x86: fold RegEip/RegRip and RegEiz/RegRiz
[deliverable/binutils-gdb.git] / gas / config / tc-i386.c
1 /* tc-i386.c -- Assemble code for the Intel 80386
2 Copyright (C) 1989-2018 Free Software Foundation, Inc.
3
4 This file is part of GAS, the GNU Assembler.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* Intel 80386 machine specific gas.
22 Written by Eliot Dresselhaus (eliot@mgm.mit.edu).
23 x86_64 support by Jan Hubicka (jh@suse.cz)
24 VIA PadLock support by Michal Ludvig (mludvig@suse.cz)
25 Bugs & suggestions are completely welcome. This is free software.
26 Please help us make it better. */
27
28 #include "as.h"
29 #include "safe-ctype.h"
30 #include "subsegs.h"
31 #include "dwarf2dbg.h"
32 #include "dw2gencfi.h"
33 #include "elf/x86-64.h"
34 #include "opcodes/i386-init.h"
35
36 #ifndef REGISTER_WARNINGS
37 #define REGISTER_WARNINGS 1
38 #endif
39
40 #ifndef INFER_ADDR_PREFIX
41 #define INFER_ADDR_PREFIX 1
42 #endif
43
44 #ifndef DEFAULT_ARCH
45 #define DEFAULT_ARCH "i386"
46 #endif
47
48 #ifndef INLINE
49 #if __GNUC__ >= 2
50 #define INLINE __inline__
51 #else
52 #define INLINE
53 #endif
54 #endif
55
56 /* Prefixes will be emitted in the order defined below.
57 WAIT_PREFIX must be the first prefix since FWAIT is really is an
58 instruction, and so must come before any prefixes.
59 The preferred prefix order is SEG_PREFIX, ADDR_PREFIX, DATA_PREFIX,
60 REP_PREFIX/HLE_PREFIX, LOCK_PREFIX. */
61 #define WAIT_PREFIX 0
62 #define SEG_PREFIX 1
63 #define ADDR_PREFIX 2
64 #define DATA_PREFIX 3
65 #define REP_PREFIX 4
66 #define HLE_PREFIX REP_PREFIX
67 #define BND_PREFIX REP_PREFIX
68 #define LOCK_PREFIX 5
69 #define REX_PREFIX 6 /* must come last. */
70 #define MAX_PREFIXES 7 /* max prefixes per opcode */
71
72 /* we define the syntax here (modulo base,index,scale syntax) */
73 #define REGISTER_PREFIX '%'
74 #define IMMEDIATE_PREFIX '$'
75 #define ABSOLUTE_PREFIX '*'
76
77 /* these are the instruction mnemonic suffixes in AT&T syntax or
78 memory operand size in Intel syntax. */
79 #define WORD_MNEM_SUFFIX 'w'
80 #define BYTE_MNEM_SUFFIX 'b'
81 #define SHORT_MNEM_SUFFIX 's'
82 #define LONG_MNEM_SUFFIX 'l'
83 #define QWORD_MNEM_SUFFIX 'q'
84 /* Intel Syntax. Use a non-ascii letter since since it never appears
85 in instructions. */
86 #define LONG_DOUBLE_MNEM_SUFFIX '\1'
87
88 #define END_OF_INSN '\0'
89
90 /*
91 'templates' is for grouping together 'template' structures for opcodes
92 of the same name. This is only used for storing the insns in the grand
93 ole hash table of insns.
94 The templates themselves start at START and range up to (but not including)
95 END.
96 */
97 typedef struct
98 {
99 const insn_template *start;
100 const insn_template *end;
101 }
102 templates;
103
104 /* 386 operand encoding bytes: see 386 book for details of this. */
105 typedef struct
106 {
107 unsigned int regmem; /* codes register or memory operand */
108 unsigned int reg; /* codes register operand (or extended opcode) */
109 unsigned int mode; /* how to interpret regmem & reg */
110 }
111 modrm_byte;
112
113 /* x86-64 extension prefix. */
114 typedef int rex_byte;
115
116 /* 386 opcode byte to code indirect addressing. */
117 typedef struct
118 {
119 unsigned base;
120 unsigned index;
121 unsigned scale;
122 }
123 sib_byte;
124
125 /* x86 arch names, types and features */
126 typedef struct
127 {
128 const char *name; /* arch name */
129 unsigned int len; /* arch string length */
130 enum processor_type type; /* arch type */
131 i386_cpu_flags flags; /* cpu feature flags */
132 unsigned int skip; /* show_arch should skip this. */
133 }
134 arch_entry;
135
136 /* Used to turn off indicated flags. */
137 typedef struct
138 {
139 const char *name; /* arch name */
140 unsigned int len; /* arch string length */
141 i386_cpu_flags flags; /* cpu feature flags */
142 }
143 noarch_entry;
144
145 static void update_code_flag (int, int);
146 static void set_code_flag (int);
147 static void set_16bit_gcc_code_flag (int);
148 static void set_intel_syntax (int);
149 static void set_intel_mnemonic (int);
150 static void set_allow_index_reg (int);
151 static void set_check (int);
152 static void set_cpu_arch (int);
153 #ifdef TE_PE
154 static void pe_directive_secrel (int);
155 #endif
156 static void signed_cons (int);
157 static char *output_invalid (int c);
158 static int i386_finalize_immediate (segT, expressionS *, i386_operand_type,
159 const char *);
160 static int i386_finalize_displacement (segT, expressionS *, i386_operand_type,
161 const char *);
162 static int i386_att_operand (char *);
163 static int i386_intel_operand (char *, int);
164 static int i386_intel_simplify (expressionS *);
165 static int i386_intel_parse_name (const char *, expressionS *);
166 static const reg_entry *parse_register (char *, char **);
167 static char *parse_insn (char *, char *);
168 static char *parse_operands (char *, const char *);
169 static void swap_operands (void);
170 static void swap_2_operands (int, int);
171 static void optimize_imm (void);
172 static void optimize_disp (void);
173 static const insn_template *match_template (char);
174 static int check_string (void);
175 static int process_suffix (void);
176 static int check_byte_reg (void);
177 static int check_long_reg (void);
178 static int check_qword_reg (void);
179 static int check_word_reg (void);
180 static int finalize_imm (void);
181 static int process_operands (void);
182 static const seg_entry *build_modrm_byte (void);
183 static void output_insn (void);
184 static void output_imm (fragS *, offsetT);
185 static void output_disp (fragS *, offsetT);
186 #ifndef I386COFF
187 static void s_bss (int);
188 #endif
189 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
190 static void handle_large_common (int small ATTRIBUTE_UNUSED);
191 #endif
192
193 static const char *default_arch = DEFAULT_ARCH;
194
195 /* This struct describes rounding control and SAE in the instruction. */
196 struct RC_Operation
197 {
198 enum rc_type
199 {
200 rne = 0,
201 rd,
202 ru,
203 rz,
204 saeonly
205 } type;
206 int operand;
207 };
208
209 static struct RC_Operation rc_op;
210
211 /* The struct describes masking, applied to OPERAND in the instruction.
212 MASK is a pointer to the corresponding mask register. ZEROING tells
213 whether merging or zeroing mask is used. */
214 struct Mask_Operation
215 {
216 const reg_entry *mask;
217 unsigned int zeroing;
218 /* The operand where this operation is associated. */
219 int operand;
220 };
221
222 static struct Mask_Operation mask_op;
223
224 /* The struct describes broadcasting, applied to OPERAND. FACTOR is
225 broadcast factor. */
226 struct Broadcast_Operation
227 {
228 /* Type of broadcast: {1to2}, {1to4}, {1to8}, or {1to16}. */
229 int type;
230
231 /* Index of broadcasted operand. */
232 int operand;
233
234 /* Number of bytes to broadcast. */
235 int bytes;
236 };
237
238 static struct Broadcast_Operation broadcast_op;
239
240 /* VEX prefix. */
241 typedef struct
242 {
243 /* VEX prefix is either 2 byte or 3 byte. EVEX is 4 byte. */
244 unsigned char bytes[4];
245 unsigned int length;
246 /* Destination or source register specifier. */
247 const reg_entry *register_specifier;
248 } vex_prefix;
249
250 /* 'md_assemble ()' gathers together information and puts it into a
251 i386_insn. */
252
253 union i386_op
254 {
255 expressionS *disps;
256 expressionS *imms;
257 const reg_entry *regs;
258 };
259
260 enum i386_error
261 {
262 operand_size_mismatch,
263 operand_type_mismatch,
264 register_type_mismatch,
265 number_of_operands_mismatch,
266 invalid_instruction_suffix,
267 bad_imm4,
268 unsupported_with_intel_mnemonic,
269 unsupported_syntax,
270 unsupported,
271 invalid_vsib_address,
272 invalid_vector_register_set,
273 unsupported_vector_index_register,
274 unsupported_broadcast,
275 broadcast_needed,
276 unsupported_masking,
277 mask_not_on_destination,
278 no_default_mask,
279 unsupported_rc_sae,
280 rc_sae_operand_not_last_imm,
281 invalid_register_operand,
282 };
283
284 struct _i386_insn
285 {
286 /* TM holds the template for the insn were currently assembling. */
287 insn_template tm;
288
289 /* SUFFIX holds the instruction size suffix for byte, word, dword
290 or qword, if given. */
291 char suffix;
292
293 /* OPERANDS gives the number of given operands. */
294 unsigned int operands;
295
296 /* REG_OPERANDS, DISP_OPERANDS, MEM_OPERANDS, IMM_OPERANDS give the number
297 of given register, displacement, memory operands and immediate
298 operands. */
299 unsigned int reg_operands, disp_operands, mem_operands, imm_operands;
300
301 /* TYPES [i] is the type (see above #defines) which tells us how to
302 use OP[i] for the corresponding operand. */
303 i386_operand_type types[MAX_OPERANDS];
304
305 /* Displacement expression, immediate expression, or register for each
306 operand. */
307 union i386_op op[MAX_OPERANDS];
308
309 /* Flags for operands. */
310 unsigned int flags[MAX_OPERANDS];
311 #define Operand_PCrel 1
312 #define Operand_Mem 2
313
314 /* Relocation type for operand */
315 enum bfd_reloc_code_real reloc[MAX_OPERANDS];
316
317 /* BASE_REG, INDEX_REG, and LOG2_SCALE_FACTOR are used to encode
318 the base index byte below. */
319 const reg_entry *base_reg;
320 const reg_entry *index_reg;
321 unsigned int log2_scale_factor;
322
323 /* SEG gives the seg_entries of this insn. They are zero unless
324 explicit segment overrides are given. */
325 const seg_entry *seg[2];
326
327 /* Copied first memory operand string, for re-checking. */
328 char *memop1_string;
329
330 /* PREFIX holds all the given prefix opcodes (usually null).
331 PREFIXES is the number of prefix opcodes. */
332 unsigned int prefixes;
333 unsigned char prefix[MAX_PREFIXES];
334
335 /* RM and SIB are the modrm byte and the sib byte where the
336 addressing modes of this insn are encoded. */
337 modrm_byte rm;
338 rex_byte rex;
339 rex_byte vrex;
340 sib_byte sib;
341 vex_prefix vex;
342
343 /* Masking attributes. */
344 struct Mask_Operation *mask;
345
346 /* Rounding control and SAE attributes. */
347 struct RC_Operation *rounding;
348
349 /* Broadcasting attributes. */
350 struct Broadcast_Operation *broadcast;
351
352 /* Compressed disp8*N attribute. */
353 unsigned int memshift;
354
355 /* Prefer load or store in encoding. */
356 enum
357 {
358 dir_encoding_default = 0,
359 dir_encoding_load,
360 dir_encoding_store
361 } dir_encoding;
362
363 /* Prefer 8bit or 32bit displacement in encoding. */
364 enum
365 {
366 disp_encoding_default = 0,
367 disp_encoding_8bit,
368 disp_encoding_32bit
369 } disp_encoding;
370
371 /* Prefer the REX byte in encoding. */
372 bfd_boolean rex_encoding;
373
374 /* Disable instruction size optimization. */
375 bfd_boolean no_optimize;
376
377 /* How to encode vector instructions. */
378 enum
379 {
380 vex_encoding_default = 0,
381 vex_encoding_vex2,
382 vex_encoding_vex3,
383 vex_encoding_evex
384 } vec_encoding;
385
386 /* REP prefix. */
387 const char *rep_prefix;
388
389 /* HLE prefix. */
390 const char *hle_prefix;
391
392 /* Have BND prefix. */
393 const char *bnd_prefix;
394
395 /* Have NOTRACK prefix. */
396 const char *notrack_prefix;
397
398 /* Error message. */
399 enum i386_error error;
400 };
401
402 typedef struct _i386_insn i386_insn;
403
404 /* Link RC type with corresponding string, that'll be looked for in
405 asm. */
406 struct RC_name
407 {
408 enum rc_type type;
409 const char *name;
410 unsigned int len;
411 };
412
413 static const struct RC_name RC_NamesTable[] =
414 {
415 { rne, STRING_COMMA_LEN ("rn-sae") },
416 { rd, STRING_COMMA_LEN ("rd-sae") },
417 { ru, STRING_COMMA_LEN ("ru-sae") },
418 { rz, STRING_COMMA_LEN ("rz-sae") },
419 { saeonly, STRING_COMMA_LEN ("sae") },
420 };
421
422 /* List of chars besides those in app.c:symbol_chars that can start an
423 operand. Used to prevent the scrubber eating vital white-space. */
424 const char extra_symbol_chars[] = "*%-([{}"
425 #ifdef LEX_AT
426 "@"
427 #endif
428 #ifdef LEX_QM
429 "?"
430 #endif
431 ;
432
433 #if (defined (TE_I386AIX) \
434 || ((defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)) \
435 && !defined (TE_GNU) \
436 && !defined (TE_LINUX) \
437 && !defined (TE_NACL) \
438 && !defined (TE_FreeBSD) \
439 && !defined (TE_DragonFly) \
440 && !defined (TE_NetBSD)))
441 /* This array holds the chars that always start a comment. If the
442 pre-processor is disabled, these aren't very useful. The option
443 --divide will remove '/' from this list. */
444 const char *i386_comment_chars = "#/";
445 #define SVR4_COMMENT_CHARS 1
446 #define PREFIX_SEPARATOR '\\'
447
448 #else
449 const char *i386_comment_chars = "#";
450 #define PREFIX_SEPARATOR '/'
451 #endif
452
453 /* This array holds the chars that only start a comment at the beginning of
454 a line. If the line seems to have the form '# 123 filename'
455 .line and .file directives will appear in the pre-processed output.
456 Note that input_file.c hand checks for '#' at the beginning of the
457 first line of the input file. This is because the compiler outputs
458 #NO_APP at the beginning of its output.
459 Also note that comments started like this one will always work if
460 '/' isn't otherwise defined. */
461 const char line_comment_chars[] = "#/";
462
463 const char line_separator_chars[] = ";";
464
465 /* Chars that can be used to separate mant from exp in floating point
466 nums. */
467 const char EXP_CHARS[] = "eE";
468
469 /* Chars that mean this number is a floating point constant
470 As in 0f12.456
471 or 0d1.2345e12. */
472 const char FLT_CHARS[] = "fFdDxX";
473
474 /* Tables for lexical analysis. */
475 static char mnemonic_chars[256];
476 static char register_chars[256];
477 static char operand_chars[256];
478 static char identifier_chars[256];
479 static char digit_chars[256];
480
481 /* Lexical macros. */
482 #define is_mnemonic_char(x) (mnemonic_chars[(unsigned char) x])
483 #define is_operand_char(x) (operand_chars[(unsigned char) x])
484 #define is_register_char(x) (register_chars[(unsigned char) x])
485 #define is_space_char(x) ((x) == ' ')
486 #define is_identifier_char(x) (identifier_chars[(unsigned char) x])
487 #define is_digit_char(x) (digit_chars[(unsigned char) x])
488
489 /* All non-digit non-letter characters that may occur in an operand. */
490 static char operand_special_chars[] = "%$-+(,)*._~/<>|&^!:[@]";
491
492 /* md_assemble() always leaves the strings it's passed unaltered. To
493 effect this we maintain a stack of saved characters that we've smashed
494 with '\0's (indicating end of strings for various sub-fields of the
495 assembler instruction). */
496 static char save_stack[32];
497 static char *save_stack_p;
498 #define END_STRING_AND_SAVE(s) \
499 do { *save_stack_p++ = *(s); *(s) = '\0'; } while (0)
500 #define RESTORE_END_STRING(s) \
501 do { *(s) = *--save_stack_p; } while (0)
502
503 /* The instruction we're assembling. */
504 static i386_insn i;
505
506 /* Possible templates for current insn. */
507 static const templates *current_templates;
508
509 /* Per instruction expressionS buffers: max displacements & immediates. */
510 static expressionS disp_expressions[MAX_MEMORY_OPERANDS];
511 static expressionS im_expressions[MAX_IMMEDIATE_OPERANDS];
512
513 /* Current operand we are working on. */
514 static int this_operand = -1;
515
516 /* We support four different modes. FLAG_CODE variable is used to distinguish
517 these. */
518
519 enum flag_code {
520 CODE_32BIT,
521 CODE_16BIT,
522 CODE_64BIT };
523
524 static enum flag_code flag_code;
525 static unsigned int object_64bit;
526 static unsigned int disallow_64bit_reloc;
527 static int use_rela_relocations = 0;
528
529 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
530 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
531 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
532
533 /* The ELF ABI to use. */
534 enum x86_elf_abi
535 {
536 I386_ABI,
537 X86_64_ABI,
538 X86_64_X32_ABI
539 };
540
541 static enum x86_elf_abi x86_elf_abi = I386_ABI;
542 #endif
543
544 #if defined (TE_PE) || defined (TE_PEP)
545 /* Use big object file format. */
546 static int use_big_obj = 0;
547 #endif
548
549 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
550 /* 1 if generating code for a shared library. */
551 static int shared = 0;
552 #endif
553
554 /* 1 for intel syntax,
555 0 if att syntax. */
556 static int intel_syntax = 0;
557
558 /* 1 for Intel64 ISA,
559 0 if AMD64 ISA. */
560 static int intel64;
561
562 /* 1 for intel mnemonic,
563 0 if att mnemonic. */
564 static int intel_mnemonic = !SYSV386_COMPAT;
565
566 /* 1 if pseudo registers are permitted. */
567 static int allow_pseudo_reg = 0;
568
569 /* 1 if register prefix % not required. */
570 static int allow_naked_reg = 0;
571
572 /* 1 if the assembler should add BND prefix for all control-transferring
573 instructions supporting it, even if this prefix wasn't specified
574 explicitly. */
575 static int add_bnd_prefix = 0;
576
577 /* 1 if pseudo index register, eiz/riz, is allowed . */
578 static int allow_index_reg = 0;
579
580 /* 1 if the assembler should ignore LOCK prefix, even if it was
581 specified explicitly. */
582 static int omit_lock_prefix = 0;
583
584 /* 1 if the assembler should encode lfence, mfence, and sfence as
585 "lock addl $0, (%{re}sp)". */
586 static int avoid_fence = 0;
587
588 /* 1 if the assembler should generate relax relocations. */
589
590 static int generate_relax_relocations
591 = DEFAULT_GENERATE_X86_RELAX_RELOCATIONS;
592
593 static enum check_kind
594 {
595 check_none = 0,
596 check_warning,
597 check_error
598 }
599 sse_check, operand_check = check_warning;
600
601 /* Optimization:
602 1. Clear the REX_W bit with register operand if possible.
603 2. Above plus use 128bit vector instruction to clear the full vector
604 register.
605 */
606 static int optimize = 0;
607
608 /* Optimization:
609 1. Clear the REX_W bit with register operand if possible.
610 2. Above plus use 128bit vector instruction to clear the full vector
611 register.
612 3. Above plus optimize "test{q,l,w} $imm8,%r{64,32,16}" to
613 "testb $imm7,%r8".
614 */
615 static int optimize_for_space = 0;
616
617 /* Register prefix used for error message. */
618 static const char *register_prefix = "%";
619
620 /* Used in 16 bit gcc mode to add an l suffix to call, ret, enter,
621 leave, push, and pop instructions so that gcc has the same stack
622 frame as in 32 bit mode. */
623 static char stackop_size = '\0';
624
625 /* Non-zero to optimize code alignment. */
626 int optimize_align_code = 1;
627
628 /* Non-zero to quieten some warnings. */
629 static int quiet_warnings = 0;
630
631 /* CPU name. */
632 static const char *cpu_arch_name = NULL;
633 static char *cpu_sub_arch_name = NULL;
634
635 /* CPU feature flags. */
636 static i386_cpu_flags cpu_arch_flags = CPU_UNKNOWN_FLAGS;
637
638 /* If we have selected a cpu we are generating instructions for. */
639 static int cpu_arch_tune_set = 0;
640
641 /* Cpu we are generating instructions for. */
642 enum processor_type cpu_arch_tune = PROCESSOR_UNKNOWN;
643
644 /* CPU feature flags of cpu we are generating instructions for. */
645 static i386_cpu_flags cpu_arch_tune_flags;
646
647 /* CPU instruction set architecture used. */
648 enum processor_type cpu_arch_isa = PROCESSOR_UNKNOWN;
649
650 /* CPU feature flags of instruction set architecture used. */
651 i386_cpu_flags cpu_arch_isa_flags;
652
653 /* If set, conditional jumps are not automatically promoted to handle
654 larger than a byte offset. */
655 static unsigned int no_cond_jump_promotion = 0;
656
657 /* Encode SSE instructions with VEX prefix. */
658 static unsigned int sse2avx;
659
660 /* Encode scalar AVX instructions with specific vector length. */
661 static enum
662 {
663 vex128 = 0,
664 vex256
665 } avxscalar;
666
667 /* Encode scalar EVEX LIG instructions with specific vector length. */
668 static enum
669 {
670 evexl128 = 0,
671 evexl256,
672 evexl512
673 } evexlig;
674
675 /* Encode EVEX WIG instructions with specific evex.w. */
676 static enum
677 {
678 evexw0 = 0,
679 evexw1
680 } evexwig;
681
682 /* Value to encode in EVEX RC bits, for SAE-only instructions. */
683 static enum rc_type evexrcig = rne;
684
685 /* Pre-defined "_GLOBAL_OFFSET_TABLE_". */
686 static symbolS *GOT_symbol;
687
688 /* The dwarf2 return column, adjusted for 32 or 64 bit. */
689 unsigned int x86_dwarf2_return_column;
690
691 /* The dwarf2 data alignment, adjusted for 32 or 64 bit. */
692 int x86_cie_data_alignment;
693
694 /* Interface to relax_segment.
695 There are 3 major relax states for 386 jump insns because the
696 different types of jumps add different sizes to frags when we're
697 figuring out what sort of jump to choose to reach a given label. */
698
699 /* Types. */
700 #define UNCOND_JUMP 0
701 #define COND_JUMP 1
702 #define COND_JUMP86 2
703
704 /* Sizes. */
705 #define CODE16 1
706 #define SMALL 0
707 #define SMALL16 (SMALL | CODE16)
708 #define BIG 2
709 #define BIG16 (BIG | CODE16)
710
711 #ifndef INLINE
712 #ifdef __GNUC__
713 #define INLINE __inline__
714 #else
715 #define INLINE
716 #endif
717 #endif
718
719 #define ENCODE_RELAX_STATE(type, size) \
720 ((relax_substateT) (((type) << 2) | (size)))
721 #define TYPE_FROM_RELAX_STATE(s) \
722 ((s) >> 2)
723 #define DISP_SIZE_FROM_RELAX_STATE(s) \
724 ((((s) & 3) == BIG ? 4 : (((s) & 3) == BIG16 ? 2 : 1)))
725
726 /* This table is used by relax_frag to promote short jumps to long
727 ones where necessary. SMALL (short) jumps may be promoted to BIG
728 (32 bit long) ones, and SMALL16 jumps to BIG16 (16 bit long). We
729 don't allow a short jump in a 32 bit code segment to be promoted to
730 a 16 bit offset jump because it's slower (requires data size
731 prefix), and doesn't work, unless the destination is in the bottom
732 64k of the code segment (The top 16 bits of eip are zeroed). */
733
734 const relax_typeS md_relax_table[] =
735 {
736 /* The fields are:
737 1) most positive reach of this state,
738 2) most negative reach of this state,
739 3) how many bytes this mode will have in the variable part of the frag
740 4) which index into the table to try if we can't fit into this one. */
741
742 /* UNCOND_JUMP states. */
743 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG)},
744 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16)},
745 /* dword jmp adds 4 bytes to frag:
746 0 extra opcode bytes, 4 displacement bytes. */
747 {0, 0, 4, 0},
748 /* word jmp adds 2 byte2 to frag:
749 0 extra opcode bytes, 2 displacement bytes. */
750 {0, 0, 2, 0},
751
752 /* COND_JUMP states. */
753 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG)},
754 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP, BIG16)},
755 /* dword conditionals adds 5 bytes to frag:
756 1 extra opcode byte, 4 displacement bytes. */
757 {0, 0, 5, 0},
758 /* word conditionals add 3 bytes to frag:
759 1 extra opcode byte, 2 displacement bytes. */
760 {0, 0, 3, 0},
761
762 /* COND_JUMP86 states. */
763 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG)},
764 {127 + 1, -128 + 1, 1, ENCODE_RELAX_STATE (COND_JUMP86, BIG16)},
765 /* dword conditionals adds 5 bytes to frag:
766 1 extra opcode byte, 4 displacement bytes. */
767 {0, 0, 5, 0},
768 /* word conditionals add 4 bytes to frag:
769 1 displacement byte and a 3 byte long branch insn. */
770 {0, 0, 4, 0}
771 };
772
773 static const arch_entry cpu_arch[] =
774 {
775 /* Do not replace the first two entries - i386_target_format()
776 relies on them being there in this order. */
777 { STRING_COMMA_LEN ("generic32"), PROCESSOR_GENERIC32,
778 CPU_GENERIC32_FLAGS, 0 },
779 { STRING_COMMA_LEN ("generic64"), PROCESSOR_GENERIC64,
780 CPU_GENERIC64_FLAGS, 0 },
781 { STRING_COMMA_LEN ("i8086"), PROCESSOR_UNKNOWN,
782 CPU_NONE_FLAGS, 0 },
783 { STRING_COMMA_LEN ("i186"), PROCESSOR_UNKNOWN,
784 CPU_I186_FLAGS, 0 },
785 { STRING_COMMA_LEN ("i286"), PROCESSOR_UNKNOWN,
786 CPU_I286_FLAGS, 0 },
787 { STRING_COMMA_LEN ("i386"), PROCESSOR_I386,
788 CPU_I386_FLAGS, 0 },
789 { STRING_COMMA_LEN ("i486"), PROCESSOR_I486,
790 CPU_I486_FLAGS, 0 },
791 { STRING_COMMA_LEN ("i586"), PROCESSOR_PENTIUM,
792 CPU_I586_FLAGS, 0 },
793 { STRING_COMMA_LEN ("i686"), PROCESSOR_PENTIUMPRO,
794 CPU_I686_FLAGS, 0 },
795 { STRING_COMMA_LEN ("pentium"), PROCESSOR_PENTIUM,
796 CPU_I586_FLAGS, 0 },
797 { STRING_COMMA_LEN ("pentiumpro"), PROCESSOR_PENTIUMPRO,
798 CPU_PENTIUMPRO_FLAGS, 0 },
799 { STRING_COMMA_LEN ("pentiumii"), PROCESSOR_PENTIUMPRO,
800 CPU_P2_FLAGS, 0 },
801 { STRING_COMMA_LEN ("pentiumiii"),PROCESSOR_PENTIUMPRO,
802 CPU_P3_FLAGS, 0 },
803 { STRING_COMMA_LEN ("pentium4"), PROCESSOR_PENTIUM4,
804 CPU_P4_FLAGS, 0 },
805 { STRING_COMMA_LEN ("prescott"), PROCESSOR_NOCONA,
806 CPU_CORE_FLAGS, 0 },
807 { STRING_COMMA_LEN ("nocona"), PROCESSOR_NOCONA,
808 CPU_NOCONA_FLAGS, 0 },
809 { STRING_COMMA_LEN ("yonah"), PROCESSOR_CORE,
810 CPU_CORE_FLAGS, 1 },
811 { STRING_COMMA_LEN ("core"), PROCESSOR_CORE,
812 CPU_CORE_FLAGS, 0 },
813 { STRING_COMMA_LEN ("merom"), PROCESSOR_CORE2,
814 CPU_CORE2_FLAGS, 1 },
815 { STRING_COMMA_LEN ("core2"), PROCESSOR_CORE2,
816 CPU_CORE2_FLAGS, 0 },
817 { STRING_COMMA_LEN ("corei7"), PROCESSOR_COREI7,
818 CPU_COREI7_FLAGS, 0 },
819 { STRING_COMMA_LEN ("l1om"), PROCESSOR_L1OM,
820 CPU_L1OM_FLAGS, 0 },
821 { STRING_COMMA_LEN ("k1om"), PROCESSOR_K1OM,
822 CPU_K1OM_FLAGS, 0 },
823 { STRING_COMMA_LEN ("iamcu"), PROCESSOR_IAMCU,
824 CPU_IAMCU_FLAGS, 0 },
825 { STRING_COMMA_LEN ("k6"), PROCESSOR_K6,
826 CPU_K6_FLAGS, 0 },
827 { STRING_COMMA_LEN ("k6_2"), PROCESSOR_K6,
828 CPU_K6_2_FLAGS, 0 },
829 { STRING_COMMA_LEN ("athlon"), PROCESSOR_ATHLON,
830 CPU_ATHLON_FLAGS, 0 },
831 { STRING_COMMA_LEN ("sledgehammer"), PROCESSOR_K8,
832 CPU_K8_FLAGS, 1 },
833 { STRING_COMMA_LEN ("opteron"), PROCESSOR_K8,
834 CPU_K8_FLAGS, 0 },
835 { STRING_COMMA_LEN ("k8"), PROCESSOR_K8,
836 CPU_K8_FLAGS, 0 },
837 { STRING_COMMA_LEN ("amdfam10"), PROCESSOR_AMDFAM10,
838 CPU_AMDFAM10_FLAGS, 0 },
839 { STRING_COMMA_LEN ("bdver1"), PROCESSOR_BD,
840 CPU_BDVER1_FLAGS, 0 },
841 { STRING_COMMA_LEN ("bdver2"), PROCESSOR_BD,
842 CPU_BDVER2_FLAGS, 0 },
843 { STRING_COMMA_LEN ("bdver3"), PROCESSOR_BD,
844 CPU_BDVER3_FLAGS, 0 },
845 { STRING_COMMA_LEN ("bdver4"), PROCESSOR_BD,
846 CPU_BDVER4_FLAGS, 0 },
847 { STRING_COMMA_LEN ("znver1"), PROCESSOR_ZNVER,
848 CPU_ZNVER1_FLAGS, 0 },
849 { STRING_COMMA_LEN ("znver2"), PROCESSOR_ZNVER,
850 CPU_ZNVER2_FLAGS, 0 },
851 { STRING_COMMA_LEN ("btver1"), PROCESSOR_BT,
852 CPU_BTVER1_FLAGS, 0 },
853 { STRING_COMMA_LEN ("btver2"), PROCESSOR_BT,
854 CPU_BTVER2_FLAGS, 0 },
855 { STRING_COMMA_LEN (".8087"), PROCESSOR_UNKNOWN,
856 CPU_8087_FLAGS, 0 },
857 { STRING_COMMA_LEN (".287"), PROCESSOR_UNKNOWN,
858 CPU_287_FLAGS, 0 },
859 { STRING_COMMA_LEN (".387"), PROCESSOR_UNKNOWN,
860 CPU_387_FLAGS, 0 },
861 { STRING_COMMA_LEN (".687"), PROCESSOR_UNKNOWN,
862 CPU_687_FLAGS, 0 },
863 { STRING_COMMA_LEN (".mmx"), PROCESSOR_UNKNOWN,
864 CPU_MMX_FLAGS, 0 },
865 { STRING_COMMA_LEN (".sse"), PROCESSOR_UNKNOWN,
866 CPU_SSE_FLAGS, 0 },
867 { STRING_COMMA_LEN (".sse2"), PROCESSOR_UNKNOWN,
868 CPU_SSE2_FLAGS, 0 },
869 { STRING_COMMA_LEN (".sse3"), PROCESSOR_UNKNOWN,
870 CPU_SSE3_FLAGS, 0 },
871 { STRING_COMMA_LEN (".ssse3"), PROCESSOR_UNKNOWN,
872 CPU_SSSE3_FLAGS, 0 },
873 { STRING_COMMA_LEN (".sse4.1"), PROCESSOR_UNKNOWN,
874 CPU_SSE4_1_FLAGS, 0 },
875 { STRING_COMMA_LEN (".sse4.2"), PROCESSOR_UNKNOWN,
876 CPU_SSE4_2_FLAGS, 0 },
877 { STRING_COMMA_LEN (".sse4"), PROCESSOR_UNKNOWN,
878 CPU_SSE4_2_FLAGS, 0 },
879 { STRING_COMMA_LEN (".avx"), PROCESSOR_UNKNOWN,
880 CPU_AVX_FLAGS, 0 },
881 { STRING_COMMA_LEN (".avx2"), PROCESSOR_UNKNOWN,
882 CPU_AVX2_FLAGS, 0 },
883 { STRING_COMMA_LEN (".avx512f"), PROCESSOR_UNKNOWN,
884 CPU_AVX512F_FLAGS, 0 },
885 { STRING_COMMA_LEN (".avx512cd"), PROCESSOR_UNKNOWN,
886 CPU_AVX512CD_FLAGS, 0 },
887 { STRING_COMMA_LEN (".avx512er"), PROCESSOR_UNKNOWN,
888 CPU_AVX512ER_FLAGS, 0 },
889 { STRING_COMMA_LEN (".avx512pf"), PROCESSOR_UNKNOWN,
890 CPU_AVX512PF_FLAGS, 0 },
891 { STRING_COMMA_LEN (".avx512dq"), PROCESSOR_UNKNOWN,
892 CPU_AVX512DQ_FLAGS, 0 },
893 { STRING_COMMA_LEN (".avx512bw"), PROCESSOR_UNKNOWN,
894 CPU_AVX512BW_FLAGS, 0 },
895 { STRING_COMMA_LEN (".avx512vl"), PROCESSOR_UNKNOWN,
896 CPU_AVX512VL_FLAGS, 0 },
897 { STRING_COMMA_LEN (".vmx"), PROCESSOR_UNKNOWN,
898 CPU_VMX_FLAGS, 0 },
899 { STRING_COMMA_LEN (".vmfunc"), PROCESSOR_UNKNOWN,
900 CPU_VMFUNC_FLAGS, 0 },
901 { STRING_COMMA_LEN (".smx"), PROCESSOR_UNKNOWN,
902 CPU_SMX_FLAGS, 0 },
903 { STRING_COMMA_LEN (".xsave"), PROCESSOR_UNKNOWN,
904 CPU_XSAVE_FLAGS, 0 },
905 { STRING_COMMA_LEN (".xsaveopt"), PROCESSOR_UNKNOWN,
906 CPU_XSAVEOPT_FLAGS, 0 },
907 { STRING_COMMA_LEN (".xsavec"), PROCESSOR_UNKNOWN,
908 CPU_XSAVEC_FLAGS, 0 },
909 { STRING_COMMA_LEN (".xsaves"), PROCESSOR_UNKNOWN,
910 CPU_XSAVES_FLAGS, 0 },
911 { STRING_COMMA_LEN (".aes"), PROCESSOR_UNKNOWN,
912 CPU_AES_FLAGS, 0 },
913 { STRING_COMMA_LEN (".pclmul"), PROCESSOR_UNKNOWN,
914 CPU_PCLMUL_FLAGS, 0 },
915 { STRING_COMMA_LEN (".clmul"), PROCESSOR_UNKNOWN,
916 CPU_PCLMUL_FLAGS, 1 },
917 { STRING_COMMA_LEN (".fsgsbase"), PROCESSOR_UNKNOWN,
918 CPU_FSGSBASE_FLAGS, 0 },
919 { STRING_COMMA_LEN (".rdrnd"), PROCESSOR_UNKNOWN,
920 CPU_RDRND_FLAGS, 0 },
921 { STRING_COMMA_LEN (".f16c"), PROCESSOR_UNKNOWN,
922 CPU_F16C_FLAGS, 0 },
923 { STRING_COMMA_LEN (".bmi2"), PROCESSOR_UNKNOWN,
924 CPU_BMI2_FLAGS, 0 },
925 { STRING_COMMA_LEN (".fma"), PROCESSOR_UNKNOWN,
926 CPU_FMA_FLAGS, 0 },
927 { STRING_COMMA_LEN (".fma4"), PROCESSOR_UNKNOWN,
928 CPU_FMA4_FLAGS, 0 },
929 { STRING_COMMA_LEN (".xop"), PROCESSOR_UNKNOWN,
930 CPU_XOP_FLAGS, 0 },
931 { STRING_COMMA_LEN (".lwp"), PROCESSOR_UNKNOWN,
932 CPU_LWP_FLAGS, 0 },
933 { STRING_COMMA_LEN (".movbe"), PROCESSOR_UNKNOWN,
934 CPU_MOVBE_FLAGS, 0 },
935 { STRING_COMMA_LEN (".cx16"), PROCESSOR_UNKNOWN,
936 CPU_CX16_FLAGS, 0 },
937 { STRING_COMMA_LEN (".ept"), PROCESSOR_UNKNOWN,
938 CPU_EPT_FLAGS, 0 },
939 { STRING_COMMA_LEN (".lzcnt"), PROCESSOR_UNKNOWN,
940 CPU_LZCNT_FLAGS, 0 },
941 { STRING_COMMA_LEN (".hle"), PROCESSOR_UNKNOWN,
942 CPU_HLE_FLAGS, 0 },
943 { STRING_COMMA_LEN (".rtm"), PROCESSOR_UNKNOWN,
944 CPU_RTM_FLAGS, 0 },
945 { STRING_COMMA_LEN (".invpcid"), PROCESSOR_UNKNOWN,
946 CPU_INVPCID_FLAGS, 0 },
947 { STRING_COMMA_LEN (".clflush"), PROCESSOR_UNKNOWN,
948 CPU_CLFLUSH_FLAGS, 0 },
949 { STRING_COMMA_LEN (".nop"), PROCESSOR_UNKNOWN,
950 CPU_NOP_FLAGS, 0 },
951 { STRING_COMMA_LEN (".syscall"), PROCESSOR_UNKNOWN,
952 CPU_SYSCALL_FLAGS, 0 },
953 { STRING_COMMA_LEN (".rdtscp"), PROCESSOR_UNKNOWN,
954 CPU_RDTSCP_FLAGS, 0 },
955 { STRING_COMMA_LEN (".3dnow"), PROCESSOR_UNKNOWN,
956 CPU_3DNOW_FLAGS, 0 },
957 { STRING_COMMA_LEN (".3dnowa"), PROCESSOR_UNKNOWN,
958 CPU_3DNOWA_FLAGS, 0 },
959 { STRING_COMMA_LEN (".padlock"), PROCESSOR_UNKNOWN,
960 CPU_PADLOCK_FLAGS, 0 },
961 { STRING_COMMA_LEN (".pacifica"), PROCESSOR_UNKNOWN,
962 CPU_SVME_FLAGS, 1 },
963 { STRING_COMMA_LEN (".svme"), PROCESSOR_UNKNOWN,
964 CPU_SVME_FLAGS, 0 },
965 { STRING_COMMA_LEN (".sse4a"), PROCESSOR_UNKNOWN,
966 CPU_SSE4A_FLAGS, 0 },
967 { STRING_COMMA_LEN (".abm"), PROCESSOR_UNKNOWN,
968 CPU_ABM_FLAGS, 0 },
969 { STRING_COMMA_LEN (".bmi"), PROCESSOR_UNKNOWN,
970 CPU_BMI_FLAGS, 0 },
971 { STRING_COMMA_LEN (".tbm"), PROCESSOR_UNKNOWN,
972 CPU_TBM_FLAGS, 0 },
973 { STRING_COMMA_LEN (".adx"), PROCESSOR_UNKNOWN,
974 CPU_ADX_FLAGS, 0 },
975 { STRING_COMMA_LEN (".rdseed"), PROCESSOR_UNKNOWN,
976 CPU_RDSEED_FLAGS, 0 },
977 { STRING_COMMA_LEN (".prfchw"), PROCESSOR_UNKNOWN,
978 CPU_PRFCHW_FLAGS, 0 },
979 { STRING_COMMA_LEN (".smap"), PROCESSOR_UNKNOWN,
980 CPU_SMAP_FLAGS, 0 },
981 { STRING_COMMA_LEN (".mpx"), PROCESSOR_UNKNOWN,
982 CPU_MPX_FLAGS, 0 },
983 { STRING_COMMA_LEN (".sha"), PROCESSOR_UNKNOWN,
984 CPU_SHA_FLAGS, 0 },
985 { STRING_COMMA_LEN (".clflushopt"), PROCESSOR_UNKNOWN,
986 CPU_CLFLUSHOPT_FLAGS, 0 },
987 { STRING_COMMA_LEN (".prefetchwt1"), PROCESSOR_UNKNOWN,
988 CPU_PREFETCHWT1_FLAGS, 0 },
989 { STRING_COMMA_LEN (".se1"), PROCESSOR_UNKNOWN,
990 CPU_SE1_FLAGS, 0 },
991 { STRING_COMMA_LEN (".clwb"), PROCESSOR_UNKNOWN,
992 CPU_CLWB_FLAGS, 0 },
993 { STRING_COMMA_LEN (".avx512ifma"), PROCESSOR_UNKNOWN,
994 CPU_AVX512IFMA_FLAGS, 0 },
995 { STRING_COMMA_LEN (".avx512vbmi"), PROCESSOR_UNKNOWN,
996 CPU_AVX512VBMI_FLAGS, 0 },
997 { STRING_COMMA_LEN (".avx512_4fmaps"), PROCESSOR_UNKNOWN,
998 CPU_AVX512_4FMAPS_FLAGS, 0 },
999 { STRING_COMMA_LEN (".avx512_4vnniw"), PROCESSOR_UNKNOWN,
1000 CPU_AVX512_4VNNIW_FLAGS, 0 },
1001 { STRING_COMMA_LEN (".avx512_vpopcntdq"), PROCESSOR_UNKNOWN,
1002 CPU_AVX512_VPOPCNTDQ_FLAGS, 0 },
1003 { STRING_COMMA_LEN (".avx512_vbmi2"), PROCESSOR_UNKNOWN,
1004 CPU_AVX512_VBMI2_FLAGS, 0 },
1005 { STRING_COMMA_LEN (".avx512_vnni"), PROCESSOR_UNKNOWN,
1006 CPU_AVX512_VNNI_FLAGS, 0 },
1007 { STRING_COMMA_LEN (".avx512_bitalg"), PROCESSOR_UNKNOWN,
1008 CPU_AVX512_BITALG_FLAGS, 0 },
1009 { STRING_COMMA_LEN (".clzero"), PROCESSOR_UNKNOWN,
1010 CPU_CLZERO_FLAGS, 0 },
1011 { STRING_COMMA_LEN (".mwaitx"), PROCESSOR_UNKNOWN,
1012 CPU_MWAITX_FLAGS, 0 },
1013 { STRING_COMMA_LEN (".ospke"), PROCESSOR_UNKNOWN,
1014 CPU_OSPKE_FLAGS, 0 },
1015 { STRING_COMMA_LEN (".rdpid"), PROCESSOR_UNKNOWN,
1016 CPU_RDPID_FLAGS, 0 },
1017 { STRING_COMMA_LEN (".ptwrite"), PROCESSOR_UNKNOWN,
1018 CPU_PTWRITE_FLAGS, 0 },
1019 { STRING_COMMA_LEN (".ibt"), PROCESSOR_UNKNOWN,
1020 CPU_IBT_FLAGS, 0 },
1021 { STRING_COMMA_LEN (".shstk"), PROCESSOR_UNKNOWN,
1022 CPU_SHSTK_FLAGS, 0 },
1023 { STRING_COMMA_LEN (".gfni"), PROCESSOR_UNKNOWN,
1024 CPU_GFNI_FLAGS, 0 },
1025 { STRING_COMMA_LEN (".vaes"), PROCESSOR_UNKNOWN,
1026 CPU_VAES_FLAGS, 0 },
1027 { STRING_COMMA_LEN (".vpclmulqdq"), PROCESSOR_UNKNOWN,
1028 CPU_VPCLMULQDQ_FLAGS, 0 },
1029 { STRING_COMMA_LEN (".wbnoinvd"), PROCESSOR_UNKNOWN,
1030 CPU_WBNOINVD_FLAGS, 0 },
1031 { STRING_COMMA_LEN (".pconfig"), PROCESSOR_UNKNOWN,
1032 CPU_PCONFIG_FLAGS, 0 },
1033 { STRING_COMMA_LEN (".waitpkg"), PROCESSOR_UNKNOWN,
1034 CPU_WAITPKG_FLAGS, 0 },
1035 { STRING_COMMA_LEN (".cldemote"), PROCESSOR_UNKNOWN,
1036 CPU_CLDEMOTE_FLAGS, 0 },
1037 { STRING_COMMA_LEN (".movdiri"), PROCESSOR_UNKNOWN,
1038 CPU_MOVDIRI_FLAGS, 0 },
1039 { STRING_COMMA_LEN (".movdir64b"), PROCESSOR_UNKNOWN,
1040 CPU_MOVDIR64B_FLAGS, 0 },
1041 };
1042
1043 static const noarch_entry cpu_noarch[] =
1044 {
1045 { STRING_COMMA_LEN ("no87"), CPU_ANY_X87_FLAGS },
1046 { STRING_COMMA_LEN ("no287"), CPU_ANY_287_FLAGS },
1047 { STRING_COMMA_LEN ("no387"), CPU_ANY_387_FLAGS },
1048 { STRING_COMMA_LEN ("no687"), CPU_ANY_687_FLAGS },
1049 { STRING_COMMA_LEN ("nommx"), CPU_ANY_MMX_FLAGS },
1050 { STRING_COMMA_LEN ("nosse"), CPU_ANY_SSE_FLAGS },
1051 { STRING_COMMA_LEN ("nosse2"), CPU_ANY_SSE2_FLAGS },
1052 { STRING_COMMA_LEN ("nosse3"), CPU_ANY_SSE3_FLAGS },
1053 { STRING_COMMA_LEN ("nossse3"), CPU_ANY_SSSE3_FLAGS },
1054 { STRING_COMMA_LEN ("nosse4.1"), CPU_ANY_SSE4_1_FLAGS },
1055 { STRING_COMMA_LEN ("nosse4.2"), CPU_ANY_SSE4_2_FLAGS },
1056 { STRING_COMMA_LEN ("nosse4"), CPU_ANY_SSE4_1_FLAGS },
1057 { STRING_COMMA_LEN ("noavx"), CPU_ANY_AVX_FLAGS },
1058 { STRING_COMMA_LEN ("noavx2"), CPU_ANY_AVX2_FLAGS },
1059 { STRING_COMMA_LEN ("noavx512f"), CPU_ANY_AVX512F_FLAGS },
1060 { STRING_COMMA_LEN ("noavx512cd"), CPU_ANY_AVX512CD_FLAGS },
1061 { STRING_COMMA_LEN ("noavx512er"), CPU_ANY_AVX512ER_FLAGS },
1062 { STRING_COMMA_LEN ("noavx512pf"), CPU_ANY_AVX512PF_FLAGS },
1063 { STRING_COMMA_LEN ("noavx512dq"), CPU_ANY_AVX512DQ_FLAGS },
1064 { STRING_COMMA_LEN ("noavx512bw"), CPU_ANY_AVX512BW_FLAGS },
1065 { STRING_COMMA_LEN ("noavx512vl"), CPU_ANY_AVX512VL_FLAGS },
1066 { STRING_COMMA_LEN ("noavx512ifma"), CPU_ANY_AVX512IFMA_FLAGS },
1067 { STRING_COMMA_LEN ("noavx512vbmi"), CPU_ANY_AVX512VBMI_FLAGS },
1068 { STRING_COMMA_LEN ("noavx512_4fmaps"), CPU_ANY_AVX512_4FMAPS_FLAGS },
1069 { STRING_COMMA_LEN ("noavx512_4vnniw"), CPU_ANY_AVX512_4VNNIW_FLAGS },
1070 { STRING_COMMA_LEN ("noavx512_vpopcntdq"), CPU_ANY_AVX512_VPOPCNTDQ_FLAGS },
1071 { STRING_COMMA_LEN ("noavx512_vbmi2"), CPU_ANY_AVX512_VBMI2_FLAGS },
1072 { STRING_COMMA_LEN ("noavx512_vnni"), CPU_ANY_AVX512_VNNI_FLAGS },
1073 { STRING_COMMA_LEN ("noavx512_bitalg"), CPU_ANY_AVX512_BITALG_FLAGS },
1074 { STRING_COMMA_LEN ("noibt"), CPU_ANY_IBT_FLAGS },
1075 { STRING_COMMA_LEN ("noshstk"), CPU_ANY_SHSTK_FLAGS },
1076 { STRING_COMMA_LEN ("nomovdiri"), CPU_ANY_MOVDIRI_FLAGS },
1077 { STRING_COMMA_LEN ("nomovdir64b"), CPU_ANY_MOVDIR64B_FLAGS },
1078 };
1079
1080 #ifdef I386COFF
1081 /* Like s_lcomm_internal in gas/read.c but the alignment string
1082 is allowed to be optional. */
1083
1084 static symbolS *
1085 pe_lcomm_internal (int needs_align, symbolS *symbolP, addressT size)
1086 {
1087 addressT align = 0;
1088
1089 SKIP_WHITESPACE ();
1090
1091 if (needs_align
1092 && *input_line_pointer == ',')
1093 {
1094 align = parse_align (needs_align - 1);
1095
1096 if (align == (addressT) -1)
1097 return NULL;
1098 }
1099 else
1100 {
1101 if (size >= 8)
1102 align = 3;
1103 else if (size >= 4)
1104 align = 2;
1105 else if (size >= 2)
1106 align = 1;
1107 else
1108 align = 0;
1109 }
1110
1111 bss_alloc (symbolP, size, align);
1112 return symbolP;
1113 }
1114
1115 static void
1116 pe_lcomm (int needs_align)
1117 {
1118 s_comm_internal (needs_align * 2, pe_lcomm_internal);
1119 }
1120 #endif
1121
1122 const pseudo_typeS md_pseudo_table[] =
1123 {
1124 #if !defined(OBJ_AOUT) && !defined(USE_ALIGN_PTWO)
1125 {"align", s_align_bytes, 0},
1126 #else
1127 {"align", s_align_ptwo, 0},
1128 #endif
1129 {"arch", set_cpu_arch, 0},
1130 #ifndef I386COFF
1131 {"bss", s_bss, 0},
1132 #else
1133 {"lcomm", pe_lcomm, 1},
1134 #endif
1135 {"ffloat", float_cons, 'f'},
1136 {"dfloat", float_cons, 'd'},
1137 {"tfloat", float_cons, 'x'},
1138 {"value", cons, 2},
1139 {"slong", signed_cons, 4},
1140 {"noopt", s_ignore, 0},
1141 {"optim", s_ignore, 0},
1142 {"code16gcc", set_16bit_gcc_code_flag, CODE_16BIT},
1143 {"code16", set_code_flag, CODE_16BIT},
1144 {"code32", set_code_flag, CODE_32BIT},
1145 #ifdef BFD64
1146 {"code64", set_code_flag, CODE_64BIT},
1147 #endif
1148 {"intel_syntax", set_intel_syntax, 1},
1149 {"att_syntax", set_intel_syntax, 0},
1150 {"intel_mnemonic", set_intel_mnemonic, 1},
1151 {"att_mnemonic", set_intel_mnemonic, 0},
1152 {"allow_index_reg", set_allow_index_reg, 1},
1153 {"disallow_index_reg", set_allow_index_reg, 0},
1154 {"sse_check", set_check, 0},
1155 {"operand_check", set_check, 1},
1156 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
1157 {"largecomm", handle_large_common, 0},
1158 #else
1159 {"file", dwarf2_directive_file, 0},
1160 {"loc", dwarf2_directive_loc, 0},
1161 {"loc_mark_labels", dwarf2_directive_loc_mark_labels, 0},
1162 #endif
1163 #ifdef TE_PE
1164 {"secrel32", pe_directive_secrel, 0},
1165 #endif
1166 {0, 0, 0}
1167 };
1168
1169 /* For interface with expression (). */
1170 extern char *input_line_pointer;
1171
1172 /* Hash table for instruction mnemonic lookup. */
1173 static struct hash_control *op_hash;
1174
1175 /* Hash table for register lookup. */
1176 static struct hash_control *reg_hash;
1177 \f
1178 /* Various efficient no-op patterns for aligning code labels.
1179 Note: Don't try to assemble the instructions in the comments.
1180 0L and 0w are not legal. */
1181 static const unsigned char f32_1[] =
1182 {0x90}; /* nop */
1183 static const unsigned char f32_2[] =
1184 {0x66,0x90}; /* xchg %ax,%ax */
1185 static const unsigned char f32_3[] =
1186 {0x8d,0x76,0x00}; /* leal 0(%esi),%esi */
1187 static const unsigned char f32_4[] =
1188 {0x8d,0x74,0x26,0x00}; /* leal 0(%esi,1),%esi */
1189 static const unsigned char f32_6[] =
1190 {0x8d,0xb6,0x00,0x00,0x00,0x00}; /* leal 0L(%esi),%esi */
1191 static const unsigned char f32_7[] =
1192 {0x8d,0xb4,0x26,0x00,0x00,0x00,0x00}; /* leal 0L(%esi,1),%esi */
1193 static const unsigned char f16_3[] =
1194 {0x8d,0x74,0x00}; /* lea 0(%si),%si */
1195 static const unsigned char f16_4[] =
1196 {0x8d,0xb4,0x00,0x00}; /* lea 0W(%si),%si */
1197 static const unsigned char jump_disp8[] =
1198 {0xeb}; /* jmp disp8 */
1199 static const unsigned char jump32_disp32[] =
1200 {0xe9}; /* jmp disp32 */
1201 static const unsigned char jump16_disp32[] =
1202 {0x66,0xe9}; /* jmp disp32 */
1203 /* 32-bit NOPs patterns. */
1204 static const unsigned char *const f32_patt[] = {
1205 f32_1, f32_2, f32_3, f32_4, NULL, f32_6, f32_7
1206 };
1207 /* 16-bit NOPs patterns. */
1208 static const unsigned char *const f16_patt[] = {
1209 f32_1, f32_2, f16_3, f16_4
1210 };
1211 /* nopl (%[re]ax) */
1212 static const unsigned char alt_3[] =
1213 {0x0f,0x1f,0x00};
1214 /* nopl 0(%[re]ax) */
1215 static const unsigned char alt_4[] =
1216 {0x0f,0x1f,0x40,0x00};
1217 /* nopl 0(%[re]ax,%[re]ax,1) */
1218 static const unsigned char alt_5[] =
1219 {0x0f,0x1f,0x44,0x00,0x00};
1220 /* nopw 0(%[re]ax,%[re]ax,1) */
1221 static const unsigned char alt_6[] =
1222 {0x66,0x0f,0x1f,0x44,0x00,0x00};
1223 /* nopl 0L(%[re]ax) */
1224 static const unsigned char alt_7[] =
1225 {0x0f,0x1f,0x80,0x00,0x00,0x00,0x00};
1226 /* nopl 0L(%[re]ax,%[re]ax,1) */
1227 static const unsigned char alt_8[] =
1228 {0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1229 /* nopw 0L(%[re]ax,%[re]ax,1) */
1230 static const unsigned char alt_9[] =
1231 {0x66,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1232 /* nopw %cs:0L(%[re]ax,%[re]ax,1) */
1233 static const unsigned char alt_10[] =
1234 {0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1235 /* data16 nopw %cs:0L(%eax,%eax,1) */
1236 static const unsigned char alt_11[] =
1237 {0x66,0x66,0x2e,0x0f,0x1f,0x84,0x00,0x00,0x00,0x00,0x00};
1238 /* 32-bit and 64-bit NOPs patterns. */
1239 static const unsigned char *const alt_patt[] = {
1240 f32_1, f32_2, alt_3, alt_4, alt_5, alt_6, alt_7, alt_8,
1241 alt_9, alt_10, alt_11
1242 };
1243
1244 /* Genenerate COUNT bytes of NOPs to WHERE from PATT with the maximum
1245 size of a single NOP instruction MAX_SINGLE_NOP_SIZE. */
1246
1247 static void
1248 i386_output_nops (char *where, const unsigned char *const *patt,
1249 int count, int max_single_nop_size)
1250
1251 {
1252 /* Place the longer NOP first. */
1253 int last;
1254 int offset;
1255 const unsigned char *nops = patt[max_single_nop_size - 1];
1256
1257 /* Use the smaller one if the requsted one isn't available. */
1258 if (nops == NULL)
1259 {
1260 max_single_nop_size--;
1261 nops = patt[max_single_nop_size - 1];
1262 }
1263
1264 last = count % max_single_nop_size;
1265
1266 count -= last;
1267 for (offset = 0; offset < count; offset += max_single_nop_size)
1268 memcpy (where + offset, nops, max_single_nop_size);
1269
1270 if (last)
1271 {
1272 nops = patt[last - 1];
1273 if (nops == NULL)
1274 {
1275 /* Use the smaller one plus one-byte NOP if the needed one
1276 isn't available. */
1277 last--;
1278 nops = patt[last - 1];
1279 memcpy (where + offset, nops, last);
1280 where[offset + last] = *patt[0];
1281 }
1282 else
1283 memcpy (where + offset, nops, last);
1284 }
1285 }
1286
1287 static INLINE int
1288 fits_in_imm7 (offsetT num)
1289 {
1290 return (num & 0x7f) == num;
1291 }
1292
1293 static INLINE int
1294 fits_in_imm31 (offsetT num)
1295 {
1296 return (num & 0x7fffffff) == num;
1297 }
1298
1299 /* Genenerate COUNT bytes of NOPs to WHERE with the maximum size of a
1300 single NOP instruction LIMIT. */
1301
1302 void
1303 i386_generate_nops (fragS *fragP, char *where, offsetT count, int limit)
1304 {
1305 const unsigned char *const *patt = NULL;
1306 int max_single_nop_size;
1307 /* Maximum number of NOPs before switching to jump over NOPs. */
1308 int max_number_of_nops;
1309
1310 switch (fragP->fr_type)
1311 {
1312 case rs_fill_nop:
1313 case rs_align_code:
1314 break;
1315 default:
1316 return;
1317 }
1318
1319 /* We need to decide which NOP sequence to use for 32bit and
1320 64bit. When -mtune= is used:
1321
1322 1. For PROCESSOR_I386, PROCESSOR_I486, PROCESSOR_PENTIUM and
1323 PROCESSOR_GENERIC32, f32_patt will be used.
1324 2. For the rest, alt_patt will be used.
1325
1326 When -mtune= isn't used, alt_patt will be used if
1327 cpu_arch_isa_flags has CpuNop. Otherwise, f32_patt will
1328 be used.
1329
1330 When -march= or .arch is used, we can't use anything beyond
1331 cpu_arch_isa_flags. */
1332
1333 if (flag_code == CODE_16BIT)
1334 {
1335 patt = f16_patt;
1336 max_single_nop_size = sizeof (f16_patt) / sizeof (f16_patt[0]);
1337 /* Limit number of NOPs to 2 in 16-bit mode. */
1338 max_number_of_nops = 2;
1339 }
1340 else
1341 {
1342 if (fragP->tc_frag_data.isa == PROCESSOR_UNKNOWN)
1343 {
1344 /* PROCESSOR_UNKNOWN means that all ISAs may be used. */
1345 switch (cpu_arch_tune)
1346 {
1347 case PROCESSOR_UNKNOWN:
1348 /* We use cpu_arch_isa_flags to check if we SHOULD
1349 optimize with nops. */
1350 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1351 patt = alt_patt;
1352 else
1353 patt = f32_patt;
1354 break;
1355 case PROCESSOR_PENTIUM4:
1356 case PROCESSOR_NOCONA:
1357 case PROCESSOR_CORE:
1358 case PROCESSOR_CORE2:
1359 case PROCESSOR_COREI7:
1360 case PROCESSOR_L1OM:
1361 case PROCESSOR_K1OM:
1362 case PROCESSOR_GENERIC64:
1363 case PROCESSOR_K6:
1364 case PROCESSOR_ATHLON:
1365 case PROCESSOR_K8:
1366 case PROCESSOR_AMDFAM10:
1367 case PROCESSOR_BD:
1368 case PROCESSOR_ZNVER:
1369 case PROCESSOR_BT:
1370 patt = alt_patt;
1371 break;
1372 case PROCESSOR_I386:
1373 case PROCESSOR_I486:
1374 case PROCESSOR_PENTIUM:
1375 case PROCESSOR_PENTIUMPRO:
1376 case PROCESSOR_IAMCU:
1377 case PROCESSOR_GENERIC32:
1378 patt = f32_patt;
1379 break;
1380 }
1381 }
1382 else
1383 {
1384 switch (fragP->tc_frag_data.tune)
1385 {
1386 case PROCESSOR_UNKNOWN:
1387 /* When cpu_arch_isa is set, cpu_arch_tune shouldn't be
1388 PROCESSOR_UNKNOWN. */
1389 abort ();
1390 break;
1391
1392 case PROCESSOR_I386:
1393 case PROCESSOR_I486:
1394 case PROCESSOR_PENTIUM:
1395 case PROCESSOR_IAMCU:
1396 case PROCESSOR_K6:
1397 case PROCESSOR_ATHLON:
1398 case PROCESSOR_K8:
1399 case PROCESSOR_AMDFAM10:
1400 case PROCESSOR_BD:
1401 case PROCESSOR_ZNVER:
1402 case PROCESSOR_BT:
1403 case PROCESSOR_GENERIC32:
1404 /* We use cpu_arch_isa_flags to check if we CAN optimize
1405 with nops. */
1406 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1407 patt = alt_patt;
1408 else
1409 patt = f32_patt;
1410 break;
1411 case PROCESSOR_PENTIUMPRO:
1412 case PROCESSOR_PENTIUM4:
1413 case PROCESSOR_NOCONA:
1414 case PROCESSOR_CORE:
1415 case PROCESSOR_CORE2:
1416 case PROCESSOR_COREI7:
1417 case PROCESSOR_L1OM:
1418 case PROCESSOR_K1OM:
1419 if (fragP->tc_frag_data.isa_flags.bitfield.cpunop)
1420 patt = alt_patt;
1421 else
1422 patt = f32_patt;
1423 break;
1424 case PROCESSOR_GENERIC64:
1425 patt = alt_patt;
1426 break;
1427 }
1428 }
1429
1430 if (patt == f32_patt)
1431 {
1432 max_single_nop_size = sizeof (f32_patt) / sizeof (f32_patt[0]);
1433 /* Limit number of NOPs to 2 for older processors. */
1434 max_number_of_nops = 2;
1435 }
1436 else
1437 {
1438 max_single_nop_size = sizeof (alt_patt) / sizeof (alt_patt[0]);
1439 /* Limit number of NOPs to 7 for newer processors. */
1440 max_number_of_nops = 7;
1441 }
1442 }
1443
1444 if (limit == 0)
1445 limit = max_single_nop_size;
1446
1447 if (fragP->fr_type == rs_fill_nop)
1448 {
1449 /* Output NOPs for .nop directive. */
1450 if (limit > max_single_nop_size)
1451 {
1452 as_bad_where (fragP->fr_file, fragP->fr_line,
1453 _("invalid single nop size: %d "
1454 "(expect within [0, %d])"),
1455 limit, max_single_nop_size);
1456 return;
1457 }
1458 }
1459 else
1460 fragP->fr_var = count;
1461
1462 if ((count / max_single_nop_size) > max_number_of_nops)
1463 {
1464 /* Generate jump over NOPs. */
1465 offsetT disp = count - 2;
1466 if (fits_in_imm7 (disp))
1467 {
1468 /* Use "jmp disp8" if possible. */
1469 count = disp;
1470 where[0] = jump_disp8[0];
1471 where[1] = count;
1472 where += 2;
1473 }
1474 else
1475 {
1476 unsigned int size_of_jump;
1477
1478 if (flag_code == CODE_16BIT)
1479 {
1480 where[0] = jump16_disp32[0];
1481 where[1] = jump16_disp32[1];
1482 size_of_jump = 2;
1483 }
1484 else
1485 {
1486 where[0] = jump32_disp32[0];
1487 size_of_jump = 1;
1488 }
1489
1490 count -= size_of_jump + 4;
1491 if (!fits_in_imm31 (count))
1492 {
1493 as_bad_where (fragP->fr_file, fragP->fr_line,
1494 _("jump over nop padding out of range"));
1495 return;
1496 }
1497
1498 md_number_to_chars (where + size_of_jump, count, 4);
1499 where += size_of_jump + 4;
1500 }
1501 }
1502
1503 /* Generate multiple NOPs. */
1504 i386_output_nops (where, patt, count, limit);
1505 }
1506
1507 static INLINE int
1508 operand_type_all_zero (const union i386_operand_type *x)
1509 {
1510 switch (ARRAY_SIZE(x->array))
1511 {
1512 case 3:
1513 if (x->array[2])
1514 return 0;
1515 /* Fall through. */
1516 case 2:
1517 if (x->array[1])
1518 return 0;
1519 /* Fall through. */
1520 case 1:
1521 return !x->array[0];
1522 default:
1523 abort ();
1524 }
1525 }
1526
1527 static INLINE void
1528 operand_type_set (union i386_operand_type *x, unsigned int v)
1529 {
1530 switch (ARRAY_SIZE(x->array))
1531 {
1532 case 3:
1533 x->array[2] = v;
1534 /* Fall through. */
1535 case 2:
1536 x->array[1] = v;
1537 /* Fall through. */
1538 case 1:
1539 x->array[0] = v;
1540 /* Fall through. */
1541 break;
1542 default:
1543 abort ();
1544 }
1545 }
1546
1547 static INLINE int
1548 operand_type_equal (const union i386_operand_type *x,
1549 const union i386_operand_type *y)
1550 {
1551 switch (ARRAY_SIZE(x->array))
1552 {
1553 case 3:
1554 if (x->array[2] != y->array[2])
1555 return 0;
1556 /* Fall through. */
1557 case 2:
1558 if (x->array[1] != y->array[1])
1559 return 0;
1560 /* Fall through. */
1561 case 1:
1562 return x->array[0] == y->array[0];
1563 break;
1564 default:
1565 abort ();
1566 }
1567 }
1568
1569 static INLINE int
1570 cpu_flags_all_zero (const union i386_cpu_flags *x)
1571 {
1572 switch (ARRAY_SIZE(x->array))
1573 {
1574 case 4:
1575 if (x->array[3])
1576 return 0;
1577 /* Fall through. */
1578 case 3:
1579 if (x->array[2])
1580 return 0;
1581 /* Fall through. */
1582 case 2:
1583 if (x->array[1])
1584 return 0;
1585 /* Fall through. */
1586 case 1:
1587 return !x->array[0];
1588 default:
1589 abort ();
1590 }
1591 }
1592
1593 static INLINE int
1594 cpu_flags_equal (const union i386_cpu_flags *x,
1595 const union i386_cpu_flags *y)
1596 {
1597 switch (ARRAY_SIZE(x->array))
1598 {
1599 case 4:
1600 if (x->array[3] != y->array[3])
1601 return 0;
1602 /* Fall through. */
1603 case 3:
1604 if (x->array[2] != y->array[2])
1605 return 0;
1606 /* Fall through. */
1607 case 2:
1608 if (x->array[1] != y->array[1])
1609 return 0;
1610 /* Fall through. */
1611 case 1:
1612 return x->array[0] == y->array[0];
1613 break;
1614 default:
1615 abort ();
1616 }
1617 }
1618
1619 static INLINE int
1620 cpu_flags_check_cpu64 (i386_cpu_flags f)
1621 {
1622 return !((flag_code == CODE_64BIT && f.bitfield.cpuno64)
1623 || (flag_code != CODE_64BIT && f.bitfield.cpu64));
1624 }
1625
1626 static INLINE i386_cpu_flags
1627 cpu_flags_and (i386_cpu_flags x, i386_cpu_flags y)
1628 {
1629 switch (ARRAY_SIZE (x.array))
1630 {
1631 case 4:
1632 x.array [3] &= y.array [3];
1633 /* Fall through. */
1634 case 3:
1635 x.array [2] &= y.array [2];
1636 /* Fall through. */
1637 case 2:
1638 x.array [1] &= y.array [1];
1639 /* Fall through. */
1640 case 1:
1641 x.array [0] &= y.array [0];
1642 break;
1643 default:
1644 abort ();
1645 }
1646 return x;
1647 }
1648
1649 static INLINE i386_cpu_flags
1650 cpu_flags_or (i386_cpu_flags x, i386_cpu_flags y)
1651 {
1652 switch (ARRAY_SIZE (x.array))
1653 {
1654 case 4:
1655 x.array [3] |= y.array [3];
1656 /* Fall through. */
1657 case 3:
1658 x.array [2] |= y.array [2];
1659 /* Fall through. */
1660 case 2:
1661 x.array [1] |= y.array [1];
1662 /* Fall through. */
1663 case 1:
1664 x.array [0] |= y.array [0];
1665 break;
1666 default:
1667 abort ();
1668 }
1669 return x;
1670 }
1671
1672 static INLINE i386_cpu_flags
1673 cpu_flags_and_not (i386_cpu_flags x, i386_cpu_flags y)
1674 {
1675 switch (ARRAY_SIZE (x.array))
1676 {
1677 case 4:
1678 x.array [3] &= ~y.array [3];
1679 /* Fall through. */
1680 case 3:
1681 x.array [2] &= ~y.array [2];
1682 /* Fall through. */
1683 case 2:
1684 x.array [1] &= ~y.array [1];
1685 /* Fall through. */
1686 case 1:
1687 x.array [0] &= ~y.array [0];
1688 break;
1689 default:
1690 abort ();
1691 }
1692 return x;
1693 }
1694
1695 #define CPU_FLAGS_ARCH_MATCH 0x1
1696 #define CPU_FLAGS_64BIT_MATCH 0x2
1697
1698 #define CPU_FLAGS_PERFECT_MATCH \
1699 (CPU_FLAGS_ARCH_MATCH | CPU_FLAGS_64BIT_MATCH)
1700
1701 /* Return CPU flags match bits. */
1702
1703 static int
1704 cpu_flags_match (const insn_template *t)
1705 {
1706 i386_cpu_flags x = t->cpu_flags;
1707 int match = cpu_flags_check_cpu64 (x) ? CPU_FLAGS_64BIT_MATCH : 0;
1708
1709 x.bitfield.cpu64 = 0;
1710 x.bitfield.cpuno64 = 0;
1711
1712 if (cpu_flags_all_zero (&x))
1713 {
1714 /* This instruction is available on all archs. */
1715 match |= CPU_FLAGS_ARCH_MATCH;
1716 }
1717 else
1718 {
1719 /* This instruction is available only on some archs. */
1720 i386_cpu_flags cpu = cpu_arch_flags;
1721
1722 /* AVX512VL is no standalone feature - match it and then strip it. */
1723 if (x.bitfield.cpuavx512vl && !cpu.bitfield.cpuavx512vl)
1724 return match;
1725 x.bitfield.cpuavx512vl = 0;
1726
1727 cpu = cpu_flags_and (x, cpu);
1728 if (!cpu_flags_all_zero (&cpu))
1729 {
1730 if (x.bitfield.cpuavx)
1731 {
1732 /* We need to check a few extra flags with AVX. */
1733 if (cpu.bitfield.cpuavx
1734 && (!t->opcode_modifier.sse2avx || sse2avx)
1735 && (!x.bitfield.cpuaes || cpu.bitfield.cpuaes)
1736 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1737 && (!x.bitfield.cpupclmul || cpu.bitfield.cpupclmul))
1738 match |= CPU_FLAGS_ARCH_MATCH;
1739 }
1740 else if (x.bitfield.cpuavx512f)
1741 {
1742 /* We need to check a few extra flags with AVX512F. */
1743 if (cpu.bitfield.cpuavx512f
1744 && (!x.bitfield.cpugfni || cpu.bitfield.cpugfni)
1745 && (!x.bitfield.cpuvaes || cpu.bitfield.cpuvaes)
1746 && (!x.bitfield.cpuvpclmulqdq || cpu.bitfield.cpuvpclmulqdq))
1747 match |= CPU_FLAGS_ARCH_MATCH;
1748 }
1749 else
1750 match |= CPU_FLAGS_ARCH_MATCH;
1751 }
1752 }
1753 return match;
1754 }
1755
1756 static INLINE i386_operand_type
1757 operand_type_and (i386_operand_type x, i386_operand_type y)
1758 {
1759 switch (ARRAY_SIZE (x.array))
1760 {
1761 case 3:
1762 x.array [2] &= y.array [2];
1763 /* Fall through. */
1764 case 2:
1765 x.array [1] &= y.array [1];
1766 /* Fall through. */
1767 case 1:
1768 x.array [0] &= y.array [0];
1769 break;
1770 default:
1771 abort ();
1772 }
1773 return x;
1774 }
1775
1776 static INLINE i386_operand_type
1777 operand_type_and_not (i386_operand_type x, i386_operand_type y)
1778 {
1779 switch (ARRAY_SIZE (x.array))
1780 {
1781 case 3:
1782 x.array [2] &= ~y.array [2];
1783 /* Fall through. */
1784 case 2:
1785 x.array [1] &= ~y.array [1];
1786 /* Fall through. */
1787 case 1:
1788 x.array [0] &= ~y.array [0];
1789 break;
1790 default:
1791 abort ();
1792 }
1793 return x;
1794 }
1795
1796 static INLINE i386_operand_type
1797 operand_type_or (i386_operand_type x, i386_operand_type y)
1798 {
1799 switch (ARRAY_SIZE (x.array))
1800 {
1801 case 3:
1802 x.array [2] |= y.array [2];
1803 /* Fall through. */
1804 case 2:
1805 x.array [1] |= y.array [1];
1806 /* Fall through. */
1807 case 1:
1808 x.array [0] |= y.array [0];
1809 break;
1810 default:
1811 abort ();
1812 }
1813 return x;
1814 }
1815
1816 static INLINE i386_operand_type
1817 operand_type_xor (i386_operand_type x, i386_operand_type y)
1818 {
1819 switch (ARRAY_SIZE (x.array))
1820 {
1821 case 3:
1822 x.array [2] ^= y.array [2];
1823 /* Fall through. */
1824 case 2:
1825 x.array [1] ^= y.array [1];
1826 /* Fall through. */
1827 case 1:
1828 x.array [0] ^= y.array [0];
1829 break;
1830 default:
1831 abort ();
1832 }
1833 return x;
1834 }
1835
1836 static const i386_operand_type acc32 = OPERAND_TYPE_ACC32;
1837 static const i386_operand_type acc64 = OPERAND_TYPE_ACC64;
1838 static const i386_operand_type disp16 = OPERAND_TYPE_DISP16;
1839 static const i386_operand_type disp32 = OPERAND_TYPE_DISP32;
1840 static const i386_operand_type disp32s = OPERAND_TYPE_DISP32S;
1841 static const i386_operand_type disp16_32 = OPERAND_TYPE_DISP16_32;
1842 static const i386_operand_type anydisp
1843 = OPERAND_TYPE_ANYDISP;
1844 static const i386_operand_type regxmm = OPERAND_TYPE_REGXMM;
1845 static const i386_operand_type regmask = OPERAND_TYPE_REGMASK;
1846 static const i386_operand_type imm8 = OPERAND_TYPE_IMM8;
1847 static const i386_operand_type imm8s = OPERAND_TYPE_IMM8S;
1848 static const i386_operand_type imm16 = OPERAND_TYPE_IMM16;
1849 static const i386_operand_type imm32 = OPERAND_TYPE_IMM32;
1850 static const i386_operand_type imm32s = OPERAND_TYPE_IMM32S;
1851 static const i386_operand_type imm64 = OPERAND_TYPE_IMM64;
1852 static const i386_operand_type imm16_32 = OPERAND_TYPE_IMM16_32;
1853 static const i386_operand_type imm16_32s = OPERAND_TYPE_IMM16_32S;
1854 static const i386_operand_type imm16_32_32s = OPERAND_TYPE_IMM16_32_32S;
1855 static const i386_operand_type vec_imm4 = OPERAND_TYPE_VEC_IMM4;
1856
1857 enum operand_type
1858 {
1859 reg,
1860 imm,
1861 disp,
1862 anymem
1863 };
1864
1865 static INLINE int
1866 operand_type_check (i386_operand_type t, enum operand_type c)
1867 {
1868 switch (c)
1869 {
1870 case reg:
1871 return t.bitfield.reg;
1872
1873 case imm:
1874 return (t.bitfield.imm8
1875 || t.bitfield.imm8s
1876 || t.bitfield.imm16
1877 || t.bitfield.imm32
1878 || t.bitfield.imm32s
1879 || t.bitfield.imm64);
1880
1881 case disp:
1882 return (t.bitfield.disp8
1883 || t.bitfield.disp16
1884 || t.bitfield.disp32
1885 || t.bitfield.disp32s
1886 || t.bitfield.disp64);
1887
1888 case anymem:
1889 return (t.bitfield.disp8
1890 || t.bitfield.disp16
1891 || t.bitfield.disp32
1892 || t.bitfield.disp32s
1893 || t.bitfield.disp64
1894 || t.bitfield.baseindex);
1895
1896 default:
1897 abort ();
1898 }
1899
1900 return 0;
1901 }
1902
1903 /* Return 1 if there is no conflict in 8bit/16bit/32bit/64bit/80bit size
1904 between operand GIVEN and opeand WANTED for instruction template T. */
1905
1906 static INLINE int
1907 match_operand_size (const insn_template *t, unsigned int wanted,
1908 unsigned int given)
1909 {
1910 return !((i.types[given].bitfield.byte
1911 && !t->operand_types[wanted].bitfield.byte)
1912 || (i.types[given].bitfield.word
1913 && !t->operand_types[wanted].bitfield.word)
1914 || (i.types[given].bitfield.dword
1915 && !t->operand_types[wanted].bitfield.dword)
1916 || (i.types[given].bitfield.qword
1917 && !t->operand_types[wanted].bitfield.qword)
1918 || (i.types[given].bitfield.tbyte
1919 && !t->operand_types[wanted].bitfield.tbyte));
1920 }
1921
1922 /* Return 1 if there is no conflict in SIMD register between operand
1923 GIVEN and opeand WANTED for instruction template T. */
1924
1925 static INLINE int
1926 match_simd_size (const insn_template *t, unsigned int wanted,
1927 unsigned int given)
1928 {
1929 return !((i.types[given].bitfield.xmmword
1930 && !t->operand_types[wanted].bitfield.xmmword)
1931 || (i.types[given].bitfield.ymmword
1932 && !t->operand_types[wanted].bitfield.ymmword)
1933 || (i.types[given].bitfield.zmmword
1934 && !t->operand_types[wanted].bitfield.zmmword));
1935 }
1936
1937 /* Return 1 if there is no conflict in any size between operand GIVEN
1938 and opeand WANTED for instruction template T. */
1939
1940 static INLINE int
1941 match_mem_size (const insn_template *t, unsigned int wanted,
1942 unsigned int given)
1943 {
1944 return (match_operand_size (t, wanted, given)
1945 && !((i.types[given].bitfield.unspecified
1946 && !i.broadcast
1947 && !t->operand_types[wanted].bitfield.unspecified)
1948 || (i.types[given].bitfield.fword
1949 && !t->operand_types[wanted].bitfield.fword)
1950 /* For scalar opcode templates to allow register and memory
1951 operands at the same time, some special casing is needed
1952 here. Also for v{,p}broadcast*, {,v}pmov{s,z}*, and
1953 down-conversion vpmov*. */
1954 || ((t->operand_types[wanted].bitfield.regsimd
1955 && !t->opcode_modifier.broadcast
1956 && (t->operand_types[wanted].bitfield.byte
1957 || t->operand_types[wanted].bitfield.word
1958 || t->operand_types[wanted].bitfield.dword
1959 || t->operand_types[wanted].bitfield.qword))
1960 ? (i.types[given].bitfield.xmmword
1961 || i.types[given].bitfield.ymmword
1962 || i.types[given].bitfield.zmmword)
1963 : !match_simd_size(t, wanted, given))));
1964 }
1965
1966 /* Return value has MATCH_STRAIGHT set if there is no size conflict on any
1967 operands for instruction template T, and it has MATCH_REVERSE set if there
1968 is no size conflict on any operands for the template with operands reversed
1969 (and the template allows for reversing in the first place). */
1970
1971 #define MATCH_STRAIGHT 1
1972 #define MATCH_REVERSE 2
1973
1974 static INLINE unsigned int
1975 operand_size_match (const insn_template *t)
1976 {
1977 unsigned int j, match = MATCH_STRAIGHT;
1978
1979 /* Don't check jump instructions. */
1980 if (t->opcode_modifier.jump
1981 || t->opcode_modifier.jumpbyte
1982 || t->opcode_modifier.jumpdword
1983 || t->opcode_modifier.jumpintersegment)
1984 return match;
1985
1986 /* Check memory and accumulator operand size. */
1987 for (j = 0; j < i.operands; j++)
1988 {
1989 if (!i.types[j].bitfield.reg && !i.types[j].bitfield.regsimd
1990 && t->operand_types[j].bitfield.anysize)
1991 continue;
1992
1993 if (t->operand_types[j].bitfield.reg
1994 && !match_operand_size (t, j, j))
1995 {
1996 match = 0;
1997 break;
1998 }
1999
2000 if (t->operand_types[j].bitfield.regsimd
2001 && !match_simd_size (t, j, j))
2002 {
2003 match = 0;
2004 break;
2005 }
2006
2007 if (t->operand_types[j].bitfield.acc
2008 && (!match_operand_size (t, j, j) || !match_simd_size (t, j, j)))
2009 {
2010 match = 0;
2011 break;
2012 }
2013
2014 if ((i.flags[j] & Operand_Mem) && !match_mem_size (t, j, j))
2015 {
2016 match = 0;
2017 break;
2018 }
2019 }
2020
2021 if (!t->opcode_modifier.d)
2022 {
2023 mismatch:
2024 if (!match)
2025 i.error = operand_size_mismatch;
2026 return match;
2027 }
2028
2029 /* Check reverse. */
2030 gas_assert (i.operands == 2);
2031
2032 for (j = 0; j < 2; j++)
2033 {
2034 if ((t->operand_types[j].bitfield.reg
2035 || t->operand_types[j].bitfield.acc)
2036 && !match_operand_size (t, j, !j))
2037 goto mismatch;
2038
2039 if ((i.flags[!j] & Operand_Mem) && !match_mem_size (t, j, !j))
2040 goto mismatch;
2041 }
2042
2043 return match | MATCH_REVERSE;
2044 }
2045
2046 static INLINE int
2047 operand_type_match (i386_operand_type overlap,
2048 i386_operand_type given)
2049 {
2050 i386_operand_type temp = overlap;
2051
2052 temp.bitfield.jumpabsolute = 0;
2053 temp.bitfield.unspecified = 0;
2054 temp.bitfield.byte = 0;
2055 temp.bitfield.word = 0;
2056 temp.bitfield.dword = 0;
2057 temp.bitfield.fword = 0;
2058 temp.bitfield.qword = 0;
2059 temp.bitfield.tbyte = 0;
2060 temp.bitfield.xmmword = 0;
2061 temp.bitfield.ymmword = 0;
2062 temp.bitfield.zmmword = 0;
2063 if (operand_type_all_zero (&temp))
2064 goto mismatch;
2065
2066 if (given.bitfield.baseindex == overlap.bitfield.baseindex
2067 && given.bitfield.jumpabsolute == overlap.bitfield.jumpabsolute)
2068 return 1;
2069
2070 mismatch:
2071 i.error = operand_type_mismatch;
2072 return 0;
2073 }
2074
2075 /* If given types g0 and g1 are registers they must be of the same type
2076 unless the expected operand type register overlap is null.
2077 Memory operand size of certain SIMD instructions is also being checked
2078 here. */
2079
2080 static INLINE int
2081 operand_type_register_match (i386_operand_type g0,
2082 i386_operand_type t0,
2083 i386_operand_type g1,
2084 i386_operand_type t1)
2085 {
2086 if (!g0.bitfield.reg
2087 && !g0.bitfield.regsimd
2088 && (!operand_type_check (g0, anymem)
2089 || g0.bitfield.unspecified
2090 || !t0.bitfield.regsimd))
2091 return 1;
2092
2093 if (!g1.bitfield.reg
2094 && !g1.bitfield.regsimd
2095 && (!operand_type_check (g1, anymem)
2096 || g1.bitfield.unspecified
2097 || !t1.bitfield.regsimd))
2098 return 1;
2099
2100 if (g0.bitfield.byte == g1.bitfield.byte
2101 && g0.bitfield.word == g1.bitfield.word
2102 && g0.bitfield.dword == g1.bitfield.dword
2103 && g0.bitfield.qword == g1.bitfield.qword
2104 && g0.bitfield.xmmword == g1.bitfield.xmmword
2105 && g0.bitfield.ymmword == g1.bitfield.ymmword
2106 && g0.bitfield.zmmword == g1.bitfield.zmmword)
2107 return 1;
2108
2109 if (!(t0.bitfield.byte & t1.bitfield.byte)
2110 && !(t0.bitfield.word & t1.bitfield.word)
2111 && !(t0.bitfield.dword & t1.bitfield.dword)
2112 && !(t0.bitfield.qword & t1.bitfield.qword)
2113 && !(t0.bitfield.xmmword & t1.bitfield.xmmword)
2114 && !(t0.bitfield.ymmword & t1.bitfield.ymmword)
2115 && !(t0.bitfield.zmmword & t1.bitfield.zmmword))
2116 return 1;
2117
2118 i.error = register_type_mismatch;
2119
2120 return 0;
2121 }
2122
2123 static INLINE unsigned int
2124 register_number (const reg_entry *r)
2125 {
2126 unsigned int nr = r->reg_num;
2127
2128 if (r->reg_flags & RegRex)
2129 nr += 8;
2130
2131 if (r->reg_flags & RegVRex)
2132 nr += 16;
2133
2134 return nr;
2135 }
2136
2137 static INLINE unsigned int
2138 mode_from_disp_size (i386_operand_type t)
2139 {
2140 if (t.bitfield.disp8)
2141 return 1;
2142 else if (t.bitfield.disp16
2143 || t.bitfield.disp32
2144 || t.bitfield.disp32s)
2145 return 2;
2146 else
2147 return 0;
2148 }
2149
2150 static INLINE int
2151 fits_in_signed_byte (addressT num)
2152 {
2153 return num + 0x80 <= 0xff;
2154 }
2155
2156 static INLINE int
2157 fits_in_unsigned_byte (addressT num)
2158 {
2159 return num <= 0xff;
2160 }
2161
2162 static INLINE int
2163 fits_in_unsigned_word (addressT num)
2164 {
2165 return num <= 0xffff;
2166 }
2167
2168 static INLINE int
2169 fits_in_signed_word (addressT num)
2170 {
2171 return num + 0x8000 <= 0xffff;
2172 }
2173
2174 static INLINE int
2175 fits_in_signed_long (addressT num ATTRIBUTE_UNUSED)
2176 {
2177 #ifndef BFD64
2178 return 1;
2179 #else
2180 return num + 0x80000000 <= 0xffffffff;
2181 #endif
2182 } /* fits_in_signed_long() */
2183
2184 static INLINE int
2185 fits_in_unsigned_long (addressT num ATTRIBUTE_UNUSED)
2186 {
2187 #ifndef BFD64
2188 return 1;
2189 #else
2190 return num <= 0xffffffff;
2191 #endif
2192 } /* fits_in_unsigned_long() */
2193
2194 static INLINE int
2195 fits_in_disp8 (offsetT num)
2196 {
2197 int shift = i.memshift;
2198 unsigned int mask;
2199
2200 if (shift == -1)
2201 abort ();
2202
2203 mask = (1 << shift) - 1;
2204
2205 /* Return 0 if NUM isn't properly aligned. */
2206 if ((num & mask))
2207 return 0;
2208
2209 /* Check if NUM will fit in 8bit after shift. */
2210 return fits_in_signed_byte (num >> shift);
2211 }
2212
2213 static INLINE int
2214 fits_in_imm4 (offsetT num)
2215 {
2216 return (num & 0xf) == num;
2217 }
2218
2219 static i386_operand_type
2220 smallest_imm_type (offsetT num)
2221 {
2222 i386_operand_type t;
2223
2224 operand_type_set (&t, 0);
2225 t.bitfield.imm64 = 1;
2226
2227 if (cpu_arch_tune != PROCESSOR_I486 && num == 1)
2228 {
2229 /* This code is disabled on the 486 because all the Imm1 forms
2230 in the opcode table are slower on the i486. They're the
2231 versions with the implicitly specified single-position
2232 displacement, which has another syntax if you really want to
2233 use that form. */
2234 t.bitfield.imm1 = 1;
2235 t.bitfield.imm8 = 1;
2236 t.bitfield.imm8s = 1;
2237 t.bitfield.imm16 = 1;
2238 t.bitfield.imm32 = 1;
2239 t.bitfield.imm32s = 1;
2240 }
2241 else if (fits_in_signed_byte (num))
2242 {
2243 t.bitfield.imm8 = 1;
2244 t.bitfield.imm8s = 1;
2245 t.bitfield.imm16 = 1;
2246 t.bitfield.imm32 = 1;
2247 t.bitfield.imm32s = 1;
2248 }
2249 else if (fits_in_unsigned_byte (num))
2250 {
2251 t.bitfield.imm8 = 1;
2252 t.bitfield.imm16 = 1;
2253 t.bitfield.imm32 = 1;
2254 t.bitfield.imm32s = 1;
2255 }
2256 else if (fits_in_signed_word (num) || fits_in_unsigned_word (num))
2257 {
2258 t.bitfield.imm16 = 1;
2259 t.bitfield.imm32 = 1;
2260 t.bitfield.imm32s = 1;
2261 }
2262 else if (fits_in_signed_long (num))
2263 {
2264 t.bitfield.imm32 = 1;
2265 t.bitfield.imm32s = 1;
2266 }
2267 else if (fits_in_unsigned_long (num))
2268 t.bitfield.imm32 = 1;
2269
2270 return t;
2271 }
2272
2273 static offsetT
2274 offset_in_range (offsetT val, int size)
2275 {
2276 addressT mask;
2277
2278 switch (size)
2279 {
2280 case 1: mask = ((addressT) 1 << 8) - 1; break;
2281 case 2: mask = ((addressT) 1 << 16) - 1; break;
2282 case 4: mask = ((addressT) 2 << 31) - 1; break;
2283 #ifdef BFD64
2284 case 8: mask = ((addressT) 2 << 63) - 1; break;
2285 #endif
2286 default: abort ();
2287 }
2288
2289 #ifdef BFD64
2290 /* If BFD64, sign extend val for 32bit address mode. */
2291 if (flag_code != CODE_64BIT
2292 || i.prefix[ADDR_PREFIX])
2293 if ((val & ~(((addressT) 2 << 31) - 1)) == 0)
2294 val = (val ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
2295 #endif
2296
2297 if ((val & ~mask) != 0 && (val & ~mask) != ~mask)
2298 {
2299 char buf1[40], buf2[40];
2300
2301 sprint_value (buf1, val);
2302 sprint_value (buf2, val & mask);
2303 as_warn (_("%s shortened to %s"), buf1, buf2);
2304 }
2305 return val & mask;
2306 }
2307
2308 enum PREFIX_GROUP
2309 {
2310 PREFIX_EXIST = 0,
2311 PREFIX_LOCK,
2312 PREFIX_REP,
2313 PREFIX_DS,
2314 PREFIX_OTHER
2315 };
2316
2317 /* Returns
2318 a. PREFIX_EXIST if attempting to add a prefix where one from the
2319 same class already exists.
2320 b. PREFIX_LOCK if lock prefix is added.
2321 c. PREFIX_REP if rep/repne prefix is added.
2322 d. PREFIX_DS if ds prefix is added.
2323 e. PREFIX_OTHER if other prefix is added.
2324 */
2325
2326 static enum PREFIX_GROUP
2327 add_prefix (unsigned int prefix)
2328 {
2329 enum PREFIX_GROUP ret = PREFIX_OTHER;
2330 unsigned int q;
2331
2332 if (prefix >= REX_OPCODE && prefix < REX_OPCODE + 16
2333 && flag_code == CODE_64BIT)
2334 {
2335 if ((i.prefix[REX_PREFIX] & prefix & REX_W)
2336 || (i.prefix[REX_PREFIX] & prefix & REX_R)
2337 || (i.prefix[REX_PREFIX] & prefix & REX_X)
2338 || (i.prefix[REX_PREFIX] & prefix & REX_B))
2339 ret = PREFIX_EXIST;
2340 q = REX_PREFIX;
2341 }
2342 else
2343 {
2344 switch (prefix)
2345 {
2346 default:
2347 abort ();
2348
2349 case DS_PREFIX_OPCODE:
2350 ret = PREFIX_DS;
2351 /* Fall through. */
2352 case CS_PREFIX_OPCODE:
2353 case ES_PREFIX_OPCODE:
2354 case FS_PREFIX_OPCODE:
2355 case GS_PREFIX_OPCODE:
2356 case SS_PREFIX_OPCODE:
2357 q = SEG_PREFIX;
2358 break;
2359
2360 case REPNE_PREFIX_OPCODE:
2361 case REPE_PREFIX_OPCODE:
2362 q = REP_PREFIX;
2363 ret = PREFIX_REP;
2364 break;
2365
2366 case LOCK_PREFIX_OPCODE:
2367 q = LOCK_PREFIX;
2368 ret = PREFIX_LOCK;
2369 break;
2370
2371 case FWAIT_OPCODE:
2372 q = WAIT_PREFIX;
2373 break;
2374
2375 case ADDR_PREFIX_OPCODE:
2376 q = ADDR_PREFIX;
2377 break;
2378
2379 case DATA_PREFIX_OPCODE:
2380 q = DATA_PREFIX;
2381 break;
2382 }
2383 if (i.prefix[q] != 0)
2384 ret = PREFIX_EXIST;
2385 }
2386
2387 if (ret)
2388 {
2389 if (!i.prefix[q])
2390 ++i.prefixes;
2391 i.prefix[q] |= prefix;
2392 }
2393 else
2394 as_bad (_("same type of prefix used twice"));
2395
2396 return ret;
2397 }
2398
2399 static void
2400 update_code_flag (int value, int check)
2401 {
2402 PRINTF_LIKE ((*as_error));
2403
2404 flag_code = (enum flag_code) value;
2405 if (flag_code == CODE_64BIT)
2406 {
2407 cpu_arch_flags.bitfield.cpu64 = 1;
2408 cpu_arch_flags.bitfield.cpuno64 = 0;
2409 }
2410 else
2411 {
2412 cpu_arch_flags.bitfield.cpu64 = 0;
2413 cpu_arch_flags.bitfield.cpuno64 = 1;
2414 }
2415 if (value == CODE_64BIT && !cpu_arch_flags.bitfield.cpulm )
2416 {
2417 if (check)
2418 as_error = as_fatal;
2419 else
2420 as_error = as_bad;
2421 (*as_error) (_("64bit mode not supported on `%s'."),
2422 cpu_arch_name ? cpu_arch_name : default_arch);
2423 }
2424 if (value == CODE_32BIT && !cpu_arch_flags.bitfield.cpui386)
2425 {
2426 if (check)
2427 as_error = as_fatal;
2428 else
2429 as_error = as_bad;
2430 (*as_error) (_("32bit mode not supported on `%s'."),
2431 cpu_arch_name ? cpu_arch_name : default_arch);
2432 }
2433 stackop_size = '\0';
2434 }
2435
2436 static void
2437 set_code_flag (int value)
2438 {
2439 update_code_flag (value, 0);
2440 }
2441
2442 static void
2443 set_16bit_gcc_code_flag (int new_code_flag)
2444 {
2445 flag_code = (enum flag_code) new_code_flag;
2446 if (flag_code != CODE_16BIT)
2447 abort ();
2448 cpu_arch_flags.bitfield.cpu64 = 0;
2449 cpu_arch_flags.bitfield.cpuno64 = 1;
2450 stackop_size = LONG_MNEM_SUFFIX;
2451 }
2452
2453 static void
2454 set_intel_syntax (int syntax_flag)
2455 {
2456 /* Find out if register prefixing is specified. */
2457 int ask_naked_reg = 0;
2458
2459 SKIP_WHITESPACE ();
2460 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2461 {
2462 char *string;
2463 int e = get_symbol_name (&string);
2464
2465 if (strcmp (string, "prefix") == 0)
2466 ask_naked_reg = 1;
2467 else if (strcmp (string, "noprefix") == 0)
2468 ask_naked_reg = -1;
2469 else
2470 as_bad (_("bad argument to syntax directive."));
2471 (void) restore_line_pointer (e);
2472 }
2473 demand_empty_rest_of_line ();
2474
2475 intel_syntax = syntax_flag;
2476
2477 if (ask_naked_reg == 0)
2478 allow_naked_reg = (intel_syntax
2479 && (bfd_get_symbol_leading_char (stdoutput) != '\0'));
2480 else
2481 allow_naked_reg = (ask_naked_reg < 0);
2482
2483 expr_set_rank (O_full_ptr, syntax_flag ? 10 : 0);
2484
2485 identifier_chars['%'] = intel_syntax && allow_naked_reg ? '%' : 0;
2486 identifier_chars['$'] = intel_syntax ? '$' : 0;
2487 register_prefix = allow_naked_reg ? "" : "%";
2488 }
2489
2490 static void
2491 set_intel_mnemonic (int mnemonic_flag)
2492 {
2493 intel_mnemonic = mnemonic_flag;
2494 }
2495
2496 static void
2497 set_allow_index_reg (int flag)
2498 {
2499 allow_index_reg = flag;
2500 }
2501
2502 static void
2503 set_check (int what)
2504 {
2505 enum check_kind *kind;
2506 const char *str;
2507
2508 if (what)
2509 {
2510 kind = &operand_check;
2511 str = "operand";
2512 }
2513 else
2514 {
2515 kind = &sse_check;
2516 str = "sse";
2517 }
2518
2519 SKIP_WHITESPACE ();
2520
2521 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2522 {
2523 char *string;
2524 int e = get_symbol_name (&string);
2525
2526 if (strcmp (string, "none") == 0)
2527 *kind = check_none;
2528 else if (strcmp (string, "warning") == 0)
2529 *kind = check_warning;
2530 else if (strcmp (string, "error") == 0)
2531 *kind = check_error;
2532 else
2533 as_bad (_("bad argument to %s_check directive."), str);
2534 (void) restore_line_pointer (e);
2535 }
2536 else
2537 as_bad (_("missing argument for %s_check directive"), str);
2538
2539 demand_empty_rest_of_line ();
2540 }
2541
2542 static void
2543 check_cpu_arch_compatible (const char *name ATTRIBUTE_UNUSED,
2544 i386_cpu_flags new_flag ATTRIBUTE_UNUSED)
2545 {
2546 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
2547 static const char *arch;
2548
2549 /* Intel LIOM is only supported on ELF. */
2550 if (!IS_ELF)
2551 return;
2552
2553 if (!arch)
2554 {
2555 /* Use cpu_arch_name if it is set in md_parse_option. Otherwise
2556 use default_arch. */
2557 arch = cpu_arch_name;
2558 if (!arch)
2559 arch = default_arch;
2560 }
2561
2562 /* If we are targeting Intel MCU, we must enable it. */
2563 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_IAMCU
2564 || new_flag.bitfield.cpuiamcu)
2565 return;
2566
2567 /* If we are targeting Intel L1OM, we must enable it. */
2568 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_L1OM
2569 || new_flag.bitfield.cpul1om)
2570 return;
2571
2572 /* If we are targeting Intel K1OM, we must enable it. */
2573 if (get_elf_backend_data (stdoutput)->elf_machine_code != EM_K1OM
2574 || new_flag.bitfield.cpuk1om)
2575 return;
2576
2577 as_bad (_("`%s' is not supported on `%s'"), name, arch);
2578 #endif
2579 }
2580
2581 static void
2582 set_cpu_arch (int dummy ATTRIBUTE_UNUSED)
2583 {
2584 SKIP_WHITESPACE ();
2585
2586 if (!is_end_of_line[(unsigned char) *input_line_pointer])
2587 {
2588 char *string;
2589 int e = get_symbol_name (&string);
2590 unsigned int j;
2591 i386_cpu_flags flags;
2592
2593 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
2594 {
2595 if (strcmp (string, cpu_arch[j].name) == 0)
2596 {
2597 check_cpu_arch_compatible (string, cpu_arch[j].flags);
2598
2599 if (*string != '.')
2600 {
2601 cpu_arch_name = cpu_arch[j].name;
2602 cpu_sub_arch_name = NULL;
2603 cpu_arch_flags = cpu_arch[j].flags;
2604 if (flag_code == CODE_64BIT)
2605 {
2606 cpu_arch_flags.bitfield.cpu64 = 1;
2607 cpu_arch_flags.bitfield.cpuno64 = 0;
2608 }
2609 else
2610 {
2611 cpu_arch_flags.bitfield.cpu64 = 0;
2612 cpu_arch_flags.bitfield.cpuno64 = 1;
2613 }
2614 cpu_arch_isa = cpu_arch[j].type;
2615 cpu_arch_isa_flags = cpu_arch[j].flags;
2616 if (!cpu_arch_tune_set)
2617 {
2618 cpu_arch_tune = cpu_arch_isa;
2619 cpu_arch_tune_flags = cpu_arch_isa_flags;
2620 }
2621 break;
2622 }
2623
2624 flags = cpu_flags_or (cpu_arch_flags,
2625 cpu_arch[j].flags);
2626
2627 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2628 {
2629 if (cpu_sub_arch_name)
2630 {
2631 char *name = cpu_sub_arch_name;
2632 cpu_sub_arch_name = concat (name,
2633 cpu_arch[j].name,
2634 (const char *) NULL);
2635 free (name);
2636 }
2637 else
2638 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
2639 cpu_arch_flags = flags;
2640 cpu_arch_isa_flags = flags;
2641 }
2642 else
2643 cpu_arch_isa_flags
2644 = cpu_flags_or (cpu_arch_isa_flags,
2645 cpu_arch[j].flags);
2646 (void) restore_line_pointer (e);
2647 demand_empty_rest_of_line ();
2648 return;
2649 }
2650 }
2651
2652 if (*string == '.' && j >= ARRAY_SIZE (cpu_arch))
2653 {
2654 /* Disable an ISA extension. */
2655 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
2656 if (strcmp (string + 1, cpu_noarch [j].name) == 0)
2657 {
2658 flags = cpu_flags_and_not (cpu_arch_flags,
2659 cpu_noarch[j].flags);
2660 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
2661 {
2662 if (cpu_sub_arch_name)
2663 {
2664 char *name = cpu_sub_arch_name;
2665 cpu_sub_arch_name = concat (name, string,
2666 (const char *) NULL);
2667 free (name);
2668 }
2669 else
2670 cpu_sub_arch_name = xstrdup (string);
2671 cpu_arch_flags = flags;
2672 cpu_arch_isa_flags = flags;
2673 }
2674 (void) restore_line_pointer (e);
2675 demand_empty_rest_of_line ();
2676 return;
2677 }
2678
2679 j = ARRAY_SIZE (cpu_arch);
2680 }
2681
2682 if (j >= ARRAY_SIZE (cpu_arch))
2683 as_bad (_("no such architecture: `%s'"), string);
2684
2685 *input_line_pointer = e;
2686 }
2687 else
2688 as_bad (_("missing cpu architecture"));
2689
2690 no_cond_jump_promotion = 0;
2691 if (*input_line_pointer == ','
2692 && !is_end_of_line[(unsigned char) input_line_pointer[1]])
2693 {
2694 char *string;
2695 char e;
2696
2697 ++input_line_pointer;
2698 e = get_symbol_name (&string);
2699
2700 if (strcmp (string, "nojumps") == 0)
2701 no_cond_jump_promotion = 1;
2702 else if (strcmp (string, "jumps") == 0)
2703 ;
2704 else
2705 as_bad (_("no such architecture modifier: `%s'"), string);
2706
2707 (void) restore_line_pointer (e);
2708 }
2709
2710 demand_empty_rest_of_line ();
2711 }
2712
2713 enum bfd_architecture
2714 i386_arch (void)
2715 {
2716 if (cpu_arch_isa == PROCESSOR_L1OM)
2717 {
2718 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2719 || flag_code != CODE_64BIT)
2720 as_fatal (_("Intel L1OM is 64bit ELF only"));
2721 return bfd_arch_l1om;
2722 }
2723 else if (cpu_arch_isa == PROCESSOR_K1OM)
2724 {
2725 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2726 || flag_code != CODE_64BIT)
2727 as_fatal (_("Intel K1OM is 64bit ELF only"));
2728 return bfd_arch_k1om;
2729 }
2730 else if (cpu_arch_isa == PROCESSOR_IAMCU)
2731 {
2732 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2733 || flag_code == CODE_64BIT)
2734 as_fatal (_("Intel MCU is 32bit ELF only"));
2735 return bfd_arch_iamcu;
2736 }
2737 else
2738 return bfd_arch_i386;
2739 }
2740
2741 unsigned long
2742 i386_mach (void)
2743 {
2744 if (!strncmp (default_arch, "x86_64", 6))
2745 {
2746 if (cpu_arch_isa == PROCESSOR_L1OM)
2747 {
2748 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2749 || default_arch[6] != '\0')
2750 as_fatal (_("Intel L1OM is 64bit ELF only"));
2751 return bfd_mach_l1om;
2752 }
2753 else if (cpu_arch_isa == PROCESSOR_K1OM)
2754 {
2755 if (OUTPUT_FLAVOR != bfd_target_elf_flavour
2756 || default_arch[6] != '\0')
2757 as_fatal (_("Intel K1OM is 64bit ELF only"));
2758 return bfd_mach_k1om;
2759 }
2760 else if (default_arch[6] == '\0')
2761 return bfd_mach_x86_64;
2762 else
2763 return bfd_mach_x64_32;
2764 }
2765 else if (!strcmp (default_arch, "i386")
2766 || !strcmp (default_arch, "iamcu"))
2767 {
2768 if (cpu_arch_isa == PROCESSOR_IAMCU)
2769 {
2770 if (OUTPUT_FLAVOR != bfd_target_elf_flavour)
2771 as_fatal (_("Intel MCU is 32bit ELF only"));
2772 return bfd_mach_i386_iamcu;
2773 }
2774 else
2775 return bfd_mach_i386_i386;
2776 }
2777 else
2778 as_fatal (_("unknown architecture"));
2779 }
2780 \f
2781 void
2782 md_begin (void)
2783 {
2784 const char *hash_err;
2785
2786 /* Support pseudo prefixes like {disp32}. */
2787 lex_type ['{'] = LEX_BEGIN_NAME;
2788
2789 /* Initialize op_hash hash table. */
2790 op_hash = hash_new ();
2791
2792 {
2793 const insn_template *optab;
2794 templates *core_optab;
2795
2796 /* Setup for loop. */
2797 optab = i386_optab;
2798 core_optab = XNEW (templates);
2799 core_optab->start = optab;
2800
2801 while (1)
2802 {
2803 ++optab;
2804 if (optab->name == NULL
2805 || strcmp (optab->name, (optab - 1)->name) != 0)
2806 {
2807 /* different name --> ship out current template list;
2808 add to hash table; & begin anew. */
2809 core_optab->end = optab;
2810 hash_err = hash_insert (op_hash,
2811 (optab - 1)->name,
2812 (void *) core_optab);
2813 if (hash_err)
2814 {
2815 as_fatal (_("can't hash %s: %s"),
2816 (optab - 1)->name,
2817 hash_err);
2818 }
2819 if (optab->name == NULL)
2820 break;
2821 core_optab = XNEW (templates);
2822 core_optab->start = optab;
2823 }
2824 }
2825 }
2826
2827 /* Initialize reg_hash hash table. */
2828 reg_hash = hash_new ();
2829 {
2830 const reg_entry *regtab;
2831 unsigned int regtab_size = i386_regtab_size;
2832
2833 for (regtab = i386_regtab; regtab_size--; regtab++)
2834 {
2835 hash_err = hash_insert (reg_hash, regtab->reg_name, (void *) regtab);
2836 if (hash_err)
2837 as_fatal (_("can't hash %s: %s"),
2838 regtab->reg_name,
2839 hash_err);
2840 }
2841 }
2842
2843 /* Fill in lexical tables: mnemonic_chars, operand_chars. */
2844 {
2845 int c;
2846 char *p;
2847
2848 for (c = 0; c < 256; c++)
2849 {
2850 if (ISDIGIT (c))
2851 {
2852 digit_chars[c] = c;
2853 mnemonic_chars[c] = c;
2854 register_chars[c] = c;
2855 operand_chars[c] = c;
2856 }
2857 else if (ISLOWER (c))
2858 {
2859 mnemonic_chars[c] = c;
2860 register_chars[c] = c;
2861 operand_chars[c] = c;
2862 }
2863 else if (ISUPPER (c))
2864 {
2865 mnemonic_chars[c] = TOLOWER (c);
2866 register_chars[c] = mnemonic_chars[c];
2867 operand_chars[c] = c;
2868 }
2869 else if (c == '{' || c == '}')
2870 {
2871 mnemonic_chars[c] = c;
2872 operand_chars[c] = c;
2873 }
2874
2875 if (ISALPHA (c) || ISDIGIT (c))
2876 identifier_chars[c] = c;
2877 else if (c >= 128)
2878 {
2879 identifier_chars[c] = c;
2880 operand_chars[c] = c;
2881 }
2882 }
2883
2884 #ifdef LEX_AT
2885 identifier_chars['@'] = '@';
2886 #endif
2887 #ifdef LEX_QM
2888 identifier_chars['?'] = '?';
2889 operand_chars['?'] = '?';
2890 #endif
2891 digit_chars['-'] = '-';
2892 mnemonic_chars['_'] = '_';
2893 mnemonic_chars['-'] = '-';
2894 mnemonic_chars['.'] = '.';
2895 identifier_chars['_'] = '_';
2896 identifier_chars['.'] = '.';
2897
2898 for (p = operand_special_chars; *p != '\0'; p++)
2899 operand_chars[(unsigned char) *p] = *p;
2900 }
2901
2902 if (flag_code == CODE_64BIT)
2903 {
2904 #if defined (OBJ_COFF) && defined (TE_PE)
2905 x86_dwarf2_return_column = (OUTPUT_FLAVOR == bfd_target_coff_flavour
2906 ? 32 : 16);
2907 #else
2908 x86_dwarf2_return_column = 16;
2909 #endif
2910 x86_cie_data_alignment = -8;
2911 }
2912 else
2913 {
2914 x86_dwarf2_return_column = 8;
2915 x86_cie_data_alignment = -4;
2916 }
2917 }
2918
2919 void
2920 i386_print_statistics (FILE *file)
2921 {
2922 hash_print_statistics (file, "i386 opcode", op_hash);
2923 hash_print_statistics (file, "i386 register", reg_hash);
2924 }
2925 \f
2926 #ifdef DEBUG386
2927
2928 /* Debugging routines for md_assemble. */
2929 static void pte (insn_template *);
2930 static void pt (i386_operand_type);
2931 static void pe (expressionS *);
2932 static void ps (symbolS *);
2933
2934 static void
2935 pi (char *line, i386_insn *x)
2936 {
2937 unsigned int j;
2938
2939 fprintf (stdout, "%s: template ", line);
2940 pte (&x->tm);
2941 fprintf (stdout, " address: base %s index %s scale %x\n",
2942 x->base_reg ? x->base_reg->reg_name : "none",
2943 x->index_reg ? x->index_reg->reg_name : "none",
2944 x->log2_scale_factor);
2945 fprintf (stdout, " modrm: mode %x reg %x reg/mem %x\n",
2946 x->rm.mode, x->rm.reg, x->rm.regmem);
2947 fprintf (stdout, " sib: base %x index %x scale %x\n",
2948 x->sib.base, x->sib.index, x->sib.scale);
2949 fprintf (stdout, " rex: 64bit %x extX %x extY %x extZ %x\n",
2950 (x->rex & REX_W) != 0,
2951 (x->rex & REX_R) != 0,
2952 (x->rex & REX_X) != 0,
2953 (x->rex & REX_B) != 0);
2954 for (j = 0; j < x->operands; j++)
2955 {
2956 fprintf (stdout, " #%d: ", j + 1);
2957 pt (x->types[j]);
2958 fprintf (stdout, "\n");
2959 if (x->types[j].bitfield.reg
2960 || x->types[j].bitfield.regmmx
2961 || x->types[j].bitfield.regsimd
2962 || x->types[j].bitfield.sreg2
2963 || x->types[j].bitfield.sreg3
2964 || x->types[j].bitfield.control
2965 || x->types[j].bitfield.debug
2966 || x->types[j].bitfield.test)
2967 fprintf (stdout, "%s\n", x->op[j].regs->reg_name);
2968 if (operand_type_check (x->types[j], imm))
2969 pe (x->op[j].imms);
2970 if (operand_type_check (x->types[j], disp))
2971 pe (x->op[j].disps);
2972 }
2973 }
2974
2975 static void
2976 pte (insn_template *t)
2977 {
2978 unsigned int j;
2979 fprintf (stdout, " %d operands ", t->operands);
2980 fprintf (stdout, "opcode %x ", t->base_opcode);
2981 if (t->extension_opcode != None)
2982 fprintf (stdout, "ext %x ", t->extension_opcode);
2983 if (t->opcode_modifier.d)
2984 fprintf (stdout, "D");
2985 if (t->opcode_modifier.w)
2986 fprintf (stdout, "W");
2987 fprintf (stdout, "\n");
2988 for (j = 0; j < t->operands; j++)
2989 {
2990 fprintf (stdout, " #%d type ", j + 1);
2991 pt (t->operand_types[j]);
2992 fprintf (stdout, "\n");
2993 }
2994 }
2995
2996 static void
2997 pe (expressionS *e)
2998 {
2999 fprintf (stdout, " operation %d\n", e->X_op);
3000 fprintf (stdout, " add_number %ld (%lx)\n",
3001 (long) e->X_add_number, (long) e->X_add_number);
3002 if (e->X_add_symbol)
3003 {
3004 fprintf (stdout, " add_symbol ");
3005 ps (e->X_add_symbol);
3006 fprintf (stdout, "\n");
3007 }
3008 if (e->X_op_symbol)
3009 {
3010 fprintf (stdout, " op_symbol ");
3011 ps (e->X_op_symbol);
3012 fprintf (stdout, "\n");
3013 }
3014 }
3015
3016 static void
3017 ps (symbolS *s)
3018 {
3019 fprintf (stdout, "%s type %s%s",
3020 S_GET_NAME (s),
3021 S_IS_EXTERNAL (s) ? "EXTERNAL " : "",
3022 segment_name (S_GET_SEGMENT (s)));
3023 }
3024
3025 static struct type_name
3026 {
3027 i386_operand_type mask;
3028 const char *name;
3029 }
3030 const type_names[] =
3031 {
3032 { OPERAND_TYPE_REG8, "r8" },
3033 { OPERAND_TYPE_REG16, "r16" },
3034 { OPERAND_TYPE_REG32, "r32" },
3035 { OPERAND_TYPE_REG64, "r64" },
3036 { OPERAND_TYPE_IMM8, "i8" },
3037 { OPERAND_TYPE_IMM8, "i8s" },
3038 { OPERAND_TYPE_IMM16, "i16" },
3039 { OPERAND_TYPE_IMM32, "i32" },
3040 { OPERAND_TYPE_IMM32S, "i32s" },
3041 { OPERAND_TYPE_IMM64, "i64" },
3042 { OPERAND_TYPE_IMM1, "i1" },
3043 { OPERAND_TYPE_BASEINDEX, "BaseIndex" },
3044 { OPERAND_TYPE_DISP8, "d8" },
3045 { OPERAND_TYPE_DISP16, "d16" },
3046 { OPERAND_TYPE_DISP32, "d32" },
3047 { OPERAND_TYPE_DISP32S, "d32s" },
3048 { OPERAND_TYPE_DISP64, "d64" },
3049 { OPERAND_TYPE_INOUTPORTREG, "InOutPortReg" },
3050 { OPERAND_TYPE_SHIFTCOUNT, "ShiftCount" },
3051 { OPERAND_TYPE_CONTROL, "control reg" },
3052 { OPERAND_TYPE_TEST, "test reg" },
3053 { OPERAND_TYPE_DEBUG, "debug reg" },
3054 { OPERAND_TYPE_FLOATREG, "FReg" },
3055 { OPERAND_TYPE_FLOATACC, "FAcc" },
3056 { OPERAND_TYPE_SREG2, "SReg2" },
3057 { OPERAND_TYPE_SREG3, "SReg3" },
3058 { OPERAND_TYPE_ACC, "Acc" },
3059 { OPERAND_TYPE_JUMPABSOLUTE, "Jump Absolute" },
3060 { OPERAND_TYPE_REGMMX, "rMMX" },
3061 { OPERAND_TYPE_REGXMM, "rXMM" },
3062 { OPERAND_TYPE_REGYMM, "rYMM" },
3063 { OPERAND_TYPE_REGZMM, "rZMM" },
3064 { OPERAND_TYPE_REGMASK, "Mask reg" },
3065 { OPERAND_TYPE_ESSEG, "es" },
3066 };
3067
3068 static void
3069 pt (i386_operand_type t)
3070 {
3071 unsigned int j;
3072 i386_operand_type a;
3073
3074 for (j = 0; j < ARRAY_SIZE (type_names); j++)
3075 {
3076 a = operand_type_and (t, type_names[j].mask);
3077 if (!operand_type_all_zero (&a))
3078 fprintf (stdout, "%s, ", type_names[j].name);
3079 }
3080 fflush (stdout);
3081 }
3082
3083 #endif /* DEBUG386 */
3084 \f
3085 static bfd_reloc_code_real_type
3086 reloc (unsigned int size,
3087 int pcrel,
3088 int sign,
3089 bfd_reloc_code_real_type other)
3090 {
3091 if (other != NO_RELOC)
3092 {
3093 reloc_howto_type *rel;
3094
3095 if (size == 8)
3096 switch (other)
3097 {
3098 case BFD_RELOC_X86_64_GOT32:
3099 return BFD_RELOC_X86_64_GOT64;
3100 break;
3101 case BFD_RELOC_X86_64_GOTPLT64:
3102 return BFD_RELOC_X86_64_GOTPLT64;
3103 break;
3104 case BFD_RELOC_X86_64_PLTOFF64:
3105 return BFD_RELOC_X86_64_PLTOFF64;
3106 break;
3107 case BFD_RELOC_X86_64_GOTPC32:
3108 other = BFD_RELOC_X86_64_GOTPC64;
3109 break;
3110 case BFD_RELOC_X86_64_GOTPCREL:
3111 other = BFD_RELOC_X86_64_GOTPCREL64;
3112 break;
3113 case BFD_RELOC_X86_64_TPOFF32:
3114 other = BFD_RELOC_X86_64_TPOFF64;
3115 break;
3116 case BFD_RELOC_X86_64_DTPOFF32:
3117 other = BFD_RELOC_X86_64_DTPOFF64;
3118 break;
3119 default:
3120 break;
3121 }
3122
3123 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3124 if (other == BFD_RELOC_SIZE32)
3125 {
3126 if (size == 8)
3127 other = BFD_RELOC_SIZE64;
3128 if (pcrel)
3129 {
3130 as_bad (_("there are no pc-relative size relocations"));
3131 return NO_RELOC;
3132 }
3133 }
3134 #endif
3135
3136 /* Sign-checking 4-byte relocations in 16-/32-bit code is pointless. */
3137 if (size == 4 && (flag_code != CODE_64BIT || disallow_64bit_reloc))
3138 sign = -1;
3139
3140 rel = bfd_reloc_type_lookup (stdoutput, other);
3141 if (!rel)
3142 as_bad (_("unknown relocation (%u)"), other);
3143 else if (size != bfd_get_reloc_size (rel))
3144 as_bad (_("%u-byte relocation cannot be applied to %u-byte field"),
3145 bfd_get_reloc_size (rel),
3146 size);
3147 else if (pcrel && !rel->pc_relative)
3148 as_bad (_("non-pc-relative relocation for pc-relative field"));
3149 else if ((rel->complain_on_overflow == complain_overflow_signed
3150 && !sign)
3151 || (rel->complain_on_overflow == complain_overflow_unsigned
3152 && sign > 0))
3153 as_bad (_("relocated field and relocation type differ in signedness"));
3154 else
3155 return other;
3156 return NO_RELOC;
3157 }
3158
3159 if (pcrel)
3160 {
3161 if (!sign)
3162 as_bad (_("there are no unsigned pc-relative relocations"));
3163 switch (size)
3164 {
3165 case 1: return BFD_RELOC_8_PCREL;
3166 case 2: return BFD_RELOC_16_PCREL;
3167 case 4: return BFD_RELOC_32_PCREL;
3168 case 8: return BFD_RELOC_64_PCREL;
3169 }
3170 as_bad (_("cannot do %u byte pc-relative relocation"), size);
3171 }
3172 else
3173 {
3174 if (sign > 0)
3175 switch (size)
3176 {
3177 case 4: return BFD_RELOC_X86_64_32S;
3178 }
3179 else
3180 switch (size)
3181 {
3182 case 1: return BFD_RELOC_8;
3183 case 2: return BFD_RELOC_16;
3184 case 4: return BFD_RELOC_32;
3185 case 8: return BFD_RELOC_64;
3186 }
3187 as_bad (_("cannot do %s %u byte relocation"),
3188 sign > 0 ? "signed" : "unsigned", size);
3189 }
3190
3191 return NO_RELOC;
3192 }
3193
3194 /* Here we decide which fixups can be adjusted to make them relative to
3195 the beginning of the section instead of the symbol. Basically we need
3196 to make sure that the dynamic relocations are done correctly, so in
3197 some cases we force the original symbol to be used. */
3198
3199 int
3200 tc_i386_fix_adjustable (fixS *fixP ATTRIBUTE_UNUSED)
3201 {
3202 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
3203 if (!IS_ELF)
3204 return 1;
3205
3206 /* Don't adjust pc-relative references to merge sections in 64-bit
3207 mode. */
3208 if (use_rela_relocations
3209 && (S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_MERGE) != 0
3210 && fixP->fx_pcrel)
3211 return 0;
3212
3213 /* The x86_64 GOTPCREL are represented as 32bit PCrel relocations
3214 and changed later by validate_fix. */
3215 if (GOT_symbol && fixP->fx_subsy == GOT_symbol
3216 && fixP->fx_r_type == BFD_RELOC_32_PCREL)
3217 return 0;
3218
3219 /* Adjust_reloc_syms doesn't know about the GOT. Need to keep symbol
3220 for size relocations. */
3221 if (fixP->fx_r_type == BFD_RELOC_SIZE32
3222 || fixP->fx_r_type == BFD_RELOC_SIZE64
3223 || fixP->fx_r_type == BFD_RELOC_386_GOTOFF
3224 || fixP->fx_r_type == BFD_RELOC_386_PLT32
3225 || fixP->fx_r_type == BFD_RELOC_386_GOT32
3226 || fixP->fx_r_type == BFD_RELOC_386_GOT32X
3227 || fixP->fx_r_type == BFD_RELOC_386_TLS_GD
3228 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDM
3229 || fixP->fx_r_type == BFD_RELOC_386_TLS_LDO_32
3230 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE_32
3231 || fixP->fx_r_type == BFD_RELOC_386_TLS_IE
3232 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTIE
3233 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE_32
3234 || fixP->fx_r_type == BFD_RELOC_386_TLS_LE
3235 || fixP->fx_r_type == BFD_RELOC_386_TLS_GOTDESC
3236 || fixP->fx_r_type == BFD_RELOC_386_TLS_DESC_CALL
3237 || fixP->fx_r_type == BFD_RELOC_X86_64_PLT32
3238 || fixP->fx_r_type == BFD_RELOC_X86_64_GOT32
3239 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCREL
3240 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPCRELX
3241 || fixP->fx_r_type == BFD_RELOC_X86_64_REX_GOTPCRELX
3242 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSGD
3243 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSLD
3244 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF32
3245 || fixP->fx_r_type == BFD_RELOC_X86_64_DTPOFF64
3246 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTTPOFF
3247 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF32
3248 || fixP->fx_r_type == BFD_RELOC_X86_64_TPOFF64
3249 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTOFF64
3250 || fixP->fx_r_type == BFD_RELOC_X86_64_GOTPC32_TLSDESC
3251 || fixP->fx_r_type == BFD_RELOC_X86_64_TLSDESC_CALL
3252 || fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT
3253 || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
3254 return 0;
3255 #endif
3256 return 1;
3257 }
3258
3259 static int
3260 intel_float_operand (const char *mnemonic)
3261 {
3262 /* Note that the value returned is meaningful only for opcodes with (memory)
3263 operands, hence the code here is free to improperly handle opcodes that
3264 have no operands (for better performance and smaller code). */
3265
3266 if (mnemonic[0] != 'f')
3267 return 0; /* non-math */
3268
3269 switch (mnemonic[1])
3270 {
3271 /* fclex, fdecstp, fdisi, femms, feni, fincstp, finit, fsetpm, and
3272 the fs segment override prefix not currently handled because no
3273 call path can make opcodes without operands get here */
3274 case 'i':
3275 return 2 /* integer op */;
3276 case 'l':
3277 if (mnemonic[2] == 'd' && (mnemonic[3] == 'c' || mnemonic[3] == 'e'))
3278 return 3; /* fldcw/fldenv */
3279 break;
3280 case 'n':
3281 if (mnemonic[2] != 'o' /* fnop */)
3282 return 3; /* non-waiting control op */
3283 break;
3284 case 'r':
3285 if (mnemonic[2] == 's')
3286 return 3; /* frstor/frstpm */
3287 break;
3288 case 's':
3289 if (mnemonic[2] == 'a')
3290 return 3; /* fsave */
3291 if (mnemonic[2] == 't')
3292 {
3293 switch (mnemonic[3])
3294 {
3295 case 'c': /* fstcw */
3296 case 'd': /* fstdw */
3297 case 'e': /* fstenv */
3298 case 's': /* fsts[gw] */
3299 return 3;
3300 }
3301 }
3302 break;
3303 case 'x':
3304 if (mnemonic[2] == 'r' || mnemonic[2] == 's')
3305 return 0; /* fxsave/fxrstor are not really math ops */
3306 break;
3307 }
3308
3309 return 1;
3310 }
3311
3312 /* Build the VEX prefix. */
3313
3314 static void
3315 build_vex_prefix (const insn_template *t)
3316 {
3317 unsigned int register_specifier;
3318 unsigned int implied_prefix;
3319 unsigned int vector_length;
3320
3321 /* Check register specifier. */
3322 if (i.vex.register_specifier)
3323 {
3324 register_specifier =
3325 ~register_number (i.vex.register_specifier) & 0xf;
3326 gas_assert ((i.vex.register_specifier->reg_flags & RegVRex) == 0);
3327 }
3328 else
3329 register_specifier = 0xf;
3330
3331 /* Use 2-byte VEX prefix by swapping destination and source
3332 operand. */
3333 if (i.vec_encoding != vex_encoding_vex3
3334 && i.dir_encoding == dir_encoding_default
3335 && i.operands == i.reg_operands
3336 && i.tm.opcode_modifier.vexopcode == VEX0F
3337 && i.tm.opcode_modifier.load
3338 && i.rex == REX_B)
3339 {
3340 unsigned int xchg = i.operands - 1;
3341 union i386_op temp_op;
3342 i386_operand_type temp_type;
3343
3344 temp_type = i.types[xchg];
3345 i.types[xchg] = i.types[0];
3346 i.types[0] = temp_type;
3347 temp_op = i.op[xchg];
3348 i.op[xchg] = i.op[0];
3349 i.op[0] = temp_op;
3350
3351 gas_assert (i.rm.mode == 3);
3352
3353 i.rex = REX_R;
3354 xchg = i.rm.regmem;
3355 i.rm.regmem = i.rm.reg;
3356 i.rm.reg = xchg;
3357
3358 /* Use the next insn. */
3359 i.tm = t[1];
3360 }
3361
3362 if (i.tm.opcode_modifier.vex == VEXScalar)
3363 vector_length = avxscalar;
3364 else if (i.tm.opcode_modifier.vex == VEX256)
3365 vector_length = 1;
3366 else
3367 {
3368 unsigned int op;
3369
3370 /* Determine vector length from the last multi-length vector
3371 operand. */
3372 vector_length = 0;
3373 for (op = t->operands; op--;)
3374 if (t->operand_types[op].bitfield.xmmword
3375 && t->operand_types[op].bitfield.ymmword
3376 && i.types[op].bitfield.ymmword)
3377 {
3378 vector_length = 1;
3379 break;
3380 }
3381 }
3382
3383 switch ((i.tm.base_opcode >> 8) & 0xff)
3384 {
3385 case 0:
3386 implied_prefix = 0;
3387 break;
3388 case DATA_PREFIX_OPCODE:
3389 implied_prefix = 1;
3390 break;
3391 case REPE_PREFIX_OPCODE:
3392 implied_prefix = 2;
3393 break;
3394 case REPNE_PREFIX_OPCODE:
3395 implied_prefix = 3;
3396 break;
3397 default:
3398 abort ();
3399 }
3400
3401 /* Use 2-byte VEX prefix if possible. */
3402 if (i.vec_encoding != vex_encoding_vex3
3403 && i.tm.opcode_modifier.vexopcode == VEX0F
3404 && i.tm.opcode_modifier.vexw != VEXW1
3405 && (i.rex & (REX_W | REX_X | REX_B)) == 0)
3406 {
3407 /* 2-byte VEX prefix. */
3408 unsigned int r;
3409
3410 i.vex.length = 2;
3411 i.vex.bytes[0] = 0xc5;
3412
3413 /* Check the REX.R bit. */
3414 r = (i.rex & REX_R) ? 0 : 1;
3415 i.vex.bytes[1] = (r << 7
3416 | register_specifier << 3
3417 | vector_length << 2
3418 | implied_prefix);
3419 }
3420 else
3421 {
3422 /* 3-byte VEX prefix. */
3423 unsigned int m, w;
3424
3425 i.vex.length = 3;
3426
3427 switch (i.tm.opcode_modifier.vexopcode)
3428 {
3429 case VEX0F:
3430 m = 0x1;
3431 i.vex.bytes[0] = 0xc4;
3432 break;
3433 case VEX0F38:
3434 m = 0x2;
3435 i.vex.bytes[0] = 0xc4;
3436 break;
3437 case VEX0F3A:
3438 m = 0x3;
3439 i.vex.bytes[0] = 0xc4;
3440 break;
3441 case XOP08:
3442 m = 0x8;
3443 i.vex.bytes[0] = 0x8f;
3444 break;
3445 case XOP09:
3446 m = 0x9;
3447 i.vex.bytes[0] = 0x8f;
3448 break;
3449 case XOP0A:
3450 m = 0xa;
3451 i.vex.bytes[0] = 0x8f;
3452 break;
3453 default:
3454 abort ();
3455 }
3456
3457 /* The high 3 bits of the second VEX byte are 1's compliment
3458 of RXB bits from REX. */
3459 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3460
3461 /* Check the REX.W bit. */
3462 w = (i.rex & REX_W) ? 1 : 0;
3463 if (i.tm.opcode_modifier.vexw == VEXW1)
3464 w = 1;
3465
3466 i.vex.bytes[2] = (w << 7
3467 | register_specifier << 3
3468 | vector_length << 2
3469 | implied_prefix);
3470 }
3471 }
3472
3473 static INLINE bfd_boolean
3474 is_evex_encoding (const insn_template *t)
3475 {
3476 return t->opcode_modifier.evex || t->opcode_modifier.disp8memshift
3477 || t->opcode_modifier.broadcast || t->opcode_modifier.masking
3478 || t->opcode_modifier.staticrounding || t->opcode_modifier.sae;
3479 }
3480
3481 static INLINE bfd_boolean
3482 is_any_vex_encoding (const insn_template *t)
3483 {
3484 return t->opcode_modifier.vex || t->opcode_modifier.vexopcode
3485 || is_evex_encoding (t);
3486 }
3487
3488 /* Build the EVEX prefix. */
3489
3490 static void
3491 build_evex_prefix (void)
3492 {
3493 unsigned int register_specifier;
3494 unsigned int implied_prefix;
3495 unsigned int m, w;
3496 rex_byte vrex_used = 0;
3497
3498 /* Check register specifier. */
3499 if (i.vex.register_specifier)
3500 {
3501 gas_assert ((i.vrex & REX_X) == 0);
3502
3503 register_specifier = i.vex.register_specifier->reg_num;
3504 if ((i.vex.register_specifier->reg_flags & RegRex))
3505 register_specifier += 8;
3506 /* The upper 16 registers are encoded in the fourth byte of the
3507 EVEX prefix. */
3508 if (!(i.vex.register_specifier->reg_flags & RegVRex))
3509 i.vex.bytes[3] = 0x8;
3510 register_specifier = ~register_specifier & 0xf;
3511 }
3512 else
3513 {
3514 register_specifier = 0xf;
3515
3516 /* Encode upper 16 vector index register in the fourth byte of
3517 the EVEX prefix. */
3518 if (!(i.vrex & REX_X))
3519 i.vex.bytes[3] = 0x8;
3520 else
3521 vrex_used |= REX_X;
3522 }
3523
3524 switch ((i.tm.base_opcode >> 8) & 0xff)
3525 {
3526 case 0:
3527 implied_prefix = 0;
3528 break;
3529 case DATA_PREFIX_OPCODE:
3530 implied_prefix = 1;
3531 break;
3532 case REPE_PREFIX_OPCODE:
3533 implied_prefix = 2;
3534 break;
3535 case REPNE_PREFIX_OPCODE:
3536 implied_prefix = 3;
3537 break;
3538 default:
3539 abort ();
3540 }
3541
3542 /* 4 byte EVEX prefix. */
3543 i.vex.length = 4;
3544 i.vex.bytes[0] = 0x62;
3545
3546 /* mmmm bits. */
3547 switch (i.tm.opcode_modifier.vexopcode)
3548 {
3549 case VEX0F:
3550 m = 1;
3551 break;
3552 case VEX0F38:
3553 m = 2;
3554 break;
3555 case VEX0F3A:
3556 m = 3;
3557 break;
3558 default:
3559 abort ();
3560 break;
3561 }
3562
3563 /* The high 3 bits of the second EVEX byte are 1's compliment of RXB
3564 bits from REX. */
3565 i.vex.bytes[1] = (~i.rex & 0x7) << 5 | m;
3566
3567 /* The fifth bit of the second EVEX byte is 1's compliment of the
3568 REX_R bit in VREX. */
3569 if (!(i.vrex & REX_R))
3570 i.vex.bytes[1] |= 0x10;
3571 else
3572 vrex_used |= REX_R;
3573
3574 if ((i.reg_operands + i.imm_operands) == i.operands)
3575 {
3576 /* When all operands are registers, the REX_X bit in REX is not
3577 used. We reuse it to encode the upper 16 registers, which is
3578 indicated by the REX_B bit in VREX. The REX_X bit is encoded
3579 as 1's compliment. */
3580 if ((i.vrex & REX_B))
3581 {
3582 vrex_used |= REX_B;
3583 i.vex.bytes[1] &= ~0x40;
3584 }
3585 }
3586
3587 /* EVEX instructions shouldn't need the REX prefix. */
3588 i.vrex &= ~vrex_used;
3589 gas_assert (i.vrex == 0);
3590
3591 /* Check the REX.W bit. */
3592 w = (i.rex & REX_W) ? 1 : 0;
3593 if (i.tm.opcode_modifier.vexw)
3594 {
3595 if (i.tm.opcode_modifier.vexw == VEXW1)
3596 w = 1;
3597 }
3598 /* If w is not set it means we are dealing with WIG instruction. */
3599 else if (!w)
3600 {
3601 if (evexwig == evexw1)
3602 w = 1;
3603 }
3604
3605 /* Encode the U bit. */
3606 implied_prefix |= 0x4;
3607
3608 /* The third byte of the EVEX prefix. */
3609 i.vex.bytes[2] = (w << 7 | register_specifier << 3 | implied_prefix);
3610
3611 /* The fourth byte of the EVEX prefix. */
3612 /* The zeroing-masking bit. */
3613 if (i.mask && i.mask->zeroing)
3614 i.vex.bytes[3] |= 0x80;
3615
3616 /* Don't always set the broadcast bit if there is no RC. */
3617 if (!i.rounding)
3618 {
3619 /* Encode the vector length. */
3620 unsigned int vec_length;
3621
3622 if (!i.tm.opcode_modifier.evex
3623 || i.tm.opcode_modifier.evex == EVEXDYN)
3624 {
3625 unsigned int op;
3626
3627 /* Determine vector length from the last multi-length vector
3628 operand. */
3629 vec_length = 0;
3630 for (op = i.operands; op--;)
3631 if (i.tm.operand_types[op].bitfield.xmmword
3632 + i.tm.operand_types[op].bitfield.ymmword
3633 + i.tm.operand_types[op].bitfield.zmmword > 1)
3634 {
3635 if (i.types[op].bitfield.zmmword)
3636 {
3637 i.tm.opcode_modifier.evex = EVEX512;
3638 break;
3639 }
3640 else if (i.types[op].bitfield.ymmword)
3641 {
3642 i.tm.opcode_modifier.evex = EVEX256;
3643 break;
3644 }
3645 else if (i.types[op].bitfield.xmmword)
3646 {
3647 i.tm.opcode_modifier.evex = EVEX128;
3648 break;
3649 }
3650 else if (i.broadcast && (int) op == i.broadcast->operand)
3651 {
3652 switch (i.broadcast->bytes)
3653 {
3654 case 64:
3655 i.tm.opcode_modifier.evex = EVEX512;
3656 break;
3657 case 32:
3658 i.tm.opcode_modifier.evex = EVEX256;
3659 break;
3660 case 16:
3661 i.tm.opcode_modifier.evex = EVEX128;
3662 break;
3663 default:
3664 abort ();
3665 }
3666 break;
3667 }
3668 }
3669
3670 if (op >= MAX_OPERANDS)
3671 abort ();
3672 }
3673
3674 switch (i.tm.opcode_modifier.evex)
3675 {
3676 case EVEXLIG: /* LL' is ignored */
3677 vec_length = evexlig << 5;
3678 break;
3679 case EVEX128:
3680 vec_length = 0 << 5;
3681 break;
3682 case EVEX256:
3683 vec_length = 1 << 5;
3684 break;
3685 case EVEX512:
3686 vec_length = 2 << 5;
3687 break;
3688 default:
3689 abort ();
3690 break;
3691 }
3692 i.vex.bytes[3] |= vec_length;
3693 /* Encode the broadcast bit. */
3694 if (i.broadcast)
3695 i.vex.bytes[3] |= 0x10;
3696 }
3697 else
3698 {
3699 if (i.rounding->type != saeonly)
3700 i.vex.bytes[3] |= 0x10 | (i.rounding->type << 5);
3701 else
3702 i.vex.bytes[3] |= 0x10 | (evexrcig << 5);
3703 }
3704
3705 if (i.mask && i.mask->mask)
3706 i.vex.bytes[3] |= i.mask->mask->reg_num;
3707 }
3708
3709 static void
3710 process_immext (void)
3711 {
3712 expressionS *exp;
3713
3714 if ((i.tm.cpu_flags.bitfield.cpusse3 || i.tm.cpu_flags.bitfield.cpusvme)
3715 && i.operands > 0)
3716 {
3717 /* MONITOR/MWAIT as well as SVME instructions have fixed operands
3718 with an opcode suffix which is coded in the same place as an
3719 8-bit immediate field would be.
3720 Here we check those operands and remove them afterwards. */
3721 unsigned int x;
3722
3723 for (x = 0; x < i.operands; x++)
3724 if (register_number (i.op[x].regs) != x)
3725 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3726 register_prefix, i.op[x].regs->reg_name, x + 1,
3727 i.tm.name);
3728
3729 i.operands = 0;
3730 }
3731
3732 if (i.tm.cpu_flags.bitfield.cpumwaitx && i.operands > 0)
3733 {
3734 /* MONITORX/MWAITX instructions have fixed operands with an opcode
3735 suffix which is coded in the same place as an 8-bit immediate
3736 field would be.
3737 Here we check those operands and remove them afterwards. */
3738 unsigned int x;
3739
3740 if (i.operands != 3)
3741 abort();
3742
3743 for (x = 0; x < 2; x++)
3744 if (register_number (i.op[x].regs) != x)
3745 goto bad_register_operand;
3746
3747 /* Check for third operand for mwaitx/monitorx insn. */
3748 if (register_number (i.op[x].regs)
3749 != (x + (i.tm.extension_opcode == 0xfb)))
3750 {
3751 bad_register_operand:
3752 as_bad (_("can't use register '%s%s' as operand %d in '%s'."),
3753 register_prefix, i.op[x].regs->reg_name, x+1,
3754 i.tm.name);
3755 }
3756
3757 i.operands = 0;
3758 }
3759
3760 /* These AMD 3DNow! and SSE2 instructions have an opcode suffix
3761 which is coded in the same place as an 8-bit immediate field
3762 would be. Here we fake an 8-bit immediate operand from the
3763 opcode suffix stored in tm.extension_opcode.
3764
3765 AVX instructions also use this encoding, for some of
3766 3 argument instructions. */
3767
3768 gas_assert (i.imm_operands <= 1
3769 && (i.operands <= 2
3770 || (is_any_vex_encoding (&i.tm)
3771 && i.operands <= 4)));
3772
3773 exp = &im_expressions[i.imm_operands++];
3774 i.op[i.operands].imms = exp;
3775 i.types[i.operands] = imm8;
3776 i.operands++;
3777 exp->X_op = O_constant;
3778 exp->X_add_number = i.tm.extension_opcode;
3779 i.tm.extension_opcode = None;
3780 }
3781
3782
3783 static int
3784 check_hle (void)
3785 {
3786 switch (i.tm.opcode_modifier.hleprefixok)
3787 {
3788 default:
3789 abort ();
3790 case HLEPrefixNone:
3791 as_bad (_("invalid instruction `%s' after `%s'"),
3792 i.tm.name, i.hle_prefix);
3793 return 0;
3794 case HLEPrefixLock:
3795 if (i.prefix[LOCK_PREFIX])
3796 return 1;
3797 as_bad (_("missing `lock' with `%s'"), i.hle_prefix);
3798 return 0;
3799 case HLEPrefixAny:
3800 return 1;
3801 case HLEPrefixRelease:
3802 if (i.prefix[HLE_PREFIX] != XRELEASE_PREFIX_OPCODE)
3803 {
3804 as_bad (_("instruction `%s' after `xacquire' not allowed"),
3805 i.tm.name);
3806 return 0;
3807 }
3808 if (i.mem_operands == 0
3809 || !operand_type_check (i.types[i.operands - 1], anymem))
3810 {
3811 as_bad (_("memory destination needed for instruction `%s'"
3812 " after `xrelease'"), i.tm.name);
3813 return 0;
3814 }
3815 return 1;
3816 }
3817 }
3818
3819 /* Try the shortest encoding by shortening operand size. */
3820
3821 static void
3822 optimize_encoding (void)
3823 {
3824 int j;
3825
3826 if (optimize_for_space
3827 && i.reg_operands == 1
3828 && i.imm_operands == 1
3829 && !i.types[1].bitfield.byte
3830 && i.op[0].imms->X_op == O_constant
3831 && fits_in_imm7 (i.op[0].imms->X_add_number)
3832 && ((i.tm.base_opcode == 0xa8
3833 && i.tm.extension_opcode == None)
3834 || (i.tm.base_opcode == 0xf6
3835 && i.tm.extension_opcode == 0x0)))
3836 {
3837 /* Optimize: -Os:
3838 test $imm7, %r64/%r32/%r16 -> test $imm7, %r8
3839 */
3840 unsigned int base_regnum = i.op[1].regs->reg_num;
3841 if (flag_code == CODE_64BIT || base_regnum < 4)
3842 {
3843 i.types[1].bitfield.byte = 1;
3844 /* Ignore the suffix. */
3845 i.suffix = 0;
3846 if (base_regnum >= 4
3847 && !(i.op[1].regs->reg_flags & RegRex))
3848 {
3849 /* Handle SP, BP, SI and DI registers. */
3850 if (i.types[1].bitfield.word)
3851 j = 16;
3852 else if (i.types[1].bitfield.dword)
3853 j = 32;
3854 else
3855 j = 48;
3856 i.op[1].regs -= j;
3857 }
3858 }
3859 }
3860 else if (flag_code == CODE_64BIT
3861 && ((i.types[1].bitfield.qword
3862 && i.reg_operands == 1
3863 && i.imm_operands == 1
3864 && i.op[0].imms->X_op == O_constant
3865 && ((i.tm.base_opcode == 0xb0
3866 && i.tm.extension_opcode == None
3867 && fits_in_unsigned_long (i.op[0].imms->X_add_number))
3868 || (fits_in_imm31 (i.op[0].imms->X_add_number)
3869 && (((i.tm.base_opcode == 0x24
3870 || i.tm.base_opcode == 0xa8)
3871 && i.tm.extension_opcode == None)
3872 || (i.tm.base_opcode == 0x80
3873 && i.tm.extension_opcode == 0x4)
3874 || ((i.tm.base_opcode == 0xf6
3875 || i.tm.base_opcode == 0xc6)
3876 && i.tm.extension_opcode == 0x0)))))
3877 || (i.types[0].bitfield.qword
3878 && ((i.reg_operands == 2
3879 && i.op[0].regs == i.op[1].regs
3880 && ((i.tm.base_opcode == 0x30
3881 || i.tm.base_opcode == 0x28)
3882 && i.tm.extension_opcode == None))
3883 || (i.reg_operands == 1
3884 && i.operands == 1
3885 && i.tm.base_opcode == 0x30
3886 && i.tm.extension_opcode == None)))))
3887 {
3888 /* Optimize: -O:
3889 andq $imm31, %r64 -> andl $imm31, %r32
3890 testq $imm31, %r64 -> testl $imm31, %r32
3891 xorq %r64, %r64 -> xorl %r32, %r32
3892 subq %r64, %r64 -> subl %r32, %r32
3893 movq $imm31, %r64 -> movl $imm31, %r32
3894 movq $imm32, %r64 -> movl $imm32, %r32
3895 */
3896 i.tm.opcode_modifier.norex64 = 1;
3897 if (i.tm.base_opcode == 0xb0 || i.tm.base_opcode == 0xc6)
3898 {
3899 /* Handle
3900 movq $imm31, %r64 -> movl $imm31, %r32
3901 movq $imm32, %r64 -> movl $imm32, %r32
3902 */
3903 i.tm.operand_types[0].bitfield.imm32 = 1;
3904 i.tm.operand_types[0].bitfield.imm32s = 0;
3905 i.tm.operand_types[0].bitfield.imm64 = 0;
3906 i.types[0].bitfield.imm32 = 1;
3907 i.types[0].bitfield.imm32s = 0;
3908 i.types[0].bitfield.imm64 = 0;
3909 i.types[1].bitfield.dword = 1;
3910 i.types[1].bitfield.qword = 0;
3911 if (i.tm.base_opcode == 0xc6)
3912 {
3913 /* Handle
3914 movq $imm31, %r64 -> movl $imm31, %r32
3915 */
3916 i.tm.base_opcode = 0xb0;
3917 i.tm.extension_opcode = None;
3918 i.tm.opcode_modifier.shortform = 1;
3919 i.tm.opcode_modifier.modrm = 0;
3920 }
3921 }
3922 }
3923 else if (optimize > 1
3924 && i.reg_operands == 3
3925 && i.op[0].regs == i.op[1].regs
3926 && !i.types[2].bitfield.xmmword
3927 && (i.tm.opcode_modifier.vex
3928 || ((!i.mask || i.mask->zeroing)
3929 && !i.rounding
3930 && is_evex_encoding (&i.tm)
3931 && (i.vec_encoding != vex_encoding_evex
3932 || i.tm.cpu_flags.bitfield.cpuavx512vl
3933 || (i.tm.operand_types[2].bitfield.zmmword
3934 && i.types[2].bitfield.ymmword)
3935 || cpu_arch_isa_flags.bitfield.cpuavx512vl)))
3936 && ((i.tm.base_opcode == 0x55
3937 || i.tm.base_opcode == 0x6655
3938 || i.tm.base_opcode == 0x66df
3939 || i.tm.base_opcode == 0x57
3940 || i.tm.base_opcode == 0x6657
3941 || i.tm.base_opcode == 0x66ef
3942 || i.tm.base_opcode == 0x66f8
3943 || i.tm.base_opcode == 0x66f9
3944 || i.tm.base_opcode == 0x66fa
3945 || i.tm.base_opcode == 0x66fb
3946 || i.tm.base_opcode == 0x42
3947 || i.tm.base_opcode == 0x6642
3948 || i.tm.base_opcode == 0x47
3949 || i.tm.base_opcode == 0x6647)
3950 && i.tm.extension_opcode == None))
3951 {
3952 /* Optimize: -O2:
3953 VOP, one of vandnps, vandnpd, vxorps, vxorpd, vpsubb, vpsubd,
3954 vpsubq and vpsubw:
3955 EVEX VOP %zmmM, %zmmM, %zmmN
3956 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3957 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3958 EVEX VOP %ymmM, %ymmM, %ymmN
3959 -> VEX VOP %xmmM, %xmmM, %xmmN (M and N < 16)
3960 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3961 VEX VOP %ymmM, %ymmM, %ymmN
3962 -> VEX VOP %xmmM, %xmmM, %xmmN
3963 VOP, one of vpandn and vpxor:
3964 VEX VOP %ymmM, %ymmM, %ymmN
3965 -> VEX VOP %xmmM, %xmmM, %xmmN
3966 VOP, one of vpandnd and vpandnq:
3967 EVEX VOP %zmmM, %zmmM, %zmmN
3968 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3969 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3970 EVEX VOP %ymmM, %ymmM, %ymmN
3971 -> VEX vpandn %xmmM, %xmmM, %xmmN (M and N < 16)
3972 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3973 VOP, one of vpxord and vpxorq:
3974 EVEX VOP %zmmM, %zmmM, %zmmN
3975 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3976 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3977 EVEX VOP %ymmM, %ymmM, %ymmN
3978 -> VEX vpxor %xmmM, %xmmM, %xmmN (M and N < 16)
3979 -> EVEX VOP %xmmM, %xmmM, %xmmN (M || N >= 16)
3980 VOP, one of kxord and kxorq:
3981 VEX VOP %kM, %kM, %kN
3982 -> VEX kxorw %kM, %kM, %kN
3983 VOP, one of kandnd and kandnq:
3984 VEX VOP %kM, %kM, %kN
3985 -> VEX kandnw %kM, %kM, %kN
3986 */
3987 if (is_evex_encoding (&i.tm))
3988 {
3989 if (i.vec_encoding == vex_encoding_evex)
3990 i.tm.opcode_modifier.evex = EVEX128;
3991 else
3992 {
3993 i.tm.opcode_modifier.vex = VEX128;
3994 i.tm.opcode_modifier.vexw = VEXW0;
3995 i.tm.opcode_modifier.evex = 0;
3996 }
3997 }
3998 else if (i.tm.operand_types[0].bitfield.regmask)
3999 {
4000 i.tm.base_opcode &= 0xff;
4001 i.tm.opcode_modifier.vexw = VEXW0;
4002 }
4003 else
4004 i.tm.opcode_modifier.vex = VEX128;
4005
4006 if (i.tm.opcode_modifier.vex)
4007 for (j = 0; j < 3; j++)
4008 {
4009 i.types[j].bitfield.xmmword = 1;
4010 i.types[j].bitfield.ymmword = 0;
4011 }
4012 }
4013 }
4014
4015 /* This is the guts of the machine-dependent assembler. LINE points to a
4016 machine dependent instruction. This function is supposed to emit
4017 the frags/bytes it assembles to. */
4018
4019 void
4020 md_assemble (char *line)
4021 {
4022 unsigned int j;
4023 char mnemonic[MAX_MNEM_SIZE], mnem_suffix;
4024 const insn_template *t;
4025
4026 /* Initialize globals. */
4027 memset (&i, '\0', sizeof (i));
4028 for (j = 0; j < MAX_OPERANDS; j++)
4029 i.reloc[j] = NO_RELOC;
4030 memset (disp_expressions, '\0', sizeof (disp_expressions));
4031 memset (im_expressions, '\0', sizeof (im_expressions));
4032 save_stack_p = save_stack;
4033
4034 /* First parse an instruction mnemonic & call i386_operand for the operands.
4035 We assume that the scrubber has arranged it so that line[0] is the valid
4036 start of a (possibly prefixed) mnemonic. */
4037
4038 line = parse_insn (line, mnemonic);
4039 if (line == NULL)
4040 return;
4041 mnem_suffix = i.suffix;
4042
4043 line = parse_operands (line, mnemonic);
4044 this_operand = -1;
4045 xfree (i.memop1_string);
4046 i.memop1_string = NULL;
4047 if (line == NULL)
4048 return;
4049
4050 /* Now we've parsed the mnemonic into a set of templates, and have the
4051 operands at hand. */
4052
4053 /* All intel opcodes have reversed operands except for "bound" and
4054 "enter". We also don't reverse intersegment "jmp" and "call"
4055 instructions with 2 immediate operands so that the immediate segment
4056 precedes the offset, as it does when in AT&T mode. */
4057 if (intel_syntax
4058 && i.operands > 1
4059 && (strcmp (mnemonic, "bound") != 0)
4060 && (strcmp (mnemonic, "invlpga") != 0)
4061 && !(operand_type_check (i.types[0], imm)
4062 && operand_type_check (i.types[1], imm)))
4063 swap_operands ();
4064
4065 /* The order of the immediates should be reversed
4066 for 2 immediates extrq and insertq instructions */
4067 if (i.imm_operands == 2
4068 && (strcmp (mnemonic, "extrq") == 0
4069 || strcmp (mnemonic, "insertq") == 0))
4070 swap_2_operands (0, 1);
4071
4072 if (i.imm_operands)
4073 optimize_imm ();
4074
4075 /* Don't optimize displacement for movabs since it only takes 64bit
4076 displacement. */
4077 if (i.disp_operands
4078 && i.disp_encoding != disp_encoding_32bit
4079 && (flag_code != CODE_64BIT
4080 || strcmp (mnemonic, "movabs") != 0))
4081 optimize_disp ();
4082
4083 /* Next, we find a template that matches the given insn,
4084 making sure the overlap of the given operands types is consistent
4085 with the template operand types. */
4086
4087 if (!(t = match_template (mnem_suffix)))
4088 return;
4089
4090 if (sse_check != check_none
4091 && !i.tm.opcode_modifier.noavx
4092 && !i.tm.cpu_flags.bitfield.cpuavx
4093 && (i.tm.cpu_flags.bitfield.cpusse
4094 || i.tm.cpu_flags.bitfield.cpusse2
4095 || i.tm.cpu_flags.bitfield.cpusse3
4096 || i.tm.cpu_flags.bitfield.cpussse3
4097 || i.tm.cpu_flags.bitfield.cpusse4_1
4098 || i.tm.cpu_flags.bitfield.cpusse4_2
4099 || i.tm.cpu_flags.bitfield.cpupclmul
4100 || i.tm.cpu_flags.bitfield.cpuaes
4101 || i.tm.cpu_flags.bitfield.cpugfni))
4102 {
4103 (sse_check == check_warning
4104 ? as_warn
4105 : as_bad) (_("SSE instruction `%s' is used"), i.tm.name);
4106 }
4107
4108 /* Zap movzx and movsx suffix. The suffix has been set from
4109 "word ptr" or "byte ptr" on the source operand in Intel syntax
4110 or extracted from mnemonic in AT&T syntax. But we'll use
4111 the destination register to choose the suffix for encoding. */
4112 if ((i.tm.base_opcode & ~9) == 0x0fb6)
4113 {
4114 /* In Intel syntax, there must be a suffix. In AT&T syntax, if
4115 there is no suffix, the default will be byte extension. */
4116 if (i.reg_operands != 2
4117 && !i.suffix
4118 && intel_syntax)
4119 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
4120
4121 i.suffix = 0;
4122 }
4123
4124 if (i.tm.opcode_modifier.fwait)
4125 if (!add_prefix (FWAIT_OPCODE))
4126 return;
4127
4128 /* Check if REP prefix is OK. */
4129 if (i.rep_prefix && !i.tm.opcode_modifier.repprefixok)
4130 {
4131 as_bad (_("invalid instruction `%s' after `%s'"),
4132 i.tm.name, i.rep_prefix);
4133 return;
4134 }
4135
4136 /* Check for lock without a lockable instruction. Destination operand
4137 must be memory unless it is xchg (0x86). */
4138 if (i.prefix[LOCK_PREFIX]
4139 && (!i.tm.opcode_modifier.islockable
4140 || i.mem_operands == 0
4141 || (i.tm.base_opcode != 0x86
4142 && !operand_type_check (i.types[i.operands - 1], anymem))))
4143 {
4144 as_bad (_("expecting lockable instruction after `lock'"));
4145 return;
4146 }
4147
4148 /* Check for data size prefix on VEX/XOP/EVEX encoded insns. */
4149 if (i.prefix[DATA_PREFIX] && is_any_vex_encoding (&i.tm))
4150 {
4151 as_bad (_("data size prefix invalid with `%s'"), i.tm.name);
4152 return;
4153 }
4154
4155 /* Check if HLE prefix is OK. */
4156 if (i.hle_prefix && !check_hle ())
4157 return;
4158
4159 /* Check BND prefix. */
4160 if (i.bnd_prefix && !i.tm.opcode_modifier.bndprefixok)
4161 as_bad (_("expecting valid branch instruction after `bnd'"));
4162
4163 /* Check NOTRACK prefix. */
4164 if (i.notrack_prefix && !i.tm.opcode_modifier.notrackprefixok)
4165 as_bad (_("expecting indirect branch instruction after `notrack'"));
4166
4167 if (i.tm.cpu_flags.bitfield.cpumpx)
4168 {
4169 if (flag_code == CODE_64BIT && i.prefix[ADDR_PREFIX])
4170 as_bad (_("32-bit address isn't allowed in 64-bit MPX instructions."));
4171 else if (flag_code != CODE_16BIT
4172 ? i.prefix[ADDR_PREFIX]
4173 : i.mem_operands && !i.prefix[ADDR_PREFIX])
4174 as_bad (_("16-bit address isn't allowed in MPX instructions"));
4175 }
4176
4177 /* Insert BND prefix. */
4178 if (add_bnd_prefix && i.tm.opcode_modifier.bndprefixok)
4179 {
4180 if (!i.prefix[BND_PREFIX])
4181 add_prefix (BND_PREFIX_OPCODE);
4182 else if (i.prefix[BND_PREFIX] != BND_PREFIX_OPCODE)
4183 {
4184 as_warn (_("replacing `rep'/`repe' prefix by `bnd'"));
4185 i.prefix[BND_PREFIX] = BND_PREFIX_OPCODE;
4186 }
4187 }
4188
4189 /* Check string instruction segment overrides. */
4190 if (i.tm.opcode_modifier.isstring && i.mem_operands != 0)
4191 {
4192 if (!check_string ())
4193 return;
4194 i.disp_operands = 0;
4195 }
4196
4197 if (optimize && !i.no_optimize && i.tm.opcode_modifier.optimize)
4198 optimize_encoding ();
4199
4200 if (!process_suffix ())
4201 return;
4202
4203 /* Update operand types. */
4204 for (j = 0; j < i.operands; j++)
4205 i.types[j] = operand_type_and (i.types[j], i.tm.operand_types[j]);
4206
4207 /* Make still unresolved immediate matches conform to size of immediate
4208 given in i.suffix. */
4209 if (!finalize_imm ())
4210 return;
4211
4212 if (i.types[0].bitfield.imm1)
4213 i.imm_operands = 0; /* kludge for shift insns. */
4214
4215 /* We only need to check those implicit registers for instructions
4216 with 3 operands or less. */
4217 if (i.operands <= 3)
4218 for (j = 0; j < i.operands; j++)
4219 if (i.types[j].bitfield.inoutportreg
4220 || i.types[j].bitfield.shiftcount
4221 || (i.types[j].bitfield.acc && !i.types[j].bitfield.xmmword))
4222 i.reg_operands--;
4223
4224 /* ImmExt should be processed after SSE2AVX. */
4225 if (!i.tm.opcode_modifier.sse2avx
4226 && i.tm.opcode_modifier.immext)
4227 process_immext ();
4228
4229 /* For insns with operands there are more diddles to do to the opcode. */
4230 if (i.operands)
4231 {
4232 if (!process_operands ())
4233 return;
4234 }
4235 else if (!quiet_warnings && i.tm.opcode_modifier.ugh)
4236 {
4237 /* UnixWare fsub no args is alias for fsubp, fadd -> faddp, etc. */
4238 as_warn (_("translating to `%sp'"), i.tm.name);
4239 }
4240
4241 if (is_any_vex_encoding (&i.tm))
4242 {
4243 if (flag_code == CODE_16BIT)
4244 {
4245 as_bad (_("instruction `%s' isn't supported in 16-bit mode."),
4246 i.tm.name);
4247 return;
4248 }
4249
4250 if (i.tm.opcode_modifier.vex)
4251 build_vex_prefix (t);
4252 else
4253 build_evex_prefix ();
4254 }
4255
4256 /* Handle conversion of 'int $3' --> special int3 insn. XOP or FMA4
4257 instructions may define INT_OPCODE as well, so avoid this corner
4258 case for those instructions that use MODRM. */
4259 if (i.tm.base_opcode == INT_OPCODE
4260 && !i.tm.opcode_modifier.modrm
4261 && i.op[0].imms->X_add_number == 3)
4262 {
4263 i.tm.base_opcode = INT3_OPCODE;
4264 i.imm_operands = 0;
4265 }
4266
4267 if ((i.tm.opcode_modifier.jump
4268 || i.tm.opcode_modifier.jumpbyte
4269 || i.tm.opcode_modifier.jumpdword)
4270 && i.op[0].disps->X_op == O_constant)
4271 {
4272 /* Convert "jmp constant" (and "call constant") to a jump (call) to
4273 the absolute address given by the constant. Since ix86 jumps and
4274 calls are pc relative, we need to generate a reloc. */
4275 i.op[0].disps->X_add_symbol = &abs_symbol;
4276 i.op[0].disps->X_op = O_symbol;
4277 }
4278
4279 if (i.tm.opcode_modifier.rex64)
4280 i.rex |= REX_W;
4281
4282 /* For 8 bit registers we need an empty rex prefix. Also if the
4283 instruction already has a prefix, we need to convert old
4284 registers to new ones. */
4285
4286 if ((i.types[0].bitfield.reg && i.types[0].bitfield.byte
4287 && (i.op[0].regs->reg_flags & RegRex64) != 0)
4288 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte
4289 && (i.op[1].regs->reg_flags & RegRex64) != 0)
4290 || (((i.types[0].bitfield.reg && i.types[0].bitfield.byte)
4291 || (i.types[1].bitfield.reg && i.types[1].bitfield.byte))
4292 && i.rex != 0))
4293 {
4294 int x;
4295
4296 i.rex |= REX_OPCODE;
4297 for (x = 0; x < 2; x++)
4298 {
4299 /* Look for 8 bit operand that uses old registers. */
4300 if (i.types[x].bitfield.reg && i.types[x].bitfield.byte
4301 && (i.op[x].regs->reg_flags & RegRex64) == 0)
4302 {
4303 /* In case it is "hi" register, give up. */
4304 if (i.op[x].regs->reg_num > 3)
4305 as_bad (_("can't encode register '%s%s' in an "
4306 "instruction requiring REX prefix."),
4307 register_prefix, i.op[x].regs->reg_name);
4308
4309 /* Otherwise it is equivalent to the extended register.
4310 Since the encoding doesn't change this is merely
4311 cosmetic cleanup for debug output. */
4312
4313 i.op[x].regs = i.op[x].regs + 8;
4314 }
4315 }
4316 }
4317
4318 if (i.rex == 0 && i.rex_encoding)
4319 {
4320 /* Check if we can add a REX_OPCODE byte. Look for 8 bit operand
4321 that uses legacy register. If it is "hi" register, don't add
4322 the REX_OPCODE byte. */
4323 int x;
4324 for (x = 0; x < 2; x++)
4325 if (i.types[x].bitfield.reg
4326 && i.types[x].bitfield.byte
4327 && (i.op[x].regs->reg_flags & RegRex64) == 0
4328 && i.op[x].regs->reg_num > 3)
4329 {
4330 i.rex_encoding = FALSE;
4331 break;
4332 }
4333
4334 if (i.rex_encoding)
4335 i.rex = REX_OPCODE;
4336 }
4337
4338 if (i.rex != 0)
4339 add_prefix (REX_OPCODE | i.rex);
4340
4341 /* We are ready to output the insn. */
4342 output_insn ();
4343 }
4344
4345 static char *
4346 parse_insn (char *line, char *mnemonic)
4347 {
4348 char *l = line;
4349 char *token_start = l;
4350 char *mnem_p;
4351 int supported;
4352 const insn_template *t;
4353 char *dot_p = NULL;
4354
4355 while (1)
4356 {
4357 mnem_p = mnemonic;
4358 while ((*mnem_p = mnemonic_chars[(unsigned char) *l]) != 0)
4359 {
4360 if (*mnem_p == '.')
4361 dot_p = mnem_p;
4362 mnem_p++;
4363 if (mnem_p >= mnemonic + MAX_MNEM_SIZE)
4364 {
4365 as_bad (_("no such instruction: `%s'"), token_start);
4366 return NULL;
4367 }
4368 l++;
4369 }
4370 if (!is_space_char (*l)
4371 && *l != END_OF_INSN
4372 && (intel_syntax
4373 || (*l != PREFIX_SEPARATOR
4374 && *l != ',')))
4375 {
4376 as_bad (_("invalid character %s in mnemonic"),
4377 output_invalid (*l));
4378 return NULL;
4379 }
4380 if (token_start == l)
4381 {
4382 if (!intel_syntax && *l == PREFIX_SEPARATOR)
4383 as_bad (_("expecting prefix; got nothing"));
4384 else
4385 as_bad (_("expecting mnemonic; got nothing"));
4386 return NULL;
4387 }
4388
4389 /* Look up instruction (or prefix) via hash table. */
4390 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4391
4392 if (*l != END_OF_INSN
4393 && (!is_space_char (*l) || l[1] != END_OF_INSN)
4394 && current_templates
4395 && current_templates->start->opcode_modifier.isprefix)
4396 {
4397 if (!cpu_flags_check_cpu64 (current_templates->start->cpu_flags))
4398 {
4399 as_bad ((flag_code != CODE_64BIT
4400 ? _("`%s' is only supported in 64-bit mode")
4401 : _("`%s' is not supported in 64-bit mode")),
4402 current_templates->start->name);
4403 return NULL;
4404 }
4405 /* If we are in 16-bit mode, do not allow addr16 or data16.
4406 Similarly, in 32-bit mode, do not allow addr32 or data32. */
4407 if ((current_templates->start->opcode_modifier.size16
4408 || current_templates->start->opcode_modifier.size32)
4409 && flag_code != CODE_64BIT
4410 && (current_templates->start->opcode_modifier.size32
4411 ^ (flag_code == CODE_16BIT)))
4412 {
4413 as_bad (_("redundant %s prefix"),
4414 current_templates->start->name);
4415 return NULL;
4416 }
4417 if (current_templates->start->opcode_length == 0)
4418 {
4419 /* Handle pseudo prefixes. */
4420 switch (current_templates->start->base_opcode)
4421 {
4422 case 0x0:
4423 /* {disp8} */
4424 i.disp_encoding = disp_encoding_8bit;
4425 break;
4426 case 0x1:
4427 /* {disp32} */
4428 i.disp_encoding = disp_encoding_32bit;
4429 break;
4430 case 0x2:
4431 /* {load} */
4432 i.dir_encoding = dir_encoding_load;
4433 break;
4434 case 0x3:
4435 /* {store} */
4436 i.dir_encoding = dir_encoding_store;
4437 break;
4438 case 0x4:
4439 /* {vex2} */
4440 i.vec_encoding = vex_encoding_vex2;
4441 break;
4442 case 0x5:
4443 /* {vex3} */
4444 i.vec_encoding = vex_encoding_vex3;
4445 break;
4446 case 0x6:
4447 /* {evex} */
4448 i.vec_encoding = vex_encoding_evex;
4449 break;
4450 case 0x7:
4451 /* {rex} */
4452 i.rex_encoding = TRUE;
4453 break;
4454 case 0x8:
4455 /* {nooptimize} */
4456 i.no_optimize = TRUE;
4457 break;
4458 default:
4459 abort ();
4460 }
4461 }
4462 else
4463 {
4464 /* Add prefix, checking for repeated prefixes. */
4465 switch (add_prefix (current_templates->start->base_opcode))
4466 {
4467 case PREFIX_EXIST:
4468 return NULL;
4469 case PREFIX_DS:
4470 if (current_templates->start->cpu_flags.bitfield.cpuibt)
4471 i.notrack_prefix = current_templates->start->name;
4472 break;
4473 case PREFIX_REP:
4474 if (current_templates->start->cpu_flags.bitfield.cpuhle)
4475 i.hle_prefix = current_templates->start->name;
4476 else if (current_templates->start->cpu_flags.bitfield.cpumpx)
4477 i.bnd_prefix = current_templates->start->name;
4478 else
4479 i.rep_prefix = current_templates->start->name;
4480 break;
4481 default:
4482 break;
4483 }
4484 }
4485 /* Skip past PREFIX_SEPARATOR and reset token_start. */
4486 token_start = ++l;
4487 }
4488 else
4489 break;
4490 }
4491
4492 if (!current_templates)
4493 {
4494 /* Check if we should swap operand or force 32bit displacement in
4495 encoding. */
4496 if (mnem_p - 2 == dot_p && dot_p[1] == 's')
4497 i.dir_encoding = dir_encoding_store;
4498 else if (mnem_p - 3 == dot_p
4499 && dot_p[1] == 'd'
4500 && dot_p[2] == '8')
4501 i.disp_encoding = disp_encoding_8bit;
4502 else if (mnem_p - 4 == dot_p
4503 && dot_p[1] == 'd'
4504 && dot_p[2] == '3'
4505 && dot_p[3] == '2')
4506 i.disp_encoding = disp_encoding_32bit;
4507 else
4508 goto check_suffix;
4509 mnem_p = dot_p;
4510 *dot_p = '\0';
4511 current_templates = (const templates *) hash_find (op_hash, mnemonic);
4512 }
4513
4514 if (!current_templates)
4515 {
4516 check_suffix:
4517 /* See if we can get a match by trimming off a suffix. */
4518 switch (mnem_p[-1])
4519 {
4520 case WORD_MNEM_SUFFIX:
4521 if (intel_syntax && (intel_float_operand (mnemonic) & 2))
4522 i.suffix = SHORT_MNEM_SUFFIX;
4523 else
4524 /* Fall through. */
4525 case BYTE_MNEM_SUFFIX:
4526 case QWORD_MNEM_SUFFIX:
4527 i.suffix = mnem_p[-1];
4528 mnem_p[-1] = '\0';
4529 current_templates = (const templates *) hash_find (op_hash,
4530 mnemonic);
4531 break;
4532 case SHORT_MNEM_SUFFIX:
4533 case LONG_MNEM_SUFFIX:
4534 if (!intel_syntax)
4535 {
4536 i.suffix = mnem_p[-1];
4537 mnem_p[-1] = '\0';
4538 current_templates = (const templates *) hash_find (op_hash,
4539 mnemonic);
4540 }
4541 break;
4542
4543 /* Intel Syntax. */
4544 case 'd':
4545 if (intel_syntax)
4546 {
4547 if (intel_float_operand (mnemonic) == 1)
4548 i.suffix = SHORT_MNEM_SUFFIX;
4549 else
4550 i.suffix = LONG_MNEM_SUFFIX;
4551 mnem_p[-1] = '\0';
4552 current_templates = (const templates *) hash_find (op_hash,
4553 mnemonic);
4554 }
4555 break;
4556 }
4557 if (!current_templates)
4558 {
4559 as_bad (_("no such instruction: `%s'"), token_start);
4560 return NULL;
4561 }
4562 }
4563
4564 if (current_templates->start->opcode_modifier.jump
4565 || current_templates->start->opcode_modifier.jumpbyte)
4566 {
4567 /* Check for a branch hint. We allow ",pt" and ",pn" for
4568 predict taken and predict not taken respectively.
4569 I'm not sure that branch hints actually do anything on loop
4570 and jcxz insns (JumpByte) for current Pentium4 chips. They
4571 may work in the future and it doesn't hurt to accept them
4572 now. */
4573 if (l[0] == ',' && l[1] == 'p')
4574 {
4575 if (l[2] == 't')
4576 {
4577 if (!add_prefix (DS_PREFIX_OPCODE))
4578 return NULL;
4579 l += 3;
4580 }
4581 else if (l[2] == 'n')
4582 {
4583 if (!add_prefix (CS_PREFIX_OPCODE))
4584 return NULL;
4585 l += 3;
4586 }
4587 }
4588 }
4589 /* Any other comma loses. */
4590 if (*l == ',')
4591 {
4592 as_bad (_("invalid character %s in mnemonic"),
4593 output_invalid (*l));
4594 return NULL;
4595 }
4596
4597 /* Check if instruction is supported on specified architecture. */
4598 supported = 0;
4599 for (t = current_templates->start; t < current_templates->end; ++t)
4600 {
4601 supported |= cpu_flags_match (t);
4602 if (supported == CPU_FLAGS_PERFECT_MATCH)
4603 {
4604 if (!cpu_arch_flags.bitfield.cpui386 && (flag_code != CODE_16BIT))
4605 as_warn (_("use .code16 to ensure correct addressing mode"));
4606
4607 return l;
4608 }
4609 }
4610
4611 if (!(supported & CPU_FLAGS_64BIT_MATCH))
4612 as_bad (flag_code == CODE_64BIT
4613 ? _("`%s' is not supported in 64-bit mode")
4614 : _("`%s' is only supported in 64-bit mode"),
4615 current_templates->start->name);
4616 else
4617 as_bad (_("`%s' is not supported on `%s%s'"),
4618 current_templates->start->name,
4619 cpu_arch_name ? cpu_arch_name : default_arch,
4620 cpu_sub_arch_name ? cpu_sub_arch_name : "");
4621
4622 return NULL;
4623 }
4624
4625 static char *
4626 parse_operands (char *l, const char *mnemonic)
4627 {
4628 char *token_start;
4629
4630 /* 1 if operand is pending after ','. */
4631 unsigned int expecting_operand = 0;
4632
4633 /* Non-zero if operand parens not balanced. */
4634 unsigned int paren_not_balanced;
4635
4636 while (*l != END_OF_INSN)
4637 {
4638 /* Skip optional white space before operand. */
4639 if (is_space_char (*l))
4640 ++l;
4641 if (!is_operand_char (*l) && *l != END_OF_INSN && *l != '"')
4642 {
4643 as_bad (_("invalid character %s before operand %d"),
4644 output_invalid (*l),
4645 i.operands + 1);
4646 return NULL;
4647 }
4648 token_start = l; /* After white space. */
4649 paren_not_balanced = 0;
4650 while (paren_not_balanced || *l != ',')
4651 {
4652 if (*l == END_OF_INSN)
4653 {
4654 if (paren_not_balanced)
4655 {
4656 if (!intel_syntax)
4657 as_bad (_("unbalanced parenthesis in operand %d."),
4658 i.operands + 1);
4659 else
4660 as_bad (_("unbalanced brackets in operand %d."),
4661 i.operands + 1);
4662 return NULL;
4663 }
4664 else
4665 break; /* we are done */
4666 }
4667 else if (!is_operand_char (*l) && !is_space_char (*l) && *l != '"')
4668 {
4669 as_bad (_("invalid character %s in operand %d"),
4670 output_invalid (*l),
4671 i.operands + 1);
4672 return NULL;
4673 }
4674 if (!intel_syntax)
4675 {
4676 if (*l == '(')
4677 ++paren_not_balanced;
4678 if (*l == ')')
4679 --paren_not_balanced;
4680 }
4681 else
4682 {
4683 if (*l == '[')
4684 ++paren_not_balanced;
4685 if (*l == ']')
4686 --paren_not_balanced;
4687 }
4688 l++;
4689 }
4690 if (l != token_start)
4691 { /* Yes, we've read in another operand. */
4692 unsigned int operand_ok;
4693 this_operand = i.operands++;
4694 if (i.operands > MAX_OPERANDS)
4695 {
4696 as_bad (_("spurious operands; (%d operands/instruction max)"),
4697 MAX_OPERANDS);
4698 return NULL;
4699 }
4700 i.types[this_operand].bitfield.unspecified = 1;
4701 /* Now parse operand adding info to 'i' as we go along. */
4702 END_STRING_AND_SAVE (l);
4703
4704 if (i.mem_operands > 1)
4705 {
4706 as_bad (_("too many memory references for `%s'"),
4707 mnemonic);
4708 return 0;
4709 }
4710
4711 if (intel_syntax)
4712 operand_ok =
4713 i386_intel_operand (token_start,
4714 intel_float_operand (mnemonic));
4715 else
4716 operand_ok = i386_att_operand (token_start);
4717
4718 RESTORE_END_STRING (l);
4719 if (!operand_ok)
4720 return NULL;
4721 }
4722 else
4723 {
4724 if (expecting_operand)
4725 {
4726 expecting_operand_after_comma:
4727 as_bad (_("expecting operand after ','; got nothing"));
4728 return NULL;
4729 }
4730 if (*l == ',')
4731 {
4732 as_bad (_("expecting operand before ','; got nothing"));
4733 return NULL;
4734 }
4735 }
4736
4737 /* Now *l must be either ',' or END_OF_INSN. */
4738 if (*l == ',')
4739 {
4740 if (*++l == END_OF_INSN)
4741 {
4742 /* Just skip it, if it's \n complain. */
4743 goto expecting_operand_after_comma;
4744 }
4745 expecting_operand = 1;
4746 }
4747 }
4748 return l;
4749 }
4750
4751 static void
4752 swap_2_operands (int xchg1, int xchg2)
4753 {
4754 union i386_op temp_op;
4755 i386_operand_type temp_type;
4756 unsigned int temp_flags;
4757 enum bfd_reloc_code_real temp_reloc;
4758
4759 temp_type = i.types[xchg2];
4760 i.types[xchg2] = i.types[xchg1];
4761 i.types[xchg1] = temp_type;
4762
4763 temp_flags = i.flags[xchg2];
4764 i.flags[xchg2] = i.flags[xchg1];
4765 i.flags[xchg1] = temp_flags;
4766
4767 temp_op = i.op[xchg2];
4768 i.op[xchg2] = i.op[xchg1];
4769 i.op[xchg1] = temp_op;
4770
4771 temp_reloc = i.reloc[xchg2];
4772 i.reloc[xchg2] = i.reloc[xchg1];
4773 i.reloc[xchg1] = temp_reloc;
4774
4775 if (i.mask)
4776 {
4777 if (i.mask->operand == xchg1)
4778 i.mask->operand = xchg2;
4779 else if (i.mask->operand == xchg2)
4780 i.mask->operand = xchg1;
4781 }
4782 if (i.broadcast)
4783 {
4784 if (i.broadcast->operand == xchg1)
4785 i.broadcast->operand = xchg2;
4786 else if (i.broadcast->operand == xchg2)
4787 i.broadcast->operand = xchg1;
4788 }
4789 if (i.rounding)
4790 {
4791 if (i.rounding->operand == xchg1)
4792 i.rounding->operand = xchg2;
4793 else if (i.rounding->operand == xchg2)
4794 i.rounding->operand = xchg1;
4795 }
4796 }
4797
4798 static void
4799 swap_operands (void)
4800 {
4801 switch (i.operands)
4802 {
4803 case 5:
4804 case 4:
4805 swap_2_operands (1, i.operands - 2);
4806 /* Fall through. */
4807 case 3:
4808 case 2:
4809 swap_2_operands (0, i.operands - 1);
4810 break;
4811 default:
4812 abort ();
4813 }
4814
4815 if (i.mem_operands == 2)
4816 {
4817 const seg_entry *temp_seg;
4818 temp_seg = i.seg[0];
4819 i.seg[0] = i.seg[1];
4820 i.seg[1] = temp_seg;
4821 }
4822 }
4823
4824 /* Try to ensure constant immediates are represented in the smallest
4825 opcode possible. */
4826 static void
4827 optimize_imm (void)
4828 {
4829 char guess_suffix = 0;
4830 int op;
4831
4832 if (i.suffix)
4833 guess_suffix = i.suffix;
4834 else if (i.reg_operands)
4835 {
4836 /* Figure out a suffix from the last register operand specified.
4837 We can't do this properly yet, ie. excluding InOutPortReg,
4838 but the following works for instructions with immediates.
4839 In any case, we can't set i.suffix yet. */
4840 for (op = i.operands; --op >= 0;)
4841 if (i.types[op].bitfield.reg && i.types[op].bitfield.byte)
4842 {
4843 guess_suffix = BYTE_MNEM_SUFFIX;
4844 break;
4845 }
4846 else if (i.types[op].bitfield.reg && i.types[op].bitfield.word)
4847 {
4848 guess_suffix = WORD_MNEM_SUFFIX;
4849 break;
4850 }
4851 else if (i.types[op].bitfield.reg && i.types[op].bitfield.dword)
4852 {
4853 guess_suffix = LONG_MNEM_SUFFIX;
4854 break;
4855 }
4856 else if (i.types[op].bitfield.reg && i.types[op].bitfield.qword)
4857 {
4858 guess_suffix = QWORD_MNEM_SUFFIX;
4859 break;
4860 }
4861 }
4862 else if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
4863 guess_suffix = WORD_MNEM_SUFFIX;
4864
4865 for (op = i.operands; --op >= 0;)
4866 if (operand_type_check (i.types[op], imm))
4867 {
4868 switch (i.op[op].imms->X_op)
4869 {
4870 case O_constant:
4871 /* If a suffix is given, this operand may be shortened. */
4872 switch (guess_suffix)
4873 {
4874 case LONG_MNEM_SUFFIX:
4875 i.types[op].bitfield.imm32 = 1;
4876 i.types[op].bitfield.imm64 = 1;
4877 break;
4878 case WORD_MNEM_SUFFIX:
4879 i.types[op].bitfield.imm16 = 1;
4880 i.types[op].bitfield.imm32 = 1;
4881 i.types[op].bitfield.imm32s = 1;
4882 i.types[op].bitfield.imm64 = 1;
4883 break;
4884 case BYTE_MNEM_SUFFIX:
4885 i.types[op].bitfield.imm8 = 1;
4886 i.types[op].bitfield.imm8s = 1;
4887 i.types[op].bitfield.imm16 = 1;
4888 i.types[op].bitfield.imm32 = 1;
4889 i.types[op].bitfield.imm32s = 1;
4890 i.types[op].bitfield.imm64 = 1;
4891 break;
4892 }
4893
4894 /* If this operand is at most 16 bits, convert it
4895 to a signed 16 bit number before trying to see
4896 whether it will fit in an even smaller size.
4897 This allows a 16-bit operand such as $0xffe0 to
4898 be recognised as within Imm8S range. */
4899 if ((i.types[op].bitfield.imm16)
4900 && (i.op[op].imms->X_add_number & ~(offsetT) 0xffff) == 0)
4901 {
4902 i.op[op].imms->X_add_number =
4903 (((i.op[op].imms->X_add_number & 0xffff) ^ 0x8000) - 0x8000);
4904 }
4905 #ifdef BFD64
4906 /* Store 32-bit immediate in 64-bit for 64-bit BFD. */
4907 if ((i.types[op].bitfield.imm32)
4908 && ((i.op[op].imms->X_add_number & ~(((offsetT) 2 << 31) - 1))
4909 == 0))
4910 {
4911 i.op[op].imms->X_add_number = ((i.op[op].imms->X_add_number
4912 ^ ((offsetT) 1 << 31))
4913 - ((offsetT) 1 << 31));
4914 }
4915 #endif
4916 i.types[op]
4917 = operand_type_or (i.types[op],
4918 smallest_imm_type (i.op[op].imms->X_add_number));
4919
4920 /* We must avoid matching of Imm32 templates when 64bit
4921 only immediate is available. */
4922 if (guess_suffix == QWORD_MNEM_SUFFIX)
4923 i.types[op].bitfield.imm32 = 0;
4924 break;
4925
4926 case O_absent:
4927 case O_register:
4928 abort ();
4929
4930 /* Symbols and expressions. */
4931 default:
4932 /* Convert symbolic operand to proper sizes for matching, but don't
4933 prevent matching a set of insns that only supports sizes other
4934 than those matching the insn suffix. */
4935 {
4936 i386_operand_type mask, allowed;
4937 const insn_template *t;
4938
4939 operand_type_set (&mask, 0);
4940 operand_type_set (&allowed, 0);
4941
4942 for (t = current_templates->start;
4943 t < current_templates->end;
4944 ++t)
4945 allowed = operand_type_or (allowed,
4946 t->operand_types[op]);
4947 switch (guess_suffix)
4948 {
4949 case QWORD_MNEM_SUFFIX:
4950 mask.bitfield.imm64 = 1;
4951 mask.bitfield.imm32s = 1;
4952 break;
4953 case LONG_MNEM_SUFFIX:
4954 mask.bitfield.imm32 = 1;
4955 break;
4956 case WORD_MNEM_SUFFIX:
4957 mask.bitfield.imm16 = 1;
4958 break;
4959 case BYTE_MNEM_SUFFIX:
4960 mask.bitfield.imm8 = 1;
4961 break;
4962 default:
4963 break;
4964 }
4965 allowed = operand_type_and (mask, allowed);
4966 if (!operand_type_all_zero (&allowed))
4967 i.types[op] = operand_type_and (i.types[op], mask);
4968 }
4969 break;
4970 }
4971 }
4972 }
4973
4974 /* Try to use the smallest displacement type too. */
4975 static void
4976 optimize_disp (void)
4977 {
4978 int op;
4979
4980 for (op = i.operands; --op >= 0;)
4981 if (operand_type_check (i.types[op], disp))
4982 {
4983 if (i.op[op].disps->X_op == O_constant)
4984 {
4985 offsetT op_disp = i.op[op].disps->X_add_number;
4986
4987 if (i.types[op].bitfield.disp16
4988 && (op_disp & ~(offsetT) 0xffff) == 0)
4989 {
4990 /* If this operand is at most 16 bits, convert
4991 to a signed 16 bit number and don't use 64bit
4992 displacement. */
4993 op_disp = (((op_disp & 0xffff) ^ 0x8000) - 0x8000);
4994 i.types[op].bitfield.disp64 = 0;
4995 }
4996 #ifdef BFD64
4997 /* Optimize 64-bit displacement to 32-bit for 64-bit BFD. */
4998 if (i.types[op].bitfield.disp32
4999 && (op_disp & ~(((offsetT) 2 << 31) - 1)) == 0)
5000 {
5001 /* If this operand is at most 32 bits, convert
5002 to a signed 32 bit number and don't use 64bit
5003 displacement. */
5004 op_disp &= (((offsetT) 2 << 31) - 1);
5005 op_disp = (op_disp ^ ((offsetT) 1 << 31)) - ((addressT) 1 << 31);
5006 i.types[op].bitfield.disp64 = 0;
5007 }
5008 #endif
5009 if (!op_disp && i.types[op].bitfield.baseindex)
5010 {
5011 i.types[op].bitfield.disp8 = 0;
5012 i.types[op].bitfield.disp16 = 0;
5013 i.types[op].bitfield.disp32 = 0;
5014 i.types[op].bitfield.disp32s = 0;
5015 i.types[op].bitfield.disp64 = 0;
5016 i.op[op].disps = 0;
5017 i.disp_operands--;
5018 }
5019 else if (flag_code == CODE_64BIT)
5020 {
5021 if (fits_in_signed_long (op_disp))
5022 {
5023 i.types[op].bitfield.disp64 = 0;
5024 i.types[op].bitfield.disp32s = 1;
5025 }
5026 if (i.prefix[ADDR_PREFIX]
5027 && fits_in_unsigned_long (op_disp))
5028 i.types[op].bitfield.disp32 = 1;
5029 }
5030 if ((i.types[op].bitfield.disp32
5031 || i.types[op].bitfield.disp32s
5032 || i.types[op].bitfield.disp16)
5033 && fits_in_disp8 (op_disp))
5034 i.types[op].bitfield.disp8 = 1;
5035 }
5036 else if (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
5037 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL)
5038 {
5039 fix_new_exp (frag_now, frag_more (0) - frag_now->fr_literal, 0,
5040 i.op[op].disps, 0, i.reloc[op]);
5041 i.types[op].bitfield.disp8 = 0;
5042 i.types[op].bitfield.disp16 = 0;
5043 i.types[op].bitfield.disp32 = 0;
5044 i.types[op].bitfield.disp32s = 0;
5045 i.types[op].bitfield.disp64 = 0;
5046 }
5047 else
5048 /* We only support 64bit displacement on constants. */
5049 i.types[op].bitfield.disp64 = 0;
5050 }
5051 }
5052
5053 /* Return 1 if there is a match in broadcast bytes between operand
5054 GIVEN and instruction template T. */
5055
5056 static INLINE int
5057 match_broadcast_size (const insn_template *t, unsigned int given)
5058 {
5059 return ((t->opcode_modifier.broadcast == BYTE_BROADCAST
5060 && i.types[given].bitfield.byte)
5061 || (t->opcode_modifier.broadcast == WORD_BROADCAST
5062 && i.types[given].bitfield.word)
5063 || (t->opcode_modifier.broadcast == DWORD_BROADCAST
5064 && i.types[given].bitfield.dword)
5065 || (t->opcode_modifier.broadcast == QWORD_BROADCAST
5066 && i.types[given].bitfield.qword));
5067 }
5068
5069 /* Check if operands are valid for the instruction. */
5070
5071 static int
5072 check_VecOperands (const insn_template *t)
5073 {
5074 unsigned int op;
5075 i386_cpu_flags cpu;
5076 static const i386_cpu_flags avx512 = CPU_ANY_AVX512F_FLAGS;
5077
5078 /* Templates allowing for ZMMword as well as YMMword and/or XMMword for
5079 any one operand are implicity requiring AVX512VL support if the actual
5080 operand size is YMMword or XMMword. Since this function runs after
5081 template matching, there's no need to check for YMMword/XMMword in
5082 the template. */
5083 cpu = cpu_flags_and (t->cpu_flags, avx512);
5084 if (!cpu_flags_all_zero (&cpu)
5085 && !t->cpu_flags.bitfield.cpuavx512vl
5086 && !cpu_arch_flags.bitfield.cpuavx512vl)
5087 {
5088 for (op = 0; op < t->operands; ++op)
5089 {
5090 if (t->operand_types[op].bitfield.zmmword
5091 && (i.types[op].bitfield.ymmword
5092 || i.types[op].bitfield.xmmword))
5093 {
5094 i.error = unsupported;
5095 return 1;
5096 }
5097 }
5098 }
5099
5100 /* Without VSIB byte, we can't have a vector register for index. */
5101 if (!t->opcode_modifier.vecsib
5102 && i.index_reg
5103 && (i.index_reg->reg_type.bitfield.xmmword
5104 || i.index_reg->reg_type.bitfield.ymmword
5105 || i.index_reg->reg_type.bitfield.zmmword))
5106 {
5107 i.error = unsupported_vector_index_register;
5108 return 1;
5109 }
5110
5111 /* Check if default mask is allowed. */
5112 if (t->opcode_modifier.nodefmask
5113 && (!i.mask || i.mask->mask->reg_num == 0))
5114 {
5115 i.error = no_default_mask;
5116 return 1;
5117 }
5118
5119 /* For VSIB byte, we need a vector register for index, and all vector
5120 registers must be distinct. */
5121 if (t->opcode_modifier.vecsib)
5122 {
5123 if (!i.index_reg
5124 || !((t->opcode_modifier.vecsib == VecSIB128
5125 && i.index_reg->reg_type.bitfield.xmmword)
5126 || (t->opcode_modifier.vecsib == VecSIB256
5127 && i.index_reg->reg_type.bitfield.ymmword)
5128 || (t->opcode_modifier.vecsib == VecSIB512
5129 && i.index_reg->reg_type.bitfield.zmmword)))
5130 {
5131 i.error = invalid_vsib_address;
5132 return 1;
5133 }
5134
5135 gas_assert (i.reg_operands == 2 || i.mask);
5136 if (i.reg_operands == 2 && !i.mask)
5137 {
5138 gas_assert (i.types[0].bitfield.regsimd);
5139 gas_assert (i.types[0].bitfield.xmmword
5140 || i.types[0].bitfield.ymmword);
5141 gas_assert (i.types[2].bitfield.regsimd);
5142 gas_assert (i.types[2].bitfield.xmmword
5143 || i.types[2].bitfield.ymmword);
5144 if (operand_check == check_none)
5145 return 0;
5146 if (register_number (i.op[0].regs)
5147 != register_number (i.index_reg)
5148 && register_number (i.op[2].regs)
5149 != register_number (i.index_reg)
5150 && register_number (i.op[0].regs)
5151 != register_number (i.op[2].regs))
5152 return 0;
5153 if (operand_check == check_error)
5154 {
5155 i.error = invalid_vector_register_set;
5156 return 1;
5157 }
5158 as_warn (_("mask, index, and destination registers should be distinct"));
5159 }
5160 else if (i.reg_operands == 1 && i.mask)
5161 {
5162 if (i.types[1].bitfield.regsimd
5163 && (i.types[1].bitfield.xmmword
5164 || i.types[1].bitfield.ymmword
5165 || i.types[1].bitfield.zmmword)
5166 && (register_number (i.op[1].regs)
5167 == register_number (i.index_reg)))
5168 {
5169 if (operand_check == check_error)
5170 {
5171 i.error = invalid_vector_register_set;
5172 return 1;
5173 }
5174 if (operand_check != check_none)
5175 as_warn (_("index and destination registers should be distinct"));
5176 }
5177 }
5178 }
5179
5180 /* Check if broadcast is supported by the instruction and is applied
5181 to the memory operand. */
5182 if (i.broadcast)
5183 {
5184 i386_operand_type type, overlap;
5185
5186 /* Check if specified broadcast is supported in this instruction,
5187 and its broadcast bytes match the memory operand. */
5188 op = i.broadcast->operand;
5189 if (!t->opcode_modifier.broadcast
5190 || !(i.flags[op] & Operand_Mem)
5191 || (!i.types[op].bitfield.unspecified
5192 && !match_broadcast_size (t, op)))
5193 {
5194 bad_broadcast:
5195 i.error = unsupported_broadcast;
5196 return 1;
5197 }
5198
5199 i.broadcast->bytes = ((1 << (t->opcode_modifier.broadcast - 1))
5200 * i.broadcast->type);
5201 operand_type_set (&type, 0);
5202 switch (i.broadcast->bytes)
5203 {
5204 case 2:
5205 type.bitfield.word = 1;
5206 break;
5207 case 4:
5208 type.bitfield.dword = 1;
5209 break;
5210 case 8:
5211 type.bitfield.qword = 1;
5212 break;
5213 case 16:
5214 type.bitfield.xmmword = 1;
5215 break;
5216 case 32:
5217 type.bitfield.ymmword = 1;
5218 break;
5219 case 64:
5220 type.bitfield.zmmword = 1;
5221 break;
5222 default:
5223 goto bad_broadcast;
5224 }
5225
5226 overlap = operand_type_and (type, t->operand_types[op]);
5227 if (operand_type_all_zero (&overlap))
5228 goto bad_broadcast;
5229
5230 if (t->opcode_modifier.checkregsize)
5231 {
5232 unsigned int j;
5233
5234 type.bitfield.baseindex = 1;
5235 for (j = 0; j < i.operands; ++j)
5236 {
5237 if (j != op
5238 && !operand_type_register_match(i.types[j],
5239 t->operand_types[j],
5240 type,
5241 t->operand_types[op]))
5242 goto bad_broadcast;
5243 }
5244 }
5245 }
5246 /* If broadcast is supported in this instruction, we need to check if
5247 operand of one-element size isn't specified without broadcast. */
5248 else if (t->opcode_modifier.broadcast && i.mem_operands)
5249 {
5250 /* Find memory operand. */
5251 for (op = 0; op < i.operands; op++)
5252 if (operand_type_check (i.types[op], anymem))
5253 break;
5254 gas_assert (op < i.operands);
5255 /* Check size of the memory operand. */
5256 if (match_broadcast_size (t, op))
5257 {
5258 i.error = broadcast_needed;
5259 return 1;
5260 }
5261 }
5262 else
5263 op = MAX_OPERANDS - 1; /* Avoid uninitialized variable warning. */
5264
5265 /* Check if requested masking is supported. */
5266 if (i.mask)
5267 {
5268 switch (t->opcode_modifier.masking)
5269 {
5270 case BOTH_MASKING:
5271 break;
5272 case MERGING_MASKING:
5273 if (i.mask->zeroing)
5274 {
5275 case 0:
5276 i.error = unsupported_masking;
5277 return 1;
5278 }
5279 break;
5280 case DYNAMIC_MASKING:
5281 /* Memory destinations allow only merging masking. */
5282 if (i.mask->zeroing && i.mem_operands)
5283 {
5284 /* Find memory operand. */
5285 for (op = 0; op < i.operands; op++)
5286 if (i.flags[op] & Operand_Mem)
5287 break;
5288 gas_assert (op < i.operands);
5289 if (op == i.operands - 1)
5290 {
5291 i.error = unsupported_masking;
5292 return 1;
5293 }
5294 }
5295 break;
5296 default:
5297 abort ();
5298 }
5299 }
5300
5301 /* Check if masking is applied to dest operand. */
5302 if (i.mask && (i.mask->operand != (int) (i.operands - 1)))
5303 {
5304 i.error = mask_not_on_destination;
5305 return 1;
5306 }
5307
5308 /* Check RC/SAE. */
5309 if (i.rounding)
5310 {
5311 if ((i.rounding->type != saeonly
5312 && !t->opcode_modifier.staticrounding)
5313 || (i.rounding->type == saeonly
5314 && (t->opcode_modifier.staticrounding
5315 || !t->opcode_modifier.sae)))
5316 {
5317 i.error = unsupported_rc_sae;
5318 return 1;
5319 }
5320 /* If the instruction has several immediate operands and one of
5321 them is rounding, the rounding operand should be the last
5322 immediate operand. */
5323 if (i.imm_operands > 1
5324 && i.rounding->operand != (int) (i.imm_operands - 1))
5325 {
5326 i.error = rc_sae_operand_not_last_imm;
5327 return 1;
5328 }
5329 }
5330
5331 /* Check vector Disp8 operand. */
5332 if (t->opcode_modifier.disp8memshift
5333 && i.disp_encoding != disp_encoding_32bit)
5334 {
5335 if (i.broadcast)
5336 i.memshift = t->opcode_modifier.broadcast - 1;
5337 else if (t->opcode_modifier.disp8memshift != DISP8_SHIFT_VL)
5338 i.memshift = t->opcode_modifier.disp8memshift;
5339 else
5340 {
5341 const i386_operand_type *type = NULL;
5342
5343 i.memshift = 0;
5344 for (op = 0; op < i.operands; op++)
5345 if (operand_type_check (i.types[op], anymem))
5346 {
5347 if (t->opcode_modifier.evex == EVEXLIG)
5348 i.memshift = 2 + (i.suffix == QWORD_MNEM_SUFFIX);
5349 else if (t->operand_types[op].bitfield.xmmword
5350 + t->operand_types[op].bitfield.ymmword
5351 + t->operand_types[op].bitfield.zmmword <= 1)
5352 type = &t->operand_types[op];
5353 else if (!i.types[op].bitfield.unspecified)
5354 type = &i.types[op];
5355 }
5356 else if (i.types[op].bitfield.regsimd
5357 && t->opcode_modifier.evex != EVEXLIG)
5358 {
5359 if (i.types[op].bitfield.zmmword)
5360 i.memshift = 6;
5361 else if (i.types[op].bitfield.ymmword && i.memshift < 5)
5362 i.memshift = 5;
5363 else if (i.types[op].bitfield.xmmword && i.memshift < 4)
5364 i.memshift = 4;
5365 }
5366
5367 if (type)
5368 {
5369 if (type->bitfield.zmmword)
5370 i.memshift = 6;
5371 else if (type->bitfield.ymmword)
5372 i.memshift = 5;
5373 else if (type->bitfield.xmmword)
5374 i.memshift = 4;
5375 }
5376
5377 /* For the check in fits_in_disp8(). */
5378 if (i.memshift == 0)
5379 i.memshift = -1;
5380 }
5381
5382 for (op = 0; op < i.operands; op++)
5383 if (operand_type_check (i.types[op], disp)
5384 && i.op[op].disps->X_op == O_constant)
5385 {
5386 if (fits_in_disp8 (i.op[op].disps->X_add_number))
5387 {
5388 i.types[op].bitfield.disp8 = 1;
5389 return 0;
5390 }
5391 i.types[op].bitfield.disp8 = 0;
5392 }
5393 }
5394
5395 i.memshift = 0;
5396
5397 return 0;
5398 }
5399
5400 /* Check if operands are valid for the instruction. Update VEX
5401 operand types. */
5402
5403 static int
5404 VEX_check_operands (const insn_template *t)
5405 {
5406 if (i.vec_encoding == vex_encoding_evex)
5407 {
5408 /* This instruction must be encoded with EVEX prefix. */
5409 if (!is_evex_encoding (t))
5410 {
5411 i.error = unsupported;
5412 return 1;
5413 }
5414 return 0;
5415 }
5416
5417 if (!t->opcode_modifier.vex)
5418 {
5419 /* This instruction template doesn't have VEX prefix. */
5420 if (i.vec_encoding != vex_encoding_default)
5421 {
5422 i.error = unsupported;
5423 return 1;
5424 }
5425 return 0;
5426 }
5427
5428 /* Only check VEX_Imm4, which must be the first operand. */
5429 if (t->operand_types[0].bitfield.vec_imm4)
5430 {
5431 if (i.op[0].imms->X_op != O_constant
5432 || !fits_in_imm4 (i.op[0].imms->X_add_number))
5433 {
5434 i.error = bad_imm4;
5435 return 1;
5436 }
5437
5438 /* Turn off Imm8 so that update_imm won't complain. */
5439 i.types[0] = vec_imm4;
5440 }
5441
5442 return 0;
5443 }
5444
5445 static const insn_template *
5446 match_template (char mnem_suffix)
5447 {
5448 /* Points to template once we've found it. */
5449 const insn_template *t;
5450 i386_operand_type overlap0, overlap1, overlap2, overlap3;
5451 i386_operand_type overlap4;
5452 unsigned int found_reverse_match;
5453 i386_opcode_modifier suffix_check, mnemsuf_check;
5454 i386_operand_type operand_types [MAX_OPERANDS];
5455 int addr_prefix_disp;
5456 unsigned int j;
5457 unsigned int found_cpu_match, size_match;
5458 unsigned int check_register;
5459 enum i386_error specific_error = 0;
5460
5461 #if MAX_OPERANDS != 5
5462 # error "MAX_OPERANDS must be 5."
5463 #endif
5464
5465 found_reverse_match = 0;
5466 addr_prefix_disp = -1;
5467
5468 memset (&suffix_check, 0, sizeof (suffix_check));
5469 if (intel_syntax && i.broadcast)
5470 /* nothing */;
5471 else if (i.suffix == BYTE_MNEM_SUFFIX)
5472 suffix_check.no_bsuf = 1;
5473 else if (i.suffix == WORD_MNEM_SUFFIX)
5474 suffix_check.no_wsuf = 1;
5475 else if (i.suffix == SHORT_MNEM_SUFFIX)
5476 suffix_check.no_ssuf = 1;
5477 else if (i.suffix == LONG_MNEM_SUFFIX)
5478 suffix_check.no_lsuf = 1;
5479 else if (i.suffix == QWORD_MNEM_SUFFIX)
5480 suffix_check.no_qsuf = 1;
5481 else if (i.suffix == LONG_DOUBLE_MNEM_SUFFIX)
5482 suffix_check.no_ldsuf = 1;
5483
5484 memset (&mnemsuf_check, 0, sizeof (mnemsuf_check));
5485 if (intel_syntax)
5486 {
5487 switch (mnem_suffix)
5488 {
5489 case BYTE_MNEM_SUFFIX: mnemsuf_check.no_bsuf = 1; break;
5490 case WORD_MNEM_SUFFIX: mnemsuf_check.no_wsuf = 1; break;
5491 case SHORT_MNEM_SUFFIX: mnemsuf_check.no_ssuf = 1; break;
5492 case LONG_MNEM_SUFFIX: mnemsuf_check.no_lsuf = 1; break;
5493 case QWORD_MNEM_SUFFIX: mnemsuf_check.no_qsuf = 1; break;
5494 }
5495 }
5496
5497 /* Must have right number of operands. */
5498 i.error = number_of_operands_mismatch;
5499
5500 for (t = current_templates->start; t < current_templates->end; t++)
5501 {
5502 addr_prefix_disp = -1;
5503
5504 if (i.operands != t->operands)
5505 continue;
5506
5507 /* Check processor support. */
5508 i.error = unsupported;
5509 found_cpu_match = (cpu_flags_match (t)
5510 == CPU_FLAGS_PERFECT_MATCH);
5511 if (!found_cpu_match)
5512 continue;
5513
5514 /* Check AT&T mnemonic. */
5515 i.error = unsupported_with_intel_mnemonic;
5516 if (intel_mnemonic && t->opcode_modifier.attmnemonic)
5517 continue;
5518
5519 /* Check AT&T/Intel syntax and Intel64/AMD64 ISA. */
5520 i.error = unsupported_syntax;
5521 if ((intel_syntax && t->opcode_modifier.attsyntax)
5522 || (!intel_syntax && t->opcode_modifier.intelsyntax)
5523 || (intel64 && t->opcode_modifier.amd64)
5524 || (!intel64 && t->opcode_modifier.intel64))
5525 continue;
5526
5527 /* Check the suffix, except for some instructions in intel mode. */
5528 i.error = invalid_instruction_suffix;
5529 if ((!intel_syntax || !t->opcode_modifier.ignoresize)
5530 && ((t->opcode_modifier.no_bsuf && suffix_check.no_bsuf)
5531 || (t->opcode_modifier.no_wsuf && suffix_check.no_wsuf)
5532 || (t->opcode_modifier.no_lsuf && suffix_check.no_lsuf)
5533 || (t->opcode_modifier.no_ssuf && suffix_check.no_ssuf)
5534 || (t->opcode_modifier.no_qsuf && suffix_check.no_qsuf)
5535 || (t->opcode_modifier.no_ldsuf && suffix_check.no_ldsuf)))
5536 continue;
5537 /* In Intel mode all mnemonic suffixes must be explicitly allowed. */
5538 if ((t->opcode_modifier.no_bsuf && mnemsuf_check.no_bsuf)
5539 || (t->opcode_modifier.no_wsuf && mnemsuf_check.no_wsuf)
5540 || (t->opcode_modifier.no_lsuf && mnemsuf_check.no_lsuf)
5541 || (t->opcode_modifier.no_ssuf && mnemsuf_check.no_ssuf)
5542 || (t->opcode_modifier.no_qsuf && mnemsuf_check.no_qsuf)
5543 || (t->opcode_modifier.no_ldsuf && mnemsuf_check.no_ldsuf))
5544 continue;
5545
5546 size_match = operand_size_match (t);
5547 if (!size_match)
5548 continue;
5549
5550 for (j = 0; j < MAX_OPERANDS; j++)
5551 operand_types[j] = t->operand_types[j];
5552
5553 /* In general, don't allow 64-bit operands in 32-bit mode. */
5554 if (i.suffix == QWORD_MNEM_SUFFIX
5555 && flag_code != CODE_64BIT
5556 && (intel_syntax
5557 ? (!t->opcode_modifier.ignoresize
5558 && !t->opcode_modifier.broadcast
5559 && !intel_float_operand (t->name))
5560 : intel_float_operand (t->name) != 2)
5561 && ((!operand_types[0].bitfield.regmmx
5562 && !operand_types[0].bitfield.regsimd)
5563 || (!operand_types[t->operands > 1].bitfield.regmmx
5564 && !operand_types[t->operands > 1].bitfield.regsimd))
5565 && (t->base_opcode != 0x0fc7
5566 || t->extension_opcode != 1 /* cmpxchg8b */))
5567 continue;
5568
5569 /* In general, don't allow 32-bit operands on pre-386. */
5570 else if (i.suffix == LONG_MNEM_SUFFIX
5571 && !cpu_arch_flags.bitfield.cpui386
5572 && (intel_syntax
5573 ? (!t->opcode_modifier.ignoresize
5574 && !intel_float_operand (t->name))
5575 : intel_float_operand (t->name) != 2)
5576 && ((!operand_types[0].bitfield.regmmx
5577 && !operand_types[0].bitfield.regsimd)
5578 || (!operand_types[t->operands > 1].bitfield.regmmx
5579 && !operand_types[t->operands > 1].bitfield.regsimd)))
5580 continue;
5581
5582 /* Do not verify operands when there are none. */
5583 else
5584 {
5585 if (!t->operands)
5586 /* We've found a match; break out of loop. */
5587 break;
5588 }
5589
5590 /* Address size prefix will turn Disp64/Disp32/Disp16 operand
5591 into Disp32/Disp16/Disp32 operand. */
5592 if (i.prefix[ADDR_PREFIX] != 0)
5593 {
5594 /* There should be only one Disp operand. */
5595 switch (flag_code)
5596 {
5597 case CODE_16BIT:
5598 for (j = 0; j < MAX_OPERANDS; j++)
5599 {
5600 if (operand_types[j].bitfield.disp16)
5601 {
5602 addr_prefix_disp = j;
5603 operand_types[j].bitfield.disp32 = 1;
5604 operand_types[j].bitfield.disp16 = 0;
5605 break;
5606 }
5607 }
5608 break;
5609 case CODE_32BIT:
5610 for (j = 0; j < MAX_OPERANDS; j++)
5611 {
5612 if (operand_types[j].bitfield.disp32)
5613 {
5614 addr_prefix_disp = j;
5615 operand_types[j].bitfield.disp32 = 0;
5616 operand_types[j].bitfield.disp16 = 1;
5617 break;
5618 }
5619 }
5620 break;
5621 case CODE_64BIT:
5622 for (j = 0; j < MAX_OPERANDS; j++)
5623 {
5624 if (operand_types[j].bitfield.disp64)
5625 {
5626 addr_prefix_disp = j;
5627 operand_types[j].bitfield.disp64 = 0;
5628 operand_types[j].bitfield.disp32 = 1;
5629 break;
5630 }
5631 }
5632 break;
5633 }
5634 }
5635
5636 /* Force 0x8b encoding for "mov foo@GOT, %eax". */
5637 if (i.reloc[0] == BFD_RELOC_386_GOT32 && t->base_opcode == 0xa0)
5638 continue;
5639
5640 /* We check register size if needed. */
5641 if (t->opcode_modifier.checkregsize)
5642 {
5643 check_register = (1 << t->operands) - 1;
5644 if (i.broadcast)
5645 check_register &= ~(1 << i.broadcast->operand);
5646 }
5647 else
5648 check_register = 0;
5649
5650 overlap0 = operand_type_and (i.types[0], operand_types[0]);
5651 switch (t->operands)
5652 {
5653 case 1:
5654 if (!operand_type_match (overlap0, i.types[0]))
5655 continue;
5656 break;
5657 case 2:
5658 /* xchg %eax, %eax is a special case. It is an alias for nop
5659 only in 32bit mode and we can use opcode 0x90. In 64bit
5660 mode, we can't use 0x90 for xchg %eax, %eax since it should
5661 zero-extend %eax to %rax. */
5662 if (flag_code == CODE_64BIT
5663 && t->base_opcode == 0x90
5664 && operand_type_equal (&i.types [0], &acc32)
5665 && operand_type_equal (&i.types [1], &acc32))
5666 continue;
5667 /* xrelease mov %eax, <disp> is another special case. It must not
5668 match the accumulator-only encoding of mov. */
5669 if (flag_code != CODE_64BIT
5670 && i.hle_prefix
5671 && t->base_opcode == 0xa0
5672 && i.types[0].bitfield.acc
5673 && operand_type_check (i.types[1], anymem))
5674 continue;
5675 if (!(size_match & MATCH_STRAIGHT))
5676 goto check_reverse;
5677 /* If we want store form, we reverse direction of operands. */
5678 if (i.dir_encoding == dir_encoding_store
5679 && t->opcode_modifier.d)
5680 goto check_reverse;
5681 /* Fall through. */
5682
5683 case 3:
5684 /* If we want store form, we skip the current load. */
5685 if (i.dir_encoding == dir_encoding_store
5686 && i.mem_operands == 0
5687 && t->opcode_modifier.load)
5688 continue;
5689 /* Fall through. */
5690 case 4:
5691 case 5:
5692 overlap1 = operand_type_and (i.types[1], operand_types[1]);
5693 if (!operand_type_match (overlap0, i.types[0])
5694 || !operand_type_match (overlap1, i.types[1])
5695 || ((check_register & 3) == 3
5696 && !operand_type_register_match (i.types[0],
5697 operand_types[0],
5698 i.types[1],
5699 operand_types[1])))
5700 {
5701 /* Check if other direction is valid ... */
5702 if (!t->opcode_modifier.d)
5703 continue;
5704
5705 check_reverse:
5706 if (!(size_match & MATCH_REVERSE))
5707 continue;
5708 /* Try reversing direction of operands. */
5709 overlap0 = operand_type_and (i.types[0], operand_types[1]);
5710 overlap1 = operand_type_and (i.types[1], operand_types[0]);
5711 if (!operand_type_match (overlap0, i.types[0])
5712 || !operand_type_match (overlap1, i.types[1])
5713 || (check_register
5714 && !operand_type_register_match (i.types[0],
5715 operand_types[1],
5716 i.types[1],
5717 operand_types[0])))
5718 {
5719 /* Does not match either direction. */
5720 continue;
5721 }
5722 /* found_reverse_match holds which of D or FloatR
5723 we've found. */
5724 if (!t->opcode_modifier.d)
5725 found_reverse_match = 0;
5726 else if (operand_types[0].bitfield.tbyte)
5727 found_reverse_match = Opcode_FloatD;
5728 else
5729 found_reverse_match = Opcode_D;
5730 if (t->opcode_modifier.floatr)
5731 found_reverse_match |= Opcode_FloatR;
5732 }
5733 else
5734 {
5735 /* Found a forward 2 operand match here. */
5736 switch (t->operands)
5737 {
5738 case 5:
5739 overlap4 = operand_type_and (i.types[4],
5740 operand_types[4]);
5741 /* Fall through. */
5742 case 4:
5743 overlap3 = operand_type_and (i.types[3],
5744 operand_types[3]);
5745 /* Fall through. */
5746 case 3:
5747 overlap2 = operand_type_and (i.types[2],
5748 operand_types[2]);
5749 break;
5750 }
5751
5752 switch (t->operands)
5753 {
5754 case 5:
5755 if (!operand_type_match (overlap4, i.types[4])
5756 || !operand_type_register_match (i.types[3],
5757 operand_types[3],
5758 i.types[4],
5759 operand_types[4]))
5760 continue;
5761 /* Fall through. */
5762 case 4:
5763 if (!operand_type_match (overlap3, i.types[3])
5764 || ((check_register & 0xa) == 0xa
5765 && !operand_type_register_match (i.types[1],
5766 operand_types[1],
5767 i.types[3],
5768 operand_types[3]))
5769 || ((check_register & 0xc) == 0xc
5770 && !operand_type_register_match (i.types[2],
5771 operand_types[2],
5772 i.types[3],
5773 operand_types[3])))
5774 continue;
5775 /* Fall through. */
5776 case 3:
5777 /* Here we make use of the fact that there are no
5778 reverse match 3 operand instructions. */
5779 if (!operand_type_match (overlap2, i.types[2])
5780 || ((check_register & 5) == 5
5781 && !operand_type_register_match (i.types[0],
5782 operand_types[0],
5783 i.types[2],
5784 operand_types[2]))
5785 || ((check_register & 6) == 6
5786 && !operand_type_register_match (i.types[1],
5787 operand_types[1],
5788 i.types[2],
5789 operand_types[2])))
5790 continue;
5791 break;
5792 }
5793 }
5794 /* Found either forward/reverse 2, 3 or 4 operand match here:
5795 slip through to break. */
5796 }
5797 if (!found_cpu_match)
5798 {
5799 found_reverse_match = 0;
5800 continue;
5801 }
5802
5803 /* Check if vector and VEX operands are valid. */
5804 if (check_VecOperands (t) || VEX_check_operands (t))
5805 {
5806 specific_error = i.error;
5807 continue;
5808 }
5809
5810 /* We've found a match; break out of loop. */
5811 break;
5812 }
5813
5814 if (t == current_templates->end)
5815 {
5816 /* We found no match. */
5817 const char *err_msg;
5818 switch (specific_error ? specific_error : i.error)
5819 {
5820 default:
5821 abort ();
5822 case operand_size_mismatch:
5823 err_msg = _("operand size mismatch");
5824 break;
5825 case operand_type_mismatch:
5826 err_msg = _("operand type mismatch");
5827 break;
5828 case register_type_mismatch:
5829 err_msg = _("register type mismatch");
5830 break;
5831 case number_of_operands_mismatch:
5832 err_msg = _("number of operands mismatch");
5833 break;
5834 case invalid_instruction_suffix:
5835 err_msg = _("invalid instruction suffix");
5836 break;
5837 case bad_imm4:
5838 err_msg = _("constant doesn't fit in 4 bits");
5839 break;
5840 case unsupported_with_intel_mnemonic:
5841 err_msg = _("unsupported with Intel mnemonic");
5842 break;
5843 case unsupported_syntax:
5844 err_msg = _("unsupported syntax");
5845 break;
5846 case unsupported:
5847 as_bad (_("unsupported instruction `%s'"),
5848 current_templates->start->name);
5849 return NULL;
5850 case invalid_vsib_address:
5851 err_msg = _("invalid VSIB address");
5852 break;
5853 case invalid_vector_register_set:
5854 err_msg = _("mask, index, and destination registers must be distinct");
5855 break;
5856 case unsupported_vector_index_register:
5857 err_msg = _("unsupported vector index register");
5858 break;
5859 case unsupported_broadcast:
5860 err_msg = _("unsupported broadcast");
5861 break;
5862 case broadcast_needed:
5863 err_msg = _("broadcast is needed for operand of such type");
5864 break;
5865 case unsupported_masking:
5866 err_msg = _("unsupported masking");
5867 break;
5868 case mask_not_on_destination:
5869 err_msg = _("mask not on destination operand");
5870 break;
5871 case no_default_mask:
5872 err_msg = _("default mask isn't allowed");
5873 break;
5874 case unsupported_rc_sae:
5875 err_msg = _("unsupported static rounding/sae");
5876 break;
5877 case rc_sae_operand_not_last_imm:
5878 if (intel_syntax)
5879 err_msg = _("RC/SAE operand must precede immediate operands");
5880 else
5881 err_msg = _("RC/SAE operand must follow immediate operands");
5882 break;
5883 case invalid_register_operand:
5884 err_msg = _("invalid register operand");
5885 break;
5886 }
5887 as_bad (_("%s for `%s'"), err_msg,
5888 current_templates->start->name);
5889 return NULL;
5890 }
5891
5892 if (!quiet_warnings)
5893 {
5894 if (!intel_syntax
5895 && (i.types[0].bitfield.jumpabsolute
5896 != operand_types[0].bitfield.jumpabsolute))
5897 {
5898 as_warn (_("indirect %s without `*'"), t->name);
5899 }
5900
5901 if (t->opcode_modifier.isprefix
5902 && t->opcode_modifier.ignoresize)
5903 {
5904 /* Warn them that a data or address size prefix doesn't
5905 affect assembly of the next line of code. */
5906 as_warn (_("stand-alone `%s' prefix"), t->name);
5907 }
5908 }
5909
5910 /* Copy the template we found. */
5911 i.tm = *t;
5912
5913 if (addr_prefix_disp != -1)
5914 i.tm.operand_types[addr_prefix_disp]
5915 = operand_types[addr_prefix_disp];
5916
5917 if (found_reverse_match)
5918 {
5919 /* If we found a reverse match we must alter the opcode
5920 direction bit. found_reverse_match holds bits to change
5921 (different for int & float insns). */
5922
5923 i.tm.base_opcode ^= found_reverse_match;
5924
5925 i.tm.operand_types[0] = operand_types[1];
5926 i.tm.operand_types[1] = operand_types[0];
5927 }
5928
5929 return t;
5930 }
5931
5932 static int
5933 check_string (void)
5934 {
5935 int mem_op = operand_type_check (i.types[0], anymem) ? 0 : 1;
5936 if (i.tm.operand_types[mem_op].bitfield.esseg)
5937 {
5938 if (i.seg[0] != NULL && i.seg[0] != &es)
5939 {
5940 as_bad (_("`%s' operand %d must use `%ses' segment"),
5941 i.tm.name,
5942 mem_op + 1,
5943 register_prefix);
5944 return 0;
5945 }
5946 /* There's only ever one segment override allowed per instruction.
5947 This instruction possibly has a legal segment override on the
5948 second operand, so copy the segment to where non-string
5949 instructions store it, allowing common code. */
5950 i.seg[0] = i.seg[1];
5951 }
5952 else if (i.tm.operand_types[mem_op + 1].bitfield.esseg)
5953 {
5954 if (i.seg[1] != NULL && i.seg[1] != &es)
5955 {
5956 as_bad (_("`%s' operand %d must use `%ses' segment"),
5957 i.tm.name,
5958 mem_op + 2,
5959 register_prefix);
5960 return 0;
5961 }
5962 }
5963 return 1;
5964 }
5965
5966 static int
5967 process_suffix (void)
5968 {
5969 /* If matched instruction specifies an explicit instruction mnemonic
5970 suffix, use it. */
5971 if (i.tm.opcode_modifier.size16)
5972 i.suffix = WORD_MNEM_SUFFIX;
5973 else if (i.tm.opcode_modifier.size32)
5974 i.suffix = LONG_MNEM_SUFFIX;
5975 else if (i.tm.opcode_modifier.size64)
5976 i.suffix = QWORD_MNEM_SUFFIX;
5977 else if (i.reg_operands)
5978 {
5979 /* If there's no instruction mnemonic suffix we try to invent one
5980 based on register operands. */
5981 if (!i.suffix)
5982 {
5983 /* We take i.suffix from the last register operand specified,
5984 Destination register type is more significant than source
5985 register type. crc32 in SSE4.2 prefers source register
5986 type. */
5987 if (i.tm.base_opcode == 0xf20f38f1)
5988 {
5989 if (i.types[0].bitfield.reg && i.types[0].bitfield.word)
5990 i.suffix = WORD_MNEM_SUFFIX;
5991 else if (i.types[0].bitfield.reg && i.types[0].bitfield.dword)
5992 i.suffix = LONG_MNEM_SUFFIX;
5993 else if (i.types[0].bitfield.reg && i.types[0].bitfield.qword)
5994 i.suffix = QWORD_MNEM_SUFFIX;
5995 }
5996 else if (i.tm.base_opcode == 0xf20f38f0)
5997 {
5998 if (i.types[0].bitfield.reg && i.types[0].bitfield.byte)
5999 i.suffix = BYTE_MNEM_SUFFIX;
6000 }
6001
6002 if (!i.suffix)
6003 {
6004 int op;
6005
6006 if (i.tm.base_opcode == 0xf20f38f1
6007 || i.tm.base_opcode == 0xf20f38f0)
6008 {
6009 /* We have to know the operand size for crc32. */
6010 as_bad (_("ambiguous memory operand size for `%s`"),
6011 i.tm.name);
6012 return 0;
6013 }
6014
6015 for (op = i.operands; --op >= 0;)
6016 if (!i.tm.operand_types[op].bitfield.inoutportreg
6017 && !i.tm.operand_types[op].bitfield.shiftcount)
6018 {
6019 if (!i.types[op].bitfield.reg)
6020 continue;
6021 if (i.types[op].bitfield.byte)
6022 i.suffix = BYTE_MNEM_SUFFIX;
6023 else if (i.types[op].bitfield.word)
6024 i.suffix = WORD_MNEM_SUFFIX;
6025 else if (i.types[op].bitfield.dword)
6026 i.suffix = LONG_MNEM_SUFFIX;
6027 else if (i.types[op].bitfield.qword)
6028 i.suffix = QWORD_MNEM_SUFFIX;
6029 else
6030 continue;
6031 break;
6032 }
6033 }
6034 }
6035 else if (i.suffix == BYTE_MNEM_SUFFIX)
6036 {
6037 if (intel_syntax
6038 && i.tm.opcode_modifier.ignoresize
6039 && i.tm.opcode_modifier.no_bsuf)
6040 i.suffix = 0;
6041 else if (!check_byte_reg ())
6042 return 0;
6043 }
6044 else if (i.suffix == LONG_MNEM_SUFFIX)
6045 {
6046 if (intel_syntax
6047 && i.tm.opcode_modifier.ignoresize
6048 && i.tm.opcode_modifier.no_lsuf
6049 && !i.tm.opcode_modifier.todword
6050 && !i.tm.opcode_modifier.toqword)
6051 i.suffix = 0;
6052 else if (!check_long_reg ())
6053 return 0;
6054 }
6055 else if (i.suffix == QWORD_MNEM_SUFFIX)
6056 {
6057 if (intel_syntax
6058 && i.tm.opcode_modifier.ignoresize
6059 && i.tm.opcode_modifier.no_qsuf
6060 && !i.tm.opcode_modifier.todword
6061 && !i.tm.opcode_modifier.toqword)
6062 i.suffix = 0;
6063 else if (!check_qword_reg ())
6064 return 0;
6065 }
6066 else if (i.suffix == WORD_MNEM_SUFFIX)
6067 {
6068 if (intel_syntax
6069 && i.tm.opcode_modifier.ignoresize
6070 && i.tm.opcode_modifier.no_wsuf)
6071 i.suffix = 0;
6072 else if (!check_word_reg ())
6073 return 0;
6074 }
6075 else if (intel_syntax && i.tm.opcode_modifier.ignoresize)
6076 /* Do nothing if the instruction is going to ignore the prefix. */
6077 ;
6078 else
6079 abort ();
6080 }
6081 else if (i.tm.opcode_modifier.defaultsize
6082 && !i.suffix
6083 /* exclude fldenv/frstor/fsave/fstenv */
6084 && i.tm.opcode_modifier.no_ssuf)
6085 {
6086 i.suffix = stackop_size;
6087 }
6088 else if (intel_syntax
6089 && !i.suffix
6090 && (i.tm.operand_types[0].bitfield.jumpabsolute
6091 || i.tm.opcode_modifier.jumpbyte
6092 || i.tm.opcode_modifier.jumpintersegment
6093 || (i.tm.base_opcode == 0x0f01 /* [ls][gi]dt */
6094 && i.tm.extension_opcode <= 3)))
6095 {
6096 switch (flag_code)
6097 {
6098 case CODE_64BIT:
6099 if (!i.tm.opcode_modifier.no_qsuf)
6100 {
6101 i.suffix = QWORD_MNEM_SUFFIX;
6102 break;
6103 }
6104 /* Fall through. */
6105 case CODE_32BIT:
6106 if (!i.tm.opcode_modifier.no_lsuf)
6107 i.suffix = LONG_MNEM_SUFFIX;
6108 break;
6109 case CODE_16BIT:
6110 if (!i.tm.opcode_modifier.no_wsuf)
6111 i.suffix = WORD_MNEM_SUFFIX;
6112 break;
6113 }
6114 }
6115
6116 if (!i.suffix)
6117 {
6118 if (!intel_syntax)
6119 {
6120 if (i.tm.opcode_modifier.w)
6121 {
6122 as_bad (_("no instruction mnemonic suffix given and "
6123 "no register operands; can't size instruction"));
6124 return 0;
6125 }
6126 }
6127 else
6128 {
6129 unsigned int suffixes;
6130
6131 suffixes = !i.tm.opcode_modifier.no_bsuf;
6132 if (!i.tm.opcode_modifier.no_wsuf)
6133 suffixes |= 1 << 1;
6134 if (!i.tm.opcode_modifier.no_lsuf)
6135 suffixes |= 1 << 2;
6136 if (!i.tm.opcode_modifier.no_ldsuf)
6137 suffixes |= 1 << 3;
6138 if (!i.tm.opcode_modifier.no_ssuf)
6139 suffixes |= 1 << 4;
6140 if (flag_code == CODE_64BIT && !i.tm.opcode_modifier.no_qsuf)
6141 suffixes |= 1 << 5;
6142
6143 /* There are more than suffix matches. */
6144 if (i.tm.opcode_modifier.w
6145 || ((suffixes & (suffixes - 1))
6146 && !i.tm.opcode_modifier.defaultsize
6147 && !i.tm.opcode_modifier.ignoresize))
6148 {
6149 as_bad (_("ambiguous operand size for `%s'"), i.tm.name);
6150 return 0;
6151 }
6152 }
6153 }
6154
6155 /* Change the opcode based on the operand size given by i.suffix. */
6156 switch (i.suffix)
6157 {
6158 /* Size floating point instruction. */
6159 case LONG_MNEM_SUFFIX:
6160 if (i.tm.opcode_modifier.floatmf)
6161 {
6162 i.tm.base_opcode ^= 4;
6163 break;
6164 }
6165 /* fall through */
6166 case WORD_MNEM_SUFFIX:
6167 case QWORD_MNEM_SUFFIX:
6168 /* It's not a byte, select word/dword operation. */
6169 if (i.tm.opcode_modifier.w)
6170 {
6171 if (i.tm.opcode_modifier.shortform)
6172 i.tm.base_opcode |= 8;
6173 else
6174 i.tm.base_opcode |= 1;
6175 }
6176 /* fall through */
6177 case SHORT_MNEM_SUFFIX:
6178 /* Now select between word & dword operations via the operand
6179 size prefix, except for instructions that will ignore this
6180 prefix anyway. */
6181 if (i.reg_operands > 0
6182 && i.types[0].bitfield.reg
6183 && i.tm.opcode_modifier.addrprefixopreg
6184 && (i.tm.opcode_modifier.immext
6185 || i.operands == 1))
6186 {
6187 /* The address size override prefix changes the size of the
6188 first operand. */
6189 if ((flag_code == CODE_32BIT
6190 && i.op[0].regs->reg_type.bitfield.word)
6191 || (flag_code != CODE_32BIT
6192 && i.op[0].regs->reg_type.bitfield.dword))
6193 if (!add_prefix (ADDR_PREFIX_OPCODE))
6194 return 0;
6195 }
6196 else if (i.suffix != QWORD_MNEM_SUFFIX
6197 && !i.tm.opcode_modifier.ignoresize
6198 && !i.tm.opcode_modifier.floatmf
6199 && !i.tm.opcode_modifier.vex
6200 && !i.tm.opcode_modifier.vexopcode
6201 && !is_evex_encoding (&i.tm)
6202 && ((i.suffix == LONG_MNEM_SUFFIX) == (flag_code == CODE_16BIT)
6203 || (flag_code == CODE_64BIT
6204 && i.tm.opcode_modifier.jumpbyte)))
6205 {
6206 unsigned int prefix = DATA_PREFIX_OPCODE;
6207
6208 if (i.tm.opcode_modifier.jumpbyte) /* jcxz, loop */
6209 prefix = ADDR_PREFIX_OPCODE;
6210
6211 if (!add_prefix (prefix))
6212 return 0;
6213 }
6214
6215 /* Set mode64 for an operand. */
6216 if (i.suffix == QWORD_MNEM_SUFFIX
6217 && flag_code == CODE_64BIT
6218 && !i.tm.opcode_modifier.norex64
6219 /* Special case for xchg %rax,%rax. It is NOP and doesn't
6220 need rex64. */
6221 && ! (i.operands == 2
6222 && i.tm.base_opcode == 0x90
6223 && i.tm.extension_opcode == None
6224 && operand_type_equal (&i.types [0], &acc64)
6225 && operand_type_equal (&i.types [1], &acc64)))
6226 i.rex |= REX_W;
6227
6228 break;
6229 }
6230
6231 if (i.reg_operands != 0
6232 && i.operands > 1
6233 && i.tm.opcode_modifier.addrprefixopreg
6234 && !i.tm.opcode_modifier.immext)
6235 {
6236 /* Check invalid register operand when the address size override
6237 prefix changes the size of register operands. */
6238 unsigned int op;
6239 enum { need_word, need_dword, need_qword } need;
6240
6241 if (flag_code == CODE_32BIT)
6242 need = i.prefix[ADDR_PREFIX] ? need_word : need_dword;
6243 else
6244 {
6245 if (i.prefix[ADDR_PREFIX])
6246 need = need_dword;
6247 else
6248 need = flag_code == CODE_64BIT ? need_qword : need_word;
6249 }
6250
6251 for (op = 0; op < i.operands; op++)
6252 if (i.types[op].bitfield.reg
6253 && ((need == need_word
6254 && !i.op[op].regs->reg_type.bitfield.word)
6255 || (need == need_dword
6256 && !i.op[op].regs->reg_type.bitfield.dword)
6257 || (need == need_qword
6258 && !i.op[op].regs->reg_type.bitfield.qword)))
6259 {
6260 as_bad (_("invalid register operand size for `%s'"),
6261 i.tm.name);
6262 return 0;
6263 }
6264 }
6265
6266 return 1;
6267 }
6268
6269 static int
6270 check_byte_reg (void)
6271 {
6272 int op;
6273
6274 for (op = i.operands; --op >= 0;)
6275 {
6276 /* Skip non-register operands. */
6277 if (!i.types[op].bitfield.reg)
6278 continue;
6279
6280 /* If this is an eight bit register, it's OK. If it's the 16 or
6281 32 bit version of an eight bit register, we will just use the
6282 low portion, and that's OK too. */
6283 if (i.types[op].bitfield.byte)
6284 continue;
6285
6286 /* I/O port address operands are OK too. */
6287 if (i.tm.operand_types[op].bitfield.inoutportreg)
6288 continue;
6289
6290 /* crc32 doesn't generate this warning. */
6291 if (i.tm.base_opcode == 0xf20f38f0)
6292 continue;
6293
6294 if ((i.types[op].bitfield.word
6295 || i.types[op].bitfield.dword
6296 || i.types[op].bitfield.qword)
6297 && i.op[op].regs->reg_num < 4
6298 /* Prohibit these changes in 64bit mode, since the lowering
6299 would be more complicated. */
6300 && flag_code != CODE_64BIT)
6301 {
6302 #if REGISTER_WARNINGS
6303 if (!quiet_warnings)
6304 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6305 register_prefix,
6306 (i.op[op].regs + (i.types[op].bitfield.word
6307 ? REGNAM_AL - REGNAM_AX
6308 : REGNAM_AL - REGNAM_EAX))->reg_name,
6309 register_prefix,
6310 i.op[op].regs->reg_name,
6311 i.suffix);
6312 #endif
6313 continue;
6314 }
6315 /* Any other register is bad. */
6316 if (i.types[op].bitfield.reg
6317 || i.types[op].bitfield.regmmx
6318 || i.types[op].bitfield.regsimd
6319 || i.types[op].bitfield.sreg2
6320 || i.types[op].bitfield.sreg3
6321 || i.types[op].bitfield.control
6322 || i.types[op].bitfield.debug
6323 || i.types[op].bitfield.test)
6324 {
6325 as_bad (_("`%s%s' not allowed with `%s%c'"),
6326 register_prefix,
6327 i.op[op].regs->reg_name,
6328 i.tm.name,
6329 i.suffix);
6330 return 0;
6331 }
6332 }
6333 return 1;
6334 }
6335
6336 static int
6337 check_long_reg (void)
6338 {
6339 int op;
6340
6341 for (op = i.operands; --op >= 0;)
6342 /* Skip non-register operands. */
6343 if (!i.types[op].bitfield.reg)
6344 continue;
6345 /* Reject eight bit registers, except where the template requires
6346 them. (eg. movzb) */
6347 else if (i.types[op].bitfield.byte
6348 && (i.tm.operand_types[op].bitfield.reg
6349 || i.tm.operand_types[op].bitfield.acc)
6350 && (i.tm.operand_types[op].bitfield.word
6351 || i.tm.operand_types[op].bitfield.dword))
6352 {
6353 as_bad (_("`%s%s' not allowed with `%s%c'"),
6354 register_prefix,
6355 i.op[op].regs->reg_name,
6356 i.tm.name,
6357 i.suffix);
6358 return 0;
6359 }
6360 /* Warn if the e prefix on a general reg is missing. */
6361 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6362 && i.types[op].bitfield.word
6363 && (i.tm.operand_types[op].bitfield.reg
6364 || i.tm.operand_types[op].bitfield.acc)
6365 && i.tm.operand_types[op].bitfield.dword)
6366 {
6367 /* Prohibit these changes in the 64bit mode, since the
6368 lowering is more complicated. */
6369 if (flag_code == CODE_64BIT)
6370 {
6371 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6372 register_prefix, i.op[op].regs->reg_name,
6373 i.suffix);
6374 return 0;
6375 }
6376 #if REGISTER_WARNINGS
6377 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6378 register_prefix,
6379 (i.op[op].regs + REGNAM_EAX - REGNAM_AX)->reg_name,
6380 register_prefix, i.op[op].regs->reg_name, i.suffix);
6381 #endif
6382 }
6383 /* Warn if the r prefix on a general reg is present. */
6384 else if (i.types[op].bitfield.qword
6385 && (i.tm.operand_types[op].bitfield.reg
6386 || i.tm.operand_types[op].bitfield.acc)
6387 && i.tm.operand_types[op].bitfield.dword)
6388 {
6389 if (intel_syntax
6390 && i.tm.opcode_modifier.toqword
6391 && !i.types[0].bitfield.regsimd)
6392 {
6393 /* Convert to QWORD. We want REX byte. */
6394 i.suffix = QWORD_MNEM_SUFFIX;
6395 }
6396 else
6397 {
6398 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6399 register_prefix, i.op[op].regs->reg_name,
6400 i.suffix);
6401 return 0;
6402 }
6403 }
6404 return 1;
6405 }
6406
6407 static int
6408 check_qword_reg (void)
6409 {
6410 int op;
6411
6412 for (op = i.operands; --op >= 0; )
6413 /* Skip non-register operands. */
6414 if (!i.types[op].bitfield.reg)
6415 continue;
6416 /* Reject eight bit registers, except where the template requires
6417 them. (eg. movzb) */
6418 else if (i.types[op].bitfield.byte
6419 && (i.tm.operand_types[op].bitfield.reg
6420 || i.tm.operand_types[op].bitfield.acc)
6421 && (i.tm.operand_types[op].bitfield.word
6422 || i.tm.operand_types[op].bitfield.dword))
6423 {
6424 as_bad (_("`%s%s' not allowed with `%s%c'"),
6425 register_prefix,
6426 i.op[op].regs->reg_name,
6427 i.tm.name,
6428 i.suffix);
6429 return 0;
6430 }
6431 /* Warn if the r prefix on a general reg is missing. */
6432 else if ((i.types[op].bitfield.word
6433 || i.types[op].bitfield.dword)
6434 && (i.tm.operand_types[op].bitfield.reg
6435 || i.tm.operand_types[op].bitfield.acc)
6436 && i.tm.operand_types[op].bitfield.qword)
6437 {
6438 /* Prohibit these changes in the 64bit mode, since the
6439 lowering is more complicated. */
6440 if (intel_syntax
6441 && i.tm.opcode_modifier.todword
6442 && !i.types[0].bitfield.regsimd)
6443 {
6444 /* Convert to DWORD. We don't want REX byte. */
6445 i.suffix = LONG_MNEM_SUFFIX;
6446 }
6447 else
6448 {
6449 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6450 register_prefix, i.op[op].regs->reg_name,
6451 i.suffix);
6452 return 0;
6453 }
6454 }
6455 return 1;
6456 }
6457
6458 static int
6459 check_word_reg (void)
6460 {
6461 int op;
6462 for (op = i.operands; --op >= 0;)
6463 /* Skip non-register operands. */
6464 if (!i.types[op].bitfield.reg)
6465 continue;
6466 /* Reject eight bit registers, except where the template requires
6467 them. (eg. movzb) */
6468 else if (i.types[op].bitfield.byte
6469 && (i.tm.operand_types[op].bitfield.reg
6470 || i.tm.operand_types[op].bitfield.acc)
6471 && (i.tm.operand_types[op].bitfield.word
6472 || i.tm.operand_types[op].bitfield.dword))
6473 {
6474 as_bad (_("`%s%s' not allowed with `%s%c'"),
6475 register_prefix,
6476 i.op[op].regs->reg_name,
6477 i.tm.name,
6478 i.suffix);
6479 return 0;
6480 }
6481 /* Warn if the e or r prefix on a general reg is present. */
6482 else if ((!quiet_warnings || flag_code == CODE_64BIT)
6483 && (i.types[op].bitfield.dword
6484 || i.types[op].bitfield.qword)
6485 && (i.tm.operand_types[op].bitfield.reg
6486 || i.tm.operand_types[op].bitfield.acc)
6487 && i.tm.operand_types[op].bitfield.word)
6488 {
6489 /* Prohibit these changes in the 64bit mode, since the
6490 lowering is more complicated. */
6491 if (flag_code == CODE_64BIT)
6492 {
6493 as_bad (_("incorrect register `%s%s' used with `%c' suffix"),
6494 register_prefix, i.op[op].regs->reg_name,
6495 i.suffix);
6496 return 0;
6497 }
6498 #if REGISTER_WARNINGS
6499 as_warn (_("using `%s%s' instead of `%s%s' due to `%c' suffix"),
6500 register_prefix,
6501 (i.op[op].regs + REGNAM_AX - REGNAM_EAX)->reg_name,
6502 register_prefix, i.op[op].regs->reg_name, i.suffix);
6503 #endif
6504 }
6505 return 1;
6506 }
6507
6508 static int
6509 update_imm (unsigned int j)
6510 {
6511 i386_operand_type overlap = i.types[j];
6512 if ((overlap.bitfield.imm8
6513 || overlap.bitfield.imm8s
6514 || overlap.bitfield.imm16
6515 || overlap.bitfield.imm32
6516 || overlap.bitfield.imm32s
6517 || overlap.bitfield.imm64)
6518 && !operand_type_equal (&overlap, &imm8)
6519 && !operand_type_equal (&overlap, &imm8s)
6520 && !operand_type_equal (&overlap, &imm16)
6521 && !operand_type_equal (&overlap, &imm32)
6522 && !operand_type_equal (&overlap, &imm32s)
6523 && !operand_type_equal (&overlap, &imm64))
6524 {
6525 if (i.suffix)
6526 {
6527 i386_operand_type temp;
6528
6529 operand_type_set (&temp, 0);
6530 if (i.suffix == BYTE_MNEM_SUFFIX)
6531 {
6532 temp.bitfield.imm8 = overlap.bitfield.imm8;
6533 temp.bitfield.imm8s = overlap.bitfield.imm8s;
6534 }
6535 else if (i.suffix == WORD_MNEM_SUFFIX)
6536 temp.bitfield.imm16 = overlap.bitfield.imm16;
6537 else if (i.suffix == QWORD_MNEM_SUFFIX)
6538 {
6539 temp.bitfield.imm64 = overlap.bitfield.imm64;
6540 temp.bitfield.imm32s = overlap.bitfield.imm32s;
6541 }
6542 else
6543 temp.bitfield.imm32 = overlap.bitfield.imm32;
6544 overlap = temp;
6545 }
6546 else if (operand_type_equal (&overlap, &imm16_32_32s)
6547 || operand_type_equal (&overlap, &imm16_32)
6548 || operand_type_equal (&overlap, &imm16_32s))
6549 {
6550 if ((flag_code == CODE_16BIT) ^ (i.prefix[DATA_PREFIX] != 0))
6551 overlap = imm16;
6552 else
6553 overlap = imm32s;
6554 }
6555 if (!operand_type_equal (&overlap, &imm8)
6556 && !operand_type_equal (&overlap, &imm8s)
6557 && !operand_type_equal (&overlap, &imm16)
6558 && !operand_type_equal (&overlap, &imm32)
6559 && !operand_type_equal (&overlap, &imm32s)
6560 && !operand_type_equal (&overlap, &imm64))
6561 {
6562 as_bad (_("no instruction mnemonic suffix given; "
6563 "can't determine immediate size"));
6564 return 0;
6565 }
6566 }
6567 i.types[j] = overlap;
6568
6569 return 1;
6570 }
6571
6572 static int
6573 finalize_imm (void)
6574 {
6575 unsigned int j, n;
6576
6577 /* Update the first 2 immediate operands. */
6578 n = i.operands > 2 ? 2 : i.operands;
6579 if (n)
6580 {
6581 for (j = 0; j < n; j++)
6582 if (update_imm (j) == 0)
6583 return 0;
6584
6585 /* The 3rd operand can't be immediate operand. */
6586 gas_assert (operand_type_check (i.types[2], imm) == 0);
6587 }
6588
6589 return 1;
6590 }
6591
6592 static int
6593 process_operands (void)
6594 {
6595 /* Default segment register this instruction will use for memory
6596 accesses. 0 means unknown. This is only for optimizing out
6597 unnecessary segment overrides. */
6598 const seg_entry *default_seg = 0;
6599
6600 if (i.tm.opcode_modifier.sse2avx && i.tm.opcode_modifier.vexvvvv)
6601 {
6602 unsigned int dupl = i.operands;
6603 unsigned int dest = dupl - 1;
6604 unsigned int j;
6605
6606 /* The destination must be an xmm register. */
6607 gas_assert (i.reg_operands
6608 && MAX_OPERANDS > dupl
6609 && operand_type_equal (&i.types[dest], &regxmm));
6610
6611 if (i.tm.operand_types[0].bitfield.acc
6612 && i.tm.operand_types[0].bitfield.xmmword)
6613 {
6614 if (i.tm.opcode_modifier.vexsources == VEX3SOURCES)
6615 {
6616 /* Keep xmm0 for instructions with VEX prefix and 3
6617 sources. */
6618 i.tm.operand_types[0].bitfield.acc = 0;
6619 i.tm.operand_types[0].bitfield.regsimd = 1;
6620 goto duplicate;
6621 }
6622 else
6623 {
6624 /* We remove the first xmm0 and keep the number of
6625 operands unchanged, which in fact duplicates the
6626 destination. */
6627 for (j = 1; j < i.operands; j++)
6628 {
6629 i.op[j - 1] = i.op[j];
6630 i.types[j - 1] = i.types[j];
6631 i.tm.operand_types[j - 1] = i.tm.operand_types[j];
6632 }
6633 }
6634 }
6635 else if (i.tm.opcode_modifier.implicit1stxmm0)
6636 {
6637 gas_assert ((MAX_OPERANDS - 1) > dupl
6638 && (i.tm.opcode_modifier.vexsources
6639 == VEX3SOURCES));
6640
6641 /* Add the implicit xmm0 for instructions with VEX prefix
6642 and 3 sources. */
6643 for (j = i.operands; j > 0; j--)
6644 {
6645 i.op[j] = i.op[j - 1];
6646 i.types[j] = i.types[j - 1];
6647 i.tm.operand_types[j] = i.tm.operand_types[j - 1];
6648 }
6649 i.op[0].regs
6650 = (const reg_entry *) hash_find (reg_hash, "xmm0");
6651 i.types[0] = regxmm;
6652 i.tm.operand_types[0] = regxmm;
6653
6654 i.operands += 2;
6655 i.reg_operands += 2;
6656 i.tm.operands += 2;
6657
6658 dupl++;
6659 dest++;
6660 i.op[dupl] = i.op[dest];
6661 i.types[dupl] = i.types[dest];
6662 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6663 }
6664 else
6665 {
6666 duplicate:
6667 i.operands++;
6668 i.reg_operands++;
6669 i.tm.operands++;
6670
6671 i.op[dupl] = i.op[dest];
6672 i.types[dupl] = i.types[dest];
6673 i.tm.operand_types[dupl] = i.tm.operand_types[dest];
6674 }
6675
6676 if (i.tm.opcode_modifier.immext)
6677 process_immext ();
6678 }
6679 else if (i.tm.operand_types[0].bitfield.acc
6680 && i.tm.operand_types[0].bitfield.xmmword)
6681 {
6682 unsigned int j;
6683
6684 for (j = 1; j < i.operands; j++)
6685 {
6686 i.op[j - 1] = i.op[j];
6687 i.types[j - 1] = i.types[j];
6688
6689 /* We need to adjust fields in i.tm since they are used by
6690 build_modrm_byte. */
6691 i.tm.operand_types [j - 1] = i.tm.operand_types [j];
6692 }
6693
6694 i.operands--;
6695 i.reg_operands--;
6696 i.tm.operands--;
6697 }
6698 else if (i.tm.opcode_modifier.implicitquadgroup)
6699 {
6700 unsigned int regnum, first_reg_in_group, last_reg_in_group;
6701
6702 /* The second operand must be {x,y,z}mmN, where N is a multiple of 4. */
6703 gas_assert (i.operands >= 2 && i.types[1].bitfield.regsimd);
6704 regnum = register_number (i.op[1].regs);
6705 first_reg_in_group = regnum & ~3;
6706 last_reg_in_group = first_reg_in_group + 3;
6707 if (regnum != first_reg_in_group)
6708 as_warn (_("source register `%s%s' implicitly denotes"
6709 " `%s%.3s%u' to `%s%.3s%u' source group in `%s'"),
6710 register_prefix, i.op[1].regs->reg_name,
6711 register_prefix, i.op[1].regs->reg_name, first_reg_in_group,
6712 register_prefix, i.op[1].regs->reg_name, last_reg_in_group,
6713 i.tm.name);
6714 }
6715 else if (i.tm.opcode_modifier.regkludge)
6716 {
6717 /* The imul $imm, %reg instruction is converted into
6718 imul $imm, %reg, %reg, and the clr %reg instruction
6719 is converted into xor %reg, %reg. */
6720
6721 unsigned int first_reg_op;
6722
6723 if (operand_type_check (i.types[0], reg))
6724 first_reg_op = 0;
6725 else
6726 first_reg_op = 1;
6727 /* Pretend we saw the extra register operand. */
6728 gas_assert (i.reg_operands == 1
6729 && i.op[first_reg_op + 1].regs == 0);
6730 i.op[first_reg_op + 1].regs = i.op[first_reg_op].regs;
6731 i.types[first_reg_op + 1] = i.types[first_reg_op];
6732 i.operands++;
6733 i.reg_operands++;
6734 }
6735
6736 if (i.tm.opcode_modifier.shortform)
6737 {
6738 if (i.types[0].bitfield.sreg2
6739 || i.types[0].bitfield.sreg3)
6740 {
6741 if (i.tm.base_opcode == POP_SEG_SHORT
6742 && i.op[0].regs->reg_num == 1)
6743 {
6744 as_bad (_("you can't `pop %scs'"), register_prefix);
6745 return 0;
6746 }
6747 i.tm.base_opcode |= (i.op[0].regs->reg_num << 3);
6748 if ((i.op[0].regs->reg_flags & RegRex) != 0)
6749 i.rex |= REX_B;
6750 }
6751 else
6752 {
6753 /* The register or float register operand is in operand
6754 0 or 1. */
6755 unsigned int op;
6756
6757 if ((i.types[0].bitfield.reg && i.types[0].bitfield.tbyte)
6758 || operand_type_check (i.types[0], reg))
6759 op = 0;
6760 else
6761 op = 1;
6762 /* Register goes in low 3 bits of opcode. */
6763 i.tm.base_opcode |= i.op[op].regs->reg_num;
6764 if ((i.op[op].regs->reg_flags & RegRex) != 0)
6765 i.rex |= REX_B;
6766 if (!quiet_warnings && i.tm.opcode_modifier.ugh)
6767 {
6768 /* Warn about some common errors, but press on regardless.
6769 The first case can be generated by gcc (<= 2.8.1). */
6770 if (i.operands == 2)
6771 {
6772 /* Reversed arguments on faddp, fsubp, etc. */
6773 as_warn (_("translating to `%s %s%s,%s%s'"), i.tm.name,
6774 register_prefix, i.op[!intel_syntax].regs->reg_name,
6775 register_prefix, i.op[intel_syntax].regs->reg_name);
6776 }
6777 else
6778 {
6779 /* Extraneous `l' suffix on fp insn. */
6780 as_warn (_("translating to `%s %s%s'"), i.tm.name,
6781 register_prefix, i.op[0].regs->reg_name);
6782 }
6783 }
6784 }
6785 }
6786 else if (i.tm.opcode_modifier.modrm)
6787 {
6788 /* The opcode is completed (modulo i.tm.extension_opcode which
6789 must be put into the modrm byte). Now, we make the modrm and
6790 index base bytes based on all the info we've collected. */
6791
6792 default_seg = build_modrm_byte ();
6793 }
6794 else if ((i.tm.base_opcode & ~0x3) == MOV_AX_DISP32)
6795 {
6796 default_seg = &ds;
6797 }
6798 else if (i.tm.opcode_modifier.isstring)
6799 {
6800 /* For the string instructions that allow a segment override
6801 on one of their operands, the default segment is ds. */
6802 default_seg = &ds;
6803 }
6804
6805 if (i.tm.base_opcode == 0x8d /* lea */
6806 && i.seg[0]
6807 && !quiet_warnings)
6808 as_warn (_("segment override on `%s' is ineffectual"), i.tm.name);
6809
6810 /* If a segment was explicitly specified, and the specified segment
6811 is not the default, use an opcode prefix to select it. If we
6812 never figured out what the default segment is, then default_seg
6813 will be zero at this point, and the specified segment prefix will
6814 always be used. */
6815 if ((i.seg[0]) && (i.seg[0] != default_seg))
6816 {
6817 if (!add_prefix (i.seg[0]->seg_prefix))
6818 return 0;
6819 }
6820 return 1;
6821 }
6822
6823 static const seg_entry *
6824 build_modrm_byte (void)
6825 {
6826 const seg_entry *default_seg = 0;
6827 unsigned int source, dest;
6828 int vex_3_sources;
6829
6830 vex_3_sources = i.tm.opcode_modifier.vexsources == VEX3SOURCES;
6831 if (vex_3_sources)
6832 {
6833 unsigned int nds, reg_slot;
6834 expressionS *exp;
6835
6836 dest = i.operands - 1;
6837 nds = dest - 1;
6838
6839 /* There are 2 kinds of instructions:
6840 1. 5 operands: 4 register operands or 3 register operands
6841 plus 1 memory operand plus one Vec_Imm4 operand, VexXDS, and
6842 VexW0 or VexW1. The destination must be either XMM, YMM or
6843 ZMM register.
6844 2. 4 operands: 4 register operands or 3 register operands
6845 plus 1 memory operand, with VexXDS. */
6846 gas_assert ((i.reg_operands == 4
6847 || (i.reg_operands == 3 && i.mem_operands == 1))
6848 && i.tm.opcode_modifier.vexvvvv == VEXXDS
6849 && i.tm.opcode_modifier.vexw
6850 && i.tm.operand_types[dest].bitfield.regsimd);
6851
6852 /* If VexW1 is set, the first non-immediate operand is the source and
6853 the second non-immediate one is encoded in the immediate operand. */
6854 if (i.tm.opcode_modifier.vexw == VEXW1)
6855 {
6856 source = i.imm_operands;
6857 reg_slot = i.imm_operands + 1;
6858 }
6859 else
6860 {
6861 source = i.imm_operands + 1;
6862 reg_slot = i.imm_operands;
6863 }
6864
6865 if (i.imm_operands == 0)
6866 {
6867 /* When there is no immediate operand, generate an 8bit
6868 immediate operand to encode the first operand. */
6869 exp = &im_expressions[i.imm_operands++];
6870 i.op[i.operands].imms = exp;
6871 i.types[i.operands] = imm8;
6872 i.operands++;
6873
6874 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6875 exp->X_op = O_constant;
6876 exp->X_add_number = register_number (i.op[reg_slot].regs) << 4;
6877 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6878 }
6879 else
6880 {
6881 unsigned int imm_slot;
6882
6883 gas_assert (i.imm_operands == 1 && i.types[0].bitfield.vec_imm4);
6884
6885 if (i.tm.opcode_modifier.immext)
6886 {
6887 /* When ImmExt is set, the immediate byte is the last
6888 operand. */
6889 imm_slot = i.operands - 1;
6890 source--;
6891 reg_slot--;
6892 }
6893 else
6894 {
6895 imm_slot = 0;
6896
6897 /* Turn on Imm8 so that output_imm will generate it. */
6898 i.types[imm_slot].bitfield.imm8 = 1;
6899 }
6900
6901 gas_assert (i.tm.operand_types[reg_slot].bitfield.regsimd);
6902 i.op[imm_slot].imms->X_add_number
6903 |= register_number (i.op[reg_slot].regs) << 4;
6904 gas_assert ((i.op[reg_slot].regs->reg_flags & RegVRex) == 0);
6905 }
6906
6907 gas_assert (i.tm.operand_types[nds].bitfield.regsimd);
6908 i.vex.register_specifier = i.op[nds].regs;
6909 }
6910 else
6911 source = dest = 0;
6912
6913 /* i.reg_operands MUST be the number of real register operands;
6914 implicit registers do not count. If there are 3 register
6915 operands, it must be a instruction with VexNDS. For a
6916 instruction with VexNDD, the destination register is encoded
6917 in VEX prefix. If there are 4 register operands, it must be
6918 a instruction with VEX prefix and 3 sources. */
6919 if (i.mem_operands == 0
6920 && ((i.reg_operands == 2
6921 && i.tm.opcode_modifier.vexvvvv <= VEXXDS)
6922 || (i.reg_operands == 3
6923 && i.tm.opcode_modifier.vexvvvv == VEXXDS)
6924 || (i.reg_operands == 4 && vex_3_sources)))
6925 {
6926 switch (i.operands)
6927 {
6928 case 2:
6929 source = 0;
6930 break;
6931 case 3:
6932 /* When there are 3 operands, one of them may be immediate,
6933 which may be the first or the last operand. Otherwise,
6934 the first operand must be shift count register (cl) or it
6935 is an instruction with VexNDS. */
6936 gas_assert (i.imm_operands == 1
6937 || (i.imm_operands == 0
6938 && (i.tm.opcode_modifier.vexvvvv == VEXXDS
6939 || i.types[0].bitfield.shiftcount)));
6940 if (operand_type_check (i.types[0], imm)
6941 || i.types[0].bitfield.shiftcount)
6942 source = 1;
6943 else
6944 source = 0;
6945 break;
6946 case 4:
6947 /* When there are 4 operands, the first two must be 8bit
6948 immediate operands. The source operand will be the 3rd
6949 one.
6950
6951 For instructions with VexNDS, if the first operand
6952 an imm8, the source operand is the 2nd one. If the last
6953 operand is imm8, the source operand is the first one. */
6954 gas_assert ((i.imm_operands == 2
6955 && i.types[0].bitfield.imm8
6956 && i.types[1].bitfield.imm8)
6957 || (i.tm.opcode_modifier.vexvvvv == VEXXDS
6958 && i.imm_operands == 1
6959 && (i.types[0].bitfield.imm8
6960 || i.types[i.operands - 1].bitfield.imm8
6961 || i.rounding)));
6962 if (i.imm_operands == 2)
6963 source = 2;
6964 else
6965 {
6966 if (i.types[0].bitfield.imm8)
6967 source = 1;
6968 else
6969 source = 0;
6970 }
6971 break;
6972 case 5:
6973 if (is_evex_encoding (&i.tm))
6974 {
6975 /* For EVEX instructions, when there are 5 operands, the
6976 first one must be immediate operand. If the second one
6977 is immediate operand, the source operand is the 3th
6978 one. If the last one is immediate operand, the source
6979 operand is the 2nd one. */
6980 gas_assert (i.imm_operands == 2
6981 && i.tm.opcode_modifier.sae
6982 && operand_type_check (i.types[0], imm));
6983 if (operand_type_check (i.types[1], imm))
6984 source = 2;
6985 else if (operand_type_check (i.types[4], imm))
6986 source = 1;
6987 else
6988 abort ();
6989 }
6990 break;
6991 default:
6992 abort ();
6993 }
6994
6995 if (!vex_3_sources)
6996 {
6997 dest = source + 1;
6998
6999 /* RC/SAE operand could be between DEST and SRC. That happens
7000 when one operand is GPR and the other one is XMM/YMM/ZMM
7001 register. */
7002 if (i.rounding && i.rounding->operand == (int) dest)
7003 dest++;
7004
7005 if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7006 {
7007 /* For instructions with VexNDS, the register-only source
7008 operand must be a 32/64bit integer, XMM, YMM, ZMM, or mask
7009 register. It is encoded in VEX prefix. We need to
7010 clear RegMem bit before calling operand_type_equal. */
7011
7012 i386_operand_type op;
7013 unsigned int vvvv;
7014
7015 /* Check register-only source operand when two source
7016 operands are swapped. */
7017 if (!i.tm.operand_types[source].bitfield.baseindex
7018 && i.tm.operand_types[dest].bitfield.baseindex)
7019 {
7020 vvvv = source;
7021 source = dest;
7022 }
7023 else
7024 vvvv = dest;
7025
7026 op = i.tm.operand_types[vvvv];
7027 op.bitfield.regmem = 0;
7028 if ((dest + 1) >= i.operands
7029 || ((!op.bitfield.reg
7030 || (!op.bitfield.dword && !op.bitfield.qword))
7031 && !op.bitfield.regsimd
7032 && !operand_type_equal (&op, &regmask)))
7033 abort ();
7034 i.vex.register_specifier = i.op[vvvv].regs;
7035 dest++;
7036 }
7037 }
7038
7039 i.rm.mode = 3;
7040 /* One of the register operands will be encoded in the i.tm.reg
7041 field, the other in the combined i.tm.mode and i.tm.regmem
7042 fields. If no form of this instruction supports a memory
7043 destination operand, then we assume the source operand may
7044 sometimes be a memory operand and so we need to store the
7045 destination in the i.rm.reg field. */
7046 if (!i.tm.operand_types[dest].bitfield.regmem
7047 && operand_type_check (i.tm.operand_types[dest], anymem) == 0)
7048 {
7049 i.rm.reg = i.op[dest].regs->reg_num;
7050 i.rm.regmem = i.op[source].regs->reg_num;
7051 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7052 i.rex |= REX_R;
7053 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7054 i.vrex |= REX_R;
7055 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7056 i.rex |= REX_B;
7057 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7058 i.vrex |= REX_B;
7059 }
7060 else
7061 {
7062 i.rm.reg = i.op[source].regs->reg_num;
7063 i.rm.regmem = i.op[dest].regs->reg_num;
7064 if ((i.op[dest].regs->reg_flags & RegRex) != 0)
7065 i.rex |= REX_B;
7066 if ((i.op[dest].regs->reg_flags & RegVRex) != 0)
7067 i.vrex |= REX_B;
7068 if ((i.op[source].regs->reg_flags & RegRex) != 0)
7069 i.rex |= REX_R;
7070 if ((i.op[source].regs->reg_flags & RegVRex) != 0)
7071 i.vrex |= REX_R;
7072 }
7073 if (flag_code != CODE_64BIT && (i.rex & REX_R))
7074 {
7075 if (!i.types[i.tm.operand_types[0].bitfield.regmem].bitfield.control)
7076 abort ();
7077 i.rex &= ~REX_R;
7078 add_prefix (LOCK_PREFIX_OPCODE);
7079 }
7080 }
7081 else
7082 { /* If it's not 2 reg operands... */
7083 unsigned int mem;
7084
7085 if (i.mem_operands)
7086 {
7087 unsigned int fake_zero_displacement = 0;
7088 unsigned int op;
7089
7090 for (op = 0; op < i.operands; op++)
7091 if (operand_type_check (i.types[op], anymem))
7092 break;
7093 gas_assert (op < i.operands);
7094
7095 if (i.tm.opcode_modifier.vecsib)
7096 {
7097 if (i.index_reg->reg_num == RegIZ)
7098 abort ();
7099
7100 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7101 if (!i.base_reg)
7102 {
7103 i.sib.base = NO_BASE_REGISTER;
7104 i.sib.scale = i.log2_scale_factor;
7105 i.types[op].bitfield.disp8 = 0;
7106 i.types[op].bitfield.disp16 = 0;
7107 i.types[op].bitfield.disp64 = 0;
7108 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7109 {
7110 /* Must be 32 bit */
7111 i.types[op].bitfield.disp32 = 1;
7112 i.types[op].bitfield.disp32s = 0;
7113 }
7114 else
7115 {
7116 i.types[op].bitfield.disp32 = 0;
7117 i.types[op].bitfield.disp32s = 1;
7118 }
7119 }
7120 i.sib.index = i.index_reg->reg_num;
7121 if ((i.index_reg->reg_flags & RegRex) != 0)
7122 i.rex |= REX_X;
7123 if ((i.index_reg->reg_flags & RegVRex) != 0)
7124 i.vrex |= REX_X;
7125 }
7126
7127 default_seg = &ds;
7128
7129 if (i.base_reg == 0)
7130 {
7131 i.rm.mode = 0;
7132 if (!i.disp_operands)
7133 fake_zero_displacement = 1;
7134 if (i.index_reg == 0)
7135 {
7136 i386_operand_type newdisp;
7137
7138 gas_assert (!i.tm.opcode_modifier.vecsib);
7139 /* Operand is just <disp> */
7140 if (flag_code == CODE_64BIT)
7141 {
7142 /* 64bit mode overwrites the 32bit absolute
7143 addressing by RIP relative addressing and
7144 absolute addressing is encoded by one of the
7145 redundant SIB forms. */
7146 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7147 i.sib.base = NO_BASE_REGISTER;
7148 i.sib.index = NO_INDEX_REGISTER;
7149 newdisp = (!i.prefix[ADDR_PREFIX] ? disp32s : disp32);
7150 }
7151 else if ((flag_code == CODE_16BIT)
7152 ^ (i.prefix[ADDR_PREFIX] != 0))
7153 {
7154 i.rm.regmem = NO_BASE_REGISTER_16;
7155 newdisp = disp16;
7156 }
7157 else
7158 {
7159 i.rm.regmem = NO_BASE_REGISTER;
7160 newdisp = disp32;
7161 }
7162 i.types[op] = operand_type_and_not (i.types[op], anydisp);
7163 i.types[op] = operand_type_or (i.types[op], newdisp);
7164 }
7165 else if (!i.tm.opcode_modifier.vecsib)
7166 {
7167 /* !i.base_reg && i.index_reg */
7168 if (i.index_reg->reg_num == RegIZ)
7169 i.sib.index = NO_INDEX_REGISTER;
7170 else
7171 i.sib.index = i.index_reg->reg_num;
7172 i.sib.base = NO_BASE_REGISTER;
7173 i.sib.scale = i.log2_scale_factor;
7174 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7175 i.types[op].bitfield.disp8 = 0;
7176 i.types[op].bitfield.disp16 = 0;
7177 i.types[op].bitfield.disp64 = 0;
7178 if (flag_code != CODE_64BIT || i.prefix[ADDR_PREFIX])
7179 {
7180 /* Must be 32 bit */
7181 i.types[op].bitfield.disp32 = 1;
7182 i.types[op].bitfield.disp32s = 0;
7183 }
7184 else
7185 {
7186 i.types[op].bitfield.disp32 = 0;
7187 i.types[op].bitfield.disp32s = 1;
7188 }
7189 if ((i.index_reg->reg_flags & RegRex) != 0)
7190 i.rex |= REX_X;
7191 }
7192 }
7193 /* RIP addressing for 64bit mode. */
7194 else if (i.base_reg->reg_num == RegIP)
7195 {
7196 gas_assert (!i.tm.opcode_modifier.vecsib);
7197 i.rm.regmem = NO_BASE_REGISTER;
7198 i.types[op].bitfield.disp8 = 0;
7199 i.types[op].bitfield.disp16 = 0;
7200 i.types[op].bitfield.disp32 = 0;
7201 i.types[op].bitfield.disp32s = 1;
7202 i.types[op].bitfield.disp64 = 0;
7203 i.flags[op] |= Operand_PCrel;
7204 if (! i.disp_operands)
7205 fake_zero_displacement = 1;
7206 }
7207 else if (i.base_reg->reg_type.bitfield.word)
7208 {
7209 gas_assert (!i.tm.opcode_modifier.vecsib);
7210 switch (i.base_reg->reg_num)
7211 {
7212 case 3: /* (%bx) */
7213 if (i.index_reg == 0)
7214 i.rm.regmem = 7;
7215 else /* (%bx,%si) -> 0, or (%bx,%di) -> 1 */
7216 i.rm.regmem = i.index_reg->reg_num - 6;
7217 break;
7218 case 5: /* (%bp) */
7219 default_seg = &ss;
7220 if (i.index_reg == 0)
7221 {
7222 i.rm.regmem = 6;
7223 if (operand_type_check (i.types[op], disp) == 0)
7224 {
7225 /* fake (%bp) into 0(%bp) */
7226 i.types[op].bitfield.disp8 = 1;
7227 fake_zero_displacement = 1;
7228 }
7229 }
7230 else /* (%bp,%si) -> 2, or (%bp,%di) -> 3 */
7231 i.rm.regmem = i.index_reg->reg_num - 6 + 2;
7232 break;
7233 default: /* (%si) -> 4 or (%di) -> 5 */
7234 i.rm.regmem = i.base_reg->reg_num - 6 + 4;
7235 }
7236 i.rm.mode = mode_from_disp_size (i.types[op]);
7237 }
7238 else /* i.base_reg and 32/64 bit mode */
7239 {
7240 if (flag_code == CODE_64BIT
7241 && operand_type_check (i.types[op], disp))
7242 {
7243 i.types[op].bitfield.disp16 = 0;
7244 i.types[op].bitfield.disp64 = 0;
7245 if (i.prefix[ADDR_PREFIX] == 0)
7246 {
7247 i.types[op].bitfield.disp32 = 0;
7248 i.types[op].bitfield.disp32s = 1;
7249 }
7250 else
7251 {
7252 i.types[op].bitfield.disp32 = 1;
7253 i.types[op].bitfield.disp32s = 0;
7254 }
7255 }
7256
7257 if (!i.tm.opcode_modifier.vecsib)
7258 i.rm.regmem = i.base_reg->reg_num;
7259 if ((i.base_reg->reg_flags & RegRex) != 0)
7260 i.rex |= REX_B;
7261 i.sib.base = i.base_reg->reg_num;
7262 /* x86-64 ignores REX prefix bit here to avoid decoder
7263 complications. */
7264 if (!(i.base_reg->reg_flags & RegRex)
7265 && (i.base_reg->reg_num == EBP_REG_NUM
7266 || i.base_reg->reg_num == ESP_REG_NUM))
7267 default_seg = &ss;
7268 if (i.base_reg->reg_num == 5 && i.disp_operands == 0)
7269 {
7270 fake_zero_displacement = 1;
7271 i.types[op].bitfield.disp8 = 1;
7272 }
7273 i.sib.scale = i.log2_scale_factor;
7274 if (i.index_reg == 0)
7275 {
7276 gas_assert (!i.tm.opcode_modifier.vecsib);
7277 /* <disp>(%esp) becomes two byte modrm with no index
7278 register. We've already stored the code for esp
7279 in i.rm.regmem ie. ESCAPE_TO_TWO_BYTE_ADDRESSING.
7280 Any base register besides %esp will not use the
7281 extra modrm byte. */
7282 i.sib.index = NO_INDEX_REGISTER;
7283 }
7284 else if (!i.tm.opcode_modifier.vecsib)
7285 {
7286 if (i.index_reg->reg_num == RegIZ)
7287 i.sib.index = NO_INDEX_REGISTER;
7288 else
7289 i.sib.index = i.index_reg->reg_num;
7290 i.rm.regmem = ESCAPE_TO_TWO_BYTE_ADDRESSING;
7291 if ((i.index_reg->reg_flags & RegRex) != 0)
7292 i.rex |= REX_X;
7293 }
7294
7295 if (i.disp_operands
7296 && (i.reloc[op] == BFD_RELOC_386_TLS_DESC_CALL
7297 || i.reloc[op] == BFD_RELOC_X86_64_TLSDESC_CALL))
7298 i.rm.mode = 0;
7299 else
7300 {
7301 if (!fake_zero_displacement
7302 && !i.disp_operands
7303 && i.disp_encoding)
7304 {
7305 fake_zero_displacement = 1;
7306 if (i.disp_encoding == disp_encoding_8bit)
7307 i.types[op].bitfield.disp8 = 1;
7308 else
7309 i.types[op].bitfield.disp32 = 1;
7310 }
7311 i.rm.mode = mode_from_disp_size (i.types[op]);
7312 }
7313 }
7314
7315 if (fake_zero_displacement)
7316 {
7317 /* Fakes a zero displacement assuming that i.types[op]
7318 holds the correct displacement size. */
7319 expressionS *exp;
7320
7321 gas_assert (i.op[op].disps == 0);
7322 exp = &disp_expressions[i.disp_operands++];
7323 i.op[op].disps = exp;
7324 exp->X_op = O_constant;
7325 exp->X_add_number = 0;
7326 exp->X_add_symbol = (symbolS *) 0;
7327 exp->X_op_symbol = (symbolS *) 0;
7328 }
7329
7330 mem = op;
7331 }
7332 else
7333 mem = ~0;
7334
7335 if (i.tm.opcode_modifier.vexsources == XOP2SOURCES)
7336 {
7337 if (operand_type_check (i.types[0], imm))
7338 i.vex.register_specifier = NULL;
7339 else
7340 {
7341 /* VEX.vvvv encodes one of the sources when the first
7342 operand is not an immediate. */
7343 if (i.tm.opcode_modifier.vexw == VEXW0)
7344 i.vex.register_specifier = i.op[0].regs;
7345 else
7346 i.vex.register_specifier = i.op[1].regs;
7347 }
7348
7349 /* Destination is a XMM register encoded in the ModRM.reg
7350 and VEX.R bit. */
7351 i.rm.reg = i.op[2].regs->reg_num;
7352 if ((i.op[2].regs->reg_flags & RegRex) != 0)
7353 i.rex |= REX_R;
7354
7355 /* ModRM.rm and VEX.B encodes the other source. */
7356 if (!i.mem_operands)
7357 {
7358 i.rm.mode = 3;
7359
7360 if (i.tm.opcode_modifier.vexw == VEXW0)
7361 i.rm.regmem = i.op[1].regs->reg_num;
7362 else
7363 i.rm.regmem = i.op[0].regs->reg_num;
7364
7365 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7366 i.rex |= REX_B;
7367 }
7368 }
7369 else if (i.tm.opcode_modifier.vexvvvv == VEXLWP)
7370 {
7371 i.vex.register_specifier = i.op[2].regs;
7372 if (!i.mem_operands)
7373 {
7374 i.rm.mode = 3;
7375 i.rm.regmem = i.op[1].regs->reg_num;
7376 if ((i.op[1].regs->reg_flags & RegRex) != 0)
7377 i.rex |= REX_B;
7378 }
7379 }
7380 /* Fill in i.rm.reg or i.rm.regmem field with register operand
7381 (if any) based on i.tm.extension_opcode. Again, we must be
7382 careful to make sure that segment/control/debug/test/MMX
7383 registers are coded into the i.rm.reg field. */
7384 else if (i.reg_operands)
7385 {
7386 unsigned int op;
7387 unsigned int vex_reg = ~0;
7388
7389 for (op = 0; op < i.operands; op++)
7390 if (i.types[op].bitfield.reg
7391 || i.types[op].bitfield.regmmx
7392 || i.types[op].bitfield.regsimd
7393 || i.types[op].bitfield.regbnd
7394 || i.types[op].bitfield.regmask
7395 || i.types[op].bitfield.sreg2
7396 || i.types[op].bitfield.sreg3
7397 || i.types[op].bitfield.control
7398 || i.types[op].bitfield.debug
7399 || i.types[op].bitfield.test)
7400 break;
7401
7402 if (vex_3_sources)
7403 op = dest;
7404 else if (i.tm.opcode_modifier.vexvvvv == VEXXDS)
7405 {
7406 /* For instructions with VexNDS, the register-only
7407 source operand is encoded in VEX prefix. */
7408 gas_assert (mem != (unsigned int) ~0);
7409
7410 if (op > mem)
7411 {
7412 vex_reg = op++;
7413 gas_assert (op < i.operands);
7414 }
7415 else
7416 {
7417 /* Check register-only source operand when two source
7418 operands are swapped. */
7419 if (!i.tm.operand_types[op].bitfield.baseindex
7420 && i.tm.operand_types[op + 1].bitfield.baseindex)
7421 {
7422 vex_reg = op;
7423 op += 2;
7424 gas_assert (mem == (vex_reg + 1)
7425 && op < i.operands);
7426 }
7427 else
7428 {
7429 vex_reg = op + 1;
7430 gas_assert (vex_reg < i.operands);
7431 }
7432 }
7433 }
7434 else if (i.tm.opcode_modifier.vexvvvv == VEXNDD)
7435 {
7436 /* For instructions with VexNDD, the register destination
7437 is encoded in VEX prefix. */
7438 if (i.mem_operands == 0)
7439 {
7440 /* There is no memory operand. */
7441 gas_assert ((op + 2) == i.operands);
7442 vex_reg = op + 1;
7443 }
7444 else
7445 {
7446 /* There are only 2 non-immediate operands. */
7447 gas_assert (op < i.imm_operands + 2
7448 && i.operands == i.imm_operands + 2);
7449 vex_reg = i.imm_operands + 1;
7450 }
7451 }
7452 else
7453 gas_assert (op < i.operands);
7454
7455 if (vex_reg != (unsigned int) ~0)
7456 {
7457 i386_operand_type *type = &i.tm.operand_types[vex_reg];
7458
7459 if ((!type->bitfield.reg
7460 || (!type->bitfield.dword && !type->bitfield.qword))
7461 && !type->bitfield.regsimd
7462 && !operand_type_equal (type, &regmask))
7463 abort ();
7464
7465 i.vex.register_specifier = i.op[vex_reg].regs;
7466 }
7467
7468 /* Don't set OP operand twice. */
7469 if (vex_reg != op)
7470 {
7471 /* If there is an extension opcode to put here, the
7472 register number must be put into the regmem field. */
7473 if (i.tm.extension_opcode != None)
7474 {
7475 i.rm.regmem = i.op[op].regs->reg_num;
7476 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7477 i.rex |= REX_B;
7478 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7479 i.vrex |= REX_B;
7480 }
7481 else
7482 {
7483 i.rm.reg = i.op[op].regs->reg_num;
7484 if ((i.op[op].regs->reg_flags & RegRex) != 0)
7485 i.rex |= REX_R;
7486 if ((i.op[op].regs->reg_flags & RegVRex) != 0)
7487 i.vrex |= REX_R;
7488 }
7489 }
7490
7491 /* Now, if no memory operand has set i.rm.mode = 0, 1, 2 we
7492 must set it to 3 to indicate this is a register operand
7493 in the regmem field. */
7494 if (!i.mem_operands)
7495 i.rm.mode = 3;
7496 }
7497
7498 /* Fill in i.rm.reg field with extension opcode (if any). */
7499 if (i.tm.extension_opcode != None)
7500 i.rm.reg = i.tm.extension_opcode;
7501 }
7502 return default_seg;
7503 }
7504
7505 static void
7506 output_branch (void)
7507 {
7508 char *p;
7509 int size;
7510 int code16;
7511 int prefix;
7512 relax_substateT subtype;
7513 symbolS *sym;
7514 offsetT off;
7515
7516 code16 = flag_code == CODE_16BIT ? CODE16 : 0;
7517 size = i.disp_encoding == disp_encoding_32bit ? BIG : SMALL;
7518
7519 prefix = 0;
7520 if (i.prefix[DATA_PREFIX] != 0)
7521 {
7522 prefix = 1;
7523 i.prefixes -= 1;
7524 code16 ^= CODE16;
7525 }
7526 /* Pentium4 branch hints. */
7527 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7528 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7529 {
7530 prefix++;
7531 i.prefixes--;
7532 }
7533 if (i.prefix[REX_PREFIX] != 0)
7534 {
7535 prefix++;
7536 i.prefixes--;
7537 }
7538
7539 /* BND prefixed jump. */
7540 if (i.prefix[BND_PREFIX] != 0)
7541 {
7542 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7543 i.prefixes -= 1;
7544 }
7545
7546 if (i.prefixes != 0 && !intel_syntax)
7547 as_warn (_("skipping prefixes on this instruction"));
7548
7549 /* It's always a symbol; End frag & setup for relax.
7550 Make sure there is enough room in this frag for the largest
7551 instruction we may generate in md_convert_frag. This is 2
7552 bytes for the opcode and room for the prefix and largest
7553 displacement. */
7554 frag_grow (prefix + 2 + 4);
7555 /* Prefix and 1 opcode byte go in fr_fix. */
7556 p = frag_more (prefix + 1);
7557 if (i.prefix[DATA_PREFIX] != 0)
7558 *p++ = DATA_PREFIX_OPCODE;
7559 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE
7560 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE)
7561 *p++ = i.prefix[SEG_PREFIX];
7562 if (i.prefix[REX_PREFIX] != 0)
7563 *p++ = i.prefix[REX_PREFIX];
7564 *p = i.tm.base_opcode;
7565
7566 if ((unsigned char) *p == JUMP_PC_RELATIVE)
7567 subtype = ENCODE_RELAX_STATE (UNCOND_JUMP, size);
7568 else if (cpu_arch_flags.bitfield.cpui386)
7569 subtype = ENCODE_RELAX_STATE (COND_JUMP, size);
7570 else
7571 subtype = ENCODE_RELAX_STATE (COND_JUMP86, size);
7572 subtype |= code16;
7573
7574 sym = i.op[0].disps->X_add_symbol;
7575 off = i.op[0].disps->X_add_number;
7576
7577 if (i.op[0].disps->X_op != O_constant
7578 && i.op[0].disps->X_op != O_symbol)
7579 {
7580 /* Handle complex expressions. */
7581 sym = make_expr_symbol (i.op[0].disps);
7582 off = 0;
7583 }
7584
7585 /* 1 possible extra opcode + 4 byte displacement go in var part.
7586 Pass reloc in fr_var. */
7587 frag_var (rs_machine_dependent, 5, i.reloc[0], subtype, sym, off, p);
7588 }
7589
7590 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7591 /* Return TRUE iff PLT32 relocation should be used for branching to
7592 symbol S. */
7593
7594 static bfd_boolean
7595 need_plt32_p (symbolS *s)
7596 {
7597 /* PLT32 relocation is ELF only. */
7598 if (!IS_ELF)
7599 return FALSE;
7600
7601 /* Since there is no need to prepare for PLT branch on x86-64, we
7602 can generate R_X86_64_PLT32, instead of R_X86_64_PC32, which can
7603 be used as a marker for 32-bit PC-relative branches. */
7604 if (!object_64bit)
7605 return FALSE;
7606
7607 /* Weak or undefined symbol need PLT32 relocation. */
7608 if (S_IS_WEAK (s) || !S_IS_DEFINED (s))
7609 return TRUE;
7610
7611 /* Non-global symbol doesn't need PLT32 relocation. */
7612 if (! S_IS_EXTERNAL (s))
7613 return FALSE;
7614
7615 /* Other global symbols need PLT32 relocation. NB: Symbol with
7616 non-default visibilities are treated as normal global symbol
7617 so that PLT32 relocation can be used as a marker for 32-bit
7618 PC-relative branches. It is useful for linker relaxation. */
7619 return TRUE;
7620 }
7621 #endif
7622
7623 static void
7624 output_jump (void)
7625 {
7626 char *p;
7627 int size;
7628 fixS *fixP;
7629 bfd_reloc_code_real_type jump_reloc = i.reloc[0];
7630
7631 if (i.tm.opcode_modifier.jumpbyte)
7632 {
7633 /* This is a loop or jecxz type instruction. */
7634 size = 1;
7635 if (i.prefix[ADDR_PREFIX] != 0)
7636 {
7637 FRAG_APPEND_1_CHAR (ADDR_PREFIX_OPCODE);
7638 i.prefixes -= 1;
7639 }
7640 /* Pentium4 branch hints. */
7641 if (i.prefix[SEG_PREFIX] == CS_PREFIX_OPCODE /* not taken */
7642 || i.prefix[SEG_PREFIX] == DS_PREFIX_OPCODE /* taken */)
7643 {
7644 FRAG_APPEND_1_CHAR (i.prefix[SEG_PREFIX]);
7645 i.prefixes--;
7646 }
7647 }
7648 else
7649 {
7650 int code16;
7651
7652 code16 = 0;
7653 if (flag_code == CODE_16BIT)
7654 code16 = CODE16;
7655
7656 if (i.prefix[DATA_PREFIX] != 0)
7657 {
7658 FRAG_APPEND_1_CHAR (DATA_PREFIX_OPCODE);
7659 i.prefixes -= 1;
7660 code16 ^= CODE16;
7661 }
7662
7663 size = 4;
7664 if (code16)
7665 size = 2;
7666 }
7667
7668 if (i.prefix[REX_PREFIX] != 0)
7669 {
7670 FRAG_APPEND_1_CHAR (i.prefix[REX_PREFIX]);
7671 i.prefixes -= 1;
7672 }
7673
7674 /* BND prefixed jump. */
7675 if (i.prefix[BND_PREFIX] != 0)
7676 {
7677 FRAG_APPEND_1_CHAR (i.prefix[BND_PREFIX]);
7678 i.prefixes -= 1;
7679 }
7680
7681 if (i.prefixes != 0 && !intel_syntax)
7682 as_warn (_("skipping prefixes on this instruction"));
7683
7684 p = frag_more (i.tm.opcode_length + size);
7685 switch (i.tm.opcode_length)
7686 {
7687 case 2:
7688 *p++ = i.tm.base_opcode >> 8;
7689 /* Fall through. */
7690 case 1:
7691 *p++ = i.tm.base_opcode;
7692 break;
7693 default:
7694 abort ();
7695 }
7696
7697 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
7698 if (size == 4
7699 && jump_reloc == NO_RELOC
7700 && need_plt32_p (i.op[0].disps->X_add_symbol))
7701 jump_reloc = BFD_RELOC_X86_64_PLT32;
7702 #endif
7703
7704 jump_reloc = reloc (size, 1, 1, jump_reloc);
7705
7706 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7707 i.op[0].disps, 1, jump_reloc);
7708
7709 /* All jumps handled here are signed, but don't use a signed limit
7710 check for 32 and 16 bit jumps as we want to allow wrap around at
7711 4G and 64k respectively. */
7712 if (size == 1)
7713 fixP->fx_signed = 1;
7714 }
7715
7716 static void
7717 output_interseg_jump (void)
7718 {
7719 char *p;
7720 int size;
7721 int prefix;
7722 int code16;
7723
7724 code16 = 0;
7725 if (flag_code == CODE_16BIT)
7726 code16 = CODE16;
7727
7728 prefix = 0;
7729 if (i.prefix[DATA_PREFIX] != 0)
7730 {
7731 prefix = 1;
7732 i.prefixes -= 1;
7733 code16 ^= CODE16;
7734 }
7735 if (i.prefix[REX_PREFIX] != 0)
7736 {
7737 prefix++;
7738 i.prefixes -= 1;
7739 }
7740
7741 size = 4;
7742 if (code16)
7743 size = 2;
7744
7745 if (i.prefixes != 0 && !intel_syntax)
7746 as_warn (_("skipping prefixes on this instruction"));
7747
7748 /* 1 opcode; 2 segment; offset */
7749 p = frag_more (prefix + 1 + 2 + size);
7750
7751 if (i.prefix[DATA_PREFIX] != 0)
7752 *p++ = DATA_PREFIX_OPCODE;
7753
7754 if (i.prefix[REX_PREFIX] != 0)
7755 *p++ = i.prefix[REX_PREFIX];
7756
7757 *p++ = i.tm.base_opcode;
7758 if (i.op[1].imms->X_op == O_constant)
7759 {
7760 offsetT n = i.op[1].imms->X_add_number;
7761
7762 if (size == 2
7763 && !fits_in_unsigned_word (n)
7764 && !fits_in_signed_word (n))
7765 {
7766 as_bad (_("16-bit jump out of range"));
7767 return;
7768 }
7769 md_number_to_chars (p, n, size);
7770 }
7771 else
7772 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
7773 i.op[1].imms, 0, reloc (size, 0, 0, i.reloc[1]));
7774 if (i.op[0].imms->X_op != O_constant)
7775 as_bad (_("can't handle non absolute segment in `%s'"),
7776 i.tm.name);
7777 md_number_to_chars (p + size, (valueT) i.op[0].imms->X_add_number, 2);
7778 }
7779
7780 static void
7781 output_insn (void)
7782 {
7783 fragS *insn_start_frag;
7784 offsetT insn_start_off;
7785
7786 /* Tie dwarf2 debug info to the address at the start of the insn.
7787 We can't do this after the insn has been output as the current
7788 frag may have been closed off. eg. by frag_var. */
7789 dwarf2_emit_insn (0);
7790
7791 insn_start_frag = frag_now;
7792 insn_start_off = frag_now_fix ();
7793
7794 /* Output jumps. */
7795 if (i.tm.opcode_modifier.jump)
7796 output_branch ();
7797 else if (i.tm.opcode_modifier.jumpbyte
7798 || i.tm.opcode_modifier.jumpdword)
7799 output_jump ();
7800 else if (i.tm.opcode_modifier.jumpintersegment)
7801 output_interseg_jump ();
7802 else
7803 {
7804 /* Output normal instructions here. */
7805 char *p;
7806 unsigned char *q;
7807 unsigned int j;
7808 unsigned int prefix;
7809
7810 if (avoid_fence
7811 && i.tm.base_opcode == 0xfae
7812 && i.operands == 1
7813 && i.imm_operands == 1
7814 && (i.op[0].imms->X_add_number == 0xe8
7815 || i.op[0].imms->X_add_number == 0xf0
7816 || i.op[0].imms->X_add_number == 0xf8))
7817 {
7818 /* Encode lfence, mfence, and sfence as
7819 f0 83 04 24 00 lock addl $0x0, (%{re}sp). */
7820 offsetT val = 0x240483f0ULL;
7821 p = frag_more (5);
7822 md_number_to_chars (p, val, 5);
7823 return;
7824 }
7825
7826 /* Some processors fail on LOCK prefix. This options makes
7827 assembler ignore LOCK prefix and serves as a workaround. */
7828 if (omit_lock_prefix)
7829 {
7830 if (i.tm.base_opcode == LOCK_PREFIX_OPCODE)
7831 return;
7832 i.prefix[LOCK_PREFIX] = 0;
7833 }
7834
7835 /* Since the VEX/EVEX prefix contains the implicit prefix, we
7836 don't need the explicit prefix. */
7837 if (!i.tm.opcode_modifier.vex && !i.tm.opcode_modifier.evex)
7838 {
7839 switch (i.tm.opcode_length)
7840 {
7841 case 3:
7842 if (i.tm.base_opcode & 0xff000000)
7843 {
7844 prefix = (i.tm.base_opcode >> 24) & 0xff;
7845 add_prefix (prefix);
7846 }
7847 break;
7848 case 2:
7849 if ((i.tm.base_opcode & 0xff0000) != 0)
7850 {
7851 prefix = (i.tm.base_opcode >> 16) & 0xff;
7852 if (!i.tm.cpu_flags.bitfield.cpupadlock
7853 || prefix != REPE_PREFIX_OPCODE
7854 || (i.prefix[REP_PREFIX] != REPE_PREFIX_OPCODE))
7855 add_prefix (prefix);
7856 }
7857 break;
7858 case 1:
7859 break;
7860 case 0:
7861 /* Check for pseudo prefixes. */
7862 as_bad_where (insn_start_frag->fr_file,
7863 insn_start_frag->fr_line,
7864 _("pseudo prefix without instruction"));
7865 return;
7866 default:
7867 abort ();
7868 }
7869
7870 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
7871 /* For x32, add a dummy REX_OPCODE prefix for mov/add with
7872 R_X86_64_GOTTPOFF relocation so that linker can safely
7873 perform IE->LE optimization. */
7874 if (x86_elf_abi == X86_64_X32_ABI
7875 && i.operands == 2
7876 && i.reloc[0] == BFD_RELOC_X86_64_GOTTPOFF
7877 && i.prefix[REX_PREFIX] == 0)
7878 add_prefix (REX_OPCODE);
7879 #endif
7880
7881 /* The prefix bytes. */
7882 for (j = ARRAY_SIZE (i.prefix), q = i.prefix; j > 0; j--, q++)
7883 if (*q)
7884 FRAG_APPEND_1_CHAR (*q);
7885 }
7886 else
7887 {
7888 for (j = 0, q = i.prefix; j < ARRAY_SIZE (i.prefix); j++, q++)
7889 if (*q)
7890 switch (j)
7891 {
7892 case REX_PREFIX:
7893 /* REX byte is encoded in VEX prefix. */
7894 break;
7895 case SEG_PREFIX:
7896 case ADDR_PREFIX:
7897 FRAG_APPEND_1_CHAR (*q);
7898 break;
7899 default:
7900 /* There should be no other prefixes for instructions
7901 with VEX prefix. */
7902 abort ();
7903 }
7904
7905 /* For EVEX instructions i.vrex should become 0 after
7906 build_evex_prefix. For VEX instructions upper 16 registers
7907 aren't available, so VREX should be 0. */
7908 if (i.vrex)
7909 abort ();
7910 /* Now the VEX prefix. */
7911 p = frag_more (i.vex.length);
7912 for (j = 0; j < i.vex.length; j++)
7913 p[j] = i.vex.bytes[j];
7914 }
7915
7916 /* Now the opcode; be careful about word order here! */
7917 if (i.tm.opcode_length == 1)
7918 {
7919 FRAG_APPEND_1_CHAR (i.tm.base_opcode);
7920 }
7921 else
7922 {
7923 switch (i.tm.opcode_length)
7924 {
7925 case 4:
7926 p = frag_more (4);
7927 *p++ = (i.tm.base_opcode >> 24) & 0xff;
7928 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7929 break;
7930 case 3:
7931 p = frag_more (3);
7932 *p++ = (i.tm.base_opcode >> 16) & 0xff;
7933 break;
7934 case 2:
7935 p = frag_more (2);
7936 break;
7937 default:
7938 abort ();
7939 break;
7940 }
7941
7942 /* Put out high byte first: can't use md_number_to_chars! */
7943 *p++ = (i.tm.base_opcode >> 8) & 0xff;
7944 *p = i.tm.base_opcode & 0xff;
7945 }
7946
7947 /* Now the modrm byte and sib byte (if present). */
7948 if (i.tm.opcode_modifier.modrm)
7949 {
7950 FRAG_APPEND_1_CHAR ((i.rm.regmem << 0
7951 | i.rm.reg << 3
7952 | i.rm.mode << 6));
7953 /* If i.rm.regmem == ESP (4)
7954 && i.rm.mode != (Register mode)
7955 && not 16 bit
7956 ==> need second modrm byte. */
7957 if (i.rm.regmem == ESCAPE_TO_TWO_BYTE_ADDRESSING
7958 && i.rm.mode != 3
7959 && !(i.base_reg && i.base_reg->reg_type.bitfield.word))
7960 FRAG_APPEND_1_CHAR ((i.sib.base << 0
7961 | i.sib.index << 3
7962 | i.sib.scale << 6));
7963 }
7964
7965 if (i.disp_operands)
7966 output_disp (insn_start_frag, insn_start_off);
7967
7968 if (i.imm_operands)
7969 output_imm (insn_start_frag, insn_start_off);
7970 }
7971
7972 #ifdef DEBUG386
7973 if (flag_debug)
7974 {
7975 pi ("" /*line*/, &i);
7976 }
7977 #endif /* DEBUG386 */
7978 }
7979
7980 /* Return the size of the displacement operand N. */
7981
7982 static int
7983 disp_size (unsigned int n)
7984 {
7985 int size = 4;
7986
7987 if (i.types[n].bitfield.disp64)
7988 size = 8;
7989 else if (i.types[n].bitfield.disp8)
7990 size = 1;
7991 else if (i.types[n].bitfield.disp16)
7992 size = 2;
7993 return size;
7994 }
7995
7996 /* Return the size of the immediate operand N. */
7997
7998 static int
7999 imm_size (unsigned int n)
8000 {
8001 int size = 4;
8002 if (i.types[n].bitfield.imm64)
8003 size = 8;
8004 else if (i.types[n].bitfield.imm8 || i.types[n].bitfield.imm8s)
8005 size = 1;
8006 else if (i.types[n].bitfield.imm16)
8007 size = 2;
8008 return size;
8009 }
8010
8011 static void
8012 output_disp (fragS *insn_start_frag, offsetT insn_start_off)
8013 {
8014 char *p;
8015 unsigned int n;
8016
8017 for (n = 0; n < i.operands; n++)
8018 {
8019 if (operand_type_check (i.types[n], disp))
8020 {
8021 if (i.op[n].disps->X_op == O_constant)
8022 {
8023 int size = disp_size (n);
8024 offsetT val = i.op[n].disps->X_add_number;
8025
8026 val = offset_in_range (val >> (size == 1 ? i.memshift : 0),
8027 size);
8028 p = frag_more (size);
8029 md_number_to_chars (p, val, size);
8030 }
8031 else
8032 {
8033 enum bfd_reloc_code_real reloc_type;
8034 int size = disp_size (n);
8035 int sign = i.types[n].bitfield.disp32s;
8036 int pcrel = (i.flags[n] & Operand_PCrel) != 0;
8037 fixS *fixP;
8038
8039 /* We can't have 8 bit displacement here. */
8040 gas_assert (!i.types[n].bitfield.disp8);
8041
8042 /* The PC relative address is computed relative
8043 to the instruction boundary, so in case immediate
8044 fields follows, we need to adjust the value. */
8045 if (pcrel && i.imm_operands)
8046 {
8047 unsigned int n1;
8048 int sz = 0;
8049
8050 for (n1 = 0; n1 < i.operands; n1++)
8051 if (operand_type_check (i.types[n1], imm))
8052 {
8053 /* Only one immediate is allowed for PC
8054 relative address. */
8055 gas_assert (sz == 0);
8056 sz = imm_size (n1);
8057 i.op[n].disps->X_add_number -= sz;
8058 }
8059 /* We should find the immediate. */
8060 gas_assert (sz != 0);
8061 }
8062
8063 p = frag_more (size);
8064 reloc_type = reloc (size, pcrel, sign, i.reloc[n]);
8065 if (GOT_symbol
8066 && GOT_symbol == i.op[n].disps->X_add_symbol
8067 && (((reloc_type == BFD_RELOC_32
8068 || reloc_type == BFD_RELOC_X86_64_32S
8069 || (reloc_type == BFD_RELOC_64
8070 && object_64bit))
8071 && (i.op[n].disps->X_op == O_symbol
8072 || (i.op[n].disps->X_op == O_add
8073 && ((symbol_get_value_expression
8074 (i.op[n].disps->X_op_symbol)->X_op)
8075 == O_subtract))))
8076 || reloc_type == BFD_RELOC_32_PCREL))
8077 {
8078 offsetT add;
8079
8080 if (insn_start_frag == frag_now)
8081 add = (p - frag_now->fr_literal) - insn_start_off;
8082 else
8083 {
8084 fragS *fr;
8085
8086 add = insn_start_frag->fr_fix - insn_start_off;
8087 for (fr = insn_start_frag->fr_next;
8088 fr && fr != frag_now; fr = fr->fr_next)
8089 add += fr->fr_fix;
8090 add += p - frag_now->fr_literal;
8091 }
8092
8093 if (!object_64bit)
8094 {
8095 reloc_type = BFD_RELOC_386_GOTPC;
8096 i.op[n].imms->X_add_number += add;
8097 }
8098 else if (reloc_type == BFD_RELOC_64)
8099 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8100 else
8101 /* Don't do the adjustment for x86-64, as there
8102 the pcrel addressing is relative to the _next_
8103 insn, and that is taken care of in other code. */
8104 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8105 }
8106 fixP = fix_new_exp (frag_now, p - frag_now->fr_literal,
8107 size, i.op[n].disps, pcrel,
8108 reloc_type);
8109 /* Check for "call/jmp *mem", "mov mem, %reg",
8110 "test %reg, mem" and "binop mem, %reg" where binop
8111 is one of adc, add, and, cmp, or, sbb, sub, xor
8112 instructions. Always generate R_386_GOT32X for
8113 "sym*GOT" operand in 32-bit mode. */
8114 if ((generate_relax_relocations
8115 || (!object_64bit
8116 && i.rm.mode == 0
8117 && i.rm.regmem == 5))
8118 && (i.rm.mode == 2
8119 || (i.rm.mode == 0 && i.rm.regmem == 5))
8120 && ((i.operands == 1
8121 && i.tm.base_opcode == 0xff
8122 && (i.rm.reg == 2 || i.rm.reg == 4))
8123 || (i.operands == 2
8124 && (i.tm.base_opcode == 0x8b
8125 || i.tm.base_opcode == 0x85
8126 || (i.tm.base_opcode & 0xc7) == 0x03))))
8127 {
8128 if (object_64bit)
8129 {
8130 fixP->fx_tcbit = i.rex != 0;
8131 if (i.base_reg
8132 && (i.base_reg->reg_num == RegIP))
8133 fixP->fx_tcbit2 = 1;
8134 }
8135 else
8136 fixP->fx_tcbit2 = 1;
8137 }
8138 }
8139 }
8140 }
8141 }
8142
8143 static void
8144 output_imm (fragS *insn_start_frag, offsetT insn_start_off)
8145 {
8146 char *p;
8147 unsigned int n;
8148
8149 for (n = 0; n < i.operands; n++)
8150 {
8151 /* Skip SAE/RC Imm operand in EVEX. They are already handled. */
8152 if (i.rounding && (int) n == i.rounding->operand)
8153 continue;
8154
8155 if (operand_type_check (i.types[n], imm))
8156 {
8157 if (i.op[n].imms->X_op == O_constant)
8158 {
8159 int size = imm_size (n);
8160 offsetT val;
8161
8162 val = offset_in_range (i.op[n].imms->X_add_number,
8163 size);
8164 p = frag_more (size);
8165 md_number_to_chars (p, val, size);
8166 }
8167 else
8168 {
8169 /* Not absolute_section.
8170 Need a 32-bit fixup (don't support 8bit
8171 non-absolute imms). Try to support other
8172 sizes ... */
8173 enum bfd_reloc_code_real reloc_type;
8174 int size = imm_size (n);
8175 int sign;
8176
8177 if (i.types[n].bitfield.imm32s
8178 && (i.suffix == QWORD_MNEM_SUFFIX
8179 || (!i.suffix && i.tm.opcode_modifier.no_lsuf)))
8180 sign = 1;
8181 else
8182 sign = 0;
8183
8184 p = frag_more (size);
8185 reloc_type = reloc (size, 0, sign, i.reloc[n]);
8186
8187 /* This is tough to explain. We end up with this one if we
8188 * have operands that look like
8189 * "_GLOBAL_OFFSET_TABLE_+[.-.L284]". The goal here is to
8190 * obtain the absolute address of the GOT, and it is strongly
8191 * preferable from a performance point of view to avoid using
8192 * a runtime relocation for this. The actual sequence of
8193 * instructions often look something like:
8194 *
8195 * call .L66
8196 * .L66:
8197 * popl %ebx
8198 * addl $_GLOBAL_OFFSET_TABLE_+[.-.L66],%ebx
8199 *
8200 * The call and pop essentially return the absolute address
8201 * of the label .L66 and store it in %ebx. The linker itself
8202 * will ultimately change the first operand of the addl so
8203 * that %ebx points to the GOT, but to keep things simple, the
8204 * .o file must have this operand set so that it generates not
8205 * the absolute address of .L66, but the absolute address of
8206 * itself. This allows the linker itself simply treat a GOTPC
8207 * relocation as asking for a pcrel offset to the GOT to be
8208 * added in, and the addend of the relocation is stored in the
8209 * operand field for the instruction itself.
8210 *
8211 * Our job here is to fix the operand so that it would add
8212 * the correct offset so that %ebx would point to itself. The
8213 * thing that is tricky is that .-.L66 will point to the
8214 * beginning of the instruction, so we need to further modify
8215 * the operand so that it will point to itself. There are
8216 * other cases where you have something like:
8217 *
8218 * .long $_GLOBAL_OFFSET_TABLE_+[.-.L66]
8219 *
8220 * and here no correction would be required. Internally in
8221 * the assembler we treat operands of this form as not being
8222 * pcrel since the '.' is explicitly mentioned, and I wonder
8223 * whether it would simplify matters to do it this way. Who
8224 * knows. In earlier versions of the PIC patches, the
8225 * pcrel_adjust field was used to store the correction, but
8226 * since the expression is not pcrel, I felt it would be
8227 * confusing to do it this way. */
8228
8229 if ((reloc_type == BFD_RELOC_32
8230 || reloc_type == BFD_RELOC_X86_64_32S
8231 || reloc_type == BFD_RELOC_64)
8232 && GOT_symbol
8233 && GOT_symbol == i.op[n].imms->X_add_symbol
8234 && (i.op[n].imms->X_op == O_symbol
8235 || (i.op[n].imms->X_op == O_add
8236 && ((symbol_get_value_expression
8237 (i.op[n].imms->X_op_symbol)->X_op)
8238 == O_subtract))))
8239 {
8240 offsetT add;
8241
8242 if (insn_start_frag == frag_now)
8243 add = (p - frag_now->fr_literal) - insn_start_off;
8244 else
8245 {
8246 fragS *fr;
8247
8248 add = insn_start_frag->fr_fix - insn_start_off;
8249 for (fr = insn_start_frag->fr_next;
8250 fr && fr != frag_now; fr = fr->fr_next)
8251 add += fr->fr_fix;
8252 add += p - frag_now->fr_literal;
8253 }
8254
8255 if (!object_64bit)
8256 reloc_type = BFD_RELOC_386_GOTPC;
8257 else if (size == 4)
8258 reloc_type = BFD_RELOC_X86_64_GOTPC32;
8259 else if (size == 8)
8260 reloc_type = BFD_RELOC_X86_64_GOTPC64;
8261 i.op[n].imms->X_add_number += add;
8262 }
8263 fix_new_exp (frag_now, p - frag_now->fr_literal, size,
8264 i.op[n].imms, 0, reloc_type);
8265 }
8266 }
8267 }
8268 }
8269 \f
8270 /* x86_cons_fix_new is called via the expression parsing code when a
8271 reloc is needed. We use this hook to get the correct .got reloc. */
8272 static int cons_sign = -1;
8273
8274 void
8275 x86_cons_fix_new (fragS *frag, unsigned int off, unsigned int len,
8276 expressionS *exp, bfd_reloc_code_real_type r)
8277 {
8278 r = reloc (len, 0, cons_sign, r);
8279
8280 #ifdef TE_PE
8281 if (exp->X_op == O_secrel)
8282 {
8283 exp->X_op = O_symbol;
8284 r = BFD_RELOC_32_SECREL;
8285 }
8286 #endif
8287
8288 fix_new_exp (frag, off, len, exp, 0, r);
8289 }
8290
8291 /* Export the ABI address size for use by TC_ADDRESS_BYTES for the
8292 purpose of the `.dc.a' internal pseudo-op. */
8293
8294 int
8295 x86_address_bytes (void)
8296 {
8297 if ((stdoutput->arch_info->mach & bfd_mach_x64_32))
8298 return 4;
8299 return stdoutput->arch_info->bits_per_address / 8;
8300 }
8301
8302 #if !(defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) || defined (OBJ_MACH_O)) \
8303 || defined (LEX_AT)
8304 # define lex_got(reloc, adjust, types) NULL
8305 #else
8306 /* Parse operands of the form
8307 <symbol>@GOTOFF+<nnn>
8308 and similar .plt or .got references.
8309
8310 If we find one, set up the correct relocation in RELOC and copy the
8311 input string, minus the `@GOTOFF' into a malloc'd buffer for
8312 parsing by the calling routine. Return this buffer, and if ADJUST
8313 is non-null set it to the length of the string we removed from the
8314 input line. Otherwise return NULL. */
8315 static char *
8316 lex_got (enum bfd_reloc_code_real *rel,
8317 int *adjust,
8318 i386_operand_type *types)
8319 {
8320 /* Some of the relocations depend on the size of what field is to
8321 be relocated. But in our callers i386_immediate and i386_displacement
8322 we don't yet know the operand size (this will be set by insn
8323 matching). Hence we record the word32 relocation here,
8324 and adjust the reloc according to the real size in reloc(). */
8325 static const struct {
8326 const char *str;
8327 int len;
8328 const enum bfd_reloc_code_real rel[2];
8329 const i386_operand_type types64;
8330 } gotrel[] = {
8331 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
8332 { STRING_COMMA_LEN ("SIZE"), { BFD_RELOC_SIZE32,
8333 BFD_RELOC_SIZE32 },
8334 OPERAND_TYPE_IMM32_64 },
8335 #endif
8336 { STRING_COMMA_LEN ("PLTOFF"), { _dummy_first_bfd_reloc_code_real,
8337 BFD_RELOC_X86_64_PLTOFF64 },
8338 OPERAND_TYPE_IMM64 },
8339 { STRING_COMMA_LEN ("PLT"), { BFD_RELOC_386_PLT32,
8340 BFD_RELOC_X86_64_PLT32 },
8341 OPERAND_TYPE_IMM32_32S_DISP32 },
8342 { STRING_COMMA_LEN ("GOTPLT"), { _dummy_first_bfd_reloc_code_real,
8343 BFD_RELOC_X86_64_GOTPLT64 },
8344 OPERAND_TYPE_IMM64_DISP64 },
8345 { STRING_COMMA_LEN ("GOTOFF"), { BFD_RELOC_386_GOTOFF,
8346 BFD_RELOC_X86_64_GOTOFF64 },
8347 OPERAND_TYPE_IMM64_DISP64 },
8348 { STRING_COMMA_LEN ("GOTPCREL"), { _dummy_first_bfd_reloc_code_real,
8349 BFD_RELOC_X86_64_GOTPCREL },
8350 OPERAND_TYPE_IMM32_32S_DISP32 },
8351 { STRING_COMMA_LEN ("TLSGD"), { BFD_RELOC_386_TLS_GD,
8352 BFD_RELOC_X86_64_TLSGD },
8353 OPERAND_TYPE_IMM32_32S_DISP32 },
8354 { STRING_COMMA_LEN ("TLSLDM"), { BFD_RELOC_386_TLS_LDM,
8355 _dummy_first_bfd_reloc_code_real },
8356 OPERAND_TYPE_NONE },
8357 { STRING_COMMA_LEN ("TLSLD"), { _dummy_first_bfd_reloc_code_real,
8358 BFD_RELOC_X86_64_TLSLD },
8359 OPERAND_TYPE_IMM32_32S_DISP32 },
8360 { STRING_COMMA_LEN ("GOTTPOFF"), { BFD_RELOC_386_TLS_IE_32,
8361 BFD_RELOC_X86_64_GOTTPOFF },
8362 OPERAND_TYPE_IMM32_32S_DISP32 },
8363 { STRING_COMMA_LEN ("TPOFF"), { BFD_RELOC_386_TLS_LE_32,
8364 BFD_RELOC_X86_64_TPOFF32 },
8365 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8366 { STRING_COMMA_LEN ("NTPOFF"), { BFD_RELOC_386_TLS_LE,
8367 _dummy_first_bfd_reloc_code_real },
8368 OPERAND_TYPE_NONE },
8369 { STRING_COMMA_LEN ("DTPOFF"), { BFD_RELOC_386_TLS_LDO_32,
8370 BFD_RELOC_X86_64_DTPOFF32 },
8371 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8372 { STRING_COMMA_LEN ("GOTNTPOFF"),{ BFD_RELOC_386_TLS_GOTIE,
8373 _dummy_first_bfd_reloc_code_real },
8374 OPERAND_TYPE_NONE },
8375 { STRING_COMMA_LEN ("INDNTPOFF"),{ BFD_RELOC_386_TLS_IE,
8376 _dummy_first_bfd_reloc_code_real },
8377 OPERAND_TYPE_NONE },
8378 { STRING_COMMA_LEN ("GOT"), { BFD_RELOC_386_GOT32,
8379 BFD_RELOC_X86_64_GOT32 },
8380 OPERAND_TYPE_IMM32_32S_64_DISP32 },
8381 { STRING_COMMA_LEN ("TLSDESC"), { BFD_RELOC_386_TLS_GOTDESC,
8382 BFD_RELOC_X86_64_GOTPC32_TLSDESC },
8383 OPERAND_TYPE_IMM32_32S_DISP32 },
8384 { STRING_COMMA_LEN ("TLSCALL"), { BFD_RELOC_386_TLS_DESC_CALL,
8385 BFD_RELOC_X86_64_TLSDESC_CALL },
8386 OPERAND_TYPE_IMM32_32S_DISP32 },
8387 };
8388 char *cp;
8389 unsigned int j;
8390
8391 #if defined (OBJ_MAYBE_ELF)
8392 if (!IS_ELF)
8393 return NULL;
8394 #endif
8395
8396 for (cp = input_line_pointer; *cp != '@'; cp++)
8397 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8398 return NULL;
8399
8400 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8401 {
8402 int len = gotrel[j].len;
8403 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8404 {
8405 if (gotrel[j].rel[object_64bit] != 0)
8406 {
8407 int first, second;
8408 char *tmpbuf, *past_reloc;
8409
8410 *rel = gotrel[j].rel[object_64bit];
8411
8412 if (types)
8413 {
8414 if (flag_code != CODE_64BIT)
8415 {
8416 types->bitfield.imm32 = 1;
8417 types->bitfield.disp32 = 1;
8418 }
8419 else
8420 *types = gotrel[j].types64;
8421 }
8422
8423 if (j != 0 && GOT_symbol == NULL)
8424 GOT_symbol = symbol_find_or_make (GLOBAL_OFFSET_TABLE_NAME);
8425
8426 /* The length of the first part of our input line. */
8427 first = cp - input_line_pointer;
8428
8429 /* The second part goes from after the reloc token until
8430 (and including) an end_of_line char or comma. */
8431 past_reloc = cp + 1 + len;
8432 cp = past_reloc;
8433 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8434 ++cp;
8435 second = cp + 1 - past_reloc;
8436
8437 /* Allocate and copy string. The trailing NUL shouldn't
8438 be necessary, but be safe. */
8439 tmpbuf = XNEWVEC (char, first + second + 2);
8440 memcpy (tmpbuf, input_line_pointer, first);
8441 if (second != 0 && *past_reloc != ' ')
8442 /* Replace the relocation token with ' ', so that
8443 errors like foo@GOTOFF1 will be detected. */
8444 tmpbuf[first++] = ' ';
8445 else
8446 /* Increment length by 1 if the relocation token is
8447 removed. */
8448 len++;
8449 if (adjust)
8450 *adjust = len;
8451 memcpy (tmpbuf + first, past_reloc, second);
8452 tmpbuf[first + second] = '\0';
8453 return tmpbuf;
8454 }
8455
8456 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8457 gotrel[j].str, 1 << (5 + object_64bit));
8458 return NULL;
8459 }
8460 }
8461
8462 /* Might be a symbol version string. Don't as_bad here. */
8463 return NULL;
8464 }
8465 #endif
8466
8467 #ifdef TE_PE
8468 #ifdef lex_got
8469 #undef lex_got
8470 #endif
8471 /* Parse operands of the form
8472 <symbol>@SECREL32+<nnn>
8473
8474 If we find one, set up the correct relocation in RELOC and copy the
8475 input string, minus the `@SECREL32' into a malloc'd buffer for
8476 parsing by the calling routine. Return this buffer, and if ADJUST
8477 is non-null set it to the length of the string we removed from the
8478 input line. Otherwise return NULL.
8479
8480 This function is copied from the ELF version above adjusted for PE targets. */
8481
8482 static char *
8483 lex_got (enum bfd_reloc_code_real *rel ATTRIBUTE_UNUSED,
8484 int *adjust ATTRIBUTE_UNUSED,
8485 i386_operand_type *types)
8486 {
8487 static const struct
8488 {
8489 const char *str;
8490 int len;
8491 const enum bfd_reloc_code_real rel[2];
8492 const i386_operand_type types64;
8493 }
8494 gotrel[] =
8495 {
8496 { STRING_COMMA_LEN ("SECREL32"), { BFD_RELOC_32_SECREL,
8497 BFD_RELOC_32_SECREL },
8498 OPERAND_TYPE_IMM32_32S_64_DISP32_64 },
8499 };
8500
8501 char *cp;
8502 unsigned j;
8503
8504 for (cp = input_line_pointer; *cp != '@'; cp++)
8505 if (is_end_of_line[(unsigned char) *cp] || *cp == ',')
8506 return NULL;
8507
8508 for (j = 0; j < ARRAY_SIZE (gotrel); j++)
8509 {
8510 int len = gotrel[j].len;
8511
8512 if (strncasecmp (cp + 1, gotrel[j].str, len) == 0)
8513 {
8514 if (gotrel[j].rel[object_64bit] != 0)
8515 {
8516 int first, second;
8517 char *tmpbuf, *past_reloc;
8518
8519 *rel = gotrel[j].rel[object_64bit];
8520 if (adjust)
8521 *adjust = len;
8522
8523 if (types)
8524 {
8525 if (flag_code != CODE_64BIT)
8526 {
8527 types->bitfield.imm32 = 1;
8528 types->bitfield.disp32 = 1;
8529 }
8530 else
8531 *types = gotrel[j].types64;
8532 }
8533
8534 /* The length of the first part of our input line. */
8535 first = cp - input_line_pointer;
8536
8537 /* The second part goes from after the reloc token until
8538 (and including) an end_of_line char or comma. */
8539 past_reloc = cp + 1 + len;
8540 cp = past_reloc;
8541 while (!is_end_of_line[(unsigned char) *cp] && *cp != ',')
8542 ++cp;
8543 second = cp + 1 - past_reloc;
8544
8545 /* Allocate and copy string. The trailing NUL shouldn't
8546 be necessary, but be safe. */
8547 tmpbuf = XNEWVEC (char, first + second + 2);
8548 memcpy (tmpbuf, input_line_pointer, first);
8549 if (second != 0 && *past_reloc != ' ')
8550 /* Replace the relocation token with ' ', so that
8551 errors like foo@SECLREL321 will be detected. */
8552 tmpbuf[first++] = ' ';
8553 memcpy (tmpbuf + first, past_reloc, second);
8554 tmpbuf[first + second] = '\0';
8555 return tmpbuf;
8556 }
8557
8558 as_bad (_("@%s reloc is not supported with %d-bit output format"),
8559 gotrel[j].str, 1 << (5 + object_64bit));
8560 return NULL;
8561 }
8562 }
8563
8564 /* Might be a symbol version string. Don't as_bad here. */
8565 return NULL;
8566 }
8567
8568 #endif /* TE_PE */
8569
8570 bfd_reloc_code_real_type
8571 x86_cons (expressionS *exp, int size)
8572 {
8573 bfd_reloc_code_real_type got_reloc = NO_RELOC;
8574
8575 intel_syntax = -intel_syntax;
8576
8577 exp->X_md = 0;
8578 if (size == 4 || (object_64bit && size == 8))
8579 {
8580 /* Handle @GOTOFF and the like in an expression. */
8581 char *save;
8582 char *gotfree_input_line;
8583 int adjust = 0;
8584
8585 save = input_line_pointer;
8586 gotfree_input_line = lex_got (&got_reloc, &adjust, NULL);
8587 if (gotfree_input_line)
8588 input_line_pointer = gotfree_input_line;
8589
8590 expression (exp);
8591
8592 if (gotfree_input_line)
8593 {
8594 /* expression () has merrily parsed up to the end of line,
8595 or a comma - in the wrong buffer. Transfer how far
8596 input_line_pointer has moved to the right buffer. */
8597 input_line_pointer = (save
8598 + (input_line_pointer - gotfree_input_line)
8599 + adjust);
8600 free (gotfree_input_line);
8601 if (exp->X_op == O_constant
8602 || exp->X_op == O_absent
8603 || exp->X_op == O_illegal
8604 || exp->X_op == O_register
8605 || exp->X_op == O_big)
8606 {
8607 char c = *input_line_pointer;
8608 *input_line_pointer = 0;
8609 as_bad (_("missing or invalid expression `%s'"), save);
8610 *input_line_pointer = c;
8611 }
8612 }
8613 }
8614 else
8615 expression (exp);
8616
8617 intel_syntax = -intel_syntax;
8618
8619 if (intel_syntax)
8620 i386_intel_simplify (exp);
8621
8622 return got_reloc;
8623 }
8624
8625 static void
8626 signed_cons (int size)
8627 {
8628 if (flag_code == CODE_64BIT)
8629 cons_sign = 1;
8630 cons (size);
8631 cons_sign = -1;
8632 }
8633
8634 #ifdef TE_PE
8635 static void
8636 pe_directive_secrel (int dummy ATTRIBUTE_UNUSED)
8637 {
8638 expressionS exp;
8639
8640 do
8641 {
8642 expression (&exp);
8643 if (exp.X_op == O_symbol)
8644 exp.X_op = O_secrel;
8645
8646 emit_expr (&exp, 4);
8647 }
8648 while (*input_line_pointer++ == ',');
8649
8650 input_line_pointer--;
8651 demand_empty_rest_of_line ();
8652 }
8653 #endif
8654
8655 /* Handle Vector operations. */
8656
8657 static char *
8658 check_VecOperations (char *op_string, char *op_end)
8659 {
8660 const reg_entry *mask;
8661 const char *saved;
8662 char *end_op;
8663
8664 while (*op_string
8665 && (op_end == NULL || op_string < op_end))
8666 {
8667 saved = op_string;
8668 if (*op_string == '{')
8669 {
8670 op_string++;
8671
8672 /* Check broadcasts. */
8673 if (strncmp (op_string, "1to", 3) == 0)
8674 {
8675 int bcst_type;
8676
8677 if (i.broadcast)
8678 goto duplicated_vec_op;
8679
8680 op_string += 3;
8681 if (*op_string == '8')
8682 bcst_type = 8;
8683 else if (*op_string == '4')
8684 bcst_type = 4;
8685 else if (*op_string == '2')
8686 bcst_type = 2;
8687 else if (*op_string == '1'
8688 && *(op_string+1) == '6')
8689 {
8690 bcst_type = 16;
8691 op_string++;
8692 }
8693 else
8694 {
8695 as_bad (_("Unsupported broadcast: `%s'"), saved);
8696 return NULL;
8697 }
8698 op_string++;
8699
8700 broadcast_op.type = bcst_type;
8701 broadcast_op.operand = this_operand;
8702 broadcast_op.bytes = 0;
8703 i.broadcast = &broadcast_op;
8704 }
8705 /* Check masking operation. */
8706 else if ((mask = parse_register (op_string, &end_op)) != NULL)
8707 {
8708 /* k0 can't be used for write mask. */
8709 if (!mask->reg_type.bitfield.regmask || mask->reg_num == 0)
8710 {
8711 as_bad (_("`%s%s' can't be used for write mask"),
8712 register_prefix, mask->reg_name);
8713 return NULL;
8714 }
8715
8716 if (!i.mask)
8717 {
8718 mask_op.mask = mask;
8719 mask_op.zeroing = 0;
8720 mask_op.operand = this_operand;
8721 i.mask = &mask_op;
8722 }
8723 else
8724 {
8725 if (i.mask->mask)
8726 goto duplicated_vec_op;
8727
8728 i.mask->mask = mask;
8729
8730 /* Only "{z}" is allowed here. No need to check
8731 zeroing mask explicitly. */
8732 if (i.mask->operand != this_operand)
8733 {
8734 as_bad (_("invalid write mask `%s'"), saved);
8735 return NULL;
8736 }
8737 }
8738
8739 op_string = end_op;
8740 }
8741 /* Check zeroing-flag for masking operation. */
8742 else if (*op_string == 'z')
8743 {
8744 if (!i.mask)
8745 {
8746 mask_op.mask = NULL;
8747 mask_op.zeroing = 1;
8748 mask_op.operand = this_operand;
8749 i.mask = &mask_op;
8750 }
8751 else
8752 {
8753 if (i.mask->zeroing)
8754 {
8755 duplicated_vec_op:
8756 as_bad (_("duplicated `%s'"), saved);
8757 return NULL;
8758 }
8759
8760 i.mask->zeroing = 1;
8761
8762 /* Only "{%k}" is allowed here. No need to check mask
8763 register explicitly. */
8764 if (i.mask->operand != this_operand)
8765 {
8766 as_bad (_("invalid zeroing-masking `%s'"),
8767 saved);
8768 return NULL;
8769 }
8770 }
8771
8772 op_string++;
8773 }
8774 else
8775 goto unknown_vec_op;
8776
8777 if (*op_string != '}')
8778 {
8779 as_bad (_("missing `}' in `%s'"), saved);
8780 return NULL;
8781 }
8782 op_string++;
8783
8784 /* Strip whitespace since the addition of pseudo prefixes
8785 changed how the scrubber treats '{'. */
8786 if (is_space_char (*op_string))
8787 ++op_string;
8788
8789 continue;
8790 }
8791 unknown_vec_op:
8792 /* We don't know this one. */
8793 as_bad (_("unknown vector operation: `%s'"), saved);
8794 return NULL;
8795 }
8796
8797 if (i.mask && i.mask->zeroing && !i.mask->mask)
8798 {
8799 as_bad (_("zeroing-masking only allowed with write mask"));
8800 return NULL;
8801 }
8802
8803 return op_string;
8804 }
8805
8806 static int
8807 i386_immediate (char *imm_start)
8808 {
8809 char *save_input_line_pointer;
8810 char *gotfree_input_line;
8811 segT exp_seg = 0;
8812 expressionS *exp;
8813 i386_operand_type types;
8814
8815 operand_type_set (&types, ~0);
8816
8817 if (i.imm_operands == MAX_IMMEDIATE_OPERANDS)
8818 {
8819 as_bad (_("at most %d immediate operands are allowed"),
8820 MAX_IMMEDIATE_OPERANDS);
8821 return 0;
8822 }
8823
8824 exp = &im_expressions[i.imm_operands++];
8825 i.op[this_operand].imms = exp;
8826
8827 if (is_space_char (*imm_start))
8828 ++imm_start;
8829
8830 save_input_line_pointer = input_line_pointer;
8831 input_line_pointer = imm_start;
8832
8833 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
8834 if (gotfree_input_line)
8835 input_line_pointer = gotfree_input_line;
8836
8837 exp_seg = expression (exp);
8838
8839 SKIP_WHITESPACE ();
8840
8841 /* Handle vector operations. */
8842 if (*input_line_pointer == '{')
8843 {
8844 input_line_pointer = check_VecOperations (input_line_pointer,
8845 NULL);
8846 if (input_line_pointer == NULL)
8847 return 0;
8848 }
8849
8850 if (*input_line_pointer)
8851 as_bad (_("junk `%s' after expression"), input_line_pointer);
8852
8853 input_line_pointer = save_input_line_pointer;
8854 if (gotfree_input_line)
8855 {
8856 free (gotfree_input_line);
8857
8858 if (exp->X_op == O_constant || exp->X_op == O_register)
8859 exp->X_op = O_illegal;
8860 }
8861
8862 return i386_finalize_immediate (exp_seg, exp, types, imm_start);
8863 }
8864
8865 static int
8866 i386_finalize_immediate (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
8867 i386_operand_type types, const char *imm_start)
8868 {
8869 if (exp->X_op == O_absent || exp->X_op == O_illegal || exp->X_op == O_big)
8870 {
8871 if (imm_start)
8872 as_bad (_("missing or invalid immediate expression `%s'"),
8873 imm_start);
8874 return 0;
8875 }
8876 else if (exp->X_op == O_constant)
8877 {
8878 /* Size it properly later. */
8879 i.types[this_operand].bitfield.imm64 = 1;
8880 /* If not 64bit, sign extend val. */
8881 if (flag_code != CODE_64BIT
8882 && (exp->X_add_number & ~(((addressT) 2 << 31) - 1)) == 0)
8883 exp->X_add_number
8884 = (exp->X_add_number ^ ((addressT) 1 << 31)) - ((addressT) 1 << 31);
8885 }
8886 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
8887 else if (OUTPUT_FLAVOR == bfd_target_aout_flavour
8888 && exp_seg != absolute_section
8889 && exp_seg != text_section
8890 && exp_seg != data_section
8891 && exp_seg != bss_section
8892 && exp_seg != undefined_section
8893 && !bfd_is_com_section (exp_seg))
8894 {
8895 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
8896 return 0;
8897 }
8898 #endif
8899 else if (!intel_syntax && exp_seg == reg_section)
8900 {
8901 if (imm_start)
8902 as_bad (_("illegal immediate register operand %s"), imm_start);
8903 return 0;
8904 }
8905 else
8906 {
8907 /* This is an address. The size of the address will be
8908 determined later, depending on destination register,
8909 suffix, or the default for the section. */
8910 i.types[this_operand].bitfield.imm8 = 1;
8911 i.types[this_operand].bitfield.imm16 = 1;
8912 i.types[this_operand].bitfield.imm32 = 1;
8913 i.types[this_operand].bitfield.imm32s = 1;
8914 i.types[this_operand].bitfield.imm64 = 1;
8915 i.types[this_operand] = operand_type_and (i.types[this_operand],
8916 types);
8917 }
8918
8919 return 1;
8920 }
8921
8922 static char *
8923 i386_scale (char *scale)
8924 {
8925 offsetT val;
8926 char *save = input_line_pointer;
8927
8928 input_line_pointer = scale;
8929 val = get_absolute_expression ();
8930
8931 switch (val)
8932 {
8933 case 1:
8934 i.log2_scale_factor = 0;
8935 break;
8936 case 2:
8937 i.log2_scale_factor = 1;
8938 break;
8939 case 4:
8940 i.log2_scale_factor = 2;
8941 break;
8942 case 8:
8943 i.log2_scale_factor = 3;
8944 break;
8945 default:
8946 {
8947 char sep = *input_line_pointer;
8948
8949 *input_line_pointer = '\0';
8950 as_bad (_("expecting scale factor of 1, 2, 4, or 8: got `%s'"),
8951 scale);
8952 *input_line_pointer = sep;
8953 input_line_pointer = save;
8954 return NULL;
8955 }
8956 }
8957 if (i.log2_scale_factor != 0 && i.index_reg == 0)
8958 {
8959 as_warn (_("scale factor of %d without an index register"),
8960 1 << i.log2_scale_factor);
8961 i.log2_scale_factor = 0;
8962 }
8963 scale = input_line_pointer;
8964 input_line_pointer = save;
8965 return scale;
8966 }
8967
8968 static int
8969 i386_displacement (char *disp_start, char *disp_end)
8970 {
8971 expressionS *exp;
8972 segT exp_seg = 0;
8973 char *save_input_line_pointer;
8974 char *gotfree_input_line;
8975 int override;
8976 i386_operand_type bigdisp, types = anydisp;
8977 int ret;
8978
8979 if (i.disp_operands == MAX_MEMORY_OPERANDS)
8980 {
8981 as_bad (_("at most %d displacement operands are allowed"),
8982 MAX_MEMORY_OPERANDS);
8983 return 0;
8984 }
8985
8986 operand_type_set (&bigdisp, 0);
8987 if ((i.types[this_operand].bitfield.jumpabsolute)
8988 || (!current_templates->start->opcode_modifier.jump
8989 && !current_templates->start->opcode_modifier.jumpdword))
8990 {
8991 bigdisp.bitfield.disp32 = 1;
8992 override = (i.prefix[ADDR_PREFIX] != 0);
8993 if (flag_code == CODE_64BIT)
8994 {
8995 if (!override)
8996 {
8997 bigdisp.bitfield.disp32s = 1;
8998 bigdisp.bitfield.disp64 = 1;
8999 }
9000 }
9001 else if ((flag_code == CODE_16BIT) ^ override)
9002 {
9003 bigdisp.bitfield.disp32 = 0;
9004 bigdisp.bitfield.disp16 = 1;
9005 }
9006 }
9007 else
9008 {
9009 /* For PC-relative branches, the width of the displacement
9010 is dependent upon data size, not address size. */
9011 override = (i.prefix[DATA_PREFIX] != 0);
9012 if (flag_code == CODE_64BIT)
9013 {
9014 if (override || i.suffix == WORD_MNEM_SUFFIX)
9015 bigdisp.bitfield.disp16 = 1;
9016 else
9017 {
9018 bigdisp.bitfield.disp32 = 1;
9019 bigdisp.bitfield.disp32s = 1;
9020 }
9021 }
9022 else
9023 {
9024 if (!override)
9025 override = (i.suffix == (flag_code != CODE_16BIT
9026 ? WORD_MNEM_SUFFIX
9027 : LONG_MNEM_SUFFIX));
9028 bigdisp.bitfield.disp32 = 1;
9029 if ((flag_code == CODE_16BIT) ^ override)
9030 {
9031 bigdisp.bitfield.disp32 = 0;
9032 bigdisp.bitfield.disp16 = 1;
9033 }
9034 }
9035 }
9036 i.types[this_operand] = operand_type_or (i.types[this_operand],
9037 bigdisp);
9038
9039 exp = &disp_expressions[i.disp_operands];
9040 i.op[this_operand].disps = exp;
9041 i.disp_operands++;
9042 save_input_line_pointer = input_line_pointer;
9043 input_line_pointer = disp_start;
9044 END_STRING_AND_SAVE (disp_end);
9045
9046 #ifndef GCC_ASM_O_HACK
9047 #define GCC_ASM_O_HACK 0
9048 #endif
9049 #if GCC_ASM_O_HACK
9050 END_STRING_AND_SAVE (disp_end + 1);
9051 if (i.types[this_operand].bitfield.baseIndex
9052 && displacement_string_end[-1] == '+')
9053 {
9054 /* This hack is to avoid a warning when using the "o"
9055 constraint within gcc asm statements.
9056 For instance:
9057
9058 #define _set_tssldt_desc(n,addr,limit,type) \
9059 __asm__ __volatile__ ( \
9060 "movw %w2,%0\n\t" \
9061 "movw %w1,2+%0\n\t" \
9062 "rorl $16,%1\n\t" \
9063 "movb %b1,4+%0\n\t" \
9064 "movb %4,5+%0\n\t" \
9065 "movb $0,6+%0\n\t" \
9066 "movb %h1,7+%0\n\t" \
9067 "rorl $16,%1" \
9068 : "=o"(*(n)) : "q" (addr), "ri"(limit), "i"(type))
9069
9070 This works great except that the output assembler ends
9071 up looking a bit weird if it turns out that there is
9072 no offset. You end up producing code that looks like:
9073
9074 #APP
9075 movw $235,(%eax)
9076 movw %dx,2+(%eax)
9077 rorl $16,%edx
9078 movb %dl,4+(%eax)
9079 movb $137,5+(%eax)
9080 movb $0,6+(%eax)
9081 movb %dh,7+(%eax)
9082 rorl $16,%edx
9083 #NO_APP
9084
9085 So here we provide the missing zero. */
9086
9087 *displacement_string_end = '0';
9088 }
9089 #endif
9090 gotfree_input_line = lex_got (&i.reloc[this_operand], NULL, &types);
9091 if (gotfree_input_line)
9092 input_line_pointer = gotfree_input_line;
9093
9094 exp_seg = expression (exp);
9095
9096 SKIP_WHITESPACE ();
9097 if (*input_line_pointer)
9098 as_bad (_("junk `%s' after expression"), input_line_pointer);
9099 #if GCC_ASM_O_HACK
9100 RESTORE_END_STRING (disp_end + 1);
9101 #endif
9102 input_line_pointer = save_input_line_pointer;
9103 if (gotfree_input_line)
9104 {
9105 free (gotfree_input_line);
9106
9107 if (exp->X_op == O_constant || exp->X_op == O_register)
9108 exp->X_op = O_illegal;
9109 }
9110
9111 ret = i386_finalize_displacement (exp_seg, exp, types, disp_start);
9112
9113 RESTORE_END_STRING (disp_end);
9114
9115 return ret;
9116 }
9117
9118 static int
9119 i386_finalize_displacement (segT exp_seg ATTRIBUTE_UNUSED, expressionS *exp,
9120 i386_operand_type types, const char *disp_start)
9121 {
9122 i386_operand_type bigdisp;
9123 int ret = 1;
9124
9125 /* We do this to make sure that the section symbol is in
9126 the symbol table. We will ultimately change the relocation
9127 to be relative to the beginning of the section. */
9128 if (i.reloc[this_operand] == BFD_RELOC_386_GOTOFF
9129 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL
9130 || i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9131 {
9132 if (exp->X_op != O_symbol)
9133 goto inv_disp;
9134
9135 if (S_IS_LOCAL (exp->X_add_symbol)
9136 && S_GET_SEGMENT (exp->X_add_symbol) != undefined_section
9137 && S_GET_SEGMENT (exp->X_add_symbol) != expr_section)
9138 section_symbol (S_GET_SEGMENT (exp->X_add_symbol));
9139 exp->X_op = O_subtract;
9140 exp->X_op_symbol = GOT_symbol;
9141 if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTPCREL)
9142 i.reloc[this_operand] = BFD_RELOC_32_PCREL;
9143 else if (i.reloc[this_operand] == BFD_RELOC_X86_64_GOTOFF64)
9144 i.reloc[this_operand] = BFD_RELOC_64;
9145 else
9146 i.reloc[this_operand] = BFD_RELOC_32;
9147 }
9148
9149 else if (exp->X_op == O_absent
9150 || exp->X_op == O_illegal
9151 || exp->X_op == O_big)
9152 {
9153 inv_disp:
9154 as_bad (_("missing or invalid displacement expression `%s'"),
9155 disp_start);
9156 ret = 0;
9157 }
9158
9159 else if (flag_code == CODE_64BIT
9160 && !i.prefix[ADDR_PREFIX]
9161 && exp->X_op == O_constant)
9162 {
9163 /* Since displacement is signed extended to 64bit, don't allow
9164 disp32 and turn off disp32s if they are out of range. */
9165 i.types[this_operand].bitfield.disp32 = 0;
9166 if (!fits_in_signed_long (exp->X_add_number))
9167 {
9168 i.types[this_operand].bitfield.disp32s = 0;
9169 if (i.types[this_operand].bitfield.baseindex)
9170 {
9171 as_bad (_("0x%lx out range of signed 32bit displacement"),
9172 (long) exp->X_add_number);
9173 ret = 0;
9174 }
9175 }
9176 }
9177
9178 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
9179 else if (exp->X_op != O_constant
9180 && OUTPUT_FLAVOR == bfd_target_aout_flavour
9181 && exp_seg != absolute_section
9182 && exp_seg != text_section
9183 && exp_seg != data_section
9184 && exp_seg != bss_section
9185 && exp_seg != undefined_section
9186 && !bfd_is_com_section (exp_seg))
9187 {
9188 as_bad (_("unimplemented segment %s in operand"), exp_seg->name);
9189 ret = 0;
9190 }
9191 #endif
9192
9193 /* Check if this is a displacement only operand. */
9194 bigdisp = i.types[this_operand];
9195 bigdisp.bitfield.disp8 = 0;
9196 bigdisp.bitfield.disp16 = 0;
9197 bigdisp.bitfield.disp32 = 0;
9198 bigdisp.bitfield.disp32s = 0;
9199 bigdisp.bitfield.disp64 = 0;
9200 if (operand_type_all_zero (&bigdisp))
9201 i.types[this_operand] = operand_type_and (i.types[this_operand],
9202 types);
9203
9204 return ret;
9205 }
9206
9207 /* Return the active addressing mode, taking address override and
9208 registers forming the address into consideration. Update the
9209 address override prefix if necessary. */
9210
9211 static enum flag_code
9212 i386_addressing_mode (void)
9213 {
9214 enum flag_code addr_mode;
9215
9216 if (i.prefix[ADDR_PREFIX])
9217 addr_mode = flag_code == CODE_32BIT ? CODE_16BIT : CODE_32BIT;
9218 else
9219 {
9220 addr_mode = flag_code;
9221
9222 #if INFER_ADDR_PREFIX
9223 if (i.mem_operands == 0)
9224 {
9225 /* Infer address prefix from the first memory operand. */
9226 const reg_entry *addr_reg = i.base_reg;
9227
9228 if (addr_reg == NULL)
9229 addr_reg = i.index_reg;
9230
9231 if (addr_reg)
9232 {
9233 if (addr_reg->reg_type.bitfield.dword)
9234 addr_mode = CODE_32BIT;
9235 else if (flag_code != CODE_64BIT
9236 && addr_reg->reg_type.bitfield.word)
9237 addr_mode = CODE_16BIT;
9238
9239 if (addr_mode != flag_code)
9240 {
9241 i.prefix[ADDR_PREFIX] = ADDR_PREFIX_OPCODE;
9242 i.prefixes += 1;
9243 /* Change the size of any displacement too. At most one
9244 of Disp16 or Disp32 is set.
9245 FIXME. There doesn't seem to be any real need for
9246 separate Disp16 and Disp32 flags. The same goes for
9247 Imm16 and Imm32. Removing them would probably clean
9248 up the code quite a lot. */
9249 if (flag_code != CODE_64BIT
9250 && (i.types[this_operand].bitfield.disp16
9251 || i.types[this_operand].bitfield.disp32))
9252 i.types[this_operand]
9253 = operand_type_xor (i.types[this_operand], disp16_32);
9254 }
9255 }
9256 }
9257 #endif
9258 }
9259
9260 return addr_mode;
9261 }
9262
9263 /* Make sure the memory operand we've been dealt is valid.
9264 Return 1 on success, 0 on a failure. */
9265
9266 static int
9267 i386_index_check (const char *operand_string)
9268 {
9269 const char *kind = "base/index";
9270 enum flag_code addr_mode = i386_addressing_mode ();
9271
9272 if (current_templates->start->opcode_modifier.isstring
9273 && !current_templates->start->opcode_modifier.immext
9274 && (current_templates->end[-1].opcode_modifier.isstring
9275 || i.mem_operands))
9276 {
9277 /* Memory operands of string insns are special in that they only allow
9278 a single register (rDI, rSI, or rBX) as their memory address. */
9279 const reg_entry *expected_reg;
9280 static const char *di_si[][2] =
9281 {
9282 { "esi", "edi" },
9283 { "si", "di" },
9284 { "rsi", "rdi" }
9285 };
9286 static const char *bx[] = { "ebx", "bx", "rbx" };
9287
9288 kind = "string address";
9289
9290 if (current_templates->start->opcode_modifier.repprefixok)
9291 {
9292 i386_operand_type type = current_templates->end[-1].operand_types[0];
9293
9294 if (!type.bitfield.baseindex
9295 || ((!i.mem_operands != !intel_syntax)
9296 && current_templates->end[-1].operand_types[1]
9297 .bitfield.baseindex))
9298 type = current_templates->end[-1].operand_types[1];
9299 expected_reg = hash_find (reg_hash,
9300 di_si[addr_mode][type.bitfield.esseg]);
9301
9302 }
9303 else
9304 expected_reg = hash_find (reg_hash, bx[addr_mode]);
9305
9306 if (i.base_reg != expected_reg
9307 || i.index_reg
9308 || operand_type_check (i.types[this_operand], disp))
9309 {
9310 /* The second memory operand must have the same size as
9311 the first one. */
9312 if (i.mem_operands
9313 && i.base_reg
9314 && !((addr_mode == CODE_64BIT
9315 && i.base_reg->reg_type.bitfield.qword)
9316 || (addr_mode == CODE_32BIT
9317 ? i.base_reg->reg_type.bitfield.dword
9318 : i.base_reg->reg_type.bitfield.word)))
9319 goto bad_address;
9320
9321 as_warn (_("`%s' is not valid here (expected `%c%s%s%c')"),
9322 operand_string,
9323 intel_syntax ? '[' : '(',
9324 register_prefix,
9325 expected_reg->reg_name,
9326 intel_syntax ? ']' : ')');
9327 return 1;
9328 }
9329 else
9330 return 1;
9331
9332 bad_address:
9333 as_bad (_("`%s' is not a valid %s expression"),
9334 operand_string, kind);
9335 return 0;
9336 }
9337 else
9338 {
9339 if (addr_mode != CODE_16BIT)
9340 {
9341 /* 32-bit/64-bit checks. */
9342 if ((i.base_reg
9343 && ((addr_mode == CODE_64BIT
9344 ? !i.base_reg->reg_type.bitfield.qword
9345 : !i.base_reg->reg_type.bitfield.dword)
9346 || (i.index_reg && i.base_reg->reg_num == RegIP)
9347 || i.base_reg->reg_num == RegIZ))
9348 || (i.index_reg
9349 && !i.index_reg->reg_type.bitfield.xmmword
9350 && !i.index_reg->reg_type.bitfield.ymmword
9351 && !i.index_reg->reg_type.bitfield.zmmword
9352 && ((addr_mode == CODE_64BIT
9353 ? !i.index_reg->reg_type.bitfield.qword
9354 : !i.index_reg->reg_type.bitfield.dword)
9355 || !i.index_reg->reg_type.bitfield.baseindex)))
9356 goto bad_address;
9357
9358 /* bndmk, bndldx, and bndstx have special restrictions. */
9359 if (current_templates->start->base_opcode == 0xf30f1b
9360 || (current_templates->start->base_opcode & ~1) == 0x0f1a)
9361 {
9362 /* They cannot use RIP-relative addressing. */
9363 if (i.base_reg && i.base_reg->reg_num == RegIP)
9364 {
9365 as_bad (_("`%s' cannot be used here"), operand_string);
9366 return 0;
9367 }
9368
9369 /* bndldx and bndstx ignore their scale factor. */
9370 if (current_templates->start->base_opcode != 0xf30f1b
9371 && i.log2_scale_factor)
9372 as_warn (_("register scaling is being ignored here"));
9373 }
9374 }
9375 else
9376 {
9377 /* 16-bit checks. */
9378 if ((i.base_reg
9379 && (!i.base_reg->reg_type.bitfield.word
9380 || !i.base_reg->reg_type.bitfield.baseindex))
9381 || (i.index_reg
9382 && (!i.index_reg->reg_type.bitfield.word
9383 || !i.index_reg->reg_type.bitfield.baseindex
9384 || !(i.base_reg
9385 && i.base_reg->reg_num < 6
9386 && i.index_reg->reg_num >= 6
9387 && i.log2_scale_factor == 0))))
9388 goto bad_address;
9389 }
9390 }
9391 return 1;
9392 }
9393
9394 /* Handle vector immediates. */
9395
9396 static int
9397 RC_SAE_immediate (const char *imm_start)
9398 {
9399 unsigned int match_found, j;
9400 const char *pstr = imm_start;
9401 expressionS *exp;
9402
9403 if (*pstr != '{')
9404 return 0;
9405
9406 pstr++;
9407 match_found = 0;
9408 for (j = 0; j < ARRAY_SIZE (RC_NamesTable); j++)
9409 {
9410 if (!strncmp (pstr, RC_NamesTable[j].name, RC_NamesTable[j].len))
9411 {
9412 if (!i.rounding)
9413 {
9414 rc_op.type = RC_NamesTable[j].type;
9415 rc_op.operand = this_operand;
9416 i.rounding = &rc_op;
9417 }
9418 else
9419 {
9420 as_bad (_("duplicated `%s'"), imm_start);
9421 return 0;
9422 }
9423 pstr += RC_NamesTable[j].len;
9424 match_found = 1;
9425 break;
9426 }
9427 }
9428 if (!match_found)
9429 return 0;
9430
9431 if (*pstr++ != '}')
9432 {
9433 as_bad (_("Missing '}': '%s'"), imm_start);
9434 return 0;
9435 }
9436 /* RC/SAE immediate string should contain nothing more. */;
9437 if (*pstr != 0)
9438 {
9439 as_bad (_("Junk after '}': '%s'"), imm_start);
9440 return 0;
9441 }
9442
9443 exp = &im_expressions[i.imm_operands++];
9444 i.op[this_operand].imms = exp;
9445
9446 exp->X_op = O_constant;
9447 exp->X_add_number = 0;
9448 exp->X_add_symbol = (symbolS *) 0;
9449 exp->X_op_symbol = (symbolS *) 0;
9450
9451 i.types[this_operand].bitfield.imm8 = 1;
9452 return 1;
9453 }
9454
9455 /* Only string instructions can have a second memory operand, so
9456 reduce current_templates to just those if it contains any. */
9457 static int
9458 maybe_adjust_templates (void)
9459 {
9460 const insn_template *t;
9461
9462 gas_assert (i.mem_operands == 1);
9463
9464 for (t = current_templates->start; t < current_templates->end; ++t)
9465 if (t->opcode_modifier.isstring)
9466 break;
9467
9468 if (t < current_templates->end)
9469 {
9470 static templates aux_templates;
9471 bfd_boolean recheck;
9472
9473 aux_templates.start = t;
9474 for (; t < current_templates->end; ++t)
9475 if (!t->opcode_modifier.isstring)
9476 break;
9477 aux_templates.end = t;
9478
9479 /* Determine whether to re-check the first memory operand. */
9480 recheck = (aux_templates.start != current_templates->start
9481 || t != current_templates->end);
9482
9483 current_templates = &aux_templates;
9484
9485 if (recheck)
9486 {
9487 i.mem_operands = 0;
9488 if (i.memop1_string != NULL
9489 && i386_index_check (i.memop1_string) == 0)
9490 return 0;
9491 i.mem_operands = 1;
9492 }
9493 }
9494
9495 return 1;
9496 }
9497
9498 /* Parse OPERAND_STRING into the i386_insn structure I. Returns zero
9499 on error. */
9500
9501 static int
9502 i386_att_operand (char *operand_string)
9503 {
9504 const reg_entry *r;
9505 char *end_op;
9506 char *op_string = operand_string;
9507
9508 if (is_space_char (*op_string))
9509 ++op_string;
9510
9511 /* We check for an absolute prefix (differentiating,
9512 for example, 'jmp pc_relative_label' from 'jmp *absolute_label'. */
9513 if (*op_string == ABSOLUTE_PREFIX)
9514 {
9515 ++op_string;
9516 if (is_space_char (*op_string))
9517 ++op_string;
9518 i.types[this_operand].bitfield.jumpabsolute = 1;
9519 }
9520
9521 /* Check if operand is a register. */
9522 if ((r = parse_register (op_string, &end_op)) != NULL)
9523 {
9524 i386_operand_type temp;
9525
9526 /* Check for a segment override by searching for ':' after a
9527 segment register. */
9528 op_string = end_op;
9529 if (is_space_char (*op_string))
9530 ++op_string;
9531 if (*op_string == ':'
9532 && (r->reg_type.bitfield.sreg2
9533 || r->reg_type.bitfield.sreg3))
9534 {
9535 switch (r->reg_num)
9536 {
9537 case 0:
9538 i.seg[i.mem_operands] = &es;
9539 break;
9540 case 1:
9541 i.seg[i.mem_operands] = &cs;
9542 break;
9543 case 2:
9544 i.seg[i.mem_operands] = &ss;
9545 break;
9546 case 3:
9547 i.seg[i.mem_operands] = &ds;
9548 break;
9549 case 4:
9550 i.seg[i.mem_operands] = &fs;
9551 break;
9552 case 5:
9553 i.seg[i.mem_operands] = &gs;
9554 break;
9555 }
9556
9557 /* Skip the ':' and whitespace. */
9558 ++op_string;
9559 if (is_space_char (*op_string))
9560 ++op_string;
9561
9562 if (!is_digit_char (*op_string)
9563 && !is_identifier_char (*op_string)
9564 && *op_string != '('
9565 && *op_string != ABSOLUTE_PREFIX)
9566 {
9567 as_bad (_("bad memory operand `%s'"), op_string);
9568 return 0;
9569 }
9570 /* Handle case of %es:*foo. */
9571 if (*op_string == ABSOLUTE_PREFIX)
9572 {
9573 ++op_string;
9574 if (is_space_char (*op_string))
9575 ++op_string;
9576 i.types[this_operand].bitfield.jumpabsolute = 1;
9577 }
9578 goto do_memory_reference;
9579 }
9580
9581 /* Handle vector operations. */
9582 if (*op_string == '{')
9583 {
9584 op_string = check_VecOperations (op_string, NULL);
9585 if (op_string == NULL)
9586 return 0;
9587 }
9588
9589 if (*op_string)
9590 {
9591 as_bad (_("junk `%s' after register"), op_string);
9592 return 0;
9593 }
9594 temp = r->reg_type;
9595 temp.bitfield.baseindex = 0;
9596 i.types[this_operand] = operand_type_or (i.types[this_operand],
9597 temp);
9598 i.types[this_operand].bitfield.unspecified = 0;
9599 i.op[this_operand].regs = r;
9600 i.reg_operands++;
9601 }
9602 else if (*op_string == REGISTER_PREFIX)
9603 {
9604 as_bad (_("bad register name `%s'"), op_string);
9605 return 0;
9606 }
9607 else if (*op_string == IMMEDIATE_PREFIX)
9608 {
9609 ++op_string;
9610 if (i.types[this_operand].bitfield.jumpabsolute)
9611 {
9612 as_bad (_("immediate operand illegal with absolute jump"));
9613 return 0;
9614 }
9615 if (!i386_immediate (op_string))
9616 return 0;
9617 }
9618 else if (RC_SAE_immediate (operand_string))
9619 {
9620 /* If it is a RC or SAE immediate, do nothing. */
9621 ;
9622 }
9623 else if (is_digit_char (*op_string)
9624 || is_identifier_char (*op_string)
9625 || *op_string == '"'
9626 || *op_string == '(')
9627 {
9628 /* This is a memory reference of some sort. */
9629 char *base_string;
9630
9631 /* Start and end of displacement string expression (if found). */
9632 char *displacement_string_start;
9633 char *displacement_string_end;
9634 char *vop_start;
9635
9636 do_memory_reference:
9637 if (i.mem_operands == 1 && !maybe_adjust_templates ())
9638 return 0;
9639 if ((i.mem_operands == 1
9640 && !current_templates->start->opcode_modifier.isstring)
9641 || i.mem_operands == 2)
9642 {
9643 as_bad (_("too many memory references for `%s'"),
9644 current_templates->start->name);
9645 return 0;
9646 }
9647
9648 /* Check for base index form. We detect the base index form by
9649 looking for an ')' at the end of the operand, searching
9650 for the '(' matching it, and finding a REGISTER_PREFIX or ','
9651 after the '('. */
9652 base_string = op_string + strlen (op_string);
9653
9654 /* Handle vector operations. */
9655 vop_start = strchr (op_string, '{');
9656 if (vop_start && vop_start < base_string)
9657 {
9658 if (check_VecOperations (vop_start, base_string) == NULL)
9659 return 0;
9660 base_string = vop_start;
9661 }
9662
9663 --base_string;
9664 if (is_space_char (*base_string))
9665 --base_string;
9666
9667 /* If we only have a displacement, set-up for it to be parsed later. */
9668 displacement_string_start = op_string;
9669 displacement_string_end = base_string + 1;
9670
9671 if (*base_string == ')')
9672 {
9673 char *temp_string;
9674 unsigned int parens_balanced = 1;
9675 /* We've already checked that the number of left & right ()'s are
9676 equal, so this loop will not be infinite. */
9677 do
9678 {
9679 base_string--;
9680 if (*base_string == ')')
9681 parens_balanced++;
9682 if (*base_string == '(')
9683 parens_balanced--;
9684 }
9685 while (parens_balanced);
9686
9687 temp_string = base_string;
9688
9689 /* Skip past '(' and whitespace. */
9690 ++base_string;
9691 if (is_space_char (*base_string))
9692 ++base_string;
9693
9694 if (*base_string == ','
9695 || ((i.base_reg = parse_register (base_string, &end_op))
9696 != NULL))
9697 {
9698 displacement_string_end = temp_string;
9699
9700 i.types[this_operand].bitfield.baseindex = 1;
9701
9702 if (i.base_reg)
9703 {
9704 base_string = end_op;
9705 if (is_space_char (*base_string))
9706 ++base_string;
9707 }
9708
9709 /* There may be an index reg or scale factor here. */
9710 if (*base_string == ',')
9711 {
9712 ++base_string;
9713 if (is_space_char (*base_string))
9714 ++base_string;
9715
9716 if ((i.index_reg = parse_register (base_string, &end_op))
9717 != NULL)
9718 {
9719 base_string = end_op;
9720 if (is_space_char (*base_string))
9721 ++base_string;
9722 if (*base_string == ',')
9723 {
9724 ++base_string;
9725 if (is_space_char (*base_string))
9726 ++base_string;
9727 }
9728 else if (*base_string != ')')
9729 {
9730 as_bad (_("expecting `,' or `)' "
9731 "after index register in `%s'"),
9732 operand_string);
9733 return 0;
9734 }
9735 }
9736 else if (*base_string == REGISTER_PREFIX)
9737 {
9738 end_op = strchr (base_string, ',');
9739 if (end_op)
9740 *end_op = '\0';
9741 as_bad (_("bad register name `%s'"), base_string);
9742 return 0;
9743 }
9744
9745 /* Check for scale factor. */
9746 if (*base_string != ')')
9747 {
9748 char *end_scale = i386_scale (base_string);
9749
9750 if (!end_scale)
9751 return 0;
9752
9753 base_string = end_scale;
9754 if (is_space_char (*base_string))
9755 ++base_string;
9756 if (*base_string != ')')
9757 {
9758 as_bad (_("expecting `)' "
9759 "after scale factor in `%s'"),
9760 operand_string);
9761 return 0;
9762 }
9763 }
9764 else if (!i.index_reg)
9765 {
9766 as_bad (_("expecting index register or scale factor "
9767 "after `,'; got '%c'"),
9768 *base_string);
9769 return 0;
9770 }
9771 }
9772 else if (*base_string != ')')
9773 {
9774 as_bad (_("expecting `,' or `)' "
9775 "after base register in `%s'"),
9776 operand_string);
9777 return 0;
9778 }
9779 }
9780 else if (*base_string == REGISTER_PREFIX)
9781 {
9782 end_op = strchr (base_string, ',');
9783 if (end_op)
9784 *end_op = '\0';
9785 as_bad (_("bad register name `%s'"), base_string);
9786 return 0;
9787 }
9788 }
9789
9790 /* If there's an expression beginning the operand, parse it,
9791 assuming displacement_string_start and
9792 displacement_string_end are meaningful. */
9793 if (displacement_string_start != displacement_string_end)
9794 {
9795 if (!i386_displacement (displacement_string_start,
9796 displacement_string_end))
9797 return 0;
9798 }
9799
9800 /* Special case for (%dx) while doing input/output op. */
9801 if (i.base_reg
9802 && i.base_reg->reg_type.bitfield.inoutportreg
9803 && i.index_reg == 0
9804 && i.log2_scale_factor == 0
9805 && i.seg[i.mem_operands] == 0
9806 && !operand_type_check (i.types[this_operand], disp))
9807 {
9808 i.types[this_operand] = i.base_reg->reg_type;
9809 return 1;
9810 }
9811
9812 if (i386_index_check (operand_string) == 0)
9813 return 0;
9814 i.flags[this_operand] |= Operand_Mem;
9815 if (i.mem_operands == 0)
9816 i.memop1_string = xstrdup (operand_string);
9817 i.mem_operands++;
9818 }
9819 else
9820 {
9821 /* It's not a memory operand; argh! */
9822 as_bad (_("invalid char %s beginning operand %d `%s'"),
9823 output_invalid (*op_string),
9824 this_operand + 1,
9825 op_string);
9826 return 0;
9827 }
9828 return 1; /* Normal return. */
9829 }
9830 \f
9831 /* Calculate the maximum variable size (i.e., excluding fr_fix)
9832 that an rs_machine_dependent frag may reach. */
9833
9834 unsigned int
9835 i386_frag_max_var (fragS *frag)
9836 {
9837 /* The only relaxable frags are for jumps.
9838 Unconditional jumps can grow by 4 bytes and others by 5 bytes. */
9839 gas_assert (frag->fr_type == rs_machine_dependent);
9840 return TYPE_FROM_RELAX_STATE (frag->fr_subtype) == UNCOND_JUMP ? 4 : 5;
9841 }
9842
9843 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9844 static int
9845 elf_symbol_resolved_in_segment_p (symbolS *fr_symbol, offsetT fr_var)
9846 {
9847 /* STT_GNU_IFUNC symbol must go through PLT. */
9848 if ((symbol_get_bfdsym (fr_symbol)->flags
9849 & BSF_GNU_INDIRECT_FUNCTION) != 0)
9850 return 0;
9851
9852 if (!S_IS_EXTERNAL (fr_symbol))
9853 /* Symbol may be weak or local. */
9854 return !S_IS_WEAK (fr_symbol);
9855
9856 /* Global symbols with non-default visibility can't be preempted. */
9857 if (ELF_ST_VISIBILITY (S_GET_OTHER (fr_symbol)) != STV_DEFAULT)
9858 return 1;
9859
9860 if (fr_var != NO_RELOC)
9861 switch ((enum bfd_reloc_code_real) fr_var)
9862 {
9863 case BFD_RELOC_386_PLT32:
9864 case BFD_RELOC_X86_64_PLT32:
9865 /* Symbol with PLT relocation may be preempted. */
9866 return 0;
9867 default:
9868 abort ();
9869 }
9870
9871 /* Global symbols with default visibility in a shared library may be
9872 preempted by another definition. */
9873 return !shared;
9874 }
9875 #endif
9876
9877 /* md_estimate_size_before_relax()
9878
9879 Called just before relax() for rs_machine_dependent frags. The x86
9880 assembler uses these frags to handle variable size jump
9881 instructions.
9882
9883 Any symbol that is now undefined will not become defined.
9884 Return the correct fr_subtype in the frag.
9885 Return the initial "guess for variable size of frag" to caller.
9886 The guess is actually the growth beyond the fixed part. Whatever
9887 we do to grow the fixed or variable part contributes to our
9888 returned value. */
9889
9890 int
9891 md_estimate_size_before_relax (fragS *fragP, segT segment)
9892 {
9893 /* We've already got fragP->fr_subtype right; all we have to do is
9894 check for un-relaxable symbols. On an ELF system, we can't relax
9895 an externally visible symbol, because it may be overridden by a
9896 shared library. */
9897 if (S_GET_SEGMENT (fragP->fr_symbol) != segment
9898 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9899 || (IS_ELF
9900 && !elf_symbol_resolved_in_segment_p (fragP->fr_symbol,
9901 fragP->fr_var))
9902 #endif
9903 #if defined (OBJ_COFF) && defined (TE_PE)
9904 || (OUTPUT_FLAVOR == bfd_target_coff_flavour
9905 && S_IS_WEAK (fragP->fr_symbol))
9906 #endif
9907 )
9908 {
9909 /* Symbol is undefined in this segment, or we need to keep a
9910 reloc so that weak symbols can be overridden. */
9911 int size = (fragP->fr_subtype & CODE16) ? 2 : 4;
9912 enum bfd_reloc_code_real reloc_type;
9913 unsigned char *opcode;
9914 int old_fr_fix;
9915
9916 if (fragP->fr_var != NO_RELOC)
9917 reloc_type = (enum bfd_reloc_code_real) fragP->fr_var;
9918 else if (size == 2)
9919 reloc_type = BFD_RELOC_16_PCREL;
9920 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
9921 else if (need_plt32_p (fragP->fr_symbol))
9922 reloc_type = BFD_RELOC_X86_64_PLT32;
9923 #endif
9924 else
9925 reloc_type = BFD_RELOC_32_PCREL;
9926
9927 old_fr_fix = fragP->fr_fix;
9928 opcode = (unsigned char *) fragP->fr_opcode;
9929
9930 switch (TYPE_FROM_RELAX_STATE (fragP->fr_subtype))
9931 {
9932 case UNCOND_JUMP:
9933 /* Make jmp (0xeb) a (d)word displacement jump. */
9934 opcode[0] = 0xe9;
9935 fragP->fr_fix += size;
9936 fix_new (fragP, old_fr_fix, size,
9937 fragP->fr_symbol,
9938 fragP->fr_offset, 1,
9939 reloc_type);
9940 break;
9941
9942 case COND_JUMP86:
9943 if (size == 2
9944 && (!no_cond_jump_promotion || fragP->fr_var != NO_RELOC))
9945 {
9946 /* Negate the condition, and branch past an
9947 unconditional jump. */
9948 opcode[0] ^= 1;
9949 opcode[1] = 3;
9950 /* Insert an unconditional jump. */
9951 opcode[2] = 0xe9;
9952 /* We added two extra opcode bytes, and have a two byte
9953 offset. */
9954 fragP->fr_fix += 2 + 2;
9955 fix_new (fragP, old_fr_fix + 2, 2,
9956 fragP->fr_symbol,
9957 fragP->fr_offset, 1,
9958 reloc_type);
9959 break;
9960 }
9961 /* Fall through. */
9962
9963 case COND_JUMP:
9964 if (no_cond_jump_promotion && fragP->fr_var == NO_RELOC)
9965 {
9966 fixS *fixP;
9967
9968 fragP->fr_fix += 1;
9969 fixP = fix_new (fragP, old_fr_fix, 1,
9970 fragP->fr_symbol,
9971 fragP->fr_offset, 1,
9972 BFD_RELOC_8_PCREL);
9973 fixP->fx_signed = 1;
9974 break;
9975 }
9976
9977 /* This changes the byte-displacement jump 0x7N
9978 to the (d)word-displacement jump 0x0f,0x8N. */
9979 opcode[1] = opcode[0] + 0x10;
9980 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
9981 /* We've added an opcode byte. */
9982 fragP->fr_fix += 1 + size;
9983 fix_new (fragP, old_fr_fix + 1, size,
9984 fragP->fr_symbol,
9985 fragP->fr_offset, 1,
9986 reloc_type);
9987 break;
9988
9989 default:
9990 BAD_CASE (fragP->fr_subtype);
9991 break;
9992 }
9993 frag_wane (fragP);
9994 return fragP->fr_fix - old_fr_fix;
9995 }
9996
9997 /* Guess size depending on current relax state. Initially the relax
9998 state will correspond to a short jump and we return 1, because
9999 the variable part of the frag (the branch offset) is one byte
10000 long. However, we can relax a section more than once and in that
10001 case we must either set fr_subtype back to the unrelaxed state,
10002 or return the value for the appropriate branch. */
10003 return md_relax_table[fragP->fr_subtype].rlx_length;
10004 }
10005
10006 /* Called after relax() is finished.
10007
10008 In: Address of frag.
10009 fr_type == rs_machine_dependent.
10010 fr_subtype is what the address relaxed to.
10011
10012 Out: Any fixSs and constants are set up.
10013 Caller will turn frag into a ".space 0". */
10014
10015 void
10016 md_convert_frag (bfd *abfd ATTRIBUTE_UNUSED, segT sec ATTRIBUTE_UNUSED,
10017 fragS *fragP)
10018 {
10019 unsigned char *opcode;
10020 unsigned char *where_to_put_displacement = NULL;
10021 offsetT target_address;
10022 offsetT opcode_address;
10023 unsigned int extension = 0;
10024 offsetT displacement_from_opcode_start;
10025
10026 opcode = (unsigned char *) fragP->fr_opcode;
10027
10028 /* Address we want to reach in file space. */
10029 target_address = S_GET_VALUE (fragP->fr_symbol) + fragP->fr_offset;
10030
10031 /* Address opcode resides at in file space. */
10032 opcode_address = fragP->fr_address + fragP->fr_fix;
10033
10034 /* Displacement from opcode start to fill into instruction. */
10035 displacement_from_opcode_start = target_address - opcode_address;
10036
10037 if ((fragP->fr_subtype & BIG) == 0)
10038 {
10039 /* Don't have to change opcode. */
10040 extension = 1; /* 1 opcode + 1 displacement */
10041 where_to_put_displacement = &opcode[1];
10042 }
10043 else
10044 {
10045 if (no_cond_jump_promotion
10046 && TYPE_FROM_RELAX_STATE (fragP->fr_subtype) != UNCOND_JUMP)
10047 as_warn_where (fragP->fr_file, fragP->fr_line,
10048 _("long jump required"));
10049
10050 switch (fragP->fr_subtype)
10051 {
10052 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG):
10053 extension = 4; /* 1 opcode + 4 displacement */
10054 opcode[0] = 0xe9;
10055 where_to_put_displacement = &opcode[1];
10056 break;
10057
10058 case ENCODE_RELAX_STATE (UNCOND_JUMP, BIG16):
10059 extension = 2; /* 1 opcode + 2 displacement */
10060 opcode[0] = 0xe9;
10061 where_to_put_displacement = &opcode[1];
10062 break;
10063
10064 case ENCODE_RELAX_STATE (COND_JUMP, BIG):
10065 case ENCODE_RELAX_STATE (COND_JUMP86, BIG):
10066 extension = 5; /* 2 opcode + 4 displacement */
10067 opcode[1] = opcode[0] + 0x10;
10068 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10069 where_to_put_displacement = &opcode[2];
10070 break;
10071
10072 case ENCODE_RELAX_STATE (COND_JUMP, BIG16):
10073 extension = 3; /* 2 opcode + 2 displacement */
10074 opcode[1] = opcode[0] + 0x10;
10075 opcode[0] = TWO_BYTE_OPCODE_ESCAPE;
10076 where_to_put_displacement = &opcode[2];
10077 break;
10078
10079 case ENCODE_RELAX_STATE (COND_JUMP86, BIG16):
10080 extension = 4;
10081 opcode[0] ^= 1;
10082 opcode[1] = 3;
10083 opcode[2] = 0xe9;
10084 where_to_put_displacement = &opcode[3];
10085 break;
10086
10087 default:
10088 BAD_CASE (fragP->fr_subtype);
10089 break;
10090 }
10091 }
10092
10093 /* If size if less then four we are sure that the operand fits,
10094 but if it's 4, then it could be that the displacement is larger
10095 then -/+ 2GB. */
10096 if (DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype) == 4
10097 && object_64bit
10098 && ((addressT) (displacement_from_opcode_start - extension
10099 + ((addressT) 1 << 31))
10100 > (((addressT) 2 << 31) - 1)))
10101 {
10102 as_bad_where (fragP->fr_file, fragP->fr_line,
10103 _("jump target out of range"));
10104 /* Make us emit 0. */
10105 displacement_from_opcode_start = extension;
10106 }
10107 /* Now put displacement after opcode. */
10108 md_number_to_chars ((char *) where_to_put_displacement,
10109 (valueT) (displacement_from_opcode_start - extension),
10110 DISP_SIZE_FROM_RELAX_STATE (fragP->fr_subtype));
10111 fragP->fr_fix += extension;
10112 }
10113 \f
10114 /* Apply a fixup (fixP) to segment data, once it has been determined
10115 by our caller that we have all the info we need to fix it up.
10116
10117 Parameter valP is the pointer to the value of the bits.
10118
10119 On the 386, immediates, displacements, and data pointers are all in
10120 the same (little-endian) format, so we don't need to care about which
10121 we are handling. */
10122
10123 void
10124 md_apply_fix (fixS *fixP, valueT *valP, segT seg ATTRIBUTE_UNUSED)
10125 {
10126 char *p = fixP->fx_where + fixP->fx_frag->fr_literal;
10127 valueT value = *valP;
10128
10129 #if !defined (TE_Mach)
10130 if (fixP->fx_pcrel)
10131 {
10132 switch (fixP->fx_r_type)
10133 {
10134 default:
10135 break;
10136
10137 case BFD_RELOC_64:
10138 fixP->fx_r_type = BFD_RELOC_64_PCREL;
10139 break;
10140 case BFD_RELOC_32:
10141 case BFD_RELOC_X86_64_32S:
10142 fixP->fx_r_type = BFD_RELOC_32_PCREL;
10143 break;
10144 case BFD_RELOC_16:
10145 fixP->fx_r_type = BFD_RELOC_16_PCREL;
10146 break;
10147 case BFD_RELOC_8:
10148 fixP->fx_r_type = BFD_RELOC_8_PCREL;
10149 break;
10150 }
10151 }
10152
10153 if (fixP->fx_addsy != NULL
10154 && (fixP->fx_r_type == BFD_RELOC_32_PCREL
10155 || fixP->fx_r_type == BFD_RELOC_64_PCREL
10156 || fixP->fx_r_type == BFD_RELOC_16_PCREL
10157 || fixP->fx_r_type == BFD_RELOC_8_PCREL)
10158 && !use_rela_relocations)
10159 {
10160 /* This is a hack. There should be a better way to handle this.
10161 This covers for the fact that bfd_install_relocation will
10162 subtract the current location (for partial_inplace, PC relative
10163 relocations); see more below. */
10164 #ifndef OBJ_AOUT
10165 if (IS_ELF
10166 #ifdef TE_PE
10167 || OUTPUT_FLAVOR == bfd_target_coff_flavour
10168 #endif
10169 )
10170 value += fixP->fx_where + fixP->fx_frag->fr_address;
10171 #endif
10172 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10173 if (IS_ELF)
10174 {
10175 segT sym_seg = S_GET_SEGMENT (fixP->fx_addsy);
10176
10177 if ((sym_seg == seg
10178 || (symbol_section_p (fixP->fx_addsy)
10179 && sym_seg != absolute_section))
10180 && !generic_force_reloc (fixP))
10181 {
10182 /* Yes, we add the values in twice. This is because
10183 bfd_install_relocation subtracts them out again. I think
10184 bfd_install_relocation is broken, but I don't dare change
10185 it. FIXME. */
10186 value += fixP->fx_where + fixP->fx_frag->fr_address;
10187 }
10188 }
10189 #endif
10190 #if defined (OBJ_COFF) && defined (TE_PE)
10191 /* For some reason, the PE format does not store a
10192 section address offset for a PC relative symbol. */
10193 if (S_GET_SEGMENT (fixP->fx_addsy) != seg
10194 || S_IS_WEAK (fixP->fx_addsy))
10195 value += md_pcrel_from (fixP);
10196 #endif
10197 }
10198 #if defined (OBJ_COFF) && defined (TE_PE)
10199 if (fixP->fx_addsy != NULL
10200 && S_IS_WEAK (fixP->fx_addsy)
10201 /* PR 16858: Do not modify weak function references. */
10202 && ! fixP->fx_pcrel)
10203 {
10204 #if !defined (TE_PEP)
10205 /* For x86 PE weak function symbols are neither PC-relative
10206 nor do they set S_IS_FUNCTION. So the only reliable way
10207 to detect them is to check the flags of their containing
10208 section. */
10209 if (S_GET_SEGMENT (fixP->fx_addsy) != NULL
10210 && S_GET_SEGMENT (fixP->fx_addsy)->flags & SEC_CODE)
10211 ;
10212 else
10213 #endif
10214 value -= S_GET_VALUE (fixP->fx_addsy);
10215 }
10216 #endif
10217
10218 /* Fix a few things - the dynamic linker expects certain values here,
10219 and we must not disappoint it. */
10220 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10221 if (IS_ELF && fixP->fx_addsy)
10222 switch (fixP->fx_r_type)
10223 {
10224 case BFD_RELOC_386_PLT32:
10225 case BFD_RELOC_X86_64_PLT32:
10226 /* Make the jump instruction point to the address of the operand. At
10227 runtime we merely add the offset to the actual PLT entry. */
10228 value = -4;
10229 break;
10230
10231 case BFD_RELOC_386_TLS_GD:
10232 case BFD_RELOC_386_TLS_LDM:
10233 case BFD_RELOC_386_TLS_IE_32:
10234 case BFD_RELOC_386_TLS_IE:
10235 case BFD_RELOC_386_TLS_GOTIE:
10236 case BFD_RELOC_386_TLS_GOTDESC:
10237 case BFD_RELOC_X86_64_TLSGD:
10238 case BFD_RELOC_X86_64_TLSLD:
10239 case BFD_RELOC_X86_64_GOTTPOFF:
10240 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
10241 value = 0; /* Fully resolved at runtime. No addend. */
10242 /* Fallthrough */
10243 case BFD_RELOC_386_TLS_LE:
10244 case BFD_RELOC_386_TLS_LDO_32:
10245 case BFD_RELOC_386_TLS_LE_32:
10246 case BFD_RELOC_X86_64_DTPOFF32:
10247 case BFD_RELOC_X86_64_DTPOFF64:
10248 case BFD_RELOC_X86_64_TPOFF32:
10249 case BFD_RELOC_X86_64_TPOFF64:
10250 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10251 break;
10252
10253 case BFD_RELOC_386_TLS_DESC_CALL:
10254 case BFD_RELOC_X86_64_TLSDESC_CALL:
10255 value = 0; /* Fully resolved at runtime. No addend. */
10256 S_SET_THREAD_LOCAL (fixP->fx_addsy);
10257 fixP->fx_done = 0;
10258 return;
10259
10260 case BFD_RELOC_VTABLE_INHERIT:
10261 case BFD_RELOC_VTABLE_ENTRY:
10262 fixP->fx_done = 0;
10263 return;
10264
10265 default:
10266 break;
10267 }
10268 #endif /* defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) */
10269 *valP = value;
10270 #endif /* !defined (TE_Mach) */
10271
10272 /* Are we finished with this relocation now? */
10273 if (fixP->fx_addsy == NULL)
10274 fixP->fx_done = 1;
10275 #if defined (OBJ_COFF) && defined (TE_PE)
10276 else if (fixP->fx_addsy != NULL && S_IS_WEAK (fixP->fx_addsy))
10277 {
10278 fixP->fx_done = 0;
10279 /* Remember value for tc_gen_reloc. */
10280 fixP->fx_addnumber = value;
10281 /* Clear out the frag for now. */
10282 value = 0;
10283 }
10284 #endif
10285 else if (use_rela_relocations)
10286 {
10287 fixP->fx_no_overflow = 1;
10288 /* Remember value for tc_gen_reloc. */
10289 fixP->fx_addnumber = value;
10290 value = 0;
10291 }
10292
10293 md_number_to_chars (p, value, fixP->fx_size);
10294 }
10295 \f
10296 const char *
10297 md_atof (int type, char *litP, int *sizeP)
10298 {
10299 /* This outputs the LITTLENUMs in REVERSE order;
10300 in accord with the bigendian 386. */
10301 return ieee_md_atof (type, litP, sizeP, FALSE);
10302 }
10303 \f
10304 static char output_invalid_buf[sizeof (unsigned char) * 2 + 6];
10305
10306 static char *
10307 output_invalid (int c)
10308 {
10309 if (ISPRINT (c))
10310 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10311 "'%c'", c);
10312 else
10313 snprintf (output_invalid_buf, sizeof (output_invalid_buf),
10314 "(0x%x)", (unsigned char) c);
10315 return output_invalid_buf;
10316 }
10317
10318 /* REG_STRING starts *before* REGISTER_PREFIX. */
10319
10320 static const reg_entry *
10321 parse_real_register (char *reg_string, char **end_op)
10322 {
10323 char *s = reg_string;
10324 char *p;
10325 char reg_name_given[MAX_REG_NAME_SIZE + 1];
10326 const reg_entry *r;
10327
10328 /* Skip possible REGISTER_PREFIX and possible whitespace. */
10329 if (*s == REGISTER_PREFIX)
10330 ++s;
10331
10332 if (is_space_char (*s))
10333 ++s;
10334
10335 p = reg_name_given;
10336 while ((*p++ = register_chars[(unsigned char) *s]) != '\0')
10337 {
10338 if (p >= reg_name_given + MAX_REG_NAME_SIZE)
10339 return (const reg_entry *) NULL;
10340 s++;
10341 }
10342
10343 /* For naked regs, make sure that we are not dealing with an identifier.
10344 This prevents confusing an identifier like `eax_var' with register
10345 `eax'. */
10346 if (allow_naked_reg && identifier_chars[(unsigned char) *s])
10347 return (const reg_entry *) NULL;
10348
10349 *end_op = s;
10350
10351 r = (const reg_entry *) hash_find (reg_hash, reg_name_given);
10352
10353 /* Handle floating point regs, allowing spaces in the (i) part. */
10354 if (r == i386_regtab /* %st is first entry of table */)
10355 {
10356 if (!cpu_arch_flags.bitfield.cpu8087
10357 && !cpu_arch_flags.bitfield.cpu287
10358 && !cpu_arch_flags.bitfield.cpu387)
10359 return (const reg_entry *) NULL;
10360
10361 if (is_space_char (*s))
10362 ++s;
10363 if (*s == '(')
10364 {
10365 ++s;
10366 if (is_space_char (*s))
10367 ++s;
10368 if (*s >= '0' && *s <= '7')
10369 {
10370 int fpr = *s - '0';
10371 ++s;
10372 if (is_space_char (*s))
10373 ++s;
10374 if (*s == ')')
10375 {
10376 *end_op = s + 1;
10377 r = (const reg_entry *) hash_find (reg_hash, "st(0)");
10378 know (r);
10379 return r + fpr;
10380 }
10381 }
10382 /* We have "%st(" then garbage. */
10383 return (const reg_entry *) NULL;
10384 }
10385 }
10386
10387 if (r == NULL || allow_pseudo_reg)
10388 return r;
10389
10390 if (operand_type_all_zero (&r->reg_type))
10391 return (const reg_entry *) NULL;
10392
10393 if ((r->reg_type.bitfield.dword
10394 || r->reg_type.bitfield.sreg3
10395 || r->reg_type.bitfield.control
10396 || r->reg_type.bitfield.debug
10397 || r->reg_type.bitfield.test)
10398 && !cpu_arch_flags.bitfield.cpui386)
10399 return (const reg_entry *) NULL;
10400
10401 if (r->reg_type.bitfield.regmmx && !cpu_arch_flags.bitfield.cpummx)
10402 return (const reg_entry *) NULL;
10403
10404 if (!cpu_arch_flags.bitfield.cpuavx512f)
10405 {
10406 if (r->reg_type.bitfield.zmmword || r->reg_type.bitfield.regmask)
10407 return (const reg_entry *) NULL;
10408
10409 if (!cpu_arch_flags.bitfield.cpuavx)
10410 {
10411 if (r->reg_type.bitfield.ymmword)
10412 return (const reg_entry *) NULL;
10413
10414 if (!cpu_arch_flags.bitfield.cpusse && r->reg_type.bitfield.xmmword)
10415 return (const reg_entry *) NULL;
10416 }
10417 }
10418
10419 if (r->reg_type.bitfield.regbnd && !cpu_arch_flags.bitfield.cpumpx)
10420 return (const reg_entry *) NULL;
10421
10422 /* Don't allow fake index register unless allow_index_reg isn't 0. */
10423 if (!allow_index_reg && r->reg_num == RegIZ)
10424 return (const reg_entry *) NULL;
10425
10426 /* Upper 16 vector registers are only available with VREX in 64bit
10427 mode, and require EVEX encoding. */
10428 if (r->reg_flags & RegVRex)
10429 {
10430 if (!cpu_arch_flags.bitfield.cpuavx512f
10431 || flag_code != CODE_64BIT)
10432 return (const reg_entry *) NULL;
10433
10434 i.vec_encoding = vex_encoding_evex;
10435 }
10436
10437 if (((r->reg_flags & (RegRex64 | RegRex)) || r->reg_type.bitfield.qword)
10438 && (!cpu_arch_flags.bitfield.cpulm || !r->reg_type.bitfield.control)
10439 && flag_code != CODE_64BIT)
10440 return (const reg_entry *) NULL;
10441
10442 if (r->reg_type.bitfield.sreg3 && r->reg_num == RegFlat && !intel_syntax)
10443 return (const reg_entry *) NULL;
10444
10445 return r;
10446 }
10447
10448 /* REG_STRING starts *before* REGISTER_PREFIX. */
10449
10450 static const reg_entry *
10451 parse_register (char *reg_string, char **end_op)
10452 {
10453 const reg_entry *r;
10454
10455 if (*reg_string == REGISTER_PREFIX || allow_naked_reg)
10456 r = parse_real_register (reg_string, end_op);
10457 else
10458 r = NULL;
10459 if (!r)
10460 {
10461 char *save = input_line_pointer;
10462 char c;
10463 symbolS *symbolP;
10464
10465 input_line_pointer = reg_string;
10466 c = get_symbol_name (&reg_string);
10467 symbolP = symbol_find (reg_string);
10468 if (symbolP && S_GET_SEGMENT (symbolP) == reg_section)
10469 {
10470 const expressionS *e = symbol_get_value_expression (symbolP);
10471
10472 know (e->X_op == O_register);
10473 know (e->X_add_number >= 0
10474 && (valueT) e->X_add_number < i386_regtab_size);
10475 r = i386_regtab + e->X_add_number;
10476 if ((r->reg_flags & RegVRex))
10477 i.vec_encoding = vex_encoding_evex;
10478 *end_op = input_line_pointer;
10479 }
10480 *input_line_pointer = c;
10481 input_line_pointer = save;
10482 }
10483 return r;
10484 }
10485
10486 int
10487 i386_parse_name (char *name, expressionS *e, char *nextcharP)
10488 {
10489 const reg_entry *r;
10490 char *end = input_line_pointer;
10491
10492 *end = *nextcharP;
10493 r = parse_register (name, &input_line_pointer);
10494 if (r && end <= input_line_pointer)
10495 {
10496 *nextcharP = *input_line_pointer;
10497 *input_line_pointer = 0;
10498 e->X_op = O_register;
10499 e->X_add_number = r - i386_regtab;
10500 return 1;
10501 }
10502 input_line_pointer = end;
10503 *end = 0;
10504 return intel_syntax ? i386_intel_parse_name (name, e) : 0;
10505 }
10506
10507 void
10508 md_operand (expressionS *e)
10509 {
10510 char *end;
10511 const reg_entry *r;
10512
10513 switch (*input_line_pointer)
10514 {
10515 case REGISTER_PREFIX:
10516 r = parse_real_register (input_line_pointer, &end);
10517 if (r)
10518 {
10519 e->X_op = O_register;
10520 e->X_add_number = r - i386_regtab;
10521 input_line_pointer = end;
10522 }
10523 break;
10524
10525 case '[':
10526 gas_assert (intel_syntax);
10527 end = input_line_pointer++;
10528 expression (e);
10529 if (*input_line_pointer == ']')
10530 {
10531 ++input_line_pointer;
10532 e->X_op_symbol = make_expr_symbol (e);
10533 e->X_add_symbol = NULL;
10534 e->X_add_number = 0;
10535 e->X_op = O_index;
10536 }
10537 else
10538 {
10539 e->X_op = O_absent;
10540 input_line_pointer = end;
10541 }
10542 break;
10543 }
10544 }
10545
10546 \f
10547 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10548 const char *md_shortopts = "kVQ:sqnO::";
10549 #else
10550 const char *md_shortopts = "qnO::";
10551 #endif
10552
10553 #define OPTION_32 (OPTION_MD_BASE + 0)
10554 #define OPTION_64 (OPTION_MD_BASE + 1)
10555 #define OPTION_DIVIDE (OPTION_MD_BASE + 2)
10556 #define OPTION_MARCH (OPTION_MD_BASE + 3)
10557 #define OPTION_MTUNE (OPTION_MD_BASE + 4)
10558 #define OPTION_MMNEMONIC (OPTION_MD_BASE + 5)
10559 #define OPTION_MSYNTAX (OPTION_MD_BASE + 6)
10560 #define OPTION_MINDEX_REG (OPTION_MD_BASE + 7)
10561 #define OPTION_MNAKED_REG (OPTION_MD_BASE + 8)
10562 #define OPTION_MRELAX_RELOCATIONS (OPTION_MD_BASE + 9)
10563 #define OPTION_MSSE2AVX (OPTION_MD_BASE + 10)
10564 #define OPTION_MSSE_CHECK (OPTION_MD_BASE + 11)
10565 #define OPTION_MOPERAND_CHECK (OPTION_MD_BASE + 12)
10566 #define OPTION_MAVXSCALAR (OPTION_MD_BASE + 13)
10567 #define OPTION_X32 (OPTION_MD_BASE + 14)
10568 #define OPTION_MADD_BND_PREFIX (OPTION_MD_BASE + 15)
10569 #define OPTION_MEVEXLIG (OPTION_MD_BASE + 16)
10570 #define OPTION_MEVEXWIG (OPTION_MD_BASE + 17)
10571 #define OPTION_MBIG_OBJ (OPTION_MD_BASE + 18)
10572 #define OPTION_MOMIT_LOCK_PREFIX (OPTION_MD_BASE + 19)
10573 #define OPTION_MEVEXRCIG (OPTION_MD_BASE + 20)
10574 #define OPTION_MSHARED (OPTION_MD_BASE + 21)
10575 #define OPTION_MAMD64 (OPTION_MD_BASE + 22)
10576 #define OPTION_MINTEL64 (OPTION_MD_BASE + 23)
10577 #define OPTION_MFENCE_AS_LOCK_ADD (OPTION_MD_BASE + 24)
10578
10579 struct option md_longopts[] =
10580 {
10581 {"32", no_argument, NULL, OPTION_32},
10582 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10583 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10584 {"64", no_argument, NULL, OPTION_64},
10585 #endif
10586 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10587 {"x32", no_argument, NULL, OPTION_X32},
10588 {"mshared", no_argument, NULL, OPTION_MSHARED},
10589 #endif
10590 {"divide", no_argument, NULL, OPTION_DIVIDE},
10591 {"march", required_argument, NULL, OPTION_MARCH},
10592 {"mtune", required_argument, NULL, OPTION_MTUNE},
10593 {"mmnemonic", required_argument, NULL, OPTION_MMNEMONIC},
10594 {"msyntax", required_argument, NULL, OPTION_MSYNTAX},
10595 {"mindex-reg", no_argument, NULL, OPTION_MINDEX_REG},
10596 {"mnaked-reg", no_argument, NULL, OPTION_MNAKED_REG},
10597 {"msse2avx", no_argument, NULL, OPTION_MSSE2AVX},
10598 {"msse-check", required_argument, NULL, OPTION_MSSE_CHECK},
10599 {"moperand-check", required_argument, NULL, OPTION_MOPERAND_CHECK},
10600 {"mavxscalar", required_argument, NULL, OPTION_MAVXSCALAR},
10601 {"madd-bnd-prefix", no_argument, NULL, OPTION_MADD_BND_PREFIX},
10602 {"mevexlig", required_argument, NULL, OPTION_MEVEXLIG},
10603 {"mevexwig", required_argument, NULL, OPTION_MEVEXWIG},
10604 # if defined (TE_PE) || defined (TE_PEP)
10605 {"mbig-obj", no_argument, NULL, OPTION_MBIG_OBJ},
10606 #endif
10607 {"momit-lock-prefix", required_argument, NULL, OPTION_MOMIT_LOCK_PREFIX},
10608 {"mfence-as-lock-add", required_argument, NULL, OPTION_MFENCE_AS_LOCK_ADD},
10609 {"mrelax-relocations", required_argument, NULL, OPTION_MRELAX_RELOCATIONS},
10610 {"mevexrcig", required_argument, NULL, OPTION_MEVEXRCIG},
10611 {"mamd64", no_argument, NULL, OPTION_MAMD64},
10612 {"mintel64", no_argument, NULL, OPTION_MINTEL64},
10613 {NULL, no_argument, NULL, 0}
10614 };
10615 size_t md_longopts_size = sizeof (md_longopts);
10616
10617 int
10618 md_parse_option (int c, const char *arg)
10619 {
10620 unsigned int j;
10621 char *arch, *next, *saved;
10622
10623 switch (c)
10624 {
10625 case 'n':
10626 optimize_align_code = 0;
10627 break;
10628
10629 case 'q':
10630 quiet_warnings = 1;
10631 break;
10632
10633 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10634 /* -Qy, -Qn: SVR4 arguments controlling whether a .comment section
10635 should be emitted or not. FIXME: Not implemented. */
10636 case 'Q':
10637 break;
10638
10639 /* -V: SVR4 argument to print version ID. */
10640 case 'V':
10641 print_version_id ();
10642 break;
10643
10644 /* -k: Ignore for FreeBSD compatibility. */
10645 case 'k':
10646 break;
10647
10648 case 's':
10649 /* -s: On i386 Solaris, this tells the native assembler to use
10650 .stab instead of .stab.excl. We always use .stab anyhow. */
10651 break;
10652
10653 case OPTION_MSHARED:
10654 shared = 1;
10655 break;
10656 #endif
10657 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
10658 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
10659 case OPTION_64:
10660 {
10661 const char **list, **l;
10662
10663 list = bfd_target_list ();
10664 for (l = list; *l != NULL; l++)
10665 if (CONST_STRNEQ (*l, "elf64-x86-64")
10666 || strcmp (*l, "coff-x86-64") == 0
10667 || strcmp (*l, "pe-x86-64") == 0
10668 || strcmp (*l, "pei-x86-64") == 0
10669 || strcmp (*l, "mach-o-x86-64") == 0)
10670 {
10671 default_arch = "x86_64";
10672 break;
10673 }
10674 if (*l == NULL)
10675 as_fatal (_("no compiled in support for x86_64"));
10676 free (list);
10677 }
10678 break;
10679 #endif
10680
10681 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
10682 case OPTION_X32:
10683 if (IS_ELF)
10684 {
10685 const char **list, **l;
10686
10687 list = bfd_target_list ();
10688 for (l = list; *l != NULL; l++)
10689 if (CONST_STRNEQ (*l, "elf32-x86-64"))
10690 {
10691 default_arch = "x86_64:32";
10692 break;
10693 }
10694 if (*l == NULL)
10695 as_fatal (_("no compiled in support for 32bit x86_64"));
10696 free (list);
10697 }
10698 else
10699 as_fatal (_("32bit x86_64 is only supported for ELF"));
10700 break;
10701 #endif
10702
10703 case OPTION_32:
10704 default_arch = "i386";
10705 break;
10706
10707 case OPTION_DIVIDE:
10708 #ifdef SVR4_COMMENT_CHARS
10709 {
10710 char *n, *t;
10711 const char *s;
10712
10713 n = XNEWVEC (char, strlen (i386_comment_chars) + 1);
10714 t = n;
10715 for (s = i386_comment_chars; *s != '\0'; s++)
10716 if (*s != '/')
10717 *t++ = *s;
10718 *t = '\0';
10719 i386_comment_chars = n;
10720 }
10721 #endif
10722 break;
10723
10724 case OPTION_MARCH:
10725 saved = xstrdup (arg);
10726 arch = saved;
10727 /* Allow -march=+nosse. */
10728 if (*arch == '+')
10729 arch++;
10730 do
10731 {
10732 if (*arch == '.')
10733 as_fatal (_("invalid -march= option: `%s'"), arg);
10734 next = strchr (arch, '+');
10735 if (next)
10736 *next++ = '\0';
10737 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10738 {
10739 if (strcmp (arch, cpu_arch [j].name) == 0)
10740 {
10741 /* Processor. */
10742 if (! cpu_arch[j].flags.bitfield.cpui386)
10743 continue;
10744
10745 cpu_arch_name = cpu_arch[j].name;
10746 cpu_sub_arch_name = NULL;
10747 cpu_arch_flags = cpu_arch[j].flags;
10748 cpu_arch_isa = cpu_arch[j].type;
10749 cpu_arch_isa_flags = cpu_arch[j].flags;
10750 if (!cpu_arch_tune_set)
10751 {
10752 cpu_arch_tune = cpu_arch_isa;
10753 cpu_arch_tune_flags = cpu_arch_isa_flags;
10754 }
10755 break;
10756 }
10757 else if (*cpu_arch [j].name == '.'
10758 && strcmp (arch, cpu_arch [j].name + 1) == 0)
10759 {
10760 /* ISA extension. */
10761 i386_cpu_flags flags;
10762
10763 flags = cpu_flags_or (cpu_arch_flags,
10764 cpu_arch[j].flags);
10765
10766 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10767 {
10768 if (cpu_sub_arch_name)
10769 {
10770 char *name = cpu_sub_arch_name;
10771 cpu_sub_arch_name = concat (name,
10772 cpu_arch[j].name,
10773 (const char *) NULL);
10774 free (name);
10775 }
10776 else
10777 cpu_sub_arch_name = xstrdup (cpu_arch[j].name);
10778 cpu_arch_flags = flags;
10779 cpu_arch_isa_flags = flags;
10780 }
10781 else
10782 cpu_arch_isa_flags
10783 = cpu_flags_or (cpu_arch_isa_flags,
10784 cpu_arch[j].flags);
10785 break;
10786 }
10787 }
10788
10789 if (j >= ARRAY_SIZE (cpu_arch))
10790 {
10791 /* Disable an ISA extension. */
10792 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
10793 if (strcmp (arch, cpu_noarch [j].name) == 0)
10794 {
10795 i386_cpu_flags flags;
10796
10797 flags = cpu_flags_and_not (cpu_arch_flags,
10798 cpu_noarch[j].flags);
10799 if (!cpu_flags_equal (&flags, &cpu_arch_flags))
10800 {
10801 if (cpu_sub_arch_name)
10802 {
10803 char *name = cpu_sub_arch_name;
10804 cpu_sub_arch_name = concat (arch,
10805 (const char *) NULL);
10806 free (name);
10807 }
10808 else
10809 cpu_sub_arch_name = xstrdup (arch);
10810 cpu_arch_flags = flags;
10811 cpu_arch_isa_flags = flags;
10812 }
10813 break;
10814 }
10815
10816 if (j >= ARRAY_SIZE (cpu_noarch))
10817 j = ARRAY_SIZE (cpu_arch);
10818 }
10819
10820 if (j >= ARRAY_SIZE (cpu_arch))
10821 as_fatal (_("invalid -march= option: `%s'"), arg);
10822
10823 arch = next;
10824 }
10825 while (next != NULL);
10826 free (saved);
10827 break;
10828
10829 case OPTION_MTUNE:
10830 if (*arg == '.')
10831 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10832 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
10833 {
10834 if (strcmp (arg, cpu_arch [j].name) == 0)
10835 {
10836 cpu_arch_tune_set = 1;
10837 cpu_arch_tune = cpu_arch [j].type;
10838 cpu_arch_tune_flags = cpu_arch[j].flags;
10839 break;
10840 }
10841 }
10842 if (j >= ARRAY_SIZE (cpu_arch))
10843 as_fatal (_("invalid -mtune= option: `%s'"), arg);
10844 break;
10845
10846 case OPTION_MMNEMONIC:
10847 if (strcasecmp (arg, "att") == 0)
10848 intel_mnemonic = 0;
10849 else if (strcasecmp (arg, "intel") == 0)
10850 intel_mnemonic = 1;
10851 else
10852 as_fatal (_("invalid -mmnemonic= option: `%s'"), arg);
10853 break;
10854
10855 case OPTION_MSYNTAX:
10856 if (strcasecmp (arg, "att") == 0)
10857 intel_syntax = 0;
10858 else if (strcasecmp (arg, "intel") == 0)
10859 intel_syntax = 1;
10860 else
10861 as_fatal (_("invalid -msyntax= option: `%s'"), arg);
10862 break;
10863
10864 case OPTION_MINDEX_REG:
10865 allow_index_reg = 1;
10866 break;
10867
10868 case OPTION_MNAKED_REG:
10869 allow_naked_reg = 1;
10870 break;
10871
10872 case OPTION_MSSE2AVX:
10873 sse2avx = 1;
10874 break;
10875
10876 case OPTION_MSSE_CHECK:
10877 if (strcasecmp (arg, "error") == 0)
10878 sse_check = check_error;
10879 else if (strcasecmp (arg, "warning") == 0)
10880 sse_check = check_warning;
10881 else if (strcasecmp (arg, "none") == 0)
10882 sse_check = check_none;
10883 else
10884 as_fatal (_("invalid -msse-check= option: `%s'"), arg);
10885 break;
10886
10887 case OPTION_MOPERAND_CHECK:
10888 if (strcasecmp (arg, "error") == 0)
10889 operand_check = check_error;
10890 else if (strcasecmp (arg, "warning") == 0)
10891 operand_check = check_warning;
10892 else if (strcasecmp (arg, "none") == 0)
10893 operand_check = check_none;
10894 else
10895 as_fatal (_("invalid -moperand-check= option: `%s'"), arg);
10896 break;
10897
10898 case OPTION_MAVXSCALAR:
10899 if (strcasecmp (arg, "128") == 0)
10900 avxscalar = vex128;
10901 else if (strcasecmp (arg, "256") == 0)
10902 avxscalar = vex256;
10903 else
10904 as_fatal (_("invalid -mavxscalar= option: `%s'"), arg);
10905 break;
10906
10907 case OPTION_MADD_BND_PREFIX:
10908 add_bnd_prefix = 1;
10909 break;
10910
10911 case OPTION_MEVEXLIG:
10912 if (strcmp (arg, "128") == 0)
10913 evexlig = evexl128;
10914 else if (strcmp (arg, "256") == 0)
10915 evexlig = evexl256;
10916 else if (strcmp (arg, "512") == 0)
10917 evexlig = evexl512;
10918 else
10919 as_fatal (_("invalid -mevexlig= option: `%s'"), arg);
10920 break;
10921
10922 case OPTION_MEVEXRCIG:
10923 if (strcmp (arg, "rne") == 0)
10924 evexrcig = rne;
10925 else if (strcmp (arg, "rd") == 0)
10926 evexrcig = rd;
10927 else if (strcmp (arg, "ru") == 0)
10928 evexrcig = ru;
10929 else if (strcmp (arg, "rz") == 0)
10930 evexrcig = rz;
10931 else
10932 as_fatal (_("invalid -mevexrcig= option: `%s'"), arg);
10933 break;
10934
10935 case OPTION_MEVEXWIG:
10936 if (strcmp (arg, "0") == 0)
10937 evexwig = evexw0;
10938 else if (strcmp (arg, "1") == 0)
10939 evexwig = evexw1;
10940 else
10941 as_fatal (_("invalid -mevexwig= option: `%s'"), arg);
10942 break;
10943
10944 # if defined (TE_PE) || defined (TE_PEP)
10945 case OPTION_MBIG_OBJ:
10946 use_big_obj = 1;
10947 break;
10948 #endif
10949
10950 case OPTION_MOMIT_LOCK_PREFIX:
10951 if (strcasecmp (arg, "yes") == 0)
10952 omit_lock_prefix = 1;
10953 else if (strcasecmp (arg, "no") == 0)
10954 omit_lock_prefix = 0;
10955 else
10956 as_fatal (_("invalid -momit-lock-prefix= option: `%s'"), arg);
10957 break;
10958
10959 case OPTION_MFENCE_AS_LOCK_ADD:
10960 if (strcasecmp (arg, "yes") == 0)
10961 avoid_fence = 1;
10962 else if (strcasecmp (arg, "no") == 0)
10963 avoid_fence = 0;
10964 else
10965 as_fatal (_("invalid -mfence-as-lock-add= option: `%s'"), arg);
10966 break;
10967
10968 case OPTION_MRELAX_RELOCATIONS:
10969 if (strcasecmp (arg, "yes") == 0)
10970 generate_relax_relocations = 1;
10971 else if (strcasecmp (arg, "no") == 0)
10972 generate_relax_relocations = 0;
10973 else
10974 as_fatal (_("invalid -mrelax-relocations= option: `%s'"), arg);
10975 break;
10976
10977 case OPTION_MAMD64:
10978 intel64 = 0;
10979 break;
10980
10981 case OPTION_MINTEL64:
10982 intel64 = 1;
10983 break;
10984
10985 case 'O':
10986 if (arg == NULL)
10987 {
10988 optimize = 1;
10989 /* Turn off -Os. */
10990 optimize_for_space = 0;
10991 }
10992 else if (*arg == 's')
10993 {
10994 optimize_for_space = 1;
10995 /* Turn on all encoding optimizations. */
10996 optimize = -1;
10997 }
10998 else
10999 {
11000 optimize = atoi (arg);
11001 /* Turn off -Os. */
11002 optimize_for_space = 0;
11003 }
11004 break;
11005
11006 default:
11007 return 0;
11008 }
11009 return 1;
11010 }
11011
11012 #define MESSAGE_TEMPLATE \
11013 " "
11014
11015 static char *
11016 output_message (FILE *stream, char *p, char *message, char *start,
11017 int *left_p, const char *name, int len)
11018 {
11019 int size = sizeof (MESSAGE_TEMPLATE);
11020 int left = *left_p;
11021
11022 /* Reserve 2 spaces for ", " or ",\0" */
11023 left -= len + 2;
11024
11025 /* Check if there is any room. */
11026 if (left >= 0)
11027 {
11028 if (p != start)
11029 {
11030 *p++ = ',';
11031 *p++ = ' ';
11032 }
11033 p = mempcpy (p, name, len);
11034 }
11035 else
11036 {
11037 /* Output the current message now and start a new one. */
11038 *p++ = ',';
11039 *p = '\0';
11040 fprintf (stream, "%s\n", message);
11041 p = start;
11042 left = size - (start - message) - len - 2;
11043
11044 gas_assert (left >= 0);
11045
11046 p = mempcpy (p, name, len);
11047 }
11048
11049 *left_p = left;
11050 return p;
11051 }
11052
11053 static void
11054 show_arch (FILE *stream, int ext, int check)
11055 {
11056 static char message[] = MESSAGE_TEMPLATE;
11057 char *start = message + 27;
11058 char *p;
11059 int size = sizeof (MESSAGE_TEMPLATE);
11060 int left;
11061 const char *name;
11062 int len;
11063 unsigned int j;
11064
11065 p = start;
11066 left = size - (start - message);
11067 for (j = 0; j < ARRAY_SIZE (cpu_arch); j++)
11068 {
11069 /* Should it be skipped? */
11070 if (cpu_arch [j].skip)
11071 continue;
11072
11073 name = cpu_arch [j].name;
11074 len = cpu_arch [j].len;
11075 if (*name == '.')
11076 {
11077 /* It is an extension. Skip if we aren't asked to show it. */
11078 if (ext)
11079 {
11080 name++;
11081 len--;
11082 }
11083 else
11084 continue;
11085 }
11086 else if (ext)
11087 {
11088 /* It is an processor. Skip if we show only extension. */
11089 continue;
11090 }
11091 else if (check && ! cpu_arch[j].flags.bitfield.cpui386)
11092 {
11093 /* It is an impossible processor - skip. */
11094 continue;
11095 }
11096
11097 p = output_message (stream, p, message, start, &left, name, len);
11098 }
11099
11100 /* Display disabled extensions. */
11101 if (ext)
11102 for (j = 0; j < ARRAY_SIZE (cpu_noarch); j++)
11103 {
11104 name = cpu_noarch [j].name;
11105 len = cpu_noarch [j].len;
11106 p = output_message (stream, p, message, start, &left, name,
11107 len);
11108 }
11109
11110 *p = '\0';
11111 fprintf (stream, "%s\n", message);
11112 }
11113
11114 void
11115 md_show_usage (FILE *stream)
11116 {
11117 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11118 fprintf (stream, _("\
11119 -Q ignored\n\
11120 -V print assembler version number\n\
11121 -k ignored\n"));
11122 #endif
11123 fprintf (stream, _("\
11124 -n Do not optimize code alignment\n\
11125 -q quieten some warnings\n"));
11126 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11127 fprintf (stream, _("\
11128 -s ignored\n"));
11129 #endif
11130 #if (defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11131 || defined (TE_PE) || defined (TE_PEP))
11132 fprintf (stream, _("\
11133 --32/--64/--x32 generate 32bit/64bit/x32 code\n"));
11134 #endif
11135 #ifdef SVR4_COMMENT_CHARS
11136 fprintf (stream, _("\
11137 --divide do not treat `/' as a comment character\n"));
11138 #else
11139 fprintf (stream, _("\
11140 --divide ignored\n"));
11141 #endif
11142 fprintf (stream, _("\
11143 -march=CPU[,+EXTENSION...]\n\
11144 generate code for CPU and EXTENSION, CPU is one of:\n"));
11145 show_arch (stream, 0, 1);
11146 fprintf (stream, _("\
11147 EXTENSION is combination of:\n"));
11148 show_arch (stream, 1, 0);
11149 fprintf (stream, _("\
11150 -mtune=CPU optimize for CPU, CPU is one of:\n"));
11151 show_arch (stream, 0, 0);
11152 fprintf (stream, _("\
11153 -msse2avx encode SSE instructions with VEX prefix\n"));
11154 fprintf (stream, _("\
11155 -msse-check=[none|error|warning]\n\
11156 check SSE instructions\n"));
11157 fprintf (stream, _("\
11158 -moperand-check=[none|error|warning]\n\
11159 check operand combinations for validity\n"));
11160 fprintf (stream, _("\
11161 -mavxscalar=[128|256] encode scalar AVX instructions with specific vector\n\
11162 length\n"));
11163 fprintf (stream, _("\
11164 -mevexlig=[128|256|512] encode scalar EVEX instructions with specific vector\n\
11165 length\n"));
11166 fprintf (stream, _("\
11167 -mevexwig=[0|1] encode EVEX instructions with specific EVEX.W value\n\
11168 for EVEX.W bit ignored instructions\n"));
11169 fprintf (stream, _("\
11170 -mevexrcig=[rne|rd|ru|rz]\n\
11171 encode EVEX instructions with specific EVEX.RC value\n\
11172 for SAE-only ignored instructions\n"));
11173 fprintf (stream, _("\
11174 -mmnemonic=[att|intel] use AT&T/Intel mnemonic\n"));
11175 fprintf (stream, _("\
11176 -msyntax=[att|intel] use AT&T/Intel syntax\n"));
11177 fprintf (stream, _("\
11178 -mindex-reg support pseudo index registers\n"));
11179 fprintf (stream, _("\
11180 -mnaked-reg don't require `%%' prefix for registers\n"));
11181 fprintf (stream, _("\
11182 -madd-bnd-prefix add BND prefix for all valid branches\n"));
11183 fprintf (stream, _("\
11184 -mshared disable branch optimization for shared code\n"));
11185 # if defined (TE_PE) || defined (TE_PEP)
11186 fprintf (stream, _("\
11187 -mbig-obj generate big object files\n"));
11188 #endif
11189 fprintf (stream, _("\
11190 -momit-lock-prefix=[no|yes]\n\
11191 strip all lock prefixes\n"));
11192 fprintf (stream, _("\
11193 -mfence-as-lock-add=[no|yes]\n\
11194 encode lfence, mfence and sfence as\n\
11195 lock addl $0x0, (%%{re}sp)\n"));
11196 fprintf (stream, _("\
11197 -mrelax-relocations=[no|yes]\n\
11198 generate relax relocations\n"));
11199 fprintf (stream, _("\
11200 -mamd64 accept only AMD64 ISA\n"));
11201 fprintf (stream, _("\
11202 -mintel64 accept only Intel64 ISA\n"));
11203 }
11204
11205 #if ((defined (OBJ_MAYBE_COFF) && defined (OBJ_MAYBE_AOUT)) \
11206 || defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF) \
11207 || defined (TE_PE) || defined (TE_PEP) || defined (OBJ_MACH_O))
11208
11209 /* Pick the target format to use. */
11210
11211 const char *
11212 i386_target_format (void)
11213 {
11214 if (!strncmp (default_arch, "x86_64", 6))
11215 {
11216 update_code_flag (CODE_64BIT, 1);
11217 if (default_arch[6] == '\0')
11218 x86_elf_abi = X86_64_ABI;
11219 else
11220 x86_elf_abi = X86_64_X32_ABI;
11221 }
11222 else if (!strcmp (default_arch, "i386"))
11223 update_code_flag (CODE_32BIT, 1);
11224 else if (!strcmp (default_arch, "iamcu"))
11225 {
11226 update_code_flag (CODE_32BIT, 1);
11227 if (cpu_arch_isa == PROCESSOR_UNKNOWN)
11228 {
11229 static const i386_cpu_flags iamcu_flags = CPU_IAMCU_FLAGS;
11230 cpu_arch_name = "iamcu";
11231 cpu_sub_arch_name = NULL;
11232 cpu_arch_flags = iamcu_flags;
11233 cpu_arch_isa = PROCESSOR_IAMCU;
11234 cpu_arch_isa_flags = iamcu_flags;
11235 if (!cpu_arch_tune_set)
11236 {
11237 cpu_arch_tune = cpu_arch_isa;
11238 cpu_arch_tune_flags = cpu_arch_isa_flags;
11239 }
11240 }
11241 else if (cpu_arch_isa != PROCESSOR_IAMCU)
11242 as_fatal (_("Intel MCU doesn't support `%s' architecture"),
11243 cpu_arch_name);
11244 }
11245 else
11246 as_fatal (_("unknown architecture"));
11247
11248 if (cpu_flags_all_zero (&cpu_arch_isa_flags))
11249 cpu_arch_isa_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11250 if (cpu_flags_all_zero (&cpu_arch_tune_flags))
11251 cpu_arch_tune_flags = cpu_arch[flag_code == CODE_64BIT].flags;
11252
11253 switch (OUTPUT_FLAVOR)
11254 {
11255 #if defined (OBJ_MAYBE_AOUT) || defined (OBJ_AOUT)
11256 case bfd_target_aout_flavour:
11257 return AOUT_TARGET_FORMAT;
11258 #endif
11259 #if defined (OBJ_MAYBE_COFF) || defined (OBJ_COFF)
11260 # if defined (TE_PE) || defined (TE_PEP)
11261 case bfd_target_coff_flavour:
11262 if (flag_code == CODE_64BIT)
11263 return use_big_obj ? "pe-bigobj-x86-64" : "pe-x86-64";
11264 else
11265 return "pe-i386";
11266 # elif defined (TE_GO32)
11267 case bfd_target_coff_flavour:
11268 return "coff-go32";
11269 # else
11270 case bfd_target_coff_flavour:
11271 return "coff-i386";
11272 # endif
11273 #endif
11274 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11275 case bfd_target_elf_flavour:
11276 {
11277 const char *format;
11278
11279 switch (x86_elf_abi)
11280 {
11281 default:
11282 format = ELF_TARGET_FORMAT;
11283 break;
11284 case X86_64_ABI:
11285 use_rela_relocations = 1;
11286 object_64bit = 1;
11287 format = ELF_TARGET_FORMAT64;
11288 break;
11289 case X86_64_X32_ABI:
11290 use_rela_relocations = 1;
11291 object_64bit = 1;
11292 disallow_64bit_reloc = 1;
11293 format = ELF_TARGET_FORMAT32;
11294 break;
11295 }
11296 if (cpu_arch_isa == PROCESSOR_L1OM)
11297 {
11298 if (x86_elf_abi != X86_64_ABI)
11299 as_fatal (_("Intel L1OM is 64bit only"));
11300 return ELF_TARGET_L1OM_FORMAT;
11301 }
11302 else if (cpu_arch_isa == PROCESSOR_K1OM)
11303 {
11304 if (x86_elf_abi != X86_64_ABI)
11305 as_fatal (_("Intel K1OM is 64bit only"));
11306 return ELF_TARGET_K1OM_FORMAT;
11307 }
11308 else if (cpu_arch_isa == PROCESSOR_IAMCU)
11309 {
11310 if (x86_elf_abi != I386_ABI)
11311 as_fatal (_("Intel MCU is 32bit only"));
11312 return ELF_TARGET_IAMCU_FORMAT;
11313 }
11314 else
11315 return format;
11316 }
11317 #endif
11318 #if defined (OBJ_MACH_O)
11319 case bfd_target_mach_o_flavour:
11320 if (flag_code == CODE_64BIT)
11321 {
11322 use_rela_relocations = 1;
11323 object_64bit = 1;
11324 return "mach-o-x86-64";
11325 }
11326 else
11327 return "mach-o-i386";
11328 #endif
11329 default:
11330 abort ();
11331 return NULL;
11332 }
11333 }
11334
11335 #endif /* OBJ_MAYBE_ more than one */
11336 \f
11337 symbolS *
11338 md_undefined_symbol (char *name)
11339 {
11340 if (name[0] == GLOBAL_OFFSET_TABLE_NAME[0]
11341 && name[1] == GLOBAL_OFFSET_TABLE_NAME[1]
11342 && name[2] == GLOBAL_OFFSET_TABLE_NAME[2]
11343 && strcmp (name, GLOBAL_OFFSET_TABLE_NAME) == 0)
11344 {
11345 if (!GOT_symbol)
11346 {
11347 if (symbol_find (name))
11348 as_bad (_("GOT already in symbol table"));
11349 GOT_symbol = symbol_new (name, undefined_section,
11350 (valueT) 0, &zero_address_frag);
11351 };
11352 return GOT_symbol;
11353 }
11354 return 0;
11355 }
11356
11357 /* Round up a section size to the appropriate boundary. */
11358
11359 valueT
11360 md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size)
11361 {
11362 #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT))
11363 if (OUTPUT_FLAVOR == bfd_target_aout_flavour)
11364 {
11365 /* For a.out, force the section size to be aligned. If we don't do
11366 this, BFD will align it for us, but it will not write out the
11367 final bytes of the section. This may be a bug in BFD, but it is
11368 easier to fix it here since that is how the other a.out targets
11369 work. */
11370 int align;
11371
11372 align = bfd_get_section_alignment (stdoutput, segment);
11373 size = ((size + (1 << align) - 1) & (-((valueT) 1 << align)));
11374 }
11375 #endif
11376
11377 return size;
11378 }
11379
11380 /* On the i386, PC-relative offsets are relative to the start of the
11381 next instruction. That is, the address of the offset, plus its
11382 size, since the offset is always the last part of the insn. */
11383
11384 long
11385 md_pcrel_from (fixS *fixP)
11386 {
11387 return fixP->fx_size + fixP->fx_where + fixP->fx_frag->fr_address;
11388 }
11389
11390 #ifndef I386COFF
11391
11392 static void
11393 s_bss (int ignore ATTRIBUTE_UNUSED)
11394 {
11395 int temp;
11396
11397 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11398 if (IS_ELF)
11399 obj_elf_section_change_hook ();
11400 #endif
11401 temp = get_absolute_expression ();
11402 subseg_set (bss_section, (subsegT) temp);
11403 demand_empty_rest_of_line ();
11404 }
11405
11406 #endif
11407
11408 void
11409 i386_validate_fix (fixS *fixp)
11410 {
11411 if (fixp->fx_subsy)
11412 {
11413 if (fixp->fx_subsy == GOT_symbol)
11414 {
11415 if (fixp->fx_r_type == BFD_RELOC_32_PCREL)
11416 {
11417 if (!object_64bit)
11418 abort ();
11419 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11420 if (fixp->fx_tcbit2)
11421 fixp->fx_r_type = (fixp->fx_tcbit
11422 ? BFD_RELOC_X86_64_REX_GOTPCRELX
11423 : BFD_RELOC_X86_64_GOTPCRELX);
11424 else
11425 #endif
11426 fixp->fx_r_type = BFD_RELOC_X86_64_GOTPCREL;
11427 }
11428 else
11429 {
11430 if (!object_64bit)
11431 fixp->fx_r_type = BFD_RELOC_386_GOTOFF;
11432 else
11433 fixp->fx_r_type = BFD_RELOC_X86_64_GOTOFF64;
11434 }
11435 fixp->fx_subsy = 0;
11436 }
11437 }
11438 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11439 else if (!object_64bit)
11440 {
11441 if (fixp->fx_r_type == BFD_RELOC_386_GOT32
11442 && fixp->fx_tcbit2)
11443 fixp->fx_r_type = BFD_RELOC_386_GOT32X;
11444 }
11445 #endif
11446 }
11447
11448 arelent *
11449 tc_gen_reloc (asection *section ATTRIBUTE_UNUSED, fixS *fixp)
11450 {
11451 arelent *rel;
11452 bfd_reloc_code_real_type code;
11453
11454 switch (fixp->fx_r_type)
11455 {
11456 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11457 case BFD_RELOC_SIZE32:
11458 case BFD_RELOC_SIZE64:
11459 if (S_IS_DEFINED (fixp->fx_addsy)
11460 && !S_IS_EXTERNAL (fixp->fx_addsy))
11461 {
11462 /* Resolve size relocation against local symbol to size of
11463 the symbol plus addend. */
11464 valueT value = S_GET_SIZE (fixp->fx_addsy) + fixp->fx_offset;
11465 if (fixp->fx_r_type == BFD_RELOC_SIZE32
11466 && !fits_in_unsigned_long (value))
11467 as_bad_where (fixp->fx_file, fixp->fx_line,
11468 _("symbol size computation overflow"));
11469 fixp->fx_addsy = NULL;
11470 fixp->fx_subsy = NULL;
11471 md_apply_fix (fixp, (valueT *) &value, NULL);
11472 return NULL;
11473 }
11474 #endif
11475 /* Fall through. */
11476
11477 case BFD_RELOC_X86_64_PLT32:
11478 case BFD_RELOC_X86_64_GOT32:
11479 case BFD_RELOC_X86_64_GOTPCREL:
11480 case BFD_RELOC_X86_64_GOTPCRELX:
11481 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11482 case BFD_RELOC_386_PLT32:
11483 case BFD_RELOC_386_GOT32:
11484 case BFD_RELOC_386_GOT32X:
11485 case BFD_RELOC_386_GOTOFF:
11486 case BFD_RELOC_386_GOTPC:
11487 case BFD_RELOC_386_TLS_GD:
11488 case BFD_RELOC_386_TLS_LDM:
11489 case BFD_RELOC_386_TLS_LDO_32:
11490 case BFD_RELOC_386_TLS_IE_32:
11491 case BFD_RELOC_386_TLS_IE:
11492 case BFD_RELOC_386_TLS_GOTIE:
11493 case BFD_RELOC_386_TLS_LE_32:
11494 case BFD_RELOC_386_TLS_LE:
11495 case BFD_RELOC_386_TLS_GOTDESC:
11496 case BFD_RELOC_386_TLS_DESC_CALL:
11497 case BFD_RELOC_X86_64_TLSGD:
11498 case BFD_RELOC_X86_64_TLSLD:
11499 case BFD_RELOC_X86_64_DTPOFF32:
11500 case BFD_RELOC_X86_64_DTPOFF64:
11501 case BFD_RELOC_X86_64_GOTTPOFF:
11502 case BFD_RELOC_X86_64_TPOFF32:
11503 case BFD_RELOC_X86_64_TPOFF64:
11504 case BFD_RELOC_X86_64_GOTOFF64:
11505 case BFD_RELOC_X86_64_GOTPC32:
11506 case BFD_RELOC_X86_64_GOT64:
11507 case BFD_RELOC_X86_64_GOTPCREL64:
11508 case BFD_RELOC_X86_64_GOTPC64:
11509 case BFD_RELOC_X86_64_GOTPLT64:
11510 case BFD_RELOC_X86_64_PLTOFF64:
11511 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11512 case BFD_RELOC_X86_64_TLSDESC_CALL:
11513 case BFD_RELOC_RVA:
11514 case BFD_RELOC_VTABLE_ENTRY:
11515 case BFD_RELOC_VTABLE_INHERIT:
11516 #ifdef TE_PE
11517 case BFD_RELOC_32_SECREL:
11518 #endif
11519 code = fixp->fx_r_type;
11520 break;
11521 case BFD_RELOC_X86_64_32S:
11522 if (!fixp->fx_pcrel)
11523 {
11524 /* Don't turn BFD_RELOC_X86_64_32S into BFD_RELOC_32. */
11525 code = fixp->fx_r_type;
11526 break;
11527 }
11528 /* Fall through. */
11529 default:
11530 if (fixp->fx_pcrel)
11531 {
11532 switch (fixp->fx_size)
11533 {
11534 default:
11535 as_bad_where (fixp->fx_file, fixp->fx_line,
11536 _("can not do %d byte pc-relative relocation"),
11537 fixp->fx_size);
11538 code = BFD_RELOC_32_PCREL;
11539 break;
11540 case 1: code = BFD_RELOC_8_PCREL; break;
11541 case 2: code = BFD_RELOC_16_PCREL; break;
11542 case 4: code = BFD_RELOC_32_PCREL; break;
11543 #ifdef BFD64
11544 case 8: code = BFD_RELOC_64_PCREL; break;
11545 #endif
11546 }
11547 }
11548 else
11549 {
11550 switch (fixp->fx_size)
11551 {
11552 default:
11553 as_bad_where (fixp->fx_file, fixp->fx_line,
11554 _("can not do %d byte relocation"),
11555 fixp->fx_size);
11556 code = BFD_RELOC_32;
11557 break;
11558 case 1: code = BFD_RELOC_8; break;
11559 case 2: code = BFD_RELOC_16; break;
11560 case 4: code = BFD_RELOC_32; break;
11561 #ifdef BFD64
11562 case 8: code = BFD_RELOC_64; break;
11563 #endif
11564 }
11565 }
11566 break;
11567 }
11568
11569 if ((code == BFD_RELOC_32
11570 || code == BFD_RELOC_32_PCREL
11571 || code == BFD_RELOC_X86_64_32S)
11572 && GOT_symbol
11573 && fixp->fx_addsy == GOT_symbol)
11574 {
11575 if (!object_64bit)
11576 code = BFD_RELOC_386_GOTPC;
11577 else
11578 code = BFD_RELOC_X86_64_GOTPC32;
11579 }
11580 if ((code == BFD_RELOC_64 || code == BFD_RELOC_64_PCREL)
11581 && GOT_symbol
11582 && fixp->fx_addsy == GOT_symbol)
11583 {
11584 code = BFD_RELOC_X86_64_GOTPC64;
11585 }
11586
11587 rel = XNEW (arelent);
11588 rel->sym_ptr_ptr = XNEW (asymbol *);
11589 *rel->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11590
11591 rel->address = fixp->fx_frag->fr_address + fixp->fx_where;
11592
11593 if (!use_rela_relocations)
11594 {
11595 /* HACK: Since i386 ELF uses Rel instead of Rela, encode the
11596 vtable entry to be used in the relocation's section offset. */
11597 if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY)
11598 rel->address = fixp->fx_offset;
11599 #if defined (OBJ_COFF) && defined (TE_PE)
11600 else if (fixp->fx_addsy && S_IS_WEAK (fixp->fx_addsy))
11601 rel->addend = fixp->fx_addnumber - (S_GET_VALUE (fixp->fx_addsy) * 2);
11602 else
11603 #endif
11604 rel->addend = 0;
11605 }
11606 /* Use the rela in 64bit mode. */
11607 else
11608 {
11609 if (disallow_64bit_reloc)
11610 switch (code)
11611 {
11612 case BFD_RELOC_X86_64_DTPOFF64:
11613 case BFD_RELOC_X86_64_TPOFF64:
11614 case BFD_RELOC_64_PCREL:
11615 case BFD_RELOC_X86_64_GOTOFF64:
11616 case BFD_RELOC_X86_64_GOT64:
11617 case BFD_RELOC_X86_64_GOTPCREL64:
11618 case BFD_RELOC_X86_64_GOTPC64:
11619 case BFD_RELOC_X86_64_GOTPLT64:
11620 case BFD_RELOC_X86_64_PLTOFF64:
11621 as_bad_where (fixp->fx_file, fixp->fx_line,
11622 _("cannot represent relocation type %s in x32 mode"),
11623 bfd_get_reloc_code_name (code));
11624 break;
11625 default:
11626 break;
11627 }
11628
11629 if (!fixp->fx_pcrel)
11630 rel->addend = fixp->fx_offset;
11631 else
11632 switch (code)
11633 {
11634 case BFD_RELOC_X86_64_PLT32:
11635 case BFD_RELOC_X86_64_GOT32:
11636 case BFD_RELOC_X86_64_GOTPCREL:
11637 case BFD_RELOC_X86_64_GOTPCRELX:
11638 case BFD_RELOC_X86_64_REX_GOTPCRELX:
11639 case BFD_RELOC_X86_64_TLSGD:
11640 case BFD_RELOC_X86_64_TLSLD:
11641 case BFD_RELOC_X86_64_GOTTPOFF:
11642 case BFD_RELOC_X86_64_GOTPC32_TLSDESC:
11643 case BFD_RELOC_X86_64_TLSDESC_CALL:
11644 rel->addend = fixp->fx_offset - fixp->fx_size;
11645 break;
11646 default:
11647 rel->addend = (section->vma
11648 - fixp->fx_size
11649 + fixp->fx_addnumber
11650 + md_pcrel_from (fixp));
11651 break;
11652 }
11653 }
11654
11655 rel->howto = bfd_reloc_type_lookup (stdoutput, code);
11656 if (rel->howto == NULL)
11657 {
11658 as_bad_where (fixp->fx_file, fixp->fx_line,
11659 _("cannot represent relocation type %s"),
11660 bfd_get_reloc_code_name (code));
11661 /* Set howto to a garbage value so that we can keep going. */
11662 rel->howto = bfd_reloc_type_lookup (stdoutput, BFD_RELOC_32);
11663 gas_assert (rel->howto != NULL);
11664 }
11665
11666 return rel;
11667 }
11668
11669 #include "tc-i386-intel.c"
11670
11671 void
11672 tc_x86_parse_to_dw2regnum (expressionS *exp)
11673 {
11674 int saved_naked_reg;
11675 char saved_register_dot;
11676
11677 saved_naked_reg = allow_naked_reg;
11678 allow_naked_reg = 1;
11679 saved_register_dot = register_chars['.'];
11680 register_chars['.'] = '.';
11681 allow_pseudo_reg = 1;
11682 expression_and_evaluate (exp);
11683 allow_pseudo_reg = 0;
11684 register_chars['.'] = saved_register_dot;
11685 allow_naked_reg = saved_naked_reg;
11686
11687 if (exp->X_op == O_register && exp->X_add_number >= 0)
11688 {
11689 if ((addressT) exp->X_add_number < i386_regtab_size)
11690 {
11691 exp->X_op = O_constant;
11692 exp->X_add_number = i386_regtab[exp->X_add_number]
11693 .dw2_regnum[flag_code >> 1];
11694 }
11695 else
11696 exp->X_op = O_illegal;
11697 }
11698 }
11699
11700 void
11701 tc_x86_frame_initial_instructions (void)
11702 {
11703 static unsigned int sp_regno[2];
11704
11705 if (!sp_regno[flag_code >> 1])
11706 {
11707 char *saved_input = input_line_pointer;
11708 char sp[][4] = {"esp", "rsp"};
11709 expressionS exp;
11710
11711 input_line_pointer = sp[flag_code >> 1];
11712 tc_x86_parse_to_dw2regnum (&exp);
11713 gas_assert (exp.X_op == O_constant);
11714 sp_regno[flag_code >> 1] = exp.X_add_number;
11715 input_line_pointer = saved_input;
11716 }
11717
11718 cfi_add_CFA_def_cfa (sp_regno[flag_code >> 1], -x86_cie_data_alignment);
11719 cfi_add_CFA_offset (x86_dwarf2_return_column, x86_cie_data_alignment);
11720 }
11721
11722 int
11723 x86_dwarf2_addr_size (void)
11724 {
11725 #if defined (OBJ_MAYBE_ELF) || defined (OBJ_ELF)
11726 if (x86_elf_abi == X86_64_X32_ABI)
11727 return 4;
11728 #endif
11729 return bfd_arch_bits_per_address (stdoutput) / 8;
11730 }
11731
11732 int
11733 i386_elf_section_type (const char *str, size_t len)
11734 {
11735 if (flag_code == CODE_64BIT
11736 && len == sizeof ("unwind") - 1
11737 && strncmp (str, "unwind", 6) == 0)
11738 return SHT_X86_64_UNWIND;
11739
11740 return -1;
11741 }
11742
11743 #ifdef TE_SOLARIS
11744 void
11745 i386_solaris_fix_up_eh_frame (segT sec)
11746 {
11747 if (flag_code == CODE_64BIT)
11748 elf_section_type (sec) = SHT_X86_64_UNWIND;
11749 }
11750 #endif
11751
11752 #ifdef TE_PE
11753 void
11754 tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11755 {
11756 expressionS exp;
11757
11758 exp.X_op = O_secrel;
11759 exp.X_add_symbol = symbol;
11760 exp.X_add_number = 0;
11761 emit_expr (&exp, size);
11762 }
11763 #endif
11764
11765 #if defined (OBJ_ELF) || defined (OBJ_MAYBE_ELF)
11766 /* For ELF on x86-64, add support for SHF_X86_64_LARGE. */
11767
11768 bfd_vma
11769 x86_64_section_letter (int letter, const char **ptr_msg)
11770 {
11771 if (flag_code == CODE_64BIT)
11772 {
11773 if (letter == 'l')
11774 return SHF_X86_64_LARGE;
11775
11776 *ptr_msg = _("bad .section directive: want a,l,w,x,M,S,G,T in string");
11777 }
11778 else
11779 *ptr_msg = _("bad .section directive: want a,w,x,M,S,G,T in string");
11780 return -1;
11781 }
11782
11783 bfd_vma
11784 x86_64_section_word (char *str, size_t len)
11785 {
11786 if (len == 5 && flag_code == CODE_64BIT && CONST_STRNEQ (str, "large"))
11787 return SHF_X86_64_LARGE;
11788
11789 return -1;
11790 }
11791
11792 static void
11793 handle_large_common (int small ATTRIBUTE_UNUSED)
11794 {
11795 if (flag_code != CODE_64BIT)
11796 {
11797 s_comm_internal (0, elf_common_parse);
11798 as_warn (_(".largecomm supported only in 64bit mode, producing .comm"));
11799 }
11800 else
11801 {
11802 static segT lbss_section;
11803 asection *saved_com_section_ptr = elf_com_section_ptr;
11804 asection *saved_bss_section = bss_section;
11805
11806 if (lbss_section == NULL)
11807 {
11808 flagword applicable;
11809 segT seg = now_seg;
11810 subsegT subseg = now_subseg;
11811
11812 /* The .lbss section is for local .largecomm symbols. */
11813 lbss_section = subseg_new (".lbss", 0);
11814 applicable = bfd_applicable_section_flags (stdoutput);
11815 bfd_set_section_flags (stdoutput, lbss_section,
11816 applicable & SEC_ALLOC);
11817 seg_info (lbss_section)->bss = 1;
11818
11819 subseg_set (seg, subseg);
11820 }
11821
11822 elf_com_section_ptr = &_bfd_elf_large_com_section;
11823 bss_section = lbss_section;
11824
11825 s_comm_internal (0, elf_common_parse);
11826
11827 elf_com_section_ptr = saved_com_section_ptr;
11828 bss_section = saved_bss_section;
11829 }
11830 }
11831 #endif /* OBJ_ELF || OBJ_MAYBE_ELF */
This page took 0.268338 seconds and 5 git commands to generate.