Changes to let cons handle bignums like general expressions.
[deliverable/binutils-gdb.git] / gas / config / tc-i960.c
1 /* tc-i960.c - All the i80960-specific stuff
2 Copyright (C) 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
3
4 This file is part of GAS.
5
6 GAS is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GAS is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GAS; see the file COPYING. If not, write to
18 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /* See comment on md_parse_option for 80960-specific invocation options. */
21
22 /******************************************************************************
23 * i80690 NOTE!!!:
24 * Header, symbol, and relocation info will be used on the host machine
25 * only -- only executable code is actually downloaded to the i80960.
26 * Therefore, leave all such information in host byte order.
27 *
28 * (That's a slight lie -- we DO download some header information, but
29 * the downloader converts the file format and corrects the byte-ordering
30 * of the relevant fields while doing so.)
31 *
32 * ==> THIS IS NO LONGER TRUE USING BFD. WE CAN GENERATE ANY BYTE ORDER
33 * FOR THE HEADER, AND READ ANY BYTE ORDER. PREFERENCE WOULD BE TO
34 * USE LITTLE-ENDIAN BYTE ORDER THROUGHOUT, REGARDLESS OF HOST. <==
35 *
36 ***************************************************************************** */
37
38 /* There are 4 different lengths of (potentially) symbol-based displacements
39 * in the 80960 instruction set, each of which could require address fix-ups
40 * and (in the case of external symbols) emission of relocation directives:
41 *
42 * 32-bit (MEMB)
43 * This is a standard length for the base assembler and requires no
44 * special action.
45 *
46 * 13-bit (COBR)
47 * This is a non-standard length, but the base assembler has a hook for
48 * bit field address fixups: the fixS structure can point to a descriptor
49 * of the field, in which case our md_number_to_field() routine gets called
50 * to process it.
51 *
52 * I made the hook a little cleaner by having fix_new() (in the base
53 * assembler) return a pointer to the fixS in question. And I made it a
54 * little simpler by storing the field size (in this case 13) instead of
55 * of a pointer to another structure: 80960 displacements are ALWAYS
56 * stored in the low-order bits of a 4-byte word.
57 *
58 * Since the target of a COBR cannot be external, no relocation directives
59 * for this size displacement have to be generated. But the base assembler
60 * had to be modified to issue error messages if the symbol did turn out
61 * to be external.
62 *
63 * 24-bit (CTRL)
64 * Fixups are handled as for the 13-bit case (except that 24 is stored
65 * in the fixS).
66 *
67 * The relocation directive generated is the same as that for the 32-bit
68 * displacement, except that it's PC-relative (the 32-bit displacement
69 * never is). The i80960 version of the linker needs a mod to
70 * distinguish and handle the 24-bit case.
71 *
72 * 12-bit (MEMA)
73 * MEMA formats are always promoted to MEMB (32-bit) if the displacement
74 * is based on a symbol, because it could be relocated at link time.
75 * The only time we use the 12-bit format is if an absolute value of
76 * less than 4096 is specified, in which case we need neither a fixup nor
77 * a relocation directive.
78 */
79
80 #include <stdio.h>
81 #include <ctype.h>
82
83 #include "as.h"
84
85 #include "obstack.h"
86
87 #include "opcode/i960.h"
88
89 extern char *input_line_pointer;
90 extern struct hash_control *po_hash;
91 extern char *next_object_file_charP;
92
93 #ifdef OBJ_COFF
94 const int md_reloc_size = sizeof (struct reloc);
95 #else /* OBJ_COFF */
96 const int md_reloc_size = sizeof (struct relocation_info);
97 #endif /* OBJ_COFF */
98
99 /***************************
100 * Local i80960 routines *
101 ************************** */
102
103 static void brcnt_emit (); /* Emit branch-prediction instrumentation code */
104 static char *brlab_next (); /* Return next branch local label */
105 void brtab_emit (); /* Emit br-predict instrumentation table */
106 static void cobr_fmt (); /* Generate COBR instruction */
107 static void ctrl_fmt (); /* Generate CTRL instruction */
108 static char *emit (); /* Emit (internally) binary */
109 static int get_args (); /* Break arguments out of comma-separated list */
110 static void get_cdisp (); /* Handle COBR or CTRL displacement */
111 static char *get_ispec (); /* Find index specification string */
112 static int get_regnum (); /* Translate text to register number */
113 static int i_scan (); /* Lexical scan of instruction source */
114 static void mem_fmt (); /* Generate MEMA or MEMB instruction */
115 static void mema_to_memb (); /* Convert MEMA instruction to MEMB format */
116 static void parse_expr (); /* Parse an expression */
117 static int parse_ldconst (); /* Parse and replace a 'ldconst' pseudo-op */
118 static void parse_memop (); /* Parse a memory operand */
119 static void parse_po (); /* Parse machine-dependent pseudo-op */
120 static void parse_regop (); /* Parse a register operand */
121 static void reg_fmt (); /* Generate a REG format instruction */
122 void reloc_callj (); /* Relocate a 'callj' instruction */
123 static void relax_cobr (); /* "De-optimize" cobr into compare/branch */
124 static void s_leafproc (); /* Process '.leafproc' pseudo-op */
125 static void s_sysproc (); /* Process '.sysproc' pseudo-op */
126 static int shift_ok (); /* Will a 'shlo' substiture for a 'ldconst'? */
127 static void syntax (); /* Give syntax error */
128 static int targ_has_sfr (); /* Target chip supports spec-func register? */
129 static int targ_has_iclass (); /* Target chip supports instruction set? */
130 /* static void unlink_sym(); *//* Remove a symbol from the symbol list */
131
132 /* See md_parse_option() for meanings of these options */
133 static char norelax; /* True if -norelax switch seen */
134 static char instrument_branches;/* True if -b switch seen */
135
136 /* Characters that always start a comment.
137 * If the pre-processor is disabled, these aren't very useful.
138 */
139 const char comment_chars[] = "#";
140
141 /* Characters that only start a comment at the beginning of
142 * a line. If the line seems to have the form '# 123 filename'
143 * .line and .file directives will appear in the pre-processed output.
144 *
145 * Note that input_file.c hand checks for '#' at the beginning of the
146 * first line of the input file. This is because the compiler outputs
147 * #NO_APP at the beginning of its output.
148 */
149
150 /* Also note that comments started like this one will always work. */
151
152 const char line_comment_chars[1];
153
154 const char line_separator_chars[1];
155
156 /* Chars that can be used to separate mant from exp in floating point nums */
157 const char EXP_CHARS[] = "eE";
158
159 /* Chars that mean this number is a floating point constant,
160 * as in 0f12.456 or 0d1.2345e12
161 */
162 const char FLT_CHARS[] = "fFdDtT";
163
164
165 /* Table used by base assembler to relax addresses based on varying length
166 * instructions. The fields are:
167 * 1) most positive reach of this state,
168 * 2) most negative reach of this state,
169 * 3) how many bytes this mode will add to the size of the current frag
170 * 4) which index into the table to try if we can't fit into this one.
171 *
172 * For i80960, the only application is the (de-)optimization of cobr
173 * instructions into separate compare and branch instructions when a 13-bit
174 * displacement won't hack it.
175 */
176 const relax_typeS
177 md_relax_table[] =
178 {
179 {0, 0, 0, 0}, /* State 0 => no more relaxation possible */
180 {4088, -4096, 0, 2}, /* State 1: conditional branch (cobr) */
181 {0x800000 - 8, -0x800000, 4, 0}, /* State 2: compare (reg) & branch (ctrl) */
182 };
183
184
185 /* These are the machine dependent pseudo-ops.
186 *
187 * This table describes all the machine specific pseudo-ops the assembler
188 * has to support. The fields are:
189 * pseudo-op name without dot
190 * function to call to execute this pseudo-op
191 * integer arg to pass to the function
192 */
193 #define S_LEAFPROC 1
194 #define S_SYSPROC 2
195
196 const pseudo_typeS md_pseudo_table[] =
197 {
198 {"bss", s_lcomm, 1},
199 {"extended", float_cons, 't'},
200 {"leafproc", parse_po, S_LEAFPROC},
201 {"sysproc", parse_po, S_SYSPROC},
202
203 {"word", cons, 4},
204 {"quad", cons, 16},
205
206 {0, 0, 0}
207 };
208 \f
209 /* Macros to extract info from an 'expressionS' structure 'e' */
210 #define adds(e) e.X_add_symbol
211 #define offs(e) e.X_add_number
212
213
214 /* Branch-prediction bits for CTRL/COBR format opcodes */
215 #define BP_MASK 0x00000002 /* Mask for branch-prediction bit */
216 #define BP_TAKEN 0x00000000 /* Value to OR in to predict branch */
217 #define BP_NOT_TAKEN 0x00000002 /* Value to OR in to predict no branch */
218
219
220 /* Some instruction opcodes that we need explicitly */
221 #define BE 0x12000000
222 #define BG 0x11000000
223 #define BGE 0x13000000
224 #define BL 0x14000000
225 #define BLE 0x16000000
226 #define BNE 0x15000000
227 #define BNO 0x10000000
228 #define BO 0x17000000
229 #define CHKBIT 0x5a002700
230 #define CMPI 0x5a002080
231 #define CMPO 0x5a002000
232
233 #define B 0x08000000
234 #define BAL 0x0b000000
235 #define CALL 0x09000000
236 #define CALLS 0x66003800
237 #define RET 0x0a000000
238
239
240 /* These masks are used to build up a set of MEMB mode bits. */
241 #define A_BIT 0x0400
242 #define I_BIT 0x0800
243 #define MEMB_BIT 0x1000
244 #define D_BIT 0x2000
245
246
247 /* Mask for the only mode bit in a MEMA instruction (if set, abase reg is
248 used). */
249 #define MEMA_ABASE 0x2000
250
251 /* Info from which a MEMA or MEMB format instruction can be generated */
252 typedef struct
253 {
254 /* (First) 32 bits of instruction */
255 long opcode;
256 /* 0-(none), 12- or, 32-bit displacement needed */
257 int disp;
258 /* The expression in the source instruction from which the
259 displacement should be determined. */
260 char *e;
261 }
262
263 memS;
264
265
266 /* The two pieces of info we need to generate a register operand */
267 struct regop
268 {
269 int mode; /* 0 =>local/global/spec reg; 1=> literal or fp reg */
270 int special; /* 0 =>not a sfr; 1=> is a sfr (not valid w/mode=0) */
271 int n; /* Register number or literal value */
272 };
273
274
275 /* Number and assembler mnemonic for all registers that can appear in operands */
276 static struct
277 {
278 char *reg_name;
279 int reg_num;
280 }
281
282 regnames[] =
283 {
284 { "pfp", 0 },
285 { "sp", 1 },
286 { "rip", 2 },
287 { "r3", 3 },
288 { "r4", 4 },
289 { "r5", 5 },
290 { "r6", 6 },
291 { "r7", 7 },
292 { "r8", 8 },
293 { "r9", 9 },
294 { "r10", 10 },
295 { "r11", 11 },
296 { "r12", 12 },
297 { "r13", 13 },
298 { "r14", 14 },
299 { "r15", 15 },
300 { "g0", 16 },
301 { "g1", 17 },
302 { "g2", 18 },
303 { "g3", 19 },
304 { "g4", 20 },
305 { "g5", 21 },
306 { "g6", 22 },
307 { "g7", 23 },
308 { "g8", 24 },
309 { "g9", 25 },
310 { "g10", 26 },
311 { "g11", 27 },
312 { "g12", 28 },
313 { "g13", 29 },
314 { "g14", 30 },
315 { "fp", 31 },
316
317 /* Numbers for special-function registers are for assembler internal
318 use only: they are scaled back to range [0-31] for binary output. */
319 #define SF0 32
320
321 { "sf0", 32 },
322 { "sf1", 33 },
323 { "sf2", 34 },
324 { "sf3", 35 },
325 { "sf4", 36 },
326 { "sf5", 37 },
327 { "sf6", 38 },
328 { "sf7", 39 },
329 { "sf8", 40 },
330 { "sf9", 41 },
331 { "sf10", 42 },
332 { "sf11", 43 },
333 { "sf12", 44 },
334 { "sf13", 45 },
335 { "sf14", 46 },
336 { "sf15", 47 },
337 { "sf16", 48 },
338 { "sf17", 49 },
339 { "sf18", 50 },
340 { "sf19", 51 },
341 { "sf20", 52 },
342 { "sf21", 53 },
343 { "sf22", 54 },
344 { "sf23", 55 },
345 { "sf24", 56 },
346 { "sf25", 57 },
347 { "sf26", 58 },
348 { "sf27", 59 },
349 { "sf28", 60 },
350 { "sf29", 61 },
351 { "sf30", 62 },
352 { "sf31", 63 },
353
354 /* Numbers for floating point registers are for assembler internal use
355 * only: they are scaled back to [0-3] for binary output.
356 */
357 #define FP0 64
358
359 { "fp0", 64 },
360 { "fp1", 65 },
361 { "fp2", 66 },
362 { "fp3", 67 },
363
364 { NULL, 0 }, /* END OF LIST */
365 };
366
367 #define IS_RG_REG(n) ((0 <= (n)) && ((n) < SF0))
368 #define IS_SF_REG(n) ((SF0 <= (n)) && ((n) < FP0))
369 #define IS_FP_REG(n) ((n) >= FP0)
370
371 /* Number and assembler mnemonic for all registers that can appear as 'abase'
372 * (indirect addressing) registers.
373 */
374 static struct
375 {
376 char *areg_name;
377 int areg_num;
378 }
379
380 aregs[] =
381 {
382 { "(pfp)", 0 },
383 { "(sp)", 1 },
384 { "(rip)", 2 },
385 { "(r3)", 3 },
386 { "(r4)", 4 },
387 { "(r5)", 5 },
388 { "(r6)", 6 },
389 { "(r7)", 7 },
390 { "(r8)", 8 },
391 { "(r9)", 9 },
392 { "(r10)", 10 },
393 { "(r11)", 11 },
394 { "(r12)", 12 },
395 { "(r13)", 13 },
396 { "(r14)", 14 },
397 { "(r15)", 15 },
398 { "(g0)", 16 },
399 { "(g1)", 17 },
400 { "(g2)", 18 },
401 { "(g3)", 19 },
402 { "(g4)", 20 },
403 { "(g5)", 21 },
404 { "(g6)", 22 },
405 { "(g7)", 23 },
406 { "(g8)", 24 },
407 { "(g9)", 25 },
408 { "(g10)", 26 },
409 { "(g11)", 27 },
410 { "(g12)", 28 },
411 { "(g13)", 29 },
412 { "(g14)", 30 },
413 { "(fp)", 31 },
414
415 #define IPREL 32
416 /* For assembler internal use only: this number never appears in binary
417 output. */
418 { "(ip)", IPREL },
419
420 { NULL, 0 }, /* END OF LIST */
421 };
422
423
424 /* Hash tables */
425 static struct hash_control *op_hash; /* Opcode mnemonics */
426 static struct hash_control *reg_hash; /* Register name hash table */
427 static struct hash_control *areg_hash; /* Abase register hash table */
428
429
430 /* Architecture for which we are assembling */
431 #define ARCH_ANY 0 /* Default: no architecture checking done */
432 #define ARCH_KA 1
433 #define ARCH_KB 2
434 #define ARCH_MC 3
435 #define ARCH_CA 4
436 int architecture = ARCH_ANY; /* Architecture requested on invocation line */
437 int iclasses_seen; /* OR of instruction classes (I_* constants)
438 * for which we've actually assembled
439 * instructions.
440 */
441
442
443 /* BRANCH-PREDICTION INSTRUMENTATION
444 *
445 * The following supports generation of branch-prediction instrumentation
446 * (turned on by -b switch). The instrumentation collects counts
447 * of branches taken/not-taken for later input to a utility that will
448 * set the branch prediction bits of the instructions in accordance with
449 * the behavior observed. (Note that the KX series does not have
450 * brach-prediction.)
451 *
452 * The instrumentation consists of:
453 *
454 * (1) before and after each conditional branch, a call to an external
455 * routine that increments and steps over an inline counter. The
456 * counter itself, initialized to 0, immediately follows the call
457 * instruction. For each branch, the counter following the branch
458 * is the number of times the branch was not taken, and the difference
459 * between the counters is the number of times it was taken. An
460 * example of an instrumented conditional branch:
461 *
462 * call BR_CNT_FUNC
463 * .word 0
464 * LBRANCH23: be label
465 * call BR_CNT_FUNC
466 * .word 0
467 *
468 * (2) a table of pointers to the instrumented branches, so that an
469 * external postprocessing routine can locate all of the counters.
470 * the table begins with a 2-word header: a pointer to the next in
471 * a linked list of such tables (initialized to 0); and a count
472 * of the number of entries in the table (exclusive of the header.
473 *
474 * Note that input source code is expected to already contain calls
475 * an external routine that will link the branch local table into a
476 * list of such tables.
477 */
478
479 static int br_cnt; /* Number of branches instrumented so far.
480 * Also used to generate unique local labels
481 * for each instrumented branch
482 */
483
484 #define BR_LABEL_BASE "LBRANCH"
485 /* Basename of local labels on instrumented
486 * branches, to avoid conflict with compiler-
487 * generated local labels.
488 */
489
490 #define BR_CNT_FUNC "__inc_branch"
491 /* Name of the external routine that will
492 * increment (and step over) an inline counter.
493 */
494
495 #define BR_TAB_NAME "__BRANCH_TABLE__"
496 /* Name of the table of pointers to branches.
497 * A local (i.e., non-external) symbol.
498 */
499 \f
500 /*****************************************************************************
501 * md_begin: One-time initialization.
502 *
503 * Set up hash tables.
504 *
505 **************************************************************************** */
506 void
507 md_begin ()
508 {
509 int i; /* Loop counter */
510 const struct i960_opcode *oP; /* Pointer into opcode table */
511 const char *retval; /* Value returned by hash functions */
512
513 if (((op_hash = hash_new ()) == 0)
514 || ((reg_hash = hash_new ()) == 0)
515 || ((areg_hash = hash_new ()) == 0))
516 as_fatal ("virtual memory exceeded");
517
518 /* For some reason, the base assembler uses an empty string for "no
519 error message", instead of a NULL pointer. */
520 retval = "";
521
522 for (oP = i960_opcodes; oP->name && !retval; oP++)
523 retval = hash_insert (op_hash, oP->name, (PTR) oP);
524
525 for (i = 0; regnames[i].reg_name && !retval; i++)
526 retval = hash_insert (reg_hash, regnames[i].reg_name,
527 &regnames[i].reg_num);
528
529 for (i = 0; aregs[i].areg_name && !retval; i++)
530 retval = hash_insert (areg_hash, aregs[i].areg_name,
531 &aregs[i].areg_num);
532
533 if (retval)
534 as_fatal ("Hashing returned \"%s\".", retval);
535 }
536
537 /*****************************************************************************
538 * md_end: One-time final cleanup
539 *
540 * None necessary
541 *
542 **************************************************************************** */
543 void
544 md_end ()
545 {
546 }
547
548 /*****************************************************************************
549 * md_assemble: Assemble an instruction
550 *
551 * Assumptions about the passed-in text:
552 * - all comments, labels removed
553 * - text is an instruction
554 * - all white space compressed to single blanks
555 * - all character constants have been replaced with decimal
556 *
557 **************************************************************************** */
558 void
559 md_assemble (textP)
560 char *textP; /* Source text of instruction */
561 {
562 /* Parsed instruction text, containing NO whitespace:
563 * arg[0]->opcode mnemonic
564 * arg[1-3]->operands, with char constants
565 * replaced by decimal numbers
566 */
567 char *args[4];
568
569 int n_ops; /* Number of instruction operands */
570 /* Pointer to instruction description */
571 struct i960_opcode *oP;
572 /* TRUE iff opcode mnemonic included branch-prediction
573 * suffix (".f" or ".t")
574 */
575 int branch_predict;
576 /* Setting of branch-prediction bit(s) to be OR'd
577 * into instruction opcode of CTRL/COBR format
578 * instructions.
579 */
580 long bp_bits;
581
582 int n; /* Offset of last character in opcode mnemonic */
583
584 static const char bp_error_msg[] = "branch prediction invalid on this opcode";
585
586
587 /* Parse instruction into opcode and operands */
588 memset (args, '\0', sizeof (args));
589 n_ops = i_scan (textP, args);
590 if (n_ops == -1)
591 {
592 return; /* Error message already issued */
593 }
594
595 /* Do "macro substitution" (sort of) on 'ldconst' pseudo-instruction */
596 if (!strcmp (args[0], "ldconst"))
597 {
598 n_ops = parse_ldconst (args);
599 if (n_ops == -1)
600 {
601 return;
602 }
603 }
604
605
606
607 /* Check for branch-prediction suffix on opcode mnemonic, strip it off */
608 n = strlen (args[0]) - 1;
609 branch_predict = 0;
610 bp_bits = 0;
611 if (args[0][n - 1] == '.' && (args[0][n] == 't' || args[0][n] == 'f'))
612 {
613 /* We could check here to see if the target architecture
614 * supports branch prediction, but why bother? The bit
615 * will just be ignored by processors that don't use it.
616 */
617 branch_predict = 1;
618 bp_bits = (args[0][n] == 't') ? BP_TAKEN : BP_NOT_TAKEN;
619 args[0][n - 1] = '\0'; /* Strip suffix from opcode mnemonic */
620 }
621
622 /* Look up opcode mnemonic in table and check number of operands.
623 * Check that opcode is legal for the target architecture.
624 * If all looks good, assemble instruction.
625 */
626 oP = (struct i960_opcode *) hash_find (op_hash, args[0]);
627 if (!oP || !targ_has_iclass (oP->iclass))
628 {
629 as_bad ("invalid opcode, \"%s\".", args[0]);
630
631 }
632 else if (n_ops != oP->num_ops)
633 {
634 as_bad ("improper number of operands. expecting %d, got %d",
635 oP->num_ops, n_ops);
636 }
637 else
638 {
639 switch (oP->format)
640 {
641 case FBRA:
642 case CTRL:
643 ctrl_fmt (args[1], oP->opcode | bp_bits, oP->num_ops);
644 if (oP->format == FBRA)
645 {
646 /* Now generate a 'bno' to same arg */
647 ctrl_fmt (args[1], BNO | bp_bits, 1);
648 }
649 break;
650 case COBR:
651 case COJ:
652 cobr_fmt (args, oP->opcode | bp_bits, oP);
653 break;
654 case REG:
655 if (branch_predict)
656 {
657 as_warn (bp_error_msg);
658 }
659 reg_fmt (args, oP);
660 break;
661 case MEM1:
662 if (args[0][0] == 'c' && args[0][1] == 'a')
663 {
664 if (branch_predict)
665 {
666 as_warn (bp_error_msg);
667 }
668 mem_fmt (args, oP, 1);
669 break;
670 }
671 case MEM2:
672 case MEM4:
673 case MEM8:
674 case MEM12:
675 case MEM16:
676 if (branch_predict)
677 {
678 as_warn (bp_error_msg);
679 }
680 mem_fmt (args, oP, 0);
681 break;
682 case CALLJ:
683 if (branch_predict)
684 {
685 as_warn (bp_error_msg);
686 }
687 /* Output opcode & set up "fixup" (relocation);
688 * flag relocation as 'callj' type.
689 */
690 know (oP->num_ops == 1);
691 get_cdisp (args[1], "CTRL", oP->opcode, 24, 0, 1);
692 break;
693 default:
694 BAD_CASE (oP->format);
695 break;
696 }
697 }
698 } /* md_assemble() */
699
700 /*****************************************************************************
701 * md_number_to_chars: convert a number to target byte order
702 *
703 **************************************************************************** */
704 void
705 md_number_to_chars (buf, value, n)
706 char *buf; /* Put output here */
707 valueT value; /* The integer to be converted */
708 int n; /* Number of bytes to output (significant bytes
709 * in 'value')
710 */
711 {
712 while (n--)
713 {
714 *buf++ = value;
715 value >>= 8;
716 }
717
718 /* XXX line number probably botched for this warning message. */
719 if (value != 0 && value != -1)
720 {
721 as_bad ("Displacement too long for instruction field length.");
722 }
723
724 return;
725 } /* md_number_to_chars() */
726
727 /*****************************************************************************
728 * md_chars_to_number: convert from target byte order to host byte order.
729 *
730 **************************************************************************** */
731 int
732 md_chars_to_number (val, n)
733 unsigned char *val; /* Value in target byte order */
734 int n; /* Number of bytes in the input */
735 {
736 int retval;
737
738 for (retval = 0; n--;)
739 {
740 retval <<= 8;
741 retval |= val[n];
742 }
743 return retval;
744 }
745
746
747 #define MAX_LITTLENUMS 6
748 #define LNUM_SIZE sizeof(LITTLENUM_TYPE)
749
750 /*****************************************************************************
751 * md_atof: convert ascii to floating point
752 *
753 * Turn a string at input_line_pointer into a floating point constant of type
754 * 'type', and store the appropriate bytes at *litP. The number of LITTLENUMS
755 * emitted is returned at 'sizeP'. An error message is returned, or a pointer
756 * to an empty message if OK.
757 *
758 * Note we call the i386 floating point routine, rather than complicating
759 * things with more files or symbolic links.
760 *
761 **************************************************************************** */
762 char *
763 md_atof (type, litP, sizeP)
764 int type;
765 char *litP;
766 int *sizeP;
767 {
768 LITTLENUM_TYPE words[MAX_LITTLENUMS];
769 LITTLENUM_TYPE *wordP;
770 int prec;
771 char *t;
772 char *atof_ieee ();
773
774 switch (type)
775 {
776 case 'f':
777 case 'F':
778 prec = 2;
779 break;
780
781 case 'd':
782 case 'D':
783 prec = 4;
784 break;
785
786 case 't':
787 case 'T':
788 prec = 5;
789 type = 'x'; /* That's what atof_ieee() understands */
790 break;
791
792 default:
793 *sizeP = 0;
794 return "Bad call to md_atof()";
795 }
796
797 t = atof_ieee (input_line_pointer, type, words);
798 if (t)
799 {
800 input_line_pointer = t;
801 }
802
803 *sizeP = prec * LNUM_SIZE;
804
805 /* Output the LITTLENUMs in REVERSE order in accord with i80960
806 * word-order. (Dunno why atof_ieee doesn't do it in the right
807 * order in the first place -- probably because it's a hack of
808 * atof_m68k.)
809 */
810
811 for (wordP = words + prec - 1; prec--;)
812 {
813 md_number_to_chars (litP, (long) (*wordP--), LNUM_SIZE);
814 litP += sizeof (LITTLENUM_TYPE);
815 }
816
817 return ""; /* Someone should teach Dean about null pointers */
818 }
819
820
821 /*****************************************************************************
822 * md_number_to_imm
823 *
824 **************************************************************************** */
825 void
826 md_number_to_imm (buf, val, n)
827 char *buf;
828 long val;
829 int n;
830 {
831 md_number_to_chars (buf, val, n);
832 }
833
834
835 /*****************************************************************************
836 * md_number_to_disp
837 *
838 **************************************************************************** */
839 void
840 md_number_to_disp (buf, val, n)
841 char *buf;
842 long val;
843 int n;
844 {
845 md_number_to_chars (buf, val, n);
846 }
847
848 /*****************************************************************************
849 * md_number_to_field:
850 *
851 * Stick a value (an address fixup) into a bit field of
852 * previously-generated instruction.
853 *
854 **************************************************************************** */
855 void
856 md_number_to_field (instrP, val, bfixP)
857 char *instrP; /* Pointer to instruction to be fixed */
858 long val; /* Address fixup value */
859 bit_fixS *bfixP; /* Description of bit field to be fixed up */
860 {
861 int numbits; /* Length of bit field to be fixed */
862 long instr; /* 32-bit instruction to be fixed-up */
863 long sign; /* 0 or -1, according to sign bit of 'val' */
864
865 /* Convert instruction back to host byte order
866 */
867 instr = md_chars_to_number (instrP, 4);
868
869 /* Surprise! -- we stored the number of bits
870 * to be modified rather than a pointer to a structure.
871 */
872 numbits = (int) bfixP;
873 if (numbits == 1)
874 {
875 /* This is a no-op, stuck here by reloc_callj() */
876 return;
877 }
878
879 know ((numbits == 13) || (numbits == 24));
880
881 /* Propagate sign bit of 'val' for the given number of bits.
882 * Result should be all 0 or all 1
883 */
884 sign = val >> ((int) numbits - 1);
885 if (((val < 0) && (sign != -1))
886 || ((val > 0) && (sign != 0)))
887 {
888 as_bad ("Fixup of %ld too large for field width of %d",
889 val, numbits);
890 }
891 else
892 {
893 /* Put bit field into instruction and write back in target
894 * byte order.
895 */
896 val &= ~(-1 << (int) numbits); /* Clear unused sign bits */
897 instr |= val;
898 md_number_to_chars (instrP, instr, 4);
899 }
900 } /* md_number_to_field() */
901
902
903 /*****************************************************************************
904 * md_parse_option
905 * Invocation line includes a switch not recognized by the base assembler.
906 * See if it's a processor-specific option. For the 960, these are:
907 *
908 * -norelax:
909 * Conditional branch instructions that require displacements
910 * greater than 13 bits (or that have external targets) should
911 * generate errors. The default is to replace each such
912 * instruction with the corresponding compare (or chkbit) and
913 * branch instructions. Note that the Intel "j" cobr directives
914 * are ALWAYS "de-optimized" in this way when necessary,
915 * regardless of the setting of this option.
916 *
917 * -b:
918 * Add code to collect information about branches taken, for
919 * later optimization of branch prediction bits by a separate
920 * tool. COBR and CNTL format instructions have branch
921 * prediction bits (in the CX architecture); if "BR" represents
922 * an instruction in one of these classes, the following rep-
923 * resents the code generated by the assembler:
924 *
925 * call <increment routine>
926 * .word 0 # pre-counter
927 * Label: BR
928 * call <increment routine>
929 * .word 0 # post-counter
930 *
931 * A table of all such "Labels" is also generated.
932 *
933 *
934 * -AKA, -AKB, -AKC, -ASA, -ASB, -AMC, -ACA:
935 * Select the 80960 architecture. Instructions or features not
936 * supported by the selected architecture cause fatal errors.
937 * The default is to generate code for any instruction or feature
938 * that is supported by SOME version of the 960 (even if this
939 * means mixing architectures!).
940 *
941 **************************************************************************** */
942 int
943 md_parse_option (argP, cntP, vecP)
944 char **argP;
945 int *cntP;
946 char ***vecP;
947 {
948 char *p;
949 struct tabentry
950 {
951 char *flag;
952 int arch;
953 };
954 static struct tabentry arch_tab[] =
955 {
956 { "KA", ARCH_KA },
957 { "KB", ARCH_KB },
958 { "SA", ARCH_KA }, /* Synonym for KA */
959 { "SB", ARCH_KB }, /* Synonym for KB */
960 { "KC", ARCH_MC }, /* Synonym for MC */
961 { "MC", ARCH_MC },
962 { "CA", ARCH_CA },
963 { NULL, 0 }
964 };
965 struct tabentry *tp;
966 if (!strcmp (*argP, "linkrelax"))
967 {
968 linkrelax = 1;
969 flagseen['L'] = 1;
970 }
971 else if (!strcmp (*argP, "norelax"))
972 {
973 norelax = 1;
974
975 }
976 else if (**argP == 'b')
977 {
978 instrument_branches = 1;
979
980 }
981 else if (**argP == 'A')
982 {
983 p = (*argP) + 1;
984
985 for (tp = arch_tab; tp->flag != NULL; tp++)
986 {
987 if (!strcmp (p, tp->flag))
988 {
989 break;
990 }
991 }
992
993 if (tp->flag == NULL)
994 {
995 as_bad ("unknown architecture: %s", p);
996 }
997 else
998 {
999 architecture = tp->arch;
1000 }
1001 }
1002 else
1003 {
1004 /* Unknown option */
1005 (*argP)++;
1006 return 0;
1007 }
1008 **argP = '\0'; /* Done parsing this switch */
1009 return 1;
1010 }
1011
1012 /*****************************************************************************
1013 * md_convert_frag:
1014 * Called by base assembler after address relaxation is finished: modify
1015 * variable fragments according to how much relaxation was done.
1016 *
1017 * If the fragment substate is still 1, a 13-bit displacement was enough
1018 * to reach the symbol in question. Set up an address fixup, but otherwise
1019 * leave the cobr instruction alone.
1020 *
1021 * If the fragment substate is 2, a 13-bit displacement was not enough.
1022 * Replace the cobr with a two instructions (a compare and a branch).
1023 *
1024 **************************************************************************** */
1025 void
1026 md_convert_frag (headers, fragP)
1027 object_headers *headers;
1028 fragS *fragP;
1029 {
1030 fixS *fixP; /* Structure describing needed address fix */
1031
1032 switch (fragP->fr_subtype)
1033 {
1034 case 1:
1035 /* LEAVE SINGLE COBR INSTRUCTION */
1036 fixP = fix_new (fragP,
1037 fragP->fr_opcode - fragP->fr_literal,
1038 4,
1039 fragP->fr_symbol,
1040 fragP->fr_offset,
1041 1,
1042 NO_RELOC);
1043
1044 fixP->fx_bit_fixP = (bit_fixS *) 13; /* size of bit field */
1045 break;
1046 case 2:
1047 /* REPLACE COBR WITH COMPARE/BRANCH INSTRUCTIONS */
1048 relax_cobr (fragP);
1049 break;
1050 default:
1051 BAD_CASE (fragP->fr_subtype);
1052 break;
1053 }
1054 }
1055
1056 /*****************************************************************************
1057 * md_estimate_size_before_relax: How much does it look like *fragP will grow?
1058 *
1059 * Called by base assembler just before address relaxation.
1060 * Return the amount by which the fragment will grow.
1061 *
1062 * Any symbol that is now undefined will not become defined; cobr's
1063 * based on undefined symbols will have to be replaced with a compare
1064 * instruction and a branch instruction, and the code fragment will grow
1065 * by 4 bytes.
1066 *
1067 **************************************************************************** */
1068 int
1069 md_estimate_size_before_relax (fragP, segment_type)
1070 register fragS *fragP;
1071 register segT segment_type;
1072 {
1073 /* If symbol is undefined in this segment, go to "relaxed" state
1074 * (compare and branch instructions instead of cobr) right now.
1075 */
1076 if (S_GET_SEGMENT (fragP->fr_symbol) != segment_type)
1077 {
1078 relax_cobr (fragP);
1079 return 4;
1080 }
1081 return 0;
1082 } /* md_estimate_size_before_relax() */
1083
1084
1085 /*****************************************************************************
1086 * md_ri_to_chars:
1087 * This routine exists in order to overcome machine byte-order problems
1088 * when dealing with bit-field entries in the relocation_info struct.
1089 *
1090 * But relocation info will be used on the host machine only (only
1091 * executable code is actually downloaded to the i80960). Therefore,
1092 * we leave it in host byte order.
1093 *
1094 * The above comment is no longer true. This routine now really
1095 * does do the reordering (Ian Taylor 28 Aug 92).
1096 *
1097 **************************************************************************** */
1098 void
1099 md_ri_to_chars (where, ri)
1100 char *where;
1101 struct relocation_info *ri;
1102 {
1103 md_number_to_chars (where, ri->r_address,
1104 sizeof (ri->r_address));
1105 where[4] = ri->r_index & 0x0ff;
1106 where[5] = (ri->r_index >> 8) & 0x0ff;
1107 where[6] = (ri->r_index >> 16) & 0x0ff;
1108 where[7] = ((ri->r_pcrel << 0)
1109 | (ri->r_length << 1)
1110 | (ri->r_extern << 3)
1111 | (ri->r_bsr << 4)
1112 | (ri->r_disp << 5)
1113 | (ri->r_callj << 6));
1114 } /* md_ri_to_chars() */
1115
1116 #ifndef WORKING_DOT_WORD
1117
1118 int md_short_jump_size = 0;
1119 int md_long_jump_size = 0;
1120
1121 void
1122 md_create_short_jump (ptr, from_addr, to_addr, frag, to_symbol)
1123 char *ptr;
1124 addressT from_addr;
1125 addressT to_addr;
1126 fragS *frag;
1127 symbolS *to_symbol;
1128 {
1129 as_fatal ("failed sanity check.");
1130 }
1131
1132 void
1133 md_create_long_jump (ptr, from_addr, to_addr, frag, to_symbol)
1134 char *ptr;
1135 addressT from_addr, to_addr;
1136 fragS *frag;
1137 symbolS *to_symbol;
1138 {
1139 as_fatal ("failed sanity check.");
1140 }
1141
1142 #endif
1143 \f
1144 /*************************************************************
1145 * *
1146 * FOLLOWING ARE THE LOCAL ROUTINES, IN ALPHABETICAL ORDER *
1147 * *
1148 ************************************************************ */
1149
1150
1151
1152 /*****************************************************************************
1153 * brcnt_emit: Emit code to increment inline branch counter.
1154 *
1155 * See the comments above the declaration of 'br_cnt' for details on
1156 * branch-prediction instrumentation.
1157 **************************************************************************** */
1158 static void
1159 brcnt_emit ()
1160 {
1161 ctrl_fmt (BR_CNT_FUNC, CALL, 1); /* Emit call to "increment" routine */
1162 emit (0); /* Emit inline counter to be incremented */
1163 }
1164
1165 /*****************************************************************************
1166 * brlab_next: generate the next branch local label
1167 *
1168 * See the comments above the declaration of 'br_cnt' for details on
1169 * branch-prediction instrumentation.
1170 **************************************************************************** */
1171 static char *
1172 brlab_next ()
1173 {
1174 static char buf[20];
1175
1176 sprintf (buf, "%s%d", BR_LABEL_BASE, br_cnt++);
1177 return buf;
1178 }
1179
1180 /*****************************************************************************
1181 * brtab_emit: generate the fetch-prediction branch table.
1182 *
1183 * See the comments above the declaration of 'br_cnt' for details on
1184 * branch-prediction instrumentation.
1185 *
1186 * The code emitted here would be functionally equivalent to the following
1187 * example assembler source.
1188 *
1189 * .data
1190 * .align 2
1191 * BR_TAB_NAME:
1192 * .word 0 # link to next table
1193 * .word 3 # length of table
1194 * .word LBRANCH0 # 1st entry in table proper
1195 * .word LBRANCH1
1196 * .word LBRANCH2
1197 ***************************************************************************** */
1198 void
1199 brtab_emit ()
1200 {
1201 int i;
1202 char buf[20];
1203 char *p; /* Where the binary was output to */
1204 fixS *fixP; /*->description of deferred address fixup */
1205
1206 if (!instrument_branches)
1207 {
1208 return;
1209 }
1210
1211 subseg_set (SEG_DATA, 0); /* .data */
1212 frag_align (2, 0); /* .align 2 */
1213 record_alignment (now_seg, 2);
1214 colon (BR_TAB_NAME); /* BR_TAB_NAME: */
1215 emit (0); /* .word 0 #link to next table */
1216 emit (br_cnt); /* .word n #length of table */
1217
1218 for (i = 0; i < br_cnt; i++)
1219 {
1220 sprintf (buf, "%s%d", BR_LABEL_BASE, i);
1221 p = emit (0);
1222 fixP = fix_new (frag_now,
1223 p - frag_now->fr_literal,
1224 4,
1225 symbol_find (buf),
1226 0,
1227 0,
1228 NO_RELOC);
1229 fixP->fx_im_disp = 2; /* 32-bit displacement fix */
1230 }
1231 }
1232
1233 /*****************************************************************************
1234 * cobr_fmt: generate a COBR-format instruction
1235 *
1236 **************************************************************************** */
1237 static
1238 void
1239 cobr_fmt (arg, opcode, oP)
1240 char *arg[]; /* arg[0]->opcode mnemonic, arg[1-3]->operands (ascii) */
1241 long opcode; /* Opcode, with branch-prediction bits already set
1242 * if necessary.
1243 */
1244 struct i960_opcode *oP;
1245 /*->description of instruction */
1246 {
1247 long instr; /* 32-bit instruction */
1248 struct regop regop; /* Description of register operand */
1249 int n; /* Number of operands */
1250 int var_frag; /* 1 if varying length code fragment should
1251 * be emitted; 0 if an address fix
1252 * should be emitted.
1253 */
1254
1255 instr = opcode;
1256 n = oP->num_ops;
1257
1258 if (n >= 1)
1259 {
1260 /* First operand (if any) of a COBR is always a register
1261 * operand. Parse it.
1262 */
1263 parse_regop (&regop, arg[1], oP->operand[0]);
1264 instr |= (regop.n << 19) | (regop.mode << 13);
1265 }
1266 if (n >= 2)
1267 {
1268 /* Second operand (if any) of a COBR is always a register
1269 * operand. Parse it.
1270 */
1271 parse_regop (&regop, arg[2], oP->operand[1]);
1272 instr |= (regop.n << 14) | regop.special;
1273 }
1274
1275
1276 if (n < 3)
1277 {
1278 emit (instr);
1279
1280 }
1281 else
1282 {
1283 if (instrument_branches)
1284 {
1285 brcnt_emit ();
1286 colon (brlab_next ());
1287 }
1288
1289 /* A third operand to a COBR is always a displacement.
1290 * Parse it; if it's relaxable (a cobr "j" directive, or any
1291 * cobr other than bbs/bbc when the "-norelax" option is not in
1292 * use) set up a variable code fragment; otherwise set up an
1293 * address fix.
1294 */
1295 var_frag = !norelax || (oP->format == COJ); /* TRUE or FALSE */
1296 get_cdisp (arg[3], "COBR", instr, 13, var_frag, 0);
1297
1298 if (instrument_branches)
1299 {
1300 brcnt_emit ();
1301 }
1302 }
1303 } /* cobr_fmt() */
1304
1305
1306 /*****************************************************************************
1307 * ctrl_fmt: generate a CTRL-format instruction
1308 *
1309 **************************************************************************** */
1310 static
1311 void
1312 ctrl_fmt (targP, opcode, num_ops)
1313 char *targP; /* Pointer to text of lone operand (if any) */
1314 long opcode; /* Template of instruction */
1315 int num_ops; /* Number of operands */
1316 {
1317 int instrument; /* TRUE iff we should add instrumentation to track
1318 * how often the branch is taken
1319 */
1320
1321
1322 if (num_ops == 0)
1323 {
1324 emit (opcode); /* Output opcode */
1325 }
1326 else
1327 {
1328
1329 instrument = instrument_branches && (opcode != CALL)
1330 && (opcode != B) && (opcode != RET) && (opcode != BAL);
1331
1332 if (instrument)
1333 {
1334 brcnt_emit ();
1335 colon (brlab_next ());
1336 }
1337
1338 /* The operand MUST be an ip-relative displacment. Parse it
1339 * and set up address fix for the instruction we just output.
1340 */
1341 get_cdisp (targP, "CTRL", opcode, 24, 0, 0);
1342
1343 if (instrument)
1344 {
1345 brcnt_emit ();
1346 }
1347 }
1348
1349 }
1350
1351
1352 /*****************************************************************************
1353 * emit: output instruction binary
1354 *
1355 * Output instruction binary, in target byte order, 4 bytes at a time.
1356 * Return pointer to where it was placed.
1357 *
1358 **************************************************************************** */
1359 static
1360 char *
1361 emit (instr)
1362 long instr; /* Word to be output, host byte order */
1363 {
1364 char *toP; /* Where to output it */
1365
1366 toP = frag_more (4); /* Allocate storage */
1367 md_number_to_chars (toP, instr, 4); /* Convert to target byte order */
1368 return toP;
1369 }
1370
1371
1372 /*****************************************************************************
1373 * get_args: break individual arguments out of comma-separated list
1374 *
1375 * Input assumptions:
1376 * - all comments and labels have been removed
1377 * - all strings of whitespace have been collapsed to a single blank.
1378 * - all character constants ('x') have been replaced with decimal
1379 *
1380 * Output:
1381 * args[0] is untouched. args[1] points to first operand, etc. All args:
1382 * - are NULL-terminated
1383 * - contain no whitespace
1384 *
1385 * Return value:
1386 * Number of operands (0,1,2, or 3) or -1 on error.
1387 *
1388 **************************************************************************** */
1389 static int
1390 get_args (p, args)
1391 register char *p; /* Pointer to comma-separated operands; MUCKED BY US */
1392 char *args[]; /* Output arg: pointers to operands placed in args[1-3].
1393 * MUST ACCOMMODATE 4 ENTRIES (args[0-3]).
1394 */
1395 {
1396 register int n; /* Number of operands */
1397 register char *to;
1398 /* char buf[4]; */
1399 /* int len; */
1400
1401
1402 /* Skip lead white space */
1403 while (*p == ' ')
1404 {
1405 p++;
1406 }
1407
1408 if (*p == '\0')
1409 {
1410 return 0;
1411 }
1412
1413 n = 1;
1414 args[1] = p;
1415
1416 /* Squeze blanks out by moving non-blanks toward start of string.
1417 * Isolate operands, whenever comma is found.
1418 */
1419 to = p;
1420 while (*p != '\0')
1421 {
1422
1423 if (*p == ' ')
1424 {
1425 p++;
1426
1427 }
1428 else if (*p == ',')
1429 {
1430
1431 /* Start of operand */
1432 if (n == 3)
1433 {
1434 as_bad ("too many operands");
1435 return -1;
1436 }
1437 *to++ = '\0'; /* Terminate argument */
1438 args[++n] = to; /* Start next argument */
1439 p++;
1440
1441 }
1442 else
1443 {
1444 *to++ = *p++;
1445 }
1446 }
1447 *to = '\0';
1448 return n;
1449 }
1450
1451
1452 /*****************************************************************************
1453 * get_cdisp: handle displacement for a COBR or CTRL instruction.
1454 *
1455 * Parse displacement for a COBR or CTRL instruction.
1456 *
1457 * If successful, output the instruction opcode and set up for it,
1458 * depending on the arg 'var_frag', either:
1459 * o an address fixup to be done when all symbol values are known, or
1460 * o a varying length code fragment, with address fixup info. This
1461 * will be done for cobr instructions that may have to be relaxed
1462 * in to compare/branch instructions (8 bytes) if the final
1463 * address displacement is greater than 13 bits.
1464 *
1465 *****************************************************************************/
1466 static
1467 void
1468 get_cdisp (dispP, ifmtP, instr, numbits, var_frag, callj)
1469 /* displacement as specified in source instruction */
1470 char *dispP;
1471 /* "COBR" or "CTRL" (for use in error message) */
1472 char *ifmtP;
1473 /* Instruction needing the displacement */
1474 long instr;
1475 /* # bits of displacement (13 for COBR, 24 for CTRL) */
1476 int numbits;
1477 /* 1 if varying length code fragment should be emitted;
1478 * 0 if an address fix should be emitted.
1479 */
1480 int var_frag;
1481 /* 1 if callj relocation should be done; else 0 */
1482 int callj;
1483 {
1484 expressionS e; /* Parsed expression */
1485 fixS *fixP; /* Structure describing needed address fix */
1486 char *outP; /* Where instruction binary is output to */
1487
1488 fixP = NULL;
1489
1490 parse_expr (dispP, &e);
1491 switch (e.X_op)
1492 {
1493 case O_illegal:
1494 as_bad ("expression syntax error");
1495
1496 case O_symbol:
1497 if (S_GET_SEGMENT (e.X_add_symbol) == text_section
1498 || S_GET_SEGMENT (e.X_add_symbol) == undefined_section)
1499 {
1500 if (var_frag)
1501 {
1502 outP = frag_more (8); /* Allocate worst-case storage */
1503 md_number_to_chars (outP, instr, 4);
1504 frag_variant (rs_machine_dependent, 4, 4, 1,
1505 adds (e), offs (e), outP, 0, 0);
1506 }
1507 else
1508 {
1509 /* Set up a new fix structure, so address can be updated
1510 * when all symbol values are known.
1511 */
1512 outP = emit (instr);
1513 fixP = fix_new (frag_now,
1514 outP - frag_now->fr_literal,
1515 4,
1516 adds (e),
1517 offs (e),
1518 1,
1519 NO_RELOC);
1520
1521 fixP->fx_callj = callj;
1522
1523 /* We want to modify a bit field when the address is
1524 * known. But we don't need all the garbage in the
1525 * bit_fix structure. So we're going to lie and store
1526 * the number of bits affected instead of a pointer.
1527 */
1528 fixP->fx_bit_fixP = (bit_fixS *) numbits;
1529 }
1530 }
1531 else
1532 as_bad ("attempt to branch into different segment");
1533 break;
1534
1535 default:
1536 as_bad ("target of %s instruction must be a label", ifmtP);
1537 break;
1538 }
1539 }
1540
1541
1542 /*****************************************************************************
1543 * get_ispec: parse a memory operand for an index specification
1544 *
1545 * Here, an "index specification" is taken to be anything surrounded
1546 * by square brackets and NOT followed by anything else.
1547 *
1548 * If it's found, detach it from the input string, remove the surrounding
1549 * square brackets, and return a pointer to it. Otherwise, return NULL.
1550 *
1551 **************************************************************************** */
1552 static
1553 char *
1554 get_ispec (textP)
1555 char *textP; /*->memory operand from source instruction, no white space */
1556 {
1557 char *start; /*->start of index specification */
1558 char *end; /*->end of index specification */
1559
1560 /* Find opening square bracket, if any
1561 */
1562 start = strchr (textP, '[');
1563
1564 if (start != NULL)
1565 {
1566
1567 /* Eliminate '[', detach from rest of operand */
1568 *start++ = '\0';
1569
1570 end = strchr (start, ']');
1571
1572 if (end == NULL)
1573 {
1574 as_bad ("unmatched '['");
1575
1576 }
1577 else
1578 {
1579 /* Eliminate ']' and make sure it was the last thing
1580 * in the string.
1581 */
1582 *end = '\0';
1583 if (*(end + 1) != '\0')
1584 {
1585 as_bad ("garbage after index spec ignored");
1586 }
1587 }
1588 }
1589 return start;
1590 }
1591
1592 /*****************************************************************************
1593 * get_regnum:
1594 *
1595 * Look up a (suspected) register name in the register table and return the
1596 * associated register number (or -1 if not found).
1597 *
1598 **************************************************************************** */
1599 static
1600 int
1601 get_regnum (regname)
1602 char *regname; /* Suspected register name */
1603 {
1604 int *rP;
1605
1606 rP = (int *) hash_find (reg_hash, regname);
1607 return (rP == NULL) ? -1 : *rP;
1608 }
1609
1610
1611 /*****************************************************************************
1612 * i_scan: perform lexical scan of ascii assembler instruction.
1613 *
1614 * Input assumptions:
1615 * - input string is an i80960 instruction (not a pseudo-op)
1616 * - all comments and labels have been removed
1617 * - all strings of whitespace have been collapsed to a single blank.
1618 *
1619 * Output:
1620 * args[0] points to opcode, other entries point to operands. All strings:
1621 * - are NULL-terminated
1622 * - contain no whitespace
1623 * - have character constants ('x') replaced with a decimal number
1624 *
1625 * Return value:
1626 * Number of operands (0,1,2, or 3) or -1 on error.
1627 *
1628 **************************************************************************** */
1629 static int
1630 i_scan (iP, args)
1631 register char *iP; /* Pointer to ascii instruction; MUCKED BY US. */
1632 char *args[]; /* Output arg: pointers to opcode and operands placed
1633 * here. MUST ACCOMMODATE 4 ENTRIES.
1634 */
1635 {
1636
1637 /* Isolate opcode */
1638 if (*(iP) == ' ')
1639 {
1640 iP++;
1641 } /* Skip lead space, if any */
1642 args[0] = iP;
1643 for (; *iP != ' '; iP++)
1644 {
1645 if (*iP == '\0')
1646 {
1647 /* There are no operands */
1648 if (args[0] == iP)
1649 {
1650 /* We never moved: there was no opcode either! */
1651 as_bad ("missing opcode");
1652 return -1;
1653 }
1654 return 0;
1655 }
1656 }
1657 *iP++ = '\0'; /* Terminate opcode */
1658 return (get_args (iP, args));
1659 } /* i_scan() */
1660
1661
1662 /*****************************************************************************
1663 * mem_fmt: generate a MEMA- or MEMB-format instruction
1664 *
1665 **************************************************************************** */
1666 static void
1667 mem_fmt (args, oP, callx)
1668 char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */
1669 struct i960_opcode *oP; /* Pointer to description of instruction */
1670 int callx; /* Is this a callx opcode */
1671 {
1672 int i; /* Loop counter */
1673 struct regop regop; /* Description of register operand */
1674 char opdesc; /* Operand descriptor byte */
1675 memS instr; /* Description of binary to be output */
1676 char *outP; /* Where the binary was output to */
1677 expressionS expr; /* Parsed expression */
1678 fixS *fixP; /*->description of deferred address fixup */
1679
1680 memset (&instr, '\0', sizeof (memS));
1681 instr.opcode = oP->opcode;
1682
1683 /* Process operands. */
1684 for (i = 1; i <= oP->num_ops; i++)
1685 {
1686 opdesc = oP->operand[i - 1];
1687
1688 if (MEMOP (opdesc))
1689 {
1690 parse_memop (&instr, args[i], oP->format);
1691 }
1692 else
1693 {
1694 parse_regop (&regop, args[i], opdesc);
1695 instr.opcode |= regop.n << 19;
1696 }
1697 }
1698
1699 /* Output opcode */
1700 outP = emit (instr.opcode);
1701
1702 if (instr.disp == 0)
1703 {
1704 return;
1705 }
1706
1707 /* Parse and process the displacement */
1708 parse_expr (instr.e, &expr);
1709 switch (expr.X_op)
1710 {
1711 case O_illegal:
1712 as_bad ("expression syntax error");
1713 break;
1714
1715 case O_constant:
1716 if (instr.disp == 32)
1717 {
1718 (void) emit (offs (expr)); /* Output displacement */
1719 }
1720 else
1721 {
1722 /* 12-bit displacement */
1723 if (offs (expr) & ~0xfff)
1724 {
1725 /* Won't fit in 12 bits: convert already-output
1726 * instruction to MEMB format, output
1727 * displacement.
1728 */
1729 mema_to_memb (outP);
1730 (void) emit (offs (expr));
1731 }
1732 else
1733 {
1734 /* WILL fit in 12 bits: OR into opcode and
1735 * overwrite the binary we already put out
1736 */
1737 instr.opcode |= offs (expr);
1738 md_number_to_chars (outP, instr.opcode, 4);
1739 }
1740 }
1741 break;
1742
1743 default:
1744 if (instr.disp == 12)
1745 {
1746 /* Displacement is dependent on a symbol, whose value
1747 * may change at link time. We HAVE to reserve 32 bits.
1748 * Convert already-output opcode to MEMB format.
1749 */
1750 mema_to_memb (outP);
1751 }
1752
1753 /* Output 0 displacement and set up address fixup for when
1754 * this symbol's value becomes known.
1755 */
1756 outP = emit ((long) 0);
1757 fixP = fix_new_exp (frag_now,
1758 outP - frag_now->fr_literal,
1759 4,
1760 &expr,
1761 0,
1762 NO_RELOC);
1763 fixP->fx_im_disp = 2; /* 32-bit displacement fix */
1764 fixP->fx_bsr = callx; /*SAC LD RELAX HACK *//* Mark reloc as being in i stream */
1765 break;
1766 }
1767 } /* memfmt() */
1768
1769
1770 /*****************************************************************************
1771 * mema_to_memb: convert a MEMA-format opcode to a MEMB-format opcode.
1772 *
1773 * There are 2 possible MEMA formats:
1774 * - displacement only
1775 * - displacement + abase
1776 *
1777 * They are distinguished by the setting of the MEMA_ABASE bit.
1778 *
1779 **************************************************************************** */
1780 static void
1781 mema_to_memb (opcodeP)
1782 char *opcodeP; /* Where to find the opcode, in target byte order */
1783 {
1784 long opcode; /* Opcode in host byte order */
1785 long mode; /* Mode bits for MEMB instruction */
1786
1787 opcode = md_chars_to_number (opcodeP, 4);
1788 know (!(opcode & MEMB_BIT));
1789
1790 mode = MEMB_BIT | D_BIT;
1791 if (opcode & MEMA_ABASE)
1792 {
1793 mode |= A_BIT;
1794 }
1795
1796 opcode &= 0xffffc000; /* Clear MEMA offset and mode bits */
1797 opcode |= mode; /* Set MEMB mode bits */
1798
1799 md_number_to_chars (opcodeP, opcode, 4);
1800 } /* mema_to_memb() */
1801
1802
1803 /*****************************************************************************
1804 * parse_expr: parse an expression
1805 *
1806 * Use base assembler's expression parser to parse an expression.
1807 * It, unfortunately, runs off a global which we have to save/restore
1808 * in order to make it work for us.
1809 *
1810 * An empty expression string is treated as an absolute 0.
1811 *
1812 * Sets O_illegal regardless of expression evaluation if entire input
1813 * string is not consumed in the evaluation -- tolerate no dangling junk!
1814 *
1815 **************************************************************************** */
1816 static void
1817 parse_expr (textP, expP)
1818 char *textP; /* Text of expression to be parsed */
1819 expressionS *expP; /* Where to put the results of parsing */
1820 {
1821 char *save_in; /* Save global here */
1822 symbolS *symP;
1823
1824 know (textP);
1825
1826 if (*textP == '\0')
1827 {
1828 /* Treat empty string as absolute 0 */
1829 expP->X_add_symbol = expP->X_op_symbol = NULL;
1830 expP->X_add_number = 0;
1831 expP->X_op = O_constant;
1832 }
1833 else
1834 {
1835 save_in = input_line_pointer; /* Save global */
1836 input_line_pointer = textP; /* Make parser work for us */
1837
1838 (void) expression (expP);
1839 if (input_line_pointer - textP != strlen (textP))
1840 {
1841 /* Did not consume all of the input */
1842 expP->X_op = O_illegal;
1843 }
1844 symP = expP->X_add_symbol;
1845 if (symP && (hash_find (reg_hash, S_GET_NAME (symP))))
1846 {
1847 /* Register name in an expression */
1848 /* FIXME: this isn't much of a check any more. */
1849 expP->X_op = O_illegal;
1850 }
1851
1852 input_line_pointer = save_in; /* Restore global */
1853 }
1854 }
1855
1856
1857 /*****************************************************************************
1858 * parse_ldcont:
1859 * Parse and replace a 'ldconst' pseudo-instruction with an appropriate
1860 * i80960 instruction.
1861 *
1862 * Assumes the input consists of:
1863 * arg[0] opcode mnemonic ('ldconst')
1864 * arg[1] first operand (constant)
1865 * arg[2] name of register to be loaded
1866 *
1867 * Replaces opcode and/or operands as appropriate.
1868 *
1869 * Returns the new number of arguments, or -1 on failure.
1870 *
1871 **************************************************************************** */
1872 static
1873 int
1874 parse_ldconst (arg)
1875 char *arg[]; /* See above */
1876 {
1877 int n; /* Constant to be loaded */
1878 int shift; /* Shift count for "shlo" instruction */
1879 static char buf[5]; /* Literal for first operand */
1880 static char buf2[5]; /* Literal for second operand */
1881 expressionS e; /* Parsed expression */
1882
1883
1884 arg[3] = NULL; /* So we can tell at the end if it got used or not */
1885
1886 parse_expr (arg[1], &e);
1887 switch (e.X_op)
1888 {
1889 default:
1890 /* We're dependent on one or more symbols -- use "lda" */
1891 arg[0] = "lda";
1892 break;
1893
1894 case O_constant:
1895 /* Try the following mappings:
1896 * ldconst 0,<reg> ->mov 0,<reg>
1897 * ldconst 31,<reg> ->mov 31,<reg>
1898 * ldconst 32,<reg> ->addo 1,31,<reg>
1899 * ldconst 62,<reg> ->addo 31,31,<reg>
1900 * ldconst 64,<reg> ->shlo 8,3,<reg>
1901 * ldconst -1,<reg> ->subo 1,0,<reg>
1902 * ldconst -31,<reg>->subo 31,0,<reg>
1903 *
1904 * anthing else becomes:
1905 * lda xxx,<reg>
1906 */
1907 n = offs (e);
1908 if ((0 <= n) && (n <= 31))
1909 {
1910 arg[0] = "mov";
1911
1912 }
1913 else if ((-31 <= n) && (n <= -1))
1914 {
1915 arg[0] = "subo";
1916 arg[3] = arg[2];
1917 sprintf (buf, "%d", -n);
1918 arg[1] = buf;
1919 arg[2] = "0";
1920
1921 }
1922 else if ((32 <= n) && (n <= 62))
1923 {
1924 arg[0] = "addo";
1925 arg[3] = arg[2];
1926 arg[1] = "31";
1927 sprintf (buf, "%d", n - 31);
1928 arg[2] = buf;
1929
1930 }
1931 else if ((shift = shift_ok (n)) != 0)
1932 {
1933 arg[0] = "shlo";
1934 arg[3] = arg[2];
1935 sprintf (buf, "%d", shift);
1936 arg[1] = buf;
1937 sprintf (buf2, "%d", n >> shift);
1938 arg[2] = buf2;
1939
1940 }
1941 else
1942 {
1943 arg[0] = "lda";
1944 }
1945 break;
1946
1947 case O_illegal:
1948 as_bad ("invalid constant");
1949 return -1;
1950 break;
1951 }
1952 return (arg[3] == 0) ? 2 : 3;
1953 }
1954
1955 /*****************************************************************************
1956 * parse_memop: parse a memory operand
1957 *
1958 * This routine is based on the observation that the 4 mode bits of the
1959 * MEMB format, taken individually, have fairly consistent meaning:
1960 *
1961 * M3 (bit 13): 1 if displacement is present (D_BIT)
1962 * M2 (bit 12): 1 for MEMB instructions (MEMB_BIT)
1963 * M1 (bit 11): 1 if index is present (I_BIT)
1964 * M0 (bit 10): 1 if abase is present (A_BIT)
1965 *
1966 * So we parse the memory operand and set bits in the mode as we find
1967 * things. Then at the end, if we go to MEMB format, we need only set
1968 * the MEMB bit (M2) and our mode is built for us.
1969 *
1970 * Unfortunately, I said "fairly consistent". The exceptions:
1971 *
1972 * DBIA
1973 * 0100 Would seem illegal, but means "abase-only".
1974 *
1975 * 0101 Would seem to mean "abase-only" -- it means IP-relative.
1976 * Must be converted to 0100.
1977 *
1978 * 0110 Would seem to mean "index-only", but is reserved.
1979 * We turn on the D bit and provide a 0 displacement.
1980 *
1981 * The other thing to observe is that we parse from the right, peeling
1982 * things * off as we go: first any index spec, then any abase, then
1983 * the displacement.
1984 *
1985 **************************************************************************** */
1986 static
1987 void
1988 parse_memop (memP, argP, optype)
1989 memS *memP; /* Where to put the results */
1990 char *argP; /* Text of the operand to be parsed */
1991 int optype; /* MEM1, MEM2, MEM4, MEM8, MEM12, or MEM16 */
1992 {
1993 char *indexP; /* Pointer to index specification with "[]" removed */
1994 char *p; /* Temp char pointer */
1995 char iprel_flag; /* True if this is an IP-relative operand */
1996 int regnum; /* Register number */
1997 int scale; /* Scale factor: 1,2,4,8, or 16. Later converted
1998 * to internal format (0,1,2,3,4 respectively).
1999 */
2000 int mode; /* MEMB mode bits */
2001 int *intP; /* Pointer to register number */
2002
2003 /* The following table contains the default scale factors for each
2004 * type of memory instruction. It is accessed using (optype-MEM1)
2005 * as an index -- thus it assumes the 'optype' constants are assigned
2006 * consecutive values, in the order they appear in this table
2007 */
2008 static int def_scale[] =
2009 {
2010 1, /* MEM1 */
2011 2, /* MEM2 */
2012 4, /* MEM4 */
2013 8, /* MEM8 */
2014 -1, /* MEM12 -- no valid default */
2015 16 /* MEM16 */
2016 };
2017
2018
2019 iprel_flag = mode = 0;
2020
2021 /* Any index present? */
2022 indexP = get_ispec (argP);
2023 if (indexP)
2024 {
2025 p = strchr (indexP, '*');
2026 if (p == NULL)
2027 {
2028 /* No explicit scale -- use default for this
2029 *instruction type.
2030 */
2031 scale = def_scale[optype - MEM1];
2032 }
2033 else
2034 {
2035 *p++ = '\0'; /* Eliminate '*' */
2036
2037 /* Now indexP->a '\0'-terminated register name,
2038 * and p->a scale factor.
2039 */
2040
2041 if (!strcmp (p, "16"))
2042 {
2043 scale = 16;
2044 }
2045 else if (strchr ("1248", *p) && (p[1] == '\0'))
2046 {
2047 scale = *p - '0';
2048 }
2049 else
2050 {
2051 scale = -1;
2052 }
2053 }
2054
2055 regnum = get_regnum (indexP); /* Get index reg. # */
2056 if (!IS_RG_REG (regnum))
2057 {
2058 as_bad ("invalid index register");
2059 return;
2060 }
2061
2062 /* Convert scale to its binary encoding */
2063 switch (scale)
2064 {
2065 case 1:
2066 scale = 0 << 7;
2067 break;
2068 case 2:
2069 scale = 1 << 7;
2070 break;
2071 case 4:
2072 scale = 2 << 7;
2073 break;
2074 case 8:
2075 scale = 3 << 7;
2076 break;
2077 case 16:
2078 scale = 4 << 7;
2079 break;
2080 default:
2081 as_bad ("invalid scale factor");
2082 return;
2083 };
2084
2085 memP->opcode |= scale | regnum; /* Set index bits in opcode */
2086 mode |= I_BIT; /* Found a valid index spec */
2087 }
2088
2089 /* Any abase (Register Indirect) specification present? */
2090 if ((p = strrchr (argP, '(')) != NULL)
2091 {
2092 /* "(" is there -- does it start a legal abase spec?
2093 * (If not it could be part of a displacement expression.)
2094 */
2095 intP = (int *) hash_find (areg_hash, p);
2096 if (intP != NULL)
2097 {
2098 /* Got an abase here */
2099 regnum = *intP;
2100 *p = '\0'; /* discard register spec */
2101 if (regnum == IPREL)
2102 {
2103 /* We have to specialcase ip-rel mode */
2104 iprel_flag = 1;
2105 }
2106 else
2107 {
2108 memP->opcode |= regnum << 14;
2109 mode |= A_BIT;
2110 }
2111 }
2112 }
2113
2114 /* Any expression present? */
2115 memP->e = argP;
2116 if (*argP != '\0')
2117 {
2118 mode |= D_BIT;
2119 }
2120
2121 /* Special-case ip-relative addressing */
2122 if (iprel_flag)
2123 {
2124 if (mode & I_BIT)
2125 {
2126 syntax ();
2127 }
2128 else
2129 {
2130 memP->opcode |= 5 << 10; /* IP-relative mode */
2131 memP->disp = 32;
2132 }
2133 return;
2134 }
2135
2136 /* Handle all other modes */
2137 switch (mode)
2138 {
2139 case D_BIT | A_BIT:
2140 /* Go with MEMA instruction format for now (grow to MEMB later
2141 * if 12 bits is not enough for the displacement).
2142 * MEMA format has a single mode bit: set it to indicate
2143 * that abase is present.
2144 */
2145 memP->opcode |= MEMA_ABASE;
2146 memP->disp = 12;
2147 break;
2148
2149 case D_BIT:
2150 /* Go with MEMA instruction format for now (grow to MEMB later
2151 * if 12 bits is not enough for the displacement).
2152 */
2153 memP->disp = 12;
2154 break;
2155
2156 case A_BIT:
2157 /* For some reason, the bit string for this mode is not
2158 * consistent: it should be 0 (exclusive of the MEMB bit),
2159 * so we set it "by hand" here.
2160 */
2161 memP->opcode |= MEMB_BIT;
2162 break;
2163
2164 case A_BIT | I_BIT:
2165 /* set MEMB bit in mode, and OR in mode bits */
2166 memP->opcode |= mode | MEMB_BIT;
2167 break;
2168
2169 case I_BIT:
2170 /* Treat missing displacement as displacement of 0 */
2171 mode |= D_BIT;
2172 /***********************
2173 * Fall into next case *
2174 ********************** */
2175 case D_BIT | A_BIT | I_BIT:
2176 case D_BIT | I_BIT:
2177 /* set MEMB bit in mode, and OR in mode bits */
2178 memP->opcode |= mode | MEMB_BIT;
2179 memP->disp = 32;
2180 break;
2181
2182 default:
2183 syntax ();
2184 break;
2185 }
2186 }
2187
2188 /*****************************************************************************
2189 * parse_po: parse machine-dependent pseudo-op
2190 *
2191 * This is a top-level routine for machine-dependent pseudo-ops. It slurps
2192 * up the rest of the input line, breaks out the individual arguments,
2193 * and dispatches them to the correct handler.
2194 **************************************************************************** */
2195 static
2196 void
2197 parse_po (po_num)
2198 int po_num; /* Pseudo-op number: currently S_LEAFPROC or S_SYSPROC */
2199 {
2200 char *args[4]; /* Pointers operands, with no embedded whitespace.
2201 * arg[0] unused.
2202 * arg[1-3]->operands
2203 */
2204 int n_ops; /* Number of operands */
2205 char *p; /* Pointer to beginning of unparsed argument string */
2206 char eol; /* Character that indicated end of line */
2207
2208 extern char is_end_of_line[];
2209
2210 /* Advance input pointer to end of line. */
2211 p = input_line_pointer;
2212 while (!is_end_of_line[(unsigned char) *input_line_pointer])
2213 {
2214 input_line_pointer++;
2215 }
2216 eol = *input_line_pointer; /* Save end-of-line char */
2217 *input_line_pointer = '\0'; /* Terminate argument list */
2218
2219 /* Parse out operands */
2220 n_ops = get_args (p, args);
2221 if (n_ops == -1)
2222 {
2223 return;
2224 }
2225
2226 /* Dispatch to correct handler */
2227 switch (po_num)
2228 {
2229 case S_SYSPROC:
2230 s_sysproc (n_ops, args);
2231 break;
2232 case S_LEAFPROC:
2233 s_leafproc (n_ops, args);
2234 break;
2235 default:
2236 BAD_CASE (po_num);
2237 break;
2238 }
2239
2240 /* Restore eol, so line numbers get updated correctly. Base assembler
2241 * assumes we leave input pointer pointing at char following the eol.
2242 */
2243 *input_line_pointer++ = eol;
2244 }
2245
2246 /*****************************************************************************
2247 * parse_regop: parse a register operand.
2248 *
2249 * In case of illegal operand, issue a message and return some valid
2250 * information so instruction processing can continue.
2251 **************************************************************************** */
2252 static
2253 void
2254 parse_regop (regopP, optext, opdesc)
2255 struct regop *regopP; /* Where to put description of register operand */
2256 char *optext; /* Text of operand */
2257 char opdesc; /* Descriptor byte: what's legal for this operand */
2258 {
2259 int n; /* Register number */
2260 expressionS e; /* Parsed expression */
2261
2262 /* See if operand is a register */
2263 n = get_regnum (optext);
2264 if (n >= 0)
2265 {
2266 if (IS_RG_REG (n))
2267 {
2268 /* global or local register */
2269 if (!REG_ALIGN (opdesc, n))
2270 {
2271 as_bad ("unaligned register");
2272 }
2273 regopP->n = n;
2274 regopP->mode = 0;
2275 regopP->special = 0;
2276 return;
2277 }
2278 else if (IS_FP_REG (n) && FP_OK (opdesc))
2279 {
2280 /* Floating point register, and it's allowed */
2281 regopP->n = n - FP0;
2282 regopP->mode = 1;
2283 regopP->special = 0;
2284 return;
2285 }
2286 else if (IS_SF_REG (n) && SFR_OK (opdesc))
2287 {
2288 /* Special-function register, and it's allowed */
2289 regopP->n = n - SF0;
2290 regopP->mode = 0;
2291 regopP->special = 1;
2292 if (!targ_has_sfr (regopP->n))
2293 {
2294 as_bad ("no such sfr in this architecture");
2295 }
2296 return;
2297 }
2298 }
2299 else if (LIT_OK (opdesc))
2300 {
2301 /*
2302 * How about a literal?
2303 */
2304 regopP->mode = 1;
2305 regopP->special = 0;
2306 if (FP_OK (opdesc))
2307 { /* floating point literal acceptable */
2308 /* Skip over 0f, 0d, or 0e prefix */
2309 if ((optext[0] == '0')
2310 && (optext[1] >= 'd')
2311 && (optext[1] <= 'f'))
2312 {
2313 optext += 2;
2314 }
2315
2316 if (!strcmp (optext, "0.0") || !strcmp (optext, "0"))
2317 {
2318 regopP->n = 0x10;
2319 return;
2320 }
2321 if (!strcmp (optext, "1.0") || !strcmp (optext, "1"))
2322 {
2323 regopP->n = 0x16;
2324 return;
2325 }
2326
2327 }
2328 else
2329 { /* fixed point literal acceptable */
2330 parse_expr (optext, &e);
2331 if (e.X_op != O_constant
2332 || (offs (e) < 0) || (offs (e) > 31))
2333 {
2334 as_bad ("illegal literal");
2335 offs (e) = 0;
2336 }
2337 regopP->n = offs (e);
2338 return;
2339 }
2340 }
2341
2342 /* Nothing worked */
2343 syntax ();
2344 regopP->mode = 0; /* Register r0 is always a good one */
2345 regopP->n = 0;
2346 regopP->special = 0;
2347 } /* parse_regop() */
2348
2349 /*****************************************************************************
2350 * reg_fmt: generate a REG-format instruction
2351 *
2352 **************************************************************************** */
2353 static void
2354 reg_fmt (args, oP)
2355 char *args[]; /* args[0]->opcode mnemonic, args[1-3]->operands */
2356 struct i960_opcode *oP; /* Pointer to description of instruction */
2357 {
2358 long instr; /* Binary to be output */
2359 struct regop regop; /* Description of register operand */
2360 int n_ops; /* Number of operands */
2361
2362
2363 instr = oP->opcode;
2364 n_ops = oP->num_ops;
2365
2366 if (n_ops >= 1)
2367 {
2368 parse_regop (&regop, args[1], oP->operand[0]);
2369
2370 if ((n_ops == 1) && !(instr & M3))
2371 {
2372 /* 1-operand instruction in which the dst field should
2373 * be used (instead of src1).
2374 */
2375 regop.n <<= 19;
2376 if (regop.special)
2377 {
2378 regop.mode = regop.special;
2379 }
2380 regop.mode <<= 13;
2381 regop.special = 0;
2382 }
2383 else
2384 {
2385 /* regop.n goes in bit 0, needs no shifting */
2386 regop.mode <<= 11;
2387 regop.special <<= 5;
2388 }
2389 instr |= regop.n | regop.mode | regop.special;
2390 }
2391
2392 if (n_ops >= 2)
2393 {
2394 parse_regop (&regop, args[2], oP->operand[1]);
2395
2396 if ((n_ops == 2) && !(instr & M3))
2397 {
2398 /* 2-operand instruction in which the dst field should
2399 * be used instead of src2).
2400 */
2401 regop.n <<= 19;
2402 if (regop.special)
2403 {
2404 regop.mode = regop.special;
2405 }
2406 regop.mode <<= 13;
2407 regop.special = 0;
2408 }
2409 else
2410 {
2411 regop.n <<= 14;
2412 regop.mode <<= 12;
2413 regop.special <<= 6;
2414 }
2415 instr |= regop.n | regop.mode | regop.special;
2416 }
2417 if (n_ops == 3)
2418 {
2419 parse_regop (&regop, args[3], oP->operand[2]);
2420 if (regop.special)
2421 {
2422 regop.mode = regop.special;
2423 }
2424 instr |= (regop.n <<= 19) | (regop.mode <<= 13);
2425 }
2426 emit (instr);
2427 }
2428
2429
2430 /*****************************************************************************
2431 * relax_cobr:
2432 * Replace cobr instruction in a code fragment with equivalent branch and
2433 * compare instructions, so it can reach beyond a 13-bit displacement.
2434 * Set up an address fix/relocation for the new branch instruction.
2435 *
2436 **************************************************************************** */
2437
2438 /* This "conditional jump" table maps cobr instructions into equivalent
2439 * compare and branch opcodes.
2440 */
2441 static
2442 struct
2443 {
2444 long compare;
2445 long branch;
2446 }
2447
2448 coj[] =
2449 { /* COBR OPCODE: */
2450 { CHKBIT, BNO }, /* 0x30 - bbc */
2451 { CMPO, BG }, /* 0x31 - cmpobg */
2452 { CMPO, BE }, /* 0x32 - cmpobe */
2453 { CMPO, BGE }, /* 0x33 - cmpobge */
2454 { CMPO, BL }, /* 0x34 - cmpobl */
2455 { CMPO, BNE }, /* 0x35 - cmpobne */
2456 { CMPO, BLE }, /* 0x36 - cmpoble */
2457 { CHKBIT, BO }, /* 0x37 - bbs */
2458 { CMPI, BNO }, /* 0x38 - cmpibno */
2459 { CMPI, BG }, /* 0x39 - cmpibg */
2460 { CMPI, BE }, /* 0x3a - cmpibe */
2461 { CMPI, BGE }, /* 0x3b - cmpibge */
2462 { CMPI, BL }, /* 0x3c - cmpibl */
2463 { CMPI, BNE }, /* 0x3d - cmpibne */
2464 { CMPI, BLE }, /* 0x3e - cmpible */
2465 { CMPI, BO }, /* 0x3f - cmpibo */
2466 };
2467
2468 static
2469 void
2470 relax_cobr (fragP)
2471 register fragS *fragP; /* fragP->fr_opcode is assumed to point to
2472 * the cobr instruction, which comes at the
2473 * end of the code fragment.
2474 */
2475 {
2476 int opcode, src1, src2, m1, s2;
2477 /* Bit fields from cobr instruction */
2478 long bp_bits; /* Branch prediction bits from cobr instruction */
2479 long instr; /* A single i960 instruction */
2480 char *iP; /*->instruction to be replaced */
2481 fixS *fixP; /* Relocation that can be done at assembly time */
2482
2483 /* PICK UP & PARSE COBR INSTRUCTION */
2484 iP = fragP->fr_opcode;
2485 instr = md_chars_to_number (iP, 4);
2486 opcode = ((instr >> 24) & 0xff) - 0x30; /* "-0x30" for table index */
2487 src1 = (instr >> 19) & 0x1f;
2488 m1 = (instr >> 13) & 1;
2489 s2 = instr & 1;
2490 src2 = (instr >> 14) & 0x1f;
2491 bp_bits = instr & BP_MASK;
2492
2493 /* GENERATE AND OUTPUT COMPARE INSTRUCTION */
2494 instr = coj[opcode].compare
2495 | src1 | (m1 << 11) | (s2 << 6) | (src2 << 14);
2496 md_number_to_chars (iP, instr, 4);
2497
2498 /* OUTPUT BRANCH INSTRUCTION */
2499 md_number_to_chars (iP + 4, coj[opcode].branch | bp_bits, 4);
2500
2501 /* SET UP ADDRESS FIXUP/RELOCATION */
2502 fixP = fix_new (fragP,
2503 iP + 4 - fragP->fr_literal,
2504 4,
2505 fragP->fr_symbol,
2506 fragP->fr_offset,
2507 1,
2508 NO_RELOC);
2509
2510 fixP->fx_bit_fixP = (bit_fixS *) 24; /* Store size of bit field */
2511
2512 fragP->fr_fix += 4;
2513 frag_wane (fragP);
2514 }
2515
2516
2517 /*****************************************************************************
2518 * reloc_callj: Relocate a 'callj' instruction
2519 *
2520 * This is a "non-(GNU)-standard" machine-dependent hook. The base
2521 * assembler calls it when it decides it can relocate an address at
2522 * assembly time instead of emitting a relocation directive.
2523 *
2524 * Check to see if the relocation involves a 'callj' instruction to a:
2525 * sysproc: Replace the default 'call' instruction with a 'calls'
2526 * leafproc: Replace the default 'call' instruction with a 'bal'.
2527 * other proc: Do nothing.
2528 *
2529 * See b.out.h for details on the 'n_other' field in a symbol structure.
2530 *
2531 * IMPORTANT!:
2532 * Assumes the caller has already figured out, in the case of a leafproc,
2533 * to use the 'bal' entry point, and has substituted that symbol into the
2534 * passed fixup structure.
2535 *
2536 **************************************************************************** */
2537 void
2538 reloc_callj (fixP)
2539 fixS *fixP; /* Relocation that can be done at assembly time */
2540 {
2541 char *where; /*->the binary for the instruction being relocated */
2542
2543 if (!fixP->fx_callj)
2544 {
2545 return;
2546 } /* This wasn't a callj instruction in the first place */
2547
2548 where = fixP->fx_frag->fr_literal + fixP->fx_where;
2549
2550 if (TC_S_IS_SYSPROC (fixP->fx_addsy))
2551 {
2552 /* Symbol is a .sysproc: replace 'call' with 'calls'.
2553 * System procedure number is (other-1).
2554 */
2555 md_number_to_chars (where, CALLS | TC_S_GET_SYSPROC (fixP->fx_addsy), 4);
2556
2557 /* Nothing else needs to be done for this instruction.
2558 * Make sure 'md_number_to_field()' will perform a no-op.
2559 */
2560 fixP->fx_bit_fixP = (bit_fixS *) 1;
2561
2562 }
2563 else if (TC_S_IS_CALLNAME (fixP->fx_addsy))
2564 {
2565 /* Should not happen: see block comment above */
2566 as_fatal ("Trying to 'bal' to %s", S_GET_NAME (fixP->fx_addsy));
2567
2568 }
2569 else if (TC_S_IS_BALNAME (fixP->fx_addsy))
2570 {
2571 /* Replace 'call' with 'bal'; both instructions have
2572 * the same format, so calling code should complete
2573 * relocation as if nothing happened here.
2574 */
2575 md_number_to_chars (where, BAL, 4);
2576 }
2577 else if (TC_S_IS_BADPROC (fixP->fx_addsy))
2578 {
2579 as_bad ("Looks like a proc, but can't tell what kind.\n");
2580 } /* switch on proc type */
2581
2582 /* else Symbol is neither a sysproc nor a leafproc */
2583
2584 return;
2585 } /* reloc_callj() */
2586
2587
2588 /*****************************************************************************
2589 * s_leafproc: process .leafproc pseudo-op
2590 *
2591 * .leafproc takes two arguments, the second one is optional:
2592 * arg[1]: name of 'call' entry point to leaf procedure
2593 * arg[2]: name of 'bal' entry point to leaf procedure
2594 *
2595 * If the two arguments are identical, or if the second one is missing,
2596 * the first argument is taken to be the 'bal' entry point.
2597 *
2598 * If there are 2 distinct arguments, we must make sure that the 'bal'
2599 * entry point immediately follows the 'call' entry point in the linked
2600 * list of symbols.
2601 *
2602 **************************************************************************** */
2603 static void
2604 s_leafproc (n_ops, args)
2605 int n_ops; /* Number of operands */
2606 char *args[]; /* args[1]->1st operand, args[2]->2nd operand */
2607 {
2608 symbolS *callP; /* Pointer to leafproc 'call' entry point symbol */
2609 symbolS *balP; /* Pointer to leafproc 'bal' entry point symbol */
2610
2611 if ((n_ops != 1) && (n_ops != 2))
2612 {
2613 as_bad ("should have 1 or 2 operands");
2614 return;
2615 } /* Check number of arguments */
2616
2617 /* Find or create symbol for 'call' entry point. */
2618 callP = symbol_find_or_make (args[1]);
2619
2620 if (TC_S_IS_CALLNAME (callP))
2621 {
2622 as_warn ("Redefining leafproc %s", S_GET_NAME (callP));
2623 } /* is leafproc */
2624
2625 /* If that was the only argument, use it as the 'bal' entry point.
2626 * Otherwise, mark it as the 'call' entry point and find or create
2627 * another symbol for the 'bal' entry point.
2628 */
2629 if ((n_ops == 1) || !strcmp (args[1], args[2]))
2630 {
2631 TC_S_FORCE_TO_BALNAME (callP);
2632
2633 }
2634 else
2635 {
2636 TC_S_FORCE_TO_CALLNAME (callP);
2637
2638 balP = symbol_find_or_make (args[2]);
2639 if (TC_S_IS_CALLNAME (balP))
2640 {
2641 as_warn ("Redefining leafproc %s", S_GET_NAME (balP));
2642 }
2643 TC_S_FORCE_TO_BALNAME (balP);
2644
2645 tc_set_bal_of_call (callP, balP);
2646 } /* if only one arg, or the args are the same */
2647
2648 return;
2649 } /* s_leafproc() */
2650
2651
2652 /*
2653 * s_sysproc: process .sysproc pseudo-op
2654 *
2655 * .sysproc takes two arguments:
2656 * arg[1]: name of entry point to system procedure
2657 * arg[2]: 'entry_num' (index) of system procedure in the range
2658 * [0,31] inclusive.
2659 *
2660 * For [ab].out, we store the 'entrynum' in the 'n_other' field of
2661 * the symbol. Since that entry is normally 0, we bias 'entrynum'
2662 * by adding 1 to it. It must be unbiased before it is used.
2663 */
2664 static void
2665 s_sysproc (n_ops, args)
2666 int n_ops; /* Number of operands */
2667 char *args[]; /* args[1]->1st operand, args[2]->2nd operand */
2668 {
2669 expressionS exp;
2670 symbolS *symP;
2671
2672 if (n_ops != 2)
2673 {
2674 as_bad ("should have two operands");
2675 return;
2676 } /* bad arg count */
2677
2678 /* Parse "entry_num" argument and check it for validity. */
2679 parse_expr (args[2], &exp);
2680 if (exp.X_op != O_constant
2681 || (offs (exp) < 0)
2682 || (offs (exp) > 31))
2683 {
2684 as_bad ("'entry_num' must be absolute number in [0,31]");
2685 return;
2686 }
2687
2688 /* Find/make symbol and stick entry number (biased by +1) into it */
2689 symP = symbol_find_or_make (args[1]);
2690
2691 if (TC_S_IS_SYSPROC (symP))
2692 {
2693 as_warn ("Redefining entrynum for sysproc %s", S_GET_NAME (symP));
2694 } /* redefining */
2695
2696 TC_S_SET_SYSPROC (symP, offs (exp)); /* encode entry number */
2697 TC_S_FORCE_TO_SYSPROC (symP);
2698
2699 return;
2700 } /* s_sysproc() */
2701
2702
2703 /*****************************************************************************
2704 * shift_ok:
2705 * Determine if a "shlo" instruction can be used to implement a "ldconst".
2706 * This means that some number X < 32 can be shifted left to produce the
2707 * constant of interest.
2708 *
2709 * Return the shift count, or 0 if we can't do it.
2710 * Caller calculates X by shifting original constant right 'shift' places.
2711 *
2712 **************************************************************************** */
2713 static
2714 int
2715 shift_ok (n)
2716 int n; /* The constant of interest */
2717 {
2718 int shift; /* The shift count */
2719
2720 if (n <= 0)
2721 {
2722 /* Can't do it for negative numbers */
2723 return 0;
2724 }
2725
2726 /* Shift 'n' right until a 1 is about to be lost */
2727 for (shift = 0; (n & 1) == 0; shift++)
2728 {
2729 n >>= 1;
2730 }
2731
2732 if (n >= 32)
2733 {
2734 return 0;
2735 }
2736 return shift;
2737 }
2738
2739
2740 /*****************************************************************************
2741 * syntax: issue syntax error
2742 *
2743 **************************************************************************** */
2744 static void
2745 syntax ()
2746 {
2747 as_bad ("syntax error");
2748 } /* syntax() */
2749
2750
2751 /*****************************************************************************
2752 * targ_has_sfr:
2753 * Return TRUE iff the target architecture supports the specified
2754 * special-function register (sfr).
2755 *
2756 **************************************************************************** */
2757 static
2758 int
2759 targ_has_sfr (n)
2760 int n; /* Number (0-31) of sfr */
2761 {
2762 switch (architecture)
2763 {
2764 case ARCH_KA:
2765 case ARCH_KB:
2766 case ARCH_MC:
2767 return 0;
2768 case ARCH_CA:
2769 default:
2770 return ((0 <= n) && (n <= 2));
2771 }
2772 }
2773
2774
2775 /*****************************************************************************
2776 * targ_has_iclass:
2777 * Return TRUE iff the target architecture supports the indicated
2778 * class of instructions.
2779 *
2780 **************************************************************************** */
2781 static
2782 int
2783 targ_has_iclass (ic)
2784 int ic; /* Instruction class; one of:
2785 * I_BASE, I_CX, I_DEC, I_KX, I_FP, I_MIL, I_CASIM
2786 */
2787 {
2788 iclasses_seen |= ic;
2789 switch (architecture)
2790 {
2791 case ARCH_KA:
2792 return ic & (I_BASE | I_KX);
2793 case ARCH_KB:
2794 return ic & (I_BASE | I_KX | I_FP | I_DEC);
2795 case ARCH_MC:
2796 return ic & (I_BASE | I_KX | I_FP | I_DEC | I_MIL);
2797 case ARCH_CA:
2798 return ic & (I_BASE | I_CX | I_CASIM);
2799 default:
2800 if ((iclasses_seen & (I_KX | I_FP | I_DEC | I_MIL))
2801 && (iclasses_seen & I_CX))
2802 {
2803 as_warn ("architecture of opcode conflicts with that of earlier instruction(s)");
2804 iclasses_seen &= ~ic;
2805 }
2806 return 1;
2807 }
2808 }
2809
2810
2811 /* Parse an operand that is machine-specific.
2812 We just return without modifying the expression if we have nothing
2813 to do. */
2814
2815 /* ARGSUSED */
2816 void
2817 md_operand (expressionP)
2818 expressionS *expressionP;
2819 {
2820 }
2821
2822 /* We have no need to default values of symbols. */
2823
2824 /* ARGSUSED */
2825 symbolS *
2826 md_undefined_symbol (name)
2827 char *name;
2828 {
2829 return 0;
2830 } /* md_undefined_symbol() */
2831
2832 /* Exactly what point is a PC-relative offset relative TO?
2833 On the i960, they're relative to the address of the instruction,
2834 which we have set up as the address of the fixup too. */
2835 long
2836 md_pcrel_from (fixP)
2837 fixS *fixP;
2838 {
2839 return fixP->fx_where + fixP->fx_frag->fr_address;
2840 }
2841
2842 void
2843 md_apply_fix (fixP, val)
2844 fixS *fixP;
2845 long val;
2846 {
2847 char *place = fixP->fx_where + fixP->fx_frag->fr_literal;
2848
2849 if (!fixP->fx_bit_fixP)
2850 {
2851
2852 switch (fixP->fx_im_disp)
2853 {
2854 case 0:
2855 fixP->fx_addnumber = val;
2856 md_number_to_imm (place, val, fixP->fx_size, fixP);
2857 break;
2858 case 1:
2859 md_number_to_disp (place,
2860 (fixP->fx_pcrel
2861 ? val + fixP->fx_pcrel_adjust
2862 : val),
2863 fixP->fx_size);
2864 break;
2865 case 2: /* fix requested for .long .word etc */
2866 md_number_to_chars (place, val, fixP->fx_size);
2867 break;
2868 default:
2869 as_fatal ("Internal error in md_apply_fix() in file \"%s\"",
2870 __FILE__);
2871 }
2872 }
2873 else
2874 {
2875 md_number_to_field (place, val, fixP->fx_bit_fixP);
2876 }
2877
2878 return;
2879 } /* md_apply_fix() */
2880
2881 #if defined(OBJ_AOUT) | defined(OBJ_BOUT)
2882 void
2883 tc_bout_fix_to_chars (where, fixP, segment_address_in_file)
2884 char *where;
2885 fixS *fixP;
2886 relax_addressT segment_address_in_file;
2887 {
2888 static unsigned char nbytes_r_length[] =
2889 {42, 0, 1, 42, 2};
2890 struct relocation_info ri;
2891 symbolS *symbolP;
2892
2893 /* JF this is for paranoia */
2894 memset ((char *) &ri, '\0', sizeof (ri));
2895 symbolP = fixP->fx_addsy;
2896 know (symbolP != 0 || fixP->fx_r_type != NO_RELOC);
2897 ri.r_bsr = fixP->fx_bsr; /*SAC LD RELAX HACK */
2898 /* These two 'cuz of NS32K */
2899 ri.r_callj = fixP->fx_callj;
2900 if (fixP->fx_bit_fixP)
2901 {
2902 ri.r_length = 2;
2903 }
2904 else
2905 {
2906 ri.r_length = nbytes_r_length[fixP->fx_size];
2907 }
2908 ri.r_pcrel = fixP->fx_pcrel;
2909 ri.r_address = fixP->fx_frag->fr_address + fixP->fx_where - segment_address_in_file;
2910
2911 if (fixP->fx_r_type != NO_RELOC)
2912 {
2913 switch (fixP->fx_r_type)
2914 {
2915 case rs_align:
2916 ri.r_index = -2;
2917 ri.r_pcrel = 1;
2918 ri.r_length = fixP->fx_size - 1;
2919 break;
2920 case rs_org:
2921 ri.r_index = -2;
2922 ri.r_pcrel = 0;
2923 break;
2924 case rs_fill:
2925 ri.r_index = -1;
2926 break;
2927 default:
2928 abort ();
2929 }
2930 ri.r_extern = 0;
2931 }
2932 else if (linkrelax || !S_IS_DEFINED (symbolP))
2933 {
2934 ri.r_extern = 1;
2935 ri.r_index = symbolP->sy_number;
2936 }
2937 else
2938 {
2939 ri.r_extern = 0;
2940 ri.r_index = S_GET_TYPE (symbolP);
2941 }
2942
2943 /* Output the relocation information in machine-dependent form. */
2944 md_ri_to_chars (where, &ri);
2945
2946 return;
2947 } /* tc_bout_fix_to_chars() */
2948
2949 #endif /* OBJ_AOUT or OBJ_BOUT */
2950
2951 /* Align an address by rounding it up to the specified boundary.
2952 */
2953 valueT
2954 md_section_align (seg, addr)
2955 segT seg;
2956 valueT addr; /* Address to be rounded up */
2957 {
2958 return ((addr + (1 << section_alignment[(int) seg]) - 1) & (-1 << section_alignment[(int) seg]));
2959 } /* md_section_align() */
2960
2961 #ifdef OBJ_COFF
2962 void
2963 tc_headers_hook (headers)
2964 object_headers *headers;
2965 {
2966 /* FIXME: remove this line *//* unsigned short arch_flag = 0; */
2967
2968 if (iclasses_seen == I_BASE)
2969 {
2970 headers->filehdr.f_flags |= F_I960CORE;
2971 }
2972 else if (iclasses_seen & I_CX)
2973 {
2974 headers->filehdr.f_flags |= F_I960CA;
2975 }
2976 else if (iclasses_seen & I_MIL)
2977 {
2978 headers->filehdr.f_flags |= F_I960MC;
2979 }
2980 else if (iclasses_seen & (I_DEC | I_FP))
2981 {
2982 headers->filehdr.f_flags |= F_I960KB;
2983 }
2984 else
2985 {
2986 headers->filehdr.f_flags |= F_I960KA;
2987 } /* set arch flag */
2988
2989 if (flagseen['R'])
2990 {
2991 headers->filehdr.f_magic = I960RWMAGIC;
2992 headers->aouthdr.magic = OMAGIC;
2993 }
2994 else
2995 {
2996 headers->filehdr.f_magic = I960ROMAGIC;
2997 headers->aouthdr.magic = NMAGIC;
2998 } /* set magic numbers */
2999
3000 return;
3001 } /* tc_headers_hook() */
3002
3003 #endif /* OBJ_COFF */
3004
3005 /*
3006 * Things going on here:
3007 *
3008 * For bout, We need to assure a couple of simplifying
3009 * assumptions about leafprocs for the linker: the leafproc
3010 * entry symbols will be defined in the same assembly in
3011 * which they're declared with the '.leafproc' directive;
3012 * and if a leafproc has both 'call' and 'bal' entry points
3013 * they are both global or both local.
3014 *
3015 * For coff, the call symbol has a second aux entry that
3016 * contains the bal entry point. The bal symbol becomes a
3017 * label.
3018 *
3019 * For coff representation, the call symbol has a second aux entry that
3020 * contains the bal entry point. The bal symbol becomes a label.
3021 *
3022 */
3023
3024 void
3025 tc_crawl_symbol_chain (headers)
3026 object_headers *headers;
3027 {
3028 symbolS *symbolP;
3029
3030 for (symbolP = symbol_rootP; symbolP; symbolP = symbol_next (symbolP))
3031 {
3032 #ifdef OBJ_COFF
3033 if (TC_S_IS_SYSPROC (symbolP))
3034 {
3035 /* second aux entry already contains the sysproc number */
3036 S_SET_NUMBER_AUXILIARY (symbolP, 2);
3037 S_SET_STORAGE_CLASS (symbolP, C_SCALL);
3038 S_SET_DATA_TYPE (symbolP, S_GET_DATA_TYPE (symbolP) | (DT_FCN << N_BTSHFT));
3039 continue;
3040 } /* rewrite sysproc */
3041 #endif /* OBJ_COFF */
3042
3043 if (!TC_S_IS_BALNAME (symbolP) && !TC_S_IS_CALLNAME (symbolP))
3044 {
3045 continue;
3046 } /* Not a leafproc symbol */
3047
3048 if (!S_IS_DEFINED (symbolP))
3049 {
3050 as_bad ("leafproc symbol '%s' undefined", S_GET_NAME (symbolP));
3051 } /* undefined leaf */
3052
3053 if (TC_S_IS_CALLNAME (symbolP))
3054 {
3055 symbolS *balP = tc_get_bal_of_call (symbolP);
3056 if (S_IS_EXTERNAL (symbolP) != S_IS_EXTERNAL (balP))
3057 {
3058 S_SET_EXTERNAL (symbolP);
3059 S_SET_EXTERNAL (balP);
3060 as_warn ("Warning: making leafproc entries %s and %s both global\n",
3061 S_GET_NAME (symbolP), S_GET_NAME (balP));
3062 } /* externality mismatch */
3063 } /* if callname */
3064 } /* walk the symbol chain */
3065
3066 return;
3067 } /* tc_crawl_symbol_chain() */
3068
3069 /*
3070 * For aout or bout, the bal immediately follows the call.
3071 *
3072 * For coff, we cheat and store a pointer to the bal symbol
3073 * in the second aux entry of the call.
3074 */
3075
3076 #undef OBJ_ABOUT
3077 #ifdef OBJ_AOUT
3078 #define OBJ_ABOUT
3079 #endif
3080 #ifdef OBJ_BOUT
3081 #define OBJ_ABOUT
3082 #endif
3083
3084 void
3085 tc_set_bal_of_call (callP, balP)
3086 symbolS *callP;
3087 symbolS *balP;
3088 {
3089 know (TC_S_IS_CALLNAME (callP));
3090 know (TC_S_IS_BALNAME (balP));
3091
3092 #ifdef OBJ_COFF
3093
3094 callP->sy_symbol.ost_auxent[1].x_bal.x_balntry = (int) balP;
3095 S_SET_NUMBER_AUXILIARY (callP, 2);
3096
3097 #else /* ! OBJ_COFF */
3098 #ifdef OBJ_ABOUT
3099
3100 /* If the 'bal' entry doesn't immediately follow the 'call'
3101 * symbol, unlink it from the symbol list and re-insert it.
3102 */
3103 if (symbol_next (callP) != balP)
3104 {
3105 symbol_remove (balP, &symbol_rootP, &symbol_lastP);
3106 symbol_append (balP, callP, &symbol_rootP, &symbol_lastP);
3107 } /* if not in order */
3108
3109 #else /* ! OBJ_ABOUT */
3110 (as yet unwritten.);
3111 #endif /* ! OBJ_ABOUT */
3112 #endif /* ! OBJ_COFF */
3113
3114 return;
3115 } /* tc_set_bal_of_call() */
3116
3117 char *
3118 _tc_get_bal_of_call (callP)
3119 symbolS *callP;
3120 {
3121 symbolS *retval;
3122
3123 know (TC_S_IS_CALLNAME (callP));
3124
3125 #ifdef OBJ_COFF
3126 retval = (symbolS *) (callP->sy_symbol.ost_auxent[1].x_bal.x_balntry);
3127 #else
3128 #ifdef OBJ_ABOUT
3129 retval = symbol_next (callP);
3130 #else
3131 (as yet unwritten.);
3132 #endif /* ! OBJ_ABOUT */
3133 #endif /* ! OBJ_COFF */
3134
3135 know (TC_S_IS_BALNAME (retval));
3136 return ((char *) retval);
3137 } /* _tc_get_bal_of_call() */
3138
3139 void
3140 tc_coff_symbol_emit_hook (symbolP)
3141 symbolS *symbolP;
3142 {
3143 if (TC_S_IS_CALLNAME (symbolP))
3144 {
3145 #ifdef OBJ_COFF
3146 symbolS *balP = tc_get_bal_of_call (symbolP);
3147
3148 /* second aux entry contains the bal entry point */
3149 /* S_SET_NUMBER_AUXILIARY(symbolP, 2); */
3150 symbolP->sy_symbol.ost_auxent[1].x_bal.x_balntry = S_GET_VALUE (balP);
3151 S_SET_STORAGE_CLASS (symbolP, (!SF_GET_LOCAL (symbolP) ? C_LEAFEXT : C_LEAFSTAT));
3152 S_SET_DATA_TYPE (symbolP, S_GET_DATA_TYPE (symbolP) | (DT_FCN << N_BTSHFT));
3153 /* fix up the bal symbol */
3154 S_SET_STORAGE_CLASS (balP, C_LABEL);
3155 #endif /* OBJ_COFF */
3156 } /* only on calls */
3157
3158 return;
3159 } /* tc_coff_symbol_emit_hook() */
3160
3161 void
3162 i960_handle_align (fragp)
3163 fragS *fragp;
3164 {
3165 fixS *fixp;
3166
3167 if (!linkrelax)
3168 return;
3169
3170 /* The text section "ends" with another alignment reloc, to which we
3171 aren't adding padding. */
3172 if (fragp->fr_next == text_last_frag
3173 || fragp->fr_next == data_last_frag)
3174 {
3175 return;
3176 }
3177
3178 /* alignment directive */
3179 fixp = fix_new (fragp, fragp->fr_fix, fragp->fr_offset, 0, 0, 0,
3180 (int) fragp->fr_type);
3181 }
3182
3183 /* end of tc-i960.c */
This page took 0.095165 seconds and 5 git commands to generate.