gas/
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* Intel 80386 machine specific gas.
24 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
25 x86_64 support by Jan Hubicka (jh@suse.cz)
26 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
27 Bugs & suggestions are completely welcome. This is free software.
28 Please help us make it better. */
29
30 #include "as.h"
31 #include "safe-ctype.h"
32 #include "subsegs.h"
33 #include "dwarf2dbg.h"
34 #include "dw2gencfi.h"
35 #include "elf/x86-64.h"
36
37 #ifndef REGISTER_WARNINGS
38 #define REGISTER_WARNINGS 1
39 #endif
40
41 #ifndef INFER_ADDR_PREFIX
42 #define INFER_ADDR_PREFIX 1
43 #endif
44
45 #ifndef SCALE1_WHEN_NO_INDEX
46 /* Specifying a scale factor besides 1 when there is no index is
47 futile. eg. `mov (%ebx,2),%al' does exactly the same as
48 `mov (%ebx),%al'. To slavishly follow what the programmer
49 specified, set SCALE1_WHEN_NO_INDEX to 0. */
50 #define SCALE1_WHEN_NO_INDEX 1
51 #endif
52
53 #ifndef DEFAULT_ARCH
54 #define DEFAULT_ARCH "i386"
55 #endif
56
57 #ifndef INLINE
58 #if __GNUC__ >= 2
59 #define INLINE __inline__
60 #else
61 #define INLINE
62 #endif
63 #endif
64
65 static void set_code_flag (int);
66 static void set_16bit_gcc_code_flag (int);
67 static void set_intel_syntax (int);
68 static void set_cpu_arch (int);
69 #ifdef TE_PE
70 static void pe_directive_secrel (int);
71 #endif
72 static void signed_cons (int);
73 static char *output_invalid (int c);
74 static int i386_operand (char *);
75 static int i386_intel_operand (char *, int);
76 static const reg_entry *parse_register (char *, char **);
77 static char *parse_insn (char *, char *);
78 static char *parse_operands (char *, const char *);
79 static void swap_operands (void);
80 static void swap_2_operands (int, int);
81 static void optimize_imm (void);
82 static void optimize_disp (void);
83 static int match_template (void);
84 static int check_string (void);
85 static int process_suffix (void);
86 static int check_byte_reg (void);
87 static int check_long_reg (void);
88 static int check_qword_reg (void);
89 static int check_word_reg (void);
90 static int finalize_imm (void);
91 static int process_operands (void);
92 static const seg_entry *build_modrm_byte (void);
93 static void output_insn (void);
94 static void output_imm (fragS *, offsetT);
95 static void output_disp (fragS *, offsetT);
96 #ifndef I386COFF
97 static void s_bss (int);
98 #endif
99 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
100 static void handle_large_common (int small ATTRIBUTE_UNUSED);
101 #endif
102
103 static const char *default_arch = DEFAULT_ARCH;
104
105 /* 'md_assemble ()' gathers together information and puts it into a
106 i386_insn. */
107
108 union i386_op
109 {
110 expressionS *disps;
111 expressionS *imms;
112 const reg_entry *regs;
113 };
114
115 struct _i386_insn
116 {
117 /* TM holds the template for the insn were currently assembling. */
118 template tm;
119
120 /* SUFFIX holds the instruction mnemonic suffix if given.
121 (e.g. 'l' for 'movl') */
122 char suffix;
123
124 /* OPERANDS gives the number of given operands. */
125 unsigned int operands;
126
127 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
128 of given register, displacement, memory operands and immediate
129 operands. */
130 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
131
132 /* TYPES [i] is the type (see above #defines) which tells us how to
133 use OP[i] for the corresponding operand. */
134 unsigned int types[MAX_OPERANDS];
135
136 /* Displacement expression, immediate expression, or register for each
137 operand. */
138 union i386_op op[MAX_OPERANDS];
139
140 /* Flags for operands. */
141 unsigned int flags[MAX_OPERANDS];
142 #define Operand_PCrel 1
143
144 /* Relocation type for operand */
145 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
146
147 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
148 the base index byte below. */
149 const reg_entry *base_reg;
150 const reg_entry *index_reg;
151 unsigned int log2_scale_factor;
152
153 /* SEG gives the seg_entries of this insn. They are zero unless
154 explicit segment overrides are given. */
155 const seg_entry *seg[2];
156
157 /* PREFIX holds all the given prefix opcodes (usually null).
158 PREFIXES is the number of prefix opcodes. */
159 unsigned int prefixes;
160 unsigned char prefix[MAX_PREFIXES];
161
162 /* RM and SIB are the modrm byte and the sib byte where the
163 addressing modes of this insn are encoded. */
164
165 modrm_byte rm;
166 rex_byte rex;
167 sib_byte sib;
168 };
169
170 typedef struct _i386_insn i386_insn;
171
172 /* List of chars besides those in app.c:symbol_chars that can start an
173 operand. Used to prevent the scrubber eating vital white-space. */
174 const char extra_symbol_chars[] = "*%-(["
175 #ifdef LEX_AT
176 "@"
177 #endif
178 #ifdef LEX_QM
179 "?"
180 #endif
181 ;
182
183 #if (defined (TE_I386AIX) \
184 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
185 && !defined (TE_GNU) \
186 && !defined (TE_LINUX) \
187 && !defined (TE_NETWARE) \
188 && !defined (TE_FreeBSD) \
189 && !defined (TE_NetBSD)))
190 /* This array holds the chars that always start a comment. If the
191 pre-processor is disabled, these aren't very useful. The option
192 --divide will remove '/' from this list. */
193 const char *i386_comment_chars = "#/";
194 #define SVR4_COMMENT_CHARS 1
195 #define PREFIX_SEPARATOR '\\'
196
197 #else
198 const char *i386_comment_chars = "#";
199 #define PREFIX_SEPARATOR '/'
200 #endif
201
202 /* This array holds the chars that only start a comment at the beginning of
203 a line. If the line seems to have the form '# 123 filename'
204 .line and .file directives will appear in the pre-processed output.
205 Note that input_file.c hand checks for '#' at the beginning of the
206 first line of the input file. This is because the compiler outputs
207 #NO_APP at the beginning of its output.
208 Also note that comments started like this one will always work if
209 '/' isn't otherwise defined. */
210 const char line_comment_chars[] = "#/";
211
212 const char line_separator_chars[] = ";";
213
214 /* Chars that can be used to separate mant from exp in floating point
215 nums. */
216 const char EXP_CHARS[] = "eE";
217
218 /* Chars that mean this number is a floating point constant
219 As in 0f12.456
220 or 0d1.2345e12. */
221 const char FLT_CHARS[] = "fFdDxX";
222
223 /* Tables for lexical analysis. */
224 static char mnemonic_chars[256];
225 static char register_chars[256];
226 static char operand_chars[256];
227 static char identifier_chars[256];
228 static char digit_chars[256];
229
230 /* Lexical macros. */
231 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
232 #define is_operand_char(x) (operand_chars[(unsigned char) x])
233 #define is_register_char(x) (register_chars[(unsigned char) x])
234 #define is_space_char(x) ((x) == ' ')
235 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
236 #define is_digit_char(x) (digit_chars[(unsigned char) x])
237
238 /* All non-digit non-letter characters that may occur in an operand. */
239 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
240
241 /* md_assemble() always leaves the strings it's passed unaltered. To
242 effect this we maintain a stack of saved characters that we've smashed
243 with '\0's (indicating end of strings for various sub-fields of the
244 assembler instruction). */
245 static char save_stack[32];
246 static char *save_stack_p;
247 #define END_STRING_AND_SAVE(s) \
248 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
249 #define RESTORE_END_STRING(s) \
250 do { *(s) = *--save_stack_p; } while (0)
251
252 /* The instruction we're assembling. */
253 static i386_insn i;
254
255 /* Possible templates for current insn. */
256 static const templates *current_templates;
257
258 /* Per instruction expressionS buffers: max displacements & immediates. */
259 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
260 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
261
262 /* Current operand we are working on. */
263 static int this_operand;
264
265 /* We support four different modes. FLAG_CODE variable is used to distinguish
266 these. */
267
268 enum flag_code {
269 CODE_32BIT,
270 CODE_16BIT,
271 CODE_64BIT };
272 #define NUM_FLAG_CODE ((int) CODE_64BIT + 1)
273
274 static enum flag_code flag_code;
275 static unsigned int object_64bit;
276 static int use_rela_relocations = 0;
277
278 /* The names used to print error messages. */
279 static const char *flag_code_names[] =
280 {
281 "32",
282 "16",
283 "64"
284 };
285
286 /* 1 for intel syntax,
287 0 if att syntax. */
288 static int intel_syntax = 0;
289
290 /* 1 if register prefix % not required. */
291 static int allow_naked_reg = 0;
292
293 /* Register prefix used for error message. */
294 static const char *register_prefix = "%";
295
296 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
297 leave, push, and pop instructions so that gcc has the same stack
298 frame as in 32 bit mode. */
299 static char stackop_size = '\0';
300
301 /* Non-zero to optimize code alignment. */
302 int optimize_align_code = 1;
303
304 /* Non-zero to quieten some warnings. */
305 static int quiet_warnings = 0;
306
307 /* CPU name. */
308 static const char *cpu_arch_name = NULL;
309 static const char *cpu_sub_arch_name = NULL;
310
311 /* CPU feature flags. */
312 static unsigned int cpu_arch_flags = CpuUnknownFlags | CpuNo64;
313
314 /* If we have selected a cpu we are generating instructions for. */
315 static int cpu_arch_tune_set = 0;
316
317 /* Cpu we are generating instructions for. */
318 static enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
319
320 /* CPU feature flags of cpu we are generating instructions for. */
321 static unsigned int cpu_arch_tune_flags = 0;
322
323 /* CPU instruction set architecture used. */
324 static enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
325
326 /* CPU feature flags of instruction set architecture used. */
327 static unsigned int cpu_arch_isa_flags = 0;
328
329 /* If set, conditional jumps are not automatically promoted to handle
330 larger than a byte offset. */
331 static unsigned int no_cond_jump_promotion = 0;
332
333 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
334 static symbolS *GOT_symbol;
335
336 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
337 unsigned int x86_dwarf2_return_column;
338
339 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
340 int x86_cie_data_alignment;
341
342 /* Interface to relax_segment.
343 There are 3 major relax states for 386 jump insns because the
344 different types of jumps add different sizes to frags when we're
345 figuring out what sort of jump to choose to reach a given label. */
346
347 /* Types. */
348 #define UNCOND_JUMP 0
349 #define COND_JUMP 1
350 #define COND_JUMP86 2
351
352 /* Sizes. */
353 #define CODE16 1
354 #define SMALL 0
355 #define SMALL16 (SMALL | CODE16)
356 #define BIG 2
357 #define BIG16 (BIG | CODE16)
358
359 #ifndef INLINE
360 #ifdef __GNUC__
361 #define INLINE __inline__
362 #else
363 #define INLINE
364 #endif
365 #endif
366
367 #define ENCODE_RELAX_STATE(type, size) \
368 ((relax_substateT) (((type) << 2) | (size)))
369 #define TYPE_FROM_RELAX_STATE(s) \
370 ((s) >> 2)
371 #define DISP_SIZE_FROM_RELAX_STATE(s) \
372 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
373
374 /* This table is used by relax_frag to promote short jumps to long
375 ones where necessary. SMALL (short) jumps may be promoted to BIG
376 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
377 don't allow a short jump in a 32 bit code segment to be promoted to
378 a 16 bit offset jump because it's slower (requires data size
379 prefix), and doesn't work, unless the destination is in the bottom
380 64k of the code segment (The top 16 bits of eip are zeroed). */
381
382 const relax_typeS md_relax_table[] =
383 {
384 /* The fields are:
385 1) most positive reach of this state,
386 2) most negative reach of this state,
387 3) how many bytes this mode will have in the variable part of the frag
388 4) which index into the table to try if we can't fit into this one. */
389
390 /* UNCOND_JUMP states. */
391 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
392 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
393 /* dword jmp adds 4 bytes to frag:
394 0 extra opcode bytes, 4 displacement bytes. */
395 {0, 0, 4, 0},
396 /* word jmp adds 2 byte2 to frag:
397 0 extra opcode bytes, 2 displacement bytes. */
398 {0, 0, 2, 0},
399
400 /* COND_JUMP states. */
401 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
402 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
403 /* dword conditionals adds 5 bytes to frag:
404 1 extra opcode byte, 4 displacement bytes. */
405 {0, 0, 5, 0},
406 /* word conditionals add 3 bytes to frag:
407 1 extra opcode byte, 2 displacement bytes. */
408 {0, 0, 3, 0},
409
410 /* COND_JUMP86 states. */
411 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
412 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
413 /* dword conditionals adds 5 bytes to frag:
414 1 extra opcode byte, 4 displacement bytes. */
415 {0, 0, 5, 0},
416 /* word conditionals add 4 bytes to frag:
417 1 displacement byte and a 3 byte long branch insn. */
418 {0, 0, 4, 0}
419 };
420
421 static const arch_entry cpu_arch[] =
422 {
423 {"generic32", PROCESSOR_GENERIC32,
424 Cpu186|Cpu286|Cpu386},
425 {"generic64", PROCESSOR_GENERIC64,
426 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
427 |CpuMMX2|CpuSSE|CpuSSE2},
428 {"i8086", PROCESSOR_UNKNOWN,
429 0},
430 {"i186", PROCESSOR_UNKNOWN,
431 Cpu186},
432 {"i286", PROCESSOR_UNKNOWN,
433 Cpu186|Cpu286},
434 {"i386", PROCESSOR_I386,
435 Cpu186|Cpu286|Cpu386},
436 {"i486", PROCESSOR_I486,
437 Cpu186|Cpu286|Cpu386|Cpu486},
438 {"i586", PROCESSOR_PENTIUM,
439 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586},
440 {"i686", PROCESSOR_PENTIUMPRO,
441 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686},
442 {"pentium", PROCESSOR_PENTIUM,
443 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586},
444 {"pentiumpro",PROCESSOR_PENTIUMPRO,
445 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686},
446 {"pentiumii", PROCESSOR_PENTIUMPRO,
447 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX},
448 {"pentiumiii",PROCESSOR_PENTIUMPRO,
449 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuMMX|CpuMMX2|CpuSSE},
450 {"pentium4", PROCESSOR_PENTIUM4,
451 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
452 |CpuMMX2|CpuSSE|CpuSSE2},
453 {"prescott", PROCESSOR_NOCONA,
454 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
455 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
456 {"nocona", PROCESSOR_NOCONA,
457 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
458 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
459 {"yonah", PROCESSOR_CORE,
460 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
461 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
462 {"core", PROCESSOR_CORE,
463 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
464 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
465 {"merom", PROCESSOR_CORE2,
466 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
467 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
468 {"core2", PROCESSOR_CORE2,
469 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuP4|CpuMMX
470 |CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
471 {"k6", PROCESSOR_K6,
472 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX},
473 {"k6_2", PROCESSOR_K6,
474 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|CpuK6|CpuMMX|Cpu3dnow},
475 {"athlon", PROCESSOR_ATHLON,
476 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
477 |CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA},
478 {"sledgehammer", PROCESSOR_K8,
479 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
480 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
481 {"opteron", PROCESSOR_K8,
482 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
483 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
484 {"k8", PROCESSOR_K8,
485 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6
486 |CpuSledgehammer|CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2},
487 {"amdfam10", PROCESSOR_AMDFAM10,
488 Cpu186|Cpu286|Cpu386|Cpu486|Cpu586|Cpu686|CpuK6|CpuSledgehammer
489 |CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA|CpuSSE|CpuSSE2|CpuSSE3|CpuSSE4a
490 |CpuABM},
491 {".mmx", PROCESSOR_UNKNOWN,
492 CpuMMX},
493 {".sse", PROCESSOR_UNKNOWN,
494 CpuMMX|CpuMMX2|CpuSSE},
495 {".sse2", PROCESSOR_UNKNOWN,
496 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2},
497 {".sse3", PROCESSOR_UNKNOWN,
498 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3},
499 {".ssse3", PROCESSOR_UNKNOWN,
500 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3},
501 {".sse4.1", PROCESSOR_UNKNOWN,
502 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3|CpuSSE4_1},
503 {".sse4.2", PROCESSOR_UNKNOWN,
504 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3|CpuSSE4},
505 {".sse4", PROCESSOR_UNKNOWN,
506 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSSE3|CpuSSE4},
507 {".3dnow", PROCESSOR_UNKNOWN,
508 CpuMMX|Cpu3dnow},
509 {".3dnowa", PROCESSOR_UNKNOWN,
510 CpuMMX|CpuMMX2|Cpu3dnow|Cpu3dnowA},
511 {".padlock", PROCESSOR_UNKNOWN,
512 CpuPadLock},
513 {".pacifica", PROCESSOR_UNKNOWN,
514 CpuSVME},
515 {".svme", PROCESSOR_UNKNOWN,
516 CpuSVME},
517 {".sse4a", PROCESSOR_UNKNOWN,
518 CpuMMX|CpuMMX2|CpuSSE|CpuSSE2|CpuSSE3|CpuSSE4a},
519 {".abm", PROCESSOR_UNKNOWN,
520 CpuABM}
521 };
522
523 const pseudo_typeS md_pseudo_table[] =
524 {
525 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
526 {"align", s_align_bytes, 0},
527 #else
528 {"align", s_align_ptwo, 0},
529 #endif
530 {"arch", set_cpu_arch, 0},
531 #ifndef I386COFF
532 {"bss", s_bss, 0},
533 #endif
534 {"ffloat", float_cons, 'f'},
535 {"dfloat", float_cons, 'd'},
536 {"tfloat", float_cons, 'x'},
537 {"value", cons, 2},
538 {"slong", signed_cons, 4},
539 {"noopt", s_ignore, 0},
540 {"optim", s_ignore, 0},
541 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
542 {"code16", set_code_flag, CODE_16BIT},
543 {"code32", set_code_flag, CODE_32BIT},
544 {"code64", set_code_flag, CODE_64BIT},
545 {"intel_syntax", set_intel_syntax, 1},
546 {"att_syntax", set_intel_syntax, 0},
547 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
548 {"largecomm", handle_large_common, 0},
549 #else
550 {"file", (void (*) (int)) dwarf2_directive_file, 0},
551 {"loc", dwarf2_directive_loc, 0},
552 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
553 #endif
554 #ifdef TE_PE
555 {"secrel32", pe_directive_secrel, 0},
556 #endif
557 {0, 0, 0}
558 };
559
560 /* For interface with expression (). */
561 extern char *input_line_pointer;
562
563 /* Hash table for instruction mnemonic lookup. */
564 static struct hash_control *op_hash;
565
566 /* Hash table for register lookup. */
567 static struct hash_control *reg_hash;
568 \f
569 void
570 i386_align_code (fragS *fragP, int count)
571 {
572 /* Various efficient no-op patterns for aligning code labels.
573 Note: Don't try to assemble the instructions in the comments.
574 0L and 0w are not legal. */
575 static const char f32_1[] =
576 {0x90}; /* nop */
577 static const char f32_2[] =
578 {0x66,0x90}; /* xchg %ax,%ax */
579 static const char f32_3[] =
580 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
581 static const char f32_4[] =
582 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
583 static const char f32_5[] =
584 {0x90, /* nop */
585 0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
586 static const char f32_6[] =
587 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
588 static const char f32_7[] =
589 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
590 static const char f32_8[] =
591 {0x90, /* nop */
592 0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
593 static const char f32_9[] =
594 {0x89,0xf6, /* movl %esi,%esi */
595 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
596 static const char f32_10[] =
597 {0x8d,0x76,0x00, /* leal 0(%esi),%esi */
598 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
599 static const char f32_11[] =
600 {0x8d,0x74,0x26,0x00, /* leal 0(%esi,1),%esi */
601 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
602 static const char f32_12[] =
603 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
604 0x8d,0xbf,0x00,0x00,0x00,0x00}; /* leal 0L(%edi),%edi */
605 static const char f32_13[] =
606 {0x8d,0xb6,0x00,0x00,0x00,0x00, /* leal 0L(%esi),%esi */
607 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
608 static const char f32_14[] =
609 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00, /* leal 0L(%esi,1),%esi */
610 0x8d,0xbc,0x27,0x00,0x00,0x00,0x00}; /* leal 0L(%edi,1),%edi */
611 static const char f16_3[] =
612 {0x8d,0x74,0x00}; /* lea 0(%esi),%esi */
613 static const char f16_4[] =
614 {0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
615 static const char f16_5[] =
616 {0x90, /* nop */
617 0x8d,0xb4,0x00,0x00}; /* lea 0w(%si),%si */
618 static const char f16_6[] =
619 {0x89,0xf6, /* mov %si,%si */
620 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
621 static const char f16_7[] =
622 {0x8d,0x74,0x00, /* lea 0(%si),%si */
623 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
624 static const char f16_8[] =
625 {0x8d,0xb4,0x00,0x00, /* lea 0w(%si),%si */
626 0x8d,0xbd,0x00,0x00}; /* lea 0w(%di),%di */
627 static const char jump_31[] =
628 {0xeb,0x1d,0x90,0x90,0x90,0x90,0x90, /* jmp .+31; lotsa nops */
629 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
630 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90,
631 0x90,0x90,0x90,0x90,0x90,0x90,0x90,0x90};
632 static const char *const f32_patt[] = {
633 f32_1, f32_2, f32_3, f32_4, f32_5, f32_6, f32_7, f32_8,
634 f32_9, f32_10, f32_11, f32_12, f32_13, f32_14
635 };
636 static const char *const f16_patt[] = {
637 f32_1, f32_2, f16_3, f16_4, f16_5, f16_6, f16_7, f16_8
638 };
639 /* nopl (%[re]ax) */
640 static const char alt_3[] =
641 {0x0f,0x1f,0x00};
642 /* nopl 0(%[re]ax) */
643 static const char alt_4[] =
644 {0x0f,0x1f,0x40,0x00};
645 /* nopl 0(%[re]ax,%[re]ax,1) */
646 static const char alt_5[] =
647 {0x0f,0x1f,0x44,0x00,0x00};
648 /* nopw 0(%[re]ax,%[re]ax,1) */
649 static const char alt_6[] =
650 {0x66,0x0f,0x1f,0x44,0x00,0x00};
651 /* nopl 0L(%[re]ax) */
652 static const char alt_7[] =
653 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
654 /* nopl 0L(%[re]ax,%[re]ax,1) */
655 static const char alt_8[] =
656 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
657 /* nopw 0L(%[re]ax,%[re]ax,1) */
658 static const char alt_9[] =
659 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
660 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
661 static const char alt_10[] =
662 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
663 /* data16
664 nopw %cs:0L(%[re]ax,%[re]ax,1) */
665 static const char alt_long_11[] =
666 {0x66,
667 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
668 /* data16
669 data16
670 nopw %cs:0L(%[re]ax,%[re]ax,1) */
671 static const char alt_long_12[] =
672 {0x66,
673 0x66,
674 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
675 /* data16
676 data16
677 data16
678 nopw %cs:0L(%[re]ax,%[re]ax,1) */
679 static const char alt_long_13[] =
680 {0x66,
681 0x66,
682 0x66,
683 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
684 /* data16
685 data16
686 data16
687 data16
688 nopw %cs:0L(%[re]ax,%[re]ax,1) */
689 static const char alt_long_14[] =
690 {0x66,
691 0x66,
692 0x66,
693 0x66,
694 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
695 /* data16
696 data16
697 data16
698 data16
699 data16
700 nopw %cs:0L(%[re]ax,%[re]ax,1) */
701 static const char alt_long_15[] =
702 {0x66,
703 0x66,
704 0x66,
705 0x66,
706 0x66,
707 0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
708 /* nopl 0(%[re]ax,%[re]ax,1)
709 nopw 0(%[re]ax,%[re]ax,1) */
710 static const char alt_short_11[] =
711 {0x0f,0x1f,0x44,0x00,0x00,
712 0x66,0x0f,0x1f,0x44,0x00,0x00};
713 /* nopw 0(%[re]ax,%[re]ax,1)
714 nopw 0(%[re]ax,%[re]ax,1) */
715 static const char alt_short_12[] =
716 {0x66,0x0f,0x1f,0x44,0x00,0x00,
717 0x66,0x0f,0x1f,0x44,0x00,0x00};
718 /* nopw 0(%[re]ax,%[re]ax,1)
719 nopl 0L(%[re]ax) */
720 static const char alt_short_13[] =
721 {0x66,0x0f,0x1f,0x44,0x00,0x00,
722 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
723 /* nopl 0L(%[re]ax)
724 nopl 0L(%[re]ax) */
725 static const char alt_short_14[] =
726 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
727 0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
728 /* nopl 0L(%[re]ax)
729 nopl 0L(%[re]ax,%[re]ax,1) */
730 static const char alt_short_15[] =
731 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00,
732 0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
733 static const char *const alt_short_patt[] = {
734 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
735 alt_9, alt_10, alt_short_11, alt_short_12, alt_short_13,
736 alt_short_14, alt_short_15
737 };
738 static const char *const alt_long_patt[] = {
739 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
740 alt_9, alt_10, alt_long_11, alt_long_12, alt_long_13,
741 alt_long_14, alt_long_15
742 };
743
744 /* Only align for at least a positive non-zero boundary. */
745 if (count <= 0 || count > MAX_MEM_FOR_RS_ALIGN_CODE)
746 return;
747
748 /* We need to decide which NOP sequence to use for 32bit and
749 64bit. When -mtune= is used:
750
751 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
752 PROCESSOR_GENERIC32, f32_patt will be used.
753 2. For PROCESSOR_PENTIUMPRO, PROCESSOR_PENTIUM4, PROCESSOR_NOCONA,
754 PROCESSOR_CORE, PROCESSOR_CORE2, and PROCESSOR_GENERIC64,
755 alt_long_patt will be used.
756 3. For PROCESSOR_ATHLON, PROCESSOR_K6, PROCESSOR_K8 and
757 PROCESSOR_AMDFAM10, alt_short_patt will be used.
758
759 When -mtune= isn't used, alt_long_patt will be used if
760 cpu_arch_isa_flags has Cpu686. Otherwise, f32_patt will
761 be used.
762
763 When -march= or .arch is used, we can't use anything beyond
764 cpu_arch_isa_flags. */
765
766 if (flag_code == CODE_16BIT)
767 {
768 if (count > 8)
769 {
770 memcpy (fragP->fr_literal + fragP->fr_fix,
771 jump_31, count);
772 /* Adjust jump offset. */
773 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
774 }
775 else
776 memcpy (fragP->fr_literal + fragP->fr_fix,
777 f16_patt[count - 1], count);
778 }
779 else
780 {
781 const char *const *patt = NULL;
782
783 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
784 {
785 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
786 switch (cpu_arch_tune)
787 {
788 case PROCESSOR_UNKNOWN:
789 /* We use cpu_arch_isa_flags to check if we SHOULD
790 optimize for Cpu686. */
791 if ((cpu_arch_isa_flags & Cpu686) != 0)
792 patt = alt_long_patt;
793 else
794 patt = f32_patt;
795 break;
796 case PROCESSOR_PENTIUMPRO:
797 case PROCESSOR_PENTIUM4:
798 case PROCESSOR_NOCONA:
799 case PROCESSOR_CORE:
800 case PROCESSOR_CORE2:
801 case PROCESSOR_GENERIC64:
802 patt = alt_long_patt;
803 break;
804 case PROCESSOR_K6:
805 case PROCESSOR_ATHLON:
806 case PROCESSOR_K8:
807 case PROCESSOR_AMDFAM10:
808 patt = alt_short_patt;
809 break;
810 case PROCESSOR_I386:
811 case PROCESSOR_I486:
812 case PROCESSOR_PENTIUM:
813 case PROCESSOR_GENERIC32:
814 patt = f32_patt;
815 break;
816 }
817 }
818 else
819 {
820 switch (cpu_arch_tune)
821 {
822 case PROCESSOR_UNKNOWN:
823 /* When cpu_arch_isa is net, cpu_arch_tune shouldn't be
824 PROCESSOR_UNKNOWN. */
825 abort ();
826 break;
827
828 case PROCESSOR_I386:
829 case PROCESSOR_I486:
830 case PROCESSOR_PENTIUM:
831 case PROCESSOR_K6:
832 case PROCESSOR_ATHLON:
833 case PROCESSOR_K8:
834 case PROCESSOR_AMDFAM10:
835 case PROCESSOR_GENERIC32:
836 /* We use cpu_arch_isa_flags to check if we CAN optimize
837 for Cpu686. */
838 if ((cpu_arch_isa_flags & Cpu686) != 0)
839 patt = alt_short_patt;
840 else
841 patt = f32_patt;
842 break;
843 case PROCESSOR_PENTIUMPRO:
844 case PROCESSOR_PENTIUM4:
845 case PROCESSOR_NOCONA:
846 case PROCESSOR_CORE:
847 case PROCESSOR_CORE2:
848 if ((cpu_arch_isa_flags & Cpu686) != 0)
849 patt = alt_long_patt;
850 else
851 patt = f32_patt;
852 break;
853 case PROCESSOR_GENERIC64:
854 patt = alt_long_patt;
855 break;
856 }
857 }
858
859 if (patt == f32_patt)
860 {
861 /* If the padding is less than 15 bytes, we use the normal
862 ones. Otherwise, we use a jump instruction and adjust
863 its offset. */
864 if (count < 15)
865 memcpy (fragP->fr_literal + fragP->fr_fix,
866 patt[count - 1], count);
867 else
868 {
869 memcpy (fragP->fr_literal + fragP->fr_fix,
870 jump_31, count);
871 /* Adjust jump offset. */
872 fragP->fr_literal[fragP->fr_fix + 1] = count - 2;
873 }
874 }
875 else
876 {
877 /* Maximum length of an instruction is 15 byte. If the
878 padding is greater than 15 bytes and we don't use jump,
879 we have to break it into smaller pieces. */
880 int padding = count;
881 while (padding > 15)
882 {
883 padding -= 15;
884 memcpy (fragP->fr_literal + fragP->fr_fix + padding,
885 patt [14], 15);
886 }
887
888 if (padding)
889 memcpy (fragP->fr_literal + fragP->fr_fix,
890 patt [padding - 1], padding);
891 }
892 }
893 fragP->fr_var = count;
894 }
895
896 static INLINE unsigned int
897 mode_from_disp_size (unsigned int t)
898 {
899 return (t & Disp8) ? 1 : (t & (Disp16 | Disp32 | Disp32S)) ? 2 : 0;
900 }
901
902 static INLINE int
903 fits_in_signed_byte (offsetT num)
904 {
905 return (num >= -128) && (num <= 127);
906 }
907
908 static INLINE int
909 fits_in_unsigned_byte (offsetT num)
910 {
911 return (num & 0xff) == num;
912 }
913
914 static INLINE int
915 fits_in_unsigned_word (offsetT num)
916 {
917 return (num & 0xffff) == num;
918 }
919
920 static INLINE int
921 fits_in_signed_word (offsetT num)
922 {
923 return (-32768 <= num) && (num <= 32767);
924 }
925
926 static INLINE int
927 fits_in_signed_long (offsetT num ATTRIBUTE_UNUSED)
928 {
929 #ifndef BFD64
930 return 1;
931 #else
932 return (!(((offsetT) -1 << 31) & num)
933 || (((offsetT) -1 << 31) & num) == ((offsetT) -1 << 31));
934 #endif
935 } /* fits_in_signed_long() */
936
937 static INLINE int
938 fits_in_unsigned_long (offsetT num ATTRIBUTE_UNUSED)
939 {
940 #ifndef BFD64
941 return 1;
942 #else
943 return (num & (((offsetT) 2 << 31) - 1)) == num;
944 #endif
945 } /* fits_in_unsigned_long() */
946
947 static unsigned int
948 smallest_imm_type (offsetT num)
949 {
950 if (cpu_arch_flags != (Cpu186 | Cpu286 | Cpu386 | Cpu486 | CpuNo64))
951 {
952 /* This code is disabled on the 486 because all the Imm1 forms
953 in the opcode table are slower on the i486. They're the
954 versions with the implicitly specified single-position
955 displacement, which has another syntax if you really want to
956 use that form. */
957 if (num == 1)
958 return Imm1 | Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64;
959 }
960 return (fits_in_signed_byte (num)
961 ? (Imm8S | Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
962 : fits_in_unsigned_byte (num)
963 ? (Imm8 | Imm16 | Imm32 | Imm32S | Imm64)
964 : (fits_in_signed_word (num) || fits_in_unsigned_word (num))
965 ? (Imm16 | Imm32 | Imm32S | Imm64)
966 : fits_in_signed_long (num)
967 ? (Imm32 | Imm32S | Imm64)
968 : fits_in_unsigned_long (num)
969 ? (Imm32 | Imm64)
970 : Imm64);
971 }
972
973 static offsetT
974 offset_in_range (offsetT val, int size)
975 {
976 addressT mask;
977
978 switch (size)
979 {
980 case 1: mask = ((addressT) 1 << 8) - 1; break;
981 case 2: mask = ((addressT) 1 << 16) - 1; break;
982 case 4: mask = ((addressT) 2 << 31) - 1; break;
983 #ifdef BFD64
984 case 8: mask = ((addressT) 2 << 63) - 1; break;
985 #endif
986 default: abort ();
987 }
988
989 /* If BFD64, sign extend val. */
990 if (!use_rela_relocations)
991 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
992 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
993
994 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
995 {
996 char buf1[40], buf2[40];
997
998 sprint_value (buf1, val);
999 sprint_value (buf2, val & mask);
1000 as_warn (_("%s shortened to %s"), buf1, buf2);
1001 }
1002 return val & mask;
1003 }
1004
1005 /* Returns 0 if attempting to add a prefix where one from the same
1006 class already exists, 1 if non rep/repne added, 2 if rep/repne
1007 added. */
1008 static int
1009 add_prefix (unsigned int prefix)
1010 {
1011 int ret = 1;
1012 unsigned int q;
1013
1014 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
1015 && flag_code == CODE_64BIT)
1016 {
1017 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
1018 || ((i.prefix[REX_PREFIX] & (REX_R | REX_X | REX_B))
1019 && (prefix & (REX_R | REX_X | REX_B))))
1020 ret = 0;
1021 q = REX_PREFIX;
1022 }
1023 else
1024 {
1025 switch (prefix)
1026 {
1027 default:
1028 abort ();
1029
1030 case CS_PREFIX_OPCODE:
1031 case DS_PREFIX_OPCODE:
1032 case ES_PREFIX_OPCODE:
1033 case FS_PREFIX_OPCODE:
1034 case GS_PREFIX_OPCODE:
1035 case SS_PREFIX_OPCODE:
1036 q = SEG_PREFIX;
1037 break;
1038
1039 case REPNE_PREFIX_OPCODE:
1040 case REPE_PREFIX_OPCODE:
1041 ret = 2;
1042 /* fall thru */
1043 case LOCK_PREFIX_OPCODE:
1044 q = LOCKREP_PREFIX;
1045 break;
1046
1047 case FWAIT_OPCODE:
1048 q = WAIT_PREFIX;
1049 break;
1050
1051 case ADDR_PREFIX_OPCODE:
1052 q = ADDR_PREFIX;
1053 break;
1054
1055 case DATA_PREFIX_OPCODE:
1056 q = DATA_PREFIX;
1057 break;
1058 }
1059 if (i.prefix[q] != 0)
1060 ret = 0;
1061 }
1062
1063 if (ret)
1064 {
1065 if (!i.prefix[q])
1066 ++i.prefixes;
1067 i.prefix[q] |= prefix;
1068 }
1069 else
1070 as_bad (_("same type of prefix used twice"));
1071
1072 return ret;
1073 }
1074
1075 static void
1076 set_code_flag (int value)
1077 {
1078 flag_code = value;
1079 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
1080 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
1081 if (value == CODE_64BIT && !(cpu_arch_flags & CpuSledgehammer))
1082 {
1083 as_bad (_("64bit mode not supported on this CPU."));
1084 }
1085 if (value == CODE_32BIT && !(cpu_arch_flags & Cpu386))
1086 {
1087 as_bad (_("32bit mode not supported on this CPU."));
1088 }
1089 stackop_size = '\0';
1090 }
1091
1092 static void
1093 set_16bit_gcc_code_flag (int new_code_flag)
1094 {
1095 flag_code = new_code_flag;
1096 cpu_arch_flags &= ~(Cpu64 | CpuNo64);
1097 cpu_arch_flags |= (flag_code == CODE_64BIT ? Cpu64 : CpuNo64);
1098 stackop_size = LONG_MNEM_SUFFIX;
1099 }
1100
1101 static void
1102 set_intel_syntax (int syntax_flag)
1103 {
1104 /* Find out if register prefixing is specified. */
1105 int ask_naked_reg = 0;
1106
1107 SKIP_WHITESPACE ();
1108 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1109 {
1110 char *string = input_line_pointer;
1111 int e = get_symbol_end ();
1112
1113 if (strcmp (string, "prefix") == 0)
1114 ask_naked_reg = 1;
1115 else if (strcmp (string, "noprefix") == 0)
1116 ask_naked_reg = -1;
1117 else
1118 as_bad (_("bad argument to syntax directive."));
1119 *input_line_pointer = e;
1120 }
1121 demand_empty_rest_of_line ();
1122
1123 intel_syntax = syntax_flag;
1124
1125 if (ask_naked_reg == 0)
1126 allow_naked_reg = (intel_syntax
1127 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
1128 else
1129 allow_naked_reg = (ask_naked_reg < 0);
1130
1131 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
1132 identifier_chars['$'] = intel_syntax ? '$' : 0;
1133 register_prefix = allow_naked_reg ? "" : "%";
1134 }
1135
1136 static void
1137 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
1138 {
1139 SKIP_WHITESPACE ();
1140
1141 if (!is_end_of_line[(unsigned char) *input_line_pointer])
1142 {
1143 char *string = input_line_pointer;
1144 int e = get_symbol_end ();
1145 unsigned int i;
1146
1147 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
1148 {
1149 if (strcmp (string, cpu_arch[i].name) == 0)
1150 {
1151 if (*string != '.')
1152 {
1153 cpu_arch_name = cpu_arch[i].name;
1154 cpu_sub_arch_name = NULL;
1155 cpu_arch_flags = (cpu_arch[i].flags
1156 | (flag_code == CODE_64BIT
1157 ? Cpu64 : CpuNo64));
1158 cpu_arch_isa = cpu_arch[i].type;
1159 cpu_arch_isa_flags = cpu_arch[i].flags;
1160 if (!cpu_arch_tune_set)
1161 {
1162 cpu_arch_tune = cpu_arch_isa;
1163 cpu_arch_tune_flags = cpu_arch_isa_flags;
1164 }
1165 break;
1166 }
1167 if ((cpu_arch_flags | cpu_arch[i].flags) != cpu_arch_flags)
1168 {
1169 cpu_sub_arch_name = cpu_arch[i].name;
1170 cpu_arch_flags |= cpu_arch[i].flags;
1171 }
1172 *input_line_pointer = e;
1173 demand_empty_rest_of_line ();
1174 return;
1175 }
1176 }
1177 if (i >= ARRAY_SIZE (cpu_arch))
1178 as_bad (_("no such architecture: `%s'"), string);
1179
1180 *input_line_pointer = e;
1181 }
1182 else
1183 as_bad (_("missing cpu architecture"));
1184
1185 no_cond_jump_promotion = 0;
1186 if (*input_line_pointer == ','
1187 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
1188 {
1189 char *string = ++input_line_pointer;
1190 int e = get_symbol_end ();
1191
1192 if (strcmp (string, "nojumps") == 0)
1193 no_cond_jump_promotion = 1;
1194 else if (strcmp (string, "jumps") == 0)
1195 ;
1196 else
1197 as_bad (_("no such architecture modifier: `%s'"), string);
1198
1199 *input_line_pointer = e;
1200 }
1201
1202 demand_empty_rest_of_line ();
1203 }
1204
1205 unsigned long
1206 i386_mach ()
1207 {
1208 if (!strcmp (default_arch, "x86_64"))
1209 return bfd_mach_x86_64;
1210 else if (!strcmp (default_arch, "i386"))
1211 return bfd_mach_i386_i386;
1212 else
1213 as_fatal (_("Unknown architecture"));
1214 }
1215 \f
1216 void
1217 md_begin ()
1218 {
1219 const char *hash_err;
1220
1221 /* Initialize op_hash hash table. */
1222 op_hash = hash_new ();
1223
1224 {
1225 const template *optab;
1226 templates *core_optab;
1227
1228 /* Setup for loop. */
1229 optab = i386_optab;
1230 core_optab = (templates *) xmalloc (sizeof (templates));
1231 core_optab->start = optab;
1232
1233 while (1)
1234 {
1235 ++optab;
1236 if (optab->name == NULL
1237 || strcmp (optab->name, (optab - 1)->name) != 0)
1238 {
1239 /* different name --> ship out current template list;
1240 add to hash table; & begin anew. */
1241 core_optab->end = optab;
1242 hash_err = hash_insert (op_hash,
1243 (optab - 1)->name,
1244 (PTR) core_optab);
1245 if (hash_err)
1246 {
1247 as_fatal (_("Internal Error: Can't hash %s: %s"),
1248 (optab - 1)->name,
1249 hash_err);
1250 }
1251 if (optab->name == NULL)
1252 break;
1253 core_optab = (templates *) xmalloc (sizeof (templates));
1254 core_optab->start = optab;
1255 }
1256 }
1257 }
1258
1259 /* Initialize reg_hash hash table. */
1260 reg_hash = hash_new ();
1261 {
1262 const reg_entry *regtab;
1263 unsigned int regtab_size = i386_regtab_size;
1264
1265 for (regtab = i386_regtab; regtab_size--; regtab++)
1266 {
1267 hash_err = hash_insert (reg_hash, regtab->reg_name, (PTR) regtab);
1268 if (hash_err)
1269 as_fatal (_("Internal Error: Can't hash %s: %s"),
1270 regtab->reg_name,
1271 hash_err);
1272 }
1273 }
1274
1275 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
1276 {
1277 int c;
1278 char *p;
1279
1280 for (c = 0; c < 256; c++)
1281 {
1282 if (ISDIGIT (c))
1283 {
1284 digit_chars[c] = c;
1285 mnemonic_chars[c] = c;
1286 register_chars[c] = c;
1287 operand_chars[c] = c;
1288 }
1289 else if (ISLOWER (c))
1290 {
1291 mnemonic_chars[c] = c;
1292 register_chars[c] = c;
1293 operand_chars[c] = c;
1294 }
1295 else if (ISUPPER (c))
1296 {
1297 mnemonic_chars[c] = TOLOWER (c);
1298 register_chars[c] = mnemonic_chars[c];
1299 operand_chars[c] = c;
1300 }
1301
1302 if (ISALPHA (c) || ISDIGIT (c))
1303 identifier_chars[c] = c;
1304 else if (c >= 128)
1305 {
1306 identifier_chars[c] = c;
1307 operand_chars[c] = c;
1308 }
1309 }
1310
1311 #ifdef LEX_AT
1312 identifier_chars['@'] = '@';
1313 #endif
1314 #ifdef LEX_QM
1315 identifier_chars['?'] = '?';
1316 operand_chars['?'] = '?';
1317 #endif
1318 digit_chars['-'] = '-';
1319 mnemonic_chars['-'] = '-';
1320 mnemonic_chars['.'] = '.';
1321 identifier_chars['_'] = '_';
1322 identifier_chars['.'] = '.';
1323
1324 for (p = operand_special_chars; *p != '\0'; p++)
1325 operand_chars[(unsigned char) *p] = *p;
1326 }
1327
1328 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1329 if (IS_ELF)
1330 {
1331 record_alignment (text_section, 2);
1332 record_alignment (data_section, 2);
1333 record_alignment (bss_section, 2);
1334 }
1335 #endif
1336
1337 if (flag_code == CODE_64BIT)
1338 {
1339 x86_dwarf2_return_column = 16;
1340 x86_cie_data_alignment = -8;
1341 }
1342 else
1343 {
1344 x86_dwarf2_return_column = 8;
1345 x86_cie_data_alignment = -4;
1346 }
1347 }
1348
1349 void
1350 i386_print_statistics (FILE *file)
1351 {
1352 hash_print_statistics (file, "i386 opcode", op_hash);
1353 hash_print_statistics (file, "i386 register", reg_hash);
1354 }
1355 \f
1356 #ifdef DEBUG386
1357
1358 /* Debugging routines for md_assemble. */
1359 static void pte (template *);
1360 static void pt (unsigned int);
1361 static void pe (expressionS *);
1362 static void ps (symbolS *);
1363
1364 static void
1365 pi (char *line, i386_insn *x)
1366 {
1367 unsigned int i;
1368
1369 fprintf (stdout, "%s: template ", line);
1370 pte (&x->tm);
1371 fprintf (stdout, " address: base %s index %s scale %x\n",
1372 x->base_reg ? x->base_reg->reg_name : "none",
1373 x->index_reg ? x->index_reg->reg_name : "none",
1374 x->log2_scale_factor);
1375 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
1376 x->rm.mode, x->rm.reg, x->rm.regmem);
1377 fprintf (stdout, " sib: base %x index %x scale %x\n",
1378 x->sib.base, x->sib.index, x->sib.scale);
1379 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
1380 (x->rex & REX_W) != 0,
1381 (x->rex & REX_R) != 0,
1382 (x->rex & REX_X) != 0,
1383 (x->rex & REX_B) != 0);
1384 for (i = 0; i < x->operands; i++)
1385 {
1386 fprintf (stdout, " #%d: ", i + 1);
1387 pt (x->types[i]);
1388 fprintf (stdout, "\n");
1389 if (x->types[i]
1390 & (Reg | SReg2 | SReg3 | Control | Debug | Test | RegMMX | RegXMM))
1391 fprintf (stdout, "%s\n", x->op[i].regs->reg_name);
1392 if (x->types[i] & Imm)
1393 pe (x->op[i].imms);
1394 if (x->types[i] & Disp)
1395 pe (x->op[i].disps);
1396 }
1397 }
1398
1399 static void
1400 pte (template *t)
1401 {
1402 unsigned int i;
1403 fprintf (stdout, " %d operands ", t->operands);
1404 fprintf (stdout, "opcode %x ", t->base_opcode);
1405 if (t->extension_opcode != None)
1406 fprintf (stdout, "ext %x ", t->extension_opcode);
1407 if (t->opcode_modifier & D)
1408 fprintf (stdout, "D");
1409 if (t->opcode_modifier & W)
1410 fprintf (stdout, "W");
1411 fprintf (stdout, "\n");
1412 for (i = 0; i < t->operands; i++)
1413 {
1414 fprintf (stdout, " #%d type ", i + 1);
1415 pt (t->operand_types[i]);
1416 fprintf (stdout, "\n");
1417 }
1418 }
1419
1420 static void
1421 pe (expressionS *e)
1422 {
1423 fprintf (stdout, " operation %d\n", e->X_op);
1424 fprintf (stdout, " add_number %ld (%lx)\n",
1425 (long) e->X_add_number, (long) e->X_add_number);
1426 if (e->X_add_symbol)
1427 {
1428 fprintf (stdout, " add_symbol ");
1429 ps (e->X_add_symbol);
1430 fprintf (stdout, "\n");
1431 }
1432 if (e->X_op_symbol)
1433 {
1434 fprintf (stdout, " op_symbol ");
1435 ps (e->X_op_symbol);
1436 fprintf (stdout, "\n");
1437 }
1438 }
1439
1440 static void
1441 ps (symbolS *s)
1442 {
1443 fprintf (stdout, "%s type %s%s",
1444 S_GET_NAME (s),
1445 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
1446 segment_name (S_GET_SEGMENT (s)));
1447 }
1448
1449 static struct type_name
1450 {
1451 unsigned int mask;
1452 char *tname;
1453 }
1454 const type_names[] =
1455 {
1456 { Reg8, "r8" },
1457 { Reg16, "r16" },
1458 { Reg32, "r32" },
1459 { Reg64, "r64" },
1460 { Imm8, "i8" },
1461 { Imm8S, "i8s" },
1462 { Imm16, "i16" },
1463 { Imm32, "i32" },
1464 { Imm32S, "i32s" },
1465 { Imm64, "i64" },
1466 { Imm1, "i1" },
1467 { BaseIndex, "BaseIndex" },
1468 { Disp8, "d8" },
1469 { Disp16, "d16" },
1470 { Disp32, "d32" },
1471 { Disp32S, "d32s" },
1472 { Disp64, "d64" },
1473 { InOutPortReg, "InOutPortReg" },
1474 { ShiftCount, "ShiftCount" },
1475 { Control, "control reg" },
1476 { Test, "test reg" },
1477 { Debug, "debug reg" },
1478 { FloatReg, "FReg" },
1479 { FloatAcc, "FAcc" },
1480 { SReg2, "SReg2" },
1481 { SReg3, "SReg3" },
1482 { Acc, "Acc" },
1483 { JumpAbsolute, "Jump Absolute" },
1484 { RegMMX, "rMMX" },
1485 { RegXMM, "rXMM" },
1486 { EsSeg, "es" },
1487 { 0, "" }
1488 };
1489
1490 static void
1491 pt (t)
1492 unsigned int t;
1493 {
1494 const struct type_name *ty;
1495
1496 for (ty = type_names; ty->mask; ty++)
1497 if (t & ty->mask)
1498 fprintf (stdout, "%s, ", ty->tname);
1499 fflush (stdout);
1500 }
1501
1502 #endif /* DEBUG386 */
1503 \f
1504 static bfd_reloc_code_real_type
1505 reloc (unsigned int size,
1506 int pcrel,
1507 int sign,
1508 bfd_reloc_code_real_type other)
1509 {
1510 if (other != NO_RELOC)
1511 {
1512 reloc_howto_type *reloc;
1513
1514 if (size == 8)
1515 switch (other)
1516 {
1517 case BFD_RELOC_X86_64_GOT32:
1518 return BFD_RELOC_X86_64_GOT64;
1519 break;
1520 case BFD_RELOC_X86_64_PLTOFF64:
1521 return BFD_RELOC_X86_64_PLTOFF64;
1522 break;
1523 case BFD_RELOC_X86_64_GOTPC32:
1524 other = BFD_RELOC_X86_64_GOTPC64;
1525 break;
1526 case BFD_RELOC_X86_64_GOTPCREL:
1527 other = BFD_RELOC_X86_64_GOTPCREL64;
1528 break;
1529 case BFD_RELOC_X86_64_TPOFF32:
1530 other = BFD_RELOC_X86_64_TPOFF64;
1531 break;
1532 case BFD_RELOC_X86_64_DTPOFF32:
1533 other = BFD_RELOC_X86_64_DTPOFF64;
1534 break;
1535 default:
1536 break;
1537 }
1538
1539 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
1540 if (size == 4 && flag_code != CODE_64BIT)
1541 sign = -1;
1542
1543 reloc = bfd_reloc_type_lookup (stdoutput, other);
1544 if (!reloc)
1545 as_bad (_("unknown relocation (%u)"), other);
1546 else if (size != bfd_get_reloc_size (reloc))
1547 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
1548 bfd_get_reloc_size (reloc),
1549 size);
1550 else if (pcrel && !reloc->pc_relative)
1551 as_bad (_("non-pc-relative relocation for pc-relative field"));
1552 else if ((reloc->complain_on_overflow == complain_overflow_signed
1553 && !sign)
1554 || (reloc->complain_on_overflow == complain_overflow_unsigned
1555 && sign > 0))
1556 as_bad (_("relocated field and relocation type differ in signedness"));
1557 else
1558 return other;
1559 return NO_RELOC;
1560 }
1561
1562 if (pcrel)
1563 {
1564 if (!sign)
1565 as_bad (_("there are no unsigned pc-relative relocations"));
1566 switch (size)
1567 {
1568 case 1: return BFD_RELOC_8_PCREL;
1569 case 2: return BFD_RELOC_16_PCREL;
1570 case 4: return BFD_RELOC_32_PCREL;
1571 case 8: return BFD_RELOC_64_PCREL;
1572 }
1573 as_bad (_("cannot do %u byte pc-relative relocation"), size);
1574 }
1575 else
1576 {
1577 if (sign > 0)
1578 switch (size)
1579 {
1580 case 4: return BFD_RELOC_X86_64_32S;
1581 }
1582 else
1583 switch (size)
1584 {
1585 case 1: return BFD_RELOC_8;
1586 case 2: return BFD_RELOC_16;
1587 case 4: return BFD_RELOC_32;
1588 case 8: return BFD_RELOC_64;
1589 }
1590 as_bad (_("cannot do %s %u byte relocation"),
1591 sign > 0 ? "signed" : "unsigned", size);
1592 }
1593
1594 abort ();
1595 return BFD_RELOC_NONE;
1596 }
1597
1598 /* Here we decide which fixups can be adjusted to make them relative to
1599 the beginning of the section instead of the symbol. Basically we need
1600 to make sure that the dynamic relocations are done correctly, so in
1601 some cases we force the original symbol to be used. */
1602
1603 int
1604 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
1605 {
1606 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1607 if (!IS_ELF)
1608 return 1;
1609
1610 /* Don't adjust pc-relative references to merge sections in 64-bit
1611 mode. */
1612 if (use_rela_relocations
1613 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
1614 && fixP->fx_pcrel)
1615 return 0;
1616
1617 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
1618 and changed later by validate_fix. */
1619 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
1620 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
1621 return 0;
1622
1623 /* adjust_reloc_syms doesn't know about the GOT. */
1624 if (fixP->fx_r_type == BFD_RELOC_386_GOTOFF
1625 || fixP->fx_r_type == BFD_RELOC_386_PLT32
1626 || fixP->fx_r_type == BFD_RELOC_386_GOT32
1627 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
1628 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
1629 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
1630 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
1631 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
1632 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
1633 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
1634 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
1635 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
1636 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
1637 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
1638 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
1639 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
1640 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
1641 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
1642 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
1643 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
1644 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
1645 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
1646 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
1647 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
1648 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
1649 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
1650 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
1651 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
1652 return 0;
1653 #endif
1654 return 1;
1655 }
1656
1657 static int
1658 intel_float_operand (const char *mnemonic)
1659 {
1660 /* Note that the value returned is meaningful only for opcodes with (memory)
1661 operands, hence the code here is free to improperly handle opcodes that
1662 have no operands (for better performance and smaller code). */
1663
1664 if (mnemonic[0] != 'f')
1665 return 0; /* non-math */
1666
1667 switch (mnemonic[1])
1668 {
1669 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
1670 the fs segment override prefix not currently handled because no
1671 call path can make opcodes without operands get here */
1672 case 'i':
1673 return 2 /* integer op */;
1674 case 'l':
1675 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
1676 return 3; /* fldcw/fldenv */
1677 break;
1678 case 'n':
1679 if (mnemonic[2] != 'o' /* fnop */)
1680 return 3; /* non-waiting control op */
1681 break;
1682 case 'r':
1683 if (mnemonic[2] == 's')
1684 return 3; /* frstor/frstpm */
1685 break;
1686 case 's':
1687 if (mnemonic[2] == 'a')
1688 return 3; /* fsave */
1689 if (mnemonic[2] == 't')
1690 {
1691 switch (mnemonic[3])
1692 {
1693 case 'c': /* fstcw */
1694 case 'd': /* fstdw */
1695 case 'e': /* fstenv */
1696 case 's': /* fsts[gw] */
1697 return 3;
1698 }
1699 }
1700 break;
1701 case 'x':
1702 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
1703 return 0; /* fxsave/fxrstor are not really math ops */
1704 break;
1705 }
1706
1707 return 1;
1708 }
1709
1710 /* This is the guts of the machine-dependent assembler. LINE points to a
1711 machine dependent instruction. This function is supposed to emit
1712 the frags/bytes it assembles to. */
1713
1714 void
1715 md_assemble (line)
1716 char *line;
1717 {
1718 int j;
1719 char mnemonic[MAX_MNEM_SIZE];
1720
1721 /* Initialize globals. */
1722 memset (&i, '\0', sizeof (i));
1723 for (j = 0; j < MAX_OPERANDS; j++)
1724 i.reloc[j] = NO_RELOC;
1725 memset (disp_expressions, '\0', sizeof (disp_expressions));
1726 memset (im_expressions, '\0', sizeof (im_expressions));
1727 save_stack_p = save_stack;
1728
1729 /* First parse an instruction mnemonic & call i386_operand for the operands.
1730 We assume that the scrubber has arranged it so that line[0] is the valid
1731 start of a (possibly prefixed) mnemonic. */
1732
1733 line = parse_insn (line, mnemonic);
1734 if (line == NULL)
1735 return;
1736
1737 line = parse_operands (line, mnemonic);
1738 if (line == NULL)
1739 return;
1740
1741 /* The order of the immediates should be reversed
1742 for 2 immediates extrq and insertq instructions */
1743 if ((i.imm_operands == 2)
1744 && ((strcmp (mnemonic, "extrq") == 0)
1745 || (strcmp (mnemonic, "insertq") == 0)))
1746 {
1747 swap_2_operands (0, 1);
1748 /* "extrq" and insertq" are the only two instructions whose operands
1749 have to be reversed even though they have two immediate operands.
1750 */
1751 if (intel_syntax)
1752 swap_operands ();
1753 }
1754
1755 /* Now we've parsed the mnemonic into a set of templates, and have the
1756 operands at hand. */
1757
1758 /* All intel opcodes have reversed operands except for "bound" and
1759 "enter". We also don't reverse intersegment "jmp" and "call"
1760 instructions with 2 immediate operands so that the immediate segment
1761 precedes the offset, as it does when in AT&T mode. */
1762 if (intel_syntax
1763 && i.operands > 1
1764 && (strcmp (mnemonic, "bound") != 0)
1765 && (strcmp (mnemonic, "invlpga") != 0)
1766 && !((i.types[0] & Imm) && (i.types[1] & Imm)))
1767 swap_operands ();
1768
1769 if (i.imm_operands)
1770 optimize_imm ();
1771
1772 /* Don't optimize displacement for movabs since it only takes 64bit
1773 displacement. */
1774 if (i.disp_operands
1775 && (flag_code != CODE_64BIT
1776 || strcmp (mnemonic, "movabs") != 0))
1777 optimize_disp ();
1778
1779 /* Next, we find a template that matches the given insn,
1780 making sure the overlap of the given operands types is consistent
1781 with the template operand types. */
1782
1783 if (!match_template ())
1784 return;
1785
1786 if (intel_syntax)
1787 {
1788 /* Undo SYSV386_COMPAT brokenness when in Intel mode. See i386.h */
1789 if (SYSV386_COMPAT
1790 && (i.tm.base_opcode & 0xfffffde0) == 0xdce0)
1791 i.tm.base_opcode ^= Opcode_FloatR;
1792
1793 /* Zap movzx and movsx suffix. The suffix may have been set from
1794 "word ptr" or "byte ptr" on the source operand, but we'll use
1795 the suffix later to choose the destination register. */
1796 if ((i.tm.base_opcode & ~9) == 0x0fb6)
1797 {
1798 if (i.reg_operands < 2
1799 && !i.suffix
1800 && (~i.tm.opcode_modifier
1801 & (No_bSuf
1802 | No_wSuf
1803 | No_lSuf
1804 | No_sSuf
1805 | No_xSuf
1806 | No_qSuf)))
1807 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
1808
1809 i.suffix = 0;
1810 }
1811 }
1812
1813 if (i.tm.opcode_modifier & FWait)
1814 if (!add_prefix (FWAIT_OPCODE))
1815 return;
1816
1817 /* Check string instruction segment overrides. */
1818 if ((i.tm.opcode_modifier & IsString) != 0 && i.mem_operands != 0)
1819 {
1820 if (!check_string ())
1821 return;
1822 }
1823
1824 if (!process_suffix ())
1825 return;
1826
1827 /* Make still unresolved immediate matches conform to size of immediate
1828 given in i.suffix. */
1829 if (!finalize_imm ())
1830 return;
1831
1832 if (i.types[0] & Imm1)
1833 i.imm_operands = 0; /* kludge for shift insns. */
1834 if (i.types[0] & ImplicitRegister)
1835 i.reg_operands--;
1836 if (i.types[1] & ImplicitRegister)
1837 i.reg_operands--;
1838 if (i.types[2] & ImplicitRegister)
1839 i.reg_operands--;
1840
1841 if (i.tm.opcode_modifier & ImmExt)
1842 {
1843 expressionS *exp;
1844
1845 if ((i.tm.cpu_flags & CpuSSE3) && i.operands > 0)
1846 {
1847 /* Streaming SIMD extensions 3 Instructions have the fixed
1848 operands with an opcode suffix which is coded in the same
1849 place as an 8-bit immediate field would be. Here we check
1850 those operands and remove them afterwards. */
1851 unsigned int x;
1852
1853 for (x = 0; x < i.operands; x++)
1854 if (i.op[x].regs->reg_num != x)
1855 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
1856 register_prefix,
1857 i.op[x].regs->reg_name,
1858 x + 1,
1859 i.tm.name);
1860 i.operands = 0;
1861 }
1862
1863 /* These AMD 3DNow! and Intel Katmai New Instructions have an
1864 opcode suffix which is coded in the same place as an 8-bit
1865 immediate field would be. Here we fake an 8-bit immediate
1866 operand from the opcode suffix stored in tm.extension_opcode. */
1867
1868 assert (i.imm_operands == 0 && i.operands <= 2 && 2 < MAX_OPERANDS);
1869
1870 exp = &im_expressions[i.imm_operands++];
1871 i.op[i.operands].imms = exp;
1872 i.types[i.operands++] = Imm8;
1873 exp->X_op = O_constant;
1874 exp->X_add_number = i.tm.extension_opcode;
1875 i.tm.extension_opcode = None;
1876 }
1877
1878 /* For insns with operands there are more diddles to do to the opcode. */
1879 if (i.operands)
1880 {
1881 if (!process_operands ())
1882 return;
1883 }
1884 else if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
1885 {
1886 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
1887 as_warn (_("translating to `%sp'"), i.tm.name);
1888 }
1889
1890 /* Handle conversion of 'int $3' --> special int3 insn. */
1891 if (i.tm.base_opcode == INT_OPCODE && i.op[0].imms->X_add_number == 3)
1892 {
1893 i.tm.base_opcode = INT3_OPCODE;
1894 i.imm_operands = 0;
1895 }
1896
1897 if ((i.tm.opcode_modifier & (Jump | JumpByte | JumpDword))
1898 && i.op[0].disps->X_op == O_constant)
1899 {
1900 /* Convert "jmp constant" (and "call constant") to a jump (call) to
1901 the absolute address given by the constant. Since ix86 jumps and
1902 calls are pc relative, we need to generate a reloc. */
1903 i.op[0].disps->X_add_symbol = &abs_symbol;
1904 i.op[0].disps->X_op = O_symbol;
1905 }
1906
1907 if ((i.tm.opcode_modifier & Rex64) != 0)
1908 i.rex |= REX_W;
1909
1910 /* For 8 bit registers we need an empty rex prefix. Also if the
1911 instruction already has a prefix, we need to convert old
1912 registers to new ones. */
1913
1914 if (((i.types[0] & Reg8) != 0
1915 && (i.op[0].regs->reg_flags & RegRex64) != 0)
1916 || ((i.types[1] & Reg8) != 0
1917 && (i.op[1].regs->reg_flags & RegRex64) != 0)
1918 || (((i.types[0] & Reg8) != 0 || (i.types[1] & Reg8) != 0)
1919 && i.rex != 0))
1920 {
1921 int x;
1922
1923 i.rex |= REX_OPCODE;
1924 for (x = 0; x < 2; x++)
1925 {
1926 /* Look for 8 bit operand that uses old registers. */
1927 if ((i.types[x] & Reg8) != 0
1928 && (i.op[x].regs->reg_flags & RegRex64) == 0)
1929 {
1930 /* In case it is "hi" register, give up. */
1931 if (i.op[x].regs->reg_num > 3)
1932 as_bad (_("can't encode register '%s%s' in an "
1933 "instruction requiring REX prefix."),
1934 register_prefix, i.op[x].regs->reg_name);
1935
1936 /* Otherwise it is equivalent to the extended register.
1937 Since the encoding doesn't change this is merely
1938 cosmetic cleanup for debug output. */
1939
1940 i.op[x].regs = i.op[x].regs + 8;
1941 }
1942 }
1943 }
1944
1945 if (i.rex != 0)
1946 add_prefix (REX_OPCODE | i.rex);
1947
1948 /* We are ready to output the insn. */
1949 output_insn ();
1950 }
1951
1952 static char *
1953 parse_insn (char *line, char *mnemonic)
1954 {
1955 char *l = line;
1956 char *token_start = l;
1957 char *mnem_p;
1958 int supported;
1959 const template *t;
1960
1961 /* Non-zero if we found a prefix only acceptable with string insns. */
1962 const char *expecting_string_instruction = NULL;
1963
1964 while (1)
1965 {
1966 mnem_p = mnemonic;
1967 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
1968 {
1969 mnem_p++;
1970 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
1971 {
1972 as_bad (_("no such instruction: `%s'"), token_start);
1973 return NULL;
1974 }
1975 l++;
1976 }
1977 if (!is_space_char (*l)
1978 && *l != END_OF_INSN
1979 && (intel_syntax
1980 || (*l != PREFIX_SEPARATOR
1981 && *l != ',')))
1982 {
1983 as_bad (_("invalid character %s in mnemonic"),
1984 output_invalid (*l));
1985 return NULL;
1986 }
1987 if (token_start == l)
1988 {
1989 if (!intel_syntax && *l == PREFIX_SEPARATOR)
1990 as_bad (_("expecting prefix; got nothing"));
1991 else
1992 as_bad (_("expecting mnemonic; got nothing"));
1993 return NULL;
1994 }
1995
1996 /* Look up instruction (or prefix) via hash table. */
1997 current_templates = hash_find (op_hash, mnemonic);
1998
1999 if (*l != END_OF_INSN
2000 && (!is_space_char (*l) || l[1] != END_OF_INSN)
2001 && current_templates
2002 && (current_templates->start->opcode_modifier & IsPrefix))
2003 {
2004 if (current_templates->start->cpu_flags
2005 & (flag_code != CODE_64BIT ? Cpu64 : CpuNo64))
2006 {
2007 as_bad ((flag_code != CODE_64BIT
2008 ? _("`%s' is only supported in 64-bit mode")
2009 : _("`%s' is not supported in 64-bit mode")),
2010 current_templates->start->name);
2011 return NULL;
2012 }
2013 /* If we are in 16-bit mode, do not allow addr16 or data16.
2014 Similarly, in 32-bit mode, do not allow addr32 or data32. */
2015 if ((current_templates->start->opcode_modifier & (Size16 | Size32))
2016 && flag_code != CODE_64BIT
2017 && (((current_templates->start->opcode_modifier & Size32) != 0)
2018 ^ (flag_code == CODE_16BIT)))
2019 {
2020 as_bad (_("redundant %s prefix"),
2021 current_templates->start->name);
2022 return NULL;
2023 }
2024 /* Add prefix, checking for repeated prefixes. */
2025 switch (add_prefix (current_templates->start->base_opcode))
2026 {
2027 case 0:
2028 return NULL;
2029 case 2:
2030 expecting_string_instruction = current_templates->start->name;
2031 break;
2032 }
2033 /* Skip past PREFIX_SEPARATOR and reset token_start. */
2034 token_start = ++l;
2035 }
2036 else
2037 break;
2038 }
2039
2040 if (!current_templates)
2041 {
2042 /* See if we can get a match by trimming off a suffix. */
2043 switch (mnem_p[-1])
2044 {
2045 case WORD_MNEM_SUFFIX:
2046 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
2047 i.suffix = SHORT_MNEM_SUFFIX;
2048 else
2049 case BYTE_MNEM_SUFFIX:
2050 case QWORD_MNEM_SUFFIX:
2051 i.suffix = mnem_p[-1];
2052 mnem_p[-1] = '\0';
2053 current_templates = hash_find (op_hash, mnemonic);
2054 break;
2055 case SHORT_MNEM_SUFFIX:
2056 case LONG_MNEM_SUFFIX:
2057 if (!intel_syntax)
2058 {
2059 i.suffix = mnem_p[-1];
2060 mnem_p[-1] = '\0';
2061 current_templates = hash_find (op_hash, mnemonic);
2062 }
2063 break;
2064
2065 /* Intel Syntax. */
2066 case 'd':
2067 if (intel_syntax)
2068 {
2069 if (intel_float_operand (mnemonic) == 1)
2070 i.suffix = SHORT_MNEM_SUFFIX;
2071 else
2072 i.suffix = LONG_MNEM_SUFFIX;
2073 mnem_p[-1] = '\0';
2074 current_templates = hash_find (op_hash, mnemonic);
2075 }
2076 break;
2077 }
2078 if (!current_templates)
2079 {
2080 as_bad (_("no such instruction: `%s'"), token_start);
2081 return NULL;
2082 }
2083 }
2084
2085 if (current_templates->start->opcode_modifier & (Jump | JumpByte))
2086 {
2087 /* Check for a branch hint. We allow ",pt" and ",pn" for
2088 predict taken and predict not taken respectively.
2089 I'm not sure that branch hints actually do anything on loop
2090 and jcxz insns (JumpByte) for current Pentium4 chips. They
2091 may work in the future and it doesn't hurt to accept them
2092 now. */
2093 if (l[0] == ',' && l[1] == 'p')
2094 {
2095 if (l[2] == 't')
2096 {
2097 if (!add_prefix (DS_PREFIX_OPCODE))
2098 return NULL;
2099 l += 3;
2100 }
2101 else if (l[2] == 'n')
2102 {
2103 if (!add_prefix (CS_PREFIX_OPCODE))
2104 return NULL;
2105 l += 3;
2106 }
2107 }
2108 }
2109 /* Any other comma loses. */
2110 if (*l == ',')
2111 {
2112 as_bad (_("invalid character %s in mnemonic"),
2113 output_invalid (*l));
2114 return NULL;
2115 }
2116
2117 /* Check if instruction is supported on specified architecture. */
2118 supported = 0;
2119 for (t = current_templates->start; t < current_templates->end; ++t)
2120 {
2121 if (!((t->cpu_flags & ~(Cpu64 | CpuNo64))
2122 & ~(cpu_arch_flags & ~(Cpu64 | CpuNo64))))
2123 supported |= 1;
2124 if (!(t->cpu_flags & (flag_code == CODE_64BIT ? CpuNo64 : Cpu64)))
2125 supported |= 2;
2126 }
2127 if (!(supported & 2))
2128 {
2129 as_bad (flag_code == CODE_64BIT
2130 ? _("`%s' is not supported in 64-bit mode")
2131 : _("`%s' is only supported in 64-bit mode"),
2132 current_templates->start->name);
2133 return NULL;
2134 }
2135 if (!(supported & 1))
2136 {
2137 as_warn (_("`%s' is not supported on `%s%s'"),
2138 current_templates->start->name,
2139 cpu_arch_name,
2140 cpu_sub_arch_name ? cpu_sub_arch_name : "");
2141 }
2142 else if ((Cpu386 & ~cpu_arch_flags) && (flag_code != CODE_16BIT))
2143 {
2144 as_warn (_("use .code16 to ensure correct addressing mode"));
2145 }
2146
2147 /* Check for rep/repne without a string instruction. */
2148 if (expecting_string_instruction)
2149 {
2150 static templates override;
2151
2152 for (t = current_templates->start; t < current_templates->end; ++t)
2153 if (t->opcode_modifier & IsString)
2154 break;
2155 if (t >= current_templates->end)
2156 {
2157 as_bad (_("expecting string instruction after `%s'"),
2158 expecting_string_instruction);
2159 return NULL;
2160 }
2161 for (override.start = t; t < current_templates->end; ++t)
2162 if (!(t->opcode_modifier & IsString))
2163 break;
2164 override.end = t;
2165 current_templates = &override;
2166 }
2167
2168 return l;
2169 }
2170
2171 static char *
2172 parse_operands (char *l, const char *mnemonic)
2173 {
2174 char *token_start;
2175
2176 /* 1 if operand is pending after ','. */
2177 unsigned int expecting_operand = 0;
2178
2179 /* Non-zero if operand parens not balanced. */
2180 unsigned int paren_not_balanced;
2181
2182 while (*l != END_OF_INSN)
2183 {
2184 /* Skip optional white space before operand. */
2185 if (is_space_char (*l))
2186 ++l;
2187 if (!is_operand_char (*l) && *l != END_OF_INSN)
2188 {
2189 as_bad (_("invalid character %s before operand %d"),
2190 output_invalid (*l),
2191 i.operands + 1);
2192 return NULL;
2193 }
2194 token_start = l; /* after white space */
2195 paren_not_balanced = 0;
2196 while (paren_not_balanced || *l != ',')
2197 {
2198 if (*l == END_OF_INSN)
2199 {
2200 if (paren_not_balanced)
2201 {
2202 if (!intel_syntax)
2203 as_bad (_("unbalanced parenthesis in operand %d."),
2204 i.operands + 1);
2205 else
2206 as_bad (_("unbalanced brackets in operand %d."),
2207 i.operands + 1);
2208 return NULL;
2209 }
2210 else
2211 break; /* we are done */
2212 }
2213 else if (!is_operand_char (*l) && !is_space_char (*l))
2214 {
2215 as_bad (_("invalid character %s in operand %d"),
2216 output_invalid (*l),
2217 i.operands + 1);
2218 return NULL;
2219 }
2220 if (!intel_syntax)
2221 {
2222 if (*l == '(')
2223 ++paren_not_balanced;
2224 if (*l == ')')
2225 --paren_not_balanced;
2226 }
2227 else
2228 {
2229 if (*l == '[')
2230 ++paren_not_balanced;
2231 if (*l == ']')
2232 --paren_not_balanced;
2233 }
2234 l++;
2235 }
2236 if (l != token_start)
2237 { /* Yes, we've read in another operand. */
2238 unsigned int operand_ok;
2239 this_operand = i.operands++;
2240 if (i.operands > MAX_OPERANDS)
2241 {
2242 as_bad (_("spurious operands; (%d operands/instruction max)"),
2243 MAX_OPERANDS);
2244 return NULL;
2245 }
2246 /* Now parse operand adding info to 'i' as we go along. */
2247 END_STRING_AND_SAVE (l);
2248
2249 if (intel_syntax)
2250 operand_ok =
2251 i386_intel_operand (token_start,
2252 intel_float_operand (mnemonic));
2253 else
2254 operand_ok = i386_operand (token_start);
2255
2256 RESTORE_END_STRING (l);
2257 if (!operand_ok)
2258 return NULL;
2259 }
2260 else
2261 {
2262 if (expecting_operand)
2263 {
2264 expecting_operand_after_comma:
2265 as_bad (_("expecting operand after ','; got nothing"));
2266 return NULL;
2267 }
2268 if (*l == ',')
2269 {
2270 as_bad (_("expecting operand before ','; got nothing"));
2271 return NULL;
2272 }
2273 }
2274
2275 /* Now *l must be either ',' or END_OF_INSN. */
2276 if (*l == ',')
2277 {
2278 if (*++l == END_OF_INSN)
2279 {
2280 /* Just skip it, if it's \n complain. */
2281 goto expecting_operand_after_comma;
2282 }
2283 expecting_operand = 1;
2284 }
2285 }
2286 return l;
2287 }
2288
2289 static void
2290 swap_2_operands (int xchg1, int xchg2)
2291 {
2292 union i386_op temp_op;
2293 unsigned int temp_type;
2294 enum bfd_reloc_code_real temp_reloc;
2295
2296 temp_type = i.types[xchg2];
2297 i.types[xchg2] = i.types[xchg1];
2298 i.types[xchg1] = temp_type;
2299 temp_op = i.op[xchg2];
2300 i.op[xchg2] = i.op[xchg1];
2301 i.op[xchg1] = temp_op;
2302 temp_reloc = i.reloc[xchg2];
2303 i.reloc[xchg2] = i.reloc[xchg1];
2304 i.reloc[xchg1] = temp_reloc;
2305 }
2306
2307 static void
2308 swap_operands (void)
2309 {
2310 switch (i.operands)
2311 {
2312 case 4:
2313 swap_2_operands (1, i.operands - 2);
2314 case 3:
2315 case 2:
2316 swap_2_operands (0, i.operands - 1);
2317 break;
2318 default:
2319 abort ();
2320 }
2321
2322 if (i.mem_operands == 2)
2323 {
2324 const seg_entry *temp_seg;
2325 temp_seg = i.seg[0];
2326 i.seg[0] = i.seg[1];
2327 i.seg[1] = temp_seg;
2328 }
2329 }
2330
2331 /* Try to ensure constant immediates are represented in the smallest
2332 opcode possible. */
2333 static void
2334 optimize_imm (void)
2335 {
2336 char guess_suffix = 0;
2337 int op;
2338
2339 if (i.suffix)
2340 guess_suffix = i.suffix;
2341 else if (i.reg_operands)
2342 {
2343 /* Figure out a suffix from the last register operand specified.
2344 We can't do this properly yet, ie. excluding InOutPortReg,
2345 but the following works for instructions with immediates.
2346 In any case, we can't set i.suffix yet. */
2347 for (op = i.operands; --op >= 0;)
2348 if (i.types[op] & Reg)
2349 {
2350 if (i.types[op] & Reg8)
2351 guess_suffix = BYTE_MNEM_SUFFIX;
2352 else if (i.types[op] & Reg16)
2353 guess_suffix = WORD_MNEM_SUFFIX;
2354 else if (i.types[op] & Reg32)
2355 guess_suffix = LONG_MNEM_SUFFIX;
2356 else if (i.types[op] & Reg64)
2357 guess_suffix = QWORD_MNEM_SUFFIX;
2358 break;
2359 }
2360 }
2361 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
2362 guess_suffix = WORD_MNEM_SUFFIX;
2363
2364 for (op = i.operands; --op >= 0;)
2365 if (i.types[op] & Imm)
2366 {
2367 switch (i.op[op].imms->X_op)
2368 {
2369 case O_constant:
2370 /* If a suffix is given, this operand may be shortened. */
2371 switch (guess_suffix)
2372 {
2373 case LONG_MNEM_SUFFIX:
2374 i.types[op] |= Imm32 | Imm64;
2375 break;
2376 case WORD_MNEM_SUFFIX:
2377 i.types[op] |= Imm16 | Imm32S | Imm32 | Imm64;
2378 break;
2379 case BYTE_MNEM_SUFFIX:
2380 i.types[op] |= Imm16 | Imm8 | Imm8S | Imm32S | Imm32 | Imm64;
2381 break;
2382 }
2383
2384 /* If this operand is at most 16 bits, convert it
2385 to a signed 16 bit number before trying to see
2386 whether it will fit in an even smaller size.
2387 This allows a 16-bit operand such as $0xffe0 to
2388 be recognised as within Imm8S range. */
2389 if ((i.types[op] & Imm16)
2390 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
2391 {
2392 i.op[op].imms->X_add_number =
2393 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
2394 }
2395 if ((i.types[op] & Imm32)
2396 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
2397 == 0))
2398 {
2399 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
2400 ^ ((offsetT) 1 << 31))
2401 - ((offsetT) 1 << 31));
2402 }
2403 i.types[op] |= smallest_imm_type (i.op[op].imms->X_add_number);
2404
2405 /* We must avoid matching of Imm32 templates when 64bit
2406 only immediate is available. */
2407 if (guess_suffix == QWORD_MNEM_SUFFIX)
2408 i.types[op] &= ~Imm32;
2409 break;
2410
2411 case O_absent:
2412 case O_register:
2413 abort ();
2414
2415 /* Symbols and expressions. */
2416 default:
2417 /* Convert symbolic operand to proper sizes for matching, but don't
2418 prevent matching a set of insns that only supports sizes other
2419 than those matching the insn suffix. */
2420 {
2421 unsigned int mask, allowed = 0;
2422 const template *t;
2423
2424 for (t = current_templates->start;
2425 t < current_templates->end;
2426 ++t)
2427 allowed |= t->operand_types[op];
2428 switch (guess_suffix)
2429 {
2430 case QWORD_MNEM_SUFFIX:
2431 mask = Imm64 | Imm32S;
2432 break;
2433 case LONG_MNEM_SUFFIX:
2434 mask = Imm32;
2435 break;
2436 case WORD_MNEM_SUFFIX:
2437 mask = Imm16;
2438 break;
2439 case BYTE_MNEM_SUFFIX:
2440 mask = Imm8;
2441 break;
2442 default:
2443 mask = 0;
2444 break;
2445 }
2446 if (mask & allowed)
2447 i.types[op] &= mask;
2448 }
2449 break;
2450 }
2451 }
2452 }
2453
2454 /* Try to use the smallest displacement type too. */
2455 static void
2456 optimize_disp (void)
2457 {
2458 int op;
2459
2460 for (op = i.operands; --op >= 0;)
2461 if (i.types[op] & Disp)
2462 {
2463 if (i.op[op].disps->X_op == O_constant)
2464 {
2465 offsetT disp = i.op[op].disps->X_add_number;
2466
2467 if ((i.types[op] & Disp16)
2468 && (disp & ~(offsetT) 0xffff) == 0)
2469 {
2470 /* If this operand is at most 16 bits, convert
2471 to a signed 16 bit number and don't use 64bit
2472 displacement. */
2473 disp = (((disp & 0xffff) ^ 0x8000) - 0x8000);
2474 i.types[op] &= ~Disp64;
2475 }
2476 if ((i.types[op] & Disp32)
2477 && (disp & ~(((offsetT) 2 << 31) - 1)) == 0)
2478 {
2479 /* If this operand is at most 32 bits, convert
2480 to a signed 32 bit number and don't use 64bit
2481 displacement. */
2482 disp &= (((offsetT) 2 << 31) - 1);
2483 disp = (disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
2484 i.types[op] &= ~Disp64;
2485 }
2486 if (!disp && (i.types[op] & BaseIndex))
2487 {
2488 i.types[op] &= ~Disp;
2489 i.op[op].disps = 0;
2490 i.disp_operands--;
2491 }
2492 else if (flag_code == CODE_64BIT)
2493 {
2494 if (fits_in_signed_long (disp))
2495 {
2496 i.types[op] &= ~Disp64;
2497 i.types[op] |= Disp32S;
2498 }
2499 if (fits_in_unsigned_long (disp))
2500 i.types[op] |= Disp32;
2501 }
2502 if ((i.types[op] & (Disp32 | Disp32S | Disp16))
2503 && fits_in_signed_byte (disp))
2504 i.types[op] |= Disp8;
2505 }
2506 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
2507 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
2508 {
2509 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
2510 i.op[op].disps, 0, i.reloc[op]);
2511 i.types[op] &= ~Disp;
2512 }
2513 else
2514 /* We only support 64bit displacement on constants. */
2515 i.types[op] &= ~Disp64;
2516 }
2517 }
2518
2519 static int
2520 match_template (void)
2521 {
2522 /* Points to template once we've found it. */
2523 const template *t;
2524 unsigned int overlap0, overlap1, overlap2, overlap3;
2525 unsigned int found_reverse_match;
2526 int suffix_check;
2527 unsigned int operand_types [MAX_OPERANDS];
2528 int addr_prefix_disp;
2529 unsigned int j;
2530
2531 #if MAX_OPERANDS != 4
2532 # error "MAX_OPERANDS must be 4."
2533 #endif
2534
2535 #define MATCH(overlap, given, template) \
2536 ((overlap & ~JumpAbsolute) \
2537 && (((given) & (BaseIndex | JumpAbsolute)) \
2538 == ((overlap) & (BaseIndex | JumpAbsolute))))
2539
2540 /* If given types r0 and r1 are registers they must be of the same type
2541 unless the expected operand type register overlap is null.
2542 Note that Acc in a template matches every size of reg. */
2543 #define CONSISTENT_REGISTER_MATCH(m0, g0, t0, m1, g1, t1) \
2544 (((g0) & Reg) == 0 || ((g1) & Reg) == 0 \
2545 || ((g0) & Reg) == ((g1) & Reg) \
2546 || ((((m0) & Acc) ? Reg : (t0)) & (((m1) & Acc) ? Reg : (t1)) & Reg) == 0 )
2547
2548 overlap0 = 0;
2549 overlap1 = 0;
2550 overlap2 = 0;
2551 overlap3 = 0;
2552 found_reverse_match = 0;
2553 for (j = 0; j < MAX_OPERANDS; j++)
2554 operand_types [j] = 0;
2555 addr_prefix_disp = -1;
2556 suffix_check = (i.suffix == BYTE_MNEM_SUFFIX
2557 ? No_bSuf
2558 : (i.suffix == WORD_MNEM_SUFFIX
2559 ? No_wSuf
2560 : (i.suffix == SHORT_MNEM_SUFFIX
2561 ? No_sSuf
2562 : (i.suffix == LONG_MNEM_SUFFIX
2563 ? No_lSuf
2564 : (i.suffix == QWORD_MNEM_SUFFIX
2565 ? No_qSuf
2566 : (i.suffix == LONG_DOUBLE_MNEM_SUFFIX
2567 ? No_xSuf : 0))))));
2568
2569 for (t = current_templates->start; t < current_templates->end; t++)
2570 {
2571 addr_prefix_disp = -1;
2572
2573 /* Must have right number of operands. */
2574 if (i.operands != t->operands)
2575 continue;
2576
2577 /* Check the suffix, except for some instructions in intel mode. */
2578 if ((t->opcode_modifier & suffix_check)
2579 && !(intel_syntax
2580 && (t->opcode_modifier & IgnoreSize)))
2581 continue;
2582
2583 for (j = 0; j < MAX_OPERANDS; j++)
2584 operand_types [j] = t->operand_types [j];
2585
2586 /* In general, don't allow 64-bit operands in 32-bit mode. */
2587 if (i.suffix == QWORD_MNEM_SUFFIX
2588 && flag_code != CODE_64BIT
2589 && (intel_syntax
2590 ? (!(t->opcode_modifier & IgnoreSize)
2591 && !intel_float_operand (t->name))
2592 : intel_float_operand (t->name) != 2)
2593 && (!(operand_types[0] & (RegMMX | RegXMM))
2594 || !(operand_types[t->operands > 1] & (RegMMX | RegXMM)))
2595 && (t->base_opcode != 0x0fc7
2596 || t->extension_opcode != 1 /* cmpxchg8b */))
2597 continue;
2598
2599 /* Do not verify operands when there are none. */
2600 else if (!t->operands)
2601 {
2602 if (t->cpu_flags & ~cpu_arch_flags)
2603 continue;
2604 /* We've found a match; break out of loop. */
2605 break;
2606 }
2607
2608 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
2609 into Disp32/Disp16/Disp32 operand. */
2610 if (i.prefix[ADDR_PREFIX] != 0)
2611 {
2612 unsigned int DispOn = 0, DispOff = 0;
2613
2614 switch (flag_code)
2615 {
2616 case CODE_16BIT:
2617 DispOn = Disp32;
2618 DispOff = Disp16;
2619 break;
2620 case CODE_32BIT:
2621 DispOn = Disp16;
2622 DispOff = Disp32;
2623 break;
2624 case CODE_64BIT:
2625 DispOn = Disp32;
2626 DispOff = Disp64;
2627 break;
2628 }
2629
2630 for (j = 0; j < MAX_OPERANDS; j++)
2631 {
2632 /* There should be only one Disp operand. */
2633 if ((operand_types[j] & DispOff))
2634 {
2635 addr_prefix_disp = j;
2636 operand_types[j] |= DispOn;
2637 operand_types[j] &= ~DispOff;
2638 break;
2639 }
2640 }
2641 }
2642
2643 overlap0 = i.types[0] & operand_types[0];
2644 switch (t->operands)
2645 {
2646 case 1:
2647 if (!MATCH (overlap0, i.types[0], operand_types[0]))
2648 continue;
2649 break;
2650 case 2:
2651 /* xchg %eax, %eax is a special case. It is an aliase for nop
2652 only in 32bit mode and we can use opcode 0x90. In 64bit
2653 mode, we can't use 0x90 for xchg %eax, %eax since it should
2654 zero-extend %eax to %rax. */
2655 if (flag_code == CODE_64BIT
2656 && t->base_opcode == 0x90
2657 && i.types [0] == (Acc | Reg32)
2658 && i.types [1] == (Acc | Reg32))
2659 continue;
2660 case 3:
2661 case 4:
2662 overlap1 = i.types[1] & operand_types[1];
2663 if (!MATCH (overlap0, i.types[0], operand_types[0])
2664 || !MATCH (overlap1, i.types[1], operand_types[1])
2665 /* monitor in SSE3 is a very special case. The first
2666 register and the second register may have different
2667 sizes. The same applies to crc32 in SSE4.2. */
2668 || !((t->base_opcode == 0x0f01
2669 && t->extension_opcode == 0xc8)
2670 || t->base_opcode == 0xf20f38f1
2671 || CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2672 operand_types[0],
2673 overlap1, i.types[1],
2674 operand_types[1])))
2675 {
2676 /* Check if other direction is valid ... */
2677 if ((t->opcode_modifier & (D | FloatD)) == 0)
2678 continue;
2679
2680 /* Try reversing direction of operands. */
2681 overlap0 = i.types[0] & operand_types[1];
2682 overlap1 = i.types[1] & operand_types[0];
2683 if (!MATCH (overlap0, i.types[0], operand_types[1])
2684 || !MATCH (overlap1, i.types[1], operand_types[0])
2685 || !CONSISTENT_REGISTER_MATCH (overlap0, i.types[0],
2686 operand_types[1],
2687 overlap1, i.types[1],
2688 operand_types[0]))
2689 {
2690 /* Does not match either direction. */
2691 continue;
2692 }
2693 /* found_reverse_match holds which of D or FloatDR
2694 we've found. */
2695 if ((t->opcode_modifier & D))
2696 found_reverse_match = Opcode_D;
2697 else if ((t->opcode_modifier & FloatD))
2698 found_reverse_match = Opcode_FloatD;
2699 else
2700 found_reverse_match = 0;
2701 if ((t->opcode_modifier & FloatR))
2702 found_reverse_match |= Opcode_FloatR;
2703 }
2704 else
2705 {
2706 /* Found a forward 2 operand match here. */
2707 switch (t->operands)
2708 {
2709 case 4:
2710 overlap3 = i.types[3] & operand_types[3];
2711 case 3:
2712 overlap2 = i.types[2] & operand_types[2];
2713 break;
2714 }
2715
2716 switch (t->operands)
2717 {
2718 case 4:
2719 if (!MATCH (overlap3, i.types[3], operand_types[3])
2720 || !CONSISTENT_REGISTER_MATCH (overlap2,
2721 i.types[2],
2722 operand_types[2],
2723 overlap3,
2724 i.types[3],
2725 operand_types[3]))
2726 continue;
2727 case 3:
2728 /* Here we make use of the fact that there are no
2729 reverse match 3 operand instructions, and all 3
2730 operand instructions only need to be checked for
2731 register consistency between operands 2 and 3. */
2732 if (!MATCH (overlap2, i.types[2], operand_types[2])
2733 || !CONSISTENT_REGISTER_MATCH (overlap1,
2734 i.types[1],
2735 operand_types[1],
2736 overlap2,
2737 i.types[2],
2738 operand_types[2]))
2739 continue;
2740 break;
2741 }
2742 }
2743 /* Found either forward/reverse 2, 3 or 4 operand match here:
2744 slip through to break. */
2745 }
2746 if (t->cpu_flags & ~cpu_arch_flags)
2747 {
2748 found_reverse_match = 0;
2749 continue;
2750 }
2751 /* We've found a match; break out of loop. */
2752 break;
2753 }
2754
2755 if (t == current_templates->end)
2756 {
2757 /* We found no match. */
2758 as_bad (_("suffix or operands invalid for `%s'"),
2759 current_templates->start->name);
2760 return 0;
2761 }
2762
2763 if (!quiet_warnings)
2764 {
2765 if (!intel_syntax
2766 && ((i.types[0] & JumpAbsolute)
2767 != (operand_types[0] & JumpAbsolute)))
2768 {
2769 as_warn (_("indirect %s without `*'"), t->name);
2770 }
2771
2772 if ((t->opcode_modifier & (IsPrefix | IgnoreSize))
2773 == (IsPrefix | IgnoreSize))
2774 {
2775 /* Warn them that a data or address size prefix doesn't
2776 affect assembly of the next line of code. */
2777 as_warn (_("stand-alone `%s' prefix"), t->name);
2778 }
2779 }
2780
2781 /* Copy the template we found. */
2782 i.tm = *t;
2783
2784 if (addr_prefix_disp != -1)
2785 i.tm.operand_types[addr_prefix_disp]
2786 = operand_types[addr_prefix_disp];
2787
2788 if (found_reverse_match)
2789 {
2790 /* If we found a reverse match we must alter the opcode
2791 direction bit. found_reverse_match holds bits to change
2792 (different for int & float insns). */
2793
2794 i.tm.base_opcode ^= found_reverse_match;
2795
2796 i.tm.operand_types[0] = operand_types[1];
2797 i.tm.operand_types[1] = operand_types[0];
2798 }
2799
2800 return 1;
2801 }
2802
2803 static int
2804 check_string (void)
2805 {
2806 int mem_op = (i.types[0] & AnyMem) ? 0 : 1;
2807 if ((i.tm.operand_types[mem_op] & EsSeg) != 0)
2808 {
2809 if (i.seg[0] != NULL && i.seg[0] != &es)
2810 {
2811 as_bad (_("`%s' operand %d must use `%%es' segment"),
2812 i.tm.name,
2813 mem_op + 1);
2814 return 0;
2815 }
2816 /* There's only ever one segment override allowed per instruction.
2817 This instruction possibly has a legal segment override on the
2818 second operand, so copy the segment to where non-string
2819 instructions store it, allowing common code. */
2820 i.seg[0] = i.seg[1];
2821 }
2822 else if ((i.tm.operand_types[mem_op + 1] & EsSeg) != 0)
2823 {
2824 if (i.seg[1] != NULL && i.seg[1] != &es)
2825 {
2826 as_bad (_("`%s' operand %d must use `%%es' segment"),
2827 i.tm.name,
2828 mem_op + 2);
2829 return 0;
2830 }
2831 }
2832 return 1;
2833 }
2834
2835 static int
2836 process_suffix (void)
2837 {
2838 /* If matched instruction specifies an explicit instruction mnemonic
2839 suffix, use it. */
2840 if (i.tm.opcode_modifier & (Size16 | Size32 | Size64))
2841 {
2842 if (i.tm.opcode_modifier & Size16)
2843 i.suffix = WORD_MNEM_SUFFIX;
2844 else if (i.tm.opcode_modifier & Size64)
2845 i.suffix = QWORD_MNEM_SUFFIX;
2846 else
2847 i.suffix = LONG_MNEM_SUFFIX;
2848 }
2849 else if (i.reg_operands)
2850 {
2851 /* If there's no instruction mnemonic suffix we try to invent one
2852 based on register operands. */
2853 if (!i.suffix)
2854 {
2855 /* We take i.suffix from the last register operand specified,
2856 Destination register type is more significant than source
2857 register type. crc32 in SSE4.2 prefers source register
2858 type. */
2859 if (i.tm.base_opcode == 0xf20f38f1)
2860 {
2861 if ((i.types[0] & Reg))
2862 i.suffix = ((i.types[0] & Reg16) ? WORD_MNEM_SUFFIX :
2863 LONG_MNEM_SUFFIX);
2864 }
2865 else if (i.tm.base_opcode == 0xf20f38f0)
2866 {
2867 if ((i.types[0] & Reg8))
2868 i.suffix = BYTE_MNEM_SUFFIX;
2869 }
2870
2871 if (!i.suffix)
2872 {
2873 int op;
2874
2875 if (i.tm.base_opcode == 0xf20f38f1
2876 || i.tm.base_opcode == 0xf20f38f0)
2877 {
2878 /* We have to know the operand size for crc32. */
2879 as_bad (_("ambiguous memory operand size for `%s`"),
2880 i.tm.name);
2881 return 0;
2882 }
2883
2884 for (op = i.operands; --op >= 0;)
2885 if ((i.types[op] & Reg)
2886 && !(i.tm.operand_types[op] & InOutPortReg))
2887 {
2888 i.suffix = ((i.types[op] & Reg8) ? BYTE_MNEM_SUFFIX :
2889 (i.types[op] & Reg16) ? WORD_MNEM_SUFFIX :
2890 (i.types[op] & Reg64) ? QWORD_MNEM_SUFFIX :
2891 LONG_MNEM_SUFFIX);
2892 break;
2893 }
2894 }
2895 }
2896 else if (i.suffix == BYTE_MNEM_SUFFIX)
2897 {
2898 if (!check_byte_reg ())
2899 return 0;
2900 }
2901 else if (i.suffix == LONG_MNEM_SUFFIX)
2902 {
2903 if (!check_long_reg ())
2904 return 0;
2905 }
2906 else if (i.suffix == QWORD_MNEM_SUFFIX)
2907 {
2908 if (!check_qword_reg ())
2909 return 0;
2910 }
2911 else if (i.suffix == WORD_MNEM_SUFFIX)
2912 {
2913 if (!check_word_reg ())
2914 return 0;
2915 }
2916 else if (intel_syntax && (i.tm.opcode_modifier & IgnoreSize))
2917 /* Do nothing if the instruction is going to ignore the prefix. */
2918 ;
2919 else
2920 abort ();
2921 }
2922 else if ((i.tm.opcode_modifier & DefaultSize)
2923 && !i.suffix
2924 /* exclude fldenv/frstor/fsave/fstenv */
2925 && (i.tm.opcode_modifier & No_sSuf))
2926 {
2927 i.suffix = stackop_size;
2928 }
2929 else if (intel_syntax
2930 && !i.suffix
2931 && ((i.tm.operand_types[0] & JumpAbsolute)
2932 || (i.tm.opcode_modifier & (JumpByte|JumpInterSegment))
2933 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
2934 && i.tm.extension_opcode <= 3)))
2935 {
2936 switch (flag_code)
2937 {
2938 case CODE_64BIT:
2939 if (!(i.tm.opcode_modifier & No_qSuf))
2940 {
2941 i.suffix = QWORD_MNEM_SUFFIX;
2942 break;
2943 }
2944 case CODE_32BIT:
2945 if (!(i.tm.opcode_modifier & No_lSuf))
2946 i.suffix = LONG_MNEM_SUFFIX;
2947 break;
2948 case CODE_16BIT:
2949 if (!(i.tm.opcode_modifier & No_wSuf))
2950 i.suffix = WORD_MNEM_SUFFIX;
2951 break;
2952 }
2953 }
2954
2955 if (!i.suffix)
2956 {
2957 if (!intel_syntax)
2958 {
2959 if (i.tm.opcode_modifier & W)
2960 {
2961 as_bad (_("no instruction mnemonic suffix given and "
2962 "no register operands; can't size instruction"));
2963 return 0;
2964 }
2965 }
2966 else
2967 {
2968 unsigned int suffixes = (~i.tm.opcode_modifier
2969 & (No_bSuf
2970 | No_wSuf
2971 | No_lSuf
2972 | No_sSuf
2973 | No_xSuf
2974 | No_qSuf));
2975
2976 if ((i.tm.opcode_modifier & W)
2977 || ((suffixes & (suffixes - 1))
2978 && !(i.tm.opcode_modifier & (DefaultSize | IgnoreSize))))
2979 {
2980 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
2981 return 0;
2982 }
2983 }
2984 }
2985
2986 /* Change the opcode based on the operand size given by i.suffix;
2987 We don't need to change things for byte insns. */
2988
2989 if (i.suffix && i.suffix != BYTE_MNEM_SUFFIX)
2990 {
2991 /* It's not a byte, select word/dword operation. */
2992 if (i.tm.opcode_modifier & W)
2993 {
2994 if (i.tm.opcode_modifier & ShortForm)
2995 i.tm.base_opcode |= 8;
2996 else
2997 i.tm.base_opcode |= 1;
2998 }
2999
3000 /* Now select between word & dword operations via the operand
3001 size prefix, except for instructions that will ignore this
3002 prefix anyway. */
3003 if (i.tm.base_opcode == 0x0f01 && i.tm.extension_opcode == 0xc8)
3004 {
3005 /* monitor in SSE3 is a very special case. The default size
3006 of AX is the size of mode. The address size override
3007 prefix will change the size of AX. */
3008 if (i.op->regs[0].reg_type &
3009 (flag_code == CODE_32BIT ? Reg16 : Reg32))
3010 if (!add_prefix (ADDR_PREFIX_OPCODE))
3011 return 0;
3012 }
3013 else if (i.suffix != QWORD_MNEM_SUFFIX
3014 && i.suffix != LONG_DOUBLE_MNEM_SUFFIX
3015 && !(i.tm.opcode_modifier & (IgnoreSize | FloatMF))
3016 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
3017 || (flag_code == CODE_64BIT
3018 && (i.tm.opcode_modifier & JumpByte))))
3019 {
3020 unsigned int prefix = DATA_PREFIX_OPCODE;
3021
3022 if (i.tm.opcode_modifier & JumpByte) /* jcxz, loop */
3023 prefix = ADDR_PREFIX_OPCODE;
3024
3025 if (!add_prefix (prefix))
3026 return 0;
3027 }
3028
3029 /* Set mode64 for an operand. */
3030 if (i.suffix == QWORD_MNEM_SUFFIX
3031 && flag_code == CODE_64BIT
3032 && (i.tm.opcode_modifier & NoRex64) == 0)
3033 {
3034 /* Special case for xchg %rax,%rax. It is NOP and doesn't
3035 need rex64. cmpxchg8b is also a special case. */
3036 if (! (i.operands == 2
3037 && i.tm.base_opcode == 0x90
3038 && i.tm.extension_opcode == None
3039 && i.types [0] == (Acc | Reg64)
3040 && i.types [1] == (Acc | Reg64))
3041 && ! (i.operands == 1
3042 && i.tm.base_opcode == 0xfc7
3043 && i.tm.extension_opcode == 1
3044 && (i.types [0] & Reg) == 0
3045 && (i.types [0] & AnyMem) != 0))
3046 i.rex |= REX_W;
3047 }
3048
3049 /* Size floating point instruction. */
3050 if (i.suffix == LONG_MNEM_SUFFIX)
3051 if (i.tm.opcode_modifier & FloatMF)
3052 i.tm.base_opcode ^= 4;
3053 }
3054
3055 return 1;
3056 }
3057
3058 static int
3059 check_byte_reg (void)
3060 {
3061 int op;
3062
3063 for (op = i.operands; --op >= 0;)
3064 {
3065 /* If this is an eight bit register, it's OK. If it's the 16 or
3066 32 bit version of an eight bit register, we will just use the
3067 low portion, and that's OK too. */
3068 if (i.types[op] & Reg8)
3069 continue;
3070
3071 /* movzx, movsx, pextrb and pinsrb should not generate this
3072 warning. */
3073 if (intel_syntax
3074 && (i.tm.base_opcode == 0xfb7
3075 || i.tm.base_opcode == 0xfb6
3076 || i.tm.base_opcode == 0x63
3077 || i.tm.base_opcode == 0xfbe
3078 || i.tm.base_opcode == 0xfbf
3079 || i.tm.base_opcode == 0x660f3a14
3080 || i.tm.base_opcode == 0x660f3a20))
3081 continue;
3082
3083 /* crc32 doesn't generate this warning. */
3084 if (i.tm.base_opcode == 0xf20f38f0)
3085 continue;
3086
3087 if ((i.types[op] & WordReg) && i.op[op].regs->reg_num < 4)
3088 {
3089 /* Prohibit these changes in the 64bit mode, since the
3090 lowering is more complicated. */
3091 if (flag_code == CODE_64BIT
3092 && (i.tm.operand_types[op] & InOutPortReg) == 0)
3093 {
3094 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3095 register_prefix, i.op[op].regs->reg_name,
3096 i.suffix);
3097 return 0;
3098 }
3099 #if REGISTER_WARNINGS
3100 if (!quiet_warnings
3101 && (i.tm.operand_types[op] & InOutPortReg) == 0)
3102 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3103 register_prefix,
3104 (i.op[op].regs + (i.types[op] & Reg16
3105 ? REGNAM_AL - REGNAM_AX
3106 : REGNAM_AL - REGNAM_EAX))->reg_name,
3107 register_prefix,
3108 i.op[op].regs->reg_name,
3109 i.suffix);
3110 #endif
3111 continue;
3112 }
3113 /* Any other register is bad. */
3114 if (i.types[op] & (Reg | RegMMX | RegXMM
3115 | SReg2 | SReg3
3116 | Control | Debug | Test
3117 | FloatReg | FloatAcc))
3118 {
3119 as_bad (_("`%s%s' not allowed with `%s%c'"),
3120 register_prefix,
3121 i.op[op].regs->reg_name,
3122 i.tm.name,
3123 i.suffix);
3124 return 0;
3125 }
3126 }
3127 return 1;
3128 }
3129
3130 static int
3131 check_long_reg (void)
3132 {
3133 int op;
3134
3135 for (op = i.operands; --op >= 0;)
3136 /* Reject eight bit registers, except where the template requires
3137 them. (eg. movzb) */
3138 if ((i.types[op] & Reg8) != 0
3139 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3140 {
3141 as_bad (_("`%s%s' not allowed with `%s%c'"),
3142 register_prefix,
3143 i.op[op].regs->reg_name,
3144 i.tm.name,
3145 i.suffix);
3146 return 0;
3147 }
3148 /* Warn if the e prefix on a general reg is missing. */
3149 else if ((!quiet_warnings || flag_code == CODE_64BIT)
3150 && (i.types[op] & Reg16) != 0
3151 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3152 {
3153 /* Prohibit these changes in the 64bit mode, since the
3154 lowering is more complicated. */
3155 if (flag_code == CODE_64BIT)
3156 {
3157 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3158 register_prefix, i.op[op].regs->reg_name,
3159 i.suffix);
3160 return 0;
3161 }
3162 #if REGISTER_WARNINGS
3163 else
3164 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3165 register_prefix,
3166 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
3167 register_prefix,
3168 i.op[op].regs->reg_name,
3169 i.suffix);
3170 #endif
3171 }
3172 /* Warn if the r prefix on a general reg is missing. */
3173 else if ((i.types[op] & Reg64) != 0
3174 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3175 {
3176 if (intel_syntax
3177 && i.tm.base_opcode == 0xf30f2d
3178 && (i.types[0] & RegXMM) == 0)
3179 {
3180 /* cvtss2si converts DWORD memory to Reg64. We want
3181 REX byte. */
3182 i.suffix = QWORD_MNEM_SUFFIX;
3183 }
3184 else
3185 {
3186 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3187 register_prefix, i.op[op].regs->reg_name,
3188 i.suffix);
3189 return 0;
3190 }
3191 }
3192 return 1;
3193 }
3194
3195 static int
3196 check_qword_reg (void)
3197 {
3198 int op;
3199
3200 for (op = i.operands; --op >= 0; )
3201 /* Reject eight bit registers, except where the template requires
3202 them. (eg. movzb) */
3203 if ((i.types[op] & Reg8) != 0
3204 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3205 {
3206 as_bad (_("`%s%s' not allowed with `%s%c'"),
3207 register_prefix,
3208 i.op[op].regs->reg_name,
3209 i.tm.name,
3210 i.suffix);
3211 return 0;
3212 }
3213 /* Warn if the e prefix on a general reg is missing. */
3214 else if ((i.types[op] & (Reg16 | Reg32)) != 0
3215 && (i.tm.operand_types[op] & (Reg32 | Acc)) != 0)
3216 {
3217 /* Prohibit these changes in the 64bit mode, since the
3218 lowering is more complicated. */
3219 if (intel_syntax
3220 && i.tm.base_opcode == 0xf20f2d
3221 && (i.types[0] & RegXMM) == 0)
3222 {
3223 /* cvtsd2si converts QWORD memory to Reg32. We don't want
3224 REX byte. */
3225 i.suffix = LONG_MNEM_SUFFIX;
3226 }
3227 else
3228 {
3229 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3230 register_prefix, i.op[op].regs->reg_name,
3231 i.suffix);
3232 return 0;
3233 }
3234 }
3235 return 1;
3236 }
3237
3238 static int
3239 check_word_reg (void)
3240 {
3241 int op;
3242 for (op = i.operands; --op >= 0;)
3243 /* Reject eight bit registers, except where the template requires
3244 them. (eg. movzb) */
3245 if ((i.types[op] & Reg8) != 0
3246 && (i.tm.operand_types[op] & (Reg16 | Reg32 | Acc)) != 0)
3247 {
3248 as_bad (_("`%s%s' not allowed with `%s%c'"),
3249 register_prefix,
3250 i.op[op].regs->reg_name,
3251 i.tm.name,
3252 i.suffix);
3253 return 0;
3254 }
3255 /* Warn if the e prefix on a general reg is present. */
3256 else if ((!quiet_warnings || flag_code == CODE_64BIT)
3257 && (i.types[op] & Reg32) != 0
3258 && (i.tm.operand_types[op] & (Reg16 | Acc)) != 0)
3259 {
3260 /* Prohibit these changes in the 64bit mode, since the
3261 lowering is more complicated. */
3262 if (flag_code == CODE_64BIT)
3263 {
3264 as_bad (_("Incorrect register `%s%s' used with `%c' suffix"),
3265 register_prefix, i.op[op].regs->reg_name,
3266 i.suffix);
3267 return 0;
3268 }
3269 else
3270 #if REGISTER_WARNINGS
3271 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
3272 register_prefix,
3273 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
3274 register_prefix,
3275 i.op[op].regs->reg_name,
3276 i.suffix);
3277 #endif
3278 }
3279 return 1;
3280 }
3281
3282 static int
3283 finalize_imm (void)
3284 {
3285 unsigned int overlap0, overlap1, overlap2;
3286
3287 overlap0 = i.types[0] & i.tm.operand_types[0];
3288 if ((overlap0 & (Imm8 | Imm8S | Imm16 | Imm32 | Imm32S | Imm64))
3289 && overlap0 != Imm8 && overlap0 != Imm8S
3290 && overlap0 != Imm16 && overlap0 != Imm32S
3291 && overlap0 != Imm32 && overlap0 != Imm64)
3292 {
3293 if (i.suffix)
3294 {
3295 overlap0 &= (i.suffix == BYTE_MNEM_SUFFIX
3296 ? Imm8 | Imm8S
3297 : (i.suffix == WORD_MNEM_SUFFIX
3298 ? Imm16
3299 : (i.suffix == QWORD_MNEM_SUFFIX
3300 ? Imm64 | Imm32S
3301 : Imm32)));
3302 }
3303 else if (overlap0 == (Imm16 | Imm32S | Imm32)
3304 || overlap0 == (Imm16 | Imm32)
3305 || overlap0 == (Imm16 | Imm32S))
3306 {
3307 overlap0 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
3308 ? Imm16 : Imm32S);
3309 }
3310 if (overlap0 != Imm8 && overlap0 != Imm8S
3311 && overlap0 != Imm16 && overlap0 != Imm32S
3312 && overlap0 != Imm32 && overlap0 != Imm64)
3313 {
3314 as_bad (_("no instruction mnemonic suffix given; "
3315 "can't determine immediate size"));
3316 return 0;
3317 }
3318 }
3319 i.types[0] = overlap0;
3320
3321 overlap1 = i.types[1] & i.tm.operand_types[1];
3322 if ((overlap1 & (Imm8 | Imm8S | Imm16 | Imm32S | Imm32 | Imm64))
3323 && overlap1 != Imm8 && overlap1 != Imm8S
3324 && overlap1 != Imm16 && overlap1 != Imm32S
3325 && overlap1 != Imm32 && overlap1 != Imm64)
3326 {
3327 if (i.suffix)
3328 {
3329 overlap1 &= (i.suffix == BYTE_MNEM_SUFFIX
3330 ? Imm8 | Imm8S
3331 : (i.suffix == WORD_MNEM_SUFFIX
3332 ? Imm16
3333 : (i.suffix == QWORD_MNEM_SUFFIX
3334 ? Imm64 | Imm32S
3335 : Imm32)));
3336 }
3337 else if (overlap1 == (Imm16 | Imm32 | Imm32S)
3338 || overlap1 == (Imm16 | Imm32)
3339 || overlap1 == (Imm16 | Imm32S))
3340 {
3341 overlap1 = ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0)
3342 ? Imm16 : Imm32S);
3343 }
3344 if (overlap1 != Imm8 && overlap1 != Imm8S
3345 && overlap1 != Imm16 && overlap1 != Imm32S
3346 && overlap1 != Imm32 && overlap1 != Imm64)
3347 {
3348 as_bad (_("no instruction mnemonic suffix given; "
3349 "can't determine immediate size %x %c"),
3350 overlap1, i.suffix);
3351 return 0;
3352 }
3353 }
3354 i.types[1] = overlap1;
3355
3356 overlap2 = i.types[2] & i.tm.operand_types[2];
3357 assert ((overlap2 & Imm) == 0);
3358 i.types[2] = overlap2;
3359
3360 return 1;
3361 }
3362
3363 static int
3364 process_operands (void)
3365 {
3366 /* Default segment register this instruction will use for memory
3367 accesses. 0 means unknown. This is only for optimizing out
3368 unnecessary segment overrides. */
3369 const seg_entry *default_seg = 0;
3370
3371 /* The imul $imm, %reg instruction is converted into
3372 imul $imm, %reg, %reg, and the clr %reg instruction
3373 is converted into xor %reg, %reg. */
3374 if (i.tm.opcode_modifier & RegKludge)
3375 {
3376 if ((i.tm.cpu_flags & CpuSSE4_1))
3377 {
3378 /* The first operand in instruction blendvpd, blendvps and
3379 pblendvb in SSE4.1 is implicit and must be xmm0. */
3380 assert (i.operands == 3
3381 && i.reg_operands >= 2
3382 && i.types[0] == RegXMM);
3383 if (i.op[0].regs->reg_num != 0)
3384 {
3385 if (intel_syntax)
3386 as_bad (_("the last operand of `%s' must be `%sxmm0'"),
3387 i.tm.name, register_prefix);
3388 else
3389 as_bad (_("the first operand of `%s' must be `%sxmm0'"),
3390 i.tm.name, register_prefix);
3391 return 0;
3392 }
3393 i.op[0] = i.op[1];
3394 i.op[1] = i.op[2];
3395 i.types[0] = i.types[1];
3396 i.types[1] = i.types[2];
3397 i.operands--;
3398 i.reg_operands--;
3399
3400 /* We need to adjust fields in i.tm since they are used by
3401 build_modrm_byte. */
3402 i.tm.operand_types [0] = i.tm.operand_types [1];
3403 i.tm.operand_types [1] = i.tm.operand_types [2];
3404 i.tm.operands--;
3405 }
3406 else
3407 {
3408 unsigned int first_reg_op = (i.types[0] & Reg) ? 0 : 1;
3409 /* Pretend we saw the extra register operand. */
3410 assert (i.reg_operands == 1
3411 && i.op[first_reg_op + 1].regs == 0);
3412 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
3413 i.types[first_reg_op + 1] = i.types[first_reg_op];
3414 i.operands++;
3415 i.reg_operands++;
3416 }
3417 }
3418
3419 if (i.tm.opcode_modifier & ShortForm)
3420 {
3421 if (i.types[0] & (SReg2 | SReg3))
3422 {
3423 if (i.tm.base_opcode == POP_SEG_SHORT
3424 && i.op[0].regs->reg_num == 1)
3425 {
3426 as_bad (_("you can't `pop %%cs'"));
3427 return 0;
3428 }
3429 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
3430 if ((i.op[0].regs->reg_flags & RegRex) != 0)
3431 i.rex |= REX_B;
3432 }
3433 else
3434 {
3435 /* The register or float register operand is in operand 0 or 1. */
3436 unsigned int op = (i.types[0] & (Reg | FloatReg)) ? 0 : 1;
3437 /* Register goes in low 3 bits of opcode. */
3438 i.tm.base_opcode |= i.op[op].regs->reg_num;
3439 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3440 i.rex |= REX_B;
3441 if (!quiet_warnings && (i.tm.opcode_modifier & Ugh) != 0)
3442 {
3443 /* Warn about some common errors, but press on regardless.
3444 The first case can be generated by gcc (<= 2.8.1). */
3445 if (i.operands == 2)
3446 {
3447 /* Reversed arguments on faddp, fsubp, etc. */
3448 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
3449 register_prefix, i.op[1].regs->reg_name,
3450 register_prefix, i.op[0].regs->reg_name);
3451 }
3452 else
3453 {
3454 /* Extraneous `l' suffix on fp insn. */
3455 as_warn (_("translating to `%s %s%s'"), i.tm.name,
3456 register_prefix, i.op[0].regs->reg_name);
3457 }
3458 }
3459 }
3460 }
3461 else if (i.tm.opcode_modifier & Modrm)
3462 {
3463 /* The opcode is completed (modulo i.tm.extension_opcode which
3464 must be put into the modrm byte). Now, we make the modrm and
3465 index base bytes based on all the info we've collected. */
3466
3467 default_seg = build_modrm_byte ();
3468 }
3469 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
3470 {
3471 default_seg = &ds;
3472 }
3473 else if ((i.tm.opcode_modifier & IsString) != 0)
3474 {
3475 /* For the string instructions that allow a segment override
3476 on one of their operands, the default segment is ds. */
3477 default_seg = &ds;
3478 }
3479
3480 if ((i.tm.base_opcode == 0x8d /* lea */
3481 || (i.tm.cpu_flags & CpuSVME))
3482 && i.seg[0] && !quiet_warnings)
3483 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
3484
3485 /* If a segment was explicitly specified, and the specified segment
3486 is not the default, use an opcode prefix to select it. If we
3487 never figured out what the default segment is, then default_seg
3488 will be zero at this point, and the specified segment prefix will
3489 always be used. */
3490 if ((i.seg[0]) && (i.seg[0] != default_seg))
3491 {
3492 if (!add_prefix (i.seg[0]->seg_prefix))
3493 return 0;
3494 }
3495 return 1;
3496 }
3497
3498 static const seg_entry *
3499 build_modrm_byte (void)
3500 {
3501 const seg_entry *default_seg = 0;
3502
3503 /* i.reg_operands MUST be the number of real register operands;
3504 implicit registers do not count. */
3505 if (i.reg_operands == 2)
3506 {
3507 unsigned int source, dest;
3508
3509 switch (i.operands)
3510 {
3511 case 2:
3512 source = 0;
3513 break;
3514 case 3:
3515 /* When there are 3 operands, one of them may be immediate,
3516 which may be the first or the last operand. Otherwise,
3517 the first operand must be shift count register (cl). */
3518 assert (i.imm_operands == 1
3519 || (i.imm_operands == 0
3520 && (i.types[0] & ShiftCount)));
3521 source = (i.types[0] & (Imm | ShiftCount)) ? 1 : 0;
3522 break;
3523 case 4:
3524 /* When there are 4 operands, the first two must be immediate
3525 operands. The source operand will be the 3rd one. */
3526 assert (i.imm_operands == 2
3527 && (i.types[0] & Imm)
3528 && (i.types[1] & Imm));
3529 source = 2;
3530 break;
3531 default:
3532 abort ();
3533 }
3534
3535 dest = source + 1;
3536
3537 i.rm.mode = 3;
3538 /* One of the register operands will be encoded in the i.tm.reg
3539 field, the other in the combined i.tm.mode and i.tm.regmem
3540 fields. If no form of this instruction supports a memory
3541 destination operand, then we assume the source operand may
3542 sometimes be a memory operand and so we need to store the
3543 destination in the i.rm.reg field. */
3544 if ((i.tm.operand_types[dest] & (AnyMem | RegMem)) == 0)
3545 {
3546 i.rm.reg = i.op[dest].regs->reg_num;
3547 i.rm.regmem = i.op[source].regs->reg_num;
3548 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
3549 i.rex |= REX_R;
3550 if ((i.op[source].regs->reg_flags & RegRex) != 0)
3551 i.rex |= REX_B;
3552 }
3553 else
3554 {
3555 i.rm.reg = i.op[source].regs->reg_num;
3556 i.rm.regmem = i.op[dest].regs->reg_num;
3557 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
3558 i.rex |= REX_B;
3559 if ((i.op[source].regs->reg_flags & RegRex) != 0)
3560 i.rex |= REX_R;
3561 }
3562 if (flag_code != CODE_64BIT && (i.rex & (REX_R | REX_B)))
3563 {
3564 if (!((i.types[0] | i.types[1]) & Control))
3565 abort ();
3566 i.rex &= ~(REX_R | REX_B);
3567 add_prefix (LOCK_PREFIX_OPCODE);
3568 }
3569 }
3570 else
3571 { /* If it's not 2 reg operands... */
3572 if (i.mem_operands)
3573 {
3574 unsigned int fake_zero_displacement = 0;
3575 unsigned int op;
3576
3577 for (op = 0; op < i.operands; op++)
3578 if ((i.types[op] & AnyMem))
3579 break;
3580 assert (op < i.operands);
3581
3582 default_seg = &ds;
3583
3584 if (i.base_reg == 0)
3585 {
3586 i.rm.mode = 0;
3587 if (!i.disp_operands)
3588 fake_zero_displacement = 1;
3589 if (i.index_reg == 0)
3590 {
3591 /* Operand is just <disp> */
3592 if (flag_code == CODE_64BIT)
3593 {
3594 /* 64bit mode overwrites the 32bit absolute
3595 addressing by RIP relative addressing and
3596 absolute addressing is encoded by one of the
3597 redundant SIB forms. */
3598 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3599 i.sib.base = NO_BASE_REGISTER;
3600 i.sib.index = NO_INDEX_REGISTER;
3601 i.types[op] = ((i.prefix[ADDR_PREFIX] == 0)
3602 ? Disp32S : Disp32);
3603 }
3604 else if ((flag_code == CODE_16BIT)
3605 ^ (i.prefix[ADDR_PREFIX] != 0))
3606 {
3607 i.rm.regmem = NO_BASE_REGISTER_16;
3608 i.types[op] = Disp16;
3609 }
3610 else
3611 {
3612 i.rm.regmem = NO_BASE_REGISTER;
3613 i.types[op] = Disp32;
3614 }
3615 }
3616 else /* !i.base_reg && i.index_reg */
3617 {
3618 i.sib.index = i.index_reg->reg_num;
3619 i.sib.base = NO_BASE_REGISTER;
3620 i.sib.scale = i.log2_scale_factor;
3621 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3622 i.types[op] &= ~Disp;
3623 if (flag_code != CODE_64BIT)
3624 i.types[op] |= Disp32; /* Must be 32 bit */
3625 else
3626 i.types[op] |= Disp32S;
3627 if ((i.index_reg->reg_flags & RegRex) != 0)
3628 i.rex |= REX_X;
3629 }
3630 }
3631 /* RIP addressing for 64bit mode. */
3632 else if (i.base_reg->reg_type == BaseIndex)
3633 {
3634 i.rm.regmem = NO_BASE_REGISTER;
3635 i.types[op] &= ~ Disp;
3636 i.types[op] |= Disp32S;
3637 i.flags[op] |= Operand_PCrel;
3638 if (! i.disp_operands)
3639 fake_zero_displacement = 1;
3640 }
3641 else if (i.base_reg->reg_type & Reg16)
3642 {
3643 switch (i.base_reg->reg_num)
3644 {
3645 case 3: /* (%bx) */
3646 if (i.index_reg == 0)
3647 i.rm.regmem = 7;
3648 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
3649 i.rm.regmem = i.index_reg->reg_num - 6;
3650 break;
3651 case 5: /* (%bp) */
3652 default_seg = &ss;
3653 if (i.index_reg == 0)
3654 {
3655 i.rm.regmem = 6;
3656 if ((i.types[op] & Disp) == 0)
3657 {
3658 /* fake (%bp) into 0(%bp) */
3659 i.types[op] |= Disp8;
3660 fake_zero_displacement = 1;
3661 }
3662 }
3663 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
3664 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
3665 break;
3666 default: /* (%si) -> 4 or (%di) -> 5 */
3667 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
3668 }
3669 i.rm.mode = mode_from_disp_size (i.types[op]);
3670 }
3671 else /* i.base_reg and 32/64 bit mode */
3672 {
3673 if (flag_code == CODE_64BIT
3674 && (i.types[op] & Disp))
3675 i.types[op] = ((i.types[op] & Disp8)
3676 | (i.prefix[ADDR_PREFIX] == 0
3677 ? Disp32S : Disp32));
3678
3679 i.rm.regmem = i.base_reg->reg_num;
3680 if ((i.base_reg->reg_flags & RegRex) != 0)
3681 i.rex |= REX_B;
3682 i.sib.base = i.base_reg->reg_num;
3683 /* x86-64 ignores REX prefix bit here to avoid decoder
3684 complications. */
3685 if ((i.base_reg->reg_num & 7) == EBP_REG_NUM)
3686 {
3687 default_seg = &ss;
3688 if (i.disp_operands == 0)
3689 {
3690 fake_zero_displacement = 1;
3691 i.types[op] |= Disp8;
3692 }
3693 }
3694 else if (i.base_reg->reg_num == ESP_REG_NUM)
3695 {
3696 default_seg = &ss;
3697 }
3698 i.sib.scale = i.log2_scale_factor;
3699 if (i.index_reg == 0)
3700 {
3701 /* <disp>(%esp) becomes two byte modrm with no index
3702 register. We've already stored the code for esp
3703 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
3704 Any base register besides %esp will not use the
3705 extra modrm byte. */
3706 i.sib.index = NO_INDEX_REGISTER;
3707 #if !SCALE1_WHEN_NO_INDEX
3708 /* Another case where we force the second modrm byte. */
3709 if (i.log2_scale_factor)
3710 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3711 #endif
3712 }
3713 else
3714 {
3715 i.sib.index = i.index_reg->reg_num;
3716 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
3717 if ((i.index_reg->reg_flags & RegRex) != 0)
3718 i.rex |= REX_X;
3719 }
3720
3721 if (i.disp_operands
3722 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
3723 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
3724 i.rm.mode = 0;
3725 else
3726 i.rm.mode = mode_from_disp_size (i.types[op]);
3727 }
3728
3729 if (fake_zero_displacement)
3730 {
3731 /* Fakes a zero displacement assuming that i.types[op]
3732 holds the correct displacement size. */
3733 expressionS *exp;
3734
3735 assert (i.op[op].disps == 0);
3736 exp = &disp_expressions[i.disp_operands++];
3737 i.op[op].disps = exp;
3738 exp->X_op = O_constant;
3739 exp->X_add_number = 0;
3740 exp->X_add_symbol = (symbolS *) 0;
3741 exp->X_op_symbol = (symbolS *) 0;
3742 }
3743 }
3744
3745 /* Fill in i.rm.reg or i.rm.regmem field with register operand
3746 (if any) based on i.tm.extension_opcode. Again, we must be
3747 careful to make sure that segment/control/debug/test/MMX
3748 registers are coded into the i.rm.reg field. */
3749 if (i.reg_operands)
3750 {
3751 unsigned int op;
3752
3753 for (op = 0; op < i.operands; op++)
3754 if ((i.types[op] & (Reg | RegMMX | RegXMM
3755 | SReg2 | SReg3
3756 | Control | Debug | Test)))
3757 break;
3758 assert (op < i.operands);
3759
3760 /* If there is an extension opcode to put here, the register
3761 number must be put into the regmem field. */
3762 if (i.tm.extension_opcode != None)
3763 {
3764 i.rm.regmem = i.op[op].regs->reg_num;
3765 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3766 i.rex |= REX_B;
3767 }
3768 else
3769 {
3770 i.rm.reg = i.op[op].regs->reg_num;
3771 if ((i.op[op].regs->reg_flags & RegRex) != 0)
3772 i.rex |= REX_R;
3773 }
3774
3775 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
3776 must set it to 3 to indicate this is a register operand
3777 in the regmem field. */
3778 if (!i.mem_operands)
3779 i.rm.mode = 3;
3780 }
3781
3782 /* Fill in i.rm.reg field with extension opcode (if any). */
3783 if (i.tm.extension_opcode != None)
3784 i.rm.reg = i.tm.extension_opcode;
3785 }
3786 return default_seg;
3787 }
3788
3789 static void
3790 output_branch (void)
3791 {
3792 char *p;
3793 int code16;
3794 int prefix;
3795 relax_substateT subtype;
3796 symbolS *sym;
3797 offsetT off;
3798
3799 code16 = 0;
3800 if (flag_code == CODE_16BIT)
3801 code16 = CODE16;
3802
3803 prefix = 0;
3804 if (i.prefix[DATA_PREFIX] != 0)
3805 {
3806 prefix = 1;
3807 i.prefixes -= 1;
3808 code16 ^= CODE16;
3809 }
3810 /* Pentium4 branch hints. */
3811 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3812 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3813 {
3814 prefix++;
3815 i.prefixes--;
3816 }
3817 if (i.prefix[REX_PREFIX] != 0)
3818 {
3819 prefix++;
3820 i.prefixes--;
3821 }
3822
3823 if (i.prefixes != 0 && !intel_syntax)
3824 as_warn (_("skipping prefixes on this instruction"));
3825
3826 /* It's always a symbol; End frag & setup for relax.
3827 Make sure there is enough room in this frag for the largest
3828 instruction we may generate in md_convert_frag. This is 2
3829 bytes for the opcode and room for the prefix and largest
3830 displacement. */
3831 frag_grow (prefix + 2 + 4);
3832 /* Prefix and 1 opcode byte go in fr_fix. */
3833 p = frag_more (prefix + 1);
3834 if (i.prefix[DATA_PREFIX] != 0)
3835 *p++ = DATA_PREFIX_OPCODE;
3836 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
3837 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
3838 *p++ = i.prefix[SEG_PREFIX];
3839 if (i.prefix[REX_PREFIX] != 0)
3840 *p++ = i.prefix[REX_PREFIX];
3841 *p = i.tm.base_opcode;
3842
3843 if ((unsigned char) *p == JUMP_PC_RELATIVE)
3844 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, SMALL);
3845 else if ((cpu_arch_flags & Cpu386) != 0)
3846 subtype = ENCODE_RELAX_STATE (COND_JUMP, SMALL);
3847 else
3848 subtype = ENCODE_RELAX_STATE (COND_JUMP86, SMALL);
3849 subtype |= code16;
3850
3851 sym = i.op[0].disps->X_add_symbol;
3852 off = i.op[0].disps->X_add_number;
3853
3854 if (i.op[0].disps->X_op != O_constant
3855 && i.op[0].disps->X_op != O_symbol)
3856 {
3857 /* Handle complex expressions. */
3858 sym = make_expr_symbol (i.op[0].disps);
3859 off = 0;
3860 }
3861
3862 /* 1 possible extra opcode + 4 byte displacement go in var part.
3863 Pass reloc in fr_var. */
3864 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
3865 }
3866
3867 static void
3868 output_jump (void)
3869 {
3870 char *p;
3871 int size;
3872 fixS *fixP;
3873
3874 if (i.tm.opcode_modifier & JumpByte)
3875 {
3876 /* This is a loop or jecxz type instruction. */
3877 size = 1;
3878 if (i.prefix[ADDR_PREFIX] != 0)
3879 {
3880 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
3881 i.prefixes -= 1;
3882 }
3883 /* Pentium4 branch hints. */
3884 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
3885 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
3886 {
3887 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
3888 i.prefixes--;
3889 }
3890 }
3891 else
3892 {
3893 int code16;
3894
3895 code16 = 0;
3896 if (flag_code == CODE_16BIT)
3897 code16 = CODE16;
3898
3899 if (i.prefix[DATA_PREFIX] != 0)
3900 {
3901 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
3902 i.prefixes -= 1;
3903 code16 ^= CODE16;
3904 }
3905
3906 size = 4;
3907 if (code16)
3908 size = 2;
3909 }
3910
3911 if (i.prefix[REX_PREFIX] != 0)
3912 {
3913 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
3914 i.prefixes -= 1;
3915 }
3916
3917 if (i.prefixes != 0 && !intel_syntax)
3918 as_warn (_("skipping prefixes on this instruction"));
3919
3920 p = frag_more (1 + size);
3921 *p++ = i.tm.base_opcode;
3922
3923 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3924 i.op[0].disps, 1, reloc (size, 1, 1, i.reloc[0]));
3925
3926 /* All jumps handled here are signed, but don't use a signed limit
3927 check for 32 and 16 bit jumps as we want to allow wrap around at
3928 4G and 64k respectively. */
3929 if (size == 1)
3930 fixP->fx_signed = 1;
3931 }
3932
3933 static void
3934 output_interseg_jump (void)
3935 {
3936 char *p;
3937 int size;
3938 int prefix;
3939 int code16;
3940
3941 code16 = 0;
3942 if (flag_code == CODE_16BIT)
3943 code16 = CODE16;
3944
3945 prefix = 0;
3946 if (i.prefix[DATA_PREFIX] != 0)
3947 {
3948 prefix = 1;
3949 i.prefixes -= 1;
3950 code16 ^= CODE16;
3951 }
3952 if (i.prefix[REX_PREFIX] != 0)
3953 {
3954 prefix++;
3955 i.prefixes -= 1;
3956 }
3957
3958 size = 4;
3959 if (code16)
3960 size = 2;
3961
3962 if (i.prefixes != 0 && !intel_syntax)
3963 as_warn (_("skipping prefixes on this instruction"));
3964
3965 /* 1 opcode; 2 segment; offset */
3966 p = frag_more (prefix + 1 + 2 + size);
3967
3968 if (i.prefix[DATA_PREFIX] != 0)
3969 *p++ = DATA_PREFIX_OPCODE;
3970
3971 if (i.prefix[REX_PREFIX] != 0)
3972 *p++ = i.prefix[REX_PREFIX];
3973
3974 *p++ = i.tm.base_opcode;
3975 if (i.op[1].imms->X_op == O_constant)
3976 {
3977 offsetT n = i.op[1].imms->X_add_number;
3978
3979 if (size == 2
3980 && !fits_in_unsigned_word (n)
3981 && !fits_in_signed_word (n))
3982 {
3983 as_bad (_("16-bit jump out of range"));
3984 return;
3985 }
3986 md_number_to_chars (p, n, size);
3987 }
3988 else
3989 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
3990 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
3991 if (i.op[0].imms->X_op != O_constant)
3992 as_bad (_("can't handle non absolute segment in `%s'"),
3993 i.tm.name);
3994 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
3995 }
3996
3997 static void
3998 output_insn (void)
3999 {
4000 fragS *insn_start_frag;
4001 offsetT insn_start_off;
4002
4003 /* Tie dwarf2 debug info to the address at the start of the insn.
4004 We can't do this after the insn has been output as the current
4005 frag may have been closed off. eg. by frag_var. */
4006 dwarf2_emit_insn (0);
4007
4008 insn_start_frag = frag_now;
4009 insn_start_off = frag_now_fix ();
4010
4011 /* Output jumps. */
4012 if (i.tm.opcode_modifier & Jump)
4013 output_branch ();
4014 else if (i.tm.opcode_modifier & (JumpByte | JumpDword))
4015 output_jump ();
4016 else if (i.tm.opcode_modifier & JumpInterSegment)
4017 output_interseg_jump ();
4018 else
4019 {
4020 /* Output normal instructions here. */
4021 char *p;
4022 unsigned char *q;
4023 unsigned int prefix;
4024
4025 /* All opcodes on i386 have either 1 or 2 bytes. SSSE3 and
4026 SSE4 instructions have 3 bytes. We may use one more higher
4027 byte to specify a prefix the instruction requires. Exclude
4028 instructions which are in both SSE4 and ABM. */
4029 if ((i.tm.cpu_flags & (CpuSSSE3 | CpuSSE4)) != 0
4030 && (i.tm.cpu_flags & CpuABM) == 0)
4031 {
4032 if (i.tm.base_opcode & 0xff000000)
4033 {
4034 prefix = (i.tm.base_opcode >> 24) & 0xff;
4035 goto check_prefix;
4036 }
4037 }
4038 else if ((i.tm.base_opcode & 0xff0000) != 0)
4039 {
4040 prefix = (i.tm.base_opcode >> 16) & 0xff;
4041 if ((i.tm.cpu_flags & CpuPadLock) != 0)
4042 {
4043 check_prefix:
4044 if (prefix != REPE_PREFIX_OPCODE
4045 || i.prefix[LOCKREP_PREFIX] != REPE_PREFIX_OPCODE)
4046 add_prefix (prefix);
4047 }
4048 else
4049 add_prefix (prefix);
4050 }
4051
4052 /* The prefix bytes. */
4053 for (q = i.prefix;
4054 q < i.prefix + sizeof (i.prefix) / sizeof (i.prefix[0]);
4055 q++)
4056 {
4057 if (*q)
4058 {
4059 p = frag_more (1);
4060 md_number_to_chars (p, (valueT) *q, 1);
4061 }
4062 }
4063
4064 /* Now the opcode; be careful about word order here! */
4065 if (fits_in_unsigned_byte (i.tm.base_opcode))
4066 {
4067 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
4068 }
4069 else
4070 {
4071 if ((i.tm.cpu_flags & (CpuSSSE3 | CpuSSE4)) != 0
4072 && (i.tm.cpu_flags & CpuABM) == 0)
4073 {
4074 p = frag_more (3);
4075 *p++ = (i.tm.base_opcode >> 16) & 0xff;
4076 }
4077 else
4078 p = frag_more (2);
4079
4080 /* Put out high byte first: can't use md_number_to_chars! */
4081 *p++ = (i.tm.base_opcode >> 8) & 0xff;
4082 *p = i.tm.base_opcode & 0xff;
4083 }
4084
4085 /* Now the modrm byte and sib byte (if present). */
4086 if (i.tm.opcode_modifier & Modrm)
4087 {
4088 p = frag_more (1);
4089 md_number_to_chars (p,
4090 (valueT) (i.rm.regmem << 0
4091 | i.rm.reg << 3
4092 | i.rm.mode << 6),
4093 1);
4094 /* If i.rm.regmem == ESP (4)
4095 && i.rm.mode != (Register mode)
4096 && not 16 bit
4097 ==> need second modrm byte. */
4098 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
4099 && i.rm.mode != 3
4100 && !(i.base_reg && (i.base_reg->reg_type & Reg16) != 0))
4101 {
4102 p = frag_more (1);
4103 md_number_to_chars (p,
4104 (valueT) (i.sib.base << 0
4105 | i.sib.index << 3
4106 | i.sib.scale << 6),
4107 1);
4108 }
4109 }
4110
4111 if (i.disp_operands)
4112 output_disp (insn_start_frag, insn_start_off);
4113
4114 if (i.imm_operands)
4115 output_imm (insn_start_frag, insn_start_off);
4116 }
4117
4118 #ifdef DEBUG386
4119 if (flag_debug)
4120 {
4121 pi ("" /*line*/, &i);
4122 }
4123 #endif /* DEBUG386 */
4124 }
4125
4126 /* Return the size of the displacement operand N. */
4127
4128 static int
4129 disp_size (unsigned int n)
4130 {
4131 int size = 4;
4132 if (i.types[n] & (Disp8 | Disp16 | Disp64))
4133 {
4134 size = 2;
4135 if (i.types[n] & Disp8)
4136 size = 1;
4137 if (i.types[n] & Disp64)
4138 size = 8;
4139 }
4140 return size;
4141 }
4142
4143 /* Return the size of the immediate operand N. */
4144
4145 static int
4146 imm_size (unsigned int n)
4147 {
4148 int size = 4;
4149 if (i.types[n] & (Imm8 | Imm8S | Imm16 | Imm64))
4150 {
4151 size = 2;
4152 if (i.types[n] & (Imm8 | Imm8S))
4153 size = 1;
4154 if (i.types[n] & Imm64)
4155 size = 8;
4156 }
4157 return size;
4158 }
4159
4160 static void
4161 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
4162 {
4163 char *p;
4164 unsigned int n;
4165
4166 for (n = 0; n < i.operands; n++)
4167 {
4168 if (i.types[n] & Disp)
4169 {
4170 if (i.op[n].disps->X_op == O_constant)
4171 {
4172 int size = disp_size (n);
4173 offsetT val;
4174
4175 val = offset_in_range (i.op[n].disps->X_add_number,
4176 size);
4177 p = frag_more (size);
4178 md_number_to_chars (p, val, size);
4179 }
4180 else
4181 {
4182 enum bfd_reloc_code_real reloc_type;
4183 int size = disp_size (n);
4184 int sign = (i.types[n] & Disp32S) != 0;
4185 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
4186
4187 /* We can't have 8 bit displacement here. */
4188 assert ((i.types[n] & Disp8) == 0);
4189
4190 /* The PC relative address is computed relative
4191 to the instruction boundary, so in case immediate
4192 fields follows, we need to adjust the value. */
4193 if (pcrel && i.imm_operands)
4194 {
4195 unsigned int n1;
4196 int sz = 0;
4197
4198 for (n1 = 0; n1 < i.operands; n1++)
4199 if (i.types[n1] & Imm)
4200 {
4201 /* Only one immediate is allowed for PC
4202 relative address. */
4203 assert (sz == 0);
4204 sz = imm_size (n1);
4205 i.op[n].disps->X_add_number -= sz;
4206 }
4207 /* We should find the immediate. */
4208 assert (sz != 0);
4209 }
4210
4211 p = frag_more (size);
4212 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
4213 if (GOT_symbol
4214 && GOT_symbol == i.op[n].disps->X_add_symbol
4215 && (((reloc_type == BFD_RELOC_32
4216 || reloc_type == BFD_RELOC_X86_64_32S
4217 || (reloc_type == BFD_RELOC_64
4218 && object_64bit))
4219 && (i.op[n].disps->X_op == O_symbol
4220 || (i.op[n].disps->X_op == O_add
4221 && ((symbol_get_value_expression
4222 (i.op[n].disps->X_op_symbol)->X_op)
4223 == O_subtract))))
4224 || reloc_type == BFD_RELOC_32_PCREL))
4225 {
4226 offsetT add;
4227
4228 if (insn_start_frag == frag_now)
4229 add = (p - frag_now->fr_literal) - insn_start_off;
4230 else
4231 {
4232 fragS *fr;
4233
4234 add = insn_start_frag->fr_fix - insn_start_off;
4235 for (fr = insn_start_frag->fr_next;
4236 fr && fr != frag_now; fr = fr->fr_next)
4237 add += fr->fr_fix;
4238 add += p - frag_now->fr_literal;
4239 }
4240
4241 if (!object_64bit)
4242 {
4243 reloc_type = BFD_RELOC_386_GOTPC;
4244 i.op[n].imms->X_add_number += add;
4245 }
4246 else if (reloc_type == BFD_RELOC_64)
4247 reloc_type = BFD_RELOC_X86_64_GOTPC64;
4248 else
4249 /* Don't do the adjustment for x86-64, as there
4250 the pcrel addressing is relative to the _next_
4251 insn, and that is taken care of in other code. */
4252 reloc_type = BFD_RELOC_X86_64_GOTPC32;
4253 }
4254 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
4255 i.op[n].disps, pcrel, reloc_type);
4256 }
4257 }
4258 }
4259 }
4260
4261 static void
4262 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
4263 {
4264 char *p;
4265 unsigned int n;
4266
4267 for (n = 0; n < i.operands; n++)
4268 {
4269 if (i.types[n] & Imm)
4270 {
4271 if (i.op[n].imms->X_op == O_constant)
4272 {
4273 int size = imm_size (n);
4274 offsetT val;
4275
4276 val = offset_in_range (i.op[n].imms->X_add_number,
4277 size);
4278 p = frag_more (size);
4279 md_number_to_chars (p, val, size);
4280 }
4281 else
4282 {
4283 /* Not absolute_section.
4284 Need a 32-bit fixup (don't support 8bit
4285 non-absolute imms). Try to support other
4286 sizes ... */
4287 enum bfd_reloc_code_real reloc_type;
4288 int size = imm_size (n);
4289 int sign;
4290
4291 if ((i.types[n] & (Imm32S))
4292 && (i.suffix == QWORD_MNEM_SUFFIX
4293 || (!i.suffix && (i.tm.opcode_modifier & No_lSuf))))
4294 sign = 1;
4295 else
4296 sign = 0;
4297
4298 p = frag_more (size);
4299 reloc_type = reloc (size, 0, sign, i.reloc[n]);
4300
4301 /* This is tough to explain. We end up with this one if we
4302 * have operands that look like
4303 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
4304 * obtain the absolute address of the GOT, and it is strongly
4305 * preferable from a performance point of view to avoid using
4306 * a runtime relocation for this. The actual sequence of
4307 * instructions often look something like:
4308 *
4309 * call .L66
4310 * .L66:
4311 * popl %ebx
4312 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
4313 *
4314 * The call and pop essentially return the absolute address
4315 * of the label .L66 and store it in %ebx. The linker itself
4316 * will ultimately change the first operand of the addl so
4317 * that %ebx points to the GOT, but to keep things simple, the
4318 * .o file must have this operand set so that it generates not
4319 * the absolute address of .L66, but the absolute address of
4320 * itself. This allows the linker itself simply treat a GOTPC
4321 * relocation as asking for a pcrel offset to the GOT to be
4322 * added in, and the addend of the relocation is stored in the
4323 * operand field for the instruction itself.
4324 *
4325 * Our job here is to fix the operand so that it would add
4326 * the correct offset so that %ebx would point to itself. The
4327 * thing that is tricky is that .-.L66 will point to the
4328 * beginning of the instruction, so we need to further modify
4329 * the operand so that it will point to itself. There are
4330 * other cases where you have something like:
4331 *
4332 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
4333 *
4334 * and here no correction would be required. Internally in
4335 * the assembler we treat operands of this form as not being
4336 * pcrel since the '.' is explicitly mentioned, and I wonder
4337 * whether it would simplify matters to do it this way. Who
4338 * knows. In earlier versions of the PIC patches, the
4339 * pcrel_adjust field was used to store the correction, but
4340 * since the expression is not pcrel, I felt it would be
4341 * confusing to do it this way. */
4342
4343 if ((reloc_type == BFD_RELOC_32
4344 || reloc_type == BFD_RELOC_X86_64_32S
4345 || reloc_type == BFD_RELOC_64)
4346 && GOT_symbol
4347 && GOT_symbol == i.op[n].imms->X_add_symbol
4348 && (i.op[n].imms->X_op == O_symbol
4349 || (i.op[n].imms->X_op == O_add
4350 && ((symbol_get_value_expression
4351 (i.op[n].imms->X_op_symbol)->X_op)
4352 == O_subtract))))
4353 {
4354 offsetT add;
4355
4356 if (insn_start_frag == frag_now)
4357 add = (p - frag_now->fr_literal) - insn_start_off;
4358 else
4359 {
4360 fragS *fr;
4361
4362 add = insn_start_frag->fr_fix - insn_start_off;
4363 for (fr = insn_start_frag->fr_next;
4364 fr && fr != frag_now; fr = fr->fr_next)
4365 add += fr->fr_fix;
4366 add += p - frag_now->fr_literal;
4367 }
4368
4369 if (!object_64bit)
4370 reloc_type = BFD_RELOC_386_GOTPC;
4371 else if (size == 4)
4372 reloc_type = BFD_RELOC_X86_64_GOTPC32;
4373 else if (size == 8)
4374 reloc_type = BFD_RELOC_X86_64_GOTPC64;
4375 i.op[n].imms->X_add_number += add;
4376 }
4377 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
4378 i.op[n].imms, 0, reloc_type);
4379 }
4380 }
4381 }
4382 }
4383 \f
4384 /* x86_cons_fix_new is called via the expression parsing code when a
4385 reloc is needed. We use this hook to get the correct .got reloc. */
4386 static enum bfd_reloc_code_real got_reloc = NO_RELOC;
4387 static int cons_sign = -1;
4388
4389 void
4390 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
4391 expressionS *exp)
4392 {
4393 enum bfd_reloc_code_real r = reloc (len, 0, cons_sign, got_reloc);
4394
4395 got_reloc = NO_RELOC;
4396
4397 #ifdef TE_PE
4398 if (exp->X_op == O_secrel)
4399 {
4400 exp->X_op = O_symbol;
4401 r = BFD_RELOC_32_SECREL;
4402 }
4403 #endif
4404
4405 fix_new_exp (frag, off, len, exp, 0, r);
4406 }
4407
4408 #if (!defined (OBJ_ELF) && !defined (OBJ_MAYBE_ELF)) || defined (LEX_AT)
4409 # define lex_got(reloc, adjust, types) NULL
4410 #else
4411 /* Parse operands of the form
4412 <symbol>@GOTOFF+<nnn>
4413 and similar .plt or .got references.
4414
4415 If we find one, set up the correct relocation in RELOC and copy the
4416 input string, minus the `@GOTOFF' into a malloc'd buffer for
4417 parsing by the calling routine. Return this buffer, and if ADJUST
4418 is non-null set it to the length of the string we removed from the
4419 input line. Otherwise return NULL. */
4420 static char *
4421 lex_got (enum bfd_reloc_code_real *reloc,
4422 int *adjust,
4423 unsigned int *types)
4424 {
4425 /* Some of the relocations depend on the size of what field is to
4426 be relocated. But in our callers i386_immediate and i386_displacement
4427 we don't yet know the operand size (this will be set by insn
4428 matching). Hence we record the word32 relocation here,
4429 and adjust the reloc according to the real size in reloc(). */
4430 static const struct {
4431 const char *str;
4432 const enum bfd_reloc_code_real rel[2];
4433 const unsigned int types64;
4434 } gotrel[] = {
4435 { "PLTOFF", { 0,
4436 BFD_RELOC_X86_64_PLTOFF64 },
4437 Imm64 },
4438 { "PLT", { BFD_RELOC_386_PLT32,
4439 BFD_RELOC_X86_64_PLT32 },
4440 Imm32 | Imm32S | Disp32 },
4441 { "GOTPLT", { 0,
4442 BFD_RELOC_X86_64_GOTPLT64 },
4443 Imm64 | Disp64 },
4444 { "GOTOFF", { BFD_RELOC_386_GOTOFF,
4445 BFD_RELOC_X86_64_GOTOFF64 },
4446 Imm64 | Disp64 },
4447 { "GOTPCREL", { 0,
4448 BFD_RELOC_X86_64_GOTPCREL },
4449 Imm32 | Imm32S | Disp32 },
4450 { "TLSGD", { BFD_RELOC_386_TLS_GD,
4451 BFD_RELOC_X86_64_TLSGD },
4452 Imm32 | Imm32S | Disp32 },
4453 { "TLSLDM", { BFD_RELOC_386_TLS_LDM,
4454 0 },
4455 0 },
4456 { "TLSLD", { 0,
4457 BFD_RELOC_X86_64_TLSLD },
4458 Imm32 | Imm32S | Disp32 },
4459 { "GOTTPOFF", { BFD_RELOC_386_TLS_IE_32,
4460 BFD_RELOC_X86_64_GOTTPOFF },
4461 Imm32 | Imm32S | Disp32 },
4462 { "TPOFF", { BFD_RELOC_386_TLS_LE_32,
4463 BFD_RELOC_X86_64_TPOFF32 },
4464 Imm32 | Imm32S | Imm64 | Disp32 | Disp64 },
4465 { "NTPOFF", { BFD_RELOC_386_TLS_LE,
4466 0 },
4467 0 },
4468 { "DTPOFF", { BFD_RELOC_386_TLS_LDO_32,
4469 BFD_RELOC_X86_64_DTPOFF32 },
4470 Imm32 | Imm32S | Imm64 | Disp32 | Disp64 },
4471 { "GOTNTPOFF",{ BFD_RELOC_386_TLS_GOTIE,
4472 0 },
4473 0 },
4474 { "INDNTPOFF",{ BFD_RELOC_386_TLS_IE,
4475 0 },
4476 0 },
4477 { "GOT", { BFD_RELOC_386_GOT32,
4478 BFD_RELOC_X86_64_GOT32 },
4479 Imm32 | Imm32S | Disp32 | Imm64 },
4480 { "TLSDESC", { BFD_RELOC_386_TLS_GOTDESC,
4481 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
4482 Imm32 | Imm32S | Disp32 },
4483 { "TLSCALL", { BFD_RELOC_386_TLS_DESC_CALL,
4484 BFD_RELOC_X86_64_TLSDESC_CALL },
4485 Imm32 | Imm32S | Disp32 }
4486 };
4487 char *cp;
4488 unsigned int j;
4489
4490 if (!IS_ELF)
4491 return NULL;
4492
4493 for (cp = input_line_pointer; *cp != '@'; cp++)
4494 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
4495 return NULL;
4496
4497 for (j = 0; j < sizeof (gotrel) / sizeof (gotrel[0]); j++)
4498 {
4499 int len;
4500
4501 len = strlen (gotrel[j].str);
4502 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
4503 {
4504 if (gotrel[j].rel[object_64bit] != 0)
4505 {
4506 int first, second;
4507 char *tmpbuf, *past_reloc;
4508
4509 *reloc = gotrel[j].rel[object_64bit];
4510 if (adjust)
4511 *adjust = len;
4512
4513 if (types)
4514 {
4515 if (flag_code != CODE_64BIT)
4516 *types = Imm32 | Disp32;
4517 else
4518 *types = gotrel[j].types64;
4519 }
4520
4521 if (GOT_symbol == NULL)
4522 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
4523
4524 /* The length of the first part of our input line. */
4525 first = cp - input_line_pointer;
4526
4527 /* The second part goes from after the reloc token until
4528 (and including) an end_of_line char or comma. */
4529 past_reloc = cp + 1 + len;
4530 cp = past_reloc;
4531 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
4532 ++cp;
4533 second = cp + 1 - past_reloc;
4534
4535 /* Allocate and copy string. The trailing NUL shouldn't
4536 be necessary, but be safe. */
4537 tmpbuf = xmalloc (first + second + 2);
4538 memcpy (tmpbuf, input_line_pointer, first);
4539 if (second != 0 && *past_reloc != ' ')
4540 /* Replace the relocation token with ' ', so that
4541 errors like foo@GOTOFF1 will be detected. */
4542 tmpbuf[first++] = ' ';
4543 memcpy (tmpbuf + first, past_reloc, second);
4544 tmpbuf[first + second] = '\0';
4545 return tmpbuf;
4546 }
4547
4548 as_bad (_("@%s reloc is not supported with %d-bit output format"),
4549 gotrel[j].str, 1 << (5 + object_64bit));
4550 return NULL;
4551 }
4552 }
4553
4554 /* Might be a symbol version string. Don't as_bad here. */
4555 return NULL;
4556 }
4557
4558 void
4559 x86_cons (expressionS *exp, int size)
4560 {
4561 if (size == 4 || (object_64bit && size == 8))
4562 {
4563 /* Handle @GOTOFF and the like in an expression. */
4564 char *save;
4565 char *gotfree_input_line;
4566 int adjust;
4567
4568 save = input_line_pointer;
4569 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
4570 if (gotfree_input_line)
4571 input_line_pointer = gotfree_input_line;
4572
4573 expression (exp);
4574
4575 if (gotfree_input_line)
4576 {
4577 /* expression () has merrily parsed up to the end of line,
4578 or a comma - in the wrong buffer. Transfer how far
4579 input_line_pointer has moved to the right buffer. */
4580 input_line_pointer = (save
4581 + (input_line_pointer - gotfree_input_line)
4582 + adjust);
4583 free (gotfree_input_line);
4584 if (exp->X_op == O_constant
4585 || exp->X_op == O_absent
4586 || exp->X_op == O_illegal
4587 || exp->X_op == O_register
4588 || exp->X_op == O_big)
4589 {
4590 char c = *input_line_pointer;
4591 *input_line_pointer = 0;
4592 as_bad (_("missing or invalid expression `%s'"), save);
4593 *input_line_pointer = c;
4594 }
4595 }
4596 }
4597 else
4598 expression (exp);
4599 }
4600 #endif
4601
4602 static void signed_cons (int size)
4603 {
4604 if (flag_code == CODE_64BIT)
4605 cons_sign = 1;
4606 cons (size);
4607 cons_sign = -1;
4608 }
4609
4610 #ifdef TE_PE
4611 static void
4612 pe_directive_secrel (dummy)
4613 int dummy ATTRIBUTE_UNUSED;
4614 {
4615 expressionS exp;
4616
4617 do
4618 {
4619 expression (&exp);
4620 if (exp.X_op == O_symbol)
4621 exp.X_op = O_secrel;
4622
4623 emit_expr (&exp, 4);
4624 }
4625 while (*input_line_pointer++ == ',');
4626
4627 input_line_pointer--;
4628 demand_empty_rest_of_line ();
4629 }
4630 #endif
4631
4632 static int
4633 i386_immediate (char *imm_start)
4634 {
4635 char *save_input_line_pointer;
4636 char *gotfree_input_line;
4637 segT exp_seg = 0;
4638 expressionS *exp;
4639 unsigned int types = ~0U;
4640
4641 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
4642 {
4643 as_bad (_("at most %d immediate operands are allowed"),
4644 MAX_IMMEDIATE_OPERANDS);
4645 return 0;
4646 }
4647
4648 exp = &im_expressions[i.imm_operands++];
4649 i.op[this_operand].imms = exp;
4650
4651 if (is_space_char (*imm_start))
4652 ++imm_start;
4653
4654 save_input_line_pointer = input_line_pointer;
4655 input_line_pointer = imm_start;
4656
4657 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
4658 if (gotfree_input_line)
4659 input_line_pointer = gotfree_input_line;
4660
4661 exp_seg = expression (exp);
4662
4663 SKIP_WHITESPACE ();
4664 if (*input_line_pointer)
4665 as_bad (_("junk `%s' after expression"), input_line_pointer);
4666
4667 input_line_pointer = save_input_line_pointer;
4668 if (gotfree_input_line)
4669 free (gotfree_input_line);
4670
4671 if (exp->X_op == O_absent
4672 || exp->X_op == O_illegal
4673 || exp->X_op == O_big
4674 || (gotfree_input_line
4675 && (exp->X_op == O_constant
4676 || exp->X_op == O_register)))
4677 {
4678 as_bad (_("missing or invalid immediate expression `%s'"),
4679 imm_start);
4680 return 0;
4681 }
4682 else if (exp->X_op == O_constant)
4683 {
4684 /* Size it properly later. */
4685 i.types[this_operand] |= Imm64;
4686 /* If BFD64, sign extend val. */
4687 if (!use_rela_relocations
4688 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
4689 exp->X_add_number
4690 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
4691 }
4692 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4693 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
4694 && exp_seg != absolute_section
4695 && exp_seg != text_section
4696 && exp_seg != data_section
4697 && exp_seg != bss_section
4698 && exp_seg != undefined_section
4699 && !bfd_is_com_section (exp_seg))
4700 {
4701 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4702 return 0;
4703 }
4704 #endif
4705 else if (!intel_syntax && exp->X_op == O_register)
4706 {
4707 as_bad (_("illegal immediate register operand %s"), imm_start);
4708 return 0;
4709 }
4710 else
4711 {
4712 /* This is an address. The size of the address will be
4713 determined later, depending on destination register,
4714 suffix, or the default for the section. */
4715 i.types[this_operand] |= Imm8 | Imm16 | Imm32 | Imm32S | Imm64;
4716 i.types[this_operand] &= types;
4717 }
4718
4719 return 1;
4720 }
4721
4722 static char *
4723 i386_scale (char *scale)
4724 {
4725 offsetT val;
4726 char *save = input_line_pointer;
4727
4728 input_line_pointer = scale;
4729 val = get_absolute_expression ();
4730
4731 switch (val)
4732 {
4733 case 1:
4734 i.log2_scale_factor = 0;
4735 break;
4736 case 2:
4737 i.log2_scale_factor = 1;
4738 break;
4739 case 4:
4740 i.log2_scale_factor = 2;
4741 break;
4742 case 8:
4743 i.log2_scale_factor = 3;
4744 break;
4745 default:
4746 {
4747 char sep = *input_line_pointer;
4748
4749 *input_line_pointer = '\0';
4750 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
4751 scale);
4752 *input_line_pointer = sep;
4753 input_line_pointer = save;
4754 return NULL;
4755 }
4756 }
4757 if (i.log2_scale_factor != 0 && i.index_reg == 0)
4758 {
4759 as_warn (_("scale factor of %d without an index register"),
4760 1 << i.log2_scale_factor);
4761 #if SCALE1_WHEN_NO_INDEX
4762 i.log2_scale_factor = 0;
4763 #endif
4764 }
4765 scale = input_line_pointer;
4766 input_line_pointer = save;
4767 return scale;
4768 }
4769
4770 static int
4771 i386_displacement (char *disp_start, char *disp_end)
4772 {
4773 expressionS *exp;
4774 segT exp_seg = 0;
4775 char *save_input_line_pointer;
4776 char *gotfree_input_line;
4777 int bigdisp, override;
4778 unsigned int types = Disp;
4779 int ret;
4780
4781 if (i.disp_operands == MAX_MEMORY_OPERANDS)
4782 {
4783 as_bad (_("at most %d displacement operands are allowed"),
4784 MAX_MEMORY_OPERANDS);
4785 return 0;
4786 }
4787
4788 if ((i.types[this_operand] & JumpAbsolute)
4789 || !(current_templates->start->opcode_modifier & (Jump | JumpDword)))
4790 {
4791 bigdisp = Disp32;
4792 override = (i.prefix[ADDR_PREFIX] != 0);
4793 }
4794 else
4795 {
4796 /* For PC-relative branches, the width of the displacement
4797 is dependent upon data size, not address size. */
4798 bigdisp = 0;
4799 override = (i.prefix[DATA_PREFIX] != 0);
4800 }
4801 if (flag_code == CODE_64BIT)
4802 {
4803 if (!bigdisp)
4804 bigdisp = ((override || i.suffix == WORD_MNEM_SUFFIX)
4805 ? Disp16
4806 : Disp32S | Disp32);
4807 else if (!override)
4808 bigdisp = Disp64 | Disp32S | Disp32;
4809 }
4810 else
4811 {
4812 if (!bigdisp)
4813 {
4814 if (!override)
4815 override = (i.suffix == (flag_code != CODE_16BIT
4816 ? WORD_MNEM_SUFFIX
4817 : LONG_MNEM_SUFFIX));
4818 bigdisp = Disp32;
4819 }
4820 if ((flag_code == CODE_16BIT) ^ override)
4821 bigdisp = Disp16;
4822 }
4823 i.types[this_operand] |= bigdisp;
4824
4825 exp = &disp_expressions[i.disp_operands];
4826 i.op[this_operand].disps = exp;
4827 i.disp_operands++;
4828 save_input_line_pointer = input_line_pointer;
4829 input_line_pointer = disp_start;
4830 END_STRING_AND_SAVE (disp_end);
4831
4832 #ifndef GCC_ASM_O_HACK
4833 #define GCC_ASM_O_HACK 0
4834 #endif
4835 #if GCC_ASM_O_HACK
4836 END_STRING_AND_SAVE (disp_end + 1);
4837 if ((i.types[this_operand] & BaseIndex) != 0
4838 && displacement_string_end[-1] == '+')
4839 {
4840 /* This hack is to avoid a warning when using the "o"
4841 constraint within gcc asm statements.
4842 For instance:
4843
4844 #define _set_tssldt_desc(n,addr,limit,type) \
4845 __asm__ __volatile__ ( \
4846 "movw %w2,%0\n\t" \
4847 "movw %w1,2+%0\n\t" \
4848 "rorl $16,%1\n\t" \
4849 "movb %b1,4+%0\n\t" \
4850 "movb %4,5+%0\n\t" \
4851 "movb $0,6+%0\n\t" \
4852 "movb %h1,7+%0\n\t" \
4853 "rorl $16,%1" \
4854 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
4855
4856 This works great except that the output assembler ends
4857 up looking a bit weird if it turns out that there is
4858 no offset. You end up producing code that looks like:
4859
4860 #APP
4861 movw $235,(%eax)
4862 movw %dx,2+(%eax)
4863 rorl $16,%edx
4864 movb %dl,4+(%eax)
4865 movb $137,5+(%eax)
4866 movb $0,6+(%eax)
4867 movb %dh,7+(%eax)
4868 rorl $16,%edx
4869 #NO_APP
4870
4871 So here we provide the missing zero. */
4872
4873 *displacement_string_end = '0';
4874 }
4875 #endif
4876 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
4877 if (gotfree_input_line)
4878 input_line_pointer = gotfree_input_line;
4879
4880 exp_seg = expression (exp);
4881
4882 SKIP_WHITESPACE ();
4883 if (*input_line_pointer)
4884 as_bad (_("junk `%s' after expression"), input_line_pointer);
4885 #if GCC_ASM_O_HACK
4886 RESTORE_END_STRING (disp_end + 1);
4887 #endif
4888 input_line_pointer = save_input_line_pointer;
4889 if (gotfree_input_line)
4890 free (gotfree_input_line);
4891 ret = 1;
4892
4893 /* We do this to make sure that the section symbol is in
4894 the symbol table. We will ultimately change the relocation
4895 to be relative to the beginning of the section. */
4896 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
4897 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
4898 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
4899 {
4900 if (exp->X_op != O_symbol)
4901 goto inv_disp;
4902
4903 if (S_IS_LOCAL (exp->X_add_symbol)
4904 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section)
4905 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
4906 exp->X_op = O_subtract;
4907 exp->X_op_symbol = GOT_symbol;
4908 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
4909 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
4910 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
4911 i.reloc[this_operand] = BFD_RELOC_64;
4912 else
4913 i.reloc[this_operand] = BFD_RELOC_32;
4914 }
4915
4916 else if (exp->X_op == O_absent
4917 || exp->X_op == O_illegal
4918 || exp->X_op == O_big
4919 || (gotfree_input_line
4920 && (exp->X_op == O_constant
4921 || exp->X_op == O_register)))
4922 {
4923 inv_disp:
4924 as_bad (_("missing or invalid displacement expression `%s'"),
4925 disp_start);
4926 ret = 0;
4927 }
4928
4929 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
4930 else if (exp->X_op != O_constant
4931 && OUTPUT_FLAVOR == bfd_target_aout_flavour
4932 && exp_seg != absolute_section
4933 && exp_seg != text_section
4934 && exp_seg != data_section
4935 && exp_seg != bss_section
4936 && exp_seg != undefined_section
4937 && !bfd_is_com_section (exp_seg))
4938 {
4939 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
4940 ret = 0;
4941 }
4942 #endif
4943
4944 RESTORE_END_STRING (disp_end);
4945
4946 if (!(i.types[this_operand] & ~Disp))
4947 i.types[this_operand] &= types;
4948
4949 return ret;
4950 }
4951
4952 /* Make sure the memory operand we've been dealt is valid.
4953 Return 1 on success, 0 on a failure. */
4954
4955 static int
4956 i386_index_check (const char *operand_string)
4957 {
4958 int ok;
4959 #if INFER_ADDR_PREFIX
4960 int fudged = 0;
4961
4962 tryprefix:
4963 #endif
4964 ok = 1;
4965 if ((current_templates->start->cpu_flags & CpuSVME)
4966 && current_templates->end[-1].operand_types[0] == AnyMem)
4967 {
4968 /* Memory operands of SVME insns are special in that they only allow
4969 rAX as their memory address and ignore any segment override. */
4970 unsigned RegXX;
4971
4972 /* SKINIT is even more restrictive: it always requires EAX. */
4973 if (strcmp (current_templates->start->name, "skinit") == 0)
4974 RegXX = Reg32;
4975 else if (flag_code == CODE_64BIT)
4976 RegXX = i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32;
4977 else
4978 RegXX = ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0)
4979 ? Reg16
4980 : Reg32);
4981 if (!i.base_reg
4982 || !(i.base_reg->reg_type & Acc)
4983 || !(i.base_reg->reg_type & RegXX)
4984 || i.index_reg
4985 || (i.types[0] & Disp))
4986 ok = 0;
4987 }
4988 else if (flag_code == CODE_64BIT)
4989 {
4990 unsigned RegXX = (i.prefix[ADDR_PREFIX] == 0 ? Reg64 : Reg32);
4991
4992 if ((i.base_reg
4993 && ((i.base_reg->reg_type & RegXX) == 0)
4994 && (i.base_reg->reg_type != BaseIndex
4995 || i.index_reg))
4996 || (i.index_reg
4997 && ((i.index_reg->reg_type & (RegXX | BaseIndex))
4998 != (RegXX | BaseIndex))))
4999 ok = 0;
5000 }
5001 else
5002 {
5003 if ((flag_code == CODE_16BIT) ^ (i.prefix[ADDR_PREFIX] != 0))
5004 {
5005 /* 16bit checks. */
5006 if ((i.base_reg
5007 && ((i.base_reg->reg_type & (Reg16 | BaseIndex | RegRex))
5008 != (Reg16 | BaseIndex)))
5009 || (i.index_reg
5010 && (((i.index_reg->reg_type & (Reg16 | BaseIndex))
5011 != (Reg16 | BaseIndex))
5012 || !(i.base_reg
5013 && i.base_reg->reg_num < 6
5014 && i.index_reg->reg_num >= 6
5015 && i.log2_scale_factor == 0))))
5016 ok = 0;
5017 }
5018 else
5019 {
5020 /* 32bit checks. */
5021 if ((i.base_reg
5022 && (i.base_reg->reg_type & (Reg32 | RegRex)) != Reg32)
5023 || (i.index_reg
5024 && ((i.index_reg->reg_type & (Reg32 | BaseIndex | RegRex))
5025 != (Reg32 | BaseIndex))))
5026 ok = 0;
5027 }
5028 }
5029 if (!ok)
5030 {
5031 #if INFER_ADDR_PREFIX
5032 if (i.prefix[ADDR_PREFIX] == 0)
5033 {
5034 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
5035 i.prefixes += 1;
5036 /* Change the size of any displacement too. At most one of
5037 Disp16 or Disp32 is set.
5038 FIXME. There doesn't seem to be any real need for separate
5039 Disp16 and Disp32 flags. The same goes for Imm16 and Imm32.
5040 Removing them would probably clean up the code quite a lot. */
5041 if (flag_code != CODE_64BIT
5042 && (i.types[this_operand] & (Disp16 | Disp32)))
5043 i.types[this_operand] ^= (Disp16 | Disp32);
5044 fudged = 1;
5045 goto tryprefix;
5046 }
5047 if (fudged)
5048 as_bad (_("`%s' is not a valid base/index expression"),
5049 operand_string);
5050 else
5051 #endif
5052 as_bad (_("`%s' is not a valid %s bit base/index expression"),
5053 operand_string,
5054 flag_code_names[flag_code]);
5055 }
5056 return ok;
5057 }
5058
5059 /* Parse OPERAND_STRING into the i386_insn structure I. Returns non-zero
5060 on error. */
5061
5062 static int
5063 i386_operand (char *operand_string)
5064 {
5065 const reg_entry *r;
5066 char *end_op;
5067 char *op_string = operand_string;
5068
5069 if (is_space_char (*op_string))
5070 ++op_string;
5071
5072 /* We check for an absolute prefix (differentiating,
5073 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
5074 if (*op_string == ABSOLUTE_PREFIX)
5075 {
5076 ++op_string;
5077 if (is_space_char (*op_string))
5078 ++op_string;
5079 i.types[this_operand] |= JumpAbsolute;
5080 }
5081
5082 /* Check if operand is a register. */
5083 if ((r = parse_register (op_string, &end_op)) != NULL)
5084 {
5085 /* Check for a segment override by searching for ':' after a
5086 segment register. */
5087 op_string = end_op;
5088 if (is_space_char (*op_string))
5089 ++op_string;
5090 if (*op_string == ':' && (r->reg_type & (SReg2 | SReg3)))
5091 {
5092 switch (r->reg_num)
5093 {
5094 case 0:
5095 i.seg[i.mem_operands] = &es;
5096 break;
5097 case 1:
5098 i.seg[i.mem_operands] = &cs;
5099 break;
5100 case 2:
5101 i.seg[i.mem_operands] = &ss;
5102 break;
5103 case 3:
5104 i.seg[i.mem_operands] = &ds;
5105 break;
5106 case 4:
5107 i.seg[i.mem_operands] = &fs;
5108 break;
5109 case 5:
5110 i.seg[i.mem_operands] = &gs;
5111 break;
5112 }
5113
5114 /* Skip the ':' and whitespace. */
5115 ++op_string;
5116 if (is_space_char (*op_string))
5117 ++op_string;
5118
5119 if (!is_digit_char (*op_string)
5120 && !is_identifier_char (*op_string)
5121 && *op_string != '('
5122 && *op_string != ABSOLUTE_PREFIX)
5123 {
5124 as_bad (_("bad memory operand `%s'"), op_string);
5125 return 0;
5126 }
5127 /* Handle case of %es:*foo. */
5128 if (*op_string == ABSOLUTE_PREFIX)
5129 {
5130 ++op_string;
5131 if (is_space_char (*op_string))
5132 ++op_string;
5133 i.types[this_operand] |= JumpAbsolute;
5134 }
5135 goto do_memory_reference;
5136 }
5137 if (*op_string)
5138 {
5139 as_bad (_("junk `%s' after register"), op_string);
5140 return 0;
5141 }
5142 i.types[this_operand] |= r->reg_type & ~BaseIndex;
5143 i.op[this_operand].regs = r;
5144 i.reg_operands++;
5145 }
5146 else if (*op_string == REGISTER_PREFIX)
5147 {
5148 as_bad (_("bad register name `%s'"), op_string);
5149 return 0;
5150 }
5151 else if (*op_string == IMMEDIATE_PREFIX)
5152 {
5153 ++op_string;
5154 if (i.types[this_operand] & JumpAbsolute)
5155 {
5156 as_bad (_("immediate operand illegal with absolute jump"));
5157 return 0;
5158 }
5159 if (!i386_immediate (op_string))
5160 return 0;
5161 }
5162 else if (is_digit_char (*op_string)
5163 || is_identifier_char (*op_string)
5164 || *op_string == '(')
5165 {
5166 /* This is a memory reference of some sort. */
5167 char *base_string;
5168
5169 /* Start and end of displacement string expression (if found). */
5170 char *displacement_string_start;
5171 char *displacement_string_end;
5172
5173 do_memory_reference:
5174 if ((i.mem_operands == 1
5175 && (current_templates->start->opcode_modifier & IsString) == 0)
5176 || i.mem_operands == 2)
5177 {
5178 as_bad (_("too many memory references for `%s'"),
5179 current_templates->start->name);
5180 return 0;
5181 }
5182
5183 /* Check for base index form. We detect the base index form by
5184 looking for an ')' at the end of the operand, searching
5185 for the '(' matching it, and finding a REGISTER_PREFIX or ','
5186 after the '('. */
5187 base_string = op_string + strlen (op_string);
5188
5189 --base_string;
5190 if (is_space_char (*base_string))
5191 --base_string;
5192
5193 /* If we only have a displacement, set-up for it to be parsed later. */
5194 displacement_string_start = op_string;
5195 displacement_string_end = base_string + 1;
5196
5197 if (*base_string == ')')
5198 {
5199 char *temp_string;
5200 unsigned int parens_balanced = 1;
5201 /* We've already checked that the number of left & right ()'s are
5202 equal, so this loop will not be infinite. */
5203 do
5204 {
5205 base_string--;
5206 if (*base_string == ')')
5207 parens_balanced++;
5208 if (*base_string == '(')
5209 parens_balanced--;
5210 }
5211 while (parens_balanced);
5212
5213 temp_string = base_string;
5214
5215 /* Skip past '(' and whitespace. */
5216 ++base_string;
5217 if (is_space_char (*base_string))
5218 ++base_string;
5219
5220 if (*base_string == ','
5221 || ((i.base_reg = parse_register (base_string, &end_op))
5222 != NULL))
5223 {
5224 displacement_string_end = temp_string;
5225
5226 i.types[this_operand] |= BaseIndex;
5227
5228 if (i.base_reg)
5229 {
5230 base_string = end_op;
5231 if (is_space_char (*base_string))
5232 ++base_string;
5233 }
5234
5235 /* There may be an index reg or scale factor here. */
5236 if (*base_string == ',')
5237 {
5238 ++base_string;
5239 if (is_space_char (*base_string))
5240 ++base_string;
5241
5242 if ((i.index_reg = parse_register (base_string, &end_op))
5243 != NULL)
5244 {
5245 base_string = end_op;
5246 if (is_space_char (*base_string))
5247 ++base_string;
5248 if (*base_string == ',')
5249 {
5250 ++base_string;
5251 if (is_space_char (*base_string))
5252 ++base_string;
5253 }
5254 else if (*base_string != ')')
5255 {
5256 as_bad (_("expecting `,' or `)' "
5257 "after index register in `%s'"),
5258 operand_string);
5259 return 0;
5260 }
5261 }
5262 else if (*base_string == REGISTER_PREFIX)
5263 {
5264 as_bad (_("bad register name `%s'"), base_string);
5265 return 0;
5266 }
5267
5268 /* Check for scale factor. */
5269 if (*base_string != ')')
5270 {
5271 char *end_scale = i386_scale (base_string);
5272
5273 if (!end_scale)
5274 return 0;
5275
5276 base_string = end_scale;
5277 if (is_space_char (*base_string))
5278 ++base_string;
5279 if (*base_string != ')')
5280 {
5281 as_bad (_("expecting `)' "
5282 "after scale factor in `%s'"),
5283 operand_string);
5284 return 0;
5285 }
5286 }
5287 else if (!i.index_reg)
5288 {
5289 as_bad (_("expecting index register or scale factor "
5290 "after `,'; got '%c'"),
5291 *base_string);
5292 return 0;
5293 }
5294 }
5295 else if (*base_string != ')')
5296 {
5297 as_bad (_("expecting `,' or `)' "
5298 "after base register in `%s'"),
5299 operand_string);
5300 return 0;
5301 }
5302 }
5303 else if (*base_string == REGISTER_PREFIX)
5304 {
5305 as_bad (_("bad register name `%s'"), base_string);
5306 return 0;
5307 }
5308 }
5309
5310 /* If there's an expression beginning the operand, parse it,
5311 assuming displacement_string_start and
5312 displacement_string_end are meaningful. */
5313 if (displacement_string_start != displacement_string_end)
5314 {
5315 if (!i386_displacement (displacement_string_start,
5316 displacement_string_end))
5317 return 0;
5318 }
5319
5320 /* Special case for (%dx) while doing input/output op. */
5321 if (i.base_reg
5322 && i.base_reg->reg_type == (Reg16 | InOutPortReg)
5323 && i.index_reg == 0
5324 && i.log2_scale_factor == 0
5325 && i.seg[i.mem_operands] == 0
5326 && (i.types[this_operand] & Disp) == 0)
5327 {
5328 i.types[this_operand] = InOutPortReg;
5329 return 1;
5330 }
5331
5332 if (i386_index_check (operand_string) == 0)
5333 return 0;
5334 i.mem_operands++;
5335 }
5336 else
5337 {
5338 /* It's not a memory operand; argh! */
5339 as_bad (_("invalid char %s beginning operand %d `%s'"),
5340 output_invalid (*op_string),
5341 this_operand + 1,
5342 op_string);
5343 return 0;
5344 }
5345 return 1; /* Normal return. */
5346 }
5347 \f
5348 /* md_estimate_size_before_relax()
5349
5350 Called just before relax() for rs_machine_dependent frags. The x86
5351 assembler uses these frags to handle variable size jump
5352 instructions.
5353
5354 Any symbol that is now undefined will not become defined.
5355 Return the correct fr_subtype in the frag.
5356 Return the initial "guess for variable size of frag" to caller.
5357 The guess is actually the growth beyond the fixed part. Whatever
5358 we do to grow the fixed or variable part contributes to our
5359 returned value. */
5360
5361 int
5362 md_estimate_size_before_relax (fragP, segment)
5363 fragS *fragP;
5364 segT segment;
5365 {
5366 /* We've already got fragP->fr_subtype right; all we have to do is
5367 check for un-relaxable symbols. On an ELF system, we can't relax
5368 an externally visible symbol, because it may be overridden by a
5369 shared library. */
5370 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
5371 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5372 || (IS_ELF
5373 && (S_IS_EXTERNAL (fragP->fr_symbol)
5374 || S_IS_WEAK (fragP->fr_symbol)))
5375 #endif
5376 )
5377 {
5378 /* Symbol is undefined in this segment, or we need to keep a
5379 reloc so that weak symbols can be overridden. */
5380 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
5381 enum bfd_reloc_code_real reloc_type;
5382 unsigned char *opcode;
5383 int old_fr_fix;
5384
5385 if (fragP->fr_var != NO_RELOC)
5386 reloc_type = fragP->fr_var;
5387 else if (size == 2)
5388 reloc_type = BFD_RELOC_16_PCREL;
5389 else
5390 reloc_type = BFD_RELOC_32_PCREL;
5391
5392 old_fr_fix = fragP->fr_fix;
5393 opcode = (unsigned char *) fragP->fr_opcode;
5394
5395 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
5396 {
5397 case UNCOND_JUMP:
5398 /* Make jmp (0xeb) a (d)word displacement jump. */
5399 opcode[0] = 0xe9;
5400 fragP->fr_fix += size;
5401 fix_new (fragP, old_fr_fix, size,
5402 fragP->fr_symbol,
5403 fragP->fr_offset, 1,
5404 reloc_type);
5405 break;
5406
5407 case COND_JUMP86:
5408 if (size == 2
5409 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
5410 {
5411 /* Negate the condition, and branch past an
5412 unconditional jump. */
5413 opcode[0] ^= 1;
5414 opcode[1] = 3;
5415 /* Insert an unconditional jump. */
5416 opcode[2] = 0xe9;
5417 /* We added two extra opcode bytes, and have a two byte
5418 offset. */
5419 fragP->fr_fix += 2 + 2;
5420 fix_new (fragP, old_fr_fix + 2, 2,
5421 fragP->fr_symbol,
5422 fragP->fr_offset, 1,
5423 reloc_type);
5424 break;
5425 }
5426 /* Fall through. */
5427
5428 case COND_JUMP:
5429 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
5430 {
5431 fixS *fixP;
5432
5433 fragP->fr_fix += 1;
5434 fixP = fix_new (fragP, old_fr_fix, 1,
5435 fragP->fr_symbol,
5436 fragP->fr_offset, 1,
5437 BFD_RELOC_8_PCREL);
5438 fixP->fx_signed = 1;
5439 break;
5440 }
5441
5442 /* This changes the byte-displacement jump 0x7N
5443 to the (d)word-displacement jump 0x0f,0x8N. */
5444 opcode[1] = opcode[0] + 0x10;
5445 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5446 /* We've added an opcode byte. */
5447 fragP->fr_fix += 1 + size;
5448 fix_new (fragP, old_fr_fix + 1, size,
5449 fragP->fr_symbol,
5450 fragP->fr_offset, 1,
5451 reloc_type);
5452 break;
5453
5454 default:
5455 BAD_CASE (fragP->fr_subtype);
5456 break;
5457 }
5458 frag_wane (fragP);
5459 return fragP->fr_fix - old_fr_fix;
5460 }
5461
5462 /* Guess size depending on current relax state. Initially the relax
5463 state will correspond to a short jump and we return 1, because
5464 the variable part of the frag (the branch offset) is one byte
5465 long. However, we can relax a section more than once and in that
5466 case we must either set fr_subtype back to the unrelaxed state,
5467 or return the value for the appropriate branch. */
5468 return md_relax_table[fragP->fr_subtype].rlx_length;
5469 }
5470
5471 /* Called after relax() is finished.
5472
5473 In: Address of frag.
5474 fr_type == rs_machine_dependent.
5475 fr_subtype is what the address relaxed to.
5476
5477 Out: Any fixSs and constants are set up.
5478 Caller will turn frag into a ".space 0". */
5479
5480 void
5481 md_convert_frag (abfd, sec, fragP)
5482 bfd *abfd ATTRIBUTE_UNUSED;
5483 segT sec ATTRIBUTE_UNUSED;
5484 fragS *fragP;
5485 {
5486 unsigned char *opcode;
5487 unsigned char *where_to_put_displacement = NULL;
5488 offsetT target_address;
5489 offsetT opcode_address;
5490 unsigned int extension = 0;
5491 offsetT displacement_from_opcode_start;
5492
5493 opcode = (unsigned char *) fragP->fr_opcode;
5494
5495 /* Address we want to reach in file space. */
5496 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
5497
5498 /* Address opcode resides at in file space. */
5499 opcode_address = fragP->fr_address + fragP->fr_fix;
5500
5501 /* Displacement from opcode start to fill into instruction. */
5502 displacement_from_opcode_start = target_address - opcode_address;
5503
5504 if ((fragP->fr_subtype & BIG) == 0)
5505 {
5506 /* Don't have to change opcode. */
5507 extension = 1; /* 1 opcode + 1 displacement */
5508 where_to_put_displacement = &opcode[1];
5509 }
5510 else
5511 {
5512 if (no_cond_jump_promotion
5513 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
5514 as_warn_where (fragP->fr_file, fragP->fr_line,
5515 _("long jump required"));
5516
5517 switch (fragP->fr_subtype)
5518 {
5519 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
5520 extension = 4; /* 1 opcode + 4 displacement */
5521 opcode[0] = 0xe9;
5522 where_to_put_displacement = &opcode[1];
5523 break;
5524
5525 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
5526 extension = 2; /* 1 opcode + 2 displacement */
5527 opcode[0] = 0xe9;
5528 where_to_put_displacement = &opcode[1];
5529 break;
5530
5531 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
5532 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
5533 extension = 5; /* 2 opcode + 4 displacement */
5534 opcode[1] = opcode[0] + 0x10;
5535 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5536 where_to_put_displacement = &opcode[2];
5537 break;
5538
5539 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
5540 extension = 3; /* 2 opcode + 2 displacement */
5541 opcode[1] = opcode[0] + 0x10;
5542 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
5543 where_to_put_displacement = &opcode[2];
5544 break;
5545
5546 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
5547 extension = 4;
5548 opcode[0] ^= 1;
5549 opcode[1] = 3;
5550 opcode[2] = 0xe9;
5551 where_to_put_displacement = &opcode[3];
5552 break;
5553
5554 default:
5555 BAD_CASE (fragP->fr_subtype);
5556 break;
5557 }
5558 }
5559
5560 /* If size if less then four we are sure that the operand fits,
5561 but if it's 4, then it could be that the displacement is larger
5562 then -/+ 2GB. */
5563 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
5564 && object_64bit
5565 && ((addressT) (displacement_from_opcode_start - extension
5566 + ((addressT) 1 << 31))
5567 > (((addressT) 2 << 31) - 1)))
5568 {
5569 as_bad_where (fragP->fr_file, fragP->fr_line,
5570 _("jump target out of range"));
5571 /* Make us emit 0. */
5572 displacement_from_opcode_start = extension;
5573 }
5574 /* Now put displacement after opcode. */
5575 md_number_to_chars ((char *) where_to_put_displacement,
5576 (valueT) (displacement_from_opcode_start - extension),
5577 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
5578 fragP->fr_fix += extension;
5579 }
5580 \f
5581 /* Size of byte displacement jmp. */
5582 int md_short_jump_size = 2;
5583
5584 /* Size of dword displacement jmp. */
5585 int md_long_jump_size = 5;
5586
5587 void
5588 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
5589 char *ptr;
5590 addressT from_addr, to_addr;
5591 fragS *frag ATTRIBUTE_UNUSED;
5592 symbolS *to_symbol ATTRIBUTE_UNUSED;
5593 {
5594 offsetT offset;
5595
5596 offset = to_addr - (from_addr + 2);
5597 /* Opcode for byte-disp jump. */
5598 md_number_to_chars (ptr, (valueT) 0xeb, 1);
5599 md_number_to_chars (ptr + 1, (valueT) offset, 1);
5600 }
5601
5602 void
5603 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
5604 char *ptr;
5605 addressT from_addr, to_addr;
5606 fragS *frag ATTRIBUTE_UNUSED;
5607 symbolS *to_symbol ATTRIBUTE_UNUSED;
5608 {
5609 offsetT offset;
5610
5611 offset = to_addr - (from_addr + 5);
5612 md_number_to_chars (ptr, (valueT) 0xe9, 1);
5613 md_number_to_chars (ptr + 1, (valueT) offset, 4);
5614 }
5615 \f
5616 /* Apply a fixup (fixS) to segment data, once it has been determined
5617 by our caller that we have all the info we need to fix it up.
5618
5619 On the 386, immediates, displacements, and data pointers are all in
5620 the same (little-endian) format, so we don't need to care about which
5621 we are handling. */
5622
5623 void
5624 md_apply_fix (fixP, valP, seg)
5625 /* The fix we're to put in. */
5626 fixS *fixP;
5627 /* Pointer to the value of the bits. */
5628 valueT *valP;
5629 /* Segment fix is from. */
5630 segT seg ATTRIBUTE_UNUSED;
5631 {
5632 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
5633 valueT value = *valP;
5634
5635 #if !defined (TE_Mach)
5636 if (fixP->fx_pcrel)
5637 {
5638 switch (fixP->fx_r_type)
5639 {
5640 default:
5641 break;
5642
5643 case BFD_RELOC_64:
5644 fixP->fx_r_type = BFD_RELOC_64_PCREL;
5645 break;
5646 case BFD_RELOC_32:
5647 case BFD_RELOC_X86_64_32S:
5648 fixP->fx_r_type = BFD_RELOC_32_PCREL;
5649 break;
5650 case BFD_RELOC_16:
5651 fixP->fx_r_type = BFD_RELOC_16_PCREL;
5652 break;
5653 case BFD_RELOC_8:
5654 fixP->fx_r_type = BFD_RELOC_8_PCREL;
5655 break;
5656 }
5657 }
5658
5659 if (fixP->fx_addsy != NULL
5660 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
5661 || fixP->fx_r_type == BFD_RELOC_64_PCREL
5662 || fixP->fx_r_type == BFD_RELOC_16_PCREL
5663 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
5664 && !use_rela_relocations)
5665 {
5666 /* This is a hack. There should be a better way to handle this.
5667 This covers for the fact that bfd_install_relocation will
5668 subtract the current location (for partial_inplace, PC relative
5669 relocations); see more below. */
5670 #ifndef OBJ_AOUT
5671 if (IS_ELF
5672 #ifdef TE_PE
5673 || OUTPUT_FLAVOR == bfd_target_coff_flavour
5674 #endif
5675 )
5676 value += fixP->fx_where + fixP->fx_frag->fr_address;
5677 #endif
5678 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5679 if (IS_ELF)
5680 {
5681 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
5682
5683 if ((sym_seg == seg
5684 || (symbol_section_p (fixP->fx_addsy)
5685 && sym_seg != absolute_section))
5686 && !generic_force_reloc (fixP))
5687 {
5688 /* Yes, we add the values in twice. This is because
5689 bfd_install_relocation subtracts them out again. I think
5690 bfd_install_relocation is broken, but I don't dare change
5691 it. FIXME. */
5692 value += fixP->fx_where + fixP->fx_frag->fr_address;
5693 }
5694 }
5695 #endif
5696 #if defined (OBJ_COFF) && defined (TE_PE)
5697 /* For some reason, the PE format does not store a
5698 section address offset for a PC relative symbol. */
5699 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
5700 || S_IS_WEAK (fixP->fx_addsy))
5701 value += md_pcrel_from (fixP);
5702 #endif
5703 }
5704
5705 /* Fix a few things - the dynamic linker expects certain values here,
5706 and we must not disappoint it. */
5707 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5708 if (IS_ELF && fixP->fx_addsy)
5709 switch (fixP->fx_r_type)
5710 {
5711 case BFD_RELOC_386_PLT32:
5712 case BFD_RELOC_X86_64_PLT32:
5713 /* Make the jump instruction point to the address of the operand. At
5714 runtime we merely add the offset to the actual PLT entry. */
5715 value = -4;
5716 break;
5717
5718 case BFD_RELOC_386_TLS_GD:
5719 case BFD_RELOC_386_TLS_LDM:
5720 case BFD_RELOC_386_TLS_IE_32:
5721 case BFD_RELOC_386_TLS_IE:
5722 case BFD_RELOC_386_TLS_GOTIE:
5723 case BFD_RELOC_386_TLS_GOTDESC:
5724 case BFD_RELOC_X86_64_TLSGD:
5725 case BFD_RELOC_X86_64_TLSLD:
5726 case BFD_RELOC_X86_64_GOTTPOFF:
5727 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
5728 value = 0; /* Fully resolved at runtime. No addend. */
5729 /* Fallthrough */
5730 case BFD_RELOC_386_TLS_LE:
5731 case BFD_RELOC_386_TLS_LDO_32:
5732 case BFD_RELOC_386_TLS_LE_32:
5733 case BFD_RELOC_X86_64_DTPOFF32:
5734 case BFD_RELOC_X86_64_DTPOFF64:
5735 case BFD_RELOC_X86_64_TPOFF32:
5736 case BFD_RELOC_X86_64_TPOFF64:
5737 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5738 break;
5739
5740 case BFD_RELOC_386_TLS_DESC_CALL:
5741 case BFD_RELOC_X86_64_TLSDESC_CALL:
5742 value = 0; /* Fully resolved at runtime. No addend. */
5743 S_SET_THREAD_LOCAL (fixP->fx_addsy);
5744 fixP->fx_done = 0;
5745 return;
5746
5747 case BFD_RELOC_386_GOT32:
5748 case BFD_RELOC_X86_64_GOT32:
5749 value = 0; /* Fully resolved at runtime. No addend. */
5750 break;
5751
5752 case BFD_RELOC_VTABLE_INHERIT:
5753 case BFD_RELOC_VTABLE_ENTRY:
5754 fixP->fx_done = 0;
5755 return;
5756
5757 default:
5758 break;
5759 }
5760 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
5761 *valP = value;
5762 #endif /* !defined (TE_Mach) */
5763
5764 /* Are we finished with this relocation now? */
5765 if (fixP->fx_addsy == NULL)
5766 fixP->fx_done = 1;
5767 else if (use_rela_relocations)
5768 {
5769 fixP->fx_no_overflow = 1;
5770 /* Remember value for tc_gen_reloc. */
5771 fixP->fx_addnumber = value;
5772 value = 0;
5773 }
5774
5775 md_number_to_chars (p, value, fixP->fx_size);
5776 }
5777 \f
5778 #define MAX_LITTLENUMS 6
5779
5780 /* Turn the string pointed to by litP into a floating point constant
5781 of type TYPE, and emit the appropriate bytes. The number of
5782 LITTLENUMS emitted is stored in *SIZEP. An error message is
5783 returned, or NULL on OK. */
5784
5785 char *
5786 md_atof (type, litP, sizeP)
5787 int type;
5788 char *litP;
5789 int *sizeP;
5790 {
5791 int prec;
5792 LITTLENUM_TYPE words[MAX_LITTLENUMS];
5793 LITTLENUM_TYPE *wordP;
5794 char *t;
5795
5796 switch (type)
5797 {
5798 case 'f':
5799 case 'F':
5800 prec = 2;
5801 break;
5802
5803 case 'd':
5804 case 'D':
5805 prec = 4;
5806 break;
5807
5808 case 'x':
5809 case 'X':
5810 prec = 5;
5811 break;
5812
5813 default:
5814 *sizeP = 0;
5815 return _("Bad call to md_atof ()");
5816 }
5817 t = atof_ieee (input_line_pointer, type, words);
5818 if (t)
5819 input_line_pointer = t;
5820
5821 *sizeP = prec * sizeof (LITTLENUM_TYPE);
5822 /* This loops outputs the LITTLENUMs in REVERSE order; in accord with
5823 the bigendian 386. */
5824 for (wordP = words + prec - 1; prec--;)
5825 {
5826 md_number_to_chars (litP, (valueT) (*wordP--), sizeof (LITTLENUM_TYPE));
5827 litP += sizeof (LITTLENUM_TYPE);
5828 }
5829 return 0;
5830 }
5831 \f
5832 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
5833
5834 static char *
5835 output_invalid (int c)
5836 {
5837 if (ISPRINT (c))
5838 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
5839 "'%c'", c);
5840 else
5841 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
5842 "(0x%x)", (unsigned char) c);
5843 return output_invalid_buf;
5844 }
5845
5846 /* REG_STRING starts *before* REGISTER_PREFIX. */
5847
5848 static const reg_entry *
5849 parse_real_register (char *reg_string, char **end_op)
5850 {
5851 char *s = reg_string;
5852 char *p;
5853 char reg_name_given[MAX_REG_NAME_SIZE + 1];
5854 const reg_entry *r;
5855
5856 /* Skip possible REGISTER_PREFIX and possible whitespace. */
5857 if (*s == REGISTER_PREFIX)
5858 ++s;
5859
5860 if (is_space_char (*s))
5861 ++s;
5862
5863 p = reg_name_given;
5864 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
5865 {
5866 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
5867 return (const reg_entry *) NULL;
5868 s++;
5869 }
5870
5871 /* For naked regs, make sure that we are not dealing with an identifier.
5872 This prevents confusing an identifier like `eax_var' with register
5873 `eax'. */
5874 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
5875 return (const reg_entry *) NULL;
5876
5877 *end_op = s;
5878
5879 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
5880
5881 /* Handle floating point regs, allowing spaces in the (i) part. */
5882 if (r == i386_regtab /* %st is first entry of table */)
5883 {
5884 if (is_space_char (*s))
5885 ++s;
5886 if (*s == '(')
5887 {
5888 ++s;
5889 if (is_space_char (*s))
5890 ++s;
5891 if (*s >= '0' && *s <= '7')
5892 {
5893 int fpr = *s - '0';
5894 ++s;
5895 if (is_space_char (*s))
5896 ++s;
5897 if (*s == ')')
5898 {
5899 *end_op = s + 1;
5900 r = hash_find (reg_hash, "st(0)");
5901 know (r);
5902 return r + fpr;
5903 }
5904 }
5905 /* We have "%st(" then garbage. */
5906 return (const reg_entry *) NULL;
5907 }
5908 }
5909
5910 if (r != NULL
5911 && ((r->reg_flags & (RegRex64 | RegRex)) | (r->reg_type & Reg64)) != 0
5912 && (r->reg_type != Control || !(cpu_arch_flags & CpuSledgehammer))
5913 && flag_code != CODE_64BIT)
5914 return (const reg_entry *) NULL;
5915
5916 return r;
5917 }
5918
5919 /* REG_STRING starts *before* REGISTER_PREFIX. */
5920
5921 static const reg_entry *
5922 parse_register (char *reg_string, char **end_op)
5923 {
5924 const reg_entry *r;
5925
5926 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
5927 r = parse_real_register (reg_string, end_op);
5928 else
5929 r = NULL;
5930 if (!r)
5931 {
5932 char *save = input_line_pointer;
5933 char c;
5934 symbolS *symbolP;
5935
5936 input_line_pointer = reg_string;
5937 c = get_symbol_end ();
5938 symbolP = symbol_find (reg_string);
5939 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
5940 {
5941 const expressionS *e = symbol_get_value_expression (symbolP);
5942
5943 know (e->X_op == O_register);
5944 know (e->X_add_number >= 0
5945 && (valueT) e->X_add_number < i386_regtab_size);
5946 r = i386_regtab + e->X_add_number;
5947 *end_op = input_line_pointer;
5948 }
5949 *input_line_pointer = c;
5950 input_line_pointer = save;
5951 }
5952 return r;
5953 }
5954
5955 int
5956 i386_parse_name (char *name, expressionS *e, char *nextcharP)
5957 {
5958 const reg_entry *r;
5959 char *end = input_line_pointer;
5960
5961 *end = *nextcharP;
5962 r = parse_register (name, &input_line_pointer);
5963 if (r && end <= input_line_pointer)
5964 {
5965 *nextcharP = *input_line_pointer;
5966 *input_line_pointer = 0;
5967 e->X_op = O_register;
5968 e->X_add_number = r - i386_regtab;
5969 return 1;
5970 }
5971 input_line_pointer = end;
5972 *end = 0;
5973 return 0;
5974 }
5975
5976 void
5977 md_operand (expressionS *e)
5978 {
5979 if (*input_line_pointer == REGISTER_PREFIX)
5980 {
5981 char *end;
5982 const reg_entry *r = parse_real_register (input_line_pointer, &end);
5983
5984 if (r)
5985 {
5986 e->X_op = O_register;
5987 e->X_add_number = r - i386_regtab;
5988 input_line_pointer = end;
5989 }
5990 }
5991 }
5992
5993 \f
5994 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
5995 const char *md_shortopts = "kVQ:sqn";
5996 #else
5997 const char *md_shortopts = "qn";
5998 #endif
5999
6000 #define OPTION_32 (OPTION_MD_BASE + 0)
6001 #define OPTION_64 (OPTION_MD_BASE + 1)
6002 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
6003 #define OPTION_MARCH (OPTION_MD_BASE + 3)
6004 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
6005
6006 struct option md_longopts[] =
6007 {
6008 {"32", no_argument, NULL, OPTION_32},
6009 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
6010 {"64", no_argument, NULL, OPTION_64},
6011 #endif
6012 {"divide", no_argument, NULL, OPTION_DIVIDE},
6013 {"march", required_argument, NULL, OPTION_MARCH},
6014 {"mtune", required_argument, NULL, OPTION_MTUNE},
6015 {NULL, no_argument, NULL, 0}
6016 };
6017 size_t md_longopts_size = sizeof (md_longopts);
6018
6019 int
6020 md_parse_option (int c, char *arg)
6021 {
6022 unsigned int i;
6023
6024 switch (c)
6025 {
6026 case 'n':
6027 optimize_align_code = 0;
6028 break;
6029
6030 case 'q':
6031 quiet_warnings = 1;
6032 break;
6033
6034 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6035 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
6036 should be emitted or not. FIXME: Not implemented. */
6037 case 'Q':
6038 break;
6039
6040 /* -V: SVR4 argument to print version ID. */
6041 case 'V':
6042 print_version_id ();
6043 break;
6044
6045 /* -k: Ignore for FreeBSD compatibility. */
6046 case 'k':
6047 break;
6048
6049 case 's':
6050 /* -s: On i386 Solaris, this tells the native assembler to use
6051 .stab instead of .stab.excl. We always use .stab anyhow. */
6052 break;
6053 #endif
6054 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
6055 case OPTION_64:
6056 {
6057 const char **list, **l;
6058
6059 list = bfd_target_list ();
6060 for (l = list; *l != NULL; l++)
6061 if (CONST_STRNEQ (*l, "elf64-x86-64")
6062 || strcmp (*l, "coff-x86-64") == 0
6063 || strcmp (*l, "pe-x86-64") == 0
6064 || strcmp (*l, "pei-x86-64") == 0)
6065 {
6066 default_arch = "x86_64";
6067 break;
6068 }
6069 if (*l == NULL)
6070 as_fatal (_("No compiled in support for x86_64"));
6071 free (list);
6072 }
6073 break;
6074 #endif
6075
6076 case OPTION_32:
6077 default_arch = "i386";
6078 break;
6079
6080 case OPTION_DIVIDE:
6081 #ifdef SVR4_COMMENT_CHARS
6082 {
6083 char *n, *t;
6084 const char *s;
6085
6086 n = (char *) xmalloc (strlen (i386_comment_chars) + 1);
6087 t = n;
6088 for (s = i386_comment_chars; *s != '\0'; s++)
6089 if (*s != '/')
6090 *t++ = *s;
6091 *t = '\0';
6092 i386_comment_chars = n;
6093 }
6094 #endif
6095 break;
6096
6097 case OPTION_MARCH:
6098 if (*arg == '.')
6099 as_fatal (_("Invalid -march= option: `%s'"), arg);
6100 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
6101 {
6102 if (strcmp (arg, cpu_arch [i].name) == 0)
6103 {
6104 cpu_arch_isa = cpu_arch[i].type;
6105 cpu_arch_isa_flags = cpu_arch[i].flags;
6106 if (!cpu_arch_tune_set)
6107 {
6108 cpu_arch_tune = cpu_arch_isa;
6109 cpu_arch_tune_flags = cpu_arch_isa_flags;
6110 }
6111 break;
6112 }
6113 }
6114 if (i >= ARRAY_SIZE (cpu_arch))
6115 as_fatal (_("Invalid -march= option: `%s'"), arg);
6116 break;
6117
6118 case OPTION_MTUNE:
6119 if (*arg == '.')
6120 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
6121 for (i = 0; i < ARRAY_SIZE (cpu_arch); i++)
6122 {
6123 if (strcmp (arg, cpu_arch [i].name) == 0)
6124 {
6125 cpu_arch_tune_set = 1;
6126 cpu_arch_tune = cpu_arch [i].type;
6127 cpu_arch_tune_flags = cpu_arch[i].flags;
6128 break;
6129 }
6130 }
6131 if (i >= ARRAY_SIZE (cpu_arch))
6132 as_fatal (_("Invalid -mtune= option: `%s'"), arg);
6133 break;
6134
6135 default:
6136 return 0;
6137 }
6138 return 1;
6139 }
6140
6141 void
6142 md_show_usage (stream)
6143 FILE *stream;
6144 {
6145 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6146 fprintf (stream, _("\
6147 -Q ignored\n\
6148 -V print assembler version number\n\
6149 -k ignored\n"));
6150 #endif
6151 fprintf (stream, _("\
6152 -n Do not optimize code alignment\n\
6153 -q quieten some warnings\n"));
6154 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6155 fprintf (stream, _("\
6156 -s ignored\n"));
6157 #endif
6158 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined(TE_PEP)
6159 fprintf (stream, _("\
6160 --32/--64 generate 32bit/64bit code\n"));
6161 #endif
6162 #ifdef SVR4_COMMENT_CHARS
6163 fprintf (stream, _("\
6164 --divide do not treat `/' as a comment character\n"));
6165 #else
6166 fprintf (stream, _("\
6167 --divide ignored\n"));
6168 #endif
6169 fprintf (stream, _("\
6170 -march=CPU/-mtune=CPU generate code/optimize for CPU, where CPU is one of:\n\
6171 i386, i486, pentium, pentiumpro, pentium4, nocona,\n\
6172 core, core2, k6, athlon, k8, generic32, generic64\n"));
6173
6174 }
6175
6176 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
6177 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (TE_PEP))
6178
6179 /* Pick the target format to use. */
6180
6181 const char *
6182 i386_target_format (void)
6183 {
6184 if (!strcmp (default_arch, "x86_64"))
6185 {
6186 set_code_flag (CODE_64BIT);
6187 if (cpu_arch_isa_flags == 0)
6188 cpu_arch_isa_flags = Cpu186|Cpu286|Cpu386|Cpu486
6189 |Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2
6190 |CpuSSE|CpuSSE2;
6191 if (cpu_arch_tune_flags == 0)
6192 cpu_arch_tune_flags = Cpu186|Cpu286|Cpu386|Cpu486
6193 |Cpu586|Cpu686|CpuP4|CpuMMX|CpuMMX2
6194 |CpuSSE|CpuSSE2;
6195 }
6196 else if (!strcmp (default_arch, "i386"))
6197 {
6198 set_code_flag (CODE_32BIT);
6199 if (cpu_arch_isa_flags == 0)
6200 cpu_arch_isa_flags = Cpu186|Cpu286|Cpu386;
6201 if (cpu_arch_tune_flags == 0)
6202 cpu_arch_tune_flags = Cpu186|Cpu286|Cpu386;
6203 }
6204 else
6205 as_fatal (_("Unknown architecture"));
6206 switch (OUTPUT_FLAVOR)
6207 {
6208 #ifdef TE_PEP
6209 case bfd_target_coff_flavour:
6210 return flag_code == CODE_64BIT ? COFF_TARGET_FORMAT : "coff-i386";
6211 break;
6212 #endif
6213 #ifdef OBJ_MAYBE_AOUT
6214 case bfd_target_aout_flavour:
6215 return AOUT_TARGET_FORMAT;
6216 #endif
6217 #ifdef OBJ_MAYBE_COFF
6218 case bfd_target_coff_flavour:
6219 return "coff-i386";
6220 #endif
6221 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
6222 case bfd_target_elf_flavour:
6223 {
6224 if (flag_code == CODE_64BIT)
6225 {
6226 object_64bit = 1;
6227 use_rela_relocations = 1;
6228 }
6229 return flag_code == CODE_64BIT ? ELF_TARGET_FORMAT64 : ELF_TARGET_FORMAT;
6230 }
6231 #endif
6232 default:
6233 abort ();
6234 return NULL;
6235 }
6236 }
6237
6238 #endif /* OBJ_MAYBE_ more than one */
6239
6240 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF))
6241 void
6242 i386_elf_emit_arch_note (void)
6243 {
6244 if (IS_ELF && cpu_arch_name != NULL)
6245 {
6246 char *p;
6247 asection *seg = now_seg;
6248 subsegT subseg = now_subseg;
6249 Elf_Internal_Note i_note;
6250 Elf_External_Note e_note;
6251 asection *note_secp;
6252 int len;
6253
6254 /* Create the .note section. */
6255 note_secp = subseg_new (".note", 0);
6256 bfd_set_section_flags (stdoutput,
6257 note_secp,
6258 SEC_HAS_CONTENTS | SEC_READONLY);
6259
6260 /* Process the arch string. */
6261 len = strlen (cpu_arch_name);
6262
6263 i_note.namesz = len + 1;
6264 i_note.descsz = 0;
6265 i_note.type = NT_ARCH;
6266 p = frag_more (sizeof (e_note.namesz));
6267 md_number_to_chars (p, (valueT) i_note.namesz, sizeof (e_note.namesz));
6268 p = frag_more (sizeof (e_note.descsz));
6269 md_number_to_chars (p, (valueT) i_note.descsz, sizeof (e_note.descsz));
6270 p = frag_more (sizeof (e_note.type));
6271 md_number_to_chars (p, (valueT) i_note.type, sizeof (e_note.type));
6272 p = frag_more (len + 1);
6273 strcpy (p, cpu_arch_name);
6274
6275 frag_align (2, 0, 0);
6276
6277 subseg_set (seg, subseg);
6278 }
6279 }
6280 #endif
6281 \f
6282 symbolS *
6283 md_undefined_symbol (name)
6284 char *name;
6285 {
6286 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
6287 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
6288 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
6289 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
6290 {
6291 if (!GOT_symbol)
6292 {
6293 if (symbol_find (name))
6294 as_bad (_("GOT already in symbol table"));
6295 GOT_symbol = symbol_new (name, undefined_section,
6296 (valueT) 0, &zero_address_frag);
6297 };
6298 return GOT_symbol;
6299 }
6300 return 0;
6301 }
6302
6303 /* Round up a section size to the appropriate boundary. */
6304
6305 valueT
6306 md_section_align (segment, size)
6307 segT segment ATTRIBUTE_UNUSED;
6308 valueT size;
6309 {
6310 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
6311 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
6312 {
6313 /* For a.out, force the section size to be aligned. If we don't do
6314 this, BFD will align it for us, but it will not write out the
6315 final bytes of the section. This may be a bug in BFD, but it is
6316 easier to fix it here since that is how the other a.out targets
6317 work. */
6318 int align;
6319
6320 align = bfd_get_section_alignment (stdoutput, segment);
6321 size = ((size + (1 << align) - 1) & ((valueT) -1 << align));
6322 }
6323 #endif
6324
6325 return size;
6326 }
6327
6328 /* On the i386, PC-relative offsets are relative to the start of the
6329 next instruction. That is, the address of the offset, plus its
6330 size, since the offset is always the last part of the insn. */
6331
6332 long
6333 md_pcrel_from (fixS *fixP)
6334 {
6335 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
6336 }
6337
6338 #ifndef I386COFF
6339
6340 static void
6341 s_bss (int ignore ATTRIBUTE_UNUSED)
6342 {
6343 int temp;
6344
6345 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
6346 if (IS_ELF)
6347 obj_elf_section_change_hook ();
6348 #endif
6349 temp = get_absolute_expression ();
6350 subseg_set (bss_section, (subsegT) temp);
6351 demand_empty_rest_of_line ();
6352 }
6353
6354 #endif
6355
6356 void
6357 i386_validate_fix (fixS *fixp)
6358 {
6359 if (fixp->fx_subsy && fixp->fx_subsy == GOT_symbol)
6360 {
6361 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
6362 {
6363 if (!object_64bit)
6364 abort ();
6365 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
6366 }
6367 else
6368 {
6369 if (!object_64bit)
6370 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
6371 else
6372 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
6373 }
6374 fixp->fx_subsy = 0;
6375 }
6376 }
6377
6378 arelent *
6379 tc_gen_reloc (section, fixp)
6380 asection *section ATTRIBUTE_UNUSED;
6381 fixS *fixp;
6382 {
6383 arelent *rel;
6384 bfd_reloc_code_real_type code;
6385
6386 switch (fixp->fx_r_type)
6387 {
6388 case BFD_RELOC_X86_64_PLT32:
6389 case BFD_RELOC_X86_64_GOT32:
6390 case BFD_RELOC_X86_64_GOTPCREL:
6391 case BFD_RELOC_386_PLT32:
6392 case BFD_RELOC_386_GOT32:
6393 case BFD_RELOC_386_GOTOFF:
6394 case BFD_RELOC_386_GOTPC:
6395 case BFD_RELOC_386_TLS_GD:
6396 case BFD_RELOC_386_TLS_LDM:
6397 case BFD_RELOC_386_TLS_LDO_32:
6398 case BFD_RELOC_386_TLS_IE_32:
6399 case BFD_RELOC_386_TLS_IE:
6400 case BFD_RELOC_386_TLS_GOTIE:
6401 case BFD_RELOC_386_TLS_LE_32:
6402 case BFD_RELOC_386_TLS_LE:
6403 case BFD_RELOC_386_TLS_GOTDESC:
6404 case BFD_RELOC_386_TLS_DESC_CALL:
6405 case BFD_RELOC_X86_64_TLSGD:
6406 case BFD_RELOC_X86_64_TLSLD:
6407 case BFD_RELOC_X86_64_DTPOFF32:
6408 case BFD_RELOC_X86_64_DTPOFF64:
6409 case BFD_RELOC_X86_64_GOTTPOFF:
6410 case BFD_RELOC_X86_64_TPOFF32:
6411 case BFD_RELOC_X86_64_TPOFF64:
6412 case BFD_RELOC_X86_64_GOTOFF64:
6413 case BFD_RELOC_X86_64_GOTPC32:
6414 case BFD_RELOC_X86_64_GOT64:
6415 case BFD_RELOC_X86_64_GOTPCREL64:
6416 case BFD_RELOC_X86_64_GOTPC64:
6417 case BFD_RELOC_X86_64_GOTPLT64:
6418 case BFD_RELOC_X86_64_PLTOFF64:
6419 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
6420 case BFD_RELOC_X86_64_TLSDESC_CALL:
6421 case BFD_RELOC_RVA:
6422 case BFD_RELOC_VTABLE_ENTRY:
6423 case BFD_RELOC_VTABLE_INHERIT:
6424 #ifdef TE_PE
6425 case BFD_RELOC_32_SECREL:
6426 #endif
6427 code = fixp->fx_r_type;
6428 break;
6429 case BFD_RELOC_X86_64_32S:
6430 if (!fixp->fx_pcrel)
6431 {
6432 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
6433 code = fixp->fx_r_type;
6434 break;
6435 }
6436 default:
6437 if (fixp->fx_pcrel)
6438 {
6439 switch (fixp->fx_size)
6440 {
6441 default:
6442 as_bad_where (fixp->fx_file, fixp->fx_line,
6443 _("can not do %d byte pc-relative relocation"),
6444 fixp->fx_size);
6445 code = BFD_RELOC_32_PCREL;
6446 break;
6447 case 1: code = BFD_RELOC_8_PCREL; break;
6448 case 2: code = BFD_RELOC_16_PCREL; break;
6449 case 4: code = BFD_RELOC_32_PCREL; break;
6450 #ifdef BFD64
6451 case 8: code = BFD_RELOC_64_PCREL; break;
6452 #endif
6453 }
6454 }
6455 else
6456 {
6457 switch (fixp->fx_size)
6458 {
6459 default:
6460 as_bad_where (fixp->fx_file, fixp->fx_line,
6461 _("can not do %d byte relocation"),
6462 fixp->fx_size);
6463 code = BFD_RELOC_32;
6464 break;
6465 case 1: code = BFD_RELOC_8; break;
6466 case 2: code = BFD_RELOC_16; break;
6467 case 4: code = BFD_RELOC_32; break;
6468 #ifdef BFD64
6469 case 8: code = BFD_RELOC_64; break;
6470 #endif
6471 }
6472 }
6473 break;
6474 }
6475
6476 if ((code == BFD_RELOC_32
6477 || code == BFD_RELOC_32_PCREL
6478 || code == BFD_RELOC_X86_64_32S)
6479 && GOT_symbol
6480 && fixp->fx_addsy == GOT_symbol)
6481 {
6482 if (!object_64bit)
6483 code = BFD_RELOC_386_GOTPC;
6484 else
6485 code = BFD_RELOC_X86_64_GOTPC32;
6486 }
6487 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
6488 && GOT_symbol
6489 && fixp->fx_addsy == GOT_symbol)
6490 {
6491 code = BFD_RELOC_X86_64_GOTPC64;
6492 }
6493
6494 rel = (arelent *) xmalloc (sizeof (arelent));
6495 rel->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
6496 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
6497
6498 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
6499
6500 if (!use_rela_relocations)
6501 {
6502 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
6503 vtable entry to be used in the relocation's section offset. */
6504 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
6505 rel->address = fixp->fx_offset;
6506
6507 rel->addend = 0;
6508 }
6509 /* Use the rela in 64bit mode. */
6510 else
6511 {
6512 if (!fixp->fx_pcrel)
6513 rel->addend = fixp->fx_offset;
6514 else
6515 switch (code)
6516 {
6517 case BFD_RELOC_X86_64_PLT32:
6518 case BFD_RELOC_X86_64_GOT32:
6519 case BFD_RELOC_X86_64_GOTPCREL:
6520 case BFD_RELOC_X86_64_TLSGD:
6521 case BFD_RELOC_X86_64_TLSLD:
6522 case BFD_RELOC_X86_64_GOTTPOFF:
6523 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
6524 case BFD_RELOC_X86_64_TLSDESC_CALL:
6525 rel->addend = fixp->fx_offset - fixp->fx_size;
6526 break;
6527 default:
6528 rel->addend = (section->vma
6529 - fixp->fx_size
6530 + fixp->fx_addnumber
6531 + md_pcrel_from (fixp));
6532 break;
6533 }
6534 }
6535
6536 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
6537 if (rel->howto == NULL)
6538 {
6539 as_bad_where (fixp->fx_file, fixp->fx_line,
6540 _("cannot represent relocation type %s"),
6541 bfd_get_reloc_code_name (code));
6542 /* Set howto to a garbage value so that we can keep going. */
6543 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
6544 assert (rel->howto != NULL);
6545 }
6546
6547 return rel;
6548 }
6549
6550 \f
6551 /* Parse operands using Intel syntax. This implements a recursive descent
6552 parser based on the BNF grammar published in Appendix B of the MASM 6.1
6553 Programmer's Guide.
6554
6555 FIXME: We do not recognize the full operand grammar defined in the MASM
6556 documentation. In particular, all the structure/union and
6557 high-level macro operands are missing.
6558
6559 Uppercase words are terminals, lower case words are non-terminals.
6560 Objects surrounded by double brackets '[[' ']]' are optional. Vertical
6561 bars '|' denote choices. Most grammar productions are implemented in
6562 functions called 'intel_<production>'.
6563
6564 Initial production is 'expr'.
6565
6566 addOp + | -
6567
6568 alpha [a-zA-Z]
6569
6570 binOp & | AND | \| | OR | ^ | XOR
6571
6572 byteRegister AL | AH | BL | BH | CL | CH | DL | DH
6573
6574 constant digits [[ radixOverride ]]
6575
6576 dataType BYTE | WORD | DWORD | FWORD | QWORD | TBYTE | OWORD | XMMWORD
6577
6578 digits decdigit
6579 | digits decdigit
6580 | digits hexdigit
6581
6582 decdigit [0-9]
6583
6584 e04 e04 addOp e05
6585 | e05
6586
6587 e05 e05 binOp e06
6588 | e06
6589
6590 e06 e06 mulOp e09
6591 | e09
6592
6593 e09 OFFSET e10
6594 | SHORT e10
6595 | + e10
6596 | - e10
6597 | ~ e10
6598 | NOT e10
6599 | e09 PTR e10
6600 | e09 : e10
6601 | e10
6602
6603 e10 e10 [ expr ]
6604 | e11
6605
6606 e11 ( expr )
6607 | [ expr ]
6608 | constant
6609 | dataType
6610 | id
6611 | $
6612 | register
6613
6614 => expr expr cmpOp e04
6615 | e04
6616
6617 gpRegister AX | EAX | BX | EBX | CX | ECX | DX | EDX
6618 | BP | EBP | SP | ESP | DI | EDI | SI | ESI
6619
6620 hexdigit a | b | c | d | e | f
6621 | A | B | C | D | E | F
6622
6623 id alpha
6624 | id alpha
6625 | id decdigit
6626
6627 mulOp * | / | % | MOD | << | SHL | >> | SHR
6628
6629 quote " | '
6630
6631 register specialRegister
6632 | gpRegister
6633 | byteRegister
6634
6635 segmentRegister CS | DS | ES | FS | GS | SS
6636
6637 specialRegister CR0 | CR2 | CR3 | CR4
6638 | DR0 | DR1 | DR2 | DR3 | DR6 | DR7
6639 | TR3 | TR4 | TR5 | TR6 | TR7
6640
6641 We simplify the grammar in obvious places (e.g., register parsing is
6642 done by calling parse_register) and eliminate immediate left recursion
6643 to implement a recursive-descent parser.
6644
6645 expr e04 expr'
6646
6647 expr' cmpOp e04 expr'
6648 | Empty
6649
6650 e04 e05 e04'
6651
6652 e04' addOp e05 e04'
6653 | Empty
6654
6655 e05 e06 e05'
6656
6657 e05' binOp e06 e05'
6658 | Empty
6659
6660 e06 e09 e06'
6661
6662 e06' mulOp e09 e06'
6663 | Empty
6664
6665 e09 OFFSET e10 e09'
6666 | SHORT e10'
6667 | + e10'
6668 | - e10'
6669 | ~ e10'
6670 | NOT e10'
6671 | e10 e09'
6672
6673 e09' PTR e10 e09'
6674 | : e10 e09'
6675 | Empty
6676
6677 e10 e11 e10'
6678
6679 e10' [ expr ] e10'
6680 | Empty
6681
6682 e11 ( expr )
6683 | [ expr ]
6684 | BYTE
6685 | WORD
6686 | DWORD
6687 | FWORD
6688 | QWORD
6689 | TBYTE
6690 | OWORD
6691 | XMMWORD
6692 | .
6693 | $
6694 | register
6695 | id
6696 | constant */
6697
6698 /* Parsing structure for the intel syntax parser. Used to implement the
6699 semantic actions for the operand grammar. */
6700 struct intel_parser_s
6701 {
6702 char *op_string; /* The string being parsed. */
6703 int got_a_float; /* Whether the operand is a float. */
6704 int op_modifier; /* Operand modifier. */
6705 int is_mem; /* 1 if operand is memory reference. */
6706 int in_offset; /* >=1 if parsing operand of offset. */
6707 int in_bracket; /* >=1 if parsing operand in brackets. */
6708 const reg_entry *reg; /* Last register reference found. */
6709 char *disp; /* Displacement string being built. */
6710 char *next_operand; /* Resume point when splitting operands. */
6711 };
6712
6713 static struct intel_parser_s intel_parser;
6714
6715 /* Token structure for parsing intel syntax. */
6716 struct intel_token
6717 {
6718 int code; /* Token code. */
6719 const reg_entry *reg; /* Register entry for register tokens. */
6720 char *str; /* String representation. */
6721 };
6722
6723 static struct intel_token cur_token, prev_token;
6724
6725 /* Token codes for the intel parser. Since T_SHORT is already used
6726 by COFF, undefine it first to prevent a warning. */
6727 #define T_NIL -1
6728 #define T_CONST 1
6729 #define T_REG 2
6730 #define T_BYTE 3
6731 #define T_WORD 4
6732 #define T_DWORD 5
6733 #define T_FWORD 6
6734 #define T_QWORD 7
6735 #define T_TBYTE 8
6736 #define T_XMMWORD 9
6737 #undef T_SHORT
6738 #define T_SHORT 10
6739 #define T_OFFSET 11
6740 #define T_PTR 12
6741 #define T_ID 13
6742 #define T_SHL 14
6743 #define T_SHR 15
6744
6745 /* Prototypes for intel parser functions. */
6746 static int intel_match_token (int);
6747 static void intel_putback_token (void);
6748 static void intel_get_token (void);
6749 static int intel_expr (void);
6750 static int intel_e04 (void);
6751 static int intel_e05 (void);
6752 static int intel_e06 (void);
6753 static int intel_e09 (void);
6754 static int intel_e10 (void);
6755 static int intel_e11 (void);
6756
6757 static int
6758 i386_intel_operand (char *operand_string, int got_a_float)
6759 {
6760 int ret;
6761 char *p;
6762
6763 p = intel_parser.op_string = xstrdup (operand_string);
6764 intel_parser.disp = (char *) xmalloc (strlen (operand_string) + 1);
6765
6766 for (;;)
6767 {
6768 /* Initialize token holders. */
6769 cur_token.code = prev_token.code = T_NIL;
6770 cur_token.reg = prev_token.reg = NULL;
6771 cur_token.str = prev_token.str = NULL;
6772
6773 /* Initialize parser structure. */
6774 intel_parser.got_a_float = got_a_float;
6775 intel_parser.op_modifier = 0;
6776 intel_parser.is_mem = 0;
6777 intel_parser.in_offset = 0;
6778 intel_parser.in_bracket = 0;
6779 intel_parser.reg = NULL;
6780 intel_parser.disp[0] = '\0';
6781 intel_parser.next_operand = NULL;
6782
6783 /* Read the first token and start the parser. */
6784 intel_get_token ();
6785 ret = intel_expr ();
6786
6787 if (!ret)
6788 break;
6789
6790 if (cur_token.code != T_NIL)
6791 {
6792 as_bad (_("invalid operand for '%s' ('%s' unexpected)"),
6793 current_templates->start->name, cur_token.str);
6794 ret = 0;
6795 }
6796 /* If we found a memory reference, hand it over to i386_displacement
6797 to fill in the rest of the operand fields. */
6798 else if (intel_parser.is_mem)
6799 {
6800 if ((i.mem_operands == 1
6801 && (current_templates->start->opcode_modifier & IsString) == 0)
6802 || i.mem_operands == 2)
6803 {
6804 as_bad (_("too many memory references for '%s'"),
6805 current_templates->start->name);
6806 ret = 0;
6807 }
6808 else
6809 {
6810 char *s = intel_parser.disp;
6811 i.mem_operands++;
6812
6813 if (!quiet_warnings && intel_parser.is_mem < 0)
6814 /* See the comments in intel_bracket_expr. */
6815 as_warn (_("Treating `%s' as memory reference"), operand_string);
6816
6817 /* Add the displacement expression. */
6818 if (*s != '\0')
6819 ret = i386_displacement (s, s + strlen (s));
6820 if (ret)
6821 {
6822 /* Swap base and index in 16-bit memory operands like
6823 [si+bx]. Since i386_index_check is also used in AT&T
6824 mode we have to do that here. */
6825 if (i.base_reg
6826 && i.index_reg
6827 && (i.base_reg->reg_type & Reg16)
6828 && (i.index_reg->reg_type & Reg16)
6829 && i.base_reg->reg_num >= 6
6830 && i.index_reg->reg_num < 6)
6831 {
6832 const reg_entry *base = i.index_reg;
6833
6834 i.index_reg = i.base_reg;
6835 i.base_reg = base;
6836 }
6837 ret = i386_index_check (operand_string);
6838 }
6839 }
6840 }
6841
6842 /* Constant and OFFSET expressions are handled by i386_immediate. */
6843 else if ((intel_parser.op_modifier & (1 << T_OFFSET))
6844 || intel_parser.reg == NULL)
6845 ret = i386_immediate (intel_parser.disp);
6846
6847 if (intel_parser.next_operand && this_operand >= MAX_OPERANDS - 1)
6848 ret = 0;
6849 if (!ret || !intel_parser.next_operand)
6850 break;
6851 intel_parser.op_string = intel_parser.next_operand;
6852 this_operand = i.operands++;
6853 }
6854
6855 free (p);
6856 free (intel_parser.disp);
6857
6858 return ret;
6859 }
6860
6861 #define NUM_ADDRESS_REGS (!!i.base_reg + !!i.index_reg)
6862
6863 /* expr e04 expr'
6864
6865 expr' cmpOp e04 expr'
6866 | Empty */
6867 static int
6868 intel_expr (void)
6869 {
6870 /* XXX Implement the comparison operators. */
6871 return intel_e04 ();
6872 }
6873
6874 /* e04 e05 e04'
6875
6876 e04' addOp e05 e04'
6877 | Empty */
6878 static int
6879 intel_e04 (void)
6880 {
6881 int nregs = -1;
6882
6883 for (;;)
6884 {
6885 if (!intel_e05())
6886 return 0;
6887
6888 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6889 i.base_reg = i386_regtab + REGNAM_AL; /* al is invalid as base */
6890
6891 if (cur_token.code == '+')
6892 nregs = -1;
6893 else if (cur_token.code == '-')
6894 nregs = NUM_ADDRESS_REGS;
6895 else
6896 return 1;
6897
6898 strcat (intel_parser.disp, cur_token.str);
6899 intel_match_token (cur_token.code);
6900 }
6901 }
6902
6903 /* e05 e06 e05'
6904
6905 e05' binOp e06 e05'
6906 | Empty */
6907 static int
6908 intel_e05 (void)
6909 {
6910 int nregs = ~NUM_ADDRESS_REGS;
6911
6912 for (;;)
6913 {
6914 if (!intel_e06())
6915 return 0;
6916
6917 if (cur_token.code == '&'
6918 || cur_token.code == '|'
6919 || cur_token.code == '^')
6920 {
6921 char str[2];
6922
6923 str[0] = cur_token.code;
6924 str[1] = 0;
6925 strcat (intel_parser.disp, str);
6926 }
6927 else
6928 break;
6929
6930 intel_match_token (cur_token.code);
6931
6932 if (nregs < 0)
6933 nregs = ~nregs;
6934 }
6935 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6936 i.base_reg = i386_regtab + REGNAM_AL + 1; /* cl is invalid as base */
6937 return 1;
6938 }
6939
6940 /* e06 e09 e06'
6941
6942 e06' mulOp e09 e06'
6943 | Empty */
6944 static int
6945 intel_e06 (void)
6946 {
6947 int nregs = ~NUM_ADDRESS_REGS;
6948
6949 for (;;)
6950 {
6951 if (!intel_e09())
6952 return 0;
6953
6954 if (cur_token.code == '*'
6955 || cur_token.code == '/'
6956 || cur_token.code == '%')
6957 {
6958 char str[2];
6959
6960 str[0] = cur_token.code;
6961 str[1] = 0;
6962 strcat (intel_parser.disp, str);
6963 }
6964 else if (cur_token.code == T_SHL)
6965 strcat (intel_parser.disp, "<<");
6966 else if (cur_token.code == T_SHR)
6967 strcat (intel_parser.disp, ">>");
6968 else
6969 break;
6970
6971 intel_match_token (cur_token.code);
6972
6973 if (nregs < 0)
6974 nregs = ~nregs;
6975 }
6976 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
6977 i.base_reg = i386_regtab + REGNAM_AL + 2; /* dl is invalid as base */
6978 return 1;
6979 }
6980
6981 /* e09 OFFSET e09
6982 | SHORT e09
6983 | + e09
6984 | - e09
6985 | ~ e09
6986 | NOT e09
6987 | e10 e09'
6988
6989 e09' PTR e10 e09'
6990 | : e10 e09'
6991 | Empty */
6992 static int
6993 intel_e09 (void)
6994 {
6995 int nregs = ~NUM_ADDRESS_REGS;
6996 int in_offset = 0;
6997
6998 for (;;)
6999 {
7000 /* Don't consume constants here. */
7001 if (cur_token.code == '+' || cur_token.code == '-')
7002 {
7003 /* Need to look one token ahead - if the next token
7004 is a constant, the current token is its sign. */
7005 int next_code;
7006
7007 intel_match_token (cur_token.code);
7008 next_code = cur_token.code;
7009 intel_putback_token ();
7010 if (next_code == T_CONST)
7011 break;
7012 }
7013
7014 /* e09 OFFSET e09 */
7015 if (cur_token.code == T_OFFSET)
7016 {
7017 if (!in_offset++)
7018 ++intel_parser.in_offset;
7019 }
7020
7021 /* e09 SHORT e09 */
7022 else if (cur_token.code == T_SHORT)
7023 intel_parser.op_modifier |= 1 << T_SHORT;
7024
7025 /* e09 + e09 */
7026 else if (cur_token.code == '+')
7027 strcat (intel_parser.disp, "+");
7028
7029 /* e09 - e09
7030 | ~ e09
7031 | NOT e09 */
7032 else if (cur_token.code == '-' || cur_token.code == '~')
7033 {
7034 char str[2];
7035
7036 if (nregs < 0)
7037 nregs = ~nregs;
7038 str[0] = cur_token.code;
7039 str[1] = 0;
7040 strcat (intel_parser.disp, str);
7041 }
7042
7043 /* e09 e10 e09' */
7044 else
7045 break;
7046
7047 intel_match_token (cur_token.code);
7048 }
7049
7050 for (;;)
7051 {
7052 if (!intel_e10 ())
7053 return 0;
7054
7055 /* e09' PTR e10 e09' */
7056 if (cur_token.code == T_PTR)
7057 {
7058 char suffix;
7059
7060 if (prev_token.code == T_BYTE)
7061 suffix = BYTE_MNEM_SUFFIX;
7062
7063 else if (prev_token.code == T_WORD)
7064 {
7065 if (current_templates->start->name[0] == 'l'
7066 && current_templates->start->name[2] == 's'
7067 && current_templates->start->name[3] == 0)
7068 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
7069 else if (intel_parser.got_a_float == 2) /* "fi..." */
7070 suffix = SHORT_MNEM_SUFFIX;
7071 else
7072 suffix = WORD_MNEM_SUFFIX;
7073 }
7074
7075 else if (prev_token.code == T_DWORD)
7076 {
7077 if (current_templates->start->name[0] == 'l'
7078 && current_templates->start->name[2] == 's'
7079 && current_templates->start->name[3] == 0)
7080 suffix = WORD_MNEM_SUFFIX;
7081 else if (flag_code == CODE_16BIT
7082 && (current_templates->start->opcode_modifier
7083 & (Jump | JumpDword)))
7084 suffix = LONG_DOUBLE_MNEM_SUFFIX;
7085 else if (intel_parser.got_a_float == 1) /* "f..." */
7086 suffix = SHORT_MNEM_SUFFIX;
7087 else
7088 suffix = LONG_MNEM_SUFFIX;
7089 }
7090
7091 else if (prev_token.code == T_FWORD)
7092 {
7093 if (current_templates->start->name[0] == 'l'
7094 && current_templates->start->name[2] == 's'
7095 && current_templates->start->name[3] == 0)
7096 suffix = LONG_MNEM_SUFFIX;
7097 else if (!intel_parser.got_a_float)
7098 {
7099 if (flag_code == CODE_16BIT)
7100 add_prefix (DATA_PREFIX_OPCODE);
7101 suffix = LONG_DOUBLE_MNEM_SUFFIX;
7102 }
7103 else
7104 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
7105 }
7106
7107 else if (prev_token.code == T_QWORD)
7108 {
7109 if (intel_parser.got_a_float == 1) /* "f..." */
7110 suffix = LONG_MNEM_SUFFIX;
7111 else
7112 suffix = QWORD_MNEM_SUFFIX;
7113 }
7114
7115 else if (prev_token.code == T_TBYTE)
7116 {
7117 if (intel_parser.got_a_float == 1)
7118 suffix = LONG_DOUBLE_MNEM_SUFFIX;
7119 else
7120 suffix = BYTE_MNEM_SUFFIX; /* so it will cause an error */
7121 }
7122
7123 else if (prev_token.code == T_XMMWORD)
7124 {
7125 /* XXX ignored for now, but accepted since gcc uses it */
7126 suffix = 0;
7127 }
7128
7129 else
7130 {
7131 as_bad (_("Unknown operand modifier `%s'"), prev_token.str);
7132 return 0;
7133 }
7134
7135 /* Operands for jump/call using 'ptr' notation denote absolute
7136 addresses. */
7137 if (current_templates->start->opcode_modifier & (Jump | JumpDword))
7138 i.types[this_operand] |= JumpAbsolute;
7139
7140 if (current_templates->start->base_opcode == 0x8d /* lea */)
7141 ;
7142 else if (!i.suffix)
7143 i.suffix = suffix;
7144 else if (i.suffix != suffix)
7145 {
7146 as_bad (_("Conflicting operand modifiers"));
7147 return 0;
7148 }
7149
7150 }
7151
7152 /* e09' : e10 e09' */
7153 else if (cur_token.code == ':')
7154 {
7155 if (prev_token.code != T_REG)
7156 {
7157 /* While {call,jmp} SSSS:OOOO is MASM syntax only when SSSS is a
7158 segment/group identifier (which we don't have), using comma
7159 as the operand separator there is even less consistent, since
7160 there all branches only have a single operand. */
7161 if (this_operand != 0
7162 || intel_parser.in_offset
7163 || intel_parser.in_bracket
7164 || (!(current_templates->start->opcode_modifier
7165 & (Jump|JumpDword|JumpInterSegment))
7166 && !(current_templates->start->operand_types[0]
7167 & JumpAbsolute)))
7168 return intel_match_token (T_NIL);
7169 /* Remember the start of the 2nd operand and terminate 1st
7170 operand here.
7171 XXX This isn't right, yet (when SSSS:OOOO is right operand of
7172 another expression), but it gets at least the simplest case
7173 (a plain number or symbol on the left side) right. */
7174 intel_parser.next_operand = intel_parser.op_string;
7175 *--intel_parser.op_string = '\0';
7176 return intel_match_token (':');
7177 }
7178 }
7179
7180 /* e09' Empty */
7181 else
7182 break;
7183
7184 intel_match_token (cur_token.code);
7185
7186 }
7187
7188 if (in_offset)
7189 {
7190 --intel_parser.in_offset;
7191 if (nregs < 0)
7192 nregs = ~nregs;
7193 if (NUM_ADDRESS_REGS > nregs)
7194 {
7195 as_bad (_("Invalid operand to `OFFSET'"));
7196 return 0;
7197 }
7198 intel_parser.op_modifier |= 1 << T_OFFSET;
7199 }
7200
7201 if (nregs >= 0 && NUM_ADDRESS_REGS > nregs)
7202 i.base_reg = i386_regtab + REGNAM_AL + 3; /* bl is invalid as base */
7203 return 1;
7204 }
7205
7206 static int
7207 intel_bracket_expr (void)
7208 {
7209 int was_offset = intel_parser.op_modifier & (1 << T_OFFSET);
7210 const char *start = intel_parser.op_string;
7211 int len;
7212
7213 if (i.op[this_operand].regs)
7214 return intel_match_token (T_NIL);
7215
7216 intel_match_token ('[');
7217
7218 /* Mark as a memory operand only if it's not already known to be an
7219 offset expression. If it's an offset expression, we need to keep
7220 the brace in. */
7221 if (!intel_parser.in_offset)
7222 {
7223 ++intel_parser.in_bracket;
7224
7225 /* Operands for jump/call inside brackets denote absolute addresses. */
7226 if (current_templates->start->opcode_modifier & (Jump | JumpDword))
7227 i.types[this_operand] |= JumpAbsolute;
7228
7229 /* Unfortunately gas always diverged from MASM in a respect that can't
7230 be easily fixed without risking to break code sequences likely to be
7231 encountered (the testsuite even check for this): MASM doesn't consider
7232 an expression inside brackets unconditionally as a memory reference.
7233 When that is e.g. a constant, an offset expression, or the sum of the
7234 two, this is still taken as a constant load. gas, however, always
7235 treated these as memory references. As a compromise, we'll try to make
7236 offset expressions inside brackets work the MASM way (since that's
7237 less likely to be found in real world code), but make constants alone
7238 continue to work the traditional gas way. In either case, issue a
7239 warning. */
7240 intel_parser.op_modifier &= ~was_offset;
7241 }
7242 else
7243 strcat (intel_parser.disp, "[");
7244
7245 /* Add a '+' to the displacement string if necessary. */
7246 if (*intel_parser.disp != '\0'
7247 && *(intel_parser.disp + strlen (intel_parser.disp) - 1) != '+')
7248 strcat (intel_parser.disp, "+");
7249
7250 if (intel_expr ()
7251 && (len = intel_parser.op_string - start - 1,
7252 intel_match_token (']')))
7253 {
7254 /* Preserve brackets when the operand is an offset expression. */
7255 if (intel_parser.in_offset)
7256 strcat (intel_parser.disp, "]");
7257 else
7258 {
7259 --intel_parser.in_bracket;
7260 if (i.base_reg || i.index_reg)
7261 intel_parser.is_mem = 1;
7262 if (!intel_parser.is_mem)
7263 {
7264 if (!(intel_parser.op_modifier & (1 << T_OFFSET)))
7265 /* Defer the warning until all of the operand was parsed. */
7266 intel_parser.is_mem = -1;
7267 else if (!quiet_warnings)
7268 as_warn (_("`[%.*s]' taken to mean just `%.*s'"),
7269 len, start, len, start);
7270 }
7271 }
7272 intel_parser.op_modifier |= was_offset;
7273
7274 return 1;
7275 }
7276 return 0;
7277 }
7278
7279 /* e10 e11 e10'
7280
7281 e10' [ expr ] e10'
7282 | Empty */
7283 static int
7284 intel_e10 (void)
7285 {
7286 if (!intel_e11 ())
7287 return 0;
7288
7289 while (cur_token.code == '[')
7290 {
7291 if (!intel_bracket_expr ())
7292 return 0;
7293 }
7294
7295 return 1;
7296 }
7297
7298 /* e11 ( expr )
7299 | [ expr ]
7300 | BYTE
7301 | WORD
7302 | DWORD
7303 | FWORD
7304 | QWORD
7305 | TBYTE
7306 | OWORD
7307 | XMMWORD
7308 | $
7309 | .
7310 | register
7311 | id
7312 | constant */
7313 static int
7314 intel_e11 (void)
7315 {
7316 switch (cur_token.code)
7317 {
7318 /* e11 ( expr ) */
7319 case '(':
7320 intel_match_token ('(');
7321 strcat (intel_parser.disp, "(");
7322
7323 if (intel_expr () && intel_match_token (')'))
7324 {
7325 strcat (intel_parser.disp, ")");
7326 return 1;
7327 }
7328 return 0;
7329
7330 /* e11 [ expr ] */
7331 case '[':
7332 return intel_bracket_expr ();
7333
7334 /* e11 $
7335 | . */
7336 case '.':
7337 strcat (intel_parser.disp, cur_token.str);
7338 intel_match_token (cur_token.code);
7339
7340 /* Mark as a memory operand only if it's not already known to be an
7341 offset expression. */
7342 if (!intel_parser.in_offset)
7343 intel_parser.is_mem = 1;
7344
7345 return 1;
7346
7347 /* e11 register */
7348 case T_REG:
7349 {
7350 const reg_entry *reg = intel_parser.reg = cur_token.reg;
7351
7352 intel_match_token (T_REG);
7353
7354 /* Check for segment change. */
7355 if (cur_token.code == ':')
7356 {
7357 if (!(reg->reg_type & (SReg2 | SReg3)))
7358 {
7359 as_bad (_("`%s' is not a valid segment register"),
7360 reg->reg_name);
7361 return 0;
7362 }
7363 else if (i.seg[i.mem_operands])
7364 as_warn (_("Extra segment override ignored"));
7365 else
7366 {
7367 if (!intel_parser.in_offset)
7368 intel_parser.is_mem = 1;
7369 switch (reg->reg_num)
7370 {
7371 case 0:
7372 i.seg[i.mem_operands] = &es;
7373 break;
7374 case 1:
7375 i.seg[i.mem_operands] = &cs;
7376 break;
7377 case 2:
7378 i.seg[i.mem_operands] = &ss;
7379 break;
7380 case 3:
7381 i.seg[i.mem_operands] = &ds;
7382 break;
7383 case 4:
7384 i.seg[i.mem_operands] = &fs;
7385 break;
7386 case 5:
7387 i.seg[i.mem_operands] = &gs;
7388 break;
7389 }
7390 }
7391 }
7392
7393 /* Not a segment register. Check for register scaling. */
7394 else if (cur_token.code == '*')
7395 {
7396 if (!intel_parser.in_bracket)
7397 {
7398 as_bad (_("Register scaling only allowed in memory operands"));
7399 return 0;
7400 }
7401
7402 if (reg->reg_type & Reg16) /* Disallow things like [si*1]. */
7403 reg = i386_regtab + REGNAM_AX + 4; /* sp is invalid as index */
7404 else if (i.index_reg)
7405 reg = i386_regtab + REGNAM_EAX + 4; /* esp is invalid as index */
7406
7407 /* What follows must be a valid scale. */
7408 intel_match_token ('*');
7409 i.index_reg = reg;
7410 i.types[this_operand] |= BaseIndex;
7411
7412 /* Set the scale after setting the register (otherwise,
7413 i386_scale will complain) */
7414 if (cur_token.code == '+' || cur_token.code == '-')
7415 {
7416 char *str, sign = cur_token.code;
7417 intel_match_token (cur_token.code);
7418 if (cur_token.code != T_CONST)
7419 {
7420 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
7421 cur_token.str);
7422 return 0;
7423 }
7424 str = (char *) xmalloc (strlen (cur_token.str) + 2);
7425 strcpy (str + 1, cur_token.str);
7426 *str = sign;
7427 if (!i386_scale (str))
7428 return 0;
7429 free (str);
7430 }
7431 else if (!i386_scale (cur_token.str))
7432 return 0;
7433 intel_match_token (cur_token.code);
7434 }
7435
7436 /* No scaling. If this is a memory operand, the register is either a
7437 base register (first occurrence) or an index register (second
7438 occurrence). */
7439 else if (intel_parser.in_bracket)
7440 {
7441
7442 if (!i.base_reg)
7443 i.base_reg = reg;
7444 else if (!i.index_reg)
7445 i.index_reg = reg;
7446 else
7447 {
7448 as_bad (_("Too many register references in memory operand"));
7449 return 0;
7450 }
7451
7452 i.types[this_operand] |= BaseIndex;
7453 }
7454
7455 /* It's neither base nor index. */
7456 else if (!intel_parser.in_offset && !intel_parser.is_mem)
7457 {
7458 i.types[this_operand] |= reg->reg_type & ~BaseIndex;
7459 i.op[this_operand].regs = reg;
7460 i.reg_operands++;
7461 }
7462 else
7463 {
7464 as_bad (_("Invalid use of register"));
7465 return 0;
7466 }
7467
7468 /* Since registers are not part of the displacement string (except
7469 when we're parsing offset operands), we may need to remove any
7470 preceding '+' from the displacement string. */
7471 if (*intel_parser.disp != '\0'
7472 && !intel_parser.in_offset)
7473 {
7474 char *s = intel_parser.disp;
7475 s += strlen (s) - 1;
7476 if (*s == '+')
7477 *s = '\0';
7478 }
7479
7480 return 1;
7481 }
7482
7483 /* e11 BYTE
7484 | WORD
7485 | DWORD
7486 | FWORD
7487 | QWORD
7488 | TBYTE
7489 | OWORD
7490 | XMMWORD */
7491 case T_BYTE:
7492 case T_WORD:
7493 case T_DWORD:
7494 case T_FWORD:
7495 case T_QWORD:
7496 case T_TBYTE:
7497 case T_XMMWORD:
7498 intel_match_token (cur_token.code);
7499
7500 if (cur_token.code == T_PTR)
7501 return 1;
7502
7503 /* It must have been an identifier. */
7504 intel_putback_token ();
7505 cur_token.code = T_ID;
7506 /* FALLTHRU */
7507
7508 /* e11 id
7509 | constant */
7510 case T_ID:
7511 if (!intel_parser.in_offset && intel_parser.is_mem <= 0)
7512 {
7513 symbolS *symbolP;
7514
7515 /* The identifier represents a memory reference only if it's not
7516 preceded by an offset modifier and if it's not an equate. */
7517 symbolP = symbol_find(cur_token.str);
7518 if (!symbolP || S_GET_SEGMENT(symbolP) != absolute_section)
7519 intel_parser.is_mem = 1;
7520 }
7521 /* FALLTHRU */
7522
7523 case T_CONST:
7524 case '-':
7525 case '+':
7526 {
7527 char *save_str, sign = 0;
7528
7529 /* Allow constants that start with `+' or `-'. */
7530 if (cur_token.code == '-' || cur_token.code == '+')
7531 {
7532 sign = cur_token.code;
7533 intel_match_token (cur_token.code);
7534 if (cur_token.code != T_CONST)
7535 {
7536 as_bad (_("Syntax error: Expecting a constant, got `%s'"),
7537 cur_token.str);
7538 return 0;
7539 }
7540 }
7541
7542 save_str = (char *) xmalloc (strlen (cur_token.str) + 2);
7543 strcpy (save_str + !!sign, cur_token.str);
7544 if (sign)
7545 *save_str = sign;
7546
7547 /* Get the next token to check for register scaling. */
7548 intel_match_token (cur_token.code);
7549
7550 /* Check if this constant is a scaling factor for an
7551 index register. */
7552 if (cur_token.code == '*')
7553 {
7554 if (intel_match_token ('*') && cur_token.code == T_REG)
7555 {
7556 const reg_entry *reg = cur_token.reg;
7557
7558 if (!intel_parser.in_bracket)
7559 {
7560 as_bad (_("Register scaling only allowed "
7561 "in memory operands"));
7562 return 0;
7563 }
7564
7565 /* Disallow things like [1*si].
7566 sp and esp are invalid as index. */
7567 if (reg->reg_type & Reg16)
7568 reg = i386_regtab + REGNAM_AX + 4;
7569 else if (i.index_reg)
7570 reg = i386_regtab + REGNAM_EAX + 4;
7571
7572 /* The constant is followed by `* reg', so it must be
7573 a valid scale. */
7574 i.index_reg = reg;
7575 i.types[this_operand] |= BaseIndex;
7576
7577 /* Set the scale after setting the register (otherwise,
7578 i386_scale will complain) */
7579 if (!i386_scale (save_str))
7580 return 0;
7581 intel_match_token (T_REG);
7582
7583 /* Since registers are not part of the displacement
7584 string, we may need to remove any preceding '+' from
7585 the displacement string. */
7586 if (*intel_parser.disp != '\0')
7587 {
7588 char *s = intel_parser.disp;
7589 s += strlen (s) - 1;
7590 if (*s == '+')
7591 *s = '\0';
7592 }
7593
7594 free (save_str);
7595
7596 return 1;
7597 }
7598
7599 /* The constant was not used for register scaling. Since we have
7600 already consumed the token following `*' we now need to put it
7601 back in the stream. */
7602 intel_putback_token ();
7603 }
7604
7605 /* Add the constant to the displacement string. */
7606 strcat (intel_parser.disp, save_str);
7607 free (save_str);
7608
7609 return 1;
7610 }
7611 }
7612
7613 as_bad (_("Unrecognized token '%s'"), cur_token.str);
7614 return 0;
7615 }
7616
7617 /* Match the given token against cur_token. If they match, read the next
7618 token from the operand string. */
7619 static int
7620 intel_match_token (int code)
7621 {
7622 if (cur_token.code == code)
7623 {
7624 intel_get_token ();
7625 return 1;
7626 }
7627 else
7628 {
7629 as_bad (_("Unexpected token `%s'"), cur_token.str);
7630 return 0;
7631 }
7632 }
7633
7634 /* Read a new token from intel_parser.op_string and store it in cur_token. */
7635 static void
7636 intel_get_token (void)
7637 {
7638 char *end_op;
7639 const reg_entry *reg;
7640 struct intel_token new_token;
7641
7642 new_token.code = T_NIL;
7643 new_token.reg = NULL;
7644 new_token.str = NULL;
7645
7646 /* Free the memory allocated to the previous token and move
7647 cur_token to prev_token. */
7648 if (prev_token.str)
7649 free (prev_token.str);
7650
7651 prev_token = cur_token;
7652
7653 /* Skip whitespace. */
7654 while (is_space_char (*intel_parser.op_string))
7655 intel_parser.op_string++;
7656
7657 /* Return an empty token if we find nothing else on the line. */
7658 if (*intel_parser.op_string == '\0')
7659 {
7660 cur_token = new_token;
7661 return;
7662 }
7663
7664 /* The new token cannot be larger than the remainder of the operand
7665 string. */
7666 new_token.str = (char *) xmalloc (strlen (intel_parser.op_string) + 1);
7667 new_token.str[0] = '\0';
7668
7669 if (strchr ("0123456789", *intel_parser.op_string))
7670 {
7671 char *p = new_token.str;
7672 char *q = intel_parser.op_string;
7673 new_token.code = T_CONST;
7674
7675 /* Allow any kind of identifier char to encompass floating point and
7676 hexadecimal numbers. */
7677 while (is_identifier_char (*q))
7678 *p++ = *q++;
7679 *p = '\0';
7680
7681 /* Recognize special symbol names [0-9][bf]. */
7682 if (strlen (intel_parser.op_string) == 2
7683 && (intel_parser.op_string[1] == 'b'
7684 || intel_parser.op_string[1] == 'f'))
7685 new_token.code = T_ID;
7686 }
7687
7688 else if ((reg = parse_register (intel_parser.op_string, &end_op)) != NULL)
7689 {
7690 size_t len = end_op - intel_parser.op_string;
7691
7692 new_token.code = T_REG;
7693 new_token.reg = reg;
7694
7695 memcpy (new_token.str, intel_parser.op_string, len);
7696 new_token.str[len] = '\0';
7697 }
7698
7699 else if (is_identifier_char (*intel_parser.op_string))
7700 {
7701 char *p = new_token.str;
7702 char *q = intel_parser.op_string;
7703
7704 /* A '.' or '$' followed by an identifier char is an identifier.
7705 Otherwise, it's operator '.' followed by an expression. */
7706 if ((*q == '.' || *q == '$') && !is_identifier_char (*(q + 1)))
7707 {
7708 new_token.code = '.';
7709 new_token.str[0] = '.';
7710 new_token.str[1] = '\0';
7711 }
7712 else
7713 {
7714 while (is_identifier_char (*q) || *q == '@')
7715 *p++ = *q++;
7716 *p = '\0';
7717
7718 if (strcasecmp (new_token.str, "NOT") == 0)
7719 new_token.code = '~';
7720
7721 else if (strcasecmp (new_token.str, "MOD") == 0)
7722 new_token.code = '%';
7723
7724 else if (strcasecmp (new_token.str, "AND") == 0)
7725 new_token.code = '&';
7726
7727 else if (strcasecmp (new_token.str, "OR") == 0)
7728 new_token.code = '|';
7729
7730 else if (strcasecmp (new_token.str, "XOR") == 0)
7731 new_token.code = '^';
7732
7733 else if (strcasecmp (new_token.str, "SHL") == 0)
7734 new_token.code = T_SHL;
7735
7736 else if (strcasecmp (new_token.str, "SHR") == 0)
7737 new_token.code = T_SHR;
7738
7739 else if (strcasecmp (new_token.str, "BYTE") == 0)
7740 new_token.code = T_BYTE;
7741
7742 else if (strcasecmp (new_token.str, "WORD") == 0)
7743 new_token.code = T_WORD;
7744
7745 else if (strcasecmp (new_token.str, "DWORD") == 0)
7746 new_token.code = T_DWORD;
7747
7748 else if (strcasecmp (new_token.str, "FWORD") == 0)
7749 new_token.code = T_FWORD;
7750
7751 else if (strcasecmp (new_token.str, "QWORD") == 0)
7752 new_token.code = T_QWORD;
7753
7754 else if (strcasecmp (new_token.str, "TBYTE") == 0
7755 /* XXX remove (gcc still uses it) */
7756 || strcasecmp (new_token.str, "XWORD") == 0)
7757 new_token.code = T_TBYTE;
7758
7759 else if (strcasecmp (new_token.str, "XMMWORD") == 0
7760 || strcasecmp (new_token.str, "OWORD") == 0)
7761 new_token.code = T_XMMWORD;
7762
7763 else if (strcasecmp (new_token.str, "PTR") == 0)
7764 new_token.code = T_PTR;
7765
7766 else if (strcasecmp (new_token.str, "SHORT") == 0)
7767 new_token.code = T_SHORT;
7768
7769 else if (strcasecmp (new_token.str, "OFFSET") == 0)
7770 {
7771 new_token.code = T_OFFSET;
7772
7773 /* ??? This is not mentioned in the MASM grammar but gcc
7774 makes use of it with -mintel-syntax. OFFSET may be
7775 followed by FLAT: */
7776 if (strncasecmp (q, " FLAT:", 6) == 0)
7777 strcat (new_token.str, " FLAT:");
7778 }
7779
7780 /* ??? This is not mentioned in the MASM grammar. */
7781 else if (strcasecmp (new_token.str, "FLAT") == 0)
7782 {
7783 new_token.code = T_OFFSET;
7784 if (*q == ':')
7785 strcat (new_token.str, ":");
7786 else
7787 as_bad (_("`:' expected"));
7788 }
7789
7790 else
7791 new_token.code = T_ID;
7792 }
7793 }
7794
7795 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
7796 {
7797 new_token.code = *intel_parser.op_string;
7798 new_token.str[0] = *intel_parser.op_string;
7799 new_token.str[1] = '\0';
7800 }
7801
7802 else if (strchr ("<>", *intel_parser.op_string)
7803 && *intel_parser.op_string == *(intel_parser.op_string + 1))
7804 {
7805 new_token.code = *intel_parser.op_string == '<' ? T_SHL : T_SHR;
7806 new_token.str[0] = *intel_parser.op_string;
7807 new_token.str[1] = *intel_parser.op_string;
7808 new_token.str[2] = '\0';
7809 }
7810
7811 else
7812 as_bad (_("Unrecognized token `%s'"), intel_parser.op_string);
7813
7814 intel_parser.op_string += strlen (new_token.str);
7815 cur_token = new_token;
7816 }
7817
7818 /* Put cur_token back into the token stream and make cur_token point to
7819 prev_token. */
7820 static void
7821 intel_putback_token (void)
7822 {
7823 if (cur_token.code != T_NIL)
7824 {
7825 intel_parser.op_string -= strlen (cur_token.str);
7826 free (cur_token.str);
7827 }
7828 cur_token = prev_token;
7829
7830 /* Forget prev_token. */
7831 prev_token.code = T_NIL;
7832 prev_token.reg = NULL;
7833 prev_token.str = NULL;
7834 }
7835
7836 int
7837 tc_x86_regname_to_dw2regnum (char *regname)
7838 {
7839 unsigned int regnum;
7840 unsigned int regnames_count;
7841 static const char *const regnames_32[] =
7842 {
7843 "eax", "ecx", "edx", "ebx",
7844 "esp", "ebp", "esi", "edi",
7845 "eip", "eflags", NULL,
7846 "st0", "st1", "st2", "st3",
7847 "st4", "st5", "st6", "st7",
7848 NULL, NULL,
7849 "xmm0", "xmm1", "xmm2", "xmm3",
7850 "xmm4", "xmm5", "xmm6", "xmm7",
7851 "mm0", "mm1", "mm2", "mm3",
7852 "mm4", "mm5", "mm6", "mm7",
7853 "fcw", "fsw", "mxcsr",
7854 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
7855 "tr", "ldtr"
7856 };
7857 static const char *const regnames_64[] =
7858 {
7859 "rax", "rdx", "rcx", "rbx",
7860 "rsi", "rdi", "rbp", "rsp",
7861 "r8", "r9", "r10", "r11",
7862 "r12", "r13", "r14", "r15",
7863 "rip",
7864 "xmm0", "xmm1", "xmm2", "xmm3",
7865 "xmm4", "xmm5", "xmm6", "xmm7",
7866 "xmm8", "xmm9", "xmm10", "xmm11",
7867 "xmm12", "xmm13", "xmm14", "xmm15",
7868 "st0", "st1", "st2", "st3",
7869 "st4", "st5", "st6", "st7",
7870 "mm0", "mm1", "mm2", "mm3",
7871 "mm4", "mm5", "mm6", "mm7",
7872 "rflags",
7873 "es", "cs", "ss", "ds", "fs", "gs", NULL, NULL,
7874 "fs.base", "gs.base", NULL, NULL,
7875 "tr", "ldtr",
7876 "mxcsr", "fcw", "fsw"
7877 };
7878 const char *const *regnames;
7879
7880 if (flag_code == CODE_64BIT)
7881 {
7882 regnames = regnames_64;
7883 regnames_count = ARRAY_SIZE (regnames_64);
7884 }
7885 else
7886 {
7887 regnames = regnames_32;
7888 regnames_count = ARRAY_SIZE (regnames_32);
7889 }
7890
7891 for (regnum = 0; regnum < regnames_count; regnum++)
7892 if (regnames[regnum] != NULL
7893 && strcmp (regname, regnames[regnum]) == 0)
7894 return regnum;
7895
7896 return -1;
7897 }
7898
7899 void
7900 tc_x86_frame_initial_instructions (void)
7901 {
7902 static unsigned int sp_regno;
7903
7904 if (!sp_regno)
7905 sp_regno = tc_x86_regname_to_dw2regnum (flag_code == CODE_64BIT
7906 ? "rsp" : "esp");
7907
7908 cfi_add_CFA_def_cfa (sp_regno, -x86_cie_data_alignment);
7909 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
7910 }
7911
7912 int
7913 i386_elf_section_type (const char *str, size_t len)
7914 {
7915 if (flag_code == CODE_64BIT
7916 && len == sizeof ("unwind") - 1
7917 && strncmp (str, "unwind", 6) == 0)
7918 return SHT_X86_64_UNWIND;
7919
7920 return -1;
7921 }
7922
7923 #ifdef TE_PE
7924 void
7925 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
7926 {
7927 expressionS expr;
7928
7929 expr.X_op = O_secrel;
7930 expr.X_add_symbol = symbol;
7931 expr.X_add_number = 0;
7932 emit_expr (&expr, size);
7933 }
7934 #endif
7935
7936 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7937 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
7938
7939 int
7940 x86_64_section_letter (int letter, char **ptr_msg)
7941 {
7942 if (flag_code == CODE_64BIT)
7943 {
7944 if (letter == 'l')
7945 return SHF_X86_64_LARGE;
7946
7947 *ptr_msg = _("Bad .section directive: want a,l,w,x,M,S,G,T in string");
7948 }
7949 else
7950 *ptr_msg = _("Bad .section directive: want a,w,x,M,S,G,T in string");
7951 return -1;
7952 }
7953
7954 int
7955 x86_64_section_word (char *str, size_t len)
7956 {
7957 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
7958 return SHF_X86_64_LARGE;
7959
7960 return -1;
7961 }
7962
7963 static void
7964 handle_large_common (int small ATTRIBUTE_UNUSED)
7965 {
7966 if (flag_code != CODE_64BIT)
7967 {
7968 s_comm_internal (0, elf_common_parse);
7969 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
7970 }
7971 else
7972 {
7973 static segT lbss_section;
7974 asection *saved_com_section_ptr = elf_com_section_ptr;
7975 asection *saved_bss_section = bss_section;
7976
7977 if (lbss_section == NULL)
7978 {
7979 flagword applicable;
7980 segT seg = now_seg;
7981 subsegT subseg = now_subseg;
7982
7983 /* The .lbss section is for local .largecomm symbols. */
7984 lbss_section = subseg_new (".lbss", 0);
7985 applicable = bfd_applicable_section_flags (stdoutput);
7986 bfd_set_section_flags (stdoutput, lbss_section,
7987 applicable & SEC_ALLOC);
7988 seg_info (lbss_section)->bss = 1;
7989
7990 subseg_set (seg, subseg);
7991 }
7992
7993 elf_com_section_ptr = &_bfd_elf_large_com_section;
7994 bss_section = lbss_section;
7995
7996 s_comm_internal (0, elf_common_parse);
7997
7998 elf_com_section_ptr = saved_com_section_ptr;
7999 bss_section = saved_bss_section;
8000 }
8001 }
8002 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.185168 seconds and 5 git commands to generate.