fe0f9a00b2f2b50bf983474ec513b91f33a763de
[deliverable/binutils-gdb.git] / gas / config / tc-ia64.c
1 /* tc-ia64.c -- Assembler for the HP/Intel IA-64 architecture.
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street - Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 /*
24 TODO:
25
26 - optional operands
27 - directives:
28 .eb
29 .estate
30 .lb
31 .popsection
32 .previous
33 .psr
34 .pushsection
35 - labels are wrong if automatic alignment is introduced
36 (e.g., checkout the second real10 definition in test-data.s)
37 - DV-related stuff:
38 <reg>.safe_across_calls and any other DV-related directives I don't
39 have documentation for.
40 verify mod-sched-brs reads/writes are checked/marked (and other
41 notes)
42
43 */
44
45 #include "as.h"
46 #include "safe-ctype.h"
47 #include "dwarf2dbg.h"
48 #include "subsegs.h"
49
50 #include "opcode/ia64.h"
51
52 #include "elf/ia64.h"
53
54 #ifdef HAVE_LIMITS_H
55 #include <limits.h>
56 #endif
57
58 #define NELEMS(a) ((int) (sizeof (a)/sizeof ((a)[0])))
59
60 /* Some systems define MIN in, e.g., param.h. */
61 #undef MIN
62 #define MIN(a,b) ((a) < (b) ? (a) : (b))
63
64 #define NUM_SLOTS 4
65 #define PREV_SLOT md.slot[(md.curr_slot + NUM_SLOTS - 1) % NUM_SLOTS]
66 #define CURR_SLOT md.slot[md.curr_slot]
67
68 #define O_pseudo_fixup (O_max + 1)
69
70 enum special_section
71 {
72 /* IA-64 ABI section pseudo-ops. */
73 SPECIAL_SECTION_BSS = 0,
74 SPECIAL_SECTION_SBSS,
75 SPECIAL_SECTION_SDATA,
76 SPECIAL_SECTION_RODATA,
77 SPECIAL_SECTION_COMMENT,
78 SPECIAL_SECTION_UNWIND,
79 SPECIAL_SECTION_UNWIND_INFO,
80 /* HPUX specific section pseudo-ops. */
81 SPECIAL_SECTION_INIT_ARRAY,
82 SPECIAL_SECTION_FINI_ARRAY,
83 };
84
85 enum reloc_func
86 {
87 FUNC_DTP_MODULE,
88 FUNC_DTP_RELATIVE,
89 FUNC_FPTR_RELATIVE,
90 FUNC_GP_RELATIVE,
91 FUNC_LT_RELATIVE,
92 FUNC_LT_RELATIVE_X,
93 FUNC_PC_RELATIVE,
94 FUNC_PLT_RELATIVE,
95 FUNC_SEC_RELATIVE,
96 FUNC_SEG_RELATIVE,
97 FUNC_TP_RELATIVE,
98 FUNC_LTV_RELATIVE,
99 FUNC_LT_FPTR_RELATIVE,
100 FUNC_LT_DTP_MODULE,
101 FUNC_LT_DTP_RELATIVE,
102 FUNC_LT_TP_RELATIVE,
103 FUNC_IPLT_RELOC,
104 };
105
106 enum reg_symbol
107 {
108 REG_GR = 0,
109 REG_FR = (REG_GR + 128),
110 REG_AR = (REG_FR + 128),
111 REG_CR = (REG_AR + 128),
112 REG_P = (REG_CR + 128),
113 REG_BR = (REG_P + 64),
114 REG_IP = (REG_BR + 8),
115 REG_CFM,
116 REG_PR,
117 REG_PR_ROT,
118 REG_PSR,
119 REG_PSR_L,
120 REG_PSR_UM,
121 /* The following are pseudo-registers for use by gas only. */
122 IND_CPUID,
123 IND_DBR,
124 IND_DTR,
125 IND_ITR,
126 IND_IBR,
127 IND_MEM,
128 IND_MSR,
129 IND_PKR,
130 IND_PMC,
131 IND_PMD,
132 IND_RR,
133 /* The following pseudo-registers are used for unwind directives only: */
134 REG_PSP,
135 REG_PRIUNAT,
136 REG_NUM
137 };
138
139 enum dynreg_type
140 {
141 DYNREG_GR = 0, /* dynamic general purpose register */
142 DYNREG_FR, /* dynamic floating point register */
143 DYNREG_PR, /* dynamic predicate register */
144 DYNREG_NUM_TYPES
145 };
146
147 enum operand_match_result
148 {
149 OPERAND_MATCH,
150 OPERAND_OUT_OF_RANGE,
151 OPERAND_MISMATCH
152 };
153
154 /* On the ia64, we can't know the address of a text label until the
155 instructions are packed into a bundle. To handle this, we keep
156 track of the list of labels that appear in front of each
157 instruction. */
158 struct label_fix
159 {
160 struct label_fix *next;
161 struct symbol *sym;
162 };
163
164 /* This is the endianness of the current section. */
165 extern int target_big_endian;
166
167 /* This is the default endianness. */
168 static int default_big_endian = TARGET_BYTES_BIG_ENDIAN;
169
170 void (*ia64_number_to_chars) PARAMS ((char *, valueT, int));
171
172 static void ia64_float_to_chars_bigendian
173 PARAMS ((char *, LITTLENUM_TYPE *, int));
174 static void ia64_float_to_chars_littleendian
175 PARAMS ((char *, LITTLENUM_TYPE *, int));
176 static void (*ia64_float_to_chars)
177 PARAMS ((char *, LITTLENUM_TYPE *, int));
178
179 static struct hash_control *alias_hash;
180 static struct hash_control *alias_name_hash;
181 static struct hash_control *secalias_hash;
182 static struct hash_control *secalias_name_hash;
183
184 /* List of chars besides those in app.c:symbol_chars that can start an
185 operand. Used to prevent the scrubber eating vital white-space. */
186 const char ia64_symbol_chars[] = "@?";
187
188 /* Characters which always start a comment. */
189 const char comment_chars[] = "";
190
191 /* Characters which start a comment at the beginning of a line. */
192 const char line_comment_chars[] = "#";
193
194 /* Characters which may be used to separate multiple commands on a
195 single line. */
196 const char line_separator_chars[] = ";{}";
197
198 /* Characters which are used to indicate an exponent in a floating
199 point number. */
200 const char EXP_CHARS[] = "eE";
201
202 /* Characters which mean that a number is a floating point constant,
203 as in 0d1.0. */
204 const char FLT_CHARS[] = "rRsSfFdDxXpP";
205
206 /* ia64-specific option processing: */
207
208 const char *md_shortopts = "m:N:x::";
209
210 struct option md_longopts[] =
211 {
212 #define OPTION_MCONSTANT_GP (OPTION_MD_BASE + 1)
213 {"mconstant-gp", no_argument, NULL, OPTION_MCONSTANT_GP},
214 #define OPTION_MAUTO_PIC (OPTION_MD_BASE + 2)
215 {"mauto-pic", no_argument, NULL, OPTION_MAUTO_PIC}
216 };
217
218 size_t md_longopts_size = sizeof (md_longopts);
219
220 static struct
221 {
222 struct hash_control *pseudo_hash; /* pseudo opcode hash table */
223 struct hash_control *reg_hash; /* register name hash table */
224 struct hash_control *dynreg_hash; /* dynamic register hash table */
225 struct hash_control *const_hash; /* constant hash table */
226 struct hash_control *entry_hash; /* code entry hint hash table */
227
228 symbolS *regsym[REG_NUM];
229
230 /* If X_op is != O_absent, the registername for the instruction's
231 qualifying predicate. If NULL, p0 is assumed for instructions
232 that are predicatable. */
233 expressionS qp;
234
235 /* Optimize for which CPU. */
236 enum
237 {
238 itanium1,
239 itanium2
240 } tune;
241
242 /* What to do when hint.b is used. */
243 enum
244 {
245 hint_b_error,
246 hint_b_warning,
247 hint_b_ok
248 } hint_b;
249
250 unsigned int
251 manual_bundling : 1,
252 debug_dv: 1,
253 detect_dv: 1,
254 explicit_mode : 1, /* which mode we're in */
255 default_explicit_mode : 1, /* which mode is the default */
256 mode_explicitly_set : 1, /* was the current mode explicitly set? */
257 auto_align : 1,
258 keep_pending_output : 1;
259
260 /* What to do when something is wrong with unwind directives. */
261 enum
262 {
263 unwind_check_warning,
264 unwind_check_error
265 } unwind_check;
266
267 /* Each bundle consists of up to three instructions. We keep
268 track of four most recent instructions so we can correctly set
269 the end_of_insn_group for the last instruction in a bundle. */
270 int curr_slot;
271 int num_slots_in_use;
272 struct slot
273 {
274 unsigned int
275 end_of_insn_group : 1,
276 manual_bundling_on : 1,
277 manual_bundling_off : 1,
278 loc_directive_seen : 1;
279 signed char user_template; /* user-selected template, if any */
280 unsigned char qp_regno; /* qualifying predicate */
281 /* This duplicates a good fraction of "struct fix" but we
282 can't use a "struct fix" instead since we can't call
283 fix_new_exp() until we know the address of the instruction. */
284 int num_fixups;
285 struct insn_fix
286 {
287 bfd_reloc_code_real_type code;
288 enum ia64_opnd opnd; /* type of operand in need of fix */
289 unsigned int is_pcrel : 1; /* is operand pc-relative? */
290 expressionS expr; /* the value to be inserted */
291 }
292 fixup[2]; /* at most two fixups per insn */
293 struct ia64_opcode *idesc;
294 struct label_fix *label_fixups;
295 struct label_fix *tag_fixups;
296 struct unw_rec_list *unwind_record; /* Unwind directive. */
297 expressionS opnd[6];
298 char *src_file;
299 unsigned int src_line;
300 struct dwarf2_line_info debug_line;
301 }
302 slot[NUM_SLOTS];
303
304 segT last_text_seg;
305
306 struct dynreg
307 {
308 struct dynreg *next; /* next dynamic register */
309 const char *name;
310 unsigned short base; /* the base register number */
311 unsigned short num_regs; /* # of registers in this set */
312 }
313 *dynreg[DYNREG_NUM_TYPES], in, loc, out, rot;
314
315 flagword flags; /* ELF-header flags */
316
317 struct mem_offset {
318 unsigned hint:1; /* is this hint currently valid? */
319 bfd_vma offset; /* mem.offset offset */
320 bfd_vma base; /* mem.offset base */
321 } mem_offset;
322
323 int path; /* number of alt. entry points seen */
324 const char **entry_labels; /* labels of all alternate paths in
325 the current DV-checking block. */
326 int maxpaths; /* size currently allocated for
327 entry_labels */
328
329 int pointer_size; /* size in bytes of a pointer */
330 int pointer_size_shift; /* shift size of a pointer for alignment */
331 }
332 md;
333
334 /* These are not const, because they are modified to MMI for non-itanium1
335 targets below. */
336 /* MFI bundle of nops. */
337 static unsigned char le_nop[16] =
338 {
339 0x0c, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
340 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
341 };
342 /* MFI bundle of nops with stop-bit. */
343 static unsigned char le_nop_stop[16] =
344 {
345 0x0d, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
346 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
347 };
348
349 /* application registers: */
350
351 #define AR_K0 0
352 #define AR_K7 7
353 #define AR_RSC 16
354 #define AR_BSP 17
355 #define AR_BSPSTORE 18
356 #define AR_RNAT 19
357 #define AR_UNAT 36
358 #define AR_FPSR 40
359 #define AR_ITC 44
360 #define AR_PFS 64
361 #define AR_LC 65
362
363 static const struct
364 {
365 const char *name;
366 int regnum;
367 }
368 ar[] =
369 {
370 {"ar.k0", 0}, {"ar.k1", 1}, {"ar.k2", 2}, {"ar.k3", 3},
371 {"ar.k4", 4}, {"ar.k5", 5}, {"ar.k6", 6}, {"ar.k7", 7},
372 {"ar.rsc", 16}, {"ar.bsp", 17},
373 {"ar.bspstore", 18}, {"ar.rnat", 19},
374 {"ar.fcr", 21}, {"ar.eflag", 24},
375 {"ar.csd", 25}, {"ar.ssd", 26},
376 {"ar.cflg", 27}, {"ar.fsr", 28},
377 {"ar.fir", 29}, {"ar.fdr", 30},
378 {"ar.ccv", 32}, {"ar.unat", 36},
379 {"ar.fpsr", 40}, {"ar.itc", 44},
380 {"ar.pfs", 64}, {"ar.lc", 65},
381 {"ar.ec", 66},
382 };
383
384 #define CR_IPSR 16
385 #define CR_ISR 17
386 #define CR_IIP 19
387 #define CR_IFA 20
388 #define CR_ITIR 21
389 #define CR_IIPA 22
390 #define CR_IFS 23
391 #define CR_IIM 24
392 #define CR_IHA 25
393 #define CR_IVR 65
394 #define CR_TPR 66
395 #define CR_EOI 67
396 #define CR_IRR0 68
397 #define CR_IRR3 71
398 #define CR_LRR0 80
399 #define CR_LRR1 81
400
401 /* control registers: */
402 static const struct
403 {
404 const char *name;
405 int regnum;
406 }
407 cr[] =
408 {
409 {"cr.dcr", 0},
410 {"cr.itm", 1},
411 {"cr.iva", 2},
412 {"cr.pta", 8},
413 {"cr.gpta", 9},
414 {"cr.ipsr", 16},
415 {"cr.isr", 17},
416 {"cr.iip", 19},
417 {"cr.ifa", 20},
418 {"cr.itir", 21},
419 {"cr.iipa", 22},
420 {"cr.ifs", 23},
421 {"cr.iim", 24},
422 {"cr.iha", 25},
423 {"cr.lid", 64},
424 {"cr.ivr", 65},
425 {"cr.tpr", 66},
426 {"cr.eoi", 67},
427 {"cr.irr0", 68},
428 {"cr.irr1", 69},
429 {"cr.irr2", 70},
430 {"cr.irr3", 71},
431 {"cr.itv", 72},
432 {"cr.pmv", 73},
433 {"cr.cmcv", 74},
434 {"cr.lrr0", 80},
435 {"cr.lrr1", 81}
436 };
437
438 #define PSR_MFL 4
439 #define PSR_IC 13
440 #define PSR_DFL 18
441 #define PSR_CPL 32
442
443 static const struct const_desc
444 {
445 const char *name;
446 valueT value;
447 }
448 const_bits[] =
449 {
450 /* PSR constant masks: */
451
452 /* 0: reserved */
453 {"psr.be", ((valueT) 1) << 1},
454 {"psr.up", ((valueT) 1) << 2},
455 {"psr.ac", ((valueT) 1) << 3},
456 {"psr.mfl", ((valueT) 1) << 4},
457 {"psr.mfh", ((valueT) 1) << 5},
458 /* 6-12: reserved */
459 {"psr.ic", ((valueT) 1) << 13},
460 {"psr.i", ((valueT) 1) << 14},
461 {"psr.pk", ((valueT) 1) << 15},
462 /* 16: reserved */
463 {"psr.dt", ((valueT) 1) << 17},
464 {"psr.dfl", ((valueT) 1) << 18},
465 {"psr.dfh", ((valueT) 1) << 19},
466 {"psr.sp", ((valueT) 1) << 20},
467 {"psr.pp", ((valueT) 1) << 21},
468 {"psr.di", ((valueT) 1) << 22},
469 {"psr.si", ((valueT) 1) << 23},
470 {"psr.db", ((valueT) 1) << 24},
471 {"psr.lp", ((valueT) 1) << 25},
472 {"psr.tb", ((valueT) 1) << 26},
473 {"psr.rt", ((valueT) 1) << 27},
474 /* 28-31: reserved */
475 /* 32-33: cpl (current privilege level) */
476 {"psr.is", ((valueT) 1) << 34},
477 {"psr.mc", ((valueT) 1) << 35},
478 {"psr.it", ((valueT) 1) << 36},
479 {"psr.id", ((valueT) 1) << 37},
480 {"psr.da", ((valueT) 1) << 38},
481 {"psr.dd", ((valueT) 1) << 39},
482 {"psr.ss", ((valueT) 1) << 40},
483 /* 41-42: ri (restart instruction) */
484 {"psr.ed", ((valueT) 1) << 43},
485 {"psr.bn", ((valueT) 1) << 44},
486 };
487
488 /* indirect register-sets/memory: */
489
490 static const struct
491 {
492 const char *name;
493 int regnum;
494 }
495 indirect_reg[] =
496 {
497 { "CPUID", IND_CPUID },
498 { "cpuid", IND_CPUID },
499 { "dbr", IND_DBR },
500 { "dtr", IND_DTR },
501 { "itr", IND_ITR },
502 { "ibr", IND_IBR },
503 { "msr", IND_MSR },
504 { "pkr", IND_PKR },
505 { "pmc", IND_PMC },
506 { "pmd", IND_PMD },
507 { "rr", IND_RR },
508 };
509
510 /* Pseudo functions used to indicate relocation types (these functions
511 start with an at sign (@). */
512 static struct
513 {
514 const char *name;
515 enum pseudo_type
516 {
517 PSEUDO_FUNC_NONE,
518 PSEUDO_FUNC_RELOC,
519 PSEUDO_FUNC_CONST,
520 PSEUDO_FUNC_REG,
521 PSEUDO_FUNC_FLOAT
522 }
523 type;
524 union
525 {
526 unsigned long ival;
527 symbolS *sym;
528 }
529 u;
530 }
531 pseudo_func[] =
532 {
533 /* reloc pseudo functions (these must come first!): */
534 { "dtpmod", PSEUDO_FUNC_RELOC, { 0 } },
535 { "dtprel", PSEUDO_FUNC_RELOC, { 0 } },
536 { "fptr", PSEUDO_FUNC_RELOC, { 0 } },
537 { "gprel", PSEUDO_FUNC_RELOC, { 0 } },
538 { "ltoff", PSEUDO_FUNC_RELOC, { 0 } },
539 { "ltoffx", PSEUDO_FUNC_RELOC, { 0 } },
540 { "pcrel", PSEUDO_FUNC_RELOC, { 0 } },
541 { "pltoff", PSEUDO_FUNC_RELOC, { 0 } },
542 { "secrel", PSEUDO_FUNC_RELOC, { 0 } },
543 { "segrel", PSEUDO_FUNC_RELOC, { 0 } },
544 { "tprel", PSEUDO_FUNC_RELOC, { 0 } },
545 { "ltv", PSEUDO_FUNC_RELOC, { 0 } },
546 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_FPTR_RELATIVE */
547 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_MODULE */
548 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_RELATIVE */
549 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_TP_RELATIVE */
550 { "iplt", PSEUDO_FUNC_RELOC, { 0 } },
551
552 /* mbtype4 constants: */
553 { "alt", PSEUDO_FUNC_CONST, { 0xa } },
554 { "brcst", PSEUDO_FUNC_CONST, { 0x0 } },
555 { "mix", PSEUDO_FUNC_CONST, { 0x8 } },
556 { "rev", PSEUDO_FUNC_CONST, { 0xb } },
557 { "shuf", PSEUDO_FUNC_CONST, { 0x9 } },
558
559 /* fclass constants: */
560 { "nat", PSEUDO_FUNC_CONST, { 0x100 } },
561 { "qnan", PSEUDO_FUNC_CONST, { 0x080 } },
562 { "snan", PSEUDO_FUNC_CONST, { 0x040 } },
563 { "pos", PSEUDO_FUNC_CONST, { 0x001 } },
564 { "neg", PSEUDO_FUNC_CONST, { 0x002 } },
565 { "zero", PSEUDO_FUNC_CONST, { 0x004 } },
566 { "unorm", PSEUDO_FUNC_CONST, { 0x008 } },
567 { "norm", PSEUDO_FUNC_CONST, { 0x010 } },
568 { "inf", PSEUDO_FUNC_CONST, { 0x020 } },
569
570 { "natval", PSEUDO_FUNC_CONST, { 0x100 } }, /* old usage */
571
572 /* hint constants: */
573 { "pause", PSEUDO_FUNC_CONST, { 0x0 } },
574
575 /* unwind-related constants: */
576 { "svr4", PSEUDO_FUNC_CONST, { ELFOSABI_NONE } },
577 { "hpux", PSEUDO_FUNC_CONST, { ELFOSABI_HPUX } },
578 { "nt", PSEUDO_FUNC_CONST, { 2 } }, /* conflicts w/ELFOSABI_NETBSD */
579 { "linux", PSEUDO_FUNC_CONST, { ELFOSABI_LINUX } },
580 { "freebsd", PSEUDO_FUNC_CONST, { ELFOSABI_FREEBSD } },
581 { "openvms", PSEUDO_FUNC_CONST, { ELFOSABI_OPENVMS } },
582 { "nsk", PSEUDO_FUNC_CONST, { ELFOSABI_NSK } },
583
584 /* unwind-related registers: */
585 { "priunat",PSEUDO_FUNC_REG, { REG_PRIUNAT } }
586 };
587
588 /* 41-bit nop opcodes (one per unit): */
589 static const bfd_vma nop[IA64_NUM_UNITS] =
590 {
591 0x0000000000LL, /* NIL => break 0 */
592 0x0008000000LL, /* I-unit nop */
593 0x0008000000LL, /* M-unit nop */
594 0x4000000000LL, /* B-unit nop */
595 0x0008000000LL, /* F-unit nop */
596 0x0008000000LL, /* L-"unit" nop */
597 0x0008000000LL, /* X-unit nop */
598 };
599
600 /* Can't be `const' as it's passed to input routines (which have the
601 habit of setting temporary sentinels. */
602 static char special_section_name[][20] =
603 {
604 {".bss"}, {".sbss"}, {".sdata"}, {".rodata"}, {".comment"},
605 {".IA_64.unwind"}, {".IA_64.unwind_info"},
606 {".init_array"}, {".fini_array"}
607 };
608
609 /* The best template for a particular sequence of up to three
610 instructions: */
611 #define N IA64_NUM_TYPES
612 static unsigned char best_template[N][N][N];
613 #undef N
614
615 /* Resource dependencies currently in effect */
616 static struct rsrc {
617 int depind; /* dependency index */
618 const struct ia64_dependency *dependency; /* actual dependency */
619 unsigned specific:1, /* is this a specific bit/regno? */
620 link_to_qp_branch:1; /* will a branch on the same QP clear it?*/
621 int index; /* specific regno/bit within dependency */
622 int note; /* optional qualifying note (0 if none) */
623 #define STATE_NONE 0
624 #define STATE_STOP 1
625 #define STATE_SRLZ 2
626 int insn_srlz; /* current insn serialization state */
627 int data_srlz; /* current data serialization state */
628 int qp_regno; /* qualifying predicate for this usage */
629 char *file; /* what file marked this dependency */
630 unsigned int line; /* what line marked this dependency */
631 struct mem_offset mem_offset; /* optional memory offset hint */
632 enum { CMP_NONE, CMP_OR, CMP_AND } cmp_type; /* OR or AND compare? */
633 int path; /* corresponding code entry index */
634 } *regdeps = NULL;
635 static int regdepslen = 0;
636 static int regdepstotlen = 0;
637 static const char *dv_mode[] = { "RAW", "WAW", "WAR" };
638 static const char *dv_sem[] = { "none", "implied", "impliedf",
639 "data", "instr", "specific", "stop", "other" };
640 static const char *dv_cmp_type[] = { "none", "OR", "AND" };
641
642 /* Current state of PR mutexation */
643 static struct qpmutex {
644 valueT prmask;
645 int path;
646 } *qp_mutexes = NULL; /* QP mutex bitmasks */
647 static int qp_mutexeslen = 0;
648 static int qp_mutexestotlen = 0;
649 static valueT qp_safe_across_calls = 0;
650
651 /* Current state of PR implications */
652 static struct qp_imply {
653 unsigned p1:6;
654 unsigned p2:6;
655 unsigned p2_branched:1;
656 int path;
657 } *qp_implies = NULL;
658 static int qp_implieslen = 0;
659 static int qp_impliestotlen = 0;
660
661 /* Keep track of static GR values so that indirect register usage can
662 sometimes be tracked. */
663 static struct gr {
664 unsigned known:1;
665 int path;
666 valueT value;
667 } gr_values[128] = {
668 {
669 1,
670 #ifdef INT_MAX
671 INT_MAX,
672 #else
673 (((1 << (8 * sizeof(gr_values->path) - 2)) - 1) << 1) + 1,
674 #endif
675 0
676 }
677 };
678
679 /* Remember the alignment frag. */
680 static fragS *align_frag;
681
682 /* These are the routines required to output the various types of
683 unwind records. */
684
685 /* A slot_number is a frag address plus the slot index (0-2). We use the
686 frag address here so that if there is a section switch in the middle of
687 a function, then instructions emitted to a different section are not
688 counted. Since there may be more than one frag for a function, this
689 means we also need to keep track of which frag this address belongs to
690 so we can compute inter-frag distances. This also nicely solves the
691 problem with nops emitted for align directives, which can't easily be
692 counted, but can easily be derived from frag sizes. */
693
694 typedef struct unw_rec_list {
695 unwind_record r;
696 unsigned long slot_number;
697 fragS *slot_frag;
698 struct unw_rec_list *next;
699 } unw_rec_list;
700
701 #define SLOT_NUM_NOT_SET (unsigned)-1
702
703 /* Linked list of saved prologue counts. A very poor
704 implementation of a map from label numbers to prologue counts. */
705 typedef struct label_prologue_count
706 {
707 struct label_prologue_count *next;
708 unsigned long label_number;
709 unsigned int prologue_count;
710 } label_prologue_count;
711
712 typedef struct proc_pending
713 {
714 symbolS *sym;
715 struct proc_pending *next;
716 } proc_pending;
717
718 static struct
719 {
720 /* Maintain a list of unwind entries for the current function. */
721 unw_rec_list *list;
722 unw_rec_list *tail;
723
724 /* Any unwind entires that should be attached to the current slot
725 that an insn is being constructed for. */
726 unw_rec_list *current_entry;
727
728 /* These are used to create the unwind table entry for this function. */
729 proc_pending proc_pending;
730 symbolS *info; /* pointer to unwind info */
731 symbolS *personality_routine;
732 segT saved_text_seg;
733 subsegT saved_text_subseg;
734 unsigned int force_unwind_entry : 1; /* force generation of unwind entry? */
735
736 /* TRUE if processing unwind directives in a prologue region. */
737 unsigned int prologue : 1;
738 unsigned int prologue_mask : 4;
739 unsigned int prologue_gr : 7;
740 unsigned int body : 1;
741 unsigned int insn : 1;
742 unsigned int prologue_count; /* number of .prologues seen so far */
743 /* Prologue counts at previous .label_state directives. */
744 struct label_prologue_count * saved_prologue_counts;
745 } unwind;
746
747 /* The input value is a negated offset from psp, and specifies an address
748 psp - offset. The encoded value is psp + 16 - (4 * offset). Thus we
749 must add 16 and divide by 4 to get the encoded value. */
750
751 #define ENCODED_PSP_OFFSET(OFFSET) (((OFFSET) + 16) / 4)
752
753 typedef void (*vbyte_func) PARAMS ((int, char *, char *));
754
755 /* Forward declarations: */
756 static void set_section PARAMS ((char *name));
757 static unsigned int set_regstack PARAMS ((unsigned int, unsigned int,
758 unsigned int, unsigned int));
759 static void dot_align (int);
760 static void dot_radix PARAMS ((int));
761 static void dot_special_section PARAMS ((int));
762 static void dot_proc PARAMS ((int));
763 static void dot_fframe PARAMS ((int));
764 static void dot_vframe PARAMS ((int));
765 static void dot_vframesp PARAMS ((int));
766 static void dot_save PARAMS ((int));
767 static void dot_restore PARAMS ((int));
768 static void dot_restorereg PARAMS ((int));
769 static void dot_handlerdata PARAMS ((int));
770 static void dot_unwentry PARAMS ((int));
771 static void dot_altrp PARAMS ((int));
772 static void dot_savemem PARAMS ((int));
773 static void dot_saveg PARAMS ((int));
774 static void dot_savef PARAMS ((int));
775 static void dot_saveb PARAMS ((int));
776 static void dot_savegf PARAMS ((int));
777 static void dot_spill PARAMS ((int));
778 static void dot_spillreg PARAMS ((int));
779 static void dot_spillmem PARAMS ((int));
780 static void dot_label_state PARAMS ((int));
781 static void dot_copy_state PARAMS ((int));
782 static void dot_unwabi PARAMS ((int));
783 static void dot_personality PARAMS ((int));
784 static void dot_body PARAMS ((int));
785 static void dot_prologue PARAMS ((int));
786 static void dot_endp PARAMS ((int));
787 static void dot_template PARAMS ((int));
788 static void dot_regstk PARAMS ((int));
789 static void dot_rot PARAMS ((int));
790 static void dot_byteorder PARAMS ((int));
791 static void dot_psr PARAMS ((int));
792 static void dot_alias PARAMS ((int));
793 static void dot_ln PARAMS ((int));
794 static void cross_section PARAMS ((int ref, void (*cons) PARAMS((int)), int ua));
795 static void dot_xdata PARAMS ((int));
796 static void stmt_float_cons PARAMS ((int));
797 static void stmt_cons_ua PARAMS ((int));
798 static void dot_xfloat_cons PARAMS ((int));
799 static void dot_xstringer PARAMS ((int));
800 static void dot_xdata_ua PARAMS ((int));
801 static void dot_xfloat_cons_ua PARAMS ((int));
802 static void print_prmask PARAMS ((valueT mask));
803 static void dot_pred_rel PARAMS ((int));
804 static void dot_reg_val PARAMS ((int));
805 static void dot_serialize PARAMS ((int));
806 static void dot_dv_mode PARAMS ((int));
807 static void dot_entry PARAMS ((int));
808 static void dot_mem_offset PARAMS ((int));
809 static void add_unwind_entry PARAMS((unw_rec_list *, int));
810 static symbolS *declare_register PARAMS ((const char *name, int regnum));
811 static void declare_register_set PARAMS ((const char *, int, int));
812 static unsigned int operand_width PARAMS ((enum ia64_opnd));
813 static enum operand_match_result operand_match PARAMS ((const struct ia64_opcode *idesc,
814 int index,
815 expressionS *e));
816 static int parse_operand PARAMS ((expressionS *, int));
817 static struct ia64_opcode * parse_operands PARAMS ((struct ia64_opcode *));
818 static void build_insn PARAMS ((struct slot *, bfd_vma *));
819 static void emit_one_bundle PARAMS ((void));
820 static void fix_insn PARAMS ((fixS *, const struct ia64_operand *, valueT));
821 static bfd_reloc_code_real_type ia64_gen_real_reloc_type PARAMS ((struct symbol *sym,
822 bfd_reloc_code_real_type r_type));
823 static void insn_group_break PARAMS ((int, int, int));
824 static void mark_resource PARAMS ((struct ia64_opcode *, const struct ia64_dependency *,
825 struct rsrc *, int depind, int path));
826 static void add_qp_mutex PARAMS((valueT mask));
827 static void add_qp_imply PARAMS((int p1, int p2));
828 static void clear_qp_branch_flag PARAMS((valueT mask));
829 static void clear_qp_mutex PARAMS((valueT mask));
830 static void clear_qp_implies PARAMS((valueT p1_mask, valueT p2_mask));
831 static int has_suffix_p PARAMS((const char *, const char *));
832 static void clear_register_values PARAMS ((void));
833 static void print_dependency PARAMS ((const char *action, int depind));
834 static void instruction_serialization PARAMS ((void));
835 static void data_serialization PARAMS ((void));
836 static void remove_marked_resource PARAMS ((struct rsrc *));
837 static int is_conditional_branch PARAMS ((struct ia64_opcode *));
838 static int is_taken_branch PARAMS ((struct ia64_opcode *));
839 static int is_interruption_or_rfi PARAMS ((struct ia64_opcode *));
840 static int depends_on PARAMS ((int, struct ia64_opcode *));
841 static int specify_resource PARAMS ((const struct ia64_dependency *,
842 struct ia64_opcode *, int, struct rsrc [], int, int));
843 static int check_dv PARAMS((struct ia64_opcode *idesc));
844 static void check_dependencies PARAMS((struct ia64_opcode *));
845 static void mark_resources PARAMS((struct ia64_opcode *));
846 static void update_dependencies PARAMS((struct ia64_opcode *));
847 static void note_register_values PARAMS((struct ia64_opcode *));
848 static int qp_mutex PARAMS ((int, int, int));
849 static int resources_match PARAMS ((struct rsrc *, struct ia64_opcode *, int, int, int));
850 static void output_vbyte_mem PARAMS ((int, char *, char *));
851 static void count_output PARAMS ((int, char *, char *));
852 static void output_R1_format PARAMS ((vbyte_func, unw_record_type, int));
853 static void output_R2_format PARAMS ((vbyte_func, int, int, unsigned long));
854 static void output_R3_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
855 static void output_P1_format PARAMS ((vbyte_func, int));
856 static void output_P2_format PARAMS ((vbyte_func, int, int));
857 static void output_P3_format PARAMS ((vbyte_func, unw_record_type, int));
858 static void output_P4_format PARAMS ((vbyte_func, unsigned char *, unsigned long));
859 static void output_P5_format PARAMS ((vbyte_func, int, unsigned long));
860 static void output_P6_format PARAMS ((vbyte_func, unw_record_type, int));
861 static void output_P7_format PARAMS ((vbyte_func, unw_record_type, unsigned long, unsigned long));
862 static void output_P8_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
863 static void output_P9_format PARAMS ((vbyte_func, int, int));
864 static void output_P10_format PARAMS ((vbyte_func, int, int));
865 static void output_B1_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
866 static void output_B2_format PARAMS ((vbyte_func, unsigned long, unsigned long));
867 static void output_B3_format PARAMS ((vbyte_func, unsigned long, unsigned long));
868 static void output_B4_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
869 static char format_ab_reg PARAMS ((int, int));
870 static void output_X1_format PARAMS ((vbyte_func, unw_record_type, int, int, unsigned long,
871 unsigned long));
872 static void output_X2_format PARAMS ((vbyte_func, int, int, int, int, int, unsigned long));
873 static void output_X3_format PARAMS ((vbyte_func, unw_record_type, int, int, int, unsigned long,
874 unsigned long));
875 static void output_X4_format PARAMS ((vbyte_func, int, int, int, int, int, int, unsigned long));
876 static unw_rec_list *output_endp PARAMS ((void));
877 static unw_rec_list *output_prologue PARAMS ((void));
878 static unw_rec_list *output_prologue_gr PARAMS ((unsigned int, unsigned int));
879 static unw_rec_list *output_body PARAMS ((void));
880 static unw_rec_list *output_mem_stack_f PARAMS ((unsigned int));
881 static unw_rec_list *output_mem_stack_v PARAMS ((void));
882 static unw_rec_list *output_psp_gr PARAMS ((unsigned int));
883 static unw_rec_list *output_psp_sprel PARAMS ((unsigned int));
884 static unw_rec_list *output_rp_when PARAMS ((void));
885 static unw_rec_list *output_rp_gr PARAMS ((unsigned int));
886 static unw_rec_list *output_rp_br PARAMS ((unsigned int));
887 static unw_rec_list *output_rp_psprel PARAMS ((unsigned int));
888 static unw_rec_list *output_rp_sprel PARAMS ((unsigned int));
889 static unw_rec_list *output_pfs_when PARAMS ((void));
890 static unw_rec_list *output_pfs_gr PARAMS ((unsigned int));
891 static unw_rec_list *output_pfs_psprel PARAMS ((unsigned int));
892 static unw_rec_list *output_pfs_sprel PARAMS ((unsigned int));
893 static unw_rec_list *output_preds_when PARAMS ((void));
894 static unw_rec_list *output_preds_gr PARAMS ((unsigned int));
895 static unw_rec_list *output_preds_psprel PARAMS ((unsigned int));
896 static unw_rec_list *output_preds_sprel PARAMS ((unsigned int));
897 static unw_rec_list *output_fr_mem PARAMS ((unsigned int));
898 static unw_rec_list *output_frgr_mem PARAMS ((unsigned int, unsigned int));
899 static unw_rec_list *output_gr_gr PARAMS ((unsigned int, unsigned int));
900 static unw_rec_list *output_gr_mem PARAMS ((unsigned int));
901 static unw_rec_list *output_br_mem PARAMS ((unsigned int));
902 static unw_rec_list *output_br_gr PARAMS ((unsigned int, unsigned int));
903 static unw_rec_list *output_spill_base PARAMS ((unsigned int));
904 static unw_rec_list *output_unat_when PARAMS ((void));
905 static unw_rec_list *output_unat_gr PARAMS ((unsigned int));
906 static unw_rec_list *output_unat_psprel PARAMS ((unsigned int));
907 static unw_rec_list *output_unat_sprel PARAMS ((unsigned int));
908 static unw_rec_list *output_lc_when PARAMS ((void));
909 static unw_rec_list *output_lc_gr PARAMS ((unsigned int));
910 static unw_rec_list *output_lc_psprel PARAMS ((unsigned int));
911 static unw_rec_list *output_lc_sprel PARAMS ((unsigned int));
912 static unw_rec_list *output_fpsr_when PARAMS ((void));
913 static unw_rec_list *output_fpsr_gr PARAMS ((unsigned int));
914 static unw_rec_list *output_fpsr_psprel PARAMS ((unsigned int));
915 static unw_rec_list *output_fpsr_sprel PARAMS ((unsigned int));
916 static unw_rec_list *output_priunat_when_gr PARAMS ((void));
917 static unw_rec_list *output_priunat_when_mem PARAMS ((void));
918 static unw_rec_list *output_priunat_gr PARAMS ((unsigned int));
919 static unw_rec_list *output_priunat_psprel PARAMS ((unsigned int));
920 static unw_rec_list *output_priunat_sprel PARAMS ((unsigned int));
921 static unw_rec_list *output_bsp_when PARAMS ((void));
922 static unw_rec_list *output_bsp_gr PARAMS ((unsigned int));
923 static unw_rec_list *output_bsp_psprel PARAMS ((unsigned int));
924 static unw_rec_list *output_bsp_sprel PARAMS ((unsigned int));
925 static unw_rec_list *output_bspstore_when PARAMS ((void));
926 static unw_rec_list *output_bspstore_gr PARAMS ((unsigned int));
927 static unw_rec_list *output_bspstore_psprel PARAMS ((unsigned int));
928 static unw_rec_list *output_bspstore_sprel PARAMS ((unsigned int));
929 static unw_rec_list *output_rnat_when PARAMS ((void));
930 static unw_rec_list *output_rnat_gr PARAMS ((unsigned int));
931 static unw_rec_list *output_rnat_psprel PARAMS ((unsigned int));
932 static unw_rec_list *output_rnat_sprel PARAMS ((unsigned int));
933 static unw_rec_list *output_unwabi PARAMS ((unsigned long, unsigned long));
934 static unw_rec_list *output_epilogue PARAMS ((unsigned long));
935 static unw_rec_list *output_label_state PARAMS ((unsigned long));
936 static unw_rec_list *output_copy_state PARAMS ((unsigned long));
937 static unw_rec_list *output_spill_psprel PARAMS ((unsigned int, unsigned int, unsigned int,
938 unsigned int));
939 static unw_rec_list *output_spill_sprel PARAMS ((unsigned int, unsigned int, unsigned int,
940 unsigned int));
941 static unw_rec_list *output_spill_reg PARAMS ((unsigned int, unsigned int, unsigned int,
942 unsigned int, unsigned int));
943 static void process_one_record PARAMS ((unw_rec_list *, vbyte_func));
944 static void process_unw_records PARAMS ((unw_rec_list *, vbyte_func));
945 static int calc_record_size PARAMS ((unw_rec_list *));
946 static void set_imask PARAMS ((unw_rec_list *, unsigned long, unsigned long, unsigned int));
947 static unsigned long slot_index PARAMS ((unsigned long, fragS *,
948 unsigned long, fragS *,
949 int));
950 static unw_rec_list *optimize_unw_records PARAMS ((unw_rec_list *));
951 static void fixup_unw_records PARAMS ((unw_rec_list *, int));
952 static int parse_predicate_and_operand PARAMS ((expressionS *, unsigned *, const char *));
953 static void convert_expr_to_ab_reg PARAMS ((const expressionS *, unsigned int *, unsigned int *, const char *, int));
954 static void convert_expr_to_xy_reg PARAMS ((const expressionS *, unsigned int *, unsigned int *, const char *, int));
955 static unsigned int get_saved_prologue_count PARAMS ((unsigned long));
956 static void save_prologue_count PARAMS ((unsigned long, unsigned int));
957 static void free_saved_prologue_counts PARAMS ((void));
958
959 /* Determine if application register REGNUM resides only in the integer
960 unit (as opposed to the memory unit). */
961 static int
962 ar_is_only_in_integer_unit (int reg)
963 {
964 reg -= REG_AR;
965 return reg >= 64 && reg <= 111;
966 }
967
968 /* Determine if application register REGNUM resides only in the memory
969 unit (as opposed to the integer unit). */
970 static int
971 ar_is_only_in_memory_unit (int reg)
972 {
973 reg -= REG_AR;
974 return reg >= 0 && reg <= 47;
975 }
976
977 /* Switch to section NAME and create section if necessary. It's
978 rather ugly that we have to manipulate input_line_pointer but I
979 don't see any other way to accomplish the same thing without
980 changing obj-elf.c (which may be the Right Thing, in the end). */
981 static void
982 set_section (name)
983 char *name;
984 {
985 char *saved_input_line_pointer;
986
987 saved_input_line_pointer = input_line_pointer;
988 input_line_pointer = name;
989 obj_elf_section (0);
990 input_line_pointer = saved_input_line_pointer;
991 }
992
993 /* Map 's' to SHF_IA_64_SHORT. */
994
995 int
996 ia64_elf_section_letter (letter, ptr_msg)
997 int letter;
998 char **ptr_msg;
999 {
1000 if (letter == 's')
1001 return SHF_IA_64_SHORT;
1002 else if (letter == 'o')
1003 return SHF_LINK_ORDER;
1004
1005 *ptr_msg = _("Bad .section directive: want a,o,s,w,x,M,S,G,T in string");
1006 return -1;
1007 }
1008
1009 /* Map SHF_IA_64_SHORT to SEC_SMALL_DATA. */
1010
1011 flagword
1012 ia64_elf_section_flags (flags, attr, type)
1013 flagword flags;
1014 int attr, type ATTRIBUTE_UNUSED;
1015 {
1016 if (attr & SHF_IA_64_SHORT)
1017 flags |= SEC_SMALL_DATA;
1018 return flags;
1019 }
1020
1021 int
1022 ia64_elf_section_type (str, len)
1023 const char *str;
1024 size_t len;
1025 {
1026 #define STREQ(s) ((len == sizeof (s) - 1) && (strncmp (str, s, sizeof (s) - 1) == 0))
1027
1028 if (STREQ (ELF_STRING_ia64_unwind_info))
1029 return SHT_PROGBITS;
1030
1031 if (STREQ (ELF_STRING_ia64_unwind_info_once))
1032 return SHT_PROGBITS;
1033
1034 if (STREQ (ELF_STRING_ia64_unwind))
1035 return SHT_IA_64_UNWIND;
1036
1037 if (STREQ (ELF_STRING_ia64_unwind_once))
1038 return SHT_IA_64_UNWIND;
1039
1040 if (STREQ ("unwind"))
1041 return SHT_IA_64_UNWIND;
1042
1043 return -1;
1044 #undef STREQ
1045 }
1046
1047 static unsigned int
1048 set_regstack (ins, locs, outs, rots)
1049 unsigned int ins, locs, outs, rots;
1050 {
1051 /* Size of frame. */
1052 unsigned int sof;
1053
1054 sof = ins + locs + outs;
1055 if (sof > 96)
1056 {
1057 as_bad ("Size of frame exceeds maximum of 96 registers");
1058 return 0;
1059 }
1060 if (rots > sof)
1061 {
1062 as_warn ("Size of rotating registers exceeds frame size");
1063 return 0;
1064 }
1065 md.in.base = REG_GR + 32;
1066 md.loc.base = md.in.base + ins;
1067 md.out.base = md.loc.base + locs;
1068
1069 md.in.num_regs = ins;
1070 md.loc.num_regs = locs;
1071 md.out.num_regs = outs;
1072 md.rot.num_regs = rots;
1073 return sof;
1074 }
1075
1076 void
1077 ia64_flush_insns ()
1078 {
1079 struct label_fix *lfix;
1080 segT saved_seg;
1081 subsegT saved_subseg;
1082 unw_rec_list *ptr;
1083
1084 if (!md.last_text_seg)
1085 return;
1086
1087 saved_seg = now_seg;
1088 saved_subseg = now_subseg;
1089
1090 subseg_set (md.last_text_seg, 0);
1091
1092 while (md.num_slots_in_use > 0)
1093 emit_one_bundle (); /* force out queued instructions */
1094
1095 /* In case there are labels following the last instruction, resolve
1096 those now: */
1097 for (lfix = CURR_SLOT.label_fixups; lfix; lfix = lfix->next)
1098 {
1099 S_SET_VALUE (lfix->sym, frag_now_fix ());
1100 symbol_set_frag (lfix->sym, frag_now);
1101 }
1102 CURR_SLOT.label_fixups = 0;
1103 for (lfix = CURR_SLOT.tag_fixups; lfix; lfix = lfix->next)
1104 {
1105 S_SET_VALUE (lfix->sym, frag_now_fix ());
1106 symbol_set_frag (lfix->sym, frag_now);
1107 }
1108 CURR_SLOT.tag_fixups = 0;
1109
1110 /* In case there are unwind directives following the last instruction,
1111 resolve those now. We only handle prologue, body, and endp directives
1112 here. Give an error for others. */
1113 for (ptr = unwind.current_entry; ptr; ptr = ptr->next)
1114 {
1115 switch (ptr->r.type)
1116 {
1117 case prologue:
1118 case prologue_gr:
1119 case body:
1120 case endp:
1121 ptr->slot_number = (unsigned long) frag_more (0);
1122 ptr->slot_frag = frag_now;
1123 break;
1124
1125 /* Allow any record which doesn't have a "t" field (i.e.,
1126 doesn't relate to a particular instruction). */
1127 case unwabi:
1128 case br_gr:
1129 case copy_state:
1130 case fr_mem:
1131 case frgr_mem:
1132 case gr_gr:
1133 case gr_mem:
1134 case label_state:
1135 case rp_br:
1136 case spill_base:
1137 case spill_mask:
1138 /* nothing */
1139 break;
1140
1141 default:
1142 as_bad (_("Unwind directive not followed by an instruction."));
1143 break;
1144 }
1145 }
1146 unwind.current_entry = NULL;
1147
1148 subseg_set (saved_seg, saved_subseg);
1149
1150 if (md.qp.X_op == O_register)
1151 as_bad ("qualifying predicate not followed by instruction");
1152 }
1153
1154 static void
1155 ia64_do_align (int nbytes)
1156 {
1157 char *saved_input_line_pointer = input_line_pointer;
1158
1159 input_line_pointer = "";
1160 s_align_bytes (nbytes);
1161 input_line_pointer = saved_input_line_pointer;
1162 }
1163
1164 void
1165 ia64_cons_align (nbytes)
1166 int nbytes;
1167 {
1168 if (md.auto_align)
1169 {
1170 char *saved_input_line_pointer = input_line_pointer;
1171 input_line_pointer = "";
1172 s_align_bytes (nbytes);
1173 input_line_pointer = saved_input_line_pointer;
1174 }
1175 }
1176
1177 /* Output COUNT bytes to a memory location. */
1178 static char *vbyte_mem_ptr = NULL;
1179
1180 void
1181 output_vbyte_mem (count, ptr, comment)
1182 int count;
1183 char *ptr;
1184 char *comment ATTRIBUTE_UNUSED;
1185 {
1186 int x;
1187 if (vbyte_mem_ptr == NULL)
1188 abort ();
1189
1190 if (count == 0)
1191 return;
1192 for (x = 0; x < count; x++)
1193 *(vbyte_mem_ptr++) = ptr[x];
1194 }
1195
1196 /* Count the number of bytes required for records. */
1197 static int vbyte_count = 0;
1198 void
1199 count_output (count, ptr, comment)
1200 int count;
1201 char *ptr ATTRIBUTE_UNUSED;
1202 char *comment ATTRIBUTE_UNUSED;
1203 {
1204 vbyte_count += count;
1205 }
1206
1207 static void
1208 output_R1_format (f, rtype, rlen)
1209 vbyte_func f;
1210 unw_record_type rtype;
1211 int rlen;
1212 {
1213 int r = 0;
1214 char byte;
1215 if (rlen > 0x1f)
1216 {
1217 output_R3_format (f, rtype, rlen);
1218 return;
1219 }
1220
1221 if (rtype == body)
1222 r = 1;
1223 else if (rtype != prologue)
1224 as_bad ("record type is not valid");
1225
1226 byte = UNW_R1 | (r << 5) | (rlen & 0x1f);
1227 (*f) (1, &byte, NULL);
1228 }
1229
1230 static void
1231 output_R2_format (f, mask, grsave, rlen)
1232 vbyte_func f;
1233 int mask, grsave;
1234 unsigned long rlen;
1235 {
1236 char bytes[20];
1237 int count = 2;
1238 mask = (mask & 0x0f);
1239 grsave = (grsave & 0x7f);
1240
1241 bytes[0] = (UNW_R2 | (mask >> 1));
1242 bytes[1] = (((mask & 0x01) << 7) | grsave);
1243 count += output_leb128 (bytes + 2, rlen, 0);
1244 (*f) (count, bytes, NULL);
1245 }
1246
1247 static void
1248 output_R3_format (f, rtype, rlen)
1249 vbyte_func f;
1250 unw_record_type rtype;
1251 unsigned long rlen;
1252 {
1253 int r = 0, count;
1254 char bytes[20];
1255 if (rlen <= 0x1f)
1256 {
1257 output_R1_format (f, rtype, rlen);
1258 return;
1259 }
1260
1261 if (rtype == body)
1262 r = 1;
1263 else if (rtype != prologue)
1264 as_bad ("record type is not valid");
1265 bytes[0] = (UNW_R3 | r);
1266 count = output_leb128 (bytes + 1, rlen, 0);
1267 (*f) (count + 1, bytes, NULL);
1268 }
1269
1270 static void
1271 output_P1_format (f, brmask)
1272 vbyte_func f;
1273 int brmask;
1274 {
1275 char byte;
1276 byte = UNW_P1 | (brmask & 0x1f);
1277 (*f) (1, &byte, NULL);
1278 }
1279
1280 static void
1281 output_P2_format (f, brmask, gr)
1282 vbyte_func f;
1283 int brmask;
1284 int gr;
1285 {
1286 char bytes[2];
1287 brmask = (brmask & 0x1f);
1288 bytes[0] = UNW_P2 | (brmask >> 1);
1289 bytes[1] = (((brmask & 1) << 7) | gr);
1290 (*f) (2, bytes, NULL);
1291 }
1292
1293 static void
1294 output_P3_format (f, rtype, reg)
1295 vbyte_func f;
1296 unw_record_type rtype;
1297 int reg;
1298 {
1299 char bytes[2];
1300 int r = 0;
1301 reg = (reg & 0x7f);
1302 switch (rtype)
1303 {
1304 case psp_gr:
1305 r = 0;
1306 break;
1307 case rp_gr:
1308 r = 1;
1309 break;
1310 case pfs_gr:
1311 r = 2;
1312 break;
1313 case preds_gr:
1314 r = 3;
1315 break;
1316 case unat_gr:
1317 r = 4;
1318 break;
1319 case lc_gr:
1320 r = 5;
1321 break;
1322 case rp_br:
1323 r = 6;
1324 break;
1325 case rnat_gr:
1326 r = 7;
1327 break;
1328 case bsp_gr:
1329 r = 8;
1330 break;
1331 case bspstore_gr:
1332 r = 9;
1333 break;
1334 case fpsr_gr:
1335 r = 10;
1336 break;
1337 case priunat_gr:
1338 r = 11;
1339 break;
1340 default:
1341 as_bad ("Invalid record type for P3 format.");
1342 }
1343 bytes[0] = (UNW_P3 | (r >> 1));
1344 bytes[1] = (((r & 1) << 7) | reg);
1345 (*f) (2, bytes, NULL);
1346 }
1347
1348 static void
1349 output_P4_format (f, imask, imask_size)
1350 vbyte_func f;
1351 unsigned char *imask;
1352 unsigned long imask_size;
1353 {
1354 imask[0] = UNW_P4;
1355 (*f) (imask_size, (char *) imask, NULL);
1356 }
1357
1358 static void
1359 output_P5_format (f, grmask, frmask)
1360 vbyte_func f;
1361 int grmask;
1362 unsigned long frmask;
1363 {
1364 char bytes[4];
1365 grmask = (grmask & 0x0f);
1366
1367 bytes[0] = UNW_P5;
1368 bytes[1] = ((grmask << 4) | ((frmask & 0x000f0000) >> 16));
1369 bytes[2] = ((frmask & 0x0000ff00) >> 8);
1370 bytes[3] = (frmask & 0x000000ff);
1371 (*f) (4, bytes, NULL);
1372 }
1373
1374 static void
1375 output_P6_format (f, rtype, rmask)
1376 vbyte_func f;
1377 unw_record_type rtype;
1378 int rmask;
1379 {
1380 char byte;
1381 int r = 0;
1382
1383 if (rtype == gr_mem)
1384 r = 1;
1385 else if (rtype != fr_mem)
1386 as_bad ("Invalid record type for format P6");
1387 byte = (UNW_P6 | (r << 4) | (rmask & 0x0f));
1388 (*f) (1, &byte, NULL);
1389 }
1390
1391 static void
1392 output_P7_format (f, rtype, w1, w2)
1393 vbyte_func f;
1394 unw_record_type rtype;
1395 unsigned long w1;
1396 unsigned long w2;
1397 {
1398 char bytes[20];
1399 int count = 1;
1400 int r = 0;
1401 count += output_leb128 (bytes + 1, w1, 0);
1402 switch (rtype)
1403 {
1404 case mem_stack_f:
1405 r = 0;
1406 count += output_leb128 (bytes + count, w2 >> 4, 0);
1407 break;
1408 case mem_stack_v:
1409 r = 1;
1410 break;
1411 case spill_base:
1412 r = 2;
1413 break;
1414 case psp_sprel:
1415 r = 3;
1416 break;
1417 case rp_when:
1418 r = 4;
1419 break;
1420 case rp_psprel:
1421 r = 5;
1422 break;
1423 case pfs_when:
1424 r = 6;
1425 break;
1426 case pfs_psprel:
1427 r = 7;
1428 break;
1429 case preds_when:
1430 r = 8;
1431 break;
1432 case preds_psprel:
1433 r = 9;
1434 break;
1435 case lc_when:
1436 r = 10;
1437 break;
1438 case lc_psprel:
1439 r = 11;
1440 break;
1441 case unat_when:
1442 r = 12;
1443 break;
1444 case unat_psprel:
1445 r = 13;
1446 break;
1447 case fpsr_when:
1448 r = 14;
1449 break;
1450 case fpsr_psprel:
1451 r = 15;
1452 break;
1453 default:
1454 break;
1455 }
1456 bytes[0] = (UNW_P7 | r);
1457 (*f) (count, bytes, NULL);
1458 }
1459
1460 static void
1461 output_P8_format (f, rtype, t)
1462 vbyte_func f;
1463 unw_record_type rtype;
1464 unsigned long t;
1465 {
1466 char bytes[20];
1467 int r = 0;
1468 int count = 2;
1469 bytes[0] = UNW_P8;
1470 switch (rtype)
1471 {
1472 case rp_sprel:
1473 r = 1;
1474 break;
1475 case pfs_sprel:
1476 r = 2;
1477 break;
1478 case preds_sprel:
1479 r = 3;
1480 break;
1481 case lc_sprel:
1482 r = 4;
1483 break;
1484 case unat_sprel:
1485 r = 5;
1486 break;
1487 case fpsr_sprel:
1488 r = 6;
1489 break;
1490 case bsp_when:
1491 r = 7;
1492 break;
1493 case bsp_psprel:
1494 r = 8;
1495 break;
1496 case bsp_sprel:
1497 r = 9;
1498 break;
1499 case bspstore_when:
1500 r = 10;
1501 break;
1502 case bspstore_psprel:
1503 r = 11;
1504 break;
1505 case bspstore_sprel:
1506 r = 12;
1507 break;
1508 case rnat_when:
1509 r = 13;
1510 break;
1511 case rnat_psprel:
1512 r = 14;
1513 break;
1514 case rnat_sprel:
1515 r = 15;
1516 break;
1517 case priunat_when_gr:
1518 r = 16;
1519 break;
1520 case priunat_psprel:
1521 r = 17;
1522 break;
1523 case priunat_sprel:
1524 r = 18;
1525 break;
1526 case priunat_when_mem:
1527 r = 19;
1528 break;
1529 default:
1530 break;
1531 }
1532 bytes[1] = r;
1533 count += output_leb128 (bytes + 2, t, 0);
1534 (*f) (count, bytes, NULL);
1535 }
1536
1537 static void
1538 output_P9_format (f, grmask, gr)
1539 vbyte_func f;
1540 int grmask;
1541 int gr;
1542 {
1543 char bytes[3];
1544 bytes[0] = UNW_P9;
1545 bytes[1] = (grmask & 0x0f);
1546 bytes[2] = (gr & 0x7f);
1547 (*f) (3, bytes, NULL);
1548 }
1549
1550 static void
1551 output_P10_format (f, abi, context)
1552 vbyte_func f;
1553 int abi;
1554 int context;
1555 {
1556 char bytes[3];
1557 bytes[0] = UNW_P10;
1558 bytes[1] = (abi & 0xff);
1559 bytes[2] = (context & 0xff);
1560 (*f) (3, bytes, NULL);
1561 }
1562
1563 static void
1564 output_B1_format (f, rtype, label)
1565 vbyte_func f;
1566 unw_record_type rtype;
1567 unsigned long label;
1568 {
1569 char byte;
1570 int r = 0;
1571 if (label > 0x1f)
1572 {
1573 output_B4_format (f, rtype, label);
1574 return;
1575 }
1576 if (rtype == copy_state)
1577 r = 1;
1578 else if (rtype != label_state)
1579 as_bad ("Invalid record type for format B1");
1580
1581 byte = (UNW_B1 | (r << 5) | (label & 0x1f));
1582 (*f) (1, &byte, NULL);
1583 }
1584
1585 static void
1586 output_B2_format (f, ecount, t)
1587 vbyte_func f;
1588 unsigned long ecount;
1589 unsigned long t;
1590 {
1591 char bytes[20];
1592 int count = 1;
1593 if (ecount > 0x1f)
1594 {
1595 output_B3_format (f, ecount, t);
1596 return;
1597 }
1598 bytes[0] = (UNW_B2 | (ecount & 0x1f));
1599 count += output_leb128 (bytes + 1, t, 0);
1600 (*f) (count, bytes, NULL);
1601 }
1602
1603 static void
1604 output_B3_format (f, ecount, t)
1605 vbyte_func f;
1606 unsigned long ecount;
1607 unsigned long t;
1608 {
1609 char bytes[20];
1610 int count = 1;
1611 if (ecount <= 0x1f)
1612 {
1613 output_B2_format (f, ecount, t);
1614 return;
1615 }
1616 bytes[0] = UNW_B3;
1617 count += output_leb128 (bytes + 1, t, 0);
1618 count += output_leb128 (bytes + count, ecount, 0);
1619 (*f) (count, bytes, NULL);
1620 }
1621
1622 static void
1623 output_B4_format (f, rtype, label)
1624 vbyte_func f;
1625 unw_record_type rtype;
1626 unsigned long label;
1627 {
1628 char bytes[20];
1629 int r = 0;
1630 int count = 1;
1631 if (label <= 0x1f)
1632 {
1633 output_B1_format (f, rtype, label);
1634 return;
1635 }
1636
1637 if (rtype == copy_state)
1638 r = 1;
1639 else if (rtype != label_state)
1640 as_bad ("Invalid record type for format B1");
1641
1642 bytes[0] = (UNW_B4 | (r << 3));
1643 count += output_leb128 (bytes + 1, label, 0);
1644 (*f) (count, bytes, NULL);
1645 }
1646
1647 static char
1648 format_ab_reg (ab, reg)
1649 int ab;
1650 int reg;
1651 {
1652 int ret;
1653 ab = (ab & 3);
1654 reg = (reg & 0x1f);
1655 ret = (ab << 5) | reg;
1656 return ret;
1657 }
1658
1659 static void
1660 output_X1_format (f, rtype, ab, reg, t, w1)
1661 vbyte_func f;
1662 unw_record_type rtype;
1663 int ab, reg;
1664 unsigned long t;
1665 unsigned long w1;
1666 {
1667 char bytes[20];
1668 int r = 0;
1669 int count = 2;
1670 bytes[0] = UNW_X1;
1671
1672 if (rtype == spill_sprel)
1673 r = 1;
1674 else if (rtype != spill_psprel)
1675 as_bad ("Invalid record type for format X1");
1676 bytes[1] = ((r << 7) | format_ab_reg (ab, reg));
1677 count += output_leb128 (bytes + 2, t, 0);
1678 count += output_leb128 (bytes + count, w1, 0);
1679 (*f) (count, bytes, NULL);
1680 }
1681
1682 static void
1683 output_X2_format (f, ab, reg, x, y, treg, t)
1684 vbyte_func f;
1685 int ab, reg;
1686 int x, y, treg;
1687 unsigned long t;
1688 {
1689 char bytes[20];
1690 int count = 3;
1691 bytes[0] = UNW_X2;
1692 bytes[1] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1693 bytes[2] = (((y & 1) << 7) | (treg & 0x7f));
1694 count += output_leb128 (bytes + 3, t, 0);
1695 (*f) (count, bytes, NULL);
1696 }
1697
1698 static void
1699 output_X3_format (f, rtype, qp, ab, reg, t, w1)
1700 vbyte_func f;
1701 unw_record_type rtype;
1702 int qp;
1703 int ab, reg;
1704 unsigned long t;
1705 unsigned long w1;
1706 {
1707 char bytes[20];
1708 int r = 0;
1709 int count = 3;
1710 bytes[0] = UNW_X3;
1711
1712 if (rtype == spill_sprel_p)
1713 r = 1;
1714 else if (rtype != spill_psprel_p)
1715 as_bad ("Invalid record type for format X3");
1716 bytes[1] = ((r << 7) | (qp & 0x3f));
1717 bytes[2] = format_ab_reg (ab, reg);
1718 count += output_leb128 (bytes + 3, t, 0);
1719 count += output_leb128 (bytes + count, w1, 0);
1720 (*f) (count, bytes, NULL);
1721 }
1722
1723 static void
1724 output_X4_format (f, qp, ab, reg, x, y, treg, t)
1725 vbyte_func f;
1726 int qp;
1727 int ab, reg;
1728 int x, y, treg;
1729 unsigned long t;
1730 {
1731 char bytes[20];
1732 int count = 4;
1733 bytes[0] = UNW_X4;
1734 bytes[1] = (qp & 0x3f);
1735 bytes[2] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1736 bytes[3] = (((y & 1) << 7) | (treg & 0x7f));
1737 count += output_leb128 (bytes + 4, t, 0);
1738 (*f) (count, bytes, NULL);
1739 }
1740
1741 /* This function allocates a record list structure, and initializes fields. */
1742
1743 static unw_rec_list *
1744 alloc_record (unw_record_type t)
1745 {
1746 unw_rec_list *ptr;
1747 ptr = xmalloc (sizeof (*ptr));
1748 ptr->next = NULL;
1749 ptr->slot_number = SLOT_NUM_NOT_SET;
1750 ptr->r.type = t;
1751 return ptr;
1752 }
1753
1754 /* Dummy unwind record used for calculating the length of the last prologue or
1755 body region. */
1756
1757 static unw_rec_list *
1758 output_endp ()
1759 {
1760 unw_rec_list *ptr = alloc_record (endp);
1761 return ptr;
1762 }
1763
1764 static unw_rec_list *
1765 output_prologue ()
1766 {
1767 unw_rec_list *ptr = alloc_record (prologue);
1768 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1769 return ptr;
1770 }
1771
1772 static unw_rec_list *
1773 output_prologue_gr (saved_mask, reg)
1774 unsigned int saved_mask;
1775 unsigned int reg;
1776 {
1777 unw_rec_list *ptr = alloc_record (prologue_gr);
1778 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1779 ptr->r.record.r.grmask = saved_mask;
1780 ptr->r.record.r.grsave = reg;
1781 return ptr;
1782 }
1783
1784 static unw_rec_list *
1785 output_body ()
1786 {
1787 unw_rec_list *ptr = alloc_record (body);
1788 return ptr;
1789 }
1790
1791 static unw_rec_list *
1792 output_mem_stack_f (size)
1793 unsigned int size;
1794 {
1795 unw_rec_list *ptr = alloc_record (mem_stack_f);
1796 ptr->r.record.p.size = size;
1797 return ptr;
1798 }
1799
1800 static unw_rec_list *
1801 output_mem_stack_v ()
1802 {
1803 unw_rec_list *ptr = alloc_record (mem_stack_v);
1804 return ptr;
1805 }
1806
1807 static unw_rec_list *
1808 output_psp_gr (gr)
1809 unsigned int gr;
1810 {
1811 unw_rec_list *ptr = alloc_record (psp_gr);
1812 ptr->r.record.p.gr = gr;
1813 return ptr;
1814 }
1815
1816 static unw_rec_list *
1817 output_psp_sprel (offset)
1818 unsigned int offset;
1819 {
1820 unw_rec_list *ptr = alloc_record (psp_sprel);
1821 ptr->r.record.p.spoff = offset / 4;
1822 return ptr;
1823 }
1824
1825 static unw_rec_list *
1826 output_rp_when ()
1827 {
1828 unw_rec_list *ptr = alloc_record (rp_when);
1829 return ptr;
1830 }
1831
1832 static unw_rec_list *
1833 output_rp_gr (gr)
1834 unsigned int gr;
1835 {
1836 unw_rec_list *ptr = alloc_record (rp_gr);
1837 ptr->r.record.p.gr = gr;
1838 return ptr;
1839 }
1840
1841 static unw_rec_list *
1842 output_rp_br (br)
1843 unsigned int br;
1844 {
1845 unw_rec_list *ptr = alloc_record (rp_br);
1846 ptr->r.record.p.br = br;
1847 return ptr;
1848 }
1849
1850 static unw_rec_list *
1851 output_rp_psprel (offset)
1852 unsigned int offset;
1853 {
1854 unw_rec_list *ptr = alloc_record (rp_psprel);
1855 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
1856 return ptr;
1857 }
1858
1859 static unw_rec_list *
1860 output_rp_sprel (offset)
1861 unsigned int offset;
1862 {
1863 unw_rec_list *ptr = alloc_record (rp_sprel);
1864 ptr->r.record.p.spoff = offset / 4;
1865 return ptr;
1866 }
1867
1868 static unw_rec_list *
1869 output_pfs_when ()
1870 {
1871 unw_rec_list *ptr = alloc_record (pfs_when);
1872 return ptr;
1873 }
1874
1875 static unw_rec_list *
1876 output_pfs_gr (gr)
1877 unsigned int gr;
1878 {
1879 unw_rec_list *ptr = alloc_record (pfs_gr);
1880 ptr->r.record.p.gr = gr;
1881 return ptr;
1882 }
1883
1884 static unw_rec_list *
1885 output_pfs_psprel (offset)
1886 unsigned int offset;
1887 {
1888 unw_rec_list *ptr = alloc_record (pfs_psprel);
1889 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
1890 return ptr;
1891 }
1892
1893 static unw_rec_list *
1894 output_pfs_sprel (offset)
1895 unsigned int offset;
1896 {
1897 unw_rec_list *ptr = alloc_record (pfs_sprel);
1898 ptr->r.record.p.spoff = offset / 4;
1899 return ptr;
1900 }
1901
1902 static unw_rec_list *
1903 output_preds_when ()
1904 {
1905 unw_rec_list *ptr = alloc_record (preds_when);
1906 return ptr;
1907 }
1908
1909 static unw_rec_list *
1910 output_preds_gr (gr)
1911 unsigned int gr;
1912 {
1913 unw_rec_list *ptr = alloc_record (preds_gr);
1914 ptr->r.record.p.gr = gr;
1915 return ptr;
1916 }
1917
1918 static unw_rec_list *
1919 output_preds_psprel (offset)
1920 unsigned int offset;
1921 {
1922 unw_rec_list *ptr = alloc_record (preds_psprel);
1923 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
1924 return ptr;
1925 }
1926
1927 static unw_rec_list *
1928 output_preds_sprel (offset)
1929 unsigned int offset;
1930 {
1931 unw_rec_list *ptr = alloc_record (preds_sprel);
1932 ptr->r.record.p.spoff = offset / 4;
1933 return ptr;
1934 }
1935
1936 static unw_rec_list *
1937 output_fr_mem (mask)
1938 unsigned int mask;
1939 {
1940 unw_rec_list *ptr = alloc_record (fr_mem);
1941 ptr->r.record.p.rmask = mask;
1942 return ptr;
1943 }
1944
1945 static unw_rec_list *
1946 output_frgr_mem (gr_mask, fr_mask)
1947 unsigned int gr_mask;
1948 unsigned int fr_mask;
1949 {
1950 unw_rec_list *ptr = alloc_record (frgr_mem);
1951 ptr->r.record.p.grmask = gr_mask;
1952 ptr->r.record.p.frmask = fr_mask;
1953 return ptr;
1954 }
1955
1956 static unw_rec_list *
1957 output_gr_gr (mask, reg)
1958 unsigned int mask;
1959 unsigned int reg;
1960 {
1961 unw_rec_list *ptr = alloc_record (gr_gr);
1962 ptr->r.record.p.grmask = mask;
1963 ptr->r.record.p.gr = reg;
1964 return ptr;
1965 }
1966
1967 static unw_rec_list *
1968 output_gr_mem (mask)
1969 unsigned int mask;
1970 {
1971 unw_rec_list *ptr = alloc_record (gr_mem);
1972 ptr->r.record.p.rmask = mask;
1973 return ptr;
1974 }
1975
1976 static unw_rec_list *
1977 output_br_mem (unsigned int mask)
1978 {
1979 unw_rec_list *ptr = alloc_record (br_mem);
1980 ptr->r.record.p.brmask = mask;
1981 return ptr;
1982 }
1983
1984 static unw_rec_list *
1985 output_br_gr (save_mask, reg)
1986 unsigned int save_mask;
1987 unsigned int reg;
1988 {
1989 unw_rec_list *ptr = alloc_record (br_gr);
1990 ptr->r.record.p.brmask = save_mask;
1991 ptr->r.record.p.gr = reg;
1992 return ptr;
1993 }
1994
1995 static unw_rec_list *
1996 output_spill_base (offset)
1997 unsigned int offset;
1998 {
1999 unw_rec_list *ptr = alloc_record (spill_base);
2000 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2001 return ptr;
2002 }
2003
2004 static unw_rec_list *
2005 output_unat_when ()
2006 {
2007 unw_rec_list *ptr = alloc_record (unat_when);
2008 return ptr;
2009 }
2010
2011 static unw_rec_list *
2012 output_unat_gr (gr)
2013 unsigned int gr;
2014 {
2015 unw_rec_list *ptr = alloc_record (unat_gr);
2016 ptr->r.record.p.gr = gr;
2017 return ptr;
2018 }
2019
2020 static unw_rec_list *
2021 output_unat_psprel (offset)
2022 unsigned int offset;
2023 {
2024 unw_rec_list *ptr = alloc_record (unat_psprel);
2025 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2026 return ptr;
2027 }
2028
2029 static unw_rec_list *
2030 output_unat_sprel (offset)
2031 unsigned int offset;
2032 {
2033 unw_rec_list *ptr = alloc_record (unat_sprel);
2034 ptr->r.record.p.spoff = offset / 4;
2035 return ptr;
2036 }
2037
2038 static unw_rec_list *
2039 output_lc_when ()
2040 {
2041 unw_rec_list *ptr = alloc_record (lc_when);
2042 return ptr;
2043 }
2044
2045 static unw_rec_list *
2046 output_lc_gr (gr)
2047 unsigned int gr;
2048 {
2049 unw_rec_list *ptr = alloc_record (lc_gr);
2050 ptr->r.record.p.gr = gr;
2051 return ptr;
2052 }
2053
2054 static unw_rec_list *
2055 output_lc_psprel (offset)
2056 unsigned int offset;
2057 {
2058 unw_rec_list *ptr = alloc_record (lc_psprel);
2059 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2060 return ptr;
2061 }
2062
2063 static unw_rec_list *
2064 output_lc_sprel (offset)
2065 unsigned int offset;
2066 {
2067 unw_rec_list *ptr = alloc_record (lc_sprel);
2068 ptr->r.record.p.spoff = offset / 4;
2069 return ptr;
2070 }
2071
2072 static unw_rec_list *
2073 output_fpsr_when ()
2074 {
2075 unw_rec_list *ptr = alloc_record (fpsr_when);
2076 return ptr;
2077 }
2078
2079 static unw_rec_list *
2080 output_fpsr_gr (gr)
2081 unsigned int gr;
2082 {
2083 unw_rec_list *ptr = alloc_record (fpsr_gr);
2084 ptr->r.record.p.gr = gr;
2085 return ptr;
2086 }
2087
2088 static unw_rec_list *
2089 output_fpsr_psprel (offset)
2090 unsigned int offset;
2091 {
2092 unw_rec_list *ptr = alloc_record (fpsr_psprel);
2093 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2094 return ptr;
2095 }
2096
2097 static unw_rec_list *
2098 output_fpsr_sprel (offset)
2099 unsigned int offset;
2100 {
2101 unw_rec_list *ptr = alloc_record (fpsr_sprel);
2102 ptr->r.record.p.spoff = offset / 4;
2103 return ptr;
2104 }
2105
2106 static unw_rec_list *
2107 output_priunat_when_gr ()
2108 {
2109 unw_rec_list *ptr = alloc_record (priunat_when_gr);
2110 return ptr;
2111 }
2112
2113 static unw_rec_list *
2114 output_priunat_when_mem ()
2115 {
2116 unw_rec_list *ptr = alloc_record (priunat_when_mem);
2117 return ptr;
2118 }
2119
2120 static unw_rec_list *
2121 output_priunat_gr (gr)
2122 unsigned int gr;
2123 {
2124 unw_rec_list *ptr = alloc_record (priunat_gr);
2125 ptr->r.record.p.gr = gr;
2126 return ptr;
2127 }
2128
2129 static unw_rec_list *
2130 output_priunat_psprel (offset)
2131 unsigned int offset;
2132 {
2133 unw_rec_list *ptr = alloc_record (priunat_psprel);
2134 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2135 return ptr;
2136 }
2137
2138 static unw_rec_list *
2139 output_priunat_sprel (offset)
2140 unsigned int offset;
2141 {
2142 unw_rec_list *ptr = alloc_record (priunat_sprel);
2143 ptr->r.record.p.spoff = offset / 4;
2144 return ptr;
2145 }
2146
2147 static unw_rec_list *
2148 output_bsp_when ()
2149 {
2150 unw_rec_list *ptr = alloc_record (bsp_when);
2151 return ptr;
2152 }
2153
2154 static unw_rec_list *
2155 output_bsp_gr (gr)
2156 unsigned int gr;
2157 {
2158 unw_rec_list *ptr = alloc_record (bsp_gr);
2159 ptr->r.record.p.gr = gr;
2160 return ptr;
2161 }
2162
2163 static unw_rec_list *
2164 output_bsp_psprel (offset)
2165 unsigned int offset;
2166 {
2167 unw_rec_list *ptr = alloc_record (bsp_psprel);
2168 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2169 return ptr;
2170 }
2171
2172 static unw_rec_list *
2173 output_bsp_sprel (offset)
2174 unsigned int offset;
2175 {
2176 unw_rec_list *ptr = alloc_record (bsp_sprel);
2177 ptr->r.record.p.spoff = offset / 4;
2178 return ptr;
2179 }
2180
2181 static unw_rec_list *
2182 output_bspstore_when ()
2183 {
2184 unw_rec_list *ptr = alloc_record (bspstore_when);
2185 return ptr;
2186 }
2187
2188 static unw_rec_list *
2189 output_bspstore_gr (gr)
2190 unsigned int gr;
2191 {
2192 unw_rec_list *ptr = alloc_record (bspstore_gr);
2193 ptr->r.record.p.gr = gr;
2194 return ptr;
2195 }
2196
2197 static unw_rec_list *
2198 output_bspstore_psprel (offset)
2199 unsigned int offset;
2200 {
2201 unw_rec_list *ptr = alloc_record (bspstore_psprel);
2202 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2203 return ptr;
2204 }
2205
2206 static unw_rec_list *
2207 output_bspstore_sprel (offset)
2208 unsigned int offset;
2209 {
2210 unw_rec_list *ptr = alloc_record (bspstore_sprel);
2211 ptr->r.record.p.spoff = offset / 4;
2212 return ptr;
2213 }
2214
2215 static unw_rec_list *
2216 output_rnat_when ()
2217 {
2218 unw_rec_list *ptr = alloc_record (rnat_when);
2219 return ptr;
2220 }
2221
2222 static unw_rec_list *
2223 output_rnat_gr (gr)
2224 unsigned int gr;
2225 {
2226 unw_rec_list *ptr = alloc_record (rnat_gr);
2227 ptr->r.record.p.gr = gr;
2228 return ptr;
2229 }
2230
2231 static unw_rec_list *
2232 output_rnat_psprel (offset)
2233 unsigned int offset;
2234 {
2235 unw_rec_list *ptr = alloc_record (rnat_psprel);
2236 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2237 return ptr;
2238 }
2239
2240 static unw_rec_list *
2241 output_rnat_sprel (offset)
2242 unsigned int offset;
2243 {
2244 unw_rec_list *ptr = alloc_record (rnat_sprel);
2245 ptr->r.record.p.spoff = offset / 4;
2246 return ptr;
2247 }
2248
2249 static unw_rec_list *
2250 output_unwabi (abi, context)
2251 unsigned long abi;
2252 unsigned long context;
2253 {
2254 unw_rec_list *ptr = alloc_record (unwabi);
2255 ptr->r.record.p.abi = abi;
2256 ptr->r.record.p.context = context;
2257 return ptr;
2258 }
2259
2260 static unw_rec_list *
2261 output_epilogue (unsigned long ecount)
2262 {
2263 unw_rec_list *ptr = alloc_record (epilogue);
2264 ptr->r.record.b.ecount = ecount;
2265 return ptr;
2266 }
2267
2268 static unw_rec_list *
2269 output_label_state (unsigned long label)
2270 {
2271 unw_rec_list *ptr = alloc_record (label_state);
2272 ptr->r.record.b.label = label;
2273 return ptr;
2274 }
2275
2276 static unw_rec_list *
2277 output_copy_state (unsigned long label)
2278 {
2279 unw_rec_list *ptr = alloc_record (copy_state);
2280 ptr->r.record.b.label = label;
2281 return ptr;
2282 }
2283
2284 static unw_rec_list *
2285 output_spill_psprel (ab, reg, offset, predicate)
2286 unsigned int ab;
2287 unsigned int reg;
2288 unsigned int offset;
2289 unsigned int predicate;
2290 {
2291 unw_rec_list *ptr = alloc_record (predicate ? spill_psprel_p : spill_psprel);
2292 ptr->r.record.x.ab = ab;
2293 ptr->r.record.x.reg = reg;
2294 ptr->r.record.x.pspoff = ENCODED_PSP_OFFSET (offset);
2295 ptr->r.record.x.qp = predicate;
2296 return ptr;
2297 }
2298
2299 static unw_rec_list *
2300 output_spill_sprel (ab, reg, offset, predicate)
2301 unsigned int ab;
2302 unsigned int reg;
2303 unsigned int offset;
2304 unsigned int predicate;
2305 {
2306 unw_rec_list *ptr = alloc_record (predicate ? spill_sprel_p : spill_sprel);
2307 ptr->r.record.x.ab = ab;
2308 ptr->r.record.x.reg = reg;
2309 ptr->r.record.x.spoff = offset / 4;
2310 ptr->r.record.x.qp = predicate;
2311 return ptr;
2312 }
2313
2314 static unw_rec_list *
2315 output_spill_reg (ab, reg, targ_reg, xy, predicate)
2316 unsigned int ab;
2317 unsigned int reg;
2318 unsigned int targ_reg;
2319 unsigned int xy;
2320 unsigned int predicate;
2321 {
2322 unw_rec_list *ptr = alloc_record (predicate ? spill_reg_p : spill_reg);
2323 ptr->r.record.x.ab = ab;
2324 ptr->r.record.x.reg = reg;
2325 ptr->r.record.x.treg = targ_reg;
2326 ptr->r.record.x.xy = xy;
2327 ptr->r.record.x.qp = predicate;
2328 return ptr;
2329 }
2330
2331 /* Given a unw_rec_list process the correct format with the
2332 specified function. */
2333
2334 static void
2335 process_one_record (ptr, f)
2336 unw_rec_list *ptr;
2337 vbyte_func f;
2338 {
2339 unsigned long fr_mask, gr_mask;
2340
2341 switch (ptr->r.type)
2342 {
2343 /* This is a dummy record that takes up no space in the output. */
2344 case endp:
2345 break;
2346
2347 case gr_mem:
2348 case fr_mem:
2349 case br_mem:
2350 case frgr_mem:
2351 /* These are taken care of by prologue/prologue_gr. */
2352 break;
2353
2354 case prologue_gr:
2355 case prologue:
2356 if (ptr->r.type == prologue_gr)
2357 output_R2_format (f, ptr->r.record.r.grmask,
2358 ptr->r.record.r.grsave, ptr->r.record.r.rlen);
2359 else
2360 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2361
2362 /* Output descriptor(s) for union of register spills (if any). */
2363 gr_mask = ptr->r.record.r.mask.gr_mem;
2364 fr_mask = ptr->r.record.r.mask.fr_mem;
2365 if (fr_mask)
2366 {
2367 if ((fr_mask & ~0xfUL) == 0)
2368 output_P6_format (f, fr_mem, fr_mask);
2369 else
2370 {
2371 output_P5_format (f, gr_mask, fr_mask);
2372 gr_mask = 0;
2373 }
2374 }
2375 if (gr_mask)
2376 output_P6_format (f, gr_mem, gr_mask);
2377 if (ptr->r.record.r.mask.br_mem)
2378 output_P1_format (f, ptr->r.record.r.mask.br_mem);
2379
2380 /* output imask descriptor if necessary: */
2381 if (ptr->r.record.r.mask.i)
2382 output_P4_format (f, ptr->r.record.r.mask.i,
2383 ptr->r.record.r.imask_size);
2384 break;
2385
2386 case body:
2387 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2388 break;
2389 case mem_stack_f:
2390 case mem_stack_v:
2391 output_P7_format (f, ptr->r.type, ptr->r.record.p.t,
2392 ptr->r.record.p.size);
2393 break;
2394 case psp_gr:
2395 case rp_gr:
2396 case pfs_gr:
2397 case preds_gr:
2398 case unat_gr:
2399 case lc_gr:
2400 case fpsr_gr:
2401 case priunat_gr:
2402 case bsp_gr:
2403 case bspstore_gr:
2404 case rnat_gr:
2405 output_P3_format (f, ptr->r.type, ptr->r.record.p.gr);
2406 break;
2407 case rp_br:
2408 output_P3_format (f, rp_br, ptr->r.record.p.br);
2409 break;
2410 case psp_sprel:
2411 output_P7_format (f, psp_sprel, ptr->r.record.p.spoff, 0);
2412 break;
2413 case rp_when:
2414 case pfs_when:
2415 case preds_when:
2416 case unat_when:
2417 case lc_when:
2418 case fpsr_when:
2419 output_P7_format (f, ptr->r.type, ptr->r.record.p.t, 0);
2420 break;
2421 case rp_psprel:
2422 case pfs_psprel:
2423 case preds_psprel:
2424 case unat_psprel:
2425 case lc_psprel:
2426 case fpsr_psprel:
2427 case spill_base:
2428 output_P7_format (f, ptr->r.type, ptr->r.record.p.pspoff, 0);
2429 break;
2430 case rp_sprel:
2431 case pfs_sprel:
2432 case preds_sprel:
2433 case unat_sprel:
2434 case lc_sprel:
2435 case fpsr_sprel:
2436 case priunat_sprel:
2437 case bsp_sprel:
2438 case bspstore_sprel:
2439 case rnat_sprel:
2440 output_P8_format (f, ptr->r.type, ptr->r.record.p.spoff);
2441 break;
2442 case gr_gr:
2443 output_P9_format (f, ptr->r.record.p.grmask, ptr->r.record.p.gr);
2444 break;
2445 case br_gr:
2446 output_P2_format (f, ptr->r.record.p.brmask, ptr->r.record.p.gr);
2447 break;
2448 case spill_mask:
2449 as_bad ("spill_mask record unimplemented.");
2450 break;
2451 case priunat_when_gr:
2452 case priunat_when_mem:
2453 case bsp_when:
2454 case bspstore_when:
2455 case rnat_when:
2456 output_P8_format (f, ptr->r.type, ptr->r.record.p.t);
2457 break;
2458 case priunat_psprel:
2459 case bsp_psprel:
2460 case bspstore_psprel:
2461 case rnat_psprel:
2462 output_P8_format (f, ptr->r.type, ptr->r.record.p.pspoff);
2463 break;
2464 case unwabi:
2465 output_P10_format (f, ptr->r.record.p.abi, ptr->r.record.p.context);
2466 break;
2467 case epilogue:
2468 output_B3_format (f, ptr->r.record.b.ecount, ptr->r.record.b.t);
2469 break;
2470 case label_state:
2471 case copy_state:
2472 output_B4_format (f, ptr->r.type, ptr->r.record.b.label);
2473 break;
2474 case spill_psprel:
2475 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2476 ptr->r.record.x.reg, ptr->r.record.x.t,
2477 ptr->r.record.x.pspoff);
2478 break;
2479 case spill_sprel:
2480 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2481 ptr->r.record.x.reg, ptr->r.record.x.t,
2482 ptr->r.record.x.spoff);
2483 break;
2484 case spill_reg:
2485 output_X2_format (f, ptr->r.record.x.ab, ptr->r.record.x.reg,
2486 ptr->r.record.x.xy >> 1, ptr->r.record.x.xy,
2487 ptr->r.record.x.treg, ptr->r.record.x.t);
2488 break;
2489 case spill_psprel_p:
2490 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2491 ptr->r.record.x.ab, ptr->r.record.x.reg,
2492 ptr->r.record.x.t, ptr->r.record.x.pspoff);
2493 break;
2494 case spill_sprel_p:
2495 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2496 ptr->r.record.x.ab, ptr->r.record.x.reg,
2497 ptr->r.record.x.t, ptr->r.record.x.spoff);
2498 break;
2499 case spill_reg_p:
2500 output_X4_format (f, ptr->r.record.x.qp, ptr->r.record.x.ab,
2501 ptr->r.record.x.reg, ptr->r.record.x.xy >> 1,
2502 ptr->r.record.x.xy, ptr->r.record.x.treg,
2503 ptr->r.record.x.t);
2504 break;
2505 default:
2506 as_bad ("record_type_not_valid");
2507 break;
2508 }
2509 }
2510
2511 /* Given a unw_rec_list list, process all the records with
2512 the specified function. */
2513 static void
2514 process_unw_records (list, f)
2515 unw_rec_list *list;
2516 vbyte_func f;
2517 {
2518 unw_rec_list *ptr;
2519 for (ptr = list; ptr; ptr = ptr->next)
2520 process_one_record (ptr, f);
2521 }
2522
2523 /* Determine the size of a record list in bytes. */
2524 static int
2525 calc_record_size (list)
2526 unw_rec_list *list;
2527 {
2528 vbyte_count = 0;
2529 process_unw_records (list, count_output);
2530 return vbyte_count;
2531 }
2532
2533 /* Return the number of bits set in the input value.
2534 Perhaps this has a better place... */
2535 #if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)
2536 # define popcount __builtin_popcount
2537 #else
2538 static int
2539 popcount (unsigned x)
2540 {
2541 static const unsigned char popcnt[16] =
2542 {
2543 0, 1, 1, 2,
2544 1, 2, 2, 3,
2545 1, 2, 2, 3,
2546 2, 3, 3, 4
2547 };
2548
2549 if (x < NELEMS (popcnt))
2550 return popcnt[x];
2551 return popcnt[x % NELEMS (popcnt)] + popcount (x / NELEMS (popcnt));
2552 }
2553 #endif
2554
2555 /* Update IMASK bitmask to reflect the fact that one or more registers
2556 of type TYPE are saved starting at instruction with index T. If N
2557 bits are set in REGMASK, it is assumed that instructions T through
2558 T+N-1 save these registers.
2559
2560 TYPE values:
2561 0: no save
2562 1: instruction saves next fp reg
2563 2: instruction saves next general reg
2564 3: instruction saves next branch reg */
2565 static void
2566 set_imask (region, regmask, t, type)
2567 unw_rec_list *region;
2568 unsigned long regmask;
2569 unsigned long t;
2570 unsigned int type;
2571 {
2572 unsigned char *imask;
2573 unsigned long imask_size;
2574 unsigned int i;
2575 int pos;
2576
2577 imask = region->r.record.r.mask.i;
2578 imask_size = region->r.record.r.imask_size;
2579 if (!imask)
2580 {
2581 imask_size = (region->r.record.r.rlen * 2 + 7) / 8 + 1;
2582 imask = xmalloc (imask_size);
2583 memset (imask, 0, imask_size);
2584
2585 region->r.record.r.imask_size = imask_size;
2586 region->r.record.r.mask.i = imask;
2587 }
2588
2589 i = (t / 4) + 1;
2590 pos = 2 * (3 - t % 4);
2591 while (regmask)
2592 {
2593 if (i >= imask_size)
2594 {
2595 as_bad ("Ignoring attempt to spill beyond end of region");
2596 return;
2597 }
2598
2599 imask[i] |= (type & 0x3) << pos;
2600
2601 regmask &= (regmask - 1);
2602 pos -= 2;
2603 if (pos < 0)
2604 {
2605 pos = 0;
2606 ++i;
2607 }
2608 }
2609 }
2610
2611 /* Return the number of instruction slots from FIRST_ADDR to SLOT_ADDR.
2612 SLOT_FRAG is the frag containing SLOT_ADDR, and FIRST_FRAG is the frag
2613 containing FIRST_ADDR. If BEFORE_RELAX, then we use worst-case estimates
2614 for frag sizes. */
2615
2616 unsigned long
2617 slot_index (slot_addr, slot_frag, first_addr, first_frag, before_relax)
2618 unsigned long slot_addr;
2619 fragS *slot_frag;
2620 unsigned long first_addr;
2621 fragS *first_frag;
2622 int before_relax;
2623 {
2624 unsigned long index = 0;
2625
2626 /* First time we are called, the initial address and frag are invalid. */
2627 if (first_addr == 0)
2628 return 0;
2629
2630 /* If the two addresses are in different frags, then we need to add in
2631 the remaining size of this frag, and then the entire size of intermediate
2632 frags. */
2633 while (slot_frag != first_frag)
2634 {
2635 unsigned long start_addr = (unsigned long) &first_frag->fr_literal;
2636
2637 if (! before_relax)
2638 {
2639 /* We can get the final addresses only during and after
2640 relaxation. */
2641 if (first_frag->fr_next && first_frag->fr_next->fr_address)
2642 index += 3 * ((first_frag->fr_next->fr_address
2643 - first_frag->fr_address
2644 - first_frag->fr_fix) >> 4);
2645 }
2646 else
2647 /* We don't know what the final addresses will be. We try our
2648 best to estimate. */
2649 switch (first_frag->fr_type)
2650 {
2651 default:
2652 break;
2653
2654 case rs_space:
2655 as_fatal ("only constant space allocation is supported");
2656 break;
2657
2658 case rs_align:
2659 case rs_align_code:
2660 case rs_align_test:
2661 /* Take alignment into account. Assume the worst case
2662 before relaxation. */
2663 index += 3 * ((1 << first_frag->fr_offset) >> 4);
2664 break;
2665
2666 case rs_org:
2667 if (first_frag->fr_symbol)
2668 {
2669 as_fatal ("only constant offsets are supported");
2670 break;
2671 }
2672 case rs_fill:
2673 index += 3 * (first_frag->fr_offset >> 4);
2674 break;
2675 }
2676
2677 /* Add in the full size of the frag converted to instruction slots. */
2678 index += 3 * (first_frag->fr_fix >> 4);
2679 /* Subtract away the initial part before first_addr. */
2680 index -= (3 * ((first_addr >> 4) - (start_addr >> 4))
2681 + ((first_addr & 0x3) - (start_addr & 0x3)));
2682
2683 /* Move to the beginning of the next frag. */
2684 first_frag = first_frag->fr_next;
2685 first_addr = (unsigned long) &first_frag->fr_literal;
2686
2687 /* This can happen if there is section switching in the middle of a
2688 function, causing the frag chain for the function to be broken. */
2689 if (first_frag == NULL)
2690 {
2691 /* We get six warnings for one problem, because of the loop in
2692 fixup_unw_records, and because fixup_unw_records is called 3
2693 times: once before creating the variant frag, once to estimate
2694 its size, and once to relax it. This is unreasonable, so we use
2695 a static var to make sure we only emit the warning once. */
2696 static int warned = 0;
2697
2698 if (!warned)
2699 {
2700 as_warn ("Corrupted unwind info due to unsupported section switching");
2701 warned = 1;
2702 }
2703
2704 return index;
2705 }
2706 }
2707
2708 /* Add in the used part of the last frag. */
2709 index += (3 * ((slot_addr >> 4) - (first_addr >> 4))
2710 + ((slot_addr & 0x3) - (first_addr & 0x3)));
2711 return index;
2712 }
2713
2714 /* Optimize unwind record directives. */
2715
2716 static unw_rec_list *
2717 optimize_unw_records (list)
2718 unw_rec_list *list;
2719 {
2720 if (!list)
2721 return NULL;
2722
2723 /* If the only unwind record is ".prologue" or ".prologue" followed
2724 by ".body", then we can optimize the unwind directives away. */
2725 if (list->r.type == prologue
2726 && (list->next->r.type == endp
2727 || (list->next->r.type == body && list->next->next->r.type == endp)))
2728 return NULL;
2729
2730 return list;
2731 }
2732
2733 /* Given a complete record list, process any records which have
2734 unresolved fields, (ie length counts for a prologue). After
2735 this has been run, all necessary information should be available
2736 within each record to generate an image. */
2737
2738 static void
2739 fixup_unw_records (list, before_relax)
2740 unw_rec_list *list;
2741 int before_relax;
2742 {
2743 unw_rec_list *ptr, *region = 0;
2744 unsigned long first_addr = 0, rlen = 0, t;
2745 fragS *first_frag = 0;
2746
2747 for (ptr = list; ptr; ptr = ptr->next)
2748 {
2749 if (ptr->slot_number == SLOT_NUM_NOT_SET)
2750 as_bad (" Insn slot not set in unwind record.");
2751 t = slot_index (ptr->slot_number, ptr->slot_frag,
2752 first_addr, first_frag, before_relax);
2753 switch (ptr->r.type)
2754 {
2755 case prologue:
2756 case prologue_gr:
2757 case body:
2758 {
2759 unw_rec_list *last;
2760 int size;
2761 unsigned long last_addr = 0;
2762 fragS *last_frag = NULL;
2763
2764 first_addr = ptr->slot_number;
2765 first_frag = ptr->slot_frag;
2766 /* Find either the next body/prologue start, or the end of
2767 the function, and determine the size of the region. */
2768 for (last = ptr->next; last != NULL; last = last->next)
2769 if (last->r.type == prologue || last->r.type == prologue_gr
2770 || last->r.type == body || last->r.type == endp)
2771 {
2772 last_addr = last->slot_number;
2773 last_frag = last->slot_frag;
2774 break;
2775 }
2776 size = slot_index (last_addr, last_frag, first_addr, first_frag,
2777 before_relax);
2778 rlen = ptr->r.record.r.rlen = size;
2779 if (ptr->r.type == body)
2780 /* End of region. */
2781 region = 0;
2782 else
2783 region = ptr;
2784 break;
2785 }
2786 case epilogue:
2787 if (t < rlen)
2788 ptr->r.record.b.t = rlen - 1 - t;
2789 else
2790 /* This happens when a memory-stack-less procedure uses a
2791 ".restore sp" directive at the end of a region to pop
2792 the frame state. */
2793 ptr->r.record.b.t = 0;
2794 break;
2795
2796 case mem_stack_f:
2797 case mem_stack_v:
2798 case rp_when:
2799 case pfs_when:
2800 case preds_when:
2801 case unat_when:
2802 case lc_when:
2803 case fpsr_when:
2804 case priunat_when_gr:
2805 case priunat_when_mem:
2806 case bsp_when:
2807 case bspstore_when:
2808 case rnat_when:
2809 ptr->r.record.p.t = t;
2810 break;
2811
2812 case spill_reg:
2813 case spill_sprel:
2814 case spill_psprel:
2815 case spill_reg_p:
2816 case spill_sprel_p:
2817 case spill_psprel_p:
2818 ptr->r.record.x.t = t;
2819 break;
2820
2821 case frgr_mem:
2822 if (!region)
2823 {
2824 as_bad ("frgr_mem record before region record!");
2825 return;
2826 }
2827 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
2828 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
2829 set_imask (region, ptr->r.record.p.frmask, t, 1);
2830 set_imask (region, ptr->r.record.p.grmask, t, 2);
2831 break;
2832 case fr_mem:
2833 if (!region)
2834 {
2835 as_bad ("fr_mem record before region record!");
2836 return;
2837 }
2838 region->r.record.r.mask.fr_mem |= ptr->r.record.p.rmask;
2839 set_imask (region, ptr->r.record.p.rmask, t, 1);
2840 break;
2841 case gr_mem:
2842 if (!region)
2843 {
2844 as_bad ("gr_mem record before region record!");
2845 return;
2846 }
2847 region->r.record.r.mask.gr_mem |= ptr->r.record.p.rmask;
2848 set_imask (region, ptr->r.record.p.rmask, t, 2);
2849 break;
2850 case br_mem:
2851 if (!region)
2852 {
2853 as_bad ("br_mem record before region record!");
2854 return;
2855 }
2856 region->r.record.r.mask.br_mem |= ptr->r.record.p.brmask;
2857 set_imask (region, ptr->r.record.p.brmask, t, 3);
2858 break;
2859
2860 case gr_gr:
2861 if (!region)
2862 {
2863 as_bad ("gr_gr record before region record!");
2864 return;
2865 }
2866 set_imask (region, ptr->r.record.p.grmask, t, 2);
2867 break;
2868 case br_gr:
2869 if (!region)
2870 {
2871 as_bad ("br_gr record before region record!");
2872 return;
2873 }
2874 set_imask (region, ptr->r.record.p.brmask, t, 3);
2875 break;
2876
2877 default:
2878 break;
2879 }
2880 }
2881 }
2882
2883 /* Estimate the size of a frag before relaxing. We only have one type of frag
2884 to handle here, which is the unwind info frag. */
2885
2886 int
2887 ia64_estimate_size_before_relax (fragS *frag,
2888 asection *segtype ATTRIBUTE_UNUSED)
2889 {
2890 unw_rec_list *list;
2891 int len, size, pad;
2892
2893 /* ??? This code is identical to the first part of ia64_convert_frag. */
2894 list = (unw_rec_list *) frag->fr_opcode;
2895 fixup_unw_records (list, 0);
2896
2897 len = calc_record_size (list);
2898 /* pad to pointer-size boundary. */
2899 pad = len % md.pointer_size;
2900 if (pad != 0)
2901 len += md.pointer_size - pad;
2902 /* Add 8 for the header. */
2903 size = len + 8;
2904 /* Add a pointer for the personality offset. */
2905 if (frag->fr_offset)
2906 size += md.pointer_size;
2907
2908 /* fr_var carries the max_chars that we created the fragment with.
2909 We must, of course, have allocated enough memory earlier. */
2910 assert (frag->fr_var >= size);
2911
2912 return frag->fr_fix + size;
2913 }
2914
2915 /* This function converts a rs_machine_dependent variant frag into a
2916 normal fill frag with the unwind image from the the record list. */
2917 void
2918 ia64_convert_frag (fragS *frag)
2919 {
2920 unw_rec_list *list;
2921 int len, size, pad;
2922 valueT flag_value;
2923
2924 /* ??? This code is identical to ia64_estimate_size_before_relax. */
2925 list = (unw_rec_list *) frag->fr_opcode;
2926 fixup_unw_records (list, 0);
2927
2928 len = calc_record_size (list);
2929 /* pad to pointer-size boundary. */
2930 pad = len % md.pointer_size;
2931 if (pad != 0)
2932 len += md.pointer_size - pad;
2933 /* Add 8 for the header. */
2934 size = len + 8;
2935 /* Add a pointer for the personality offset. */
2936 if (frag->fr_offset)
2937 size += md.pointer_size;
2938
2939 /* fr_var carries the max_chars that we created the fragment with.
2940 We must, of course, have allocated enough memory earlier. */
2941 assert (frag->fr_var >= size);
2942
2943 /* Initialize the header area. fr_offset is initialized with
2944 unwind.personality_routine. */
2945 if (frag->fr_offset)
2946 {
2947 if (md.flags & EF_IA_64_ABI64)
2948 flag_value = (bfd_vma) 3 << 32;
2949 else
2950 /* 32-bit unwind info block. */
2951 flag_value = (bfd_vma) 0x1003 << 32;
2952 }
2953 else
2954 flag_value = 0;
2955
2956 md_number_to_chars (frag->fr_literal,
2957 (((bfd_vma) 1 << 48) /* Version. */
2958 | flag_value /* U & E handler flags. */
2959 | (len / md.pointer_size)), /* Length. */
2960 8);
2961
2962 /* Skip the header. */
2963 vbyte_mem_ptr = frag->fr_literal + 8;
2964 process_unw_records (list, output_vbyte_mem);
2965
2966 /* Fill the padding bytes with zeros. */
2967 if (pad != 0)
2968 md_number_to_chars (frag->fr_literal + len + 8 - md.pointer_size + pad, 0,
2969 md.pointer_size - pad);
2970
2971 frag->fr_fix += size;
2972 frag->fr_type = rs_fill;
2973 frag->fr_var = 0;
2974 frag->fr_offset = 0;
2975 }
2976
2977 static int
2978 parse_predicate_and_operand (e, qp, po)
2979 expressionS * e;
2980 unsigned * qp;
2981 const char * po;
2982 {
2983 int sep = parse_operand (e, ',');
2984
2985 *qp = e->X_add_number - REG_P;
2986 if (e->X_op != O_register || *qp > 63)
2987 {
2988 as_bad ("First operand to .%s must be a predicate", po);
2989 *qp = 0;
2990 }
2991 else if (*qp == 0)
2992 as_warn ("Pointless use of p0 as first operand to .%s", po);
2993 if (sep == ',')
2994 sep = parse_operand (e, ',');
2995 else
2996 e->X_op = O_absent;
2997 return sep;
2998 }
2999
3000 static void
3001 convert_expr_to_ab_reg (e, ab, regp, po, n)
3002 const expressionS *e;
3003 unsigned int *ab;
3004 unsigned int *regp;
3005 const char * po;
3006 int n;
3007 {
3008 unsigned int reg = e->X_add_number;
3009
3010 *ab = *regp = 0; /* Anything valid is good here. */
3011
3012 if (e->X_op != O_register)
3013 reg = REG_GR; /* Anything invalid is good here. */
3014
3015 if (reg >= (REG_GR + 4) && reg <= (REG_GR + 7))
3016 {
3017 *ab = 0;
3018 *regp = reg - REG_GR;
3019 }
3020 else if ((reg >= (REG_FR + 2) && reg <= (REG_FR + 5))
3021 || (reg >= (REG_FR + 16) && reg <= (REG_FR + 31)))
3022 {
3023 *ab = 1;
3024 *regp = reg - REG_FR;
3025 }
3026 else if (reg >= (REG_BR + 1) && reg <= (REG_BR + 5))
3027 {
3028 *ab = 2;
3029 *regp = reg - REG_BR;
3030 }
3031 else
3032 {
3033 *ab = 3;
3034 switch (reg)
3035 {
3036 case REG_PR: *regp = 0; break;
3037 case REG_PSP: *regp = 1; break;
3038 case REG_PRIUNAT: *regp = 2; break;
3039 case REG_BR + 0: *regp = 3; break;
3040 case REG_AR + AR_BSP: *regp = 4; break;
3041 case REG_AR + AR_BSPSTORE: *regp = 5; break;
3042 case REG_AR + AR_RNAT: *regp = 6; break;
3043 case REG_AR + AR_UNAT: *regp = 7; break;
3044 case REG_AR + AR_FPSR: *regp = 8; break;
3045 case REG_AR + AR_PFS: *regp = 9; break;
3046 case REG_AR + AR_LC: *regp = 10; break;
3047
3048 default:
3049 as_bad ("Operand %d to .%s must be a preserved register", n, po);
3050 break;
3051 }
3052 }
3053 }
3054
3055 static void
3056 convert_expr_to_xy_reg (e, xy, regp, po, n)
3057 const expressionS *e;
3058 unsigned int *xy;
3059 unsigned int *regp;
3060 const char * po;
3061 int n;
3062 {
3063 unsigned int reg = e->X_add_number;
3064
3065 *xy = *regp = 0; /* Anything valid is good here. */
3066
3067 if (e->X_op != O_register)
3068 reg = REG_GR; /* Anything invalid is good here. */
3069
3070 if (reg >= (REG_GR + 1) && reg <= (REG_GR + 127))
3071 {
3072 *xy = 0;
3073 *regp = reg - REG_GR;
3074 }
3075 else if (reg >= (REG_FR + 2) && reg <= (REG_FR + 127))
3076 {
3077 *xy = 1;
3078 *regp = reg - REG_FR;
3079 }
3080 else if (reg >= REG_BR && reg <= (REG_BR + 7))
3081 {
3082 *xy = 2;
3083 *regp = reg - REG_BR;
3084 }
3085 else
3086 as_bad ("Operand %d to .%s must be a writable register", n, po);
3087 }
3088
3089 static void
3090 dot_align (int arg)
3091 {
3092 /* The current frag is an alignment frag. */
3093 align_frag = frag_now;
3094 s_align_bytes (arg);
3095 }
3096
3097 static void
3098 dot_radix (dummy)
3099 int dummy ATTRIBUTE_UNUSED;
3100 {
3101 char *radix;
3102 int ch;
3103
3104 SKIP_WHITESPACE ();
3105
3106 if (is_it_end_of_statement ())
3107 return;
3108 radix = input_line_pointer;
3109 ch = get_symbol_end ();
3110 ia64_canonicalize_symbol_name (radix);
3111 if (strcasecmp (radix, "C"))
3112 as_bad ("Radix `%s' unsupported or invalid", radix);
3113 *input_line_pointer = ch;
3114 demand_empty_rest_of_line ();
3115 }
3116
3117 /* Helper function for .loc directives. If the assembler is not generating
3118 line number info, then we need to remember which instructions have a .loc
3119 directive, and only call dwarf2_gen_line_info for those instructions. */
3120
3121 static void
3122 dot_loc (int x)
3123 {
3124 CURR_SLOT.loc_directive_seen = 1;
3125 dwarf2_directive_loc (x);
3126 }
3127
3128 /* .sbss, .bss etc. are macros that expand into ".section SECNAME". */
3129 static void
3130 dot_special_section (which)
3131 int which;
3132 {
3133 set_section ((char *) special_section_name[which]);
3134 }
3135
3136 /* Return -1 for warning and 0 for error. */
3137
3138 static int
3139 unwind_diagnostic (const char * region, const char *directive)
3140 {
3141 if (md.unwind_check == unwind_check_warning)
3142 {
3143 as_warn (".%s outside of %s", directive, region);
3144 return -1;
3145 }
3146 else
3147 {
3148 as_bad (".%s outside of %s", directive, region);
3149 ignore_rest_of_line ();
3150 return 0;
3151 }
3152 }
3153
3154 /* Return 1 if a directive is in a procedure, -1 if a directive isn't in
3155 a procedure but the unwind directive check is set to warning, 0 if
3156 a directive isn't in a procedure and the unwind directive check is set
3157 to error. */
3158
3159 static int
3160 in_procedure (const char *directive)
3161 {
3162 if (unwind.proc_pending.sym
3163 && (!unwind.saved_text_seg || strcmp (directive, "endp") == 0))
3164 return 1;
3165 return unwind_diagnostic ("procedure", directive);
3166 }
3167
3168 /* Return 1 if a directive is in a prologue, -1 if a directive isn't in
3169 a prologue but the unwind directive check is set to warning, 0 if
3170 a directive isn't in a prologue and the unwind directive check is set
3171 to error. */
3172
3173 static int
3174 in_prologue (const char *directive)
3175 {
3176 int in = in_procedure (directive);
3177 if (in)
3178 {
3179 /* We are in a procedure. Check if we are in a prologue. */
3180 if (unwind.prologue)
3181 return 1;
3182 /* We only want to issue one message. */
3183 if (in == 1)
3184 return unwind_diagnostic ("prologue", directive);
3185 else
3186 return -1;
3187 }
3188 return 0;
3189 }
3190
3191 /* Return 1 if a directive is in a body, -1 if a directive isn't in
3192 a body but the unwind directive check is set to warning, 0 if
3193 a directive isn't in a body and the unwind directive check is set
3194 to error. */
3195
3196 static int
3197 in_body (const char *directive)
3198 {
3199 int in = in_procedure (directive);
3200 if (in)
3201 {
3202 /* We are in a procedure. Check if we are in a body. */
3203 if (unwind.body)
3204 return 1;
3205 /* We only want to issue one message. */
3206 if (in == 1)
3207 return unwind_diagnostic ("body region", directive);
3208 else
3209 return -1;
3210 }
3211 return 0;
3212 }
3213
3214 static void
3215 add_unwind_entry (ptr, sep)
3216 unw_rec_list *ptr;
3217 int sep;
3218 {
3219 if (ptr)
3220 {
3221 if (unwind.tail)
3222 unwind.tail->next = ptr;
3223 else
3224 unwind.list = ptr;
3225 unwind.tail = ptr;
3226
3227 /* The current entry can in fact be a chain of unwind entries. */
3228 if (unwind.current_entry == NULL)
3229 unwind.current_entry = ptr;
3230 }
3231
3232 /* The current entry can in fact be a chain of unwind entries. */
3233 if (unwind.current_entry == NULL)
3234 unwind.current_entry = ptr;
3235
3236 if (sep == ',')
3237 {
3238 /* Parse a tag permitted for the current directive. */
3239 int ch;
3240
3241 SKIP_WHITESPACE ();
3242 ch = get_symbol_end ();
3243 /* FIXME: For now, just issue a warning that this isn't implemented. */
3244 {
3245 static int warned;
3246
3247 if (!warned)
3248 {
3249 warned = 1;
3250 as_warn ("Tags on unwind pseudo-ops aren't supported, yet");
3251 }
3252 }
3253 *input_line_pointer = ch;
3254 }
3255 if (sep != NOT_A_CHAR)
3256 demand_empty_rest_of_line ();
3257 }
3258
3259 static void
3260 dot_fframe (dummy)
3261 int dummy ATTRIBUTE_UNUSED;
3262 {
3263 expressionS e;
3264 int sep;
3265
3266 if (!in_prologue ("fframe"))
3267 return;
3268
3269 sep = parse_operand (&e, ',');
3270
3271 if (e.X_op != O_constant)
3272 {
3273 as_bad ("First operand to .fframe must be a constant");
3274 e.X_add_number = 0;
3275 }
3276 add_unwind_entry (output_mem_stack_f (e.X_add_number), sep);
3277 }
3278
3279 static void
3280 dot_vframe (dummy)
3281 int dummy ATTRIBUTE_UNUSED;
3282 {
3283 expressionS e;
3284 unsigned reg;
3285 int sep;
3286
3287 if (!in_prologue ("vframe"))
3288 return;
3289
3290 sep = parse_operand (&e, ',');
3291 reg = e.X_add_number - REG_GR;
3292 if (e.X_op != O_register || reg > 127)
3293 {
3294 as_bad ("First operand to .vframe must be a general register");
3295 reg = 0;
3296 }
3297 add_unwind_entry (output_mem_stack_v (), sep);
3298 if (! (unwind.prologue_mask & 2))
3299 add_unwind_entry (output_psp_gr (reg), NOT_A_CHAR);
3300 else if (reg != unwind.prologue_gr
3301 + (unsigned) popcount (unwind.prologue_mask & (-2 << 1)))
3302 as_warn ("Operand of .vframe contradicts .prologue");
3303 }
3304
3305 static void
3306 dot_vframesp (psp)
3307 int psp;
3308 {
3309 expressionS e;
3310 int sep;
3311
3312 if (psp)
3313 as_warn (".vframepsp is meaningless, assuming .vframesp was meant");
3314
3315 if (!in_prologue ("vframesp"))
3316 return;
3317
3318 sep = parse_operand (&e, ',');
3319 if (e.X_op != O_constant)
3320 {
3321 as_bad ("Operand to .vframesp must be a constant (sp-relative offset)");
3322 e.X_add_number = 0;
3323 }
3324 add_unwind_entry (output_mem_stack_v (), sep);
3325 add_unwind_entry (output_psp_sprel (e.X_add_number), NOT_A_CHAR);
3326 }
3327
3328 static void
3329 dot_save (dummy)
3330 int dummy ATTRIBUTE_UNUSED;
3331 {
3332 expressionS e1, e2;
3333 unsigned reg1, reg2;
3334 int sep;
3335
3336 if (!in_prologue ("save"))
3337 return;
3338
3339 sep = parse_operand (&e1, ',');
3340 if (sep == ',')
3341 sep = parse_operand (&e2, ',');
3342 else
3343 e2.X_op = O_absent;
3344
3345 reg1 = e1.X_add_number;
3346 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3347 if (e1.X_op != O_register)
3348 {
3349 as_bad ("First operand to .save not a register");
3350 reg1 = REG_PR; /* Anything valid is good here. */
3351 }
3352 reg2 = e2.X_add_number - REG_GR;
3353 if (e2.X_op != O_register || reg2 > 127)
3354 {
3355 as_bad ("Second operand to .save not a valid register");
3356 reg2 = 0;
3357 }
3358 switch (reg1)
3359 {
3360 case REG_AR + AR_BSP:
3361 add_unwind_entry (output_bsp_when (), sep);
3362 add_unwind_entry (output_bsp_gr (reg2), NOT_A_CHAR);
3363 break;
3364 case REG_AR + AR_BSPSTORE:
3365 add_unwind_entry (output_bspstore_when (), sep);
3366 add_unwind_entry (output_bspstore_gr (reg2), NOT_A_CHAR);
3367 break;
3368 case REG_AR + AR_RNAT:
3369 add_unwind_entry (output_rnat_when (), sep);
3370 add_unwind_entry (output_rnat_gr (reg2), NOT_A_CHAR);
3371 break;
3372 case REG_AR + AR_UNAT:
3373 add_unwind_entry (output_unat_when (), sep);
3374 add_unwind_entry (output_unat_gr (reg2), NOT_A_CHAR);
3375 break;
3376 case REG_AR + AR_FPSR:
3377 add_unwind_entry (output_fpsr_when (), sep);
3378 add_unwind_entry (output_fpsr_gr (reg2), NOT_A_CHAR);
3379 break;
3380 case REG_AR + AR_PFS:
3381 add_unwind_entry (output_pfs_when (), sep);
3382 if (! (unwind.prologue_mask & 4))
3383 add_unwind_entry (output_pfs_gr (reg2), NOT_A_CHAR);
3384 else if (reg2 != unwind.prologue_gr
3385 + (unsigned) popcount (unwind.prologue_mask & (-4 << 1)))
3386 as_warn ("Second operand of .save contradicts .prologue");
3387 break;
3388 case REG_AR + AR_LC:
3389 add_unwind_entry (output_lc_when (), sep);
3390 add_unwind_entry (output_lc_gr (reg2), NOT_A_CHAR);
3391 break;
3392 case REG_BR:
3393 add_unwind_entry (output_rp_when (), sep);
3394 if (! (unwind.prologue_mask & 8))
3395 add_unwind_entry (output_rp_gr (reg2), NOT_A_CHAR);
3396 else if (reg2 != unwind.prologue_gr)
3397 as_warn ("Second operand of .save contradicts .prologue");
3398 break;
3399 case REG_PR:
3400 add_unwind_entry (output_preds_when (), sep);
3401 if (! (unwind.prologue_mask & 1))
3402 add_unwind_entry (output_preds_gr (reg2), NOT_A_CHAR);
3403 else if (reg2 != unwind.prologue_gr
3404 + (unsigned) popcount (unwind.prologue_mask & (-1 << 1)))
3405 as_warn ("Second operand of .save contradicts .prologue");
3406 break;
3407 case REG_PRIUNAT:
3408 add_unwind_entry (output_priunat_when_gr (), sep);
3409 add_unwind_entry (output_priunat_gr (reg2), NOT_A_CHAR);
3410 break;
3411 default:
3412 as_bad ("First operand to .save not a valid register");
3413 add_unwind_entry (NULL, sep);
3414 break;
3415 }
3416 }
3417
3418 static void
3419 dot_restore (dummy)
3420 int dummy ATTRIBUTE_UNUSED;
3421 {
3422 expressionS e1;
3423 unsigned long ecount; /* # of _additional_ regions to pop */
3424 int sep;
3425
3426 if (!in_body ("restore"))
3427 return;
3428
3429 sep = parse_operand (&e1, ',');
3430 if (e1.X_op != O_register || e1.X_add_number != REG_GR + 12)
3431 as_bad ("First operand to .restore must be stack pointer (sp)");
3432
3433 if (sep == ',')
3434 {
3435 expressionS e2;
3436
3437 sep = parse_operand (&e2, ',');
3438 if (e2.X_op != O_constant || e2.X_add_number < 0)
3439 {
3440 as_bad ("Second operand to .restore must be a constant >= 0");
3441 e2.X_add_number = 0;
3442 }
3443 ecount = e2.X_add_number;
3444 }
3445 else
3446 ecount = unwind.prologue_count - 1;
3447
3448 if (ecount >= unwind.prologue_count)
3449 {
3450 as_bad ("Epilogue count of %lu exceeds number of nested prologues (%u)",
3451 ecount + 1, unwind.prologue_count);
3452 ecount = 0;
3453 }
3454
3455 add_unwind_entry (output_epilogue (ecount), sep);
3456
3457 if (ecount < unwind.prologue_count)
3458 unwind.prologue_count -= ecount + 1;
3459 else
3460 unwind.prologue_count = 0;
3461 }
3462
3463 static void
3464 dot_restorereg (pred)
3465 int pred;
3466 {
3467 unsigned int qp, ab, reg;
3468 expressionS e;
3469 int sep;
3470 const char * const po = pred ? "restorereg.p" : "restorereg";
3471
3472 if (!in_procedure (po))
3473 return;
3474
3475 if (pred)
3476 sep = parse_predicate_and_operand (&e, &qp, po);
3477 else
3478 {
3479 sep = parse_operand (&e, ',');
3480 qp = 0;
3481 }
3482 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
3483
3484 add_unwind_entry (output_spill_reg (ab, reg, 0, 0, qp), sep);
3485 }
3486
3487 static char *special_linkonce_name[] =
3488 {
3489 ".gnu.linkonce.ia64unw.", ".gnu.linkonce.ia64unwi."
3490 };
3491
3492 static void
3493 start_unwind_section (const segT text_seg, int sec_index)
3494 {
3495 /*
3496 Use a slightly ugly scheme to derive the unwind section names from
3497 the text section name:
3498
3499 text sect. unwind table sect.
3500 name: name: comments:
3501 ---------- ----------------- --------------------------------
3502 .text .IA_64.unwind
3503 .text.foo .IA_64.unwind.text.foo
3504 .foo .IA_64.unwind.foo
3505 .gnu.linkonce.t.foo
3506 .gnu.linkonce.ia64unw.foo
3507 _info .IA_64.unwind_info gas issues error message (ditto)
3508 _infoFOO .IA_64.unwind_infoFOO gas issues error message (ditto)
3509
3510 This mapping is done so that:
3511
3512 (a) An object file with unwind info only in .text will use
3513 unwind section names .IA_64.unwind and .IA_64.unwind_info.
3514 This follows the letter of the ABI and also ensures backwards
3515 compatibility with older toolchains.
3516
3517 (b) An object file with unwind info in multiple text sections
3518 will use separate unwind sections for each text section.
3519 This allows us to properly set the "sh_info" and "sh_link"
3520 fields in SHT_IA_64_UNWIND as required by the ABI and also
3521 lets GNU ld support programs with multiple segments
3522 containing unwind info (as might be the case for certain
3523 embedded applications).
3524
3525 (c) An error is issued if there would be a name clash.
3526 */
3527
3528 const char *text_name, *sec_text_name;
3529 char *sec_name;
3530 const char *prefix = special_section_name [sec_index];
3531 const char *suffix;
3532 size_t prefix_len, suffix_len, sec_name_len;
3533
3534 sec_text_name = segment_name (text_seg);
3535 text_name = sec_text_name;
3536 if (strncmp (text_name, "_info", 5) == 0)
3537 {
3538 as_bad ("Illegal section name `%s' (causes unwind section name clash)",
3539 text_name);
3540 ignore_rest_of_line ();
3541 return;
3542 }
3543 if (strcmp (text_name, ".text") == 0)
3544 text_name = "";
3545
3546 /* Build the unwind section name by appending the (possibly stripped)
3547 text section name to the unwind prefix. */
3548 suffix = text_name;
3549 if (strncmp (text_name, ".gnu.linkonce.t.",
3550 sizeof (".gnu.linkonce.t.") - 1) == 0)
3551 {
3552 prefix = special_linkonce_name [sec_index - SPECIAL_SECTION_UNWIND];
3553 suffix += sizeof (".gnu.linkonce.t.") - 1;
3554 }
3555
3556 prefix_len = strlen (prefix);
3557 suffix_len = strlen (suffix);
3558 sec_name_len = prefix_len + suffix_len;
3559 sec_name = alloca (sec_name_len + 1);
3560 memcpy (sec_name, prefix, prefix_len);
3561 memcpy (sec_name + prefix_len, suffix, suffix_len);
3562 sec_name [sec_name_len] = '\0';
3563
3564 /* Handle COMDAT group. */
3565 if ((text_seg->flags & SEC_LINK_ONCE) != 0
3566 && (elf_section_flags (text_seg) & SHF_GROUP) != 0)
3567 {
3568 char *section;
3569 size_t len, group_name_len;
3570 const char *group_name = elf_group_name (text_seg);
3571
3572 if (group_name == NULL)
3573 {
3574 as_bad ("Group section `%s' has no group signature",
3575 sec_text_name);
3576 ignore_rest_of_line ();
3577 return;
3578 }
3579 /* We have to construct a fake section directive. */
3580 group_name_len = strlen (group_name);
3581 len = (sec_name_len
3582 + 16 /* ,"aG",@progbits, */
3583 + group_name_len /* ,group_name */
3584 + 7); /* ,comdat */
3585
3586 section = alloca (len + 1);
3587 memcpy (section, sec_name, sec_name_len);
3588 memcpy (section + sec_name_len, ",\"aG\",@progbits,", 16);
3589 memcpy (section + sec_name_len + 16, group_name, group_name_len);
3590 memcpy (section + len - 7, ",comdat", 7);
3591 section [len] = '\0';
3592 set_section (section);
3593 }
3594 else
3595 {
3596 set_section (sec_name);
3597 bfd_set_section_flags (stdoutput, now_seg,
3598 SEC_LOAD | SEC_ALLOC | SEC_READONLY);
3599 }
3600
3601 elf_linked_to_section (now_seg) = text_seg;
3602 }
3603
3604 static void
3605 generate_unwind_image (const segT text_seg)
3606 {
3607 int size, pad;
3608 unw_rec_list *list;
3609
3610 /* Mark the end of the unwind info, so that we can compute the size of the
3611 last unwind region. */
3612 add_unwind_entry (output_endp (), NOT_A_CHAR);
3613
3614 /* Force out pending instructions, to make sure all unwind records have
3615 a valid slot_number field. */
3616 ia64_flush_insns ();
3617
3618 /* Generate the unwind record. */
3619 list = optimize_unw_records (unwind.list);
3620 fixup_unw_records (list, 1);
3621 size = calc_record_size (list);
3622
3623 if (size > 0 || unwind.force_unwind_entry)
3624 {
3625 unwind.force_unwind_entry = 0;
3626 /* pad to pointer-size boundary. */
3627 pad = size % md.pointer_size;
3628 if (pad != 0)
3629 size += md.pointer_size - pad;
3630 /* Add 8 for the header. */
3631 size += 8;
3632 /* Add a pointer for the personality offset. */
3633 if (unwind.personality_routine)
3634 size += md.pointer_size;
3635 }
3636
3637 /* If there are unwind records, switch sections, and output the info. */
3638 if (size != 0)
3639 {
3640 expressionS exp;
3641 bfd_reloc_code_real_type reloc;
3642
3643 start_unwind_section (text_seg, SPECIAL_SECTION_UNWIND_INFO);
3644
3645 /* Make sure the section has 4 byte alignment for ILP32 and
3646 8 byte alignment for LP64. */
3647 frag_align (md.pointer_size_shift, 0, 0);
3648 record_alignment (now_seg, md.pointer_size_shift);
3649
3650 /* Set expression which points to start of unwind descriptor area. */
3651 unwind.info = expr_build_dot ();
3652
3653 frag_var (rs_machine_dependent, size, size, 0, 0,
3654 (offsetT) (long) unwind.personality_routine,
3655 (char *) list);
3656
3657 /* Add the personality address to the image. */
3658 if (unwind.personality_routine != 0)
3659 {
3660 exp.X_op = O_symbol;
3661 exp.X_add_symbol = unwind.personality_routine;
3662 exp.X_add_number = 0;
3663
3664 if (md.flags & EF_IA_64_BE)
3665 {
3666 if (md.flags & EF_IA_64_ABI64)
3667 reloc = BFD_RELOC_IA64_LTOFF_FPTR64MSB;
3668 else
3669 reloc = BFD_RELOC_IA64_LTOFF_FPTR32MSB;
3670 }
3671 else
3672 {
3673 if (md.flags & EF_IA_64_ABI64)
3674 reloc = BFD_RELOC_IA64_LTOFF_FPTR64LSB;
3675 else
3676 reloc = BFD_RELOC_IA64_LTOFF_FPTR32LSB;
3677 }
3678
3679 fix_new_exp (frag_now, frag_now_fix () - md.pointer_size,
3680 md.pointer_size, &exp, 0, reloc);
3681 unwind.personality_routine = 0;
3682 }
3683 }
3684
3685 free_saved_prologue_counts ();
3686 unwind.list = unwind.tail = unwind.current_entry = NULL;
3687 }
3688
3689 static void
3690 dot_handlerdata (dummy)
3691 int dummy ATTRIBUTE_UNUSED;
3692 {
3693 if (!in_procedure ("handlerdata"))
3694 return;
3695 unwind.force_unwind_entry = 1;
3696
3697 /* Remember which segment we're in so we can switch back after .endp */
3698 unwind.saved_text_seg = now_seg;
3699 unwind.saved_text_subseg = now_subseg;
3700
3701 /* Generate unwind info into unwind-info section and then leave that
3702 section as the currently active one so dataXX directives go into
3703 the language specific data area of the unwind info block. */
3704 generate_unwind_image (now_seg);
3705 demand_empty_rest_of_line ();
3706 }
3707
3708 static void
3709 dot_unwentry (dummy)
3710 int dummy ATTRIBUTE_UNUSED;
3711 {
3712 if (!in_procedure ("unwentry"))
3713 return;
3714 unwind.force_unwind_entry = 1;
3715 demand_empty_rest_of_line ();
3716 }
3717
3718 static void
3719 dot_altrp (dummy)
3720 int dummy ATTRIBUTE_UNUSED;
3721 {
3722 expressionS e;
3723 unsigned reg;
3724
3725 if (!in_prologue ("altrp"))
3726 return;
3727
3728 parse_operand (&e, 0);
3729 reg = e.X_add_number - REG_BR;
3730 if (e.X_op != O_register || reg > 7)
3731 {
3732 as_bad ("First operand to .altrp not a valid branch register");
3733 reg = 0;
3734 }
3735 add_unwind_entry (output_rp_br (reg), 0);
3736 }
3737
3738 static void
3739 dot_savemem (psprel)
3740 int psprel;
3741 {
3742 expressionS e1, e2;
3743 int sep;
3744 int reg1, val;
3745 const char * const po = psprel ? "savepsp" : "savesp";
3746
3747 if (!in_prologue (po))
3748 return;
3749
3750 sep = parse_operand (&e1, ',');
3751 if (sep == ',')
3752 sep = parse_operand (&e2, ',');
3753 else
3754 e2.X_op = O_absent;
3755
3756 reg1 = e1.X_add_number;
3757 val = e2.X_add_number;
3758
3759 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3760 if (e1.X_op != O_register)
3761 {
3762 as_bad ("First operand to .%s not a register", po);
3763 reg1 = REG_PR; /* Anything valid is good here. */
3764 }
3765 if (e2.X_op != O_constant)
3766 {
3767 as_bad ("Second operand to .%s not a constant", po);
3768 val = 0;
3769 }
3770
3771 switch (reg1)
3772 {
3773 case REG_AR + AR_BSP:
3774 add_unwind_entry (output_bsp_when (), sep);
3775 add_unwind_entry ((psprel
3776 ? output_bsp_psprel
3777 : output_bsp_sprel) (val), NOT_A_CHAR);
3778 break;
3779 case REG_AR + AR_BSPSTORE:
3780 add_unwind_entry (output_bspstore_when (), sep);
3781 add_unwind_entry ((psprel
3782 ? output_bspstore_psprel
3783 : output_bspstore_sprel) (val), NOT_A_CHAR);
3784 break;
3785 case REG_AR + AR_RNAT:
3786 add_unwind_entry (output_rnat_when (), sep);
3787 add_unwind_entry ((psprel
3788 ? output_rnat_psprel
3789 : output_rnat_sprel) (val), NOT_A_CHAR);
3790 break;
3791 case REG_AR + AR_UNAT:
3792 add_unwind_entry (output_unat_when (), sep);
3793 add_unwind_entry ((psprel
3794 ? output_unat_psprel
3795 : output_unat_sprel) (val), NOT_A_CHAR);
3796 break;
3797 case REG_AR + AR_FPSR:
3798 add_unwind_entry (output_fpsr_when (), sep);
3799 add_unwind_entry ((psprel
3800 ? output_fpsr_psprel
3801 : output_fpsr_sprel) (val), NOT_A_CHAR);
3802 break;
3803 case REG_AR + AR_PFS:
3804 add_unwind_entry (output_pfs_when (), sep);
3805 add_unwind_entry ((psprel
3806 ? output_pfs_psprel
3807 : output_pfs_sprel) (val), NOT_A_CHAR);
3808 break;
3809 case REG_AR + AR_LC:
3810 add_unwind_entry (output_lc_when (), sep);
3811 add_unwind_entry ((psprel
3812 ? output_lc_psprel
3813 : output_lc_sprel) (val), NOT_A_CHAR);
3814 break;
3815 case REG_BR:
3816 add_unwind_entry (output_rp_when (), sep);
3817 add_unwind_entry ((psprel
3818 ? output_rp_psprel
3819 : output_rp_sprel) (val), NOT_A_CHAR);
3820 break;
3821 case REG_PR:
3822 add_unwind_entry (output_preds_when (), sep);
3823 add_unwind_entry ((psprel
3824 ? output_preds_psprel
3825 : output_preds_sprel) (val), NOT_A_CHAR);
3826 break;
3827 case REG_PRIUNAT:
3828 add_unwind_entry (output_priunat_when_mem (), sep);
3829 add_unwind_entry ((psprel
3830 ? output_priunat_psprel
3831 : output_priunat_sprel) (val), NOT_A_CHAR);
3832 break;
3833 default:
3834 as_bad ("First operand to .%s not a valid register", po);
3835 add_unwind_entry (NULL, sep);
3836 break;
3837 }
3838 }
3839
3840 static void
3841 dot_saveg (dummy)
3842 int dummy ATTRIBUTE_UNUSED;
3843 {
3844 expressionS e;
3845 unsigned grmask;
3846 int sep;
3847
3848 if (!in_prologue ("save.g"))
3849 return;
3850
3851 sep = parse_operand (&e, ',');
3852
3853 grmask = e.X_add_number;
3854 if (e.X_op != O_constant
3855 || e.X_add_number <= 0
3856 || e.X_add_number > 0xf)
3857 {
3858 as_bad ("First operand to .save.g must be a positive 4-bit constant");
3859 grmask = 0;
3860 }
3861
3862 if (sep == ',')
3863 {
3864 unsigned reg;
3865 int n = popcount (grmask);
3866
3867 parse_operand (&e, 0);
3868 reg = e.X_add_number - REG_GR;
3869 if (e.X_op != O_register || reg > 127)
3870 {
3871 as_bad ("Second operand to .save.g must be a general register");
3872 reg = 0;
3873 }
3874 else if (reg > 128U - n)
3875 {
3876 as_bad ("Second operand to .save.g must be the first of %d general registers", n);
3877 reg = 0;
3878 }
3879 add_unwind_entry (output_gr_gr (grmask, reg), 0);
3880 }
3881 else
3882 add_unwind_entry (output_gr_mem (grmask), 0);
3883 }
3884
3885 static void
3886 dot_savef (dummy)
3887 int dummy ATTRIBUTE_UNUSED;
3888 {
3889 expressionS e;
3890
3891 if (!in_prologue ("save.f"))
3892 return;
3893
3894 parse_operand (&e, 0);
3895
3896 if (e.X_op != O_constant
3897 || e.X_add_number <= 0
3898 || e.X_add_number > 0xfffff)
3899 {
3900 as_bad ("Operand to .save.f must be a positive 20-bit constant");
3901 e.X_add_number = 0;
3902 }
3903 add_unwind_entry (output_fr_mem (e.X_add_number), 0);
3904 }
3905
3906 static void
3907 dot_saveb (dummy)
3908 int dummy ATTRIBUTE_UNUSED;
3909 {
3910 expressionS e;
3911 unsigned brmask;
3912 int sep;
3913
3914 if (!in_prologue ("save.b"))
3915 return;
3916
3917 sep = parse_operand (&e, ',');
3918
3919 brmask = e.X_add_number;
3920 if (e.X_op != O_constant
3921 || e.X_add_number <= 0
3922 || e.X_add_number > 0x1f)
3923 {
3924 as_bad ("First operand to .save.b must be a positive 5-bit constant");
3925 brmask = 0;
3926 }
3927
3928 if (sep == ',')
3929 {
3930 unsigned reg;
3931 int n = popcount (brmask);
3932
3933 parse_operand (&e, 0);
3934 reg = e.X_add_number - REG_GR;
3935 if (e.X_op != O_register || reg > 127)
3936 {
3937 as_bad ("Second operand to .save.b must be a general register");
3938 reg = 0;
3939 }
3940 else if (reg > 128U - n)
3941 {
3942 as_bad ("Second operand to .save.b must be the first of %d general registers", n);
3943 reg = 0;
3944 }
3945 add_unwind_entry (output_br_gr (brmask, reg), 0);
3946 }
3947 else
3948 add_unwind_entry (output_br_mem (brmask), 0);
3949 }
3950
3951 static void
3952 dot_savegf (dummy)
3953 int dummy ATTRIBUTE_UNUSED;
3954 {
3955 expressionS e1, e2;
3956
3957 if (!in_prologue ("save.gf"))
3958 return;
3959
3960 if (parse_operand (&e1, ',') == ',')
3961 parse_operand (&e2, 0);
3962 else
3963 e2.X_op = O_absent;
3964
3965 if (e1.X_op != O_constant
3966 || e1.X_add_number < 0
3967 || e1.X_add_number > 0xf)
3968 {
3969 as_bad ("First operand to .save.gf must be a non-negative 4-bit constant");
3970 e1.X_op = O_absent;
3971 e1.X_add_number = 0;
3972 }
3973 if (e2.X_op != O_constant
3974 || e2.X_add_number < 0
3975 || e2.X_add_number > 0xfffff)
3976 {
3977 as_bad ("Second operand to .save.gf must be a non-negative 20-bit constant");
3978 e2.X_op = O_absent;
3979 e2.X_add_number = 0;
3980 }
3981 if (e1.X_op == O_constant
3982 && e2.X_op == O_constant
3983 && e1.X_add_number == 0
3984 && e2.X_add_number == 0)
3985 as_bad ("Operands to .save.gf may not be both zero");
3986
3987 add_unwind_entry (output_frgr_mem (e1.X_add_number, e2.X_add_number), 0);
3988 }
3989
3990 static void
3991 dot_spill (dummy)
3992 int dummy ATTRIBUTE_UNUSED;
3993 {
3994 expressionS e;
3995
3996 if (!in_prologue ("spill"))
3997 return;
3998
3999 parse_operand (&e, 0);
4000
4001 if (e.X_op != O_constant)
4002 {
4003 as_bad ("Operand to .spill must be a constant");
4004 e.X_add_number = 0;
4005 }
4006 add_unwind_entry (output_spill_base (e.X_add_number), 0);
4007 }
4008
4009 static void
4010 dot_spillreg (pred)
4011 int pred;
4012 {
4013 int sep;
4014 unsigned int qp, ab, xy, reg, treg;
4015 expressionS e;
4016 const char * const po = pred ? "spillreg.p" : "spillreg";
4017
4018 if (!in_procedure (po))
4019 return;
4020
4021 if (pred)
4022 sep = parse_predicate_and_operand (&e, &qp, po);
4023 else
4024 {
4025 sep = parse_operand (&e, ',');
4026 qp = 0;
4027 }
4028 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
4029
4030 if (sep == ',')
4031 sep = parse_operand (&e, ',');
4032 else
4033 e.X_op = O_absent;
4034 convert_expr_to_xy_reg (&e, &xy, &treg, po, 2 + pred);
4035
4036 add_unwind_entry (output_spill_reg (ab, reg, treg, xy, qp), sep);
4037 }
4038
4039 static void
4040 dot_spillmem (psprel)
4041 int psprel;
4042 {
4043 expressionS e;
4044 int pred = (psprel < 0), sep;
4045 unsigned int qp, ab, reg;
4046 const char * po;
4047
4048 if (pred)
4049 {
4050 psprel = ~psprel;
4051 po = psprel ? "spillpsp.p" : "spillsp.p";
4052 }
4053 else
4054 po = psprel ? "spillpsp" : "spillsp";
4055
4056 if (!in_procedure (po))
4057 return;
4058
4059 if (pred)
4060 sep = parse_predicate_and_operand (&e, &qp, po);
4061 else
4062 {
4063 sep = parse_operand (&e, ',');
4064 qp = 0;
4065 }
4066 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
4067
4068 if (sep == ',')
4069 sep = parse_operand (&e, ',');
4070 else
4071 e.X_op = O_absent;
4072 if (e.X_op != O_constant)
4073 {
4074 as_bad ("Operand %d to .%s must be a constant", 2 + pred, po);
4075 e.X_add_number = 0;
4076 }
4077
4078 if (psprel)
4079 add_unwind_entry (output_spill_psprel (ab, reg, e.X_add_number, qp), sep);
4080 else
4081 add_unwind_entry (output_spill_sprel (ab, reg, e.X_add_number, qp), sep);
4082 }
4083
4084 static unsigned int
4085 get_saved_prologue_count (lbl)
4086 unsigned long lbl;
4087 {
4088 label_prologue_count *lpc = unwind.saved_prologue_counts;
4089
4090 while (lpc != NULL && lpc->label_number != lbl)
4091 lpc = lpc->next;
4092
4093 if (lpc != NULL)
4094 return lpc->prologue_count;
4095
4096 as_bad ("Missing .label_state %ld", lbl);
4097 return 1;
4098 }
4099
4100 static void
4101 save_prologue_count (lbl, count)
4102 unsigned long lbl;
4103 unsigned int count;
4104 {
4105 label_prologue_count *lpc = unwind.saved_prologue_counts;
4106
4107 while (lpc != NULL && lpc->label_number != lbl)
4108 lpc = lpc->next;
4109
4110 if (lpc != NULL)
4111 lpc->prologue_count = count;
4112 else
4113 {
4114 label_prologue_count *new_lpc = xmalloc (sizeof (* new_lpc));
4115
4116 new_lpc->next = unwind.saved_prologue_counts;
4117 new_lpc->label_number = lbl;
4118 new_lpc->prologue_count = count;
4119 unwind.saved_prologue_counts = new_lpc;
4120 }
4121 }
4122
4123 static void
4124 free_saved_prologue_counts ()
4125 {
4126 label_prologue_count *lpc = unwind.saved_prologue_counts;
4127 label_prologue_count *next;
4128
4129 while (lpc != NULL)
4130 {
4131 next = lpc->next;
4132 free (lpc);
4133 lpc = next;
4134 }
4135
4136 unwind.saved_prologue_counts = NULL;
4137 }
4138
4139 static void
4140 dot_label_state (dummy)
4141 int dummy ATTRIBUTE_UNUSED;
4142 {
4143 expressionS e;
4144
4145 if (!in_body ("label_state"))
4146 return;
4147
4148 parse_operand (&e, 0);
4149 if (e.X_op == O_constant)
4150 save_prologue_count (e.X_add_number, unwind.prologue_count);
4151 else
4152 {
4153 as_bad ("Operand to .label_state must be a constant");
4154 e.X_add_number = 0;
4155 }
4156 add_unwind_entry (output_label_state (e.X_add_number), 0);
4157 }
4158
4159 static void
4160 dot_copy_state (dummy)
4161 int dummy ATTRIBUTE_UNUSED;
4162 {
4163 expressionS e;
4164
4165 if (!in_body ("copy_state"))
4166 return;
4167
4168 parse_operand (&e, 0);
4169 if (e.X_op == O_constant)
4170 unwind.prologue_count = get_saved_prologue_count (e.X_add_number);
4171 else
4172 {
4173 as_bad ("Operand to .copy_state must be a constant");
4174 e.X_add_number = 0;
4175 }
4176 add_unwind_entry (output_copy_state (e.X_add_number), 0);
4177 }
4178
4179 static void
4180 dot_unwabi (dummy)
4181 int dummy ATTRIBUTE_UNUSED;
4182 {
4183 expressionS e1, e2;
4184 unsigned char sep;
4185
4186 if (!in_prologue ("unwabi"))
4187 return;
4188
4189 sep = parse_operand (&e1, ',');
4190 if (sep == ',')
4191 parse_operand (&e2, 0);
4192 else
4193 e2.X_op = O_absent;
4194
4195 if (e1.X_op != O_constant)
4196 {
4197 as_bad ("First operand to .unwabi must be a constant");
4198 e1.X_add_number = 0;
4199 }
4200
4201 if (e2.X_op != O_constant)
4202 {
4203 as_bad ("Second operand to .unwabi must be a constant");
4204 e2.X_add_number = 0;
4205 }
4206
4207 add_unwind_entry (output_unwabi (e1.X_add_number, e2.X_add_number), 0);
4208 }
4209
4210 static void
4211 dot_personality (dummy)
4212 int dummy ATTRIBUTE_UNUSED;
4213 {
4214 char *name, *p, c;
4215 if (!in_procedure ("personality"))
4216 return;
4217 SKIP_WHITESPACE ();
4218 name = input_line_pointer;
4219 c = get_symbol_end ();
4220 p = input_line_pointer;
4221 unwind.personality_routine = symbol_find_or_make (name);
4222 unwind.force_unwind_entry = 1;
4223 *p = c;
4224 SKIP_WHITESPACE ();
4225 demand_empty_rest_of_line ();
4226 }
4227
4228 static void
4229 dot_proc (dummy)
4230 int dummy ATTRIBUTE_UNUSED;
4231 {
4232 char *name, *p, c;
4233 symbolS *sym;
4234 proc_pending *pending, *last_pending;
4235
4236 if (unwind.proc_pending.sym)
4237 {
4238 (md.unwind_check == unwind_check_warning
4239 ? as_warn
4240 : as_bad) ("Missing .endp after previous .proc");
4241 while (unwind.proc_pending.next)
4242 {
4243 pending = unwind.proc_pending.next;
4244 unwind.proc_pending.next = pending->next;
4245 free (pending);
4246 }
4247 }
4248 last_pending = NULL;
4249
4250 /* Parse names of main and alternate entry points and mark them as
4251 function symbols: */
4252 while (1)
4253 {
4254 SKIP_WHITESPACE ();
4255 name = input_line_pointer;
4256 c = get_symbol_end ();
4257 p = input_line_pointer;
4258 if (!*name)
4259 as_bad ("Empty argument of .proc");
4260 else
4261 {
4262 sym = symbol_find_or_make (name);
4263 if (S_IS_DEFINED (sym))
4264 as_bad ("`%s' was already defined", name);
4265 else if (!last_pending)
4266 {
4267 unwind.proc_pending.sym = sym;
4268 last_pending = &unwind.proc_pending;
4269 }
4270 else
4271 {
4272 pending = xmalloc (sizeof (*pending));
4273 pending->sym = sym;
4274 last_pending = last_pending->next = pending;
4275 }
4276 symbol_get_bfdsym (sym)->flags |= BSF_FUNCTION;
4277 }
4278 *p = c;
4279 SKIP_WHITESPACE ();
4280 if (*input_line_pointer != ',')
4281 break;
4282 ++input_line_pointer;
4283 }
4284 if (!last_pending)
4285 {
4286 unwind.proc_pending.sym = expr_build_dot ();
4287 last_pending = &unwind.proc_pending;
4288 }
4289 last_pending->next = NULL;
4290 demand_empty_rest_of_line ();
4291 ia64_do_align (16);
4292
4293 unwind.prologue = 0;
4294 unwind.prologue_count = 0;
4295 unwind.body = 0;
4296 unwind.insn = 0;
4297 unwind.list = unwind.tail = unwind.current_entry = NULL;
4298 unwind.personality_routine = 0;
4299 }
4300
4301 static void
4302 dot_body (dummy)
4303 int dummy ATTRIBUTE_UNUSED;
4304 {
4305 if (!in_procedure ("body"))
4306 return;
4307 if (!unwind.prologue && !unwind.body && unwind.insn)
4308 as_warn ("Initial .body should precede any instructions");
4309
4310 unwind.prologue = 0;
4311 unwind.prologue_mask = 0;
4312 unwind.body = 1;
4313
4314 add_unwind_entry (output_body (), 0);
4315 }
4316
4317 static void
4318 dot_prologue (dummy)
4319 int dummy ATTRIBUTE_UNUSED;
4320 {
4321 unsigned mask = 0, grsave = 0;
4322
4323 if (!in_procedure ("prologue"))
4324 return;
4325 if (unwind.prologue)
4326 {
4327 as_bad (".prologue within prologue");
4328 ignore_rest_of_line ();
4329 return;
4330 }
4331 if (!unwind.body && unwind.insn)
4332 as_warn ("Initial .prologue should precede any instructions");
4333
4334 if (!is_it_end_of_statement ())
4335 {
4336 expressionS e;
4337 int n, sep = parse_operand (&e, ',');
4338
4339 if (e.X_op != O_constant
4340 || e.X_add_number < 0
4341 || e.X_add_number > 0xf)
4342 as_bad ("First operand to .prologue must be a positive 4-bit constant");
4343 else if (e.X_add_number == 0)
4344 as_warn ("Pointless use of zero first operand to .prologue");
4345 else
4346 mask = e.X_add_number;
4347 n = popcount (mask);
4348
4349 if (sep == ',')
4350 parse_operand (&e, 0);
4351 else
4352 e.X_op = O_absent;
4353 if (e.X_op == O_constant
4354 && e.X_add_number >= 0
4355 && e.X_add_number < 128)
4356 {
4357 if (md.unwind_check == unwind_check_error)
4358 as_warn ("Using a constant as second operand to .prologue is deprecated");
4359 grsave = e.X_add_number;
4360 }
4361 else if (e.X_op != O_register
4362 || (grsave = e.X_add_number - REG_GR) > 127)
4363 {
4364 as_bad ("Second operand to .prologue must be a general register");
4365 grsave = 0;
4366 }
4367 else if (grsave > 128U - n)
4368 {
4369 as_bad ("Second operand to .prologue must be the first of %d general registers", n);
4370 grsave = 0;
4371 }
4372
4373 }
4374
4375 if (mask)
4376 add_unwind_entry (output_prologue_gr (mask, grsave), 0);
4377 else
4378 add_unwind_entry (output_prologue (), 0);
4379
4380 unwind.prologue = 1;
4381 unwind.prologue_mask = mask;
4382 unwind.prologue_gr = grsave;
4383 unwind.body = 0;
4384 ++unwind.prologue_count;
4385 }
4386
4387 static void
4388 dot_endp (dummy)
4389 int dummy ATTRIBUTE_UNUSED;
4390 {
4391 expressionS e;
4392 int bytes_per_address;
4393 long where;
4394 segT saved_seg;
4395 subsegT saved_subseg;
4396 proc_pending *pending;
4397 int unwind_check = md.unwind_check;
4398
4399 md.unwind_check = unwind_check_error;
4400 if (!in_procedure ("endp"))
4401 return;
4402 md.unwind_check = unwind_check;
4403
4404 if (unwind.saved_text_seg)
4405 {
4406 saved_seg = unwind.saved_text_seg;
4407 saved_subseg = unwind.saved_text_subseg;
4408 unwind.saved_text_seg = NULL;
4409 }
4410 else
4411 {
4412 saved_seg = now_seg;
4413 saved_subseg = now_subseg;
4414 }
4415
4416 insn_group_break (1, 0, 0);
4417
4418 /* If there wasn't a .handlerdata, we haven't generated an image yet. */
4419 if (!unwind.info)
4420 generate_unwind_image (saved_seg);
4421
4422 if (unwind.info || unwind.force_unwind_entry)
4423 {
4424 symbolS *proc_end;
4425
4426 subseg_set (md.last_text_seg, 0);
4427 proc_end = expr_build_dot ();
4428
4429 start_unwind_section (saved_seg, SPECIAL_SECTION_UNWIND);
4430
4431 /* Make sure that section has 4 byte alignment for ILP32 and
4432 8 byte alignment for LP64. */
4433 record_alignment (now_seg, md.pointer_size_shift);
4434
4435 /* Need space for 3 pointers for procedure start, procedure end,
4436 and unwind info. */
4437 memset (frag_more (3 * md.pointer_size), 0, 3 * md.pointer_size);
4438 where = frag_now_fix () - (3 * md.pointer_size);
4439 bytes_per_address = bfd_arch_bits_per_address (stdoutput) / 8;
4440
4441 /* Issue the values of a) Proc Begin, b) Proc End, c) Unwind Record. */
4442 e.X_op = O_pseudo_fixup;
4443 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4444 e.X_add_number = 0;
4445 if (!S_IS_LOCAL (unwind.proc_pending.sym)
4446 && S_IS_DEFINED (unwind.proc_pending.sym))
4447 e.X_add_symbol = symbol_temp_new (S_GET_SEGMENT (unwind.proc_pending.sym),
4448 S_GET_VALUE (unwind.proc_pending.sym),
4449 symbol_get_frag (unwind.proc_pending.sym));
4450 else
4451 e.X_add_symbol = unwind.proc_pending.sym;
4452 ia64_cons_fix_new (frag_now, where, bytes_per_address, &e);
4453
4454 e.X_op = O_pseudo_fixup;
4455 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4456 e.X_add_number = 0;
4457 e.X_add_symbol = proc_end;
4458 ia64_cons_fix_new (frag_now, where + bytes_per_address,
4459 bytes_per_address, &e);
4460
4461 if (unwind.info)
4462 {
4463 e.X_op = O_pseudo_fixup;
4464 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4465 e.X_add_number = 0;
4466 e.X_add_symbol = unwind.info;
4467 ia64_cons_fix_new (frag_now, where + (bytes_per_address * 2),
4468 bytes_per_address, &e);
4469 }
4470 }
4471 subseg_set (saved_seg, saved_subseg);
4472
4473 /* Set symbol sizes. */
4474 pending = &unwind.proc_pending;
4475 if (S_GET_NAME (pending->sym))
4476 {
4477 do
4478 {
4479 symbolS *sym = pending->sym;
4480
4481 if (!S_IS_DEFINED (sym))
4482 as_bad ("`%s' was not defined within procedure", S_GET_NAME (sym));
4483 else if (S_GET_SIZE (sym) == 0
4484 && symbol_get_obj (sym)->size == NULL)
4485 {
4486 fragS *frag = symbol_get_frag (sym);
4487
4488 if (frag)
4489 {
4490 if (frag == frag_now && SEG_NORMAL (now_seg))
4491 S_SET_SIZE (sym, frag_now_fix () - S_GET_VALUE (sym));
4492 else
4493 {
4494 symbol_get_obj (sym)->size =
4495 (expressionS *) xmalloc (sizeof (expressionS));
4496 symbol_get_obj (sym)->size->X_op = O_subtract;
4497 symbol_get_obj (sym)->size->X_add_symbol
4498 = symbol_new (FAKE_LABEL_NAME, now_seg,
4499 frag_now_fix (), frag_now);
4500 symbol_get_obj (sym)->size->X_op_symbol = sym;
4501 symbol_get_obj (sym)->size->X_add_number = 0;
4502 }
4503 }
4504 }
4505 } while ((pending = pending->next) != NULL);
4506 }
4507
4508 /* Parse names of main and alternate entry points. */
4509 while (1)
4510 {
4511 char *name, *p, c;
4512
4513 SKIP_WHITESPACE ();
4514 name = input_line_pointer;
4515 c = get_symbol_end ();
4516 p = input_line_pointer;
4517 if (!*name)
4518 (md.unwind_check == unwind_check_warning
4519 ? as_warn
4520 : as_bad) ("Empty argument of .endp");
4521 else
4522 {
4523 symbolS *sym = symbol_find (name);
4524
4525 for (pending = &unwind.proc_pending; pending; pending = pending->next)
4526 {
4527 if (sym == pending->sym)
4528 {
4529 pending->sym = NULL;
4530 break;
4531 }
4532 }
4533 if (!sym || !pending)
4534 as_warn ("`%s' was not specified with previous .proc", name);
4535 }
4536 *p = c;
4537 SKIP_WHITESPACE ();
4538 if (*input_line_pointer != ',')
4539 break;
4540 ++input_line_pointer;
4541 }
4542 demand_empty_rest_of_line ();
4543
4544 /* Deliberately only checking for the main entry point here; the
4545 language spec even says all arguments to .endp are ignored. */
4546 if (unwind.proc_pending.sym
4547 && S_GET_NAME (unwind.proc_pending.sym)
4548 && strcmp (S_GET_NAME (unwind.proc_pending.sym), FAKE_LABEL_NAME))
4549 as_warn ("`%s' should be an operand to this .endp",
4550 S_GET_NAME (unwind.proc_pending.sym));
4551 while (unwind.proc_pending.next)
4552 {
4553 pending = unwind.proc_pending.next;
4554 unwind.proc_pending.next = pending->next;
4555 free (pending);
4556 }
4557 unwind.proc_pending.sym = unwind.info = NULL;
4558 }
4559
4560 static void
4561 dot_template (template)
4562 int template;
4563 {
4564 CURR_SLOT.user_template = template;
4565 }
4566
4567 static void
4568 dot_regstk (dummy)
4569 int dummy ATTRIBUTE_UNUSED;
4570 {
4571 int ins, locs, outs, rots;
4572
4573 if (is_it_end_of_statement ())
4574 ins = locs = outs = rots = 0;
4575 else
4576 {
4577 ins = get_absolute_expression ();
4578 if (*input_line_pointer++ != ',')
4579 goto err;
4580 locs = get_absolute_expression ();
4581 if (*input_line_pointer++ != ',')
4582 goto err;
4583 outs = get_absolute_expression ();
4584 if (*input_line_pointer++ != ',')
4585 goto err;
4586 rots = get_absolute_expression ();
4587 }
4588 set_regstack (ins, locs, outs, rots);
4589 return;
4590
4591 err:
4592 as_bad ("Comma expected");
4593 ignore_rest_of_line ();
4594 }
4595
4596 static void
4597 dot_rot (type)
4598 int type;
4599 {
4600 unsigned num_regs, num_alloced = 0;
4601 struct dynreg **drpp, *dr;
4602 int ch, base_reg = 0;
4603 char *name, *start;
4604 size_t len;
4605
4606 switch (type)
4607 {
4608 case DYNREG_GR: base_reg = REG_GR + 32; break;
4609 case DYNREG_FR: base_reg = REG_FR + 32; break;
4610 case DYNREG_PR: base_reg = REG_P + 16; break;
4611 default: break;
4612 }
4613
4614 /* First, remove existing names from hash table. */
4615 for (dr = md.dynreg[type]; dr && dr->num_regs; dr = dr->next)
4616 {
4617 hash_delete (md.dynreg_hash, dr->name);
4618 /* FIXME: Free dr->name. */
4619 dr->num_regs = 0;
4620 }
4621
4622 drpp = &md.dynreg[type];
4623 while (1)
4624 {
4625 start = input_line_pointer;
4626 ch = get_symbol_end ();
4627 len = strlen (ia64_canonicalize_symbol_name (start));
4628 *input_line_pointer = ch;
4629
4630 SKIP_WHITESPACE ();
4631 if (*input_line_pointer != '[')
4632 {
4633 as_bad ("Expected '['");
4634 goto err;
4635 }
4636 ++input_line_pointer; /* skip '[' */
4637
4638 num_regs = get_absolute_expression ();
4639
4640 if (*input_line_pointer++ != ']')
4641 {
4642 as_bad ("Expected ']'");
4643 goto err;
4644 }
4645 SKIP_WHITESPACE ();
4646
4647 num_alloced += num_regs;
4648 switch (type)
4649 {
4650 case DYNREG_GR:
4651 if (num_alloced > md.rot.num_regs)
4652 {
4653 as_bad ("Used more than the declared %d rotating registers",
4654 md.rot.num_regs);
4655 goto err;
4656 }
4657 break;
4658 case DYNREG_FR:
4659 if (num_alloced > 96)
4660 {
4661 as_bad ("Used more than the available 96 rotating registers");
4662 goto err;
4663 }
4664 break;
4665 case DYNREG_PR:
4666 if (num_alloced > 48)
4667 {
4668 as_bad ("Used more than the available 48 rotating registers");
4669 goto err;
4670 }
4671 break;
4672
4673 default:
4674 break;
4675 }
4676
4677 if (!*drpp)
4678 {
4679 *drpp = obstack_alloc (&notes, sizeof (*dr));
4680 memset (*drpp, 0, sizeof (*dr));
4681 }
4682
4683 name = obstack_alloc (&notes, len + 1);
4684 memcpy (name, start, len);
4685 name[len] = '\0';
4686
4687 dr = *drpp;
4688 dr->name = name;
4689 dr->num_regs = num_regs;
4690 dr->base = base_reg;
4691 drpp = &dr->next;
4692 base_reg += num_regs;
4693
4694 if (hash_insert (md.dynreg_hash, name, dr))
4695 {
4696 as_bad ("Attempt to redefine register set `%s'", name);
4697 obstack_free (&notes, name);
4698 goto err;
4699 }
4700
4701 if (*input_line_pointer != ',')
4702 break;
4703 ++input_line_pointer; /* skip comma */
4704 SKIP_WHITESPACE ();
4705 }
4706 demand_empty_rest_of_line ();
4707 return;
4708
4709 err:
4710 ignore_rest_of_line ();
4711 }
4712
4713 static void
4714 dot_byteorder (byteorder)
4715 int byteorder;
4716 {
4717 segment_info_type *seginfo = seg_info (now_seg);
4718
4719 if (byteorder == -1)
4720 {
4721 if (seginfo->tc_segment_info_data.endian == 0)
4722 seginfo->tc_segment_info_data.endian = default_big_endian ? 1 : 2;
4723 byteorder = seginfo->tc_segment_info_data.endian == 1;
4724 }
4725 else
4726 seginfo->tc_segment_info_data.endian = byteorder ? 1 : 2;
4727
4728 if (target_big_endian != byteorder)
4729 {
4730 target_big_endian = byteorder;
4731 if (target_big_endian)
4732 {
4733 ia64_number_to_chars = number_to_chars_bigendian;
4734 ia64_float_to_chars = ia64_float_to_chars_bigendian;
4735 }
4736 else
4737 {
4738 ia64_number_to_chars = number_to_chars_littleendian;
4739 ia64_float_to_chars = ia64_float_to_chars_littleendian;
4740 }
4741 }
4742 }
4743
4744 static void
4745 dot_psr (dummy)
4746 int dummy ATTRIBUTE_UNUSED;
4747 {
4748 char *option;
4749 int ch;
4750
4751 while (1)
4752 {
4753 option = input_line_pointer;
4754 ch = get_symbol_end ();
4755 if (strcmp (option, "lsb") == 0)
4756 md.flags &= ~EF_IA_64_BE;
4757 else if (strcmp (option, "msb") == 0)
4758 md.flags |= EF_IA_64_BE;
4759 else if (strcmp (option, "abi32") == 0)
4760 md.flags &= ~EF_IA_64_ABI64;
4761 else if (strcmp (option, "abi64") == 0)
4762 md.flags |= EF_IA_64_ABI64;
4763 else
4764 as_bad ("Unknown psr option `%s'", option);
4765 *input_line_pointer = ch;
4766
4767 SKIP_WHITESPACE ();
4768 if (*input_line_pointer != ',')
4769 break;
4770
4771 ++input_line_pointer;
4772 SKIP_WHITESPACE ();
4773 }
4774 demand_empty_rest_of_line ();
4775 }
4776
4777 static void
4778 dot_ln (dummy)
4779 int dummy ATTRIBUTE_UNUSED;
4780 {
4781 new_logical_line (0, get_absolute_expression ());
4782 demand_empty_rest_of_line ();
4783 }
4784
4785 static void
4786 cross_section (ref, cons, ua)
4787 int ref;
4788 void (*cons) PARAMS((int));
4789 int ua;
4790 {
4791 char *start, *end;
4792 int saved_auto_align;
4793 unsigned int section_count;
4794
4795 SKIP_WHITESPACE ();
4796 start = input_line_pointer;
4797 if (*start == '"')
4798 {
4799 int len;
4800 char *name;
4801
4802 name = demand_copy_C_string (&len);
4803 obstack_free(&notes, name);
4804 if (!name)
4805 {
4806 ignore_rest_of_line ();
4807 return;
4808 }
4809 }
4810 else
4811 {
4812 char c = get_symbol_end ();
4813
4814 if (input_line_pointer == start)
4815 {
4816 as_bad ("Missing section name");
4817 ignore_rest_of_line ();
4818 return;
4819 }
4820 *input_line_pointer = c;
4821 }
4822 end = input_line_pointer;
4823 SKIP_WHITESPACE ();
4824 if (*input_line_pointer != ',')
4825 {
4826 as_bad ("Comma expected after section name");
4827 ignore_rest_of_line ();
4828 return;
4829 }
4830 *end = '\0';
4831 end = input_line_pointer + 1; /* skip comma */
4832 input_line_pointer = start;
4833 md.keep_pending_output = 1;
4834 section_count = bfd_count_sections(stdoutput);
4835 obj_elf_section (0);
4836 if (section_count != bfd_count_sections(stdoutput))
4837 as_warn ("Creating sections with .xdataN/.xrealN/.xstringZ is deprecated.");
4838 input_line_pointer = end;
4839 saved_auto_align = md.auto_align;
4840 if (ua)
4841 md.auto_align = 0;
4842 (*cons) (ref);
4843 if (ua)
4844 md.auto_align = saved_auto_align;
4845 obj_elf_previous (0);
4846 md.keep_pending_output = 0;
4847 }
4848
4849 static void
4850 dot_xdata (size)
4851 int size;
4852 {
4853 cross_section (size, cons, 0);
4854 }
4855
4856 /* Why doesn't float_cons() call md_cons_align() the way cons() does? */
4857
4858 static void
4859 stmt_float_cons (kind)
4860 int kind;
4861 {
4862 size_t alignment;
4863
4864 switch (kind)
4865 {
4866 case 'd':
4867 alignment = 8;
4868 break;
4869
4870 case 'x':
4871 case 'X':
4872 alignment = 16;
4873 break;
4874
4875 case 'f':
4876 default:
4877 alignment = 4;
4878 break;
4879 }
4880 ia64_do_align (alignment);
4881 float_cons (kind);
4882 }
4883
4884 static void
4885 stmt_cons_ua (size)
4886 int size;
4887 {
4888 int saved_auto_align = md.auto_align;
4889
4890 md.auto_align = 0;
4891 cons (size);
4892 md.auto_align = saved_auto_align;
4893 }
4894
4895 static void
4896 dot_xfloat_cons (kind)
4897 int kind;
4898 {
4899 cross_section (kind, stmt_float_cons, 0);
4900 }
4901
4902 static void
4903 dot_xstringer (zero)
4904 int zero;
4905 {
4906 cross_section (zero, stringer, 0);
4907 }
4908
4909 static void
4910 dot_xdata_ua (size)
4911 int size;
4912 {
4913 cross_section (size, cons, 1);
4914 }
4915
4916 static void
4917 dot_xfloat_cons_ua (kind)
4918 int kind;
4919 {
4920 cross_section (kind, float_cons, 1);
4921 }
4922
4923 /* .reg.val <regname>,value */
4924
4925 static void
4926 dot_reg_val (dummy)
4927 int dummy ATTRIBUTE_UNUSED;
4928 {
4929 expressionS reg;
4930
4931 expression (&reg);
4932 if (reg.X_op != O_register)
4933 {
4934 as_bad (_("Register name expected"));
4935 ignore_rest_of_line ();
4936 }
4937 else if (*input_line_pointer++ != ',')
4938 {
4939 as_bad (_("Comma expected"));
4940 ignore_rest_of_line ();
4941 }
4942 else
4943 {
4944 valueT value = get_absolute_expression ();
4945 int regno = reg.X_add_number;
4946 if (regno <= REG_GR || regno > REG_GR + 127)
4947 as_warn (_("Register value annotation ignored"));
4948 else
4949 {
4950 gr_values[regno - REG_GR].known = 1;
4951 gr_values[regno - REG_GR].value = value;
4952 gr_values[regno - REG_GR].path = md.path;
4953 }
4954 }
4955 demand_empty_rest_of_line ();
4956 }
4957
4958 /*
4959 .serialize.data
4960 .serialize.instruction
4961 */
4962 static void
4963 dot_serialize (type)
4964 int type;
4965 {
4966 insn_group_break (0, 0, 0);
4967 if (type)
4968 instruction_serialization ();
4969 else
4970 data_serialization ();
4971 insn_group_break (0, 0, 0);
4972 demand_empty_rest_of_line ();
4973 }
4974
4975 /* select dv checking mode
4976 .auto
4977 .explicit
4978 .default
4979
4980 A stop is inserted when changing modes
4981 */
4982
4983 static void
4984 dot_dv_mode (type)
4985 int type;
4986 {
4987 if (md.manual_bundling)
4988 as_warn (_("Directive invalid within a bundle"));
4989
4990 if (type == 'E' || type == 'A')
4991 md.mode_explicitly_set = 0;
4992 else
4993 md.mode_explicitly_set = 1;
4994
4995 md.detect_dv = 1;
4996 switch (type)
4997 {
4998 case 'A':
4999 case 'a':
5000 if (md.explicit_mode)
5001 insn_group_break (1, 0, 0);
5002 md.explicit_mode = 0;
5003 break;
5004 case 'E':
5005 case 'e':
5006 if (!md.explicit_mode)
5007 insn_group_break (1, 0, 0);
5008 md.explicit_mode = 1;
5009 break;
5010 default:
5011 case 'd':
5012 if (md.explicit_mode != md.default_explicit_mode)
5013 insn_group_break (1, 0, 0);
5014 md.explicit_mode = md.default_explicit_mode;
5015 md.mode_explicitly_set = 0;
5016 break;
5017 }
5018 }
5019
5020 static void
5021 print_prmask (mask)
5022 valueT mask;
5023 {
5024 int regno;
5025 char *comma = "";
5026 for (regno = 0; regno < 64; regno++)
5027 {
5028 if (mask & ((valueT) 1 << regno))
5029 {
5030 fprintf (stderr, "%s p%d", comma, regno);
5031 comma = ",";
5032 }
5033 }
5034 }
5035
5036 /*
5037 .pred.rel.clear [p1 [,p2 [,...]]] (also .pred.rel "clear" or @clear)
5038 .pred.rel.imply p1, p2 (also .pred.rel "imply" or @imply)
5039 .pred.rel.mutex p1, p2 [,...] (also .pred.rel "mutex" or @mutex)
5040 .pred.safe_across_calls p1 [, p2 [,...]]
5041 */
5042
5043 static void
5044 dot_pred_rel (type)
5045 int type;
5046 {
5047 valueT mask = 0;
5048 int count = 0;
5049 int p1 = -1, p2 = -1;
5050
5051 if (type == 0)
5052 {
5053 if (*input_line_pointer == '"')
5054 {
5055 int len;
5056 char *form = demand_copy_C_string (&len);
5057
5058 if (strcmp (form, "mutex") == 0)
5059 type = 'm';
5060 else if (strcmp (form, "clear") == 0)
5061 type = 'c';
5062 else if (strcmp (form, "imply") == 0)
5063 type = 'i';
5064 obstack_free (&notes, form);
5065 }
5066 else if (*input_line_pointer == '@')
5067 {
5068 char *form = ++input_line_pointer;
5069 char c = get_symbol_end();
5070
5071 if (strcmp (form, "mutex") == 0)
5072 type = 'm';
5073 else if (strcmp (form, "clear") == 0)
5074 type = 'c';
5075 else if (strcmp (form, "imply") == 0)
5076 type = 'i';
5077 *input_line_pointer = c;
5078 }
5079 else
5080 {
5081 as_bad (_("Missing predicate relation type"));
5082 ignore_rest_of_line ();
5083 return;
5084 }
5085 if (type == 0)
5086 {
5087 as_bad (_("Unrecognized predicate relation type"));
5088 ignore_rest_of_line ();
5089 return;
5090 }
5091 if (*input_line_pointer == ',')
5092 ++input_line_pointer;
5093 SKIP_WHITESPACE ();
5094 }
5095
5096 SKIP_WHITESPACE ();
5097 while (1)
5098 {
5099 valueT bits = 1;
5100 int regno;
5101 expressionS pr, *pr1, *pr2;
5102
5103 expression (&pr);
5104 if (pr.X_op == O_register
5105 && pr.X_add_number >= REG_P
5106 && pr.X_add_number <= REG_P + 63)
5107 {
5108 regno = pr.X_add_number - REG_P;
5109 bits <<= regno;
5110 count++;
5111 if (p1 == -1)
5112 p1 = regno;
5113 else if (p2 == -1)
5114 p2 = regno;
5115 }
5116 else if (type != 'i'
5117 && pr.X_op == O_subtract
5118 && (pr1 = symbol_get_value_expression (pr.X_add_symbol))
5119 && pr1->X_op == O_register
5120 && pr1->X_add_number >= REG_P
5121 && pr1->X_add_number <= REG_P + 63
5122 && (pr2 = symbol_get_value_expression (pr.X_op_symbol))
5123 && pr2->X_op == O_register
5124 && pr2->X_add_number >= REG_P
5125 && pr2->X_add_number <= REG_P + 63)
5126 {
5127 /* It's a range. */
5128 int stop;
5129
5130 regno = pr1->X_add_number - REG_P;
5131 stop = pr2->X_add_number - REG_P;
5132 if (regno >= stop)
5133 {
5134 as_bad (_("Bad register range"));
5135 ignore_rest_of_line ();
5136 return;
5137 }
5138 bits = ((bits << stop) << 1) - (bits << regno);
5139 count += stop - regno + 1;
5140 }
5141 else
5142 {
5143 as_bad (_("Predicate register expected"));
5144 ignore_rest_of_line ();
5145 return;
5146 }
5147 if (mask & bits)
5148 as_warn (_("Duplicate predicate register ignored"));
5149 mask |= bits;
5150 if (*input_line_pointer != ',')
5151 break;
5152 ++input_line_pointer;
5153 SKIP_WHITESPACE ();
5154 }
5155
5156 switch (type)
5157 {
5158 case 'c':
5159 if (count == 0)
5160 mask = ~(valueT) 0;
5161 clear_qp_mutex (mask);
5162 clear_qp_implies (mask, (valueT) 0);
5163 break;
5164 case 'i':
5165 if (count != 2 || p1 == -1 || p2 == -1)
5166 as_bad (_("Predicate source and target required"));
5167 else if (p1 == 0 || p2 == 0)
5168 as_bad (_("Use of p0 is not valid in this context"));
5169 else
5170 add_qp_imply (p1, p2);
5171 break;
5172 case 'm':
5173 if (count < 2)
5174 {
5175 as_bad (_("At least two PR arguments expected"));
5176 break;
5177 }
5178 else if (mask & 1)
5179 {
5180 as_bad (_("Use of p0 is not valid in this context"));
5181 break;
5182 }
5183 add_qp_mutex (mask);
5184 break;
5185 case 's':
5186 /* note that we don't override any existing relations */
5187 if (count == 0)
5188 {
5189 as_bad (_("At least one PR argument expected"));
5190 break;
5191 }
5192 if (md.debug_dv)
5193 {
5194 fprintf (stderr, "Safe across calls: ");
5195 print_prmask (mask);
5196 fprintf (stderr, "\n");
5197 }
5198 qp_safe_across_calls = mask;
5199 break;
5200 }
5201 demand_empty_rest_of_line ();
5202 }
5203
5204 /* .entry label [, label [, ...]]
5205 Hint to DV code that the given labels are to be considered entry points.
5206 Otherwise, only global labels are considered entry points. */
5207
5208 static void
5209 dot_entry (dummy)
5210 int dummy ATTRIBUTE_UNUSED;
5211 {
5212 const char *err;
5213 char *name;
5214 int c;
5215 symbolS *symbolP;
5216
5217 do
5218 {
5219 name = input_line_pointer;
5220 c = get_symbol_end ();
5221 symbolP = symbol_find_or_make (name);
5222
5223 err = hash_insert (md.entry_hash, S_GET_NAME (symbolP), (PTR) symbolP);
5224 if (err)
5225 as_fatal (_("Inserting \"%s\" into entry hint table failed: %s"),
5226 name, err);
5227
5228 *input_line_pointer = c;
5229 SKIP_WHITESPACE ();
5230 c = *input_line_pointer;
5231 if (c == ',')
5232 {
5233 input_line_pointer++;
5234 SKIP_WHITESPACE ();
5235 if (*input_line_pointer == '\n')
5236 c = '\n';
5237 }
5238 }
5239 while (c == ',');
5240
5241 demand_empty_rest_of_line ();
5242 }
5243
5244 /* .mem.offset offset, base
5245 "base" is used to distinguish between offsets from a different base. */
5246
5247 static void
5248 dot_mem_offset (dummy)
5249 int dummy ATTRIBUTE_UNUSED;
5250 {
5251 md.mem_offset.hint = 1;
5252 md.mem_offset.offset = get_absolute_expression ();
5253 if (*input_line_pointer != ',')
5254 {
5255 as_bad (_("Comma expected"));
5256 ignore_rest_of_line ();
5257 return;
5258 }
5259 ++input_line_pointer;
5260 md.mem_offset.base = get_absolute_expression ();
5261 demand_empty_rest_of_line ();
5262 }
5263
5264 /* ia64-specific pseudo-ops: */
5265 const pseudo_typeS md_pseudo_table[] =
5266 {
5267 { "radix", dot_radix, 0 },
5268 { "lcomm", s_lcomm_bytes, 1 },
5269 { "loc", dot_loc, 0 },
5270 { "bss", dot_special_section, SPECIAL_SECTION_BSS },
5271 { "sbss", dot_special_section, SPECIAL_SECTION_SBSS },
5272 { "sdata", dot_special_section, SPECIAL_SECTION_SDATA },
5273 { "rodata", dot_special_section, SPECIAL_SECTION_RODATA },
5274 { "comment", dot_special_section, SPECIAL_SECTION_COMMENT },
5275 { "ia_64.unwind", dot_special_section, SPECIAL_SECTION_UNWIND },
5276 { "ia_64.unwind_info", dot_special_section, SPECIAL_SECTION_UNWIND_INFO },
5277 { "init_array", dot_special_section, SPECIAL_SECTION_INIT_ARRAY },
5278 { "fini_array", dot_special_section, SPECIAL_SECTION_FINI_ARRAY },
5279 { "proc", dot_proc, 0 },
5280 { "body", dot_body, 0 },
5281 { "prologue", dot_prologue, 0 },
5282 { "endp", dot_endp, 0 },
5283
5284 { "fframe", dot_fframe, 0 },
5285 { "vframe", dot_vframe, 0 },
5286 { "vframesp", dot_vframesp, 0 },
5287 { "vframepsp", dot_vframesp, 1 },
5288 { "save", dot_save, 0 },
5289 { "restore", dot_restore, 0 },
5290 { "restorereg", dot_restorereg, 0 },
5291 { "restorereg.p", dot_restorereg, 1 },
5292 { "handlerdata", dot_handlerdata, 0 },
5293 { "unwentry", dot_unwentry, 0 },
5294 { "altrp", dot_altrp, 0 },
5295 { "savesp", dot_savemem, 0 },
5296 { "savepsp", dot_savemem, 1 },
5297 { "save.g", dot_saveg, 0 },
5298 { "save.f", dot_savef, 0 },
5299 { "save.b", dot_saveb, 0 },
5300 { "save.gf", dot_savegf, 0 },
5301 { "spill", dot_spill, 0 },
5302 { "spillreg", dot_spillreg, 0 },
5303 { "spillsp", dot_spillmem, 0 },
5304 { "spillpsp", dot_spillmem, 1 },
5305 { "spillreg.p", dot_spillreg, 1 },
5306 { "spillsp.p", dot_spillmem, ~0 },
5307 { "spillpsp.p", dot_spillmem, ~1 },
5308 { "label_state", dot_label_state, 0 },
5309 { "copy_state", dot_copy_state, 0 },
5310 { "unwabi", dot_unwabi, 0 },
5311 { "personality", dot_personality, 0 },
5312 { "mii", dot_template, 0x0 },
5313 { "mli", dot_template, 0x2 }, /* old format, for compatibility */
5314 { "mlx", dot_template, 0x2 },
5315 { "mmi", dot_template, 0x4 },
5316 { "mfi", dot_template, 0x6 },
5317 { "mmf", dot_template, 0x7 },
5318 { "mib", dot_template, 0x8 },
5319 { "mbb", dot_template, 0x9 },
5320 { "bbb", dot_template, 0xb },
5321 { "mmb", dot_template, 0xc },
5322 { "mfb", dot_template, 0xe },
5323 { "align", dot_align, 0 },
5324 { "regstk", dot_regstk, 0 },
5325 { "rotr", dot_rot, DYNREG_GR },
5326 { "rotf", dot_rot, DYNREG_FR },
5327 { "rotp", dot_rot, DYNREG_PR },
5328 { "lsb", dot_byteorder, 0 },
5329 { "msb", dot_byteorder, 1 },
5330 { "psr", dot_psr, 0 },
5331 { "alias", dot_alias, 0 },
5332 { "secalias", dot_alias, 1 },
5333 { "ln", dot_ln, 0 }, /* source line info (for debugging) */
5334
5335 { "xdata1", dot_xdata, 1 },
5336 { "xdata2", dot_xdata, 2 },
5337 { "xdata4", dot_xdata, 4 },
5338 { "xdata8", dot_xdata, 8 },
5339 { "xdata16", dot_xdata, 16 },
5340 { "xreal4", dot_xfloat_cons, 'f' },
5341 { "xreal8", dot_xfloat_cons, 'd' },
5342 { "xreal10", dot_xfloat_cons, 'x' },
5343 { "xreal16", dot_xfloat_cons, 'X' },
5344 { "xstring", dot_xstringer, 0 },
5345 { "xstringz", dot_xstringer, 1 },
5346
5347 /* unaligned versions: */
5348 { "xdata2.ua", dot_xdata_ua, 2 },
5349 { "xdata4.ua", dot_xdata_ua, 4 },
5350 { "xdata8.ua", dot_xdata_ua, 8 },
5351 { "xdata16.ua", dot_xdata_ua, 16 },
5352 { "xreal4.ua", dot_xfloat_cons_ua, 'f' },
5353 { "xreal8.ua", dot_xfloat_cons_ua, 'd' },
5354 { "xreal10.ua", dot_xfloat_cons_ua, 'x' },
5355 { "xreal16.ua", dot_xfloat_cons_ua, 'X' },
5356
5357 /* annotations/DV checking support */
5358 { "entry", dot_entry, 0 },
5359 { "mem.offset", dot_mem_offset, 0 },
5360 { "pred.rel", dot_pred_rel, 0 },
5361 { "pred.rel.clear", dot_pred_rel, 'c' },
5362 { "pred.rel.imply", dot_pred_rel, 'i' },
5363 { "pred.rel.mutex", dot_pred_rel, 'm' },
5364 { "pred.safe_across_calls", dot_pred_rel, 's' },
5365 { "reg.val", dot_reg_val, 0 },
5366 { "serialize.data", dot_serialize, 0 },
5367 { "serialize.instruction", dot_serialize, 1 },
5368 { "auto", dot_dv_mode, 'a' },
5369 { "explicit", dot_dv_mode, 'e' },
5370 { "default", dot_dv_mode, 'd' },
5371
5372 /* ??? These are needed to make gas/testsuite/gas/elf/ehopt.s work.
5373 IA-64 aligns data allocation pseudo-ops by default, so we have to
5374 tell it that these ones are supposed to be unaligned. Long term,
5375 should rewrite so that only IA-64 specific data allocation pseudo-ops
5376 are aligned by default. */
5377 {"2byte", stmt_cons_ua, 2},
5378 {"4byte", stmt_cons_ua, 4},
5379 {"8byte", stmt_cons_ua, 8},
5380
5381 { NULL, 0, 0 }
5382 };
5383
5384 static const struct pseudo_opcode
5385 {
5386 const char *name;
5387 void (*handler) (int);
5388 int arg;
5389 }
5390 pseudo_opcode[] =
5391 {
5392 /* these are more like pseudo-ops, but don't start with a dot */
5393 { "data1", cons, 1 },
5394 { "data2", cons, 2 },
5395 { "data4", cons, 4 },
5396 { "data8", cons, 8 },
5397 { "data16", cons, 16 },
5398 { "real4", stmt_float_cons, 'f' },
5399 { "real8", stmt_float_cons, 'd' },
5400 { "real10", stmt_float_cons, 'x' },
5401 { "real16", stmt_float_cons, 'X' },
5402 { "string", stringer, 0 },
5403 { "stringz", stringer, 1 },
5404
5405 /* unaligned versions: */
5406 { "data2.ua", stmt_cons_ua, 2 },
5407 { "data4.ua", stmt_cons_ua, 4 },
5408 { "data8.ua", stmt_cons_ua, 8 },
5409 { "data16.ua", stmt_cons_ua, 16 },
5410 { "real4.ua", float_cons, 'f' },
5411 { "real8.ua", float_cons, 'd' },
5412 { "real10.ua", float_cons, 'x' },
5413 { "real16.ua", float_cons, 'X' },
5414 };
5415
5416 /* Declare a register by creating a symbol for it and entering it in
5417 the symbol table. */
5418
5419 static symbolS *
5420 declare_register (name, regnum)
5421 const char *name;
5422 int regnum;
5423 {
5424 const char *err;
5425 symbolS *sym;
5426
5427 sym = symbol_new (name, reg_section, regnum, &zero_address_frag);
5428
5429 err = hash_insert (md.reg_hash, S_GET_NAME (sym), (PTR) sym);
5430 if (err)
5431 as_fatal ("Inserting \"%s\" into register table failed: %s",
5432 name, err);
5433
5434 return sym;
5435 }
5436
5437 static void
5438 declare_register_set (prefix, num_regs, base_regnum)
5439 const char *prefix;
5440 int num_regs;
5441 int base_regnum;
5442 {
5443 char name[8];
5444 int i;
5445
5446 for (i = 0; i < num_regs; ++i)
5447 {
5448 sprintf (name, "%s%u", prefix, i);
5449 declare_register (name, base_regnum + i);
5450 }
5451 }
5452
5453 static unsigned int
5454 operand_width (opnd)
5455 enum ia64_opnd opnd;
5456 {
5457 const struct ia64_operand *odesc = &elf64_ia64_operands[opnd];
5458 unsigned int bits = 0;
5459 int i;
5460
5461 bits = 0;
5462 for (i = 0; i < NELEMS (odesc->field) && odesc->field[i].bits; ++i)
5463 bits += odesc->field[i].bits;
5464
5465 return bits;
5466 }
5467
5468 static enum operand_match_result
5469 operand_match (idesc, index, e)
5470 const struct ia64_opcode *idesc;
5471 int index;
5472 expressionS *e;
5473 {
5474 enum ia64_opnd opnd = idesc->operands[index];
5475 int bits, relocatable = 0;
5476 struct insn_fix *fix;
5477 bfd_signed_vma val;
5478
5479 switch (opnd)
5480 {
5481 /* constants: */
5482
5483 case IA64_OPND_AR_CCV:
5484 if (e->X_op == O_register && e->X_add_number == REG_AR + 32)
5485 return OPERAND_MATCH;
5486 break;
5487
5488 case IA64_OPND_AR_CSD:
5489 if (e->X_op == O_register && e->X_add_number == REG_AR + 25)
5490 return OPERAND_MATCH;
5491 break;
5492
5493 case IA64_OPND_AR_PFS:
5494 if (e->X_op == O_register && e->X_add_number == REG_AR + 64)
5495 return OPERAND_MATCH;
5496 break;
5497
5498 case IA64_OPND_GR0:
5499 if (e->X_op == O_register && e->X_add_number == REG_GR + 0)
5500 return OPERAND_MATCH;
5501 break;
5502
5503 case IA64_OPND_IP:
5504 if (e->X_op == O_register && e->X_add_number == REG_IP)
5505 return OPERAND_MATCH;
5506 break;
5507
5508 case IA64_OPND_PR:
5509 if (e->X_op == O_register && e->X_add_number == REG_PR)
5510 return OPERAND_MATCH;
5511 break;
5512
5513 case IA64_OPND_PR_ROT:
5514 if (e->X_op == O_register && e->X_add_number == REG_PR_ROT)
5515 return OPERAND_MATCH;
5516 break;
5517
5518 case IA64_OPND_PSR:
5519 if (e->X_op == O_register && e->X_add_number == REG_PSR)
5520 return OPERAND_MATCH;
5521 break;
5522
5523 case IA64_OPND_PSR_L:
5524 if (e->X_op == O_register && e->X_add_number == REG_PSR_L)
5525 return OPERAND_MATCH;
5526 break;
5527
5528 case IA64_OPND_PSR_UM:
5529 if (e->X_op == O_register && e->X_add_number == REG_PSR_UM)
5530 return OPERAND_MATCH;
5531 break;
5532
5533 case IA64_OPND_C1:
5534 if (e->X_op == O_constant)
5535 {
5536 if (e->X_add_number == 1)
5537 return OPERAND_MATCH;
5538 else
5539 return OPERAND_OUT_OF_RANGE;
5540 }
5541 break;
5542
5543 case IA64_OPND_C8:
5544 if (e->X_op == O_constant)
5545 {
5546 if (e->X_add_number == 8)
5547 return OPERAND_MATCH;
5548 else
5549 return OPERAND_OUT_OF_RANGE;
5550 }
5551 break;
5552
5553 case IA64_OPND_C16:
5554 if (e->X_op == O_constant)
5555 {
5556 if (e->X_add_number == 16)
5557 return OPERAND_MATCH;
5558 else
5559 return OPERAND_OUT_OF_RANGE;
5560 }
5561 break;
5562
5563 /* register operands: */
5564
5565 case IA64_OPND_AR3:
5566 if (e->X_op == O_register && e->X_add_number >= REG_AR
5567 && e->X_add_number < REG_AR + 128)
5568 return OPERAND_MATCH;
5569 break;
5570
5571 case IA64_OPND_B1:
5572 case IA64_OPND_B2:
5573 if (e->X_op == O_register && e->X_add_number >= REG_BR
5574 && e->X_add_number < REG_BR + 8)
5575 return OPERAND_MATCH;
5576 break;
5577
5578 case IA64_OPND_CR3:
5579 if (e->X_op == O_register && e->X_add_number >= REG_CR
5580 && e->X_add_number < REG_CR + 128)
5581 return OPERAND_MATCH;
5582 break;
5583
5584 case IA64_OPND_F1:
5585 case IA64_OPND_F2:
5586 case IA64_OPND_F3:
5587 case IA64_OPND_F4:
5588 if (e->X_op == O_register && e->X_add_number >= REG_FR
5589 && e->X_add_number < REG_FR + 128)
5590 return OPERAND_MATCH;
5591 break;
5592
5593 case IA64_OPND_P1:
5594 case IA64_OPND_P2:
5595 if (e->X_op == O_register && e->X_add_number >= REG_P
5596 && e->X_add_number < REG_P + 64)
5597 return OPERAND_MATCH;
5598 break;
5599
5600 case IA64_OPND_R1:
5601 case IA64_OPND_R2:
5602 case IA64_OPND_R3:
5603 if (e->X_op == O_register && e->X_add_number >= REG_GR
5604 && e->X_add_number < REG_GR + 128)
5605 return OPERAND_MATCH;
5606 break;
5607
5608 case IA64_OPND_R3_2:
5609 if (e->X_op == O_register && e->X_add_number >= REG_GR)
5610 {
5611 if (e->X_add_number < REG_GR + 4)
5612 return OPERAND_MATCH;
5613 else if (e->X_add_number < REG_GR + 128)
5614 return OPERAND_OUT_OF_RANGE;
5615 }
5616 break;
5617
5618 /* indirect operands: */
5619 case IA64_OPND_CPUID_R3:
5620 case IA64_OPND_DBR_R3:
5621 case IA64_OPND_DTR_R3:
5622 case IA64_OPND_ITR_R3:
5623 case IA64_OPND_IBR_R3:
5624 case IA64_OPND_MSR_R3:
5625 case IA64_OPND_PKR_R3:
5626 case IA64_OPND_PMC_R3:
5627 case IA64_OPND_PMD_R3:
5628 case IA64_OPND_RR_R3:
5629 if (e->X_op == O_index && e->X_op_symbol
5630 && (S_GET_VALUE (e->X_op_symbol) - IND_CPUID
5631 == opnd - IA64_OPND_CPUID_R3))
5632 return OPERAND_MATCH;
5633 break;
5634
5635 case IA64_OPND_MR3:
5636 if (e->X_op == O_index && !e->X_op_symbol)
5637 return OPERAND_MATCH;
5638 break;
5639
5640 /* immediate operands: */
5641 case IA64_OPND_CNT2a:
5642 case IA64_OPND_LEN4:
5643 case IA64_OPND_LEN6:
5644 bits = operand_width (idesc->operands[index]);
5645 if (e->X_op == O_constant)
5646 {
5647 if ((bfd_vma) (e->X_add_number - 1) < ((bfd_vma) 1 << bits))
5648 return OPERAND_MATCH;
5649 else
5650 return OPERAND_OUT_OF_RANGE;
5651 }
5652 break;
5653
5654 case IA64_OPND_CNT2b:
5655 if (e->X_op == O_constant)
5656 {
5657 if ((bfd_vma) (e->X_add_number - 1) < 3)
5658 return OPERAND_MATCH;
5659 else
5660 return OPERAND_OUT_OF_RANGE;
5661 }
5662 break;
5663
5664 case IA64_OPND_CNT2c:
5665 val = e->X_add_number;
5666 if (e->X_op == O_constant)
5667 {
5668 if ((val == 0 || val == 7 || val == 15 || val == 16))
5669 return OPERAND_MATCH;
5670 else
5671 return OPERAND_OUT_OF_RANGE;
5672 }
5673 break;
5674
5675 case IA64_OPND_SOR:
5676 /* SOR must be an integer multiple of 8 */
5677 if (e->X_op == O_constant && e->X_add_number & 0x7)
5678 return OPERAND_OUT_OF_RANGE;
5679 case IA64_OPND_SOF:
5680 case IA64_OPND_SOL:
5681 if (e->X_op == O_constant)
5682 {
5683 if ((bfd_vma) e->X_add_number <= 96)
5684 return OPERAND_MATCH;
5685 else
5686 return OPERAND_OUT_OF_RANGE;
5687 }
5688 break;
5689
5690 case IA64_OPND_IMMU62:
5691 if (e->X_op == O_constant)
5692 {
5693 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << 62))
5694 return OPERAND_MATCH;
5695 else
5696 return OPERAND_OUT_OF_RANGE;
5697 }
5698 else
5699 {
5700 /* FIXME -- need 62-bit relocation type */
5701 as_bad (_("62-bit relocation not yet implemented"));
5702 }
5703 break;
5704
5705 case IA64_OPND_IMMU64:
5706 if (e->X_op == O_symbol || e->X_op == O_pseudo_fixup
5707 || e->X_op == O_subtract)
5708 {
5709 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5710 fix->code = BFD_RELOC_IA64_IMM64;
5711 if (e->X_op != O_subtract)
5712 {
5713 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5714 if (e->X_op == O_pseudo_fixup)
5715 e->X_op = O_symbol;
5716 }
5717
5718 fix->opnd = idesc->operands[index];
5719 fix->expr = *e;
5720 fix->is_pcrel = 0;
5721 ++CURR_SLOT.num_fixups;
5722 return OPERAND_MATCH;
5723 }
5724 else if (e->X_op == O_constant)
5725 return OPERAND_MATCH;
5726 break;
5727
5728 case IA64_OPND_CCNT5:
5729 case IA64_OPND_CNT5:
5730 case IA64_OPND_CNT6:
5731 case IA64_OPND_CPOS6a:
5732 case IA64_OPND_CPOS6b:
5733 case IA64_OPND_CPOS6c:
5734 case IA64_OPND_IMMU2:
5735 case IA64_OPND_IMMU7a:
5736 case IA64_OPND_IMMU7b:
5737 case IA64_OPND_IMMU21:
5738 case IA64_OPND_IMMU24:
5739 case IA64_OPND_MBTYPE4:
5740 case IA64_OPND_MHTYPE8:
5741 case IA64_OPND_POS6:
5742 bits = operand_width (idesc->operands[index]);
5743 if (e->X_op == O_constant)
5744 {
5745 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5746 return OPERAND_MATCH;
5747 else
5748 return OPERAND_OUT_OF_RANGE;
5749 }
5750 break;
5751
5752 case IA64_OPND_IMMU9:
5753 bits = operand_width (idesc->operands[index]);
5754 if (e->X_op == O_constant)
5755 {
5756 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5757 {
5758 int lobits = e->X_add_number & 0x3;
5759 if (((bfd_vma) e->X_add_number & 0x3C) != 0 && lobits == 0)
5760 e->X_add_number |= (bfd_vma) 0x3;
5761 return OPERAND_MATCH;
5762 }
5763 else
5764 return OPERAND_OUT_OF_RANGE;
5765 }
5766 break;
5767
5768 case IA64_OPND_IMM44:
5769 /* least 16 bits must be zero */
5770 if ((e->X_add_number & 0xffff) != 0)
5771 /* XXX technically, this is wrong: we should not be issuing warning
5772 messages until we're sure this instruction pattern is going to
5773 be used! */
5774 as_warn (_("lower 16 bits of mask ignored"));
5775
5776 if (e->X_op == O_constant)
5777 {
5778 if (((e->X_add_number >= 0
5779 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 44))
5780 || (e->X_add_number < 0
5781 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 44))))
5782 {
5783 /* sign-extend */
5784 if (e->X_add_number >= 0
5785 && (e->X_add_number & ((bfd_vma) 1 << 43)) != 0)
5786 {
5787 e->X_add_number |= ~(((bfd_vma) 1 << 44) - 1);
5788 }
5789 return OPERAND_MATCH;
5790 }
5791 else
5792 return OPERAND_OUT_OF_RANGE;
5793 }
5794 break;
5795
5796 case IA64_OPND_IMM17:
5797 /* bit 0 is a don't care (pr0 is hardwired to 1) */
5798 if (e->X_op == O_constant)
5799 {
5800 if (((e->X_add_number >= 0
5801 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 17))
5802 || (e->X_add_number < 0
5803 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 17))))
5804 {
5805 /* sign-extend */
5806 if (e->X_add_number >= 0
5807 && (e->X_add_number & ((bfd_vma) 1 << 16)) != 0)
5808 {
5809 e->X_add_number |= ~(((bfd_vma) 1 << 17) - 1);
5810 }
5811 return OPERAND_MATCH;
5812 }
5813 else
5814 return OPERAND_OUT_OF_RANGE;
5815 }
5816 break;
5817
5818 case IA64_OPND_IMM14:
5819 case IA64_OPND_IMM22:
5820 relocatable = 1;
5821 case IA64_OPND_IMM1:
5822 case IA64_OPND_IMM8:
5823 case IA64_OPND_IMM8U4:
5824 case IA64_OPND_IMM8M1:
5825 case IA64_OPND_IMM8M1U4:
5826 case IA64_OPND_IMM8M1U8:
5827 case IA64_OPND_IMM9a:
5828 case IA64_OPND_IMM9b:
5829 bits = operand_width (idesc->operands[index]);
5830 if (relocatable && (e->X_op == O_symbol
5831 || e->X_op == O_subtract
5832 || e->X_op == O_pseudo_fixup))
5833 {
5834 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5835
5836 if (idesc->operands[index] == IA64_OPND_IMM14)
5837 fix->code = BFD_RELOC_IA64_IMM14;
5838 else
5839 fix->code = BFD_RELOC_IA64_IMM22;
5840
5841 if (e->X_op != O_subtract)
5842 {
5843 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5844 if (e->X_op == O_pseudo_fixup)
5845 e->X_op = O_symbol;
5846 }
5847
5848 fix->opnd = idesc->operands[index];
5849 fix->expr = *e;
5850 fix->is_pcrel = 0;
5851 ++CURR_SLOT.num_fixups;
5852 return OPERAND_MATCH;
5853 }
5854 else if (e->X_op != O_constant
5855 && ! (e->X_op == O_big && opnd == IA64_OPND_IMM8M1U8))
5856 return OPERAND_MISMATCH;
5857
5858 if (opnd == IA64_OPND_IMM8M1U4)
5859 {
5860 /* Zero is not valid for unsigned compares that take an adjusted
5861 constant immediate range. */
5862 if (e->X_add_number == 0)
5863 return OPERAND_OUT_OF_RANGE;
5864
5865 /* Sign-extend 32-bit unsigned numbers, so that the following range
5866 checks will work. */
5867 val = e->X_add_number;
5868 if (((val & (~(bfd_vma) 0 << 32)) == 0)
5869 && ((val & ((bfd_vma) 1 << 31)) != 0))
5870 val = ((val << 32) >> 32);
5871
5872 /* Check for 0x100000000. This is valid because
5873 0x100000000-1 is the same as ((uint32_t) -1). */
5874 if (val == ((bfd_signed_vma) 1 << 32))
5875 return OPERAND_MATCH;
5876
5877 val = val - 1;
5878 }
5879 else if (opnd == IA64_OPND_IMM8M1U8)
5880 {
5881 /* Zero is not valid for unsigned compares that take an adjusted
5882 constant immediate range. */
5883 if (e->X_add_number == 0)
5884 return OPERAND_OUT_OF_RANGE;
5885
5886 /* Check for 0x10000000000000000. */
5887 if (e->X_op == O_big)
5888 {
5889 if (generic_bignum[0] == 0
5890 && generic_bignum[1] == 0
5891 && generic_bignum[2] == 0
5892 && generic_bignum[3] == 0
5893 && generic_bignum[4] == 1)
5894 return OPERAND_MATCH;
5895 else
5896 return OPERAND_OUT_OF_RANGE;
5897 }
5898 else
5899 val = e->X_add_number - 1;
5900 }
5901 else if (opnd == IA64_OPND_IMM8M1)
5902 val = e->X_add_number - 1;
5903 else if (opnd == IA64_OPND_IMM8U4)
5904 {
5905 /* Sign-extend 32-bit unsigned numbers, so that the following range
5906 checks will work. */
5907 val = e->X_add_number;
5908 if (((val & (~(bfd_vma) 0 << 32)) == 0)
5909 && ((val & ((bfd_vma) 1 << 31)) != 0))
5910 val = ((val << 32) >> 32);
5911 }
5912 else
5913 val = e->X_add_number;
5914
5915 if ((val >= 0 && (bfd_vma) val < ((bfd_vma) 1 << (bits - 1)))
5916 || (val < 0 && (bfd_vma) -val <= ((bfd_vma) 1 << (bits - 1))))
5917 return OPERAND_MATCH;
5918 else
5919 return OPERAND_OUT_OF_RANGE;
5920
5921 case IA64_OPND_INC3:
5922 /* +/- 1, 4, 8, 16 */
5923 val = e->X_add_number;
5924 if (val < 0)
5925 val = -val;
5926 if (e->X_op == O_constant)
5927 {
5928 if ((val == 1 || val == 4 || val == 8 || val == 16))
5929 return OPERAND_MATCH;
5930 else
5931 return OPERAND_OUT_OF_RANGE;
5932 }
5933 break;
5934
5935 case IA64_OPND_TGT25:
5936 case IA64_OPND_TGT25b:
5937 case IA64_OPND_TGT25c:
5938 case IA64_OPND_TGT64:
5939 if (e->X_op == O_symbol)
5940 {
5941 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5942 if (opnd == IA64_OPND_TGT25)
5943 fix->code = BFD_RELOC_IA64_PCREL21F;
5944 else if (opnd == IA64_OPND_TGT25b)
5945 fix->code = BFD_RELOC_IA64_PCREL21M;
5946 else if (opnd == IA64_OPND_TGT25c)
5947 fix->code = BFD_RELOC_IA64_PCREL21B;
5948 else if (opnd == IA64_OPND_TGT64)
5949 fix->code = BFD_RELOC_IA64_PCREL60B;
5950 else
5951 abort ();
5952
5953 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5954 fix->opnd = idesc->operands[index];
5955 fix->expr = *e;
5956 fix->is_pcrel = 1;
5957 ++CURR_SLOT.num_fixups;
5958 return OPERAND_MATCH;
5959 }
5960 case IA64_OPND_TAG13:
5961 case IA64_OPND_TAG13b:
5962 switch (e->X_op)
5963 {
5964 case O_constant:
5965 return OPERAND_MATCH;
5966
5967 case O_symbol:
5968 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5969 /* There are no external relocs for TAG13/TAG13b fields, so we
5970 create a dummy reloc. This will not live past md_apply_fix. */
5971 fix->code = BFD_RELOC_UNUSED;
5972 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5973 fix->opnd = idesc->operands[index];
5974 fix->expr = *e;
5975 fix->is_pcrel = 1;
5976 ++CURR_SLOT.num_fixups;
5977 return OPERAND_MATCH;
5978
5979 default:
5980 break;
5981 }
5982 break;
5983
5984 case IA64_OPND_LDXMOV:
5985 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5986 fix->code = BFD_RELOC_IA64_LDXMOV;
5987 fix->opnd = idesc->operands[index];
5988 fix->expr = *e;
5989 fix->is_pcrel = 0;
5990 ++CURR_SLOT.num_fixups;
5991 return OPERAND_MATCH;
5992
5993 default:
5994 break;
5995 }
5996 return OPERAND_MISMATCH;
5997 }
5998
5999 static int
6000 parse_operand (e, more)
6001 expressionS *e;
6002 int more;
6003 {
6004 int sep = '\0';
6005
6006 memset (e, 0, sizeof (*e));
6007 e->X_op = O_absent;
6008 SKIP_WHITESPACE ();
6009 expression (e);
6010 sep = *input_line_pointer;
6011 if (more && (sep == ',' || sep == more))
6012 ++input_line_pointer;
6013 return sep;
6014 }
6015
6016 /* Returns the next entry in the opcode table that matches the one in
6017 IDESC, and frees the entry in IDESC. If no matching entry is
6018 found, NULL is returned instead. */
6019
6020 static struct ia64_opcode *
6021 get_next_opcode (struct ia64_opcode *idesc)
6022 {
6023 struct ia64_opcode *next = ia64_find_next_opcode (idesc);
6024 ia64_free_opcode (idesc);
6025 return next;
6026 }
6027
6028 /* Parse the operands for the opcode and find the opcode variant that
6029 matches the specified operands, or NULL if no match is possible. */
6030
6031 static struct ia64_opcode *
6032 parse_operands (idesc)
6033 struct ia64_opcode *idesc;
6034 {
6035 int i = 0, highest_unmatched_operand, num_operands = 0, num_outputs = 0;
6036 int error_pos, out_of_range_pos, curr_out_of_range_pos, sep = 0;
6037 int reg1, reg2;
6038 char reg_class;
6039 enum ia64_opnd expected_operand = IA64_OPND_NIL;
6040 enum operand_match_result result;
6041 char mnemonic[129];
6042 char *first_arg = 0, *end, *saved_input_pointer;
6043 unsigned int sof;
6044
6045 assert (strlen (idesc->name) <= 128);
6046
6047 strcpy (mnemonic, idesc->name);
6048 if (idesc->operands[2] == IA64_OPND_SOF
6049 || idesc->operands[1] == IA64_OPND_SOF)
6050 {
6051 /* To make the common idiom "alloc loc?=ar.pfs,0,1,0,0" work, we
6052 can't parse the first operand until we have parsed the
6053 remaining operands of the "alloc" instruction. */
6054 SKIP_WHITESPACE ();
6055 first_arg = input_line_pointer;
6056 end = strchr (input_line_pointer, '=');
6057 if (!end)
6058 {
6059 as_bad ("Expected separator `='");
6060 return 0;
6061 }
6062 input_line_pointer = end + 1;
6063 ++i;
6064 ++num_outputs;
6065 }
6066
6067 for (; ; ++i)
6068 {
6069 if (i < NELEMS (CURR_SLOT.opnd))
6070 {
6071 sep = parse_operand (CURR_SLOT.opnd + i, '=');
6072 if (CURR_SLOT.opnd[i].X_op == O_absent)
6073 break;
6074 }
6075 else
6076 {
6077 expressionS dummy;
6078
6079 sep = parse_operand (&dummy, '=');
6080 if (dummy.X_op == O_absent)
6081 break;
6082 }
6083
6084 ++num_operands;
6085
6086 if (sep != '=' && sep != ',')
6087 break;
6088
6089 if (sep == '=')
6090 {
6091 if (num_outputs > 0)
6092 as_bad ("Duplicate equal sign (=) in instruction");
6093 else
6094 num_outputs = i + 1;
6095 }
6096 }
6097 if (sep != '\0')
6098 {
6099 as_bad ("Illegal operand separator `%c'", sep);
6100 return 0;
6101 }
6102
6103 if (idesc->operands[2] == IA64_OPND_SOF
6104 || idesc->operands[1] == IA64_OPND_SOF)
6105 {
6106 /* map alloc r1=ar.pfs,i,l,o,r to alloc r1=ar.pfs,(i+l+o),(i+l),r */
6107 know (strcmp (idesc->name, "alloc") == 0);
6108 i = (CURR_SLOT.opnd[1].X_op == O_register
6109 && CURR_SLOT.opnd[1].X_add_number == REG_AR + AR_PFS) ? 2 : 1;
6110 if (num_operands == i + 3 /* first_arg not included in this count! */
6111 && CURR_SLOT.opnd[i].X_op == O_constant
6112 && CURR_SLOT.opnd[i + 1].X_op == O_constant
6113 && CURR_SLOT.opnd[i + 2].X_op == O_constant
6114 && CURR_SLOT.opnd[i + 3].X_op == O_constant)
6115 {
6116 sof = set_regstack (CURR_SLOT.opnd[i].X_add_number,
6117 CURR_SLOT.opnd[i + 1].X_add_number,
6118 CURR_SLOT.opnd[i + 2].X_add_number,
6119 CURR_SLOT.opnd[i + 3].X_add_number);
6120
6121 /* now we can parse the first arg: */
6122 saved_input_pointer = input_line_pointer;
6123 input_line_pointer = first_arg;
6124 sep = parse_operand (CURR_SLOT.opnd + 0, '=');
6125 if (sep != '=')
6126 --num_outputs; /* force error */
6127 input_line_pointer = saved_input_pointer;
6128
6129 CURR_SLOT.opnd[i].X_add_number = sof;
6130 CURR_SLOT.opnd[i + 1].X_add_number
6131 = sof - CURR_SLOT.opnd[i + 2].X_add_number;
6132 CURR_SLOT.opnd[i + 2] = CURR_SLOT.opnd[i + 3];
6133 }
6134 }
6135
6136 highest_unmatched_operand = -4;
6137 curr_out_of_range_pos = -1;
6138 error_pos = 0;
6139 for (; idesc; idesc = get_next_opcode (idesc))
6140 {
6141 if (num_outputs != idesc->num_outputs)
6142 continue; /* mismatch in # of outputs */
6143 if (highest_unmatched_operand < 0)
6144 highest_unmatched_operand |= 1;
6145 if (num_operands > NELEMS (idesc->operands)
6146 || (num_operands < NELEMS (idesc->operands)
6147 && idesc->operands[num_operands])
6148 || (num_operands > 0 && !idesc->operands[num_operands - 1]))
6149 continue; /* mismatch in number of arguments */
6150 if (highest_unmatched_operand < 0)
6151 highest_unmatched_operand |= 2;
6152
6153 CURR_SLOT.num_fixups = 0;
6154
6155 /* Try to match all operands. If we see an out-of-range operand,
6156 then continue trying to match the rest of the operands, since if
6157 the rest match, then this idesc will give the best error message. */
6158
6159 out_of_range_pos = -1;
6160 for (i = 0; i < num_operands && idesc->operands[i]; ++i)
6161 {
6162 result = operand_match (idesc, i, CURR_SLOT.opnd + i);
6163 if (result != OPERAND_MATCH)
6164 {
6165 if (result != OPERAND_OUT_OF_RANGE)
6166 break;
6167 if (out_of_range_pos < 0)
6168 /* remember position of the first out-of-range operand: */
6169 out_of_range_pos = i;
6170 }
6171 }
6172
6173 /* If we did not match all operands, or if at least one operand was
6174 out-of-range, then this idesc does not match. Keep track of which
6175 idesc matched the most operands before failing. If we have two
6176 idescs that failed at the same position, and one had an out-of-range
6177 operand, then prefer the out-of-range operand. Thus if we have
6178 "add r0=0x1000000,r1" we get an error saying the constant is out
6179 of range instead of an error saying that the constant should have been
6180 a register. */
6181
6182 if (i != num_operands || out_of_range_pos >= 0)
6183 {
6184 if (i > highest_unmatched_operand
6185 || (i == highest_unmatched_operand
6186 && out_of_range_pos > curr_out_of_range_pos))
6187 {
6188 highest_unmatched_operand = i;
6189 if (out_of_range_pos >= 0)
6190 {
6191 expected_operand = idesc->operands[out_of_range_pos];
6192 error_pos = out_of_range_pos;
6193 }
6194 else
6195 {
6196 expected_operand = idesc->operands[i];
6197 error_pos = i;
6198 }
6199 curr_out_of_range_pos = out_of_range_pos;
6200 }
6201 continue;
6202 }
6203
6204 break;
6205 }
6206 if (!idesc)
6207 {
6208 if (expected_operand)
6209 as_bad ("Operand %u of `%s' should be %s",
6210 error_pos + 1, mnemonic,
6211 elf64_ia64_operands[expected_operand].desc);
6212 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 1))
6213 as_bad ("Wrong number of output operands");
6214 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 2))
6215 as_bad ("Wrong number of input operands");
6216 else
6217 as_bad ("Operand mismatch");
6218 return 0;
6219 }
6220
6221 /* Check that the instruction doesn't use
6222 - r0, f0, or f1 as output operands
6223 - the same predicate twice as output operands
6224 - r0 as address of a base update load or store
6225 - the same GR as output and address of a base update load
6226 - two even- or two odd-numbered FRs as output operands of a floating
6227 point parallel load.
6228 At most two (conflicting) output (or output-like) operands can exist,
6229 (floating point parallel loads have three outputs, but the base register,
6230 if updated, cannot conflict with the actual outputs). */
6231 reg2 = reg1 = -1;
6232 for (i = 0; i < num_operands; ++i)
6233 {
6234 int regno = 0;
6235
6236 reg_class = 0;
6237 switch (idesc->operands[i])
6238 {
6239 case IA64_OPND_R1:
6240 case IA64_OPND_R2:
6241 case IA64_OPND_R3:
6242 if (i < num_outputs)
6243 {
6244 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6245 reg_class = 'r';
6246 else if (reg1 < 0)
6247 reg1 = CURR_SLOT.opnd[i].X_add_number;
6248 else if (reg2 < 0)
6249 reg2 = CURR_SLOT.opnd[i].X_add_number;
6250 }
6251 break;
6252 case IA64_OPND_P1:
6253 case IA64_OPND_P2:
6254 if (i < num_outputs)
6255 {
6256 if (reg1 < 0)
6257 reg1 = CURR_SLOT.opnd[i].X_add_number;
6258 else if (reg2 < 0)
6259 reg2 = CURR_SLOT.opnd[i].X_add_number;
6260 }
6261 break;
6262 case IA64_OPND_F1:
6263 case IA64_OPND_F2:
6264 case IA64_OPND_F3:
6265 case IA64_OPND_F4:
6266 if (i < num_outputs)
6267 {
6268 if (CURR_SLOT.opnd[i].X_add_number >= REG_FR
6269 && CURR_SLOT.opnd[i].X_add_number <= REG_FR + 1)
6270 {
6271 reg_class = 'f';
6272 regno = CURR_SLOT.opnd[i].X_add_number - REG_FR;
6273 }
6274 else if (reg1 < 0)
6275 reg1 = CURR_SLOT.opnd[i].X_add_number;
6276 else if (reg2 < 0)
6277 reg2 = CURR_SLOT.opnd[i].X_add_number;
6278 }
6279 break;
6280 case IA64_OPND_MR3:
6281 if (idesc->flags & IA64_OPCODE_POSTINC)
6282 {
6283 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6284 reg_class = 'm';
6285 else if (reg1 < 0)
6286 reg1 = CURR_SLOT.opnd[i].X_add_number;
6287 else if (reg2 < 0)
6288 reg2 = CURR_SLOT.opnd[i].X_add_number;
6289 }
6290 break;
6291 default:
6292 break;
6293 }
6294 switch (reg_class)
6295 {
6296 case 0:
6297 break;
6298 default:
6299 as_warn ("Invalid use of `%c%d' as output operand", reg_class, regno);
6300 break;
6301 case 'm':
6302 as_warn ("Invalid use of `r%d' as base update address operand", regno);
6303 break;
6304 }
6305 }
6306 if (reg1 == reg2)
6307 {
6308 if (reg1 >= REG_GR && reg1 <= REG_GR + 127)
6309 {
6310 reg1 -= REG_GR;
6311 reg_class = 'r';
6312 }
6313 else if (reg1 >= REG_P && reg1 <= REG_P + 63)
6314 {
6315 reg1 -= REG_P;
6316 reg_class = 'p';
6317 }
6318 else if (reg1 >= REG_FR && reg1 <= REG_FR + 127)
6319 {
6320 reg1 -= REG_FR;
6321 reg_class = 'f';
6322 }
6323 else
6324 reg_class = 0;
6325 if (reg_class)
6326 as_warn ("Invalid duplicate use of `%c%d'", reg_class, reg1);
6327 }
6328 else if (((reg1 >= REG_FR && reg1 <= REG_FR + 31
6329 && reg2 >= REG_FR && reg2 <= REG_FR + 31)
6330 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6331 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127))
6332 && ! ((reg1 ^ reg2) & 1))
6333 as_warn ("Invalid simultaneous use of `f%d' and `f%d'",
6334 reg1 - REG_FR, reg2 - REG_FR);
6335 else if ((reg1 >= REG_FR && reg1 <= REG_FR + 31
6336 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127)
6337 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6338 && reg2 >= REG_FR && reg2 <= REG_FR + 31))
6339 as_warn ("Dangerous simultaneous use of `f%d' and `f%d'",
6340 reg1 - REG_FR, reg2 - REG_FR);
6341 return idesc;
6342 }
6343
6344 static void
6345 build_insn (slot, insnp)
6346 struct slot *slot;
6347 bfd_vma *insnp;
6348 {
6349 const struct ia64_operand *odesc, *o2desc;
6350 struct ia64_opcode *idesc = slot->idesc;
6351 bfd_vma insn;
6352 bfd_signed_vma val;
6353 const char *err;
6354 int i;
6355
6356 insn = idesc->opcode | slot->qp_regno;
6357
6358 for (i = 0; i < NELEMS (idesc->operands) && idesc->operands[i]; ++i)
6359 {
6360 if (slot->opnd[i].X_op == O_register
6361 || slot->opnd[i].X_op == O_constant
6362 || slot->opnd[i].X_op == O_index)
6363 val = slot->opnd[i].X_add_number;
6364 else if (slot->opnd[i].X_op == O_big)
6365 {
6366 /* This must be the value 0x10000000000000000. */
6367 assert (idesc->operands[i] == IA64_OPND_IMM8M1U8);
6368 val = 0;
6369 }
6370 else
6371 val = 0;
6372
6373 switch (idesc->operands[i])
6374 {
6375 case IA64_OPND_IMMU64:
6376 *insnp++ = (val >> 22) & 0x1ffffffffffLL;
6377 insn |= (((val & 0x7f) << 13) | (((val >> 7) & 0x1ff) << 27)
6378 | (((val >> 16) & 0x1f) << 22) | (((val >> 21) & 0x1) << 21)
6379 | (((val >> 63) & 0x1) << 36));
6380 continue;
6381
6382 case IA64_OPND_IMMU62:
6383 val &= 0x3fffffffffffffffULL;
6384 if (val != slot->opnd[i].X_add_number)
6385 as_warn (_("Value truncated to 62 bits"));
6386 *insnp++ = (val >> 21) & 0x1ffffffffffLL;
6387 insn |= (((val & 0xfffff) << 6) | (((val >> 20) & 0x1) << 36));
6388 continue;
6389
6390 case IA64_OPND_TGT64:
6391 val >>= 4;
6392 *insnp++ = ((val >> 20) & 0x7fffffffffLL) << 2;
6393 insn |= ((((val >> 59) & 0x1) << 36)
6394 | (((val >> 0) & 0xfffff) << 13));
6395 continue;
6396
6397 case IA64_OPND_AR3:
6398 val -= REG_AR;
6399 break;
6400
6401 case IA64_OPND_B1:
6402 case IA64_OPND_B2:
6403 val -= REG_BR;
6404 break;
6405
6406 case IA64_OPND_CR3:
6407 val -= REG_CR;
6408 break;
6409
6410 case IA64_OPND_F1:
6411 case IA64_OPND_F2:
6412 case IA64_OPND_F3:
6413 case IA64_OPND_F4:
6414 val -= REG_FR;
6415 break;
6416
6417 case IA64_OPND_P1:
6418 case IA64_OPND_P2:
6419 val -= REG_P;
6420 break;
6421
6422 case IA64_OPND_R1:
6423 case IA64_OPND_R2:
6424 case IA64_OPND_R3:
6425 case IA64_OPND_R3_2:
6426 case IA64_OPND_CPUID_R3:
6427 case IA64_OPND_DBR_R3:
6428 case IA64_OPND_DTR_R3:
6429 case IA64_OPND_ITR_R3:
6430 case IA64_OPND_IBR_R3:
6431 case IA64_OPND_MR3:
6432 case IA64_OPND_MSR_R3:
6433 case IA64_OPND_PKR_R3:
6434 case IA64_OPND_PMC_R3:
6435 case IA64_OPND_PMD_R3:
6436 case IA64_OPND_RR_R3:
6437 val -= REG_GR;
6438 break;
6439
6440 default:
6441 break;
6442 }
6443
6444 odesc = elf64_ia64_operands + idesc->operands[i];
6445 err = (*odesc->insert) (odesc, val, &insn);
6446 if (err)
6447 as_bad_where (slot->src_file, slot->src_line,
6448 "Bad operand value: %s", err);
6449 if (idesc->flags & IA64_OPCODE_PSEUDO)
6450 {
6451 if ((idesc->flags & IA64_OPCODE_F2_EQ_F3)
6452 && odesc == elf64_ia64_operands + IA64_OPND_F3)
6453 {
6454 o2desc = elf64_ia64_operands + IA64_OPND_F2;
6455 (*o2desc->insert) (o2desc, val, &insn);
6456 }
6457 if ((idesc->flags & IA64_OPCODE_LEN_EQ_64MCNT)
6458 && (odesc == elf64_ia64_operands + IA64_OPND_CPOS6a
6459 || odesc == elf64_ia64_operands + IA64_OPND_POS6))
6460 {
6461 o2desc = elf64_ia64_operands + IA64_OPND_LEN6;
6462 (*o2desc->insert) (o2desc, 64 - val, &insn);
6463 }
6464 }
6465 }
6466 *insnp = insn;
6467 }
6468
6469 static void
6470 emit_one_bundle ()
6471 {
6472 int manual_bundling_off = 0, manual_bundling = 0;
6473 enum ia64_unit required_unit, insn_unit = 0;
6474 enum ia64_insn_type type[3], insn_type;
6475 unsigned int template, orig_template;
6476 bfd_vma insn[3] = { -1, -1, -1 };
6477 struct ia64_opcode *idesc;
6478 int end_of_insn_group = 0, user_template = -1;
6479 int n, i, j, first, curr, last_slot;
6480 bfd_vma t0 = 0, t1 = 0;
6481 struct label_fix *lfix;
6482 struct insn_fix *ifix;
6483 char mnemonic[16];
6484 fixS *fix;
6485 char *f;
6486 int addr_mod;
6487
6488 first = (md.curr_slot + NUM_SLOTS - md.num_slots_in_use) % NUM_SLOTS;
6489 know (first >= 0 & first < NUM_SLOTS);
6490 n = MIN (3, md.num_slots_in_use);
6491
6492 /* Determine template: user user_template if specified, best match
6493 otherwise: */
6494
6495 if (md.slot[first].user_template >= 0)
6496 user_template = template = md.slot[first].user_template;
6497 else
6498 {
6499 /* Auto select appropriate template. */
6500 memset (type, 0, sizeof (type));
6501 curr = first;
6502 for (i = 0; i < n; ++i)
6503 {
6504 if (md.slot[curr].label_fixups && i != 0)
6505 break;
6506 type[i] = md.slot[curr].idesc->type;
6507 curr = (curr + 1) % NUM_SLOTS;
6508 }
6509 template = best_template[type[0]][type[1]][type[2]];
6510 }
6511
6512 /* initialize instructions with appropriate nops: */
6513 for (i = 0; i < 3; ++i)
6514 insn[i] = nop[ia64_templ_desc[template].exec_unit[i]];
6515
6516 f = frag_more (16);
6517
6518 /* Check to see if this bundle is at an offset that is a multiple of 16-bytes
6519 from the start of the frag. */
6520 addr_mod = frag_now_fix () & 15;
6521 if (frag_now->has_code && frag_now->insn_addr != addr_mod)
6522 as_bad (_("instruction address is not a multiple of 16"));
6523 frag_now->insn_addr = addr_mod;
6524 frag_now->has_code = 1;
6525
6526 /* now fill in slots with as many insns as possible: */
6527 curr = first;
6528 idesc = md.slot[curr].idesc;
6529 end_of_insn_group = 0;
6530 last_slot = -1;
6531 for (i = 0; i < 3 && md.num_slots_in_use > 0; ++i)
6532 {
6533 /* If we have unwind records, we may need to update some now. */
6534 unw_rec_list *ptr = md.slot[curr].unwind_record;
6535 unw_rec_list *end_ptr = NULL;
6536
6537 if (ptr)
6538 {
6539 /* Find the last prologue/body record in the list for the current
6540 insn, and set the slot number for all records up to that point.
6541 This needs to be done now, because prologue/body records refer to
6542 the current point, not the point after the instruction has been
6543 issued. This matters because there may have been nops emitted
6544 meanwhile. Any non-prologue non-body record followed by a
6545 prologue/body record must also refer to the current point. */
6546 unw_rec_list *last_ptr;
6547
6548 for (j = 1; end_ptr == NULL && j < md.num_slots_in_use; ++j)
6549 end_ptr = md.slot[(curr + j) % NUM_SLOTS].unwind_record;
6550 for (last_ptr = NULL; ptr != end_ptr; ptr = ptr->next)
6551 if (ptr->r.type == prologue || ptr->r.type == prologue_gr
6552 || ptr->r.type == body)
6553 last_ptr = ptr;
6554 if (last_ptr)
6555 {
6556 /* Make last_ptr point one after the last prologue/body
6557 record. */
6558 last_ptr = last_ptr->next;
6559 for (ptr = md.slot[curr].unwind_record; ptr != last_ptr;
6560 ptr = ptr->next)
6561 {
6562 ptr->slot_number = (unsigned long) f + i;
6563 ptr->slot_frag = frag_now;
6564 }
6565 /* Remove the initialized records, so that we won't accidentally
6566 update them again if we insert a nop and continue. */
6567 md.slot[curr].unwind_record = last_ptr;
6568 }
6569 }
6570
6571 manual_bundling_off = md.slot[curr].manual_bundling_off;
6572 if (md.slot[curr].manual_bundling_on)
6573 {
6574 if (curr == first)
6575 manual_bundling = 1;
6576 else
6577 break; /* Need to start a new bundle. */
6578 }
6579
6580 /* If this instruction specifies a template, then it must be the first
6581 instruction of a bundle. */
6582 if (curr != first && md.slot[curr].user_template >= 0)
6583 break;
6584
6585 if (idesc->flags & IA64_OPCODE_SLOT2)
6586 {
6587 if (manual_bundling && !manual_bundling_off)
6588 {
6589 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6590 "`%s' must be last in bundle", idesc->name);
6591 if (i < 2)
6592 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6593 }
6594 i = 2;
6595 }
6596 if (idesc->flags & IA64_OPCODE_LAST)
6597 {
6598 int required_slot;
6599 unsigned int required_template;
6600
6601 /* If we need a stop bit after an M slot, our only choice is
6602 template 5 (M;;MI). If we need a stop bit after a B
6603 slot, our only choice is to place it at the end of the
6604 bundle, because the only available templates are MIB,
6605 MBB, BBB, MMB, and MFB. We don't handle anything other
6606 than M and B slots because these are the only kind of
6607 instructions that can have the IA64_OPCODE_LAST bit set. */
6608 required_template = template;
6609 switch (idesc->type)
6610 {
6611 case IA64_TYPE_M:
6612 required_slot = 0;
6613 required_template = 5;
6614 break;
6615
6616 case IA64_TYPE_B:
6617 required_slot = 2;
6618 break;
6619
6620 default:
6621 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6622 "Internal error: don't know how to force %s to end"
6623 "of instruction group", idesc->name);
6624 required_slot = i;
6625 break;
6626 }
6627 if (manual_bundling
6628 && (i > required_slot
6629 || (required_slot == 2 && !manual_bundling_off)
6630 || (user_template >= 0
6631 /* Changing from MMI to M;MI is OK. */
6632 && (template ^ required_template) > 1)))
6633 {
6634 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6635 "`%s' must be last in instruction group",
6636 idesc->name);
6637 if (i < 2 && required_slot == 2 && !manual_bundling_off)
6638 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6639 }
6640 if (required_slot < i)
6641 /* Can't fit this instruction. */
6642 break;
6643
6644 i = required_slot;
6645 if (required_template != template)
6646 {
6647 /* If we switch the template, we need to reset the NOPs
6648 after slot i. The slot-types of the instructions ahead
6649 of i never change, so we don't need to worry about
6650 changing NOPs in front of this slot. */
6651 for (j = i; j < 3; ++j)
6652 insn[j] = nop[ia64_templ_desc[required_template].exec_unit[j]];
6653 }
6654 template = required_template;
6655 }
6656 if (curr != first && md.slot[curr].label_fixups)
6657 {
6658 if (manual_bundling)
6659 {
6660 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6661 "Label must be first in a bundle");
6662 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6663 }
6664 /* This insn must go into the first slot of a bundle. */
6665 break;
6666 }
6667
6668 if (end_of_insn_group && md.num_slots_in_use >= 1)
6669 {
6670 /* We need an instruction group boundary in the middle of a
6671 bundle. See if we can switch to an other template with
6672 an appropriate boundary. */
6673
6674 orig_template = template;
6675 if (i == 1 && (user_template == 4
6676 || (user_template < 0
6677 && (ia64_templ_desc[template].exec_unit[0]
6678 == IA64_UNIT_M))))
6679 {
6680 template = 5;
6681 end_of_insn_group = 0;
6682 }
6683 else if (i == 2 && (user_template == 0
6684 || (user_template < 0
6685 && (ia64_templ_desc[template].exec_unit[1]
6686 == IA64_UNIT_I)))
6687 /* This test makes sure we don't switch the template if
6688 the next instruction is one that needs to be first in
6689 an instruction group. Since all those instructions are
6690 in the M group, there is no way such an instruction can
6691 fit in this bundle even if we switch the template. The
6692 reason we have to check for this is that otherwise we
6693 may end up generating "MI;;I M.." which has the deadly
6694 effect that the second M instruction is no longer the
6695 first in the group! --davidm 99/12/16 */
6696 && (idesc->flags & IA64_OPCODE_FIRST) == 0)
6697 {
6698 template = 1;
6699 end_of_insn_group = 0;
6700 }
6701 else if (i == 1
6702 && user_template == 0
6703 && !(idesc->flags & IA64_OPCODE_FIRST))
6704 /* Use the next slot. */
6705 continue;
6706 else if (curr != first)
6707 /* can't fit this insn */
6708 break;
6709
6710 if (template != orig_template)
6711 /* if we switch the template, we need to reset the NOPs
6712 after slot i. The slot-types of the instructions ahead
6713 of i never change, so we don't need to worry about
6714 changing NOPs in front of this slot. */
6715 for (j = i; j < 3; ++j)
6716 insn[j] = nop[ia64_templ_desc[template].exec_unit[j]];
6717 }
6718 required_unit = ia64_templ_desc[template].exec_unit[i];
6719
6720 /* resolve dynamic opcodes such as "break", "hint", and "nop": */
6721 if (idesc->type == IA64_TYPE_DYN)
6722 {
6723 enum ia64_opnd opnd1, opnd2;
6724
6725 if ((strcmp (idesc->name, "nop") == 0)
6726 || (strcmp (idesc->name, "break") == 0))
6727 insn_unit = required_unit;
6728 else if (strcmp (idesc->name, "hint") == 0)
6729 {
6730 insn_unit = required_unit;
6731 if (required_unit == IA64_UNIT_B)
6732 {
6733 switch (md.hint_b)
6734 {
6735 case hint_b_ok:
6736 break;
6737 case hint_b_warning:
6738 as_warn ("hint in B unit may be treated as nop");
6739 break;
6740 case hint_b_error:
6741 /* When manual bundling is off and there is no
6742 user template, we choose a different unit so
6743 that hint won't go into the current slot. We
6744 will fill the current bundle with nops and
6745 try to put hint into the next bundle. */
6746 if (!manual_bundling && user_template < 0)
6747 insn_unit = IA64_UNIT_I;
6748 else
6749 as_bad ("hint in B unit can't be used");
6750 break;
6751 }
6752 }
6753 }
6754 else if (strcmp (idesc->name, "chk.s") == 0
6755 || strcmp (idesc->name, "mov") == 0)
6756 {
6757 insn_unit = IA64_UNIT_M;
6758 if (required_unit == IA64_UNIT_I
6759 || (required_unit == IA64_UNIT_F && template == 6))
6760 insn_unit = IA64_UNIT_I;
6761 }
6762 else
6763 as_fatal ("emit_one_bundle: unexpected dynamic op");
6764
6765 sprintf (mnemonic, "%s.%c", idesc->name, "?imbfxx"[insn_unit]);
6766 opnd1 = idesc->operands[0];
6767 opnd2 = idesc->operands[1];
6768 ia64_free_opcode (idesc);
6769 idesc = ia64_find_opcode (mnemonic);
6770 /* moves to/from ARs have collisions */
6771 if (opnd1 == IA64_OPND_AR3 || opnd2 == IA64_OPND_AR3)
6772 {
6773 while (idesc != NULL
6774 && (idesc->operands[0] != opnd1
6775 || idesc->operands[1] != opnd2))
6776 idesc = get_next_opcode (idesc);
6777 }
6778 md.slot[curr].idesc = idesc;
6779 }
6780 else
6781 {
6782 insn_type = idesc->type;
6783 insn_unit = IA64_UNIT_NIL;
6784 switch (insn_type)
6785 {
6786 case IA64_TYPE_A:
6787 if (required_unit == IA64_UNIT_I || required_unit == IA64_UNIT_M)
6788 insn_unit = required_unit;
6789 break;
6790 case IA64_TYPE_X: insn_unit = IA64_UNIT_L; break;
6791 case IA64_TYPE_I: insn_unit = IA64_UNIT_I; break;
6792 case IA64_TYPE_M: insn_unit = IA64_UNIT_M; break;
6793 case IA64_TYPE_B: insn_unit = IA64_UNIT_B; break;
6794 case IA64_TYPE_F: insn_unit = IA64_UNIT_F; break;
6795 default: break;
6796 }
6797 }
6798
6799 if (insn_unit != required_unit)
6800 continue; /* Try next slot. */
6801
6802 if (debug_type == DEBUG_DWARF2 || md.slot[curr].loc_directive_seen)
6803 {
6804 bfd_vma addr = frag_now->fr_address + frag_now_fix () - 16 + i;
6805
6806 md.slot[curr].loc_directive_seen = 0;
6807 dwarf2_gen_line_info (addr, &md.slot[curr].debug_line);
6808 }
6809
6810 build_insn (md.slot + curr, insn + i);
6811
6812 ptr = md.slot[curr].unwind_record;
6813 if (ptr)
6814 {
6815 /* Set slot numbers for all remaining unwind records belonging to the
6816 current insn. There can not be any prologue/body unwind records
6817 here. */
6818 for (; ptr != end_ptr; ptr = ptr->next)
6819 {
6820 ptr->slot_number = (unsigned long) f + i;
6821 ptr->slot_frag = frag_now;
6822 }
6823 md.slot[curr].unwind_record = NULL;
6824 }
6825
6826 if (required_unit == IA64_UNIT_L)
6827 {
6828 know (i == 1);
6829 /* skip one slot for long/X-unit instructions */
6830 ++i;
6831 }
6832 --md.num_slots_in_use;
6833 last_slot = i;
6834
6835 /* now is a good time to fix up the labels for this insn: */
6836 for (lfix = md.slot[curr].label_fixups; lfix; lfix = lfix->next)
6837 {
6838 S_SET_VALUE (lfix->sym, frag_now_fix () - 16);
6839 symbol_set_frag (lfix->sym, frag_now);
6840 }
6841 /* and fix up the tags also. */
6842 for (lfix = md.slot[curr].tag_fixups; lfix; lfix = lfix->next)
6843 {
6844 S_SET_VALUE (lfix->sym, frag_now_fix () - 16 + i);
6845 symbol_set_frag (lfix->sym, frag_now);
6846 }
6847
6848 for (j = 0; j < md.slot[curr].num_fixups; ++j)
6849 {
6850 ifix = md.slot[curr].fixup + j;
6851 fix = fix_new_exp (frag_now, frag_now_fix () - 16 + i, 8,
6852 &ifix->expr, ifix->is_pcrel, ifix->code);
6853 fix->tc_fix_data.opnd = ifix->opnd;
6854 fix->fx_plt = (fix->fx_r_type == BFD_RELOC_IA64_PLTOFF22);
6855 fix->fx_file = md.slot[curr].src_file;
6856 fix->fx_line = md.slot[curr].src_line;
6857 }
6858
6859 end_of_insn_group = md.slot[curr].end_of_insn_group;
6860
6861 /* clear slot: */
6862 ia64_free_opcode (md.slot[curr].idesc);
6863 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
6864 md.slot[curr].user_template = -1;
6865
6866 if (manual_bundling_off)
6867 {
6868 manual_bundling = 0;
6869 break;
6870 }
6871 curr = (curr + 1) % NUM_SLOTS;
6872 idesc = md.slot[curr].idesc;
6873 }
6874 if (manual_bundling > 0)
6875 {
6876 if (md.num_slots_in_use > 0)
6877 {
6878 if (last_slot >= 2)
6879 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6880 "`%s' does not fit into bundle", idesc->name);
6881 else if (last_slot < 0)
6882 {
6883 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6884 "`%s' does not fit into %s template",
6885 idesc->name, ia64_templ_desc[template].name);
6886 /* Drop first insn so we don't livelock. */
6887 --md.num_slots_in_use;
6888 know (curr == first);
6889 ia64_free_opcode (md.slot[curr].idesc);
6890 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
6891 md.slot[curr].user_template = -1;
6892 }
6893 else
6894 {
6895 const char *where;
6896
6897 if (template == 2)
6898 where = "X slot";
6899 else if (last_slot == 0)
6900 where = "slots 2 or 3";
6901 else
6902 where = "slot 3";
6903 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6904 "`%s' can't go in %s of %s template",
6905 idesc->name, where, ia64_templ_desc[template].name);
6906 }
6907 }
6908 else
6909 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6910 "Missing '}' at end of file");
6911 }
6912 know (md.num_slots_in_use < NUM_SLOTS);
6913
6914 t0 = end_of_insn_group | (template << 1) | (insn[0] << 5) | (insn[1] << 46);
6915 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
6916
6917 number_to_chars_littleendian (f + 0, t0, 8);
6918 number_to_chars_littleendian (f + 8, t1, 8);
6919 }
6920
6921 int
6922 md_parse_option (c, arg)
6923 int c;
6924 char *arg;
6925 {
6926
6927 switch (c)
6928 {
6929 /* Switches from the Intel assembler. */
6930 case 'm':
6931 if (strcmp (arg, "ilp64") == 0
6932 || strcmp (arg, "lp64") == 0
6933 || strcmp (arg, "p64") == 0)
6934 {
6935 md.flags |= EF_IA_64_ABI64;
6936 }
6937 else if (strcmp (arg, "ilp32") == 0)
6938 {
6939 md.flags &= ~EF_IA_64_ABI64;
6940 }
6941 else if (strcmp (arg, "le") == 0)
6942 {
6943 md.flags &= ~EF_IA_64_BE;
6944 default_big_endian = 0;
6945 }
6946 else if (strcmp (arg, "be") == 0)
6947 {
6948 md.flags |= EF_IA_64_BE;
6949 default_big_endian = 1;
6950 }
6951 else if (strncmp (arg, "unwind-check=", 13) == 0)
6952 {
6953 arg += 13;
6954 if (strcmp (arg, "warning") == 0)
6955 md.unwind_check = unwind_check_warning;
6956 else if (strcmp (arg, "error") == 0)
6957 md.unwind_check = unwind_check_error;
6958 else
6959 return 0;
6960 }
6961 else if (strncmp (arg, "hint.b=", 7) == 0)
6962 {
6963 arg += 7;
6964 if (strcmp (arg, "ok") == 0)
6965 md.hint_b = hint_b_ok;
6966 else if (strcmp (arg, "warning") == 0)
6967 md.hint_b = hint_b_warning;
6968 else if (strcmp (arg, "error") == 0)
6969 md.hint_b = hint_b_error;
6970 else
6971 return 0;
6972 }
6973 else if (strncmp (arg, "tune=", 5) == 0)
6974 {
6975 arg += 5;
6976 if (strcmp (arg, "itanium1") == 0)
6977 md.tune = itanium1;
6978 else if (strcmp (arg, "itanium2") == 0)
6979 md.tune = itanium2;
6980 else
6981 return 0;
6982 }
6983 else
6984 return 0;
6985 break;
6986
6987 case 'N':
6988 if (strcmp (arg, "so") == 0)
6989 {
6990 /* Suppress signon message. */
6991 }
6992 else if (strcmp (arg, "pi") == 0)
6993 {
6994 /* Reject privileged instructions. FIXME */
6995 }
6996 else if (strcmp (arg, "us") == 0)
6997 {
6998 /* Allow union of signed and unsigned range. FIXME */
6999 }
7000 else if (strcmp (arg, "close_fcalls") == 0)
7001 {
7002 /* Do not resolve global function calls. */
7003 }
7004 else
7005 return 0;
7006 break;
7007
7008 case 'C':
7009 /* temp[="prefix"] Insert temporary labels into the object file
7010 symbol table prefixed by "prefix".
7011 Default prefix is ":temp:".
7012 */
7013 break;
7014
7015 case 'a':
7016 /* indirect=<tgt> Assume unannotated indirect branches behavior
7017 according to <tgt> --
7018 exit: branch out from the current context (default)
7019 labels: all labels in context may be branch targets
7020 */
7021 if (strncmp (arg, "indirect=", 9) != 0)
7022 return 0;
7023 break;
7024
7025 case 'x':
7026 /* -X conflicts with an ignored option, use -x instead */
7027 md.detect_dv = 1;
7028 if (!arg || strcmp (arg, "explicit") == 0)
7029 {
7030 /* set default mode to explicit */
7031 md.default_explicit_mode = 1;
7032 break;
7033 }
7034 else if (strcmp (arg, "auto") == 0)
7035 {
7036 md.default_explicit_mode = 0;
7037 }
7038 else if (strcmp (arg, "none") == 0)
7039 {
7040 md.detect_dv = 0;
7041 }
7042 else if (strcmp (arg, "debug") == 0)
7043 {
7044 md.debug_dv = 1;
7045 }
7046 else if (strcmp (arg, "debugx") == 0)
7047 {
7048 md.default_explicit_mode = 1;
7049 md.debug_dv = 1;
7050 }
7051 else if (strcmp (arg, "debugn") == 0)
7052 {
7053 md.debug_dv = 1;
7054 md.detect_dv = 0;
7055 }
7056 else
7057 {
7058 as_bad (_("Unrecognized option '-x%s'"), arg);
7059 }
7060 break;
7061
7062 case 'S':
7063 /* nops Print nops statistics. */
7064 break;
7065
7066 /* GNU specific switches for gcc. */
7067 case OPTION_MCONSTANT_GP:
7068 md.flags |= EF_IA_64_CONS_GP;
7069 break;
7070
7071 case OPTION_MAUTO_PIC:
7072 md.flags |= EF_IA_64_NOFUNCDESC_CONS_GP;
7073 break;
7074
7075 default:
7076 return 0;
7077 }
7078
7079 return 1;
7080 }
7081
7082 void
7083 md_show_usage (stream)
7084 FILE *stream;
7085 {
7086 fputs (_("\
7087 IA-64 options:\n\
7088 --mconstant-gp mark output file as using the constant-GP model\n\
7089 (sets ELF header flag EF_IA_64_CONS_GP)\n\
7090 --mauto-pic mark output file as using the constant-GP model\n\
7091 without function descriptors (sets ELF header flag\n\
7092 EF_IA_64_NOFUNCDESC_CONS_GP)\n\
7093 -milp32|-milp64|-mlp64|-mp64 select data model (default -mlp64)\n\
7094 -mle | -mbe select little- or big-endian byte order (default -mle)\n\
7095 -mtune=[itanium1|itanium2]\n\
7096 tune for a specific CPU (default -mtune=itanium2)\n\
7097 -munwind-check=[warning|error]\n\
7098 unwind directive check (default -munwind-check=warning)\n\
7099 -mhint.b=[ok|warning|error]\n\
7100 hint.b check (default -mhint.b=error)\n\
7101 -x | -xexplicit turn on dependency violation checking\n\
7102 -xauto automagically remove dependency violations (default)\n\
7103 -xnone turn off dependency violation checking\n\
7104 -xdebug debug dependency violation checker\n\
7105 -xdebugn debug dependency violation checker but turn off\n\
7106 dependency violation checking\n\
7107 -xdebugx debug dependency violation checker and turn on\n\
7108 dependency violation checking\n"),
7109 stream);
7110 }
7111
7112 void
7113 ia64_after_parse_args ()
7114 {
7115 if (debug_type == DEBUG_STABS)
7116 as_fatal (_("--gstabs is not supported for ia64"));
7117 }
7118
7119 /* Return true if TYPE fits in TEMPL at SLOT. */
7120
7121 static int
7122 match (int templ, int type, int slot)
7123 {
7124 enum ia64_unit unit;
7125 int result;
7126
7127 unit = ia64_templ_desc[templ].exec_unit[slot];
7128 switch (type)
7129 {
7130 case IA64_TYPE_DYN: result = 1; break; /* for nop and break */
7131 case IA64_TYPE_A:
7132 result = (unit == IA64_UNIT_I || unit == IA64_UNIT_M);
7133 break;
7134 case IA64_TYPE_X: result = (unit == IA64_UNIT_L); break;
7135 case IA64_TYPE_I: result = (unit == IA64_UNIT_I); break;
7136 case IA64_TYPE_M: result = (unit == IA64_UNIT_M); break;
7137 case IA64_TYPE_B: result = (unit == IA64_UNIT_B); break;
7138 case IA64_TYPE_F: result = (unit == IA64_UNIT_F); break;
7139 default: result = 0; break;
7140 }
7141 return result;
7142 }
7143
7144 /* For Itanium 1, add a bit of extra goodness if a nop of type F or B would fit
7145 in TEMPL at SLOT. For Itanium 2, add a bit of extra goodness if a nop of
7146 type M or I would fit in TEMPL at SLOT. */
7147
7148 static inline int
7149 extra_goodness (int templ, int slot)
7150 {
7151 switch (md.tune)
7152 {
7153 case itanium1:
7154 if (slot == 1 && match (templ, IA64_TYPE_F, slot))
7155 return 2;
7156 else if (slot == 2 && match (templ, IA64_TYPE_B, slot))
7157 return 1;
7158 else
7159 return 0;
7160 break;
7161 case itanium2:
7162 if (match (templ, IA64_TYPE_M, slot)
7163 || match (templ, IA64_TYPE_I, slot))
7164 /* Favor M- and I-unit NOPs. We definitely want to avoid
7165 F-unit and B-unit may cause split-issue or less-than-optimal
7166 branch-prediction. */
7167 return 2;
7168 else
7169 return 0;
7170 break;
7171 default:
7172 abort ();
7173 return 0;
7174 }
7175 }
7176
7177 /* This function is called once, at assembler startup time. It sets
7178 up all the tables, etc. that the MD part of the assembler will need
7179 that can be determined before arguments are parsed. */
7180 void
7181 md_begin ()
7182 {
7183 int i, j, k, t, total, ar_base, cr_base, goodness, best, regnum, ok;
7184 const char *err;
7185 char name[8];
7186
7187 md.auto_align = 1;
7188 md.explicit_mode = md.default_explicit_mode;
7189
7190 bfd_set_section_alignment (stdoutput, text_section, 4);
7191
7192 /* Make sure function pointers get initialized. */
7193 target_big_endian = -1;
7194 dot_byteorder (default_big_endian);
7195
7196 alias_hash = hash_new ();
7197 alias_name_hash = hash_new ();
7198 secalias_hash = hash_new ();
7199 secalias_name_hash = hash_new ();
7200
7201 pseudo_func[FUNC_DTP_MODULE].u.sym =
7202 symbol_new (".<dtpmod>", undefined_section, FUNC_DTP_MODULE,
7203 &zero_address_frag);
7204
7205 pseudo_func[FUNC_DTP_RELATIVE].u.sym =
7206 symbol_new (".<dtprel>", undefined_section, FUNC_DTP_RELATIVE,
7207 &zero_address_frag);
7208
7209 pseudo_func[FUNC_FPTR_RELATIVE].u.sym =
7210 symbol_new (".<fptr>", undefined_section, FUNC_FPTR_RELATIVE,
7211 &zero_address_frag);
7212
7213 pseudo_func[FUNC_GP_RELATIVE].u.sym =
7214 symbol_new (".<gprel>", undefined_section, FUNC_GP_RELATIVE,
7215 &zero_address_frag);
7216
7217 pseudo_func[FUNC_LT_RELATIVE].u.sym =
7218 symbol_new (".<ltoff>", undefined_section, FUNC_LT_RELATIVE,
7219 &zero_address_frag);
7220
7221 pseudo_func[FUNC_LT_RELATIVE_X].u.sym =
7222 symbol_new (".<ltoffx>", undefined_section, FUNC_LT_RELATIVE_X,
7223 &zero_address_frag);
7224
7225 pseudo_func[FUNC_PC_RELATIVE].u.sym =
7226 symbol_new (".<pcrel>", undefined_section, FUNC_PC_RELATIVE,
7227 &zero_address_frag);
7228
7229 pseudo_func[FUNC_PLT_RELATIVE].u.sym =
7230 symbol_new (".<pltoff>", undefined_section, FUNC_PLT_RELATIVE,
7231 &zero_address_frag);
7232
7233 pseudo_func[FUNC_SEC_RELATIVE].u.sym =
7234 symbol_new (".<secrel>", undefined_section, FUNC_SEC_RELATIVE,
7235 &zero_address_frag);
7236
7237 pseudo_func[FUNC_SEG_RELATIVE].u.sym =
7238 symbol_new (".<segrel>", undefined_section, FUNC_SEG_RELATIVE,
7239 &zero_address_frag);
7240
7241 pseudo_func[FUNC_TP_RELATIVE].u.sym =
7242 symbol_new (".<tprel>", undefined_section, FUNC_TP_RELATIVE,
7243 &zero_address_frag);
7244
7245 pseudo_func[FUNC_LTV_RELATIVE].u.sym =
7246 symbol_new (".<ltv>", undefined_section, FUNC_LTV_RELATIVE,
7247 &zero_address_frag);
7248
7249 pseudo_func[FUNC_LT_FPTR_RELATIVE].u.sym =
7250 symbol_new (".<ltoff.fptr>", undefined_section, FUNC_LT_FPTR_RELATIVE,
7251 &zero_address_frag);
7252
7253 pseudo_func[FUNC_LT_DTP_MODULE].u.sym =
7254 symbol_new (".<ltoff.dtpmod>", undefined_section, FUNC_LT_DTP_MODULE,
7255 &zero_address_frag);
7256
7257 pseudo_func[FUNC_LT_DTP_RELATIVE].u.sym =
7258 symbol_new (".<ltoff.dptrel>", undefined_section, FUNC_LT_DTP_RELATIVE,
7259 &zero_address_frag);
7260
7261 pseudo_func[FUNC_LT_TP_RELATIVE].u.sym =
7262 symbol_new (".<ltoff.tprel>", undefined_section, FUNC_LT_TP_RELATIVE,
7263 &zero_address_frag);
7264
7265 pseudo_func[FUNC_IPLT_RELOC].u.sym =
7266 symbol_new (".<iplt>", undefined_section, FUNC_IPLT_RELOC,
7267 &zero_address_frag);
7268
7269 if (md.tune != itanium1)
7270 {
7271 /* Convert MFI NOPs bundles into MMI NOPs bundles. */
7272 le_nop[0] = 0x8;
7273 le_nop_stop[0] = 0x9;
7274 }
7275
7276 /* Compute the table of best templates. We compute goodness as a
7277 base 4 value, in which each match counts for 3. Match-failures
7278 result in NOPs and we use extra_goodness() to pick the execution
7279 units that are best suited for issuing the NOP. */
7280 for (i = 0; i < IA64_NUM_TYPES; ++i)
7281 for (j = 0; j < IA64_NUM_TYPES; ++j)
7282 for (k = 0; k < IA64_NUM_TYPES; ++k)
7283 {
7284 best = 0;
7285 for (t = 0; t < NELEMS (ia64_templ_desc); ++t)
7286 {
7287 goodness = 0;
7288 if (match (t, i, 0))
7289 {
7290 if (match (t, j, 1))
7291 {
7292 if ((t == 2 && j == IA64_TYPE_X) || match (t, k, 2))
7293 goodness = 3 + 3 + 3;
7294 else
7295 goodness = 3 + 3 + extra_goodness (t, 2);
7296 }
7297 else if (match (t, j, 2))
7298 goodness = 3 + 3 + extra_goodness (t, 1);
7299 else
7300 {
7301 goodness = 3;
7302 goodness += extra_goodness (t, 1);
7303 goodness += extra_goodness (t, 2);
7304 }
7305 }
7306 else if (match (t, i, 1))
7307 {
7308 if ((t == 2 && i == IA64_TYPE_X) || match (t, j, 2))
7309 goodness = 3 + 3;
7310 else
7311 goodness = 3 + extra_goodness (t, 2);
7312 }
7313 else if (match (t, i, 2))
7314 goodness = 3 + extra_goodness (t, 1);
7315
7316 if (goodness > best)
7317 {
7318 best = goodness;
7319 best_template[i][j][k] = t;
7320 }
7321 }
7322 }
7323
7324 #ifdef DEBUG_TEMPLATES
7325 /* For debugging changes to the best_template calculations. We don't care
7326 about combinations with invalid instructions, so start the loops at 1. */
7327 for (i = 0; i < IA64_NUM_TYPES; ++i)
7328 for (j = 0; j < IA64_NUM_TYPES; ++j)
7329 for (k = 0; k < IA64_NUM_TYPES; ++k)
7330 {
7331 char type_letter[IA64_NUM_TYPES] = { 'n', 'a', 'i', 'm', 'b', 'f',
7332 'x', 'd' };
7333 fprintf (stderr, "%c%c%c %s\n", type_letter[i], type_letter[j],
7334 type_letter[k],
7335 ia64_templ_desc[best_template[i][j][k]].name);
7336 }
7337 #endif
7338
7339 for (i = 0; i < NUM_SLOTS; ++i)
7340 md.slot[i].user_template = -1;
7341
7342 md.pseudo_hash = hash_new ();
7343 for (i = 0; i < NELEMS (pseudo_opcode); ++i)
7344 {
7345 err = hash_insert (md.pseudo_hash, pseudo_opcode[i].name,
7346 (void *) (pseudo_opcode + i));
7347 if (err)
7348 as_fatal ("ia64.md_begin: can't hash `%s': %s",
7349 pseudo_opcode[i].name, err);
7350 }
7351
7352 md.reg_hash = hash_new ();
7353 md.dynreg_hash = hash_new ();
7354 md.const_hash = hash_new ();
7355 md.entry_hash = hash_new ();
7356
7357 /* general registers: */
7358
7359 total = 128;
7360 for (i = 0; i < total; ++i)
7361 {
7362 sprintf (name, "r%d", i - REG_GR);
7363 md.regsym[i] = declare_register (name, i);
7364 }
7365
7366 /* floating point registers: */
7367 total += 128;
7368 for (; i < total; ++i)
7369 {
7370 sprintf (name, "f%d", i - REG_FR);
7371 md.regsym[i] = declare_register (name, i);
7372 }
7373
7374 /* application registers: */
7375 total += 128;
7376 ar_base = i;
7377 for (; i < total; ++i)
7378 {
7379 sprintf (name, "ar%d", i - REG_AR);
7380 md.regsym[i] = declare_register (name, i);
7381 }
7382
7383 /* control registers: */
7384 total += 128;
7385 cr_base = i;
7386 for (; i < total; ++i)
7387 {
7388 sprintf (name, "cr%d", i - REG_CR);
7389 md.regsym[i] = declare_register (name, i);
7390 }
7391
7392 /* predicate registers: */
7393 total += 64;
7394 for (; i < total; ++i)
7395 {
7396 sprintf (name, "p%d", i - REG_P);
7397 md.regsym[i] = declare_register (name, i);
7398 }
7399
7400 /* branch registers: */
7401 total += 8;
7402 for (; i < total; ++i)
7403 {
7404 sprintf (name, "b%d", i - REG_BR);
7405 md.regsym[i] = declare_register (name, i);
7406 }
7407
7408 md.regsym[REG_IP] = declare_register ("ip", REG_IP);
7409 md.regsym[REG_CFM] = declare_register ("cfm", REG_CFM);
7410 md.regsym[REG_PR] = declare_register ("pr", REG_PR);
7411 md.regsym[REG_PR_ROT] = declare_register ("pr.rot", REG_PR_ROT);
7412 md.regsym[REG_PSR] = declare_register ("psr", REG_PSR);
7413 md.regsym[REG_PSR_L] = declare_register ("psr.l", REG_PSR_L);
7414 md.regsym[REG_PSR_UM] = declare_register ("psr.um", REG_PSR_UM);
7415
7416 for (i = 0; i < NELEMS (indirect_reg); ++i)
7417 {
7418 regnum = indirect_reg[i].regnum;
7419 md.regsym[regnum] = declare_register (indirect_reg[i].name, regnum);
7420 }
7421
7422 /* define synonyms for application registers: */
7423 for (i = REG_AR; i < REG_AR + NELEMS (ar); ++i)
7424 md.regsym[i] = declare_register (ar[i - REG_AR].name,
7425 REG_AR + ar[i - REG_AR].regnum);
7426
7427 /* define synonyms for control registers: */
7428 for (i = REG_CR; i < REG_CR + NELEMS (cr); ++i)
7429 md.regsym[i] = declare_register (cr[i - REG_CR].name,
7430 REG_CR + cr[i - REG_CR].regnum);
7431
7432 declare_register ("gp", REG_GR + 1);
7433 declare_register ("sp", REG_GR + 12);
7434 declare_register ("rp", REG_BR + 0);
7435
7436 /* pseudo-registers used to specify unwind info: */
7437 declare_register ("psp", REG_PSP);
7438
7439 declare_register_set ("ret", 4, REG_GR + 8);
7440 declare_register_set ("farg", 8, REG_FR + 8);
7441 declare_register_set ("fret", 8, REG_FR + 8);
7442
7443 for (i = 0; i < NELEMS (const_bits); ++i)
7444 {
7445 err = hash_insert (md.const_hash, const_bits[i].name,
7446 (PTR) (const_bits + i));
7447 if (err)
7448 as_fatal ("Inserting \"%s\" into constant hash table failed: %s",
7449 name, err);
7450 }
7451
7452 /* Set the architecture and machine depending on defaults and command line
7453 options. */
7454 if (md.flags & EF_IA_64_ABI64)
7455 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf64);
7456 else
7457 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf32);
7458
7459 if (! ok)
7460 as_warn (_("Could not set architecture and machine"));
7461
7462 /* Set the pointer size and pointer shift size depending on md.flags */
7463
7464 if (md.flags & EF_IA_64_ABI64)
7465 {
7466 md.pointer_size = 8; /* pointers are 8 bytes */
7467 md.pointer_size_shift = 3; /* alignment is 8 bytes = 2^2 */
7468 }
7469 else
7470 {
7471 md.pointer_size = 4; /* pointers are 4 bytes */
7472 md.pointer_size_shift = 2; /* alignment is 4 bytes = 2^2 */
7473 }
7474
7475 md.mem_offset.hint = 0;
7476 md.path = 0;
7477 md.maxpaths = 0;
7478 md.entry_labels = NULL;
7479 }
7480
7481 /* Set the default options in md. Cannot do this in md_begin because
7482 that is called after md_parse_option which is where we set the
7483 options in md based on command line options. */
7484
7485 void
7486 ia64_init (argc, argv)
7487 int argc ATTRIBUTE_UNUSED;
7488 char **argv ATTRIBUTE_UNUSED;
7489 {
7490 md.flags = MD_FLAGS_DEFAULT;
7491 md.detect_dv = 1;
7492 /* FIXME: We should change it to unwind_check_error someday. */
7493 md.unwind_check = unwind_check_warning;
7494 md.hint_b = hint_b_error;
7495 md.tune = itanium2;
7496 }
7497
7498 /* Return a string for the target object file format. */
7499
7500 const char *
7501 ia64_target_format ()
7502 {
7503 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
7504 {
7505 if (md.flags & EF_IA_64_BE)
7506 {
7507 if (md.flags & EF_IA_64_ABI64)
7508 #if defined(TE_AIX50)
7509 return "elf64-ia64-aix-big";
7510 #elif defined(TE_HPUX)
7511 return "elf64-ia64-hpux-big";
7512 #else
7513 return "elf64-ia64-big";
7514 #endif
7515 else
7516 #if defined(TE_AIX50)
7517 return "elf32-ia64-aix-big";
7518 #elif defined(TE_HPUX)
7519 return "elf32-ia64-hpux-big";
7520 #else
7521 return "elf32-ia64-big";
7522 #endif
7523 }
7524 else
7525 {
7526 if (md.flags & EF_IA_64_ABI64)
7527 #ifdef TE_AIX50
7528 return "elf64-ia64-aix-little";
7529 #else
7530 return "elf64-ia64-little";
7531 #endif
7532 else
7533 #ifdef TE_AIX50
7534 return "elf32-ia64-aix-little";
7535 #else
7536 return "elf32-ia64-little";
7537 #endif
7538 }
7539 }
7540 else
7541 return "unknown-format";
7542 }
7543
7544 void
7545 ia64_end_of_source ()
7546 {
7547 /* terminate insn group upon reaching end of file: */
7548 insn_group_break (1, 0, 0);
7549
7550 /* emits slots we haven't written yet: */
7551 ia64_flush_insns ();
7552
7553 bfd_set_private_flags (stdoutput, md.flags);
7554
7555 md.mem_offset.hint = 0;
7556 }
7557
7558 void
7559 ia64_start_line ()
7560 {
7561 static int first;
7562
7563 if (!first) {
7564 /* Make sure we don't reference input_line_pointer[-1] when that's
7565 not valid. */
7566 first = 1;
7567 return;
7568 }
7569
7570 if (md.qp.X_op == O_register)
7571 as_bad ("qualifying predicate not followed by instruction");
7572 md.qp.X_op = O_absent;
7573
7574 if (ignore_input ())
7575 return;
7576
7577 if (input_line_pointer[0] == ';' && input_line_pointer[-1] == ';')
7578 {
7579 if (md.detect_dv && !md.explicit_mode)
7580 {
7581 static int warned;
7582
7583 if (!warned)
7584 {
7585 warned = 1;
7586 as_warn (_("Explicit stops are ignored in auto mode"));
7587 }
7588 }
7589 else
7590 insn_group_break (1, 0, 0);
7591 }
7592 else if (input_line_pointer[-1] == '{')
7593 {
7594 if (md.manual_bundling)
7595 as_warn ("Found '{' when manual bundling is already turned on");
7596 else
7597 CURR_SLOT.manual_bundling_on = 1;
7598 md.manual_bundling = 1;
7599
7600 /* Bundling is only acceptable in explicit mode
7601 or when in default automatic mode. */
7602 if (md.detect_dv && !md.explicit_mode)
7603 {
7604 if (!md.mode_explicitly_set
7605 && !md.default_explicit_mode)
7606 dot_dv_mode ('E');
7607 else
7608 as_warn (_("Found '{' after explicit switch to automatic mode"));
7609 }
7610 }
7611 else if (input_line_pointer[-1] == '}')
7612 {
7613 if (!md.manual_bundling)
7614 as_warn ("Found '}' when manual bundling is off");
7615 else
7616 PREV_SLOT.manual_bundling_off = 1;
7617 md.manual_bundling = 0;
7618
7619 /* switch back to automatic mode, if applicable */
7620 if (md.detect_dv
7621 && md.explicit_mode
7622 && !md.mode_explicitly_set
7623 && !md.default_explicit_mode)
7624 dot_dv_mode ('A');
7625 }
7626 }
7627
7628 /* This is a hook for ia64_frob_label, so that it can distinguish tags from
7629 labels. */
7630 static int defining_tag = 0;
7631
7632 int
7633 ia64_unrecognized_line (ch)
7634 int ch;
7635 {
7636 switch (ch)
7637 {
7638 case '(':
7639 expression (&md.qp);
7640 if (*input_line_pointer++ != ')')
7641 {
7642 as_bad ("Expected ')'");
7643 return 0;
7644 }
7645 if (md.qp.X_op != O_register)
7646 {
7647 as_bad ("Qualifying predicate expected");
7648 return 0;
7649 }
7650 if (md.qp.X_add_number < REG_P || md.qp.X_add_number >= REG_P + 64)
7651 {
7652 as_bad ("Predicate register expected");
7653 return 0;
7654 }
7655 return 1;
7656
7657 case '[':
7658 {
7659 char *s;
7660 char c;
7661 symbolS *tag;
7662 int temp;
7663
7664 if (md.qp.X_op == O_register)
7665 {
7666 as_bad ("Tag must come before qualifying predicate.");
7667 return 0;
7668 }
7669
7670 /* This implements just enough of read_a_source_file in read.c to
7671 recognize labels. */
7672 if (is_name_beginner (*input_line_pointer))
7673 {
7674 s = input_line_pointer;
7675 c = get_symbol_end ();
7676 }
7677 else if (LOCAL_LABELS_FB
7678 && ISDIGIT (*input_line_pointer))
7679 {
7680 temp = 0;
7681 while (ISDIGIT (*input_line_pointer))
7682 temp = (temp * 10) + *input_line_pointer++ - '0';
7683 fb_label_instance_inc (temp);
7684 s = fb_label_name (temp, 0);
7685 c = *input_line_pointer;
7686 }
7687 else
7688 {
7689 s = NULL;
7690 c = '\0';
7691 }
7692 if (c != ':')
7693 {
7694 /* Put ':' back for error messages' sake. */
7695 *input_line_pointer++ = ':';
7696 as_bad ("Expected ':'");
7697 return 0;
7698 }
7699
7700 defining_tag = 1;
7701 tag = colon (s);
7702 defining_tag = 0;
7703 /* Put ':' back for error messages' sake. */
7704 *input_line_pointer++ = ':';
7705 if (*input_line_pointer++ != ']')
7706 {
7707 as_bad ("Expected ']'");
7708 return 0;
7709 }
7710 if (! tag)
7711 {
7712 as_bad ("Tag name expected");
7713 return 0;
7714 }
7715 return 1;
7716 }
7717
7718 default:
7719 break;
7720 }
7721
7722 /* Not a valid line. */
7723 return 0;
7724 }
7725
7726 void
7727 ia64_frob_label (sym)
7728 struct symbol *sym;
7729 {
7730 struct label_fix *fix;
7731
7732 /* Tags need special handling since they are not bundle breaks like
7733 labels. */
7734 if (defining_tag)
7735 {
7736 fix = obstack_alloc (&notes, sizeof (*fix));
7737 fix->sym = sym;
7738 fix->next = CURR_SLOT.tag_fixups;
7739 CURR_SLOT.tag_fixups = fix;
7740
7741 return;
7742 }
7743
7744 if (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7745 {
7746 md.last_text_seg = now_seg;
7747 fix = obstack_alloc (&notes, sizeof (*fix));
7748 fix->sym = sym;
7749 fix->next = CURR_SLOT.label_fixups;
7750 CURR_SLOT.label_fixups = fix;
7751
7752 /* Keep track of how many code entry points we've seen. */
7753 if (md.path == md.maxpaths)
7754 {
7755 md.maxpaths += 20;
7756 md.entry_labels = (const char **)
7757 xrealloc ((void *) md.entry_labels,
7758 md.maxpaths * sizeof (char *));
7759 }
7760 md.entry_labels[md.path++] = S_GET_NAME (sym);
7761 }
7762 }
7763
7764 #ifdef TE_HPUX
7765 /* The HP-UX linker will give unresolved symbol errors for symbols
7766 that are declared but unused. This routine removes declared,
7767 unused symbols from an object. */
7768 int
7769 ia64_frob_symbol (sym)
7770 struct symbol *sym;
7771 {
7772 if ((S_GET_SEGMENT (sym) == &bfd_und_section && ! symbol_used_p (sym) &&
7773 ELF_ST_VISIBILITY (S_GET_OTHER (sym)) == STV_DEFAULT)
7774 || (S_GET_SEGMENT (sym) == &bfd_abs_section
7775 && ! S_IS_EXTERNAL (sym)))
7776 return 1;
7777 return 0;
7778 }
7779 #endif
7780
7781 void
7782 ia64_flush_pending_output ()
7783 {
7784 if (!md.keep_pending_output
7785 && bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7786 {
7787 /* ??? This causes many unnecessary stop bits to be emitted.
7788 Unfortunately, it isn't clear if it is safe to remove this. */
7789 insn_group_break (1, 0, 0);
7790 ia64_flush_insns ();
7791 }
7792 }
7793
7794 /* Do ia64-specific expression optimization. All that's done here is
7795 to transform index expressions that are either due to the indexing
7796 of rotating registers or due to the indexing of indirect register
7797 sets. */
7798 int
7799 ia64_optimize_expr (l, op, r)
7800 expressionS *l;
7801 operatorT op;
7802 expressionS *r;
7803 {
7804 unsigned num_regs;
7805
7806 if (op == O_index)
7807 {
7808 if (l->X_op == O_register && r->X_op == O_constant)
7809 {
7810 num_regs = (l->X_add_number >> 16);
7811 if ((unsigned) r->X_add_number >= num_regs)
7812 {
7813 if (!num_regs)
7814 as_bad ("No current frame");
7815 else
7816 as_bad ("Index out of range 0..%u", num_regs - 1);
7817 r->X_add_number = 0;
7818 }
7819 l->X_add_number = (l->X_add_number & 0xffff) + r->X_add_number;
7820 return 1;
7821 }
7822 else if (l->X_op == O_register && r->X_op == O_register)
7823 {
7824 if (l->X_add_number < IND_CPUID || l->X_add_number > IND_RR
7825 || l->X_add_number == IND_MEM)
7826 {
7827 as_bad ("Indirect register set name expected");
7828 l->X_add_number = IND_CPUID;
7829 }
7830 l->X_op = O_index;
7831 l->X_op_symbol = md.regsym[l->X_add_number];
7832 l->X_add_number = r->X_add_number;
7833 return 1;
7834 }
7835 }
7836 return 0;
7837 }
7838
7839 int
7840 ia64_parse_name (name, e, nextcharP)
7841 char *name;
7842 expressionS *e;
7843 char *nextcharP;
7844 {
7845 struct const_desc *cdesc;
7846 struct dynreg *dr = 0;
7847 unsigned int idx;
7848 struct symbol *sym;
7849 char *end;
7850
7851 if (*name == '@')
7852 {
7853 enum pseudo_type pseudo_type = PSEUDO_FUNC_NONE;
7854
7855 /* Find what relocation pseudo-function we're dealing with. */
7856 for (idx = 0; idx < NELEMS (pseudo_func); ++idx)
7857 if (pseudo_func[idx].name
7858 && pseudo_func[idx].name[0] == name[1]
7859 && strcmp (pseudo_func[idx].name + 1, name + 2) == 0)
7860 {
7861 pseudo_type = pseudo_func[idx].type;
7862 break;
7863 }
7864 switch (pseudo_type)
7865 {
7866 case PSEUDO_FUNC_RELOC:
7867 end = input_line_pointer;
7868 if (*nextcharP != '(')
7869 {
7870 as_bad ("Expected '('");
7871 break;
7872 }
7873 /* Skip '('. */
7874 ++input_line_pointer;
7875 expression (e);
7876 if (*input_line_pointer != ')')
7877 {
7878 as_bad ("Missing ')'");
7879 goto done;
7880 }
7881 /* Skip ')'. */
7882 ++input_line_pointer;
7883 if (e->X_op != O_symbol)
7884 {
7885 if (e->X_op != O_pseudo_fixup)
7886 {
7887 as_bad ("Not a symbolic expression");
7888 goto done;
7889 }
7890 if (idx != FUNC_LT_RELATIVE)
7891 {
7892 as_bad ("Illegal combination of relocation functions");
7893 goto done;
7894 }
7895 switch (S_GET_VALUE (e->X_op_symbol))
7896 {
7897 case FUNC_FPTR_RELATIVE:
7898 idx = FUNC_LT_FPTR_RELATIVE; break;
7899 case FUNC_DTP_MODULE:
7900 idx = FUNC_LT_DTP_MODULE; break;
7901 case FUNC_DTP_RELATIVE:
7902 idx = FUNC_LT_DTP_RELATIVE; break;
7903 case FUNC_TP_RELATIVE:
7904 idx = FUNC_LT_TP_RELATIVE; break;
7905 default:
7906 as_bad ("Illegal combination of relocation functions");
7907 goto done;
7908 }
7909 }
7910 /* Make sure gas doesn't get rid of local symbols that are used
7911 in relocs. */
7912 e->X_op = O_pseudo_fixup;
7913 e->X_op_symbol = pseudo_func[idx].u.sym;
7914 done:
7915 *nextcharP = *input_line_pointer;
7916 break;
7917
7918 case PSEUDO_FUNC_CONST:
7919 e->X_op = O_constant;
7920 e->X_add_number = pseudo_func[idx].u.ival;
7921 break;
7922
7923 case PSEUDO_FUNC_REG:
7924 e->X_op = O_register;
7925 e->X_add_number = pseudo_func[idx].u.ival;
7926 break;
7927
7928 default:
7929 return 0;
7930 }
7931 return 1;
7932 }
7933
7934 /* first see if NAME is a known register name: */
7935 sym = hash_find (md.reg_hash, name);
7936 if (sym)
7937 {
7938 e->X_op = O_register;
7939 e->X_add_number = S_GET_VALUE (sym);
7940 return 1;
7941 }
7942
7943 cdesc = hash_find (md.const_hash, name);
7944 if (cdesc)
7945 {
7946 e->X_op = O_constant;
7947 e->X_add_number = cdesc->value;
7948 return 1;
7949 }
7950
7951 /* check for inN, locN, or outN: */
7952 idx = 0;
7953 switch (name[0])
7954 {
7955 case 'i':
7956 if (name[1] == 'n' && ISDIGIT (name[2]))
7957 {
7958 dr = &md.in;
7959 idx = 2;
7960 }
7961 break;
7962
7963 case 'l':
7964 if (name[1] == 'o' && name[2] == 'c' && ISDIGIT (name[3]))
7965 {
7966 dr = &md.loc;
7967 idx = 3;
7968 }
7969 break;
7970
7971 case 'o':
7972 if (name[1] == 'u' && name[2] == 't' && ISDIGIT (name[3]))
7973 {
7974 dr = &md.out;
7975 idx = 3;
7976 }
7977 break;
7978
7979 default:
7980 break;
7981 }
7982
7983 /* Ignore register numbers with leading zeroes, except zero itself. */
7984 if (dr && (name[idx] != '0' || name[idx + 1] == '\0'))
7985 {
7986 unsigned long regnum;
7987
7988 /* The name is inN, locN, or outN; parse the register number. */
7989 regnum = strtoul (name + idx, &end, 10);
7990 if (end > name + idx && *end == '\0' && regnum < 96)
7991 {
7992 if (regnum >= dr->num_regs)
7993 {
7994 if (!dr->num_regs)
7995 as_bad ("No current frame");
7996 else
7997 as_bad ("Register number out of range 0..%u",
7998 dr->num_regs - 1);
7999 regnum = 0;
8000 }
8001 e->X_op = O_register;
8002 e->X_add_number = dr->base + regnum;
8003 return 1;
8004 }
8005 }
8006
8007 end = alloca (strlen (name) + 1);
8008 strcpy (end, name);
8009 name = ia64_canonicalize_symbol_name (end);
8010 if ((dr = hash_find (md.dynreg_hash, name)))
8011 {
8012 /* We've got ourselves the name of a rotating register set.
8013 Store the base register number in the low 16 bits of
8014 X_add_number and the size of the register set in the top 16
8015 bits. */
8016 e->X_op = O_register;
8017 e->X_add_number = dr->base | (dr->num_regs << 16);
8018 return 1;
8019 }
8020 return 0;
8021 }
8022
8023 /* Remove the '#' suffix that indicates a symbol as opposed to a register. */
8024
8025 char *
8026 ia64_canonicalize_symbol_name (name)
8027 char *name;
8028 {
8029 size_t len = strlen (name), full = len;
8030
8031 while (len > 0 && name[len - 1] == '#')
8032 --len;
8033 if (len <= 0)
8034 {
8035 if (full > 0)
8036 as_bad ("Standalone `#' is illegal");
8037 }
8038 else if (len < full - 1)
8039 as_warn ("Redundant `#' suffix operators");
8040 name[len] = '\0';
8041 return name;
8042 }
8043
8044 /* Return true if idesc is a conditional branch instruction. This excludes
8045 the modulo scheduled branches, and br.ia. Mod-sched branches are excluded
8046 because they always read/write resources regardless of the value of the
8047 qualifying predicate. br.ia must always use p0, and hence is always
8048 taken. Thus this function returns true for branches which can fall
8049 through, and which use no resources if they do fall through. */
8050
8051 static int
8052 is_conditional_branch (idesc)
8053 struct ia64_opcode *idesc;
8054 {
8055 /* br is a conditional branch. Everything that starts with br. except
8056 br.ia, br.c{loop,top,exit}, and br.w{top,exit} is a conditional branch.
8057 Everything that starts with brl is a conditional branch. */
8058 return (idesc->name[0] == 'b' && idesc->name[1] == 'r'
8059 && (idesc->name[2] == '\0'
8060 || (idesc->name[2] == '.' && idesc->name[3] != 'i'
8061 && idesc->name[3] != 'c' && idesc->name[3] != 'w')
8062 || idesc->name[2] == 'l'
8063 /* br.cond, br.call, br.clr */
8064 || (idesc->name[2] == '.' && idesc->name[3] == 'c'
8065 && (idesc->name[4] == 'a' || idesc->name[4] == 'o'
8066 || (idesc->name[4] == 'l' && idesc->name[5] == 'r')))));
8067 }
8068
8069 /* Return whether the given opcode is a taken branch. If there's any doubt,
8070 returns zero. */
8071
8072 static int
8073 is_taken_branch (idesc)
8074 struct ia64_opcode *idesc;
8075 {
8076 return ((is_conditional_branch (idesc) && CURR_SLOT.qp_regno == 0)
8077 || strncmp (idesc->name, "br.ia", 5) == 0);
8078 }
8079
8080 /* Return whether the given opcode is an interruption or rfi. If there's any
8081 doubt, returns zero. */
8082
8083 static int
8084 is_interruption_or_rfi (idesc)
8085 struct ia64_opcode *idesc;
8086 {
8087 if (strcmp (idesc->name, "rfi") == 0)
8088 return 1;
8089 return 0;
8090 }
8091
8092 /* Returns the index of the given dependency in the opcode's list of chks, or
8093 -1 if there is no dependency. */
8094
8095 static int
8096 depends_on (depind, idesc)
8097 int depind;
8098 struct ia64_opcode *idesc;
8099 {
8100 int i;
8101 const struct ia64_opcode_dependency *dep = idesc->dependencies;
8102 for (i = 0; i < dep->nchks; i++)
8103 {
8104 if (depind == DEP (dep->chks[i]))
8105 return i;
8106 }
8107 return -1;
8108 }
8109
8110 /* Determine a set of specific resources used for a particular resource
8111 class. Returns the number of specific resources identified For those
8112 cases which are not determinable statically, the resource returned is
8113 marked nonspecific.
8114
8115 Meanings of value in 'NOTE':
8116 1) only read/write when the register number is explicitly encoded in the
8117 insn.
8118 2) only read CFM when accessing a rotating GR, FR, or PR. mov pr only
8119 accesses CFM when qualifying predicate is in the rotating region.
8120 3) general register value is used to specify an indirect register; not
8121 determinable statically.
8122 4) only read the given resource when bits 7:0 of the indirect index
8123 register value does not match the register number of the resource; not
8124 determinable statically.
8125 5) all rules are implementation specific.
8126 6) only when both the index specified by the reader and the index specified
8127 by the writer have the same value in bits 63:61; not determinable
8128 statically.
8129 7) only access the specified resource when the corresponding mask bit is
8130 set
8131 8) PSR.dfh is only read when these insns reference FR32-127. PSR.dfl is
8132 only read when these insns reference FR2-31
8133 9) PSR.mfl is only written when these insns write FR2-31. PSR.mfh is only
8134 written when these insns write FR32-127
8135 10) The PSR.bn bit is only accessed when one of GR16-31 is specified in the
8136 instruction
8137 11) The target predicates are written independently of PR[qp], but source
8138 registers are only read if PR[qp] is true. Since the state of PR[qp]
8139 cannot statically be determined, all source registers are marked used.
8140 12) This insn only reads the specified predicate register when that
8141 register is the PR[qp].
8142 13) This reference to ld-c only applies to teh GR whose value is loaded
8143 with data returned from memory, not the post-incremented address register.
8144 14) The RSE resource includes the implementation-specific RSE internal
8145 state resources. At least one (and possibly more) of these resources are
8146 read by each instruction listed in IC:rse-readers. At least one (and
8147 possibly more) of these resources are written by each insn listed in
8148 IC:rse-writers.
8149 15+16) Represents reserved instructions, which the assembler does not
8150 generate.
8151
8152 Memory resources (i.e. locations in memory) are *not* marked or tracked by
8153 this code; there are no dependency violations based on memory access.
8154 */
8155
8156 #define MAX_SPECS 256
8157 #define DV_CHK 1
8158 #define DV_REG 0
8159
8160 static int
8161 specify_resource (dep, idesc, type, specs, note, path)
8162 const struct ia64_dependency *dep;
8163 struct ia64_opcode *idesc;
8164 int type; /* is this a DV chk or a DV reg? */
8165 struct rsrc specs[MAX_SPECS]; /* returned specific resources */
8166 int note; /* resource note for this insn's usage */
8167 int path; /* which execution path to examine */
8168 {
8169 int count = 0;
8170 int i;
8171 int rsrc_write = 0;
8172 struct rsrc tmpl;
8173
8174 if (dep->mode == IA64_DV_WAW
8175 || (dep->mode == IA64_DV_RAW && type == DV_REG)
8176 || (dep->mode == IA64_DV_WAR && type == DV_CHK))
8177 rsrc_write = 1;
8178
8179 /* template for any resources we identify */
8180 tmpl.dependency = dep;
8181 tmpl.note = note;
8182 tmpl.insn_srlz = tmpl.data_srlz = 0;
8183 tmpl.qp_regno = CURR_SLOT.qp_regno;
8184 tmpl.link_to_qp_branch = 1;
8185 tmpl.mem_offset.hint = 0;
8186 tmpl.mem_offset.offset = 0;
8187 tmpl.mem_offset.base = 0;
8188 tmpl.specific = 1;
8189 tmpl.index = -1;
8190 tmpl.cmp_type = CMP_NONE;
8191 tmpl.depind = 0;
8192 tmpl.file = NULL;
8193 tmpl.line = 0;
8194 tmpl.path = 0;
8195
8196 #define UNHANDLED \
8197 as_warn (_("Unhandled dependency %s for %s (%s), note %d"), \
8198 dep->name, idesc->name, (rsrc_write?"write":"read"), note)
8199 #define KNOWN(REG) (gr_values[REG].known && gr_values[REG].path >= path)
8200
8201 /* we don't need to track these */
8202 if (dep->semantics == IA64_DVS_NONE)
8203 return 0;
8204
8205 switch (dep->specifier)
8206 {
8207 case IA64_RS_AR_K:
8208 if (note == 1)
8209 {
8210 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8211 {
8212 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8213 if (regno >= 0 && regno <= 7)
8214 {
8215 specs[count] = tmpl;
8216 specs[count++].index = regno;
8217 }
8218 }
8219 }
8220 else if (note == 0)
8221 {
8222 for (i = 0; i < 8; i++)
8223 {
8224 specs[count] = tmpl;
8225 specs[count++].index = i;
8226 }
8227 }
8228 else
8229 {
8230 UNHANDLED;
8231 }
8232 break;
8233
8234 case IA64_RS_AR_UNAT:
8235 /* This is a mov =AR or mov AR= instruction. */
8236 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8237 {
8238 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8239 if (regno == AR_UNAT)
8240 {
8241 specs[count++] = tmpl;
8242 }
8243 }
8244 else
8245 {
8246 /* This is a spill/fill, or other instruction that modifies the
8247 unat register. */
8248
8249 /* Unless we can determine the specific bits used, mark the whole
8250 thing; bits 8:3 of the memory address indicate the bit used in
8251 UNAT. The .mem.offset hint may be used to eliminate a small
8252 subset of conflicts. */
8253 specs[count] = tmpl;
8254 if (md.mem_offset.hint)
8255 {
8256 if (md.debug_dv)
8257 fprintf (stderr, " Using hint for spill/fill\n");
8258 /* The index isn't actually used, just set it to something
8259 approximating the bit index. */
8260 specs[count].index = (md.mem_offset.offset >> 3) & 0x3F;
8261 specs[count].mem_offset.hint = 1;
8262 specs[count].mem_offset.offset = md.mem_offset.offset;
8263 specs[count++].mem_offset.base = md.mem_offset.base;
8264 }
8265 else
8266 {
8267 specs[count++].specific = 0;
8268 }
8269 }
8270 break;
8271
8272 case IA64_RS_AR:
8273 if (note == 1)
8274 {
8275 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8276 {
8277 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8278 if ((regno >= 8 && regno <= 15)
8279 || (regno >= 20 && regno <= 23)
8280 || (regno >= 31 && regno <= 39)
8281 || (regno >= 41 && regno <= 47)
8282 || (regno >= 67 && regno <= 111))
8283 {
8284 specs[count] = tmpl;
8285 specs[count++].index = regno;
8286 }
8287 }
8288 }
8289 else
8290 {
8291 UNHANDLED;
8292 }
8293 break;
8294
8295 case IA64_RS_ARb:
8296 if (note == 1)
8297 {
8298 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8299 {
8300 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8301 if ((regno >= 48 && regno <= 63)
8302 || (regno >= 112 && regno <= 127))
8303 {
8304 specs[count] = tmpl;
8305 specs[count++].index = regno;
8306 }
8307 }
8308 }
8309 else if (note == 0)
8310 {
8311 for (i = 48; i < 64; i++)
8312 {
8313 specs[count] = tmpl;
8314 specs[count++].index = i;
8315 }
8316 for (i = 112; i < 128; i++)
8317 {
8318 specs[count] = tmpl;
8319 specs[count++].index = i;
8320 }
8321 }
8322 else
8323 {
8324 UNHANDLED;
8325 }
8326 break;
8327
8328 case IA64_RS_BR:
8329 if (note != 1)
8330 {
8331 UNHANDLED;
8332 }
8333 else
8334 {
8335 if (rsrc_write)
8336 {
8337 for (i = 0; i < idesc->num_outputs; i++)
8338 if (idesc->operands[i] == IA64_OPND_B1
8339 || idesc->operands[i] == IA64_OPND_B2)
8340 {
8341 specs[count] = tmpl;
8342 specs[count++].index =
8343 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8344 }
8345 }
8346 else
8347 {
8348 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8349 if (idesc->operands[i] == IA64_OPND_B1
8350 || idesc->operands[i] == IA64_OPND_B2)
8351 {
8352 specs[count] = tmpl;
8353 specs[count++].index =
8354 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8355 }
8356 }
8357 }
8358 break;
8359
8360 case IA64_RS_CPUID: /* four or more registers */
8361 if (note == 3)
8362 {
8363 if (idesc->operands[!rsrc_write] == IA64_OPND_CPUID_R3)
8364 {
8365 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8366 if (regno >= 0 && regno < NELEMS (gr_values)
8367 && KNOWN (regno))
8368 {
8369 specs[count] = tmpl;
8370 specs[count++].index = gr_values[regno].value & 0xFF;
8371 }
8372 else
8373 {
8374 specs[count] = tmpl;
8375 specs[count++].specific = 0;
8376 }
8377 }
8378 }
8379 else
8380 {
8381 UNHANDLED;
8382 }
8383 break;
8384
8385 case IA64_RS_DBR: /* four or more registers */
8386 if (note == 3)
8387 {
8388 if (idesc->operands[!rsrc_write] == IA64_OPND_DBR_R3)
8389 {
8390 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8391 if (regno >= 0 && regno < NELEMS (gr_values)
8392 && KNOWN (regno))
8393 {
8394 specs[count] = tmpl;
8395 specs[count++].index = gr_values[regno].value & 0xFF;
8396 }
8397 else
8398 {
8399 specs[count] = tmpl;
8400 specs[count++].specific = 0;
8401 }
8402 }
8403 }
8404 else if (note == 0 && !rsrc_write)
8405 {
8406 specs[count] = tmpl;
8407 specs[count++].specific = 0;
8408 }
8409 else
8410 {
8411 UNHANDLED;
8412 }
8413 break;
8414
8415 case IA64_RS_IBR: /* four or more registers */
8416 if (note == 3)
8417 {
8418 if (idesc->operands[!rsrc_write] == IA64_OPND_IBR_R3)
8419 {
8420 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8421 if (regno >= 0 && regno < NELEMS (gr_values)
8422 && KNOWN (regno))
8423 {
8424 specs[count] = tmpl;
8425 specs[count++].index = gr_values[regno].value & 0xFF;
8426 }
8427 else
8428 {
8429 specs[count] = tmpl;
8430 specs[count++].specific = 0;
8431 }
8432 }
8433 }
8434 else
8435 {
8436 UNHANDLED;
8437 }
8438 break;
8439
8440 case IA64_RS_MSR:
8441 if (note == 5)
8442 {
8443 /* These are implementation specific. Force all references to
8444 conflict with all other references. */
8445 specs[count] = tmpl;
8446 specs[count++].specific = 0;
8447 }
8448 else
8449 {
8450 UNHANDLED;
8451 }
8452 break;
8453
8454 case IA64_RS_PKR: /* 16 or more registers */
8455 if (note == 3 || note == 4)
8456 {
8457 if (idesc->operands[!rsrc_write] == IA64_OPND_PKR_R3)
8458 {
8459 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8460 if (regno >= 0 && regno < NELEMS (gr_values)
8461 && KNOWN (regno))
8462 {
8463 if (note == 3)
8464 {
8465 specs[count] = tmpl;
8466 specs[count++].index = gr_values[regno].value & 0xFF;
8467 }
8468 else
8469 for (i = 0; i < NELEMS (gr_values); i++)
8470 {
8471 /* Uses all registers *except* the one in R3. */
8472 if ((unsigned)i != (gr_values[regno].value & 0xFF))
8473 {
8474 specs[count] = tmpl;
8475 specs[count++].index = i;
8476 }
8477 }
8478 }
8479 else
8480 {
8481 specs[count] = tmpl;
8482 specs[count++].specific = 0;
8483 }
8484 }
8485 }
8486 else if (note == 0)
8487 {
8488 /* probe et al. */
8489 specs[count] = tmpl;
8490 specs[count++].specific = 0;
8491 }
8492 break;
8493
8494 case IA64_RS_PMC: /* four or more registers */
8495 if (note == 3)
8496 {
8497 if (idesc->operands[!rsrc_write] == IA64_OPND_PMC_R3
8498 || (!rsrc_write && idesc->operands[1] == IA64_OPND_PMD_R3))
8499
8500 {
8501 int index = ((idesc->operands[1] == IA64_OPND_R3 && !rsrc_write)
8502 ? 1 : !rsrc_write);
8503 int regno = CURR_SLOT.opnd[index].X_add_number - REG_GR;
8504 if (regno >= 0 && regno < NELEMS (gr_values)
8505 && KNOWN (regno))
8506 {
8507 specs[count] = tmpl;
8508 specs[count++].index = gr_values[regno].value & 0xFF;
8509 }
8510 else
8511 {
8512 specs[count] = tmpl;
8513 specs[count++].specific = 0;
8514 }
8515 }
8516 }
8517 else
8518 {
8519 UNHANDLED;
8520 }
8521 break;
8522
8523 case IA64_RS_PMD: /* four or more registers */
8524 if (note == 3)
8525 {
8526 if (idesc->operands[!rsrc_write] == IA64_OPND_PMD_R3)
8527 {
8528 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8529 if (regno >= 0 && regno < NELEMS (gr_values)
8530 && KNOWN (regno))
8531 {
8532 specs[count] = tmpl;
8533 specs[count++].index = gr_values[regno].value & 0xFF;
8534 }
8535 else
8536 {
8537 specs[count] = tmpl;
8538 specs[count++].specific = 0;
8539 }
8540 }
8541 }
8542 else
8543 {
8544 UNHANDLED;
8545 }
8546 break;
8547
8548 case IA64_RS_RR: /* eight registers */
8549 if (note == 6)
8550 {
8551 if (idesc->operands[!rsrc_write] == IA64_OPND_RR_R3)
8552 {
8553 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8554 if (regno >= 0 && regno < NELEMS (gr_values)
8555 && KNOWN (regno))
8556 {
8557 specs[count] = tmpl;
8558 specs[count++].index = (gr_values[regno].value >> 61) & 0x7;
8559 }
8560 else
8561 {
8562 specs[count] = tmpl;
8563 specs[count++].specific = 0;
8564 }
8565 }
8566 }
8567 else if (note == 0 && !rsrc_write)
8568 {
8569 specs[count] = tmpl;
8570 specs[count++].specific = 0;
8571 }
8572 else
8573 {
8574 UNHANDLED;
8575 }
8576 break;
8577
8578 case IA64_RS_CR_IRR:
8579 if (note == 0)
8580 {
8581 /* handle mov-from-CR-IVR; it's a read that writes CR[IRR] */
8582 int regno = CURR_SLOT.opnd[1].X_add_number - REG_CR;
8583 if (rsrc_write
8584 && idesc->operands[1] == IA64_OPND_CR3
8585 && regno == CR_IVR)
8586 {
8587 for (i = 0; i < 4; i++)
8588 {
8589 specs[count] = tmpl;
8590 specs[count++].index = CR_IRR0 + i;
8591 }
8592 }
8593 }
8594 else if (note == 1)
8595 {
8596 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8597 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8598 && regno >= CR_IRR0
8599 && regno <= CR_IRR3)
8600 {
8601 specs[count] = tmpl;
8602 specs[count++].index = regno;
8603 }
8604 }
8605 else
8606 {
8607 UNHANDLED;
8608 }
8609 break;
8610
8611 case IA64_RS_CR_LRR:
8612 if (note != 1)
8613 {
8614 UNHANDLED;
8615 }
8616 else
8617 {
8618 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8619 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8620 && (regno == CR_LRR0 || regno == CR_LRR1))
8621 {
8622 specs[count] = tmpl;
8623 specs[count++].index = regno;
8624 }
8625 }
8626 break;
8627
8628 case IA64_RS_CR:
8629 if (note == 1)
8630 {
8631 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
8632 {
8633 specs[count] = tmpl;
8634 specs[count++].index =
8635 CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8636 }
8637 }
8638 else
8639 {
8640 UNHANDLED;
8641 }
8642 break;
8643
8644 case IA64_RS_FR:
8645 case IA64_RS_FRb:
8646 if (note != 1)
8647 {
8648 UNHANDLED;
8649 }
8650 else if (rsrc_write)
8651 {
8652 if (dep->specifier == IA64_RS_FRb
8653 && idesc->operands[0] == IA64_OPND_F1)
8654 {
8655 specs[count] = tmpl;
8656 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_FR;
8657 }
8658 }
8659 else
8660 {
8661 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8662 {
8663 if (idesc->operands[i] == IA64_OPND_F2
8664 || idesc->operands[i] == IA64_OPND_F3
8665 || idesc->operands[i] == IA64_OPND_F4)
8666 {
8667 specs[count] = tmpl;
8668 specs[count++].index =
8669 CURR_SLOT.opnd[i].X_add_number - REG_FR;
8670 }
8671 }
8672 }
8673 break;
8674
8675 case IA64_RS_GR:
8676 if (note == 13)
8677 {
8678 /* This reference applies only to the GR whose value is loaded with
8679 data returned from memory. */
8680 specs[count] = tmpl;
8681 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_GR;
8682 }
8683 else if (note == 1)
8684 {
8685 if (rsrc_write)
8686 {
8687 for (i = 0; i < idesc->num_outputs; i++)
8688 if (idesc->operands[i] == IA64_OPND_R1
8689 || idesc->operands[i] == IA64_OPND_R2
8690 || idesc->operands[i] == IA64_OPND_R3)
8691 {
8692 specs[count] = tmpl;
8693 specs[count++].index =
8694 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8695 }
8696 if (idesc->flags & IA64_OPCODE_POSTINC)
8697 for (i = 0; i < NELEMS (idesc->operands); i++)
8698 if (idesc->operands[i] == IA64_OPND_MR3)
8699 {
8700 specs[count] = tmpl;
8701 specs[count++].index =
8702 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8703 }
8704 }
8705 else
8706 {
8707 /* Look for anything that reads a GR. */
8708 for (i = 0; i < NELEMS (idesc->operands); i++)
8709 {
8710 if (idesc->operands[i] == IA64_OPND_MR3
8711 || idesc->operands[i] == IA64_OPND_CPUID_R3
8712 || idesc->operands[i] == IA64_OPND_DBR_R3
8713 || idesc->operands[i] == IA64_OPND_IBR_R3
8714 || idesc->operands[i] == IA64_OPND_MSR_R3
8715 || idesc->operands[i] == IA64_OPND_PKR_R3
8716 || idesc->operands[i] == IA64_OPND_PMC_R3
8717 || idesc->operands[i] == IA64_OPND_PMD_R3
8718 || idesc->operands[i] == IA64_OPND_RR_R3
8719 || ((i >= idesc->num_outputs)
8720 && (idesc->operands[i] == IA64_OPND_R1
8721 || idesc->operands[i] == IA64_OPND_R2
8722 || idesc->operands[i] == IA64_OPND_R3
8723 /* addl source register. */
8724 || idesc->operands[i] == IA64_OPND_R3_2)))
8725 {
8726 specs[count] = tmpl;
8727 specs[count++].index =
8728 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8729 }
8730 }
8731 }
8732 }
8733 else
8734 {
8735 UNHANDLED;
8736 }
8737 break;
8738
8739 /* This is the same as IA64_RS_PRr, except that the register range is
8740 from 1 - 15, and there are no rotating register reads/writes here. */
8741 case IA64_RS_PR:
8742 if (note == 0)
8743 {
8744 for (i = 1; i < 16; i++)
8745 {
8746 specs[count] = tmpl;
8747 specs[count++].index = i;
8748 }
8749 }
8750 else if (note == 7)
8751 {
8752 valueT mask = 0;
8753 /* Mark only those registers indicated by the mask. */
8754 if (rsrc_write)
8755 {
8756 mask = CURR_SLOT.opnd[2].X_add_number;
8757 for (i = 1; i < 16; i++)
8758 if (mask & ((valueT) 1 << i))
8759 {
8760 specs[count] = tmpl;
8761 specs[count++].index = i;
8762 }
8763 }
8764 else
8765 {
8766 UNHANDLED;
8767 }
8768 }
8769 else if (note == 11) /* note 11 implies note 1 as well */
8770 {
8771 if (rsrc_write)
8772 {
8773 for (i = 0; i < idesc->num_outputs; i++)
8774 {
8775 if (idesc->operands[i] == IA64_OPND_P1
8776 || idesc->operands[i] == IA64_OPND_P2)
8777 {
8778 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8779 if (regno >= 1 && regno < 16)
8780 {
8781 specs[count] = tmpl;
8782 specs[count++].index = regno;
8783 }
8784 }
8785 }
8786 }
8787 else
8788 {
8789 UNHANDLED;
8790 }
8791 }
8792 else if (note == 12)
8793 {
8794 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8795 {
8796 specs[count] = tmpl;
8797 specs[count++].index = CURR_SLOT.qp_regno;
8798 }
8799 }
8800 else if (note == 1)
8801 {
8802 if (rsrc_write)
8803 {
8804 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8805 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8806 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8807 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
8808
8809 if ((idesc->operands[0] == IA64_OPND_P1
8810 || idesc->operands[0] == IA64_OPND_P2)
8811 && p1 >= 1 && p1 < 16)
8812 {
8813 specs[count] = tmpl;
8814 specs[count].cmp_type =
8815 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
8816 specs[count++].index = p1;
8817 }
8818 if ((idesc->operands[1] == IA64_OPND_P1
8819 || idesc->operands[1] == IA64_OPND_P2)
8820 && p2 >= 1 && p2 < 16)
8821 {
8822 specs[count] = tmpl;
8823 specs[count].cmp_type =
8824 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
8825 specs[count++].index = p2;
8826 }
8827 }
8828 else
8829 {
8830 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8831 {
8832 specs[count] = tmpl;
8833 specs[count++].index = CURR_SLOT.qp_regno;
8834 }
8835 if (idesc->operands[1] == IA64_OPND_PR)
8836 {
8837 for (i = 1; i < 16; i++)
8838 {
8839 specs[count] = tmpl;
8840 specs[count++].index = i;
8841 }
8842 }
8843 }
8844 }
8845 else
8846 {
8847 UNHANDLED;
8848 }
8849 break;
8850
8851 /* This is the general case for PRs. IA64_RS_PR and IA64_RS_PR63 are
8852 simplified cases of this. */
8853 case IA64_RS_PRr:
8854 if (note == 0)
8855 {
8856 for (i = 16; i < 63; i++)
8857 {
8858 specs[count] = tmpl;
8859 specs[count++].index = i;
8860 }
8861 }
8862 else if (note == 7)
8863 {
8864 valueT mask = 0;
8865 /* Mark only those registers indicated by the mask. */
8866 if (rsrc_write
8867 && idesc->operands[0] == IA64_OPND_PR)
8868 {
8869 mask = CURR_SLOT.opnd[2].X_add_number;
8870 if (mask & ((valueT) 1 << 16))
8871 for (i = 16; i < 63; i++)
8872 {
8873 specs[count] = tmpl;
8874 specs[count++].index = i;
8875 }
8876 }
8877 else if (rsrc_write
8878 && idesc->operands[0] == IA64_OPND_PR_ROT)
8879 {
8880 for (i = 16; i < 63; i++)
8881 {
8882 specs[count] = tmpl;
8883 specs[count++].index = i;
8884 }
8885 }
8886 else
8887 {
8888 UNHANDLED;
8889 }
8890 }
8891 else if (note == 11) /* note 11 implies note 1 as well */
8892 {
8893 if (rsrc_write)
8894 {
8895 for (i = 0; i < idesc->num_outputs; i++)
8896 {
8897 if (idesc->operands[i] == IA64_OPND_P1
8898 || idesc->operands[i] == IA64_OPND_P2)
8899 {
8900 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8901 if (regno >= 16 && regno < 63)
8902 {
8903 specs[count] = tmpl;
8904 specs[count++].index = regno;
8905 }
8906 }
8907 }
8908 }
8909 else
8910 {
8911 UNHANDLED;
8912 }
8913 }
8914 else if (note == 12)
8915 {
8916 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
8917 {
8918 specs[count] = tmpl;
8919 specs[count++].index = CURR_SLOT.qp_regno;
8920 }
8921 }
8922 else if (note == 1)
8923 {
8924 if (rsrc_write)
8925 {
8926 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8927 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8928 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8929 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
8930
8931 if ((idesc->operands[0] == IA64_OPND_P1
8932 || idesc->operands[0] == IA64_OPND_P2)
8933 && p1 >= 16 && p1 < 63)
8934 {
8935 specs[count] = tmpl;
8936 specs[count].cmp_type =
8937 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
8938 specs[count++].index = p1;
8939 }
8940 if ((idesc->operands[1] == IA64_OPND_P1
8941 || idesc->operands[1] == IA64_OPND_P2)
8942 && p2 >= 16 && p2 < 63)
8943 {
8944 specs[count] = tmpl;
8945 specs[count].cmp_type =
8946 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
8947 specs[count++].index = p2;
8948 }
8949 }
8950 else
8951 {
8952 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
8953 {
8954 specs[count] = tmpl;
8955 specs[count++].index = CURR_SLOT.qp_regno;
8956 }
8957 if (idesc->operands[1] == IA64_OPND_PR)
8958 {
8959 for (i = 16; i < 63; i++)
8960 {
8961 specs[count] = tmpl;
8962 specs[count++].index = i;
8963 }
8964 }
8965 }
8966 }
8967 else
8968 {
8969 UNHANDLED;
8970 }
8971 break;
8972
8973 case IA64_RS_PSR:
8974 /* Verify that the instruction is using the PSR bit indicated in
8975 dep->regindex. */
8976 if (note == 0)
8977 {
8978 if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_UM)
8979 {
8980 if (dep->regindex < 6)
8981 {
8982 specs[count++] = tmpl;
8983 }
8984 }
8985 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR)
8986 {
8987 if (dep->regindex < 32
8988 || dep->regindex == 35
8989 || dep->regindex == 36
8990 || (!rsrc_write && dep->regindex == PSR_CPL))
8991 {
8992 specs[count++] = tmpl;
8993 }
8994 }
8995 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_L)
8996 {
8997 if (dep->regindex < 32
8998 || dep->regindex == 35
8999 || dep->regindex == 36
9000 || (rsrc_write && dep->regindex == PSR_CPL))
9001 {
9002 specs[count++] = tmpl;
9003 }
9004 }
9005 else
9006 {
9007 /* Several PSR bits have very specific dependencies. */
9008 switch (dep->regindex)
9009 {
9010 default:
9011 specs[count++] = tmpl;
9012 break;
9013 case PSR_IC:
9014 if (rsrc_write)
9015 {
9016 specs[count++] = tmpl;
9017 }
9018 else
9019 {
9020 /* Only certain CR accesses use PSR.ic */
9021 if (idesc->operands[0] == IA64_OPND_CR3
9022 || idesc->operands[1] == IA64_OPND_CR3)
9023 {
9024 int index =
9025 ((idesc->operands[0] == IA64_OPND_CR3)
9026 ? 0 : 1);
9027 int regno =
9028 CURR_SLOT.opnd[index].X_add_number - REG_CR;
9029
9030 switch (regno)
9031 {
9032 default:
9033 break;
9034 case CR_ITIR:
9035 case CR_IFS:
9036 case CR_IIM:
9037 case CR_IIP:
9038 case CR_IPSR:
9039 case CR_ISR:
9040 case CR_IFA:
9041 case CR_IHA:
9042 case CR_IIPA:
9043 specs[count++] = tmpl;
9044 break;
9045 }
9046 }
9047 }
9048 break;
9049 case PSR_CPL:
9050 if (rsrc_write)
9051 {
9052 specs[count++] = tmpl;
9053 }
9054 else
9055 {
9056 /* Only some AR accesses use cpl */
9057 if (idesc->operands[0] == IA64_OPND_AR3
9058 || idesc->operands[1] == IA64_OPND_AR3)
9059 {
9060 int index =
9061 ((idesc->operands[0] == IA64_OPND_AR3)
9062 ? 0 : 1);
9063 int regno =
9064 CURR_SLOT.opnd[index].X_add_number - REG_AR;
9065
9066 if (regno == AR_ITC
9067 || (index == 0
9068 && (regno == AR_ITC
9069 || regno == AR_RSC
9070 || (regno >= AR_K0
9071 && regno <= AR_K7))))
9072 {
9073 specs[count++] = tmpl;
9074 }
9075 }
9076 else
9077 {
9078 specs[count++] = tmpl;
9079 }
9080 break;
9081 }
9082 }
9083 }
9084 }
9085 else if (note == 7)
9086 {
9087 valueT mask = 0;
9088 if (idesc->operands[0] == IA64_OPND_IMMU24)
9089 {
9090 mask = CURR_SLOT.opnd[0].X_add_number;
9091 }
9092 else
9093 {
9094 UNHANDLED;
9095 }
9096 if (mask & ((valueT) 1 << dep->regindex))
9097 {
9098 specs[count++] = tmpl;
9099 }
9100 }
9101 else if (note == 8)
9102 {
9103 int min = dep->regindex == PSR_DFL ? 2 : 32;
9104 int max = dep->regindex == PSR_DFL ? 31 : 127;
9105 /* dfh is read on FR32-127; dfl is read on FR2-31 */
9106 for (i = 0; i < NELEMS (idesc->operands); i++)
9107 {
9108 if (idesc->operands[i] == IA64_OPND_F1
9109 || idesc->operands[i] == IA64_OPND_F2
9110 || idesc->operands[i] == IA64_OPND_F3
9111 || idesc->operands[i] == IA64_OPND_F4)
9112 {
9113 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9114 if (reg >= min && reg <= max)
9115 {
9116 specs[count++] = tmpl;
9117 }
9118 }
9119 }
9120 }
9121 else if (note == 9)
9122 {
9123 int min = dep->regindex == PSR_MFL ? 2 : 32;
9124 int max = dep->regindex == PSR_MFL ? 31 : 127;
9125 /* mfh is read on writes to FR32-127; mfl is read on writes to
9126 FR2-31 */
9127 for (i = 0; i < idesc->num_outputs; i++)
9128 {
9129 if (idesc->operands[i] == IA64_OPND_F1)
9130 {
9131 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9132 if (reg >= min && reg <= max)
9133 {
9134 specs[count++] = tmpl;
9135 }
9136 }
9137 }
9138 }
9139 else if (note == 10)
9140 {
9141 for (i = 0; i < NELEMS (idesc->operands); i++)
9142 {
9143 if (idesc->operands[i] == IA64_OPND_R1
9144 || idesc->operands[i] == IA64_OPND_R2
9145 || idesc->operands[i] == IA64_OPND_R3)
9146 {
9147 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9148 if (regno >= 16 && regno <= 31)
9149 {
9150 specs[count++] = tmpl;
9151 }
9152 }
9153 }
9154 }
9155 else
9156 {
9157 UNHANDLED;
9158 }
9159 break;
9160
9161 case IA64_RS_AR_FPSR:
9162 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
9163 {
9164 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9165 if (regno == AR_FPSR)
9166 {
9167 specs[count++] = tmpl;
9168 }
9169 }
9170 else
9171 {
9172 specs[count++] = tmpl;
9173 }
9174 break;
9175
9176 case IA64_RS_ARX:
9177 /* Handle all AR[REG] resources */
9178 if (note == 0 || note == 1)
9179 {
9180 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9181 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3
9182 && regno == dep->regindex)
9183 {
9184 specs[count++] = tmpl;
9185 }
9186 /* other AR[REG] resources may be affected by AR accesses */
9187 else if (idesc->operands[0] == IA64_OPND_AR3)
9188 {
9189 /* AR[] writes */
9190 regno = CURR_SLOT.opnd[0].X_add_number - REG_AR;
9191 switch (dep->regindex)
9192 {
9193 default:
9194 break;
9195 case AR_BSP:
9196 case AR_RNAT:
9197 if (regno == AR_BSPSTORE)
9198 {
9199 specs[count++] = tmpl;
9200 }
9201 case AR_RSC:
9202 if (!rsrc_write &&
9203 (regno == AR_BSPSTORE
9204 || regno == AR_RNAT))
9205 {
9206 specs[count++] = tmpl;
9207 }
9208 break;
9209 }
9210 }
9211 else if (idesc->operands[1] == IA64_OPND_AR3)
9212 {
9213 /* AR[] reads */
9214 regno = CURR_SLOT.opnd[1].X_add_number - REG_AR;
9215 switch (dep->regindex)
9216 {
9217 default:
9218 break;
9219 case AR_RSC:
9220 if (regno == AR_BSPSTORE || regno == AR_RNAT)
9221 {
9222 specs[count++] = tmpl;
9223 }
9224 break;
9225 }
9226 }
9227 else
9228 {
9229 specs[count++] = tmpl;
9230 }
9231 }
9232 else
9233 {
9234 UNHANDLED;
9235 }
9236 break;
9237
9238 case IA64_RS_CRX:
9239 /* Handle all CR[REG] resources */
9240 if (note == 0 || note == 1)
9241 {
9242 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
9243 {
9244 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
9245 if (regno == dep->regindex)
9246 {
9247 specs[count++] = tmpl;
9248 }
9249 else if (!rsrc_write)
9250 {
9251 /* Reads from CR[IVR] affect other resources. */
9252 if (regno == CR_IVR)
9253 {
9254 if ((dep->regindex >= CR_IRR0
9255 && dep->regindex <= CR_IRR3)
9256 || dep->regindex == CR_TPR)
9257 {
9258 specs[count++] = tmpl;
9259 }
9260 }
9261 }
9262 }
9263 else
9264 {
9265 specs[count++] = tmpl;
9266 }
9267 }
9268 else
9269 {
9270 UNHANDLED;
9271 }
9272 break;
9273
9274 case IA64_RS_INSERVICE:
9275 /* look for write of EOI (67) or read of IVR (65) */
9276 if ((idesc->operands[0] == IA64_OPND_CR3
9277 && CURR_SLOT.opnd[0].X_add_number - REG_CR == CR_EOI)
9278 || (idesc->operands[1] == IA64_OPND_CR3
9279 && CURR_SLOT.opnd[1].X_add_number - REG_CR == CR_IVR))
9280 {
9281 specs[count++] = tmpl;
9282 }
9283 break;
9284
9285 case IA64_RS_GR0:
9286 if (note == 1)
9287 {
9288 specs[count++] = tmpl;
9289 }
9290 else
9291 {
9292 UNHANDLED;
9293 }
9294 break;
9295
9296 case IA64_RS_CFM:
9297 if (note != 2)
9298 {
9299 specs[count++] = tmpl;
9300 }
9301 else
9302 {
9303 /* Check if any of the registers accessed are in the rotating region.
9304 mov to/from pr accesses CFM only when qp_regno is in the rotating
9305 region */
9306 for (i = 0; i < NELEMS (idesc->operands); i++)
9307 {
9308 if (idesc->operands[i] == IA64_OPND_R1
9309 || idesc->operands[i] == IA64_OPND_R2
9310 || idesc->operands[i] == IA64_OPND_R3)
9311 {
9312 int num = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9313 /* Assumes that md.rot.num_regs is always valid */
9314 if (md.rot.num_regs > 0
9315 && num > 31
9316 && num < 31 + md.rot.num_regs)
9317 {
9318 specs[count] = tmpl;
9319 specs[count++].specific = 0;
9320 }
9321 }
9322 else if (idesc->operands[i] == IA64_OPND_F1
9323 || idesc->operands[i] == IA64_OPND_F2
9324 || idesc->operands[i] == IA64_OPND_F3
9325 || idesc->operands[i] == IA64_OPND_F4)
9326 {
9327 int num = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9328 if (num > 31)
9329 {
9330 specs[count] = tmpl;
9331 specs[count++].specific = 0;
9332 }
9333 }
9334 else if (idesc->operands[i] == IA64_OPND_P1
9335 || idesc->operands[i] == IA64_OPND_P2)
9336 {
9337 int num = CURR_SLOT.opnd[i].X_add_number - REG_P;
9338 if (num > 15)
9339 {
9340 specs[count] = tmpl;
9341 specs[count++].specific = 0;
9342 }
9343 }
9344 }
9345 if (CURR_SLOT.qp_regno > 15)
9346 {
9347 specs[count] = tmpl;
9348 specs[count++].specific = 0;
9349 }
9350 }
9351 break;
9352
9353 /* This is the same as IA64_RS_PRr, except simplified to account for
9354 the fact that there is only one register. */
9355 case IA64_RS_PR63:
9356 if (note == 0)
9357 {
9358 specs[count++] = tmpl;
9359 }
9360 else if (note == 7)
9361 {
9362 valueT mask = 0;
9363 if (idesc->operands[2] == IA64_OPND_IMM17)
9364 mask = CURR_SLOT.opnd[2].X_add_number;
9365 if (mask & ((valueT) 1 << 63))
9366 specs[count++] = tmpl;
9367 }
9368 else if (note == 11)
9369 {
9370 if ((idesc->operands[0] == IA64_OPND_P1
9371 && CURR_SLOT.opnd[0].X_add_number - REG_P == 63)
9372 || (idesc->operands[1] == IA64_OPND_P2
9373 && CURR_SLOT.opnd[1].X_add_number - REG_P == 63))
9374 {
9375 specs[count++] = tmpl;
9376 }
9377 }
9378 else if (note == 12)
9379 {
9380 if (CURR_SLOT.qp_regno == 63)
9381 {
9382 specs[count++] = tmpl;
9383 }
9384 }
9385 else if (note == 1)
9386 {
9387 if (rsrc_write)
9388 {
9389 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9390 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9391 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9392 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9393
9394 if (p1 == 63
9395 && (idesc->operands[0] == IA64_OPND_P1
9396 || idesc->operands[0] == IA64_OPND_P2))
9397 {
9398 specs[count] = tmpl;
9399 specs[count++].cmp_type =
9400 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9401 }
9402 if (p2 == 63
9403 && (idesc->operands[1] == IA64_OPND_P1
9404 || idesc->operands[1] == IA64_OPND_P2))
9405 {
9406 specs[count] = tmpl;
9407 specs[count++].cmp_type =
9408 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9409 }
9410 }
9411 else
9412 {
9413 if (CURR_SLOT.qp_regno == 63)
9414 {
9415 specs[count++] = tmpl;
9416 }
9417 }
9418 }
9419 else
9420 {
9421 UNHANDLED;
9422 }
9423 break;
9424
9425 case IA64_RS_RSE:
9426 /* FIXME we can identify some individual RSE written resources, but RSE
9427 read resources have not yet been completely identified, so for now
9428 treat RSE as a single resource */
9429 if (strncmp (idesc->name, "mov", 3) == 0)
9430 {
9431 if (rsrc_write)
9432 {
9433 if (idesc->operands[0] == IA64_OPND_AR3
9434 && CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE)
9435 {
9436 specs[count++] = tmpl;
9437 }
9438 }
9439 else
9440 {
9441 if (idesc->operands[0] == IA64_OPND_AR3)
9442 {
9443 if (CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE
9444 || CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_RNAT)
9445 {
9446 specs[count++] = tmpl;
9447 }
9448 }
9449 else if (idesc->operands[1] == IA64_OPND_AR3)
9450 {
9451 if (CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSP
9452 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSPSTORE
9453 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_RNAT)
9454 {
9455 specs[count++] = tmpl;
9456 }
9457 }
9458 }
9459 }
9460 else
9461 {
9462 specs[count++] = tmpl;
9463 }
9464 break;
9465
9466 case IA64_RS_ANY:
9467 /* FIXME -- do any of these need to be non-specific? */
9468 specs[count++] = tmpl;
9469 break;
9470
9471 default:
9472 as_bad (_("Unrecognized dependency specifier %d\n"), dep->specifier);
9473 break;
9474 }
9475
9476 return count;
9477 }
9478
9479 /* Clear branch flags on marked resources. This breaks the link between the
9480 QP of the marking instruction and a subsequent branch on the same QP. */
9481
9482 static void
9483 clear_qp_branch_flag (mask)
9484 valueT mask;
9485 {
9486 int i;
9487 for (i = 0; i < regdepslen; i++)
9488 {
9489 valueT bit = ((valueT) 1 << regdeps[i].qp_regno);
9490 if ((bit & mask) != 0)
9491 {
9492 regdeps[i].link_to_qp_branch = 0;
9493 }
9494 }
9495 }
9496
9497 /* MASK contains 2 and only 2 PRs which are mutually exclusive. Remove
9498 any mutexes which contain one of the PRs and create new ones when
9499 needed. */
9500
9501 static int
9502 update_qp_mutex (valueT mask)
9503 {
9504 int i;
9505 int add = 0;
9506
9507 i = 0;
9508 while (i < qp_mutexeslen)
9509 {
9510 if ((qp_mutexes[i].prmask & mask) != 0)
9511 {
9512 /* If it destroys and creates the same mutex, do nothing. */
9513 if (qp_mutexes[i].prmask == mask
9514 && qp_mutexes[i].path == md.path)
9515 {
9516 i++;
9517 add = -1;
9518 }
9519 else
9520 {
9521 int keep = 0;
9522
9523 if (md.debug_dv)
9524 {
9525 fprintf (stderr, " Clearing mutex relation");
9526 print_prmask (qp_mutexes[i].prmask);
9527 fprintf (stderr, "\n");
9528 }
9529
9530 /* Deal with the old mutex with more than 3+ PRs only if
9531 the new mutex on the same execution path with it.
9532
9533 FIXME: The 3+ mutex support is incomplete.
9534 dot_pred_rel () may be a better place to fix it. */
9535 if (qp_mutexes[i].path == md.path)
9536 {
9537 /* If it is a proper subset of the mutex, create a
9538 new mutex. */
9539 if (add == 0
9540 && (qp_mutexes[i].prmask & mask) == mask)
9541 add = 1;
9542
9543 qp_mutexes[i].prmask &= ~mask;
9544 if (qp_mutexes[i].prmask & (qp_mutexes[i].prmask - 1))
9545 {
9546 /* Modify the mutex if there are more than one
9547 PR left. */
9548 keep = 1;
9549 i++;
9550 }
9551 }
9552
9553 if (keep == 0)
9554 /* Remove the mutex. */
9555 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9556 }
9557 }
9558 else
9559 ++i;
9560 }
9561
9562 if (add == 1)
9563 add_qp_mutex (mask);
9564
9565 return add;
9566 }
9567
9568 /* Remove any mutexes which contain any of the PRs indicated in the mask.
9569
9570 Any changes to a PR clears the mutex relations which include that PR. */
9571
9572 static void
9573 clear_qp_mutex (mask)
9574 valueT mask;
9575 {
9576 int i;
9577
9578 i = 0;
9579 while (i < qp_mutexeslen)
9580 {
9581 if ((qp_mutexes[i].prmask & mask) != 0)
9582 {
9583 if (md.debug_dv)
9584 {
9585 fprintf (stderr, " Clearing mutex relation");
9586 print_prmask (qp_mutexes[i].prmask);
9587 fprintf (stderr, "\n");
9588 }
9589 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9590 }
9591 else
9592 ++i;
9593 }
9594 }
9595
9596 /* Clear implies relations which contain PRs in the given masks.
9597 P1_MASK indicates the source of the implies relation, while P2_MASK
9598 indicates the implied PR. */
9599
9600 static void
9601 clear_qp_implies (p1_mask, p2_mask)
9602 valueT p1_mask;
9603 valueT p2_mask;
9604 {
9605 int i;
9606
9607 i = 0;
9608 while (i < qp_implieslen)
9609 {
9610 if ((((valueT) 1 << qp_implies[i].p1) & p1_mask) != 0
9611 || (((valueT) 1 << qp_implies[i].p2) & p2_mask) != 0)
9612 {
9613 if (md.debug_dv)
9614 fprintf (stderr, "Clearing implied relation PR%d->PR%d\n",
9615 qp_implies[i].p1, qp_implies[i].p2);
9616 qp_implies[i] = qp_implies[--qp_implieslen];
9617 }
9618 else
9619 ++i;
9620 }
9621 }
9622
9623 /* Add the PRs specified to the list of implied relations. */
9624
9625 static void
9626 add_qp_imply (p1, p2)
9627 int p1, p2;
9628 {
9629 valueT mask;
9630 valueT bit;
9631 int i;
9632
9633 /* p0 is not meaningful here. */
9634 if (p1 == 0 || p2 == 0)
9635 abort ();
9636
9637 if (p1 == p2)
9638 return;
9639
9640 /* If it exists already, ignore it. */
9641 for (i = 0; i < qp_implieslen; i++)
9642 {
9643 if (qp_implies[i].p1 == p1
9644 && qp_implies[i].p2 == p2
9645 && qp_implies[i].path == md.path
9646 && !qp_implies[i].p2_branched)
9647 return;
9648 }
9649
9650 if (qp_implieslen == qp_impliestotlen)
9651 {
9652 qp_impliestotlen += 20;
9653 qp_implies = (struct qp_imply *)
9654 xrealloc ((void *) qp_implies,
9655 qp_impliestotlen * sizeof (struct qp_imply));
9656 }
9657 if (md.debug_dv)
9658 fprintf (stderr, " Registering PR%d implies PR%d\n", p1, p2);
9659 qp_implies[qp_implieslen].p1 = p1;
9660 qp_implies[qp_implieslen].p2 = p2;
9661 qp_implies[qp_implieslen].path = md.path;
9662 qp_implies[qp_implieslen++].p2_branched = 0;
9663
9664 /* Add in the implied transitive relations; for everything that p2 implies,
9665 make p1 imply that, too; for everything that implies p1, make it imply p2
9666 as well. */
9667 for (i = 0; i < qp_implieslen; i++)
9668 {
9669 if (qp_implies[i].p1 == p2)
9670 add_qp_imply (p1, qp_implies[i].p2);
9671 if (qp_implies[i].p2 == p1)
9672 add_qp_imply (qp_implies[i].p1, p2);
9673 }
9674 /* Add in mutex relations implied by this implies relation; for each mutex
9675 relation containing p2, duplicate it and replace p2 with p1. */
9676 bit = (valueT) 1 << p1;
9677 mask = (valueT) 1 << p2;
9678 for (i = 0; i < qp_mutexeslen; i++)
9679 {
9680 if (qp_mutexes[i].prmask & mask)
9681 add_qp_mutex ((qp_mutexes[i].prmask & ~mask) | bit);
9682 }
9683 }
9684
9685 /* Add the PRs specified in the mask to the mutex list; this means that only
9686 one of the PRs can be true at any time. PR0 should never be included in
9687 the mask. */
9688
9689 static void
9690 add_qp_mutex (mask)
9691 valueT mask;
9692 {
9693 if (mask & 0x1)
9694 abort ();
9695
9696 if (qp_mutexeslen == qp_mutexestotlen)
9697 {
9698 qp_mutexestotlen += 20;
9699 qp_mutexes = (struct qpmutex *)
9700 xrealloc ((void *) qp_mutexes,
9701 qp_mutexestotlen * sizeof (struct qpmutex));
9702 }
9703 if (md.debug_dv)
9704 {
9705 fprintf (stderr, " Registering mutex on");
9706 print_prmask (mask);
9707 fprintf (stderr, "\n");
9708 }
9709 qp_mutexes[qp_mutexeslen].path = md.path;
9710 qp_mutexes[qp_mutexeslen++].prmask = mask;
9711 }
9712
9713 static int
9714 has_suffix_p (name, suffix)
9715 const char *name;
9716 const char *suffix;
9717 {
9718 size_t namelen = strlen (name);
9719 size_t sufflen = strlen (suffix);
9720
9721 if (namelen <= sufflen)
9722 return 0;
9723 return strcmp (name + namelen - sufflen, suffix) == 0;
9724 }
9725
9726 static void
9727 clear_register_values ()
9728 {
9729 int i;
9730 if (md.debug_dv)
9731 fprintf (stderr, " Clearing register values\n");
9732 for (i = 1; i < NELEMS (gr_values); i++)
9733 gr_values[i].known = 0;
9734 }
9735
9736 /* Keep track of register values/changes which affect DV tracking.
9737
9738 optimization note: should add a flag to classes of insns where otherwise we
9739 have to examine a group of strings to identify them. */
9740
9741 static void
9742 note_register_values (idesc)
9743 struct ia64_opcode *idesc;
9744 {
9745 valueT qp_changemask = 0;
9746 int i;
9747
9748 /* Invalidate values for registers being written to. */
9749 for (i = 0; i < idesc->num_outputs; i++)
9750 {
9751 if (idesc->operands[i] == IA64_OPND_R1
9752 || idesc->operands[i] == IA64_OPND_R2
9753 || idesc->operands[i] == IA64_OPND_R3)
9754 {
9755 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9756 if (regno > 0 && regno < NELEMS (gr_values))
9757 gr_values[regno].known = 0;
9758 }
9759 else if (idesc->operands[i] == IA64_OPND_R3_2)
9760 {
9761 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9762 if (regno > 0 && regno < 4)
9763 gr_values[regno].known = 0;
9764 }
9765 else if (idesc->operands[i] == IA64_OPND_P1
9766 || idesc->operands[i] == IA64_OPND_P2)
9767 {
9768 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9769 qp_changemask |= (valueT) 1 << regno;
9770 }
9771 else if (idesc->operands[i] == IA64_OPND_PR)
9772 {
9773 if (idesc->operands[2] & (valueT) 0x10000)
9774 qp_changemask = ~(valueT) 0x1FFFF | idesc->operands[2];
9775 else
9776 qp_changemask = idesc->operands[2];
9777 break;
9778 }
9779 else if (idesc->operands[i] == IA64_OPND_PR_ROT)
9780 {
9781 if (idesc->operands[1] & ((valueT) 1 << 43))
9782 qp_changemask = -((valueT) 1 << 44) | idesc->operands[1];
9783 else
9784 qp_changemask = idesc->operands[1];
9785 qp_changemask &= ~(valueT) 0xFFFF;
9786 break;
9787 }
9788 }
9789
9790 /* Always clear qp branch flags on any PR change. */
9791 /* FIXME there may be exceptions for certain compares. */
9792 clear_qp_branch_flag (qp_changemask);
9793
9794 /* Invalidate rotating registers on insns which affect RRBs in CFM. */
9795 if (idesc->flags & IA64_OPCODE_MOD_RRBS)
9796 {
9797 qp_changemask |= ~(valueT) 0xFFFF;
9798 if (strcmp (idesc->name, "clrrrb.pr") != 0)
9799 {
9800 for (i = 32; i < 32 + md.rot.num_regs; i++)
9801 gr_values[i].known = 0;
9802 }
9803 clear_qp_mutex (qp_changemask);
9804 clear_qp_implies (qp_changemask, qp_changemask);
9805 }
9806 /* After a call, all register values are undefined, except those marked
9807 as "safe". */
9808 else if (strncmp (idesc->name, "br.call", 6) == 0
9809 || strncmp (idesc->name, "brl.call", 7) == 0)
9810 {
9811 /* FIXME keep GR values which are marked as "safe_across_calls" */
9812 clear_register_values ();
9813 clear_qp_mutex (~qp_safe_across_calls);
9814 clear_qp_implies (~qp_safe_across_calls, ~qp_safe_across_calls);
9815 clear_qp_branch_flag (~qp_safe_across_calls);
9816 }
9817 else if (is_interruption_or_rfi (idesc)
9818 || is_taken_branch (idesc))
9819 {
9820 clear_register_values ();
9821 clear_qp_mutex (~(valueT) 0);
9822 clear_qp_implies (~(valueT) 0, ~(valueT) 0);
9823 }
9824 /* Look for mutex and implies relations. */
9825 else if ((idesc->operands[0] == IA64_OPND_P1
9826 || idesc->operands[0] == IA64_OPND_P2)
9827 && (idesc->operands[1] == IA64_OPND_P1
9828 || idesc->operands[1] == IA64_OPND_P2))
9829 {
9830 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9831 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9832 valueT p1mask = (p1 != 0) ? (valueT) 1 << p1 : 0;
9833 valueT p2mask = (p2 != 0) ? (valueT) 1 << p2 : 0;
9834
9835 /* If both PRs are PR0, we can't really do anything. */
9836 if (p1 == 0 && p2 == 0)
9837 {
9838 if (md.debug_dv)
9839 fprintf (stderr, " Ignoring PRs due to inclusion of p0\n");
9840 }
9841 /* In general, clear mutexes and implies which include P1 or P2,
9842 with the following exceptions. */
9843 else if (has_suffix_p (idesc->name, ".or.andcm")
9844 || has_suffix_p (idesc->name, ".and.orcm"))
9845 {
9846 clear_qp_implies (p2mask, p1mask);
9847 }
9848 else if (has_suffix_p (idesc->name, ".andcm")
9849 || has_suffix_p (idesc->name, ".and"))
9850 {
9851 clear_qp_implies (0, p1mask | p2mask);
9852 }
9853 else if (has_suffix_p (idesc->name, ".orcm")
9854 || has_suffix_p (idesc->name, ".or"))
9855 {
9856 clear_qp_mutex (p1mask | p2mask);
9857 clear_qp_implies (p1mask | p2mask, 0);
9858 }
9859 else
9860 {
9861 int added = 0;
9862
9863 clear_qp_implies (p1mask | p2mask, p1mask | p2mask);
9864
9865 /* If one of the PRs is PR0, we call clear_qp_mutex. */
9866 if (p1 == 0 || p2 == 0)
9867 clear_qp_mutex (p1mask | p2mask);
9868 else
9869 added = update_qp_mutex (p1mask | p2mask);
9870
9871 if (CURR_SLOT.qp_regno == 0
9872 || has_suffix_p (idesc->name, ".unc"))
9873 {
9874 if (added == 0 && p1 && p2)
9875 add_qp_mutex (p1mask | p2mask);
9876 if (CURR_SLOT.qp_regno != 0)
9877 {
9878 if (p1)
9879 add_qp_imply (p1, CURR_SLOT.qp_regno);
9880 if (p2)
9881 add_qp_imply (p2, CURR_SLOT.qp_regno);
9882 }
9883 }
9884 }
9885 }
9886 /* Look for mov imm insns into GRs. */
9887 else if (idesc->operands[0] == IA64_OPND_R1
9888 && (idesc->operands[1] == IA64_OPND_IMM22
9889 || idesc->operands[1] == IA64_OPND_IMMU64)
9890 && CURR_SLOT.opnd[1].X_op == O_constant
9891 && (strcmp (idesc->name, "mov") == 0
9892 || strcmp (idesc->name, "movl") == 0))
9893 {
9894 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
9895 if (regno > 0 && regno < NELEMS (gr_values))
9896 {
9897 gr_values[regno].known = 1;
9898 gr_values[regno].value = CURR_SLOT.opnd[1].X_add_number;
9899 gr_values[regno].path = md.path;
9900 if (md.debug_dv)
9901 {
9902 fprintf (stderr, " Know gr%d = ", regno);
9903 fprintf_vma (stderr, gr_values[regno].value);
9904 fputs ("\n", stderr);
9905 }
9906 }
9907 }
9908 /* Look for dep.z imm insns. */
9909 else if (idesc->operands[0] == IA64_OPND_R1
9910 && idesc->operands[1] == IA64_OPND_IMM8
9911 && strcmp (idesc->name, "dep.z") == 0)
9912 {
9913 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
9914 if (regno > 0 && regno < NELEMS (gr_values))
9915 {
9916 valueT value = CURR_SLOT.opnd[1].X_add_number;
9917
9918 if (CURR_SLOT.opnd[3].X_add_number < 64)
9919 value &= ((valueT)1 << CURR_SLOT.opnd[3].X_add_number) - 1;
9920 value <<= CURR_SLOT.opnd[2].X_add_number;
9921 gr_values[regno].known = 1;
9922 gr_values[regno].value = value;
9923 gr_values[regno].path = md.path;
9924 if (md.debug_dv)
9925 {
9926 fprintf (stderr, " Know gr%d = ", regno);
9927 fprintf_vma (stderr, gr_values[regno].value);
9928 fputs ("\n", stderr);
9929 }
9930 }
9931 }
9932 else
9933 {
9934 clear_qp_mutex (qp_changemask);
9935 clear_qp_implies (qp_changemask, qp_changemask);
9936 }
9937 }
9938
9939 /* Return whether the given predicate registers are currently mutex. */
9940
9941 static int
9942 qp_mutex (p1, p2, path)
9943 int p1;
9944 int p2;
9945 int path;
9946 {
9947 int i;
9948 valueT mask;
9949
9950 if (p1 != p2)
9951 {
9952 mask = ((valueT) 1 << p1) | (valueT) 1 << p2;
9953 for (i = 0; i < qp_mutexeslen; i++)
9954 {
9955 if (qp_mutexes[i].path >= path
9956 && (qp_mutexes[i].prmask & mask) == mask)
9957 return 1;
9958 }
9959 }
9960 return 0;
9961 }
9962
9963 /* Return whether the given resource is in the given insn's list of chks
9964 Return 1 if the conflict is absolutely determined, 2 if it's a potential
9965 conflict. */
9966
9967 static int
9968 resources_match (rs, idesc, note, qp_regno, path)
9969 struct rsrc *rs;
9970 struct ia64_opcode *idesc;
9971 int note;
9972 int qp_regno;
9973 int path;
9974 {
9975 struct rsrc specs[MAX_SPECS];
9976 int count;
9977
9978 /* If the marked resource's qp_regno and the given qp_regno are mutex,
9979 we don't need to check. One exception is note 11, which indicates that
9980 target predicates are written regardless of PR[qp]. */
9981 if (qp_mutex (rs->qp_regno, qp_regno, path)
9982 && note != 11)
9983 return 0;
9984
9985 count = specify_resource (rs->dependency, idesc, DV_CHK, specs, note, path);
9986 while (count-- > 0)
9987 {
9988 /* UNAT checking is a bit more specific than other resources */
9989 if (rs->dependency->specifier == IA64_RS_AR_UNAT
9990 && specs[count].mem_offset.hint
9991 && rs->mem_offset.hint)
9992 {
9993 if (rs->mem_offset.base == specs[count].mem_offset.base)
9994 {
9995 if (((rs->mem_offset.offset >> 3) & 0x3F) ==
9996 ((specs[count].mem_offset.offset >> 3) & 0x3F))
9997 return 1;
9998 else
9999 continue;
10000 }
10001 }
10002
10003 /* Skip apparent PR write conflicts where both writes are an AND or both
10004 writes are an OR. */
10005 if (rs->dependency->specifier == IA64_RS_PR
10006 || rs->dependency->specifier == IA64_RS_PRr
10007 || rs->dependency->specifier == IA64_RS_PR63)
10008 {
10009 if (specs[count].cmp_type != CMP_NONE
10010 && specs[count].cmp_type == rs->cmp_type)
10011 {
10012 if (md.debug_dv)
10013 fprintf (stderr, " %s on parallel compare allowed (PR%d)\n",
10014 dv_mode[rs->dependency->mode],
10015 rs->dependency->specifier != IA64_RS_PR63 ?
10016 specs[count].index : 63);
10017 continue;
10018 }
10019 if (md.debug_dv)
10020 fprintf (stderr,
10021 " %s on parallel compare conflict %s vs %s on PR%d\n",
10022 dv_mode[rs->dependency->mode],
10023 dv_cmp_type[rs->cmp_type],
10024 dv_cmp_type[specs[count].cmp_type],
10025 rs->dependency->specifier != IA64_RS_PR63 ?
10026 specs[count].index : 63);
10027
10028 }
10029
10030 /* If either resource is not specific, conservatively assume a conflict
10031 */
10032 if (!specs[count].specific || !rs->specific)
10033 return 2;
10034 else if (specs[count].index == rs->index)
10035 return 1;
10036 }
10037
10038 return 0;
10039 }
10040
10041 /* Indicate an instruction group break; if INSERT_STOP is non-zero, then
10042 insert a stop to create the break. Update all resource dependencies
10043 appropriately. If QP_REGNO is non-zero, only apply the break to resources
10044 which use the same QP_REGNO and have the link_to_qp_branch flag set.
10045 If SAVE_CURRENT is non-zero, don't affect resources marked by the current
10046 instruction. */
10047
10048 static void
10049 insn_group_break (insert_stop, qp_regno, save_current)
10050 int insert_stop;
10051 int qp_regno;
10052 int save_current;
10053 {
10054 int i;
10055
10056 if (insert_stop && md.num_slots_in_use > 0)
10057 PREV_SLOT.end_of_insn_group = 1;
10058
10059 if (md.debug_dv)
10060 {
10061 fprintf (stderr, " Insn group break%s",
10062 (insert_stop ? " (w/stop)" : ""));
10063 if (qp_regno != 0)
10064 fprintf (stderr, " effective for QP=%d", qp_regno);
10065 fprintf (stderr, "\n");
10066 }
10067
10068 i = 0;
10069 while (i < regdepslen)
10070 {
10071 const struct ia64_dependency *dep = regdeps[i].dependency;
10072
10073 if (qp_regno != 0
10074 && regdeps[i].qp_regno != qp_regno)
10075 {
10076 ++i;
10077 continue;
10078 }
10079
10080 if (save_current
10081 && CURR_SLOT.src_file == regdeps[i].file
10082 && CURR_SLOT.src_line == regdeps[i].line)
10083 {
10084 ++i;
10085 continue;
10086 }
10087
10088 /* clear dependencies which are automatically cleared by a stop, or
10089 those that have reached the appropriate state of insn serialization */
10090 if (dep->semantics == IA64_DVS_IMPLIED
10091 || dep->semantics == IA64_DVS_IMPLIEDF
10092 || regdeps[i].insn_srlz == STATE_SRLZ)
10093 {
10094 print_dependency ("Removing", i);
10095 regdeps[i] = regdeps[--regdepslen];
10096 }
10097 else
10098 {
10099 if (dep->semantics == IA64_DVS_DATA
10100 || dep->semantics == IA64_DVS_INSTR
10101 || dep->semantics == IA64_DVS_SPECIFIC)
10102 {
10103 if (regdeps[i].insn_srlz == STATE_NONE)
10104 regdeps[i].insn_srlz = STATE_STOP;
10105 if (regdeps[i].data_srlz == STATE_NONE)
10106 regdeps[i].data_srlz = STATE_STOP;
10107 }
10108 ++i;
10109 }
10110 }
10111 }
10112
10113 /* Add the given resource usage spec to the list of active dependencies. */
10114
10115 static void
10116 mark_resource (idesc, dep, spec, depind, path)
10117 struct ia64_opcode *idesc ATTRIBUTE_UNUSED;
10118 const struct ia64_dependency *dep ATTRIBUTE_UNUSED;
10119 struct rsrc *spec;
10120 int depind;
10121 int path;
10122 {
10123 if (regdepslen == regdepstotlen)
10124 {
10125 regdepstotlen += 20;
10126 regdeps = (struct rsrc *)
10127 xrealloc ((void *) regdeps,
10128 regdepstotlen * sizeof (struct rsrc));
10129 }
10130
10131 regdeps[regdepslen] = *spec;
10132 regdeps[regdepslen].depind = depind;
10133 regdeps[regdepslen].path = path;
10134 regdeps[regdepslen].file = CURR_SLOT.src_file;
10135 regdeps[regdepslen].line = CURR_SLOT.src_line;
10136
10137 print_dependency ("Adding", regdepslen);
10138
10139 ++regdepslen;
10140 }
10141
10142 static void
10143 print_dependency (action, depind)
10144 const char *action;
10145 int depind;
10146 {
10147 if (md.debug_dv)
10148 {
10149 fprintf (stderr, " %s %s '%s'",
10150 action, dv_mode[(regdeps[depind].dependency)->mode],
10151 (regdeps[depind].dependency)->name);
10152 if (regdeps[depind].specific && regdeps[depind].index >= 0)
10153 fprintf (stderr, " (%d)", regdeps[depind].index);
10154 if (regdeps[depind].mem_offset.hint)
10155 {
10156 fputs (" ", stderr);
10157 fprintf_vma (stderr, regdeps[depind].mem_offset.base);
10158 fputs ("+", stderr);
10159 fprintf_vma (stderr, regdeps[depind].mem_offset.offset);
10160 }
10161 fprintf (stderr, "\n");
10162 }
10163 }
10164
10165 static void
10166 instruction_serialization ()
10167 {
10168 int i;
10169 if (md.debug_dv)
10170 fprintf (stderr, " Instruction serialization\n");
10171 for (i = 0; i < regdepslen; i++)
10172 if (regdeps[i].insn_srlz == STATE_STOP)
10173 regdeps[i].insn_srlz = STATE_SRLZ;
10174 }
10175
10176 static void
10177 data_serialization ()
10178 {
10179 int i = 0;
10180 if (md.debug_dv)
10181 fprintf (stderr, " Data serialization\n");
10182 while (i < regdepslen)
10183 {
10184 if (regdeps[i].data_srlz == STATE_STOP
10185 /* Note: as of 991210, all "other" dependencies are cleared by a
10186 data serialization. This might change with new tables */
10187 || (regdeps[i].dependency)->semantics == IA64_DVS_OTHER)
10188 {
10189 print_dependency ("Removing", i);
10190 regdeps[i] = regdeps[--regdepslen];
10191 }
10192 else
10193 ++i;
10194 }
10195 }
10196
10197 /* Insert stops and serializations as needed to avoid DVs. */
10198
10199 static void
10200 remove_marked_resource (rs)
10201 struct rsrc *rs;
10202 {
10203 switch (rs->dependency->semantics)
10204 {
10205 case IA64_DVS_SPECIFIC:
10206 if (md.debug_dv)
10207 fprintf (stderr, "Implementation-specific, assume worst case...\n");
10208 /* ...fall through... */
10209 case IA64_DVS_INSTR:
10210 if (md.debug_dv)
10211 fprintf (stderr, "Inserting instr serialization\n");
10212 if (rs->insn_srlz < STATE_STOP)
10213 insn_group_break (1, 0, 0);
10214 if (rs->insn_srlz < STATE_SRLZ)
10215 {
10216 struct slot oldslot = CURR_SLOT;
10217 /* Manually jam a srlz.i insn into the stream */
10218 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10219 CURR_SLOT.user_template = -1;
10220 CURR_SLOT.idesc = ia64_find_opcode ("srlz.i");
10221 instruction_serialization ();
10222 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10223 if (++md.num_slots_in_use >= NUM_SLOTS)
10224 emit_one_bundle ();
10225 CURR_SLOT = oldslot;
10226 }
10227 insn_group_break (1, 0, 0);
10228 break;
10229 case IA64_DVS_OTHER: /* as of rev2 (991220) of the DV tables, all
10230 "other" types of DV are eliminated
10231 by a data serialization */
10232 case IA64_DVS_DATA:
10233 if (md.debug_dv)
10234 fprintf (stderr, "Inserting data serialization\n");
10235 if (rs->data_srlz < STATE_STOP)
10236 insn_group_break (1, 0, 0);
10237 {
10238 struct slot oldslot = CURR_SLOT;
10239 /* Manually jam a srlz.d insn into the stream */
10240 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10241 CURR_SLOT.user_template = -1;
10242 CURR_SLOT.idesc = ia64_find_opcode ("srlz.d");
10243 data_serialization ();
10244 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10245 if (++md.num_slots_in_use >= NUM_SLOTS)
10246 emit_one_bundle ();
10247 CURR_SLOT = oldslot;
10248 }
10249 break;
10250 case IA64_DVS_IMPLIED:
10251 case IA64_DVS_IMPLIEDF:
10252 if (md.debug_dv)
10253 fprintf (stderr, "Inserting stop\n");
10254 insn_group_break (1, 0, 0);
10255 break;
10256 default:
10257 break;
10258 }
10259 }
10260
10261 /* Check the resources used by the given opcode against the current dependency
10262 list.
10263
10264 The check is run once for each execution path encountered. In this case,
10265 a unique execution path is the sequence of instructions following a code
10266 entry point, e.g. the following has three execution paths, one starting
10267 at L0, one at L1, and one at L2.
10268
10269 L0: nop
10270 L1: add
10271 L2: add
10272 br.ret
10273 */
10274
10275 static void
10276 check_dependencies (idesc)
10277 struct ia64_opcode *idesc;
10278 {
10279 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10280 int path;
10281 int i;
10282
10283 /* Note that the number of marked resources may change within the
10284 loop if in auto mode. */
10285 i = 0;
10286 while (i < regdepslen)
10287 {
10288 struct rsrc *rs = &regdeps[i];
10289 const struct ia64_dependency *dep = rs->dependency;
10290 int chkind;
10291 int note;
10292 int start_over = 0;
10293
10294 if (dep->semantics == IA64_DVS_NONE
10295 || (chkind = depends_on (rs->depind, idesc)) == -1)
10296 {
10297 ++i;
10298 continue;
10299 }
10300
10301 note = NOTE (opdeps->chks[chkind]);
10302
10303 /* Check this resource against each execution path seen thus far. */
10304 for (path = 0; path <= md.path; path++)
10305 {
10306 int matchtype;
10307
10308 /* If the dependency wasn't on the path being checked, ignore it. */
10309 if (rs->path < path)
10310 continue;
10311
10312 /* If the QP for this insn implies a QP which has branched, don't
10313 bother checking. Ed. NOTE: I don't think this check is terribly
10314 useful; what's the point of generating code which will only be
10315 reached if its QP is zero?
10316 This code was specifically inserted to handle the following code,
10317 based on notes from Intel's DV checking code, where p1 implies p2.
10318
10319 mov r4 = 2
10320 (p2) br.cond L
10321 (p1) mov r4 = 7
10322 */
10323 if (CURR_SLOT.qp_regno != 0)
10324 {
10325 int skip = 0;
10326 int implies;
10327 for (implies = 0; implies < qp_implieslen; implies++)
10328 {
10329 if (qp_implies[implies].path >= path
10330 && qp_implies[implies].p1 == CURR_SLOT.qp_regno
10331 && qp_implies[implies].p2_branched)
10332 {
10333 skip = 1;
10334 break;
10335 }
10336 }
10337 if (skip)
10338 continue;
10339 }
10340
10341 if ((matchtype = resources_match (rs, idesc, note,
10342 CURR_SLOT.qp_regno, path)) != 0)
10343 {
10344 char msg[1024];
10345 char pathmsg[256] = "";
10346 char indexmsg[256] = "";
10347 int certain = (matchtype == 1 && CURR_SLOT.qp_regno == 0);
10348
10349 if (path != 0)
10350 sprintf (pathmsg, " when entry is at label '%s'",
10351 md.entry_labels[path - 1]);
10352 if (matchtype == 1 && rs->index >= 0)
10353 sprintf (indexmsg, ", specific resource number is %d",
10354 rs->index);
10355 sprintf (msg, "Use of '%s' %s %s dependency '%s' (%s)%s%s",
10356 idesc->name,
10357 (certain ? "violates" : "may violate"),
10358 dv_mode[dep->mode], dep->name,
10359 dv_sem[dep->semantics],
10360 pathmsg, indexmsg);
10361
10362 if (md.explicit_mode)
10363 {
10364 as_warn ("%s", msg);
10365 if (path < md.path)
10366 as_warn (_("Only the first path encountering the conflict "
10367 "is reported"));
10368 as_warn_where (rs->file, rs->line,
10369 _("This is the location of the "
10370 "conflicting usage"));
10371 /* Don't bother checking other paths, to avoid duplicating
10372 the same warning */
10373 break;
10374 }
10375 else
10376 {
10377 if (md.debug_dv)
10378 fprintf (stderr, "%s @ %s:%d\n", msg, rs->file, rs->line);
10379
10380 remove_marked_resource (rs);
10381
10382 /* since the set of dependencies has changed, start over */
10383 /* FIXME -- since we're removing dvs as we go, we
10384 probably don't really need to start over... */
10385 start_over = 1;
10386 break;
10387 }
10388 }
10389 }
10390 if (start_over)
10391 i = 0;
10392 else
10393 ++i;
10394 }
10395 }
10396
10397 /* Register new dependencies based on the given opcode. */
10398
10399 static void
10400 mark_resources (idesc)
10401 struct ia64_opcode *idesc;
10402 {
10403 int i;
10404 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10405 int add_only_qp_reads = 0;
10406
10407 /* A conditional branch only uses its resources if it is taken; if it is
10408 taken, we stop following that path. The other branch types effectively
10409 *always* write their resources. If it's not taken, register only QP
10410 reads. */
10411 if (is_conditional_branch (idesc) || is_interruption_or_rfi (idesc))
10412 {
10413 add_only_qp_reads = 1;
10414 }
10415
10416 if (md.debug_dv)
10417 fprintf (stderr, "Registering '%s' resource usage\n", idesc->name);
10418
10419 for (i = 0; i < opdeps->nregs; i++)
10420 {
10421 const struct ia64_dependency *dep;
10422 struct rsrc specs[MAX_SPECS];
10423 int note;
10424 int path;
10425 int count;
10426
10427 dep = ia64_find_dependency (opdeps->regs[i]);
10428 note = NOTE (opdeps->regs[i]);
10429
10430 if (add_only_qp_reads
10431 && !(dep->mode == IA64_DV_WAR
10432 && (dep->specifier == IA64_RS_PR
10433 || dep->specifier == IA64_RS_PRr
10434 || dep->specifier == IA64_RS_PR63)))
10435 continue;
10436
10437 count = specify_resource (dep, idesc, DV_REG, specs, note, md.path);
10438
10439 while (count-- > 0)
10440 {
10441 mark_resource (idesc, dep, &specs[count],
10442 DEP (opdeps->regs[i]), md.path);
10443 }
10444
10445 /* The execution path may affect register values, which may in turn
10446 affect which indirect-access resources are accessed. */
10447 switch (dep->specifier)
10448 {
10449 default:
10450 break;
10451 case IA64_RS_CPUID:
10452 case IA64_RS_DBR:
10453 case IA64_RS_IBR:
10454 case IA64_RS_MSR:
10455 case IA64_RS_PKR:
10456 case IA64_RS_PMC:
10457 case IA64_RS_PMD:
10458 case IA64_RS_RR:
10459 for (path = 0; path < md.path; path++)
10460 {
10461 count = specify_resource (dep, idesc, DV_REG, specs, note, path);
10462 while (count-- > 0)
10463 mark_resource (idesc, dep, &specs[count],
10464 DEP (opdeps->regs[i]), path);
10465 }
10466 break;
10467 }
10468 }
10469 }
10470
10471 /* Remove dependencies when they no longer apply. */
10472
10473 static void
10474 update_dependencies (idesc)
10475 struct ia64_opcode *idesc;
10476 {
10477 int i;
10478
10479 if (strcmp (idesc->name, "srlz.i") == 0)
10480 {
10481 instruction_serialization ();
10482 }
10483 else if (strcmp (idesc->name, "srlz.d") == 0)
10484 {
10485 data_serialization ();
10486 }
10487 else if (is_interruption_or_rfi (idesc)
10488 || is_taken_branch (idesc))
10489 {
10490 /* Although technically the taken branch doesn't clear dependencies
10491 which require a srlz.[id], we don't follow the branch; the next
10492 instruction is assumed to start with a clean slate. */
10493 regdepslen = 0;
10494 md.path = 0;
10495 }
10496 else if (is_conditional_branch (idesc)
10497 && CURR_SLOT.qp_regno != 0)
10498 {
10499 int is_call = strstr (idesc->name, ".call") != NULL;
10500
10501 for (i = 0; i < qp_implieslen; i++)
10502 {
10503 /* If the conditional branch's predicate is implied by the predicate
10504 in an existing dependency, remove that dependency. */
10505 if (qp_implies[i].p2 == CURR_SLOT.qp_regno)
10506 {
10507 int depind = 0;
10508 /* Note that this implied predicate takes a branch so that if
10509 a later insn generates a DV but its predicate implies this
10510 one, we can avoid the false DV warning. */
10511 qp_implies[i].p2_branched = 1;
10512 while (depind < regdepslen)
10513 {
10514 if (regdeps[depind].qp_regno == qp_implies[i].p1)
10515 {
10516 print_dependency ("Removing", depind);
10517 regdeps[depind] = regdeps[--regdepslen];
10518 }
10519 else
10520 ++depind;
10521 }
10522 }
10523 }
10524 /* Any marked resources which have this same predicate should be
10525 cleared, provided that the QP hasn't been modified between the
10526 marking instruction and the branch. */
10527 if (is_call)
10528 {
10529 insn_group_break (0, CURR_SLOT.qp_regno, 1);
10530 }
10531 else
10532 {
10533 i = 0;
10534 while (i < regdepslen)
10535 {
10536 if (regdeps[i].qp_regno == CURR_SLOT.qp_regno
10537 && regdeps[i].link_to_qp_branch
10538 && (regdeps[i].file != CURR_SLOT.src_file
10539 || regdeps[i].line != CURR_SLOT.src_line))
10540 {
10541 /* Treat like a taken branch */
10542 print_dependency ("Removing", i);
10543 regdeps[i] = regdeps[--regdepslen];
10544 }
10545 else
10546 ++i;
10547 }
10548 }
10549 }
10550 }
10551
10552 /* Examine the current instruction for dependency violations. */
10553
10554 static int
10555 check_dv (idesc)
10556 struct ia64_opcode *idesc;
10557 {
10558 if (md.debug_dv)
10559 {
10560 fprintf (stderr, "Checking %s for violations (line %d, %d/%d)\n",
10561 idesc->name, CURR_SLOT.src_line,
10562 idesc->dependencies->nchks,
10563 idesc->dependencies->nregs);
10564 }
10565
10566 /* Look through the list of currently marked resources; if the current
10567 instruction has the dependency in its chks list which uses that resource,
10568 check against the specific resources used. */
10569 check_dependencies (idesc);
10570
10571 /* Look up the instruction's regdeps (RAW writes, WAW writes, and WAR reads),
10572 then add them to the list of marked resources. */
10573 mark_resources (idesc);
10574
10575 /* There are several types of dependency semantics, and each has its own
10576 requirements for being cleared
10577
10578 Instruction serialization (insns separated by interruption, rfi, or
10579 writer + srlz.i + reader, all in separate groups) clears DVS_INSTR.
10580
10581 Data serialization (instruction serialization, or writer + srlz.d +
10582 reader, where writer and srlz.d are in separate groups) clears
10583 DVS_DATA. (This also clears DVS_OTHER, but that is not guaranteed to
10584 always be the case).
10585
10586 Instruction group break (groups separated by stop, taken branch,
10587 interruption or rfi) clears DVS_IMPLIED and DVS_IMPLIEDF.
10588 */
10589 update_dependencies (idesc);
10590
10591 /* Sometimes, knowing a register value allows us to avoid giving a false DV
10592 warning. Keep track of as many as possible that are useful. */
10593 note_register_values (idesc);
10594
10595 /* We don't need or want this anymore. */
10596 md.mem_offset.hint = 0;
10597
10598 return 0;
10599 }
10600
10601 /* Translate one line of assembly. Pseudo ops and labels do not show
10602 here. */
10603 void
10604 md_assemble (str)
10605 char *str;
10606 {
10607 char *saved_input_line_pointer, *mnemonic;
10608 const struct pseudo_opcode *pdesc;
10609 struct ia64_opcode *idesc;
10610 unsigned char qp_regno;
10611 unsigned int flags;
10612 int ch;
10613
10614 saved_input_line_pointer = input_line_pointer;
10615 input_line_pointer = str;
10616
10617 /* extract the opcode (mnemonic): */
10618
10619 mnemonic = input_line_pointer;
10620 ch = get_symbol_end ();
10621 pdesc = (struct pseudo_opcode *) hash_find (md.pseudo_hash, mnemonic);
10622 if (pdesc)
10623 {
10624 *input_line_pointer = ch;
10625 (*pdesc->handler) (pdesc->arg);
10626 goto done;
10627 }
10628
10629 /* Find the instruction descriptor matching the arguments. */
10630
10631 idesc = ia64_find_opcode (mnemonic);
10632 *input_line_pointer = ch;
10633 if (!idesc)
10634 {
10635 as_bad ("Unknown opcode `%s'", mnemonic);
10636 goto done;
10637 }
10638
10639 idesc = parse_operands (idesc);
10640 if (!idesc)
10641 goto done;
10642
10643 /* Handle the dynamic ops we can handle now: */
10644 if (idesc->type == IA64_TYPE_DYN)
10645 {
10646 if (strcmp (idesc->name, "add") == 0)
10647 {
10648 if (CURR_SLOT.opnd[2].X_op == O_register
10649 && CURR_SLOT.opnd[2].X_add_number < 4)
10650 mnemonic = "addl";
10651 else
10652 mnemonic = "adds";
10653 ia64_free_opcode (idesc);
10654 idesc = ia64_find_opcode (mnemonic);
10655 }
10656 else if (strcmp (idesc->name, "mov") == 0)
10657 {
10658 enum ia64_opnd opnd1, opnd2;
10659 int rop;
10660
10661 opnd1 = idesc->operands[0];
10662 opnd2 = idesc->operands[1];
10663 if (opnd1 == IA64_OPND_AR3)
10664 rop = 0;
10665 else if (opnd2 == IA64_OPND_AR3)
10666 rop = 1;
10667 else
10668 abort ();
10669 if (CURR_SLOT.opnd[rop].X_op == O_register)
10670 {
10671 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10672 mnemonic = "mov.i";
10673 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10674 mnemonic = "mov.m";
10675 else
10676 rop = -1;
10677 }
10678 else
10679 abort ();
10680 if (rop >= 0)
10681 {
10682 ia64_free_opcode (idesc);
10683 idesc = ia64_find_opcode (mnemonic);
10684 while (idesc != NULL
10685 && (idesc->operands[0] != opnd1
10686 || idesc->operands[1] != opnd2))
10687 idesc = get_next_opcode (idesc);
10688 }
10689 }
10690 }
10691 else if (strcmp (idesc->name, "mov.i") == 0
10692 || strcmp (idesc->name, "mov.m") == 0)
10693 {
10694 enum ia64_opnd opnd1, opnd2;
10695 int rop;
10696
10697 opnd1 = idesc->operands[0];
10698 opnd2 = idesc->operands[1];
10699 if (opnd1 == IA64_OPND_AR3)
10700 rop = 0;
10701 else if (opnd2 == IA64_OPND_AR3)
10702 rop = 1;
10703 else
10704 abort ();
10705 if (CURR_SLOT.opnd[rop].X_op == O_register)
10706 {
10707 char unit = 'a';
10708 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10709 unit = 'i';
10710 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10711 unit = 'm';
10712 if (unit != 'a' && unit != idesc->name [4])
10713 as_bad ("AR %d can only be accessed by %c-unit",
10714 (int) (CURR_SLOT.opnd[rop].X_add_number - REG_AR),
10715 TOUPPER (unit));
10716 }
10717 }
10718 else if (strcmp (idesc->name, "hint.b") == 0)
10719 {
10720 switch (md.hint_b)
10721 {
10722 case hint_b_ok:
10723 break;
10724 case hint_b_warning:
10725 as_warn ("hint.b may be treated as nop");
10726 break;
10727 case hint_b_error:
10728 as_bad ("hint.b shouldn't be used");
10729 break;
10730 }
10731 }
10732
10733 qp_regno = 0;
10734 if (md.qp.X_op == O_register)
10735 {
10736 qp_regno = md.qp.X_add_number - REG_P;
10737 md.qp.X_op = O_absent;
10738 }
10739
10740 flags = idesc->flags;
10741
10742 if ((flags & IA64_OPCODE_FIRST) != 0)
10743 {
10744 /* The alignment frag has to end with a stop bit only if the
10745 next instruction after the alignment directive has to be
10746 the first instruction in an instruction group. */
10747 if (align_frag)
10748 {
10749 while (align_frag->fr_type != rs_align_code)
10750 {
10751 align_frag = align_frag->fr_next;
10752 if (!align_frag)
10753 break;
10754 }
10755 /* align_frag can be NULL if there are directives in
10756 between. */
10757 if (align_frag && align_frag->fr_next == frag_now)
10758 align_frag->tc_frag_data = 1;
10759 }
10760
10761 insn_group_break (1, 0, 0);
10762 }
10763 align_frag = NULL;
10764
10765 if ((flags & IA64_OPCODE_NO_PRED) != 0 && qp_regno != 0)
10766 {
10767 as_bad ("`%s' cannot be predicated", idesc->name);
10768 goto done;
10769 }
10770
10771 /* Build the instruction. */
10772 CURR_SLOT.qp_regno = qp_regno;
10773 CURR_SLOT.idesc = idesc;
10774 as_where (&CURR_SLOT.src_file, &CURR_SLOT.src_line);
10775 dwarf2_where (&CURR_SLOT.debug_line);
10776
10777 /* Add unwind entry, if there is one. */
10778 if (unwind.current_entry)
10779 {
10780 CURR_SLOT.unwind_record = unwind.current_entry;
10781 unwind.current_entry = NULL;
10782 }
10783 if (unwind.proc_pending.sym && S_IS_DEFINED (unwind.proc_pending.sym))
10784 unwind.insn = 1;
10785
10786 /* Check for dependency violations. */
10787 if (md.detect_dv)
10788 check_dv (idesc);
10789
10790 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10791 if (++md.num_slots_in_use >= NUM_SLOTS)
10792 emit_one_bundle ();
10793
10794 if ((flags & IA64_OPCODE_LAST) != 0)
10795 insn_group_break (1, 0, 0);
10796
10797 md.last_text_seg = now_seg;
10798
10799 done:
10800 input_line_pointer = saved_input_line_pointer;
10801 }
10802
10803 /* Called when symbol NAME cannot be found in the symbol table.
10804 Should be used for dynamic valued symbols only. */
10805
10806 symbolS *
10807 md_undefined_symbol (name)
10808 char *name ATTRIBUTE_UNUSED;
10809 {
10810 return 0;
10811 }
10812
10813 /* Called for any expression that can not be recognized. When the
10814 function is called, `input_line_pointer' will point to the start of
10815 the expression. */
10816
10817 void
10818 md_operand (e)
10819 expressionS *e;
10820 {
10821 switch (*input_line_pointer)
10822 {
10823 case '[':
10824 ++input_line_pointer;
10825 expression (e);
10826 if (*input_line_pointer != ']')
10827 {
10828 as_bad ("Closing bracket missing");
10829 goto err;
10830 }
10831 else
10832 {
10833 if (e->X_op != O_register)
10834 as_bad ("Register expected as index");
10835
10836 ++input_line_pointer;
10837 e->X_op = O_index;
10838 }
10839 break;
10840
10841 default:
10842 break;
10843 }
10844 return;
10845
10846 err:
10847 ignore_rest_of_line ();
10848 }
10849
10850 /* Return 1 if it's OK to adjust a reloc by replacing the symbol with
10851 a section symbol plus some offset. For relocs involving @fptr(),
10852 directives we don't want such adjustments since we need to have the
10853 original symbol's name in the reloc. */
10854 int
10855 ia64_fix_adjustable (fix)
10856 fixS *fix;
10857 {
10858 /* Prevent all adjustments to global symbols */
10859 if (S_IS_EXTERNAL (fix->fx_addsy) || S_IS_WEAK (fix->fx_addsy))
10860 return 0;
10861
10862 switch (fix->fx_r_type)
10863 {
10864 case BFD_RELOC_IA64_FPTR64I:
10865 case BFD_RELOC_IA64_FPTR32MSB:
10866 case BFD_RELOC_IA64_FPTR32LSB:
10867 case BFD_RELOC_IA64_FPTR64MSB:
10868 case BFD_RELOC_IA64_FPTR64LSB:
10869 case BFD_RELOC_IA64_LTOFF_FPTR22:
10870 case BFD_RELOC_IA64_LTOFF_FPTR64I:
10871 return 0;
10872 default:
10873 break;
10874 }
10875
10876 return 1;
10877 }
10878
10879 int
10880 ia64_force_relocation (fix)
10881 fixS *fix;
10882 {
10883 switch (fix->fx_r_type)
10884 {
10885 case BFD_RELOC_IA64_FPTR64I:
10886 case BFD_RELOC_IA64_FPTR32MSB:
10887 case BFD_RELOC_IA64_FPTR32LSB:
10888 case BFD_RELOC_IA64_FPTR64MSB:
10889 case BFD_RELOC_IA64_FPTR64LSB:
10890
10891 case BFD_RELOC_IA64_LTOFF22:
10892 case BFD_RELOC_IA64_LTOFF64I:
10893 case BFD_RELOC_IA64_LTOFF_FPTR22:
10894 case BFD_RELOC_IA64_LTOFF_FPTR64I:
10895 case BFD_RELOC_IA64_PLTOFF22:
10896 case BFD_RELOC_IA64_PLTOFF64I:
10897 case BFD_RELOC_IA64_PLTOFF64MSB:
10898 case BFD_RELOC_IA64_PLTOFF64LSB:
10899
10900 case BFD_RELOC_IA64_LTOFF22X:
10901 case BFD_RELOC_IA64_LDXMOV:
10902 return 1;
10903
10904 default:
10905 break;
10906 }
10907
10908 return generic_force_reloc (fix);
10909 }
10910
10911 /* Decide from what point a pc-relative relocation is relative to,
10912 relative to the pc-relative fixup. Er, relatively speaking. */
10913 long
10914 ia64_pcrel_from_section (fix, sec)
10915 fixS *fix;
10916 segT sec;
10917 {
10918 unsigned long off = fix->fx_frag->fr_address + fix->fx_where;
10919
10920 if (bfd_get_section_flags (stdoutput, sec) & SEC_CODE)
10921 off &= ~0xfUL;
10922
10923 return off;
10924 }
10925
10926
10927 /* Used to emit section-relative relocs for the dwarf2 debug data. */
10928 void
10929 ia64_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10930 {
10931 expressionS expr;
10932
10933 expr.X_op = O_pseudo_fixup;
10934 expr.X_op_symbol = pseudo_func[FUNC_SEC_RELATIVE].u.sym;
10935 expr.X_add_number = 0;
10936 expr.X_add_symbol = symbol;
10937 emit_expr (&expr, size);
10938 }
10939
10940 /* This is called whenever some data item (not an instruction) needs a
10941 fixup. We pick the right reloc code depending on the byteorder
10942 currently in effect. */
10943 void
10944 ia64_cons_fix_new (f, where, nbytes, exp)
10945 fragS *f;
10946 int where;
10947 int nbytes;
10948 expressionS *exp;
10949 {
10950 bfd_reloc_code_real_type code;
10951 fixS *fix;
10952
10953 switch (nbytes)
10954 {
10955 /* There are no reloc for 8 and 16 bit quantities, but we allow
10956 them here since they will work fine as long as the expression
10957 is fully defined at the end of the pass over the source file. */
10958 case 1: code = BFD_RELOC_8; break;
10959 case 2: code = BFD_RELOC_16; break;
10960 case 4:
10961 if (target_big_endian)
10962 code = BFD_RELOC_IA64_DIR32MSB;
10963 else
10964 code = BFD_RELOC_IA64_DIR32LSB;
10965 break;
10966
10967 case 8:
10968 /* In 32-bit mode, data8 could mean function descriptors too. */
10969 if (exp->X_op == O_pseudo_fixup
10970 && exp->X_op_symbol
10971 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC
10972 && !(md.flags & EF_IA_64_ABI64))
10973 {
10974 if (target_big_endian)
10975 code = BFD_RELOC_IA64_IPLTMSB;
10976 else
10977 code = BFD_RELOC_IA64_IPLTLSB;
10978 exp->X_op = O_symbol;
10979 break;
10980 }
10981 else
10982 {
10983 if (target_big_endian)
10984 code = BFD_RELOC_IA64_DIR64MSB;
10985 else
10986 code = BFD_RELOC_IA64_DIR64LSB;
10987 break;
10988 }
10989
10990 case 16:
10991 if (exp->X_op == O_pseudo_fixup
10992 && exp->X_op_symbol
10993 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC)
10994 {
10995 if (target_big_endian)
10996 code = BFD_RELOC_IA64_IPLTMSB;
10997 else
10998 code = BFD_RELOC_IA64_IPLTLSB;
10999 exp->X_op = O_symbol;
11000 break;
11001 }
11002 /* FALLTHRU */
11003
11004 default:
11005 as_bad ("Unsupported fixup size %d", nbytes);
11006 ignore_rest_of_line ();
11007 return;
11008 }
11009
11010 if (exp->X_op == O_pseudo_fixup)
11011 {
11012 exp->X_op = O_symbol;
11013 code = ia64_gen_real_reloc_type (exp->X_op_symbol, code);
11014 /* ??? If code unchanged, unsupported. */
11015 }
11016
11017 fix = fix_new_exp (f, where, nbytes, exp, 0, code);
11018 /* We need to store the byte order in effect in case we're going
11019 to fix an 8 or 16 bit relocation (for which there no real
11020 relocs available). See md_apply_fix(). */
11021 fix->tc_fix_data.bigendian = target_big_endian;
11022 }
11023
11024 /* Return the actual relocation we wish to associate with the pseudo
11025 reloc described by SYM and R_TYPE. SYM should be one of the
11026 symbols in the pseudo_func array, or NULL. */
11027
11028 static bfd_reloc_code_real_type
11029 ia64_gen_real_reloc_type (sym, r_type)
11030 struct symbol *sym;
11031 bfd_reloc_code_real_type r_type;
11032 {
11033 bfd_reloc_code_real_type new = 0;
11034 const char *type = NULL, *suffix = "";
11035
11036 if (sym == NULL)
11037 {
11038 return r_type;
11039 }
11040
11041 switch (S_GET_VALUE (sym))
11042 {
11043 case FUNC_FPTR_RELATIVE:
11044 switch (r_type)
11045 {
11046 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_FPTR64I; break;
11047 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_FPTR32MSB; break;
11048 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_FPTR32LSB; break;
11049 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_FPTR64MSB; break;
11050 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_FPTR64LSB; break;
11051 default: type = "FPTR"; break;
11052 }
11053 break;
11054
11055 case FUNC_GP_RELATIVE:
11056 switch (r_type)
11057 {
11058 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_GPREL22; break;
11059 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_GPREL64I; break;
11060 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_GPREL32MSB; break;
11061 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_GPREL32LSB; break;
11062 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_GPREL64MSB; break;
11063 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_GPREL64LSB; break;
11064 default: type = "GPREL"; break;
11065 }
11066 break;
11067
11068 case FUNC_LT_RELATIVE:
11069 switch (r_type)
11070 {
11071 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22; break;
11072 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_LTOFF64I; break;
11073 default: type = "LTOFF"; break;
11074 }
11075 break;
11076
11077 case FUNC_LT_RELATIVE_X:
11078 switch (r_type)
11079 {
11080 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22X; break;
11081 default: type = "LTOFF"; suffix = "X"; break;
11082 }
11083 break;
11084
11085 case FUNC_PC_RELATIVE:
11086 switch (r_type)
11087 {
11088 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PCREL22; break;
11089 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PCREL64I; break;
11090 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_PCREL32MSB; break;
11091 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_PCREL32LSB; break;
11092 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PCREL64MSB; break;
11093 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PCREL64LSB; break;
11094 default: type = "PCREL"; break;
11095 }
11096 break;
11097
11098 case FUNC_PLT_RELATIVE:
11099 switch (r_type)
11100 {
11101 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PLTOFF22; break;
11102 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PLTOFF64I; break;
11103 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PLTOFF64MSB;break;
11104 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PLTOFF64LSB;break;
11105 default: type = "PLTOFF"; break;
11106 }
11107 break;
11108
11109 case FUNC_SEC_RELATIVE:
11110 switch (r_type)
11111 {
11112 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SECREL32MSB;break;
11113 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SECREL32LSB;break;
11114 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SECREL64MSB;break;
11115 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SECREL64LSB;break;
11116 default: type = "SECREL"; break;
11117 }
11118 break;
11119
11120 case FUNC_SEG_RELATIVE:
11121 switch (r_type)
11122 {
11123 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SEGREL32MSB;break;
11124 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SEGREL32LSB;break;
11125 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SEGREL64MSB;break;
11126 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SEGREL64LSB;break;
11127 default: type = "SEGREL"; break;
11128 }
11129 break;
11130
11131 case FUNC_LTV_RELATIVE:
11132 switch (r_type)
11133 {
11134 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_LTV32MSB; break;
11135 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_LTV32LSB; break;
11136 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_LTV64MSB; break;
11137 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_LTV64LSB; break;
11138 default: type = "LTV"; break;
11139 }
11140 break;
11141
11142 case FUNC_LT_FPTR_RELATIVE:
11143 switch (r_type)
11144 {
11145 case BFD_RELOC_IA64_IMM22:
11146 new = BFD_RELOC_IA64_LTOFF_FPTR22; break;
11147 case BFD_RELOC_IA64_IMM64:
11148 new = BFD_RELOC_IA64_LTOFF_FPTR64I; break;
11149 case BFD_RELOC_IA64_DIR32MSB:
11150 new = BFD_RELOC_IA64_LTOFF_FPTR32MSB; break;
11151 case BFD_RELOC_IA64_DIR32LSB:
11152 new = BFD_RELOC_IA64_LTOFF_FPTR32LSB; break;
11153 case BFD_RELOC_IA64_DIR64MSB:
11154 new = BFD_RELOC_IA64_LTOFF_FPTR64MSB; break;
11155 case BFD_RELOC_IA64_DIR64LSB:
11156 new = BFD_RELOC_IA64_LTOFF_FPTR64LSB; break;
11157 default:
11158 type = "LTOFF_FPTR"; break;
11159 }
11160 break;
11161
11162 case FUNC_TP_RELATIVE:
11163 switch (r_type)
11164 {
11165 case BFD_RELOC_IA64_IMM14: new = BFD_RELOC_IA64_TPREL14; break;
11166 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_TPREL22; break;
11167 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_TPREL64I; break;
11168 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_TPREL64MSB; break;
11169 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_TPREL64LSB; break;
11170 default: type = "TPREL"; break;
11171 }
11172 break;
11173
11174 case FUNC_LT_TP_RELATIVE:
11175 switch (r_type)
11176 {
11177 case BFD_RELOC_IA64_IMM22:
11178 new = BFD_RELOC_IA64_LTOFF_TPREL22; break;
11179 default:
11180 type = "LTOFF_TPREL"; break;
11181 }
11182 break;
11183
11184 case FUNC_DTP_MODULE:
11185 switch (r_type)
11186 {
11187 case BFD_RELOC_IA64_DIR64MSB:
11188 new = BFD_RELOC_IA64_DTPMOD64MSB; break;
11189 case BFD_RELOC_IA64_DIR64LSB:
11190 new = BFD_RELOC_IA64_DTPMOD64LSB; break;
11191 default:
11192 type = "DTPMOD"; break;
11193 }
11194 break;
11195
11196 case FUNC_LT_DTP_MODULE:
11197 switch (r_type)
11198 {
11199 case BFD_RELOC_IA64_IMM22:
11200 new = BFD_RELOC_IA64_LTOFF_DTPMOD22; break;
11201 default:
11202 type = "LTOFF_DTPMOD"; break;
11203 }
11204 break;
11205
11206 case FUNC_DTP_RELATIVE:
11207 switch (r_type)
11208 {
11209 case BFD_RELOC_IA64_DIR32MSB:
11210 new = BFD_RELOC_IA64_DTPREL32MSB; break;
11211 case BFD_RELOC_IA64_DIR32LSB:
11212 new = BFD_RELOC_IA64_DTPREL32LSB; break;
11213 case BFD_RELOC_IA64_DIR64MSB:
11214 new = BFD_RELOC_IA64_DTPREL64MSB; break;
11215 case BFD_RELOC_IA64_DIR64LSB:
11216 new = BFD_RELOC_IA64_DTPREL64LSB; break;
11217 case BFD_RELOC_IA64_IMM14:
11218 new = BFD_RELOC_IA64_DTPREL14; break;
11219 case BFD_RELOC_IA64_IMM22:
11220 new = BFD_RELOC_IA64_DTPREL22; break;
11221 case BFD_RELOC_IA64_IMM64:
11222 new = BFD_RELOC_IA64_DTPREL64I; break;
11223 default:
11224 type = "DTPREL"; break;
11225 }
11226 break;
11227
11228 case FUNC_LT_DTP_RELATIVE:
11229 switch (r_type)
11230 {
11231 case BFD_RELOC_IA64_IMM22:
11232 new = BFD_RELOC_IA64_LTOFF_DTPREL22; break;
11233 default:
11234 type = "LTOFF_DTPREL"; break;
11235 }
11236 break;
11237
11238 case FUNC_IPLT_RELOC:
11239 switch (r_type)
11240 {
11241 case BFD_RELOC_IA64_IPLTMSB: return r_type;
11242 case BFD_RELOC_IA64_IPLTLSB: return r_type;
11243 default: type = "IPLT"; break;
11244 }
11245 break;
11246
11247 default:
11248 abort ();
11249 }
11250
11251 if (new)
11252 return new;
11253 else
11254 {
11255 int width;
11256
11257 if (!type)
11258 abort ();
11259 switch (r_type)
11260 {
11261 case BFD_RELOC_IA64_DIR32MSB: width = 32; suffix = "MSB"; break;
11262 case BFD_RELOC_IA64_DIR32LSB: width = 32; suffix = "LSB"; break;
11263 case BFD_RELOC_IA64_DIR64MSB: width = 64; suffix = "MSB"; break;
11264 case BFD_RELOC_IA64_DIR64LSB: width = 64; suffix = "LSB"; break;
11265 case BFD_RELOC_UNUSED: width = 13; break;
11266 case BFD_RELOC_IA64_IMM14: width = 14; break;
11267 case BFD_RELOC_IA64_IMM22: width = 22; break;
11268 case BFD_RELOC_IA64_IMM64: width = 64; suffix = "I"; break;
11269 default: abort ();
11270 }
11271
11272 /* This should be an error, but since previously there wasn't any
11273 diagnostic here, dont't make it fail because of this for now. */
11274 as_warn ("Cannot express %s%d%s relocation", type, width, suffix);
11275 return r_type;
11276 }
11277 }
11278
11279 /* Here is where generate the appropriate reloc for pseudo relocation
11280 functions. */
11281 void
11282 ia64_validate_fix (fix)
11283 fixS *fix;
11284 {
11285 switch (fix->fx_r_type)
11286 {
11287 case BFD_RELOC_IA64_FPTR64I:
11288 case BFD_RELOC_IA64_FPTR32MSB:
11289 case BFD_RELOC_IA64_FPTR64LSB:
11290 case BFD_RELOC_IA64_LTOFF_FPTR22:
11291 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11292 if (fix->fx_offset != 0)
11293 as_bad_where (fix->fx_file, fix->fx_line,
11294 "No addend allowed in @fptr() relocation");
11295 break;
11296 default:
11297 break;
11298 }
11299 }
11300
11301 static void
11302 fix_insn (fix, odesc, value)
11303 fixS *fix;
11304 const struct ia64_operand *odesc;
11305 valueT value;
11306 {
11307 bfd_vma insn[3], t0, t1, control_bits;
11308 const char *err;
11309 char *fixpos;
11310 long slot;
11311
11312 slot = fix->fx_where & 0x3;
11313 fixpos = fix->fx_frag->fr_literal + (fix->fx_where - slot);
11314
11315 /* Bundles are always in little-endian byte order */
11316 t0 = bfd_getl64 (fixpos);
11317 t1 = bfd_getl64 (fixpos + 8);
11318 control_bits = t0 & 0x1f;
11319 insn[0] = (t0 >> 5) & 0x1ffffffffffLL;
11320 insn[1] = ((t0 >> 46) & 0x3ffff) | ((t1 & 0x7fffff) << 18);
11321 insn[2] = (t1 >> 23) & 0x1ffffffffffLL;
11322
11323 err = NULL;
11324 if (odesc - elf64_ia64_operands == IA64_OPND_IMMU64)
11325 {
11326 insn[1] = (value >> 22) & 0x1ffffffffffLL;
11327 insn[2] |= (((value & 0x7f) << 13)
11328 | (((value >> 7) & 0x1ff) << 27)
11329 | (((value >> 16) & 0x1f) << 22)
11330 | (((value >> 21) & 0x1) << 21)
11331 | (((value >> 63) & 0x1) << 36));
11332 }
11333 else if (odesc - elf64_ia64_operands == IA64_OPND_IMMU62)
11334 {
11335 if (value & ~0x3fffffffffffffffULL)
11336 err = "integer operand out of range";
11337 insn[1] = (value >> 21) & 0x1ffffffffffLL;
11338 insn[2] |= (((value & 0xfffff) << 6) | (((value >> 20) & 0x1) << 36));
11339 }
11340 else if (odesc - elf64_ia64_operands == IA64_OPND_TGT64)
11341 {
11342 value >>= 4;
11343 insn[1] = ((value >> 20) & 0x7fffffffffLL) << 2;
11344 insn[2] |= ((((value >> 59) & 0x1) << 36)
11345 | (((value >> 0) & 0xfffff) << 13));
11346 }
11347 else
11348 err = (*odesc->insert) (odesc, value, insn + slot);
11349
11350 if (err)
11351 as_bad_where (fix->fx_file, fix->fx_line, err);
11352
11353 t0 = control_bits | (insn[0] << 5) | (insn[1] << 46);
11354 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
11355 number_to_chars_littleendian (fixpos + 0, t0, 8);
11356 number_to_chars_littleendian (fixpos + 8, t1, 8);
11357 }
11358
11359 /* Attempt to simplify or even eliminate a fixup. The return value is
11360 ignored; perhaps it was once meaningful, but now it is historical.
11361 To indicate that a fixup has been eliminated, set FIXP->FX_DONE.
11362
11363 If fixp->fx_addsy is non-NULL, we'll have to generate a reloc entry
11364 (if possible). */
11365
11366 void
11367 md_apply_fix (fix, valP, seg)
11368 fixS *fix;
11369 valueT *valP;
11370 segT seg ATTRIBUTE_UNUSED;
11371 {
11372 char *fixpos;
11373 valueT value = *valP;
11374
11375 fixpos = fix->fx_frag->fr_literal + fix->fx_where;
11376
11377 if (fix->fx_pcrel)
11378 {
11379 switch (fix->fx_r_type)
11380 {
11381 case BFD_RELOC_IA64_PCREL21B: break;
11382 case BFD_RELOC_IA64_PCREL21BI: break;
11383 case BFD_RELOC_IA64_PCREL21F: break;
11384 case BFD_RELOC_IA64_PCREL21M: break;
11385 case BFD_RELOC_IA64_PCREL60B: break;
11386 case BFD_RELOC_IA64_PCREL22: break;
11387 case BFD_RELOC_IA64_PCREL64I: break;
11388 case BFD_RELOC_IA64_PCREL32MSB: break;
11389 case BFD_RELOC_IA64_PCREL32LSB: break;
11390 case BFD_RELOC_IA64_PCREL64MSB: break;
11391 case BFD_RELOC_IA64_PCREL64LSB: break;
11392 default:
11393 fix->fx_r_type = ia64_gen_real_reloc_type (pseudo_func[FUNC_PC_RELATIVE].u.sym,
11394 fix->fx_r_type);
11395 break;
11396 }
11397 }
11398 if (fix->fx_addsy)
11399 {
11400 switch (fix->fx_r_type)
11401 {
11402 case BFD_RELOC_UNUSED:
11403 /* This must be a TAG13 or TAG13b operand. There are no external
11404 relocs defined for them, so we must give an error. */
11405 as_bad_where (fix->fx_file, fix->fx_line,
11406 "%s must have a constant value",
11407 elf64_ia64_operands[fix->tc_fix_data.opnd].desc);
11408 fix->fx_done = 1;
11409 return;
11410
11411 case BFD_RELOC_IA64_TPREL14:
11412 case BFD_RELOC_IA64_TPREL22:
11413 case BFD_RELOC_IA64_TPREL64I:
11414 case BFD_RELOC_IA64_LTOFF_TPREL22:
11415 case BFD_RELOC_IA64_LTOFF_DTPMOD22:
11416 case BFD_RELOC_IA64_DTPREL14:
11417 case BFD_RELOC_IA64_DTPREL22:
11418 case BFD_RELOC_IA64_DTPREL64I:
11419 case BFD_RELOC_IA64_LTOFF_DTPREL22:
11420 S_SET_THREAD_LOCAL (fix->fx_addsy);
11421 break;
11422
11423 default:
11424 break;
11425 }
11426 }
11427 else if (fix->tc_fix_data.opnd == IA64_OPND_NIL)
11428 {
11429 if (fix->tc_fix_data.bigendian)
11430 number_to_chars_bigendian (fixpos, value, fix->fx_size);
11431 else
11432 number_to_chars_littleendian (fixpos, value, fix->fx_size);
11433 fix->fx_done = 1;
11434 }
11435 else
11436 {
11437 fix_insn (fix, elf64_ia64_operands + fix->tc_fix_data.opnd, value);
11438 fix->fx_done = 1;
11439 }
11440 }
11441
11442 /* Generate the BFD reloc to be stuck in the object file from the
11443 fixup used internally in the assembler. */
11444
11445 arelent *
11446 tc_gen_reloc (sec, fixp)
11447 asection *sec ATTRIBUTE_UNUSED;
11448 fixS *fixp;
11449 {
11450 arelent *reloc;
11451
11452 reloc = xmalloc (sizeof (*reloc));
11453 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
11454 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11455 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
11456 reloc->addend = fixp->fx_offset;
11457 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
11458
11459 if (!reloc->howto)
11460 {
11461 as_bad_where (fixp->fx_file, fixp->fx_line,
11462 "Cannot represent %s relocation in object file",
11463 bfd_get_reloc_code_name (fixp->fx_r_type));
11464 }
11465 return reloc;
11466 }
11467
11468 /* Turn a string in input_line_pointer into a floating point constant
11469 of type TYPE, and store the appropriate bytes in *LIT. The number
11470 of LITTLENUMS emitted is stored in *SIZE. An error message is
11471 returned, or NULL on OK. */
11472
11473 #define MAX_LITTLENUMS 5
11474
11475 char *
11476 md_atof (type, lit, size)
11477 int type;
11478 char *lit;
11479 int *size;
11480 {
11481 LITTLENUM_TYPE words[MAX_LITTLENUMS];
11482 char *t;
11483 int prec;
11484
11485 switch (type)
11486 {
11487 /* IEEE floats */
11488 case 'f':
11489 case 'F':
11490 case 's':
11491 case 'S':
11492 prec = 2;
11493 break;
11494
11495 case 'd':
11496 case 'D':
11497 case 'r':
11498 case 'R':
11499 prec = 4;
11500 break;
11501
11502 case 'x':
11503 case 'X':
11504 case 'p':
11505 case 'P':
11506 prec = 5;
11507 break;
11508
11509 default:
11510 *size = 0;
11511 return "Bad call to MD_ATOF()";
11512 }
11513 t = atof_ieee (input_line_pointer, type, words);
11514 if (t)
11515 input_line_pointer = t;
11516
11517 (*ia64_float_to_chars) (lit, words, prec);
11518
11519 if (type == 'X')
11520 {
11521 /* It is 10 byte floating point with 6 byte padding. */
11522 memset (&lit [10], 0, 6);
11523 *size = 8 * sizeof (LITTLENUM_TYPE);
11524 }
11525 else
11526 *size = prec * sizeof (LITTLENUM_TYPE);
11527
11528 return 0;
11529 }
11530
11531 /* Handle ia64 specific semantics of the align directive. */
11532
11533 void
11534 ia64_md_do_align (n, fill, len, max)
11535 int n ATTRIBUTE_UNUSED;
11536 const char *fill ATTRIBUTE_UNUSED;
11537 int len ATTRIBUTE_UNUSED;
11538 int max ATTRIBUTE_UNUSED;
11539 {
11540 if (subseg_text_p (now_seg))
11541 ia64_flush_insns ();
11542 }
11543
11544 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
11545 of an rs_align_code fragment. */
11546
11547 void
11548 ia64_handle_align (fragp)
11549 fragS *fragp;
11550 {
11551 int bytes;
11552 char *p;
11553 const unsigned char *nop;
11554
11555 if (fragp->fr_type != rs_align_code)
11556 return;
11557
11558 /* Check if this frag has to end with a stop bit. */
11559 nop = fragp->tc_frag_data ? le_nop_stop : le_nop;
11560
11561 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
11562 p = fragp->fr_literal + fragp->fr_fix;
11563
11564 /* If no paddings are needed, we check if we need a stop bit. */
11565 if (!bytes && fragp->tc_frag_data)
11566 {
11567 if (fragp->fr_fix < 16)
11568 #if 1
11569 /* FIXME: It won't work with
11570 .align 16
11571 alloc r32=ar.pfs,1,2,4,0
11572 */
11573 ;
11574 #else
11575 as_bad_where (fragp->fr_file, fragp->fr_line,
11576 _("Can't add stop bit to mark end of instruction group"));
11577 #endif
11578 else
11579 /* Bundles are always in little-endian byte order. Make sure
11580 the previous bundle has the stop bit. */
11581 *(p - 16) |= 1;
11582 }
11583
11584 /* Make sure we are on a 16-byte boundary, in case someone has been
11585 putting data into a text section. */
11586 if (bytes & 15)
11587 {
11588 int fix = bytes & 15;
11589 memset (p, 0, fix);
11590 p += fix;
11591 bytes -= fix;
11592 fragp->fr_fix += fix;
11593 }
11594
11595 /* Instruction bundles are always little-endian. */
11596 memcpy (p, nop, 16);
11597 fragp->fr_var = 16;
11598 }
11599
11600 static void
11601 ia64_float_to_chars_bigendian (char *lit, LITTLENUM_TYPE *words,
11602 int prec)
11603 {
11604 while (prec--)
11605 {
11606 number_to_chars_bigendian (lit, (long) (*words++),
11607 sizeof (LITTLENUM_TYPE));
11608 lit += sizeof (LITTLENUM_TYPE);
11609 }
11610 }
11611
11612 static void
11613 ia64_float_to_chars_littleendian (char *lit, LITTLENUM_TYPE *words,
11614 int prec)
11615 {
11616 while (prec--)
11617 {
11618 number_to_chars_littleendian (lit, (long) (words[prec]),
11619 sizeof (LITTLENUM_TYPE));
11620 lit += sizeof (LITTLENUM_TYPE);
11621 }
11622 }
11623
11624 void
11625 ia64_elf_section_change_hook (void)
11626 {
11627 if (elf_section_type (now_seg) == SHT_IA_64_UNWIND
11628 && elf_linked_to_section (now_seg) == NULL)
11629 elf_linked_to_section (now_seg) = text_section;
11630 dot_byteorder (-1);
11631 }
11632
11633 /* Check if a label should be made global. */
11634 void
11635 ia64_check_label (symbolS *label)
11636 {
11637 if (*input_line_pointer == ':')
11638 {
11639 S_SET_EXTERNAL (label);
11640 input_line_pointer++;
11641 }
11642 }
11643
11644 /* Used to remember where .alias and .secalias directives are seen. We
11645 will rename symbol and section names when we are about to output
11646 the relocatable file. */
11647 struct alias
11648 {
11649 char *file; /* The file where the directive is seen. */
11650 unsigned int line; /* The line number the directive is at. */
11651 const char *name; /* The orignale name of the symbol. */
11652 };
11653
11654 /* Called for .alias and .secalias directives. If SECTION is 1, it is
11655 .secalias. Otherwise, it is .alias. */
11656 static void
11657 dot_alias (int section)
11658 {
11659 char *name, *alias;
11660 char delim;
11661 char *end_name;
11662 int len;
11663 const char *error_string;
11664 struct alias *h;
11665 const char *a;
11666 struct hash_control *ahash, *nhash;
11667 const char *kind;
11668
11669 name = input_line_pointer;
11670 delim = get_symbol_end ();
11671 end_name = input_line_pointer;
11672 *end_name = delim;
11673
11674 if (name == end_name)
11675 {
11676 as_bad (_("expected symbol name"));
11677 ignore_rest_of_line ();
11678 return;
11679 }
11680
11681 SKIP_WHITESPACE ();
11682
11683 if (*input_line_pointer != ',')
11684 {
11685 *end_name = 0;
11686 as_bad (_("expected comma after \"%s\""), name);
11687 *end_name = delim;
11688 ignore_rest_of_line ();
11689 return;
11690 }
11691
11692 input_line_pointer++;
11693 *end_name = 0;
11694 ia64_canonicalize_symbol_name (name);
11695
11696 /* We call demand_copy_C_string to check if alias string is valid.
11697 There should be a closing `"' and no `\0' in the string. */
11698 alias = demand_copy_C_string (&len);
11699 if (alias == NULL)
11700 {
11701 ignore_rest_of_line ();
11702 return;
11703 }
11704
11705 /* Make a copy of name string. */
11706 len = strlen (name) + 1;
11707 obstack_grow (&notes, name, len);
11708 name = obstack_finish (&notes);
11709
11710 if (section)
11711 {
11712 kind = "section";
11713 ahash = secalias_hash;
11714 nhash = secalias_name_hash;
11715 }
11716 else
11717 {
11718 kind = "symbol";
11719 ahash = alias_hash;
11720 nhash = alias_name_hash;
11721 }
11722
11723 /* Check if alias has been used before. */
11724 h = (struct alias *) hash_find (ahash, alias);
11725 if (h)
11726 {
11727 if (strcmp (h->name, name))
11728 as_bad (_("`%s' is already the alias of %s `%s'"),
11729 alias, kind, h->name);
11730 goto out;
11731 }
11732
11733 /* Check if name already has an alias. */
11734 a = (const char *) hash_find (nhash, name);
11735 if (a)
11736 {
11737 if (strcmp (a, alias))
11738 as_bad (_("%s `%s' already has an alias `%s'"), kind, name, a);
11739 goto out;
11740 }
11741
11742 h = (struct alias *) xmalloc (sizeof (struct alias));
11743 as_where (&h->file, &h->line);
11744 h->name = name;
11745
11746 error_string = hash_jam (ahash, alias, (PTR) h);
11747 if (error_string)
11748 {
11749 as_fatal (_("inserting \"%s\" into %s alias hash table failed: %s"),
11750 alias, kind, error_string);
11751 goto out;
11752 }
11753
11754 error_string = hash_jam (nhash, name, (PTR) alias);
11755 if (error_string)
11756 {
11757 as_fatal (_("inserting \"%s\" into %s name hash table failed: %s"),
11758 alias, kind, error_string);
11759 out:
11760 obstack_free (&notes, name);
11761 obstack_free (&notes, alias);
11762 }
11763
11764 demand_empty_rest_of_line ();
11765 }
11766
11767 /* It renames the original symbol name to its alias. */
11768 static void
11769 do_alias (const char *alias, PTR value)
11770 {
11771 struct alias *h = (struct alias *) value;
11772 symbolS *sym = symbol_find (h->name);
11773
11774 if (sym == NULL)
11775 as_warn_where (h->file, h->line,
11776 _("symbol `%s' aliased to `%s' is not used"),
11777 h->name, alias);
11778 else
11779 S_SET_NAME (sym, (char *) alias);
11780 }
11781
11782 /* Called from write_object_file. */
11783 void
11784 ia64_adjust_symtab (void)
11785 {
11786 hash_traverse (alias_hash, do_alias);
11787 }
11788
11789 /* It renames the original section name to its alias. */
11790 static void
11791 do_secalias (const char *alias, PTR value)
11792 {
11793 struct alias *h = (struct alias *) value;
11794 segT sec = bfd_get_section_by_name (stdoutput, h->name);
11795
11796 if (sec == NULL)
11797 as_warn_where (h->file, h->line,
11798 _("section `%s' aliased to `%s' is not used"),
11799 h->name, alias);
11800 else
11801 sec->name = alias;
11802 }
11803
11804 /* Called from write_object_file. */
11805 void
11806 ia64_frob_file (void)
11807 {
11808 hash_traverse (secalias_hash, do_secalias);
11809 }
This page took 0.301875 seconds and 4 git commands to generate.