BRANCH_PREFIX))
11911 {
11912 if (left_size)
11913 {
11914 int max = next_fragP->tc_frag_data.max_bytes;
11915 if (max)
11916 {
11917 int size;
11918 if (max > left_size)
11919 size = left_size;
11920 else
11921 size = max;
11922 left_size -= size;
11923 next_fragP->tc_frag_data.last_length = size;
11924 }
11925 }
11926 else
11927 next_fragP->tc_frag_data.last_length = 0;
11928 }
11929
11930 /* Check the padding size for the padding frag. */
11931 padding_size = i386_branch_padding_size
11932 (padding_fragP, (fragP->fr_address
11933 + fragP->tc_frag_data.padding_address));
11934
11935 last_size = fragP->tc_frag_data.prefix_length;
11936 /* Check if there is change from the last interation. */
11937 if (padding_size == last_size)
11938 {
11939 /* Update the expected address of the padding frag. */
11940 padding_fragP->tc_frag_data.padding_address
11941 = (fragP->fr_address + padding_size
11942 + fragP->tc_frag_data.padding_address);
11943 return 0;
11944 }
11945
11946 if (padding_size > fragP->tc_frag_data.max_prefix_length)
11947 {
11948 /* No padding if there is no sufficient room. Clear the
11949 expected address of the padding frag. */
11950 padding_fragP->tc_frag_data.padding_address = 0;
11951 padding_size = 0;
11952 }
11953 else
11954 /* Store the expected address of the padding frag. */
11955 padding_fragP->tc_frag_data.padding_address
11956 = (fragP->fr_address + padding_size
11957 + fragP->tc_frag_data.padding_address);
11958
11959 fragP->tc_frag_data.prefix_length = padding_size;
11960
11961 /* Update the length for the current interation. */
11962 left_size = padding_size;
11963 for (next_fragP = fragP;
11964 next_fragP != padding_fragP;
11965 next_fragP = next_fragP->fr_next)
11966 if (next_fragP->fr_type == rs_machine_dependent
11967 && (TYPE_FROM_RELAX_STATE (next_fragP->fr_subtype)
11968 == BRANCH_PREFIX))
11969 {
11970 if (left_size)
11971 {
11972 int max = next_fragP->tc_frag_data.max_bytes;
11973 if (max)
11974 {
11975 int size;
11976 if (max > left_size)
11977 size = left_size;
11978 else
11979 size = max;
11980 left_size -= size;
11981 next_fragP->tc_frag_data.length = size;
11982 }
11983 }
11984 else
11985 next_fragP->tc_frag_data.length = 0;
11986 }
11987
11988 return (fragP->tc_frag_data.length
11989 - fragP->tc_frag_data.last_length);
11990 }
11991 return relax_frag (segment, fragP, stretch);
11992 }
11993
11994 /* md_estimate_size_before_relax()
11995
11996 Called just before relax() for rs_machine_dependent frags. The x86
11997 assembler uses these frags to handle variable size jump
11998 instructions.
11999
12000 Any symbol that is now undefined will not become defined.
12001 Return the correct fr_subtype in the frag.
12002 Return the initial "guess for variable size of frag" to caller.
12003 The guess is actually the growth beyond the fixed part. Whatever
12004 we do to grow the fixed or variable part contributes to our
12005 returned value. */
12006
12007 int
12008 md_estimate_size_before_relax (fragS *fragP, segT segment)
12009 {
12010 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
12011 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX
12012 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING)
12013 {
12014 i386_classify_machine_dependent_frag (fragP);
12015 return fragP->tc_frag_data.length;
12016 }
12017
12018 /* We've already got fragP->fr_subtype right; all we have to do is
12019 check for un-relaxable symbols. On an ELF system, we can't relax
12020 an externally visible symbol, because it may be overridden by a
12021 shared library. */
12022 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
12023 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12024 || (IS_ELF
12025 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
12026 fragP->fr_var))
12027 #endif
12028 #if defined (OBJ_COFF) && defined (TE_PE)
12029 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
12030 && S_IS_WEAK (fragP->fr_symbol))
12031 #endif
12032 )
12033 {
12034 /* Symbol is undefined in this segment, or we need to keep a
12035 reloc so that weak symbols can be overridden. */
12036 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
12037 enum bfd_reloc_code_real reloc_type;
12038 unsigned char *opcode;
12039 int old_fr_fix;
12040
12041 if (fragP->fr_var != NO_RELOC)
12042 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
12043 else if (size == 2)
12044 reloc_type = BFD_RELOC_16_PCREL;
12045 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12046 else if (need_plt32_p (fragP->fr_symbol))
12047 reloc_type = BFD_RELOC_X86_64_PLT32;
12048 #endif
12049 else
12050 reloc_type = BFD_RELOC_32_PCREL;
12051
12052 old_fr_fix = fragP->fr_fix;
12053 opcode = (unsigned char *) fragP->fr_opcode;
12054
12055 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
12056 {
12057 case UNCOND_JUMP:
12058 /* Make jmp (0xeb) a (d)word displacement jump. */
12059 opcode[0] = 0xe9;
12060 fragP->fr_fix += size;
12061 fix_new (fragP, old_fr_fix, size,
12062 fragP->fr_symbol,
12063 fragP->fr_offset, 1,
12064 reloc_type);
12065 break;
12066
12067 case COND_JUMP86:
12068 if (size == 2
12069 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
12070 {
12071 /* Negate the condition, and branch past an
12072 unconditional jump. */
12073 opcode[0] ^= 1;
12074 opcode[1] = 3;
12075 /* Insert an unconditional jump. */
12076 opcode[2] = 0xe9;
12077 /* We added two extra opcode bytes, and have a two byte
12078 offset. */
12079 fragP->fr_fix += 2 + 2;
12080 fix_new (fragP, old_fr_fix + 2, 2,
12081 fragP->fr_symbol,
12082 fragP->fr_offset, 1,
12083 reloc_type);
12084 break;
12085 }
12086 /* Fall through. */
12087
12088 case COND_JUMP:
12089 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
12090 {
12091 fixS *fixP;
12092
12093 fragP->fr_fix += 1;
12094 fixP = fix_new (fragP, old_fr_fix, 1,
12095 fragP->fr_symbol,
12096 fragP->fr_offset, 1,
12097 BFD_RELOC_8_PCREL);
12098 fixP->fx_signed = 1;
12099 break;
12100 }
12101
12102 /* This changes the byte-displacement jump 0x7N
12103 to the (d)word-displacement jump 0x0f,0x8N. */
12104 opcode[1] = opcode[0] + 0x10;
12105 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
12106 /* We've added an opcode byte. */
12107 fragP->fr_fix += 1 + size;
12108 fix_new (fragP, old_fr_fix + 1, size,
12109 fragP->fr_symbol,
12110 fragP->fr_offset, 1,
12111 reloc_type);
12112 break;
12113
12114 default:
12115 BAD_CASE (fragP->fr_subtype);
12116 break;
12117 }
12118 frag_wane (fragP);
12119 return fragP->fr_fix - old_fr_fix;
12120 }
12121
12122 /* Guess size depending on current relax state. Initially the relax
12123 state will correspond to a short jump and we return 1, because
12124 the variable part of the frag (the branch offset) is one byte
12125 long. However, we can relax a section more than once and in that
12126 case we must either set fr_subtype back to the unrelaxed state,
12127 or return the value for the appropriate branch. */
12128 return md_relax_table[fragP->fr_subtype].rlx_length;
12129 }
12130
12131 /* Called after relax() is finished.
12132
12133 In: Address of frag.
12134 fr_type == rs_machine_dependent.
12135 fr_subtype is what the address relaxed to.
12136
12137 Out: Any fixSs and constants are set up.
12138 Caller will turn frag into a ".space 0". */
12139
12140 void
12141 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
12142 fragS *fragP)
12143 {
12144 unsigned char *opcode;
12145 unsigned char *where_to_put_displacement = NULL;
12146 offsetT target_address;
12147 offsetT opcode_address;
12148 unsigned int extension = 0;
12149 offsetT displacement_from_opcode_start;
12150
12151 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PADDING
12152 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == FUSED_JCC_PADDING
12153 || TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
12154 {
12155 /* Generate nop padding. */
12156 unsigned int size = fragP->tc_frag_data.length;
12157 if (size)
12158 {
12159 if (size > fragP->tc_frag_data.max_bytes)
12160 abort ();
12161
12162 if (flag_debug)
12163 {
12164 const char *msg;
12165 const char *branch = "branch";
12166 const char *prefix = "";
12167 fragS *padding_fragP;
12168 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype)
12169 == BRANCH_PREFIX)
12170 {
12171 padding_fragP = fragP->tc_frag_data.u.padding_fragP;
12172 switch (fragP->tc_frag_data.default_prefix)
12173 {
12174 default:
12175 abort ();
12176 break;
12177 case CS_PREFIX_OPCODE:
12178 prefix = " cs";
12179 break;
12180 case DS_PREFIX_OPCODE:
12181 prefix = " ds";
12182 break;
12183 case ES_PREFIX_OPCODE:
12184 prefix = " es";
12185 break;
12186 case FS_PREFIX_OPCODE:
12187 prefix = " fs";
12188 break;
12189 case GS_PREFIX_OPCODE:
12190 prefix = " gs";
12191 break;
12192 case SS_PREFIX_OPCODE:
12193 prefix = " ss";
12194 break;
12195 }
12196 if (padding_fragP)
12197 msg = _("%s:%u: add %d%s at 0x%llx to align "
12198 "%s within %d-byte boundary\n");
12199 else
12200 msg = _("%s:%u: add additional %d%s at 0x%llx to "
12201 "align %s within %d-byte boundary\n");
12202 }
12203 else
12204 {
12205 padding_fragP = fragP;
12206 msg = _("%s:%u: add %d%s-byte nop at 0x%llx to align "
12207 "%s within %d-byte boundary\n");
12208 }
12209
12210 if (padding_fragP)
12211 switch (padding_fragP->tc_frag_data.branch_type)
12212 {
12213 case align_branch_jcc:
12214 branch = "jcc";
12215 break;
12216 case align_branch_fused:
12217 branch = "fused jcc";
12218 break;
12219 case align_branch_jmp:
12220 branch = "jmp";
12221 break;
12222 case align_branch_call:
12223 branch = "call";
12224 break;
12225 case align_branch_indirect:
12226 branch = "indiret branch";
12227 break;
12228 case align_branch_ret:
12229 branch = "ret";
12230 break;
12231 default:
12232 break;
12233 }
12234
12235 fprintf (stdout, msg,
12236 fragP->fr_file, fragP->fr_line, size, prefix,
12237 (long long) fragP->fr_address, branch,
12238 1 << align_branch_power);
12239 }
12240 if (TYPE_FROM_RELAX_STATE (fragP->fr_subtype) == BRANCH_PREFIX)
12241 memset (fragP->fr_opcode,
12242 fragP->tc_frag_data.default_prefix, size);
12243 else
12244 i386_generate_nops (fragP, (char *) fragP->fr_opcode,
12245 size, 0);
12246 fragP->fr_fix += size;
12247 }
12248 return;
12249 }
12250
12251 opcode = (unsigned char *) fragP->fr_opcode;
12252
12253 /* Address we want to reach in file space. */
12254 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
12255
12256 /* Address opcode resides at in file space. */
12257 opcode_address = fragP->fr_address + fragP->fr_fix;
12258
12259 /* Displacement from opcode start to fill into instruction. */
12260 displacement_from_opcode_start = target_address - opcode_address;
12261
12262 if ((fragP->fr_subtype & BIG) == 0)
12263 {
12264 /* Don't have to change opcode. */
12265 extension = 1; /* 1 opcode + 1 displacement */
12266 where_to_put_displacement = &opcode[1];
12267 }
12268 else
12269 {
12270 if (no_cond_jump_promotion
12271 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
12272 as_warn_where (fragP->fr_file, fragP->fr_line,
12273 _("long jump required"));
12274
12275 switch (fragP->fr_subtype)
12276 {
12277 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
12278 extension = 4; /* 1 opcode + 4 displacement */
12279 opcode[0] = 0xe9;
12280 where_to_put_displacement = &opcode[1];
12281 break;
12282
12283 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
12284 extension = 2; /* 1 opcode + 2 displacement */
12285 opcode[0] = 0xe9;
12286 where_to_put_displacement = &opcode[1];
12287 break;
12288
12289 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
12290 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
12291 extension = 5; /* 2 opcode + 4 displacement */
12292 opcode[1] = opcode[0] + 0x10;
12293 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
12294 where_to_put_displacement = &opcode[2];
12295 break;
12296
12297 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
12298 extension = 3; /* 2 opcode + 2 displacement */
12299 opcode[1] = opcode[0] + 0x10;
12300 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
12301 where_to_put_displacement = &opcode[2];
12302 break;
12303
12304 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
12305 extension = 4;
12306 opcode[0] ^= 1;
12307 opcode[1] = 3;
12308 opcode[2] = 0xe9;
12309 where_to_put_displacement = &opcode[3];
12310 break;
12311
12312 default:
12313 BAD_CASE (fragP->fr_subtype);
12314 break;
12315 }
12316 }
12317
12318 /* If size if less then four we are sure that the operand fits,
12319 but if it's 4, then it could be that the displacement is larger
12320 then -/+ 2GB. */
12321 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
12322 && object_64bit
12323 && ((addressT) (displacement_from_opcode_start - extension
12324 + ((addressT) 1 << 31))
12325 > (((addressT) 2 << 31) - 1)))
12326 {
12327 as_bad_where (fragP->fr_file, fragP->fr_line,
12328 _("jump target out of range"));
12329 /* Make us emit 0. */
12330 displacement_from_opcode_start = extension;
12331 }
12332 /* Now put displacement after opcode. */
12333 md_number_to_chars ((char *) where_to_put_displacement,
12334 (valueT) (displacement_from_opcode_start - extension),
12335 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
12336 fragP->fr_fix += extension;
12337 }
12338 \f
12339 /* Apply a fixup (fixP) to segment data, once it has been determined
12340 by our caller that we have all the info we need to fix it up.
12341
12342 Parameter valP is the pointer to the value of the bits.
12343
12344 On the 386, immediates, displacements, and data pointers are all in
12345 the same (little-endian) format, so we don't need to care about which
12346 we are handling. */
12347
12348 void
12349 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
12350 {
12351 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
12352 valueT value = *valP;
12353
12354 #if !defined (TE_Mach)
12355 if (fixP->fx_pcrel)
12356 {
12357 switch (fixP->fx_r_type)
12358 {
12359 default:
12360 break;
12361
12362 case BFD_RELOC_64:
12363 fixP->fx_r_type = BFD_RELOC_64_PCREL;
12364 break;
12365 case BFD_RELOC_32:
12366 case BFD_RELOC_X86_64_32S:
12367 fixP->fx_r_type = BFD_RELOC_32_PCREL;
12368 break;
12369 case BFD_RELOC_16:
12370 fixP->fx_r_type = BFD_RELOC_16_PCREL;
12371 break;
12372 case BFD_RELOC_8:
12373 fixP->fx_r_type = BFD_RELOC_8_PCREL;
12374 break;
12375 }
12376 }
12377
12378 if (fixP->fx_addsy != NULL
12379 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
12380 || fixP->fx_r_type == BFD_RELOC_64_PCREL
12381 || fixP->fx_r_type == BFD_RELOC_16_PCREL
12382 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
12383 && !use_rela_relocations)
12384 {
12385 /* This is a hack. There should be a better way to handle this.
12386 This covers for the fact that bfd_install_relocation will
12387 subtract the current location (for partial_inplace, PC relative
12388 relocations); see more below. */
12389 #ifndef OBJ_AOUT
12390 if (IS_ELF
12391 #ifdef TE_PE
12392 || OUTPUT_FLAVOR == bfd_target_coff_flavour
12393 #endif
12394 )
12395 value += fixP->fx_where + fixP->fx_frag->fr_address;
12396 #endif
12397 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12398 if (IS_ELF)
12399 {
12400 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
12401
12402 if ((sym_seg == seg
12403 || (symbol_section_p (fixP->fx_addsy)
12404 && sym_seg != absolute_section))
12405 && !generic_force_reloc (fixP))
12406 {
12407 /* Yes, we add the values in twice. This is because
12408 bfd_install_relocation subtracts them out again. I think
12409 bfd_install_relocation is broken, but I don't dare change
12410 it. FIXME. */
12411 value += fixP->fx_where + fixP->fx_frag->fr_address;
12412 }
12413 }
12414 #endif
12415 #if defined (OBJ_COFF) && defined (TE_PE)
12416 /* For some reason, the PE format does not store a
12417 section address offset for a PC relative symbol. */
12418 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
12419 || S_IS_WEAK (fixP->fx_addsy))
12420 value += md_pcrel_from (fixP);
12421 #endif
12422 }
12423 #if defined (OBJ_COFF) && defined (TE_PE)
12424 if (fixP->fx_addsy != NULL
12425 && S_IS_WEAK (fixP->fx_addsy)
12426 /* PR 16858: Do not modify weak function references. */
12427 && ! fixP->fx_pcrel)
12428 {
12429 #if !defined (TE_PEP)
12430 /* For x86 PE weak function symbols are neither PC-relative
12431 nor do they set S_IS_FUNCTION. So the only reliable way
12432 to detect them is to check the flags of their containing
12433 section. */
12434 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
12435 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
12436 ;
12437 else
12438 #endif
12439 value -= S_GET_VALUE (fixP->fx_addsy);
12440 }
12441 #endif
12442
12443 /* Fix a few things - the dynamic linker expects certain values here,
12444 and we must not disappoint it. */
12445 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12446 if (IS_ELF && fixP->fx_addsy)
12447 switch (fixP->fx_r_type)
12448 {
12449 case BFD_RELOC_386_PLT32:
12450 case BFD_RELOC_X86_64_PLT32:
12451 /* Make the jump instruction point to the address of the operand.
12452 At runtime we merely add the offset to the actual PLT entry.
12453 NB: Subtract the offset size only for jump instructions. */
12454 if (fixP->fx_pcrel)
12455 value = -4;
12456 break;
12457
12458 case BFD_RELOC_386_TLS_GD:
12459 case BFD_RELOC_386_TLS_LDM:
12460 case BFD_RELOC_386_TLS_IE_32:
12461 case BFD_RELOC_386_TLS_IE:
12462 case BFD_RELOC_386_TLS_GOTIE:
12463 case BFD_RELOC_386_TLS_GOTDESC:
12464 case BFD_RELOC_X86_64_TLSGD:
12465 case BFD_RELOC_X86_64_TLSLD:
12466 case BFD_RELOC_X86_64_GOTTPOFF:
12467 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
12468 value = 0; /* Fully resolved at runtime. No addend. */
12469 /* Fallthrough */
12470 case BFD_RELOC_386_TLS_LE:
12471 case BFD_RELOC_386_TLS_LDO_32:
12472 case BFD_RELOC_386_TLS_LE_32:
12473 case BFD_RELOC_X86_64_DTPOFF32:
12474 case BFD_RELOC_X86_64_DTPOFF64:
12475 case BFD_RELOC_X86_64_TPOFF32:
12476 case BFD_RELOC_X86_64_TPOFF64:
12477 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12478 break;
12479
12480 case BFD_RELOC_386_TLS_DESC_CALL:
12481 case BFD_RELOC_X86_64_TLSDESC_CALL:
12482 value = 0; /* Fully resolved at runtime. No addend. */
12483 S_SET_THREAD_LOCAL (fixP->fx_addsy);
12484 fixP->fx_done = 0;
12485 return;
12486
12487 case BFD_RELOC_VTABLE_INHERIT:
12488 case BFD_RELOC_VTABLE_ENTRY:
12489 fixP->fx_done = 0;
12490 return;
12491
12492 default:
12493 break;
12494 }
12495 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
12496 *valP = value;
12497 #endif /* !defined (TE_Mach) */
12498
12499 /* Are we finished with this relocation now? */
12500 if (fixP->fx_addsy == NULL)
12501 fixP->fx_done = 1;
12502 #if defined (OBJ_COFF) && defined (TE_PE)
12503 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
12504 {
12505 fixP->fx_done = 0;
12506 /* Remember value for tc_gen_reloc. */
12507 fixP->fx_addnumber = value;
12508 /* Clear out the frag for now. */
12509 value = 0;
12510 }
12511 #endif
12512 else if (use_rela_relocations)
12513 {
12514 fixP->fx_no_overflow = 1;
12515 /* Remember value for tc_gen_reloc. */
12516 fixP->fx_addnumber = value;
12517 value = 0;
12518 }
12519
12520 md_number_to_chars (p, value, fixP->fx_size);
12521 }
12522 \f
12523 const char *
12524 md_atof (int type, char *litP, int *sizeP)
12525 {
12526 /* This outputs the LITTLENUMs in REVERSE order;
12527 in accord with the bigendian 386. */
12528 return ieee_md_atof (type, litP, sizeP, FALSE);
12529 }
12530 \f
12531 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
12532
12533 static char *
12534 output_invalid (int c)
12535 {
12536 if (ISPRINT (c))
12537 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
12538 "'%c'", c);
12539 else
12540 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
12541 "(0x%x)", (unsigned char) c);
12542 return output_invalid_buf;
12543 }
12544
12545 /* Verify that @r can be used in the current context. */
12546
12547 static bfd_boolean check_register (const reg_entry *r)
12548 {
12549 if (allow_pseudo_reg)
12550 return TRUE;
12551
12552 if (operand_type_all_zero (&r->reg_type))
12553 return FALSE;
12554
12555 if ((r->reg_type.bitfield.dword
12556 || (r->reg_type.bitfield.class == SReg && r->reg_num > 3)
12557 || r->reg_type.bitfield.class == RegCR
12558 || r->reg_type.bitfield.class == RegDR)
12559 && !cpu_arch_flags.bitfield.cpui386)
12560 return FALSE;
12561
12562 if (r->reg_type.bitfield.class == RegTR
12563 && (flag_code == CODE_64BIT
12564 || !cpu_arch_flags.bitfield.cpui386
12565 || cpu_arch_isa_flags.bitfield.cpui586
12566 || cpu_arch_isa_flags.bitfield.cpui686))
12567 return FALSE;
12568
12569 if (r->reg_type.bitfield.class == RegMMX && !cpu_arch_flags.bitfield.cpummx)
12570 return FALSE;
12571
12572 if (!cpu_arch_flags.bitfield.cpuavx512f)
12573 {
12574 if (r->reg_type.bitfield.zmmword
12575 || r->reg_type.bitfield.class == RegMask)
12576 return FALSE;
12577
12578 if (!cpu_arch_flags.bitfield.cpuavx)
12579 {
12580 if (r->reg_type.bitfield.ymmword)
12581 return FALSE;
12582
12583 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
12584 return FALSE;
12585 }
12586 }
12587
12588 if (r->reg_type.bitfield.tmmword
12589 && (!cpu_arch_flags.bitfield.cpuamx_tile
12590 || flag_code != CODE_64BIT))
12591 return FALSE;
12592
12593 if (r->reg_type.bitfield.class == RegBND && !cpu_arch_flags.bitfield.cpumpx)
12594 return FALSE;
12595
12596 /* Don't allow fake index register unless allow_index_reg isn't 0. */
12597 if (!allow_index_reg && r->reg_num == RegIZ)
12598 return FALSE;
12599
12600 /* Upper 16 vector registers are only available with VREX in 64bit
12601 mode, and require EVEX encoding. */
12602 if (r->reg_flags & RegVRex)
12603 {
12604 if (!cpu_arch_flags.bitfield.cpuavx512f
12605 || flag_code != CODE_64BIT)
12606 return FALSE;
12607
12608 if (i.vec_encoding == vex_encoding_default)
12609 i.vec_encoding = vex_encoding_evex;
12610 else if (i.vec_encoding != vex_encoding_evex)
12611 i.vec_encoding = vex_encoding_error;
12612 }
12613
12614 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
12615 && (!cpu_arch_flags.bitfield.cpulm || r->reg_type.bitfield.class != RegCR)
12616 && flag_code != CODE_64BIT)
12617 return FALSE;
12618
12619 if (r->reg_type.bitfield.class == SReg && r->reg_num == RegFlat
12620 && !intel_syntax)
12621 return FALSE;
12622
12623 return TRUE;
12624 }
12625
12626 /* REG_STRING starts *before* REGISTER_PREFIX. */
12627
12628 static const reg_entry *
12629 parse_real_register (char *reg_string, char **end_op)
12630 {
12631 char *s = reg_string;
12632 char *p;
12633 char reg_name_given[MAX_REG_NAME_SIZE + 1];
12634 const reg_entry *r;
12635
12636 /* Skip possible REGISTER_PREFIX and possible whitespace. */
12637 if (*s == REGISTER_PREFIX)
12638 ++s;
12639
12640 if (is_space_char (*s))
12641 ++s;
12642
12643 p = reg_name_given;
12644 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
12645 {
12646 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
12647 return (const reg_entry *) NULL;
12648 s++;
12649 }
12650
12651 /* For naked regs, make sure that we are not dealing with an identifier.
12652 This prevents confusing an identifier like `eax_var' with register
12653 `eax'. */
12654 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
12655 return (const reg_entry *) NULL;
12656
12657 *end_op = s;
12658
12659 r = (const reg_entry *) str_hash_find (reg_hash, reg_name_given);
12660
12661 /* Handle floating point regs, allowing spaces in the (i) part. */
12662 if (r == i386_regtab /* %st is first entry of table */)
12663 {
12664 if (!cpu_arch_flags.bitfield.cpu8087
12665 && !cpu_arch_flags.bitfield.cpu287
12666 && !cpu_arch_flags.bitfield.cpu387
12667 && !allow_pseudo_reg)
12668 return (const reg_entry *) NULL;
12669
12670 if (is_space_char (*s))
12671 ++s;
12672 if (*s == '(')
12673 {
12674 ++s;
12675 if (is_space_char (*s))
12676 ++s;
12677 if (*s >= '0' && *s <= '7')
12678 {
12679 int fpr = *s - '0';
12680 ++s;
12681 if (is_space_char (*s))
12682 ++s;
12683 if (*s == ')')
12684 {
12685 *end_op = s + 1;
12686 r = (const reg_entry *) str_hash_find (reg_hash, "st(0)");
12687 know (r);
12688 return r + fpr;
12689 }
12690 }
12691 /* We have "%st(" then garbage. */
12692 return (const reg_entry *) NULL;
12693 }
12694 }
12695
12696 return r && check_register (r) ? r : NULL;
12697 }
12698
12699 /* REG_STRING starts *before* REGISTER_PREFIX. */
12700
12701 static const reg_entry *
12702 parse_register (char *reg_string, char **end_op)
12703 {
12704 const reg_entry *r;
12705
12706 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
12707 r = parse_real_register (reg_string, end_op);
12708 else
12709 r = NULL;
12710 if (!r)
12711 {
12712 char *save = input_line_pointer;
12713 char c;
12714 symbolS *symbolP;
12715
12716 input_line_pointer = reg_string;
12717 c = get_symbol_name (&reg_string);
12718 symbolP = symbol_find (reg_string);
12719 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
12720 {
12721 const expressionS *e = symbol_get_value_expression (symbolP);
12722
12723 know (e->X_op == O_register);
12724 know (e->X_add_number >= 0
12725 && (valueT) e->X_add_number < i386_regtab_size);
12726 r = i386_regtab + e->X_add_number;
12727 if (!check_register (r))
12728 {
12729 as_bad (_("register '%s%s' cannot be used here"),
12730 register_prefix, r->reg_name);
12731 r = &bad_reg;
12732 }
12733 *end_op = input_line_pointer;
12734 }
12735 *input_line_pointer = c;
12736 input_line_pointer = save;
12737 }
12738 return r;
12739 }
12740
12741 int
12742 i386_parse_name (char *name, expressionS *e, char *nextcharP)
12743 {
12744 const reg_entry *r;
12745 char *end = input_line_pointer;
12746
12747 *end = *nextcharP;
12748 r = parse_register (name, &input_line_pointer);
12749 if (r && end <= input_line_pointer)
12750 {
12751 *nextcharP = *input_line_pointer;
12752 *input_line_pointer = 0;
12753 if (r != &bad_reg)
12754 {
12755 e->X_op = O_register;
12756 e->X_add_number = r - i386_regtab;
12757 }
12758 else
12759 e->X_op = O_illegal;
12760 return 1;
12761 }
12762 input_line_pointer = end;
12763 *end = 0;
12764 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
12765 }
12766
12767 void
12768 md_operand (expressionS *e)
12769 {
12770 char *end;
12771 const reg_entry *r;
12772
12773 switch (*input_line_pointer)
12774 {
12775 case REGISTER_PREFIX:
12776 r = parse_real_register (input_line_pointer, &end);
12777 if (r)
12778 {
12779 e->X_op = O_register;
12780 e->X_add_number = r - i386_regtab;
12781 input_line_pointer = end;
12782 }
12783 break;
12784
12785 case '[':
12786 gas_assert (intel_syntax);
12787 end = input_line_pointer++;
12788 expression (e);
12789 if (*input_line_pointer == ']')
12790 {
12791 ++input_line_pointer;
12792 e->X_op_symbol = make_expr_symbol (e);
12793 e->X_add_symbol = NULL;
12794 e->X_add_number = 0;
12795 e->X_op = O_index;
12796 }
12797 else
12798 {
12799 e->X_op = O_absent;
12800 input_line_pointer = end;
12801 }
12802 break;
12803 }
12804 }
12805
12806 \f
12807 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12808 const char *md_shortopts = "kVQ:sqnO::";
12809 #else
12810 const char *md_shortopts = "qnO::";
12811 #endif
12812
12813 #define OPTION_32 (OPTION_MD_BASE + 0)
12814 #define OPTION_64 (OPTION_MD_BASE + 1)
12815 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
12816 #define OPTION_MARCH (OPTION_MD_BASE + 3)
12817 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
12818 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
12819 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
12820 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
12821 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
12822 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
12823 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
12824 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
12825 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
12826 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
12827 #define OPTION_X32 (OPTION_MD_BASE + 14)
12828 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
12829 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
12830 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
12831 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
12832 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
12833 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
12834 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
12835 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
12836 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
12837 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
12838 #define OPTION_X86_USED_NOTE (OPTION_MD_BASE + 25)
12839 #define OPTION_MVEXWIG (OPTION_MD_BASE + 26)
12840 #define OPTION_MALIGN_BRANCH_BOUNDARY (OPTION_MD_BASE + 27)
12841 #define OPTION_MALIGN_BRANCH_PREFIX_SIZE (OPTION_MD_BASE + 28)
12842 #define OPTION_MALIGN_BRANCH (OPTION_MD_BASE + 29)
12843 #define OPTION_MBRANCHES_WITH_32B_BOUNDARIES (OPTION_MD_BASE + 30)
12844 #define OPTION_MLFENCE_AFTER_LOAD (OPTION_MD_BASE + 31)
12845 #define OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH (OPTION_MD_BASE + 32)
12846 #define OPTION_MLFENCE_BEFORE_RET (OPTION_MD_BASE + 33)
12847
12848 struct option md_longopts[] =
12849 {
12850 {"32", no_argument, NULL, OPTION_32},
12851 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12852 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12853 {"64", no_argument, NULL, OPTION_64},
12854 #endif
12855 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12856 {"x32", no_argument, NULL, OPTION_X32},
12857 {"mshared", no_argument, NULL, OPTION_MSHARED},
12858 {"mx86-used-note", required_argument, NULL, OPTION_X86_USED_NOTE},
12859 #endif
12860 {"divide", no_argument, NULL, OPTION_DIVIDE},
12861 {"march", required_argument, NULL, OPTION_MARCH},
12862 {"mtune", required_argument, NULL, OPTION_MTUNE},
12863 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
12864 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
12865 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
12866 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
12867 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
12868 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
12869 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
12870 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
12871 {"mvexwig", required_argument, NULL, OPTION_MVEXWIG},
12872 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
12873 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
12874 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
12875 # if defined (TE_PE) || defined (TE_PEP)
12876 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
12877 #endif
12878 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
12879 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
12880 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
12881 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
12882 {"malign-branch-boundary", required_argument, NULL, OPTION_MALIGN_BRANCH_BOUNDARY},
12883 {"malign-branch-prefix-size", required_argument, NULL, OPTION_MALIGN_BRANCH_PREFIX_SIZE},
12884 {"malign-branch", required_argument, NULL, OPTION_MALIGN_BRANCH},
12885 {"mbranches-within-32B-boundaries", no_argument, NULL, OPTION_MBRANCHES_WITH_32B_BOUNDARIES},
12886 {"mlfence-after-load", required_argument, NULL, OPTION_MLFENCE_AFTER_LOAD},
12887 {"mlfence-before-indirect-branch", required_argument, NULL,
12888 OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH},
12889 {"mlfence-before-ret", required_argument, NULL, OPTION_MLFENCE_BEFORE_RET},
12890 {"mamd64", no_argument, NULL, OPTION_MAMD64},
12891 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
12892 {NULL, no_argument, NULL, 0}
12893 };
12894 size_t md_longopts_size = sizeof (md_longopts);
12895
12896 int
12897 md_parse_option (int c, const char *arg)
12898 {
12899 unsigned int j;
12900 char *arch, *next, *saved, *type;
12901
12902 switch (c)
12903 {
12904 case 'n':
12905 optimize_align_code = 0;
12906 break;
12907
12908 case 'q':
12909 quiet_warnings = 1;
12910 break;
12911
12912 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12913 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
12914 should be emitted or not. FIXME: Not implemented. */
12915 case 'Q':
12916 if ((arg[0] != 'y' && arg[0] != 'n') || arg[1])
12917 return 0;
12918 break;
12919
12920 /* -V: SVR4 argument to print version ID. */
12921 case 'V':
12922 print_version_id ();
12923 break;
12924
12925 /* -k: Ignore for FreeBSD compatibility. */
12926 case 'k':
12927 break;
12928
12929 case 's':
12930 /* -s: On i386 Solaris, this tells the native assembler to use
12931 .stab instead of .stab.excl. We always use .stab anyhow. */
12932 break;
12933
12934 case OPTION_MSHARED:
12935 shared = 1;
12936 break;
12937
12938 case OPTION_X86_USED_NOTE:
12939 if (strcasecmp (arg, "yes") == 0)
12940 x86_used_note = 1;
12941 else if (strcasecmp (arg, "no") == 0)
12942 x86_used_note = 0;
12943 else
12944 as_fatal (_("invalid -mx86-used-note= option: `%s'"), arg);
12945 break;
12946
12947
12948 #endif
12949 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
12950 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
12951 case OPTION_64:
12952 {
12953 const char **list, **l;
12954
12955 list = bfd_target_list ();
12956 for (l = list; *l != NULL; l++)
12957 if (CONST_STRNEQ (*l, "elf64-x86-64")
12958 || strcmp (*l, "coff-x86-64") == 0
12959 || strcmp (*l, "pe-x86-64") == 0
12960 || strcmp (*l, "pei-x86-64") == 0
12961 || strcmp (*l, "mach-o-x86-64") == 0)
12962 {
12963 default_arch = "x86_64";
12964 break;
12965 }
12966 if (*l == NULL)
12967 as_fatal (_("no compiled in support for x86_64"));
12968 free (list);
12969 }
12970 break;
12971 #endif
12972
12973 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
12974 case OPTION_X32:
12975 if (IS_ELF)
12976 {
12977 const char **list, **l;
12978
12979 list = bfd_target_list ();
12980 for (l = list; *l != NULL; l++)
12981 if (CONST_STRNEQ (*l, "elf32-x86-64"))
12982 {
12983 default_arch = "x86_64:32";
12984 break;
12985 }
12986 if (*l == NULL)
12987 as_fatal (_("no compiled in support for 32bit x86_64"));
12988 free (list);
12989 }
12990 else
12991 as_fatal (_("32bit x86_64 is only supported for ELF"));
12992 break;
12993 #endif
12994
12995 case OPTION_32:
12996 default_arch = "i386";
12997 break;
12998
12999 case OPTION_DIVIDE:
13000 #ifdef SVR4_COMMENT_CHARS
13001 {
13002 char *n, *t;
13003 const char *s;
13004
13005 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
13006 t = n;
13007 for (s = i386_comment_chars; *s != '\0'; s++)
13008 if (*s != '/')
13009 *t++ = *s;
13010 *t = '\0';
13011 i386_comment_chars = n;
13012 }
13013 #endif
13014 break;
13015
13016 case OPTION_MARCH:
13017 saved = xstrdup (arg);
13018 arch = saved;
13019 /* Allow -march=+nosse. */
13020 if (*arch == '+')
13021 arch++;
13022 do
13023 {
13024 if (*arch == '.')
13025 as_fatal (_("invalid -march= option: `%s'"), arg);
13026 next = strchr (arch, '+');
13027 if (next)
13028 *next++ = '\0';
13029 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
13030 {
13031 if (strcmp (arch, cpu_arch [j].name) == 0)
13032 {
13033 /* Processor. */
13034 if (! cpu_arch[j].flags.bitfield.cpui386)
13035 continue;
13036
13037 cpu_arch_name = cpu_arch[j].name;
13038 cpu_sub_arch_name = NULL;
13039 cpu_arch_flags = cpu_arch[j].flags;
13040 cpu_arch_isa = cpu_arch[j].type;
13041 cpu_arch_isa_flags = cpu_arch[j].flags;
13042 if (!cpu_arch_tune_set)
13043 {
13044 cpu_arch_tune = cpu_arch_isa;
13045 cpu_arch_tune_flags = cpu_arch_isa_flags;
13046 }
13047 break;
13048 }
13049 else if (*cpu_arch [j].name == '.'
13050 && strcmp (arch, cpu_arch [j].name + 1) == 0)
13051 {
13052 /* ISA extension. */
13053 i386_cpu_flags flags;
13054
13055 flags = cpu_flags_or (cpu_arch_flags,
13056 cpu_arch[j].flags);
13057
13058 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
13059 {
13060 if (cpu_sub_arch_name)
13061 {
13062 char *name = cpu_sub_arch_name;
13063 cpu_sub_arch_name = concat (name,
13064 cpu_arch[j].name,
13065 (const char *) NULL);
13066 free (name);
13067 }
13068 else
13069 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
13070 cpu_arch_flags = flags;
13071 cpu_arch_isa_flags = flags;
13072 }
13073 else
13074 cpu_arch_isa_flags
13075 = cpu_flags_or (cpu_arch_isa_flags,
13076 cpu_arch[j].flags);
13077 break;
13078 }
13079 }
13080
13081 if (j >= ARRAY_SIZE (cpu_arch))
13082 {
13083 /* Disable an ISA extension. */
13084 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
13085 if (strcmp (arch, cpu_noarch [j].name) == 0)
13086 {
13087 i386_cpu_flags flags;
13088
13089 flags = cpu_flags_and_not (cpu_arch_flags,
13090 cpu_noarch[j].flags);
13091 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
13092 {
13093 if (cpu_sub_arch_name)
13094 {
13095 char *name = cpu_sub_arch_name;
13096 cpu_sub_arch_name = concat (arch,
13097 (const char *) NULL);
13098 free (name);
13099 }
13100 else
13101 cpu_sub_arch_name = xstrdup (arch);
13102 cpu_arch_flags = flags;
13103 cpu_arch_isa_flags = flags;
13104 }
13105 break;
13106 }
13107
13108 if (j >= ARRAY_SIZE (cpu_noarch))
13109 j = ARRAY_SIZE (cpu_arch);
13110 }
13111
13112 if (j >= ARRAY_SIZE (cpu_arch))
13113 as_fatal (_("invalid -march= option: `%s'"), arg);
13114
13115 arch = next;
13116 }
13117 while (next != NULL);
13118 free (saved);
13119 break;
13120
13121 case OPTION_MTUNE:
13122 if (*arg == '.')
13123 as_fatal (_("invalid -mtune= option: `%s'"), arg);
13124 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
13125 {
13126 if (strcmp (arg, cpu_arch [j].name) == 0)
13127 {
13128 cpu_arch_tune_set = 1;
13129 cpu_arch_tune = cpu_arch [j].type;
13130 cpu_arch_tune_flags = cpu_arch[j].flags;
13131 break;
13132 }
13133 }
13134 if (j >= ARRAY_SIZE (cpu_arch))
13135 as_fatal (_("invalid -mtune= option: `%s'"), arg);
13136 break;
13137
13138 case OPTION_MMNEMONIC:
13139 if (strcasecmp (arg, "att") == 0)
13140 intel_mnemonic = 0;
13141 else if (strcasecmp (arg, "intel") == 0)
13142 intel_mnemonic = 1;
13143 else
13144 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
13145 break;
13146
13147 case OPTION_MSYNTAX:
13148 if (strcasecmp (arg, "att") == 0)
13149 intel_syntax = 0;
13150 else if (strcasecmp (arg, "intel") == 0)
13151 intel_syntax = 1;
13152 else
13153 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
13154 break;
13155
13156 case OPTION_MINDEX_REG:
13157 allow_index_reg = 1;
13158 break;
13159
13160 case OPTION_MNAKED_REG:
13161 allow_naked_reg = 1;
13162 break;
13163
13164 case OPTION_MSSE2AVX:
13165 sse2avx = 1;
13166 break;
13167
13168 case OPTION_MSSE_CHECK:
13169 if (strcasecmp (arg, "error") == 0)
13170 sse_check = check_error;
13171 else if (strcasecmp (arg, "warning") == 0)
13172 sse_check = check_warning;
13173 else if (strcasecmp (arg, "none") == 0)
13174 sse_check = check_none;
13175 else
13176 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
13177 break;
13178
13179 case OPTION_MOPERAND_CHECK:
13180 if (strcasecmp (arg, "error") == 0)
13181 operand_check = check_error;
13182 else if (strcasecmp (arg, "warning") == 0)
13183 operand_check = check_warning;
13184 else if (strcasecmp (arg, "none") == 0)
13185 operand_check = check_none;
13186 else
13187 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
13188 break;
13189
13190 case OPTION_MAVXSCALAR:
13191 if (strcasecmp (arg, "128") == 0)
13192 avxscalar = vex128;
13193 else if (strcasecmp (arg, "256") == 0)
13194 avxscalar = vex256;
13195 else
13196 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
13197 break;
13198
13199 case OPTION_MVEXWIG:
13200 if (strcmp (arg, "0") == 0)
13201 vexwig = vexw0;
13202 else if (strcmp (arg, "1") == 0)
13203 vexwig = vexw1;
13204 else
13205 as_fatal (_("invalid -mvexwig= option: `%s'"), arg);
13206 break;
13207
13208 case OPTION_MADD_BND_PREFIX:
13209 add_bnd_prefix = 1;
13210 break;
13211
13212 case OPTION_MEVEXLIG:
13213 if (strcmp (arg, "128") == 0)
13214 evexlig = evexl128;
13215 else if (strcmp (arg, "256") == 0)
13216 evexlig = evexl256;
13217 else if (strcmp (arg, "512") == 0)
13218 evexlig = evexl512;
13219 else
13220 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
13221 break;
13222
13223 case OPTION_MEVEXRCIG:
13224 if (strcmp (arg, "rne") == 0)
13225 evexrcig = rne;
13226 else if (strcmp (arg, "rd") == 0)
13227 evexrcig = rd;
13228 else if (strcmp (arg, "ru") == 0)
13229 evexrcig = ru;
13230 else if (strcmp (arg, "rz") == 0)
13231 evexrcig = rz;
13232 else
13233 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
13234 break;
13235
13236 case OPTION_MEVEXWIG:
13237 if (strcmp (arg, "0") == 0)
13238 evexwig = evexw0;
13239 else if (strcmp (arg, "1") == 0)
13240 evexwig = evexw1;
13241 else
13242 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
13243 break;
13244
13245 # if defined (TE_PE) || defined (TE_PEP)
13246 case OPTION_MBIG_OBJ:
13247 use_big_obj = 1;
13248 break;
13249 #endif
13250
13251 case OPTION_MOMIT_LOCK_PREFIX:
13252 if (strcasecmp (arg, "yes") == 0)
13253 omit_lock_prefix = 1;
13254 else if (strcasecmp (arg, "no") == 0)
13255 omit_lock_prefix = 0;
13256 else
13257 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
13258 break;
13259
13260 case OPTION_MFENCE_AS_LOCK_ADD:
13261 if (strcasecmp (arg, "yes") == 0)
13262 avoid_fence = 1;
13263 else if (strcasecmp (arg, "no") == 0)
13264 avoid_fence = 0;
13265 else
13266 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
13267 break;
13268
13269 case OPTION_MLFENCE_AFTER_LOAD:
13270 if (strcasecmp (arg, "yes") == 0)
13271 lfence_after_load = 1;
13272 else if (strcasecmp (arg, "no") == 0)
13273 lfence_after_load = 0;
13274 else
13275 as_fatal (_("invalid -mlfence-after-load= option: `%s'"), arg);
13276 break;
13277
13278 case OPTION_MLFENCE_BEFORE_INDIRECT_BRANCH:
13279 if (strcasecmp (arg, "all") == 0)
13280 {
13281 lfence_before_indirect_branch = lfence_branch_all;
13282 if (lfence_before_ret == lfence_before_ret_none)
13283 lfence_before_ret = lfence_before_ret_shl;
13284 }
13285 else if (strcasecmp (arg, "memory") == 0)
13286 lfence_before_indirect_branch = lfence_branch_memory;
13287 else if (strcasecmp (arg, "register") == 0)
13288 lfence_before_indirect_branch = lfence_branch_register;
13289 else if (strcasecmp (arg, "none") == 0)
13290 lfence_before_indirect_branch = lfence_branch_none;
13291 else
13292 as_fatal (_("invalid -mlfence-before-indirect-branch= option: `%s'"),
13293 arg);
13294 break;
13295
13296 case OPTION_MLFENCE_BEFORE_RET:
13297 if (strcasecmp (arg, "or") == 0)
13298 lfence_before_ret = lfence_before_ret_or;
13299 else if (strcasecmp (arg, "not") == 0)
13300 lfence_before_ret = lfence_before_ret_not;
13301 else if (strcasecmp (arg, "shl") == 0 || strcasecmp (arg, "yes") == 0)
13302 lfence_before_ret = lfence_before_ret_shl;
13303 else if (strcasecmp (arg, "none") == 0)
13304 lfence_before_ret = lfence_before_ret_none;
13305 else
13306 as_fatal (_("invalid -mlfence-before-ret= option: `%s'"),
13307 arg);
13308 break;
13309
13310 case OPTION_MRELAX_RELOCATIONS:
13311 if (strcasecmp (arg, "yes") == 0)
13312 generate_relax_relocations = 1;
13313 else if (strcasecmp (arg, "no") == 0)
13314 generate_relax_relocations = 0;
13315 else
13316 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
13317 break;
13318
13319 case OPTION_MALIGN_BRANCH_BOUNDARY:
13320 {
13321 char *end;
13322 long int align = strtoul (arg, &end, 0);
13323 if (*end == '\0')
13324 {
13325 if (align == 0)
13326 {
13327 align_branch_power = 0;
13328 break;
13329 }
13330 else if (align >= 16)
13331 {
13332 int align_power;
13333 for (align_power = 0;
13334 (align & 1) == 0;
13335 align >>= 1, align_power++)
13336 continue;
13337 /* Limit alignment power to 31. */
13338 if (align == 1 && align_power < 32)
13339 {
13340 align_branch_power = align_power;
13341 break;
13342 }
13343 }
13344 }
13345 as_fatal (_("invalid -malign-branch-boundary= value: %s"), arg);
13346 }
13347 break;
13348
13349 case OPTION_MALIGN_BRANCH_PREFIX_SIZE:
13350 {
13351 char *end;
13352 int align = strtoul (arg, &end, 0);
13353 /* Some processors only support 5 prefixes. */
13354 if (*end == '\0' && align >= 0 && align < 6)
13355 {
13356 align_branch_prefix_size = align;
13357 break;
13358 }
13359 as_fatal (_("invalid -malign-branch-prefix-size= value: %s"),
13360 arg);
13361 }
13362 break;
13363
13364 case OPTION_MALIGN_BRANCH:
13365 align_branch = 0;
13366 saved = xstrdup (arg);
13367 type = saved;
13368 do
13369 {
13370 next = strchr (type, '+');
13371 if (next)
13372 *next++ = '\0';
13373 if (strcasecmp (type, "jcc") == 0)
13374 align_branch |= align_branch_jcc_bit;
13375 else if (strcasecmp (type, "fused") == 0)
13376 align_branch |= align_branch_fused_bit;
13377 else if (strcasecmp (type, "jmp") == 0)
13378 align_branch |= align_branch_jmp_bit;
13379 else if (strcasecmp (type, "call") == 0)
13380 align_branch |= align_branch_call_bit;
13381 else if (strcasecmp (type, "ret") == 0)
13382 align_branch |= align_branch_ret_bit;
13383 else if (strcasecmp (type, "indirect") == 0)
13384 align_branch |= align_branch_indirect_bit;
13385 else
13386 as_fatal (_("invalid -malign-branch= option: `%s'"), arg);
13387 type = next;
13388 }
13389 while (next != NULL);
13390 free (saved);
13391 break;
13392
13393 case OPTION_MBRANCHES_WITH_32B_BOUNDARIES:
13394 align_branch_power = 5;
13395 align_branch_prefix_size = 5;
13396 align_branch = (align_branch_jcc_bit
13397 | align_branch_fused_bit
13398 | align_branch_jmp_bit);
13399 break;
13400
13401 case OPTION_MAMD64:
13402 isa64 = amd64;
13403 break;
13404
13405 case OPTION_MINTEL64:
13406 isa64 = intel64;
13407 break;
13408
13409 case 'O':
13410 if (arg == NULL)
13411 {
13412 optimize = 1;
13413 /* Turn off -Os. */
13414 optimize_for_space = 0;
13415 }
13416 else if (*arg == 's')
13417 {
13418 optimize_for_space = 1;
13419 /* Turn on all encoding optimizations. */
13420 optimize = INT_MAX;
13421 }
13422 else
13423 {
13424 optimize = atoi (arg);
13425 /* Turn off -Os. */
13426 optimize_for_space = 0;
13427 }
13428 break;
13429
13430 default:
13431 return 0;
13432 }
13433 return 1;
13434 }
13435
13436 #define MESSAGE_TEMPLATE \
13437 " "
13438
13439 static char *
13440 output_message (FILE *stream, char *p, char *message, char *start,
13441 int *left_p, const char *name, int len)
13442 {
13443 int size = sizeof (MESSAGE_TEMPLATE);
13444 int left = *left_p;
13445
13446 /* Reserve 2 spaces for ", " or ",\0" */
13447 left -= len + 2;
13448
13449 /* Check if there is any room. */
13450 if (left >= 0)
13451 {
13452 if (p != start)
13453 {
13454 *p++ = ',';
13455 *p++ = ' ';
13456 }
13457 p = mempcpy (p, name, len);
13458 }
13459 else
13460 {
13461 /* Output the current message now and start a new one. */
13462 *p++ = ',';
13463 *p = '\0';
13464 fprintf (stream, "%s\n", message);
13465 p = start;
13466 left = size - (start - message) - len - 2;
13467
13468 gas_assert (left >= 0);
13469
13470 p = mempcpy (p, name, len);
13471 }
13472
13473 *left_p = left;
13474 return p;
13475 }
13476
13477 static void
13478 show_arch (FILE *stream, int ext, int check)
13479 {
13480 static char message[] = MESSAGE_TEMPLATE;
13481 char *start = message + 27;
13482 char *p;
13483 int size = sizeof (MESSAGE_TEMPLATE);
13484 int left;
13485 const char *name;
13486 int len;
13487 unsigned int j;
13488
13489 p = start;
13490 left = size - (start - message);
13491 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
13492 {
13493 /* Should it be skipped? */
13494 if (cpu_arch [j].skip)
13495 continue;
13496
13497 name = cpu_arch [j].name;
13498 len = cpu_arch [j].len;
13499 if (*name == '.')
13500 {
13501 /* It is an extension. Skip if we aren't asked to show it. */
13502 if (ext)
13503 {
13504 name++;
13505 len--;
13506 }
13507 else
13508 continue;
13509 }
13510 else if (ext)
13511 {
13512 /* It is an processor. Skip if we show only extension. */
13513 continue;
13514 }
13515 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
13516 {
13517 /* It is an impossible processor - skip. */
13518 continue;
13519 }
13520
13521 p = output_message (stream, p, message, start, &left, name, len);
13522 }
13523
13524 /* Display disabled extensions. */
13525 if (ext)
13526 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
13527 {
13528 name = cpu_noarch [j].name;
13529 len = cpu_noarch [j].len;
13530 p = output_message (stream, p, message, start, &left, name,
13531 len);
13532 }
13533
13534 *p = '\0';
13535 fprintf (stream, "%s\n", message);
13536 }
13537
13538 void
13539 md_show_usage (FILE *stream)
13540 {
13541 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13542 fprintf (stream, _("\
13543 -Qy, -Qn ignored\n\
13544 -V print assembler version number\n\
13545 -k ignored\n"));
13546 #endif
13547 fprintf (stream, _("\
13548 -n Do not optimize code alignment\n\
13549 -q quieten some warnings\n"));
13550 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13551 fprintf (stream, _("\
13552 -s ignored\n"));
13553 #endif
13554 #if defined BFD64 && (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
13555 || defined (TE_PE) || defined (TE_PEP))
13556 fprintf (stream, _("\
13557 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
13558 #endif
13559 #ifdef SVR4_COMMENT_CHARS
13560 fprintf (stream, _("\
13561 --divide do not treat `/' as a comment character\n"));
13562 #else
13563 fprintf (stream, _("\
13564 --divide ignored\n"));
13565 #endif
13566 fprintf (stream, _("\
13567 -march=CPU[,+EXTENSION...]\n\
13568 generate code for CPU and EXTENSION, CPU is one of:\n"));
13569 show_arch (stream, 0, 1);
13570 fprintf (stream, _("\
13571 EXTENSION is combination of:\n"));
13572 show_arch (stream, 1, 0);
13573 fprintf (stream, _("\
13574 -mtune=CPU optimize for CPU, CPU is one of:\n"));
13575 show_arch (stream, 0, 0);
13576 fprintf (stream, _("\
13577 -msse2avx encode SSE instructions with VEX prefix\n"));
13578 fprintf (stream, _("\
13579 -msse-check=[none|error|warning] (default: warning)\n\
13580 check SSE instructions\n"));
13581 fprintf (stream, _("\
13582 -moperand-check=[none|error|warning] (default: warning)\n\
13583 check operand combinations for validity\n"));
13584 fprintf (stream, _("\
13585 -mavxscalar=[128|256] (default: 128)\n\
13586 encode scalar AVX instructions with specific vector\n\
13587 length\n"));
13588 fprintf (stream, _("\
13589 -mvexwig=[0|1] (default: 0)\n\
13590 encode VEX instructions with specific VEX.W value\n\
13591 for VEX.W bit ignored instructions\n"));
13592 fprintf (stream, _("\
13593 -mevexlig=[128|256|512] (default: 128)\n\
13594 encode scalar EVEX instructions with specific vector\n\
13595 length\n"));
13596 fprintf (stream, _("\
13597 -mevexwig=[0|1] (default: 0)\n\
13598 encode EVEX instructions with specific EVEX.W value\n\
13599 for EVEX.W bit ignored instructions\n"));
13600 fprintf (stream, _("\
13601 -mevexrcig=[rne|rd|ru|rz] (default: rne)\n\
13602 encode EVEX instructions with specific EVEX.RC value\n\
13603 for SAE-only ignored instructions\n"));
13604 fprintf (stream, _("\
13605 -mmnemonic=[att|intel] "));
13606 if (SYSV386_COMPAT)
13607 fprintf (stream, _("(default: att)\n"));
13608 else
13609 fprintf (stream, _("(default: intel)\n"));
13610 fprintf (stream, _("\
13611 use AT&T/Intel mnemonic\n"));
13612 fprintf (stream, _("\
13613 -msyntax=[att|intel] (default: att)\n\
13614 use AT&T/Intel syntax\n"));
13615 fprintf (stream, _("\
13616 -mindex-reg support pseudo index registers\n"));
13617 fprintf (stream, _("\
13618 -mnaked-reg don't require `%%' prefix for registers\n"));
13619 fprintf (stream, _("\
13620 -madd-bnd-prefix add BND prefix for all valid branches\n"));
13621 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13622 fprintf (stream, _("\
13623 -mshared disable branch optimization for shared code\n"));
13624 fprintf (stream, _("\
13625 -mx86-used-note=[no|yes] "));
13626 if (DEFAULT_X86_USED_NOTE)
13627 fprintf (stream, _("(default: yes)\n"));
13628 else
13629 fprintf (stream, _("(default: no)\n"));
13630 fprintf (stream, _("\
13631 generate x86 used ISA and feature properties\n"));
13632 #endif
13633 #if defined (TE_PE) || defined (TE_PEP)
13634 fprintf (stream, _("\
13635 -mbig-obj generate big object files\n"));
13636 #endif
13637 fprintf (stream, _("\
13638 -momit-lock-prefix=[no|yes] (default: no)\n\
13639 strip all lock prefixes\n"));
13640 fprintf (stream, _("\
13641 -mfence-as-lock-add=[no|yes] (default: no)\n\
13642 encode lfence, mfence and sfence as\n\
13643 lock addl $0x0, (%%{re}sp)\n"));
13644 fprintf (stream, _("\
13645 -mrelax-relocations=[no|yes] "));
13646 if (DEFAULT_GENERATE_X86_RELAX_RELOCATIONS)
13647 fprintf (stream, _("(default: yes)\n"));
13648 else
13649 fprintf (stream, _("(default: no)\n"));
13650 fprintf (stream, _("\
13651 generate relax relocations\n"));
13652 fprintf (stream, _("\
13653 -malign-branch-boundary=NUM (default: 0)\n\
13654 align branches within NUM byte boundary\n"));
13655 fprintf (stream, _("\
13656 -malign-branch=TYPE[+TYPE...] (default: jcc+fused+jmp)\n\
13657 TYPE is combination of jcc, fused, jmp, call, ret,\n\
13658 indirect\n\
13659 specify types of branches to align\n"));
13660 fprintf (stream, _("\
13661 -malign-branch-prefix-size=NUM (default: 5)\n\
13662 align branches with NUM prefixes per instruction\n"));
13663 fprintf (stream, _("\
13664 -mbranches-within-32B-boundaries\n\
13665 align branches within 32 byte boundary\n"));
13666 fprintf (stream, _("\
13667 -mlfence-after-load=[no|yes] (default: no)\n\
13668 generate lfence after load\n"));
13669 fprintf (stream, _("\
13670 -mlfence-before-indirect-branch=[none|all|register|memory] (default: none)\n\
13671 generate lfence before indirect near branch\n"));
13672 fprintf (stream, _("\
13673 -mlfence-before-ret=[none|or|not|shl|yes] (default: none)\n\
13674 generate lfence before ret\n"));
13675 fprintf (stream, _("\
13676 -mamd64 accept only AMD64 ISA [default]\n"));
13677 fprintf (stream, _("\
13678 -mintel64 accept only Intel64 ISA\n"));
13679 }
13680
13681 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
13682 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
13683 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
13684
13685 /* Pick the target format to use. */
13686
13687 const char *
13688 i386_target_format (void)
13689 {
13690 if (!strncmp (default_arch, "x86_64", 6))
13691 {
13692 update_code_flag (CODE_64BIT, 1);
13693 if (default_arch[6] == '\0')
13694 x86_elf_abi = X86_64_ABI;
13695 else
13696 x86_elf_abi = X86_64_X32_ABI;
13697 }
13698 else if (!strcmp (default_arch, "i386"))
13699 update_code_flag (CODE_32BIT, 1);
13700 else if (!strcmp (default_arch, "iamcu"))
13701 {
13702 update_code_flag (CODE_32BIT, 1);
13703 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
13704 {
13705 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
13706 cpu_arch_name = "iamcu";
13707 cpu_sub_arch_name = NULL;
13708 cpu_arch_flags = iamcu_flags;
13709 cpu_arch_isa = PROCESSOR_IAMCU;
13710 cpu_arch_isa_flags = iamcu_flags;
13711 if (!cpu_arch_tune_set)
13712 {
13713 cpu_arch_tune = cpu_arch_isa;
13714 cpu_arch_tune_flags = cpu_arch_isa_flags;
13715 }
13716 }
13717 else if (cpu_arch_isa != PROCESSOR_IAMCU)
13718 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
13719 cpu_arch_name);
13720 }
13721 else
13722 as_fatal (_("unknown architecture"));
13723
13724 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
13725 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13726 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
13727 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
13728
13729 switch (OUTPUT_FLAVOR)
13730 {
13731 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
13732 case bfd_target_aout_flavour:
13733 return AOUT_TARGET_FORMAT;
13734 #endif
13735 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
13736 # if defined (TE_PE) || defined (TE_PEP)
13737 case bfd_target_coff_flavour:
13738 if (flag_code == CODE_64BIT)
13739 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
13740 else
13741 return use_big_obj ? "pe-bigobj-i386" : "pe-i386";
13742 # elif defined (TE_GO32)
13743 case bfd_target_coff_flavour:
13744 return "coff-go32";
13745 # else
13746 case bfd_target_coff_flavour:
13747 return "coff-i386";
13748 # endif
13749 #endif
13750 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
13751 case bfd_target_elf_flavour:
13752 {
13753 const char *format;
13754
13755 switch (x86_elf_abi)
13756 {
13757 default:
13758 format = ELF_TARGET_FORMAT;
13759 #ifndef TE_SOLARIS
13760 tls_get_addr = "___tls_get_addr";
13761 #endif
13762 break;
13763 case X86_64_ABI:
13764 use_rela_relocations = 1;
13765 object_64bit = 1;
13766 #ifndef TE_SOLARIS
13767 tls_get_addr = "__tls_get_addr";
13768 #endif
13769 format = ELF_TARGET_FORMAT64;
13770 break;
13771 case X86_64_X32_ABI:
13772 use_rela_relocations = 1;
13773 object_64bit = 1;
13774 #ifndef TE_SOLARIS
13775 tls_get_addr = "__tls_get_addr";
13776 #endif
13777 disallow_64bit_reloc = 1;
13778 format = ELF_TARGET_FORMAT32;
13779 break;
13780 }
13781 if (cpu_arch_isa == PROCESSOR_L1OM)
13782 {
13783 if (x86_elf_abi != X86_64_ABI)
13784 as_fatal (_("Intel L1OM is 64bit only"));
13785 return ELF_TARGET_L1OM_FORMAT;
13786 }
13787 else if (cpu_arch_isa == PROCESSOR_K1OM)
13788 {
13789 if (x86_elf_abi != X86_64_ABI)
13790 as_fatal (_("Intel K1OM is 64bit only"));
13791 return ELF_TARGET_K1OM_FORMAT;
13792 }
13793 else if (cpu_arch_isa == PROCESSOR_IAMCU)
13794 {
13795 if (x86_elf_abi != I386_ABI)
13796 as_fatal (_("Intel MCU is 32bit only"));
13797 return ELF_TARGET_IAMCU_FORMAT;
13798 }
13799 else
13800 return format;
13801 }
13802 #endif
13803 #if defined (OBJ_MACH_O)
13804 case bfd_target_mach_o_flavour:
13805 if (flag_code == CODE_64BIT)
13806 {
13807 use_rela_relocations = 1;
13808 object_64bit = 1;
13809 return "mach-o-x86-64";
13810 }
13811 else
13812 return "mach-o-i386";
13813 #endif
13814 default:
13815 abort ();
13816 return NULL;
13817 }
13818 }
13819
13820 #endif /* OBJ_MAYBE_ more than one */
13821 \f
13822 symbolS *
13823 md_undefined_symbol (char *name)
13824 {
13825 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
13826 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
13827 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
13828 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
13829 {
13830 if (!GOT_symbol)
13831 {
13832 if (symbol_find (name))
13833 as_bad (_("GOT already in symbol table"));
13834 GOT_symbol = symbol_new (name, undefined_section,
13835 &zero_address_frag, 0);
13836 };
13837 return GOT_symbol;
13838 }
13839 return 0;
13840 }
13841
13842 /* Round up a section size to the appropriate boundary. */
13843
13844 valueT
13845 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
13846 {
13847 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
13848 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
13849 {
13850 /* For a.out, force the section size to be aligned. If we don't do
13851 this, BFD will align it for us, but it will not write out the
13852 final bytes of the section. This may be a bug in BFD, but it is
13853 easier to fix it here since that is how the other a.out targets
13854 work. */
13855 int align;
13856
13857 align = bfd_section_alignment (segment);
13858 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
13859 }
13860 #endif
13861
13862 return size;
13863 }
13864
13865 /* On the i386, PC-relative offsets are relative to the start of the
13866 next instruction. That is, the address of the offset, plus its
13867 size, since the offset is always the last part of the insn. */
13868
13869 long
13870 md_pcrel_from (fixS *fixP)
13871 {
13872 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
13873 }
13874
13875 #ifndef I386COFF
13876
13877 static void
13878 s_bss (int ignore ATTRIBUTE_UNUSED)
13879 {
13880 int temp;
13881
13882 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13883 if (IS_ELF)
13884 obj_elf_section_change_hook ();
13885 #endif
13886 temp = get_absolute_expression ();
13887 subseg_set (bss_section, (subsegT) temp);
13888 demand_empty_rest_of_line ();
13889 }
13890
13891 #endif
13892
13893 /* Remember constant directive. */
13894
13895 void
13896 i386_cons_align (int ignore ATTRIBUTE_UNUSED)
13897 {
13898 if (last_insn.kind != last_insn_directive
13899 && (bfd_section_flags (now_seg) & SEC_CODE))
13900 {
13901 last_insn.seg = now_seg;
13902 last_insn.kind = last_insn_directive;
13903 last_insn.name = "constant directive";
13904 last_insn.file = as_where (&last_insn.line);
13905 if (lfence_before_ret != lfence_before_ret_none)
13906 {
13907 if (lfence_before_indirect_branch != lfence_branch_none)
13908 as_warn (_("constant directive skips -mlfence-before-ret "
13909 "and -mlfence-before-indirect-branch"));
13910 else
13911 as_warn (_("constant directive skips -mlfence-before-ret"));
13912 }
13913 else if (lfence_before_indirect_branch != lfence_branch_none)
13914 as_warn (_("constant directive skips -mlfence-before-indirect-branch"));
13915 }
13916 }
13917
13918 void
13919 i386_validate_fix (fixS *fixp)
13920 {
13921 if (fixp->fx_subsy)
13922 {
13923 if (fixp->fx_subsy == GOT_symbol)
13924 {
13925 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
13926 {
13927 if (!object_64bit)
13928 abort ();
13929 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13930 if (fixp->fx_tcbit2)
13931 fixp->fx_r_type = (fixp->fx_tcbit
13932 ? BFD_RELOC_X86_64_REX_GOTPCRELX
13933 : BFD_RELOC_X86_64_GOTPCRELX);
13934 else
13935 #endif
13936 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
13937 }
13938 else
13939 {
13940 if (!object_64bit)
13941 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
13942 else
13943 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
13944 }
13945 fixp->fx_subsy = 0;
13946 }
13947 }
13948 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13949 else
13950 {
13951 /* NB: Commit 292676c1 resolved PLT32 reloc aganst local symbol
13952 to section. Since PLT32 relocation must be against symbols,
13953 turn such PLT32 relocation into PC32 relocation. */
13954 if (fixp->fx_addsy
13955 && (fixp->fx_r_type == BFD_RELOC_386_PLT32
13956 || fixp->fx_r_type == BFD_RELOC_X86_64_PLT32)
13957 && symbol_section_p (fixp->fx_addsy))
13958 fixp->fx_r_type = BFD_RELOC_32_PCREL;
13959 if (!object_64bit)
13960 {
13961 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
13962 && fixp->fx_tcbit2)
13963 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
13964 }
13965 }
13966 #endif
13967 }
13968
13969 arelent *
13970 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
13971 {
13972 arelent *rel;
13973 bfd_reloc_code_real_type code;
13974
13975 switch (fixp->fx_r_type)
13976 {
13977 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
13978 case BFD_RELOC_SIZE32:
13979 case BFD_RELOC_SIZE64:
13980 if (S_IS_DEFINED (fixp->fx_addsy)
13981 && !S_IS_EXTERNAL (fixp->fx_addsy))
13982 {
13983 /* Resolve size relocation against local symbol to size of
13984 the symbol plus addend. */
13985 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
13986 if (fixp->fx_r_type == BFD_RELOC_SIZE32
13987 && !fits_in_unsigned_long (value))
13988 as_bad_where (fixp->fx_file, fixp->fx_line,
13989 _("symbol size computation overflow"));
13990 fixp->fx_addsy = NULL;
13991 fixp->fx_subsy = NULL;
13992 md_apply_fix (fixp, (valueT *) &value, NULL);
13993 return NULL;
13994 }
13995 #endif
13996 /* Fall through. */
13997
13998 case BFD_RELOC_X86_64_PLT32:
13999 case BFD_RELOC_X86_64_GOT32:
14000 case BFD_RELOC_X86_64_GOTPCREL:
14001 case BFD_RELOC_X86_64_GOTPCRELX:
14002 case BFD_RELOC_X86_64_REX_GOTPCRELX:
14003 case BFD_RELOC_386_PLT32:
14004 case BFD_RELOC_386_GOT32:
14005 case BFD_RELOC_386_GOT32X:
14006 case BFD_RELOC_386_GOTOFF:
14007 case BFD_RELOC_386_GOTPC:
14008 case BFD_RELOC_386_TLS_GD:
14009 case BFD_RELOC_386_TLS_LDM:
14010 case BFD_RELOC_386_TLS_LDO_32:
14011 case BFD_RELOC_386_TLS_IE_32:
14012 case BFD_RELOC_386_TLS_IE:
14013 case BFD_RELOC_386_TLS_GOTIE:
14014 case BFD_RELOC_386_TLS_LE_32:
14015 case BFD_RELOC_386_TLS_LE:
14016 case BFD_RELOC_386_TLS_GOTDESC:
14017 case BFD_RELOC_386_TLS_DESC_CALL:
14018 case BFD_RELOC_X86_64_TLSGD:
14019 case BFD_RELOC_X86_64_TLSLD:
14020 case BFD_RELOC_X86_64_DTPOFF32:
14021 case BFD_RELOC_X86_64_DTPOFF64:
14022 case BFD_RELOC_X86_64_GOTTPOFF:
14023 case BFD_RELOC_X86_64_TPOFF32:
14024 case BFD_RELOC_X86_64_TPOFF64:
14025 case BFD_RELOC_X86_64_GOTOFF64:
14026 case BFD_RELOC_X86_64_GOTPC32:
14027 case BFD_RELOC_X86_64_GOT64:
14028 case BFD_RELOC_X86_64_GOTPCREL64:
14029 case BFD_RELOC_X86_64_GOTPC64:
14030 case BFD_RELOC_X86_64_GOTPLT64:
14031 case BFD_RELOC_X86_64_PLTOFF64:
14032 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
14033 case BFD_RELOC_X86_64_TLSDESC_CALL:
14034 case BFD_RELOC_RVA:
14035 case BFD_RELOC_VTABLE_ENTRY:
14036 case BFD_RELOC_VTABLE_INHERIT:
14037 #ifdef TE_PE
14038 case BFD_RELOC_32_SECREL:
14039 #endif
14040 code = fixp->fx_r_type;
14041 break;
14042 case BFD_RELOC_X86_64_32S:
14043 if (!fixp->fx_pcrel)
14044 {
14045 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
14046 code = fixp->fx_r_type;
14047 break;
14048 }
14049 /* Fall through. */
14050 default:
14051 if (fixp->fx_pcrel)
14052 {
14053 switch (fixp->fx_size)
14054 {
14055 default:
14056 as_bad_where (fixp->fx_file, fixp->fx_line,
14057 _("can not do %d byte pc-relative relocation"),
14058 fixp->fx_size);
14059 code = BFD_RELOC_32_PCREL;
14060 break;
14061 case 1: code = BFD_RELOC_8_PCREL; break;
14062 case 2: code = BFD_RELOC_16_PCREL; break;
14063 case 4: code = BFD_RELOC_32_PCREL; break;
14064 #ifdef BFD64
14065 case 8: code = BFD_RELOC_64_PCREL; break;
14066 #endif
14067 }
14068 }
14069 else
14070 {
14071 switch (fixp->fx_size)
14072 {
14073 default:
14074 as_bad_where (fixp->fx_file, fixp->fx_line,
14075 _("can not do %d byte relocation"),
14076 fixp->fx_size);
14077 code = BFD_RELOC_32;
14078 break;
14079 case 1: code = BFD_RELOC_8; break;
14080 case 2: code = BFD_RELOC_16; break;
14081 case 4: code = BFD_RELOC_32; break;
14082 #ifdef BFD64
14083 case 8: code = BFD_RELOC_64; break;
14084 #endif
14085 }
14086 }
14087 break;
14088 }
14089
14090 if ((code == BFD_RELOC_32
14091 || code == BFD_RELOC_32_PCREL
14092 || code == BFD_RELOC_X86_64_32S)
14093 && GOT_symbol
14094 && fixp->fx_addsy == GOT_symbol)
14095 {
14096 if (!object_64bit)
14097 code = BFD_RELOC_386_GOTPC;
14098 else
14099 code = BFD_RELOC_X86_64_GOTPC32;
14100 }
14101 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
14102 && GOT_symbol
14103 && fixp->fx_addsy == GOT_symbol)
14104 {
14105 code = BFD_RELOC_X86_64_GOTPC64;
14106 }
14107
14108 rel = XNEW (arelent);
14109 rel->sym_ptr_ptr = XNEW (asymbol *);
14110 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
14111
14112 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
14113
14114 if (!use_rela_relocations)
14115 {
14116 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
14117 vtable entry to be used in the relocation's section offset. */
14118 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
14119 rel->address = fixp->fx_offset;
14120 #if defined (OBJ_COFF) && defined (TE_PE)
14121 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
14122 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
14123 else
14124 #endif
14125 rel->addend = 0;
14126 }
14127 /* Use the rela in 64bit mode. */
14128 else
14129 {
14130 if (disallow_64bit_reloc)
14131 switch (code)
14132 {
14133 case BFD_RELOC_X86_64_DTPOFF64:
14134 case BFD_RELOC_X86_64_TPOFF64:
14135 case BFD_RELOC_64_PCREL:
14136 case BFD_RELOC_X86_64_GOTOFF64:
14137 case BFD_RELOC_X86_64_GOT64:
14138 case BFD_RELOC_X86_64_GOTPCREL64:
14139 case BFD_RELOC_X86_64_GOTPC64:
14140 case BFD_RELOC_X86_64_GOTPLT64:
14141 case BFD_RELOC_X86_64_PLTOFF64:
14142 as_bad_where (fixp->fx_file, fixp->fx_line,
14143 _("cannot represent relocation type %s in x32 mode"),
14144 bfd_get_reloc_code_name (code));
14145 break;
14146 default:
14147 break;
14148 }
14149
14150 if (!fixp->fx_pcrel)
14151 rel->addend = fixp->fx_offset;
14152 else
14153 switch (code)
14154 {
14155 case BFD_RELOC_X86_64_PLT32:
14156 case BFD_RELOC_X86_64_GOT32:
14157 case BFD_RELOC_X86_64_GOTPCREL:
14158 case BFD_RELOC_X86_64_GOTPCRELX:
14159 case BFD_RELOC_X86_64_REX_GOTPCRELX:
14160 case BFD_RELOC_X86_64_TLSGD:
14161 case BFD_RELOC_X86_64_TLSLD:
14162 case BFD_RELOC_X86_64_GOTTPOFF:
14163 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
14164 case BFD_RELOC_X86_64_TLSDESC_CALL:
14165 rel->addend = fixp->fx_offset - fixp->fx_size;
14166 break;
14167 default:
14168 rel->addend = (section->vma
14169 - fixp->fx_size
14170 + fixp->fx_addnumber
14171 + md_pcrel_from (fixp));
14172 break;
14173 }
14174 }
14175
14176 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
14177 if (rel->howto == NULL)
14178 {
14179 as_bad_where (fixp->fx_file, fixp->fx_line,
14180 _("cannot represent relocation type %s"),
14181 bfd_get_reloc_code_name (code));
14182 /* Set howto to a garbage value so that we can keep going. */
14183 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
14184 gas_assert (rel->howto != NULL);
14185 }
14186
14187 return rel;
14188 }
14189
14190 #include "tc-i386-intel.c"
14191
14192 void
14193 tc_x86_parse_to_dw2regnum (expressionS *exp)
14194 {
14195 int saved_naked_reg;
14196 char saved_register_dot;
14197
14198 saved_naked_reg = allow_naked_reg;
14199 allow_naked_reg = 1;
14200 saved_register_dot = register_chars['.'];
14201 register_chars['.'] = '.';
14202 allow_pseudo_reg = 1;
14203 expression_and_evaluate (exp);
14204 allow_pseudo_reg = 0;
14205 register_chars['.'] = saved_register_dot;
14206 allow_naked_reg = saved_naked_reg;
14207
14208 if (exp->X_op == O_register && exp->X_add_number >= 0)
14209 {
14210 if ((addressT) exp->X_add_number < i386_regtab_size)
14211 {
14212 exp->X_op = O_constant;
14213 exp->X_add_number = i386_regtab[exp->X_add_number]
14214 .dw2_regnum[flag_code >> 1];
14215 }
14216 else
14217 exp->X_op = O_illegal;
14218 }
14219 }
14220
14221 void
14222 tc_x86_frame_initial_instructions (void)
14223 {
14224 static unsigned int sp_regno[2];
14225
14226 if (!sp_regno[flag_code >> 1])
14227 {
14228 char *saved_input = input_line_pointer;
14229 char sp[][4] = {"esp", "rsp"};
14230 expressionS exp;
14231
14232 input_line_pointer = sp[flag_code >> 1];
14233 tc_x86_parse_to_dw2regnum (&exp);
14234 gas_assert (exp.X_op == O_constant);
14235 sp_regno[flag_code >> 1] = exp.X_add_number;
14236 input_line_pointer = saved_input;
14237 }
14238
14239 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
14240 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
14241 }
14242
14243 int
14244 x86_dwarf2_addr_size (void)
14245 {
14246 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
14247 if (x86_elf_abi == X86_64_X32_ABI)
14248 return 4;
14249 #endif
14250 return bfd_arch_bits_per_address (stdoutput) / 8;
14251 }
14252
14253 int
14254 i386_elf_section_type (const char *str, size_t len)
14255 {
14256 if (flag_code == CODE_64BIT
14257 && len == sizeof ("unwind") - 1
14258 && strncmp (str, "unwind", 6) == 0)
14259 return SHT_X86_64_UNWIND;
14260
14261 return -1;
14262 }
14263
14264 #ifdef TE_SOLARIS
14265 void
14266 i386_solaris_fix_up_eh_frame (segT sec)
14267 {
14268 if (flag_code == CODE_64BIT)
14269 elf_section_type (sec) = SHT_X86_64_UNWIND;
14270 }
14271 #endif
14272
14273 #ifdef TE_PE
14274 void
14275 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
14276 {
14277 expressionS exp;
14278
14279 exp.X_op = O_secrel;
14280 exp.X_add_symbol = symbol;
14281 exp.X_add_number = 0;
14282 emit_expr (&exp, size);
14283 }
14284 #endif
14285
14286 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
14287 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
14288
14289 bfd_vma
14290 x86_64_section_letter (int letter, const char **ptr_msg)
14291 {
14292 if (flag_code == CODE_64BIT)
14293 {
14294 if (letter == 'l')
14295 return SHF_X86_64_LARGE;
14296
14297 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
14298 }
14299 else
14300 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
14301 return -1;
14302 }
14303
14304 bfd_vma
14305 x86_64_section_word (char *str, size_t len)
14306 {
14307 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
14308 return SHF_X86_64_LARGE;
14309
14310 return -1;
14311 }
14312
14313 static void
14314 handle_large_common (int small ATTRIBUTE_UNUSED)
14315 {
14316 if (flag_code != CODE_64BIT)
14317 {
14318 s_comm_internal (0, elf_common_parse);
14319 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
14320 }
14321 else
14322 {
14323 static segT lbss_section;
14324 asection *saved_com_section_ptr = elf_com_section_ptr;
14325 asection *saved_bss_section = bss_section;
14326
14327 if (lbss_section == NULL)
14328 {
14329 flagword applicable;
14330 segT seg = now_seg;
14331 subsegT subseg = now_subseg;
14332
14333 /* The .lbss section is for local .largecomm symbols. */
14334 lbss_section = subseg_new (".lbss", 0);
14335 applicable = bfd_applicable_section_flags (stdoutput);
14336 bfd_set_section_flags (lbss_section, applicable & SEC_ALLOC);
14337 seg_info (lbss_section)->bss = 1;
14338
14339 subseg_set (seg, subseg);
14340 }
14341
14342 elf_com_section_ptr = &_bfd_elf_large_com_section;
14343 bss_section = lbss_section;
14344
14345 s_comm_internal (0, elf_common_parse);
14346
14347 elf_com_section_ptr = saved_com_section_ptr;
14348 bss_section = saved_bss_section;
14349 }
14350 }
14351 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.306762 seconds and 5 git commands to generate.