recording file death
[deliverable/binutils-gdb.git] / gas / config / tc-i960.c
1 /* tc-i960.c - All the i80960-specific stuff
2 Copyright (C) 1989, 1990, 1991, 1992 Free Software Foundation, Inc.
3
4 This file is part of GAS.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* See comment on md_parse_option for 80960-specific invocation options. */
21
22 /******************************************************************************
23 * i80690 NOTE!!!:
24 * Header, symbol, and relocation info will be used on the host machine
25 * only -- only executable code is actually downloaded to the i80960.
26 * Therefore, leave all such information in host byte order.
27 *
28 * (That's a slight lie -- we DO download some header information, but
29 * the downloader converts the file format and corrects the byte-ordering
30 * of the relevant fields while doing so.)
31 *
32 * ==> THIS IS NO LONGER TRUE USING BFD. WE CAN GENERATE ANY BYTE ORDER
33 * FOR THE HEADER, AND READ ANY BYTE ORDER. PREFERENCE WOULD BE TO
34 * USE LITTLE-ENDIAN BYTE ORDER THROUGHOUT, REGARDLESS OF HOST. <==
35 *
36 ***************************************************************************** */
37
38 /* There are 4 different lengths of (potentially) symbol-based displacements
39 * in the 80960 instruction set, each of which could require address fix-ups
40 * and (in the case of external symbols) emission of relocation directives:
41 *
42 * 32-bit (MEMB)
43 * This is a standard length for the base assembler and requires no
44 * special action.
45 *
46 * 13-bit (COBR)
47 * This is a non-standard length, but the base assembler has a hook for
48 * bit field address fixups: the fixS structure can point to a descriptor
49 * of the field, in which case our md_number_to_field() routine gets called
50 * to process it.
51 *
52 * I made the hook a little cleaner by having fix_new() (in the base
53 * assembler) return a pointer to the fixS in question. And I made it a
54 * little simpler by storing the field size (in this case 13) instead of
55 * of a pointer to another structure: 80960 displacements are ALWAYS
56 * stored in the low-order bits of a 4-byte word.
57 *
58 * Since the target of a COBR cannot be external, no relocation directives
59 * for this size displacement have to be generated. But the base assembler
60 * had to be modified to issue error messages if the symbol did turn out
61 * to be external.
62 *
63 * 24-bit (CTRL)
64 * Fixups are handled as for the 13-bit case (except that 24 is stored
65 * in the fixS).
66 *
67 * The relocation directive generated is the same as that for the 32-bit
68 * displacement, except that it's PC-relative (the 32-bit displacement
69 * never is). The i80960 version of the linker needs a mod to
70 * distinguish and handle the 24-bit case.
71 *
72 * 12-bit (MEMA)
73 * MEMA formats are always promoted to MEMB (32-bit) if the displacement
74 * is based on a symbol, because it could be relocated at link time.
75 * The only time we use the 12-bit format is if an absolute value of
76 * less than 4096 is specified, in which case we need neither a fixup nor
77 * a relocation directive.
78 */
79
80 #include <stdio.h>
81 #include <ctype.h>
82
83 #include "as.h"
84 #include "read.h"
85
86 #include "obstack.h"
87
88 #include "opcode/i960.h"
89
90 extern char *input_line_pointer;
91 extern struct hash_control *po_hash;
92 extern char *next_object_file_charP;
93
94 #ifdef OBJ_COFF
95 int md_reloc_size = sizeof (struct reloc);
96 #else /* OBJ_COFF */
97 int md_reloc_size = sizeof (struct relocation_info);
98 #endif /* OBJ_COFF */
99
100 /***************************
101 * Local i80960 routines *
102 ************************** */
103
104 static void brcnt_emit (); /* Emit branch-prediction instrumentation code */
105 static char *brlab_next (); /* Return next branch local label */
106 void brtab_emit (); /* Emit br-predict instrumentation table */
107 static void cobr_fmt (); /* Generate COBR instruction */
108 static void ctrl_fmt (); /* Generate CTRL instruction */
109 static char *emit (); /* Emit (internally) binary */
110 static int get_args (); /* Break arguments out of comma-separated list */
111 static void get_cdisp (); /* Handle COBR or CTRL displacement */
112 static char *get_ispec (); /* Find index specification string */
113 static int get_regnum (); /* Translate text to register number */
114 static int i_scan (); /* Lexical scan of instruction source */
115 static void mem_fmt (); /* Generate MEMA or MEMB instruction */
116 static void mema_to_memb (); /* Convert MEMA instruction to MEMB format */
117 static segT parse_expr (); /* Parse an expression */
118 static int parse_ldconst (); /* Parse and replace a 'ldconst' pseudo-op */
119 static void parse_memop (); /* Parse a memory operand */
120 static void parse_po (); /* Parse machine-dependent pseudo-op */
121 static void parse_regop (); /* Parse a register operand */
122 static void reg_fmt (); /* Generate a REG format instruction */
123 void reloc_callj (); /* Relocate a 'callj' instruction */
124 static void relax_cobr (); /* "De-optimize" cobr into compare/branch */
125 static void s_leafproc (); /* Process '.leafproc' pseudo-op */
126 static void s_sysproc (); /* Process '.sysproc' pseudo-op */
127 static int shift_ok (); /* Will a 'shlo' substiture for a 'ldconst'? */
128 static void syntax (); /* Give syntax error */
129 static int targ_has_sfr (); /* Target chip supports spec-func register? */
130 static int targ_has_iclass (); /* Target chip supports instruction set? */
131 /* static void unlink_sym(); *//* Remove a symbol from the symbol list */
132
133 /* See md_parse_option() for meanings of these options */
134 static char norelax; /* True if -norelax switch seen */
135 static char instrument_branches;/* True if -b switch seen */
136
137 /* Characters that always start a comment.
138 * If the pre-processor is disabled, these aren't very useful.
139 */
140 const char comment_chars[] = "#";
141
142 /* Characters that only start a comment at the beginning of
143 * a line. If the line seems to have the form '# 123 filename'
144 * .line and .file directives will appear in the pre-processed output.
145 *
146 * Note that input_file.c hand checks for '#' at the beginning of the
147 * first line of the input file. This is because the compiler outputs
148 * #NO_APP at the beginning of its output.
149 */
150
151 /* Also note that comments started like this one will always work. */
152
153 const char line_comment_chars[] = "";
154
155 const char line_separator_chars[] = "";
156
157 /* Chars that can be used to separate mant from exp in floating point nums */
158 const char EXP_CHARS[] = "eE";
159
160 /* Chars that mean this number is a floating point constant,
161 * as in 0f12.456 or 0d1.2345e12
162 */
163 const char FLT_CHARS[] = "fFdDtT";
164
165
166 /* Table used by base assembler to relax addresses based on varying length
167 * instructions. The fields are:
168 * 1) most positive reach of this state,
169 * 2) most negative reach of this state,
170 * 3) how many bytes this mode will add to the size of the current frag
171 * 4) which index into the table to try if we can't fit into this one.
172 *
173 * For i80960, the only application is the (de-)optimization of cobr
174 * instructions into separate compare and branch instructions when a 13-bit
175 * displacement won't hack it.
176 */
177 const relax_typeS
178 md_relax_table[] =
179 {
180 {0, 0, 0, 0}, /* State 0 => no more relaxation possible */
181 {4088, -4096, 0, 2}, /* State 1: conditional branch (cobr) */
182 {0x800000 - 8, -0x800000, 4, 0}, /* State 2: compare (reg) & branch (ctrl) */
183 };
184
185
186 /* These are the machine dependent pseudo-ops.
187 *
188 * This table describes all the machine specific pseudo-ops the assembler
189 * has to support. The fields are:
190 * pseudo-op name without dot
191 * function to call to execute this pseudo-op
192 * integer arg to pass to the function
193 */
194 #define S_LEAFPROC 1
195 #define S_SYSPROC 2
196
197 const pseudo_typeS md_pseudo_table[] =
198 {
199 {"bss", s_lcomm, 1},
200 {"extended", float_cons, 't'},
201 {"leafproc", parse_po, S_LEAFPROC},
202 {"sysproc", parse_po, S_SYSPROC},
203
204 {"word", cons, 4},
205 {"quad", big_cons, 16},
206
207 {0, 0, 0}
208 };
209 \f
210 /* Macros to extract info from an 'expressionS' structure 'e' */
211 #define adds(e) e.X_add_symbol
212 #define subs(e) e.X_subtract_symbol
213 #define offs(e) e.X_add_number
214 #define segs(e) e.X_seg
215
216
217 /* Branch-prediction bits for CTRL/COBR format opcodes */
218 #define BP_MASK 0x00000002 /* Mask for branch-prediction bit */
219 #define BP_TAKEN 0x00000000 /* Value to OR in to predict branch */
220 #define BP_NOT_TAKEN 0x00000002 /* Value to OR in to predict no branch */
221
222
223 /* Some instruction opcodes that we need explicitly */
224 #define BE 0x12000000
225 #define BG 0x11000000
226 #define BGE 0x13000000
227 #define BL 0x14000000
228 #define BLE 0x16000000
229 #define BNE 0x15000000
230 #define BNO 0x10000000
231 #define BO 0x17000000
232 #define CHKBIT 0x5a002700
233 #define CMPI 0x5a002080
234 #define CMPO 0x5a002000
235
236 #define B 0x08000000
237 #define BAL 0x0b000000
238 #define CALL 0x09000000
239 #define CALLS 0x66003800
240 #define RET 0x0a000000
241
242
243 /* These masks are used to build up a set of MEMB mode bits. */
244 #define A_BIT 0x0400
245 #define I_BIT 0x0800
246 #define MEMB_BIT 0x1000
247 #define D_BIT 0x2000
248
249
250 /* Mask for the only mode bit in a MEMA instruction (if set, abase reg is used) */
251 #define MEMA_ABASE 0x2000
252
253 /* Info from which a MEMA or MEMB format instruction can be generated */
254 typedef struct
255 {
256 long opcode; /* (First) 32 bits of instruction */
257 int disp; /* 0-(none), 12- or, 32-bit displacement needed */
258 char *e; /* The expression in the source instruction from
259 * which the displacement should be determined
260 */
261 }
262
263 memS;
264
265
266 /* The two pieces of info we need to generate a register operand */
267 struct regop
268 {
269 int mode; /* 0 =>local/global/spec reg; 1=> literal or fp reg */
270 int special; /* 0 =>not a sfr; 1=> is a sfr (not valid w/mode=0) */
271 int n; /* Register number or literal value */
272 };
273
274
275 /* Number and assembler mnemonic for all registers that can appear in operands */
276 static struct
277 {
278 char *reg_name;
279 int reg_num;
280 }
281
282 regnames[] =
283 {
284 { "pfp", 0 },
285 { "sp", 1 },
286 { "rip", 2 },
287 { "r3", 3 },
288 { "r4", 4 },
289 { "r5", 5 },
290 { "r6", 6 },
291 { "r7", 7 },
292 { "r8", 8 },
293 { "r9", 9 },
294 { "r10", 10 },
295 { "r11", 11 },
296 { "r12", 12 },
297 { "r13", 13 },
298 { "r14", 14 },
299 { "r15", 15 },
300 { "g0", 16 },
301 { "g1", 17 },
302 { "g2", 18 },
303 { "g3", 19 },
304 { "g4", 20 },
305 { "g5", 21 },
306 { "g6", 22 },
307 { "g7", 23 },
308 { "g8", 24 },
309 { "g9", 25 },
310 { "g10", 26 },
311 { "g11", 27 },
312 { "g12", 28 },
313 { "g13", 29 },
314 { "g14", 30 },
315 { "fp", 31 },
316
317 /* Numbers for special-function registers are for assembler internal
318 use only: they are scaled back to range [0-31] for binary output. */
319 #define SF0 32
320
321 { "sf0", 32 },
322 { "sf1", 33 },
323 { "sf2", 34 },
324 { "sf3", 35 },
325 { "sf4", 36 },
326 { "sf5", 37 },
327 { "sf6", 38 },
328 { "sf7", 39 },
329 { "sf8", 40 },
330 { "sf9", 41 },
331 { "sf10", 42 },
332 { "sf11", 43 },
333 { "sf12", 44 },
334 { "sf13", 45 },
335 { "sf14", 46 },
336 { "sf15", 47 },
337 { "sf16", 48 },
338 { "sf17", 49 },
339 { "sf18", 50 },
340 { "sf19", 51 },
341 { "sf20", 52 },
342 { "sf21", 53 },
343 { "sf22", 54 },
344 { "sf23", 55 },
345 { "sf24", 56 },
346 { "sf25", 57 },
347 { "sf26", 58 },
348 { "sf27", 59 },
349 { "sf28", 60 },
350 { "sf29", 61 },
351 { "sf30", 62 },
352 { "sf31", 63 },
353
354 /* Numbers for floating point registers are for assembler internal use
355 * only: they are scaled back to [0-3] for binary output.
356 */
357 #define FP0 64
358
359 { "fp0", 64 },
360 { "fp1", 65 },
361 { "fp2", 66 },
362 { "fp3", 67 },
363
364 { NULL, 0 }, /* END OF LIST */
365 };
366
367 #define IS_RG_REG(n) ((0 <= (n)) && ((n) < SF0))
368 #define IS_SF_REG(n) ((SF0 <= (n)) && ((n) < FP0))
369 #define IS_FP_REG(n) ((n) >= FP0)
370
371 /* Number and assembler mnemonic for all registers that can appear as 'abase'
372 * (indirect addressing) registers.
373 */
374 static struct
375 {
376 char *areg_name;
377 int areg_num;
378 }
379
380 aregs[] =
381 {
382 { "(pfp)", 0 },
383 { "(sp)", 1 },
384 { "(rip)", 2 },
385 { "(r3)", 3 },
386 { "(r4)", 4 },
387 { "(r5)", 5 },
388 { "(r6)", 6 },
389 { "(r7)", 7 },
390 { "(r8)", 8 },
391 { "(r9)", 9 },
392 { "(r10)", 10 },
393 { "(r11)", 11 },
394 { "(r12)", 12 },
395 { "(r13)", 13 },
396 { "(r14)", 14 },
397 { "(r15)", 15 },
398 { "(g0)", 16 },
399 { "(g1)", 17 },
400 { "(g2)", 18 },
401 { "(g3)", 19 },
402 { "(g4)", 20 },
403 { "(g5)", 21 },
404 { "(g6)", 22 },
405 { "(g7)", 23 },
406 { "(g8)", 24 },
407 { "(g9)", 25 },
408 { "(g10)", 26 },
409 { "(g11)", 27 },
410 { "(g12)", 28 },
411 { "(g13)", 29 },
412 { "(g14)", 30 },
413 { "(fp)", 31 },
414
415 #define IPREL 32
416 /* For assembler internal use only: this number never appears in binary
417 output. */
418 { "(ip)", IPREL },
419
420 { NULL, 0 }, /* END OF LIST */
421 };
422
423
424 /* Hash tables */
425 static struct hash_control *op_hash = NULL; /* Opcode mnemonics */
426 static struct hash_control *reg_hash = NULL; /* Register name hash table */
427 static struct hash_control *areg_hash = NULL; /* Abase register hash table */
428
429
430 /* Architecture for which we are assembling */
431 #define ARCH_ANY 0 /* Default: no architecture checking done */
432 #define ARCH_KA 1
433 #define ARCH_KB 2
434 #define ARCH_MC 3
435 #define ARCH_CA 4
436 int architecture = ARCH_ANY; /* Architecture requested on invocation line */
437 int iclasses_seen = 0; /* OR of instruction classes (I_* constants)
438 * for which we've actually assembled
439 * instructions.
440 */
441
442
443 /* BRANCH-PREDICTION INSTRUMENTATION
444 *
445 * The following supports generation of branch-prediction instrumentation
446 * (turned on by -b switch). The instrumentation collects counts
447 * of branches taken/not-taken for later input to a utility that will
448 * set the branch prediction bits of the instructions in accordance with
449 * the behavior observed. (Note that the KX series does not have
450 * brach-prediction.)
451 *
452 * The instrumentation consists of:
453 *
454 * (1) before and after each conditional branch, a call to an external
455 * routine that increments and steps over an inline counter. The
456 * counter itself, initialized to 0, immediately follows the call
457 * instruction. For each branch, the counter following the branch
458 * is the number of times the branch was not taken, and the difference
459 * between the counters is the number of times it was taken. An
460 * example of an instrumented conditional branch:
461 *
462 * call BR_CNT_FUNC
463 * .word 0
464 * LBRANCH23: be label
465 * call BR_CNT_FUNC
466 * .word 0
467 *
468 * (2) a table of pointers to the instrumented branches, so that an
469 * external postprocessing routine can locate all of the counters.
470 * the table begins with a 2-word header: a pointer to the next in
471 * a linked list of such tables (initialized to 0); and a count
472 * of the number of entries in the table (exclusive of the header.
473 *
474 * Note that input source code is expected to already contain calls
475 * an external routine that will link the branch local table into a
476 * list of such tables.
477 */
478
479 static int br_cnt = 0; /* Number of branches instrumented so far.
480 * Also used to generate unique local labels
481 * for each instrumented branch
482 */
483
484 #define BR_LABEL_BASE "LBRANCH"
485 /* Basename of local labels on instrumented
486 * branches, to avoid conflict with compiler-
487 * generated local labels.
488 */
489
490 #define BR_CNT_FUNC "__inc_branch"
491 /* Name of the external routine that will
492 * increment (and step over) an inline counter.
493 */
494
495 #define BR_TAB_NAME "__BRANCH_TABLE__"
496 /* Name of the table of pointers to branches.
497 * A local (i.e., non-external) symbol.
498 */
499 \f
500 /*****************************************************************************
501 * md_begin: One-time initialization.
502 *
503 * Set up hash tables.
504 *
505 **************************************************************************** */
506 void
507 md_begin ()
508 {
509 int i; /* Loop counter */
510 const struct i960_opcode *oP; /* Pointer into opcode table */
511 char *retval; /* Value returned by hash functions */
512
513 if (((op_hash = hash_new ()) == 0)
514 || ((reg_hash = hash_new ()) == 0)
515 || ((areg_hash = hash_new ()) == 0))
516 {
517 as_fatal ("virtual memory exceeded");
518 }
519
520 retval = ""; /* For some reason, the base assembler uses an empty
521 * string for "no error message", instead of a NULL
522 * pointer.
523 */
524
525 for (oP = i960_opcodes; oP->name && !*retval; oP++)
526 {
527 retval = hash_insert (op_hash, oP->name, oP);
528 }
529
530 for (i = 0; regnames[i].reg_name && !*retval; i++)
531 {
532 retval = hash_insert (reg_hash, regnames[i].reg_name,
533 &regnames[i].reg_num);
534 }
535
536 for (i = 0; aregs[i].areg_name && !*retval; i++)
537 {
538 retval = hash_insert (areg_hash, aregs[i].areg_name,
539 &aregs[i].areg_num);
540 }
541
542 if (*retval)
543 {
544 as_fatal ("Hashing returned \"%s\".", retval);
545 }
546 } /* md_begin() */
547
548 /*****************************************************************************
549 * md_end: One-time final cleanup
550 *
551 * None necessary
552 *
553 **************************************************************************** */
554 void
555 md_end ()
556 {
557 }
558
559 /*****************************************************************************
560 * md_assemble: Assemble an instruction
561 *
562 * Assumptions about the passed-in text:
563 * - all comments, labels removed
564 * - text is an instruction
565 * - all white space compressed to single blanks
566 * - all character constants have been replaced with decimal
567 *
568 **************************************************************************** */
569 void
570 md_assemble (textP)
571 char *textP; /* Source text of instruction */
572 {
573 char *args[4]; /* Parsed instruction text, containing NO whitespace:
574 * arg[0]->opcode mnemonic
575 * arg[1-3]->operands, with char constants
576 * replaced by decimal numbers
577 */
578 int n_ops; /* Number of instruction operands */
579 int callx;
580 struct i960_opcode *oP;
581 /* Pointer to instruction description */
582 int branch_predict;
583 /* TRUE iff opcode mnemonic included branch-prediction
584 * suffix (".f" or ".t")
585 */
586 long bp_bits; /* Setting of branch-prediction bit(s) to be OR'd
587 * into instruction opcode of CTRL/COBR format
588 * instructions.
589 */
590 int n; /* Offset of last character in opcode mnemonic */
591
592 static const char bp_error_msg[] = "branch prediction invalid on this opcode";
593
594
595 /* Parse instruction into opcode and operands */
596 memset (args, '\0', sizeof (args));
597 n_ops = i_scan (textP, args);
598 if (n_ops == -1)
599 {
600 return; /* Error message already issued */
601 }
602
603 /* Do "macro substitution" (sort of) on 'ldconst' pseudo-instruction */
604 if (!strcmp (args[0], "ldconst"))
605 {
606 n_ops = parse_ldconst (args);
607 if (n_ops == -1)
608 {
609 return;
610 }
611 }
612
613
614
615 /* Check for branch-prediction suffix on opcode mnemonic, strip it off */
616 n = strlen (args[0]) - 1;
617 branch_predict = 0;
618 bp_bits = 0;
619 if (args[0][n - 1] == '.' && (args[0][n] == 't' || args[0][n] == 'f'))
620 {
621 /* We could check here to see if the target architecture
622 * supports branch prediction, but why bother? The bit
623 * will just be ignored by processors that don't use it.
624 */
625 branch_predict = 1;
626 bp_bits = (args[0][n] == 't') ? BP_TAKEN : BP_NOT_TAKEN;
627 args[0][n - 1] = '\0'; /* Strip suffix from opcode mnemonic */
628 }
629
630 /* Look up opcode mnemonic in table and check number of operands.
631 * Check that opcode is legal for the target architecture.
632 * If all looks good, assemble instruction.
633 */
634 oP = (struct i960_opcode *) hash_find (op_hash, args[0]);
635 if (!oP || !targ_has_iclass (oP->iclass))
636 {
637 as_bad ("invalid opcode, \"%s\".", args[0]);
638
639 }
640 else if (n_ops != oP->num_ops)
641 {
642 as_bad ("improper number of operands. expecting %d, got %d", oP->num_ops, n_ops);
643
644 }
645 else
646 {
647 switch (oP->format)
648 {
649 case FBRA:
650 case CTRL:
651 ctrl_fmt (args[1], oP->opcode | bp_bits, oP->num_ops);
652 if (oP->format == FBRA)
653 {
654 /* Now generate a 'bno' to same arg */
655 ctrl_fmt (args[1], BNO | bp_bits, 1);
656 }
657 break;
658 case COBR:
659 case COJ:
660 cobr_fmt (args, oP->opcode | bp_bits, oP);
661 break;
662 case REG:
663 if (branch_predict)
664 {
665 as_warn (bp_error_msg);
666 }
667 reg_fmt (args, oP);
668 break;
669 case MEM1:
670 if (args[0][0] == 'c' && args[0][1] == 'a')
671 {
672 if (branch_predict)
673 {
674 as_warn (bp_error_msg);
675 }
676 mem_fmt (args, oP, 1);
677 break;
678 }
679 case MEM2:
680 case MEM4:
681 case MEM8:
682 case MEM12:
683 case MEM16:
684 if (branch_predict)
685 {
686 as_warn (bp_error_msg);
687 }
688 mem_fmt (args, oP, 0);
689 break;
690 case CALLJ:
691 if (branch_predict)
692 {
693 as_warn (bp_error_msg);
694 }
695 /* Output opcode & set up "fixup" (relocation);
696 * flag relocation as 'callj' type.
697 */
698 know (oP->num_ops == 1);
699 get_cdisp (args[1], "CTRL", oP->opcode, 24, 0, 1);
700 break;
701 default:
702 BAD_CASE (oP->format);
703 break;
704 }
705 }
706 } /* md_assemble() */
707
708 /*****************************************************************************
709 * md_number_to_chars: convert a number to target byte order
710 *
711 **************************************************************************** */
712 void
713 md_number_to_chars (buf, value, n)
714 char *buf; /* Put output here */
715 long value; /* The integer to be converted */
716 int n; /* Number of bytes to output (significant bytes
717 * in 'value')
718 */
719 {
720 while (n--)
721 {
722 *buf++ = value;
723 value >>= 8;
724 }
725
726 /* XXX line number probably botched for this warning message. */
727 if (value != 0 && value != -1)
728 {
729 as_bad ("Displacement too long for instruction field length.");
730 }
731
732 return;
733 } /* md_number_to_chars() */
734
735 /*****************************************************************************
736 * md_chars_to_number: convert from target byte order to host byte order.
737 *
738 **************************************************************************** */
739 int
740 md_chars_to_number (val, n)
741 unsigned char *val; /* Value in target byte order */
742 int n; /* Number of bytes in the input */
743 {
744 int retval;
745
746 for (retval = 0; n--;)
747 {
748 retval <<= 8;
749 retval |= val[n];
750 }
751 return retval;
752 }
753
754
755 #define MAX_LITTLENUMS 6
756 #define LNUM_SIZE sizeof(LITTLENUM_TYPE)
757
758 /*****************************************************************************
759 * md_atof: convert ascii to floating point
760 *
761 * Turn a string at input_line_pointer into a floating point constant of type
762 * 'type', and store the appropriate bytes at *litP. The number of LITTLENUMS
763 * emitted is returned at 'sizeP'. An error message is returned, or a pointer
764 * to an empty message if OK.
765 *
766 * Note we call the i386 floating point routine, rather than complicating
767 * things with more files or symbolic links.
768 *
769 **************************************************************************** */
770 char *
771 md_atof (type, litP, sizeP)
772 int type;
773 char *litP;
774 int *sizeP;
775 {
776 LITTLENUM_TYPE words[MAX_LITTLENUMS];
777 LITTLENUM_TYPE *wordP;
778 int prec;
779 char *t;
780 char *atof_ieee ();
781
782 switch (type)
783 {
784 case 'f':
785 case 'F':
786 prec = 2;
787 break;
788
789 case 'd':
790 case 'D':
791 prec = 4;
792 break;
793
794 case 't':
795 case 'T':
796 prec = 5;
797 type = 'x'; /* That's what atof_ieee() understands */
798 break;
799
800 default:
801 *sizeP = 0;
802 return "Bad call to md_atof()";
803 }
804
805 t = atof_ieee (input_line_pointer, type, words);
806 if (t)
807 {
808 input_line_pointer = t;
809 }
810
811 *sizeP = prec * LNUM_SIZE;
812
813 /* Output the LITTLENUMs in REVERSE order in accord with i80960
814 * word-order. (Dunno why atof_ieee doesn't do it in the right
815 * order in the first place -- probably because it's a hack of
816 * atof_m68k.)
817 */
818
819 for (wordP = words + prec - 1; prec--;)
820 {
821 md_number_to_chars (litP, (long) (*wordP--), LNUM_SIZE);
822 litP += sizeof (LITTLENUM_TYPE);
823 }
824
825 return ""; /* Someone should teach Dean about null pointers */
826 }
827
828
829 /*****************************************************************************
830 * md_number_to_imm
831 *
832 **************************************************************************** */
833 void
834 md_number_to_imm (buf, val, n)
835 char *buf;
836 long val;
837 int n;
838 {
839 md_number_to_chars (buf, val, n);
840 }
841
842
843 /*****************************************************************************
844 * md_number_to_disp
845 *
846 **************************************************************************** */
847 void
848 md_number_to_disp (buf, val, n)
849 char *buf;
850 long val;
851 int n;
852 {
853 md_number_to_chars (buf, val, n);
854 }
855
856 /*****************************************************************************
857 * md_number_to_field:
858 *
859 * Stick a value (an address fixup) into a bit field of
860 * previously-generated instruction.
861 *
862 **************************************************************************** */
863 void
864 md_number_to_field (instrP, val, bfixP)
865 char *instrP; /* Pointer to instruction to be fixed */
866 long val; /* Address fixup value */
867 bit_fixS *bfixP; /* Description of bit field to be fixed up */
868 {
869 int numbits; /* Length of bit field to be fixed */
870 long instr; /* 32-bit instruction to be fixed-up */
871 long sign; /* 0 or -1, according to sign bit of 'val' */
872
873 /* Convert instruction back to host byte order
874 */
875 instr = md_chars_to_number (instrP, 4);
876
877 /* Surprise! -- we stored the number of bits
878 * to be modified rather than a pointer to a structure.
879 */
880 numbits = (int) bfixP;
881 if (numbits == 1)
882 {
883 /* This is a no-op, stuck here by reloc_callj() */
884 return;
885 }
886
887 know ((numbits == 13) || (numbits == 24));
888
889 /* Propagate sign bit of 'val' for the given number of bits.
890 * Result should be all 0 or all 1
891 */
892 sign = val >> ((int) numbits - 1);
893 if (((val < 0) && (sign != -1))
894 || ((val > 0) && (sign != 0)))
895 {
896 as_bad ("Fixup of %d too large for field width of %d",
897 val, numbits);
898 }
899 else
900 {
901 /* Put bit field into instruction and write back in target
902 * byte order.
903 */
904 val &= ~(-1 << (int) numbits); /* Clear unused sign bits */
905 instr |= val;
906 md_number_to_chars (instrP, instr, 4);
907 }
908 } /* md_number_to_field() */
909
910
911 /*****************************************************************************
912 * md_parse_option
913 * Invocation line includes a switch not recognized by the base assembler.
914 * See if it's a processor-specific option. For the 960, these are:
915 *
916 * -norelax:
917 * Conditional branch instructions that require displacements
918 * greater than 13 bits (or that have external targets) should
919 * generate errors. The default is to replace each such
920 * instruction with the corresponding compare (or chkbit) and
921 * branch instructions. Note that the Intel "j" cobr directives
922 * are ALWAYS "de-optimized" in this way when necessary,
923 * regardless of the setting of this option.
924 *
925 * -b:
926 * Add code to collect information about branches taken, for
927 * later optimization of branch prediction bits by a separate
928 * tool. COBR and CNTL format instructions have branch
929 * prediction bits (in the CX architecture); if "BR" represents
930 * an instruction in one of these classes, the following rep-
931 * resents the code generated by the assembler:
932 *
933 * call <increment routine>
934 * .word 0 # pre-counter
935 * Label: BR
936 * call <increment routine>
937 * .word 0 # post-counter
938 *
939 * A table of all such "Labels" is also generated.
940 *
941 *
942 * -AKA, -AKB, -AKC, -ASA, -ASB, -AMC, -ACA:
943 * Select the 80960 architecture. Instructions or features not
944 * supported by the selected architecture cause fatal errors.
945 * The default is to generate code for any instruction or feature
946 * that is supported by SOME version of the 960 (even if this
947 * means mixing architectures!).
948 *
949 **************************************************************************** */
950 int
951 md_parse_option (argP, cntP, vecP)
952 char **argP;
953 int *cntP;
954 char ***vecP;
955 {
956 char *p;
957 struct tabentry
958 {
959 char *flag;
960 int arch;
961 };
962 static struct tabentry arch_tab[] =
963 {
964 "KA", ARCH_KA,
965 "KB", ARCH_KB,
966 "SA", ARCH_KA, /* Synonym for KA */
967 "SB", ARCH_KB, /* Synonym for KB */
968 "KC", ARCH_MC, /* Synonym for MC */
969 "MC", ARCH_MC,
970 "CA", ARCH_CA,
971 NULL, 0
972 };
973 struct tabentry *tp;
974 if (!strcmp (*argP, "linkrelax"))
975 {
976 linkrelax = 1;
977 flagseen['L'] = 1;
978 }
979 else if (!strcmp (*argP, "norelax"))
980 {
981 norelax = 1;
982
983 }
984 else if (**argP == 'b')
985 {
986 instrument_branches = 1;
987
988 }
989 else if (**argP == 'A')
990 {
991 p = (*argP) + 1;
992
993 for (tp = arch_tab; tp->flag != NULL; tp++)
994 {
995 if (!strcmp (p, tp->flag))
996 {
997 break;
998 }
999 }
1000
1001 if (tp->flag == NULL)
1002 {
1003 as_bad ("unknown architecture: %s", p);
1004 }
1005 else
1006 {
1007 architecture = tp->arch;
1008 }
1009 }
1010 else
1011 {
1012 /* Unknown option */
1013 (*argP)++;
1014 return 0;
1015 }
1016 **argP = '\0'; /* Done parsing this switch */
1017 return 1;
1018 }
1019
1020 /*****************************************************************************
1021 * md_convert_frag:
1022 * Called by base assembler after address relaxation is finished: modify
1023 * variable fragments according to how much relaxation was done.
1024 *
1025 * If the fragment substate is still 1, a 13-bit displacement was enough
1026 * to reach the symbol in question. Set up an address fixup, but otherwise
1027 * leave the cobr instruction alone.
1028 *
1029 * If the fragment substate is 2, a 13-bit displacement was not enough.
1030 * Replace the cobr with a two instructions (a compare and a branch).
1031 *
1032 **************************************************************************** */
1033 void
1034 md_convert_frag (headers, fragP)
1035 object_headers *headers;
1036 fragS *fragP;
1037 {
1038 fixS *fixP; /* Structure describing needed address fix */
1039
1040 switch (fragP->fr_subtype)
1041 {
1042 case 1:
1043 /* LEAVE SINGLE COBR INSTRUCTION */
1044 fixP = fix_new (fragP,
1045 fragP->fr_opcode - fragP->fr_literal,
1046 4,
1047 fragP->fr_symbol,
1048 0,
1049 fragP->fr_offset,
1050 1,
1051 NO_RELOC);
1052
1053 fixP->fx_bit_fixP = (bit_fixS *) 13; /* size of bit field */
1054 break;
1055 case 2:
1056 /* REPLACE COBR WITH COMPARE/BRANCH INSTRUCTIONS */
1057 relax_cobr (fragP);
1058 break;
1059 default:
1060 BAD_CASE (fragP->fr_subtype);
1061 break;
1062 }
1063 }
1064
1065 /*****************************************************************************
1066 * md_estimate_size_before_relax: How much does it look like *fragP will grow?
1067 *
1068 * Called by base assembler just before address relaxation.
1069 * Return the amount by which the fragment will grow.
1070 *
1071 * Any symbol that is now undefined will not become defined; cobr's
1072 * based on undefined symbols will have to be replaced with a compare
1073 * instruction and a branch instruction, and the code fragment will grow
1074 * by 4 bytes.
1075 *
1076 **************************************************************************** */
1077 int
1078 md_estimate_size_before_relax (fragP, segment_type)
1079 register fragS *fragP;
1080 register segT segment_type;
1081 {
1082 /* If symbol is undefined in this segment, go to "relaxed" state
1083 * (compare and branch instructions instead of cobr) right now.
1084 */
1085 if (S_GET_SEGMENT (fragP->fr_symbol) != segment_type)
1086 {
1087 relax_cobr (fragP);
1088 return 4;
1089 }
1090 return 0;
1091 } /* md_estimate_size_before_relax() */
1092
1093
1094 /*****************************************************************************
1095 * md_ri_to_chars:
1096 * This routine exists in order to overcome machine byte-order problems
1097 * when dealing with bit-field entries in the relocation_info struct.
1098 *
1099 * But relocation info will be used on the host machine only (only
1100 * executable code is actually downloaded to the i80960). Therefore,
1101 * we leave it in host byte order.
1102 *
1103 * The above comment is no longer true. This routine now really
1104 * does do the reordering (Ian Taylor 28 Aug 92).
1105 *
1106 **************************************************************************** */
1107 void
1108 md_ri_to_chars (where, ri)
1109 char *where;
1110 struct relocation_info *ri;
1111 {
1112 md_number_to_chars (where, ri->r_address,
1113 sizeof (ri->r_address));
1114 where[4] = ri->r_index & 0x0ff;
1115 where[5] = (ri->r_index >> 8) & 0x0ff;
1116 where[6] = (ri->r_index >> 16) & 0x0ff;
1117 where[7] = ((ri->r_pcrel << 0)
1118 | (ri->r_length << 1)
1119 | (ri->r_extern << 3)
1120 | (ri->r_bsr << 4)
1121 | (ri->r_disp << 5)
1122 | (ri->r_callj << 6));
1123 } /* md_ri_to_chars() */
1124
1125 #ifndef WORKING_DOT_WORD
1126
1127 int md_short_jump_size = 0;
1128 int md_long_jump_size = 0;
1129
1130 void
1131 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
1132 char *ptr;
1133 long from_addr;
1134 long to_addr;
1135 fragS *frag;
1136 symbolS *to_symbol;
1137 {
1138 as_fatal ("failed sanity check.");
1139 }
1140
1141 void
1142 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
1143 char *ptr;
1144 long from_addr, to_addr;
1145 fragS *frag;
1146 symbolS *to_symbol;
1147 {
1148 as_fatal ("failed sanity check.");
1149 }
1150
1151 #endif
1152 \f
1153 /*************************************************************
1154 * *
1155 * FOLLOWING ARE THE LOCAL ROUTINES, IN ALPHABETICAL ORDER *
1156 * *
1157 ************************************************************ */
1158
1159
1160
1161 /*****************************************************************************
1162 * brcnt_emit: Emit code to increment inline branch counter.
1163 *
1164 * See the comments above the declaration of 'br_cnt' for details on
1165 * branch-prediction instrumentation.
1166 **************************************************************************** */
1167 static void
1168 brcnt_emit ()
1169 {
1170 ctrl_fmt (BR_CNT_FUNC, CALL, 1); /* Emit call to "increment" routine */
1171 emit (0); /* Emit inline counter to be incremented */
1172 }
1173
1174 /*****************************************************************************
1175 * brlab_next: generate the next branch local label
1176 *
1177 * See the comments above the declaration of 'br_cnt' for details on
1178 * branch-prediction instrumentation.
1179 **************************************************************************** */
1180 static char *
1181 brlab_next ()
1182 {
1183 static char buf[20];
1184
1185 sprintf (buf, "%s%d", BR_LABEL_BASE, br_cnt++);
1186 return buf;
1187 }
1188
1189 /*****************************************************************************
1190 * brtab_emit: generate the fetch-prediction branch table.
1191 *
1192 * See the comments above the declaration of 'br_cnt' for details on
1193 * branch-prediction instrumentation.
1194 *
1195 * The code emitted here would be functionally equivalent to the following
1196 * example assembler source.
1197 *
1198 * .data
1199 * .align 2
1200 * BR_TAB_NAME:
1201 * .word 0 # link to next table
1202 * .word 3 # length of table
1203 * .word LBRANCH0 # 1st entry in table proper
1204 * .word LBRANCH1
1205 * .word LBRANCH2
1206 ***************************************************************************** */
1207 void
1208 brtab_emit ()
1209 {
1210 int i;
1211 char buf[20];
1212 char *p; /* Where the binary was output to */
1213 fixS *fixP; /*->description of deferred address fixup */
1214
1215 if (!instrument_branches)
1216 {
1217 return;
1218 }
1219
1220 subseg_new (SEG_DATA, 0); /* .data */
1221 frag_align (2, 0); /* .align 2 */
1222 record_alignment (now_seg, 2);
1223 colon (BR_TAB_NAME); /* BR_TAB_NAME: */
1224 emit (0); /* .word 0 #link to next table */
1225 emit (br_cnt); /* .word n #length of table */
1226
1227 for (i = 0; i < br_cnt; i++)
1228 {
1229 sprintf (buf, "%s%d", BR_LABEL_BASE, i);
1230 p = emit (0);
1231 fixP = fix_new (frag_now,
1232 p - frag_now->fr_literal,
1233 4,
1234 symbol_find (buf),
1235 0,
1236 0,
1237 0,
1238 NO_RELOC);
1239 fixP->fx_im_disp = 2; /* 32-bit displacement fix */
1240 }
1241 }
1242
1243 /*****************************************************************************
1244 * cobr_fmt: generate a COBR-format instruction
1245 *
1246 **************************************************************************** */
1247 static
1248 void
1249 cobr_fmt (arg, opcode, oP)
1250 char *arg[]; /* arg[0]->opcode mnemonic, arg[1-3]->operands (ascii) */
1251 long opcode; /* Opcode, with branch-prediction bits already set
1252 * if necessary.
1253 */
1254 struct i960_opcode *oP;
1255 /*->description of instruction */
1256 {
1257 long instr; /* 32-bit instruction */
1258 struct regop regop; /* Description of register operand */
1259 int n; /* Number of operands */
1260 int var_frag; /* 1 if varying length code fragment should
1261 * be emitted; 0 if an address fix
1262 * should be emitted.
1263 */
1264
1265 instr = opcode;
1266 n = oP->num_ops;
1267
1268 if (n >= 1)
1269 {
1270 /* First operand (if any) of a COBR is always a register
1271 * operand. Parse it.
1272 */
1273 parse_regop (&regop, arg[1], oP->operand[0]);
1274 instr |= (regop.n << 19) | (regop.mode << 13);
1275 }
1276 if (n >= 2)
1277 {
1278 /* Second operand (if any) of a COBR is always a register
1279 * operand. Parse it.
1280 */
1281 parse_regop (&regop, arg[2], oP->operand[1]);
1282 instr |= (regop.n << 14) | regop.special;
1283 }
1284
1285
1286 if (n < 3)
1287 {
1288 emit (instr);
1289
1290 }
1291 else
1292 {
1293 if (instrument_branches)
1294 {
1295 brcnt_emit ();
1296 colon (brlab_next ());
1297 }
1298
1299 /* A third operand to a COBR is always a displacement.
1300 * Parse it; if it's relaxable (a cobr "j" directive, or any
1301 * cobr other than bbs/bbc when the "-norelax" option is not in
1302 * use) set up a variable code fragment; otherwise set up an
1303 * address fix.
1304 */
1305 var_frag = !norelax || (oP->format == COJ); /* TRUE or FALSE */
1306 get_cdisp (arg[3], "COBR", instr, 13, var_frag, 0);
1307
1308 if (instrument_branches)
1309 {
1310 brcnt_emit ();
1311 }
1312 }
1313 } /* cobr_fmt() */
1314
1315
1316 /*****************************************************************************
1317 * ctrl_fmt: generate a CTRL-format instruction
1318 *
1319 **************************************************************************** */
1320 static
1321 void
1322 ctrl_fmt (targP, opcode, num_ops)
1323 char *targP; /* Pointer to text of lone operand (if any) */
1324 long opcode; /* Template of instruction */
1325 int num_ops; /* Number of operands */
1326 {
1327 int instrument; /* TRUE iff we should add instrumentation to track
1328 * how often the branch is taken
1329 */
1330
1331
1332 if (num_ops == 0)
1333 {
1334 emit (opcode); /* Output opcode */
1335 }
1336 else
1337 {
1338
1339 instrument = instrument_branches && (opcode != CALL)
1340 && (opcode != B) && (opcode != RET) && (opcode != BAL);
1341
1342 if (instrument)
1343 {
1344 brcnt_emit ();
1345 colon (brlab_next ());
1346 }
1347
1348 /* The operand MUST be an ip-relative displacment. Parse it
1349 * and set up address fix for the instruction we just output.
1350 */
1351 get_cdisp (targP, "CTRL", opcode, 24, 0, 0);
1352
1353 if (instrument)
1354 {
1355 brcnt_emit ();
1356 }
1357 }
1358
1359 }
1360
1361
1362 /*****************************************************************************
1363 * emit: output instruction binary
1364 *
1365 * Output instruction binary, in target byte order, 4 bytes at a time.
1366 * Return pointer to where it was placed.
1367 *
1368 **************************************************************************** */
1369 static
1370 char *
1371 emit (instr)
1372 long instr; /* Word to be output, host byte order */
1373 {
1374 char *toP; /* Where to output it */
1375
1376 toP = frag_more (4); /* Allocate storage */
1377 md_number_to_chars (toP, instr, 4); /* Convert to target byte order */
1378 return toP;
1379 }
1380
1381
1382 /*****************************************************************************
1383 * get_args: break individual arguments out of comma-separated list
1384 *
1385 * Input assumptions:
1386 * - all comments and labels have been removed
1387 * - all strings of whitespace have been collapsed to a single blank.
1388 * - all character constants ('x') have been replaced with decimal
1389 *
1390 * Output:
1391 * args[0] is untouched. args[1] points to first operand, etc. All args:
1392 * - are NULL-terminated
1393 * - contain no whitespace
1394 *
1395 * Return value:
1396 * Number of operands (0,1,2, or 3) or -1 on error.
1397 *
1398 **************************************************************************** */
1399 static int
1400 get_args (p, args)
1401 register char *p; /* Pointer to comma-separated operands; MUCKED BY US */
1402 char *args[]; /* Output arg: pointers to operands placed in args[1-3].
1403 * MUST ACCOMMODATE 4 ENTRIES (args[0-3]).
1404 */
1405 {
1406 register int n; /* Number of operands */
1407 register char *to;
1408 /* char buf[4]; */
1409 /* int len; */
1410
1411
1412 /* Skip lead white space */
1413 while (*p == ' ')
1414 {
1415 p++;
1416 }
1417
1418 if (*p == '\0')
1419 {
1420 return 0;
1421 }
1422
1423 n = 1;
1424 args[1] = p;
1425
1426 /* Squeze blanks out by moving non-blanks toward start of string.
1427 * Isolate operands, whenever comma is found.
1428 */
1429 to = p;
1430 while (*p != '\0')
1431 {
1432
1433 if (*p == ' ')
1434 {
1435 p++;
1436
1437 }
1438 else if (*p == ',')
1439 {
1440
1441 /* Start of operand */
1442 if (n == 3)
1443 {
1444 as_bad ("too many operands");
1445 return -1;
1446 }
1447 *to++ = '\0'; /* Terminate argument */
1448 args[++n] = to; /* Start next argument */
1449 p++;
1450
1451 }
1452 else
1453 {
1454 *to++ = *p++;
1455 }
1456 }
1457 *to = '\0';
1458 return n;
1459 }
1460
1461
1462 /*****************************************************************************
1463 * get_cdisp: handle displacement for a COBR or CTRL instruction.
1464 *
1465 * Parse displacement for a COBR or CTRL instruction.
1466 *
1467 * If successful, output the instruction opcode and set up for it,
1468 * depending on the arg 'var_frag', either:
1469 * o an address fixup to be done when all symbol values are known, or
1470 * o a varying length code fragment, with address fixup info. This
1471 * will be done for cobr instructions that may have to be relaxed
1472 * in to compare/branch instructions (8 bytes) if the final address
1473 * displacement is greater than 13 bits.
1474 *
1475 **************************************************************************** */
1476 static
1477 void
1478 get_cdisp (dispP, ifmtP, instr, numbits, var_frag, callj)
1479 char *dispP; /*->displacement as specified in source instruction */
1480 char *ifmtP; /*->"COBR" or "CTRL" (for use in error message) */
1481 long instr; /* Instruction needing the displacement */
1482 int numbits; /* # bits of displacement (13 for COBR, 24 for CTRL) */
1483 int var_frag; /* 1 if varying length code fragment should be emitted;
1484 * 0 if an address fix should be emitted.
1485 */
1486 int callj; /* 1 if callj relocation should be done; else 0 */
1487 {
1488 expressionS e; /* Parsed expression */
1489 fixS *fixP; /* Structure describing needed address fix */
1490 char *outP; /* Where instruction binary is output to */
1491
1492 fixP = NULL;
1493
1494 switch (parse_expr (dispP, &e))
1495 {
1496
1497 case SEG_GOOF:
1498 as_bad ("expression syntax error");
1499 break;
1500
1501 case SEG_TEXT:
1502 case SEG_UNKNOWN:
1503 if (var_frag)
1504 {
1505 outP = frag_more (8); /* Allocate worst-case storage */
1506 md_number_to_chars (outP, instr, 4);
1507 frag_variant (rs_machine_dependent, 4, 4, 1,
1508 adds (e), offs (e), outP, 0, 0);
1509 }
1510 else
1511 {
1512 /* Set up a new fix structure, so address can be updated
1513 * when all symbol values are known.
1514 */
1515 outP = emit (instr);
1516 fixP = fix_new (frag_now,
1517 outP - frag_now->fr_literal,
1518 4,
1519 adds (e),
1520 0,
1521 offs (e),
1522 1,
1523 NO_RELOC);
1524
1525 fixP->fx_callj = callj;
1526
1527 /* We want to modify a bit field when the address is
1528 * known. But we don't need all the garbage in the
1529 * bit_fix structure. So we're going to lie and store
1530 * the number of bits affected instead of a pointer.
1531 */
1532 fixP->fx_bit_fixP = (bit_fixS *) numbits;
1533 }
1534 break;
1535
1536 case SEG_DATA:
1537 case SEG_BSS:
1538 as_bad ("attempt to branch into different segment");
1539 break;
1540
1541 default:
1542 as_bad ("target of %s instruction must be a label", ifmtP);
1543 break;
1544 }
1545 }
1546
1547
1548 /*****************************************************************************
1549 * get_ispec: parse a memory operand for an index specification
1550 *
1551 * Here, an "index specification" is taken to be anything surrounded
1552 * by square brackets and NOT followed by anything else.
1553 *
1554 * If it's found, detach it from the input string, remove the surrounding
1555 * square brackets, and return a pointer to it. Otherwise, return NULL.
1556 *
1557 **************************************************************************** */
1558 static
1559 char *
1560 get_ispec (textP)
1561 char *textP; /*->memory operand from source instruction, no white space */
1562 {
1563 char *start; /*->start of index specification */
1564 char *end; /*->end of index specification */
1565
1566 /* Find opening square bracket, if any
1567 */
1568 start = strchr (textP, '[');
1569
1570 if (start != NULL)
1571 {
1572
1573 /* Eliminate '[', detach from rest of operand */
1574 *start++ = '\0';
1575
1576 end = strchr (start, ']');
1577
1578 if (end == NULL)
1579 {
1580 as_bad ("unmatched '['");
1581
1582 }
1583 else
1584 {
1585 /* Eliminate ']' and make sure it was the last thing
1586 * in the string.
1587 */
1588 *end = '\0';
1589 if (*(end + 1) != '\0')
1590 {
1591 as_bad ("garbage after index spec ignored");
1592 }
1593 }
1594 }
1595 return start;
1596 }
1597
1598 /*****************************************************************************
1599 * get_regnum:
1600 *
1601 * Look up a (suspected) register name in the register table and return the
1602 * associated register number (or -1 if not found).
1603 *
1604 **************************************************************************** */
1605 static
1606 int
1607 get_regnum (regname)
1608 char *regname; /* Suspected register name */
1609 {
1610 int *rP;
1611
1612 rP = (int *) hash_find (reg_hash, regname);
1613 return (rP == NULL) ? -1 : *rP;
1614 }
1615
1616
1617 /*****************************************************************************
1618 * i_scan: perform lexical scan of ascii assembler instruction.
1619 *
1620 * Input assumptions:
1621 * - input string is an i80960 instruction (not a pseudo-op)
1622 * - all comments and labels have been removed
1623 * - all strings of whitespace have been collapsed to a single blank.
1624 *
1625 * Output:
1626 * args[0] points to opcode, other entries point to operands. All strings:
1627 * - are NULL-terminated
1628 * - contain no whitespace
1629 * - have character constants ('x') replaced with a decimal number
1630 *
1631 * Return value:
1632 * Number of operands (0,1,2, or 3) or -1 on error.
1633 *
1634 **************************************************************************** */
1635 static int
1636 i_scan (iP, args)
1637 register char *iP; /* Pointer to ascii instruction; MUCKED BY US. */
1638 char *args[]; /* Output arg: pointers to opcode and operands placed
1639 * here. MUST ACCOMMODATE 4 ENTRIES.
1640 */
1641 {
1642
1643 /* Isolate opcode */
1644 if (*(iP) == ' ')
1645 {
1646 iP++;
1647 } /* Skip lead space, if any */
1648 args[0] = iP;
1649 for (; *iP != ' '; iP++)
1650 {
1651 if (*iP == '\0')
1652 {
1653 /* There are no operands */
1654 if (args[0] == iP)
1655 {
1656 /* We never moved: there was no opcode either! */
1657 as_bad ("missing opcode");
1658 return -1;
1659 }
1660 return 0;
1661 }
1662 }
1663 *iP++ = '\0'; /* Terminate opcode */
1664 return (get_args (iP, args));
1665 } /* i_scan() */
1666
1667
1668 /*****************************************************************************
1669 * mem_fmt: generate a MEMA- or MEMB-format instruction
1670 *
1671 **************************************************************************** */
1672 static void
1673 mem_fmt (args, oP, callx)
1674 char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */
1675 struct i960_opcode *oP; /* Pointer to description of instruction */
1676 int callx; /* Is this a callx opcode */
1677 {
1678 int i; /* Loop counter */
1679 struct regop regop; /* Description of register operand */
1680 char opdesc; /* Operand descriptor byte */
1681 memS instr; /* Description of binary to be output */
1682 char *outP; /* Where the binary was output to */
1683 expressionS expr; /* Parsed expression */
1684 fixS *fixP; /*->description of deferred address fixup */
1685
1686 memset (&instr, '\0', sizeof (memS));
1687 instr.opcode = oP->opcode;
1688
1689 /* Process operands. */
1690 for (i = 1; i <= oP->num_ops; i++)
1691 {
1692 opdesc = oP->operand[i - 1];
1693
1694 if (MEMOP (opdesc))
1695 {
1696 parse_memop (&instr, args[i], oP->format);
1697 }
1698 else
1699 {
1700 parse_regop (&regop, args[i], opdesc);
1701 instr.opcode |= regop.n << 19;
1702 }
1703 }
1704
1705 /* Output opcode */
1706 outP = emit (instr.opcode);
1707
1708 if (instr.disp == 0)
1709 {
1710 return;
1711 }
1712
1713 /* Parse and process the displacement */
1714 switch (parse_expr (instr.e, &expr))
1715 {
1716
1717 case SEG_GOOF:
1718 as_bad ("expression syntax error");
1719 break;
1720
1721 case SEG_ABSOLUTE:
1722 if (instr.disp == 32)
1723 {
1724 (void) emit (offs (expr)); /* Output displacement */
1725 }
1726 else
1727 {
1728 /* 12-bit displacement */
1729 if (offs (expr) & ~0xfff)
1730 {
1731 /* Won't fit in 12 bits: convert already-output
1732 * instruction to MEMB format, output
1733 * displacement.
1734 */
1735 mema_to_memb (outP);
1736 (void) emit (offs (expr));
1737 }
1738 else
1739 {
1740 /* WILL fit in 12 bits: OR into opcode and
1741 * overwrite the binary we already put out
1742 */
1743 instr.opcode |= offs (expr);
1744 md_number_to_chars (outP, instr.opcode, 4);
1745 }
1746 }
1747 break;
1748
1749 case SEG_DIFFERENCE:
1750 case SEG_TEXT:
1751 case SEG_DATA:
1752 case SEG_BSS:
1753 case SEG_UNKNOWN:
1754 if (instr.disp == 12)
1755 {
1756 /* Displacement is dependent on a symbol, whose value
1757 * may change at link time. We HAVE to reserve 32 bits.
1758 * Convert already-output opcode to MEMB format.
1759 */
1760 mema_to_memb (outP);
1761 }
1762
1763 /* Output 0 displacement and set up address fixup for when
1764 * this symbol's value becomes known.
1765 */
1766 outP = emit ((long) 0);
1767 fixP = fix_new (frag_now,
1768 outP - frag_now->fr_literal,
1769 4,
1770 adds (expr),
1771 subs (expr),
1772 offs (expr),
1773 0,
1774 NO_RELOC);
1775 fixP->fx_im_disp = 2; /* 32-bit displacement fix */
1776 fixP->fx_bsr = callx; /*SAC LD RELAX HACK *//* Mark reloc as being in i stream */
1777 break;
1778
1779 default:
1780 BAD_CASE (segs (expr));
1781 break;
1782 }
1783 } /* memfmt() */
1784
1785
1786 /*****************************************************************************
1787 * mema_to_memb: convert a MEMA-format opcode to a MEMB-format opcode.
1788 *
1789 * There are 2 possible MEMA formats:
1790 * - displacement only
1791 * - displacement + abase
1792 *
1793 * They are distinguished by the setting of the MEMA_ABASE bit.
1794 *
1795 **************************************************************************** */
1796 static void
1797 mema_to_memb (opcodeP)
1798 char *opcodeP; /* Where to find the opcode, in target byte order */
1799 {
1800 long opcode; /* Opcode in host byte order */
1801 long mode; /* Mode bits for MEMB instruction */
1802
1803 opcode = md_chars_to_number (opcodeP, 4);
1804 know (!(opcode & MEMB_BIT));
1805
1806 mode = MEMB_BIT | D_BIT;
1807 if (opcode & MEMA_ABASE)
1808 {
1809 mode |= A_BIT;
1810 }
1811
1812 opcode &= 0xffffc000; /* Clear MEMA offset and mode bits */
1813 opcode |= mode; /* Set MEMB mode bits */
1814
1815 md_number_to_chars (opcodeP, opcode, 4);
1816 } /* mema_to_memb() */
1817
1818
1819 /*****************************************************************************
1820 * parse_expr: parse an expression
1821 *
1822 * Use base assembler's expression parser to parse an expression.
1823 * It, unfortunately, runs off a global which we have to save/restore
1824 * in order to make it work for us.
1825 *
1826 * An empty expression string is treated as an absolute 0.
1827 *
1828 * Return "segment" to which the expression evaluates.
1829 * Return SEG_GOOF regardless of expression evaluation if entire input
1830 * string is not consumed in the evaluation -- tolerate no dangling junk!
1831 *
1832 **************************************************************************** */
1833 static
1834 segT
1835 parse_expr (textP, expP)
1836 char *textP; /* Text of expression to be parsed */
1837 expressionS *expP; /* Where to put the results of parsing */
1838 {
1839 char *save_in; /* Save global here */
1840 segT seg; /* Segment to which expression evaluates */
1841 symbolS *symP;
1842
1843 know (textP);
1844
1845 if (*textP == '\0')
1846 {
1847 /* Treat empty string as absolute 0 */
1848 expP->X_add_symbol = expP->X_subtract_symbol = NULL;
1849 expP->X_add_number = 0;
1850 seg = expP->X_seg = SEG_ABSOLUTE;
1851
1852 }
1853 else
1854 {
1855 save_in = input_line_pointer; /* Save global */
1856 input_line_pointer = textP; /* Make parser work for us */
1857
1858 seg = expression (expP);
1859 if (input_line_pointer - textP != strlen (textP))
1860 {
1861 /* Did not consume all of the input */
1862 seg = SEG_GOOF;
1863 }
1864 symP = expP->X_add_symbol;
1865 if (symP && (hash_find (reg_hash, S_GET_NAME (symP))))
1866 {
1867 /* Register name in an expression */
1868 seg = SEG_GOOF;
1869 }
1870
1871 input_line_pointer = save_in; /* Restore global */
1872 }
1873 return seg;
1874 }
1875
1876
1877 /*****************************************************************************
1878 * parse_ldcont:
1879 * Parse and replace a 'ldconst' pseudo-instruction with an appropriate
1880 * i80960 instruction.
1881 *
1882 * Assumes the input consists of:
1883 * arg[0] opcode mnemonic ('ldconst')
1884 * arg[1] first operand (constant)
1885 * arg[2] name of register to be loaded
1886 *
1887 * Replaces opcode and/or operands as appropriate.
1888 *
1889 * Returns the new number of arguments, or -1 on failure.
1890 *
1891 **************************************************************************** */
1892 static
1893 int
1894 parse_ldconst (arg)
1895 char *arg[]; /* See above */
1896 {
1897 int n; /* Constant to be loaded */
1898 int shift; /* Shift count for "shlo" instruction */
1899 static char buf[5]; /* Literal for first operand */
1900 static char buf2[5]; /* Literal for second operand */
1901 expressionS e; /* Parsed expression */
1902
1903
1904 arg[3] = NULL; /* So we can tell at the end if it got used or not */
1905
1906 switch (parse_expr (arg[1], &e))
1907 {
1908
1909 case SEG_TEXT:
1910 case SEG_DATA:
1911 case SEG_BSS:
1912 case SEG_UNKNOWN:
1913 case SEG_DIFFERENCE:
1914 /* We're dependent on one or more symbols -- use "lda" */
1915 arg[0] = "lda";
1916 break;
1917
1918 case SEG_ABSOLUTE:
1919 /* Try the following mappings:
1920 * ldconst 0,<reg> ->mov 0,<reg>
1921 * ldconst 31,<reg> ->mov 31,<reg>
1922 * ldconst 32,<reg> ->addo 1,31,<reg>
1923 * ldconst 62,<reg> ->addo 31,31,<reg>
1924 * ldconst 64,<reg> ->shlo 8,3,<reg>
1925 * ldconst -1,<reg> ->subo 1,0,<reg>
1926 * ldconst -31,<reg>->subo 31,0,<reg>
1927 *
1928 * anthing else becomes:
1929 * lda xxx,<reg>
1930 */
1931 n = offs (e);
1932 if ((0 <= n) && (n <= 31))
1933 {
1934 arg[0] = "mov";
1935
1936 }
1937 else if ((-31 <= n) && (n <= -1))
1938 {
1939 arg[0] = "subo";
1940 arg[3] = arg[2];
1941 sprintf (buf, "%d", -n);
1942 arg[1] = buf;
1943 arg[2] = "0";
1944
1945 }
1946 else if ((32 <= n) && (n <= 62))
1947 {
1948 arg[0] = "addo";
1949 arg[3] = arg[2];
1950 arg[1] = "31";
1951 sprintf (buf, "%d", n - 31);
1952 arg[2] = buf;
1953
1954 }
1955 else if ((shift = shift_ok (n)) != 0)
1956 {
1957 arg[0] = "shlo";
1958 arg[3] = arg[2];
1959 sprintf (buf, "%d", shift);
1960 arg[1] = buf;
1961 sprintf (buf2, "%d", n >> shift);
1962 arg[2] = buf2;
1963
1964 }
1965 else
1966 {
1967 arg[0] = "lda";
1968 }
1969 break;
1970
1971 default:
1972 as_bad ("invalid constant");
1973 return -1;
1974 break;
1975 }
1976 return (arg[3] == 0) ? 2 : 3;
1977 }
1978
1979 /*****************************************************************************
1980 * parse_memop: parse a memory operand
1981 *
1982 * This routine is based on the observation that the 4 mode bits of the
1983 * MEMB format, taken individually, have fairly consistent meaning:
1984 *
1985 * M3 (bit 13): 1 if displacement is present (D_BIT)
1986 * M2 (bit 12): 1 for MEMB instructions (MEMB_BIT)
1987 * M1 (bit 11): 1 if index is present (I_BIT)
1988 * M0 (bit 10): 1 if abase is present (A_BIT)
1989 *
1990 * So we parse the memory operand and set bits in the mode as we find
1991 * things. Then at the end, if we go to MEMB format, we need only set
1992 * the MEMB bit (M2) and our mode is built for us.
1993 *
1994 * Unfortunately, I said "fairly consistent". The exceptions:
1995 *
1996 * DBIA
1997 * 0100 Would seem illegal, but means "abase-only".
1998 *
1999 * 0101 Would seem to mean "abase-only" -- it means IP-relative.
2000 * Must be converted to 0100.
2001 *
2002 * 0110 Would seem to mean "index-only", but is reserved.
2003 * We turn on the D bit and provide a 0 displacement.
2004 *
2005 * The other thing to observe is that we parse from the right, peeling
2006 * things * off as we go: first any index spec, then any abase, then
2007 * the displacement.
2008 *
2009 **************************************************************************** */
2010 static
2011 void
2012 parse_memop (memP, argP, optype)
2013 memS *memP; /* Where to put the results */
2014 char *argP; /* Text of the operand to be parsed */
2015 int optype; /* MEM1, MEM2, MEM4, MEM8, MEM12, or MEM16 */
2016 {
2017 char *indexP; /* Pointer to index specification with "[]" removed */
2018 char *p; /* Temp char pointer */
2019 char iprel_flag; /* True if this is an IP-relative operand */
2020 int regnum; /* Register number */
2021 int scale; /* Scale factor: 1,2,4,8, or 16. Later converted
2022 * to internal format (0,1,2,3,4 respectively).
2023 */
2024 int mode; /* MEMB mode bits */
2025 int *intP; /* Pointer to register number */
2026
2027 /* The following table contains the default scale factors for each
2028 * type of memory instruction. It is accessed using (optype-MEM1)
2029 * as an index -- thus it assumes the 'optype' constants are assigned
2030 * consecutive values, in the order they appear in this table
2031 */
2032 static int def_scale[] =
2033 {
2034 1, /* MEM1 */
2035 2, /* MEM2 */
2036 4, /* MEM4 */
2037 8, /* MEM8 */
2038 -1, /* MEM12 -- no valid default */
2039 16 /* MEM16 */
2040 };
2041
2042
2043 iprel_flag = mode = 0;
2044
2045 /* Any index present? */
2046 indexP = get_ispec (argP);
2047 if (indexP)
2048 {
2049 p = strchr (indexP, '*');
2050 if (p == NULL)
2051 {
2052 /* No explicit scale -- use default for this
2053 *instruction type.
2054 */
2055 scale = def_scale[optype - MEM1];
2056 }
2057 else
2058 {
2059 *p++ = '\0'; /* Eliminate '*' */
2060
2061 /* Now indexP->a '\0'-terminated register name,
2062 * and p->a scale factor.
2063 */
2064
2065 if (!strcmp (p, "16"))
2066 {
2067 scale = 16;
2068 }
2069 else if (strchr ("1248", *p) && (p[1] == '\0'))
2070 {
2071 scale = *p - '0';
2072 }
2073 else
2074 {
2075 scale = -1;
2076 }
2077 }
2078
2079 regnum = get_regnum (indexP); /* Get index reg. # */
2080 if (!IS_RG_REG (regnum))
2081 {
2082 as_bad ("invalid index register");
2083 return;
2084 }
2085
2086 /* Convert scale to its binary encoding */
2087 switch (scale)
2088 {
2089 case 1:
2090 scale = 0 << 7;
2091 break;
2092 case 2:
2093 scale = 1 << 7;
2094 break;
2095 case 4:
2096 scale = 2 << 7;
2097 break;
2098 case 8:
2099 scale = 3 << 7;
2100 break;
2101 case 16:
2102 scale = 4 << 7;
2103 break;
2104 default:
2105 as_bad ("invalid scale factor");
2106 return;
2107 };
2108
2109 memP->opcode |= scale | regnum; /* Set index bits in opcode */
2110 mode |= I_BIT; /* Found a valid index spec */
2111 }
2112
2113 /* Any abase (Register Indirect) specification present? */
2114 if ((p = strrchr (argP, '(')) != NULL)
2115 {
2116 /* "(" is there -- does it start a legal abase spec?
2117 * (If not it could be part of a displacement expression.)
2118 */
2119 intP = (int *) hash_find (areg_hash, p);
2120 if (intP != NULL)
2121 {
2122 /* Got an abase here */
2123 regnum = *intP;
2124 *p = '\0'; /* discard register spec */
2125 if (regnum == IPREL)
2126 {
2127 /* We have to specialcase ip-rel mode */
2128 iprel_flag = 1;
2129 }
2130 else
2131 {
2132 memP->opcode |= regnum << 14;
2133 mode |= A_BIT;
2134 }
2135 }
2136 }
2137
2138 /* Any expression present? */
2139 memP->e = argP;
2140 if (*argP != '\0')
2141 {
2142 mode |= D_BIT;
2143 }
2144
2145 /* Special-case ip-relative addressing */
2146 if (iprel_flag)
2147 {
2148 if (mode & I_BIT)
2149 {
2150 syntax ();
2151 }
2152 else
2153 {
2154 memP->opcode |= 5 << 10; /* IP-relative mode */
2155 memP->disp = 32;
2156 }
2157 return;
2158 }
2159
2160 /* Handle all other modes */
2161 switch (mode)
2162 {
2163 case D_BIT | A_BIT:
2164 /* Go with MEMA instruction format for now (grow to MEMB later
2165 * if 12 bits is not enough for the displacement).
2166 * MEMA format has a single mode bit: set it to indicate
2167 * that abase is present.
2168 */
2169 memP->opcode |= MEMA_ABASE;
2170 memP->disp = 12;
2171 break;
2172
2173 case D_BIT:
2174 /* Go with MEMA instruction format for now (grow to MEMB later
2175 * if 12 bits is not enough for the displacement).
2176 */
2177 memP->disp = 12;
2178 break;
2179
2180 case A_BIT:
2181 /* For some reason, the bit string for this mode is not
2182 * consistent: it should be 0 (exclusive of the MEMB bit),
2183 * so we set it "by hand" here.
2184 */
2185 memP->opcode |= MEMB_BIT;
2186 break;
2187
2188 case A_BIT | I_BIT:
2189 /* set MEMB bit in mode, and OR in mode bits */
2190 memP->opcode |= mode | MEMB_BIT;
2191 break;
2192
2193 case I_BIT:
2194 /* Treat missing displacement as displacement of 0 */
2195 mode |= D_BIT;
2196 /***********************
2197 * Fall into next case *
2198 ********************** */
2199 case D_BIT | A_BIT | I_BIT:
2200 case D_BIT | I_BIT:
2201 /* set MEMB bit in mode, and OR in mode bits */
2202 memP->opcode |= mode | MEMB_BIT;
2203 memP->disp = 32;
2204 break;
2205
2206 default:
2207 syntax ();
2208 break;
2209 }
2210 }
2211
2212 /*****************************************************************************
2213 * parse_po: parse machine-dependent pseudo-op
2214 *
2215 * This is a top-level routine for machine-dependent pseudo-ops. It slurps
2216 * up the rest of the input line, breaks out the individual arguments,
2217 * and dispatches them to the correct handler.
2218 **************************************************************************** */
2219 static
2220 void
2221 parse_po (po_num)
2222 int po_num; /* Pseudo-op number: currently S_LEAFPROC or S_SYSPROC */
2223 {
2224 char *args[4]; /* Pointers operands, with no embedded whitespace.
2225 * arg[0] unused.
2226 * arg[1-3]->operands
2227 */
2228 int n_ops; /* Number of operands */
2229 char *p; /* Pointer to beginning of unparsed argument string */
2230 char eol; /* Character that indicated end of line */
2231
2232 extern char is_end_of_line[];
2233
2234 /* Advance input pointer to end of line. */
2235 p = input_line_pointer;
2236 while (!is_end_of_line[*input_line_pointer])
2237 {
2238 input_line_pointer++;
2239 }
2240 eol = *input_line_pointer; /* Save end-of-line char */
2241 *input_line_pointer = '\0'; /* Terminate argument list */
2242
2243 /* Parse out operands */
2244 n_ops = get_args (p, args);
2245 if (n_ops == -1)
2246 {
2247 return;
2248 }
2249
2250 /* Dispatch to correct handler */
2251 switch (po_num)
2252 {
2253 case S_SYSPROC:
2254 s_sysproc (n_ops, args);
2255 break;
2256 case S_LEAFPROC:
2257 s_leafproc (n_ops, args);
2258 break;
2259 default:
2260 BAD_CASE (po_num);
2261 break;
2262 }
2263
2264 /* Restore eol, so line numbers get updated correctly. Base assembler
2265 * assumes we leave input pointer pointing at char following the eol.
2266 */
2267 *input_line_pointer++ = eol;
2268 }
2269
2270 /*****************************************************************************
2271 * parse_regop: parse a register operand.
2272 *
2273 * In case of illegal operand, issue a message and return some valid
2274 * information so instruction processing can continue.
2275 **************************************************************************** */
2276 static
2277 void
2278 parse_regop (regopP, optext, opdesc)
2279 struct regop *regopP; /* Where to put description of register operand */
2280 char *optext; /* Text of operand */
2281 char opdesc; /* Descriptor byte: what's legal for this operand */
2282 {
2283 int n; /* Register number */
2284 expressionS e; /* Parsed expression */
2285
2286 /* See if operand is a register */
2287 n = get_regnum (optext);
2288 if (n >= 0)
2289 {
2290 if (IS_RG_REG (n))
2291 {
2292 /* global or local register */
2293 if (!REG_ALIGN (opdesc, n))
2294 {
2295 as_bad ("unaligned register");
2296 }
2297 regopP->n = n;
2298 regopP->mode = 0;
2299 regopP->special = 0;
2300 return;
2301 }
2302 else if (IS_FP_REG (n) && FP_OK (opdesc))
2303 {
2304 /* Floating point register, and it's allowed */
2305 regopP->n = n - FP0;
2306 regopP->mode = 1;
2307 regopP->special = 0;
2308 return;
2309 }
2310 else if (IS_SF_REG (n) && SFR_OK (opdesc))
2311 {
2312 /* Special-function register, and it's allowed */
2313 regopP->n = n - SF0;
2314 regopP->mode = 0;
2315 regopP->special = 1;
2316 if (!targ_has_sfr (regopP->n))
2317 {
2318 as_bad ("no such sfr in this architecture");
2319 }
2320 return;
2321 }
2322 }
2323 else if (LIT_OK (opdesc))
2324 {
2325 /*
2326 * How about a literal?
2327 */
2328 regopP->mode = 1;
2329 regopP->special = 0;
2330 if (FP_OK (opdesc))
2331 { /* floating point literal acceptable */
2332 /* Skip over 0f, 0d, or 0e prefix */
2333 if ((optext[0] == '0')
2334 && (optext[1] >= 'd')
2335 && (optext[1] <= 'f'))
2336 {
2337 optext += 2;
2338 }
2339
2340 if (!strcmp (optext, "0.0") || !strcmp (optext, "0"))
2341 {
2342 regopP->n = 0x10;
2343 return;
2344 }
2345 if (!strcmp (optext, "1.0") || !strcmp (optext, "1"))
2346 {
2347 regopP->n = 0x16;
2348 return;
2349 }
2350
2351 }
2352 else
2353 { /* fixed point literal acceptable */
2354 if ((parse_expr (optext, &e) != SEG_ABSOLUTE)
2355 || (offs (e) < 0) || (offs (e) > 31))
2356 {
2357 as_bad ("illegal literal");
2358 offs (e) = 0;
2359 }
2360 regopP->n = offs (e);
2361 return;
2362 }
2363 }
2364
2365 /* Nothing worked */
2366 syntax ();
2367 regopP->mode = 0; /* Register r0 is always a good one */
2368 regopP->n = 0;
2369 regopP->special = 0;
2370 } /* parse_regop() */
2371
2372 /*****************************************************************************
2373 * reg_fmt: generate a REG-format instruction
2374 *
2375 **************************************************************************** */
2376 static void
2377 reg_fmt (args, oP)
2378 char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */
2379 struct i960_opcode *oP; /* Pointer to description of instruction */
2380 {
2381 long instr; /* Binary to be output */
2382 struct regop regop; /* Description of register operand */
2383 int n_ops; /* Number of operands */
2384
2385
2386 instr = oP->opcode;
2387 n_ops = oP->num_ops;
2388
2389 if (n_ops >= 1)
2390 {
2391 parse_regop (&regop, args[1], oP->operand[0]);
2392
2393 if ((n_ops == 1) && !(instr & M3))
2394 {
2395 /* 1-operand instruction in which the dst field should
2396 * be used (instead of src1).
2397 */
2398 regop.n <<= 19;
2399 if (regop.special)
2400 {
2401 regop.mode = regop.special;
2402 }
2403 regop.mode <<= 13;
2404 regop.special = 0;
2405 }
2406 else
2407 {
2408 /* regop.n goes in bit 0, needs no shifting */
2409 regop.mode <<= 11;
2410 regop.special <<= 5;
2411 }
2412 instr |= regop.n | regop.mode | regop.special;
2413 }
2414
2415 if (n_ops >= 2)
2416 {
2417 parse_regop (&regop, args[2], oP->operand[1]);
2418
2419 if ((n_ops == 2) && !(instr & M3))
2420 {
2421 /* 2-operand instruction in which the dst field should
2422 * be used instead of src2).
2423 */
2424 regop.n <<= 19;
2425 if (regop.special)
2426 {
2427 regop.mode = regop.special;
2428 }
2429 regop.mode <<= 13;
2430 regop.special = 0;
2431 }
2432 else
2433 {
2434 regop.n <<= 14;
2435 regop.mode <<= 12;
2436 regop.special <<= 6;
2437 }
2438 instr |= regop.n | regop.mode | regop.special;
2439 }
2440 if (n_ops == 3)
2441 {
2442 parse_regop (&regop, args[3], oP->operand[2]);
2443 if (regop.special)
2444 {
2445 regop.mode = regop.special;
2446 }
2447 instr |= (regop.n <<= 19) | (regop.mode <<= 13);
2448 }
2449 emit (instr);
2450 }
2451
2452
2453 /*****************************************************************************
2454 * relax_cobr:
2455 * Replace cobr instruction in a code fragment with equivalent branch and
2456 * compare instructions, so it can reach beyond a 13-bit displacement.
2457 * Set up an address fix/relocation for the new branch instruction.
2458 *
2459 **************************************************************************** */
2460
2461 /* This "conditional jump" table maps cobr instructions into equivalent
2462 * compare and branch opcodes.
2463 */
2464 static
2465 struct
2466 {
2467 long compare;
2468 long branch;
2469 }
2470
2471 coj[] =
2472 { /* COBR OPCODE: */
2473 CHKBIT, BNO, /* 0x30 - bbc */
2474 CMPO, BG, /* 0x31 - cmpobg */
2475 CMPO, BE, /* 0x32 - cmpobe */
2476 CMPO, BGE, /* 0x33 - cmpobge */
2477 CMPO, BL, /* 0x34 - cmpobl */
2478 CMPO, BNE, /* 0x35 - cmpobne */
2479 CMPO, BLE, /* 0x36 - cmpoble */
2480 CHKBIT, BO, /* 0x37 - bbs */
2481 CMPI, BNO, /* 0x38 - cmpibno */
2482 CMPI, BG, /* 0x39 - cmpibg */
2483 CMPI, BE, /* 0x3a - cmpibe */
2484 CMPI, BGE, /* 0x3b - cmpibge */
2485 CMPI, BL, /* 0x3c - cmpibl */
2486 CMPI, BNE, /* 0x3d - cmpibne */
2487 CMPI, BLE, /* 0x3e - cmpible */
2488 CMPI, BO, /* 0x3f - cmpibo */
2489 };
2490
2491 static
2492 void
2493 relax_cobr (fragP)
2494 register fragS *fragP; /* fragP->fr_opcode is assumed to point to
2495 * the cobr instruction, which comes at the
2496 * end of the code fragment.
2497 */
2498 {
2499 int opcode, src1, src2, m1, s2;
2500 /* Bit fields from cobr instruction */
2501 long bp_bits; /* Branch prediction bits from cobr instruction */
2502 long instr; /* A single i960 instruction */
2503 char *iP; /*->instruction to be replaced */
2504 fixS *fixP; /* Relocation that can be done at assembly time */
2505
2506 /* PICK UP & PARSE COBR INSTRUCTION */
2507 iP = fragP->fr_opcode;
2508 instr = md_chars_to_number (iP, 4);
2509 opcode = ((instr >> 24) & 0xff) - 0x30; /* "-0x30" for table index */
2510 src1 = (instr >> 19) & 0x1f;
2511 m1 = (instr >> 13) & 1;
2512 s2 = instr & 1;
2513 src2 = (instr >> 14) & 0x1f;
2514 bp_bits = instr & BP_MASK;
2515
2516 /* GENERATE AND OUTPUT COMPARE INSTRUCTION */
2517 instr = coj[opcode].compare
2518 | src1 | (m1 << 11) | (s2 << 6) | (src2 << 14);
2519 md_number_to_chars (iP, instr, 4);
2520
2521 /* OUTPUT BRANCH INSTRUCTION */
2522 md_number_to_chars (iP + 4, coj[opcode].branch | bp_bits, 4);
2523
2524 /* SET UP ADDRESS FIXUP/RELOCATION */
2525 fixP = fix_new (fragP,
2526 iP + 4 - fragP->fr_literal,
2527 4,
2528 fragP->fr_symbol,
2529 0,
2530 fragP->fr_offset,
2531 1,
2532 NO_RELOC);
2533
2534 fixP->fx_bit_fixP = (bit_fixS *) 24; /* Store size of bit field */
2535
2536 fragP->fr_fix += 4;
2537 frag_wane (fragP);
2538 }
2539
2540
2541 /*****************************************************************************
2542 * reloc_callj: Relocate a 'callj' instruction
2543 *
2544 * This is a "non-(GNU)-standard" machine-dependent hook. The base
2545 * assembler calls it when it decides it can relocate an address at
2546 * assembly time instead of emitting a relocation directive.
2547 *
2548 * Check to see if the relocation involves a 'callj' instruction to a:
2549 * sysproc: Replace the default 'call' instruction with a 'calls'
2550 * leafproc: Replace the default 'call' instruction with a 'bal'.
2551 * other proc: Do nothing.
2552 *
2553 * See b.out.h for details on the 'n_other' field in a symbol structure.
2554 *
2555 * IMPORTANT!:
2556 * Assumes the caller has already figured out, in the case of a leafproc,
2557 * to use the 'bal' entry point, and has substituted that symbol into the
2558 * passed fixup structure.
2559 *
2560 **************************************************************************** */
2561 void
2562 reloc_callj (fixP)
2563 fixS *fixP; /* Relocation that can be done at assembly time */
2564 {
2565 char *where; /*->the binary for the instruction being relocated */
2566
2567 if (!fixP->fx_callj)
2568 {
2569 return;
2570 } /* This wasn't a callj instruction in the first place */
2571
2572 where = fixP->fx_frag->fr_literal + fixP->fx_where;
2573
2574 if (TC_S_IS_SYSPROC (fixP->fx_addsy))
2575 {
2576 /* Symbol is a .sysproc: replace 'call' with 'calls'.
2577 * System procedure number is (other-1).
2578 */
2579 md_number_to_chars (where, CALLS | TC_S_GET_SYSPROC (fixP->fx_addsy), 4);
2580
2581 /* Nothing else needs to be done for this instruction.
2582 * Make sure 'md_number_to_field()' will perform a no-op.
2583 */
2584 fixP->fx_bit_fixP = (bit_fixS *) 1;
2585
2586 }
2587 else if (TC_S_IS_CALLNAME (fixP->fx_addsy))
2588 {
2589 /* Should not happen: see block comment above */
2590 as_fatal ("Trying to 'bal' to %s", S_GET_NAME (fixP->fx_addsy));
2591
2592 }
2593 else if (TC_S_IS_BALNAME (fixP->fx_addsy))
2594 {
2595 /* Replace 'call' with 'bal'; both instructions have
2596 * the same format, so calling code should complete
2597 * relocation as if nothing happened here.
2598 */
2599 md_number_to_chars (where, BAL, 4);
2600 }
2601 else if (TC_S_IS_BADPROC (fixP->fx_addsy))
2602 {
2603 as_bad ("Looks like a proc, but can't tell what kind.\n");
2604 } /* switch on proc type */
2605
2606 /* else Symbol is neither a sysproc nor a leafproc */
2607
2608 return;
2609 } /* reloc_callj() */
2610
2611
2612 /*****************************************************************************
2613 * s_leafproc: process .leafproc pseudo-op
2614 *
2615 * .leafproc takes two arguments, the second one is optional:
2616 * arg[1]: name of 'call' entry point to leaf procedure
2617 * arg[2]: name of 'bal' entry point to leaf procedure
2618 *
2619 * If the two arguments are identical, or if the second one is missing,
2620 * the first argument is taken to be the 'bal' entry point.
2621 *
2622 * If there are 2 distinct arguments, we must make sure that the 'bal'
2623 * entry point immediately follows the 'call' entry point in the linked
2624 * list of symbols.
2625 *
2626 **************************************************************************** */
2627 static void
2628 s_leafproc (n_ops, args)
2629 int n_ops; /* Number of operands */
2630 char *args[]; /* args[1]->1st operand, args[2]->2nd operand */
2631 {
2632 symbolS *callP; /* Pointer to leafproc 'call' entry point symbol */
2633 symbolS *balP; /* Pointer to leafproc 'bal' entry point symbol */
2634
2635 if ((n_ops != 1) && (n_ops != 2))
2636 {
2637 as_bad ("should have 1 or 2 operands");
2638 return;
2639 } /* Check number of arguments */
2640
2641 /* Find or create symbol for 'call' entry point. */
2642 callP = symbol_find_or_make (args[1]);
2643
2644 if (TC_S_IS_CALLNAME (callP))
2645 {
2646 as_warn ("Redefining leafproc %s", S_GET_NAME (callP));
2647 } /* is leafproc */
2648
2649 /* If that was the only argument, use it as the 'bal' entry point.
2650 * Otherwise, mark it as the 'call' entry point and find or create
2651 * another symbol for the 'bal' entry point.
2652 */
2653 if ((n_ops == 1) || !strcmp (args[1], args[2]))
2654 {
2655 TC_S_FORCE_TO_BALNAME (callP);
2656
2657 }
2658 else
2659 {
2660 TC_S_FORCE_TO_CALLNAME (callP);
2661
2662 balP = symbol_find_or_make (args[2]);
2663 if (TC_S_IS_CALLNAME (balP))
2664 {
2665 as_warn ("Redefining leafproc %s", S_GET_NAME (balP));
2666 }
2667 TC_S_FORCE_TO_BALNAME (balP);
2668
2669 tc_set_bal_of_call (callP, balP);
2670 } /* if only one arg, or the args are the same */
2671
2672 return;
2673 } /* s_leafproc() */
2674
2675
2676 /*
2677 * s_sysproc: process .sysproc pseudo-op
2678 *
2679 * .sysproc takes two arguments:
2680 * arg[1]: name of entry point to system procedure
2681 * arg[2]: 'entry_num' (index) of system procedure in the range
2682 * [0,31] inclusive.
2683 *
2684 * For [ab].out, we store the 'entrynum' in the 'n_other' field of
2685 * the symbol. Since that entry is normally 0, we bias 'entrynum'
2686 * by adding 1 to it. It must be unbiased before it is used.
2687 */
2688 static void
2689 s_sysproc (n_ops, args)
2690 int n_ops; /* Number of operands */
2691 char *args[]; /* args[1]->1st operand, args[2]->2nd operand */
2692 {
2693 expressionS exp;
2694 symbolS *symP;
2695
2696 if (n_ops != 2)
2697 {
2698 as_bad ("should have two operands");
2699 return;
2700 } /* bad arg count */
2701
2702 /* Parse "entry_num" argument and check it for validity. */
2703 if ((parse_expr (args[2], &exp) != SEG_ABSOLUTE)
2704 || (offs (exp) < 0)
2705 || (offs (exp) > 31))
2706 {
2707 as_bad ("'entry_num' must be absolute number in [0,31]");
2708 return;
2709 }
2710
2711 /* Find/make symbol and stick entry number (biased by +1) into it */
2712 symP = symbol_find_or_make (args[1]);
2713
2714 if (TC_S_IS_SYSPROC (symP))
2715 {
2716 as_warn ("Redefining entrynum for sysproc %s", S_GET_NAME (symP));
2717 } /* redefining */
2718
2719 TC_S_SET_SYSPROC (symP, offs (exp)); /* encode entry number */
2720 TC_S_FORCE_TO_SYSPROC (symP);
2721
2722 return;
2723 } /* s_sysproc() */
2724
2725
2726 /*****************************************************************************
2727 * shift_ok:
2728 * Determine if a "shlo" instruction can be used to implement a "ldconst".
2729 * This means that some number X < 32 can be shifted left to produce the
2730 * constant of interest.
2731 *
2732 * Return the shift count, or 0 if we can't do it.
2733 * Caller calculates X by shifting original constant right 'shift' places.
2734 *
2735 **************************************************************************** */
2736 static
2737 int
2738 shift_ok (n)
2739 int n; /* The constant of interest */
2740 {
2741 int shift; /* The shift count */
2742
2743 if (n <= 0)
2744 {
2745 /* Can't do it for negative numbers */
2746 return 0;
2747 }
2748
2749 /* Shift 'n' right until a 1 is about to be lost */
2750 for (shift = 0; (n & 1) == 0; shift++)
2751 {
2752 n >>= 1;
2753 }
2754
2755 if (n >= 32)
2756 {
2757 return 0;
2758 }
2759 return shift;
2760 }
2761
2762
2763 /*****************************************************************************
2764 * syntax: issue syntax error
2765 *
2766 **************************************************************************** */
2767 static void
2768 syntax ()
2769 {
2770 as_bad ("syntax error");
2771 } /* syntax() */
2772
2773
2774 /*****************************************************************************
2775 * targ_has_sfr:
2776 * Return TRUE iff the target architecture supports the specified
2777 * special-function register (sfr).
2778 *
2779 **************************************************************************** */
2780 static
2781 int
2782 targ_has_sfr (n)
2783 int n; /* Number (0-31) of sfr */
2784 {
2785 switch (architecture)
2786 {
2787 case ARCH_KA:
2788 case ARCH_KB:
2789 case ARCH_MC:
2790 return 0;
2791 case ARCH_CA:
2792 default:
2793 return ((0 <= n) && (n <= 2));
2794 }
2795 }
2796
2797
2798 /*****************************************************************************
2799 * targ_has_iclass:
2800 * Return TRUE iff the target architecture supports the indicated
2801 * class of instructions.
2802 *
2803 **************************************************************************** */
2804 static
2805 int
2806 targ_has_iclass (ic)
2807 int ic; /* Instruction class; one of:
2808 * I_BASE, I_CX, I_DEC, I_KX, I_FP, I_MIL, I_CASIM
2809 */
2810 {
2811 iclasses_seen |= ic;
2812 switch (architecture)
2813 {
2814 case ARCH_KA:
2815 return ic & (I_BASE | I_KX);
2816 case ARCH_KB:
2817 return ic & (I_BASE | I_KX | I_FP | I_DEC);
2818 case ARCH_MC:
2819 return ic & (I_BASE | I_KX | I_FP | I_DEC | I_MIL);
2820 case ARCH_CA:
2821 return ic & (I_BASE | I_CX | I_CASIM);
2822 default:
2823 if ((iclasses_seen & (I_KX | I_FP | I_DEC | I_MIL))
2824 && (iclasses_seen & I_CX))
2825 {
2826 as_warn ("architecture of opcode conflicts with that of earlier instruction(s)");
2827 iclasses_seen &= ~ic;
2828 }
2829 return 1;
2830 }
2831 }
2832
2833
2834 /* Parse an operand that is machine-specific.
2835 We just return without modifying the expression if we have nothing
2836 to do. */
2837
2838 /* ARGSUSED */
2839 void
2840 md_operand (expressionP)
2841 expressionS *expressionP;
2842 {
2843 }
2844
2845 /* We have no need to default values of symbols. */
2846
2847 /* ARGSUSED */
2848 symbolS *
2849 md_undefined_symbol (name)
2850 char *name;
2851 {
2852 return 0;
2853 } /* md_undefined_symbol() */
2854
2855 /* Exactly what point is a PC-relative offset relative TO?
2856 On the i960, they're relative to the address of the instruction,
2857 which we have set up as the address of the fixup too. */
2858 long
2859 md_pcrel_from (fixP)
2860 fixS *fixP;
2861 {
2862 return fixP->fx_where + fixP->fx_frag->fr_address;
2863 }
2864
2865 void
2866 md_apply_fix (fixP, val)
2867 fixS *fixP;
2868 long val;
2869 {
2870 char *place = fixP->fx_where + fixP->fx_frag->fr_literal;
2871
2872 if (!fixP->fx_bit_fixP)
2873 {
2874
2875 switch (fixP->fx_im_disp)
2876 {
2877 case 0:
2878 fixP->fx_addnumber = val;
2879 md_number_to_imm (place, val, fixP->fx_size, fixP);
2880 break;
2881 case 1:
2882 md_number_to_disp (place,
2883 fixP->fx_pcrel ? val + fixP->fx_pcrel_adjust : val,
2884 fixP->fx_size);
2885 break;
2886 case 2: /* fix requested for .long .word etc */
2887 md_number_to_chars (place, val, fixP->fx_size);
2888 break;
2889 default:
2890 as_fatal ("Internal error in md_apply_fix() in file \"%s\"", __FILE__);
2891 } /* OVE: maybe one ought to put _imm _disp _chars in one md-func */
2892 }
2893 else
2894 {
2895 md_number_to_field (place, val, fixP->fx_bit_fixP);
2896 }
2897
2898 return;
2899 } /* md_apply_fix() */
2900
2901 #if defined(OBJ_AOUT) | defined(OBJ_BOUT)
2902 void
2903 tc_bout_fix_to_chars (where, fixP, segment_address_in_file)
2904 char *where;
2905 fixS *fixP;
2906 relax_addressT segment_address_in_file;
2907 {
2908 static unsigned char nbytes_r_length[] =
2909 {42, 0, 1, 42, 2};
2910 struct relocation_info ri;
2911 symbolS *symbolP;
2912
2913 /* JF this is for paranoia */
2914 memset ((char *) &ri, '\0', sizeof (ri));
2915 symbolP = fixP->fx_addsy;
2916 know (symbolP != 0 || fixP->fx_r_type != NO_RELOC);
2917 ri.r_bsr = fixP->fx_bsr; /*SAC LD RELAX HACK */
2918 /* These two 'cuz of NS32K */
2919 ri.r_callj = fixP->fx_callj;
2920 if (fixP->fx_bit_fixP)
2921 {
2922 ri.r_length = 2;
2923 }
2924 else
2925 {
2926 ri.r_length = nbytes_r_length[fixP->fx_size];
2927 }
2928 ri.r_pcrel = fixP->fx_pcrel;
2929 ri.r_address = fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file;
2930
2931 if (fixP->fx_r_type != NO_RELOC)
2932 {
2933 switch (fixP->fx_r_type)
2934 {
2935 case rs_align:
2936 ri.r_index = -2;
2937 ri.r_pcrel = 1;
2938 ri.r_length = fixP->fx_size - 1;
2939 break;
2940 case rs_org:
2941 ri.r_index = -2;
2942 ri.r_pcrel = 0;
2943 break;
2944 case rs_fill:
2945 ri.r_index = -1;
2946 break;
2947 default:
2948 abort ();
2949 }
2950 ri.r_extern = 0;
2951 }
2952 else if (linkrelax || !S_IS_DEFINED (symbolP))
2953 {
2954 ri.r_extern = 1;
2955 ri.r_index = symbolP->sy_number;
2956 }
2957 else
2958 {
2959 ri.r_extern = 0;
2960 ri.r_index = S_GET_TYPE (symbolP);
2961 }
2962
2963 /* Output the relocation information in machine-dependent form. */
2964 md_ri_to_chars (where, &ri);
2965
2966 return;
2967 } /* tc_bout_fix_to_chars() */
2968
2969 #endif /* OBJ_AOUT or OBJ_BOUT */
2970
2971 /* Align an address by rounding it up to the specified boundary.
2972 */
2973 long
2974 md_section_align (seg, addr)
2975 segT seg;
2976 long addr; /* Address to be rounded up */
2977 {
2978 return ((addr + (1 << section_alignment[(int) seg]) - 1) & (-1 << section_alignment[(int) seg]));
2979 } /* md_section_align() */
2980
2981 #ifdef OBJ_COFF
2982 void
2983 tc_headers_hook (headers)
2984 object_headers *headers;
2985 {
2986 /* FIXME: remove this line *//* unsigned short arch_flag = 0; */
2987
2988 if (iclasses_seen == I_BASE)
2989 {
2990 headers->filehdr.f_flags |= F_I960CORE;
2991 }
2992 else if (iclasses_seen & I_CX)
2993 {
2994 headers->filehdr.f_flags |= F_I960CA;
2995 }
2996 else if (iclasses_seen & I_MIL)
2997 {
2998 headers->filehdr.f_flags |= F_I960MC;
2999 }
3000 else if (iclasses_seen & (I_DEC | I_FP))
3001 {
3002 headers->filehdr.f_flags |= F_I960KB;
3003 }
3004 else
3005 {
3006 headers->filehdr.f_flags |= F_I960KA;
3007 } /* set arch flag */
3008
3009 if (flagseen['R'])
3010 {
3011 headers->filehdr.f_magic = I960RWMAGIC;
3012 headers->aouthdr.magic = OMAGIC;
3013 }
3014 else
3015 {
3016 headers->filehdr.f_magic = I960ROMAGIC;
3017 headers->aouthdr.magic = NMAGIC;
3018 } /* set magic numbers */
3019
3020 return;
3021 } /* tc_headers_hook() */
3022
3023 #endif /* OBJ_COFF */
3024
3025 /*
3026 * Things going on here:
3027 *
3028 * For bout, We need to assure a couple of simplifying
3029 * assumptions about leafprocs for the linker: the leafproc
3030 * entry symbols will be defined in the same assembly in
3031 * which they're declared with the '.leafproc' directive;
3032 * and if a leafproc has both 'call' and 'bal' entry points
3033 * they are both global or both local.
3034 *
3035 * For coff, the call symbol has a second aux entry that
3036 * contains the bal entry point. The bal symbol becomes a
3037 * label.
3038 *
3039 * For coff representation, the call symbol has a second aux entry that
3040 * contains the bal entry point. The bal symbol becomes a label.
3041 *
3042 */
3043
3044 void
3045 tc_crawl_symbol_chain (headers)
3046 object_headers *headers;
3047 {
3048 symbolS *symbolP;
3049
3050 for (symbolP = symbol_rootP; symbolP; symbolP = symbol_next (symbolP))
3051 {
3052 #ifdef OBJ_COFF
3053 if (TC_S_IS_SYSPROC (symbolP))
3054 {
3055 /* second aux entry already contains the sysproc number */
3056 S_SET_NUMBER_AUXILIARY (symbolP, 2);
3057 S_SET_STORAGE_CLASS (symbolP, C_SCALL);
3058 S_SET_DATA_TYPE (symbolP, S_GET_DATA_TYPE (symbolP) | (DT_FCN << N_BTSHFT));
3059 continue;
3060 } /* rewrite sysproc */
3061 #endif /* OBJ_COFF */
3062
3063 if (!TC_S_IS_BALNAME (symbolP) && !TC_S_IS_CALLNAME (symbolP))
3064 {
3065 continue;
3066 } /* Not a leafproc symbol */
3067
3068 if (!S_IS_DEFINED (symbolP))
3069 {
3070 as_bad ("leafproc symbol '%s' undefined", S_GET_NAME (symbolP));
3071 } /* undefined leaf */
3072
3073 if (TC_S_IS_CALLNAME (symbolP))
3074 {
3075 symbolS *balP = tc_get_bal_of_call (symbolP);
3076 if (S_IS_EXTERNAL (symbolP) != S_IS_EXTERNAL (balP))
3077 {
3078 S_SET_EXTERNAL (symbolP);
3079 S_SET_EXTERNAL (balP);
3080 as_warn ("Warning: making leafproc entries %s and %s both global\n",
3081 S_GET_NAME (symbolP), S_GET_NAME (balP));
3082 } /* externality mismatch */
3083 } /* if callname */
3084 } /* walk the symbol chain */
3085
3086 return;
3087 } /* tc_crawl_symbol_chain() */
3088
3089 /*
3090 * For aout or bout, the bal immediately follows the call.
3091 *
3092 * For coff, we cheat and store a pointer to the bal symbol
3093 * in the second aux entry of the call.
3094 */
3095
3096 #undef OBJ_ABOUT
3097 #ifdef OBJ_AOUT
3098 #define OBJ_ABOUT
3099 #endif
3100 #ifdef OBJ_BOUT
3101 #define OBJ_ABOUT
3102 #endif
3103
3104 void
3105 tc_set_bal_of_call (callP, balP)
3106 symbolS *callP;
3107 symbolS *balP;
3108 {
3109 know (TC_S_IS_CALLNAME (callP));
3110 know (TC_S_IS_BALNAME (balP));
3111
3112 #ifdef OBJ_COFF
3113
3114 callP->sy_symbol.ost_auxent[1].x_bal.x_balntry = (int) balP;
3115 S_SET_NUMBER_AUXILIARY (callP, 2);
3116
3117 #else /* ! OBJ_COFF */
3118 #ifdef OBJ_ABOUT
3119
3120 /* If the 'bal' entry doesn't immediately follow the 'call'
3121 * symbol, unlink it from the symbol list and re-insert it.
3122 */
3123 if (symbol_next (callP) != balP)
3124 {
3125 symbol_remove (balP, &symbol_rootP, &symbol_lastP);
3126 symbol_append (balP, callP, &symbol_rootP, &symbol_lastP);
3127 } /* if not in order */
3128
3129 #else /* ! OBJ_ABOUT */
3130 (as yet unwritten.);
3131 #endif /* ! OBJ_ABOUT */
3132 #endif /* ! OBJ_COFF */
3133
3134 return;
3135 } /* tc_set_bal_of_call() */
3136
3137 char *
3138 _tc_get_bal_of_call (callP)
3139 symbolS *callP;
3140 {
3141 symbolS *retval;
3142
3143 know (TC_S_IS_CALLNAME (callP));
3144
3145 #ifdef OBJ_COFF
3146 retval = (symbolS *) (callP->sy_symbol.ost_auxent[1].x_bal.x_balntry);
3147 #else
3148 #ifdef OBJ_ABOUT
3149 retval = symbol_next (callP);
3150 #else
3151 (as yet unwritten.);
3152 #endif /* ! OBJ_ABOUT */
3153 #endif /* ! OBJ_COFF */
3154
3155 know (TC_S_IS_BALNAME (retval));
3156 return ((char *) retval);
3157 } /* _tc_get_bal_of_call() */
3158
3159 void
3160 tc_coff_symbol_emit_hook (symbolP)
3161 symbolS *symbolP;
3162 {
3163 if (TC_S_IS_CALLNAME (symbolP))
3164 {
3165 #ifdef OBJ_COFF
3166 symbolS *balP = tc_get_bal_of_call (symbolP);
3167
3168 /* second aux entry contains the bal entry point */
3169 /* S_SET_NUMBER_AUXILIARY(symbolP, 2); */
3170 symbolP->sy_symbol.ost_auxent[1].x_bal.x_balntry = S_GET_VALUE (balP);
3171 S_SET_STORAGE_CLASS (symbolP, (!SF_GET_LOCAL (symbolP) ? C_LEAFEXT : C_LEAFSTAT));
3172 S_SET_DATA_TYPE (symbolP, S_GET_DATA_TYPE (symbolP) | (DT_FCN << N_BTSHFT));
3173 /* fix up the bal symbol */
3174 S_SET_STORAGE_CLASS (balP, C_LABEL);
3175 #endif /* OBJ_COFF */
3176 } /* only on calls */
3177
3178 return;
3179 } /* tc_coff_symbol_emit_hook() */
3180
3181 void
3182 i960_handle_align (fragp)
3183 fragS *fragp;
3184 {
3185 fixS *fixp;
3186 segT old_seg = now_seg, this_seg;
3187 int old_subseg = now_subseg;
3188 int pad_size;
3189 extern struct frag *text_last_frag, *data_last_frag;
3190
3191 if (!linkrelax)
3192 return;
3193
3194 /* The text section "ends" with another alignment reloc, to which we
3195 aren't adding padding. */
3196 if (fragp->fr_next == text_last_frag
3197 || fragp->fr_next == data_last_frag)
3198 {
3199 return;
3200 }
3201
3202 /* alignment directive */
3203 fixp = fix_new (fragp, fragp->fr_fix, fragp->fr_offset, 0, 0, 0, 0,
3204 (int) fragp->fr_type);
3205 }
3206
3207 /*
3208 * Local Variables:
3209 * comment-column: 0
3210 * fill-column: 131
3211 * End:
3212 */
3213
3214 /* end of tc-i960.c */
This page took 0.096263 seconds and 4 git commands to generate.