Add R_X86_64_PC32_BND and R_X86_64_PLT32_BND
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011,
4 2012
5 Free Software Foundation, Inc.
6
7 This file is part of GAS, the GNU Assembler.
8
9 GAS is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GAS is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GAS; see the file COPYING. If not, write to the Free
21 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
22 02110-1301, USA. */
23
24 /* Intel 80386 machine specific gas.
25 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
26 x86_64 support by Jan Hubicka (jh@suse.cz)
27 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
28 Bugs & suggestions are completely welcome. This is free software.
29 Please help us make it better. */
30
31 #include "as.h"
32 #include "safe-ctype.h"
33 #include "subsegs.h"
34 #include "dwarf2dbg.h"
35 #include "dw2gencfi.h"
36 #include "elf/x86-64.h"
37 #include "opcodes/i386-init.h"
38
39 #ifndef REGISTER_WARNINGS
40 #define REGISTER_WARNINGS 1
41 #endif
42
43 #ifndef INFER_ADDR_PREFIX
44 #define INFER_ADDR_PREFIX 1
45 #endif
46
47 #ifndef DEFAULT_ARCH
48 #define DEFAULT_ARCH "i386"
49 #endif
50
51 #ifndef INLINE
52 #if __GNUC__ >= 2
53 #define INLINE __inline__
54 #else
55 #define INLINE
56 #endif
57 #endif
58
59 /* Prefixes will be emitted in the order defined below.
60 WAIT_PREFIX must be the first prefix since FWAIT is really is an
61 instruction, and so must come before any prefixes.
62 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
63 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
64 #define WAIT_PREFIX 0
65 #define SEG_PREFIX 1
66 #define ADDR_PREFIX 2
67 #define DATA_PREFIX 3
68 #define REP_PREFIX 4
69 #define HLE_PREFIX REP_PREFIX
70 #define BND_PREFIX REP_PREFIX
71 #define LOCK_PREFIX 5
72 #define REX_PREFIX 6 /* must come last. */
73 #define MAX_PREFIXES 7 /* max prefixes per opcode */
74
75 /* we define the syntax here (modulo base,index,scale syntax) */
76 #define REGISTER_PREFIX '%'
77 #define IMMEDIATE_PREFIX '$'
78 #define ABSOLUTE_PREFIX '*'
79
80 /* these are the instruction mnemonic suffixes in AT&T syntax or
81 memory operand size in Intel syntax. */
82 #define WORD_MNEM_SUFFIX 'w'
83 #define BYTE_MNEM_SUFFIX 'b'
84 #define SHORT_MNEM_SUFFIX 's'
85 #define LONG_MNEM_SUFFIX 'l'
86 #define QWORD_MNEM_SUFFIX 'q'
87 #define XMMWORD_MNEM_SUFFIX 'x'
88 #define YMMWORD_MNEM_SUFFIX 'y'
89 #define ZMMWORD_MNEM_SUFFIX 'z'
90 /* Intel Syntax. Use a non-ascii letter since since it never appears
91 in instructions. */
92 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
93
94 #define END_OF_INSN '\0'
95
96 /*
97 'templates' is for grouping together 'template' structures for opcodes
98 of the same name. This is only used for storing the insns in the grand
99 ole hash table of insns.
100 The templates themselves start at START and range up to (but not including)
101 END.
102 */
103 typedef struct
104 {
105 const insn_template *start;
106 const insn_template *end;
107 }
108 templates;
109
110 /* 386 operand encoding bytes: see 386 book for details of this. */
111 typedef struct
112 {
113 unsigned int regmem; /* codes register or memory operand */
114 unsigned int reg; /* codes register operand (or extended opcode) */
115 unsigned int mode; /* how to interpret regmem & reg */
116 }
117 modrm_byte;
118
119 /* x86-64 extension prefix. */
120 typedef int rex_byte;
121
122 /* 386 opcode byte to code indirect addressing. */
123 typedef struct
124 {
125 unsigned base;
126 unsigned index;
127 unsigned scale;
128 }
129 sib_byte;
130
131 /* x86 arch names, types and features */
132 typedef struct
133 {
134 const char *name; /* arch name */
135 unsigned int len; /* arch string length */
136 enum processor_type type; /* arch type */
137 i386_cpu_flags flags; /* cpu feature flags */
138 unsigned int skip; /* show_arch should skip this. */
139 unsigned int negated; /* turn off indicated flags. */
140 }
141 arch_entry;
142
143 static void update_code_flag (int, int);
144 static void set_code_flag (int);
145 static void set_16bit_gcc_code_flag (int);
146 static void set_intel_syntax (int);
147 static void set_intel_mnemonic (int);
148 static void set_allow_index_reg (int);
149 static void set_check (int);
150 static void set_cpu_arch (int);
151 #ifdef TE_PE
152 static void pe_directive_secrel (int);
153 #endif
154 static void signed_cons (int);
155 static char *output_invalid (int c);
156 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
157 const char *);
158 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
159 const char *);
160 static int i386_att_operand (char *);
161 static int i386_intel_operand (char *, int);
162 static int i386_intel_simplify (expressionS *);
163 static int i386_intel_parse_name (const char *, expressionS *);
164 static const reg_entry *parse_register (char *, char **);
165 static char *parse_insn (char *, char *);
166 static char *parse_operands (char *, const char *);
167 static void swap_operands (void);
168 static void swap_2_operands (int, int);
169 static void optimize_imm (void);
170 static void optimize_disp (void);
171 static const insn_template *match_template (void);
172 static int check_string (void);
173 static int process_suffix (void);
174 static int check_byte_reg (void);
175 static int check_long_reg (void);
176 static int check_qword_reg (void);
177 static int check_word_reg (void);
178 static int finalize_imm (void);
179 static int process_operands (void);
180 static const seg_entry *build_modrm_byte (void);
181 static void output_insn (void);
182 static void output_imm (fragS *, offsetT);
183 static void output_disp (fragS *, offsetT);
184 #ifndef I386COFF
185 static void s_bss (int);
186 #endif
187 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
188 static void handle_large_common (int small ATTRIBUTE_UNUSED);
189 #endif
190
191 static const char *default_arch = DEFAULT_ARCH;
192
193 /* This struct describes rounding control and SAE in the instruction. */
194 struct RC_Operation
195 {
196 enum rc_type
197 {
198 rne = 0,
199 rd,
200 ru,
201 rz,
202 saeonly
203 } type;
204 int operand;
205 };
206
207 static struct RC_Operation rc_op;
208
209 /* The struct describes masking, applied to OPERAND in the instruction.
210 MASK is a pointer to the corresponding mask register. ZEROING tells
211 whether merging or zeroing mask is used. */
212 struct Mask_Operation
213 {
214 const reg_entry *mask;
215 unsigned int zeroing;
216 /* The operand where this operation is associated. */
217 int operand;
218 };
219
220 static struct Mask_Operation mask_op;
221
222 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
223 broadcast factor. */
224 struct Broadcast_Operation
225 {
226 /* Type of broadcast: no broadcast, {1to8}, or {1to16}. */
227 int type;
228
229 /* Index of broadcasted operand. */
230 int operand;
231 };
232
233 static struct Broadcast_Operation broadcast_op;
234
235 /* VEX prefix. */
236 typedef struct
237 {
238 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
239 unsigned char bytes[4];
240 unsigned int length;
241 /* Destination or source register specifier. */
242 const reg_entry *register_specifier;
243 } vex_prefix;
244
245 /* 'md_assemble ()' gathers together information and puts it into a
246 i386_insn. */
247
248 union i386_op
249 {
250 expressionS *disps;
251 expressionS *imms;
252 const reg_entry *regs;
253 };
254
255 enum i386_error
256 {
257 operand_size_mismatch,
258 operand_type_mismatch,
259 register_type_mismatch,
260 number_of_operands_mismatch,
261 invalid_instruction_suffix,
262 bad_imm4,
263 old_gcc_only,
264 unsupported_with_intel_mnemonic,
265 unsupported_syntax,
266 unsupported,
267 invalid_vsib_address,
268 invalid_vector_register_set,
269 unsupported_vector_index_register,
270 unsupported_broadcast,
271 broadcast_not_on_src_operand,
272 broadcast_needed,
273 unsupported_masking,
274 mask_not_on_destination,
275 no_default_mask,
276 unsupported_rc_sae,
277 rc_sae_operand_not_last_imm,
278 invalid_register_operand,
279 try_vector_disp8
280 };
281
282 struct _i386_insn
283 {
284 /* TM holds the template for the insn were currently assembling. */
285 insn_template tm;
286
287 /* SUFFIX holds the instruction size suffix for byte, word, dword
288 or qword, if given. */
289 char suffix;
290
291 /* OPERANDS gives the number of given operands. */
292 unsigned int operands;
293
294 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
295 of given register, displacement, memory operands and immediate
296 operands. */
297 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
298
299 /* TYPES [i] is the type (see above #defines) which tells us how to
300 use OP[i] for the corresponding operand. */
301 i386_operand_type types[MAX_OPERANDS];
302
303 /* Displacement expression, immediate expression, or register for each
304 operand. */
305 union i386_op op[MAX_OPERANDS];
306
307 /* Flags for operands. */
308 unsigned int flags[MAX_OPERANDS];
309 #define Operand_PCrel 1
310
311 /* Relocation type for operand */
312 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
313
314 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
315 the base index byte below. */
316 const reg_entry *base_reg;
317 const reg_entry *index_reg;
318 unsigned int log2_scale_factor;
319
320 /* SEG gives the seg_entries of this insn. They are zero unless
321 explicit segment overrides are given. */
322 const seg_entry *seg[2];
323
324 /* PREFIX holds all the given prefix opcodes (usually null).
325 PREFIXES is the number of prefix opcodes. */
326 unsigned int prefixes;
327 unsigned char prefix[MAX_PREFIXES];
328
329 /* RM and SIB are the modrm byte and the sib byte where the
330 addressing modes of this insn are encoded. */
331 modrm_byte rm;
332 rex_byte rex;
333 rex_byte vrex;
334 sib_byte sib;
335 vex_prefix vex;
336
337 /* Masking attributes. */
338 struct Mask_Operation *mask;
339
340 /* Rounding control and SAE attributes. */
341 struct RC_Operation *rounding;
342
343 /* Broadcasting attributes. */
344 struct Broadcast_Operation *broadcast;
345
346 /* Compressed disp8*N attribute. */
347 unsigned int memshift;
348
349 /* Swap operand in encoding. */
350 unsigned int swap_operand;
351
352 /* Prefer 8bit or 32bit displacement in encoding. */
353 enum
354 {
355 disp_encoding_default = 0,
356 disp_encoding_8bit,
357 disp_encoding_32bit
358 } disp_encoding;
359
360 /* REP prefix. */
361 const char *rep_prefix;
362
363 /* HLE prefix. */
364 const char *hle_prefix;
365
366 /* Have BND prefix. */
367 const char *bnd_prefix;
368
369 /* Need VREX to support upper 16 registers. */
370 int need_vrex;
371
372 /* Error message. */
373 enum i386_error error;
374 };
375
376 typedef struct _i386_insn i386_insn;
377
378 /* Link RC type with corresponding string, that'll be looked for in
379 asm. */
380 struct RC_name
381 {
382 enum rc_type type;
383 const char *name;
384 unsigned int len;
385 };
386
387 static const struct RC_name RC_NamesTable[] =
388 {
389 { rne, STRING_COMMA_LEN ("rn-sae") },
390 { rd, STRING_COMMA_LEN ("rd-sae") },
391 { ru, STRING_COMMA_LEN ("ru-sae") },
392 { rz, STRING_COMMA_LEN ("rz-sae") },
393 { saeonly, STRING_COMMA_LEN ("sae") },
394 };
395
396 /* List of chars besides those in app.c:symbol_chars that can start an
397 operand. Used to prevent the scrubber eating vital white-space. */
398 const char extra_symbol_chars[] = "*%-([{"
399 #ifdef LEX_AT
400 "@"
401 #endif
402 #ifdef LEX_QM
403 "?"
404 #endif
405 ;
406
407 #if (defined (TE_I386AIX) \
408 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
409 && !defined (TE_GNU) \
410 && !defined (TE_LINUX) \
411 && !defined (TE_NACL) \
412 && !defined (TE_NETWARE) \
413 && !defined (TE_FreeBSD) \
414 && !defined (TE_DragonFly) \
415 && !defined (TE_NetBSD)))
416 /* This array holds the chars that always start a comment. If the
417 pre-processor is disabled, these aren't very useful. The option
418 --divide will remove '/' from this list. */
419 const char *i386_comment_chars = "#/";
420 #define SVR4_COMMENT_CHARS 1
421 #define PREFIX_SEPARATOR '\\'
422
423 #else
424 const char *i386_comment_chars = "#";
425 #define PREFIX_SEPARATOR '/'
426 #endif
427
428 /* This array holds the chars that only start a comment at the beginning of
429 a line. If the line seems to have the form '# 123 filename'
430 .line and .file directives will appear in the pre-processed output.
431 Note that input_file.c hand checks for '#' at the beginning of the
432 first line of the input file. This is because the compiler outputs
433 #NO_APP at the beginning of its output.
434 Also note that comments started like this one will always work if
435 '/' isn't otherwise defined. */
436 const char line_comment_chars[] = "#/";
437
438 const char line_separator_chars[] = ";";
439
440 /* Chars that can be used to separate mant from exp in floating point
441 nums. */
442 const char EXP_CHARS[] = "eE";
443
444 /* Chars that mean this number is a floating point constant
445 As in 0f12.456
446 or 0d1.2345e12. */
447 const char FLT_CHARS[] = "fFdDxX";
448
449 /* Tables for lexical analysis. */
450 static char mnemonic_chars[256];
451 static char register_chars[256];
452 static char operand_chars[256];
453 static char identifier_chars[256];
454 static char digit_chars[256];
455
456 /* Lexical macros. */
457 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
458 #define is_operand_char(x) (operand_chars[(unsigned char) x])
459 #define is_register_char(x) (register_chars[(unsigned char) x])
460 #define is_space_char(x) ((x) == ' ')
461 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
462 #define is_digit_char(x) (digit_chars[(unsigned char) x])
463
464 /* All non-digit non-letter characters that may occur in an operand. */
465 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
466
467 /* md_assemble() always leaves the strings it's passed unaltered. To
468 effect this we maintain a stack of saved characters that we've smashed
469 with '\0's (indicating end of strings for various sub-fields of the
470 assembler instruction). */
471 static char save_stack[32];
472 static char *save_stack_p;
473 #define END_STRING_AND_SAVE(s) \
474 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
475 #define RESTORE_END_STRING(s) \
476 do { *(s) = *--save_stack_p; } while (0)
477
478 /* The instruction we're assembling. */
479 static i386_insn i;
480
481 /* Possible templates for current insn. */
482 static const templates *current_templates;
483
484 /* Per instruction expressionS buffers: max displacements & immediates. */
485 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
486 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
487
488 /* Current operand we are working on. */
489 static int this_operand = -1;
490
491 /* We support four different modes. FLAG_CODE variable is used to distinguish
492 these. */
493
494 enum flag_code {
495 CODE_32BIT,
496 CODE_16BIT,
497 CODE_64BIT };
498
499 static enum flag_code flag_code;
500 static unsigned int object_64bit;
501 static unsigned int disallow_64bit_reloc;
502 static int use_rela_relocations = 0;
503
504 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
505 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
506 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
507
508 /* The ELF ABI to use. */
509 enum x86_elf_abi
510 {
511 I386_ABI,
512 X86_64_ABI,
513 X86_64_X32_ABI
514 };
515
516 static enum x86_elf_abi x86_elf_abi = I386_ABI;
517 #endif
518
519 /* 1 for intel syntax,
520 0 if att syntax. */
521 static int intel_syntax = 0;
522
523 /* 1 for intel mnemonic,
524 0 if att mnemonic. */
525 static int intel_mnemonic = !SYSV386_COMPAT;
526
527 /* 1 if support old (<= 2.8.1) versions of gcc. */
528 static int old_gcc = OLDGCC_COMPAT;
529
530 /* 1 if pseudo registers are permitted. */
531 static int allow_pseudo_reg = 0;
532
533 /* 1 if register prefix % not required. */
534 static int allow_naked_reg = 0;
535
536 /* 1 if the assembler should add BND prefix for all control-tranferring
537 instructions supporting it, even if this prefix wasn't specified
538 explicitly. */
539 static int add_bnd_prefix = 0;
540
541 /* 1 if pseudo index register, eiz/riz, is allowed . */
542 static int allow_index_reg = 0;
543
544 static enum check_kind
545 {
546 check_none = 0,
547 check_warning,
548 check_error
549 }
550 sse_check, operand_check = check_warning;
551
552 /* Register prefix used for error message. */
553 static const char *register_prefix = "%";
554
555 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
556 leave, push, and pop instructions so that gcc has the same stack
557 frame as in 32 bit mode. */
558 static char stackop_size = '\0';
559
560 /* Non-zero to optimize code alignment. */
561 int optimize_align_code = 1;
562
563 /* Non-zero to quieten some warnings. */
564 static int quiet_warnings = 0;
565
566 /* CPU name. */
567 static const char *cpu_arch_name = NULL;
568 static char *cpu_sub_arch_name = NULL;
569
570 /* CPU feature flags. */
571 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
572
573 /* If we have selected a cpu we are generating instructions for. */
574 static int cpu_arch_tune_set = 0;
575
576 /* Cpu we are generating instructions for. */
577 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
578
579 /* CPU feature flags of cpu we are generating instructions for. */
580 static i386_cpu_flags cpu_arch_tune_flags;
581
582 /* CPU instruction set architecture used. */
583 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
584
585 /* CPU feature flags of instruction set architecture used. */
586 i386_cpu_flags cpu_arch_isa_flags;
587
588 /* If set, conditional jumps are not automatically promoted to handle
589 larger than a byte offset. */
590 static unsigned int no_cond_jump_promotion = 0;
591
592 /* Encode SSE instructions with VEX prefix. */
593 static unsigned int sse2avx;
594
595 /* Encode scalar AVX instructions with specific vector length. */
596 static enum
597 {
598 vex128 = 0,
599 vex256
600 } avxscalar;
601
602 /* Encode scalar EVEX LIG instructions with specific vector length. */
603 static enum
604 {
605 evexl128 = 0,
606 evexl256,
607 evexl512
608 } evexlig;
609
610 /* Encode EVEX WIG instructions with specific evex.w. */
611 static enum
612 {
613 evexw0 = 0,
614 evexw1
615 } evexwig;
616
617 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
618 static symbolS *GOT_symbol;
619
620 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
621 unsigned int x86_dwarf2_return_column;
622
623 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
624 int x86_cie_data_alignment;
625
626 /* Interface to relax_segment.
627 There are 3 major relax states for 386 jump insns because the
628 different types of jumps add different sizes to frags when we're
629 figuring out what sort of jump to choose to reach a given label. */
630
631 /* Types. */
632 #define UNCOND_JUMP 0
633 #define COND_JUMP 1
634 #define COND_JUMP86 2
635
636 /* Sizes. */
637 #define CODE16 1
638 #define SMALL 0
639 #define SMALL16 (SMALL | CODE16)
640 #define BIG 2
641 #define BIG16 (BIG | CODE16)
642
643 #ifndef INLINE
644 #ifdef __GNUC__
645 #define INLINE __inline__
646 #else
647 #define INLINE
648 #endif
649 #endif
650
651 #define ENCODE_RELAX_STATE(type, size) \
652 ((relax_substateT) (((type) << 2) | (size)))
653 #define TYPE_FROM_RELAX_STATE(s) \
654 ((s) >> 2)
655 #define DISP_SIZE_FROM_RELAX_STATE(s) \
656 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
657
658 /* This table is used by relax_frag to promote short jumps to long
659 ones where necessary. SMALL (short) jumps may be promoted to BIG
660 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
661 don't allow a short jump in a 32 bit code segment to be promoted to
662 a 16 bit offset jump because it's slower (requires data size
663 prefix), and doesn't work, unless the destination is in the bottom
664 64k of the code segment (The top 16 bits of eip are zeroed). */
665
666 const relax_typeS md_relax_table[] =
667 {
668 /* The fields are:
669 1) most positive reach of this state,
670 2) most negative reach of this state,
671 3) how many bytes this mode will have in the variable part of the frag
672 4) which index into the table to try if we can't fit into this one. */
673
674 /* UNCOND_JUMP states. */
675 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
676 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
677 /* dword jmp adds 4 bytes to frag:
678 0 extra opcode bytes, 4 displacement bytes. */
679 {0, 0, 4, 0},
680 /* word jmp adds 2 byte2 to frag:
681 0 extra opcode bytes, 2 displacement bytes. */
682 {0, 0, 2, 0},
683
684 /* COND_JUMP states. */
685 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
686 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
687 /* dword conditionals adds 5 bytes to frag:
688 1 extra opcode byte, 4 displacement bytes. */
689 {0, 0, 5, 0},
690 /* word conditionals add 3 bytes to frag:
691 1 extra opcode byte, 2 displacement bytes. */
692 {0, 0, 3, 0},
693
694 /* COND_JUMP86 states. */
695 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
696 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
697 /* dword conditionals adds 5 bytes to frag:
698 1 extra opcode byte, 4 displacement bytes. */
699 {0, 0, 5, 0},
700 /* word conditionals add 4 bytes to frag:
701 1 displacement byte and a 3 byte long branch insn. */
702 {0, 0, 4, 0}
703 };
704
705 static const arch_entry cpu_arch[] =
706 {
707 /* Do not replace the first two entries - i386_target_format()
708 relies on them being there in this order. */
709 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
710 CPU_GENERIC32_FLAGS, 0, 0 },
711 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
712 CPU_GENERIC64_FLAGS, 0, 0 },
713 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
714 CPU_NONE_FLAGS, 0, 0 },
715 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
716 CPU_I186_FLAGS, 0, 0 },
717 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
718 CPU_I286_FLAGS, 0, 0 },
719 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
720 CPU_I386_FLAGS, 0, 0 },
721 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
722 CPU_I486_FLAGS, 0, 0 },
723 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
724 CPU_I586_FLAGS, 0, 0 },
725 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
726 CPU_I686_FLAGS, 0, 0 },
727 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
728 CPU_I586_FLAGS, 0, 0 },
729 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
730 CPU_PENTIUMPRO_FLAGS, 0, 0 },
731 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
732 CPU_P2_FLAGS, 0, 0 },
733 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
734 CPU_P3_FLAGS, 0, 0 },
735 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
736 CPU_P4_FLAGS, 0, 0 },
737 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
738 CPU_CORE_FLAGS, 0, 0 },
739 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
740 CPU_NOCONA_FLAGS, 0, 0 },
741 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
742 CPU_CORE_FLAGS, 1, 0 },
743 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
744 CPU_CORE_FLAGS, 0, 0 },
745 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
746 CPU_CORE2_FLAGS, 1, 0 },
747 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
748 CPU_CORE2_FLAGS, 0, 0 },
749 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
750 CPU_COREI7_FLAGS, 0, 0 },
751 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
752 CPU_L1OM_FLAGS, 0, 0 },
753 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
754 CPU_K1OM_FLAGS, 0, 0 },
755 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
756 CPU_K6_FLAGS, 0, 0 },
757 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
758 CPU_K6_2_FLAGS, 0, 0 },
759 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
760 CPU_ATHLON_FLAGS, 0, 0 },
761 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
762 CPU_K8_FLAGS, 1, 0 },
763 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
764 CPU_K8_FLAGS, 0, 0 },
765 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
766 CPU_K8_FLAGS, 0, 0 },
767 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
768 CPU_AMDFAM10_FLAGS, 0, 0 },
769 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
770 CPU_BDVER1_FLAGS, 0, 0 },
771 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
772 CPU_BDVER2_FLAGS, 0, 0 },
773 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
774 CPU_BDVER3_FLAGS, 0, 0 },
775 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
776 CPU_BDVER4_FLAGS, 0, 0 },
777 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
778 CPU_BTVER1_FLAGS, 0, 0 },
779 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
780 CPU_BTVER2_FLAGS, 0, 0 },
781 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
782 CPU_8087_FLAGS, 0, 0 },
783 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
784 CPU_287_FLAGS, 0, 0 },
785 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
786 CPU_387_FLAGS, 0, 0 },
787 { STRING_COMMA_LEN (".no87"), PROCESSOR_UNKNOWN,
788 CPU_ANY87_FLAGS, 0, 1 },
789 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
790 CPU_MMX_FLAGS, 0, 0 },
791 { STRING_COMMA_LEN (".nommx"), PROCESSOR_UNKNOWN,
792 CPU_3DNOWA_FLAGS, 0, 1 },
793 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
794 CPU_SSE_FLAGS, 0, 0 },
795 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
796 CPU_SSE2_FLAGS, 0, 0 },
797 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
798 CPU_SSE3_FLAGS, 0, 0 },
799 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
800 CPU_SSSE3_FLAGS, 0, 0 },
801 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
802 CPU_SSE4_1_FLAGS, 0, 0 },
803 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
804 CPU_SSE4_2_FLAGS, 0, 0 },
805 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
806 CPU_SSE4_2_FLAGS, 0, 0 },
807 { STRING_COMMA_LEN (".nosse"), PROCESSOR_UNKNOWN,
808 CPU_ANY_SSE_FLAGS, 0, 1 },
809 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
810 CPU_AVX_FLAGS, 0, 0 },
811 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
812 CPU_AVX2_FLAGS, 0, 0 },
813 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
814 CPU_AVX512F_FLAGS, 0, 0 },
815 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
816 CPU_AVX512CD_FLAGS, 0, 0 },
817 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
818 CPU_AVX512ER_FLAGS, 0, 0 },
819 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
820 CPU_AVX512PF_FLAGS, 0, 0 },
821 { STRING_COMMA_LEN (".noavx"), PROCESSOR_UNKNOWN,
822 CPU_ANY_AVX_FLAGS, 0, 1 },
823 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
824 CPU_VMX_FLAGS, 0, 0 },
825 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
826 CPU_VMFUNC_FLAGS, 0, 0 },
827 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
828 CPU_SMX_FLAGS, 0, 0 },
829 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
830 CPU_XSAVE_FLAGS, 0, 0 },
831 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
832 CPU_XSAVEOPT_FLAGS, 0, 0 },
833 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
834 CPU_AES_FLAGS, 0, 0 },
835 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
836 CPU_PCLMUL_FLAGS, 0, 0 },
837 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
838 CPU_PCLMUL_FLAGS, 1, 0 },
839 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
840 CPU_FSGSBASE_FLAGS, 0, 0 },
841 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
842 CPU_RDRND_FLAGS, 0, 0 },
843 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
844 CPU_F16C_FLAGS, 0, 0 },
845 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
846 CPU_BMI2_FLAGS, 0, 0 },
847 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
848 CPU_FMA_FLAGS, 0, 0 },
849 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
850 CPU_FMA4_FLAGS, 0, 0 },
851 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
852 CPU_XOP_FLAGS, 0, 0 },
853 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
854 CPU_LWP_FLAGS, 0, 0 },
855 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
856 CPU_MOVBE_FLAGS, 0, 0 },
857 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
858 CPU_CX16_FLAGS, 0, 0 },
859 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
860 CPU_EPT_FLAGS, 0, 0 },
861 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
862 CPU_LZCNT_FLAGS, 0, 0 },
863 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
864 CPU_HLE_FLAGS, 0, 0 },
865 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
866 CPU_RTM_FLAGS, 0, 0 },
867 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
868 CPU_INVPCID_FLAGS, 0, 0 },
869 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
870 CPU_CLFLUSH_FLAGS, 0, 0 },
871 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
872 CPU_NOP_FLAGS, 0, 0 },
873 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
874 CPU_SYSCALL_FLAGS, 0, 0 },
875 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
876 CPU_RDTSCP_FLAGS, 0, 0 },
877 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
878 CPU_3DNOW_FLAGS, 0, 0 },
879 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
880 CPU_3DNOWA_FLAGS, 0, 0 },
881 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
882 CPU_PADLOCK_FLAGS, 0, 0 },
883 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
884 CPU_SVME_FLAGS, 1, 0 },
885 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
886 CPU_SVME_FLAGS, 0, 0 },
887 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
888 CPU_SSE4A_FLAGS, 0, 0 },
889 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
890 CPU_ABM_FLAGS, 0, 0 },
891 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
892 CPU_BMI_FLAGS, 0, 0 },
893 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
894 CPU_TBM_FLAGS, 0, 0 },
895 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
896 CPU_ADX_FLAGS, 0, 0 },
897 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
898 CPU_RDSEED_FLAGS, 0, 0 },
899 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
900 CPU_PRFCHW_FLAGS, 0, 0 },
901 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
902 CPU_SMAP_FLAGS, 0, 0 },
903 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
904 CPU_MPX_FLAGS, 0, 0 },
905 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
906 CPU_SHA_FLAGS, 0, 0 },
907 };
908
909 #ifdef I386COFF
910 /* Like s_lcomm_internal in gas/read.c but the alignment string
911 is allowed to be optional. */
912
913 static symbolS *
914 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
915 {
916 addressT align = 0;
917
918 SKIP_WHITESPACE ();
919
920 if (needs_align
921 && *input_line_pointer == ',')
922 {
923 align = parse_align (needs_align - 1);
924
925 if (align == (addressT) -1)
926 return NULL;
927 }
928 else
929 {
930 if (size >= 8)
931 align = 3;
932 else if (size >= 4)
933 align = 2;
934 else if (size >= 2)
935 align = 1;
936 else
937 align = 0;
938 }
939
940 bss_alloc (symbolP, size, align);
941 return symbolP;
942 }
943
944 static void
945 pe_lcomm (int needs_align)
946 {
947 s_comm_internal (needs_align * 2, pe_lcomm_internal);
948 }
949 #endif
950
951 const pseudo_typeS md_pseudo_table[] =
952 {
953 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
954 {"align", s_align_bytes, 0},
955 #else
956 {"align", s_align_ptwo, 0},
957 #endif
958 {"arch", set_cpu_arch, 0},
959 #ifndef I386COFF
960 {"bss", s_bss, 0},
961 #else
962 {"lcomm", pe_lcomm, 1},
963 #endif
964 {"ffloat", float_cons, 'f'},
965 {"dfloat", float_cons, 'd'},
966 {"tfloat", float_cons, 'x'},
967 {"value", cons, 2},
968 {"slong", signed_cons, 4},
969 {"noopt", s_ignore, 0},
970 {"optim", s_ignore, 0},
971 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
972 {"code16", set_code_flag, CODE_16BIT},
973 {"code32", set_code_flag, CODE_32BIT},
974 {"code64", set_code_flag, CODE_64BIT},
975 {"intel_syntax", set_intel_syntax, 1},
976 {"att_syntax", set_intel_syntax, 0},
977 {"intel_mnemonic", set_intel_mnemonic, 1},
978 {"att_mnemonic", set_intel_mnemonic, 0},
979 {"allow_index_reg", set_allow_index_reg, 1},
980 {"disallow_index_reg", set_allow_index_reg, 0},
981 {"sse_check", set_check, 0},
982 {"operand_check", set_check, 1},
983 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
984 {"largecomm", handle_large_common, 0},
985 #else
986 {"file", (void (*) (int)) dwarf2_directive_file, 0},
987 {"loc", dwarf2_directive_loc, 0},
988 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
989 #endif
990 #ifdef TE_PE
991 {"secrel32", pe_directive_secrel, 0},
992 #endif
993 {0, 0, 0}
994 };
995
996 /* For interface with expression (). */
997 extern char *input_line_pointer;
998
999 /* Hash table for instruction mnemonic lookup. */
1000 static struct hash_control *op_hash;
1001
1002 /* Hash table for register lookup. */
1003 static struct hash_control *reg_hash;
1004 \f
1005 void
1006 i386_align_code (fragS *fragP, int count)
1007 {
1008 /* Various efficient no-op patterns for aligning code labels.
1009 Note: Don't try to assemble the instructions in the comments.
1010 0L and 0w are not legal. */
1011 static const char f32_1[] =
1012 {0x90}; /* nop */
1013 static const char f32_2[] =
1014 {0x66,0x90}; /* xchg %ax,%ax */
1015 static const char f32_3[] =
1016 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1017 static const char f32_4[] =
1018 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1019 static const char f32_5[] =
1020 {0x90, /* nop */
1021 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1022 static const char f32_6[] =
1023 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1024 static const char f32_7[] =
1025 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1026 static const char f32_8[] =
1027 {0x90, /* nop */
1028 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1029 static const char f32_9[] =
1030 {0x89,0xf6, /* movl %esi,%esi */
1031 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1032 static const char f32_10[] =
1033 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
1034 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1035 static const char f32_11[] =
1036 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
1037 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1038 static const char f32_12[] =
1039 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1040 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
1041 static const char f32_13[] =
1042 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
1043 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1044 static const char f32_14[] =
1045 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
1046 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
1047 static const char f16_3[] =
1048 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
1049 static const char f16_4[] =
1050 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1051 static const char f16_5[] =
1052 {0x90, /* nop */
1053 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
1054 static const char f16_6[] =
1055 {0x89,0xf6, /* mov %si,%si */
1056 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1057 static const char f16_7[] =
1058 {0x8d,0x74,0x00, /* lea 0(%si),%si */
1059 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1060 static const char f16_8[] =
1061 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
1062 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
1063 static const char jump_31[] =
1064 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
1065 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1066 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
1067 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
1068 static const char *const f32_patt[] = {
1069 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
1070 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
1071 };
1072 static const char *const f16_patt[] = {
1073 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
1074 };
1075 /* nopl (%[re]ax) */
1076 static const char alt_3[] =
1077 {0x0f,0x1f,0x00};
1078 /* nopl 0(%[re]ax) */
1079 static const char alt_4[] =
1080 {0x0f,0x1f,0x40,0x00};
1081 /* nopl 0(%[re]ax,%[re]ax,1) */
1082 static const char alt_5[] =
1083 {0x0f,0x1f,0x44,0x00,0x00};
1084 /* nopw 0(%[re]ax,%[re]ax,1) */
1085 static const char alt_6[] =
1086 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1087 /* nopl 0L(%[re]ax) */
1088 static const char alt_7[] =
1089 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1090 /* nopl 0L(%[re]ax,%[re]ax,1) */
1091 static const char alt_8[] =
1092 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1093 /* nopw 0L(%[re]ax,%[re]ax,1) */
1094 static const char alt_9[] =
1095 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1096 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1097 static const char alt_10[] =
1098 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1099 /* data16
1100 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1101 static const char alt_long_11[] =
1102 {0x66,
1103 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1104 /* data16
1105 data16
1106 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1107 static const char alt_long_12[] =
1108 {0x66,
1109 0x66,
1110 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1111 /* data16
1112 data16
1113 data16
1114 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1115 static const char alt_long_13[] =
1116 {0x66,
1117 0x66,
1118 0x66,
1119 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1120 /* data16
1121 data16
1122 data16
1123 data16
1124 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1125 static const char alt_long_14[] =
1126 {0x66,
1127 0x66,
1128 0x66,
1129 0x66,
1130 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1131 /* data16
1132 data16
1133 data16
1134 data16
1135 data16
1136 nopw %cs:0L(%[re]ax,%[re]ax,1) */
1137 static const char alt_long_15[] =
1138 {0x66,
1139 0x66,
1140 0x66,
1141 0x66,
1142 0x66,
1143 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1144 /* nopl 0(%[re]ax,%[re]ax,1)
1145 nopw 0(%[re]ax,%[re]ax,1) */
1146 static const char alt_short_11[] =
1147 {0x0f,0x1f,0x44,0x00,0x00,
1148 0x66,0x0f,0x1f,0x44,0x00,0x00};
1149 /* nopw 0(%[re]ax,%[re]ax,1)
1150 nopw 0(%[re]ax,%[re]ax,1) */
1151 static const char alt_short_12[] =
1152 {0x66,0x0f,0x1f,0x44,0x00,0x00,
1153 0x66,0x0f,0x1f,0x44,0x00,0x00};
1154 /* nopw 0(%[re]ax,%[re]ax,1)
1155 nopl 0L(%[re]ax) */
1156 static const char alt_short_13[] =
1157 {0x66,0x0f,0x1f,0x44,0x00,0x00,
1158 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1159 /* nopl 0L(%[re]ax)
1160 nopl 0L(%[re]ax) */
1161 static const char alt_short_14[] =
1162 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
1163 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1164 /* nopl 0L(%[re]ax)
1165 nopl 0L(%[re]ax,%[re]ax,1) */
1166 static const char alt_short_15[] =
1167 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
1168 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1169 static const char *const alt_short_patt[] = {
1170 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1171 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
1172 alt_short_14, alt_short_15
1173 };
1174 static const char *const alt_long_patt[] = {
1175 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1176 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
1177 alt_long_14, alt_long_15
1178 };
1179
1180 /* Only align for at least a positive non-zero boundary. */
1181 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
1182 return;
1183
1184 /* We need to decide which NOP sequence to use for 32bit and
1185 64bit. When -mtune= is used:
1186
1187 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1188 PROCESSOR_GENERIC32, f32_patt will be used.
1189 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
1190 PROCESSOR_CORE, PROCESSOR_CORE2, PROCESSOR_COREI7, and
1191 PROCESSOR_GENERIC64, alt_long_patt will be used.
1192 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
1193 PROCESSOR_AMDFAM10, PROCESSOR_BD and PROCESSOR_BT, alt_short_patt
1194 will be used.
1195
1196 When -mtune= isn't used, alt_long_patt will be used if
1197 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1198 be used.
1199
1200 When -march= or .arch is used, we can't use anything beyond
1201 cpu_arch_isa_flags. */
1202
1203 if (flag_code == CODE_16BIT)
1204 {
1205 if (count > 8)
1206 {
1207 memcpy (fragP->fr_literal + fragP->fr_fix,
1208 jump_31, count);
1209 /* Adjust jump offset. */
1210 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1211 }
1212 else
1213 memcpy (fragP->fr_literal + fragP->fr_fix,
1214 f16_patt[count - 1], count);
1215 }
1216 else
1217 {
1218 const char *const *patt = NULL;
1219
1220 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1221 {
1222 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1223 switch (cpu_arch_tune)
1224 {
1225 case PROCESSOR_UNKNOWN:
1226 /* We use cpu_arch_isa_flags to check if we SHOULD
1227 optimize with nops. */
1228 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1229 patt = alt_long_patt;
1230 else
1231 patt = f32_patt;
1232 break;
1233 case PROCESSOR_PENTIUM4:
1234 case PROCESSOR_NOCONA:
1235 case PROCESSOR_CORE:
1236 case PROCESSOR_CORE2:
1237 case PROCESSOR_COREI7:
1238 case PROCESSOR_L1OM:
1239 case PROCESSOR_K1OM:
1240 case PROCESSOR_GENERIC64:
1241 patt = alt_long_patt;
1242 break;
1243 case PROCESSOR_K6:
1244 case PROCESSOR_ATHLON:
1245 case PROCESSOR_K8:
1246 case PROCESSOR_AMDFAM10:
1247 case PROCESSOR_BD:
1248 case PROCESSOR_BT:
1249 patt = alt_short_patt;
1250 break;
1251 case PROCESSOR_I386:
1252 case PROCESSOR_I486:
1253 case PROCESSOR_PENTIUM:
1254 case PROCESSOR_PENTIUMPRO:
1255 case PROCESSOR_GENERIC32:
1256 patt = f32_patt;
1257 break;
1258 }
1259 }
1260 else
1261 {
1262 switch (fragP->tc_frag_data.tune)
1263 {
1264 case PROCESSOR_UNKNOWN:
1265 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1266 PROCESSOR_UNKNOWN. */
1267 abort ();
1268 break;
1269
1270 case PROCESSOR_I386:
1271 case PROCESSOR_I486:
1272 case PROCESSOR_PENTIUM:
1273 case PROCESSOR_K6:
1274 case PROCESSOR_ATHLON:
1275 case PROCESSOR_K8:
1276 case PROCESSOR_AMDFAM10:
1277 case PROCESSOR_BD:
1278 case PROCESSOR_BT:
1279 case PROCESSOR_GENERIC32:
1280 /* We use cpu_arch_isa_flags to check if we CAN optimize
1281 with nops. */
1282 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1283 patt = alt_short_patt;
1284 else
1285 patt = f32_patt;
1286 break;
1287 case PROCESSOR_PENTIUMPRO:
1288 case PROCESSOR_PENTIUM4:
1289 case PROCESSOR_NOCONA:
1290 case PROCESSOR_CORE:
1291 case PROCESSOR_CORE2:
1292 case PROCESSOR_COREI7:
1293 case PROCESSOR_L1OM:
1294 case PROCESSOR_K1OM:
1295 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1296 patt = alt_long_patt;
1297 else
1298 patt = f32_patt;
1299 break;
1300 case PROCESSOR_GENERIC64:
1301 patt = alt_long_patt;
1302 break;
1303 }
1304 }
1305
1306 if (patt == f32_patt)
1307 {
1308 /* If the padding is less than 15 bytes, we use the normal
1309 ones. Otherwise, we use a jump instruction and adjust
1310 its offset. */
1311 int limit;
1312
1313 /* For 64bit, the limit is 3 bytes. */
1314 if (flag_code == CODE_64BIT
1315 && fragP->tc_frag_data.isa_flags.bitfield.cpulm)
1316 limit = 3;
1317 else
1318 limit = 15;
1319 if (count < limit)
1320 memcpy (fragP->fr_literal + fragP->fr_fix,
1321 patt[count - 1], count);
1322 else
1323 {
1324 memcpy (fragP->fr_literal + fragP->fr_fix,
1325 jump_31, count);
1326 /* Adjust jump offset. */
1327 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
1328 }
1329 }
1330 else
1331 {
1332 /* Maximum length of an instruction is 15 byte. If the
1333 padding is greater than 15 bytes and we don't use jump,
1334 we have to break it into smaller pieces. */
1335 int padding = count;
1336 while (padding > 15)
1337 {
1338 padding -= 15;
1339 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
1340 patt [14], 15);
1341 }
1342
1343 if (padding)
1344 memcpy (fragP->fr_literal + fragP->fr_fix,
1345 patt [padding - 1], padding);
1346 }
1347 }
1348 fragP->fr_var = count;
1349 }
1350
1351 static INLINE int
1352 operand_type_all_zero (const union i386_operand_type *x)
1353 {
1354 switch (ARRAY_SIZE(x->array))
1355 {
1356 case 3:
1357 if (x->array[2])
1358 return 0;
1359 case 2:
1360 if (x->array[1])
1361 return 0;
1362 case 1:
1363 return !x->array[0];
1364 default:
1365 abort ();
1366 }
1367 }
1368
1369 static INLINE void
1370 operand_type_set (union i386_operand_type *x, unsigned int v)
1371 {
1372 switch (ARRAY_SIZE(x->array))
1373 {
1374 case 3:
1375 x->array[2] = v;
1376 case 2:
1377 x->array[1] = v;
1378 case 1:
1379 x->array[0] = v;
1380 break;
1381 default:
1382 abort ();
1383 }
1384 }
1385
1386 static INLINE int
1387 operand_type_equal (const union i386_operand_type *x,
1388 const union i386_operand_type *y)
1389 {
1390 switch (ARRAY_SIZE(x->array))
1391 {
1392 case 3:
1393 if (x->array[2] != y->array[2])
1394 return 0;
1395 case 2:
1396 if (x->array[1] != y->array[1])
1397 return 0;
1398 case 1:
1399 return x->array[0] == y->array[0];
1400 break;
1401 default:
1402 abort ();
1403 }
1404 }
1405
1406 static INLINE int
1407 cpu_flags_all_zero (const union i386_cpu_flags *x)
1408 {
1409 switch (ARRAY_SIZE(x->array))
1410 {
1411 case 3:
1412 if (x->array[2])
1413 return 0;
1414 case 2:
1415 if (x->array[1])
1416 return 0;
1417 case 1:
1418 return !x->array[0];
1419 default:
1420 abort ();
1421 }
1422 }
1423
1424 static INLINE void
1425 cpu_flags_set (union i386_cpu_flags *x, unsigned int v)
1426 {
1427 switch (ARRAY_SIZE(x->array))
1428 {
1429 case 3:
1430 x->array[2] = v;
1431 case 2:
1432 x->array[1] = v;
1433 case 1:
1434 x->array[0] = v;
1435 break;
1436 default:
1437 abort ();
1438 }
1439 }
1440
1441 static INLINE int
1442 cpu_flags_equal (const union i386_cpu_flags *x,
1443 const union i386_cpu_flags *y)
1444 {
1445 switch (ARRAY_SIZE(x->array))
1446 {
1447 case 3:
1448 if (x->array[2] != y->array[2])
1449 return 0;
1450 case 2:
1451 if (x->array[1] != y->array[1])
1452 return 0;
1453 case 1:
1454 return x->array[0] == y->array[0];
1455 break;
1456 default:
1457 abort ();
1458 }
1459 }
1460
1461 static INLINE int
1462 cpu_flags_check_cpu64 (i386_cpu_flags f)
1463 {
1464 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1465 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1466 }
1467
1468 static INLINE i386_cpu_flags
1469 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1470 {
1471 switch (ARRAY_SIZE (x.array))
1472 {
1473 case 3:
1474 x.array [2] &= y.array [2];
1475 case 2:
1476 x.array [1] &= y.array [1];
1477 case 1:
1478 x.array [0] &= y.array [0];
1479 break;
1480 default:
1481 abort ();
1482 }
1483 return x;
1484 }
1485
1486 static INLINE i386_cpu_flags
1487 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1488 {
1489 switch (ARRAY_SIZE (x.array))
1490 {
1491 case 3:
1492 x.array [2] |= y.array [2];
1493 case 2:
1494 x.array [1] |= y.array [1];
1495 case 1:
1496 x.array [0] |= y.array [0];
1497 break;
1498 default:
1499 abort ();
1500 }
1501 return x;
1502 }
1503
1504 static INLINE i386_cpu_flags
1505 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1506 {
1507 switch (ARRAY_SIZE (x.array))
1508 {
1509 case 3:
1510 x.array [2] &= ~y.array [2];
1511 case 2:
1512 x.array [1] &= ~y.array [1];
1513 case 1:
1514 x.array [0] &= ~y.array [0];
1515 break;
1516 default:
1517 abort ();
1518 }
1519 return x;
1520 }
1521
1522 #define CPU_FLAGS_ARCH_MATCH 0x1
1523 #define CPU_FLAGS_64BIT_MATCH 0x2
1524 #define CPU_FLAGS_AES_MATCH 0x4
1525 #define CPU_FLAGS_PCLMUL_MATCH 0x8
1526 #define CPU_FLAGS_AVX_MATCH 0x10
1527
1528 #define CPU_FLAGS_32BIT_MATCH \
1529 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_AES_MATCH \
1530 | CPU_FLAGS_PCLMUL_MATCH | CPU_FLAGS_AVX_MATCH)
1531 #define CPU_FLAGS_PERFECT_MATCH \
1532 (CPU_FLAGS_32BIT_MATCH | CPU_FLAGS_64BIT_MATCH)
1533
1534 /* Return CPU flags match bits. */
1535
1536 static int
1537 cpu_flags_match (const insn_template *t)
1538 {
1539 i386_cpu_flags x = t->cpu_flags;
1540 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1541
1542 x.bitfield.cpu64 = 0;
1543 x.bitfield.cpuno64 = 0;
1544
1545 if (cpu_flags_all_zero (&x))
1546 {
1547 /* This instruction is available on all archs. */
1548 match |= CPU_FLAGS_32BIT_MATCH;
1549 }
1550 else
1551 {
1552 /* This instruction is available only on some archs. */
1553 i386_cpu_flags cpu = cpu_arch_flags;
1554
1555 cpu.bitfield.cpu64 = 0;
1556 cpu.bitfield.cpuno64 = 0;
1557 cpu = cpu_flags_and (x, cpu);
1558 if (!cpu_flags_all_zero (&cpu))
1559 {
1560 if (x.bitfield.cpuavx)
1561 {
1562 /* We only need to check AES/PCLMUL/SSE2AVX with AVX. */
1563 if (cpu.bitfield.cpuavx)
1564 {
1565 /* Check SSE2AVX. */
1566 if (!t->opcode_modifier.sse2avx|| sse2avx)
1567 {
1568 match |= (CPU_FLAGS_ARCH_MATCH
1569 | CPU_FLAGS_AVX_MATCH);
1570 /* Check AES. */
1571 if (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1572 match |= CPU_FLAGS_AES_MATCH;
1573 /* Check PCLMUL. */
1574 if (!x.bitfield.cpupclmul
1575 || cpu.bitfield.cpupclmul)
1576 match |= CPU_FLAGS_PCLMUL_MATCH;
1577 }
1578 }
1579 else
1580 match |= CPU_FLAGS_ARCH_MATCH;
1581 }
1582 else
1583 match |= CPU_FLAGS_32BIT_MATCH;
1584 }
1585 }
1586 return match;
1587 }
1588
1589 static INLINE i386_operand_type
1590 operand_type_and (i386_operand_type x, i386_operand_type y)
1591 {
1592 switch (ARRAY_SIZE (x.array))
1593 {
1594 case 3:
1595 x.array [2] &= y.array [2];
1596 case 2:
1597 x.array [1] &= y.array [1];
1598 case 1:
1599 x.array [0] &= y.array [0];
1600 break;
1601 default:
1602 abort ();
1603 }
1604 return x;
1605 }
1606
1607 static INLINE i386_operand_type
1608 operand_type_or (i386_operand_type x, i386_operand_type y)
1609 {
1610 switch (ARRAY_SIZE (x.array))
1611 {
1612 case 3:
1613 x.array [2] |= y.array [2];
1614 case 2:
1615 x.array [1] |= y.array [1];
1616 case 1:
1617 x.array [0] |= y.array [0];
1618 break;
1619 default:
1620 abort ();
1621 }
1622 return x;
1623 }
1624
1625 static INLINE i386_operand_type
1626 operand_type_xor (i386_operand_type x, i386_operand_type y)
1627 {
1628 switch (ARRAY_SIZE (x.array))
1629 {
1630 case 3:
1631 x.array [2] ^= y.array [2];
1632 case 2:
1633 x.array [1] ^= y.array [1];
1634 case 1:
1635 x.array [0] ^= y.array [0];
1636 break;
1637 default:
1638 abort ();
1639 }
1640 return x;
1641 }
1642
1643 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1644 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1645 static const i386_operand_type control = OPERAND_TYPE_CONTROL;
1646 static const i386_operand_type inoutportreg
1647 = OPERAND_TYPE_INOUTPORTREG;
1648 static const i386_operand_type reg16_inoutportreg
1649 = OPERAND_TYPE_REG16_INOUTPORTREG;
1650 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1651 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1652 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1653 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1654 static const i386_operand_type anydisp
1655 = OPERAND_TYPE_ANYDISP;
1656 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1657 static const i386_operand_type regymm = OPERAND_TYPE_REGYMM;
1658 static const i386_operand_type regzmm = OPERAND_TYPE_REGZMM;
1659 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1660 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1661 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1662 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1663 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1664 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1665 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1666 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1667 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1668 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1669 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1670 static const i386_operand_type regbnd = OPERAND_TYPE_REGBND;
1671 static const i386_operand_type vec_disp8 = OPERAND_TYPE_VEC_DISP8;
1672
1673 enum operand_type
1674 {
1675 reg,
1676 imm,
1677 disp,
1678 anymem
1679 };
1680
1681 static INLINE int
1682 operand_type_check (i386_operand_type t, enum operand_type c)
1683 {
1684 switch (c)
1685 {
1686 case reg:
1687 return (t.bitfield.reg8
1688 || t.bitfield.reg16
1689 || t.bitfield.reg32
1690 || t.bitfield.reg64);
1691
1692 case imm:
1693 return (t.bitfield.imm8
1694 || t.bitfield.imm8s
1695 || t.bitfield.imm16
1696 || t.bitfield.imm32
1697 || t.bitfield.imm32s
1698 || t.bitfield.imm64);
1699
1700 case disp:
1701 return (t.bitfield.disp8
1702 || t.bitfield.disp16
1703 || t.bitfield.disp32
1704 || t.bitfield.disp32s
1705 || t.bitfield.disp64);
1706
1707 case anymem:
1708 return (t.bitfield.disp8
1709 || t.bitfield.disp16
1710 || t.bitfield.disp32
1711 || t.bitfield.disp32s
1712 || t.bitfield.disp64
1713 || t.bitfield.baseindex);
1714
1715 default:
1716 abort ();
1717 }
1718
1719 return 0;
1720 }
1721
1722 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit on
1723 operand J for instruction template T. */
1724
1725 static INLINE int
1726 match_reg_size (const insn_template *t, unsigned int j)
1727 {
1728 return !((i.types[j].bitfield.byte
1729 && !t->operand_types[j].bitfield.byte)
1730 || (i.types[j].bitfield.word
1731 && !t->operand_types[j].bitfield.word)
1732 || (i.types[j].bitfield.dword
1733 && !t->operand_types[j].bitfield.dword)
1734 || (i.types[j].bitfield.qword
1735 && !t->operand_types[j].bitfield.qword));
1736 }
1737
1738 /* Return 1 if there is no conflict in any size on operand J for
1739 instruction template T. */
1740
1741 static INLINE int
1742 match_mem_size (const insn_template *t, unsigned int j)
1743 {
1744 return (match_reg_size (t, j)
1745 && !((i.types[j].bitfield.unspecified
1746 && !t->operand_types[j].bitfield.unspecified)
1747 || (i.types[j].bitfield.fword
1748 && !t->operand_types[j].bitfield.fword)
1749 || (i.types[j].bitfield.tbyte
1750 && !t->operand_types[j].bitfield.tbyte)
1751 || (i.types[j].bitfield.xmmword
1752 && !t->operand_types[j].bitfield.xmmword)
1753 || (i.types[j].bitfield.ymmword
1754 && !t->operand_types[j].bitfield.ymmword)
1755 || (i.types[j].bitfield.zmmword
1756 && !t->operand_types[j].bitfield.zmmword)));
1757 }
1758
1759 /* Return 1 if there is no size conflict on any operands for
1760 instruction template T. */
1761
1762 static INLINE int
1763 operand_size_match (const insn_template *t)
1764 {
1765 unsigned int j;
1766 int match = 1;
1767
1768 /* Don't check jump instructions. */
1769 if (t->opcode_modifier.jump
1770 || t->opcode_modifier.jumpbyte
1771 || t->opcode_modifier.jumpdword
1772 || t->opcode_modifier.jumpintersegment)
1773 return match;
1774
1775 /* Check memory and accumulator operand size. */
1776 for (j = 0; j < i.operands; j++)
1777 {
1778 if (t->operand_types[j].bitfield.anysize)
1779 continue;
1780
1781 if (t->operand_types[j].bitfield.acc && !match_reg_size (t, j))
1782 {
1783 match = 0;
1784 break;
1785 }
1786
1787 if (i.types[j].bitfield.mem && !match_mem_size (t, j))
1788 {
1789 match = 0;
1790 break;
1791 }
1792 }
1793
1794 if (match)
1795 return match;
1796 else if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
1797 {
1798 mismatch:
1799 i.error = operand_size_mismatch;
1800 return 0;
1801 }
1802
1803 /* Check reverse. */
1804 gas_assert (i.operands == 2);
1805
1806 match = 1;
1807 for (j = 0; j < 2; j++)
1808 {
1809 if (t->operand_types[j].bitfield.acc
1810 && !match_reg_size (t, j ? 0 : 1))
1811 goto mismatch;
1812
1813 if (i.types[j].bitfield.mem
1814 && !match_mem_size (t, j ? 0 : 1))
1815 goto mismatch;
1816 }
1817
1818 return match;
1819 }
1820
1821 static INLINE int
1822 operand_type_match (i386_operand_type overlap,
1823 i386_operand_type given)
1824 {
1825 i386_operand_type temp = overlap;
1826
1827 temp.bitfield.jumpabsolute = 0;
1828 temp.bitfield.unspecified = 0;
1829 temp.bitfield.byte = 0;
1830 temp.bitfield.word = 0;
1831 temp.bitfield.dword = 0;
1832 temp.bitfield.fword = 0;
1833 temp.bitfield.qword = 0;
1834 temp.bitfield.tbyte = 0;
1835 temp.bitfield.xmmword = 0;
1836 temp.bitfield.ymmword = 0;
1837 temp.bitfield.zmmword = 0;
1838 if (operand_type_all_zero (&temp))
1839 goto mismatch;
1840
1841 if (given.bitfield.baseindex == overlap.bitfield.baseindex
1842 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
1843 return 1;
1844
1845 mismatch:
1846 i.error = operand_type_mismatch;
1847 return 0;
1848 }
1849
1850 /* If given types g0 and g1 are registers they must be of the same type
1851 unless the expected operand type register overlap is null.
1852 Note that Acc in a template matches every size of reg. */
1853
1854 static INLINE int
1855 operand_type_register_match (i386_operand_type m0,
1856 i386_operand_type g0,
1857 i386_operand_type t0,
1858 i386_operand_type m1,
1859 i386_operand_type g1,
1860 i386_operand_type t1)
1861 {
1862 if (!operand_type_check (g0, reg))
1863 return 1;
1864
1865 if (!operand_type_check (g1, reg))
1866 return 1;
1867
1868 if (g0.bitfield.reg8 == g1.bitfield.reg8
1869 && g0.bitfield.reg16 == g1.bitfield.reg16
1870 && g0.bitfield.reg32 == g1.bitfield.reg32
1871 && g0.bitfield.reg64 == g1.bitfield.reg64)
1872 return 1;
1873
1874 if (m0.bitfield.acc)
1875 {
1876 t0.bitfield.reg8 = 1;
1877 t0.bitfield.reg16 = 1;
1878 t0.bitfield.reg32 = 1;
1879 t0.bitfield.reg64 = 1;
1880 }
1881
1882 if (m1.bitfield.acc)
1883 {
1884 t1.bitfield.reg8 = 1;
1885 t1.bitfield.reg16 = 1;
1886 t1.bitfield.reg32 = 1;
1887 t1.bitfield.reg64 = 1;
1888 }
1889
1890 if (!(t0.bitfield.reg8 & t1.bitfield.reg8)
1891 && !(t0.bitfield.reg16 & t1.bitfield.reg16)
1892 && !(t0.bitfield.reg32 & t1.bitfield.reg32)
1893 && !(t0.bitfield.reg64 & t1.bitfield.reg64))
1894 return 1;
1895
1896 i.error = register_type_mismatch;
1897
1898 return 0;
1899 }
1900
1901 static INLINE unsigned int
1902 register_number (const reg_entry *r)
1903 {
1904 unsigned int nr = r->reg_num;
1905
1906 if (r->reg_flags & RegRex)
1907 nr += 8;
1908
1909 return nr;
1910 }
1911
1912 static INLINE unsigned int
1913 mode_from_disp_size (i386_operand_type t)
1914 {
1915 if (t.bitfield.disp8 || t.bitfield.vec_disp8)
1916 return 1;
1917 else if (t.bitfield.disp16
1918 || t.bitfield.disp32
1919 || t.bitfield.disp32s)
1920 return 2;
1921 else
1922 return 0;
1923 }
1924
1925 static INLINE int
1926 fits_in_signed_byte (offsetT num)
1927 {
1928 return (num >= -128) && (num <= 127);
1929 }
1930
1931 static INLINE int
1932 fits_in_unsigned_byte (offsetT num)
1933 {
1934 return (num & 0xff) == num;
1935 }
1936
1937 static INLINE int
1938 fits_in_unsigned_word (offsetT num)
1939 {
1940 return (num & 0xffff) == num;
1941 }
1942
1943 static INLINE int
1944 fits_in_signed_word (offsetT num)
1945 {
1946 return (-32768 <= num) && (num <= 32767);
1947 }
1948
1949 static INLINE int
1950 fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
1951 {
1952 #ifndef BFD64
1953 return 1;
1954 #else
1955 return (!(((offsetT) -1 << 31) & num)
1956 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
1957 #endif
1958 } /* fits_in_signed_long() */
1959
1960 static INLINE int
1961 fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
1962 {
1963 #ifndef BFD64
1964 return 1;
1965 #else
1966 return (num & (((offsetT) 2 << 31) - 1)) == num;
1967 #endif
1968 } /* fits_in_unsigned_long() */
1969
1970 static INLINE int
1971 fits_in_vec_disp8 (offsetT num)
1972 {
1973 int shift = i.memshift;
1974 unsigned int mask;
1975
1976 if (shift == -1)
1977 abort ();
1978
1979 mask = (1 << shift) - 1;
1980
1981 /* Return 0 if NUM isn't properly aligned. */
1982 if ((num & mask))
1983 return 0;
1984
1985 /* Check if NUM will fit in 8bit after shift. */
1986 return fits_in_signed_byte (num >> shift);
1987 }
1988
1989 static INLINE int
1990 fits_in_imm4 (offsetT num)
1991 {
1992 return (num & 0xf) == num;
1993 }
1994
1995 static i386_operand_type
1996 smallest_imm_type (offsetT num)
1997 {
1998 i386_operand_type t;
1999
2000 operand_type_set (&t, 0);
2001 t.bitfield.imm64 = 1;
2002
2003 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2004 {
2005 /* This code is disabled on the 486 because all the Imm1 forms
2006 in the opcode table are slower on the i486. They're the
2007 versions with the implicitly specified single-position
2008 displacement, which has another syntax if you really want to
2009 use that form. */
2010 t.bitfield.imm1 = 1;
2011 t.bitfield.imm8 = 1;
2012 t.bitfield.imm8s = 1;
2013 t.bitfield.imm16 = 1;
2014 t.bitfield.imm32 = 1;
2015 t.bitfield.imm32s = 1;
2016 }
2017 else if (fits_in_signed_byte (num))
2018 {
2019 t.bitfield.imm8 = 1;
2020 t.bitfield.imm8s = 1;
2021 t.bitfield.imm16 = 1;
2022 t.bitfield.imm32 = 1;
2023 t.bitfield.imm32s = 1;
2024 }
2025 else if (fits_in_unsigned_byte (num))
2026 {
2027 t.bitfield.imm8 = 1;
2028 t.bitfield.imm16 = 1;
2029 t.bitfield.imm32 = 1;
2030 t.bitfield.imm32s = 1;
2031 }
2032 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2033 {
2034 t.bitfield.imm16 = 1;
2035 t.bitfield.imm32 = 1;
2036 t.bitfield.imm32s = 1;
2037 }
2038 else if (fits_in_signed_long (num))
2039 {
2040 t.bitfield.imm32 = 1;
2041 t.bitfield.imm32s = 1;
2042 }
2043 else if (fits_in_unsigned_long (num))
2044 t.bitfield.imm32 = 1;
2045
2046 return t;
2047 }
2048
2049 static offsetT
2050 offset_in_range (offsetT val, int size)
2051 {
2052 addressT mask;
2053
2054 switch (size)
2055 {
2056 case 1: mask = ((addressT) 1 << 8) - 1; break;
2057 case 2: mask = ((addressT) 1 << 16) - 1; break;
2058 case 4: mask = ((addressT) 2 << 31) - 1; break;
2059 #ifdef BFD64
2060 case 8: mask = ((addressT) 2 << 63) - 1; break;
2061 #endif
2062 default: abort ();
2063 }
2064
2065 #ifdef BFD64
2066 /* If BFD64, sign extend val for 32bit address mode. */
2067 if (flag_code != CODE_64BIT
2068 || i.prefix[ADDR_PREFIX])
2069 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2070 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2071 #endif
2072
2073 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2074 {
2075 char buf1[40], buf2[40];
2076
2077 sprint_value (buf1, val);
2078 sprint_value (buf2, val & mask);
2079 as_warn (_("%s shortened to %s"), buf1, buf2);
2080 }
2081 return val & mask;
2082 }
2083
2084 enum PREFIX_GROUP
2085 {
2086 PREFIX_EXIST = 0,
2087 PREFIX_LOCK,
2088 PREFIX_REP,
2089 PREFIX_OTHER
2090 };
2091
2092 /* Returns
2093 a. PREFIX_EXIST if attempting to add a prefix where one from the
2094 same class already exists.
2095 b. PREFIX_LOCK if lock prefix is added.
2096 c. PREFIX_REP if rep/repne prefix is added.
2097 d. PREFIX_OTHER if other prefix is added.
2098 */
2099
2100 static enum PREFIX_GROUP
2101 add_prefix (unsigned int prefix)
2102 {
2103 enum PREFIX_GROUP ret = PREFIX_OTHER;
2104 unsigned int q;
2105
2106 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2107 && flag_code == CODE_64BIT)
2108 {
2109 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2110 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
2111 && (prefix & (REX_R | REX_X | REX_B))))
2112 ret = PREFIX_EXIST;
2113 q = REX_PREFIX;
2114 }
2115 else
2116 {
2117 switch (prefix)
2118 {
2119 default:
2120 abort ();
2121
2122 case CS_PREFIX_OPCODE:
2123 case DS_PREFIX_OPCODE:
2124 case ES_PREFIX_OPCODE:
2125 case FS_PREFIX_OPCODE:
2126 case GS_PREFIX_OPCODE:
2127 case SS_PREFIX_OPCODE:
2128 q = SEG_PREFIX;
2129 break;
2130
2131 case REPNE_PREFIX_OPCODE:
2132 case REPE_PREFIX_OPCODE:
2133 q = REP_PREFIX;
2134 ret = PREFIX_REP;
2135 break;
2136
2137 case LOCK_PREFIX_OPCODE:
2138 q = LOCK_PREFIX;
2139 ret = PREFIX_LOCK;
2140 break;
2141
2142 case FWAIT_OPCODE:
2143 q = WAIT_PREFIX;
2144 break;
2145
2146 case ADDR_PREFIX_OPCODE:
2147 q = ADDR_PREFIX;
2148 break;
2149
2150 case DATA_PREFIX_OPCODE:
2151 q = DATA_PREFIX;
2152 break;
2153 }
2154 if (i.prefix[q] != 0)
2155 ret = PREFIX_EXIST;
2156 }
2157
2158 if (ret)
2159 {
2160 if (!i.prefix[q])
2161 ++i.prefixes;
2162 i.prefix[q] |= prefix;
2163 }
2164 else
2165 as_bad (_("same type of prefix used twice"));
2166
2167 return ret;
2168 }
2169
2170 static void
2171 update_code_flag (int value, int check)
2172 {
2173 PRINTF_LIKE ((*as_error));
2174
2175 flag_code = (enum flag_code) value;
2176 if (flag_code == CODE_64BIT)
2177 {
2178 cpu_arch_flags.bitfield.cpu64 = 1;
2179 cpu_arch_flags.bitfield.cpuno64 = 0;
2180 }
2181 else
2182 {
2183 cpu_arch_flags.bitfield.cpu64 = 0;
2184 cpu_arch_flags.bitfield.cpuno64 = 1;
2185 }
2186 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2187 {
2188 if (check)
2189 as_error = as_fatal;
2190 else
2191 as_error = as_bad;
2192 (*as_error) (_("64bit mode not supported on `%s'."),
2193 cpu_arch_name ? cpu_arch_name : default_arch);
2194 }
2195 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2196 {
2197 if (check)
2198 as_error = as_fatal;
2199 else
2200 as_error = as_bad;
2201 (*as_error) (_("32bit mode not supported on `%s'."),
2202 cpu_arch_name ? cpu_arch_name : default_arch);
2203 }
2204 stackop_size = '\0';
2205 }
2206
2207 static void
2208 set_code_flag (int value)
2209 {
2210 update_code_flag (value, 0);
2211 }
2212
2213 static void
2214 set_16bit_gcc_code_flag (int new_code_flag)
2215 {
2216 flag_code = (enum flag_code) new_code_flag;
2217 if (flag_code != CODE_16BIT)
2218 abort ();
2219 cpu_arch_flags.bitfield.cpu64 = 0;
2220 cpu_arch_flags.bitfield.cpuno64 = 1;
2221 stackop_size = LONG_MNEM_SUFFIX;
2222 }
2223
2224 static void
2225 set_intel_syntax (int syntax_flag)
2226 {
2227 /* Find out if register prefixing is specified. */
2228 int ask_naked_reg = 0;
2229
2230 SKIP_WHITESPACE ();
2231 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2232 {
2233 char *string = input_line_pointer;
2234 int e = get_symbol_end ();
2235
2236 if (strcmp (string, "prefix") == 0)
2237 ask_naked_reg = 1;
2238 else if (strcmp (string, "noprefix") == 0)
2239 ask_naked_reg = -1;
2240 else
2241 as_bad (_("bad argument to syntax directive."));
2242 *input_line_pointer = e;
2243 }
2244 demand_empty_rest_of_line ();
2245
2246 intel_syntax = syntax_flag;
2247
2248 if (ask_naked_reg == 0)
2249 allow_naked_reg = (intel_syntax
2250 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2251 else
2252 allow_naked_reg = (ask_naked_reg < 0);
2253
2254 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2255
2256 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2257 identifier_chars['$'] = intel_syntax ? '$' : 0;
2258 register_prefix = allow_naked_reg ? "" : "%";
2259 }
2260
2261 static void
2262 set_intel_mnemonic (int mnemonic_flag)
2263 {
2264 intel_mnemonic = mnemonic_flag;
2265 }
2266
2267 static void
2268 set_allow_index_reg (int flag)
2269 {
2270 allow_index_reg = flag;
2271 }
2272
2273 static void
2274 set_check (int what)
2275 {
2276 enum check_kind *kind;
2277 const char *str;
2278
2279 if (what)
2280 {
2281 kind = &operand_check;
2282 str = "operand";
2283 }
2284 else
2285 {
2286 kind = &sse_check;
2287 str = "sse";
2288 }
2289
2290 SKIP_WHITESPACE ();
2291
2292 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2293 {
2294 char *string = input_line_pointer;
2295 int e = get_symbol_end ();
2296
2297 if (strcmp (string, "none") == 0)
2298 *kind = check_none;
2299 else if (strcmp (string, "warning") == 0)
2300 *kind = check_warning;
2301 else if (strcmp (string, "error") == 0)
2302 *kind = check_error;
2303 else
2304 as_bad (_("bad argument to %s_check directive."), str);
2305 *input_line_pointer = e;
2306 }
2307 else
2308 as_bad (_("missing argument for %s_check directive"), str);
2309
2310 demand_empty_rest_of_line ();
2311 }
2312
2313 static void
2314 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2315 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2316 {
2317 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2318 static const char *arch;
2319
2320 /* Intel LIOM is only supported on ELF. */
2321 if (!IS_ELF)
2322 return;
2323
2324 if (!arch)
2325 {
2326 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2327 use default_arch. */
2328 arch = cpu_arch_name;
2329 if (!arch)
2330 arch = default_arch;
2331 }
2332
2333 /* If we are targeting Intel L1OM, we must enable it. */
2334 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2335 || new_flag.bitfield.cpul1om)
2336 return;
2337
2338 /* If we are targeting Intel K1OM, we must enable it. */
2339 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2340 || new_flag.bitfield.cpuk1om)
2341 return;
2342
2343 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2344 #endif
2345 }
2346
2347 static void
2348 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2349 {
2350 SKIP_WHITESPACE ();
2351
2352 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2353 {
2354 char *string = input_line_pointer;
2355 int e = get_symbol_end ();
2356 unsigned int j;
2357 i386_cpu_flags flags;
2358
2359 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2360 {
2361 if (strcmp (string, cpu_arch[j].name) == 0)
2362 {
2363 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2364
2365 if (*string != '.')
2366 {
2367 cpu_arch_name = cpu_arch[j].name;
2368 cpu_sub_arch_name = NULL;
2369 cpu_arch_flags = cpu_arch[j].flags;
2370 if (flag_code == CODE_64BIT)
2371 {
2372 cpu_arch_flags.bitfield.cpu64 = 1;
2373 cpu_arch_flags.bitfield.cpuno64 = 0;
2374 }
2375 else
2376 {
2377 cpu_arch_flags.bitfield.cpu64 = 0;
2378 cpu_arch_flags.bitfield.cpuno64 = 1;
2379 }
2380 cpu_arch_isa = cpu_arch[j].type;
2381 cpu_arch_isa_flags = cpu_arch[j].flags;
2382 if (!cpu_arch_tune_set)
2383 {
2384 cpu_arch_tune = cpu_arch_isa;
2385 cpu_arch_tune_flags = cpu_arch_isa_flags;
2386 }
2387 break;
2388 }
2389
2390 if (!cpu_arch[j].negated)
2391 flags = cpu_flags_or (cpu_arch_flags,
2392 cpu_arch[j].flags);
2393 else
2394 flags = cpu_flags_and_not (cpu_arch_flags,
2395 cpu_arch[j].flags);
2396 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2397 {
2398 if (cpu_sub_arch_name)
2399 {
2400 char *name = cpu_sub_arch_name;
2401 cpu_sub_arch_name = concat (name,
2402 cpu_arch[j].name,
2403 (const char *) NULL);
2404 free (name);
2405 }
2406 else
2407 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2408 cpu_arch_flags = flags;
2409 cpu_arch_isa_flags = flags;
2410 }
2411 *input_line_pointer = e;
2412 demand_empty_rest_of_line ();
2413 return;
2414 }
2415 }
2416 if (j >= ARRAY_SIZE (cpu_arch))
2417 as_bad (_("no such architecture: `%s'"), string);
2418
2419 *input_line_pointer = e;
2420 }
2421 else
2422 as_bad (_("missing cpu architecture"));
2423
2424 no_cond_jump_promotion = 0;
2425 if (*input_line_pointer == ','
2426 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2427 {
2428 char *string = ++input_line_pointer;
2429 int e = get_symbol_end ();
2430
2431 if (strcmp (string, "nojumps") == 0)
2432 no_cond_jump_promotion = 1;
2433 else if (strcmp (string, "jumps") == 0)
2434 ;
2435 else
2436 as_bad (_("no such architecture modifier: `%s'"), string);
2437
2438 *input_line_pointer = e;
2439 }
2440
2441 demand_empty_rest_of_line ();
2442 }
2443
2444 enum bfd_architecture
2445 i386_arch (void)
2446 {
2447 if (cpu_arch_isa == PROCESSOR_L1OM)
2448 {
2449 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2450 || flag_code != CODE_64BIT)
2451 as_fatal (_("Intel L1OM is 64bit ELF only"));
2452 return bfd_arch_l1om;
2453 }
2454 else if (cpu_arch_isa == PROCESSOR_K1OM)
2455 {
2456 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2457 || flag_code != CODE_64BIT)
2458 as_fatal (_("Intel K1OM is 64bit ELF only"));
2459 return bfd_arch_k1om;
2460 }
2461 else
2462 return bfd_arch_i386;
2463 }
2464
2465 unsigned long
2466 i386_mach (void)
2467 {
2468 if (!strncmp (default_arch, "x86_64", 6))
2469 {
2470 if (cpu_arch_isa == PROCESSOR_L1OM)
2471 {
2472 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2473 || default_arch[6] != '\0')
2474 as_fatal (_("Intel L1OM is 64bit ELF only"));
2475 return bfd_mach_l1om;
2476 }
2477 else if (cpu_arch_isa == PROCESSOR_K1OM)
2478 {
2479 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2480 || default_arch[6] != '\0')
2481 as_fatal (_("Intel K1OM is 64bit ELF only"));
2482 return bfd_mach_k1om;
2483 }
2484 else if (default_arch[6] == '\0')
2485 return bfd_mach_x86_64;
2486 else
2487 return bfd_mach_x64_32;
2488 }
2489 else if (!strcmp (default_arch, "i386"))
2490 return bfd_mach_i386_i386;
2491 else
2492 as_fatal (_("unknown architecture"));
2493 }
2494 \f
2495 void
2496 md_begin (void)
2497 {
2498 const char *hash_err;
2499
2500 /* Initialize op_hash hash table. */
2501 op_hash = hash_new ();
2502
2503 {
2504 const insn_template *optab;
2505 templates *core_optab;
2506
2507 /* Setup for loop. */
2508 optab = i386_optab;
2509 core_optab = (templates *) xmalloc (sizeof (templates));
2510 core_optab->start = optab;
2511
2512 while (1)
2513 {
2514 ++optab;
2515 if (optab->name == NULL
2516 || strcmp (optab->name, (optab - 1)->name) != 0)
2517 {
2518 /* different name --> ship out current template list;
2519 add to hash table; & begin anew. */
2520 core_optab->end = optab;
2521 hash_err = hash_insert (op_hash,
2522 (optab - 1)->name,
2523 (void *) core_optab);
2524 if (hash_err)
2525 {
2526 as_fatal (_("can't hash %s: %s"),
2527 (optab - 1)->name,
2528 hash_err);
2529 }
2530 if (optab->name == NULL)
2531 break;
2532 core_optab = (templates *) xmalloc (sizeof (templates));
2533 core_optab->start = optab;
2534 }
2535 }
2536 }
2537
2538 /* Initialize reg_hash hash table. */
2539 reg_hash = hash_new ();
2540 {
2541 const reg_entry *regtab;
2542 unsigned int regtab_size = i386_regtab_size;
2543
2544 for (regtab = i386_regtab; regtab_size--; regtab++)
2545 {
2546 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2547 if (hash_err)
2548 as_fatal (_("can't hash %s: %s"),
2549 regtab->reg_name,
2550 hash_err);
2551 }
2552 }
2553
2554 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2555 {
2556 int c;
2557 char *p;
2558
2559 for (c = 0; c < 256; c++)
2560 {
2561 if (ISDIGIT (c))
2562 {
2563 digit_chars[c] = c;
2564 mnemonic_chars[c] = c;
2565 register_chars[c] = c;
2566 operand_chars[c] = c;
2567 }
2568 else if (ISLOWER (c))
2569 {
2570 mnemonic_chars[c] = c;
2571 register_chars[c] = c;
2572 operand_chars[c] = c;
2573 }
2574 else if (ISUPPER (c))
2575 {
2576 mnemonic_chars[c] = TOLOWER (c);
2577 register_chars[c] = mnemonic_chars[c];
2578 operand_chars[c] = c;
2579 }
2580 else if (c == '{' || c == '}')
2581 operand_chars[c] = c;
2582
2583 if (ISALPHA (c) || ISDIGIT (c))
2584 identifier_chars[c] = c;
2585 else if (c >= 128)
2586 {
2587 identifier_chars[c] = c;
2588 operand_chars[c] = c;
2589 }
2590 }
2591
2592 #ifdef LEX_AT
2593 identifier_chars['@'] = '@';
2594 #endif
2595 #ifdef LEX_QM
2596 identifier_chars['?'] = '?';
2597 operand_chars['?'] = '?';
2598 #endif
2599 digit_chars['-'] = '-';
2600 mnemonic_chars['_'] = '_';
2601 mnemonic_chars['-'] = '-';
2602 mnemonic_chars['.'] = '.';
2603 identifier_chars['_'] = '_';
2604 identifier_chars['.'] = '.';
2605
2606 for (p = operand_special_chars; *p != '\0'; p++)
2607 operand_chars[(unsigned char) *p] = *p;
2608 }
2609
2610 if (flag_code == CODE_64BIT)
2611 {
2612 #if defined (OBJ_COFF) && defined (TE_PE)
2613 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2614 ? 32 : 16);
2615 #else
2616 x86_dwarf2_return_column = 16;
2617 #endif
2618 x86_cie_data_alignment = -8;
2619 }
2620 else
2621 {
2622 x86_dwarf2_return_column = 8;
2623 x86_cie_data_alignment = -4;
2624 }
2625 }
2626
2627 void
2628 i386_print_statistics (FILE *file)
2629 {
2630 hash_print_statistics (file, "i386 opcode", op_hash);
2631 hash_print_statistics (file, "i386 register", reg_hash);
2632 }
2633 \f
2634 #ifdef DEBUG386
2635
2636 /* Debugging routines for md_assemble. */
2637 static void pte (insn_template *);
2638 static void pt (i386_operand_type);
2639 static void pe (expressionS *);
2640 static void ps (symbolS *);
2641
2642 static void
2643 pi (char *line, i386_insn *x)
2644 {
2645 unsigned int j;
2646
2647 fprintf (stdout, "%s: template ", line);
2648 pte (&x->tm);
2649 fprintf (stdout, " address: base %s index %s scale %x\n",
2650 x->base_reg ? x->base_reg->reg_name : "none",
2651 x->index_reg ? x->index_reg->reg_name : "none",
2652 x->log2_scale_factor);
2653 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2654 x->rm.mode, x->rm.reg, x->rm.regmem);
2655 fprintf (stdout, " sib: base %x index %x scale %x\n",
2656 x->sib.base, x->sib.index, x->sib.scale);
2657 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2658 (x->rex & REX_W) != 0,
2659 (x->rex & REX_R) != 0,
2660 (x->rex & REX_X) != 0,
2661 (x->rex & REX_B) != 0);
2662 for (j = 0; j < x->operands; j++)
2663 {
2664 fprintf (stdout, " #%d: ", j + 1);
2665 pt (x->types[j]);
2666 fprintf (stdout, "\n");
2667 if (x->types[j].bitfield.reg8
2668 || x->types[j].bitfield.reg16
2669 || x->types[j].bitfield.reg32
2670 || x->types[j].bitfield.reg64
2671 || x->types[j].bitfield.regmmx
2672 || x->types[j].bitfield.regxmm
2673 || x->types[j].bitfield.regymm
2674 || x->types[j].bitfield.regzmm
2675 || x->types[j].bitfield.sreg2
2676 || x->types[j].bitfield.sreg3
2677 || x->types[j].bitfield.control
2678 || x->types[j].bitfield.debug
2679 || x->types[j].bitfield.test)
2680 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2681 if (operand_type_check (x->types[j], imm))
2682 pe (x->op[j].imms);
2683 if (operand_type_check (x->types[j], disp))
2684 pe (x->op[j].disps);
2685 }
2686 }
2687
2688 static void
2689 pte (insn_template *t)
2690 {
2691 unsigned int j;
2692 fprintf (stdout, " %d operands ", t->operands);
2693 fprintf (stdout, "opcode %x ", t->base_opcode);
2694 if (t->extension_opcode != None)
2695 fprintf (stdout, "ext %x ", t->extension_opcode);
2696 if (t->opcode_modifier.d)
2697 fprintf (stdout, "D");
2698 if (t->opcode_modifier.w)
2699 fprintf (stdout, "W");
2700 fprintf (stdout, "\n");
2701 for (j = 0; j < t->operands; j++)
2702 {
2703 fprintf (stdout, " #%d type ", j + 1);
2704 pt (t->operand_types[j]);
2705 fprintf (stdout, "\n");
2706 }
2707 }
2708
2709 static void
2710 pe (expressionS *e)
2711 {
2712 fprintf (stdout, " operation %d\n", e->X_op);
2713 fprintf (stdout, " add_number %ld (%lx)\n",
2714 (long) e->X_add_number, (long) e->X_add_number);
2715 if (e->X_add_symbol)
2716 {
2717 fprintf (stdout, " add_symbol ");
2718 ps (e->X_add_symbol);
2719 fprintf (stdout, "\n");
2720 }
2721 if (e->X_op_symbol)
2722 {
2723 fprintf (stdout, " op_symbol ");
2724 ps (e->X_op_symbol);
2725 fprintf (stdout, "\n");
2726 }
2727 }
2728
2729 static void
2730 ps (symbolS *s)
2731 {
2732 fprintf (stdout, "%s type %s%s",
2733 S_GET_NAME (s),
2734 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
2735 segment_name (S_GET_SEGMENT (s)));
2736 }
2737
2738 static struct type_name
2739 {
2740 i386_operand_type mask;
2741 const char *name;
2742 }
2743 const type_names[] =
2744 {
2745 { OPERAND_TYPE_REG8, "r8" },
2746 { OPERAND_TYPE_REG16, "r16" },
2747 { OPERAND_TYPE_REG32, "r32" },
2748 { OPERAND_TYPE_REG64, "r64" },
2749 { OPERAND_TYPE_IMM8, "i8" },
2750 { OPERAND_TYPE_IMM8, "i8s" },
2751 { OPERAND_TYPE_IMM16, "i16" },
2752 { OPERAND_TYPE_IMM32, "i32" },
2753 { OPERAND_TYPE_IMM32S, "i32s" },
2754 { OPERAND_TYPE_IMM64, "i64" },
2755 { OPERAND_TYPE_IMM1, "i1" },
2756 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
2757 { OPERAND_TYPE_DISP8, "d8" },
2758 { OPERAND_TYPE_DISP16, "d16" },
2759 { OPERAND_TYPE_DISP32, "d32" },
2760 { OPERAND_TYPE_DISP32S, "d32s" },
2761 { OPERAND_TYPE_DISP64, "d64" },
2762 { OPERAND_TYPE_VEC_DISP8, "Vector d8" },
2763 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
2764 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
2765 { OPERAND_TYPE_CONTROL, "control reg" },
2766 { OPERAND_TYPE_TEST, "test reg" },
2767 { OPERAND_TYPE_DEBUG, "debug reg" },
2768 { OPERAND_TYPE_FLOATREG, "FReg" },
2769 { OPERAND_TYPE_FLOATACC, "FAcc" },
2770 { OPERAND_TYPE_SREG2, "SReg2" },
2771 { OPERAND_TYPE_SREG3, "SReg3" },
2772 { OPERAND_TYPE_ACC, "Acc" },
2773 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
2774 { OPERAND_TYPE_REGMMX, "rMMX" },
2775 { OPERAND_TYPE_REGXMM, "rXMM" },
2776 { OPERAND_TYPE_REGYMM, "rYMM" },
2777 { OPERAND_TYPE_REGZMM, "rZMM" },
2778 { OPERAND_TYPE_REGMASK, "Mask reg" },
2779 { OPERAND_TYPE_ESSEG, "es" },
2780 };
2781
2782 static void
2783 pt (i386_operand_type t)
2784 {
2785 unsigned int j;
2786 i386_operand_type a;
2787
2788 for (j = 0; j < ARRAY_SIZE (type_names); j++)
2789 {
2790 a = operand_type_and (t, type_names[j].mask);
2791 if (!operand_type_all_zero (&a))
2792 fprintf (stdout, "%s, ", type_names[j].name);
2793 }
2794 fflush (stdout);
2795 }
2796
2797 #endif /* DEBUG386 */
2798 \f
2799 static bfd_reloc_code_real_type
2800 reloc (unsigned int size,
2801 int pcrel,
2802 int sign,
2803 int bnd_prefix,
2804 bfd_reloc_code_real_type other)
2805 {
2806 if (other != NO_RELOC)
2807 {
2808 reloc_howto_type *rel;
2809
2810 if (size == 8)
2811 switch (other)
2812 {
2813 case BFD_RELOC_X86_64_GOT32:
2814 return BFD_RELOC_X86_64_GOT64;
2815 break;
2816 case BFD_RELOC_X86_64_PLTOFF64:
2817 return BFD_RELOC_X86_64_PLTOFF64;
2818 break;
2819 case BFD_RELOC_X86_64_GOTPC32:
2820 other = BFD_RELOC_X86_64_GOTPC64;
2821 break;
2822 case BFD_RELOC_X86_64_GOTPCREL:
2823 other = BFD_RELOC_X86_64_GOTPCREL64;
2824 break;
2825 case BFD_RELOC_X86_64_TPOFF32:
2826 other = BFD_RELOC_X86_64_TPOFF64;
2827 break;
2828 case BFD_RELOC_X86_64_DTPOFF32:
2829 other = BFD_RELOC_X86_64_DTPOFF64;
2830 break;
2831 default:
2832 break;
2833 }
2834
2835 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2836 if (other == BFD_RELOC_SIZE32)
2837 {
2838 if (size == 8)
2839 return BFD_RELOC_SIZE64;
2840 if (pcrel)
2841 as_bad (_("there are no pc-relative size relocations"));
2842 }
2843 #endif
2844
2845 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
2846 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
2847 sign = -1;
2848
2849 rel = bfd_reloc_type_lookup (stdoutput, other);
2850 if (!rel)
2851 as_bad (_("unknown relocation (%u)"), other);
2852 else if (size != bfd_get_reloc_size (rel))
2853 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
2854 bfd_get_reloc_size (rel),
2855 size);
2856 else if (pcrel && !rel->pc_relative)
2857 as_bad (_("non-pc-relative relocation for pc-relative field"));
2858 else if ((rel->complain_on_overflow == complain_overflow_signed
2859 && !sign)
2860 || (rel->complain_on_overflow == complain_overflow_unsigned
2861 && sign > 0))
2862 as_bad (_("relocated field and relocation type differ in signedness"));
2863 else
2864 return other;
2865 return NO_RELOC;
2866 }
2867
2868 if (pcrel)
2869 {
2870 if (!sign)
2871 as_bad (_("there are no unsigned pc-relative relocations"));
2872 switch (size)
2873 {
2874 case 1: return BFD_RELOC_8_PCREL;
2875 case 2: return BFD_RELOC_16_PCREL;
2876 case 4: return (bnd_prefix && object_64bit
2877 ? BFD_RELOC_X86_64_PC32_BND
2878 : BFD_RELOC_32_PCREL);
2879 case 8: return BFD_RELOC_64_PCREL;
2880 }
2881 as_bad (_("cannot do %u byte pc-relative relocation"), size);
2882 }
2883 else
2884 {
2885 if (sign > 0)
2886 switch (size)
2887 {
2888 case 4: return BFD_RELOC_X86_64_32S;
2889 }
2890 else
2891 switch (size)
2892 {
2893 case 1: return BFD_RELOC_8;
2894 case 2: return BFD_RELOC_16;
2895 case 4: return BFD_RELOC_32;
2896 case 8: return BFD_RELOC_64;
2897 }
2898 as_bad (_("cannot do %s %u byte relocation"),
2899 sign > 0 ? "signed" : "unsigned", size);
2900 }
2901
2902 return NO_RELOC;
2903 }
2904
2905 /* Here we decide which fixups can be adjusted to make them relative to
2906 the beginning of the section instead of the symbol. Basically we need
2907 to make sure that the dynamic relocations are done correctly, so in
2908 some cases we force the original symbol to be used. */
2909
2910 int
2911 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
2912 {
2913 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2914 if (!IS_ELF)
2915 return 1;
2916
2917 /* Don't adjust pc-relative references to merge sections in 64-bit
2918 mode. */
2919 if (use_rela_relocations
2920 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
2921 && fixP->fx_pcrel)
2922 return 0;
2923
2924 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
2925 and changed later by validate_fix. */
2926 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
2927 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
2928 return 0;
2929
2930 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
2931 for size relocations. */
2932 if (fixP->fx_r_type == BFD_RELOC_SIZE32
2933 || fixP->fx_r_type == BFD_RELOC_SIZE64
2934 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
2935 || fixP->fx_r_type == BFD_RELOC_386_PLT32
2936 || fixP->fx_r_type == BFD_RELOC_386_GOT32
2937 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
2938 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
2939 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
2940 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
2941 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
2942 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
2943 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
2944 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
2945 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
2946 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
2947 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
2948 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
2949 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
2950 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
2951 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
2952 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
2953 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
2954 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
2955 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
2956 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
2957 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
2958 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
2959 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
2960 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
2961 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
2962 return 0;
2963 #endif
2964 return 1;
2965 }
2966
2967 static int
2968 intel_float_operand (const char *mnemonic)
2969 {
2970 /* Note that the value returned is meaningful only for opcodes with (memory)
2971 operands, hence the code here is free to improperly handle opcodes that
2972 have no operands (for better performance and smaller code). */
2973
2974 if (mnemonic[0] != 'f')
2975 return 0; /* non-math */
2976
2977 switch (mnemonic[1])
2978 {
2979 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
2980 the fs segment override prefix not currently handled because no
2981 call path can make opcodes without operands get here */
2982 case 'i':
2983 return 2 /* integer op */;
2984 case 'l':
2985 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
2986 return 3; /* fldcw/fldenv */
2987 break;
2988 case 'n':
2989 if (mnemonic[2] != 'o' /* fnop */)
2990 return 3; /* non-waiting control op */
2991 break;
2992 case 'r':
2993 if (mnemonic[2] == 's')
2994 return 3; /* frstor/frstpm */
2995 break;
2996 case 's':
2997 if (mnemonic[2] == 'a')
2998 return 3; /* fsave */
2999 if (mnemonic[2] == 't')
3000 {
3001 switch (mnemonic[3])
3002 {
3003 case 'c': /* fstcw */
3004 case 'd': /* fstdw */
3005 case 'e': /* fstenv */
3006 case 's': /* fsts[gw] */
3007 return 3;
3008 }
3009 }
3010 break;
3011 case 'x':
3012 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3013 return 0; /* fxsave/fxrstor are not really math ops */
3014 break;
3015 }
3016
3017 return 1;
3018 }
3019
3020 /* Build the VEX prefix. */
3021
3022 static void
3023 build_vex_prefix (const insn_template *t)
3024 {
3025 unsigned int register_specifier;
3026 unsigned int implied_prefix;
3027 unsigned int vector_length;
3028
3029 /* Check register specifier. */
3030 if (i.vex.register_specifier)
3031 {
3032 register_specifier =
3033 ~register_number (i.vex.register_specifier) & 0xf;
3034 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3035 }
3036 else
3037 register_specifier = 0xf;
3038
3039 /* Use 2-byte VEX prefix by swappping destination and source
3040 operand. */
3041 if (!i.swap_operand
3042 && i.operands == i.reg_operands
3043 && i.tm.opcode_modifier.vexopcode == VEX0F
3044 && i.tm.opcode_modifier.s
3045 && i.rex == REX_B)
3046 {
3047 unsigned int xchg = i.operands - 1;
3048 union i386_op temp_op;
3049 i386_operand_type temp_type;
3050
3051 temp_type = i.types[xchg];
3052 i.types[xchg] = i.types[0];
3053 i.types[0] = temp_type;
3054 temp_op = i.op[xchg];
3055 i.op[xchg] = i.op[0];
3056 i.op[0] = temp_op;
3057
3058 gas_assert (i.rm.mode == 3);
3059
3060 i.rex = REX_R;
3061 xchg = i.rm.regmem;
3062 i.rm.regmem = i.rm.reg;
3063 i.rm.reg = xchg;
3064
3065 /* Use the next insn. */
3066 i.tm = t[1];
3067 }
3068
3069 if (i.tm.opcode_modifier.vex == VEXScalar)
3070 vector_length = avxscalar;
3071 else
3072 vector_length = i.tm.opcode_modifier.vex == VEX256 ? 1 : 0;
3073
3074 switch ((i.tm.base_opcode >> 8) & 0xff)
3075 {
3076 case 0:
3077 implied_prefix = 0;
3078 break;
3079 case DATA_PREFIX_OPCODE:
3080 implied_prefix = 1;
3081 break;
3082 case REPE_PREFIX_OPCODE:
3083 implied_prefix = 2;
3084 break;
3085 case REPNE_PREFIX_OPCODE:
3086 implied_prefix = 3;
3087 break;
3088 default:
3089 abort ();
3090 }
3091
3092 /* Use 2-byte VEX prefix if possible. */
3093 if (i.tm.opcode_modifier.vexopcode == VEX0F
3094 && i.tm.opcode_modifier.vexw != VEXW1
3095 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3096 {
3097 /* 2-byte VEX prefix. */
3098 unsigned int r;
3099
3100 i.vex.length = 2;
3101 i.vex.bytes[0] = 0xc5;
3102
3103 /* Check the REX.R bit. */
3104 r = (i.rex & REX_R) ? 0 : 1;
3105 i.vex.bytes[1] = (r << 7
3106 | register_specifier << 3
3107 | vector_length << 2
3108 | implied_prefix);
3109 }
3110 else
3111 {
3112 /* 3-byte VEX prefix. */
3113 unsigned int m, w;
3114
3115 i.vex.length = 3;
3116
3117 switch (i.tm.opcode_modifier.vexopcode)
3118 {
3119 case VEX0F:
3120 m = 0x1;
3121 i.vex.bytes[0] = 0xc4;
3122 break;
3123 case VEX0F38:
3124 m = 0x2;
3125 i.vex.bytes[0] = 0xc4;
3126 break;
3127 case VEX0F3A:
3128 m = 0x3;
3129 i.vex.bytes[0] = 0xc4;
3130 break;
3131 case XOP08:
3132 m = 0x8;
3133 i.vex.bytes[0] = 0x8f;
3134 break;
3135 case XOP09:
3136 m = 0x9;
3137 i.vex.bytes[0] = 0x8f;
3138 break;
3139 case XOP0A:
3140 m = 0xa;
3141 i.vex.bytes[0] = 0x8f;
3142 break;
3143 default:
3144 abort ();
3145 }
3146
3147 /* The high 3 bits of the second VEX byte are 1's compliment
3148 of RXB bits from REX. */
3149 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3150
3151 /* Check the REX.W bit. */
3152 w = (i.rex & REX_W) ? 1 : 0;
3153 if (i.tm.opcode_modifier.vexw)
3154 {
3155 if (w)
3156 abort ();
3157
3158 if (i.tm.opcode_modifier.vexw == VEXW1)
3159 w = 1;
3160 }
3161
3162 i.vex.bytes[2] = (w << 7
3163 | register_specifier << 3
3164 | vector_length << 2
3165 | implied_prefix);
3166 }
3167 }
3168
3169 /* Build the EVEX prefix. */
3170
3171 static void
3172 build_evex_prefix (void)
3173 {
3174 unsigned int register_specifier;
3175 unsigned int implied_prefix;
3176 unsigned int m, w;
3177 rex_byte vrex_used = 0;
3178
3179 /* Check register specifier. */
3180 if (i.vex.register_specifier)
3181 {
3182 gas_assert ((i.vrex & REX_X) == 0);
3183
3184 register_specifier = i.vex.register_specifier->reg_num;
3185 if ((i.vex.register_specifier->reg_flags & RegRex))
3186 register_specifier += 8;
3187 /* The upper 16 registers are encoded in the fourth byte of the
3188 EVEX prefix. */
3189 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3190 i.vex.bytes[3] = 0x8;
3191 register_specifier = ~register_specifier & 0xf;
3192 }
3193 else
3194 {
3195 register_specifier = 0xf;
3196
3197 /* Encode upper 16 vector index register in the fourth byte of
3198 the EVEX prefix. */
3199 if (!(i.vrex & REX_X))
3200 i.vex.bytes[3] = 0x8;
3201 else
3202 vrex_used |= REX_X;
3203 }
3204
3205 switch ((i.tm.base_opcode >> 8) & 0xff)
3206 {
3207 case 0:
3208 implied_prefix = 0;
3209 break;
3210 case DATA_PREFIX_OPCODE:
3211 implied_prefix = 1;
3212 break;
3213 case REPE_PREFIX_OPCODE:
3214 implied_prefix = 2;
3215 break;
3216 case REPNE_PREFIX_OPCODE:
3217 implied_prefix = 3;
3218 break;
3219 default:
3220 abort ();
3221 }
3222
3223 /* 4 byte EVEX prefix. */
3224 i.vex.length = 4;
3225 i.vex.bytes[0] = 0x62;
3226
3227 /* mmmm bits. */
3228 switch (i.tm.opcode_modifier.vexopcode)
3229 {
3230 case VEX0F:
3231 m = 1;
3232 break;
3233 case VEX0F38:
3234 m = 2;
3235 break;
3236 case VEX0F3A:
3237 m = 3;
3238 break;
3239 default:
3240 abort ();
3241 break;
3242 }
3243
3244 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3245 bits from REX. */
3246 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3247
3248 /* The fifth bit of the second EVEX byte is 1's compliment of the
3249 REX_R bit in VREX. */
3250 if (!(i.vrex & REX_R))
3251 i.vex.bytes[1] |= 0x10;
3252 else
3253 vrex_used |= REX_R;
3254
3255 if ((i.reg_operands + i.imm_operands) == i.operands)
3256 {
3257 /* When all operands are registers, the REX_X bit in REX is not
3258 used. We reuse it to encode the upper 16 registers, which is
3259 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3260 as 1's compliment. */
3261 if ((i.vrex & REX_B))
3262 {
3263 vrex_used |= REX_B;
3264 i.vex.bytes[1] &= ~0x40;
3265 }
3266 }
3267
3268 /* EVEX instructions shouldn't need the REX prefix. */
3269 i.vrex &= ~vrex_used;
3270 gas_assert (i.vrex == 0);
3271
3272 /* Check the REX.W bit. */
3273 w = (i.rex & REX_W) ? 1 : 0;
3274 if (i.tm.opcode_modifier.vexw)
3275 {
3276 if (i.tm.opcode_modifier.vexw == VEXW1)
3277 w = 1;
3278 }
3279 /* If w is not set it means we are dealing with WIG instruction. */
3280 else if (!w)
3281 {
3282 if (evexwig == evexw1)
3283 w = 1;
3284 }
3285
3286 /* Encode the U bit. */
3287 implied_prefix |= 0x4;
3288
3289 /* The third byte of the EVEX prefix. */
3290 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3291
3292 /* The fourth byte of the EVEX prefix. */
3293 /* The zeroing-masking bit. */
3294 if (i.mask && i.mask->zeroing)
3295 i.vex.bytes[3] |= 0x80;
3296
3297 /* Don't always set the broadcast bit if there is no RC. */
3298 if (!i.rounding)
3299 {
3300 /* Encode the vector length. */
3301 unsigned int vec_length;
3302
3303 switch (i.tm.opcode_modifier.evex)
3304 {
3305 case EVEXLIG: /* LL' is ignored */
3306 vec_length = evexlig << 5;
3307 break;
3308 case EVEX128:
3309 vec_length = 0 << 5;
3310 break;
3311 case EVEX256:
3312 vec_length = 1 << 5;
3313 break;
3314 case EVEX512:
3315 vec_length = 2 << 5;
3316 break;
3317 default:
3318 abort ();
3319 break;
3320 }
3321 i.vex.bytes[3] |= vec_length;
3322 /* Encode the broadcast bit. */
3323 if (i.broadcast)
3324 i.vex.bytes[3] |= 0x10;
3325 }
3326 else
3327 {
3328 if (i.rounding->type != saeonly)
3329 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3330 else
3331 i.vex.bytes[3] |= 0x10;
3332 }
3333
3334 if (i.mask && i.mask->mask)
3335 i.vex.bytes[3] |= i.mask->mask->reg_num;
3336 }
3337
3338 static void
3339 process_immext (void)
3340 {
3341 expressionS *exp;
3342
3343 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3344 && i.operands > 0)
3345 {
3346 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3347 with an opcode suffix which is coded in the same place as an
3348 8-bit immediate field would be.
3349 Here we check those operands and remove them afterwards. */
3350 unsigned int x;
3351
3352 for (x = 0; x < i.operands; x++)
3353 if (register_number (i.op[x].regs) != x)
3354 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3355 register_prefix, i.op[x].regs->reg_name, x + 1,
3356 i.tm.name);
3357
3358 i.operands = 0;
3359 }
3360
3361 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3362 which is coded in the same place as an 8-bit immediate field
3363 would be. Here we fake an 8-bit immediate operand from the
3364 opcode suffix stored in tm.extension_opcode.
3365
3366 AVX instructions also use this encoding, for some of
3367 3 argument instructions. */
3368
3369 gas_assert (i.imm_operands <= 1
3370 && (i.operands <= 2
3371 || ((i.tm.opcode_modifier.vex
3372 || i.tm.opcode_modifier.evex)
3373 && i.operands <= 4)));
3374
3375 exp = &im_expressions[i.imm_operands++];
3376 i.op[i.operands].imms = exp;
3377 i.types[i.operands] = imm8;
3378 i.operands++;
3379 exp->X_op = O_constant;
3380 exp->X_add_number = i.tm.extension_opcode;
3381 i.tm.extension_opcode = None;
3382 }
3383
3384
3385 static int
3386 check_hle (void)
3387 {
3388 switch (i.tm.opcode_modifier.hleprefixok)
3389 {
3390 default:
3391 abort ();
3392 case HLEPrefixNone:
3393 as_bad (_("invalid instruction `%s' after `%s'"),
3394 i.tm.name, i.hle_prefix);
3395 return 0;
3396 case HLEPrefixLock:
3397 if (i.prefix[LOCK_PREFIX])
3398 return 1;
3399 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3400 return 0;
3401 case HLEPrefixAny:
3402 return 1;
3403 case HLEPrefixRelease:
3404 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3405 {
3406 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3407 i.tm.name);
3408 return 0;
3409 }
3410 if (i.mem_operands == 0
3411 || !operand_type_check (i.types[i.operands - 1], anymem))
3412 {
3413 as_bad (_("memory destination needed for instruction `%s'"
3414 " after `xrelease'"), i.tm.name);
3415 return 0;
3416 }
3417 return 1;
3418 }
3419 }
3420
3421 /* This is the guts of the machine-dependent assembler. LINE points to a
3422 machine dependent instruction. This function is supposed to emit
3423 the frags/bytes it assembles to. */
3424
3425 void
3426 md_assemble (char *line)
3427 {
3428 unsigned int j;
3429 char mnemonic[MAX_MNEM_SIZE];
3430 const insn_template *t;
3431
3432 /* Initialize globals. */
3433 memset (&i, '\0', sizeof (i));
3434 for (j = 0; j < MAX_OPERANDS; j++)
3435 i.reloc[j] = NO_RELOC;
3436 memset (disp_expressions, '\0', sizeof (disp_expressions));
3437 memset (im_expressions, '\0', sizeof (im_expressions));
3438 save_stack_p = save_stack;
3439
3440 /* First parse an instruction mnemonic & call i386_operand for the operands.
3441 We assume that the scrubber has arranged it so that line[0] is the valid
3442 start of a (possibly prefixed) mnemonic. */
3443
3444 line = parse_insn (line, mnemonic);
3445 if (line == NULL)
3446 return;
3447
3448 line = parse_operands (line, mnemonic);
3449 this_operand = -1;
3450 if (line == NULL)
3451 return;
3452
3453 /* Now we've parsed the mnemonic into a set of templates, and have the
3454 operands at hand. */
3455
3456 /* All intel opcodes have reversed operands except for "bound" and
3457 "enter". We also don't reverse intersegment "jmp" and "call"
3458 instructions with 2 immediate operands so that the immediate segment
3459 precedes the offset, as it does when in AT&T mode. */
3460 if (intel_syntax
3461 && i.operands > 1
3462 && (strcmp (mnemonic, "bound") != 0)
3463 && (strcmp (mnemonic, "invlpga") != 0)
3464 && !(operand_type_check (i.types[0], imm)
3465 && operand_type_check (i.types[1], imm)))
3466 swap_operands ();
3467
3468 /* The order of the immediates should be reversed
3469 for 2 immediates extrq and insertq instructions */
3470 if (i.imm_operands == 2
3471 && (strcmp (mnemonic, "extrq") == 0
3472 || strcmp (mnemonic, "insertq") == 0))
3473 swap_2_operands (0, 1);
3474
3475 if (i.imm_operands)
3476 optimize_imm ();
3477
3478 /* Don't optimize displacement for movabs since it only takes 64bit
3479 displacement. */
3480 if (i.disp_operands
3481 && i.disp_encoding != disp_encoding_32bit
3482 && (flag_code != CODE_64BIT
3483 || strcmp (mnemonic, "movabs") != 0))
3484 optimize_disp ();
3485
3486 /* Next, we find a template that matches the given insn,
3487 making sure the overlap of the given operands types is consistent
3488 with the template operand types. */
3489
3490 if (!(t = match_template ()))
3491 return;
3492
3493 if (sse_check != check_none
3494 && !i.tm.opcode_modifier.noavx
3495 && (i.tm.cpu_flags.bitfield.cpusse
3496 || i.tm.cpu_flags.bitfield.cpusse2
3497 || i.tm.cpu_flags.bitfield.cpusse3
3498 || i.tm.cpu_flags.bitfield.cpussse3
3499 || i.tm.cpu_flags.bitfield.cpusse4_1
3500 || i.tm.cpu_flags.bitfield.cpusse4_2))
3501 {
3502 (sse_check == check_warning
3503 ? as_warn
3504 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
3505 }
3506
3507 /* Zap movzx and movsx suffix. The suffix has been set from
3508 "word ptr" or "byte ptr" on the source operand in Intel syntax
3509 or extracted from mnemonic in AT&T syntax. But we'll use
3510 the destination register to choose the suffix for encoding. */
3511 if ((i.tm.base_opcode & ~9) == 0x0fb6)
3512 {
3513 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
3514 there is no suffix, the default will be byte extension. */
3515 if (i.reg_operands != 2
3516 && !i.suffix
3517 && intel_syntax)
3518 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
3519
3520 i.suffix = 0;
3521 }
3522
3523 if (i.tm.opcode_modifier.fwait)
3524 if (!add_prefix (FWAIT_OPCODE))
3525 return;
3526
3527 /* Check if REP prefix is OK. */
3528 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
3529 {
3530 as_bad (_("invalid instruction `%s' after `%s'"),
3531 i.tm.name, i.rep_prefix);
3532 return;
3533 }
3534
3535 /* Check for lock without a lockable instruction. Destination operand
3536 must be memory unless it is xchg (0x86). */
3537 if (i.prefix[LOCK_PREFIX]
3538 && (!i.tm.opcode_modifier.islockable
3539 || i.mem_operands == 0
3540 || (i.tm.base_opcode != 0x86
3541 && !operand_type_check (i.types[i.operands - 1], anymem))))
3542 {
3543 as_bad (_("expecting lockable instruction after `lock'"));
3544 return;
3545 }
3546
3547 /* Check if HLE prefix is OK. */
3548 if (i.hle_prefix && !check_hle ())
3549 return;
3550
3551 /* Check BND prefix. */
3552 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
3553 as_bad (_("expecting valid branch instruction after `bnd'"));
3554
3555 if (i.tm.cpu_flags.bitfield.cpumpx
3556 && flag_code == CODE_64BIT
3557 && i.prefix[ADDR_PREFIX])
3558 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
3559
3560 /* Insert BND prefix. */
3561 if (add_bnd_prefix
3562 && i.tm.opcode_modifier.bndprefixok
3563 && !i.prefix[BND_PREFIX])
3564 add_prefix (BND_PREFIX_OPCODE);
3565
3566 /* Check string instruction segment overrides. */
3567 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
3568 {
3569 if (!check_string ())
3570 return;
3571 i.disp_operands = 0;
3572 }
3573
3574 if (!process_suffix ())
3575 return;
3576
3577 /* Update operand types. */
3578 for (j = 0; j < i.operands; j++)
3579 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
3580
3581 /* Make still unresolved immediate matches conform to size of immediate
3582 given in i.suffix. */
3583 if (!finalize_imm ())
3584 return;
3585
3586 if (i.types[0].bitfield.imm1)
3587 i.imm_operands = 0; /* kludge for shift insns. */
3588
3589 /* We only need to check those implicit registers for instructions
3590 with 3 operands or less. */
3591 if (i.operands <= 3)
3592 for (j = 0; j < i.operands; j++)
3593 if (i.types[j].bitfield.inoutportreg
3594 || i.types[j].bitfield.shiftcount
3595 || i.types[j].bitfield.acc
3596 || i.types[j].bitfield.floatacc)
3597 i.reg_operands--;
3598
3599 /* ImmExt should be processed after SSE2AVX. */
3600 if (!i.tm.opcode_modifier.sse2avx
3601 && i.tm.opcode_modifier.immext)
3602 process_immext ();
3603
3604 /* For insns with operands there are more diddles to do to the opcode. */
3605 if (i.operands)
3606 {
3607 if (!process_operands ())
3608 return;
3609 }
3610 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
3611 {
3612 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
3613 as_warn (_("translating to `%sp'"), i.tm.name);
3614 }
3615
3616 if (i.tm.opcode_modifier.vex)
3617 build_vex_prefix (t);
3618
3619 if (i.tm.opcode_modifier.evex)
3620 build_evex_prefix ();
3621
3622 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
3623 instructions may define INT_OPCODE as well, so avoid this corner
3624 case for those instructions that use MODRM. */
3625 if (i.tm.base_opcode == INT_OPCODE
3626 && !i.tm.opcode_modifier.modrm
3627 && i.op[0].imms->X_add_number == 3)
3628 {
3629 i.tm.base_opcode = INT3_OPCODE;
3630 i.imm_operands = 0;
3631 }
3632
3633 if ((i.tm.opcode_modifier.jump
3634 || i.tm.opcode_modifier.jumpbyte
3635 || i.tm.opcode_modifier.jumpdword)
3636 && i.op[0].disps->X_op == O_constant)
3637 {
3638 /* Convert "jmp constant" (and "call constant") to a jump (call) to
3639 the absolute address given by the constant. Since ix86 jumps and
3640 calls are pc relative, we need to generate a reloc. */
3641 i.op[0].disps->X_add_symbol = &abs_symbol;
3642 i.op[0].disps->X_op = O_symbol;
3643 }
3644
3645 if (i.tm.opcode_modifier.rex64)
3646 i.rex |= REX_W;
3647
3648 /* For 8 bit registers we need an empty rex prefix. Also if the
3649 instruction already has a prefix, we need to convert old
3650 registers to new ones. */
3651
3652 if ((i.types[0].bitfield.reg8
3653 && (i.op[0].regs->reg_flags & RegRex64) != 0)
3654 || (i.types[1].bitfield.reg8
3655 && (i.op[1].regs->reg_flags & RegRex64) != 0)
3656 || ((i.types[0].bitfield.reg8
3657 || i.types[1].bitfield.reg8)
3658 && i.rex != 0))
3659 {
3660 int x;
3661
3662 i.rex |= REX_OPCODE;
3663 for (x = 0; x < 2; x++)
3664 {
3665 /* Look for 8 bit operand that uses old registers. */
3666 if (i.types[x].bitfield.reg8
3667 && (i.op[x].regs->reg_flags & RegRex64) == 0)
3668 {
3669 /* In case it is "hi" register, give up. */
3670 if (i.op[x].regs->reg_num > 3)
3671 as_bad (_("can't encode register '%s%s' in an "
3672 "instruction requiring REX prefix."),
3673 register_prefix, i.op[x].regs->reg_name);
3674
3675 /* Otherwise it is equivalent to the extended register.
3676 Since the encoding doesn't change this is merely
3677 cosmetic cleanup for debug output. */
3678
3679 i.op[x].regs = i.op[x].regs + 8;
3680 }
3681 }
3682 }
3683
3684 if (i.rex != 0)
3685 add_prefix (REX_OPCODE | i.rex);
3686
3687 /* We are ready to output the insn. */
3688 output_insn ();
3689 }
3690
3691 static char *
3692 parse_insn (char *line, char *mnemonic)
3693 {
3694 char *l = line;
3695 char *token_start = l;
3696 char *mnem_p;
3697 int supported;
3698 const insn_template *t;
3699 char *dot_p = NULL;
3700
3701 while (1)
3702 {
3703 mnem_p = mnemonic;
3704 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
3705 {
3706 if (*mnem_p == '.')
3707 dot_p = mnem_p;
3708 mnem_p++;
3709 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
3710 {
3711 as_bad (_("no such instruction: `%s'"), token_start);
3712 return NULL;
3713 }
3714 l++;
3715 }
3716 if (!is_space_char (*l)
3717 && *l != END_OF_INSN
3718 && (intel_syntax
3719 || (*l != PREFIX_SEPARATOR
3720 && *l != ',')))
3721 {
3722 as_bad (_("invalid character %s in mnemonic"),
3723 output_invalid (*l));
3724 return NULL;
3725 }
3726 if (token_start == l)
3727 {
3728 if (!intel_syntax && *l == PREFIX_SEPARATOR)
3729 as_bad (_("expecting prefix; got nothing"));
3730 else
3731 as_bad (_("expecting mnemonic; got nothing"));
3732 return NULL;
3733 }
3734
3735 /* Look up instruction (or prefix) via hash table. */
3736 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3737
3738 if (*l != END_OF_INSN
3739 && (!is_space_char (*l) || l[1] != END_OF_INSN)
3740 && current_templates
3741 && current_templates->start->opcode_modifier.isprefix)
3742 {
3743 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
3744 {
3745 as_bad ((flag_code != CODE_64BIT
3746 ? _("`%s' is only supported in 64-bit mode")
3747 : _("`%s' is not supported in 64-bit mode")),
3748 current_templates->start->name);
3749 return NULL;
3750 }
3751 /* If we are in 16-bit mode, do not allow addr16 or data16.
3752 Similarly, in 32-bit mode, do not allow addr32 or data32. */
3753 if ((current_templates->start->opcode_modifier.size16
3754 || current_templates->start->opcode_modifier.size32)
3755 && flag_code != CODE_64BIT
3756 && (current_templates->start->opcode_modifier.size32
3757 ^ (flag_code == CODE_16BIT)))
3758 {
3759 as_bad (_("redundant %s prefix"),
3760 current_templates->start->name);
3761 return NULL;
3762 }
3763 /* Add prefix, checking for repeated prefixes. */
3764 switch (add_prefix (current_templates->start->base_opcode))
3765 {
3766 case PREFIX_EXIST:
3767 return NULL;
3768 case PREFIX_REP:
3769 if (current_templates->start->cpu_flags.bitfield.cpuhle)
3770 i.hle_prefix = current_templates->start->name;
3771 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
3772 i.bnd_prefix = current_templates->start->name;
3773 else
3774 i.rep_prefix = current_templates->start->name;
3775 break;
3776 default:
3777 break;
3778 }
3779 /* Skip past PREFIX_SEPARATOR and reset token_start. */
3780 token_start = ++l;
3781 }
3782 else
3783 break;
3784 }
3785
3786 if (!current_templates)
3787 {
3788 /* Check if we should swap operand or force 32bit displacement in
3789 encoding. */
3790 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
3791 i.swap_operand = 1;
3792 else if (mnem_p - 3 == dot_p
3793 && dot_p[1] == 'd'
3794 && dot_p[2] == '8')
3795 i.disp_encoding = disp_encoding_8bit;
3796 else if (mnem_p - 4 == dot_p
3797 && dot_p[1] == 'd'
3798 && dot_p[2] == '3'
3799 && dot_p[3] == '2')
3800 i.disp_encoding = disp_encoding_32bit;
3801 else
3802 goto check_suffix;
3803 mnem_p = dot_p;
3804 *dot_p = '\0';
3805 current_templates = (const templates *) hash_find (op_hash, mnemonic);
3806 }
3807
3808 if (!current_templates)
3809 {
3810 check_suffix:
3811 /* See if we can get a match by trimming off a suffix. */
3812 switch (mnem_p[-1])
3813 {
3814 case WORD_MNEM_SUFFIX:
3815 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
3816 i.suffix = SHORT_MNEM_SUFFIX;
3817 else
3818 case BYTE_MNEM_SUFFIX:
3819 case QWORD_MNEM_SUFFIX:
3820 i.suffix = mnem_p[-1];
3821 mnem_p[-1] = '\0';
3822 current_templates = (const templates *) hash_find (op_hash,
3823 mnemonic);
3824 break;
3825 case SHORT_MNEM_SUFFIX:
3826 case LONG_MNEM_SUFFIX:
3827 if (!intel_syntax)
3828 {
3829 i.suffix = mnem_p[-1];
3830 mnem_p[-1] = '\0';
3831 current_templates = (const templates *) hash_find (op_hash,
3832 mnemonic);
3833 }
3834 break;
3835
3836 /* Intel Syntax. */
3837 case 'd':
3838 if (intel_syntax)
3839 {
3840 if (intel_float_operand (mnemonic) == 1)
3841 i.suffix = SHORT_MNEM_SUFFIX;
3842 else
3843 i.suffix = LONG_MNEM_SUFFIX;
3844 mnem_p[-1] = '\0';
3845 current_templates = (const templates *) hash_find (op_hash,
3846 mnemonic);
3847 }
3848 break;
3849 }
3850 if (!current_templates)
3851 {
3852 as_bad (_("no such instruction: `%s'"), token_start);
3853 return NULL;
3854 }
3855 }
3856
3857 if (current_templates->start->opcode_modifier.jump
3858 || current_templates->start->opcode_modifier.jumpbyte)
3859 {
3860 /* Check for a branch hint. We allow ",pt" and ",pn" for
3861 predict taken and predict not taken respectively.
3862 I'm not sure that branch hints actually do anything on loop
3863 and jcxz insns (JumpByte) for current Pentium4 chips. They
3864 may work in the future and it doesn't hurt to accept them
3865 now. */
3866 if (l[0] == ',' && l[1] == 'p')
3867 {
3868 if (l[2] == 't')
3869 {
3870 if (!add_prefix (DS_PREFIX_OPCODE))
3871 return NULL;
3872 l += 3;
3873 }
3874 else if (l[2] == 'n')
3875 {
3876 if (!add_prefix (CS_PREFIX_OPCODE))
3877 return NULL;
3878 l += 3;
3879 }
3880 }
3881 }
3882 /* Any other comma loses. */
3883 if (*l == ',')
3884 {
3885 as_bad (_("invalid character %s in mnemonic"),
3886 output_invalid (*l));
3887 return NULL;
3888 }
3889
3890 /* Check if instruction is supported on specified architecture. */
3891 supported = 0;
3892 for (t = current_templates->start; t < current_templates->end; ++t)
3893 {
3894 supported |= cpu_flags_match (t);
3895 if (supported == CPU_FLAGS_PERFECT_MATCH)
3896 goto skip;
3897 }
3898
3899 if (!(supported & CPU_FLAGS_64BIT_MATCH))
3900 {
3901 as_bad (flag_code == CODE_64BIT
3902 ? _("`%s' is not supported in 64-bit mode")
3903 : _("`%s' is only supported in 64-bit mode"),
3904 current_templates->start->name);
3905 return NULL;
3906 }
3907 if (supported != CPU_FLAGS_PERFECT_MATCH)
3908 {
3909 as_bad (_("`%s' is not supported on `%s%s'"),
3910 current_templates->start->name,
3911 cpu_arch_name ? cpu_arch_name : default_arch,
3912 cpu_sub_arch_name ? cpu_sub_arch_name : "");
3913 return NULL;
3914 }
3915
3916 skip:
3917 if (!cpu_arch_flags.bitfield.cpui386
3918 && (flag_code != CODE_16BIT))
3919 {
3920 as_warn (_("use .code16 to ensure correct addressing mode"));
3921 }
3922
3923 return l;
3924 }
3925
3926 static char *
3927 parse_operands (char *l, const char *mnemonic)
3928 {
3929 char *token_start;
3930
3931 /* 1 if operand is pending after ','. */
3932 unsigned int expecting_operand = 0;
3933
3934 /* Non-zero if operand parens not balanced. */
3935 unsigned int paren_not_balanced;
3936
3937 while (*l != END_OF_INSN)
3938 {
3939 /* Skip optional white space before operand. */
3940 if (is_space_char (*l))
3941 ++l;
3942 if (!is_operand_char (*l) && *l != END_OF_INSN)
3943 {
3944 as_bad (_("invalid character %s before operand %d"),
3945 output_invalid (*l),
3946 i.operands + 1);
3947 return NULL;
3948 }
3949 token_start = l; /* after white space */
3950 paren_not_balanced = 0;
3951 while (paren_not_balanced || *l != ',')
3952 {
3953 if (*l == END_OF_INSN)
3954 {
3955 if (paren_not_balanced)
3956 {
3957 if (!intel_syntax)
3958 as_bad (_("unbalanced parenthesis in operand %d."),
3959 i.operands + 1);
3960 else
3961 as_bad (_("unbalanced brackets in operand %d."),
3962 i.operands + 1);
3963 return NULL;
3964 }
3965 else
3966 break; /* we are done */
3967 }
3968 else if (!is_operand_char (*l) && !is_space_char (*l))
3969 {
3970 as_bad (_("invalid character %s in operand %d"),
3971 output_invalid (*l),
3972 i.operands + 1);
3973 return NULL;
3974 }
3975 if (!intel_syntax)
3976 {
3977 if (*l == '(')
3978 ++paren_not_balanced;
3979 if (*l == ')')
3980 --paren_not_balanced;
3981 }
3982 else
3983 {
3984 if (*l == '[')
3985 ++paren_not_balanced;
3986 if (*l == ']')
3987 --paren_not_balanced;
3988 }
3989 l++;
3990 }
3991 if (l != token_start)
3992 { /* Yes, we've read in another operand. */
3993 unsigned int operand_ok;
3994 this_operand = i.operands++;
3995 i.types[this_operand].bitfield.unspecified = 1;
3996 if (i.operands > MAX_OPERANDS)
3997 {
3998 as_bad (_("spurious operands; (%d operands/instruction max)"),
3999 MAX_OPERANDS);
4000 return NULL;
4001 }
4002 /* Now parse operand adding info to 'i' as we go along. */
4003 END_STRING_AND_SAVE (l);
4004
4005 if (intel_syntax)
4006 operand_ok =
4007 i386_intel_operand (token_start,
4008 intel_float_operand (mnemonic));
4009 else
4010 operand_ok = i386_att_operand (token_start);
4011
4012 RESTORE_END_STRING (l);
4013 if (!operand_ok)
4014 return NULL;
4015 }
4016 else
4017 {
4018 if (expecting_operand)
4019 {
4020 expecting_operand_after_comma:
4021 as_bad (_("expecting operand after ','; got nothing"));
4022 return NULL;
4023 }
4024 if (*l == ',')
4025 {
4026 as_bad (_("expecting operand before ','; got nothing"));
4027 return NULL;
4028 }
4029 }
4030
4031 /* Now *l must be either ',' or END_OF_INSN. */
4032 if (*l == ',')
4033 {
4034 if (*++l == END_OF_INSN)
4035 {
4036 /* Just skip it, if it's \n complain. */
4037 goto expecting_operand_after_comma;
4038 }
4039 expecting_operand = 1;
4040 }
4041 }
4042 return l;
4043 }
4044
4045 static void
4046 swap_2_operands (int xchg1, int xchg2)
4047 {
4048 union i386_op temp_op;
4049 i386_operand_type temp_type;
4050 enum bfd_reloc_code_real temp_reloc;
4051
4052 temp_type = i.types[xchg2];
4053 i.types[xchg2] = i.types[xchg1];
4054 i.types[xchg1] = temp_type;
4055 temp_op = i.op[xchg2];
4056 i.op[xchg2] = i.op[xchg1];
4057 i.op[xchg1] = temp_op;
4058 temp_reloc = i.reloc[xchg2];
4059 i.reloc[xchg2] = i.reloc[xchg1];
4060 i.reloc[xchg1] = temp_reloc;
4061
4062 if (i.mask)
4063 {
4064 if (i.mask->operand == xchg1)
4065 i.mask->operand = xchg2;
4066 else if (i.mask->operand == xchg2)
4067 i.mask->operand = xchg1;
4068 }
4069 if (i.broadcast)
4070 {
4071 if (i.broadcast->operand == xchg1)
4072 i.broadcast->operand = xchg2;
4073 else if (i.broadcast->operand == xchg2)
4074 i.broadcast->operand = xchg1;
4075 }
4076 if (i.rounding)
4077 {
4078 if (i.rounding->operand == xchg1)
4079 i.rounding->operand = xchg2;
4080 else if (i.rounding->operand == xchg2)
4081 i.rounding->operand = xchg1;
4082 }
4083 }
4084
4085 static void
4086 swap_operands (void)
4087 {
4088 switch (i.operands)
4089 {
4090 case 5:
4091 case 4:
4092 swap_2_operands (1, i.operands - 2);
4093 case 3:
4094 case 2:
4095 swap_2_operands (0, i.operands - 1);
4096 break;
4097 default:
4098 abort ();
4099 }
4100
4101 if (i.mem_operands == 2)
4102 {
4103 const seg_entry *temp_seg;
4104 temp_seg = i.seg[0];
4105 i.seg[0] = i.seg[1];
4106 i.seg[1] = temp_seg;
4107 }
4108 }
4109
4110 /* Try to ensure constant immediates are represented in the smallest
4111 opcode possible. */
4112 static void
4113 optimize_imm (void)
4114 {
4115 char guess_suffix = 0;
4116 int op;
4117
4118 if (i.suffix)
4119 guess_suffix = i.suffix;
4120 else if (i.reg_operands)
4121 {
4122 /* Figure out a suffix from the last register operand specified.
4123 We can't do this properly yet, ie. excluding InOutPortReg,
4124 but the following works for instructions with immediates.
4125 In any case, we can't set i.suffix yet. */
4126 for (op = i.operands; --op >= 0;)
4127 if (i.types[op].bitfield.reg8)
4128 {
4129 guess_suffix = BYTE_MNEM_SUFFIX;
4130 break;
4131 }
4132 else if (i.types[op].bitfield.reg16)
4133 {
4134 guess_suffix = WORD_MNEM_SUFFIX;
4135 break;
4136 }
4137 else if (i.types[op].bitfield.reg32)
4138 {
4139 guess_suffix = LONG_MNEM_SUFFIX;
4140 break;
4141 }
4142 else if (i.types[op].bitfield.reg64)
4143 {
4144 guess_suffix = QWORD_MNEM_SUFFIX;
4145 break;
4146 }
4147 }
4148 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4149 guess_suffix = WORD_MNEM_SUFFIX;
4150
4151 for (op = i.operands; --op >= 0;)
4152 if (operand_type_check (i.types[op], imm))
4153 {
4154 switch (i.op[op].imms->X_op)
4155 {
4156 case O_constant:
4157 /* If a suffix is given, this operand may be shortened. */
4158 switch (guess_suffix)
4159 {
4160 case LONG_MNEM_SUFFIX:
4161 i.types[op].bitfield.imm32 = 1;
4162 i.types[op].bitfield.imm64 = 1;
4163 break;
4164 case WORD_MNEM_SUFFIX:
4165 i.types[op].bitfield.imm16 = 1;
4166 i.types[op].bitfield.imm32 = 1;
4167 i.types[op].bitfield.imm32s = 1;
4168 i.types[op].bitfield.imm64 = 1;
4169 break;
4170 case BYTE_MNEM_SUFFIX:
4171 i.types[op].bitfield.imm8 = 1;
4172 i.types[op].bitfield.imm8s = 1;
4173 i.types[op].bitfield.imm16 = 1;
4174 i.types[op].bitfield.imm32 = 1;
4175 i.types[op].bitfield.imm32s = 1;
4176 i.types[op].bitfield.imm64 = 1;
4177 break;
4178 }
4179
4180 /* If this operand is at most 16 bits, convert it
4181 to a signed 16 bit number before trying to see
4182 whether it will fit in an even smaller size.
4183 This allows a 16-bit operand such as $0xffe0 to
4184 be recognised as within Imm8S range. */
4185 if ((i.types[op].bitfield.imm16)
4186 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4187 {
4188 i.op[op].imms->X_add_number =
4189 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4190 }
4191 if ((i.types[op].bitfield.imm32)
4192 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4193 == 0))
4194 {
4195 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4196 ^ ((offsetT) 1 << 31))
4197 - ((offsetT) 1 << 31));
4198 }
4199 i.types[op]
4200 = operand_type_or (i.types[op],
4201 smallest_imm_type (i.op[op].imms->X_add_number));
4202
4203 /* We must avoid matching of Imm32 templates when 64bit
4204 only immediate is available. */
4205 if (guess_suffix == QWORD_MNEM_SUFFIX)
4206 i.types[op].bitfield.imm32 = 0;
4207 break;
4208
4209 case O_absent:
4210 case O_register:
4211 abort ();
4212
4213 /* Symbols and expressions. */
4214 default:
4215 /* Convert symbolic operand to proper sizes for matching, but don't
4216 prevent matching a set of insns that only supports sizes other
4217 than those matching the insn suffix. */
4218 {
4219 i386_operand_type mask, allowed;
4220 const insn_template *t;
4221
4222 operand_type_set (&mask, 0);
4223 operand_type_set (&allowed, 0);
4224
4225 for (t = current_templates->start;
4226 t < current_templates->end;
4227 ++t)
4228 allowed = operand_type_or (allowed,
4229 t->operand_types[op]);
4230 switch (guess_suffix)
4231 {
4232 case QWORD_MNEM_SUFFIX:
4233 mask.bitfield.imm64 = 1;
4234 mask.bitfield.imm32s = 1;
4235 break;
4236 case LONG_MNEM_SUFFIX:
4237 mask.bitfield.imm32 = 1;
4238 break;
4239 case WORD_MNEM_SUFFIX:
4240 mask.bitfield.imm16 = 1;
4241 break;
4242 case BYTE_MNEM_SUFFIX:
4243 mask.bitfield.imm8 = 1;
4244 break;
4245 default:
4246 break;
4247 }
4248 allowed = operand_type_and (mask, allowed);
4249 if (!operand_type_all_zero (&allowed))
4250 i.types[op] = operand_type_and (i.types[op], mask);
4251 }
4252 break;
4253 }
4254 }
4255 }
4256
4257 /* Try to use the smallest displacement type too. */
4258 static void
4259 optimize_disp (void)
4260 {
4261 int op;
4262
4263 for (op = i.operands; --op >= 0;)
4264 if (operand_type_check (i.types[op], disp))
4265 {
4266 if (i.op[op].disps->X_op == O_constant)
4267 {
4268 offsetT op_disp = i.op[op].disps->X_add_number;
4269
4270 if (i.types[op].bitfield.disp16
4271 && (op_disp & ~(offsetT) 0xffff) == 0)
4272 {
4273 /* If this operand is at most 16 bits, convert
4274 to a signed 16 bit number and don't use 64bit
4275 displacement. */
4276 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4277 i.types[op].bitfield.disp64 = 0;
4278 }
4279 if (i.types[op].bitfield.disp32
4280 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
4281 {
4282 /* If this operand is at most 32 bits, convert
4283 to a signed 32 bit number and don't use 64bit
4284 displacement. */
4285 op_disp &= (((offsetT) 2 << 31) - 1);
4286 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
4287 i.types[op].bitfield.disp64 = 0;
4288 }
4289 if (!op_disp && i.types[op].bitfield.baseindex)
4290 {
4291 i.types[op].bitfield.disp8 = 0;
4292 i.types[op].bitfield.disp16 = 0;
4293 i.types[op].bitfield.disp32 = 0;
4294 i.types[op].bitfield.disp32s = 0;
4295 i.types[op].bitfield.disp64 = 0;
4296 i.op[op].disps = 0;
4297 i.disp_operands--;
4298 }
4299 else if (flag_code == CODE_64BIT)
4300 {
4301 if (fits_in_signed_long (op_disp))
4302 {
4303 i.types[op].bitfield.disp64 = 0;
4304 i.types[op].bitfield.disp32s = 1;
4305 }
4306 if (i.prefix[ADDR_PREFIX]
4307 && fits_in_unsigned_long (op_disp))
4308 i.types[op].bitfield.disp32 = 1;
4309 }
4310 if ((i.types[op].bitfield.disp32
4311 || i.types[op].bitfield.disp32s
4312 || i.types[op].bitfield.disp16)
4313 && fits_in_signed_byte (op_disp))
4314 i.types[op].bitfield.disp8 = 1;
4315 }
4316 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
4317 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
4318 {
4319 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
4320 i.op[op].disps, 0, i.reloc[op]);
4321 i.types[op].bitfield.disp8 = 0;
4322 i.types[op].bitfield.disp16 = 0;
4323 i.types[op].bitfield.disp32 = 0;
4324 i.types[op].bitfield.disp32s = 0;
4325 i.types[op].bitfield.disp64 = 0;
4326 }
4327 else
4328 /* We only support 64bit displacement on constants. */
4329 i.types[op].bitfield.disp64 = 0;
4330 }
4331 }
4332
4333 /* Check if operands are valid for the instruction. */
4334
4335 static int
4336 check_VecOperands (const insn_template *t)
4337 {
4338 unsigned int op;
4339
4340 /* Without VSIB byte, we can't have a vector register for index. */
4341 if (!t->opcode_modifier.vecsib
4342 && i.index_reg
4343 && (i.index_reg->reg_type.bitfield.regxmm
4344 || i.index_reg->reg_type.bitfield.regymm
4345 || i.index_reg->reg_type.bitfield.regzmm))
4346 {
4347 i.error = unsupported_vector_index_register;
4348 return 1;
4349 }
4350
4351 /* Check if default mask is allowed. */
4352 if (t->opcode_modifier.nodefmask
4353 && (!i.mask || i.mask->mask->reg_num == 0))
4354 {
4355 i.error = no_default_mask;
4356 return 1;
4357 }
4358
4359 /* For VSIB byte, we need a vector register for index, and all vector
4360 registers must be distinct. */
4361 if (t->opcode_modifier.vecsib)
4362 {
4363 if (!i.index_reg
4364 || !((t->opcode_modifier.vecsib == VecSIB128
4365 && i.index_reg->reg_type.bitfield.regxmm)
4366 || (t->opcode_modifier.vecsib == VecSIB256
4367 && i.index_reg->reg_type.bitfield.regymm)
4368 || (t->opcode_modifier.vecsib == VecSIB512
4369 && i.index_reg->reg_type.bitfield.regzmm)))
4370 {
4371 i.error = invalid_vsib_address;
4372 return 1;
4373 }
4374
4375 gas_assert (i.reg_operands == 2 || i.mask);
4376 if (i.reg_operands == 2 && !i.mask)
4377 {
4378 gas_assert (i.types[0].bitfield.regxmm
4379 || i.types[0].bitfield.regymm
4380 || i.types[0].bitfield.regzmm);
4381 gas_assert (i.types[2].bitfield.regxmm
4382 || i.types[2].bitfield.regymm
4383 || i.types[2].bitfield.regzmm);
4384 if (operand_check == check_none)
4385 return 0;
4386 if (register_number (i.op[0].regs)
4387 != register_number (i.index_reg)
4388 && register_number (i.op[2].regs)
4389 != register_number (i.index_reg)
4390 && register_number (i.op[0].regs)
4391 != register_number (i.op[2].regs))
4392 return 0;
4393 if (operand_check == check_error)
4394 {
4395 i.error = invalid_vector_register_set;
4396 return 1;
4397 }
4398 as_warn (_("mask, index, and destination registers should be distinct"));
4399 }
4400 }
4401
4402 /* Check if broadcast is supported by the instruction and is applied
4403 to the memory operand. */
4404 if (i.broadcast)
4405 {
4406 int broadcasted_opnd_size;
4407
4408 /* Check if specified broadcast is supported in this instruction,
4409 and it's applied to memory operand of DWORD or QWORD type,
4410 depending on VecESize. */
4411 if (i.broadcast->type != t->opcode_modifier.broadcast
4412 || !i.types[i.broadcast->operand].bitfield.mem
4413 || (t->opcode_modifier.vecesize == 0
4414 && !i.types[i.broadcast->operand].bitfield.dword
4415 && !i.types[i.broadcast->operand].bitfield.unspecified)
4416 || (t->opcode_modifier.vecesize == 1
4417 && !i.types[i.broadcast->operand].bitfield.qword
4418 && !i.types[i.broadcast->operand].bitfield.unspecified))
4419 goto bad_broadcast;
4420
4421 broadcasted_opnd_size = t->opcode_modifier.vecesize ? 64 : 32;
4422 if (i.broadcast->type == BROADCAST_1TO16)
4423 broadcasted_opnd_size <<= 4; /* Broadcast 1to16. */
4424 else if (i.broadcast->type == BROADCAST_1TO8)
4425 broadcasted_opnd_size <<= 3; /* Broadcast 1to8. */
4426 else
4427 goto bad_broadcast;
4428
4429 if ((broadcasted_opnd_size == 256
4430 && !t->operand_types[i.broadcast->operand].bitfield.ymmword)
4431 || (broadcasted_opnd_size == 512
4432 && !t->operand_types[i.broadcast->operand].bitfield.zmmword))
4433 {
4434 bad_broadcast:
4435 i.error = unsupported_broadcast;
4436 return 1;
4437 }
4438 }
4439 /* If broadcast is supported in this instruction, we need to check if
4440 operand of one-element size isn't specified without broadcast. */
4441 else if (t->opcode_modifier.broadcast && i.mem_operands)
4442 {
4443 /* Find memory operand. */
4444 for (op = 0; op < i.operands; op++)
4445 if (operand_type_check (i.types[op], anymem))
4446 break;
4447 gas_assert (op < i.operands);
4448 /* Check size of the memory operand. */
4449 if ((t->opcode_modifier.vecesize == 0
4450 && i.types[op].bitfield.dword)
4451 || (t->opcode_modifier.vecesize == 1
4452 && i.types[op].bitfield.qword))
4453 {
4454 i.error = broadcast_needed;
4455 return 1;
4456 }
4457 }
4458
4459 /* Check if requested masking is supported. */
4460 if (i.mask
4461 && (!t->opcode_modifier.masking
4462 || (i.mask->zeroing
4463 && t->opcode_modifier.masking == MERGING_MASKING)))
4464 {
4465 i.error = unsupported_masking;
4466 return 1;
4467 }
4468
4469 /* Check if masking is applied to dest operand. */
4470 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
4471 {
4472 i.error = mask_not_on_destination;
4473 return 1;
4474 }
4475
4476 /* Check RC/SAE. */
4477 if (i.rounding)
4478 {
4479 if ((i.rounding->type != saeonly
4480 && !t->opcode_modifier.staticrounding)
4481 || (i.rounding->type == saeonly
4482 && (t->opcode_modifier.staticrounding
4483 || !t->opcode_modifier.sae)))
4484 {
4485 i.error = unsupported_rc_sae;
4486 return 1;
4487 }
4488 /* If the instruction has several immediate operands and one of
4489 them is rounding, the rounding operand should be the last
4490 immediate operand. */
4491 if (i.imm_operands > 1
4492 && i.rounding->operand != (int) (i.imm_operands - 1))
4493 {
4494 i.error = rc_sae_operand_not_last_imm;
4495 return 1;
4496 }
4497 }
4498
4499 /* Check vector Disp8 operand. */
4500 if (t->opcode_modifier.disp8memshift)
4501 {
4502 if (i.broadcast)
4503 i.memshift = t->opcode_modifier.vecesize ? 3 : 2;
4504 else
4505 i.memshift = t->opcode_modifier.disp8memshift;
4506
4507 for (op = 0; op < i.operands; op++)
4508 if (operand_type_check (i.types[op], disp)
4509 && i.op[op].disps->X_op == O_constant)
4510 {
4511 offsetT value = i.op[op].disps->X_add_number;
4512 int vec_disp8_ok = fits_in_vec_disp8 (value);
4513 if (t->operand_types [op].bitfield.vec_disp8)
4514 {
4515 if (vec_disp8_ok)
4516 i.types[op].bitfield.vec_disp8 = 1;
4517 else
4518 {
4519 /* Vector insn can only have Vec_Disp8/Disp32 in
4520 32/64bit modes, and Vec_Disp8/Disp16 in 16bit
4521 mode. */
4522 i.types[op].bitfield.disp8 = 0;
4523 if (flag_code != CODE_16BIT)
4524 i.types[op].bitfield.disp16 = 0;
4525 }
4526 }
4527 else if (flag_code != CODE_16BIT)
4528 {
4529 /* One form of this instruction supports vector Disp8.
4530 Try vector Disp8 if we need to use Disp32. */
4531 if (vec_disp8_ok && !fits_in_signed_byte (value))
4532 {
4533 i.error = try_vector_disp8;
4534 return 1;
4535 }
4536 }
4537 }
4538 }
4539 else
4540 i.memshift = -1;
4541
4542 return 0;
4543 }
4544
4545 /* Check if operands are valid for the instruction. Update VEX
4546 operand types. */
4547
4548 static int
4549 VEX_check_operands (const insn_template *t)
4550 {
4551 /* VREX is only valid with EVEX prefix. */
4552 if (i.need_vrex && !t->opcode_modifier.evex)
4553 {
4554 i.error = invalid_register_operand;
4555 return 1;
4556 }
4557
4558 if (!t->opcode_modifier.vex)
4559 return 0;
4560
4561 /* Only check VEX_Imm4, which must be the first operand. */
4562 if (t->operand_types[0].bitfield.vec_imm4)
4563 {
4564 if (i.op[0].imms->X_op != O_constant
4565 || !fits_in_imm4 (i.op[0].imms->X_add_number))
4566 {
4567 i.error = bad_imm4;
4568 return 1;
4569 }
4570
4571 /* Turn off Imm8 so that update_imm won't complain. */
4572 i.types[0] = vec_imm4;
4573 }
4574
4575 return 0;
4576 }
4577
4578 static const insn_template *
4579 match_template (void)
4580 {
4581 /* Points to template once we've found it. */
4582 const insn_template *t;
4583 i386_operand_type overlap0, overlap1, overlap2, overlap3;
4584 i386_operand_type overlap4;
4585 unsigned int found_reverse_match;
4586 i386_opcode_modifier suffix_check;
4587 i386_operand_type operand_types [MAX_OPERANDS];
4588 int addr_prefix_disp;
4589 unsigned int j;
4590 unsigned int found_cpu_match;
4591 unsigned int check_register;
4592 enum i386_error specific_error = 0;
4593
4594 #if MAX_OPERANDS != 5
4595 # error "MAX_OPERANDS must be 5."
4596 #endif
4597
4598 found_reverse_match = 0;
4599 addr_prefix_disp = -1;
4600
4601 memset (&suffix_check, 0, sizeof (suffix_check));
4602 if (i.suffix == BYTE_MNEM_SUFFIX)
4603 suffix_check.no_bsuf = 1;
4604 else if (i.suffix == WORD_MNEM_SUFFIX)
4605 suffix_check.no_wsuf = 1;
4606 else if (i.suffix == SHORT_MNEM_SUFFIX)
4607 suffix_check.no_ssuf = 1;
4608 else if (i.suffix == LONG_MNEM_SUFFIX)
4609 suffix_check.no_lsuf = 1;
4610 else if (i.suffix == QWORD_MNEM_SUFFIX)
4611 suffix_check.no_qsuf = 1;
4612 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
4613 suffix_check.no_ldsuf = 1;
4614
4615 /* Must have right number of operands. */
4616 i.error = number_of_operands_mismatch;
4617
4618 for (t = current_templates->start; t < current_templates->end; t++)
4619 {
4620 addr_prefix_disp = -1;
4621
4622 if (i.operands != t->operands)
4623 continue;
4624
4625 /* Check processor support. */
4626 i.error = unsupported;
4627 found_cpu_match = (cpu_flags_match (t)
4628 == CPU_FLAGS_PERFECT_MATCH);
4629 if (!found_cpu_match)
4630 continue;
4631
4632 /* Check old gcc support. */
4633 i.error = old_gcc_only;
4634 if (!old_gcc && t->opcode_modifier.oldgcc)
4635 continue;
4636
4637 /* Check AT&T mnemonic. */
4638 i.error = unsupported_with_intel_mnemonic;
4639 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
4640 continue;
4641
4642 /* Check AT&T/Intel syntax. */
4643 i.error = unsupported_syntax;
4644 if ((intel_syntax && t->opcode_modifier.attsyntax)
4645 || (!intel_syntax && t->opcode_modifier.intelsyntax))
4646 continue;
4647
4648 /* Check the suffix, except for some instructions in intel mode. */
4649 i.error = invalid_instruction_suffix;
4650 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
4651 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
4652 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
4653 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
4654 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
4655 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
4656 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
4657 continue;
4658
4659 if (!operand_size_match (t))
4660 continue;
4661
4662 for (j = 0; j < MAX_OPERANDS; j++)
4663 operand_types[j] = t->operand_types[j];
4664
4665 /* In general, don't allow 64-bit operands in 32-bit mode. */
4666 if (i.suffix == QWORD_MNEM_SUFFIX
4667 && flag_code != CODE_64BIT
4668 && (intel_syntax
4669 ? (!t->opcode_modifier.ignoresize
4670 && !intel_float_operand (t->name))
4671 : intel_float_operand (t->name) != 2)
4672 && ((!operand_types[0].bitfield.regmmx
4673 && !operand_types[0].bitfield.regxmm
4674 && !operand_types[0].bitfield.regymm
4675 && !operand_types[0].bitfield.regzmm)
4676 || (!operand_types[t->operands > 1].bitfield.regmmx
4677 && !!operand_types[t->operands > 1].bitfield.regxmm
4678 && !!operand_types[t->operands > 1].bitfield.regymm
4679 && !!operand_types[t->operands > 1].bitfield.regzmm))
4680 && (t->base_opcode != 0x0fc7
4681 || t->extension_opcode != 1 /* cmpxchg8b */))
4682 continue;
4683
4684 /* In general, don't allow 32-bit operands on pre-386. */
4685 else if (i.suffix == LONG_MNEM_SUFFIX
4686 && !cpu_arch_flags.bitfield.cpui386
4687 && (intel_syntax
4688 ? (!t->opcode_modifier.ignoresize
4689 && !intel_float_operand (t->name))
4690 : intel_float_operand (t->name) != 2)
4691 && ((!operand_types[0].bitfield.regmmx
4692 && !operand_types[0].bitfield.regxmm)
4693 || (!operand_types[t->operands > 1].bitfield.regmmx
4694 && !!operand_types[t->operands > 1].bitfield.regxmm)))
4695 continue;
4696
4697 /* Do not verify operands when there are none. */
4698 else
4699 {
4700 if (!t->operands)
4701 /* We've found a match; break out of loop. */
4702 break;
4703 }
4704
4705 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
4706 into Disp32/Disp16/Disp32 operand. */
4707 if (i.prefix[ADDR_PREFIX] != 0)
4708 {
4709 /* There should be only one Disp operand. */
4710 switch (flag_code)
4711 {
4712 case CODE_16BIT:
4713 for (j = 0; j < MAX_OPERANDS; j++)
4714 {
4715 if (operand_types[j].bitfield.disp16)
4716 {
4717 addr_prefix_disp = j;
4718 operand_types[j].bitfield.disp32 = 1;
4719 operand_types[j].bitfield.disp16 = 0;
4720 break;
4721 }
4722 }
4723 break;
4724 case CODE_32BIT:
4725 for (j = 0; j < MAX_OPERANDS; j++)
4726 {
4727 if (operand_types[j].bitfield.disp32)
4728 {
4729 addr_prefix_disp = j;
4730 operand_types[j].bitfield.disp32 = 0;
4731 operand_types[j].bitfield.disp16 = 1;
4732 break;
4733 }
4734 }
4735 break;
4736 case CODE_64BIT:
4737 for (j = 0; j < MAX_OPERANDS; j++)
4738 {
4739 if (operand_types[j].bitfield.disp64)
4740 {
4741 addr_prefix_disp = j;
4742 operand_types[j].bitfield.disp64 = 0;
4743 operand_types[j].bitfield.disp32 = 1;
4744 break;
4745 }
4746 }
4747 break;
4748 }
4749 }
4750
4751 /* We check register size if needed. */
4752 check_register = t->opcode_modifier.checkregsize;
4753 overlap0 = operand_type_and (i.types[0], operand_types[0]);
4754 switch (t->operands)
4755 {
4756 case 1:
4757 if (!operand_type_match (overlap0, i.types[0]))
4758 continue;
4759 break;
4760 case 2:
4761 /* xchg %eax, %eax is a special case. It is an aliase for nop
4762 only in 32bit mode and we can use opcode 0x90. In 64bit
4763 mode, we can't use 0x90 for xchg %eax, %eax since it should
4764 zero-extend %eax to %rax. */
4765 if (flag_code == CODE_64BIT
4766 && t->base_opcode == 0x90
4767 && operand_type_equal (&i.types [0], &acc32)
4768 && operand_type_equal (&i.types [1], &acc32))
4769 continue;
4770 if (i.swap_operand)
4771 {
4772 /* If we swap operand in encoding, we either match
4773 the next one or reverse direction of operands. */
4774 if (t->opcode_modifier.s)
4775 continue;
4776 else if (t->opcode_modifier.d)
4777 goto check_reverse;
4778 }
4779
4780 case 3:
4781 /* If we swap operand in encoding, we match the next one. */
4782 if (i.swap_operand && t->opcode_modifier.s)
4783 continue;
4784 case 4:
4785 case 5:
4786 overlap1 = operand_type_and (i.types[1], operand_types[1]);
4787 if (!operand_type_match (overlap0, i.types[0])
4788 || !operand_type_match (overlap1, i.types[1])
4789 || (check_register
4790 && !operand_type_register_match (overlap0, i.types[0],
4791 operand_types[0],
4792 overlap1, i.types[1],
4793 operand_types[1])))
4794 {
4795 /* Check if other direction is valid ... */
4796 if (!t->opcode_modifier.d && !t->opcode_modifier.floatd)
4797 continue;
4798
4799 check_reverse:
4800 /* Try reversing direction of operands. */
4801 overlap0 = operand_type_and (i.types[0], operand_types[1]);
4802 overlap1 = operand_type_and (i.types[1], operand_types[0]);
4803 if (!operand_type_match (overlap0, i.types[0])
4804 || !operand_type_match (overlap1, i.types[1])
4805 || (check_register
4806 && !operand_type_register_match (overlap0,
4807 i.types[0],
4808 operand_types[1],
4809 overlap1,
4810 i.types[1],
4811 operand_types[0])))
4812 {
4813 /* Does not match either direction. */
4814 continue;
4815 }
4816 /* found_reverse_match holds which of D or FloatDR
4817 we've found. */
4818 if (t->opcode_modifier.d)
4819 found_reverse_match = Opcode_D;
4820 else if (t->opcode_modifier.floatd)
4821 found_reverse_match = Opcode_FloatD;
4822 else
4823 found_reverse_match = 0;
4824 if (t->opcode_modifier.floatr)
4825 found_reverse_match |= Opcode_FloatR;
4826 }
4827 else
4828 {
4829 /* Found a forward 2 operand match here. */
4830 switch (t->operands)
4831 {
4832 case 5:
4833 overlap4 = operand_type_and (i.types[4],
4834 operand_types[4]);
4835 case 4:
4836 overlap3 = operand_type_and (i.types[3],
4837 operand_types[3]);
4838 case 3:
4839 overlap2 = operand_type_and (i.types[2],
4840 operand_types[2]);
4841 break;
4842 }
4843
4844 switch (t->operands)
4845 {
4846 case 5:
4847 if (!operand_type_match (overlap4, i.types[4])
4848 || !operand_type_register_match (overlap3,
4849 i.types[3],
4850 operand_types[3],
4851 overlap4,
4852 i.types[4],
4853 operand_types[4]))
4854 continue;
4855 case 4:
4856 if (!operand_type_match (overlap3, i.types[3])
4857 || (check_register
4858 && !operand_type_register_match (overlap2,
4859 i.types[2],
4860 operand_types[2],
4861 overlap3,
4862 i.types[3],
4863 operand_types[3])))
4864 continue;
4865 case 3:
4866 /* Here we make use of the fact that there are no
4867 reverse match 3 operand instructions, and all 3
4868 operand instructions only need to be checked for
4869 register consistency between operands 2 and 3. */
4870 if (!operand_type_match (overlap2, i.types[2])
4871 || (check_register
4872 && !operand_type_register_match (overlap1,
4873 i.types[1],
4874 operand_types[1],
4875 overlap2,
4876 i.types[2],
4877 operand_types[2])))
4878 continue;
4879 break;
4880 }
4881 }
4882 /* Found either forward/reverse 2, 3 or 4 operand match here:
4883 slip through to break. */
4884 }
4885 if (!found_cpu_match)
4886 {
4887 found_reverse_match = 0;
4888 continue;
4889 }
4890
4891 /* Check if vector and VEX operands are valid. */
4892 if (check_VecOperands (t) || VEX_check_operands (t))
4893 {
4894 specific_error = i.error;
4895 continue;
4896 }
4897
4898 /* We've found a match; break out of loop. */
4899 break;
4900 }
4901
4902 if (t == current_templates->end)
4903 {
4904 /* We found no match. */
4905 const char *err_msg;
4906 switch (specific_error ? specific_error : i.error)
4907 {
4908 default:
4909 abort ();
4910 case operand_size_mismatch:
4911 err_msg = _("operand size mismatch");
4912 break;
4913 case operand_type_mismatch:
4914 err_msg = _("operand type mismatch");
4915 break;
4916 case register_type_mismatch:
4917 err_msg = _("register type mismatch");
4918 break;
4919 case number_of_operands_mismatch:
4920 err_msg = _("number of operands mismatch");
4921 break;
4922 case invalid_instruction_suffix:
4923 err_msg = _("invalid instruction suffix");
4924 break;
4925 case bad_imm4:
4926 err_msg = _("constant doesn't fit in 4 bits");
4927 break;
4928 case old_gcc_only:
4929 err_msg = _("only supported with old gcc");
4930 break;
4931 case unsupported_with_intel_mnemonic:
4932 err_msg = _("unsupported with Intel mnemonic");
4933 break;
4934 case unsupported_syntax:
4935 err_msg = _("unsupported syntax");
4936 break;
4937 case unsupported:
4938 as_bad (_("unsupported instruction `%s'"),
4939 current_templates->start->name);
4940 return NULL;
4941 case invalid_vsib_address:
4942 err_msg = _("invalid VSIB address");
4943 break;
4944 case invalid_vector_register_set:
4945 err_msg = _("mask, index, and destination registers must be distinct");
4946 break;
4947 case unsupported_vector_index_register:
4948 err_msg = _("unsupported vector index register");
4949 break;
4950 case unsupported_broadcast:
4951 err_msg = _("unsupported broadcast");
4952 break;
4953 case broadcast_not_on_src_operand:
4954 err_msg = _("broadcast not on source memory operand");
4955 break;
4956 case broadcast_needed:
4957 err_msg = _("broadcast is needed for operand of such type");
4958 break;
4959 case unsupported_masking:
4960 err_msg = _("unsupported masking");
4961 break;
4962 case mask_not_on_destination:
4963 err_msg = _("mask not on destination operand");
4964 break;
4965 case no_default_mask:
4966 err_msg = _("default mask isn't allowed");
4967 break;
4968 case unsupported_rc_sae:
4969 err_msg = _("unsupported static rounding/sae");
4970 break;
4971 case rc_sae_operand_not_last_imm:
4972 if (intel_syntax)
4973 err_msg = _("RC/SAE operand must precede immediate operands");
4974 else
4975 err_msg = _("RC/SAE operand must follow immediate operands");
4976 break;
4977 case invalid_register_operand:
4978 err_msg = _("invalid register operand");
4979 break;
4980 }
4981 as_bad (_("%s for `%s'"), err_msg,
4982 current_templates->start->name);
4983 return NULL;
4984 }
4985
4986 if (!quiet_warnings)
4987 {
4988 if (!intel_syntax
4989 && (i.types[0].bitfield.jumpabsolute
4990 != operand_types[0].bitfield.jumpabsolute))
4991 {
4992 as_warn (_("indirect %s without `*'"), t->name);
4993 }
4994
4995 if (t->opcode_modifier.isprefix
4996 && t->opcode_modifier.ignoresize)
4997 {
4998 /* Warn them that a data or address size prefix doesn't
4999 affect assembly of the next line of code. */
5000 as_warn (_("stand-alone `%s' prefix"), t->name);
5001 }
5002 }
5003
5004 /* Copy the template we found. */
5005 i.tm = *t;
5006
5007 if (addr_prefix_disp != -1)
5008 i.tm.operand_types[addr_prefix_disp]
5009 = operand_types[addr_prefix_disp];
5010
5011 if (found_reverse_match)
5012 {
5013 /* If we found a reverse match we must alter the opcode
5014 direction bit. found_reverse_match holds bits to change
5015 (different for int & float insns). */
5016
5017 i.tm.base_opcode ^= found_reverse_match;
5018
5019 i.tm.operand_types[0] = operand_types[1];
5020 i.tm.operand_types[1] = operand_types[0];
5021 }
5022
5023 return t;
5024 }
5025
5026 static int
5027 check_string (void)
5028 {
5029 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5030 if (i.tm.operand_types[mem_op].bitfield.esseg)
5031 {
5032 if (i.seg[0] != NULL && i.seg[0] != &es)
5033 {
5034 as_bad (_("`%s' operand %d must use `%ses' segment"),
5035 i.tm.name,
5036 mem_op + 1,
5037 register_prefix);
5038 return 0;
5039 }
5040 /* There's only ever one segment override allowed per instruction.
5041 This instruction possibly has a legal segment override on the
5042 second operand, so copy the segment to where non-string
5043 instructions store it, allowing common code. */
5044 i.seg[0] = i.seg[1];
5045 }
5046 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5047 {
5048 if (i.seg[1] != NULL && i.seg[1] != &es)
5049 {
5050 as_bad (_("`%s' operand %d must use `%ses' segment"),
5051 i.tm.name,
5052 mem_op + 2,
5053 register_prefix);
5054 return 0;
5055 }
5056 }
5057 return 1;
5058 }
5059
5060 static int
5061 process_suffix (void)
5062 {
5063 /* If matched instruction specifies an explicit instruction mnemonic
5064 suffix, use it. */
5065 if (i.tm.opcode_modifier.size16)
5066 i.suffix = WORD_MNEM_SUFFIX;
5067 else if (i.tm.opcode_modifier.size32)
5068 i.suffix = LONG_MNEM_SUFFIX;
5069 else if (i.tm.opcode_modifier.size64)
5070 i.suffix = QWORD_MNEM_SUFFIX;
5071 else if (i.reg_operands)
5072 {
5073 /* If there's no instruction mnemonic suffix we try to invent one
5074 based on register operands. */
5075 if (!i.suffix)
5076 {
5077 /* We take i.suffix from the last register operand specified,
5078 Destination register type is more significant than source
5079 register type. crc32 in SSE4.2 prefers source register
5080 type. */
5081 if (i.tm.base_opcode == 0xf20f38f1)
5082 {
5083 if (i.types[0].bitfield.reg16)
5084 i.suffix = WORD_MNEM_SUFFIX;
5085 else if (i.types[0].bitfield.reg32)
5086 i.suffix = LONG_MNEM_SUFFIX;
5087 else if (i.types[0].bitfield.reg64)
5088 i.suffix = QWORD_MNEM_SUFFIX;
5089 }
5090 else if (i.tm.base_opcode == 0xf20f38f0)
5091 {
5092 if (i.types[0].bitfield.reg8)
5093 i.suffix = BYTE_MNEM_SUFFIX;
5094 }
5095
5096 if (!i.suffix)
5097 {
5098 int op;
5099
5100 if (i.tm.base_opcode == 0xf20f38f1
5101 || i.tm.base_opcode == 0xf20f38f0)
5102 {
5103 /* We have to know the operand size for crc32. */
5104 as_bad (_("ambiguous memory operand size for `%s`"),
5105 i.tm.name);
5106 return 0;
5107 }
5108
5109 for (op = i.operands; --op >= 0;)
5110 if (!i.tm.operand_types[op].bitfield.inoutportreg)
5111 {
5112 if (i.types[op].bitfield.reg8)
5113 {
5114 i.suffix = BYTE_MNEM_SUFFIX;
5115 break;
5116 }
5117 else if (i.types[op].bitfield.reg16)
5118 {
5119 i.suffix = WORD_MNEM_SUFFIX;
5120 break;
5121 }
5122 else if (i.types[op].bitfield.reg32)
5123 {
5124 i.suffix = LONG_MNEM_SUFFIX;
5125 break;
5126 }
5127 else if (i.types[op].bitfield.reg64)
5128 {
5129 i.suffix = QWORD_MNEM_SUFFIX;
5130 break;
5131 }
5132 }
5133 }
5134 }
5135 else if (i.suffix == BYTE_MNEM_SUFFIX)
5136 {
5137 if (intel_syntax
5138 && i.tm.opcode_modifier.ignoresize
5139 && i.tm.opcode_modifier.no_bsuf)
5140 i.suffix = 0;
5141 else if (!check_byte_reg ())
5142 return 0;
5143 }
5144 else if (i.suffix == LONG_MNEM_SUFFIX)
5145 {
5146 if (intel_syntax
5147 && i.tm.opcode_modifier.ignoresize
5148 && i.tm.opcode_modifier.no_lsuf)
5149 i.suffix = 0;
5150 else if (!check_long_reg ())
5151 return 0;
5152 }
5153 else if (i.suffix == QWORD_MNEM_SUFFIX)
5154 {
5155 if (intel_syntax
5156 && i.tm.opcode_modifier.ignoresize
5157 && i.tm.opcode_modifier.no_qsuf)
5158 i.suffix = 0;
5159 else if (!check_qword_reg ())
5160 return 0;
5161 }
5162 else if (i.suffix == WORD_MNEM_SUFFIX)
5163 {
5164 if (intel_syntax
5165 && i.tm.opcode_modifier.ignoresize
5166 && i.tm.opcode_modifier.no_wsuf)
5167 i.suffix = 0;
5168 else if (!check_word_reg ())
5169 return 0;
5170 }
5171 else if (i.suffix == XMMWORD_MNEM_SUFFIX
5172 || i.suffix == YMMWORD_MNEM_SUFFIX
5173 || i.suffix == ZMMWORD_MNEM_SUFFIX)
5174 {
5175 /* Skip if the instruction has x/y/z suffix. match_template
5176 should check if it is a valid suffix. */
5177 }
5178 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
5179 /* Do nothing if the instruction is going to ignore the prefix. */
5180 ;
5181 else
5182 abort ();
5183 }
5184 else if (i.tm.opcode_modifier.defaultsize
5185 && !i.suffix
5186 /* exclude fldenv/frstor/fsave/fstenv */
5187 && i.tm.opcode_modifier.no_ssuf)
5188 {
5189 i.suffix = stackop_size;
5190 }
5191 else if (intel_syntax
5192 && !i.suffix
5193 && (i.tm.operand_types[0].bitfield.jumpabsolute
5194 || i.tm.opcode_modifier.jumpbyte
5195 || i.tm.opcode_modifier.jumpintersegment
5196 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
5197 && i.tm.extension_opcode <= 3)))
5198 {
5199 switch (flag_code)
5200 {
5201 case CODE_64BIT:
5202 if (!i.tm.opcode_modifier.no_qsuf)
5203 {
5204 i.suffix = QWORD_MNEM_SUFFIX;
5205 break;
5206 }
5207 case CODE_32BIT:
5208 if (!i.tm.opcode_modifier.no_lsuf)
5209 i.suffix = LONG_MNEM_SUFFIX;
5210 break;
5211 case CODE_16BIT:
5212 if (!i.tm.opcode_modifier.no_wsuf)
5213 i.suffix = WORD_MNEM_SUFFIX;
5214 break;
5215 }
5216 }
5217
5218 if (!i.suffix)
5219 {
5220 if (!intel_syntax)
5221 {
5222 if (i.tm.opcode_modifier.w)
5223 {
5224 as_bad (_("no instruction mnemonic suffix given and "
5225 "no register operands; can't size instruction"));
5226 return 0;
5227 }
5228 }
5229 else
5230 {
5231 unsigned int suffixes;
5232
5233 suffixes = !i.tm.opcode_modifier.no_bsuf;
5234 if (!i.tm.opcode_modifier.no_wsuf)
5235 suffixes |= 1 << 1;
5236 if (!i.tm.opcode_modifier.no_lsuf)
5237 suffixes |= 1 << 2;
5238 if (!i.tm.opcode_modifier.no_ldsuf)
5239 suffixes |= 1 << 3;
5240 if (!i.tm.opcode_modifier.no_ssuf)
5241 suffixes |= 1 << 4;
5242 if (!i.tm.opcode_modifier.no_qsuf)
5243 suffixes |= 1 << 5;
5244
5245 /* There are more than suffix matches. */
5246 if (i.tm.opcode_modifier.w
5247 || ((suffixes & (suffixes - 1))
5248 && !i.tm.opcode_modifier.defaultsize
5249 && !i.tm.opcode_modifier.ignoresize))
5250 {
5251 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
5252 return 0;
5253 }
5254 }
5255 }
5256
5257 /* Change the opcode based on the operand size given by i.suffix;
5258 We don't need to change things for byte insns. */
5259
5260 if (i.suffix
5261 && i.suffix != BYTE_MNEM_SUFFIX
5262 && i.suffix != XMMWORD_MNEM_SUFFIX
5263 && i.suffix != YMMWORD_MNEM_SUFFIX
5264 && i.suffix != ZMMWORD_MNEM_SUFFIX)
5265 {
5266 /* It's not a byte, select word/dword operation. */
5267 if (i.tm.opcode_modifier.w)
5268 {
5269 if (i.tm.opcode_modifier.shortform)
5270 i.tm.base_opcode |= 8;
5271 else
5272 i.tm.base_opcode |= 1;
5273 }
5274
5275 /* Now select between word & dword operations via the operand
5276 size prefix, except for instructions that will ignore this
5277 prefix anyway. */
5278 if (i.tm.opcode_modifier.addrprefixop0)
5279 {
5280 /* The address size override prefix changes the size of the
5281 first operand. */
5282 if ((flag_code == CODE_32BIT
5283 && i.op->regs[0].reg_type.bitfield.reg16)
5284 || (flag_code != CODE_32BIT
5285 && i.op->regs[0].reg_type.bitfield.reg32))
5286 if (!add_prefix (ADDR_PREFIX_OPCODE))
5287 return 0;
5288 }
5289 else if (i.suffix != QWORD_MNEM_SUFFIX
5290 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
5291 && !i.tm.opcode_modifier.ignoresize
5292 && !i.tm.opcode_modifier.floatmf
5293 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
5294 || (flag_code == CODE_64BIT
5295 && i.tm.opcode_modifier.jumpbyte)))
5296 {
5297 unsigned int prefix = DATA_PREFIX_OPCODE;
5298
5299 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
5300 prefix = ADDR_PREFIX_OPCODE;
5301
5302 if (!add_prefix (prefix))
5303 return 0;
5304 }
5305
5306 /* Set mode64 for an operand. */
5307 if (i.suffix == QWORD_MNEM_SUFFIX
5308 && flag_code == CODE_64BIT
5309 && !i.tm.opcode_modifier.norex64)
5310 {
5311 /* Special case for xchg %rax,%rax. It is NOP and doesn't
5312 need rex64. cmpxchg8b is also a special case. */
5313 if (! (i.operands == 2
5314 && i.tm.base_opcode == 0x90
5315 && i.tm.extension_opcode == None
5316 && operand_type_equal (&i.types [0], &acc64)
5317 && operand_type_equal (&i.types [1], &acc64))
5318 && ! (i.operands == 1
5319 && i.tm.base_opcode == 0xfc7
5320 && i.tm.extension_opcode == 1
5321 && !operand_type_check (i.types [0], reg)
5322 && operand_type_check (i.types [0], anymem)))
5323 i.rex |= REX_W;
5324 }
5325
5326 /* Size floating point instruction. */
5327 if (i.suffix == LONG_MNEM_SUFFIX)
5328 if (i.tm.opcode_modifier.floatmf)
5329 i.tm.base_opcode ^= 4;
5330 }
5331
5332 return 1;
5333 }
5334
5335 static int
5336 check_byte_reg (void)
5337 {
5338 int op;
5339
5340 for (op = i.operands; --op >= 0;)
5341 {
5342 /* If this is an eight bit register, it's OK. If it's the 16 or
5343 32 bit version of an eight bit register, we will just use the
5344 low portion, and that's OK too. */
5345 if (i.types[op].bitfield.reg8)
5346 continue;
5347
5348 /* I/O port address operands are OK too. */
5349 if (i.tm.operand_types[op].bitfield.inoutportreg)
5350 continue;
5351
5352 /* crc32 doesn't generate this warning. */
5353 if (i.tm.base_opcode == 0xf20f38f0)
5354 continue;
5355
5356 if ((i.types[op].bitfield.reg16
5357 || i.types[op].bitfield.reg32
5358 || i.types[op].bitfield.reg64)
5359 && i.op[op].regs->reg_num < 4
5360 /* Prohibit these changes in 64bit mode, since the lowering
5361 would be more complicated. */
5362 && flag_code != CODE_64BIT)
5363 {
5364 #if REGISTER_WARNINGS
5365 if (!quiet_warnings)
5366 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5367 register_prefix,
5368 (i.op[op].regs + (i.types[op].bitfield.reg16
5369 ? REGNAM_AL - REGNAM_AX
5370 : REGNAM_AL - REGNAM_EAX))->reg_name,
5371 register_prefix,
5372 i.op[op].regs->reg_name,
5373 i.suffix);
5374 #endif
5375 continue;
5376 }
5377 /* Any other register is bad. */
5378 if (i.types[op].bitfield.reg16
5379 || i.types[op].bitfield.reg32
5380 || i.types[op].bitfield.reg64
5381 || i.types[op].bitfield.regmmx
5382 || i.types[op].bitfield.regxmm
5383 || i.types[op].bitfield.regymm
5384 || i.types[op].bitfield.regzmm
5385 || i.types[op].bitfield.sreg2
5386 || i.types[op].bitfield.sreg3
5387 || i.types[op].bitfield.control
5388 || i.types[op].bitfield.debug
5389 || i.types[op].bitfield.test
5390 || i.types[op].bitfield.floatreg
5391 || i.types[op].bitfield.floatacc)
5392 {
5393 as_bad (_("`%s%s' not allowed with `%s%c'"),
5394 register_prefix,
5395 i.op[op].regs->reg_name,
5396 i.tm.name,
5397 i.suffix);
5398 return 0;
5399 }
5400 }
5401 return 1;
5402 }
5403
5404 static int
5405 check_long_reg (void)
5406 {
5407 int op;
5408
5409 for (op = i.operands; --op >= 0;)
5410 /* Reject eight bit registers, except where the template requires
5411 them. (eg. movzb) */
5412 if (i.types[op].bitfield.reg8
5413 && (i.tm.operand_types[op].bitfield.reg16
5414 || i.tm.operand_types[op].bitfield.reg32
5415 || i.tm.operand_types[op].bitfield.acc))
5416 {
5417 as_bad (_("`%s%s' not allowed with `%s%c'"),
5418 register_prefix,
5419 i.op[op].regs->reg_name,
5420 i.tm.name,
5421 i.suffix);
5422 return 0;
5423 }
5424 /* Warn if the e prefix on a general reg is missing. */
5425 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5426 && i.types[op].bitfield.reg16
5427 && (i.tm.operand_types[op].bitfield.reg32
5428 || i.tm.operand_types[op].bitfield.acc))
5429 {
5430 /* Prohibit these changes in the 64bit mode, since the
5431 lowering is more complicated. */
5432 if (flag_code == CODE_64BIT)
5433 {
5434 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5435 register_prefix, i.op[op].regs->reg_name,
5436 i.suffix);
5437 return 0;
5438 }
5439 #if REGISTER_WARNINGS
5440 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5441 register_prefix,
5442 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
5443 register_prefix, i.op[op].regs->reg_name, i.suffix);
5444 #endif
5445 }
5446 /* Warn if the r prefix on a general reg is present. */
5447 else if (i.types[op].bitfield.reg64
5448 && (i.tm.operand_types[op].bitfield.reg32
5449 || i.tm.operand_types[op].bitfield.acc))
5450 {
5451 if (intel_syntax
5452 && i.tm.opcode_modifier.toqword
5453 && !i.types[0].bitfield.regxmm)
5454 {
5455 /* Convert to QWORD. We want REX byte. */
5456 i.suffix = QWORD_MNEM_SUFFIX;
5457 }
5458 else
5459 {
5460 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5461 register_prefix, i.op[op].regs->reg_name,
5462 i.suffix);
5463 return 0;
5464 }
5465 }
5466 return 1;
5467 }
5468
5469 static int
5470 check_qword_reg (void)
5471 {
5472 int op;
5473
5474 for (op = i.operands; --op >= 0; )
5475 /* Reject eight bit registers, except where the template requires
5476 them. (eg. movzb) */
5477 if (i.types[op].bitfield.reg8
5478 && (i.tm.operand_types[op].bitfield.reg16
5479 || i.tm.operand_types[op].bitfield.reg32
5480 || i.tm.operand_types[op].bitfield.acc))
5481 {
5482 as_bad (_("`%s%s' not allowed with `%s%c'"),
5483 register_prefix,
5484 i.op[op].regs->reg_name,
5485 i.tm.name,
5486 i.suffix);
5487 return 0;
5488 }
5489 /* Warn if the r prefix on a general reg is missing. */
5490 else if ((i.types[op].bitfield.reg16
5491 || i.types[op].bitfield.reg32)
5492 && (i.tm.operand_types[op].bitfield.reg32
5493 || i.tm.operand_types[op].bitfield.acc))
5494 {
5495 /* Prohibit these changes in the 64bit mode, since the
5496 lowering is more complicated. */
5497 if (intel_syntax
5498 && i.tm.opcode_modifier.todword
5499 && !i.types[0].bitfield.regxmm)
5500 {
5501 /* Convert to DWORD. We don't want REX byte. */
5502 i.suffix = LONG_MNEM_SUFFIX;
5503 }
5504 else
5505 {
5506 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5507 register_prefix, i.op[op].regs->reg_name,
5508 i.suffix);
5509 return 0;
5510 }
5511 }
5512 return 1;
5513 }
5514
5515 static int
5516 check_word_reg (void)
5517 {
5518 int op;
5519 for (op = i.operands; --op >= 0;)
5520 /* Reject eight bit registers, except where the template requires
5521 them. (eg. movzb) */
5522 if (i.types[op].bitfield.reg8
5523 && (i.tm.operand_types[op].bitfield.reg16
5524 || i.tm.operand_types[op].bitfield.reg32
5525 || i.tm.operand_types[op].bitfield.acc))
5526 {
5527 as_bad (_("`%s%s' not allowed with `%s%c'"),
5528 register_prefix,
5529 i.op[op].regs->reg_name,
5530 i.tm.name,
5531 i.suffix);
5532 return 0;
5533 }
5534 /* Warn if the e or r prefix on a general reg is present. */
5535 else if ((!quiet_warnings || flag_code == CODE_64BIT)
5536 && (i.types[op].bitfield.reg32
5537 || i.types[op].bitfield.reg64)
5538 && (i.tm.operand_types[op].bitfield.reg16
5539 || i.tm.operand_types[op].bitfield.acc))
5540 {
5541 /* Prohibit these changes in the 64bit mode, since the
5542 lowering is more complicated. */
5543 if (flag_code == CODE_64BIT)
5544 {
5545 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
5546 register_prefix, i.op[op].regs->reg_name,
5547 i.suffix);
5548 return 0;
5549 }
5550 #if REGISTER_WARNINGS
5551 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
5552 register_prefix,
5553 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
5554 register_prefix, i.op[op].regs->reg_name, i.suffix);
5555 #endif
5556 }
5557 return 1;
5558 }
5559
5560 static int
5561 update_imm (unsigned int j)
5562 {
5563 i386_operand_type overlap = i.types[j];
5564 if ((overlap.bitfield.imm8
5565 || overlap.bitfield.imm8s
5566 || overlap.bitfield.imm16
5567 || overlap.bitfield.imm32
5568 || overlap.bitfield.imm32s
5569 || overlap.bitfield.imm64)
5570 && !operand_type_equal (&overlap, &imm8)
5571 && !operand_type_equal (&overlap, &imm8s)
5572 && !operand_type_equal (&overlap, &imm16)
5573 && !operand_type_equal (&overlap, &imm32)
5574 && !operand_type_equal (&overlap, &imm32s)
5575 && !operand_type_equal (&overlap, &imm64))
5576 {
5577 if (i.suffix)
5578 {
5579 i386_operand_type temp;
5580
5581 operand_type_set (&temp, 0);
5582 if (i.suffix == BYTE_MNEM_SUFFIX)
5583 {
5584 temp.bitfield.imm8 = overlap.bitfield.imm8;
5585 temp.bitfield.imm8s = overlap.bitfield.imm8s;
5586 }
5587 else if (i.suffix == WORD_MNEM_SUFFIX)
5588 temp.bitfield.imm16 = overlap.bitfield.imm16;
5589 else if (i.suffix == QWORD_MNEM_SUFFIX)
5590 {
5591 temp.bitfield.imm64 = overlap.bitfield.imm64;
5592 temp.bitfield.imm32s = overlap.bitfield.imm32s;
5593 }
5594 else
5595 temp.bitfield.imm32 = overlap.bitfield.imm32;
5596 overlap = temp;
5597 }
5598 else if (operand_type_equal (&overlap, &imm16_32_32s)
5599 || operand_type_equal (&overlap, &imm16_32)
5600 || operand_type_equal (&overlap, &imm16_32s))
5601 {
5602 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
5603 overlap = imm16;
5604 else
5605 overlap = imm32s;
5606 }
5607 if (!operand_type_equal (&overlap, &imm8)
5608 && !operand_type_equal (&overlap, &imm8s)
5609 && !operand_type_equal (&overlap, &imm16)
5610 && !operand_type_equal (&overlap, &imm32)
5611 && !operand_type_equal (&overlap, &imm32s)
5612 && !operand_type_equal (&overlap, &imm64))
5613 {
5614 as_bad (_("no instruction mnemonic suffix given; "
5615 "can't determine immediate size"));
5616 return 0;
5617 }
5618 }
5619 i.types[j] = overlap;
5620
5621 return 1;
5622 }
5623
5624 static int
5625 finalize_imm (void)
5626 {
5627 unsigned int j, n;
5628
5629 /* Update the first 2 immediate operands. */
5630 n = i.operands > 2 ? 2 : i.operands;
5631 if (n)
5632 {
5633 for (j = 0; j < n; j++)
5634 if (update_imm (j) == 0)
5635 return 0;
5636
5637 /* The 3rd operand can't be immediate operand. */
5638 gas_assert (operand_type_check (i.types[2], imm) == 0);
5639 }
5640
5641 return 1;
5642 }
5643
5644 static int
5645 bad_implicit_operand (int xmm)
5646 {
5647 const char *ireg = xmm ? "xmm0" : "ymm0";
5648
5649 if (intel_syntax)
5650 as_bad (_("the last operand of `%s' must be `%s%s'"),
5651 i.tm.name, register_prefix, ireg);
5652 else
5653 as_bad (_("the first operand of `%s' must be `%s%s'"),
5654 i.tm.name, register_prefix, ireg);
5655 return 0;
5656 }
5657
5658 static int
5659 process_operands (void)
5660 {
5661 /* Default segment register this instruction will use for memory
5662 accesses. 0 means unknown. This is only for optimizing out
5663 unnecessary segment overrides. */
5664 const seg_entry *default_seg = 0;
5665
5666 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
5667 {
5668 unsigned int dupl = i.operands;
5669 unsigned int dest = dupl - 1;
5670 unsigned int j;
5671
5672 /* The destination must be an xmm register. */
5673 gas_assert (i.reg_operands
5674 && MAX_OPERANDS > dupl
5675 && operand_type_equal (&i.types[dest], &regxmm));
5676
5677 if (i.tm.opcode_modifier.firstxmm0)
5678 {
5679 /* The first operand is implicit and must be xmm0. */
5680 gas_assert (operand_type_equal (&i.types[0], &regxmm));
5681 if (register_number (i.op[0].regs) != 0)
5682 return bad_implicit_operand (1);
5683
5684 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
5685 {
5686 /* Keep xmm0 for instructions with VEX prefix and 3
5687 sources. */
5688 goto duplicate;
5689 }
5690 else
5691 {
5692 /* We remove the first xmm0 and keep the number of
5693 operands unchanged, which in fact duplicates the
5694 destination. */
5695 for (j = 1; j < i.operands; j++)
5696 {
5697 i.op[j - 1] = i.op[j];
5698 i.types[j - 1] = i.types[j];
5699 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
5700 }
5701 }
5702 }
5703 else if (i.tm.opcode_modifier.implicit1stxmm0)
5704 {
5705 gas_assert ((MAX_OPERANDS - 1) > dupl
5706 && (i.tm.opcode_modifier.vexsources
5707 == VEX3SOURCES));
5708
5709 /* Add the implicit xmm0 for instructions with VEX prefix
5710 and 3 sources. */
5711 for (j = i.operands; j > 0; j--)
5712 {
5713 i.op[j] = i.op[j - 1];
5714 i.types[j] = i.types[j - 1];
5715 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
5716 }
5717 i.op[0].regs
5718 = (const reg_entry *) hash_find (reg_hash, "xmm0");
5719 i.types[0] = regxmm;
5720 i.tm.operand_types[0] = regxmm;
5721
5722 i.operands += 2;
5723 i.reg_operands += 2;
5724 i.tm.operands += 2;
5725
5726 dupl++;
5727 dest++;
5728 i.op[dupl] = i.op[dest];
5729 i.types[dupl] = i.types[dest];
5730 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5731 }
5732 else
5733 {
5734 duplicate:
5735 i.operands++;
5736 i.reg_operands++;
5737 i.tm.operands++;
5738
5739 i.op[dupl] = i.op[dest];
5740 i.types[dupl] = i.types[dest];
5741 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
5742 }
5743
5744 if (i.tm.opcode_modifier.immext)
5745 process_immext ();
5746 }
5747 else if (i.tm.opcode_modifier.firstxmm0)
5748 {
5749 unsigned int j;
5750
5751 /* The first operand is implicit and must be xmm0/ymm0/zmm0. */
5752 gas_assert (i.reg_operands
5753 && (operand_type_equal (&i.types[0], &regxmm)
5754 || operand_type_equal (&i.types[0], &regymm)
5755 || operand_type_equal (&i.types[0], &regzmm)));
5756 if (register_number (i.op[0].regs) != 0)
5757 return bad_implicit_operand (i.types[0].bitfield.regxmm);
5758
5759 for (j = 1; j < i.operands; j++)
5760 {
5761 i.op[j - 1] = i.op[j];
5762 i.types[j - 1] = i.types[j];
5763
5764 /* We need to adjust fields in i.tm since they are used by
5765 build_modrm_byte. */
5766 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
5767 }
5768
5769 i.operands--;
5770 i.reg_operands--;
5771 i.tm.operands--;
5772 }
5773 else if (i.tm.opcode_modifier.regkludge)
5774 {
5775 /* The imul $imm, %reg instruction is converted into
5776 imul $imm, %reg, %reg, and the clr %reg instruction
5777 is converted into xor %reg, %reg. */
5778
5779 unsigned int first_reg_op;
5780
5781 if (operand_type_check (i.types[0], reg))
5782 first_reg_op = 0;
5783 else
5784 first_reg_op = 1;
5785 /* Pretend we saw the extra register operand. */
5786 gas_assert (i.reg_operands == 1
5787 && i.op[first_reg_op + 1].regs == 0);
5788 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
5789 i.types[first_reg_op + 1] = i.types[first_reg_op];
5790 i.operands++;
5791 i.reg_operands++;
5792 }
5793
5794 if (i.tm.opcode_modifier.shortform)
5795 {
5796 if (i.types[0].bitfield.sreg2
5797 || i.types[0].bitfield.sreg3)
5798 {
5799 if (i.tm.base_opcode == POP_SEG_SHORT
5800 && i.op[0].regs->reg_num == 1)
5801 {
5802 as_bad (_("you can't `pop %scs'"), register_prefix);
5803 return 0;
5804 }
5805 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
5806 if ((i.op[0].regs->reg_flags & RegRex) != 0)
5807 i.rex |= REX_B;
5808 }
5809 else
5810 {
5811 /* The register or float register operand is in operand
5812 0 or 1. */
5813 unsigned int op;
5814
5815 if (i.types[0].bitfield.floatreg
5816 || operand_type_check (i.types[0], reg))
5817 op = 0;
5818 else
5819 op = 1;
5820 /* Register goes in low 3 bits of opcode. */
5821 i.tm.base_opcode |= i.op[op].regs->reg_num;
5822 if ((i.op[op].regs->reg_flags & RegRex) != 0)
5823 i.rex |= REX_B;
5824 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
5825 {
5826 /* Warn about some common errors, but press on regardless.
5827 The first case can be generated by gcc (<= 2.8.1). */
5828 if (i.operands == 2)
5829 {
5830 /* Reversed arguments on faddp, fsubp, etc. */
5831 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
5832 register_prefix, i.op[!intel_syntax].regs->reg_name,
5833 register_prefix, i.op[intel_syntax].regs->reg_name);
5834 }
5835 else
5836 {
5837 /* Extraneous `l' suffix on fp insn. */
5838 as_warn (_("translating to `%s %s%s'"), i.tm.name,
5839 register_prefix, i.op[0].regs->reg_name);
5840 }
5841 }
5842 }
5843 }
5844 else if (i.tm.opcode_modifier.modrm)
5845 {
5846 /* The opcode is completed (modulo i.tm.extension_opcode which
5847 must be put into the modrm byte). Now, we make the modrm and
5848 index base bytes based on all the info we've collected. */
5849
5850 default_seg = build_modrm_byte ();
5851 }
5852 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
5853 {
5854 default_seg = &ds;
5855 }
5856 else if (i.tm.opcode_modifier.isstring)
5857 {
5858 /* For the string instructions that allow a segment override
5859 on one of their operands, the default segment is ds. */
5860 default_seg = &ds;
5861 }
5862
5863 if (i.tm.base_opcode == 0x8d /* lea */
5864 && i.seg[0]
5865 && !quiet_warnings)
5866 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
5867
5868 /* If a segment was explicitly specified, and the specified segment
5869 is not the default, use an opcode prefix to select it. If we
5870 never figured out what the default segment is, then default_seg
5871 will be zero at this point, and the specified segment prefix will
5872 always be used. */
5873 if ((i.seg[0]) && (i.seg[0] != default_seg))
5874 {
5875 if (!add_prefix (i.seg[0]->seg_prefix))
5876 return 0;
5877 }
5878 return 1;
5879 }
5880
5881 static const seg_entry *
5882 build_modrm_byte (void)
5883 {
5884 const seg_entry *default_seg = 0;
5885 unsigned int source, dest;
5886 int vex_3_sources;
5887
5888 /* The first operand of instructions with VEX prefix and 3 sources
5889 must be VEX_Imm4. */
5890 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
5891 if (vex_3_sources)
5892 {
5893 unsigned int nds, reg_slot;
5894 expressionS *exp;
5895
5896 if (i.tm.opcode_modifier.veximmext
5897 && i.tm.opcode_modifier.immext)
5898 {
5899 dest = i.operands - 2;
5900 gas_assert (dest == 3);
5901 }
5902 else
5903 dest = i.operands - 1;
5904 nds = dest - 1;
5905
5906 /* There are 2 kinds of instructions:
5907 1. 5 operands: 4 register operands or 3 register operands
5908 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
5909 VexW0 or VexW1. The destination must be either XMM, YMM or
5910 ZMM register.
5911 2. 4 operands: 4 register operands or 3 register operands
5912 plus 1 memory operand, VexXDS, and VexImmExt */
5913 gas_assert ((i.reg_operands == 4
5914 || (i.reg_operands == 3 && i.mem_operands == 1))
5915 && i.tm.opcode_modifier.vexvvvv == VEXXDS
5916 && (i.tm.opcode_modifier.veximmext
5917 || (i.imm_operands == 1
5918 && i.types[0].bitfield.vec_imm4
5919 && (i.tm.opcode_modifier.vexw == VEXW0
5920 || i.tm.opcode_modifier.vexw == VEXW1)
5921 && (operand_type_equal (&i.tm.operand_types[dest], &regxmm)
5922 || operand_type_equal (&i.tm.operand_types[dest], &regymm)
5923 || operand_type_equal (&i.tm.operand_types[dest], &regzmm)))));
5924
5925 if (i.imm_operands == 0)
5926 {
5927 /* When there is no immediate operand, generate an 8bit
5928 immediate operand to encode the first operand. */
5929 exp = &im_expressions[i.imm_operands++];
5930 i.op[i.operands].imms = exp;
5931 i.types[i.operands] = imm8;
5932 i.operands++;
5933 /* If VexW1 is set, the first operand is the source and
5934 the second operand is encoded in the immediate operand. */
5935 if (i.tm.opcode_modifier.vexw == VEXW1)
5936 {
5937 source = 0;
5938 reg_slot = 1;
5939 }
5940 else
5941 {
5942 source = 1;
5943 reg_slot = 0;
5944 }
5945
5946 /* FMA swaps REG and NDS. */
5947 if (i.tm.cpu_flags.bitfield.cpufma)
5948 {
5949 unsigned int tmp;
5950 tmp = reg_slot;
5951 reg_slot = nds;
5952 nds = tmp;
5953 }
5954
5955 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
5956 &regxmm)
5957 || operand_type_equal (&i.tm.operand_types[reg_slot],
5958 &regymm)
5959 || operand_type_equal (&i.tm.operand_types[reg_slot],
5960 &regzmm));
5961 exp->X_op = O_constant;
5962 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
5963 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
5964 }
5965 else
5966 {
5967 unsigned int imm_slot;
5968
5969 if (i.tm.opcode_modifier.vexw == VEXW0)
5970 {
5971 /* If VexW0 is set, the third operand is the source and
5972 the second operand is encoded in the immediate
5973 operand. */
5974 source = 2;
5975 reg_slot = 1;
5976 }
5977 else
5978 {
5979 /* VexW1 is set, the second operand is the source and
5980 the third operand is encoded in the immediate
5981 operand. */
5982 source = 1;
5983 reg_slot = 2;
5984 }
5985
5986 if (i.tm.opcode_modifier.immext)
5987 {
5988 /* When ImmExt is set, the immdiate byte is the last
5989 operand. */
5990 imm_slot = i.operands - 1;
5991 source--;
5992 reg_slot--;
5993 }
5994 else
5995 {
5996 imm_slot = 0;
5997
5998 /* Turn on Imm8 so that output_imm will generate it. */
5999 i.types[imm_slot].bitfield.imm8 = 1;
6000 }
6001
6002 gas_assert (operand_type_equal (&i.tm.operand_types[reg_slot],
6003 &regxmm)
6004 || operand_type_equal (&i.tm.operand_types[reg_slot],
6005 &regymm)
6006 || operand_type_equal (&i.tm.operand_types[reg_slot],
6007 &regzmm));
6008 i.op[imm_slot].imms->X_add_number
6009 |= register_number (i.op[reg_slot].regs) << 4;
6010 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6011 }
6012
6013 gas_assert (operand_type_equal (&i.tm.operand_types[nds], &regxmm)
6014 || operand_type_equal (&i.tm.operand_types[nds],
6015 &regymm)
6016 || operand_type_equal (&i.tm.operand_types[nds],
6017 &regzmm));
6018 i.vex.register_specifier = i.op[nds].regs;
6019 }
6020 else
6021 source = dest = 0;
6022
6023 /* i.reg_operands MUST be the number of real register operands;
6024 implicit registers do not count. If there are 3 register
6025 operands, it must be a instruction with VexNDS. For a
6026 instruction with VexNDD, the destination register is encoded
6027 in VEX prefix. If there are 4 register operands, it must be
6028 a instruction with VEX prefix and 3 sources. */
6029 if (i.mem_operands == 0
6030 && ((i.reg_operands == 2
6031 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6032 || (i.reg_operands == 3
6033 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6034 || (i.reg_operands == 4 && vex_3_sources)))
6035 {
6036 switch (i.operands)
6037 {
6038 case 2:
6039 source = 0;
6040 break;
6041 case 3:
6042 /* When there are 3 operands, one of them may be immediate,
6043 which may be the first or the last operand. Otherwise,
6044 the first operand must be shift count register (cl) or it
6045 is an instruction with VexNDS. */
6046 gas_assert (i.imm_operands == 1
6047 || (i.imm_operands == 0
6048 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6049 || i.types[0].bitfield.shiftcount)));
6050 if (operand_type_check (i.types[0], imm)
6051 || i.types[0].bitfield.shiftcount)
6052 source = 1;
6053 else
6054 source = 0;
6055 break;
6056 case 4:
6057 /* When there are 4 operands, the first two must be 8bit
6058 immediate operands. The source operand will be the 3rd
6059 one.
6060
6061 For instructions with VexNDS, if the first operand
6062 an imm8, the source operand is the 2nd one. If the last
6063 operand is imm8, the source operand is the first one. */
6064 gas_assert ((i.imm_operands == 2
6065 && i.types[0].bitfield.imm8
6066 && i.types[1].bitfield.imm8)
6067 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6068 && i.imm_operands == 1
6069 && (i.types[0].bitfield.imm8
6070 || i.types[i.operands - 1].bitfield.imm8
6071 || i.rounding)));
6072 if (i.imm_operands == 2)
6073 source = 2;
6074 else
6075 {
6076 if (i.types[0].bitfield.imm8)
6077 source = 1;
6078 else
6079 source = 0;
6080 }
6081 break;
6082 case 5:
6083 if (i.tm.opcode_modifier.evex)
6084 {
6085 /* For EVEX instructions, when there are 5 operands, the
6086 first one must be immediate operand. If the second one
6087 is immediate operand, the source operand is the 3th
6088 one. If the last one is immediate operand, the source
6089 operand is the 2nd one. */
6090 gas_assert (i.imm_operands == 2
6091 && i.tm.opcode_modifier.sae
6092 && operand_type_check (i.types[0], imm));
6093 if (operand_type_check (i.types[1], imm))
6094 source = 2;
6095 else if (operand_type_check (i.types[4], imm))
6096 source = 1;
6097 else
6098 abort ();
6099 }
6100 break;
6101 default:
6102 abort ();
6103 }
6104
6105 if (!vex_3_sources)
6106 {
6107 dest = source + 1;
6108
6109 /* RC/SAE operand could be between DEST and SRC. That happens
6110 when one operand is GPR and the other one is XMM/YMM/ZMM
6111 register. */
6112 if (i.rounding && i.rounding->operand == (int) dest)
6113 dest++;
6114
6115 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6116 {
6117 /* For instructions with VexNDS, the register-only source
6118 operand must be 32/64bit integer, XMM, YMM or ZMM
6119 register. It is encoded in VEX prefix. We need to
6120 clear RegMem bit before calling operand_type_equal. */
6121
6122 i386_operand_type op;
6123 unsigned int vvvv;
6124
6125 /* Check register-only source operand when two source
6126 operands are swapped. */
6127 if (!i.tm.operand_types[source].bitfield.baseindex
6128 && i.tm.operand_types[dest].bitfield.baseindex)
6129 {
6130 vvvv = source;
6131 source = dest;
6132 }
6133 else
6134 vvvv = dest;
6135
6136 op = i.tm.operand_types[vvvv];
6137 op.bitfield.regmem = 0;
6138 if ((dest + 1) >= i.operands
6139 || (op.bitfield.reg32 != 1
6140 && !op.bitfield.reg64 != 1
6141 && !operand_type_equal (&op, &regxmm)
6142 && !operand_type_equal (&op, &regymm)
6143 && !operand_type_equal (&op, &regzmm)
6144 && !operand_type_equal (&op, &regmask)))
6145 abort ();
6146 i.vex.register_specifier = i.op[vvvv].regs;
6147 dest++;
6148 }
6149 }
6150
6151 i.rm.mode = 3;
6152 /* One of the register operands will be encoded in the i.tm.reg
6153 field, the other in the combined i.tm.mode and i.tm.regmem
6154 fields. If no form of this instruction supports a memory
6155 destination operand, then we assume the source operand may
6156 sometimes be a memory operand and so we need to store the
6157 destination in the i.rm.reg field. */
6158 if (!i.tm.operand_types[dest].bitfield.regmem
6159 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
6160 {
6161 i.rm.reg = i.op[dest].regs->reg_num;
6162 i.rm.regmem = i.op[source].regs->reg_num;
6163 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6164 i.rex |= REX_R;
6165 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6166 i.vrex |= REX_R;
6167 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6168 i.rex |= REX_B;
6169 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6170 i.vrex |= REX_B;
6171 }
6172 else
6173 {
6174 i.rm.reg = i.op[source].regs->reg_num;
6175 i.rm.regmem = i.op[dest].regs->reg_num;
6176 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
6177 i.rex |= REX_B;
6178 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
6179 i.vrex |= REX_B;
6180 if ((i.op[source].regs->reg_flags & RegRex) != 0)
6181 i.rex |= REX_R;
6182 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
6183 i.vrex |= REX_R;
6184 }
6185 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
6186 {
6187 if (!i.types[0].bitfield.control
6188 && !i.types[1].bitfield.control)
6189 abort ();
6190 i.rex &= ~(REX_R | REX_B);
6191 add_prefix (LOCK_PREFIX_OPCODE);
6192 }
6193 }
6194 else
6195 { /* If it's not 2 reg operands... */
6196 unsigned int mem;
6197
6198 if (i.mem_operands)
6199 {
6200 unsigned int fake_zero_displacement = 0;
6201 unsigned int op;
6202
6203 for (op = 0; op < i.operands; op++)
6204 if (operand_type_check (i.types[op], anymem))
6205 break;
6206 gas_assert (op < i.operands);
6207
6208 if (i.tm.opcode_modifier.vecsib)
6209 {
6210 if (i.index_reg->reg_num == RegEiz
6211 || i.index_reg->reg_num == RegRiz)
6212 abort ();
6213
6214 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6215 if (!i.base_reg)
6216 {
6217 i.sib.base = NO_BASE_REGISTER;
6218 i.sib.scale = i.log2_scale_factor;
6219 /* No Vec_Disp8 if there is no base. */
6220 i.types[op].bitfield.vec_disp8 = 0;
6221 i.types[op].bitfield.disp8 = 0;
6222 i.types[op].bitfield.disp16 = 0;
6223 i.types[op].bitfield.disp64 = 0;
6224 if (flag_code != CODE_64BIT)
6225 {
6226 /* Must be 32 bit */
6227 i.types[op].bitfield.disp32 = 1;
6228 i.types[op].bitfield.disp32s = 0;
6229 }
6230 else
6231 {
6232 i.types[op].bitfield.disp32 = 0;
6233 i.types[op].bitfield.disp32s = 1;
6234 }
6235 }
6236 i.sib.index = i.index_reg->reg_num;
6237 if ((i.index_reg->reg_flags & RegRex) != 0)
6238 i.rex |= REX_X;
6239 if ((i.index_reg->reg_flags & RegVRex) != 0)
6240 i.vrex |= REX_X;
6241 }
6242
6243 default_seg = &ds;
6244
6245 if (i.base_reg == 0)
6246 {
6247 i.rm.mode = 0;
6248 if (!i.disp_operands)
6249 {
6250 fake_zero_displacement = 1;
6251 /* Instructions with VSIB byte need 32bit displacement
6252 if there is no base register. */
6253 if (i.tm.opcode_modifier.vecsib)
6254 i.types[op].bitfield.disp32 = 1;
6255 }
6256 if (i.index_reg == 0)
6257 {
6258 gas_assert (!i.tm.opcode_modifier.vecsib);
6259 /* Operand is just <disp> */
6260 if (flag_code == CODE_64BIT)
6261 {
6262 /* 64bit mode overwrites the 32bit absolute
6263 addressing by RIP relative addressing and
6264 absolute addressing is encoded by one of the
6265 redundant SIB forms. */
6266 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6267 i.sib.base = NO_BASE_REGISTER;
6268 i.sib.index = NO_INDEX_REGISTER;
6269 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
6270 ? disp32s : disp32);
6271 }
6272 else if ((flag_code == CODE_16BIT)
6273 ^ (i.prefix[ADDR_PREFIX] != 0))
6274 {
6275 i.rm.regmem = NO_BASE_REGISTER_16;
6276 i.types[op] = disp16;
6277 }
6278 else
6279 {
6280 i.rm.regmem = NO_BASE_REGISTER;
6281 i.types[op] = disp32;
6282 }
6283 }
6284 else if (!i.tm.opcode_modifier.vecsib)
6285 {
6286 /* !i.base_reg && i.index_reg */
6287 if (i.index_reg->reg_num == RegEiz
6288 || i.index_reg->reg_num == RegRiz)
6289 i.sib.index = NO_INDEX_REGISTER;
6290 else
6291 i.sib.index = i.index_reg->reg_num;
6292 i.sib.base = NO_BASE_REGISTER;
6293 i.sib.scale = i.log2_scale_factor;
6294 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6295 /* No Vec_Disp8 if there is no base. */
6296 i.types[op].bitfield.vec_disp8 = 0;
6297 i.types[op].bitfield.disp8 = 0;
6298 i.types[op].bitfield.disp16 = 0;
6299 i.types[op].bitfield.disp64 = 0;
6300 if (flag_code != CODE_64BIT)
6301 {
6302 /* Must be 32 bit */
6303 i.types[op].bitfield.disp32 = 1;
6304 i.types[op].bitfield.disp32s = 0;
6305 }
6306 else
6307 {
6308 i.types[op].bitfield.disp32 = 0;
6309 i.types[op].bitfield.disp32s = 1;
6310 }
6311 if ((i.index_reg->reg_flags & RegRex) != 0)
6312 i.rex |= REX_X;
6313 }
6314 }
6315 /* RIP addressing for 64bit mode. */
6316 else if (i.base_reg->reg_num == RegRip ||
6317 i.base_reg->reg_num == RegEip)
6318 {
6319 gas_assert (!i.tm.opcode_modifier.vecsib);
6320 i.rm.regmem = NO_BASE_REGISTER;
6321 i.types[op].bitfield.disp8 = 0;
6322 i.types[op].bitfield.disp16 = 0;
6323 i.types[op].bitfield.disp32 = 0;
6324 i.types[op].bitfield.disp32s = 1;
6325 i.types[op].bitfield.disp64 = 0;
6326 i.types[op].bitfield.vec_disp8 = 0;
6327 i.flags[op] |= Operand_PCrel;
6328 if (! i.disp_operands)
6329 fake_zero_displacement = 1;
6330 }
6331 else if (i.base_reg->reg_type.bitfield.reg16)
6332 {
6333 gas_assert (!i.tm.opcode_modifier.vecsib);
6334 switch (i.base_reg->reg_num)
6335 {
6336 case 3: /* (%bx) */
6337 if (i.index_reg == 0)
6338 i.rm.regmem = 7;
6339 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
6340 i.rm.regmem = i.index_reg->reg_num - 6;
6341 break;
6342 case 5: /* (%bp) */
6343 default_seg = &ss;
6344 if (i.index_reg == 0)
6345 {
6346 i.rm.regmem = 6;
6347 if (operand_type_check (i.types[op], disp) == 0)
6348 {
6349 /* fake (%bp) into 0(%bp) */
6350 if (i.tm.operand_types[op].bitfield.vec_disp8)
6351 i.types[op].bitfield.vec_disp8 = 1;
6352 else
6353 i.types[op].bitfield.disp8 = 1;
6354 fake_zero_displacement = 1;
6355 }
6356 }
6357 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
6358 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
6359 break;
6360 default: /* (%si) -> 4 or (%di) -> 5 */
6361 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
6362 }
6363 i.rm.mode = mode_from_disp_size (i.types[op]);
6364 }
6365 else /* i.base_reg and 32/64 bit mode */
6366 {
6367 if (flag_code == CODE_64BIT
6368 && operand_type_check (i.types[op], disp))
6369 {
6370 i386_operand_type temp;
6371 operand_type_set (&temp, 0);
6372 temp.bitfield.disp8 = i.types[op].bitfield.disp8;
6373 temp.bitfield.vec_disp8
6374 = i.types[op].bitfield.vec_disp8;
6375 i.types[op] = temp;
6376 if (i.prefix[ADDR_PREFIX] == 0)
6377 i.types[op].bitfield.disp32s = 1;
6378 else
6379 i.types[op].bitfield.disp32 = 1;
6380 }
6381
6382 if (!i.tm.opcode_modifier.vecsib)
6383 i.rm.regmem = i.base_reg->reg_num;
6384 if ((i.base_reg->reg_flags & RegRex) != 0)
6385 i.rex |= REX_B;
6386 i.sib.base = i.base_reg->reg_num;
6387 /* x86-64 ignores REX prefix bit here to avoid decoder
6388 complications. */
6389 if (!(i.base_reg->reg_flags & RegRex)
6390 && (i.base_reg->reg_num == EBP_REG_NUM
6391 || i.base_reg->reg_num == ESP_REG_NUM))
6392 default_seg = &ss;
6393 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
6394 {
6395 fake_zero_displacement = 1;
6396 if (i.tm.operand_types [op].bitfield.vec_disp8)
6397 i.types[op].bitfield.vec_disp8 = 1;
6398 else
6399 i.types[op].bitfield.disp8 = 1;
6400 }
6401 i.sib.scale = i.log2_scale_factor;
6402 if (i.index_reg == 0)
6403 {
6404 gas_assert (!i.tm.opcode_modifier.vecsib);
6405 /* <disp>(%esp) becomes two byte modrm with no index
6406 register. We've already stored the code for esp
6407 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
6408 Any base register besides %esp will not use the
6409 extra modrm byte. */
6410 i.sib.index = NO_INDEX_REGISTER;
6411 }
6412 else if (!i.tm.opcode_modifier.vecsib)
6413 {
6414 if (i.index_reg->reg_num == RegEiz
6415 || i.index_reg->reg_num == RegRiz)
6416 i.sib.index = NO_INDEX_REGISTER;
6417 else
6418 i.sib.index = i.index_reg->reg_num;
6419 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
6420 if ((i.index_reg->reg_flags & RegRex) != 0)
6421 i.rex |= REX_X;
6422 }
6423
6424 if (i.disp_operands
6425 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
6426 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
6427 i.rm.mode = 0;
6428 else
6429 {
6430 if (!fake_zero_displacement
6431 && !i.disp_operands
6432 && i.disp_encoding)
6433 {
6434 fake_zero_displacement = 1;
6435 if (i.disp_encoding == disp_encoding_8bit)
6436 i.types[op].bitfield.disp8 = 1;
6437 else
6438 i.types[op].bitfield.disp32 = 1;
6439 }
6440 i.rm.mode = mode_from_disp_size (i.types[op]);
6441 }
6442 }
6443
6444 if (fake_zero_displacement)
6445 {
6446 /* Fakes a zero displacement assuming that i.types[op]
6447 holds the correct displacement size. */
6448 expressionS *exp;
6449
6450 gas_assert (i.op[op].disps == 0);
6451 exp = &disp_expressions[i.disp_operands++];
6452 i.op[op].disps = exp;
6453 exp->X_op = O_constant;
6454 exp->X_add_number = 0;
6455 exp->X_add_symbol = (symbolS *) 0;
6456 exp->X_op_symbol = (symbolS *) 0;
6457 }
6458
6459 mem = op;
6460 }
6461 else
6462 mem = ~0;
6463
6464 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
6465 {
6466 if (operand_type_check (i.types[0], imm))
6467 i.vex.register_specifier = NULL;
6468 else
6469 {
6470 /* VEX.vvvv encodes one of the sources when the first
6471 operand is not an immediate. */
6472 if (i.tm.opcode_modifier.vexw == VEXW0)
6473 i.vex.register_specifier = i.op[0].regs;
6474 else
6475 i.vex.register_specifier = i.op[1].regs;
6476 }
6477
6478 /* Destination is a XMM register encoded in the ModRM.reg
6479 and VEX.R bit. */
6480 i.rm.reg = i.op[2].regs->reg_num;
6481 if ((i.op[2].regs->reg_flags & RegRex) != 0)
6482 i.rex |= REX_R;
6483
6484 /* ModRM.rm and VEX.B encodes the other source. */
6485 if (!i.mem_operands)
6486 {
6487 i.rm.mode = 3;
6488
6489 if (i.tm.opcode_modifier.vexw == VEXW0)
6490 i.rm.regmem = i.op[1].regs->reg_num;
6491 else
6492 i.rm.regmem = i.op[0].regs->reg_num;
6493
6494 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6495 i.rex |= REX_B;
6496 }
6497 }
6498 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
6499 {
6500 i.vex.register_specifier = i.op[2].regs;
6501 if (!i.mem_operands)
6502 {
6503 i.rm.mode = 3;
6504 i.rm.regmem = i.op[1].regs->reg_num;
6505 if ((i.op[1].regs->reg_flags & RegRex) != 0)
6506 i.rex |= REX_B;
6507 }
6508 }
6509 /* Fill in i.rm.reg or i.rm.regmem field with register operand
6510 (if any) based on i.tm.extension_opcode. Again, we must be
6511 careful to make sure that segment/control/debug/test/MMX
6512 registers are coded into the i.rm.reg field. */
6513 else if (i.reg_operands)
6514 {
6515 unsigned int op;
6516 unsigned int vex_reg = ~0;
6517
6518 for (op = 0; op < i.operands; op++)
6519 if (i.types[op].bitfield.reg8
6520 || i.types[op].bitfield.reg16
6521 || i.types[op].bitfield.reg32
6522 || i.types[op].bitfield.reg64
6523 || i.types[op].bitfield.regmmx
6524 || i.types[op].bitfield.regxmm
6525 || i.types[op].bitfield.regymm
6526 || i.types[op].bitfield.regbnd
6527 || i.types[op].bitfield.regzmm
6528 || i.types[op].bitfield.regmask
6529 || i.types[op].bitfield.sreg2
6530 || i.types[op].bitfield.sreg3
6531 || i.types[op].bitfield.control
6532 || i.types[op].bitfield.debug
6533 || i.types[op].bitfield.test)
6534 break;
6535
6536 if (vex_3_sources)
6537 op = dest;
6538 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
6539 {
6540 /* For instructions with VexNDS, the register-only
6541 source operand is encoded in VEX prefix. */
6542 gas_assert (mem != (unsigned int) ~0);
6543
6544 if (op > mem)
6545 {
6546 vex_reg = op++;
6547 gas_assert (op < i.operands);
6548 }
6549 else
6550 {
6551 /* Check register-only source operand when two source
6552 operands are swapped. */
6553 if (!i.tm.operand_types[op].bitfield.baseindex
6554 && i.tm.operand_types[op + 1].bitfield.baseindex)
6555 {
6556 vex_reg = op;
6557 op += 2;
6558 gas_assert (mem == (vex_reg + 1)
6559 && op < i.operands);
6560 }
6561 else
6562 {
6563 vex_reg = op + 1;
6564 gas_assert (vex_reg < i.operands);
6565 }
6566 }
6567 }
6568 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
6569 {
6570 /* For instructions with VexNDD, the register destination
6571 is encoded in VEX prefix. */
6572 if (i.mem_operands == 0)
6573 {
6574 /* There is no memory operand. */
6575 gas_assert ((op + 2) == i.operands);
6576 vex_reg = op + 1;
6577 }
6578 else
6579 {
6580 /* There are only 2 operands. */
6581 gas_assert (op < 2 && i.operands == 2);
6582 vex_reg = 1;
6583 }
6584 }
6585 else
6586 gas_assert (op < i.operands);
6587
6588 if (vex_reg != (unsigned int) ~0)
6589 {
6590 i386_operand_type *type = &i.tm.operand_types[vex_reg];
6591
6592 if (type->bitfield.reg32 != 1
6593 && type->bitfield.reg64 != 1
6594 && !operand_type_equal (type, &regxmm)
6595 && !operand_type_equal (type, &regymm)
6596 && !operand_type_equal (type, &regzmm)
6597 && !operand_type_equal (type, &regmask))
6598 abort ();
6599
6600 i.vex.register_specifier = i.op[vex_reg].regs;
6601 }
6602
6603 /* Don't set OP operand twice. */
6604 if (vex_reg != op)
6605 {
6606 /* If there is an extension opcode to put here, the
6607 register number must be put into the regmem field. */
6608 if (i.tm.extension_opcode != None)
6609 {
6610 i.rm.regmem = i.op[op].regs->reg_num;
6611 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6612 i.rex |= REX_B;
6613 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6614 i.vrex |= REX_B;
6615 }
6616 else
6617 {
6618 i.rm.reg = i.op[op].regs->reg_num;
6619 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6620 i.rex |= REX_R;
6621 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
6622 i.vrex |= REX_R;
6623 }
6624 }
6625
6626 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
6627 must set it to 3 to indicate this is a register operand
6628 in the regmem field. */
6629 if (!i.mem_operands)
6630 i.rm.mode = 3;
6631 }
6632
6633 /* Fill in i.rm.reg field with extension opcode (if any). */
6634 if (i.tm.extension_opcode != None)
6635 i.rm.reg = i.tm.extension_opcode;
6636 }
6637 return default_seg;
6638 }
6639
6640 static void
6641 output_branch (void)
6642 {
6643 char *p;
6644 int size;
6645 int code16;
6646 int prefix;
6647 relax_substateT subtype;
6648 symbolS *sym;
6649 offsetT off;
6650
6651 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
6652 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
6653
6654 prefix = 0;
6655 if (i.prefix[DATA_PREFIX] != 0)
6656 {
6657 prefix = 1;
6658 i.prefixes -= 1;
6659 code16 ^= CODE16;
6660 }
6661 /* Pentium4 branch hints. */
6662 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6663 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6664 {
6665 prefix++;
6666 i.prefixes--;
6667 }
6668 if (i.prefix[REX_PREFIX] != 0)
6669 {
6670 prefix++;
6671 i.prefixes--;
6672 }
6673
6674 /* BND prefixed jump. */
6675 if (i.prefix[BND_PREFIX] != 0)
6676 {
6677 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6678 i.prefixes -= 1;
6679 }
6680
6681 if (i.prefixes != 0 && !intel_syntax)
6682 as_warn (_("skipping prefixes on this instruction"));
6683
6684 /* It's always a symbol; End frag & setup for relax.
6685 Make sure there is enough room in this frag for the largest
6686 instruction we may generate in md_convert_frag. This is 2
6687 bytes for the opcode and room for the prefix and largest
6688 displacement. */
6689 frag_grow (prefix + 2 + 4);
6690 /* Prefix and 1 opcode byte go in fr_fix. */
6691 p = frag_more (prefix + 1);
6692 if (i.prefix[DATA_PREFIX] != 0)
6693 *p++ = DATA_PREFIX_OPCODE;
6694 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
6695 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
6696 *p++ = i.prefix[SEG_PREFIX];
6697 if (i.prefix[REX_PREFIX] != 0)
6698 *p++ = i.prefix[REX_PREFIX];
6699 *p = i.tm.base_opcode;
6700
6701 if ((unsigned char) *p == JUMP_PC_RELATIVE)
6702 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
6703 else if (cpu_arch_flags.bitfield.cpui386)
6704 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
6705 else
6706 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
6707 subtype |= code16;
6708
6709 sym = i.op[0].disps->X_add_symbol;
6710 off = i.op[0].disps->X_add_number;
6711
6712 if (i.op[0].disps->X_op != O_constant
6713 && i.op[0].disps->X_op != O_symbol)
6714 {
6715 /* Handle complex expressions. */
6716 sym = make_expr_symbol (i.op[0].disps);
6717 off = 0;
6718 }
6719
6720 /* 1 possible extra opcode + 4 byte displacement go in var part.
6721 Pass reloc in fr_var. */
6722 frag_var (rs_machine_dependent, 5,
6723 ((!object_64bit
6724 || i.reloc[0] != NO_RELOC
6725 || (i.bnd_prefix == NULL && !add_bnd_prefix))
6726 ? i.reloc[0]
6727 : BFD_RELOC_X86_64_PC32_BND),
6728 subtype, sym, off, p);
6729 }
6730
6731 static void
6732 output_jump (void)
6733 {
6734 char *p;
6735 int size;
6736 fixS *fixP;
6737
6738 if (i.tm.opcode_modifier.jumpbyte)
6739 {
6740 /* This is a loop or jecxz type instruction. */
6741 size = 1;
6742 if (i.prefix[ADDR_PREFIX] != 0)
6743 {
6744 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
6745 i.prefixes -= 1;
6746 }
6747 /* Pentium4 branch hints. */
6748 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
6749 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
6750 {
6751 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
6752 i.prefixes--;
6753 }
6754 }
6755 else
6756 {
6757 int code16;
6758
6759 code16 = 0;
6760 if (flag_code == CODE_16BIT)
6761 code16 = CODE16;
6762
6763 if (i.prefix[DATA_PREFIX] != 0)
6764 {
6765 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
6766 i.prefixes -= 1;
6767 code16 ^= CODE16;
6768 }
6769
6770 size = 4;
6771 if (code16)
6772 size = 2;
6773 }
6774
6775 if (i.prefix[REX_PREFIX] != 0)
6776 {
6777 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
6778 i.prefixes -= 1;
6779 }
6780
6781 /* BND prefixed jump. */
6782 if (i.prefix[BND_PREFIX] != 0)
6783 {
6784 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
6785 i.prefixes -= 1;
6786 }
6787
6788 if (i.prefixes != 0 && !intel_syntax)
6789 as_warn (_("skipping prefixes on this instruction"));
6790
6791 p = frag_more (i.tm.opcode_length + size);
6792 switch (i.tm.opcode_length)
6793 {
6794 case 2:
6795 *p++ = i.tm.base_opcode >> 8;
6796 case 1:
6797 *p++ = i.tm.base_opcode;
6798 break;
6799 default:
6800 abort ();
6801 }
6802
6803 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6804 i.op[0].disps, 1, reloc (size, 1, 1,
6805 (i.bnd_prefix != NULL
6806 || add_bnd_prefix),
6807 i.reloc[0]));
6808
6809 /* All jumps handled here are signed, but don't use a signed limit
6810 check for 32 and 16 bit jumps as we want to allow wrap around at
6811 4G and 64k respectively. */
6812 if (size == 1)
6813 fixP->fx_signed = 1;
6814 }
6815
6816 static void
6817 output_interseg_jump (void)
6818 {
6819 char *p;
6820 int size;
6821 int prefix;
6822 int code16;
6823
6824 code16 = 0;
6825 if (flag_code == CODE_16BIT)
6826 code16 = CODE16;
6827
6828 prefix = 0;
6829 if (i.prefix[DATA_PREFIX] != 0)
6830 {
6831 prefix = 1;
6832 i.prefixes -= 1;
6833 code16 ^= CODE16;
6834 }
6835 if (i.prefix[REX_PREFIX] != 0)
6836 {
6837 prefix++;
6838 i.prefixes -= 1;
6839 }
6840
6841 size = 4;
6842 if (code16)
6843 size = 2;
6844
6845 if (i.prefixes != 0 && !intel_syntax)
6846 as_warn (_("skipping prefixes on this instruction"));
6847
6848 /* 1 opcode; 2 segment; offset */
6849 p = frag_more (prefix + 1 + 2 + size);
6850
6851 if (i.prefix[DATA_PREFIX] != 0)
6852 *p++ = DATA_PREFIX_OPCODE;
6853
6854 if (i.prefix[REX_PREFIX] != 0)
6855 *p++ = i.prefix[REX_PREFIX];
6856
6857 *p++ = i.tm.base_opcode;
6858 if (i.op[1].imms->X_op == O_constant)
6859 {
6860 offsetT n = i.op[1].imms->X_add_number;
6861
6862 if (size == 2
6863 && !fits_in_unsigned_word (n)
6864 && !fits_in_signed_word (n))
6865 {
6866 as_bad (_("16-bit jump out of range"));
6867 return;
6868 }
6869 md_number_to_chars (p, n, size);
6870 }
6871 else
6872 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
6873 i.op[1].imms, 0, reloc (size, 0, 0, 0, i.reloc[1]));
6874 if (i.op[0].imms->X_op != O_constant)
6875 as_bad (_("can't handle non absolute segment in `%s'"),
6876 i.tm.name);
6877 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
6878 }
6879
6880 static void
6881 output_insn (void)
6882 {
6883 fragS *insn_start_frag;
6884 offsetT insn_start_off;
6885
6886 /* Tie dwarf2 debug info to the address at the start of the insn.
6887 We can't do this after the insn has been output as the current
6888 frag may have been closed off. eg. by frag_var. */
6889 dwarf2_emit_insn (0);
6890
6891 insn_start_frag = frag_now;
6892 insn_start_off = frag_now_fix ();
6893
6894 /* Output jumps. */
6895 if (i.tm.opcode_modifier.jump)
6896 output_branch ();
6897 else if (i.tm.opcode_modifier.jumpbyte
6898 || i.tm.opcode_modifier.jumpdword)
6899 output_jump ();
6900 else if (i.tm.opcode_modifier.jumpintersegment)
6901 output_interseg_jump ();
6902 else
6903 {
6904 /* Output normal instructions here. */
6905 char *p;
6906 unsigned char *q;
6907 unsigned int j;
6908 unsigned int prefix;
6909
6910 /* Since the VEX/EVEX prefix contains the implicit prefix, we
6911 don't need the explicit prefix. */
6912 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
6913 {
6914 switch (i.tm.opcode_length)
6915 {
6916 case 3:
6917 if (i.tm.base_opcode & 0xff000000)
6918 {
6919 prefix = (i.tm.base_opcode >> 24) & 0xff;
6920 goto check_prefix;
6921 }
6922 break;
6923 case 2:
6924 if ((i.tm.base_opcode & 0xff0000) != 0)
6925 {
6926 prefix = (i.tm.base_opcode >> 16) & 0xff;
6927 if (i.tm.cpu_flags.bitfield.cpupadlock)
6928 {
6929 check_prefix:
6930 if (prefix != REPE_PREFIX_OPCODE
6931 || (i.prefix[REP_PREFIX]
6932 != REPE_PREFIX_OPCODE))
6933 add_prefix (prefix);
6934 }
6935 else
6936 add_prefix (prefix);
6937 }
6938 break;
6939 case 1:
6940 break;
6941 default:
6942 abort ();
6943 }
6944
6945 /* The prefix bytes. */
6946 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
6947 if (*q)
6948 FRAG_APPEND_1_CHAR (*q);
6949 }
6950 else
6951 {
6952 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
6953 if (*q)
6954 switch (j)
6955 {
6956 case REX_PREFIX:
6957 /* REX byte is encoded in VEX prefix. */
6958 break;
6959 case SEG_PREFIX:
6960 case ADDR_PREFIX:
6961 FRAG_APPEND_1_CHAR (*q);
6962 break;
6963 default:
6964 /* There should be no other prefixes for instructions
6965 with VEX prefix. */
6966 abort ();
6967 }
6968
6969 /* For EVEX instructions i.vrex should become 0 after
6970 build_evex_prefix. For VEX instructions upper 16 registers
6971 aren't available, so VREX should be 0. */
6972 if (i.vrex)
6973 abort ();
6974 /* Now the VEX prefix. */
6975 p = frag_more (i.vex.length);
6976 for (j = 0; j < i.vex.length; j++)
6977 p[j] = i.vex.bytes[j];
6978 }
6979
6980 /* Now the opcode; be careful about word order here! */
6981 if (i.tm.opcode_length == 1)
6982 {
6983 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
6984 }
6985 else
6986 {
6987 switch (i.tm.opcode_length)
6988 {
6989 case 4:
6990 p = frag_more (4);
6991 *p++ = (i.tm.base_opcode >> 24) & 0xff;
6992 *p++ = (i.tm.base_opcode >> 16) & 0xff;
6993 break;
6994 case 3:
6995 p = frag_more (3);
6996 *p++ = (i.tm.base_opcode >> 16) & 0xff;
6997 break;
6998 case 2:
6999 p = frag_more (2);
7000 break;
7001 default:
7002 abort ();
7003 break;
7004 }
7005
7006 /* Put out high byte first: can't use md_number_to_chars! */
7007 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7008 *p = i.tm.base_opcode & 0xff;
7009 }
7010
7011 /* Now the modrm byte and sib byte (if present). */
7012 if (i.tm.opcode_modifier.modrm)
7013 {
7014 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7015 | i.rm.reg << 3
7016 | i.rm.mode << 6));
7017 /* If i.rm.regmem == ESP (4)
7018 && i.rm.mode != (Register mode)
7019 && not 16 bit
7020 ==> need second modrm byte. */
7021 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7022 && i.rm.mode != 3
7023 && !(i.base_reg && i.base_reg->reg_type.bitfield.reg16))
7024 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7025 | i.sib.index << 3
7026 | i.sib.scale << 6));
7027 }
7028
7029 if (i.disp_operands)
7030 output_disp (insn_start_frag, insn_start_off);
7031
7032 if (i.imm_operands)
7033 output_imm (insn_start_frag, insn_start_off);
7034 }
7035
7036 #ifdef DEBUG386
7037 if (flag_debug)
7038 {
7039 pi ("" /*line*/, &i);
7040 }
7041 #endif /* DEBUG386 */
7042 }
7043
7044 /* Return the size of the displacement operand N. */
7045
7046 static int
7047 disp_size (unsigned int n)
7048 {
7049 int size = 4;
7050
7051 /* Vec_Disp8 has to be 8bit. */
7052 if (i.types[n].bitfield.vec_disp8)
7053 size = 1;
7054 else if (i.types[n].bitfield.disp64)
7055 size = 8;
7056 else if (i.types[n].bitfield.disp8)
7057 size = 1;
7058 else if (i.types[n].bitfield.disp16)
7059 size = 2;
7060 return size;
7061 }
7062
7063 /* Return the size of the immediate operand N. */
7064
7065 static int
7066 imm_size (unsigned int n)
7067 {
7068 int size = 4;
7069 if (i.types[n].bitfield.imm64)
7070 size = 8;
7071 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
7072 size = 1;
7073 else if (i.types[n].bitfield.imm16)
7074 size = 2;
7075 return size;
7076 }
7077
7078 static void
7079 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
7080 {
7081 char *p;
7082 unsigned int n;
7083
7084 for (n = 0; n < i.operands; n++)
7085 {
7086 if (i.types[n].bitfield.vec_disp8
7087 || operand_type_check (i.types[n], disp))
7088 {
7089 if (i.op[n].disps->X_op == O_constant)
7090 {
7091 int size = disp_size (n);
7092 offsetT val = i.op[n].disps->X_add_number;
7093
7094 if (i.types[n].bitfield.vec_disp8)
7095 val >>= i.memshift;
7096 val = offset_in_range (val, size);
7097 p = frag_more (size);
7098 md_number_to_chars (p, val, size);
7099 }
7100 else
7101 {
7102 enum bfd_reloc_code_real reloc_type;
7103 int size = disp_size (n);
7104 int sign = i.types[n].bitfield.disp32s;
7105 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
7106
7107 /* We can't have 8 bit displacement here. */
7108 gas_assert (!i.types[n].bitfield.disp8);
7109
7110 /* The PC relative address is computed relative
7111 to the instruction boundary, so in case immediate
7112 fields follows, we need to adjust the value. */
7113 if (pcrel && i.imm_operands)
7114 {
7115 unsigned int n1;
7116 int sz = 0;
7117
7118 for (n1 = 0; n1 < i.operands; n1++)
7119 if (operand_type_check (i.types[n1], imm))
7120 {
7121 /* Only one immediate is allowed for PC
7122 relative address. */
7123 gas_assert (sz == 0);
7124 sz = imm_size (n1);
7125 i.op[n].disps->X_add_number -= sz;
7126 }
7127 /* We should find the immediate. */
7128 gas_assert (sz != 0);
7129 }
7130
7131 p = frag_more (size);
7132 reloc_type = reloc (size, pcrel, sign,
7133 (i.bnd_prefix != NULL
7134 || add_bnd_prefix),
7135 i.reloc[n]);
7136 if (GOT_symbol
7137 && GOT_symbol == i.op[n].disps->X_add_symbol
7138 && (((reloc_type == BFD_RELOC_32
7139 || reloc_type == BFD_RELOC_X86_64_32S
7140 || (reloc_type == BFD_RELOC_64
7141 && object_64bit))
7142 && (i.op[n].disps->X_op == O_symbol
7143 || (i.op[n].disps->X_op == O_add
7144 && ((symbol_get_value_expression
7145 (i.op[n].disps->X_op_symbol)->X_op)
7146 == O_subtract))))
7147 || reloc_type == BFD_RELOC_32_PCREL))
7148 {
7149 offsetT add;
7150
7151 if (insn_start_frag == frag_now)
7152 add = (p - frag_now->fr_literal) - insn_start_off;
7153 else
7154 {
7155 fragS *fr;
7156
7157 add = insn_start_frag->fr_fix - insn_start_off;
7158 for (fr = insn_start_frag->fr_next;
7159 fr && fr != frag_now; fr = fr->fr_next)
7160 add += fr->fr_fix;
7161 add += p - frag_now->fr_literal;
7162 }
7163
7164 if (!object_64bit)
7165 {
7166 reloc_type = BFD_RELOC_386_GOTPC;
7167 i.op[n].imms->X_add_number += add;
7168 }
7169 else if (reloc_type == BFD_RELOC_64)
7170 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7171 else
7172 /* Don't do the adjustment for x86-64, as there
7173 the pcrel addressing is relative to the _next_
7174 insn, and that is taken care of in other code. */
7175 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7176 }
7177 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7178 i.op[n].disps, pcrel, reloc_type);
7179 }
7180 }
7181 }
7182 }
7183
7184 static void
7185 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
7186 {
7187 char *p;
7188 unsigned int n;
7189
7190 for (n = 0; n < i.operands; n++)
7191 {
7192 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
7193 if (i.rounding && (int) n == i.rounding->operand)
7194 continue;
7195
7196 if (operand_type_check (i.types[n], imm))
7197 {
7198 if (i.op[n].imms->X_op == O_constant)
7199 {
7200 int size = imm_size (n);
7201 offsetT val;
7202
7203 val = offset_in_range (i.op[n].imms->X_add_number,
7204 size);
7205 p = frag_more (size);
7206 md_number_to_chars (p, val, size);
7207 }
7208 else
7209 {
7210 /* Not absolute_section.
7211 Need a 32-bit fixup (don't support 8bit
7212 non-absolute imms). Try to support other
7213 sizes ... */
7214 enum bfd_reloc_code_real reloc_type;
7215 int size = imm_size (n);
7216 int sign;
7217
7218 if (i.types[n].bitfield.imm32s
7219 && (i.suffix == QWORD_MNEM_SUFFIX
7220 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
7221 sign = 1;
7222 else
7223 sign = 0;
7224
7225 p = frag_more (size);
7226 reloc_type = reloc (size, 0, sign, 0, i.reloc[n]);
7227
7228 /* This is tough to explain. We end up with this one if we
7229 * have operands that look like
7230 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
7231 * obtain the absolute address of the GOT, and it is strongly
7232 * preferable from a performance point of view to avoid using
7233 * a runtime relocation for this. The actual sequence of
7234 * instructions often look something like:
7235 *
7236 * call .L66
7237 * .L66:
7238 * popl %ebx
7239 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
7240 *
7241 * The call and pop essentially return the absolute address
7242 * of the label .L66 and store it in %ebx. The linker itself
7243 * will ultimately change the first operand of the addl so
7244 * that %ebx points to the GOT, but to keep things simple, the
7245 * .o file must have this operand set so that it generates not
7246 * the absolute address of .L66, but the absolute address of
7247 * itself. This allows the linker itself simply treat a GOTPC
7248 * relocation as asking for a pcrel offset to the GOT to be
7249 * added in, and the addend of the relocation is stored in the
7250 * operand field for the instruction itself.
7251 *
7252 * Our job here is to fix the operand so that it would add
7253 * the correct offset so that %ebx would point to itself. The
7254 * thing that is tricky is that .-.L66 will point to the
7255 * beginning of the instruction, so we need to further modify
7256 * the operand so that it will point to itself. There are
7257 * other cases where you have something like:
7258 *
7259 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
7260 *
7261 * and here no correction would be required. Internally in
7262 * the assembler we treat operands of this form as not being
7263 * pcrel since the '.' is explicitly mentioned, and I wonder
7264 * whether it would simplify matters to do it this way. Who
7265 * knows. In earlier versions of the PIC patches, the
7266 * pcrel_adjust field was used to store the correction, but
7267 * since the expression is not pcrel, I felt it would be
7268 * confusing to do it this way. */
7269
7270 if ((reloc_type == BFD_RELOC_32
7271 || reloc_type == BFD_RELOC_X86_64_32S
7272 || reloc_type == BFD_RELOC_64)
7273 && GOT_symbol
7274 && GOT_symbol == i.op[n].imms->X_add_symbol
7275 && (i.op[n].imms->X_op == O_symbol
7276 || (i.op[n].imms->X_op == O_add
7277 && ((symbol_get_value_expression
7278 (i.op[n].imms->X_op_symbol)->X_op)
7279 == O_subtract))))
7280 {
7281 offsetT add;
7282
7283 if (insn_start_frag == frag_now)
7284 add = (p - frag_now->fr_literal) - insn_start_off;
7285 else
7286 {
7287 fragS *fr;
7288
7289 add = insn_start_frag->fr_fix - insn_start_off;
7290 for (fr = insn_start_frag->fr_next;
7291 fr && fr != frag_now; fr = fr->fr_next)
7292 add += fr->fr_fix;
7293 add += p - frag_now->fr_literal;
7294 }
7295
7296 if (!object_64bit)
7297 reloc_type = BFD_RELOC_386_GOTPC;
7298 else if (size == 4)
7299 reloc_type = BFD_RELOC_X86_64_GOTPC32;
7300 else if (size == 8)
7301 reloc_type = BFD_RELOC_X86_64_GOTPC64;
7302 i.op[n].imms->X_add_number += add;
7303 }
7304 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7305 i.op[n].imms, 0, reloc_type);
7306 }
7307 }
7308 }
7309 }
7310 \f
7311 /* x86_cons_fix_new is called via the expression parsing code when a
7312 reloc is needed. We use this hook to get the correct .got reloc. */
7313 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
7314 static int cons_sign = -1;
7315
7316 void
7317 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
7318 expressionS *exp)
7319 {
7320 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, 0, got_reloc);
7321
7322 got_reloc = NO_RELOC;
7323
7324 #ifdef TE_PE
7325 if (exp->X_op == O_secrel)
7326 {
7327 exp->X_op = O_symbol;
7328 r = BFD_RELOC_32_SECREL;
7329 }
7330 #endif
7331
7332 fix_new_exp (frag, off, len, exp, 0, r);
7333 }
7334
7335 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
7336 purpose of the `.dc.a' internal pseudo-op. */
7337
7338 int
7339 x86_address_bytes (void)
7340 {
7341 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
7342 return 4;
7343 return stdoutput->arch_info->bits_per_address / 8;
7344 }
7345
7346 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
7347 || defined (LEX_AT)
7348 # define lex_got(reloc, adjust, types) NULL
7349 #else
7350 /* Parse operands of the form
7351 <symbol>@GOTOFF+<nnn>
7352 and similar .plt or .got references.
7353
7354 If we find one, set up the correct relocation in RELOC and copy the
7355 input string, minus the `@GOTOFF' into a malloc'd buffer for
7356 parsing by the calling routine. Return this buffer, and if ADJUST
7357 is non-null set it to the length of the string we removed from the
7358 input line. Otherwise return NULL. */
7359 static char *
7360 lex_got (enum bfd_reloc_code_real *rel,
7361 int *adjust,
7362 i386_operand_type *types,
7363 int bnd_prefix)
7364 {
7365 /* Some of the relocations depend on the size of what field is to
7366 be relocated. But in our callers i386_immediate and i386_displacement
7367 we don't yet know the operand size (this will be set by insn
7368 matching). Hence we record the word32 relocation here,
7369 and adjust the reloc according to the real size in reloc(). */
7370 static const struct {
7371 const char *str;
7372 int len;
7373 const enum bfd_reloc_code_real rel[2];
7374 const i386_operand_type types64;
7375 } gotrel[] = {
7376 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7377 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
7378 BFD_RELOC_SIZE32 },
7379 OPERAND_TYPE_IMM32_64 },
7380 #endif
7381 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
7382 BFD_RELOC_X86_64_PLTOFF64 },
7383 OPERAND_TYPE_IMM64 },
7384 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
7385 BFD_RELOC_X86_64_PLT32 },
7386 OPERAND_TYPE_IMM32_32S_DISP32 },
7387 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
7388 BFD_RELOC_X86_64_GOTPLT64 },
7389 OPERAND_TYPE_IMM64_DISP64 },
7390 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
7391 BFD_RELOC_X86_64_GOTOFF64 },
7392 OPERAND_TYPE_IMM64_DISP64 },
7393 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
7394 BFD_RELOC_X86_64_GOTPCREL },
7395 OPERAND_TYPE_IMM32_32S_DISP32 },
7396 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
7397 BFD_RELOC_X86_64_TLSGD },
7398 OPERAND_TYPE_IMM32_32S_DISP32 },
7399 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
7400 _dummy_first_bfd_reloc_code_real },
7401 OPERAND_TYPE_NONE },
7402 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
7403 BFD_RELOC_X86_64_TLSLD },
7404 OPERAND_TYPE_IMM32_32S_DISP32 },
7405 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
7406 BFD_RELOC_X86_64_GOTTPOFF },
7407 OPERAND_TYPE_IMM32_32S_DISP32 },
7408 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
7409 BFD_RELOC_X86_64_TPOFF32 },
7410 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7411 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
7412 _dummy_first_bfd_reloc_code_real },
7413 OPERAND_TYPE_NONE },
7414 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
7415 BFD_RELOC_X86_64_DTPOFF32 },
7416 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7417 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
7418 _dummy_first_bfd_reloc_code_real },
7419 OPERAND_TYPE_NONE },
7420 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
7421 _dummy_first_bfd_reloc_code_real },
7422 OPERAND_TYPE_NONE },
7423 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
7424 BFD_RELOC_X86_64_GOT32 },
7425 OPERAND_TYPE_IMM32_32S_64_DISP32 },
7426 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
7427 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
7428 OPERAND_TYPE_IMM32_32S_DISP32 },
7429 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
7430 BFD_RELOC_X86_64_TLSDESC_CALL },
7431 OPERAND_TYPE_IMM32_32S_DISP32 },
7432 };
7433 char *cp;
7434 unsigned int j;
7435
7436 #if defined (OBJ_MAYBE_ELF)
7437 if (!IS_ELF)
7438 return NULL;
7439 #endif
7440
7441 for (cp = input_line_pointer; *cp != '@'; cp++)
7442 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7443 return NULL;
7444
7445 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7446 {
7447 int len = gotrel[j].len;
7448 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7449 {
7450 if (gotrel[j].rel[object_64bit] != 0)
7451 {
7452 int first, second;
7453 char *tmpbuf, *past_reloc;
7454
7455 *rel = gotrel[j].rel[object_64bit];
7456
7457 if (types)
7458 {
7459 if (flag_code != CODE_64BIT)
7460 {
7461 types->bitfield.imm32 = 1;
7462 types->bitfield.disp32 = 1;
7463 }
7464 else
7465 *types = gotrel[j].types64;
7466 }
7467
7468 if (j != 0 && GOT_symbol == NULL)
7469 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
7470
7471 /* The length of the first part of our input line. */
7472 first = cp - input_line_pointer;
7473
7474 /* The second part goes from after the reloc token until
7475 (and including) an end_of_line char or comma. */
7476 past_reloc = cp + 1 + len;
7477 cp = past_reloc;
7478 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7479 ++cp;
7480 second = cp + 1 - past_reloc;
7481
7482 /* Allocate and copy string. The trailing NUL shouldn't
7483 be necessary, but be safe. */
7484 tmpbuf = (char *) xmalloc (first + second + 2);
7485 memcpy (tmpbuf, input_line_pointer, first);
7486 if (second != 0 && *past_reloc != ' ')
7487 /* Replace the relocation token with ' ', so that
7488 errors like foo@GOTOFF1 will be detected. */
7489 tmpbuf[first++] = ' ';
7490 else
7491 /* Increment length by 1 if the relocation token is
7492 removed. */
7493 len++;
7494 if (adjust)
7495 *adjust = len;
7496 memcpy (tmpbuf + first, past_reloc, second);
7497 tmpbuf[first + second] = '\0';
7498 if (bnd_prefix && *rel == BFD_RELOC_X86_64_PLT32)
7499 *rel = BFD_RELOC_X86_64_PLT32_BND;
7500 return tmpbuf;
7501 }
7502
7503 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7504 gotrel[j].str, 1 << (5 + object_64bit));
7505 return NULL;
7506 }
7507 }
7508
7509 /* Might be a symbol version string. Don't as_bad here. */
7510 return NULL;
7511 }
7512 #endif
7513
7514 #ifdef TE_PE
7515 #ifdef lex_got
7516 #undef lex_got
7517 #endif
7518 /* Parse operands of the form
7519 <symbol>@SECREL32+<nnn>
7520
7521 If we find one, set up the correct relocation in RELOC and copy the
7522 input string, minus the `@SECREL32' into a malloc'd buffer for
7523 parsing by the calling routine. Return this buffer, and if ADJUST
7524 is non-null set it to the length of the string we removed from the
7525 input line. Otherwise return NULL.
7526
7527 This function is copied from the ELF version above adjusted for PE targets. */
7528
7529 static char *
7530 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
7531 int *adjust ATTRIBUTE_UNUSED,
7532 i386_operand_type *types ATTRIBUTE_UNUSED)
7533 {
7534 static const struct
7535 {
7536 const char *str;
7537 int len;
7538 const enum bfd_reloc_code_real rel[2];
7539 const i386_operand_type types64;
7540 }
7541 gotrel[] =
7542 {
7543 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
7544 BFD_RELOC_32_SECREL },
7545 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
7546 };
7547
7548 char *cp;
7549 unsigned j;
7550
7551 for (cp = input_line_pointer; *cp != '@'; cp++)
7552 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
7553 return NULL;
7554
7555 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
7556 {
7557 int len = gotrel[j].len;
7558
7559 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
7560 {
7561 if (gotrel[j].rel[object_64bit] != 0)
7562 {
7563 int first, second;
7564 char *tmpbuf, *past_reloc;
7565
7566 *rel = gotrel[j].rel[object_64bit];
7567 if (adjust)
7568 *adjust = len;
7569
7570 if (types)
7571 {
7572 if (flag_code != CODE_64BIT)
7573 {
7574 types->bitfield.imm32 = 1;
7575 types->bitfield.disp32 = 1;
7576 }
7577 else
7578 *types = gotrel[j].types64;
7579 }
7580
7581 /* The length of the first part of our input line. */
7582 first = cp - input_line_pointer;
7583
7584 /* The second part goes from after the reloc token until
7585 (and including) an end_of_line char or comma. */
7586 past_reloc = cp + 1 + len;
7587 cp = past_reloc;
7588 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
7589 ++cp;
7590 second = cp + 1 - past_reloc;
7591
7592 /* Allocate and copy string. The trailing NUL shouldn't
7593 be necessary, but be safe. */
7594 tmpbuf = (char *) xmalloc (first + second + 2);
7595 memcpy (tmpbuf, input_line_pointer, first);
7596 if (second != 0 && *past_reloc != ' ')
7597 /* Replace the relocation token with ' ', so that
7598 errors like foo@SECLREL321 will be detected. */
7599 tmpbuf[first++] = ' ';
7600 memcpy (tmpbuf + first, past_reloc, second);
7601 tmpbuf[first + second] = '\0';
7602 return tmpbuf;
7603 }
7604
7605 as_bad (_("@%s reloc is not supported with %d-bit output format"),
7606 gotrel[j].str, 1 << (5 + object_64bit));
7607 return NULL;
7608 }
7609 }
7610
7611 /* Might be a symbol version string. Don't as_bad here. */
7612 return NULL;
7613 }
7614
7615 #endif /* TE_PE */
7616
7617 void
7618 x86_cons (expressionS *exp, int size)
7619 {
7620 intel_syntax = -intel_syntax;
7621
7622 exp->X_md = 0;
7623 if (size == 4 || (object_64bit && size == 8))
7624 {
7625 /* Handle @GOTOFF and the like in an expression. */
7626 char *save;
7627 char *gotfree_input_line;
7628 int adjust = 0;
7629
7630 save = input_line_pointer;
7631 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL, 0);
7632 if (gotfree_input_line)
7633 input_line_pointer = gotfree_input_line;
7634
7635 expression (exp);
7636
7637 if (gotfree_input_line)
7638 {
7639 /* expression () has merrily parsed up to the end of line,
7640 or a comma - in the wrong buffer. Transfer how far
7641 input_line_pointer has moved to the right buffer. */
7642 input_line_pointer = (save
7643 + (input_line_pointer - gotfree_input_line)
7644 + adjust);
7645 free (gotfree_input_line);
7646 if (exp->X_op == O_constant
7647 || exp->X_op == O_absent
7648 || exp->X_op == O_illegal
7649 || exp->X_op == O_register
7650 || exp->X_op == O_big)
7651 {
7652 char c = *input_line_pointer;
7653 *input_line_pointer = 0;
7654 as_bad (_("missing or invalid expression `%s'"), save);
7655 *input_line_pointer = c;
7656 }
7657 }
7658 }
7659 else
7660 expression (exp);
7661
7662 intel_syntax = -intel_syntax;
7663
7664 if (intel_syntax)
7665 i386_intel_simplify (exp);
7666 }
7667
7668 static void
7669 signed_cons (int size)
7670 {
7671 if (flag_code == CODE_64BIT)
7672 cons_sign = 1;
7673 cons (size);
7674 cons_sign = -1;
7675 }
7676
7677 #ifdef TE_PE
7678 static void
7679 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
7680 {
7681 expressionS exp;
7682
7683 do
7684 {
7685 expression (&exp);
7686 if (exp.X_op == O_symbol)
7687 exp.X_op = O_secrel;
7688
7689 emit_expr (&exp, 4);
7690 }
7691 while (*input_line_pointer++ == ',');
7692
7693 input_line_pointer--;
7694 demand_empty_rest_of_line ();
7695 }
7696 #endif
7697
7698 /* Handle Vector operations. */
7699
7700 static char *
7701 check_VecOperations (char *op_string, char *op_end)
7702 {
7703 const reg_entry *mask;
7704 const char *saved;
7705 char *end_op;
7706
7707 while (*op_string
7708 && (op_end == NULL || op_string < op_end))
7709 {
7710 saved = op_string;
7711 if (*op_string == '{')
7712 {
7713 op_string++;
7714
7715 /* Check broadcasts. */
7716 if (strncmp (op_string, "1to", 3) == 0)
7717 {
7718 int bcst_type;
7719
7720 if (i.broadcast)
7721 goto duplicated_vec_op;
7722
7723 op_string += 3;
7724 if (*op_string == '8')
7725 bcst_type = BROADCAST_1TO8;
7726 else if (*op_string == '1'
7727 && *(op_string+1) == '6')
7728 {
7729 bcst_type = BROADCAST_1TO16;
7730 op_string++;
7731 }
7732 else
7733 {
7734 as_bad (_("Unsupported broadcast: `%s'"), saved);
7735 return NULL;
7736 }
7737 op_string++;
7738
7739 broadcast_op.type = bcst_type;
7740 broadcast_op.operand = this_operand;
7741 i.broadcast = &broadcast_op;
7742 }
7743 /* Check masking operation. */
7744 else if ((mask = parse_register (op_string, &end_op)) != NULL)
7745 {
7746 /* k0 can't be used for write mask. */
7747 if (mask->reg_num == 0)
7748 {
7749 as_bad (_("`%s' can't be used for write mask"),
7750 op_string);
7751 return NULL;
7752 }
7753
7754 if (!i.mask)
7755 {
7756 mask_op.mask = mask;
7757 mask_op.zeroing = 0;
7758 mask_op.operand = this_operand;
7759 i.mask = &mask_op;
7760 }
7761 else
7762 {
7763 if (i.mask->mask)
7764 goto duplicated_vec_op;
7765
7766 i.mask->mask = mask;
7767
7768 /* Only "{z}" is allowed here. No need to check
7769 zeroing mask explicitly. */
7770 if (i.mask->operand != this_operand)
7771 {
7772 as_bad (_("invalid write mask `%s'"), saved);
7773 return NULL;
7774 }
7775 }
7776
7777 op_string = end_op;
7778 }
7779 /* Check zeroing-flag for masking operation. */
7780 else if (*op_string == 'z')
7781 {
7782 if (!i.mask)
7783 {
7784 mask_op.mask = NULL;
7785 mask_op.zeroing = 1;
7786 mask_op.operand = this_operand;
7787 i.mask = &mask_op;
7788 }
7789 else
7790 {
7791 if (i.mask->zeroing)
7792 {
7793 duplicated_vec_op:
7794 as_bad (_("duplicated `%s'"), saved);
7795 return NULL;
7796 }
7797
7798 i.mask->zeroing = 1;
7799
7800 /* Only "{%k}" is allowed here. No need to check mask
7801 register explicitly. */
7802 if (i.mask->operand != this_operand)
7803 {
7804 as_bad (_("invalid zeroing-masking `%s'"),
7805 saved);
7806 return NULL;
7807 }
7808 }
7809
7810 op_string++;
7811 }
7812 else
7813 goto unknown_vec_op;
7814
7815 if (*op_string != '}')
7816 {
7817 as_bad (_("missing `}' in `%s'"), saved);
7818 return NULL;
7819 }
7820 op_string++;
7821 continue;
7822 }
7823 unknown_vec_op:
7824 /* We don't know this one. */
7825 as_bad (_("unknown vector operation: `%s'"), saved);
7826 return NULL;
7827 }
7828
7829 return op_string;
7830 }
7831
7832 static int
7833 i386_immediate (char *imm_start)
7834 {
7835 char *save_input_line_pointer;
7836 char *gotfree_input_line;
7837 segT exp_seg = 0;
7838 expressionS *exp;
7839 i386_operand_type types;
7840
7841 operand_type_set (&types, ~0);
7842
7843 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
7844 {
7845 as_bad (_("at most %d immediate operands are allowed"),
7846 MAX_IMMEDIATE_OPERANDS);
7847 return 0;
7848 }
7849
7850 exp = &im_expressions[i.imm_operands++];
7851 i.op[this_operand].imms = exp;
7852
7853 if (is_space_char (*imm_start))
7854 ++imm_start;
7855
7856 save_input_line_pointer = input_line_pointer;
7857 input_line_pointer = imm_start;
7858
7859 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types,
7860 (i.bnd_prefix != NULL
7861 || add_bnd_prefix));
7862 if (gotfree_input_line)
7863 input_line_pointer = gotfree_input_line;
7864
7865 exp_seg = expression (exp);
7866
7867 SKIP_WHITESPACE ();
7868
7869 /* Handle vector operations. */
7870 if (*input_line_pointer == '{')
7871 {
7872 input_line_pointer = check_VecOperations (input_line_pointer,
7873 NULL);
7874 if (input_line_pointer == NULL)
7875 return 0;
7876 }
7877
7878 if (*input_line_pointer)
7879 as_bad (_("junk `%s' after expression"), input_line_pointer);
7880
7881 input_line_pointer = save_input_line_pointer;
7882 if (gotfree_input_line)
7883 {
7884 free (gotfree_input_line);
7885
7886 if (exp->X_op == O_constant || exp->X_op == O_register)
7887 exp->X_op = O_illegal;
7888 }
7889
7890 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
7891 }
7892
7893 static int
7894 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
7895 i386_operand_type types, const char *imm_start)
7896 {
7897 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
7898 {
7899 if (imm_start)
7900 as_bad (_("missing or invalid immediate expression `%s'"),
7901 imm_start);
7902 return 0;
7903 }
7904 else if (exp->X_op == O_constant)
7905 {
7906 /* Size it properly later. */
7907 i.types[this_operand].bitfield.imm64 = 1;
7908 /* If not 64bit, sign extend val. */
7909 if (flag_code != CODE_64BIT
7910 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
7911 exp->X_add_number
7912 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
7913 }
7914 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
7915 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
7916 && exp_seg != absolute_section
7917 && exp_seg != text_section
7918 && exp_seg != data_section
7919 && exp_seg != bss_section
7920 && exp_seg != undefined_section
7921 && !bfd_is_com_section (exp_seg))
7922 {
7923 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
7924 return 0;
7925 }
7926 #endif
7927 else if (!intel_syntax && exp->X_op == O_register)
7928 {
7929 if (imm_start)
7930 as_bad (_("illegal immediate register operand %s"), imm_start);
7931 return 0;
7932 }
7933 else
7934 {
7935 /* This is an address. The size of the address will be
7936 determined later, depending on destination register,
7937 suffix, or the default for the section. */
7938 i.types[this_operand].bitfield.imm8 = 1;
7939 i.types[this_operand].bitfield.imm16 = 1;
7940 i.types[this_operand].bitfield.imm32 = 1;
7941 i.types[this_operand].bitfield.imm32s = 1;
7942 i.types[this_operand].bitfield.imm64 = 1;
7943 i.types[this_operand] = operand_type_and (i.types[this_operand],
7944 types);
7945 }
7946
7947 return 1;
7948 }
7949
7950 static char *
7951 i386_scale (char *scale)
7952 {
7953 offsetT val;
7954 char *save = input_line_pointer;
7955
7956 input_line_pointer = scale;
7957 val = get_absolute_expression ();
7958
7959 switch (val)
7960 {
7961 case 1:
7962 i.log2_scale_factor = 0;
7963 break;
7964 case 2:
7965 i.log2_scale_factor = 1;
7966 break;
7967 case 4:
7968 i.log2_scale_factor = 2;
7969 break;
7970 case 8:
7971 i.log2_scale_factor = 3;
7972 break;
7973 default:
7974 {
7975 char sep = *input_line_pointer;
7976
7977 *input_line_pointer = '\0';
7978 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
7979 scale);
7980 *input_line_pointer = sep;
7981 input_line_pointer = save;
7982 return NULL;
7983 }
7984 }
7985 if (i.log2_scale_factor != 0 && i.index_reg == 0)
7986 {
7987 as_warn (_("scale factor of %d without an index register"),
7988 1 << i.log2_scale_factor);
7989 i.log2_scale_factor = 0;
7990 }
7991 scale = input_line_pointer;
7992 input_line_pointer = save;
7993 return scale;
7994 }
7995
7996 static int
7997 i386_displacement (char *disp_start, char *disp_end)
7998 {
7999 expressionS *exp;
8000 segT exp_seg = 0;
8001 char *save_input_line_pointer;
8002 char *gotfree_input_line;
8003 int override;
8004 i386_operand_type bigdisp, types = anydisp;
8005 int ret;
8006
8007 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8008 {
8009 as_bad (_("at most %d displacement operands are allowed"),
8010 MAX_MEMORY_OPERANDS);
8011 return 0;
8012 }
8013
8014 operand_type_set (&bigdisp, 0);
8015 if ((i.types[this_operand].bitfield.jumpabsolute)
8016 || (!current_templates->start->opcode_modifier.jump
8017 && !current_templates->start->opcode_modifier.jumpdword))
8018 {
8019 bigdisp.bitfield.disp32 = 1;
8020 override = (i.prefix[ADDR_PREFIX] != 0);
8021 if (flag_code == CODE_64BIT)
8022 {
8023 if (!override)
8024 {
8025 bigdisp.bitfield.disp32s = 1;
8026 bigdisp.bitfield.disp64 = 1;
8027 }
8028 }
8029 else if ((flag_code == CODE_16BIT) ^ override)
8030 {
8031 bigdisp.bitfield.disp32 = 0;
8032 bigdisp.bitfield.disp16 = 1;
8033 }
8034 }
8035 else
8036 {
8037 /* For PC-relative branches, the width of the displacement
8038 is dependent upon data size, not address size. */
8039 override = (i.prefix[DATA_PREFIX] != 0);
8040 if (flag_code == CODE_64BIT)
8041 {
8042 if (override || i.suffix == WORD_MNEM_SUFFIX)
8043 bigdisp.bitfield.disp16 = 1;
8044 else
8045 {
8046 bigdisp.bitfield.disp32 = 1;
8047 bigdisp.bitfield.disp32s = 1;
8048 }
8049 }
8050 else
8051 {
8052 if (!override)
8053 override = (i.suffix == (flag_code != CODE_16BIT
8054 ? WORD_MNEM_SUFFIX
8055 : LONG_MNEM_SUFFIX));
8056 bigdisp.bitfield.disp32 = 1;
8057 if ((flag_code == CODE_16BIT) ^ override)
8058 {
8059 bigdisp.bitfield.disp32 = 0;
8060 bigdisp.bitfield.disp16 = 1;
8061 }
8062 }
8063 }
8064 i.types[this_operand] = operand_type_or (i.types[this_operand],
8065 bigdisp);
8066
8067 exp = &disp_expressions[i.disp_operands];
8068 i.op[this_operand].disps = exp;
8069 i.disp_operands++;
8070 save_input_line_pointer = input_line_pointer;
8071 input_line_pointer = disp_start;
8072 END_STRING_AND_SAVE (disp_end);
8073
8074 #ifndef GCC_ASM_O_HACK
8075 #define GCC_ASM_O_HACK 0
8076 #endif
8077 #if GCC_ASM_O_HACK
8078 END_STRING_AND_SAVE (disp_end + 1);
8079 if (i.types[this_operand].bitfield.baseIndex
8080 && displacement_string_end[-1] == '+')
8081 {
8082 /* This hack is to avoid a warning when using the "o"
8083 constraint within gcc asm statements.
8084 For instance:
8085
8086 #define _set_tssldt_desc(n,addr,limit,type) \
8087 __asm__ __volatile__ ( \
8088 "movw %w2,%0\n\t" \
8089 "movw %w1,2+%0\n\t" \
8090 "rorl $16,%1\n\t" \
8091 "movb %b1,4+%0\n\t" \
8092 "movb %4,5+%0\n\t" \
8093 "movb $0,6+%0\n\t" \
8094 "movb %h1,7+%0\n\t" \
8095 "rorl $16,%1" \
8096 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
8097
8098 This works great except that the output assembler ends
8099 up looking a bit weird if it turns out that there is
8100 no offset. You end up producing code that looks like:
8101
8102 #APP
8103 movw $235,(%eax)
8104 movw %dx,2+(%eax)
8105 rorl $16,%edx
8106 movb %dl,4+(%eax)
8107 movb $137,5+(%eax)
8108 movb $0,6+(%eax)
8109 movb %dh,7+(%eax)
8110 rorl $16,%edx
8111 #NO_APP
8112
8113 So here we provide the missing zero. */
8114
8115 *displacement_string_end = '0';
8116 }
8117 #endif
8118 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types,
8119 (i.bnd_prefix != NULL
8120 || add_bnd_prefix));
8121 if (gotfree_input_line)
8122 input_line_pointer = gotfree_input_line;
8123
8124 exp_seg = expression (exp);
8125
8126 SKIP_WHITESPACE ();
8127 if (*input_line_pointer)
8128 as_bad (_("junk `%s' after expression"), input_line_pointer);
8129 #if GCC_ASM_O_HACK
8130 RESTORE_END_STRING (disp_end + 1);
8131 #endif
8132 input_line_pointer = save_input_line_pointer;
8133 if (gotfree_input_line)
8134 {
8135 free (gotfree_input_line);
8136
8137 if (exp->X_op == O_constant || exp->X_op == O_register)
8138 exp->X_op = O_illegal;
8139 }
8140
8141 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
8142
8143 RESTORE_END_STRING (disp_end);
8144
8145 return ret;
8146 }
8147
8148 static int
8149 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8150 i386_operand_type types, const char *disp_start)
8151 {
8152 i386_operand_type bigdisp;
8153 int ret = 1;
8154
8155 /* We do this to make sure that the section symbol is in
8156 the symbol table. We will ultimately change the relocation
8157 to be relative to the beginning of the section. */
8158 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
8159 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
8160 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8161 {
8162 if (exp->X_op != O_symbol)
8163 goto inv_disp;
8164
8165 if (S_IS_LOCAL (exp->X_add_symbol)
8166 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
8167 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
8168 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
8169 exp->X_op = O_subtract;
8170 exp->X_op_symbol = GOT_symbol;
8171 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
8172 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
8173 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
8174 i.reloc[this_operand] = BFD_RELOC_64;
8175 else
8176 i.reloc[this_operand] = BFD_RELOC_32;
8177 }
8178
8179 else if (exp->X_op == O_absent
8180 || exp->X_op == O_illegal
8181 || exp->X_op == O_big)
8182 {
8183 inv_disp:
8184 as_bad (_("missing or invalid displacement expression `%s'"),
8185 disp_start);
8186 ret = 0;
8187 }
8188
8189 else if (flag_code == CODE_64BIT
8190 && !i.prefix[ADDR_PREFIX]
8191 && exp->X_op == O_constant)
8192 {
8193 /* Since displacement is signed extended to 64bit, don't allow
8194 disp32 and turn off disp32s if they are out of range. */
8195 i.types[this_operand].bitfield.disp32 = 0;
8196 if (!fits_in_signed_long (exp->X_add_number))
8197 {
8198 i.types[this_operand].bitfield.disp32s = 0;
8199 if (i.types[this_operand].bitfield.baseindex)
8200 {
8201 as_bad (_("0x%lx out range of signed 32bit displacement"),
8202 (long) exp->X_add_number);
8203 ret = 0;
8204 }
8205 }
8206 }
8207
8208 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8209 else if (exp->X_op != O_constant
8210 && OUTPUT_FLAVOR == bfd_target_aout_flavour
8211 && exp_seg != absolute_section
8212 && exp_seg != text_section
8213 && exp_seg != data_section
8214 && exp_seg != bss_section
8215 && exp_seg != undefined_section
8216 && !bfd_is_com_section (exp_seg))
8217 {
8218 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8219 ret = 0;
8220 }
8221 #endif
8222
8223 /* Check if this is a displacement only operand. */
8224 bigdisp = i.types[this_operand];
8225 bigdisp.bitfield.disp8 = 0;
8226 bigdisp.bitfield.disp16 = 0;
8227 bigdisp.bitfield.disp32 = 0;
8228 bigdisp.bitfield.disp32s = 0;
8229 bigdisp.bitfield.disp64 = 0;
8230 if (operand_type_all_zero (&bigdisp))
8231 i.types[this_operand] = operand_type_and (i.types[this_operand],
8232 types);
8233
8234 return ret;
8235 }
8236
8237 /* Make sure the memory operand we've been dealt is valid.
8238 Return 1 on success, 0 on a failure. */
8239
8240 static int
8241 i386_index_check (const char *operand_string)
8242 {
8243 const char *kind = "base/index";
8244 enum flag_code addr_mode;
8245
8246 if (i.prefix[ADDR_PREFIX])
8247 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
8248 else
8249 {
8250 addr_mode = flag_code;
8251
8252 #if INFER_ADDR_PREFIX
8253 if (i.mem_operands == 0)
8254 {
8255 /* Infer address prefix from the first memory operand. */
8256 const reg_entry *addr_reg = i.base_reg;
8257
8258 if (addr_reg == NULL)
8259 addr_reg = i.index_reg;
8260
8261 if (addr_reg)
8262 {
8263 if (addr_reg->reg_num == RegEip
8264 || addr_reg->reg_num == RegEiz
8265 || addr_reg->reg_type.bitfield.reg32)
8266 addr_mode = CODE_32BIT;
8267 else if (flag_code != CODE_64BIT
8268 && addr_reg->reg_type.bitfield.reg16)
8269 addr_mode = CODE_16BIT;
8270
8271 if (addr_mode != flag_code)
8272 {
8273 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
8274 i.prefixes += 1;
8275 /* Change the size of any displacement too. At most one
8276 of Disp16 or Disp32 is set.
8277 FIXME. There doesn't seem to be any real need for
8278 separate Disp16 and Disp32 flags. The same goes for
8279 Imm16 and Imm32. Removing them would probably clean
8280 up the code quite a lot. */
8281 if (flag_code != CODE_64BIT
8282 && (i.types[this_operand].bitfield.disp16
8283 || i.types[this_operand].bitfield.disp32))
8284 i.types[this_operand]
8285 = operand_type_xor (i.types[this_operand], disp16_32);
8286 }
8287 }
8288 }
8289 #endif
8290 }
8291
8292 if (current_templates->start->opcode_modifier.isstring
8293 && !current_templates->start->opcode_modifier.immext
8294 && (current_templates->end[-1].opcode_modifier.isstring
8295 || i.mem_operands))
8296 {
8297 /* Memory operands of string insns are special in that they only allow
8298 a single register (rDI, rSI, or rBX) as their memory address. */
8299 const reg_entry *expected_reg;
8300 static const char *di_si[][2] =
8301 {
8302 { "esi", "edi" },
8303 { "si", "di" },
8304 { "rsi", "rdi" }
8305 };
8306 static const char *bx[] = { "ebx", "bx", "rbx" };
8307
8308 kind = "string address";
8309
8310 if (current_templates->start->opcode_modifier.w)
8311 {
8312 i386_operand_type type = current_templates->end[-1].operand_types[0];
8313
8314 if (!type.bitfield.baseindex
8315 || ((!i.mem_operands != !intel_syntax)
8316 && current_templates->end[-1].operand_types[1]
8317 .bitfield.baseindex))
8318 type = current_templates->end[-1].operand_types[1];
8319 expected_reg = hash_find (reg_hash,
8320 di_si[addr_mode][type.bitfield.esseg]);
8321
8322 }
8323 else
8324 expected_reg = hash_find (reg_hash, bx[addr_mode]);
8325
8326 if (i.base_reg != expected_reg
8327 || i.index_reg
8328 || operand_type_check (i.types[this_operand], disp))
8329 {
8330 /* The second memory operand must have the same size as
8331 the first one. */
8332 if (i.mem_operands
8333 && i.base_reg
8334 && !((addr_mode == CODE_64BIT
8335 && i.base_reg->reg_type.bitfield.reg64)
8336 || (addr_mode == CODE_32BIT
8337 ? i.base_reg->reg_type.bitfield.reg32
8338 : i.base_reg->reg_type.bitfield.reg16)))
8339 goto bad_address;
8340
8341 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
8342 operand_string,
8343 intel_syntax ? '[' : '(',
8344 register_prefix,
8345 expected_reg->reg_name,
8346 intel_syntax ? ']' : ')');
8347 return 1;
8348 }
8349 else
8350 return 1;
8351
8352 bad_address:
8353 as_bad (_("`%s' is not a valid %s expression"),
8354 operand_string, kind);
8355 return 0;
8356 }
8357 else
8358 {
8359 if (addr_mode != CODE_16BIT)
8360 {
8361 /* 32-bit/64-bit checks. */
8362 if ((i.base_reg
8363 && (addr_mode == CODE_64BIT
8364 ? !i.base_reg->reg_type.bitfield.reg64
8365 : !i.base_reg->reg_type.bitfield.reg32)
8366 && (i.index_reg
8367 || (i.base_reg->reg_num
8368 != (addr_mode == CODE_64BIT ? RegRip : RegEip))))
8369 || (i.index_reg
8370 && !i.index_reg->reg_type.bitfield.regxmm
8371 && !i.index_reg->reg_type.bitfield.regymm
8372 && !i.index_reg->reg_type.bitfield.regzmm
8373 && ((addr_mode == CODE_64BIT
8374 ? !(i.index_reg->reg_type.bitfield.reg64
8375 || i.index_reg->reg_num == RegRiz)
8376 : !(i.index_reg->reg_type.bitfield.reg32
8377 || i.index_reg->reg_num == RegEiz))
8378 || !i.index_reg->reg_type.bitfield.baseindex)))
8379 goto bad_address;
8380 }
8381 else
8382 {
8383 /* 16-bit checks. */
8384 if ((i.base_reg
8385 && (!i.base_reg->reg_type.bitfield.reg16
8386 || !i.base_reg->reg_type.bitfield.baseindex))
8387 || (i.index_reg
8388 && (!i.index_reg->reg_type.bitfield.reg16
8389 || !i.index_reg->reg_type.bitfield.baseindex
8390 || !(i.base_reg
8391 && i.base_reg->reg_num < 6
8392 && i.index_reg->reg_num >= 6
8393 && i.log2_scale_factor == 0))))
8394 goto bad_address;
8395 }
8396 }
8397 return 1;
8398 }
8399
8400 /* Handle vector immediates. */
8401
8402 static int
8403 RC_SAE_immediate (const char *imm_start)
8404 {
8405 unsigned int match_found, j;
8406 const char *pstr = imm_start;
8407 expressionS *exp;
8408
8409 if (*pstr != '{')
8410 return 0;
8411
8412 pstr++;
8413 match_found = 0;
8414 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
8415 {
8416 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
8417 {
8418 if (!i.rounding)
8419 {
8420 rc_op.type = RC_NamesTable[j].type;
8421 rc_op.operand = this_operand;
8422 i.rounding = &rc_op;
8423 }
8424 else
8425 {
8426 as_bad (_("duplicated `%s'"), imm_start);
8427 return 0;
8428 }
8429 pstr += RC_NamesTable[j].len;
8430 match_found = 1;
8431 break;
8432 }
8433 }
8434 if (!match_found)
8435 return 0;
8436
8437 if (*pstr++ != '}')
8438 {
8439 as_bad (_("Missing '}': '%s'"), imm_start);
8440 return 0;
8441 }
8442 /* RC/SAE immediate string should contain nothing more. */;
8443 if (*pstr != 0)
8444 {
8445 as_bad (_("Junk after '}': '%s'"), imm_start);
8446 return 0;
8447 }
8448
8449 exp = &im_expressions[i.imm_operands++];
8450 i.op[this_operand].imms = exp;
8451
8452 exp->X_op = O_constant;
8453 exp->X_add_number = 0;
8454 exp->X_add_symbol = (symbolS *) 0;
8455 exp->X_op_symbol = (symbolS *) 0;
8456
8457 i.types[this_operand].bitfield.imm8 = 1;
8458 return 1;
8459 }
8460
8461 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
8462 on error. */
8463
8464 static int
8465 i386_att_operand (char *operand_string)
8466 {
8467 const reg_entry *r;
8468 char *end_op;
8469 char *op_string = operand_string;
8470
8471 if (is_space_char (*op_string))
8472 ++op_string;
8473
8474 /* We check for an absolute prefix (differentiating,
8475 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
8476 if (*op_string == ABSOLUTE_PREFIX)
8477 {
8478 ++op_string;
8479 if (is_space_char (*op_string))
8480 ++op_string;
8481 i.types[this_operand].bitfield.jumpabsolute = 1;
8482 }
8483
8484 /* Check if operand is a register. */
8485 if ((r = parse_register (op_string, &end_op)) != NULL)
8486 {
8487 i386_operand_type temp;
8488
8489 /* Check for a segment override by searching for ':' after a
8490 segment register. */
8491 op_string = end_op;
8492 if (is_space_char (*op_string))
8493 ++op_string;
8494 if (*op_string == ':'
8495 && (r->reg_type.bitfield.sreg2
8496 || r->reg_type.bitfield.sreg3))
8497 {
8498 switch (r->reg_num)
8499 {
8500 case 0:
8501 i.seg[i.mem_operands] = &es;
8502 break;
8503 case 1:
8504 i.seg[i.mem_operands] = &cs;
8505 break;
8506 case 2:
8507 i.seg[i.mem_operands] = &ss;
8508 break;
8509 case 3:
8510 i.seg[i.mem_operands] = &ds;
8511 break;
8512 case 4:
8513 i.seg[i.mem_operands] = &fs;
8514 break;
8515 case 5:
8516 i.seg[i.mem_operands] = &gs;
8517 break;
8518 }
8519
8520 /* Skip the ':' and whitespace. */
8521 ++op_string;
8522 if (is_space_char (*op_string))
8523 ++op_string;
8524
8525 if (!is_digit_char (*op_string)
8526 && !is_identifier_char (*op_string)
8527 && *op_string != '('
8528 && *op_string != ABSOLUTE_PREFIX)
8529 {
8530 as_bad (_("bad memory operand `%s'"), op_string);
8531 return 0;
8532 }
8533 /* Handle case of %es:*foo. */
8534 if (*op_string == ABSOLUTE_PREFIX)
8535 {
8536 ++op_string;
8537 if (is_space_char (*op_string))
8538 ++op_string;
8539 i.types[this_operand].bitfield.jumpabsolute = 1;
8540 }
8541 goto do_memory_reference;
8542 }
8543
8544 /* Handle vector operations. */
8545 if (*op_string == '{')
8546 {
8547 op_string = check_VecOperations (op_string, NULL);
8548 if (op_string == NULL)
8549 return 0;
8550 }
8551
8552 if (*op_string)
8553 {
8554 as_bad (_("junk `%s' after register"), op_string);
8555 return 0;
8556 }
8557 temp = r->reg_type;
8558 temp.bitfield.baseindex = 0;
8559 i.types[this_operand] = operand_type_or (i.types[this_operand],
8560 temp);
8561 i.types[this_operand].bitfield.unspecified = 0;
8562 i.op[this_operand].regs = r;
8563 i.reg_operands++;
8564 }
8565 else if (*op_string == REGISTER_PREFIX)
8566 {
8567 as_bad (_("bad register name `%s'"), op_string);
8568 return 0;
8569 }
8570 else if (*op_string == IMMEDIATE_PREFIX)
8571 {
8572 ++op_string;
8573 if (i.types[this_operand].bitfield.jumpabsolute)
8574 {
8575 as_bad (_("immediate operand illegal with absolute jump"));
8576 return 0;
8577 }
8578 if (!i386_immediate (op_string))
8579 return 0;
8580 }
8581 else if (RC_SAE_immediate (operand_string))
8582 {
8583 /* If it is a RC or SAE immediate, do nothing. */
8584 ;
8585 }
8586 else if (is_digit_char (*op_string)
8587 || is_identifier_char (*op_string)
8588 || *op_string == '(')
8589 {
8590 /* This is a memory reference of some sort. */
8591 char *base_string;
8592
8593 /* Start and end of displacement string expression (if found). */
8594 char *displacement_string_start;
8595 char *displacement_string_end;
8596 char *vop_start;
8597
8598 do_memory_reference:
8599 if ((i.mem_operands == 1
8600 && !current_templates->start->opcode_modifier.isstring)
8601 || i.mem_operands == 2)
8602 {
8603 as_bad (_("too many memory references for `%s'"),
8604 current_templates->start->name);
8605 return 0;
8606 }
8607
8608 /* Check for base index form. We detect the base index form by
8609 looking for an ')' at the end of the operand, searching
8610 for the '(' matching it, and finding a REGISTER_PREFIX or ','
8611 after the '('. */
8612 base_string = op_string + strlen (op_string);
8613
8614 /* Handle vector operations. */
8615 vop_start = strchr (op_string, '{');
8616 if (vop_start && vop_start < base_string)
8617 {
8618 if (check_VecOperations (vop_start, base_string) == NULL)
8619 return 0;
8620 base_string = vop_start;
8621 }
8622
8623 --base_string;
8624 if (is_space_char (*base_string))
8625 --base_string;
8626
8627 /* If we only have a displacement, set-up for it to be parsed later. */
8628 displacement_string_start = op_string;
8629 displacement_string_end = base_string + 1;
8630
8631 if (*base_string == ')')
8632 {
8633 char *temp_string;
8634 unsigned int parens_balanced = 1;
8635 /* We've already checked that the number of left & right ()'s are
8636 equal, so this loop will not be infinite. */
8637 do
8638 {
8639 base_string--;
8640 if (*base_string == ')')
8641 parens_balanced++;
8642 if (*base_string == '(')
8643 parens_balanced--;
8644 }
8645 while (parens_balanced);
8646
8647 temp_string = base_string;
8648
8649 /* Skip past '(' and whitespace. */
8650 ++base_string;
8651 if (is_space_char (*base_string))
8652 ++base_string;
8653
8654 if (*base_string == ','
8655 || ((i.base_reg = parse_register (base_string, &end_op))
8656 != NULL))
8657 {
8658 displacement_string_end = temp_string;
8659
8660 i.types[this_operand].bitfield.baseindex = 1;
8661
8662 if (i.base_reg)
8663 {
8664 base_string = end_op;
8665 if (is_space_char (*base_string))
8666 ++base_string;
8667 }
8668
8669 /* There may be an index reg or scale factor here. */
8670 if (*base_string == ',')
8671 {
8672 ++base_string;
8673 if (is_space_char (*base_string))
8674 ++base_string;
8675
8676 if ((i.index_reg = parse_register (base_string, &end_op))
8677 != NULL)
8678 {
8679 base_string = end_op;
8680 if (is_space_char (*base_string))
8681 ++base_string;
8682 if (*base_string == ',')
8683 {
8684 ++base_string;
8685 if (is_space_char (*base_string))
8686 ++base_string;
8687 }
8688 else if (*base_string != ')')
8689 {
8690 as_bad (_("expecting `,' or `)' "
8691 "after index register in `%s'"),
8692 operand_string);
8693 return 0;
8694 }
8695 }
8696 else if (*base_string == REGISTER_PREFIX)
8697 {
8698 end_op = strchr (base_string, ',');
8699 if (end_op)
8700 *end_op = '\0';
8701 as_bad (_("bad register name `%s'"), base_string);
8702 return 0;
8703 }
8704
8705 /* Check for scale factor. */
8706 if (*base_string != ')')
8707 {
8708 char *end_scale = i386_scale (base_string);
8709
8710 if (!end_scale)
8711 return 0;
8712
8713 base_string = end_scale;
8714 if (is_space_char (*base_string))
8715 ++base_string;
8716 if (*base_string != ')')
8717 {
8718 as_bad (_("expecting `)' "
8719 "after scale factor in `%s'"),
8720 operand_string);
8721 return 0;
8722 }
8723 }
8724 else if (!i.index_reg)
8725 {
8726 as_bad (_("expecting index register or scale factor "
8727 "after `,'; got '%c'"),
8728 *base_string);
8729 return 0;
8730 }
8731 }
8732 else if (*base_string != ')')
8733 {
8734 as_bad (_("expecting `,' or `)' "
8735 "after base register in `%s'"),
8736 operand_string);
8737 return 0;
8738 }
8739 }
8740 else if (*base_string == REGISTER_PREFIX)
8741 {
8742 end_op = strchr (base_string, ',');
8743 if (end_op)
8744 *end_op = '\0';
8745 as_bad (_("bad register name `%s'"), base_string);
8746 return 0;
8747 }
8748 }
8749
8750 /* If there's an expression beginning the operand, parse it,
8751 assuming displacement_string_start and
8752 displacement_string_end are meaningful. */
8753 if (displacement_string_start != displacement_string_end)
8754 {
8755 if (!i386_displacement (displacement_string_start,
8756 displacement_string_end))
8757 return 0;
8758 }
8759
8760 /* Special case for (%dx) while doing input/output op. */
8761 if (i.base_reg
8762 && operand_type_equal (&i.base_reg->reg_type,
8763 &reg16_inoutportreg)
8764 && i.index_reg == 0
8765 && i.log2_scale_factor == 0
8766 && i.seg[i.mem_operands] == 0
8767 && !operand_type_check (i.types[this_operand], disp))
8768 {
8769 i.types[this_operand] = inoutportreg;
8770 return 1;
8771 }
8772
8773 if (i386_index_check (operand_string) == 0)
8774 return 0;
8775 i.types[this_operand].bitfield.mem = 1;
8776 i.mem_operands++;
8777 }
8778 else
8779 {
8780 /* It's not a memory operand; argh! */
8781 as_bad (_("invalid char %s beginning operand %d `%s'"),
8782 output_invalid (*op_string),
8783 this_operand + 1,
8784 op_string);
8785 return 0;
8786 }
8787 return 1; /* Normal return. */
8788 }
8789 \f
8790 /* Calculate the maximum variable size (i.e., excluding fr_fix)
8791 that an rs_machine_dependent frag may reach. */
8792
8793 unsigned int
8794 i386_frag_max_var (fragS *frag)
8795 {
8796 /* The only relaxable frags are for jumps.
8797 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
8798 gas_assert (frag->fr_type == rs_machine_dependent);
8799 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
8800 }
8801
8802 /* md_estimate_size_before_relax()
8803
8804 Called just before relax() for rs_machine_dependent frags. The x86
8805 assembler uses these frags to handle variable size jump
8806 instructions.
8807
8808 Any symbol that is now undefined will not become defined.
8809 Return the correct fr_subtype in the frag.
8810 Return the initial "guess for variable size of frag" to caller.
8811 The guess is actually the growth beyond the fixed part. Whatever
8812 we do to grow the fixed or variable part contributes to our
8813 returned value. */
8814
8815 int
8816 md_estimate_size_before_relax (fragS *fragP, segT segment)
8817 {
8818 /* We've already got fragP->fr_subtype right; all we have to do is
8819 check for un-relaxable symbols. On an ELF system, we can't relax
8820 an externally visible symbol, because it may be overridden by a
8821 shared library. */
8822 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
8823 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8824 || (IS_ELF
8825 && (S_IS_EXTERNAL (fragP->fr_symbol)
8826 || S_IS_WEAK (fragP->fr_symbol)
8827 || ((symbol_get_bfdsym (fragP->fr_symbol)->flags
8828 & BSF_GNU_INDIRECT_FUNCTION))))
8829 #endif
8830 #if defined (OBJ_COFF) && defined (TE_PE)
8831 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
8832 && S_IS_WEAK (fragP->fr_symbol))
8833 #endif
8834 )
8835 {
8836 /* Symbol is undefined in this segment, or we need to keep a
8837 reloc so that weak symbols can be overridden. */
8838 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
8839 enum bfd_reloc_code_real reloc_type;
8840 unsigned char *opcode;
8841 int old_fr_fix;
8842
8843 if (fragP->fr_var != NO_RELOC)
8844 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
8845 else if (size == 2)
8846 reloc_type = BFD_RELOC_16_PCREL;
8847 else
8848 reloc_type = BFD_RELOC_32_PCREL;
8849
8850 old_fr_fix = fragP->fr_fix;
8851 opcode = (unsigned char *) fragP->fr_opcode;
8852
8853 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
8854 {
8855 case UNCOND_JUMP:
8856 /* Make jmp (0xeb) a (d)word displacement jump. */
8857 opcode[0] = 0xe9;
8858 fragP->fr_fix += size;
8859 fix_new (fragP, old_fr_fix, size,
8860 fragP->fr_symbol,
8861 fragP->fr_offset, 1,
8862 reloc_type);
8863 break;
8864
8865 case COND_JUMP86:
8866 if (size == 2
8867 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
8868 {
8869 /* Negate the condition, and branch past an
8870 unconditional jump. */
8871 opcode[0] ^= 1;
8872 opcode[1] = 3;
8873 /* Insert an unconditional jump. */
8874 opcode[2] = 0xe9;
8875 /* We added two extra opcode bytes, and have a two byte
8876 offset. */
8877 fragP->fr_fix += 2 + 2;
8878 fix_new (fragP, old_fr_fix + 2, 2,
8879 fragP->fr_symbol,
8880 fragP->fr_offset, 1,
8881 reloc_type);
8882 break;
8883 }
8884 /* Fall through. */
8885
8886 case COND_JUMP:
8887 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
8888 {
8889 fixS *fixP;
8890
8891 fragP->fr_fix += 1;
8892 fixP = fix_new (fragP, old_fr_fix, 1,
8893 fragP->fr_symbol,
8894 fragP->fr_offset, 1,
8895 BFD_RELOC_8_PCREL);
8896 fixP->fx_signed = 1;
8897 break;
8898 }
8899
8900 /* This changes the byte-displacement jump 0x7N
8901 to the (d)word-displacement jump 0x0f,0x8N. */
8902 opcode[1] = opcode[0] + 0x10;
8903 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
8904 /* We've added an opcode byte. */
8905 fragP->fr_fix += 1 + size;
8906 fix_new (fragP, old_fr_fix + 1, size,
8907 fragP->fr_symbol,
8908 fragP->fr_offset, 1,
8909 reloc_type);
8910 break;
8911
8912 default:
8913 BAD_CASE (fragP->fr_subtype);
8914 break;
8915 }
8916 frag_wane (fragP);
8917 return fragP->fr_fix - old_fr_fix;
8918 }
8919
8920 /* Guess size depending on current relax state. Initially the relax
8921 state will correspond to a short jump and we return 1, because
8922 the variable part of the frag (the branch offset) is one byte
8923 long. However, we can relax a section more than once and in that
8924 case we must either set fr_subtype back to the unrelaxed state,
8925 or return the value for the appropriate branch. */
8926 return md_relax_table[fragP->fr_subtype].rlx_length;
8927 }
8928
8929 /* Called after relax() is finished.
8930
8931 In: Address of frag.
8932 fr_type == rs_machine_dependent.
8933 fr_subtype is what the address relaxed to.
8934
8935 Out: Any fixSs and constants are set up.
8936 Caller will turn frag into a ".space 0". */
8937
8938 void
8939 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
8940 fragS *fragP)
8941 {
8942 unsigned char *opcode;
8943 unsigned char *where_to_put_displacement = NULL;
8944 offsetT target_address;
8945 offsetT opcode_address;
8946 unsigned int extension = 0;
8947 offsetT displacement_from_opcode_start;
8948
8949 opcode = (unsigned char *) fragP->fr_opcode;
8950
8951 /* Address we want to reach in file space. */
8952 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
8953
8954 /* Address opcode resides at in file space. */
8955 opcode_address = fragP->fr_address + fragP->fr_fix;
8956
8957 /* Displacement from opcode start to fill into instruction. */
8958 displacement_from_opcode_start = target_address - opcode_address;
8959
8960 if ((fragP->fr_subtype & BIG) == 0)
8961 {
8962 /* Don't have to change opcode. */
8963 extension = 1; /* 1 opcode + 1 displacement */
8964 where_to_put_displacement = &opcode[1];
8965 }
8966 else
8967 {
8968 if (no_cond_jump_promotion
8969 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
8970 as_warn_where (fragP->fr_file, fragP->fr_line,
8971 _("long jump required"));
8972
8973 switch (fragP->fr_subtype)
8974 {
8975 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
8976 extension = 4; /* 1 opcode + 4 displacement */
8977 opcode[0] = 0xe9;
8978 where_to_put_displacement = &opcode[1];
8979 break;
8980
8981 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
8982 extension = 2; /* 1 opcode + 2 displacement */
8983 opcode[0] = 0xe9;
8984 where_to_put_displacement = &opcode[1];
8985 break;
8986
8987 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
8988 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
8989 extension = 5; /* 2 opcode + 4 displacement */
8990 opcode[1] = opcode[0] + 0x10;
8991 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
8992 where_to_put_displacement = &opcode[2];
8993 break;
8994
8995 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
8996 extension = 3; /* 2 opcode + 2 displacement */
8997 opcode[1] = opcode[0] + 0x10;
8998 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
8999 where_to_put_displacement = &opcode[2];
9000 break;
9001
9002 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
9003 extension = 4;
9004 opcode[0] ^= 1;
9005 opcode[1] = 3;
9006 opcode[2] = 0xe9;
9007 where_to_put_displacement = &opcode[3];
9008 break;
9009
9010 default:
9011 BAD_CASE (fragP->fr_subtype);
9012 break;
9013 }
9014 }
9015
9016 /* If size if less then four we are sure that the operand fits,
9017 but if it's 4, then it could be that the displacement is larger
9018 then -/+ 2GB. */
9019 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
9020 && object_64bit
9021 && ((addressT) (displacement_from_opcode_start - extension
9022 + ((addressT) 1 << 31))
9023 > (((addressT) 2 << 31) - 1)))
9024 {
9025 as_bad_where (fragP->fr_file, fragP->fr_line,
9026 _("jump target out of range"));
9027 /* Make us emit 0. */
9028 displacement_from_opcode_start = extension;
9029 }
9030 /* Now put displacement after opcode. */
9031 md_number_to_chars ((char *) where_to_put_displacement,
9032 (valueT) (displacement_from_opcode_start - extension),
9033 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
9034 fragP->fr_fix += extension;
9035 }
9036 \f
9037 /* Apply a fixup (fixP) to segment data, once it has been determined
9038 by our caller that we have all the info we need to fix it up.
9039
9040 Parameter valP is the pointer to the value of the bits.
9041
9042 On the 386, immediates, displacements, and data pointers are all in
9043 the same (little-endian) format, so we don't need to care about which
9044 we are handling. */
9045
9046 void
9047 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
9048 {
9049 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
9050 valueT value = *valP;
9051
9052 #if !defined (TE_Mach)
9053 if (fixP->fx_pcrel)
9054 {
9055 switch (fixP->fx_r_type)
9056 {
9057 default:
9058 break;
9059
9060 case BFD_RELOC_64:
9061 fixP->fx_r_type = BFD_RELOC_64_PCREL;
9062 break;
9063 case BFD_RELOC_32:
9064 case BFD_RELOC_X86_64_32S:
9065 fixP->fx_r_type = BFD_RELOC_32_PCREL;
9066 break;
9067 case BFD_RELOC_16:
9068 fixP->fx_r_type = BFD_RELOC_16_PCREL;
9069 break;
9070 case BFD_RELOC_8:
9071 fixP->fx_r_type = BFD_RELOC_8_PCREL;
9072 break;
9073 }
9074 }
9075
9076 if (fixP->fx_addsy != NULL
9077 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
9078 || fixP->fx_r_type == BFD_RELOC_64_PCREL
9079 || fixP->fx_r_type == BFD_RELOC_16_PCREL
9080 || fixP->fx_r_type == BFD_RELOC_8_PCREL
9081 || fixP->fx_r_type == BFD_RELOC_X86_64_PC32_BND)
9082 && !use_rela_relocations)
9083 {
9084 /* This is a hack. There should be a better way to handle this.
9085 This covers for the fact that bfd_install_relocation will
9086 subtract the current location (for partial_inplace, PC relative
9087 relocations); see more below. */
9088 #ifndef OBJ_AOUT
9089 if (IS_ELF
9090 #ifdef TE_PE
9091 || OUTPUT_FLAVOR == bfd_target_coff_flavour
9092 #endif
9093 )
9094 value += fixP->fx_where + fixP->fx_frag->fr_address;
9095 #endif
9096 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9097 if (IS_ELF)
9098 {
9099 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
9100
9101 if ((sym_seg == seg
9102 || (symbol_section_p (fixP->fx_addsy)
9103 && sym_seg != absolute_section))
9104 && !generic_force_reloc (fixP))
9105 {
9106 /* Yes, we add the values in twice. This is because
9107 bfd_install_relocation subtracts them out again. I think
9108 bfd_install_relocation is broken, but I don't dare change
9109 it. FIXME. */
9110 value += fixP->fx_where + fixP->fx_frag->fr_address;
9111 }
9112 }
9113 #endif
9114 #if defined (OBJ_COFF) && defined (TE_PE)
9115 /* For some reason, the PE format does not store a
9116 section address offset for a PC relative symbol. */
9117 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
9118 || S_IS_WEAK (fixP->fx_addsy))
9119 value += md_pcrel_from (fixP);
9120 #endif
9121 }
9122 #if defined (OBJ_COFF) && defined (TE_PE)
9123 if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9124 {
9125 value -= S_GET_VALUE (fixP->fx_addsy);
9126 }
9127 #endif
9128
9129 /* Fix a few things - the dynamic linker expects certain values here,
9130 and we must not disappoint it. */
9131 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9132 if (IS_ELF && fixP->fx_addsy)
9133 switch (fixP->fx_r_type)
9134 {
9135 case BFD_RELOC_386_PLT32:
9136 case BFD_RELOC_X86_64_PLT32:
9137 case BFD_RELOC_X86_64_PLT32_BND:
9138 /* Make the jump instruction point to the address of the operand. At
9139 runtime we merely add the offset to the actual PLT entry. */
9140 value = -4;
9141 break;
9142
9143 case BFD_RELOC_386_TLS_GD:
9144 case BFD_RELOC_386_TLS_LDM:
9145 case BFD_RELOC_386_TLS_IE_32:
9146 case BFD_RELOC_386_TLS_IE:
9147 case BFD_RELOC_386_TLS_GOTIE:
9148 case BFD_RELOC_386_TLS_GOTDESC:
9149 case BFD_RELOC_X86_64_TLSGD:
9150 case BFD_RELOC_X86_64_TLSLD:
9151 case BFD_RELOC_X86_64_GOTTPOFF:
9152 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
9153 value = 0; /* Fully resolved at runtime. No addend. */
9154 /* Fallthrough */
9155 case BFD_RELOC_386_TLS_LE:
9156 case BFD_RELOC_386_TLS_LDO_32:
9157 case BFD_RELOC_386_TLS_LE_32:
9158 case BFD_RELOC_X86_64_DTPOFF32:
9159 case BFD_RELOC_X86_64_DTPOFF64:
9160 case BFD_RELOC_X86_64_TPOFF32:
9161 case BFD_RELOC_X86_64_TPOFF64:
9162 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9163 break;
9164
9165 case BFD_RELOC_386_TLS_DESC_CALL:
9166 case BFD_RELOC_X86_64_TLSDESC_CALL:
9167 value = 0; /* Fully resolved at runtime. No addend. */
9168 S_SET_THREAD_LOCAL (fixP->fx_addsy);
9169 fixP->fx_done = 0;
9170 return;
9171
9172 case BFD_RELOC_386_GOT32:
9173 case BFD_RELOC_X86_64_GOT32:
9174 value = 0; /* Fully resolved at runtime. No addend. */
9175 break;
9176
9177 case BFD_RELOC_VTABLE_INHERIT:
9178 case BFD_RELOC_VTABLE_ENTRY:
9179 fixP->fx_done = 0;
9180 return;
9181
9182 default:
9183 break;
9184 }
9185 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
9186 *valP = value;
9187 #endif /* !defined (TE_Mach) */
9188
9189 /* Are we finished with this relocation now? */
9190 if (fixP->fx_addsy == NULL)
9191 fixP->fx_done = 1;
9192 #if defined (OBJ_COFF) && defined (TE_PE)
9193 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
9194 {
9195 fixP->fx_done = 0;
9196 /* Remember value for tc_gen_reloc. */
9197 fixP->fx_addnumber = value;
9198 /* Clear out the frag for now. */
9199 value = 0;
9200 }
9201 #endif
9202 else if (use_rela_relocations)
9203 {
9204 fixP->fx_no_overflow = 1;
9205 /* Remember value for tc_gen_reloc. */
9206 fixP->fx_addnumber = value;
9207 value = 0;
9208 }
9209
9210 md_number_to_chars (p, value, fixP->fx_size);
9211 }
9212 \f
9213 char *
9214 md_atof (int type, char *litP, int *sizeP)
9215 {
9216 /* This outputs the LITTLENUMs in REVERSE order;
9217 in accord with the bigendian 386. */
9218 return ieee_md_atof (type, litP, sizeP, FALSE);
9219 }
9220 \f
9221 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
9222
9223 static char *
9224 output_invalid (int c)
9225 {
9226 if (ISPRINT (c))
9227 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9228 "'%c'", c);
9229 else
9230 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
9231 "(0x%x)", (unsigned char) c);
9232 return output_invalid_buf;
9233 }
9234
9235 /* REG_STRING starts *before* REGISTER_PREFIX. */
9236
9237 static const reg_entry *
9238 parse_real_register (char *reg_string, char **end_op)
9239 {
9240 char *s = reg_string;
9241 char *p;
9242 char reg_name_given[MAX_REG_NAME_SIZE + 1];
9243 const reg_entry *r;
9244
9245 /* Skip possible REGISTER_PREFIX and possible whitespace. */
9246 if (*s == REGISTER_PREFIX)
9247 ++s;
9248
9249 if (is_space_char (*s))
9250 ++s;
9251
9252 p = reg_name_given;
9253 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
9254 {
9255 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
9256 return (const reg_entry *) NULL;
9257 s++;
9258 }
9259
9260 /* For naked regs, make sure that we are not dealing with an identifier.
9261 This prevents confusing an identifier like `eax_var' with register
9262 `eax'. */
9263 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
9264 return (const reg_entry *) NULL;
9265
9266 *end_op = s;
9267
9268 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
9269
9270 /* Handle floating point regs, allowing spaces in the (i) part. */
9271 if (r == i386_regtab /* %st is first entry of table */)
9272 {
9273 if (is_space_char (*s))
9274 ++s;
9275 if (*s == '(')
9276 {
9277 ++s;
9278 if (is_space_char (*s))
9279 ++s;
9280 if (*s >= '0' && *s <= '7')
9281 {
9282 int fpr = *s - '0';
9283 ++s;
9284 if (is_space_char (*s))
9285 ++s;
9286 if (*s == ')')
9287 {
9288 *end_op = s + 1;
9289 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
9290 know (r);
9291 return r + fpr;
9292 }
9293 }
9294 /* We have "%st(" then garbage. */
9295 return (const reg_entry *) NULL;
9296 }
9297 }
9298
9299 if (r == NULL || allow_pseudo_reg)
9300 return r;
9301
9302 if (operand_type_all_zero (&r->reg_type))
9303 return (const reg_entry *) NULL;
9304
9305 if ((r->reg_type.bitfield.reg32
9306 || r->reg_type.bitfield.sreg3
9307 || r->reg_type.bitfield.control
9308 || r->reg_type.bitfield.debug
9309 || r->reg_type.bitfield.test)
9310 && !cpu_arch_flags.bitfield.cpui386)
9311 return (const reg_entry *) NULL;
9312
9313 if (r->reg_type.bitfield.floatreg
9314 && !cpu_arch_flags.bitfield.cpu8087
9315 && !cpu_arch_flags.bitfield.cpu287
9316 && !cpu_arch_flags.bitfield.cpu387)
9317 return (const reg_entry *) NULL;
9318
9319 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
9320 return (const reg_entry *) NULL;
9321
9322 if (r->reg_type.bitfield.regxmm && !cpu_arch_flags.bitfield.cpusse)
9323 return (const reg_entry *) NULL;
9324
9325 if (r->reg_type.bitfield.regymm && !cpu_arch_flags.bitfield.cpuavx)
9326 return (const reg_entry *) NULL;
9327
9328 if ((r->reg_type.bitfield.regzmm || r->reg_type.bitfield.regmask)
9329 && !cpu_arch_flags.bitfield.cpuavx512f)
9330 return (const reg_entry *) NULL;
9331
9332 /* Don't allow fake index register unless allow_index_reg isn't 0. */
9333 if (!allow_index_reg
9334 && (r->reg_num == RegEiz || r->reg_num == RegRiz))
9335 return (const reg_entry *) NULL;
9336
9337 /* Upper 16 vector register is only available with VREX in 64bit
9338 mode. */
9339 if ((r->reg_flags & RegVRex))
9340 {
9341 if (!cpu_arch_flags.bitfield.cpuvrex
9342 || flag_code != CODE_64BIT)
9343 return (const reg_entry *) NULL;
9344
9345 i.need_vrex = 1;
9346 }
9347
9348 if (((r->reg_flags & (RegRex64 | RegRex))
9349 || r->reg_type.bitfield.reg64)
9350 && (!cpu_arch_flags.bitfield.cpulm
9351 || !operand_type_equal (&r->reg_type, &control))
9352 && flag_code != CODE_64BIT)
9353 return (const reg_entry *) NULL;
9354
9355 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
9356 return (const reg_entry *) NULL;
9357
9358 return r;
9359 }
9360
9361 /* REG_STRING starts *before* REGISTER_PREFIX. */
9362
9363 static const reg_entry *
9364 parse_register (char *reg_string, char **end_op)
9365 {
9366 const reg_entry *r;
9367
9368 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
9369 r = parse_real_register (reg_string, end_op);
9370 else
9371 r = NULL;
9372 if (!r)
9373 {
9374 char *save = input_line_pointer;
9375 char c;
9376 symbolS *symbolP;
9377
9378 input_line_pointer = reg_string;
9379 c = get_symbol_end ();
9380 symbolP = symbol_find (reg_string);
9381 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
9382 {
9383 const expressionS *e = symbol_get_value_expression (symbolP);
9384
9385 know (e->X_op == O_register);
9386 know (e->X_add_number >= 0
9387 && (valueT) e->X_add_number < i386_regtab_size);
9388 r = i386_regtab + e->X_add_number;
9389 *end_op = input_line_pointer;
9390 }
9391 *input_line_pointer = c;
9392 input_line_pointer = save;
9393 }
9394 return r;
9395 }
9396
9397 int
9398 i386_parse_name (char *name, expressionS *e, char *nextcharP)
9399 {
9400 const reg_entry *r;
9401 char *end = input_line_pointer;
9402
9403 *end = *nextcharP;
9404 r = parse_register (name, &input_line_pointer);
9405 if (r && end <= input_line_pointer)
9406 {
9407 *nextcharP = *input_line_pointer;
9408 *input_line_pointer = 0;
9409 e->X_op = O_register;
9410 e->X_add_number = r - i386_regtab;
9411 return 1;
9412 }
9413 input_line_pointer = end;
9414 *end = 0;
9415 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
9416 }
9417
9418 void
9419 md_operand (expressionS *e)
9420 {
9421 char *end;
9422 const reg_entry *r;
9423
9424 switch (*input_line_pointer)
9425 {
9426 case REGISTER_PREFIX:
9427 r = parse_real_register (input_line_pointer, &end);
9428 if (r)
9429 {
9430 e->X_op = O_register;
9431 e->X_add_number = r - i386_regtab;
9432 input_line_pointer = end;
9433 }
9434 break;
9435
9436 case '[':
9437 gas_assert (intel_syntax);
9438 end = input_line_pointer++;
9439 expression (e);
9440 if (*input_line_pointer == ']')
9441 {
9442 ++input_line_pointer;
9443 e->X_op_symbol = make_expr_symbol (e);
9444 e->X_add_symbol = NULL;
9445 e->X_add_number = 0;
9446 e->X_op = O_index;
9447 }
9448 else
9449 {
9450 e->X_op = O_absent;
9451 input_line_pointer = end;
9452 }
9453 break;
9454 }
9455 }
9456
9457 \f
9458 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9459 const char *md_shortopts = "kVQ:sqn";
9460 #else
9461 const char *md_shortopts = "qn";
9462 #endif
9463
9464 #define OPTION_32 (OPTION_MD_BASE + 0)
9465 #define OPTION_64 (OPTION_MD_BASE + 1)
9466 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
9467 #define OPTION_MARCH (OPTION_MD_BASE + 3)
9468 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
9469 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
9470 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
9471 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
9472 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
9473 #define OPTION_MOLD_GCC (OPTION_MD_BASE + 9)
9474 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
9475 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
9476 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
9477 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
9478 #define OPTION_X32 (OPTION_MD_BASE + 14)
9479 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
9480 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
9481 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
9482
9483 struct option md_longopts[] =
9484 {
9485 {"32", no_argument, NULL, OPTION_32},
9486 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9487 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9488 {"64", no_argument, NULL, OPTION_64},
9489 #endif
9490 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9491 {"x32", no_argument, NULL, OPTION_X32},
9492 #endif
9493 {"divide", no_argument, NULL, OPTION_DIVIDE},
9494 {"march", required_argument, NULL, OPTION_MARCH},
9495 {"mtune", required_argument, NULL, OPTION_MTUNE},
9496 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
9497 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
9498 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
9499 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
9500 {"mold-gcc", no_argument, NULL, OPTION_MOLD_GCC},
9501 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
9502 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
9503 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
9504 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
9505 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
9506 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
9507 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
9508 {NULL, no_argument, NULL, 0}
9509 };
9510 size_t md_longopts_size = sizeof (md_longopts);
9511
9512 int
9513 md_parse_option (int c, char *arg)
9514 {
9515 unsigned int j;
9516 char *arch, *next;
9517
9518 switch (c)
9519 {
9520 case 'n':
9521 optimize_align_code = 0;
9522 break;
9523
9524 case 'q':
9525 quiet_warnings = 1;
9526 break;
9527
9528 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9529 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
9530 should be emitted or not. FIXME: Not implemented. */
9531 case 'Q':
9532 break;
9533
9534 /* -V: SVR4 argument to print version ID. */
9535 case 'V':
9536 print_version_id ();
9537 break;
9538
9539 /* -k: Ignore for FreeBSD compatibility. */
9540 case 'k':
9541 break;
9542
9543 case 's':
9544 /* -s: On i386 Solaris, this tells the native assembler to use
9545 .stab instead of .stab.excl. We always use .stab anyhow. */
9546 break;
9547 #endif
9548 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9549 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9550 case OPTION_64:
9551 {
9552 const char **list, **l;
9553
9554 list = bfd_target_list ();
9555 for (l = list; *l != NULL; l++)
9556 if (CONST_STRNEQ (*l, "elf64-x86-64")
9557 || strcmp (*l, "coff-x86-64") == 0
9558 || strcmp (*l, "pe-x86-64") == 0
9559 || strcmp (*l, "pei-x86-64") == 0
9560 || strcmp (*l, "mach-o-x86-64") == 0)
9561 {
9562 default_arch = "x86_64";
9563 break;
9564 }
9565 if (*l == NULL)
9566 as_fatal (_("no compiled in support for x86_64"));
9567 free (list);
9568 }
9569 break;
9570 #endif
9571
9572 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9573 case OPTION_X32:
9574 if (IS_ELF)
9575 {
9576 const char **list, **l;
9577
9578 list = bfd_target_list ();
9579 for (l = list; *l != NULL; l++)
9580 if (CONST_STRNEQ (*l, "elf32-x86-64"))
9581 {
9582 default_arch = "x86_64:32";
9583 break;
9584 }
9585 if (*l == NULL)
9586 as_fatal (_("no compiled in support for 32bit x86_64"));
9587 free (list);
9588 }
9589 else
9590 as_fatal (_("32bit x86_64 is only supported for ELF"));
9591 break;
9592 #endif
9593
9594 case OPTION_32:
9595 default_arch = "i386";
9596 break;
9597
9598 case OPTION_DIVIDE:
9599 #ifdef SVR4_COMMENT_CHARS
9600 {
9601 char *n, *t;
9602 const char *s;
9603
9604 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
9605 t = n;
9606 for (s = i386_comment_chars; *s != '\0'; s++)
9607 if (*s != '/')
9608 *t++ = *s;
9609 *t = '\0';
9610 i386_comment_chars = n;
9611 }
9612 #endif
9613 break;
9614
9615 case OPTION_MARCH:
9616 arch = xstrdup (arg);
9617 do
9618 {
9619 if (*arch == '.')
9620 as_fatal (_("invalid -march= option: `%s'"), arg);
9621 next = strchr (arch, '+');
9622 if (next)
9623 *next++ = '\0';
9624 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9625 {
9626 if (strcmp (arch, cpu_arch [j].name) == 0)
9627 {
9628 /* Processor. */
9629 if (! cpu_arch[j].flags.bitfield.cpui386)
9630 continue;
9631
9632 cpu_arch_name = cpu_arch[j].name;
9633 cpu_sub_arch_name = NULL;
9634 cpu_arch_flags = cpu_arch[j].flags;
9635 cpu_arch_isa = cpu_arch[j].type;
9636 cpu_arch_isa_flags = cpu_arch[j].flags;
9637 if (!cpu_arch_tune_set)
9638 {
9639 cpu_arch_tune = cpu_arch_isa;
9640 cpu_arch_tune_flags = cpu_arch_isa_flags;
9641 }
9642 break;
9643 }
9644 else if (*cpu_arch [j].name == '.'
9645 && strcmp (arch, cpu_arch [j].name + 1) == 0)
9646 {
9647 /* ISA entension. */
9648 i386_cpu_flags flags;
9649
9650 if (!cpu_arch[j].negated)
9651 flags = cpu_flags_or (cpu_arch_flags,
9652 cpu_arch[j].flags);
9653 else
9654 flags = cpu_flags_and_not (cpu_arch_flags,
9655 cpu_arch[j].flags);
9656 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
9657 {
9658 if (cpu_sub_arch_name)
9659 {
9660 char *name = cpu_sub_arch_name;
9661 cpu_sub_arch_name = concat (name,
9662 cpu_arch[j].name,
9663 (const char *) NULL);
9664 free (name);
9665 }
9666 else
9667 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
9668 cpu_arch_flags = flags;
9669 cpu_arch_isa_flags = flags;
9670 }
9671 break;
9672 }
9673 }
9674
9675 if (j >= ARRAY_SIZE (cpu_arch))
9676 as_fatal (_("invalid -march= option: `%s'"), arg);
9677
9678 arch = next;
9679 }
9680 while (next != NULL );
9681 break;
9682
9683 case OPTION_MTUNE:
9684 if (*arg == '.')
9685 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9686 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9687 {
9688 if (strcmp (arg, cpu_arch [j].name) == 0)
9689 {
9690 cpu_arch_tune_set = 1;
9691 cpu_arch_tune = cpu_arch [j].type;
9692 cpu_arch_tune_flags = cpu_arch[j].flags;
9693 break;
9694 }
9695 }
9696 if (j >= ARRAY_SIZE (cpu_arch))
9697 as_fatal (_("invalid -mtune= option: `%s'"), arg);
9698 break;
9699
9700 case OPTION_MMNEMONIC:
9701 if (strcasecmp (arg, "att") == 0)
9702 intel_mnemonic = 0;
9703 else if (strcasecmp (arg, "intel") == 0)
9704 intel_mnemonic = 1;
9705 else
9706 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
9707 break;
9708
9709 case OPTION_MSYNTAX:
9710 if (strcasecmp (arg, "att") == 0)
9711 intel_syntax = 0;
9712 else if (strcasecmp (arg, "intel") == 0)
9713 intel_syntax = 1;
9714 else
9715 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
9716 break;
9717
9718 case OPTION_MINDEX_REG:
9719 allow_index_reg = 1;
9720 break;
9721
9722 case OPTION_MNAKED_REG:
9723 allow_naked_reg = 1;
9724 break;
9725
9726 case OPTION_MOLD_GCC:
9727 old_gcc = 1;
9728 break;
9729
9730 case OPTION_MSSE2AVX:
9731 sse2avx = 1;
9732 break;
9733
9734 case OPTION_MSSE_CHECK:
9735 if (strcasecmp (arg, "error") == 0)
9736 sse_check = check_error;
9737 else if (strcasecmp (arg, "warning") == 0)
9738 sse_check = check_warning;
9739 else if (strcasecmp (arg, "none") == 0)
9740 sse_check = check_none;
9741 else
9742 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
9743 break;
9744
9745 case OPTION_MOPERAND_CHECK:
9746 if (strcasecmp (arg, "error") == 0)
9747 operand_check = check_error;
9748 else if (strcasecmp (arg, "warning") == 0)
9749 operand_check = check_warning;
9750 else if (strcasecmp (arg, "none") == 0)
9751 operand_check = check_none;
9752 else
9753 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
9754 break;
9755
9756 case OPTION_MAVXSCALAR:
9757 if (strcasecmp (arg, "128") == 0)
9758 avxscalar = vex128;
9759 else if (strcasecmp (arg, "256") == 0)
9760 avxscalar = vex256;
9761 else
9762 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
9763 break;
9764
9765 case OPTION_MADD_BND_PREFIX:
9766 add_bnd_prefix = 1;
9767 break;
9768
9769 case OPTION_MEVEXLIG:
9770 if (strcmp (arg, "128") == 0)
9771 evexlig = evexl128;
9772 else if (strcmp (arg, "256") == 0)
9773 evexlig = evexl256;
9774 else if (strcmp (arg, "512") == 0)
9775 evexlig = evexl512;
9776 else
9777 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
9778 break;
9779
9780 case OPTION_MEVEXWIG:
9781 if (strcmp (arg, "0") == 0)
9782 evexwig = evexw0;
9783 else if (strcmp (arg, "1") == 0)
9784 evexwig = evexw1;
9785 else
9786 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
9787 break;
9788
9789 default:
9790 return 0;
9791 }
9792 return 1;
9793 }
9794
9795 #define MESSAGE_TEMPLATE \
9796 " "
9797
9798 static void
9799 show_arch (FILE *stream, int ext, int check)
9800 {
9801 static char message[] = MESSAGE_TEMPLATE;
9802 char *start = message + 27;
9803 char *p;
9804 int size = sizeof (MESSAGE_TEMPLATE);
9805 int left;
9806 const char *name;
9807 int len;
9808 unsigned int j;
9809
9810 p = start;
9811 left = size - (start - message);
9812 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
9813 {
9814 /* Should it be skipped? */
9815 if (cpu_arch [j].skip)
9816 continue;
9817
9818 name = cpu_arch [j].name;
9819 len = cpu_arch [j].len;
9820 if (*name == '.')
9821 {
9822 /* It is an extension. Skip if we aren't asked to show it. */
9823 if (ext)
9824 {
9825 name++;
9826 len--;
9827 }
9828 else
9829 continue;
9830 }
9831 else if (ext)
9832 {
9833 /* It is an processor. Skip if we show only extension. */
9834 continue;
9835 }
9836 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
9837 {
9838 /* It is an impossible processor - skip. */
9839 continue;
9840 }
9841
9842 /* Reserve 2 spaces for ", " or ",\0" */
9843 left -= len + 2;
9844
9845 /* Check if there is any room. */
9846 if (left >= 0)
9847 {
9848 if (p != start)
9849 {
9850 *p++ = ',';
9851 *p++ = ' ';
9852 }
9853 p = mempcpy (p, name, len);
9854 }
9855 else
9856 {
9857 /* Output the current message now and start a new one. */
9858 *p++ = ',';
9859 *p = '\0';
9860 fprintf (stream, "%s\n", message);
9861 p = start;
9862 left = size - (start - message) - len - 2;
9863
9864 gas_assert (left >= 0);
9865
9866 p = mempcpy (p, name, len);
9867 }
9868 }
9869
9870 *p = '\0';
9871 fprintf (stream, "%s\n", message);
9872 }
9873
9874 void
9875 md_show_usage (FILE *stream)
9876 {
9877 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9878 fprintf (stream, _("\
9879 -Q ignored\n\
9880 -V print assembler version number\n\
9881 -k ignored\n"));
9882 #endif
9883 fprintf (stream, _("\
9884 -n Do not optimize code alignment\n\
9885 -q quieten some warnings\n"));
9886 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9887 fprintf (stream, _("\
9888 -s ignored\n"));
9889 #endif
9890 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9891 || defined (TE_PE) || defined (TE_PEP))
9892 fprintf (stream, _("\
9893 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
9894 #endif
9895 #ifdef SVR4_COMMENT_CHARS
9896 fprintf (stream, _("\
9897 --divide do not treat `/' as a comment character\n"));
9898 #else
9899 fprintf (stream, _("\
9900 --divide ignored\n"));
9901 #endif
9902 fprintf (stream, _("\
9903 -march=CPU[,+EXTENSION...]\n\
9904 generate code for CPU and EXTENSION, CPU is one of:\n"));
9905 show_arch (stream, 0, 1);
9906 fprintf (stream, _("\
9907 EXTENSION is combination of:\n"));
9908 show_arch (stream, 1, 0);
9909 fprintf (stream, _("\
9910 -mtune=CPU optimize for CPU, CPU is one of:\n"));
9911 show_arch (stream, 0, 0);
9912 fprintf (stream, _("\
9913 -msse2avx encode SSE instructions with VEX prefix\n"));
9914 fprintf (stream, _("\
9915 -msse-check=[none|error|warning]\n\
9916 check SSE instructions\n"));
9917 fprintf (stream, _("\
9918 -moperand-check=[none|error|warning]\n\
9919 check operand combinations for validity\n"));
9920 fprintf (stream, _("\
9921 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
9922 length\n"));
9923 fprintf (stream, _("\
9924 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
9925 length\n"));
9926 fprintf (stream, _("\
9927 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
9928 for EVEX.W bit ignored instructions\n"));
9929 fprintf (stream, _("\
9930 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
9931 fprintf (stream, _("\
9932 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
9933 fprintf (stream, _("\
9934 -mindex-reg support pseudo index registers\n"));
9935 fprintf (stream, _("\
9936 -mnaked-reg don't require `%%' prefix for registers\n"));
9937 fprintf (stream, _("\
9938 -mold-gcc support old (<= 2.8.1) versions of gcc\n"));
9939 fprintf (stream, _("\
9940 -madd-bnd-prefix add BND prefix for all valid branches\n"));
9941 }
9942
9943 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
9944 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
9945 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
9946
9947 /* Pick the target format to use. */
9948
9949 const char *
9950 i386_target_format (void)
9951 {
9952 if (!strncmp (default_arch, "x86_64", 6))
9953 {
9954 update_code_flag (CODE_64BIT, 1);
9955 if (default_arch[6] == '\0')
9956 x86_elf_abi = X86_64_ABI;
9957 else
9958 x86_elf_abi = X86_64_X32_ABI;
9959 }
9960 else if (!strcmp (default_arch, "i386"))
9961 update_code_flag (CODE_32BIT, 1);
9962 else
9963 as_fatal (_("unknown architecture"));
9964
9965 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
9966 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
9967 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
9968 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
9969
9970 switch (OUTPUT_FLAVOR)
9971 {
9972 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
9973 case bfd_target_aout_flavour:
9974 return AOUT_TARGET_FORMAT;
9975 #endif
9976 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
9977 # if defined (TE_PE) || defined (TE_PEP)
9978 case bfd_target_coff_flavour:
9979 return flag_code == CODE_64BIT ? "pe-x86-64" : "pe-i386";
9980 # elif defined (TE_GO32)
9981 case bfd_target_coff_flavour:
9982 return "coff-go32";
9983 # else
9984 case bfd_target_coff_flavour:
9985 return "coff-i386";
9986 # endif
9987 #endif
9988 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
9989 case bfd_target_elf_flavour:
9990 {
9991 const char *format;
9992
9993 switch (x86_elf_abi)
9994 {
9995 default:
9996 format = ELF_TARGET_FORMAT;
9997 break;
9998 case X86_64_ABI:
9999 use_rela_relocations = 1;
10000 object_64bit = 1;
10001 format = ELF_TARGET_FORMAT64;
10002 break;
10003 case X86_64_X32_ABI:
10004 use_rela_relocations = 1;
10005 object_64bit = 1;
10006 disallow_64bit_reloc = 1;
10007 format = ELF_TARGET_FORMAT32;
10008 break;
10009 }
10010 if (cpu_arch_isa == PROCESSOR_L1OM)
10011 {
10012 if (x86_elf_abi != X86_64_ABI)
10013 as_fatal (_("Intel L1OM is 64bit only"));
10014 return ELF_TARGET_L1OM_FORMAT;
10015 }
10016 if (cpu_arch_isa == PROCESSOR_K1OM)
10017 {
10018 if (x86_elf_abi != X86_64_ABI)
10019 as_fatal (_("Intel K1OM is 64bit only"));
10020 return ELF_TARGET_K1OM_FORMAT;
10021 }
10022 else
10023 return format;
10024 }
10025 #endif
10026 #if defined (OBJ_MACH_O)
10027 case bfd_target_mach_o_flavour:
10028 if (flag_code == CODE_64BIT)
10029 {
10030 use_rela_relocations = 1;
10031 object_64bit = 1;
10032 return "mach-o-x86-64";
10033 }
10034 else
10035 return "mach-o-i386";
10036 #endif
10037 default:
10038 abort ();
10039 return NULL;
10040 }
10041 }
10042
10043 #endif /* OBJ_MAYBE_ more than one */
10044
10045 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
10046 void
10047 i386_elf_emit_arch_note (void)
10048 {
10049 if (IS_ELF && cpu_arch_name != NULL)
10050 {
10051 char *p;
10052 asection *seg = now_seg;
10053 subsegT subseg = now_subseg;
10054 Elf_Internal_Note i_note;
10055 Elf_External_Note e_note;
10056 asection *note_secp;
10057 int len;
10058
10059 /* Create the .note section. */
10060 note_secp = subseg_new (".note", 0);
10061 bfd_set_section_flags (stdoutput,
10062 note_secp,
10063 SEC_HAS_CONTENTS | SEC_READONLY);
10064
10065 /* Process the arch string. */
10066 len = strlen (cpu_arch_name);
10067
10068 i_note.namesz = len + 1;
10069 i_note.descsz = 0;
10070 i_note.type = NT_ARCH;
10071 p = frag_more (sizeof (e_note.namesz));
10072 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
10073 p = frag_more (sizeof (e_note.descsz));
10074 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
10075 p = frag_more (sizeof (e_note.type));
10076 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
10077 p = frag_more (len + 1);
10078 strcpy (p, cpu_arch_name);
10079
10080 frag_align (2, 0, 0);
10081
10082 subseg_set (seg, subseg);
10083 }
10084 }
10085 #endif
10086 \f
10087 symbolS *
10088 md_undefined_symbol (char *name)
10089 {
10090 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
10091 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
10092 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
10093 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
10094 {
10095 if (!GOT_symbol)
10096 {
10097 if (symbol_find (name))
10098 as_bad (_("GOT already in symbol table"));
10099 GOT_symbol = symbol_new (name, undefined_section,
10100 (valueT) 0, &zero_address_frag);
10101 };
10102 return GOT_symbol;
10103 }
10104 return 0;
10105 }
10106
10107 /* Round up a section size to the appropriate boundary. */
10108
10109 valueT
10110 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
10111 {
10112 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
10113 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
10114 {
10115 /* For a.out, force the section size to be aligned. If we don't do
10116 this, BFD will align it for us, but it will not write out the
10117 final bytes of the section. This may be a bug in BFD, but it is
10118 easier to fix it here since that is how the other a.out targets
10119 work. */
10120 int align;
10121
10122 align = bfd_get_section_alignment (stdoutput, segment);
10123 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
10124 }
10125 #endif
10126
10127 return size;
10128 }
10129
10130 /* On the i386, PC-relative offsets are relative to the start of the
10131 next instruction. That is, the address of the offset, plus its
10132 size, since the offset is always the last part of the insn. */
10133
10134 long
10135 md_pcrel_from (fixS *fixP)
10136 {
10137 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
10138 }
10139
10140 #ifndef I386COFF
10141
10142 static void
10143 s_bss (int ignore ATTRIBUTE_UNUSED)
10144 {
10145 int temp;
10146
10147 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10148 if (IS_ELF)
10149 obj_elf_section_change_hook ();
10150 #endif
10151 temp = get_absolute_expression ();
10152 subseg_set (bss_section, (subsegT) temp);
10153 demand_empty_rest_of_line ();
10154 }
10155
10156 #endif
10157
10158 void
10159 i386_validate_fix (fixS *fixp)
10160 {
10161 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
10162 {
10163 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
10164 {
10165 if (!object_64bit)
10166 abort ();
10167 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
10168 }
10169 else
10170 {
10171 if (!object_64bit)
10172 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
10173 else
10174 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
10175 }
10176 fixp->fx_subsy = 0;
10177 }
10178 }
10179
10180 arelent *
10181 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
10182 {
10183 arelent *rel;
10184 bfd_reloc_code_real_type code;
10185
10186 switch (fixp->fx_r_type)
10187 {
10188 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10189 case BFD_RELOC_SIZE32:
10190 case BFD_RELOC_SIZE64:
10191 if (S_IS_DEFINED (fixp->fx_addsy)
10192 && !S_IS_EXTERNAL (fixp->fx_addsy))
10193 {
10194 /* Resolve size relocation against local symbol to size of
10195 the symbol plus addend. */
10196 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
10197 if (fixp->fx_r_type == BFD_RELOC_SIZE32
10198 && !fits_in_unsigned_long (value))
10199 as_bad_where (fixp->fx_file, fixp->fx_line,
10200 _("symbol size computation overflow"));
10201 fixp->fx_addsy = NULL;
10202 fixp->fx_subsy = NULL;
10203 md_apply_fix (fixp, (valueT *) &value, NULL);
10204 return NULL;
10205 }
10206 #endif
10207
10208 case BFD_RELOC_X86_64_PLT32:
10209 case BFD_RELOC_X86_64_PLT32_BND:
10210 case BFD_RELOC_X86_64_GOT32:
10211 case BFD_RELOC_X86_64_GOTPCREL:
10212 case BFD_RELOC_386_PLT32:
10213 case BFD_RELOC_386_GOT32:
10214 case BFD_RELOC_386_GOTOFF:
10215 case BFD_RELOC_386_GOTPC:
10216 case BFD_RELOC_386_TLS_GD:
10217 case BFD_RELOC_386_TLS_LDM:
10218 case BFD_RELOC_386_TLS_LDO_32:
10219 case BFD_RELOC_386_TLS_IE_32:
10220 case BFD_RELOC_386_TLS_IE:
10221 case BFD_RELOC_386_TLS_GOTIE:
10222 case BFD_RELOC_386_TLS_LE_32:
10223 case BFD_RELOC_386_TLS_LE:
10224 case BFD_RELOC_386_TLS_GOTDESC:
10225 case BFD_RELOC_386_TLS_DESC_CALL:
10226 case BFD_RELOC_X86_64_TLSGD:
10227 case BFD_RELOC_X86_64_TLSLD:
10228 case BFD_RELOC_X86_64_DTPOFF32:
10229 case BFD_RELOC_X86_64_DTPOFF64:
10230 case BFD_RELOC_X86_64_GOTTPOFF:
10231 case BFD_RELOC_X86_64_TPOFF32:
10232 case BFD_RELOC_X86_64_TPOFF64:
10233 case BFD_RELOC_X86_64_GOTOFF64:
10234 case BFD_RELOC_X86_64_GOTPC32:
10235 case BFD_RELOC_X86_64_GOT64:
10236 case BFD_RELOC_X86_64_GOTPCREL64:
10237 case BFD_RELOC_X86_64_GOTPC64:
10238 case BFD_RELOC_X86_64_GOTPLT64:
10239 case BFD_RELOC_X86_64_PLTOFF64:
10240 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10241 case BFD_RELOC_X86_64_TLSDESC_CALL:
10242 case BFD_RELOC_RVA:
10243 case BFD_RELOC_VTABLE_ENTRY:
10244 case BFD_RELOC_VTABLE_INHERIT:
10245 #ifdef TE_PE
10246 case BFD_RELOC_32_SECREL:
10247 #endif
10248 code = fixp->fx_r_type;
10249 break;
10250 case BFD_RELOC_X86_64_32S:
10251 if (!fixp->fx_pcrel)
10252 {
10253 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
10254 code = fixp->fx_r_type;
10255 break;
10256 }
10257 default:
10258 if (fixp->fx_pcrel)
10259 {
10260 switch (fixp->fx_size)
10261 {
10262 default:
10263 as_bad_where (fixp->fx_file, fixp->fx_line,
10264 _("can not do %d byte pc-relative relocation"),
10265 fixp->fx_size);
10266 code = BFD_RELOC_32_PCREL;
10267 break;
10268 case 1: code = BFD_RELOC_8_PCREL; break;
10269 case 2: code = BFD_RELOC_16_PCREL; break;
10270 case 4:
10271 code = (fixp->fx_r_type == BFD_RELOC_X86_64_PC32_BND
10272 ? fixp-> fx_r_type : BFD_RELOC_32_PCREL);
10273 break;
10274 #ifdef BFD64
10275 case 8: code = BFD_RELOC_64_PCREL; break;
10276 #endif
10277 }
10278 }
10279 else
10280 {
10281 switch (fixp->fx_size)
10282 {
10283 default:
10284 as_bad_where (fixp->fx_file, fixp->fx_line,
10285 _("can not do %d byte relocation"),
10286 fixp->fx_size);
10287 code = BFD_RELOC_32;
10288 break;
10289 case 1: code = BFD_RELOC_8; break;
10290 case 2: code = BFD_RELOC_16; break;
10291 case 4: code = BFD_RELOC_32; break;
10292 #ifdef BFD64
10293 case 8: code = BFD_RELOC_64; break;
10294 #endif
10295 }
10296 }
10297 break;
10298 }
10299
10300 if ((code == BFD_RELOC_32
10301 || code == BFD_RELOC_32_PCREL
10302 || code == BFD_RELOC_X86_64_32S)
10303 && GOT_symbol
10304 && fixp->fx_addsy == GOT_symbol)
10305 {
10306 if (!object_64bit)
10307 code = BFD_RELOC_386_GOTPC;
10308 else
10309 code = BFD_RELOC_X86_64_GOTPC32;
10310 }
10311 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
10312 && GOT_symbol
10313 && fixp->fx_addsy == GOT_symbol)
10314 {
10315 code = BFD_RELOC_X86_64_GOTPC64;
10316 }
10317
10318 rel = (arelent *) xmalloc (sizeof (arelent));
10319 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
10320 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10321
10322 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
10323
10324 if (!use_rela_relocations)
10325 {
10326 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
10327 vtable entry to be used in the relocation's section offset. */
10328 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
10329 rel->address = fixp->fx_offset;
10330 #if defined (OBJ_COFF) && defined (TE_PE)
10331 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
10332 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
10333 else
10334 #endif
10335 rel->addend = 0;
10336 }
10337 /* Use the rela in 64bit mode. */
10338 else
10339 {
10340 if (disallow_64bit_reloc)
10341 switch (code)
10342 {
10343 case BFD_RELOC_X86_64_DTPOFF64:
10344 case BFD_RELOC_X86_64_TPOFF64:
10345 case BFD_RELOC_64_PCREL:
10346 case BFD_RELOC_X86_64_GOTOFF64:
10347 case BFD_RELOC_X86_64_GOT64:
10348 case BFD_RELOC_X86_64_GOTPCREL64:
10349 case BFD_RELOC_X86_64_GOTPC64:
10350 case BFD_RELOC_X86_64_GOTPLT64:
10351 case BFD_RELOC_X86_64_PLTOFF64:
10352 as_bad_where (fixp->fx_file, fixp->fx_line,
10353 _("cannot represent relocation type %s in x32 mode"),
10354 bfd_get_reloc_code_name (code));
10355 break;
10356 default:
10357 break;
10358 }
10359
10360 if (!fixp->fx_pcrel)
10361 rel->addend = fixp->fx_offset;
10362 else
10363 switch (code)
10364 {
10365 case BFD_RELOC_X86_64_PLT32:
10366 case BFD_RELOC_X86_64_PLT32_BND:
10367 case BFD_RELOC_X86_64_GOT32:
10368 case BFD_RELOC_X86_64_GOTPCREL:
10369 case BFD_RELOC_X86_64_TLSGD:
10370 case BFD_RELOC_X86_64_TLSLD:
10371 case BFD_RELOC_X86_64_GOTTPOFF:
10372 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10373 case BFD_RELOC_X86_64_TLSDESC_CALL:
10374 rel->addend = fixp->fx_offset - fixp->fx_size;
10375 break;
10376 default:
10377 rel->addend = (section->vma
10378 - fixp->fx_size
10379 + fixp->fx_addnumber
10380 + md_pcrel_from (fixp));
10381 break;
10382 }
10383 }
10384
10385 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
10386 if (rel->howto == NULL)
10387 {
10388 as_bad_where (fixp->fx_file, fixp->fx_line,
10389 _("cannot represent relocation type %s"),
10390 bfd_get_reloc_code_name (code));
10391 /* Set howto to a garbage value so that we can keep going. */
10392 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
10393 gas_assert (rel->howto != NULL);
10394 }
10395
10396 return rel;
10397 }
10398
10399 #include "tc-i386-intel.c"
10400
10401 void
10402 tc_x86_parse_to_dw2regnum (expressionS *exp)
10403 {
10404 int saved_naked_reg;
10405 char saved_register_dot;
10406
10407 saved_naked_reg = allow_naked_reg;
10408 allow_naked_reg = 1;
10409 saved_register_dot = register_chars['.'];
10410 register_chars['.'] = '.';
10411 allow_pseudo_reg = 1;
10412 expression_and_evaluate (exp);
10413 allow_pseudo_reg = 0;
10414 register_chars['.'] = saved_register_dot;
10415 allow_naked_reg = saved_naked_reg;
10416
10417 if (exp->X_op == O_register && exp->X_add_number >= 0)
10418 {
10419 if ((addressT) exp->X_add_number < i386_regtab_size)
10420 {
10421 exp->X_op = O_constant;
10422 exp->X_add_number = i386_regtab[exp->X_add_number]
10423 .dw2_regnum[flag_code >> 1];
10424 }
10425 else
10426 exp->X_op = O_illegal;
10427 }
10428 }
10429
10430 void
10431 tc_x86_frame_initial_instructions (void)
10432 {
10433 static unsigned int sp_regno[2];
10434
10435 if (!sp_regno[flag_code >> 1])
10436 {
10437 char *saved_input = input_line_pointer;
10438 char sp[][4] = {"esp", "rsp"};
10439 expressionS exp;
10440
10441 input_line_pointer = sp[flag_code >> 1];
10442 tc_x86_parse_to_dw2regnum (&exp);
10443 gas_assert (exp.X_op == O_constant);
10444 sp_regno[flag_code >> 1] = exp.X_add_number;
10445 input_line_pointer = saved_input;
10446 }
10447
10448 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
10449 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
10450 }
10451
10452 int
10453 x86_dwarf2_addr_size (void)
10454 {
10455 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
10456 if (x86_elf_abi == X86_64_X32_ABI)
10457 return 4;
10458 #endif
10459 return bfd_arch_bits_per_address (stdoutput) / 8;
10460 }
10461
10462 int
10463 i386_elf_section_type (const char *str, size_t len)
10464 {
10465 if (flag_code == CODE_64BIT
10466 && len == sizeof ("unwind") - 1
10467 && strncmp (str, "unwind", 6) == 0)
10468 return SHT_X86_64_UNWIND;
10469
10470 return -1;
10471 }
10472
10473 #ifdef TE_SOLARIS
10474 void
10475 i386_solaris_fix_up_eh_frame (segT sec)
10476 {
10477 if (flag_code == CODE_64BIT)
10478 elf_section_type (sec) = SHT_X86_64_UNWIND;
10479 }
10480 #endif
10481
10482 #ifdef TE_PE
10483 void
10484 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10485 {
10486 expressionS exp;
10487
10488 exp.X_op = O_secrel;
10489 exp.X_add_symbol = symbol;
10490 exp.X_add_number = 0;
10491 emit_expr (&exp, size);
10492 }
10493 #endif
10494
10495 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10496 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
10497
10498 bfd_vma
10499 x86_64_section_letter (int letter, char **ptr_msg)
10500 {
10501 if (flag_code == CODE_64BIT)
10502 {
10503 if (letter == 'l')
10504 return SHF_X86_64_LARGE;
10505
10506 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
10507 }
10508 else
10509 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
10510 return -1;
10511 }
10512
10513 bfd_vma
10514 x86_64_section_word (char *str, size_t len)
10515 {
10516 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
10517 return SHF_X86_64_LARGE;
10518
10519 return -1;
10520 }
10521
10522 static void
10523 handle_large_common (int small ATTRIBUTE_UNUSED)
10524 {
10525 if (flag_code != CODE_64BIT)
10526 {
10527 s_comm_internal (0, elf_common_parse);
10528 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
10529 }
10530 else
10531 {
10532 static segT lbss_section;
10533 asection *saved_com_section_ptr = elf_com_section_ptr;
10534 asection *saved_bss_section = bss_section;
10535
10536 if (lbss_section == NULL)
10537 {
10538 flagword applicable;
10539 segT seg = now_seg;
10540 subsegT subseg = now_subseg;
10541
10542 /* The .lbss section is for local .largecomm symbols. */
10543 lbss_section = subseg_new (".lbss", 0);
10544 applicable = bfd_applicable_section_flags (stdoutput);
10545 bfd_set_section_flags (stdoutput, lbss_section,
10546 applicable & SEC_ALLOC);
10547 seg_info (lbss_section)->bss = 1;
10548
10549 subseg_set (seg, subseg);
10550 }
10551
10552 elf_com_section_ptr = &_bfd_elf_large_com_section;
10553 bss_section = lbss_section;
10554
10555 s_comm_internal (0, elf_common_parse);
10556
10557 elf_com_section_ptr = saved_com_section_ptr;
10558 bss_section = saved_bss_section;
10559 }
10560 }
10561 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.251973 seconds and 5 git commands to generate.