455c2582c3dccbb14f64d4716f54235f434a758e
[deliverable/binutils-gdb.git] / gas / config / tc-ia64.c
1 /* tc-ia64.c -- Assembler for the HP/Intel IA-64 architecture.
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street - Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 /*
24 TODO:
25
26 - optional operands
27 - directives:
28 .eb
29 .estate
30 .lb
31 .popsection
32 .previous
33 .psr
34 .pushsection
35 - labels are wrong if automatic alignment is introduced
36 (e.g., checkout the second real10 definition in test-data.s)
37 - DV-related stuff:
38 <reg>.safe_across_calls and any other DV-related directives I don't
39 have documentation for.
40 verify mod-sched-brs reads/writes are checked/marked (and other
41 notes)
42
43 */
44
45 #include "as.h"
46 #include "safe-ctype.h"
47 #include "dwarf2dbg.h"
48 #include "subsegs.h"
49
50 #include "opcode/ia64.h"
51
52 #include "elf/ia64.h"
53
54 #ifdef HAVE_LIMITS_H
55 #include <limits.h>
56 #endif
57
58 #define NELEMS(a) ((int) (sizeof (a)/sizeof ((a)[0])))
59
60 /* Some systems define MIN in, e.g., param.h. */
61 #undef MIN
62 #define MIN(a,b) ((a) < (b) ? (a) : (b))
63
64 #define NUM_SLOTS 4
65 #define PREV_SLOT md.slot[(md.curr_slot + NUM_SLOTS - 1) % NUM_SLOTS]
66 #define CURR_SLOT md.slot[md.curr_slot]
67
68 #define O_pseudo_fixup (O_max + 1)
69
70 enum special_section
71 {
72 /* IA-64 ABI section pseudo-ops. */
73 SPECIAL_SECTION_BSS = 0,
74 SPECIAL_SECTION_SBSS,
75 SPECIAL_SECTION_SDATA,
76 SPECIAL_SECTION_RODATA,
77 SPECIAL_SECTION_COMMENT,
78 SPECIAL_SECTION_UNWIND,
79 SPECIAL_SECTION_UNWIND_INFO,
80 /* HPUX specific section pseudo-ops. */
81 SPECIAL_SECTION_INIT_ARRAY,
82 SPECIAL_SECTION_FINI_ARRAY,
83 };
84
85 enum reloc_func
86 {
87 FUNC_DTP_MODULE,
88 FUNC_DTP_RELATIVE,
89 FUNC_FPTR_RELATIVE,
90 FUNC_GP_RELATIVE,
91 FUNC_LT_RELATIVE,
92 FUNC_LT_RELATIVE_X,
93 FUNC_PC_RELATIVE,
94 FUNC_PLT_RELATIVE,
95 FUNC_SEC_RELATIVE,
96 FUNC_SEG_RELATIVE,
97 FUNC_TP_RELATIVE,
98 FUNC_LTV_RELATIVE,
99 FUNC_LT_FPTR_RELATIVE,
100 FUNC_LT_DTP_MODULE,
101 FUNC_LT_DTP_RELATIVE,
102 FUNC_LT_TP_RELATIVE,
103 FUNC_IPLT_RELOC,
104 };
105
106 enum reg_symbol
107 {
108 REG_GR = 0,
109 REG_FR = (REG_GR + 128),
110 REG_AR = (REG_FR + 128),
111 REG_CR = (REG_AR + 128),
112 REG_P = (REG_CR + 128),
113 REG_BR = (REG_P + 64),
114 REG_IP = (REG_BR + 8),
115 REG_CFM,
116 REG_PR,
117 REG_PR_ROT,
118 REG_PSR,
119 REG_PSR_L,
120 REG_PSR_UM,
121 /* The following are pseudo-registers for use by gas only. */
122 IND_CPUID,
123 IND_DBR,
124 IND_DTR,
125 IND_ITR,
126 IND_IBR,
127 IND_MEM,
128 IND_MSR,
129 IND_PKR,
130 IND_PMC,
131 IND_PMD,
132 IND_RR,
133 /* The following pseudo-registers are used for unwind directives only: */
134 REG_PSP,
135 REG_PRIUNAT,
136 REG_NUM
137 };
138
139 enum dynreg_type
140 {
141 DYNREG_GR = 0, /* dynamic general purpose register */
142 DYNREG_FR, /* dynamic floating point register */
143 DYNREG_PR, /* dynamic predicate register */
144 DYNREG_NUM_TYPES
145 };
146
147 enum operand_match_result
148 {
149 OPERAND_MATCH,
150 OPERAND_OUT_OF_RANGE,
151 OPERAND_MISMATCH
152 };
153
154 /* On the ia64, we can't know the address of a text label until the
155 instructions are packed into a bundle. To handle this, we keep
156 track of the list of labels that appear in front of each
157 instruction. */
158 struct label_fix
159 {
160 struct label_fix *next;
161 struct symbol *sym;
162 };
163
164 /* This is the endianness of the current section. */
165 extern int target_big_endian;
166
167 /* This is the default endianness. */
168 static int default_big_endian = TARGET_BYTES_BIG_ENDIAN;
169
170 void (*ia64_number_to_chars) PARAMS ((char *, valueT, int));
171
172 static void ia64_float_to_chars_bigendian
173 PARAMS ((char *, LITTLENUM_TYPE *, int));
174 static void ia64_float_to_chars_littleendian
175 PARAMS ((char *, LITTLENUM_TYPE *, int));
176 static void (*ia64_float_to_chars)
177 PARAMS ((char *, LITTLENUM_TYPE *, int));
178
179 static struct hash_control *alias_hash;
180 static struct hash_control *alias_name_hash;
181 static struct hash_control *secalias_hash;
182 static struct hash_control *secalias_name_hash;
183
184 /* List of chars besides those in app.c:symbol_chars that can start an
185 operand. Used to prevent the scrubber eating vital white-space. */
186 const char ia64_symbol_chars[] = "@?";
187
188 /* Characters which always start a comment. */
189 const char comment_chars[] = "";
190
191 /* Characters which start a comment at the beginning of a line. */
192 const char line_comment_chars[] = "#";
193
194 /* Characters which may be used to separate multiple commands on a
195 single line. */
196 const char line_separator_chars[] = ";";
197
198 /* Characters which are used to indicate an exponent in a floating
199 point number. */
200 const char EXP_CHARS[] = "eE";
201
202 /* Characters which mean that a number is a floating point constant,
203 as in 0d1.0. */
204 const char FLT_CHARS[] = "rRsSfFdDxXpP";
205
206 /* ia64-specific option processing: */
207
208 const char *md_shortopts = "m:N:x::";
209
210 struct option md_longopts[] =
211 {
212 #define OPTION_MCONSTANT_GP (OPTION_MD_BASE + 1)
213 {"mconstant-gp", no_argument, NULL, OPTION_MCONSTANT_GP},
214 #define OPTION_MAUTO_PIC (OPTION_MD_BASE + 2)
215 {"mauto-pic", no_argument, NULL, OPTION_MAUTO_PIC}
216 };
217
218 size_t md_longopts_size = sizeof (md_longopts);
219
220 static struct
221 {
222 struct hash_control *pseudo_hash; /* pseudo opcode hash table */
223 struct hash_control *reg_hash; /* register name hash table */
224 struct hash_control *dynreg_hash; /* dynamic register hash table */
225 struct hash_control *const_hash; /* constant hash table */
226 struct hash_control *entry_hash; /* code entry hint hash table */
227
228 symbolS *regsym[REG_NUM];
229
230 /* If X_op is != O_absent, the registername for the instruction's
231 qualifying predicate. If NULL, p0 is assumed for instructions
232 that are predicatable. */
233 expressionS qp;
234
235 /* Optimize for which CPU. */
236 enum
237 {
238 itanium1,
239 itanium2
240 } tune;
241
242 /* What to do when hint.b is used. */
243 enum
244 {
245 hint_b_error,
246 hint_b_warning,
247 hint_b_ok
248 } hint_b;
249
250 unsigned int
251 manual_bundling : 1,
252 debug_dv: 1,
253 detect_dv: 1,
254 explicit_mode : 1, /* which mode we're in */
255 default_explicit_mode : 1, /* which mode is the default */
256 mode_explicitly_set : 1, /* was the current mode explicitly set? */
257 auto_align : 1,
258 keep_pending_output : 1;
259
260 /* What to do when something is wrong with unwind directives. */
261 enum
262 {
263 unwind_check_warning,
264 unwind_check_error
265 } unwind_check;
266
267 /* Each bundle consists of up to three instructions. We keep
268 track of four most recent instructions so we can correctly set
269 the end_of_insn_group for the last instruction in a bundle. */
270 int curr_slot;
271 int num_slots_in_use;
272 struct slot
273 {
274 unsigned int
275 end_of_insn_group : 1,
276 manual_bundling_on : 1,
277 manual_bundling_off : 1,
278 loc_directive_seen : 1;
279 signed char user_template; /* user-selected template, if any */
280 unsigned char qp_regno; /* qualifying predicate */
281 /* This duplicates a good fraction of "struct fix" but we
282 can't use a "struct fix" instead since we can't call
283 fix_new_exp() until we know the address of the instruction. */
284 int num_fixups;
285 struct insn_fix
286 {
287 bfd_reloc_code_real_type code;
288 enum ia64_opnd opnd; /* type of operand in need of fix */
289 unsigned int is_pcrel : 1; /* is operand pc-relative? */
290 expressionS expr; /* the value to be inserted */
291 }
292 fixup[2]; /* at most two fixups per insn */
293 struct ia64_opcode *idesc;
294 struct label_fix *label_fixups;
295 struct label_fix *tag_fixups;
296 struct unw_rec_list *unwind_record; /* Unwind directive. */
297 expressionS opnd[6];
298 char *src_file;
299 unsigned int src_line;
300 struct dwarf2_line_info debug_line;
301 }
302 slot[NUM_SLOTS];
303
304 segT last_text_seg;
305
306 struct dynreg
307 {
308 struct dynreg *next; /* next dynamic register */
309 const char *name;
310 unsigned short base; /* the base register number */
311 unsigned short num_regs; /* # of registers in this set */
312 }
313 *dynreg[DYNREG_NUM_TYPES], in, loc, out, rot;
314
315 flagword flags; /* ELF-header flags */
316
317 struct mem_offset {
318 unsigned hint:1; /* is this hint currently valid? */
319 bfd_vma offset; /* mem.offset offset */
320 bfd_vma base; /* mem.offset base */
321 } mem_offset;
322
323 int path; /* number of alt. entry points seen */
324 const char **entry_labels; /* labels of all alternate paths in
325 the current DV-checking block. */
326 int maxpaths; /* size currently allocated for
327 entry_labels */
328
329 int pointer_size; /* size in bytes of a pointer */
330 int pointer_size_shift; /* shift size of a pointer for alignment */
331 }
332 md;
333
334 /* These are not const, because they are modified to MMI for non-itanium1
335 targets below. */
336 /* MFI bundle of nops. */
337 static unsigned char le_nop[16] =
338 {
339 0x0c, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
340 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
341 };
342 /* MFI bundle of nops with stop-bit. */
343 static unsigned char le_nop_stop[16] =
344 {
345 0x0d, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
346 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
347 };
348
349 /* application registers: */
350
351 #define AR_K0 0
352 #define AR_K7 7
353 #define AR_RSC 16
354 #define AR_BSP 17
355 #define AR_BSPSTORE 18
356 #define AR_RNAT 19
357 #define AR_UNAT 36
358 #define AR_FPSR 40
359 #define AR_ITC 44
360 #define AR_PFS 64
361 #define AR_LC 65
362
363 static const struct
364 {
365 const char *name;
366 int regnum;
367 }
368 ar[] =
369 {
370 {"ar.k0", 0}, {"ar.k1", 1}, {"ar.k2", 2}, {"ar.k3", 3},
371 {"ar.k4", 4}, {"ar.k5", 5}, {"ar.k6", 6}, {"ar.k7", 7},
372 {"ar.rsc", 16}, {"ar.bsp", 17},
373 {"ar.bspstore", 18}, {"ar.rnat", 19},
374 {"ar.fcr", 21}, {"ar.eflag", 24},
375 {"ar.csd", 25}, {"ar.ssd", 26},
376 {"ar.cflg", 27}, {"ar.fsr", 28},
377 {"ar.fir", 29}, {"ar.fdr", 30},
378 {"ar.ccv", 32}, {"ar.unat", 36},
379 {"ar.fpsr", 40}, {"ar.itc", 44},
380 {"ar.pfs", 64}, {"ar.lc", 65},
381 {"ar.ec", 66},
382 };
383
384 #define CR_IPSR 16
385 #define CR_ISR 17
386 #define CR_IIP 19
387 #define CR_IFA 20
388 #define CR_ITIR 21
389 #define CR_IIPA 22
390 #define CR_IFS 23
391 #define CR_IIM 24
392 #define CR_IHA 25
393 #define CR_IVR 65
394 #define CR_TPR 66
395 #define CR_EOI 67
396 #define CR_IRR0 68
397 #define CR_IRR3 71
398 #define CR_LRR0 80
399 #define CR_LRR1 81
400
401 /* control registers: */
402 static const struct
403 {
404 const char *name;
405 int regnum;
406 }
407 cr[] =
408 {
409 {"cr.dcr", 0},
410 {"cr.itm", 1},
411 {"cr.iva", 2},
412 {"cr.pta", 8},
413 {"cr.gpta", 9},
414 {"cr.ipsr", 16},
415 {"cr.isr", 17},
416 {"cr.iip", 19},
417 {"cr.ifa", 20},
418 {"cr.itir", 21},
419 {"cr.iipa", 22},
420 {"cr.ifs", 23},
421 {"cr.iim", 24},
422 {"cr.iha", 25},
423 {"cr.lid", 64},
424 {"cr.ivr", 65},
425 {"cr.tpr", 66},
426 {"cr.eoi", 67},
427 {"cr.irr0", 68},
428 {"cr.irr1", 69},
429 {"cr.irr2", 70},
430 {"cr.irr3", 71},
431 {"cr.itv", 72},
432 {"cr.pmv", 73},
433 {"cr.cmcv", 74},
434 {"cr.lrr0", 80},
435 {"cr.lrr1", 81}
436 };
437
438 #define PSR_MFL 4
439 #define PSR_IC 13
440 #define PSR_DFL 18
441 #define PSR_CPL 32
442
443 static const struct const_desc
444 {
445 const char *name;
446 valueT value;
447 }
448 const_bits[] =
449 {
450 /* PSR constant masks: */
451
452 /* 0: reserved */
453 {"psr.be", ((valueT) 1) << 1},
454 {"psr.up", ((valueT) 1) << 2},
455 {"psr.ac", ((valueT) 1) << 3},
456 {"psr.mfl", ((valueT) 1) << 4},
457 {"psr.mfh", ((valueT) 1) << 5},
458 /* 6-12: reserved */
459 {"psr.ic", ((valueT) 1) << 13},
460 {"psr.i", ((valueT) 1) << 14},
461 {"psr.pk", ((valueT) 1) << 15},
462 /* 16: reserved */
463 {"psr.dt", ((valueT) 1) << 17},
464 {"psr.dfl", ((valueT) 1) << 18},
465 {"psr.dfh", ((valueT) 1) << 19},
466 {"psr.sp", ((valueT) 1) << 20},
467 {"psr.pp", ((valueT) 1) << 21},
468 {"psr.di", ((valueT) 1) << 22},
469 {"psr.si", ((valueT) 1) << 23},
470 {"psr.db", ((valueT) 1) << 24},
471 {"psr.lp", ((valueT) 1) << 25},
472 {"psr.tb", ((valueT) 1) << 26},
473 {"psr.rt", ((valueT) 1) << 27},
474 /* 28-31: reserved */
475 /* 32-33: cpl (current privilege level) */
476 {"psr.is", ((valueT) 1) << 34},
477 {"psr.mc", ((valueT) 1) << 35},
478 {"psr.it", ((valueT) 1) << 36},
479 {"psr.id", ((valueT) 1) << 37},
480 {"psr.da", ((valueT) 1) << 38},
481 {"psr.dd", ((valueT) 1) << 39},
482 {"psr.ss", ((valueT) 1) << 40},
483 /* 41-42: ri (restart instruction) */
484 {"psr.ed", ((valueT) 1) << 43},
485 {"psr.bn", ((valueT) 1) << 44},
486 };
487
488 /* indirect register-sets/memory: */
489
490 static const struct
491 {
492 const char *name;
493 int regnum;
494 }
495 indirect_reg[] =
496 {
497 { "CPUID", IND_CPUID },
498 { "cpuid", IND_CPUID },
499 { "dbr", IND_DBR },
500 { "dtr", IND_DTR },
501 { "itr", IND_ITR },
502 { "ibr", IND_IBR },
503 { "msr", IND_MSR },
504 { "pkr", IND_PKR },
505 { "pmc", IND_PMC },
506 { "pmd", IND_PMD },
507 { "rr", IND_RR },
508 };
509
510 /* Pseudo functions used to indicate relocation types (these functions
511 start with an at sign (@). */
512 static struct
513 {
514 const char *name;
515 enum pseudo_type
516 {
517 PSEUDO_FUNC_NONE,
518 PSEUDO_FUNC_RELOC,
519 PSEUDO_FUNC_CONST,
520 PSEUDO_FUNC_REG,
521 PSEUDO_FUNC_FLOAT
522 }
523 type;
524 union
525 {
526 unsigned long ival;
527 symbolS *sym;
528 }
529 u;
530 }
531 pseudo_func[] =
532 {
533 /* reloc pseudo functions (these must come first!): */
534 { "dtpmod", PSEUDO_FUNC_RELOC, { 0 } },
535 { "dtprel", PSEUDO_FUNC_RELOC, { 0 } },
536 { "fptr", PSEUDO_FUNC_RELOC, { 0 } },
537 { "gprel", PSEUDO_FUNC_RELOC, { 0 } },
538 { "ltoff", PSEUDO_FUNC_RELOC, { 0 } },
539 { "ltoffx", PSEUDO_FUNC_RELOC, { 0 } },
540 { "pcrel", PSEUDO_FUNC_RELOC, { 0 } },
541 { "pltoff", PSEUDO_FUNC_RELOC, { 0 } },
542 { "secrel", PSEUDO_FUNC_RELOC, { 0 } },
543 { "segrel", PSEUDO_FUNC_RELOC, { 0 } },
544 { "tprel", PSEUDO_FUNC_RELOC, { 0 } },
545 { "ltv", PSEUDO_FUNC_RELOC, { 0 } },
546 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_FPTR_RELATIVE */
547 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_MODULE */
548 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_RELATIVE */
549 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_TP_RELATIVE */
550 { "iplt", PSEUDO_FUNC_RELOC, { 0 } },
551
552 /* mbtype4 constants: */
553 { "alt", PSEUDO_FUNC_CONST, { 0xa } },
554 { "brcst", PSEUDO_FUNC_CONST, { 0x0 } },
555 { "mix", PSEUDO_FUNC_CONST, { 0x8 } },
556 { "rev", PSEUDO_FUNC_CONST, { 0xb } },
557 { "shuf", PSEUDO_FUNC_CONST, { 0x9 } },
558
559 /* fclass constants: */
560 { "nat", PSEUDO_FUNC_CONST, { 0x100 } },
561 { "qnan", PSEUDO_FUNC_CONST, { 0x080 } },
562 { "snan", PSEUDO_FUNC_CONST, { 0x040 } },
563 { "pos", PSEUDO_FUNC_CONST, { 0x001 } },
564 { "neg", PSEUDO_FUNC_CONST, { 0x002 } },
565 { "zero", PSEUDO_FUNC_CONST, { 0x004 } },
566 { "unorm", PSEUDO_FUNC_CONST, { 0x008 } },
567 { "norm", PSEUDO_FUNC_CONST, { 0x010 } },
568 { "inf", PSEUDO_FUNC_CONST, { 0x020 } },
569
570 { "natval", PSEUDO_FUNC_CONST, { 0x100 } }, /* old usage */
571
572 /* hint constants: */
573 { "pause", PSEUDO_FUNC_CONST, { 0x0 } },
574
575 /* unwind-related constants: */
576 { "svr4", PSEUDO_FUNC_CONST, { ELFOSABI_NONE } },
577 { "hpux", PSEUDO_FUNC_CONST, { ELFOSABI_HPUX } },
578 { "nt", PSEUDO_FUNC_CONST, { 2 } }, /* conflicts w/ELFOSABI_NETBSD */
579 { "linux", PSEUDO_FUNC_CONST, { ELFOSABI_LINUX } },
580 { "freebsd", PSEUDO_FUNC_CONST, { ELFOSABI_FREEBSD } },
581 { "openvms", PSEUDO_FUNC_CONST, { ELFOSABI_OPENVMS } },
582 { "nsk", PSEUDO_FUNC_CONST, { ELFOSABI_NSK } },
583
584 /* unwind-related registers: */
585 { "priunat",PSEUDO_FUNC_REG, { REG_PRIUNAT } }
586 };
587
588 /* 41-bit nop opcodes (one per unit): */
589 static const bfd_vma nop[IA64_NUM_UNITS] =
590 {
591 0x0000000000LL, /* NIL => break 0 */
592 0x0008000000LL, /* I-unit nop */
593 0x0008000000LL, /* M-unit nop */
594 0x4000000000LL, /* B-unit nop */
595 0x0008000000LL, /* F-unit nop */
596 0x0008000000LL, /* L-"unit" nop */
597 0x0008000000LL, /* X-unit nop */
598 };
599
600 /* Can't be `const' as it's passed to input routines (which have the
601 habit of setting temporary sentinels. */
602 static char special_section_name[][20] =
603 {
604 {".bss"}, {".sbss"}, {".sdata"}, {".rodata"}, {".comment"},
605 {".IA_64.unwind"}, {".IA_64.unwind_info"},
606 {".init_array"}, {".fini_array"}
607 };
608
609 /* The best template for a particular sequence of up to three
610 instructions: */
611 #define N IA64_NUM_TYPES
612 static unsigned char best_template[N][N][N];
613 #undef N
614
615 /* Resource dependencies currently in effect */
616 static struct rsrc {
617 int depind; /* dependency index */
618 const struct ia64_dependency *dependency; /* actual dependency */
619 unsigned specific:1, /* is this a specific bit/regno? */
620 link_to_qp_branch:1; /* will a branch on the same QP clear it?*/
621 int index; /* specific regno/bit within dependency */
622 int note; /* optional qualifying note (0 if none) */
623 #define STATE_NONE 0
624 #define STATE_STOP 1
625 #define STATE_SRLZ 2
626 int insn_srlz; /* current insn serialization state */
627 int data_srlz; /* current data serialization state */
628 int qp_regno; /* qualifying predicate for this usage */
629 char *file; /* what file marked this dependency */
630 unsigned int line; /* what line marked this dependency */
631 struct mem_offset mem_offset; /* optional memory offset hint */
632 enum { CMP_NONE, CMP_OR, CMP_AND } cmp_type; /* OR or AND compare? */
633 int path; /* corresponding code entry index */
634 } *regdeps = NULL;
635 static int regdepslen = 0;
636 static int regdepstotlen = 0;
637 static const char *dv_mode[] = { "RAW", "WAW", "WAR" };
638 static const char *dv_sem[] = { "none", "implied", "impliedf",
639 "data", "instr", "specific", "stop", "other" };
640 static const char *dv_cmp_type[] = { "none", "OR", "AND" };
641
642 /* Current state of PR mutexation */
643 static struct qpmutex {
644 valueT prmask;
645 int path;
646 } *qp_mutexes = NULL; /* QP mutex bitmasks */
647 static int qp_mutexeslen = 0;
648 static int qp_mutexestotlen = 0;
649 static valueT qp_safe_across_calls = 0;
650
651 /* Current state of PR implications */
652 static struct qp_imply {
653 unsigned p1:6;
654 unsigned p2:6;
655 unsigned p2_branched:1;
656 int path;
657 } *qp_implies = NULL;
658 static int qp_implieslen = 0;
659 static int qp_impliestotlen = 0;
660
661 /* Keep track of static GR values so that indirect register usage can
662 sometimes be tracked. */
663 static struct gr {
664 unsigned known:1;
665 int path;
666 valueT value;
667 } gr_values[128] = {
668 {
669 1,
670 #ifdef INT_MAX
671 INT_MAX,
672 #else
673 (((1 << (8 * sizeof(gr_values->path) - 2)) - 1) << 1) + 1,
674 #endif
675 0
676 }
677 };
678
679 /* Remember the alignment frag. */
680 static fragS *align_frag;
681
682 /* These are the routines required to output the various types of
683 unwind records. */
684
685 /* A slot_number is a frag address plus the slot index (0-2). We use the
686 frag address here so that if there is a section switch in the middle of
687 a function, then instructions emitted to a different section are not
688 counted. Since there may be more than one frag for a function, this
689 means we also need to keep track of which frag this address belongs to
690 so we can compute inter-frag distances. This also nicely solves the
691 problem with nops emitted for align directives, which can't easily be
692 counted, but can easily be derived from frag sizes. */
693
694 typedef struct unw_rec_list {
695 unwind_record r;
696 unsigned long slot_number;
697 fragS *slot_frag;
698 struct unw_rec_list *next;
699 } unw_rec_list;
700
701 #define SLOT_NUM_NOT_SET (unsigned)-1
702
703 /* Linked list of saved prologue counts. A very poor
704 implementation of a map from label numbers to prologue counts. */
705 typedef struct label_prologue_count
706 {
707 struct label_prologue_count *next;
708 unsigned long label_number;
709 unsigned int prologue_count;
710 } label_prologue_count;
711
712 static struct
713 {
714 /* Maintain a list of unwind entries for the current function. */
715 unw_rec_list *list;
716 unw_rec_list *tail;
717
718 /* Any unwind entires that should be attached to the current slot
719 that an insn is being constructed for. */
720 unw_rec_list *current_entry;
721
722 /* These are used to create the unwind table entry for this function. */
723 symbolS *proc_start;
724 symbolS *info; /* pointer to unwind info */
725 symbolS *personality_routine;
726 segT saved_text_seg;
727 subsegT saved_text_subseg;
728 unsigned int force_unwind_entry : 1; /* force generation of unwind entry? */
729
730 /* TRUE if processing unwind directives in a prologue region. */
731 unsigned int prologue : 1;
732 unsigned int prologue_mask : 4;
733 unsigned int body : 1;
734 unsigned int insn : 1;
735 unsigned int prologue_count; /* number of .prologues seen so far */
736 /* Prologue counts at previous .label_state directives. */
737 struct label_prologue_count * saved_prologue_counts;
738 } unwind;
739
740 /* The input value is a negated offset from psp, and specifies an address
741 psp - offset. The encoded value is psp + 16 - (4 * offset). Thus we
742 must add 16 and divide by 4 to get the encoded value. */
743
744 #define ENCODED_PSP_OFFSET(OFFSET) (((OFFSET) + 16) / 4)
745
746 typedef void (*vbyte_func) PARAMS ((int, char *, char *));
747
748 /* Forward declarations: */
749 static void set_section PARAMS ((char *name));
750 static unsigned int set_regstack PARAMS ((unsigned int, unsigned int,
751 unsigned int, unsigned int));
752 static void dot_align (int);
753 static void dot_radix PARAMS ((int));
754 static void dot_special_section PARAMS ((int));
755 static void dot_proc PARAMS ((int));
756 static void dot_fframe PARAMS ((int));
757 static void dot_vframe PARAMS ((int));
758 static void dot_vframesp PARAMS ((int));
759 static void dot_vframepsp PARAMS ((int));
760 static void dot_save PARAMS ((int));
761 static void dot_restore PARAMS ((int));
762 static void dot_restorereg PARAMS ((int));
763 static void dot_restorereg_p PARAMS ((int));
764 static void dot_handlerdata PARAMS ((int));
765 static void dot_unwentry PARAMS ((int));
766 static void dot_altrp PARAMS ((int));
767 static void dot_savemem PARAMS ((int));
768 static void dot_saveg PARAMS ((int));
769 static void dot_savef PARAMS ((int));
770 static void dot_saveb PARAMS ((int));
771 static void dot_savegf PARAMS ((int));
772 static void dot_spill PARAMS ((int));
773 static void dot_spillreg PARAMS ((int));
774 static void dot_spillmem PARAMS ((int));
775 static void dot_spillreg_p PARAMS ((int));
776 static void dot_spillmem_p PARAMS ((int));
777 static void dot_label_state PARAMS ((int));
778 static void dot_copy_state PARAMS ((int));
779 static void dot_unwabi PARAMS ((int));
780 static void dot_personality PARAMS ((int));
781 static void dot_body PARAMS ((int));
782 static void dot_prologue PARAMS ((int));
783 static void dot_endp PARAMS ((int));
784 static void dot_template PARAMS ((int));
785 static void dot_regstk PARAMS ((int));
786 static void dot_rot PARAMS ((int));
787 static void dot_byteorder PARAMS ((int));
788 static void dot_psr PARAMS ((int));
789 static void dot_alias PARAMS ((int));
790 static void dot_ln PARAMS ((int));
791 static void cross_section PARAMS ((int ref, void (*cons) PARAMS((int)), int ua));
792 static void dot_xdata PARAMS ((int));
793 static void stmt_float_cons PARAMS ((int));
794 static void stmt_cons_ua PARAMS ((int));
795 static void dot_xfloat_cons PARAMS ((int));
796 static void dot_xstringer PARAMS ((int));
797 static void dot_xdata_ua PARAMS ((int));
798 static void dot_xfloat_cons_ua PARAMS ((int));
799 static void print_prmask PARAMS ((valueT mask));
800 static void dot_pred_rel PARAMS ((int));
801 static void dot_reg_val PARAMS ((int));
802 static void dot_serialize PARAMS ((int));
803 static void dot_dv_mode PARAMS ((int));
804 static void dot_entry PARAMS ((int));
805 static void dot_mem_offset PARAMS ((int));
806 static void add_unwind_entry PARAMS((unw_rec_list *ptr));
807 static symbolS *declare_register PARAMS ((const char *name, int regnum));
808 static void declare_register_set PARAMS ((const char *, int, int));
809 static unsigned int operand_width PARAMS ((enum ia64_opnd));
810 static enum operand_match_result operand_match PARAMS ((const struct ia64_opcode *idesc,
811 int index,
812 expressionS *e));
813 static int parse_operand PARAMS ((expressionS *e));
814 static struct ia64_opcode * parse_operands PARAMS ((struct ia64_opcode *));
815 static void build_insn PARAMS ((struct slot *, bfd_vma *));
816 static void emit_one_bundle PARAMS ((void));
817 static void fix_insn PARAMS ((fixS *, const struct ia64_operand *, valueT));
818 static bfd_reloc_code_real_type ia64_gen_real_reloc_type PARAMS ((struct symbol *sym,
819 bfd_reloc_code_real_type r_type));
820 static void insn_group_break PARAMS ((int, int, int));
821 static void mark_resource PARAMS ((struct ia64_opcode *, const struct ia64_dependency *,
822 struct rsrc *, int depind, int path));
823 static void add_qp_mutex PARAMS((valueT mask));
824 static void add_qp_imply PARAMS((int p1, int p2));
825 static void clear_qp_branch_flag PARAMS((valueT mask));
826 static void clear_qp_mutex PARAMS((valueT mask));
827 static void clear_qp_implies PARAMS((valueT p1_mask, valueT p2_mask));
828 static int has_suffix_p PARAMS((const char *, const char *));
829 static void clear_register_values PARAMS ((void));
830 static void print_dependency PARAMS ((const char *action, int depind));
831 static void instruction_serialization PARAMS ((void));
832 static void data_serialization PARAMS ((void));
833 static void remove_marked_resource PARAMS ((struct rsrc *));
834 static int is_conditional_branch PARAMS ((struct ia64_opcode *));
835 static int is_taken_branch PARAMS ((struct ia64_opcode *));
836 static int is_interruption_or_rfi PARAMS ((struct ia64_opcode *));
837 static int depends_on PARAMS ((int, struct ia64_opcode *));
838 static int specify_resource PARAMS ((const struct ia64_dependency *,
839 struct ia64_opcode *, int, struct rsrc [], int, int));
840 static int check_dv PARAMS((struct ia64_opcode *idesc));
841 static void check_dependencies PARAMS((struct ia64_opcode *));
842 static void mark_resources PARAMS((struct ia64_opcode *));
843 static void update_dependencies PARAMS((struct ia64_opcode *));
844 static void note_register_values PARAMS((struct ia64_opcode *));
845 static int qp_mutex PARAMS ((int, int, int));
846 static int resources_match PARAMS ((struct rsrc *, struct ia64_opcode *, int, int, int));
847 static void output_vbyte_mem PARAMS ((int, char *, char *));
848 static void count_output PARAMS ((int, char *, char *));
849 static void output_R1_format PARAMS ((vbyte_func, unw_record_type, int));
850 static void output_R2_format PARAMS ((vbyte_func, int, int, unsigned long));
851 static void output_R3_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
852 static void output_P1_format PARAMS ((vbyte_func, int));
853 static void output_P2_format PARAMS ((vbyte_func, int, int));
854 static void output_P3_format PARAMS ((vbyte_func, unw_record_type, int));
855 static void output_P4_format PARAMS ((vbyte_func, unsigned char *, unsigned long));
856 static void output_P5_format PARAMS ((vbyte_func, int, unsigned long));
857 static void output_P6_format PARAMS ((vbyte_func, unw_record_type, int));
858 static void output_P7_format PARAMS ((vbyte_func, unw_record_type, unsigned long, unsigned long));
859 static void output_P8_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
860 static void output_P9_format PARAMS ((vbyte_func, int, int));
861 static void output_P10_format PARAMS ((vbyte_func, int, int));
862 static void output_B1_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
863 static void output_B2_format PARAMS ((vbyte_func, unsigned long, unsigned long));
864 static void output_B3_format PARAMS ((vbyte_func, unsigned long, unsigned long));
865 static void output_B4_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
866 static char format_ab_reg PARAMS ((int, int));
867 static void output_X1_format PARAMS ((vbyte_func, unw_record_type, int, int, unsigned long,
868 unsigned long));
869 static void output_X2_format PARAMS ((vbyte_func, int, int, int, int, int, unsigned long));
870 static void output_X3_format PARAMS ((vbyte_func, unw_record_type, int, int, int, unsigned long,
871 unsigned long));
872 static void output_X4_format PARAMS ((vbyte_func, int, int, int, int, int, int, unsigned long));
873 static unw_rec_list *output_endp PARAMS ((void));
874 static unw_rec_list *output_prologue PARAMS ((void));
875 static unw_rec_list *output_prologue_gr PARAMS ((unsigned int, unsigned int));
876 static unw_rec_list *output_body PARAMS ((void));
877 static unw_rec_list *output_mem_stack_f PARAMS ((unsigned int));
878 static unw_rec_list *output_mem_stack_v PARAMS ((void));
879 static unw_rec_list *output_psp_gr PARAMS ((unsigned int));
880 static unw_rec_list *output_psp_sprel PARAMS ((unsigned int));
881 static unw_rec_list *output_rp_when PARAMS ((void));
882 static unw_rec_list *output_rp_gr PARAMS ((unsigned int));
883 static unw_rec_list *output_rp_br PARAMS ((unsigned int));
884 static unw_rec_list *output_rp_psprel PARAMS ((unsigned int));
885 static unw_rec_list *output_rp_sprel PARAMS ((unsigned int));
886 static unw_rec_list *output_pfs_when PARAMS ((void));
887 static unw_rec_list *output_pfs_gr PARAMS ((unsigned int));
888 static unw_rec_list *output_pfs_psprel PARAMS ((unsigned int));
889 static unw_rec_list *output_pfs_sprel PARAMS ((unsigned int));
890 static unw_rec_list *output_preds_when PARAMS ((void));
891 static unw_rec_list *output_preds_gr PARAMS ((unsigned int));
892 static unw_rec_list *output_preds_psprel PARAMS ((unsigned int));
893 static unw_rec_list *output_preds_sprel PARAMS ((unsigned int));
894 static unw_rec_list *output_fr_mem PARAMS ((unsigned int));
895 static unw_rec_list *output_frgr_mem PARAMS ((unsigned int, unsigned int));
896 static unw_rec_list *output_gr_gr PARAMS ((unsigned int, unsigned int));
897 static unw_rec_list *output_gr_mem PARAMS ((unsigned int));
898 static unw_rec_list *output_br_mem PARAMS ((unsigned int));
899 static unw_rec_list *output_br_gr PARAMS ((unsigned int, unsigned int));
900 static unw_rec_list *output_spill_base PARAMS ((unsigned int));
901 static unw_rec_list *output_unat_when PARAMS ((void));
902 static unw_rec_list *output_unat_gr PARAMS ((unsigned int));
903 static unw_rec_list *output_unat_psprel PARAMS ((unsigned int));
904 static unw_rec_list *output_unat_sprel PARAMS ((unsigned int));
905 static unw_rec_list *output_lc_when PARAMS ((void));
906 static unw_rec_list *output_lc_gr PARAMS ((unsigned int));
907 static unw_rec_list *output_lc_psprel PARAMS ((unsigned int));
908 static unw_rec_list *output_lc_sprel PARAMS ((unsigned int));
909 static unw_rec_list *output_fpsr_when PARAMS ((void));
910 static unw_rec_list *output_fpsr_gr PARAMS ((unsigned int));
911 static unw_rec_list *output_fpsr_psprel PARAMS ((unsigned int));
912 static unw_rec_list *output_fpsr_sprel PARAMS ((unsigned int));
913 static unw_rec_list *output_priunat_when_gr PARAMS ((void));
914 static unw_rec_list *output_priunat_when_mem PARAMS ((void));
915 static unw_rec_list *output_priunat_gr PARAMS ((unsigned int));
916 static unw_rec_list *output_priunat_psprel PARAMS ((unsigned int));
917 static unw_rec_list *output_priunat_sprel PARAMS ((unsigned int));
918 static unw_rec_list *output_bsp_when PARAMS ((void));
919 static unw_rec_list *output_bsp_gr PARAMS ((unsigned int));
920 static unw_rec_list *output_bsp_psprel PARAMS ((unsigned int));
921 static unw_rec_list *output_bsp_sprel PARAMS ((unsigned int));
922 static unw_rec_list *output_bspstore_when PARAMS ((void));
923 static unw_rec_list *output_bspstore_gr PARAMS ((unsigned int));
924 static unw_rec_list *output_bspstore_psprel PARAMS ((unsigned int));
925 static unw_rec_list *output_bspstore_sprel PARAMS ((unsigned int));
926 static unw_rec_list *output_rnat_when PARAMS ((void));
927 static unw_rec_list *output_rnat_gr PARAMS ((unsigned int));
928 static unw_rec_list *output_rnat_psprel PARAMS ((unsigned int));
929 static unw_rec_list *output_rnat_sprel PARAMS ((unsigned int));
930 static unw_rec_list *output_unwabi PARAMS ((unsigned long, unsigned long));
931 static unw_rec_list *output_epilogue PARAMS ((unsigned long));
932 static unw_rec_list *output_label_state PARAMS ((unsigned long));
933 static unw_rec_list *output_copy_state PARAMS ((unsigned long));
934 static unw_rec_list *output_spill_psprel PARAMS ((unsigned int, unsigned int, unsigned int));
935 static unw_rec_list *output_spill_sprel PARAMS ((unsigned int, unsigned int, unsigned int));
936 static unw_rec_list *output_spill_psprel_p PARAMS ((unsigned int, unsigned int, unsigned int,
937 unsigned int));
938 static unw_rec_list *output_spill_sprel_p PARAMS ((unsigned int, unsigned int, unsigned int,
939 unsigned int));
940 static unw_rec_list *output_spill_reg PARAMS ((unsigned int, unsigned int, unsigned int,
941 unsigned int));
942 static unw_rec_list *output_spill_reg_p PARAMS ((unsigned int, unsigned int, unsigned int,
943 unsigned int, unsigned int));
944 static void process_one_record PARAMS ((unw_rec_list *, vbyte_func));
945 static void process_unw_records PARAMS ((unw_rec_list *, vbyte_func));
946 static int calc_record_size PARAMS ((unw_rec_list *));
947 static void set_imask PARAMS ((unw_rec_list *, unsigned long, unsigned long, unsigned int));
948 static unsigned long slot_index PARAMS ((unsigned long, fragS *,
949 unsigned long, fragS *,
950 int));
951 static unw_rec_list *optimize_unw_records PARAMS ((unw_rec_list *));
952 static void fixup_unw_records PARAMS ((unw_rec_list *, int));
953 static int convert_expr_to_ab_reg PARAMS ((expressionS *, unsigned int *, unsigned int *));
954 static int convert_expr_to_xy_reg PARAMS ((expressionS *, unsigned int *, unsigned int *));
955 static unsigned int get_saved_prologue_count PARAMS ((unsigned long));
956 static void save_prologue_count PARAMS ((unsigned long, unsigned int));
957 static void free_saved_prologue_counts PARAMS ((void));
958
959 /* Determine if application register REGNUM resides only in the integer
960 unit (as opposed to the memory unit). */
961 static int
962 ar_is_only_in_integer_unit (int reg)
963 {
964 reg -= REG_AR;
965 return reg >= 64 && reg <= 111;
966 }
967
968 /* Determine if application register REGNUM resides only in the memory
969 unit (as opposed to the integer unit). */
970 static int
971 ar_is_only_in_memory_unit (int reg)
972 {
973 reg -= REG_AR;
974 return reg >= 0 && reg <= 47;
975 }
976
977 /* Switch to section NAME and create section if necessary. It's
978 rather ugly that we have to manipulate input_line_pointer but I
979 don't see any other way to accomplish the same thing without
980 changing obj-elf.c (which may be the Right Thing, in the end). */
981 static void
982 set_section (name)
983 char *name;
984 {
985 char *saved_input_line_pointer;
986
987 saved_input_line_pointer = input_line_pointer;
988 input_line_pointer = name;
989 obj_elf_section (0);
990 input_line_pointer = saved_input_line_pointer;
991 }
992
993 /* Map 's' to SHF_IA_64_SHORT. */
994
995 int
996 ia64_elf_section_letter (letter, ptr_msg)
997 int letter;
998 char **ptr_msg;
999 {
1000 if (letter == 's')
1001 return SHF_IA_64_SHORT;
1002 else if (letter == 'o')
1003 return SHF_LINK_ORDER;
1004
1005 *ptr_msg = _("Bad .section directive: want a,o,s,w,x,M,S,G,T in string");
1006 return -1;
1007 }
1008
1009 /* Map SHF_IA_64_SHORT to SEC_SMALL_DATA. */
1010
1011 flagword
1012 ia64_elf_section_flags (flags, attr, type)
1013 flagword flags;
1014 int attr, type ATTRIBUTE_UNUSED;
1015 {
1016 if (attr & SHF_IA_64_SHORT)
1017 flags |= SEC_SMALL_DATA;
1018 return flags;
1019 }
1020
1021 int
1022 ia64_elf_section_type (str, len)
1023 const char *str;
1024 size_t len;
1025 {
1026 #define STREQ(s) ((len == sizeof (s) - 1) && (strncmp (str, s, sizeof (s) - 1) == 0))
1027
1028 if (STREQ (ELF_STRING_ia64_unwind_info))
1029 return SHT_PROGBITS;
1030
1031 if (STREQ (ELF_STRING_ia64_unwind_info_once))
1032 return SHT_PROGBITS;
1033
1034 if (STREQ (ELF_STRING_ia64_unwind))
1035 return SHT_IA_64_UNWIND;
1036
1037 if (STREQ (ELF_STRING_ia64_unwind_once))
1038 return SHT_IA_64_UNWIND;
1039
1040 if (STREQ ("unwind"))
1041 return SHT_IA_64_UNWIND;
1042
1043 return -1;
1044 #undef STREQ
1045 }
1046
1047 static unsigned int
1048 set_regstack (ins, locs, outs, rots)
1049 unsigned int ins, locs, outs, rots;
1050 {
1051 /* Size of frame. */
1052 unsigned int sof;
1053
1054 sof = ins + locs + outs;
1055 if (sof > 96)
1056 {
1057 as_bad ("Size of frame exceeds maximum of 96 registers");
1058 return 0;
1059 }
1060 if (rots > sof)
1061 {
1062 as_warn ("Size of rotating registers exceeds frame size");
1063 return 0;
1064 }
1065 md.in.base = REG_GR + 32;
1066 md.loc.base = md.in.base + ins;
1067 md.out.base = md.loc.base + locs;
1068
1069 md.in.num_regs = ins;
1070 md.loc.num_regs = locs;
1071 md.out.num_regs = outs;
1072 md.rot.num_regs = rots;
1073 return sof;
1074 }
1075
1076 void
1077 ia64_flush_insns ()
1078 {
1079 struct label_fix *lfix;
1080 segT saved_seg;
1081 subsegT saved_subseg;
1082 unw_rec_list *ptr;
1083
1084 if (!md.last_text_seg)
1085 return;
1086
1087 saved_seg = now_seg;
1088 saved_subseg = now_subseg;
1089
1090 subseg_set (md.last_text_seg, 0);
1091
1092 while (md.num_slots_in_use > 0)
1093 emit_one_bundle (); /* force out queued instructions */
1094
1095 /* In case there are labels following the last instruction, resolve
1096 those now: */
1097 for (lfix = CURR_SLOT.label_fixups; lfix; lfix = lfix->next)
1098 {
1099 S_SET_VALUE (lfix->sym, frag_now_fix ());
1100 symbol_set_frag (lfix->sym, frag_now);
1101 }
1102 CURR_SLOT.label_fixups = 0;
1103 for (lfix = CURR_SLOT.tag_fixups; lfix; lfix = lfix->next)
1104 {
1105 S_SET_VALUE (lfix->sym, frag_now_fix ());
1106 symbol_set_frag (lfix->sym, frag_now);
1107 }
1108 CURR_SLOT.tag_fixups = 0;
1109
1110 /* In case there are unwind directives following the last instruction,
1111 resolve those now. We only handle prologue, body, and endp directives
1112 here. Give an error for others. */
1113 for (ptr = unwind.current_entry; ptr; ptr = ptr->next)
1114 {
1115 switch (ptr->r.type)
1116 {
1117 case prologue:
1118 case prologue_gr:
1119 case body:
1120 case endp:
1121 ptr->slot_number = (unsigned long) frag_more (0);
1122 ptr->slot_frag = frag_now;
1123 break;
1124
1125 /* Allow any record which doesn't have a "t" field (i.e.,
1126 doesn't relate to a particular instruction). */
1127 case unwabi:
1128 case br_gr:
1129 case copy_state:
1130 case fr_mem:
1131 case frgr_mem:
1132 case gr_gr:
1133 case gr_mem:
1134 case label_state:
1135 case rp_br:
1136 case spill_base:
1137 case spill_mask:
1138 /* nothing */
1139 break;
1140
1141 default:
1142 as_bad (_("Unwind directive not followed by an instruction."));
1143 break;
1144 }
1145 }
1146 unwind.current_entry = NULL;
1147
1148 subseg_set (saved_seg, saved_subseg);
1149
1150 if (md.qp.X_op == O_register)
1151 as_bad ("qualifying predicate not followed by instruction");
1152 }
1153
1154 static void
1155 ia64_do_align (int nbytes)
1156 {
1157 char *saved_input_line_pointer = input_line_pointer;
1158
1159 input_line_pointer = "";
1160 s_align_bytes (nbytes);
1161 input_line_pointer = saved_input_line_pointer;
1162 }
1163
1164 void
1165 ia64_cons_align (nbytes)
1166 int nbytes;
1167 {
1168 if (md.auto_align)
1169 {
1170 char *saved_input_line_pointer = input_line_pointer;
1171 input_line_pointer = "";
1172 s_align_bytes (nbytes);
1173 input_line_pointer = saved_input_line_pointer;
1174 }
1175 }
1176
1177 /* Output COUNT bytes to a memory location. */
1178 static char *vbyte_mem_ptr = NULL;
1179
1180 void
1181 output_vbyte_mem (count, ptr, comment)
1182 int count;
1183 char *ptr;
1184 char *comment ATTRIBUTE_UNUSED;
1185 {
1186 int x;
1187 if (vbyte_mem_ptr == NULL)
1188 abort ();
1189
1190 if (count == 0)
1191 return;
1192 for (x = 0; x < count; x++)
1193 *(vbyte_mem_ptr++) = ptr[x];
1194 }
1195
1196 /* Count the number of bytes required for records. */
1197 static int vbyte_count = 0;
1198 void
1199 count_output (count, ptr, comment)
1200 int count;
1201 char *ptr ATTRIBUTE_UNUSED;
1202 char *comment ATTRIBUTE_UNUSED;
1203 {
1204 vbyte_count += count;
1205 }
1206
1207 static void
1208 output_R1_format (f, rtype, rlen)
1209 vbyte_func f;
1210 unw_record_type rtype;
1211 int rlen;
1212 {
1213 int r = 0;
1214 char byte;
1215 if (rlen > 0x1f)
1216 {
1217 output_R3_format (f, rtype, rlen);
1218 return;
1219 }
1220
1221 if (rtype == body)
1222 r = 1;
1223 else if (rtype != prologue)
1224 as_bad ("record type is not valid");
1225
1226 byte = UNW_R1 | (r << 5) | (rlen & 0x1f);
1227 (*f) (1, &byte, NULL);
1228 }
1229
1230 static void
1231 output_R2_format (f, mask, grsave, rlen)
1232 vbyte_func f;
1233 int mask, grsave;
1234 unsigned long rlen;
1235 {
1236 char bytes[20];
1237 int count = 2;
1238 mask = (mask & 0x0f);
1239 grsave = (grsave & 0x7f);
1240
1241 bytes[0] = (UNW_R2 | (mask >> 1));
1242 bytes[1] = (((mask & 0x01) << 7) | grsave);
1243 count += output_leb128 (bytes + 2, rlen, 0);
1244 (*f) (count, bytes, NULL);
1245 }
1246
1247 static void
1248 output_R3_format (f, rtype, rlen)
1249 vbyte_func f;
1250 unw_record_type rtype;
1251 unsigned long rlen;
1252 {
1253 int r = 0, count;
1254 char bytes[20];
1255 if (rlen <= 0x1f)
1256 {
1257 output_R1_format (f, rtype, rlen);
1258 return;
1259 }
1260
1261 if (rtype == body)
1262 r = 1;
1263 else if (rtype != prologue)
1264 as_bad ("record type is not valid");
1265 bytes[0] = (UNW_R3 | r);
1266 count = output_leb128 (bytes + 1, rlen, 0);
1267 (*f) (count + 1, bytes, NULL);
1268 }
1269
1270 static void
1271 output_P1_format (f, brmask)
1272 vbyte_func f;
1273 int brmask;
1274 {
1275 char byte;
1276 byte = UNW_P1 | (brmask & 0x1f);
1277 (*f) (1, &byte, NULL);
1278 }
1279
1280 static void
1281 output_P2_format (f, brmask, gr)
1282 vbyte_func f;
1283 int brmask;
1284 int gr;
1285 {
1286 char bytes[2];
1287 brmask = (brmask & 0x1f);
1288 bytes[0] = UNW_P2 | (brmask >> 1);
1289 bytes[1] = (((brmask & 1) << 7) | gr);
1290 (*f) (2, bytes, NULL);
1291 }
1292
1293 static void
1294 output_P3_format (f, rtype, reg)
1295 vbyte_func f;
1296 unw_record_type rtype;
1297 int reg;
1298 {
1299 char bytes[2];
1300 int r = 0;
1301 reg = (reg & 0x7f);
1302 switch (rtype)
1303 {
1304 case psp_gr:
1305 r = 0;
1306 break;
1307 case rp_gr:
1308 r = 1;
1309 break;
1310 case pfs_gr:
1311 r = 2;
1312 break;
1313 case preds_gr:
1314 r = 3;
1315 break;
1316 case unat_gr:
1317 r = 4;
1318 break;
1319 case lc_gr:
1320 r = 5;
1321 break;
1322 case rp_br:
1323 r = 6;
1324 break;
1325 case rnat_gr:
1326 r = 7;
1327 break;
1328 case bsp_gr:
1329 r = 8;
1330 break;
1331 case bspstore_gr:
1332 r = 9;
1333 break;
1334 case fpsr_gr:
1335 r = 10;
1336 break;
1337 case priunat_gr:
1338 r = 11;
1339 break;
1340 default:
1341 as_bad ("Invalid record type for P3 format.");
1342 }
1343 bytes[0] = (UNW_P3 | (r >> 1));
1344 bytes[1] = (((r & 1) << 7) | reg);
1345 (*f) (2, bytes, NULL);
1346 }
1347
1348 static void
1349 output_P4_format (f, imask, imask_size)
1350 vbyte_func f;
1351 unsigned char *imask;
1352 unsigned long imask_size;
1353 {
1354 imask[0] = UNW_P4;
1355 (*f) (imask_size, (char *) imask, NULL);
1356 }
1357
1358 static void
1359 output_P5_format (f, grmask, frmask)
1360 vbyte_func f;
1361 int grmask;
1362 unsigned long frmask;
1363 {
1364 char bytes[4];
1365 grmask = (grmask & 0x0f);
1366
1367 bytes[0] = UNW_P5;
1368 bytes[1] = ((grmask << 4) | ((frmask & 0x000f0000) >> 16));
1369 bytes[2] = ((frmask & 0x0000ff00) >> 8);
1370 bytes[3] = (frmask & 0x000000ff);
1371 (*f) (4, bytes, NULL);
1372 }
1373
1374 static void
1375 output_P6_format (f, rtype, rmask)
1376 vbyte_func f;
1377 unw_record_type rtype;
1378 int rmask;
1379 {
1380 char byte;
1381 int r = 0;
1382
1383 if (rtype == gr_mem)
1384 r = 1;
1385 else if (rtype != fr_mem)
1386 as_bad ("Invalid record type for format P6");
1387 byte = (UNW_P6 | (r << 4) | (rmask & 0x0f));
1388 (*f) (1, &byte, NULL);
1389 }
1390
1391 static void
1392 output_P7_format (f, rtype, w1, w2)
1393 vbyte_func f;
1394 unw_record_type rtype;
1395 unsigned long w1;
1396 unsigned long w2;
1397 {
1398 char bytes[20];
1399 int count = 1;
1400 int r = 0;
1401 count += output_leb128 (bytes + 1, w1, 0);
1402 switch (rtype)
1403 {
1404 case mem_stack_f:
1405 r = 0;
1406 count += output_leb128 (bytes + count, w2 >> 4, 0);
1407 break;
1408 case mem_stack_v:
1409 r = 1;
1410 break;
1411 case spill_base:
1412 r = 2;
1413 break;
1414 case psp_sprel:
1415 r = 3;
1416 break;
1417 case rp_when:
1418 r = 4;
1419 break;
1420 case rp_psprel:
1421 r = 5;
1422 break;
1423 case pfs_when:
1424 r = 6;
1425 break;
1426 case pfs_psprel:
1427 r = 7;
1428 break;
1429 case preds_when:
1430 r = 8;
1431 break;
1432 case preds_psprel:
1433 r = 9;
1434 break;
1435 case lc_when:
1436 r = 10;
1437 break;
1438 case lc_psprel:
1439 r = 11;
1440 break;
1441 case unat_when:
1442 r = 12;
1443 break;
1444 case unat_psprel:
1445 r = 13;
1446 break;
1447 case fpsr_when:
1448 r = 14;
1449 break;
1450 case fpsr_psprel:
1451 r = 15;
1452 break;
1453 default:
1454 break;
1455 }
1456 bytes[0] = (UNW_P7 | r);
1457 (*f) (count, bytes, NULL);
1458 }
1459
1460 static void
1461 output_P8_format (f, rtype, t)
1462 vbyte_func f;
1463 unw_record_type rtype;
1464 unsigned long t;
1465 {
1466 char bytes[20];
1467 int r = 0;
1468 int count = 2;
1469 bytes[0] = UNW_P8;
1470 switch (rtype)
1471 {
1472 case rp_sprel:
1473 r = 1;
1474 break;
1475 case pfs_sprel:
1476 r = 2;
1477 break;
1478 case preds_sprel:
1479 r = 3;
1480 break;
1481 case lc_sprel:
1482 r = 4;
1483 break;
1484 case unat_sprel:
1485 r = 5;
1486 break;
1487 case fpsr_sprel:
1488 r = 6;
1489 break;
1490 case bsp_when:
1491 r = 7;
1492 break;
1493 case bsp_psprel:
1494 r = 8;
1495 break;
1496 case bsp_sprel:
1497 r = 9;
1498 break;
1499 case bspstore_when:
1500 r = 10;
1501 break;
1502 case bspstore_psprel:
1503 r = 11;
1504 break;
1505 case bspstore_sprel:
1506 r = 12;
1507 break;
1508 case rnat_when:
1509 r = 13;
1510 break;
1511 case rnat_psprel:
1512 r = 14;
1513 break;
1514 case rnat_sprel:
1515 r = 15;
1516 break;
1517 case priunat_when_gr:
1518 r = 16;
1519 break;
1520 case priunat_psprel:
1521 r = 17;
1522 break;
1523 case priunat_sprel:
1524 r = 18;
1525 break;
1526 case priunat_when_mem:
1527 r = 19;
1528 break;
1529 default:
1530 break;
1531 }
1532 bytes[1] = r;
1533 count += output_leb128 (bytes + 2, t, 0);
1534 (*f) (count, bytes, NULL);
1535 }
1536
1537 static void
1538 output_P9_format (f, grmask, gr)
1539 vbyte_func f;
1540 int grmask;
1541 int gr;
1542 {
1543 char bytes[3];
1544 bytes[0] = UNW_P9;
1545 bytes[1] = (grmask & 0x0f);
1546 bytes[2] = (gr & 0x7f);
1547 (*f) (3, bytes, NULL);
1548 }
1549
1550 static void
1551 output_P10_format (f, abi, context)
1552 vbyte_func f;
1553 int abi;
1554 int context;
1555 {
1556 char bytes[3];
1557 bytes[0] = UNW_P10;
1558 bytes[1] = (abi & 0xff);
1559 bytes[2] = (context & 0xff);
1560 (*f) (3, bytes, NULL);
1561 }
1562
1563 static void
1564 output_B1_format (f, rtype, label)
1565 vbyte_func f;
1566 unw_record_type rtype;
1567 unsigned long label;
1568 {
1569 char byte;
1570 int r = 0;
1571 if (label > 0x1f)
1572 {
1573 output_B4_format (f, rtype, label);
1574 return;
1575 }
1576 if (rtype == copy_state)
1577 r = 1;
1578 else if (rtype != label_state)
1579 as_bad ("Invalid record type for format B1");
1580
1581 byte = (UNW_B1 | (r << 5) | (label & 0x1f));
1582 (*f) (1, &byte, NULL);
1583 }
1584
1585 static void
1586 output_B2_format (f, ecount, t)
1587 vbyte_func f;
1588 unsigned long ecount;
1589 unsigned long t;
1590 {
1591 char bytes[20];
1592 int count = 1;
1593 if (ecount > 0x1f)
1594 {
1595 output_B3_format (f, ecount, t);
1596 return;
1597 }
1598 bytes[0] = (UNW_B2 | (ecount & 0x1f));
1599 count += output_leb128 (bytes + 1, t, 0);
1600 (*f) (count, bytes, NULL);
1601 }
1602
1603 static void
1604 output_B3_format (f, ecount, t)
1605 vbyte_func f;
1606 unsigned long ecount;
1607 unsigned long t;
1608 {
1609 char bytes[20];
1610 int count = 1;
1611 if (ecount <= 0x1f)
1612 {
1613 output_B2_format (f, ecount, t);
1614 return;
1615 }
1616 bytes[0] = UNW_B3;
1617 count += output_leb128 (bytes + 1, t, 0);
1618 count += output_leb128 (bytes + count, ecount, 0);
1619 (*f) (count, bytes, NULL);
1620 }
1621
1622 static void
1623 output_B4_format (f, rtype, label)
1624 vbyte_func f;
1625 unw_record_type rtype;
1626 unsigned long label;
1627 {
1628 char bytes[20];
1629 int r = 0;
1630 int count = 1;
1631 if (label <= 0x1f)
1632 {
1633 output_B1_format (f, rtype, label);
1634 return;
1635 }
1636
1637 if (rtype == copy_state)
1638 r = 1;
1639 else if (rtype != label_state)
1640 as_bad ("Invalid record type for format B1");
1641
1642 bytes[0] = (UNW_B4 | (r << 3));
1643 count += output_leb128 (bytes + 1, label, 0);
1644 (*f) (count, bytes, NULL);
1645 }
1646
1647 static char
1648 format_ab_reg (ab, reg)
1649 int ab;
1650 int reg;
1651 {
1652 int ret;
1653 ab = (ab & 3);
1654 reg = (reg & 0x1f);
1655 ret = (ab << 5) | reg;
1656 return ret;
1657 }
1658
1659 static void
1660 output_X1_format (f, rtype, ab, reg, t, w1)
1661 vbyte_func f;
1662 unw_record_type rtype;
1663 int ab, reg;
1664 unsigned long t;
1665 unsigned long w1;
1666 {
1667 char bytes[20];
1668 int r = 0;
1669 int count = 2;
1670 bytes[0] = UNW_X1;
1671
1672 if (rtype == spill_sprel)
1673 r = 1;
1674 else if (rtype != spill_psprel)
1675 as_bad ("Invalid record type for format X1");
1676 bytes[1] = ((r << 7) | format_ab_reg (ab, reg));
1677 count += output_leb128 (bytes + 2, t, 0);
1678 count += output_leb128 (bytes + count, w1, 0);
1679 (*f) (count, bytes, NULL);
1680 }
1681
1682 static void
1683 output_X2_format (f, ab, reg, x, y, treg, t)
1684 vbyte_func f;
1685 int ab, reg;
1686 int x, y, treg;
1687 unsigned long t;
1688 {
1689 char bytes[20];
1690 int count = 3;
1691 bytes[0] = UNW_X2;
1692 bytes[1] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1693 bytes[2] = (((y & 1) << 7) | (treg & 0x7f));
1694 count += output_leb128 (bytes + 3, t, 0);
1695 (*f) (count, bytes, NULL);
1696 }
1697
1698 static void
1699 output_X3_format (f, rtype, qp, ab, reg, t, w1)
1700 vbyte_func f;
1701 unw_record_type rtype;
1702 int qp;
1703 int ab, reg;
1704 unsigned long t;
1705 unsigned long w1;
1706 {
1707 char bytes[20];
1708 int r = 0;
1709 int count = 3;
1710 bytes[0] = UNW_X3;
1711
1712 if (rtype == spill_sprel_p)
1713 r = 1;
1714 else if (rtype != spill_psprel_p)
1715 as_bad ("Invalid record type for format X3");
1716 bytes[1] = ((r << 7) | (qp & 0x3f));
1717 bytes[2] = format_ab_reg (ab, reg);
1718 count += output_leb128 (bytes + 3, t, 0);
1719 count += output_leb128 (bytes + count, w1, 0);
1720 (*f) (count, bytes, NULL);
1721 }
1722
1723 static void
1724 output_X4_format (f, qp, ab, reg, x, y, treg, t)
1725 vbyte_func f;
1726 int qp;
1727 int ab, reg;
1728 int x, y, treg;
1729 unsigned long t;
1730 {
1731 char bytes[20];
1732 int count = 4;
1733 bytes[0] = UNW_X4;
1734 bytes[1] = (qp & 0x3f);
1735 bytes[2] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1736 bytes[3] = (((y & 1) << 7) | (treg & 0x7f));
1737 count += output_leb128 (bytes + 4, t, 0);
1738 (*f) (count, bytes, NULL);
1739 }
1740
1741 /* This function allocates a record list structure, and initializes fields. */
1742
1743 static unw_rec_list *
1744 alloc_record (unw_record_type t)
1745 {
1746 unw_rec_list *ptr;
1747 ptr = xmalloc (sizeof (*ptr));
1748 ptr->next = NULL;
1749 ptr->slot_number = SLOT_NUM_NOT_SET;
1750 ptr->r.type = t;
1751 return ptr;
1752 }
1753
1754 /* Dummy unwind record used for calculating the length of the last prologue or
1755 body region. */
1756
1757 static unw_rec_list *
1758 output_endp ()
1759 {
1760 unw_rec_list *ptr = alloc_record (endp);
1761 return ptr;
1762 }
1763
1764 static unw_rec_list *
1765 output_prologue ()
1766 {
1767 unw_rec_list *ptr = alloc_record (prologue);
1768 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1769 return ptr;
1770 }
1771
1772 static unw_rec_list *
1773 output_prologue_gr (saved_mask, reg)
1774 unsigned int saved_mask;
1775 unsigned int reg;
1776 {
1777 unw_rec_list *ptr = alloc_record (prologue_gr);
1778 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1779 ptr->r.record.r.grmask = saved_mask;
1780 ptr->r.record.r.grsave = reg;
1781 return ptr;
1782 }
1783
1784 static unw_rec_list *
1785 output_body ()
1786 {
1787 unw_rec_list *ptr = alloc_record (body);
1788 return ptr;
1789 }
1790
1791 static unw_rec_list *
1792 output_mem_stack_f (size)
1793 unsigned int size;
1794 {
1795 unw_rec_list *ptr = alloc_record (mem_stack_f);
1796 ptr->r.record.p.size = size;
1797 return ptr;
1798 }
1799
1800 static unw_rec_list *
1801 output_mem_stack_v ()
1802 {
1803 unw_rec_list *ptr = alloc_record (mem_stack_v);
1804 return ptr;
1805 }
1806
1807 static unw_rec_list *
1808 output_psp_gr (gr)
1809 unsigned int gr;
1810 {
1811 unw_rec_list *ptr = alloc_record (psp_gr);
1812 ptr->r.record.p.gr = gr;
1813 return ptr;
1814 }
1815
1816 static unw_rec_list *
1817 output_psp_sprel (offset)
1818 unsigned int offset;
1819 {
1820 unw_rec_list *ptr = alloc_record (psp_sprel);
1821 ptr->r.record.p.spoff = offset / 4;
1822 return ptr;
1823 }
1824
1825 static unw_rec_list *
1826 output_rp_when ()
1827 {
1828 unw_rec_list *ptr = alloc_record (rp_when);
1829 return ptr;
1830 }
1831
1832 static unw_rec_list *
1833 output_rp_gr (gr)
1834 unsigned int gr;
1835 {
1836 unw_rec_list *ptr = alloc_record (rp_gr);
1837 ptr->r.record.p.gr = gr;
1838 return ptr;
1839 }
1840
1841 static unw_rec_list *
1842 output_rp_br (br)
1843 unsigned int br;
1844 {
1845 unw_rec_list *ptr = alloc_record (rp_br);
1846 ptr->r.record.p.br = br;
1847 return ptr;
1848 }
1849
1850 static unw_rec_list *
1851 output_rp_psprel (offset)
1852 unsigned int offset;
1853 {
1854 unw_rec_list *ptr = alloc_record (rp_psprel);
1855 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
1856 return ptr;
1857 }
1858
1859 static unw_rec_list *
1860 output_rp_sprel (offset)
1861 unsigned int offset;
1862 {
1863 unw_rec_list *ptr = alloc_record (rp_sprel);
1864 ptr->r.record.p.spoff = offset / 4;
1865 return ptr;
1866 }
1867
1868 static unw_rec_list *
1869 output_pfs_when ()
1870 {
1871 unw_rec_list *ptr = alloc_record (pfs_when);
1872 return ptr;
1873 }
1874
1875 static unw_rec_list *
1876 output_pfs_gr (gr)
1877 unsigned int gr;
1878 {
1879 unw_rec_list *ptr = alloc_record (pfs_gr);
1880 ptr->r.record.p.gr = gr;
1881 return ptr;
1882 }
1883
1884 static unw_rec_list *
1885 output_pfs_psprel (offset)
1886 unsigned int offset;
1887 {
1888 unw_rec_list *ptr = alloc_record (pfs_psprel);
1889 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
1890 return ptr;
1891 }
1892
1893 static unw_rec_list *
1894 output_pfs_sprel (offset)
1895 unsigned int offset;
1896 {
1897 unw_rec_list *ptr = alloc_record (pfs_sprel);
1898 ptr->r.record.p.spoff = offset / 4;
1899 return ptr;
1900 }
1901
1902 static unw_rec_list *
1903 output_preds_when ()
1904 {
1905 unw_rec_list *ptr = alloc_record (preds_when);
1906 return ptr;
1907 }
1908
1909 static unw_rec_list *
1910 output_preds_gr (gr)
1911 unsigned int gr;
1912 {
1913 unw_rec_list *ptr = alloc_record (preds_gr);
1914 ptr->r.record.p.gr = gr;
1915 return ptr;
1916 }
1917
1918 static unw_rec_list *
1919 output_preds_psprel (offset)
1920 unsigned int offset;
1921 {
1922 unw_rec_list *ptr = alloc_record (preds_psprel);
1923 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
1924 return ptr;
1925 }
1926
1927 static unw_rec_list *
1928 output_preds_sprel (offset)
1929 unsigned int offset;
1930 {
1931 unw_rec_list *ptr = alloc_record (preds_sprel);
1932 ptr->r.record.p.spoff = offset / 4;
1933 return ptr;
1934 }
1935
1936 static unw_rec_list *
1937 output_fr_mem (mask)
1938 unsigned int mask;
1939 {
1940 unw_rec_list *ptr = alloc_record (fr_mem);
1941 ptr->r.record.p.rmask = mask;
1942 return ptr;
1943 }
1944
1945 static unw_rec_list *
1946 output_frgr_mem (gr_mask, fr_mask)
1947 unsigned int gr_mask;
1948 unsigned int fr_mask;
1949 {
1950 unw_rec_list *ptr = alloc_record (frgr_mem);
1951 ptr->r.record.p.grmask = gr_mask;
1952 ptr->r.record.p.frmask = fr_mask;
1953 return ptr;
1954 }
1955
1956 static unw_rec_list *
1957 output_gr_gr (mask, reg)
1958 unsigned int mask;
1959 unsigned int reg;
1960 {
1961 unw_rec_list *ptr = alloc_record (gr_gr);
1962 ptr->r.record.p.grmask = mask;
1963 ptr->r.record.p.gr = reg;
1964 return ptr;
1965 }
1966
1967 static unw_rec_list *
1968 output_gr_mem (mask)
1969 unsigned int mask;
1970 {
1971 unw_rec_list *ptr = alloc_record (gr_mem);
1972 ptr->r.record.p.rmask = mask;
1973 return ptr;
1974 }
1975
1976 static unw_rec_list *
1977 output_br_mem (unsigned int mask)
1978 {
1979 unw_rec_list *ptr = alloc_record (br_mem);
1980 ptr->r.record.p.brmask = mask;
1981 return ptr;
1982 }
1983
1984 static unw_rec_list *
1985 output_br_gr (save_mask, reg)
1986 unsigned int save_mask;
1987 unsigned int reg;
1988 {
1989 unw_rec_list *ptr = alloc_record (br_gr);
1990 ptr->r.record.p.brmask = save_mask;
1991 ptr->r.record.p.gr = reg;
1992 return ptr;
1993 }
1994
1995 static unw_rec_list *
1996 output_spill_base (offset)
1997 unsigned int offset;
1998 {
1999 unw_rec_list *ptr = alloc_record (spill_base);
2000 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2001 return ptr;
2002 }
2003
2004 static unw_rec_list *
2005 output_unat_when ()
2006 {
2007 unw_rec_list *ptr = alloc_record (unat_when);
2008 return ptr;
2009 }
2010
2011 static unw_rec_list *
2012 output_unat_gr (gr)
2013 unsigned int gr;
2014 {
2015 unw_rec_list *ptr = alloc_record (unat_gr);
2016 ptr->r.record.p.gr = gr;
2017 return ptr;
2018 }
2019
2020 static unw_rec_list *
2021 output_unat_psprel (offset)
2022 unsigned int offset;
2023 {
2024 unw_rec_list *ptr = alloc_record (unat_psprel);
2025 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2026 return ptr;
2027 }
2028
2029 static unw_rec_list *
2030 output_unat_sprel (offset)
2031 unsigned int offset;
2032 {
2033 unw_rec_list *ptr = alloc_record (unat_sprel);
2034 ptr->r.record.p.spoff = offset / 4;
2035 return ptr;
2036 }
2037
2038 static unw_rec_list *
2039 output_lc_when ()
2040 {
2041 unw_rec_list *ptr = alloc_record (lc_when);
2042 return ptr;
2043 }
2044
2045 static unw_rec_list *
2046 output_lc_gr (gr)
2047 unsigned int gr;
2048 {
2049 unw_rec_list *ptr = alloc_record (lc_gr);
2050 ptr->r.record.p.gr = gr;
2051 return ptr;
2052 }
2053
2054 static unw_rec_list *
2055 output_lc_psprel (offset)
2056 unsigned int offset;
2057 {
2058 unw_rec_list *ptr = alloc_record (lc_psprel);
2059 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2060 return ptr;
2061 }
2062
2063 static unw_rec_list *
2064 output_lc_sprel (offset)
2065 unsigned int offset;
2066 {
2067 unw_rec_list *ptr = alloc_record (lc_sprel);
2068 ptr->r.record.p.spoff = offset / 4;
2069 return ptr;
2070 }
2071
2072 static unw_rec_list *
2073 output_fpsr_when ()
2074 {
2075 unw_rec_list *ptr = alloc_record (fpsr_when);
2076 return ptr;
2077 }
2078
2079 static unw_rec_list *
2080 output_fpsr_gr (gr)
2081 unsigned int gr;
2082 {
2083 unw_rec_list *ptr = alloc_record (fpsr_gr);
2084 ptr->r.record.p.gr = gr;
2085 return ptr;
2086 }
2087
2088 static unw_rec_list *
2089 output_fpsr_psprel (offset)
2090 unsigned int offset;
2091 {
2092 unw_rec_list *ptr = alloc_record (fpsr_psprel);
2093 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2094 return ptr;
2095 }
2096
2097 static unw_rec_list *
2098 output_fpsr_sprel (offset)
2099 unsigned int offset;
2100 {
2101 unw_rec_list *ptr = alloc_record (fpsr_sprel);
2102 ptr->r.record.p.spoff = offset / 4;
2103 return ptr;
2104 }
2105
2106 static unw_rec_list *
2107 output_priunat_when_gr ()
2108 {
2109 unw_rec_list *ptr = alloc_record (priunat_when_gr);
2110 return ptr;
2111 }
2112
2113 static unw_rec_list *
2114 output_priunat_when_mem ()
2115 {
2116 unw_rec_list *ptr = alloc_record (priunat_when_mem);
2117 return ptr;
2118 }
2119
2120 static unw_rec_list *
2121 output_priunat_gr (gr)
2122 unsigned int gr;
2123 {
2124 unw_rec_list *ptr = alloc_record (priunat_gr);
2125 ptr->r.record.p.gr = gr;
2126 return ptr;
2127 }
2128
2129 static unw_rec_list *
2130 output_priunat_psprel (offset)
2131 unsigned int offset;
2132 {
2133 unw_rec_list *ptr = alloc_record (priunat_psprel);
2134 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2135 return ptr;
2136 }
2137
2138 static unw_rec_list *
2139 output_priunat_sprel (offset)
2140 unsigned int offset;
2141 {
2142 unw_rec_list *ptr = alloc_record (priunat_sprel);
2143 ptr->r.record.p.spoff = offset / 4;
2144 return ptr;
2145 }
2146
2147 static unw_rec_list *
2148 output_bsp_when ()
2149 {
2150 unw_rec_list *ptr = alloc_record (bsp_when);
2151 return ptr;
2152 }
2153
2154 static unw_rec_list *
2155 output_bsp_gr (gr)
2156 unsigned int gr;
2157 {
2158 unw_rec_list *ptr = alloc_record (bsp_gr);
2159 ptr->r.record.p.gr = gr;
2160 return ptr;
2161 }
2162
2163 static unw_rec_list *
2164 output_bsp_psprel (offset)
2165 unsigned int offset;
2166 {
2167 unw_rec_list *ptr = alloc_record (bsp_psprel);
2168 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2169 return ptr;
2170 }
2171
2172 static unw_rec_list *
2173 output_bsp_sprel (offset)
2174 unsigned int offset;
2175 {
2176 unw_rec_list *ptr = alloc_record (bsp_sprel);
2177 ptr->r.record.p.spoff = offset / 4;
2178 return ptr;
2179 }
2180
2181 static unw_rec_list *
2182 output_bspstore_when ()
2183 {
2184 unw_rec_list *ptr = alloc_record (bspstore_when);
2185 return ptr;
2186 }
2187
2188 static unw_rec_list *
2189 output_bspstore_gr (gr)
2190 unsigned int gr;
2191 {
2192 unw_rec_list *ptr = alloc_record (bspstore_gr);
2193 ptr->r.record.p.gr = gr;
2194 return ptr;
2195 }
2196
2197 static unw_rec_list *
2198 output_bspstore_psprel (offset)
2199 unsigned int offset;
2200 {
2201 unw_rec_list *ptr = alloc_record (bspstore_psprel);
2202 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2203 return ptr;
2204 }
2205
2206 static unw_rec_list *
2207 output_bspstore_sprel (offset)
2208 unsigned int offset;
2209 {
2210 unw_rec_list *ptr = alloc_record (bspstore_sprel);
2211 ptr->r.record.p.spoff = offset / 4;
2212 return ptr;
2213 }
2214
2215 static unw_rec_list *
2216 output_rnat_when ()
2217 {
2218 unw_rec_list *ptr = alloc_record (rnat_when);
2219 return ptr;
2220 }
2221
2222 static unw_rec_list *
2223 output_rnat_gr (gr)
2224 unsigned int gr;
2225 {
2226 unw_rec_list *ptr = alloc_record (rnat_gr);
2227 ptr->r.record.p.gr = gr;
2228 return ptr;
2229 }
2230
2231 static unw_rec_list *
2232 output_rnat_psprel (offset)
2233 unsigned int offset;
2234 {
2235 unw_rec_list *ptr = alloc_record (rnat_psprel);
2236 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2237 return ptr;
2238 }
2239
2240 static unw_rec_list *
2241 output_rnat_sprel (offset)
2242 unsigned int offset;
2243 {
2244 unw_rec_list *ptr = alloc_record (rnat_sprel);
2245 ptr->r.record.p.spoff = offset / 4;
2246 return ptr;
2247 }
2248
2249 static unw_rec_list *
2250 output_unwabi (abi, context)
2251 unsigned long abi;
2252 unsigned long context;
2253 {
2254 unw_rec_list *ptr = alloc_record (unwabi);
2255 ptr->r.record.p.abi = abi;
2256 ptr->r.record.p.context = context;
2257 return ptr;
2258 }
2259
2260 static unw_rec_list *
2261 output_epilogue (unsigned long ecount)
2262 {
2263 unw_rec_list *ptr = alloc_record (epilogue);
2264 ptr->r.record.b.ecount = ecount;
2265 return ptr;
2266 }
2267
2268 static unw_rec_list *
2269 output_label_state (unsigned long label)
2270 {
2271 unw_rec_list *ptr = alloc_record (label_state);
2272 ptr->r.record.b.label = label;
2273 return ptr;
2274 }
2275
2276 static unw_rec_list *
2277 output_copy_state (unsigned long label)
2278 {
2279 unw_rec_list *ptr = alloc_record (copy_state);
2280 ptr->r.record.b.label = label;
2281 return ptr;
2282 }
2283
2284 static unw_rec_list *
2285 output_spill_psprel (ab, reg, offset)
2286 unsigned int ab;
2287 unsigned int reg;
2288 unsigned int offset;
2289 {
2290 unw_rec_list *ptr = alloc_record (spill_psprel);
2291 ptr->r.record.x.ab = ab;
2292 ptr->r.record.x.reg = reg;
2293 ptr->r.record.x.pspoff = ENCODED_PSP_OFFSET (offset);
2294 return ptr;
2295 }
2296
2297 static unw_rec_list *
2298 output_spill_sprel (ab, reg, offset)
2299 unsigned int ab;
2300 unsigned int reg;
2301 unsigned int offset;
2302 {
2303 unw_rec_list *ptr = alloc_record (spill_sprel);
2304 ptr->r.record.x.ab = ab;
2305 ptr->r.record.x.reg = reg;
2306 ptr->r.record.x.spoff = offset / 4;
2307 return ptr;
2308 }
2309
2310 static unw_rec_list *
2311 output_spill_psprel_p (ab, reg, offset, predicate)
2312 unsigned int ab;
2313 unsigned int reg;
2314 unsigned int offset;
2315 unsigned int predicate;
2316 {
2317 unw_rec_list *ptr = alloc_record (spill_psprel_p);
2318 ptr->r.record.x.ab = ab;
2319 ptr->r.record.x.reg = reg;
2320 ptr->r.record.x.pspoff = ENCODED_PSP_OFFSET (offset);
2321 ptr->r.record.x.qp = predicate;
2322 return ptr;
2323 }
2324
2325 static unw_rec_list *
2326 output_spill_sprel_p (ab, reg, offset, predicate)
2327 unsigned int ab;
2328 unsigned int reg;
2329 unsigned int offset;
2330 unsigned int predicate;
2331 {
2332 unw_rec_list *ptr = alloc_record (spill_sprel_p);
2333 ptr->r.record.x.ab = ab;
2334 ptr->r.record.x.reg = reg;
2335 ptr->r.record.x.spoff = offset / 4;
2336 ptr->r.record.x.qp = predicate;
2337 return ptr;
2338 }
2339
2340 static unw_rec_list *
2341 output_spill_reg (ab, reg, targ_reg, xy)
2342 unsigned int ab;
2343 unsigned int reg;
2344 unsigned int targ_reg;
2345 unsigned int xy;
2346 {
2347 unw_rec_list *ptr = alloc_record (spill_reg);
2348 ptr->r.record.x.ab = ab;
2349 ptr->r.record.x.reg = reg;
2350 ptr->r.record.x.treg = targ_reg;
2351 ptr->r.record.x.xy = xy;
2352 return ptr;
2353 }
2354
2355 static unw_rec_list *
2356 output_spill_reg_p (ab, reg, targ_reg, xy, predicate)
2357 unsigned int ab;
2358 unsigned int reg;
2359 unsigned int targ_reg;
2360 unsigned int xy;
2361 unsigned int predicate;
2362 {
2363 unw_rec_list *ptr = alloc_record (spill_reg_p);
2364 ptr->r.record.x.ab = ab;
2365 ptr->r.record.x.reg = reg;
2366 ptr->r.record.x.treg = targ_reg;
2367 ptr->r.record.x.xy = xy;
2368 ptr->r.record.x.qp = predicate;
2369 return ptr;
2370 }
2371
2372 /* Given a unw_rec_list process the correct format with the
2373 specified function. */
2374
2375 static void
2376 process_one_record (ptr, f)
2377 unw_rec_list *ptr;
2378 vbyte_func f;
2379 {
2380 unsigned long fr_mask, gr_mask;
2381
2382 switch (ptr->r.type)
2383 {
2384 /* This is a dummy record that takes up no space in the output. */
2385 case endp:
2386 break;
2387
2388 case gr_mem:
2389 case fr_mem:
2390 case br_mem:
2391 case frgr_mem:
2392 /* These are taken care of by prologue/prologue_gr. */
2393 break;
2394
2395 case prologue_gr:
2396 case prologue:
2397 if (ptr->r.type == prologue_gr)
2398 output_R2_format (f, ptr->r.record.r.grmask,
2399 ptr->r.record.r.grsave, ptr->r.record.r.rlen);
2400 else
2401 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2402
2403 /* Output descriptor(s) for union of register spills (if any). */
2404 gr_mask = ptr->r.record.r.mask.gr_mem;
2405 fr_mask = ptr->r.record.r.mask.fr_mem;
2406 if (fr_mask)
2407 {
2408 if ((fr_mask & ~0xfUL) == 0)
2409 output_P6_format (f, fr_mem, fr_mask);
2410 else
2411 {
2412 output_P5_format (f, gr_mask, fr_mask);
2413 gr_mask = 0;
2414 }
2415 }
2416 if (gr_mask)
2417 output_P6_format (f, gr_mem, gr_mask);
2418 if (ptr->r.record.r.mask.br_mem)
2419 output_P1_format (f, ptr->r.record.r.mask.br_mem);
2420
2421 /* output imask descriptor if necessary: */
2422 if (ptr->r.record.r.mask.i)
2423 output_P4_format (f, ptr->r.record.r.mask.i,
2424 ptr->r.record.r.imask_size);
2425 break;
2426
2427 case body:
2428 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2429 break;
2430 case mem_stack_f:
2431 case mem_stack_v:
2432 output_P7_format (f, ptr->r.type, ptr->r.record.p.t,
2433 ptr->r.record.p.size);
2434 break;
2435 case psp_gr:
2436 case rp_gr:
2437 case pfs_gr:
2438 case preds_gr:
2439 case unat_gr:
2440 case lc_gr:
2441 case fpsr_gr:
2442 case priunat_gr:
2443 case bsp_gr:
2444 case bspstore_gr:
2445 case rnat_gr:
2446 output_P3_format (f, ptr->r.type, ptr->r.record.p.gr);
2447 break;
2448 case rp_br:
2449 output_P3_format (f, rp_br, ptr->r.record.p.br);
2450 break;
2451 case psp_sprel:
2452 output_P7_format (f, psp_sprel, ptr->r.record.p.spoff, 0);
2453 break;
2454 case rp_when:
2455 case pfs_when:
2456 case preds_when:
2457 case unat_when:
2458 case lc_when:
2459 case fpsr_when:
2460 output_P7_format (f, ptr->r.type, ptr->r.record.p.t, 0);
2461 break;
2462 case rp_psprel:
2463 case pfs_psprel:
2464 case preds_psprel:
2465 case unat_psprel:
2466 case lc_psprel:
2467 case fpsr_psprel:
2468 case spill_base:
2469 output_P7_format (f, ptr->r.type, ptr->r.record.p.pspoff, 0);
2470 break;
2471 case rp_sprel:
2472 case pfs_sprel:
2473 case preds_sprel:
2474 case unat_sprel:
2475 case lc_sprel:
2476 case fpsr_sprel:
2477 case priunat_sprel:
2478 case bsp_sprel:
2479 case bspstore_sprel:
2480 case rnat_sprel:
2481 output_P8_format (f, ptr->r.type, ptr->r.record.p.spoff);
2482 break;
2483 case gr_gr:
2484 output_P9_format (f, ptr->r.record.p.grmask, ptr->r.record.p.gr);
2485 break;
2486 case br_gr:
2487 output_P2_format (f, ptr->r.record.p.brmask, ptr->r.record.p.gr);
2488 break;
2489 case spill_mask:
2490 as_bad ("spill_mask record unimplemented.");
2491 break;
2492 case priunat_when_gr:
2493 case priunat_when_mem:
2494 case bsp_when:
2495 case bspstore_when:
2496 case rnat_when:
2497 output_P8_format (f, ptr->r.type, ptr->r.record.p.t);
2498 break;
2499 case priunat_psprel:
2500 case bsp_psprel:
2501 case bspstore_psprel:
2502 case rnat_psprel:
2503 output_P8_format (f, ptr->r.type, ptr->r.record.p.pspoff);
2504 break;
2505 case unwabi:
2506 output_P10_format (f, ptr->r.record.p.abi, ptr->r.record.p.context);
2507 break;
2508 case epilogue:
2509 output_B3_format (f, ptr->r.record.b.ecount, ptr->r.record.b.t);
2510 break;
2511 case label_state:
2512 case copy_state:
2513 output_B4_format (f, ptr->r.type, ptr->r.record.b.label);
2514 break;
2515 case spill_psprel:
2516 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2517 ptr->r.record.x.reg, ptr->r.record.x.t,
2518 ptr->r.record.x.pspoff);
2519 break;
2520 case spill_sprel:
2521 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2522 ptr->r.record.x.reg, ptr->r.record.x.t,
2523 ptr->r.record.x.spoff);
2524 break;
2525 case spill_reg:
2526 output_X2_format (f, ptr->r.record.x.ab, ptr->r.record.x.reg,
2527 ptr->r.record.x.xy >> 1, ptr->r.record.x.xy,
2528 ptr->r.record.x.treg, ptr->r.record.x.t);
2529 break;
2530 case spill_psprel_p:
2531 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2532 ptr->r.record.x.ab, ptr->r.record.x.reg,
2533 ptr->r.record.x.t, ptr->r.record.x.pspoff);
2534 break;
2535 case spill_sprel_p:
2536 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2537 ptr->r.record.x.ab, ptr->r.record.x.reg,
2538 ptr->r.record.x.t, ptr->r.record.x.spoff);
2539 break;
2540 case spill_reg_p:
2541 output_X4_format (f, ptr->r.record.x.qp, ptr->r.record.x.ab,
2542 ptr->r.record.x.reg, ptr->r.record.x.xy >> 1,
2543 ptr->r.record.x.xy, ptr->r.record.x.treg,
2544 ptr->r.record.x.t);
2545 break;
2546 default:
2547 as_bad ("record_type_not_valid");
2548 break;
2549 }
2550 }
2551
2552 /* Given a unw_rec_list list, process all the records with
2553 the specified function. */
2554 static void
2555 process_unw_records (list, f)
2556 unw_rec_list *list;
2557 vbyte_func f;
2558 {
2559 unw_rec_list *ptr;
2560 for (ptr = list; ptr; ptr = ptr->next)
2561 process_one_record (ptr, f);
2562 }
2563
2564 /* Determine the size of a record list in bytes. */
2565 static int
2566 calc_record_size (list)
2567 unw_rec_list *list;
2568 {
2569 vbyte_count = 0;
2570 process_unw_records (list, count_output);
2571 return vbyte_count;
2572 }
2573
2574 /* Update IMASK bitmask to reflect the fact that one or more registers
2575 of type TYPE are saved starting at instruction with index T. If N
2576 bits are set in REGMASK, it is assumed that instructions T through
2577 T+N-1 save these registers.
2578
2579 TYPE values:
2580 0: no save
2581 1: instruction saves next fp reg
2582 2: instruction saves next general reg
2583 3: instruction saves next branch reg */
2584 static void
2585 set_imask (region, regmask, t, type)
2586 unw_rec_list *region;
2587 unsigned long regmask;
2588 unsigned long t;
2589 unsigned int type;
2590 {
2591 unsigned char *imask;
2592 unsigned long imask_size;
2593 unsigned int i;
2594 int pos;
2595
2596 imask = region->r.record.r.mask.i;
2597 imask_size = region->r.record.r.imask_size;
2598 if (!imask)
2599 {
2600 imask_size = (region->r.record.r.rlen * 2 + 7) / 8 + 1;
2601 imask = xmalloc (imask_size);
2602 memset (imask, 0, imask_size);
2603
2604 region->r.record.r.imask_size = imask_size;
2605 region->r.record.r.mask.i = imask;
2606 }
2607
2608 i = (t / 4) + 1;
2609 pos = 2 * (3 - t % 4);
2610 while (regmask)
2611 {
2612 if (i >= imask_size)
2613 {
2614 as_bad ("Ignoring attempt to spill beyond end of region");
2615 return;
2616 }
2617
2618 imask[i] |= (type & 0x3) << pos;
2619
2620 regmask &= (regmask - 1);
2621 pos -= 2;
2622 if (pos < 0)
2623 {
2624 pos = 0;
2625 ++i;
2626 }
2627 }
2628 }
2629
2630 /* Return the number of instruction slots from FIRST_ADDR to SLOT_ADDR.
2631 SLOT_FRAG is the frag containing SLOT_ADDR, and FIRST_FRAG is the frag
2632 containing FIRST_ADDR. If BEFORE_RELAX, then we use worst-case estimates
2633 for frag sizes. */
2634
2635 unsigned long
2636 slot_index (slot_addr, slot_frag, first_addr, first_frag, before_relax)
2637 unsigned long slot_addr;
2638 fragS *slot_frag;
2639 unsigned long first_addr;
2640 fragS *first_frag;
2641 int before_relax;
2642 {
2643 unsigned long index = 0;
2644
2645 /* First time we are called, the initial address and frag are invalid. */
2646 if (first_addr == 0)
2647 return 0;
2648
2649 /* If the two addresses are in different frags, then we need to add in
2650 the remaining size of this frag, and then the entire size of intermediate
2651 frags. */
2652 while (slot_frag != first_frag)
2653 {
2654 unsigned long start_addr = (unsigned long) &first_frag->fr_literal;
2655
2656 if (! before_relax)
2657 {
2658 /* We can get the final addresses only during and after
2659 relaxation. */
2660 if (first_frag->fr_next && first_frag->fr_next->fr_address)
2661 index += 3 * ((first_frag->fr_next->fr_address
2662 - first_frag->fr_address
2663 - first_frag->fr_fix) >> 4);
2664 }
2665 else
2666 /* We don't know what the final addresses will be. We try our
2667 best to estimate. */
2668 switch (first_frag->fr_type)
2669 {
2670 default:
2671 break;
2672
2673 case rs_space:
2674 as_fatal ("only constant space allocation is supported");
2675 break;
2676
2677 case rs_align:
2678 case rs_align_code:
2679 case rs_align_test:
2680 /* Take alignment into account. Assume the worst case
2681 before relaxation. */
2682 index += 3 * ((1 << first_frag->fr_offset) >> 4);
2683 break;
2684
2685 case rs_org:
2686 if (first_frag->fr_symbol)
2687 {
2688 as_fatal ("only constant offsets are supported");
2689 break;
2690 }
2691 case rs_fill:
2692 index += 3 * (first_frag->fr_offset >> 4);
2693 break;
2694 }
2695
2696 /* Add in the full size of the frag converted to instruction slots. */
2697 index += 3 * (first_frag->fr_fix >> 4);
2698 /* Subtract away the initial part before first_addr. */
2699 index -= (3 * ((first_addr >> 4) - (start_addr >> 4))
2700 + ((first_addr & 0x3) - (start_addr & 0x3)));
2701
2702 /* Move to the beginning of the next frag. */
2703 first_frag = first_frag->fr_next;
2704 first_addr = (unsigned long) &first_frag->fr_literal;
2705 }
2706
2707 /* Add in the used part of the last frag. */
2708 index += (3 * ((slot_addr >> 4) - (first_addr >> 4))
2709 + ((slot_addr & 0x3) - (first_addr & 0x3)));
2710 return index;
2711 }
2712
2713 /* Optimize unwind record directives. */
2714
2715 static unw_rec_list *
2716 optimize_unw_records (list)
2717 unw_rec_list *list;
2718 {
2719 if (!list)
2720 return NULL;
2721
2722 /* If the only unwind record is ".prologue" or ".prologue" followed
2723 by ".body", then we can optimize the unwind directives away. */
2724 if (list->r.type == prologue
2725 && (list->next->r.type == endp
2726 || (list->next->r.type == body && list->next->next->r.type == endp)))
2727 return NULL;
2728
2729 return list;
2730 }
2731
2732 /* Given a complete record list, process any records which have
2733 unresolved fields, (ie length counts for a prologue). After
2734 this has been run, all necessary information should be available
2735 within each record to generate an image. */
2736
2737 static void
2738 fixup_unw_records (list, before_relax)
2739 unw_rec_list *list;
2740 int before_relax;
2741 {
2742 unw_rec_list *ptr, *region = 0;
2743 unsigned long first_addr = 0, rlen = 0, t;
2744 fragS *first_frag = 0;
2745
2746 for (ptr = list; ptr; ptr = ptr->next)
2747 {
2748 if (ptr->slot_number == SLOT_NUM_NOT_SET)
2749 as_bad (" Insn slot not set in unwind record.");
2750 t = slot_index (ptr->slot_number, ptr->slot_frag,
2751 first_addr, first_frag, before_relax);
2752 switch (ptr->r.type)
2753 {
2754 case prologue:
2755 case prologue_gr:
2756 case body:
2757 {
2758 unw_rec_list *last;
2759 int size;
2760 unsigned long last_addr = 0;
2761 fragS *last_frag = NULL;
2762
2763 first_addr = ptr->slot_number;
2764 first_frag = ptr->slot_frag;
2765 /* Find either the next body/prologue start, or the end of
2766 the function, and determine the size of the region. */
2767 for (last = ptr->next; last != NULL; last = last->next)
2768 if (last->r.type == prologue || last->r.type == prologue_gr
2769 || last->r.type == body || last->r.type == endp)
2770 {
2771 last_addr = last->slot_number;
2772 last_frag = last->slot_frag;
2773 break;
2774 }
2775 size = slot_index (last_addr, last_frag, first_addr, first_frag,
2776 before_relax);
2777 rlen = ptr->r.record.r.rlen = size;
2778 if (ptr->r.type == body)
2779 /* End of region. */
2780 region = 0;
2781 else
2782 region = ptr;
2783 break;
2784 }
2785 case epilogue:
2786 if (t < rlen)
2787 ptr->r.record.b.t = rlen - 1 - t;
2788 else
2789 /* This happens when a memory-stack-less procedure uses a
2790 ".restore sp" directive at the end of a region to pop
2791 the frame state. */
2792 ptr->r.record.b.t = 0;
2793 break;
2794
2795 case mem_stack_f:
2796 case mem_stack_v:
2797 case rp_when:
2798 case pfs_when:
2799 case preds_when:
2800 case unat_when:
2801 case lc_when:
2802 case fpsr_when:
2803 case priunat_when_gr:
2804 case priunat_when_mem:
2805 case bsp_when:
2806 case bspstore_when:
2807 case rnat_when:
2808 ptr->r.record.p.t = t;
2809 break;
2810
2811 case spill_reg:
2812 case spill_sprel:
2813 case spill_psprel:
2814 case spill_reg_p:
2815 case spill_sprel_p:
2816 case spill_psprel_p:
2817 ptr->r.record.x.t = t;
2818 break;
2819
2820 case frgr_mem:
2821 if (!region)
2822 {
2823 as_bad ("frgr_mem record before region record!");
2824 return;
2825 }
2826 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
2827 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
2828 set_imask (region, ptr->r.record.p.frmask, t, 1);
2829 set_imask (region, ptr->r.record.p.grmask, t, 2);
2830 break;
2831 case fr_mem:
2832 if (!region)
2833 {
2834 as_bad ("fr_mem record before region record!");
2835 return;
2836 }
2837 region->r.record.r.mask.fr_mem |= ptr->r.record.p.rmask;
2838 set_imask (region, ptr->r.record.p.rmask, t, 1);
2839 break;
2840 case gr_mem:
2841 if (!region)
2842 {
2843 as_bad ("gr_mem record before region record!");
2844 return;
2845 }
2846 region->r.record.r.mask.gr_mem |= ptr->r.record.p.rmask;
2847 set_imask (region, ptr->r.record.p.rmask, t, 2);
2848 break;
2849 case br_mem:
2850 if (!region)
2851 {
2852 as_bad ("br_mem record before region record!");
2853 return;
2854 }
2855 region->r.record.r.mask.br_mem |= ptr->r.record.p.brmask;
2856 set_imask (region, ptr->r.record.p.brmask, t, 3);
2857 break;
2858
2859 case gr_gr:
2860 if (!region)
2861 {
2862 as_bad ("gr_gr record before region record!");
2863 return;
2864 }
2865 set_imask (region, ptr->r.record.p.grmask, t, 2);
2866 break;
2867 case br_gr:
2868 if (!region)
2869 {
2870 as_bad ("br_gr record before region record!");
2871 return;
2872 }
2873 set_imask (region, ptr->r.record.p.brmask, t, 3);
2874 break;
2875
2876 default:
2877 break;
2878 }
2879 }
2880 }
2881
2882 /* Estimate the size of a frag before relaxing. We only have one type of frag
2883 to handle here, which is the unwind info frag. */
2884
2885 int
2886 ia64_estimate_size_before_relax (fragS *frag,
2887 asection *segtype ATTRIBUTE_UNUSED)
2888 {
2889 unw_rec_list *list;
2890 int len, size, pad;
2891
2892 /* ??? This code is identical to the first part of ia64_convert_frag. */
2893 list = (unw_rec_list *) frag->fr_opcode;
2894 fixup_unw_records (list, 0);
2895
2896 len = calc_record_size (list);
2897 /* pad to pointer-size boundary. */
2898 pad = len % md.pointer_size;
2899 if (pad != 0)
2900 len += md.pointer_size - pad;
2901 /* Add 8 for the header. */
2902 size = len + 8;
2903 /* Add a pointer for the personality offset. */
2904 if (frag->fr_offset)
2905 size += md.pointer_size;
2906
2907 /* fr_var carries the max_chars that we created the fragment with.
2908 We must, of course, have allocated enough memory earlier. */
2909 assert (frag->fr_var >= size);
2910
2911 return frag->fr_fix + size;
2912 }
2913
2914 /* This function converts a rs_machine_dependent variant frag into a
2915 normal fill frag with the unwind image from the the record list. */
2916 void
2917 ia64_convert_frag (fragS *frag)
2918 {
2919 unw_rec_list *list;
2920 int len, size, pad;
2921 valueT flag_value;
2922
2923 /* ??? This code is identical to ia64_estimate_size_before_relax. */
2924 list = (unw_rec_list *) frag->fr_opcode;
2925 fixup_unw_records (list, 0);
2926
2927 len = calc_record_size (list);
2928 /* pad to pointer-size boundary. */
2929 pad = len % md.pointer_size;
2930 if (pad != 0)
2931 len += md.pointer_size - pad;
2932 /* Add 8 for the header. */
2933 size = len + 8;
2934 /* Add a pointer for the personality offset. */
2935 if (frag->fr_offset)
2936 size += md.pointer_size;
2937
2938 /* fr_var carries the max_chars that we created the fragment with.
2939 We must, of course, have allocated enough memory earlier. */
2940 assert (frag->fr_var >= size);
2941
2942 /* Initialize the header area. fr_offset is initialized with
2943 unwind.personality_routine. */
2944 if (frag->fr_offset)
2945 {
2946 if (md.flags & EF_IA_64_ABI64)
2947 flag_value = (bfd_vma) 3 << 32;
2948 else
2949 /* 32-bit unwind info block. */
2950 flag_value = (bfd_vma) 0x1003 << 32;
2951 }
2952 else
2953 flag_value = 0;
2954
2955 md_number_to_chars (frag->fr_literal,
2956 (((bfd_vma) 1 << 48) /* Version. */
2957 | flag_value /* U & E handler flags. */
2958 | (len / md.pointer_size)), /* Length. */
2959 8);
2960
2961 /* Skip the header. */
2962 vbyte_mem_ptr = frag->fr_literal + 8;
2963 process_unw_records (list, output_vbyte_mem);
2964
2965 /* Fill the padding bytes with zeros. */
2966 if (pad != 0)
2967 md_number_to_chars (frag->fr_literal + len + 8 - md.pointer_size + pad, 0,
2968 md.pointer_size - pad);
2969
2970 frag->fr_fix += size;
2971 frag->fr_type = rs_fill;
2972 frag->fr_var = 0;
2973 frag->fr_offset = 0;
2974 }
2975
2976 static int
2977 convert_expr_to_ab_reg (e, ab, regp)
2978 expressionS *e;
2979 unsigned int *ab;
2980 unsigned int *regp;
2981 {
2982 unsigned int reg;
2983
2984 if (e->X_op != O_register)
2985 return 0;
2986
2987 reg = e->X_add_number;
2988 if (reg >= (REG_GR + 4) && reg <= (REG_GR + 7))
2989 {
2990 *ab = 0;
2991 *regp = reg - REG_GR;
2992 }
2993 else if ((reg >= (REG_FR + 2) && reg <= (REG_FR + 5))
2994 || (reg >= (REG_FR + 16) && reg <= (REG_FR + 31)))
2995 {
2996 *ab = 1;
2997 *regp = reg - REG_FR;
2998 }
2999 else if (reg >= (REG_BR + 1) && reg <= (REG_BR + 5))
3000 {
3001 *ab = 2;
3002 *regp = reg - REG_BR;
3003 }
3004 else
3005 {
3006 *ab = 3;
3007 switch (reg)
3008 {
3009 case REG_PR: *regp = 0; break;
3010 case REG_PSP: *regp = 1; break;
3011 case REG_PRIUNAT: *regp = 2; break;
3012 case REG_BR + 0: *regp = 3; break;
3013 case REG_AR + AR_BSP: *regp = 4; break;
3014 case REG_AR + AR_BSPSTORE: *regp = 5; break;
3015 case REG_AR + AR_RNAT: *regp = 6; break;
3016 case REG_AR + AR_UNAT: *regp = 7; break;
3017 case REG_AR + AR_FPSR: *regp = 8; break;
3018 case REG_AR + AR_PFS: *regp = 9; break;
3019 case REG_AR + AR_LC: *regp = 10; break;
3020
3021 default:
3022 return 0;
3023 }
3024 }
3025 return 1;
3026 }
3027
3028 static int
3029 convert_expr_to_xy_reg (e, xy, regp)
3030 expressionS *e;
3031 unsigned int *xy;
3032 unsigned int *regp;
3033 {
3034 unsigned int reg;
3035
3036 if (e->X_op != O_register)
3037 return 0;
3038
3039 reg = e->X_add_number;
3040
3041 if (/* reg >= REG_GR && */ reg <= (REG_GR + 127))
3042 {
3043 *xy = 0;
3044 *regp = reg - REG_GR;
3045 }
3046 else if (reg >= REG_FR && reg <= (REG_FR + 127))
3047 {
3048 *xy = 1;
3049 *regp = reg - REG_FR;
3050 }
3051 else if (reg >= REG_BR && reg <= (REG_BR + 7))
3052 {
3053 *xy = 2;
3054 *regp = reg - REG_BR;
3055 }
3056 else
3057 return -1;
3058 return 1;
3059 }
3060
3061 static void
3062 dot_align (int arg)
3063 {
3064 /* The current frag is an alignment frag. */
3065 align_frag = frag_now;
3066 s_align_bytes (arg);
3067 }
3068
3069 static void
3070 dot_radix (dummy)
3071 int dummy ATTRIBUTE_UNUSED;
3072 {
3073 int radix;
3074
3075 SKIP_WHITESPACE ();
3076 radix = *input_line_pointer++;
3077
3078 if (radix != 'C' && !is_end_of_line[(unsigned char) radix])
3079 {
3080 as_bad ("Radix `%c' unsupported", *input_line_pointer);
3081 ignore_rest_of_line ();
3082 return;
3083 }
3084 }
3085
3086 /* Helper function for .loc directives. If the assembler is not generating
3087 line number info, then we need to remember which instructions have a .loc
3088 directive, and only call dwarf2_gen_line_info for those instructions. */
3089
3090 static void
3091 dot_loc (int x)
3092 {
3093 CURR_SLOT.loc_directive_seen = 1;
3094 dwarf2_directive_loc (x);
3095 }
3096
3097 /* .sbss, .bss etc. are macros that expand into ".section SECNAME". */
3098 static void
3099 dot_special_section (which)
3100 int which;
3101 {
3102 set_section ((char *) special_section_name[which]);
3103 }
3104
3105 /* Return -1 for warning and 0 for error. */
3106
3107 static int
3108 unwind_diagnostic (const char * region, const char *directive)
3109 {
3110 if (md.unwind_check == unwind_check_warning)
3111 {
3112 as_warn (".%s outside of %s", directive, region);
3113 return -1;
3114 }
3115 else
3116 {
3117 as_bad (".%s outside of %s", directive, region);
3118 ignore_rest_of_line ();
3119 return 0;
3120 }
3121 }
3122
3123 /* Return 1 if a directive is in a procedure, -1 if a directive isn't in
3124 a procedure but the unwind directive check is set to warning, 0 if
3125 a directive isn't in a procedure and the unwind directive check is set
3126 to error. */
3127
3128 static int
3129 in_procedure (const char *directive)
3130 {
3131 if (unwind.proc_start
3132 && (!unwind.saved_text_seg || strcmp (directive, "endp") == 0))
3133 return 1;
3134 return unwind_diagnostic ("procedure", directive);
3135 }
3136
3137 /* Return 1 if a directive is in a prologue, -1 if a directive isn't in
3138 a prologue but the unwind directive check is set to warning, 0 if
3139 a directive isn't in a prologue and the unwind directive check is set
3140 to error. */
3141
3142 static int
3143 in_prologue (const char *directive)
3144 {
3145 int in = in_procedure (directive);
3146 if (in)
3147 {
3148 /* We are in a procedure. Check if we are in a prologue. */
3149 if (unwind.prologue)
3150 return 1;
3151 /* We only want to issue one message. */
3152 if (in == 1)
3153 return unwind_diagnostic ("prologue", directive);
3154 else
3155 return -1;
3156 }
3157 return 0;
3158 }
3159
3160 /* Return 1 if a directive is in a body, -1 if a directive isn't in
3161 a body but the unwind directive check is set to warning, 0 if
3162 a directive isn't in a body and the unwind directive check is set
3163 to error. */
3164
3165 static int
3166 in_body (const char *directive)
3167 {
3168 int in = in_procedure (directive);
3169 if (in)
3170 {
3171 /* We are in a procedure. Check if we are in a body. */
3172 if (unwind.body)
3173 return 1;
3174 /* We only want to issue one message. */
3175 if (in == 1)
3176 return unwind_diagnostic ("body region", directive);
3177 else
3178 return -1;
3179 }
3180 return 0;
3181 }
3182
3183 static void
3184 add_unwind_entry (ptr)
3185 unw_rec_list *ptr;
3186 {
3187 if (unwind.tail)
3188 unwind.tail->next = ptr;
3189 else
3190 unwind.list = ptr;
3191 unwind.tail = ptr;
3192
3193 /* The current entry can in fact be a chain of unwind entries. */
3194 if (unwind.current_entry == NULL)
3195 unwind.current_entry = ptr;
3196 }
3197
3198 static void
3199 dot_fframe (dummy)
3200 int dummy ATTRIBUTE_UNUSED;
3201 {
3202 expressionS e;
3203
3204 if (!in_prologue ("fframe"))
3205 return;
3206
3207 parse_operand (&e);
3208
3209 if (e.X_op != O_constant)
3210 as_bad ("Operand to .fframe must be a constant");
3211 else
3212 add_unwind_entry (output_mem_stack_f (e.X_add_number));
3213 }
3214
3215 static void
3216 dot_vframe (dummy)
3217 int dummy ATTRIBUTE_UNUSED;
3218 {
3219 expressionS e;
3220 unsigned reg;
3221
3222 if (!in_prologue ("vframe"))
3223 return;
3224
3225 parse_operand (&e);
3226 reg = e.X_add_number - REG_GR;
3227 if (e.X_op == O_register && reg < 128)
3228 {
3229 add_unwind_entry (output_mem_stack_v ());
3230 if (! (unwind.prologue_mask & 2))
3231 add_unwind_entry (output_psp_gr (reg));
3232 }
3233 else
3234 as_bad ("First operand to .vframe must be a general register");
3235 }
3236
3237 static void
3238 dot_vframesp (dummy)
3239 int dummy ATTRIBUTE_UNUSED;
3240 {
3241 expressionS e;
3242
3243 if (!in_prologue ("vframesp"))
3244 return;
3245
3246 parse_operand (&e);
3247 if (e.X_op == O_constant)
3248 {
3249 add_unwind_entry (output_mem_stack_v ());
3250 add_unwind_entry (output_psp_sprel (e.X_add_number));
3251 }
3252 else
3253 as_bad ("Operand to .vframesp must be a constant (sp-relative offset)");
3254 }
3255
3256 static void
3257 dot_vframepsp (dummy)
3258 int dummy ATTRIBUTE_UNUSED;
3259 {
3260 expressionS e;
3261
3262 if (!in_prologue ("vframepsp"))
3263 return;
3264
3265 parse_operand (&e);
3266 if (e.X_op == O_constant)
3267 {
3268 add_unwind_entry (output_mem_stack_v ());
3269 add_unwind_entry (output_psp_sprel (e.X_add_number));
3270 }
3271 else
3272 as_bad ("Operand to .vframepsp must be a constant (psp-relative offset)");
3273 }
3274
3275 static void
3276 dot_save (dummy)
3277 int dummy ATTRIBUTE_UNUSED;
3278 {
3279 expressionS e1, e2;
3280 int sep;
3281 int reg1, reg2;
3282
3283 if (!in_prologue ("save"))
3284 return;
3285
3286 sep = parse_operand (&e1);
3287 if (sep != ',')
3288 as_bad ("No second operand to .save");
3289 sep = parse_operand (&e2);
3290
3291 reg1 = e1.X_add_number;
3292 reg2 = e2.X_add_number - REG_GR;
3293
3294 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3295 if (e1.X_op == O_register)
3296 {
3297 if (e2.X_op == O_register && reg2 >= 0 && reg2 < 128)
3298 {
3299 switch (reg1)
3300 {
3301 case REG_AR + AR_BSP:
3302 add_unwind_entry (output_bsp_when ());
3303 add_unwind_entry (output_bsp_gr (reg2));
3304 break;
3305 case REG_AR + AR_BSPSTORE:
3306 add_unwind_entry (output_bspstore_when ());
3307 add_unwind_entry (output_bspstore_gr (reg2));
3308 break;
3309 case REG_AR + AR_RNAT:
3310 add_unwind_entry (output_rnat_when ());
3311 add_unwind_entry (output_rnat_gr (reg2));
3312 break;
3313 case REG_AR + AR_UNAT:
3314 add_unwind_entry (output_unat_when ());
3315 add_unwind_entry (output_unat_gr (reg2));
3316 break;
3317 case REG_AR + AR_FPSR:
3318 add_unwind_entry (output_fpsr_when ());
3319 add_unwind_entry (output_fpsr_gr (reg2));
3320 break;
3321 case REG_AR + AR_PFS:
3322 add_unwind_entry (output_pfs_when ());
3323 if (! (unwind.prologue_mask & 4))
3324 add_unwind_entry (output_pfs_gr (reg2));
3325 break;
3326 case REG_AR + AR_LC:
3327 add_unwind_entry (output_lc_when ());
3328 add_unwind_entry (output_lc_gr (reg2));
3329 break;
3330 case REG_BR:
3331 add_unwind_entry (output_rp_when ());
3332 if (! (unwind.prologue_mask & 8))
3333 add_unwind_entry (output_rp_gr (reg2));
3334 break;
3335 case REG_PR:
3336 add_unwind_entry (output_preds_when ());
3337 if (! (unwind.prologue_mask & 1))
3338 add_unwind_entry (output_preds_gr (reg2));
3339 break;
3340 case REG_PRIUNAT:
3341 add_unwind_entry (output_priunat_when_gr ());
3342 add_unwind_entry (output_priunat_gr (reg2));
3343 break;
3344 default:
3345 as_bad ("First operand not a valid register");
3346 }
3347 }
3348 else
3349 as_bad (" Second operand not a valid register");
3350 }
3351 else
3352 as_bad ("First operand not a register");
3353 }
3354
3355 static void
3356 dot_restore (dummy)
3357 int dummy ATTRIBUTE_UNUSED;
3358 {
3359 expressionS e1, e2;
3360 unsigned long ecount; /* # of _additional_ regions to pop */
3361 int sep;
3362
3363 if (!in_body ("restore"))
3364 return;
3365
3366 sep = parse_operand (&e1);
3367 if (e1.X_op != O_register || e1.X_add_number != REG_GR + 12)
3368 {
3369 as_bad ("First operand to .restore must be stack pointer (sp)");
3370 return;
3371 }
3372
3373 if (sep == ',')
3374 {
3375 parse_operand (&e2);
3376 if (e2.X_op != O_constant || e2.X_add_number < 0)
3377 {
3378 as_bad ("Second operand to .restore must be a constant >= 0");
3379 return;
3380 }
3381 ecount = e2.X_add_number;
3382 }
3383 else
3384 ecount = unwind.prologue_count - 1;
3385
3386 if (ecount >= unwind.prologue_count)
3387 {
3388 as_bad ("Epilogue count of %lu exceeds number of nested prologues (%u)",
3389 ecount + 1, unwind.prologue_count);
3390 return;
3391 }
3392
3393 add_unwind_entry (output_epilogue (ecount));
3394
3395 if (ecount < unwind.prologue_count)
3396 unwind.prologue_count -= ecount + 1;
3397 else
3398 unwind.prologue_count = 0;
3399 }
3400
3401 static void
3402 dot_restorereg (dummy)
3403 int dummy ATTRIBUTE_UNUSED;
3404 {
3405 unsigned int ab, reg;
3406 expressionS e;
3407
3408 if (!in_procedure ("restorereg"))
3409 return;
3410
3411 parse_operand (&e);
3412
3413 if (!convert_expr_to_ab_reg (&e, &ab, &reg))
3414 {
3415 as_bad ("First operand to .restorereg must be a preserved register");
3416 return;
3417 }
3418 add_unwind_entry (output_spill_reg (ab, reg, 0, 0));
3419 }
3420
3421 static void
3422 dot_restorereg_p (dummy)
3423 int dummy ATTRIBUTE_UNUSED;
3424 {
3425 unsigned int qp, ab, reg;
3426 expressionS e1, e2;
3427 int sep;
3428
3429 if (!in_procedure ("restorereg.p"))
3430 return;
3431
3432 sep = parse_operand (&e1);
3433 if (sep != ',')
3434 {
3435 as_bad ("No second operand to .restorereg.p");
3436 return;
3437 }
3438
3439 parse_operand (&e2);
3440
3441 qp = e1.X_add_number - REG_P;
3442 if (e1.X_op != O_register || qp > 63)
3443 {
3444 as_bad ("First operand to .restorereg.p must be a predicate");
3445 return;
3446 }
3447
3448 if (!convert_expr_to_ab_reg (&e2, &ab, &reg))
3449 {
3450 as_bad ("Second operand to .restorereg.p must be a preserved register");
3451 return;
3452 }
3453 add_unwind_entry (output_spill_reg_p (ab, reg, 0, 0, qp));
3454 }
3455
3456 static char *special_linkonce_name[] =
3457 {
3458 ".gnu.linkonce.ia64unw.", ".gnu.linkonce.ia64unwi."
3459 };
3460
3461 static void
3462 start_unwind_section (const segT text_seg, int sec_index)
3463 {
3464 /*
3465 Use a slightly ugly scheme to derive the unwind section names from
3466 the text section name:
3467
3468 text sect. unwind table sect.
3469 name: name: comments:
3470 ---------- ----------------- --------------------------------
3471 .text .IA_64.unwind
3472 .text.foo .IA_64.unwind.text.foo
3473 .foo .IA_64.unwind.foo
3474 .gnu.linkonce.t.foo
3475 .gnu.linkonce.ia64unw.foo
3476 _info .IA_64.unwind_info gas issues error message (ditto)
3477 _infoFOO .IA_64.unwind_infoFOO gas issues error message (ditto)
3478
3479 This mapping is done so that:
3480
3481 (a) An object file with unwind info only in .text will use
3482 unwind section names .IA_64.unwind and .IA_64.unwind_info.
3483 This follows the letter of the ABI and also ensures backwards
3484 compatibility with older toolchains.
3485
3486 (b) An object file with unwind info in multiple text sections
3487 will use separate unwind sections for each text section.
3488 This allows us to properly set the "sh_info" and "sh_link"
3489 fields in SHT_IA_64_UNWIND as required by the ABI and also
3490 lets GNU ld support programs with multiple segments
3491 containing unwind info (as might be the case for certain
3492 embedded applications).
3493
3494 (c) An error is issued if there would be a name clash.
3495 */
3496
3497 const char *text_name, *sec_text_name;
3498 char *sec_name;
3499 const char *prefix = special_section_name [sec_index];
3500 const char *suffix;
3501 size_t prefix_len, suffix_len, sec_name_len;
3502
3503 sec_text_name = segment_name (text_seg);
3504 text_name = sec_text_name;
3505 if (strncmp (text_name, "_info", 5) == 0)
3506 {
3507 as_bad ("Illegal section name `%s' (causes unwind section name clash)",
3508 text_name);
3509 ignore_rest_of_line ();
3510 return;
3511 }
3512 if (strcmp (text_name, ".text") == 0)
3513 text_name = "";
3514
3515 /* Build the unwind section name by appending the (possibly stripped)
3516 text section name to the unwind prefix. */
3517 suffix = text_name;
3518 if (strncmp (text_name, ".gnu.linkonce.t.",
3519 sizeof (".gnu.linkonce.t.") - 1) == 0)
3520 {
3521 prefix = special_linkonce_name [sec_index - SPECIAL_SECTION_UNWIND];
3522 suffix += sizeof (".gnu.linkonce.t.") - 1;
3523 }
3524
3525 prefix_len = strlen (prefix);
3526 suffix_len = strlen (suffix);
3527 sec_name_len = prefix_len + suffix_len;
3528 sec_name = alloca (sec_name_len + 1);
3529 memcpy (sec_name, prefix, prefix_len);
3530 memcpy (sec_name + prefix_len, suffix, suffix_len);
3531 sec_name [sec_name_len] = '\0';
3532
3533 /* Handle COMDAT group. */
3534 if ((text_seg->flags & SEC_LINK_ONCE) != 0
3535 && (elf_section_flags (text_seg) & SHF_GROUP) != 0)
3536 {
3537 char *section;
3538 size_t len, group_name_len;
3539 const char *group_name = elf_group_name (text_seg);
3540
3541 if (group_name == NULL)
3542 {
3543 as_bad ("Group section `%s' has no group signature",
3544 sec_text_name);
3545 ignore_rest_of_line ();
3546 return;
3547 }
3548 /* We have to construct a fake section directive. */
3549 group_name_len = strlen (group_name);
3550 len = (sec_name_len
3551 + 16 /* ,"aG",@progbits, */
3552 + group_name_len /* ,group_name */
3553 + 7); /* ,comdat */
3554
3555 section = alloca (len + 1);
3556 memcpy (section, sec_name, sec_name_len);
3557 memcpy (section + sec_name_len, ",\"aG\",@progbits,", 16);
3558 memcpy (section + sec_name_len + 16, group_name, group_name_len);
3559 memcpy (section + len - 7, ",comdat", 7);
3560 section [len] = '\0';
3561 set_section (section);
3562 }
3563 else
3564 {
3565 set_section (sec_name);
3566 bfd_set_section_flags (stdoutput, now_seg,
3567 SEC_LOAD | SEC_ALLOC | SEC_READONLY);
3568 }
3569
3570 elf_linked_to_section (now_seg) = text_seg;
3571 }
3572
3573 static void
3574 generate_unwind_image (const segT text_seg)
3575 {
3576 int size, pad;
3577 unw_rec_list *list;
3578
3579 /* Mark the end of the unwind info, so that we can compute the size of the
3580 last unwind region. */
3581 add_unwind_entry (output_endp ());
3582
3583 /* Force out pending instructions, to make sure all unwind records have
3584 a valid slot_number field. */
3585 ia64_flush_insns ();
3586
3587 /* Generate the unwind record. */
3588 list = optimize_unw_records (unwind.list);
3589 fixup_unw_records (list, 1);
3590 size = calc_record_size (list);
3591
3592 if (size > 0 || unwind.force_unwind_entry)
3593 {
3594 unwind.force_unwind_entry = 0;
3595 /* pad to pointer-size boundary. */
3596 pad = size % md.pointer_size;
3597 if (pad != 0)
3598 size += md.pointer_size - pad;
3599 /* Add 8 for the header. */
3600 size += 8;
3601 /* Add a pointer for the personality offset. */
3602 if (unwind.personality_routine)
3603 size += md.pointer_size;
3604 }
3605
3606 /* If there are unwind records, switch sections, and output the info. */
3607 if (size != 0)
3608 {
3609 expressionS exp;
3610 bfd_reloc_code_real_type reloc;
3611
3612 start_unwind_section (text_seg, SPECIAL_SECTION_UNWIND_INFO);
3613
3614 /* Make sure the section has 4 byte alignment for ILP32 and
3615 8 byte alignment for LP64. */
3616 frag_align (md.pointer_size_shift, 0, 0);
3617 record_alignment (now_seg, md.pointer_size_shift);
3618
3619 /* Set expression which points to start of unwind descriptor area. */
3620 unwind.info = expr_build_dot ();
3621
3622 frag_var (rs_machine_dependent, size, size, 0, 0,
3623 (offsetT) (long) unwind.personality_routine,
3624 (char *) list);
3625
3626 /* Add the personality address to the image. */
3627 if (unwind.personality_routine != 0)
3628 {
3629 exp.X_op = O_symbol;
3630 exp.X_add_symbol = unwind.personality_routine;
3631 exp.X_add_number = 0;
3632
3633 if (md.flags & EF_IA_64_BE)
3634 {
3635 if (md.flags & EF_IA_64_ABI64)
3636 reloc = BFD_RELOC_IA64_LTOFF_FPTR64MSB;
3637 else
3638 reloc = BFD_RELOC_IA64_LTOFF_FPTR32MSB;
3639 }
3640 else
3641 {
3642 if (md.flags & EF_IA_64_ABI64)
3643 reloc = BFD_RELOC_IA64_LTOFF_FPTR64LSB;
3644 else
3645 reloc = BFD_RELOC_IA64_LTOFF_FPTR32LSB;
3646 }
3647
3648 fix_new_exp (frag_now, frag_now_fix () - md.pointer_size,
3649 md.pointer_size, &exp, 0, reloc);
3650 unwind.personality_routine = 0;
3651 }
3652 }
3653
3654 free_saved_prologue_counts ();
3655 unwind.list = unwind.tail = unwind.current_entry = NULL;
3656 }
3657
3658 static void
3659 dot_handlerdata (dummy)
3660 int dummy ATTRIBUTE_UNUSED;
3661 {
3662 if (!in_procedure ("handlerdata"))
3663 return;
3664 unwind.force_unwind_entry = 1;
3665
3666 /* Remember which segment we're in so we can switch back after .endp */
3667 unwind.saved_text_seg = now_seg;
3668 unwind.saved_text_subseg = now_subseg;
3669
3670 /* Generate unwind info into unwind-info section and then leave that
3671 section as the currently active one so dataXX directives go into
3672 the language specific data area of the unwind info block. */
3673 generate_unwind_image (now_seg);
3674 demand_empty_rest_of_line ();
3675 }
3676
3677 static void
3678 dot_unwentry (dummy)
3679 int dummy ATTRIBUTE_UNUSED;
3680 {
3681 if (!in_procedure ("unwentry"))
3682 return;
3683 unwind.force_unwind_entry = 1;
3684 demand_empty_rest_of_line ();
3685 }
3686
3687 static void
3688 dot_altrp (dummy)
3689 int dummy ATTRIBUTE_UNUSED;
3690 {
3691 expressionS e;
3692 unsigned reg;
3693
3694 if (!in_prologue ("altrp"))
3695 return;
3696
3697 parse_operand (&e);
3698 reg = e.X_add_number - REG_BR;
3699 if (e.X_op == O_register && reg < 8)
3700 add_unwind_entry (output_rp_br (reg));
3701 else
3702 as_bad ("First operand not a valid branch register");
3703 }
3704
3705 static void
3706 dot_savemem (psprel)
3707 int psprel;
3708 {
3709 expressionS e1, e2;
3710 int sep;
3711 int reg1, val;
3712
3713 if (!in_prologue (psprel ? "savepsp" : "savesp"))
3714 return;
3715
3716 sep = parse_operand (&e1);
3717 if (sep != ',')
3718 as_bad ("No second operand to .save%ssp", psprel ? "p" : "");
3719 sep = parse_operand (&e2);
3720
3721 reg1 = e1.X_add_number;
3722 val = e2.X_add_number;
3723
3724 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3725 if (e1.X_op == O_register)
3726 {
3727 if (e2.X_op == O_constant)
3728 {
3729 switch (reg1)
3730 {
3731 case REG_AR + AR_BSP:
3732 add_unwind_entry (output_bsp_when ());
3733 add_unwind_entry ((psprel
3734 ? output_bsp_psprel
3735 : output_bsp_sprel) (val));
3736 break;
3737 case REG_AR + AR_BSPSTORE:
3738 add_unwind_entry (output_bspstore_when ());
3739 add_unwind_entry ((psprel
3740 ? output_bspstore_psprel
3741 : output_bspstore_sprel) (val));
3742 break;
3743 case REG_AR + AR_RNAT:
3744 add_unwind_entry (output_rnat_when ());
3745 add_unwind_entry ((psprel
3746 ? output_rnat_psprel
3747 : output_rnat_sprel) (val));
3748 break;
3749 case REG_AR + AR_UNAT:
3750 add_unwind_entry (output_unat_when ());
3751 add_unwind_entry ((psprel
3752 ? output_unat_psprel
3753 : output_unat_sprel) (val));
3754 break;
3755 case REG_AR + AR_FPSR:
3756 add_unwind_entry (output_fpsr_when ());
3757 add_unwind_entry ((psprel
3758 ? output_fpsr_psprel
3759 : output_fpsr_sprel) (val));
3760 break;
3761 case REG_AR + AR_PFS:
3762 add_unwind_entry (output_pfs_when ());
3763 add_unwind_entry ((psprel
3764 ? output_pfs_psprel
3765 : output_pfs_sprel) (val));
3766 break;
3767 case REG_AR + AR_LC:
3768 add_unwind_entry (output_lc_when ());
3769 add_unwind_entry ((psprel
3770 ? output_lc_psprel
3771 : output_lc_sprel) (val));
3772 break;
3773 case REG_BR:
3774 add_unwind_entry (output_rp_when ());
3775 add_unwind_entry ((psprel
3776 ? output_rp_psprel
3777 : output_rp_sprel) (val));
3778 break;
3779 case REG_PR:
3780 add_unwind_entry (output_preds_when ());
3781 add_unwind_entry ((psprel
3782 ? output_preds_psprel
3783 : output_preds_sprel) (val));
3784 break;
3785 case REG_PRIUNAT:
3786 add_unwind_entry (output_priunat_when_mem ());
3787 add_unwind_entry ((psprel
3788 ? output_priunat_psprel
3789 : output_priunat_sprel) (val));
3790 break;
3791 default:
3792 as_bad ("First operand not a valid register");
3793 }
3794 }
3795 else
3796 as_bad (" Second operand not a valid constant");
3797 }
3798 else
3799 as_bad ("First operand not a register");
3800 }
3801
3802 static void
3803 dot_saveg (dummy)
3804 int dummy ATTRIBUTE_UNUSED;
3805 {
3806 expressionS e1, e2;
3807 int sep;
3808
3809 if (!in_prologue ("save.g"))
3810 return;
3811
3812 sep = parse_operand (&e1);
3813 if (sep == ',')
3814 parse_operand (&e2);
3815
3816 if (e1.X_op != O_constant)
3817 as_bad ("First operand to .save.g must be a constant.");
3818 else
3819 {
3820 int grmask = e1.X_add_number;
3821 if (sep != ',')
3822 add_unwind_entry (output_gr_mem (grmask));
3823 else
3824 {
3825 int reg = e2.X_add_number - REG_GR;
3826 if (e2.X_op == O_register && reg >= 0 && reg < 128)
3827 add_unwind_entry (output_gr_gr (grmask, reg));
3828 else
3829 as_bad ("Second operand is an invalid register.");
3830 }
3831 }
3832 }
3833
3834 static void
3835 dot_savef (dummy)
3836 int dummy ATTRIBUTE_UNUSED;
3837 {
3838 expressionS e1;
3839 int sep;
3840
3841 if (!in_prologue ("save.f"))
3842 return;
3843
3844 sep = parse_operand (&e1);
3845
3846 if (e1.X_op != O_constant)
3847 as_bad ("Operand to .save.f must be a constant.");
3848 else
3849 add_unwind_entry (output_fr_mem (e1.X_add_number));
3850 }
3851
3852 static void
3853 dot_saveb (dummy)
3854 int dummy ATTRIBUTE_UNUSED;
3855 {
3856 expressionS e1, e2;
3857 unsigned int reg;
3858 unsigned char sep;
3859 int brmask;
3860
3861 if (!in_prologue ("save.b"))
3862 return;
3863
3864 sep = parse_operand (&e1);
3865 if (e1.X_op != O_constant)
3866 {
3867 as_bad ("First operand to .save.b must be a constant.");
3868 return;
3869 }
3870 brmask = e1.X_add_number;
3871
3872 if (sep == ',')
3873 {
3874 sep = parse_operand (&e2);
3875 reg = e2.X_add_number - REG_GR;
3876 if (e2.X_op != O_register || reg > 127)
3877 {
3878 as_bad ("Second operand to .save.b must be a general register.");
3879 return;
3880 }
3881 add_unwind_entry (output_br_gr (brmask, e2.X_add_number));
3882 }
3883 else
3884 add_unwind_entry (output_br_mem (brmask));
3885
3886 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
3887 demand_empty_rest_of_line ();
3888 }
3889
3890 static void
3891 dot_savegf (dummy)
3892 int dummy ATTRIBUTE_UNUSED;
3893 {
3894 expressionS e1, e2;
3895 int sep;
3896
3897 if (!in_prologue ("save.gf"))
3898 return;
3899
3900 sep = parse_operand (&e1);
3901 if (sep == ',')
3902 parse_operand (&e2);
3903
3904 if (e1.X_op != O_constant || sep != ',' || e2.X_op != O_constant)
3905 as_bad ("Both operands of .save.gf must be constants.");
3906 else
3907 {
3908 int grmask = e1.X_add_number;
3909 int frmask = e2.X_add_number;
3910 add_unwind_entry (output_frgr_mem (grmask, frmask));
3911 }
3912 }
3913
3914 static void
3915 dot_spill (dummy)
3916 int dummy ATTRIBUTE_UNUSED;
3917 {
3918 expressionS e;
3919 unsigned char sep;
3920
3921 if (!in_prologue ("spill"))
3922 return;
3923
3924 sep = parse_operand (&e);
3925 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
3926 demand_empty_rest_of_line ();
3927
3928 if (e.X_op != O_constant)
3929 as_bad ("Operand to .spill must be a constant");
3930 else
3931 add_unwind_entry (output_spill_base (e.X_add_number));
3932 }
3933
3934 static void
3935 dot_spillreg (dummy)
3936 int dummy ATTRIBUTE_UNUSED;
3937 {
3938 int sep;
3939 unsigned int ab, xy, reg, treg;
3940 expressionS e1, e2;
3941
3942 if (!in_procedure ("spillreg"))
3943 return;
3944
3945 sep = parse_operand (&e1);
3946 if (sep != ',')
3947 {
3948 as_bad ("No second operand to .spillreg");
3949 return;
3950 }
3951
3952 parse_operand (&e2);
3953
3954 if (!convert_expr_to_ab_reg (&e1, &ab, &reg))
3955 {
3956 as_bad ("First operand to .spillreg must be a preserved register");
3957 return;
3958 }
3959
3960 if (!convert_expr_to_xy_reg (&e2, &xy, &treg))
3961 {
3962 as_bad ("Second operand to .spillreg must be a register");
3963 return;
3964 }
3965
3966 add_unwind_entry (output_spill_reg (ab, reg, treg, xy));
3967 }
3968
3969 static void
3970 dot_spillmem (psprel)
3971 int psprel;
3972 {
3973 expressionS e1, e2;
3974 int sep;
3975 unsigned int ab, reg;
3976
3977 if (!in_procedure ("spillmem"))
3978 return;
3979
3980 sep = parse_operand (&e1);
3981 if (sep != ',')
3982 {
3983 as_bad ("Second operand missing");
3984 return;
3985 }
3986
3987 parse_operand (&e2);
3988
3989 if (!convert_expr_to_ab_reg (&e1, &ab, &reg))
3990 {
3991 as_bad ("First operand to .spill%s must be a preserved register",
3992 psprel ? "psp" : "sp");
3993 return;
3994 }
3995
3996 if (e2.X_op != O_constant)
3997 {
3998 as_bad ("Second operand to .spill%s must be a constant",
3999 psprel ? "psp" : "sp");
4000 return;
4001 }
4002
4003 if (psprel)
4004 add_unwind_entry (output_spill_psprel (ab, reg, e2.X_add_number));
4005 else
4006 add_unwind_entry (output_spill_sprel (ab, reg, e2.X_add_number));
4007 }
4008
4009 static void
4010 dot_spillreg_p (dummy)
4011 int dummy ATTRIBUTE_UNUSED;
4012 {
4013 int sep;
4014 unsigned int ab, xy, reg, treg;
4015 expressionS e1, e2, e3;
4016 unsigned int qp;
4017
4018 if (!in_procedure ("spillreg.p"))
4019 return;
4020
4021 sep = parse_operand (&e1);
4022 if (sep != ',')
4023 {
4024 as_bad ("No second and third operand to .spillreg.p");
4025 return;
4026 }
4027
4028 sep = parse_operand (&e2);
4029 if (sep != ',')
4030 {
4031 as_bad ("No third operand to .spillreg.p");
4032 return;
4033 }
4034
4035 parse_operand (&e3);
4036
4037 qp = e1.X_add_number - REG_P;
4038
4039 if (e1.X_op != O_register || qp > 63)
4040 {
4041 as_bad ("First operand to .spillreg.p must be a predicate");
4042 return;
4043 }
4044
4045 if (!convert_expr_to_ab_reg (&e2, &ab, &reg))
4046 {
4047 as_bad ("Second operand to .spillreg.p must be a preserved register");
4048 return;
4049 }
4050
4051 if (!convert_expr_to_xy_reg (&e3, &xy, &treg))
4052 {
4053 as_bad ("Third operand to .spillreg.p must be a register");
4054 return;
4055 }
4056
4057 add_unwind_entry (output_spill_reg_p (ab, reg, treg, xy, qp));
4058 }
4059
4060 static void
4061 dot_spillmem_p (psprel)
4062 int psprel;
4063 {
4064 expressionS e1, e2, e3;
4065 int sep;
4066 unsigned int ab, reg;
4067 unsigned int qp;
4068
4069 if (!in_procedure ("spillmem.p"))
4070 return;
4071
4072 sep = parse_operand (&e1);
4073 if (sep != ',')
4074 {
4075 as_bad ("Second operand missing");
4076 return;
4077 }
4078
4079 parse_operand (&e2);
4080 if (sep != ',')
4081 {
4082 as_bad ("Second operand missing");
4083 return;
4084 }
4085
4086 parse_operand (&e3);
4087
4088 qp = e1.X_add_number - REG_P;
4089 if (e1.X_op != O_register || qp > 63)
4090 {
4091 as_bad ("First operand to .spill%s_p must be a predicate",
4092 psprel ? "psp" : "sp");
4093 return;
4094 }
4095
4096 if (!convert_expr_to_ab_reg (&e2, &ab, &reg))
4097 {
4098 as_bad ("Second operand to .spill%s_p must be a preserved register",
4099 psprel ? "psp" : "sp");
4100 return;
4101 }
4102
4103 if (e3.X_op != O_constant)
4104 {
4105 as_bad ("Third operand to .spill%s_p must be a constant",
4106 psprel ? "psp" : "sp");
4107 return;
4108 }
4109
4110 if (psprel)
4111 add_unwind_entry (output_spill_psprel_p (ab, reg, e3.X_add_number, qp));
4112 else
4113 add_unwind_entry (output_spill_sprel_p (ab, reg, e3.X_add_number, qp));
4114 }
4115
4116 static unsigned int
4117 get_saved_prologue_count (lbl)
4118 unsigned long lbl;
4119 {
4120 label_prologue_count *lpc = unwind.saved_prologue_counts;
4121
4122 while (lpc != NULL && lpc->label_number != lbl)
4123 lpc = lpc->next;
4124
4125 if (lpc != NULL)
4126 return lpc->prologue_count;
4127
4128 as_bad ("Missing .label_state %ld", lbl);
4129 return 1;
4130 }
4131
4132 static void
4133 save_prologue_count (lbl, count)
4134 unsigned long lbl;
4135 unsigned int count;
4136 {
4137 label_prologue_count *lpc = unwind.saved_prologue_counts;
4138
4139 while (lpc != NULL && lpc->label_number != lbl)
4140 lpc = lpc->next;
4141
4142 if (lpc != NULL)
4143 lpc->prologue_count = count;
4144 else
4145 {
4146 label_prologue_count *new_lpc = xmalloc (sizeof (* new_lpc));
4147
4148 new_lpc->next = unwind.saved_prologue_counts;
4149 new_lpc->label_number = lbl;
4150 new_lpc->prologue_count = count;
4151 unwind.saved_prologue_counts = new_lpc;
4152 }
4153 }
4154
4155 static void
4156 free_saved_prologue_counts ()
4157 {
4158 label_prologue_count *lpc = unwind.saved_prologue_counts;
4159 label_prologue_count *next;
4160
4161 while (lpc != NULL)
4162 {
4163 next = lpc->next;
4164 free (lpc);
4165 lpc = next;
4166 }
4167
4168 unwind.saved_prologue_counts = NULL;
4169 }
4170
4171 static void
4172 dot_label_state (dummy)
4173 int dummy ATTRIBUTE_UNUSED;
4174 {
4175 expressionS e;
4176
4177 if (!in_body ("label_state"))
4178 return;
4179
4180 parse_operand (&e);
4181 if (e.X_op != O_constant)
4182 {
4183 as_bad ("Operand to .label_state must be a constant");
4184 return;
4185 }
4186 add_unwind_entry (output_label_state (e.X_add_number));
4187 save_prologue_count (e.X_add_number, unwind.prologue_count);
4188 }
4189
4190 static void
4191 dot_copy_state (dummy)
4192 int dummy ATTRIBUTE_UNUSED;
4193 {
4194 expressionS e;
4195
4196 if (!in_body ("copy_state"))
4197 return;
4198
4199 parse_operand (&e);
4200 if (e.X_op != O_constant)
4201 {
4202 as_bad ("Operand to .copy_state must be a constant");
4203 return;
4204 }
4205 add_unwind_entry (output_copy_state (e.X_add_number));
4206 unwind.prologue_count = get_saved_prologue_count (e.X_add_number);
4207 }
4208
4209 static void
4210 dot_unwabi (dummy)
4211 int dummy ATTRIBUTE_UNUSED;
4212 {
4213 expressionS e1, e2;
4214 unsigned char sep;
4215
4216 if (!in_procedure ("unwabi"))
4217 return;
4218
4219 sep = parse_operand (&e1);
4220 if (sep != ',')
4221 {
4222 as_bad ("Second operand to .unwabi missing");
4223 return;
4224 }
4225 sep = parse_operand (&e2);
4226 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
4227 demand_empty_rest_of_line ();
4228
4229 if (e1.X_op != O_constant)
4230 {
4231 as_bad ("First operand to .unwabi must be a constant");
4232 return;
4233 }
4234
4235 if (e2.X_op != O_constant)
4236 {
4237 as_bad ("Second operand to .unwabi must be a constant");
4238 return;
4239 }
4240
4241 add_unwind_entry (output_unwabi (e1.X_add_number, e2.X_add_number));
4242 }
4243
4244 static void
4245 dot_personality (dummy)
4246 int dummy ATTRIBUTE_UNUSED;
4247 {
4248 char *name, *p, c;
4249 if (!in_procedure ("personality"))
4250 return;
4251 SKIP_WHITESPACE ();
4252 name = input_line_pointer;
4253 c = get_symbol_end ();
4254 p = input_line_pointer;
4255 unwind.personality_routine = symbol_find_or_make (name);
4256 unwind.force_unwind_entry = 1;
4257 *p = c;
4258 SKIP_WHITESPACE ();
4259 demand_empty_rest_of_line ();
4260 }
4261
4262 static void
4263 dot_proc (dummy)
4264 int dummy ATTRIBUTE_UNUSED;
4265 {
4266 char *name, *p, c;
4267 symbolS *sym;
4268
4269 unwind.proc_start = 0;
4270 /* Parse names of main and alternate entry points and mark them as
4271 function symbols: */
4272 while (1)
4273 {
4274 SKIP_WHITESPACE ();
4275 name = input_line_pointer;
4276 c = get_symbol_end ();
4277 p = input_line_pointer;
4278 if (!*name)
4279 as_bad ("Empty argument of .proc");
4280 else
4281 {
4282 sym = symbol_find_or_make (name);
4283 if (S_IS_DEFINED (sym))
4284 as_bad ("`%s' was already defined", name);
4285 else if (unwind.proc_start == 0)
4286 {
4287 unwind.proc_start = sym;
4288 }
4289 symbol_get_bfdsym (sym)->flags |= BSF_FUNCTION;
4290 }
4291 *p = c;
4292 SKIP_WHITESPACE ();
4293 if (*input_line_pointer != ',')
4294 break;
4295 ++input_line_pointer;
4296 }
4297 if (unwind.proc_start == 0)
4298 unwind.proc_start = expr_build_dot ();
4299 demand_empty_rest_of_line ();
4300 ia64_do_align (16);
4301
4302 unwind.prologue = 0;
4303 unwind.prologue_count = 0;
4304 unwind.body = 0;
4305 unwind.insn = 0;
4306 unwind.list = unwind.tail = unwind.current_entry = NULL;
4307 unwind.personality_routine = 0;
4308 }
4309
4310 static void
4311 dot_body (dummy)
4312 int dummy ATTRIBUTE_UNUSED;
4313 {
4314 if (!in_procedure ("body"))
4315 return;
4316 if (!unwind.prologue && !unwind.body && unwind.insn)
4317 as_warn ("Initial .body should precede any instructions");
4318
4319 unwind.prologue = 0;
4320 unwind.prologue_mask = 0;
4321 unwind.body = 1;
4322
4323 add_unwind_entry (output_body ());
4324 demand_empty_rest_of_line ();
4325 }
4326
4327 static void
4328 dot_prologue (dummy)
4329 int dummy ATTRIBUTE_UNUSED;
4330 {
4331 unsigned char sep;
4332 int mask = 0, grsave = 0;
4333
4334 if (!in_procedure ("prologue"))
4335 return;
4336 if (unwind.prologue)
4337 {
4338 as_bad (".prologue within prologue");
4339 ignore_rest_of_line ();
4340 return;
4341 }
4342 if (!unwind.body && unwind.insn)
4343 as_warn ("Initial .prologue should precede any instructions");
4344
4345 if (!is_it_end_of_statement ())
4346 {
4347 expressionS e1, e2;
4348 sep = parse_operand (&e1);
4349 if (sep != ',')
4350 as_bad ("No second operand to .prologue");
4351 sep = parse_operand (&e2);
4352 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
4353 demand_empty_rest_of_line ();
4354
4355 if (e1.X_op == O_constant)
4356 {
4357 mask = e1.X_add_number;
4358
4359 if (e2.X_op == O_constant)
4360 grsave = e2.X_add_number;
4361 else if (e2.X_op == O_register
4362 && (grsave = e2.X_add_number - REG_GR) < 128)
4363 ;
4364 else
4365 as_bad ("Second operand not a constant or general register");
4366
4367 add_unwind_entry (output_prologue_gr (mask, grsave));
4368 }
4369 else
4370 as_bad ("First operand not a constant");
4371 }
4372 else
4373 add_unwind_entry (output_prologue ());
4374
4375 unwind.prologue = 1;
4376 unwind.prologue_mask = mask;
4377 unwind.body = 0;
4378 ++unwind.prologue_count;
4379 }
4380
4381 static void
4382 dot_endp (dummy)
4383 int dummy ATTRIBUTE_UNUSED;
4384 {
4385 expressionS e;
4386 char *ptr;
4387 int bytes_per_address;
4388 long where;
4389 segT saved_seg;
4390 subsegT saved_subseg;
4391 char *name, *default_name, *p, c;
4392 symbolS *sym;
4393 int unwind_check = md.unwind_check;
4394
4395 md.unwind_check = unwind_check_error;
4396 if (!in_procedure ("endp"))
4397 return;
4398 md.unwind_check = unwind_check;
4399
4400 if (unwind.saved_text_seg)
4401 {
4402 saved_seg = unwind.saved_text_seg;
4403 saved_subseg = unwind.saved_text_subseg;
4404 unwind.saved_text_seg = NULL;
4405 }
4406 else
4407 {
4408 saved_seg = now_seg;
4409 saved_subseg = now_subseg;
4410 }
4411
4412 insn_group_break (1, 0, 0);
4413
4414 /* If there wasn't a .handlerdata, we haven't generated an image yet. */
4415 if (!unwind.info)
4416 generate_unwind_image (saved_seg);
4417
4418 if (unwind.info || unwind.force_unwind_entry)
4419 {
4420 symbolS *proc_end;
4421
4422 subseg_set (md.last_text_seg, 0);
4423 proc_end = expr_build_dot ();
4424
4425 start_unwind_section (saved_seg, SPECIAL_SECTION_UNWIND);
4426
4427 /* Make sure that section has 4 byte alignment for ILP32 and
4428 8 byte alignment for LP64. */
4429 record_alignment (now_seg, md.pointer_size_shift);
4430
4431 /* Need space for 3 pointers for procedure start, procedure end,
4432 and unwind info. */
4433 ptr = frag_more (3 * md.pointer_size);
4434 where = frag_now_fix () - (3 * md.pointer_size);
4435 bytes_per_address = bfd_arch_bits_per_address (stdoutput) / 8;
4436
4437 /* Issue the values of a) Proc Begin, b) Proc End, c) Unwind Record. */
4438 e.X_op = O_pseudo_fixup;
4439 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4440 e.X_add_number = 0;
4441 if (!S_IS_LOCAL (unwind.proc_start)
4442 && S_IS_DEFINED (unwind.proc_start))
4443 e.X_add_symbol = symbol_temp_new (S_GET_SEGMENT (unwind.proc_start),
4444 S_GET_VALUE (unwind.proc_start),
4445 symbol_get_frag (unwind.proc_start));
4446 else
4447 e.X_add_symbol = unwind.proc_start;
4448 ia64_cons_fix_new (frag_now, where, bytes_per_address, &e);
4449
4450 e.X_op = O_pseudo_fixup;
4451 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4452 e.X_add_number = 0;
4453 e.X_add_symbol = proc_end;
4454 ia64_cons_fix_new (frag_now, where + bytes_per_address,
4455 bytes_per_address, &e);
4456
4457 if (unwind.info)
4458 {
4459 e.X_op = O_pseudo_fixup;
4460 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4461 e.X_add_number = 0;
4462 e.X_add_symbol = unwind.info;
4463 ia64_cons_fix_new (frag_now, where + (bytes_per_address * 2),
4464 bytes_per_address, &e);
4465 }
4466 else
4467 md_number_to_chars (ptr + (bytes_per_address * 2), 0,
4468 bytes_per_address);
4469
4470 }
4471 subseg_set (saved_seg, saved_subseg);
4472
4473 if (unwind.proc_start)
4474 default_name = (char *) S_GET_NAME (unwind.proc_start);
4475 else
4476 default_name = NULL;
4477
4478 /* Parse names of main and alternate entry points and set symbol sizes. */
4479 while (1)
4480 {
4481 SKIP_WHITESPACE ();
4482 name = input_line_pointer;
4483 c = get_symbol_end ();
4484 p = input_line_pointer;
4485 if (!*name)
4486 {
4487 if (md.unwind_check == unwind_check_warning)
4488 {
4489 if (default_name)
4490 {
4491 as_warn ("Empty argument of .endp. Use the default name `%s'",
4492 default_name);
4493 name = default_name;
4494 }
4495 else
4496 as_warn ("Empty argument of .endp");
4497 }
4498 else
4499 as_bad ("Empty argument of .endp");
4500 }
4501 if (*name)
4502 {
4503 sym = symbol_find (name);
4504 if (!sym
4505 && md.unwind_check == unwind_check_warning
4506 && default_name
4507 && default_name != name)
4508 {
4509 /* We have a bad name. Try the default one if needed. */
4510 as_warn ("`%s' was not defined within procedure. Use the default name `%s'",
4511 name, default_name);
4512 name = default_name;
4513 sym = symbol_find (name);
4514 }
4515 if (!sym || !S_IS_DEFINED (sym))
4516 as_bad ("`%s' was not defined within procedure", name);
4517 else if (unwind.proc_start
4518 && (symbol_get_bfdsym (sym)->flags & BSF_FUNCTION)
4519 && S_GET_SIZE (sym) == 0 && symbol_get_obj (sym)->size == NULL)
4520 {
4521 fragS *fr = symbol_get_frag (unwind.proc_start);
4522 fragS *frag = symbol_get_frag (sym);
4523
4524 /* Check whether the function label is at or beyond last
4525 .proc directive. */
4526 while (fr && fr != frag)
4527 fr = fr->fr_next;
4528 if (fr)
4529 {
4530 if (frag == frag_now && SEG_NORMAL (now_seg))
4531 S_SET_SIZE (sym, frag_now_fix () - S_GET_VALUE (sym));
4532 else
4533 {
4534 symbol_get_obj (sym)->size =
4535 (expressionS *) xmalloc (sizeof (expressionS));
4536 symbol_get_obj (sym)->size->X_op = O_subtract;
4537 symbol_get_obj (sym)->size->X_add_symbol
4538 = symbol_new (FAKE_LABEL_NAME, now_seg,
4539 frag_now_fix (), frag_now);
4540 symbol_get_obj (sym)->size->X_op_symbol = sym;
4541 symbol_get_obj (sym)->size->X_add_number = 0;
4542 }
4543 }
4544 }
4545 }
4546 *p = c;
4547 SKIP_WHITESPACE ();
4548 if (*input_line_pointer != ',')
4549 break;
4550 ++input_line_pointer;
4551 }
4552 demand_empty_rest_of_line ();
4553 unwind.proc_start = unwind.info = 0;
4554 }
4555
4556 static void
4557 dot_template (template)
4558 int template;
4559 {
4560 CURR_SLOT.user_template = template;
4561 }
4562
4563 static void
4564 dot_regstk (dummy)
4565 int dummy ATTRIBUTE_UNUSED;
4566 {
4567 int ins, locs, outs, rots;
4568
4569 if (is_it_end_of_statement ())
4570 ins = locs = outs = rots = 0;
4571 else
4572 {
4573 ins = get_absolute_expression ();
4574 if (*input_line_pointer++ != ',')
4575 goto err;
4576 locs = get_absolute_expression ();
4577 if (*input_line_pointer++ != ',')
4578 goto err;
4579 outs = get_absolute_expression ();
4580 if (*input_line_pointer++ != ',')
4581 goto err;
4582 rots = get_absolute_expression ();
4583 }
4584 set_regstack (ins, locs, outs, rots);
4585 return;
4586
4587 err:
4588 as_bad ("Comma expected");
4589 ignore_rest_of_line ();
4590 }
4591
4592 static void
4593 dot_rot (type)
4594 int type;
4595 {
4596 unsigned num_regs, num_alloced = 0;
4597 struct dynreg **drpp, *dr;
4598 int ch, base_reg = 0;
4599 char *name, *start;
4600 size_t len;
4601
4602 switch (type)
4603 {
4604 case DYNREG_GR: base_reg = REG_GR + 32; break;
4605 case DYNREG_FR: base_reg = REG_FR + 32; break;
4606 case DYNREG_PR: base_reg = REG_P + 16; break;
4607 default: break;
4608 }
4609
4610 /* First, remove existing names from hash table. */
4611 for (dr = md.dynreg[type]; dr && dr->num_regs; dr = dr->next)
4612 {
4613 hash_delete (md.dynreg_hash, dr->name);
4614 /* FIXME: Free dr->name. */
4615 dr->num_regs = 0;
4616 }
4617
4618 drpp = &md.dynreg[type];
4619 while (1)
4620 {
4621 start = input_line_pointer;
4622 ch = get_symbol_end ();
4623 len = strlen (ia64_canonicalize_symbol_name (start));
4624 *input_line_pointer = ch;
4625
4626 SKIP_WHITESPACE ();
4627 if (*input_line_pointer != '[')
4628 {
4629 as_bad ("Expected '['");
4630 goto err;
4631 }
4632 ++input_line_pointer; /* skip '[' */
4633
4634 num_regs = get_absolute_expression ();
4635
4636 if (*input_line_pointer++ != ']')
4637 {
4638 as_bad ("Expected ']'");
4639 goto err;
4640 }
4641 SKIP_WHITESPACE ();
4642
4643 num_alloced += num_regs;
4644 switch (type)
4645 {
4646 case DYNREG_GR:
4647 if (num_alloced > md.rot.num_regs)
4648 {
4649 as_bad ("Used more than the declared %d rotating registers",
4650 md.rot.num_regs);
4651 goto err;
4652 }
4653 break;
4654 case DYNREG_FR:
4655 if (num_alloced > 96)
4656 {
4657 as_bad ("Used more than the available 96 rotating registers");
4658 goto err;
4659 }
4660 break;
4661 case DYNREG_PR:
4662 if (num_alloced > 48)
4663 {
4664 as_bad ("Used more than the available 48 rotating registers");
4665 goto err;
4666 }
4667 break;
4668
4669 default:
4670 break;
4671 }
4672
4673 if (!*drpp)
4674 {
4675 *drpp = obstack_alloc (&notes, sizeof (*dr));
4676 memset (*drpp, 0, sizeof (*dr));
4677 }
4678
4679 name = obstack_alloc (&notes, len + 1);
4680 memcpy (name, start, len);
4681 name[len] = '\0';
4682
4683 dr = *drpp;
4684 dr->name = name;
4685 dr->num_regs = num_regs;
4686 dr->base = base_reg;
4687 drpp = &dr->next;
4688 base_reg += num_regs;
4689
4690 if (hash_insert (md.dynreg_hash, name, dr))
4691 {
4692 as_bad ("Attempt to redefine register set `%s'", name);
4693 obstack_free (&notes, name);
4694 goto err;
4695 }
4696
4697 if (*input_line_pointer != ',')
4698 break;
4699 ++input_line_pointer; /* skip comma */
4700 SKIP_WHITESPACE ();
4701 }
4702 demand_empty_rest_of_line ();
4703 return;
4704
4705 err:
4706 ignore_rest_of_line ();
4707 }
4708
4709 static void
4710 dot_byteorder (byteorder)
4711 int byteorder;
4712 {
4713 segment_info_type *seginfo = seg_info (now_seg);
4714
4715 if (byteorder == -1)
4716 {
4717 if (seginfo->tc_segment_info_data.endian == 0)
4718 seginfo->tc_segment_info_data.endian = default_big_endian ? 1 : 2;
4719 byteorder = seginfo->tc_segment_info_data.endian == 1;
4720 }
4721 else
4722 seginfo->tc_segment_info_data.endian = byteorder ? 1 : 2;
4723
4724 if (target_big_endian != byteorder)
4725 {
4726 target_big_endian = byteorder;
4727 if (target_big_endian)
4728 {
4729 ia64_number_to_chars = number_to_chars_bigendian;
4730 ia64_float_to_chars = ia64_float_to_chars_bigendian;
4731 }
4732 else
4733 {
4734 ia64_number_to_chars = number_to_chars_littleendian;
4735 ia64_float_to_chars = ia64_float_to_chars_littleendian;
4736 }
4737 }
4738 }
4739
4740 static void
4741 dot_psr (dummy)
4742 int dummy ATTRIBUTE_UNUSED;
4743 {
4744 char *option;
4745 int ch;
4746
4747 while (1)
4748 {
4749 option = input_line_pointer;
4750 ch = get_symbol_end ();
4751 if (strcmp (option, "lsb") == 0)
4752 md.flags &= ~EF_IA_64_BE;
4753 else if (strcmp (option, "msb") == 0)
4754 md.flags |= EF_IA_64_BE;
4755 else if (strcmp (option, "abi32") == 0)
4756 md.flags &= ~EF_IA_64_ABI64;
4757 else if (strcmp (option, "abi64") == 0)
4758 md.flags |= EF_IA_64_ABI64;
4759 else
4760 as_bad ("Unknown psr option `%s'", option);
4761 *input_line_pointer = ch;
4762
4763 SKIP_WHITESPACE ();
4764 if (*input_line_pointer != ',')
4765 break;
4766
4767 ++input_line_pointer;
4768 SKIP_WHITESPACE ();
4769 }
4770 demand_empty_rest_of_line ();
4771 }
4772
4773 static void
4774 dot_ln (dummy)
4775 int dummy ATTRIBUTE_UNUSED;
4776 {
4777 new_logical_line (0, get_absolute_expression ());
4778 demand_empty_rest_of_line ();
4779 }
4780
4781 static void
4782 cross_section (ref, cons, ua)
4783 int ref;
4784 void (*cons) PARAMS((int));
4785 int ua;
4786 {
4787 char *start, *end;
4788 int saved_auto_align;
4789 unsigned int section_count;
4790
4791 SKIP_WHITESPACE ();
4792 start = input_line_pointer;
4793 if (*start == '"')
4794 {
4795 int len;
4796 char *name;
4797
4798 name = demand_copy_C_string (&len);
4799 obstack_free(&notes, name);
4800 if (!name)
4801 {
4802 ignore_rest_of_line ();
4803 return;
4804 }
4805 }
4806 else
4807 {
4808 char c = get_symbol_end ();
4809
4810 if (input_line_pointer == start)
4811 {
4812 as_bad ("Missing section name");
4813 ignore_rest_of_line ();
4814 return;
4815 }
4816 *input_line_pointer = c;
4817 }
4818 end = input_line_pointer;
4819 SKIP_WHITESPACE ();
4820 if (*input_line_pointer != ',')
4821 {
4822 as_bad ("Comma expected after section name");
4823 ignore_rest_of_line ();
4824 return;
4825 }
4826 *end = '\0';
4827 end = input_line_pointer + 1; /* skip comma */
4828 input_line_pointer = start;
4829 md.keep_pending_output = 1;
4830 section_count = bfd_count_sections(stdoutput);
4831 obj_elf_section (0);
4832 if (section_count != bfd_count_sections(stdoutput))
4833 as_warn ("Creating sections with .xdataN/.xrealN/.xstringZ is deprecated.");
4834 input_line_pointer = end;
4835 saved_auto_align = md.auto_align;
4836 if (ua)
4837 md.auto_align = 0;
4838 (*cons) (ref);
4839 if (ua)
4840 md.auto_align = saved_auto_align;
4841 obj_elf_previous (0);
4842 md.keep_pending_output = 0;
4843 }
4844
4845 static void
4846 dot_xdata (size)
4847 int size;
4848 {
4849 cross_section (size, cons, 0);
4850 }
4851
4852 /* Why doesn't float_cons() call md_cons_align() the way cons() does? */
4853
4854 static void
4855 stmt_float_cons (kind)
4856 int kind;
4857 {
4858 size_t alignment;
4859
4860 switch (kind)
4861 {
4862 case 'd':
4863 alignment = 8;
4864 break;
4865
4866 case 'x':
4867 case 'X':
4868 alignment = 16;
4869 break;
4870
4871 case 'f':
4872 default:
4873 alignment = 4;
4874 break;
4875 }
4876 ia64_do_align (alignment);
4877 float_cons (kind);
4878 }
4879
4880 static void
4881 stmt_cons_ua (size)
4882 int size;
4883 {
4884 int saved_auto_align = md.auto_align;
4885
4886 md.auto_align = 0;
4887 cons (size);
4888 md.auto_align = saved_auto_align;
4889 }
4890
4891 static void
4892 dot_xfloat_cons (kind)
4893 int kind;
4894 {
4895 cross_section (kind, stmt_float_cons, 0);
4896 }
4897
4898 static void
4899 dot_xstringer (zero)
4900 int zero;
4901 {
4902 cross_section (zero, stringer, 0);
4903 }
4904
4905 static void
4906 dot_xdata_ua (size)
4907 int size;
4908 {
4909 cross_section (size, cons, 1);
4910 }
4911
4912 static void
4913 dot_xfloat_cons_ua (kind)
4914 int kind;
4915 {
4916 cross_section (kind, float_cons, 1);
4917 }
4918
4919 /* .reg.val <regname>,value */
4920
4921 static void
4922 dot_reg_val (dummy)
4923 int dummy ATTRIBUTE_UNUSED;
4924 {
4925 expressionS reg;
4926
4927 expression (&reg);
4928 if (reg.X_op != O_register)
4929 {
4930 as_bad (_("Register name expected"));
4931 ignore_rest_of_line ();
4932 }
4933 else if (*input_line_pointer++ != ',')
4934 {
4935 as_bad (_("Comma expected"));
4936 ignore_rest_of_line ();
4937 }
4938 else
4939 {
4940 valueT value = get_absolute_expression ();
4941 int regno = reg.X_add_number;
4942 if (regno <= REG_GR || regno > REG_GR + 127)
4943 as_warn (_("Register value annotation ignored"));
4944 else
4945 {
4946 gr_values[regno - REG_GR].known = 1;
4947 gr_values[regno - REG_GR].value = value;
4948 gr_values[regno - REG_GR].path = md.path;
4949 }
4950 }
4951 demand_empty_rest_of_line ();
4952 }
4953
4954 /*
4955 .serialize.data
4956 .serialize.instruction
4957 */
4958 static void
4959 dot_serialize (type)
4960 int type;
4961 {
4962 insn_group_break (0, 0, 0);
4963 if (type)
4964 instruction_serialization ();
4965 else
4966 data_serialization ();
4967 insn_group_break (0, 0, 0);
4968 demand_empty_rest_of_line ();
4969 }
4970
4971 /* select dv checking mode
4972 .auto
4973 .explicit
4974 .default
4975
4976 A stop is inserted when changing modes
4977 */
4978
4979 static void
4980 dot_dv_mode (type)
4981 int type;
4982 {
4983 if (md.manual_bundling)
4984 as_warn (_("Directive invalid within a bundle"));
4985
4986 if (type == 'E' || type == 'A')
4987 md.mode_explicitly_set = 0;
4988 else
4989 md.mode_explicitly_set = 1;
4990
4991 md.detect_dv = 1;
4992 switch (type)
4993 {
4994 case 'A':
4995 case 'a':
4996 if (md.explicit_mode)
4997 insn_group_break (1, 0, 0);
4998 md.explicit_mode = 0;
4999 break;
5000 case 'E':
5001 case 'e':
5002 if (!md.explicit_mode)
5003 insn_group_break (1, 0, 0);
5004 md.explicit_mode = 1;
5005 break;
5006 default:
5007 case 'd':
5008 if (md.explicit_mode != md.default_explicit_mode)
5009 insn_group_break (1, 0, 0);
5010 md.explicit_mode = md.default_explicit_mode;
5011 md.mode_explicitly_set = 0;
5012 break;
5013 }
5014 }
5015
5016 static void
5017 print_prmask (mask)
5018 valueT mask;
5019 {
5020 int regno;
5021 char *comma = "";
5022 for (regno = 0; regno < 64; regno++)
5023 {
5024 if (mask & ((valueT) 1 << regno))
5025 {
5026 fprintf (stderr, "%s p%d", comma, regno);
5027 comma = ",";
5028 }
5029 }
5030 }
5031
5032 /*
5033 .pred.rel.clear [p1 [,p2 [,...]]] (also .pred.rel "clear" or @clear)
5034 .pred.rel.imply p1, p2 (also .pred.rel "imply" or @imply)
5035 .pred.rel.mutex p1, p2 [,...] (also .pred.rel "mutex" or @mutex)
5036 .pred.safe_across_calls p1 [, p2 [,...]]
5037 */
5038
5039 static void
5040 dot_pred_rel (type)
5041 int type;
5042 {
5043 valueT mask = 0;
5044 int count = 0;
5045 int p1 = -1, p2 = -1;
5046
5047 if (type == 0)
5048 {
5049 if (*input_line_pointer == '"')
5050 {
5051 int len;
5052 char *form = demand_copy_C_string (&len);
5053
5054 if (strcmp (form, "mutex") == 0)
5055 type = 'm';
5056 else if (strcmp (form, "clear") == 0)
5057 type = 'c';
5058 else if (strcmp (form, "imply") == 0)
5059 type = 'i';
5060 obstack_free (&notes, form);
5061 }
5062 else if (*input_line_pointer == '@')
5063 {
5064 char *form = ++input_line_pointer;
5065 char c = get_symbol_end();
5066
5067 if (strcmp (form, "mutex") == 0)
5068 type = 'm';
5069 else if (strcmp (form, "clear") == 0)
5070 type = 'c';
5071 else if (strcmp (form, "imply") == 0)
5072 type = 'i';
5073 *input_line_pointer = c;
5074 }
5075 else
5076 {
5077 as_bad (_("Missing predicate relation type"));
5078 ignore_rest_of_line ();
5079 return;
5080 }
5081 if (type == 0)
5082 {
5083 as_bad (_("Unrecognized predicate relation type"));
5084 ignore_rest_of_line ();
5085 return;
5086 }
5087 if (*input_line_pointer == ',')
5088 ++input_line_pointer;
5089 SKIP_WHITESPACE ();
5090 }
5091
5092 SKIP_WHITESPACE ();
5093 while (1)
5094 {
5095 valueT bits = 1;
5096 int regno;
5097 expressionS pr, *pr1, *pr2;
5098
5099 expression (&pr);
5100 if (pr.X_op == O_register
5101 && pr.X_add_number >= REG_P
5102 && pr.X_add_number <= REG_P + 63)
5103 {
5104 regno = pr.X_add_number - REG_P;
5105 bits <<= regno;
5106 count++;
5107 if (p1 == -1)
5108 p1 = regno;
5109 else if (p2 == -1)
5110 p2 = regno;
5111 }
5112 else if (type != 'i'
5113 && pr.X_op == O_subtract
5114 && (pr1 = symbol_get_value_expression (pr.X_add_symbol))
5115 && pr1->X_op == O_register
5116 && pr1->X_add_number >= REG_P
5117 && pr1->X_add_number <= REG_P + 63
5118 && (pr2 = symbol_get_value_expression (pr.X_op_symbol))
5119 && pr2->X_op == O_register
5120 && pr2->X_add_number >= REG_P
5121 && pr2->X_add_number <= REG_P + 63)
5122 {
5123 /* It's a range. */
5124 int stop;
5125
5126 regno = pr1->X_add_number - REG_P;
5127 stop = pr2->X_add_number - REG_P;
5128 if (regno >= stop)
5129 {
5130 as_bad (_("Bad register range"));
5131 ignore_rest_of_line ();
5132 return;
5133 }
5134 bits = ((bits << stop) << 1) - (bits << regno);
5135 count += stop - regno + 1;
5136 }
5137 else
5138 {
5139 as_bad (_("Predicate register expected"));
5140 ignore_rest_of_line ();
5141 return;
5142 }
5143 if (mask & bits)
5144 as_warn (_("Duplicate predicate register ignored"));
5145 mask |= bits;
5146 if (*input_line_pointer != ',')
5147 break;
5148 ++input_line_pointer;
5149 SKIP_WHITESPACE ();
5150 }
5151
5152 switch (type)
5153 {
5154 case 'c':
5155 if (count == 0)
5156 mask = ~(valueT) 0;
5157 clear_qp_mutex (mask);
5158 clear_qp_implies (mask, (valueT) 0);
5159 break;
5160 case 'i':
5161 if (count != 2 || p1 == -1 || p2 == -1)
5162 as_bad (_("Predicate source and target required"));
5163 else if (p1 == 0 || p2 == 0)
5164 as_bad (_("Use of p0 is not valid in this context"));
5165 else
5166 add_qp_imply (p1, p2);
5167 break;
5168 case 'm':
5169 if (count < 2)
5170 {
5171 as_bad (_("At least two PR arguments expected"));
5172 break;
5173 }
5174 else if (mask & 1)
5175 {
5176 as_bad (_("Use of p0 is not valid in this context"));
5177 break;
5178 }
5179 add_qp_mutex (mask);
5180 break;
5181 case 's':
5182 /* note that we don't override any existing relations */
5183 if (count == 0)
5184 {
5185 as_bad (_("At least one PR argument expected"));
5186 break;
5187 }
5188 if (md.debug_dv)
5189 {
5190 fprintf (stderr, "Safe across calls: ");
5191 print_prmask (mask);
5192 fprintf (stderr, "\n");
5193 }
5194 qp_safe_across_calls = mask;
5195 break;
5196 }
5197 demand_empty_rest_of_line ();
5198 }
5199
5200 /* .entry label [, label [, ...]]
5201 Hint to DV code that the given labels are to be considered entry points.
5202 Otherwise, only global labels are considered entry points. */
5203
5204 static void
5205 dot_entry (dummy)
5206 int dummy ATTRIBUTE_UNUSED;
5207 {
5208 const char *err;
5209 char *name;
5210 int c;
5211 symbolS *symbolP;
5212
5213 do
5214 {
5215 name = input_line_pointer;
5216 c = get_symbol_end ();
5217 symbolP = symbol_find_or_make (name);
5218
5219 err = hash_insert (md.entry_hash, S_GET_NAME (symbolP), (PTR) symbolP);
5220 if (err)
5221 as_fatal (_("Inserting \"%s\" into entry hint table failed: %s"),
5222 name, err);
5223
5224 *input_line_pointer = c;
5225 SKIP_WHITESPACE ();
5226 c = *input_line_pointer;
5227 if (c == ',')
5228 {
5229 input_line_pointer++;
5230 SKIP_WHITESPACE ();
5231 if (*input_line_pointer == '\n')
5232 c = '\n';
5233 }
5234 }
5235 while (c == ',');
5236
5237 demand_empty_rest_of_line ();
5238 }
5239
5240 /* .mem.offset offset, base
5241 "base" is used to distinguish between offsets from a different base. */
5242
5243 static void
5244 dot_mem_offset (dummy)
5245 int dummy ATTRIBUTE_UNUSED;
5246 {
5247 md.mem_offset.hint = 1;
5248 md.mem_offset.offset = get_absolute_expression ();
5249 if (*input_line_pointer != ',')
5250 {
5251 as_bad (_("Comma expected"));
5252 ignore_rest_of_line ();
5253 return;
5254 }
5255 ++input_line_pointer;
5256 md.mem_offset.base = get_absolute_expression ();
5257 demand_empty_rest_of_line ();
5258 }
5259
5260 /* ia64-specific pseudo-ops: */
5261 const pseudo_typeS md_pseudo_table[] =
5262 {
5263 { "radix", dot_radix, 0 },
5264 { "lcomm", s_lcomm_bytes, 1 },
5265 { "loc", dot_loc, 0 },
5266 { "bss", dot_special_section, SPECIAL_SECTION_BSS },
5267 { "sbss", dot_special_section, SPECIAL_SECTION_SBSS },
5268 { "sdata", dot_special_section, SPECIAL_SECTION_SDATA },
5269 { "rodata", dot_special_section, SPECIAL_SECTION_RODATA },
5270 { "comment", dot_special_section, SPECIAL_SECTION_COMMENT },
5271 { "ia_64.unwind", dot_special_section, SPECIAL_SECTION_UNWIND },
5272 { "ia_64.unwind_info", dot_special_section, SPECIAL_SECTION_UNWIND_INFO },
5273 { "init_array", dot_special_section, SPECIAL_SECTION_INIT_ARRAY },
5274 { "fini_array", dot_special_section, SPECIAL_SECTION_FINI_ARRAY },
5275 { "proc", dot_proc, 0 },
5276 { "body", dot_body, 0 },
5277 { "prologue", dot_prologue, 0 },
5278 { "endp", dot_endp, 0 },
5279
5280 { "fframe", dot_fframe, 0 },
5281 { "vframe", dot_vframe, 0 },
5282 { "vframesp", dot_vframesp, 0 },
5283 { "vframepsp", dot_vframepsp, 0 },
5284 { "save", dot_save, 0 },
5285 { "restore", dot_restore, 0 },
5286 { "restorereg", dot_restorereg, 0 },
5287 { "restorereg.p", dot_restorereg_p, 0 },
5288 { "handlerdata", dot_handlerdata, 0 },
5289 { "unwentry", dot_unwentry, 0 },
5290 { "altrp", dot_altrp, 0 },
5291 { "savesp", dot_savemem, 0 },
5292 { "savepsp", dot_savemem, 1 },
5293 { "save.g", dot_saveg, 0 },
5294 { "save.f", dot_savef, 0 },
5295 { "save.b", dot_saveb, 0 },
5296 { "save.gf", dot_savegf, 0 },
5297 { "spill", dot_spill, 0 },
5298 { "spillreg", dot_spillreg, 0 },
5299 { "spillsp", dot_spillmem, 0 },
5300 { "spillpsp", dot_spillmem, 1 },
5301 { "spillreg.p", dot_spillreg_p, 0 },
5302 { "spillsp.p", dot_spillmem_p, 0 },
5303 { "spillpsp.p", dot_spillmem_p, 1 },
5304 { "label_state", dot_label_state, 0 },
5305 { "copy_state", dot_copy_state, 0 },
5306 { "unwabi", dot_unwabi, 0 },
5307 { "personality", dot_personality, 0 },
5308 { "mii", dot_template, 0x0 },
5309 { "mli", dot_template, 0x2 }, /* old format, for compatibility */
5310 { "mlx", dot_template, 0x2 },
5311 { "mmi", dot_template, 0x4 },
5312 { "mfi", dot_template, 0x6 },
5313 { "mmf", dot_template, 0x7 },
5314 { "mib", dot_template, 0x8 },
5315 { "mbb", dot_template, 0x9 },
5316 { "bbb", dot_template, 0xb },
5317 { "mmb", dot_template, 0xc },
5318 { "mfb", dot_template, 0xe },
5319 { "align", dot_align, 0 },
5320 { "regstk", dot_regstk, 0 },
5321 { "rotr", dot_rot, DYNREG_GR },
5322 { "rotf", dot_rot, DYNREG_FR },
5323 { "rotp", dot_rot, DYNREG_PR },
5324 { "lsb", dot_byteorder, 0 },
5325 { "msb", dot_byteorder, 1 },
5326 { "psr", dot_psr, 0 },
5327 { "alias", dot_alias, 0 },
5328 { "secalias", dot_alias, 1 },
5329 { "ln", dot_ln, 0 }, /* source line info (for debugging) */
5330
5331 { "xdata1", dot_xdata, 1 },
5332 { "xdata2", dot_xdata, 2 },
5333 { "xdata4", dot_xdata, 4 },
5334 { "xdata8", dot_xdata, 8 },
5335 { "xdata16", dot_xdata, 16 },
5336 { "xreal4", dot_xfloat_cons, 'f' },
5337 { "xreal8", dot_xfloat_cons, 'd' },
5338 { "xreal10", dot_xfloat_cons, 'x' },
5339 { "xreal16", dot_xfloat_cons, 'X' },
5340 { "xstring", dot_xstringer, 0 },
5341 { "xstringz", dot_xstringer, 1 },
5342
5343 /* unaligned versions: */
5344 { "xdata2.ua", dot_xdata_ua, 2 },
5345 { "xdata4.ua", dot_xdata_ua, 4 },
5346 { "xdata8.ua", dot_xdata_ua, 8 },
5347 { "xdata16.ua", dot_xdata_ua, 16 },
5348 { "xreal4.ua", dot_xfloat_cons_ua, 'f' },
5349 { "xreal8.ua", dot_xfloat_cons_ua, 'd' },
5350 { "xreal10.ua", dot_xfloat_cons_ua, 'x' },
5351 { "xreal16.ua", dot_xfloat_cons_ua, 'X' },
5352
5353 /* annotations/DV checking support */
5354 { "entry", dot_entry, 0 },
5355 { "mem.offset", dot_mem_offset, 0 },
5356 { "pred.rel", dot_pred_rel, 0 },
5357 { "pred.rel.clear", dot_pred_rel, 'c' },
5358 { "pred.rel.imply", dot_pred_rel, 'i' },
5359 { "pred.rel.mutex", dot_pred_rel, 'm' },
5360 { "pred.safe_across_calls", dot_pred_rel, 's' },
5361 { "reg.val", dot_reg_val, 0 },
5362 { "serialize.data", dot_serialize, 0 },
5363 { "serialize.instruction", dot_serialize, 1 },
5364 { "auto", dot_dv_mode, 'a' },
5365 { "explicit", dot_dv_mode, 'e' },
5366 { "default", dot_dv_mode, 'd' },
5367
5368 /* ??? These are needed to make gas/testsuite/gas/elf/ehopt.s work.
5369 IA-64 aligns data allocation pseudo-ops by default, so we have to
5370 tell it that these ones are supposed to be unaligned. Long term,
5371 should rewrite so that only IA-64 specific data allocation pseudo-ops
5372 are aligned by default. */
5373 {"2byte", stmt_cons_ua, 2},
5374 {"4byte", stmt_cons_ua, 4},
5375 {"8byte", stmt_cons_ua, 8},
5376
5377 { NULL, 0, 0 }
5378 };
5379
5380 static const struct pseudo_opcode
5381 {
5382 const char *name;
5383 void (*handler) (int);
5384 int arg;
5385 }
5386 pseudo_opcode[] =
5387 {
5388 /* these are more like pseudo-ops, but don't start with a dot */
5389 { "data1", cons, 1 },
5390 { "data2", cons, 2 },
5391 { "data4", cons, 4 },
5392 { "data8", cons, 8 },
5393 { "data16", cons, 16 },
5394 { "real4", stmt_float_cons, 'f' },
5395 { "real8", stmt_float_cons, 'd' },
5396 { "real10", stmt_float_cons, 'x' },
5397 { "real16", stmt_float_cons, 'X' },
5398 { "string", stringer, 0 },
5399 { "stringz", stringer, 1 },
5400
5401 /* unaligned versions: */
5402 { "data2.ua", stmt_cons_ua, 2 },
5403 { "data4.ua", stmt_cons_ua, 4 },
5404 { "data8.ua", stmt_cons_ua, 8 },
5405 { "data16.ua", stmt_cons_ua, 16 },
5406 { "real4.ua", float_cons, 'f' },
5407 { "real8.ua", float_cons, 'd' },
5408 { "real10.ua", float_cons, 'x' },
5409 { "real16.ua", float_cons, 'X' },
5410 };
5411
5412 /* Declare a register by creating a symbol for it and entering it in
5413 the symbol table. */
5414
5415 static symbolS *
5416 declare_register (name, regnum)
5417 const char *name;
5418 int regnum;
5419 {
5420 const char *err;
5421 symbolS *sym;
5422
5423 sym = symbol_new (name, reg_section, regnum, &zero_address_frag);
5424
5425 err = hash_insert (md.reg_hash, S_GET_NAME (sym), (PTR) sym);
5426 if (err)
5427 as_fatal ("Inserting \"%s\" into register table failed: %s",
5428 name, err);
5429
5430 return sym;
5431 }
5432
5433 static void
5434 declare_register_set (prefix, num_regs, base_regnum)
5435 const char *prefix;
5436 int num_regs;
5437 int base_regnum;
5438 {
5439 char name[8];
5440 int i;
5441
5442 for (i = 0; i < num_regs; ++i)
5443 {
5444 sprintf (name, "%s%u", prefix, i);
5445 declare_register (name, base_regnum + i);
5446 }
5447 }
5448
5449 static unsigned int
5450 operand_width (opnd)
5451 enum ia64_opnd opnd;
5452 {
5453 const struct ia64_operand *odesc = &elf64_ia64_operands[opnd];
5454 unsigned int bits = 0;
5455 int i;
5456
5457 bits = 0;
5458 for (i = 0; i < NELEMS (odesc->field) && odesc->field[i].bits; ++i)
5459 bits += odesc->field[i].bits;
5460
5461 return bits;
5462 }
5463
5464 static enum operand_match_result
5465 operand_match (idesc, index, e)
5466 const struct ia64_opcode *idesc;
5467 int index;
5468 expressionS *e;
5469 {
5470 enum ia64_opnd opnd = idesc->operands[index];
5471 int bits, relocatable = 0;
5472 struct insn_fix *fix;
5473 bfd_signed_vma val;
5474
5475 switch (opnd)
5476 {
5477 /* constants: */
5478
5479 case IA64_OPND_AR_CCV:
5480 if (e->X_op == O_register && e->X_add_number == REG_AR + 32)
5481 return OPERAND_MATCH;
5482 break;
5483
5484 case IA64_OPND_AR_CSD:
5485 if (e->X_op == O_register && e->X_add_number == REG_AR + 25)
5486 return OPERAND_MATCH;
5487 break;
5488
5489 case IA64_OPND_AR_PFS:
5490 if (e->X_op == O_register && e->X_add_number == REG_AR + 64)
5491 return OPERAND_MATCH;
5492 break;
5493
5494 case IA64_OPND_GR0:
5495 if (e->X_op == O_register && e->X_add_number == REG_GR + 0)
5496 return OPERAND_MATCH;
5497 break;
5498
5499 case IA64_OPND_IP:
5500 if (e->X_op == O_register && e->X_add_number == REG_IP)
5501 return OPERAND_MATCH;
5502 break;
5503
5504 case IA64_OPND_PR:
5505 if (e->X_op == O_register && e->X_add_number == REG_PR)
5506 return OPERAND_MATCH;
5507 break;
5508
5509 case IA64_OPND_PR_ROT:
5510 if (e->X_op == O_register && e->X_add_number == REG_PR_ROT)
5511 return OPERAND_MATCH;
5512 break;
5513
5514 case IA64_OPND_PSR:
5515 if (e->X_op == O_register && e->X_add_number == REG_PSR)
5516 return OPERAND_MATCH;
5517 break;
5518
5519 case IA64_OPND_PSR_L:
5520 if (e->X_op == O_register && e->X_add_number == REG_PSR_L)
5521 return OPERAND_MATCH;
5522 break;
5523
5524 case IA64_OPND_PSR_UM:
5525 if (e->X_op == O_register && e->X_add_number == REG_PSR_UM)
5526 return OPERAND_MATCH;
5527 break;
5528
5529 case IA64_OPND_C1:
5530 if (e->X_op == O_constant)
5531 {
5532 if (e->X_add_number == 1)
5533 return OPERAND_MATCH;
5534 else
5535 return OPERAND_OUT_OF_RANGE;
5536 }
5537 break;
5538
5539 case IA64_OPND_C8:
5540 if (e->X_op == O_constant)
5541 {
5542 if (e->X_add_number == 8)
5543 return OPERAND_MATCH;
5544 else
5545 return OPERAND_OUT_OF_RANGE;
5546 }
5547 break;
5548
5549 case IA64_OPND_C16:
5550 if (e->X_op == O_constant)
5551 {
5552 if (e->X_add_number == 16)
5553 return OPERAND_MATCH;
5554 else
5555 return OPERAND_OUT_OF_RANGE;
5556 }
5557 break;
5558
5559 /* register operands: */
5560
5561 case IA64_OPND_AR3:
5562 if (e->X_op == O_register && e->X_add_number >= REG_AR
5563 && e->X_add_number < REG_AR + 128)
5564 return OPERAND_MATCH;
5565 break;
5566
5567 case IA64_OPND_B1:
5568 case IA64_OPND_B2:
5569 if (e->X_op == O_register && e->X_add_number >= REG_BR
5570 && e->X_add_number < REG_BR + 8)
5571 return OPERAND_MATCH;
5572 break;
5573
5574 case IA64_OPND_CR3:
5575 if (e->X_op == O_register && e->X_add_number >= REG_CR
5576 && e->X_add_number < REG_CR + 128)
5577 return OPERAND_MATCH;
5578 break;
5579
5580 case IA64_OPND_F1:
5581 case IA64_OPND_F2:
5582 case IA64_OPND_F3:
5583 case IA64_OPND_F4:
5584 if (e->X_op == O_register && e->X_add_number >= REG_FR
5585 && e->X_add_number < REG_FR + 128)
5586 return OPERAND_MATCH;
5587 break;
5588
5589 case IA64_OPND_P1:
5590 case IA64_OPND_P2:
5591 if (e->X_op == O_register && e->X_add_number >= REG_P
5592 && e->X_add_number < REG_P + 64)
5593 return OPERAND_MATCH;
5594 break;
5595
5596 case IA64_OPND_R1:
5597 case IA64_OPND_R2:
5598 case IA64_OPND_R3:
5599 if (e->X_op == O_register && e->X_add_number >= REG_GR
5600 && e->X_add_number < REG_GR + 128)
5601 return OPERAND_MATCH;
5602 break;
5603
5604 case IA64_OPND_R3_2:
5605 if (e->X_op == O_register && e->X_add_number >= REG_GR)
5606 {
5607 if (e->X_add_number < REG_GR + 4)
5608 return OPERAND_MATCH;
5609 else if (e->X_add_number < REG_GR + 128)
5610 return OPERAND_OUT_OF_RANGE;
5611 }
5612 break;
5613
5614 /* indirect operands: */
5615 case IA64_OPND_CPUID_R3:
5616 case IA64_OPND_DBR_R3:
5617 case IA64_OPND_DTR_R3:
5618 case IA64_OPND_ITR_R3:
5619 case IA64_OPND_IBR_R3:
5620 case IA64_OPND_MSR_R3:
5621 case IA64_OPND_PKR_R3:
5622 case IA64_OPND_PMC_R3:
5623 case IA64_OPND_PMD_R3:
5624 case IA64_OPND_RR_R3:
5625 if (e->X_op == O_index && e->X_op_symbol
5626 && (S_GET_VALUE (e->X_op_symbol) - IND_CPUID
5627 == opnd - IA64_OPND_CPUID_R3))
5628 return OPERAND_MATCH;
5629 break;
5630
5631 case IA64_OPND_MR3:
5632 if (e->X_op == O_index && !e->X_op_symbol)
5633 return OPERAND_MATCH;
5634 break;
5635
5636 /* immediate operands: */
5637 case IA64_OPND_CNT2a:
5638 case IA64_OPND_LEN4:
5639 case IA64_OPND_LEN6:
5640 bits = operand_width (idesc->operands[index]);
5641 if (e->X_op == O_constant)
5642 {
5643 if ((bfd_vma) (e->X_add_number - 1) < ((bfd_vma) 1 << bits))
5644 return OPERAND_MATCH;
5645 else
5646 return OPERAND_OUT_OF_RANGE;
5647 }
5648 break;
5649
5650 case IA64_OPND_CNT2b:
5651 if (e->X_op == O_constant)
5652 {
5653 if ((bfd_vma) (e->X_add_number - 1) < 3)
5654 return OPERAND_MATCH;
5655 else
5656 return OPERAND_OUT_OF_RANGE;
5657 }
5658 break;
5659
5660 case IA64_OPND_CNT2c:
5661 val = e->X_add_number;
5662 if (e->X_op == O_constant)
5663 {
5664 if ((val == 0 || val == 7 || val == 15 || val == 16))
5665 return OPERAND_MATCH;
5666 else
5667 return OPERAND_OUT_OF_RANGE;
5668 }
5669 break;
5670
5671 case IA64_OPND_SOR:
5672 /* SOR must be an integer multiple of 8 */
5673 if (e->X_op == O_constant && e->X_add_number & 0x7)
5674 return OPERAND_OUT_OF_RANGE;
5675 case IA64_OPND_SOF:
5676 case IA64_OPND_SOL:
5677 if (e->X_op == O_constant)
5678 {
5679 if ((bfd_vma) e->X_add_number <= 96)
5680 return OPERAND_MATCH;
5681 else
5682 return OPERAND_OUT_OF_RANGE;
5683 }
5684 break;
5685
5686 case IA64_OPND_IMMU62:
5687 if (e->X_op == O_constant)
5688 {
5689 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << 62))
5690 return OPERAND_MATCH;
5691 else
5692 return OPERAND_OUT_OF_RANGE;
5693 }
5694 else
5695 {
5696 /* FIXME -- need 62-bit relocation type */
5697 as_bad (_("62-bit relocation not yet implemented"));
5698 }
5699 break;
5700
5701 case IA64_OPND_IMMU64:
5702 if (e->X_op == O_symbol || e->X_op == O_pseudo_fixup
5703 || e->X_op == O_subtract)
5704 {
5705 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5706 fix->code = BFD_RELOC_IA64_IMM64;
5707 if (e->X_op != O_subtract)
5708 {
5709 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5710 if (e->X_op == O_pseudo_fixup)
5711 e->X_op = O_symbol;
5712 }
5713
5714 fix->opnd = idesc->operands[index];
5715 fix->expr = *e;
5716 fix->is_pcrel = 0;
5717 ++CURR_SLOT.num_fixups;
5718 return OPERAND_MATCH;
5719 }
5720 else if (e->X_op == O_constant)
5721 return OPERAND_MATCH;
5722 break;
5723
5724 case IA64_OPND_CCNT5:
5725 case IA64_OPND_CNT5:
5726 case IA64_OPND_CNT6:
5727 case IA64_OPND_CPOS6a:
5728 case IA64_OPND_CPOS6b:
5729 case IA64_OPND_CPOS6c:
5730 case IA64_OPND_IMMU2:
5731 case IA64_OPND_IMMU7a:
5732 case IA64_OPND_IMMU7b:
5733 case IA64_OPND_IMMU21:
5734 case IA64_OPND_IMMU24:
5735 case IA64_OPND_MBTYPE4:
5736 case IA64_OPND_MHTYPE8:
5737 case IA64_OPND_POS6:
5738 bits = operand_width (idesc->operands[index]);
5739 if (e->X_op == O_constant)
5740 {
5741 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5742 return OPERAND_MATCH;
5743 else
5744 return OPERAND_OUT_OF_RANGE;
5745 }
5746 break;
5747
5748 case IA64_OPND_IMMU9:
5749 bits = operand_width (idesc->operands[index]);
5750 if (e->X_op == O_constant)
5751 {
5752 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5753 {
5754 int lobits = e->X_add_number & 0x3;
5755 if (((bfd_vma) e->X_add_number & 0x3C) != 0 && lobits == 0)
5756 e->X_add_number |= (bfd_vma) 0x3;
5757 return OPERAND_MATCH;
5758 }
5759 else
5760 return OPERAND_OUT_OF_RANGE;
5761 }
5762 break;
5763
5764 case IA64_OPND_IMM44:
5765 /* least 16 bits must be zero */
5766 if ((e->X_add_number & 0xffff) != 0)
5767 /* XXX technically, this is wrong: we should not be issuing warning
5768 messages until we're sure this instruction pattern is going to
5769 be used! */
5770 as_warn (_("lower 16 bits of mask ignored"));
5771
5772 if (e->X_op == O_constant)
5773 {
5774 if (((e->X_add_number >= 0
5775 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 44))
5776 || (e->X_add_number < 0
5777 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 44))))
5778 {
5779 /* sign-extend */
5780 if (e->X_add_number >= 0
5781 && (e->X_add_number & ((bfd_vma) 1 << 43)) != 0)
5782 {
5783 e->X_add_number |= ~(((bfd_vma) 1 << 44) - 1);
5784 }
5785 return OPERAND_MATCH;
5786 }
5787 else
5788 return OPERAND_OUT_OF_RANGE;
5789 }
5790 break;
5791
5792 case IA64_OPND_IMM17:
5793 /* bit 0 is a don't care (pr0 is hardwired to 1) */
5794 if (e->X_op == O_constant)
5795 {
5796 if (((e->X_add_number >= 0
5797 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 17))
5798 || (e->X_add_number < 0
5799 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 17))))
5800 {
5801 /* sign-extend */
5802 if (e->X_add_number >= 0
5803 && (e->X_add_number & ((bfd_vma) 1 << 16)) != 0)
5804 {
5805 e->X_add_number |= ~(((bfd_vma) 1 << 17) - 1);
5806 }
5807 return OPERAND_MATCH;
5808 }
5809 else
5810 return OPERAND_OUT_OF_RANGE;
5811 }
5812 break;
5813
5814 case IA64_OPND_IMM14:
5815 case IA64_OPND_IMM22:
5816 relocatable = 1;
5817 case IA64_OPND_IMM1:
5818 case IA64_OPND_IMM8:
5819 case IA64_OPND_IMM8U4:
5820 case IA64_OPND_IMM8M1:
5821 case IA64_OPND_IMM8M1U4:
5822 case IA64_OPND_IMM8M1U8:
5823 case IA64_OPND_IMM9a:
5824 case IA64_OPND_IMM9b:
5825 bits = operand_width (idesc->operands[index]);
5826 if (relocatable && (e->X_op == O_symbol
5827 || e->X_op == O_subtract
5828 || e->X_op == O_pseudo_fixup))
5829 {
5830 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5831
5832 if (idesc->operands[index] == IA64_OPND_IMM14)
5833 fix->code = BFD_RELOC_IA64_IMM14;
5834 else
5835 fix->code = BFD_RELOC_IA64_IMM22;
5836
5837 if (e->X_op != O_subtract)
5838 {
5839 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5840 if (e->X_op == O_pseudo_fixup)
5841 e->X_op = O_symbol;
5842 }
5843
5844 fix->opnd = idesc->operands[index];
5845 fix->expr = *e;
5846 fix->is_pcrel = 0;
5847 ++CURR_SLOT.num_fixups;
5848 return OPERAND_MATCH;
5849 }
5850 else if (e->X_op != O_constant
5851 && ! (e->X_op == O_big && opnd == IA64_OPND_IMM8M1U8))
5852 return OPERAND_MISMATCH;
5853
5854 if (opnd == IA64_OPND_IMM8M1U4)
5855 {
5856 /* Zero is not valid for unsigned compares that take an adjusted
5857 constant immediate range. */
5858 if (e->X_add_number == 0)
5859 return OPERAND_OUT_OF_RANGE;
5860
5861 /* Sign-extend 32-bit unsigned numbers, so that the following range
5862 checks will work. */
5863 val = e->X_add_number;
5864 if (((val & (~(bfd_vma) 0 << 32)) == 0)
5865 && ((val & ((bfd_vma) 1 << 31)) != 0))
5866 val = ((val << 32) >> 32);
5867
5868 /* Check for 0x100000000. This is valid because
5869 0x100000000-1 is the same as ((uint32_t) -1). */
5870 if (val == ((bfd_signed_vma) 1 << 32))
5871 return OPERAND_MATCH;
5872
5873 val = val - 1;
5874 }
5875 else if (opnd == IA64_OPND_IMM8M1U8)
5876 {
5877 /* Zero is not valid for unsigned compares that take an adjusted
5878 constant immediate range. */
5879 if (e->X_add_number == 0)
5880 return OPERAND_OUT_OF_RANGE;
5881
5882 /* Check for 0x10000000000000000. */
5883 if (e->X_op == O_big)
5884 {
5885 if (generic_bignum[0] == 0
5886 && generic_bignum[1] == 0
5887 && generic_bignum[2] == 0
5888 && generic_bignum[3] == 0
5889 && generic_bignum[4] == 1)
5890 return OPERAND_MATCH;
5891 else
5892 return OPERAND_OUT_OF_RANGE;
5893 }
5894 else
5895 val = e->X_add_number - 1;
5896 }
5897 else if (opnd == IA64_OPND_IMM8M1)
5898 val = e->X_add_number - 1;
5899 else if (opnd == IA64_OPND_IMM8U4)
5900 {
5901 /* Sign-extend 32-bit unsigned numbers, so that the following range
5902 checks will work. */
5903 val = e->X_add_number;
5904 if (((val & (~(bfd_vma) 0 << 32)) == 0)
5905 && ((val & ((bfd_vma) 1 << 31)) != 0))
5906 val = ((val << 32) >> 32);
5907 }
5908 else
5909 val = e->X_add_number;
5910
5911 if ((val >= 0 && (bfd_vma) val < ((bfd_vma) 1 << (bits - 1)))
5912 || (val < 0 && (bfd_vma) -val <= ((bfd_vma) 1 << (bits - 1))))
5913 return OPERAND_MATCH;
5914 else
5915 return OPERAND_OUT_OF_RANGE;
5916
5917 case IA64_OPND_INC3:
5918 /* +/- 1, 4, 8, 16 */
5919 val = e->X_add_number;
5920 if (val < 0)
5921 val = -val;
5922 if (e->X_op == O_constant)
5923 {
5924 if ((val == 1 || val == 4 || val == 8 || val == 16))
5925 return OPERAND_MATCH;
5926 else
5927 return OPERAND_OUT_OF_RANGE;
5928 }
5929 break;
5930
5931 case IA64_OPND_TGT25:
5932 case IA64_OPND_TGT25b:
5933 case IA64_OPND_TGT25c:
5934 case IA64_OPND_TGT64:
5935 if (e->X_op == O_symbol)
5936 {
5937 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5938 if (opnd == IA64_OPND_TGT25)
5939 fix->code = BFD_RELOC_IA64_PCREL21F;
5940 else if (opnd == IA64_OPND_TGT25b)
5941 fix->code = BFD_RELOC_IA64_PCREL21M;
5942 else if (opnd == IA64_OPND_TGT25c)
5943 fix->code = BFD_RELOC_IA64_PCREL21B;
5944 else if (opnd == IA64_OPND_TGT64)
5945 fix->code = BFD_RELOC_IA64_PCREL60B;
5946 else
5947 abort ();
5948
5949 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5950 fix->opnd = idesc->operands[index];
5951 fix->expr = *e;
5952 fix->is_pcrel = 1;
5953 ++CURR_SLOT.num_fixups;
5954 return OPERAND_MATCH;
5955 }
5956 case IA64_OPND_TAG13:
5957 case IA64_OPND_TAG13b:
5958 switch (e->X_op)
5959 {
5960 case O_constant:
5961 return OPERAND_MATCH;
5962
5963 case O_symbol:
5964 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5965 /* There are no external relocs for TAG13/TAG13b fields, so we
5966 create a dummy reloc. This will not live past md_apply_fix3. */
5967 fix->code = BFD_RELOC_UNUSED;
5968 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5969 fix->opnd = idesc->operands[index];
5970 fix->expr = *e;
5971 fix->is_pcrel = 1;
5972 ++CURR_SLOT.num_fixups;
5973 return OPERAND_MATCH;
5974
5975 default:
5976 break;
5977 }
5978 break;
5979
5980 case IA64_OPND_LDXMOV:
5981 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5982 fix->code = BFD_RELOC_IA64_LDXMOV;
5983 fix->opnd = idesc->operands[index];
5984 fix->expr = *e;
5985 fix->is_pcrel = 0;
5986 ++CURR_SLOT.num_fixups;
5987 return OPERAND_MATCH;
5988
5989 default:
5990 break;
5991 }
5992 return OPERAND_MISMATCH;
5993 }
5994
5995 static int
5996 parse_operand (e)
5997 expressionS *e;
5998 {
5999 int sep = '\0';
6000
6001 memset (e, 0, sizeof (*e));
6002 e->X_op = O_absent;
6003 SKIP_WHITESPACE ();
6004 if (*input_line_pointer != '}')
6005 expression (e);
6006 sep = *input_line_pointer++;
6007
6008 if (sep == '}')
6009 {
6010 if (!md.manual_bundling)
6011 as_warn ("Found '}' when manual bundling is off");
6012 else
6013 CURR_SLOT.manual_bundling_off = 1;
6014 md.manual_bundling = 0;
6015 sep = '\0';
6016 }
6017 return sep;
6018 }
6019
6020 /* Returns the next entry in the opcode table that matches the one in
6021 IDESC, and frees the entry in IDESC. If no matching entry is
6022 found, NULL is returned instead. */
6023
6024 static struct ia64_opcode *
6025 get_next_opcode (struct ia64_opcode *idesc)
6026 {
6027 struct ia64_opcode *next = ia64_find_next_opcode (idesc);
6028 ia64_free_opcode (idesc);
6029 return next;
6030 }
6031
6032 /* Parse the operands for the opcode and find the opcode variant that
6033 matches the specified operands, or NULL if no match is possible. */
6034
6035 static struct ia64_opcode *
6036 parse_operands (idesc)
6037 struct ia64_opcode *idesc;
6038 {
6039 int i = 0, highest_unmatched_operand, num_operands = 0, num_outputs = 0;
6040 int error_pos, out_of_range_pos, curr_out_of_range_pos, sep = 0;
6041 int reg1, reg2;
6042 char reg_class;
6043 enum ia64_opnd expected_operand = IA64_OPND_NIL;
6044 enum operand_match_result result;
6045 char mnemonic[129];
6046 char *first_arg = 0, *end, *saved_input_pointer;
6047 unsigned int sof;
6048
6049 assert (strlen (idesc->name) <= 128);
6050
6051 strcpy (mnemonic, idesc->name);
6052 if (idesc->operands[2] == IA64_OPND_SOF
6053 || idesc->operands[1] == IA64_OPND_SOF)
6054 {
6055 /* To make the common idiom "alloc loc?=ar.pfs,0,1,0,0" work, we
6056 can't parse the first operand until we have parsed the
6057 remaining operands of the "alloc" instruction. */
6058 SKIP_WHITESPACE ();
6059 first_arg = input_line_pointer;
6060 end = strchr (input_line_pointer, '=');
6061 if (!end)
6062 {
6063 as_bad ("Expected separator `='");
6064 return 0;
6065 }
6066 input_line_pointer = end + 1;
6067 ++i;
6068 ++num_outputs;
6069 }
6070
6071 for (; ; ++i)
6072 {
6073 if (i < NELEMS (CURR_SLOT.opnd))
6074 {
6075 sep = parse_operand (CURR_SLOT.opnd + i);
6076 if (CURR_SLOT.opnd[i].X_op == O_absent)
6077 break;
6078 }
6079 else
6080 {
6081 expressionS dummy;
6082
6083 sep = parse_operand (&dummy);
6084 if (dummy.X_op == O_absent)
6085 break;
6086 }
6087
6088 ++num_operands;
6089
6090 if (sep != '=' && sep != ',')
6091 break;
6092
6093 if (sep == '=')
6094 {
6095 if (num_outputs > 0)
6096 as_bad ("Duplicate equal sign (=) in instruction");
6097 else
6098 num_outputs = i + 1;
6099 }
6100 }
6101 if (sep != '\0')
6102 {
6103 as_bad ("Illegal operand separator `%c'", sep);
6104 return 0;
6105 }
6106
6107 if (idesc->operands[2] == IA64_OPND_SOF
6108 || idesc->operands[1] == IA64_OPND_SOF)
6109 {
6110 /* map alloc r1=ar.pfs,i,l,o,r to alloc r1=ar.pfs,(i+l+o),(i+l),r */
6111 know (strcmp (idesc->name, "alloc") == 0);
6112 i = (CURR_SLOT.opnd[1].X_op == O_register
6113 && CURR_SLOT.opnd[1].X_add_number == REG_AR + AR_PFS) ? 2 : 1;
6114 if (num_operands == i + 3 /* first_arg not included in this count! */
6115 && CURR_SLOT.opnd[i].X_op == O_constant
6116 && CURR_SLOT.opnd[i + 1].X_op == O_constant
6117 && CURR_SLOT.opnd[i + 2].X_op == O_constant
6118 && CURR_SLOT.opnd[i + 3].X_op == O_constant)
6119 {
6120 sof = set_regstack (CURR_SLOT.opnd[i].X_add_number,
6121 CURR_SLOT.opnd[i + 1].X_add_number,
6122 CURR_SLOT.opnd[i + 2].X_add_number,
6123 CURR_SLOT.opnd[i + 3].X_add_number);
6124
6125 /* now we can parse the first arg: */
6126 saved_input_pointer = input_line_pointer;
6127 input_line_pointer = first_arg;
6128 sep = parse_operand (CURR_SLOT.opnd + 0);
6129 if (sep != '=')
6130 --num_outputs; /* force error */
6131 input_line_pointer = saved_input_pointer;
6132
6133 CURR_SLOT.opnd[i].X_add_number = sof;
6134 CURR_SLOT.opnd[i + 1].X_add_number
6135 = sof - CURR_SLOT.opnd[i + 2].X_add_number;
6136 CURR_SLOT.opnd[i + 2] = CURR_SLOT.opnd[i + 3];
6137 }
6138 }
6139
6140 highest_unmatched_operand = -4;
6141 curr_out_of_range_pos = -1;
6142 error_pos = 0;
6143 for (; idesc; idesc = get_next_opcode (idesc))
6144 {
6145 if (num_outputs != idesc->num_outputs)
6146 continue; /* mismatch in # of outputs */
6147 if (highest_unmatched_operand < 0)
6148 highest_unmatched_operand |= 1;
6149 if (num_operands > NELEMS (idesc->operands)
6150 || (num_operands < NELEMS (idesc->operands)
6151 && idesc->operands[num_operands])
6152 || (num_operands > 0 && !idesc->operands[num_operands - 1]))
6153 continue; /* mismatch in number of arguments */
6154 if (highest_unmatched_operand < 0)
6155 highest_unmatched_operand |= 2;
6156
6157 CURR_SLOT.num_fixups = 0;
6158
6159 /* Try to match all operands. If we see an out-of-range operand,
6160 then continue trying to match the rest of the operands, since if
6161 the rest match, then this idesc will give the best error message. */
6162
6163 out_of_range_pos = -1;
6164 for (i = 0; i < num_operands && idesc->operands[i]; ++i)
6165 {
6166 result = operand_match (idesc, i, CURR_SLOT.opnd + i);
6167 if (result != OPERAND_MATCH)
6168 {
6169 if (result != OPERAND_OUT_OF_RANGE)
6170 break;
6171 if (out_of_range_pos < 0)
6172 /* remember position of the first out-of-range operand: */
6173 out_of_range_pos = i;
6174 }
6175 }
6176
6177 /* If we did not match all operands, or if at least one operand was
6178 out-of-range, then this idesc does not match. Keep track of which
6179 idesc matched the most operands before failing. If we have two
6180 idescs that failed at the same position, and one had an out-of-range
6181 operand, then prefer the out-of-range operand. Thus if we have
6182 "add r0=0x1000000,r1" we get an error saying the constant is out
6183 of range instead of an error saying that the constant should have been
6184 a register. */
6185
6186 if (i != num_operands || out_of_range_pos >= 0)
6187 {
6188 if (i > highest_unmatched_operand
6189 || (i == highest_unmatched_operand
6190 && out_of_range_pos > curr_out_of_range_pos))
6191 {
6192 highest_unmatched_operand = i;
6193 if (out_of_range_pos >= 0)
6194 {
6195 expected_operand = idesc->operands[out_of_range_pos];
6196 error_pos = out_of_range_pos;
6197 }
6198 else
6199 {
6200 expected_operand = idesc->operands[i];
6201 error_pos = i;
6202 }
6203 curr_out_of_range_pos = out_of_range_pos;
6204 }
6205 continue;
6206 }
6207
6208 break;
6209 }
6210 if (!idesc)
6211 {
6212 if (expected_operand)
6213 as_bad ("Operand %u of `%s' should be %s",
6214 error_pos + 1, mnemonic,
6215 elf64_ia64_operands[expected_operand].desc);
6216 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 1))
6217 as_bad ("Wrong number of output operands");
6218 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 2))
6219 as_bad ("Wrong number of input operands");
6220 else
6221 as_bad ("Operand mismatch");
6222 return 0;
6223 }
6224
6225 /* Check that the instruction doesn't use
6226 - r0, f0, or f1 as output operands
6227 - the same predicate twice as output operands
6228 - r0 as address of a base update load or store
6229 - the same GR as output and address of a base update load
6230 - two even- or two odd-numbered FRs as output operands of a floating
6231 point parallel load.
6232 At most two (conflicting) output (or output-like) operands can exist,
6233 (floating point parallel loads have three outputs, but the base register,
6234 if updated, cannot conflict with the actual outputs). */
6235 reg2 = reg1 = -1;
6236 for (i = 0; i < num_operands; ++i)
6237 {
6238 int regno = 0;
6239
6240 reg_class = 0;
6241 switch (idesc->operands[i])
6242 {
6243 case IA64_OPND_R1:
6244 case IA64_OPND_R2:
6245 case IA64_OPND_R3:
6246 if (i < num_outputs)
6247 {
6248 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6249 reg_class = 'r';
6250 else if (reg1 < 0)
6251 reg1 = CURR_SLOT.opnd[i].X_add_number;
6252 else if (reg2 < 0)
6253 reg2 = CURR_SLOT.opnd[i].X_add_number;
6254 }
6255 break;
6256 case IA64_OPND_P1:
6257 case IA64_OPND_P2:
6258 if (i < num_outputs)
6259 {
6260 if (reg1 < 0)
6261 reg1 = CURR_SLOT.opnd[i].X_add_number;
6262 else if (reg2 < 0)
6263 reg2 = CURR_SLOT.opnd[i].X_add_number;
6264 }
6265 break;
6266 case IA64_OPND_F1:
6267 case IA64_OPND_F2:
6268 case IA64_OPND_F3:
6269 case IA64_OPND_F4:
6270 if (i < num_outputs)
6271 {
6272 if (CURR_SLOT.opnd[i].X_add_number >= REG_FR
6273 && CURR_SLOT.opnd[i].X_add_number <= REG_FR + 1)
6274 {
6275 reg_class = 'f';
6276 regno = CURR_SLOT.opnd[i].X_add_number - REG_FR;
6277 }
6278 else if (reg1 < 0)
6279 reg1 = CURR_SLOT.opnd[i].X_add_number;
6280 else if (reg2 < 0)
6281 reg2 = CURR_SLOT.opnd[i].X_add_number;
6282 }
6283 break;
6284 case IA64_OPND_MR3:
6285 if (idesc->flags & IA64_OPCODE_POSTINC)
6286 {
6287 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6288 reg_class = 'm';
6289 else if (reg1 < 0)
6290 reg1 = CURR_SLOT.opnd[i].X_add_number;
6291 else if (reg2 < 0)
6292 reg2 = CURR_SLOT.opnd[i].X_add_number;
6293 }
6294 break;
6295 default:
6296 break;
6297 }
6298 switch (reg_class)
6299 {
6300 case 0:
6301 break;
6302 default:
6303 as_warn ("Invalid use of `%c%d' as output operand", reg_class, regno);
6304 break;
6305 case 'm':
6306 as_warn ("Invalid use of `r%d' as base update address operand", regno);
6307 break;
6308 }
6309 }
6310 if (reg1 == reg2)
6311 {
6312 if (reg1 >= REG_GR && reg1 <= REG_GR + 127)
6313 {
6314 reg1 -= REG_GR;
6315 reg_class = 'r';
6316 }
6317 else if (reg1 >= REG_P && reg1 <= REG_P + 63)
6318 {
6319 reg1 -= REG_P;
6320 reg_class = 'p';
6321 }
6322 else if (reg1 >= REG_FR && reg1 <= REG_FR + 127)
6323 {
6324 reg1 -= REG_FR;
6325 reg_class = 'f';
6326 }
6327 else
6328 reg_class = 0;
6329 if (reg_class)
6330 as_warn ("Invalid duplicate use of `%c%d'", reg_class, reg1);
6331 }
6332 else if (((reg1 >= REG_FR && reg1 <= REG_FR + 31
6333 && reg2 >= REG_FR && reg2 <= REG_FR + 31)
6334 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6335 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127))
6336 && ! ((reg1 ^ reg2) & 1))
6337 as_warn ("Invalid simultaneous use of `f%d' and `f%d'",
6338 reg1 - REG_FR, reg2 - REG_FR);
6339 else if ((reg1 >= REG_FR && reg1 <= REG_FR + 31
6340 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127)
6341 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6342 && reg2 >= REG_FR && reg2 <= REG_FR + 31))
6343 as_warn ("Dangerous simultaneous use of `f%d' and `f%d'",
6344 reg1 - REG_FR, reg2 - REG_FR);
6345 return idesc;
6346 }
6347
6348 static void
6349 build_insn (slot, insnp)
6350 struct slot *slot;
6351 bfd_vma *insnp;
6352 {
6353 const struct ia64_operand *odesc, *o2desc;
6354 struct ia64_opcode *idesc = slot->idesc;
6355 bfd_vma insn;
6356 bfd_signed_vma val;
6357 const char *err;
6358 int i;
6359
6360 insn = idesc->opcode | slot->qp_regno;
6361
6362 for (i = 0; i < NELEMS (idesc->operands) && idesc->operands[i]; ++i)
6363 {
6364 if (slot->opnd[i].X_op == O_register
6365 || slot->opnd[i].X_op == O_constant
6366 || slot->opnd[i].X_op == O_index)
6367 val = slot->opnd[i].X_add_number;
6368 else if (slot->opnd[i].X_op == O_big)
6369 {
6370 /* This must be the value 0x10000000000000000. */
6371 assert (idesc->operands[i] == IA64_OPND_IMM8M1U8);
6372 val = 0;
6373 }
6374 else
6375 val = 0;
6376
6377 switch (idesc->operands[i])
6378 {
6379 case IA64_OPND_IMMU64:
6380 *insnp++ = (val >> 22) & 0x1ffffffffffLL;
6381 insn |= (((val & 0x7f) << 13) | (((val >> 7) & 0x1ff) << 27)
6382 | (((val >> 16) & 0x1f) << 22) | (((val >> 21) & 0x1) << 21)
6383 | (((val >> 63) & 0x1) << 36));
6384 continue;
6385
6386 case IA64_OPND_IMMU62:
6387 val &= 0x3fffffffffffffffULL;
6388 if (val != slot->opnd[i].X_add_number)
6389 as_warn (_("Value truncated to 62 bits"));
6390 *insnp++ = (val >> 21) & 0x1ffffffffffLL;
6391 insn |= (((val & 0xfffff) << 6) | (((val >> 20) & 0x1) << 36));
6392 continue;
6393
6394 case IA64_OPND_TGT64:
6395 val >>= 4;
6396 *insnp++ = ((val >> 20) & 0x7fffffffffLL) << 2;
6397 insn |= ((((val >> 59) & 0x1) << 36)
6398 | (((val >> 0) & 0xfffff) << 13));
6399 continue;
6400
6401 case IA64_OPND_AR3:
6402 val -= REG_AR;
6403 break;
6404
6405 case IA64_OPND_B1:
6406 case IA64_OPND_B2:
6407 val -= REG_BR;
6408 break;
6409
6410 case IA64_OPND_CR3:
6411 val -= REG_CR;
6412 break;
6413
6414 case IA64_OPND_F1:
6415 case IA64_OPND_F2:
6416 case IA64_OPND_F3:
6417 case IA64_OPND_F4:
6418 val -= REG_FR;
6419 break;
6420
6421 case IA64_OPND_P1:
6422 case IA64_OPND_P2:
6423 val -= REG_P;
6424 break;
6425
6426 case IA64_OPND_R1:
6427 case IA64_OPND_R2:
6428 case IA64_OPND_R3:
6429 case IA64_OPND_R3_2:
6430 case IA64_OPND_CPUID_R3:
6431 case IA64_OPND_DBR_R3:
6432 case IA64_OPND_DTR_R3:
6433 case IA64_OPND_ITR_R3:
6434 case IA64_OPND_IBR_R3:
6435 case IA64_OPND_MR3:
6436 case IA64_OPND_MSR_R3:
6437 case IA64_OPND_PKR_R3:
6438 case IA64_OPND_PMC_R3:
6439 case IA64_OPND_PMD_R3:
6440 case IA64_OPND_RR_R3:
6441 val -= REG_GR;
6442 break;
6443
6444 default:
6445 break;
6446 }
6447
6448 odesc = elf64_ia64_operands + idesc->operands[i];
6449 err = (*odesc->insert) (odesc, val, &insn);
6450 if (err)
6451 as_bad_where (slot->src_file, slot->src_line,
6452 "Bad operand value: %s", err);
6453 if (idesc->flags & IA64_OPCODE_PSEUDO)
6454 {
6455 if ((idesc->flags & IA64_OPCODE_F2_EQ_F3)
6456 && odesc == elf64_ia64_operands + IA64_OPND_F3)
6457 {
6458 o2desc = elf64_ia64_operands + IA64_OPND_F2;
6459 (*o2desc->insert) (o2desc, val, &insn);
6460 }
6461 if ((idesc->flags & IA64_OPCODE_LEN_EQ_64MCNT)
6462 && (odesc == elf64_ia64_operands + IA64_OPND_CPOS6a
6463 || odesc == elf64_ia64_operands + IA64_OPND_POS6))
6464 {
6465 o2desc = elf64_ia64_operands + IA64_OPND_LEN6;
6466 (*o2desc->insert) (o2desc, 64 - val, &insn);
6467 }
6468 }
6469 }
6470 *insnp = insn;
6471 }
6472
6473 static void
6474 emit_one_bundle ()
6475 {
6476 int manual_bundling_off = 0, manual_bundling = 0;
6477 enum ia64_unit required_unit, insn_unit = 0;
6478 enum ia64_insn_type type[3], insn_type;
6479 unsigned int template, orig_template;
6480 bfd_vma insn[3] = { -1, -1, -1 };
6481 struct ia64_opcode *idesc;
6482 int end_of_insn_group = 0, user_template = -1;
6483 int n, i, j, first, curr, last_slot;
6484 unw_rec_list *ptr, *last_ptr, *end_ptr;
6485 bfd_vma t0 = 0, t1 = 0;
6486 struct label_fix *lfix;
6487 struct insn_fix *ifix;
6488 char mnemonic[16];
6489 fixS *fix;
6490 char *f;
6491 int addr_mod;
6492
6493 first = (md.curr_slot + NUM_SLOTS - md.num_slots_in_use) % NUM_SLOTS;
6494 know (first >= 0 & first < NUM_SLOTS);
6495 n = MIN (3, md.num_slots_in_use);
6496
6497 /* Determine template: user user_template if specified, best match
6498 otherwise: */
6499
6500 if (md.slot[first].user_template >= 0)
6501 user_template = template = md.slot[first].user_template;
6502 else
6503 {
6504 /* Auto select appropriate template. */
6505 memset (type, 0, sizeof (type));
6506 curr = first;
6507 for (i = 0; i < n; ++i)
6508 {
6509 if (md.slot[curr].label_fixups && i != 0)
6510 break;
6511 type[i] = md.slot[curr].idesc->type;
6512 curr = (curr + 1) % NUM_SLOTS;
6513 }
6514 template = best_template[type[0]][type[1]][type[2]];
6515 }
6516
6517 /* initialize instructions with appropriate nops: */
6518 for (i = 0; i < 3; ++i)
6519 insn[i] = nop[ia64_templ_desc[template].exec_unit[i]];
6520
6521 f = frag_more (16);
6522
6523 /* Check to see if this bundle is at an offset that is a multiple of 16-bytes
6524 from the start of the frag. */
6525 addr_mod = frag_now_fix () & 15;
6526 if (frag_now->has_code && frag_now->insn_addr != addr_mod)
6527 as_bad (_("instruction address is not a multiple of 16"));
6528 frag_now->insn_addr = addr_mod;
6529 frag_now->has_code = 1;
6530
6531 /* now fill in slots with as many insns as possible: */
6532 curr = first;
6533 idesc = md.slot[curr].idesc;
6534 end_of_insn_group = 0;
6535 last_slot = -1;
6536 for (i = 0; i < 3 && md.num_slots_in_use > 0; ++i)
6537 {
6538 /* If we have unwind records, we may need to update some now. */
6539 ptr = md.slot[curr].unwind_record;
6540 if (ptr)
6541 {
6542 /* Find the last prologue/body record in the list for the current
6543 insn, and set the slot number for all records up to that point.
6544 This needs to be done now, because prologue/body records refer to
6545 the current point, not the point after the instruction has been
6546 issued. This matters because there may have been nops emitted
6547 meanwhile. Any non-prologue non-body record followed by a
6548 prologue/body record must also refer to the current point. */
6549 last_ptr = NULL;
6550 end_ptr = md.slot[(curr + 1) % NUM_SLOTS].unwind_record;
6551 for (; ptr != end_ptr; ptr = ptr->next)
6552 if (ptr->r.type == prologue || ptr->r.type == prologue_gr
6553 || ptr->r.type == body)
6554 last_ptr = ptr;
6555 if (last_ptr)
6556 {
6557 /* Make last_ptr point one after the last prologue/body
6558 record. */
6559 last_ptr = last_ptr->next;
6560 for (ptr = md.slot[curr].unwind_record; ptr != last_ptr;
6561 ptr = ptr->next)
6562 {
6563 ptr->slot_number = (unsigned long) f + i;
6564 ptr->slot_frag = frag_now;
6565 }
6566 /* Remove the initialized records, so that we won't accidentally
6567 update them again if we insert a nop and continue. */
6568 md.slot[curr].unwind_record = last_ptr;
6569 }
6570 }
6571
6572 manual_bundling_off = md.slot[curr].manual_bundling_off;
6573 if (md.slot[curr].manual_bundling_on)
6574 {
6575 if (curr == first)
6576 manual_bundling = 1;
6577 else
6578 break; /* Need to start a new bundle. */
6579 }
6580
6581 /* If this instruction specifies a template, then it must be the first
6582 instruction of a bundle. */
6583 if (curr != first && md.slot[curr].user_template >= 0)
6584 break;
6585
6586 if (idesc->flags & IA64_OPCODE_SLOT2)
6587 {
6588 if (manual_bundling && !manual_bundling_off)
6589 {
6590 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6591 "`%s' must be last in bundle", idesc->name);
6592 if (i < 2)
6593 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6594 }
6595 i = 2;
6596 }
6597 if (idesc->flags & IA64_OPCODE_LAST)
6598 {
6599 int required_slot;
6600 unsigned int required_template;
6601
6602 /* If we need a stop bit after an M slot, our only choice is
6603 template 5 (M;;MI). If we need a stop bit after a B
6604 slot, our only choice is to place it at the end of the
6605 bundle, because the only available templates are MIB,
6606 MBB, BBB, MMB, and MFB. We don't handle anything other
6607 than M and B slots because these are the only kind of
6608 instructions that can have the IA64_OPCODE_LAST bit set. */
6609 required_template = template;
6610 switch (idesc->type)
6611 {
6612 case IA64_TYPE_M:
6613 required_slot = 0;
6614 required_template = 5;
6615 break;
6616
6617 case IA64_TYPE_B:
6618 required_slot = 2;
6619 break;
6620
6621 default:
6622 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6623 "Internal error: don't know how to force %s to end"
6624 "of instruction group", idesc->name);
6625 required_slot = i;
6626 break;
6627 }
6628 if (manual_bundling
6629 && (i > required_slot
6630 || (required_slot == 2 && !manual_bundling_off)
6631 || (user_template >= 0
6632 /* Changing from MMI to M;MI is OK. */
6633 && (template ^ required_template) > 1)))
6634 {
6635 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6636 "`%s' must be last in instruction group",
6637 idesc->name);
6638 if (i < 2 && required_slot == 2 && !manual_bundling_off)
6639 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6640 }
6641 if (required_slot < i)
6642 /* Can't fit this instruction. */
6643 break;
6644
6645 i = required_slot;
6646 if (required_template != template)
6647 {
6648 /* If we switch the template, we need to reset the NOPs
6649 after slot i. The slot-types of the instructions ahead
6650 of i never change, so we don't need to worry about
6651 changing NOPs in front of this slot. */
6652 for (j = i; j < 3; ++j)
6653 insn[j] = nop[ia64_templ_desc[required_template].exec_unit[j]];
6654 }
6655 template = required_template;
6656 }
6657 if (curr != first && md.slot[curr].label_fixups)
6658 {
6659 if (manual_bundling)
6660 {
6661 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6662 "Label must be first in a bundle");
6663 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6664 }
6665 /* This insn must go into the first slot of a bundle. */
6666 break;
6667 }
6668
6669 if (end_of_insn_group && md.num_slots_in_use >= 1)
6670 {
6671 /* We need an instruction group boundary in the middle of a
6672 bundle. See if we can switch to an other template with
6673 an appropriate boundary. */
6674
6675 orig_template = template;
6676 if (i == 1 && (user_template == 4
6677 || (user_template < 0
6678 && (ia64_templ_desc[template].exec_unit[0]
6679 == IA64_UNIT_M))))
6680 {
6681 template = 5;
6682 end_of_insn_group = 0;
6683 }
6684 else if (i == 2 && (user_template == 0
6685 || (user_template < 0
6686 && (ia64_templ_desc[template].exec_unit[1]
6687 == IA64_UNIT_I)))
6688 /* This test makes sure we don't switch the template if
6689 the next instruction is one that needs to be first in
6690 an instruction group. Since all those instructions are
6691 in the M group, there is no way such an instruction can
6692 fit in this bundle even if we switch the template. The
6693 reason we have to check for this is that otherwise we
6694 may end up generating "MI;;I M.." which has the deadly
6695 effect that the second M instruction is no longer the
6696 first in the group! --davidm 99/12/16 */
6697 && (idesc->flags & IA64_OPCODE_FIRST) == 0)
6698 {
6699 template = 1;
6700 end_of_insn_group = 0;
6701 }
6702 else if (i == 1
6703 && user_template == 0
6704 && !(idesc->flags & IA64_OPCODE_FIRST))
6705 /* Use the next slot. */
6706 continue;
6707 else if (curr != first)
6708 /* can't fit this insn */
6709 break;
6710
6711 if (template != orig_template)
6712 /* if we switch the template, we need to reset the NOPs
6713 after slot i. The slot-types of the instructions ahead
6714 of i never change, so we don't need to worry about
6715 changing NOPs in front of this slot. */
6716 for (j = i; j < 3; ++j)
6717 insn[j] = nop[ia64_templ_desc[template].exec_unit[j]];
6718 }
6719 required_unit = ia64_templ_desc[template].exec_unit[i];
6720
6721 /* resolve dynamic opcodes such as "break", "hint", and "nop": */
6722 if (idesc->type == IA64_TYPE_DYN)
6723 {
6724 enum ia64_opnd opnd1, opnd2;
6725
6726 if ((strcmp (idesc->name, "nop") == 0)
6727 || (strcmp (idesc->name, "break") == 0))
6728 insn_unit = required_unit;
6729 else if (strcmp (idesc->name, "hint") == 0)
6730 {
6731 insn_unit = required_unit;
6732 if (required_unit == IA64_UNIT_B)
6733 {
6734 switch (md.hint_b)
6735 {
6736 case hint_b_ok:
6737 break;
6738 case hint_b_warning:
6739 as_warn ("hint in B unit may be treated as nop");
6740 break;
6741 case hint_b_error:
6742 /* When manual bundling is off and there is no
6743 user template, we choose a different unit so
6744 that hint won't go into the current slot. We
6745 will fill the current bundle with nops and
6746 try to put hint into the next bundle. */
6747 if (!manual_bundling && user_template < 0)
6748 insn_unit = IA64_UNIT_I;
6749 else
6750 as_bad ("hint in B unit can't be used");
6751 break;
6752 }
6753 }
6754 }
6755 else if (strcmp (idesc->name, "chk.s") == 0
6756 || strcmp (idesc->name, "mov") == 0)
6757 {
6758 insn_unit = IA64_UNIT_M;
6759 if (required_unit == IA64_UNIT_I
6760 || (required_unit == IA64_UNIT_F && template == 6))
6761 insn_unit = IA64_UNIT_I;
6762 }
6763 else
6764 as_fatal ("emit_one_bundle: unexpected dynamic op");
6765
6766 sprintf (mnemonic, "%s.%c", idesc->name, "?imbfxx"[insn_unit]);
6767 opnd1 = idesc->operands[0];
6768 opnd2 = idesc->operands[1];
6769 ia64_free_opcode (idesc);
6770 idesc = ia64_find_opcode (mnemonic);
6771 /* moves to/from ARs have collisions */
6772 if (opnd1 == IA64_OPND_AR3 || opnd2 == IA64_OPND_AR3)
6773 {
6774 while (idesc != NULL
6775 && (idesc->operands[0] != opnd1
6776 || idesc->operands[1] != opnd2))
6777 idesc = get_next_opcode (idesc);
6778 }
6779 md.slot[curr].idesc = idesc;
6780 }
6781 else
6782 {
6783 insn_type = idesc->type;
6784 insn_unit = IA64_UNIT_NIL;
6785 switch (insn_type)
6786 {
6787 case IA64_TYPE_A:
6788 if (required_unit == IA64_UNIT_I || required_unit == IA64_UNIT_M)
6789 insn_unit = required_unit;
6790 break;
6791 case IA64_TYPE_X: insn_unit = IA64_UNIT_L; break;
6792 case IA64_TYPE_I: insn_unit = IA64_UNIT_I; break;
6793 case IA64_TYPE_M: insn_unit = IA64_UNIT_M; break;
6794 case IA64_TYPE_B: insn_unit = IA64_UNIT_B; break;
6795 case IA64_TYPE_F: insn_unit = IA64_UNIT_F; break;
6796 default: break;
6797 }
6798 }
6799
6800 if (insn_unit != required_unit)
6801 continue; /* Try next slot. */
6802
6803 if (debug_type == DEBUG_DWARF2 || md.slot[curr].loc_directive_seen)
6804 {
6805 bfd_vma addr = frag_now->fr_address + frag_now_fix () - 16 + i;
6806
6807 md.slot[curr].loc_directive_seen = 0;
6808 dwarf2_gen_line_info (addr, &md.slot[curr].debug_line);
6809 }
6810
6811 build_insn (md.slot + curr, insn + i);
6812
6813 ptr = md.slot[curr].unwind_record;
6814 if (ptr)
6815 {
6816 /* Set slot numbers for all remaining unwind records belonging to the
6817 current insn. There can not be any prologue/body unwind records
6818 here. */
6819 end_ptr = md.slot[(curr + 1) % NUM_SLOTS].unwind_record;
6820 for (; ptr != end_ptr; ptr = ptr->next)
6821 {
6822 ptr->slot_number = (unsigned long) f + i;
6823 ptr->slot_frag = frag_now;
6824 }
6825 md.slot[curr].unwind_record = NULL;
6826 }
6827
6828 if (required_unit == IA64_UNIT_L)
6829 {
6830 know (i == 1);
6831 /* skip one slot for long/X-unit instructions */
6832 ++i;
6833 }
6834 --md.num_slots_in_use;
6835 last_slot = i;
6836
6837 /* now is a good time to fix up the labels for this insn: */
6838 for (lfix = md.slot[curr].label_fixups; lfix; lfix = lfix->next)
6839 {
6840 S_SET_VALUE (lfix->sym, frag_now_fix () - 16);
6841 symbol_set_frag (lfix->sym, frag_now);
6842 }
6843 /* and fix up the tags also. */
6844 for (lfix = md.slot[curr].tag_fixups; lfix; lfix = lfix->next)
6845 {
6846 S_SET_VALUE (lfix->sym, frag_now_fix () - 16 + i);
6847 symbol_set_frag (lfix->sym, frag_now);
6848 }
6849
6850 for (j = 0; j < md.slot[curr].num_fixups; ++j)
6851 {
6852 ifix = md.slot[curr].fixup + j;
6853 fix = fix_new_exp (frag_now, frag_now_fix () - 16 + i, 8,
6854 &ifix->expr, ifix->is_pcrel, ifix->code);
6855 fix->tc_fix_data.opnd = ifix->opnd;
6856 fix->fx_plt = (fix->fx_r_type == BFD_RELOC_IA64_PLTOFF22);
6857 fix->fx_file = md.slot[curr].src_file;
6858 fix->fx_line = md.slot[curr].src_line;
6859 }
6860
6861 end_of_insn_group = md.slot[curr].end_of_insn_group;
6862
6863 /* clear slot: */
6864 ia64_free_opcode (md.slot[curr].idesc);
6865 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
6866 md.slot[curr].user_template = -1;
6867
6868 if (manual_bundling_off)
6869 {
6870 manual_bundling = 0;
6871 break;
6872 }
6873 curr = (curr + 1) % NUM_SLOTS;
6874 idesc = md.slot[curr].idesc;
6875 }
6876 if (manual_bundling > 0)
6877 {
6878 if (md.num_slots_in_use > 0)
6879 {
6880 if (last_slot >= 2)
6881 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6882 "`%s' does not fit into bundle", idesc->name);
6883 else if (last_slot < 0)
6884 {
6885 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6886 "`%s' does not fit into %s template",
6887 idesc->name, ia64_templ_desc[template].name);
6888 /* Drop first insn so we don't livelock. */
6889 --md.num_slots_in_use;
6890 know (curr == first);
6891 ia64_free_opcode (md.slot[curr].idesc);
6892 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
6893 md.slot[curr].user_template = -1;
6894 }
6895 else
6896 {
6897 const char *where;
6898
6899 if (template == 2)
6900 where = "X slot";
6901 else if (last_slot == 0)
6902 where = "slots 2 or 3";
6903 else
6904 where = "slot 3";
6905 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6906 "`%s' can't go in %s of %s template",
6907 idesc->name, where, ia64_templ_desc[template].name);
6908 }
6909 }
6910 else
6911 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6912 "Missing '}' at end of file");
6913 }
6914 know (md.num_slots_in_use < NUM_SLOTS);
6915
6916 t0 = end_of_insn_group | (template << 1) | (insn[0] << 5) | (insn[1] << 46);
6917 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
6918
6919 number_to_chars_littleendian (f + 0, t0, 8);
6920 number_to_chars_littleendian (f + 8, t1, 8);
6921 }
6922
6923 int
6924 md_parse_option (c, arg)
6925 int c;
6926 char *arg;
6927 {
6928
6929 switch (c)
6930 {
6931 /* Switches from the Intel assembler. */
6932 case 'm':
6933 if (strcmp (arg, "ilp64") == 0
6934 || strcmp (arg, "lp64") == 0
6935 || strcmp (arg, "p64") == 0)
6936 {
6937 md.flags |= EF_IA_64_ABI64;
6938 }
6939 else if (strcmp (arg, "ilp32") == 0)
6940 {
6941 md.flags &= ~EF_IA_64_ABI64;
6942 }
6943 else if (strcmp (arg, "le") == 0)
6944 {
6945 md.flags &= ~EF_IA_64_BE;
6946 default_big_endian = 0;
6947 }
6948 else if (strcmp (arg, "be") == 0)
6949 {
6950 md.flags |= EF_IA_64_BE;
6951 default_big_endian = 1;
6952 }
6953 else if (strncmp (arg, "unwind-check=", 13) == 0)
6954 {
6955 arg += 13;
6956 if (strcmp (arg, "warning") == 0)
6957 md.unwind_check = unwind_check_warning;
6958 else if (strcmp (arg, "error") == 0)
6959 md.unwind_check = unwind_check_error;
6960 else
6961 return 0;
6962 }
6963 else if (strncmp (arg, "hint.b=", 7) == 0)
6964 {
6965 arg += 7;
6966 if (strcmp (arg, "ok") == 0)
6967 md.hint_b = hint_b_ok;
6968 else if (strcmp (arg, "warning") == 0)
6969 md.hint_b = hint_b_warning;
6970 else if (strcmp (arg, "error") == 0)
6971 md.hint_b = hint_b_error;
6972 else
6973 return 0;
6974 }
6975 else if (strncmp (arg, "tune=", 5) == 0)
6976 {
6977 arg += 5;
6978 if (strcmp (arg, "itanium1") == 0)
6979 md.tune = itanium1;
6980 else if (strcmp (arg, "itanium2") == 0)
6981 md.tune = itanium2;
6982 else
6983 return 0;
6984 }
6985 else
6986 return 0;
6987 break;
6988
6989 case 'N':
6990 if (strcmp (arg, "so") == 0)
6991 {
6992 /* Suppress signon message. */
6993 }
6994 else if (strcmp (arg, "pi") == 0)
6995 {
6996 /* Reject privileged instructions. FIXME */
6997 }
6998 else if (strcmp (arg, "us") == 0)
6999 {
7000 /* Allow union of signed and unsigned range. FIXME */
7001 }
7002 else if (strcmp (arg, "close_fcalls") == 0)
7003 {
7004 /* Do not resolve global function calls. */
7005 }
7006 else
7007 return 0;
7008 break;
7009
7010 case 'C':
7011 /* temp[="prefix"] Insert temporary labels into the object file
7012 symbol table prefixed by "prefix".
7013 Default prefix is ":temp:".
7014 */
7015 break;
7016
7017 case 'a':
7018 /* indirect=<tgt> Assume unannotated indirect branches behavior
7019 according to <tgt> --
7020 exit: branch out from the current context (default)
7021 labels: all labels in context may be branch targets
7022 */
7023 if (strncmp (arg, "indirect=", 9) != 0)
7024 return 0;
7025 break;
7026
7027 case 'x':
7028 /* -X conflicts with an ignored option, use -x instead */
7029 md.detect_dv = 1;
7030 if (!arg || strcmp (arg, "explicit") == 0)
7031 {
7032 /* set default mode to explicit */
7033 md.default_explicit_mode = 1;
7034 break;
7035 }
7036 else if (strcmp (arg, "auto") == 0)
7037 {
7038 md.default_explicit_mode = 0;
7039 }
7040 else if (strcmp (arg, "none") == 0)
7041 {
7042 md.detect_dv = 0;
7043 }
7044 else if (strcmp (arg, "debug") == 0)
7045 {
7046 md.debug_dv = 1;
7047 }
7048 else if (strcmp (arg, "debugx") == 0)
7049 {
7050 md.default_explicit_mode = 1;
7051 md.debug_dv = 1;
7052 }
7053 else if (strcmp (arg, "debugn") == 0)
7054 {
7055 md.debug_dv = 1;
7056 md.detect_dv = 0;
7057 }
7058 else
7059 {
7060 as_bad (_("Unrecognized option '-x%s'"), arg);
7061 }
7062 break;
7063
7064 case 'S':
7065 /* nops Print nops statistics. */
7066 break;
7067
7068 /* GNU specific switches for gcc. */
7069 case OPTION_MCONSTANT_GP:
7070 md.flags |= EF_IA_64_CONS_GP;
7071 break;
7072
7073 case OPTION_MAUTO_PIC:
7074 md.flags |= EF_IA_64_NOFUNCDESC_CONS_GP;
7075 break;
7076
7077 default:
7078 return 0;
7079 }
7080
7081 return 1;
7082 }
7083
7084 void
7085 md_show_usage (stream)
7086 FILE *stream;
7087 {
7088 fputs (_("\
7089 IA-64 options:\n\
7090 --mconstant-gp mark output file as using the constant-GP model\n\
7091 (sets ELF header flag EF_IA_64_CONS_GP)\n\
7092 --mauto-pic mark output file as using the constant-GP model\n\
7093 without function descriptors (sets ELF header flag\n\
7094 EF_IA_64_NOFUNCDESC_CONS_GP)\n\
7095 -milp32|-milp64|-mlp64|-mp64 select data model (default -mlp64)\n\
7096 -mle | -mbe select little- or big-endian byte order (default -mle)\n\
7097 -mtune=[itanium1|itanium2]\n\
7098 tune for a specific CPU (default -mtune=itanium2)\n\
7099 -munwind-check=[warning|error]\n\
7100 unwind directive check (default -munwind-check=warning)\n\
7101 -mhint.b=[ok|warning|error]\n\
7102 hint.b check (default -mhint.b=error)\n\
7103 -x | -xexplicit turn on dependency violation checking\n\
7104 -xauto automagically remove dependency violations (default)\n\
7105 -xnone turn off dependency violation checking\n\
7106 -xdebug debug dependency violation checker\n\
7107 -xdebugn debug dependency violation checker but turn off\n\
7108 dependency violation checking\n\
7109 -xdebugx debug dependency violation checker and turn on\n\
7110 dependency violation checking\n"),
7111 stream);
7112 }
7113
7114 void
7115 ia64_after_parse_args ()
7116 {
7117 if (debug_type == DEBUG_STABS)
7118 as_fatal (_("--gstabs is not supported for ia64"));
7119 }
7120
7121 /* Return true if TYPE fits in TEMPL at SLOT. */
7122
7123 static int
7124 match (int templ, int type, int slot)
7125 {
7126 enum ia64_unit unit;
7127 int result;
7128
7129 unit = ia64_templ_desc[templ].exec_unit[slot];
7130 switch (type)
7131 {
7132 case IA64_TYPE_DYN: result = 1; break; /* for nop and break */
7133 case IA64_TYPE_A:
7134 result = (unit == IA64_UNIT_I || unit == IA64_UNIT_M);
7135 break;
7136 case IA64_TYPE_X: result = (unit == IA64_UNIT_L); break;
7137 case IA64_TYPE_I: result = (unit == IA64_UNIT_I); break;
7138 case IA64_TYPE_M: result = (unit == IA64_UNIT_M); break;
7139 case IA64_TYPE_B: result = (unit == IA64_UNIT_B); break;
7140 case IA64_TYPE_F: result = (unit == IA64_UNIT_F); break;
7141 default: result = 0; break;
7142 }
7143 return result;
7144 }
7145
7146 /* Add a bit of extra goodness if a nop of type F or B would fit
7147 in TEMPL at SLOT. */
7148
7149 static inline int
7150 extra_goodness (int templ, int slot)
7151 {
7152 switch (md.tune)
7153 {
7154 case itanium1:
7155 if (slot == 1 && match (templ, IA64_TYPE_F, slot))
7156 return 2;
7157 else if (slot == 2 && match (templ, IA64_TYPE_B, slot))
7158 return 1;
7159 else
7160 return 0;
7161 break;
7162 case itanium2:
7163 if (match (templ, IA64_TYPE_M, slot)
7164 || match (templ, IA64_TYPE_I, slot))
7165 /* Favor M- and I-unit NOPs. We definitely want to avoid
7166 F-unit and B-unit may cause split-issue or less-than-optimal
7167 branch-prediction. */
7168 return 2;
7169 else
7170 return 0;
7171 break;
7172 default:
7173 abort ();
7174 return 0;
7175 }
7176 }
7177
7178 /* This function is called once, at assembler startup time. It sets
7179 up all the tables, etc. that the MD part of the assembler will need
7180 that can be determined before arguments are parsed. */
7181 void
7182 md_begin ()
7183 {
7184 int i, j, k, t, total, ar_base, cr_base, goodness, best, regnum, ok;
7185 const char *err;
7186 char name[8];
7187
7188 md.auto_align = 1;
7189 md.explicit_mode = md.default_explicit_mode;
7190
7191 bfd_set_section_alignment (stdoutput, text_section, 4);
7192
7193 /* Make sure function pointers get initialized. */
7194 target_big_endian = -1;
7195 dot_byteorder (default_big_endian);
7196
7197 alias_hash = hash_new ();
7198 alias_name_hash = hash_new ();
7199 secalias_hash = hash_new ();
7200 secalias_name_hash = hash_new ();
7201
7202 pseudo_func[FUNC_DTP_MODULE].u.sym =
7203 symbol_new (".<dtpmod>", undefined_section, FUNC_DTP_MODULE,
7204 &zero_address_frag);
7205
7206 pseudo_func[FUNC_DTP_RELATIVE].u.sym =
7207 symbol_new (".<dtprel>", undefined_section, FUNC_DTP_RELATIVE,
7208 &zero_address_frag);
7209
7210 pseudo_func[FUNC_FPTR_RELATIVE].u.sym =
7211 symbol_new (".<fptr>", undefined_section, FUNC_FPTR_RELATIVE,
7212 &zero_address_frag);
7213
7214 pseudo_func[FUNC_GP_RELATIVE].u.sym =
7215 symbol_new (".<gprel>", undefined_section, FUNC_GP_RELATIVE,
7216 &zero_address_frag);
7217
7218 pseudo_func[FUNC_LT_RELATIVE].u.sym =
7219 symbol_new (".<ltoff>", undefined_section, FUNC_LT_RELATIVE,
7220 &zero_address_frag);
7221
7222 pseudo_func[FUNC_LT_RELATIVE_X].u.sym =
7223 symbol_new (".<ltoffx>", undefined_section, FUNC_LT_RELATIVE_X,
7224 &zero_address_frag);
7225
7226 pseudo_func[FUNC_PC_RELATIVE].u.sym =
7227 symbol_new (".<pcrel>", undefined_section, FUNC_PC_RELATIVE,
7228 &zero_address_frag);
7229
7230 pseudo_func[FUNC_PLT_RELATIVE].u.sym =
7231 symbol_new (".<pltoff>", undefined_section, FUNC_PLT_RELATIVE,
7232 &zero_address_frag);
7233
7234 pseudo_func[FUNC_SEC_RELATIVE].u.sym =
7235 symbol_new (".<secrel>", undefined_section, FUNC_SEC_RELATIVE,
7236 &zero_address_frag);
7237
7238 pseudo_func[FUNC_SEG_RELATIVE].u.sym =
7239 symbol_new (".<segrel>", undefined_section, FUNC_SEG_RELATIVE,
7240 &zero_address_frag);
7241
7242 pseudo_func[FUNC_TP_RELATIVE].u.sym =
7243 symbol_new (".<tprel>", undefined_section, FUNC_TP_RELATIVE,
7244 &zero_address_frag);
7245
7246 pseudo_func[FUNC_LTV_RELATIVE].u.sym =
7247 symbol_new (".<ltv>", undefined_section, FUNC_LTV_RELATIVE,
7248 &zero_address_frag);
7249
7250 pseudo_func[FUNC_LT_FPTR_RELATIVE].u.sym =
7251 symbol_new (".<ltoff.fptr>", undefined_section, FUNC_LT_FPTR_RELATIVE,
7252 &zero_address_frag);
7253
7254 pseudo_func[FUNC_LT_DTP_MODULE].u.sym =
7255 symbol_new (".<ltoff.dtpmod>", undefined_section, FUNC_LT_DTP_MODULE,
7256 &zero_address_frag);
7257
7258 pseudo_func[FUNC_LT_DTP_RELATIVE].u.sym =
7259 symbol_new (".<ltoff.dptrel>", undefined_section, FUNC_LT_DTP_RELATIVE,
7260 &zero_address_frag);
7261
7262 pseudo_func[FUNC_LT_TP_RELATIVE].u.sym =
7263 symbol_new (".<ltoff.tprel>", undefined_section, FUNC_LT_TP_RELATIVE,
7264 &zero_address_frag);
7265
7266 pseudo_func[FUNC_IPLT_RELOC].u.sym =
7267 symbol_new (".<iplt>", undefined_section, FUNC_IPLT_RELOC,
7268 &zero_address_frag);
7269
7270 if (md.tune != itanium1)
7271 {
7272 /* Convert MFI NOPs bundles into MMI NOPs bundles. */
7273 le_nop[0] = 0x8;
7274 le_nop_stop[0] = 0x9;
7275 }
7276
7277 /* Compute the table of best templates. We compute goodness as a
7278 base 4 value, in which each match counts for 3. Match-failures
7279 result in NOPs and we use extra_goodness() to pick the execution
7280 units that are best suited for issuing the NOP. */
7281 for (i = 0; i < IA64_NUM_TYPES; ++i)
7282 for (j = 0; j < IA64_NUM_TYPES; ++j)
7283 for (k = 0; k < IA64_NUM_TYPES; ++k)
7284 {
7285 best = 0;
7286 for (t = 0; t < NELEMS (ia64_templ_desc); ++t)
7287 {
7288 goodness = 0;
7289 if (match (t, i, 0))
7290 {
7291 if (match (t, j, 1))
7292 {
7293 if (match (t, k, 2))
7294 goodness = 3 + 3 + 3;
7295 else
7296 goodness = 3 + 3 + extra_goodness (t, 2);
7297 }
7298 else if (match (t, j, 2))
7299 goodness = 3 + 3 + extra_goodness (t, 1);
7300 else
7301 {
7302 goodness = 3;
7303 goodness += extra_goodness (t, 1);
7304 goodness += extra_goodness (t, 2);
7305 }
7306 }
7307 else if (match (t, i, 1))
7308 {
7309 if (match (t, j, 2))
7310 goodness = 3 + 3;
7311 else
7312 goodness = 3 + extra_goodness (t, 2);
7313 }
7314 else if (match (t, i, 2))
7315 goodness = 3 + extra_goodness (t, 1);
7316
7317 if (goodness > best)
7318 {
7319 best = goodness;
7320 best_template[i][j][k] = t;
7321 }
7322 }
7323 }
7324
7325 for (i = 0; i < NUM_SLOTS; ++i)
7326 md.slot[i].user_template = -1;
7327
7328 md.pseudo_hash = hash_new ();
7329 for (i = 0; i < NELEMS (pseudo_opcode); ++i)
7330 {
7331 err = hash_insert (md.pseudo_hash, pseudo_opcode[i].name,
7332 (void *) (pseudo_opcode + i));
7333 if (err)
7334 as_fatal ("ia64.md_begin: can't hash `%s': %s",
7335 pseudo_opcode[i].name, err);
7336 }
7337
7338 md.reg_hash = hash_new ();
7339 md.dynreg_hash = hash_new ();
7340 md.const_hash = hash_new ();
7341 md.entry_hash = hash_new ();
7342
7343 /* general registers: */
7344
7345 total = 128;
7346 for (i = 0; i < total; ++i)
7347 {
7348 sprintf (name, "r%d", i - REG_GR);
7349 md.regsym[i] = declare_register (name, i);
7350 }
7351
7352 /* floating point registers: */
7353 total += 128;
7354 for (; i < total; ++i)
7355 {
7356 sprintf (name, "f%d", i - REG_FR);
7357 md.regsym[i] = declare_register (name, i);
7358 }
7359
7360 /* application registers: */
7361 total += 128;
7362 ar_base = i;
7363 for (; i < total; ++i)
7364 {
7365 sprintf (name, "ar%d", i - REG_AR);
7366 md.regsym[i] = declare_register (name, i);
7367 }
7368
7369 /* control registers: */
7370 total += 128;
7371 cr_base = i;
7372 for (; i < total; ++i)
7373 {
7374 sprintf (name, "cr%d", i - REG_CR);
7375 md.regsym[i] = declare_register (name, i);
7376 }
7377
7378 /* predicate registers: */
7379 total += 64;
7380 for (; i < total; ++i)
7381 {
7382 sprintf (name, "p%d", i - REG_P);
7383 md.regsym[i] = declare_register (name, i);
7384 }
7385
7386 /* branch registers: */
7387 total += 8;
7388 for (; i < total; ++i)
7389 {
7390 sprintf (name, "b%d", i - REG_BR);
7391 md.regsym[i] = declare_register (name, i);
7392 }
7393
7394 md.regsym[REG_IP] = declare_register ("ip", REG_IP);
7395 md.regsym[REG_CFM] = declare_register ("cfm", REG_CFM);
7396 md.regsym[REG_PR] = declare_register ("pr", REG_PR);
7397 md.regsym[REG_PR_ROT] = declare_register ("pr.rot", REG_PR_ROT);
7398 md.regsym[REG_PSR] = declare_register ("psr", REG_PSR);
7399 md.regsym[REG_PSR_L] = declare_register ("psr.l", REG_PSR_L);
7400 md.regsym[REG_PSR_UM] = declare_register ("psr.um", REG_PSR_UM);
7401
7402 for (i = 0; i < NELEMS (indirect_reg); ++i)
7403 {
7404 regnum = indirect_reg[i].regnum;
7405 md.regsym[regnum] = declare_register (indirect_reg[i].name, regnum);
7406 }
7407
7408 /* define synonyms for application registers: */
7409 for (i = REG_AR; i < REG_AR + NELEMS (ar); ++i)
7410 md.regsym[i] = declare_register (ar[i - REG_AR].name,
7411 REG_AR + ar[i - REG_AR].regnum);
7412
7413 /* define synonyms for control registers: */
7414 for (i = REG_CR; i < REG_CR + NELEMS (cr); ++i)
7415 md.regsym[i] = declare_register (cr[i - REG_CR].name,
7416 REG_CR + cr[i - REG_CR].regnum);
7417
7418 declare_register ("gp", REG_GR + 1);
7419 declare_register ("sp", REG_GR + 12);
7420 declare_register ("rp", REG_BR + 0);
7421
7422 /* pseudo-registers used to specify unwind info: */
7423 declare_register ("psp", REG_PSP);
7424
7425 declare_register_set ("ret", 4, REG_GR + 8);
7426 declare_register_set ("farg", 8, REG_FR + 8);
7427 declare_register_set ("fret", 8, REG_FR + 8);
7428
7429 for (i = 0; i < NELEMS (const_bits); ++i)
7430 {
7431 err = hash_insert (md.const_hash, const_bits[i].name,
7432 (PTR) (const_bits + i));
7433 if (err)
7434 as_fatal ("Inserting \"%s\" into constant hash table failed: %s",
7435 name, err);
7436 }
7437
7438 /* Set the architecture and machine depending on defaults and command line
7439 options. */
7440 if (md.flags & EF_IA_64_ABI64)
7441 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf64);
7442 else
7443 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf32);
7444
7445 if (! ok)
7446 as_warn (_("Could not set architecture and machine"));
7447
7448 /* Set the pointer size and pointer shift size depending on md.flags */
7449
7450 if (md.flags & EF_IA_64_ABI64)
7451 {
7452 md.pointer_size = 8; /* pointers are 8 bytes */
7453 md.pointer_size_shift = 3; /* alignment is 8 bytes = 2^2 */
7454 }
7455 else
7456 {
7457 md.pointer_size = 4; /* pointers are 4 bytes */
7458 md.pointer_size_shift = 2; /* alignment is 4 bytes = 2^2 */
7459 }
7460
7461 md.mem_offset.hint = 0;
7462 md.path = 0;
7463 md.maxpaths = 0;
7464 md.entry_labels = NULL;
7465 }
7466
7467 /* Set the default options in md. Cannot do this in md_begin because
7468 that is called after md_parse_option which is where we set the
7469 options in md based on command line options. */
7470
7471 void
7472 ia64_init (argc, argv)
7473 int argc ATTRIBUTE_UNUSED;
7474 char **argv ATTRIBUTE_UNUSED;
7475 {
7476 md.flags = MD_FLAGS_DEFAULT;
7477 md.detect_dv = 1;
7478 /* FIXME: We should change it to unwind_check_error someday. */
7479 md.unwind_check = unwind_check_warning;
7480 md.hint_b = hint_b_error;
7481 md.tune = itanium2;
7482 }
7483
7484 /* Return a string for the target object file format. */
7485
7486 const char *
7487 ia64_target_format ()
7488 {
7489 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
7490 {
7491 if (md.flags & EF_IA_64_BE)
7492 {
7493 if (md.flags & EF_IA_64_ABI64)
7494 #if defined(TE_AIX50)
7495 return "elf64-ia64-aix-big";
7496 #elif defined(TE_HPUX)
7497 return "elf64-ia64-hpux-big";
7498 #else
7499 return "elf64-ia64-big";
7500 #endif
7501 else
7502 #if defined(TE_AIX50)
7503 return "elf32-ia64-aix-big";
7504 #elif defined(TE_HPUX)
7505 return "elf32-ia64-hpux-big";
7506 #else
7507 return "elf32-ia64-big";
7508 #endif
7509 }
7510 else
7511 {
7512 if (md.flags & EF_IA_64_ABI64)
7513 #ifdef TE_AIX50
7514 return "elf64-ia64-aix-little";
7515 #else
7516 return "elf64-ia64-little";
7517 #endif
7518 else
7519 #ifdef TE_AIX50
7520 return "elf32-ia64-aix-little";
7521 #else
7522 return "elf32-ia64-little";
7523 #endif
7524 }
7525 }
7526 else
7527 return "unknown-format";
7528 }
7529
7530 void
7531 ia64_end_of_source ()
7532 {
7533 /* terminate insn group upon reaching end of file: */
7534 insn_group_break (1, 0, 0);
7535
7536 /* emits slots we haven't written yet: */
7537 ia64_flush_insns ();
7538
7539 bfd_set_private_flags (stdoutput, md.flags);
7540
7541 md.mem_offset.hint = 0;
7542 }
7543
7544 void
7545 ia64_start_line ()
7546 {
7547 if (md.qp.X_op == O_register)
7548 as_bad ("qualifying predicate not followed by instruction");
7549 md.qp.X_op = O_absent;
7550
7551 if (ignore_input ())
7552 return;
7553
7554 if (input_line_pointer[0] == ';' && input_line_pointer[-1] == ';')
7555 {
7556 if (md.detect_dv && !md.explicit_mode)
7557 {
7558 static int warned;
7559
7560 if (!warned)
7561 {
7562 warned = 1;
7563 as_warn (_("Explicit stops are ignored in auto mode"));
7564 }
7565 }
7566 else
7567 insn_group_break (1, 0, 0);
7568 }
7569 }
7570
7571 /* This is a hook for ia64_frob_label, so that it can distinguish tags from
7572 labels. */
7573 static int defining_tag = 0;
7574
7575 int
7576 ia64_unrecognized_line (ch)
7577 int ch;
7578 {
7579 switch (ch)
7580 {
7581 case '(':
7582 expression (&md.qp);
7583 if (*input_line_pointer++ != ')')
7584 {
7585 as_bad ("Expected ')'");
7586 return 0;
7587 }
7588 if (md.qp.X_op != O_register)
7589 {
7590 as_bad ("Qualifying predicate expected");
7591 return 0;
7592 }
7593 if (md.qp.X_add_number < REG_P || md.qp.X_add_number >= REG_P + 64)
7594 {
7595 as_bad ("Predicate register expected");
7596 return 0;
7597 }
7598 return 1;
7599
7600 case '{':
7601 if (md.manual_bundling)
7602 as_warn ("Found '{' when manual bundling is already turned on");
7603 else
7604 CURR_SLOT.manual_bundling_on = 1;
7605 md.manual_bundling = 1;
7606
7607 /* Bundling is only acceptable in explicit mode
7608 or when in default automatic mode. */
7609 if (md.detect_dv && !md.explicit_mode)
7610 {
7611 if (!md.mode_explicitly_set
7612 && !md.default_explicit_mode)
7613 dot_dv_mode ('E');
7614 else
7615 as_warn (_("Found '{' after explicit switch to automatic mode"));
7616 }
7617 return 1;
7618
7619 case '}':
7620 if (!md.manual_bundling)
7621 as_warn ("Found '}' when manual bundling is off");
7622 else
7623 PREV_SLOT.manual_bundling_off = 1;
7624 md.manual_bundling = 0;
7625
7626 /* switch back to automatic mode, if applicable */
7627 if (md.detect_dv
7628 && md.explicit_mode
7629 && !md.mode_explicitly_set
7630 && !md.default_explicit_mode)
7631 dot_dv_mode ('A');
7632
7633 /* Allow '{' to follow on the same line. We also allow ";;", but that
7634 happens automatically because ';' is an end of line marker. */
7635 SKIP_WHITESPACE ();
7636 if (input_line_pointer[0] == '{')
7637 {
7638 input_line_pointer++;
7639 return ia64_unrecognized_line ('{');
7640 }
7641
7642 demand_empty_rest_of_line ();
7643 return 1;
7644
7645 case '[':
7646 {
7647 char *s;
7648 char c;
7649 symbolS *tag;
7650 int temp;
7651
7652 if (md.qp.X_op == O_register)
7653 {
7654 as_bad ("Tag must come before qualifying predicate.");
7655 return 0;
7656 }
7657
7658 /* This implements just enough of read_a_source_file in read.c to
7659 recognize labels. */
7660 if (is_name_beginner (*input_line_pointer))
7661 {
7662 s = input_line_pointer;
7663 c = get_symbol_end ();
7664 }
7665 else if (LOCAL_LABELS_FB
7666 && ISDIGIT (*input_line_pointer))
7667 {
7668 temp = 0;
7669 while (ISDIGIT (*input_line_pointer))
7670 temp = (temp * 10) + *input_line_pointer++ - '0';
7671 fb_label_instance_inc (temp);
7672 s = fb_label_name (temp, 0);
7673 c = *input_line_pointer;
7674 }
7675 else
7676 {
7677 s = NULL;
7678 c = '\0';
7679 }
7680 if (c != ':')
7681 {
7682 /* Put ':' back for error messages' sake. */
7683 *input_line_pointer++ = ':';
7684 as_bad ("Expected ':'");
7685 return 0;
7686 }
7687
7688 defining_tag = 1;
7689 tag = colon (s);
7690 defining_tag = 0;
7691 /* Put ':' back for error messages' sake. */
7692 *input_line_pointer++ = ':';
7693 if (*input_line_pointer++ != ']')
7694 {
7695 as_bad ("Expected ']'");
7696 return 0;
7697 }
7698 if (! tag)
7699 {
7700 as_bad ("Tag name expected");
7701 return 0;
7702 }
7703 return 1;
7704 }
7705
7706 default:
7707 break;
7708 }
7709
7710 /* Not a valid line. */
7711 return 0;
7712 }
7713
7714 void
7715 ia64_frob_label (sym)
7716 struct symbol *sym;
7717 {
7718 struct label_fix *fix;
7719
7720 /* Tags need special handling since they are not bundle breaks like
7721 labels. */
7722 if (defining_tag)
7723 {
7724 fix = obstack_alloc (&notes, sizeof (*fix));
7725 fix->sym = sym;
7726 fix->next = CURR_SLOT.tag_fixups;
7727 CURR_SLOT.tag_fixups = fix;
7728
7729 return;
7730 }
7731
7732 if (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7733 {
7734 md.last_text_seg = now_seg;
7735 fix = obstack_alloc (&notes, sizeof (*fix));
7736 fix->sym = sym;
7737 fix->next = CURR_SLOT.label_fixups;
7738 CURR_SLOT.label_fixups = fix;
7739
7740 /* Keep track of how many code entry points we've seen. */
7741 if (md.path == md.maxpaths)
7742 {
7743 md.maxpaths += 20;
7744 md.entry_labels = (const char **)
7745 xrealloc ((void *) md.entry_labels,
7746 md.maxpaths * sizeof (char *));
7747 }
7748 md.entry_labels[md.path++] = S_GET_NAME (sym);
7749 }
7750 }
7751
7752 #ifdef TE_HPUX
7753 /* The HP-UX linker will give unresolved symbol errors for symbols
7754 that are declared but unused. This routine removes declared,
7755 unused symbols from an object. */
7756 int
7757 ia64_frob_symbol (sym)
7758 struct symbol *sym;
7759 {
7760 if ((S_GET_SEGMENT (sym) == &bfd_und_section && ! symbol_used_p (sym) &&
7761 ELF_ST_VISIBILITY (S_GET_OTHER (sym)) == STV_DEFAULT)
7762 || (S_GET_SEGMENT (sym) == &bfd_abs_section
7763 && ! S_IS_EXTERNAL (sym)))
7764 return 1;
7765 return 0;
7766 }
7767 #endif
7768
7769 void
7770 ia64_flush_pending_output ()
7771 {
7772 if (!md.keep_pending_output
7773 && bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7774 {
7775 /* ??? This causes many unnecessary stop bits to be emitted.
7776 Unfortunately, it isn't clear if it is safe to remove this. */
7777 insn_group_break (1, 0, 0);
7778 ia64_flush_insns ();
7779 }
7780 }
7781
7782 /* Do ia64-specific expression optimization. All that's done here is
7783 to transform index expressions that are either due to the indexing
7784 of rotating registers or due to the indexing of indirect register
7785 sets. */
7786 int
7787 ia64_optimize_expr (l, op, r)
7788 expressionS *l;
7789 operatorT op;
7790 expressionS *r;
7791 {
7792 unsigned num_regs;
7793
7794 if (op == O_index)
7795 {
7796 if (l->X_op == O_register && r->X_op == O_constant)
7797 {
7798 num_regs = (l->X_add_number >> 16);
7799 if ((unsigned) r->X_add_number >= num_regs)
7800 {
7801 if (!num_regs)
7802 as_bad ("No current frame");
7803 else
7804 as_bad ("Index out of range 0..%u", num_regs - 1);
7805 r->X_add_number = 0;
7806 }
7807 l->X_add_number = (l->X_add_number & 0xffff) + r->X_add_number;
7808 return 1;
7809 }
7810 else if (l->X_op == O_register && r->X_op == O_register)
7811 {
7812 if (l->X_add_number < IND_CPUID || l->X_add_number > IND_RR
7813 || l->X_add_number == IND_MEM)
7814 {
7815 as_bad ("Indirect register set name expected");
7816 l->X_add_number = IND_CPUID;
7817 }
7818 l->X_op = O_index;
7819 l->X_op_symbol = md.regsym[l->X_add_number];
7820 l->X_add_number = r->X_add_number;
7821 return 1;
7822 }
7823 }
7824 return 0;
7825 }
7826
7827 int
7828 ia64_parse_name (name, e, nextcharP)
7829 char *name;
7830 expressionS *e;
7831 char *nextcharP;
7832 {
7833 struct const_desc *cdesc;
7834 struct dynreg *dr = 0;
7835 unsigned int idx;
7836 struct symbol *sym;
7837 char *end;
7838
7839 if (*name == '@')
7840 {
7841 enum pseudo_type pseudo_type = PSEUDO_FUNC_NONE;
7842
7843 /* Find what relocation pseudo-function we're dealing with. */
7844 for (idx = 0; idx < NELEMS (pseudo_func); ++idx)
7845 if (pseudo_func[idx].name
7846 && pseudo_func[idx].name[0] == name[1]
7847 && strcmp (pseudo_func[idx].name + 1, name + 2) == 0)
7848 {
7849 pseudo_type = pseudo_func[idx].type;
7850 break;
7851 }
7852 switch (pseudo_type)
7853 {
7854 case PSEUDO_FUNC_RELOC:
7855 end = input_line_pointer;
7856 if (*nextcharP != '(')
7857 {
7858 as_bad ("Expected '('");
7859 break;
7860 }
7861 /* Skip '('. */
7862 ++input_line_pointer;
7863 expression (e);
7864 if (*input_line_pointer != ')')
7865 {
7866 as_bad ("Missing ')'");
7867 goto done;
7868 }
7869 /* Skip ')'. */
7870 ++input_line_pointer;
7871 if (e->X_op != O_symbol)
7872 {
7873 if (e->X_op != O_pseudo_fixup)
7874 {
7875 as_bad ("Not a symbolic expression");
7876 goto done;
7877 }
7878 if (idx != FUNC_LT_RELATIVE)
7879 {
7880 as_bad ("Illegal combination of relocation functions");
7881 goto done;
7882 }
7883 switch (S_GET_VALUE (e->X_op_symbol))
7884 {
7885 case FUNC_FPTR_RELATIVE:
7886 idx = FUNC_LT_FPTR_RELATIVE; break;
7887 case FUNC_DTP_MODULE:
7888 idx = FUNC_LT_DTP_MODULE; break;
7889 case FUNC_DTP_RELATIVE:
7890 idx = FUNC_LT_DTP_RELATIVE; break;
7891 case FUNC_TP_RELATIVE:
7892 idx = FUNC_LT_TP_RELATIVE; break;
7893 default:
7894 as_bad ("Illegal combination of relocation functions");
7895 goto done;
7896 }
7897 }
7898 /* Make sure gas doesn't get rid of local symbols that are used
7899 in relocs. */
7900 e->X_op = O_pseudo_fixup;
7901 e->X_op_symbol = pseudo_func[idx].u.sym;
7902 done:
7903 *nextcharP = *input_line_pointer;
7904 break;
7905
7906 case PSEUDO_FUNC_CONST:
7907 e->X_op = O_constant;
7908 e->X_add_number = pseudo_func[idx].u.ival;
7909 break;
7910
7911 case PSEUDO_FUNC_REG:
7912 e->X_op = O_register;
7913 e->X_add_number = pseudo_func[idx].u.ival;
7914 break;
7915
7916 default:
7917 return 0;
7918 }
7919 return 1;
7920 }
7921
7922 /* first see if NAME is a known register name: */
7923 sym = hash_find (md.reg_hash, name);
7924 if (sym)
7925 {
7926 e->X_op = O_register;
7927 e->X_add_number = S_GET_VALUE (sym);
7928 return 1;
7929 }
7930
7931 cdesc = hash_find (md.const_hash, name);
7932 if (cdesc)
7933 {
7934 e->X_op = O_constant;
7935 e->X_add_number = cdesc->value;
7936 return 1;
7937 }
7938
7939 /* check for inN, locN, or outN: */
7940 idx = 0;
7941 switch (name[0])
7942 {
7943 case 'i':
7944 if (name[1] == 'n' && ISDIGIT (name[2]))
7945 {
7946 dr = &md.in;
7947 idx = 2;
7948 }
7949 break;
7950
7951 case 'l':
7952 if (name[1] == 'o' && name[2] == 'c' && ISDIGIT (name[3]))
7953 {
7954 dr = &md.loc;
7955 idx = 3;
7956 }
7957 break;
7958
7959 case 'o':
7960 if (name[1] == 'u' && name[2] == 't' && ISDIGIT (name[3]))
7961 {
7962 dr = &md.out;
7963 idx = 3;
7964 }
7965 break;
7966
7967 default:
7968 break;
7969 }
7970
7971 /* Ignore register numbers with leading zeroes, except zero itself. */
7972 if (dr && (name[idx] != '0' || name[idx + 1] == '\0'))
7973 {
7974 unsigned long regnum;
7975
7976 /* The name is inN, locN, or outN; parse the register number. */
7977 regnum = strtoul (name + idx, &end, 10);
7978 if (end > name + idx && *end == '\0' && regnum < 96)
7979 {
7980 if (regnum >= dr->num_regs)
7981 {
7982 if (!dr->num_regs)
7983 as_bad ("No current frame");
7984 else
7985 as_bad ("Register number out of range 0..%u",
7986 dr->num_regs - 1);
7987 regnum = 0;
7988 }
7989 e->X_op = O_register;
7990 e->X_add_number = dr->base + regnum;
7991 return 1;
7992 }
7993 }
7994
7995 end = alloca (strlen (name) + 1);
7996 strcpy (end, name);
7997 name = ia64_canonicalize_symbol_name (end);
7998 if ((dr = hash_find (md.dynreg_hash, name)))
7999 {
8000 /* We've got ourselves the name of a rotating register set.
8001 Store the base register number in the low 16 bits of
8002 X_add_number and the size of the register set in the top 16
8003 bits. */
8004 e->X_op = O_register;
8005 e->X_add_number = dr->base | (dr->num_regs << 16);
8006 return 1;
8007 }
8008 return 0;
8009 }
8010
8011 /* Remove the '#' suffix that indicates a symbol as opposed to a register. */
8012
8013 char *
8014 ia64_canonicalize_symbol_name (name)
8015 char *name;
8016 {
8017 size_t len = strlen (name), full = len;
8018
8019 while (len > 0 && name[len - 1] == '#')
8020 --len;
8021 if (len <= 0)
8022 {
8023 if (full > 0)
8024 as_bad ("Standalone `#' is illegal");
8025 }
8026 else if (len < full - 1)
8027 as_warn ("Redundant `#' suffix operators");
8028 name[len] = '\0';
8029 return name;
8030 }
8031
8032 /* Return true if idesc is a conditional branch instruction. This excludes
8033 the modulo scheduled branches, and br.ia. Mod-sched branches are excluded
8034 because they always read/write resources regardless of the value of the
8035 qualifying predicate. br.ia must always use p0, and hence is always
8036 taken. Thus this function returns true for branches which can fall
8037 through, and which use no resources if they do fall through. */
8038
8039 static int
8040 is_conditional_branch (idesc)
8041 struct ia64_opcode *idesc;
8042 {
8043 /* br is a conditional branch. Everything that starts with br. except
8044 br.ia, br.c{loop,top,exit}, and br.w{top,exit} is a conditional branch.
8045 Everything that starts with brl is a conditional branch. */
8046 return (idesc->name[0] == 'b' && idesc->name[1] == 'r'
8047 && (idesc->name[2] == '\0'
8048 || (idesc->name[2] == '.' && idesc->name[3] != 'i'
8049 && idesc->name[3] != 'c' && idesc->name[3] != 'w')
8050 || idesc->name[2] == 'l'
8051 /* br.cond, br.call, br.clr */
8052 || (idesc->name[2] == '.' && idesc->name[3] == 'c'
8053 && (idesc->name[4] == 'a' || idesc->name[4] == 'o'
8054 || (idesc->name[4] == 'l' && idesc->name[5] == 'r')))));
8055 }
8056
8057 /* Return whether the given opcode is a taken branch. If there's any doubt,
8058 returns zero. */
8059
8060 static int
8061 is_taken_branch (idesc)
8062 struct ia64_opcode *idesc;
8063 {
8064 return ((is_conditional_branch (idesc) && CURR_SLOT.qp_regno == 0)
8065 || strncmp (idesc->name, "br.ia", 5) == 0);
8066 }
8067
8068 /* Return whether the given opcode is an interruption or rfi. If there's any
8069 doubt, returns zero. */
8070
8071 static int
8072 is_interruption_or_rfi (idesc)
8073 struct ia64_opcode *idesc;
8074 {
8075 if (strcmp (idesc->name, "rfi") == 0)
8076 return 1;
8077 return 0;
8078 }
8079
8080 /* Returns the index of the given dependency in the opcode's list of chks, or
8081 -1 if there is no dependency. */
8082
8083 static int
8084 depends_on (depind, idesc)
8085 int depind;
8086 struct ia64_opcode *idesc;
8087 {
8088 int i;
8089 const struct ia64_opcode_dependency *dep = idesc->dependencies;
8090 for (i = 0; i < dep->nchks; i++)
8091 {
8092 if (depind == DEP (dep->chks[i]))
8093 return i;
8094 }
8095 return -1;
8096 }
8097
8098 /* Determine a set of specific resources used for a particular resource
8099 class. Returns the number of specific resources identified For those
8100 cases which are not determinable statically, the resource returned is
8101 marked nonspecific.
8102
8103 Meanings of value in 'NOTE':
8104 1) only read/write when the register number is explicitly encoded in the
8105 insn.
8106 2) only read CFM when accessing a rotating GR, FR, or PR. mov pr only
8107 accesses CFM when qualifying predicate is in the rotating region.
8108 3) general register value is used to specify an indirect register; not
8109 determinable statically.
8110 4) only read the given resource when bits 7:0 of the indirect index
8111 register value does not match the register number of the resource; not
8112 determinable statically.
8113 5) all rules are implementation specific.
8114 6) only when both the index specified by the reader and the index specified
8115 by the writer have the same value in bits 63:61; not determinable
8116 statically.
8117 7) only access the specified resource when the corresponding mask bit is
8118 set
8119 8) PSR.dfh is only read when these insns reference FR32-127. PSR.dfl is
8120 only read when these insns reference FR2-31
8121 9) PSR.mfl is only written when these insns write FR2-31. PSR.mfh is only
8122 written when these insns write FR32-127
8123 10) The PSR.bn bit is only accessed when one of GR16-31 is specified in the
8124 instruction
8125 11) The target predicates are written independently of PR[qp], but source
8126 registers are only read if PR[qp] is true. Since the state of PR[qp]
8127 cannot statically be determined, all source registers are marked used.
8128 12) This insn only reads the specified predicate register when that
8129 register is the PR[qp].
8130 13) This reference to ld-c only applies to teh GR whose value is loaded
8131 with data returned from memory, not the post-incremented address register.
8132 14) The RSE resource includes the implementation-specific RSE internal
8133 state resources. At least one (and possibly more) of these resources are
8134 read by each instruction listed in IC:rse-readers. At least one (and
8135 possibly more) of these resources are written by each insn listed in
8136 IC:rse-writers.
8137 15+16) Represents reserved instructions, which the assembler does not
8138 generate.
8139
8140 Memory resources (i.e. locations in memory) are *not* marked or tracked by
8141 this code; there are no dependency violations based on memory access.
8142 */
8143
8144 #define MAX_SPECS 256
8145 #define DV_CHK 1
8146 #define DV_REG 0
8147
8148 static int
8149 specify_resource (dep, idesc, type, specs, note, path)
8150 const struct ia64_dependency *dep;
8151 struct ia64_opcode *idesc;
8152 int type; /* is this a DV chk or a DV reg? */
8153 struct rsrc specs[MAX_SPECS]; /* returned specific resources */
8154 int note; /* resource note for this insn's usage */
8155 int path; /* which execution path to examine */
8156 {
8157 int count = 0;
8158 int i;
8159 int rsrc_write = 0;
8160 struct rsrc tmpl;
8161
8162 if (dep->mode == IA64_DV_WAW
8163 || (dep->mode == IA64_DV_RAW && type == DV_REG)
8164 || (dep->mode == IA64_DV_WAR && type == DV_CHK))
8165 rsrc_write = 1;
8166
8167 /* template for any resources we identify */
8168 tmpl.dependency = dep;
8169 tmpl.note = note;
8170 tmpl.insn_srlz = tmpl.data_srlz = 0;
8171 tmpl.qp_regno = CURR_SLOT.qp_regno;
8172 tmpl.link_to_qp_branch = 1;
8173 tmpl.mem_offset.hint = 0;
8174 tmpl.mem_offset.offset = 0;
8175 tmpl.mem_offset.base = 0;
8176 tmpl.specific = 1;
8177 tmpl.index = -1;
8178 tmpl.cmp_type = CMP_NONE;
8179 tmpl.depind = 0;
8180 tmpl.file = NULL;
8181 tmpl.line = 0;
8182 tmpl.path = 0;
8183
8184 #define UNHANDLED \
8185 as_warn (_("Unhandled dependency %s for %s (%s), note %d"), \
8186 dep->name, idesc->name, (rsrc_write?"write":"read"), note)
8187 #define KNOWN(REG) (gr_values[REG].known && gr_values[REG].path >= path)
8188
8189 /* we don't need to track these */
8190 if (dep->semantics == IA64_DVS_NONE)
8191 return 0;
8192
8193 switch (dep->specifier)
8194 {
8195 case IA64_RS_AR_K:
8196 if (note == 1)
8197 {
8198 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8199 {
8200 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8201 if (regno >= 0 && regno <= 7)
8202 {
8203 specs[count] = tmpl;
8204 specs[count++].index = regno;
8205 }
8206 }
8207 }
8208 else if (note == 0)
8209 {
8210 for (i = 0; i < 8; i++)
8211 {
8212 specs[count] = tmpl;
8213 specs[count++].index = i;
8214 }
8215 }
8216 else
8217 {
8218 UNHANDLED;
8219 }
8220 break;
8221
8222 case IA64_RS_AR_UNAT:
8223 /* This is a mov =AR or mov AR= instruction. */
8224 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8225 {
8226 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8227 if (regno == AR_UNAT)
8228 {
8229 specs[count++] = tmpl;
8230 }
8231 }
8232 else
8233 {
8234 /* This is a spill/fill, or other instruction that modifies the
8235 unat register. */
8236
8237 /* Unless we can determine the specific bits used, mark the whole
8238 thing; bits 8:3 of the memory address indicate the bit used in
8239 UNAT. The .mem.offset hint may be used to eliminate a small
8240 subset of conflicts. */
8241 specs[count] = tmpl;
8242 if (md.mem_offset.hint)
8243 {
8244 if (md.debug_dv)
8245 fprintf (stderr, " Using hint for spill/fill\n");
8246 /* The index isn't actually used, just set it to something
8247 approximating the bit index. */
8248 specs[count].index = (md.mem_offset.offset >> 3) & 0x3F;
8249 specs[count].mem_offset.hint = 1;
8250 specs[count].mem_offset.offset = md.mem_offset.offset;
8251 specs[count++].mem_offset.base = md.mem_offset.base;
8252 }
8253 else
8254 {
8255 specs[count++].specific = 0;
8256 }
8257 }
8258 break;
8259
8260 case IA64_RS_AR:
8261 if (note == 1)
8262 {
8263 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8264 {
8265 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8266 if ((regno >= 8 && regno <= 15)
8267 || (regno >= 20 && regno <= 23)
8268 || (regno >= 31 && regno <= 39)
8269 || (regno >= 41 && regno <= 47)
8270 || (regno >= 67 && regno <= 111))
8271 {
8272 specs[count] = tmpl;
8273 specs[count++].index = regno;
8274 }
8275 }
8276 }
8277 else
8278 {
8279 UNHANDLED;
8280 }
8281 break;
8282
8283 case IA64_RS_ARb:
8284 if (note == 1)
8285 {
8286 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8287 {
8288 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8289 if ((regno >= 48 && regno <= 63)
8290 || (regno >= 112 && regno <= 127))
8291 {
8292 specs[count] = tmpl;
8293 specs[count++].index = regno;
8294 }
8295 }
8296 }
8297 else if (note == 0)
8298 {
8299 for (i = 48; i < 64; i++)
8300 {
8301 specs[count] = tmpl;
8302 specs[count++].index = i;
8303 }
8304 for (i = 112; i < 128; i++)
8305 {
8306 specs[count] = tmpl;
8307 specs[count++].index = i;
8308 }
8309 }
8310 else
8311 {
8312 UNHANDLED;
8313 }
8314 break;
8315
8316 case IA64_RS_BR:
8317 if (note != 1)
8318 {
8319 UNHANDLED;
8320 }
8321 else
8322 {
8323 if (rsrc_write)
8324 {
8325 for (i = 0; i < idesc->num_outputs; i++)
8326 if (idesc->operands[i] == IA64_OPND_B1
8327 || idesc->operands[i] == IA64_OPND_B2)
8328 {
8329 specs[count] = tmpl;
8330 specs[count++].index =
8331 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8332 }
8333 }
8334 else
8335 {
8336 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8337 if (idesc->operands[i] == IA64_OPND_B1
8338 || idesc->operands[i] == IA64_OPND_B2)
8339 {
8340 specs[count] = tmpl;
8341 specs[count++].index =
8342 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8343 }
8344 }
8345 }
8346 break;
8347
8348 case IA64_RS_CPUID: /* four or more registers */
8349 if (note == 3)
8350 {
8351 if (idesc->operands[!rsrc_write] == IA64_OPND_CPUID_R3)
8352 {
8353 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8354 if (regno >= 0 && regno < NELEMS (gr_values)
8355 && KNOWN (regno))
8356 {
8357 specs[count] = tmpl;
8358 specs[count++].index = gr_values[regno].value & 0xFF;
8359 }
8360 else
8361 {
8362 specs[count] = tmpl;
8363 specs[count++].specific = 0;
8364 }
8365 }
8366 }
8367 else
8368 {
8369 UNHANDLED;
8370 }
8371 break;
8372
8373 case IA64_RS_DBR: /* four or more registers */
8374 if (note == 3)
8375 {
8376 if (idesc->operands[!rsrc_write] == IA64_OPND_DBR_R3)
8377 {
8378 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8379 if (regno >= 0 && regno < NELEMS (gr_values)
8380 && KNOWN (regno))
8381 {
8382 specs[count] = tmpl;
8383 specs[count++].index = gr_values[regno].value & 0xFF;
8384 }
8385 else
8386 {
8387 specs[count] = tmpl;
8388 specs[count++].specific = 0;
8389 }
8390 }
8391 }
8392 else if (note == 0 && !rsrc_write)
8393 {
8394 specs[count] = tmpl;
8395 specs[count++].specific = 0;
8396 }
8397 else
8398 {
8399 UNHANDLED;
8400 }
8401 break;
8402
8403 case IA64_RS_IBR: /* four or more registers */
8404 if (note == 3)
8405 {
8406 if (idesc->operands[!rsrc_write] == IA64_OPND_IBR_R3)
8407 {
8408 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8409 if (regno >= 0 && regno < NELEMS (gr_values)
8410 && KNOWN (regno))
8411 {
8412 specs[count] = tmpl;
8413 specs[count++].index = gr_values[regno].value & 0xFF;
8414 }
8415 else
8416 {
8417 specs[count] = tmpl;
8418 specs[count++].specific = 0;
8419 }
8420 }
8421 }
8422 else
8423 {
8424 UNHANDLED;
8425 }
8426 break;
8427
8428 case IA64_RS_MSR:
8429 if (note == 5)
8430 {
8431 /* These are implementation specific. Force all references to
8432 conflict with all other references. */
8433 specs[count] = tmpl;
8434 specs[count++].specific = 0;
8435 }
8436 else
8437 {
8438 UNHANDLED;
8439 }
8440 break;
8441
8442 case IA64_RS_PKR: /* 16 or more registers */
8443 if (note == 3 || note == 4)
8444 {
8445 if (idesc->operands[!rsrc_write] == IA64_OPND_PKR_R3)
8446 {
8447 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8448 if (regno >= 0 && regno < NELEMS (gr_values)
8449 && KNOWN (regno))
8450 {
8451 if (note == 3)
8452 {
8453 specs[count] = tmpl;
8454 specs[count++].index = gr_values[regno].value & 0xFF;
8455 }
8456 else
8457 for (i = 0; i < NELEMS (gr_values); i++)
8458 {
8459 /* Uses all registers *except* the one in R3. */
8460 if ((unsigned)i != (gr_values[regno].value & 0xFF))
8461 {
8462 specs[count] = tmpl;
8463 specs[count++].index = i;
8464 }
8465 }
8466 }
8467 else
8468 {
8469 specs[count] = tmpl;
8470 specs[count++].specific = 0;
8471 }
8472 }
8473 }
8474 else if (note == 0)
8475 {
8476 /* probe et al. */
8477 specs[count] = tmpl;
8478 specs[count++].specific = 0;
8479 }
8480 break;
8481
8482 case IA64_RS_PMC: /* four or more registers */
8483 if (note == 3)
8484 {
8485 if (idesc->operands[!rsrc_write] == IA64_OPND_PMC_R3
8486 || (!rsrc_write && idesc->operands[1] == IA64_OPND_PMD_R3))
8487
8488 {
8489 int index = ((idesc->operands[1] == IA64_OPND_R3 && !rsrc_write)
8490 ? 1 : !rsrc_write);
8491 int regno = CURR_SLOT.opnd[index].X_add_number - REG_GR;
8492 if (regno >= 0 && regno < NELEMS (gr_values)
8493 && KNOWN (regno))
8494 {
8495 specs[count] = tmpl;
8496 specs[count++].index = gr_values[regno].value & 0xFF;
8497 }
8498 else
8499 {
8500 specs[count] = tmpl;
8501 specs[count++].specific = 0;
8502 }
8503 }
8504 }
8505 else
8506 {
8507 UNHANDLED;
8508 }
8509 break;
8510
8511 case IA64_RS_PMD: /* four or more registers */
8512 if (note == 3)
8513 {
8514 if (idesc->operands[!rsrc_write] == IA64_OPND_PMD_R3)
8515 {
8516 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8517 if (regno >= 0 && regno < NELEMS (gr_values)
8518 && KNOWN (regno))
8519 {
8520 specs[count] = tmpl;
8521 specs[count++].index = gr_values[regno].value & 0xFF;
8522 }
8523 else
8524 {
8525 specs[count] = tmpl;
8526 specs[count++].specific = 0;
8527 }
8528 }
8529 }
8530 else
8531 {
8532 UNHANDLED;
8533 }
8534 break;
8535
8536 case IA64_RS_RR: /* eight registers */
8537 if (note == 6)
8538 {
8539 if (idesc->operands[!rsrc_write] == IA64_OPND_RR_R3)
8540 {
8541 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8542 if (regno >= 0 && regno < NELEMS (gr_values)
8543 && KNOWN (regno))
8544 {
8545 specs[count] = tmpl;
8546 specs[count++].index = (gr_values[regno].value >> 61) & 0x7;
8547 }
8548 else
8549 {
8550 specs[count] = tmpl;
8551 specs[count++].specific = 0;
8552 }
8553 }
8554 }
8555 else if (note == 0 && !rsrc_write)
8556 {
8557 specs[count] = tmpl;
8558 specs[count++].specific = 0;
8559 }
8560 else
8561 {
8562 UNHANDLED;
8563 }
8564 break;
8565
8566 case IA64_RS_CR_IRR:
8567 if (note == 0)
8568 {
8569 /* handle mov-from-CR-IVR; it's a read that writes CR[IRR] */
8570 int regno = CURR_SLOT.opnd[1].X_add_number - REG_CR;
8571 if (rsrc_write
8572 && idesc->operands[1] == IA64_OPND_CR3
8573 && regno == CR_IVR)
8574 {
8575 for (i = 0; i < 4; i++)
8576 {
8577 specs[count] = tmpl;
8578 specs[count++].index = CR_IRR0 + i;
8579 }
8580 }
8581 }
8582 else if (note == 1)
8583 {
8584 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8585 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8586 && regno >= CR_IRR0
8587 && regno <= CR_IRR3)
8588 {
8589 specs[count] = tmpl;
8590 specs[count++].index = regno;
8591 }
8592 }
8593 else
8594 {
8595 UNHANDLED;
8596 }
8597 break;
8598
8599 case IA64_RS_CR_LRR:
8600 if (note != 1)
8601 {
8602 UNHANDLED;
8603 }
8604 else
8605 {
8606 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8607 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8608 && (regno == CR_LRR0 || regno == CR_LRR1))
8609 {
8610 specs[count] = tmpl;
8611 specs[count++].index = regno;
8612 }
8613 }
8614 break;
8615
8616 case IA64_RS_CR:
8617 if (note == 1)
8618 {
8619 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
8620 {
8621 specs[count] = tmpl;
8622 specs[count++].index =
8623 CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8624 }
8625 }
8626 else
8627 {
8628 UNHANDLED;
8629 }
8630 break;
8631
8632 case IA64_RS_FR:
8633 case IA64_RS_FRb:
8634 if (note != 1)
8635 {
8636 UNHANDLED;
8637 }
8638 else if (rsrc_write)
8639 {
8640 if (dep->specifier == IA64_RS_FRb
8641 && idesc->operands[0] == IA64_OPND_F1)
8642 {
8643 specs[count] = tmpl;
8644 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_FR;
8645 }
8646 }
8647 else
8648 {
8649 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8650 {
8651 if (idesc->operands[i] == IA64_OPND_F2
8652 || idesc->operands[i] == IA64_OPND_F3
8653 || idesc->operands[i] == IA64_OPND_F4)
8654 {
8655 specs[count] = tmpl;
8656 specs[count++].index =
8657 CURR_SLOT.opnd[i].X_add_number - REG_FR;
8658 }
8659 }
8660 }
8661 break;
8662
8663 case IA64_RS_GR:
8664 if (note == 13)
8665 {
8666 /* This reference applies only to the GR whose value is loaded with
8667 data returned from memory. */
8668 specs[count] = tmpl;
8669 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_GR;
8670 }
8671 else if (note == 1)
8672 {
8673 if (rsrc_write)
8674 {
8675 for (i = 0; i < idesc->num_outputs; i++)
8676 if (idesc->operands[i] == IA64_OPND_R1
8677 || idesc->operands[i] == IA64_OPND_R2
8678 || idesc->operands[i] == IA64_OPND_R3)
8679 {
8680 specs[count] = tmpl;
8681 specs[count++].index =
8682 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8683 }
8684 if (idesc->flags & IA64_OPCODE_POSTINC)
8685 for (i = 0; i < NELEMS (idesc->operands); i++)
8686 if (idesc->operands[i] == IA64_OPND_MR3)
8687 {
8688 specs[count] = tmpl;
8689 specs[count++].index =
8690 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8691 }
8692 }
8693 else
8694 {
8695 /* Look for anything that reads a GR. */
8696 for (i = 0; i < NELEMS (idesc->operands); i++)
8697 {
8698 if (idesc->operands[i] == IA64_OPND_MR3
8699 || idesc->operands[i] == IA64_OPND_CPUID_R3
8700 || idesc->operands[i] == IA64_OPND_DBR_R3
8701 || idesc->operands[i] == IA64_OPND_IBR_R3
8702 || idesc->operands[i] == IA64_OPND_MSR_R3
8703 || idesc->operands[i] == IA64_OPND_PKR_R3
8704 || idesc->operands[i] == IA64_OPND_PMC_R3
8705 || idesc->operands[i] == IA64_OPND_PMD_R3
8706 || idesc->operands[i] == IA64_OPND_RR_R3
8707 || ((i >= idesc->num_outputs)
8708 && (idesc->operands[i] == IA64_OPND_R1
8709 || idesc->operands[i] == IA64_OPND_R2
8710 || idesc->operands[i] == IA64_OPND_R3
8711 /* addl source register. */
8712 || idesc->operands[i] == IA64_OPND_R3_2)))
8713 {
8714 specs[count] = tmpl;
8715 specs[count++].index =
8716 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8717 }
8718 }
8719 }
8720 }
8721 else
8722 {
8723 UNHANDLED;
8724 }
8725 break;
8726
8727 /* This is the same as IA64_RS_PRr, except that the register range is
8728 from 1 - 15, and there are no rotating register reads/writes here. */
8729 case IA64_RS_PR:
8730 if (note == 0)
8731 {
8732 for (i = 1; i < 16; i++)
8733 {
8734 specs[count] = tmpl;
8735 specs[count++].index = i;
8736 }
8737 }
8738 else if (note == 7)
8739 {
8740 valueT mask = 0;
8741 /* Mark only those registers indicated by the mask. */
8742 if (rsrc_write)
8743 {
8744 mask = CURR_SLOT.opnd[2].X_add_number;
8745 for (i = 1; i < 16; i++)
8746 if (mask & ((valueT) 1 << i))
8747 {
8748 specs[count] = tmpl;
8749 specs[count++].index = i;
8750 }
8751 }
8752 else
8753 {
8754 UNHANDLED;
8755 }
8756 }
8757 else if (note == 11) /* note 11 implies note 1 as well */
8758 {
8759 if (rsrc_write)
8760 {
8761 for (i = 0; i < idesc->num_outputs; i++)
8762 {
8763 if (idesc->operands[i] == IA64_OPND_P1
8764 || idesc->operands[i] == IA64_OPND_P2)
8765 {
8766 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8767 if (regno >= 1 && regno < 16)
8768 {
8769 specs[count] = tmpl;
8770 specs[count++].index = regno;
8771 }
8772 }
8773 }
8774 }
8775 else
8776 {
8777 UNHANDLED;
8778 }
8779 }
8780 else if (note == 12)
8781 {
8782 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8783 {
8784 specs[count] = tmpl;
8785 specs[count++].index = CURR_SLOT.qp_regno;
8786 }
8787 }
8788 else if (note == 1)
8789 {
8790 if (rsrc_write)
8791 {
8792 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8793 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8794 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8795 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
8796
8797 if ((idesc->operands[0] == IA64_OPND_P1
8798 || idesc->operands[0] == IA64_OPND_P2)
8799 && p1 >= 1 && p1 < 16)
8800 {
8801 specs[count] = tmpl;
8802 specs[count].cmp_type =
8803 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
8804 specs[count++].index = p1;
8805 }
8806 if ((idesc->operands[1] == IA64_OPND_P1
8807 || idesc->operands[1] == IA64_OPND_P2)
8808 && p2 >= 1 && p2 < 16)
8809 {
8810 specs[count] = tmpl;
8811 specs[count].cmp_type =
8812 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
8813 specs[count++].index = p2;
8814 }
8815 }
8816 else
8817 {
8818 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8819 {
8820 specs[count] = tmpl;
8821 specs[count++].index = CURR_SLOT.qp_regno;
8822 }
8823 if (idesc->operands[1] == IA64_OPND_PR)
8824 {
8825 for (i = 1; i < 16; i++)
8826 {
8827 specs[count] = tmpl;
8828 specs[count++].index = i;
8829 }
8830 }
8831 }
8832 }
8833 else
8834 {
8835 UNHANDLED;
8836 }
8837 break;
8838
8839 /* This is the general case for PRs. IA64_RS_PR and IA64_RS_PR63 are
8840 simplified cases of this. */
8841 case IA64_RS_PRr:
8842 if (note == 0)
8843 {
8844 for (i = 16; i < 63; i++)
8845 {
8846 specs[count] = tmpl;
8847 specs[count++].index = i;
8848 }
8849 }
8850 else if (note == 7)
8851 {
8852 valueT mask = 0;
8853 /* Mark only those registers indicated by the mask. */
8854 if (rsrc_write
8855 && idesc->operands[0] == IA64_OPND_PR)
8856 {
8857 mask = CURR_SLOT.opnd[2].X_add_number;
8858 if (mask & ((valueT) 1 << 16))
8859 for (i = 16; i < 63; i++)
8860 {
8861 specs[count] = tmpl;
8862 specs[count++].index = i;
8863 }
8864 }
8865 else if (rsrc_write
8866 && idesc->operands[0] == IA64_OPND_PR_ROT)
8867 {
8868 for (i = 16; i < 63; i++)
8869 {
8870 specs[count] = tmpl;
8871 specs[count++].index = i;
8872 }
8873 }
8874 else
8875 {
8876 UNHANDLED;
8877 }
8878 }
8879 else if (note == 11) /* note 11 implies note 1 as well */
8880 {
8881 if (rsrc_write)
8882 {
8883 for (i = 0; i < idesc->num_outputs; i++)
8884 {
8885 if (idesc->operands[i] == IA64_OPND_P1
8886 || idesc->operands[i] == IA64_OPND_P2)
8887 {
8888 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8889 if (regno >= 16 && regno < 63)
8890 {
8891 specs[count] = tmpl;
8892 specs[count++].index = regno;
8893 }
8894 }
8895 }
8896 }
8897 else
8898 {
8899 UNHANDLED;
8900 }
8901 }
8902 else if (note == 12)
8903 {
8904 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
8905 {
8906 specs[count] = tmpl;
8907 specs[count++].index = CURR_SLOT.qp_regno;
8908 }
8909 }
8910 else if (note == 1)
8911 {
8912 if (rsrc_write)
8913 {
8914 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8915 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8916 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8917 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
8918
8919 if ((idesc->operands[0] == IA64_OPND_P1
8920 || idesc->operands[0] == IA64_OPND_P2)
8921 && p1 >= 16 && p1 < 63)
8922 {
8923 specs[count] = tmpl;
8924 specs[count].cmp_type =
8925 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
8926 specs[count++].index = p1;
8927 }
8928 if ((idesc->operands[1] == IA64_OPND_P1
8929 || idesc->operands[1] == IA64_OPND_P2)
8930 && p2 >= 16 && p2 < 63)
8931 {
8932 specs[count] = tmpl;
8933 specs[count].cmp_type =
8934 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
8935 specs[count++].index = p2;
8936 }
8937 }
8938 else
8939 {
8940 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
8941 {
8942 specs[count] = tmpl;
8943 specs[count++].index = CURR_SLOT.qp_regno;
8944 }
8945 if (idesc->operands[1] == IA64_OPND_PR)
8946 {
8947 for (i = 16; i < 63; i++)
8948 {
8949 specs[count] = tmpl;
8950 specs[count++].index = i;
8951 }
8952 }
8953 }
8954 }
8955 else
8956 {
8957 UNHANDLED;
8958 }
8959 break;
8960
8961 case IA64_RS_PSR:
8962 /* Verify that the instruction is using the PSR bit indicated in
8963 dep->regindex. */
8964 if (note == 0)
8965 {
8966 if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_UM)
8967 {
8968 if (dep->regindex < 6)
8969 {
8970 specs[count++] = tmpl;
8971 }
8972 }
8973 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR)
8974 {
8975 if (dep->regindex < 32
8976 || dep->regindex == 35
8977 || dep->regindex == 36
8978 || (!rsrc_write && dep->regindex == PSR_CPL))
8979 {
8980 specs[count++] = tmpl;
8981 }
8982 }
8983 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_L)
8984 {
8985 if (dep->regindex < 32
8986 || dep->regindex == 35
8987 || dep->regindex == 36
8988 || (rsrc_write && dep->regindex == PSR_CPL))
8989 {
8990 specs[count++] = tmpl;
8991 }
8992 }
8993 else
8994 {
8995 /* Several PSR bits have very specific dependencies. */
8996 switch (dep->regindex)
8997 {
8998 default:
8999 specs[count++] = tmpl;
9000 break;
9001 case PSR_IC:
9002 if (rsrc_write)
9003 {
9004 specs[count++] = tmpl;
9005 }
9006 else
9007 {
9008 /* Only certain CR accesses use PSR.ic */
9009 if (idesc->operands[0] == IA64_OPND_CR3
9010 || idesc->operands[1] == IA64_OPND_CR3)
9011 {
9012 int index =
9013 ((idesc->operands[0] == IA64_OPND_CR3)
9014 ? 0 : 1);
9015 int regno =
9016 CURR_SLOT.opnd[index].X_add_number - REG_CR;
9017
9018 switch (regno)
9019 {
9020 default:
9021 break;
9022 case CR_ITIR:
9023 case CR_IFS:
9024 case CR_IIM:
9025 case CR_IIP:
9026 case CR_IPSR:
9027 case CR_ISR:
9028 case CR_IFA:
9029 case CR_IHA:
9030 case CR_IIPA:
9031 specs[count++] = tmpl;
9032 break;
9033 }
9034 }
9035 }
9036 break;
9037 case PSR_CPL:
9038 if (rsrc_write)
9039 {
9040 specs[count++] = tmpl;
9041 }
9042 else
9043 {
9044 /* Only some AR accesses use cpl */
9045 if (idesc->operands[0] == IA64_OPND_AR3
9046 || idesc->operands[1] == IA64_OPND_AR3)
9047 {
9048 int index =
9049 ((idesc->operands[0] == IA64_OPND_AR3)
9050 ? 0 : 1);
9051 int regno =
9052 CURR_SLOT.opnd[index].X_add_number - REG_AR;
9053
9054 if (regno == AR_ITC
9055 || (index == 0
9056 && (regno == AR_ITC
9057 || regno == AR_RSC
9058 || (regno >= AR_K0
9059 && regno <= AR_K7))))
9060 {
9061 specs[count++] = tmpl;
9062 }
9063 }
9064 else
9065 {
9066 specs[count++] = tmpl;
9067 }
9068 break;
9069 }
9070 }
9071 }
9072 }
9073 else if (note == 7)
9074 {
9075 valueT mask = 0;
9076 if (idesc->operands[0] == IA64_OPND_IMMU24)
9077 {
9078 mask = CURR_SLOT.opnd[0].X_add_number;
9079 }
9080 else
9081 {
9082 UNHANDLED;
9083 }
9084 if (mask & ((valueT) 1 << dep->regindex))
9085 {
9086 specs[count++] = tmpl;
9087 }
9088 }
9089 else if (note == 8)
9090 {
9091 int min = dep->regindex == PSR_DFL ? 2 : 32;
9092 int max = dep->regindex == PSR_DFL ? 31 : 127;
9093 /* dfh is read on FR32-127; dfl is read on FR2-31 */
9094 for (i = 0; i < NELEMS (idesc->operands); i++)
9095 {
9096 if (idesc->operands[i] == IA64_OPND_F1
9097 || idesc->operands[i] == IA64_OPND_F2
9098 || idesc->operands[i] == IA64_OPND_F3
9099 || idesc->operands[i] == IA64_OPND_F4)
9100 {
9101 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9102 if (reg >= min && reg <= max)
9103 {
9104 specs[count++] = tmpl;
9105 }
9106 }
9107 }
9108 }
9109 else if (note == 9)
9110 {
9111 int min = dep->regindex == PSR_MFL ? 2 : 32;
9112 int max = dep->regindex == PSR_MFL ? 31 : 127;
9113 /* mfh is read on writes to FR32-127; mfl is read on writes to
9114 FR2-31 */
9115 for (i = 0; i < idesc->num_outputs; i++)
9116 {
9117 if (idesc->operands[i] == IA64_OPND_F1)
9118 {
9119 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9120 if (reg >= min && reg <= max)
9121 {
9122 specs[count++] = tmpl;
9123 }
9124 }
9125 }
9126 }
9127 else if (note == 10)
9128 {
9129 for (i = 0; i < NELEMS (idesc->operands); i++)
9130 {
9131 if (idesc->operands[i] == IA64_OPND_R1
9132 || idesc->operands[i] == IA64_OPND_R2
9133 || idesc->operands[i] == IA64_OPND_R3)
9134 {
9135 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9136 if (regno >= 16 && regno <= 31)
9137 {
9138 specs[count++] = tmpl;
9139 }
9140 }
9141 }
9142 }
9143 else
9144 {
9145 UNHANDLED;
9146 }
9147 break;
9148
9149 case IA64_RS_AR_FPSR:
9150 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
9151 {
9152 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9153 if (regno == AR_FPSR)
9154 {
9155 specs[count++] = tmpl;
9156 }
9157 }
9158 else
9159 {
9160 specs[count++] = tmpl;
9161 }
9162 break;
9163
9164 case IA64_RS_ARX:
9165 /* Handle all AR[REG] resources */
9166 if (note == 0 || note == 1)
9167 {
9168 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9169 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3
9170 && regno == dep->regindex)
9171 {
9172 specs[count++] = tmpl;
9173 }
9174 /* other AR[REG] resources may be affected by AR accesses */
9175 else if (idesc->operands[0] == IA64_OPND_AR3)
9176 {
9177 /* AR[] writes */
9178 regno = CURR_SLOT.opnd[0].X_add_number - REG_AR;
9179 switch (dep->regindex)
9180 {
9181 default:
9182 break;
9183 case AR_BSP:
9184 case AR_RNAT:
9185 if (regno == AR_BSPSTORE)
9186 {
9187 specs[count++] = tmpl;
9188 }
9189 case AR_RSC:
9190 if (!rsrc_write &&
9191 (regno == AR_BSPSTORE
9192 || regno == AR_RNAT))
9193 {
9194 specs[count++] = tmpl;
9195 }
9196 break;
9197 }
9198 }
9199 else if (idesc->operands[1] == IA64_OPND_AR3)
9200 {
9201 /* AR[] reads */
9202 regno = CURR_SLOT.opnd[1].X_add_number - REG_AR;
9203 switch (dep->regindex)
9204 {
9205 default:
9206 break;
9207 case AR_RSC:
9208 if (regno == AR_BSPSTORE || regno == AR_RNAT)
9209 {
9210 specs[count++] = tmpl;
9211 }
9212 break;
9213 }
9214 }
9215 else
9216 {
9217 specs[count++] = tmpl;
9218 }
9219 }
9220 else
9221 {
9222 UNHANDLED;
9223 }
9224 break;
9225
9226 case IA64_RS_CRX:
9227 /* Handle all CR[REG] resources */
9228 if (note == 0 || note == 1)
9229 {
9230 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
9231 {
9232 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
9233 if (regno == dep->regindex)
9234 {
9235 specs[count++] = tmpl;
9236 }
9237 else if (!rsrc_write)
9238 {
9239 /* Reads from CR[IVR] affect other resources. */
9240 if (regno == CR_IVR)
9241 {
9242 if ((dep->regindex >= CR_IRR0
9243 && dep->regindex <= CR_IRR3)
9244 || dep->regindex == CR_TPR)
9245 {
9246 specs[count++] = tmpl;
9247 }
9248 }
9249 }
9250 }
9251 else
9252 {
9253 specs[count++] = tmpl;
9254 }
9255 }
9256 else
9257 {
9258 UNHANDLED;
9259 }
9260 break;
9261
9262 case IA64_RS_INSERVICE:
9263 /* look for write of EOI (67) or read of IVR (65) */
9264 if ((idesc->operands[0] == IA64_OPND_CR3
9265 && CURR_SLOT.opnd[0].X_add_number - REG_CR == CR_EOI)
9266 || (idesc->operands[1] == IA64_OPND_CR3
9267 && CURR_SLOT.opnd[1].X_add_number - REG_CR == CR_IVR))
9268 {
9269 specs[count++] = tmpl;
9270 }
9271 break;
9272
9273 case IA64_RS_GR0:
9274 if (note == 1)
9275 {
9276 specs[count++] = tmpl;
9277 }
9278 else
9279 {
9280 UNHANDLED;
9281 }
9282 break;
9283
9284 case IA64_RS_CFM:
9285 if (note != 2)
9286 {
9287 specs[count++] = tmpl;
9288 }
9289 else
9290 {
9291 /* Check if any of the registers accessed are in the rotating region.
9292 mov to/from pr accesses CFM only when qp_regno is in the rotating
9293 region */
9294 for (i = 0; i < NELEMS (idesc->operands); i++)
9295 {
9296 if (idesc->operands[i] == IA64_OPND_R1
9297 || idesc->operands[i] == IA64_OPND_R2
9298 || idesc->operands[i] == IA64_OPND_R3)
9299 {
9300 int num = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9301 /* Assumes that md.rot.num_regs is always valid */
9302 if (md.rot.num_regs > 0
9303 && num > 31
9304 && num < 31 + md.rot.num_regs)
9305 {
9306 specs[count] = tmpl;
9307 specs[count++].specific = 0;
9308 }
9309 }
9310 else if (idesc->operands[i] == IA64_OPND_F1
9311 || idesc->operands[i] == IA64_OPND_F2
9312 || idesc->operands[i] == IA64_OPND_F3
9313 || idesc->operands[i] == IA64_OPND_F4)
9314 {
9315 int num = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9316 if (num > 31)
9317 {
9318 specs[count] = tmpl;
9319 specs[count++].specific = 0;
9320 }
9321 }
9322 else if (idesc->operands[i] == IA64_OPND_P1
9323 || idesc->operands[i] == IA64_OPND_P2)
9324 {
9325 int num = CURR_SLOT.opnd[i].X_add_number - REG_P;
9326 if (num > 15)
9327 {
9328 specs[count] = tmpl;
9329 specs[count++].specific = 0;
9330 }
9331 }
9332 }
9333 if (CURR_SLOT.qp_regno > 15)
9334 {
9335 specs[count] = tmpl;
9336 specs[count++].specific = 0;
9337 }
9338 }
9339 break;
9340
9341 /* This is the same as IA64_RS_PRr, except simplified to account for
9342 the fact that there is only one register. */
9343 case IA64_RS_PR63:
9344 if (note == 0)
9345 {
9346 specs[count++] = tmpl;
9347 }
9348 else if (note == 7)
9349 {
9350 valueT mask = 0;
9351 if (idesc->operands[2] == IA64_OPND_IMM17)
9352 mask = CURR_SLOT.opnd[2].X_add_number;
9353 if (mask & ((valueT) 1 << 63))
9354 specs[count++] = tmpl;
9355 }
9356 else if (note == 11)
9357 {
9358 if ((idesc->operands[0] == IA64_OPND_P1
9359 && CURR_SLOT.opnd[0].X_add_number - REG_P == 63)
9360 || (idesc->operands[1] == IA64_OPND_P2
9361 && CURR_SLOT.opnd[1].X_add_number - REG_P == 63))
9362 {
9363 specs[count++] = tmpl;
9364 }
9365 }
9366 else if (note == 12)
9367 {
9368 if (CURR_SLOT.qp_regno == 63)
9369 {
9370 specs[count++] = tmpl;
9371 }
9372 }
9373 else if (note == 1)
9374 {
9375 if (rsrc_write)
9376 {
9377 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9378 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9379 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9380 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9381
9382 if (p1 == 63
9383 && (idesc->operands[0] == IA64_OPND_P1
9384 || idesc->operands[0] == IA64_OPND_P2))
9385 {
9386 specs[count] = tmpl;
9387 specs[count++].cmp_type =
9388 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9389 }
9390 if (p2 == 63
9391 && (idesc->operands[1] == IA64_OPND_P1
9392 || idesc->operands[1] == IA64_OPND_P2))
9393 {
9394 specs[count] = tmpl;
9395 specs[count++].cmp_type =
9396 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9397 }
9398 }
9399 else
9400 {
9401 if (CURR_SLOT.qp_regno == 63)
9402 {
9403 specs[count++] = tmpl;
9404 }
9405 }
9406 }
9407 else
9408 {
9409 UNHANDLED;
9410 }
9411 break;
9412
9413 case IA64_RS_RSE:
9414 /* FIXME we can identify some individual RSE written resources, but RSE
9415 read resources have not yet been completely identified, so for now
9416 treat RSE as a single resource */
9417 if (strncmp (idesc->name, "mov", 3) == 0)
9418 {
9419 if (rsrc_write)
9420 {
9421 if (idesc->operands[0] == IA64_OPND_AR3
9422 && CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE)
9423 {
9424 specs[count++] = tmpl;
9425 }
9426 }
9427 else
9428 {
9429 if (idesc->operands[0] == IA64_OPND_AR3)
9430 {
9431 if (CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE
9432 || CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_RNAT)
9433 {
9434 specs[count++] = tmpl;
9435 }
9436 }
9437 else if (idesc->operands[1] == IA64_OPND_AR3)
9438 {
9439 if (CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSP
9440 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSPSTORE
9441 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_RNAT)
9442 {
9443 specs[count++] = tmpl;
9444 }
9445 }
9446 }
9447 }
9448 else
9449 {
9450 specs[count++] = tmpl;
9451 }
9452 break;
9453
9454 case IA64_RS_ANY:
9455 /* FIXME -- do any of these need to be non-specific? */
9456 specs[count++] = tmpl;
9457 break;
9458
9459 default:
9460 as_bad (_("Unrecognized dependency specifier %d\n"), dep->specifier);
9461 break;
9462 }
9463
9464 return count;
9465 }
9466
9467 /* Clear branch flags on marked resources. This breaks the link between the
9468 QP of the marking instruction and a subsequent branch on the same QP. */
9469
9470 static void
9471 clear_qp_branch_flag (mask)
9472 valueT mask;
9473 {
9474 int i;
9475 for (i = 0; i < regdepslen; i++)
9476 {
9477 valueT bit = ((valueT) 1 << regdeps[i].qp_regno);
9478 if ((bit & mask) != 0)
9479 {
9480 regdeps[i].link_to_qp_branch = 0;
9481 }
9482 }
9483 }
9484
9485 /* MASK contains 2 and only 2 PRs which are mutually exclusive. Remove
9486 any mutexes which contain one of the PRs and create new ones when
9487 needed. */
9488
9489 static int
9490 update_qp_mutex (valueT mask)
9491 {
9492 int i;
9493 int add = 0;
9494
9495 i = 0;
9496 while (i < qp_mutexeslen)
9497 {
9498 if ((qp_mutexes[i].prmask & mask) != 0)
9499 {
9500 /* If it destroys and creates the same mutex, do nothing. */
9501 if (qp_mutexes[i].prmask == mask
9502 && qp_mutexes[i].path == md.path)
9503 {
9504 i++;
9505 add = -1;
9506 }
9507 else
9508 {
9509 int keep = 0;
9510
9511 if (md.debug_dv)
9512 {
9513 fprintf (stderr, " Clearing mutex relation");
9514 print_prmask (qp_mutexes[i].prmask);
9515 fprintf (stderr, "\n");
9516 }
9517
9518 /* Deal with the old mutex with more than 3+ PRs only if
9519 the new mutex on the same execution path with it.
9520
9521 FIXME: The 3+ mutex support is incomplete.
9522 dot_pred_rel () may be a better place to fix it. */
9523 if (qp_mutexes[i].path == md.path)
9524 {
9525 /* If it is a proper subset of the mutex, create a
9526 new mutex. */
9527 if (add == 0
9528 && (qp_mutexes[i].prmask & mask) == mask)
9529 add = 1;
9530
9531 qp_mutexes[i].prmask &= ~mask;
9532 if (qp_mutexes[i].prmask & (qp_mutexes[i].prmask - 1))
9533 {
9534 /* Modify the mutex if there are more than one
9535 PR left. */
9536 keep = 1;
9537 i++;
9538 }
9539 }
9540
9541 if (keep == 0)
9542 /* Remove the mutex. */
9543 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9544 }
9545 }
9546 else
9547 ++i;
9548 }
9549
9550 if (add == 1)
9551 add_qp_mutex (mask);
9552
9553 return add;
9554 }
9555
9556 /* Remove any mutexes which contain any of the PRs indicated in the mask.
9557
9558 Any changes to a PR clears the mutex relations which include that PR. */
9559
9560 static void
9561 clear_qp_mutex (mask)
9562 valueT mask;
9563 {
9564 int i;
9565
9566 i = 0;
9567 while (i < qp_mutexeslen)
9568 {
9569 if ((qp_mutexes[i].prmask & mask) != 0)
9570 {
9571 if (md.debug_dv)
9572 {
9573 fprintf (stderr, " Clearing mutex relation");
9574 print_prmask (qp_mutexes[i].prmask);
9575 fprintf (stderr, "\n");
9576 }
9577 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9578 }
9579 else
9580 ++i;
9581 }
9582 }
9583
9584 /* Clear implies relations which contain PRs in the given masks.
9585 P1_MASK indicates the source of the implies relation, while P2_MASK
9586 indicates the implied PR. */
9587
9588 static void
9589 clear_qp_implies (p1_mask, p2_mask)
9590 valueT p1_mask;
9591 valueT p2_mask;
9592 {
9593 int i;
9594
9595 i = 0;
9596 while (i < qp_implieslen)
9597 {
9598 if ((((valueT) 1 << qp_implies[i].p1) & p1_mask) != 0
9599 || (((valueT) 1 << qp_implies[i].p2) & p2_mask) != 0)
9600 {
9601 if (md.debug_dv)
9602 fprintf (stderr, "Clearing implied relation PR%d->PR%d\n",
9603 qp_implies[i].p1, qp_implies[i].p2);
9604 qp_implies[i] = qp_implies[--qp_implieslen];
9605 }
9606 else
9607 ++i;
9608 }
9609 }
9610
9611 /* Add the PRs specified to the list of implied relations. */
9612
9613 static void
9614 add_qp_imply (p1, p2)
9615 int p1, p2;
9616 {
9617 valueT mask;
9618 valueT bit;
9619 int i;
9620
9621 /* p0 is not meaningful here. */
9622 if (p1 == 0 || p2 == 0)
9623 abort ();
9624
9625 if (p1 == p2)
9626 return;
9627
9628 /* If it exists already, ignore it. */
9629 for (i = 0; i < qp_implieslen; i++)
9630 {
9631 if (qp_implies[i].p1 == p1
9632 && qp_implies[i].p2 == p2
9633 && qp_implies[i].path == md.path
9634 && !qp_implies[i].p2_branched)
9635 return;
9636 }
9637
9638 if (qp_implieslen == qp_impliestotlen)
9639 {
9640 qp_impliestotlen += 20;
9641 qp_implies = (struct qp_imply *)
9642 xrealloc ((void *) qp_implies,
9643 qp_impliestotlen * sizeof (struct qp_imply));
9644 }
9645 if (md.debug_dv)
9646 fprintf (stderr, " Registering PR%d implies PR%d\n", p1, p2);
9647 qp_implies[qp_implieslen].p1 = p1;
9648 qp_implies[qp_implieslen].p2 = p2;
9649 qp_implies[qp_implieslen].path = md.path;
9650 qp_implies[qp_implieslen++].p2_branched = 0;
9651
9652 /* Add in the implied transitive relations; for everything that p2 implies,
9653 make p1 imply that, too; for everything that implies p1, make it imply p2
9654 as well. */
9655 for (i = 0; i < qp_implieslen; i++)
9656 {
9657 if (qp_implies[i].p1 == p2)
9658 add_qp_imply (p1, qp_implies[i].p2);
9659 if (qp_implies[i].p2 == p1)
9660 add_qp_imply (qp_implies[i].p1, p2);
9661 }
9662 /* Add in mutex relations implied by this implies relation; for each mutex
9663 relation containing p2, duplicate it and replace p2 with p1. */
9664 bit = (valueT) 1 << p1;
9665 mask = (valueT) 1 << p2;
9666 for (i = 0; i < qp_mutexeslen; i++)
9667 {
9668 if (qp_mutexes[i].prmask & mask)
9669 add_qp_mutex ((qp_mutexes[i].prmask & ~mask) | bit);
9670 }
9671 }
9672
9673 /* Add the PRs specified in the mask to the mutex list; this means that only
9674 one of the PRs can be true at any time. PR0 should never be included in
9675 the mask. */
9676
9677 static void
9678 add_qp_mutex (mask)
9679 valueT mask;
9680 {
9681 if (mask & 0x1)
9682 abort ();
9683
9684 if (qp_mutexeslen == qp_mutexestotlen)
9685 {
9686 qp_mutexestotlen += 20;
9687 qp_mutexes = (struct qpmutex *)
9688 xrealloc ((void *) qp_mutexes,
9689 qp_mutexestotlen * sizeof (struct qpmutex));
9690 }
9691 if (md.debug_dv)
9692 {
9693 fprintf (stderr, " Registering mutex on");
9694 print_prmask (mask);
9695 fprintf (stderr, "\n");
9696 }
9697 qp_mutexes[qp_mutexeslen].path = md.path;
9698 qp_mutexes[qp_mutexeslen++].prmask = mask;
9699 }
9700
9701 static int
9702 has_suffix_p (name, suffix)
9703 const char *name;
9704 const char *suffix;
9705 {
9706 size_t namelen = strlen (name);
9707 size_t sufflen = strlen (suffix);
9708
9709 if (namelen <= sufflen)
9710 return 0;
9711 return strcmp (name + namelen - sufflen, suffix) == 0;
9712 }
9713
9714 static void
9715 clear_register_values ()
9716 {
9717 int i;
9718 if (md.debug_dv)
9719 fprintf (stderr, " Clearing register values\n");
9720 for (i = 1; i < NELEMS (gr_values); i++)
9721 gr_values[i].known = 0;
9722 }
9723
9724 /* Keep track of register values/changes which affect DV tracking.
9725
9726 optimization note: should add a flag to classes of insns where otherwise we
9727 have to examine a group of strings to identify them. */
9728
9729 static void
9730 note_register_values (idesc)
9731 struct ia64_opcode *idesc;
9732 {
9733 valueT qp_changemask = 0;
9734 int i;
9735
9736 /* Invalidate values for registers being written to. */
9737 for (i = 0; i < idesc->num_outputs; i++)
9738 {
9739 if (idesc->operands[i] == IA64_OPND_R1
9740 || idesc->operands[i] == IA64_OPND_R2
9741 || idesc->operands[i] == IA64_OPND_R3)
9742 {
9743 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9744 if (regno > 0 && regno < NELEMS (gr_values))
9745 gr_values[regno].known = 0;
9746 }
9747 else if (idesc->operands[i] == IA64_OPND_R3_2)
9748 {
9749 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9750 if (regno > 0 && regno < 4)
9751 gr_values[regno].known = 0;
9752 }
9753 else if (idesc->operands[i] == IA64_OPND_P1
9754 || idesc->operands[i] == IA64_OPND_P2)
9755 {
9756 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9757 qp_changemask |= (valueT) 1 << regno;
9758 }
9759 else if (idesc->operands[i] == IA64_OPND_PR)
9760 {
9761 if (idesc->operands[2] & (valueT) 0x10000)
9762 qp_changemask = ~(valueT) 0x1FFFF | idesc->operands[2];
9763 else
9764 qp_changemask = idesc->operands[2];
9765 break;
9766 }
9767 else if (idesc->operands[i] == IA64_OPND_PR_ROT)
9768 {
9769 if (idesc->operands[1] & ((valueT) 1 << 43))
9770 qp_changemask = -((valueT) 1 << 44) | idesc->operands[1];
9771 else
9772 qp_changemask = idesc->operands[1];
9773 qp_changemask &= ~(valueT) 0xFFFF;
9774 break;
9775 }
9776 }
9777
9778 /* Always clear qp branch flags on any PR change. */
9779 /* FIXME there may be exceptions for certain compares. */
9780 clear_qp_branch_flag (qp_changemask);
9781
9782 /* Invalidate rotating registers on insns which affect RRBs in CFM. */
9783 if (idesc->flags & IA64_OPCODE_MOD_RRBS)
9784 {
9785 qp_changemask |= ~(valueT) 0xFFFF;
9786 if (strcmp (idesc->name, "clrrrb.pr") != 0)
9787 {
9788 for (i = 32; i < 32 + md.rot.num_regs; i++)
9789 gr_values[i].known = 0;
9790 }
9791 clear_qp_mutex (qp_changemask);
9792 clear_qp_implies (qp_changemask, qp_changemask);
9793 }
9794 /* After a call, all register values are undefined, except those marked
9795 as "safe". */
9796 else if (strncmp (idesc->name, "br.call", 6) == 0
9797 || strncmp (idesc->name, "brl.call", 7) == 0)
9798 {
9799 /* FIXME keep GR values which are marked as "safe_across_calls" */
9800 clear_register_values ();
9801 clear_qp_mutex (~qp_safe_across_calls);
9802 clear_qp_implies (~qp_safe_across_calls, ~qp_safe_across_calls);
9803 clear_qp_branch_flag (~qp_safe_across_calls);
9804 }
9805 else if (is_interruption_or_rfi (idesc)
9806 || is_taken_branch (idesc))
9807 {
9808 clear_register_values ();
9809 clear_qp_mutex (~(valueT) 0);
9810 clear_qp_implies (~(valueT) 0, ~(valueT) 0);
9811 }
9812 /* Look for mutex and implies relations. */
9813 else if ((idesc->operands[0] == IA64_OPND_P1
9814 || idesc->operands[0] == IA64_OPND_P2)
9815 && (idesc->operands[1] == IA64_OPND_P1
9816 || idesc->operands[1] == IA64_OPND_P2))
9817 {
9818 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9819 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9820 valueT p1mask = (p1 != 0) ? (valueT) 1 << p1 : 0;
9821 valueT p2mask = (p2 != 0) ? (valueT) 1 << p2 : 0;
9822
9823 /* If both PRs are PR0, we can't really do anything. */
9824 if (p1 == 0 && p2 == 0)
9825 {
9826 if (md.debug_dv)
9827 fprintf (stderr, " Ignoring PRs due to inclusion of p0\n");
9828 }
9829 /* In general, clear mutexes and implies which include P1 or P2,
9830 with the following exceptions. */
9831 else if (has_suffix_p (idesc->name, ".or.andcm")
9832 || has_suffix_p (idesc->name, ".and.orcm"))
9833 {
9834 clear_qp_implies (p2mask, p1mask);
9835 }
9836 else if (has_suffix_p (idesc->name, ".andcm")
9837 || has_suffix_p (idesc->name, ".and"))
9838 {
9839 clear_qp_implies (0, p1mask | p2mask);
9840 }
9841 else if (has_suffix_p (idesc->name, ".orcm")
9842 || has_suffix_p (idesc->name, ".or"))
9843 {
9844 clear_qp_mutex (p1mask | p2mask);
9845 clear_qp_implies (p1mask | p2mask, 0);
9846 }
9847 else
9848 {
9849 int added = 0;
9850
9851 clear_qp_implies (p1mask | p2mask, p1mask | p2mask);
9852
9853 /* If one of the PRs is PR0, we call clear_qp_mutex. */
9854 if (p1 == 0 || p2 == 0)
9855 clear_qp_mutex (p1mask | p2mask);
9856 else
9857 added = update_qp_mutex (p1mask | p2mask);
9858
9859 if (CURR_SLOT.qp_regno == 0
9860 || has_suffix_p (idesc->name, ".unc"))
9861 {
9862 if (added == 0 && p1 && p2)
9863 add_qp_mutex (p1mask | p2mask);
9864 if (CURR_SLOT.qp_regno != 0)
9865 {
9866 if (p1)
9867 add_qp_imply (p1, CURR_SLOT.qp_regno);
9868 if (p2)
9869 add_qp_imply (p2, CURR_SLOT.qp_regno);
9870 }
9871 }
9872 }
9873 }
9874 /* Look for mov imm insns into GRs. */
9875 else if (idesc->operands[0] == IA64_OPND_R1
9876 && (idesc->operands[1] == IA64_OPND_IMM22
9877 || idesc->operands[1] == IA64_OPND_IMMU64)
9878 && CURR_SLOT.opnd[1].X_op == O_constant
9879 && (strcmp (idesc->name, "mov") == 0
9880 || strcmp (idesc->name, "movl") == 0))
9881 {
9882 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
9883 if (regno > 0 && regno < NELEMS (gr_values))
9884 {
9885 gr_values[regno].known = 1;
9886 gr_values[regno].value = CURR_SLOT.opnd[1].X_add_number;
9887 gr_values[regno].path = md.path;
9888 if (md.debug_dv)
9889 {
9890 fprintf (stderr, " Know gr%d = ", regno);
9891 fprintf_vma (stderr, gr_values[regno].value);
9892 fputs ("\n", stderr);
9893 }
9894 }
9895 }
9896 /* Look for dep.z imm insns. */
9897 else if (idesc->operands[0] == IA64_OPND_R1
9898 && idesc->operands[1] == IA64_OPND_IMM8
9899 && strcmp (idesc->name, "dep.z") == 0)
9900 {
9901 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
9902 if (regno > 0 && regno < NELEMS (gr_values))
9903 {
9904 valueT value = CURR_SLOT.opnd[1].X_add_number;
9905
9906 if (CURR_SLOT.opnd[3].X_add_number < 64)
9907 value &= ((valueT)1 << CURR_SLOT.opnd[3].X_add_number) - 1;
9908 value <<= CURR_SLOT.opnd[2].X_add_number;
9909 gr_values[regno].known = 1;
9910 gr_values[regno].value = value;
9911 gr_values[regno].path = md.path;
9912 if (md.debug_dv)
9913 {
9914 fprintf (stderr, " Know gr%d = ", regno);
9915 fprintf_vma (stderr, gr_values[regno].value);
9916 fputs ("\n", stderr);
9917 }
9918 }
9919 }
9920 else
9921 {
9922 clear_qp_mutex (qp_changemask);
9923 clear_qp_implies (qp_changemask, qp_changemask);
9924 }
9925 }
9926
9927 /* Return whether the given predicate registers are currently mutex. */
9928
9929 static int
9930 qp_mutex (p1, p2, path)
9931 int p1;
9932 int p2;
9933 int path;
9934 {
9935 int i;
9936 valueT mask;
9937
9938 if (p1 != p2)
9939 {
9940 mask = ((valueT) 1 << p1) | (valueT) 1 << p2;
9941 for (i = 0; i < qp_mutexeslen; i++)
9942 {
9943 if (qp_mutexes[i].path >= path
9944 && (qp_mutexes[i].prmask & mask) == mask)
9945 return 1;
9946 }
9947 }
9948 return 0;
9949 }
9950
9951 /* Return whether the given resource is in the given insn's list of chks
9952 Return 1 if the conflict is absolutely determined, 2 if it's a potential
9953 conflict. */
9954
9955 static int
9956 resources_match (rs, idesc, note, qp_regno, path)
9957 struct rsrc *rs;
9958 struct ia64_opcode *idesc;
9959 int note;
9960 int qp_regno;
9961 int path;
9962 {
9963 struct rsrc specs[MAX_SPECS];
9964 int count;
9965
9966 /* If the marked resource's qp_regno and the given qp_regno are mutex,
9967 we don't need to check. One exception is note 11, which indicates that
9968 target predicates are written regardless of PR[qp]. */
9969 if (qp_mutex (rs->qp_regno, qp_regno, path)
9970 && note != 11)
9971 return 0;
9972
9973 count = specify_resource (rs->dependency, idesc, DV_CHK, specs, note, path);
9974 while (count-- > 0)
9975 {
9976 /* UNAT checking is a bit more specific than other resources */
9977 if (rs->dependency->specifier == IA64_RS_AR_UNAT
9978 && specs[count].mem_offset.hint
9979 && rs->mem_offset.hint)
9980 {
9981 if (rs->mem_offset.base == specs[count].mem_offset.base)
9982 {
9983 if (((rs->mem_offset.offset >> 3) & 0x3F) ==
9984 ((specs[count].mem_offset.offset >> 3) & 0x3F))
9985 return 1;
9986 else
9987 continue;
9988 }
9989 }
9990
9991 /* Skip apparent PR write conflicts where both writes are an AND or both
9992 writes are an OR. */
9993 if (rs->dependency->specifier == IA64_RS_PR
9994 || rs->dependency->specifier == IA64_RS_PRr
9995 || rs->dependency->specifier == IA64_RS_PR63)
9996 {
9997 if (specs[count].cmp_type != CMP_NONE
9998 && specs[count].cmp_type == rs->cmp_type)
9999 {
10000 if (md.debug_dv)
10001 fprintf (stderr, " %s on parallel compare allowed (PR%d)\n",
10002 dv_mode[rs->dependency->mode],
10003 rs->dependency->specifier != IA64_RS_PR63 ?
10004 specs[count].index : 63);
10005 continue;
10006 }
10007 if (md.debug_dv)
10008 fprintf (stderr,
10009 " %s on parallel compare conflict %s vs %s on PR%d\n",
10010 dv_mode[rs->dependency->mode],
10011 dv_cmp_type[rs->cmp_type],
10012 dv_cmp_type[specs[count].cmp_type],
10013 rs->dependency->specifier != IA64_RS_PR63 ?
10014 specs[count].index : 63);
10015
10016 }
10017
10018 /* If either resource is not specific, conservatively assume a conflict
10019 */
10020 if (!specs[count].specific || !rs->specific)
10021 return 2;
10022 else if (specs[count].index == rs->index)
10023 return 1;
10024 }
10025
10026 return 0;
10027 }
10028
10029 /* Indicate an instruction group break; if INSERT_STOP is non-zero, then
10030 insert a stop to create the break. Update all resource dependencies
10031 appropriately. If QP_REGNO is non-zero, only apply the break to resources
10032 which use the same QP_REGNO and have the link_to_qp_branch flag set.
10033 If SAVE_CURRENT is non-zero, don't affect resources marked by the current
10034 instruction. */
10035
10036 static void
10037 insn_group_break (insert_stop, qp_regno, save_current)
10038 int insert_stop;
10039 int qp_regno;
10040 int save_current;
10041 {
10042 int i;
10043
10044 if (insert_stop && md.num_slots_in_use > 0)
10045 PREV_SLOT.end_of_insn_group = 1;
10046
10047 if (md.debug_dv)
10048 {
10049 fprintf (stderr, " Insn group break%s",
10050 (insert_stop ? " (w/stop)" : ""));
10051 if (qp_regno != 0)
10052 fprintf (stderr, " effective for QP=%d", qp_regno);
10053 fprintf (stderr, "\n");
10054 }
10055
10056 i = 0;
10057 while (i < regdepslen)
10058 {
10059 const struct ia64_dependency *dep = regdeps[i].dependency;
10060
10061 if (qp_regno != 0
10062 && regdeps[i].qp_regno != qp_regno)
10063 {
10064 ++i;
10065 continue;
10066 }
10067
10068 if (save_current
10069 && CURR_SLOT.src_file == regdeps[i].file
10070 && CURR_SLOT.src_line == regdeps[i].line)
10071 {
10072 ++i;
10073 continue;
10074 }
10075
10076 /* clear dependencies which are automatically cleared by a stop, or
10077 those that have reached the appropriate state of insn serialization */
10078 if (dep->semantics == IA64_DVS_IMPLIED
10079 || dep->semantics == IA64_DVS_IMPLIEDF
10080 || regdeps[i].insn_srlz == STATE_SRLZ)
10081 {
10082 print_dependency ("Removing", i);
10083 regdeps[i] = regdeps[--regdepslen];
10084 }
10085 else
10086 {
10087 if (dep->semantics == IA64_DVS_DATA
10088 || dep->semantics == IA64_DVS_INSTR
10089 || dep->semantics == IA64_DVS_SPECIFIC)
10090 {
10091 if (regdeps[i].insn_srlz == STATE_NONE)
10092 regdeps[i].insn_srlz = STATE_STOP;
10093 if (regdeps[i].data_srlz == STATE_NONE)
10094 regdeps[i].data_srlz = STATE_STOP;
10095 }
10096 ++i;
10097 }
10098 }
10099 }
10100
10101 /* Add the given resource usage spec to the list of active dependencies. */
10102
10103 static void
10104 mark_resource (idesc, dep, spec, depind, path)
10105 struct ia64_opcode *idesc ATTRIBUTE_UNUSED;
10106 const struct ia64_dependency *dep ATTRIBUTE_UNUSED;
10107 struct rsrc *spec;
10108 int depind;
10109 int path;
10110 {
10111 if (regdepslen == regdepstotlen)
10112 {
10113 regdepstotlen += 20;
10114 regdeps = (struct rsrc *)
10115 xrealloc ((void *) regdeps,
10116 regdepstotlen * sizeof (struct rsrc));
10117 }
10118
10119 regdeps[regdepslen] = *spec;
10120 regdeps[regdepslen].depind = depind;
10121 regdeps[regdepslen].path = path;
10122 regdeps[regdepslen].file = CURR_SLOT.src_file;
10123 regdeps[regdepslen].line = CURR_SLOT.src_line;
10124
10125 print_dependency ("Adding", regdepslen);
10126
10127 ++regdepslen;
10128 }
10129
10130 static void
10131 print_dependency (action, depind)
10132 const char *action;
10133 int depind;
10134 {
10135 if (md.debug_dv)
10136 {
10137 fprintf (stderr, " %s %s '%s'",
10138 action, dv_mode[(regdeps[depind].dependency)->mode],
10139 (regdeps[depind].dependency)->name);
10140 if (regdeps[depind].specific && regdeps[depind].index >= 0)
10141 fprintf (stderr, " (%d)", regdeps[depind].index);
10142 if (regdeps[depind].mem_offset.hint)
10143 {
10144 fputs (" ", stderr);
10145 fprintf_vma (stderr, regdeps[depind].mem_offset.base);
10146 fputs ("+", stderr);
10147 fprintf_vma (stderr, regdeps[depind].mem_offset.offset);
10148 }
10149 fprintf (stderr, "\n");
10150 }
10151 }
10152
10153 static void
10154 instruction_serialization ()
10155 {
10156 int i;
10157 if (md.debug_dv)
10158 fprintf (stderr, " Instruction serialization\n");
10159 for (i = 0; i < regdepslen; i++)
10160 if (regdeps[i].insn_srlz == STATE_STOP)
10161 regdeps[i].insn_srlz = STATE_SRLZ;
10162 }
10163
10164 static void
10165 data_serialization ()
10166 {
10167 int i = 0;
10168 if (md.debug_dv)
10169 fprintf (stderr, " Data serialization\n");
10170 while (i < regdepslen)
10171 {
10172 if (regdeps[i].data_srlz == STATE_STOP
10173 /* Note: as of 991210, all "other" dependencies are cleared by a
10174 data serialization. This might change with new tables */
10175 || (regdeps[i].dependency)->semantics == IA64_DVS_OTHER)
10176 {
10177 print_dependency ("Removing", i);
10178 regdeps[i] = regdeps[--regdepslen];
10179 }
10180 else
10181 ++i;
10182 }
10183 }
10184
10185 /* Insert stops and serializations as needed to avoid DVs. */
10186
10187 static void
10188 remove_marked_resource (rs)
10189 struct rsrc *rs;
10190 {
10191 switch (rs->dependency->semantics)
10192 {
10193 case IA64_DVS_SPECIFIC:
10194 if (md.debug_dv)
10195 fprintf (stderr, "Implementation-specific, assume worst case...\n");
10196 /* ...fall through... */
10197 case IA64_DVS_INSTR:
10198 if (md.debug_dv)
10199 fprintf (stderr, "Inserting instr serialization\n");
10200 if (rs->insn_srlz < STATE_STOP)
10201 insn_group_break (1, 0, 0);
10202 if (rs->insn_srlz < STATE_SRLZ)
10203 {
10204 struct slot oldslot = CURR_SLOT;
10205 /* Manually jam a srlz.i insn into the stream */
10206 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10207 CURR_SLOT.user_template = -1;
10208 CURR_SLOT.idesc = ia64_find_opcode ("srlz.i");
10209 instruction_serialization ();
10210 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10211 if (++md.num_slots_in_use >= NUM_SLOTS)
10212 emit_one_bundle ();
10213 CURR_SLOT = oldslot;
10214 }
10215 insn_group_break (1, 0, 0);
10216 break;
10217 case IA64_DVS_OTHER: /* as of rev2 (991220) of the DV tables, all
10218 "other" types of DV are eliminated
10219 by a data serialization */
10220 case IA64_DVS_DATA:
10221 if (md.debug_dv)
10222 fprintf (stderr, "Inserting data serialization\n");
10223 if (rs->data_srlz < STATE_STOP)
10224 insn_group_break (1, 0, 0);
10225 {
10226 struct slot oldslot = CURR_SLOT;
10227 /* Manually jam a srlz.d insn into the stream */
10228 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10229 CURR_SLOT.user_template = -1;
10230 CURR_SLOT.idesc = ia64_find_opcode ("srlz.d");
10231 data_serialization ();
10232 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10233 if (++md.num_slots_in_use >= NUM_SLOTS)
10234 emit_one_bundle ();
10235 CURR_SLOT = oldslot;
10236 }
10237 break;
10238 case IA64_DVS_IMPLIED:
10239 case IA64_DVS_IMPLIEDF:
10240 if (md.debug_dv)
10241 fprintf (stderr, "Inserting stop\n");
10242 insn_group_break (1, 0, 0);
10243 break;
10244 default:
10245 break;
10246 }
10247 }
10248
10249 /* Check the resources used by the given opcode against the current dependency
10250 list.
10251
10252 The check is run once for each execution path encountered. In this case,
10253 a unique execution path is the sequence of instructions following a code
10254 entry point, e.g. the following has three execution paths, one starting
10255 at L0, one at L1, and one at L2.
10256
10257 L0: nop
10258 L1: add
10259 L2: add
10260 br.ret
10261 */
10262
10263 static void
10264 check_dependencies (idesc)
10265 struct ia64_opcode *idesc;
10266 {
10267 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10268 int path;
10269 int i;
10270
10271 /* Note that the number of marked resources may change within the
10272 loop if in auto mode. */
10273 i = 0;
10274 while (i < regdepslen)
10275 {
10276 struct rsrc *rs = &regdeps[i];
10277 const struct ia64_dependency *dep = rs->dependency;
10278 int chkind;
10279 int note;
10280 int start_over = 0;
10281
10282 if (dep->semantics == IA64_DVS_NONE
10283 || (chkind = depends_on (rs->depind, idesc)) == -1)
10284 {
10285 ++i;
10286 continue;
10287 }
10288
10289 note = NOTE (opdeps->chks[chkind]);
10290
10291 /* Check this resource against each execution path seen thus far. */
10292 for (path = 0; path <= md.path; path++)
10293 {
10294 int matchtype;
10295
10296 /* If the dependency wasn't on the path being checked, ignore it. */
10297 if (rs->path < path)
10298 continue;
10299
10300 /* If the QP for this insn implies a QP which has branched, don't
10301 bother checking. Ed. NOTE: I don't think this check is terribly
10302 useful; what's the point of generating code which will only be
10303 reached if its QP is zero?
10304 This code was specifically inserted to handle the following code,
10305 based on notes from Intel's DV checking code, where p1 implies p2.
10306
10307 mov r4 = 2
10308 (p2) br.cond L
10309 (p1) mov r4 = 7
10310 */
10311 if (CURR_SLOT.qp_regno != 0)
10312 {
10313 int skip = 0;
10314 int implies;
10315 for (implies = 0; implies < qp_implieslen; implies++)
10316 {
10317 if (qp_implies[implies].path >= path
10318 && qp_implies[implies].p1 == CURR_SLOT.qp_regno
10319 && qp_implies[implies].p2_branched)
10320 {
10321 skip = 1;
10322 break;
10323 }
10324 }
10325 if (skip)
10326 continue;
10327 }
10328
10329 if ((matchtype = resources_match (rs, idesc, note,
10330 CURR_SLOT.qp_regno, path)) != 0)
10331 {
10332 char msg[1024];
10333 char pathmsg[256] = "";
10334 char indexmsg[256] = "";
10335 int certain = (matchtype == 1 && CURR_SLOT.qp_regno == 0);
10336
10337 if (path != 0)
10338 sprintf (pathmsg, " when entry is at label '%s'",
10339 md.entry_labels[path - 1]);
10340 if (matchtype == 1 && rs->index >= 0)
10341 sprintf (indexmsg, ", specific resource number is %d",
10342 rs->index);
10343 sprintf (msg, "Use of '%s' %s %s dependency '%s' (%s)%s%s",
10344 idesc->name,
10345 (certain ? "violates" : "may violate"),
10346 dv_mode[dep->mode], dep->name,
10347 dv_sem[dep->semantics],
10348 pathmsg, indexmsg);
10349
10350 if (md.explicit_mode)
10351 {
10352 as_warn ("%s", msg);
10353 if (path < md.path)
10354 as_warn (_("Only the first path encountering the conflict "
10355 "is reported"));
10356 as_warn_where (rs->file, rs->line,
10357 _("This is the location of the "
10358 "conflicting usage"));
10359 /* Don't bother checking other paths, to avoid duplicating
10360 the same warning */
10361 break;
10362 }
10363 else
10364 {
10365 if (md.debug_dv)
10366 fprintf (stderr, "%s @ %s:%d\n", msg, rs->file, rs->line);
10367
10368 remove_marked_resource (rs);
10369
10370 /* since the set of dependencies has changed, start over */
10371 /* FIXME -- since we're removing dvs as we go, we
10372 probably don't really need to start over... */
10373 start_over = 1;
10374 break;
10375 }
10376 }
10377 }
10378 if (start_over)
10379 i = 0;
10380 else
10381 ++i;
10382 }
10383 }
10384
10385 /* Register new dependencies based on the given opcode. */
10386
10387 static void
10388 mark_resources (idesc)
10389 struct ia64_opcode *idesc;
10390 {
10391 int i;
10392 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10393 int add_only_qp_reads = 0;
10394
10395 /* A conditional branch only uses its resources if it is taken; if it is
10396 taken, we stop following that path. The other branch types effectively
10397 *always* write their resources. If it's not taken, register only QP
10398 reads. */
10399 if (is_conditional_branch (idesc) || is_interruption_or_rfi (idesc))
10400 {
10401 add_only_qp_reads = 1;
10402 }
10403
10404 if (md.debug_dv)
10405 fprintf (stderr, "Registering '%s' resource usage\n", idesc->name);
10406
10407 for (i = 0; i < opdeps->nregs; i++)
10408 {
10409 const struct ia64_dependency *dep;
10410 struct rsrc specs[MAX_SPECS];
10411 int note;
10412 int path;
10413 int count;
10414
10415 dep = ia64_find_dependency (opdeps->regs[i]);
10416 note = NOTE (opdeps->regs[i]);
10417
10418 if (add_only_qp_reads
10419 && !(dep->mode == IA64_DV_WAR
10420 && (dep->specifier == IA64_RS_PR
10421 || dep->specifier == IA64_RS_PRr
10422 || dep->specifier == IA64_RS_PR63)))
10423 continue;
10424
10425 count = specify_resource (dep, idesc, DV_REG, specs, note, md.path);
10426
10427 while (count-- > 0)
10428 {
10429 mark_resource (idesc, dep, &specs[count],
10430 DEP (opdeps->regs[i]), md.path);
10431 }
10432
10433 /* The execution path may affect register values, which may in turn
10434 affect which indirect-access resources are accessed. */
10435 switch (dep->specifier)
10436 {
10437 default:
10438 break;
10439 case IA64_RS_CPUID:
10440 case IA64_RS_DBR:
10441 case IA64_RS_IBR:
10442 case IA64_RS_MSR:
10443 case IA64_RS_PKR:
10444 case IA64_RS_PMC:
10445 case IA64_RS_PMD:
10446 case IA64_RS_RR:
10447 for (path = 0; path < md.path; path++)
10448 {
10449 count = specify_resource (dep, idesc, DV_REG, specs, note, path);
10450 while (count-- > 0)
10451 mark_resource (idesc, dep, &specs[count],
10452 DEP (opdeps->regs[i]), path);
10453 }
10454 break;
10455 }
10456 }
10457 }
10458
10459 /* Remove dependencies when they no longer apply. */
10460
10461 static void
10462 update_dependencies (idesc)
10463 struct ia64_opcode *idesc;
10464 {
10465 int i;
10466
10467 if (strcmp (idesc->name, "srlz.i") == 0)
10468 {
10469 instruction_serialization ();
10470 }
10471 else if (strcmp (idesc->name, "srlz.d") == 0)
10472 {
10473 data_serialization ();
10474 }
10475 else if (is_interruption_or_rfi (idesc)
10476 || is_taken_branch (idesc))
10477 {
10478 /* Although technically the taken branch doesn't clear dependencies
10479 which require a srlz.[id], we don't follow the branch; the next
10480 instruction is assumed to start with a clean slate. */
10481 regdepslen = 0;
10482 md.path = 0;
10483 }
10484 else if (is_conditional_branch (idesc)
10485 && CURR_SLOT.qp_regno != 0)
10486 {
10487 int is_call = strstr (idesc->name, ".call") != NULL;
10488
10489 for (i = 0; i < qp_implieslen; i++)
10490 {
10491 /* If the conditional branch's predicate is implied by the predicate
10492 in an existing dependency, remove that dependency. */
10493 if (qp_implies[i].p2 == CURR_SLOT.qp_regno)
10494 {
10495 int depind = 0;
10496 /* Note that this implied predicate takes a branch so that if
10497 a later insn generates a DV but its predicate implies this
10498 one, we can avoid the false DV warning. */
10499 qp_implies[i].p2_branched = 1;
10500 while (depind < regdepslen)
10501 {
10502 if (regdeps[depind].qp_regno == qp_implies[i].p1)
10503 {
10504 print_dependency ("Removing", depind);
10505 regdeps[depind] = regdeps[--regdepslen];
10506 }
10507 else
10508 ++depind;
10509 }
10510 }
10511 }
10512 /* Any marked resources which have this same predicate should be
10513 cleared, provided that the QP hasn't been modified between the
10514 marking instruction and the branch. */
10515 if (is_call)
10516 {
10517 insn_group_break (0, CURR_SLOT.qp_regno, 1);
10518 }
10519 else
10520 {
10521 i = 0;
10522 while (i < regdepslen)
10523 {
10524 if (regdeps[i].qp_regno == CURR_SLOT.qp_regno
10525 && regdeps[i].link_to_qp_branch
10526 && (regdeps[i].file != CURR_SLOT.src_file
10527 || regdeps[i].line != CURR_SLOT.src_line))
10528 {
10529 /* Treat like a taken branch */
10530 print_dependency ("Removing", i);
10531 regdeps[i] = regdeps[--regdepslen];
10532 }
10533 else
10534 ++i;
10535 }
10536 }
10537 }
10538 }
10539
10540 /* Examine the current instruction for dependency violations. */
10541
10542 static int
10543 check_dv (idesc)
10544 struct ia64_opcode *idesc;
10545 {
10546 if (md.debug_dv)
10547 {
10548 fprintf (stderr, "Checking %s for violations (line %d, %d/%d)\n",
10549 idesc->name, CURR_SLOT.src_line,
10550 idesc->dependencies->nchks,
10551 idesc->dependencies->nregs);
10552 }
10553
10554 /* Look through the list of currently marked resources; if the current
10555 instruction has the dependency in its chks list which uses that resource,
10556 check against the specific resources used. */
10557 check_dependencies (idesc);
10558
10559 /* Look up the instruction's regdeps (RAW writes, WAW writes, and WAR reads),
10560 then add them to the list of marked resources. */
10561 mark_resources (idesc);
10562
10563 /* There are several types of dependency semantics, and each has its own
10564 requirements for being cleared
10565
10566 Instruction serialization (insns separated by interruption, rfi, or
10567 writer + srlz.i + reader, all in separate groups) clears DVS_INSTR.
10568
10569 Data serialization (instruction serialization, or writer + srlz.d +
10570 reader, where writer and srlz.d are in separate groups) clears
10571 DVS_DATA. (This also clears DVS_OTHER, but that is not guaranteed to
10572 always be the case).
10573
10574 Instruction group break (groups separated by stop, taken branch,
10575 interruption or rfi) clears DVS_IMPLIED and DVS_IMPLIEDF.
10576 */
10577 update_dependencies (idesc);
10578
10579 /* Sometimes, knowing a register value allows us to avoid giving a false DV
10580 warning. Keep track of as many as possible that are useful. */
10581 note_register_values (idesc);
10582
10583 /* We don't need or want this anymore. */
10584 md.mem_offset.hint = 0;
10585
10586 return 0;
10587 }
10588
10589 /* Translate one line of assembly. Pseudo ops and labels do not show
10590 here. */
10591 void
10592 md_assemble (str)
10593 char *str;
10594 {
10595 char *saved_input_line_pointer, *mnemonic;
10596 const struct pseudo_opcode *pdesc;
10597 struct ia64_opcode *idesc;
10598 unsigned char qp_regno;
10599 unsigned int flags;
10600 int ch;
10601
10602 saved_input_line_pointer = input_line_pointer;
10603 input_line_pointer = str;
10604
10605 /* extract the opcode (mnemonic): */
10606
10607 mnemonic = input_line_pointer;
10608 ch = get_symbol_end ();
10609 pdesc = (struct pseudo_opcode *) hash_find (md.pseudo_hash, mnemonic);
10610 if (pdesc)
10611 {
10612 *input_line_pointer = ch;
10613 (*pdesc->handler) (pdesc->arg);
10614 goto done;
10615 }
10616
10617 /* Find the instruction descriptor matching the arguments. */
10618
10619 idesc = ia64_find_opcode (mnemonic);
10620 *input_line_pointer = ch;
10621 if (!idesc)
10622 {
10623 as_bad ("Unknown opcode `%s'", mnemonic);
10624 goto done;
10625 }
10626
10627 idesc = parse_operands (idesc);
10628 if (!idesc)
10629 goto done;
10630
10631 /* Handle the dynamic ops we can handle now: */
10632 if (idesc->type == IA64_TYPE_DYN)
10633 {
10634 if (strcmp (idesc->name, "add") == 0)
10635 {
10636 if (CURR_SLOT.opnd[2].X_op == O_register
10637 && CURR_SLOT.opnd[2].X_add_number < 4)
10638 mnemonic = "addl";
10639 else
10640 mnemonic = "adds";
10641 ia64_free_opcode (idesc);
10642 idesc = ia64_find_opcode (mnemonic);
10643 }
10644 else if (strcmp (idesc->name, "mov") == 0)
10645 {
10646 enum ia64_opnd opnd1, opnd2;
10647 int rop;
10648
10649 opnd1 = idesc->operands[0];
10650 opnd2 = idesc->operands[1];
10651 if (opnd1 == IA64_OPND_AR3)
10652 rop = 0;
10653 else if (opnd2 == IA64_OPND_AR3)
10654 rop = 1;
10655 else
10656 abort ();
10657 if (CURR_SLOT.opnd[rop].X_op == O_register)
10658 {
10659 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10660 mnemonic = "mov.i";
10661 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10662 mnemonic = "mov.m";
10663 else
10664 rop = -1;
10665 }
10666 else
10667 abort ();
10668 if (rop >= 0)
10669 {
10670 ia64_free_opcode (idesc);
10671 idesc = ia64_find_opcode (mnemonic);
10672 while (idesc != NULL
10673 && (idesc->operands[0] != opnd1
10674 || idesc->operands[1] != opnd2))
10675 idesc = get_next_opcode (idesc);
10676 }
10677 }
10678 }
10679 else if (strcmp (idesc->name, "mov.i") == 0
10680 || strcmp (idesc->name, "mov.m") == 0)
10681 {
10682 enum ia64_opnd opnd1, opnd2;
10683 int rop;
10684
10685 opnd1 = idesc->operands[0];
10686 opnd2 = idesc->operands[1];
10687 if (opnd1 == IA64_OPND_AR3)
10688 rop = 0;
10689 else if (opnd2 == IA64_OPND_AR3)
10690 rop = 1;
10691 else
10692 abort ();
10693 if (CURR_SLOT.opnd[rop].X_op == O_register)
10694 {
10695 char unit = 'a';
10696 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10697 unit = 'i';
10698 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10699 unit = 'm';
10700 if (unit != 'a' && unit != idesc->name [4])
10701 as_bad ("AR %d can only be accessed by %c-unit",
10702 (int) (CURR_SLOT.opnd[rop].X_add_number - REG_AR),
10703 TOUPPER (unit));
10704 }
10705 }
10706 else if (strcmp (idesc->name, "hint.b") == 0)
10707 {
10708 switch (md.hint_b)
10709 {
10710 case hint_b_ok:
10711 break;
10712 case hint_b_warning:
10713 as_warn ("hint.b may be treated as nop");
10714 break;
10715 case hint_b_error:
10716 as_bad ("hint.b shouldn't be used");
10717 break;
10718 }
10719 }
10720
10721 qp_regno = 0;
10722 if (md.qp.X_op == O_register)
10723 {
10724 qp_regno = md.qp.X_add_number - REG_P;
10725 md.qp.X_op = O_absent;
10726 }
10727
10728 flags = idesc->flags;
10729
10730 if ((flags & IA64_OPCODE_FIRST) != 0)
10731 {
10732 /* The alignment frag has to end with a stop bit only if the
10733 next instruction after the alignment directive has to be
10734 the first instruction in an instruction group. */
10735 if (align_frag)
10736 {
10737 while (align_frag->fr_type != rs_align_code)
10738 {
10739 align_frag = align_frag->fr_next;
10740 if (!align_frag)
10741 break;
10742 }
10743 /* align_frag can be NULL if there are directives in
10744 between. */
10745 if (align_frag && align_frag->fr_next == frag_now)
10746 align_frag->tc_frag_data = 1;
10747 }
10748
10749 insn_group_break (1, 0, 0);
10750 }
10751 align_frag = NULL;
10752
10753 if ((flags & IA64_OPCODE_NO_PRED) != 0 && qp_regno != 0)
10754 {
10755 as_bad ("`%s' cannot be predicated", idesc->name);
10756 goto done;
10757 }
10758
10759 /* Build the instruction. */
10760 CURR_SLOT.qp_regno = qp_regno;
10761 CURR_SLOT.idesc = idesc;
10762 as_where (&CURR_SLOT.src_file, &CURR_SLOT.src_line);
10763 dwarf2_where (&CURR_SLOT.debug_line);
10764
10765 /* Add unwind entry, if there is one. */
10766 if (unwind.current_entry)
10767 {
10768 CURR_SLOT.unwind_record = unwind.current_entry;
10769 unwind.current_entry = NULL;
10770 }
10771 if (unwind.proc_start && S_IS_DEFINED (unwind.proc_start))
10772 unwind.insn = 1;
10773
10774 /* Check for dependency violations. */
10775 if (md.detect_dv)
10776 check_dv (idesc);
10777
10778 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10779 if (++md.num_slots_in_use >= NUM_SLOTS)
10780 emit_one_bundle ();
10781
10782 if ((flags & IA64_OPCODE_LAST) != 0)
10783 insn_group_break (1, 0, 0);
10784
10785 md.last_text_seg = now_seg;
10786
10787 done:
10788 input_line_pointer = saved_input_line_pointer;
10789 }
10790
10791 /* Called when symbol NAME cannot be found in the symbol table.
10792 Should be used for dynamic valued symbols only. */
10793
10794 symbolS *
10795 md_undefined_symbol (name)
10796 char *name ATTRIBUTE_UNUSED;
10797 {
10798 return 0;
10799 }
10800
10801 /* Called for any expression that can not be recognized. When the
10802 function is called, `input_line_pointer' will point to the start of
10803 the expression. */
10804
10805 void
10806 md_operand (e)
10807 expressionS *e;
10808 {
10809 switch (*input_line_pointer)
10810 {
10811 case '[':
10812 ++input_line_pointer;
10813 expression (e);
10814 if (*input_line_pointer != ']')
10815 {
10816 as_bad ("Closing bracket missing");
10817 goto err;
10818 }
10819 else
10820 {
10821 if (e->X_op != O_register)
10822 as_bad ("Register expected as index");
10823
10824 ++input_line_pointer;
10825 e->X_op = O_index;
10826 }
10827 break;
10828
10829 default:
10830 break;
10831 }
10832 return;
10833
10834 err:
10835 ignore_rest_of_line ();
10836 }
10837
10838 /* Return 1 if it's OK to adjust a reloc by replacing the symbol with
10839 a section symbol plus some offset. For relocs involving @fptr(),
10840 directives we don't want such adjustments since we need to have the
10841 original symbol's name in the reloc. */
10842 int
10843 ia64_fix_adjustable (fix)
10844 fixS *fix;
10845 {
10846 /* Prevent all adjustments to global symbols */
10847 if (S_IS_EXTERNAL (fix->fx_addsy) || S_IS_WEAK (fix->fx_addsy))
10848 return 0;
10849
10850 switch (fix->fx_r_type)
10851 {
10852 case BFD_RELOC_IA64_FPTR64I:
10853 case BFD_RELOC_IA64_FPTR32MSB:
10854 case BFD_RELOC_IA64_FPTR32LSB:
10855 case BFD_RELOC_IA64_FPTR64MSB:
10856 case BFD_RELOC_IA64_FPTR64LSB:
10857 case BFD_RELOC_IA64_LTOFF_FPTR22:
10858 case BFD_RELOC_IA64_LTOFF_FPTR64I:
10859 return 0;
10860 default:
10861 break;
10862 }
10863
10864 return 1;
10865 }
10866
10867 int
10868 ia64_force_relocation (fix)
10869 fixS *fix;
10870 {
10871 switch (fix->fx_r_type)
10872 {
10873 case BFD_RELOC_IA64_FPTR64I:
10874 case BFD_RELOC_IA64_FPTR32MSB:
10875 case BFD_RELOC_IA64_FPTR32LSB:
10876 case BFD_RELOC_IA64_FPTR64MSB:
10877 case BFD_RELOC_IA64_FPTR64LSB:
10878
10879 case BFD_RELOC_IA64_LTOFF22:
10880 case BFD_RELOC_IA64_LTOFF64I:
10881 case BFD_RELOC_IA64_LTOFF_FPTR22:
10882 case BFD_RELOC_IA64_LTOFF_FPTR64I:
10883 case BFD_RELOC_IA64_PLTOFF22:
10884 case BFD_RELOC_IA64_PLTOFF64I:
10885 case BFD_RELOC_IA64_PLTOFF64MSB:
10886 case BFD_RELOC_IA64_PLTOFF64LSB:
10887
10888 case BFD_RELOC_IA64_LTOFF22X:
10889 case BFD_RELOC_IA64_LDXMOV:
10890 return 1;
10891
10892 default:
10893 break;
10894 }
10895
10896 return generic_force_reloc (fix);
10897 }
10898
10899 /* Decide from what point a pc-relative relocation is relative to,
10900 relative to the pc-relative fixup. Er, relatively speaking. */
10901 long
10902 ia64_pcrel_from_section (fix, sec)
10903 fixS *fix;
10904 segT sec;
10905 {
10906 unsigned long off = fix->fx_frag->fr_address + fix->fx_where;
10907
10908 if (bfd_get_section_flags (stdoutput, sec) & SEC_CODE)
10909 off &= ~0xfUL;
10910
10911 return off;
10912 }
10913
10914
10915 /* Used to emit section-relative relocs for the dwarf2 debug data. */
10916 void
10917 ia64_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10918 {
10919 expressionS expr;
10920
10921 expr.X_op = O_pseudo_fixup;
10922 expr.X_op_symbol = pseudo_func[FUNC_SEC_RELATIVE].u.sym;
10923 expr.X_add_number = 0;
10924 expr.X_add_symbol = symbol;
10925 emit_expr (&expr, size);
10926 }
10927
10928 /* This is called whenever some data item (not an instruction) needs a
10929 fixup. We pick the right reloc code depending on the byteorder
10930 currently in effect. */
10931 void
10932 ia64_cons_fix_new (f, where, nbytes, exp)
10933 fragS *f;
10934 int where;
10935 int nbytes;
10936 expressionS *exp;
10937 {
10938 bfd_reloc_code_real_type code;
10939 fixS *fix;
10940
10941 switch (nbytes)
10942 {
10943 /* There are no reloc for 8 and 16 bit quantities, but we allow
10944 them here since they will work fine as long as the expression
10945 is fully defined at the end of the pass over the source file. */
10946 case 1: code = BFD_RELOC_8; break;
10947 case 2: code = BFD_RELOC_16; break;
10948 case 4:
10949 if (target_big_endian)
10950 code = BFD_RELOC_IA64_DIR32MSB;
10951 else
10952 code = BFD_RELOC_IA64_DIR32LSB;
10953 break;
10954
10955 case 8:
10956 /* In 32-bit mode, data8 could mean function descriptors too. */
10957 if (exp->X_op == O_pseudo_fixup
10958 && exp->X_op_symbol
10959 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC
10960 && !(md.flags & EF_IA_64_ABI64))
10961 {
10962 if (target_big_endian)
10963 code = BFD_RELOC_IA64_IPLTMSB;
10964 else
10965 code = BFD_RELOC_IA64_IPLTLSB;
10966 exp->X_op = O_symbol;
10967 break;
10968 }
10969 else
10970 {
10971 if (target_big_endian)
10972 code = BFD_RELOC_IA64_DIR64MSB;
10973 else
10974 code = BFD_RELOC_IA64_DIR64LSB;
10975 break;
10976 }
10977
10978 case 16:
10979 if (exp->X_op == O_pseudo_fixup
10980 && exp->X_op_symbol
10981 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC)
10982 {
10983 if (target_big_endian)
10984 code = BFD_RELOC_IA64_IPLTMSB;
10985 else
10986 code = BFD_RELOC_IA64_IPLTLSB;
10987 exp->X_op = O_symbol;
10988 break;
10989 }
10990 /* FALLTHRU */
10991
10992 default:
10993 as_bad ("Unsupported fixup size %d", nbytes);
10994 ignore_rest_of_line ();
10995 return;
10996 }
10997
10998 if (exp->X_op == O_pseudo_fixup)
10999 {
11000 exp->X_op = O_symbol;
11001 code = ia64_gen_real_reloc_type (exp->X_op_symbol, code);
11002 /* ??? If code unchanged, unsupported. */
11003 }
11004
11005 fix = fix_new_exp (f, where, nbytes, exp, 0, code);
11006 /* We need to store the byte order in effect in case we're going
11007 to fix an 8 or 16 bit relocation (for which there no real
11008 relocs available). See md_apply_fix3(). */
11009 fix->tc_fix_data.bigendian = target_big_endian;
11010 }
11011
11012 /* Return the actual relocation we wish to associate with the pseudo
11013 reloc described by SYM and R_TYPE. SYM should be one of the
11014 symbols in the pseudo_func array, or NULL. */
11015
11016 static bfd_reloc_code_real_type
11017 ia64_gen_real_reloc_type (sym, r_type)
11018 struct symbol *sym;
11019 bfd_reloc_code_real_type r_type;
11020 {
11021 bfd_reloc_code_real_type new = 0;
11022 const char *type = NULL, *suffix = "";
11023
11024 if (sym == NULL)
11025 {
11026 return r_type;
11027 }
11028
11029 switch (S_GET_VALUE (sym))
11030 {
11031 case FUNC_FPTR_RELATIVE:
11032 switch (r_type)
11033 {
11034 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_FPTR64I; break;
11035 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_FPTR32MSB; break;
11036 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_FPTR32LSB; break;
11037 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_FPTR64MSB; break;
11038 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_FPTR64LSB; break;
11039 default: type = "FPTR"; break;
11040 }
11041 break;
11042
11043 case FUNC_GP_RELATIVE:
11044 switch (r_type)
11045 {
11046 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_GPREL22; break;
11047 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_GPREL64I; break;
11048 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_GPREL32MSB; break;
11049 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_GPREL32LSB; break;
11050 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_GPREL64MSB; break;
11051 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_GPREL64LSB; break;
11052 default: type = "GPREL"; break;
11053 }
11054 break;
11055
11056 case FUNC_LT_RELATIVE:
11057 switch (r_type)
11058 {
11059 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22; break;
11060 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_LTOFF64I; break;
11061 default: type = "LTOFF"; break;
11062 }
11063 break;
11064
11065 case FUNC_LT_RELATIVE_X:
11066 switch (r_type)
11067 {
11068 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22X; break;
11069 default: type = "LTOFF"; suffix = "X"; break;
11070 }
11071 break;
11072
11073 case FUNC_PC_RELATIVE:
11074 switch (r_type)
11075 {
11076 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PCREL22; break;
11077 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PCREL64I; break;
11078 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_PCREL32MSB; break;
11079 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_PCREL32LSB; break;
11080 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PCREL64MSB; break;
11081 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PCREL64LSB; break;
11082 default: type = "PCREL"; break;
11083 }
11084 break;
11085
11086 case FUNC_PLT_RELATIVE:
11087 switch (r_type)
11088 {
11089 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PLTOFF22; break;
11090 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PLTOFF64I; break;
11091 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PLTOFF64MSB;break;
11092 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PLTOFF64LSB;break;
11093 default: type = "PLTOFF"; break;
11094 }
11095 break;
11096
11097 case FUNC_SEC_RELATIVE:
11098 switch (r_type)
11099 {
11100 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SECREL32MSB;break;
11101 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SECREL32LSB;break;
11102 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SECREL64MSB;break;
11103 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SECREL64LSB;break;
11104 default: type = "SECREL"; break;
11105 }
11106 break;
11107
11108 case FUNC_SEG_RELATIVE:
11109 switch (r_type)
11110 {
11111 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SEGREL32MSB;break;
11112 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SEGREL32LSB;break;
11113 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SEGREL64MSB;break;
11114 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SEGREL64LSB;break;
11115 default: type = "SEGREL"; break;
11116 }
11117 break;
11118
11119 case FUNC_LTV_RELATIVE:
11120 switch (r_type)
11121 {
11122 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_LTV32MSB; break;
11123 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_LTV32LSB; break;
11124 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_LTV64MSB; break;
11125 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_LTV64LSB; break;
11126 default: type = "LTV"; break;
11127 }
11128 break;
11129
11130 case FUNC_LT_FPTR_RELATIVE:
11131 switch (r_type)
11132 {
11133 case BFD_RELOC_IA64_IMM22:
11134 new = BFD_RELOC_IA64_LTOFF_FPTR22; break;
11135 case BFD_RELOC_IA64_IMM64:
11136 new = BFD_RELOC_IA64_LTOFF_FPTR64I; break;
11137 case BFD_RELOC_IA64_DIR32MSB:
11138 new = BFD_RELOC_IA64_LTOFF_FPTR32MSB; break;
11139 case BFD_RELOC_IA64_DIR32LSB:
11140 new = BFD_RELOC_IA64_LTOFF_FPTR32LSB; break;
11141 case BFD_RELOC_IA64_DIR64MSB:
11142 new = BFD_RELOC_IA64_LTOFF_FPTR64MSB; break;
11143 case BFD_RELOC_IA64_DIR64LSB:
11144 new = BFD_RELOC_IA64_LTOFF_FPTR64LSB; break;
11145 default:
11146 type = "LTOFF_FPTR"; break;
11147 }
11148 break;
11149
11150 case FUNC_TP_RELATIVE:
11151 switch (r_type)
11152 {
11153 case BFD_RELOC_IA64_IMM14: new = BFD_RELOC_IA64_TPREL14; break;
11154 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_TPREL22; break;
11155 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_TPREL64I; break;
11156 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_TPREL64MSB; break;
11157 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_TPREL64LSB; break;
11158 default: type = "TPREL"; break;
11159 }
11160 break;
11161
11162 case FUNC_LT_TP_RELATIVE:
11163 switch (r_type)
11164 {
11165 case BFD_RELOC_IA64_IMM22:
11166 new = BFD_RELOC_IA64_LTOFF_TPREL22; break;
11167 default:
11168 type = "LTOFF_TPREL"; break;
11169 }
11170 break;
11171
11172 case FUNC_DTP_MODULE:
11173 switch (r_type)
11174 {
11175 case BFD_RELOC_IA64_DIR64MSB:
11176 new = BFD_RELOC_IA64_DTPMOD64MSB; break;
11177 case BFD_RELOC_IA64_DIR64LSB:
11178 new = BFD_RELOC_IA64_DTPMOD64LSB; break;
11179 default:
11180 type = "DTPMOD"; break;
11181 }
11182 break;
11183
11184 case FUNC_LT_DTP_MODULE:
11185 switch (r_type)
11186 {
11187 case BFD_RELOC_IA64_IMM22:
11188 new = BFD_RELOC_IA64_LTOFF_DTPMOD22; break;
11189 default:
11190 type = "LTOFF_DTPMOD"; break;
11191 }
11192 break;
11193
11194 case FUNC_DTP_RELATIVE:
11195 switch (r_type)
11196 {
11197 case BFD_RELOC_IA64_DIR32MSB:
11198 new = BFD_RELOC_IA64_DTPREL32MSB; break;
11199 case BFD_RELOC_IA64_DIR32LSB:
11200 new = BFD_RELOC_IA64_DTPREL32LSB; break;
11201 case BFD_RELOC_IA64_DIR64MSB:
11202 new = BFD_RELOC_IA64_DTPREL64MSB; break;
11203 case BFD_RELOC_IA64_DIR64LSB:
11204 new = BFD_RELOC_IA64_DTPREL64LSB; break;
11205 case BFD_RELOC_IA64_IMM14:
11206 new = BFD_RELOC_IA64_DTPREL14; break;
11207 case BFD_RELOC_IA64_IMM22:
11208 new = BFD_RELOC_IA64_DTPREL22; break;
11209 case BFD_RELOC_IA64_IMM64:
11210 new = BFD_RELOC_IA64_DTPREL64I; break;
11211 default:
11212 type = "DTPREL"; break;
11213 }
11214 break;
11215
11216 case FUNC_LT_DTP_RELATIVE:
11217 switch (r_type)
11218 {
11219 case BFD_RELOC_IA64_IMM22:
11220 new = BFD_RELOC_IA64_LTOFF_DTPREL22; break;
11221 default:
11222 type = "LTOFF_DTPREL"; break;
11223 }
11224 break;
11225
11226 case FUNC_IPLT_RELOC:
11227 switch (r_type)
11228 {
11229 case BFD_RELOC_IA64_IPLTMSB: return r_type;
11230 case BFD_RELOC_IA64_IPLTLSB: return r_type;
11231 default: type = "IPLT"; break;
11232 }
11233 break;
11234
11235 default:
11236 abort ();
11237 }
11238
11239 if (new)
11240 return new;
11241 else
11242 {
11243 int width;
11244
11245 if (!type)
11246 abort ();
11247 switch (r_type)
11248 {
11249 case BFD_RELOC_IA64_DIR32MSB: width = 32; suffix = "MSB"; break;
11250 case BFD_RELOC_IA64_DIR32LSB: width = 32; suffix = "LSB"; break;
11251 case BFD_RELOC_IA64_DIR64MSB: width = 64; suffix = "MSB"; break;
11252 case BFD_RELOC_IA64_DIR64LSB: width = 64; suffix = "LSB"; break;
11253 case BFD_RELOC_IA64_IMM14: width = 14; break;
11254 case BFD_RELOC_IA64_IMM22: width = 22; break;
11255 case BFD_RELOC_IA64_IMM64: width = 64; suffix = "I"; break;
11256 default: abort ();
11257 }
11258
11259 /* This should be an error, but since previously there wasn't any
11260 diagnostic here, dont't make it fail because of this for now. */
11261 as_warn ("Cannot express %s%d%s relocation", type, width, suffix);
11262 return r_type;
11263 }
11264 }
11265
11266 /* Here is where generate the appropriate reloc for pseudo relocation
11267 functions. */
11268 void
11269 ia64_validate_fix (fix)
11270 fixS *fix;
11271 {
11272 switch (fix->fx_r_type)
11273 {
11274 case BFD_RELOC_IA64_FPTR64I:
11275 case BFD_RELOC_IA64_FPTR32MSB:
11276 case BFD_RELOC_IA64_FPTR64LSB:
11277 case BFD_RELOC_IA64_LTOFF_FPTR22:
11278 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11279 if (fix->fx_offset != 0)
11280 as_bad_where (fix->fx_file, fix->fx_line,
11281 "No addend allowed in @fptr() relocation");
11282 break;
11283 default:
11284 break;
11285 }
11286 }
11287
11288 static void
11289 fix_insn (fix, odesc, value)
11290 fixS *fix;
11291 const struct ia64_operand *odesc;
11292 valueT value;
11293 {
11294 bfd_vma insn[3], t0, t1, control_bits;
11295 const char *err;
11296 char *fixpos;
11297 long slot;
11298
11299 slot = fix->fx_where & 0x3;
11300 fixpos = fix->fx_frag->fr_literal + (fix->fx_where - slot);
11301
11302 /* Bundles are always in little-endian byte order */
11303 t0 = bfd_getl64 (fixpos);
11304 t1 = bfd_getl64 (fixpos + 8);
11305 control_bits = t0 & 0x1f;
11306 insn[0] = (t0 >> 5) & 0x1ffffffffffLL;
11307 insn[1] = ((t0 >> 46) & 0x3ffff) | ((t1 & 0x7fffff) << 18);
11308 insn[2] = (t1 >> 23) & 0x1ffffffffffLL;
11309
11310 err = NULL;
11311 if (odesc - elf64_ia64_operands == IA64_OPND_IMMU64)
11312 {
11313 insn[1] = (value >> 22) & 0x1ffffffffffLL;
11314 insn[2] |= (((value & 0x7f) << 13)
11315 | (((value >> 7) & 0x1ff) << 27)
11316 | (((value >> 16) & 0x1f) << 22)
11317 | (((value >> 21) & 0x1) << 21)
11318 | (((value >> 63) & 0x1) << 36));
11319 }
11320 else if (odesc - elf64_ia64_operands == IA64_OPND_IMMU62)
11321 {
11322 if (value & ~0x3fffffffffffffffULL)
11323 err = "integer operand out of range";
11324 insn[1] = (value >> 21) & 0x1ffffffffffLL;
11325 insn[2] |= (((value & 0xfffff) << 6) | (((value >> 20) & 0x1) << 36));
11326 }
11327 else if (odesc - elf64_ia64_operands == IA64_OPND_TGT64)
11328 {
11329 value >>= 4;
11330 insn[1] = ((value >> 20) & 0x7fffffffffLL) << 2;
11331 insn[2] |= ((((value >> 59) & 0x1) << 36)
11332 | (((value >> 0) & 0xfffff) << 13));
11333 }
11334 else
11335 err = (*odesc->insert) (odesc, value, insn + slot);
11336
11337 if (err)
11338 as_bad_where (fix->fx_file, fix->fx_line, err);
11339
11340 t0 = control_bits | (insn[0] << 5) | (insn[1] << 46);
11341 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
11342 number_to_chars_littleendian (fixpos + 0, t0, 8);
11343 number_to_chars_littleendian (fixpos + 8, t1, 8);
11344 }
11345
11346 /* Attempt to simplify or even eliminate a fixup. The return value is
11347 ignored; perhaps it was once meaningful, but now it is historical.
11348 To indicate that a fixup has been eliminated, set FIXP->FX_DONE.
11349
11350 If fixp->fx_addsy is non-NULL, we'll have to generate a reloc entry
11351 (if possible). */
11352
11353 void
11354 md_apply_fix3 (fix, valP, seg)
11355 fixS *fix;
11356 valueT *valP;
11357 segT seg ATTRIBUTE_UNUSED;
11358 {
11359 char *fixpos;
11360 valueT value = *valP;
11361
11362 fixpos = fix->fx_frag->fr_literal + fix->fx_where;
11363
11364 if (fix->fx_pcrel)
11365 {
11366 switch (fix->fx_r_type)
11367 {
11368 case BFD_RELOC_IA64_PCREL21B: break;
11369 case BFD_RELOC_IA64_PCREL21BI: break;
11370 case BFD_RELOC_IA64_PCREL21F: break;
11371 case BFD_RELOC_IA64_PCREL21M: break;
11372 case BFD_RELOC_IA64_PCREL60B: break;
11373 case BFD_RELOC_IA64_PCREL22: break;
11374 case BFD_RELOC_IA64_PCREL64I: break;
11375 case BFD_RELOC_IA64_PCREL32MSB: break;
11376 case BFD_RELOC_IA64_PCREL32LSB: break;
11377 case BFD_RELOC_IA64_PCREL64MSB: break;
11378 case BFD_RELOC_IA64_PCREL64LSB: break;
11379 default:
11380 fix->fx_r_type = ia64_gen_real_reloc_type (pseudo_func[FUNC_PC_RELATIVE].u.sym,
11381 fix->fx_r_type);
11382 break;
11383 }
11384 }
11385 if (fix->fx_addsy)
11386 {
11387 switch (fix->fx_r_type)
11388 {
11389 case BFD_RELOC_UNUSED:
11390 /* This must be a TAG13 or TAG13b operand. There are no external
11391 relocs defined for them, so we must give an error. */
11392 as_bad_where (fix->fx_file, fix->fx_line,
11393 "%s must have a constant value",
11394 elf64_ia64_operands[fix->tc_fix_data.opnd].desc);
11395 fix->fx_done = 1;
11396 return;
11397
11398 case BFD_RELOC_IA64_TPREL14:
11399 case BFD_RELOC_IA64_TPREL22:
11400 case BFD_RELOC_IA64_TPREL64I:
11401 case BFD_RELOC_IA64_LTOFF_TPREL22:
11402 case BFD_RELOC_IA64_LTOFF_DTPMOD22:
11403 case BFD_RELOC_IA64_DTPREL14:
11404 case BFD_RELOC_IA64_DTPREL22:
11405 case BFD_RELOC_IA64_DTPREL64I:
11406 case BFD_RELOC_IA64_LTOFF_DTPREL22:
11407 S_SET_THREAD_LOCAL (fix->fx_addsy);
11408 break;
11409
11410 default:
11411 break;
11412 }
11413 }
11414 else if (fix->tc_fix_data.opnd == IA64_OPND_NIL)
11415 {
11416 if (fix->tc_fix_data.bigendian)
11417 number_to_chars_bigendian (fixpos, value, fix->fx_size);
11418 else
11419 number_to_chars_littleendian (fixpos, value, fix->fx_size);
11420 fix->fx_done = 1;
11421 }
11422 else
11423 {
11424 fix_insn (fix, elf64_ia64_operands + fix->tc_fix_data.opnd, value);
11425 fix->fx_done = 1;
11426 }
11427 }
11428
11429 /* Generate the BFD reloc to be stuck in the object file from the
11430 fixup used internally in the assembler. */
11431
11432 arelent *
11433 tc_gen_reloc (sec, fixp)
11434 asection *sec ATTRIBUTE_UNUSED;
11435 fixS *fixp;
11436 {
11437 arelent *reloc;
11438
11439 reloc = xmalloc (sizeof (*reloc));
11440 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
11441 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11442 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
11443 reloc->addend = fixp->fx_offset;
11444 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
11445
11446 if (!reloc->howto)
11447 {
11448 as_bad_where (fixp->fx_file, fixp->fx_line,
11449 "Cannot represent %s relocation in object file",
11450 bfd_get_reloc_code_name (fixp->fx_r_type));
11451 }
11452 return reloc;
11453 }
11454
11455 /* Turn a string in input_line_pointer into a floating point constant
11456 of type TYPE, and store the appropriate bytes in *LIT. The number
11457 of LITTLENUMS emitted is stored in *SIZE. An error message is
11458 returned, or NULL on OK. */
11459
11460 #define MAX_LITTLENUMS 5
11461
11462 char *
11463 md_atof (type, lit, size)
11464 int type;
11465 char *lit;
11466 int *size;
11467 {
11468 LITTLENUM_TYPE words[MAX_LITTLENUMS];
11469 char *t;
11470 int prec;
11471
11472 switch (type)
11473 {
11474 /* IEEE floats */
11475 case 'f':
11476 case 'F':
11477 case 's':
11478 case 'S':
11479 prec = 2;
11480 break;
11481
11482 case 'd':
11483 case 'D':
11484 case 'r':
11485 case 'R':
11486 prec = 4;
11487 break;
11488
11489 case 'x':
11490 case 'X':
11491 case 'p':
11492 case 'P':
11493 prec = 5;
11494 break;
11495
11496 default:
11497 *size = 0;
11498 return "Bad call to MD_ATOF()";
11499 }
11500 t = atof_ieee (input_line_pointer, type, words);
11501 if (t)
11502 input_line_pointer = t;
11503
11504 (*ia64_float_to_chars) (lit, words, prec);
11505
11506 if (type == 'X')
11507 {
11508 /* It is 10 byte floating point with 6 byte padding. */
11509 memset (&lit [10], 0, 6);
11510 *size = 8 * sizeof (LITTLENUM_TYPE);
11511 }
11512 else
11513 *size = prec * sizeof (LITTLENUM_TYPE);
11514
11515 return 0;
11516 }
11517
11518 /* Handle ia64 specific semantics of the align directive. */
11519
11520 void
11521 ia64_md_do_align (n, fill, len, max)
11522 int n ATTRIBUTE_UNUSED;
11523 const char *fill ATTRIBUTE_UNUSED;
11524 int len ATTRIBUTE_UNUSED;
11525 int max ATTRIBUTE_UNUSED;
11526 {
11527 if (subseg_text_p (now_seg))
11528 ia64_flush_insns ();
11529 }
11530
11531 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
11532 of an rs_align_code fragment. */
11533
11534 void
11535 ia64_handle_align (fragp)
11536 fragS *fragp;
11537 {
11538 int bytes;
11539 char *p;
11540 const unsigned char *nop;
11541
11542 if (fragp->fr_type != rs_align_code)
11543 return;
11544
11545 /* Check if this frag has to end with a stop bit. */
11546 nop = fragp->tc_frag_data ? le_nop_stop : le_nop;
11547
11548 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
11549 p = fragp->fr_literal + fragp->fr_fix;
11550
11551 /* If no paddings are needed, we check if we need a stop bit. */
11552 if (!bytes && fragp->tc_frag_data)
11553 {
11554 if (fragp->fr_fix < 16)
11555 #if 1
11556 /* FIXME: It won't work with
11557 .align 16
11558 alloc r32=ar.pfs,1,2,4,0
11559 */
11560 ;
11561 #else
11562 as_bad_where (fragp->fr_file, fragp->fr_line,
11563 _("Can't add stop bit to mark end of instruction group"));
11564 #endif
11565 else
11566 /* Bundles are always in little-endian byte order. Make sure
11567 the previous bundle has the stop bit. */
11568 *(p - 16) |= 1;
11569 }
11570
11571 /* Make sure we are on a 16-byte boundary, in case someone has been
11572 putting data into a text section. */
11573 if (bytes & 15)
11574 {
11575 int fix = bytes & 15;
11576 memset (p, 0, fix);
11577 p += fix;
11578 bytes -= fix;
11579 fragp->fr_fix += fix;
11580 }
11581
11582 /* Instruction bundles are always little-endian. */
11583 memcpy (p, nop, 16);
11584 fragp->fr_var = 16;
11585 }
11586
11587 static void
11588 ia64_float_to_chars_bigendian (char *lit, LITTLENUM_TYPE *words,
11589 int prec)
11590 {
11591 while (prec--)
11592 {
11593 number_to_chars_bigendian (lit, (long) (*words++),
11594 sizeof (LITTLENUM_TYPE));
11595 lit += sizeof (LITTLENUM_TYPE);
11596 }
11597 }
11598
11599 static void
11600 ia64_float_to_chars_littleendian (char *lit, LITTLENUM_TYPE *words,
11601 int prec)
11602 {
11603 while (prec--)
11604 {
11605 number_to_chars_littleendian (lit, (long) (words[prec]),
11606 sizeof (LITTLENUM_TYPE));
11607 lit += sizeof (LITTLENUM_TYPE);
11608 }
11609 }
11610
11611 void
11612 ia64_elf_section_change_hook (void)
11613 {
11614 if (elf_section_type (now_seg) == SHT_IA_64_UNWIND
11615 && elf_linked_to_section (now_seg) == NULL)
11616 elf_linked_to_section (now_seg) = text_section;
11617 dot_byteorder (-1);
11618 }
11619
11620 /* Check if a label should be made global. */
11621 void
11622 ia64_check_label (symbolS *label)
11623 {
11624 if (*input_line_pointer == ':')
11625 {
11626 S_SET_EXTERNAL (label);
11627 input_line_pointer++;
11628 }
11629 }
11630
11631 /* Used to remember where .alias and .secalias directives are seen. We
11632 will rename symbol and section names when we are about to output
11633 the relocatable file. */
11634 struct alias
11635 {
11636 char *file; /* The file where the directive is seen. */
11637 unsigned int line; /* The line number the directive is at. */
11638 const char *name; /* The orignale name of the symbol. */
11639 };
11640
11641 /* Called for .alias and .secalias directives. If SECTION is 1, it is
11642 .secalias. Otherwise, it is .alias. */
11643 static void
11644 dot_alias (int section)
11645 {
11646 char *name, *alias;
11647 char delim;
11648 char *end_name;
11649 int len;
11650 const char *error_string;
11651 struct alias *h;
11652 const char *a;
11653 struct hash_control *ahash, *nhash;
11654 const char *kind;
11655
11656 name = input_line_pointer;
11657 delim = get_symbol_end ();
11658 end_name = input_line_pointer;
11659 *end_name = delim;
11660
11661 if (name == end_name)
11662 {
11663 as_bad (_("expected symbol name"));
11664 discard_rest_of_line ();
11665 return;
11666 }
11667
11668 SKIP_WHITESPACE ();
11669
11670 if (*input_line_pointer != ',')
11671 {
11672 *end_name = 0;
11673 as_bad (_("expected comma after \"%s\""), name);
11674 *end_name = delim;
11675 ignore_rest_of_line ();
11676 return;
11677 }
11678
11679 input_line_pointer++;
11680 *end_name = 0;
11681 ia64_canonicalize_symbol_name (name);
11682
11683 /* We call demand_copy_C_string to check if alias string is valid.
11684 There should be a closing `"' and no `\0' in the string. */
11685 alias = demand_copy_C_string (&len);
11686 if (alias == NULL)
11687 {
11688 ignore_rest_of_line ();
11689 return;
11690 }
11691
11692 /* Make a copy of name string. */
11693 len = strlen (name) + 1;
11694 obstack_grow (&notes, name, len);
11695 name = obstack_finish (&notes);
11696
11697 if (section)
11698 {
11699 kind = "section";
11700 ahash = secalias_hash;
11701 nhash = secalias_name_hash;
11702 }
11703 else
11704 {
11705 kind = "symbol";
11706 ahash = alias_hash;
11707 nhash = alias_name_hash;
11708 }
11709
11710 /* Check if alias has been used before. */
11711 h = (struct alias *) hash_find (ahash, alias);
11712 if (h)
11713 {
11714 if (strcmp (h->name, name))
11715 as_bad (_("`%s' is already the alias of %s `%s'"),
11716 alias, kind, h->name);
11717 goto out;
11718 }
11719
11720 /* Check if name already has an alias. */
11721 a = (const char *) hash_find (nhash, name);
11722 if (a)
11723 {
11724 if (strcmp (a, alias))
11725 as_bad (_("%s `%s' already has an alias `%s'"), kind, name, a);
11726 goto out;
11727 }
11728
11729 h = (struct alias *) xmalloc (sizeof (struct alias));
11730 as_where (&h->file, &h->line);
11731 h->name = name;
11732
11733 error_string = hash_jam (ahash, alias, (PTR) h);
11734 if (error_string)
11735 {
11736 as_fatal (_("inserting \"%s\" into %s alias hash table failed: %s"),
11737 alias, kind, error_string);
11738 goto out;
11739 }
11740
11741 error_string = hash_jam (nhash, name, (PTR) alias);
11742 if (error_string)
11743 {
11744 as_fatal (_("inserting \"%s\" into %s name hash table failed: %s"),
11745 alias, kind, error_string);
11746 out:
11747 obstack_free (&notes, name);
11748 obstack_free (&notes, alias);
11749 }
11750
11751 demand_empty_rest_of_line ();
11752 }
11753
11754 /* It renames the original symbol name to its alias. */
11755 static void
11756 do_alias (const char *alias, PTR value)
11757 {
11758 struct alias *h = (struct alias *) value;
11759 symbolS *sym = symbol_find (h->name);
11760
11761 if (sym == NULL)
11762 as_warn_where (h->file, h->line,
11763 _("symbol `%s' aliased to `%s' is not used"),
11764 h->name, alias);
11765 else
11766 S_SET_NAME (sym, (char *) alias);
11767 }
11768
11769 /* Called from write_object_file. */
11770 void
11771 ia64_adjust_symtab (void)
11772 {
11773 hash_traverse (alias_hash, do_alias);
11774 }
11775
11776 /* It renames the original section name to its alias. */
11777 static void
11778 do_secalias (const char *alias, PTR value)
11779 {
11780 struct alias *h = (struct alias *) value;
11781 segT sec = bfd_get_section_by_name (stdoutput, h->name);
11782
11783 if (sec == NULL)
11784 as_warn_where (h->file, h->line,
11785 _("section `%s' aliased to `%s' is not used"),
11786 h->name, alias);
11787 else
11788 sec->name = alias;
11789 }
11790
11791 /* Called from write_object_file. */
11792 void
11793 ia64_frob_file (void)
11794 {
11795 hash_traverse (secalias_hash, do_secalias);
11796 }
This page took 0.277129 seconds and 4 git commands to generate.