* config/tc-arm.c (md_begin): Mark .note.gnu.arm.ident as
[deliverable/binutils-gdb.git] / gas / config / tc-ia64.c
1 /* tc-ia64.c -- Assembler for the HP/Intel IA-64 architecture.
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /*
23 TODO:
24
25 - optional operands
26 - directives:
27 .eb
28 .estate
29 .lb
30 .popsection
31 .previous
32 .psr
33 .pushsection
34 - labels are wrong if automatic alignment is introduced
35 (e.g., checkout the second real10 definition in test-data.s)
36 - DV-related stuff:
37 <reg>.safe_across_calls and any other DV-related directives I don't
38 have documentation for.
39 verify mod-sched-brs reads/writes are checked/marked (and other
40 notes)
41
42 */
43
44 #include "as.h"
45 #include "safe-ctype.h"
46 #include "dwarf2dbg.h"
47 #include "subsegs.h"
48
49 #include "opcode/ia64.h"
50
51 #include "elf/ia64.h"
52
53 #define NELEMS(a) ((int) (sizeof (a)/sizeof ((a)[0])))
54 #define MIN(a,b) ((a) < (b) ? (a) : (b))
55
56 #define NUM_SLOTS 4
57 #define PREV_SLOT md.slot[(md.curr_slot + NUM_SLOTS - 1) % NUM_SLOTS]
58 #define CURR_SLOT md.slot[md.curr_slot]
59
60 #define O_pseudo_fixup (O_max + 1)
61
62 enum special_section
63 {
64 /* IA-64 ABI section pseudo-ops. */
65 SPECIAL_SECTION_BSS = 0,
66 SPECIAL_SECTION_SBSS,
67 SPECIAL_SECTION_SDATA,
68 SPECIAL_SECTION_RODATA,
69 SPECIAL_SECTION_COMMENT,
70 SPECIAL_SECTION_UNWIND,
71 SPECIAL_SECTION_UNWIND_INFO,
72 /* HPUX specific section pseudo-ops. */
73 SPECIAL_SECTION_INIT_ARRAY,
74 SPECIAL_SECTION_FINI_ARRAY,
75 };
76
77 enum reloc_func
78 {
79 FUNC_DTP_MODULE,
80 FUNC_DTP_RELATIVE,
81 FUNC_FPTR_RELATIVE,
82 FUNC_GP_RELATIVE,
83 FUNC_LT_RELATIVE,
84 FUNC_LT_RELATIVE_X,
85 FUNC_PC_RELATIVE,
86 FUNC_PLT_RELATIVE,
87 FUNC_SEC_RELATIVE,
88 FUNC_SEG_RELATIVE,
89 FUNC_TP_RELATIVE,
90 FUNC_LTV_RELATIVE,
91 FUNC_LT_FPTR_RELATIVE,
92 FUNC_LT_DTP_MODULE,
93 FUNC_LT_DTP_RELATIVE,
94 FUNC_LT_TP_RELATIVE,
95 FUNC_IPLT_RELOC,
96 };
97
98 enum reg_symbol
99 {
100 REG_GR = 0,
101 REG_FR = (REG_GR + 128),
102 REG_AR = (REG_FR + 128),
103 REG_CR = (REG_AR + 128),
104 REG_P = (REG_CR + 128),
105 REG_BR = (REG_P + 64),
106 REG_IP = (REG_BR + 8),
107 REG_CFM,
108 REG_PR,
109 REG_PR_ROT,
110 REG_PSR,
111 REG_PSR_L,
112 REG_PSR_UM,
113 /* The following are pseudo-registers for use by gas only. */
114 IND_CPUID,
115 IND_DBR,
116 IND_DTR,
117 IND_ITR,
118 IND_IBR,
119 IND_MEM,
120 IND_MSR,
121 IND_PKR,
122 IND_PMC,
123 IND_PMD,
124 IND_RR,
125 /* The following pseudo-registers are used for unwind directives only: */
126 REG_PSP,
127 REG_PRIUNAT,
128 REG_NUM
129 };
130
131 enum dynreg_type
132 {
133 DYNREG_GR = 0, /* dynamic general purpose register */
134 DYNREG_FR, /* dynamic floating point register */
135 DYNREG_PR, /* dynamic predicate register */
136 DYNREG_NUM_TYPES
137 };
138
139 enum operand_match_result
140 {
141 OPERAND_MATCH,
142 OPERAND_OUT_OF_RANGE,
143 OPERAND_MISMATCH
144 };
145
146 /* On the ia64, we can't know the address of a text label until the
147 instructions are packed into a bundle. To handle this, we keep
148 track of the list of labels that appear in front of each
149 instruction. */
150 struct label_fix
151 {
152 struct label_fix *next;
153 struct symbol *sym;
154 };
155
156 extern int target_big_endian;
157
158 void (*ia64_number_to_chars) PARAMS ((char *, valueT, int));
159
160 static void ia64_float_to_chars_bigendian
161 PARAMS ((char *, LITTLENUM_TYPE *, int));
162 static void ia64_float_to_chars_littleendian
163 PARAMS ((char *, LITTLENUM_TYPE *, int));
164 static void (*ia64_float_to_chars)
165 PARAMS ((char *, LITTLENUM_TYPE *, int));
166
167 static struct hash_control *alias_hash;
168 static struct hash_control *alias_name_hash;
169 static struct hash_control *secalias_hash;
170 static struct hash_control *secalias_name_hash;
171
172 /* Characters which always start a comment. */
173 const char comment_chars[] = "";
174
175 /* Characters which start a comment at the beginning of a line. */
176 const char line_comment_chars[] = "#";
177
178 /* Characters which may be used to separate multiple commands on a
179 single line. */
180 const char line_separator_chars[] = ";";
181
182 /* Characters which are used to indicate an exponent in a floating
183 point number. */
184 const char EXP_CHARS[] = "eE";
185
186 /* Characters which mean that a number is a floating point constant,
187 as in 0d1.0. */
188 const char FLT_CHARS[] = "rRsSfFdDxXpP";
189
190 /* ia64-specific option processing: */
191
192 const char *md_shortopts = "m:N:x::";
193
194 struct option md_longopts[] =
195 {
196 #define OPTION_MCONSTANT_GP (OPTION_MD_BASE + 1)
197 {"mconstant-gp", no_argument, NULL, OPTION_MCONSTANT_GP},
198 #define OPTION_MAUTO_PIC (OPTION_MD_BASE + 2)
199 {"mauto-pic", no_argument, NULL, OPTION_MAUTO_PIC}
200 };
201
202 size_t md_longopts_size = sizeof (md_longopts);
203
204 static struct
205 {
206 struct hash_control *pseudo_hash; /* pseudo opcode hash table */
207 struct hash_control *reg_hash; /* register name hash table */
208 struct hash_control *dynreg_hash; /* dynamic register hash table */
209 struct hash_control *const_hash; /* constant hash table */
210 struct hash_control *entry_hash; /* code entry hint hash table */
211
212 symbolS *regsym[REG_NUM];
213
214 /* If X_op is != O_absent, the registername for the instruction's
215 qualifying predicate. If NULL, p0 is assumed for instructions
216 that are predicatable. */
217 expressionS qp;
218
219 unsigned int
220 manual_bundling : 1,
221 debug_dv: 1,
222 detect_dv: 1,
223 explicit_mode : 1, /* which mode we're in */
224 default_explicit_mode : 1, /* which mode is the default */
225 mode_explicitly_set : 1, /* was the current mode explicitly set? */
226 auto_align : 1,
227 keep_pending_output : 1;
228
229 /* Each bundle consists of up to three instructions. We keep
230 track of four most recent instructions so we can correctly set
231 the end_of_insn_group for the last instruction in a bundle. */
232 int curr_slot;
233 int num_slots_in_use;
234 struct slot
235 {
236 unsigned int
237 end_of_insn_group : 1,
238 manual_bundling_on : 1,
239 manual_bundling_off : 1;
240 signed char user_template; /* user-selected template, if any */
241 unsigned char qp_regno; /* qualifying predicate */
242 /* This duplicates a good fraction of "struct fix" but we
243 can't use a "struct fix" instead since we can't call
244 fix_new_exp() until we know the address of the instruction. */
245 int num_fixups;
246 struct insn_fix
247 {
248 bfd_reloc_code_real_type code;
249 enum ia64_opnd opnd; /* type of operand in need of fix */
250 unsigned int is_pcrel : 1; /* is operand pc-relative? */
251 expressionS expr; /* the value to be inserted */
252 }
253 fixup[2]; /* at most two fixups per insn */
254 struct ia64_opcode *idesc;
255 struct label_fix *label_fixups;
256 struct label_fix *tag_fixups;
257 struct unw_rec_list *unwind_record; /* Unwind directive. */
258 expressionS opnd[6];
259 char *src_file;
260 unsigned int src_line;
261 struct dwarf2_line_info debug_line;
262 }
263 slot[NUM_SLOTS];
264
265 segT last_text_seg;
266
267 struct dynreg
268 {
269 struct dynreg *next; /* next dynamic register */
270 const char *name;
271 unsigned short base; /* the base register number */
272 unsigned short num_regs; /* # of registers in this set */
273 }
274 *dynreg[DYNREG_NUM_TYPES], in, loc, out, rot;
275
276 flagword flags; /* ELF-header flags */
277
278 struct mem_offset {
279 unsigned hint:1; /* is this hint currently valid? */
280 bfd_vma offset; /* mem.offset offset */
281 bfd_vma base; /* mem.offset base */
282 } mem_offset;
283
284 int path; /* number of alt. entry points seen */
285 const char **entry_labels; /* labels of all alternate paths in
286 the current DV-checking block. */
287 int maxpaths; /* size currently allocated for
288 entry_labels */
289 /* Support for hardware errata workarounds. */
290
291 /* Record data about the last three insn groups. */
292 struct group
293 {
294 /* B-step workaround.
295 For each predicate register, this is set if the corresponding insn
296 group conditionally sets this register with one of the affected
297 instructions. */
298 int p_reg_set[64];
299 /* B-step workaround.
300 For each general register, this is set if the corresponding insn
301 a) is conditional one one of the predicate registers for which
302 P_REG_SET is 1 in the corresponding entry of the previous group,
303 b) sets this general register with one of the affected
304 instructions. */
305 int g_reg_set_conditionally[128];
306 } last_groups[3];
307 int group_idx;
308
309 int pointer_size; /* size in bytes of a pointer */
310 int pointer_size_shift; /* shift size of a pointer for alignment */
311 }
312 md;
313
314 /* application registers: */
315
316 #define AR_K0 0
317 #define AR_K7 7
318 #define AR_RSC 16
319 #define AR_BSP 17
320 #define AR_BSPSTORE 18
321 #define AR_RNAT 19
322 #define AR_UNAT 36
323 #define AR_FPSR 40
324 #define AR_ITC 44
325 #define AR_PFS 64
326 #define AR_LC 65
327
328 static const struct
329 {
330 const char *name;
331 int regnum;
332 }
333 ar[] =
334 {
335 {"ar.k0", 0}, {"ar.k1", 1}, {"ar.k2", 2}, {"ar.k3", 3},
336 {"ar.k4", 4}, {"ar.k5", 5}, {"ar.k6", 6}, {"ar.k7", 7},
337 {"ar.rsc", 16}, {"ar.bsp", 17},
338 {"ar.bspstore", 18}, {"ar.rnat", 19},
339 {"ar.fcr", 21}, {"ar.eflag", 24},
340 {"ar.csd", 25}, {"ar.ssd", 26},
341 {"ar.cflg", 27}, {"ar.fsr", 28},
342 {"ar.fir", 29}, {"ar.fdr", 30},
343 {"ar.ccv", 32}, {"ar.unat", 36},
344 {"ar.fpsr", 40}, {"ar.itc", 44},
345 {"ar.pfs", 64}, {"ar.lc", 65},
346 {"ar.ec", 66},
347 };
348
349 #define CR_IPSR 16
350 #define CR_ISR 17
351 #define CR_IIP 19
352 #define CR_IFA 20
353 #define CR_ITIR 21
354 #define CR_IIPA 22
355 #define CR_IFS 23
356 #define CR_IIM 24
357 #define CR_IHA 25
358 #define CR_IVR 65
359 #define CR_TPR 66
360 #define CR_EOI 67
361 #define CR_IRR0 68
362 #define CR_IRR3 71
363 #define CR_LRR0 80
364 #define CR_LRR1 81
365
366 /* control registers: */
367 static const struct
368 {
369 const char *name;
370 int regnum;
371 }
372 cr[] =
373 {
374 {"cr.dcr", 0},
375 {"cr.itm", 1},
376 {"cr.iva", 2},
377 {"cr.pta", 8},
378 {"cr.gpta", 9},
379 {"cr.ipsr", 16},
380 {"cr.isr", 17},
381 {"cr.iip", 19},
382 {"cr.ifa", 20},
383 {"cr.itir", 21},
384 {"cr.iipa", 22},
385 {"cr.ifs", 23},
386 {"cr.iim", 24},
387 {"cr.iha", 25},
388 {"cr.lid", 64},
389 {"cr.ivr", 65},
390 {"cr.tpr", 66},
391 {"cr.eoi", 67},
392 {"cr.irr0", 68},
393 {"cr.irr1", 69},
394 {"cr.irr2", 70},
395 {"cr.irr3", 71},
396 {"cr.itv", 72},
397 {"cr.pmv", 73},
398 {"cr.cmcv", 74},
399 {"cr.lrr0", 80},
400 {"cr.lrr1", 81}
401 };
402
403 #define PSR_MFL 4
404 #define PSR_IC 13
405 #define PSR_DFL 18
406 #define PSR_CPL 32
407
408 static const struct const_desc
409 {
410 const char *name;
411 valueT value;
412 }
413 const_bits[] =
414 {
415 /* PSR constant masks: */
416
417 /* 0: reserved */
418 {"psr.be", ((valueT) 1) << 1},
419 {"psr.up", ((valueT) 1) << 2},
420 {"psr.ac", ((valueT) 1) << 3},
421 {"psr.mfl", ((valueT) 1) << 4},
422 {"psr.mfh", ((valueT) 1) << 5},
423 /* 6-12: reserved */
424 {"psr.ic", ((valueT) 1) << 13},
425 {"psr.i", ((valueT) 1) << 14},
426 {"psr.pk", ((valueT) 1) << 15},
427 /* 16: reserved */
428 {"psr.dt", ((valueT) 1) << 17},
429 {"psr.dfl", ((valueT) 1) << 18},
430 {"psr.dfh", ((valueT) 1) << 19},
431 {"psr.sp", ((valueT) 1) << 20},
432 {"psr.pp", ((valueT) 1) << 21},
433 {"psr.di", ((valueT) 1) << 22},
434 {"psr.si", ((valueT) 1) << 23},
435 {"psr.db", ((valueT) 1) << 24},
436 {"psr.lp", ((valueT) 1) << 25},
437 {"psr.tb", ((valueT) 1) << 26},
438 {"psr.rt", ((valueT) 1) << 27},
439 /* 28-31: reserved */
440 /* 32-33: cpl (current privilege level) */
441 {"psr.is", ((valueT) 1) << 34},
442 {"psr.mc", ((valueT) 1) << 35},
443 {"psr.it", ((valueT) 1) << 36},
444 {"psr.id", ((valueT) 1) << 37},
445 {"psr.da", ((valueT) 1) << 38},
446 {"psr.dd", ((valueT) 1) << 39},
447 {"psr.ss", ((valueT) 1) << 40},
448 /* 41-42: ri (restart instruction) */
449 {"psr.ed", ((valueT) 1) << 43},
450 {"psr.bn", ((valueT) 1) << 44},
451 };
452
453 /* indirect register-sets/memory: */
454
455 static const struct
456 {
457 const char *name;
458 int regnum;
459 }
460 indirect_reg[] =
461 {
462 { "CPUID", IND_CPUID },
463 { "cpuid", IND_CPUID },
464 { "dbr", IND_DBR },
465 { "dtr", IND_DTR },
466 { "itr", IND_ITR },
467 { "ibr", IND_IBR },
468 { "msr", IND_MSR },
469 { "pkr", IND_PKR },
470 { "pmc", IND_PMC },
471 { "pmd", IND_PMD },
472 { "rr", IND_RR },
473 };
474
475 /* Pseudo functions used to indicate relocation types (these functions
476 start with an at sign (@). */
477 static struct
478 {
479 const char *name;
480 enum pseudo_type
481 {
482 PSEUDO_FUNC_NONE,
483 PSEUDO_FUNC_RELOC,
484 PSEUDO_FUNC_CONST,
485 PSEUDO_FUNC_REG,
486 PSEUDO_FUNC_FLOAT
487 }
488 type;
489 union
490 {
491 unsigned long ival;
492 symbolS *sym;
493 }
494 u;
495 }
496 pseudo_func[] =
497 {
498 /* reloc pseudo functions (these must come first!): */
499 { "dtpmod", PSEUDO_FUNC_RELOC, { 0 } },
500 { "dtprel", PSEUDO_FUNC_RELOC, { 0 } },
501 { "fptr", PSEUDO_FUNC_RELOC, { 0 } },
502 { "gprel", PSEUDO_FUNC_RELOC, { 0 } },
503 { "ltoff", PSEUDO_FUNC_RELOC, { 0 } },
504 { "ltoffx", PSEUDO_FUNC_RELOC, { 0 } },
505 { "pcrel", PSEUDO_FUNC_RELOC, { 0 } },
506 { "pltoff", PSEUDO_FUNC_RELOC, { 0 } },
507 { "secrel", PSEUDO_FUNC_RELOC, { 0 } },
508 { "segrel", PSEUDO_FUNC_RELOC, { 0 } },
509 { "tprel", PSEUDO_FUNC_RELOC, { 0 } },
510 { "ltv", PSEUDO_FUNC_RELOC, { 0 } },
511 { "", 0, { 0 } }, /* placeholder for FUNC_LT_FPTR_RELATIVE */
512 { "", 0, { 0 } }, /* placeholder for FUNC_LT_DTP_MODULE */
513 { "", 0, { 0 } }, /* placeholder for FUNC_LT_DTP_RELATIVE */
514 { "", 0, { 0 } }, /* placeholder for FUNC_LT_TP_RELATIVE */
515 { "iplt", PSEUDO_FUNC_RELOC, { 0 } },
516
517 /* mbtype4 constants: */
518 { "alt", PSEUDO_FUNC_CONST, { 0xa } },
519 { "brcst", PSEUDO_FUNC_CONST, { 0x0 } },
520 { "mix", PSEUDO_FUNC_CONST, { 0x8 } },
521 { "rev", PSEUDO_FUNC_CONST, { 0xb } },
522 { "shuf", PSEUDO_FUNC_CONST, { 0x9 } },
523
524 /* fclass constants: */
525 { "nat", PSEUDO_FUNC_CONST, { 0x100 } },
526 { "qnan", PSEUDO_FUNC_CONST, { 0x080 } },
527 { "snan", PSEUDO_FUNC_CONST, { 0x040 } },
528 { "pos", PSEUDO_FUNC_CONST, { 0x001 } },
529 { "neg", PSEUDO_FUNC_CONST, { 0x002 } },
530 { "zero", PSEUDO_FUNC_CONST, { 0x004 } },
531 { "unorm", PSEUDO_FUNC_CONST, { 0x008 } },
532 { "norm", PSEUDO_FUNC_CONST, { 0x010 } },
533 { "inf", PSEUDO_FUNC_CONST, { 0x020 } },
534
535 { "natval", PSEUDO_FUNC_CONST, { 0x100 } }, /* old usage */
536
537 /* hint constants: */
538 { "pause", PSEUDO_FUNC_CONST, { 0x0 } },
539
540 /* unwind-related constants: */
541 { "svr4", PSEUDO_FUNC_CONST, { ELFOSABI_NONE } },
542 { "hpux", PSEUDO_FUNC_CONST, { ELFOSABI_HPUX } },
543 { "nt", PSEUDO_FUNC_CONST, { 2 } }, /* conflicts w/ELFOSABI_NETBSD */
544 { "linux", PSEUDO_FUNC_CONST, { ELFOSABI_LINUX } },
545 { "freebsd", PSEUDO_FUNC_CONST, { ELFOSABI_FREEBSD } },
546 { "openvms", PSEUDO_FUNC_CONST, { ELFOSABI_OPENVMS } },
547 { "nsk", PSEUDO_FUNC_CONST, { ELFOSABI_NSK } },
548
549 /* unwind-related registers: */
550 { "priunat",PSEUDO_FUNC_REG, { REG_PRIUNAT } }
551 };
552
553 /* 41-bit nop opcodes (one per unit): */
554 static const bfd_vma nop[IA64_NUM_UNITS] =
555 {
556 0x0000000000LL, /* NIL => break 0 */
557 0x0008000000LL, /* I-unit nop */
558 0x0008000000LL, /* M-unit nop */
559 0x4000000000LL, /* B-unit nop */
560 0x0008000000LL, /* F-unit nop */
561 0x0008000000LL, /* L-"unit" nop */
562 0x0008000000LL, /* X-unit nop */
563 };
564
565 /* Can't be `const' as it's passed to input routines (which have the
566 habit of setting temporary sentinels. */
567 static char special_section_name[][20] =
568 {
569 {".bss"}, {".sbss"}, {".sdata"}, {".rodata"}, {".comment"},
570 {".IA_64.unwind"}, {".IA_64.unwind_info"},
571 {".init_array"}, {".fini_array"}
572 };
573
574 static char *special_linkonce_name[] =
575 {
576 ".gnu.linkonce.ia64unw.", ".gnu.linkonce.ia64unwi."
577 };
578
579 /* The best template for a particular sequence of up to three
580 instructions: */
581 #define N IA64_NUM_TYPES
582 static unsigned char best_template[N][N][N];
583 #undef N
584
585 /* Resource dependencies currently in effect */
586 static struct rsrc {
587 int depind; /* dependency index */
588 const struct ia64_dependency *dependency; /* actual dependency */
589 unsigned specific:1, /* is this a specific bit/regno? */
590 link_to_qp_branch:1; /* will a branch on the same QP clear it?*/
591 int index; /* specific regno/bit within dependency */
592 int note; /* optional qualifying note (0 if none) */
593 #define STATE_NONE 0
594 #define STATE_STOP 1
595 #define STATE_SRLZ 2
596 int insn_srlz; /* current insn serialization state */
597 int data_srlz; /* current data serialization state */
598 int qp_regno; /* qualifying predicate for this usage */
599 char *file; /* what file marked this dependency */
600 unsigned int line; /* what line marked this dependency */
601 struct mem_offset mem_offset; /* optional memory offset hint */
602 enum { CMP_NONE, CMP_OR, CMP_AND } cmp_type; /* OR or AND compare? */
603 int path; /* corresponding code entry index */
604 } *regdeps = NULL;
605 static int regdepslen = 0;
606 static int regdepstotlen = 0;
607 static const char *dv_mode[] = { "RAW", "WAW", "WAR" };
608 static const char *dv_sem[] = { "none", "implied", "impliedf",
609 "data", "instr", "specific", "stop", "other" };
610 static const char *dv_cmp_type[] = { "none", "OR", "AND" };
611
612 /* Current state of PR mutexation */
613 static struct qpmutex {
614 valueT prmask;
615 int path;
616 } *qp_mutexes = NULL; /* QP mutex bitmasks */
617 static int qp_mutexeslen = 0;
618 static int qp_mutexestotlen = 0;
619 static valueT qp_safe_across_calls = 0;
620
621 /* Current state of PR implications */
622 static struct qp_imply {
623 unsigned p1:6;
624 unsigned p2:6;
625 unsigned p2_branched:1;
626 int path;
627 } *qp_implies = NULL;
628 static int qp_implieslen = 0;
629 static int qp_impliestotlen = 0;
630
631 /* Keep track of static GR values so that indirect register usage can
632 sometimes be tracked. */
633 static struct gr {
634 unsigned known:1;
635 int path;
636 valueT value;
637 } gr_values[128] = {{ 1, 0, 0 }};
638
639 /* These are the routines required to output the various types of
640 unwind records. */
641
642 /* A slot_number is a frag address plus the slot index (0-2). We use the
643 frag address here so that if there is a section switch in the middle of
644 a function, then instructions emitted to a different section are not
645 counted. Since there may be more than one frag for a function, this
646 means we also need to keep track of which frag this address belongs to
647 so we can compute inter-frag distances. This also nicely solves the
648 problem with nops emitted for align directives, which can't easily be
649 counted, but can easily be derived from frag sizes. */
650
651 typedef struct unw_rec_list {
652 unwind_record r;
653 unsigned long slot_number;
654 fragS *slot_frag;
655 unsigned long next_slot_number;
656 fragS *next_slot_frag;
657 struct unw_rec_list *next;
658 } unw_rec_list;
659
660 #define SLOT_NUM_NOT_SET (unsigned)-1
661
662 /* Linked list of saved prologue counts. A very poor
663 implementation of a map from label numbers to prologue counts. */
664 typedef struct label_prologue_count
665 {
666 struct label_prologue_count *next;
667 unsigned long label_number;
668 unsigned int prologue_count;
669 } label_prologue_count;
670
671 static struct
672 {
673 /* Maintain a list of unwind entries for the current function. */
674 unw_rec_list *list;
675 unw_rec_list *tail;
676
677 /* Any unwind entires that should be attached to the current slot
678 that an insn is being constructed for. */
679 unw_rec_list *current_entry;
680
681 /* These are used to create the unwind table entry for this function. */
682 symbolS *proc_start;
683 symbolS *proc_end;
684 symbolS *info; /* pointer to unwind info */
685 symbolS *personality_routine;
686 segT saved_text_seg;
687 subsegT saved_text_subseg;
688 unsigned int force_unwind_entry : 1; /* force generation of unwind entry? */
689
690 /* TRUE if processing unwind directives in a prologue region. */
691 int prologue;
692 int prologue_mask;
693 unsigned int prologue_count; /* number of .prologues seen so far */
694 /* Prologue counts at previous .label_state directives. */
695 struct label_prologue_count * saved_prologue_counts;
696 } unwind;
697
698 typedef void (*vbyte_func) PARAMS ((int, char *, char *));
699
700 /* Forward declarations: */
701 static int ar_is_in_integer_unit PARAMS ((int regnum));
702 static void set_section PARAMS ((char *name));
703 static unsigned int set_regstack PARAMS ((unsigned int, unsigned int,
704 unsigned int, unsigned int));
705 static void dot_radix PARAMS ((int));
706 static void dot_special_section PARAMS ((int));
707 static void dot_proc PARAMS ((int));
708 static void dot_fframe PARAMS ((int));
709 static void dot_vframe PARAMS ((int));
710 static void dot_vframesp PARAMS ((int));
711 static void dot_vframepsp PARAMS ((int));
712 static void dot_save PARAMS ((int));
713 static void dot_restore PARAMS ((int));
714 static void dot_restorereg PARAMS ((int));
715 static void dot_restorereg_p PARAMS ((int));
716 static void dot_handlerdata PARAMS ((int));
717 static void dot_unwentry PARAMS ((int));
718 static void dot_altrp PARAMS ((int));
719 static void dot_savemem PARAMS ((int));
720 static void dot_saveg PARAMS ((int));
721 static void dot_savef PARAMS ((int));
722 static void dot_saveb PARAMS ((int));
723 static void dot_savegf PARAMS ((int));
724 static void dot_spill PARAMS ((int));
725 static void dot_spillreg PARAMS ((int));
726 static void dot_spillmem PARAMS ((int));
727 static void dot_spillreg_p PARAMS ((int));
728 static void dot_spillmem_p PARAMS ((int));
729 static void dot_label_state PARAMS ((int));
730 static void dot_copy_state PARAMS ((int));
731 static void dot_unwabi PARAMS ((int));
732 static void dot_personality PARAMS ((int));
733 static void dot_body PARAMS ((int));
734 static void dot_prologue PARAMS ((int));
735 static void dot_endp PARAMS ((int));
736 static void dot_template PARAMS ((int));
737 static void dot_regstk PARAMS ((int));
738 static void dot_rot PARAMS ((int));
739 static void dot_byteorder PARAMS ((int));
740 static void dot_psr PARAMS ((int));
741 static void dot_alias PARAMS ((int));
742 static void dot_ln PARAMS ((int));
743 static char *parse_section_name PARAMS ((void));
744 static void dot_xdata PARAMS ((int));
745 static void stmt_float_cons PARAMS ((int));
746 static void stmt_cons_ua PARAMS ((int));
747 static void dot_xfloat_cons PARAMS ((int));
748 static void dot_xstringer PARAMS ((int));
749 static void dot_xdata_ua PARAMS ((int));
750 static void dot_xfloat_cons_ua PARAMS ((int));
751 static void print_prmask PARAMS ((valueT mask));
752 static void dot_pred_rel PARAMS ((int));
753 static void dot_reg_val PARAMS ((int));
754 static void dot_dv_mode PARAMS ((int));
755 static void dot_entry PARAMS ((int));
756 static void dot_mem_offset PARAMS ((int));
757 static void add_unwind_entry PARAMS((unw_rec_list *ptr));
758 static symbolS *declare_register PARAMS ((const char *name, int regnum));
759 static void declare_register_set PARAMS ((const char *, int, int));
760 static unsigned int operand_width PARAMS ((enum ia64_opnd));
761 static enum operand_match_result operand_match PARAMS ((const struct ia64_opcode *idesc,
762 int index,
763 expressionS *e));
764 static int parse_operand PARAMS ((expressionS *e));
765 static struct ia64_opcode * parse_operands PARAMS ((struct ia64_opcode *));
766 static int errata_nop_necessary_p PARAMS ((struct slot *, enum ia64_unit));
767 static void build_insn PARAMS ((struct slot *, bfd_vma *));
768 static void emit_one_bundle PARAMS ((void));
769 static void fix_insn PARAMS ((fixS *, const struct ia64_operand *, valueT));
770 static bfd_reloc_code_real_type ia64_gen_real_reloc_type PARAMS ((struct symbol *sym,
771 bfd_reloc_code_real_type r_type));
772 static void insn_group_break PARAMS ((int, int, int));
773 static void mark_resource PARAMS ((struct ia64_opcode *, const struct ia64_dependency *,
774 struct rsrc *, int depind, int path));
775 static void add_qp_mutex PARAMS((valueT mask));
776 static void add_qp_imply PARAMS((int p1, int p2));
777 static void clear_qp_branch_flag PARAMS((valueT mask));
778 static void clear_qp_mutex PARAMS((valueT mask));
779 static void clear_qp_implies PARAMS((valueT p1_mask, valueT p2_mask));
780 static int has_suffix_p PARAMS((const char *, const char *));
781 static void clear_register_values PARAMS ((void));
782 static void print_dependency PARAMS ((const char *action, int depind));
783 static void instruction_serialization PARAMS ((void));
784 static void data_serialization PARAMS ((void));
785 static void remove_marked_resource PARAMS ((struct rsrc *));
786 static int is_conditional_branch PARAMS ((struct ia64_opcode *));
787 static int is_taken_branch PARAMS ((struct ia64_opcode *));
788 static int is_interruption_or_rfi PARAMS ((struct ia64_opcode *));
789 static int depends_on PARAMS ((int, struct ia64_opcode *));
790 static int specify_resource PARAMS ((const struct ia64_dependency *,
791 struct ia64_opcode *, int, struct rsrc [], int, int));
792 static int check_dv PARAMS((struct ia64_opcode *idesc));
793 static void check_dependencies PARAMS((struct ia64_opcode *));
794 static void mark_resources PARAMS((struct ia64_opcode *));
795 static void update_dependencies PARAMS((struct ia64_opcode *));
796 static void note_register_values PARAMS((struct ia64_opcode *));
797 static int qp_mutex PARAMS ((int, int, int));
798 static int resources_match PARAMS ((struct rsrc *, struct ia64_opcode *, int, int, int));
799 static void output_vbyte_mem PARAMS ((int, char *, char *));
800 static void count_output PARAMS ((int, char *, char *));
801 static void output_R1_format PARAMS ((vbyte_func, unw_record_type, int));
802 static void output_R2_format PARAMS ((vbyte_func, int, int, unsigned long));
803 static void output_R3_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
804 static void output_P1_format PARAMS ((vbyte_func, int));
805 static void output_P2_format PARAMS ((vbyte_func, int, int));
806 static void output_P3_format PARAMS ((vbyte_func, unw_record_type, int));
807 static void output_P4_format PARAMS ((vbyte_func, unsigned char *, unsigned long));
808 static void output_P5_format PARAMS ((vbyte_func, int, unsigned long));
809 static void output_P6_format PARAMS ((vbyte_func, unw_record_type, int));
810 static void output_P7_format PARAMS ((vbyte_func, unw_record_type, unsigned long, unsigned long));
811 static void output_P8_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
812 static void output_P9_format PARAMS ((vbyte_func, int, int));
813 static void output_P10_format PARAMS ((vbyte_func, int, int));
814 static void output_B1_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
815 static void output_B2_format PARAMS ((vbyte_func, unsigned long, unsigned long));
816 static void output_B3_format PARAMS ((vbyte_func, unsigned long, unsigned long));
817 static void output_B4_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
818 static char format_ab_reg PARAMS ((int, int));
819 static void output_X1_format PARAMS ((vbyte_func, unw_record_type, int, int, unsigned long,
820 unsigned long));
821 static void output_X2_format PARAMS ((vbyte_func, int, int, int, int, int, unsigned long));
822 static void output_X3_format PARAMS ((vbyte_func, unw_record_type, int, int, int, unsigned long,
823 unsigned long));
824 static void output_X4_format PARAMS ((vbyte_func, int, int, int, int, int, int, unsigned long));
825 static unw_rec_list *output_endp PARAMS ((void));
826 static unw_rec_list *output_prologue PARAMS ((void));
827 static unw_rec_list *output_prologue_gr PARAMS ((unsigned int, unsigned int));
828 static unw_rec_list *output_body PARAMS ((void));
829 static unw_rec_list *output_mem_stack_f PARAMS ((unsigned int));
830 static unw_rec_list *output_mem_stack_v PARAMS ((void));
831 static unw_rec_list *output_psp_gr PARAMS ((unsigned int));
832 static unw_rec_list *output_psp_sprel PARAMS ((unsigned int));
833 static unw_rec_list *output_rp_when PARAMS ((void));
834 static unw_rec_list *output_rp_gr PARAMS ((unsigned int));
835 static unw_rec_list *output_rp_br PARAMS ((unsigned int));
836 static unw_rec_list *output_rp_psprel PARAMS ((unsigned int));
837 static unw_rec_list *output_rp_sprel PARAMS ((unsigned int));
838 static unw_rec_list *output_pfs_when PARAMS ((void));
839 static unw_rec_list *output_pfs_gr PARAMS ((unsigned int));
840 static unw_rec_list *output_pfs_psprel PARAMS ((unsigned int));
841 static unw_rec_list *output_pfs_sprel PARAMS ((unsigned int));
842 static unw_rec_list *output_preds_when PARAMS ((void));
843 static unw_rec_list *output_preds_gr PARAMS ((unsigned int));
844 static unw_rec_list *output_preds_psprel PARAMS ((unsigned int));
845 static unw_rec_list *output_preds_sprel PARAMS ((unsigned int));
846 static unw_rec_list *output_fr_mem PARAMS ((unsigned int));
847 static unw_rec_list *output_frgr_mem PARAMS ((unsigned int, unsigned int));
848 static unw_rec_list *output_gr_gr PARAMS ((unsigned int, unsigned int));
849 static unw_rec_list *output_gr_mem PARAMS ((unsigned int));
850 static unw_rec_list *output_br_mem PARAMS ((unsigned int));
851 static unw_rec_list *output_br_gr PARAMS ((unsigned int, unsigned int));
852 static unw_rec_list *output_spill_base PARAMS ((unsigned int));
853 static unw_rec_list *output_unat_when PARAMS ((void));
854 static unw_rec_list *output_unat_gr PARAMS ((unsigned int));
855 static unw_rec_list *output_unat_psprel PARAMS ((unsigned int));
856 static unw_rec_list *output_unat_sprel PARAMS ((unsigned int));
857 static unw_rec_list *output_lc_when PARAMS ((void));
858 static unw_rec_list *output_lc_gr PARAMS ((unsigned int));
859 static unw_rec_list *output_lc_psprel PARAMS ((unsigned int));
860 static unw_rec_list *output_lc_sprel PARAMS ((unsigned int));
861 static unw_rec_list *output_fpsr_when PARAMS ((void));
862 static unw_rec_list *output_fpsr_gr PARAMS ((unsigned int));
863 static unw_rec_list *output_fpsr_psprel PARAMS ((unsigned int));
864 static unw_rec_list *output_fpsr_sprel PARAMS ((unsigned int));
865 static unw_rec_list *output_priunat_when_gr PARAMS ((void));
866 static unw_rec_list *output_priunat_when_mem PARAMS ((void));
867 static unw_rec_list *output_priunat_gr PARAMS ((unsigned int));
868 static unw_rec_list *output_priunat_psprel PARAMS ((unsigned int));
869 static unw_rec_list *output_priunat_sprel PARAMS ((unsigned int));
870 static unw_rec_list *output_bsp_when PARAMS ((void));
871 static unw_rec_list *output_bsp_gr PARAMS ((unsigned int));
872 static unw_rec_list *output_bsp_psprel PARAMS ((unsigned int));
873 static unw_rec_list *output_bsp_sprel PARAMS ((unsigned int));
874 static unw_rec_list *output_bspstore_when PARAMS ((void));
875 static unw_rec_list *output_bspstore_gr PARAMS ((unsigned int));
876 static unw_rec_list *output_bspstore_psprel PARAMS ((unsigned int));
877 static unw_rec_list *output_bspstore_sprel PARAMS ((unsigned int));
878 static unw_rec_list *output_rnat_when PARAMS ((void));
879 static unw_rec_list *output_rnat_gr PARAMS ((unsigned int));
880 static unw_rec_list *output_rnat_psprel PARAMS ((unsigned int));
881 static unw_rec_list *output_rnat_sprel PARAMS ((unsigned int));
882 static unw_rec_list *output_unwabi PARAMS ((unsigned long, unsigned long));
883 static unw_rec_list *output_epilogue PARAMS ((unsigned long));
884 static unw_rec_list *output_label_state PARAMS ((unsigned long));
885 static unw_rec_list *output_copy_state PARAMS ((unsigned long));
886 static unw_rec_list *output_spill_psprel PARAMS ((unsigned int, unsigned int, unsigned int));
887 static unw_rec_list *output_spill_sprel PARAMS ((unsigned int, unsigned int, unsigned int));
888 static unw_rec_list *output_spill_psprel_p PARAMS ((unsigned int, unsigned int, unsigned int,
889 unsigned int));
890 static unw_rec_list *output_spill_sprel_p PARAMS ((unsigned int, unsigned int, unsigned int,
891 unsigned int));
892 static unw_rec_list *output_spill_reg PARAMS ((unsigned int, unsigned int, unsigned int,
893 unsigned int));
894 static unw_rec_list *output_spill_reg_p PARAMS ((unsigned int, unsigned int, unsigned int,
895 unsigned int, unsigned int));
896 static void process_one_record PARAMS ((unw_rec_list *, vbyte_func));
897 static void process_unw_records PARAMS ((unw_rec_list *, vbyte_func));
898 static int calc_record_size PARAMS ((unw_rec_list *));
899 static void set_imask PARAMS ((unw_rec_list *, unsigned long, unsigned long, unsigned int));
900 static unsigned long slot_index PARAMS ((unsigned long, fragS *,
901 unsigned long, fragS *));
902 static unw_rec_list *optimize_unw_records PARAMS ((unw_rec_list *));
903 static void fixup_unw_records PARAMS ((unw_rec_list *));
904 static int convert_expr_to_ab_reg PARAMS ((expressionS *, unsigned int *, unsigned int *));
905 static int convert_expr_to_xy_reg PARAMS ((expressionS *, unsigned int *, unsigned int *));
906 static void generate_unwind_image PARAMS ((const char *));
907 static unsigned int get_saved_prologue_count PARAMS ((unsigned long));
908 static void save_prologue_count PARAMS ((unsigned long, unsigned int));
909 static void free_saved_prologue_counts PARAMS ((void));
910
911 /* Build the unwind section name by appending the (possibly stripped)
912 text section NAME to the unwind PREFIX. The resulting string
913 pointer is assigned to RESULT. The string is allocated on the
914 stack, so this must be a macro... */
915 #define make_unw_section_name(special, text_name, result) \
916 { \
917 const char *_prefix = special_section_name[special]; \
918 const char *_suffix = text_name; \
919 size_t _prefix_len, _suffix_len; \
920 char *_result; \
921 if (strncmp (text_name, ".gnu.linkonce.t.", \
922 sizeof (".gnu.linkonce.t.") - 1) == 0) \
923 { \
924 _prefix = special_linkonce_name[special - SPECIAL_SECTION_UNWIND]; \
925 _suffix += sizeof (".gnu.linkonce.t.") - 1; \
926 } \
927 _prefix_len = strlen (_prefix), _suffix_len = strlen (_suffix); \
928 _result = alloca (_prefix_len + _suffix_len + 1); \
929 memcpy (_result, _prefix, _prefix_len); \
930 memcpy (_result + _prefix_len, _suffix, _suffix_len); \
931 _result[_prefix_len + _suffix_len] = '\0'; \
932 result = _result; \
933 } \
934 while (0)
935
936 /* Determine if application register REGNUM resides in the integer
937 unit (as opposed to the memory unit). */
938 static int
939 ar_is_in_integer_unit (reg)
940 int reg;
941 {
942 reg -= REG_AR;
943
944 return (reg == 64 /* pfs */
945 || reg == 65 /* lc */
946 || reg == 66 /* ec */
947 /* ??? ias accepts and puts these in the integer unit. */
948 || (reg >= 112 && reg <= 127));
949 }
950
951 /* Switch to section NAME and create section if necessary. It's
952 rather ugly that we have to manipulate input_line_pointer but I
953 don't see any other way to accomplish the same thing without
954 changing obj-elf.c (which may be the Right Thing, in the end). */
955 static void
956 set_section (name)
957 char *name;
958 {
959 char *saved_input_line_pointer;
960
961 saved_input_line_pointer = input_line_pointer;
962 input_line_pointer = name;
963 obj_elf_section (0);
964 input_line_pointer = saved_input_line_pointer;
965 }
966
967 /* Map 's' to SHF_IA_64_SHORT. */
968
969 int
970 ia64_elf_section_letter (letter, ptr_msg)
971 int letter;
972 char **ptr_msg;
973 {
974 if (letter == 's')
975 return SHF_IA_64_SHORT;
976 else if (letter == 'o')
977 return SHF_LINK_ORDER;
978
979 *ptr_msg = _("Bad .section directive: want a,o,s,w,x,M,S,G,T in string");
980 return -1;
981 }
982
983 /* Map SHF_IA_64_SHORT to SEC_SMALL_DATA. */
984
985 flagword
986 ia64_elf_section_flags (flags, attr, type)
987 flagword flags;
988 int attr, type ATTRIBUTE_UNUSED;
989 {
990 if (attr & SHF_IA_64_SHORT)
991 flags |= SEC_SMALL_DATA;
992 return flags;
993 }
994
995 int
996 ia64_elf_section_type (str, len)
997 const char *str;
998 size_t len;
999 {
1000 #define STREQ(s) ((len == sizeof (s) - 1) && (strncmp (str, s, sizeof (s) - 1) == 0))
1001
1002 if (STREQ (ELF_STRING_ia64_unwind_info))
1003 return SHT_PROGBITS;
1004
1005 if (STREQ (ELF_STRING_ia64_unwind_info_once))
1006 return SHT_PROGBITS;
1007
1008 if (STREQ (ELF_STRING_ia64_unwind))
1009 return SHT_IA_64_UNWIND;
1010
1011 if (STREQ (ELF_STRING_ia64_unwind_once))
1012 return SHT_IA_64_UNWIND;
1013
1014 if (STREQ ("unwind"))
1015 return SHT_IA_64_UNWIND;
1016
1017 if (STREQ ("init_array"))
1018 return SHT_INIT_ARRAY;
1019
1020 if (STREQ ("fini_array"))
1021 return SHT_FINI_ARRAY;
1022
1023 return -1;
1024 #undef STREQ
1025 }
1026
1027 static unsigned int
1028 set_regstack (ins, locs, outs, rots)
1029 unsigned int ins, locs, outs, rots;
1030 {
1031 /* Size of frame. */
1032 unsigned int sof;
1033
1034 sof = ins + locs + outs;
1035 if (sof > 96)
1036 {
1037 as_bad ("Size of frame exceeds maximum of 96 registers");
1038 return 0;
1039 }
1040 if (rots > sof)
1041 {
1042 as_warn ("Size of rotating registers exceeds frame size");
1043 return 0;
1044 }
1045 md.in.base = REG_GR + 32;
1046 md.loc.base = md.in.base + ins;
1047 md.out.base = md.loc.base + locs;
1048
1049 md.in.num_regs = ins;
1050 md.loc.num_regs = locs;
1051 md.out.num_regs = outs;
1052 md.rot.num_regs = rots;
1053 return sof;
1054 }
1055
1056 void
1057 ia64_flush_insns ()
1058 {
1059 struct label_fix *lfix;
1060 segT saved_seg;
1061 subsegT saved_subseg;
1062 unw_rec_list *ptr;
1063
1064 if (!md.last_text_seg)
1065 return;
1066
1067 saved_seg = now_seg;
1068 saved_subseg = now_subseg;
1069
1070 subseg_set (md.last_text_seg, 0);
1071
1072 while (md.num_slots_in_use > 0)
1073 emit_one_bundle (); /* force out queued instructions */
1074
1075 /* In case there are labels following the last instruction, resolve
1076 those now: */
1077 for (lfix = CURR_SLOT.label_fixups; lfix; lfix = lfix->next)
1078 {
1079 S_SET_VALUE (lfix->sym, frag_now_fix ());
1080 symbol_set_frag (lfix->sym, frag_now);
1081 }
1082 CURR_SLOT.label_fixups = 0;
1083 for (lfix = CURR_SLOT.tag_fixups; lfix; lfix = lfix->next)
1084 {
1085 S_SET_VALUE (lfix->sym, frag_now_fix ());
1086 symbol_set_frag (lfix->sym, frag_now);
1087 }
1088 CURR_SLOT.tag_fixups = 0;
1089
1090 /* In case there are unwind directives following the last instruction,
1091 resolve those now. We only handle prologue, body, and endp directives
1092 here. Give an error for others. */
1093 for (ptr = unwind.current_entry; ptr; ptr = ptr->next)
1094 {
1095 if (ptr->r.type == prologue || ptr->r.type == prologue_gr
1096 || ptr->r.type == body || ptr->r.type == endp)
1097 {
1098 ptr->slot_number = (unsigned long) frag_more (0);
1099 ptr->slot_frag = frag_now;
1100 }
1101 else
1102 as_bad (_("Unwind directive not followed by an instruction."));
1103 }
1104 unwind.current_entry = NULL;
1105
1106 subseg_set (saved_seg, saved_subseg);
1107
1108 if (md.qp.X_op == O_register)
1109 as_bad ("qualifying predicate not followed by instruction");
1110 }
1111
1112 void
1113 ia64_do_align (nbytes)
1114 int nbytes;
1115 {
1116 char *saved_input_line_pointer = input_line_pointer;
1117
1118 input_line_pointer = "";
1119 s_align_bytes (nbytes);
1120 input_line_pointer = saved_input_line_pointer;
1121 }
1122
1123 void
1124 ia64_cons_align (nbytes)
1125 int nbytes;
1126 {
1127 if (md.auto_align)
1128 {
1129 char *saved_input_line_pointer = input_line_pointer;
1130 input_line_pointer = "";
1131 s_align_bytes (nbytes);
1132 input_line_pointer = saved_input_line_pointer;
1133 }
1134 }
1135
1136 /* Output COUNT bytes to a memory location. */
1137 static unsigned char *vbyte_mem_ptr = NULL;
1138
1139 void
1140 output_vbyte_mem (count, ptr, comment)
1141 int count;
1142 char *ptr;
1143 char *comment ATTRIBUTE_UNUSED;
1144 {
1145 int x;
1146 if (vbyte_mem_ptr == NULL)
1147 abort ();
1148
1149 if (count == 0)
1150 return;
1151 for (x = 0; x < count; x++)
1152 *(vbyte_mem_ptr++) = ptr[x];
1153 }
1154
1155 /* Count the number of bytes required for records. */
1156 static int vbyte_count = 0;
1157 void
1158 count_output (count, ptr, comment)
1159 int count;
1160 char *ptr ATTRIBUTE_UNUSED;
1161 char *comment ATTRIBUTE_UNUSED;
1162 {
1163 vbyte_count += count;
1164 }
1165
1166 static void
1167 output_R1_format (f, rtype, rlen)
1168 vbyte_func f;
1169 unw_record_type rtype;
1170 int rlen;
1171 {
1172 int r = 0;
1173 char byte;
1174 if (rlen > 0x1f)
1175 {
1176 output_R3_format (f, rtype, rlen);
1177 return;
1178 }
1179
1180 if (rtype == body)
1181 r = 1;
1182 else if (rtype != prologue)
1183 as_bad ("record type is not valid");
1184
1185 byte = UNW_R1 | (r << 5) | (rlen & 0x1f);
1186 (*f) (1, &byte, NULL);
1187 }
1188
1189 static void
1190 output_R2_format (f, mask, grsave, rlen)
1191 vbyte_func f;
1192 int mask, grsave;
1193 unsigned long rlen;
1194 {
1195 char bytes[20];
1196 int count = 2;
1197 mask = (mask & 0x0f);
1198 grsave = (grsave & 0x7f);
1199
1200 bytes[0] = (UNW_R2 | (mask >> 1));
1201 bytes[1] = (((mask & 0x01) << 7) | grsave);
1202 count += output_leb128 (bytes + 2, rlen, 0);
1203 (*f) (count, bytes, NULL);
1204 }
1205
1206 static void
1207 output_R3_format (f, rtype, rlen)
1208 vbyte_func f;
1209 unw_record_type rtype;
1210 unsigned long rlen;
1211 {
1212 int r = 0, count;
1213 char bytes[20];
1214 if (rlen <= 0x1f)
1215 {
1216 output_R1_format (f, rtype, rlen);
1217 return;
1218 }
1219
1220 if (rtype == body)
1221 r = 1;
1222 else if (rtype != prologue)
1223 as_bad ("record type is not valid");
1224 bytes[0] = (UNW_R3 | r);
1225 count = output_leb128 (bytes + 1, rlen, 0);
1226 (*f) (count + 1, bytes, NULL);
1227 }
1228
1229 static void
1230 output_P1_format (f, brmask)
1231 vbyte_func f;
1232 int brmask;
1233 {
1234 char byte;
1235 byte = UNW_P1 | (brmask & 0x1f);
1236 (*f) (1, &byte, NULL);
1237 }
1238
1239 static void
1240 output_P2_format (f, brmask, gr)
1241 vbyte_func f;
1242 int brmask;
1243 int gr;
1244 {
1245 char bytes[2];
1246 brmask = (brmask & 0x1f);
1247 bytes[0] = UNW_P2 | (brmask >> 1);
1248 bytes[1] = (((brmask & 1) << 7) | gr);
1249 (*f) (2, bytes, NULL);
1250 }
1251
1252 static void
1253 output_P3_format (f, rtype, reg)
1254 vbyte_func f;
1255 unw_record_type rtype;
1256 int reg;
1257 {
1258 char bytes[2];
1259 int r = 0;
1260 reg = (reg & 0x7f);
1261 switch (rtype)
1262 {
1263 case psp_gr:
1264 r = 0;
1265 break;
1266 case rp_gr:
1267 r = 1;
1268 break;
1269 case pfs_gr:
1270 r = 2;
1271 break;
1272 case preds_gr:
1273 r = 3;
1274 break;
1275 case unat_gr:
1276 r = 4;
1277 break;
1278 case lc_gr:
1279 r = 5;
1280 break;
1281 case rp_br:
1282 r = 6;
1283 break;
1284 case rnat_gr:
1285 r = 7;
1286 break;
1287 case bsp_gr:
1288 r = 8;
1289 break;
1290 case bspstore_gr:
1291 r = 9;
1292 break;
1293 case fpsr_gr:
1294 r = 10;
1295 break;
1296 case priunat_gr:
1297 r = 11;
1298 break;
1299 default:
1300 as_bad ("Invalid record type for P3 format.");
1301 }
1302 bytes[0] = (UNW_P3 | (r >> 1));
1303 bytes[1] = (((r & 1) << 7) | reg);
1304 (*f) (2, bytes, NULL);
1305 }
1306
1307 static void
1308 output_P4_format (f, imask, imask_size)
1309 vbyte_func f;
1310 unsigned char *imask;
1311 unsigned long imask_size;
1312 {
1313 imask[0] = UNW_P4;
1314 (*f) (imask_size, imask, NULL);
1315 }
1316
1317 static void
1318 output_P5_format (f, grmask, frmask)
1319 vbyte_func f;
1320 int grmask;
1321 unsigned long frmask;
1322 {
1323 char bytes[4];
1324 grmask = (grmask & 0x0f);
1325
1326 bytes[0] = UNW_P5;
1327 bytes[1] = ((grmask << 4) | ((frmask & 0x000f0000) >> 16));
1328 bytes[2] = ((frmask & 0x0000ff00) >> 8);
1329 bytes[3] = (frmask & 0x000000ff);
1330 (*f) (4, bytes, NULL);
1331 }
1332
1333 static void
1334 output_P6_format (f, rtype, rmask)
1335 vbyte_func f;
1336 unw_record_type rtype;
1337 int rmask;
1338 {
1339 char byte;
1340 int r = 0;
1341
1342 if (rtype == gr_mem)
1343 r = 1;
1344 else if (rtype != fr_mem)
1345 as_bad ("Invalid record type for format P6");
1346 byte = (UNW_P6 | (r << 4) | (rmask & 0x0f));
1347 (*f) (1, &byte, NULL);
1348 }
1349
1350 static void
1351 output_P7_format (f, rtype, w1, w2)
1352 vbyte_func f;
1353 unw_record_type rtype;
1354 unsigned long w1;
1355 unsigned long w2;
1356 {
1357 char bytes[20];
1358 int count = 1;
1359 int r = 0;
1360 count += output_leb128 (bytes + 1, w1, 0);
1361 switch (rtype)
1362 {
1363 case mem_stack_f:
1364 r = 0;
1365 count += output_leb128 (bytes + count, w2 >> 4, 0);
1366 break;
1367 case mem_stack_v:
1368 r = 1;
1369 break;
1370 case spill_base:
1371 r = 2;
1372 break;
1373 case psp_sprel:
1374 r = 3;
1375 break;
1376 case rp_when:
1377 r = 4;
1378 break;
1379 case rp_psprel:
1380 r = 5;
1381 break;
1382 case pfs_when:
1383 r = 6;
1384 break;
1385 case pfs_psprel:
1386 r = 7;
1387 break;
1388 case preds_when:
1389 r = 8;
1390 break;
1391 case preds_psprel:
1392 r = 9;
1393 break;
1394 case lc_when:
1395 r = 10;
1396 break;
1397 case lc_psprel:
1398 r = 11;
1399 break;
1400 case unat_when:
1401 r = 12;
1402 break;
1403 case unat_psprel:
1404 r = 13;
1405 break;
1406 case fpsr_when:
1407 r = 14;
1408 break;
1409 case fpsr_psprel:
1410 r = 15;
1411 break;
1412 default:
1413 break;
1414 }
1415 bytes[0] = (UNW_P7 | r);
1416 (*f) (count, bytes, NULL);
1417 }
1418
1419 static void
1420 output_P8_format (f, rtype, t)
1421 vbyte_func f;
1422 unw_record_type rtype;
1423 unsigned long t;
1424 {
1425 char bytes[20];
1426 int r = 0;
1427 int count = 2;
1428 bytes[0] = UNW_P8;
1429 switch (rtype)
1430 {
1431 case rp_sprel:
1432 r = 1;
1433 break;
1434 case pfs_sprel:
1435 r = 2;
1436 break;
1437 case preds_sprel:
1438 r = 3;
1439 break;
1440 case lc_sprel:
1441 r = 4;
1442 break;
1443 case unat_sprel:
1444 r = 5;
1445 break;
1446 case fpsr_sprel:
1447 r = 6;
1448 break;
1449 case bsp_when:
1450 r = 7;
1451 break;
1452 case bsp_psprel:
1453 r = 8;
1454 break;
1455 case bsp_sprel:
1456 r = 9;
1457 break;
1458 case bspstore_when:
1459 r = 10;
1460 break;
1461 case bspstore_psprel:
1462 r = 11;
1463 break;
1464 case bspstore_sprel:
1465 r = 12;
1466 break;
1467 case rnat_when:
1468 r = 13;
1469 break;
1470 case rnat_psprel:
1471 r = 14;
1472 break;
1473 case rnat_sprel:
1474 r = 15;
1475 break;
1476 case priunat_when_gr:
1477 r = 16;
1478 break;
1479 case priunat_psprel:
1480 r = 17;
1481 break;
1482 case priunat_sprel:
1483 r = 18;
1484 break;
1485 case priunat_when_mem:
1486 r = 19;
1487 break;
1488 default:
1489 break;
1490 }
1491 bytes[1] = r;
1492 count += output_leb128 (bytes + 2, t, 0);
1493 (*f) (count, bytes, NULL);
1494 }
1495
1496 static void
1497 output_P9_format (f, grmask, gr)
1498 vbyte_func f;
1499 int grmask;
1500 int gr;
1501 {
1502 char bytes[3];
1503 bytes[0] = UNW_P9;
1504 bytes[1] = (grmask & 0x0f);
1505 bytes[2] = (gr & 0x7f);
1506 (*f) (3, bytes, NULL);
1507 }
1508
1509 static void
1510 output_P10_format (f, abi, context)
1511 vbyte_func f;
1512 int abi;
1513 int context;
1514 {
1515 char bytes[3];
1516 bytes[0] = UNW_P10;
1517 bytes[1] = (abi & 0xff);
1518 bytes[2] = (context & 0xff);
1519 (*f) (3, bytes, NULL);
1520 }
1521
1522 static void
1523 output_B1_format (f, rtype, label)
1524 vbyte_func f;
1525 unw_record_type rtype;
1526 unsigned long label;
1527 {
1528 char byte;
1529 int r = 0;
1530 if (label > 0x1f)
1531 {
1532 output_B4_format (f, rtype, label);
1533 return;
1534 }
1535 if (rtype == copy_state)
1536 r = 1;
1537 else if (rtype != label_state)
1538 as_bad ("Invalid record type for format B1");
1539
1540 byte = (UNW_B1 | (r << 5) | (label & 0x1f));
1541 (*f) (1, &byte, NULL);
1542 }
1543
1544 static void
1545 output_B2_format (f, ecount, t)
1546 vbyte_func f;
1547 unsigned long ecount;
1548 unsigned long t;
1549 {
1550 char bytes[20];
1551 int count = 1;
1552 if (ecount > 0x1f)
1553 {
1554 output_B3_format (f, ecount, t);
1555 return;
1556 }
1557 bytes[0] = (UNW_B2 | (ecount & 0x1f));
1558 count += output_leb128 (bytes + 1, t, 0);
1559 (*f) (count, bytes, NULL);
1560 }
1561
1562 static void
1563 output_B3_format (f, ecount, t)
1564 vbyte_func f;
1565 unsigned long ecount;
1566 unsigned long t;
1567 {
1568 char bytes[20];
1569 int count = 1;
1570 if (ecount <= 0x1f)
1571 {
1572 output_B2_format (f, ecount, t);
1573 return;
1574 }
1575 bytes[0] = UNW_B3;
1576 count += output_leb128 (bytes + 1, t, 0);
1577 count += output_leb128 (bytes + count, ecount, 0);
1578 (*f) (count, bytes, NULL);
1579 }
1580
1581 static void
1582 output_B4_format (f, rtype, label)
1583 vbyte_func f;
1584 unw_record_type rtype;
1585 unsigned long label;
1586 {
1587 char bytes[20];
1588 int r = 0;
1589 int count = 1;
1590 if (label <= 0x1f)
1591 {
1592 output_B1_format (f, rtype, label);
1593 return;
1594 }
1595
1596 if (rtype == copy_state)
1597 r = 1;
1598 else if (rtype != label_state)
1599 as_bad ("Invalid record type for format B1");
1600
1601 bytes[0] = (UNW_B4 | (r << 3));
1602 count += output_leb128 (bytes + 1, label, 0);
1603 (*f) (count, bytes, NULL);
1604 }
1605
1606 static char
1607 format_ab_reg (ab, reg)
1608 int ab;
1609 int reg;
1610 {
1611 int ret;
1612 ab = (ab & 3);
1613 reg = (reg & 0x1f);
1614 ret = (ab << 5) | reg;
1615 return ret;
1616 }
1617
1618 static void
1619 output_X1_format (f, rtype, ab, reg, t, w1)
1620 vbyte_func f;
1621 unw_record_type rtype;
1622 int ab, reg;
1623 unsigned long t;
1624 unsigned long w1;
1625 {
1626 char bytes[20];
1627 int r = 0;
1628 int count = 2;
1629 bytes[0] = UNW_X1;
1630
1631 if (rtype == spill_sprel)
1632 r = 1;
1633 else if (rtype != spill_psprel)
1634 as_bad ("Invalid record type for format X1");
1635 bytes[1] = ((r << 7) | format_ab_reg (ab, reg));
1636 count += output_leb128 (bytes + 2, t, 0);
1637 count += output_leb128 (bytes + count, w1, 0);
1638 (*f) (count, bytes, NULL);
1639 }
1640
1641 static void
1642 output_X2_format (f, ab, reg, x, y, treg, t)
1643 vbyte_func f;
1644 int ab, reg;
1645 int x, y, treg;
1646 unsigned long t;
1647 {
1648 char bytes[20];
1649 int count = 3;
1650 bytes[0] = UNW_X2;
1651 bytes[1] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1652 bytes[2] = (((y & 1) << 7) | (treg & 0x7f));
1653 count += output_leb128 (bytes + 3, t, 0);
1654 (*f) (count, bytes, NULL);
1655 }
1656
1657 static void
1658 output_X3_format (f, rtype, qp, ab, reg, t, w1)
1659 vbyte_func f;
1660 unw_record_type rtype;
1661 int qp;
1662 int ab, reg;
1663 unsigned long t;
1664 unsigned long w1;
1665 {
1666 char bytes[20];
1667 int r = 0;
1668 int count = 3;
1669 bytes[0] = UNW_X3;
1670
1671 if (rtype == spill_sprel_p)
1672 r = 1;
1673 else if (rtype != spill_psprel_p)
1674 as_bad ("Invalid record type for format X3");
1675 bytes[1] = ((r << 7) | (qp & 0x3f));
1676 bytes[2] = format_ab_reg (ab, reg);
1677 count += output_leb128 (bytes + 3, t, 0);
1678 count += output_leb128 (bytes + count, w1, 0);
1679 (*f) (count, bytes, NULL);
1680 }
1681
1682 static void
1683 output_X4_format (f, qp, ab, reg, x, y, treg, t)
1684 vbyte_func f;
1685 int qp;
1686 int ab, reg;
1687 int x, y, treg;
1688 unsigned long t;
1689 {
1690 char bytes[20];
1691 int count = 4;
1692 bytes[0] = UNW_X4;
1693 bytes[1] = (qp & 0x3f);
1694 bytes[2] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1695 bytes[3] = (((y & 1) << 7) | (treg & 0x7f));
1696 count += output_leb128 (bytes + 4, t, 0);
1697 (*f) (count, bytes, NULL);
1698 }
1699
1700 /* This function allocates a record list structure, and initializes fields. */
1701
1702 static unw_rec_list *
1703 alloc_record (unw_record_type t)
1704 {
1705 unw_rec_list *ptr;
1706 ptr = xmalloc (sizeof (*ptr));
1707 ptr->next = NULL;
1708 ptr->slot_number = SLOT_NUM_NOT_SET;
1709 ptr->r.type = t;
1710 ptr->next_slot_number = 0;
1711 ptr->next_slot_frag = 0;
1712 return ptr;
1713 }
1714
1715 /* Dummy unwind record used for calculating the length of the last prologue or
1716 body region. */
1717
1718 static unw_rec_list *
1719 output_endp ()
1720 {
1721 unw_rec_list *ptr = alloc_record (endp);
1722 return ptr;
1723 }
1724
1725 static unw_rec_list *
1726 output_prologue ()
1727 {
1728 unw_rec_list *ptr = alloc_record (prologue);
1729 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1730 return ptr;
1731 }
1732
1733 static unw_rec_list *
1734 output_prologue_gr (saved_mask, reg)
1735 unsigned int saved_mask;
1736 unsigned int reg;
1737 {
1738 unw_rec_list *ptr = alloc_record (prologue_gr);
1739 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1740 ptr->r.record.r.grmask = saved_mask;
1741 ptr->r.record.r.grsave = reg;
1742 return ptr;
1743 }
1744
1745 static unw_rec_list *
1746 output_body ()
1747 {
1748 unw_rec_list *ptr = alloc_record (body);
1749 return ptr;
1750 }
1751
1752 static unw_rec_list *
1753 output_mem_stack_f (size)
1754 unsigned int size;
1755 {
1756 unw_rec_list *ptr = alloc_record (mem_stack_f);
1757 ptr->r.record.p.size = size;
1758 return ptr;
1759 }
1760
1761 static unw_rec_list *
1762 output_mem_stack_v ()
1763 {
1764 unw_rec_list *ptr = alloc_record (mem_stack_v);
1765 return ptr;
1766 }
1767
1768 static unw_rec_list *
1769 output_psp_gr (gr)
1770 unsigned int gr;
1771 {
1772 unw_rec_list *ptr = alloc_record (psp_gr);
1773 ptr->r.record.p.gr = gr;
1774 return ptr;
1775 }
1776
1777 static unw_rec_list *
1778 output_psp_sprel (offset)
1779 unsigned int offset;
1780 {
1781 unw_rec_list *ptr = alloc_record (psp_sprel);
1782 ptr->r.record.p.spoff = offset / 4;
1783 return ptr;
1784 }
1785
1786 static unw_rec_list *
1787 output_rp_when ()
1788 {
1789 unw_rec_list *ptr = alloc_record (rp_when);
1790 return ptr;
1791 }
1792
1793 static unw_rec_list *
1794 output_rp_gr (gr)
1795 unsigned int gr;
1796 {
1797 unw_rec_list *ptr = alloc_record (rp_gr);
1798 ptr->r.record.p.gr = gr;
1799 return ptr;
1800 }
1801
1802 static unw_rec_list *
1803 output_rp_br (br)
1804 unsigned int br;
1805 {
1806 unw_rec_list *ptr = alloc_record (rp_br);
1807 ptr->r.record.p.br = br;
1808 return ptr;
1809 }
1810
1811 static unw_rec_list *
1812 output_rp_psprel (offset)
1813 unsigned int offset;
1814 {
1815 unw_rec_list *ptr = alloc_record (rp_psprel);
1816 ptr->r.record.p.pspoff = offset / 4;
1817 return ptr;
1818 }
1819
1820 static unw_rec_list *
1821 output_rp_sprel (offset)
1822 unsigned int offset;
1823 {
1824 unw_rec_list *ptr = alloc_record (rp_sprel);
1825 ptr->r.record.p.spoff = offset / 4;
1826 return ptr;
1827 }
1828
1829 static unw_rec_list *
1830 output_pfs_when ()
1831 {
1832 unw_rec_list *ptr = alloc_record (pfs_when);
1833 return ptr;
1834 }
1835
1836 static unw_rec_list *
1837 output_pfs_gr (gr)
1838 unsigned int gr;
1839 {
1840 unw_rec_list *ptr = alloc_record (pfs_gr);
1841 ptr->r.record.p.gr = gr;
1842 return ptr;
1843 }
1844
1845 static unw_rec_list *
1846 output_pfs_psprel (offset)
1847 unsigned int offset;
1848 {
1849 unw_rec_list *ptr = alloc_record (pfs_psprel);
1850 ptr->r.record.p.pspoff = offset / 4;
1851 return ptr;
1852 }
1853
1854 static unw_rec_list *
1855 output_pfs_sprel (offset)
1856 unsigned int offset;
1857 {
1858 unw_rec_list *ptr = alloc_record (pfs_sprel);
1859 ptr->r.record.p.spoff = offset / 4;
1860 return ptr;
1861 }
1862
1863 static unw_rec_list *
1864 output_preds_when ()
1865 {
1866 unw_rec_list *ptr = alloc_record (preds_when);
1867 return ptr;
1868 }
1869
1870 static unw_rec_list *
1871 output_preds_gr (gr)
1872 unsigned int gr;
1873 {
1874 unw_rec_list *ptr = alloc_record (preds_gr);
1875 ptr->r.record.p.gr = gr;
1876 return ptr;
1877 }
1878
1879 static unw_rec_list *
1880 output_preds_psprel (offset)
1881 unsigned int offset;
1882 {
1883 unw_rec_list *ptr = alloc_record (preds_psprel);
1884 ptr->r.record.p.pspoff = offset / 4;
1885 return ptr;
1886 }
1887
1888 static unw_rec_list *
1889 output_preds_sprel (offset)
1890 unsigned int offset;
1891 {
1892 unw_rec_list *ptr = alloc_record (preds_sprel);
1893 ptr->r.record.p.spoff = offset / 4;
1894 return ptr;
1895 }
1896
1897 static unw_rec_list *
1898 output_fr_mem (mask)
1899 unsigned int mask;
1900 {
1901 unw_rec_list *ptr = alloc_record (fr_mem);
1902 ptr->r.record.p.rmask = mask;
1903 return ptr;
1904 }
1905
1906 static unw_rec_list *
1907 output_frgr_mem (gr_mask, fr_mask)
1908 unsigned int gr_mask;
1909 unsigned int fr_mask;
1910 {
1911 unw_rec_list *ptr = alloc_record (frgr_mem);
1912 ptr->r.record.p.grmask = gr_mask;
1913 ptr->r.record.p.frmask = fr_mask;
1914 return ptr;
1915 }
1916
1917 static unw_rec_list *
1918 output_gr_gr (mask, reg)
1919 unsigned int mask;
1920 unsigned int reg;
1921 {
1922 unw_rec_list *ptr = alloc_record (gr_gr);
1923 ptr->r.record.p.grmask = mask;
1924 ptr->r.record.p.gr = reg;
1925 return ptr;
1926 }
1927
1928 static unw_rec_list *
1929 output_gr_mem (mask)
1930 unsigned int mask;
1931 {
1932 unw_rec_list *ptr = alloc_record (gr_mem);
1933 ptr->r.record.p.rmask = mask;
1934 return ptr;
1935 }
1936
1937 static unw_rec_list *
1938 output_br_mem (unsigned int mask)
1939 {
1940 unw_rec_list *ptr = alloc_record (br_mem);
1941 ptr->r.record.p.brmask = mask;
1942 return ptr;
1943 }
1944
1945 static unw_rec_list *
1946 output_br_gr (save_mask, reg)
1947 unsigned int save_mask;
1948 unsigned int reg;
1949 {
1950 unw_rec_list *ptr = alloc_record (br_gr);
1951 ptr->r.record.p.brmask = save_mask;
1952 ptr->r.record.p.gr = reg;
1953 return ptr;
1954 }
1955
1956 static unw_rec_list *
1957 output_spill_base (offset)
1958 unsigned int offset;
1959 {
1960 unw_rec_list *ptr = alloc_record (spill_base);
1961 ptr->r.record.p.pspoff = offset / 4;
1962 return ptr;
1963 }
1964
1965 static unw_rec_list *
1966 output_unat_when ()
1967 {
1968 unw_rec_list *ptr = alloc_record (unat_when);
1969 return ptr;
1970 }
1971
1972 static unw_rec_list *
1973 output_unat_gr (gr)
1974 unsigned int gr;
1975 {
1976 unw_rec_list *ptr = alloc_record (unat_gr);
1977 ptr->r.record.p.gr = gr;
1978 return ptr;
1979 }
1980
1981 static unw_rec_list *
1982 output_unat_psprel (offset)
1983 unsigned int offset;
1984 {
1985 unw_rec_list *ptr = alloc_record (unat_psprel);
1986 ptr->r.record.p.pspoff = offset / 4;
1987 return ptr;
1988 }
1989
1990 static unw_rec_list *
1991 output_unat_sprel (offset)
1992 unsigned int offset;
1993 {
1994 unw_rec_list *ptr = alloc_record (unat_sprel);
1995 ptr->r.record.p.spoff = offset / 4;
1996 return ptr;
1997 }
1998
1999 static unw_rec_list *
2000 output_lc_when ()
2001 {
2002 unw_rec_list *ptr = alloc_record (lc_when);
2003 return ptr;
2004 }
2005
2006 static unw_rec_list *
2007 output_lc_gr (gr)
2008 unsigned int gr;
2009 {
2010 unw_rec_list *ptr = alloc_record (lc_gr);
2011 ptr->r.record.p.gr = gr;
2012 return ptr;
2013 }
2014
2015 static unw_rec_list *
2016 output_lc_psprel (offset)
2017 unsigned int offset;
2018 {
2019 unw_rec_list *ptr = alloc_record (lc_psprel);
2020 ptr->r.record.p.pspoff = offset / 4;
2021 return ptr;
2022 }
2023
2024 static unw_rec_list *
2025 output_lc_sprel (offset)
2026 unsigned int offset;
2027 {
2028 unw_rec_list *ptr = alloc_record (lc_sprel);
2029 ptr->r.record.p.spoff = offset / 4;
2030 return ptr;
2031 }
2032
2033 static unw_rec_list *
2034 output_fpsr_when ()
2035 {
2036 unw_rec_list *ptr = alloc_record (fpsr_when);
2037 return ptr;
2038 }
2039
2040 static unw_rec_list *
2041 output_fpsr_gr (gr)
2042 unsigned int gr;
2043 {
2044 unw_rec_list *ptr = alloc_record (fpsr_gr);
2045 ptr->r.record.p.gr = gr;
2046 return ptr;
2047 }
2048
2049 static unw_rec_list *
2050 output_fpsr_psprel (offset)
2051 unsigned int offset;
2052 {
2053 unw_rec_list *ptr = alloc_record (fpsr_psprel);
2054 ptr->r.record.p.pspoff = offset / 4;
2055 return ptr;
2056 }
2057
2058 static unw_rec_list *
2059 output_fpsr_sprel (offset)
2060 unsigned int offset;
2061 {
2062 unw_rec_list *ptr = alloc_record (fpsr_sprel);
2063 ptr->r.record.p.spoff = offset / 4;
2064 return ptr;
2065 }
2066
2067 static unw_rec_list *
2068 output_priunat_when_gr ()
2069 {
2070 unw_rec_list *ptr = alloc_record (priunat_when_gr);
2071 return ptr;
2072 }
2073
2074 static unw_rec_list *
2075 output_priunat_when_mem ()
2076 {
2077 unw_rec_list *ptr = alloc_record (priunat_when_mem);
2078 return ptr;
2079 }
2080
2081 static unw_rec_list *
2082 output_priunat_gr (gr)
2083 unsigned int gr;
2084 {
2085 unw_rec_list *ptr = alloc_record (priunat_gr);
2086 ptr->r.record.p.gr = gr;
2087 return ptr;
2088 }
2089
2090 static unw_rec_list *
2091 output_priunat_psprel (offset)
2092 unsigned int offset;
2093 {
2094 unw_rec_list *ptr = alloc_record (priunat_psprel);
2095 ptr->r.record.p.pspoff = offset / 4;
2096 return ptr;
2097 }
2098
2099 static unw_rec_list *
2100 output_priunat_sprel (offset)
2101 unsigned int offset;
2102 {
2103 unw_rec_list *ptr = alloc_record (priunat_sprel);
2104 ptr->r.record.p.spoff = offset / 4;
2105 return ptr;
2106 }
2107
2108 static unw_rec_list *
2109 output_bsp_when ()
2110 {
2111 unw_rec_list *ptr = alloc_record (bsp_when);
2112 return ptr;
2113 }
2114
2115 static unw_rec_list *
2116 output_bsp_gr (gr)
2117 unsigned int gr;
2118 {
2119 unw_rec_list *ptr = alloc_record (bsp_gr);
2120 ptr->r.record.p.gr = gr;
2121 return ptr;
2122 }
2123
2124 static unw_rec_list *
2125 output_bsp_psprel (offset)
2126 unsigned int offset;
2127 {
2128 unw_rec_list *ptr = alloc_record (bsp_psprel);
2129 ptr->r.record.p.pspoff = offset / 4;
2130 return ptr;
2131 }
2132
2133 static unw_rec_list *
2134 output_bsp_sprel (offset)
2135 unsigned int offset;
2136 {
2137 unw_rec_list *ptr = alloc_record (bsp_sprel);
2138 ptr->r.record.p.spoff = offset / 4;
2139 return ptr;
2140 }
2141
2142 static unw_rec_list *
2143 output_bspstore_when ()
2144 {
2145 unw_rec_list *ptr = alloc_record (bspstore_when);
2146 return ptr;
2147 }
2148
2149 static unw_rec_list *
2150 output_bspstore_gr (gr)
2151 unsigned int gr;
2152 {
2153 unw_rec_list *ptr = alloc_record (bspstore_gr);
2154 ptr->r.record.p.gr = gr;
2155 return ptr;
2156 }
2157
2158 static unw_rec_list *
2159 output_bspstore_psprel (offset)
2160 unsigned int offset;
2161 {
2162 unw_rec_list *ptr = alloc_record (bspstore_psprel);
2163 ptr->r.record.p.pspoff = offset / 4;
2164 return ptr;
2165 }
2166
2167 static unw_rec_list *
2168 output_bspstore_sprel (offset)
2169 unsigned int offset;
2170 {
2171 unw_rec_list *ptr = alloc_record (bspstore_sprel);
2172 ptr->r.record.p.spoff = offset / 4;
2173 return ptr;
2174 }
2175
2176 static unw_rec_list *
2177 output_rnat_when ()
2178 {
2179 unw_rec_list *ptr = alloc_record (rnat_when);
2180 return ptr;
2181 }
2182
2183 static unw_rec_list *
2184 output_rnat_gr (gr)
2185 unsigned int gr;
2186 {
2187 unw_rec_list *ptr = alloc_record (rnat_gr);
2188 ptr->r.record.p.gr = gr;
2189 return ptr;
2190 }
2191
2192 static unw_rec_list *
2193 output_rnat_psprel (offset)
2194 unsigned int offset;
2195 {
2196 unw_rec_list *ptr = alloc_record (rnat_psprel);
2197 ptr->r.record.p.pspoff = offset / 4;
2198 return ptr;
2199 }
2200
2201 static unw_rec_list *
2202 output_rnat_sprel (offset)
2203 unsigned int offset;
2204 {
2205 unw_rec_list *ptr = alloc_record (rnat_sprel);
2206 ptr->r.record.p.spoff = offset / 4;
2207 return ptr;
2208 }
2209
2210 static unw_rec_list *
2211 output_unwabi (abi, context)
2212 unsigned long abi;
2213 unsigned long context;
2214 {
2215 unw_rec_list *ptr = alloc_record (unwabi);
2216 ptr->r.record.p.abi = abi;
2217 ptr->r.record.p.context = context;
2218 return ptr;
2219 }
2220
2221 static unw_rec_list *
2222 output_epilogue (unsigned long ecount)
2223 {
2224 unw_rec_list *ptr = alloc_record (epilogue);
2225 ptr->r.record.b.ecount = ecount;
2226 return ptr;
2227 }
2228
2229 static unw_rec_list *
2230 output_label_state (unsigned long label)
2231 {
2232 unw_rec_list *ptr = alloc_record (label_state);
2233 ptr->r.record.b.label = label;
2234 return ptr;
2235 }
2236
2237 static unw_rec_list *
2238 output_copy_state (unsigned long label)
2239 {
2240 unw_rec_list *ptr = alloc_record (copy_state);
2241 ptr->r.record.b.label = label;
2242 return ptr;
2243 }
2244
2245 static unw_rec_list *
2246 output_spill_psprel (ab, reg, offset)
2247 unsigned int ab;
2248 unsigned int reg;
2249 unsigned int offset;
2250 {
2251 unw_rec_list *ptr = alloc_record (spill_psprel);
2252 ptr->r.record.x.ab = ab;
2253 ptr->r.record.x.reg = reg;
2254 ptr->r.record.x.pspoff = offset / 4;
2255 return ptr;
2256 }
2257
2258 static unw_rec_list *
2259 output_spill_sprel (ab, reg, offset)
2260 unsigned int ab;
2261 unsigned int reg;
2262 unsigned int offset;
2263 {
2264 unw_rec_list *ptr = alloc_record (spill_sprel);
2265 ptr->r.record.x.ab = ab;
2266 ptr->r.record.x.reg = reg;
2267 ptr->r.record.x.spoff = offset / 4;
2268 return ptr;
2269 }
2270
2271 static unw_rec_list *
2272 output_spill_psprel_p (ab, reg, offset, predicate)
2273 unsigned int ab;
2274 unsigned int reg;
2275 unsigned int offset;
2276 unsigned int predicate;
2277 {
2278 unw_rec_list *ptr = alloc_record (spill_psprel_p);
2279 ptr->r.record.x.ab = ab;
2280 ptr->r.record.x.reg = reg;
2281 ptr->r.record.x.pspoff = offset / 4;
2282 ptr->r.record.x.qp = predicate;
2283 return ptr;
2284 }
2285
2286 static unw_rec_list *
2287 output_spill_sprel_p (ab, reg, offset, predicate)
2288 unsigned int ab;
2289 unsigned int reg;
2290 unsigned int offset;
2291 unsigned int predicate;
2292 {
2293 unw_rec_list *ptr = alloc_record (spill_sprel_p);
2294 ptr->r.record.x.ab = ab;
2295 ptr->r.record.x.reg = reg;
2296 ptr->r.record.x.spoff = offset / 4;
2297 ptr->r.record.x.qp = predicate;
2298 return ptr;
2299 }
2300
2301 static unw_rec_list *
2302 output_spill_reg (ab, reg, targ_reg, xy)
2303 unsigned int ab;
2304 unsigned int reg;
2305 unsigned int targ_reg;
2306 unsigned int xy;
2307 {
2308 unw_rec_list *ptr = alloc_record (spill_reg);
2309 ptr->r.record.x.ab = ab;
2310 ptr->r.record.x.reg = reg;
2311 ptr->r.record.x.treg = targ_reg;
2312 ptr->r.record.x.xy = xy;
2313 return ptr;
2314 }
2315
2316 static unw_rec_list *
2317 output_spill_reg_p (ab, reg, targ_reg, xy, predicate)
2318 unsigned int ab;
2319 unsigned int reg;
2320 unsigned int targ_reg;
2321 unsigned int xy;
2322 unsigned int predicate;
2323 {
2324 unw_rec_list *ptr = alloc_record (spill_reg_p);
2325 ptr->r.record.x.ab = ab;
2326 ptr->r.record.x.reg = reg;
2327 ptr->r.record.x.treg = targ_reg;
2328 ptr->r.record.x.xy = xy;
2329 ptr->r.record.x.qp = predicate;
2330 return ptr;
2331 }
2332
2333 /* Given a unw_rec_list process the correct format with the
2334 specified function. */
2335
2336 static void
2337 process_one_record (ptr, f)
2338 unw_rec_list *ptr;
2339 vbyte_func f;
2340 {
2341 unsigned long fr_mask, gr_mask;
2342
2343 switch (ptr->r.type)
2344 {
2345 /* This is a dummy record that takes up no space in the output. */
2346 case endp:
2347 break;
2348
2349 case gr_mem:
2350 case fr_mem:
2351 case br_mem:
2352 case frgr_mem:
2353 /* These are taken care of by prologue/prologue_gr. */
2354 break;
2355
2356 case prologue_gr:
2357 case prologue:
2358 if (ptr->r.type == prologue_gr)
2359 output_R2_format (f, ptr->r.record.r.grmask,
2360 ptr->r.record.r.grsave, ptr->r.record.r.rlen);
2361 else
2362 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2363
2364 /* Output descriptor(s) for union of register spills (if any). */
2365 gr_mask = ptr->r.record.r.mask.gr_mem;
2366 fr_mask = ptr->r.record.r.mask.fr_mem;
2367 if (fr_mask)
2368 {
2369 if ((fr_mask & ~0xfUL) == 0)
2370 output_P6_format (f, fr_mem, fr_mask);
2371 else
2372 {
2373 output_P5_format (f, gr_mask, fr_mask);
2374 gr_mask = 0;
2375 }
2376 }
2377 if (gr_mask)
2378 output_P6_format (f, gr_mem, gr_mask);
2379 if (ptr->r.record.r.mask.br_mem)
2380 output_P1_format (f, ptr->r.record.r.mask.br_mem);
2381
2382 /* output imask descriptor if necessary: */
2383 if (ptr->r.record.r.mask.i)
2384 output_P4_format (f, ptr->r.record.r.mask.i,
2385 ptr->r.record.r.imask_size);
2386 break;
2387
2388 case body:
2389 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2390 break;
2391 case mem_stack_f:
2392 case mem_stack_v:
2393 output_P7_format (f, ptr->r.type, ptr->r.record.p.t,
2394 ptr->r.record.p.size);
2395 break;
2396 case psp_gr:
2397 case rp_gr:
2398 case pfs_gr:
2399 case preds_gr:
2400 case unat_gr:
2401 case lc_gr:
2402 case fpsr_gr:
2403 case priunat_gr:
2404 case bsp_gr:
2405 case bspstore_gr:
2406 case rnat_gr:
2407 output_P3_format (f, ptr->r.type, ptr->r.record.p.gr);
2408 break;
2409 case rp_br:
2410 output_P3_format (f, rp_br, ptr->r.record.p.br);
2411 break;
2412 case psp_sprel:
2413 output_P7_format (f, psp_sprel, ptr->r.record.p.spoff, 0);
2414 break;
2415 case rp_when:
2416 case pfs_when:
2417 case preds_when:
2418 case unat_when:
2419 case lc_when:
2420 case fpsr_when:
2421 output_P7_format (f, ptr->r.type, ptr->r.record.p.t, 0);
2422 break;
2423 case rp_psprel:
2424 case pfs_psprel:
2425 case preds_psprel:
2426 case unat_psprel:
2427 case lc_psprel:
2428 case fpsr_psprel:
2429 case spill_base:
2430 output_P7_format (f, ptr->r.type, ptr->r.record.p.pspoff, 0);
2431 break;
2432 case rp_sprel:
2433 case pfs_sprel:
2434 case preds_sprel:
2435 case unat_sprel:
2436 case lc_sprel:
2437 case fpsr_sprel:
2438 case priunat_sprel:
2439 case bsp_sprel:
2440 case bspstore_sprel:
2441 case rnat_sprel:
2442 output_P8_format (f, ptr->r.type, ptr->r.record.p.spoff);
2443 break;
2444 case gr_gr:
2445 output_P9_format (f, ptr->r.record.p.grmask, ptr->r.record.p.gr);
2446 break;
2447 case br_gr:
2448 output_P2_format (f, ptr->r.record.p.brmask, ptr->r.record.p.gr);
2449 break;
2450 case spill_mask:
2451 as_bad ("spill_mask record unimplemented.");
2452 break;
2453 case priunat_when_gr:
2454 case priunat_when_mem:
2455 case bsp_when:
2456 case bspstore_when:
2457 case rnat_when:
2458 output_P8_format (f, ptr->r.type, ptr->r.record.p.t);
2459 break;
2460 case priunat_psprel:
2461 case bsp_psprel:
2462 case bspstore_psprel:
2463 case rnat_psprel:
2464 output_P8_format (f, ptr->r.type, ptr->r.record.p.pspoff);
2465 break;
2466 case unwabi:
2467 output_P10_format (f, ptr->r.record.p.abi, ptr->r.record.p.context);
2468 break;
2469 case epilogue:
2470 output_B3_format (f, ptr->r.record.b.ecount, ptr->r.record.b.t);
2471 break;
2472 case label_state:
2473 case copy_state:
2474 output_B4_format (f, ptr->r.type, ptr->r.record.b.label);
2475 break;
2476 case spill_psprel:
2477 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2478 ptr->r.record.x.reg, ptr->r.record.x.t,
2479 ptr->r.record.x.pspoff);
2480 break;
2481 case spill_sprel:
2482 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2483 ptr->r.record.x.reg, ptr->r.record.x.t,
2484 ptr->r.record.x.spoff);
2485 break;
2486 case spill_reg:
2487 output_X2_format (f, ptr->r.record.x.ab, ptr->r.record.x.reg,
2488 ptr->r.record.x.xy >> 1, ptr->r.record.x.xy,
2489 ptr->r.record.x.treg, ptr->r.record.x.t);
2490 break;
2491 case spill_psprel_p:
2492 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2493 ptr->r.record.x.ab, ptr->r.record.x.reg,
2494 ptr->r.record.x.t, ptr->r.record.x.pspoff);
2495 break;
2496 case spill_sprel_p:
2497 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2498 ptr->r.record.x.ab, ptr->r.record.x.reg,
2499 ptr->r.record.x.t, ptr->r.record.x.spoff);
2500 break;
2501 case spill_reg_p:
2502 output_X4_format (f, ptr->r.record.x.qp, ptr->r.record.x.ab,
2503 ptr->r.record.x.reg, ptr->r.record.x.xy >> 1,
2504 ptr->r.record.x.xy, ptr->r.record.x.treg,
2505 ptr->r.record.x.t);
2506 break;
2507 default:
2508 as_bad ("record_type_not_valid");
2509 break;
2510 }
2511 }
2512
2513 /* Given a unw_rec_list list, process all the records with
2514 the specified function. */
2515 static void
2516 process_unw_records (list, f)
2517 unw_rec_list *list;
2518 vbyte_func f;
2519 {
2520 unw_rec_list *ptr;
2521 for (ptr = list; ptr; ptr = ptr->next)
2522 process_one_record (ptr, f);
2523 }
2524
2525 /* Determine the size of a record list in bytes. */
2526 static int
2527 calc_record_size (list)
2528 unw_rec_list *list;
2529 {
2530 vbyte_count = 0;
2531 process_unw_records (list, count_output);
2532 return vbyte_count;
2533 }
2534
2535 /* Update IMASK bitmask to reflect the fact that one or more registers
2536 of type TYPE are saved starting at instruction with index T. If N
2537 bits are set in REGMASK, it is assumed that instructions T through
2538 T+N-1 save these registers.
2539
2540 TYPE values:
2541 0: no save
2542 1: instruction saves next fp reg
2543 2: instruction saves next general reg
2544 3: instruction saves next branch reg */
2545 static void
2546 set_imask (region, regmask, t, type)
2547 unw_rec_list *region;
2548 unsigned long regmask;
2549 unsigned long t;
2550 unsigned int type;
2551 {
2552 unsigned char *imask;
2553 unsigned long imask_size;
2554 unsigned int i;
2555 int pos;
2556
2557 imask = region->r.record.r.mask.i;
2558 imask_size = region->r.record.r.imask_size;
2559 if (!imask)
2560 {
2561 imask_size = (region->r.record.r.rlen * 2 + 7) / 8 + 1;
2562 imask = xmalloc (imask_size);
2563 memset (imask, 0, imask_size);
2564
2565 region->r.record.r.imask_size = imask_size;
2566 region->r.record.r.mask.i = imask;
2567 }
2568
2569 i = (t / 4) + 1;
2570 pos = 2 * (3 - t % 4);
2571 while (regmask)
2572 {
2573 if (i >= imask_size)
2574 {
2575 as_bad ("Ignoring attempt to spill beyond end of region");
2576 return;
2577 }
2578
2579 imask[i] |= (type & 0x3) << pos;
2580
2581 regmask &= (regmask - 1);
2582 pos -= 2;
2583 if (pos < 0)
2584 {
2585 pos = 0;
2586 ++i;
2587 }
2588 }
2589 }
2590
2591 /* Return the number of instruction slots from FIRST_ADDR to SLOT_ADDR.
2592 SLOT_FRAG is the frag containing SLOT_ADDR, and FIRST_FRAG is the frag
2593 containing FIRST_ADDR. */
2594
2595 unsigned long
2596 slot_index (slot_addr, slot_frag, first_addr, first_frag)
2597 unsigned long slot_addr;
2598 fragS *slot_frag;
2599 unsigned long first_addr;
2600 fragS *first_frag;
2601 {
2602 unsigned long index = 0;
2603
2604 /* First time we are called, the initial address and frag are invalid. */
2605 if (first_addr == 0)
2606 return 0;
2607
2608 /* If the two addresses are in different frags, then we need to add in
2609 the remaining size of this frag, and then the entire size of intermediate
2610 frags. */
2611 while (slot_frag != first_frag)
2612 {
2613 unsigned long start_addr = (unsigned long) &first_frag->fr_literal;
2614
2615 if (finalize_syms)
2616 {
2617 /* We can get the final addresses only after relaxation is
2618 done. */
2619 if (first_frag->fr_next && first_frag->fr_next->fr_address)
2620 index += 3 * ((first_frag->fr_next->fr_address
2621 - first_frag->fr_address
2622 - first_frag->fr_fix) >> 4);
2623 }
2624 else
2625 /* We don't know what the final addresses will be. We try our
2626 best to estimate. */
2627 switch (first_frag->fr_type)
2628 {
2629 default:
2630 break;
2631
2632 case rs_space:
2633 as_fatal ("only constant space allocation is supported");
2634 break;
2635
2636 case rs_align:
2637 case rs_align_code:
2638 case rs_align_test:
2639 /* Take alignment into account. Assume the worst case
2640 before relaxation. */
2641 index += 3 * ((1 << first_frag->fr_offset) >> 4);
2642 break;
2643
2644 case rs_org:
2645 if (first_frag->fr_symbol)
2646 {
2647 as_fatal ("only constant offsets are supported");
2648 break;
2649 }
2650 case rs_fill:
2651 index += 3 * (first_frag->fr_offset >> 4);
2652 break;
2653 }
2654
2655 /* Add in the full size of the frag converted to instruction slots. */
2656 index += 3 * (first_frag->fr_fix >> 4);
2657 /* Subtract away the initial part before first_addr. */
2658 index -= (3 * ((first_addr >> 4) - (start_addr >> 4))
2659 + ((first_addr & 0x3) - (start_addr & 0x3)));
2660
2661 /* Move to the beginning of the next frag. */
2662 first_frag = first_frag->fr_next;
2663 first_addr = (unsigned long) &first_frag->fr_literal;
2664 }
2665
2666 /* Add in the used part of the last frag. */
2667 index += (3 * ((slot_addr >> 4) - (first_addr >> 4))
2668 + ((slot_addr & 0x3) - (first_addr & 0x3)));
2669 return index;
2670 }
2671
2672 /* Optimize unwind record directives. */
2673
2674 static unw_rec_list *
2675 optimize_unw_records (list)
2676 unw_rec_list *list;
2677 {
2678 if (!list)
2679 return NULL;
2680
2681 /* If the only unwind record is ".prologue" or ".prologue" followed
2682 by ".body", then we can optimize the unwind directives away. */
2683 if (list->r.type == prologue
2684 && (list->next->r.type == endp
2685 || (list->next->r.type == body && list->next->next->r.type == endp)))
2686 return NULL;
2687
2688 return list;
2689 }
2690
2691 /* Given a complete record list, process any records which have
2692 unresolved fields, (ie length counts for a prologue). After
2693 this has been run, all necessary information should be available
2694 within each record to generate an image. */
2695
2696 static void
2697 fixup_unw_records (list)
2698 unw_rec_list *list;
2699 {
2700 unw_rec_list *ptr, *region = 0;
2701 unsigned long first_addr = 0, rlen = 0, t;
2702 fragS *first_frag = 0;
2703
2704 for (ptr = list; ptr; ptr = ptr->next)
2705 {
2706 if (ptr->slot_number == SLOT_NUM_NOT_SET)
2707 as_bad (" Insn slot not set in unwind record.");
2708 t = slot_index (ptr->slot_number, ptr->slot_frag,
2709 first_addr, first_frag);
2710 switch (ptr->r.type)
2711 {
2712 case prologue:
2713 case prologue_gr:
2714 case body:
2715 {
2716 unw_rec_list *last;
2717 int size;
2718 unsigned long last_addr = 0;
2719 fragS *last_frag = NULL;
2720
2721 first_addr = ptr->slot_number;
2722 first_frag = ptr->slot_frag;
2723 /* Find either the next body/prologue start, or the end of
2724 the function, and determine the size of the region. */
2725 for (last = ptr->next; last != NULL; last = last->next)
2726 if (last->r.type == prologue || last->r.type == prologue_gr
2727 || last->r.type == body || last->r.type == endp)
2728 {
2729 last_addr = last->slot_number;
2730 last_frag = last->slot_frag;
2731 break;
2732 }
2733 size = slot_index (last_addr, last_frag, first_addr, first_frag);
2734 rlen = ptr->r.record.r.rlen = size;
2735 if (ptr->r.type == body)
2736 /* End of region. */
2737 region = 0;
2738 else
2739 region = ptr;
2740 break;
2741 }
2742 case epilogue:
2743 ptr->r.record.b.t = rlen - 1 - t;
2744 break;
2745
2746 case mem_stack_f:
2747 case mem_stack_v:
2748 case rp_when:
2749 case pfs_when:
2750 case preds_when:
2751 case unat_when:
2752 case lc_when:
2753 case fpsr_when:
2754 case priunat_when_gr:
2755 case priunat_when_mem:
2756 case bsp_when:
2757 case bspstore_when:
2758 case rnat_when:
2759 ptr->r.record.p.t = t;
2760 break;
2761
2762 case spill_reg:
2763 case spill_sprel:
2764 case spill_psprel:
2765 case spill_reg_p:
2766 case spill_sprel_p:
2767 case spill_psprel_p:
2768 ptr->r.record.x.t = t;
2769 break;
2770
2771 case frgr_mem:
2772 if (!region)
2773 {
2774 as_bad ("frgr_mem record before region record!\n");
2775 return;
2776 }
2777 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
2778 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
2779 set_imask (region, ptr->r.record.p.frmask, t, 1);
2780 set_imask (region, ptr->r.record.p.grmask, t, 2);
2781 break;
2782 case fr_mem:
2783 if (!region)
2784 {
2785 as_bad ("fr_mem record before region record!\n");
2786 return;
2787 }
2788 region->r.record.r.mask.fr_mem |= ptr->r.record.p.rmask;
2789 set_imask (region, ptr->r.record.p.rmask, t, 1);
2790 break;
2791 case gr_mem:
2792 if (!region)
2793 {
2794 as_bad ("gr_mem record before region record!\n");
2795 return;
2796 }
2797 region->r.record.r.mask.gr_mem |= ptr->r.record.p.rmask;
2798 set_imask (region, ptr->r.record.p.rmask, t, 2);
2799 break;
2800 case br_mem:
2801 if (!region)
2802 {
2803 as_bad ("br_mem record before region record!\n");
2804 return;
2805 }
2806 region->r.record.r.mask.br_mem |= ptr->r.record.p.brmask;
2807 set_imask (region, ptr->r.record.p.brmask, t, 3);
2808 break;
2809
2810 case gr_gr:
2811 if (!region)
2812 {
2813 as_bad ("gr_gr record before region record!\n");
2814 return;
2815 }
2816 set_imask (region, ptr->r.record.p.grmask, t, 2);
2817 break;
2818 case br_gr:
2819 if (!region)
2820 {
2821 as_bad ("br_gr record before region record!\n");
2822 return;
2823 }
2824 set_imask (region, ptr->r.record.p.brmask, t, 3);
2825 break;
2826
2827 default:
2828 break;
2829 }
2830 }
2831 }
2832
2833 /* This function converts a rs_machine_dependent variant frag into a
2834 normal fill frag with the unwind image from the the record list. */
2835 void
2836 ia64_convert_frag (fragS *frag)
2837 {
2838 unw_rec_list *list;
2839 int len, size, pad;
2840 valueT flag_value;
2841
2842 list = (unw_rec_list *) frag->fr_opcode;
2843 fixup_unw_records (list);
2844
2845 len = calc_record_size (list);
2846 /* pad to pointer-size boundary. */
2847 pad = len % md.pointer_size;
2848 if (pad != 0)
2849 len += md.pointer_size - pad;
2850 /* Add 8 for the header + a pointer for the personality offset. */
2851 size = len + 8 + md.pointer_size;
2852
2853 /* fr_var carries the max_chars that we created the fragment with.
2854 We must, of course, have allocated enough memory earlier. */
2855 assert (frag->fr_var >= size);
2856
2857 /* Initialize the header area. fr_offset is initialized with
2858 unwind.personality_routine. */
2859 if (frag->fr_offset)
2860 {
2861 if (md.flags & EF_IA_64_ABI64)
2862 flag_value = (bfd_vma) 3 << 32;
2863 else
2864 /* 32-bit unwind info block. */
2865 flag_value = (bfd_vma) 0x1003 << 32;
2866 }
2867 else
2868 flag_value = 0;
2869
2870 md_number_to_chars (frag->fr_literal,
2871 (((bfd_vma) 1 << 48) /* Version. */
2872 | flag_value /* U & E handler flags. */
2873 | (len / md.pointer_size)), /* Length. */
2874 8);
2875
2876 /* Skip the header. */
2877 vbyte_mem_ptr = frag->fr_literal + 8;
2878 process_unw_records (list, output_vbyte_mem);
2879
2880 /* Fill the padding bytes with zeros. */
2881 if (pad != 0)
2882 md_number_to_chars (frag->fr_literal + len + 8 - md.pointer_size + pad, 0,
2883 md.pointer_size - pad);
2884
2885 frag->fr_fix += size;
2886 frag->fr_type = rs_fill;
2887 frag->fr_var = 0;
2888 frag->fr_offset = 0;
2889 }
2890
2891 static int
2892 convert_expr_to_ab_reg (e, ab, regp)
2893 expressionS *e;
2894 unsigned int *ab;
2895 unsigned int *regp;
2896 {
2897 unsigned int reg;
2898
2899 if (e->X_op != O_register)
2900 return 0;
2901
2902 reg = e->X_add_number;
2903 if (reg >= (REG_GR + 4) && reg <= (REG_GR + 7))
2904 {
2905 *ab = 0;
2906 *regp = reg - REG_GR;
2907 }
2908 else if ((reg >= (REG_FR + 2) && reg <= (REG_FR + 5))
2909 || (reg >= (REG_FR + 16) && reg <= (REG_FR + 31)))
2910 {
2911 *ab = 1;
2912 *regp = reg - REG_FR;
2913 }
2914 else if (reg >= (REG_BR + 1) && reg <= (REG_BR + 5))
2915 {
2916 *ab = 2;
2917 *regp = reg - REG_BR;
2918 }
2919 else
2920 {
2921 *ab = 3;
2922 switch (reg)
2923 {
2924 case REG_PR: *regp = 0; break;
2925 case REG_PSP: *regp = 1; break;
2926 case REG_PRIUNAT: *regp = 2; break;
2927 case REG_BR + 0: *regp = 3; break;
2928 case REG_AR + AR_BSP: *regp = 4; break;
2929 case REG_AR + AR_BSPSTORE: *regp = 5; break;
2930 case REG_AR + AR_RNAT: *regp = 6; break;
2931 case REG_AR + AR_UNAT: *regp = 7; break;
2932 case REG_AR + AR_FPSR: *regp = 8; break;
2933 case REG_AR + AR_PFS: *regp = 9; break;
2934 case REG_AR + AR_LC: *regp = 10; break;
2935
2936 default:
2937 return 0;
2938 }
2939 }
2940 return 1;
2941 }
2942
2943 static int
2944 convert_expr_to_xy_reg (e, xy, regp)
2945 expressionS *e;
2946 unsigned int *xy;
2947 unsigned int *regp;
2948 {
2949 unsigned int reg;
2950
2951 if (e->X_op != O_register)
2952 return 0;
2953
2954 reg = e->X_add_number;
2955
2956 if (/* reg >= REG_GR && */ reg <= (REG_GR + 127))
2957 {
2958 *xy = 0;
2959 *regp = reg - REG_GR;
2960 }
2961 else if (reg >= REG_FR && reg <= (REG_FR + 127))
2962 {
2963 *xy = 1;
2964 *regp = reg - REG_FR;
2965 }
2966 else if (reg >= REG_BR && reg <= (REG_BR + 7))
2967 {
2968 *xy = 2;
2969 *regp = reg - REG_BR;
2970 }
2971 else
2972 return -1;
2973 return 1;
2974 }
2975
2976 static void
2977 dot_radix (dummy)
2978 int dummy ATTRIBUTE_UNUSED;
2979 {
2980 int radix;
2981
2982 SKIP_WHITESPACE ();
2983 radix = *input_line_pointer++;
2984
2985 if (radix != 'C' && !is_end_of_line[(unsigned char) radix])
2986 {
2987 as_bad ("Radix `%c' unsupported", *input_line_pointer);
2988 ignore_rest_of_line ();
2989 return;
2990 }
2991 }
2992
2993 /* .sbss, .bss etc. are macros that expand into ".section SECNAME". */
2994 static void
2995 dot_special_section (which)
2996 int which;
2997 {
2998 set_section ((char *) special_section_name[which]);
2999 }
3000
3001 static void
3002 add_unwind_entry (ptr)
3003 unw_rec_list *ptr;
3004 {
3005 if (unwind.tail)
3006 unwind.tail->next = ptr;
3007 else
3008 unwind.list = ptr;
3009 unwind.tail = ptr;
3010
3011 /* The current entry can in fact be a chain of unwind entries. */
3012 if (unwind.current_entry == NULL)
3013 unwind.current_entry = ptr;
3014 }
3015
3016 static void
3017 dot_fframe (dummy)
3018 int dummy ATTRIBUTE_UNUSED;
3019 {
3020 expressionS e;
3021
3022 parse_operand (&e);
3023
3024 if (e.X_op != O_constant)
3025 as_bad ("Operand to .fframe must be a constant");
3026 else
3027 add_unwind_entry (output_mem_stack_f (e.X_add_number));
3028 }
3029
3030 static void
3031 dot_vframe (dummy)
3032 int dummy ATTRIBUTE_UNUSED;
3033 {
3034 expressionS e;
3035 unsigned reg;
3036
3037 parse_operand (&e);
3038 reg = e.X_add_number - REG_GR;
3039 if (e.X_op == O_register && reg < 128)
3040 {
3041 add_unwind_entry (output_mem_stack_v ());
3042 if (! (unwind.prologue_mask & 2))
3043 add_unwind_entry (output_psp_gr (reg));
3044 }
3045 else
3046 as_bad ("First operand to .vframe must be a general register");
3047 }
3048
3049 static void
3050 dot_vframesp (dummy)
3051 int dummy ATTRIBUTE_UNUSED;
3052 {
3053 expressionS e;
3054
3055 parse_operand (&e);
3056 if (e.X_op == O_constant)
3057 {
3058 add_unwind_entry (output_mem_stack_v ());
3059 add_unwind_entry (output_psp_sprel (e.X_add_number));
3060 }
3061 else
3062 as_bad ("Operand to .vframesp must be a constant (sp-relative offset)");
3063 }
3064
3065 static void
3066 dot_vframepsp (dummy)
3067 int dummy ATTRIBUTE_UNUSED;
3068 {
3069 expressionS e;
3070
3071 parse_operand (&e);
3072 if (e.X_op == O_constant)
3073 {
3074 add_unwind_entry (output_mem_stack_v ());
3075 add_unwind_entry (output_psp_sprel (e.X_add_number));
3076 }
3077 else
3078 as_bad ("Operand to .vframepsp must be a constant (psp-relative offset)");
3079 }
3080
3081 static void
3082 dot_save (dummy)
3083 int dummy ATTRIBUTE_UNUSED;
3084 {
3085 expressionS e1, e2;
3086 int sep;
3087 int reg1, reg2;
3088
3089 sep = parse_operand (&e1);
3090 if (sep != ',')
3091 as_bad ("No second operand to .save");
3092 sep = parse_operand (&e2);
3093
3094 reg1 = e1.X_add_number;
3095 reg2 = e2.X_add_number - REG_GR;
3096
3097 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3098 if (e1.X_op == O_register)
3099 {
3100 if (e2.X_op == O_register && reg2 >= 0 && reg2 < 128)
3101 {
3102 switch (reg1)
3103 {
3104 case REG_AR + AR_BSP:
3105 add_unwind_entry (output_bsp_when ());
3106 add_unwind_entry (output_bsp_gr (reg2));
3107 break;
3108 case REG_AR + AR_BSPSTORE:
3109 add_unwind_entry (output_bspstore_when ());
3110 add_unwind_entry (output_bspstore_gr (reg2));
3111 break;
3112 case REG_AR + AR_RNAT:
3113 add_unwind_entry (output_rnat_when ());
3114 add_unwind_entry (output_rnat_gr (reg2));
3115 break;
3116 case REG_AR + AR_UNAT:
3117 add_unwind_entry (output_unat_when ());
3118 add_unwind_entry (output_unat_gr (reg2));
3119 break;
3120 case REG_AR + AR_FPSR:
3121 add_unwind_entry (output_fpsr_when ());
3122 add_unwind_entry (output_fpsr_gr (reg2));
3123 break;
3124 case REG_AR + AR_PFS:
3125 add_unwind_entry (output_pfs_when ());
3126 if (! (unwind.prologue_mask & 4))
3127 add_unwind_entry (output_pfs_gr (reg2));
3128 break;
3129 case REG_AR + AR_LC:
3130 add_unwind_entry (output_lc_when ());
3131 add_unwind_entry (output_lc_gr (reg2));
3132 break;
3133 case REG_BR:
3134 add_unwind_entry (output_rp_when ());
3135 if (! (unwind.prologue_mask & 8))
3136 add_unwind_entry (output_rp_gr (reg2));
3137 break;
3138 case REG_PR:
3139 add_unwind_entry (output_preds_when ());
3140 if (! (unwind.prologue_mask & 1))
3141 add_unwind_entry (output_preds_gr (reg2));
3142 break;
3143 case REG_PRIUNAT:
3144 add_unwind_entry (output_priunat_when_gr ());
3145 add_unwind_entry (output_priunat_gr (reg2));
3146 break;
3147 default:
3148 as_bad ("First operand not a valid register");
3149 }
3150 }
3151 else
3152 as_bad (" Second operand not a valid register");
3153 }
3154 else
3155 as_bad ("First operand not a register");
3156 }
3157
3158 static void
3159 dot_restore (dummy)
3160 int dummy ATTRIBUTE_UNUSED;
3161 {
3162 expressionS e1, e2;
3163 unsigned long ecount; /* # of _additional_ regions to pop */
3164 int sep;
3165
3166 sep = parse_operand (&e1);
3167 if (e1.X_op != O_register || e1.X_add_number != REG_GR + 12)
3168 {
3169 as_bad ("First operand to .restore must be stack pointer (sp)");
3170 return;
3171 }
3172
3173 if (sep == ',')
3174 {
3175 parse_operand (&e2);
3176 if (e2.X_op != O_constant || e2.X_add_number < 0)
3177 {
3178 as_bad ("Second operand to .restore must be a constant >= 0");
3179 return;
3180 }
3181 ecount = e2.X_add_number;
3182 }
3183 else
3184 ecount = unwind.prologue_count - 1;
3185
3186 if (ecount >= unwind.prologue_count)
3187 {
3188 as_bad ("Epilogue count of %lu exceeds number of nested prologues (%u)",
3189 ecount + 1, unwind.prologue_count);
3190 return;
3191 }
3192
3193 add_unwind_entry (output_epilogue (ecount));
3194
3195 if (ecount < unwind.prologue_count)
3196 unwind.prologue_count -= ecount + 1;
3197 else
3198 unwind.prologue_count = 0;
3199 }
3200
3201 static void
3202 dot_restorereg (dummy)
3203 int dummy ATTRIBUTE_UNUSED;
3204 {
3205 unsigned int ab, reg;
3206 expressionS e;
3207
3208 parse_operand (&e);
3209
3210 if (!convert_expr_to_ab_reg (&e, &ab, &reg))
3211 {
3212 as_bad ("First operand to .restorereg must be a preserved register");
3213 return;
3214 }
3215 add_unwind_entry (output_spill_reg (ab, reg, 0, 0));
3216 }
3217
3218 static void
3219 dot_restorereg_p (dummy)
3220 int dummy ATTRIBUTE_UNUSED;
3221 {
3222 unsigned int qp, ab, reg;
3223 expressionS e1, e2;
3224 int sep;
3225
3226 sep = parse_operand (&e1);
3227 if (sep != ',')
3228 {
3229 as_bad ("No second operand to .restorereg.p");
3230 return;
3231 }
3232
3233 parse_operand (&e2);
3234
3235 qp = e1.X_add_number - REG_P;
3236 if (e1.X_op != O_register || qp > 63)
3237 {
3238 as_bad ("First operand to .restorereg.p must be a predicate");
3239 return;
3240 }
3241
3242 if (!convert_expr_to_ab_reg (&e2, &ab, &reg))
3243 {
3244 as_bad ("Second operand to .restorereg.p must be a preserved register");
3245 return;
3246 }
3247 add_unwind_entry (output_spill_reg_p (ab, reg, 0, 0, qp));
3248 }
3249
3250 static void
3251 generate_unwind_image (text_name)
3252 const char *text_name;
3253 {
3254 int size, pad;
3255 unw_rec_list *list;
3256
3257 /* Mark the end of the unwind info, so that we can compute the size of the
3258 last unwind region. */
3259 add_unwind_entry (output_endp ());
3260
3261 /* Force out pending instructions, to make sure all unwind records have
3262 a valid slot_number field. */
3263 ia64_flush_insns ();
3264
3265 /* Generate the unwind record. */
3266 list = optimize_unw_records (unwind.list);
3267 fixup_unw_records (list);
3268 size = calc_record_size (list);
3269
3270 if (size > 0 || unwind.force_unwind_entry)
3271 {
3272 unwind.force_unwind_entry = 0;
3273 /* pad to pointer-size boundary. */
3274 pad = size % md.pointer_size;
3275 if (pad != 0)
3276 size += md.pointer_size - pad;
3277 /* Add 8 for the header + a pointer for the personality
3278 offset. */
3279 size += 8 + md.pointer_size;
3280 }
3281
3282 /* If there are unwind records, switch sections, and output the info. */
3283 if (size != 0)
3284 {
3285 char *sec_name;
3286 expressionS exp;
3287 bfd_reloc_code_real_type reloc;
3288
3289 make_unw_section_name (SPECIAL_SECTION_UNWIND_INFO, text_name, sec_name);
3290 set_section (sec_name);
3291 bfd_set_section_flags (stdoutput, now_seg,
3292 SEC_LOAD | SEC_ALLOC | SEC_READONLY);
3293
3294 /* Make sure the section has 4 byte alignment for ILP32 and
3295 8 byte alignment for LP64. */
3296 frag_align (md.pointer_size_shift, 0, 0);
3297 record_alignment (now_seg, md.pointer_size_shift);
3298
3299 /* Set expression which points to start of unwind descriptor area. */
3300 unwind.info = expr_build_dot ();
3301
3302 frag_var (rs_machine_dependent, size, size, 0, 0,
3303 (offsetT) unwind.personality_routine, (char *) list);
3304
3305 /* Add the personality address to the image. */
3306 if (unwind.personality_routine != 0)
3307 {
3308 exp.X_op = O_symbol;
3309 exp.X_add_symbol = unwind.personality_routine;
3310 exp.X_add_number = 0;
3311
3312 if (md.flags & EF_IA_64_BE)
3313 {
3314 if (md.flags & EF_IA_64_ABI64)
3315 reloc = BFD_RELOC_IA64_LTOFF_FPTR64MSB;
3316 else
3317 reloc = BFD_RELOC_IA64_LTOFF_FPTR32MSB;
3318 }
3319 else
3320 {
3321 if (md.flags & EF_IA_64_ABI64)
3322 reloc = BFD_RELOC_IA64_LTOFF_FPTR64LSB;
3323 else
3324 reloc = BFD_RELOC_IA64_LTOFF_FPTR32LSB;
3325 }
3326
3327 fix_new_exp (frag_now, frag_now_fix () - md.pointer_size,
3328 md.pointer_size, &exp, 0, reloc);
3329 unwind.personality_routine = 0;
3330 }
3331 }
3332
3333 free_saved_prologue_counts ();
3334 unwind.list = unwind.tail = unwind.current_entry = NULL;
3335 }
3336
3337 static void
3338 dot_handlerdata (dummy)
3339 int dummy ATTRIBUTE_UNUSED;
3340 {
3341 const char *text_name = segment_name (now_seg);
3342
3343 /* If text section name starts with ".text" (which it should),
3344 strip this prefix off. */
3345 if (strcmp (text_name, ".text") == 0)
3346 text_name = "";
3347
3348 unwind.force_unwind_entry = 1;
3349
3350 /* Remember which segment we're in so we can switch back after .endp */
3351 unwind.saved_text_seg = now_seg;
3352 unwind.saved_text_subseg = now_subseg;
3353
3354 /* Generate unwind info into unwind-info section and then leave that
3355 section as the currently active one so dataXX directives go into
3356 the language specific data area of the unwind info block. */
3357 generate_unwind_image (text_name);
3358 demand_empty_rest_of_line ();
3359 }
3360
3361 static void
3362 dot_unwentry (dummy)
3363 int dummy ATTRIBUTE_UNUSED;
3364 {
3365 unwind.force_unwind_entry = 1;
3366 demand_empty_rest_of_line ();
3367 }
3368
3369 static void
3370 dot_altrp (dummy)
3371 int dummy ATTRIBUTE_UNUSED;
3372 {
3373 expressionS e;
3374 unsigned reg;
3375
3376 parse_operand (&e);
3377 reg = e.X_add_number - REG_BR;
3378 if (e.X_op == O_register && reg < 8)
3379 add_unwind_entry (output_rp_br (reg));
3380 else
3381 as_bad ("First operand not a valid branch register");
3382 }
3383
3384 static void
3385 dot_savemem (psprel)
3386 int psprel;
3387 {
3388 expressionS e1, e2;
3389 int sep;
3390 int reg1, val;
3391
3392 sep = parse_operand (&e1);
3393 if (sep != ',')
3394 as_bad ("No second operand to .save%ssp", psprel ? "p" : "");
3395 sep = parse_operand (&e2);
3396
3397 reg1 = e1.X_add_number;
3398 val = e2.X_add_number;
3399
3400 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3401 if (e1.X_op == O_register)
3402 {
3403 if (e2.X_op == O_constant)
3404 {
3405 switch (reg1)
3406 {
3407 case REG_AR + AR_BSP:
3408 add_unwind_entry (output_bsp_when ());
3409 add_unwind_entry ((psprel
3410 ? output_bsp_psprel
3411 : output_bsp_sprel) (val));
3412 break;
3413 case REG_AR + AR_BSPSTORE:
3414 add_unwind_entry (output_bspstore_when ());
3415 add_unwind_entry ((psprel
3416 ? output_bspstore_psprel
3417 : output_bspstore_sprel) (val));
3418 break;
3419 case REG_AR + AR_RNAT:
3420 add_unwind_entry (output_rnat_when ());
3421 add_unwind_entry ((psprel
3422 ? output_rnat_psprel
3423 : output_rnat_sprel) (val));
3424 break;
3425 case REG_AR + AR_UNAT:
3426 add_unwind_entry (output_unat_when ());
3427 add_unwind_entry ((psprel
3428 ? output_unat_psprel
3429 : output_unat_sprel) (val));
3430 break;
3431 case REG_AR + AR_FPSR:
3432 add_unwind_entry (output_fpsr_when ());
3433 add_unwind_entry ((psprel
3434 ? output_fpsr_psprel
3435 : output_fpsr_sprel) (val));
3436 break;
3437 case REG_AR + AR_PFS:
3438 add_unwind_entry (output_pfs_when ());
3439 add_unwind_entry ((psprel
3440 ? output_pfs_psprel
3441 : output_pfs_sprel) (val));
3442 break;
3443 case REG_AR + AR_LC:
3444 add_unwind_entry (output_lc_when ());
3445 add_unwind_entry ((psprel
3446 ? output_lc_psprel
3447 : output_lc_sprel) (val));
3448 break;
3449 case REG_BR:
3450 add_unwind_entry (output_rp_when ());
3451 add_unwind_entry ((psprel
3452 ? output_rp_psprel
3453 : output_rp_sprel) (val));
3454 break;
3455 case REG_PR:
3456 add_unwind_entry (output_preds_when ());
3457 add_unwind_entry ((psprel
3458 ? output_preds_psprel
3459 : output_preds_sprel) (val));
3460 break;
3461 case REG_PRIUNAT:
3462 add_unwind_entry (output_priunat_when_mem ());
3463 add_unwind_entry ((psprel
3464 ? output_priunat_psprel
3465 : output_priunat_sprel) (val));
3466 break;
3467 default:
3468 as_bad ("First operand not a valid register");
3469 }
3470 }
3471 else
3472 as_bad (" Second operand not a valid constant");
3473 }
3474 else
3475 as_bad ("First operand not a register");
3476 }
3477
3478 static void
3479 dot_saveg (dummy)
3480 int dummy ATTRIBUTE_UNUSED;
3481 {
3482 expressionS e1, e2;
3483 int sep;
3484 sep = parse_operand (&e1);
3485 if (sep == ',')
3486 parse_operand (&e2);
3487
3488 if (e1.X_op != O_constant)
3489 as_bad ("First operand to .save.g must be a constant.");
3490 else
3491 {
3492 int grmask = e1.X_add_number;
3493 if (sep != ',')
3494 add_unwind_entry (output_gr_mem (grmask));
3495 else
3496 {
3497 int reg = e2.X_add_number - REG_GR;
3498 if (e2.X_op == O_register && reg >= 0 && reg < 128)
3499 add_unwind_entry (output_gr_gr (grmask, reg));
3500 else
3501 as_bad ("Second operand is an invalid register.");
3502 }
3503 }
3504 }
3505
3506 static void
3507 dot_savef (dummy)
3508 int dummy ATTRIBUTE_UNUSED;
3509 {
3510 expressionS e1;
3511 int sep;
3512 sep = parse_operand (&e1);
3513
3514 if (e1.X_op != O_constant)
3515 as_bad ("Operand to .save.f must be a constant.");
3516 else
3517 add_unwind_entry (output_fr_mem (e1.X_add_number));
3518 }
3519
3520 static void
3521 dot_saveb (dummy)
3522 int dummy ATTRIBUTE_UNUSED;
3523 {
3524 expressionS e1, e2;
3525 unsigned int reg;
3526 unsigned char sep;
3527 int brmask;
3528
3529 sep = parse_operand (&e1);
3530 if (e1.X_op != O_constant)
3531 {
3532 as_bad ("First operand to .save.b must be a constant.");
3533 return;
3534 }
3535 brmask = e1.X_add_number;
3536
3537 if (sep == ',')
3538 {
3539 sep = parse_operand (&e2);
3540 reg = e2.X_add_number - REG_GR;
3541 if (e2.X_op != O_register || reg > 127)
3542 {
3543 as_bad ("Second operand to .save.b must be a general register.");
3544 return;
3545 }
3546 add_unwind_entry (output_br_gr (brmask, e2.X_add_number));
3547 }
3548 else
3549 add_unwind_entry (output_br_mem (brmask));
3550
3551 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
3552 ignore_rest_of_line ();
3553 }
3554
3555 static void
3556 dot_savegf (dummy)
3557 int dummy ATTRIBUTE_UNUSED;
3558 {
3559 expressionS e1, e2;
3560 int sep;
3561 sep = parse_operand (&e1);
3562 if (sep == ',')
3563 parse_operand (&e2);
3564
3565 if (e1.X_op != O_constant || sep != ',' || e2.X_op != O_constant)
3566 as_bad ("Both operands of .save.gf must be constants.");
3567 else
3568 {
3569 int grmask = e1.X_add_number;
3570 int frmask = e2.X_add_number;
3571 add_unwind_entry (output_frgr_mem (grmask, frmask));
3572 }
3573 }
3574
3575 static void
3576 dot_spill (dummy)
3577 int dummy ATTRIBUTE_UNUSED;
3578 {
3579 expressionS e;
3580 unsigned char sep;
3581
3582 sep = parse_operand (&e);
3583 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
3584 ignore_rest_of_line ();
3585
3586 if (e.X_op != O_constant)
3587 as_bad ("Operand to .spill must be a constant");
3588 else
3589 add_unwind_entry (output_spill_base (e.X_add_number));
3590 }
3591
3592 static void
3593 dot_spillreg (dummy)
3594 int dummy ATTRIBUTE_UNUSED;
3595 {
3596 int sep, ab, xy, reg, treg;
3597 expressionS e1, e2;
3598
3599 sep = parse_operand (&e1);
3600 if (sep != ',')
3601 {
3602 as_bad ("No second operand to .spillreg");
3603 return;
3604 }
3605
3606 parse_operand (&e2);
3607
3608 if (!convert_expr_to_ab_reg (&e1, &ab, &reg))
3609 {
3610 as_bad ("First operand to .spillreg must be a preserved register");
3611 return;
3612 }
3613
3614 if (!convert_expr_to_xy_reg (&e2, &xy, &treg))
3615 {
3616 as_bad ("Second operand to .spillreg must be a register");
3617 return;
3618 }
3619
3620 add_unwind_entry (output_spill_reg (ab, reg, treg, xy));
3621 }
3622
3623 static void
3624 dot_spillmem (psprel)
3625 int psprel;
3626 {
3627 expressionS e1, e2;
3628 int sep, ab, reg;
3629
3630 sep = parse_operand (&e1);
3631 if (sep != ',')
3632 {
3633 as_bad ("Second operand missing");
3634 return;
3635 }
3636
3637 parse_operand (&e2);
3638
3639 if (!convert_expr_to_ab_reg (&e1, &ab, &reg))
3640 {
3641 as_bad ("First operand to .spill%s must be a preserved register",
3642 psprel ? "psp" : "sp");
3643 return;
3644 }
3645
3646 if (e2.X_op != O_constant)
3647 {
3648 as_bad ("Second operand to .spill%s must be a constant",
3649 psprel ? "psp" : "sp");
3650 return;
3651 }
3652
3653 if (psprel)
3654 add_unwind_entry (output_spill_psprel (ab, reg, e2.X_add_number));
3655 else
3656 add_unwind_entry (output_spill_sprel (ab, reg, e2.X_add_number));
3657 }
3658
3659 static void
3660 dot_spillreg_p (dummy)
3661 int dummy ATTRIBUTE_UNUSED;
3662 {
3663 int sep, ab, xy, reg, treg;
3664 expressionS e1, e2, e3;
3665 unsigned int qp;
3666
3667 sep = parse_operand (&e1);
3668 if (sep != ',')
3669 {
3670 as_bad ("No second and third operand to .spillreg.p");
3671 return;
3672 }
3673
3674 sep = parse_operand (&e2);
3675 if (sep != ',')
3676 {
3677 as_bad ("No third operand to .spillreg.p");
3678 return;
3679 }
3680
3681 parse_operand (&e3);
3682
3683 qp = e1.X_add_number - REG_P;
3684
3685 if (e1.X_op != O_register || qp > 63)
3686 {
3687 as_bad ("First operand to .spillreg.p must be a predicate");
3688 return;
3689 }
3690
3691 if (!convert_expr_to_ab_reg (&e2, &ab, &reg))
3692 {
3693 as_bad ("Second operand to .spillreg.p must be a preserved register");
3694 return;
3695 }
3696
3697 if (!convert_expr_to_xy_reg (&e3, &xy, &treg))
3698 {
3699 as_bad ("Third operand to .spillreg.p must be a register");
3700 return;
3701 }
3702
3703 add_unwind_entry (output_spill_reg_p (ab, reg, treg, xy, qp));
3704 }
3705
3706 static void
3707 dot_spillmem_p (psprel)
3708 int psprel;
3709 {
3710 expressionS e1, e2, e3;
3711 int sep, ab, reg;
3712 unsigned int qp;
3713
3714 sep = parse_operand (&e1);
3715 if (sep != ',')
3716 {
3717 as_bad ("Second operand missing");
3718 return;
3719 }
3720
3721 parse_operand (&e2);
3722 if (sep != ',')
3723 {
3724 as_bad ("Second operand missing");
3725 return;
3726 }
3727
3728 parse_operand (&e3);
3729
3730 qp = e1.X_add_number - REG_P;
3731 if (e1.X_op != O_register || qp > 63)
3732 {
3733 as_bad ("First operand to .spill%s_p must be a predicate",
3734 psprel ? "psp" : "sp");
3735 return;
3736 }
3737
3738 if (!convert_expr_to_ab_reg (&e2, &ab, &reg))
3739 {
3740 as_bad ("Second operand to .spill%s_p must be a preserved register",
3741 psprel ? "psp" : "sp");
3742 return;
3743 }
3744
3745 if (e3.X_op != O_constant)
3746 {
3747 as_bad ("Third operand to .spill%s_p must be a constant",
3748 psprel ? "psp" : "sp");
3749 return;
3750 }
3751
3752 if (psprel)
3753 add_unwind_entry (output_spill_psprel_p (ab, reg, e3.X_add_number, qp));
3754 else
3755 add_unwind_entry (output_spill_sprel_p (ab, reg, e3.X_add_number, qp));
3756 }
3757
3758 static unsigned int
3759 get_saved_prologue_count (lbl)
3760 unsigned long lbl;
3761 {
3762 label_prologue_count *lpc = unwind.saved_prologue_counts;
3763
3764 while (lpc != NULL && lpc->label_number != lbl)
3765 lpc = lpc->next;
3766
3767 if (lpc != NULL)
3768 return lpc->prologue_count;
3769
3770 as_bad ("Missing .label_state %ld", lbl);
3771 return 1;
3772 }
3773
3774 static void
3775 save_prologue_count (lbl, count)
3776 unsigned long lbl;
3777 unsigned int count;
3778 {
3779 label_prologue_count *lpc = unwind.saved_prologue_counts;
3780
3781 while (lpc != NULL && lpc->label_number != lbl)
3782 lpc = lpc->next;
3783
3784 if (lpc != NULL)
3785 lpc->prologue_count = count;
3786 else
3787 {
3788 label_prologue_count *new_lpc = xmalloc (sizeof (* new_lpc));
3789
3790 new_lpc->next = unwind.saved_prologue_counts;
3791 new_lpc->label_number = lbl;
3792 new_lpc->prologue_count = count;
3793 unwind.saved_prologue_counts = new_lpc;
3794 }
3795 }
3796
3797 static void
3798 free_saved_prologue_counts ()
3799 {
3800 label_prologue_count *lpc = unwind.saved_prologue_counts;
3801 label_prologue_count *next;
3802
3803 while (lpc != NULL)
3804 {
3805 next = lpc->next;
3806 free (lpc);
3807 lpc = next;
3808 }
3809
3810 unwind.saved_prologue_counts = NULL;
3811 }
3812
3813 static void
3814 dot_label_state (dummy)
3815 int dummy ATTRIBUTE_UNUSED;
3816 {
3817 expressionS e;
3818
3819 parse_operand (&e);
3820 if (e.X_op != O_constant)
3821 {
3822 as_bad ("Operand to .label_state must be a constant");
3823 return;
3824 }
3825 add_unwind_entry (output_label_state (e.X_add_number));
3826 save_prologue_count (e.X_add_number, unwind.prologue_count);
3827 }
3828
3829 static void
3830 dot_copy_state (dummy)
3831 int dummy ATTRIBUTE_UNUSED;
3832 {
3833 expressionS e;
3834
3835 parse_operand (&e);
3836 if (e.X_op != O_constant)
3837 {
3838 as_bad ("Operand to .copy_state must be a constant");
3839 return;
3840 }
3841 add_unwind_entry (output_copy_state (e.X_add_number));
3842 unwind.prologue_count = get_saved_prologue_count (e.X_add_number);
3843 }
3844
3845 static void
3846 dot_unwabi (dummy)
3847 int dummy ATTRIBUTE_UNUSED;
3848 {
3849 expressionS e1, e2;
3850 unsigned char sep;
3851
3852 sep = parse_operand (&e1);
3853 if (sep != ',')
3854 {
3855 as_bad ("Second operand to .unwabi missing");
3856 return;
3857 }
3858 sep = parse_operand (&e2);
3859 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
3860 ignore_rest_of_line ();
3861
3862 if (e1.X_op != O_constant)
3863 {
3864 as_bad ("First operand to .unwabi must be a constant");
3865 return;
3866 }
3867
3868 if (e2.X_op != O_constant)
3869 {
3870 as_bad ("Second operand to .unwabi must be a constant");
3871 return;
3872 }
3873
3874 add_unwind_entry (output_unwabi (e1.X_add_number, e2.X_add_number));
3875 }
3876
3877 static void
3878 dot_personality (dummy)
3879 int dummy ATTRIBUTE_UNUSED;
3880 {
3881 char *name, *p, c;
3882 SKIP_WHITESPACE ();
3883 name = input_line_pointer;
3884 c = get_symbol_end ();
3885 p = input_line_pointer;
3886 unwind.personality_routine = symbol_find_or_make (name);
3887 unwind.force_unwind_entry = 1;
3888 *p = c;
3889 SKIP_WHITESPACE ();
3890 demand_empty_rest_of_line ();
3891 }
3892
3893 static void
3894 dot_proc (dummy)
3895 int dummy ATTRIBUTE_UNUSED;
3896 {
3897 char *name, *p, c;
3898 symbolS *sym;
3899
3900 unwind.proc_start = expr_build_dot ();
3901 /* Parse names of main and alternate entry points and mark them as
3902 function symbols: */
3903 while (1)
3904 {
3905 SKIP_WHITESPACE ();
3906 name = input_line_pointer;
3907 c = get_symbol_end ();
3908 p = input_line_pointer;
3909 sym = symbol_find_or_make (name);
3910 if (unwind.proc_start == 0)
3911 {
3912 unwind.proc_start = sym;
3913 }
3914 symbol_get_bfdsym (sym)->flags |= BSF_FUNCTION;
3915 *p = c;
3916 SKIP_WHITESPACE ();
3917 if (*input_line_pointer != ',')
3918 break;
3919 ++input_line_pointer;
3920 }
3921 demand_empty_rest_of_line ();
3922 ia64_do_align (16);
3923
3924 unwind.prologue_count = 0;
3925 unwind.list = unwind.tail = unwind.current_entry = NULL;
3926 unwind.personality_routine = 0;
3927 }
3928
3929 static void
3930 dot_body (dummy)
3931 int dummy ATTRIBUTE_UNUSED;
3932 {
3933 unwind.prologue = 0;
3934 unwind.prologue_mask = 0;
3935
3936 add_unwind_entry (output_body ());
3937 demand_empty_rest_of_line ();
3938 }
3939
3940 static void
3941 dot_prologue (dummy)
3942 int dummy ATTRIBUTE_UNUSED;
3943 {
3944 unsigned char sep;
3945 int mask = 0, grsave = 0;
3946
3947 if (!is_it_end_of_statement ())
3948 {
3949 expressionS e1, e2;
3950 sep = parse_operand (&e1);
3951 if (sep != ',')
3952 as_bad ("No second operand to .prologue");
3953 sep = parse_operand (&e2);
3954 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
3955 ignore_rest_of_line ();
3956
3957 if (e1.X_op == O_constant)
3958 {
3959 mask = e1.X_add_number;
3960
3961 if (e2.X_op == O_constant)
3962 grsave = e2.X_add_number;
3963 else if (e2.X_op == O_register
3964 && (grsave = e2.X_add_number - REG_GR) < 128)
3965 ;
3966 else
3967 as_bad ("Second operand not a constant or general register");
3968
3969 add_unwind_entry (output_prologue_gr (mask, grsave));
3970 }
3971 else
3972 as_bad ("First operand not a constant");
3973 }
3974 else
3975 add_unwind_entry (output_prologue ());
3976
3977 unwind.prologue = 1;
3978 unwind.prologue_mask = mask;
3979 ++unwind.prologue_count;
3980 }
3981
3982 static void
3983 dot_endp (dummy)
3984 int dummy ATTRIBUTE_UNUSED;
3985 {
3986 expressionS e;
3987 unsigned char *ptr;
3988 int bytes_per_address;
3989 long where;
3990 segT saved_seg;
3991 subsegT saved_subseg;
3992 const char *sec_name, *text_name;
3993 char *name, *p, c;
3994 symbolS *sym;
3995
3996 if (unwind.saved_text_seg)
3997 {
3998 saved_seg = unwind.saved_text_seg;
3999 saved_subseg = unwind.saved_text_subseg;
4000 unwind.saved_text_seg = NULL;
4001 }
4002 else
4003 {
4004 saved_seg = now_seg;
4005 saved_subseg = now_subseg;
4006 }
4007
4008 /*
4009 Use a slightly ugly scheme to derive the unwind section names from
4010 the text section name:
4011
4012 text sect. unwind table sect.
4013 name: name: comments:
4014 ---------- ----------------- --------------------------------
4015 .text .IA_64.unwind
4016 .text.foo .IA_64.unwind.text.foo
4017 .foo .IA_64.unwind.foo
4018 .gnu.linkonce.t.foo
4019 .gnu.linkonce.ia64unw.foo
4020 _info .IA_64.unwind_info gas issues error message (ditto)
4021 _infoFOO .IA_64.unwind_infoFOO gas issues error message (ditto)
4022
4023 This mapping is done so that:
4024
4025 (a) An object file with unwind info only in .text will use
4026 unwind section names .IA_64.unwind and .IA_64.unwind_info.
4027 This follows the letter of the ABI and also ensures backwards
4028 compatibility with older toolchains.
4029
4030 (b) An object file with unwind info in multiple text sections
4031 will use separate unwind sections for each text section.
4032 This allows us to properly set the "sh_info" and "sh_link"
4033 fields in SHT_IA_64_UNWIND as required by the ABI and also
4034 lets GNU ld support programs with multiple segments
4035 containing unwind info (as might be the case for certain
4036 embedded applications).
4037
4038 (c) An error is issued if there would be a name clash.
4039 */
4040 text_name = segment_name (saved_seg);
4041 if (strncmp (text_name, "_info", 5) == 0)
4042 {
4043 as_bad ("Illegal section name `%s' (causes unwind section name clash)",
4044 text_name);
4045 ignore_rest_of_line ();
4046 return;
4047 }
4048 if (strcmp (text_name, ".text") == 0)
4049 text_name = "";
4050
4051 insn_group_break (1, 0, 0);
4052
4053 /* If there wasn't a .handlerdata, we haven't generated an image yet. */
4054 if (!unwind.info)
4055 generate_unwind_image (text_name);
4056
4057 if (unwind.info || unwind.force_unwind_entry)
4058 {
4059 subseg_set (md.last_text_seg, 0);
4060 unwind.proc_end = expr_build_dot ();
4061
4062 make_unw_section_name (SPECIAL_SECTION_UNWIND, text_name, sec_name);
4063 set_section ((char *) sec_name);
4064 bfd_set_section_flags (stdoutput, now_seg,
4065 SEC_LOAD | SEC_ALLOC | SEC_READONLY);
4066
4067 /* Make sure that section has 4 byte alignment for ILP32 and
4068 8 byte alignment for LP64. */
4069 record_alignment (now_seg, md.pointer_size_shift);
4070
4071 /* Need space for 3 pointers for procedure start, procedure end,
4072 and unwind info. */
4073 ptr = frag_more (3 * md.pointer_size);
4074 where = frag_now_fix () - (3 * md.pointer_size);
4075 bytes_per_address = bfd_arch_bits_per_address (stdoutput) / 8;
4076
4077 /* Issue the values of a) Proc Begin, b) Proc End, c) Unwind Record. */
4078 e.X_op = O_pseudo_fixup;
4079 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4080 e.X_add_number = 0;
4081 e.X_add_symbol = unwind.proc_start;
4082 ia64_cons_fix_new (frag_now, where, bytes_per_address, &e);
4083
4084 e.X_op = O_pseudo_fixup;
4085 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4086 e.X_add_number = 0;
4087 e.X_add_symbol = unwind.proc_end;
4088 ia64_cons_fix_new (frag_now, where + bytes_per_address,
4089 bytes_per_address, &e);
4090
4091 if (unwind.info)
4092 {
4093 e.X_op = O_pseudo_fixup;
4094 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4095 e.X_add_number = 0;
4096 e.X_add_symbol = unwind.info;
4097 ia64_cons_fix_new (frag_now, where + (bytes_per_address * 2),
4098 bytes_per_address, &e);
4099 }
4100 else
4101 md_number_to_chars (ptr + (bytes_per_address * 2), 0,
4102 bytes_per_address);
4103
4104 }
4105 subseg_set (saved_seg, saved_subseg);
4106
4107 /* Parse names of main and alternate entry points and set symbol sizes. */
4108 while (1)
4109 {
4110 SKIP_WHITESPACE ();
4111 name = input_line_pointer;
4112 c = get_symbol_end ();
4113 p = input_line_pointer;
4114 sym = symbol_find (name);
4115 if (sym && unwind.proc_start
4116 && (symbol_get_bfdsym (sym)->flags & BSF_FUNCTION)
4117 && S_GET_SIZE (sym) == 0 && symbol_get_obj (sym)->size == NULL)
4118 {
4119 fragS *fr = symbol_get_frag (unwind.proc_start);
4120 fragS *frag = symbol_get_frag (sym);
4121
4122 /* Check whether the function label is at or beyond last
4123 .proc directive. */
4124 while (fr && fr != frag)
4125 fr = fr->fr_next;
4126 if (fr)
4127 {
4128 if (frag == frag_now && SEG_NORMAL (now_seg))
4129 S_SET_SIZE (sym, frag_now_fix () - S_GET_VALUE (sym));
4130 else
4131 {
4132 symbol_get_obj (sym)->size =
4133 (expressionS *) xmalloc (sizeof (expressionS));
4134 symbol_get_obj (sym)->size->X_op = O_subtract;
4135 symbol_get_obj (sym)->size->X_add_symbol
4136 = symbol_new (FAKE_LABEL_NAME, now_seg,
4137 frag_now_fix (), frag_now);
4138 symbol_get_obj (sym)->size->X_op_symbol = sym;
4139 symbol_get_obj (sym)->size->X_add_number = 0;
4140 }
4141 }
4142 }
4143 *p = c;
4144 SKIP_WHITESPACE ();
4145 if (*input_line_pointer != ',')
4146 break;
4147 ++input_line_pointer;
4148 }
4149 demand_empty_rest_of_line ();
4150 unwind.proc_start = unwind.proc_end = unwind.info = 0;
4151 }
4152
4153 static void
4154 dot_template (template)
4155 int template;
4156 {
4157 CURR_SLOT.user_template = template;
4158 }
4159
4160 static void
4161 dot_regstk (dummy)
4162 int dummy ATTRIBUTE_UNUSED;
4163 {
4164 int ins, locs, outs, rots;
4165
4166 if (is_it_end_of_statement ())
4167 ins = locs = outs = rots = 0;
4168 else
4169 {
4170 ins = get_absolute_expression ();
4171 if (*input_line_pointer++ != ',')
4172 goto err;
4173 locs = get_absolute_expression ();
4174 if (*input_line_pointer++ != ',')
4175 goto err;
4176 outs = get_absolute_expression ();
4177 if (*input_line_pointer++ != ',')
4178 goto err;
4179 rots = get_absolute_expression ();
4180 }
4181 set_regstack (ins, locs, outs, rots);
4182 return;
4183
4184 err:
4185 as_bad ("Comma expected");
4186 ignore_rest_of_line ();
4187 }
4188
4189 static void
4190 dot_rot (type)
4191 int type;
4192 {
4193 unsigned num_regs, num_alloced = 0;
4194 struct dynreg **drpp, *dr;
4195 int ch, base_reg = 0;
4196 char *name, *start;
4197 size_t len;
4198
4199 switch (type)
4200 {
4201 case DYNREG_GR: base_reg = REG_GR + 32; break;
4202 case DYNREG_FR: base_reg = REG_FR + 32; break;
4203 case DYNREG_PR: base_reg = REG_P + 16; break;
4204 default: break;
4205 }
4206
4207 /* First, remove existing names from hash table. */
4208 for (dr = md.dynreg[type]; dr && dr->num_regs; dr = dr->next)
4209 {
4210 hash_delete (md.dynreg_hash, dr->name);
4211 dr->num_regs = 0;
4212 }
4213
4214 drpp = &md.dynreg[type];
4215 while (1)
4216 {
4217 start = input_line_pointer;
4218 ch = get_symbol_end ();
4219 *input_line_pointer = ch;
4220 len = (input_line_pointer - start);
4221
4222 SKIP_WHITESPACE ();
4223 if (*input_line_pointer != '[')
4224 {
4225 as_bad ("Expected '['");
4226 goto err;
4227 }
4228 ++input_line_pointer; /* skip '[' */
4229
4230 num_regs = get_absolute_expression ();
4231
4232 if (*input_line_pointer++ != ']')
4233 {
4234 as_bad ("Expected ']'");
4235 goto err;
4236 }
4237 SKIP_WHITESPACE ();
4238
4239 num_alloced += num_regs;
4240 switch (type)
4241 {
4242 case DYNREG_GR:
4243 if (num_alloced > md.rot.num_regs)
4244 {
4245 as_bad ("Used more than the declared %d rotating registers",
4246 md.rot.num_regs);
4247 goto err;
4248 }
4249 break;
4250 case DYNREG_FR:
4251 if (num_alloced > 96)
4252 {
4253 as_bad ("Used more than the available 96 rotating registers");
4254 goto err;
4255 }
4256 break;
4257 case DYNREG_PR:
4258 if (num_alloced > 48)
4259 {
4260 as_bad ("Used more than the available 48 rotating registers");
4261 goto err;
4262 }
4263 break;
4264
4265 default:
4266 break;
4267 }
4268
4269 name = obstack_alloc (&notes, len + 1);
4270 memcpy (name, start, len);
4271 name[len] = '\0';
4272
4273 if (!*drpp)
4274 {
4275 *drpp = obstack_alloc (&notes, sizeof (*dr));
4276 memset (*drpp, 0, sizeof (*dr));
4277 }
4278
4279 dr = *drpp;
4280 dr->name = name;
4281 dr->num_regs = num_regs;
4282 dr->base = base_reg;
4283 drpp = &dr->next;
4284 base_reg += num_regs;
4285
4286 if (hash_insert (md.dynreg_hash, name, dr))
4287 {
4288 as_bad ("Attempt to redefine register set `%s'", name);
4289 goto err;
4290 }
4291
4292 if (*input_line_pointer != ',')
4293 break;
4294 ++input_line_pointer; /* skip comma */
4295 SKIP_WHITESPACE ();
4296 }
4297 demand_empty_rest_of_line ();
4298 return;
4299
4300 err:
4301 ignore_rest_of_line ();
4302 }
4303
4304 static void
4305 dot_byteorder (byteorder)
4306 int byteorder;
4307 {
4308 segment_info_type *seginfo = seg_info (now_seg);
4309
4310 if (byteorder == -1)
4311 {
4312 if (seginfo->tc_segment_info_data.endian == 0)
4313 seginfo->tc_segment_info_data.endian
4314 = TARGET_BYTES_BIG_ENDIAN ? 1 : 2;
4315 byteorder = seginfo->tc_segment_info_data.endian == 1;
4316 }
4317 else
4318 seginfo->tc_segment_info_data.endian = byteorder ? 1 : 2;
4319
4320 if (target_big_endian != byteorder)
4321 {
4322 target_big_endian = byteorder;
4323 if (target_big_endian)
4324 {
4325 ia64_number_to_chars = number_to_chars_bigendian;
4326 ia64_float_to_chars = ia64_float_to_chars_bigendian;
4327 }
4328 else
4329 {
4330 ia64_number_to_chars = number_to_chars_littleendian;
4331 ia64_float_to_chars = ia64_float_to_chars_littleendian;
4332 }
4333 }
4334 }
4335
4336 static void
4337 dot_psr (dummy)
4338 int dummy ATTRIBUTE_UNUSED;
4339 {
4340 char *option;
4341 int ch;
4342
4343 while (1)
4344 {
4345 option = input_line_pointer;
4346 ch = get_symbol_end ();
4347 if (strcmp (option, "lsb") == 0)
4348 md.flags &= ~EF_IA_64_BE;
4349 else if (strcmp (option, "msb") == 0)
4350 md.flags |= EF_IA_64_BE;
4351 else if (strcmp (option, "abi32") == 0)
4352 md.flags &= ~EF_IA_64_ABI64;
4353 else if (strcmp (option, "abi64") == 0)
4354 md.flags |= EF_IA_64_ABI64;
4355 else
4356 as_bad ("Unknown psr option `%s'", option);
4357 *input_line_pointer = ch;
4358
4359 SKIP_WHITESPACE ();
4360 if (*input_line_pointer != ',')
4361 break;
4362
4363 ++input_line_pointer;
4364 SKIP_WHITESPACE ();
4365 }
4366 demand_empty_rest_of_line ();
4367 }
4368
4369 static void
4370 dot_ln (dummy)
4371 int dummy ATTRIBUTE_UNUSED;
4372 {
4373 new_logical_line (0, get_absolute_expression ());
4374 demand_empty_rest_of_line ();
4375 }
4376
4377 static char *
4378 parse_section_name ()
4379 {
4380 char *name;
4381 int len;
4382
4383 SKIP_WHITESPACE ();
4384 if (*input_line_pointer != '"')
4385 {
4386 as_bad ("Missing section name");
4387 ignore_rest_of_line ();
4388 return 0;
4389 }
4390 name = demand_copy_C_string (&len);
4391 if (!name)
4392 {
4393 ignore_rest_of_line ();
4394 return 0;
4395 }
4396 SKIP_WHITESPACE ();
4397 if (*input_line_pointer != ',')
4398 {
4399 as_bad ("Comma expected after section name");
4400 ignore_rest_of_line ();
4401 return 0;
4402 }
4403 ++input_line_pointer; /* skip comma */
4404 return name;
4405 }
4406
4407 static void
4408 dot_xdata (size)
4409 int size;
4410 {
4411 char *name = parse_section_name ();
4412 if (!name)
4413 return;
4414
4415 md.keep_pending_output = 1;
4416 set_section (name);
4417 cons (size);
4418 obj_elf_previous (0);
4419 md.keep_pending_output = 0;
4420 }
4421
4422 /* Why doesn't float_cons() call md_cons_align() the way cons() does? */
4423
4424 static void
4425 stmt_float_cons (kind)
4426 int kind;
4427 {
4428 size_t alignment;
4429
4430 switch (kind)
4431 {
4432 case 'd':
4433 alignment = 8;
4434 break;
4435
4436 case 'x':
4437 case 'X':
4438 alignment = 16;
4439 break;
4440
4441 case 'f':
4442 default:
4443 alignment = 4;
4444 break;
4445 }
4446 ia64_do_align (alignment);
4447 float_cons (kind);
4448 }
4449
4450 static void
4451 stmt_cons_ua (size)
4452 int size;
4453 {
4454 int saved_auto_align = md.auto_align;
4455
4456 md.auto_align = 0;
4457 cons (size);
4458 md.auto_align = saved_auto_align;
4459 }
4460
4461 static void
4462 dot_xfloat_cons (kind)
4463 int kind;
4464 {
4465 char *name = parse_section_name ();
4466 if (!name)
4467 return;
4468
4469 md.keep_pending_output = 1;
4470 set_section (name);
4471 stmt_float_cons (kind);
4472 obj_elf_previous (0);
4473 md.keep_pending_output = 0;
4474 }
4475
4476 static void
4477 dot_xstringer (zero)
4478 int zero;
4479 {
4480 char *name = parse_section_name ();
4481 if (!name)
4482 return;
4483
4484 md.keep_pending_output = 1;
4485 set_section (name);
4486 stringer (zero);
4487 obj_elf_previous (0);
4488 md.keep_pending_output = 0;
4489 }
4490
4491 static void
4492 dot_xdata_ua (size)
4493 int size;
4494 {
4495 int saved_auto_align = md.auto_align;
4496 char *name = parse_section_name ();
4497 if (!name)
4498 return;
4499
4500 md.keep_pending_output = 1;
4501 set_section (name);
4502 md.auto_align = 0;
4503 cons (size);
4504 md.auto_align = saved_auto_align;
4505 obj_elf_previous (0);
4506 md.keep_pending_output = 0;
4507 }
4508
4509 static void
4510 dot_xfloat_cons_ua (kind)
4511 int kind;
4512 {
4513 int saved_auto_align = md.auto_align;
4514 char *name = parse_section_name ();
4515 if (!name)
4516 return;
4517
4518 md.keep_pending_output = 1;
4519 set_section (name);
4520 md.auto_align = 0;
4521 stmt_float_cons (kind);
4522 md.auto_align = saved_auto_align;
4523 obj_elf_previous (0);
4524 md.keep_pending_output = 0;
4525 }
4526
4527 /* .reg.val <regname>,value */
4528
4529 static void
4530 dot_reg_val (dummy)
4531 int dummy ATTRIBUTE_UNUSED;
4532 {
4533 expressionS reg;
4534
4535 expression (&reg);
4536 if (reg.X_op != O_register)
4537 {
4538 as_bad (_("Register name expected"));
4539 ignore_rest_of_line ();
4540 }
4541 else if (*input_line_pointer++ != ',')
4542 {
4543 as_bad (_("Comma expected"));
4544 ignore_rest_of_line ();
4545 }
4546 else
4547 {
4548 valueT value = get_absolute_expression ();
4549 int regno = reg.X_add_number;
4550 if (regno < REG_GR || regno > REG_GR + 128)
4551 as_warn (_("Register value annotation ignored"));
4552 else
4553 {
4554 gr_values[regno - REG_GR].known = 1;
4555 gr_values[regno - REG_GR].value = value;
4556 gr_values[regno - REG_GR].path = md.path;
4557 }
4558 }
4559 demand_empty_rest_of_line ();
4560 }
4561
4562 /* select dv checking mode
4563 .auto
4564 .explicit
4565 .default
4566
4567 A stop is inserted when changing modes
4568 */
4569
4570 static void
4571 dot_dv_mode (type)
4572 int type;
4573 {
4574 if (md.manual_bundling)
4575 as_warn (_("Directive invalid within a bundle"));
4576
4577 if (type == 'E' || type == 'A')
4578 md.mode_explicitly_set = 0;
4579 else
4580 md.mode_explicitly_set = 1;
4581
4582 md.detect_dv = 1;
4583 switch (type)
4584 {
4585 case 'A':
4586 case 'a':
4587 if (md.explicit_mode)
4588 insn_group_break (1, 0, 0);
4589 md.explicit_mode = 0;
4590 break;
4591 case 'E':
4592 case 'e':
4593 if (!md.explicit_mode)
4594 insn_group_break (1, 0, 0);
4595 md.explicit_mode = 1;
4596 break;
4597 default:
4598 case 'd':
4599 if (md.explicit_mode != md.default_explicit_mode)
4600 insn_group_break (1, 0, 0);
4601 md.explicit_mode = md.default_explicit_mode;
4602 md.mode_explicitly_set = 0;
4603 break;
4604 }
4605 }
4606
4607 static void
4608 print_prmask (mask)
4609 valueT mask;
4610 {
4611 int regno;
4612 char *comma = "";
4613 for (regno = 0; regno < 64; regno++)
4614 {
4615 if (mask & ((valueT) 1 << regno))
4616 {
4617 fprintf (stderr, "%s p%d", comma, regno);
4618 comma = ",";
4619 }
4620 }
4621 }
4622
4623 /*
4624 .pred.rel.clear [p1 [,p2 [,...]]] (also .pred.rel "clear")
4625 .pred.rel.imply p1, p2 (also .pred.rel "imply")
4626 .pred.rel.mutex p1, p2 [,...] (also .pred.rel "mutex")
4627 .pred.safe_across_calls p1 [, p2 [,...]]
4628 */
4629
4630 static void
4631 dot_pred_rel (type)
4632 int type;
4633 {
4634 valueT mask = 0;
4635 int count = 0;
4636 int p1 = -1, p2 = -1;
4637
4638 if (type == 0)
4639 {
4640 if (*input_line_pointer != '"')
4641 {
4642 as_bad (_("Missing predicate relation type"));
4643 ignore_rest_of_line ();
4644 return;
4645 }
4646 else
4647 {
4648 int len;
4649 char *form = demand_copy_C_string (&len);
4650 if (strcmp (form, "mutex") == 0)
4651 type = 'm';
4652 else if (strcmp (form, "clear") == 0)
4653 type = 'c';
4654 else if (strcmp (form, "imply") == 0)
4655 type = 'i';
4656 else
4657 {
4658 as_bad (_("Unrecognized predicate relation type"));
4659 ignore_rest_of_line ();
4660 return;
4661 }
4662 }
4663 if (*input_line_pointer == ',')
4664 ++input_line_pointer;
4665 SKIP_WHITESPACE ();
4666 }
4667
4668 SKIP_WHITESPACE ();
4669 while (1)
4670 {
4671 valueT bit = 1;
4672 int regno;
4673
4674 if (TOUPPER (*input_line_pointer) != 'P'
4675 || (regno = atoi (++input_line_pointer)) < 0
4676 || regno > 63)
4677 {
4678 as_bad (_("Predicate register expected"));
4679 ignore_rest_of_line ();
4680 return;
4681 }
4682 while (ISDIGIT (*input_line_pointer))
4683 ++input_line_pointer;
4684 if (p1 == -1)
4685 p1 = regno;
4686 else if (p2 == -1)
4687 p2 = regno;
4688 bit <<= regno;
4689 if (mask & bit)
4690 as_warn (_("Duplicate predicate register ignored"));
4691 mask |= bit;
4692 count++;
4693 /* See if it's a range. */
4694 if (*input_line_pointer == '-')
4695 {
4696 valueT stop = 1;
4697 ++input_line_pointer;
4698
4699 if (TOUPPER (*input_line_pointer) != 'P'
4700 || (regno = atoi (++input_line_pointer)) < 0
4701 || regno > 63)
4702 {
4703 as_bad (_("Predicate register expected"));
4704 ignore_rest_of_line ();
4705 return;
4706 }
4707 while (ISDIGIT (*input_line_pointer))
4708 ++input_line_pointer;
4709 stop <<= regno;
4710 if (bit >= stop)
4711 {
4712 as_bad (_("Bad register range"));
4713 ignore_rest_of_line ();
4714 return;
4715 }
4716 while (bit < stop)
4717 {
4718 bit <<= 1;
4719 mask |= bit;
4720 count++;
4721 }
4722 SKIP_WHITESPACE ();
4723 }
4724 if (*input_line_pointer != ',')
4725 break;
4726 ++input_line_pointer;
4727 SKIP_WHITESPACE ();
4728 }
4729
4730 switch (type)
4731 {
4732 case 'c':
4733 if (count == 0)
4734 mask = ~(valueT) 0;
4735 clear_qp_mutex (mask);
4736 clear_qp_implies (mask, (valueT) 0);
4737 break;
4738 case 'i':
4739 if (count != 2 || p1 == -1 || p2 == -1)
4740 as_bad (_("Predicate source and target required"));
4741 else if (p1 == 0 || p2 == 0)
4742 as_bad (_("Use of p0 is not valid in this context"));
4743 else
4744 add_qp_imply (p1, p2);
4745 break;
4746 case 'm':
4747 if (count < 2)
4748 {
4749 as_bad (_("At least two PR arguments expected"));
4750 break;
4751 }
4752 else if (mask & 1)
4753 {
4754 as_bad (_("Use of p0 is not valid in this context"));
4755 break;
4756 }
4757 add_qp_mutex (mask);
4758 break;
4759 case 's':
4760 /* note that we don't override any existing relations */
4761 if (count == 0)
4762 {
4763 as_bad (_("At least one PR argument expected"));
4764 break;
4765 }
4766 if (md.debug_dv)
4767 {
4768 fprintf (stderr, "Safe across calls: ");
4769 print_prmask (mask);
4770 fprintf (stderr, "\n");
4771 }
4772 qp_safe_across_calls = mask;
4773 break;
4774 }
4775 demand_empty_rest_of_line ();
4776 }
4777
4778 /* .entry label [, label [, ...]]
4779 Hint to DV code that the given labels are to be considered entry points.
4780 Otherwise, only global labels are considered entry points. */
4781
4782 static void
4783 dot_entry (dummy)
4784 int dummy ATTRIBUTE_UNUSED;
4785 {
4786 const char *err;
4787 char *name;
4788 int c;
4789 symbolS *symbolP;
4790
4791 do
4792 {
4793 name = input_line_pointer;
4794 c = get_symbol_end ();
4795 symbolP = symbol_find_or_make (name);
4796
4797 err = hash_insert (md.entry_hash, S_GET_NAME (symbolP), (PTR) symbolP);
4798 if (err)
4799 as_fatal (_("Inserting \"%s\" into entry hint table failed: %s"),
4800 name, err);
4801
4802 *input_line_pointer = c;
4803 SKIP_WHITESPACE ();
4804 c = *input_line_pointer;
4805 if (c == ',')
4806 {
4807 input_line_pointer++;
4808 SKIP_WHITESPACE ();
4809 if (*input_line_pointer == '\n')
4810 c = '\n';
4811 }
4812 }
4813 while (c == ',');
4814
4815 demand_empty_rest_of_line ();
4816 }
4817
4818 /* .mem.offset offset, base
4819 "base" is used to distinguish between offsets from a different base. */
4820
4821 static void
4822 dot_mem_offset (dummy)
4823 int dummy ATTRIBUTE_UNUSED;
4824 {
4825 md.mem_offset.hint = 1;
4826 md.mem_offset.offset = get_absolute_expression ();
4827 if (*input_line_pointer != ',')
4828 {
4829 as_bad (_("Comma expected"));
4830 ignore_rest_of_line ();
4831 return;
4832 }
4833 ++input_line_pointer;
4834 md.mem_offset.base = get_absolute_expression ();
4835 demand_empty_rest_of_line ();
4836 }
4837
4838 /* ia64-specific pseudo-ops: */
4839 const pseudo_typeS md_pseudo_table[] =
4840 {
4841 { "radix", dot_radix, 0 },
4842 { "lcomm", s_lcomm_bytes, 1 },
4843 { "bss", dot_special_section, SPECIAL_SECTION_BSS },
4844 { "sbss", dot_special_section, SPECIAL_SECTION_SBSS },
4845 { "sdata", dot_special_section, SPECIAL_SECTION_SDATA },
4846 { "rodata", dot_special_section, SPECIAL_SECTION_RODATA },
4847 { "comment", dot_special_section, SPECIAL_SECTION_COMMENT },
4848 { "ia_64.unwind", dot_special_section, SPECIAL_SECTION_UNWIND },
4849 { "ia_64.unwind_info", dot_special_section, SPECIAL_SECTION_UNWIND_INFO },
4850 { "init_array", dot_special_section, SPECIAL_SECTION_INIT_ARRAY },
4851 { "fini_array", dot_special_section, SPECIAL_SECTION_FINI_ARRAY },
4852 { "proc", dot_proc, 0 },
4853 { "body", dot_body, 0 },
4854 { "prologue", dot_prologue, 0 },
4855 { "endp", dot_endp, 0 },
4856
4857 { "fframe", dot_fframe, 0 },
4858 { "vframe", dot_vframe, 0 },
4859 { "vframesp", dot_vframesp, 0 },
4860 { "vframepsp", dot_vframepsp, 0 },
4861 { "save", dot_save, 0 },
4862 { "restore", dot_restore, 0 },
4863 { "restorereg", dot_restorereg, 0 },
4864 { "restorereg.p", dot_restorereg_p, 0 },
4865 { "handlerdata", dot_handlerdata, 0 },
4866 { "unwentry", dot_unwentry, 0 },
4867 { "altrp", dot_altrp, 0 },
4868 { "savesp", dot_savemem, 0 },
4869 { "savepsp", dot_savemem, 1 },
4870 { "save.g", dot_saveg, 0 },
4871 { "save.f", dot_savef, 0 },
4872 { "save.b", dot_saveb, 0 },
4873 { "save.gf", dot_savegf, 0 },
4874 { "spill", dot_spill, 0 },
4875 { "spillreg", dot_spillreg, 0 },
4876 { "spillsp", dot_spillmem, 0 },
4877 { "spillpsp", dot_spillmem, 1 },
4878 { "spillreg.p", dot_spillreg_p, 0 },
4879 { "spillsp.p", dot_spillmem_p, 0 },
4880 { "spillpsp.p", dot_spillmem_p, 1 },
4881 { "label_state", dot_label_state, 0 },
4882 { "copy_state", dot_copy_state, 0 },
4883 { "unwabi", dot_unwabi, 0 },
4884 { "personality", dot_personality, 0 },
4885 #if 0
4886 { "estate", dot_estate, 0 },
4887 #endif
4888 { "mii", dot_template, 0x0 },
4889 { "mli", dot_template, 0x2 }, /* old format, for compatibility */
4890 { "mlx", dot_template, 0x2 },
4891 { "mmi", dot_template, 0x4 },
4892 { "mfi", dot_template, 0x6 },
4893 { "mmf", dot_template, 0x7 },
4894 { "mib", dot_template, 0x8 },
4895 { "mbb", dot_template, 0x9 },
4896 { "bbb", dot_template, 0xb },
4897 { "mmb", dot_template, 0xc },
4898 { "mfb", dot_template, 0xe },
4899 #if 0
4900 { "lb", dot_scope, 0 },
4901 { "le", dot_scope, 1 },
4902 #endif
4903 { "align", s_align_bytes, 0 },
4904 { "regstk", dot_regstk, 0 },
4905 { "rotr", dot_rot, DYNREG_GR },
4906 { "rotf", dot_rot, DYNREG_FR },
4907 { "rotp", dot_rot, DYNREG_PR },
4908 { "lsb", dot_byteorder, 0 },
4909 { "msb", dot_byteorder, 1 },
4910 { "psr", dot_psr, 0 },
4911 { "alias", dot_alias, 0 },
4912 { "secalias", dot_alias, 1 },
4913 { "ln", dot_ln, 0 }, /* source line info (for debugging) */
4914
4915 { "xdata1", dot_xdata, 1 },
4916 { "xdata2", dot_xdata, 2 },
4917 { "xdata4", dot_xdata, 4 },
4918 { "xdata8", dot_xdata, 8 },
4919 { "xreal4", dot_xfloat_cons, 'f' },
4920 { "xreal8", dot_xfloat_cons, 'd' },
4921 { "xreal10", dot_xfloat_cons, 'x' },
4922 { "xreal16", dot_xfloat_cons, 'X' },
4923 { "xstring", dot_xstringer, 0 },
4924 { "xstringz", dot_xstringer, 1 },
4925
4926 /* unaligned versions: */
4927 { "xdata2.ua", dot_xdata_ua, 2 },
4928 { "xdata4.ua", dot_xdata_ua, 4 },
4929 { "xdata8.ua", dot_xdata_ua, 8 },
4930 { "xreal4.ua", dot_xfloat_cons_ua, 'f' },
4931 { "xreal8.ua", dot_xfloat_cons_ua, 'd' },
4932 { "xreal10.ua", dot_xfloat_cons_ua, 'x' },
4933 { "xreal16.ua", dot_xfloat_cons_ua, 'X' },
4934
4935 /* annotations/DV checking support */
4936 { "entry", dot_entry, 0 },
4937 { "mem.offset", dot_mem_offset, 0 },
4938 { "pred.rel", dot_pred_rel, 0 },
4939 { "pred.rel.clear", dot_pred_rel, 'c' },
4940 { "pred.rel.imply", dot_pred_rel, 'i' },
4941 { "pred.rel.mutex", dot_pred_rel, 'm' },
4942 { "pred.safe_across_calls", dot_pred_rel, 's' },
4943 { "reg.val", dot_reg_val, 0 },
4944 { "auto", dot_dv_mode, 'a' },
4945 { "explicit", dot_dv_mode, 'e' },
4946 { "default", dot_dv_mode, 'd' },
4947
4948 /* ??? These are needed to make gas/testsuite/gas/elf/ehopt.s work.
4949 IA-64 aligns data allocation pseudo-ops by default, so we have to
4950 tell it that these ones are supposed to be unaligned. Long term,
4951 should rewrite so that only IA-64 specific data allocation pseudo-ops
4952 are aligned by default. */
4953 {"2byte", stmt_cons_ua, 2},
4954 {"4byte", stmt_cons_ua, 4},
4955 {"8byte", stmt_cons_ua, 8},
4956
4957 { NULL, 0, 0 }
4958 };
4959
4960 static const struct pseudo_opcode
4961 {
4962 const char *name;
4963 void (*handler) (int);
4964 int arg;
4965 }
4966 pseudo_opcode[] =
4967 {
4968 /* these are more like pseudo-ops, but don't start with a dot */
4969 { "data1", cons, 1 },
4970 { "data2", cons, 2 },
4971 { "data4", cons, 4 },
4972 { "data8", cons, 8 },
4973 { "data16", cons, 16 },
4974 { "real4", stmt_float_cons, 'f' },
4975 { "real8", stmt_float_cons, 'd' },
4976 { "real10", stmt_float_cons, 'x' },
4977 { "real16", stmt_float_cons, 'X' },
4978 { "string", stringer, 0 },
4979 { "stringz", stringer, 1 },
4980
4981 /* unaligned versions: */
4982 { "data2.ua", stmt_cons_ua, 2 },
4983 { "data4.ua", stmt_cons_ua, 4 },
4984 { "data8.ua", stmt_cons_ua, 8 },
4985 { "data16.ua", stmt_cons_ua, 16 },
4986 { "real4.ua", float_cons, 'f' },
4987 { "real8.ua", float_cons, 'd' },
4988 { "real10.ua", float_cons, 'x' },
4989 { "real16.ua", float_cons, 'X' },
4990 };
4991
4992 /* Declare a register by creating a symbol for it and entering it in
4993 the symbol table. */
4994
4995 static symbolS *
4996 declare_register (name, regnum)
4997 const char *name;
4998 int regnum;
4999 {
5000 const char *err;
5001 symbolS *sym;
5002
5003 sym = symbol_new (name, reg_section, regnum, &zero_address_frag);
5004
5005 err = hash_insert (md.reg_hash, S_GET_NAME (sym), (PTR) sym);
5006 if (err)
5007 as_fatal ("Inserting \"%s\" into register table failed: %s",
5008 name, err);
5009
5010 return sym;
5011 }
5012
5013 static void
5014 declare_register_set (prefix, num_regs, base_regnum)
5015 const char *prefix;
5016 int num_regs;
5017 int base_regnum;
5018 {
5019 char name[8];
5020 int i;
5021
5022 for (i = 0; i < num_regs; ++i)
5023 {
5024 sprintf (name, "%s%u", prefix, i);
5025 declare_register (name, base_regnum + i);
5026 }
5027 }
5028
5029 static unsigned int
5030 operand_width (opnd)
5031 enum ia64_opnd opnd;
5032 {
5033 const struct ia64_operand *odesc = &elf64_ia64_operands[opnd];
5034 unsigned int bits = 0;
5035 int i;
5036
5037 bits = 0;
5038 for (i = 0; i < NELEMS (odesc->field) && odesc->field[i].bits; ++i)
5039 bits += odesc->field[i].bits;
5040
5041 return bits;
5042 }
5043
5044 static enum operand_match_result
5045 operand_match (idesc, index, e)
5046 const struct ia64_opcode *idesc;
5047 int index;
5048 expressionS *e;
5049 {
5050 enum ia64_opnd opnd = idesc->operands[index];
5051 int bits, relocatable = 0;
5052 struct insn_fix *fix;
5053 bfd_signed_vma val;
5054
5055 switch (opnd)
5056 {
5057 /* constants: */
5058
5059 case IA64_OPND_AR_CCV:
5060 if (e->X_op == O_register && e->X_add_number == REG_AR + 32)
5061 return OPERAND_MATCH;
5062 break;
5063
5064 case IA64_OPND_AR_CSD:
5065 if (e->X_op == O_register && e->X_add_number == REG_AR + 25)
5066 return OPERAND_MATCH;
5067 break;
5068
5069 case IA64_OPND_AR_PFS:
5070 if (e->X_op == O_register && e->X_add_number == REG_AR + 64)
5071 return OPERAND_MATCH;
5072 break;
5073
5074 case IA64_OPND_GR0:
5075 if (e->X_op == O_register && e->X_add_number == REG_GR + 0)
5076 return OPERAND_MATCH;
5077 break;
5078
5079 case IA64_OPND_IP:
5080 if (e->X_op == O_register && e->X_add_number == REG_IP)
5081 return OPERAND_MATCH;
5082 break;
5083
5084 case IA64_OPND_PR:
5085 if (e->X_op == O_register && e->X_add_number == REG_PR)
5086 return OPERAND_MATCH;
5087 break;
5088
5089 case IA64_OPND_PR_ROT:
5090 if (e->X_op == O_register && e->X_add_number == REG_PR_ROT)
5091 return OPERAND_MATCH;
5092 break;
5093
5094 case IA64_OPND_PSR:
5095 if (e->X_op == O_register && e->X_add_number == REG_PSR)
5096 return OPERAND_MATCH;
5097 break;
5098
5099 case IA64_OPND_PSR_L:
5100 if (e->X_op == O_register && e->X_add_number == REG_PSR_L)
5101 return OPERAND_MATCH;
5102 break;
5103
5104 case IA64_OPND_PSR_UM:
5105 if (e->X_op == O_register && e->X_add_number == REG_PSR_UM)
5106 return OPERAND_MATCH;
5107 break;
5108
5109 case IA64_OPND_C1:
5110 if (e->X_op == O_constant)
5111 {
5112 if (e->X_add_number == 1)
5113 return OPERAND_MATCH;
5114 else
5115 return OPERAND_OUT_OF_RANGE;
5116 }
5117 break;
5118
5119 case IA64_OPND_C8:
5120 if (e->X_op == O_constant)
5121 {
5122 if (e->X_add_number == 8)
5123 return OPERAND_MATCH;
5124 else
5125 return OPERAND_OUT_OF_RANGE;
5126 }
5127 break;
5128
5129 case IA64_OPND_C16:
5130 if (e->X_op == O_constant)
5131 {
5132 if (e->X_add_number == 16)
5133 return OPERAND_MATCH;
5134 else
5135 return OPERAND_OUT_OF_RANGE;
5136 }
5137 break;
5138
5139 /* register operands: */
5140
5141 case IA64_OPND_AR3:
5142 if (e->X_op == O_register && e->X_add_number >= REG_AR
5143 && e->X_add_number < REG_AR + 128)
5144 return OPERAND_MATCH;
5145 break;
5146
5147 case IA64_OPND_B1:
5148 case IA64_OPND_B2:
5149 if (e->X_op == O_register && e->X_add_number >= REG_BR
5150 && e->X_add_number < REG_BR + 8)
5151 return OPERAND_MATCH;
5152 break;
5153
5154 case IA64_OPND_CR3:
5155 if (e->X_op == O_register && e->X_add_number >= REG_CR
5156 && e->X_add_number < REG_CR + 128)
5157 return OPERAND_MATCH;
5158 break;
5159
5160 case IA64_OPND_F1:
5161 case IA64_OPND_F2:
5162 case IA64_OPND_F3:
5163 case IA64_OPND_F4:
5164 if (e->X_op == O_register && e->X_add_number >= REG_FR
5165 && e->X_add_number < REG_FR + 128)
5166 return OPERAND_MATCH;
5167 break;
5168
5169 case IA64_OPND_P1:
5170 case IA64_OPND_P2:
5171 if (e->X_op == O_register && e->X_add_number >= REG_P
5172 && e->X_add_number < REG_P + 64)
5173 return OPERAND_MATCH;
5174 break;
5175
5176 case IA64_OPND_R1:
5177 case IA64_OPND_R2:
5178 case IA64_OPND_R3:
5179 if (e->X_op == O_register && e->X_add_number >= REG_GR
5180 && e->X_add_number < REG_GR + 128)
5181 return OPERAND_MATCH;
5182 break;
5183
5184 case IA64_OPND_R3_2:
5185 if (e->X_op == O_register && e->X_add_number >= REG_GR)
5186 {
5187 if (e->X_add_number < REG_GR + 4)
5188 return OPERAND_MATCH;
5189 else if (e->X_add_number < REG_GR + 128)
5190 return OPERAND_OUT_OF_RANGE;
5191 }
5192 break;
5193
5194 /* indirect operands: */
5195 case IA64_OPND_CPUID_R3:
5196 case IA64_OPND_DBR_R3:
5197 case IA64_OPND_DTR_R3:
5198 case IA64_OPND_ITR_R3:
5199 case IA64_OPND_IBR_R3:
5200 case IA64_OPND_MSR_R3:
5201 case IA64_OPND_PKR_R3:
5202 case IA64_OPND_PMC_R3:
5203 case IA64_OPND_PMD_R3:
5204 case IA64_OPND_RR_R3:
5205 if (e->X_op == O_index && e->X_op_symbol
5206 && (S_GET_VALUE (e->X_op_symbol) - IND_CPUID
5207 == opnd - IA64_OPND_CPUID_R3))
5208 return OPERAND_MATCH;
5209 break;
5210
5211 case IA64_OPND_MR3:
5212 if (e->X_op == O_index && !e->X_op_symbol)
5213 return OPERAND_MATCH;
5214 break;
5215
5216 /* immediate operands: */
5217 case IA64_OPND_CNT2a:
5218 case IA64_OPND_LEN4:
5219 case IA64_OPND_LEN6:
5220 bits = operand_width (idesc->operands[index]);
5221 if (e->X_op == O_constant)
5222 {
5223 if ((bfd_vma) (e->X_add_number - 1) < ((bfd_vma) 1 << bits))
5224 return OPERAND_MATCH;
5225 else
5226 return OPERAND_OUT_OF_RANGE;
5227 }
5228 break;
5229
5230 case IA64_OPND_CNT2b:
5231 if (e->X_op == O_constant)
5232 {
5233 if ((bfd_vma) (e->X_add_number - 1) < 3)
5234 return OPERAND_MATCH;
5235 else
5236 return OPERAND_OUT_OF_RANGE;
5237 }
5238 break;
5239
5240 case IA64_OPND_CNT2c:
5241 val = e->X_add_number;
5242 if (e->X_op == O_constant)
5243 {
5244 if ((val == 0 || val == 7 || val == 15 || val == 16))
5245 return OPERAND_MATCH;
5246 else
5247 return OPERAND_OUT_OF_RANGE;
5248 }
5249 break;
5250
5251 case IA64_OPND_SOR:
5252 /* SOR must be an integer multiple of 8 */
5253 if (e->X_op == O_constant && e->X_add_number & 0x7)
5254 return OPERAND_OUT_OF_RANGE;
5255 case IA64_OPND_SOF:
5256 case IA64_OPND_SOL:
5257 if (e->X_op == O_constant)
5258 {
5259 if ((bfd_vma) e->X_add_number <= 96)
5260 return OPERAND_MATCH;
5261 else
5262 return OPERAND_OUT_OF_RANGE;
5263 }
5264 break;
5265
5266 case IA64_OPND_IMMU62:
5267 if (e->X_op == O_constant)
5268 {
5269 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << 62))
5270 return OPERAND_MATCH;
5271 else
5272 return OPERAND_OUT_OF_RANGE;
5273 }
5274 else
5275 {
5276 /* FIXME -- need 62-bit relocation type */
5277 as_bad (_("62-bit relocation not yet implemented"));
5278 }
5279 break;
5280
5281 case IA64_OPND_IMMU64:
5282 if (e->X_op == O_symbol || e->X_op == O_pseudo_fixup
5283 || e->X_op == O_subtract)
5284 {
5285 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5286 fix->code = BFD_RELOC_IA64_IMM64;
5287 if (e->X_op != O_subtract)
5288 {
5289 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5290 if (e->X_op == O_pseudo_fixup)
5291 e->X_op = O_symbol;
5292 }
5293
5294 fix->opnd = idesc->operands[index];
5295 fix->expr = *e;
5296 fix->is_pcrel = 0;
5297 ++CURR_SLOT.num_fixups;
5298 return OPERAND_MATCH;
5299 }
5300 else if (e->X_op == O_constant)
5301 return OPERAND_MATCH;
5302 break;
5303
5304 case IA64_OPND_CCNT5:
5305 case IA64_OPND_CNT5:
5306 case IA64_OPND_CNT6:
5307 case IA64_OPND_CPOS6a:
5308 case IA64_OPND_CPOS6b:
5309 case IA64_OPND_CPOS6c:
5310 case IA64_OPND_IMMU2:
5311 case IA64_OPND_IMMU7a:
5312 case IA64_OPND_IMMU7b:
5313 case IA64_OPND_IMMU21:
5314 case IA64_OPND_IMMU24:
5315 case IA64_OPND_MBTYPE4:
5316 case IA64_OPND_MHTYPE8:
5317 case IA64_OPND_POS6:
5318 bits = operand_width (idesc->operands[index]);
5319 if (e->X_op == O_constant)
5320 {
5321 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5322 return OPERAND_MATCH;
5323 else
5324 return OPERAND_OUT_OF_RANGE;
5325 }
5326 break;
5327
5328 case IA64_OPND_IMMU9:
5329 bits = operand_width (idesc->operands[index]);
5330 if (e->X_op == O_constant)
5331 {
5332 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5333 {
5334 int lobits = e->X_add_number & 0x3;
5335 if (((bfd_vma) e->X_add_number & 0x3C) != 0 && lobits == 0)
5336 e->X_add_number |= (bfd_vma) 0x3;
5337 return OPERAND_MATCH;
5338 }
5339 else
5340 return OPERAND_OUT_OF_RANGE;
5341 }
5342 break;
5343
5344 case IA64_OPND_IMM44:
5345 /* least 16 bits must be zero */
5346 if ((e->X_add_number & 0xffff) != 0)
5347 /* XXX technically, this is wrong: we should not be issuing warning
5348 messages until we're sure this instruction pattern is going to
5349 be used! */
5350 as_warn (_("lower 16 bits of mask ignored"));
5351
5352 if (e->X_op == O_constant)
5353 {
5354 if (((e->X_add_number >= 0
5355 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 44))
5356 || (e->X_add_number < 0
5357 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 44))))
5358 {
5359 /* sign-extend */
5360 if (e->X_add_number >= 0
5361 && (e->X_add_number & ((bfd_vma) 1 << 43)) != 0)
5362 {
5363 e->X_add_number |= ~(((bfd_vma) 1 << 44) - 1);
5364 }
5365 return OPERAND_MATCH;
5366 }
5367 else
5368 return OPERAND_OUT_OF_RANGE;
5369 }
5370 break;
5371
5372 case IA64_OPND_IMM17:
5373 /* bit 0 is a don't care (pr0 is hardwired to 1) */
5374 if (e->X_op == O_constant)
5375 {
5376 if (((e->X_add_number >= 0
5377 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 17))
5378 || (e->X_add_number < 0
5379 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 17))))
5380 {
5381 /* sign-extend */
5382 if (e->X_add_number >= 0
5383 && (e->X_add_number & ((bfd_vma) 1 << 16)) != 0)
5384 {
5385 e->X_add_number |= ~(((bfd_vma) 1 << 17) - 1);
5386 }
5387 return OPERAND_MATCH;
5388 }
5389 else
5390 return OPERAND_OUT_OF_RANGE;
5391 }
5392 break;
5393
5394 case IA64_OPND_IMM14:
5395 case IA64_OPND_IMM22:
5396 relocatable = 1;
5397 case IA64_OPND_IMM1:
5398 case IA64_OPND_IMM8:
5399 case IA64_OPND_IMM8U4:
5400 case IA64_OPND_IMM8M1:
5401 case IA64_OPND_IMM8M1U4:
5402 case IA64_OPND_IMM8M1U8:
5403 case IA64_OPND_IMM9a:
5404 case IA64_OPND_IMM9b:
5405 bits = operand_width (idesc->operands[index]);
5406 if (relocatable && (e->X_op == O_symbol
5407 || e->X_op == O_subtract
5408 || e->X_op == O_pseudo_fixup))
5409 {
5410 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5411
5412 if (idesc->operands[index] == IA64_OPND_IMM14)
5413 fix->code = BFD_RELOC_IA64_IMM14;
5414 else
5415 fix->code = BFD_RELOC_IA64_IMM22;
5416
5417 if (e->X_op != O_subtract)
5418 {
5419 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5420 if (e->X_op == O_pseudo_fixup)
5421 e->X_op = O_symbol;
5422 }
5423
5424 fix->opnd = idesc->operands[index];
5425 fix->expr = *e;
5426 fix->is_pcrel = 0;
5427 ++CURR_SLOT.num_fixups;
5428 return OPERAND_MATCH;
5429 }
5430 else if (e->X_op != O_constant
5431 && ! (e->X_op == O_big && opnd == IA64_OPND_IMM8M1U8))
5432 return OPERAND_MISMATCH;
5433
5434 if (opnd == IA64_OPND_IMM8M1U4)
5435 {
5436 /* Zero is not valid for unsigned compares that take an adjusted
5437 constant immediate range. */
5438 if (e->X_add_number == 0)
5439 return OPERAND_OUT_OF_RANGE;
5440
5441 /* Sign-extend 32-bit unsigned numbers, so that the following range
5442 checks will work. */
5443 val = e->X_add_number;
5444 if (((val & (~(bfd_vma) 0 << 32)) == 0)
5445 && ((val & ((bfd_vma) 1 << 31)) != 0))
5446 val = ((val << 32) >> 32);
5447
5448 /* Check for 0x100000000. This is valid because
5449 0x100000000-1 is the same as ((uint32_t) -1). */
5450 if (val == ((bfd_signed_vma) 1 << 32))
5451 return OPERAND_MATCH;
5452
5453 val = val - 1;
5454 }
5455 else if (opnd == IA64_OPND_IMM8M1U8)
5456 {
5457 /* Zero is not valid for unsigned compares that take an adjusted
5458 constant immediate range. */
5459 if (e->X_add_number == 0)
5460 return OPERAND_OUT_OF_RANGE;
5461
5462 /* Check for 0x10000000000000000. */
5463 if (e->X_op == O_big)
5464 {
5465 if (generic_bignum[0] == 0
5466 && generic_bignum[1] == 0
5467 && generic_bignum[2] == 0
5468 && generic_bignum[3] == 0
5469 && generic_bignum[4] == 1)
5470 return OPERAND_MATCH;
5471 else
5472 return OPERAND_OUT_OF_RANGE;
5473 }
5474 else
5475 val = e->X_add_number - 1;
5476 }
5477 else if (opnd == IA64_OPND_IMM8M1)
5478 val = e->X_add_number - 1;
5479 else if (opnd == IA64_OPND_IMM8U4)
5480 {
5481 /* Sign-extend 32-bit unsigned numbers, so that the following range
5482 checks will work. */
5483 val = e->X_add_number;
5484 if (((val & (~(bfd_vma) 0 << 32)) == 0)
5485 && ((val & ((bfd_vma) 1 << 31)) != 0))
5486 val = ((val << 32) >> 32);
5487 }
5488 else
5489 val = e->X_add_number;
5490
5491 if ((val >= 0 && (bfd_vma) val < ((bfd_vma) 1 << (bits - 1)))
5492 || (val < 0 && (bfd_vma) -val <= ((bfd_vma) 1 << (bits - 1))))
5493 return OPERAND_MATCH;
5494 else
5495 return OPERAND_OUT_OF_RANGE;
5496
5497 case IA64_OPND_INC3:
5498 /* +/- 1, 4, 8, 16 */
5499 val = e->X_add_number;
5500 if (val < 0)
5501 val = -val;
5502 if (e->X_op == O_constant)
5503 {
5504 if ((val == 1 || val == 4 || val == 8 || val == 16))
5505 return OPERAND_MATCH;
5506 else
5507 return OPERAND_OUT_OF_RANGE;
5508 }
5509 break;
5510
5511 case IA64_OPND_TGT25:
5512 case IA64_OPND_TGT25b:
5513 case IA64_OPND_TGT25c:
5514 case IA64_OPND_TGT64:
5515 if (e->X_op == O_symbol)
5516 {
5517 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5518 if (opnd == IA64_OPND_TGT25)
5519 fix->code = BFD_RELOC_IA64_PCREL21F;
5520 else if (opnd == IA64_OPND_TGT25b)
5521 fix->code = BFD_RELOC_IA64_PCREL21M;
5522 else if (opnd == IA64_OPND_TGT25c)
5523 fix->code = BFD_RELOC_IA64_PCREL21B;
5524 else if (opnd == IA64_OPND_TGT64)
5525 fix->code = BFD_RELOC_IA64_PCREL60B;
5526 else
5527 abort ();
5528
5529 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5530 fix->opnd = idesc->operands[index];
5531 fix->expr = *e;
5532 fix->is_pcrel = 1;
5533 ++CURR_SLOT.num_fixups;
5534 return OPERAND_MATCH;
5535 }
5536 case IA64_OPND_TAG13:
5537 case IA64_OPND_TAG13b:
5538 switch (e->X_op)
5539 {
5540 case O_constant:
5541 return OPERAND_MATCH;
5542
5543 case O_symbol:
5544 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5545 /* There are no external relocs for TAG13/TAG13b fields, so we
5546 create a dummy reloc. This will not live past md_apply_fix3. */
5547 fix->code = BFD_RELOC_UNUSED;
5548 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5549 fix->opnd = idesc->operands[index];
5550 fix->expr = *e;
5551 fix->is_pcrel = 1;
5552 ++CURR_SLOT.num_fixups;
5553 return OPERAND_MATCH;
5554
5555 default:
5556 break;
5557 }
5558 break;
5559
5560 case IA64_OPND_LDXMOV:
5561 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5562 fix->code = BFD_RELOC_IA64_LDXMOV;
5563 fix->opnd = idesc->operands[index];
5564 fix->expr = *e;
5565 fix->is_pcrel = 0;
5566 ++CURR_SLOT.num_fixups;
5567 return OPERAND_MATCH;
5568
5569 default:
5570 break;
5571 }
5572 return OPERAND_MISMATCH;
5573 }
5574
5575 static int
5576 parse_operand (e)
5577 expressionS *e;
5578 {
5579 int sep = '\0';
5580
5581 memset (e, 0, sizeof (*e));
5582 e->X_op = O_absent;
5583 SKIP_WHITESPACE ();
5584 if (*input_line_pointer != '}')
5585 expression (e);
5586 sep = *input_line_pointer++;
5587
5588 if (sep == '}')
5589 {
5590 if (!md.manual_bundling)
5591 as_warn ("Found '}' when manual bundling is off");
5592 else
5593 CURR_SLOT.manual_bundling_off = 1;
5594 md.manual_bundling = 0;
5595 sep = '\0';
5596 }
5597 return sep;
5598 }
5599
5600 /* Returns the next entry in the opcode table that matches the one in
5601 IDESC, and frees the entry in IDESC. If no matching entry is
5602 found, NULL is returned instead. */
5603
5604 static struct ia64_opcode *
5605 get_next_opcode (struct ia64_opcode *idesc)
5606 {
5607 struct ia64_opcode *next = ia64_find_next_opcode (idesc);
5608 ia64_free_opcode (idesc);
5609 return next;
5610 }
5611
5612 /* Parse the operands for the opcode and find the opcode variant that
5613 matches the specified operands, or NULL if no match is possible. */
5614
5615 static struct ia64_opcode *
5616 parse_operands (idesc)
5617 struct ia64_opcode *idesc;
5618 {
5619 int i = 0, highest_unmatched_operand, num_operands = 0, num_outputs = 0;
5620 int error_pos, out_of_range_pos, curr_out_of_range_pos, sep = 0;
5621 enum ia64_opnd expected_operand = IA64_OPND_NIL;
5622 enum operand_match_result result;
5623 char mnemonic[129];
5624 char *first_arg = 0, *end, *saved_input_pointer;
5625 unsigned int sof;
5626
5627 assert (strlen (idesc->name) <= 128);
5628
5629 strcpy (mnemonic, idesc->name);
5630 if (idesc->operands[2] == IA64_OPND_SOF)
5631 {
5632 /* To make the common idiom "alloc loc?=ar.pfs,0,1,0,0" work, we
5633 can't parse the first operand until we have parsed the
5634 remaining operands of the "alloc" instruction. */
5635 SKIP_WHITESPACE ();
5636 first_arg = input_line_pointer;
5637 end = strchr (input_line_pointer, '=');
5638 if (!end)
5639 {
5640 as_bad ("Expected separator `='");
5641 return 0;
5642 }
5643 input_line_pointer = end + 1;
5644 ++i;
5645 ++num_outputs;
5646 }
5647
5648 for (; i < NELEMS (CURR_SLOT.opnd); ++i)
5649 {
5650 sep = parse_operand (CURR_SLOT.opnd + i);
5651 if (CURR_SLOT.opnd[i].X_op == O_absent)
5652 break;
5653
5654 ++num_operands;
5655
5656 if (sep != '=' && sep != ',')
5657 break;
5658
5659 if (sep == '=')
5660 {
5661 if (num_outputs > 0)
5662 as_bad ("Duplicate equal sign (=) in instruction");
5663 else
5664 num_outputs = i + 1;
5665 }
5666 }
5667 if (sep != '\0')
5668 {
5669 as_bad ("Illegal operand separator `%c'", sep);
5670 return 0;
5671 }
5672
5673 if (idesc->operands[2] == IA64_OPND_SOF)
5674 {
5675 /* map alloc r1=ar.pfs,i,l,o,r to alloc r1=ar.pfs,(i+l+o),(i+l),r */
5676 know (strcmp (idesc->name, "alloc") == 0);
5677 if (num_operands == 5 /* first_arg not included in this count! */
5678 && CURR_SLOT.opnd[2].X_op == O_constant
5679 && CURR_SLOT.opnd[3].X_op == O_constant
5680 && CURR_SLOT.opnd[4].X_op == O_constant
5681 && CURR_SLOT.opnd[5].X_op == O_constant)
5682 {
5683 sof = set_regstack (CURR_SLOT.opnd[2].X_add_number,
5684 CURR_SLOT.opnd[3].X_add_number,
5685 CURR_SLOT.opnd[4].X_add_number,
5686 CURR_SLOT.opnd[5].X_add_number);
5687
5688 /* now we can parse the first arg: */
5689 saved_input_pointer = input_line_pointer;
5690 input_line_pointer = first_arg;
5691 sep = parse_operand (CURR_SLOT.opnd + 0);
5692 if (sep != '=')
5693 --num_outputs; /* force error */
5694 input_line_pointer = saved_input_pointer;
5695
5696 CURR_SLOT.opnd[2].X_add_number = sof;
5697 CURR_SLOT.opnd[3].X_add_number
5698 = sof - CURR_SLOT.opnd[4].X_add_number;
5699 CURR_SLOT.opnd[4] = CURR_SLOT.opnd[5];
5700 }
5701 }
5702
5703 highest_unmatched_operand = 0;
5704 curr_out_of_range_pos = -1;
5705 error_pos = 0;
5706 expected_operand = idesc->operands[0];
5707 for (; idesc; idesc = get_next_opcode (idesc))
5708 {
5709 if (num_outputs != idesc->num_outputs)
5710 continue; /* mismatch in # of outputs */
5711
5712 CURR_SLOT.num_fixups = 0;
5713
5714 /* Try to match all operands. If we see an out-of-range operand,
5715 then continue trying to match the rest of the operands, since if
5716 the rest match, then this idesc will give the best error message. */
5717
5718 out_of_range_pos = -1;
5719 for (i = 0; i < num_operands && idesc->operands[i]; ++i)
5720 {
5721 result = operand_match (idesc, i, CURR_SLOT.opnd + i);
5722 if (result != OPERAND_MATCH)
5723 {
5724 if (result != OPERAND_OUT_OF_RANGE)
5725 break;
5726 if (out_of_range_pos < 0)
5727 /* remember position of the first out-of-range operand: */
5728 out_of_range_pos = i;
5729 }
5730 }
5731
5732 /* If we did not match all operands, or if at least one operand was
5733 out-of-range, then this idesc does not match. Keep track of which
5734 idesc matched the most operands before failing. If we have two
5735 idescs that failed at the same position, and one had an out-of-range
5736 operand, then prefer the out-of-range operand. Thus if we have
5737 "add r0=0x1000000,r1" we get an error saying the constant is out
5738 of range instead of an error saying that the constant should have been
5739 a register. */
5740
5741 if (i != num_operands || out_of_range_pos >= 0)
5742 {
5743 if (i > highest_unmatched_operand
5744 || (i == highest_unmatched_operand
5745 && out_of_range_pos > curr_out_of_range_pos))
5746 {
5747 highest_unmatched_operand = i;
5748 if (out_of_range_pos >= 0)
5749 {
5750 expected_operand = idesc->operands[out_of_range_pos];
5751 error_pos = out_of_range_pos;
5752 }
5753 else
5754 {
5755 expected_operand = idesc->operands[i];
5756 error_pos = i;
5757 }
5758 curr_out_of_range_pos = out_of_range_pos;
5759 }
5760 continue;
5761 }
5762
5763 if (num_operands < NELEMS (idesc->operands)
5764 && idesc->operands[num_operands])
5765 continue; /* mismatch in number of arguments */
5766
5767 break;
5768 }
5769 if (!idesc)
5770 {
5771 if (expected_operand)
5772 as_bad ("Operand %u of `%s' should be %s",
5773 error_pos + 1, mnemonic,
5774 elf64_ia64_operands[expected_operand].desc);
5775 else
5776 as_bad ("Operand mismatch");
5777 return 0;
5778 }
5779 return idesc;
5780 }
5781
5782 /* Keep track of state necessary to determine whether a NOP is necessary
5783 to avoid an erratum in A and B step Itanium chips, and return 1 if we
5784 detect a case where additional NOPs may be necessary. */
5785 static int
5786 errata_nop_necessary_p (slot, insn_unit)
5787 struct slot *slot;
5788 enum ia64_unit insn_unit;
5789 {
5790 int i;
5791 struct group *this_group = md.last_groups + md.group_idx;
5792 struct group *prev_group = md.last_groups + (md.group_idx + 2) % 3;
5793 struct ia64_opcode *idesc = slot->idesc;
5794
5795 /* Test whether this could be the first insn in a problematic sequence. */
5796 if (insn_unit == IA64_UNIT_F)
5797 {
5798 for (i = 0; i < idesc->num_outputs; i++)
5799 if (idesc->operands[i] == IA64_OPND_P1
5800 || idesc->operands[i] == IA64_OPND_P2)
5801 {
5802 int regno = slot->opnd[i].X_add_number - REG_P;
5803 /* Ignore invalid operands; they generate errors elsewhere. */
5804 if (regno >= 64)
5805 return 0;
5806 this_group->p_reg_set[regno] = 1;
5807 }
5808 }
5809
5810 /* Test whether this could be the second insn in a problematic sequence. */
5811 if (insn_unit == IA64_UNIT_M && slot->qp_regno > 0
5812 && prev_group->p_reg_set[slot->qp_regno])
5813 {
5814 for (i = 0; i < idesc->num_outputs; i++)
5815 if (idesc->operands[i] == IA64_OPND_R1
5816 || idesc->operands[i] == IA64_OPND_R2
5817 || idesc->operands[i] == IA64_OPND_R3)
5818 {
5819 int regno = slot->opnd[i].X_add_number - REG_GR;
5820 /* Ignore invalid operands; they generate errors elsewhere. */
5821 if (regno >= 128)
5822 return 0;
5823 if (strncmp (idesc->name, "add", 3) != 0
5824 && strncmp (idesc->name, "sub", 3) != 0
5825 && strncmp (idesc->name, "shladd", 6) != 0
5826 && (idesc->flags & IA64_OPCODE_POSTINC) == 0)
5827 this_group->g_reg_set_conditionally[regno] = 1;
5828 }
5829 }
5830
5831 /* Test whether this could be the third insn in a problematic sequence. */
5832 for (i = 0; i < NELEMS (idesc->operands) && idesc->operands[i]; i++)
5833 {
5834 if (/* For fc, ptc, ptr, tak, thash, tpa, ttag, probe, ptr, ptc. */
5835 idesc->operands[i] == IA64_OPND_R3
5836 /* For mov indirect. */
5837 || idesc->operands[i] == IA64_OPND_RR_R3
5838 || idesc->operands[i] == IA64_OPND_DBR_R3
5839 || idesc->operands[i] == IA64_OPND_IBR_R3
5840 || idesc->operands[i] == IA64_OPND_PKR_R3
5841 || idesc->operands[i] == IA64_OPND_PMC_R3
5842 || idesc->operands[i] == IA64_OPND_PMD_R3
5843 || idesc->operands[i] == IA64_OPND_MSR_R3
5844 || idesc->operands[i] == IA64_OPND_CPUID_R3
5845 /* For itr. */
5846 || idesc->operands[i] == IA64_OPND_ITR_R3
5847 || idesc->operands[i] == IA64_OPND_DTR_R3
5848 /* Normal memory addresses (load, store, xchg, cmpxchg, etc.). */
5849 || idesc->operands[i] == IA64_OPND_MR3)
5850 {
5851 int regno = slot->opnd[i].X_add_number - REG_GR;
5852 /* Ignore invalid operands; they generate errors elsewhere. */
5853 if (regno >= 128)
5854 return 0;
5855 if (idesc->operands[i] == IA64_OPND_R3)
5856 {
5857 if (strcmp (idesc->name, "fc") != 0
5858 && strcmp (idesc->name, "tak") != 0
5859 && strcmp (idesc->name, "thash") != 0
5860 && strcmp (idesc->name, "tpa") != 0
5861 && strcmp (idesc->name, "ttag") != 0
5862 && strncmp (idesc->name, "ptr", 3) != 0
5863 && strncmp (idesc->name, "ptc", 3) != 0
5864 && strncmp (idesc->name, "probe", 5) != 0)
5865 return 0;
5866 }
5867 if (prev_group->g_reg_set_conditionally[regno])
5868 return 1;
5869 }
5870 }
5871 return 0;
5872 }
5873
5874 static void
5875 build_insn (slot, insnp)
5876 struct slot *slot;
5877 bfd_vma *insnp;
5878 {
5879 const struct ia64_operand *odesc, *o2desc;
5880 struct ia64_opcode *idesc = slot->idesc;
5881 bfd_signed_vma insn, val;
5882 const char *err;
5883 int i;
5884
5885 insn = idesc->opcode | slot->qp_regno;
5886
5887 for (i = 0; i < NELEMS (idesc->operands) && idesc->operands[i]; ++i)
5888 {
5889 if (slot->opnd[i].X_op == O_register
5890 || slot->opnd[i].X_op == O_constant
5891 || slot->opnd[i].X_op == O_index)
5892 val = slot->opnd[i].X_add_number;
5893 else if (slot->opnd[i].X_op == O_big)
5894 {
5895 /* This must be the value 0x10000000000000000. */
5896 assert (idesc->operands[i] == IA64_OPND_IMM8M1U8);
5897 val = 0;
5898 }
5899 else
5900 val = 0;
5901
5902 switch (idesc->operands[i])
5903 {
5904 case IA64_OPND_IMMU64:
5905 *insnp++ = (val >> 22) & 0x1ffffffffffLL;
5906 insn |= (((val & 0x7f) << 13) | (((val >> 7) & 0x1ff) << 27)
5907 | (((val >> 16) & 0x1f) << 22) | (((val >> 21) & 0x1) << 21)
5908 | (((val >> 63) & 0x1) << 36));
5909 continue;
5910
5911 case IA64_OPND_IMMU62:
5912 val &= 0x3fffffffffffffffULL;
5913 if (val != slot->opnd[i].X_add_number)
5914 as_warn (_("Value truncated to 62 bits"));
5915 *insnp++ = (val >> 21) & 0x1ffffffffffLL;
5916 insn |= (((val & 0xfffff) << 6) | (((val >> 20) & 0x1) << 36));
5917 continue;
5918
5919 case IA64_OPND_TGT64:
5920 val >>= 4;
5921 *insnp++ = ((val >> 20) & 0x7fffffffffLL) << 2;
5922 insn |= ((((val >> 59) & 0x1) << 36)
5923 | (((val >> 0) & 0xfffff) << 13));
5924 continue;
5925
5926 case IA64_OPND_AR3:
5927 val -= REG_AR;
5928 break;
5929
5930 case IA64_OPND_B1:
5931 case IA64_OPND_B2:
5932 val -= REG_BR;
5933 break;
5934
5935 case IA64_OPND_CR3:
5936 val -= REG_CR;
5937 break;
5938
5939 case IA64_OPND_F1:
5940 case IA64_OPND_F2:
5941 case IA64_OPND_F3:
5942 case IA64_OPND_F4:
5943 val -= REG_FR;
5944 break;
5945
5946 case IA64_OPND_P1:
5947 case IA64_OPND_P2:
5948 val -= REG_P;
5949 break;
5950
5951 case IA64_OPND_R1:
5952 case IA64_OPND_R2:
5953 case IA64_OPND_R3:
5954 case IA64_OPND_R3_2:
5955 case IA64_OPND_CPUID_R3:
5956 case IA64_OPND_DBR_R3:
5957 case IA64_OPND_DTR_R3:
5958 case IA64_OPND_ITR_R3:
5959 case IA64_OPND_IBR_R3:
5960 case IA64_OPND_MR3:
5961 case IA64_OPND_MSR_R3:
5962 case IA64_OPND_PKR_R3:
5963 case IA64_OPND_PMC_R3:
5964 case IA64_OPND_PMD_R3:
5965 case IA64_OPND_RR_R3:
5966 val -= REG_GR;
5967 break;
5968
5969 default:
5970 break;
5971 }
5972
5973 odesc = elf64_ia64_operands + idesc->operands[i];
5974 err = (*odesc->insert) (odesc, val, &insn);
5975 if (err)
5976 as_bad_where (slot->src_file, slot->src_line,
5977 "Bad operand value: %s", err);
5978 if (idesc->flags & IA64_OPCODE_PSEUDO)
5979 {
5980 if ((idesc->flags & IA64_OPCODE_F2_EQ_F3)
5981 && odesc == elf64_ia64_operands + IA64_OPND_F3)
5982 {
5983 o2desc = elf64_ia64_operands + IA64_OPND_F2;
5984 (*o2desc->insert) (o2desc, val, &insn);
5985 }
5986 if ((idesc->flags & IA64_OPCODE_LEN_EQ_64MCNT)
5987 && (odesc == elf64_ia64_operands + IA64_OPND_CPOS6a
5988 || odesc == elf64_ia64_operands + IA64_OPND_POS6))
5989 {
5990 o2desc = elf64_ia64_operands + IA64_OPND_LEN6;
5991 (*o2desc->insert) (o2desc, 64 - val, &insn);
5992 }
5993 }
5994 }
5995 *insnp = insn;
5996 }
5997
5998 static void
5999 emit_one_bundle ()
6000 {
6001 unsigned int manual_bundling_on = 0, manual_bundling_off = 0;
6002 unsigned int manual_bundling = 0;
6003 enum ia64_unit required_unit, insn_unit = 0;
6004 enum ia64_insn_type type[3], insn_type;
6005 unsigned int template, orig_template;
6006 bfd_vma insn[3] = { -1, -1, -1 };
6007 struct ia64_opcode *idesc;
6008 int end_of_insn_group = 0, user_template = -1;
6009 int n, i, j, first, curr;
6010 unw_rec_list *ptr, *last_ptr, *end_ptr;
6011 bfd_vma t0 = 0, t1 = 0;
6012 struct label_fix *lfix;
6013 struct insn_fix *ifix;
6014 char mnemonic[16];
6015 fixS *fix;
6016 char *f;
6017
6018 first = (md.curr_slot + NUM_SLOTS - md.num_slots_in_use) % NUM_SLOTS;
6019 know (first >= 0 & first < NUM_SLOTS);
6020 n = MIN (3, md.num_slots_in_use);
6021
6022 /* Determine template: user user_template if specified, best match
6023 otherwise: */
6024
6025 if (md.slot[first].user_template >= 0)
6026 user_template = template = md.slot[first].user_template;
6027 else
6028 {
6029 /* Auto select appropriate template. */
6030 memset (type, 0, sizeof (type));
6031 curr = first;
6032 for (i = 0; i < n; ++i)
6033 {
6034 if (md.slot[curr].label_fixups && i != 0)
6035 break;
6036 type[i] = md.slot[curr].idesc->type;
6037 curr = (curr + 1) % NUM_SLOTS;
6038 }
6039 template = best_template[type[0]][type[1]][type[2]];
6040 }
6041
6042 /* initialize instructions with appropriate nops: */
6043 for (i = 0; i < 3; ++i)
6044 insn[i] = nop[ia64_templ_desc[template].exec_unit[i]];
6045
6046 f = frag_more (16);
6047
6048 /* now fill in slots with as many insns as possible: */
6049 curr = first;
6050 idesc = md.slot[curr].idesc;
6051 end_of_insn_group = 0;
6052 for (i = 0; i < 3 && md.num_slots_in_use > 0; ++i)
6053 {
6054 /* If we have unwind records, we may need to update some now. */
6055 ptr = md.slot[curr].unwind_record;
6056 if (ptr)
6057 {
6058 /* Find the last prologue/body record in the list for the current
6059 insn, and set the slot number for all records up to that point.
6060 This needs to be done now, because prologue/body records refer to
6061 the current point, not the point after the instruction has been
6062 issued. This matters because there may have been nops emitted
6063 meanwhile. Any non-prologue non-body record followed by a
6064 prologue/body record must also refer to the current point. */
6065 last_ptr = NULL;
6066 end_ptr = md.slot[(curr + 1) % NUM_SLOTS].unwind_record;
6067 for (; ptr != end_ptr; ptr = ptr->next)
6068 if (ptr->r.type == prologue || ptr->r.type == prologue_gr
6069 || ptr->r.type == body)
6070 last_ptr = ptr;
6071 if (last_ptr)
6072 {
6073 /* Make last_ptr point one after the last prologue/body
6074 record. */
6075 last_ptr = last_ptr->next;
6076 for (ptr = md.slot[curr].unwind_record; ptr != last_ptr;
6077 ptr = ptr->next)
6078 {
6079 ptr->slot_number = (unsigned long) f + i;
6080 ptr->slot_frag = frag_now;
6081 }
6082 /* Remove the initialized records, so that we won't accidentally
6083 update them again if we insert a nop and continue. */
6084 md.slot[curr].unwind_record = last_ptr;
6085 }
6086 }
6087
6088 if (idesc->flags & IA64_OPCODE_SLOT2)
6089 {
6090 if (manual_bundling && i != 2)
6091 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6092 "`%s' must be last in bundle", idesc->name);
6093 else
6094 i = 2;
6095 }
6096 if (idesc->flags & IA64_OPCODE_LAST)
6097 {
6098 int required_slot;
6099 unsigned int required_template;
6100
6101 /* If we need a stop bit after an M slot, our only choice is
6102 template 5 (M;;MI). If we need a stop bit after a B
6103 slot, our only choice is to place it at the end of the
6104 bundle, because the only available templates are MIB,
6105 MBB, BBB, MMB, and MFB. We don't handle anything other
6106 than M and B slots because these are the only kind of
6107 instructions that can have the IA64_OPCODE_LAST bit set. */
6108 required_template = template;
6109 switch (idesc->type)
6110 {
6111 case IA64_TYPE_M:
6112 required_slot = 0;
6113 required_template = 5;
6114 break;
6115
6116 case IA64_TYPE_B:
6117 required_slot = 2;
6118 break;
6119
6120 default:
6121 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6122 "Internal error: don't know how to force %s to end"
6123 "of instruction group", idesc->name);
6124 required_slot = i;
6125 break;
6126 }
6127 if (manual_bundling && i != required_slot)
6128 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6129 "`%s' must be last in instruction group",
6130 idesc->name);
6131 if (required_slot < i)
6132 /* Can't fit this instruction. */
6133 break;
6134
6135 i = required_slot;
6136 if (required_template != template)
6137 {
6138 /* If we switch the template, we need to reset the NOPs
6139 after slot i. The slot-types of the instructions ahead
6140 of i never change, so we don't need to worry about
6141 changing NOPs in front of this slot. */
6142 for (j = i; j < 3; ++j)
6143 insn[j] = nop[ia64_templ_desc[required_template].exec_unit[j]];
6144 }
6145 template = required_template;
6146 }
6147 if (curr != first && md.slot[curr].label_fixups)
6148 {
6149 if (manual_bundling_on)
6150 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6151 "Label must be first in a bundle");
6152 /* This insn must go into the first slot of a bundle. */
6153 break;
6154 }
6155
6156 manual_bundling_on = md.slot[curr].manual_bundling_on;
6157 manual_bundling_off = md.slot[curr].manual_bundling_off;
6158
6159 if (manual_bundling_on)
6160 {
6161 if (curr == first)
6162 manual_bundling = 1;
6163 else
6164 break; /* need to start a new bundle */
6165 }
6166
6167 if (end_of_insn_group && md.num_slots_in_use >= 1)
6168 {
6169 /* We need an instruction group boundary in the middle of a
6170 bundle. See if we can switch to an other template with
6171 an appropriate boundary. */
6172
6173 orig_template = template;
6174 if (i == 1 && (user_template == 4
6175 || (user_template < 0
6176 && (ia64_templ_desc[template].exec_unit[0]
6177 == IA64_UNIT_M))))
6178 {
6179 template = 5;
6180 end_of_insn_group = 0;
6181 }
6182 else if (i == 2 && (user_template == 0
6183 || (user_template < 0
6184 && (ia64_templ_desc[template].exec_unit[1]
6185 == IA64_UNIT_I)))
6186 /* This test makes sure we don't switch the template if
6187 the next instruction is one that needs to be first in
6188 an instruction group. Since all those instructions are
6189 in the M group, there is no way such an instruction can
6190 fit in this bundle even if we switch the template. The
6191 reason we have to check for this is that otherwise we
6192 may end up generating "MI;;I M.." which has the deadly
6193 effect that the second M instruction is no longer the
6194 first in the bundle! --davidm 99/12/16 */
6195 && (idesc->flags & IA64_OPCODE_FIRST) == 0)
6196 {
6197 template = 1;
6198 end_of_insn_group = 0;
6199 }
6200 else if (curr != first)
6201 /* can't fit this insn */
6202 break;
6203
6204 if (template != orig_template)
6205 /* if we switch the template, we need to reset the NOPs
6206 after slot i. The slot-types of the instructions ahead
6207 of i never change, so we don't need to worry about
6208 changing NOPs in front of this slot. */
6209 for (j = i; j < 3; ++j)
6210 insn[j] = nop[ia64_templ_desc[template].exec_unit[j]];
6211 }
6212 required_unit = ia64_templ_desc[template].exec_unit[i];
6213
6214 /* resolve dynamic opcodes such as "break", "hint", and "nop": */
6215 if (idesc->type == IA64_TYPE_DYN)
6216 {
6217 if ((strcmp (idesc->name, "nop") == 0)
6218 || (strcmp (idesc->name, "hint") == 0)
6219 || (strcmp (idesc->name, "break") == 0))
6220 insn_unit = required_unit;
6221 else if (strcmp (idesc->name, "chk.s") == 0)
6222 {
6223 insn_unit = IA64_UNIT_M;
6224 if (required_unit == IA64_UNIT_I)
6225 insn_unit = IA64_UNIT_I;
6226 }
6227 else
6228 as_fatal ("emit_one_bundle: unexpected dynamic op");
6229
6230 sprintf (mnemonic, "%s.%c", idesc->name, "?imbf??"[insn_unit]);
6231 ia64_free_opcode (idesc);
6232 md.slot[curr].idesc = idesc = ia64_find_opcode (mnemonic);
6233 #if 0
6234 know (!idesc->next); /* no resolved dynamic ops have collisions */
6235 #endif
6236 }
6237 else
6238 {
6239 insn_type = idesc->type;
6240 insn_unit = IA64_UNIT_NIL;
6241 switch (insn_type)
6242 {
6243 case IA64_TYPE_A:
6244 if (required_unit == IA64_UNIT_I || required_unit == IA64_UNIT_M)
6245 insn_unit = required_unit;
6246 break;
6247 case IA64_TYPE_X: insn_unit = IA64_UNIT_L; break;
6248 case IA64_TYPE_I: insn_unit = IA64_UNIT_I; break;
6249 case IA64_TYPE_M: insn_unit = IA64_UNIT_M; break;
6250 case IA64_TYPE_B: insn_unit = IA64_UNIT_B; break;
6251 case IA64_TYPE_F: insn_unit = IA64_UNIT_F; break;
6252 default: break;
6253 }
6254 }
6255
6256 if (insn_unit != required_unit)
6257 {
6258 if (required_unit == IA64_UNIT_L
6259 && insn_unit == IA64_UNIT_I
6260 && !(idesc->flags & IA64_OPCODE_X_IN_MLX))
6261 {
6262 /* we got ourselves an MLX template but the current
6263 instruction isn't an X-unit, or an I-unit instruction
6264 that can go into the X slot of an MLX template. Duh. */
6265 if (md.num_slots_in_use >= NUM_SLOTS)
6266 {
6267 as_bad_where (md.slot[curr].src_file,
6268 md.slot[curr].src_line,
6269 "`%s' can't go in X slot of "
6270 "MLX template", idesc->name);
6271 /* drop this insn so we don't livelock: */
6272 --md.num_slots_in_use;
6273 }
6274 break;
6275 }
6276 continue; /* try next slot */
6277 }
6278
6279 {
6280 bfd_vma addr;
6281
6282 addr = frag_now->fr_address + frag_now_fix () - 16 + i;
6283 dwarf2_gen_line_info (addr, &md.slot[curr].debug_line);
6284 }
6285
6286 if (errata_nop_necessary_p (md.slot + curr, insn_unit))
6287 as_warn (_("Additional NOP may be necessary to workaround Itanium processor A/B step errata"));
6288
6289 build_insn (md.slot + curr, insn + i);
6290
6291 ptr = md.slot[curr].unwind_record;
6292 if (ptr)
6293 {
6294 /* Set slot numbers for all remaining unwind records belonging to the
6295 current insn. There can not be any prologue/body unwind records
6296 here. */
6297 end_ptr = md.slot[(curr + 1) % NUM_SLOTS].unwind_record;
6298 for (; ptr != end_ptr; ptr = ptr->next)
6299 {
6300 ptr->slot_number = (unsigned long) f + i;
6301 ptr->slot_frag = frag_now;
6302 }
6303 md.slot[curr].unwind_record = NULL;
6304 }
6305
6306 if (required_unit == IA64_UNIT_L)
6307 {
6308 know (i == 1);
6309 /* skip one slot for long/X-unit instructions */
6310 ++i;
6311 }
6312 --md.num_slots_in_use;
6313
6314 /* now is a good time to fix up the labels for this insn: */
6315 for (lfix = md.slot[curr].label_fixups; lfix; lfix = lfix->next)
6316 {
6317 S_SET_VALUE (lfix->sym, frag_now_fix () - 16);
6318 symbol_set_frag (lfix->sym, frag_now);
6319 }
6320 /* and fix up the tags also. */
6321 for (lfix = md.slot[curr].tag_fixups; lfix; lfix = lfix->next)
6322 {
6323 S_SET_VALUE (lfix->sym, frag_now_fix () - 16 + i);
6324 symbol_set_frag (lfix->sym, frag_now);
6325 }
6326
6327 for (j = 0; j < md.slot[curr].num_fixups; ++j)
6328 {
6329 ifix = md.slot[curr].fixup + j;
6330 fix = fix_new_exp (frag_now, frag_now_fix () - 16 + i, 8,
6331 &ifix->expr, ifix->is_pcrel, ifix->code);
6332 fix->tc_fix_data.opnd = ifix->opnd;
6333 fix->fx_plt = (fix->fx_r_type == BFD_RELOC_IA64_PLTOFF22);
6334 fix->fx_file = md.slot[curr].src_file;
6335 fix->fx_line = md.slot[curr].src_line;
6336 }
6337
6338 end_of_insn_group = md.slot[curr].end_of_insn_group;
6339
6340 if (end_of_insn_group)
6341 {
6342 md.group_idx = (md.group_idx + 1) % 3;
6343 memset (md.last_groups + md.group_idx, 0, sizeof md.last_groups[0]);
6344 }
6345
6346 /* clear slot: */
6347 ia64_free_opcode (md.slot[curr].idesc);
6348 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
6349 md.slot[curr].user_template = -1;
6350
6351 if (manual_bundling_off)
6352 {
6353 manual_bundling = 0;
6354 break;
6355 }
6356 curr = (curr + 1) % NUM_SLOTS;
6357 idesc = md.slot[curr].idesc;
6358 }
6359 if (manual_bundling)
6360 {
6361 if (md.num_slots_in_use > 0)
6362 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6363 "`%s' does not fit into %s template",
6364 idesc->name, ia64_templ_desc[template].name);
6365 else
6366 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6367 "Missing '}' at end of file");
6368 }
6369 know (md.num_slots_in_use < NUM_SLOTS);
6370
6371 t0 = end_of_insn_group | (template << 1) | (insn[0] << 5) | (insn[1] << 46);
6372 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
6373
6374 number_to_chars_littleendian (f + 0, t0, 8);
6375 number_to_chars_littleendian (f + 8, t1, 8);
6376
6377 if (unwind.list)
6378 {
6379 unwind.list->next_slot_number = (unsigned long) f + 16;
6380 unwind.list->next_slot_frag = frag_now;
6381 }
6382 }
6383
6384 int
6385 md_parse_option (c, arg)
6386 int c;
6387 char *arg;
6388 {
6389
6390 switch (c)
6391 {
6392 /* Switches from the Intel assembler. */
6393 case 'm':
6394 if (strcmp (arg, "ilp64") == 0
6395 || strcmp (arg, "lp64") == 0
6396 || strcmp (arg, "p64") == 0)
6397 {
6398 md.flags |= EF_IA_64_ABI64;
6399 }
6400 else if (strcmp (arg, "ilp32") == 0)
6401 {
6402 md.flags &= ~EF_IA_64_ABI64;
6403 }
6404 else if (strcmp (arg, "le") == 0)
6405 {
6406 md.flags &= ~EF_IA_64_BE;
6407 }
6408 else if (strcmp (arg, "be") == 0)
6409 {
6410 md.flags |= EF_IA_64_BE;
6411 }
6412 else
6413 return 0;
6414 break;
6415
6416 case 'N':
6417 if (strcmp (arg, "so") == 0)
6418 {
6419 /* Suppress signon message. */
6420 }
6421 else if (strcmp (arg, "pi") == 0)
6422 {
6423 /* Reject privileged instructions. FIXME */
6424 }
6425 else if (strcmp (arg, "us") == 0)
6426 {
6427 /* Allow union of signed and unsigned range. FIXME */
6428 }
6429 else if (strcmp (arg, "close_fcalls") == 0)
6430 {
6431 /* Do not resolve global function calls. */
6432 }
6433 else
6434 return 0;
6435 break;
6436
6437 case 'C':
6438 /* temp[="prefix"] Insert temporary labels into the object file
6439 symbol table prefixed by "prefix".
6440 Default prefix is ":temp:".
6441 */
6442 break;
6443
6444 case 'a':
6445 /* indirect=<tgt> Assume unannotated indirect branches behavior
6446 according to <tgt> --
6447 exit: branch out from the current context (default)
6448 labels: all labels in context may be branch targets
6449 */
6450 if (strncmp (arg, "indirect=", 9) != 0)
6451 return 0;
6452 break;
6453
6454 case 'x':
6455 /* -X conflicts with an ignored option, use -x instead */
6456 md.detect_dv = 1;
6457 if (!arg || strcmp (arg, "explicit") == 0)
6458 {
6459 /* set default mode to explicit */
6460 md.default_explicit_mode = 1;
6461 break;
6462 }
6463 else if (strcmp (arg, "auto") == 0)
6464 {
6465 md.default_explicit_mode = 0;
6466 }
6467 else if (strcmp (arg, "debug") == 0)
6468 {
6469 md.debug_dv = 1;
6470 }
6471 else if (strcmp (arg, "debugx") == 0)
6472 {
6473 md.default_explicit_mode = 1;
6474 md.debug_dv = 1;
6475 }
6476 else
6477 {
6478 as_bad (_("Unrecognized option '-x%s'"), arg);
6479 }
6480 break;
6481
6482 case 'S':
6483 /* nops Print nops statistics. */
6484 break;
6485
6486 /* GNU specific switches for gcc. */
6487 case OPTION_MCONSTANT_GP:
6488 md.flags |= EF_IA_64_CONS_GP;
6489 break;
6490
6491 case OPTION_MAUTO_PIC:
6492 md.flags |= EF_IA_64_NOFUNCDESC_CONS_GP;
6493 break;
6494
6495 default:
6496 return 0;
6497 }
6498
6499 return 1;
6500 }
6501
6502 void
6503 md_show_usage (stream)
6504 FILE *stream;
6505 {
6506 fputs (_("\
6507 IA-64 options:\n\
6508 --mconstant-gp mark output file as using the constant-GP model\n\
6509 (sets ELF header flag EF_IA_64_CONS_GP)\n\
6510 --mauto-pic mark output file as using the constant-GP model\n\
6511 without function descriptors (sets ELF header flag\n\
6512 EF_IA_64_NOFUNCDESC_CONS_GP)\n\
6513 -milp32|-milp64|-mlp64|-mp64 select data model (default -mlp64)\n\
6514 -mle | -mbe select little- or big-endian byte order (default -mle)\n\
6515 -x | -xexplicit turn on dependency violation checking (default)\n\
6516 -xauto automagically remove dependency violations\n\
6517 -xdebug debug dependency violation checker\n"),
6518 stream);
6519 }
6520
6521 void
6522 ia64_after_parse_args ()
6523 {
6524 if (debug_type == DEBUG_STABS)
6525 as_fatal (_("--gstabs is not supported for ia64"));
6526 }
6527
6528 /* Return true if TYPE fits in TEMPL at SLOT. */
6529
6530 static int
6531 match (int templ, int type, int slot)
6532 {
6533 enum ia64_unit unit;
6534 int result;
6535
6536 unit = ia64_templ_desc[templ].exec_unit[slot];
6537 switch (type)
6538 {
6539 case IA64_TYPE_DYN: result = 1; break; /* for nop and break */
6540 case IA64_TYPE_A:
6541 result = (unit == IA64_UNIT_I || unit == IA64_UNIT_M);
6542 break;
6543 case IA64_TYPE_X: result = (unit == IA64_UNIT_L); break;
6544 case IA64_TYPE_I: result = (unit == IA64_UNIT_I); break;
6545 case IA64_TYPE_M: result = (unit == IA64_UNIT_M); break;
6546 case IA64_TYPE_B: result = (unit == IA64_UNIT_B); break;
6547 case IA64_TYPE_F: result = (unit == IA64_UNIT_F); break;
6548 default: result = 0; break;
6549 }
6550 return result;
6551 }
6552
6553 /* Add a bit of extra goodness if a nop of type F or B would fit
6554 in TEMPL at SLOT. */
6555
6556 static inline int
6557 extra_goodness (int templ, int slot)
6558 {
6559 if (slot == 1 && match (templ, IA64_TYPE_F, slot))
6560 return 2;
6561 if (slot == 2 && match (templ, IA64_TYPE_B, slot))
6562 return 1;
6563 return 0;
6564 }
6565
6566 /* This function is called once, at assembler startup time. It sets
6567 up all the tables, etc. that the MD part of the assembler will need
6568 that can be determined before arguments are parsed. */
6569 void
6570 md_begin ()
6571 {
6572 int i, j, k, t, total, ar_base, cr_base, goodness, best, regnum, ok;
6573 const char *err;
6574 char name[8];
6575
6576 md.auto_align = 1;
6577 md.explicit_mode = md.default_explicit_mode;
6578
6579 bfd_set_section_alignment (stdoutput, text_section, 4);
6580
6581 /* Make sure function pointers get initialized. */
6582 target_big_endian = -1;
6583 dot_byteorder (TARGET_BYTES_BIG_ENDIAN);
6584
6585 alias_hash = hash_new ();
6586 alias_name_hash = hash_new ();
6587 secalias_hash = hash_new ();
6588 secalias_name_hash = hash_new ();
6589
6590 pseudo_func[FUNC_DTP_MODULE].u.sym =
6591 symbol_new (".<dtpmod>", undefined_section, FUNC_DTP_MODULE,
6592 &zero_address_frag);
6593
6594 pseudo_func[FUNC_DTP_RELATIVE].u.sym =
6595 symbol_new (".<dtprel>", undefined_section, FUNC_DTP_RELATIVE,
6596 &zero_address_frag);
6597
6598 pseudo_func[FUNC_FPTR_RELATIVE].u.sym =
6599 symbol_new (".<fptr>", undefined_section, FUNC_FPTR_RELATIVE,
6600 &zero_address_frag);
6601
6602 pseudo_func[FUNC_GP_RELATIVE].u.sym =
6603 symbol_new (".<gprel>", undefined_section, FUNC_GP_RELATIVE,
6604 &zero_address_frag);
6605
6606 pseudo_func[FUNC_LT_RELATIVE].u.sym =
6607 symbol_new (".<ltoff>", undefined_section, FUNC_LT_RELATIVE,
6608 &zero_address_frag);
6609
6610 pseudo_func[FUNC_LT_RELATIVE_X].u.sym =
6611 symbol_new (".<ltoffx>", undefined_section, FUNC_LT_RELATIVE_X,
6612 &zero_address_frag);
6613
6614 pseudo_func[FUNC_PC_RELATIVE].u.sym =
6615 symbol_new (".<pcrel>", undefined_section, FUNC_PC_RELATIVE,
6616 &zero_address_frag);
6617
6618 pseudo_func[FUNC_PLT_RELATIVE].u.sym =
6619 symbol_new (".<pltoff>", undefined_section, FUNC_PLT_RELATIVE,
6620 &zero_address_frag);
6621
6622 pseudo_func[FUNC_SEC_RELATIVE].u.sym =
6623 symbol_new (".<secrel>", undefined_section, FUNC_SEC_RELATIVE,
6624 &zero_address_frag);
6625
6626 pseudo_func[FUNC_SEG_RELATIVE].u.sym =
6627 symbol_new (".<segrel>", undefined_section, FUNC_SEG_RELATIVE,
6628 &zero_address_frag);
6629
6630 pseudo_func[FUNC_TP_RELATIVE].u.sym =
6631 symbol_new (".<tprel>", undefined_section, FUNC_TP_RELATIVE,
6632 &zero_address_frag);
6633
6634 pseudo_func[FUNC_LTV_RELATIVE].u.sym =
6635 symbol_new (".<ltv>", undefined_section, FUNC_LTV_RELATIVE,
6636 &zero_address_frag);
6637
6638 pseudo_func[FUNC_LT_FPTR_RELATIVE].u.sym =
6639 symbol_new (".<ltoff.fptr>", undefined_section, FUNC_LT_FPTR_RELATIVE,
6640 &zero_address_frag);
6641
6642 pseudo_func[FUNC_LT_DTP_MODULE].u.sym =
6643 symbol_new (".<ltoff.dtpmod>", undefined_section, FUNC_LT_DTP_MODULE,
6644 &zero_address_frag);
6645
6646 pseudo_func[FUNC_LT_DTP_RELATIVE].u.sym =
6647 symbol_new (".<ltoff.dptrel>", undefined_section, FUNC_LT_DTP_RELATIVE,
6648 &zero_address_frag);
6649
6650 pseudo_func[FUNC_LT_TP_RELATIVE].u.sym =
6651 symbol_new (".<ltoff.tprel>", undefined_section, FUNC_LT_TP_RELATIVE,
6652 &zero_address_frag);
6653
6654 pseudo_func[FUNC_IPLT_RELOC].u.sym =
6655 symbol_new (".<iplt>", undefined_section, FUNC_IPLT_RELOC,
6656 &zero_address_frag);
6657
6658 /* Compute the table of best templates. We compute goodness as a
6659 base 4 value, in which each match counts for 3, each F counts
6660 for 2, each B counts for 1. This should maximize the number of
6661 F and B nops in the chosen bundles, which is good because these
6662 pipelines are least likely to be overcommitted. */
6663 for (i = 0; i < IA64_NUM_TYPES; ++i)
6664 for (j = 0; j < IA64_NUM_TYPES; ++j)
6665 for (k = 0; k < IA64_NUM_TYPES; ++k)
6666 {
6667 best = 0;
6668 for (t = 0; t < NELEMS (ia64_templ_desc); ++t)
6669 {
6670 goodness = 0;
6671 if (match (t, i, 0))
6672 {
6673 if (match (t, j, 1))
6674 {
6675 if (match (t, k, 2))
6676 goodness = 3 + 3 + 3;
6677 else
6678 goodness = 3 + 3 + extra_goodness (t, 2);
6679 }
6680 else if (match (t, j, 2))
6681 goodness = 3 + 3 + extra_goodness (t, 1);
6682 else
6683 {
6684 goodness = 3;
6685 goodness += extra_goodness (t, 1);
6686 goodness += extra_goodness (t, 2);
6687 }
6688 }
6689 else if (match (t, i, 1))
6690 {
6691 if (match (t, j, 2))
6692 goodness = 3 + 3;
6693 else
6694 goodness = 3 + extra_goodness (t, 2);
6695 }
6696 else if (match (t, i, 2))
6697 goodness = 3 + extra_goodness (t, 1);
6698
6699 if (goodness > best)
6700 {
6701 best = goodness;
6702 best_template[i][j][k] = t;
6703 }
6704 }
6705 }
6706
6707 for (i = 0; i < NUM_SLOTS; ++i)
6708 md.slot[i].user_template = -1;
6709
6710 md.pseudo_hash = hash_new ();
6711 for (i = 0; i < NELEMS (pseudo_opcode); ++i)
6712 {
6713 err = hash_insert (md.pseudo_hash, pseudo_opcode[i].name,
6714 (void *) (pseudo_opcode + i));
6715 if (err)
6716 as_fatal ("ia64.md_begin: can't hash `%s': %s",
6717 pseudo_opcode[i].name, err);
6718 }
6719
6720 md.reg_hash = hash_new ();
6721 md.dynreg_hash = hash_new ();
6722 md.const_hash = hash_new ();
6723 md.entry_hash = hash_new ();
6724
6725 /* general registers: */
6726
6727 total = 128;
6728 for (i = 0; i < total; ++i)
6729 {
6730 sprintf (name, "r%d", i - REG_GR);
6731 md.regsym[i] = declare_register (name, i);
6732 }
6733
6734 /* floating point registers: */
6735 total += 128;
6736 for (; i < total; ++i)
6737 {
6738 sprintf (name, "f%d", i - REG_FR);
6739 md.regsym[i] = declare_register (name, i);
6740 }
6741
6742 /* application registers: */
6743 total += 128;
6744 ar_base = i;
6745 for (; i < total; ++i)
6746 {
6747 sprintf (name, "ar%d", i - REG_AR);
6748 md.regsym[i] = declare_register (name, i);
6749 }
6750
6751 /* control registers: */
6752 total += 128;
6753 cr_base = i;
6754 for (; i < total; ++i)
6755 {
6756 sprintf (name, "cr%d", i - REG_CR);
6757 md.regsym[i] = declare_register (name, i);
6758 }
6759
6760 /* predicate registers: */
6761 total += 64;
6762 for (; i < total; ++i)
6763 {
6764 sprintf (name, "p%d", i - REG_P);
6765 md.regsym[i] = declare_register (name, i);
6766 }
6767
6768 /* branch registers: */
6769 total += 8;
6770 for (; i < total; ++i)
6771 {
6772 sprintf (name, "b%d", i - REG_BR);
6773 md.regsym[i] = declare_register (name, i);
6774 }
6775
6776 md.regsym[REG_IP] = declare_register ("ip", REG_IP);
6777 md.regsym[REG_CFM] = declare_register ("cfm", REG_CFM);
6778 md.regsym[REG_PR] = declare_register ("pr", REG_PR);
6779 md.regsym[REG_PR_ROT] = declare_register ("pr.rot", REG_PR_ROT);
6780 md.regsym[REG_PSR] = declare_register ("psr", REG_PSR);
6781 md.regsym[REG_PSR_L] = declare_register ("psr.l", REG_PSR_L);
6782 md.regsym[REG_PSR_UM] = declare_register ("psr.um", REG_PSR_UM);
6783
6784 for (i = 0; i < NELEMS (indirect_reg); ++i)
6785 {
6786 regnum = indirect_reg[i].regnum;
6787 md.regsym[regnum] = declare_register (indirect_reg[i].name, regnum);
6788 }
6789
6790 /* define synonyms for application registers: */
6791 for (i = REG_AR; i < REG_AR + NELEMS (ar); ++i)
6792 md.regsym[i] = declare_register (ar[i - REG_AR].name,
6793 REG_AR + ar[i - REG_AR].regnum);
6794
6795 /* define synonyms for control registers: */
6796 for (i = REG_CR; i < REG_CR + NELEMS (cr); ++i)
6797 md.regsym[i] = declare_register (cr[i - REG_CR].name,
6798 REG_CR + cr[i - REG_CR].regnum);
6799
6800 declare_register ("gp", REG_GR + 1);
6801 declare_register ("sp", REG_GR + 12);
6802 declare_register ("rp", REG_BR + 0);
6803
6804 /* pseudo-registers used to specify unwind info: */
6805 declare_register ("psp", REG_PSP);
6806
6807 declare_register_set ("ret", 4, REG_GR + 8);
6808 declare_register_set ("farg", 8, REG_FR + 8);
6809 declare_register_set ("fret", 8, REG_FR + 8);
6810
6811 for (i = 0; i < NELEMS (const_bits); ++i)
6812 {
6813 err = hash_insert (md.const_hash, const_bits[i].name,
6814 (PTR) (const_bits + i));
6815 if (err)
6816 as_fatal ("Inserting \"%s\" into constant hash table failed: %s",
6817 name, err);
6818 }
6819
6820 /* Set the architecture and machine depending on defaults and command line
6821 options. */
6822 if (md.flags & EF_IA_64_ABI64)
6823 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf64);
6824 else
6825 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf32);
6826
6827 if (! ok)
6828 as_warn (_("Could not set architecture and machine"));
6829
6830 /* Set the pointer size and pointer shift size depending on md.flags */
6831
6832 if (md.flags & EF_IA_64_ABI64)
6833 {
6834 md.pointer_size = 8; /* pointers are 8 bytes */
6835 md.pointer_size_shift = 3; /* alignment is 8 bytes = 2^2 */
6836 }
6837 else
6838 {
6839 md.pointer_size = 4; /* pointers are 4 bytes */
6840 md.pointer_size_shift = 2; /* alignment is 4 bytes = 2^2 */
6841 }
6842
6843 md.mem_offset.hint = 0;
6844 md.path = 0;
6845 md.maxpaths = 0;
6846 md.entry_labels = NULL;
6847 }
6848
6849 /* Set the elf type to 64 bit ABI by default. Cannot do this in md_begin
6850 because that is called after md_parse_option which is where we do the
6851 dynamic changing of md.flags based on -mlp64 or -milp32. Also, set the
6852 default endianness. */
6853
6854 void
6855 ia64_init (argc, argv)
6856 int argc ATTRIBUTE_UNUSED;
6857 char **argv ATTRIBUTE_UNUSED;
6858 {
6859 md.flags = MD_FLAGS_DEFAULT;
6860 }
6861
6862 /* Return a string for the target object file format. */
6863
6864 const char *
6865 ia64_target_format ()
6866 {
6867 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
6868 {
6869 if (md.flags & EF_IA_64_BE)
6870 {
6871 if (md.flags & EF_IA_64_ABI64)
6872 #if defined(TE_AIX50)
6873 return "elf64-ia64-aix-big";
6874 #elif defined(TE_HPUX)
6875 return "elf64-ia64-hpux-big";
6876 #else
6877 return "elf64-ia64-big";
6878 #endif
6879 else
6880 #if defined(TE_AIX50)
6881 return "elf32-ia64-aix-big";
6882 #elif defined(TE_HPUX)
6883 return "elf32-ia64-hpux-big";
6884 #else
6885 return "elf32-ia64-big";
6886 #endif
6887 }
6888 else
6889 {
6890 if (md.flags & EF_IA_64_ABI64)
6891 #ifdef TE_AIX50
6892 return "elf64-ia64-aix-little";
6893 #else
6894 return "elf64-ia64-little";
6895 #endif
6896 else
6897 #ifdef TE_AIX50
6898 return "elf32-ia64-aix-little";
6899 #else
6900 return "elf32-ia64-little";
6901 #endif
6902 }
6903 }
6904 else
6905 return "unknown-format";
6906 }
6907
6908 void
6909 ia64_end_of_source ()
6910 {
6911 /* terminate insn group upon reaching end of file: */
6912 insn_group_break (1, 0, 0);
6913
6914 /* emits slots we haven't written yet: */
6915 ia64_flush_insns ();
6916
6917 bfd_set_private_flags (stdoutput, md.flags);
6918
6919 md.mem_offset.hint = 0;
6920 }
6921
6922 void
6923 ia64_start_line ()
6924 {
6925 if (md.qp.X_op == O_register)
6926 as_bad ("qualifying predicate not followed by instruction");
6927 md.qp.X_op = O_absent;
6928
6929 if (ignore_input ())
6930 return;
6931
6932 if (input_line_pointer[0] == ';' && input_line_pointer[-1] == ';')
6933 {
6934 if (md.detect_dv && !md.explicit_mode)
6935 as_warn (_("Explicit stops are ignored in auto mode"));
6936 else
6937 insn_group_break (1, 0, 0);
6938 }
6939 }
6940
6941 /* This is a hook for ia64_frob_label, so that it can distinguish tags from
6942 labels. */
6943 static int defining_tag = 0;
6944
6945 int
6946 ia64_unrecognized_line (ch)
6947 int ch;
6948 {
6949 switch (ch)
6950 {
6951 case '(':
6952 expression (&md.qp);
6953 if (*input_line_pointer++ != ')')
6954 {
6955 as_bad ("Expected ')'");
6956 return 0;
6957 }
6958 if (md.qp.X_op != O_register)
6959 {
6960 as_bad ("Qualifying predicate expected");
6961 return 0;
6962 }
6963 if (md.qp.X_add_number < REG_P || md.qp.X_add_number >= REG_P + 64)
6964 {
6965 as_bad ("Predicate register expected");
6966 return 0;
6967 }
6968 return 1;
6969
6970 case '{':
6971 if (md.manual_bundling)
6972 as_warn ("Found '{' when manual bundling is already turned on");
6973 else
6974 CURR_SLOT.manual_bundling_on = 1;
6975 md.manual_bundling = 1;
6976
6977 /* Bundling is only acceptable in explicit mode
6978 or when in default automatic mode. */
6979 if (md.detect_dv && !md.explicit_mode)
6980 {
6981 if (!md.mode_explicitly_set
6982 && !md.default_explicit_mode)
6983 dot_dv_mode ('E');
6984 else
6985 as_warn (_("Found '{' after explicit switch to automatic mode"));
6986 }
6987 return 1;
6988
6989 case '}':
6990 if (!md.manual_bundling)
6991 as_warn ("Found '}' when manual bundling is off");
6992 else
6993 PREV_SLOT.manual_bundling_off = 1;
6994 md.manual_bundling = 0;
6995
6996 /* switch back to automatic mode, if applicable */
6997 if (md.detect_dv
6998 && md.explicit_mode
6999 && !md.mode_explicitly_set
7000 && !md.default_explicit_mode)
7001 dot_dv_mode ('A');
7002
7003 /* Allow '{' to follow on the same line. We also allow ";;", but that
7004 happens automatically because ';' is an end of line marker. */
7005 SKIP_WHITESPACE ();
7006 if (input_line_pointer[0] == '{')
7007 {
7008 input_line_pointer++;
7009 return ia64_unrecognized_line ('{');
7010 }
7011
7012 demand_empty_rest_of_line ();
7013 return 1;
7014
7015 case '[':
7016 {
7017 char *s;
7018 char c;
7019 symbolS *tag;
7020 int temp;
7021
7022 if (md.qp.X_op == O_register)
7023 {
7024 as_bad ("Tag must come before qualifying predicate.");
7025 return 0;
7026 }
7027
7028 /* This implements just enough of read_a_source_file in read.c to
7029 recognize labels. */
7030 if (is_name_beginner (*input_line_pointer))
7031 {
7032 s = input_line_pointer;
7033 c = get_symbol_end ();
7034 }
7035 else if (LOCAL_LABELS_FB
7036 && ISDIGIT (*input_line_pointer))
7037 {
7038 temp = 0;
7039 while (ISDIGIT (*input_line_pointer))
7040 temp = (temp * 10) + *input_line_pointer++ - '0';
7041 fb_label_instance_inc (temp);
7042 s = fb_label_name (temp, 0);
7043 c = *input_line_pointer;
7044 }
7045 else
7046 {
7047 s = NULL;
7048 c = '\0';
7049 }
7050 if (c != ':')
7051 {
7052 /* Put ':' back for error messages' sake. */
7053 *input_line_pointer++ = ':';
7054 as_bad ("Expected ':'");
7055 return 0;
7056 }
7057
7058 defining_tag = 1;
7059 tag = colon (s);
7060 defining_tag = 0;
7061 /* Put ':' back for error messages' sake. */
7062 *input_line_pointer++ = ':';
7063 if (*input_line_pointer++ != ']')
7064 {
7065 as_bad ("Expected ']'");
7066 return 0;
7067 }
7068 if (! tag)
7069 {
7070 as_bad ("Tag name expected");
7071 return 0;
7072 }
7073 return 1;
7074 }
7075
7076 default:
7077 break;
7078 }
7079
7080 /* Not a valid line. */
7081 return 0;
7082 }
7083
7084 void
7085 ia64_frob_label (sym)
7086 struct symbol *sym;
7087 {
7088 struct label_fix *fix;
7089
7090 /* Tags need special handling since they are not bundle breaks like
7091 labels. */
7092 if (defining_tag)
7093 {
7094 fix = obstack_alloc (&notes, sizeof (*fix));
7095 fix->sym = sym;
7096 fix->next = CURR_SLOT.tag_fixups;
7097 CURR_SLOT.tag_fixups = fix;
7098
7099 return;
7100 }
7101
7102 if (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7103 {
7104 md.last_text_seg = now_seg;
7105 fix = obstack_alloc (&notes, sizeof (*fix));
7106 fix->sym = sym;
7107 fix->next = CURR_SLOT.label_fixups;
7108 CURR_SLOT.label_fixups = fix;
7109
7110 /* Keep track of how many code entry points we've seen. */
7111 if (md.path == md.maxpaths)
7112 {
7113 md.maxpaths += 20;
7114 md.entry_labels = (const char **)
7115 xrealloc ((void *) md.entry_labels,
7116 md.maxpaths * sizeof (char *));
7117 }
7118 md.entry_labels[md.path++] = S_GET_NAME (sym);
7119 }
7120 }
7121
7122 void
7123 ia64_flush_pending_output ()
7124 {
7125 if (!md.keep_pending_output
7126 && bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7127 {
7128 /* ??? This causes many unnecessary stop bits to be emitted.
7129 Unfortunately, it isn't clear if it is safe to remove this. */
7130 insn_group_break (1, 0, 0);
7131 ia64_flush_insns ();
7132 }
7133 }
7134
7135 /* Do ia64-specific expression optimization. All that's done here is
7136 to transform index expressions that are either due to the indexing
7137 of rotating registers or due to the indexing of indirect register
7138 sets. */
7139 int
7140 ia64_optimize_expr (l, op, r)
7141 expressionS *l;
7142 operatorT op;
7143 expressionS *r;
7144 {
7145 unsigned num_regs;
7146
7147 if (op == O_index)
7148 {
7149 if (l->X_op == O_register && r->X_op == O_constant)
7150 {
7151 num_regs = (l->X_add_number >> 16);
7152 if ((unsigned) r->X_add_number >= num_regs)
7153 {
7154 if (!num_regs)
7155 as_bad ("No current frame");
7156 else
7157 as_bad ("Index out of range 0..%u", num_regs - 1);
7158 r->X_add_number = 0;
7159 }
7160 l->X_add_number = (l->X_add_number & 0xffff) + r->X_add_number;
7161 return 1;
7162 }
7163 else if (l->X_op == O_register && r->X_op == O_register)
7164 {
7165 if (l->X_add_number < IND_CPUID || l->X_add_number > IND_RR
7166 || l->X_add_number == IND_MEM)
7167 {
7168 as_bad ("Indirect register set name expected");
7169 l->X_add_number = IND_CPUID;
7170 }
7171 l->X_op = O_index;
7172 l->X_op_symbol = md.regsym[l->X_add_number];
7173 l->X_add_number = r->X_add_number;
7174 return 1;
7175 }
7176 }
7177 return 0;
7178 }
7179
7180 int
7181 ia64_parse_name (name, e)
7182 char *name;
7183 expressionS *e;
7184 {
7185 struct const_desc *cdesc;
7186 struct dynreg *dr = 0;
7187 unsigned int regnum;
7188 struct symbol *sym;
7189 char *end;
7190
7191 /* first see if NAME is a known register name: */
7192 sym = hash_find (md.reg_hash, name);
7193 if (sym)
7194 {
7195 e->X_op = O_register;
7196 e->X_add_number = S_GET_VALUE (sym);
7197 return 1;
7198 }
7199
7200 cdesc = hash_find (md.const_hash, name);
7201 if (cdesc)
7202 {
7203 e->X_op = O_constant;
7204 e->X_add_number = cdesc->value;
7205 return 1;
7206 }
7207
7208 /* check for inN, locN, or outN: */
7209 switch (name[0])
7210 {
7211 case 'i':
7212 if (name[1] == 'n' && ISDIGIT (name[2]))
7213 {
7214 dr = &md.in;
7215 name += 2;
7216 }
7217 break;
7218
7219 case 'l':
7220 if (name[1] == 'o' && name[2] == 'c' && ISDIGIT (name[3]))
7221 {
7222 dr = &md.loc;
7223 name += 3;
7224 }
7225 break;
7226
7227 case 'o':
7228 if (name[1] == 'u' && name[2] == 't' && ISDIGIT (name[3]))
7229 {
7230 dr = &md.out;
7231 name += 3;
7232 }
7233 break;
7234
7235 default:
7236 break;
7237 }
7238
7239 if (dr)
7240 {
7241 /* The name is inN, locN, or outN; parse the register number. */
7242 regnum = strtoul (name, &end, 10);
7243 if (end > name && *end == '\0')
7244 {
7245 if ((unsigned) regnum >= dr->num_regs)
7246 {
7247 if (!dr->num_regs)
7248 as_bad ("No current frame");
7249 else
7250 as_bad ("Register number out of range 0..%u",
7251 dr->num_regs - 1);
7252 regnum = 0;
7253 }
7254 e->X_op = O_register;
7255 e->X_add_number = dr->base + regnum;
7256 return 1;
7257 }
7258 }
7259
7260 if ((dr = hash_find (md.dynreg_hash, name)))
7261 {
7262 /* We've got ourselves the name of a rotating register set.
7263 Store the base register number in the low 16 bits of
7264 X_add_number and the size of the register set in the top 16
7265 bits. */
7266 e->X_op = O_register;
7267 e->X_add_number = dr->base | (dr->num_regs << 16);
7268 return 1;
7269 }
7270 return 0;
7271 }
7272
7273 /* Remove the '#' suffix that indicates a symbol as opposed to a register. */
7274
7275 char *
7276 ia64_canonicalize_symbol_name (name)
7277 char *name;
7278 {
7279 size_t len = strlen (name);
7280 if (len > 1 && name[len - 1] == '#')
7281 name[len - 1] = '\0';
7282 return name;
7283 }
7284
7285 /* Return true if idesc is a conditional branch instruction. This excludes
7286 the modulo scheduled branches, and br.ia. Mod-sched branches are excluded
7287 because they always read/write resources regardless of the value of the
7288 qualifying predicate. br.ia must always use p0, and hence is always
7289 taken. Thus this function returns true for branches which can fall
7290 through, and which use no resources if they do fall through. */
7291
7292 static int
7293 is_conditional_branch (idesc)
7294 struct ia64_opcode *idesc;
7295 {
7296 /* br is a conditional branch. Everything that starts with br. except
7297 br.ia, br.c{loop,top,exit}, and br.w{top,exit} is a conditional branch.
7298 Everything that starts with brl is a conditional branch. */
7299 return (idesc->name[0] == 'b' && idesc->name[1] == 'r'
7300 && (idesc->name[2] == '\0'
7301 || (idesc->name[2] == '.' && idesc->name[3] != 'i'
7302 && idesc->name[3] != 'c' && idesc->name[3] != 'w')
7303 || idesc->name[2] == 'l'
7304 /* br.cond, br.call, br.clr */
7305 || (idesc->name[2] == '.' && idesc->name[3] == 'c'
7306 && (idesc->name[4] == 'a' || idesc->name[4] == 'o'
7307 || (idesc->name[4] == 'l' && idesc->name[5] == 'r')))));
7308 }
7309
7310 /* Return whether the given opcode is a taken branch. If there's any doubt,
7311 returns zero. */
7312
7313 static int
7314 is_taken_branch (idesc)
7315 struct ia64_opcode *idesc;
7316 {
7317 return ((is_conditional_branch (idesc) && CURR_SLOT.qp_regno == 0)
7318 || strncmp (idesc->name, "br.ia", 5) == 0);
7319 }
7320
7321 /* Return whether the given opcode is an interruption or rfi. If there's any
7322 doubt, returns zero. */
7323
7324 static int
7325 is_interruption_or_rfi (idesc)
7326 struct ia64_opcode *idesc;
7327 {
7328 if (strcmp (idesc->name, "rfi") == 0)
7329 return 1;
7330 return 0;
7331 }
7332
7333 /* Returns the index of the given dependency in the opcode's list of chks, or
7334 -1 if there is no dependency. */
7335
7336 static int
7337 depends_on (depind, idesc)
7338 int depind;
7339 struct ia64_opcode *idesc;
7340 {
7341 int i;
7342 const struct ia64_opcode_dependency *dep = idesc->dependencies;
7343 for (i = 0; i < dep->nchks; i++)
7344 {
7345 if (depind == DEP (dep->chks[i]))
7346 return i;
7347 }
7348 return -1;
7349 }
7350
7351 /* Determine a set of specific resources used for a particular resource
7352 class. Returns the number of specific resources identified For those
7353 cases which are not determinable statically, the resource returned is
7354 marked nonspecific.
7355
7356 Meanings of value in 'NOTE':
7357 1) only read/write when the register number is explicitly encoded in the
7358 insn.
7359 2) only read CFM when accessing a rotating GR, FR, or PR. mov pr only
7360 accesses CFM when qualifying predicate is in the rotating region.
7361 3) general register value is used to specify an indirect register; not
7362 determinable statically.
7363 4) only read the given resource when bits 7:0 of the indirect index
7364 register value does not match the register number of the resource; not
7365 determinable statically.
7366 5) all rules are implementation specific.
7367 6) only when both the index specified by the reader and the index specified
7368 by the writer have the same value in bits 63:61; not determinable
7369 statically.
7370 7) only access the specified resource when the corresponding mask bit is
7371 set
7372 8) PSR.dfh is only read when these insns reference FR32-127. PSR.dfl is
7373 only read when these insns reference FR2-31
7374 9) PSR.mfl is only written when these insns write FR2-31. PSR.mfh is only
7375 written when these insns write FR32-127
7376 10) The PSR.bn bit is only accessed when one of GR16-31 is specified in the
7377 instruction
7378 11) The target predicates are written independently of PR[qp], but source
7379 registers are only read if PR[qp] is true. Since the state of PR[qp]
7380 cannot statically be determined, all source registers are marked used.
7381 12) This insn only reads the specified predicate register when that
7382 register is the PR[qp].
7383 13) This reference to ld-c only applies to teh GR whose value is loaded
7384 with data returned from memory, not the post-incremented address register.
7385 14) The RSE resource includes the implementation-specific RSE internal
7386 state resources. At least one (and possibly more) of these resources are
7387 read by each instruction listed in IC:rse-readers. At least one (and
7388 possibly more) of these resources are written by each insn listed in
7389 IC:rse-writers.
7390 15+16) Represents reserved instructions, which the assembler does not
7391 generate.
7392
7393 Memory resources (i.e. locations in memory) are *not* marked or tracked by
7394 this code; there are no dependency violations based on memory access.
7395 */
7396
7397 #define MAX_SPECS 256
7398 #define DV_CHK 1
7399 #define DV_REG 0
7400
7401 static int
7402 specify_resource (dep, idesc, type, specs, note, path)
7403 const struct ia64_dependency *dep;
7404 struct ia64_opcode *idesc;
7405 int type; /* is this a DV chk or a DV reg? */
7406 struct rsrc specs[MAX_SPECS]; /* returned specific resources */
7407 int note; /* resource note for this insn's usage */
7408 int path; /* which execution path to examine */
7409 {
7410 int count = 0;
7411 int i;
7412 int rsrc_write = 0;
7413 struct rsrc tmpl;
7414
7415 if (dep->mode == IA64_DV_WAW
7416 || (dep->mode == IA64_DV_RAW && type == DV_REG)
7417 || (dep->mode == IA64_DV_WAR && type == DV_CHK))
7418 rsrc_write = 1;
7419
7420 /* template for any resources we identify */
7421 tmpl.dependency = dep;
7422 tmpl.note = note;
7423 tmpl.insn_srlz = tmpl.data_srlz = 0;
7424 tmpl.qp_regno = CURR_SLOT.qp_regno;
7425 tmpl.link_to_qp_branch = 1;
7426 tmpl.mem_offset.hint = 0;
7427 tmpl.specific = 1;
7428 tmpl.index = 0;
7429 tmpl.cmp_type = CMP_NONE;
7430
7431 #define UNHANDLED \
7432 as_warn (_("Unhandled dependency %s for %s (%s), note %d"), \
7433 dep->name, idesc->name, (rsrc_write?"write":"read"), note)
7434 #define KNOWN(REG) (gr_values[REG].known && gr_values[REG].path >= path)
7435
7436 /* we don't need to track these */
7437 if (dep->semantics == IA64_DVS_NONE)
7438 return 0;
7439
7440 switch (dep->specifier)
7441 {
7442 case IA64_RS_AR_K:
7443 if (note == 1)
7444 {
7445 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
7446 {
7447 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
7448 if (regno >= 0 && regno <= 7)
7449 {
7450 specs[count] = tmpl;
7451 specs[count++].index = regno;
7452 }
7453 }
7454 }
7455 else if (note == 0)
7456 {
7457 for (i = 0; i < 8; i++)
7458 {
7459 specs[count] = tmpl;
7460 specs[count++].index = i;
7461 }
7462 }
7463 else
7464 {
7465 UNHANDLED;
7466 }
7467 break;
7468
7469 case IA64_RS_AR_UNAT:
7470 /* This is a mov =AR or mov AR= instruction. */
7471 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
7472 {
7473 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
7474 if (regno == AR_UNAT)
7475 {
7476 specs[count++] = tmpl;
7477 }
7478 }
7479 else
7480 {
7481 /* This is a spill/fill, or other instruction that modifies the
7482 unat register. */
7483
7484 /* Unless we can determine the specific bits used, mark the whole
7485 thing; bits 8:3 of the memory address indicate the bit used in
7486 UNAT. The .mem.offset hint may be used to eliminate a small
7487 subset of conflicts. */
7488 specs[count] = tmpl;
7489 if (md.mem_offset.hint)
7490 {
7491 if (md.debug_dv)
7492 fprintf (stderr, " Using hint for spill/fill\n");
7493 /* The index isn't actually used, just set it to something
7494 approximating the bit index. */
7495 specs[count].index = (md.mem_offset.offset >> 3) & 0x3F;
7496 specs[count].mem_offset.hint = 1;
7497 specs[count].mem_offset.offset = md.mem_offset.offset;
7498 specs[count++].mem_offset.base = md.mem_offset.base;
7499 }
7500 else
7501 {
7502 specs[count++].specific = 0;
7503 }
7504 }
7505 break;
7506
7507 case IA64_RS_AR:
7508 if (note == 1)
7509 {
7510 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
7511 {
7512 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
7513 if ((regno >= 8 && regno <= 15)
7514 || (regno >= 20 && regno <= 23)
7515 || (regno >= 31 && regno <= 39)
7516 || (regno >= 41 && regno <= 47)
7517 || (regno >= 67 && regno <= 111))
7518 {
7519 specs[count] = tmpl;
7520 specs[count++].index = regno;
7521 }
7522 }
7523 }
7524 else
7525 {
7526 UNHANDLED;
7527 }
7528 break;
7529
7530 case IA64_RS_ARb:
7531 if (note == 1)
7532 {
7533 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
7534 {
7535 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
7536 if ((regno >= 48 && regno <= 63)
7537 || (regno >= 112 && regno <= 127))
7538 {
7539 specs[count] = tmpl;
7540 specs[count++].index = regno;
7541 }
7542 }
7543 }
7544 else if (note == 0)
7545 {
7546 for (i = 48; i < 64; i++)
7547 {
7548 specs[count] = tmpl;
7549 specs[count++].index = i;
7550 }
7551 for (i = 112; i < 128; i++)
7552 {
7553 specs[count] = tmpl;
7554 specs[count++].index = i;
7555 }
7556 }
7557 else
7558 {
7559 UNHANDLED;
7560 }
7561 break;
7562
7563 case IA64_RS_BR:
7564 if (note != 1)
7565 {
7566 UNHANDLED;
7567 }
7568 else
7569 {
7570 if (rsrc_write)
7571 {
7572 for (i = 0; i < idesc->num_outputs; i++)
7573 if (idesc->operands[i] == IA64_OPND_B1
7574 || idesc->operands[i] == IA64_OPND_B2)
7575 {
7576 specs[count] = tmpl;
7577 specs[count++].index =
7578 CURR_SLOT.opnd[i].X_add_number - REG_BR;
7579 }
7580 }
7581 else
7582 {
7583 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
7584 if (idesc->operands[i] == IA64_OPND_B1
7585 || idesc->operands[i] == IA64_OPND_B2)
7586 {
7587 specs[count] = tmpl;
7588 specs[count++].index =
7589 CURR_SLOT.opnd[i].X_add_number - REG_BR;
7590 }
7591 }
7592 }
7593 break;
7594
7595 case IA64_RS_CPUID: /* four or more registers */
7596 if (note == 3)
7597 {
7598 if (idesc->operands[!rsrc_write] == IA64_OPND_CPUID_R3)
7599 {
7600 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
7601 if (regno >= 0 && regno < NELEMS (gr_values)
7602 && KNOWN (regno))
7603 {
7604 specs[count] = tmpl;
7605 specs[count++].index = gr_values[regno].value & 0xFF;
7606 }
7607 else
7608 {
7609 specs[count] = tmpl;
7610 specs[count++].specific = 0;
7611 }
7612 }
7613 }
7614 else
7615 {
7616 UNHANDLED;
7617 }
7618 break;
7619
7620 case IA64_RS_DBR: /* four or more registers */
7621 if (note == 3)
7622 {
7623 if (idesc->operands[!rsrc_write] == IA64_OPND_DBR_R3)
7624 {
7625 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
7626 if (regno >= 0 && regno < NELEMS (gr_values)
7627 && KNOWN (regno))
7628 {
7629 specs[count] = tmpl;
7630 specs[count++].index = gr_values[regno].value & 0xFF;
7631 }
7632 else
7633 {
7634 specs[count] = tmpl;
7635 specs[count++].specific = 0;
7636 }
7637 }
7638 }
7639 else if (note == 0 && !rsrc_write)
7640 {
7641 specs[count] = tmpl;
7642 specs[count++].specific = 0;
7643 }
7644 else
7645 {
7646 UNHANDLED;
7647 }
7648 break;
7649
7650 case IA64_RS_IBR: /* four or more registers */
7651 if (note == 3)
7652 {
7653 if (idesc->operands[!rsrc_write] == IA64_OPND_IBR_R3)
7654 {
7655 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
7656 if (regno >= 0 && regno < NELEMS (gr_values)
7657 && KNOWN (regno))
7658 {
7659 specs[count] = tmpl;
7660 specs[count++].index = gr_values[regno].value & 0xFF;
7661 }
7662 else
7663 {
7664 specs[count] = tmpl;
7665 specs[count++].specific = 0;
7666 }
7667 }
7668 }
7669 else
7670 {
7671 UNHANDLED;
7672 }
7673 break;
7674
7675 case IA64_RS_MSR:
7676 if (note == 5)
7677 {
7678 /* These are implementation specific. Force all references to
7679 conflict with all other references. */
7680 specs[count] = tmpl;
7681 specs[count++].specific = 0;
7682 }
7683 else
7684 {
7685 UNHANDLED;
7686 }
7687 break;
7688
7689 case IA64_RS_PKR: /* 16 or more registers */
7690 if (note == 3 || note == 4)
7691 {
7692 if (idesc->operands[!rsrc_write] == IA64_OPND_PKR_R3)
7693 {
7694 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
7695 if (regno >= 0 && regno < NELEMS (gr_values)
7696 && KNOWN (regno))
7697 {
7698 if (note == 3)
7699 {
7700 specs[count] = tmpl;
7701 specs[count++].index = gr_values[regno].value & 0xFF;
7702 }
7703 else
7704 for (i = 0; i < NELEMS (gr_values); i++)
7705 {
7706 /* Uses all registers *except* the one in R3. */
7707 if ((unsigned)i != (gr_values[regno].value & 0xFF))
7708 {
7709 specs[count] = tmpl;
7710 specs[count++].index = i;
7711 }
7712 }
7713 }
7714 else
7715 {
7716 specs[count] = tmpl;
7717 specs[count++].specific = 0;
7718 }
7719 }
7720 }
7721 else if (note == 0)
7722 {
7723 /* probe et al. */
7724 specs[count] = tmpl;
7725 specs[count++].specific = 0;
7726 }
7727 break;
7728
7729 case IA64_RS_PMC: /* four or more registers */
7730 if (note == 3)
7731 {
7732 if (idesc->operands[!rsrc_write] == IA64_OPND_PMC_R3
7733 || (!rsrc_write && idesc->operands[1] == IA64_OPND_PMD_R3))
7734
7735 {
7736 int index = ((idesc->operands[1] == IA64_OPND_R3 && !rsrc_write)
7737 ? 1 : !rsrc_write);
7738 int regno = CURR_SLOT.opnd[index].X_add_number - REG_GR;
7739 if (regno >= 0 && regno < NELEMS (gr_values)
7740 && KNOWN (regno))
7741 {
7742 specs[count] = tmpl;
7743 specs[count++].index = gr_values[regno].value & 0xFF;
7744 }
7745 else
7746 {
7747 specs[count] = tmpl;
7748 specs[count++].specific = 0;
7749 }
7750 }
7751 }
7752 else
7753 {
7754 UNHANDLED;
7755 }
7756 break;
7757
7758 case IA64_RS_PMD: /* four or more registers */
7759 if (note == 3)
7760 {
7761 if (idesc->operands[!rsrc_write] == IA64_OPND_PMD_R3)
7762 {
7763 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
7764 if (regno >= 0 && regno < NELEMS (gr_values)
7765 && KNOWN (regno))
7766 {
7767 specs[count] = tmpl;
7768 specs[count++].index = gr_values[regno].value & 0xFF;
7769 }
7770 else
7771 {
7772 specs[count] = tmpl;
7773 specs[count++].specific = 0;
7774 }
7775 }
7776 }
7777 else
7778 {
7779 UNHANDLED;
7780 }
7781 break;
7782
7783 case IA64_RS_RR: /* eight registers */
7784 if (note == 6)
7785 {
7786 if (idesc->operands[!rsrc_write] == IA64_OPND_RR_R3)
7787 {
7788 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
7789 if (regno >= 0 && regno < NELEMS (gr_values)
7790 && KNOWN (regno))
7791 {
7792 specs[count] = tmpl;
7793 specs[count++].index = (gr_values[regno].value >> 61) & 0x7;
7794 }
7795 else
7796 {
7797 specs[count] = tmpl;
7798 specs[count++].specific = 0;
7799 }
7800 }
7801 }
7802 else if (note == 0 && !rsrc_write)
7803 {
7804 specs[count] = tmpl;
7805 specs[count++].specific = 0;
7806 }
7807 else
7808 {
7809 UNHANDLED;
7810 }
7811 break;
7812
7813 case IA64_RS_CR_IRR:
7814 if (note == 0)
7815 {
7816 /* handle mov-from-CR-IVR; it's a read that writes CR[IRR] */
7817 int regno = CURR_SLOT.opnd[1].X_add_number - REG_CR;
7818 if (rsrc_write
7819 && idesc->operands[1] == IA64_OPND_CR3
7820 && regno == CR_IVR)
7821 {
7822 for (i = 0; i < 4; i++)
7823 {
7824 specs[count] = tmpl;
7825 specs[count++].index = CR_IRR0 + i;
7826 }
7827 }
7828 }
7829 else if (note == 1)
7830 {
7831 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
7832 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
7833 && regno >= CR_IRR0
7834 && regno <= CR_IRR3)
7835 {
7836 specs[count] = tmpl;
7837 specs[count++].index = regno;
7838 }
7839 }
7840 else
7841 {
7842 UNHANDLED;
7843 }
7844 break;
7845
7846 case IA64_RS_CR_LRR:
7847 if (note != 1)
7848 {
7849 UNHANDLED;
7850 }
7851 else
7852 {
7853 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
7854 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
7855 && (regno == CR_LRR0 || regno == CR_LRR1))
7856 {
7857 specs[count] = tmpl;
7858 specs[count++].index = regno;
7859 }
7860 }
7861 break;
7862
7863 case IA64_RS_CR:
7864 if (note == 1)
7865 {
7866 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
7867 {
7868 specs[count] = tmpl;
7869 specs[count++].index =
7870 CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
7871 }
7872 }
7873 else
7874 {
7875 UNHANDLED;
7876 }
7877 break;
7878
7879 case IA64_RS_FR:
7880 case IA64_RS_FRb:
7881 if (note != 1)
7882 {
7883 UNHANDLED;
7884 }
7885 else if (rsrc_write)
7886 {
7887 if (dep->specifier == IA64_RS_FRb
7888 && idesc->operands[0] == IA64_OPND_F1)
7889 {
7890 specs[count] = tmpl;
7891 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_FR;
7892 }
7893 }
7894 else
7895 {
7896 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
7897 {
7898 if (idesc->operands[i] == IA64_OPND_F2
7899 || idesc->operands[i] == IA64_OPND_F3
7900 || idesc->operands[i] == IA64_OPND_F4)
7901 {
7902 specs[count] = tmpl;
7903 specs[count++].index =
7904 CURR_SLOT.opnd[i].X_add_number - REG_FR;
7905 }
7906 }
7907 }
7908 break;
7909
7910 case IA64_RS_GR:
7911 if (note == 13)
7912 {
7913 /* This reference applies only to the GR whose value is loaded with
7914 data returned from memory. */
7915 specs[count] = tmpl;
7916 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_GR;
7917 }
7918 else if (note == 1)
7919 {
7920 if (rsrc_write)
7921 {
7922 for (i = 0; i < idesc->num_outputs; i++)
7923 if (idesc->operands[i] == IA64_OPND_R1
7924 || idesc->operands[i] == IA64_OPND_R2
7925 || idesc->operands[i] == IA64_OPND_R3)
7926 {
7927 specs[count] = tmpl;
7928 specs[count++].index =
7929 CURR_SLOT.opnd[i].X_add_number - REG_GR;
7930 }
7931 if (idesc->flags & IA64_OPCODE_POSTINC)
7932 for (i = 0; i < NELEMS (idesc->operands); i++)
7933 if (idesc->operands[i] == IA64_OPND_MR3)
7934 {
7935 specs[count] = tmpl;
7936 specs[count++].index =
7937 CURR_SLOT.opnd[i].X_add_number - REG_GR;
7938 }
7939 }
7940 else
7941 {
7942 /* Look for anything that reads a GR. */
7943 for (i = 0; i < NELEMS (idesc->operands); i++)
7944 {
7945 if (idesc->operands[i] == IA64_OPND_MR3
7946 || idesc->operands[i] == IA64_OPND_CPUID_R3
7947 || idesc->operands[i] == IA64_OPND_DBR_R3
7948 || idesc->operands[i] == IA64_OPND_IBR_R3
7949 || idesc->operands[i] == IA64_OPND_MSR_R3
7950 || idesc->operands[i] == IA64_OPND_PKR_R3
7951 || idesc->operands[i] == IA64_OPND_PMC_R3
7952 || idesc->operands[i] == IA64_OPND_PMD_R3
7953 || idesc->operands[i] == IA64_OPND_RR_R3
7954 || ((i >= idesc->num_outputs)
7955 && (idesc->operands[i] == IA64_OPND_R1
7956 || idesc->operands[i] == IA64_OPND_R2
7957 || idesc->operands[i] == IA64_OPND_R3
7958 /* addl source register. */
7959 || idesc->operands[i] == IA64_OPND_R3_2)))
7960 {
7961 specs[count] = tmpl;
7962 specs[count++].index =
7963 CURR_SLOT.opnd[i].X_add_number - REG_GR;
7964 }
7965 }
7966 }
7967 }
7968 else
7969 {
7970 UNHANDLED;
7971 }
7972 break;
7973
7974 /* This is the same as IA64_RS_PRr, except that the register range is
7975 from 1 - 15, and there are no rotating register reads/writes here. */
7976 case IA64_RS_PR:
7977 if (note == 0)
7978 {
7979 for (i = 1; i < 16; i++)
7980 {
7981 specs[count] = tmpl;
7982 specs[count++].index = i;
7983 }
7984 }
7985 else if (note == 7)
7986 {
7987 valueT mask = 0;
7988 /* Mark only those registers indicated by the mask. */
7989 if (rsrc_write)
7990 {
7991 mask = CURR_SLOT.opnd[2].X_add_number;
7992 for (i = 1; i < 16; i++)
7993 if (mask & ((valueT) 1 << i))
7994 {
7995 specs[count] = tmpl;
7996 specs[count++].index = i;
7997 }
7998 }
7999 else
8000 {
8001 UNHANDLED;
8002 }
8003 }
8004 else if (note == 11) /* note 11 implies note 1 as well */
8005 {
8006 if (rsrc_write)
8007 {
8008 for (i = 0; i < idesc->num_outputs; i++)
8009 {
8010 if (idesc->operands[i] == IA64_OPND_P1
8011 || idesc->operands[i] == IA64_OPND_P2)
8012 {
8013 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8014 if (regno >= 1 && regno < 16)
8015 {
8016 specs[count] = tmpl;
8017 specs[count++].index = regno;
8018 }
8019 }
8020 }
8021 }
8022 else
8023 {
8024 UNHANDLED;
8025 }
8026 }
8027 else if (note == 12)
8028 {
8029 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8030 {
8031 specs[count] = tmpl;
8032 specs[count++].index = CURR_SLOT.qp_regno;
8033 }
8034 }
8035 else if (note == 1)
8036 {
8037 if (rsrc_write)
8038 {
8039 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8040 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8041 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8042 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
8043
8044 if ((idesc->operands[0] == IA64_OPND_P1
8045 || idesc->operands[0] == IA64_OPND_P2)
8046 && p1 >= 1 && p1 < 16)
8047 {
8048 specs[count] = tmpl;
8049 specs[count].cmp_type =
8050 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
8051 specs[count++].index = p1;
8052 }
8053 if ((idesc->operands[1] == IA64_OPND_P1
8054 || idesc->operands[1] == IA64_OPND_P2)
8055 && p2 >= 1 && p2 < 16)
8056 {
8057 specs[count] = tmpl;
8058 specs[count].cmp_type =
8059 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
8060 specs[count++].index = p2;
8061 }
8062 }
8063 else
8064 {
8065 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8066 {
8067 specs[count] = tmpl;
8068 specs[count++].index = CURR_SLOT.qp_regno;
8069 }
8070 if (idesc->operands[1] == IA64_OPND_PR)
8071 {
8072 for (i = 1; i < 16; i++)
8073 {
8074 specs[count] = tmpl;
8075 specs[count++].index = i;
8076 }
8077 }
8078 }
8079 }
8080 else
8081 {
8082 UNHANDLED;
8083 }
8084 break;
8085
8086 /* This is the general case for PRs. IA64_RS_PR and IA64_RS_PR63 are
8087 simplified cases of this. */
8088 case IA64_RS_PRr:
8089 if (note == 0)
8090 {
8091 for (i = 16; i < 63; i++)
8092 {
8093 specs[count] = tmpl;
8094 specs[count++].index = i;
8095 }
8096 }
8097 else if (note == 7)
8098 {
8099 valueT mask = 0;
8100 /* Mark only those registers indicated by the mask. */
8101 if (rsrc_write
8102 && idesc->operands[0] == IA64_OPND_PR)
8103 {
8104 mask = CURR_SLOT.opnd[2].X_add_number;
8105 if (mask & ((valueT) 1 << 16))
8106 for (i = 16; i < 63; i++)
8107 {
8108 specs[count] = tmpl;
8109 specs[count++].index = i;
8110 }
8111 }
8112 else if (rsrc_write
8113 && idesc->operands[0] == IA64_OPND_PR_ROT)
8114 {
8115 for (i = 16; i < 63; i++)
8116 {
8117 specs[count] = tmpl;
8118 specs[count++].index = i;
8119 }
8120 }
8121 else
8122 {
8123 UNHANDLED;
8124 }
8125 }
8126 else if (note == 11) /* note 11 implies note 1 as well */
8127 {
8128 if (rsrc_write)
8129 {
8130 for (i = 0; i < idesc->num_outputs; i++)
8131 {
8132 if (idesc->operands[i] == IA64_OPND_P1
8133 || idesc->operands[i] == IA64_OPND_P2)
8134 {
8135 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8136 if (regno >= 16 && regno < 63)
8137 {
8138 specs[count] = tmpl;
8139 specs[count++].index = regno;
8140 }
8141 }
8142 }
8143 }
8144 else
8145 {
8146 UNHANDLED;
8147 }
8148 }
8149 else if (note == 12)
8150 {
8151 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
8152 {
8153 specs[count] = tmpl;
8154 specs[count++].index = CURR_SLOT.qp_regno;
8155 }
8156 }
8157 else if (note == 1)
8158 {
8159 if (rsrc_write)
8160 {
8161 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8162 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8163 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8164 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
8165
8166 if ((idesc->operands[0] == IA64_OPND_P1
8167 || idesc->operands[0] == IA64_OPND_P2)
8168 && p1 >= 16 && p1 < 63)
8169 {
8170 specs[count] = tmpl;
8171 specs[count].cmp_type =
8172 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
8173 specs[count++].index = p1;
8174 }
8175 if ((idesc->operands[1] == IA64_OPND_P1
8176 || idesc->operands[1] == IA64_OPND_P2)
8177 && p2 >= 16 && p2 < 63)
8178 {
8179 specs[count] = tmpl;
8180 specs[count].cmp_type =
8181 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
8182 specs[count++].index = p2;
8183 }
8184 }
8185 else
8186 {
8187 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
8188 {
8189 specs[count] = tmpl;
8190 specs[count++].index = CURR_SLOT.qp_regno;
8191 }
8192 if (idesc->operands[1] == IA64_OPND_PR)
8193 {
8194 for (i = 16; i < 63; i++)
8195 {
8196 specs[count] = tmpl;
8197 specs[count++].index = i;
8198 }
8199 }
8200 }
8201 }
8202 else
8203 {
8204 UNHANDLED;
8205 }
8206 break;
8207
8208 case IA64_RS_PSR:
8209 /* Verify that the instruction is using the PSR bit indicated in
8210 dep->regindex. */
8211 if (note == 0)
8212 {
8213 if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_UM)
8214 {
8215 if (dep->regindex < 6)
8216 {
8217 specs[count++] = tmpl;
8218 }
8219 }
8220 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR)
8221 {
8222 if (dep->regindex < 32
8223 || dep->regindex == 35
8224 || dep->regindex == 36
8225 || (!rsrc_write && dep->regindex == PSR_CPL))
8226 {
8227 specs[count++] = tmpl;
8228 }
8229 }
8230 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_L)
8231 {
8232 if (dep->regindex < 32
8233 || dep->regindex == 35
8234 || dep->regindex == 36
8235 || (rsrc_write && dep->regindex == PSR_CPL))
8236 {
8237 specs[count++] = tmpl;
8238 }
8239 }
8240 else
8241 {
8242 /* Several PSR bits have very specific dependencies. */
8243 switch (dep->regindex)
8244 {
8245 default:
8246 specs[count++] = tmpl;
8247 break;
8248 case PSR_IC:
8249 if (rsrc_write)
8250 {
8251 specs[count++] = tmpl;
8252 }
8253 else
8254 {
8255 /* Only certain CR accesses use PSR.ic */
8256 if (idesc->operands[0] == IA64_OPND_CR3
8257 || idesc->operands[1] == IA64_OPND_CR3)
8258 {
8259 int index =
8260 ((idesc->operands[0] == IA64_OPND_CR3)
8261 ? 0 : 1);
8262 int regno =
8263 CURR_SLOT.opnd[index].X_add_number - REG_CR;
8264
8265 switch (regno)
8266 {
8267 default:
8268 break;
8269 case CR_ITIR:
8270 case CR_IFS:
8271 case CR_IIM:
8272 case CR_IIP:
8273 case CR_IPSR:
8274 case CR_ISR:
8275 case CR_IFA:
8276 case CR_IHA:
8277 case CR_IIPA:
8278 specs[count++] = tmpl;
8279 break;
8280 }
8281 }
8282 }
8283 break;
8284 case PSR_CPL:
8285 if (rsrc_write)
8286 {
8287 specs[count++] = tmpl;
8288 }
8289 else
8290 {
8291 /* Only some AR accesses use cpl */
8292 if (idesc->operands[0] == IA64_OPND_AR3
8293 || idesc->operands[1] == IA64_OPND_AR3)
8294 {
8295 int index =
8296 ((idesc->operands[0] == IA64_OPND_AR3)
8297 ? 0 : 1);
8298 int regno =
8299 CURR_SLOT.opnd[index].X_add_number - REG_AR;
8300
8301 if (regno == AR_ITC
8302 || (index == 0
8303 && (regno == AR_ITC
8304 || regno == AR_RSC
8305 || (regno >= AR_K0
8306 && regno <= AR_K7))))
8307 {
8308 specs[count++] = tmpl;
8309 }
8310 }
8311 else
8312 {
8313 specs[count++] = tmpl;
8314 }
8315 break;
8316 }
8317 }
8318 }
8319 }
8320 else if (note == 7)
8321 {
8322 valueT mask = 0;
8323 if (idesc->operands[0] == IA64_OPND_IMMU24)
8324 {
8325 mask = CURR_SLOT.opnd[0].X_add_number;
8326 }
8327 else
8328 {
8329 UNHANDLED;
8330 }
8331 if (mask & ((valueT) 1 << dep->regindex))
8332 {
8333 specs[count++] = tmpl;
8334 }
8335 }
8336 else if (note == 8)
8337 {
8338 int min = dep->regindex == PSR_DFL ? 2 : 32;
8339 int max = dep->regindex == PSR_DFL ? 31 : 127;
8340 /* dfh is read on FR32-127; dfl is read on FR2-31 */
8341 for (i = 0; i < NELEMS (idesc->operands); i++)
8342 {
8343 if (idesc->operands[i] == IA64_OPND_F1
8344 || idesc->operands[i] == IA64_OPND_F2
8345 || idesc->operands[i] == IA64_OPND_F3
8346 || idesc->operands[i] == IA64_OPND_F4)
8347 {
8348 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
8349 if (reg >= min && reg <= max)
8350 {
8351 specs[count++] = tmpl;
8352 }
8353 }
8354 }
8355 }
8356 else if (note == 9)
8357 {
8358 int min = dep->regindex == PSR_MFL ? 2 : 32;
8359 int max = dep->regindex == PSR_MFL ? 31 : 127;
8360 /* mfh is read on writes to FR32-127; mfl is read on writes to
8361 FR2-31 */
8362 for (i = 0; i < idesc->num_outputs; i++)
8363 {
8364 if (idesc->operands[i] == IA64_OPND_F1)
8365 {
8366 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
8367 if (reg >= min && reg <= max)
8368 {
8369 specs[count++] = tmpl;
8370 }
8371 }
8372 }
8373 }
8374 else if (note == 10)
8375 {
8376 for (i = 0; i < NELEMS (idesc->operands); i++)
8377 {
8378 if (idesc->operands[i] == IA64_OPND_R1
8379 || idesc->operands[i] == IA64_OPND_R2
8380 || idesc->operands[i] == IA64_OPND_R3)
8381 {
8382 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
8383 if (regno >= 16 && regno <= 31)
8384 {
8385 specs[count++] = tmpl;
8386 }
8387 }
8388 }
8389 }
8390 else
8391 {
8392 UNHANDLED;
8393 }
8394 break;
8395
8396 case IA64_RS_AR_FPSR:
8397 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8398 {
8399 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8400 if (regno == AR_FPSR)
8401 {
8402 specs[count++] = tmpl;
8403 }
8404 }
8405 else
8406 {
8407 specs[count++] = tmpl;
8408 }
8409 break;
8410
8411 case IA64_RS_ARX:
8412 /* Handle all AR[REG] resources */
8413 if (note == 0 || note == 1)
8414 {
8415 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8416 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3
8417 && regno == dep->regindex)
8418 {
8419 specs[count++] = tmpl;
8420 }
8421 /* other AR[REG] resources may be affected by AR accesses */
8422 else if (idesc->operands[0] == IA64_OPND_AR3)
8423 {
8424 /* AR[] writes */
8425 regno = CURR_SLOT.opnd[0].X_add_number - REG_AR;
8426 switch (dep->regindex)
8427 {
8428 default:
8429 break;
8430 case AR_BSP:
8431 case AR_RNAT:
8432 if (regno == AR_BSPSTORE)
8433 {
8434 specs[count++] = tmpl;
8435 }
8436 case AR_RSC:
8437 if (!rsrc_write &&
8438 (regno == AR_BSPSTORE
8439 || regno == AR_RNAT))
8440 {
8441 specs[count++] = tmpl;
8442 }
8443 break;
8444 }
8445 }
8446 else if (idesc->operands[1] == IA64_OPND_AR3)
8447 {
8448 /* AR[] reads */
8449 regno = CURR_SLOT.opnd[1].X_add_number - REG_AR;
8450 switch (dep->regindex)
8451 {
8452 default:
8453 break;
8454 case AR_RSC:
8455 if (regno == AR_BSPSTORE || regno == AR_RNAT)
8456 {
8457 specs[count++] = tmpl;
8458 }
8459 break;
8460 }
8461 }
8462 else
8463 {
8464 specs[count++] = tmpl;
8465 }
8466 }
8467 else
8468 {
8469 UNHANDLED;
8470 }
8471 break;
8472
8473 case IA64_RS_CRX:
8474 /* Handle all CR[REG] resources */
8475 if (note == 0 || note == 1)
8476 {
8477 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
8478 {
8479 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8480 if (regno == dep->regindex)
8481 {
8482 specs[count++] = tmpl;
8483 }
8484 else if (!rsrc_write)
8485 {
8486 /* Reads from CR[IVR] affect other resources. */
8487 if (regno == CR_IVR)
8488 {
8489 if ((dep->regindex >= CR_IRR0
8490 && dep->regindex <= CR_IRR3)
8491 || dep->regindex == CR_TPR)
8492 {
8493 specs[count++] = tmpl;
8494 }
8495 }
8496 }
8497 }
8498 else
8499 {
8500 specs[count++] = tmpl;
8501 }
8502 }
8503 else
8504 {
8505 UNHANDLED;
8506 }
8507 break;
8508
8509 case IA64_RS_INSERVICE:
8510 /* look for write of EOI (67) or read of IVR (65) */
8511 if ((idesc->operands[0] == IA64_OPND_CR3
8512 && CURR_SLOT.opnd[0].X_add_number - REG_CR == CR_EOI)
8513 || (idesc->operands[1] == IA64_OPND_CR3
8514 && CURR_SLOT.opnd[1].X_add_number - REG_CR == CR_IVR))
8515 {
8516 specs[count++] = tmpl;
8517 }
8518 break;
8519
8520 case IA64_RS_GR0:
8521 if (note == 1)
8522 {
8523 specs[count++] = tmpl;
8524 }
8525 else
8526 {
8527 UNHANDLED;
8528 }
8529 break;
8530
8531 case IA64_RS_CFM:
8532 if (note != 2)
8533 {
8534 specs[count++] = tmpl;
8535 }
8536 else
8537 {
8538 /* Check if any of the registers accessed are in the rotating region.
8539 mov to/from pr accesses CFM only when qp_regno is in the rotating
8540 region */
8541 for (i = 0; i < NELEMS (idesc->operands); i++)
8542 {
8543 if (idesc->operands[i] == IA64_OPND_R1
8544 || idesc->operands[i] == IA64_OPND_R2
8545 || idesc->operands[i] == IA64_OPND_R3)
8546 {
8547 int num = CURR_SLOT.opnd[i].X_add_number - REG_GR;
8548 /* Assumes that md.rot.num_regs is always valid */
8549 if (md.rot.num_regs > 0
8550 && num > 31
8551 && num < 31 + md.rot.num_regs)
8552 {
8553 specs[count] = tmpl;
8554 specs[count++].specific = 0;
8555 }
8556 }
8557 else if (idesc->operands[i] == IA64_OPND_F1
8558 || idesc->operands[i] == IA64_OPND_F2
8559 || idesc->operands[i] == IA64_OPND_F3
8560 || idesc->operands[i] == IA64_OPND_F4)
8561 {
8562 int num = CURR_SLOT.opnd[i].X_add_number - REG_FR;
8563 if (num > 31)
8564 {
8565 specs[count] = tmpl;
8566 specs[count++].specific = 0;
8567 }
8568 }
8569 else if (idesc->operands[i] == IA64_OPND_P1
8570 || idesc->operands[i] == IA64_OPND_P2)
8571 {
8572 int num = CURR_SLOT.opnd[i].X_add_number - REG_P;
8573 if (num > 15)
8574 {
8575 specs[count] = tmpl;
8576 specs[count++].specific = 0;
8577 }
8578 }
8579 }
8580 if (CURR_SLOT.qp_regno > 15)
8581 {
8582 specs[count] = tmpl;
8583 specs[count++].specific = 0;
8584 }
8585 }
8586 break;
8587
8588 /* This is the same as IA64_RS_PRr, except simplified to account for
8589 the fact that there is only one register. */
8590 case IA64_RS_PR63:
8591 if (note == 0)
8592 {
8593 specs[count++] = tmpl;
8594 }
8595 else if (note == 7)
8596 {
8597 valueT mask = 0;
8598 if (idesc->operands[2] == IA64_OPND_IMM17)
8599 mask = CURR_SLOT.opnd[2].X_add_number;
8600 if (mask & ((valueT) 1 << 63))
8601 specs[count++] = tmpl;
8602 }
8603 else if (note == 11)
8604 {
8605 if ((idesc->operands[0] == IA64_OPND_P1
8606 && CURR_SLOT.opnd[0].X_add_number - REG_P == 63)
8607 || (idesc->operands[1] == IA64_OPND_P2
8608 && CURR_SLOT.opnd[1].X_add_number - REG_P == 63))
8609 {
8610 specs[count++] = tmpl;
8611 }
8612 }
8613 else if (note == 12)
8614 {
8615 if (CURR_SLOT.qp_regno == 63)
8616 {
8617 specs[count++] = tmpl;
8618 }
8619 }
8620 else if (note == 1)
8621 {
8622 if (rsrc_write)
8623 {
8624 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8625 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8626 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8627 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
8628
8629 if (p1 == 63
8630 && (idesc->operands[0] == IA64_OPND_P1
8631 || idesc->operands[0] == IA64_OPND_P2))
8632 {
8633 specs[count] = tmpl;
8634 specs[count++].cmp_type =
8635 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
8636 }
8637 if (p2 == 63
8638 && (idesc->operands[1] == IA64_OPND_P1
8639 || idesc->operands[1] == IA64_OPND_P2))
8640 {
8641 specs[count] = tmpl;
8642 specs[count++].cmp_type =
8643 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
8644 }
8645 }
8646 else
8647 {
8648 if (CURR_SLOT.qp_regno == 63)
8649 {
8650 specs[count++] = tmpl;
8651 }
8652 }
8653 }
8654 else
8655 {
8656 UNHANDLED;
8657 }
8658 break;
8659
8660 case IA64_RS_RSE:
8661 /* FIXME we can identify some individual RSE written resources, but RSE
8662 read resources have not yet been completely identified, so for now
8663 treat RSE as a single resource */
8664 if (strncmp (idesc->name, "mov", 3) == 0)
8665 {
8666 if (rsrc_write)
8667 {
8668 if (idesc->operands[0] == IA64_OPND_AR3
8669 && CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE)
8670 {
8671 specs[count] = tmpl;
8672 specs[count++].index = 0; /* IA64_RSE_BSPLOAD/RNATBITINDEX */
8673 }
8674 }
8675 else
8676 {
8677 if (idesc->operands[0] == IA64_OPND_AR3)
8678 {
8679 if (CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE
8680 || CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_RNAT)
8681 {
8682 specs[count++] = tmpl;
8683 }
8684 }
8685 else if (idesc->operands[1] == IA64_OPND_AR3)
8686 {
8687 if (CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSP
8688 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSPSTORE
8689 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_RNAT)
8690 {
8691 specs[count++] = tmpl;
8692 }
8693 }
8694 }
8695 }
8696 else
8697 {
8698 specs[count++] = tmpl;
8699 }
8700 break;
8701
8702 case IA64_RS_ANY:
8703 /* FIXME -- do any of these need to be non-specific? */
8704 specs[count++] = tmpl;
8705 break;
8706
8707 default:
8708 as_bad (_("Unrecognized dependency specifier %d\n"), dep->specifier);
8709 break;
8710 }
8711
8712 return count;
8713 }
8714
8715 /* Clear branch flags on marked resources. This breaks the link between the
8716 QP of the marking instruction and a subsequent branch on the same QP. */
8717
8718 static void
8719 clear_qp_branch_flag (mask)
8720 valueT mask;
8721 {
8722 int i;
8723 for (i = 0; i < regdepslen; i++)
8724 {
8725 valueT bit = ((valueT) 1 << regdeps[i].qp_regno);
8726 if ((bit & mask) != 0)
8727 {
8728 regdeps[i].link_to_qp_branch = 0;
8729 }
8730 }
8731 }
8732
8733 /* MASK contains 2 and only 2 PRs which are mutually exclusive. Remove
8734 any mutexes which contain one of the PRs and create new ones when
8735 needed. */
8736
8737 static int
8738 update_qp_mutex (valueT mask)
8739 {
8740 int i;
8741 int add = 0;
8742
8743 i = 0;
8744 while (i < qp_mutexeslen)
8745 {
8746 if ((qp_mutexes[i].prmask & mask) != 0)
8747 {
8748 /* If it destroys and creates the same mutex, do nothing. */
8749 if (qp_mutexes[i].prmask == mask
8750 && qp_mutexes[i].path == md.path)
8751 {
8752 i++;
8753 add = -1;
8754 }
8755 else
8756 {
8757 int keep = 0;
8758
8759 if (md.debug_dv)
8760 {
8761 fprintf (stderr, " Clearing mutex relation");
8762 print_prmask (qp_mutexes[i].prmask);
8763 fprintf (stderr, "\n");
8764 }
8765
8766 /* Deal with the old mutex with more than 3+ PRs only if
8767 the new mutex on the same execution path with it.
8768
8769 FIXME: The 3+ mutex support is incomplete.
8770 dot_pred_rel () may be a better place to fix it. */
8771 if (qp_mutexes[i].path == md.path)
8772 {
8773 /* If it is a proper subset of the mutex, create a
8774 new mutex. */
8775 if (add == 0
8776 && (qp_mutexes[i].prmask & mask) == mask)
8777 add = 1;
8778
8779 qp_mutexes[i].prmask &= ~mask;
8780 if (qp_mutexes[i].prmask & (qp_mutexes[i].prmask - 1))
8781 {
8782 /* Modify the mutex if there are more than one
8783 PR left. */
8784 keep = 1;
8785 i++;
8786 }
8787 }
8788
8789 if (keep == 0)
8790 /* Remove the mutex. */
8791 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
8792 }
8793 }
8794 else
8795 ++i;
8796 }
8797
8798 if (add == 1)
8799 add_qp_mutex (mask);
8800
8801 return add;
8802 }
8803
8804 /* Remove any mutexes which contain any of the PRs indicated in the mask.
8805
8806 Any changes to a PR clears the mutex relations which include that PR. */
8807
8808 static void
8809 clear_qp_mutex (mask)
8810 valueT mask;
8811 {
8812 int i;
8813
8814 i = 0;
8815 while (i < qp_mutexeslen)
8816 {
8817 if ((qp_mutexes[i].prmask & mask) != 0)
8818 {
8819 if (md.debug_dv)
8820 {
8821 fprintf (stderr, " Clearing mutex relation");
8822 print_prmask (qp_mutexes[i].prmask);
8823 fprintf (stderr, "\n");
8824 }
8825 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
8826 }
8827 else
8828 ++i;
8829 }
8830 }
8831
8832 /* Clear implies relations which contain PRs in the given masks.
8833 P1_MASK indicates the source of the implies relation, while P2_MASK
8834 indicates the implied PR. */
8835
8836 static void
8837 clear_qp_implies (p1_mask, p2_mask)
8838 valueT p1_mask;
8839 valueT p2_mask;
8840 {
8841 int i;
8842
8843 i = 0;
8844 while (i < qp_implieslen)
8845 {
8846 if ((((valueT) 1 << qp_implies[i].p1) & p1_mask) != 0
8847 || (((valueT) 1 << qp_implies[i].p2) & p2_mask) != 0)
8848 {
8849 if (md.debug_dv)
8850 fprintf (stderr, "Clearing implied relation PR%d->PR%d\n",
8851 qp_implies[i].p1, qp_implies[i].p2);
8852 qp_implies[i] = qp_implies[--qp_implieslen];
8853 }
8854 else
8855 ++i;
8856 }
8857 }
8858
8859 /* Add the PRs specified to the list of implied relations. */
8860
8861 static void
8862 add_qp_imply (p1, p2)
8863 int p1, p2;
8864 {
8865 valueT mask;
8866 valueT bit;
8867 int i;
8868
8869 /* p0 is not meaningful here. */
8870 if (p1 == 0 || p2 == 0)
8871 abort ();
8872
8873 if (p1 == p2)
8874 return;
8875
8876 /* If it exists already, ignore it. */
8877 for (i = 0; i < qp_implieslen; i++)
8878 {
8879 if (qp_implies[i].p1 == p1
8880 && qp_implies[i].p2 == p2
8881 && qp_implies[i].path == md.path
8882 && !qp_implies[i].p2_branched)
8883 return;
8884 }
8885
8886 if (qp_implieslen == qp_impliestotlen)
8887 {
8888 qp_impliestotlen += 20;
8889 qp_implies = (struct qp_imply *)
8890 xrealloc ((void *) qp_implies,
8891 qp_impliestotlen * sizeof (struct qp_imply));
8892 }
8893 if (md.debug_dv)
8894 fprintf (stderr, " Registering PR%d implies PR%d\n", p1, p2);
8895 qp_implies[qp_implieslen].p1 = p1;
8896 qp_implies[qp_implieslen].p2 = p2;
8897 qp_implies[qp_implieslen].path = md.path;
8898 qp_implies[qp_implieslen++].p2_branched = 0;
8899
8900 /* Add in the implied transitive relations; for everything that p2 implies,
8901 make p1 imply that, too; for everything that implies p1, make it imply p2
8902 as well. */
8903 for (i = 0; i < qp_implieslen; i++)
8904 {
8905 if (qp_implies[i].p1 == p2)
8906 add_qp_imply (p1, qp_implies[i].p2);
8907 if (qp_implies[i].p2 == p1)
8908 add_qp_imply (qp_implies[i].p1, p2);
8909 }
8910 /* Add in mutex relations implied by this implies relation; for each mutex
8911 relation containing p2, duplicate it and replace p2 with p1. */
8912 bit = (valueT) 1 << p1;
8913 mask = (valueT) 1 << p2;
8914 for (i = 0; i < qp_mutexeslen; i++)
8915 {
8916 if (qp_mutexes[i].prmask & mask)
8917 add_qp_mutex ((qp_mutexes[i].prmask & ~mask) | bit);
8918 }
8919 }
8920
8921 /* Add the PRs specified in the mask to the mutex list; this means that only
8922 one of the PRs can be true at any time. PR0 should never be included in
8923 the mask. */
8924
8925 static void
8926 add_qp_mutex (mask)
8927 valueT mask;
8928 {
8929 if (mask & 0x1)
8930 abort ();
8931
8932 if (qp_mutexeslen == qp_mutexestotlen)
8933 {
8934 qp_mutexestotlen += 20;
8935 qp_mutexes = (struct qpmutex *)
8936 xrealloc ((void *) qp_mutexes,
8937 qp_mutexestotlen * sizeof (struct qpmutex));
8938 }
8939 if (md.debug_dv)
8940 {
8941 fprintf (stderr, " Registering mutex on");
8942 print_prmask (mask);
8943 fprintf (stderr, "\n");
8944 }
8945 qp_mutexes[qp_mutexeslen].path = md.path;
8946 qp_mutexes[qp_mutexeslen++].prmask = mask;
8947 }
8948
8949 static int
8950 has_suffix_p (name, suffix)
8951 const char *name;
8952 const char *suffix;
8953 {
8954 size_t namelen = strlen (name);
8955 size_t sufflen = strlen (suffix);
8956
8957 if (namelen <= sufflen)
8958 return 0;
8959 return strcmp (name + namelen - sufflen, suffix) == 0;
8960 }
8961
8962 static void
8963 clear_register_values ()
8964 {
8965 int i;
8966 if (md.debug_dv)
8967 fprintf (stderr, " Clearing register values\n");
8968 for (i = 1; i < NELEMS (gr_values); i++)
8969 gr_values[i].known = 0;
8970 }
8971
8972 /* Keep track of register values/changes which affect DV tracking.
8973
8974 optimization note: should add a flag to classes of insns where otherwise we
8975 have to examine a group of strings to identify them. */
8976
8977 static void
8978 note_register_values (idesc)
8979 struct ia64_opcode *idesc;
8980 {
8981 valueT qp_changemask = 0;
8982 int i;
8983
8984 /* Invalidate values for registers being written to. */
8985 for (i = 0; i < idesc->num_outputs; i++)
8986 {
8987 if (idesc->operands[i] == IA64_OPND_R1
8988 || idesc->operands[i] == IA64_OPND_R2
8989 || idesc->operands[i] == IA64_OPND_R3)
8990 {
8991 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
8992 if (regno > 0 && regno < NELEMS (gr_values))
8993 gr_values[regno].known = 0;
8994 }
8995 else if (idesc->operands[i] == IA64_OPND_R3_2)
8996 {
8997 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
8998 if (regno > 0 && regno < 4)
8999 gr_values[regno].known = 0;
9000 }
9001 else if (idesc->operands[i] == IA64_OPND_P1
9002 || idesc->operands[i] == IA64_OPND_P2)
9003 {
9004 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9005 qp_changemask |= (valueT) 1 << regno;
9006 }
9007 else if (idesc->operands[i] == IA64_OPND_PR)
9008 {
9009 if (idesc->operands[2] & (valueT) 0x10000)
9010 qp_changemask = ~(valueT) 0x1FFFF | idesc->operands[2];
9011 else
9012 qp_changemask = idesc->operands[2];
9013 break;
9014 }
9015 else if (idesc->operands[i] == IA64_OPND_PR_ROT)
9016 {
9017 if (idesc->operands[1] & ((valueT) 1 << 43))
9018 qp_changemask = -((valueT) 1 << 44) | idesc->operands[1];
9019 else
9020 qp_changemask = idesc->operands[1];
9021 qp_changemask &= ~(valueT) 0xFFFF;
9022 break;
9023 }
9024 }
9025
9026 /* Always clear qp branch flags on any PR change. */
9027 /* FIXME there may be exceptions for certain compares. */
9028 clear_qp_branch_flag (qp_changemask);
9029
9030 /* Invalidate rotating registers on insns which affect RRBs in CFM. */
9031 if (idesc->flags & IA64_OPCODE_MOD_RRBS)
9032 {
9033 qp_changemask |= ~(valueT) 0xFFFF;
9034 if (strcmp (idesc->name, "clrrrb.pr") != 0)
9035 {
9036 for (i = 32; i < 32 + md.rot.num_regs; i++)
9037 gr_values[i].known = 0;
9038 }
9039 clear_qp_mutex (qp_changemask);
9040 clear_qp_implies (qp_changemask, qp_changemask);
9041 }
9042 /* After a call, all register values are undefined, except those marked
9043 as "safe". */
9044 else if (strncmp (idesc->name, "br.call", 6) == 0
9045 || strncmp (idesc->name, "brl.call", 7) == 0)
9046 {
9047 /* FIXME keep GR values which are marked as "safe_across_calls" */
9048 clear_register_values ();
9049 clear_qp_mutex (~qp_safe_across_calls);
9050 clear_qp_implies (~qp_safe_across_calls, ~qp_safe_across_calls);
9051 clear_qp_branch_flag (~qp_safe_across_calls);
9052 }
9053 else if (is_interruption_or_rfi (idesc)
9054 || is_taken_branch (idesc))
9055 {
9056 clear_register_values ();
9057 clear_qp_mutex (~(valueT) 0);
9058 clear_qp_implies (~(valueT) 0, ~(valueT) 0);
9059 }
9060 /* Look for mutex and implies relations. */
9061 else if ((idesc->operands[0] == IA64_OPND_P1
9062 || idesc->operands[0] == IA64_OPND_P2)
9063 && (idesc->operands[1] == IA64_OPND_P1
9064 || idesc->operands[1] == IA64_OPND_P2))
9065 {
9066 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9067 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9068 valueT p1mask = (p1 != 0) ? (valueT) 1 << p1 : 0;
9069 valueT p2mask = (p2 != 0) ? (valueT) 1 << p2 : 0;
9070
9071 /* If both PRs are PR0, we can't really do anything. */
9072 if (p1 == 0 && p2 == 0)
9073 {
9074 if (md.debug_dv)
9075 fprintf (stderr, " Ignoring PRs due to inclusion of p0\n");
9076 }
9077 /* In general, clear mutexes and implies which include P1 or P2,
9078 with the following exceptions. */
9079 else if (has_suffix_p (idesc->name, ".or.andcm")
9080 || has_suffix_p (idesc->name, ".and.orcm"))
9081 {
9082 clear_qp_implies (p2mask, p1mask);
9083 }
9084 else if (has_suffix_p (idesc->name, ".andcm")
9085 || has_suffix_p (idesc->name, ".and"))
9086 {
9087 clear_qp_implies (0, p1mask | p2mask);
9088 }
9089 else if (has_suffix_p (idesc->name, ".orcm")
9090 || has_suffix_p (idesc->name, ".or"))
9091 {
9092 clear_qp_mutex (p1mask | p2mask);
9093 clear_qp_implies (p1mask | p2mask, 0);
9094 }
9095 else
9096 {
9097 int added = 0;
9098
9099 clear_qp_implies (p1mask | p2mask, p1mask | p2mask);
9100
9101 /* If one of the PRs is PR0, we call clear_qp_mutex. */
9102 if (p1 == 0 || p2 == 0)
9103 clear_qp_mutex (p1mask | p2mask);
9104 else
9105 added = update_qp_mutex (p1mask | p2mask);
9106
9107 if (CURR_SLOT.qp_regno == 0
9108 || has_suffix_p (idesc->name, ".unc"))
9109 {
9110 if (added == 0 && p1 && p2)
9111 add_qp_mutex (p1mask | p2mask);
9112 if (CURR_SLOT.qp_regno != 0)
9113 {
9114 if (p1)
9115 add_qp_imply (p1, CURR_SLOT.qp_regno);
9116 if (p2)
9117 add_qp_imply (p2, CURR_SLOT.qp_regno);
9118 }
9119 }
9120 }
9121 }
9122 /* Look for mov imm insns into GRs. */
9123 else if (idesc->operands[0] == IA64_OPND_R1
9124 && (idesc->operands[1] == IA64_OPND_IMM22
9125 || idesc->operands[1] == IA64_OPND_IMMU64)
9126 && (strcmp (idesc->name, "mov") == 0
9127 || strcmp (idesc->name, "movl") == 0))
9128 {
9129 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
9130 if (regno > 0 && regno < NELEMS (gr_values))
9131 {
9132 gr_values[regno].known = 1;
9133 gr_values[regno].value = CURR_SLOT.opnd[1].X_add_number;
9134 gr_values[regno].path = md.path;
9135 if (md.debug_dv)
9136 {
9137 fprintf (stderr, " Know gr%d = ", regno);
9138 fprintf_vma (stderr, gr_values[regno].value);
9139 fputs ("\n", stderr);
9140 }
9141 }
9142 }
9143 else
9144 {
9145 clear_qp_mutex (qp_changemask);
9146 clear_qp_implies (qp_changemask, qp_changemask);
9147 }
9148 }
9149
9150 /* Return whether the given predicate registers are currently mutex. */
9151
9152 static int
9153 qp_mutex (p1, p2, path)
9154 int p1;
9155 int p2;
9156 int path;
9157 {
9158 int i;
9159 valueT mask;
9160
9161 if (p1 != p2)
9162 {
9163 mask = ((valueT) 1 << p1) | (valueT) 1 << p2;
9164 for (i = 0; i < qp_mutexeslen; i++)
9165 {
9166 if (qp_mutexes[i].path >= path
9167 && (qp_mutexes[i].prmask & mask) == mask)
9168 return 1;
9169 }
9170 }
9171 return 0;
9172 }
9173
9174 /* Return whether the given resource is in the given insn's list of chks
9175 Return 1 if the conflict is absolutely determined, 2 if it's a potential
9176 conflict. */
9177
9178 static int
9179 resources_match (rs, idesc, note, qp_regno, path)
9180 struct rsrc *rs;
9181 struct ia64_opcode *idesc;
9182 int note;
9183 int qp_regno;
9184 int path;
9185 {
9186 struct rsrc specs[MAX_SPECS];
9187 int count;
9188
9189 /* If the marked resource's qp_regno and the given qp_regno are mutex,
9190 we don't need to check. One exception is note 11, which indicates that
9191 target predicates are written regardless of PR[qp]. */
9192 if (qp_mutex (rs->qp_regno, qp_regno, path)
9193 && note != 11)
9194 return 0;
9195
9196 count = specify_resource (rs->dependency, idesc, DV_CHK, specs, note, path);
9197 while (count-- > 0)
9198 {
9199 /* UNAT checking is a bit more specific than other resources */
9200 if (rs->dependency->specifier == IA64_RS_AR_UNAT
9201 && specs[count].mem_offset.hint
9202 && rs->mem_offset.hint)
9203 {
9204 if (rs->mem_offset.base == specs[count].mem_offset.base)
9205 {
9206 if (((rs->mem_offset.offset >> 3) & 0x3F) ==
9207 ((specs[count].mem_offset.offset >> 3) & 0x3F))
9208 return 1;
9209 else
9210 continue;
9211 }
9212 }
9213
9214 /* Skip apparent PR write conflicts where both writes are an AND or both
9215 writes are an OR. */
9216 if (rs->dependency->specifier == IA64_RS_PR
9217 || rs->dependency->specifier == IA64_RS_PRr
9218 || rs->dependency->specifier == IA64_RS_PR63)
9219 {
9220 if (specs[count].cmp_type != CMP_NONE
9221 && specs[count].cmp_type == rs->cmp_type)
9222 {
9223 if (md.debug_dv)
9224 fprintf (stderr, " %s on parallel compare allowed (PR%d)\n",
9225 dv_mode[rs->dependency->mode],
9226 rs->dependency->specifier != IA64_RS_PR63 ?
9227 specs[count].index : 63);
9228 continue;
9229 }
9230 if (md.debug_dv)
9231 fprintf (stderr,
9232 " %s on parallel compare conflict %s vs %s on PR%d\n",
9233 dv_mode[rs->dependency->mode],
9234 dv_cmp_type[rs->cmp_type],
9235 dv_cmp_type[specs[count].cmp_type],
9236 rs->dependency->specifier != IA64_RS_PR63 ?
9237 specs[count].index : 63);
9238
9239 }
9240
9241 /* If either resource is not specific, conservatively assume a conflict
9242 */
9243 if (!specs[count].specific || !rs->specific)
9244 return 2;
9245 else if (specs[count].index == rs->index)
9246 return 1;
9247 }
9248 #if 0
9249 if (md.debug_dv)
9250 fprintf (stderr, " No %s conflicts\n", rs->dependency->name);
9251 #endif
9252
9253 return 0;
9254 }
9255
9256 /* Indicate an instruction group break; if INSERT_STOP is non-zero, then
9257 insert a stop to create the break. Update all resource dependencies
9258 appropriately. If QP_REGNO is non-zero, only apply the break to resources
9259 which use the same QP_REGNO and have the link_to_qp_branch flag set.
9260 If SAVE_CURRENT is non-zero, don't affect resources marked by the current
9261 instruction. */
9262
9263 static void
9264 insn_group_break (insert_stop, qp_regno, save_current)
9265 int insert_stop;
9266 int qp_regno;
9267 int save_current;
9268 {
9269 int i;
9270
9271 if (insert_stop && md.num_slots_in_use > 0)
9272 PREV_SLOT.end_of_insn_group = 1;
9273
9274 if (md.debug_dv)
9275 {
9276 fprintf (stderr, " Insn group break%s",
9277 (insert_stop ? " (w/stop)" : ""));
9278 if (qp_regno != 0)
9279 fprintf (stderr, " effective for QP=%d", qp_regno);
9280 fprintf (stderr, "\n");
9281 }
9282
9283 i = 0;
9284 while (i < regdepslen)
9285 {
9286 const struct ia64_dependency *dep = regdeps[i].dependency;
9287
9288 if (qp_regno != 0
9289 && regdeps[i].qp_regno != qp_regno)
9290 {
9291 ++i;
9292 continue;
9293 }
9294
9295 if (save_current
9296 && CURR_SLOT.src_file == regdeps[i].file
9297 && CURR_SLOT.src_line == regdeps[i].line)
9298 {
9299 ++i;
9300 continue;
9301 }
9302
9303 /* clear dependencies which are automatically cleared by a stop, or
9304 those that have reached the appropriate state of insn serialization */
9305 if (dep->semantics == IA64_DVS_IMPLIED
9306 || dep->semantics == IA64_DVS_IMPLIEDF
9307 || regdeps[i].insn_srlz == STATE_SRLZ)
9308 {
9309 print_dependency ("Removing", i);
9310 regdeps[i] = regdeps[--regdepslen];
9311 }
9312 else
9313 {
9314 if (dep->semantics == IA64_DVS_DATA
9315 || dep->semantics == IA64_DVS_INSTR
9316 || dep->semantics == IA64_DVS_SPECIFIC)
9317 {
9318 if (regdeps[i].insn_srlz == STATE_NONE)
9319 regdeps[i].insn_srlz = STATE_STOP;
9320 if (regdeps[i].data_srlz == STATE_NONE)
9321 regdeps[i].data_srlz = STATE_STOP;
9322 }
9323 ++i;
9324 }
9325 }
9326 }
9327
9328 /* Add the given resource usage spec to the list of active dependencies. */
9329
9330 static void
9331 mark_resource (idesc, dep, spec, depind, path)
9332 struct ia64_opcode *idesc ATTRIBUTE_UNUSED;
9333 const struct ia64_dependency *dep ATTRIBUTE_UNUSED;
9334 struct rsrc *spec;
9335 int depind;
9336 int path;
9337 {
9338 if (regdepslen == regdepstotlen)
9339 {
9340 regdepstotlen += 20;
9341 regdeps = (struct rsrc *)
9342 xrealloc ((void *) regdeps,
9343 regdepstotlen * sizeof (struct rsrc));
9344 }
9345
9346 regdeps[regdepslen] = *spec;
9347 regdeps[regdepslen].depind = depind;
9348 regdeps[regdepslen].path = path;
9349 regdeps[regdepslen].file = CURR_SLOT.src_file;
9350 regdeps[regdepslen].line = CURR_SLOT.src_line;
9351
9352 print_dependency ("Adding", regdepslen);
9353
9354 ++regdepslen;
9355 }
9356
9357 static void
9358 print_dependency (action, depind)
9359 const char *action;
9360 int depind;
9361 {
9362 if (md.debug_dv)
9363 {
9364 fprintf (stderr, " %s %s '%s'",
9365 action, dv_mode[(regdeps[depind].dependency)->mode],
9366 (regdeps[depind].dependency)->name);
9367 if (regdeps[depind].specific && regdeps[depind].index != 0)
9368 fprintf (stderr, " (%d)", regdeps[depind].index);
9369 if (regdeps[depind].mem_offset.hint)
9370 {
9371 fputs (" ", stderr);
9372 fprintf_vma (stderr, regdeps[depind].mem_offset.base);
9373 fputs ("+", stderr);
9374 fprintf_vma (stderr, regdeps[depind].mem_offset.offset);
9375 }
9376 fprintf (stderr, "\n");
9377 }
9378 }
9379
9380 static void
9381 instruction_serialization ()
9382 {
9383 int i;
9384 if (md.debug_dv)
9385 fprintf (stderr, " Instruction serialization\n");
9386 for (i = 0; i < regdepslen; i++)
9387 if (regdeps[i].insn_srlz == STATE_STOP)
9388 regdeps[i].insn_srlz = STATE_SRLZ;
9389 }
9390
9391 static void
9392 data_serialization ()
9393 {
9394 int i = 0;
9395 if (md.debug_dv)
9396 fprintf (stderr, " Data serialization\n");
9397 while (i < regdepslen)
9398 {
9399 if (regdeps[i].data_srlz == STATE_STOP
9400 /* Note: as of 991210, all "other" dependencies are cleared by a
9401 data serialization. This might change with new tables */
9402 || (regdeps[i].dependency)->semantics == IA64_DVS_OTHER)
9403 {
9404 print_dependency ("Removing", i);
9405 regdeps[i] = regdeps[--regdepslen];
9406 }
9407 else
9408 ++i;
9409 }
9410 }
9411
9412 /* Insert stops and serializations as needed to avoid DVs. */
9413
9414 static void
9415 remove_marked_resource (rs)
9416 struct rsrc *rs;
9417 {
9418 switch (rs->dependency->semantics)
9419 {
9420 case IA64_DVS_SPECIFIC:
9421 if (md.debug_dv)
9422 fprintf (stderr, "Implementation-specific, assume worst case...\n");
9423 /* ...fall through... */
9424 case IA64_DVS_INSTR:
9425 if (md.debug_dv)
9426 fprintf (stderr, "Inserting instr serialization\n");
9427 if (rs->insn_srlz < STATE_STOP)
9428 insn_group_break (1, 0, 0);
9429 if (rs->insn_srlz < STATE_SRLZ)
9430 {
9431 int oldqp = CURR_SLOT.qp_regno;
9432 struct ia64_opcode *oldidesc = CURR_SLOT.idesc;
9433 /* Manually jam a srlz.i insn into the stream */
9434 CURR_SLOT.qp_regno = 0;
9435 CURR_SLOT.idesc = ia64_find_opcode ("srlz.i");
9436 instruction_serialization ();
9437 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
9438 if (++md.num_slots_in_use >= NUM_SLOTS)
9439 emit_one_bundle ();
9440 CURR_SLOT.qp_regno = oldqp;
9441 CURR_SLOT.idesc = oldidesc;
9442 }
9443 insn_group_break (1, 0, 0);
9444 break;
9445 case IA64_DVS_OTHER: /* as of rev2 (991220) of the DV tables, all
9446 "other" types of DV are eliminated
9447 by a data serialization */
9448 case IA64_DVS_DATA:
9449 if (md.debug_dv)
9450 fprintf (stderr, "Inserting data serialization\n");
9451 if (rs->data_srlz < STATE_STOP)
9452 insn_group_break (1, 0, 0);
9453 {
9454 int oldqp = CURR_SLOT.qp_regno;
9455 struct ia64_opcode *oldidesc = CURR_SLOT.idesc;
9456 /* Manually jam a srlz.d insn into the stream */
9457 CURR_SLOT.qp_regno = 0;
9458 CURR_SLOT.idesc = ia64_find_opcode ("srlz.d");
9459 data_serialization ();
9460 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
9461 if (++md.num_slots_in_use >= NUM_SLOTS)
9462 emit_one_bundle ();
9463 CURR_SLOT.qp_regno = oldqp;
9464 CURR_SLOT.idesc = oldidesc;
9465 }
9466 break;
9467 case IA64_DVS_IMPLIED:
9468 case IA64_DVS_IMPLIEDF:
9469 if (md.debug_dv)
9470 fprintf (stderr, "Inserting stop\n");
9471 insn_group_break (1, 0, 0);
9472 break;
9473 default:
9474 break;
9475 }
9476 }
9477
9478 /* Check the resources used by the given opcode against the current dependency
9479 list.
9480
9481 The check is run once for each execution path encountered. In this case,
9482 a unique execution path is the sequence of instructions following a code
9483 entry point, e.g. the following has three execution paths, one starting
9484 at L0, one at L1, and one at L2.
9485
9486 L0: nop
9487 L1: add
9488 L2: add
9489 br.ret
9490 */
9491
9492 static void
9493 check_dependencies (idesc)
9494 struct ia64_opcode *idesc;
9495 {
9496 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
9497 int path;
9498 int i;
9499
9500 /* Note that the number of marked resources may change within the
9501 loop if in auto mode. */
9502 i = 0;
9503 while (i < regdepslen)
9504 {
9505 struct rsrc *rs = &regdeps[i];
9506 const struct ia64_dependency *dep = rs->dependency;
9507 int chkind;
9508 int note;
9509 int start_over = 0;
9510
9511 if (dep->semantics == IA64_DVS_NONE
9512 || (chkind = depends_on (rs->depind, idesc)) == -1)
9513 {
9514 ++i;
9515 continue;
9516 }
9517
9518 note = NOTE (opdeps->chks[chkind]);
9519
9520 /* Check this resource against each execution path seen thus far. */
9521 for (path = 0; path <= md.path; path++)
9522 {
9523 int matchtype;
9524
9525 /* If the dependency wasn't on the path being checked, ignore it. */
9526 if (rs->path < path)
9527 continue;
9528
9529 /* If the QP for this insn implies a QP which has branched, don't
9530 bother checking. Ed. NOTE: I don't think this check is terribly
9531 useful; what's the point of generating code which will only be
9532 reached if its QP is zero?
9533 This code was specifically inserted to handle the following code,
9534 based on notes from Intel's DV checking code, where p1 implies p2.
9535
9536 mov r4 = 2
9537 (p2) br.cond L
9538 (p1) mov r4 = 7
9539 */
9540 if (CURR_SLOT.qp_regno != 0)
9541 {
9542 int skip = 0;
9543 int implies;
9544 for (implies = 0; implies < qp_implieslen; implies++)
9545 {
9546 if (qp_implies[implies].path >= path
9547 && qp_implies[implies].p1 == CURR_SLOT.qp_regno
9548 && qp_implies[implies].p2_branched)
9549 {
9550 skip = 1;
9551 break;
9552 }
9553 }
9554 if (skip)
9555 continue;
9556 }
9557
9558 if ((matchtype = resources_match (rs, idesc, note,
9559 CURR_SLOT.qp_regno, path)) != 0)
9560 {
9561 char msg[1024];
9562 char pathmsg[256] = "";
9563 char indexmsg[256] = "";
9564 int certain = (matchtype == 1 && CURR_SLOT.qp_regno == 0);
9565
9566 if (path != 0)
9567 sprintf (pathmsg, " when entry is at label '%s'",
9568 md.entry_labels[path - 1]);
9569 if (rs->specific && rs->index != 0)
9570 sprintf (indexmsg, ", specific resource number is %d",
9571 rs->index);
9572 sprintf (msg, "Use of '%s' %s %s dependency '%s' (%s)%s%s",
9573 idesc->name,
9574 (certain ? "violates" : "may violate"),
9575 dv_mode[dep->mode], dep->name,
9576 dv_sem[dep->semantics],
9577 pathmsg, indexmsg);
9578
9579 if (md.explicit_mode)
9580 {
9581 as_warn ("%s", msg);
9582 if (path < md.path)
9583 as_warn (_("Only the first path encountering the conflict "
9584 "is reported"));
9585 as_warn_where (rs->file, rs->line,
9586 _("This is the location of the "
9587 "conflicting usage"));
9588 /* Don't bother checking other paths, to avoid duplicating
9589 the same warning */
9590 break;
9591 }
9592 else
9593 {
9594 if (md.debug_dv)
9595 fprintf (stderr, "%s @ %s:%d\n", msg, rs->file, rs->line);
9596
9597 remove_marked_resource (rs);
9598
9599 /* since the set of dependencies has changed, start over */
9600 /* FIXME -- since we're removing dvs as we go, we
9601 probably don't really need to start over... */
9602 start_over = 1;
9603 break;
9604 }
9605 }
9606 }
9607 if (start_over)
9608 i = 0;
9609 else
9610 ++i;
9611 }
9612 }
9613
9614 /* Register new dependencies based on the given opcode. */
9615
9616 static void
9617 mark_resources (idesc)
9618 struct ia64_opcode *idesc;
9619 {
9620 int i;
9621 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
9622 int add_only_qp_reads = 0;
9623
9624 /* A conditional branch only uses its resources if it is taken; if it is
9625 taken, we stop following that path. The other branch types effectively
9626 *always* write their resources. If it's not taken, register only QP
9627 reads. */
9628 if (is_conditional_branch (idesc) || is_interruption_or_rfi (idesc))
9629 {
9630 add_only_qp_reads = 1;
9631 }
9632
9633 if (md.debug_dv)
9634 fprintf (stderr, "Registering '%s' resource usage\n", idesc->name);
9635
9636 for (i = 0; i < opdeps->nregs; i++)
9637 {
9638 const struct ia64_dependency *dep;
9639 struct rsrc specs[MAX_SPECS];
9640 int note;
9641 int path;
9642 int count;
9643
9644 dep = ia64_find_dependency (opdeps->regs[i]);
9645 note = NOTE (opdeps->regs[i]);
9646
9647 if (add_only_qp_reads
9648 && !(dep->mode == IA64_DV_WAR
9649 && (dep->specifier == IA64_RS_PR
9650 || dep->specifier == IA64_RS_PRr
9651 || dep->specifier == IA64_RS_PR63)))
9652 continue;
9653
9654 count = specify_resource (dep, idesc, DV_REG, specs, note, md.path);
9655
9656 #if 0
9657 if (md.debug_dv && !count)
9658 fprintf (stderr, " No %s %s usage found (path %d)\n",
9659 dv_mode[dep->mode], dep->name, md.path);
9660 #endif
9661
9662 while (count-- > 0)
9663 {
9664 mark_resource (idesc, dep, &specs[count],
9665 DEP (opdeps->regs[i]), md.path);
9666 }
9667
9668 /* The execution path may affect register values, which may in turn
9669 affect which indirect-access resources are accessed. */
9670 switch (dep->specifier)
9671 {
9672 default:
9673 break;
9674 case IA64_RS_CPUID:
9675 case IA64_RS_DBR:
9676 case IA64_RS_IBR:
9677 case IA64_RS_MSR:
9678 case IA64_RS_PKR:
9679 case IA64_RS_PMC:
9680 case IA64_RS_PMD:
9681 case IA64_RS_RR:
9682 for (path = 0; path < md.path; path++)
9683 {
9684 count = specify_resource (dep, idesc, DV_REG, specs, note, path);
9685 while (count-- > 0)
9686 mark_resource (idesc, dep, &specs[count],
9687 DEP (opdeps->regs[i]), path);
9688 }
9689 break;
9690 }
9691 }
9692 }
9693
9694 /* Remove dependencies when they no longer apply. */
9695
9696 static void
9697 update_dependencies (idesc)
9698 struct ia64_opcode *idesc;
9699 {
9700 int i;
9701
9702 if (strcmp (idesc->name, "srlz.i") == 0)
9703 {
9704 instruction_serialization ();
9705 }
9706 else if (strcmp (idesc->name, "srlz.d") == 0)
9707 {
9708 data_serialization ();
9709 }
9710 else if (is_interruption_or_rfi (idesc)
9711 || is_taken_branch (idesc))
9712 {
9713 /* Although technically the taken branch doesn't clear dependencies
9714 which require a srlz.[id], we don't follow the branch; the next
9715 instruction is assumed to start with a clean slate. */
9716 regdepslen = 0;
9717 md.path = 0;
9718 }
9719 else if (is_conditional_branch (idesc)
9720 && CURR_SLOT.qp_regno != 0)
9721 {
9722 int is_call = strstr (idesc->name, ".call") != NULL;
9723
9724 for (i = 0; i < qp_implieslen; i++)
9725 {
9726 /* If the conditional branch's predicate is implied by the predicate
9727 in an existing dependency, remove that dependency. */
9728 if (qp_implies[i].p2 == CURR_SLOT.qp_regno)
9729 {
9730 int depind = 0;
9731 /* Note that this implied predicate takes a branch so that if
9732 a later insn generates a DV but its predicate implies this
9733 one, we can avoid the false DV warning. */
9734 qp_implies[i].p2_branched = 1;
9735 while (depind < regdepslen)
9736 {
9737 if (regdeps[depind].qp_regno == qp_implies[i].p1)
9738 {
9739 print_dependency ("Removing", depind);
9740 regdeps[depind] = regdeps[--regdepslen];
9741 }
9742 else
9743 ++depind;
9744 }
9745 }
9746 }
9747 /* Any marked resources which have this same predicate should be
9748 cleared, provided that the QP hasn't been modified between the
9749 marking instruction and the branch. */
9750 if (is_call)
9751 {
9752 insn_group_break (0, CURR_SLOT.qp_regno, 1);
9753 }
9754 else
9755 {
9756 i = 0;
9757 while (i < regdepslen)
9758 {
9759 if (regdeps[i].qp_regno == CURR_SLOT.qp_regno
9760 && regdeps[i].link_to_qp_branch
9761 && (regdeps[i].file != CURR_SLOT.src_file
9762 || regdeps[i].line != CURR_SLOT.src_line))
9763 {
9764 /* Treat like a taken branch */
9765 print_dependency ("Removing", i);
9766 regdeps[i] = regdeps[--regdepslen];
9767 }
9768 else
9769 ++i;
9770 }
9771 }
9772 }
9773 }
9774
9775 /* Examine the current instruction for dependency violations. */
9776
9777 static int
9778 check_dv (idesc)
9779 struct ia64_opcode *idesc;
9780 {
9781 if (md.debug_dv)
9782 {
9783 fprintf (stderr, "Checking %s for violations (line %d, %d/%d)\n",
9784 idesc->name, CURR_SLOT.src_line,
9785 idesc->dependencies->nchks,
9786 idesc->dependencies->nregs);
9787 }
9788
9789 /* Look through the list of currently marked resources; if the current
9790 instruction has the dependency in its chks list which uses that resource,
9791 check against the specific resources used. */
9792 check_dependencies (idesc);
9793
9794 /* Look up the instruction's regdeps (RAW writes, WAW writes, and WAR reads),
9795 then add them to the list of marked resources. */
9796 mark_resources (idesc);
9797
9798 /* There are several types of dependency semantics, and each has its own
9799 requirements for being cleared
9800
9801 Instruction serialization (insns separated by interruption, rfi, or
9802 writer + srlz.i + reader, all in separate groups) clears DVS_INSTR.
9803
9804 Data serialization (instruction serialization, or writer + srlz.d +
9805 reader, where writer and srlz.d are in separate groups) clears
9806 DVS_DATA. (This also clears DVS_OTHER, but that is not guaranteed to
9807 always be the case).
9808
9809 Instruction group break (groups separated by stop, taken branch,
9810 interruption or rfi) clears DVS_IMPLIED and DVS_IMPLIEDF.
9811 */
9812 update_dependencies (idesc);
9813
9814 /* Sometimes, knowing a register value allows us to avoid giving a false DV
9815 warning. Keep track of as many as possible that are useful. */
9816 note_register_values (idesc);
9817
9818 /* We don't need or want this anymore. */
9819 md.mem_offset.hint = 0;
9820
9821 return 0;
9822 }
9823
9824 /* Translate one line of assembly. Pseudo ops and labels do not show
9825 here. */
9826 void
9827 md_assemble (str)
9828 char *str;
9829 {
9830 char *saved_input_line_pointer, *mnemonic;
9831 const struct pseudo_opcode *pdesc;
9832 struct ia64_opcode *idesc;
9833 unsigned char qp_regno;
9834 unsigned int flags;
9835 int ch;
9836
9837 saved_input_line_pointer = input_line_pointer;
9838 input_line_pointer = str;
9839
9840 /* extract the opcode (mnemonic): */
9841
9842 mnemonic = input_line_pointer;
9843 ch = get_symbol_end ();
9844 pdesc = (struct pseudo_opcode *) hash_find (md.pseudo_hash, mnemonic);
9845 if (pdesc)
9846 {
9847 *input_line_pointer = ch;
9848 (*pdesc->handler) (pdesc->arg);
9849 goto done;
9850 }
9851
9852 /* Find the instruction descriptor matching the arguments. */
9853
9854 idesc = ia64_find_opcode (mnemonic);
9855 *input_line_pointer = ch;
9856 if (!idesc)
9857 {
9858 as_bad ("Unknown opcode `%s'", mnemonic);
9859 goto done;
9860 }
9861
9862 idesc = parse_operands (idesc);
9863 if (!idesc)
9864 goto done;
9865
9866 /* Handle the dynamic ops we can handle now: */
9867 if (idesc->type == IA64_TYPE_DYN)
9868 {
9869 if (strcmp (idesc->name, "add") == 0)
9870 {
9871 if (CURR_SLOT.opnd[2].X_op == O_register
9872 && CURR_SLOT.opnd[2].X_add_number < 4)
9873 mnemonic = "addl";
9874 else
9875 mnemonic = "adds";
9876 ia64_free_opcode (idesc);
9877 idesc = ia64_find_opcode (mnemonic);
9878 #if 0
9879 know (!idesc->next);
9880 #endif
9881 }
9882 else if (strcmp (idesc->name, "mov") == 0)
9883 {
9884 enum ia64_opnd opnd1, opnd2;
9885 int rop;
9886
9887 opnd1 = idesc->operands[0];
9888 opnd2 = idesc->operands[1];
9889 if (opnd1 == IA64_OPND_AR3)
9890 rop = 0;
9891 else if (opnd2 == IA64_OPND_AR3)
9892 rop = 1;
9893 else
9894 abort ();
9895 if (CURR_SLOT.opnd[rop].X_op == O_register
9896 && ar_is_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
9897 mnemonic = "mov.i";
9898 else
9899 mnemonic = "mov.m";
9900 ia64_free_opcode (idesc);
9901 idesc = ia64_find_opcode (mnemonic);
9902 while (idesc != NULL
9903 && (idesc->operands[0] != opnd1
9904 || idesc->operands[1] != opnd2))
9905 idesc = get_next_opcode (idesc);
9906 }
9907 }
9908
9909 qp_regno = 0;
9910 if (md.qp.X_op == O_register)
9911 {
9912 qp_regno = md.qp.X_add_number - REG_P;
9913 md.qp.X_op = O_absent;
9914 }
9915
9916 flags = idesc->flags;
9917
9918 if ((flags & IA64_OPCODE_FIRST) != 0)
9919 insn_group_break (1, 0, 0);
9920
9921 if ((flags & IA64_OPCODE_NO_PRED) != 0 && qp_regno != 0)
9922 {
9923 as_bad ("`%s' cannot be predicated", idesc->name);
9924 goto done;
9925 }
9926
9927 /* Build the instruction. */
9928 CURR_SLOT.qp_regno = qp_regno;
9929 CURR_SLOT.idesc = idesc;
9930 as_where (&CURR_SLOT.src_file, &CURR_SLOT.src_line);
9931 dwarf2_where (&CURR_SLOT.debug_line);
9932
9933 /* Add unwind entry, if there is one. */
9934 if (unwind.current_entry)
9935 {
9936 CURR_SLOT.unwind_record = unwind.current_entry;
9937 unwind.current_entry = NULL;
9938 }
9939
9940 /* Check for dependency violations. */
9941 if (md.detect_dv)
9942 check_dv (idesc);
9943
9944 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
9945 if (++md.num_slots_in_use >= NUM_SLOTS)
9946 emit_one_bundle ();
9947
9948 if ((flags & IA64_OPCODE_LAST) != 0)
9949 insn_group_break (1, 0, 0);
9950
9951 md.last_text_seg = now_seg;
9952
9953 done:
9954 input_line_pointer = saved_input_line_pointer;
9955 }
9956
9957 /* Called when symbol NAME cannot be found in the symbol table.
9958 Should be used for dynamic valued symbols only. */
9959
9960 symbolS *
9961 md_undefined_symbol (name)
9962 char *name ATTRIBUTE_UNUSED;
9963 {
9964 return 0;
9965 }
9966
9967 /* Called for any expression that can not be recognized. When the
9968 function is called, `input_line_pointer' will point to the start of
9969 the expression. */
9970
9971 void
9972 md_operand (e)
9973 expressionS *e;
9974 {
9975 enum pseudo_type pseudo_type;
9976 const char *name;
9977 size_t len;
9978 int ch, i;
9979
9980 switch (*input_line_pointer)
9981 {
9982 case '@':
9983 /* Find what relocation pseudo-function we're dealing with. */
9984 pseudo_type = 0;
9985 ch = *++input_line_pointer;
9986 for (i = 0; i < NELEMS (pseudo_func); ++i)
9987 if (pseudo_func[i].name && pseudo_func[i].name[0] == ch)
9988 {
9989 len = strlen (pseudo_func[i].name);
9990 if (strncmp (pseudo_func[i].name + 1,
9991 input_line_pointer + 1, len - 1) == 0
9992 && !is_part_of_name (input_line_pointer[len]))
9993 {
9994 input_line_pointer += len;
9995 pseudo_type = pseudo_func[i].type;
9996 break;
9997 }
9998 }
9999 switch (pseudo_type)
10000 {
10001 case PSEUDO_FUNC_RELOC:
10002 SKIP_WHITESPACE ();
10003 if (*input_line_pointer != '(')
10004 {
10005 as_bad ("Expected '('");
10006 goto err;
10007 }
10008 /* Skip '('. */
10009 ++input_line_pointer;
10010 expression (e);
10011 if (*input_line_pointer++ != ')')
10012 {
10013 as_bad ("Missing ')'");
10014 goto err;
10015 }
10016 if (e->X_op != O_symbol)
10017 {
10018 if (e->X_op != O_pseudo_fixup)
10019 {
10020 as_bad ("Not a symbolic expression");
10021 goto err;
10022 }
10023 if (i != FUNC_LT_RELATIVE)
10024 {
10025 as_bad ("Illegal combination of relocation functions");
10026 goto err;
10027 }
10028 switch (S_GET_VALUE (e->X_op_symbol))
10029 {
10030 case FUNC_FPTR_RELATIVE:
10031 i = FUNC_LT_FPTR_RELATIVE; break;
10032 case FUNC_DTP_MODULE:
10033 i = FUNC_LT_DTP_MODULE; break;
10034 case FUNC_DTP_RELATIVE:
10035 i = FUNC_LT_DTP_RELATIVE; break;
10036 case FUNC_TP_RELATIVE:
10037 i = FUNC_LT_TP_RELATIVE; break;
10038 default:
10039 as_bad ("Illegal combination of relocation functions");
10040 goto err;
10041 }
10042 }
10043 /* Make sure gas doesn't get rid of local symbols that are used
10044 in relocs. */
10045 e->X_op = O_pseudo_fixup;
10046 e->X_op_symbol = pseudo_func[i].u.sym;
10047 break;
10048
10049 case PSEUDO_FUNC_CONST:
10050 e->X_op = O_constant;
10051 e->X_add_number = pseudo_func[i].u.ival;
10052 break;
10053
10054 case PSEUDO_FUNC_REG:
10055 e->X_op = O_register;
10056 e->X_add_number = pseudo_func[i].u.ival;
10057 break;
10058
10059 default:
10060 name = input_line_pointer - 1;
10061 get_symbol_end ();
10062 as_bad ("Unknown pseudo function `%s'", name);
10063 goto err;
10064 }
10065 break;
10066
10067 case '[':
10068 ++input_line_pointer;
10069 expression (e);
10070 if (*input_line_pointer != ']')
10071 {
10072 as_bad ("Closing bracket misssing");
10073 goto err;
10074 }
10075 else
10076 {
10077 if (e->X_op != O_register)
10078 as_bad ("Register expected as index");
10079
10080 ++input_line_pointer;
10081 e->X_op = O_index;
10082 }
10083 break;
10084
10085 default:
10086 break;
10087 }
10088 return;
10089
10090 err:
10091 ignore_rest_of_line ();
10092 }
10093
10094 /* Return 1 if it's OK to adjust a reloc by replacing the symbol with
10095 a section symbol plus some offset. For relocs involving @fptr(),
10096 directives we don't want such adjustments since we need to have the
10097 original symbol's name in the reloc. */
10098 int
10099 ia64_fix_adjustable (fix)
10100 fixS *fix;
10101 {
10102 /* Prevent all adjustments to global symbols */
10103 if (S_IS_EXTERN (fix->fx_addsy) || S_IS_WEAK (fix->fx_addsy))
10104 return 0;
10105
10106 switch (fix->fx_r_type)
10107 {
10108 case BFD_RELOC_IA64_FPTR64I:
10109 case BFD_RELOC_IA64_FPTR32MSB:
10110 case BFD_RELOC_IA64_FPTR32LSB:
10111 case BFD_RELOC_IA64_FPTR64MSB:
10112 case BFD_RELOC_IA64_FPTR64LSB:
10113 case BFD_RELOC_IA64_LTOFF_FPTR22:
10114 case BFD_RELOC_IA64_LTOFF_FPTR64I:
10115 return 0;
10116 default:
10117 break;
10118 }
10119
10120 return 1;
10121 }
10122
10123 int
10124 ia64_force_relocation (fix)
10125 fixS *fix;
10126 {
10127 switch (fix->fx_r_type)
10128 {
10129 case BFD_RELOC_IA64_FPTR64I:
10130 case BFD_RELOC_IA64_FPTR32MSB:
10131 case BFD_RELOC_IA64_FPTR32LSB:
10132 case BFD_RELOC_IA64_FPTR64MSB:
10133 case BFD_RELOC_IA64_FPTR64LSB:
10134
10135 case BFD_RELOC_IA64_LTOFF22:
10136 case BFD_RELOC_IA64_LTOFF64I:
10137 case BFD_RELOC_IA64_LTOFF_FPTR22:
10138 case BFD_RELOC_IA64_LTOFF_FPTR64I:
10139 case BFD_RELOC_IA64_PLTOFF22:
10140 case BFD_RELOC_IA64_PLTOFF64I:
10141 case BFD_RELOC_IA64_PLTOFF64MSB:
10142 case BFD_RELOC_IA64_PLTOFF64LSB:
10143
10144 case BFD_RELOC_IA64_LTOFF22X:
10145 case BFD_RELOC_IA64_LDXMOV:
10146 return 1;
10147
10148 default:
10149 break;
10150 }
10151
10152 return generic_force_reloc (fix);
10153 }
10154
10155 /* Decide from what point a pc-relative relocation is relative to,
10156 relative to the pc-relative fixup. Er, relatively speaking. */
10157 long
10158 ia64_pcrel_from_section (fix, sec)
10159 fixS *fix;
10160 segT sec;
10161 {
10162 unsigned long off = fix->fx_frag->fr_address + fix->fx_where;
10163
10164 if (bfd_get_section_flags (stdoutput, sec) & SEC_CODE)
10165 off &= ~0xfUL;
10166
10167 return off;
10168 }
10169
10170
10171 /* Used to emit section-relative relocs for the dwarf2 debug data. */
10172 void
10173 ia64_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10174 {
10175 expressionS expr;
10176
10177 expr.X_op = O_pseudo_fixup;
10178 expr.X_op_symbol = pseudo_func[FUNC_SEC_RELATIVE].u.sym;
10179 expr.X_add_number = 0;
10180 expr.X_add_symbol = symbol;
10181 emit_expr (&expr, size);
10182 }
10183
10184 /* This is called whenever some data item (not an instruction) needs a
10185 fixup. We pick the right reloc code depending on the byteorder
10186 currently in effect. */
10187 void
10188 ia64_cons_fix_new (f, where, nbytes, exp)
10189 fragS *f;
10190 int where;
10191 int nbytes;
10192 expressionS *exp;
10193 {
10194 bfd_reloc_code_real_type code;
10195 fixS *fix;
10196
10197 switch (nbytes)
10198 {
10199 /* There are no reloc for 8 and 16 bit quantities, but we allow
10200 them here since they will work fine as long as the expression
10201 is fully defined at the end of the pass over the source file. */
10202 case 1: code = BFD_RELOC_8; break;
10203 case 2: code = BFD_RELOC_16; break;
10204 case 4:
10205 if (target_big_endian)
10206 code = BFD_RELOC_IA64_DIR32MSB;
10207 else
10208 code = BFD_RELOC_IA64_DIR32LSB;
10209 break;
10210
10211 case 8:
10212 /* In 32-bit mode, data8 could mean function descriptors too. */
10213 if (exp->X_op == O_pseudo_fixup
10214 && exp->X_op_symbol
10215 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC
10216 && !(md.flags & EF_IA_64_ABI64))
10217 {
10218 if (target_big_endian)
10219 code = BFD_RELOC_IA64_IPLTMSB;
10220 else
10221 code = BFD_RELOC_IA64_IPLTLSB;
10222 exp->X_op = O_symbol;
10223 break;
10224 }
10225 else
10226 {
10227 if (target_big_endian)
10228 code = BFD_RELOC_IA64_DIR64MSB;
10229 else
10230 code = BFD_RELOC_IA64_DIR64LSB;
10231 break;
10232 }
10233
10234 case 16:
10235 if (exp->X_op == O_pseudo_fixup
10236 && exp->X_op_symbol
10237 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC)
10238 {
10239 if (target_big_endian)
10240 code = BFD_RELOC_IA64_IPLTMSB;
10241 else
10242 code = BFD_RELOC_IA64_IPLTLSB;
10243 exp->X_op = O_symbol;
10244 break;
10245 }
10246 /* FALLTHRU */
10247
10248 default:
10249 as_bad ("Unsupported fixup size %d", nbytes);
10250 ignore_rest_of_line ();
10251 return;
10252 }
10253
10254 if (exp->X_op == O_pseudo_fixup)
10255 {
10256 exp->X_op = O_symbol;
10257 code = ia64_gen_real_reloc_type (exp->X_op_symbol, code);
10258 /* ??? If code unchanged, unsupported. */
10259 }
10260
10261 fix = fix_new_exp (f, where, nbytes, exp, 0, code);
10262 /* We need to store the byte order in effect in case we're going
10263 to fix an 8 or 16 bit relocation (for which there no real
10264 relocs available). See md_apply_fix3(). */
10265 fix->tc_fix_data.bigendian = target_big_endian;
10266 }
10267
10268 /* Return the actual relocation we wish to associate with the pseudo
10269 reloc described by SYM and R_TYPE. SYM should be one of the
10270 symbols in the pseudo_func array, or NULL. */
10271
10272 static bfd_reloc_code_real_type
10273 ia64_gen_real_reloc_type (sym, r_type)
10274 struct symbol *sym;
10275 bfd_reloc_code_real_type r_type;
10276 {
10277 bfd_reloc_code_real_type new = 0;
10278
10279 if (sym == NULL)
10280 {
10281 return r_type;
10282 }
10283
10284 switch (S_GET_VALUE (sym))
10285 {
10286 case FUNC_FPTR_RELATIVE:
10287 switch (r_type)
10288 {
10289 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_FPTR64I; break;
10290 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_FPTR32MSB; break;
10291 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_FPTR32LSB; break;
10292 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_FPTR64MSB; break;
10293 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_FPTR64LSB; break;
10294 default: break;
10295 }
10296 break;
10297
10298 case FUNC_GP_RELATIVE:
10299 switch (r_type)
10300 {
10301 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_GPREL22; break;
10302 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_GPREL64I; break;
10303 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_GPREL32MSB; break;
10304 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_GPREL32LSB; break;
10305 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_GPREL64MSB; break;
10306 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_GPREL64LSB; break;
10307 default: break;
10308 }
10309 break;
10310
10311 case FUNC_LT_RELATIVE:
10312 switch (r_type)
10313 {
10314 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22; break;
10315 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_LTOFF64I; break;
10316 default: break;
10317 }
10318 break;
10319
10320 case FUNC_LT_RELATIVE_X:
10321 switch (r_type)
10322 {
10323 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22X; break;
10324 default: break;
10325 }
10326 break;
10327
10328 case FUNC_PC_RELATIVE:
10329 switch (r_type)
10330 {
10331 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PCREL22; break;
10332 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PCREL64I; break;
10333 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_PCREL32MSB; break;
10334 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_PCREL32LSB; break;
10335 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PCREL64MSB; break;
10336 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PCREL64LSB; break;
10337 default: break;
10338 }
10339 break;
10340
10341 case FUNC_PLT_RELATIVE:
10342 switch (r_type)
10343 {
10344 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PLTOFF22; break;
10345 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PLTOFF64I; break;
10346 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PLTOFF64MSB;break;
10347 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PLTOFF64LSB;break;
10348 default: break;
10349 }
10350 break;
10351
10352 case FUNC_SEC_RELATIVE:
10353 switch (r_type)
10354 {
10355 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SECREL32MSB;break;
10356 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SECREL32LSB;break;
10357 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SECREL64MSB;break;
10358 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SECREL64LSB;break;
10359 default: break;
10360 }
10361 break;
10362
10363 case FUNC_SEG_RELATIVE:
10364 switch (r_type)
10365 {
10366 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SEGREL32MSB;break;
10367 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SEGREL32LSB;break;
10368 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SEGREL64MSB;break;
10369 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SEGREL64LSB;break;
10370 default: break;
10371 }
10372 break;
10373
10374 case FUNC_LTV_RELATIVE:
10375 switch (r_type)
10376 {
10377 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_LTV32MSB; break;
10378 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_LTV32LSB; break;
10379 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_LTV64MSB; break;
10380 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_LTV64LSB; break;
10381 default: break;
10382 }
10383 break;
10384
10385 case FUNC_LT_FPTR_RELATIVE:
10386 switch (r_type)
10387 {
10388 case BFD_RELOC_IA64_IMM22:
10389 new = BFD_RELOC_IA64_LTOFF_FPTR22; break;
10390 case BFD_RELOC_IA64_IMM64:
10391 new = BFD_RELOC_IA64_LTOFF_FPTR64I; break;
10392 default:
10393 break;
10394 }
10395 break;
10396
10397 case FUNC_TP_RELATIVE:
10398 switch (r_type)
10399 {
10400 case BFD_RELOC_IA64_IMM14:
10401 new = BFD_RELOC_IA64_TPREL14; break;
10402 case BFD_RELOC_IA64_IMM22:
10403 new = BFD_RELOC_IA64_TPREL22; break;
10404 case BFD_RELOC_IA64_IMM64:
10405 new = BFD_RELOC_IA64_TPREL64I; break;
10406 default:
10407 break;
10408 }
10409 break;
10410
10411 case FUNC_LT_TP_RELATIVE:
10412 switch (r_type)
10413 {
10414 case BFD_RELOC_IA64_IMM22:
10415 new = BFD_RELOC_IA64_LTOFF_TPREL22; break;
10416 default:
10417 break;
10418 }
10419 break;
10420
10421 case FUNC_LT_DTP_MODULE:
10422 switch (r_type)
10423 {
10424 case BFD_RELOC_IA64_IMM22:
10425 new = BFD_RELOC_IA64_LTOFF_DTPMOD22; break;
10426 default:
10427 break;
10428 }
10429 break;
10430
10431 case FUNC_DTP_RELATIVE:
10432 switch (r_type)
10433 {
10434 case BFD_RELOC_IA64_DIR64MSB:
10435 new = BFD_RELOC_IA64_DTPREL64MSB; break;
10436 case BFD_RELOC_IA64_DIR64LSB:
10437 new = BFD_RELOC_IA64_DTPREL64LSB; break;
10438 case BFD_RELOC_IA64_IMM14:
10439 new = BFD_RELOC_IA64_DTPREL14; break;
10440 case BFD_RELOC_IA64_IMM22:
10441 new = BFD_RELOC_IA64_DTPREL22; break;
10442 case BFD_RELOC_IA64_IMM64:
10443 new = BFD_RELOC_IA64_DTPREL64I; break;
10444 default:
10445 break;
10446 }
10447 break;
10448
10449 case FUNC_LT_DTP_RELATIVE:
10450 switch (r_type)
10451 {
10452 case BFD_RELOC_IA64_IMM22:
10453 new = BFD_RELOC_IA64_LTOFF_DTPREL22; break;
10454 default:
10455 break;
10456 }
10457 break;
10458
10459 case FUNC_IPLT_RELOC:
10460 break;
10461
10462 default:
10463 abort ();
10464 }
10465
10466 /* Hmmmm. Should this ever occur? */
10467 if (new)
10468 return new;
10469 else
10470 return r_type;
10471 }
10472
10473 /* Here is where generate the appropriate reloc for pseudo relocation
10474 functions. */
10475 void
10476 ia64_validate_fix (fix)
10477 fixS *fix;
10478 {
10479 switch (fix->fx_r_type)
10480 {
10481 case BFD_RELOC_IA64_FPTR64I:
10482 case BFD_RELOC_IA64_FPTR32MSB:
10483 case BFD_RELOC_IA64_FPTR64LSB:
10484 case BFD_RELOC_IA64_LTOFF_FPTR22:
10485 case BFD_RELOC_IA64_LTOFF_FPTR64I:
10486 if (fix->fx_offset != 0)
10487 as_bad_where (fix->fx_file, fix->fx_line,
10488 "No addend allowed in @fptr() relocation");
10489 break;
10490 default:
10491 break;
10492 }
10493 }
10494
10495 static void
10496 fix_insn (fix, odesc, value)
10497 fixS *fix;
10498 const struct ia64_operand *odesc;
10499 valueT value;
10500 {
10501 bfd_vma insn[3], t0, t1, control_bits;
10502 const char *err;
10503 char *fixpos;
10504 long slot;
10505
10506 slot = fix->fx_where & 0x3;
10507 fixpos = fix->fx_frag->fr_literal + (fix->fx_where - slot);
10508
10509 /* Bundles are always in little-endian byte order */
10510 t0 = bfd_getl64 (fixpos);
10511 t1 = bfd_getl64 (fixpos + 8);
10512 control_bits = t0 & 0x1f;
10513 insn[0] = (t0 >> 5) & 0x1ffffffffffLL;
10514 insn[1] = ((t0 >> 46) & 0x3ffff) | ((t1 & 0x7fffff) << 18);
10515 insn[2] = (t1 >> 23) & 0x1ffffffffffLL;
10516
10517 err = NULL;
10518 if (odesc - elf64_ia64_operands == IA64_OPND_IMMU64)
10519 {
10520 insn[1] = (value >> 22) & 0x1ffffffffffLL;
10521 insn[2] |= (((value & 0x7f) << 13)
10522 | (((value >> 7) & 0x1ff) << 27)
10523 | (((value >> 16) & 0x1f) << 22)
10524 | (((value >> 21) & 0x1) << 21)
10525 | (((value >> 63) & 0x1) << 36));
10526 }
10527 else if (odesc - elf64_ia64_operands == IA64_OPND_IMMU62)
10528 {
10529 if (value & ~0x3fffffffffffffffULL)
10530 err = "integer operand out of range";
10531 insn[1] = (value >> 21) & 0x1ffffffffffLL;
10532 insn[2] |= (((value & 0xfffff) << 6) | (((value >> 20) & 0x1) << 36));
10533 }
10534 else if (odesc - elf64_ia64_operands == IA64_OPND_TGT64)
10535 {
10536 value >>= 4;
10537 insn[1] = ((value >> 20) & 0x7fffffffffLL) << 2;
10538 insn[2] |= ((((value >> 59) & 0x1) << 36)
10539 | (((value >> 0) & 0xfffff) << 13));
10540 }
10541 else
10542 err = (*odesc->insert) (odesc, value, insn + slot);
10543
10544 if (err)
10545 as_bad_where (fix->fx_file, fix->fx_line, err);
10546
10547 t0 = control_bits | (insn[0] << 5) | (insn[1] << 46);
10548 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
10549 number_to_chars_littleendian (fixpos + 0, t0, 8);
10550 number_to_chars_littleendian (fixpos + 8, t1, 8);
10551 }
10552
10553 /* Attempt to simplify or even eliminate a fixup. The return value is
10554 ignored; perhaps it was once meaningful, but now it is historical.
10555 To indicate that a fixup has been eliminated, set FIXP->FX_DONE.
10556
10557 If fixp->fx_addsy is non-NULL, we'll have to generate a reloc entry
10558 (if possible). */
10559
10560 void
10561 md_apply_fix3 (fix, valP, seg)
10562 fixS *fix;
10563 valueT *valP;
10564 segT seg ATTRIBUTE_UNUSED;
10565 {
10566 char *fixpos;
10567 valueT value = *valP;
10568
10569 fixpos = fix->fx_frag->fr_literal + fix->fx_where;
10570
10571 if (fix->fx_pcrel)
10572 {
10573 switch (fix->fx_r_type)
10574 {
10575 case BFD_RELOC_IA64_DIR32MSB:
10576 fix->fx_r_type = BFD_RELOC_IA64_PCREL32MSB;
10577 break;
10578
10579 case BFD_RELOC_IA64_DIR32LSB:
10580 fix->fx_r_type = BFD_RELOC_IA64_PCREL32LSB;
10581 break;
10582
10583 case BFD_RELOC_IA64_DIR64MSB:
10584 fix->fx_r_type = BFD_RELOC_IA64_PCREL64MSB;
10585 break;
10586
10587 case BFD_RELOC_IA64_DIR64LSB:
10588 fix->fx_r_type = BFD_RELOC_IA64_PCREL64LSB;
10589 break;
10590
10591 default:
10592 break;
10593 }
10594 }
10595 if (fix->fx_addsy)
10596 {
10597 switch (fix->fx_r_type)
10598 {
10599 case BFD_RELOC_UNUSED:
10600 /* This must be a TAG13 or TAG13b operand. There are no external
10601 relocs defined for them, so we must give an error. */
10602 as_bad_where (fix->fx_file, fix->fx_line,
10603 "%s must have a constant value",
10604 elf64_ia64_operands[fix->tc_fix_data.opnd].desc);
10605 fix->fx_done = 1;
10606 return;
10607
10608 case BFD_RELOC_IA64_TPREL14:
10609 case BFD_RELOC_IA64_TPREL22:
10610 case BFD_RELOC_IA64_TPREL64I:
10611 case BFD_RELOC_IA64_LTOFF_TPREL22:
10612 case BFD_RELOC_IA64_LTOFF_DTPMOD22:
10613 case BFD_RELOC_IA64_DTPREL14:
10614 case BFD_RELOC_IA64_DTPREL22:
10615 case BFD_RELOC_IA64_DTPREL64I:
10616 case BFD_RELOC_IA64_LTOFF_DTPREL22:
10617 S_SET_THREAD_LOCAL (fix->fx_addsy);
10618 break;
10619
10620 default:
10621 break;
10622 }
10623 }
10624 else if (fix->tc_fix_data.opnd == IA64_OPND_NIL)
10625 {
10626 if (fix->tc_fix_data.bigendian)
10627 number_to_chars_bigendian (fixpos, value, fix->fx_size);
10628 else
10629 number_to_chars_littleendian (fixpos, value, fix->fx_size);
10630 fix->fx_done = 1;
10631 }
10632 else
10633 {
10634 fix_insn (fix, elf64_ia64_operands + fix->tc_fix_data.opnd, value);
10635 fix->fx_done = 1;
10636 }
10637 }
10638
10639 /* Generate the BFD reloc to be stuck in the object file from the
10640 fixup used internally in the assembler. */
10641
10642 arelent *
10643 tc_gen_reloc (sec, fixp)
10644 asection *sec ATTRIBUTE_UNUSED;
10645 fixS *fixp;
10646 {
10647 arelent *reloc;
10648
10649 reloc = xmalloc (sizeof (*reloc));
10650 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
10651 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
10652 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
10653 reloc->addend = fixp->fx_offset;
10654 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
10655
10656 if (!reloc->howto)
10657 {
10658 as_bad_where (fixp->fx_file, fixp->fx_line,
10659 "Cannot represent %s relocation in object file",
10660 bfd_get_reloc_code_name (fixp->fx_r_type));
10661 }
10662 return reloc;
10663 }
10664
10665 /* Turn a string in input_line_pointer into a floating point constant
10666 of type TYPE, and store the appropriate bytes in *LIT. The number
10667 of LITTLENUMS emitted is stored in *SIZE. An error message is
10668 returned, or NULL on OK. */
10669
10670 #define MAX_LITTLENUMS 5
10671
10672 char *
10673 md_atof (type, lit, size)
10674 int type;
10675 char *lit;
10676 int *size;
10677 {
10678 LITTLENUM_TYPE words[MAX_LITTLENUMS];
10679 char *t;
10680 int prec;
10681
10682 switch (type)
10683 {
10684 /* IEEE floats */
10685 case 'f':
10686 case 'F':
10687 case 's':
10688 case 'S':
10689 prec = 2;
10690 break;
10691
10692 case 'd':
10693 case 'D':
10694 case 'r':
10695 case 'R':
10696 prec = 4;
10697 break;
10698
10699 case 'x':
10700 case 'X':
10701 case 'p':
10702 case 'P':
10703 prec = 5;
10704 break;
10705
10706 default:
10707 *size = 0;
10708 return "Bad call to MD_ATOF()";
10709 }
10710 t = atof_ieee (input_line_pointer, type, words);
10711 if (t)
10712 input_line_pointer = t;
10713
10714 (*ia64_float_to_chars) (lit, words, prec);
10715
10716 if (type == 'X')
10717 {
10718 /* It is 10 byte floating point with 6 byte padding. */
10719 memset (&lit [10], 0, 6);
10720 *size = 8 * sizeof (LITTLENUM_TYPE);
10721 }
10722 else
10723 *size = prec * sizeof (LITTLENUM_TYPE);
10724
10725 return 0;
10726 }
10727
10728 /* Handle ia64 specific semantics of the align directive. */
10729
10730 void
10731 ia64_md_do_align (n, fill, len, max)
10732 int n ATTRIBUTE_UNUSED;
10733 const char *fill ATTRIBUTE_UNUSED;
10734 int len ATTRIBUTE_UNUSED;
10735 int max ATTRIBUTE_UNUSED;
10736 {
10737 if (subseg_text_p (now_seg))
10738 ia64_flush_insns ();
10739 }
10740
10741 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
10742 of an rs_align_code fragment. */
10743
10744 void
10745 ia64_handle_align (fragp)
10746 fragS *fragp;
10747 {
10748 /* Use mfi bundle of nops with no stop bits. */
10749 static const unsigned char le_nop[]
10750 = { 0x0c, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
10751 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00};
10752
10753 int bytes;
10754 char *p;
10755
10756 if (fragp->fr_type != rs_align_code)
10757 return;
10758
10759 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
10760 p = fragp->fr_literal + fragp->fr_fix;
10761
10762 /* Make sure we are on a 16-byte boundary, in case someone has been
10763 putting data into a text section. */
10764 if (bytes & 15)
10765 {
10766 int fix = bytes & 15;
10767 memset (p, 0, fix);
10768 p += fix;
10769 bytes -= fix;
10770 fragp->fr_fix += fix;
10771 }
10772
10773 /* Instruction bundles are always little-endian. */
10774 memcpy (p, le_nop, 16);
10775 fragp->fr_var = 16;
10776 }
10777
10778 static void
10779 ia64_float_to_chars_bigendian (char *lit, LITTLENUM_TYPE *words,
10780 int prec)
10781 {
10782 while (prec--)
10783 {
10784 number_to_chars_bigendian (lit, (long) (*words++),
10785 sizeof (LITTLENUM_TYPE));
10786 lit += sizeof (LITTLENUM_TYPE);
10787 }
10788 }
10789
10790 static void
10791 ia64_float_to_chars_littleendian (char *lit, LITTLENUM_TYPE *words,
10792 int prec)
10793 {
10794 while (prec--)
10795 {
10796 number_to_chars_littleendian (lit, (long) (words[prec]),
10797 sizeof (LITTLENUM_TYPE));
10798 lit += sizeof (LITTLENUM_TYPE);
10799 }
10800 }
10801
10802 void
10803 ia64_elf_section_change_hook (void)
10804 {
10805 dot_byteorder (-1);
10806 }
10807
10808 /* Check if a label should be made global. */
10809 void
10810 ia64_check_label (symbolS *label)
10811 {
10812 if (*input_line_pointer == ':')
10813 {
10814 S_SET_EXTERNAL (label);
10815 input_line_pointer++;
10816 }
10817 }
10818
10819 /* Used to remember where .alias and .secalias directives are seen. We
10820 will rename symbol and section names when we are about to output
10821 the relocatable file. */
10822 struct alias
10823 {
10824 char *file; /* The file where the directive is seen. */
10825 unsigned int line; /* The line number the directive is at. */
10826 const char *name; /* The orignale name of the symbol. */
10827 };
10828
10829 /* Called for .alias and .secalias directives. If SECTION is 1, it is
10830 .secalias. Otherwise, it is .alias. */
10831 static void
10832 dot_alias (int section)
10833 {
10834 char *name, *alias;
10835 char delim;
10836 char *end_name;
10837 int len;
10838 const char *error_string;
10839 struct alias *h;
10840 const char *a;
10841 struct hash_control *ahash, *nhash;
10842 const char *kind;
10843
10844 name = input_line_pointer;
10845 delim = get_symbol_end ();
10846 end_name = input_line_pointer;
10847 *end_name = delim;
10848
10849 if (name == end_name)
10850 {
10851 as_bad (_("expected symbol name"));
10852 discard_rest_of_line ();
10853 return;
10854 }
10855
10856 SKIP_WHITESPACE ();
10857
10858 if (*input_line_pointer != ',')
10859 {
10860 *end_name = 0;
10861 as_bad (_("expected comma after \"%s\""), name);
10862 *end_name = delim;
10863 ignore_rest_of_line ();
10864 return;
10865 }
10866
10867 input_line_pointer++;
10868 *end_name = 0;
10869
10870 /* We call demand_copy_C_string to check if alias string is valid.
10871 There should be a closing `"' and no `\0' in the string. */
10872 alias = demand_copy_C_string (&len);
10873 if (alias == NULL)
10874 {
10875 ignore_rest_of_line ();
10876 return;
10877 }
10878
10879 /* Make a copy of name string. */
10880 len = strlen (name) + 1;
10881 obstack_grow (&notes, name, len);
10882 name = obstack_finish (&notes);
10883
10884 if (section)
10885 {
10886 kind = "section";
10887 ahash = secalias_hash;
10888 nhash = secalias_name_hash;
10889 }
10890 else
10891 {
10892 kind = "symbol";
10893 ahash = alias_hash;
10894 nhash = alias_name_hash;
10895 }
10896
10897 /* Check if alias has been used before. */
10898 h = (struct alias *) hash_find (ahash, alias);
10899 if (h)
10900 {
10901 if (strcmp (h->name, name))
10902 as_bad (_("`%s' is already the alias of %s `%s'"),
10903 alias, kind, h->name);
10904 goto out;
10905 }
10906
10907 /* Check if name already has an alias. */
10908 a = (const char *) hash_find (nhash, name);
10909 if (a)
10910 {
10911 if (strcmp (a, alias))
10912 as_bad (_("%s `%s' already has an alias `%s'"), kind, name, a);
10913 goto out;
10914 }
10915
10916 h = (struct alias *) xmalloc (sizeof (struct alias));
10917 as_where (&h->file, &h->line);
10918 h->name = name;
10919
10920 error_string = hash_jam (ahash, alias, (PTR) h);
10921 if (error_string)
10922 {
10923 as_fatal (_("inserting \"%s\" into %s alias hash table failed: %s"),
10924 alias, kind, error_string);
10925 goto out;
10926 }
10927
10928 error_string = hash_jam (nhash, name, (PTR) alias);
10929 if (error_string)
10930 {
10931 as_fatal (_("inserting \"%s\" into %s name hash table failed: %s"),
10932 alias, kind, error_string);
10933 out:
10934 obstack_free (&notes, name);
10935 obstack_free (&notes, alias);
10936 }
10937
10938 demand_empty_rest_of_line ();
10939 }
10940
10941 /* It renames the original symbol name to its alias. */
10942 static void
10943 do_alias (const char *alias, PTR value)
10944 {
10945 struct alias *h = (struct alias *) value;
10946 symbolS *sym = symbol_find (h->name);
10947
10948 if (sym == NULL)
10949 as_warn_where (h->file, h->line,
10950 _("symbol `%s' aliased to `%s' is not used"),
10951 h->name, alias);
10952 else
10953 S_SET_NAME (sym, (char *) alias);
10954 }
10955
10956 /* Called from write_object_file. */
10957 void
10958 ia64_adjust_symtab (void)
10959 {
10960 hash_traverse (alias_hash, do_alias);
10961 }
10962
10963 /* It renames the original section name to its alias. */
10964 static void
10965 do_secalias (const char *alias, PTR value)
10966 {
10967 struct alias *h = (struct alias *) value;
10968 segT sec = bfd_get_section_by_name (stdoutput, h->name);
10969
10970 if (sec == NULL)
10971 as_warn_where (h->file, h->line,
10972 _("section `%s' aliased to `%s' is not used"),
10973 h->name, alias);
10974 else
10975 sec->name = alias;
10976 }
10977
10978 /* Called from write_object_file. */
10979 void
10980 ia64_frob_file (void)
10981 {
10982 hash_traverse (secalias_hash, do_secalias);
10983 }
This page took 0.261611 seconds and 4 git commands to generate.