ec6bd61325b89e29f22ff89b3862a70c4894612c
[deliverable/binutils-gdb.git] / gas / config / tc-ia64.c
1 /* tc-ia64.c -- Assembler for the HP/Intel IA-64 architecture.
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
3 Free Software Foundation, Inc.
4 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street - Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 /*
24 TODO:
25
26 - optional operands
27 - directives:
28 .eb
29 .estate
30 .lb
31 .popsection
32 .previous
33 .psr
34 .pushsection
35 - labels are wrong if automatic alignment is introduced
36 (e.g., checkout the second real10 definition in test-data.s)
37 - DV-related stuff:
38 <reg>.safe_across_calls and any other DV-related directives I don't
39 have documentation for.
40 verify mod-sched-brs reads/writes are checked/marked (and other
41 notes)
42
43 */
44
45 #include "as.h"
46 #include "safe-ctype.h"
47 #include "dwarf2dbg.h"
48 #include "subsegs.h"
49
50 #include "opcode/ia64.h"
51
52 #include "elf/ia64.h"
53
54 #ifdef HAVE_LIMITS_H
55 #include <limits.h>
56 #endif
57
58 #define NELEMS(a) ((int) (sizeof (a)/sizeof ((a)[0])))
59
60 /* Some systems define MIN in, e.g., param.h. */
61 #undef MIN
62 #define MIN(a,b) ((a) < (b) ? (a) : (b))
63
64 #define NUM_SLOTS 4
65 #define PREV_SLOT md.slot[(md.curr_slot + NUM_SLOTS - 1) % NUM_SLOTS]
66 #define CURR_SLOT md.slot[md.curr_slot]
67
68 #define O_pseudo_fixup (O_max + 1)
69
70 enum special_section
71 {
72 /* IA-64 ABI section pseudo-ops. */
73 SPECIAL_SECTION_BSS = 0,
74 SPECIAL_SECTION_SBSS,
75 SPECIAL_SECTION_SDATA,
76 SPECIAL_SECTION_RODATA,
77 SPECIAL_SECTION_COMMENT,
78 SPECIAL_SECTION_UNWIND,
79 SPECIAL_SECTION_UNWIND_INFO,
80 /* HPUX specific section pseudo-ops. */
81 SPECIAL_SECTION_INIT_ARRAY,
82 SPECIAL_SECTION_FINI_ARRAY,
83 };
84
85 enum reloc_func
86 {
87 FUNC_DTP_MODULE,
88 FUNC_DTP_RELATIVE,
89 FUNC_FPTR_RELATIVE,
90 FUNC_GP_RELATIVE,
91 FUNC_LT_RELATIVE,
92 FUNC_LT_RELATIVE_X,
93 FUNC_PC_RELATIVE,
94 FUNC_PLT_RELATIVE,
95 FUNC_SEC_RELATIVE,
96 FUNC_SEG_RELATIVE,
97 FUNC_TP_RELATIVE,
98 FUNC_LTV_RELATIVE,
99 FUNC_LT_FPTR_RELATIVE,
100 FUNC_LT_DTP_MODULE,
101 FUNC_LT_DTP_RELATIVE,
102 FUNC_LT_TP_RELATIVE,
103 FUNC_IPLT_RELOC,
104 };
105
106 enum reg_symbol
107 {
108 REG_GR = 0,
109 REG_FR = (REG_GR + 128),
110 REG_AR = (REG_FR + 128),
111 REG_CR = (REG_AR + 128),
112 REG_P = (REG_CR + 128),
113 REG_BR = (REG_P + 64),
114 REG_IP = (REG_BR + 8),
115 REG_CFM,
116 REG_PR,
117 REG_PR_ROT,
118 REG_PSR,
119 REG_PSR_L,
120 REG_PSR_UM,
121 /* The following are pseudo-registers for use by gas only. */
122 IND_CPUID,
123 IND_DBR,
124 IND_DTR,
125 IND_ITR,
126 IND_IBR,
127 IND_MSR,
128 IND_PKR,
129 IND_PMC,
130 IND_PMD,
131 IND_RR,
132 /* The following pseudo-registers are used for unwind directives only: */
133 REG_PSP,
134 REG_PRIUNAT,
135 REG_NUM
136 };
137
138 enum dynreg_type
139 {
140 DYNREG_GR = 0, /* dynamic general purpose register */
141 DYNREG_FR, /* dynamic floating point register */
142 DYNREG_PR, /* dynamic predicate register */
143 DYNREG_NUM_TYPES
144 };
145
146 enum operand_match_result
147 {
148 OPERAND_MATCH,
149 OPERAND_OUT_OF_RANGE,
150 OPERAND_MISMATCH
151 };
152
153 /* On the ia64, we can't know the address of a text label until the
154 instructions are packed into a bundle. To handle this, we keep
155 track of the list of labels that appear in front of each
156 instruction. */
157 struct label_fix
158 {
159 struct label_fix *next;
160 struct symbol *sym;
161 bfd_boolean dw2_mark_labels;
162 };
163
164 /* This is the endianness of the current section. */
165 extern int target_big_endian;
166
167 /* This is the default endianness. */
168 static int default_big_endian = TARGET_BYTES_BIG_ENDIAN;
169
170 void (*ia64_number_to_chars) PARAMS ((char *, valueT, int));
171
172 static void ia64_float_to_chars_bigendian
173 PARAMS ((char *, LITTLENUM_TYPE *, int));
174 static void ia64_float_to_chars_littleendian
175 PARAMS ((char *, LITTLENUM_TYPE *, int));
176 static void (*ia64_float_to_chars)
177 PARAMS ((char *, LITTLENUM_TYPE *, int));
178
179 static struct hash_control *alias_hash;
180 static struct hash_control *alias_name_hash;
181 static struct hash_control *secalias_hash;
182 static struct hash_control *secalias_name_hash;
183
184 /* List of chars besides those in app.c:symbol_chars that can start an
185 operand. Used to prevent the scrubber eating vital white-space. */
186 const char ia64_symbol_chars[] = "@?";
187
188 /* Characters which always start a comment. */
189 const char comment_chars[] = "";
190
191 /* Characters which start a comment at the beginning of a line. */
192 const char line_comment_chars[] = "#";
193
194 /* Characters which may be used to separate multiple commands on a
195 single line. */
196 const char line_separator_chars[] = ";{}";
197
198 /* Characters which are used to indicate an exponent in a floating
199 point number. */
200 const char EXP_CHARS[] = "eE";
201
202 /* Characters which mean that a number is a floating point constant,
203 as in 0d1.0. */
204 const char FLT_CHARS[] = "rRsSfFdDxXpP";
205
206 /* ia64-specific option processing: */
207
208 const char *md_shortopts = "m:N:x::";
209
210 struct option md_longopts[] =
211 {
212 #define OPTION_MCONSTANT_GP (OPTION_MD_BASE + 1)
213 {"mconstant-gp", no_argument, NULL, OPTION_MCONSTANT_GP},
214 #define OPTION_MAUTO_PIC (OPTION_MD_BASE + 2)
215 {"mauto-pic", no_argument, NULL, OPTION_MAUTO_PIC}
216 };
217
218 size_t md_longopts_size = sizeof (md_longopts);
219
220 static struct
221 {
222 struct hash_control *pseudo_hash; /* pseudo opcode hash table */
223 struct hash_control *reg_hash; /* register name hash table */
224 struct hash_control *dynreg_hash; /* dynamic register hash table */
225 struct hash_control *const_hash; /* constant hash table */
226 struct hash_control *entry_hash; /* code entry hint hash table */
227
228 /* If X_op is != O_absent, the registername for the instruction's
229 qualifying predicate. If NULL, p0 is assumed for instructions
230 that are predicatable. */
231 expressionS qp;
232
233 /* Optimize for which CPU. */
234 enum
235 {
236 itanium1,
237 itanium2
238 } tune;
239
240 /* What to do when hint.b is used. */
241 enum
242 {
243 hint_b_error,
244 hint_b_warning,
245 hint_b_ok
246 } hint_b;
247
248 unsigned int
249 manual_bundling : 1,
250 debug_dv: 1,
251 detect_dv: 1,
252 explicit_mode : 1, /* which mode we're in */
253 default_explicit_mode : 1, /* which mode is the default */
254 mode_explicitly_set : 1, /* was the current mode explicitly set? */
255 auto_align : 1,
256 keep_pending_output : 1;
257
258 /* What to do when something is wrong with unwind directives. */
259 enum
260 {
261 unwind_check_warning,
262 unwind_check_error
263 } unwind_check;
264
265 /* Each bundle consists of up to three instructions. We keep
266 track of four most recent instructions so we can correctly set
267 the end_of_insn_group for the last instruction in a bundle. */
268 int curr_slot;
269 int num_slots_in_use;
270 struct slot
271 {
272 unsigned int
273 end_of_insn_group : 1,
274 manual_bundling_on : 1,
275 manual_bundling_off : 1,
276 loc_directive_seen : 1;
277 signed char user_template; /* user-selected template, if any */
278 unsigned char qp_regno; /* qualifying predicate */
279 /* This duplicates a good fraction of "struct fix" but we
280 can't use a "struct fix" instead since we can't call
281 fix_new_exp() until we know the address of the instruction. */
282 int num_fixups;
283 struct insn_fix
284 {
285 bfd_reloc_code_real_type code;
286 enum ia64_opnd opnd; /* type of operand in need of fix */
287 unsigned int is_pcrel : 1; /* is operand pc-relative? */
288 expressionS expr; /* the value to be inserted */
289 }
290 fixup[2]; /* at most two fixups per insn */
291 struct ia64_opcode *idesc;
292 struct label_fix *label_fixups;
293 struct label_fix *tag_fixups;
294 struct unw_rec_list *unwind_record; /* Unwind directive. */
295 expressionS opnd[6];
296 char *src_file;
297 unsigned int src_line;
298 struct dwarf2_line_info debug_line;
299 }
300 slot[NUM_SLOTS];
301
302 segT last_text_seg;
303
304 struct dynreg
305 {
306 struct dynreg *next; /* next dynamic register */
307 const char *name;
308 unsigned short base; /* the base register number */
309 unsigned short num_regs; /* # of registers in this set */
310 }
311 *dynreg[DYNREG_NUM_TYPES], in, loc, out, rot;
312
313 flagword flags; /* ELF-header flags */
314
315 struct mem_offset {
316 unsigned hint:1; /* is this hint currently valid? */
317 bfd_vma offset; /* mem.offset offset */
318 bfd_vma base; /* mem.offset base */
319 } mem_offset;
320
321 int path; /* number of alt. entry points seen */
322 const char **entry_labels; /* labels of all alternate paths in
323 the current DV-checking block. */
324 int maxpaths; /* size currently allocated for
325 entry_labels */
326
327 int pointer_size; /* size in bytes of a pointer */
328 int pointer_size_shift; /* shift size of a pointer for alignment */
329
330 symbolS *indregsym[IND_RR - IND_CPUID + 1];
331 }
332 md;
333
334 /* These are not const, because they are modified to MMI for non-itanium1
335 targets below. */
336 /* MFI bundle of nops. */
337 static unsigned char le_nop[16] =
338 {
339 0x0c, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
340 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
341 };
342 /* MFI bundle of nops with stop-bit. */
343 static unsigned char le_nop_stop[16] =
344 {
345 0x0d, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
346 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
347 };
348
349 /* application registers: */
350
351 #define AR_K0 0
352 #define AR_K7 7
353 #define AR_RSC 16
354 #define AR_BSP 17
355 #define AR_BSPSTORE 18
356 #define AR_RNAT 19
357 #define AR_FCR 21
358 #define AR_EFLAG 24
359 #define AR_CSD 25
360 #define AR_SSD 26
361 #define AR_CFLG 27
362 #define AR_FSR 28
363 #define AR_FIR 29
364 #define AR_FDR 30
365 #define AR_CCV 32
366 #define AR_UNAT 36
367 #define AR_FPSR 40
368 #define AR_ITC 44
369 #define AR_PFS 64
370 #define AR_LC 65
371 #define AR_EC 66
372
373 static const struct
374 {
375 const char *name;
376 unsigned int regnum;
377 }
378 ar[] =
379 {
380 {"ar.k0", AR_K0}, {"ar.k1", AR_K0 + 1},
381 {"ar.k2", AR_K0 + 2}, {"ar.k3", AR_K0 + 3},
382 {"ar.k4", AR_K0 + 4}, {"ar.k5", AR_K0 + 5},
383 {"ar.k6", AR_K0 + 6}, {"ar.k7", AR_K7},
384 {"ar.rsc", AR_RSC}, {"ar.bsp", AR_BSP},
385 {"ar.bspstore", AR_BSPSTORE}, {"ar.rnat", AR_RNAT},
386 {"ar.fcr", AR_FCR}, {"ar.eflag", AR_EFLAG},
387 {"ar.csd", AR_CSD}, {"ar.ssd", AR_SSD},
388 {"ar.cflg", AR_CFLG}, {"ar.fsr", AR_FSR},
389 {"ar.fir", AR_FIR}, {"ar.fdr", AR_FDR},
390 {"ar.ccv", AR_CCV}, {"ar.unat", AR_UNAT},
391 {"ar.fpsr", AR_FPSR}, {"ar.itc", AR_ITC},
392 {"ar.pfs", AR_PFS}, {"ar.lc", AR_LC},
393 {"ar.ec", AR_EC},
394 };
395
396 /* control registers: */
397
398 #define CR_DCR 0
399 #define CR_ITM 1
400 #define CR_IVA 2
401 #define CR_PTA 8
402 #define CR_GPTA 9
403 #define CR_IPSR 16
404 #define CR_ISR 17
405 #define CR_IIP 19
406 #define CR_IFA 20
407 #define CR_ITIR 21
408 #define CR_IIPA 22
409 #define CR_IFS 23
410 #define CR_IIM 24
411 #define CR_IHA 25
412 #define CR_LID 64
413 #define CR_IVR 65
414 #define CR_TPR 66
415 #define CR_EOI 67
416 #define CR_IRR0 68
417 #define CR_IRR3 71
418 #define CR_ITV 72
419 #define CR_PMV 73
420 #define CR_CMCV 74
421 #define CR_LRR0 80
422 #define CR_LRR1 81
423
424 static const struct
425 {
426 const char *name;
427 unsigned int regnum;
428 }
429 cr[] =
430 {
431 {"cr.dcr", CR_DCR},
432 {"cr.itm", CR_ITM},
433 {"cr.iva", CR_IVA},
434 {"cr.pta", CR_PTA},
435 {"cr.gpta", CR_GPTA},
436 {"cr.ipsr", CR_IPSR},
437 {"cr.isr", CR_ISR},
438 {"cr.iip", CR_IIP},
439 {"cr.ifa", CR_IFA},
440 {"cr.itir", CR_ITIR},
441 {"cr.iipa", CR_IIPA},
442 {"cr.ifs", CR_IFS},
443 {"cr.iim", CR_IIM},
444 {"cr.iha", CR_IHA},
445 {"cr.lid", CR_LID},
446 {"cr.ivr", CR_IVR},
447 {"cr.tpr", CR_TPR},
448 {"cr.eoi", CR_EOI},
449 {"cr.irr0", CR_IRR0},
450 {"cr.irr1", CR_IRR0 + 1},
451 {"cr.irr2", CR_IRR0 + 2},
452 {"cr.irr3", CR_IRR3},
453 {"cr.itv", CR_ITV},
454 {"cr.pmv", CR_PMV},
455 {"cr.cmcv", CR_CMCV},
456 {"cr.lrr0", CR_LRR0},
457 {"cr.lrr1", CR_LRR1}
458 };
459
460 #define PSR_MFL 4
461 #define PSR_IC 13
462 #define PSR_DFL 18
463 #define PSR_CPL 32
464
465 static const struct const_desc
466 {
467 const char *name;
468 valueT value;
469 }
470 const_bits[] =
471 {
472 /* PSR constant masks: */
473
474 /* 0: reserved */
475 {"psr.be", ((valueT) 1) << 1},
476 {"psr.up", ((valueT) 1) << 2},
477 {"psr.ac", ((valueT) 1) << 3},
478 {"psr.mfl", ((valueT) 1) << 4},
479 {"psr.mfh", ((valueT) 1) << 5},
480 /* 6-12: reserved */
481 {"psr.ic", ((valueT) 1) << 13},
482 {"psr.i", ((valueT) 1) << 14},
483 {"psr.pk", ((valueT) 1) << 15},
484 /* 16: reserved */
485 {"psr.dt", ((valueT) 1) << 17},
486 {"psr.dfl", ((valueT) 1) << 18},
487 {"psr.dfh", ((valueT) 1) << 19},
488 {"psr.sp", ((valueT) 1) << 20},
489 {"psr.pp", ((valueT) 1) << 21},
490 {"psr.di", ((valueT) 1) << 22},
491 {"psr.si", ((valueT) 1) << 23},
492 {"psr.db", ((valueT) 1) << 24},
493 {"psr.lp", ((valueT) 1) << 25},
494 {"psr.tb", ((valueT) 1) << 26},
495 {"psr.rt", ((valueT) 1) << 27},
496 /* 28-31: reserved */
497 /* 32-33: cpl (current privilege level) */
498 {"psr.is", ((valueT) 1) << 34},
499 {"psr.mc", ((valueT) 1) << 35},
500 {"psr.it", ((valueT) 1) << 36},
501 {"psr.id", ((valueT) 1) << 37},
502 {"psr.da", ((valueT) 1) << 38},
503 {"psr.dd", ((valueT) 1) << 39},
504 {"psr.ss", ((valueT) 1) << 40},
505 /* 41-42: ri (restart instruction) */
506 {"psr.ed", ((valueT) 1) << 43},
507 {"psr.bn", ((valueT) 1) << 44},
508 };
509
510 /* indirect register-sets/memory: */
511
512 static const struct
513 {
514 const char *name;
515 unsigned int regnum;
516 }
517 indirect_reg[] =
518 {
519 { "CPUID", IND_CPUID },
520 { "cpuid", IND_CPUID },
521 { "dbr", IND_DBR },
522 { "dtr", IND_DTR },
523 { "itr", IND_ITR },
524 { "ibr", IND_IBR },
525 { "msr", IND_MSR },
526 { "pkr", IND_PKR },
527 { "pmc", IND_PMC },
528 { "pmd", IND_PMD },
529 { "rr", IND_RR },
530 };
531
532 /* Pseudo functions used to indicate relocation types (these functions
533 start with an at sign (@). */
534 static struct
535 {
536 const char *name;
537 enum pseudo_type
538 {
539 PSEUDO_FUNC_NONE,
540 PSEUDO_FUNC_RELOC,
541 PSEUDO_FUNC_CONST,
542 PSEUDO_FUNC_REG,
543 PSEUDO_FUNC_FLOAT
544 }
545 type;
546 union
547 {
548 unsigned long ival;
549 symbolS *sym;
550 }
551 u;
552 }
553 pseudo_func[] =
554 {
555 /* reloc pseudo functions (these must come first!): */
556 { "dtpmod", PSEUDO_FUNC_RELOC, { 0 } },
557 { "dtprel", PSEUDO_FUNC_RELOC, { 0 } },
558 { "fptr", PSEUDO_FUNC_RELOC, { 0 } },
559 { "gprel", PSEUDO_FUNC_RELOC, { 0 } },
560 { "ltoff", PSEUDO_FUNC_RELOC, { 0 } },
561 { "ltoffx", PSEUDO_FUNC_RELOC, { 0 } },
562 { "pcrel", PSEUDO_FUNC_RELOC, { 0 } },
563 { "pltoff", PSEUDO_FUNC_RELOC, { 0 } },
564 { "secrel", PSEUDO_FUNC_RELOC, { 0 } },
565 { "segrel", PSEUDO_FUNC_RELOC, { 0 } },
566 { "tprel", PSEUDO_FUNC_RELOC, { 0 } },
567 { "ltv", PSEUDO_FUNC_RELOC, { 0 } },
568 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_FPTR_RELATIVE */
569 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_MODULE */
570 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_RELATIVE */
571 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_TP_RELATIVE */
572 { "iplt", PSEUDO_FUNC_RELOC, { 0 } },
573
574 /* mbtype4 constants: */
575 { "alt", PSEUDO_FUNC_CONST, { 0xa } },
576 { "brcst", PSEUDO_FUNC_CONST, { 0x0 } },
577 { "mix", PSEUDO_FUNC_CONST, { 0x8 } },
578 { "rev", PSEUDO_FUNC_CONST, { 0xb } },
579 { "shuf", PSEUDO_FUNC_CONST, { 0x9 } },
580
581 /* fclass constants: */
582 { "nat", PSEUDO_FUNC_CONST, { 0x100 } },
583 { "qnan", PSEUDO_FUNC_CONST, { 0x080 } },
584 { "snan", PSEUDO_FUNC_CONST, { 0x040 } },
585 { "pos", PSEUDO_FUNC_CONST, { 0x001 } },
586 { "neg", PSEUDO_FUNC_CONST, { 0x002 } },
587 { "zero", PSEUDO_FUNC_CONST, { 0x004 } },
588 { "unorm", PSEUDO_FUNC_CONST, { 0x008 } },
589 { "norm", PSEUDO_FUNC_CONST, { 0x010 } },
590 { "inf", PSEUDO_FUNC_CONST, { 0x020 } },
591
592 { "natval", PSEUDO_FUNC_CONST, { 0x100 } }, /* old usage */
593
594 /* hint constants: */
595 { "pause", PSEUDO_FUNC_CONST, { 0x0 } },
596
597 /* unwind-related constants: */
598 { "svr4", PSEUDO_FUNC_CONST, { ELFOSABI_NONE } },
599 { "hpux", PSEUDO_FUNC_CONST, { ELFOSABI_HPUX } },
600 { "nt", PSEUDO_FUNC_CONST, { 2 } }, /* conflicts w/ELFOSABI_NETBSD */
601 { "linux", PSEUDO_FUNC_CONST, { ELFOSABI_LINUX } },
602 { "freebsd", PSEUDO_FUNC_CONST, { ELFOSABI_FREEBSD } },
603 { "openvms", PSEUDO_FUNC_CONST, { ELFOSABI_OPENVMS } },
604 { "nsk", PSEUDO_FUNC_CONST, { ELFOSABI_NSK } },
605
606 /* unwind-related registers: */
607 { "priunat",PSEUDO_FUNC_REG, { REG_PRIUNAT } }
608 };
609
610 /* 41-bit nop opcodes (one per unit): */
611 static const bfd_vma nop[IA64_NUM_UNITS] =
612 {
613 0x0000000000LL, /* NIL => break 0 */
614 0x0008000000LL, /* I-unit nop */
615 0x0008000000LL, /* M-unit nop */
616 0x4000000000LL, /* B-unit nop */
617 0x0008000000LL, /* F-unit nop */
618 0x0000000000LL, /* L-"unit" nop immediate */
619 0x0008000000LL, /* X-unit nop */
620 };
621
622 /* Can't be `const' as it's passed to input routines (which have the
623 habit of setting temporary sentinels. */
624 static char special_section_name[][20] =
625 {
626 {".bss"}, {".sbss"}, {".sdata"}, {".rodata"}, {".comment"},
627 {".IA_64.unwind"}, {".IA_64.unwind_info"},
628 {".init_array"}, {".fini_array"}
629 };
630
631 /* The best template for a particular sequence of up to three
632 instructions: */
633 #define N IA64_NUM_TYPES
634 static unsigned char best_template[N][N][N];
635 #undef N
636
637 /* Resource dependencies currently in effect */
638 static struct rsrc {
639 int depind; /* dependency index */
640 const struct ia64_dependency *dependency; /* actual dependency */
641 unsigned specific:1, /* is this a specific bit/regno? */
642 link_to_qp_branch:1; /* will a branch on the same QP clear it?*/
643 int index; /* specific regno/bit within dependency */
644 int note; /* optional qualifying note (0 if none) */
645 #define STATE_NONE 0
646 #define STATE_STOP 1
647 #define STATE_SRLZ 2
648 int insn_srlz; /* current insn serialization state */
649 int data_srlz; /* current data serialization state */
650 int qp_regno; /* qualifying predicate for this usage */
651 char *file; /* what file marked this dependency */
652 unsigned int line; /* what line marked this dependency */
653 struct mem_offset mem_offset; /* optional memory offset hint */
654 enum { CMP_NONE, CMP_OR, CMP_AND } cmp_type; /* OR or AND compare? */
655 int path; /* corresponding code entry index */
656 } *regdeps = NULL;
657 static int regdepslen = 0;
658 static int regdepstotlen = 0;
659 static const char *dv_mode[] = { "RAW", "WAW", "WAR" };
660 static const char *dv_sem[] = { "none", "implied", "impliedf",
661 "data", "instr", "specific", "stop", "other" };
662 static const char *dv_cmp_type[] = { "none", "OR", "AND" };
663
664 /* Current state of PR mutexation */
665 static struct qpmutex {
666 valueT prmask;
667 int path;
668 } *qp_mutexes = NULL; /* QP mutex bitmasks */
669 static int qp_mutexeslen = 0;
670 static int qp_mutexestotlen = 0;
671 static valueT qp_safe_across_calls = 0;
672
673 /* Current state of PR implications */
674 static struct qp_imply {
675 unsigned p1:6;
676 unsigned p2:6;
677 unsigned p2_branched:1;
678 int path;
679 } *qp_implies = NULL;
680 static int qp_implieslen = 0;
681 static int qp_impliestotlen = 0;
682
683 /* Keep track of static GR values so that indirect register usage can
684 sometimes be tracked. */
685 static struct gr {
686 unsigned known:1;
687 int path;
688 valueT value;
689 } gr_values[128] = {
690 {
691 1,
692 #ifdef INT_MAX
693 INT_MAX,
694 #else
695 (((1 << (8 * sizeof(gr_values->path) - 2)) - 1) << 1) + 1,
696 #endif
697 0
698 }
699 };
700
701 /* Remember the alignment frag. */
702 static fragS *align_frag;
703
704 /* These are the routines required to output the various types of
705 unwind records. */
706
707 /* A slot_number is a frag address plus the slot index (0-2). We use the
708 frag address here so that if there is a section switch in the middle of
709 a function, then instructions emitted to a different section are not
710 counted. Since there may be more than one frag for a function, this
711 means we also need to keep track of which frag this address belongs to
712 so we can compute inter-frag distances. This also nicely solves the
713 problem with nops emitted for align directives, which can't easily be
714 counted, but can easily be derived from frag sizes. */
715
716 typedef struct unw_rec_list {
717 unwind_record r;
718 unsigned long slot_number;
719 fragS *slot_frag;
720 struct unw_rec_list *next;
721 } unw_rec_list;
722
723 #define SLOT_NUM_NOT_SET (unsigned)-1
724
725 /* Linked list of saved prologue counts. A very poor
726 implementation of a map from label numbers to prologue counts. */
727 typedef struct label_prologue_count
728 {
729 struct label_prologue_count *next;
730 unsigned long label_number;
731 unsigned int prologue_count;
732 } label_prologue_count;
733
734 typedef struct proc_pending
735 {
736 symbolS *sym;
737 struct proc_pending *next;
738 } proc_pending;
739
740 static struct
741 {
742 /* Maintain a list of unwind entries for the current function. */
743 unw_rec_list *list;
744 unw_rec_list *tail;
745
746 /* Any unwind entires that should be attached to the current slot
747 that an insn is being constructed for. */
748 unw_rec_list *current_entry;
749
750 /* These are used to create the unwind table entry for this function. */
751 proc_pending proc_pending;
752 symbolS *info; /* pointer to unwind info */
753 symbolS *personality_routine;
754 segT saved_text_seg;
755 subsegT saved_text_subseg;
756 unsigned int force_unwind_entry : 1; /* force generation of unwind entry? */
757
758 /* TRUE if processing unwind directives in a prologue region. */
759 unsigned int prologue : 1;
760 unsigned int prologue_mask : 4;
761 unsigned int prologue_gr : 7;
762 unsigned int body : 1;
763 unsigned int insn : 1;
764 unsigned int prologue_count; /* number of .prologues seen so far */
765 /* Prologue counts at previous .label_state directives. */
766 struct label_prologue_count * saved_prologue_counts;
767
768 /* List of split up .save-s. */
769 unw_p_record *pending_saves;
770 } unwind;
771
772 /* The input value is a negated offset from psp, and specifies an address
773 psp - offset. The encoded value is psp + 16 - (4 * offset). Thus we
774 must add 16 and divide by 4 to get the encoded value. */
775
776 #define ENCODED_PSP_OFFSET(OFFSET) (((OFFSET) + 16) / 4)
777
778 typedef void (*vbyte_func) PARAMS ((int, char *, char *));
779
780 /* Forward declarations: */
781 static void set_section PARAMS ((char *name));
782 static unsigned int set_regstack PARAMS ((unsigned int, unsigned int,
783 unsigned int, unsigned int));
784 static void dot_align (int);
785 static void dot_radix PARAMS ((int));
786 static void dot_special_section PARAMS ((int));
787 static void dot_proc PARAMS ((int));
788 static void dot_fframe PARAMS ((int));
789 static void dot_vframe PARAMS ((int));
790 static void dot_vframesp PARAMS ((int));
791 static void dot_save PARAMS ((int));
792 static void dot_restore PARAMS ((int));
793 static void dot_restorereg PARAMS ((int));
794 static void dot_handlerdata PARAMS ((int));
795 static void dot_unwentry PARAMS ((int));
796 static void dot_altrp PARAMS ((int));
797 static void dot_savemem PARAMS ((int));
798 static void dot_saveg PARAMS ((int));
799 static void dot_savef PARAMS ((int));
800 static void dot_saveb PARAMS ((int));
801 static void dot_savegf PARAMS ((int));
802 static void dot_spill PARAMS ((int));
803 static void dot_spillreg PARAMS ((int));
804 static void dot_spillmem PARAMS ((int));
805 static void dot_label_state PARAMS ((int));
806 static void dot_copy_state PARAMS ((int));
807 static void dot_unwabi PARAMS ((int));
808 static void dot_personality PARAMS ((int));
809 static void dot_body PARAMS ((int));
810 static void dot_prologue PARAMS ((int));
811 static void dot_endp PARAMS ((int));
812 static void dot_template PARAMS ((int));
813 static void dot_regstk PARAMS ((int));
814 static void dot_rot PARAMS ((int));
815 static void dot_byteorder PARAMS ((int));
816 static void dot_psr PARAMS ((int));
817 static void dot_alias PARAMS ((int));
818 static void dot_ln PARAMS ((int));
819 static void cross_section PARAMS ((int ref, void (*cons) PARAMS((int)), int ua));
820 static void dot_xdata PARAMS ((int));
821 static void stmt_float_cons PARAMS ((int));
822 static void stmt_cons_ua PARAMS ((int));
823 static void dot_xfloat_cons PARAMS ((int));
824 static void dot_xstringer PARAMS ((int));
825 static void dot_xdata_ua PARAMS ((int));
826 static void dot_xfloat_cons_ua PARAMS ((int));
827 static void print_prmask PARAMS ((valueT mask));
828 static void dot_pred_rel PARAMS ((int));
829 static void dot_reg_val PARAMS ((int));
830 static void dot_serialize PARAMS ((int));
831 static void dot_dv_mode PARAMS ((int));
832 static void dot_entry PARAMS ((int));
833 static void dot_mem_offset PARAMS ((int));
834 static void add_unwind_entry PARAMS((unw_rec_list *, int));
835 static symbolS *declare_register PARAMS ((const char *name, unsigned int regnum));
836 static void declare_register_set PARAMS ((const char *, unsigned int, unsigned int));
837 static unsigned int operand_width PARAMS ((enum ia64_opnd));
838 static enum operand_match_result operand_match PARAMS ((const struct ia64_opcode *idesc,
839 int index,
840 expressionS *e));
841 static int parse_operand PARAMS ((expressionS *, int));
842 static struct ia64_opcode * parse_operands PARAMS ((struct ia64_opcode *));
843 static void build_insn PARAMS ((struct slot *, bfd_vma *));
844 static void emit_one_bundle PARAMS ((void));
845 static void fix_insn PARAMS ((fixS *, const struct ia64_operand *, valueT));
846 static bfd_reloc_code_real_type ia64_gen_real_reloc_type PARAMS ((struct symbol *sym,
847 bfd_reloc_code_real_type r_type));
848 static void insn_group_break PARAMS ((int, int, int));
849 static void mark_resource PARAMS ((struct ia64_opcode *, const struct ia64_dependency *,
850 struct rsrc *, int depind, int path));
851 static void add_qp_mutex PARAMS((valueT mask));
852 static void add_qp_imply PARAMS((int p1, int p2));
853 static void clear_qp_branch_flag PARAMS((valueT mask));
854 static void clear_qp_mutex PARAMS((valueT mask));
855 static void clear_qp_implies PARAMS((valueT p1_mask, valueT p2_mask));
856 static int has_suffix_p PARAMS((const char *, const char *));
857 static void clear_register_values PARAMS ((void));
858 static void print_dependency PARAMS ((const char *action, int depind));
859 static void instruction_serialization PARAMS ((void));
860 static void data_serialization PARAMS ((void));
861 static void remove_marked_resource PARAMS ((struct rsrc *));
862 static int is_conditional_branch PARAMS ((struct ia64_opcode *));
863 static int is_taken_branch PARAMS ((struct ia64_opcode *));
864 static int is_interruption_or_rfi PARAMS ((struct ia64_opcode *));
865 static int depends_on PARAMS ((int, struct ia64_opcode *));
866 static int specify_resource PARAMS ((const struct ia64_dependency *,
867 struct ia64_opcode *, int, struct rsrc [], int, int));
868 static int check_dv PARAMS((struct ia64_opcode *idesc));
869 static void check_dependencies PARAMS((struct ia64_opcode *));
870 static void mark_resources PARAMS((struct ia64_opcode *));
871 static void update_dependencies PARAMS((struct ia64_opcode *));
872 static void note_register_values PARAMS((struct ia64_opcode *));
873 static int qp_mutex PARAMS ((int, int, int));
874 static int resources_match PARAMS ((struct rsrc *, struct ia64_opcode *, int, int, int));
875 static void output_vbyte_mem PARAMS ((int, char *, char *));
876 static void count_output PARAMS ((int, char *, char *));
877 static void output_R1_format PARAMS ((vbyte_func, unw_record_type, int));
878 static void output_R2_format PARAMS ((vbyte_func, int, int, unsigned long));
879 static void output_R3_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
880 static void output_P1_format PARAMS ((vbyte_func, int));
881 static void output_P2_format PARAMS ((vbyte_func, int, int));
882 static void output_P3_format PARAMS ((vbyte_func, unw_record_type, int));
883 static void output_P4_format PARAMS ((vbyte_func, unsigned char *, unsigned long));
884 static void output_P5_format PARAMS ((vbyte_func, int, unsigned long));
885 static void output_P6_format PARAMS ((vbyte_func, unw_record_type, int));
886 static void output_P7_format PARAMS ((vbyte_func, unw_record_type, unsigned long, unsigned long));
887 static void output_P8_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
888 static void output_P9_format PARAMS ((vbyte_func, int, int));
889 static void output_P10_format PARAMS ((vbyte_func, int, int));
890 static void output_B1_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
891 static void output_B2_format PARAMS ((vbyte_func, unsigned long, unsigned long));
892 static void output_B3_format PARAMS ((vbyte_func, unsigned long, unsigned long));
893 static void output_B4_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
894 static char format_ab_reg PARAMS ((int, int));
895 static void output_X1_format PARAMS ((vbyte_func, unw_record_type, int, int, unsigned long,
896 unsigned long));
897 static void output_X2_format PARAMS ((vbyte_func, int, int, int, int, int, unsigned long));
898 static void output_X3_format PARAMS ((vbyte_func, unw_record_type, int, int, int, unsigned long,
899 unsigned long));
900 static void output_X4_format PARAMS ((vbyte_func, int, int, int, int, int, int, unsigned long));
901 static unw_rec_list *output_endp PARAMS ((void));
902 static unw_rec_list *output_prologue PARAMS ((void));
903 static unw_rec_list *output_prologue_gr PARAMS ((unsigned int, unsigned int));
904 static unw_rec_list *output_body PARAMS ((void));
905 static unw_rec_list *output_mem_stack_f PARAMS ((unsigned int));
906 static unw_rec_list *output_mem_stack_v PARAMS ((void));
907 static unw_rec_list *output_psp_gr PARAMS ((unsigned int));
908 static unw_rec_list *output_psp_sprel PARAMS ((unsigned int));
909 static unw_rec_list *output_rp_when PARAMS ((void));
910 static unw_rec_list *output_rp_gr PARAMS ((unsigned int));
911 static unw_rec_list *output_rp_br PARAMS ((unsigned int));
912 static unw_rec_list *output_rp_psprel PARAMS ((unsigned int));
913 static unw_rec_list *output_rp_sprel PARAMS ((unsigned int));
914 static unw_rec_list *output_pfs_when PARAMS ((void));
915 static unw_rec_list *output_pfs_gr PARAMS ((unsigned int));
916 static unw_rec_list *output_pfs_psprel PARAMS ((unsigned int));
917 static unw_rec_list *output_pfs_sprel PARAMS ((unsigned int));
918 static unw_rec_list *output_preds_when PARAMS ((void));
919 static unw_rec_list *output_preds_gr PARAMS ((unsigned int));
920 static unw_rec_list *output_preds_psprel PARAMS ((unsigned int));
921 static unw_rec_list *output_preds_sprel PARAMS ((unsigned int));
922 static unw_rec_list *output_fr_mem PARAMS ((unsigned int));
923 static unw_rec_list *output_frgr_mem PARAMS ((unsigned int, unsigned int));
924 static unw_rec_list *output_gr_gr PARAMS ((unsigned int, unsigned int));
925 static unw_rec_list *output_gr_mem PARAMS ((unsigned int));
926 static unw_rec_list *output_br_mem PARAMS ((unsigned int));
927 static unw_rec_list *output_br_gr PARAMS ((unsigned int, unsigned int));
928 static unw_rec_list *output_spill_base PARAMS ((unsigned int));
929 static unw_rec_list *output_unat_when PARAMS ((void));
930 static unw_rec_list *output_unat_gr PARAMS ((unsigned int));
931 static unw_rec_list *output_unat_psprel PARAMS ((unsigned int));
932 static unw_rec_list *output_unat_sprel PARAMS ((unsigned int));
933 static unw_rec_list *output_lc_when PARAMS ((void));
934 static unw_rec_list *output_lc_gr PARAMS ((unsigned int));
935 static unw_rec_list *output_lc_psprel PARAMS ((unsigned int));
936 static unw_rec_list *output_lc_sprel PARAMS ((unsigned int));
937 static unw_rec_list *output_fpsr_when PARAMS ((void));
938 static unw_rec_list *output_fpsr_gr PARAMS ((unsigned int));
939 static unw_rec_list *output_fpsr_psprel PARAMS ((unsigned int));
940 static unw_rec_list *output_fpsr_sprel PARAMS ((unsigned int));
941 static unw_rec_list *output_priunat_when_gr PARAMS ((void));
942 static unw_rec_list *output_priunat_when_mem PARAMS ((void));
943 static unw_rec_list *output_priunat_gr PARAMS ((unsigned int));
944 static unw_rec_list *output_priunat_psprel PARAMS ((unsigned int));
945 static unw_rec_list *output_priunat_sprel PARAMS ((unsigned int));
946 static unw_rec_list *output_bsp_when PARAMS ((void));
947 static unw_rec_list *output_bsp_gr PARAMS ((unsigned int));
948 static unw_rec_list *output_bsp_psprel PARAMS ((unsigned int));
949 static unw_rec_list *output_bsp_sprel PARAMS ((unsigned int));
950 static unw_rec_list *output_bspstore_when PARAMS ((void));
951 static unw_rec_list *output_bspstore_gr PARAMS ((unsigned int));
952 static unw_rec_list *output_bspstore_psprel PARAMS ((unsigned int));
953 static unw_rec_list *output_bspstore_sprel PARAMS ((unsigned int));
954 static unw_rec_list *output_rnat_when PARAMS ((void));
955 static unw_rec_list *output_rnat_gr PARAMS ((unsigned int));
956 static unw_rec_list *output_rnat_psprel PARAMS ((unsigned int));
957 static unw_rec_list *output_rnat_sprel PARAMS ((unsigned int));
958 static unw_rec_list *output_unwabi PARAMS ((unsigned long, unsigned long));
959 static unw_rec_list *output_epilogue PARAMS ((unsigned long));
960 static unw_rec_list *output_label_state PARAMS ((unsigned long));
961 static unw_rec_list *output_copy_state PARAMS ((unsigned long));
962 static unw_rec_list *output_spill_psprel PARAMS ((unsigned int, unsigned int, unsigned int,
963 unsigned int));
964 static unw_rec_list *output_spill_sprel PARAMS ((unsigned int, unsigned int, unsigned int,
965 unsigned int));
966 static unw_rec_list *output_spill_reg PARAMS ((unsigned int, unsigned int, unsigned int,
967 unsigned int, unsigned int));
968 static void process_one_record PARAMS ((unw_rec_list *, vbyte_func));
969 static void process_unw_records PARAMS ((unw_rec_list *, vbyte_func));
970 static int calc_record_size PARAMS ((unw_rec_list *));
971 static void set_imask PARAMS ((unw_rec_list *, unsigned long, unsigned long, unsigned int));
972 static unsigned long slot_index PARAMS ((unsigned long, fragS *,
973 unsigned long, fragS *,
974 int));
975 static unw_rec_list *optimize_unw_records PARAMS ((unw_rec_list *));
976 static void fixup_unw_records PARAMS ((unw_rec_list *, int));
977 static int parse_predicate_and_operand PARAMS ((expressionS *, unsigned *, const char *));
978 static void convert_expr_to_ab_reg PARAMS ((const expressionS *, unsigned int *, unsigned int *, const char *, int));
979 static void convert_expr_to_xy_reg PARAMS ((const expressionS *, unsigned int *, unsigned int *, const char *, int));
980 static unsigned int get_saved_prologue_count PARAMS ((unsigned long));
981 static void save_prologue_count PARAMS ((unsigned long, unsigned int));
982 static void free_saved_prologue_counts PARAMS ((void));
983
984 /* Determine if application register REGNUM resides only in the integer
985 unit (as opposed to the memory unit). */
986 static int
987 ar_is_only_in_integer_unit (int reg)
988 {
989 reg -= REG_AR;
990 return reg >= 64 && reg <= 111;
991 }
992
993 /* Determine if application register REGNUM resides only in the memory
994 unit (as opposed to the integer unit). */
995 static int
996 ar_is_only_in_memory_unit (int reg)
997 {
998 reg -= REG_AR;
999 return reg >= 0 && reg <= 47;
1000 }
1001
1002 /* Switch to section NAME and create section if necessary. It's
1003 rather ugly that we have to manipulate input_line_pointer but I
1004 don't see any other way to accomplish the same thing without
1005 changing obj-elf.c (which may be the Right Thing, in the end). */
1006 static void
1007 set_section (name)
1008 char *name;
1009 {
1010 char *saved_input_line_pointer;
1011
1012 saved_input_line_pointer = input_line_pointer;
1013 input_line_pointer = name;
1014 obj_elf_section (0);
1015 input_line_pointer = saved_input_line_pointer;
1016 }
1017
1018 /* Map 's' to SHF_IA_64_SHORT. */
1019
1020 int
1021 ia64_elf_section_letter (letter, ptr_msg)
1022 int letter;
1023 char **ptr_msg;
1024 {
1025 if (letter == 's')
1026 return SHF_IA_64_SHORT;
1027 else if (letter == 'o')
1028 return SHF_LINK_ORDER;
1029
1030 *ptr_msg = _("Bad .section directive: want a,o,s,w,x,M,S,G,T in string");
1031 return -1;
1032 }
1033
1034 /* Map SHF_IA_64_SHORT to SEC_SMALL_DATA. */
1035
1036 flagword
1037 ia64_elf_section_flags (flags, attr, type)
1038 flagword flags;
1039 int attr, type ATTRIBUTE_UNUSED;
1040 {
1041 if (attr & SHF_IA_64_SHORT)
1042 flags |= SEC_SMALL_DATA;
1043 return flags;
1044 }
1045
1046 int
1047 ia64_elf_section_type (str, len)
1048 const char *str;
1049 size_t len;
1050 {
1051 #define STREQ(s) ((len == sizeof (s) - 1) && (strncmp (str, s, sizeof (s) - 1) == 0))
1052
1053 if (STREQ (ELF_STRING_ia64_unwind_info))
1054 return SHT_PROGBITS;
1055
1056 if (STREQ (ELF_STRING_ia64_unwind_info_once))
1057 return SHT_PROGBITS;
1058
1059 if (STREQ (ELF_STRING_ia64_unwind))
1060 return SHT_IA_64_UNWIND;
1061
1062 if (STREQ (ELF_STRING_ia64_unwind_once))
1063 return SHT_IA_64_UNWIND;
1064
1065 if (STREQ ("unwind"))
1066 return SHT_IA_64_UNWIND;
1067
1068 return -1;
1069 #undef STREQ
1070 }
1071
1072 static unsigned int
1073 set_regstack (ins, locs, outs, rots)
1074 unsigned int ins, locs, outs, rots;
1075 {
1076 /* Size of frame. */
1077 unsigned int sof;
1078
1079 sof = ins + locs + outs;
1080 if (sof > 96)
1081 {
1082 as_bad ("Size of frame exceeds maximum of 96 registers");
1083 return 0;
1084 }
1085 if (rots > sof)
1086 {
1087 as_warn ("Size of rotating registers exceeds frame size");
1088 return 0;
1089 }
1090 md.in.base = REG_GR + 32;
1091 md.loc.base = md.in.base + ins;
1092 md.out.base = md.loc.base + locs;
1093
1094 md.in.num_regs = ins;
1095 md.loc.num_regs = locs;
1096 md.out.num_regs = outs;
1097 md.rot.num_regs = rots;
1098 return sof;
1099 }
1100
1101 void
1102 ia64_flush_insns ()
1103 {
1104 struct label_fix *lfix;
1105 segT saved_seg;
1106 subsegT saved_subseg;
1107 unw_rec_list *ptr;
1108 bfd_boolean mark;
1109
1110 if (!md.last_text_seg)
1111 return;
1112
1113 saved_seg = now_seg;
1114 saved_subseg = now_subseg;
1115
1116 subseg_set (md.last_text_seg, 0);
1117
1118 while (md.num_slots_in_use > 0)
1119 emit_one_bundle (); /* force out queued instructions */
1120
1121 /* In case there are labels following the last instruction, resolve
1122 those now. */
1123 mark = FALSE;
1124 for (lfix = CURR_SLOT.label_fixups; lfix; lfix = lfix->next)
1125 {
1126 symbol_set_value_now (lfix->sym);
1127 mark |= lfix->dw2_mark_labels;
1128 }
1129 if (mark)
1130 {
1131 dwarf2_where (&CURR_SLOT.debug_line);
1132 CURR_SLOT.debug_line.flags |= DWARF2_FLAG_BASIC_BLOCK;
1133 dwarf2_gen_line_info (frag_now_fix (), &CURR_SLOT.debug_line);
1134 }
1135 CURR_SLOT.label_fixups = 0;
1136
1137 for (lfix = CURR_SLOT.tag_fixups; lfix; lfix = lfix->next)
1138 symbol_set_value_now (lfix->sym);
1139 CURR_SLOT.tag_fixups = 0;
1140
1141 /* In case there are unwind directives following the last instruction,
1142 resolve those now. We only handle prologue, body, and endp directives
1143 here. Give an error for others. */
1144 for (ptr = unwind.current_entry; ptr; ptr = ptr->next)
1145 {
1146 switch (ptr->r.type)
1147 {
1148 case prologue:
1149 case prologue_gr:
1150 case body:
1151 case endp:
1152 ptr->slot_number = (unsigned long) frag_more (0);
1153 ptr->slot_frag = frag_now;
1154 break;
1155
1156 /* Allow any record which doesn't have a "t" field (i.e.,
1157 doesn't relate to a particular instruction). */
1158 case unwabi:
1159 case br_gr:
1160 case copy_state:
1161 case fr_mem:
1162 case frgr_mem:
1163 case gr_gr:
1164 case gr_mem:
1165 case label_state:
1166 case rp_br:
1167 case spill_base:
1168 case spill_mask:
1169 /* nothing */
1170 break;
1171
1172 default:
1173 as_bad (_("Unwind directive not followed by an instruction."));
1174 break;
1175 }
1176 }
1177 unwind.current_entry = NULL;
1178
1179 subseg_set (saved_seg, saved_subseg);
1180
1181 if (md.qp.X_op == O_register)
1182 as_bad ("qualifying predicate not followed by instruction");
1183 }
1184
1185 static void
1186 ia64_do_align (int nbytes)
1187 {
1188 char *saved_input_line_pointer = input_line_pointer;
1189
1190 input_line_pointer = "";
1191 s_align_bytes (nbytes);
1192 input_line_pointer = saved_input_line_pointer;
1193 }
1194
1195 void
1196 ia64_cons_align (nbytes)
1197 int nbytes;
1198 {
1199 if (md.auto_align)
1200 {
1201 char *saved_input_line_pointer = input_line_pointer;
1202 input_line_pointer = "";
1203 s_align_bytes (nbytes);
1204 input_line_pointer = saved_input_line_pointer;
1205 }
1206 }
1207
1208 /* Output COUNT bytes to a memory location. */
1209 static char *vbyte_mem_ptr = NULL;
1210
1211 void
1212 output_vbyte_mem (count, ptr, comment)
1213 int count;
1214 char *ptr;
1215 char *comment ATTRIBUTE_UNUSED;
1216 {
1217 int x;
1218 if (vbyte_mem_ptr == NULL)
1219 abort ();
1220
1221 if (count == 0)
1222 return;
1223 for (x = 0; x < count; x++)
1224 *(vbyte_mem_ptr++) = ptr[x];
1225 }
1226
1227 /* Count the number of bytes required for records. */
1228 static int vbyte_count = 0;
1229 void
1230 count_output (count, ptr, comment)
1231 int count;
1232 char *ptr ATTRIBUTE_UNUSED;
1233 char *comment ATTRIBUTE_UNUSED;
1234 {
1235 vbyte_count += count;
1236 }
1237
1238 static void
1239 output_R1_format (f, rtype, rlen)
1240 vbyte_func f;
1241 unw_record_type rtype;
1242 int rlen;
1243 {
1244 int r = 0;
1245 char byte;
1246 if (rlen > 0x1f)
1247 {
1248 output_R3_format (f, rtype, rlen);
1249 return;
1250 }
1251
1252 if (rtype == body)
1253 r = 1;
1254 else if (rtype != prologue)
1255 as_bad ("record type is not valid");
1256
1257 byte = UNW_R1 | (r << 5) | (rlen & 0x1f);
1258 (*f) (1, &byte, NULL);
1259 }
1260
1261 static void
1262 output_R2_format (f, mask, grsave, rlen)
1263 vbyte_func f;
1264 int mask, grsave;
1265 unsigned long rlen;
1266 {
1267 char bytes[20];
1268 int count = 2;
1269 mask = (mask & 0x0f);
1270 grsave = (grsave & 0x7f);
1271
1272 bytes[0] = (UNW_R2 | (mask >> 1));
1273 bytes[1] = (((mask & 0x01) << 7) | grsave);
1274 count += output_leb128 (bytes + 2, rlen, 0);
1275 (*f) (count, bytes, NULL);
1276 }
1277
1278 static void
1279 output_R3_format (f, rtype, rlen)
1280 vbyte_func f;
1281 unw_record_type rtype;
1282 unsigned long rlen;
1283 {
1284 int r = 0, count;
1285 char bytes[20];
1286 if (rlen <= 0x1f)
1287 {
1288 output_R1_format (f, rtype, rlen);
1289 return;
1290 }
1291
1292 if (rtype == body)
1293 r = 1;
1294 else if (rtype != prologue)
1295 as_bad ("record type is not valid");
1296 bytes[0] = (UNW_R3 | r);
1297 count = output_leb128 (bytes + 1, rlen, 0);
1298 (*f) (count + 1, bytes, NULL);
1299 }
1300
1301 static void
1302 output_P1_format (f, brmask)
1303 vbyte_func f;
1304 int brmask;
1305 {
1306 char byte;
1307 byte = UNW_P1 | (brmask & 0x1f);
1308 (*f) (1, &byte, NULL);
1309 }
1310
1311 static void
1312 output_P2_format (f, brmask, gr)
1313 vbyte_func f;
1314 int brmask;
1315 int gr;
1316 {
1317 char bytes[2];
1318 brmask = (brmask & 0x1f);
1319 bytes[0] = UNW_P2 | (brmask >> 1);
1320 bytes[1] = (((brmask & 1) << 7) | gr);
1321 (*f) (2, bytes, NULL);
1322 }
1323
1324 static void
1325 output_P3_format (f, rtype, reg)
1326 vbyte_func f;
1327 unw_record_type rtype;
1328 int reg;
1329 {
1330 char bytes[2];
1331 int r = 0;
1332 reg = (reg & 0x7f);
1333 switch (rtype)
1334 {
1335 case psp_gr:
1336 r = 0;
1337 break;
1338 case rp_gr:
1339 r = 1;
1340 break;
1341 case pfs_gr:
1342 r = 2;
1343 break;
1344 case preds_gr:
1345 r = 3;
1346 break;
1347 case unat_gr:
1348 r = 4;
1349 break;
1350 case lc_gr:
1351 r = 5;
1352 break;
1353 case rp_br:
1354 r = 6;
1355 break;
1356 case rnat_gr:
1357 r = 7;
1358 break;
1359 case bsp_gr:
1360 r = 8;
1361 break;
1362 case bspstore_gr:
1363 r = 9;
1364 break;
1365 case fpsr_gr:
1366 r = 10;
1367 break;
1368 case priunat_gr:
1369 r = 11;
1370 break;
1371 default:
1372 as_bad ("Invalid record type for P3 format.");
1373 }
1374 bytes[0] = (UNW_P3 | (r >> 1));
1375 bytes[1] = (((r & 1) << 7) | reg);
1376 (*f) (2, bytes, NULL);
1377 }
1378
1379 static void
1380 output_P4_format (f, imask, imask_size)
1381 vbyte_func f;
1382 unsigned char *imask;
1383 unsigned long imask_size;
1384 {
1385 imask[0] = UNW_P4;
1386 (*f) (imask_size, (char *) imask, NULL);
1387 }
1388
1389 static void
1390 output_P5_format (f, grmask, frmask)
1391 vbyte_func f;
1392 int grmask;
1393 unsigned long frmask;
1394 {
1395 char bytes[4];
1396 grmask = (grmask & 0x0f);
1397
1398 bytes[0] = UNW_P5;
1399 bytes[1] = ((grmask << 4) | ((frmask & 0x000f0000) >> 16));
1400 bytes[2] = ((frmask & 0x0000ff00) >> 8);
1401 bytes[3] = (frmask & 0x000000ff);
1402 (*f) (4, bytes, NULL);
1403 }
1404
1405 static void
1406 output_P6_format (f, rtype, rmask)
1407 vbyte_func f;
1408 unw_record_type rtype;
1409 int rmask;
1410 {
1411 char byte;
1412 int r = 0;
1413
1414 if (rtype == gr_mem)
1415 r = 1;
1416 else if (rtype != fr_mem)
1417 as_bad ("Invalid record type for format P6");
1418 byte = (UNW_P6 | (r << 4) | (rmask & 0x0f));
1419 (*f) (1, &byte, NULL);
1420 }
1421
1422 static void
1423 output_P7_format (f, rtype, w1, w2)
1424 vbyte_func f;
1425 unw_record_type rtype;
1426 unsigned long w1;
1427 unsigned long w2;
1428 {
1429 char bytes[20];
1430 int count = 1;
1431 int r = 0;
1432 count += output_leb128 (bytes + 1, w1, 0);
1433 switch (rtype)
1434 {
1435 case mem_stack_f:
1436 r = 0;
1437 count += output_leb128 (bytes + count, w2 >> 4, 0);
1438 break;
1439 case mem_stack_v:
1440 r = 1;
1441 break;
1442 case spill_base:
1443 r = 2;
1444 break;
1445 case psp_sprel:
1446 r = 3;
1447 break;
1448 case rp_when:
1449 r = 4;
1450 break;
1451 case rp_psprel:
1452 r = 5;
1453 break;
1454 case pfs_when:
1455 r = 6;
1456 break;
1457 case pfs_psprel:
1458 r = 7;
1459 break;
1460 case preds_when:
1461 r = 8;
1462 break;
1463 case preds_psprel:
1464 r = 9;
1465 break;
1466 case lc_when:
1467 r = 10;
1468 break;
1469 case lc_psprel:
1470 r = 11;
1471 break;
1472 case unat_when:
1473 r = 12;
1474 break;
1475 case unat_psprel:
1476 r = 13;
1477 break;
1478 case fpsr_when:
1479 r = 14;
1480 break;
1481 case fpsr_psprel:
1482 r = 15;
1483 break;
1484 default:
1485 break;
1486 }
1487 bytes[0] = (UNW_P7 | r);
1488 (*f) (count, bytes, NULL);
1489 }
1490
1491 static void
1492 output_P8_format (f, rtype, t)
1493 vbyte_func f;
1494 unw_record_type rtype;
1495 unsigned long t;
1496 {
1497 char bytes[20];
1498 int r = 0;
1499 int count = 2;
1500 bytes[0] = UNW_P8;
1501 switch (rtype)
1502 {
1503 case rp_sprel:
1504 r = 1;
1505 break;
1506 case pfs_sprel:
1507 r = 2;
1508 break;
1509 case preds_sprel:
1510 r = 3;
1511 break;
1512 case lc_sprel:
1513 r = 4;
1514 break;
1515 case unat_sprel:
1516 r = 5;
1517 break;
1518 case fpsr_sprel:
1519 r = 6;
1520 break;
1521 case bsp_when:
1522 r = 7;
1523 break;
1524 case bsp_psprel:
1525 r = 8;
1526 break;
1527 case bsp_sprel:
1528 r = 9;
1529 break;
1530 case bspstore_when:
1531 r = 10;
1532 break;
1533 case bspstore_psprel:
1534 r = 11;
1535 break;
1536 case bspstore_sprel:
1537 r = 12;
1538 break;
1539 case rnat_when:
1540 r = 13;
1541 break;
1542 case rnat_psprel:
1543 r = 14;
1544 break;
1545 case rnat_sprel:
1546 r = 15;
1547 break;
1548 case priunat_when_gr:
1549 r = 16;
1550 break;
1551 case priunat_psprel:
1552 r = 17;
1553 break;
1554 case priunat_sprel:
1555 r = 18;
1556 break;
1557 case priunat_when_mem:
1558 r = 19;
1559 break;
1560 default:
1561 break;
1562 }
1563 bytes[1] = r;
1564 count += output_leb128 (bytes + 2, t, 0);
1565 (*f) (count, bytes, NULL);
1566 }
1567
1568 static void
1569 output_P9_format (f, grmask, gr)
1570 vbyte_func f;
1571 int grmask;
1572 int gr;
1573 {
1574 char bytes[3];
1575 bytes[0] = UNW_P9;
1576 bytes[1] = (grmask & 0x0f);
1577 bytes[2] = (gr & 0x7f);
1578 (*f) (3, bytes, NULL);
1579 }
1580
1581 static void
1582 output_P10_format (f, abi, context)
1583 vbyte_func f;
1584 int abi;
1585 int context;
1586 {
1587 char bytes[3];
1588 bytes[0] = UNW_P10;
1589 bytes[1] = (abi & 0xff);
1590 bytes[2] = (context & 0xff);
1591 (*f) (3, bytes, NULL);
1592 }
1593
1594 static void
1595 output_B1_format (f, rtype, label)
1596 vbyte_func f;
1597 unw_record_type rtype;
1598 unsigned long label;
1599 {
1600 char byte;
1601 int r = 0;
1602 if (label > 0x1f)
1603 {
1604 output_B4_format (f, rtype, label);
1605 return;
1606 }
1607 if (rtype == copy_state)
1608 r = 1;
1609 else if (rtype != label_state)
1610 as_bad ("Invalid record type for format B1");
1611
1612 byte = (UNW_B1 | (r << 5) | (label & 0x1f));
1613 (*f) (1, &byte, NULL);
1614 }
1615
1616 static void
1617 output_B2_format (f, ecount, t)
1618 vbyte_func f;
1619 unsigned long ecount;
1620 unsigned long t;
1621 {
1622 char bytes[20];
1623 int count = 1;
1624 if (ecount > 0x1f)
1625 {
1626 output_B3_format (f, ecount, t);
1627 return;
1628 }
1629 bytes[0] = (UNW_B2 | (ecount & 0x1f));
1630 count += output_leb128 (bytes + 1, t, 0);
1631 (*f) (count, bytes, NULL);
1632 }
1633
1634 static void
1635 output_B3_format (f, ecount, t)
1636 vbyte_func f;
1637 unsigned long ecount;
1638 unsigned long t;
1639 {
1640 char bytes[20];
1641 int count = 1;
1642 if (ecount <= 0x1f)
1643 {
1644 output_B2_format (f, ecount, t);
1645 return;
1646 }
1647 bytes[0] = UNW_B3;
1648 count += output_leb128 (bytes + 1, t, 0);
1649 count += output_leb128 (bytes + count, ecount, 0);
1650 (*f) (count, bytes, NULL);
1651 }
1652
1653 static void
1654 output_B4_format (f, rtype, label)
1655 vbyte_func f;
1656 unw_record_type rtype;
1657 unsigned long label;
1658 {
1659 char bytes[20];
1660 int r = 0;
1661 int count = 1;
1662 if (label <= 0x1f)
1663 {
1664 output_B1_format (f, rtype, label);
1665 return;
1666 }
1667
1668 if (rtype == copy_state)
1669 r = 1;
1670 else if (rtype != label_state)
1671 as_bad ("Invalid record type for format B1");
1672
1673 bytes[0] = (UNW_B4 | (r << 3));
1674 count += output_leb128 (bytes + 1, label, 0);
1675 (*f) (count, bytes, NULL);
1676 }
1677
1678 static char
1679 format_ab_reg (ab, reg)
1680 int ab;
1681 int reg;
1682 {
1683 int ret;
1684 ab = (ab & 3);
1685 reg = (reg & 0x1f);
1686 ret = (ab << 5) | reg;
1687 return ret;
1688 }
1689
1690 static void
1691 output_X1_format (f, rtype, ab, reg, t, w1)
1692 vbyte_func f;
1693 unw_record_type rtype;
1694 int ab, reg;
1695 unsigned long t;
1696 unsigned long w1;
1697 {
1698 char bytes[20];
1699 int r = 0;
1700 int count = 2;
1701 bytes[0] = UNW_X1;
1702
1703 if (rtype == spill_sprel)
1704 r = 1;
1705 else if (rtype != spill_psprel)
1706 as_bad ("Invalid record type for format X1");
1707 bytes[1] = ((r << 7) | format_ab_reg (ab, reg));
1708 count += output_leb128 (bytes + 2, t, 0);
1709 count += output_leb128 (bytes + count, w1, 0);
1710 (*f) (count, bytes, NULL);
1711 }
1712
1713 static void
1714 output_X2_format (f, ab, reg, x, y, treg, t)
1715 vbyte_func f;
1716 int ab, reg;
1717 int x, y, treg;
1718 unsigned long t;
1719 {
1720 char bytes[20];
1721 int count = 3;
1722 bytes[0] = UNW_X2;
1723 bytes[1] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1724 bytes[2] = (((y & 1) << 7) | (treg & 0x7f));
1725 count += output_leb128 (bytes + 3, t, 0);
1726 (*f) (count, bytes, NULL);
1727 }
1728
1729 static void
1730 output_X3_format (f, rtype, qp, ab, reg, t, w1)
1731 vbyte_func f;
1732 unw_record_type rtype;
1733 int qp;
1734 int ab, reg;
1735 unsigned long t;
1736 unsigned long w1;
1737 {
1738 char bytes[20];
1739 int r = 0;
1740 int count = 3;
1741 bytes[0] = UNW_X3;
1742
1743 if (rtype == spill_sprel_p)
1744 r = 1;
1745 else if (rtype != spill_psprel_p)
1746 as_bad ("Invalid record type for format X3");
1747 bytes[1] = ((r << 7) | (qp & 0x3f));
1748 bytes[2] = format_ab_reg (ab, reg);
1749 count += output_leb128 (bytes + 3, t, 0);
1750 count += output_leb128 (bytes + count, w1, 0);
1751 (*f) (count, bytes, NULL);
1752 }
1753
1754 static void
1755 output_X4_format (f, qp, ab, reg, x, y, treg, t)
1756 vbyte_func f;
1757 int qp;
1758 int ab, reg;
1759 int x, y, treg;
1760 unsigned long t;
1761 {
1762 char bytes[20];
1763 int count = 4;
1764 bytes[0] = UNW_X4;
1765 bytes[1] = (qp & 0x3f);
1766 bytes[2] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1767 bytes[3] = (((y & 1) << 7) | (treg & 0x7f));
1768 count += output_leb128 (bytes + 4, t, 0);
1769 (*f) (count, bytes, NULL);
1770 }
1771
1772 /* This function checks whether there are any outstanding .save-s and
1773 discards them if so. */
1774
1775 static void
1776 check_pending_save (void)
1777 {
1778 if (unwind.pending_saves)
1779 {
1780 unw_rec_list *cur, *prev;
1781
1782 as_warn ("Previous .save incomplete");
1783 for (cur = unwind.list, prev = NULL; cur; )
1784 if (&cur->r.record.p == unwind.pending_saves)
1785 {
1786 if (prev)
1787 prev->next = cur->next;
1788 else
1789 unwind.list = cur->next;
1790 if (cur == unwind.tail)
1791 unwind.tail = prev;
1792 if (cur == unwind.current_entry)
1793 unwind.current_entry = cur->next;
1794 /* Don't free the first discarded record, it's being used as
1795 terminator for (currently) br_gr and gr_gr processing, and
1796 also prevents leaving a dangling pointer to it in its
1797 predecessor. */
1798 cur->r.record.p.grmask = 0;
1799 cur->r.record.p.brmask = 0;
1800 cur->r.record.p.frmask = 0;
1801 prev = cur->r.record.p.next;
1802 cur->r.record.p.next = NULL;
1803 cur = prev;
1804 break;
1805 }
1806 else
1807 {
1808 prev = cur;
1809 cur = cur->next;
1810 }
1811 while (cur)
1812 {
1813 prev = cur;
1814 cur = cur->r.record.p.next;
1815 free (prev);
1816 }
1817 unwind.pending_saves = NULL;
1818 }
1819 }
1820
1821 /* This function allocates a record list structure, and initializes fields. */
1822
1823 static unw_rec_list *
1824 alloc_record (unw_record_type t)
1825 {
1826 unw_rec_list *ptr;
1827 ptr = xmalloc (sizeof (*ptr));
1828 memset (ptr, 0, sizeof (*ptr));
1829 ptr->slot_number = SLOT_NUM_NOT_SET;
1830 ptr->r.type = t;
1831 return ptr;
1832 }
1833
1834 /* Dummy unwind record used for calculating the length of the last prologue or
1835 body region. */
1836
1837 static unw_rec_list *
1838 output_endp ()
1839 {
1840 unw_rec_list *ptr = alloc_record (endp);
1841 return ptr;
1842 }
1843
1844 static unw_rec_list *
1845 output_prologue ()
1846 {
1847 unw_rec_list *ptr = alloc_record (prologue);
1848 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1849 return ptr;
1850 }
1851
1852 static unw_rec_list *
1853 output_prologue_gr (saved_mask, reg)
1854 unsigned int saved_mask;
1855 unsigned int reg;
1856 {
1857 unw_rec_list *ptr = alloc_record (prologue_gr);
1858 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1859 ptr->r.record.r.grmask = saved_mask;
1860 ptr->r.record.r.grsave = reg;
1861 return ptr;
1862 }
1863
1864 static unw_rec_list *
1865 output_body ()
1866 {
1867 unw_rec_list *ptr = alloc_record (body);
1868 return ptr;
1869 }
1870
1871 static unw_rec_list *
1872 output_mem_stack_f (size)
1873 unsigned int size;
1874 {
1875 unw_rec_list *ptr = alloc_record (mem_stack_f);
1876 ptr->r.record.p.size = size;
1877 return ptr;
1878 }
1879
1880 static unw_rec_list *
1881 output_mem_stack_v ()
1882 {
1883 unw_rec_list *ptr = alloc_record (mem_stack_v);
1884 return ptr;
1885 }
1886
1887 static unw_rec_list *
1888 output_psp_gr (gr)
1889 unsigned int gr;
1890 {
1891 unw_rec_list *ptr = alloc_record (psp_gr);
1892 ptr->r.record.p.r.gr = gr;
1893 return ptr;
1894 }
1895
1896 static unw_rec_list *
1897 output_psp_sprel (offset)
1898 unsigned int offset;
1899 {
1900 unw_rec_list *ptr = alloc_record (psp_sprel);
1901 ptr->r.record.p.off.sp = offset / 4;
1902 return ptr;
1903 }
1904
1905 static unw_rec_list *
1906 output_rp_when ()
1907 {
1908 unw_rec_list *ptr = alloc_record (rp_when);
1909 return ptr;
1910 }
1911
1912 static unw_rec_list *
1913 output_rp_gr (gr)
1914 unsigned int gr;
1915 {
1916 unw_rec_list *ptr = alloc_record (rp_gr);
1917 ptr->r.record.p.r.gr = gr;
1918 return ptr;
1919 }
1920
1921 static unw_rec_list *
1922 output_rp_br (br)
1923 unsigned int br;
1924 {
1925 unw_rec_list *ptr = alloc_record (rp_br);
1926 ptr->r.record.p.r.br = br;
1927 return ptr;
1928 }
1929
1930 static unw_rec_list *
1931 output_rp_psprel (offset)
1932 unsigned int offset;
1933 {
1934 unw_rec_list *ptr = alloc_record (rp_psprel);
1935 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1936 return ptr;
1937 }
1938
1939 static unw_rec_list *
1940 output_rp_sprel (offset)
1941 unsigned int offset;
1942 {
1943 unw_rec_list *ptr = alloc_record (rp_sprel);
1944 ptr->r.record.p.off.sp = offset / 4;
1945 return ptr;
1946 }
1947
1948 static unw_rec_list *
1949 output_pfs_when ()
1950 {
1951 unw_rec_list *ptr = alloc_record (pfs_when);
1952 return ptr;
1953 }
1954
1955 static unw_rec_list *
1956 output_pfs_gr (gr)
1957 unsigned int gr;
1958 {
1959 unw_rec_list *ptr = alloc_record (pfs_gr);
1960 ptr->r.record.p.r.gr = gr;
1961 return ptr;
1962 }
1963
1964 static unw_rec_list *
1965 output_pfs_psprel (offset)
1966 unsigned int offset;
1967 {
1968 unw_rec_list *ptr = alloc_record (pfs_psprel);
1969 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1970 return ptr;
1971 }
1972
1973 static unw_rec_list *
1974 output_pfs_sprel (offset)
1975 unsigned int offset;
1976 {
1977 unw_rec_list *ptr = alloc_record (pfs_sprel);
1978 ptr->r.record.p.off.sp = offset / 4;
1979 return ptr;
1980 }
1981
1982 static unw_rec_list *
1983 output_preds_when ()
1984 {
1985 unw_rec_list *ptr = alloc_record (preds_when);
1986 return ptr;
1987 }
1988
1989 static unw_rec_list *
1990 output_preds_gr (gr)
1991 unsigned int gr;
1992 {
1993 unw_rec_list *ptr = alloc_record (preds_gr);
1994 ptr->r.record.p.r.gr = gr;
1995 return ptr;
1996 }
1997
1998 static unw_rec_list *
1999 output_preds_psprel (offset)
2000 unsigned int offset;
2001 {
2002 unw_rec_list *ptr = alloc_record (preds_psprel);
2003 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2004 return ptr;
2005 }
2006
2007 static unw_rec_list *
2008 output_preds_sprel (offset)
2009 unsigned int offset;
2010 {
2011 unw_rec_list *ptr = alloc_record (preds_sprel);
2012 ptr->r.record.p.off.sp = offset / 4;
2013 return ptr;
2014 }
2015
2016 static unw_rec_list *
2017 output_fr_mem (mask)
2018 unsigned int mask;
2019 {
2020 unw_rec_list *ptr = alloc_record (fr_mem);
2021 unw_rec_list *cur = ptr;
2022
2023 ptr->r.record.p.frmask = mask;
2024 unwind.pending_saves = &ptr->r.record.p;
2025 for (;;)
2026 {
2027 unw_rec_list *prev = cur;
2028
2029 /* Clear least significant set bit. */
2030 mask &= ~(mask & (~mask + 1));
2031 if (!mask)
2032 return ptr;
2033 cur = alloc_record (fr_mem);
2034 cur->r.record.p.frmask = mask;
2035 /* Retain only least significant bit. */
2036 prev->r.record.p.frmask ^= mask;
2037 prev->r.record.p.next = cur;
2038 }
2039 }
2040
2041 static unw_rec_list *
2042 output_frgr_mem (gr_mask, fr_mask)
2043 unsigned int gr_mask;
2044 unsigned int fr_mask;
2045 {
2046 unw_rec_list *ptr = alloc_record (frgr_mem);
2047 unw_rec_list *cur = ptr;
2048
2049 unwind.pending_saves = &cur->r.record.p;
2050 cur->r.record.p.frmask = fr_mask;
2051 while (fr_mask)
2052 {
2053 unw_rec_list *prev = cur;
2054
2055 /* Clear least significant set bit. */
2056 fr_mask &= ~(fr_mask & (~fr_mask + 1));
2057 if (!gr_mask && !fr_mask)
2058 return ptr;
2059 cur = alloc_record (frgr_mem);
2060 cur->r.record.p.frmask = fr_mask;
2061 /* Retain only least significant bit. */
2062 prev->r.record.p.frmask ^= fr_mask;
2063 prev->r.record.p.next = cur;
2064 }
2065 cur->r.record.p.grmask = gr_mask;
2066 for (;;)
2067 {
2068 unw_rec_list *prev = cur;
2069
2070 /* Clear least significant set bit. */
2071 gr_mask &= ~(gr_mask & (~gr_mask + 1));
2072 if (!gr_mask)
2073 return ptr;
2074 cur = alloc_record (frgr_mem);
2075 cur->r.record.p.grmask = gr_mask;
2076 /* Retain only least significant bit. */
2077 prev->r.record.p.grmask ^= gr_mask;
2078 prev->r.record.p.next = cur;
2079 }
2080 }
2081
2082 static unw_rec_list *
2083 output_gr_gr (mask, reg)
2084 unsigned int mask;
2085 unsigned int reg;
2086 {
2087 unw_rec_list *ptr = alloc_record (gr_gr);
2088 unw_rec_list *cur = ptr;
2089
2090 ptr->r.record.p.grmask = mask;
2091 ptr->r.record.p.r.gr = reg;
2092 unwind.pending_saves = &ptr->r.record.p;
2093 for (;;)
2094 {
2095 unw_rec_list *prev = cur;
2096
2097 /* Clear least significant set bit. */
2098 mask &= ~(mask & (~mask + 1));
2099 if (!mask)
2100 return ptr;
2101 cur = alloc_record (gr_gr);
2102 cur->r.record.p.grmask = mask;
2103 /* Indicate this record shouldn't be output. */
2104 cur->r.record.p.r.gr = REG_NUM;
2105 /* Retain only least significant bit. */
2106 prev->r.record.p.grmask ^= mask;
2107 prev->r.record.p.next = cur;
2108 }
2109 }
2110
2111 static unw_rec_list *
2112 output_gr_mem (mask)
2113 unsigned int mask;
2114 {
2115 unw_rec_list *ptr = alloc_record (gr_mem);
2116 unw_rec_list *cur = ptr;
2117
2118 ptr->r.record.p.grmask = mask;
2119 unwind.pending_saves = &ptr->r.record.p;
2120 for (;;)
2121 {
2122 unw_rec_list *prev = cur;
2123
2124 /* Clear least significant set bit. */
2125 mask &= ~(mask & (~mask + 1));
2126 if (!mask)
2127 return ptr;
2128 cur = alloc_record (gr_mem);
2129 cur->r.record.p.grmask = mask;
2130 /* Retain only least significant bit. */
2131 prev->r.record.p.grmask ^= mask;
2132 prev->r.record.p.next = cur;
2133 }
2134 }
2135
2136 static unw_rec_list *
2137 output_br_mem (unsigned int mask)
2138 {
2139 unw_rec_list *ptr = alloc_record (br_mem);
2140 unw_rec_list *cur = ptr;
2141
2142 ptr->r.record.p.brmask = mask;
2143 unwind.pending_saves = &ptr->r.record.p;
2144 for (;;)
2145 {
2146 unw_rec_list *prev = cur;
2147
2148 /* Clear least significant set bit. */
2149 mask &= ~(mask & (~mask + 1));
2150 if (!mask)
2151 return ptr;
2152 cur = alloc_record (br_mem);
2153 cur->r.record.p.brmask = mask;
2154 /* Retain only least significant bit. */
2155 prev->r.record.p.brmask ^= mask;
2156 prev->r.record.p.next = cur;
2157 }
2158 }
2159
2160 static unw_rec_list *
2161 output_br_gr (mask, reg)
2162 unsigned int mask;
2163 unsigned int reg;
2164 {
2165 unw_rec_list *ptr = alloc_record (br_gr);
2166 unw_rec_list *cur = ptr;
2167
2168 ptr->r.record.p.brmask = mask;
2169 ptr->r.record.p.r.gr = reg;
2170 unwind.pending_saves = &ptr->r.record.p;
2171 for (;;)
2172 {
2173 unw_rec_list *prev = cur;
2174
2175 /* Clear least significant set bit. */
2176 mask &= ~(mask & (~mask + 1));
2177 if (!mask)
2178 return ptr;
2179 cur = alloc_record (br_gr);
2180 cur->r.record.p.brmask = mask;
2181 /* Indicate this record shouldn't be output. */
2182 cur->r.record.p.r.gr = REG_NUM;
2183 /* Retain only least significant bit. */
2184 prev->r.record.p.brmask ^= mask;
2185 prev->r.record.p.next = cur;
2186 }
2187 }
2188
2189 static unw_rec_list *
2190 output_spill_base (offset)
2191 unsigned int offset;
2192 {
2193 unw_rec_list *ptr = alloc_record (spill_base);
2194 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2195 return ptr;
2196 }
2197
2198 static unw_rec_list *
2199 output_unat_when ()
2200 {
2201 unw_rec_list *ptr = alloc_record (unat_when);
2202 return ptr;
2203 }
2204
2205 static unw_rec_list *
2206 output_unat_gr (gr)
2207 unsigned int gr;
2208 {
2209 unw_rec_list *ptr = alloc_record (unat_gr);
2210 ptr->r.record.p.r.gr = gr;
2211 return ptr;
2212 }
2213
2214 static unw_rec_list *
2215 output_unat_psprel (offset)
2216 unsigned int offset;
2217 {
2218 unw_rec_list *ptr = alloc_record (unat_psprel);
2219 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2220 return ptr;
2221 }
2222
2223 static unw_rec_list *
2224 output_unat_sprel (offset)
2225 unsigned int offset;
2226 {
2227 unw_rec_list *ptr = alloc_record (unat_sprel);
2228 ptr->r.record.p.off.sp = offset / 4;
2229 return ptr;
2230 }
2231
2232 static unw_rec_list *
2233 output_lc_when ()
2234 {
2235 unw_rec_list *ptr = alloc_record (lc_when);
2236 return ptr;
2237 }
2238
2239 static unw_rec_list *
2240 output_lc_gr (gr)
2241 unsigned int gr;
2242 {
2243 unw_rec_list *ptr = alloc_record (lc_gr);
2244 ptr->r.record.p.r.gr = gr;
2245 return ptr;
2246 }
2247
2248 static unw_rec_list *
2249 output_lc_psprel (offset)
2250 unsigned int offset;
2251 {
2252 unw_rec_list *ptr = alloc_record (lc_psprel);
2253 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2254 return ptr;
2255 }
2256
2257 static unw_rec_list *
2258 output_lc_sprel (offset)
2259 unsigned int offset;
2260 {
2261 unw_rec_list *ptr = alloc_record (lc_sprel);
2262 ptr->r.record.p.off.sp = offset / 4;
2263 return ptr;
2264 }
2265
2266 static unw_rec_list *
2267 output_fpsr_when ()
2268 {
2269 unw_rec_list *ptr = alloc_record (fpsr_when);
2270 return ptr;
2271 }
2272
2273 static unw_rec_list *
2274 output_fpsr_gr (gr)
2275 unsigned int gr;
2276 {
2277 unw_rec_list *ptr = alloc_record (fpsr_gr);
2278 ptr->r.record.p.r.gr = gr;
2279 return ptr;
2280 }
2281
2282 static unw_rec_list *
2283 output_fpsr_psprel (offset)
2284 unsigned int offset;
2285 {
2286 unw_rec_list *ptr = alloc_record (fpsr_psprel);
2287 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2288 return ptr;
2289 }
2290
2291 static unw_rec_list *
2292 output_fpsr_sprel (offset)
2293 unsigned int offset;
2294 {
2295 unw_rec_list *ptr = alloc_record (fpsr_sprel);
2296 ptr->r.record.p.off.sp = offset / 4;
2297 return ptr;
2298 }
2299
2300 static unw_rec_list *
2301 output_priunat_when_gr ()
2302 {
2303 unw_rec_list *ptr = alloc_record (priunat_when_gr);
2304 return ptr;
2305 }
2306
2307 static unw_rec_list *
2308 output_priunat_when_mem ()
2309 {
2310 unw_rec_list *ptr = alloc_record (priunat_when_mem);
2311 return ptr;
2312 }
2313
2314 static unw_rec_list *
2315 output_priunat_gr (gr)
2316 unsigned int gr;
2317 {
2318 unw_rec_list *ptr = alloc_record (priunat_gr);
2319 ptr->r.record.p.r.gr = gr;
2320 return ptr;
2321 }
2322
2323 static unw_rec_list *
2324 output_priunat_psprel (offset)
2325 unsigned int offset;
2326 {
2327 unw_rec_list *ptr = alloc_record (priunat_psprel);
2328 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2329 return ptr;
2330 }
2331
2332 static unw_rec_list *
2333 output_priunat_sprel (offset)
2334 unsigned int offset;
2335 {
2336 unw_rec_list *ptr = alloc_record (priunat_sprel);
2337 ptr->r.record.p.off.sp = offset / 4;
2338 return ptr;
2339 }
2340
2341 static unw_rec_list *
2342 output_bsp_when ()
2343 {
2344 unw_rec_list *ptr = alloc_record (bsp_when);
2345 return ptr;
2346 }
2347
2348 static unw_rec_list *
2349 output_bsp_gr (gr)
2350 unsigned int gr;
2351 {
2352 unw_rec_list *ptr = alloc_record (bsp_gr);
2353 ptr->r.record.p.r.gr = gr;
2354 return ptr;
2355 }
2356
2357 static unw_rec_list *
2358 output_bsp_psprel (offset)
2359 unsigned int offset;
2360 {
2361 unw_rec_list *ptr = alloc_record (bsp_psprel);
2362 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2363 return ptr;
2364 }
2365
2366 static unw_rec_list *
2367 output_bsp_sprel (offset)
2368 unsigned int offset;
2369 {
2370 unw_rec_list *ptr = alloc_record (bsp_sprel);
2371 ptr->r.record.p.off.sp = offset / 4;
2372 return ptr;
2373 }
2374
2375 static unw_rec_list *
2376 output_bspstore_when ()
2377 {
2378 unw_rec_list *ptr = alloc_record (bspstore_when);
2379 return ptr;
2380 }
2381
2382 static unw_rec_list *
2383 output_bspstore_gr (gr)
2384 unsigned int gr;
2385 {
2386 unw_rec_list *ptr = alloc_record (bspstore_gr);
2387 ptr->r.record.p.r.gr = gr;
2388 return ptr;
2389 }
2390
2391 static unw_rec_list *
2392 output_bspstore_psprel (offset)
2393 unsigned int offset;
2394 {
2395 unw_rec_list *ptr = alloc_record (bspstore_psprel);
2396 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2397 return ptr;
2398 }
2399
2400 static unw_rec_list *
2401 output_bspstore_sprel (offset)
2402 unsigned int offset;
2403 {
2404 unw_rec_list *ptr = alloc_record (bspstore_sprel);
2405 ptr->r.record.p.off.sp = offset / 4;
2406 return ptr;
2407 }
2408
2409 static unw_rec_list *
2410 output_rnat_when ()
2411 {
2412 unw_rec_list *ptr = alloc_record (rnat_when);
2413 return ptr;
2414 }
2415
2416 static unw_rec_list *
2417 output_rnat_gr (gr)
2418 unsigned int gr;
2419 {
2420 unw_rec_list *ptr = alloc_record (rnat_gr);
2421 ptr->r.record.p.r.gr = gr;
2422 return ptr;
2423 }
2424
2425 static unw_rec_list *
2426 output_rnat_psprel (offset)
2427 unsigned int offset;
2428 {
2429 unw_rec_list *ptr = alloc_record (rnat_psprel);
2430 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2431 return ptr;
2432 }
2433
2434 static unw_rec_list *
2435 output_rnat_sprel (offset)
2436 unsigned int offset;
2437 {
2438 unw_rec_list *ptr = alloc_record (rnat_sprel);
2439 ptr->r.record.p.off.sp = offset / 4;
2440 return ptr;
2441 }
2442
2443 static unw_rec_list *
2444 output_unwabi (abi, context)
2445 unsigned long abi;
2446 unsigned long context;
2447 {
2448 unw_rec_list *ptr = alloc_record (unwabi);
2449 ptr->r.record.p.abi = abi;
2450 ptr->r.record.p.context = context;
2451 return ptr;
2452 }
2453
2454 static unw_rec_list *
2455 output_epilogue (unsigned long ecount)
2456 {
2457 unw_rec_list *ptr = alloc_record (epilogue);
2458 ptr->r.record.b.ecount = ecount;
2459 return ptr;
2460 }
2461
2462 static unw_rec_list *
2463 output_label_state (unsigned long label)
2464 {
2465 unw_rec_list *ptr = alloc_record (label_state);
2466 ptr->r.record.b.label = label;
2467 return ptr;
2468 }
2469
2470 static unw_rec_list *
2471 output_copy_state (unsigned long label)
2472 {
2473 unw_rec_list *ptr = alloc_record (copy_state);
2474 ptr->r.record.b.label = label;
2475 return ptr;
2476 }
2477
2478 static unw_rec_list *
2479 output_spill_psprel (ab, reg, offset, predicate)
2480 unsigned int ab;
2481 unsigned int reg;
2482 unsigned int offset;
2483 unsigned int predicate;
2484 {
2485 unw_rec_list *ptr = alloc_record (predicate ? spill_psprel_p : spill_psprel);
2486 ptr->r.record.x.ab = ab;
2487 ptr->r.record.x.reg = reg;
2488 ptr->r.record.x.where.pspoff = ENCODED_PSP_OFFSET (offset);
2489 ptr->r.record.x.qp = predicate;
2490 return ptr;
2491 }
2492
2493 static unw_rec_list *
2494 output_spill_sprel (ab, reg, offset, predicate)
2495 unsigned int ab;
2496 unsigned int reg;
2497 unsigned int offset;
2498 unsigned int predicate;
2499 {
2500 unw_rec_list *ptr = alloc_record (predicate ? spill_sprel_p : spill_sprel);
2501 ptr->r.record.x.ab = ab;
2502 ptr->r.record.x.reg = reg;
2503 ptr->r.record.x.where.spoff = offset / 4;
2504 ptr->r.record.x.qp = predicate;
2505 return ptr;
2506 }
2507
2508 static unw_rec_list *
2509 output_spill_reg (ab, reg, targ_reg, xy, predicate)
2510 unsigned int ab;
2511 unsigned int reg;
2512 unsigned int targ_reg;
2513 unsigned int xy;
2514 unsigned int predicate;
2515 {
2516 unw_rec_list *ptr = alloc_record (predicate ? spill_reg_p : spill_reg);
2517 ptr->r.record.x.ab = ab;
2518 ptr->r.record.x.reg = reg;
2519 ptr->r.record.x.where.reg = targ_reg;
2520 ptr->r.record.x.xy = xy;
2521 ptr->r.record.x.qp = predicate;
2522 return ptr;
2523 }
2524
2525 /* Given a unw_rec_list process the correct format with the
2526 specified function. */
2527
2528 static void
2529 process_one_record (ptr, f)
2530 unw_rec_list *ptr;
2531 vbyte_func f;
2532 {
2533 unsigned int fr_mask, gr_mask;
2534
2535 switch (ptr->r.type)
2536 {
2537 /* This is a dummy record that takes up no space in the output. */
2538 case endp:
2539 break;
2540
2541 case gr_mem:
2542 case fr_mem:
2543 case br_mem:
2544 case frgr_mem:
2545 /* These are taken care of by prologue/prologue_gr. */
2546 break;
2547
2548 case prologue_gr:
2549 case prologue:
2550 if (ptr->r.type == prologue_gr)
2551 output_R2_format (f, ptr->r.record.r.grmask,
2552 ptr->r.record.r.grsave, ptr->r.record.r.rlen);
2553 else
2554 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2555
2556 /* Output descriptor(s) for union of register spills (if any). */
2557 gr_mask = ptr->r.record.r.mask.gr_mem;
2558 fr_mask = ptr->r.record.r.mask.fr_mem;
2559 if (fr_mask)
2560 {
2561 if ((fr_mask & ~0xfUL) == 0)
2562 output_P6_format (f, fr_mem, fr_mask);
2563 else
2564 {
2565 output_P5_format (f, gr_mask, fr_mask);
2566 gr_mask = 0;
2567 }
2568 }
2569 if (gr_mask)
2570 output_P6_format (f, gr_mem, gr_mask);
2571 if (ptr->r.record.r.mask.br_mem)
2572 output_P1_format (f, ptr->r.record.r.mask.br_mem);
2573
2574 /* output imask descriptor if necessary: */
2575 if (ptr->r.record.r.mask.i)
2576 output_P4_format (f, ptr->r.record.r.mask.i,
2577 ptr->r.record.r.imask_size);
2578 break;
2579
2580 case body:
2581 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2582 break;
2583 case mem_stack_f:
2584 case mem_stack_v:
2585 output_P7_format (f, ptr->r.type, ptr->r.record.p.t,
2586 ptr->r.record.p.size);
2587 break;
2588 case psp_gr:
2589 case rp_gr:
2590 case pfs_gr:
2591 case preds_gr:
2592 case unat_gr:
2593 case lc_gr:
2594 case fpsr_gr:
2595 case priunat_gr:
2596 case bsp_gr:
2597 case bspstore_gr:
2598 case rnat_gr:
2599 output_P3_format (f, ptr->r.type, ptr->r.record.p.r.gr);
2600 break;
2601 case rp_br:
2602 output_P3_format (f, rp_br, ptr->r.record.p.r.br);
2603 break;
2604 case psp_sprel:
2605 output_P7_format (f, psp_sprel, ptr->r.record.p.off.sp, 0);
2606 break;
2607 case rp_when:
2608 case pfs_when:
2609 case preds_when:
2610 case unat_when:
2611 case lc_when:
2612 case fpsr_when:
2613 output_P7_format (f, ptr->r.type, ptr->r.record.p.t, 0);
2614 break;
2615 case rp_psprel:
2616 case pfs_psprel:
2617 case preds_psprel:
2618 case unat_psprel:
2619 case lc_psprel:
2620 case fpsr_psprel:
2621 case spill_base:
2622 output_P7_format (f, ptr->r.type, ptr->r.record.p.off.psp, 0);
2623 break;
2624 case rp_sprel:
2625 case pfs_sprel:
2626 case preds_sprel:
2627 case unat_sprel:
2628 case lc_sprel:
2629 case fpsr_sprel:
2630 case priunat_sprel:
2631 case bsp_sprel:
2632 case bspstore_sprel:
2633 case rnat_sprel:
2634 output_P8_format (f, ptr->r.type, ptr->r.record.p.off.sp);
2635 break;
2636 case gr_gr:
2637 if (ptr->r.record.p.r.gr < REG_NUM)
2638 {
2639 const unw_rec_list *cur = ptr;
2640
2641 gr_mask = cur->r.record.p.grmask;
2642 while ((cur = cur->r.record.p.next) != NULL)
2643 gr_mask |= cur->r.record.p.grmask;
2644 output_P9_format (f, gr_mask, ptr->r.record.p.r.gr);
2645 }
2646 break;
2647 case br_gr:
2648 if (ptr->r.record.p.r.gr < REG_NUM)
2649 {
2650 const unw_rec_list *cur = ptr;
2651
2652 gr_mask = cur->r.record.p.brmask;
2653 while ((cur = cur->r.record.p.next) != NULL)
2654 gr_mask |= cur->r.record.p.brmask;
2655 output_P2_format (f, gr_mask, ptr->r.record.p.r.gr);
2656 }
2657 break;
2658 case spill_mask:
2659 as_bad ("spill_mask record unimplemented.");
2660 break;
2661 case priunat_when_gr:
2662 case priunat_when_mem:
2663 case bsp_when:
2664 case bspstore_when:
2665 case rnat_when:
2666 output_P8_format (f, ptr->r.type, ptr->r.record.p.t);
2667 break;
2668 case priunat_psprel:
2669 case bsp_psprel:
2670 case bspstore_psprel:
2671 case rnat_psprel:
2672 output_P8_format (f, ptr->r.type, ptr->r.record.p.off.psp);
2673 break;
2674 case unwabi:
2675 output_P10_format (f, ptr->r.record.p.abi, ptr->r.record.p.context);
2676 break;
2677 case epilogue:
2678 output_B3_format (f, ptr->r.record.b.ecount, ptr->r.record.b.t);
2679 break;
2680 case label_state:
2681 case copy_state:
2682 output_B4_format (f, ptr->r.type, ptr->r.record.b.label);
2683 break;
2684 case spill_psprel:
2685 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2686 ptr->r.record.x.reg, ptr->r.record.x.t,
2687 ptr->r.record.x.where.pspoff);
2688 break;
2689 case spill_sprel:
2690 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2691 ptr->r.record.x.reg, ptr->r.record.x.t,
2692 ptr->r.record.x.where.spoff);
2693 break;
2694 case spill_reg:
2695 output_X2_format (f, ptr->r.record.x.ab, ptr->r.record.x.reg,
2696 ptr->r.record.x.xy >> 1, ptr->r.record.x.xy,
2697 ptr->r.record.x.where.reg, ptr->r.record.x.t);
2698 break;
2699 case spill_psprel_p:
2700 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2701 ptr->r.record.x.ab, ptr->r.record.x.reg,
2702 ptr->r.record.x.t, ptr->r.record.x.where.pspoff);
2703 break;
2704 case spill_sprel_p:
2705 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2706 ptr->r.record.x.ab, ptr->r.record.x.reg,
2707 ptr->r.record.x.t, ptr->r.record.x.where.spoff);
2708 break;
2709 case spill_reg_p:
2710 output_X4_format (f, ptr->r.record.x.qp, ptr->r.record.x.ab,
2711 ptr->r.record.x.reg, ptr->r.record.x.xy >> 1,
2712 ptr->r.record.x.xy, ptr->r.record.x.where.reg,
2713 ptr->r.record.x.t);
2714 break;
2715 default:
2716 as_bad ("record_type_not_valid");
2717 break;
2718 }
2719 }
2720
2721 /* Given a unw_rec_list list, process all the records with
2722 the specified function. */
2723 static void
2724 process_unw_records (list, f)
2725 unw_rec_list *list;
2726 vbyte_func f;
2727 {
2728 unw_rec_list *ptr;
2729 for (ptr = list; ptr; ptr = ptr->next)
2730 process_one_record (ptr, f);
2731 }
2732
2733 /* Determine the size of a record list in bytes. */
2734 static int
2735 calc_record_size (list)
2736 unw_rec_list *list;
2737 {
2738 vbyte_count = 0;
2739 process_unw_records (list, count_output);
2740 return vbyte_count;
2741 }
2742
2743 /* Return the number of bits set in the input value.
2744 Perhaps this has a better place... */
2745 #if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)
2746 # define popcount __builtin_popcount
2747 #else
2748 static int
2749 popcount (unsigned x)
2750 {
2751 static const unsigned char popcnt[16] =
2752 {
2753 0, 1, 1, 2,
2754 1, 2, 2, 3,
2755 1, 2, 2, 3,
2756 2, 3, 3, 4
2757 };
2758
2759 if (x < NELEMS (popcnt))
2760 return popcnt[x];
2761 return popcnt[x % NELEMS (popcnt)] + popcount (x / NELEMS (popcnt));
2762 }
2763 #endif
2764
2765 /* Update IMASK bitmask to reflect the fact that one or more registers
2766 of type TYPE are saved starting at instruction with index T. If N
2767 bits are set in REGMASK, it is assumed that instructions T through
2768 T+N-1 save these registers.
2769
2770 TYPE values:
2771 0: no save
2772 1: instruction saves next fp reg
2773 2: instruction saves next general reg
2774 3: instruction saves next branch reg */
2775 static void
2776 set_imask (region, regmask, t, type)
2777 unw_rec_list *region;
2778 unsigned long regmask;
2779 unsigned long t;
2780 unsigned int type;
2781 {
2782 unsigned char *imask;
2783 unsigned long imask_size;
2784 unsigned int i;
2785 int pos;
2786
2787 imask = region->r.record.r.mask.i;
2788 imask_size = region->r.record.r.imask_size;
2789 if (!imask)
2790 {
2791 imask_size = (region->r.record.r.rlen * 2 + 7) / 8 + 1;
2792 imask = xmalloc (imask_size);
2793 memset (imask, 0, imask_size);
2794
2795 region->r.record.r.imask_size = imask_size;
2796 region->r.record.r.mask.i = imask;
2797 }
2798
2799 i = (t / 4) + 1;
2800 pos = 2 * (3 - t % 4);
2801 while (regmask)
2802 {
2803 if (i >= imask_size)
2804 {
2805 as_bad ("Ignoring attempt to spill beyond end of region");
2806 return;
2807 }
2808
2809 imask[i] |= (type & 0x3) << pos;
2810
2811 regmask &= (regmask - 1);
2812 pos -= 2;
2813 if (pos < 0)
2814 {
2815 pos = 0;
2816 ++i;
2817 }
2818 }
2819 }
2820
2821 /* Return the number of instruction slots from FIRST_ADDR to SLOT_ADDR.
2822 SLOT_FRAG is the frag containing SLOT_ADDR, and FIRST_FRAG is the frag
2823 containing FIRST_ADDR. If BEFORE_RELAX, then we use worst-case estimates
2824 for frag sizes. */
2825
2826 unsigned long
2827 slot_index (slot_addr, slot_frag, first_addr, first_frag, before_relax)
2828 unsigned long slot_addr;
2829 fragS *slot_frag;
2830 unsigned long first_addr;
2831 fragS *first_frag;
2832 int before_relax;
2833 {
2834 unsigned long index = 0;
2835
2836 /* First time we are called, the initial address and frag are invalid. */
2837 if (first_addr == 0)
2838 return 0;
2839
2840 /* If the two addresses are in different frags, then we need to add in
2841 the remaining size of this frag, and then the entire size of intermediate
2842 frags. */
2843 while (slot_frag != first_frag)
2844 {
2845 unsigned long start_addr = (unsigned long) &first_frag->fr_literal;
2846
2847 if (! before_relax)
2848 {
2849 /* We can get the final addresses only during and after
2850 relaxation. */
2851 if (first_frag->fr_next && first_frag->fr_next->fr_address)
2852 index += 3 * ((first_frag->fr_next->fr_address
2853 - first_frag->fr_address
2854 - first_frag->fr_fix) >> 4);
2855 }
2856 else
2857 /* We don't know what the final addresses will be. We try our
2858 best to estimate. */
2859 switch (first_frag->fr_type)
2860 {
2861 default:
2862 break;
2863
2864 case rs_space:
2865 as_fatal ("only constant space allocation is supported");
2866 break;
2867
2868 case rs_align:
2869 case rs_align_code:
2870 case rs_align_test:
2871 /* Take alignment into account. Assume the worst case
2872 before relaxation. */
2873 index += 3 * ((1 << first_frag->fr_offset) >> 4);
2874 break;
2875
2876 case rs_org:
2877 if (first_frag->fr_symbol)
2878 {
2879 as_fatal ("only constant offsets are supported");
2880 break;
2881 }
2882 case rs_fill:
2883 index += 3 * (first_frag->fr_offset >> 4);
2884 break;
2885 }
2886
2887 /* Add in the full size of the frag converted to instruction slots. */
2888 index += 3 * (first_frag->fr_fix >> 4);
2889 /* Subtract away the initial part before first_addr. */
2890 index -= (3 * ((first_addr >> 4) - (start_addr >> 4))
2891 + ((first_addr & 0x3) - (start_addr & 0x3)));
2892
2893 /* Move to the beginning of the next frag. */
2894 first_frag = first_frag->fr_next;
2895 first_addr = (unsigned long) &first_frag->fr_literal;
2896
2897 /* This can happen if there is section switching in the middle of a
2898 function, causing the frag chain for the function to be broken.
2899 It is too difficult to recover safely from this problem, so we just
2900 exit with an error. */
2901 if (first_frag == NULL)
2902 as_fatal ("Section switching in code is not supported.");
2903 }
2904
2905 /* Add in the used part of the last frag. */
2906 index += (3 * ((slot_addr >> 4) - (first_addr >> 4))
2907 + ((slot_addr & 0x3) - (first_addr & 0x3)));
2908 return index;
2909 }
2910
2911 /* Optimize unwind record directives. */
2912
2913 static unw_rec_list *
2914 optimize_unw_records (list)
2915 unw_rec_list *list;
2916 {
2917 if (!list)
2918 return NULL;
2919
2920 /* If the only unwind record is ".prologue" or ".prologue" followed
2921 by ".body", then we can optimize the unwind directives away. */
2922 if (list->r.type == prologue
2923 && (list->next->r.type == endp
2924 || (list->next->r.type == body && list->next->next->r.type == endp)))
2925 return NULL;
2926
2927 return list;
2928 }
2929
2930 /* Given a complete record list, process any records which have
2931 unresolved fields, (ie length counts for a prologue). After
2932 this has been run, all necessary information should be available
2933 within each record to generate an image. */
2934
2935 static void
2936 fixup_unw_records (list, before_relax)
2937 unw_rec_list *list;
2938 int before_relax;
2939 {
2940 unw_rec_list *ptr, *region = 0;
2941 unsigned long first_addr = 0, rlen = 0, t;
2942 fragS *first_frag = 0;
2943
2944 for (ptr = list; ptr; ptr = ptr->next)
2945 {
2946 if (ptr->slot_number == SLOT_NUM_NOT_SET)
2947 as_bad (" Insn slot not set in unwind record.");
2948 t = slot_index (ptr->slot_number, ptr->slot_frag,
2949 first_addr, first_frag, before_relax);
2950 switch (ptr->r.type)
2951 {
2952 case prologue:
2953 case prologue_gr:
2954 case body:
2955 {
2956 unw_rec_list *last;
2957 int size;
2958 unsigned long last_addr = 0;
2959 fragS *last_frag = NULL;
2960
2961 first_addr = ptr->slot_number;
2962 first_frag = ptr->slot_frag;
2963 /* Find either the next body/prologue start, or the end of
2964 the function, and determine the size of the region. */
2965 for (last = ptr->next; last != NULL; last = last->next)
2966 if (last->r.type == prologue || last->r.type == prologue_gr
2967 || last->r.type == body || last->r.type == endp)
2968 {
2969 last_addr = last->slot_number;
2970 last_frag = last->slot_frag;
2971 break;
2972 }
2973 size = slot_index (last_addr, last_frag, first_addr, first_frag,
2974 before_relax);
2975 rlen = ptr->r.record.r.rlen = size;
2976 if (ptr->r.type == body)
2977 /* End of region. */
2978 region = 0;
2979 else
2980 region = ptr;
2981 break;
2982 }
2983 case epilogue:
2984 if (t < rlen)
2985 ptr->r.record.b.t = rlen - 1 - t;
2986 else
2987 /* This happens when a memory-stack-less procedure uses a
2988 ".restore sp" directive at the end of a region to pop
2989 the frame state. */
2990 ptr->r.record.b.t = 0;
2991 break;
2992
2993 case mem_stack_f:
2994 case mem_stack_v:
2995 case rp_when:
2996 case pfs_when:
2997 case preds_when:
2998 case unat_when:
2999 case lc_when:
3000 case fpsr_when:
3001 case priunat_when_gr:
3002 case priunat_when_mem:
3003 case bsp_when:
3004 case bspstore_when:
3005 case rnat_when:
3006 ptr->r.record.p.t = t;
3007 break;
3008
3009 case spill_reg:
3010 case spill_sprel:
3011 case spill_psprel:
3012 case spill_reg_p:
3013 case spill_sprel_p:
3014 case spill_psprel_p:
3015 ptr->r.record.x.t = t;
3016 break;
3017
3018 case frgr_mem:
3019 if (!region)
3020 {
3021 as_bad ("frgr_mem record before region record!");
3022 return;
3023 }
3024 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
3025 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
3026 set_imask (region, ptr->r.record.p.frmask, t, 1);
3027 set_imask (region, ptr->r.record.p.grmask, t, 2);
3028 break;
3029 case fr_mem:
3030 if (!region)
3031 {
3032 as_bad ("fr_mem record before region record!");
3033 return;
3034 }
3035 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
3036 set_imask (region, ptr->r.record.p.frmask, t, 1);
3037 break;
3038 case gr_mem:
3039 if (!region)
3040 {
3041 as_bad ("gr_mem record before region record!");
3042 return;
3043 }
3044 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
3045 set_imask (region, ptr->r.record.p.grmask, t, 2);
3046 break;
3047 case br_mem:
3048 if (!region)
3049 {
3050 as_bad ("br_mem record before region record!");
3051 return;
3052 }
3053 region->r.record.r.mask.br_mem |= ptr->r.record.p.brmask;
3054 set_imask (region, ptr->r.record.p.brmask, t, 3);
3055 break;
3056
3057 case gr_gr:
3058 if (!region)
3059 {
3060 as_bad ("gr_gr record before region record!");
3061 return;
3062 }
3063 set_imask (region, ptr->r.record.p.grmask, t, 2);
3064 break;
3065 case br_gr:
3066 if (!region)
3067 {
3068 as_bad ("br_gr record before region record!");
3069 return;
3070 }
3071 set_imask (region, ptr->r.record.p.brmask, t, 3);
3072 break;
3073
3074 default:
3075 break;
3076 }
3077 }
3078 }
3079
3080 /* Estimate the size of a frag before relaxing. We only have one type of frag
3081 to handle here, which is the unwind info frag. */
3082
3083 int
3084 ia64_estimate_size_before_relax (fragS *frag,
3085 asection *segtype ATTRIBUTE_UNUSED)
3086 {
3087 unw_rec_list *list;
3088 int len, size, pad;
3089
3090 /* ??? This code is identical to the first part of ia64_convert_frag. */
3091 list = (unw_rec_list *) frag->fr_opcode;
3092 fixup_unw_records (list, 0);
3093
3094 len = calc_record_size (list);
3095 /* pad to pointer-size boundary. */
3096 pad = len % md.pointer_size;
3097 if (pad != 0)
3098 len += md.pointer_size - pad;
3099 /* Add 8 for the header. */
3100 size = len + 8;
3101 /* Add a pointer for the personality offset. */
3102 if (frag->fr_offset)
3103 size += md.pointer_size;
3104
3105 /* fr_var carries the max_chars that we created the fragment with.
3106 We must, of course, have allocated enough memory earlier. */
3107 assert (frag->fr_var >= size);
3108
3109 return frag->fr_fix + size;
3110 }
3111
3112 /* This function converts a rs_machine_dependent variant frag into a
3113 normal fill frag with the unwind image from the the record list. */
3114 void
3115 ia64_convert_frag (fragS *frag)
3116 {
3117 unw_rec_list *list;
3118 int len, size, pad;
3119 valueT flag_value;
3120
3121 /* ??? This code is identical to ia64_estimate_size_before_relax. */
3122 list = (unw_rec_list *) frag->fr_opcode;
3123 fixup_unw_records (list, 0);
3124
3125 len = calc_record_size (list);
3126 /* pad to pointer-size boundary. */
3127 pad = len % md.pointer_size;
3128 if (pad != 0)
3129 len += md.pointer_size - pad;
3130 /* Add 8 for the header. */
3131 size = len + 8;
3132 /* Add a pointer for the personality offset. */
3133 if (frag->fr_offset)
3134 size += md.pointer_size;
3135
3136 /* fr_var carries the max_chars that we created the fragment with.
3137 We must, of course, have allocated enough memory earlier. */
3138 assert (frag->fr_var >= size);
3139
3140 /* Initialize the header area. fr_offset is initialized with
3141 unwind.personality_routine. */
3142 if (frag->fr_offset)
3143 {
3144 if (md.flags & EF_IA_64_ABI64)
3145 flag_value = (bfd_vma) 3 << 32;
3146 else
3147 /* 32-bit unwind info block. */
3148 flag_value = (bfd_vma) 0x1003 << 32;
3149 }
3150 else
3151 flag_value = 0;
3152
3153 md_number_to_chars (frag->fr_literal,
3154 (((bfd_vma) 1 << 48) /* Version. */
3155 | flag_value /* U & E handler flags. */
3156 | (len / md.pointer_size)), /* Length. */
3157 8);
3158
3159 /* Skip the header. */
3160 vbyte_mem_ptr = frag->fr_literal + 8;
3161 process_unw_records (list, output_vbyte_mem);
3162
3163 /* Fill the padding bytes with zeros. */
3164 if (pad != 0)
3165 md_number_to_chars (frag->fr_literal + len + 8 - md.pointer_size + pad, 0,
3166 md.pointer_size - pad);
3167
3168 frag->fr_fix += size;
3169 frag->fr_type = rs_fill;
3170 frag->fr_var = 0;
3171 frag->fr_offset = 0;
3172 }
3173
3174 static int
3175 parse_predicate_and_operand (e, qp, po)
3176 expressionS * e;
3177 unsigned * qp;
3178 const char * po;
3179 {
3180 int sep = parse_operand (e, ',');
3181
3182 *qp = e->X_add_number - REG_P;
3183 if (e->X_op != O_register || *qp > 63)
3184 {
3185 as_bad ("First operand to .%s must be a predicate", po);
3186 *qp = 0;
3187 }
3188 else if (*qp == 0)
3189 as_warn ("Pointless use of p0 as first operand to .%s", po);
3190 if (sep == ',')
3191 sep = parse_operand (e, ',');
3192 else
3193 e->X_op = O_absent;
3194 return sep;
3195 }
3196
3197 static void
3198 convert_expr_to_ab_reg (e, ab, regp, po, n)
3199 const expressionS *e;
3200 unsigned int *ab;
3201 unsigned int *regp;
3202 const char * po;
3203 int n;
3204 {
3205 unsigned int reg = e->X_add_number;
3206
3207 *ab = *regp = 0; /* Anything valid is good here. */
3208
3209 if (e->X_op != O_register)
3210 reg = REG_GR; /* Anything invalid is good here. */
3211
3212 if (reg >= (REG_GR + 4) && reg <= (REG_GR + 7))
3213 {
3214 *ab = 0;
3215 *regp = reg - REG_GR;
3216 }
3217 else if ((reg >= (REG_FR + 2) && reg <= (REG_FR + 5))
3218 || (reg >= (REG_FR + 16) && reg <= (REG_FR + 31)))
3219 {
3220 *ab = 1;
3221 *regp = reg - REG_FR;
3222 }
3223 else if (reg >= (REG_BR + 1) && reg <= (REG_BR + 5))
3224 {
3225 *ab = 2;
3226 *regp = reg - REG_BR;
3227 }
3228 else
3229 {
3230 *ab = 3;
3231 switch (reg)
3232 {
3233 case REG_PR: *regp = 0; break;
3234 case REG_PSP: *regp = 1; break;
3235 case REG_PRIUNAT: *regp = 2; break;
3236 case REG_BR + 0: *regp = 3; break;
3237 case REG_AR + AR_BSP: *regp = 4; break;
3238 case REG_AR + AR_BSPSTORE: *regp = 5; break;
3239 case REG_AR + AR_RNAT: *regp = 6; break;
3240 case REG_AR + AR_UNAT: *regp = 7; break;
3241 case REG_AR + AR_FPSR: *regp = 8; break;
3242 case REG_AR + AR_PFS: *regp = 9; break;
3243 case REG_AR + AR_LC: *regp = 10; break;
3244
3245 default:
3246 as_bad ("Operand %d to .%s must be a preserved register", n, po);
3247 break;
3248 }
3249 }
3250 }
3251
3252 static void
3253 convert_expr_to_xy_reg (e, xy, regp, po, n)
3254 const expressionS *e;
3255 unsigned int *xy;
3256 unsigned int *regp;
3257 const char * po;
3258 int n;
3259 {
3260 unsigned int reg = e->X_add_number;
3261
3262 *xy = *regp = 0; /* Anything valid is good here. */
3263
3264 if (e->X_op != O_register)
3265 reg = REG_GR; /* Anything invalid is good here. */
3266
3267 if (reg >= (REG_GR + 1) && reg <= (REG_GR + 127))
3268 {
3269 *xy = 0;
3270 *regp = reg - REG_GR;
3271 }
3272 else if (reg >= (REG_FR + 2) && reg <= (REG_FR + 127))
3273 {
3274 *xy = 1;
3275 *regp = reg - REG_FR;
3276 }
3277 else if (reg >= REG_BR && reg <= (REG_BR + 7))
3278 {
3279 *xy = 2;
3280 *regp = reg - REG_BR;
3281 }
3282 else
3283 as_bad ("Operand %d to .%s must be a writable register", n, po);
3284 }
3285
3286 static void
3287 dot_align (int arg)
3288 {
3289 /* The current frag is an alignment frag. */
3290 align_frag = frag_now;
3291 s_align_bytes (arg);
3292 }
3293
3294 static void
3295 dot_radix (dummy)
3296 int dummy ATTRIBUTE_UNUSED;
3297 {
3298 char *radix;
3299 int ch;
3300
3301 SKIP_WHITESPACE ();
3302
3303 if (is_it_end_of_statement ())
3304 return;
3305 radix = input_line_pointer;
3306 ch = get_symbol_end ();
3307 ia64_canonicalize_symbol_name (radix);
3308 if (strcasecmp (radix, "C"))
3309 as_bad ("Radix `%s' unsupported or invalid", radix);
3310 *input_line_pointer = ch;
3311 demand_empty_rest_of_line ();
3312 }
3313
3314 /* Helper function for .loc directives. If the assembler is not generating
3315 line number info, then we need to remember which instructions have a .loc
3316 directive, and only call dwarf2_gen_line_info for those instructions. */
3317
3318 static void
3319 dot_loc (int x)
3320 {
3321 CURR_SLOT.loc_directive_seen = 1;
3322 dwarf2_directive_loc (x);
3323 }
3324
3325 /* .sbss, .bss etc. are macros that expand into ".section SECNAME". */
3326 static void
3327 dot_special_section (which)
3328 int which;
3329 {
3330 set_section ((char *) special_section_name[which]);
3331 }
3332
3333 /* Return -1 for warning and 0 for error. */
3334
3335 static int
3336 unwind_diagnostic (const char * region, const char *directive)
3337 {
3338 if (md.unwind_check == unwind_check_warning)
3339 {
3340 as_warn (".%s outside of %s", directive, region);
3341 return -1;
3342 }
3343 else
3344 {
3345 as_bad (".%s outside of %s", directive, region);
3346 ignore_rest_of_line ();
3347 return 0;
3348 }
3349 }
3350
3351 /* Return 1 if a directive is in a procedure, -1 if a directive isn't in
3352 a procedure but the unwind directive check is set to warning, 0 if
3353 a directive isn't in a procedure and the unwind directive check is set
3354 to error. */
3355
3356 static int
3357 in_procedure (const char *directive)
3358 {
3359 if (unwind.proc_pending.sym
3360 && (!unwind.saved_text_seg || strcmp (directive, "endp") == 0))
3361 return 1;
3362 return unwind_diagnostic ("procedure", directive);
3363 }
3364
3365 /* Return 1 if a directive is in a prologue, -1 if a directive isn't in
3366 a prologue but the unwind directive check is set to warning, 0 if
3367 a directive isn't in a prologue and the unwind directive check is set
3368 to error. */
3369
3370 static int
3371 in_prologue (const char *directive)
3372 {
3373 int in = in_procedure (directive);
3374
3375 if (in > 0 && !unwind.prologue)
3376 in = unwind_diagnostic ("prologue", directive);
3377 check_pending_save ();
3378 return in;
3379 }
3380
3381 /* Return 1 if a directive is in a body, -1 if a directive isn't in
3382 a body but the unwind directive check is set to warning, 0 if
3383 a directive isn't in a body and the unwind directive check is set
3384 to error. */
3385
3386 static int
3387 in_body (const char *directive)
3388 {
3389 int in = in_procedure (directive);
3390
3391 if (in > 0 && !unwind.body)
3392 in = unwind_diagnostic ("body region", directive);
3393 return in;
3394 }
3395
3396 static void
3397 add_unwind_entry (ptr, sep)
3398 unw_rec_list *ptr;
3399 int sep;
3400 {
3401 if (ptr)
3402 {
3403 if (unwind.tail)
3404 unwind.tail->next = ptr;
3405 else
3406 unwind.list = ptr;
3407 unwind.tail = ptr;
3408
3409 /* The current entry can in fact be a chain of unwind entries. */
3410 if (unwind.current_entry == NULL)
3411 unwind.current_entry = ptr;
3412 }
3413
3414 /* The current entry can in fact be a chain of unwind entries. */
3415 if (unwind.current_entry == NULL)
3416 unwind.current_entry = ptr;
3417
3418 if (sep == ',')
3419 {
3420 /* Parse a tag permitted for the current directive. */
3421 int ch;
3422
3423 SKIP_WHITESPACE ();
3424 ch = get_symbol_end ();
3425 /* FIXME: For now, just issue a warning that this isn't implemented. */
3426 {
3427 static int warned;
3428
3429 if (!warned)
3430 {
3431 warned = 1;
3432 as_warn ("Tags on unwind pseudo-ops aren't supported, yet");
3433 }
3434 }
3435 *input_line_pointer = ch;
3436 }
3437 if (sep != NOT_A_CHAR)
3438 demand_empty_rest_of_line ();
3439 }
3440
3441 static void
3442 dot_fframe (dummy)
3443 int dummy ATTRIBUTE_UNUSED;
3444 {
3445 expressionS e;
3446 int sep;
3447
3448 if (!in_prologue ("fframe"))
3449 return;
3450
3451 sep = parse_operand (&e, ',');
3452
3453 if (e.X_op != O_constant)
3454 {
3455 as_bad ("First operand to .fframe must be a constant");
3456 e.X_add_number = 0;
3457 }
3458 add_unwind_entry (output_mem_stack_f (e.X_add_number), sep);
3459 }
3460
3461 static void
3462 dot_vframe (dummy)
3463 int dummy ATTRIBUTE_UNUSED;
3464 {
3465 expressionS e;
3466 unsigned reg;
3467 int sep;
3468
3469 if (!in_prologue ("vframe"))
3470 return;
3471
3472 sep = parse_operand (&e, ',');
3473 reg = e.X_add_number - REG_GR;
3474 if (e.X_op != O_register || reg > 127)
3475 {
3476 as_bad ("First operand to .vframe must be a general register");
3477 reg = 0;
3478 }
3479 add_unwind_entry (output_mem_stack_v (), sep);
3480 if (! (unwind.prologue_mask & 2))
3481 add_unwind_entry (output_psp_gr (reg), NOT_A_CHAR);
3482 else if (reg != unwind.prologue_gr
3483 + (unsigned) popcount (unwind.prologue_mask & (-2 << 1)))
3484 as_warn ("Operand of .vframe contradicts .prologue");
3485 }
3486
3487 static void
3488 dot_vframesp (psp)
3489 int psp;
3490 {
3491 expressionS e;
3492 int sep;
3493
3494 if (psp)
3495 as_warn (".vframepsp is meaningless, assuming .vframesp was meant");
3496
3497 if (!in_prologue ("vframesp"))
3498 return;
3499
3500 sep = parse_operand (&e, ',');
3501 if (e.X_op != O_constant)
3502 {
3503 as_bad ("Operand to .vframesp must be a constant (sp-relative offset)");
3504 e.X_add_number = 0;
3505 }
3506 add_unwind_entry (output_mem_stack_v (), sep);
3507 add_unwind_entry (output_psp_sprel (e.X_add_number), NOT_A_CHAR);
3508 }
3509
3510 static void
3511 dot_save (dummy)
3512 int dummy ATTRIBUTE_UNUSED;
3513 {
3514 expressionS e1, e2;
3515 unsigned reg1, reg2;
3516 int sep;
3517
3518 if (!in_prologue ("save"))
3519 return;
3520
3521 sep = parse_operand (&e1, ',');
3522 if (sep == ',')
3523 sep = parse_operand (&e2, ',');
3524 else
3525 e2.X_op = O_absent;
3526
3527 reg1 = e1.X_add_number;
3528 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3529 if (e1.X_op != O_register)
3530 {
3531 as_bad ("First operand to .save not a register");
3532 reg1 = REG_PR; /* Anything valid is good here. */
3533 }
3534 reg2 = e2.X_add_number - REG_GR;
3535 if (e2.X_op != O_register || reg2 > 127)
3536 {
3537 as_bad ("Second operand to .save not a valid register");
3538 reg2 = 0;
3539 }
3540 switch (reg1)
3541 {
3542 case REG_AR + AR_BSP:
3543 add_unwind_entry (output_bsp_when (), sep);
3544 add_unwind_entry (output_bsp_gr (reg2), NOT_A_CHAR);
3545 break;
3546 case REG_AR + AR_BSPSTORE:
3547 add_unwind_entry (output_bspstore_when (), sep);
3548 add_unwind_entry (output_bspstore_gr (reg2), NOT_A_CHAR);
3549 break;
3550 case REG_AR + AR_RNAT:
3551 add_unwind_entry (output_rnat_when (), sep);
3552 add_unwind_entry (output_rnat_gr (reg2), NOT_A_CHAR);
3553 break;
3554 case REG_AR + AR_UNAT:
3555 add_unwind_entry (output_unat_when (), sep);
3556 add_unwind_entry (output_unat_gr (reg2), NOT_A_CHAR);
3557 break;
3558 case REG_AR + AR_FPSR:
3559 add_unwind_entry (output_fpsr_when (), sep);
3560 add_unwind_entry (output_fpsr_gr (reg2), NOT_A_CHAR);
3561 break;
3562 case REG_AR + AR_PFS:
3563 add_unwind_entry (output_pfs_when (), sep);
3564 if (! (unwind.prologue_mask & 4))
3565 add_unwind_entry (output_pfs_gr (reg2), NOT_A_CHAR);
3566 else if (reg2 != unwind.prologue_gr
3567 + (unsigned) popcount (unwind.prologue_mask & (-4 << 1)))
3568 as_warn ("Second operand of .save contradicts .prologue");
3569 break;
3570 case REG_AR + AR_LC:
3571 add_unwind_entry (output_lc_when (), sep);
3572 add_unwind_entry (output_lc_gr (reg2), NOT_A_CHAR);
3573 break;
3574 case REG_BR:
3575 add_unwind_entry (output_rp_when (), sep);
3576 if (! (unwind.prologue_mask & 8))
3577 add_unwind_entry (output_rp_gr (reg2), NOT_A_CHAR);
3578 else if (reg2 != unwind.prologue_gr)
3579 as_warn ("Second operand of .save contradicts .prologue");
3580 break;
3581 case REG_PR:
3582 add_unwind_entry (output_preds_when (), sep);
3583 if (! (unwind.prologue_mask & 1))
3584 add_unwind_entry (output_preds_gr (reg2), NOT_A_CHAR);
3585 else if (reg2 != unwind.prologue_gr
3586 + (unsigned) popcount (unwind.prologue_mask & (-1 << 1)))
3587 as_warn ("Second operand of .save contradicts .prologue");
3588 break;
3589 case REG_PRIUNAT:
3590 add_unwind_entry (output_priunat_when_gr (), sep);
3591 add_unwind_entry (output_priunat_gr (reg2), NOT_A_CHAR);
3592 break;
3593 default:
3594 as_bad ("First operand to .save not a valid register");
3595 add_unwind_entry (NULL, sep);
3596 break;
3597 }
3598 }
3599
3600 static void
3601 dot_restore (dummy)
3602 int dummy ATTRIBUTE_UNUSED;
3603 {
3604 expressionS e1;
3605 unsigned long ecount; /* # of _additional_ regions to pop */
3606 int sep;
3607
3608 if (!in_body ("restore"))
3609 return;
3610
3611 sep = parse_operand (&e1, ',');
3612 if (e1.X_op != O_register || e1.X_add_number != REG_GR + 12)
3613 as_bad ("First operand to .restore must be stack pointer (sp)");
3614
3615 if (sep == ',')
3616 {
3617 expressionS e2;
3618
3619 sep = parse_operand (&e2, ',');
3620 if (e2.X_op != O_constant || e2.X_add_number < 0)
3621 {
3622 as_bad ("Second operand to .restore must be a constant >= 0");
3623 e2.X_add_number = 0;
3624 }
3625 ecount = e2.X_add_number;
3626 }
3627 else
3628 ecount = unwind.prologue_count - 1;
3629
3630 if (ecount >= unwind.prologue_count)
3631 {
3632 as_bad ("Epilogue count of %lu exceeds number of nested prologues (%u)",
3633 ecount + 1, unwind.prologue_count);
3634 ecount = 0;
3635 }
3636
3637 add_unwind_entry (output_epilogue (ecount), sep);
3638
3639 if (ecount < unwind.prologue_count)
3640 unwind.prologue_count -= ecount + 1;
3641 else
3642 unwind.prologue_count = 0;
3643 }
3644
3645 static void
3646 dot_restorereg (pred)
3647 int pred;
3648 {
3649 unsigned int qp, ab, reg;
3650 expressionS e;
3651 int sep;
3652 const char * const po = pred ? "restorereg.p" : "restorereg";
3653
3654 if (!in_procedure (po))
3655 return;
3656
3657 if (pred)
3658 sep = parse_predicate_and_operand (&e, &qp, po);
3659 else
3660 {
3661 sep = parse_operand (&e, ',');
3662 qp = 0;
3663 }
3664 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
3665
3666 add_unwind_entry (output_spill_reg (ab, reg, 0, 0, qp), sep);
3667 }
3668
3669 static char *special_linkonce_name[] =
3670 {
3671 ".gnu.linkonce.ia64unw.", ".gnu.linkonce.ia64unwi."
3672 };
3673
3674 static void
3675 start_unwind_section (const segT text_seg, int sec_index)
3676 {
3677 /*
3678 Use a slightly ugly scheme to derive the unwind section names from
3679 the text section name:
3680
3681 text sect. unwind table sect.
3682 name: name: comments:
3683 ---------- ----------------- --------------------------------
3684 .text .IA_64.unwind
3685 .text.foo .IA_64.unwind.text.foo
3686 .foo .IA_64.unwind.foo
3687 .gnu.linkonce.t.foo
3688 .gnu.linkonce.ia64unw.foo
3689 _info .IA_64.unwind_info gas issues error message (ditto)
3690 _infoFOO .IA_64.unwind_infoFOO gas issues error message (ditto)
3691
3692 This mapping is done so that:
3693
3694 (a) An object file with unwind info only in .text will use
3695 unwind section names .IA_64.unwind and .IA_64.unwind_info.
3696 This follows the letter of the ABI and also ensures backwards
3697 compatibility with older toolchains.
3698
3699 (b) An object file with unwind info in multiple text sections
3700 will use separate unwind sections for each text section.
3701 This allows us to properly set the "sh_info" and "sh_link"
3702 fields in SHT_IA_64_UNWIND as required by the ABI and also
3703 lets GNU ld support programs with multiple segments
3704 containing unwind info (as might be the case for certain
3705 embedded applications).
3706
3707 (c) An error is issued if there would be a name clash.
3708 */
3709
3710 const char *text_name, *sec_text_name;
3711 char *sec_name;
3712 const char *prefix = special_section_name [sec_index];
3713 const char *suffix;
3714 size_t prefix_len, suffix_len, sec_name_len;
3715
3716 sec_text_name = segment_name (text_seg);
3717 text_name = sec_text_name;
3718 if (strncmp (text_name, "_info", 5) == 0)
3719 {
3720 as_bad ("Illegal section name `%s' (causes unwind section name clash)",
3721 text_name);
3722 ignore_rest_of_line ();
3723 return;
3724 }
3725 if (strcmp (text_name, ".text") == 0)
3726 text_name = "";
3727
3728 /* Build the unwind section name by appending the (possibly stripped)
3729 text section name to the unwind prefix. */
3730 suffix = text_name;
3731 if (strncmp (text_name, ".gnu.linkonce.t.",
3732 sizeof (".gnu.linkonce.t.") - 1) == 0)
3733 {
3734 prefix = special_linkonce_name [sec_index - SPECIAL_SECTION_UNWIND];
3735 suffix += sizeof (".gnu.linkonce.t.") - 1;
3736 }
3737
3738 prefix_len = strlen (prefix);
3739 suffix_len = strlen (suffix);
3740 sec_name_len = prefix_len + suffix_len;
3741 sec_name = alloca (sec_name_len + 1);
3742 memcpy (sec_name, prefix, prefix_len);
3743 memcpy (sec_name + prefix_len, suffix, suffix_len);
3744 sec_name [sec_name_len] = '\0';
3745
3746 /* Handle COMDAT group. */
3747 if ((text_seg->flags & SEC_LINK_ONCE) != 0
3748 && (elf_section_flags (text_seg) & SHF_GROUP) != 0)
3749 {
3750 char *section;
3751 size_t len, group_name_len;
3752 const char *group_name = elf_group_name (text_seg);
3753
3754 if (group_name == NULL)
3755 {
3756 as_bad ("Group section `%s' has no group signature",
3757 sec_text_name);
3758 ignore_rest_of_line ();
3759 return;
3760 }
3761 /* We have to construct a fake section directive. */
3762 group_name_len = strlen (group_name);
3763 len = (sec_name_len
3764 + 16 /* ,"aG",@progbits, */
3765 + group_name_len /* ,group_name */
3766 + 7); /* ,comdat */
3767
3768 section = alloca (len + 1);
3769 memcpy (section, sec_name, sec_name_len);
3770 memcpy (section + sec_name_len, ",\"aG\",@progbits,", 16);
3771 memcpy (section + sec_name_len + 16, group_name, group_name_len);
3772 memcpy (section + len - 7, ",comdat", 7);
3773 section [len] = '\0';
3774 set_section (section);
3775 }
3776 else
3777 {
3778 set_section (sec_name);
3779 bfd_set_section_flags (stdoutput, now_seg,
3780 SEC_LOAD | SEC_ALLOC | SEC_READONLY);
3781 }
3782
3783 elf_linked_to_section (now_seg) = text_seg;
3784 }
3785
3786 static void
3787 generate_unwind_image (const segT text_seg)
3788 {
3789 int size, pad;
3790 unw_rec_list *list;
3791
3792 /* Mark the end of the unwind info, so that we can compute the size of the
3793 last unwind region. */
3794 add_unwind_entry (output_endp (), NOT_A_CHAR);
3795
3796 /* Force out pending instructions, to make sure all unwind records have
3797 a valid slot_number field. */
3798 ia64_flush_insns ();
3799
3800 /* Generate the unwind record. */
3801 list = optimize_unw_records (unwind.list);
3802 fixup_unw_records (list, 1);
3803 size = calc_record_size (list);
3804
3805 if (size > 0 || unwind.force_unwind_entry)
3806 {
3807 unwind.force_unwind_entry = 0;
3808 /* pad to pointer-size boundary. */
3809 pad = size % md.pointer_size;
3810 if (pad != 0)
3811 size += md.pointer_size - pad;
3812 /* Add 8 for the header. */
3813 size += 8;
3814 /* Add a pointer for the personality offset. */
3815 if (unwind.personality_routine)
3816 size += md.pointer_size;
3817 }
3818
3819 /* If there are unwind records, switch sections, and output the info. */
3820 if (size != 0)
3821 {
3822 expressionS exp;
3823 bfd_reloc_code_real_type reloc;
3824
3825 start_unwind_section (text_seg, SPECIAL_SECTION_UNWIND_INFO);
3826
3827 /* Make sure the section has 4 byte alignment for ILP32 and
3828 8 byte alignment for LP64. */
3829 frag_align (md.pointer_size_shift, 0, 0);
3830 record_alignment (now_seg, md.pointer_size_shift);
3831
3832 /* Set expression which points to start of unwind descriptor area. */
3833 unwind.info = expr_build_dot ();
3834
3835 frag_var (rs_machine_dependent, size, size, 0, 0,
3836 (offsetT) (long) unwind.personality_routine,
3837 (char *) list);
3838
3839 /* Add the personality address to the image. */
3840 if (unwind.personality_routine != 0)
3841 {
3842 exp.X_op = O_symbol;
3843 exp.X_add_symbol = unwind.personality_routine;
3844 exp.X_add_number = 0;
3845
3846 if (md.flags & EF_IA_64_BE)
3847 {
3848 if (md.flags & EF_IA_64_ABI64)
3849 reloc = BFD_RELOC_IA64_LTOFF_FPTR64MSB;
3850 else
3851 reloc = BFD_RELOC_IA64_LTOFF_FPTR32MSB;
3852 }
3853 else
3854 {
3855 if (md.flags & EF_IA_64_ABI64)
3856 reloc = BFD_RELOC_IA64_LTOFF_FPTR64LSB;
3857 else
3858 reloc = BFD_RELOC_IA64_LTOFF_FPTR32LSB;
3859 }
3860
3861 fix_new_exp (frag_now, frag_now_fix () - md.pointer_size,
3862 md.pointer_size, &exp, 0, reloc);
3863 unwind.personality_routine = 0;
3864 }
3865 }
3866
3867 free_saved_prologue_counts ();
3868 unwind.list = unwind.tail = unwind.current_entry = NULL;
3869 }
3870
3871 static void
3872 dot_handlerdata (dummy)
3873 int dummy ATTRIBUTE_UNUSED;
3874 {
3875 if (!in_procedure ("handlerdata"))
3876 return;
3877 unwind.force_unwind_entry = 1;
3878
3879 /* Remember which segment we're in so we can switch back after .endp */
3880 unwind.saved_text_seg = now_seg;
3881 unwind.saved_text_subseg = now_subseg;
3882
3883 /* Generate unwind info into unwind-info section and then leave that
3884 section as the currently active one so dataXX directives go into
3885 the language specific data area of the unwind info block. */
3886 generate_unwind_image (now_seg);
3887 demand_empty_rest_of_line ();
3888 }
3889
3890 static void
3891 dot_unwentry (dummy)
3892 int dummy ATTRIBUTE_UNUSED;
3893 {
3894 if (!in_procedure ("unwentry"))
3895 return;
3896 unwind.force_unwind_entry = 1;
3897 demand_empty_rest_of_line ();
3898 }
3899
3900 static void
3901 dot_altrp (dummy)
3902 int dummy ATTRIBUTE_UNUSED;
3903 {
3904 expressionS e;
3905 unsigned reg;
3906
3907 if (!in_prologue ("altrp"))
3908 return;
3909
3910 parse_operand (&e, 0);
3911 reg = e.X_add_number - REG_BR;
3912 if (e.X_op != O_register || reg > 7)
3913 {
3914 as_bad ("First operand to .altrp not a valid branch register");
3915 reg = 0;
3916 }
3917 add_unwind_entry (output_rp_br (reg), 0);
3918 }
3919
3920 static void
3921 dot_savemem (psprel)
3922 int psprel;
3923 {
3924 expressionS e1, e2;
3925 int sep;
3926 int reg1, val;
3927 const char * const po = psprel ? "savepsp" : "savesp";
3928
3929 if (!in_prologue (po))
3930 return;
3931
3932 sep = parse_operand (&e1, ',');
3933 if (sep == ',')
3934 sep = parse_operand (&e2, ',');
3935 else
3936 e2.X_op = O_absent;
3937
3938 reg1 = e1.X_add_number;
3939 val = e2.X_add_number;
3940
3941 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3942 if (e1.X_op != O_register)
3943 {
3944 as_bad ("First operand to .%s not a register", po);
3945 reg1 = REG_PR; /* Anything valid is good here. */
3946 }
3947 if (e2.X_op != O_constant)
3948 {
3949 as_bad ("Second operand to .%s not a constant", po);
3950 val = 0;
3951 }
3952
3953 switch (reg1)
3954 {
3955 case REG_AR + AR_BSP:
3956 add_unwind_entry (output_bsp_when (), sep);
3957 add_unwind_entry ((psprel
3958 ? output_bsp_psprel
3959 : output_bsp_sprel) (val), NOT_A_CHAR);
3960 break;
3961 case REG_AR + AR_BSPSTORE:
3962 add_unwind_entry (output_bspstore_when (), sep);
3963 add_unwind_entry ((psprel
3964 ? output_bspstore_psprel
3965 : output_bspstore_sprel) (val), NOT_A_CHAR);
3966 break;
3967 case REG_AR + AR_RNAT:
3968 add_unwind_entry (output_rnat_when (), sep);
3969 add_unwind_entry ((psprel
3970 ? output_rnat_psprel
3971 : output_rnat_sprel) (val), NOT_A_CHAR);
3972 break;
3973 case REG_AR + AR_UNAT:
3974 add_unwind_entry (output_unat_when (), sep);
3975 add_unwind_entry ((psprel
3976 ? output_unat_psprel
3977 : output_unat_sprel) (val), NOT_A_CHAR);
3978 break;
3979 case REG_AR + AR_FPSR:
3980 add_unwind_entry (output_fpsr_when (), sep);
3981 add_unwind_entry ((psprel
3982 ? output_fpsr_psprel
3983 : output_fpsr_sprel) (val), NOT_A_CHAR);
3984 break;
3985 case REG_AR + AR_PFS:
3986 add_unwind_entry (output_pfs_when (), sep);
3987 add_unwind_entry ((psprel
3988 ? output_pfs_psprel
3989 : output_pfs_sprel) (val), NOT_A_CHAR);
3990 break;
3991 case REG_AR + AR_LC:
3992 add_unwind_entry (output_lc_when (), sep);
3993 add_unwind_entry ((psprel
3994 ? output_lc_psprel
3995 : output_lc_sprel) (val), NOT_A_CHAR);
3996 break;
3997 case REG_BR:
3998 add_unwind_entry (output_rp_when (), sep);
3999 add_unwind_entry ((psprel
4000 ? output_rp_psprel
4001 : output_rp_sprel) (val), NOT_A_CHAR);
4002 break;
4003 case REG_PR:
4004 add_unwind_entry (output_preds_when (), sep);
4005 add_unwind_entry ((psprel
4006 ? output_preds_psprel
4007 : output_preds_sprel) (val), NOT_A_CHAR);
4008 break;
4009 case REG_PRIUNAT:
4010 add_unwind_entry (output_priunat_when_mem (), sep);
4011 add_unwind_entry ((psprel
4012 ? output_priunat_psprel
4013 : output_priunat_sprel) (val), NOT_A_CHAR);
4014 break;
4015 default:
4016 as_bad ("First operand to .%s not a valid register", po);
4017 add_unwind_entry (NULL, sep);
4018 break;
4019 }
4020 }
4021
4022 static void
4023 dot_saveg (dummy)
4024 int dummy ATTRIBUTE_UNUSED;
4025 {
4026 expressionS e;
4027 unsigned grmask;
4028 int sep;
4029
4030 if (!in_prologue ("save.g"))
4031 return;
4032
4033 sep = parse_operand (&e, ',');
4034
4035 grmask = e.X_add_number;
4036 if (e.X_op != O_constant
4037 || e.X_add_number <= 0
4038 || e.X_add_number > 0xf)
4039 {
4040 as_bad ("First operand to .save.g must be a positive 4-bit constant");
4041 grmask = 0;
4042 }
4043
4044 if (sep == ',')
4045 {
4046 unsigned reg;
4047 int n = popcount (grmask);
4048
4049 parse_operand (&e, 0);
4050 reg = e.X_add_number - REG_GR;
4051 if (e.X_op != O_register || reg > 127)
4052 {
4053 as_bad ("Second operand to .save.g must be a general register");
4054 reg = 0;
4055 }
4056 else if (reg > 128U - n)
4057 {
4058 as_bad ("Second operand to .save.g must be the first of %d general registers", n);
4059 reg = 0;
4060 }
4061 add_unwind_entry (output_gr_gr (grmask, reg), 0);
4062 }
4063 else
4064 add_unwind_entry (output_gr_mem (grmask), 0);
4065 }
4066
4067 static void
4068 dot_savef (dummy)
4069 int dummy ATTRIBUTE_UNUSED;
4070 {
4071 expressionS e;
4072
4073 if (!in_prologue ("save.f"))
4074 return;
4075
4076 parse_operand (&e, 0);
4077
4078 if (e.X_op != O_constant
4079 || e.X_add_number <= 0
4080 || e.X_add_number > 0xfffff)
4081 {
4082 as_bad ("Operand to .save.f must be a positive 20-bit constant");
4083 e.X_add_number = 0;
4084 }
4085 add_unwind_entry (output_fr_mem (e.X_add_number), 0);
4086 }
4087
4088 static void
4089 dot_saveb (dummy)
4090 int dummy ATTRIBUTE_UNUSED;
4091 {
4092 expressionS e;
4093 unsigned brmask;
4094 int sep;
4095
4096 if (!in_prologue ("save.b"))
4097 return;
4098
4099 sep = parse_operand (&e, ',');
4100
4101 brmask = e.X_add_number;
4102 if (e.X_op != O_constant
4103 || e.X_add_number <= 0
4104 || e.X_add_number > 0x1f)
4105 {
4106 as_bad ("First operand to .save.b must be a positive 5-bit constant");
4107 brmask = 0;
4108 }
4109
4110 if (sep == ',')
4111 {
4112 unsigned reg;
4113 int n = popcount (brmask);
4114
4115 parse_operand (&e, 0);
4116 reg = e.X_add_number - REG_GR;
4117 if (e.X_op != O_register || reg > 127)
4118 {
4119 as_bad ("Second operand to .save.b must be a general register");
4120 reg = 0;
4121 }
4122 else if (reg > 128U - n)
4123 {
4124 as_bad ("Second operand to .save.b must be the first of %d general registers", n);
4125 reg = 0;
4126 }
4127 add_unwind_entry (output_br_gr (brmask, reg), 0);
4128 }
4129 else
4130 add_unwind_entry (output_br_mem (brmask), 0);
4131 }
4132
4133 static void
4134 dot_savegf (dummy)
4135 int dummy ATTRIBUTE_UNUSED;
4136 {
4137 expressionS e1, e2;
4138
4139 if (!in_prologue ("save.gf"))
4140 return;
4141
4142 if (parse_operand (&e1, ',') == ',')
4143 parse_operand (&e2, 0);
4144 else
4145 e2.X_op = O_absent;
4146
4147 if (e1.X_op != O_constant
4148 || e1.X_add_number < 0
4149 || e1.X_add_number > 0xf)
4150 {
4151 as_bad ("First operand to .save.gf must be a non-negative 4-bit constant");
4152 e1.X_op = O_absent;
4153 e1.X_add_number = 0;
4154 }
4155 if (e2.X_op != O_constant
4156 || e2.X_add_number < 0
4157 || e2.X_add_number > 0xfffff)
4158 {
4159 as_bad ("Second operand to .save.gf must be a non-negative 20-bit constant");
4160 e2.X_op = O_absent;
4161 e2.X_add_number = 0;
4162 }
4163 if (e1.X_op == O_constant
4164 && e2.X_op == O_constant
4165 && e1.X_add_number == 0
4166 && e2.X_add_number == 0)
4167 as_bad ("Operands to .save.gf may not be both zero");
4168
4169 add_unwind_entry (output_frgr_mem (e1.X_add_number, e2.X_add_number), 0);
4170 }
4171
4172 static void
4173 dot_spill (dummy)
4174 int dummy ATTRIBUTE_UNUSED;
4175 {
4176 expressionS e;
4177
4178 if (!in_prologue ("spill"))
4179 return;
4180
4181 parse_operand (&e, 0);
4182
4183 if (e.X_op != O_constant)
4184 {
4185 as_bad ("Operand to .spill must be a constant");
4186 e.X_add_number = 0;
4187 }
4188 add_unwind_entry (output_spill_base (e.X_add_number), 0);
4189 }
4190
4191 static void
4192 dot_spillreg (pred)
4193 int pred;
4194 {
4195 int sep;
4196 unsigned int qp, ab, xy, reg, treg;
4197 expressionS e;
4198 const char * const po = pred ? "spillreg.p" : "spillreg";
4199
4200 if (!in_procedure (po))
4201 return;
4202
4203 if (pred)
4204 sep = parse_predicate_and_operand (&e, &qp, po);
4205 else
4206 {
4207 sep = parse_operand (&e, ',');
4208 qp = 0;
4209 }
4210 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
4211
4212 if (sep == ',')
4213 sep = parse_operand (&e, ',');
4214 else
4215 e.X_op = O_absent;
4216 convert_expr_to_xy_reg (&e, &xy, &treg, po, 2 + pred);
4217
4218 add_unwind_entry (output_spill_reg (ab, reg, treg, xy, qp), sep);
4219 }
4220
4221 static void
4222 dot_spillmem (psprel)
4223 int psprel;
4224 {
4225 expressionS e;
4226 int pred = (psprel < 0), sep;
4227 unsigned int qp, ab, reg;
4228 const char * po;
4229
4230 if (pred)
4231 {
4232 psprel = ~psprel;
4233 po = psprel ? "spillpsp.p" : "spillsp.p";
4234 }
4235 else
4236 po = psprel ? "spillpsp" : "spillsp";
4237
4238 if (!in_procedure (po))
4239 return;
4240
4241 if (pred)
4242 sep = parse_predicate_and_operand (&e, &qp, po);
4243 else
4244 {
4245 sep = parse_operand (&e, ',');
4246 qp = 0;
4247 }
4248 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
4249
4250 if (sep == ',')
4251 sep = parse_operand (&e, ',');
4252 else
4253 e.X_op = O_absent;
4254 if (e.X_op != O_constant)
4255 {
4256 as_bad ("Operand %d to .%s must be a constant", 2 + pred, po);
4257 e.X_add_number = 0;
4258 }
4259
4260 if (psprel)
4261 add_unwind_entry (output_spill_psprel (ab, reg, e.X_add_number, qp), sep);
4262 else
4263 add_unwind_entry (output_spill_sprel (ab, reg, e.X_add_number, qp), sep);
4264 }
4265
4266 static unsigned int
4267 get_saved_prologue_count (lbl)
4268 unsigned long lbl;
4269 {
4270 label_prologue_count *lpc = unwind.saved_prologue_counts;
4271
4272 while (lpc != NULL && lpc->label_number != lbl)
4273 lpc = lpc->next;
4274
4275 if (lpc != NULL)
4276 return lpc->prologue_count;
4277
4278 as_bad ("Missing .label_state %ld", lbl);
4279 return 1;
4280 }
4281
4282 static void
4283 save_prologue_count (lbl, count)
4284 unsigned long lbl;
4285 unsigned int count;
4286 {
4287 label_prologue_count *lpc = unwind.saved_prologue_counts;
4288
4289 while (lpc != NULL && lpc->label_number != lbl)
4290 lpc = lpc->next;
4291
4292 if (lpc != NULL)
4293 lpc->prologue_count = count;
4294 else
4295 {
4296 label_prologue_count *new_lpc = xmalloc (sizeof (* new_lpc));
4297
4298 new_lpc->next = unwind.saved_prologue_counts;
4299 new_lpc->label_number = lbl;
4300 new_lpc->prologue_count = count;
4301 unwind.saved_prologue_counts = new_lpc;
4302 }
4303 }
4304
4305 static void
4306 free_saved_prologue_counts ()
4307 {
4308 label_prologue_count *lpc = unwind.saved_prologue_counts;
4309 label_prologue_count *next;
4310
4311 while (lpc != NULL)
4312 {
4313 next = lpc->next;
4314 free (lpc);
4315 lpc = next;
4316 }
4317
4318 unwind.saved_prologue_counts = NULL;
4319 }
4320
4321 static void
4322 dot_label_state (dummy)
4323 int dummy ATTRIBUTE_UNUSED;
4324 {
4325 expressionS e;
4326
4327 if (!in_body ("label_state"))
4328 return;
4329
4330 parse_operand (&e, 0);
4331 if (e.X_op == O_constant)
4332 save_prologue_count (e.X_add_number, unwind.prologue_count);
4333 else
4334 {
4335 as_bad ("Operand to .label_state must be a constant");
4336 e.X_add_number = 0;
4337 }
4338 add_unwind_entry (output_label_state (e.X_add_number), 0);
4339 }
4340
4341 static void
4342 dot_copy_state (dummy)
4343 int dummy ATTRIBUTE_UNUSED;
4344 {
4345 expressionS e;
4346
4347 if (!in_body ("copy_state"))
4348 return;
4349
4350 parse_operand (&e, 0);
4351 if (e.X_op == O_constant)
4352 unwind.prologue_count = get_saved_prologue_count (e.X_add_number);
4353 else
4354 {
4355 as_bad ("Operand to .copy_state must be a constant");
4356 e.X_add_number = 0;
4357 }
4358 add_unwind_entry (output_copy_state (e.X_add_number), 0);
4359 }
4360
4361 static void
4362 dot_unwabi (dummy)
4363 int dummy ATTRIBUTE_UNUSED;
4364 {
4365 expressionS e1, e2;
4366 unsigned char sep;
4367
4368 if (!in_prologue ("unwabi"))
4369 return;
4370
4371 sep = parse_operand (&e1, ',');
4372 if (sep == ',')
4373 parse_operand (&e2, 0);
4374 else
4375 e2.X_op = O_absent;
4376
4377 if (e1.X_op != O_constant)
4378 {
4379 as_bad ("First operand to .unwabi must be a constant");
4380 e1.X_add_number = 0;
4381 }
4382
4383 if (e2.X_op != O_constant)
4384 {
4385 as_bad ("Second operand to .unwabi must be a constant");
4386 e2.X_add_number = 0;
4387 }
4388
4389 add_unwind_entry (output_unwabi (e1.X_add_number, e2.X_add_number), 0);
4390 }
4391
4392 static void
4393 dot_personality (dummy)
4394 int dummy ATTRIBUTE_UNUSED;
4395 {
4396 char *name, *p, c;
4397 if (!in_procedure ("personality"))
4398 return;
4399 SKIP_WHITESPACE ();
4400 name = input_line_pointer;
4401 c = get_symbol_end ();
4402 p = input_line_pointer;
4403 unwind.personality_routine = symbol_find_or_make (name);
4404 unwind.force_unwind_entry = 1;
4405 *p = c;
4406 SKIP_WHITESPACE ();
4407 demand_empty_rest_of_line ();
4408 }
4409
4410 static void
4411 dot_proc (dummy)
4412 int dummy ATTRIBUTE_UNUSED;
4413 {
4414 char *name, *p, c;
4415 symbolS *sym;
4416 proc_pending *pending, *last_pending;
4417
4418 if (unwind.proc_pending.sym)
4419 {
4420 (md.unwind_check == unwind_check_warning
4421 ? as_warn
4422 : as_bad) ("Missing .endp after previous .proc");
4423 while (unwind.proc_pending.next)
4424 {
4425 pending = unwind.proc_pending.next;
4426 unwind.proc_pending.next = pending->next;
4427 free (pending);
4428 }
4429 }
4430 last_pending = NULL;
4431
4432 /* Parse names of main and alternate entry points and mark them as
4433 function symbols: */
4434 while (1)
4435 {
4436 SKIP_WHITESPACE ();
4437 name = input_line_pointer;
4438 c = get_symbol_end ();
4439 p = input_line_pointer;
4440 if (!*name)
4441 as_bad ("Empty argument of .proc");
4442 else
4443 {
4444 sym = symbol_find_or_make (name);
4445 if (S_IS_DEFINED (sym))
4446 as_bad ("`%s' was already defined", name);
4447 else if (!last_pending)
4448 {
4449 unwind.proc_pending.sym = sym;
4450 last_pending = &unwind.proc_pending;
4451 }
4452 else
4453 {
4454 pending = xmalloc (sizeof (*pending));
4455 pending->sym = sym;
4456 last_pending = last_pending->next = pending;
4457 }
4458 symbol_get_bfdsym (sym)->flags |= BSF_FUNCTION;
4459 }
4460 *p = c;
4461 SKIP_WHITESPACE ();
4462 if (*input_line_pointer != ',')
4463 break;
4464 ++input_line_pointer;
4465 }
4466 if (!last_pending)
4467 {
4468 unwind.proc_pending.sym = expr_build_dot ();
4469 last_pending = &unwind.proc_pending;
4470 }
4471 last_pending->next = NULL;
4472 demand_empty_rest_of_line ();
4473 ia64_do_align (16);
4474
4475 unwind.prologue = 0;
4476 unwind.prologue_count = 0;
4477 unwind.body = 0;
4478 unwind.insn = 0;
4479 unwind.list = unwind.tail = unwind.current_entry = NULL;
4480 unwind.personality_routine = 0;
4481 }
4482
4483 static void
4484 dot_body (dummy)
4485 int dummy ATTRIBUTE_UNUSED;
4486 {
4487 if (!in_procedure ("body"))
4488 return;
4489 if (!unwind.prologue && !unwind.body && unwind.insn)
4490 as_warn ("Initial .body should precede any instructions");
4491 check_pending_save ();
4492
4493 unwind.prologue = 0;
4494 unwind.prologue_mask = 0;
4495 unwind.body = 1;
4496
4497 add_unwind_entry (output_body (), 0);
4498 }
4499
4500 static void
4501 dot_prologue (dummy)
4502 int dummy ATTRIBUTE_UNUSED;
4503 {
4504 unsigned mask = 0, grsave = 0;
4505
4506 if (!in_procedure ("prologue"))
4507 return;
4508 if (unwind.prologue)
4509 {
4510 as_bad (".prologue within prologue");
4511 ignore_rest_of_line ();
4512 return;
4513 }
4514 if (!unwind.body && unwind.insn)
4515 as_warn ("Initial .prologue should precede any instructions");
4516
4517 if (!is_it_end_of_statement ())
4518 {
4519 expressionS e;
4520 int n, sep = parse_operand (&e, ',');
4521
4522 if (e.X_op != O_constant
4523 || e.X_add_number < 0
4524 || e.X_add_number > 0xf)
4525 as_bad ("First operand to .prologue must be a positive 4-bit constant");
4526 else if (e.X_add_number == 0)
4527 as_warn ("Pointless use of zero first operand to .prologue");
4528 else
4529 mask = e.X_add_number;
4530 n = popcount (mask);
4531
4532 if (sep == ',')
4533 parse_operand (&e, 0);
4534 else
4535 e.X_op = O_absent;
4536 if (e.X_op == O_constant
4537 && e.X_add_number >= 0
4538 && e.X_add_number < 128)
4539 {
4540 if (md.unwind_check == unwind_check_error)
4541 as_warn ("Using a constant as second operand to .prologue is deprecated");
4542 grsave = e.X_add_number;
4543 }
4544 else if (e.X_op != O_register
4545 || (grsave = e.X_add_number - REG_GR) > 127)
4546 {
4547 as_bad ("Second operand to .prologue must be a general register");
4548 grsave = 0;
4549 }
4550 else if (grsave > 128U - n)
4551 {
4552 as_bad ("Second operand to .prologue must be the first of %d general registers", n);
4553 grsave = 0;
4554 }
4555
4556 }
4557
4558 if (mask)
4559 add_unwind_entry (output_prologue_gr (mask, grsave), 0);
4560 else
4561 add_unwind_entry (output_prologue (), 0);
4562
4563 unwind.prologue = 1;
4564 unwind.prologue_mask = mask;
4565 unwind.prologue_gr = grsave;
4566 unwind.body = 0;
4567 ++unwind.prologue_count;
4568 }
4569
4570 static void
4571 dot_endp (dummy)
4572 int dummy ATTRIBUTE_UNUSED;
4573 {
4574 expressionS e;
4575 int bytes_per_address;
4576 long where;
4577 segT saved_seg;
4578 subsegT saved_subseg;
4579 proc_pending *pending;
4580 int unwind_check = md.unwind_check;
4581
4582 md.unwind_check = unwind_check_error;
4583 if (!in_procedure ("endp"))
4584 return;
4585 md.unwind_check = unwind_check;
4586
4587 if (unwind.saved_text_seg)
4588 {
4589 saved_seg = unwind.saved_text_seg;
4590 saved_subseg = unwind.saved_text_subseg;
4591 unwind.saved_text_seg = NULL;
4592 }
4593 else
4594 {
4595 saved_seg = now_seg;
4596 saved_subseg = now_subseg;
4597 }
4598
4599 insn_group_break (1, 0, 0);
4600
4601 /* If there wasn't a .handlerdata, we haven't generated an image yet. */
4602 if (!unwind.info)
4603 generate_unwind_image (saved_seg);
4604
4605 if (unwind.info || unwind.force_unwind_entry)
4606 {
4607 symbolS *proc_end;
4608
4609 subseg_set (md.last_text_seg, 0);
4610 proc_end = expr_build_dot ();
4611
4612 start_unwind_section (saved_seg, SPECIAL_SECTION_UNWIND);
4613
4614 /* Make sure that section has 4 byte alignment for ILP32 and
4615 8 byte alignment for LP64. */
4616 record_alignment (now_seg, md.pointer_size_shift);
4617
4618 /* Need space for 3 pointers for procedure start, procedure end,
4619 and unwind info. */
4620 memset (frag_more (3 * md.pointer_size), 0, 3 * md.pointer_size);
4621 where = frag_now_fix () - (3 * md.pointer_size);
4622 bytes_per_address = bfd_arch_bits_per_address (stdoutput) / 8;
4623
4624 /* Issue the values of a) Proc Begin, b) Proc End, c) Unwind Record. */
4625 e.X_op = O_pseudo_fixup;
4626 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4627 e.X_add_number = 0;
4628 if (!S_IS_LOCAL (unwind.proc_pending.sym)
4629 && S_IS_DEFINED (unwind.proc_pending.sym))
4630 e.X_add_symbol = symbol_temp_new (S_GET_SEGMENT (unwind.proc_pending.sym),
4631 S_GET_VALUE (unwind.proc_pending.sym),
4632 symbol_get_frag (unwind.proc_pending.sym));
4633 else
4634 e.X_add_symbol = unwind.proc_pending.sym;
4635 ia64_cons_fix_new (frag_now, where, bytes_per_address, &e);
4636
4637 e.X_op = O_pseudo_fixup;
4638 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4639 e.X_add_number = 0;
4640 e.X_add_symbol = proc_end;
4641 ia64_cons_fix_new (frag_now, where + bytes_per_address,
4642 bytes_per_address, &e);
4643
4644 if (unwind.info)
4645 {
4646 e.X_op = O_pseudo_fixup;
4647 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4648 e.X_add_number = 0;
4649 e.X_add_symbol = unwind.info;
4650 ia64_cons_fix_new (frag_now, where + (bytes_per_address * 2),
4651 bytes_per_address, &e);
4652 }
4653 }
4654 subseg_set (saved_seg, saved_subseg);
4655
4656 /* Set symbol sizes. */
4657 pending = &unwind.proc_pending;
4658 if (S_GET_NAME (pending->sym))
4659 {
4660 do
4661 {
4662 symbolS *sym = pending->sym;
4663
4664 if (!S_IS_DEFINED (sym))
4665 as_bad ("`%s' was not defined within procedure", S_GET_NAME (sym));
4666 else if (S_GET_SIZE (sym) == 0
4667 && symbol_get_obj (sym)->size == NULL)
4668 {
4669 fragS *frag = symbol_get_frag (sym);
4670
4671 if (frag)
4672 {
4673 if (frag == frag_now && SEG_NORMAL (now_seg))
4674 S_SET_SIZE (sym, frag_now_fix () - S_GET_VALUE (sym));
4675 else
4676 {
4677 symbol_get_obj (sym)->size =
4678 (expressionS *) xmalloc (sizeof (expressionS));
4679 symbol_get_obj (sym)->size->X_op = O_subtract;
4680 symbol_get_obj (sym)->size->X_add_symbol
4681 = symbol_new (FAKE_LABEL_NAME, now_seg,
4682 frag_now_fix (), frag_now);
4683 symbol_get_obj (sym)->size->X_op_symbol = sym;
4684 symbol_get_obj (sym)->size->X_add_number = 0;
4685 }
4686 }
4687 }
4688 } while ((pending = pending->next) != NULL);
4689 }
4690
4691 /* Parse names of main and alternate entry points. */
4692 while (1)
4693 {
4694 char *name, *p, c;
4695
4696 SKIP_WHITESPACE ();
4697 name = input_line_pointer;
4698 c = get_symbol_end ();
4699 p = input_line_pointer;
4700 if (!*name)
4701 (md.unwind_check == unwind_check_warning
4702 ? as_warn
4703 : as_bad) ("Empty argument of .endp");
4704 else
4705 {
4706 symbolS *sym = symbol_find (name);
4707
4708 for (pending = &unwind.proc_pending; pending; pending = pending->next)
4709 {
4710 if (sym == pending->sym)
4711 {
4712 pending->sym = NULL;
4713 break;
4714 }
4715 }
4716 if (!sym || !pending)
4717 as_warn ("`%s' was not specified with previous .proc", name);
4718 }
4719 *p = c;
4720 SKIP_WHITESPACE ();
4721 if (*input_line_pointer != ',')
4722 break;
4723 ++input_line_pointer;
4724 }
4725 demand_empty_rest_of_line ();
4726
4727 /* Deliberately only checking for the main entry point here; the
4728 language spec even says all arguments to .endp are ignored. */
4729 if (unwind.proc_pending.sym
4730 && S_GET_NAME (unwind.proc_pending.sym)
4731 && strcmp (S_GET_NAME (unwind.proc_pending.sym), FAKE_LABEL_NAME))
4732 as_warn ("`%s' should be an operand to this .endp",
4733 S_GET_NAME (unwind.proc_pending.sym));
4734 while (unwind.proc_pending.next)
4735 {
4736 pending = unwind.proc_pending.next;
4737 unwind.proc_pending.next = pending->next;
4738 free (pending);
4739 }
4740 unwind.proc_pending.sym = unwind.info = NULL;
4741 }
4742
4743 static void
4744 dot_template (template)
4745 int template;
4746 {
4747 CURR_SLOT.user_template = template;
4748 }
4749
4750 static void
4751 dot_regstk (dummy)
4752 int dummy ATTRIBUTE_UNUSED;
4753 {
4754 int ins, locs, outs, rots;
4755
4756 if (is_it_end_of_statement ())
4757 ins = locs = outs = rots = 0;
4758 else
4759 {
4760 ins = get_absolute_expression ();
4761 if (*input_line_pointer++ != ',')
4762 goto err;
4763 locs = get_absolute_expression ();
4764 if (*input_line_pointer++ != ',')
4765 goto err;
4766 outs = get_absolute_expression ();
4767 if (*input_line_pointer++ != ',')
4768 goto err;
4769 rots = get_absolute_expression ();
4770 }
4771 set_regstack (ins, locs, outs, rots);
4772 return;
4773
4774 err:
4775 as_bad ("Comma expected");
4776 ignore_rest_of_line ();
4777 }
4778
4779 static void
4780 dot_rot (type)
4781 int type;
4782 {
4783 offsetT num_regs;
4784 valueT num_alloced = 0;
4785 struct dynreg **drpp, *dr;
4786 int ch, base_reg = 0;
4787 char *name, *start;
4788 size_t len;
4789
4790 switch (type)
4791 {
4792 case DYNREG_GR: base_reg = REG_GR + 32; break;
4793 case DYNREG_FR: base_reg = REG_FR + 32; break;
4794 case DYNREG_PR: base_reg = REG_P + 16; break;
4795 default: break;
4796 }
4797
4798 /* First, remove existing names from hash table. */
4799 for (dr = md.dynreg[type]; dr && dr->num_regs; dr = dr->next)
4800 {
4801 hash_delete (md.dynreg_hash, dr->name);
4802 /* FIXME: Free dr->name. */
4803 dr->num_regs = 0;
4804 }
4805
4806 drpp = &md.dynreg[type];
4807 while (1)
4808 {
4809 start = input_line_pointer;
4810 ch = get_symbol_end ();
4811 len = strlen (ia64_canonicalize_symbol_name (start));
4812 *input_line_pointer = ch;
4813
4814 SKIP_WHITESPACE ();
4815 if (*input_line_pointer != '[')
4816 {
4817 as_bad ("Expected '['");
4818 goto err;
4819 }
4820 ++input_line_pointer; /* skip '[' */
4821
4822 num_regs = get_absolute_expression ();
4823
4824 if (*input_line_pointer++ != ']')
4825 {
4826 as_bad ("Expected ']'");
4827 goto err;
4828 }
4829 if (num_regs <= 0)
4830 {
4831 as_bad ("Number of elements must be positive");
4832 goto err;
4833 }
4834 SKIP_WHITESPACE ();
4835
4836 num_alloced += num_regs;
4837 switch (type)
4838 {
4839 case DYNREG_GR:
4840 if (num_alloced > md.rot.num_regs)
4841 {
4842 as_bad ("Used more than the declared %d rotating registers",
4843 md.rot.num_regs);
4844 goto err;
4845 }
4846 break;
4847 case DYNREG_FR:
4848 if (num_alloced > 96)
4849 {
4850 as_bad ("Used more than the available 96 rotating registers");
4851 goto err;
4852 }
4853 break;
4854 case DYNREG_PR:
4855 if (num_alloced > 48)
4856 {
4857 as_bad ("Used more than the available 48 rotating registers");
4858 goto err;
4859 }
4860 break;
4861
4862 default:
4863 break;
4864 }
4865
4866 if (!*drpp)
4867 {
4868 *drpp = obstack_alloc (&notes, sizeof (*dr));
4869 memset (*drpp, 0, sizeof (*dr));
4870 }
4871
4872 name = obstack_alloc (&notes, len + 1);
4873 memcpy (name, start, len);
4874 name[len] = '\0';
4875
4876 dr = *drpp;
4877 dr->name = name;
4878 dr->num_regs = num_regs;
4879 dr->base = base_reg;
4880 drpp = &dr->next;
4881 base_reg += num_regs;
4882
4883 if (hash_insert (md.dynreg_hash, name, dr))
4884 {
4885 as_bad ("Attempt to redefine register set `%s'", name);
4886 obstack_free (&notes, name);
4887 goto err;
4888 }
4889
4890 if (*input_line_pointer != ',')
4891 break;
4892 ++input_line_pointer; /* skip comma */
4893 SKIP_WHITESPACE ();
4894 }
4895 demand_empty_rest_of_line ();
4896 return;
4897
4898 err:
4899 ignore_rest_of_line ();
4900 }
4901
4902 static void
4903 dot_byteorder (byteorder)
4904 int byteorder;
4905 {
4906 segment_info_type *seginfo = seg_info (now_seg);
4907
4908 if (byteorder == -1)
4909 {
4910 if (seginfo->tc_segment_info_data.endian == 0)
4911 seginfo->tc_segment_info_data.endian = default_big_endian ? 1 : 2;
4912 byteorder = seginfo->tc_segment_info_data.endian == 1;
4913 }
4914 else
4915 seginfo->tc_segment_info_data.endian = byteorder ? 1 : 2;
4916
4917 if (target_big_endian != byteorder)
4918 {
4919 target_big_endian = byteorder;
4920 if (target_big_endian)
4921 {
4922 ia64_number_to_chars = number_to_chars_bigendian;
4923 ia64_float_to_chars = ia64_float_to_chars_bigendian;
4924 }
4925 else
4926 {
4927 ia64_number_to_chars = number_to_chars_littleendian;
4928 ia64_float_to_chars = ia64_float_to_chars_littleendian;
4929 }
4930 }
4931 }
4932
4933 static void
4934 dot_psr (dummy)
4935 int dummy ATTRIBUTE_UNUSED;
4936 {
4937 char *option;
4938 int ch;
4939
4940 while (1)
4941 {
4942 option = input_line_pointer;
4943 ch = get_symbol_end ();
4944 if (strcmp (option, "lsb") == 0)
4945 md.flags &= ~EF_IA_64_BE;
4946 else if (strcmp (option, "msb") == 0)
4947 md.flags |= EF_IA_64_BE;
4948 else if (strcmp (option, "abi32") == 0)
4949 md.flags &= ~EF_IA_64_ABI64;
4950 else if (strcmp (option, "abi64") == 0)
4951 md.flags |= EF_IA_64_ABI64;
4952 else
4953 as_bad ("Unknown psr option `%s'", option);
4954 *input_line_pointer = ch;
4955
4956 SKIP_WHITESPACE ();
4957 if (*input_line_pointer != ',')
4958 break;
4959
4960 ++input_line_pointer;
4961 SKIP_WHITESPACE ();
4962 }
4963 demand_empty_rest_of_line ();
4964 }
4965
4966 static void
4967 dot_ln (dummy)
4968 int dummy ATTRIBUTE_UNUSED;
4969 {
4970 new_logical_line (0, get_absolute_expression ());
4971 demand_empty_rest_of_line ();
4972 }
4973
4974 static void
4975 cross_section (ref, cons, ua)
4976 int ref;
4977 void (*cons) PARAMS((int));
4978 int ua;
4979 {
4980 char *start, *end;
4981 int saved_auto_align;
4982 unsigned int section_count;
4983
4984 SKIP_WHITESPACE ();
4985 start = input_line_pointer;
4986 if (*start == '"')
4987 {
4988 int len;
4989 char *name;
4990
4991 name = demand_copy_C_string (&len);
4992 obstack_free(&notes, name);
4993 if (!name)
4994 {
4995 ignore_rest_of_line ();
4996 return;
4997 }
4998 }
4999 else
5000 {
5001 char c = get_symbol_end ();
5002
5003 if (input_line_pointer == start)
5004 {
5005 as_bad ("Missing section name");
5006 ignore_rest_of_line ();
5007 return;
5008 }
5009 *input_line_pointer = c;
5010 }
5011 end = input_line_pointer;
5012 SKIP_WHITESPACE ();
5013 if (*input_line_pointer != ',')
5014 {
5015 as_bad ("Comma expected after section name");
5016 ignore_rest_of_line ();
5017 return;
5018 }
5019 *end = '\0';
5020 end = input_line_pointer + 1; /* skip comma */
5021 input_line_pointer = start;
5022 md.keep_pending_output = 1;
5023 section_count = bfd_count_sections(stdoutput);
5024 obj_elf_section (0);
5025 if (section_count != bfd_count_sections(stdoutput))
5026 as_warn ("Creating sections with .xdataN/.xrealN/.xstringZ is deprecated.");
5027 input_line_pointer = end;
5028 saved_auto_align = md.auto_align;
5029 if (ua)
5030 md.auto_align = 0;
5031 (*cons) (ref);
5032 if (ua)
5033 md.auto_align = saved_auto_align;
5034 obj_elf_previous (0);
5035 md.keep_pending_output = 0;
5036 }
5037
5038 static void
5039 dot_xdata (size)
5040 int size;
5041 {
5042 cross_section (size, cons, 0);
5043 }
5044
5045 /* Why doesn't float_cons() call md_cons_align() the way cons() does? */
5046
5047 static void
5048 stmt_float_cons (kind)
5049 int kind;
5050 {
5051 size_t alignment;
5052
5053 switch (kind)
5054 {
5055 case 'd':
5056 alignment = 8;
5057 break;
5058
5059 case 'x':
5060 case 'X':
5061 alignment = 16;
5062 break;
5063
5064 case 'f':
5065 default:
5066 alignment = 4;
5067 break;
5068 }
5069 ia64_do_align (alignment);
5070 float_cons (kind);
5071 }
5072
5073 static void
5074 stmt_cons_ua (size)
5075 int size;
5076 {
5077 int saved_auto_align = md.auto_align;
5078
5079 md.auto_align = 0;
5080 cons (size);
5081 md.auto_align = saved_auto_align;
5082 }
5083
5084 static void
5085 dot_xfloat_cons (kind)
5086 int kind;
5087 {
5088 cross_section (kind, stmt_float_cons, 0);
5089 }
5090
5091 static void
5092 dot_xstringer (zero)
5093 int zero;
5094 {
5095 cross_section (zero, stringer, 0);
5096 }
5097
5098 static void
5099 dot_xdata_ua (size)
5100 int size;
5101 {
5102 cross_section (size, cons, 1);
5103 }
5104
5105 static void
5106 dot_xfloat_cons_ua (kind)
5107 int kind;
5108 {
5109 cross_section (kind, float_cons, 1);
5110 }
5111
5112 /* .reg.val <regname>,value */
5113
5114 static void
5115 dot_reg_val (dummy)
5116 int dummy ATTRIBUTE_UNUSED;
5117 {
5118 expressionS reg;
5119
5120 expression_and_evaluate (&reg);
5121 if (reg.X_op != O_register)
5122 {
5123 as_bad (_("Register name expected"));
5124 ignore_rest_of_line ();
5125 }
5126 else if (*input_line_pointer++ != ',')
5127 {
5128 as_bad (_("Comma expected"));
5129 ignore_rest_of_line ();
5130 }
5131 else
5132 {
5133 valueT value = get_absolute_expression ();
5134 int regno = reg.X_add_number;
5135 if (regno <= REG_GR || regno > REG_GR + 127)
5136 as_warn (_("Register value annotation ignored"));
5137 else
5138 {
5139 gr_values[regno - REG_GR].known = 1;
5140 gr_values[regno - REG_GR].value = value;
5141 gr_values[regno - REG_GR].path = md.path;
5142 }
5143 }
5144 demand_empty_rest_of_line ();
5145 }
5146
5147 /*
5148 .serialize.data
5149 .serialize.instruction
5150 */
5151 static void
5152 dot_serialize (type)
5153 int type;
5154 {
5155 insn_group_break (0, 0, 0);
5156 if (type)
5157 instruction_serialization ();
5158 else
5159 data_serialization ();
5160 insn_group_break (0, 0, 0);
5161 demand_empty_rest_of_line ();
5162 }
5163
5164 /* select dv checking mode
5165 .auto
5166 .explicit
5167 .default
5168
5169 A stop is inserted when changing modes
5170 */
5171
5172 static void
5173 dot_dv_mode (type)
5174 int type;
5175 {
5176 if (md.manual_bundling)
5177 as_warn (_("Directive invalid within a bundle"));
5178
5179 if (type == 'E' || type == 'A')
5180 md.mode_explicitly_set = 0;
5181 else
5182 md.mode_explicitly_set = 1;
5183
5184 md.detect_dv = 1;
5185 switch (type)
5186 {
5187 case 'A':
5188 case 'a':
5189 if (md.explicit_mode)
5190 insn_group_break (1, 0, 0);
5191 md.explicit_mode = 0;
5192 break;
5193 case 'E':
5194 case 'e':
5195 if (!md.explicit_mode)
5196 insn_group_break (1, 0, 0);
5197 md.explicit_mode = 1;
5198 break;
5199 default:
5200 case 'd':
5201 if (md.explicit_mode != md.default_explicit_mode)
5202 insn_group_break (1, 0, 0);
5203 md.explicit_mode = md.default_explicit_mode;
5204 md.mode_explicitly_set = 0;
5205 break;
5206 }
5207 }
5208
5209 static void
5210 print_prmask (mask)
5211 valueT mask;
5212 {
5213 int regno;
5214 char *comma = "";
5215 for (regno = 0; regno < 64; regno++)
5216 {
5217 if (mask & ((valueT) 1 << regno))
5218 {
5219 fprintf (stderr, "%s p%d", comma, regno);
5220 comma = ",";
5221 }
5222 }
5223 }
5224
5225 /*
5226 .pred.rel.clear [p1 [,p2 [,...]]] (also .pred.rel "clear" or @clear)
5227 .pred.rel.imply p1, p2 (also .pred.rel "imply" or @imply)
5228 .pred.rel.mutex p1, p2 [,...] (also .pred.rel "mutex" or @mutex)
5229 .pred.safe_across_calls p1 [, p2 [,...]]
5230 */
5231
5232 static void
5233 dot_pred_rel (type)
5234 int type;
5235 {
5236 valueT mask = 0;
5237 int count = 0;
5238 int p1 = -1, p2 = -1;
5239
5240 if (type == 0)
5241 {
5242 if (*input_line_pointer == '"')
5243 {
5244 int len;
5245 char *form = demand_copy_C_string (&len);
5246
5247 if (strcmp (form, "mutex") == 0)
5248 type = 'm';
5249 else if (strcmp (form, "clear") == 0)
5250 type = 'c';
5251 else if (strcmp (form, "imply") == 0)
5252 type = 'i';
5253 obstack_free (&notes, form);
5254 }
5255 else if (*input_line_pointer == '@')
5256 {
5257 char *form = ++input_line_pointer;
5258 char c = get_symbol_end();
5259
5260 if (strcmp (form, "mutex") == 0)
5261 type = 'm';
5262 else if (strcmp (form, "clear") == 0)
5263 type = 'c';
5264 else if (strcmp (form, "imply") == 0)
5265 type = 'i';
5266 *input_line_pointer = c;
5267 }
5268 else
5269 {
5270 as_bad (_("Missing predicate relation type"));
5271 ignore_rest_of_line ();
5272 return;
5273 }
5274 if (type == 0)
5275 {
5276 as_bad (_("Unrecognized predicate relation type"));
5277 ignore_rest_of_line ();
5278 return;
5279 }
5280 if (*input_line_pointer == ',')
5281 ++input_line_pointer;
5282 SKIP_WHITESPACE ();
5283 }
5284
5285 SKIP_WHITESPACE ();
5286 while (1)
5287 {
5288 valueT bits = 1;
5289 int regno;
5290 expressionS pr, *pr1, *pr2;
5291
5292 expression_and_evaluate (&pr);
5293 if (pr.X_op == O_register
5294 && pr.X_add_number >= REG_P
5295 && pr.X_add_number <= REG_P + 63)
5296 {
5297 regno = pr.X_add_number - REG_P;
5298 bits <<= regno;
5299 count++;
5300 if (p1 == -1)
5301 p1 = regno;
5302 else if (p2 == -1)
5303 p2 = regno;
5304 }
5305 else if (type != 'i'
5306 && pr.X_op == O_subtract
5307 && (pr1 = symbol_get_value_expression (pr.X_add_symbol))
5308 && pr1->X_op == O_register
5309 && pr1->X_add_number >= REG_P
5310 && pr1->X_add_number <= REG_P + 63
5311 && (pr2 = symbol_get_value_expression (pr.X_op_symbol))
5312 && pr2->X_op == O_register
5313 && pr2->X_add_number >= REG_P
5314 && pr2->X_add_number <= REG_P + 63)
5315 {
5316 /* It's a range. */
5317 int stop;
5318
5319 regno = pr1->X_add_number - REG_P;
5320 stop = pr2->X_add_number - REG_P;
5321 if (regno >= stop)
5322 {
5323 as_bad (_("Bad register range"));
5324 ignore_rest_of_line ();
5325 return;
5326 }
5327 bits = ((bits << stop) << 1) - (bits << regno);
5328 count += stop - regno + 1;
5329 }
5330 else
5331 {
5332 as_bad (_("Predicate register expected"));
5333 ignore_rest_of_line ();
5334 return;
5335 }
5336 if (mask & bits)
5337 as_warn (_("Duplicate predicate register ignored"));
5338 mask |= bits;
5339 if (*input_line_pointer != ',')
5340 break;
5341 ++input_line_pointer;
5342 SKIP_WHITESPACE ();
5343 }
5344
5345 switch (type)
5346 {
5347 case 'c':
5348 if (count == 0)
5349 mask = ~(valueT) 0;
5350 clear_qp_mutex (mask);
5351 clear_qp_implies (mask, (valueT) 0);
5352 break;
5353 case 'i':
5354 if (count != 2 || p1 == -1 || p2 == -1)
5355 as_bad (_("Predicate source and target required"));
5356 else if (p1 == 0 || p2 == 0)
5357 as_bad (_("Use of p0 is not valid in this context"));
5358 else
5359 add_qp_imply (p1, p2);
5360 break;
5361 case 'm':
5362 if (count < 2)
5363 {
5364 as_bad (_("At least two PR arguments expected"));
5365 break;
5366 }
5367 else if (mask & 1)
5368 {
5369 as_bad (_("Use of p0 is not valid in this context"));
5370 break;
5371 }
5372 add_qp_mutex (mask);
5373 break;
5374 case 's':
5375 /* note that we don't override any existing relations */
5376 if (count == 0)
5377 {
5378 as_bad (_("At least one PR argument expected"));
5379 break;
5380 }
5381 if (md.debug_dv)
5382 {
5383 fprintf (stderr, "Safe across calls: ");
5384 print_prmask (mask);
5385 fprintf (stderr, "\n");
5386 }
5387 qp_safe_across_calls = mask;
5388 break;
5389 }
5390 demand_empty_rest_of_line ();
5391 }
5392
5393 /* .entry label [, label [, ...]]
5394 Hint to DV code that the given labels are to be considered entry points.
5395 Otherwise, only global labels are considered entry points. */
5396
5397 static void
5398 dot_entry (dummy)
5399 int dummy ATTRIBUTE_UNUSED;
5400 {
5401 const char *err;
5402 char *name;
5403 int c;
5404 symbolS *symbolP;
5405
5406 do
5407 {
5408 name = input_line_pointer;
5409 c = get_symbol_end ();
5410 symbolP = symbol_find_or_make (name);
5411
5412 err = hash_insert (md.entry_hash, S_GET_NAME (symbolP), (PTR) symbolP);
5413 if (err)
5414 as_fatal (_("Inserting \"%s\" into entry hint table failed: %s"),
5415 name, err);
5416
5417 *input_line_pointer = c;
5418 SKIP_WHITESPACE ();
5419 c = *input_line_pointer;
5420 if (c == ',')
5421 {
5422 input_line_pointer++;
5423 SKIP_WHITESPACE ();
5424 if (*input_line_pointer == '\n')
5425 c = '\n';
5426 }
5427 }
5428 while (c == ',');
5429
5430 demand_empty_rest_of_line ();
5431 }
5432
5433 /* .mem.offset offset, base
5434 "base" is used to distinguish between offsets from a different base. */
5435
5436 static void
5437 dot_mem_offset (dummy)
5438 int dummy ATTRIBUTE_UNUSED;
5439 {
5440 md.mem_offset.hint = 1;
5441 md.mem_offset.offset = get_absolute_expression ();
5442 if (*input_line_pointer != ',')
5443 {
5444 as_bad (_("Comma expected"));
5445 ignore_rest_of_line ();
5446 return;
5447 }
5448 ++input_line_pointer;
5449 md.mem_offset.base = get_absolute_expression ();
5450 demand_empty_rest_of_line ();
5451 }
5452
5453 /* ia64-specific pseudo-ops: */
5454 const pseudo_typeS md_pseudo_table[] =
5455 {
5456 { "radix", dot_radix, 0 },
5457 { "lcomm", s_lcomm_bytes, 1 },
5458 { "loc", dot_loc, 0 },
5459 { "bss", dot_special_section, SPECIAL_SECTION_BSS },
5460 { "sbss", dot_special_section, SPECIAL_SECTION_SBSS },
5461 { "sdata", dot_special_section, SPECIAL_SECTION_SDATA },
5462 { "rodata", dot_special_section, SPECIAL_SECTION_RODATA },
5463 { "comment", dot_special_section, SPECIAL_SECTION_COMMENT },
5464 { "ia_64.unwind", dot_special_section, SPECIAL_SECTION_UNWIND },
5465 { "ia_64.unwind_info", dot_special_section, SPECIAL_SECTION_UNWIND_INFO },
5466 { "init_array", dot_special_section, SPECIAL_SECTION_INIT_ARRAY },
5467 { "fini_array", dot_special_section, SPECIAL_SECTION_FINI_ARRAY },
5468 { "proc", dot_proc, 0 },
5469 { "body", dot_body, 0 },
5470 { "prologue", dot_prologue, 0 },
5471 { "endp", dot_endp, 0 },
5472
5473 { "fframe", dot_fframe, 0 },
5474 { "vframe", dot_vframe, 0 },
5475 { "vframesp", dot_vframesp, 0 },
5476 { "vframepsp", dot_vframesp, 1 },
5477 { "save", dot_save, 0 },
5478 { "restore", dot_restore, 0 },
5479 { "restorereg", dot_restorereg, 0 },
5480 { "restorereg.p", dot_restorereg, 1 },
5481 { "handlerdata", dot_handlerdata, 0 },
5482 { "unwentry", dot_unwentry, 0 },
5483 { "altrp", dot_altrp, 0 },
5484 { "savesp", dot_savemem, 0 },
5485 { "savepsp", dot_savemem, 1 },
5486 { "save.g", dot_saveg, 0 },
5487 { "save.f", dot_savef, 0 },
5488 { "save.b", dot_saveb, 0 },
5489 { "save.gf", dot_savegf, 0 },
5490 { "spill", dot_spill, 0 },
5491 { "spillreg", dot_spillreg, 0 },
5492 { "spillsp", dot_spillmem, 0 },
5493 { "spillpsp", dot_spillmem, 1 },
5494 { "spillreg.p", dot_spillreg, 1 },
5495 { "spillsp.p", dot_spillmem, ~0 },
5496 { "spillpsp.p", dot_spillmem, ~1 },
5497 { "label_state", dot_label_state, 0 },
5498 { "copy_state", dot_copy_state, 0 },
5499 { "unwabi", dot_unwabi, 0 },
5500 { "personality", dot_personality, 0 },
5501 { "mii", dot_template, 0x0 },
5502 { "mli", dot_template, 0x2 }, /* old format, for compatibility */
5503 { "mlx", dot_template, 0x2 },
5504 { "mmi", dot_template, 0x4 },
5505 { "mfi", dot_template, 0x6 },
5506 { "mmf", dot_template, 0x7 },
5507 { "mib", dot_template, 0x8 },
5508 { "mbb", dot_template, 0x9 },
5509 { "bbb", dot_template, 0xb },
5510 { "mmb", dot_template, 0xc },
5511 { "mfb", dot_template, 0xe },
5512 { "align", dot_align, 0 },
5513 { "regstk", dot_regstk, 0 },
5514 { "rotr", dot_rot, DYNREG_GR },
5515 { "rotf", dot_rot, DYNREG_FR },
5516 { "rotp", dot_rot, DYNREG_PR },
5517 { "lsb", dot_byteorder, 0 },
5518 { "msb", dot_byteorder, 1 },
5519 { "psr", dot_psr, 0 },
5520 { "alias", dot_alias, 0 },
5521 { "secalias", dot_alias, 1 },
5522 { "ln", dot_ln, 0 }, /* source line info (for debugging) */
5523
5524 { "xdata1", dot_xdata, 1 },
5525 { "xdata2", dot_xdata, 2 },
5526 { "xdata4", dot_xdata, 4 },
5527 { "xdata8", dot_xdata, 8 },
5528 { "xdata16", dot_xdata, 16 },
5529 { "xreal4", dot_xfloat_cons, 'f' },
5530 { "xreal8", dot_xfloat_cons, 'd' },
5531 { "xreal10", dot_xfloat_cons, 'x' },
5532 { "xreal16", dot_xfloat_cons, 'X' },
5533 { "xstring", dot_xstringer, 0 },
5534 { "xstringz", dot_xstringer, 1 },
5535
5536 /* unaligned versions: */
5537 { "xdata2.ua", dot_xdata_ua, 2 },
5538 { "xdata4.ua", dot_xdata_ua, 4 },
5539 { "xdata8.ua", dot_xdata_ua, 8 },
5540 { "xdata16.ua", dot_xdata_ua, 16 },
5541 { "xreal4.ua", dot_xfloat_cons_ua, 'f' },
5542 { "xreal8.ua", dot_xfloat_cons_ua, 'd' },
5543 { "xreal10.ua", dot_xfloat_cons_ua, 'x' },
5544 { "xreal16.ua", dot_xfloat_cons_ua, 'X' },
5545
5546 /* annotations/DV checking support */
5547 { "entry", dot_entry, 0 },
5548 { "mem.offset", dot_mem_offset, 0 },
5549 { "pred.rel", dot_pred_rel, 0 },
5550 { "pred.rel.clear", dot_pred_rel, 'c' },
5551 { "pred.rel.imply", dot_pred_rel, 'i' },
5552 { "pred.rel.mutex", dot_pred_rel, 'm' },
5553 { "pred.safe_across_calls", dot_pred_rel, 's' },
5554 { "reg.val", dot_reg_val, 0 },
5555 { "serialize.data", dot_serialize, 0 },
5556 { "serialize.instruction", dot_serialize, 1 },
5557 { "auto", dot_dv_mode, 'a' },
5558 { "explicit", dot_dv_mode, 'e' },
5559 { "default", dot_dv_mode, 'd' },
5560
5561 /* ??? These are needed to make gas/testsuite/gas/elf/ehopt.s work.
5562 IA-64 aligns data allocation pseudo-ops by default, so we have to
5563 tell it that these ones are supposed to be unaligned. Long term,
5564 should rewrite so that only IA-64 specific data allocation pseudo-ops
5565 are aligned by default. */
5566 {"2byte", stmt_cons_ua, 2},
5567 {"4byte", stmt_cons_ua, 4},
5568 {"8byte", stmt_cons_ua, 8},
5569
5570 { NULL, 0, 0 }
5571 };
5572
5573 static const struct pseudo_opcode
5574 {
5575 const char *name;
5576 void (*handler) (int);
5577 int arg;
5578 }
5579 pseudo_opcode[] =
5580 {
5581 /* these are more like pseudo-ops, but don't start with a dot */
5582 { "data1", cons, 1 },
5583 { "data2", cons, 2 },
5584 { "data4", cons, 4 },
5585 { "data8", cons, 8 },
5586 { "data16", cons, 16 },
5587 { "real4", stmt_float_cons, 'f' },
5588 { "real8", stmt_float_cons, 'd' },
5589 { "real10", stmt_float_cons, 'x' },
5590 { "real16", stmt_float_cons, 'X' },
5591 { "string", stringer, 0 },
5592 { "stringz", stringer, 1 },
5593
5594 /* unaligned versions: */
5595 { "data2.ua", stmt_cons_ua, 2 },
5596 { "data4.ua", stmt_cons_ua, 4 },
5597 { "data8.ua", stmt_cons_ua, 8 },
5598 { "data16.ua", stmt_cons_ua, 16 },
5599 { "real4.ua", float_cons, 'f' },
5600 { "real8.ua", float_cons, 'd' },
5601 { "real10.ua", float_cons, 'x' },
5602 { "real16.ua", float_cons, 'X' },
5603 };
5604
5605 /* Declare a register by creating a symbol for it and entering it in
5606 the symbol table. */
5607
5608 static symbolS *
5609 declare_register (name, regnum)
5610 const char *name;
5611 unsigned int regnum;
5612 {
5613 const char *err;
5614 symbolS *sym;
5615
5616 sym = symbol_create (name, reg_section, regnum, &zero_address_frag);
5617
5618 err = hash_insert (md.reg_hash, S_GET_NAME (sym), (PTR) sym);
5619 if (err)
5620 as_fatal ("Inserting \"%s\" into register table failed: %s",
5621 name, err);
5622
5623 return sym;
5624 }
5625
5626 static void
5627 declare_register_set (prefix, num_regs, base_regnum)
5628 const char *prefix;
5629 unsigned int num_regs;
5630 unsigned int base_regnum;
5631 {
5632 char name[8];
5633 unsigned int i;
5634
5635 for (i = 0; i < num_regs; ++i)
5636 {
5637 sprintf (name, "%s%u", prefix, i);
5638 declare_register (name, base_regnum + i);
5639 }
5640 }
5641
5642 static unsigned int
5643 operand_width (opnd)
5644 enum ia64_opnd opnd;
5645 {
5646 const struct ia64_operand *odesc = &elf64_ia64_operands[opnd];
5647 unsigned int bits = 0;
5648 int i;
5649
5650 bits = 0;
5651 for (i = 0; i < NELEMS (odesc->field) && odesc->field[i].bits; ++i)
5652 bits += odesc->field[i].bits;
5653
5654 return bits;
5655 }
5656
5657 static enum operand_match_result
5658 operand_match (idesc, index, e)
5659 const struct ia64_opcode *idesc;
5660 int index;
5661 expressionS *e;
5662 {
5663 enum ia64_opnd opnd = idesc->operands[index];
5664 int bits, relocatable = 0;
5665 struct insn_fix *fix;
5666 bfd_signed_vma val;
5667
5668 switch (opnd)
5669 {
5670 /* constants: */
5671
5672 case IA64_OPND_AR_CCV:
5673 if (e->X_op == O_register && e->X_add_number == REG_AR + 32)
5674 return OPERAND_MATCH;
5675 break;
5676
5677 case IA64_OPND_AR_CSD:
5678 if (e->X_op == O_register && e->X_add_number == REG_AR + 25)
5679 return OPERAND_MATCH;
5680 break;
5681
5682 case IA64_OPND_AR_PFS:
5683 if (e->X_op == O_register && e->X_add_number == REG_AR + 64)
5684 return OPERAND_MATCH;
5685 break;
5686
5687 case IA64_OPND_GR0:
5688 if (e->X_op == O_register && e->X_add_number == REG_GR + 0)
5689 return OPERAND_MATCH;
5690 break;
5691
5692 case IA64_OPND_IP:
5693 if (e->X_op == O_register && e->X_add_number == REG_IP)
5694 return OPERAND_MATCH;
5695 break;
5696
5697 case IA64_OPND_PR:
5698 if (e->X_op == O_register && e->X_add_number == REG_PR)
5699 return OPERAND_MATCH;
5700 break;
5701
5702 case IA64_OPND_PR_ROT:
5703 if (e->X_op == O_register && e->X_add_number == REG_PR_ROT)
5704 return OPERAND_MATCH;
5705 break;
5706
5707 case IA64_OPND_PSR:
5708 if (e->X_op == O_register && e->X_add_number == REG_PSR)
5709 return OPERAND_MATCH;
5710 break;
5711
5712 case IA64_OPND_PSR_L:
5713 if (e->X_op == O_register && e->X_add_number == REG_PSR_L)
5714 return OPERAND_MATCH;
5715 break;
5716
5717 case IA64_OPND_PSR_UM:
5718 if (e->X_op == O_register && e->X_add_number == REG_PSR_UM)
5719 return OPERAND_MATCH;
5720 break;
5721
5722 case IA64_OPND_C1:
5723 if (e->X_op == O_constant)
5724 {
5725 if (e->X_add_number == 1)
5726 return OPERAND_MATCH;
5727 else
5728 return OPERAND_OUT_OF_RANGE;
5729 }
5730 break;
5731
5732 case IA64_OPND_C8:
5733 if (e->X_op == O_constant)
5734 {
5735 if (e->X_add_number == 8)
5736 return OPERAND_MATCH;
5737 else
5738 return OPERAND_OUT_OF_RANGE;
5739 }
5740 break;
5741
5742 case IA64_OPND_C16:
5743 if (e->X_op == O_constant)
5744 {
5745 if (e->X_add_number == 16)
5746 return OPERAND_MATCH;
5747 else
5748 return OPERAND_OUT_OF_RANGE;
5749 }
5750 break;
5751
5752 /* register operands: */
5753
5754 case IA64_OPND_AR3:
5755 if (e->X_op == O_register && e->X_add_number >= REG_AR
5756 && e->X_add_number < REG_AR + 128)
5757 return OPERAND_MATCH;
5758 break;
5759
5760 case IA64_OPND_B1:
5761 case IA64_OPND_B2:
5762 if (e->X_op == O_register && e->X_add_number >= REG_BR
5763 && e->X_add_number < REG_BR + 8)
5764 return OPERAND_MATCH;
5765 break;
5766
5767 case IA64_OPND_CR3:
5768 if (e->X_op == O_register && e->X_add_number >= REG_CR
5769 && e->X_add_number < REG_CR + 128)
5770 return OPERAND_MATCH;
5771 break;
5772
5773 case IA64_OPND_F1:
5774 case IA64_OPND_F2:
5775 case IA64_OPND_F3:
5776 case IA64_OPND_F4:
5777 if (e->X_op == O_register && e->X_add_number >= REG_FR
5778 && e->X_add_number < REG_FR + 128)
5779 return OPERAND_MATCH;
5780 break;
5781
5782 case IA64_OPND_P1:
5783 case IA64_OPND_P2:
5784 if (e->X_op == O_register && e->X_add_number >= REG_P
5785 && e->X_add_number < REG_P + 64)
5786 return OPERAND_MATCH;
5787 break;
5788
5789 case IA64_OPND_R1:
5790 case IA64_OPND_R2:
5791 case IA64_OPND_R3:
5792 if (e->X_op == O_register && e->X_add_number >= REG_GR
5793 && e->X_add_number < REG_GR + 128)
5794 return OPERAND_MATCH;
5795 break;
5796
5797 case IA64_OPND_R3_2:
5798 if (e->X_op == O_register && e->X_add_number >= REG_GR)
5799 {
5800 if (e->X_add_number < REG_GR + 4)
5801 return OPERAND_MATCH;
5802 else if (e->X_add_number < REG_GR + 128)
5803 return OPERAND_OUT_OF_RANGE;
5804 }
5805 break;
5806
5807 /* indirect operands: */
5808 case IA64_OPND_CPUID_R3:
5809 case IA64_OPND_DBR_R3:
5810 case IA64_OPND_DTR_R3:
5811 case IA64_OPND_ITR_R3:
5812 case IA64_OPND_IBR_R3:
5813 case IA64_OPND_MSR_R3:
5814 case IA64_OPND_PKR_R3:
5815 case IA64_OPND_PMC_R3:
5816 case IA64_OPND_PMD_R3:
5817 case IA64_OPND_RR_R3:
5818 if (e->X_op == O_index && e->X_op_symbol
5819 && (S_GET_VALUE (e->X_op_symbol) - IND_CPUID
5820 == opnd - IA64_OPND_CPUID_R3))
5821 return OPERAND_MATCH;
5822 break;
5823
5824 case IA64_OPND_MR3:
5825 if (e->X_op == O_index && !e->X_op_symbol)
5826 return OPERAND_MATCH;
5827 break;
5828
5829 /* immediate operands: */
5830 case IA64_OPND_CNT2a:
5831 case IA64_OPND_LEN4:
5832 case IA64_OPND_LEN6:
5833 bits = operand_width (idesc->operands[index]);
5834 if (e->X_op == O_constant)
5835 {
5836 if ((bfd_vma) (e->X_add_number - 1) < ((bfd_vma) 1 << bits))
5837 return OPERAND_MATCH;
5838 else
5839 return OPERAND_OUT_OF_RANGE;
5840 }
5841 break;
5842
5843 case IA64_OPND_CNT2b:
5844 if (e->X_op == O_constant)
5845 {
5846 if ((bfd_vma) (e->X_add_number - 1) < 3)
5847 return OPERAND_MATCH;
5848 else
5849 return OPERAND_OUT_OF_RANGE;
5850 }
5851 break;
5852
5853 case IA64_OPND_CNT2c:
5854 val = e->X_add_number;
5855 if (e->X_op == O_constant)
5856 {
5857 if ((val == 0 || val == 7 || val == 15 || val == 16))
5858 return OPERAND_MATCH;
5859 else
5860 return OPERAND_OUT_OF_RANGE;
5861 }
5862 break;
5863
5864 case IA64_OPND_SOR:
5865 /* SOR must be an integer multiple of 8 */
5866 if (e->X_op == O_constant && e->X_add_number & 0x7)
5867 return OPERAND_OUT_OF_RANGE;
5868 case IA64_OPND_SOF:
5869 case IA64_OPND_SOL:
5870 if (e->X_op == O_constant)
5871 {
5872 if ((bfd_vma) e->X_add_number <= 96)
5873 return OPERAND_MATCH;
5874 else
5875 return OPERAND_OUT_OF_RANGE;
5876 }
5877 break;
5878
5879 case IA64_OPND_IMMU62:
5880 if (e->X_op == O_constant)
5881 {
5882 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << 62))
5883 return OPERAND_MATCH;
5884 else
5885 return OPERAND_OUT_OF_RANGE;
5886 }
5887 else
5888 {
5889 /* FIXME -- need 62-bit relocation type */
5890 as_bad (_("62-bit relocation not yet implemented"));
5891 }
5892 break;
5893
5894 case IA64_OPND_IMMU64:
5895 if (e->X_op == O_symbol || e->X_op == O_pseudo_fixup
5896 || e->X_op == O_subtract)
5897 {
5898 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5899 fix->code = BFD_RELOC_IA64_IMM64;
5900 if (e->X_op != O_subtract)
5901 {
5902 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5903 if (e->X_op == O_pseudo_fixup)
5904 e->X_op = O_symbol;
5905 }
5906
5907 fix->opnd = idesc->operands[index];
5908 fix->expr = *e;
5909 fix->is_pcrel = 0;
5910 ++CURR_SLOT.num_fixups;
5911 return OPERAND_MATCH;
5912 }
5913 else if (e->X_op == O_constant)
5914 return OPERAND_MATCH;
5915 break;
5916
5917 case IA64_OPND_IMMU5b:
5918 if (e->X_op == O_constant)
5919 {
5920 val = e->X_add_number;
5921 if (val >= 32 && val <= 63)
5922 return OPERAND_MATCH;
5923 else
5924 return OPERAND_OUT_OF_RANGE;
5925 }
5926 break;
5927
5928 case IA64_OPND_CCNT5:
5929 case IA64_OPND_CNT5:
5930 case IA64_OPND_CNT6:
5931 case IA64_OPND_CPOS6a:
5932 case IA64_OPND_CPOS6b:
5933 case IA64_OPND_CPOS6c:
5934 case IA64_OPND_IMMU2:
5935 case IA64_OPND_IMMU7a:
5936 case IA64_OPND_IMMU7b:
5937 case IA64_OPND_IMMU21:
5938 case IA64_OPND_IMMU24:
5939 case IA64_OPND_MBTYPE4:
5940 case IA64_OPND_MHTYPE8:
5941 case IA64_OPND_POS6:
5942 bits = operand_width (idesc->operands[index]);
5943 if (e->X_op == O_constant)
5944 {
5945 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5946 return OPERAND_MATCH;
5947 else
5948 return OPERAND_OUT_OF_RANGE;
5949 }
5950 break;
5951
5952 case IA64_OPND_IMMU9:
5953 bits = operand_width (idesc->operands[index]);
5954 if (e->X_op == O_constant)
5955 {
5956 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5957 {
5958 int lobits = e->X_add_number & 0x3;
5959 if (((bfd_vma) e->X_add_number & 0x3C) != 0 && lobits == 0)
5960 e->X_add_number |= (bfd_vma) 0x3;
5961 return OPERAND_MATCH;
5962 }
5963 else
5964 return OPERAND_OUT_OF_RANGE;
5965 }
5966 break;
5967
5968 case IA64_OPND_IMM44:
5969 /* least 16 bits must be zero */
5970 if ((e->X_add_number & 0xffff) != 0)
5971 /* XXX technically, this is wrong: we should not be issuing warning
5972 messages until we're sure this instruction pattern is going to
5973 be used! */
5974 as_warn (_("lower 16 bits of mask ignored"));
5975
5976 if (e->X_op == O_constant)
5977 {
5978 if (((e->X_add_number >= 0
5979 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 44))
5980 || (e->X_add_number < 0
5981 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 44))))
5982 {
5983 /* sign-extend */
5984 if (e->X_add_number >= 0
5985 && (e->X_add_number & ((bfd_vma) 1 << 43)) != 0)
5986 {
5987 e->X_add_number |= ~(((bfd_vma) 1 << 44) - 1);
5988 }
5989 return OPERAND_MATCH;
5990 }
5991 else
5992 return OPERAND_OUT_OF_RANGE;
5993 }
5994 break;
5995
5996 case IA64_OPND_IMM17:
5997 /* bit 0 is a don't care (pr0 is hardwired to 1) */
5998 if (e->X_op == O_constant)
5999 {
6000 if (((e->X_add_number >= 0
6001 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 17))
6002 || (e->X_add_number < 0
6003 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 17))))
6004 {
6005 /* sign-extend */
6006 if (e->X_add_number >= 0
6007 && (e->X_add_number & ((bfd_vma) 1 << 16)) != 0)
6008 {
6009 e->X_add_number |= ~(((bfd_vma) 1 << 17) - 1);
6010 }
6011 return OPERAND_MATCH;
6012 }
6013 else
6014 return OPERAND_OUT_OF_RANGE;
6015 }
6016 break;
6017
6018 case IA64_OPND_IMM14:
6019 case IA64_OPND_IMM22:
6020 relocatable = 1;
6021 case IA64_OPND_IMM1:
6022 case IA64_OPND_IMM8:
6023 case IA64_OPND_IMM8U4:
6024 case IA64_OPND_IMM8M1:
6025 case IA64_OPND_IMM8M1U4:
6026 case IA64_OPND_IMM8M1U8:
6027 case IA64_OPND_IMM9a:
6028 case IA64_OPND_IMM9b:
6029 bits = operand_width (idesc->operands[index]);
6030 if (relocatable && (e->X_op == O_symbol
6031 || e->X_op == O_subtract
6032 || e->X_op == O_pseudo_fixup))
6033 {
6034 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6035
6036 if (idesc->operands[index] == IA64_OPND_IMM14)
6037 fix->code = BFD_RELOC_IA64_IMM14;
6038 else
6039 fix->code = BFD_RELOC_IA64_IMM22;
6040
6041 if (e->X_op != O_subtract)
6042 {
6043 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
6044 if (e->X_op == O_pseudo_fixup)
6045 e->X_op = O_symbol;
6046 }
6047
6048 fix->opnd = idesc->operands[index];
6049 fix->expr = *e;
6050 fix->is_pcrel = 0;
6051 ++CURR_SLOT.num_fixups;
6052 return OPERAND_MATCH;
6053 }
6054 else if (e->X_op != O_constant
6055 && ! (e->X_op == O_big && opnd == IA64_OPND_IMM8M1U8))
6056 return OPERAND_MISMATCH;
6057
6058 if (opnd == IA64_OPND_IMM8M1U4)
6059 {
6060 /* Zero is not valid for unsigned compares that take an adjusted
6061 constant immediate range. */
6062 if (e->X_add_number == 0)
6063 return OPERAND_OUT_OF_RANGE;
6064
6065 /* Sign-extend 32-bit unsigned numbers, so that the following range
6066 checks will work. */
6067 val = e->X_add_number;
6068 if (((val & (~(bfd_vma) 0 << 32)) == 0)
6069 && ((val & ((bfd_vma) 1 << 31)) != 0))
6070 val = ((val << 32) >> 32);
6071
6072 /* Check for 0x100000000. This is valid because
6073 0x100000000-1 is the same as ((uint32_t) -1). */
6074 if (val == ((bfd_signed_vma) 1 << 32))
6075 return OPERAND_MATCH;
6076
6077 val = val - 1;
6078 }
6079 else if (opnd == IA64_OPND_IMM8M1U8)
6080 {
6081 /* Zero is not valid for unsigned compares that take an adjusted
6082 constant immediate range. */
6083 if (e->X_add_number == 0)
6084 return OPERAND_OUT_OF_RANGE;
6085
6086 /* Check for 0x10000000000000000. */
6087 if (e->X_op == O_big)
6088 {
6089 if (generic_bignum[0] == 0
6090 && generic_bignum[1] == 0
6091 && generic_bignum[2] == 0
6092 && generic_bignum[3] == 0
6093 && generic_bignum[4] == 1)
6094 return OPERAND_MATCH;
6095 else
6096 return OPERAND_OUT_OF_RANGE;
6097 }
6098 else
6099 val = e->X_add_number - 1;
6100 }
6101 else if (opnd == IA64_OPND_IMM8M1)
6102 val = e->X_add_number - 1;
6103 else if (opnd == IA64_OPND_IMM8U4)
6104 {
6105 /* Sign-extend 32-bit unsigned numbers, so that the following range
6106 checks will work. */
6107 val = e->X_add_number;
6108 if (((val & (~(bfd_vma) 0 << 32)) == 0)
6109 && ((val & ((bfd_vma) 1 << 31)) != 0))
6110 val = ((val << 32) >> 32);
6111 }
6112 else
6113 val = e->X_add_number;
6114
6115 if ((val >= 0 && (bfd_vma) val < ((bfd_vma) 1 << (bits - 1)))
6116 || (val < 0 && (bfd_vma) -val <= ((bfd_vma) 1 << (bits - 1))))
6117 return OPERAND_MATCH;
6118 else
6119 return OPERAND_OUT_OF_RANGE;
6120
6121 case IA64_OPND_INC3:
6122 /* +/- 1, 4, 8, 16 */
6123 val = e->X_add_number;
6124 if (val < 0)
6125 val = -val;
6126 if (e->X_op == O_constant)
6127 {
6128 if ((val == 1 || val == 4 || val == 8 || val == 16))
6129 return OPERAND_MATCH;
6130 else
6131 return OPERAND_OUT_OF_RANGE;
6132 }
6133 break;
6134
6135 case IA64_OPND_TGT25:
6136 case IA64_OPND_TGT25b:
6137 case IA64_OPND_TGT25c:
6138 case IA64_OPND_TGT64:
6139 if (e->X_op == O_symbol)
6140 {
6141 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6142 if (opnd == IA64_OPND_TGT25)
6143 fix->code = BFD_RELOC_IA64_PCREL21F;
6144 else if (opnd == IA64_OPND_TGT25b)
6145 fix->code = BFD_RELOC_IA64_PCREL21M;
6146 else if (opnd == IA64_OPND_TGT25c)
6147 fix->code = BFD_RELOC_IA64_PCREL21B;
6148 else if (opnd == IA64_OPND_TGT64)
6149 fix->code = BFD_RELOC_IA64_PCREL60B;
6150 else
6151 abort ();
6152
6153 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
6154 fix->opnd = idesc->operands[index];
6155 fix->expr = *e;
6156 fix->is_pcrel = 1;
6157 ++CURR_SLOT.num_fixups;
6158 return OPERAND_MATCH;
6159 }
6160 case IA64_OPND_TAG13:
6161 case IA64_OPND_TAG13b:
6162 switch (e->X_op)
6163 {
6164 case O_constant:
6165 return OPERAND_MATCH;
6166
6167 case O_symbol:
6168 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6169 /* There are no external relocs for TAG13/TAG13b fields, so we
6170 create a dummy reloc. This will not live past md_apply_fix. */
6171 fix->code = BFD_RELOC_UNUSED;
6172 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
6173 fix->opnd = idesc->operands[index];
6174 fix->expr = *e;
6175 fix->is_pcrel = 1;
6176 ++CURR_SLOT.num_fixups;
6177 return OPERAND_MATCH;
6178
6179 default:
6180 break;
6181 }
6182 break;
6183
6184 case IA64_OPND_LDXMOV:
6185 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6186 fix->code = BFD_RELOC_IA64_LDXMOV;
6187 fix->opnd = idesc->operands[index];
6188 fix->expr = *e;
6189 fix->is_pcrel = 0;
6190 ++CURR_SLOT.num_fixups;
6191 return OPERAND_MATCH;
6192
6193 default:
6194 break;
6195 }
6196 return OPERAND_MISMATCH;
6197 }
6198
6199 static int
6200 parse_operand (e, more)
6201 expressionS *e;
6202 int more;
6203 {
6204 int sep = '\0';
6205
6206 memset (e, 0, sizeof (*e));
6207 e->X_op = O_absent;
6208 SKIP_WHITESPACE ();
6209 expression_and_evaluate (e);
6210 sep = *input_line_pointer;
6211 if (more && (sep == ',' || sep == more))
6212 ++input_line_pointer;
6213 return sep;
6214 }
6215
6216 /* Returns the next entry in the opcode table that matches the one in
6217 IDESC, and frees the entry in IDESC. If no matching entry is
6218 found, NULL is returned instead. */
6219
6220 static struct ia64_opcode *
6221 get_next_opcode (struct ia64_opcode *idesc)
6222 {
6223 struct ia64_opcode *next = ia64_find_next_opcode (idesc);
6224 ia64_free_opcode (idesc);
6225 return next;
6226 }
6227
6228 /* Parse the operands for the opcode and find the opcode variant that
6229 matches the specified operands, or NULL if no match is possible. */
6230
6231 static struct ia64_opcode *
6232 parse_operands (idesc)
6233 struct ia64_opcode *idesc;
6234 {
6235 int i = 0, highest_unmatched_operand, num_operands = 0, num_outputs = 0;
6236 int error_pos, out_of_range_pos, curr_out_of_range_pos, sep = 0;
6237 int reg1, reg2;
6238 char reg_class;
6239 enum ia64_opnd expected_operand = IA64_OPND_NIL;
6240 enum operand_match_result result;
6241 char mnemonic[129];
6242 char *first_arg = 0, *end, *saved_input_pointer;
6243 unsigned int sof;
6244
6245 assert (strlen (idesc->name) <= 128);
6246
6247 strcpy (mnemonic, idesc->name);
6248 if (idesc->operands[2] == IA64_OPND_SOF
6249 || idesc->operands[1] == IA64_OPND_SOF)
6250 {
6251 /* To make the common idiom "alloc loc?=ar.pfs,0,1,0,0" work, we
6252 can't parse the first operand until we have parsed the
6253 remaining operands of the "alloc" instruction. */
6254 SKIP_WHITESPACE ();
6255 first_arg = input_line_pointer;
6256 end = strchr (input_line_pointer, '=');
6257 if (!end)
6258 {
6259 as_bad ("Expected separator `='");
6260 return 0;
6261 }
6262 input_line_pointer = end + 1;
6263 ++i;
6264 ++num_outputs;
6265 }
6266
6267 for (; ; ++i)
6268 {
6269 if (i < NELEMS (CURR_SLOT.opnd))
6270 {
6271 sep = parse_operand (CURR_SLOT.opnd + i, '=');
6272 if (CURR_SLOT.opnd[i].X_op == O_absent)
6273 break;
6274 }
6275 else
6276 {
6277 expressionS dummy;
6278
6279 sep = parse_operand (&dummy, '=');
6280 if (dummy.X_op == O_absent)
6281 break;
6282 }
6283
6284 ++num_operands;
6285
6286 if (sep != '=' && sep != ',')
6287 break;
6288
6289 if (sep == '=')
6290 {
6291 if (num_outputs > 0)
6292 as_bad ("Duplicate equal sign (=) in instruction");
6293 else
6294 num_outputs = i + 1;
6295 }
6296 }
6297 if (sep != '\0')
6298 {
6299 as_bad ("Illegal operand separator `%c'", sep);
6300 return 0;
6301 }
6302
6303 if (idesc->operands[2] == IA64_OPND_SOF
6304 || idesc->operands[1] == IA64_OPND_SOF)
6305 {
6306 /* Map alloc r1=ar.pfs,i,l,o,r to alloc r1=ar.pfs,(i+l+o),(i+l),r.
6307 Note, however, that due to that mapping operand numbers in error
6308 messages for any of the constant operands will not be correct. */
6309 know (strcmp (idesc->name, "alloc") == 0);
6310 /* The first operand hasn't been parsed/initialized, yet (but
6311 num_operands intentionally doesn't account for that). */
6312 i = num_operands > 4 ? 2 : 1;
6313 #define FORCE_CONST(n) (CURR_SLOT.opnd[n].X_op == O_constant \
6314 ? CURR_SLOT.opnd[n].X_add_number \
6315 : 0)
6316 sof = set_regstack (FORCE_CONST(i),
6317 FORCE_CONST(i + 1),
6318 FORCE_CONST(i + 2),
6319 FORCE_CONST(i + 3));
6320 #undef FORCE_CONST
6321
6322 /* now we can parse the first arg: */
6323 saved_input_pointer = input_line_pointer;
6324 input_line_pointer = first_arg;
6325 sep = parse_operand (CURR_SLOT.opnd + 0, '=');
6326 if (sep != '=')
6327 --num_outputs; /* force error */
6328 input_line_pointer = saved_input_pointer;
6329
6330 CURR_SLOT.opnd[i].X_add_number = sof;
6331 if (CURR_SLOT.opnd[i + 1].X_op == O_constant
6332 && CURR_SLOT.opnd[i + 2].X_op == O_constant)
6333 CURR_SLOT.opnd[i + 1].X_add_number
6334 = sof - CURR_SLOT.opnd[i + 2].X_add_number;
6335 else
6336 CURR_SLOT.opnd[i + 1].X_op = O_illegal;
6337 CURR_SLOT.opnd[i + 2] = CURR_SLOT.opnd[i + 3];
6338 }
6339
6340 highest_unmatched_operand = -4;
6341 curr_out_of_range_pos = -1;
6342 error_pos = 0;
6343 for (; idesc; idesc = get_next_opcode (idesc))
6344 {
6345 if (num_outputs != idesc->num_outputs)
6346 continue; /* mismatch in # of outputs */
6347 if (highest_unmatched_operand < 0)
6348 highest_unmatched_operand |= 1;
6349 if (num_operands > NELEMS (idesc->operands)
6350 || (num_operands < NELEMS (idesc->operands)
6351 && idesc->operands[num_operands])
6352 || (num_operands > 0 && !idesc->operands[num_operands - 1]))
6353 continue; /* mismatch in number of arguments */
6354 if (highest_unmatched_operand < 0)
6355 highest_unmatched_operand |= 2;
6356
6357 CURR_SLOT.num_fixups = 0;
6358
6359 /* Try to match all operands. If we see an out-of-range operand,
6360 then continue trying to match the rest of the operands, since if
6361 the rest match, then this idesc will give the best error message. */
6362
6363 out_of_range_pos = -1;
6364 for (i = 0; i < num_operands && idesc->operands[i]; ++i)
6365 {
6366 result = operand_match (idesc, i, CURR_SLOT.opnd + i);
6367 if (result != OPERAND_MATCH)
6368 {
6369 if (result != OPERAND_OUT_OF_RANGE)
6370 break;
6371 if (out_of_range_pos < 0)
6372 /* remember position of the first out-of-range operand: */
6373 out_of_range_pos = i;
6374 }
6375 }
6376
6377 /* If we did not match all operands, or if at least one operand was
6378 out-of-range, then this idesc does not match. Keep track of which
6379 idesc matched the most operands before failing. If we have two
6380 idescs that failed at the same position, and one had an out-of-range
6381 operand, then prefer the out-of-range operand. Thus if we have
6382 "add r0=0x1000000,r1" we get an error saying the constant is out
6383 of range instead of an error saying that the constant should have been
6384 a register. */
6385
6386 if (i != num_operands || out_of_range_pos >= 0)
6387 {
6388 if (i > highest_unmatched_operand
6389 || (i == highest_unmatched_operand
6390 && out_of_range_pos > curr_out_of_range_pos))
6391 {
6392 highest_unmatched_operand = i;
6393 if (out_of_range_pos >= 0)
6394 {
6395 expected_operand = idesc->operands[out_of_range_pos];
6396 error_pos = out_of_range_pos;
6397 }
6398 else
6399 {
6400 expected_operand = idesc->operands[i];
6401 error_pos = i;
6402 }
6403 curr_out_of_range_pos = out_of_range_pos;
6404 }
6405 continue;
6406 }
6407
6408 break;
6409 }
6410 if (!idesc)
6411 {
6412 if (expected_operand)
6413 as_bad ("Operand %u of `%s' should be %s",
6414 error_pos + 1, mnemonic,
6415 elf64_ia64_operands[expected_operand].desc);
6416 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 1))
6417 as_bad ("Wrong number of output operands");
6418 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 2))
6419 as_bad ("Wrong number of input operands");
6420 else
6421 as_bad ("Operand mismatch");
6422 return 0;
6423 }
6424
6425 /* Check that the instruction doesn't use
6426 - r0, f0, or f1 as output operands
6427 - the same predicate twice as output operands
6428 - r0 as address of a base update load or store
6429 - the same GR as output and address of a base update load
6430 - two even- or two odd-numbered FRs as output operands of a floating
6431 point parallel load.
6432 At most two (conflicting) output (or output-like) operands can exist,
6433 (floating point parallel loads have three outputs, but the base register,
6434 if updated, cannot conflict with the actual outputs). */
6435 reg2 = reg1 = -1;
6436 for (i = 0; i < num_operands; ++i)
6437 {
6438 int regno = 0;
6439
6440 reg_class = 0;
6441 switch (idesc->operands[i])
6442 {
6443 case IA64_OPND_R1:
6444 case IA64_OPND_R2:
6445 case IA64_OPND_R3:
6446 if (i < num_outputs)
6447 {
6448 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6449 reg_class = 'r';
6450 else if (reg1 < 0)
6451 reg1 = CURR_SLOT.opnd[i].X_add_number;
6452 else if (reg2 < 0)
6453 reg2 = CURR_SLOT.opnd[i].X_add_number;
6454 }
6455 break;
6456 case IA64_OPND_P1:
6457 case IA64_OPND_P2:
6458 if (i < num_outputs)
6459 {
6460 if (reg1 < 0)
6461 reg1 = CURR_SLOT.opnd[i].X_add_number;
6462 else if (reg2 < 0)
6463 reg2 = CURR_SLOT.opnd[i].X_add_number;
6464 }
6465 break;
6466 case IA64_OPND_F1:
6467 case IA64_OPND_F2:
6468 case IA64_OPND_F3:
6469 case IA64_OPND_F4:
6470 if (i < num_outputs)
6471 {
6472 if (CURR_SLOT.opnd[i].X_add_number >= REG_FR
6473 && CURR_SLOT.opnd[i].X_add_number <= REG_FR + 1)
6474 {
6475 reg_class = 'f';
6476 regno = CURR_SLOT.opnd[i].X_add_number - REG_FR;
6477 }
6478 else if (reg1 < 0)
6479 reg1 = CURR_SLOT.opnd[i].X_add_number;
6480 else if (reg2 < 0)
6481 reg2 = CURR_SLOT.opnd[i].X_add_number;
6482 }
6483 break;
6484 case IA64_OPND_MR3:
6485 if (idesc->flags & IA64_OPCODE_POSTINC)
6486 {
6487 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6488 reg_class = 'm';
6489 else if (reg1 < 0)
6490 reg1 = CURR_SLOT.opnd[i].X_add_number;
6491 else if (reg2 < 0)
6492 reg2 = CURR_SLOT.opnd[i].X_add_number;
6493 }
6494 break;
6495 default:
6496 break;
6497 }
6498 switch (reg_class)
6499 {
6500 case 0:
6501 break;
6502 default:
6503 as_warn ("Invalid use of `%c%d' as output operand", reg_class, regno);
6504 break;
6505 case 'm':
6506 as_warn ("Invalid use of `r%d' as base update address operand", regno);
6507 break;
6508 }
6509 }
6510 if (reg1 == reg2)
6511 {
6512 if (reg1 >= REG_GR && reg1 <= REG_GR + 127)
6513 {
6514 reg1 -= REG_GR;
6515 reg_class = 'r';
6516 }
6517 else if (reg1 >= REG_P && reg1 <= REG_P + 63)
6518 {
6519 reg1 -= REG_P;
6520 reg_class = 'p';
6521 }
6522 else if (reg1 >= REG_FR && reg1 <= REG_FR + 127)
6523 {
6524 reg1 -= REG_FR;
6525 reg_class = 'f';
6526 }
6527 else
6528 reg_class = 0;
6529 if (reg_class)
6530 as_warn ("Invalid duplicate use of `%c%d'", reg_class, reg1);
6531 }
6532 else if (((reg1 >= REG_FR && reg1 <= REG_FR + 31
6533 && reg2 >= REG_FR && reg2 <= REG_FR + 31)
6534 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6535 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127))
6536 && ! ((reg1 ^ reg2) & 1))
6537 as_warn ("Invalid simultaneous use of `f%d' and `f%d'",
6538 reg1 - REG_FR, reg2 - REG_FR);
6539 else if ((reg1 >= REG_FR && reg1 <= REG_FR + 31
6540 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127)
6541 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6542 && reg2 >= REG_FR && reg2 <= REG_FR + 31))
6543 as_warn ("Dangerous simultaneous use of `f%d' and `f%d'",
6544 reg1 - REG_FR, reg2 - REG_FR);
6545 return idesc;
6546 }
6547
6548 static void
6549 build_insn (slot, insnp)
6550 struct slot *slot;
6551 bfd_vma *insnp;
6552 {
6553 const struct ia64_operand *odesc, *o2desc;
6554 struct ia64_opcode *idesc = slot->idesc;
6555 bfd_vma insn;
6556 bfd_signed_vma val;
6557 const char *err;
6558 int i;
6559
6560 insn = idesc->opcode | slot->qp_regno;
6561
6562 for (i = 0; i < NELEMS (idesc->operands) && idesc->operands[i]; ++i)
6563 {
6564 if (slot->opnd[i].X_op == O_register
6565 || slot->opnd[i].X_op == O_constant
6566 || slot->opnd[i].X_op == O_index)
6567 val = slot->opnd[i].X_add_number;
6568 else if (slot->opnd[i].X_op == O_big)
6569 {
6570 /* This must be the value 0x10000000000000000. */
6571 assert (idesc->operands[i] == IA64_OPND_IMM8M1U8);
6572 val = 0;
6573 }
6574 else
6575 val = 0;
6576
6577 switch (idesc->operands[i])
6578 {
6579 case IA64_OPND_IMMU64:
6580 *insnp++ = (val >> 22) & 0x1ffffffffffLL;
6581 insn |= (((val & 0x7f) << 13) | (((val >> 7) & 0x1ff) << 27)
6582 | (((val >> 16) & 0x1f) << 22) | (((val >> 21) & 0x1) << 21)
6583 | (((val >> 63) & 0x1) << 36));
6584 continue;
6585
6586 case IA64_OPND_IMMU62:
6587 val &= 0x3fffffffffffffffULL;
6588 if (val != slot->opnd[i].X_add_number)
6589 as_warn (_("Value truncated to 62 bits"));
6590 *insnp++ = (val >> 21) & 0x1ffffffffffLL;
6591 insn |= (((val & 0xfffff) << 6) | (((val >> 20) & 0x1) << 36));
6592 continue;
6593
6594 case IA64_OPND_TGT64:
6595 val >>= 4;
6596 *insnp++ = ((val >> 20) & 0x7fffffffffLL) << 2;
6597 insn |= ((((val >> 59) & 0x1) << 36)
6598 | (((val >> 0) & 0xfffff) << 13));
6599 continue;
6600
6601 case IA64_OPND_AR3:
6602 val -= REG_AR;
6603 break;
6604
6605 case IA64_OPND_B1:
6606 case IA64_OPND_B2:
6607 val -= REG_BR;
6608 break;
6609
6610 case IA64_OPND_CR3:
6611 val -= REG_CR;
6612 break;
6613
6614 case IA64_OPND_F1:
6615 case IA64_OPND_F2:
6616 case IA64_OPND_F3:
6617 case IA64_OPND_F4:
6618 val -= REG_FR;
6619 break;
6620
6621 case IA64_OPND_P1:
6622 case IA64_OPND_P2:
6623 val -= REG_P;
6624 break;
6625
6626 case IA64_OPND_R1:
6627 case IA64_OPND_R2:
6628 case IA64_OPND_R3:
6629 case IA64_OPND_R3_2:
6630 case IA64_OPND_CPUID_R3:
6631 case IA64_OPND_DBR_R3:
6632 case IA64_OPND_DTR_R3:
6633 case IA64_OPND_ITR_R3:
6634 case IA64_OPND_IBR_R3:
6635 case IA64_OPND_MR3:
6636 case IA64_OPND_MSR_R3:
6637 case IA64_OPND_PKR_R3:
6638 case IA64_OPND_PMC_R3:
6639 case IA64_OPND_PMD_R3:
6640 case IA64_OPND_RR_R3:
6641 val -= REG_GR;
6642 break;
6643
6644 default:
6645 break;
6646 }
6647
6648 odesc = elf64_ia64_operands + idesc->operands[i];
6649 err = (*odesc->insert) (odesc, val, &insn);
6650 if (err)
6651 as_bad_where (slot->src_file, slot->src_line,
6652 "Bad operand value: %s", err);
6653 if (idesc->flags & IA64_OPCODE_PSEUDO)
6654 {
6655 if ((idesc->flags & IA64_OPCODE_F2_EQ_F3)
6656 && odesc == elf64_ia64_operands + IA64_OPND_F3)
6657 {
6658 o2desc = elf64_ia64_operands + IA64_OPND_F2;
6659 (*o2desc->insert) (o2desc, val, &insn);
6660 }
6661 if ((idesc->flags & IA64_OPCODE_LEN_EQ_64MCNT)
6662 && (odesc == elf64_ia64_operands + IA64_OPND_CPOS6a
6663 || odesc == elf64_ia64_operands + IA64_OPND_POS6))
6664 {
6665 o2desc = elf64_ia64_operands + IA64_OPND_LEN6;
6666 (*o2desc->insert) (o2desc, 64 - val, &insn);
6667 }
6668 }
6669 }
6670 *insnp = insn;
6671 }
6672
6673 static void
6674 emit_one_bundle ()
6675 {
6676 int manual_bundling_off = 0, manual_bundling = 0;
6677 enum ia64_unit required_unit, insn_unit = 0;
6678 enum ia64_insn_type type[3], insn_type;
6679 unsigned int template, orig_template;
6680 bfd_vma insn[3] = { -1, -1, -1 };
6681 struct ia64_opcode *idesc;
6682 int end_of_insn_group = 0, user_template = -1;
6683 int n, i, j, first, curr, last_slot;
6684 bfd_vma t0 = 0, t1 = 0;
6685 struct label_fix *lfix;
6686 bfd_boolean mark_label;
6687 struct insn_fix *ifix;
6688 char mnemonic[16];
6689 fixS *fix;
6690 char *f;
6691 int addr_mod;
6692
6693 first = (md.curr_slot + NUM_SLOTS - md.num_slots_in_use) % NUM_SLOTS;
6694 know (first >= 0 & first < NUM_SLOTS);
6695 n = MIN (3, md.num_slots_in_use);
6696
6697 /* Determine template: user user_template if specified, best match
6698 otherwise: */
6699
6700 if (md.slot[first].user_template >= 0)
6701 user_template = template = md.slot[first].user_template;
6702 else
6703 {
6704 /* Auto select appropriate template. */
6705 memset (type, 0, sizeof (type));
6706 curr = first;
6707 for (i = 0; i < n; ++i)
6708 {
6709 if (md.slot[curr].label_fixups && i != 0)
6710 break;
6711 type[i] = md.slot[curr].idesc->type;
6712 curr = (curr + 1) % NUM_SLOTS;
6713 }
6714 template = best_template[type[0]][type[1]][type[2]];
6715 }
6716
6717 /* initialize instructions with appropriate nops: */
6718 for (i = 0; i < 3; ++i)
6719 insn[i] = nop[ia64_templ_desc[template].exec_unit[i]];
6720
6721 f = frag_more (16);
6722
6723 /* Check to see if this bundle is at an offset that is a multiple of 16-bytes
6724 from the start of the frag. */
6725 addr_mod = frag_now_fix () & 15;
6726 if (frag_now->has_code && frag_now->insn_addr != addr_mod)
6727 as_bad (_("instruction address is not a multiple of 16"));
6728 frag_now->insn_addr = addr_mod;
6729 frag_now->has_code = 1;
6730
6731 /* now fill in slots with as many insns as possible: */
6732 curr = first;
6733 idesc = md.slot[curr].idesc;
6734 end_of_insn_group = 0;
6735 last_slot = -1;
6736 for (i = 0; i < 3 && md.num_slots_in_use > 0; ++i)
6737 {
6738 /* If we have unwind records, we may need to update some now. */
6739 unw_rec_list *ptr = md.slot[curr].unwind_record;
6740 unw_rec_list *end_ptr = NULL;
6741
6742 if (ptr)
6743 {
6744 /* Find the last prologue/body record in the list for the current
6745 insn, and set the slot number for all records up to that point.
6746 This needs to be done now, because prologue/body records refer to
6747 the current point, not the point after the instruction has been
6748 issued. This matters because there may have been nops emitted
6749 meanwhile. Any non-prologue non-body record followed by a
6750 prologue/body record must also refer to the current point. */
6751 unw_rec_list *last_ptr;
6752
6753 for (j = 1; end_ptr == NULL && j < md.num_slots_in_use; ++j)
6754 end_ptr = md.slot[(curr + j) % NUM_SLOTS].unwind_record;
6755 for (last_ptr = NULL; ptr != end_ptr; ptr = ptr->next)
6756 if (ptr->r.type == prologue || ptr->r.type == prologue_gr
6757 || ptr->r.type == body)
6758 last_ptr = ptr;
6759 if (last_ptr)
6760 {
6761 /* Make last_ptr point one after the last prologue/body
6762 record. */
6763 last_ptr = last_ptr->next;
6764 for (ptr = md.slot[curr].unwind_record; ptr != last_ptr;
6765 ptr = ptr->next)
6766 {
6767 ptr->slot_number = (unsigned long) f + i;
6768 ptr->slot_frag = frag_now;
6769 }
6770 /* Remove the initialized records, so that we won't accidentally
6771 update them again if we insert a nop and continue. */
6772 md.slot[curr].unwind_record = last_ptr;
6773 }
6774 }
6775
6776 manual_bundling_off = md.slot[curr].manual_bundling_off;
6777 if (md.slot[curr].manual_bundling_on)
6778 {
6779 if (curr == first)
6780 manual_bundling = 1;
6781 else
6782 break; /* Need to start a new bundle. */
6783 }
6784
6785 /* If this instruction specifies a template, then it must be the first
6786 instruction of a bundle. */
6787 if (curr != first && md.slot[curr].user_template >= 0)
6788 break;
6789
6790 if (idesc->flags & IA64_OPCODE_SLOT2)
6791 {
6792 if (manual_bundling && !manual_bundling_off)
6793 {
6794 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6795 "`%s' must be last in bundle", idesc->name);
6796 if (i < 2)
6797 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6798 }
6799 i = 2;
6800 }
6801 if (idesc->flags & IA64_OPCODE_LAST)
6802 {
6803 int required_slot;
6804 unsigned int required_template;
6805
6806 /* If we need a stop bit after an M slot, our only choice is
6807 template 5 (M;;MI). If we need a stop bit after a B
6808 slot, our only choice is to place it at the end of the
6809 bundle, because the only available templates are MIB,
6810 MBB, BBB, MMB, and MFB. We don't handle anything other
6811 than M and B slots because these are the only kind of
6812 instructions that can have the IA64_OPCODE_LAST bit set. */
6813 required_template = template;
6814 switch (idesc->type)
6815 {
6816 case IA64_TYPE_M:
6817 required_slot = 0;
6818 required_template = 5;
6819 break;
6820
6821 case IA64_TYPE_B:
6822 required_slot = 2;
6823 break;
6824
6825 default:
6826 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6827 "Internal error: don't know how to force %s to end"
6828 "of instruction group", idesc->name);
6829 required_slot = i;
6830 break;
6831 }
6832 if (manual_bundling
6833 && (i > required_slot
6834 || (required_slot == 2 && !manual_bundling_off)
6835 || (user_template >= 0
6836 /* Changing from MMI to M;MI is OK. */
6837 && (template ^ required_template) > 1)))
6838 {
6839 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6840 "`%s' must be last in instruction group",
6841 idesc->name);
6842 if (i < 2 && required_slot == 2 && !manual_bundling_off)
6843 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6844 }
6845 if (required_slot < i)
6846 /* Can't fit this instruction. */
6847 break;
6848
6849 i = required_slot;
6850 if (required_template != template)
6851 {
6852 /* If we switch the template, we need to reset the NOPs
6853 after slot i. The slot-types of the instructions ahead
6854 of i never change, so we don't need to worry about
6855 changing NOPs in front of this slot. */
6856 for (j = i; j < 3; ++j)
6857 insn[j] = nop[ia64_templ_desc[required_template].exec_unit[j]];
6858 }
6859 template = required_template;
6860 }
6861 if (curr != first && md.slot[curr].label_fixups)
6862 {
6863 if (manual_bundling)
6864 {
6865 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6866 "Label must be first in a bundle");
6867 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6868 }
6869 /* This insn must go into the first slot of a bundle. */
6870 break;
6871 }
6872
6873 if (end_of_insn_group && md.num_slots_in_use >= 1)
6874 {
6875 /* We need an instruction group boundary in the middle of a
6876 bundle. See if we can switch to an other template with
6877 an appropriate boundary. */
6878
6879 orig_template = template;
6880 if (i == 1 && (user_template == 4
6881 || (user_template < 0
6882 && (ia64_templ_desc[template].exec_unit[0]
6883 == IA64_UNIT_M))))
6884 {
6885 template = 5;
6886 end_of_insn_group = 0;
6887 }
6888 else if (i == 2 && (user_template == 0
6889 || (user_template < 0
6890 && (ia64_templ_desc[template].exec_unit[1]
6891 == IA64_UNIT_I)))
6892 /* This test makes sure we don't switch the template if
6893 the next instruction is one that needs to be first in
6894 an instruction group. Since all those instructions are
6895 in the M group, there is no way such an instruction can
6896 fit in this bundle even if we switch the template. The
6897 reason we have to check for this is that otherwise we
6898 may end up generating "MI;;I M.." which has the deadly
6899 effect that the second M instruction is no longer the
6900 first in the group! --davidm 99/12/16 */
6901 && (idesc->flags & IA64_OPCODE_FIRST) == 0)
6902 {
6903 template = 1;
6904 end_of_insn_group = 0;
6905 }
6906 else if (i == 1
6907 && user_template == 0
6908 && !(idesc->flags & IA64_OPCODE_FIRST))
6909 /* Use the next slot. */
6910 continue;
6911 else if (curr != first)
6912 /* can't fit this insn */
6913 break;
6914
6915 if (template != orig_template)
6916 /* if we switch the template, we need to reset the NOPs
6917 after slot i. The slot-types of the instructions ahead
6918 of i never change, so we don't need to worry about
6919 changing NOPs in front of this slot. */
6920 for (j = i; j < 3; ++j)
6921 insn[j] = nop[ia64_templ_desc[template].exec_unit[j]];
6922 }
6923 required_unit = ia64_templ_desc[template].exec_unit[i];
6924
6925 /* resolve dynamic opcodes such as "break", "hint", and "nop": */
6926 if (idesc->type == IA64_TYPE_DYN)
6927 {
6928 enum ia64_opnd opnd1, opnd2;
6929
6930 if ((strcmp (idesc->name, "nop") == 0)
6931 || (strcmp (idesc->name, "break") == 0))
6932 insn_unit = required_unit;
6933 else if (strcmp (idesc->name, "hint") == 0)
6934 {
6935 insn_unit = required_unit;
6936 if (required_unit == IA64_UNIT_B)
6937 {
6938 switch (md.hint_b)
6939 {
6940 case hint_b_ok:
6941 break;
6942 case hint_b_warning:
6943 as_warn ("hint in B unit may be treated as nop");
6944 break;
6945 case hint_b_error:
6946 /* When manual bundling is off and there is no
6947 user template, we choose a different unit so
6948 that hint won't go into the current slot. We
6949 will fill the current bundle with nops and
6950 try to put hint into the next bundle. */
6951 if (!manual_bundling && user_template < 0)
6952 insn_unit = IA64_UNIT_I;
6953 else
6954 as_bad ("hint in B unit can't be used");
6955 break;
6956 }
6957 }
6958 }
6959 else if (strcmp (idesc->name, "chk.s") == 0
6960 || strcmp (idesc->name, "mov") == 0)
6961 {
6962 insn_unit = IA64_UNIT_M;
6963 if (required_unit == IA64_UNIT_I
6964 || (required_unit == IA64_UNIT_F && template == 6))
6965 insn_unit = IA64_UNIT_I;
6966 }
6967 else
6968 as_fatal ("emit_one_bundle: unexpected dynamic op");
6969
6970 sprintf (mnemonic, "%s.%c", idesc->name, "?imbfxx"[insn_unit]);
6971 opnd1 = idesc->operands[0];
6972 opnd2 = idesc->operands[1];
6973 ia64_free_opcode (idesc);
6974 idesc = ia64_find_opcode (mnemonic);
6975 /* moves to/from ARs have collisions */
6976 if (opnd1 == IA64_OPND_AR3 || opnd2 == IA64_OPND_AR3)
6977 {
6978 while (idesc != NULL
6979 && (idesc->operands[0] != opnd1
6980 || idesc->operands[1] != opnd2))
6981 idesc = get_next_opcode (idesc);
6982 }
6983 md.slot[curr].idesc = idesc;
6984 }
6985 else
6986 {
6987 insn_type = idesc->type;
6988 insn_unit = IA64_UNIT_NIL;
6989 switch (insn_type)
6990 {
6991 case IA64_TYPE_A:
6992 if (required_unit == IA64_UNIT_I || required_unit == IA64_UNIT_M)
6993 insn_unit = required_unit;
6994 break;
6995 case IA64_TYPE_X: insn_unit = IA64_UNIT_L; break;
6996 case IA64_TYPE_I: insn_unit = IA64_UNIT_I; break;
6997 case IA64_TYPE_M: insn_unit = IA64_UNIT_M; break;
6998 case IA64_TYPE_B: insn_unit = IA64_UNIT_B; break;
6999 case IA64_TYPE_F: insn_unit = IA64_UNIT_F; break;
7000 default: break;
7001 }
7002 }
7003
7004 if (insn_unit != required_unit)
7005 continue; /* Try next slot. */
7006
7007 /* Now is a good time to fix up the labels for this insn. */
7008 mark_label = FALSE;
7009 for (lfix = md.slot[curr].label_fixups; lfix; lfix = lfix->next)
7010 {
7011 S_SET_VALUE (lfix->sym, frag_now_fix () - 16);
7012 symbol_set_frag (lfix->sym, frag_now);
7013 mark_label |= lfix->dw2_mark_labels;
7014 }
7015 for (lfix = md.slot[curr].tag_fixups; lfix; lfix = lfix->next)
7016 {
7017 S_SET_VALUE (lfix->sym, frag_now_fix () - 16 + i);
7018 symbol_set_frag (lfix->sym, frag_now);
7019 }
7020
7021 if (debug_type == DEBUG_DWARF2
7022 || md.slot[curr].loc_directive_seen
7023 || mark_label)
7024 {
7025 bfd_vma addr = frag_now->fr_address + frag_now_fix () - 16 + i;
7026
7027 md.slot[curr].loc_directive_seen = 0;
7028 if (mark_label)
7029 md.slot[curr].debug_line.flags |= DWARF2_FLAG_BASIC_BLOCK;
7030
7031 dwarf2_gen_line_info (addr, &md.slot[curr].debug_line);
7032 }
7033
7034 build_insn (md.slot + curr, insn + i);
7035
7036 ptr = md.slot[curr].unwind_record;
7037 if (ptr)
7038 {
7039 /* Set slot numbers for all remaining unwind records belonging to the
7040 current insn. There can not be any prologue/body unwind records
7041 here. */
7042 for (; ptr != end_ptr; ptr = ptr->next)
7043 {
7044 ptr->slot_number = (unsigned long) f + i;
7045 ptr->slot_frag = frag_now;
7046 }
7047 md.slot[curr].unwind_record = NULL;
7048 }
7049
7050 if (required_unit == IA64_UNIT_L)
7051 {
7052 know (i == 1);
7053 /* skip one slot for long/X-unit instructions */
7054 ++i;
7055 }
7056 --md.num_slots_in_use;
7057 last_slot = i;
7058
7059 for (j = 0; j < md.slot[curr].num_fixups; ++j)
7060 {
7061 ifix = md.slot[curr].fixup + j;
7062 fix = fix_new_exp (frag_now, frag_now_fix () - 16 + i, 8,
7063 &ifix->expr, ifix->is_pcrel, ifix->code);
7064 fix->tc_fix_data.opnd = ifix->opnd;
7065 fix->fx_plt = (fix->fx_r_type == BFD_RELOC_IA64_PLTOFF22);
7066 fix->fx_file = md.slot[curr].src_file;
7067 fix->fx_line = md.slot[curr].src_line;
7068 }
7069
7070 end_of_insn_group = md.slot[curr].end_of_insn_group;
7071
7072 /* clear slot: */
7073 ia64_free_opcode (md.slot[curr].idesc);
7074 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
7075 md.slot[curr].user_template = -1;
7076
7077 if (manual_bundling_off)
7078 {
7079 manual_bundling = 0;
7080 break;
7081 }
7082 curr = (curr + 1) % NUM_SLOTS;
7083 idesc = md.slot[curr].idesc;
7084 }
7085
7086 /* A user template was specified, but the first following instruction did
7087 not fit. This can happen with or without manual bundling. */
7088 if (md.num_slots_in_use > 0 && last_slot < 0)
7089 {
7090 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7091 "`%s' does not fit into %s template",
7092 idesc->name, ia64_templ_desc[template].name);
7093 /* Drop first insn so we don't livelock. */
7094 --md.num_slots_in_use;
7095 know (curr == first);
7096 ia64_free_opcode (md.slot[curr].idesc);
7097 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
7098 md.slot[curr].user_template = -1;
7099 }
7100 else if (manual_bundling > 0)
7101 {
7102 if (md.num_slots_in_use > 0)
7103 {
7104 if (last_slot >= 2)
7105 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7106 "`%s' does not fit into bundle", idesc->name);
7107 else
7108 {
7109 const char *where;
7110
7111 if (template == 2)
7112 where = "X slot";
7113 else if (last_slot == 0)
7114 where = "slots 2 or 3";
7115 else
7116 where = "slot 3";
7117 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7118 "`%s' can't go in %s of %s template",
7119 idesc->name, where, ia64_templ_desc[template].name);
7120 }
7121 }
7122 else
7123 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7124 "Missing '}' at end of file");
7125 }
7126
7127 know (md.num_slots_in_use < NUM_SLOTS);
7128
7129 t0 = end_of_insn_group | (template << 1) | (insn[0] << 5) | (insn[1] << 46);
7130 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
7131
7132 number_to_chars_littleendian (f + 0, t0, 8);
7133 number_to_chars_littleendian (f + 8, t1, 8);
7134 }
7135
7136 int
7137 md_parse_option (c, arg)
7138 int c;
7139 char *arg;
7140 {
7141
7142 switch (c)
7143 {
7144 /* Switches from the Intel assembler. */
7145 case 'm':
7146 if (strcmp (arg, "ilp64") == 0
7147 || strcmp (arg, "lp64") == 0
7148 || strcmp (arg, "p64") == 0)
7149 {
7150 md.flags |= EF_IA_64_ABI64;
7151 }
7152 else if (strcmp (arg, "ilp32") == 0)
7153 {
7154 md.flags &= ~EF_IA_64_ABI64;
7155 }
7156 else if (strcmp (arg, "le") == 0)
7157 {
7158 md.flags &= ~EF_IA_64_BE;
7159 default_big_endian = 0;
7160 }
7161 else if (strcmp (arg, "be") == 0)
7162 {
7163 md.flags |= EF_IA_64_BE;
7164 default_big_endian = 1;
7165 }
7166 else if (strncmp (arg, "unwind-check=", 13) == 0)
7167 {
7168 arg += 13;
7169 if (strcmp (arg, "warning") == 0)
7170 md.unwind_check = unwind_check_warning;
7171 else if (strcmp (arg, "error") == 0)
7172 md.unwind_check = unwind_check_error;
7173 else
7174 return 0;
7175 }
7176 else if (strncmp (arg, "hint.b=", 7) == 0)
7177 {
7178 arg += 7;
7179 if (strcmp (arg, "ok") == 0)
7180 md.hint_b = hint_b_ok;
7181 else if (strcmp (arg, "warning") == 0)
7182 md.hint_b = hint_b_warning;
7183 else if (strcmp (arg, "error") == 0)
7184 md.hint_b = hint_b_error;
7185 else
7186 return 0;
7187 }
7188 else if (strncmp (arg, "tune=", 5) == 0)
7189 {
7190 arg += 5;
7191 if (strcmp (arg, "itanium1") == 0)
7192 md.tune = itanium1;
7193 else if (strcmp (arg, "itanium2") == 0)
7194 md.tune = itanium2;
7195 else
7196 return 0;
7197 }
7198 else
7199 return 0;
7200 break;
7201
7202 case 'N':
7203 if (strcmp (arg, "so") == 0)
7204 {
7205 /* Suppress signon message. */
7206 }
7207 else if (strcmp (arg, "pi") == 0)
7208 {
7209 /* Reject privileged instructions. FIXME */
7210 }
7211 else if (strcmp (arg, "us") == 0)
7212 {
7213 /* Allow union of signed and unsigned range. FIXME */
7214 }
7215 else if (strcmp (arg, "close_fcalls") == 0)
7216 {
7217 /* Do not resolve global function calls. */
7218 }
7219 else
7220 return 0;
7221 break;
7222
7223 case 'C':
7224 /* temp[="prefix"] Insert temporary labels into the object file
7225 symbol table prefixed by "prefix".
7226 Default prefix is ":temp:".
7227 */
7228 break;
7229
7230 case 'a':
7231 /* indirect=<tgt> Assume unannotated indirect branches behavior
7232 according to <tgt> --
7233 exit: branch out from the current context (default)
7234 labels: all labels in context may be branch targets
7235 */
7236 if (strncmp (arg, "indirect=", 9) != 0)
7237 return 0;
7238 break;
7239
7240 case 'x':
7241 /* -X conflicts with an ignored option, use -x instead */
7242 md.detect_dv = 1;
7243 if (!arg || strcmp (arg, "explicit") == 0)
7244 {
7245 /* set default mode to explicit */
7246 md.default_explicit_mode = 1;
7247 break;
7248 }
7249 else if (strcmp (arg, "auto") == 0)
7250 {
7251 md.default_explicit_mode = 0;
7252 }
7253 else if (strcmp (arg, "none") == 0)
7254 {
7255 md.detect_dv = 0;
7256 }
7257 else if (strcmp (arg, "debug") == 0)
7258 {
7259 md.debug_dv = 1;
7260 }
7261 else if (strcmp (arg, "debugx") == 0)
7262 {
7263 md.default_explicit_mode = 1;
7264 md.debug_dv = 1;
7265 }
7266 else if (strcmp (arg, "debugn") == 0)
7267 {
7268 md.debug_dv = 1;
7269 md.detect_dv = 0;
7270 }
7271 else
7272 {
7273 as_bad (_("Unrecognized option '-x%s'"), arg);
7274 }
7275 break;
7276
7277 case 'S':
7278 /* nops Print nops statistics. */
7279 break;
7280
7281 /* GNU specific switches for gcc. */
7282 case OPTION_MCONSTANT_GP:
7283 md.flags |= EF_IA_64_CONS_GP;
7284 break;
7285
7286 case OPTION_MAUTO_PIC:
7287 md.flags |= EF_IA_64_NOFUNCDESC_CONS_GP;
7288 break;
7289
7290 default:
7291 return 0;
7292 }
7293
7294 return 1;
7295 }
7296
7297 void
7298 md_show_usage (stream)
7299 FILE *stream;
7300 {
7301 fputs (_("\
7302 IA-64 options:\n\
7303 --mconstant-gp mark output file as using the constant-GP model\n\
7304 (sets ELF header flag EF_IA_64_CONS_GP)\n\
7305 --mauto-pic mark output file as using the constant-GP model\n\
7306 without function descriptors (sets ELF header flag\n\
7307 EF_IA_64_NOFUNCDESC_CONS_GP)\n\
7308 -milp32|-milp64|-mlp64|-mp64 select data model (default -mlp64)\n\
7309 -mle | -mbe select little- or big-endian byte order (default -mle)\n\
7310 -mtune=[itanium1|itanium2]\n\
7311 tune for a specific CPU (default -mtune=itanium2)\n\
7312 -munwind-check=[warning|error]\n\
7313 unwind directive check (default -munwind-check=warning)\n\
7314 -mhint.b=[ok|warning|error]\n\
7315 hint.b check (default -mhint.b=error)\n\
7316 -x | -xexplicit turn on dependency violation checking\n\
7317 -xauto automagically remove dependency violations (default)\n\
7318 -xnone turn off dependency violation checking\n\
7319 -xdebug debug dependency violation checker\n\
7320 -xdebugn debug dependency violation checker but turn off\n\
7321 dependency violation checking\n\
7322 -xdebugx debug dependency violation checker and turn on\n\
7323 dependency violation checking\n"),
7324 stream);
7325 }
7326
7327 void
7328 ia64_after_parse_args ()
7329 {
7330 if (debug_type == DEBUG_STABS)
7331 as_fatal (_("--gstabs is not supported for ia64"));
7332 }
7333
7334 /* Return true if TYPE fits in TEMPL at SLOT. */
7335
7336 static int
7337 match (int templ, int type, int slot)
7338 {
7339 enum ia64_unit unit;
7340 int result;
7341
7342 unit = ia64_templ_desc[templ].exec_unit[slot];
7343 switch (type)
7344 {
7345 case IA64_TYPE_DYN: result = 1; break; /* for nop and break */
7346 case IA64_TYPE_A:
7347 result = (unit == IA64_UNIT_I || unit == IA64_UNIT_M);
7348 break;
7349 case IA64_TYPE_X: result = (unit == IA64_UNIT_L); break;
7350 case IA64_TYPE_I: result = (unit == IA64_UNIT_I); break;
7351 case IA64_TYPE_M: result = (unit == IA64_UNIT_M); break;
7352 case IA64_TYPE_B: result = (unit == IA64_UNIT_B); break;
7353 case IA64_TYPE_F: result = (unit == IA64_UNIT_F); break;
7354 default: result = 0; break;
7355 }
7356 return result;
7357 }
7358
7359 /* For Itanium 1, add a bit of extra goodness if a nop of type F or B would fit
7360 in TEMPL at SLOT. For Itanium 2, add a bit of extra goodness if a nop of
7361 type M or I would fit in TEMPL at SLOT. */
7362
7363 static inline int
7364 extra_goodness (int templ, int slot)
7365 {
7366 switch (md.tune)
7367 {
7368 case itanium1:
7369 if (slot == 1 && match (templ, IA64_TYPE_F, slot))
7370 return 2;
7371 else if (slot == 2 && match (templ, IA64_TYPE_B, slot))
7372 return 1;
7373 else
7374 return 0;
7375 break;
7376 case itanium2:
7377 if (match (templ, IA64_TYPE_M, slot)
7378 || match (templ, IA64_TYPE_I, slot))
7379 /* Favor M- and I-unit NOPs. We definitely want to avoid
7380 F-unit and B-unit may cause split-issue or less-than-optimal
7381 branch-prediction. */
7382 return 2;
7383 else
7384 return 0;
7385 break;
7386 default:
7387 abort ();
7388 return 0;
7389 }
7390 }
7391
7392 /* This function is called once, at assembler startup time. It sets
7393 up all the tables, etc. that the MD part of the assembler will need
7394 that can be determined before arguments are parsed. */
7395 void
7396 md_begin ()
7397 {
7398 int i, j, k, t, goodness, best, ok;
7399 const char *err;
7400 char name[8];
7401
7402 md.auto_align = 1;
7403 md.explicit_mode = md.default_explicit_mode;
7404
7405 bfd_set_section_alignment (stdoutput, text_section, 4);
7406
7407 /* Make sure function pointers get initialized. */
7408 target_big_endian = -1;
7409 dot_byteorder (default_big_endian);
7410
7411 alias_hash = hash_new ();
7412 alias_name_hash = hash_new ();
7413 secalias_hash = hash_new ();
7414 secalias_name_hash = hash_new ();
7415
7416 pseudo_func[FUNC_DTP_MODULE].u.sym =
7417 symbol_new (".<dtpmod>", undefined_section, FUNC_DTP_MODULE,
7418 &zero_address_frag);
7419
7420 pseudo_func[FUNC_DTP_RELATIVE].u.sym =
7421 symbol_new (".<dtprel>", undefined_section, FUNC_DTP_RELATIVE,
7422 &zero_address_frag);
7423
7424 pseudo_func[FUNC_FPTR_RELATIVE].u.sym =
7425 symbol_new (".<fptr>", undefined_section, FUNC_FPTR_RELATIVE,
7426 &zero_address_frag);
7427
7428 pseudo_func[FUNC_GP_RELATIVE].u.sym =
7429 symbol_new (".<gprel>", undefined_section, FUNC_GP_RELATIVE,
7430 &zero_address_frag);
7431
7432 pseudo_func[FUNC_LT_RELATIVE].u.sym =
7433 symbol_new (".<ltoff>", undefined_section, FUNC_LT_RELATIVE,
7434 &zero_address_frag);
7435
7436 pseudo_func[FUNC_LT_RELATIVE_X].u.sym =
7437 symbol_new (".<ltoffx>", undefined_section, FUNC_LT_RELATIVE_X,
7438 &zero_address_frag);
7439
7440 pseudo_func[FUNC_PC_RELATIVE].u.sym =
7441 symbol_new (".<pcrel>", undefined_section, FUNC_PC_RELATIVE,
7442 &zero_address_frag);
7443
7444 pseudo_func[FUNC_PLT_RELATIVE].u.sym =
7445 symbol_new (".<pltoff>", undefined_section, FUNC_PLT_RELATIVE,
7446 &zero_address_frag);
7447
7448 pseudo_func[FUNC_SEC_RELATIVE].u.sym =
7449 symbol_new (".<secrel>", undefined_section, FUNC_SEC_RELATIVE,
7450 &zero_address_frag);
7451
7452 pseudo_func[FUNC_SEG_RELATIVE].u.sym =
7453 symbol_new (".<segrel>", undefined_section, FUNC_SEG_RELATIVE,
7454 &zero_address_frag);
7455
7456 pseudo_func[FUNC_TP_RELATIVE].u.sym =
7457 symbol_new (".<tprel>", undefined_section, FUNC_TP_RELATIVE,
7458 &zero_address_frag);
7459
7460 pseudo_func[FUNC_LTV_RELATIVE].u.sym =
7461 symbol_new (".<ltv>", undefined_section, FUNC_LTV_RELATIVE,
7462 &zero_address_frag);
7463
7464 pseudo_func[FUNC_LT_FPTR_RELATIVE].u.sym =
7465 symbol_new (".<ltoff.fptr>", undefined_section, FUNC_LT_FPTR_RELATIVE,
7466 &zero_address_frag);
7467
7468 pseudo_func[FUNC_LT_DTP_MODULE].u.sym =
7469 symbol_new (".<ltoff.dtpmod>", undefined_section, FUNC_LT_DTP_MODULE,
7470 &zero_address_frag);
7471
7472 pseudo_func[FUNC_LT_DTP_RELATIVE].u.sym =
7473 symbol_new (".<ltoff.dptrel>", undefined_section, FUNC_LT_DTP_RELATIVE,
7474 &zero_address_frag);
7475
7476 pseudo_func[FUNC_LT_TP_RELATIVE].u.sym =
7477 symbol_new (".<ltoff.tprel>", undefined_section, FUNC_LT_TP_RELATIVE,
7478 &zero_address_frag);
7479
7480 pseudo_func[FUNC_IPLT_RELOC].u.sym =
7481 symbol_new (".<iplt>", undefined_section, FUNC_IPLT_RELOC,
7482 &zero_address_frag);
7483
7484 if (md.tune != itanium1)
7485 {
7486 /* Convert MFI NOPs bundles into MMI NOPs bundles. */
7487 le_nop[0] = 0x8;
7488 le_nop_stop[0] = 0x9;
7489 }
7490
7491 /* Compute the table of best templates. We compute goodness as a
7492 base 4 value, in which each match counts for 3. Match-failures
7493 result in NOPs and we use extra_goodness() to pick the execution
7494 units that are best suited for issuing the NOP. */
7495 for (i = 0; i < IA64_NUM_TYPES; ++i)
7496 for (j = 0; j < IA64_NUM_TYPES; ++j)
7497 for (k = 0; k < IA64_NUM_TYPES; ++k)
7498 {
7499 best = 0;
7500 for (t = 0; t < NELEMS (ia64_templ_desc); ++t)
7501 {
7502 goodness = 0;
7503 if (match (t, i, 0))
7504 {
7505 if (match (t, j, 1))
7506 {
7507 if ((t == 2 && j == IA64_TYPE_X) || match (t, k, 2))
7508 goodness = 3 + 3 + 3;
7509 else
7510 goodness = 3 + 3 + extra_goodness (t, 2);
7511 }
7512 else if (match (t, j, 2))
7513 goodness = 3 + 3 + extra_goodness (t, 1);
7514 else
7515 {
7516 goodness = 3;
7517 goodness += extra_goodness (t, 1);
7518 goodness += extra_goodness (t, 2);
7519 }
7520 }
7521 else if (match (t, i, 1))
7522 {
7523 if ((t == 2 && i == IA64_TYPE_X) || match (t, j, 2))
7524 goodness = 3 + 3;
7525 else
7526 goodness = 3 + extra_goodness (t, 2);
7527 }
7528 else if (match (t, i, 2))
7529 goodness = 3 + extra_goodness (t, 1);
7530
7531 if (goodness > best)
7532 {
7533 best = goodness;
7534 best_template[i][j][k] = t;
7535 }
7536 }
7537 }
7538
7539 #ifdef DEBUG_TEMPLATES
7540 /* For debugging changes to the best_template calculations. We don't care
7541 about combinations with invalid instructions, so start the loops at 1. */
7542 for (i = 0; i < IA64_NUM_TYPES; ++i)
7543 for (j = 0; j < IA64_NUM_TYPES; ++j)
7544 for (k = 0; k < IA64_NUM_TYPES; ++k)
7545 {
7546 char type_letter[IA64_NUM_TYPES] = { 'n', 'a', 'i', 'm', 'b', 'f',
7547 'x', 'd' };
7548 fprintf (stderr, "%c%c%c %s\n", type_letter[i], type_letter[j],
7549 type_letter[k],
7550 ia64_templ_desc[best_template[i][j][k]].name);
7551 }
7552 #endif
7553
7554 for (i = 0; i < NUM_SLOTS; ++i)
7555 md.slot[i].user_template = -1;
7556
7557 md.pseudo_hash = hash_new ();
7558 for (i = 0; i < NELEMS (pseudo_opcode); ++i)
7559 {
7560 err = hash_insert (md.pseudo_hash, pseudo_opcode[i].name,
7561 (void *) (pseudo_opcode + i));
7562 if (err)
7563 as_fatal ("ia64.md_begin: can't hash `%s': %s",
7564 pseudo_opcode[i].name, err);
7565 }
7566
7567 md.reg_hash = hash_new ();
7568 md.dynreg_hash = hash_new ();
7569 md.const_hash = hash_new ();
7570 md.entry_hash = hash_new ();
7571
7572 /* general registers: */
7573 declare_register_set ("r", 128, REG_GR);
7574 declare_register ("gp", REG_GR + 1);
7575 declare_register ("sp", REG_GR + 12);
7576 declare_register ("tp", REG_GR + 13);
7577 declare_register_set ("ret", 4, REG_GR + 8);
7578
7579 /* floating point registers: */
7580 declare_register_set ("f", 128, REG_FR);
7581 declare_register_set ("farg", 8, REG_FR + 8);
7582 declare_register_set ("fret", 8, REG_FR + 8);
7583
7584 /* branch registers: */
7585 declare_register_set ("b", 8, REG_BR);
7586 declare_register ("rp", REG_BR + 0);
7587
7588 /* predicate registers: */
7589 declare_register_set ("p", 64, REG_P);
7590 declare_register ("pr", REG_PR);
7591 declare_register ("pr.rot", REG_PR_ROT);
7592
7593 /* application registers: */
7594 declare_register_set ("ar", 128, REG_AR);
7595 for (i = 0; i < NELEMS (ar); ++i)
7596 declare_register (ar[i].name, REG_AR + ar[i].regnum);
7597
7598 /* control registers: */
7599 declare_register_set ("cr", 128, REG_CR);
7600 for (i = 0; i < NELEMS (cr); ++i)
7601 declare_register (cr[i].name, REG_CR + cr[i].regnum);
7602
7603 declare_register ("ip", REG_IP);
7604 declare_register ("cfm", REG_CFM);
7605 declare_register ("psr", REG_PSR);
7606 declare_register ("psr.l", REG_PSR_L);
7607 declare_register ("psr.um", REG_PSR_UM);
7608
7609 for (i = 0; i < NELEMS (indirect_reg); ++i)
7610 {
7611 unsigned int regnum = indirect_reg[i].regnum;
7612
7613 md.indregsym[regnum - IND_CPUID] = declare_register (indirect_reg[i].name, regnum);
7614 }
7615
7616 /* pseudo-registers used to specify unwind info: */
7617 declare_register ("psp", REG_PSP);
7618
7619 for (i = 0; i < NELEMS (const_bits); ++i)
7620 {
7621 err = hash_insert (md.const_hash, const_bits[i].name,
7622 (PTR) (const_bits + i));
7623 if (err)
7624 as_fatal ("Inserting \"%s\" into constant hash table failed: %s",
7625 name, err);
7626 }
7627
7628 /* Set the architecture and machine depending on defaults and command line
7629 options. */
7630 if (md.flags & EF_IA_64_ABI64)
7631 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf64);
7632 else
7633 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf32);
7634
7635 if (! ok)
7636 as_warn (_("Could not set architecture and machine"));
7637
7638 /* Set the pointer size and pointer shift size depending on md.flags */
7639
7640 if (md.flags & EF_IA_64_ABI64)
7641 {
7642 md.pointer_size = 8; /* pointers are 8 bytes */
7643 md.pointer_size_shift = 3; /* alignment is 8 bytes = 2^2 */
7644 }
7645 else
7646 {
7647 md.pointer_size = 4; /* pointers are 4 bytes */
7648 md.pointer_size_shift = 2; /* alignment is 4 bytes = 2^2 */
7649 }
7650
7651 md.mem_offset.hint = 0;
7652 md.path = 0;
7653 md.maxpaths = 0;
7654 md.entry_labels = NULL;
7655 }
7656
7657 /* Set the default options in md. Cannot do this in md_begin because
7658 that is called after md_parse_option which is where we set the
7659 options in md based on command line options. */
7660
7661 void
7662 ia64_init (argc, argv)
7663 int argc ATTRIBUTE_UNUSED;
7664 char **argv ATTRIBUTE_UNUSED;
7665 {
7666 md.flags = MD_FLAGS_DEFAULT;
7667 md.detect_dv = 1;
7668 /* FIXME: We should change it to unwind_check_error someday. */
7669 md.unwind_check = unwind_check_warning;
7670 md.hint_b = hint_b_error;
7671 md.tune = itanium2;
7672 }
7673
7674 /* Return a string for the target object file format. */
7675
7676 const char *
7677 ia64_target_format ()
7678 {
7679 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
7680 {
7681 if (md.flags & EF_IA_64_BE)
7682 {
7683 if (md.flags & EF_IA_64_ABI64)
7684 #if defined(TE_AIX50)
7685 return "elf64-ia64-aix-big";
7686 #elif defined(TE_HPUX)
7687 return "elf64-ia64-hpux-big";
7688 #else
7689 return "elf64-ia64-big";
7690 #endif
7691 else
7692 #if defined(TE_AIX50)
7693 return "elf32-ia64-aix-big";
7694 #elif defined(TE_HPUX)
7695 return "elf32-ia64-hpux-big";
7696 #else
7697 return "elf32-ia64-big";
7698 #endif
7699 }
7700 else
7701 {
7702 if (md.flags & EF_IA_64_ABI64)
7703 #ifdef TE_AIX50
7704 return "elf64-ia64-aix-little";
7705 #else
7706 return "elf64-ia64-little";
7707 #endif
7708 else
7709 #ifdef TE_AIX50
7710 return "elf32-ia64-aix-little";
7711 #else
7712 return "elf32-ia64-little";
7713 #endif
7714 }
7715 }
7716 else
7717 return "unknown-format";
7718 }
7719
7720 void
7721 ia64_end_of_source ()
7722 {
7723 /* terminate insn group upon reaching end of file: */
7724 insn_group_break (1, 0, 0);
7725
7726 /* emits slots we haven't written yet: */
7727 ia64_flush_insns ();
7728
7729 bfd_set_private_flags (stdoutput, md.flags);
7730
7731 md.mem_offset.hint = 0;
7732 }
7733
7734 void
7735 ia64_start_line ()
7736 {
7737 static int first;
7738
7739 if (!first) {
7740 /* Make sure we don't reference input_line_pointer[-1] when that's
7741 not valid. */
7742 first = 1;
7743 return;
7744 }
7745
7746 if (md.qp.X_op == O_register)
7747 as_bad ("qualifying predicate not followed by instruction");
7748 md.qp.X_op = O_absent;
7749
7750 if (ignore_input ())
7751 return;
7752
7753 if (input_line_pointer[0] == ';' && input_line_pointer[-1] == ';')
7754 {
7755 if (md.detect_dv && !md.explicit_mode)
7756 {
7757 static int warned;
7758
7759 if (!warned)
7760 {
7761 warned = 1;
7762 as_warn (_("Explicit stops are ignored in auto mode"));
7763 }
7764 }
7765 else
7766 insn_group_break (1, 0, 0);
7767 }
7768 else if (input_line_pointer[-1] == '{')
7769 {
7770 if (md.manual_bundling)
7771 as_warn ("Found '{' when manual bundling is already turned on");
7772 else
7773 CURR_SLOT.manual_bundling_on = 1;
7774 md.manual_bundling = 1;
7775
7776 /* Bundling is only acceptable in explicit mode
7777 or when in default automatic mode. */
7778 if (md.detect_dv && !md.explicit_mode)
7779 {
7780 if (!md.mode_explicitly_set
7781 && !md.default_explicit_mode)
7782 dot_dv_mode ('E');
7783 else
7784 as_warn (_("Found '{' after explicit switch to automatic mode"));
7785 }
7786 }
7787 else if (input_line_pointer[-1] == '}')
7788 {
7789 if (!md.manual_bundling)
7790 as_warn ("Found '}' when manual bundling is off");
7791 else
7792 PREV_SLOT.manual_bundling_off = 1;
7793 md.manual_bundling = 0;
7794
7795 /* switch back to automatic mode, if applicable */
7796 if (md.detect_dv
7797 && md.explicit_mode
7798 && !md.mode_explicitly_set
7799 && !md.default_explicit_mode)
7800 dot_dv_mode ('A');
7801 }
7802 }
7803
7804 /* This is a hook for ia64_frob_label, so that it can distinguish tags from
7805 labels. */
7806 static int defining_tag = 0;
7807
7808 int
7809 ia64_unrecognized_line (ch)
7810 int ch;
7811 {
7812 switch (ch)
7813 {
7814 case '(':
7815 expression_and_evaluate (&md.qp);
7816 if (*input_line_pointer++ != ')')
7817 {
7818 as_bad ("Expected ')'");
7819 return 0;
7820 }
7821 if (md.qp.X_op != O_register)
7822 {
7823 as_bad ("Qualifying predicate expected");
7824 return 0;
7825 }
7826 if (md.qp.X_add_number < REG_P || md.qp.X_add_number >= REG_P + 64)
7827 {
7828 as_bad ("Predicate register expected");
7829 return 0;
7830 }
7831 return 1;
7832
7833 case '[':
7834 {
7835 char *s;
7836 char c;
7837 symbolS *tag;
7838 int temp;
7839
7840 if (md.qp.X_op == O_register)
7841 {
7842 as_bad ("Tag must come before qualifying predicate.");
7843 return 0;
7844 }
7845
7846 /* This implements just enough of read_a_source_file in read.c to
7847 recognize labels. */
7848 if (is_name_beginner (*input_line_pointer))
7849 {
7850 s = input_line_pointer;
7851 c = get_symbol_end ();
7852 }
7853 else if (LOCAL_LABELS_FB
7854 && ISDIGIT (*input_line_pointer))
7855 {
7856 temp = 0;
7857 while (ISDIGIT (*input_line_pointer))
7858 temp = (temp * 10) + *input_line_pointer++ - '0';
7859 fb_label_instance_inc (temp);
7860 s = fb_label_name (temp, 0);
7861 c = *input_line_pointer;
7862 }
7863 else
7864 {
7865 s = NULL;
7866 c = '\0';
7867 }
7868 if (c != ':')
7869 {
7870 /* Put ':' back for error messages' sake. */
7871 *input_line_pointer++ = ':';
7872 as_bad ("Expected ':'");
7873 return 0;
7874 }
7875
7876 defining_tag = 1;
7877 tag = colon (s);
7878 defining_tag = 0;
7879 /* Put ':' back for error messages' sake. */
7880 *input_line_pointer++ = ':';
7881 if (*input_line_pointer++ != ']')
7882 {
7883 as_bad ("Expected ']'");
7884 return 0;
7885 }
7886 if (! tag)
7887 {
7888 as_bad ("Tag name expected");
7889 return 0;
7890 }
7891 return 1;
7892 }
7893
7894 default:
7895 break;
7896 }
7897
7898 /* Not a valid line. */
7899 return 0;
7900 }
7901
7902 void
7903 ia64_frob_label (sym)
7904 struct symbol *sym;
7905 {
7906 struct label_fix *fix;
7907
7908 /* Tags need special handling since they are not bundle breaks like
7909 labels. */
7910 if (defining_tag)
7911 {
7912 fix = obstack_alloc (&notes, sizeof (*fix));
7913 fix->sym = sym;
7914 fix->next = CURR_SLOT.tag_fixups;
7915 fix->dw2_mark_labels = FALSE;
7916 CURR_SLOT.tag_fixups = fix;
7917
7918 return;
7919 }
7920
7921 if (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7922 {
7923 md.last_text_seg = now_seg;
7924 fix = obstack_alloc (&notes, sizeof (*fix));
7925 fix->sym = sym;
7926 fix->next = CURR_SLOT.label_fixups;
7927 fix->dw2_mark_labels = dwarf2_loc_mark_labels;
7928 CURR_SLOT.label_fixups = fix;
7929
7930 /* Keep track of how many code entry points we've seen. */
7931 if (md.path == md.maxpaths)
7932 {
7933 md.maxpaths += 20;
7934 md.entry_labels = (const char **)
7935 xrealloc ((void *) md.entry_labels,
7936 md.maxpaths * sizeof (char *));
7937 }
7938 md.entry_labels[md.path++] = S_GET_NAME (sym);
7939 }
7940 }
7941
7942 #ifdef TE_HPUX
7943 /* The HP-UX linker will give unresolved symbol errors for symbols
7944 that are declared but unused. This routine removes declared,
7945 unused symbols from an object. */
7946 int
7947 ia64_frob_symbol (sym)
7948 struct symbol *sym;
7949 {
7950 if ((S_GET_SEGMENT (sym) == &bfd_und_section && ! symbol_used_p (sym) &&
7951 ELF_ST_VISIBILITY (S_GET_OTHER (sym)) == STV_DEFAULT)
7952 || (S_GET_SEGMENT (sym) == &bfd_abs_section
7953 && ! S_IS_EXTERNAL (sym)))
7954 return 1;
7955 return 0;
7956 }
7957 #endif
7958
7959 void
7960 ia64_flush_pending_output ()
7961 {
7962 if (!md.keep_pending_output
7963 && bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7964 {
7965 /* ??? This causes many unnecessary stop bits to be emitted.
7966 Unfortunately, it isn't clear if it is safe to remove this. */
7967 insn_group_break (1, 0, 0);
7968 ia64_flush_insns ();
7969 }
7970 }
7971
7972 /* Do ia64-specific expression optimization. All that's done here is
7973 to transform index expressions that are either due to the indexing
7974 of rotating registers or due to the indexing of indirect register
7975 sets. */
7976 int
7977 ia64_optimize_expr (l, op, r)
7978 expressionS *l;
7979 operatorT op;
7980 expressionS *r;
7981 {
7982 if (op != O_index)
7983 return 0;
7984 resolve_expression (l);
7985 if (l->X_op == O_register)
7986 {
7987 unsigned num_regs = l->X_add_number >> 16;
7988
7989 resolve_expression (r);
7990 if (num_regs)
7991 {
7992 /* Left side is a .rotX-allocated register. */
7993 if (r->X_op != O_constant)
7994 {
7995 as_bad ("Rotating register index must be a non-negative constant");
7996 r->X_add_number = 0;
7997 }
7998 else if ((valueT) r->X_add_number >= num_regs)
7999 {
8000 as_bad ("Index out of range 0..%u", num_regs - 1);
8001 r->X_add_number = 0;
8002 }
8003 l->X_add_number = (l->X_add_number & 0xffff) + r->X_add_number;
8004 return 1;
8005 }
8006 else if (l->X_add_number >= IND_CPUID && l->X_add_number <= IND_RR)
8007 {
8008 if (r->X_op != O_register
8009 || r->X_add_number < REG_GR
8010 || r->X_add_number > REG_GR + 127)
8011 {
8012 as_bad ("Indirect register index must be a general register");
8013 r->X_add_number = REG_GR;
8014 }
8015 l->X_op = O_index;
8016 l->X_op_symbol = md.indregsym[l->X_add_number - IND_CPUID];
8017 l->X_add_number = r->X_add_number;
8018 return 1;
8019 }
8020 }
8021 as_bad ("Index can only be applied to rotating or indirect registers");
8022 /* Fall back to some register use of which has as little as possible
8023 side effects, to minimize subsequent error messages. */
8024 l->X_op = O_register;
8025 l->X_add_number = REG_GR + 3;
8026 return 1;
8027 }
8028
8029 int
8030 ia64_parse_name (name, e, nextcharP)
8031 char *name;
8032 expressionS *e;
8033 char *nextcharP;
8034 {
8035 struct const_desc *cdesc;
8036 struct dynreg *dr = 0;
8037 unsigned int idx;
8038 struct symbol *sym;
8039 char *end;
8040
8041 if (*name == '@')
8042 {
8043 enum pseudo_type pseudo_type = PSEUDO_FUNC_NONE;
8044
8045 /* Find what relocation pseudo-function we're dealing with. */
8046 for (idx = 0; idx < NELEMS (pseudo_func); ++idx)
8047 if (pseudo_func[idx].name
8048 && pseudo_func[idx].name[0] == name[1]
8049 && strcmp (pseudo_func[idx].name + 1, name + 2) == 0)
8050 {
8051 pseudo_type = pseudo_func[idx].type;
8052 break;
8053 }
8054 switch (pseudo_type)
8055 {
8056 case PSEUDO_FUNC_RELOC:
8057 end = input_line_pointer;
8058 if (*nextcharP != '(')
8059 {
8060 as_bad ("Expected '('");
8061 break;
8062 }
8063 /* Skip '('. */
8064 ++input_line_pointer;
8065 expression (e);
8066 if (*input_line_pointer != ')')
8067 {
8068 as_bad ("Missing ')'");
8069 goto done;
8070 }
8071 /* Skip ')'. */
8072 ++input_line_pointer;
8073 if (e->X_op != O_symbol)
8074 {
8075 if (e->X_op != O_pseudo_fixup)
8076 {
8077 as_bad ("Not a symbolic expression");
8078 goto done;
8079 }
8080 if (idx != FUNC_LT_RELATIVE)
8081 {
8082 as_bad ("Illegal combination of relocation functions");
8083 goto done;
8084 }
8085 switch (S_GET_VALUE (e->X_op_symbol))
8086 {
8087 case FUNC_FPTR_RELATIVE:
8088 idx = FUNC_LT_FPTR_RELATIVE; break;
8089 case FUNC_DTP_MODULE:
8090 idx = FUNC_LT_DTP_MODULE; break;
8091 case FUNC_DTP_RELATIVE:
8092 idx = FUNC_LT_DTP_RELATIVE; break;
8093 case FUNC_TP_RELATIVE:
8094 idx = FUNC_LT_TP_RELATIVE; break;
8095 default:
8096 as_bad ("Illegal combination of relocation functions");
8097 goto done;
8098 }
8099 }
8100 /* Make sure gas doesn't get rid of local symbols that are used
8101 in relocs. */
8102 e->X_op = O_pseudo_fixup;
8103 e->X_op_symbol = pseudo_func[idx].u.sym;
8104 done:
8105 *nextcharP = *input_line_pointer;
8106 break;
8107
8108 case PSEUDO_FUNC_CONST:
8109 e->X_op = O_constant;
8110 e->X_add_number = pseudo_func[idx].u.ival;
8111 break;
8112
8113 case PSEUDO_FUNC_REG:
8114 e->X_op = O_register;
8115 e->X_add_number = pseudo_func[idx].u.ival;
8116 break;
8117
8118 default:
8119 return 0;
8120 }
8121 return 1;
8122 }
8123
8124 /* first see if NAME is a known register name: */
8125 sym = hash_find (md.reg_hash, name);
8126 if (sym)
8127 {
8128 e->X_op = O_register;
8129 e->X_add_number = S_GET_VALUE (sym);
8130 return 1;
8131 }
8132
8133 cdesc = hash_find (md.const_hash, name);
8134 if (cdesc)
8135 {
8136 e->X_op = O_constant;
8137 e->X_add_number = cdesc->value;
8138 return 1;
8139 }
8140
8141 /* check for inN, locN, or outN: */
8142 idx = 0;
8143 switch (name[0])
8144 {
8145 case 'i':
8146 if (name[1] == 'n' && ISDIGIT (name[2]))
8147 {
8148 dr = &md.in;
8149 idx = 2;
8150 }
8151 break;
8152
8153 case 'l':
8154 if (name[1] == 'o' && name[2] == 'c' && ISDIGIT (name[3]))
8155 {
8156 dr = &md.loc;
8157 idx = 3;
8158 }
8159 break;
8160
8161 case 'o':
8162 if (name[1] == 'u' && name[2] == 't' && ISDIGIT (name[3]))
8163 {
8164 dr = &md.out;
8165 idx = 3;
8166 }
8167 break;
8168
8169 default:
8170 break;
8171 }
8172
8173 /* Ignore register numbers with leading zeroes, except zero itself. */
8174 if (dr && (name[idx] != '0' || name[idx + 1] == '\0'))
8175 {
8176 unsigned long regnum;
8177
8178 /* The name is inN, locN, or outN; parse the register number. */
8179 regnum = strtoul (name + idx, &end, 10);
8180 if (end > name + idx && *end == '\0' && regnum < 96)
8181 {
8182 if (regnum >= dr->num_regs)
8183 {
8184 if (!dr->num_regs)
8185 as_bad ("No current frame");
8186 else
8187 as_bad ("Register number out of range 0..%u",
8188 dr->num_regs - 1);
8189 regnum = 0;
8190 }
8191 e->X_op = O_register;
8192 e->X_add_number = dr->base + regnum;
8193 return 1;
8194 }
8195 }
8196
8197 end = alloca (strlen (name) + 1);
8198 strcpy (end, name);
8199 name = ia64_canonicalize_symbol_name (end);
8200 if ((dr = hash_find (md.dynreg_hash, name)))
8201 {
8202 /* We've got ourselves the name of a rotating register set.
8203 Store the base register number in the low 16 bits of
8204 X_add_number and the size of the register set in the top 16
8205 bits. */
8206 e->X_op = O_register;
8207 e->X_add_number = dr->base | (dr->num_regs << 16);
8208 return 1;
8209 }
8210 return 0;
8211 }
8212
8213 /* Remove the '#' suffix that indicates a symbol as opposed to a register. */
8214
8215 char *
8216 ia64_canonicalize_symbol_name (name)
8217 char *name;
8218 {
8219 size_t len = strlen (name), full = len;
8220
8221 while (len > 0 && name[len - 1] == '#')
8222 --len;
8223 if (len <= 0)
8224 {
8225 if (full > 0)
8226 as_bad ("Standalone `#' is illegal");
8227 }
8228 else if (len < full - 1)
8229 as_warn ("Redundant `#' suffix operators");
8230 name[len] = '\0';
8231 return name;
8232 }
8233
8234 /* Return true if idesc is a conditional branch instruction. This excludes
8235 the modulo scheduled branches, and br.ia. Mod-sched branches are excluded
8236 because they always read/write resources regardless of the value of the
8237 qualifying predicate. br.ia must always use p0, and hence is always
8238 taken. Thus this function returns true for branches which can fall
8239 through, and which use no resources if they do fall through. */
8240
8241 static int
8242 is_conditional_branch (idesc)
8243 struct ia64_opcode *idesc;
8244 {
8245 /* br is a conditional branch. Everything that starts with br. except
8246 br.ia, br.c{loop,top,exit}, and br.w{top,exit} is a conditional branch.
8247 Everything that starts with brl is a conditional branch. */
8248 return (idesc->name[0] == 'b' && idesc->name[1] == 'r'
8249 && (idesc->name[2] == '\0'
8250 || (idesc->name[2] == '.' && idesc->name[3] != 'i'
8251 && idesc->name[3] != 'c' && idesc->name[3] != 'w')
8252 || idesc->name[2] == 'l'
8253 /* br.cond, br.call, br.clr */
8254 || (idesc->name[2] == '.' && idesc->name[3] == 'c'
8255 && (idesc->name[4] == 'a' || idesc->name[4] == 'o'
8256 || (idesc->name[4] == 'l' && idesc->name[5] == 'r')))));
8257 }
8258
8259 /* Return whether the given opcode is a taken branch. If there's any doubt,
8260 returns zero. */
8261
8262 static int
8263 is_taken_branch (idesc)
8264 struct ia64_opcode *idesc;
8265 {
8266 return ((is_conditional_branch (idesc) && CURR_SLOT.qp_regno == 0)
8267 || strncmp (idesc->name, "br.ia", 5) == 0);
8268 }
8269
8270 /* Return whether the given opcode is an interruption or rfi. If there's any
8271 doubt, returns zero. */
8272
8273 static int
8274 is_interruption_or_rfi (idesc)
8275 struct ia64_opcode *idesc;
8276 {
8277 if (strcmp (idesc->name, "rfi") == 0)
8278 return 1;
8279 return 0;
8280 }
8281
8282 /* Returns the index of the given dependency in the opcode's list of chks, or
8283 -1 if there is no dependency. */
8284
8285 static int
8286 depends_on (depind, idesc)
8287 int depind;
8288 struct ia64_opcode *idesc;
8289 {
8290 int i;
8291 const struct ia64_opcode_dependency *dep = idesc->dependencies;
8292 for (i = 0; i < dep->nchks; i++)
8293 {
8294 if (depind == DEP (dep->chks[i]))
8295 return i;
8296 }
8297 return -1;
8298 }
8299
8300 /* Determine a set of specific resources used for a particular resource
8301 class. Returns the number of specific resources identified For those
8302 cases which are not determinable statically, the resource returned is
8303 marked nonspecific.
8304
8305 Meanings of value in 'NOTE':
8306 1) only read/write when the register number is explicitly encoded in the
8307 insn.
8308 2) only read CFM when accessing a rotating GR, FR, or PR. mov pr only
8309 accesses CFM when qualifying predicate is in the rotating region.
8310 3) general register value is used to specify an indirect register; not
8311 determinable statically.
8312 4) only read the given resource when bits 7:0 of the indirect index
8313 register value does not match the register number of the resource; not
8314 determinable statically.
8315 5) all rules are implementation specific.
8316 6) only when both the index specified by the reader and the index specified
8317 by the writer have the same value in bits 63:61; not determinable
8318 statically.
8319 7) only access the specified resource when the corresponding mask bit is
8320 set
8321 8) PSR.dfh is only read when these insns reference FR32-127. PSR.dfl is
8322 only read when these insns reference FR2-31
8323 9) PSR.mfl is only written when these insns write FR2-31. PSR.mfh is only
8324 written when these insns write FR32-127
8325 10) The PSR.bn bit is only accessed when one of GR16-31 is specified in the
8326 instruction
8327 11) The target predicates are written independently of PR[qp], but source
8328 registers are only read if PR[qp] is true. Since the state of PR[qp]
8329 cannot statically be determined, all source registers are marked used.
8330 12) This insn only reads the specified predicate register when that
8331 register is the PR[qp].
8332 13) This reference to ld-c only applies to teh GR whose value is loaded
8333 with data returned from memory, not the post-incremented address register.
8334 14) The RSE resource includes the implementation-specific RSE internal
8335 state resources. At least one (and possibly more) of these resources are
8336 read by each instruction listed in IC:rse-readers. At least one (and
8337 possibly more) of these resources are written by each insn listed in
8338 IC:rse-writers.
8339 15+16) Represents reserved instructions, which the assembler does not
8340 generate.
8341 17) CR[TPR] has a RAW dependency only between mov-to-CR-TPR and
8342 mov-to-PSR-l or ssm instructions that set PSR.i, PSR.pp or PSR.up.
8343
8344 Memory resources (i.e. locations in memory) are *not* marked or tracked by
8345 this code; there are no dependency violations based on memory access.
8346 */
8347
8348 #define MAX_SPECS 256
8349 #define DV_CHK 1
8350 #define DV_REG 0
8351
8352 static int
8353 specify_resource (dep, idesc, type, specs, note, path)
8354 const struct ia64_dependency *dep;
8355 struct ia64_opcode *idesc;
8356 int type; /* is this a DV chk or a DV reg? */
8357 struct rsrc specs[MAX_SPECS]; /* returned specific resources */
8358 int note; /* resource note for this insn's usage */
8359 int path; /* which execution path to examine */
8360 {
8361 int count = 0;
8362 int i;
8363 int rsrc_write = 0;
8364 struct rsrc tmpl;
8365
8366 if (dep->mode == IA64_DV_WAW
8367 || (dep->mode == IA64_DV_RAW && type == DV_REG)
8368 || (dep->mode == IA64_DV_WAR && type == DV_CHK))
8369 rsrc_write = 1;
8370
8371 /* template for any resources we identify */
8372 tmpl.dependency = dep;
8373 tmpl.note = note;
8374 tmpl.insn_srlz = tmpl.data_srlz = 0;
8375 tmpl.qp_regno = CURR_SLOT.qp_regno;
8376 tmpl.link_to_qp_branch = 1;
8377 tmpl.mem_offset.hint = 0;
8378 tmpl.mem_offset.offset = 0;
8379 tmpl.mem_offset.base = 0;
8380 tmpl.specific = 1;
8381 tmpl.index = -1;
8382 tmpl.cmp_type = CMP_NONE;
8383 tmpl.depind = 0;
8384 tmpl.file = NULL;
8385 tmpl.line = 0;
8386 tmpl.path = 0;
8387
8388 #define UNHANDLED \
8389 as_warn (_("Unhandled dependency %s for %s (%s), note %d"), \
8390 dep->name, idesc->name, (rsrc_write?"write":"read"), note)
8391 #define KNOWN(REG) (gr_values[REG].known && gr_values[REG].path >= path)
8392
8393 /* we don't need to track these */
8394 if (dep->semantics == IA64_DVS_NONE)
8395 return 0;
8396
8397 switch (dep->specifier)
8398 {
8399 case IA64_RS_AR_K:
8400 if (note == 1)
8401 {
8402 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8403 {
8404 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8405 if (regno >= 0 && regno <= 7)
8406 {
8407 specs[count] = tmpl;
8408 specs[count++].index = regno;
8409 }
8410 }
8411 }
8412 else if (note == 0)
8413 {
8414 for (i = 0; i < 8; i++)
8415 {
8416 specs[count] = tmpl;
8417 specs[count++].index = i;
8418 }
8419 }
8420 else
8421 {
8422 UNHANDLED;
8423 }
8424 break;
8425
8426 case IA64_RS_AR_UNAT:
8427 /* This is a mov =AR or mov AR= instruction. */
8428 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8429 {
8430 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8431 if (regno == AR_UNAT)
8432 {
8433 specs[count++] = tmpl;
8434 }
8435 }
8436 else
8437 {
8438 /* This is a spill/fill, or other instruction that modifies the
8439 unat register. */
8440
8441 /* Unless we can determine the specific bits used, mark the whole
8442 thing; bits 8:3 of the memory address indicate the bit used in
8443 UNAT. The .mem.offset hint may be used to eliminate a small
8444 subset of conflicts. */
8445 specs[count] = tmpl;
8446 if (md.mem_offset.hint)
8447 {
8448 if (md.debug_dv)
8449 fprintf (stderr, " Using hint for spill/fill\n");
8450 /* The index isn't actually used, just set it to something
8451 approximating the bit index. */
8452 specs[count].index = (md.mem_offset.offset >> 3) & 0x3F;
8453 specs[count].mem_offset.hint = 1;
8454 specs[count].mem_offset.offset = md.mem_offset.offset;
8455 specs[count++].mem_offset.base = md.mem_offset.base;
8456 }
8457 else
8458 {
8459 specs[count++].specific = 0;
8460 }
8461 }
8462 break;
8463
8464 case IA64_RS_AR:
8465 if (note == 1)
8466 {
8467 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8468 {
8469 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8470 if ((regno >= 8 && regno <= 15)
8471 || (regno >= 20 && regno <= 23)
8472 || (regno >= 31 && regno <= 39)
8473 || (regno >= 41 && regno <= 47)
8474 || (regno >= 67 && regno <= 111))
8475 {
8476 specs[count] = tmpl;
8477 specs[count++].index = regno;
8478 }
8479 }
8480 }
8481 else
8482 {
8483 UNHANDLED;
8484 }
8485 break;
8486
8487 case IA64_RS_ARb:
8488 if (note == 1)
8489 {
8490 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8491 {
8492 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8493 if ((regno >= 48 && regno <= 63)
8494 || (regno >= 112 && regno <= 127))
8495 {
8496 specs[count] = tmpl;
8497 specs[count++].index = regno;
8498 }
8499 }
8500 }
8501 else if (note == 0)
8502 {
8503 for (i = 48; i < 64; i++)
8504 {
8505 specs[count] = tmpl;
8506 specs[count++].index = i;
8507 }
8508 for (i = 112; i < 128; i++)
8509 {
8510 specs[count] = tmpl;
8511 specs[count++].index = i;
8512 }
8513 }
8514 else
8515 {
8516 UNHANDLED;
8517 }
8518 break;
8519
8520 case IA64_RS_BR:
8521 if (note != 1)
8522 {
8523 UNHANDLED;
8524 }
8525 else
8526 {
8527 if (rsrc_write)
8528 {
8529 for (i = 0; i < idesc->num_outputs; i++)
8530 if (idesc->operands[i] == IA64_OPND_B1
8531 || idesc->operands[i] == IA64_OPND_B2)
8532 {
8533 specs[count] = tmpl;
8534 specs[count++].index =
8535 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8536 }
8537 }
8538 else
8539 {
8540 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8541 if (idesc->operands[i] == IA64_OPND_B1
8542 || idesc->operands[i] == IA64_OPND_B2)
8543 {
8544 specs[count] = tmpl;
8545 specs[count++].index =
8546 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8547 }
8548 }
8549 }
8550 break;
8551
8552 case IA64_RS_CPUID: /* four or more registers */
8553 if (note == 3)
8554 {
8555 if (idesc->operands[!rsrc_write] == IA64_OPND_CPUID_R3)
8556 {
8557 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8558 if (regno >= 0 && regno < NELEMS (gr_values)
8559 && KNOWN (regno))
8560 {
8561 specs[count] = tmpl;
8562 specs[count++].index = gr_values[regno].value & 0xFF;
8563 }
8564 else
8565 {
8566 specs[count] = tmpl;
8567 specs[count++].specific = 0;
8568 }
8569 }
8570 }
8571 else
8572 {
8573 UNHANDLED;
8574 }
8575 break;
8576
8577 case IA64_RS_DBR: /* four or more registers */
8578 if (note == 3)
8579 {
8580 if (idesc->operands[!rsrc_write] == IA64_OPND_DBR_R3)
8581 {
8582 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8583 if (regno >= 0 && regno < NELEMS (gr_values)
8584 && KNOWN (regno))
8585 {
8586 specs[count] = tmpl;
8587 specs[count++].index = gr_values[regno].value & 0xFF;
8588 }
8589 else
8590 {
8591 specs[count] = tmpl;
8592 specs[count++].specific = 0;
8593 }
8594 }
8595 }
8596 else if (note == 0 && !rsrc_write)
8597 {
8598 specs[count] = tmpl;
8599 specs[count++].specific = 0;
8600 }
8601 else
8602 {
8603 UNHANDLED;
8604 }
8605 break;
8606
8607 case IA64_RS_IBR: /* four or more registers */
8608 if (note == 3)
8609 {
8610 if (idesc->operands[!rsrc_write] == IA64_OPND_IBR_R3)
8611 {
8612 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8613 if (regno >= 0 && regno < NELEMS (gr_values)
8614 && KNOWN (regno))
8615 {
8616 specs[count] = tmpl;
8617 specs[count++].index = gr_values[regno].value & 0xFF;
8618 }
8619 else
8620 {
8621 specs[count] = tmpl;
8622 specs[count++].specific = 0;
8623 }
8624 }
8625 }
8626 else
8627 {
8628 UNHANDLED;
8629 }
8630 break;
8631
8632 case IA64_RS_MSR:
8633 if (note == 5)
8634 {
8635 /* These are implementation specific. Force all references to
8636 conflict with all other references. */
8637 specs[count] = tmpl;
8638 specs[count++].specific = 0;
8639 }
8640 else
8641 {
8642 UNHANDLED;
8643 }
8644 break;
8645
8646 case IA64_RS_PKR: /* 16 or more registers */
8647 if (note == 3 || note == 4)
8648 {
8649 if (idesc->operands[!rsrc_write] == IA64_OPND_PKR_R3)
8650 {
8651 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8652 if (regno >= 0 && regno < NELEMS (gr_values)
8653 && KNOWN (regno))
8654 {
8655 if (note == 3)
8656 {
8657 specs[count] = tmpl;
8658 specs[count++].index = gr_values[regno].value & 0xFF;
8659 }
8660 else
8661 for (i = 0; i < NELEMS (gr_values); i++)
8662 {
8663 /* Uses all registers *except* the one in R3. */
8664 if ((unsigned)i != (gr_values[regno].value & 0xFF))
8665 {
8666 specs[count] = tmpl;
8667 specs[count++].index = i;
8668 }
8669 }
8670 }
8671 else
8672 {
8673 specs[count] = tmpl;
8674 specs[count++].specific = 0;
8675 }
8676 }
8677 }
8678 else if (note == 0)
8679 {
8680 /* probe et al. */
8681 specs[count] = tmpl;
8682 specs[count++].specific = 0;
8683 }
8684 break;
8685
8686 case IA64_RS_PMC: /* four or more registers */
8687 if (note == 3)
8688 {
8689 if (idesc->operands[!rsrc_write] == IA64_OPND_PMC_R3
8690 || (!rsrc_write && idesc->operands[1] == IA64_OPND_PMD_R3))
8691
8692 {
8693 int index = ((idesc->operands[1] == IA64_OPND_R3 && !rsrc_write)
8694 ? 1 : !rsrc_write);
8695 int regno = CURR_SLOT.opnd[index].X_add_number - REG_GR;
8696 if (regno >= 0 && regno < NELEMS (gr_values)
8697 && KNOWN (regno))
8698 {
8699 specs[count] = tmpl;
8700 specs[count++].index = gr_values[regno].value & 0xFF;
8701 }
8702 else
8703 {
8704 specs[count] = tmpl;
8705 specs[count++].specific = 0;
8706 }
8707 }
8708 }
8709 else
8710 {
8711 UNHANDLED;
8712 }
8713 break;
8714
8715 case IA64_RS_PMD: /* four or more registers */
8716 if (note == 3)
8717 {
8718 if (idesc->operands[!rsrc_write] == IA64_OPND_PMD_R3)
8719 {
8720 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8721 if (regno >= 0 && regno < NELEMS (gr_values)
8722 && KNOWN (regno))
8723 {
8724 specs[count] = tmpl;
8725 specs[count++].index = gr_values[regno].value & 0xFF;
8726 }
8727 else
8728 {
8729 specs[count] = tmpl;
8730 specs[count++].specific = 0;
8731 }
8732 }
8733 }
8734 else
8735 {
8736 UNHANDLED;
8737 }
8738 break;
8739
8740 case IA64_RS_RR: /* eight registers */
8741 if (note == 6)
8742 {
8743 if (idesc->operands[!rsrc_write] == IA64_OPND_RR_R3)
8744 {
8745 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8746 if (regno >= 0 && regno < NELEMS (gr_values)
8747 && KNOWN (regno))
8748 {
8749 specs[count] = tmpl;
8750 specs[count++].index = (gr_values[regno].value >> 61) & 0x7;
8751 }
8752 else
8753 {
8754 specs[count] = tmpl;
8755 specs[count++].specific = 0;
8756 }
8757 }
8758 }
8759 else if (note == 0 && !rsrc_write)
8760 {
8761 specs[count] = tmpl;
8762 specs[count++].specific = 0;
8763 }
8764 else
8765 {
8766 UNHANDLED;
8767 }
8768 break;
8769
8770 case IA64_RS_CR_IRR:
8771 if (note == 0)
8772 {
8773 /* handle mov-from-CR-IVR; it's a read that writes CR[IRR] */
8774 int regno = CURR_SLOT.opnd[1].X_add_number - REG_CR;
8775 if (rsrc_write
8776 && idesc->operands[1] == IA64_OPND_CR3
8777 && regno == CR_IVR)
8778 {
8779 for (i = 0; i < 4; i++)
8780 {
8781 specs[count] = tmpl;
8782 specs[count++].index = CR_IRR0 + i;
8783 }
8784 }
8785 }
8786 else if (note == 1)
8787 {
8788 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8789 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8790 && regno >= CR_IRR0
8791 && regno <= CR_IRR3)
8792 {
8793 specs[count] = tmpl;
8794 specs[count++].index = regno;
8795 }
8796 }
8797 else
8798 {
8799 UNHANDLED;
8800 }
8801 break;
8802
8803 case IA64_RS_CR_LRR:
8804 if (note != 1)
8805 {
8806 UNHANDLED;
8807 }
8808 else
8809 {
8810 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8811 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8812 && (regno == CR_LRR0 || regno == CR_LRR1))
8813 {
8814 specs[count] = tmpl;
8815 specs[count++].index = regno;
8816 }
8817 }
8818 break;
8819
8820 case IA64_RS_CR:
8821 if (note == 1)
8822 {
8823 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
8824 {
8825 specs[count] = tmpl;
8826 specs[count++].index =
8827 CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8828 }
8829 }
8830 else
8831 {
8832 UNHANDLED;
8833 }
8834 break;
8835
8836 case IA64_RS_FR:
8837 case IA64_RS_FRb:
8838 if (note != 1)
8839 {
8840 UNHANDLED;
8841 }
8842 else if (rsrc_write)
8843 {
8844 if (dep->specifier == IA64_RS_FRb
8845 && idesc->operands[0] == IA64_OPND_F1)
8846 {
8847 specs[count] = tmpl;
8848 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_FR;
8849 }
8850 }
8851 else
8852 {
8853 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8854 {
8855 if (idesc->operands[i] == IA64_OPND_F2
8856 || idesc->operands[i] == IA64_OPND_F3
8857 || idesc->operands[i] == IA64_OPND_F4)
8858 {
8859 specs[count] = tmpl;
8860 specs[count++].index =
8861 CURR_SLOT.opnd[i].X_add_number - REG_FR;
8862 }
8863 }
8864 }
8865 break;
8866
8867 case IA64_RS_GR:
8868 if (note == 13)
8869 {
8870 /* This reference applies only to the GR whose value is loaded with
8871 data returned from memory. */
8872 specs[count] = tmpl;
8873 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_GR;
8874 }
8875 else if (note == 1)
8876 {
8877 if (rsrc_write)
8878 {
8879 for (i = 0; i < idesc->num_outputs; i++)
8880 if (idesc->operands[i] == IA64_OPND_R1
8881 || idesc->operands[i] == IA64_OPND_R2
8882 || idesc->operands[i] == IA64_OPND_R3)
8883 {
8884 specs[count] = tmpl;
8885 specs[count++].index =
8886 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8887 }
8888 if (idesc->flags & IA64_OPCODE_POSTINC)
8889 for (i = 0; i < NELEMS (idesc->operands); i++)
8890 if (idesc->operands[i] == IA64_OPND_MR3)
8891 {
8892 specs[count] = tmpl;
8893 specs[count++].index =
8894 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8895 }
8896 }
8897 else
8898 {
8899 /* Look for anything that reads a GR. */
8900 for (i = 0; i < NELEMS (idesc->operands); i++)
8901 {
8902 if (idesc->operands[i] == IA64_OPND_MR3
8903 || idesc->operands[i] == IA64_OPND_CPUID_R3
8904 || idesc->operands[i] == IA64_OPND_DBR_R3
8905 || idesc->operands[i] == IA64_OPND_IBR_R3
8906 || idesc->operands[i] == IA64_OPND_MSR_R3
8907 || idesc->operands[i] == IA64_OPND_PKR_R3
8908 || idesc->operands[i] == IA64_OPND_PMC_R3
8909 || idesc->operands[i] == IA64_OPND_PMD_R3
8910 || idesc->operands[i] == IA64_OPND_RR_R3
8911 || ((i >= idesc->num_outputs)
8912 && (idesc->operands[i] == IA64_OPND_R1
8913 || idesc->operands[i] == IA64_OPND_R2
8914 || idesc->operands[i] == IA64_OPND_R3
8915 /* addl source register. */
8916 || idesc->operands[i] == IA64_OPND_R3_2)))
8917 {
8918 specs[count] = tmpl;
8919 specs[count++].index =
8920 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8921 }
8922 }
8923 }
8924 }
8925 else
8926 {
8927 UNHANDLED;
8928 }
8929 break;
8930
8931 /* This is the same as IA64_RS_PRr, except that the register range is
8932 from 1 - 15, and there are no rotating register reads/writes here. */
8933 case IA64_RS_PR:
8934 if (note == 0)
8935 {
8936 for (i = 1; i < 16; i++)
8937 {
8938 specs[count] = tmpl;
8939 specs[count++].index = i;
8940 }
8941 }
8942 else if (note == 7)
8943 {
8944 valueT mask = 0;
8945 /* Mark only those registers indicated by the mask. */
8946 if (rsrc_write)
8947 {
8948 mask = CURR_SLOT.opnd[2].X_add_number;
8949 for (i = 1; i < 16; i++)
8950 if (mask & ((valueT) 1 << i))
8951 {
8952 specs[count] = tmpl;
8953 specs[count++].index = i;
8954 }
8955 }
8956 else
8957 {
8958 UNHANDLED;
8959 }
8960 }
8961 else if (note == 11) /* note 11 implies note 1 as well */
8962 {
8963 if (rsrc_write)
8964 {
8965 for (i = 0; i < idesc->num_outputs; i++)
8966 {
8967 if (idesc->operands[i] == IA64_OPND_P1
8968 || idesc->operands[i] == IA64_OPND_P2)
8969 {
8970 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8971 if (regno >= 1 && regno < 16)
8972 {
8973 specs[count] = tmpl;
8974 specs[count++].index = regno;
8975 }
8976 }
8977 }
8978 }
8979 else
8980 {
8981 UNHANDLED;
8982 }
8983 }
8984 else if (note == 12)
8985 {
8986 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8987 {
8988 specs[count] = tmpl;
8989 specs[count++].index = CURR_SLOT.qp_regno;
8990 }
8991 }
8992 else if (note == 1)
8993 {
8994 if (rsrc_write)
8995 {
8996 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8997 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8998 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8999 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9000
9001 if ((idesc->operands[0] == IA64_OPND_P1
9002 || idesc->operands[0] == IA64_OPND_P2)
9003 && p1 >= 1 && p1 < 16)
9004 {
9005 specs[count] = tmpl;
9006 specs[count].cmp_type =
9007 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9008 specs[count++].index = p1;
9009 }
9010 if ((idesc->operands[1] == IA64_OPND_P1
9011 || idesc->operands[1] == IA64_OPND_P2)
9012 && p2 >= 1 && p2 < 16)
9013 {
9014 specs[count] = tmpl;
9015 specs[count].cmp_type =
9016 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9017 specs[count++].index = p2;
9018 }
9019 }
9020 else
9021 {
9022 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
9023 {
9024 specs[count] = tmpl;
9025 specs[count++].index = CURR_SLOT.qp_regno;
9026 }
9027 if (idesc->operands[1] == IA64_OPND_PR)
9028 {
9029 for (i = 1; i < 16; i++)
9030 {
9031 specs[count] = tmpl;
9032 specs[count++].index = i;
9033 }
9034 }
9035 }
9036 }
9037 else
9038 {
9039 UNHANDLED;
9040 }
9041 break;
9042
9043 /* This is the general case for PRs. IA64_RS_PR and IA64_RS_PR63 are
9044 simplified cases of this. */
9045 case IA64_RS_PRr:
9046 if (note == 0)
9047 {
9048 for (i = 16; i < 63; i++)
9049 {
9050 specs[count] = tmpl;
9051 specs[count++].index = i;
9052 }
9053 }
9054 else if (note == 7)
9055 {
9056 valueT mask = 0;
9057 /* Mark only those registers indicated by the mask. */
9058 if (rsrc_write
9059 && idesc->operands[0] == IA64_OPND_PR)
9060 {
9061 mask = CURR_SLOT.opnd[2].X_add_number;
9062 if (mask & ((valueT) 1 << 16))
9063 for (i = 16; i < 63; i++)
9064 {
9065 specs[count] = tmpl;
9066 specs[count++].index = i;
9067 }
9068 }
9069 else if (rsrc_write
9070 && idesc->operands[0] == IA64_OPND_PR_ROT)
9071 {
9072 for (i = 16; i < 63; i++)
9073 {
9074 specs[count] = tmpl;
9075 specs[count++].index = i;
9076 }
9077 }
9078 else
9079 {
9080 UNHANDLED;
9081 }
9082 }
9083 else if (note == 11) /* note 11 implies note 1 as well */
9084 {
9085 if (rsrc_write)
9086 {
9087 for (i = 0; i < idesc->num_outputs; i++)
9088 {
9089 if (idesc->operands[i] == IA64_OPND_P1
9090 || idesc->operands[i] == IA64_OPND_P2)
9091 {
9092 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9093 if (regno >= 16 && regno < 63)
9094 {
9095 specs[count] = tmpl;
9096 specs[count++].index = regno;
9097 }
9098 }
9099 }
9100 }
9101 else
9102 {
9103 UNHANDLED;
9104 }
9105 }
9106 else if (note == 12)
9107 {
9108 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
9109 {
9110 specs[count] = tmpl;
9111 specs[count++].index = CURR_SLOT.qp_regno;
9112 }
9113 }
9114 else if (note == 1)
9115 {
9116 if (rsrc_write)
9117 {
9118 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9119 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9120 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9121 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9122
9123 if ((idesc->operands[0] == IA64_OPND_P1
9124 || idesc->operands[0] == IA64_OPND_P2)
9125 && p1 >= 16 && p1 < 63)
9126 {
9127 specs[count] = tmpl;
9128 specs[count].cmp_type =
9129 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9130 specs[count++].index = p1;
9131 }
9132 if ((idesc->operands[1] == IA64_OPND_P1
9133 || idesc->operands[1] == IA64_OPND_P2)
9134 && p2 >= 16 && p2 < 63)
9135 {
9136 specs[count] = tmpl;
9137 specs[count].cmp_type =
9138 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9139 specs[count++].index = p2;
9140 }
9141 }
9142 else
9143 {
9144 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
9145 {
9146 specs[count] = tmpl;
9147 specs[count++].index = CURR_SLOT.qp_regno;
9148 }
9149 if (idesc->operands[1] == IA64_OPND_PR)
9150 {
9151 for (i = 16; i < 63; i++)
9152 {
9153 specs[count] = tmpl;
9154 specs[count++].index = i;
9155 }
9156 }
9157 }
9158 }
9159 else
9160 {
9161 UNHANDLED;
9162 }
9163 break;
9164
9165 case IA64_RS_PSR:
9166 /* Verify that the instruction is using the PSR bit indicated in
9167 dep->regindex. */
9168 if (note == 0)
9169 {
9170 if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_UM)
9171 {
9172 if (dep->regindex < 6)
9173 {
9174 specs[count++] = tmpl;
9175 }
9176 }
9177 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR)
9178 {
9179 if (dep->regindex < 32
9180 || dep->regindex == 35
9181 || dep->regindex == 36
9182 || (!rsrc_write && dep->regindex == PSR_CPL))
9183 {
9184 specs[count++] = tmpl;
9185 }
9186 }
9187 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_L)
9188 {
9189 if (dep->regindex < 32
9190 || dep->regindex == 35
9191 || dep->regindex == 36
9192 || (rsrc_write && dep->regindex == PSR_CPL))
9193 {
9194 specs[count++] = tmpl;
9195 }
9196 }
9197 else
9198 {
9199 /* Several PSR bits have very specific dependencies. */
9200 switch (dep->regindex)
9201 {
9202 default:
9203 specs[count++] = tmpl;
9204 break;
9205 case PSR_IC:
9206 if (rsrc_write)
9207 {
9208 specs[count++] = tmpl;
9209 }
9210 else
9211 {
9212 /* Only certain CR accesses use PSR.ic */
9213 if (idesc->operands[0] == IA64_OPND_CR3
9214 || idesc->operands[1] == IA64_OPND_CR3)
9215 {
9216 int index =
9217 ((idesc->operands[0] == IA64_OPND_CR3)
9218 ? 0 : 1);
9219 int regno =
9220 CURR_SLOT.opnd[index].X_add_number - REG_CR;
9221
9222 switch (regno)
9223 {
9224 default:
9225 break;
9226 case CR_ITIR:
9227 case CR_IFS:
9228 case CR_IIM:
9229 case CR_IIP:
9230 case CR_IPSR:
9231 case CR_ISR:
9232 case CR_IFA:
9233 case CR_IHA:
9234 case CR_IIPA:
9235 specs[count++] = tmpl;
9236 break;
9237 }
9238 }
9239 }
9240 break;
9241 case PSR_CPL:
9242 if (rsrc_write)
9243 {
9244 specs[count++] = tmpl;
9245 }
9246 else
9247 {
9248 /* Only some AR accesses use cpl */
9249 if (idesc->operands[0] == IA64_OPND_AR3
9250 || idesc->operands[1] == IA64_OPND_AR3)
9251 {
9252 int index =
9253 ((idesc->operands[0] == IA64_OPND_AR3)
9254 ? 0 : 1);
9255 int regno =
9256 CURR_SLOT.opnd[index].X_add_number - REG_AR;
9257
9258 if (regno == AR_ITC
9259 || (index == 0
9260 && (regno == AR_ITC
9261 || regno == AR_RSC
9262 || (regno >= AR_K0
9263 && regno <= AR_K7))))
9264 {
9265 specs[count++] = tmpl;
9266 }
9267 }
9268 else
9269 {
9270 specs[count++] = tmpl;
9271 }
9272 break;
9273 }
9274 }
9275 }
9276 }
9277 else if (note == 7)
9278 {
9279 valueT mask = 0;
9280 if (idesc->operands[0] == IA64_OPND_IMMU24)
9281 {
9282 mask = CURR_SLOT.opnd[0].X_add_number;
9283 }
9284 else
9285 {
9286 UNHANDLED;
9287 }
9288 if (mask & ((valueT) 1 << dep->regindex))
9289 {
9290 specs[count++] = tmpl;
9291 }
9292 }
9293 else if (note == 8)
9294 {
9295 int min = dep->regindex == PSR_DFL ? 2 : 32;
9296 int max = dep->regindex == PSR_DFL ? 31 : 127;
9297 /* dfh is read on FR32-127; dfl is read on FR2-31 */
9298 for (i = 0; i < NELEMS (idesc->operands); i++)
9299 {
9300 if (idesc->operands[i] == IA64_OPND_F1
9301 || idesc->operands[i] == IA64_OPND_F2
9302 || idesc->operands[i] == IA64_OPND_F3
9303 || idesc->operands[i] == IA64_OPND_F4)
9304 {
9305 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9306 if (reg >= min && reg <= max)
9307 {
9308 specs[count++] = tmpl;
9309 }
9310 }
9311 }
9312 }
9313 else if (note == 9)
9314 {
9315 int min = dep->regindex == PSR_MFL ? 2 : 32;
9316 int max = dep->regindex == PSR_MFL ? 31 : 127;
9317 /* mfh is read on writes to FR32-127; mfl is read on writes to
9318 FR2-31 */
9319 for (i = 0; i < idesc->num_outputs; i++)
9320 {
9321 if (idesc->operands[i] == IA64_OPND_F1)
9322 {
9323 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9324 if (reg >= min && reg <= max)
9325 {
9326 specs[count++] = tmpl;
9327 }
9328 }
9329 }
9330 }
9331 else if (note == 10)
9332 {
9333 for (i = 0; i < NELEMS (idesc->operands); i++)
9334 {
9335 if (idesc->operands[i] == IA64_OPND_R1
9336 || idesc->operands[i] == IA64_OPND_R2
9337 || idesc->operands[i] == IA64_OPND_R3)
9338 {
9339 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9340 if (regno >= 16 && regno <= 31)
9341 {
9342 specs[count++] = tmpl;
9343 }
9344 }
9345 }
9346 }
9347 else
9348 {
9349 UNHANDLED;
9350 }
9351 break;
9352
9353 case IA64_RS_AR_FPSR:
9354 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
9355 {
9356 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9357 if (regno == AR_FPSR)
9358 {
9359 specs[count++] = tmpl;
9360 }
9361 }
9362 else
9363 {
9364 specs[count++] = tmpl;
9365 }
9366 break;
9367
9368 case IA64_RS_ARX:
9369 /* Handle all AR[REG] resources */
9370 if (note == 0 || note == 1)
9371 {
9372 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9373 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3
9374 && regno == dep->regindex)
9375 {
9376 specs[count++] = tmpl;
9377 }
9378 /* other AR[REG] resources may be affected by AR accesses */
9379 else if (idesc->operands[0] == IA64_OPND_AR3)
9380 {
9381 /* AR[] writes */
9382 regno = CURR_SLOT.opnd[0].X_add_number - REG_AR;
9383 switch (dep->regindex)
9384 {
9385 default:
9386 break;
9387 case AR_BSP:
9388 case AR_RNAT:
9389 if (regno == AR_BSPSTORE)
9390 {
9391 specs[count++] = tmpl;
9392 }
9393 case AR_RSC:
9394 if (!rsrc_write &&
9395 (regno == AR_BSPSTORE
9396 || regno == AR_RNAT))
9397 {
9398 specs[count++] = tmpl;
9399 }
9400 break;
9401 }
9402 }
9403 else if (idesc->operands[1] == IA64_OPND_AR3)
9404 {
9405 /* AR[] reads */
9406 regno = CURR_SLOT.opnd[1].X_add_number - REG_AR;
9407 switch (dep->regindex)
9408 {
9409 default:
9410 break;
9411 case AR_RSC:
9412 if (regno == AR_BSPSTORE || regno == AR_RNAT)
9413 {
9414 specs[count++] = tmpl;
9415 }
9416 break;
9417 }
9418 }
9419 else
9420 {
9421 specs[count++] = tmpl;
9422 }
9423 }
9424 else
9425 {
9426 UNHANDLED;
9427 }
9428 break;
9429
9430 case IA64_RS_CRX:
9431 /* Handle all CR[REG] resources.
9432 ??? FIXME: The rule 17 isn't really handled correctly. */
9433 if (note == 0 || note == 1 || note == 17)
9434 {
9435 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
9436 {
9437 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
9438 if (regno == dep->regindex)
9439 {
9440 specs[count++] = tmpl;
9441 }
9442 else if (!rsrc_write)
9443 {
9444 /* Reads from CR[IVR] affect other resources. */
9445 if (regno == CR_IVR)
9446 {
9447 if ((dep->regindex >= CR_IRR0
9448 && dep->regindex <= CR_IRR3)
9449 || dep->regindex == CR_TPR)
9450 {
9451 specs[count++] = tmpl;
9452 }
9453 }
9454 }
9455 }
9456 else
9457 {
9458 specs[count++] = tmpl;
9459 }
9460 }
9461 else
9462 {
9463 UNHANDLED;
9464 }
9465 break;
9466
9467 case IA64_RS_INSERVICE:
9468 /* look for write of EOI (67) or read of IVR (65) */
9469 if ((idesc->operands[0] == IA64_OPND_CR3
9470 && CURR_SLOT.opnd[0].X_add_number - REG_CR == CR_EOI)
9471 || (idesc->operands[1] == IA64_OPND_CR3
9472 && CURR_SLOT.opnd[1].X_add_number - REG_CR == CR_IVR))
9473 {
9474 specs[count++] = tmpl;
9475 }
9476 break;
9477
9478 case IA64_RS_GR0:
9479 if (note == 1)
9480 {
9481 specs[count++] = tmpl;
9482 }
9483 else
9484 {
9485 UNHANDLED;
9486 }
9487 break;
9488
9489 case IA64_RS_CFM:
9490 if (note != 2)
9491 {
9492 specs[count++] = tmpl;
9493 }
9494 else
9495 {
9496 /* Check if any of the registers accessed are in the rotating region.
9497 mov to/from pr accesses CFM only when qp_regno is in the rotating
9498 region */
9499 for (i = 0; i < NELEMS (idesc->operands); i++)
9500 {
9501 if (idesc->operands[i] == IA64_OPND_R1
9502 || idesc->operands[i] == IA64_OPND_R2
9503 || idesc->operands[i] == IA64_OPND_R3)
9504 {
9505 int num = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9506 /* Assumes that md.rot.num_regs is always valid */
9507 if (md.rot.num_regs > 0
9508 && num > 31
9509 && num < 31 + md.rot.num_regs)
9510 {
9511 specs[count] = tmpl;
9512 specs[count++].specific = 0;
9513 }
9514 }
9515 else if (idesc->operands[i] == IA64_OPND_F1
9516 || idesc->operands[i] == IA64_OPND_F2
9517 || idesc->operands[i] == IA64_OPND_F3
9518 || idesc->operands[i] == IA64_OPND_F4)
9519 {
9520 int num = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9521 if (num > 31)
9522 {
9523 specs[count] = tmpl;
9524 specs[count++].specific = 0;
9525 }
9526 }
9527 else if (idesc->operands[i] == IA64_OPND_P1
9528 || idesc->operands[i] == IA64_OPND_P2)
9529 {
9530 int num = CURR_SLOT.opnd[i].X_add_number - REG_P;
9531 if (num > 15)
9532 {
9533 specs[count] = tmpl;
9534 specs[count++].specific = 0;
9535 }
9536 }
9537 }
9538 if (CURR_SLOT.qp_regno > 15)
9539 {
9540 specs[count] = tmpl;
9541 specs[count++].specific = 0;
9542 }
9543 }
9544 break;
9545
9546 /* This is the same as IA64_RS_PRr, except simplified to account for
9547 the fact that there is only one register. */
9548 case IA64_RS_PR63:
9549 if (note == 0)
9550 {
9551 specs[count++] = tmpl;
9552 }
9553 else if (note == 7)
9554 {
9555 valueT mask = 0;
9556 if (idesc->operands[2] == IA64_OPND_IMM17)
9557 mask = CURR_SLOT.opnd[2].X_add_number;
9558 if (mask & ((valueT) 1 << 63))
9559 specs[count++] = tmpl;
9560 }
9561 else if (note == 11)
9562 {
9563 if ((idesc->operands[0] == IA64_OPND_P1
9564 && CURR_SLOT.opnd[0].X_add_number - REG_P == 63)
9565 || (idesc->operands[1] == IA64_OPND_P2
9566 && CURR_SLOT.opnd[1].X_add_number - REG_P == 63))
9567 {
9568 specs[count++] = tmpl;
9569 }
9570 }
9571 else if (note == 12)
9572 {
9573 if (CURR_SLOT.qp_regno == 63)
9574 {
9575 specs[count++] = tmpl;
9576 }
9577 }
9578 else if (note == 1)
9579 {
9580 if (rsrc_write)
9581 {
9582 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9583 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9584 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9585 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9586
9587 if (p1 == 63
9588 && (idesc->operands[0] == IA64_OPND_P1
9589 || idesc->operands[0] == IA64_OPND_P2))
9590 {
9591 specs[count] = tmpl;
9592 specs[count++].cmp_type =
9593 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9594 }
9595 if (p2 == 63
9596 && (idesc->operands[1] == IA64_OPND_P1
9597 || idesc->operands[1] == IA64_OPND_P2))
9598 {
9599 specs[count] = tmpl;
9600 specs[count++].cmp_type =
9601 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9602 }
9603 }
9604 else
9605 {
9606 if (CURR_SLOT.qp_regno == 63)
9607 {
9608 specs[count++] = tmpl;
9609 }
9610 }
9611 }
9612 else
9613 {
9614 UNHANDLED;
9615 }
9616 break;
9617
9618 case IA64_RS_RSE:
9619 /* FIXME we can identify some individual RSE written resources, but RSE
9620 read resources have not yet been completely identified, so for now
9621 treat RSE as a single resource */
9622 if (strncmp (idesc->name, "mov", 3) == 0)
9623 {
9624 if (rsrc_write)
9625 {
9626 if (idesc->operands[0] == IA64_OPND_AR3
9627 && CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE)
9628 {
9629 specs[count++] = tmpl;
9630 }
9631 }
9632 else
9633 {
9634 if (idesc->operands[0] == IA64_OPND_AR3)
9635 {
9636 if (CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE
9637 || CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_RNAT)
9638 {
9639 specs[count++] = tmpl;
9640 }
9641 }
9642 else if (idesc->operands[1] == IA64_OPND_AR3)
9643 {
9644 if (CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSP
9645 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSPSTORE
9646 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_RNAT)
9647 {
9648 specs[count++] = tmpl;
9649 }
9650 }
9651 }
9652 }
9653 else
9654 {
9655 specs[count++] = tmpl;
9656 }
9657 break;
9658
9659 case IA64_RS_ANY:
9660 /* FIXME -- do any of these need to be non-specific? */
9661 specs[count++] = tmpl;
9662 break;
9663
9664 default:
9665 as_bad (_("Unrecognized dependency specifier %d\n"), dep->specifier);
9666 break;
9667 }
9668
9669 return count;
9670 }
9671
9672 /* Clear branch flags on marked resources. This breaks the link between the
9673 QP of the marking instruction and a subsequent branch on the same QP. */
9674
9675 static void
9676 clear_qp_branch_flag (mask)
9677 valueT mask;
9678 {
9679 int i;
9680 for (i = 0; i < regdepslen; i++)
9681 {
9682 valueT bit = ((valueT) 1 << regdeps[i].qp_regno);
9683 if ((bit & mask) != 0)
9684 {
9685 regdeps[i].link_to_qp_branch = 0;
9686 }
9687 }
9688 }
9689
9690 /* MASK contains 2 and only 2 PRs which are mutually exclusive. Remove
9691 any mutexes which contain one of the PRs and create new ones when
9692 needed. */
9693
9694 static int
9695 update_qp_mutex (valueT mask)
9696 {
9697 int i;
9698 int add = 0;
9699
9700 i = 0;
9701 while (i < qp_mutexeslen)
9702 {
9703 if ((qp_mutexes[i].prmask & mask) != 0)
9704 {
9705 /* If it destroys and creates the same mutex, do nothing. */
9706 if (qp_mutexes[i].prmask == mask
9707 && qp_mutexes[i].path == md.path)
9708 {
9709 i++;
9710 add = -1;
9711 }
9712 else
9713 {
9714 int keep = 0;
9715
9716 if (md.debug_dv)
9717 {
9718 fprintf (stderr, " Clearing mutex relation");
9719 print_prmask (qp_mutexes[i].prmask);
9720 fprintf (stderr, "\n");
9721 }
9722
9723 /* Deal with the old mutex with more than 3+ PRs only if
9724 the new mutex on the same execution path with it.
9725
9726 FIXME: The 3+ mutex support is incomplete.
9727 dot_pred_rel () may be a better place to fix it. */
9728 if (qp_mutexes[i].path == md.path)
9729 {
9730 /* If it is a proper subset of the mutex, create a
9731 new mutex. */
9732 if (add == 0
9733 && (qp_mutexes[i].prmask & mask) == mask)
9734 add = 1;
9735
9736 qp_mutexes[i].prmask &= ~mask;
9737 if (qp_mutexes[i].prmask & (qp_mutexes[i].prmask - 1))
9738 {
9739 /* Modify the mutex if there are more than one
9740 PR left. */
9741 keep = 1;
9742 i++;
9743 }
9744 }
9745
9746 if (keep == 0)
9747 /* Remove the mutex. */
9748 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9749 }
9750 }
9751 else
9752 ++i;
9753 }
9754
9755 if (add == 1)
9756 add_qp_mutex (mask);
9757
9758 return add;
9759 }
9760
9761 /* Remove any mutexes which contain any of the PRs indicated in the mask.
9762
9763 Any changes to a PR clears the mutex relations which include that PR. */
9764
9765 static void
9766 clear_qp_mutex (mask)
9767 valueT mask;
9768 {
9769 int i;
9770
9771 i = 0;
9772 while (i < qp_mutexeslen)
9773 {
9774 if ((qp_mutexes[i].prmask & mask) != 0)
9775 {
9776 if (md.debug_dv)
9777 {
9778 fprintf (stderr, " Clearing mutex relation");
9779 print_prmask (qp_mutexes[i].prmask);
9780 fprintf (stderr, "\n");
9781 }
9782 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9783 }
9784 else
9785 ++i;
9786 }
9787 }
9788
9789 /* Clear implies relations which contain PRs in the given masks.
9790 P1_MASK indicates the source of the implies relation, while P2_MASK
9791 indicates the implied PR. */
9792
9793 static void
9794 clear_qp_implies (p1_mask, p2_mask)
9795 valueT p1_mask;
9796 valueT p2_mask;
9797 {
9798 int i;
9799
9800 i = 0;
9801 while (i < qp_implieslen)
9802 {
9803 if ((((valueT) 1 << qp_implies[i].p1) & p1_mask) != 0
9804 || (((valueT) 1 << qp_implies[i].p2) & p2_mask) != 0)
9805 {
9806 if (md.debug_dv)
9807 fprintf (stderr, "Clearing implied relation PR%d->PR%d\n",
9808 qp_implies[i].p1, qp_implies[i].p2);
9809 qp_implies[i] = qp_implies[--qp_implieslen];
9810 }
9811 else
9812 ++i;
9813 }
9814 }
9815
9816 /* Add the PRs specified to the list of implied relations. */
9817
9818 static void
9819 add_qp_imply (p1, p2)
9820 int p1, p2;
9821 {
9822 valueT mask;
9823 valueT bit;
9824 int i;
9825
9826 /* p0 is not meaningful here. */
9827 if (p1 == 0 || p2 == 0)
9828 abort ();
9829
9830 if (p1 == p2)
9831 return;
9832
9833 /* If it exists already, ignore it. */
9834 for (i = 0; i < qp_implieslen; i++)
9835 {
9836 if (qp_implies[i].p1 == p1
9837 && qp_implies[i].p2 == p2
9838 && qp_implies[i].path == md.path
9839 && !qp_implies[i].p2_branched)
9840 return;
9841 }
9842
9843 if (qp_implieslen == qp_impliestotlen)
9844 {
9845 qp_impliestotlen += 20;
9846 qp_implies = (struct qp_imply *)
9847 xrealloc ((void *) qp_implies,
9848 qp_impliestotlen * sizeof (struct qp_imply));
9849 }
9850 if (md.debug_dv)
9851 fprintf (stderr, " Registering PR%d implies PR%d\n", p1, p2);
9852 qp_implies[qp_implieslen].p1 = p1;
9853 qp_implies[qp_implieslen].p2 = p2;
9854 qp_implies[qp_implieslen].path = md.path;
9855 qp_implies[qp_implieslen++].p2_branched = 0;
9856
9857 /* Add in the implied transitive relations; for everything that p2 implies,
9858 make p1 imply that, too; for everything that implies p1, make it imply p2
9859 as well. */
9860 for (i = 0; i < qp_implieslen; i++)
9861 {
9862 if (qp_implies[i].p1 == p2)
9863 add_qp_imply (p1, qp_implies[i].p2);
9864 if (qp_implies[i].p2 == p1)
9865 add_qp_imply (qp_implies[i].p1, p2);
9866 }
9867 /* Add in mutex relations implied by this implies relation; for each mutex
9868 relation containing p2, duplicate it and replace p2 with p1. */
9869 bit = (valueT) 1 << p1;
9870 mask = (valueT) 1 << p2;
9871 for (i = 0; i < qp_mutexeslen; i++)
9872 {
9873 if (qp_mutexes[i].prmask & mask)
9874 add_qp_mutex ((qp_mutexes[i].prmask & ~mask) | bit);
9875 }
9876 }
9877
9878 /* Add the PRs specified in the mask to the mutex list; this means that only
9879 one of the PRs can be true at any time. PR0 should never be included in
9880 the mask. */
9881
9882 static void
9883 add_qp_mutex (mask)
9884 valueT mask;
9885 {
9886 if (mask & 0x1)
9887 abort ();
9888
9889 if (qp_mutexeslen == qp_mutexestotlen)
9890 {
9891 qp_mutexestotlen += 20;
9892 qp_mutexes = (struct qpmutex *)
9893 xrealloc ((void *) qp_mutexes,
9894 qp_mutexestotlen * sizeof (struct qpmutex));
9895 }
9896 if (md.debug_dv)
9897 {
9898 fprintf (stderr, " Registering mutex on");
9899 print_prmask (mask);
9900 fprintf (stderr, "\n");
9901 }
9902 qp_mutexes[qp_mutexeslen].path = md.path;
9903 qp_mutexes[qp_mutexeslen++].prmask = mask;
9904 }
9905
9906 static int
9907 has_suffix_p (name, suffix)
9908 const char *name;
9909 const char *suffix;
9910 {
9911 size_t namelen = strlen (name);
9912 size_t sufflen = strlen (suffix);
9913
9914 if (namelen <= sufflen)
9915 return 0;
9916 return strcmp (name + namelen - sufflen, suffix) == 0;
9917 }
9918
9919 static void
9920 clear_register_values ()
9921 {
9922 int i;
9923 if (md.debug_dv)
9924 fprintf (stderr, " Clearing register values\n");
9925 for (i = 1; i < NELEMS (gr_values); i++)
9926 gr_values[i].known = 0;
9927 }
9928
9929 /* Keep track of register values/changes which affect DV tracking.
9930
9931 optimization note: should add a flag to classes of insns where otherwise we
9932 have to examine a group of strings to identify them. */
9933
9934 static void
9935 note_register_values (idesc)
9936 struct ia64_opcode *idesc;
9937 {
9938 valueT qp_changemask = 0;
9939 int i;
9940
9941 /* Invalidate values for registers being written to. */
9942 for (i = 0; i < idesc->num_outputs; i++)
9943 {
9944 if (idesc->operands[i] == IA64_OPND_R1
9945 || idesc->operands[i] == IA64_OPND_R2
9946 || idesc->operands[i] == IA64_OPND_R3)
9947 {
9948 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9949 if (regno > 0 && regno < NELEMS (gr_values))
9950 gr_values[regno].known = 0;
9951 }
9952 else if (idesc->operands[i] == IA64_OPND_R3_2)
9953 {
9954 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9955 if (regno > 0 && regno < 4)
9956 gr_values[regno].known = 0;
9957 }
9958 else if (idesc->operands[i] == IA64_OPND_P1
9959 || idesc->operands[i] == IA64_OPND_P2)
9960 {
9961 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9962 qp_changemask |= (valueT) 1 << regno;
9963 }
9964 else if (idesc->operands[i] == IA64_OPND_PR)
9965 {
9966 if (idesc->operands[2] & (valueT) 0x10000)
9967 qp_changemask = ~(valueT) 0x1FFFF | idesc->operands[2];
9968 else
9969 qp_changemask = idesc->operands[2];
9970 break;
9971 }
9972 else if (idesc->operands[i] == IA64_OPND_PR_ROT)
9973 {
9974 if (idesc->operands[1] & ((valueT) 1 << 43))
9975 qp_changemask = -((valueT) 1 << 44) | idesc->operands[1];
9976 else
9977 qp_changemask = idesc->operands[1];
9978 qp_changemask &= ~(valueT) 0xFFFF;
9979 break;
9980 }
9981 }
9982
9983 /* Always clear qp branch flags on any PR change. */
9984 /* FIXME there may be exceptions for certain compares. */
9985 clear_qp_branch_flag (qp_changemask);
9986
9987 /* Invalidate rotating registers on insns which affect RRBs in CFM. */
9988 if (idesc->flags & IA64_OPCODE_MOD_RRBS)
9989 {
9990 qp_changemask |= ~(valueT) 0xFFFF;
9991 if (strcmp (idesc->name, "clrrrb.pr") != 0)
9992 {
9993 for (i = 32; i < 32 + md.rot.num_regs; i++)
9994 gr_values[i].known = 0;
9995 }
9996 clear_qp_mutex (qp_changemask);
9997 clear_qp_implies (qp_changemask, qp_changemask);
9998 }
9999 /* After a call, all register values are undefined, except those marked
10000 as "safe". */
10001 else if (strncmp (idesc->name, "br.call", 6) == 0
10002 || strncmp (idesc->name, "brl.call", 7) == 0)
10003 {
10004 /* FIXME keep GR values which are marked as "safe_across_calls" */
10005 clear_register_values ();
10006 clear_qp_mutex (~qp_safe_across_calls);
10007 clear_qp_implies (~qp_safe_across_calls, ~qp_safe_across_calls);
10008 clear_qp_branch_flag (~qp_safe_across_calls);
10009 }
10010 else if (is_interruption_or_rfi (idesc)
10011 || is_taken_branch (idesc))
10012 {
10013 clear_register_values ();
10014 clear_qp_mutex (~(valueT) 0);
10015 clear_qp_implies (~(valueT) 0, ~(valueT) 0);
10016 }
10017 /* Look for mutex and implies relations. */
10018 else if ((idesc->operands[0] == IA64_OPND_P1
10019 || idesc->operands[0] == IA64_OPND_P2)
10020 && (idesc->operands[1] == IA64_OPND_P1
10021 || idesc->operands[1] == IA64_OPND_P2))
10022 {
10023 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
10024 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
10025 valueT p1mask = (p1 != 0) ? (valueT) 1 << p1 : 0;
10026 valueT p2mask = (p2 != 0) ? (valueT) 1 << p2 : 0;
10027
10028 /* If both PRs are PR0, we can't really do anything. */
10029 if (p1 == 0 && p2 == 0)
10030 {
10031 if (md.debug_dv)
10032 fprintf (stderr, " Ignoring PRs due to inclusion of p0\n");
10033 }
10034 /* In general, clear mutexes and implies which include P1 or P2,
10035 with the following exceptions. */
10036 else if (has_suffix_p (idesc->name, ".or.andcm")
10037 || has_suffix_p (idesc->name, ".and.orcm"))
10038 {
10039 clear_qp_implies (p2mask, p1mask);
10040 }
10041 else if (has_suffix_p (idesc->name, ".andcm")
10042 || has_suffix_p (idesc->name, ".and"))
10043 {
10044 clear_qp_implies (0, p1mask | p2mask);
10045 }
10046 else if (has_suffix_p (idesc->name, ".orcm")
10047 || has_suffix_p (idesc->name, ".or"))
10048 {
10049 clear_qp_mutex (p1mask | p2mask);
10050 clear_qp_implies (p1mask | p2mask, 0);
10051 }
10052 else
10053 {
10054 int added = 0;
10055
10056 clear_qp_implies (p1mask | p2mask, p1mask | p2mask);
10057
10058 /* If one of the PRs is PR0, we call clear_qp_mutex. */
10059 if (p1 == 0 || p2 == 0)
10060 clear_qp_mutex (p1mask | p2mask);
10061 else
10062 added = update_qp_mutex (p1mask | p2mask);
10063
10064 if (CURR_SLOT.qp_regno == 0
10065 || has_suffix_p (idesc->name, ".unc"))
10066 {
10067 if (added == 0 && p1 && p2)
10068 add_qp_mutex (p1mask | p2mask);
10069 if (CURR_SLOT.qp_regno != 0)
10070 {
10071 if (p1)
10072 add_qp_imply (p1, CURR_SLOT.qp_regno);
10073 if (p2)
10074 add_qp_imply (p2, CURR_SLOT.qp_regno);
10075 }
10076 }
10077 }
10078 }
10079 /* Look for mov imm insns into GRs. */
10080 else if (idesc->operands[0] == IA64_OPND_R1
10081 && (idesc->operands[1] == IA64_OPND_IMM22
10082 || idesc->operands[1] == IA64_OPND_IMMU64)
10083 && CURR_SLOT.opnd[1].X_op == O_constant
10084 && (strcmp (idesc->name, "mov") == 0
10085 || strcmp (idesc->name, "movl") == 0))
10086 {
10087 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
10088 if (regno > 0 && regno < NELEMS (gr_values))
10089 {
10090 gr_values[regno].known = 1;
10091 gr_values[regno].value = CURR_SLOT.opnd[1].X_add_number;
10092 gr_values[regno].path = md.path;
10093 if (md.debug_dv)
10094 {
10095 fprintf (stderr, " Know gr%d = ", regno);
10096 fprintf_vma (stderr, gr_values[regno].value);
10097 fputs ("\n", stderr);
10098 }
10099 }
10100 }
10101 /* Look for dep.z imm insns. */
10102 else if (idesc->operands[0] == IA64_OPND_R1
10103 && idesc->operands[1] == IA64_OPND_IMM8
10104 && strcmp (idesc->name, "dep.z") == 0)
10105 {
10106 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
10107 if (regno > 0 && regno < NELEMS (gr_values))
10108 {
10109 valueT value = CURR_SLOT.opnd[1].X_add_number;
10110
10111 if (CURR_SLOT.opnd[3].X_add_number < 64)
10112 value &= ((valueT)1 << CURR_SLOT.opnd[3].X_add_number) - 1;
10113 value <<= CURR_SLOT.opnd[2].X_add_number;
10114 gr_values[regno].known = 1;
10115 gr_values[regno].value = value;
10116 gr_values[regno].path = md.path;
10117 if (md.debug_dv)
10118 {
10119 fprintf (stderr, " Know gr%d = ", regno);
10120 fprintf_vma (stderr, gr_values[regno].value);
10121 fputs ("\n", stderr);
10122 }
10123 }
10124 }
10125 else
10126 {
10127 clear_qp_mutex (qp_changemask);
10128 clear_qp_implies (qp_changemask, qp_changemask);
10129 }
10130 }
10131
10132 /* Return whether the given predicate registers are currently mutex. */
10133
10134 static int
10135 qp_mutex (p1, p2, path)
10136 int p1;
10137 int p2;
10138 int path;
10139 {
10140 int i;
10141 valueT mask;
10142
10143 if (p1 != p2)
10144 {
10145 mask = ((valueT) 1 << p1) | (valueT) 1 << p2;
10146 for (i = 0; i < qp_mutexeslen; i++)
10147 {
10148 if (qp_mutexes[i].path >= path
10149 && (qp_mutexes[i].prmask & mask) == mask)
10150 return 1;
10151 }
10152 }
10153 return 0;
10154 }
10155
10156 /* Return whether the given resource is in the given insn's list of chks
10157 Return 1 if the conflict is absolutely determined, 2 if it's a potential
10158 conflict. */
10159
10160 static int
10161 resources_match (rs, idesc, note, qp_regno, path)
10162 struct rsrc *rs;
10163 struct ia64_opcode *idesc;
10164 int note;
10165 int qp_regno;
10166 int path;
10167 {
10168 struct rsrc specs[MAX_SPECS];
10169 int count;
10170
10171 /* If the marked resource's qp_regno and the given qp_regno are mutex,
10172 we don't need to check. One exception is note 11, which indicates that
10173 target predicates are written regardless of PR[qp]. */
10174 if (qp_mutex (rs->qp_regno, qp_regno, path)
10175 && note != 11)
10176 return 0;
10177
10178 count = specify_resource (rs->dependency, idesc, DV_CHK, specs, note, path);
10179 while (count-- > 0)
10180 {
10181 /* UNAT checking is a bit more specific than other resources */
10182 if (rs->dependency->specifier == IA64_RS_AR_UNAT
10183 && specs[count].mem_offset.hint
10184 && rs->mem_offset.hint)
10185 {
10186 if (rs->mem_offset.base == specs[count].mem_offset.base)
10187 {
10188 if (((rs->mem_offset.offset >> 3) & 0x3F) ==
10189 ((specs[count].mem_offset.offset >> 3) & 0x3F))
10190 return 1;
10191 else
10192 continue;
10193 }
10194 }
10195
10196 /* Skip apparent PR write conflicts where both writes are an AND or both
10197 writes are an OR. */
10198 if (rs->dependency->specifier == IA64_RS_PR
10199 || rs->dependency->specifier == IA64_RS_PRr
10200 || rs->dependency->specifier == IA64_RS_PR63)
10201 {
10202 if (specs[count].cmp_type != CMP_NONE
10203 && specs[count].cmp_type == rs->cmp_type)
10204 {
10205 if (md.debug_dv)
10206 fprintf (stderr, " %s on parallel compare allowed (PR%d)\n",
10207 dv_mode[rs->dependency->mode],
10208 rs->dependency->specifier != IA64_RS_PR63 ?
10209 specs[count].index : 63);
10210 continue;
10211 }
10212 if (md.debug_dv)
10213 fprintf (stderr,
10214 " %s on parallel compare conflict %s vs %s on PR%d\n",
10215 dv_mode[rs->dependency->mode],
10216 dv_cmp_type[rs->cmp_type],
10217 dv_cmp_type[specs[count].cmp_type],
10218 rs->dependency->specifier != IA64_RS_PR63 ?
10219 specs[count].index : 63);
10220
10221 }
10222
10223 /* If either resource is not specific, conservatively assume a conflict
10224 */
10225 if (!specs[count].specific || !rs->specific)
10226 return 2;
10227 else if (specs[count].index == rs->index)
10228 return 1;
10229 }
10230
10231 return 0;
10232 }
10233
10234 /* Indicate an instruction group break; if INSERT_STOP is non-zero, then
10235 insert a stop to create the break. Update all resource dependencies
10236 appropriately. If QP_REGNO is non-zero, only apply the break to resources
10237 which use the same QP_REGNO and have the link_to_qp_branch flag set.
10238 If SAVE_CURRENT is non-zero, don't affect resources marked by the current
10239 instruction. */
10240
10241 static void
10242 insn_group_break (insert_stop, qp_regno, save_current)
10243 int insert_stop;
10244 int qp_regno;
10245 int save_current;
10246 {
10247 int i;
10248
10249 if (insert_stop && md.num_slots_in_use > 0)
10250 PREV_SLOT.end_of_insn_group = 1;
10251
10252 if (md.debug_dv)
10253 {
10254 fprintf (stderr, " Insn group break%s",
10255 (insert_stop ? " (w/stop)" : ""));
10256 if (qp_regno != 0)
10257 fprintf (stderr, " effective for QP=%d", qp_regno);
10258 fprintf (stderr, "\n");
10259 }
10260
10261 i = 0;
10262 while (i < regdepslen)
10263 {
10264 const struct ia64_dependency *dep = regdeps[i].dependency;
10265
10266 if (qp_regno != 0
10267 && regdeps[i].qp_regno != qp_regno)
10268 {
10269 ++i;
10270 continue;
10271 }
10272
10273 if (save_current
10274 && CURR_SLOT.src_file == regdeps[i].file
10275 && CURR_SLOT.src_line == regdeps[i].line)
10276 {
10277 ++i;
10278 continue;
10279 }
10280
10281 /* clear dependencies which are automatically cleared by a stop, or
10282 those that have reached the appropriate state of insn serialization */
10283 if (dep->semantics == IA64_DVS_IMPLIED
10284 || dep->semantics == IA64_DVS_IMPLIEDF
10285 || regdeps[i].insn_srlz == STATE_SRLZ)
10286 {
10287 print_dependency ("Removing", i);
10288 regdeps[i] = regdeps[--regdepslen];
10289 }
10290 else
10291 {
10292 if (dep->semantics == IA64_DVS_DATA
10293 || dep->semantics == IA64_DVS_INSTR
10294 || dep->semantics == IA64_DVS_SPECIFIC)
10295 {
10296 if (regdeps[i].insn_srlz == STATE_NONE)
10297 regdeps[i].insn_srlz = STATE_STOP;
10298 if (regdeps[i].data_srlz == STATE_NONE)
10299 regdeps[i].data_srlz = STATE_STOP;
10300 }
10301 ++i;
10302 }
10303 }
10304 }
10305
10306 /* Add the given resource usage spec to the list of active dependencies. */
10307
10308 static void
10309 mark_resource (idesc, dep, spec, depind, path)
10310 struct ia64_opcode *idesc ATTRIBUTE_UNUSED;
10311 const struct ia64_dependency *dep ATTRIBUTE_UNUSED;
10312 struct rsrc *spec;
10313 int depind;
10314 int path;
10315 {
10316 if (regdepslen == regdepstotlen)
10317 {
10318 regdepstotlen += 20;
10319 regdeps = (struct rsrc *)
10320 xrealloc ((void *) regdeps,
10321 regdepstotlen * sizeof (struct rsrc));
10322 }
10323
10324 regdeps[regdepslen] = *spec;
10325 regdeps[regdepslen].depind = depind;
10326 regdeps[regdepslen].path = path;
10327 regdeps[regdepslen].file = CURR_SLOT.src_file;
10328 regdeps[regdepslen].line = CURR_SLOT.src_line;
10329
10330 print_dependency ("Adding", regdepslen);
10331
10332 ++regdepslen;
10333 }
10334
10335 static void
10336 print_dependency (action, depind)
10337 const char *action;
10338 int depind;
10339 {
10340 if (md.debug_dv)
10341 {
10342 fprintf (stderr, " %s %s '%s'",
10343 action, dv_mode[(regdeps[depind].dependency)->mode],
10344 (regdeps[depind].dependency)->name);
10345 if (regdeps[depind].specific && regdeps[depind].index >= 0)
10346 fprintf (stderr, " (%d)", regdeps[depind].index);
10347 if (regdeps[depind].mem_offset.hint)
10348 {
10349 fputs (" ", stderr);
10350 fprintf_vma (stderr, regdeps[depind].mem_offset.base);
10351 fputs ("+", stderr);
10352 fprintf_vma (stderr, regdeps[depind].mem_offset.offset);
10353 }
10354 fprintf (stderr, "\n");
10355 }
10356 }
10357
10358 static void
10359 instruction_serialization ()
10360 {
10361 int i;
10362 if (md.debug_dv)
10363 fprintf (stderr, " Instruction serialization\n");
10364 for (i = 0; i < regdepslen; i++)
10365 if (regdeps[i].insn_srlz == STATE_STOP)
10366 regdeps[i].insn_srlz = STATE_SRLZ;
10367 }
10368
10369 static void
10370 data_serialization ()
10371 {
10372 int i = 0;
10373 if (md.debug_dv)
10374 fprintf (stderr, " Data serialization\n");
10375 while (i < regdepslen)
10376 {
10377 if (regdeps[i].data_srlz == STATE_STOP
10378 /* Note: as of 991210, all "other" dependencies are cleared by a
10379 data serialization. This might change with new tables */
10380 || (regdeps[i].dependency)->semantics == IA64_DVS_OTHER)
10381 {
10382 print_dependency ("Removing", i);
10383 regdeps[i] = regdeps[--regdepslen];
10384 }
10385 else
10386 ++i;
10387 }
10388 }
10389
10390 /* Insert stops and serializations as needed to avoid DVs. */
10391
10392 static void
10393 remove_marked_resource (rs)
10394 struct rsrc *rs;
10395 {
10396 switch (rs->dependency->semantics)
10397 {
10398 case IA64_DVS_SPECIFIC:
10399 if (md.debug_dv)
10400 fprintf (stderr, "Implementation-specific, assume worst case...\n");
10401 /* ...fall through... */
10402 case IA64_DVS_INSTR:
10403 if (md.debug_dv)
10404 fprintf (stderr, "Inserting instr serialization\n");
10405 if (rs->insn_srlz < STATE_STOP)
10406 insn_group_break (1, 0, 0);
10407 if (rs->insn_srlz < STATE_SRLZ)
10408 {
10409 struct slot oldslot = CURR_SLOT;
10410 /* Manually jam a srlz.i insn into the stream */
10411 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10412 CURR_SLOT.user_template = -1;
10413 CURR_SLOT.idesc = ia64_find_opcode ("srlz.i");
10414 instruction_serialization ();
10415 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10416 if (++md.num_slots_in_use >= NUM_SLOTS)
10417 emit_one_bundle ();
10418 CURR_SLOT = oldslot;
10419 }
10420 insn_group_break (1, 0, 0);
10421 break;
10422 case IA64_DVS_OTHER: /* as of rev2 (991220) of the DV tables, all
10423 "other" types of DV are eliminated
10424 by a data serialization */
10425 case IA64_DVS_DATA:
10426 if (md.debug_dv)
10427 fprintf (stderr, "Inserting data serialization\n");
10428 if (rs->data_srlz < STATE_STOP)
10429 insn_group_break (1, 0, 0);
10430 {
10431 struct slot oldslot = CURR_SLOT;
10432 /* Manually jam a srlz.d insn into the stream */
10433 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10434 CURR_SLOT.user_template = -1;
10435 CURR_SLOT.idesc = ia64_find_opcode ("srlz.d");
10436 data_serialization ();
10437 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10438 if (++md.num_slots_in_use >= NUM_SLOTS)
10439 emit_one_bundle ();
10440 CURR_SLOT = oldslot;
10441 }
10442 break;
10443 case IA64_DVS_IMPLIED:
10444 case IA64_DVS_IMPLIEDF:
10445 if (md.debug_dv)
10446 fprintf (stderr, "Inserting stop\n");
10447 insn_group_break (1, 0, 0);
10448 break;
10449 default:
10450 break;
10451 }
10452 }
10453
10454 /* Check the resources used by the given opcode against the current dependency
10455 list.
10456
10457 The check is run once for each execution path encountered. In this case,
10458 a unique execution path is the sequence of instructions following a code
10459 entry point, e.g. the following has three execution paths, one starting
10460 at L0, one at L1, and one at L2.
10461
10462 L0: nop
10463 L1: add
10464 L2: add
10465 br.ret
10466 */
10467
10468 static void
10469 check_dependencies (idesc)
10470 struct ia64_opcode *idesc;
10471 {
10472 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10473 int path;
10474 int i;
10475
10476 /* Note that the number of marked resources may change within the
10477 loop if in auto mode. */
10478 i = 0;
10479 while (i < regdepslen)
10480 {
10481 struct rsrc *rs = &regdeps[i];
10482 const struct ia64_dependency *dep = rs->dependency;
10483 int chkind;
10484 int note;
10485 int start_over = 0;
10486
10487 if (dep->semantics == IA64_DVS_NONE
10488 || (chkind = depends_on (rs->depind, idesc)) == -1)
10489 {
10490 ++i;
10491 continue;
10492 }
10493
10494 note = NOTE (opdeps->chks[chkind]);
10495
10496 /* Check this resource against each execution path seen thus far. */
10497 for (path = 0; path <= md.path; path++)
10498 {
10499 int matchtype;
10500
10501 /* If the dependency wasn't on the path being checked, ignore it. */
10502 if (rs->path < path)
10503 continue;
10504
10505 /* If the QP for this insn implies a QP which has branched, don't
10506 bother checking. Ed. NOTE: I don't think this check is terribly
10507 useful; what's the point of generating code which will only be
10508 reached if its QP is zero?
10509 This code was specifically inserted to handle the following code,
10510 based on notes from Intel's DV checking code, where p1 implies p2.
10511
10512 mov r4 = 2
10513 (p2) br.cond L
10514 (p1) mov r4 = 7
10515 */
10516 if (CURR_SLOT.qp_regno != 0)
10517 {
10518 int skip = 0;
10519 int implies;
10520 for (implies = 0; implies < qp_implieslen; implies++)
10521 {
10522 if (qp_implies[implies].path >= path
10523 && qp_implies[implies].p1 == CURR_SLOT.qp_regno
10524 && qp_implies[implies].p2_branched)
10525 {
10526 skip = 1;
10527 break;
10528 }
10529 }
10530 if (skip)
10531 continue;
10532 }
10533
10534 if ((matchtype = resources_match (rs, idesc, note,
10535 CURR_SLOT.qp_regno, path)) != 0)
10536 {
10537 char msg[1024];
10538 char pathmsg[256] = "";
10539 char indexmsg[256] = "";
10540 int certain = (matchtype == 1 && CURR_SLOT.qp_regno == 0);
10541
10542 if (path != 0)
10543 sprintf (pathmsg, " when entry is at label '%s'",
10544 md.entry_labels[path - 1]);
10545 if (matchtype == 1 && rs->index >= 0)
10546 sprintf (indexmsg, ", specific resource number is %d",
10547 rs->index);
10548 sprintf (msg, "Use of '%s' %s %s dependency '%s' (%s)%s%s",
10549 idesc->name,
10550 (certain ? "violates" : "may violate"),
10551 dv_mode[dep->mode], dep->name,
10552 dv_sem[dep->semantics],
10553 pathmsg, indexmsg);
10554
10555 if (md.explicit_mode)
10556 {
10557 as_warn ("%s", msg);
10558 if (path < md.path)
10559 as_warn (_("Only the first path encountering the conflict "
10560 "is reported"));
10561 as_warn_where (rs->file, rs->line,
10562 _("This is the location of the "
10563 "conflicting usage"));
10564 /* Don't bother checking other paths, to avoid duplicating
10565 the same warning */
10566 break;
10567 }
10568 else
10569 {
10570 if (md.debug_dv)
10571 fprintf (stderr, "%s @ %s:%d\n", msg, rs->file, rs->line);
10572
10573 remove_marked_resource (rs);
10574
10575 /* since the set of dependencies has changed, start over */
10576 /* FIXME -- since we're removing dvs as we go, we
10577 probably don't really need to start over... */
10578 start_over = 1;
10579 break;
10580 }
10581 }
10582 }
10583 if (start_over)
10584 i = 0;
10585 else
10586 ++i;
10587 }
10588 }
10589
10590 /* Register new dependencies based on the given opcode. */
10591
10592 static void
10593 mark_resources (idesc)
10594 struct ia64_opcode *idesc;
10595 {
10596 int i;
10597 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10598 int add_only_qp_reads = 0;
10599
10600 /* A conditional branch only uses its resources if it is taken; if it is
10601 taken, we stop following that path. The other branch types effectively
10602 *always* write their resources. If it's not taken, register only QP
10603 reads. */
10604 if (is_conditional_branch (idesc) || is_interruption_or_rfi (idesc))
10605 {
10606 add_only_qp_reads = 1;
10607 }
10608
10609 if (md.debug_dv)
10610 fprintf (stderr, "Registering '%s' resource usage\n", idesc->name);
10611
10612 for (i = 0; i < opdeps->nregs; i++)
10613 {
10614 const struct ia64_dependency *dep;
10615 struct rsrc specs[MAX_SPECS];
10616 int note;
10617 int path;
10618 int count;
10619
10620 dep = ia64_find_dependency (opdeps->regs[i]);
10621 note = NOTE (opdeps->regs[i]);
10622
10623 if (add_only_qp_reads
10624 && !(dep->mode == IA64_DV_WAR
10625 && (dep->specifier == IA64_RS_PR
10626 || dep->specifier == IA64_RS_PRr
10627 || dep->specifier == IA64_RS_PR63)))
10628 continue;
10629
10630 count = specify_resource (dep, idesc, DV_REG, specs, note, md.path);
10631
10632 while (count-- > 0)
10633 {
10634 mark_resource (idesc, dep, &specs[count],
10635 DEP (opdeps->regs[i]), md.path);
10636 }
10637
10638 /* The execution path may affect register values, which may in turn
10639 affect which indirect-access resources are accessed. */
10640 switch (dep->specifier)
10641 {
10642 default:
10643 break;
10644 case IA64_RS_CPUID:
10645 case IA64_RS_DBR:
10646 case IA64_RS_IBR:
10647 case IA64_RS_MSR:
10648 case IA64_RS_PKR:
10649 case IA64_RS_PMC:
10650 case IA64_RS_PMD:
10651 case IA64_RS_RR:
10652 for (path = 0; path < md.path; path++)
10653 {
10654 count = specify_resource (dep, idesc, DV_REG, specs, note, path);
10655 while (count-- > 0)
10656 mark_resource (idesc, dep, &specs[count],
10657 DEP (opdeps->regs[i]), path);
10658 }
10659 break;
10660 }
10661 }
10662 }
10663
10664 /* Remove dependencies when they no longer apply. */
10665
10666 static void
10667 update_dependencies (idesc)
10668 struct ia64_opcode *idesc;
10669 {
10670 int i;
10671
10672 if (strcmp (idesc->name, "srlz.i") == 0)
10673 {
10674 instruction_serialization ();
10675 }
10676 else if (strcmp (idesc->name, "srlz.d") == 0)
10677 {
10678 data_serialization ();
10679 }
10680 else if (is_interruption_or_rfi (idesc)
10681 || is_taken_branch (idesc))
10682 {
10683 /* Although technically the taken branch doesn't clear dependencies
10684 which require a srlz.[id], we don't follow the branch; the next
10685 instruction is assumed to start with a clean slate. */
10686 regdepslen = 0;
10687 md.path = 0;
10688 }
10689 else if (is_conditional_branch (idesc)
10690 && CURR_SLOT.qp_regno != 0)
10691 {
10692 int is_call = strstr (idesc->name, ".call") != NULL;
10693
10694 for (i = 0; i < qp_implieslen; i++)
10695 {
10696 /* If the conditional branch's predicate is implied by the predicate
10697 in an existing dependency, remove that dependency. */
10698 if (qp_implies[i].p2 == CURR_SLOT.qp_regno)
10699 {
10700 int depind = 0;
10701 /* Note that this implied predicate takes a branch so that if
10702 a later insn generates a DV but its predicate implies this
10703 one, we can avoid the false DV warning. */
10704 qp_implies[i].p2_branched = 1;
10705 while (depind < regdepslen)
10706 {
10707 if (regdeps[depind].qp_regno == qp_implies[i].p1)
10708 {
10709 print_dependency ("Removing", depind);
10710 regdeps[depind] = regdeps[--regdepslen];
10711 }
10712 else
10713 ++depind;
10714 }
10715 }
10716 }
10717 /* Any marked resources which have this same predicate should be
10718 cleared, provided that the QP hasn't been modified between the
10719 marking instruction and the branch. */
10720 if (is_call)
10721 {
10722 insn_group_break (0, CURR_SLOT.qp_regno, 1);
10723 }
10724 else
10725 {
10726 i = 0;
10727 while (i < regdepslen)
10728 {
10729 if (regdeps[i].qp_regno == CURR_SLOT.qp_regno
10730 && regdeps[i].link_to_qp_branch
10731 && (regdeps[i].file != CURR_SLOT.src_file
10732 || regdeps[i].line != CURR_SLOT.src_line))
10733 {
10734 /* Treat like a taken branch */
10735 print_dependency ("Removing", i);
10736 regdeps[i] = regdeps[--regdepslen];
10737 }
10738 else
10739 ++i;
10740 }
10741 }
10742 }
10743 }
10744
10745 /* Examine the current instruction for dependency violations. */
10746
10747 static int
10748 check_dv (idesc)
10749 struct ia64_opcode *idesc;
10750 {
10751 if (md.debug_dv)
10752 {
10753 fprintf (stderr, "Checking %s for violations (line %d, %d/%d)\n",
10754 idesc->name, CURR_SLOT.src_line,
10755 idesc->dependencies->nchks,
10756 idesc->dependencies->nregs);
10757 }
10758
10759 /* Look through the list of currently marked resources; if the current
10760 instruction has the dependency in its chks list which uses that resource,
10761 check against the specific resources used. */
10762 check_dependencies (idesc);
10763
10764 /* Look up the instruction's regdeps (RAW writes, WAW writes, and WAR reads),
10765 then add them to the list of marked resources. */
10766 mark_resources (idesc);
10767
10768 /* There are several types of dependency semantics, and each has its own
10769 requirements for being cleared
10770
10771 Instruction serialization (insns separated by interruption, rfi, or
10772 writer + srlz.i + reader, all in separate groups) clears DVS_INSTR.
10773
10774 Data serialization (instruction serialization, or writer + srlz.d +
10775 reader, where writer and srlz.d are in separate groups) clears
10776 DVS_DATA. (This also clears DVS_OTHER, but that is not guaranteed to
10777 always be the case).
10778
10779 Instruction group break (groups separated by stop, taken branch,
10780 interruption or rfi) clears DVS_IMPLIED and DVS_IMPLIEDF.
10781 */
10782 update_dependencies (idesc);
10783
10784 /* Sometimes, knowing a register value allows us to avoid giving a false DV
10785 warning. Keep track of as many as possible that are useful. */
10786 note_register_values (idesc);
10787
10788 /* We don't need or want this anymore. */
10789 md.mem_offset.hint = 0;
10790
10791 return 0;
10792 }
10793
10794 /* Translate one line of assembly. Pseudo ops and labels do not show
10795 here. */
10796 void
10797 md_assemble (str)
10798 char *str;
10799 {
10800 char *saved_input_line_pointer, *mnemonic;
10801 const struct pseudo_opcode *pdesc;
10802 struct ia64_opcode *idesc;
10803 unsigned char qp_regno;
10804 unsigned int flags;
10805 int ch;
10806
10807 saved_input_line_pointer = input_line_pointer;
10808 input_line_pointer = str;
10809
10810 /* extract the opcode (mnemonic): */
10811
10812 mnemonic = input_line_pointer;
10813 ch = get_symbol_end ();
10814 pdesc = (struct pseudo_opcode *) hash_find (md.pseudo_hash, mnemonic);
10815 if (pdesc)
10816 {
10817 *input_line_pointer = ch;
10818 (*pdesc->handler) (pdesc->arg);
10819 goto done;
10820 }
10821
10822 /* Find the instruction descriptor matching the arguments. */
10823
10824 idesc = ia64_find_opcode (mnemonic);
10825 *input_line_pointer = ch;
10826 if (!idesc)
10827 {
10828 as_bad ("Unknown opcode `%s'", mnemonic);
10829 goto done;
10830 }
10831
10832 idesc = parse_operands (idesc);
10833 if (!idesc)
10834 goto done;
10835
10836 /* Handle the dynamic ops we can handle now: */
10837 if (idesc->type == IA64_TYPE_DYN)
10838 {
10839 if (strcmp (idesc->name, "add") == 0)
10840 {
10841 if (CURR_SLOT.opnd[2].X_op == O_register
10842 && CURR_SLOT.opnd[2].X_add_number < 4)
10843 mnemonic = "addl";
10844 else
10845 mnemonic = "adds";
10846 ia64_free_opcode (idesc);
10847 idesc = ia64_find_opcode (mnemonic);
10848 }
10849 else if (strcmp (idesc->name, "mov") == 0)
10850 {
10851 enum ia64_opnd opnd1, opnd2;
10852 int rop;
10853
10854 opnd1 = idesc->operands[0];
10855 opnd2 = idesc->operands[1];
10856 if (opnd1 == IA64_OPND_AR3)
10857 rop = 0;
10858 else if (opnd2 == IA64_OPND_AR3)
10859 rop = 1;
10860 else
10861 abort ();
10862 if (CURR_SLOT.opnd[rop].X_op == O_register)
10863 {
10864 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10865 mnemonic = "mov.i";
10866 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10867 mnemonic = "mov.m";
10868 else
10869 rop = -1;
10870 }
10871 else
10872 abort ();
10873 if (rop >= 0)
10874 {
10875 ia64_free_opcode (idesc);
10876 idesc = ia64_find_opcode (mnemonic);
10877 while (idesc != NULL
10878 && (idesc->operands[0] != opnd1
10879 || idesc->operands[1] != opnd2))
10880 idesc = get_next_opcode (idesc);
10881 }
10882 }
10883 }
10884 else if (strcmp (idesc->name, "mov.i") == 0
10885 || strcmp (idesc->name, "mov.m") == 0)
10886 {
10887 enum ia64_opnd opnd1, opnd2;
10888 int rop;
10889
10890 opnd1 = idesc->operands[0];
10891 opnd2 = idesc->operands[1];
10892 if (opnd1 == IA64_OPND_AR3)
10893 rop = 0;
10894 else if (opnd2 == IA64_OPND_AR3)
10895 rop = 1;
10896 else
10897 abort ();
10898 if (CURR_SLOT.opnd[rop].X_op == O_register)
10899 {
10900 char unit = 'a';
10901 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10902 unit = 'i';
10903 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10904 unit = 'm';
10905 if (unit != 'a' && unit != idesc->name [4])
10906 as_bad ("AR %d can only be accessed by %c-unit",
10907 (int) (CURR_SLOT.opnd[rop].X_add_number - REG_AR),
10908 TOUPPER (unit));
10909 }
10910 }
10911 else if (strcmp (idesc->name, "hint.b") == 0)
10912 {
10913 switch (md.hint_b)
10914 {
10915 case hint_b_ok:
10916 break;
10917 case hint_b_warning:
10918 as_warn ("hint.b may be treated as nop");
10919 break;
10920 case hint_b_error:
10921 as_bad ("hint.b shouldn't be used");
10922 break;
10923 }
10924 }
10925
10926 qp_regno = 0;
10927 if (md.qp.X_op == O_register)
10928 {
10929 qp_regno = md.qp.X_add_number - REG_P;
10930 md.qp.X_op = O_absent;
10931 }
10932
10933 flags = idesc->flags;
10934
10935 if ((flags & IA64_OPCODE_FIRST) != 0)
10936 {
10937 /* The alignment frag has to end with a stop bit only if the
10938 next instruction after the alignment directive has to be
10939 the first instruction in an instruction group. */
10940 if (align_frag)
10941 {
10942 while (align_frag->fr_type != rs_align_code)
10943 {
10944 align_frag = align_frag->fr_next;
10945 if (!align_frag)
10946 break;
10947 }
10948 /* align_frag can be NULL if there are directives in
10949 between. */
10950 if (align_frag && align_frag->fr_next == frag_now)
10951 align_frag->tc_frag_data = 1;
10952 }
10953
10954 insn_group_break (1, 0, 0);
10955 }
10956 align_frag = NULL;
10957
10958 if ((flags & IA64_OPCODE_NO_PRED) != 0 && qp_regno != 0)
10959 {
10960 as_bad ("`%s' cannot be predicated", idesc->name);
10961 goto done;
10962 }
10963
10964 /* Build the instruction. */
10965 CURR_SLOT.qp_regno = qp_regno;
10966 CURR_SLOT.idesc = idesc;
10967 as_where (&CURR_SLOT.src_file, &CURR_SLOT.src_line);
10968 dwarf2_where (&CURR_SLOT.debug_line);
10969
10970 /* Add unwind entries, if there are any. */
10971 if (unwind.current_entry)
10972 {
10973 CURR_SLOT.unwind_record = unwind.current_entry;
10974 unwind.current_entry = NULL;
10975 }
10976 if (unwind.pending_saves)
10977 {
10978 if (unwind.pending_saves->next)
10979 {
10980 /* Attach the next pending save to the next slot so that its
10981 slot number will get set correctly. */
10982 add_unwind_entry (unwind.pending_saves->next, NOT_A_CHAR);
10983 unwind.pending_saves = &unwind.pending_saves->next->r.record.p;
10984 }
10985 else
10986 unwind.pending_saves = NULL;
10987 }
10988 if (unwind.proc_pending.sym && S_IS_DEFINED (unwind.proc_pending.sym))
10989 unwind.insn = 1;
10990
10991 /* Check for dependency violations. */
10992 if (md.detect_dv)
10993 check_dv (idesc);
10994
10995 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10996 if (++md.num_slots_in_use >= NUM_SLOTS)
10997 emit_one_bundle ();
10998
10999 if ((flags & IA64_OPCODE_LAST) != 0)
11000 insn_group_break (1, 0, 0);
11001
11002 md.last_text_seg = now_seg;
11003
11004 done:
11005 input_line_pointer = saved_input_line_pointer;
11006 }
11007
11008 /* Called when symbol NAME cannot be found in the symbol table.
11009 Should be used for dynamic valued symbols only. */
11010
11011 symbolS *
11012 md_undefined_symbol (name)
11013 char *name ATTRIBUTE_UNUSED;
11014 {
11015 return 0;
11016 }
11017
11018 /* Called for any expression that can not be recognized. When the
11019 function is called, `input_line_pointer' will point to the start of
11020 the expression. */
11021
11022 void
11023 md_operand (e)
11024 expressionS *e;
11025 {
11026 switch (*input_line_pointer)
11027 {
11028 case '[':
11029 ++input_line_pointer;
11030 expression_and_evaluate (e);
11031 if (*input_line_pointer != ']')
11032 {
11033 as_bad ("Closing bracket missing");
11034 goto err;
11035 }
11036 else
11037 {
11038 if (e->X_op != O_register
11039 || e->X_add_number < REG_GR
11040 || e->X_add_number > REG_GR + 127)
11041 {
11042 as_bad ("Index must be a general register");
11043 e->X_add_number = REG_GR;
11044 }
11045
11046 ++input_line_pointer;
11047 e->X_op = O_index;
11048 }
11049 break;
11050
11051 default:
11052 break;
11053 }
11054 return;
11055
11056 err:
11057 ignore_rest_of_line ();
11058 }
11059
11060 /* Return 1 if it's OK to adjust a reloc by replacing the symbol with
11061 a section symbol plus some offset. For relocs involving @fptr(),
11062 directives we don't want such adjustments since we need to have the
11063 original symbol's name in the reloc. */
11064 int
11065 ia64_fix_adjustable (fix)
11066 fixS *fix;
11067 {
11068 /* Prevent all adjustments to global symbols */
11069 if (S_IS_EXTERNAL (fix->fx_addsy) || S_IS_WEAK (fix->fx_addsy))
11070 return 0;
11071
11072 switch (fix->fx_r_type)
11073 {
11074 case BFD_RELOC_IA64_FPTR64I:
11075 case BFD_RELOC_IA64_FPTR32MSB:
11076 case BFD_RELOC_IA64_FPTR32LSB:
11077 case BFD_RELOC_IA64_FPTR64MSB:
11078 case BFD_RELOC_IA64_FPTR64LSB:
11079 case BFD_RELOC_IA64_LTOFF_FPTR22:
11080 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11081 return 0;
11082 default:
11083 break;
11084 }
11085
11086 return 1;
11087 }
11088
11089 int
11090 ia64_force_relocation (fix)
11091 fixS *fix;
11092 {
11093 switch (fix->fx_r_type)
11094 {
11095 case BFD_RELOC_IA64_FPTR64I:
11096 case BFD_RELOC_IA64_FPTR32MSB:
11097 case BFD_RELOC_IA64_FPTR32LSB:
11098 case BFD_RELOC_IA64_FPTR64MSB:
11099 case BFD_RELOC_IA64_FPTR64LSB:
11100
11101 case BFD_RELOC_IA64_LTOFF22:
11102 case BFD_RELOC_IA64_LTOFF64I:
11103 case BFD_RELOC_IA64_LTOFF_FPTR22:
11104 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11105 case BFD_RELOC_IA64_PLTOFF22:
11106 case BFD_RELOC_IA64_PLTOFF64I:
11107 case BFD_RELOC_IA64_PLTOFF64MSB:
11108 case BFD_RELOC_IA64_PLTOFF64LSB:
11109
11110 case BFD_RELOC_IA64_LTOFF22X:
11111 case BFD_RELOC_IA64_LDXMOV:
11112 return 1;
11113
11114 default:
11115 break;
11116 }
11117
11118 return generic_force_reloc (fix);
11119 }
11120
11121 /* Decide from what point a pc-relative relocation is relative to,
11122 relative to the pc-relative fixup. Er, relatively speaking. */
11123 long
11124 ia64_pcrel_from_section (fix, sec)
11125 fixS *fix;
11126 segT sec;
11127 {
11128 unsigned long off = fix->fx_frag->fr_address + fix->fx_where;
11129
11130 if (bfd_get_section_flags (stdoutput, sec) & SEC_CODE)
11131 off &= ~0xfUL;
11132
11133 return off;
11134 }
11135
11136
11137 /* Used to emit section-relative relocs for the dwarf2 debug data. */
11138 void
11139 ia64_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11140 {
11141 expressionS expr;
11142
11143 expr.X_op = O_pseudo_fixup;
11144 expr.X_op_symbol = pseudo_func[FUNC_SEC_RELATIVE].u.sym;
11145 expr.X_add_number = 0;
11146 expr.X_add_symbol = symbol;
11147 emit_expr (&expr, size);
11148 }
11149
11150 /* This is called whenever some data item (not an instruction) needs a
11151 fixup. We pick the right reloc code depending on the byteorder
11152 currently in effect. */
11153 void
11154 ia64_cons_fix_new (f, where, nbytes, exp)
11155 fragS *f;
11156 int where;
11157 int nbytes;
11158 expressionS *exp;
11159 {
11160 bfd_reloc_code_real_type code;
11161 fixS *fix;
11162
11163 switch (nbytes)
11164 {
11165 /* There are no reloc for 8 and 16 bit quantities, but we allow
11166 them here since they will work fine as long as the expression
11167 is fully defined at the end of the pass over the source file. */
11168 case 1: code = BFD_RELOC_8; break;
11169 case 2: code = BFD_RELOC_16; break;
11170 case 4:
11171 if (target_big_endian)
11172 code = BFD_RELOC_IA64_DIR32MSB;
11173 else
11174 code = BFD_RELOC_IA64_DIR32LSB;
11175 break;
11176
11177 case 8:
11178 /* In 32-bit mode, data8 could mean function descriptors too. */
11179 if (exp->X_op == O_pseudo_fixup
11180 && exp->X_op_symbol
11181 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC
11182 && !(md.flags & EF_IA_64_ABI64))
11183 {
11184 if (target_big_endian)
11185 code = BFD_RELOC_IA64_IPLTMSB;
11186 else
11187 code = BFD_RELOC_IA64_IPLTLSB;
11188 exp->X_op = O_symbol;
11189 break;
11190 }
11191 else
11192 {
11193 if (target_big_endian)
11194 code = BFD_RELOC_IA64_DIR64MSB;
11195 else
11196 code = BFD_RELOC_IA64_DIR64LSB;
11197 break;
11198 }
11199
11200 case 16:
11201 if (exp->X_op == O_pseudo_fixup
11202 && exp->X_op_symbol
11203 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC)
11204 {
11205 if (target_big_endian)
11206 code = BFD_RELOC_IA64_IPLTMSB;
11207 else
11208 code = BFD_RELOC_IA64_IPLTLSB;
11209 exp->X_op = O_symbol;
11210 break;
11211 }
11212 /* FALLTHRU */
11213
11214 default:
11215 as_bad ("Unsupported fixup size %d", nbytes);
11216 ignore_rest_of_line ();
11217 return;
11218 }
11219
11220 if (exp->X_op == O_pseudo_fixup)
11221 {
11222 exp->X_op = O_symbol;
11223 code = ia64_gen_real_reloc_type (exp->X_op_symbol, code);
11224 /* ??? If code unchanged, unsupported. */
11225 }
11226
11227 fix = fix_new_exp (f, where, nbytes, exp, 0, code);
11228 /* We need to store the byte order in effect in case we're going
11229 to fix an 8 or 16 bit relocation (for which there no real
11230 relocs available). See md_apply_fix(). */
11231 fix->tc_fix_data.bigendian = target_big_endian;
11232 }
11233
11234 /* Return the actual relocation we wish to associate with the pseudo
11235 reloc described by SYM and R_TYPE. SYM should be one of the
11236 symbols in the pseudo_func array, or NULL. */
11237
11238 static bfd_reloc_code_real_type
11239 ia64_gen_real_reloc_type (sym, r_type)
11240 struct symbol *sym;
11241 bfd_reloc_code_real_type r_type;
11242 {
11243 bfd_reloc_code_real_type new = 0;
11244 const char *type = NULL, *suffix = "";
11245
11246 if (sym == NULL)
11247 {
11248 return r_type;
11249 }
11250
11251 switch (S_GET_VALUE (sym))
11252 {
11253 case FUNC_FPTR_RELATIVE:
11254 switch (r_type)
11255 {
11256 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_FPTR64I; break;
11257 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_FPTR32MSB; break;
11258 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_FPTR32LSB; break;
11259 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_FPTR64MSB; break;
11260 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_FPTR64LSB; break;
11261 default: type = "FPTR"; break;
11262 }
11263 break;
11264
11265 case FUNC_GP_RELATIVE:
11266 switch (r_type)
11267 {
11268 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_GPREL22; break;
11269 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_GPREL64I; break;
11270 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_GPREL32MSB; break;
11271 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_GPREL32LSB; break;
11272 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_GPREL64MSB; break;
11273 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_GPREL64LSB; break;
11274 default: type = "GPREL"; break;
11275 }
11276 break;
11277
11278 case FUNC_LT_RELATIVE:
11279 switch (r_type)
11280 {
11281 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22; break;
11282 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_LTOFF64I; break;
11283 default: type = "LTOFF"; break;
11284 }
11285 break;
11286
11287 case FUNC_LT_RELATIVE_X:
11288 switch (r_type)
11289 {
11290 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22X; break;
11291 default: type = "LTOFF"; suffix = "X"; break;
11292 }
11293 break;
11294
11295 case FUNC_PC_RELATIVE:
11296 switch (r_type)
11297 {
11298 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PCREL22; break;
11299 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PCREL64I; break;
11300 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_PCREL32MSB; break;
11301 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_PCREL32LSB; break;
11302 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PCREL64MSB; break;
11303 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PCREL64LSB; break;
11304 default: type = "PCREL"; break;
11305 }
11306 break;
11307
11308 case FUNC_PLT_RELATIVE:
11309 switch (r_type)
11310 {
11311 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PLTOFF22; break;
11312 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PLTOFF64I; break;
11313 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PLTOFF64MSB;break;
11314 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PLTOFF64LSB;break;
11315 default: type = "PLTOFF"; break;
11316 }
11317 break;
11318
11319 case FUNC_SEC_RELATIVE:
11320 switch (r_type)
11321 {
11322 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SECREL32MSB;break;
11323 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SECREL32LSB;break;
11324 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SECREL64MSB;break;
11325 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SECREL64LSB;break;
11326 default: type = "SECREL"; break;
11327 }
11328 break;
11329
11330 case FUNC_SEG_RELATIVE:
11331 switch (r_type)
11332 {
11333 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SEGREL32MSB;break;
11334 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SEGREL32LSB;break;
11335 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SEGREL64MSB;break;
11336 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SEGREL64LSB;break;
11337 default: type = "SEGREL"; break;
11338 }
11339 break;
11340
11341 case FUNC_LTV_RELATIVE:
11342 switch (r_type)
11343 {
11344 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_LTV32MSB; break;
11345 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_LTV32LSB; break;
11346 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_LTV64MSB; break;
11347 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_LTV64LSB; break;
11348 default: type = "LTV"; break;
11349 }
11350 break;
11351
11352 case FUNC_LT_FPTR_RELATIVE:
11353 switch (r_type)
11354 {
11355 case BFD_RELOC_IA64_IMM22:
11356 new = BFD_RELOC_IA64_LTOFF_FPTR22; break;
11357 case BFD_RELOC_IA64_IMM64:
11358 new = BFD_RELOC_IA64_LTOFF_FPTR64I; break;
11359 case BFD_RELOC_IA64_DIR32MSB:
11360 new = BFD_RELOC_IA64_LTOFF_FPTR32MSB; break;
11361 case BFD_RELOC_IA64_DIR32LSB:
11362 new = BFD_RELOC_IA64_LTOFF_FPTR32LSB; break;
11363 case BFD_RELOC_IA64_DIR64MSB:
11364 new = BFD_RELOC_IA64_LTOFF_FPTR64MSB; break;
11365 case BFD_RELOC_IA64_DIR64LSB:
11366 new = BFD_RELOC_IA64_LTOFF_FPTR64LSB; break;
11367 default:
11368 type = "LTOFF_FPTR"; break;
11369 }
11370 break;
11371
11372 case FUNC_TP_RELATIVE:
11373 switch (r_type)
11374 {
11375 case BFD_RELOC_IA64_IMM14: new = BFD_RELOC_IA64_TPREL14; break;
11376 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_TPREL22; break;
11377 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_TPREL64I; break;
11378 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_TPREL64MSB; break;
11379 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_TPREL64LSB; break;
11380 default: type = "TPREL"; break;
11381 }
11382 break;
11383
11384 case FUNC_LT_TP_RELATIVE:
11385 switch (r_type)
11386 {
11387 case BFD_RELOC_IA64_IMM22:
11388 new = BFD_RELOC_IA64_LTOFF_TPREL22; break;
11389 default:
11390 type = "LTOFF_TPREL"; break;
11391 }
11392 break;
11393
11394 case FUNC_DTP_MODULE:
11395 switch (r_type)
11396 {
11397 case BFD_RELOC_IA64_DIR64MSB:
11398 new = BFD_RELOC_IA64_DTPMOD64MSB; break;
11399 case BFD_RELOC_IA64_DIR64LSB:
11400 new = BFD_RELOC_IA64_DTPMOD64LSB; break;
11401 default:
11402 type = "DTPMOD"; break;
11403 }
11404 break;
11405
11406 case FUNC_LT_DTP_MODULE:
11407 switch (r_type)
11408 {
11409 case BFD_RELOC_IA64_IMM22:
11410 new = BFD_RELOC_IA64_LTOFF_DTPMOD22; break;
11411 default:
11412 type = "LTOFF_DTPMOD"; break;
11413 }
11414 break;
11415
11416 case FUNC_DTP_RELATIVE:
11417 switch (r_type)
11418 {
11419 case BFD_RELOC_IA64_DIR32MSB:
11420 new = BFD_RELOC_IA64_DTPREL32MSB; break;
11421 case BFD_RELOC_IA64_DIR32LSB:
11422 new = BFD_RELOC_IA64_DTPREL32LSB; break;
11423 case BFD_RELOC_IA64_DIR64MSB:
11424 new = BFD_RELOC_IA64_DTPREL64MSB; break;
11425 case BFD_RELOC_IA64_DIR64LSB:
11426 new = BFD_RELOC_IA64_DTPREL64LSB; break;
11427 case BFD_RELOC_IA64_IMM14:
11428 new = BFD_RELOC_IA64_DTPREL14; break;
11429 case BFD_RELOC_IA64_IMM22:
11430 new = BFD_RELOC_IA64_DTPREL22; break;
11431 case BFD_RELOC_IA64_IMM64:
11432 new = BFD_RELOC_IA64_DTPREL64I; break;
11433 default:
11434 type = "DTPREL"; break;
11435 }
11436 break;
11437
11438 case FUNC_LT_DTP_RELATIVE:
11439 switch (r_type)
11440 {
11441 case BFD_RELOC_IA64_IMM22:
11442 new = BFD_RELOC_IA64_LTOFF_DTPREL22; break;
11443 default:
11444 type = "LTOFF_DTPREL"; break;
11445 }
11446 break;
11447
11448 case FUNC_IPLT_RELOC:
11449 switch (r_type)
11450 {
11451 case BFD_RELOC_IA64_IPLTMSB: return r_type;
11452 case BFD_RELOC_IA64_IPLTLSB: return r_type;
11453 default: type = "IPLT"; break;
11454 }
11455 break;
11456
11457 default:
11458 abort ();
11459 }
11460
11461 if (new)
11462 return new;
11463 else
11464 {
11465 int width;
11466
11467 if (!type)
11468 abort ();
11469 switch (r_type)
11470 {
11471 case BFD_RELOC_IA64_DIR32MSB: width = 32; suffix = "MSB"; break;
11472 case BFD_RELOC_IA64_DIR32LSB: width = 32; suffix = "LSB"; break;
11473 case BFD_RELOC_IA64_DIR64MSB: width = 64; suffix = "MSB"; break;
11474 case BFD_RELOC_IA64_DIR64LSB: width = 64; suffix = "LSB"; break;
11475 case BFD_RELOC_UNUSED: width = 13; break;
11476 case BFD_RELOC_IA64_IMM14: width = 14; break;
11477 case BFD_RELOC_IA64_IMM22: width = 22; break;
11478 case BFD_RELOC_IA64_IMM64: width = 64; suffix = "I"; break;
11479 default: abort ();
11480 }
11481
11482 /* This should be an error, but since previously there wasn't any
11483 diagnostic here, dont't make it fail because of this for now. */
11484 as_warn ("Cannot express %s%d%s relocation", type, width, suffix);
11485 return r_type;
11486 }
11487 }
11488
11489 /* Here is where generate the appropriate reloc for pseudo relocation
11490 functions. */
11491 void
11492 ia64_validate_fix (fix)
11493 fixS *fix;
11494 {
11495 switch (fix->fx_r_type)
11496 {
11497 case BFD_RELOC_IA64_FPTR64I:
11498 case BFD_RELOC_IA64_FPTR32MSB:
11499 case BFD_RELOC_IA64_FPTR64LSB:
11500 case BFD_RELOC_IA64_LTOFF_FPTR22:
11501 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11502 if (fix->fx_offset != 0)
11503 as_bad_where (fix->fx_file, fix->fx_line,
11504 "No addend allowed in @fptr() relocation");
11505 break;
11506 default:
11507 break;
11508 }
11509 }
11510
11511 static void
11512 fix_insn (fix, odesc, value)
11513 fixS *fix;
11514 const struct ia64_operand *odesc;
11515 valueT value;
11516 {
11517 bfd_vma insn[3], t0, t1, control_bits;
11518 const char *err;
11519 char *fixpos;
11520 long slot;
11521
11522 slot = fix->fx_where & 0x3;
11523 fixpos = fix->fx_frag->fr_literal + (fix->fx_where - slot);
11524
11525 /* Bundles are always in little-endian byte order */
11526 t0 = bfd_getl64 (fixpos);
11527 t1 = bfd_getl64 (fixpos + 8);
11528 control_bits = t0 & 0x1f;
11529 insn[0] = (t0 >> 5) & 0x1ffffffffffLL;
11530 insn[1] = ((t0 >> 46) & 0x3ffff) | ((t1 & 0x7fffff) << 18);
11531 insn[2] = (t1 >> 23) & 0x1ffffffffffLL;
11532
11533 err = NULL;
11534 if (odesc - elf64_ia64_operands == IA64_OPND_IMMU64)
11535 {
11536 insn[1] = (value >> 22) & 0x1ffffffffffLL;
11537 insn[2] |= (((value & 0x7f) << 13)
11538 | (((value >> 7) & 0x1ff) << 27)
11539 | (((value >> 16) & 0x1f) << 22)
11540 | (((value >> 21) & 0x1) << 21)
11541 | (((value >> 63) & 0x1) << 36));
11542 }
11543 else if (odesc - elf64_ia64_operands == IA64_OPND_IMMU62)
11544 {
11545 if (value & ~0x3fffffffffffffffULL)
11546 err = "integer operand out of range";
11547 insn[1] = (value >> 21) & 0x1ffffffffffLL;
11548 insn[2] |= (((value & 0xfffff) << 6) | (((value >> 20) & 0x1) << 36));
11549 }
11550 else if (odesc - elf64_ia64_operands == IA64_OPND_TGT64)
11551 {
11552 value >>= 4;
11553 insn[1] = ((value >> 20) & 0x7fffffffffLL) << 2;
11554 insn[2] |= ((((value >> 59) & 0x1) << 36)
11555 | (((value >> 0) & 0xfffff) << 13));
11556 }
11557 else
11558 err = (*odesc->insert) (odesc, value, insn + slot);
11559
11560 if (err)
11561 as_bad_where (fix->fx_file, fix->fx_line, err);
11562
11563 t0 = control_bits | (insn[0] << 5) | (insn[1] << 46);
11564 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
11565 number_to_chars_littleendian (fixpos + 0, t0, 8);
11566 number_to_chars_littleendian (fixpos + 8, t1, 8);
11567 }
11568
11569 /* Attempt to simplify or even eliminate a fixup. The return value is
11570 ignored; perhaps it was once meaningful, but now it is historical.
11571 To indicate that a fixup has been eliminated, set FIXP->FX_DONE.
11572
11573 If fixp->fx_addsy is non-NULL, we'll have to generate a reloc entry
11574 (if possible). */
11575
11576 void
11577 md_apply_fix (fix, valP, seg)
11578 fixS *fix;
11579 valueT *valP;
11580 segT seg ATTRIBUTE_UNUSED;
11581 {
11582 char *fixpos;
11583 valueT value = *valP;
11584
11585 fixpos = fix->fx_frag->fr_literal + fix->fx_where;
11586
11587 if (fix->fx_pcrel)
11588 {
11589 switch (fix->fx_r_type)
11590 {
11591 case BFD_RELOC_IA64_PCREL21B: break;
11592 case BFD_RELOC_IA64_PCREL21BI: break;
11593 case BFD_RELOC_IA64_PCREL21F: break;
11594 case BFD_RELOC_IA64_PCREL21M: break;
11595 case BFD_RELOC_IA64_PCREL60B: break;
11596 case BFD_RELOC_IA64_PCREL22: break;
11597 case BFD_RELOC_IA64_PCREL64I: break;
11598 case BFD_RELOC_IA64_PCREL32MSB: break;
11599 case BFD_RELOC_IA64_PCREL32LSB: break;
11600 case BFD_RELOC_IA64_PCREL64MSB: break;
11601 case BFD_RELOC_IA64_PCREL64LSB: break;
11602 default:
11603 fix->fx_r_type = ia64_gen_real_reloc_type (pseudo_func[FUNC_PC_RELATIVE].u.sym,
11604 fix->fx_r_type);
11605 break;
11606 }
11607 }
11608 if (fix->fx_addsy)
11609 {
11610 switch (fix->fx_r_type)
11611 {
11612 case BFD_RELOC_UNUSED:
11613 /* This must be a TAG13 or TAG13b operand. There are no external
11614 relocs defined for them, so we must give an error. */
11615 as_bad_where (fix->fx_file, fix->fx_line,
11616 "%s must have a constant value",
11617 elf64_ia64_operands[fix->tc_fix_data.opnd].desc);
11618 fix->fx_done = 1;
11619 return;
11620
11621 case BFD_RELOC_IA64_TPREL14:
11622 case BFD_RELOC_IA64_TPREL22:
11623 case BFD_RELOC_IA64_TPREL64I:
11624 case BFD_RELOC_IA64_LTOFF_TPREL22:
11625 case BFD_RELOC_IA64_LTOFF_DTPMOD22:
11626 case BFD_RELOC_IA64_DTPREL14:
11627 case BFD_RELOC_IA64_DTPREL22:
11628 case BFD_RELOC_IA64_DTPREL64I:
11629 case BFD_RELOC_IA64_LTOFF_DTPREL22:
11630 S_SET_THREAD_LOCAL (fix->fx_addsy);
11631 break;
11632
11633 default:
11634 break;
11635 }
11636 }
11637 else if (fix->tc_fix_data.opnd == IA64_OPND_NIL)
11638 {
11639 if (fix->tc_fix_data.bigendian)
11640 number_to_chars_bigendian (fixpos, value, fix->fx_size);
11641 else
11642 number_to_chars_littleendian (fixpos, value, fix->fx_size);
11643 fix->fx_done = 1;
11644 }
11645 else
11646 {
11647 fix_insn (fix, elf64_ia64_operands + fix->tc_fix_data.opnd, value);
11648 fix->fx_done = 1;
11649 }
11650 }
11651
11652 /* Generate the BFD reloc to be stuck in the object file from the
11653 fixup used internally in the assembler. */
11654
11655 arelent *
11656 tc_gen_reloc (sec, fixp)
11657 asection *sec ATTRIBUTE_UNUSED;
11658 fixS *fixp;
11659 {
11660 arelent *reloc;
11661
11662 reloc = xmalloc (sizeof (*reloc));
11663 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
11664 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11665 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
11666 reloc->addend = fixp->fx_offset;
11667 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
11668
11669 if (!reloc->howto)
11670 {
11671 as_bad_where (fixp->fx_file, fixp->fx_line,
11672 "Cannot represent %s relocation in object file",
11673 bfd_get_reloc_code_name (fixp->fx_r_type));
11674 }
11675 return reloc;
11676 }
11677
11678 /* Turn a string in input_line_pointer into a floating point constant
11679 of type TYPE, and store the appropriate bytes in *LIT. The number
11680 of LITTLENUMS emitted is stored in *SIZE. An error message is
11681 returned, or NULL on OK. */
11682
11683 #define MAX_LITTLENUMS 5
11684
11685 char *
11686 md_atof (type, lit, size)
11687 int type;
11688 char *lit;
11689 int *size;
11690 {
11691 LITTLENUM_TYPE words[MAX_LITTLENUMS];
11692 char *t;
11693 int prec;
11694
11695 switch (type)
11696 {
11697 /* IEEE floats */
11698 case 'f':
11699 case 'F':
11700 case 's':
11701 case 'S':
11702 prec = 2;
11703 break;
11704
11705 case 'd':
11706 case 'D':
11707 case 'r':
11708 case 'R':
11709 prec = 4;
11710 break;
11711
11712 case 'x':
11713 case 'X':
11714 case 'p':
11715 case 'P':
11716 prec = 5;
11717 break;
11718
11719 default:
11720 *size = 0;
11721 return "Bad call to MD_ATOF()";
11722 }
11723 t = atof_ieee (input_line_pointer, type, words);
11724 if (t)
11725 input_line_pointer = t;
11726
11727 (*ia64_float_to_chars) (lit, words, prec);
11728
11729 if (type == 'X')
11730 {
11731 /* It is 10 byte floating point with 6 byte padding. */
11732 memset (&lit [10], 0, 6);
11733 *size = 8 * sizeof (LITTLENUM_TYPE);
11734 }
11735 else
11736 *size = prec * sizeof (LITTLENUM_TYPE);
11737
11738 return 0;
11739 }
11740
11741 /* Handle ia64 specific semantics of the align directive. */
11742
11743 void
11744 ia64_md_do_align (n, fill, len, max)
11745 int n ATTRIBUTE_UNUSED;
11746 const char *fill ATTRIBUTE_UNUSED;
11747 int len ATTRIBUTE_UNUSED;
11748 int max ATTRIBUTE_UNUSED;
11749 {
11750 if (subseg_text_p (now_seg))
11751 ia64_flush_insns ();
11752 }
11753
11754 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
11755 of an rs_align_code fragment. */
11756
11757 void
11758 ia64_handle_align (fragp)
11759 fragS *fragp;
11760 {
11761 int bytes;
11762 char *p;
11763 const unsigned char *nop;
11764
11765 if (fragp->fr_type != rs_align_code)
11766 return;
11767
11768 /* Check if this frag has to end with a stop bit. */
11769 nop = fragp->tc_frag_data ? le_nop_stop : le_nop;
11770
11771 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
11772 p = fragp->fr_literal + fragp->fr_fix;
11773
11774 /* If no paddings are needed, we check if we need a stop bit. */
11775 if (!bytes && fragp->tc_frag_data)
11776 {
11777 if (fragp->fr_fix < 16)
11778 #if 1
11779 /* FIXME: It won't work with
11780 .align 16
11781 alloc r32=ar.pfs,1,2,4,0
11782 */
11783 ;
11784 #else
11785 as_bad_where (fragp->fr_file, fragp->fr_line,
11786 _("Can't add stop bit to mark end of instruction group"));
11787 #endif
11788 else
11789 /* Bundles are always in little-endian byte order. Make sure
11790 the previous bundle has the stop bit. */
11791 *(p - 16) |= 1;
11792 }
11793
11794 /* Make sure we are on a 16-byte boundary, in case someone has been
11795 putting data into a text section. */
11796 if (bytes & 15)
11797 {
11798 int fix = bytes & 15;
11799 memset (p, 0, fix);
11800 p += fix;
11801 bytes -= fix;
11802 fragp->fr_fix += fix;
11803 }
11804
11805 /* Instruction bundles are always little-endian. */
11806 memcpy (p, nop, 16);
11807 fragp->fr_var = 16;
11808 }
11809
11810 static void
11811 ia64_float_to_chars_bigendian (char *lit, LITTLENUM_TYPE *words,
11812 int prec)
11813 {
11814 while (prec--)
11815 {
11816 number_to_chars_bigendian (lit, (long) (*words++),
11817 sizeof (LITTLENUM_TYPE));
11818 lit += sizeof (LITTLENUM_TYPE);
11819 }
11820 }
11821
11822 static void
11823 ia64_float_to_chars_littleendian (char *lit, LITTLENUM_TYPE *words,
11824 int prec)
11825 {
11826 while (prec--)
11827 {
11828 number_to_chars_littleendian (lit, (long) (words[prec]),
11829 sizeof (LITTLENUM_TYPE));
11830 lit += sizeof (LITTLENUM_TYPE);
11831 }
11832 }
11833
11834 void
11835 ia64_elf_section_change_hook (void)
11836 {
11837 if (elf_section_type (now_seg) == SHT_IA_64_UNWIND
11838 && elf_linked_to_section (now_seg) == NULL)
11839 elf_linked_to_section (now_seg) = text_section;
11840 dot_byteorder (-1);
11841 }
11842
11843 /* Check if a label should be made global. */
11844 void
11845 ia64_check_label (symbolS *label)
11846 {
11847 if (*input_line_pointer == ':')
11848 {
11849 S_SET_EXTERNAL (label);
11850 input_line_pointer++;
11851 }
11852 }
11853
11854 /* Used to remember where .alias and .secalias directives are seen. We
11855 will rename symbol and section names when we are about to output
11856 the relocatable file. */
11857 struct alias
11858 {
11859 char *file; /* The file where the directive is seen. */
11860 unsigned int line; /* The line number the directive is at. */
11861 const char *name; /* The orignale name of the symbol. */
11862 };
11863
11864 /* Called for .alias and .secalias directives. If SECTION is 1, it is
11865 .secalias. Otherwise, it is .alias. */
11866 static void
11867 dot_alias (int section)
11868 {
11869 char *name, *alias;
11870 char delim;
11871 char *end_name;
11872 int len;
11873 const char *error_string;
11874 struct alias *h;
11875 const char *a;
11876 struct hash_control *ahash, *nhash;
11877 const char *kind;
11878
11879 name = input_line_pointer;
11880 delim = get_symbol_end ();
11881 end_name = input_line_pointer;
11882 *end_name = delim;
11883
11884 if (name == end_name)
11885 {
11886 as_bad (_("expected symbol name"));
11887 ignore_rest_of_line ();
11888 return;
11889 }
11890
11891 SKIP_WHITESPACE ();
11892
11893 if (*input_line_pointer != ',')
11894 {
11895 *end_name = 0;
11896 as_bad (_("expected comma after \"%s\""), name);
11897 *end_name = delim;
11898 ignore_rest_of_line ();
11899 return;
11900 }
11901
11902 input_line_pointer++;
11903 *end_name = 0;
11904 ia64_canonicalize_symbol_name (name);
11905
11906 /* We call demand_copy_C_string to check if alias string is valid.
11907 There should be a closing `"' and no `\0' in the string. */
11908 alias = demand_copy_C_string (&len);
11909 if (alias == NULL)
11910 {
11911 ignore_rest_of_line ();
11912 return;
11913 }
11914
11915 /* Make a copy of name string. */
11916 len = strlen (name) + 1;
11917 obstack_grow (&notes, name, len);
11918 name = obstack_finish (&notes);
11919
11920 if (section)
11921 {
11922 kind = "section";
11923 ahash = secalias_hash;
11924 nhash = secalias_name_hash;
11925 }
11926 else
11927 {
11928 kind = "symbol";
11929 ahash = alias_hash;
11930 nhash = alias_name_hash;
11931 }
11932
11933 /* Check if alias has been used before. */
11934 h = (struct alias *) hash_find (ahash, alias);
11935 if (h)
11936 {
11937 if (strcmp (h->name, name))
11938 as_bad (_("`%s' is already the alias of %s `%s'"),
11939 alias, kind, h->name);
11940 goto out;
11941 }
11942
11943 /* Check if name already has an alias. */
11944 a = (const char *) hash_find (nhash, name);
11945 if (a)
11946 {
11947 if (strcmp (a, alias))
11948 as_bad (_("%s `%s' already has an alias `%s'"), kind, name, a);
11949 goto out;
11950 }
11951
11952 h = (struct alias *) xmalloc (sizeof (struct alias));
11953 as_where (&h->file, &h->line);
11954 h->name = name;
11955
11956 error_string = hash_jam (ahash, alias, (PTR) h);
11957 if (error_string)
11958 {
11959 as_fatal (_("inserting \"%s\" into %s alias hash table failed: %s"),
11960 alias, kind, error_string);
11961 goto out;
11962 }
11963
11964 error_string = hash_jam (nhash, name, (PTR) alias);
11965 if (error_string)
11966 {
11967 as_fatal (_("inserting \"%s\" into %s name hash table failed: %s"),
11968 alias, kind, error_string);
11969 out:
11970 obstack_free (&notes, name);
11971 obstack_free (&notes, alias);
11972 }
11973
11974 demand_empty_rest_of_line ();
11975 }
11976
11977 /* It renames the original symbol name to its alias. */
11978 static void
11979 do_alias (const char *alias, PTR value)
11980 {
11981 struct alias *h = (struct alias *) value;
11982 symbolS *sym = symbol_find (h->name);
11983
11984 if (sym == NULL)
11985 as_warn_where (h->file, h->line,
11986 _("symbol `%s' aliased to `%s' is not used"),
11987 h->name, alias);
11988 else
11989 S_SET_NAME (sym, (char *) alias);
11990 }
11991
11992 /* Called from write_object_file. */
11993 void
11994 ia64_adjust_symtab (void)
11995 {
11996 hash_traverse (alias_hash, do_alias);
11997 }
11998
11999 /* It renames the original section name to its alias. */
12000 static void
12001 do_secalias (const char *alias, PTR value)
12002 {
12003 struct alias *h = (struct alias *) value;
12004 segT sec = bfd_get_section_by_name (stdoutput, h->name);
12005
12006 if (sec == NULL)
12007 as_warn_where (h->file, h->line,
12008 _("section `%s' aliased to `%s' is not used"),
12009 h->name, alias);
12010 else
12011 sec->name = alias;
12012 }
12013
12014 /* Called from write_object_file. */
12015 void
12016 ia64_frob_file (void)
12017 {
12018 hash_traverse (secalias_hash, do_secalias);
12019 }
This page took 0.282798 seconds and 3 git commands to generate.