gas/
[deliverable/binutils-gdb.git] / gas / config / tc-ia64.c
1 /* tc-ia64.c -- Assembler for the HP/Intel IA-64 architecture.
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street - Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 /*
24 TODO:
25
26 - optional operands
27 - directives:
28 .eb
29 .estate
30 .lb
31 .popsection
32 .previous
33 .psr
34 .pushsection
35 - labels are wrong if automatic alignment is introduced
36 (e.g., checkout the second real10 definition in test-data.s)
37 - DV-related stuff:
38 <reg>.safe_across_calls and any other DV-related directives I don't
39 have documentation for.
40 verify mod-sched-brs reads/writes are checked/marked (and other
41 notes)
42
43 */
44
45 #include "as.h"
46 #include "safe-ctype.h"
47 #include "dwarf2dbg.h"
48 #include "subsegs.h"
49
50 #include "opcode/ia64.h"
51
52 #include "elf/ia64.h"
53
54 #ifdef HAVE_LIMITS_H
55 #include <limits.h>
56 #endif
57
58 #define NELEMS(a) ((int) (sizeof (a)/sizeof ((a)[0])))
59
60 /* Some systems define MIN in, e.g., param.h. */
61 #undef MIN
62 #define MIN(a,b) ((a) < (b) ? (a) : (b))
63
64 #define NUM_SLOTS 4
65 #define PREV_SLOT md.slot[(md.curr_slot + NUM_SLOTS - 1) % NUM_SLOTS]
66 #define CURR_SLOT md.slot[md.curr_slot]
67
68 #define O_pseudo_fixup (O_max + 1)
69
70 enum special_section
71 {
72 /* IA-64 ABI section pseudo-ops. */
73 SPECIAL_SECTION_BSS = 0,
74 SPECIAL_SECTION_SBSS,
75 SPECIAL_SECTION_SDATA,
76 SPECIAL_SECTION_RODATA,
77 SPECIAL_SECTION_COMMENT,
78 SPECIAL_SECTION_UNWIND,
79 SPECIAL_SECTION_UNWIND_INFO,
80 /* HPUX specific section pseudo-ops. */
81 SPECIAL_SECTION_INIT_ARRAY,
82 SPECIAL_SECTION_FINI_ARRAY,
83 };
84
85 enum reloc_func
86 {
87 FUNC_DTP_MODULE,
88 FUNC_DTP_RELATIVE,
89 FUNC_FPTR_RELATIVE,
90 FUNC_GP_RELATIVE,
91 FUNC_LT_RELATIVE,
92 FUNC_LT_RELATIVE_X,
93 FUNC_PC_RELATIVE,
94 FUNC_PLT_RELATIVE,
95 FUNC_SEC_RELATIVE,
96 FUNC_SEG_RELATIVE,
97 FUNC_TP_RELATIVE,
98 FUNC_LTV_RELATIVE,
99 FUNC_LT_FPTR_RELATIVE,
100 FUNC_LT_DTP_MODULE,
101 FUNC_LT_DTP_RELATIVE,
102 FUNC_LT_TP_RELATIVE,
103 FUNC_IPLT_RELOC,
104 };
105
106 enum reg_symbol
107 {
108 REG_GR = 0,
109 REG_FR = (REG_GR + 128),
110 REG_AR = (REG_FR + 128),
111 REG_CR = (REG_AR + 128),
112 REG_P = (REG_CR + 128),
113 REG_BR = (REG_P + 64),
114 REG_IP = (REG_BR + 8),
115 REG_CFM,
116 REG_PR,
117 REG_PR_ROT,
118 REG_PSR,
119 REG_PSR_L,
120 REG_PSR_UM,
121 /* The following are pseudo-registers for use by gas only. */
122 IND_CPUID,
123 IND_DBR,
124 IND_DTR,
125 IND_ITR,
126 IND_IBR,
127 IND_MEM,
128 IND_MSR,
129 IND_PKR,
130 IND_PMC,
131 IND_PMD,
132 IND_RR,
133 /* The following pseudo-registers are used for unwind directives only: */
134 REG_PSP,
135 REG_PRIUNAT,
136 REG_NUM
137 };
138
139 enum dynreg_type
140 {
141 DYNREG_GR = 0, /* dynamic general purpose register */
142 DYNREG_FR, /* dynamic floating point register */
143 DYNREG_PR, /* dynamic predicate register */
144 DYNREG_NUM_TYPES
145 };
146
147 enum operand_match_result
148 {
149 OPERAND_MATCH,
150 OPERAND_OUT_OF_RANGE,
151 OPERAND_MISMATCH
152 };
153
154 /* On the ia64, we can't know the address of a text label until the
155 instructions are packed into a bundle. To handle this, we keep
156 track of the list of labels that appear in front of each
157 instruction. */
158 struct label_fix
159 {
160 struct label_fix *next;
161 struct symbol *sym;
162 bfd_boolean dw2_mark_labels;
163 };
164
165 /* This is the endianness of the current section. */
166 extern int target_big_endian;
167
168 /* This is the default endianness. */
169 static int default_big_endian = TARGET_BYTES_BIG_ENDIAN;
170
171 void (*ia64_number_to_chars) PARAMS ((char *, valueT, int));
172
173 static void ia64_float_to_chars_bigendian
174 PARAMS ((char *, LITTLENUM_TYPE *, int));
175 static void ia64_float_to_chars_littleendian
176 PARAMS ((char *, LITTLENUM_TYPE *, int));
177 static void (*ia64_float_to_chars)
178 PARAMS ((char *, LITTLENUM_TYPE *, int));
179
180 static struct hash_control *alias_hash;
181 static struct hash_control *alias_name_hash;
182 static struct hash_control *secalias_hash;
183 static struct hash_control *secalias_name_hash;
184
185 /* List of chars besides those in app.c:symbol_chars that can start an
186 operand. Used to prevent the scrubber eating vital white-space. */
187 const char ia64_symbol_chars[] = "@?";
188
189 /* Characters which always start a comment. */
190 const char comment_chars[] = "";
191
192 /* Characters which start a comment at the beginning of a line. */
193 const char line_comment_chars[] = "#";
194
195 /* Characters which may be used to separate multiple commands on a
196 single line. */
197 const char line_separator_chars[] = ";{}";
198
199 /* Characters which are used to indicate an exponent in a floating
200 point number. */
201 const char EXP_CHARS[] = "eE";
202
203 /* Characters which mean that a number is a floating point constant,
204 as in 0d1.0. */
205 const char FLT_CHARS[] = "rRsSfFdDxXpP";
206
207 /* ia64-specific option processing: */
208
209 const char *md_shortopts = "m:N:x::";
210
211 struct option md_longopts[] =
212 {
213 #define OPTION_MCONSTANT_GP (OPTION_MD_BASE + 1)
214 {"mconstant-gp", no_argument, NULL, OPTION_MCONSTANT_GP},
215 #define OPTION_MAUTO_PIC (OPTION_MD_BASE + 2)
216 {"mauto-pic", no_argument, NULL, OPTION_MAUTO_PIC}
217 };
218
219 size_t md_longopts_size = sizeof (md_longopts);
220
221 static struct
222 {
223 struct hash_control *pseudo_hash; /* pseudo opcode hash table */
224 struct hash_control *reg_hash; /* register name hash table */
225 struct hash_control *dynreg_hash; /* dynamic register hash table */
226 struct hash_control *const_hash; /* constant hash table */
227 struct hash_control *entry_hash; /* code entry hint hash table */
228
229 symbolS *regsym[REG_NUM];
230
231 /* If X_op is != O_absent, the registername for the instruction's
232 qualifying predicate. If NULL, p0 is assumed for instructions
233 that are predicatable. */
234 expressionS qp;
235
236 /* Optimize for which CPU. */
237 enum
238 {
239 itanium1,
240 itanium2
241 } tune;
242
243 /* What to do when hint.b is used. */
244 enum
245 {
246 hint_b_error,
247 hint_b_warning,
248 hint_b_ok
249 } hint_b;
250
251 unsigned int
252 manual_bundling : 1,
253 debug_dv: 1,
254 detect_dv: 1,
255 explicit_mode : 1, /* which mode we're in */
256 default_explicit_mode : 1, /* which mode is the default */
257 mode_explicitly_set : 1, /* was the current mode explicitly set? */
258 auto_align : 1,
259 keep_pending_output : 1;
260
261 /* What to do when something is wrong with unwind directives. */
262 enum
263 {
264 unwind_check_warning,
265 unwind_check_error
266 } unwind_check;
267
268 /* Each bundle consists of up to three instructions. We keep
269 track of four most recent instructions so we can correctly set
270 the end_of_insn_group for the last instruction in a bundle. */
271 int curr_slot;
272 int num_slots_in_use;
273 struct slot
274 {
275 unsigned int
276 end_of_insn_group : 1,
277 manual_bundling_on : 1,
278 manual_bundling_off : 1,
279 loc_directive_seen : 1;
280 signed char user_template; /* user-selected template, if any */
281 unsigned char qp_regno; /* qualifying predicate */
282 /* This duplicates a good fraction of "struct fix" but we
283 can't use a "struct fix" instead since we can't call
284 fix_new_exp() until we know the address of the instruction. */
285 int num_fixups;
286 struct insn_fix
287 {
288 bfd_reloc_code_real_type code;
289 enum ia64_opnd opnd; /* type of operand in need of fix */
290 unsigned int is_pcrel : 1; /* is operand pc-relative? */
291 expressionS expr; /* the value to be inserted */
292 }
293 fixup[2]; /* at most two fixups per insn */
294 struct ia64_opcode *idesc;
295 struct label_fix *label_fixups;
296 struct label_fix *tag_fixups;
297 struct unw_rec_list *unwind_record; /* Unwind directive. */
298 expressionS opnd[6];
299 char *src_file;
300 unsigned int src_line;
301 struct dwarf2_line_info debug_line;
302 }
303 slot[NUM_SLOTS];
304
305 segT last_text_seg;
306
307 struct dynreg
308 {
309 struct dynreg *next; /* next dynamic register */
310 const char *name;
311 unsigned short base; /* the base register number */
312 unsigned short num_regs; /* # of registers in this set */
313 }
314 *dynreg[DYNREG_NUM_TYPES], in, loc, out, rot;
315
316 flagword flags; /* ELF-header flags */
317
318 struct mem_offset {
319 unsigned hint:1; /* is this hint currently valid? */
320 bfd_vma offset; /* mem.offset offset */
321 bfd_vma base; /* mem.offset base */
322 } mem_offset;
323
324 int path; /* number of alt. entry points seen */
325 const char **entry_labels; /* labels of all alternate paths in
326 the current DV-checking block. */
327 int maxpaths; /* size currently allocated for
328 entry_labels */
329
330 int pointer_size; /* size in bytes of a pointer */
331 int pointer_size_shift; /* shift size of a pointer for alignment */
332 }
333 md;
334
335 /* These are not const, because they are modified to MMI for non-itanium1
336 targets below. */
337 /* MFI bundle of nops. */
338 static unsigned char le_nop[16] =
339 {
340 0x0c, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
341 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
342 };
343 /* MFI bundle of nops with stop-bit. */
344 static unsigned char le_nop_stop[16] =
345 {
346 0x0d, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
347 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
348 };
349
350 /* application registers: */
351
352 #define AR_K0 0
353 #define AR_K7 7
354 #define AR_RSC 16
355 #define AR_BSP 17
356 #define AR_BSPSTORE 18
357 #define AR_RNAT 19
358 #define AR_UNAT 36
359 #define AR_FPSR 40
360 #define AR_ITC 44
361 #define AR_PFS 64
362 #define AR_LC 65
363
364 static const struct
365 {
366 const char *name;
367 int regnum;
368 }
369 ar[] =
370 {
371 {"ar.k0", 0}, {"ar.k1", 1}, {"ar.k2", 2}, {"ar.k3", 3},
372 {"ar.k4", 4}, {"ar.k5", 5}, {"ar.k6", 6}, {"ar.k7", 7},
373 {"ar.rsc", 16}, {"ar.bsp", 17},
374 {"ar.bspstore", 18}, {"ar.rnat", 19},
375 {"ar.fcr", 21}, {"ar.eflag", 24},
376 {"ar.csd", 25}, {"ar.ssd", 26},
377 {"ar.cflg", 27}, {"ar.fsr", 28},
378 {"ar.fir", 29}, {"ar.fdr", 30},
379 {"ar.ccv", 32}, {"ar.unat", 36},
380 {"ar.fpsr", 40}, {"ar.itc", 44},
381 {"ar.pfs", 64}, {"ar.lc", 65},
382 {"ar.ec", 66},
383 };
384
385 #define CR_IPSR 16
386 #define CR_ISR 17
387 #define CR_IIP 19
388 #define CR_IFA 20
389 #define CR_ITIR 21
390 #define CR_IIPA 22
391 #define CR_IFS 23
392 #define CR_IIM 24
393 #define CR_IHA 25
394 #define CR_IVR 65
395 #define CR_TPR 66
396 #define CR_EOI 67
397 #define CR_IRR0 68
398 #define CR_IRR3 71
399 #define CR_LRR0 80
400 #define CR_LRR1 81
401
402 /* control registers: */
403 static const struct
404 {
405 const char *name;
406 int regnum;
407 }
408 cr[] =
409 {
410 {"cr.dcr", 0},
411 {"cr.itm", 1},
412 {"cr.iva", 2},
413 {"cr.pta", 8},
414 {"cr.gpta", 9},
415 {"cr.ipsr", 16},
416 {"cr.isr", 17},
417 {"cr.iip", 19},
418 {"cr.ifa", 20},
419 {"cr.itir", 21},
420 {"cr.iipa", 22},
421 {"cr.ifs", 23},
422 {"cr.iim", 24},
423 {"cr.iha", 25},
424 {"cr.lid", 64},
425 {"cr.ivr", 65},
426 {"cr.tpr", 66},
427 {"cr.eoi", 67},
428 {"cr.irr0", 68},
429 {"cr.irr1", 69},
430 {"cr.irr2", 70},
431 {"cr.irr3", 71},
432 {"cr.itv", 72},
433 {"cr.pmv", 73},
434 {"cr.cmcv", 74},
435 {"cr.lrr0", 80},
436 {"cr.lrr1", 81}
437 };
438
439 #define PSR_MFL 4
440 #define PSR_IC 13
441 #define PSR_DFL 18
442 #define PSR_CPL 32
443
444 static const struct const_desc
445 {
446 const char *name;
447 valueT value;
448 }
449 const_bits[] =
450 {
451 /* PSR constant masks: */
452
453 /* 0: reserved */
454 {"psr.be", ((valueT) 1) << 1},
455 {"psr.up", ((valueT) 1) << 2},
456 {"psr.ac", ((valueT) 1) << 3},
457 {"psr.mfl", ((valueT) 1) << 4},
458 {"psr.mfh", ((valueT) 1) << 5},
459 /* 6-12: reserved */
460 {"psr.ic", ((valueT) 1) << 13},
461 {"psr.i", ((valueT) 1) << 14},
462 {"psr.pk", ((valueT) 1) << 15},
463 /* 16: reserved */
464 {"psr.dt", ((valueT) 1) << 17},
465 {"psr.dfl", ((valueT) 1) << 18},
466 {"psr.dfh", ((valueT) 1) << 19},
467 {"psr.sp", ((valueT) 1) << 20},
468 {"psr.pp", ((valueT) 1) << 21},
469 {"psr.di", ((valueT) 1) << 22},
470 {"psr.si", ((valueT) 1) << 23},
471 {"psr.db", ((valueT) 1) << 24},
472 {"psr.lp", ((valueT) 1) << 25},
473 {"psr.tb", ((valueT) 1) << 26},
474 {"psr.rt", ((valueT) 1) << 27},
475 /* 28-31: reserved */
476 /* 32-33: cpl (current privilege level) */
477 {"psr.is", ((valueT) 1) << 34},
478 {"psr.mc", ((valueT) 1) << 35},
479 {"psr.it", ((valueT) 1) << 36},
480 {"psr.id", ((valueT) 1) << 37},
481 {"psr.da", ((valueT) 1) << 38},
482 {"psr.dd", ((valueT) 1) << 39},
483 {"psr.ss", ((valueT) 1) << 40},
484 /* 41-42: ri (restart instruction) */
485 {"psr.ed", ((valueT) 1) << 43},
486 {"psr.bn", ((valueT) 1) << 44},
487 };
488
489 /* indirect register-sets/memory: */
490
491 static const struct
492 {
493 const char *name;
494 int regnum;
495 }
496 indirect_reg[] =
497 {
498 { "CPUID", IND_CPUID },
499 { "cpuid", IND_CPUID },
500 { "dbr", IND_DBR },
501 { "dtr", IND_DTR },
502 { "itr", IND_ITR },
503 { "ibr", IND_IBR },
504 { "msr", IND_MSR },
505 { "pkr", IND_PKR },
506 { "pmc", IND_PMC },
507 { "pmd", IND_PMD },
508 { "rr", IND_RR },
509 };
510
511 /* Pseudo functions used to indicate relocation types (these functions
512 start with an at sign (@). */
513 static struct
514 {
515 const char *name;
516 enum pseudo_type
517 {
518 PSEUDO_FUNC_NONE,
519 PSEUDO_FUNC_RELOC,
520 PSEUDO_FUNC_CONST,
521 PSEUDO_FUNC_REG,
522 PSEUDO_FUNC_FLOAT
523 }
524 type;
525 union
526 {
527 unsigned long ival;
528 symbolS *sym;
529 }
530 u;
531 }
532 pseudo_func[] =
533 {
534 /* reloc pseudo functions (these must come first!): */
535 { "dtpmod", PSEUDO_FUNC_RELOC, { 0 } },
536 { "dtprel", PSEUDO_FUNC_RELOC, { 0 } },
537 { "fptr", PSEUDO_FUNC_RELOC, { 0 } },
538 { "gprel", PSEUDO_FUNC_RELOC, { 0 } },
539 { "ltoff", PSEUDO_FUNC_RELOC, { 0 } },
540 { "ltoffx", PSEUDO_FUNC_RELOC, { 0 } },
541 { "pcrel", PSEUDO_FUNC_RELOC, { 0 } },
542 { "pltoff", PSEUDO_FUNC_RELOC, { 0 } },
543 { "secrel", PSEUDO_FUNC_RELOC, { 0 } },
544 { "segrel", PSEUDO_FUNC_RELOC, { 0 } },
545 { "tprel", PSEUDO_FUNC_RELOC, { 0 } },
546 { "ltv", PSEUDO_FUNC_RELOC, { 0 } },
547 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_FPTR_RELATIVE */
548 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_MODULE */
549 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_RELATIVE */
550 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_TP_RELATIVE */
551 { "iplt", PSEUDO_FUNC_RELOC, { 0 } },
552
553 /* mbtype4 constants: */
554 { "alt", PSEUDO_FUNC_CONST, { 0xa } },
555 { "brcst", PSEUDO_FUNC_CONST, { 0x0 } },
556 { "mix", PSEUDO_FUNC_CONST, { 0x8 } },
557 { "rev", PSEUDO_FUNC_CONST, { 0xb } },
558 { "shuf", PSEUDO_FUNC_CONST, { 0x9 } },
559
560 /* fclass constants: */
561 { "nat", PSEUDO_FUNC_CONST, { 0x100 } },
562 { "qnan", PSEUDO_FUNC_CONST, { 0x080 } },
563 { "snan", PSEUDO_FUNC_CONST, { 0x040 } },
564 { "pos", PSEUDO_FUNC_CONST, { 0x001 } },
565 { "neg", PSEUDO_FUNC_CONST, { 0x002 } },
566 { "zero", PSEUDO_FUNC_CONST, { 0x004 } },
567 { "unorm", PSEUDO_FUNC_CONST, { 0x008 } },
568 { "norm", PSEUDO_FUNC_CONST, { 0x010 } },
569 { "inf", PSEUDO_FUNC_CONST, { 0x020 } },
570
571 { "natval", PSEUDO_FUNC_CONST, { 0x100 } }, /* old usage */
572
573 /* hint constants: */
574 { "pause", PSEUDO_FUNC_CONST, { 0x0 } },
575
576 /* unwind-related constants: */
577 { "svr4", PSEUDO_FUNC_CONST, { ELFOSABI_NONE } },
578 { "hpux", PSEUDO_FUNC_CONST, { ELFOSABI_HPUX } },
579 { "nt", PSEUDO_FUNC_CONST, { 2 } }, /* conflicts w/ELFOSABI_NETBSD */
580 { "linux", PSEUDO_FUNC_CONST, { ELFOSABI_LINUX } },
581 { "freebsd", PSEUDO_FUNC_CONST, { ELFOSABI_FREEBSD } },
582 { "openvms", PSEUDO_FUNC_CONST, { ELFOSABI_OPENVMS } },
583 { "nsk", PSEUDO_FUNC_CONST, { ELFOSABI_NSK } },
584
585 /* unwind-related registers: */
586 { "priunat",PSEUDO_FUNC_REG, { REG_PRIUNAT } }
587 };
588
589 /* 41-bit nop opcodes (one per unit): */
590 static const bfd_vma nop[IA64_NUM_UNITS] =
591 {
592 0x0000000000LL, /* NIL => break 0 */
593 0x0008000000LL, /* I-unit nop */
594 0x0008000000LL, /* M-unit nop */
595 0x4000000000LL, /* B-unit nop */
596 0x0008000000LL, /* F-unit nop */
597 0x0000000000LL, /* L-"unit" nop immediate */
598 0x0008000000LL, /* X-unit nop */
599 };
600
601 /* Can't be `const' as it's passed to input routines (which have the
602 habit of setting temporary sentinels. */
603 static char special_section_name[][20] =
604 {
605 {".bss"}, {".sbss"}, {".sdata"}, {".rodata"}, {".comment"},
606 {".IA_64.unwind"}, {".IA_64.unwind_info"},
607 {".init_array"}, {".fini_array"}
608 };
609
610 /* The best template for a particular sequence of up to three
611 instructions: */
612 #define N IA64_NUM_TYPES
613 static unsigned char best_template[N][N][N];
614 #undef N
615
616 /* Resource dependencies currently in effect */
617 static struct rsrc {
618 int depind; /* dependency index */
619 const struct ia64_dependency *dependency; /* actual dependency */
620 unsigned specific:1, /* is this a specific bit/regno? */
621 link_to_qp_branch:1; /* will a branch on the same QP clear it?*/
622 int index; /* specific regno/bit within dependency */
623 int note; /* optional qualifying note (0 if none) */
624 #define STATE_NONE 0
625 #define STATE_STOP 1
626 #define STATE_SRLZ 2
627 int insn_srlz; /* current insn serialization state */
628 int data_srlz; /* current data serialization state */
629 int qp_regno; /* qualifying predicate for this usage */
630 char *file; /* what file marked this dependency */
631 unsigned int line; /* what line marked this dependency */
632 struct mem_offset mem_offset; /* optional memory offset hint */
633 enum { CMP_NONE, CMP_OR, CMP_AND } cmp_type; /* OR or AND compare? */
634 int path; /* corresponding code entry index */
635 } *regdeps = NULL;
636 static int regdepslen = 0;
637 static int regdepstotlen = 0;
638 static const char *dv_mode[] = { "RAW", "WAW", "WAR" };
639 static const char *dv_sem[] = { "none", "implied", "impliedf",
640 "data", "instr", "specific", "stop", "other" };
641 static const char *dv_cmp_type[] = { "none", "OR", "AND" };
642
643 /* Current state of PR mutexation */
644 static struct qpmutex {
645 valueT prmask;
646 int path;
647 } *qp_mutexes = NULL; /* QP mutex bitmasks */
648 static int qp_mutexeslen = 0;
649 static int qp_mutexestotlen = 0;
650 static valueT qp_safe_across_calls = 0;
651
652 /* Current state of PR implications */
653 static struct qp_imply {
654 unsigned p1:6;
655 unsigned p2:6;
656 unsigned p2_branched:1;
657 int path;
658 } *qp_implies = NULL;
659 static int qp_implieslen = 0;
660 static int qp_impliestotlen = 0;
661
662 /* Keep track of static GR values so that indirect register usage can
663 sometimes be tracked. */
664 static struct gr {
665 unsigned known:1;
666 int path;
667 valueT value;
668 } gr_values[128] = {
669 {
670 1,
671 #ifdef INT_MAX
672 INT_MAX,
673 #else
674 (((1 << (8 * sizeof(gr_values->path) - 2)) - 1) << 1) + 1,
675 #endif
676 0
677 }
678 };
679
680 /* Remember the alignment frag. */
681 static fragS *align_frag;
682
683 /* These are the routines required to output the various types of
684 unwind records. */
685
686 /* A slot_number is a frag address plus the slot index (0-2). We use the
687 frag address here so that if there is a section switch in the middle of
688 a function, then instructions emitted to a different section are not
689 counted. Since there may be more than one frag for a function, this
690 means we also need to keep track of which frag this address belongs to
691 so we can compute inter-frag distances. This also nicely solves the
692 problem with nops emitted for align directives, which can't easily be
693 counted, but can easily be derived from frag sizes. */
694
695 typedef struct unw_rec_list {
696 unwind_record r;
697 unsigned long slot_number;
698 fragS *slot_frag;
699 struct unw_rec_list *next;
700 } unw_rec_list;
701
702 #define SLOT_NUM_NOT_SET (unsigned)-1
703
704 /* Linked list of saved prologue counts. A very poor
705 implementation of a map from label numbers to prologue counts. */
706 typedef struct label_prologue_count
707 {
708 struct label_prologue_count *next;
709 unsigned long label_number;
710 unsigned int prologue_count;
711 } label_prologue_count;
712
713 typedef struct proc_pending
714 {
715 symbolS *sym;
716 struct proc_pending *next;
717 } proc_pending;
718
719 static struct
720 {
721 /* Maintain a list of unwind entries for the current function. */
722 unw_rec_list *list;
723 unw_rec_list *tail;
724
725 /* Any unwind entires that should be attached to the current slot
726 that an insn is being constructed for. */
727 unw_rec_list *current_entry;
728
729 /* These are used to create the unwind table entry for this function. */
730 proc_pending proc_pending;
731 symbolS *info; /* pointer to unwind info */
732 symbolS *personality_routine;
733 segT saved_text_seg;
734 subsegT saved_text_subseg;
735 unsigned int force_unwind_entry : 1; /* force generation of unwind entry? */
736
737 /* TRUE if processing unwind directives in a prologue region. */
738 unsigned int prologue : 1;
739 unsigned int prologue_mask : 4;
740 unsigned int prologue_gr : 7;
741 unsigned int body : 1;
742 unsigned int insn : 1;
743 unsigned int prologue_count; /* number of .prologues seen so far */
744 /* Prologue counts at previous .label_state directives. */
745 struct label_prologue_count * saved_prologue_counts;
746
747 /* List of split up .save-s. */
748 unw_p_record *pending_saves;
749 } unwind;
750
751 /* The input value is a negated offset from psp, and specifies an address
752 psp - offset. The encoded value is psp + 16 - (4 * offset). Thus we
753 must add 16 and divide by 4 to get the encoded value. */
754
755 #define ENCODED_PSP_OFFSET(OFFSET) (((OFFSET) + 16) / 4)
756
757 typedef void (*vbyte_func) PARAMS ((int, char *, char *));
758
759 /* Forward declarations: */
760 static void set_section PARAMS ((char *name));
761 static unsigned int set_regstack PARAMS ((unsigned int, unsigned int,
762 unsigned int, unsigned int));
763 static void dot_align (int);
764 static void dot_radix PARAMS ((int));
765 static void dot_special_section PARAMS ((int));
766 static void dot_proc PARAMS ((int));
767 static void dot_fframe PARAMS ((int));
768 static void dot_vframe PARAMS ((int));
769 static void dot_vframesp PARAMS ((int));
770 static void dot_save PARAMS ((int));
771 static void dot_restore PARAMS ((int));
772 static void dot_restorereg PARAMS ((int));
773 static void dot_handlerdata PARAMS ((int));
774 static void dot_unwentry PARAMS ((int));
775 static void dot_altrp PARAMS ((int));
776 static void dot_savemem PARAMS ((int));
777 static void dot_saveg PARAMS ((int));
778 static void dot_savef PARAMS ((int));
779 static void dot_saveb PARAMS ((int));
780 static void dot_savegf PARAMS ((int));
781 static void dot_spill PARAMS ((int));
782 static void dot_spillreg PARAMS ((int));
783 static void dot_spillmem PARAMS ((int));
784 static void dot_label_state PARAMS ((int));
785 static void dot_copy_state PARAMS ((int));
786 static void dot_unwabi PARAMS ((int));
787 static void dot_personality PARAMS ((int));
788 static void dot_body PARAMS ((int));
789 static void dot_prologue PARAMS ((int));
790 static void dot_endp PARAMS ((int));
791 static void dot_template PARAMS ((int));
792 static void dot_regstk PARAMS ((int));
793 static void dot_rot PARAMS ((int));
794 static void dot_byteorder PARAMS ((int));
795 static void dot_psr PARAMS ((int));
796 static void dot_alias PARAMS ((int));
797 static void dot_ln PARAMS ((int));
798 static void cross_section PARAMS ((int ref, void (*cons) PARAMS((int)), int ua));
799 static void dot_xdata PARAMS ((int));
800 static void stmt_float_cons PARAMS ((int));
801 static void stmt_cons_ua PARAMS ((int));
802 static void dot_xfloat_cons PARAMS ((int));
803 static void dot_xstringer PARAMS ((int));
804 static void dot_xdata_ua PARAMS ((int));
805 static void dot_xfloat_cons_ua PARAMS ((int));
806 static void print_prmask PARAMS ((valueT mask));
807 static void dot_pred_rel PARAMS ((int));
808 static void dot_reg_val PARAMS ((int));
809 static void dot_serialize PARAMS ((int));
810 static void dot_dv_mode PARAMS ((int));
811 static void dot_entry PARAMS ((int));
812 static void dot_mem_offset PARAMS ((int));
813 static void add_unwind_entry PARAMS((unw_rec_list *, int));
814 static symbolS *declare_register PARAMS ((const char *name, int regnum));
815 static void declare_register_set PARAMS ((const char *, int, int));
816 static unsigned int operand_width PARAMS ((enum ia64_opnd));
817 static enum operand_match_result operand_match PARAMS ((const struct ia64_opcode *idesc,
818 int index,
819 expressionS *e));
820 static int parse_operand PARAMS ((expressionS *, int));
821 static struct ia64_opcode * parse_operands PARAMS ((struct ia64_opcode *));
822 static void build_insn PARAMS ((struct slot *, bfd_vma *));
823 static void emit_one_bundle PARAMS ((void));
824 static void fix_insn PARAMS ((fixS *, const struct ia64_operand *, valueT));
825 static bfd_reloc_code_real_type ia64_gen_real_reloc_type PARAMS ((struct symbol *sym,
826 bfd_reloc_code_real_type r_type));
827 static void insn_group_break PARAMS ((int, int, int));
828 static void mark_resource PARAMS ((struct ia64_opcode *, const struct ia64_dependency *,
829 struct rsrc *, int depind, int path));
830 static void add_qp_mutex PARAMS((valueT mask));
831 static void add_qp_imply PARAMS((int p1, int p2));
832 static void clear_qp_branch_flag PARAMS((valueT mask));
833 static void clear_qp_mutex PARAMS((valueT mask));
834 static void clear_qp_implies PARAMS((valueT p1_mask, valueT p2_mask));
835 static int has_suffix_p PARAMS((const char *, const char *));
836 static void clear_register_values PARAMS ((void));
837 static void print_dependency PARAMS ((const char *action, int depind));
838 static void instruction_serialization PARAMS ((void));
839 static void data_serialization PARAMS ((void));
840 static void remove_marked_resource PARAMS ((struct rsrc *));
841 static int is_conditional_branch PARAMS ((struct ia64_opcode *));
842 static int is_taken_branch PARAMS ((struct ia64_opcode *));
843 static int is_interruption_or_rfi PARAMS ((struct ia64_opcode *));
844 static int depends_on PARAMS ((int, struct ia64_opcode *));
845 static int specify_resource PARAMS ((const struct ia64_dependency *,
846 struct ia64_opcode *, int, struct rsrc [], int, int));
847 static int check_dv PARAMS((struct ia64_opcode *idesc));
848 static void check_dependencies PARAMS((struct ia64_opcode *));
849 static void mark_resources PARAMS((struct ia64_opcode *));
850 static void update_dependencies PARAMS((struct ia64_opcode *));
851 static void note_register_values PARAMS((struct ia64_opcode *));
852 static int qp_mutex PARAMS ((int, int, int));
853 static int resources_match PARAMS ((struct rsrc *, struct ia64_opcode *, int, int, int));
854 static void output_vbyte_mem PARAMS ((int, char *, char *));
855 static void count_output PARAMS ((int, char *, char *));
856 static void output_R1_format PARAMS ((vbyte_func, unw_record_type, int));
857 static void output_R2_format PARAMS ((vbyte_func, int, int, unsigned long));
858 static void output_R3_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
859 static void output_P1_format PARAMS ((vbyte_func, int));
860 static void output_P2_format PARAMS ((vbyte_func, int, int));
861 static void output_P3_format PARAMS ((vbyte_func, unw_record_type, int));
862 static void output_P4_format PARAMS ((vbyte_func, unsigned char *, unsigned long));
863 static void output_P5_format PARAMS ((vbyte_func, int, unsigned long));
864 static void output_P6_format PARAMS ((vbyte_func, unw_record_type, int));
865 static void output_P7_format PARAMS ((vbyte_func, unw_record_type, unsigned long, unsigned long));
866 static void output_P8_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
867 static void output_P9_format PARAMS ((vbyte_func, int, int));
868 static void output_P10_format PARAMS ((vbyte_func, int, int));
869 static void output_B1_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
870 static void output_B2_format PARAMS ((vbyte_func, unsigned long, unsigned long));
871 static void output_B3_format PARAMS ((vbyte_func, unsigned long, unsigned long));
872 static void output_B4_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
873 static char format_ab_reg PARAMS ((int, int));
874 static void output_X1_format PARAMS ((vbyte_func, unw_record_type, int, int, unsigned long,
875 unsigned long));
876 static void output_X2_format PARAMS ((vbyte_func, int, int, int, int, int, unsigned long));
877 static void output_X3_format PARAMS ((vbyte_func, unw_record_type, int, int, int, unsigned long,
878 unsigned long));
879 static void output_X4_format PARAMS ((vbyte_func, int, int, int, int, int, int, unsigned long));
880 static unw_rec_list *output_endp PARAMS ((void));
881 static unw_rec_list *output_prologue PARAMS ((void));
882 static unw_rec_list *output_prologue_gr PARAMS ((unsigned int, unsigned int));
883 static unw_rec_list *output_body PARAMS ((void));
884 static unw_rec_list *output_mem_stack_f PARAMS ((unsigned int));
885 static unw_rec_list *output_mem_stack_v PARAMS ((void));
886 static unw_rec_list *output_psp_gr PARAMS ((unsigned int));
887 static unw_rec_list *output_psp_sprel PARAMS ((unsigned int));
888 static unw_rec_list *output_rp_when PARAMS ((void));
889 static unw_rec_list *output_rp_gr PARAMS ((unsigned int));
890 static unw_rec_list *output_rp_br PARAMS ((unsigned int));
891 static unw_rec_list *output_rp_psprel PARAMS ((unsigned int));
892 static unw_rec_list *output_rp_sprel PARAMS ((unsigned int));
893 static unw_rec_list *output_pfs_when PARAMS ((void));
894 static unw_rec_list *output_pfs_gr PARAMS ((unsigned int));
895 static unw_rec_list *output_pfs_psprel PARAMS ((unsigned int));
896 static unw_rec_list *output_pfs_sprel PARAMS ((unsigned int));
897 static unw_rec_list *output_preds_when PARAMS ((void));
898 static unw_rec_list *output_preds_gr PARAMS ((unsigned int));
899 static unw_rec_list *output_preds_psprel PARAMS ((unsigned int));
900 static unw_rec_list *output_preds_sprel PARAMS ((unsigned int));
901 static unw_rec_list *output_fr_mem PARAMS ((unsigned int));
902 static unw_rec_list *output_frgr_mem PARAMS ((unsigned int, unsigned int));
903 static unw_rec_list *output_gr_gr PARAMS ((unsigned int, unsigned int));
904 static unw_rec_list *output_gr_mem PARAMS ((unsigned int));
905 static unw_rec_list *output_br_mem PARAMS ((unsigned int));
906 static unw_rec_list *output_br_gr PARAMS ((unsigned int, unsigned int));
907 static unw_rec_list *output_spill_base PARAMS ((unsigned int));
908 static unw_rec_list *output_unat_when PARAMS ((void));
909 static unw_rec_list *output_unat_gr PARAMS ((unsigned int));
910 static unw_rec_list *output_unat_psprel PARAMS ((unsigned int));
911 static unw_rec_list *output_unat_sprel PARAMS ((unsigned int));
912 static unw_rec_list *output_lc_when PARAMS ((void));
913 static unw_rec_list *output_lc_gr PARAMS ((unsigned int));
914 static unw_rec_list *output_lc_psprel PARAMS ((unsigned int));
915 static unw_rec_list *output_lc_sprel PARAMS ((unsigned int));
916 static unw_rec_list *output_fpsr_when PARAMS ((void));
917 static unw_rec_list *output_fpsr_gr PARAMS ((unsigned int));
918 static unw_rec_list *output_fpsr_psprel PARAMS ((unsigned int));
919 static unw_rec_list *output_fpsr_sprel PARAMS ((unsigned int));
920 static unw_rec_list *output_priunat_when_gr PARAMS ((void));
921 static unw_rec_list *output_priunat_when_mem PARAMS ((void));
922 static unw_rec_list *output_priunat_gr PARAMS ((unsigned int));
923 static unw_rec_list *output_priunat_psprel PARAMS ((unsigned int));
924 static unw_rec_list *output_priunat_sprel PARAMS ((unsigned int));
925 static unw_rec_list *output_bsp_when PARAMS ((void));
926 static unw_rec_list *output_bsp_gr PARAMS ((unsigned int));
927 static unw_rec_list *output_bsp_psprel PARAMS ((unsigned int));
928 static unw_rec_list *output_bsp_sprel PARAMS ((unsigned int));
929 static unw_rec_list *output_bspstore_when PARAMS ((void));
930 static unw_rec_list *output_bspstore_gr PARAMS ((unsigned int));
931 static unw_rec_list *output_bspstore_psprel PARAMS ((unsigned int));
932 static unw_rec_list *output_bspstore_sprel PARAMS ((unsigned int));
933 static unw_rec_list *output_rnat_when PARAMS ((void));
934 static unw_rec_list *output_rnat_gr PARAMS ((unsigned int));
935 static unw_rec_list *output_rnat_psprel PARAMS ((unsigned int));
936 static unw_rec_list *output_rnat_sprel PARAMS ((unsigned int));
937 static unw_rec_list *output_unwabi PARAMS ((unsigned long, unsigned long));
938 static unw_rec_list *output_epilogue PARAMS ((unsigned long));
939 static unw_rec_list *output_label_state PARAMS ((unsigned long));
940 static unw_rec_list *output_copy_state PARAMS ((unsigned long));
941 static unw_rec_list *output_spill_psprel PARAMS ((unsigned int, unsigned int, unsigned int,
942 unsigned int));
943 static unw_rec_list *output_spill_sprel PARAMS ((unsigned int, unsigned int, unsigned int,
944 unsigned int));
945 static unw_rec_list *output_spill_reg PARAMS ((unsigned int, unsigned int, unsigned int,
946 unsigned int, unsigned int));
947 static void process_one_record PARAMS ((unw_rec_list *, vbyte_func));
948 static void process_unw_records PARAMS ((unw_rec_list *, vbyte_func));
949 static int calc_record_size PARAMS ((unw_rec_list *));
950 static void set_imask PARAMS ((unw_rec_list *, unsigned long, unsigned long, unsigned int));
951 static unsigned long slot_index PARAMS ((unsigned long, fragS *,
952 unsigned long, fragS *,
953 int));
954 static unw_rec_list *optimize_unw_records PARAMS ((unw_rec_list *));
955 static void fixup_unw_records PARAMS ((unw_rec_list *, int));
956 static int parse_predicate_and_operand PARAMS ((expressionS *, unsigned *, const char *));
957 static void convert_expr_to_ab_reg PARAMS ((const expressionS *, unsigned int *, unsigned int *, const char *, int));
958 static void convert_expr_to_xy_reg PARAMS ((const expressionS *, unsigned int *, unsigned int *, const char *, int));
959 static unsigned int get_saved_prologue_count PARAMS ((unsigned long));
960 static void save_prologue_count PARAMS ((unsigned long, unsigned int));
961 static void free_saved_prologue_counts PARAMS ((void));
962
963 /* Determine if application register REGNUM resides only in the integer
964 unit (as opposed to the memory unit). */
965 static int
966 ar_is_only_in_integer_unit (int reg)
967 {
968 reg -= REG_AR;
969 return reg >= 64 && reg <= 111;
970 }
971
972 /* Determine if application register REGNUM resides only in the memory
973 unit (as opposed to the integer unit). */
974 static int
975 ar_is_only_in_memory_unit (int reg)
976 {
977 reg -= REG_AR;
978 return reg >= 0 && reg <= 47;
979 }
980
981 /* Switch to section NAME and create section if necessary. It's
982 rather ugly that we have to manipulate input_line_pointer but I
983 don't see any other way to accomplish the same thing without
984 changing obj-elf.c (which may be the Right Thing, in the end). */
985 static void
986 set_section (name)
987 char *name;
988 {
989 char *saved_input_line_pointer;
990
991 saved_input_line_pointer = input_line_pointer;
992 input_line_pointer = name;
993 obj_elf_section (0);
994 input_line_pointer = saved_input_line_pointer;
995 }
996
997 /* Map 's' to SHF_IA_64_SHORT. */
998
999 int
1000 ia64_elf_section_letter (letter, ptr_msg)
1001 int letter;
1002 char **ptr_msg;
1003 {
1004 if (letter == 's')
1005 return SHF_IA_64_SHORT;
1006 else if (letter == 'o')
1007 return SHF_LINK_ORDER;
1008
1009 *ptr_msg = _("Bad .section directive: want a,o,s,w,x,M,S,G,T in string");
1010 return -1;
1011 }
1012
1013 /* Map SHF_IA_64_SHORT to SEC_SMALL_DATA. */
1014
1015 flagword
1016 ia64_elf_section_flags (flags, attr, type)
1017 flagword flags;
1018 int attr, type ATTRIBUTE_UNUSED;
1019 {
1020 if (attr & SHF_IA_64_SHORT)
1021 flags |= SEC_SMALL_DATA;
1022 return flags;
1023 }
1024
1025 int
1026 ia64_elf_section_type (str, len)
1027 const char *str;
1028 size_t len;
1029 {
1030 #define STREQ(s) ((len == sizeof (s) - 1) && (strncmp (str, s, sizeof (s) - 1) == 0))
1031
1032 if (STREQ (ELF_STRING_ia64_unwind_info))
1033 return SHT_PROGBITS;
1034
1035 if (STREQ (ELF_STRING_ia64_unwind_info_once))
1036 return SHT_PROGBITS;
1037
1038 if (STREQ (ELF_STRING_ia64_unwind))
1039 return SHT_IA_64_UNWIND;
1040
1041 if (STREQ (ELF_STRING_ia64_unwind_once))
1042 return SHT_IA_64_UNWIND;
1043
1044 if (STREQ ("unwind"))
1045 return SHT_IA_64_UNWIND;
1046
1047 return -1;
1048 #undef STREQ
1049 }
1050
1051 static unsigned int
1052 set_regstack (ins, locs, outs, rots)
1053 unsigned int ins, locs, outs, rots;
1054 {
1055 /* Size of frame. */
1056 unsigned int sof;
1057
1058 sof = ins + locs + outs;
1059 if (sof > 96)
1060 {
1061 as_bad ("Size of frame exceeds maximum of 96 registers");
1062 return 0;
1063 }
1064 if (rots > sof)
1065 {
1066 as_warn ("Size of rotating registers exceeds frame size");
1067 return 0;
1068 }
1069 md.in.base = REG_GR + 32;
1070 md.loc.base = md.in.base + ins;
1071 md.out.base = md.loc.base + locs;
1072
1073 md.in.num_regs = ins;
1074 md.loc.num_regs = locs;
1075 md.out.num_regs = outs;
1076 md.rot.num_regs = rots;
1077 return sof;
1078 }
1079
1080 void
1081 ia64_flush_insns ()
1082 {
1083 struct label_fix *lfix;
1084 segT saved_seg;
1085 subsegT saved_subseg;
1086 unw_rec_list *ptr;
1087 bfd_boolean mark;
1088
1089 if (!md.last_text_seg)
1090 return;
1091
1092 saved_seg = now_seg;
1093 saved_subseg = now_subseg;
1094
1095 subseg_set (md.last_text_seg, 0);
1096
1097 while (md.num_slots_in_use > 0)
1098 emit_one_bundle (); /* force out queued instructions */
1099
1100 /* In case there are labels following the last instruction, resolve
1101 those now. */
1102 mark = FALSE;
1103 for (lfix = CURR_SLOT.label_fixups; lfix; lfix = lfix->next)
1104 {
1105 symbol_set_value_now (lfix->sym);
1106 mark |= lfix->dw2_mark_labels;
1107 }
1108 if (mark)
1109 {
1110 dwarf2_where (&CURR_SLOT.debug_line);
1111 CURR_SLOT.debug_line.flags |= DWARF2_FLAG_BASIC_BLOCK;
1112 dwarf2_gen_line_info (frag_now_fix (), &CURR_SLOT.debug_line);
1113 }
1114 CURR_SLOT.label_fixups = 0;
1115
1116 for (lfix = CURR_SLOT.tag_fixups; lfix; lfix = lfix->next)
1117 symbol_set_value_now (lfix->sym);
1118 CURR_SLOT.tag_fixups = 0;
1119
1120 /* In case there are unwind directives following the last instruction,
1121 resolve those now. We only handle prologue, body, and endp directives
1122 here. Give an error for others. */
1123 for (ptr = unwind.current_entry; ptr; ptr = ptr->next)
1124 {
1125 switch (ptr->r.type)
1126 {
1127 case prologue:
1128 case prologue_gr:
1129 case body:
1130 case endp:
1131 ptr->slot_number = (unsigned long) frag_more (0);
1132 ptr->slot_frag = frag_now;
1133 break;
1134
1135 /* Allow any record which doesn't have a "t" field (i.e.,
1136 doesn't relate to a particular instruction). */
1137 case unwabi:
1138 case br_gr:
1139 case copy_state:
1140 case fr_mem:
1141 case frgr_mem:
1142 case gr_gr:
1143 case gr_mem:
1144 case label_state:
1145 case rp_br:
1146 case spill_base:
1147 case spill_mask:
1148 /* nothing */
1149 break;
1150
1151 default:
1152 as_bad (_("Unwind directive not followed by an instruction."));
1153 break;
1154 }
1155 }
1156 unwind.current_entry = NULL;
1157
1158 subseg_set (saved_seg, saved_subseg);
1159
1160 if (md.qp.X_op == O_register)
1161 as_bad ("qualifying predicate not followed by instruction");
1162 }
1163
1164 static void
1165 ia64_do_align (int nbytes)
1166 {
1167 char *saved_input_line_pointer = input_line_pointer;
1168
1169 input_line_pointer = "";
1170 s_align_bytes (nbytes);
1171 input_line_pointer = saved_input_line_pointer;
1172 }
1173
1174 void
1175 ia64_cons_align (nbytes)
1176 int nbytes;
1177 {
1178 if (md.auto_align)
1179 {
1180 char *saved_input_line_pointer = input_line_pointer;
1181 input_line_pointer = "";
1182 s_align_bytes (nbytes);
1183 input_line_pointer = saved_input_line_pointer;
1184 }
1185 }
1186
1187 /* Output COUNT bytes to a memory location. */
1188 static char *vbyte_mem_ptr = NULL;
1189
1190 void
1191 output_vbyte_mem (count, ptr, comment)
1192 int count;
1193 char *ptr;
1194 char *comment ATTRIBUTE_UNUSED;
1195 {
1196 int x;
1197 if (vbyte_mem_ptr == NULL)
1198 abort ();
1199
1200 if (count == 0)
1201 return;
1202 for (x = 0; x < count; x++)
1203 *(vbyte_mem_ptr++) = ptr[x];
1204 }
1205
1206 /* Count the number of bytes required for records. */
1207 static int vbyte_count = 0;
1208 void
1209 count_output (count, ptr, comment)
1210 int count;
1211 char *ptr ATTRIBUTE_UNUSED;
1212 char *comment ATTRIBUTE_UNUSED;
1213 {
1214 vbyte_count += count;
1215 }
1216
1217 static void
1218 output_R1_format (f, rtype, rlen)
1219 vbyte_func f;
1220 unw_record_type rtype;
1221 int rlen;
1222 {
1223 int r = 0;
1224 char byte;
1225 if (rlen > 0x1f)
1226 {
1227 output_R3_format (f, rtype, rlen);
1228 return;
1229 }
1230
1231 if (rtype == body)
1232 r = 1;
1233 else if (rtype != prologue)
1234 as_bad ("record type is not valid");
1235
1236 byte = UNW_R1 | (r << 5) | (rlen & 0x1f);
1237 (*f) (1, &byte, NULL);
1238 }
1239
1240 static void
1241 output_R2_format (f, mask, grsave, rlen)
1242 vbyte_func f;
1243 int mask, grsave;
1244 unsigned long rlen;
1245 {
1246 char bytes[20];
1247 int count = 2;
1248 mask = (mask & 0x0f);
1249 grsave = (grsave & 0x7f);
1250
1251 bytes[0] = (UNW_R2 | (mask >> 1));
1252 bytes[1] = (((mask & 0x01) << 7) | grsave);
1253 count += output_leb128 (bytes + 2, rlen, 0);
1254 (*f) (count, bytes, NULL);
1255 }
1256
1257 static void
1258 output_R3_format (f, rtype, rlen)
1259 vbyte_func f;
1260 unw_record_type rtype;
1261 unsigned long rlen;
1262 {
1263 int r = 0, count;
1264 char bytes[20];
1265 if (rlen <= 0x1f)
1266 {
1267 output_R1_format (f, rtype, rlen);
1268 return;
1269 }
1270
1271 if (rtype == body)
1272 r = 1;
1273 else if (rtype != prologue)
1274 as_bad ("record type is not valid");
1275 bytes[0] = (UNW_R3 | r);
1276 count = output_leb128 (bytes + 1, rlen, 0);
1277 (*f) (count + 1, bytes, NULL);
1278 }
1279
1280 static void
1281 output_P1_format (f, brmask)
1282 vbyte_func f;
1283 int brmask;
1284 {
1285 char byte;
1286 byte = UNW_P1 | (brmask & 0x1f);
1287 (*f) (1, &byte, NULL);
1288 }
1289
1290 static void
1291 output_P2_format (f, brmask, gr)
1292 vbyte_func f;
1293 int brmask;
1294 int gr;
1295 {
1296 char bytes[2];
1297 brmask = (brmask & 0x1f);
1298 bytes[0] = UNW_P2 | (brmask >> 1);
1299 bytes[1] = (((brmask & 1) << 7) | gr);
1300 (*f) (2, bytes, NULL);
1301 }
1302
1303 static void
1304 output_P3_format (f, rtype, reg)
1305 vbyte_func f;
1306 unw_record_type rtype;
1307 int reg;
1308 {
1309 char bytes[2];
1310 int r = 0;
1311 reg = (reg & 0x7f);
1312 switch (rtype)
1313 {
1314 case psp_gr:
1315 r = 0;
1316 break;
1317 case rp_gr:
1318 r = 1;
1319 break;
1320 case pfs_gr:
1321 r = 2;
1322 break;
1323 case preds_gr:
1324 r = 3;
1325 break;
1326 case unat_gr:
1327 r = 4;
1328 break;
1329 case lc_gr:
1330 r = 5;
1331 break;
1332 case rp_br:
1333 r = 6;
1334 break;
1335 case rnat_gr:
1336 r = 7;
1337 break;
1338 case bsp_gr:
1339 r = 8;
1340 break;
1341 case bspstore_gr:
1342 r = 9;
1343 break;
1344 case fpsr_gr:
1345 r = 10;
1346 break;
1347 case priunat_gr:
1348 r = 11;
1349 break;
1350 default:
1351 as_bad ("Invalid record type for P3 format.");
1352 }
1353 bytes[0] = (UNW_P3 | (r >> 1));
1354 bytes[1] = (((r & 1) << 7) | reg);
1355 (*f) (2, bytes, NULL);
1356 }
1357
1358 static void
1359 output_P4_format (f, imask, imask_size)
1360 vbyte_func f;
1361 unsigned char *imask;
1362 unsigned long imask_size;
1363 {
1364 imask[0] = UNW_P4;
1365 (*f) (imask_size, (char *) imask, NULL);
1366 }
1367
1368 static void
1369 output_P5_format (f, grmask, frmask)
1370 vbyte_func f;
1371 int grmask;
1372 unsigned long frmask;
1373 {
1374 char bytes[4];
1375 grmask = (grmask & 0x0f);
1376
1377 bytes[0] = UNW_P5;
1378 bytes[1] = ((grmask << 4) | ((frmask & 0x000f0000) >> 16));
1379 bytes[2] = ((frmask & 0x0000ff00) >> 8);
1380 bytes[3] = (frmask & 0x000000ff);
1381 (*f) (4, bytes, NULL);
1382 }
1383
1384 static void
1385 output_P6_format (f, rtype, rmask)
1386 vbyte_func f;
1387 unw_record_type rtype;
1388 int rmask;
1389 {
1390 char byte;
1391 int r = 0;
1392
1393 if (rtype == gr_mem)
1394 r = 1;
1395 else if (rtype != fr_mem)
1396 as_bad ("Invalid record type for format P6");
1397 byte = (UNW_P6 | (r << 4) | (rmask & 0x0f));
1398 (*f) (1, &byte, NULL);
1399 }
1400
1401 static void
1402 output_P7_format (f, rtype, w1, w2)
1403 vbyte_func f;
1404 unw_record_type rtype;
1405 unsigned long w1;
1406 unsigned long w2;
1407 {
1408 char bytes[20];
1409 int count = 1;
1410 int r = 0;
1411 count += output_leb128 (bytes + 1, w1, 0);
1412 switch (rtype)
1413 {
1414 case mem_stack_f:
1415 r = 0;
1416 count += output_leb128 (bytes + count, w2 >> 4, 0);
1417 break;
1418 case mem_stack_v:
1419 r = 1;
1420 break;
1421 case spill_base:
1422 r = 2;
1423 break;
1424 case psp_sprel:
1425 r = 3;
1426 break;
1427 case rp_when:
1428 r = 4;
1429 break;
1430 case rp_psprel:
1431 r = 5;
1432 break;
1433 case pfs_when:
1434 r = 6;
1435 break;
1436 case pfs_psprel:
1437 r = 7;
1438 break;
1439 case preds_when:
1440 r = 8;
1441 break;
1442 case preds_psprel:
1443 r = 9;
1444 break;
1445 case lc_when:
1446 r = 10;
1447 break;
1448 case lc_psprel:
1449 r = 11;
1450 break;
1451 case unat_when:
1452 r = 12;
1453 break;
1454 case unat_psprel:
1455 r = 13;
1456 break;
1457 case fpsr_when:
1458 r = 14;
1459 break;
1460 case fpsr_psprel:
1461 r = 15;
1462 break;
1463 default:
1464 break;
1465 }
1466 bytes[0] = (UNW_P7 | r);
1467 (*f) (count, bytes, NULL);
1468 }
1469
1470 static void
1471 output_P8_format (f, rtype, t)
1472 vbyte_func f;
1473 unw_record_type rtype;
1474 unsigned long t;
1475 {
1476 char bytes[20];
1477 int r = 0;
1478 int count = 2;
1479 bytes[0] = UNW_P8;
1480 switch (rtype)
1481 {
1482 case rp_sprel:
1483 r = 1;
1484 break;
1485 case pfs_sprel:
1486 r = 2;
1487 break;
1488 case preds_sprel:
1489 r = 3;
1490 break;
1491 case lc_sprel:
1492 r = 4;
1493 break;
1494 case unat_sprel:
1495 r = 5;
1496 break;
1497 case fpsr_sprel:
1498 r = 6;
1499 break;
1500 case bsp_when:
1501 r = 7;
1502 break;
1503 case bsp_psprel:
1504 r = 8;
1505 break;
1506 case bsp_sprel:
1507 r = 9;
1508 break;
1509 case bspstore_when:
1510 r = 10;
1511 break;
1512 case bspstore_psprel:
1513 r = 11;
1514 break;
1515 case bspstore_sprel:
1516 r = 12;
1517 break;
1518 case rnat_when:
1519 r = 13;
1520 break;
1521 case rnat_psprel:
1522 r = 14;
1523 break;
1524 case rnat_sprel:
1525 r = 15;
1526 break;
1527 case priunat_when_gr:
1528 r = 16;
1529 break;
1530 case priunat_psprel:
1531 r = 17;
1532 break;
1533 case priunat_sprel:
1534 r = 18;
1535 break;
1536 case priunat_when_mem:
1537 r = 19;
1538 break;
1539 default:
1540 break;
1541 }
1542 bytes[1] = r;
1543 count += output_leb128 (bytes + 2, t, 0);
1544 (*f) (count, bytes, NULL);
1545 }
1546
1547 static void
1548 output_P9_format (f, grmask, gr)
1549 vbyte_func f;
1550 int grmask;
1551 int gr;
1552 {
1553 char bytes[3];
1554 bytes[0] = UNW_P9;
1555 bytes[1] = (grmask & 0x0f);
1556 bytes[2] = (gr & 0x7f);
1557 (*f) (3, bytes, NULL);
1558 }
1559
1560 static void
1561 output_P10_format (f, abi, context)
1562 vbyte_func f;
1563 int abi;
1564 int context;
1565 {
1566 char bytes[3];
1567 bytes[0] = UNW_P10;
1568 bytes[1] = (abi & 0xff);
1569 bytes[2] = (context & 0xff);
1570 (*f) (3, bytes, NULL);
1571 }
1572
1573 static void
1574 output_B1_format (f, rtype, label)
1575 vbyte_func f;
1576 unw_record_type rtype;
1577 unsigned long label;
1578 {
1579 char byte;
1580 int r = 0;
1581 if (label > 0x1f)
1582 {
1583 output_B4_format (f, rtype, label);
1584 return;
1585 }
1586 if (rtype == copy_state)
1587 r = 1;
1588 else if (rtype != label_state)
1589 as_bad ("Invalid record type for format B1");
1590
1591 byte = (UNW_B1 | (r << 5) | (label & 0x1f));
1592 (*f) (1, &byte, NULL);
1593 }
1594
1595 static void
1596 output_B2_format (f, ecount, t)
1597 vbyte_func f;
1598 unsigned long ecount;
1599 unsigned long t;
1600 {
1601 char bytes[20];
1602 int count = 1;
1603 if (ecount > 0x1f)
1604 {
1605 output_B3_format (f, ecount, t);
1606 return;
1607 }
1608 bytes[0] = (UNW_B2 | (ecount & 0x1f));
1609 count += output_leb128 (bytes + 1, t, 0);
1610 (*f) (count, bytes, NULL);
1611 }
1612
1613 static void
1614 output_B3_format (f, ecount, t)
1615 vbyte_func f;
1616 unsigned long ecount;
1617 unsigned long t;
1618 {
1619 char bytes[20];
1620 int count = 1;
1621 if (ecount <= 0x1f)
1622 {
1623 output_B2_format (f, ecount, t);
1624 return;
1625 }
1626 bytes[0] = UNW_B3;
1627 count += output_leb128 (bytes + 1, t, 0);
1628 count += output_leb128 (bytes + count, ecount, 0);
1629 (*f) (count, bytes, NULL);
1630 }
1631
1632 static void
1633 output_B4_format (f, rtype, label)
1634 vbyte_func f;
1635 unw_record_type rtype;
1636 unsigned long label;
1637 {
1638 char bytes[20];
1639 int r = 0;
1640 int count = 1;
1641 if (label <= 0x1f)
1642 {
1643 output_B1_format (f, rtype, label);
1644 return;
1645 }
1646
1647 if (rtype == copy_state)
1648 r = 1;
1649 else if (rtype != label_state)
1650 as_bad ("Invalid record type for format B1");
1651
1652 bytes[0] = (UNW_B4 | (r << 3));
1653 count += output_leb128 (bytes + 1, label, 0);
1654 (*f) (count, bytes, NULL);
1655 }
1656
1657 static char
1658 format_ab_reg (ab, reg)
1659 int ab;
1660 int reg;
1661 {
1662 int ret;
1663 ab = (ab & 3);
1664 reg = (reg & 0x1f);
1665 ret = (ab << 5) | reg;
1666 return ret;
1667 }
1668
1669 static void
1670 output_X1_format (f, rtype, ab, reg, t, w1)
1671 vbyte_func f;
1672 unw_record_type rtype;
1673 int ab, reg;
1674 unsigned long t;
1675 unsigned long w1;
1676 {
1677 char bytes[20];
1678 int r = 0;
1679 int count = 2;
1680 bytes[0] = UNW_X1;
1681
1682 if (rtype == spill_sprel)
1683 r = 1;
1684 else if (rtype != spill_psprel)
1685 as_bad ("Invalid record type for format X1");
1686 bytes[1] = ((r << 7) | format_ab_reg (ab, reg));
1687 count += output_leb128 (bytes + 2, t, 0);
1688 count += output_leb128 (bytes + count, w1, 0);
1689 (*f) (count, bytes, NULL);
1690 }
1691
1692 static void
1693 output_X2_format (f, ab, reg, x, y, treg, t)
1694 vbyte_func f;
1695 int ab, reg;
1696 int x, y, treg;
1697 unsigned long t;
1698 {
1699 char bytes[20];
1700 int count = 3;
1701 bytes[0] = UNW_X2;
1702 bytes[1] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1703 bytes[2] = (((y & 1) << 7) | (treg & 0x7f));
1704 count += output_leb128 (bytes + 3, t, 0);
1705 (*f) (count, bytes, NULL);
1706 }
1707
1708 static void
1709 output_X3_format (f, rtype, qp, ab, reg, t, w1)
1710 vbyte_func f;
1711 unw_record_type rtype;
1712 int qp;
1713 int ab, reg;
1714 unsigned long t;
1715 unsigned long w1;
1716 {
1717 char bytes[20];
1718 int r = 0;
1719 int count = 3;
1720 bytes[0] = UNW_X3;
1721
1722 if (rtype == spill_sprel_p)
1723 r = 1;
1724 else if (rtype != spill_psprel_p)
1725 as_bad ("Invalid record type for format X3");
1726 bytes[1] = ((r << 7) | (qp & 0x3f));
1727 bytes[2] = format_ab_reg (ab, reg);
1728 count += output_leb128 (bytes + 3, t, 0);
1729 count += output_leb128 (bytes + count, w1, 0);
1730 (*f) (count, bytes, NULL);
1731 }
1732
1733 static void
1734 output_X4_format (f, qp, ab, reg, x, y, treg, t)
1735 vbyte_func f;
1736 int qp;
1737 int ab, reg;
1738 int x, y, treg;
1739 unsigned long t;
1740 {
1741 char bytes[20];
1742 int count = 4;
1743 bytes[0] = UNW_X4;
1744 bytes[1] = (qp & 0x3f);
1745 bytes[2] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1746 bytes[3] = (((y & 1) << 7) | (treg & 0x7f));
1747 count += output_leb128 (bytes + 4, t, 0);
1748 (*f) (count, bytes, NULL);
1749 }
1750
1751 /* This function checks whether there are any outstanding .save-s and
1752 discards them if so. */
1753
1754 static void
1755 check_pending_save (void)
1756 {
1757 if (unwind.pending_saves)
1758 {
1759 unw_rec_list *cur, *prev;
1760
1761 as_warn ("Previous .save incomplete");
1762 for (cur = unwind.list, prev = NULL; cur; )
1763 if (&cur->r.record.p == unwind.pending_saves)
1764 {
1765 if (prev)
1766 prev->next = cur->next;
1767 else
1768 unwind.list = cur->next;
1769 if (cur == unwind.tail)
1770 unwind.tail = prev;
1771 if (cur == unwind.current_entry)
1772 unwind.current_entry = cur->next;
1773 /* Don't free the first discarded record, it's being used as
1774 terminator for (currently) br_gr and gr_gr processing, and
1775 also prevents leaving a dangling pointer to it in its
1776 predecessor. */
1777 cur->r.record.p.grmask = 0;
1778 cur->r.record.p.brmask = 0;
1779 cur->r.record.p.frmask = 0;
1780 prev = cur->r.record.p.next;
1781 cur->r.record.p.next = NULL;
1782 cur = prev;
1783 break;
1784 }
1785 else
1786 {
1787 prev = cur;
1788 cur = cur->next;
1789 }
1790 while (cur)
1791 {
1792 prev = cur;
1793 cur = cur->r.record.p.next;
1794 free (prev);
1795 }
1796 unwind.pending_saves = NULL;
1797 }
1798 }
1799
1800 /* This function allocates a record list structure, and initializes fields. */
1801
1802 static unw_rec_list *
1803 alloc_record (unw_record_type t)
1804 {
1805 unw_rec_list *ptr;
1806 ptr = xmalloc (sizeof (*ptr));
1807 memset (ptr, 0, sizeof (*ptr));
1808 ptr->slot_number = SLOT_NUM_NOT_SET;
1809 ptr->r.type = t;
1810 return ptr;
1811 }
1812
1813 /* Dummy unwind record used for calculating the length of the last prologue or
1814 body region. */
1815
1816 static unw_rec_list *
1817 output_endp ()
1818 {
1819 unw_rec_list *ptr = alloc_record (endp);
1820 return ptr;
1821 }
1822
1823 static unw_rec_list *
1824 output_prologue ()
1825 {
1826 unw_rec_list *ptr = alloc_record (prologue);
1827 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1828 return ptr;
1829 }
1830
1831 static unw_rec_list *
1832 output_prologue_gr (saved_mask, reg)
1833 unsigned int saved_mask;
1834 unsigned int reg;
1835 {
1836 unw_rec_list *ptr = alloc_record (prologue_gr);
1837 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1838 ptr->r.record.r.grmask = saved_mask;
1839 ptr->r.record.r.grsave = reg;
1840 return ptr;
1841 }
1842
1843 static unw_rec_list *
1844 output_body ()
1845 {
1846 unw_rec_list *ptr = alloc_record (body);
1847 return ptr;
1848 }
1849
1850 static unw_rec_list *
1851 output_mem_stack_f (size)
1852 unsigned int size;
1853 {
1854 unw_rec_list *ptr = alloc_record (mem_stack_f);
1855 ptr->r.record.p.size = size;
1856 return ptr;
1857 }
1858
1859 static unw_rec_list *
1860 output_mem_stack_v ()
1861 {
1862 unw_rec_list *ptr = alloc_record (mem_stack_v);
1863 return ptr;
1864 }
1865
1866 static unw_rec_list *
1867 output_psp_gr (gr)
1868 unsigned int gr;
1869 {
1870 unw_rec_list *ptr = alloc_record (psp_gr);
1871 ptr->r.record.p.r.gr = gr;
1872 return ptr;
1873 }
1874
1875 static unw_rec_list *
1876 output_psp_sprel (offset)
1877 unsigned int offset;
1878 {
1879 unw_rec_list *ptr = alloc_record (psp_sprel);
1880 ptr->r.record.p.off.sp = offset / 4;
1881 return ptr;
1882 }
1883
1884 static unw_rec_list *
1885 output_rp_when ()
1886 {
1887 unw_rec_list *ptr = alloc_record (rp_when);
1888 return ptr;
1889 }
1890
1891 static unw_rec_list *
1892 output_rp_gr (gr)
1893 unsigned int gr;
1894 {
1895 unw_rec_list *ptr = alloc_record (rp_gr);
1896 ptr->r.record.p.r.gr = gr;
1897 return ptr;
1898 }
1899
1900 static unw_rec_list *
1901 output_rp_br (br)
1902 unsigned int br;
1903 {
1904 unw_rec_list *ptr = alloc_record (rp_br);
1905 ptr->r.record.p.r.br = br;
1906 return ptr;
1907 }
1908
1909 static unw_rec_list *
1910 output_rp_psprel (offset)
1911 unsigned int offset;
1912 {
1913 unw_rec_list *ptr = alloc_record (rp_psprel);
1914 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1915 return ptr;
1916 }
1917
1918 static unw_rec_list *
1919 output_rp_sprel (offset)
1920 unsigned int offset;
1921 {
1922 unw_rec_list *ptr = alloc_record (rp_sprel);
1923 ptr->r.record.p.off.sp = offset / 4;
1924 return ptr;
1925 }
1926
1927 static unw_rec_list *
1928 output_pfs_when ()
1929 {
1930 unw_rec_list *ptr = alloc_record (pfs_when);
1931 return ptr;
1932 }
1933
1934 static unw_rec_list *
1935 output_pfs_gr (gr)
1936 unsigned int gr;
1937 {
1938 unw_rec_list *ptr = alloc_record (pfs_gr);
1939 ptr->r.record.p.r.gr = gr;
1940 return ptr;
1941 }
1942
1943 static unw_rec_list *
1944 output_pfs_psprel (offset)
1945 unsigned int offset;
1946 {
1947 unw_rec_list *ptr = alloc_record (pfs_psprel);
1948 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1949 return ptr;
1950 }
1951
1952 static unw_rec_list *
1953 output_pfs_sprel (offset)
1954 unsigned int offset;
1955 {
1956 unw_rec_list *ptr = alloc_record (pfs_sprel);
1957 ptr->r.record.p.off.sp = offset / 4;
1958 return ptr;
1959 }
1960
1961 static unw_rec_list *
1962 output_preds_when ()
1963 {
1964 unw_rec_list *ptr = alloc_record (preds_when);
1965 return ptr;
1966 }
1967
1968 static unw_rec_list *
1969 output_preds_gr (gr)
1970 unsigned int gr;
1971 {
1972 unw_rec_list *ptr = alloc_record (preds_gr);
1973 ptr->r.record.p.r.gr = gr;
1974 return ptr;
1975 }
1976
1977 static unw_rec_list *
1978 output_preds_psprel (offset)
1979 unsigned int offset;
1980 {
1981 unw_rec_list *ptr = alloc_record (preds_psprel);
1982 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1983 return ptr;
1984 }
1985
1986 static unw_rec_list *
1987 output_preds_sprel (offset)
1988 unsigned int offset;
1989 {
1990 unw_rec_list *ptr = alloc_record (preds_sprel);
1991 ptr->r.record.p.off.sp = offset / 4;
1992 return ptr;
1993 }
1994
1995 static unw_rec_list *
1996 output_fr_mem (mask)
1997 unsigned int mask;
1998 {
1999 unw_rec_list *ptr = alloc_record (fr_mem);
2000 unw_rec_list *cur = ptr;
2001
2002 ptr->r.record.p.frmask = mask;
2003 unwind.pending_saves = &ptr->r.record.p;
2004 for (;;)
2005 {
2006 unw_rec_list *prev = cur;
2007
2008 /* Clear least significant set bit. */
2009 mask &= ~(mask & (~mask + 1));
2010 if (!mask)
2011 return ptr;
2012 cur = alloc_record (fr_mem);
2013 cur->r.record.p.frmask = mask;
2014 /* Retain only least significant bit. */
2015 prev->r.record.p.frmask ^= mask;
2016 prev->r.record.p.next = cur;
2017 }
2018 }
2019
2020 static unw_rec_list *
2021 output_frgr_mem (gr_mask, fr_mask)
2022 unsigned int gr_mask;
2023 unsigned int fr_mask;
2024 {
2025 unw_rec_list *ptr = alloc_record (frgr_mem);
2026 unw_rec_list *cur = ptr;
2027
2028 unwind.pending_saves = &cur->r.record.p;
2029 cur->r.record.p.frmask = fr_mask;
2030 while (fr_mask)
2031 {
2032 unw_rec_list *prev = cur;
2033
2034 /* Clear least significant set bit. */
2035 fr_mask &= ~(fr_mask & (~fr_mask + 1));
2036 if (!gr_mask && !fr_mask)
2037 return ptr;
2038 cur = alloc_record (frgr_mem);
2039 cur->r.record.p.frmask = fr_mask;
2040 /* Retain only least significant bit. */
2041 prev->r.record.p.frmask ^= fr_mask;
2042 prev->r.record.p.next = cur;
2043 }
2044 cur->r.record.p.grmask = gr_mask;
2045 for (;;)
2046 {
2047 unw_rec_list *prev = cur;
2048
2049 /* Clear least significant set bit. */
2050 gr_mask &= ~(gr_mask & (~gr_mask + 1));
2051 if (!gr_mask)
2052 return ptr;
2053 cur = alloc_record (frgr_mem);
2054 cur->r.record.p.grmask = gr_mask;
2055 /* Retain only least significant bit. */
2056 prev->r.record.p.grmask ^= gr_mask;
2057 prev->r.record.p.next = cur;
2058 }
2059 }
2060
2061 static unw_rec_list *
2062 output_gr_gr (mask, reg)
2063 unsigned int mask;
2064 unsigned int reg;
2065 {
2066 unw_rec_list *ptr = alloc_record (gr_gr);
2067 unw_rec_list *cur = ptr;
2068
2069 ptr->r.record.p.grmask = mask;
2070 ptr->r.record.p.r.gr = reg;
2071 unwind.pending_saves = &ptr->r.record.p;
2072 for (;;)
2073 {
2074 unw_rec_list *prev = cur;
2075
2076 /* Clear least significant set bit. */
2077 mask &= ~(mask & (~mask + 1));
2078 if (!mask)
2079 return ptr;
2080 cur = alloc_record (gr_gr);
2081 cur->r.record.p.grmask = mask;
2082 /* Indicate this record shouldn't be output. */
2083 cur->r.record.p.r.gr = REG_NUM;
2084 /* Retain only least significant bit. */
2085 prev->r.record.p.grmask ^= mask;
2086 prev->r.record.p.next = cur;
2087 }
2088 }
2089
2090 static unw_rec_list *
2091 output_gr_mem (mask)
2092 unsigned int mask;
2093 {
2094 unw_rec_list *ptr = alloc_record (gr_mem);
2095 unw_rec_list *cur = ptr;
2096
2097 ptr->r.record.p.grmask = mask;
2098 unwind.pending_saves = &ptr->r.record.p;
2099 for (;;)
2100 {
2101 unw_rec_list *prev = cur;
2102
2103 /* Clear least significant set bit. */
2104 mask &= ~(mask & (~mask + 1));
2105 if (!mask)
2106 return ptr;
2107 cur = alloc_record (gr_mem);
2108 cur->r.record.p.grmask = mask;
2109 /* Retain only least significant bit. */
2110 prev->r.record.p.grmask ^= mask;
2111 prev->r.record.p.next = cur;
2112 }
2113 }
2114
2115 static unw_rec_list *
2116 output_br_mem (unsigned int mask)
2117 {
2118 unw_rec_list *ptr = alloc_record (br_mem);
2119 unw_rec_list *cur = ptr;
2120
2121 ptr->r.record.p.brmask = mask;
2122 unwind.pending_saves = &ptr->r.record.p;
2123 for (;;)
2124 {
2125 unw_rec_list *prev = cur;
2126
2127 /* Clear least significant set bit. */
2128 mask &= ~(mask & (~mask + 1));
2129 if (!mask)
2130 return ptr;
2131 cur = alloc_record (br_mem);
2132 cur->r.record.p.brmask = mask;
2133 /* Retain only least significant bit. */
2134 prev->r.record.p.brmask ^= mask;
2135 prev->r.record.p.next = cur;
2136 }
2137 }
2138
2139 static unw_rec_list *
2140 output_br_gr (mask, reg)
2141 unsigned int mask;
2142 unsigned int reg;
2143 {
2144 unw_rec_list *ptr = alloc_record (br_gr);
2145 unw_rec_list *cur = ptr;
2146
2147 ptr->r.record.p.brmask = mask;
2148 ptr->r.record.p.r.gr = reg;
2149 unwind.pending_saves = &ptr->r.record.p;
2150 for (;;)
2151 {
2152 unw_rec_list *prev = cur;
2153
2154 /* Clear least significant set bit. */
2155 mask &= ~(mask & (~mask + 1));
2156 if (!mask)
2157 return ptr;
2158 cur = alloc_record (br_gr);
2159 cur->r.record.p.brmask = mask;
2160 /* Indicate this record shouldn't be output. */
2161 cur->r.record.p.r.gr = REG_NUM;
2162 /* Retain only least significant bit. */
2163 prev->r.record.p.brmask ^= mask;
2164 prev->r.record.p.next = cur;
2165 }
2166 }
2167
2168 static unw_rec_list *
2169 output_spill_base (offset)
2170 unsigned int offset;
2171 {
2172 unw_rec_list *ptr = alloc_record (spill_base);
2173 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2174 return ptr;
2175 }
2176
2177 static unw_rec_list *
2178 output_unat_when ()
2179 {
2180 unw_rec_list *ptr = alloc_record (unat_when);
2181 return ptr;
2182 }
2183
2184 static unw_rec_list *
2185 output_unat_gr (gr)
2186 unsigned int gr;
2187 {
2188 unw_rec_list *ptr = alloc_record (unat_gr);
2189 ptr->r.record.p.r.gr = gr;
2190 return ptr;
2191 }
2192
2193 static unw_rec_list *
2194 output_unat_psprel (offset)
2195 unsigned int offset;
2196 {
2197 unw_rec_list *ptr = alloc_record (unat_psprel);
2198 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2199 return ptr;
2200 }
2201
2202 static unw_rec_list *
2203 output_unat_sprel (offset)
2204 unsigned int offset;
2205 {
2206 unw_rec_list *ptr = alloc_record (unat_sprel);
2207 ptr->r.record.p.off.sp = offset / 4;
2208 return ptr;
2209 }
2210
2211 static unw_rec_list *
2212 output_lc_when ()
2213 {
2214 unw_rec_list *ptr = alloc_record (lc_when);
2215 return ptr;
2216 }
2217
2218 static unw_rec_list *
2219 output_lc_gr (gr)
2220 unsigned int gr;
2221 {
2222 unw_rec_list *ptr = alloc_record (lc_gr);
2223 ptr->r.record.p.r.gr = gr;
2224 return ptr;
2225 }
2226
2227 static unw_rec_list *
2228 output_lc_psprel (offset)
2229 unsigned int offset;
2230 {
2231 unw_rec_list *ptr = alloc_record (lc_psprel);
2232 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2233 return ptr;
2234 }
2235
2236 static unw_rec_list *
2237 output_lc_sprel (offset)
2238 unsigned int offset;
2239 {
2240 unw_rec_list *ptr = alloc_record (lc_sprel);
2241 ptr->r.record.p.off.sp = offset / 4;
2242 return ptr;
2243 }
2244
2245 static unw_rec_list *
2246 output_fpsr_when ()
2247 {
2248 unw_rec_list *ptr = alloc_record (fpsr_when);
2249 return ptr;
2250 }
2251
2252 static unw_rec_list *
2253 output_fpsr_gr (gr)
2254 unsigned int gr;
2255 {
2256 unw_rec_list *ptr = alloc_record (fpsr_gr);
2257 ptr->r.record.p.r.gr = gr;
2258 return ptr;
2259 }
2260
2261 static unw_rec_list *
2262 output_fpsr_psprel (offset)
2263 unsigned int offset;
2264 {
2265 unw_rec_list *ptr = alloc_record (fpsr_psprel);
2266 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2267 return ptr;
2268 }
2269
2270 static unw_rec_list *
2271 output_fpsr_sprel (offset)
2272 unsigned int offset;
2273 {
2274 unw_rec_list *ptr = alloc_record (fpsr_sprel);
2275 ptr->r.record.p.off.sp = offset / 4;
2276 return ptr;
2277 }
2278
2279 static unw_rec_list *
2280 output_priunat_when_gr ()
2281 {
2282 unw_rec_list *ptr = alloc_record (priunat_when_gr);
2283 return ptr;
2284 }
2285
2286 static unw_rec_list *
2287 output_priunat_when_mem ()
2288 {
2289 unw_rec_list *ptr = alloc_record (priunat_when_mem);
2290 return ptr;
2291 }
2292
2293 static unw_rec_list *
2294 output_priunat_gr (gr)
2295 unsigned int gr;
2296 {
2297 unw_rec_list *ptr = alloc_record (priunat_gr);
2298 ptr->r.record.p.r.gr = gr;
2299 return ptr;
2300 }
2301
2302 static unw_rec_list *
2303 output_priunat_psprel (offset)
2304 unsigned int offset;
2305 {
2306 unw_rec_list *ptr = alloc_record (priunat_psprel);
2307 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2308 return ptr;
2309 }
2310
2311 static unw_rec_list *
2312 output_priunat_sprel (offset)
2313 unsigned int offset;
2314 {
2315 unw_rec_list *ptr = alloc_record (priunat_sprel);
2316 ptr->r.record.p.off.sp = offset / 4;
2317 return ptr;
2318 }
2319
2320 static unw_rec_list *
2321 output_bsp_when ()
2322 {
2323 unw_rec_list *ptr = alloc_record (bsp_when);
2324 return ptr;
2325 }
2326
2327 static unw_rec_list *
2328 output_bsp_gr (gr)
2329 unsigned int gr;
2330 {
2331 unw_rec_list *ptr = alloc_record (bsp_gr);
2332 ptr->r.record.p.r.gr = gr;
2333 return ptr;
2334 }
2335
2336 static unw_rec_list *
2337 output_bsp_psprel (offset)
2338 unsigned int offset;
2339 {
2340 unw_rec_list *ptr = alloc_record (bsp_psprel);
2341 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2342 return ptr;
2343 }
2344
2345 static unw_rec_list *
2346 output_bsp_sprel (offset)
2347 unsigned int offset;
2348 {
2349 unw_rec_list *ptr = alloc_record (bsp_sprel);
2350 ptr->r.record.p.off.sp = offset / 4;
2351 return ptr;
2352 }
2353
2354 static unw_rec_list *
2355 output_bspstore_when ()
2356 {
2357 unw_rec_list *ptr = alloc_record (bspstore_when);
2358 return ptr;
2359 }
2360
2361 static unw_rec_list *
2362 output_bspstore_gr (gr)
2363 unsigned int gr;
2364 {
2365 unw_rec_list *ptr = alloc_record (bspstore_gr);
2366 ptr->r.record.p.r.gr = gr;
2367 return ptr;
2368 }
2369
2370 static unw_rec_list *
2371 output_bspstore_psprel (offset)
2372 unsigned int offset;
2373 {
2374 unw_rec_list *ptr = alloc_record (bspstore_psprel);
2375 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2376 return ptr;
2377 }
2378
2379 static unw_rec_list *
2380 output_bspstore_sprel (offset)
2381 unsigned int offset;
2382 {
2383 unw_rec_list *ptr = alloc_record (bspstore_sprel);
2384 ptr->r.record.p.off.sp = offset / 4;
2385 return ptr;
2386 }
2387
2388 static unw_rec_list *
2389 output_rnat_when ()
2390 {
2391 unw_rec_list *ptr = alloc_record (rnat_when);
2392 return ptr;
2393 }
2394
2395 static unw_rec_list *
2396 output_rnat_gr (gr)
2397 unsigned int gr;
2398 {
2399 unw_rec_list *ptr = alloc_record (rnat_gr);
2400 ptr->r.record.p.r.gr = gr;
2401 return ptr;
2402 }
2403
2404 static unw_rec_list *
2405 output_rnat_psprel (offset)
2406 unsigned int offset;
2407 {
2408 unw_rec_list *ptr = alloc_record (rnat_psprel);
2409 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2410 return ptr;
2411 }
2412
2413 static unw_rec_list *
2414 output_rnat_sprel (offset)
2415 unsigned int offset;
2416 {
2417 unw_rec_list *ptr = alloc_record (rnat_sprel);
2418 ptr->r.record.p.off.sp = offset / 4;
2419 return ptr;
2420 }
2421
2422 static unw_rec_list *
2423 output_unwabi (abi, context)
2424 unsigned long abi;
2425 unsigned long context;
2426 {
2427 unw_rec_list *ptr = alloc_record (unwabi);
2428 ptr->r.record.p.abi = abi;
2429 ptr->r.record.p.context = context;
2430 return ptr;
2431 }
2432
2433 static unw_rec_list *
2434 output_epilogue (unsigned long ecount)
2435 {
2436 unw_rec_list *ptr = alloc_record (epilogue);
2437 ptr->r.record.b.ecount = ecount;
2438 return ptr;
2439 }
2440
2441 static unw_rec_list *
2442 output_label_state (unsigned long label)
2443 {
2444 unw_rec_list *ptr = alloc_record (label_state);
2445 ptr->r.record.b.label = label;
2446 return ptr;
2447 }
2448
2449 static unw_rec_list *
2450 output_copy_state (unsigned long label)
2451 {
2452 unw_rec_list *ptr = alloc_record (copy_state);
2453 ptr->r.record.b.label = label;
2454 return ptr;
2455 }
2456
2457 static unw_rec_list *
2458 output_spill_psprel (ab, reg, offset, predicate)
2459 unsigned int ab;
2460 unsigned int reg;
2461 unsigned int offset;
2462 unsigned int predicate;
2463 {
2464 unw_rec_list *ptr = alloc_record (predicate ? spill_psprel_p : spill_psprel);
2465 ptr->r.record.x.ab = ab;
2466 ptr->r.record.x.reg = reg;
2467 ptr->r.record.x.where.pspoff = ENCODED_PSP_OFFSET (offset);
2468 ptr->r.record.x.qp = predicate;
2469 return ptr;
2470 }
2471
2472 static unw_rec_list *
2473 output_spill_sprel (ab, reg, offset, predicate)
2474 unsigned int ab;
2475 unsigned int reg;
2476 unsigned int offset;
2477 unsigned int predicate;
2478 {
2479 unw_rec_list *ptr = alloc_record (predicate ? spill_sprel_p : spill_sprel);
2480 ptr->r.record.x.ab = ab;
2481 ptr->r.record.x.reg = reg;
2482 ptr->r.record.x.where.spoff = offset / 4;
2483 ptr->r.record.x.qp = predicate;
2484 return ptr;
2485 }
2486
2487 static unw_rec_list *
2488 output_spill_reg (ab, reg, targ_reg, xy, predicate)
2489 unsigned int ab;
2490 unsigned int reg;
2491 unsigned int targ_reg;
2492 unsigned int xy;
2493 unsigned int predicate;
2494 {
2495 unw_rec_list *ptr = alloc_record (predicate ? spill_reg_p : spill_reg);
2496 ptr->r.record.x.ab = ab;
2497 ptr->r.record.x.reg = reg;
2498 ptr->r.record.x.where.reg = targ_reg;
2499 ptr->r.record.x.xy = xy;
2500 ptr->r.record.x.qp = predicate;
2501 return ptr;
2502 }
2503
2504 /* Given a unw_rec_list process the correct format with the
2505 specified function. */
2506
2507 static void
2508 process_one_record (ptr, f)
2509 unw_rec_list *ptr;
2510 vbyte_func f;
2511 {
2512 unsigned int fr_mask, gr_mask;
2513
2514 switch (ptr->r.type)
2515 {
2516 /* This is a dummy record that takes up no space in the output. */
2517 case endp:
2518 break;
2519
2520 case gr_mem:
2521 case fr_mem:
2522 case br_mem:
2523 case frgr_mem:
2524 /* These are taken care of by prologue/prologue_gr. */
2525 break;
2526
2527 case prologue_gr:
2528 case prologue:
2529 if (ptr->r.type == prologue_gr)
2530 output_R2_format (f, ptr->r.record.r.grmask,
2531 ptr->r.record.r.grsave, ptr->r.record.r.rlen);
2532 else
2533 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2534
2535 /* Output descriptor(s) for union of register spills (if any). */
2536 gr_mask = ptr->r.record.r.mask.gr_mem;
2537 fr_mask = ptr->r.record.r.mask.fr_mem;
2538 if (fr_mask)
2539 {
2540 if ((fr_mask & ~0xfUL) == 0)
2541 output_P6_format (f, fr_mem, fr_mask);
2542 else
2543 {
2544 output_P5_format (f, gr_mask, fr_mask);
2545 gr_mask = 0;
2546 }
2547 }
2548 if (gr_mask)
2549 output_P6_format (f, gr_mem, gr_mask);
2550 if (ptr->r.record.r.mask.br_mem)
2551 output_P1_format (f, ptr->r.record.r.mask.br_mem);
2552
2553 /* output imask descriptor if necessary: */
2554 if (ptr->r.record.r.mask.i)
2555 output_P4_format (f, ptr->r.record.r.mask.i,
2556 ptr->r.record.r.imask_size);
2557 break;
2558
2559 case body:
2560 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2561 break;
2562 case mem_stack_f:
2563 case mem_stack_v:
2564 output_P7_format (f, ptr->r.type, ptr->r.record.p.t,
2565 ptr->r.record.p.size);
2566 break;
2567 case psp_gr:
2568 case rp_gr:
2569 case pfs_gr:
2570 case preds_gr:
2571 case unat_gr:
2572 case lc_gr:
2573 case fpsr_gr:
2574 case priunat_gr:
2575 case bsp_gr:
2576 case bspstore_gr:
2577 case rnat_gr:
2578 output_P3_format (f, ptr->r.type, ptr->r.record.p.r.gr);
2579 break;
2580 case rp_br:
2581 output_P3_format (f, rp_br, ptr->r.record.p.r.br);
2582 break;
2583 case psp_sprel:
2584 output_P7_format (f, psp_sprel, ptr->r.record.p.off.sp, 0);
2585 break;
2586 case rp_when:
2587 case pfs_when:
2588 case preds_when:
2589 case unat_when:
2590 case lc_when:
2591 case fpsr_when:
2592 output_P7_format (f, ptr->r.type, ptr->r.record.p.t, 0);
2593 break;
2594 case rp_psprel:
2595 case pfs_psprel:
2596 case preds_psprel:
2597 case unat_psprel:
2598 case lc_psprel:
2599 case fpsr_psprel:
2600 case spill_base:
2601 output_P7_format (f, ptr->r.type, ptr->r.record.p.off.psp, 0);
2602 break;
2603 case rp_sprel:
2604 case pfs_sprel:
2605 case preds_sprel:
2606 case unat_sprel:
2607 case lc_sprel:
2608 case fpsr_sprel:
2609 case priunat_sprel:
2610 case bsp_sprel:
2611 case bspstore_sprel:
2612 case rnat_sprel:
2613 output_P8_format (f, ptr->r.type, ptr->r.record.p.off.sp);
2614 break;
2615 case gr_gr:
2616 if (ptr->r.record.p.r.gr < REG_NUM)
2617 {
2618 const unw_rec_list *cur = ptr;
2619
2620 gr_mask = cur->r.record.p.grmask;
2621 while ((cur = cur->r.record.p.next) != NULL)
2622 gr_mask |= cur->r.record.p.grmask;
2623 output_P9_format (f, gr_mask, ptr->r.record.p.r.gr);
2624 }
2625 break;
2626 case br_gr:
2627 if (ptr->r.record.p.r.gr < REG_NUM)
2628 {
2629 const unw_rec_list *cur = ptr;
2630
2631 gr_mask = cur->r.record.p.brmask;
2632 while ((cur = cur->r.record.p.next) != NULL)
2633 gr_mask |= cur->r.record.p.brmask;
2634 output_P2_format (f, gr_mask, ptr->r.record.p.r.gr);
2635 }
2636 break;
2637 case spill_mask:
2638 as_bad ("spill_mask record unimplemented.");
2639 break;
2640 case priunat_when_gr:
2641 case priunat_when_mem:
2642 case bsp_when:
2643 case bspstore_when:
2644 case rnat_when:
2645 output_P8_format (f, ptr->r.type, ptr->r.record.p.t);
2646 break;
2647 case priunat_psprel:
2648 case bsp_psprel:
2649 case bspstore_psprel:
2650 case rnat_psprel:
2651 output_P8_format (f, ptr->r.type, ptr->r.record.p.off.psp);
2652 break;
2653 case unwabi:
2654 output_P10_format (f, ptr->r.record.p.abi, ptr->r.record.p.context);
2655 break;
2656 case epilogue:
2657 output_B3_format (f, ptr->r.record.b.ecount, ptr->r.record.b.t);
2658 break;
2659 case label_state:
2660 case copy_state:
2661 output_B4_format (f, ptr->r.type, ptr->r.record.b.label);
2662 break;
2663 case spill_psprel:
2664 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2665 ptr->r.record.x.reg, ptr->r.record.x.t,
2666 ptr->r.record.x.where.pspoff);
2667 break;
2668 case spill_sprel:
2669 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2670 ptr->r.record.x.reg, ptr->r.record.x.t,
2671 ptr->r.record.x.where.spoff);
2672 break;
2673 case spill_reg:
2674 output_X2_format (f, ptr->r.record.x.ab, ptr->r.record.x.reg,
2675 ptr->r.record.x.xy >> 1, ptr->r.record.x.xy,
2676 ptr->r.record.x.where.reg, ptr->r.record.x.t);
2677 break;
2678 case spill_psprel_p:
2679 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2680 ptr->r.record.x.ab, ptr->r.record.x.reg,
2681 ptr->r.record.x.t, ptr->r.record.x.where.pspoff);
2682 break;
2683 case spill_sprel_p:
2684 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2685 ptr->r.record.x.ab, ptr->r.record.x.reg,
2686 ptr->r.record.x.t, ptr->r.record.x.where.spoff);
2687 break;
2688 case spill_reg_p:
2689 output_X4_format (f, ptr->r.record.x.qp, ptr->r.record.x.ab,
2690 ptr->r.record.x.reg, ptr->r.record.x.xy >> 1,
2691 ptr->r.record.x.xy, ptr->r.record.x.where.reg,
2692 ptr->r.record.x.t);
2693 break;
2694 default:
2695 as_bad ("record_type_not_valid");
2696 break;
2697 }
2698 }
2699
2700 /* Given a unw_rec_list list, process all the records with
2701 the specified function. */
2702 static void
2703 process_unw_records (list, f)
2704 unw_rec_list *list;
2705 vbyte_func f;
2706 {
2707 unw_rec_list *ptr;
2708 for (ptr = list; ptr; ptr = ptr->next)
2709 process_one_record (ptr, f);
2710 }
2711
2712 /* Determine the size of a record list in bytes. */
2713 static int
2714 calc_record_size (list)
2715 unw_rec_list *list;
2716 {
2717 vbyte_count = 0;
2718 process_unw_records (list, count_output);
2719 return vbyte_count;
2720 }
2721
2722 /* Return the number of bits set in the input value.
2723 Perhaps this has a better place... */
2724 #if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)
2725 # define popcount __builtin_popcount
2726 #else
2727 static int
2728 popcount (unsigned x)
2729 {
2730 static const unsigned char popcnt[16] =
2731 {
2732 0, 1, 1, 2,
2733 1, 2, 2, 3,
2734 1, 2, 2, 3,
2735 2, 3, 3, 4
2736 };
2737
2738 if (x < NELEMS (popcnt))
2739 return popcnt[x];
2740 return popcnt[x % NELEMS (popcnt)] + popcount (x / NELEMS (popcnt));
2741 }
2742 #endif
2743
2744 /* Update IMASK bitmask to reflect the fact that one or more registers
2745 of type TYPE are saved starting at instruction with index T. If N
2746 bits are set in REGMASK, it is assumed that instructions T through
2747 T+N-1 save these registers.
2748
2749 TYPE values:
2750 0: no save
2751 1: instruction saves next fp reg
2752 2: instruction saves next general reg
2753 3: instruction saves next branch reg */
2754 static void
2755 set_imask (region, regmask, t, type)
2756 unw_rec_list *region;
2757 unsigned long regmask;
2758 unsigned long t;
2759 unsigned int type;
2760 {
2761 unsigned char *imask;
2762 unsigned long imask_size;
2763 unsigned int i;
2764 int pos;
2765
2766 imask = region->r.record.r.mask.i;
2767 imask_size = region->r.record.r.imask_size;
2768 if (!imask)
2769 {
2770 imask_size = (region->r.record.r.rlen * 2 + 7) / 8 + 1;
2771 imask = xmalloc (imask_size);
2772 memset (imask, 0, imask_size);
2773
2774 region->r.record.r.imask_size = imask_size;
2775 region->r.record.r.mask.i = imask;
2776 }
2777
2778 i = (t / 4) + 1;
2779 pos = 2 * (3 - t % 4);
2780 while (regmask)
2781 {
2782 if (i >= imask_size)
2783 {
2784 as_bad ("Ignoring attempt to spill beyond end of region");
2785 return;
2786 }
2787
2788 imask[i] |= (type & 0x3) << pos;
2789
2790 regmask &= (regmask - 1);
2791 pos -= 2;
2792 if (pos < 0)
2793 {
2794 pos = 0;
2795 ++i;
2796 }
2797 }
2798 }
2799
2800 /* Return the number of instruction slots from FIRST_ADDR to SLOT_ADDR.
2801 SLOT_FRAG is the frag containing SLOT_ADDR, and FIRST_FRAG is the frag
2802 containing FIRST_ADDR. If BEFORE_RELAX, then we use worst-case estimates
2803 for frag sizes. */
2804
2805 unsigned long
2806 slot_index (slot_addr, slot_frag, first_addr, first_frag, before_relax)
2807 unsigned long slot_addr;
2808 fragS *slot_frag;
2809 unsigned long first_addr;
2810 fragS *first_frag;
2811 int before_relax;
2812 {
2813 unsigned long index = 0;
2814
2815 /* First time we are called, the initial address and frag are invalid. */
2816 if (first_addr == 0)
2817 return 0;
2818
2819 /* If the two addresses are in different frags, then we need to add in
2820 the remaining size of this frag, and then the entire size of intermediate
2821 frags. */
2822 while (slot_frag != first_frag)
2823 {
2824 unsigned long start_addr = (unsigned long) &first_frag->fr_literal;
2825
2826 if (! before_relax)
2827 {
2828 /* We can get the final addresses only during and after
2829 relaxation. */
2830 if (first_frag->fr_next && first_frag->fr_next->fr_address)
2831 index += 3 * ((first_frag->fr_next->fr_address
2832 - first_frag->fr_address
2833 - first_frag->fr_fix) >> 4);
2834 }
2835 else
2836 /* We don't know what the final addresses will be. We try our
2837 best to estimate. */
2838 switch (first_frag->fr_type)
2839 {
2840 default:
2841 break;
2842
2843 case rs_space:
2844 as_fatal ("only constant space allocation is supported");
2845 break;
2846
2847 case rs_align:
2848 case rs_align_code:
2849 case rs_align_test:
2850 /* Take alignment into account. Assume the worst case
2851 before relaxation. */
2852 index += 3 * ((1 << first_frag->fr_offset) >> 4);
2853 break;
2854
2855 case rs_org:
2856 if (first_frag->fr_symbol)
2857 {
2858 as_fatal ("only constant offsets are supported");
2859 break;
2860 }
2861 case rs_fill:
2862 index += 3 * (first_frag->fr_offset >> 4);
2863 break;
2864 }
2865
2866 /* Add in the full size of the frag converted to instruction slots. */
2867 index += 3 * (first_frag->fr_fix >> 4);
2868 /* Subtract away the initial part before first_addr. */
2869 index -= (3 * ((first_addr >> 4) - (start_addr >> 4))
2870 + ((first_addr & 0x3) - (start_addr & 0x3)));
2871
2872 /* Move to the beginning of the next frag. */
2873 first_frag = first_frag->fr_next;
2874 first_addr = (unsigned long) &first_frag->fr_literal;
2875
2876 /* This can happen if there is section switching in the middle of a
2877 function, causing the frag chain for the function to be broken. */
2878 if (first_frag == NULL)
2879 {
2880 /* We get six warnings for one problem, because of the loop in
2881 fixup_unw_records, and because fixup_unw_records is called 3
2882 times: once before creating the variant frag, once to estimate
2883 its size, and once to relax it. This is unreasonable, so we use
2884 a static var to make sure we only emit the warning once. */
2885 static int warned = 0;
2886
2887 if (!warned)
2888 {
2889 as_warn ("Corrupted unwind info due to unsupported section switching");
2890 warned = 1;
2891 }
2892
2893 return index;
2894 }
2895 }
2896
2897 /* Add in the used part of the last frag. */
2898 index += (3 * ((slot_addr >> 4) - (first_addr >> 4))
2899 + ((slot_addr & 0x3) - (first_addr & 0x3)));
2900 return index;
2901 }
2902
2903 /* Optimize unwind record directives. */
2904
2905 static unw_rec_list *
2906 optimize_unw_records (list)
2907 unw_rec_list *list;
2908 {
2909 if (!list)
2910 return NULL;
2911
2912 /* If the only unwind record is ".prologue" or ".prologue" followed
2913 by ".body", then we can optimize the unwind directives away. */
2914 if (list->r.type == prologue
2915 && (list->next->r.type == endp
2916 || (list->next->r.type == body && list->next->next->r.type == endp)))
2917 return NULL;
2918
2919 return list;
2920 }
2921
2922 /* Given a complete record list, process any records which have
2923 unresolved fields, (ie length counts for a prologue). After
2924 this has been run, all necessary information should be available
2925 within each record to generate an image. */
2926
2927 static void
2928 fixup_unw_records (list, before_relax)
2929 unw_rec_list *list;
2930 int before_relax;
2931 {
2932 unw_rec_list *ptr, *region = 0;
2933 unsigned long first_addr = 0, rlen = 0, t;
2934 fragS *first_frag = 0;
2935
2936 for (ptr = list; ptr; ptr = ptr->next)
2937 {
2938 if (ptr->slot_number == SLOT_NUM_NOT_SET)
2939 as_bad (" Insn slot not set in unwind record.");
2940 t = slot_index (ptr->slot_number, ptr->slot_frag,
2941 first_addr, first_frag, before_relax);
2942 switch (ptr->r.type)
2943 {
2944 case prologue:
2945 case prologue_gr:
2946 case body:
2947 {
2948 unw_rec_list *last;
2949 int size;
2950 unsigned long last_addr = 0;
2951 fragS *last_frag = NULL;
2952
2953 first_addr = ptr->slot_number;
2954 first_frag = ptr->slot_frag;
2955 /* Find either the next body/prologue start, or the end of
2956 the function, and determine the size of the region. */
2957 for (last = ptr->next; last != NULL; last = last->next)
2958 if (last->r.type == prologue || last->r.type == prologue_gr
2959 || last->r.type == body || last->r.type == endp)
2960 {
2961 last_addr = last->slot_number;
2962 last_frag = last->slot_frag;
2963 break;
2964 }
2965 size = slot_index (last_addr, last_frag, first_addr, first_frag,
2966 before_relax);
2967 rlen = ptr->r.record.r.rlen = size;
2968 if (ptr->r.type == body)
2969 /* End of region. */
2970 region = 0;
2971 else
2972 region = ptr;
2973 break;
2974 }
2975 case epilogue:
2976 if (t < rlen)
2977 ptr->r.record.b.t = rlen - 1 - t;
2978 else
2979 /* This happens when a memory-stack-less procedure uses a
2980 ".restore sp" directive at the end of a region to pop
2981 the frame state. */
2982 ptr->r.record.b.t = 0;
2983 break;
2984
2985 case mem_stack_f:
2986 case mem_stack_v:
2987 case rp_when:
2988 case pfs_when:
2989 case preds_when:
2990 case unat_when:
2991 case lc_when:
2992 case fpsr_when:
2993 case priunat_when_gr:
2994 case priunat_when_mem:
2995 case bsp_when:
2996 case bspstore_when:
2997 case rnat_when:
2998 ptr->r.record.p.t = t;
2999 break;
3000
3001 case spill_reg:
3002 case spill_sprel:
3003 case spill_psprel:
3004 case spill_reg_p:
3005 case spill_sprel_p:
3006 case spill_psprel_p:
3007 ptr->r.record.x.t = t;
3008 break;
3009
3010 case frgr_mem:
3011 if (!region)
3012 {
3013 as_bad ("frgr_mem record before region record!");
3014 return;
3015 }
3016 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
3017 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
3018 set_imask (region, ptr->r.record.p.frmask, t, 1);
3019 set_imask (region, ptr->r.record.p.grmask, t, 2);
3020 break;
3021 case fr_mem:
3022 if (!region)
3023 {
3024 as_bad ("fr_mem record before region record!");
3025 return;
3026 }
3027 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
3028 set_imask (region, ptr->r.record.p.frmask, t, 1);
3029 break;
3030 case gr_mem:
3031 if (!region)
3032 {
3033 as_bad ("gr_mem record before region record!");
3034 return;
3035 }
3036 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
3037 set_imask (region, ptr->r.record.p.grmask, t, 2);
3038 break;
3039 case br_mem:
3040 if (!region)
3041 {
3042 as_bad ("br_mem record before region record!");
3043 return;
3044 }
3045 region->r.record.r.mask.br_mem |= ptr->r.record.p.brmask;
3046 set_imask (region, ptr->r.record.p.brmask, t, 3);
3047 break;
3048
3049 case gr_gr:
3050 if (!region)
3051 {
3052 as_bad ("gr_gr record before region record!");
3053 return;
3054 }
3055 set_imask (region, ptr->r.record.p.grmask, t, 2);
3056 break;
3057 case br_gr:
3058 if (!region)
3059 {
3060 as_bad ("br_gr record before region record!");
3061 return;
3062 }
3063 set_imask (region, ptr->r.record.p.brmask, t, 3);
3064 break;
3065
3066 default:
3067 break;
3068 }
3069 }
3070 }
3071
3072 /* Estimate the size of a frag before relaxing. We only have one type of frag
3073 to handle here, which is the unwind info frag. */
3074
3075 int
3076 ia64_estimate_size_before_relax (fragS *frag,
3077 asection *segtype ATTRIBUTE_UNUSED)
3078 {
3079 unw_rec_list *list;
3080 int len, size, pad;
3081
3082 /* ??? This code is identical to the first part of ia64_convert_frag. */
3083 list = (unw_rec_list *) frag->fr_opcode;
3084 fixup_unw_records (list, 0);
3085
3086 len = calc_record_size (list);
3087 /* pad to pointer-size boundary. */
3088 pad = len % md.pointer_size;
3089 if (pad != 0)
3090 len += md.pointer_size - pad;
3091 /* Add 8 for the header. */
3092 size = len + 8;
3093 /* Add a pointer for the personality offset. */
3094 if (frag->fr_offset)
3095 size += md.pointer_size;
3096
3097 /* fr_var carries the max_chars that we created the fragment with.
3098 We must, of course, have allocated enough memory earlier. */
3099 assert (frag->fr_var >= size);
3100
3101 return frag->fr_fix + size;
3102 }
3103
3104 /* This function converts a rs_machine_dependent variant frag into a
3105 normal fill frag with the unwind image from the the record list. */
3106 void
3107 ia64_convert_frag (fragS *frag)
3108 {
3109 unw_rec_list *list;
3110 int len, size, pad;
3111 valueT flag_value;
3112
3113 /* ??? This code is identical to ia64_estimate_size_before_relax. */
3114 list = (unw_rec_list *) frag->fr_opcode;
3115 fixup_unw_records (list, 0);
3116
3117 len = calc_record_size (list);
3118 /* pad to pointer-size boundary. */
3119 pad = len % md.pointer_size;
3120 if (pad != 0)
3121 len += md.pointer_size - pad;
3122 /* Add 8 for the header. */
3123 size = len + 8;
3124 /* Add a pointer for the personality offset. */
3125 if (frag->fr_offset)
3126 size += md.pointer_size;
3127
3128 /* fr_var carries the max_chars that we created the fragment with.
3129 We must, of course, have allocated enough memory earlier. */
3130 assert (frag->fr_var >= size);
3131
3132 /* Initialize the header area. fr_offset is initialized with
3133 unwind.personality_routine. */
3134 if (frag->fr_offset)
3135 {
3136 if (md.flags & EF_IA_64_ABI64)
3137 flag_value = (bfd_vma) 3 << 32;
3138 else
3139 /* 32-bit unwind info block. */
3140 flag_value = (bfd_vma) 0x1003 << 32;
3141 }
3142 else
3143 flag_value = 0;
3144
3145 md_number_to_chars (frag->fr_literal,
3146 (((bfd_vma) 1 << 48) /* Version. */
3147 | flag_value /* U & E handler flags. */
3148 | (len / md.pointer_size)), /* Length. */
3149 8);
3150
3151 /* Skip the header. */
3152 vbyte_mem_ptr = frag->fr_literal + 8;
3153 process_unw_records (list, output_vbyte_mem);
3154
3155 /* Fill the padding bytes with zeros. */
3156 if (pad != 0)
3157 md_number_to_chars (frag->fr_literal + len + 8 - md.pointer_size + pad, 0,
3158 md.pointer_size - pad);
3159
3160 frag->fr_fix += size;
3161 frag->fr_type = rs_fill;
3162 frag->fr_var = 0;
3163 frag->fr_offset = 0;
3164 }
3165
3166 static int
3167 parse_predicate_and_operand (e, qp, po)
3168 expressionS * e;
3169 unsigned * qp;
3170 const char * po;
3171 {
3172 int sep = parse_operand (e, ',');
3173
3174 *qp = e->X_add_number - REG_P;
3175 if (e->X_op != O_register || *qp > 63)
3176 {
3177 as_bad ("First operand to .%s must be a predicate", po);
3178 *qp = 0;
3179 }
3180 else if (*qp == 0)
3181 as_warn ("Pointless use of p0 as first operand to .%s", po);
3182 if (sep == ',')
3183 sep = parse_operand (e, ',');
3184 else
3185 e->X_op = O_absent;
3186 return sep;
3187 }
3188
3189 static void
3190 convert_expr_to_ab_reg (e, ab, regp, po, n)
3191 const expressionS *e;
3192 unsigned int *ab;
3193 unsigned int *regp;
3194 const char * po;
3195 int n;
3196 {
3197 unsigned int reg = e->X_add_number;
3198
3199 *ab = *regp = 0; /* Anything valid is good here. */
3200
3201 if (e->X_op != O_register)
3202 reg = REG_GR; /* Anything invalid is good here. */
3203
3204 if (reg >= (REG_GR + 4) && reg <= (REG_GR + 7))
3205 {
3206 *ab = 0;
3207 *regp = reg - REG_GR;
3208 }
3209 else if ((reg >= (REG_FR + 2) && reg <= (REG_FR + 5))
3210 || (reg >= (REG_FR + 16) && reg <= (REG_FR + 31)))
3211 {
3212 *ab = 1;
3213 *regp = reg - REG_FR;
3214 }
3215 else if (reg >= (REG_BR + 1) && reg <= (REG_BR + 5))
3216 {
3217 *ab = 2;
3218 *regp = reg - REG_BR;
3219 }
3220 else
3221 {
3222 *ab = 3;
3223 switch (reg)
3224 {
3225 case REG_PR: *regp = 0; break;
3226 case REG_PSP: *regp = 1; break;
3227 case REG_PRIUNAT: *regp = 2; break;
3228 case REG_BR + 0: *regp = 3; break;
3229 case REG_AR + AR_BSP: *regp = 4; break;
3230 case REG_AR + AR_BSPSTORE: *regp = 5; break;
3231 case REG_AR + AR_RNAT: *regp = 6; break;
3232 case REG_AR + AR_UNAT: *regp = 7; break;
3233 case REG_AR + AR_FPSR: *regp = 8; break;
3234 case REG_AR + AR_PFS: *regp = 9; break;
3235 case REG_AR + AR_LC: *regp = 10; break;
3236
3237 default:
3238 as_bad ("Operand %d to .%s must be a preserved register", n, po);
3239 break;
3240 }
3241 }
3242 }
3243
3244 static void
3245 convert_expr_to_xy_reg (e, xy, regp, po, n)
3246 const expressionS *e;
3247 unsigned int *xy;
3248 unsigned int *regp;
3249 const char * po;
3250 int n;
3251 {
3252 unsigned int reg = e->X_add_number;
3253
3254 *xy = *regp = 0; /* Anything valid is good here. */
3255
3256 if (e->X_op != O_register)
3257 reg = REG_GR; /* Anything invalid is good here. */
3258
3259 if (reg >= (REG_GR + 1) && reg <= (REG_GR + 127))
3260 {
3261 *xy = 0;
3262 *regp = reg - REG_GR;
3263 }
3264 else if (reg >= (REG_FR + 2) && reg <= (REG_FR + 127))
3265 {
3266 *xy = 1;
3267 *regp = reg - REG_FR;
3268 }
3269 else if (reg >= REG_BR && reg <= (REG_BR + 7))
3270 {
3271 *xy = 2;
3272 *regp = reg - REG_BR;
3273 }
3274 else
3275 as_bad ("Operand %d to .%s must be a writable register", n, po);
3276 }
3277
3278 static void
3279 dot_align (int arg)
3280 {
3281 /* The current frag is an alignment frag. */
3282 align_frag = frag_now;
3283 s_align_bytes (arg);
3284 }
3285
3286 static void
3287 dot_radix (dummy)
3288 int dummy ATTRIBUTE_UNUSED;
3289 {
3290 char *radix;
3291 int ch;
3292
3293 SKIP_WHITESPACE ();
3294
3295 if (is_it_end_of_statement ())
3296 return;
3297 radix = input_line_pointer;
3298 ch = get_symbol_end ();
3299 ia64_canonicalize_symbol_name (radix);
3300 if (strcasecmp (radix, "C"))
3301 as_bad ("Radix `%s' unsupported or invalid", radix);
3302 *input_line_pointer = ch;
3303 demand_empty_rest_of_line ();
3304 }
3305
3306 /* Helper function for .loc directives. If the assembler is not generating
3307 line number info, then we need to remember which instructions have a .loc
3308 directive, and only call dwarf2_gen_line_info for those instructions. */
3309
3310 static void
3311 dot_loc (int x)
3312 {
3313 CURR_SLOT.loc_directive_seen = 1;
3314 dwarf2_directive_loc (x);
3315 }
3316
3317 /* .sbss, .bss etc. are macros that expand into ".section SECNAME". */
3318 static void
3319 dot_special_section (which)
3320 int which;
3321 {
3322 set_section ((char *) special_section_name[which]);
3323 }
3324
3325 /* Return -1 for warning and 0 for error. */
3326
3327 static int
3328 unwind_diagnostic (const char * region, const char *directive)
3329 {
3330 if (md.unwind_check == unwind_check_warning)
3331 {
3332 as_warn (".%s outside of %s", directive, region);
3333 return -1;
3334 }
3335 else
3336 {
3337 as_bad (".%s outside of %s", directive, region);
3338 ignore_rest_of_line ();
3339 return 0;
3340 }
3341 }
3342
3343 /* Return 1 if a directive is in a procedure, -1 if a directive isn't in
3344 a procedure but the unwind directive check is set to warning, 0 if
3345 a directive isn't in a procedure and the unwind directive check is set
3346 to error. */
3347
3348 static int
3349 in_procedure (const char *directive)
3350 {
3351 if (unwind.proc_pending.sym
3352 && (!unwind.saved_text_seg || strcmp (directive, "endp") == 0))
3353 return 1;
3354 return unwind_diagnostic ("procedure", directive);
3355 }
3356
3357 /* Return 1 if a directive is in a prologue, -1 if a directive isn't in
3358 a prologue but the unwind directive check is set to warning, 0 if
3359 a directive isn't in a prologue and the unwind directive check is set
3360 to error. */
3361
3362 static int
3363 in_prologue (const char *directive)
3364 {
3365 int in = in_procedure (directive);
3366
3367 if (in > 0 && !unwind.prologue)
3368 in = unwind_diagnostic ("prologue", directive);
3369 check_pending_save ();
3370 return in;
3371 }
3372
3373 /* Return 1 if a directive is in a body, -1 if a directive isn't in
3374 a body but the unwind directive check is set to warning, 0 if
3375 a directive isn't in a body and the unwind directive check is set
3376 to error. */
3377
3378 static int
3379 in_body (const char *directive)
3380 {
3381 int in = in_procedure (directive);
3382
3383 if (in > 0 && !unwind.body)
3384 in = unwind_diagnostic ("body region", directive);
3385 return in;
3386 }
3387
3388 static void
3389 add_unwind_entry (ptr, sep)
3390 unw_rec_list *ptr;
3391 int sep;
3392 {
3393 if (ptr)
3394 {
3395 if (unwind.tail)
3396 unwind.tail->next = ptr;
3397 else
3398 unwind.list = ptr;
3399 unwind.tail = ptr;
3400
3401 /* The current entry can in fact be a chain of unwind entries. */
3402 if (unwind.current_entry == NULL)
3403 unwind.current_entry = ptr;
3404 }
3405
3406 /* The current entry can in fact be a chain of unwind entries. */
3407 if (unwind.current_entry == NULL)
3408 unwind.current_entry = ptr;
3409
3410 if (sep == ',')
3411 {
3412 /* Parse a tag permitted for the current directive. */
3413 int ch;
3414
3415 SKIP_WHITESPACE ();
3416 ch = get_symbol_end ();
3417 /* FIXME: For now, just issue a warning that this isn't implemented. */
3418 {
3419 static int warned;
3420
3421 if (!warned)
3422 {
3423 warned = 1;
3424 as_warn ("Tags on unwind pseudo-ops aren't supported, yet");
3425 }
3426 }
3427 *input_line_pointer = ch;
3428 }
3429 if (sep != NOT_A_CHAR)
3430 demand_empty_rest_of_line ();
3431 }
3432
3433 static void
3434 dot_fframe (dummy)
3435 int dummy ATTRIBUTE_UNUSED;
3436 {
3437 expressionS e;
3438 int sep;
3439
3440 if (!in_prologue ("fframe"))
3441 return;
3442
3443 sep = parse_operand (&e, ',');
3444
3445 if (e.X_op != O_constant)
3446 {
3447 as_bad ("First operand to .fframe must be a constant");
3448 e.X_add_number = 0;
3449 }
3450 add_unwind_entry (output_mem_stack_f (e.X_add_number), sep);
3451 }
3452
3453 static void
3454 dot_vframe (dummy)
3455 int dummy ATTRIBUTE_UNUSED;
3456 {
3457 expressionS e;
3458 unsigned reg;
3459 int sep;
3460
3461 if (!in_prologue ("vframe"))
3462 return;
3463
3464 sep = parse_operand (&e, ',');
3465 reg = e.X_add_number - REG_GR;
3466 if (e.X_op != O_register || reg > 127)
3467 {
3468 as_bad ("First operand to .vframe must be a general register");
3469 reg = 0;
3470 }
3471 add_unwind_entry (output_mem_stack_v (), sep);
3472 if (! (unwind.prologue_mask & 2))
3473 add_unwind_entry (output_psp_gr (reg), NOT_A_CHAR);
3474 else if (reg != unwind.prologue_gr
3475 + (unsigned) popcount (unwind.prologue_mask & (-2 << 1)))
3476 as_warn ("Operand of .vframe contradicts .prologue");
3477 }
3478
3479 static void
3480 dot_vframesp (psp)
3481 int psp;
3482 {
3483 expressionS e;
3484 int sep;
3485
3486 if (psp)
3487 as_warn (".vframepsp is meaningless, assuming .vframesp was meant");
3488
3489 if (!in_prologue ("vframesp"))
3490 return;
3491
3492 sep = parse_operand (&e, ',');
3493 if (e.X_op != O_constant)
3494 {
3495 as_bad ("Operand to .vframesp must be a constant (sp-relative offset)");
3496 e.X_add_number = 0;
3497 }
3498 add_unwind_entry (output_mem_stack_v (), sep);
3499 add_unwind_entry (output_psp_sprel (e.X_add_number), NOT_A_CHAR);
3500 }
3501
3502 static void
3503 dot_save (dummy)
3504 int dummy ATTRIBUTE_UNUSED;
3505 {
3506 expressionS e1, e2;
3507 unsigned reg1, reg2;
3508 int sep;
3509
3510 if (!in_prologue ("save"))
3511 return;
3512
3513 sep = parse_operand (&e1, ',');
3514 if (sep == ',')
3515 sep = parse_operand (&e2, ',');
3516 else
3517 e2.X_op = O_absent;
3518
3519 reg1 = e1.X_add_number;
3520 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3521 if (e1.X_op != O_register)
3522 {
3523 as_bad ("First operand to .save not a register");
3524 reg1 = REG_PR; /* Anything valid is good here. */
3525 }
3526 reg2 = e2.X_add_number - REG_GR;
3527 if (e2.X_op != O_register || reg2 > 127)
3528 {
3529 as_bad ("Second operand to .save not a valid register");
3530 reg2 = 0;
3531 }
3532 switch (reg1)
3533 {
3534 case REG_AR + AR_BSP:
3535 add_unwind_entry (output_bsp_when (), sep);
3536 add_unwind_entry (output_bsp_gr (reg2), NOT_A_CHAR);
3537 break;
3538 case REG_AR + AR_BSPSTORE:
3539 add_unwind_entry (output_bspstore_when (), sep);
3540 add_unwind_entry (output_bspstore_gr (reg2), NOT_A_CHAR);
3541 break;
3542 case REG_AR + AR_RNAT:
3543 add_unwind_entry (output_rnat_when (), sep);
3544 add_unwind_entry (output_rnat_gr (reg2), NOT_A_CHAR);
3545 break;
3546 case REG_AR + AR_UNAT:
3547 add_unwind_entry (output_unat_when (), sep);
3548 add_unwind_entry (output_unat_gr (reg2), NOT_A_CHAR);
3549 break;
3550 case REG_AR + AR_FPSR:
3551 add_unwind_entry (output_fpsr_when (), sep);
3552 add_unwind_entry (output_fpsr_gr (reg2), NOT_A_CHAR);
3553 break;
3554 case REG_AR + AR_PFS:
3555 add_unwind_entry (output_pfs_when (), sep);
3556 if (! (unwind.prologue_mask & 4))
3557 add_unwind_entry (output_pfs_gr (reg2), NOT_A_CHAR);
3558 else if (reg2 != unwind.prologue_gr
3559 + (unsigned) popcount (unwind.prologue_mask & (-4 << 1)))
3560 as_warn ("Second operand of .save contradicts .prologue");
3561 break;
3562 case REG_AR + AR_LC:
3563 add_unwind_entry (output_lc_when (), sep);
3564 add_unwind_entry (output_lc_gr (reg2), NOT_A_CHAR);
3565 break;
3566 case REG_BR:
3567 add_unwind_entry (output_rp_when (), sep);
3568 if (! (unwind.prologue_mask & 8))
3569 add_unwind_entry (output_rp_gr (reg2), NOT_A_CHAR);
3570 else if (reg2 != unwind.prologue_gr)
3571 as_warn ("Second operand of .save contradicts .prologue");
3572 break;
3573 case REG_PR:
3574 add_unwind_entry (output_preds_when (), sep);
3575 if (! (unwind.prologue_mask & 1))
3576 add_unwind_entry (output_preds_gr (reg2), NOT_A_CHAR);
3577 else if (reg2 != unwind.prologue_gr
3578 + (unsigned) popcount (unwind.prologue_mask & (-1 << 1)))
3579 as_warn ("Second operand of .save contradicts .prologue");
3580 break;
3581 case REG_PRIUNAT:
3582 add_unwind_entry (output_priunat_when_gr (), sep);
3583 add_unwind_entry (output_priunat_gr (reg2), NOT_A_CHAR);
3584 break;
3585 default:
3586 as_bad ("First operand to .save not a valid register");
3587 add_unwind_entry (NULL, sep);
3588 break;
3589 }
3590 }
3591
3592 static void
3593 dot_restore (dummy)
3594 int dummy ATTRIBUTE_UNUSED;
3595 {
3596 expressionS e1;
3597 unsigned long ecount; /* # of _additional_ regions to pop */
3598 int sep;
3599
3600 if (!in_body ("restore"))
3601 return;
3602
3603 sep = parse_operand (&e1, ',');
3604 if (e1.X_op != O_register || e1.X_add_number != REG_GR + 12)
3605 as_bad ("First operand to .restore must be stack pointer (sp)");
3606
3607 if (sep == ',')
3608 {
3609 expressionS e2;
3610
3611 sep = parse_operand (&e2, ',');
3612 if (e2.X_op != O_constant || e2.X_add_number < 0)
3613 {
3614 as_bad ("Second operand to .restore must be a constant >= 0");
3615 e2.X_add_number = 0;
3616 }
3617 ecount = e2.X_add_number;
3618 }
3619 else
3620 ecount = unwind.prologue_count - 1;
3621
3622 if (ecount >= unwind.prologue_count)
3623 {
3624 as_bad ("Epilogue count of %lu exceeds number of nested prologues (%u)",
3625 ecount + 1, unwind.prologue_count);
3626 ecount = 0;
3627 }
3628
3629 add_unwind_entry (output_epilogue (ecount), sep);
3630
3631 if (ecount < unwind.prologue_count)
3632 unwind.prologue_count -= ecount + 1;
3633 else
3634 unwind.prologue_count = 0;
3635 }
3636
3637 static void
3638 dot_restorereg (pred)
3639 int pred;
3640 {
3641 unsigned int qp, ab, reg;
3642 expressionS e;
3643 int sep;
3644 const char * const po = pred ? "restorereg.p" : "restorereg";
3645
3646 if (!in_procedure (po))
3647 return;
3648
3649 if (pred)
3650 sep = parse_predicate_and_operand (&e, &qp, po);
3651 else
3652 {
3653 sep = parse_operand (&e, ',');
3654 qp = 0;
3655 }
3656 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
3657
3658 add_unwind_entry (output_spill_reg (ab, reg, 0, 0, qp), sep);
3659 }
3660
3661 static char *special_linkonce_name[] =
3662 {
3663 ".gnu.linkonce.ia64unw.", ".gnu.linkonce.ia64unwi."
3664 };
3665
3666 static void
3667 start_unwind_section (const segT text_seg, int sec_index)
3668 {
3669 /*
3670 Use a slightly ugly scheme to derive the unwind section names from
3671 the text section name:
3672
3673 text sect. unwind table sect.
3674 name: name: comments:
3675 ---------- ----------------- --------------------------------
3676 .text .IA_64.unwind
3677 .text.foo .IA_64.unwind.text.foo
3678 .foo .IA_64.unwind.foo
3679 .gnu.linkonce.t.foo
3680 .gnu.linkonce.ia64unw.foo
3681 _info .IA_64.unwind_info gas issues error message (ditto)
3682 _infoFOO .IA_64.unwind_infoFOO gas issues error message (ditto)
3683
3684 This mapping is done so that:
3685
3686 (a) An object file with unwind info only in .text will use
3687 unwind section names .IA_64.unwind and .IA_64.unwind_info.
3688 This follows the letter of the ABI and also ensures backwards
3689 compatibility with older toolchains.
3690
3691 (b) An object file with unwind info in multiple text sections
3692 will use separate unwind sections for each text section.
3693 This allows us to properly set the "sh_info" and "sh_link"
3694 fields in SHT_IA_64_UNWIND as required by the ABI and also
3695 lets GNU ld support programs with multiple segments
3696 containing unwind info (as might be the case for certain
3697 embedded applications).
3698
3699 (c) An error is issued if there would be a name clash.
3700 */
3701
3702 const char *text_name, *sec_text_name;
3703 char *sec_name;
3704 const char *prefix = special_section_name [sec_index];
3705 const char *suffix;
3706 size_t prefix_len, suffix_len, sec_name_len;
3707
3708 sec_text_name = segment_name (text_seg);
3709 text_name = sec_text_name;
3710 if (strncmp (text_name, "_info", 5) == 0)
3711 {
3712 as_bad ("Illegal section name `%s' (causes unwind section name clash)",
3713 text_name);
3714 ignore_rest_of_line ();
3715 return;
3716 }
3717 if (strcmp (text_name, ".text") == 0)
3718 text_name = "";
3719
3720 /* Build the unwind section name by appending the (possibly stripped)
3721 text section name to the unwind prefix. */
3722 suffix = text_name;
3723 if (strncmp (text_name, ".gnu.linkonce.t.",
3724 sizeof (".gnu.linkonce.t.") - 1) == 0)
3725 {
3726 prefix = special_linkonce_name [sec_index - SPECIAL_SECTION_UNWIND];
3727 suffix += sizeof (".gnu.linkonce.t.") - 1;
3728 }
3729
3730 prefix_len = strlen (prefix);
3731 suffix_len = strlen (suffix);
3732 sec_name_len = prefix_len + suffix_len;
3733 sec_name = alloca (sec_name_len + 1);
3734 memcpy (sec_name, prefix, prefix_len);
3735 memcpy (sec_name + prefix_len, suffix, suffix_len);
3736 sec_name [sec_name_len] = '\0';
3737
3738 /* Handle COMDAT group. */
3739 if ((text_seg->flags & SEC_LINK_ONCE) != 0
3740 && (elf_section_flags (text_seg) & SHF_GROUP) != 0)
3741 {
3742 char *section;
3743 size_t len, group_name_len;
3744 const char *group_name = elf_group_name (text_seg);
3745
3746 if (group_name == NULL)
3747 {
3748 as_bad ("Group section `%s' has no group signature",
3749 sec_text_name);
3750 ignore_rest_of_line ();
3751 return;
3752 }
3753 /* We have to construct a fake section directive. */
3754 group_name_len = strlen (group_name);
3755 len = (sec_name_len
3756 + 16 /* ,"aG",@progbits, */
3757 + group_name_len /* ,group_name */
3758 + 7); /* ,comdat */
3759
3760 section = alloca (len + 1);
3761 memcpy (section, sec_name, sec_name_len);
3762 memcpy (section + sec_name_len, ",\"aG\",@progbits,", 16);
3763 memcpy (section + sec_name_len + 16, group_name, group_name_len);
3764 memcpy (section + len - 7, ",comdat", 7);
3765 section [len] = '\0';
3766 set_section (section);
3767 }
3768 else
3769 {
3770 set_section (sec_name);
3771 bfd_set_section_flags (stdoutput, now_seg,
3772 SEC_LOAD | SEC_ALLOC | SEC_READONLY);
3773 }
3774
3775 elf_linked_to_section (now_seg) = text_seg;
3776 }
3777
3778 static void
3779 generate_unwind_image (const segT text_seg)
3780 {
3781 int size, pad;
3782 unw_rec_list *list;
3783
3784 /* Mark the end of the unwind info, so that we can compute the size of the
3785 last unwind region. */
3786 add_unwind_entry (output_endp (), NOT_A_CHAR);
3787
3788 /* Force out pending instructions, to make sure all unwind records have
3789 a valid slot_number field. */
3790 ia64_flush_insns ();
3791
3792 /* Generate the unwind record. */
3793 list = optimize_unw_records (unwind.list);
3794 fixup_unw_records (list, 1);
3795 size = calc_record_size (list);
3796
3797 if (size > 0 || unwind.force_unwind_entry)
3798 {
3799 unwind.force_unwind_entry = 0;
3800 /* pad to pointer-size boundary. */
3801 pad = size % md.pointer_size;
3802 if (pad != 0)
3803 size += md.pointer_size - pad;
3804 /* Add 8 for the header. */
3805 size += 8;
3806 /* Add a pointer for the personality offset. */
3807 if (unwind.personality_routine)
3808 size += md.pointer_size;
3809 }
3810
3811 /* If there are unwind records, switch sections, and output the info. */
3812 if (size != 0)
3813 {
3814 expressionS exp;
3815 bfd_reloc_code_real_type reloc;
3816
3817 start_unwind_section (text_seg, SPECIAL_SECTION_UNWIND_INFO);
3818
3819 /* Make sure the section has 4 byte alignment for ILP32 and
3820 8 byte alignment for LP64. */
3821 frag_align (md.pointer_size_shift, 0, 0);
3822 record_alignment (now_seg, md.pointer_size_shift);
3823
3824 /* Set expression which points to start of unwind descriptor area. */
3825 unwind.info = expr_build_dot ();
3826
3827 frag_var (rs_machine_dependent, size, size, 0, 0,
3828 (offsetT) (long) unwind.personality_routine,
3829 (char *) list);
3830
3831 /* Add the personality address to the image. */
3832 if (unwind.personality_routine != 0)
3833 {
3834 exp.X_op = O_symbol;
3835 exp.X_add_symbol = unwind.personality_routine;
3836 exp.X_add_number = 0;
3837
3838 if (md.flags & EF_IA_64_BE)
3839 {
3840 if (md.flags & EF_IA_64_ABI64)
3841 reloc = BFD_RELOC_IA64_LTOFF_FPTR64MSB;
3842 else
3843 reloc = BFD_RELOC_IA64_LTOFF_FPTR32MSB;
3844 }
3845 else
3846 {
3847 if (md.flags & EF_IA_64_ABI64)
3848 reloc = BFD_RELOC_IA64_LTOFF_FPTR64LSB;
3849 else
3850 reloc = BFD_RELOC_IA64_LTOFF_FPTR32LSB;
3851 }
3852
3853 fix_new_exp (frag_now, frag_now_fix () - md.pointer_size,
3854 md.pointer_size, &exp, 0, reloc);
3855 unwind.personality_routine = 0;
3856 }
3857 }
3858
3859 free_saved_prologue_counts ();
3860 unwind.list = unwind.tail = unwind.current_entry = NULL;
3861 }
3862
3863 static void
3864 dot_handlerdata (dummy)
3865 int dummy ATTRIBUTE_UNUSED;
3866 {
3867 if (!in_procedure ("handlerdata"))
3868 return;
3869 unwind.force_unwind_entry = 1;
3870
3871 /* Remember which segment we're in so we can switch back after .endp */
3872 unwind.saved_text_seg = now_seg;
3873 unwind.saved_text_subseg = now_subseg;
3874
3875 /* Generate unwind info into unwind-info section and then leave that
3876 section as the currently active one so dataXX directives go into
3877 the language specific data area of the unwind info block. */
3878 generate_unwind_image (now_seg);
3879 demand_empty_rest_of_line ();
3880 }
3881
3882 static void
3883 dot_unwentry (dummy)
3884 int dummy ATTRIBUTE_UNUSED;
3885 {
3886 if (!in_procedure ("unwentry"))
3887 return;
3888 unwind.force_unwind_entry = 1;
3889 demand_empty_rest_of_line ();
3890 }
3891
3892 static void
3893 dot_altrp (dummy)
3894 int dummy ATTRIBUTE_UNUSED;
3895 {
3896 expressionS e;
3897 unsigned reg;
3898
3899 if (!in_prologue ("altrp"))
3900 return;
3901
3902 parse_operand (&e, 0);
3903 reg = e.X_add_number - REG_BR;
3904 if (e.X_op != O_register || reg > 7)
3905 {
3906 as_bad ("First operand to .altrp not a valid branch register");
3907 reg = 0;
3908 }
3909 add_unwind_entry (output_rp_br (reg), 0);
3910 }
3911
3912 static void
3913 dot_savemem (psprel)
3914 int psprel;
3915 {
3916 expressionS e1, e2;
3917 int sep;
3918 int reg1, val;
3919 const char * const po = psprel ? "savepsp" : "savesp";
3920
3921 if (!in_prologue (po))
3922 return;
3923
3924 sep = parse_operand (&e1, ',');
3925 if (sep == ',')
3926 sep = parse_operand (&e2, ',');
3927 else
3928 e2.X_op = O_absent;
3929
3930 reg1 = e1.X_add_number;
3931 val = e2.X_add_number;
3932
3933 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3934 if (e1.X_op != O_register)
3935 {
3936 as_bad ("First operand to .%s not a register", po);
3937 reg1 = REG_PR; /* Anything valid is good here. */
3938 }
3939 if (e2.X_op != O_constant)
3940 {
3941 as_bad ("Second operand to .%s not a constant", po);
3942 val = 0;
3943 }
3944
3945 switch (reg1)
3946 {
3947 case REG_AR + AR_BSP:
3948 add_unwind_entry (output_bsp_when (), sep);
3949 add_unwind_entry ((psprel
3950 ? output_bsp_psprel
3951 : output_bsp_sprel) (val), NOT_A_CHAR);
3952 break;
3953 case REG_AR + AR_BSPSTORE:
3954 add_unwind_entry (output_bspstore_when (), sep);
3955 add_unwind_entry ((psprel
3956 ? output_bspstore_psprel
3957 : output_bspstore_sprel) (val), NOT_A_CHAR);
3958 break;
3959 case REG_AR + AR_RNAT:
3960 add_unwind_entry (output_rnat_when (), sep);
3961 add_unwind_entry ((psprel
3962 ? output_rnat_psprel
3963 : output_rnat_sprel) (val), NOT_A_CHAR);
3964 break;
3965 case REG_AR + AR_UNAT:
3966 add_unwind_entry (output_unat_when (), sep);
3967 add_unwind_entry ((psprel
3968 ? output_unat_psprel
3969 : output_unat_sprel) (val), NOT_A_CHAR);
3970 break;
3971 case REG_AR + AR_FPSR:
3972 add_unwind_entry (output_fpsr_when (), sep);
3973 add_unwind_entry ((psprel
3974 ? output_fpsr_psprel
3975 : output_fpsr_sprel) (val), NOT_A_CHAR);
3976 break;
3977 case REG_AR + AR_PFS:
3978 add_unwind_entry (output_pfs_when (), sep);
3979 add_unwind_entry ((psprel
3980 ? output_pfs_psprel
3981 : output_pfs_sprel) (val), NOT_A_CHAR);
3982 break;
3983 case REG_AR + AR_LC:
3984 add_unwind_entry (output_lc_when (), sep);
3985 add_unwind_entry ((psprel
3986 ? output_lc_psprel
3987 : output_lc_sprel) (val), NOT_A_CHAR);
3988 break;
3989 case REG_BR:
3990 add_unwind_entry (output_rp_when (), sep);
3991 add_unwind_entry ((psprel
3992 ? output_rp_psprel
3993 : output_rp_sprel) (val), NOT_A_CHAR);
3994 break;
3995 case REG_PR:
3996 add_unwind_entry (output_preds_when (), sep);
3997 add_unwind_entry ((psprel
3998 ? output_preds_psprel
3999 : output_preds_sprel) (val), NOT_A_CHAR);
4000 break;
4001 case REG_PRIUNAT:
4002 add_unwind_entry (output_priunat_when_mem (), sep);
4003 add_unwind_entry ((psprel
4004 ? output_priunat_psprel
4005 : output_priunat_sprel) (val), NOT_A_CHAR);
4006 break;
4007 default:
4008 as_bad ("First operand to .%s not a valid register", po);
4009 add_unwind_entry (NULL, sep);
4010 break;
4011 }
4012 }
4013
4014 static void
4015 dot_saveg (dummy)
4016 int dummy ATTRIBUTE_UNUSED;
4017 {
4018 expressionS e;
4019 unsigned grmask;
4020 int sep;
4021
4022 if (!in_prologue ("save.g"))
4023 return;
4024
4025 sep = parse_operand (&e, ',');
4026
4027 grmask = e.X_add_number;
4028 if (e.X_op != O_constant
4029 || e.X_add_number <= 0
4030 || e.X_add_number > 0xf)
4031 {
4032 as_bad ("First operand to .save.g must be a positive 4-bit constant");
4033 grmask = 0;
4034 }
4035
4036 if (sep == ',')
4037 {
4038 unsigned reg;
4039 int n = popcount (grmask);
4040
4041 parse_operand (&e, 0);
4042 reg = e.X_add_number - REG_GR;
4043 if (e.X_op != O_register || reg > 127)
4044 {
4045 as_bad ("Second operand to .save.g must be a general register");
4046 reg = 0;
4047 }
4048 else if (reg > 128U - n)
4049 {
4050 as_bad ("Second operand to .save.g must be the first of %d general registers", n);
4051 reg = 0;
4052 }
4053 add_unwind_entry (output_gr_gr (grmask, reg), 0);
4054 }
4055 else
4056 add_unwind_entry (output_gr_mem (grmask), 0);
4057 }
4058
4059 static void
4060 dot_savef (dummy)
4061 int dummy ATTRIBUTE_UNUSED;
4062 {
4063 expressionS e;
4064
4065 if (!in_prologue ("save.f"))
4066 return;
4067
4068 parse_operand (&e, 0);
4069
4070 if (e.X_op != O_constant
4071 || e.X_add_number <= 0
4072 || e.X_add_number > 0xfffff)
4073 {
4074 as_bad ("Operand to .save.f must be a positive 20-bit constant");
4075 e.X_add_number = 0;
4076 }
4077 add_unwind_entry (output_fr_mem (e.X_add_number), 0);
4078 }
4079
4080 static void
4081 dot_saveb (dummy)
4082 int dummy ATTRIBUTE_UNUSED;
4083 {
4084 expressionS e;
4085 unsigned brmask;
4086 int sep;
4087
4088 if (!in_prologue ("save.b"))
4089 return;
4090
4091 sep = parse_operand (&e, ',');
4092
4093 brmask = e.X_add_number;
4094 if (e.X_op != O_constant
4095 || e.X_add_number <= 0
4096 || e.X_add_number > 0x1f)
4097 {
4098 as_bad ("First operand to .save.b must be a positive 5-bit constant");
4099 brmask = 0;
4100 }
4101
4102 if (sep == ',')
4103 {
4104 unsigned reg;
4105 int n = popcount (brmask);
4106
4107 parse_operand (&e, 0);
4108 reg = e.X_add_number - REG_GR;
4109 if (e.X_op != O_register || reg > 127)
4110 {
4111 as_bad ("Second operand to .save.b must be a general register");
4112 reg = 0;
4113 }
4114 else if (reg > 128U - n)
4115 {
4116 as_bad ("Second operand to .save.b must be the first of %d general registers", n);
4117 reg = 0;
4118 }
4119 add_unwind_entry (output_br_gr (brmask, reg), 0);
4120 }
4121 else
4122 add_unwind_entry (output_br_mem (brmask), 0);
4123 }
4124
4125 static void
4126 dot_savegf (dummy)
4127 int dummy ATTRIBUTE_UNUSED;
4128 {
4129 expressionS e1, e2;
4130
4131 if (!in_prologue ("save.gf"))
4132 return;
4133
4134 if (parse_operand (&e1, ',') == ',')
4135 parse_operand (&e2, 0);
4136 else
4137 e2.X_op = O_absent;
4138
4139 if (e1.X_op != O_constant
4140 || e1.X_add_number < 0
4141 || e1.X_add_number > 0xf)
4142 {
4143 as_bad ("First operand to .save.gf must be a non-negative 4-bit constant");
4144 e1.X_op = O_absent;
4145 e1.X_add_number = 0;
4146 }
4147 if (e2.X_op != O_constant
4148 || e2.X_add_number < 0
4149 || e2.X_add_number > 0xfffff)
4150 {
4151 as_bad ("Second operand to .save.gf must be a non-negative 20-bit constant");
4152 e2.X_op = O_absent;
4153 e2.X_add_number = 0;
4154 }
4155 if (e1.X_op == O_constant
4156 && e2.X_op == O_constant
4157 && e1.X_add_number == 0
4158 && e2.X_add_number == 0)
4159 as_bad ("Operands to .save.gf may not be both zero");
4160
4161 add_unwind_entry (output_frgr_mem (e1.X_add_number, e2.X_add_number), 0);
4162 }
4163
4164 static void
4165 dot_spill (dummy)
4166 int dummy ATTRIBUTE_UNUSED;
4167 {
4168 expressionS e;
4169
4170 if (!in_prologue ("spill"))
4171 return;
4172
4173 parse_operand (&e, 0);
4174
4175 if (e.X_op != O_constant)
4176 {
4177 as_bad ("Operand to .spill must be a constant");
4178 e.X_add_number = 0;
4179 }
4180 add_unwind_entry (output_spill_base (e.X_add_number), 0);
4181 }
4182
4183 static void
4184 dot_spillreg (pred)
4185 int pred;
4186 {
4187 int sep;
4188 unsigned int qp, ab, xy, reg, treg;
4189 expressionS e;
4190 const char * const po = pred ? "spillreg.p" : "spillreg";
4191
4192 if (!in_procedure (po))
4193 return;
4194
4195 if (pred)
4196 sep = parse_predicate_and_operand (&e, &qp, po);
4197 else
4198 {
4199 sep = parse_operand (&e, ',');
4200 qp = 0;
4201 }
4202 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
4203
4204 if (sep == ',')
4205 sep = parse_operand (&e, ',');
4206 else
4207 e.X_op = O_absent;
4208 convert_expr_to_xy_reg (&e, &xy, &treg, po, 2 + pred);
4209
4210 add_unwind_entry (output_spill_reg (ab, reg, treg, xy, qp), sep);
4211 }
4212
4213 static void
4214 dot_spillmem (psprel)
4215 int psprel;
4216 {
4217 expressionS e;
4218 int pred = (psprel < 0), sep;
4219 unsigned int qp, ab, reg;
4220 const char * po;
4221
4222 if (pred)
4223 {
4224 psprel = ~psprel;
4225 po = psprel ? "spillpsp.p" : "spillsp.p";
4226 }
4227 else
4228 po = psprel ? "spillpsp" : "spillsp";
4229
4230 if (!in_procedure (po))
4231 return;
4232
4233 if (pred)
4234 sep = parse_predicate_and_operand (&e, &qp, po);
4235 else
4236 {
4237 sep = parse_operand (&e, ',');
4238 qp = 0;
4239 }
4240 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
4241
4242 if (sep == ',')
4243 sep = parse_operand (&e, ',');
4244 else
4245 e.X_op = O_absent;
4246 if (e.X_op != O_constant)
4247 {
4248 as_bad ("Operand %d to .%s must be a constant", 2 + pred, po);
4249 e.X_add_number = 0;
4250 }
4251
4252 if (psprel)
4253 add_unwind_entry (output_spill_psprel (ab, reg, e.X_add_number, qp), sep);
4254 else
4255 add_unwind_entry (output_spill_sprel (ab, reg, e.X_add_number, qp), sep);
4256 }
4257
4258 static unsigned int
4259 get_saved_prologue_count (lbl)
4260 unsigned long lbl;
4261 {
4262 label_prologue_count *lpc = unwind.saved_prologue_counts;
4263
4264 while (lpc != NULL && lpc->label_number != lbl)
4265 lpc = lpc->next;
4266
4267 if (lpc != NULL)
4268 return lpc->prologue_count;
4269
4270 as_bad ("Missing .label_state %ld", lbl);
4271 return 1;
4272 }
4273
4274 static void
4275 save_prologue_count (lbl, count)
4276 unsigned long lbl;
4277 unsigned int count;
4278 {
4279 label_prologue_count *lpc = unwind.saved_prologue_counts;
4280
4281 while (lpc != NULL && lpc->label_number != lbl)
4282 lpc = lpc->next;
4283
4284 if (lpc != NULL)
4285 lpc->prologue_count = count;
4286 else
4287 {
4288 label_prologue_count *new_lpc = xmalloc (sizeof (* new_lpc));
4289
4290 new_lpc->next = unwind.saved_prologue_counts;
4291 new_lpc->label_number = lbl;
4292 new_lpc->prologue_count = count;
4293 unwind.saved_prologue_counts = new_lpc;
4294 }
4295 }
4296
4297 static void
4298 free_saved_prologue_counts ()
4299 {
4300 label_prologue_count *lpc = unwind.saved_prologue_counts;
4301 label_prologue_count *next;
4302
4303 while (lpc != NULL)
4304 {
4305 next = lpc->next;
4306 free (lpc);
4307 lpc = next;
4308 }
4309
4310 unwind.saved_prologue_counts = NULL;
4311 }
4312
4313 static void
4314 dot_label_state (dummy)
4315 int dummy ATTRIBUTE_UNUSED;
4316 {
4317 expressionS e;
4318
4319 if (!in_body ("label_state"))
4320 return;
4321
4322 parse_operand (&e, 0);
4323 if (e.X_op == O_constant)
4324 save_prologue_count (e.X_add_number, unwind.prologue_count);
4325 else
4326 {
4327 as_bad ("Operand to .label_state must be a constant");
4328 e.X_add_number = 0;
4329 }
4330 add_unwind_entry (output_label_state (e.X_add_number), 0);
4331 }
4332
4333 static void
4334 dot_copy_state (dummy)
4335 int dummy ATTRIBUTE_UNUSED;
4336 {
4337 expressionS e;
4338
4339 if (!in_body ("copy_state"))
4340 return;
4341
4342 parse_operand (&e, 0);
4343 if (e.X_op == O_constant)
4344 unwind.prologue_count = get_saved_prologue_count (e.X_add_number);
4345 else
4346 {
4347 as_bad ("Operand to .copy_state must be a constant");
4348 e.X_add_number = 0;
4349 }
4350 add_unwind_entry (output_copy_state (e.X_add_number), 0);
4351 }
4352
4353 static void
4354 dot_unwabi (dummy)
4355 int dummy ATTRIBUTE_UNUSED;
4356 {
4357 expressionS e1, e2;
4358 unsigned char sep;
4359
4360 if (!in_prologue ("unwabi"))
4361 return;
4362
4363 sep = parse_operand (&e1, ',');
4364 if (sep == ',')
4365 parse_operand (&e2, 0);
4366 else
4367 e2.X_op = O_absent;
4368
4369 if (e1.X_op != O_constant)
4370 {
4371 as_bad ("First operand to .unwabi must be a constant");
4372 e1.X_add_number = 0;
4373 }
4374
4375 if (e2.X_op != O_constant)
4376 {
4377 as_bad ("Second operand to .unwabi must be a constant");
4378 e2.X_add_number = 0;
4379 }
4380
4381 add_unwind_entry (output_unwabi (e1.X_add_number, e2.X_add_number), 0);
4382 }
4383
4384 static void
4385 dot_personality (dummy)
4386 int dummy ATTRIBUTE_UNUSED;
4387 {
4388 char *name, *p, c;
4389 if (!in_procedure ("personality"))
4390 return;
4391 SKIP_WHITESPACE ();
4392 name = input_line_pointer;
4393 c = get_symbol_end ();
4394 p = input_line_pointer;
4395 unwind.personality_routine = symbol_find_or_make (name);
4396 unwind.force_unwind_entry = 1;
4397 *p = c;
4398 SKIP_WHITESPACE ();
4399 demand_empty_rest_of_line ();
4400 }
4401
4402 static void
4403 dot_proc (dummy)
4404 int dummy ATTRIBUTE_UNUSED;
4405 {
4406 char *name, *p, c;
4407 symbolS *sym;
4408 proc_pending *pending, *last_pending;
4409
4410 if (unwind.proc_pending.sym)
4411 {
4412 (md.unwind_check == unwind_check_warning
4413 ? as_warn
4414 : as_bad) ("Missing .endp after previous .proc");
4415 while (unwind.proc_pending.next)
4416 {
4417 pending = unwind.proc_pending.next;
4418 unwind.proc_pending.next = pending->next;
4419 free (pending);
4420 }
4421 }
4422 last_pending = NULL;
4423
4424 /* Parse names of main and alternate entry points and mark them as
4425 function symbols: */
4426 while (1)
4427 {
4428 SKIP_WHITESPACE ();
4429 name = input_line_pointer;
4430 c = get_symbol_end ();
4431 p = input_line_pointer;
4432 if (!*name)
4433 as_bad ("Empty argument of .proc");
4434 else
4435 {
4436 sym = symbol_find_or_make (name);
4437 if (S_IS_DEFINED (sym))
4438 as_bad ("`%s' was already defined", name);
4439 else if (!last_pending)
4440 {
4441 unwind.proc_pending.sym = sym;
4442 last_pending = &unwind.proc_pending;
4443 }
4444 else
4445 {
4446 pending = xmalloc (sizeof (*pending));
4447 pending->sym = sym;
4448 last_pending = last_pending->next = pending;
4449 }
4450 symbol_get_bfdsym (sym)->flags |= BSF_FUNCTION;
4451 }
4452 *p = c;
4453 SKIP_WHITESPACE ();
4454 if (*input_line_pointer != ',')
4455 break;
4456 ++input_line_pointer;
4457 }
4458 if (!last_pending)
4459 {
4460 unwind.proc_pending.sym = expr_build_dot ();
4461 last_pending = &unwind.proc_pending;
4462 }
4463 last_pending->next = NULL;
4464 demand_empty_rest_of_line ();
4465 ia64_do_align (16);
4466
4467 unwind.prologue = 0;
4468 unwind.prologue_count = 0;
4469 unwind.body = 0;
4470 unwind.insn = 0;
4471 unwind.list = unwind.tail = unwind.current_entry = NULL;
4472 unwind.personality_routine = 0;
4473 }
4474
4475 static void
4476 dot_body (dummy)
4477 int dummy ATTRIBUTE_UNUSED;
4478 {
4479 if (!in_procedure ("body"))
4480 return;
4481 if (!unwind.prologue && !unwind.body && unwind.insn)
4482 as_warn ("Initial .body should precede any instructions");
4483 check_pending_save ();
4484
4485 unwind.prologue = 0;
4486 unwind.prologue_mask = 0;
4487 unwind.body = 1;
4488
4489 add_unwind_entry (output_body (), 0);
4490 }
4491
4492 static void
4493 dot_prologue (dummy)
4494 int dummy ATTRIBUTE_UNUSED;
4495 {
4496 unsigned mask = 0, grsave = 0;
4497
4498 if (!in_procedure ("prologue"))
4499 return;
4500 if (unwind.prologue)
4501 {
4502 as_bad (".prologue within prologue");
4503 ignore_rest_of_line ();
4504 return;
4505 }
4506 if (!unwind.body && unwind.insn)
4507 as_warn ("Initial .prologue should precede any instructions");
4508
4509 if (!is_it_end_of_statement ())
4510 {
4511 expressionS e;
4512 int n, sep = parse_operand (&e, ',');
4513
4514 if (e.X_op != O_constant
4515 || e.X_add_number < 0
4516 || e.X_add_number > 0xf)
4517 as_bad ("First operand to .prologue must be a positive 4-bit constant");
4518 else if (e.X_add_number == 0)
4519 as_warn ("Pointless use of zero first operand to .prologue");
4520 else
4521 mask = e.X_add_number;
4522 n = popcount (mask);
4523
4524 if (sep == ',')
4525 parse_operand (&e, 0);
4526 else
4527 e.X_op = O_absent;
4528 if (e.X_op == O_constant
4529 && e.X_add_number >= 0
4530 && e.X_add_number < 128)
4531 {
4532 if (md.unwind_check == unwind_check_error)
4533 as_warn ("Using a constant as second operand to .prologue is deprecated");
4534 grsave = e.X_add_number;
4535 }
4536 else if (e.X_op != O_register
4537 || (grsave = e.X_add_number - REG_GR) > 127)
4538 {
4539 as_bad ("Second operand to .prologue must be a general register");
4540 grsave = 0;
4541 }
4542 else if (grsave > 128U - n)
4543 {
4544 as_bad ("Second operand to .prologue must be the first of %d general registers", n);
4545 grsave = 0;
4546 }
4547
4548 }
4549
4550 if (mask)
4551 add_unwind_entry (output_prologue_gr (mask, grsave), 0);
4552 else
4553 add_unwind_entry (output_prologue (), 0);
4554
4555 unwind.prologue = 1;
4556 unwind.prologue_mask = mask;
4557 unwind.prologue_gr = grsave;
4558 unwind.body = 0;
4559 ++unwind.prologue_count;
4560 }
4561
4562 static void
4563 dot_endp (dummy)
4564 int dummy ATTRIBUTE_UNUSED;
4565 {
4566 expressionS e;
4567 int bytes_per_address;
4568 long where;
4569 segT saved_seg;
4570 subsegT saved_subseg;
4571 proc_pending *pending;
4572 int unwind_check = md.unwind_check;
4573
4574 md.unwind_check = unwind_check_error;
4575 if (!in_procedure ("endp"))
4576 return;
4577 md.unwind_check = unwind_check;
4578
4579 if (unwind.saved_text_seg)
4580 {
4581 saved_seg = unwind.saved_text_seg;
4582 saved_subseg = unwind.saved_text_subseg;
4583 unwind.saved_text_seg = NULL;
4584 }
4585 else
4586 {
4587 saved_seg = now_seg;
4588 saved_subseg = now_subseg;
4589 }
4590
4591 insn_group_break (1, 0, 0);
4592
4593 /* If there wasn't a .handlerdata, we haven't generated an image yet. */
4594 if (!unwind.info)
4595 generate_unwind_image (saved_seg);
4596
4597 if (unwind.info || unwind.force_unwind_entry)
4598 {
4599 symbolS *proc_end;
4600
4601 subseg_set (md.last_text_seg, 0);
4602 proc_end = expr_build_dot ();
4603
4604 start_unwind_section (saved_seg, SPECIAL_SECTION_UNWIND);
4605
4606 /* Make sure that section has 4 byte alignment for ILP32 and
4607 8 byte alignment for LP64. */
4608 record_alignment (now_seg, md.pointer_size_shift);
4609
4610 /* Need space for 3 pointers for procedure start, procedure end,
4611 and unwind info. */
4612 memset (frag_more (3 * md.pointer_size), 0, 3 * md.pointer_size);
4613 where = frag_now_fix () - (3 * md.pointer_size);
4614 bytes_per_address = bfd_arch_bits_per_address (stdoutput) / 8;
4615
4616 /* Issue the values of a) Proc Begin, b) Proc End, c) Unwind Record. */
4617 e.X_op = O_pseudo_fixup;
4618 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4619 e.X_add_number = 0;
4620 if (!S_IS_LOCAL (unwind.proc_pending.sym)
4621 && S_IS_DEFINED (unwind.proc_pending.sym))
4622 e.X_add_symbol = symbol_temp_new (S_GET_SEGMENT (unwind.proc_pending.sym),
4623 S_GET_VALUE (unwind.proc_pending.sym),
4624 symbol_get_frag (unwind.proc_pending.sym));
4625 else
4626 e.X_add_symbol = unwind.proc_pending.sym;
4627 ia64_cons_fix_new (frag_now, where, bytes_per_address, &e);
4628
4629 e.X_op = O_pseudo_fixup;
4630 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4631 e.X_add_number = 0;
4632 e.X_add_symbol = proc_end;
4633 ia64_cons_fix_new (frag_now, where + bytes_per_address,
4634 bytes_per_address, &e);
4635
4636 if (unwind.info)
4637 {
4638 e.X_op = O_pseudo_fixup;
4639 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4640 e.X_add_number = 0;
4641 e.X_add_symbol = unwind.info;
4642 ia64_cons_fix_new (frag_now, where + (bytes_per_address * 2),
4643 bytes_per_address, &e);
4644 }
4645 }
4646 subseg_set (saved_seg, saved_subseg);
4647
4648 /* Set symbol sizes. */
4649 pending = &unwind.proc_pending;
4650 if (S_GET_NAME (pending->sym))
4651 {
4652 do
4653 {
4654 symbolS *sym = pending->sym;
4655
4656 if (!S_IS_DEFINED (sym))
4657 as_bad ("`%s' was not defined within procedure", S_GET_NAME (sym));
4658 else if (S_GET_SIZE (sym) == 0
4659 && symbol_get_obj (sym)->size == NULL)
4660 {
4661 fragS *frag = symbol_get_frag (sym);
4662
4663 if (frag)
4664 {
4665 if (frag == frag_now && SEG_NORMAL (now_seg))
4666 S_SET_SIZE (sym, frag_now_fix () - S_GET_VALUE (sym));
4667 else
4668 {
4669 symbol_get_obj (sym)->size =
4670 (expressionS *) xmalloc (sizeof (expressionS));
4671 symbol_get_obj (sym)->size->X_op = O_subtract;
4672 symbol_get_obj (sym)->size->X_add_symbol
4673 = symbol_new (FAKE_LABEL_NAME, now_seg,
4674 frag_now_fix (), frag_now);
4675 symbol_get_obj (sym)->size->X_op_symbol = sym;
4676 symbol_get_obj (sym)->size->X_add_number = 0;
4677 }
4678 }
4679 }
4680 } while ((pending = pending->next) != NULL);
4681 }
4682
4683 /* Parse names of main and alternate entry points. */
4684 while (1)
4685 {
4686 char *name, *p, c;
4687
4688 SKIP_WHITESPACE ();
4689 name = input_line_pointer;
4690 c = get_symbol_end ();
4691 p = input_line_pointer;
4692 if (!*name)
4693 (md.unwind_check == unwind_check_warning
4694 ? as_warn
4695 : as_bad) ("Empty argument of .endp");
4696 else
4697 {
4698 symbolS *sym = symbol_find (name);
4699
4700 for (pending = &unwind.proc_pending; pending; pending = pending->next)
4701 {
4702 if (sym == pending->sym)
4703 {
4704 pending->sym = NULL;
4705 break;
4706 }
4707 }
4708 if (!sym || !pending)
4709 as_warn ("`%s' was not specified with previous .proc", name);
4710 }
4711 *p = c;
4712 SKIP_WHITESPACE ();
4713 if (*input_line_pointer != ',')
4714 break;
4715 ++input_line_pointer;
4716 }
4717 demand_empty_rest_of_line ();
4718
4719 /* Deliberately only checking for the main entry point here; the
4720 language spec even says all arguments to .endp are ignored. */
4721 if (unwind.proc_pending.sym
4722 && S_GET_NAME (unwind.proc_pending.sym)
4723 && strcmp (S_GET_NAME (unwind.proc_pending.sym), FAKE_LABEL_NAME))
4724 as_warn ("`%s' should be an operand to this .endp",
4725 S_GET_NAME (unwind.proc_pending.sym));
4726 while (unwind.proc_pending.next)
4727 {
4728 pending = unwind.proc_pending.next;
4729 unwind.proc_pending.next = pending->next;
4730 free (pending);
4731 }
4732 unwind.proc_pending.sym = unwind.info = NULL;
4733 }
4734
4735 static void
4736 dot_template (template)
4737 int template;
4738 {
4739 CURR_SLOT.user_template = template;
4740 }
4741
4742 static void
4743 dot_regstk (dummy)
4744 int dummy ATTRIBUTE_UNUSED;
4745 {
4746 int ins, locs, outs, rots;
4747
4748 if (is_it_end_of_statement ())
4749 ins = locs = outs = rots = 0;
4750 else
4751 {
4752 ins = get_absolute_expression ();
4753 if (*input_line_pointer++ != ',')
4754 goto err;
4755 locs = get_absolute_expression ();
4756 if (*input_line_pointer++ != ',')
4757 goto err;
4758 outs = get_absolute_expression ();
4759 if (*input_line_pointer++ != ',')
4760 goto err;
4761 rots = get_absolute_expression ();
4762 }
4763 set_regstack (ins, locs, outs, rots);
4764 return;
4765
4766 err:
4767 as_bad ("Comma expected");
4768 ignore_rest_of_line ();
4769 }
4770
4771 static void
4772 dot_rot (type)
4773 int type;
4774 {
4775 unsigned num_regs, num_alloced = 0;
4776 struct dynreg **drpp, *dr;
4777 int ch, base_reg = 0;
4778 char *name, *start;
4779 size_t len;
4780
4781 switch (type)
4782 {
4783 case DYNREG_GR: base_reg = REG_GR + 32; break;
4784 case DYNREG_FR: base_reg = REG_FR + 32; break;
4785 case DYNREG_PR: base_reg = REG_P + 16; break;
4786 default: break;
4787 }
4788
4789 /* First, remove existing names from hash table. */
4790 for (dr = md.dynreg[type]; dr && dr->num_regs; dr = dr->next)
4791 {
4792 hash_delete (md.dynreg_hash, dr->name);
4793 /* FIXME: Free dr->name. */
4794 dr->num_regs = 0;
4795 }
4796
4797 drpp = &md.dynreg[type];
4798 while (1)
4799 {
4800 start = input_line_pointer;
4801 ch = get_symbol_end ();
4802 len = strlen (ia64_canonicalize_symbol_name (start));
4803 *input_line_pointer = ch;
4804
4805 SKIP_WHITESPACE ();
4806 if (*input_line_pointer != '[')
4807 {
4808 as_bad ("Expected '['");
4809 goto err;
4810 }
4811 ++input_line_pointer; /* skip '[' */
4812
4813 num_regs = get_absolute_expression ();
4814
4815 if (*input_line_pointer++ != ']')
4816 {
4817 as_bad ("Expected ']'");
4818 goto err;
4819 }
4820 SKIP_WHITESPACE ();
4821
4822 num_alloced += num_regs;
4823 switch (type)
4824 {
4825 case DYNREG_GR:
4826 if (num_alloced > md.rot.num_regs)
4827 {
4828 as_bad ("Used more than the declared %d rotating registers",
4829 md.rot.num_regs);
4830 goto err;
4831 }
4832 break;
4833 case DYNREG_FR:
4834 if (num_alloced > 96)
4835 {
4836 as_bad ("Used more than the available 96 rotating registers");
4837 goto err;
4838 }
4839 break;
4840 case DYNREG_PR:
4841 if (num_alloced > 48)
4842 {
4843 as_bad ("Used more than the available 48 rotating registers");
4844 goto err;
4845 }
4846 break;
4847
4848 default:
4849 break;
4850 }
4851
4852 if (!*drpp)
4853 {
4854 *drpp = obstack_alloc (&notes, sizeof (*dr));
4855 memset (*drpp, 0, sizeof (*dr));
4856 }
4857
4858 name = obstack_alloc (&notes, len + 1);
4859 memcpy (name, start, len);
4860 name[len] = '\0';
4861
4862 dr = *drpp;
4863 dr->name = name;
4864 dr->num_regs = num_regs;
4865 dr->base = base_reg;
4866 drpp = &dr->next;
4867 base_reg += num_regs;
4868
4869 if (hash_insert (md.dynreg_hash, name, dr))
4870 {
4871 as_bad ("Attempt to redefine register set `%s'", name);
4872 obstack_free (&notes, name);
4873 goto err;
4874 }
4875
4876 if (*input_line_pointer != ',')
4877 break;
4878 ++input_line_pointer; /* skip comma */
4879 SKIP_WHITESPACE ();
4880 }
4881 demand_empty_rest_of_line ();
4882 return;
4883
4884 err:
4885 ignore_rest_of_line ();
4886 }
4887
4888 static void
4889 dot_byteorder (byteorder)
4890 int byteorder;
4891 {
4892 segment_info_type *seginfo = seg_info (now_seg);
4893
4894 if (byteorder == -1)
4895 {
4896 if (seginfo->tc_segment_info_data.endian == 0)
4897 seginfo->tc_segment_info_data.endian = default_big_endian ? 1 : 2;
4898 byteorder = seginfo->tc_segment_info_data.endian == 1;
4899 }
4900 else
4901 seginfo->tc_segment_info_data.endian = byteorder ? 1 : 2;
4902
4903 if (target_big_endian != byteorder)
4904 {
4905 target_big_endian = byteorder;
4906 if (target_big_endian)
4907 {
4908 ia64_number_to_chars = number_to_chars_bigendian;
4909 ia64_float_to_chars = ia64_float_to_chars_bigendian;
4910 }
4911 else
4912 {
4913 ia64_number_to_chars = number_to_chars_littleendian;
4914 ia64_float_to_chars = ia64_float_to_chars_littleendian;
4915 }
4916 }
4917 }
4918
4919 static void
4920 dot_psr (dummy)
4921 int dummy ATTRIBUTE_UNUSED;
4922 {
4923 char *option;
4924 int ch;
4925
4926 while (1)
4927 {
4928 option = input_line_pointer;
4929 ch = get_symbol_end ();
4930 if (strcmp (option, "lsb") == 0)
4931 md.flags &= ~EF_IA_64_BE;
4932 else if (strcmp (option, "msb") == 0)
4933 md.flags |= EF_IA_64_BE;
4934 else if (strcmp (option, "abi32") == 0)
4935 md.flags &= ~EF_IA_64_ABI64;
4936 else if (strcmp (option, "abi64") == 0)
4937 md.flags |= EF_IA_64_ABI64;
4938 else
4939 as_bad ("Unknown psr option `%s'", option);
4940 *input_line_pointer = ch;
4941
4942 SKIP_WHITESPACE ();
4943 if (*input_line_pointer != ',')
4944 break;
4945
4946 ++input_line_pointer;
4947 SKIP_WHITESPACE ();
4948 }
4949 demand_empty_rest_of_line ();
4950 }
4951
4952 static void
4953 dot_ln (dummy)
4954 int dummy ATTRIBUTE_UNUSED;
4955 {
4956 new_logical_line (0, get_absolute_expression ());
4957 demand_empty_rest_of_line ();
4958 }
4959
4960 static void
4961 cross_section (ref, cons, ua)
4962 int ref;
4963 void (*cons) PARAMS((int));
4964 int ua;
4965 {
4966 char *start, *end;
4967 int saved_auto_align;
4968 unsigned int section_count;
4969
4970 SKIP_WHITESPACE ();
4971 start = input_line_pointer;
4972 if (*start == '"')
4973 {
4974 int len;
4975 char *name;
4976
4977 name = demand_copy_C_string (&len);
4978 obstack_free(&notes, name);
4979 if (!name)
4980 {
4981 ignore_rest_of_line ();
4982 return;
4983 }
4984 }
4985 else
4986 {
4987 char c = get_symbol_end ();
4988
4989 if (input_line_pointer == start)
4990 {
4991 as_bad ("Missing section name");
4992 ignore_rest_of_line ();
4993 return;
4994 }
4995 *input_line_pointer = c;
4996 }
4997 end = input_line_pointer;
4998 SKIP_WHITESPACE ();
4999 if (*input_line_pointer != ',')
5000 {
5001 as_bad ("Comma expected after section name");
5002 ignore_rest_of_line ();
5003 return;
5004 }
5005 *end = '\0';
5006 end = input_line_pointer + 1; /* skip comma */
5007 input_line_pointer = start;
5008 md.keep_pending_output = 1;
5009 section_count = bfd_count_sections(stdoutput);
5010 obj_elf_section (0);
5011 if (section_count != bfd_count_sections(stdoutput))
5012 as_warn ("Creating sections with .xdataN/.xrealN/.xstringZ is deprecated.");
5013 input_line_pointer = end;
5014 saved_auto_align = md.auto_align;
5015 if (ua)
5016 md.auto_align = 0;
5017 (*cons) (ref);
5018 if (ua)
5019 md.auto_align = saved_auto_align;
5020 obj_elf_previous (0);
5021 md.keep_pending_output = 0;
5022 }
5023
5024 static void
5025 dot_xdata (size)
5026 int size;
5027 {
5028 cross_section (size, cons, 0);
5029 }
5030
5031 /* Why doesn't float_cons() call md_cons_align() the way cons() does? */
5032
5033 static void
5034 stmt_float_cons (kind)
5035 int kind;
5036 {
5037 size_t alignment;
5038
5039 switch (kind)
5040 {
5041 case 'd':
5042 alignment = 8;
5043 break;
5044
5045 case 'x':
5046 case 'X':
5047 alignment = 16;
5048 break;
5049
5050 case 'f':
5051 default:
5052 alignment = 4;
5053 break;
5054 }
5055 ia64_do_align (alignment);
5056 float_cons (kind);
5057 }
5058
5059 static void
5060 stmt_cons_ua (size)
5061 int size;
5062 {
5063 int saved_auto_align = md.auto_align;
5064
5065 md.auto_align = 0;
5066 cons (size);
5067 md.auto_align = saved_auto_align;
5068 }
5069
5070 static void
5071 dot_xfloat_cons (kind)
5072 int kind;
5073 {
5074 cross_section (kind, stmt_float_cons, 0);
5075 }
5076
5077 static void
5078 dot_xstringer (zero)
5079 int zero;
5080 {
5081 cross_section (zero, stringer, 0);
5082 }
5083
5084 static void
5085 dot_xdata_ua (size)
5086 int size;
5087 {
5088 cross_section (size, cons, 1);
5089 }
5090
5091 static void
5092 dot_xfloat_cons_ua (kind)
5093 int kind;
5094 {
5095 cross_section (kind, float_cons, 1);
5096 }
5097
5098 /* .reg.val <regname>,value */
5099
5100 static void
5101 dot_reg_val (dummy)
5102 int dummy ATTRIBUTE_UNUSED;
5103 {
5104 expressionS reg;
5105
5106 expression_and_evaluate (&reg);
5107 if (reg.X_op != O_register)
5108 {
5109 as_bad (_("Register name expected"));
5110 ignore_rest_of_line ();
5111 }
5112 else if (*input_line_pointer++ != ',')
5113 {
5114 as_bad (_("Comma expected"));
5115 ignore_rest_of_line ();
5116 }
5117 else
5118 {
5119 valueT value = get_absolute_expression ();
5120 int regno = reg.X_add_number;
5121 if (regno <= REG_GR || regno > REG_GR + 127)
5122 as_warn (_("Register value annotation ignored"));
5123 else
5124 {
5125 gr_values[regno - REG_GR].known = 1;
5126 gr_values[regno - REG_GR].value = value;
5127 gr_values[regno - REG_GR].path = md.path;
5128 }
5129 }
5130 demand_empty_rest_of_line ();
5131 }
5132
5133 /*
5134 .serialize.data
5135 .serialize.instruction
5136 */
5137 static void
5138 dot_serialize (type)
5139 int type;
5140 {
5141 insn_group_break (0, 0, 0);
5142 if (type)
5143 instruction_serialization ();
5144 else
5145 data_serialization ();
5146 insn_group_break (0, 0, 0);
5147 demand_empty_rest_of_line ();
5148 }
5149
5150 /* select dv checking mode
5151 .auto
5152 .explicit
5153 .default
5154
5155 A stop is inserted when changing modes
5156 */
5157
5158 static void
5159 dot_dv_mode (type)
5160 int type;
5161 {
5162 if (md.manual_bundling)
5163 as_warn (_("Directive invalid within a bundle"));
5164
5165 if (type == 'E' || type == 'A')
5166 md.mode_explicitly_set = 0;
5167 else
5168 md.mode_explicitly_set = 1;
5169
5170 md.detect_dv = 1;
5171 switch (type)
5172 {
5173 case 'A':
5174 case 'a':
5175 if (md.explicit_mode)
5176 insn_group_break (1, 0, 0);
5177 md.explicit_mode = 0;
5178 break;
5179 case 'E':
5180 case 'e':
5181 if (!md.explicit_mode)
5182 insn_group_break (1, 0, 0);
5183 md.explicit_mode = 1;
5184 break;
5185 default:
5186 case 'd':
5187 if (md.explicit_mode != md.default_explicit_mode)
5188 insn_group_break (1, 0, 0);
5189 md.explicit_mode = md.default_explicit_mode;
5190 md.mode_explicitly_set = 0;
5191 break;
5192 }
5193 }
5194
5195 static void
5196 print_prmask (mask)
5197 valueT mask;
5198 {
5199 int regno;
5200 char *comma = "";
5201 for (regno = 0; regno < 64; regno++)
5202 {
5203 if (mask & ((valueT) 1 << regno))
5204 {
5205 fprintf (stderr, "%s p%d", comma, regno);
5206 comma = ",";
5207 }
5208 }
5209 }
5210
5211 /*
5212 .pred.rel.clear [p1 [,p2 [,...]]] (also .pred.rel "clear" or @clear)
5213 .pred.rel.imply p1, p2 (also .pred.rel "imply" or @imply)
5214 .pred.rel.mutex p1, p2 [,...] (also .pred.rel "mutex" or @mutex)
5215 .pred.safe_across_calls p1 [, p2 [,...]]
5216 */
5217
5218 static void
5219 dot_pred_rel (type)
5220 int type;
5221 {
5222 valueT mask = 0;
5223 int count = 0;
5224 int p1 = -1, p2 = -1;
5225
5226 if (type == 0)
5227 {
5228 if (*input_line_pointer == '"')
5229 {
5230 int len;
5231 char *form = demand_copy_C_string (&len);
5232
5233 if (strcmp (form, "mutex") == 0)
5234 type = 'm';
5235 else if (strcmp (form, "clear") == 0)
5236 type = 'c';
5237 else if (strcmp (form, "imply") == 0)
5238 type = 'i';
5239 obstack_free (&notes, form);
5240 }
5241 else if (*input_line_pointer == '@')
5242 {
5243 char *form = ++input_line_pointer;
5244 char c = get_symbol_end();
5245
5246 if (strcmp (form, "mutex") == 0)
5247 type = 'm';
5248 else if (strcmp (form, "clear") == 0)
5249 type = 'c';
5250 else if (strcmp (form, "imply") == 0)
5251 type = 'i';
5252 *input_line_pointer = c;
5253 }
5254 else
5255 {
5256 as_bad (_("Missing predicate relation type"));
5257 ignore_rest_of_line ();
5258 return;
5259 }
5260 if (type == 0)
5261 {
5262 as_bad (_("Unrecognized predicate relation type"));
5263 ignore_rest_of_line ();
5264 return;
5265 }
5266 if (*input_line_pointer == ',')
5267 ++input_line_pointer;
5268 SKIP_WHITESPACE ();
5269 }
5270
5271 SKIP_WHITESPACE ();
5272 while (1)
5273 {
5274 valueT bits = 1;
5275 int regno;
5276 expressionS pr, *pr1, *pr2;
5277
5278 expression_and_evaluate (&pr);
5279 if (pr.X_op == O_register
5280 && pr.X_add_number >= REG_P
5281 && pr.X_add_number <= REG_P + 63)
5282 {
5283 regno = pr.X_add_number - REG_P;
5284 bits <<= regno;
5285 count++;
5286 if (p1 == -1)
5287 p1 = regno;
5288 else if (p2 == -1)
5289 p2 = regno;
5290 }
5291 else if (type != 'i'
5292 && pr.X_op == O_subtract
5293 && (pr1 = symbol_get_value_expression (pr.X_add_symbol))
5294 && pr1->X_op == O_register
5295 && pr1->X_add_number >= REG_P
5296 && pr1->X_add_number <= REG_P + 63
5297 && (pr2 = symbol_get_value_expression (pr.X_op_symbol))
5298 && pr2->X_op == O_register
5299 && pr2->X_add_number >= REG_P
5300 && pr2->X_add_number <= REG_P + 63)
5301 {
5302 /* It's a range. */
5303 int stop;
5304
5305 regno = pr1->X_add_number - REG_P;
5306 stop = pr2->X_add_number - REG_P;
5307 if (regno >= stop)
5308 {
5309 as_bad (_("Bad register range"));
5310 ignore_rest_of_line ();
5311 return;
5312 }
5313 bits = ((bits << stop) << 1) - (bits << regno);
5314 count += stop - regno + 1;
5315 }
5316 else
5317 {
5318 as_bad (_("Predicate register expected"));
5319 ignore_rest_of_line ();
5320 return;
5321 }
5322 if (mask & bits)
5323 as_warn (_("Duplicate predicate register ignored"));
5324 mask |= bits;
5325 if (*input_line_pointer != ',')
5326 break;
5327 ++input_line_pointer;
5328 SKIP_WHITESPACE ();
5329 }
5330
5331 switch (type)
5332 {
5333 case 'c':
5334 if (count == 0)
5335 mask = ~(valueT) 0;
5336 clear_qp_mutex (mask);
5337 clear_qp_implies (mask, (valueT) 0);
5338 break;
5339 case 'i':
5340 if (count != 2 || p1 == -1 || p2 == -1)
5341 as_bad (_("Predicate source and target required"));
5342 else if (p1 == 0 || p2 == 0)
5343 as_bad (_("Use of p0 is not valid in this context"));
5344 else
5345 add_qp_imply (p1, p2);
5346 break;
5347 case 'm':
5348 if (count < 2)
5349 {
5350 as_bad (_("At least two PR arguments expected"));
5351 break;
5352 }
5353 else if (mask & 1)
5354 {
5355 as_bad (_("Use of p0 is not valid in this context"));
5356 break;
5357 }
5358 add_qp_mutex (mask);
5359 break;
5360 case 's':
5361 /* note that we don't override any existing relations */
5362 if (count == 0)
5363 {
5364 as_bad (_("At least one PR argument expected"));
5365 break;
5366 }
5367 if (md.debug_dv)
5368 {
5369 fprintf (stderr, "Safe across calls: ");
5370 print_prmask (mask);
5371 fprintf (stderr, "\n");
5372 }
5373 qp_safe_across_calls = mask;
5374 break;
5375 }
5376 demand_empty_rest_of_line ();
5377 }
5378
5379 /* .entry label [, label [, ...]]
5380 Hint to DV code that the given labels are to be considered entry points.
5381 Otherwise, only global labels are considered entry points. */
5382
5383 static void
5384 dot_entry (dummy)
5385 int dummy ATTRIBUTE_UNUSED;
5386 {
5387 const char *err;
5388 char *name;
5389 int c;
5390 symbolS *symbolP;
5391
5392 do
5393 {
5394 name = input_line_pointer;
5395 c = get_symbol_end ();
5396 symbolP = symbol_find_or_make (name);
5397
5398 err = hash_insert (md.entry_hash, S_GET_NAME (symbolP), (PTR) symbolP);
5399 if (err)
5400 as_fatal (_("Inserting \"%s\" into entry hint table failed: %s"),
5401 name, err);
5402
5403 *input_line_pointer = c;
5404 SKIP_WHITESPACE ();
5405 c = *input_line_pointer;
5406 if (c == ',')
5407 {
5408 input_line_pointer++;
5409 SKIP_WHITESPACE ();
5410 if (*input_line_pointer == '\n')
5411 c = '\n';
5412 }
5413 }
5414 while (c == ',');
5415
5416 demand_empty_rest_of_line ();
5417 }
5418
5419 /* .mem.offset offset, base
5420 "base" is used to distinguish between offsets from a different base. */
5421
5422 static void
5423 dot_mem_offset (dummy)
5424 int dummy ATTRIBUTE_UNUSED;
5425 {
5426 md.mem_offset.hint = 1;
5427 md.mem_offset.offset = get_absolute_expression ();
5428 if (*input_line_pointer != ',')
5429 {
5430 as_bad (_("Comma expected"));
5431 ignore_rest_of_line ();
5432 return;
5433 }
5434 ++input_line_pointer;
5435 md.mem_offset.base = get_absolute_expression ();
5436 demand_empty_rest_of_line ();
5437 }
5438
5439 /* ia64-specific pseudo-ops: */
5440 const pseudo_typeS md_pseudo_table[] =
5441 {
5442 { "radix", dot_radix, 0 },
5443 { "lcomm", s_lcomm_bytes, 1 },
5444 { "loc", dot_loc, 0 },
5445 { "bss", dot_special_section, SPECIAL_SECTION_BSS },
5446 { "sbss", dot_special_section, SPECIAL_SECTION_SBSS },
5447 { "sdata", dot_special_section, SPECIAL_SECTION_SDATA },
5448 { "rodata", dot_special_section, SPECIAL_SECTION_RODATA },
5449 { "comment", dot_special_section, SPECIAL_SECTION_COMMENT },
5450 { "ia_64.unwind", dot_special_section, SPECIAL_SECTION_UNWIND },
5451 { "ia_64.unwind_info", dot_special_section, SPECIAL_SECTION_UNWIND_INFO },
5452 { "init_array", dot_special_section, SPECIAL_SECTION_INIT_ARRAY },
5453 { "fini_array", dot_special_section, SPECIAL_SECTION_FINI_ARRAY },
5454 { "proc", dot_proc, 0 },
5455 { "body", dot_body, 0 },
5456 { "prologue", dot_prologue, 0 },
5457 { "endp", dot_endp, 0 },
5458
5459 { "fframe", dot_fframe, 0 },
5460 { "vframe", dot_vframe, 0 },
5461 { "vframesp", dot_vframesp, 0 },
5462 { "vframepsp", dot_vframesp, 1 },
5463 { "save", dot_save, 0 },
5464 { "restore", dot_restore, 0 },
5465 { "restorereg", dot_restorereg, 0 },
5466 { "restorereg.p", dot_restorereg, 1 },
5467 { "handlerdata", dot_handlerdata, 0 },
5468 { "unwentry", dot_unwentry, 0 },
5469 { "altrp", dot_altrp, 0 },
5470 { "savesp", dot_savemem, 0 },
5471 { "savepsp", dot_savemem, 1 },
5472 { "save.g", dot_saveg, 0 },
5473 { "save.f", dot_savef, 0 },
5474 { "save.b", dot_saveb, 0 },
5475 { "save.gf", dot_savegf, 0 },
5476 { "spill", dot_spill, 0 },
5477 { "spillreg", dot_spillreg, 0 },
5478 { "spillsp", dot_spillmem, 0 },
5479 { "spillpsp", dot_spillmem, 1 },
5480 { "spillreg.p", dot_spillreg, 1 },
5481 { "spillsp.p", dot_spillmem, ~0 },
5482 { "spillpsp.p", dot_spillmem, ~1 },
5483 { "label_state", dot_label_state, 0 },
5484 { "copy_state", dot_copy_state, 0 },
5485 { "unwabi", dot_unwabi, 0 },
5486 { "personality", dot_personality, 0 },
5487 { "mii", dot_template, 0x0 },
5488 { "mli", dot_template, 0x2 }, /* old format, for compatibility */
5489 { "mlx", dot_template, 0x2 },
5490 { "mmi", dot_template, 0x4 },
5491 { "mfi", dot_template, 0x6 },
5492 { "mmf", dot_template, 0x7 },
5493 { "mib", dot_template, 0x8 },
5494 { "mbb", dot_template, 0x9 },
5495 { "bbb", dot_template, 0xb },
5496 { "mmb", dot_template, 0xc },
5497 { "mfb", dot_template, 0xe },
5498 { "align", dot_align, 0 },
5499 { "regstk", dot_regstk, 0 },
5500 { "rotr", dot_rot, DYNREG_GR },
5501 { "rotf", dot_rot, DYNREG_FR },
5502 { "rotp", dot_rot, DYNREG_PR },
5503 { "lsb", dot_byteorder, 0 },
5504 { "msb", dot_byteorder, 1 },
5505 { "psr", dot_psr, 0 },
5506 { "alias", dot_alias, 0 },
5507 { "secalias", dot_alias, 1 },
5508 { "ln", dot_ln, 0 }, /* source line info (for debugging) */
5509
5510 { "xdata1", dot_xdata, 1 },
5511 { "xdata2", dot_xdata, 2 },
5512 { "xdata4", dot_xdata, 4 },
5513 { "xdata8", dot_xdata, 8 },
5514 { "xdata16", dot_xdata, 16 },
5515 { "xreal4", dot_xfloat_cons, 'f' },
5516 { "xreal8", dot_xfloat_cons, 'd' },
5517 { "xreal10", dot_xfloat_cons, 'x' },
5518 { "xreal16", dot_xfloat_cons, 'X' },
5519 { "xstring", dot_xstringer, 0 },
5520 { "xstringz", dot_xstringer, 1 },
5521
5522 /* unaligned versions: */
5523 { "xdata2.ua", dot_xdata_ua, 2 },
5524 { "xdata4.ua", dot_xdata_ua, 4 },
5525 { "xdata8.ua", dot_xdata_ua, 8 },
5526 { "xdata16.ua", dot_xdata_ua, 16 },
5527 { "xreal4.ua", dot_xfloat_cons_ua, 'f' },
5528 { "xreal8.ua", dot_xfloat_cons_ua, 'd' },
5529 { "xreal10.ua", dot_xfloat_cons_ua, 'x' },
5530 { "xreal16.ua", dot_xfloat_cons_ua, 'X' },
5531
5532 /* annotations/DV checking support */
5533 { "entry", dot_entry, 0 },
5534 { "mem.offset", dot_mem_offset, 0 },
5535 { "pred.rel", dot_pred_rel, 0 },
5536 { "pred.rel.clear", dot_pred_rel, 'c' },
5537 { "pred.rel.imply", dot_pred_rel, 'i' },
5538 { "pred.rel.mutex", dot_pred_rel, 'm' },
5539 { "pred.safe_across_calls", dot_pred_rel, 's' },
5540 { "reg.val", dot_reg_val, 0 },
5541 { "serialize.data", dot_serialize, 0 },
5542 { "serialize.instruction", dot_serialize, 1 },
5543 { "auto", dot_dv_mode, 'a' },
5544 { "explicit", dot_dv_mode, 'e' },
5545 { "default", dot_dv_mode, 'd' },
5546
5547 /* ??? These are needed to make gas/testsuite/gas/elf/ehopt.s work.
5548 IA-64 aligns data allocation pseudo-ops by default, so we have to
5549 tell it that these ones are supposed to be unaligned. Long term,
5550 should rewrite so that only IA-64 specific data allocation pseudo-ops
5551 are aligned by default. */
5552 {"2byte", stmt_cons_ua, 2},
5553 {"4byte", stmt_cons_ua, 4},
5554 {"8byte", stmt_cons_ua, 8},
5555
5556 { NULL, 0, 0 }
5557 };
5558
5559 static const struct pseudo_opcode
5560 {
5561 const char *name;
5562 void (*handler) (int);
5563 int arg;
5564 }
5565 pseudo_opcode[] =
5566 {
5567 /* these are more like pseudo-ops, but don't start with a dot */
5568 { "data1", cons, 1 },
5569 { "data2", cons, 2 },
5570 { "data4", cons, 4 },
5571 { "data8", cons, 8 },
5572 { "data16", cons, 16 },
5573 { "real4", stmt_float_cons, 'f' },
5574 { "real8", stmt_float_cons, 'd' },
5575 { "real10", stmt_float_cons, 'x' },
5576 { "real16", stmt_float_cons, 'X' },
5577 { "string", stringer, 0 },
5578 { "stringz", stringer, 1 },
5579
5580 /* unaligned versions: */
5581 { "data2.ua", stmt_cons_ua, 2 },
5582 { "data4.ua", stmt_cons_ua, 4 },
5583 { "data8.ua", stmt_cons_ua, 8 },
5584 { "data16.ua", stmt_cons_ua, 16 },
5585 { "real4.ua", float_cons, 'f' },
5586 { "real8.ua", float_cons, 'd' },
5587 { "real10.ua", float_cons, 'x' },
5588 { "real16.ua", float_cons, 'X' },
5589 };
5590
5591 /* Declare a register by creating a symbol for it and entering it in
5592 the symbol table. */
5593
5594 static symbolS *
5595 declare_register (name, regnum)
5596 const char *name;
5597 int regnum;
5598 {
5599 const char *err;
5600 symbolS *sym;
5601
5602 sym = symbol_create (name, reg_section, regnum, &zero_address_frag);
5603
5604 err = hash_insert (md.reg_hash, S_GET_NAME (sym), (PTR) sym);
5605 if (err)
5606 as_fatal ("Inserting \"%s\" into register table failed: %s",
5607 name, err);
5608
5609 return sym;
5610 }
5611
5612 static void
5613 declare_register_set (prefix, num_regs, base_regnum)
5614 const char *prefix;
5615 int num_regs;
5616 int base_regnum;
5617 {
5618 char name[8];
5619 int i;
5620
5621 for (i = 0; i < num_regs; ++i)
5622 {
5623 sprintf (name, "%s%u", prefix, i);
5624 declare_register (name, base_regnum + i);
5625 }
5626 }
5627
5628 static unsigned int
5629 operand_width (opnd)
5630 enum ia64_opnd opnd;
5631 {
5632 const struct ia64_operand *odesc = &elf64_ia64_operands[opnd];
5633 unsigned int bits = 0;
5634 int i;
5635
5636 bits = 0;
5637 for (i = 0; i < NELEMS (odesc->field) && odesc->field[i].bits; ++i)
5638 bits += odesc->field[i].bits;
5639
5640 return bits;
5641 }
5642
5643 static enum operand_match_result
5644 operand_match (idesc, index, e)
5645 const struct ia64_opcode *idesc;
5646 int index;
5647 expressionS *e;
5648 {
5649 enum ia64_opnd opnd = idesc->operands[index];
5650 int bits, relocatable = 0;
5651 struct insn_fix *fix;
5652 bfd_signed_vma val;
5653
5654 switch (opnd)
5655 {
5656 /* constants: */
5657
5658 case IA64_OPND_AR_CCV:
5659 if (e->X_op == O_register && e->X_add_number == REG_AR + 32)
5660 return OPERAND_MATCH;
5661 break;
5662
5663 case IA64_OPND_AR_CSD:
5664 if (e->X_op == O_register && e->X_add_number == REG_AR + 25)
5665 return OPERAND_MATCH;
5666 break;
5667
5668 case IA64_OPND_AR_PFS:
5669 if (e->X_op == O_register && e->X_add_number == REG_AR + 64)
5670 return OPERAND_MATCH;
5671 break;
5672
5673 case IA64_OPND_GR0:
5674 if (e->X_op == O_register && e->X_add_number == REG_GR + 0)
5675 return OPERAND_MATCH;
5676 break;
5677
5678 case IA64_OPND_IP:
5679 if (e->X_op == O_register && e->X_add_number == REG_IP)
5680 return OPERAND_MATCH;
5681 break;
5682
5683 case IA64_OPND_PR:
5684 if (e->X_op == O_register && e->X_add_number == REG_PR)
5685 return OPERAND_MATCH;
5686 break;
5687
5688 case IA64_OPND_PR_ROT:
5689 if (e->X_op == O_register && e->X_add_number == REG_PR_ROT)
5690 return OPERAND_MATCH;
5691 break;
5692
5693 case IA64_OPND_PSR:
5694 if (e->X_op == O_register && e->X_add_number == REG_PSR)
5695 return OPERAND_MATCH;
5696 break;
5697
5698 case IA64_OPND_PSR_L:
5699 if (e->X_op == O_register && e->X_add_number == REG_PSR_L)
5700 return OPERAND_MATCH;
5701 break;
5702
5703 case IA64_OPND_PSR_UM:
5704 if (e->X_op == O_register && e->X_add_number == REG_PSR_UM)
5705 return OPERAND_MATCH;
5706 break;
5707
5708 case IA64_OPND_C1:
5709 if (e->X_op == O_constant)
5710 {
5711 if (e->X_add_number == 1)
5712 return OPERAND_MATCH;
5713 else
5714 return OPERAND_OUT_OF_RANGE;
5715 }
5716 break;
5717
5718 case IA64_OPND_C8:
5719 if (e->X_op == O_constant)
5720 {
5721 if (e->X_add_number == 8)
5722 return OPERAND_MATCH;
5723 else
5724 return OPERAND_OUT_OF_RANGE;
5725 }
5726 break;
5727
5728 case IA64_OPND_C16:
5729 if (e->X_op == O_constant)
5730 {
5731 if (e->X_add_number == 16)
5732 return OPERAND_MATCH;
5733 else
5734 return OPERAND_OUT_OF_RANGE;
5735 }
5736 break;
5737
5738 /* register operands: */
5739
5740 case IA64_OPND_AR3:
5741 if (e->X_op == O_register && e->X_add_number >= REG_AR
5742 && e->X_add_number < REG_AR + 128)
5743 return OPERAND_MATCH;
5744 break;
5745
5746 case IA64_OPND_B1:
5747 case IA64_OPND_B2:
5748 if (e->X_op == O_register && e->X_add_number >= REG_BR
5749 && e->X_add_number < REG_BR + 8)
5750 return OPERAND_MATCH;
5751 break;
5752
5753 case IA64_OPND_CR3:
5754 if (e->X_op == O_register && e->X_add_number >= REG_CR
5755 && e->X_add_number < REG_CR + 128)
5756 return OPERAND_MATCH;
5757 break;
5758
5759 case IA64_OPND_F1:
5760 case IA64_OPND_F2:
5761 case IA64_OPND_F3:
5762 case IA64_OPND_F4:
5763 if (e->X_op == O_register && e->X_add_number >= REG_FR
5764 && e->X_add_number < REG_FR + 128)
5765 return OPERAND_MATCH;
5766 break;
5767
5768 case IA64_OPND_P1:
5769 case IA64_OPND_P2:
5770 if (e->X_op == O_register && e->X_add_number >= REG_P
5771 && e->X_add_number < REG_P + 64)
5772 return OPERAND_MATCH;
5773 break;
5774
5775 case IA64_OPND_R1:
5776 case IA64_OPND_R2:
5777 case IA64_OPND_R3:
5778 if (e->X_op == O_register && e->X_add_number >= REG_GR
5779 && e->X_add_number < REG_GR + 128)
5780 return OPERAND_MATCH;
5781 break;
5782
5783 case IA64_OPND_R3_2:
5784 if (e->X_op == O_register && e->X_add_number >= REG_GR)
5785 {
5786 if (e->X_add_number < REG_GR + 4)
5787 return OPERAND_MATCH;
5788 else if (e->X_add_number < REG_GR + 128)
5789 return OPERAND_OUT_OF_RANGE;
5790 }
5791 break;
5792
5793 /* indirect operands: */
5794 case IA64_OPND_CPUID_R3:
5795 case IA64_OPND_DBR_R3:
5796 case IA64_OPND_DTR_R3:
5797 case IA64_OPND_ITR_R3:
5798 case IA64_OPND_IBR_R3:
5799 case IA64_OPND_MSR_R3:
5800 case IA64_OPND_PKR_R3:
5801 case IA64_OPND_PMC_R3:
5802 case IA64_OPND_PMD_R3:
5803 case IA64_OPND_RR_R3:
5804 if (e->X_op == O_index && e->X_op_symbol
5805 && (S_GET_VALUE (e->X_op_symbol) - IND_CPUID
5806 == opnd - IA64_OPND_CPUID_R3))
5807 return OPERAND_MATCH;
5808 break;
5809
5810 case IA64_OPND_MR3:
5811 if (e->X_op == O_index && !e->X_op_symbol)
5812 return OPERAND_MATCH;
5813 break;
5814
5815 /* immediate operands: */
5816 case IA64_OPND_CNT2a:
5817 case IA64_OPND_LEN4:
5818 case IA64_OPND_LEN6:
5819 bits = operand_width (idesc->operands[index]);
5820 if (e->X_op == O_constant)
5821 {
5822 if ((bfd_vma) (e->X_add_number - 1) < ((bfd_vma) 1 << bits))
5823 return OPERAND_MATCH;
5824 else
5825 return OPERAND_OUT_OF_RANGE;
5826 }
5827 break;
5828
5829 case IA64_OPND_CNT2b:
5830 if (e->X_op == O_constant)
5831 {
5832 if ((bfd_vma) (e->X_add_number - 1) < 3)
5833 return OPERAND_MATCH;
5834 else
5835 return OPERAND_OUT_OF_RANGE;
5836 }
5837 break;
5838
5839 case IA64_OPND_CNT2c:
5840 val = e->X_add_number;
5841 if (e->X_op == O_constant)
5842 {
5843 if ((val == 0 || val == 7 || val == 15 || val == 16))
5844 return OPERAND_MATCH;
5845 else
5846 return OPERAND_OUT_OF_RANGE;
5847 }
5848 break;
5849
5850 case IA64_OPND_SOR:
5851 /* SOR must be an integer multiple of 8 */
5852 if (e->X_op == O_constant && e->X_add_number & 0x7)
5853 return OPERAND_OUT_OF_RANGE;
5854 case IA64_OPND_SOF:
5855 case IA64_OPND_SOL:
5856 if (e->X_op == O_constant)
5857 {
5858 if ((bfd_vma) e->X_add_number <= 96)
5859 return OPERAND_MATCH;
5860 else
5861 return OPERAND_OUT_OF_RANGE;
5862 }
5863 break;
5864
5865 case IA64_OPND_IMMU62:
5866 if (e->X_op == O_constant)
5867 {
5868 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << 62))
5869 return OPERAND_MATCH;
5870 else
5871 return OPERAND_OUT_OF_RANGE;
5872 }
5873 else
5874 {
5875 /* FIXME -- need 62-bit relocation type */
5876 as_bad (_("62-bit relocation not yet implemented"));
5877 }
5878 break;
5879
5880 case IA64_OPND_IMMU64:
5881 if (e->X_op == O_symbol || e->X_op == O_pseudo_fixup
5882 || e->X_op == O_subtract)
5883 {
5884 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5885 fix->code = BFD_RELOC_IA64_IMM64;
5886 if (e->X_op != O_subtract)
5887 {
5888 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5889 if (e->X_op == O_pseudo_fixup)
5890 e->X_op = O_symbol;
5891 }
5892
5893 fix->opnd = idesc->operands[index];
5894 fix->expr = *e;
5895 fix->is_pcrel = 0;
5896 ++CURR_SLOT.num_fixups;
5897 return OPERAND_MATCH;
5898 }
5899 else if (e->X_op == O_constant)
5900 return OPERAND_MATCH;
5901 break;
5902
5903 case IA64_OPND_CCNT5:
5904 case IA64_OPND_CNT5:
5905 case IA64_OPND_CNT6:
5906 case IA64_OPND_CPOS6a:
5907 case IA64_OPND_CPOS6b:
5908 case IA64_OPND_CPOS6c:
5909 case IA64_OPND_IMMU2:
5910 case IA64_OPND_IMMU7a:
5911 case IA64_OPND_IMMU7b:
5912 case IA64_OPND_IMMU21:
5913 case IA64_OPND_IMMU24:
5914 case IA64_OPND_MBTYPE4:
5915 case IA64_OPND_MHTYPE8:
5916 case IA64_OPND_POS6:
5917 bits = operand_width (idesc->operands[index]);
5918 if (e->X_op == O_constant)
5919 {
5920 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5921 return OPERAND_MATCH;
5922 else
5923 return OPERAND_OUT_OF_RANGE;
5924 }
5925 break;
5926
5927 case IA64_OPND_IMMU9:
5928 bits = operand_width (idesc->operands[index]);
5929 if (e->X_op == O_constant)
5930 {
5931 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5932 {
5933 int lobits = e->X_add_number & 0x3;
5934 if (((bfd_vma) e->X_add_number & 0x3C) != 0 && lobits == 0)
5935 e->X_add_number |= (bfd_vma) 0x3;
5936 return OPERAND_MATCH;
5937 }
5938 else
5939 return OPERAND_OUT_OF_RANGE;
5940 }
5941 break;
5942
5943 case IA64_OPND_IMM44:
5944 /* least 16 bits must be zero */
5945 if ((e->X_add_number & 0xffff) != 0)
5946 /* XXX technically, this is wrong: we should not be issuing warning
5947 messages until we're sure this instruction pattern is going to
5948 be used! */
5949 as_warn (_("lower 16 bits of mask ignored"));
5950
5951 if (e->X_op == O_constant)
5952 {
5953 if (((e->X_add_number >= 0
5954 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 44))
5955 || (e->X_add_number < 0
5956 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 44))))
5957 {
5958 /* sign-extend */
5959 if (e->X_add_number >= 0
5960 && (e->X_add_number & ((bfd_vma) 1 << 43)) != 0)
5961 {
5962 e->X_add_number |= ~(((bfd_vma) 1 << 44) - 1);
5963 }
5964 return OPERAND_MATCH;
5965 }
5966 else
5967 return OPERAND_OUT_OF_RANGE;
5968 }
5969 break;
5970
5971 case IA64_OPND_IMM17:
5972 /* bit 0 is a don't care (pr0 is hardwired to 1) */
5973 if (e->X_op == O_constant)
5974 {
5975 if (((e->X_add_number >= 0
5976 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 17))
5977 || (e->X_add_number < 0
5978 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 17))))
5979 {
5980 /* sign-extend */
5981 if (e->X_add_number >= 0
5982 && (e->X_add_number & ((bfd_vma) 1 << 16)) != 0)
5983 {
5984 e->X_add_number |= ~(((bfd_vma) 1 << 17) - 1);
5985 }
5986 return OPERAND_MATCH;
5987 }
5988 else
5989 return OPERAND_OUT_OF_RANGE;
5990 }
5991 break;
5992
5993 case IA64_OPND_IMM14:
5994 case IA64_OPND_IMM22:
5995 relocatable = 1;
5996 case IA64_OPND_IMM1:
5997 case IA64_OPND_IMM8:
5998 case IA64_OPND_IMM8U4:
5999 case IA64_OPND_IMM8M1:
6000 case IA64_OPND_IMM8M1U4:
6001 case IA64_OPND_IMM8M1U8:
6002 case IA64_OPND_IMM9a:
6003 case IA64_OPND_IMM9b:
6004 bits = operand_width (idesc->operands[index]);
6005 if (relocatable && (e->X_op == O_symbol
6006 || e->X_op == O_subtract
6007 || e->X_op == O_pseudo_fixup))
6008 {
6009 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6010
6011 if (idesc->operands[index] == IA64_OPND_IMM14)
6012 fix->code = BFD_RELOC_IA64_IMM14;
6013 else
6014 fix->code = BFD_RELOC_IA64_IMM22;
6015
6016 if (e->X_op != O_subtract)
6017 {
6018 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
6019 if (e->X_op == O_pseudo_fixup)
6020 e->X_op = O_symbol;
6021 }
6022
6023 fix->opnd = idesc->operands[index];
6024 fix->expr = *e;
6025 fix->is_pcrel = 0;
6026 ++CURR_SLOT.num_fixups;
6027 return OPERAND_MATCH;
6028 }
6029 else if (e->X_op != O_constant
6030 && ! (e->X_op == O_big && opnd == IA64_OPND_IMM8M1U8))
6031 return OPERAND_MISMATCH;
6032
6033 if (opnd == IA64_OPND_IMM8M1U4)
6034 {
6035 /* Zero is not valid for unsigned compares that take an adjusted
6036 constant immediate range. */
6037 if (e->X_add_number == 0)
6038 return OPERAND_OUT_OF_RANGE;
6039
6040 /* Sign-extend 32-bit unsigned numbers, so that the following range
6041 checks will work. */
6042 val = e->X_add_number;
6043 if (((val & (~(bfd_vma) 0 << 32)) == 0)
6044 && ((val & ((bfd_vma) 1 << 31)) != 0))
6045 val = ((val << 32) >> 32);
6046
6047 /* Check for 0x100000000. This is valid because
6048 0x100000000-1 is the same as ((uint32_t) -1). */
6049 if (val == ((bfd_signed_vma) 1 << 32))
6050 return OPERAND_MATCH;
6051
6052 val = val - 1;
6053 }
6054 else if (opnd == IA64_OPND_IMM8M1U8)
6055 {
6056 /* Zero is not valid for unsigned compares that take an adjusted
6057 constant immediate range. */
6058 if (e->X_add_number == 0)
6059 return OPERAND_OUT_OF_RANGE;
6060
6061 /* Check for 0x10000000000000000. */
6062 if (e->X_op == O_big)
6063 {
6064 if (generic_bignum[0] == 0
6065 && generic_bignum[1] == 0
6066 && generic_bignum[2] == 0
6067 && generic_bignum[3] == 0
6068 && generic_bignum[4] == 1)
6069 return OPERAND_MATCH;
6070 else
6071 return OPERAND_OUT_OF_RANGE;
6072 }
6073 else
6074 val = e->X_add_number - 1;
6075 }
6076 else if (opnd == IA64_OPND_IMM8M1)
6077 val = e->X_add_number - 1;
6078 else if (opnd == IA64_OPND_IMM8U4)
6079 {
6080 /* Sign-extend 32-bit unsigned numbers, so that the following range
6081 checks will work. */
6082 val = e->X_add_number;
6083 if (((val & (~(bfd_vma) 0 << 32)) == 0)
6084 && ((val & ((bfd_vma) 1 << 31)) != 0))
6085 val = ((val << 32) >> 32);
6086 }
6087 else
6088 val = e->X_add_number;
6089
6090 if ((val >= 0 && (bfd_vma) val < ((bfd_vma) 1 << (bits - 1)))
6091 || (val < 0 && (bfd_vma) -val <= ((bfd_vma) 1 << (bits - 1))))
6092 return OPERAND_MATCH;
6093 else
6094 return OPERAND_OUT_OF_RANGE;
6095
6096 case IA64_OPND_INC3:
6097 /* +/- 1, 4, 8, 16 */
6098 val = e->X_add_number;
6099 if (val < 0)
6100 val = -val;
6101 if (e->X_op == O_constant)
6102 {
6103 if ((val == 1 || val == 4 || val == 8 || val == 16))
6104 return OPERAND_MATCH;
6105 else
6106 return OPERAND_OUT_OF_RANGE;
6107 }
6108 break;
6109
6110 case IA64_OPND_TGT25:
6111 case IA64_OPND_TGT25b:
6112 case IA64_OPND_TGT25c:
6113 case IA64_OPND_TGT64:
6114 if (e->X_op == O_symbol)
6115 {
6116 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6117 if (opnd == IA64_OPND_TGT25)
6118 fix->code = BFD_RELOC_IA64_PCREL21F;
6119 else if (opnd == IA64_OPND_TGT25b)
6120 fix->code = BFD_RELOC_IA64_PCREL21M;
6121 else if (opnd == IA64_OPND_TGT25c)
6122 fix->code = BFD_RELOC_IA64_PCREL21B;
6123 else if (opnd == IA64_OPND_TGT64)
6124 fix->code = BFD_RELOC_IA64_PCREL60B;
6125 else
6126 abort ();
6127
6128 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
6129 fix->opnd = idesc->operands[index];
6130 fix->expr = *e;
6131 fix->is_pcrel = 1;
6132 ++CURR_SLOT.num_fixups;
6133 return OPERAND_MATCH;
6134 }
6135 case IA64_OPND_TAG13:
6136 case IA64_OPND_TAG13b:
6137 switch (e->X_op)
6138 {
6139 case O_constant:
6140 return OPERAND_MATCH;
6141
6142 case O_symbol:
6143 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6144 /* There are no external relocs for TAG13/TAG13b fields, so we
6145 create a dummy reloc. This will not live past md_apply_fix. */
6146 fix->code = BFD_RELOC_UNUSED;
6147 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
6148 fix->opnd = idesc->operands[index];
6149 fix->expr = *e;
6150 fix->is_pcrel = 1;
6151 ++CURR_SLOT.num_fixups;
6152 return OPERAND_MATCH;
6153
6154 default:
6155 break;
6156 }
6157 break;
6158
6159 case IA64_OPND_LDXMOV:
6160 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6161 fix->code = BFD_RELOC_IA64_LDXMOV;
6162 fix->opnd = idesc->operands[index];
6163 fix->expr = *e;
6164 fix->is_pcrel = 0;
6165 ++CURR_SLOT.num_fixups;
6166 return OPERAND_MATCH;
6167
6168 default:
6169 break;
6170 }
6171 return OPERAND_MISMATCH;
6172 }
6173
6174 static int
6175 parse_operand (e, more)
6176 expressionS *e;
6177 int more;
6178 {
6179 int sep = '\0';
6180
6181 memset (e, 0, sizeof (*e));
6182 e->X_op = O_absent;
6183 SKIP_WHITESPACE ();
6184 expression_and_evaluate (e);
6185 sep = *input_line_pointer;
6186 if (more && (sep == ',' || sep == more))
6187 ++input_line_pointer;
6188 return sep;
6189 }
6190
6191 /* Returns the next entry in the opcode table that matches the one in
6192 IDESC, and frees the entry in IDESC. If no matching entry is
6193 found, NULL is returned instead. */
6194
6195 static struct ia64_opcode *
6196 get_next_opcode (struct ia64_opcode *idesc)
6197 {
6198 struct ia64_opcode *next = ia64_find_next_opcode (idesc);
6199 ia64_free_opcode (idesc);
6200 return next;
6201 }
6202
6203 /* Parse the operands for the opcode and find the opcode variant that
6204 matches the specified operands, or NULL if no match is possible. */
6205
6206 static struct ia64_opcode *
6207 parse_operands (idesc)
6208 struct ia64_opcode *idesc;
6209 {
6210 int i = 0, highest_unmatched_operand, num_operands = 0, num_outputs = 0;
6211 int error_pos, out_of_range_pos, curr_out_of_range_pos, sep = 0;
6212 int reg1, reg2;
6213 char reg_class;
6214 enum ia64_opnd expected_operand = IA64_OPND_NIL;
6215 enum operand_match_result result;
6216 char mnemonic[129];
6217 char *first_arg = 0, *end, *saved_input_pointer;
6218 unsigned int sof;
6219
6220 assert (strlen (idesc->name) <= 128);
6221
6222 strcpy (mnemonic, idesc->name);
6223 if (idesc->operands[2] == IA64_OPND_SOF
6224 || idesc->operands[1] == IA64_OPND_SOF)
6225 {
6226 /* To make the common idiom "alloc loc?=ar.pfs,0,1,0,0" work, we
6227 can't parse the first operand until we have parsed the
6228 remaining operands of the "alloc" instruction. */
6229 SKIP_WHITESPACE ();
6230 first_arg = input_line_pointer;
6231 end = strchr (input_line_pointer, '=');
6232 if (!end)
6233 {
6234 as_bad ("Expected separator `='");
6235 return 0;
6236 }
6237 input_line_pointer = end + 1;
6238 ++i;
6239 ++num_outputs;
6240 }
6241
6242 for (; ; ++i)
6243 {
6244 if (i < NELEMS (CURR_SLOT.opnd))
6245 {
6246 sep = parse_operand (CURR_SLOT.opnd + i, '=');
6247 if (CURR_SLOT.opnd[i].X_op == O_absent)
6248 break;
6249 }
6250 else
6251 {
6252 expressionS dummy;
6253
6254 sep = parse_operand (&dummy, '=');
6255 if (dummy.X_op == O_absent)
6256 break;
6257 }
6258
6259 ++num_operands;
6260
6261 if (sep != '=' && sep != ',')
6262 break;
6263
6264 if (sep == '=')
6265 {
6266 if (num_outputs > 0)
6267 as_bad ("Duplicate equal sign (=) in instruction");
6268 else
6269 num_outputs = i + 1;
6270 }
6271 }
6272 if (sep != '\0')
6273 {
6274 as_bad ("Illegal operand separator `%c'", sep);
6275 return 0;
6276 }
6277
6278 if (idesc->operands[2] == IA64_OPND_SOF
6279 || idesc->operands[1] == IA64_OPND_SOF)
6280 {
6281 /* Map alloc r1=ar.pfs,i,l,o,r to alloc r1=ar.pfs,(i+l+o),(i+l),r.
6282 Note, however, that due to that mapping operand numbers in error
6283 messages for any of the constant operands will not be correct. */
6284 know (strcmp (idesc->name, "alloc") == 0);
6285 /* The first operand hasn't been parsed/initialized, yet (but
6286 num_operands intentionally doesn't account for that). */
6287 i = num_operands > 4 ? 2 : 1;
6288 #define FORCE_CONST(n) (CURR_SLOT.opnd[n].X_op == O_constant \
6289 ? CURR_SLOT.opnd[n].X_add_number \
6290 : 0)
6291 sof = set_regstack (FORCE_CONST(i),
6292 FORCE_CONST(i + 1),
6293 FORCE_CONST(i + 2),
6294 FORCE_CONST(i + 3));
6295 #undef FORCE_CONST
6296
6297 /* now we can parse the first arg: */
6298 saved_input_pointer = input_line_pointer;
6299 input_line_pointer = first_arg;
6300 sep = parse_operand (CURR_SLOT.opnd + 0, '=');
6301 if (sep != '=')
6302 --num_outputs; /* force error */
6303 input_line_pointer = saved_input_pointer;
6304
6305 CURR_SLOT.opnd[i].X_add_number = sof;
6306 if (CURR_SLOT.opnd[i + 1].X_op == O_constant
6307 && CURR_SLOT.opnd[i + 2].X_op == O_constant)
6308 CURR_SLOT.opnd[i + 1].X_add_number
6309 = sof - CURR_SLOT.opnd[i + 2].X_add_number;
6310 else
6311 CURR_SLOT.opnd[i + 1].X_op = O_illegal;
6312 CURR_SLOT.opnd[i + 2] = CURR_SLOT.opnd[i + 3];
6313 }
6314
6315 highest_unmatched_operand = -4;
6316 curr_out_of_range_pos = -1;
6317 error_pos = 0;
6318 for (; idesc; idesc = get_next_opcode (idesc))
6319 {
6320 if (num_outputs != idesc->num_outputs)
6321 continue; /* mismatch in # of outputs */
6322 if (highest_unmatched_operand < 0)
6323 highest_unmatched_operand |= 1;
6324 if (num_operands > NELEMS (idesc->operands)
6325 || (num_operands < NELEMS (idesc->operands)
6326 && idesc->operands[num_operands])
6327 || (num_operands > 0 && !idesc->operands[num_operands - 1]))
6328 continue; /* mismatch in number of arguments */
6329 if (highest_unmatched_operand < 0)
6330 highest_unmatched_operand |= 2;
6331
6332 CURR_SLOT.num_fixups = 0;
6333
6334 /* Try to match all operands. If we see an out-of-range operand,
6335 then continue trying to match the rest of the operands, since if
6336 the rest match, then this idesc will give the best error message. */
6337
6338 out_of_range_pos = -1;
6339 for (i = 0; i < num_operands && idesc->operands[i]; ++i)
6340 {
6341 result = operand_match (idesc, i, CURR_SLOT.opnd + i);
6342 if (result != OPERAND_MATCH)
6343 {
6344 if (result != OPERAND_OUT_OF_RANGE)
6345 break;
6346 if (out_of_range_pos < 0)
6347 /* remember position of the first out-of-range operand: */
6348 out_of_range_pos = i;
6349 }
6350 }
6351
6352 /* If we did not match all operands, or if at least one operand was
6353 out-of-range, then this idesc does not match. Keep track of which
6354 idesc matched the most operands before failing. If we have two
6355 idescs that failed at the same position, and one had an out-of-range
6356 operand, then prefer the out-of-range operand. Thus if we have
6357 "add r0=0x1000000,r1" we get an error saying the constant is out
6358 of range instead of an error saying that the constant should have been
6359 a register. */
6360
6361 if (i != num_operands || out_of_range_pos >= 0)
6362 {
6363 if (i > highest_unmatched_operand
6364 || (i == highest_unmatched_operand
6365 && out_of_range_pos > curr_out_of_range_pos))
6366 {
6367 highest_unmatched_operand = i;
6368 if (out_of_range_pos >= 0)
6369 {
6370 expected_operand = idesc->operands[out_of_range_pos];
6371 error_pos = out_of_range_pos;
6372 }
6373 else
6374 {
6375 expected_operand = idesc->operands[i];
6376 error_pos = i;
6377 }
6378 curr_out_of_range_pos = out_of_range_pos;
6379 }
6380 continue;
6381 }
6382
6383 break;
6384 }
6385 if (!idesc)
6386 {
6387 if (expected_operand)
6388 as_bad ("Operand %u of `%s' should be %s",
6389 error_pos + 1, mnemonic,
6390 elf64_ia64_operands[expected_operand].desc);
6391 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 1))
6392 as_bad ("Wrong number of output operands");
6393 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 2))
6394 as_bad ("Wrong number of input operands");
6395 else
6396 as_bad ("Operand mismatch");
6397 return 0;
6398 }
6399
6400 /* Check that the instruction doesn't use
6401 - r0, f0, or f1 as output operands
6402 - the same predicate twice as output operands
6403 - r0 as address of a base update load or store
6404 - the same GR as output and address of a base update load
6405 - two even- or two odd-numbered FRs as output operands of a floating
6406 point parallel load.
6407 At most two (conflicting) output (or output-like) operands can exist,
6408 (floating point parallel loads have three outputs, but the base register,
6409 if updated, cannot conflict with the actual outputs). */
6410 reg2 = reg1 = -1;
6411 for (i = 0; i < num_operands; ++i)
6412 {
6413 int regno = 0;
6414
6415 reg_class = 0;
6416 switch (idesc->operands[i])
6417 {
6418 case IA64_OPND_R1:
6419 case IA64_OPND_R2:
6420 case IA64_OPND_R3:
6421 if (i < num_outputs)
6422 {
6423 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6424 reg_class = 'r';
6425 else if (reg1 < 0)
6426 reg1 = CURR_SLOT.opnd[i].X_add_number;
6427 else if (reg2 < 0)
6428 reg2 = CURR_SLOT.opnd[i].X_add_number;
6429 }
6430 break;
6431 case IA64_OPND_P1:
6432 case IA64_OPND_P2:
6433 if (i < num_outputs)
6434 {
6435 if (reg1 < 0)
6436 reg1 = CURR_SLOT.opnd[i].X_add_number;
6437 else if (reg2 < 0)
6438 reg2 = CURR_SLOT.opnd[i].X_add_number;
6439 }
6440 break;
6441 case IA64_OPND_F1:
6442 case IA64_OPND_F2:
6443 case IA64_OPND_F3:
6444 case IA64_OPND_F4:
6445 if (i < num_outputs)
6446 {
6447 if (CURR_SLOT.opnd[i].X_add_number >= REG_FR
6448 && CURR_SLOT.opnd[i].X_add_number <= REG_FR + 1)
6449 {
6450 reg_class = 'f';
6451 regno = CURR_SLOT.opnd[i].X_add_number - REG_FR;
6452 }
6453 else if (reg1 < 0)
6454 reg1 = CURR_SLOT.opnd[i].X_add_number;
6455 else if (reg2 < 0)
6456 reg2 = CURR_SLOT.opnd[i].X_add_number;
6457 }
6458 break;
6459 case IA64_OPND_MR3:
6460 if (idesc->flags & IA64_OPCODE_POSTINC)
6461 {
6462 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6463 reg_class = 'm';
6464 else if (reg1 < 0)
6465 reg1 = CURR_SLOT.opnd[i].X_add_number;
6466 else if (reg2 < 0)
6467 reg2 = CURR_SLOT.opnd[i].X_add_number;
6468 }
6469 break;
6470 default:
6471 break;
6472 }
6473 switch (reg_class)
6474 {
6475 case 0:
6476 break;
6477 default:
6478 as_warn ("Invalid use of `%c%d' as output operand", reg_class, regno);
6479 break;
6480 case 'm':
6481 as_warn ("Invalid use of `r%d' as base update address operand", regno);
6482 break;
6483 }
6484 }
6485 if (reg1 == reg2)
6486 {
6487 if (reg1 >= REG_GR && reg1 <= REG_GR + 127)
6488 {
6489 reg1 -= REG_GR;
6490 reg_class = 'r';
6491 }
6492 else if (reg1 >= REG_P && reg1 <= REG_P + 63)
6493 {
6494 reg1 -= REG_P;
6495 reg_class = 'p';
6496 }
6497 else if (reg1 >= REG_FR && reg1 <= REG_FR + 127)
6498 {
6499 reg1 -= REG_FR;
6500 reg_class = 'f';
6501 }
6502 else
6503 reg_class = 0;
6504 if (reg_class)
6505 as_warn ("Invalid duplicate use of `%c%d'", reg_class, reg1);
6506 }
6507 else if (((reg1 >= REG_FR && reg1 <= REG_FR + 31
6508 && reg2 >= REG_FR && reg2 <= REG_FR + 31)
6509 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6510 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127))
6511 && ! ((reg1 ^ reg2) & 1))
6512 as_warn ("Invalid simultaneous use of `f%d' and `f%d'",
6513 reg1 - REG_FR, reg2 - REG_FR);
6514 else if ((reg1 >= REG_FR && reg1 <= REG_FR + 31
6515 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127)
6516 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6517 && reg2 >= REG_FR && reg2 <= REG_FR + 31))
6518 as_warn ("Dangerous simultaneous use of `f%d' and `f%d'",
6519 reg1 - REG_FR, reg2 - REG_FR);
6520 return idesc;
6521 }
6522
6523 static void
6524 build_insn (slot, insnp)
6525 struct slot *slot;
6526 bfd_vma *insnp;
6527 {
6528 const struct ia64_operand *odesc, *o2desc;
6529 struct ia64_opcode *idesc = slot->idesc;
6530 bfd_vma insn;
6531 bfd_signed_vma val;
6532 const char *err;
6533 int i;
6534
6535 insn = idesc->opcode | slot->qp_regno;
6536
6537 for (i = 0; i < NELEMS (idesc->operands) && idesc->operands[i]; ++i)
6538 {
6539 if (slot->opnd[i].X_op == O_register
6540 || slot->opnd[i].X_op == O_constant
6541 || slot->opnd[i].X_op == O_index)
6542 val = slot->opnd[i].X_add_number;
6543 else if (slot->opnd[i].X_op == O_big)
6544 {
6545 /* This must be the value 0x10000000000000000. */
6546 assert (idesc->operands[i] == IA64_OPND_IMM8M1U8);
6547 val = 0;
6548 }
6549 else
6550 val = 0;
6551
6552 switch (idesc->operands[i])
6553 {
6554 case IA64_OPND_IMMU64:
6555 *insnp++ = (val >> 22) & 0x1ffffffffffLL;
6556 insn |= (((val & 0x7f) << 13) | (((val >> 7) & 0x1ff) << 27)
6557 | (((val >> 16) & 0x1f) << 22) | (((val >> 21) & 0x1) << 21)
6558 | (((val >> 63) & 0x1) << 36));
6559 continue;
6560
6561 case IA64_OPND_IMMU62:
6562 val &= 0x3fffffffffffffffULL;
6563 if (val != slot->opnd[i].X_add_number)
6564 as_warn (_("Value truncated to 62 bits"));
6565 *insnp++ = (val >> 21) & 0x1ffffffffffLL;
6566 insn |= (((val & 0xfffff) << 6) | (((val >> 20) & 0x1) << 36));
6567 continue;
6568
6569 case IA64_OPND_TGT64:
6570 val >>= 4;
6571 *insnp++ = ((val >> 20) & 0x7fffffffffLL) << 2;
6572 insn |= ((((val >> 59) & 0x1) << 36)
6573 | (((val >> 0) & 0xfffff) << 13));
6574 continue;
6575
6576 case IA64_OPND_AR3:
6577 val -= REG_AR;
6578 break;
6579
6580 case IA64_OPND_B1:
6581 case IA64_OPND_B2:
6582 val -= REG_BR;
6583 break;
6584
6585 case IA64_OPND_CR3:
6586 val -= REG_CR;
6587 break;
6588
6589 case IA64_OPND_F1:
6590 case IA64_OPND_F2:
6591 case IA64_OPND_F3:
6592 case IA64_OPND_F4:
6593 val -= REG_FR;
6594 break;
6595
6596 case IA64_OPND_P1:
6597 case IA64_OPND_P2:
6598 val -= REG_P;
6599 break;
6600
6601 case IA64_OPND_R1:
6602 case IA64_OPND_R2:
6603 case IA64_OPND_R3:
6604 case IA64_OPND_R3_2:
6605 case IA64_OPND_CPUID_R3:
6606 case IA64_OPND_DBR_R3:
6607 case IA64_OPND_DTR_R3:
6608 case IA64_OPND_ITR_R3:
6609 case IA64_OPND_IBR_R3:
6610 case IA64_OPND_MR3:
6611 case IA64_OPND_MSR_R3:
6612 case IA64_OPND_PKR_R3:
6613 case IA64_OPND_PMC_R3:
6614 case IA64_OPND_PMD_R3:
6615 case IA64_OPND_RR_R3:
6616 val -= REG_GR;
6617 break;
6618
6619 default:
6620 break;
6621 }
6622
6623 odesc = elf64_ia64_operands + idesc->operands[i];
6624 err = (*odesc->insert) (odesc, val, &insn);
6625 if (err)
6626 as_bad_where (slot->src_file, slot->src_line,
6627 "Bad operand value: %s", err);
6628 if (idesc->flags & IA64_OPCODE_PSEUDO)
6629 {
6630 if ((idesc->flags & IA64_OPCODE_F2_EQ_F3)
6631 && odesc == elf64_ia64_operands + IA64_OPND_F3)
6632 {
6633 o2desc = elf64_ia64_operands + IA64_OPND_F2;
6634 (*o2desc->insert) (o2desc, val, &insn);
6635 }
6636 if ((idesc->flags & IA64_OPCODE_LEN_EQ_64MCNT)
6637 && (odesc == elf64_ia64_operands + IA64_OPND_CPOS6a
6638 || odesc == elf64_ia64_operands + IA64_OPND_POS6))
6639 {
6640 o2desc = elf64_ia64_operands + IA64_OPND_LEN6;
6641 (*o2desc->insert) (o2desc, 64 - val, &insn);
6642 }
6643 }
6644 }
6645 *insnp = insn;
6646 }
6647
6648 static void
6649 emit_one_bundle ()
6650 {
6651 int manual_bundling_off = 0, manual_bundling = 0;
6652 enum ia64_unit required_unit, insn_unit = 0;
6653 enum ia64_insn_type type[3], insn_type;
6654 unsigned int template, orig_template;
6655 bfd_vma insn[3] = { -1, -1, -1 };
6656 struct ia64_opcode *idesc;
6657 int end_of_insn_group = 0, user_template = -1;
6658 int n, i, j, first, curr, last_slot;
6659 bfd_vma t0 = 0, t1 = 0;
6660 struct label_fix *lfix;
6661 bfd_boolean mark_label;
6662 struct insn_fix *ifix;
6663 char mnemonic[16];
6664 fixS *fix;
6665 char *f;
6666 int addr_mod;
6667
6668 first = (md.curr_slot + NUM_SLOTS - md.num_slots_in_use) % NUM_SLOTS;
6669 know (first >= 0 & first < NUM_SLOTS);
6670 n = MIN (3, md.num_slots_in_use);
6671
6672 /* Determine template: user user_template if specified, best match
6673 otherwise: */
6674
6675 if (md.slot[first].user_template >= 0)
6676 user_template = template = md.slot[first].user_template;
6677 else
6678 {
6679 /* Auto select appropriate template. */
6680 memset (type, 0, sizeof (type));
6681 curr = first;
6682 for (i = 0; i < n; ++i)
6683 {
6684 if (md.slot[curr].label_fixups && i != 0)
6685 break;
6686 type[i] = md.slot[curr].idesc->type;
6687 curr = (curr + 1) % NUM_SLOTS;
6688 }
6689 template = best_template[type[0]][type[1]][type[2]];
6690 }
6691
6692 /* initialize instructions with appropriate nops: */
6693 for (i = 0; i < 3; ++i)
6694 insn[i] = nop[ia64_templ_desc[template].exec_unit[i]];
6695
6696 f = frag_more (16);
6697
6698 /* Check to see if this bundle is at an offset that is a multiple of 16-bytes
6699 from the start of the frag. */
6700 addr_mod = frag_now_fix () & 15;
6701 if (frag_now->has_code && frag_now->insn_addr != addr_mod)
6702 as_bad (_("instruction address is not a multiple of 16"));
6703 frag_now->insn_addr = addr_mod;
6704 frag_now->has_code = 1;
6705
6706 /* now fill in slots with as many insns as possible: */
6707 curr = first;
6708 idesc = md.slot[curr].idesc;
6709 end_of_insn_group = 0;
6710 last_slot = -1;
6711 for (i = 0; i < 3 && md.num_slots_in_use > 0; ++i)
6712 {
6713 /* If we have unwind records, we may need to update some now. */
6714 unw_rec_list *ptr = md.slot[curr].unwind_record;
6715 unw_rec_list *end_ptr = NULL;
6716
6717 if (ptr)
6718 {
6719 /* Find the last prologue/body record in the list for the current
6720 insn, and set the slot number for all records up to that point.
6721 This needs to be done now, because prologue/body records refer to
6722 the current point, not the point after the instruction has been
6723 issued. This matters because there may have been nops emitted
6724 meanwhile. Any non-prologue non-body record followed by a
6725 prologue/body record must also refer to the current point. */
6726 unw_rec_list *last_ptr;
6727
6728 for (j = 1; end_ptr == NULL && j < md.num_slots_in_use; ++j)
6729 end_ptr = md.slot[(curr + j) % NUM_SLOTS].unwind_record;
6730 for (last_ptr = NULL; ptr != end_ptr; ptr = ptr->next)
6731 if (ptr->r.type == prologue || ptr->r.type == prologue_gr
6732 || ptr->r.type == body)
6733 last_ptr = ptr;
6734 if (last_ptr)
6735 {
6736 /* Make last_ptr point one after the last prologue/body
6737 record. */
6738 last_ptr = last_ptr->next;
6739 for (ptr = md.slot[curr].unwind_record; ptr != last_ptr;
6740 ptr = ptr->next)
6741 {
6742 ptr->slot_number = (unsigned long) f + i;
6743 ptr->slot_frag = frag_now;
6744 }
6745 /* Remove the initialized records, so that we won't accidentally
6746 update them again if we insert a nop and continue. */
6747 md.slot[curr].unwind_record = last_ptr;
6748 }
6749 }
6750
6751 manual_bundling_off = md.slot[curr].manual_bundling_off;
6752 if (md.slot[curr].manual_bundling_on)
6753 {
6754 if (curr == first)
6755 manual_bundling = 1;
6756 else
6757 break; /* Need to start a new bundle. */
6758 }
6759
6760 /* If this instruction specifies a template, then it must be the first
6761 instruction of a bundle. */
6762 if (curr != first && md.slot[curr].user_template >= 0)
6763 break;
6764
6765 if (idesc->flags & IA64_OPCODE_SLOT2)
6766 {
6767 if (manual_bundling && !manual_bundling_off)
6768 {
6769 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6770 "`%s' must be last in bundle", idesc->name);
6771 if (i < 2)
6772 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6773 }
6774 i = 2;
6775 }
6776 if (idesc->flags & IA64_OPCODE_LAST)
6777 {
6778 int required_slot;
6779 unsigned int required_template;
6780
6781 /* If we need a stop bit after an M slot, our only choice is
6782 template 5 (M;;MI). If we need a stop bit after a B
6783 slot, our only choice is to place it at the end of the
6784 bundle, because the only available templates are MIB,
6785 MBB, BBB, MMB, and MFB. We don't handle anything other
6786 than M and B slots because these are the only kind of
6787 instructions that can have the IA64_OPCODE_LAST bit set. */
6788 required_template = template;
6789 switch (idesc->type)
6790 {
6791 case IA64_TYPE_M:
6792 required_slot = 0;
6793 required_template = 5;
6794 break;
6795
6796 case IA64_TYPE_B:
6797 required_slot = 2;
6798 break;
6799
6800 default:
6801 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6802 "Internal error: don't know how to force %s to end"
6803 "of instruction group", idesc->name);
6804 required_slot = i;
6805 break;
6806 }
6807 if (manual_bundling
6808 && (i > required_slot
6809 || (required_slot == 2 && !manual_bundling_off)
6810 || (user_template >= 0
6811 /* Changing from MMI to M;MI is OK. */
6812 && (template ^ required_template) > 1)))
6813 {
6814 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6815 "`%s' must be last in instruction group",
6816 idesc->name);
6817 if (i < 2 && required_slot == 2 && !manual_bundling_off)
6818 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6819 }
6820 if (required_slot < i)
6821 /* Can't fit this instruction. */
6822 break;
6823
6824 i = required_slot;
6825 if (required_template != template)
6826 {
6827 /* If we switch the template, we need to reset the NOPs
6828 after slot i. The slot-types of the instructions ahead
6829 of i never change, so we don't need to worry about
6830 changing NOPs in front of this slot. */
6831 for (j = i; j < 3; ++j)
6832 insn[j] = nop[ia64_templ_desc[required_template].exec_unit[j]];
6833 }
6834 template = required_template;
6835 }
6836 if (curr != first && md.slot[curr].label_fixups)
6837 {
6838 if (manual_bundling)
6839 {
6840 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6841 "Label must be first in a bundle");
6842 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6843 }
6844 /* This insn must go into the first slot of a bundle. */
6845 break;
6846 }
6847
6848 if (end_of_insn_group && md.num_slots_in_use >= 1)
6849 {
6850 /* We need an instruction group boundary in the middle of a
6851 bundle. See if we can switch to an other template with
6852 an appropriate boundary. */
6853
6854 orig_template = template;
6855 if (i == 1 && (user_template == 4
6856 || (user_template < 0
6857 && (ia64_templ_desc[template].exec_unit[0]
6858 == IA64_UNIT_M))))
6859 {
6860 template = 5;
6861 end_of_insn_group = 0;
6862 }
6863 else if (i == 2 && (user_template == 0
6864 || (user_template < 0
6865 && (ia64_templ_desc[template].exec_unit[1]
6866 == IA64_UNIT_I)))
6867 /* This test makes sure we don't switch the template if
6868 the next instruction is one that needs to be first in
6869 an instruction group. Since all those instructions are
6870 in the M group, there is no way such an instruction can
6871 fit in this bundle even if we switch the template. The
6872 reason we have to check for this is that otherwise we
6873 may end up generating "MI;;I M.." which has the deadly
6874 effect that the second M instruction is no longer the
6875 first in the group! --davidm 99/12/16 */
6876 && (idesc->flags & IA64_OPCODE_FIRST) == 0)
6877 {
6878 template = 1;
6879 end_of_insn_group = 0;
6880 }
6881 else if (i == 1
6882 && user_template == 0
6883 && !(idesc->flags & IA64_OPCODE_FIRST))
6884 /* Use the next slot. */
6885 continue;
6886 else if (curr != first)
6887 /* can't fit this insn */
6888 break;
6889
6890 if (template != orig_template)
6891 /* if we switch the template, we need to reset the NOPs
6892 after slot i. The slot-types of the instructions ahead
6893 of i never change, so we don't need to worry about
6894 changing NOPs in front of this slot. */
6895 for (j = i; j < 3; ++j)
6896 insn[j] = nop[ia64_templ_desc[template].exec_unit[j]];
6897 }
6898 required_unit = ia64_templ_desc[template].exec_unit[i];
6899
6900 /* resolve dynamic opcodes such as "break", "hint", and "nop": */
6901 if (idesc->type == IA64_TYPE_DYN)
6902 {
6903 enum ia64_opnd opnd1, opnd2;
6904
6905 if ((strcmp (idesc->name, "nop") == 0)
6906 || (strcmp (idesc->name, "break") == 0))
6907 insn_unit = required_unit;
6908 else if (strcmp (idesc->name, "hint") == 0)
6909 {
6910 insn_unit = required_unit;
6911 if (required_unit == IA64_UNIT_B)
6912 {
6913 switch (md.hint_b)
6914 {
6915 case hint_b_ok:
6916 break;
6917 case hint_b_warning:
6918 as_warn ("hint in B unit may be treated as nop");
6919 break;
6920 case hint_b_error:
6921 /* When manual bundling is off and there is no
6922 user template, we choose a different unit so
6923 that hint won't go into the current slot. We
6924 will fill the current bundle with nops and
6925 try to put hint into the next bundle. */
6926 if (!manual_bundling && user_template < 0)
6927 insn_unit = IA64_UNIT_I;
6928 else
6929 as_bad ("hint in B unit can't be used");
6930 break;
6931 }
6932 }
6933 }
6934 else if (strcmp (idesc->name, "chk.s") == 0
6935 || strcmp (idesc->name, "mov") == 0)
6936 {
6937 insn_unit = IA64_UNIT_M;
6938 if (required_unit == IA64_UNIT_I
6939 || (required_unit == IA64_UNIT_F && template == 6))
6940 insn_unit = IA64_UNIT_I;
6941 }
6942 else
6943 as_fatal ("emit_one_bundle: unexpected dynamic op");
6944
6945 sprintf (mnemonic, "%s.%c", idesc->name, "?imbfxx"[insn_unit]);
6946 opnd1 = idesc->operands[0];
6947 opnd2 = idesc->operands[1];
6948 ia64_free_opcode (idesc);
6949 idesc = ia64_find_opcode (mnemonic);
6950 /* moves to/from ARs have collisions */
6951 if (opnd1 == IA64_OPND_AR3 || opnd2 == IA64_OPND_AR3)
6952 {
6953 while (idesc != NULL
6954 && (idesc->operands[0] != opnd1
6955 || idesc->operands[1] != opnd2))
6956 idesc = get_next_opcode (idesc);
6957 }
6958 md.slot[curr].idesc = idesc;
6959 }
6960 else
6961 {
6962 insn_type = idesc->type;
6963 insn_unit = IA64_UNIT_NIL;
6964 switch (insn_type)
6965 {
6966 case IA64_TYPE_A:
6967 if (required_unit == IA64_UNIT_I || required_unit == IA64_UNIT_M)
6968 insn_unit = required_unit;
6969 break;
6970 case IA64_TYPE_X: insn_unit = IA64_UNIT_L; break;
6971 case IA64_TYPE_I: insn_unit = IA64_UNIT_I; break;
6972 case IA64_TYPE_M: insn_unit = IA64_UNIT_M; break;
6973 case IA64_TYPE_B: insn_unit = IA64_UNIT_B; break;
6974 case IA64_TYPE_F: insn_unit = IA64_UNIT_F; break;
6975 default: break;
6976 }
6977 }
6978
6979 if (insn_unit != required_unit)
6980 continue; /* Try next slot. */
6981
6982 /* Now is a good time to fix up the labels for this insn. */
6983 mark_label = FALSE;
6984 for (lfix = md.slot[curr].label_fixups; lfix; lfix = lfix->next)
6985 {
6986 S_SET_VALUE (lfix->sym, frag_now_fix () - 16);
6987 symbol_set_frag (lfix->sym, frag_now);
6988 mark_label |= lfix->dw2_mark_labels;
6989 }
6990 for (lfix = md.slot[curr].tag_fixups; lfix; lfix = lfix->next)
6991 {
6992 S_SET_VALUE (lfix->sym, frag_now_fix () - 16 + i);
6993 symbol_set_frag (lfix->sym, frag_now);
6994 }
6995
6996 if (debug_type == DEBUG_DWARF2
6997 || md.slot[curr].loc_directive_seen
6998 || mark_label)
6999 {
7000 bfd_vma addr = frag_now->fr_address + frag_now_fix () - 16 + i;
7001
7002 md.slot[curr].loc_directive_seen = 0;
7003 if (mark_label)
7004 md.slot[curr].debug_line.flags |= DWARF2_FLAG_BASIC_BLOCK;
7005
7006 dwarf2_gen_line_info (addr, &md.slot[curr].debug_line);
7007 }
7008
7009 build_insn (md.slot + curr, insn + i);
7010
7011 ptr = md.slot[curr].unwind_record;
7012 if (ptr)
7013 {
7014 /* Set slot numbers for all remaining unwind records belonging to the
7015 current insn. There can not be any prologue/body unwind records
7016 here. */
7017 for (; ptr != end_ptr; ptr = ptr->next)
7018 {
7019 ptr->slot_number = (unsigned long) f + i;
7020 ptr->slot_frag = frag_now;
7021 }
7022 md.slot[curr].unwind_record = NULL;
7023 }
7024
7025 if (required_unit == IA64_UNIT_L)
7026 {
7027 know (i == 1);
7028 /* skip one slot for long/X-unit instructions */
7029 ++i;
7030 }
7031 --md.num_slots_in_use;
7032 last_slot = i;
7033
7034 for (j = 0; j < md.slot[curr].num_fixups; ++j)
7035 {
7036 ifix = md.slot[curr].fixup + j;
7037 fix = fix_new_exp (frag_now, frag_now_fix () - 16 + i, 8,
7038 &ifix->expr, ifix->is_pcrel, ifix->code);
7039 fix->tc_fix_data.opnd = ifix->opnd;
7040 fix->fx_plt = (fix->fx_r_type == BFD_RELOC_IA64_PLTOFF22);
7041 fix->fx_file = md.slot[curr].src_file;
7042 fix->fx_line = md.slot[curr].src_line;
7043 }
7044
7045 end_of_insn_group = md.slot[curr].end_of_insn_group;
7046
7047 /* clear slot: */
7048 ia64_free_opcode (md.slot[curr].idesc);
7049 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
7050 md.slot[curr].user_template = -1;
7051
7052 if (manual_bundling_off)
7053 {
7054 manual_bundling = 0;
7055 break;
7056 }
7057 curr = (curr + 1) % NUM_SLOTS;
7058 idesc = md.slot[curr].idesc;
7059 }
7060 if (manual_bundling > 0)
7061 {
7062 if (md.num_slots_in_use > 0)
7063 {
7064 if (last_slot >= 2)
7065 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7066 "`%s' does not fit into bundle", idesc->name);
7067 else if (last_slot < 0)
7068 {
7069 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7070 "`%s' does not fit into %s template",
7071 idesc->name, ia64_templ_desc[template].name);
7072 /* Drop first insn so we don't livelock. */
7073 --md.num_slots_in_use;
7074 know (curr == first);
7075 ia64_free_opcode (md.slot[curr].idesc);
7076 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
7077 md.slot[curr].user_template = -1;
7078 }
7079 else
7080 {
7081 const char *where;
7082
7083 if (template == 2)
7084 where = "X slot";
7085 else if (last_slot == 0)
7086 where = "slots 2 or 3";
7087 else
7088 where = "slot 3";
7089 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7090 "`%s' can't go in %s of %s template",
7091 idesc->name, where, ia64_templ_desc[template].name);
7092 }
7093 }
7094 else
7095 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7096 "Missing '}' at end of file");
7097 }
7098 know (md.num_slots_in_use < NUM_SLOTS);
7099
7100 t0 = end_of_insn_group | (template << 1) | (insn[0] << 5) | (insn[1] << 46);
7101 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
7102
7103 number_to_chars_littleendian (f + 0, t0, 8);
7104 number_to_chars_littleendian (f + 8, t1, 8);
7105 }
7106
7107 int
7108 md_parse_option (c, arg)
7109 int c;
7110 char *arg;
7111 {
7112
7113 switch (c)
7114 {
7115 /* Switches from the Intel assembler. */
7116 case 'm':
7117 if (strcmp (arg, "ilp64") == 0
7118 || strcmp (arg, "lp64") == 0
7119 || strcmp (arg, "p64") == 0)
7120 {
7121 md.flags |= EF_IA_64_ABI64;
7122 }
7123 else if (strcmp (arg, "ilp32") == 0)
7124 {
7125 md.flags &= ~EF_IA_64_ABI64;
7126 }
7127 else if (strcmp (arg, "le") == 0)
7128 {
7129 md.flags &= ~EF_IA_64_BE;
7130 default_big_endian = 0;
7131 }
7132 else if (strcmp (arg, "be") == 0)
7133 {
7134 md.flags |= EF_IA_64_BE;
7135 default_big_endian = 1;
7136 }
7137 else if (strncmp (arg, "unwind-check=", 13) == 0)
7138 {
7139 arg += 13;
7140 if (strcmp (arg, "warning") == 0)
7141 md.unwind_check = unwind_check_warning;
7142 else if (strcmp (arg, "error") == 0)
7143 md.unwind_check = unwind_check_error;
7144 else
7145 return 0;
7146 }
7147 else if (strncmp (arg, "hint.b=", 7) == 0)
7148 {
7149 arg += 7;
7150 if (strcmp (arg, "ok") == 0)
7151 md.hint_b = hint_b_ok;
7152 else if (strcmp (arg, "warning") == 0)
7153 md.hint_b = hint_b_warning;
7154 else if (strcmp (arg, "error") == 0)
7155 md.hint_b = hint_b_error;
7156 else
7157 return 0;
7158 }
7159 else if (strncmp (arg, "tune=", 5) == 0)
7160 {
7161 arg += 5;
7162 if (strcmp (arg, "itanium1") == 0)
7163 md.tune = itanium1;
7164 else if (strcmp (arg, "itanium2") == 0)
7165 md.tune = itanium2;
7166 else
7167 return 0;
7168 }
7169 else
7170 return 0;
7171 break;
7172
7173 case 'N':
7174 if (strcmp (arg, "so") == 0)
7175 {
7176 /* Suppress signon message. */
7177 }
7178 else if (strcmp (arg, "pi") == 0)
7179 {
7180 /* Reject privileged instructions. FIXME */
7181 }
7182 else if (strcmp (arg, "us") == 0)
7183 {
7184 /* Allow union of signed and unsigned range. FIXME */
7185 }
7186 else if (strcmp (arg, "close_fcalls") == 0)
7187 {
7188 /* Do not resolve global function calls. */
7189 }
7190 else
7191 return 0;
7192 break;
7193
7194 case 'C':
7195 /* temp[="prefix"] Insert temporary labels into the object file
7196 symbol table prefixed by "prefix".
7197 Default prefix is ":temp:".
7198 */
7199 break;
7200
7201 case 'a':
7202 /* indirect=<tgt> Assume unannotated indirect branches behavior
7203 according to <tgt> --
7204 exit: branch out from the current context (default)
7205 labels: all labels in context may be branch targets
7206 */
7207 if (strncmp (arg, "indirect=", 9) != 0)
7208 return 0;
7209 break;
7210
7211 case 'x':
7212 /* -X conflicts with an ignored option, use -x instead */
7213 md.detect_dv = 1;
7214 if (!arg || strcmp (arg, "explicit") == 0)
7215 {
7216 /* set default mode to explicit */
7217 md.default_explicit_mode = 1;
7218 break;
7219 }
7220 else if (strcmp (arg, "auto") == 0)
7221 {
7222 md.default_explicit_mode = 0;
7223 }
7224 else if (strcmp (arg, "none") == 0)
7225 {
7226 md.detect_dv = 0;
7227 }
7228 else if (strcmp (arg, "debug") == 0)
7229 {
7230 md.debug_dv = 1;
7231 }
7232 else if (strcmp (arg, "debugx") == 0)
7233 {
7234 md.default_explicit_mode = 1;
7235 md.debug_dv = 1;
7236 }
7237 else if (strcmp (arg, "debugn") == 0)
7238 {
7239 md.debug_dv = 1;
7240 md.detect_dv = 0;
7241 }
7242 else
7243 {
7244 as_bad (_("Unrecognized option '-x%s'"), arg);
7245 }
7246 break;
7247
7248 case 'S':
7249 /* nops Print nops statistics. */
7250 break;
7251
7252 /* GNU specific switches for gcc. */
7253 case OPTION_MCONSTANT_GP:
7254 md.flags |= EF_IA_64_CONS_GP;
7255 break;
7256
7257 case OPTION_MAUTO_PIC:
7258 md.flags |= EF_IA_64_NOFUNCDESC_CONS_GP;
7259 break;
7260
7261 default:
7262 return 0;
7263 }
7264
7265 return 1;
7266 }
7267
7268 void
7269 md_show_usage (stream)
7270 FILE *stream;
7271 {
7272 fputs (_("\
7273 IA-64 options:\n\
7274 --mconstant-gp mark output file as using the constant-GP model\n\
7275 (sets ELF header flag EF_IA_64_CONS_GP)\n\
7276 --mauto-pic mark output file as using the constant-GP model\n\
7277 without function descriptors (sets ELF header flag\n\
7278 EF_IA_64_NOFUNCDESC_CONS_GP)\n\
7279 -milp32|-milp64|-mlp64|-mp64 select data model (default -mlp64)\n\
7280 -mle | -mbe select little- or big-endian byte order (default -mle)\n\
7281 -mtune=[itanium1|itanium2]\n\
7282 tune for a specific CPU (default -mtune=itanium2)\n\
7283 -munwind-check=[warning|error]\n\
7284 unwind directive check (default -munwind-check=warning)\n\
7285 -mhint.b=[ok|warning|error]\n\
7286 hint.b check (default -mhint.b=error)\n\
7287 -x | -xexplicit turn on dependency violation checking\n\
7288 -xauto automagically remove dependency violations (default)\n\
7289 -xnone turn off dependency violation checking\n\
7290 -xdebug debug dependency violation checker\n\
7291 -xdebugn debug dependency violation checker but turn off\n\
7292 dependency violation checking\n\
7293 -xdebugx debug dependency violation checker and turn on\n\
7294 dependency violation checking\n"),
7295 stream);
7296 }
7297
7298 void
7299 ia64_after_parse_args ()
7300 {
7301 if (debug_type == DEBUG_STABS)
7302 as_fatal (_("--gstabs is not supported for ia64"));
7303 }
7304
7305 /* Return true if TYPE fits in TEMPL at SLOT. */
7306
7307 static int
7308 match (int templ, int type, int slot)
7309 {
7310 enum ia64_unit unit;
7311 int result;
7312
7313 unit = ia64_templ_desc[templ].exec_unit[slot];
7314 switch (type)
7315 {
7316 case IA64_TYPE_DYN: result = 1; break; /* for nop and break */
7317 case IA64_TYPE_A:
7318 result = (unit == IA64_UNIT_I || unit == IA64_UNIT_M);
7319 break;
7320 case IA64_TYPE_X: result = (unit == IA64_UNIT_L); break;
7321 case IA64_TYPE_I: result = (unit == IA64_UNIT_I); break;
7322 case IA64_TYPE_M: result = (unit == IA64_UNIT_M); break;
7323 case IA64_TYPE_B: result = (unit == IA64_UNIT_B); break;
7324 case IA64_TYPE_F: result = (unit == IA64_UNIT_F); break;
7325 default: result = 0; break;
7326 }
7327 return result;
7328 }
7329
7330 /* For Itanium 1, add a bit of extra goodness if a nop of type F or B would fit
7331 in TEMPL at SLOT. For Itanium 2, add a bit of extra goodness if a nop of
7332 type M or I would fit in TEMPL at SLOT. */
7333
7334 static inline int
7335 extra_goodness (int templ, int slot)
7336 {
7337 switch (md.tune)
7338 {
7339 case itanium1:
7340 if (slot == 1 && match (templ, IA64_TYPE_F, slot))
7341 return 2;
7342 else if (slot == 2 && match (templ, IA64_TYPE_B, slot))
7343 return 1;
7344 else
7345 return 0;
7346 break;
7347 case itanium2:
7348 if (match (templ, IA64_TYPE_M, slot)
7349 || match (templ, IA64_TYPE_I, slot))
7350 /* Favor M- and I-unit NOPs. We definitely want to avoid
7351 F-unit and B-unit may cause split-issue or less-than-optimal
7352 branch-prediction. */
7353 return 2;
7354 else
7355 return 0;
7356 break;
7357 default:
7358 abort ();
7359 return 0;
7360 }
7361 }
7362
7363 /* This function is called once, at assembler startup time. It sets
7364 up all the tables, etc. that the MD part of the assembler will need
7365 that can be determined before arguments are parsed. */
7366 void
7367 md_begin ()
7368 {
7369 int i, j, k, t, goodness, best, regnum, ok;
7370 const char *err;
7371 char name[8];
7372
7373 md.auto_align = 1;
7374 md.explicit_mode = md.default_explicit_mode;
7375
7376 bfd_set_section_alignment (stdoutput, text_section, 4);
7377
7378 /* Make sure function pointers get initialized. */
7379 target_big_endian = -1;
7380 dot_byteorder (default_big_endian);
7381
7382 alias_hash = hash_new ();
7383 alias_name_hash = hash_new ();
7384 secalias_hash = hash_new ();
7385 secalias_name_hash = hash_new ();
7386
7387 pseudo_func[FUNC_DTP_MODULE].u.sym =
7388 symbol_new (".<dtpmod>", undefined_section, FUNC_DTP_MODULE,
7389 &zero_address_frag);
7390
7391 pseudo_func[FUNC_DTP_RELATIVE].u.sym =
7392 symbol_new (".<dtprel>", undefined_section, FUNC_DTP_RELATIVE,
7393 &zero_address_frag);
7394
7395 pseudo_func[FUNC_FPTR_RELATIVE].u.sym =
7396 symbol_new (".<fptr>", undefined_section, FUNC_FPTR_RELATIVE,
7397 &zero_address_frag);
7398
7399 pseudo_func[FUNC_GP_RELATIVE].u.sym =
7400 symbol_new (".<gprel>", undefined_section, FUNC_GP_RELATIVE,
7401 &zero_address_frag);
7402
7403 pseudo_func[FUNC_LT_RELATIVE].u.sym =
7404 symbol_new (".<ltoff>", undefined_section, FUNC_LT_RELATIVE,
7405 &zero_address_frag);
7406
7407 pseudo_func[FUNC_LT_RELATIVE_X].u.sym =
7408 symbol_new (".<ltoffx>", undefined_section, FUNC_LT_RELATIVE_X,
7409 &zero_address_frag);
7410
7411 pseudo_func[FUNC_PC_RELATIVE].u.sym =
7412 symbol_new (".<pcrel>", undefined_section, FUNC_PC_RELATIVE,
7413 &zero_address_frag);
7414
7415 pseudo_func[FUNC_PLT_RELATIVE].u.sym =
7416 symbol_new (".<pltoff>", undefined_section, FUNC_PLT_RELATIVE,
7417 &zero_address_frag);
7418
7419 pseudo_func[FUNC_SEC_RELATIVE].u.sym =
7420 symbol_new (".<secrel>", undefined_section, FUNC_SEC_RELATIVE,
7421 &zero_address_frag);
7422
7423 pseudo_func[FUNC_SEG_RELATIVE].u.sym =
7424 symbol_new (".<segrel>", undefined_section, FUNC_SEG_RELATIVE,
7425 &zero_address_frag);
7426
7427 pseudo_func[FUNC_TP_RELATIVE].u.sym =
7428 symbol_new (".<tprel>", undefined_section, FUNC_TP_RELATIVE,
7429 &zero_address_frag);
7430
7431 pseudo_func[FUNC_LTV_RELATIVE].u.sym =
7432 symbol_new (".<ltv>", undefined_section, FUNC_LTV_RELATIVE,
7433 &zero_address_frag);
7434
7435 pseudo_func[FUNC_LT_FPTR_RELATIVE].u.sym =
7436 symbol_new (".<ltoff.fptr>", undefined_section, FUNC_LT_FPTR_RELATIVE,
7437 &zero_address_frag);
7438
7439 pseudo_func[FUNC_LT_DTP_MODULE].u.sym =
7440 symbol_new (".<ltoff.dtpmod>", undefined_section, FUNC_LT_DTP_MODULE,
7441 &zero_address_frag);
7442
7443 pseudo_func[FUNC_LT_DTP_RELATIVE].u.sym =
7444 symbol_new (".<ltoff.dptrel>", undefined_section, FUNC_LT_DTP_RELATIVE,
7445 &zero_address_frag);
7446
7447 pseudo_func[FUNC_LT_TP_RELATIVE].u.sym =
7448 symbol_new (".<ltoff.tprel>", undefined_section, FUNC_LT_TP_RELATIVE,
7449 &zero_address_frag);
7450
7451 pseudo_func[FUNC_IPLT_RELOC].u.sym =
7452 symbol_new (".<iplt>", undefined_section, FUNC_IPLT_RELOC,
7453 &zero_address_frag);
7454
7455 if (md.tune != itanium1)
7456 {
7457 /* Convert MFI NOPs bundles into MMI NOPs bundles. */
7458 le_nop[0] = 0x8;
7459 le_nop_stop[0] = 0x9;
7460 }
7461
7462 /* Compute the table of best templates. We compute goodness as a
7463 base 4 value, in which each match counts for 3. Match-failures
7464 result in NOPs and we use extra_goodness() to pick the execution
7465 units that are best suited for issuing the NOP. */
7466 for (i = 0; i < IA64_NUM_TYPES; ++i)
7467 for (j = 0; j < IA64_NUM_TYPES; ++j)
7468 for (k = 0; k < IA64_NUM_TYPES; ++k)
7469 {
7470 best = 0;
7471 for (t = 0; t < NELEMS (ia64_templ_desc); ++t)
7472 {
7473 goodness = 0;
7474 if (match (t, i, 0))
7475 {
7476 if (match (t, j, 1))
7477 {
7478 if ((t == 2 && j == IA64_TYPE_X) || match (t, k, 2))
7479 goodness = 3 + 3 + 3;
7480 else
7481 goodness = 3 + 3 + extra_goodness (t, 2);
7482 }
7483 else if (match (t, j, 2))
7484 goodness = 3 + 3 + extra_goodness (t, 1);
7485 else
7486 {
7487 goodness = 3;
7488 goodness += extra_goodness (t, 1);
7489 goodness += extra_goodness (t, 2);
7490 }
7491 }
7492 else if (match (t, i, 1))
7493 {
7494 if ((t == 2 && i == IA64_TYPE_X) || match (t, j, 2))
7495 goodness = 3 + 3;
7496 else
7497 goodness = 3 + extra_goodness (t, 2);
7498 }
7499 else if (match (t, i, 2))
7500 goodness = 3 + extra_goodness (t, 1);
7501
7502 if (goodness > best)
7503 {
7504 best = goodness;
7505 best_template[i][j][k] = t;
7506 }
7507 }
7508 }
7509
7510 #ifdef DEBUG_TEMPLATES
7511 /* For debugging changes to the best_template calculations. We don't care
7512 about combinations with invalid instructions, so start the loops at 1. */
7513 for (i = 0; i < IA64_NUM_TYPES; ++i)
7514 for (j = 0; j < IA64_NUM_TYPES; ++j)
7515 for (k = 0; k < IA64_NUM_TYPES; ++k)
7516 {
7517 char type_letter[IA64_NUM_TYPES] = { 'n', 'a', 'i', 'm', 'b', 'f',
7518 'x', 'd' };
7519 fprintf (stderr, "%c%c%c %s\n", type_letter[i], type_letter[j],
7520 type_letter[k],
7521 ia64_templ_desc[best_template[i][j][k]].name);
7522 }
7523 #endif
7524
7525 for (i = 0; i < NUM_SLOTS; ++i)
7526 md.slot[i].user_template = -1;
7527
7528 md.pseudo_hash = hash_new ();
7529 for (i = 0; i < NELEMS (pseudo_opcode); ++i)
7530 {
7531 err = hash_insert (md.pseudo_hash, pseudo_opcode[i].name,
7532 (void *) (pseudo_opcode + i));
7533 if (err)
7534 as_fatal ("ia64.md_begin: can't hash `%s': %s",
7535 pseudo_opcode[i].name, err);
7536 }
7537
7538 md.reg_hash = hash_new ();
7539 md.dynreg_hash = hash_new ();
7540 md.const_hash = hash_new ();
7541 md.entry_hash = hash_new ();
7542
7543 /* general registers: */
7544 for (i = REG_GR; i < REG_GR + 128; ++i)
7545 {
7546 sprintf (name, "r%d", i - REG_GR);
7547 md.regsym[i] = declare_register (name, i);
7548 }
7549
7550 /* floating point registers: */
7551 for (i = REG_FR; i < REG_FR + 128; ++i)
7552 {
7553 sprintf (name, "f%d", i - REG_FR);
7554 md.regsym[i] = declare_register (name, i);
7555 }
7556
7557 /* application registers: */
7558 for (i = REG_AR; i < REG_AR + 128; ++i)
7559 {
7560 sprintf (name, "ar%d", i - REG_AR);
7561 md.regsym[i] = declare_register (name, i);
7562 }
7563
7564 /* control registers: */
7565 for (i = REG_CR; i < REG_CR + 128; ++i)
7566 {
7567 sprintf (name, "cr%d", i - REG_CR);
7568 md.regsym[i] = declare_register (name, i);
7569 }
7570
7571 /* predicate registers: */
7572 for (i = REG_P; i < REG_P + 64; ++i)
7573 {
7574 sprintf (name, "p%d", i - REG_P);
7575 md.regsym[i] = declare_register (name, i);
7576 }
7577
7578 /* branch registers: */
7579 for (i = REG_BR; i < REG_BR + 8; ++i)
7580 {
7581 sprintf (name, "b%d", i - REG_BR);
7582 md.regsym[i] = declare_register (name, i);
7583 }
7584
7585 md.regsym[REG_IP] = declare_register ("ip", REG_IP);
7586 md.regsym[REG_CFM] = declare_register ("cfm", REG_CFM);
7587 md.regsym[REG_PR] = declare_register ("pr", REG_PR);
7588 md.regsym[REG_PR_ROT] = declare_register ("pr.rot", REG_PR_ROT);
7589 md.regsym[REG_PSR] = declare_register ("psr", REG_PSR);
7590 md.regsym[REG_PSR_L] = declare_register ("psr.l", REG_PSR_L);
7591 md.regsym[REG_PSR_UM] = declare_register ("psr.um", REG_PSR_UM);
7592
7593 for (i = 0; i < NELEMS (indirect_reg); ++i)
7594 {
7595 regnum = indirect_reg[i].regnum;
7596 md.regsym[regnum] = declare_register (indirect_reg[i].name, regnum);
7597 }
7598
7599 /* define synonyms for application registers: */
7600 for (i = 0; i < NELEMS (ar); ++i)
7601 declare_register (ar[i].name, REG_AR + ar[i].regnum);
7602
7603 /* define synonyms for control registers: */
7604 for (i = 0; i < NELEMS (cr); ++i)
7605 declare_register (cr[i].name, REG_CR + cr[i].regnum);
7606
7607 declare_register ("gp", REG_GR + 1);
7608 declare_register ("sp", REG_GR + 12);
7609 declare_register ("tp", REG_GR + 13);
7610 declare_register ("rp", REG_BR + 0);
7611
7612 /* pseudo-registers used to specify unwind info: */
7613 declare_register ("psp", REG_PSP);
7614
7615 declare_register_set ("ret", 4, REG_GR + 8);
7616 declare_register_set ("farg", 8, REG_FR + 8);
7617 declare_register_set ("fret", 8, REG_FR + 8);
7618
7619 for (i = 0; i < NELEMS (const_bits); ++i)
7620 {
7621 err = hash_insert (md.const_hash, const_bits[i].name,
7622 (PTR) (const_bits + i));
7623 if (err)
7624 as_fatal ("Inserting \"%s\" into constant hash table failed: %s",
7625 name, err);
7626 }
7627
7628 /* Set the architecture and machine depending on defaults and command line
7629 options. */
7630 if (md.flags & EF_IA_64_ABI64)
7631 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf64);
7632 else
7633 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf32);
7634
7635 if (! ok)
7636 as_warn (_("Could not set architecture and machine"));
7637
7638 /* Set the pointer size and pointer shift size depending on md.flags */
7639
7640 if (md.flags & EF_IA_64_ABI64)
7641 {
7642 md.pointer_size = 8; /* pointers are 8 bytes */
7643 md.pointer_size_shift = 3; /* alignment is 8 bytes = 2^2 */
7644 }
7645 else
7646 {
7647 md.pointer_size = 4; /* pointers are 4 bytes */
7648 md.pointer_size_shift = 2; /* alignment is 4 bytes = 2^2 */
7649 }
7650
7651 md.mem_offset.hint = 0;
7652 md.path = 0;
7653 md.maxpaths = 0;
7654 md.entry_labels = NULL;
7655 }
7656
7657 /* Set the default options in md. Cannot do this in md_begin because
7658 that is called after md_parse_option which is where we set the
7659 options in md based on command line options. */
7660
7661 void
7662 ia64_init (argc, argv)
7663 int argc ATTRIBUTE_UNUSED;
7664 char **argv ATTRIBUTE_UNUSED;
7665 {
7666 md.flags = MD_FLAGS_DEFAULT;
7667 md.detect_dv = 1;
7668 /* FIXME: We should change it to unwind_check_error someday. */
7669 md.unwind_check = unwind_check_warning;
7670 md.hint_b = hint_b_error;
7671 md.tune = itanium2;
7672 }
7673
7674 /* Return a string for the target object file format. */
7675
7676 const char *
7677 ia64_target_format ()
7678 {
7679 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
7680 {
7681 if (md.flags & EF_IA_64_BE)
7682 {
7683 if (md.flags & EF_IA_64_ABI64)
7684 #if defined(TE_AIX50)
7685 return "elf64-ia64-aix-big";
7686 #elif defined(TE_HPUX)
7687 return "elf64-ia64-hpux-big";
7688 #else
7689 return "elf64-ia64-big";
7690 #endif
7691 else
7692 #if defined(TE_AIX50)
7693 return "elf32-ia64-aix-big";
7694 #elif defined(TE_HPUX)
7695 return "elf32-ia64-hpux-big";
7696 #else
7697 return "elf32-ia64-big";
7698 #endif
7699 }
7700 else
7701 {
7702 if (md.flags & EF_IA_64_ABI64)
7703 #ifdef TE_AIX50
7704 return "elf64-ia64-aix-little";
7705 #else
7706 return "elf64-ia64-little";
7707 #endif
7708 else
7709 #ifdef TE_AIX50
7710 return "elf32-ia64-aix-little";
7711 #else
7712 return "elf32-ia64-little";
7713 #endif
7714 }
7715 }
7716 else
7717 return "unknown-format";
7718 }
7719
7720 void
7721 ia64_end_of_source ()
7722 {
7723 /* terminate insn group upon reaching end of file: */
7724 insn_group_break (1, 0, 0);
7725
7726 /* emits slots we haven't written yet: */
7727 ia64_flush_insns ();
7728
7729 bfd_set_private_flags (stdoutput, md.flags);
7730
7731 md.mem_offset.hint = 0;
7732 }
7733
7734 void
7735 ia64_start_line ()
7736 {
7737 static int first;
7738
7739 if (!first) {
7740 /* Make sure we don't reference input_line_pointer[-1] when that's
7741 not valid. */
7742 first = 1;
7743 return;
7744 }
7745
7746 if (md.qp.X_op == O_register)
7747 as_bad ("qualifying predicate not followed by instruction");
7748 md.qp.X_op = O_absent;
7749
7750 if (ignore_input ())
7751 return;
7752
7753 if (input_line_pointer[0] == ';' && input_line_pointer[-1] == ';')
7754 {
7755 if (md.detect_dv && !md.explicit_mode)
7756 {
7757 static int warned;
7758
7759 if (!warned)
7760 {
7761 warned = 1;
7762 as_warn (_("Explicit stops are ignored in auto mode"));
7763 }
7764 }
7765 else
7766 insn_group_break (1, 0, 0);
7767 }
7768 else if (input_line_pointer[-1] == '{')
7769 {
7770 if (md.manual_bundling)
7771 as_warn ("Found '{' when manual bundling is already turned on");
7772 else
7773 CURR_SLOT.manual_bundling_on = 1;
7774 md.manual_bundling = 1;
7775
7776 /* Bundling is only acceptable in explicit mode
7777 or when in default automatic mode. */
7778 if (md.detect_dv && !md.explicit_mode)
7779 {
7780 if (!md.mode_explicitly_set
7781 && !md.default_explicit_mode)
7782 dot_dv_mode ('E');
7783 else
7784 as_warn (_("Found '{' after explicit switch to automatic mode"));
7785 }
7786 }
7787 else if (input_line_pointer[-1] == '}')
7788 {
7789 if (!md.manual_bundling)
7790 as_warn ("Found '}' when manual bundling is off");
7791 else
7792 PREV_SLOT.manual_bundling_off = 1;
7793 md.manual_bundling = 0;
7794
7795 /* switch back to automatic mode, if applicable */
7796 if (md.detect_dv
7797 && md.explicit_mode
7798 && !md.mode_explicitly_set
7799 && !md.default_explicit_mode)
7800 dot_dv_mode ('A');
7801 }
7802 }
7803
7804 /* This is a hook for ia64_frob_label, so that it can distinguish tags from
7805 labels. */
7806 static int defining_tag = 0;
7807
7808 int
7809 ia64_unrecognized_line (ch)
7810 int ch;
7811 {
7812 switch (ch)
7813 {
7814 case '(':
7815 expression_and_evaluate (&md.qp);
7816 if (*input_line_pointer++ != ')')
7817 {
7818 as_bad ("Expected ')'");
7819 return 0;
7820 }
7821 if (md.qp.X_op != O_register)
7822 {
7823 as_bad ("Qualifying predicate expected");
7824 return 0;
7825 }
7826 if (md.qp.X_add_number < REG_P || md.qp.X_add_number >= REG_P + 64)
7827 {
7828 as_bad ("Predicate register expected");
7829 return 0;
7830 }
7831 return 1;
7832
7833 case '[':
7834 {
7835 char *s;
7836 char c;
7837 symbolS *tag;
7838 int temp;
7839
7840 if (md.qp.X_op == O_register)
7841 {
7842 as_bad ("Tag must come before qualifying predicate.");
7843 return 0;
7844 }
7845
7846 /* This implements just enough of read_a_source_file in read.c to
7847 recognize labels. */
7848 if (is_name_beginner (*input_line_pointer))
7849 {
7850 s = input_line_pointer;
7851 c = get_symbol_end ();
7852 }
7853 else if (LOCAL_LABELS_FB
7854 && ISDIGIT (*input_line_pointer))
7855 {
7856 temp = 0;
7857 while (ISDIGIT (*input_line_pointer))
7858 temp = (temp * 10) + *input_line_pointer++ - '0';
7859 fb_label_instance_inc (temp);
7860 s = fb_label_name (temp, 0);
7861 c = *input_line_pointer;
7862 }
7863 else
7864 {
7865 s = NULL;
7866 c = '\0';
7867 }
7868 if (c != ':')
7869 {
7870 /* Put ':' back for error messages' sake. */
7871 *input_line_pointer++ = ':';
7872 as_bad ("Expected ':'");
7873 return 0;
7874 }
7875
7876 defining_tag = 1;
7877 tag = colon (s);
7878 defining_tag = 0;
7879 /* Put ':' back for error messages' sake. */
7880 *input_line_pointer++ = ':';
7881 if (*input_line_pointer++ != ']')
7882 {
7883 as_bad ("Expected ']'");
7884 return 0;
7885 }
7886 if (! tag)
7887 {
7888 as_bad ("Tag name expected");
7889 return 0;
7890 }
7891 return 1;
7892 }
7893
7894 default:
7895 break;
7896 }
7897
7898 /* Not a valid line. */
7899 return 0;
7900 }
7901
7902 void
7903 ia64_frob_label (sym)
7904 struct symbol *sym;
7905 {
7906 struct label_fix *fix;
7907
7908 /* Tags need special handling since they are not bundle breaks like
7909 labels. */
7910 if (defining_tag)
7911 {
7912 fix = obstack_alloc (&notes, sizeof (*fix));
7913 fix->sym = sym;
7914 fix->next = CURR_SLOT.tag_fixups;
7915 fix->dw2_mark_labels = FALSE;
7916 CURR_SLOT.tag_fixups = fix;
7917
7918 return;
7919 }
7920
7921 if (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7922 {
7923 md.last_text_seg = now_seg;
7924 fix = obstack_alloc (&notes, sizeof (*fix));
7925 fix->sym = sym;
7926 fix->next = CURR_SLOT.label_fixups;
7927 fix->dw2_mark_labels = dwarf2_loc_mark_labels;
7928 CURR_SLOT.label_fixups = fix;
7929
7930 /* Keep track of how many code entry points we've seen. */
7931 if (md.path == md.maxpaths)
7932 {
7933 md.maxpaths += 20;
7934 md.entry_labels = (const char **)
7935 xrealloc ((void *) md.entry_labels,
7936 md.maxpaths * sizeof (char *));
7937 }
7938 md.entry_labels[md.path++] = S_GET_NAME (sym);
7939 }
7940 }
7941
7942 #ifdef TE_HPUX
7943 /* The HP-UX linker will give unresolved symbol errors for symbols
7944 that are declared but unused. This routine removes declared,
7945 unused symbols from an object. */
7946 int
7947 ia64_frob_symbol (sym)
7948 struct symbol *sym;
7949 {
7950 if ((S_GET_SEGMENT (sym) == &bfd_und_section && ! symbol_used_p (sym) &&
7951 ELF_ST_VISIBILITY (S_GET_OTHER (sym)) == STV_DEFAULT)
7952 || (S_GET_SEGMENT (sym) == &bfd_abs_section
7953 && ! S_IS_EXTERNAL (sym)))
7954 return 1;
7955 return 0;
7956 }
7957 #endif
7958
7959 void
7960 ia64_flush_pending_output ()
7961 {
7962 if (!md.keep_pending_output
7963 && bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7964 {
7965 /* ??? This causes many unnecessary stop bits to be emitted.
7966 Unfortunately, it isn't clear if it is safe to remove this. */
7967 insn_group_break (1, 0, 0);
7968 ia64_flush_insns ();
7969 }
7970 }
7971
7972 /* Do ia64-specific expression optimization. All that's done here is
7973 to transform index expressions that are either due to the indexing
7974 of rotating registers or due to the indexing of indirect register
7975 sets. */
7976 int
7977 ia64_optimize_expr (l, op, r)
7978 expressionS *l;
7979 operatorT op;
7980 expressionS *r;
7981 {
7982 unsigned num_regs;
7983
7984 if (op == O_index)
7985 {
7986 if (l->X_op == O_register && r->X_op == O_constant)
7987 {
7988 num_regs = (l->X_add_number >> 16);
7989 if ((unsigned) r->X_add_number >= num_regs)
7990 {
7991 if (!num_regs)
7992 as_bad ("No current frame");
7993 else
7994 as_bad ("Index out of range 0..%u", num_regs - 1);
7995 r->X_add_number = 0;
7996 }
7997 l->X_add_number = (l->X_add_number & 0xffff) + r->X_add_number;
7998 return 1;
7999 }
8000 else if (l->X_op == O_register && r->X_op == O_register)
8001 {
8002 if (l->X_add_number < IND_CPUID || l->X_add_number > IND_RR
8003 || l->X_add_number == IND_MEM)
8004 {
8005 as_bad ("Indirect register set name expected");
8006 l->X_add_number = IND_CPUID;
8007 }
8008 l->X_op = O_index;
8009 l->X_op_symbol = md.regsym[l->X_add_number];
8010 l->X_add_number = r->X_add_number;
8011 return 1;
8012 }
8013 }
8014 return 0;
8015 }
8016
8017 int
8018 ia64_parse_name (name, e, nextcharP)
8019 char *name;
8020 expressionS *e;
8021 char *nextcharP;
8022 {
8023 struct const_desc *cdesc;
8024 struct dynreg *dr = 0;
8025 unsigned int idx;
8026 struct symbol *sym;
8027 char *end;
8028
8029 if (*name == '@')
8030 {
8031 enum pseudo_type pseudo_type = PSEUDO_FUNC_NONE;
8032
8033 /* Find what relocation pseudo-function we're dealing with. */
8034 for (idx = 0; idx < NELEMS (pseudo_func); ++idx)
8035 if (pseudo_func[idx].name
8036 && pseudo_func[idx].name[0] == name[1]
8037 && strcmp (pseudo_func[idx].name + 1, name + 2) == 0)
8038 {
8039 pseudo_type = pseudo_func[idx].type;
8040 break;
8041 }
8042 switch (pseudo_type)
8043 {
8044 case PSEUDO_FUNC_RELOC:
8045 end = input_line_pointer;
8046 if (*nextcharP != '(')
8047 {
8048 as_bad ("Expected '('");
8049 break;
8050 }
8051 /* Skip '('. */
8052 ++input_line_pointer;
8053 expression (e);
8054 if (*input_line_pointer != ')')
8055 {
8056 as_bad ("Missing ')'");
8057 goto done;
8058 }
8059 /* Skip ')'. */
8060 ++input_line_pointer;
8061 if (e->X_op != O_symbol)
8062 {
8063 if (e->X_op != O_pseudo_fixup)
8064 {
8065 as_bad ("Not a symbolic expression");
8066 goto done;
8067 }
8068 if (idx != FUNC_LT_RELATIVE)
8069 {
8070 as_bad ("Illegal combination of relocation functions");
8071 goto done;
8072 }
8073 switch (S_GET_VALUE (e->X_op_symbol))
8074 {
8075 case FUNC_FPTR_RELATIVE:
8076 idx = FUNC_LT_FPTR_RELATIVE; break;
8077 case FUNC_DTP_MODULE:
8078 idx = FUNC_LT_DTP_MODULE; break;
8079 case FUNC_DTP_RELATIVE:
8080 idx = FUNC_LT_DTP_RELATIVE; break;
8081 case FUNC_TP_RELATIVE:
8082 idx = FUNC_LT_TP_RELATIVE; break;
8083 default:
8084 as_bad ("Illegal combination of relocation functions");
8085 goto done;
8086 }
8087 }
8088 /* Make sure gas doesn't get rid of local symbols that are used
8089 in relocs. */
8090 e->X_op = O_pseudo_fixup;
8091 e->X_op_symbol = pseudo_func[idx].u.sym;
8092 done:
8093 *nextcharP = *input_line_pointer;
8094 break;
8095
8096 case PSEUDO_FUNC_CONST:
8097 e->X_op = O_constant;
8098 e->X_add_number = pseudo_func[idx].u.ival;
8099 break;
8100
8101 case PSEUDO_FUNC_REG:
8102 e->X_op = O_register;
8103 e->X_add_number = pseudo_func[idx].u.ival;
8104 break;
8105
8106 default:
8107 return 0;
8108 }
8109 return 1;
8110 }
8111
8112 /* first see if NAME is a known register name: */
8113 sym = hash_find (md.reg_hash, name);
8114 if (sym)
8115 {
8116 e->X_op = O_register;
8117 e->X_add_number = S_GET_VALUE (sym);
8118 return 1;
8119 }
8120
8121 cdesc = hash_find (md.const_hash, name);
8122 if (cdesc)
8123 {
8124 e->X_op = O_constant;
8125 e->X_add_number = cdesc->value;
8126 return 1;
8127 }
8128
8129 /* check for inN, locN, or outN: */
8130 idx = 0;
8131 switch (name[0])
8132 {
8133 case 'i':
8134 if (name[1] == 'n' && ISDIGIT (name[2]))
8135 {
8136 dr = &md.in;
8137 idx = 2;
8138 }
8139 break;
8140
8141 case 'l':
8142 if (name[1] == 'o' && name[2] == 'c' && ISDIGIT (name[3]))
8143 {
8144 dr = &md.loc;
8145 idx = 3;
8146 }
8147 break;
8148
8149 case 'o':
8150 if (name[1] == 'u' && name[2] == 't' && ISDIGIT (name[3]))
8151 {
8152 dr = &md.out;
8153 idx = 3;
8154 }
8155 break;
8156
8157 default:
8158 break;
8159 }
8160
8161 /* Ignore register numbers with leading zeroes, except zero itself. */
8162 if (dr && (name[idx] != '0' || name[idx + 1] == '\0'))
8163 {
8164 unsigned long regnum;
8165
8166 /* The name is inN, locN, or outN; parse the register number. */
8167 regnum = strtoul (name + idx, &end, 10);
8168 if (end > name + idx && *end == '\0' && regnum < 96)
8169 {
8170 if (regnum >= dr->num_regs)
8171 {
8172 if (!dr->num_regs)
8173 as_bad ("No current frame");
8174 else
8175 as_bad ("Register number out of range 0..%u",
8176 dr->num_regs - 1);
8177 regnum = 0;
8178 }
8179 e->X_op = O_register;
8180 e->X_add_number = dr->base + regnum;
8181 return 1;
8182 }
8183 }
8184
8185 end = alloca (strlen (name) + 1);
8186 strcpy (end, name);
8187 name = ia64_canonicalize_symbol_name (end);
8188 if ((dr = hash_find (md.dynreg_hash, name)))
8189 {
8190 /* We've got ourselves the name of a rotating register set.
8191 Store the base register number in the low 16 bits of
8192 X_add_number and the size of the register set in the top 16
8193 bits. */
8194 e->X_op = O_register;
8195 e->X_add_number = dr->base | (dr->num_regs << 16);
8196 return 1;
8197 }
8198 return 0;
8199 }
8200
8201 /* Remove the '#' suffix that indicates a symbol as opposed to a register. */
8202
8203 char *
8204 ia64_canonicalize_symbol_name (name)
8205 char *name;
8206 {
8207 size_t len = strlen (name), full = len;
8208
8209 while (len > 0 && name[len - 1] == '#')
8210 --len;
8211 if (len <= 0)
8212 {
8213 if (full > 0)
8214 as_bad ("Standalone `#' is illegal");
8215 }
8216 else if (len < full - 1)
8217 as_warn ("Redundant `#' suffix operators");
8218 name[len] = '\0';
8219 return name;
8220 }
8221
8222 /* Return true if idesc is a conditional branch instruction. This excludes
8223 the modulo scheduled branches, and br.ia. Mod-sched branches are excluded
8224 because they always read/write resources regardless of the value of the
8225 qualifying predicate. br.ia must always use p0, and hence is always
8226 taken. Thus this function returns true for branches which can fall
8227 through, and which use no resources if they do fall through. */
8228
8229 static int
8230 is_conditional_branch (idesc)
8231 struct ia64_opcode *idesc;
8232 {
8233 /* br is a conditional branch. Everything that starts with br. except
8234 br.ia, br.c{loop,top,exit}, and br.w{top,exit} is a conditional branch.
8235 Everything that starts with brl is a conditional branch. */
8236 return (idesc->name[0] == 'b' && idesc->name[1] == 'r'
8237 && (idesc->name[2] == '\0'
8238 || (idesc->name[2] == '.' && idesc->name[3] != 'i'
8239 && idesc->name[3] != 'c' && idesc->name[3] != 'w')
8240 || idesc->name[2] == 'l'
8241 /* br.cond, br.call, br.clr */
8242 || (idesc->name[2] == '.' && idesc->name[3] == 'c'
8243 && (idesc->name[4] == 'a' || idesc->name[4] == 'o'
8244 || (idesc->name[4] == 'l' && idesc->name[5] == 'r')))));
8245 }
8246
8247 /* Return whether the given opcode is a taken branch. If there's any doubt,
8248 returns zero. */
8249
8250 static int
8251 is_taken_branch (idesc)
8252 struct ia64_opcode *idesc;
8253 {
8254 return ((is_conditional_branch (idesc) && CURR_SLOT.qp_regno == 0)
8255 || strncmp (idesc->name, "br.ia", 5) == 0);
8256 }
8257
8258 /* Return whether the given opcode is an interruption or rfi. If there's any
8259 doubt, returns zero. */
8260
8261 static int
8262 is_interruption_or_rfi (idesc)
8263 struct ia64_opcode *idesc;
8264 {
8265 if (strcmp (idesc->name, "rfi") == 0)
8266 return 1;
8267 return 0;
8268 }
8269
8270 /* Returns the index of the given dependency in the opcode's list of chks, or
8271 -1 if there is no dependency. */
8272
8273 static int
8274 depends_on (depind, idesc)
8275 int depind;
8276 struct ia64_opcode *idesc;
8277 {
8278 int i;
8279 const struct ia64_opcode_dependency *dep = idesc->dependencies;
8280 for (i = 0; i < dep->nchks; i++)
8281 {
8282 if (depind == DEP (dep->chks[i]))
8283 return i;
8284 }
8285 return -1;
8286 }
8287
8288 /* Determine a set of specific resources used for a particular resource
8289 class. Returns the number of specific resources identified For those
8290 cases which are not determinable statically, the resource returned is
8291 marked nonspecific.
8292
8293 Meanings of value in 'NOTE':
8294 1) only read/write when the register number is explicitly encoded in the
8295 insn.
8296 2) only read CFM when accessing a rotating GR, FR, or PR. mov pr only
8297 accesses CFM when qualifying predicate is in the rotating region.
8298 3) general register value is used to specify an indirect register; not
8299 determinable statically.
8300 4) only read the given resource when bits 7:0 of the indirect index
8301 register value does not match the register number of the resource; not
8302 determinable statically.
8303 5) all rules are implementation specific.
8304 6) only when both the index specified by the reader and the index specified
8305 by the writer have the same value in bits 63:61; not determinable
8306 statically.
8307 7) only access the specified resource when the corresponding mask bit is
8308 set
8309 8) PSR.dfh is only read when these insns reference FR32-127. PSR.dfl is
8310 only read when these insns reference FR2-31
8311 9) PSR.mfl is only written when these insns write FR2-31. PSR.mfh is only
8312 written when these insns write FR32-127
8313 10) The PSR.bn bit is only accessed when one of GR16-31 is specified in the
8314 instruction
8315 11) The target predicates are written independently of PR[qp], but source
8316 registers are only read if PR[qp] is true. Since the state of PR[qp]
8317 cannot statically be determined, all source registers are marked used.
8318 12) This insn only reads the specified predicate register when that
8319 register is the PR[qp].
8320 13) This reference to ld-c only applies to teh GR whose value is loaded
8321 with data returned from memory, not the post-incremented address register.
8322 14) The RSE resource includes the implementation-specific RSE internal
8323 state resources. At least one (and possibly more) of these resources are
8324 read by each instruction listed in IC:rse-readers. At least one (and
8325 possibly more) of these resources are written by each insn listed in
8326 IC:rse-writers.
8327 15+16) Represents reserved instructions, which the assembler does not
8328 generate.
8329
8330 Memory resources (i.e. locations in memory) are *not* marked or tracked by
8331 this code; there are no dependency violations based on memory access.
8332 */
8333
8334 #define MAX_SPECS 256
8335 #define DV_CHK 1
8336 #define DV_REG 0
8337
8338 static int
8339 specify_resource (dep, idesc, type, specs, note, path)
8340 const struct ia64_dependency *dep;
8341 struct ia64_opcode *idesc;
8342 int type; /* is this a DV chk or a DV reg? */
8343 struct rsrc specs[MAX_SPECS]; /* returned specific resources */
8344 int note; /* resource note for this insn's usage */
8345 int path; /* which execution path to examine */
8346 {
8347 int count = 0;
8348 int i;
8349 int rsrc_write = 0;
8350 struct rsrc tmpl;
8351
8352 if (dep->mode == IA64_DV_WAW
8353 || (dep->mode == IA64_DV_RAW && type == DV_REG)
8354 || (dep->mode == IA64_DV_WAR && type == DV_CHK))
8355 rsrc_write = 1;
8356
8357 /* template for any resources we identify */
8358 tmpl.dependency = dep;
8359 tmpl.note = note;
8360 tmpl.insn_srlz = tmpl.data_srlz = 0;
8361 tmpl.qp_regno = CURR_SLOT.qp_regno;
8362 tmpl.link_to_qp_branch = 1;
8363 tmpl.mem_offset.hint = 0;
8364 tmpl.mem_offset.offset = 0;
8365 tmpl.mem_offset.base = 0;
8366 tmpl.specific = 1;
8367 tmpl.index = -1;
8368 tmpl.cmp_type = CMP_NONE;
8369 tmpl.depind = 0;
8370 tmpl.file = NULL;
8371 tmpl.line = 0;
8372 tmpl.path = 0;
8373
8374 #define UNHANDLED \
8375 as_warn (_("Unhandled dependency %s for %s (%s), note %d"), \
8376 dep->name, idesc->name, (rsrc_write?"write":"read"), note)
8377 #define KNOWN(REG) (gr_values[REG].known && gr_values[REG].path >= path)
8378
8379 /* we don't need to track these */
8380 if (dep->semantics == IA64_DVS_NONE)
8381 return 0;
8382
8383 switch (dep->specifier)
8384 {
8385 case IA64_RS_AR_K:
8386 if (note == 1)
8387 {
8388 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8389 {
8390 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8391 if (regno >= 0 && regno <= 7)
8392 {
8393 specs[count] = tmpl;
8394 specs[count++].index = regno;
8395 }
8396 }
8397 }
8398 else if (note == 0)
8399 {
8400 for (i = 0; i < 8; i++)
8401 {
8402 specs[count] = tmpl;
8403 specs[count++].index = i;
8404 }
8405 }
8406 else
8407 {
8408 UNHANDLED;
8409 }
8410 break;
8411
8412 case IA64_RS_AR_UNAT:
8413 /* This is a mov =AR or mov AR= instruction. */
8414 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8415 {
8416 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8417 if (regno == AR_UNAT)
8418 {
8419 specs[count++] = tmpl;
8420 }
8421 }
8422 else
8423 {
8424 /* This is a spill/fill, or other instruction that modifies the
8425 unat register. */
8426
8427 /* Unless we can determine the specific bits used, mark the whole
8428 thing; bits 8:3 of the memory address indicate the bit used in
8429 UNAT. The .mem.offset hint may be used to eliminate a small
8430 subset of conflicts. */
8431 specs[count] = tmpl;
8432 if (md.mem_offset.hint)
8433 {
8434 if (md.debug_dv)
8435 fprintf (stderr, " Using hint for spill/fill\n");
8436 /* The index isn't actually used, just set it to something
8437 approximating the bit index. */
8438 specs[count].index = (md.mem_offset.offset >> 3) & 0x3F;
8439 specs[count].mem_offset.hint = 1;
8440 specs[count].mem_offset.offset = md.mem_offset.offset;
8441 specs[count++].mem_offset.base = md.mem_offset.base;
8442 }
8443 else
8444 {
8445 specs[count++].specific = 0;
8446 }
8447 }
8448 break;
8449
8450 case IA64_RS_AR:
8451 if (note == 1)
8452 {
8453 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8454 {
8455 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8456 if ((regno >= 8 && regno <= 15)
8457 || (regno >= 20 && regno <= 23)
8458 || (regno >= 31 && regno <= 39)
8459 || (regno >= 41 && regno <= 47)
8460 || (regno >= 67 && regno <= 111))
8461 {
8462 specs[count] = tmpl;
8463 specs[count++].index = regno;
8464 }
8465 }
8466 }
8467 else
8468 {
8469 UNHANDLED;
8470 }
8471 break;
8472
8473 case IA64_RS_ARb:
8474 if (note == 1)
8475 {
8476 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8477 {
8478 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8479 if ((regno >= 48 && regno <= 63)
8480 || (regno >= 112 && regno <= 127))
8481 {
8482 specs[count] = tmpl;
8483 specs[count++].index = regno;
8484 }
8485 }
8486 }
8487 else if (note == 0)
8488 {
8489 for (i = 48; i < 64; i++)
8490 {
8491 specs[count] = tmpl;
8492 specs[count++].index = i;
8493 }
8494 for (i = 112; i < 128; i++)
8495 {
8496 specs[count] = tmpl;
8497 specs[count++].index = i;
8498 }
8499 }
8500 else
8501 {
8502 UNHANDLED;
8503 }
8504 break;
8505
8506 case IA64_RS_BR:
8507 if (note != 1)
8508 {
8509 UNHANDLED;
8510 }
8511 else
8512 {
8513 if (rsrc_write)
8514 {
8515 for (i = 0; i < idesc->num_outputs; i++)
8516 if (idesc->operands[i] == IA64_OPND_B1
8517 || idesc->operands[i] == IA64_OPND_B2)
8518 {
8519 specs[count] = tmpl;
8520 specs[count++].index =
8521 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8522 }
8523 }
8524 else
8525 {
8526 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8527 if (idesc->operands[i] == IA64_OPND_B1
8528 || idesc->operands[i] == IA64_OPND_B2)
8529 {
8530 specs[count] = tmpl;
8531 specs[count++].index =
8532 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8533 }
8534 }
8535 }
8536 break;
8537
8538 case IA64_RS_CPUID: /* four or more registers */
8539 if (note == 3)
8540 {
8541 if (idesc->operands[!rsrc_write] == IA64_OPND_CPUID_R3)
8542 {
8543 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8544 if (regno >= 0 && regno < NELEMS (gr_values)
8545 && KNOWN (regno))
8546 {
8547 specs[count] = tmpl;
8548 specs[count++].index = gr_values[regno].value & 0xFF;
8549 }
8550 else
8551 {
8552 specs[count] = tmpl;
8553 specs[count++].specific = 0;
8554 }
8555 }
8556 }
8557 else
8558 {
8559 UNHANDLED;
8560 }
8561 break;
8562
8563 case IA64_RS_DBR: /* four or more registers */
8564 if (note == 3)
8565 {
8566 if (idesc->operands[!rsrc_write] == IA64_OPND_DBR_R3)
8567 {
8568 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8569 if (regno >= 0 && regno < NELEMS (gr_values)
8570 && KNOWN (regno))
8571 {
8572 specs[count] = tmpl;
8573 specs[count++].index = gr_values[regno].value & 0xFF;
8574 }
8575 else
8576 {
8577 specs[count] = tmpl;
8578 specs[count++].specific = 0;
8579 }
8580 }
8581 }
8582 else if (note == 0 && !rsrc_write)
8583 {
8584 specs[count] = tmpl;
8585 specs[count++].specific = 0;
8586 }
8587 else
8588 {
8589 UNHANDLED;
8590 }
8591 break;
8592
8593 case IA64_RS_IBR: /* four or more registers */
8594 if (note == 3)
8595 {
8596 if (idesc->operands[!rsrc_write] == IA64_OPND_IBR_R3)
8597 {
8598 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8599 if (regno >= 0 && regno < NELEMS (gr_values)
8600 && KNOWN (regno))
8601 {
8602 specs[count] = tmpl;
8603 specs[count++].index = gr_values[regno].value & 0xFF;
8604 }
8605 else
8606 {
8607 specs[count] = tmpl;
8608 specs[count++].specific = 0;
8609 }
8610 }
8611 }
8612 else
8613 {
8614 UNHANDLED;
8615 }
8616 break;
8617
8618 case IA64_RS_MSR:
8619 if (note == 5)
8620 {
8621 /* These are implementation specific. Force all references to
8622 conflict with all other references. */
8623 specs[count] = tmpl;
8624 specs[count++].specific = 0;
8625 }
8626 else
8627 {
8628 UNHANDLED;
8629 }
8630 break;
8631
8632 case IA64_RS_PKR: /* 16 or more registers */
8633 if (note == 3 || note == 4)
8634 {
8635 if (idesc->operands[!rsrc_write] == IA64_OPND_PKR_R3)
8636 {
8637 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8638 if (regno >= 0 && regno < NELEMS (gr_values)
8639 && KNOWN (regno))
8640 {
8641 if (note == 3)
8642 {
8643 specs[count] = tmpl;
8644 specs[count++].index = gr_values[regno].value & 0xFF;
8645 }
8646 else
8647 for (i = 0; i < NELEMS (gr_values); i++)
8648 {
8649 /* Uses all registers *except* the one in R3. */
8650 if ((unsigned)i != (gr_values[regno].value & 0xFF))
8651 {
8652 specs[count] = tmpl;
8653 specs[count++].index = i;
8654 }
8655 }
8656 }
8657 else
8658 {
8659 specs[count] = tmpl;
8660 specs[count++].specific = 0;
8661 }
8662 }
8663 }
8664 else if (note == 0)
8665 {
8666 /* probe et al. */
8667 specs[count] = tmpl;
8668 specs[count++].specific = 0;
8669 }
8670 break;
8671
8672 case IA64_RS_PMC: /* four or more registers */
8673 if (note == 3)
8674 {
8675 if (idesc->operands[!rsrc_write] == IA64_OPND_PMC_R3
8676 || (!rsrc_write && idesc->operands[1] == IA64_OPND_PMD_R3))
8677
8678 {
8679 int index = ((idesc->operands[1] == IA64_OPND_R3 && !rsrc_write)
8680 ? 1 : !rsrc_write);
8681 int regno = CURR_SLOT.opnd[index].X_add_number - REG_GR;
8682 if (regno >= 0 && regno < NELEMS (gr_values)
8683 && KNOWN (regno))
8684 {
8685 specs[count] = tmpl;
8686 specs[count++].index = gr_values[regno].value & 0xFF;
8687 }
8688 else
8689 {
8690 specs[count] = tmpl;
8691 specs[count++].specific = 0;
8692 }
8693 }
8694 }
8695 else
8696 {
8697 UNHANDLED;
8698 }
8699 break;
8700
8701 case IA64_RS_PMD: /* four or more registers */
8702 if (note == 3)
8703 {
8704 if (idesc->operands[!rsrc_write] == IA64_OPND_PMD_R3)
8705 {
8706 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8707 if (regno >= 0 && regno < NELEMS (gr_values)
8708 && KNOWN (regno))
8709 {
8710 specs[count] = tmpl;
8711 specs[count++].index = gr_values[regno].value & 0xFF;
8712 }
8713 else
8714 {
8715 specs[count] = tmpl;
8716 specs[count++].specific = 0;
8717 }
8718 }
8719 }
8720 else
8721 {
8722 UNHANDLED;
8723 }
8724 break;
8725
8726 case IA64_RS_RR: /* eight registers */
8727 if (note == 6)
8728 {
8729 if (idesc->operands[!rsrc_write] == IA64_OPND_RR_R3)
8730 {
8731 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8732 if (regno >= 0 && regno < NELEMS (gr_values)
8733 && KNOWN (regno))
8734 {
8735 specs[count] = tmpl;
8736 specs[count++].index = (gr_values[regno].value >> 61) & 0x7;
8737 }
8738 else
8739 {
8740 specs[count] = tmpl;
8741 specs[count++].specific = 0;
8742 }
8743 }
8744 }
8745 else if (note == 0 && !rsrc_write)
8746 {
8747 specs[count] = tmpl;
8748 specs[count++].specific = 0;
8749 }
8750 else
8751 {
8752 UNHANDLED;
8753 }
8754 break;
8755
8756 case IA64_RS_CR_IRR:
8757 if (note == 0)
8758 {
8759 /* handle mov-from-CR-IVR; it's a read that writes CR[IRR] */
8760 int regno = CURR_SLOT.opnd[1].X_add_number - REG_CR;
8761 if (rsrc_write
8762 && idesc->operands[1] == IA64_OPND_CR3
8763 && regno == CR_IVR)
8764 {
8765 for (i = 0; i < 4; i++)
8766 {
8767 specs[count] = tmpl;
8768 specs[count++].index = CR_IRR0 + i;
8769 }
8770 }
8771 }
8772 else if (note == 1)
8773 {
8774 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8775 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8776 && regno >= CR_IRR0
8777 && regno <= CR_IRR3)
8778 {
8779 specs[count] = tmpl;
8780 specs[count++].index = regno;
8781 }
8782 }
8783 else
8784 {
8785 UNHANDLED;
8786 }
8787 break;
8788
8789 case IA64_RS_CR_LRR:
8790 if (note != 1)
8791 {
8792 UNHANDLED;
8793 }
8794 else
8795 {
8796 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8797 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8798 && (regno == CR_LRR0 || regno == CR_LRR1))
8799 {
8800 specs[count] = tmpl;
8801 specs[count++].index = regno;
8802 }
8803 }
8804 break;
8805
8806 case IA64_RS_CR:
8807 if (note == 1)
8808 {
8809 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
8810 {
8811 specs[count] = tmpl;
8812 specs[count++].index =
8813 CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8814 }
8815 }
8816 else
8817 {
8818 UNHANDLED;
8819 }
8820 break;
8821
8822 case IA64_RS_FR:
8823 case IA64_RS_FRb:
8824 if (note != 1)
8825 {
8826 UNHANDLED;
8827 }
8828 else if (rsrc_write)
8829 {
8830 if (dep->specifier == IA64_RS_FRb
8831 && idesc->operands[0] == IA64_OPND_F1)
8832 {
8833 specs[count] = tmpl;
8834 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_FR;
8835 }
8836 }
8837 else
8838 {
8839 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8840 {
8841 if (idesc->operands[i] == IA64_OPND_F2
8842 || idesc->operands[i] == IA64_OPND_F3
8843 || idesc->operands[i] == IA64_OPND_F4)
8844 {
8845 specs[count] = tmpl;
8846 specs[count++].index =
8847 CURR_SLOT.opnd[i].X_add_number - REG_FR;
8848 }
8849 }
8850 }
8851 break;
8852
8853 case IA64_RS_GR:
8854 if (note == 13)
8855 {
8856 /* This reference applies only to the GR whose value is loaded with
8857 data returned from memory. */
8858 specs[count] = tmpl;
8859 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_GR;
8860 }
8861 else if (note == 1)
8862 {
8863 if (rsrc_write)
8864 {
8865 for (i = 0; i < idesc->num_outputs; i++)
8866 if (idesc->operands[i] == IA64_OPND_R1
8867 || idesc->operands[i] == IA64_OPND_R2
8868 || idesc->operands[i] == IA64_OPND_R3)
8869 {
8870 specs[count] = tmpl;
8871 specs[count++].index =
8872 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8873 }
8874 if (idesc->flags & IA64_OPCODE_POSTINC)
8875 for (i = 0; i < NELEMS (idesc->operands); i++)
8876 if (idesc->operands[i] == IA64_OPND_MR3)
8877 {
8878 specs[count] = tmpl;
8879 specs[count++].index =
8880 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8881 }
8882 }
8883 else
8884 {
8885 /* Look for anything that reads a GR. */
8886 for (i = 0; i < NELEMS (idesc->operands); i++)
8887 {
8888 if (idesc->operands[i] == IA64_OPND_MR3
8889 || idesc->operands[i] == IA64_OPND_CPUID_R3
8890 || idesc->operands[i] == IA64_OPND_DBR_R3
8891 || idesc->operands[i] == IA64_OPND_IBR_R3
8892 || idesc->operands[i] == IA64_OPND_MSR_R3
8893 || idesc->operands[i] == IA64_OPND_PKR_R3
8894 || idesc->operands[i] == IA64_OPND_PMC_R3
8895 || idesc->operands[i] == IA64_OPND_PMD_R3
8896 || idesc->operands[i] == IA64_OPND_RR_R3
8897 || ((i >= idesc->num_outputs)
8898 && (idesc->operands[i] == IA64_OPND_R1
8899 || idesc->operands[i] == IA64_OPND_R2
8900 || idesc->operands[i] == IA64_OPND_R3
8901 /* addl source register. */
8902 || idesc->operands[i] == IA64_OPND_R3_2)))
8903 {
8904 specs[count] = tmpl;
8905 specs[count++].index =
8906 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8907 }
8908 }
8909 }
8910 }
8911 else
8912 {
8913 UNHANDLED;
8914 }
8915 break;
8916
8917 /* This is the same as IA64_RS_PRr, except that the register range is
8918 from 1 - 15, and there are no rotating register reads/writes here. */
8919 case IA64_RS_PR:
8920 if (note == 0)
8921 {
8922 for (i = 1; i < 16; i++)
8923 {
8924 specs[count] = tmpl;
8925 specs[count++].index = i;
8926 }
8927 }
8928 else if (note == 7)
8929 {
8930 valueT mask = 0;
8931 /* Mark only those registers indicated by the mask. */
8932 if (rsrc_write)
8933 {
8934 mask = CURR_SLOT.opnd[2].X_add_number;
8935 for (i = 1; i < 16; i++)
8936 if (mask & ((valueT) 1 << i))
8937 {
8938 specs[count] = tmpl;
8939 specs[count++].index = i;
8940 }
8941 }
8942 else
8943 {
8944 UNHANDLED;
8945 }
8946 }
8947 else if (note == 11) /* note 11 implies note 1 as well */
8948 {
8949 if (rsrc_write)
8950 {
8951 for (i = 0; i < idesc->num_outputs; i++)
8952 {
8953 if (idesc->operands[i] == IA64_OPND_P1
8954 || idesc->operands[i] == IA64_OPND_P2)
8955 {
8956 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8957 if (regno >= 1 && regno < 16)
8958 {
8959 specs[count] = tmpl;
8960 specs[count++].index = regno;
8961 }
8962 }
8963 }
8964 }
8965 else
8966 {
8967 UNHANDLED;
8968 }
8969 }
8970 else if (note == 12)
8971 {
8972 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8973 {
8974 specs[count] = tmpl;
8975 specs[count++].index = CURR_SLOT.qp_regno;
8976 }
8977 }
8978 else if (note == 1)
8979 {
8980 if (rsrc_write)
8981 {
8982 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8983 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8984 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8985 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
8986
8987 if ((idesc->operands[0] == IA64_OPND_P1
8988 || idesc->operands[0] == IA64_OPND_P2)
8989 && p1 >= 1 && p1 < 16)
8990 {
8991 specs[count] = tmpl;
8992 specs[count].cmp_type =
8993 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
8994 specs[count++].index = p1;
8995 }
8996 if ((idesc->operands[1] == IA64_OPND_P1
8997 || idesc->operands[1] == IA64_OPND_P2)
8998 && p2 >= 1 && p2 < 16)
8999 {
9000 specs[count] = tmpl;
9001 specs[count].cmp_type =
9002 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9003 specs[count++].index = p2;
9004 }
9005 }
9006 else
9007 {
9008 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
9009 {
9010 specs[count] = tmpl;
9011 specs[count++].index = CURR_SLOT.qp_regno;
9012 }
9013 if (idesc->operands[1] == IA64_OPND_PR)
9014 {
9015 for (i = 1; i < 16; i++)
9016 {
9017 specs[count] = tmpl;
9018 specs[count++].index = i;
9019 }
9020 }
9021 }
9022 }
9023 else
9024 {
9025 UNHANDLED;
9026 }
9027 break;
9028
9029 /* This is the general case for PRs. IA64_RS_PR and IA64_RS_PR63 are
9030 simplified cases of this. */
9031 case IA64_RS_PRr:
9032 if (note == 0)
9033 {
9034 for (i = 16; i < 63; i++)
9035 {
9036 specs[count] = tmpl;
9037 specs[count++].index = i;
9038 }
9039 }
9040 else if (note == 7)
9041 {
9042 valueT mask = 0;
9043 /* Mark only those registers indicated by the mask. */
9044 if (rsrc_write
9045 && idesc->operands[0] == IA64_OPND_PR)
9046 {
9047 mask = CURR_SLOT.opnd[2].X_add_number;
9048 if (mask & ((valueT) 1 << 16))
9049 for (i = 16; i < 63; i++)
9050 {
9051 specs[count] = tmpl;
9052 specs[count++].index = i;
9053 }
9054 }
9055 else if (rsrc_write
9056 && idesc->operands[0] == IA64_OPND_PR_ROT)
9057 {
9058 for (i = 16; i < 63; i++)
9059 {
9060 specs[count] = tmpl;
9061 specs[count++].index = i;
9062 }
9063 }
9064 else
9065 {
9066 UNHANDLED;
9067 }
9068 }
9069 else if (note == 11) /* note 11 implies note 1 as well */
9070 {
9071 if (rsrc_write)
9072 {
9073 for (i = 0; i < idesc->num_outputs; i++)
9074 {
9075 if (idesc->operands[i] == IA64_OPND_P1
9076 || idesc->operands[i] == IA64_OPND_P2)
9077 {
9078 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9079 if (regno >= 16 && regno < 63)
9080 {
9081 specs[count] = tmpl;
9082 specs[count++].index = regno;
9083 }
9084 }
9085 }
9086 }
9087 else
9088 {
9089 UNHANDLED;
9090 }
9091 }
9092 else if (note == 12)
9093 {
9094 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
9095 {
9096 specs[count] = tmpl;
9097 specs[count++].index = CURR_SLOT.qp_regno;
9098 }
9099 }
9100 else if (note == 1)
9101 {
9102 if (rsrc_write)
9103 {
9104 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9105 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9106 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9107 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9108
9109 if ((idesc->operands[0] == IA64_OPND_P1
9110 || idesc->operands[0] == IA64_OPND_P2)
9111 && p1 >= 16 && p1 < 63)
9112 {
9113 specs[count] = tmpl;
9114 specs[count].cmp_type =
9115 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9116 specs[count++].index = p1;
9117 }
9118 if ((idesc->operands[1] == IA64_OPND_P1
9119 || idesc->operands[1] == IA64_OPND_P2)
9120 && p2 >= 16 && p2 < 63)
9121 {
9122 specs[count] = tmpl;
9123 specs[count].cmp_type =
9124 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9125 specs[count++].index = p2;
9126 }
9127 }
9128 else
9129 {
9130 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
9131 {
9132 specs[count] = tmpl;
9133 specs[count++].index = CURR_SLOT.qp_regno;
9134 }
9135 if (idesc->operands[1] == IA64_OPND_PR)
9136 {
9137 for (i = 16; i < 63; i++)
9138 {
9139 specs[count] = tmpl;
9140 specs[count++].index = i;
9141 }
9142 }
9143 }
9144 }
9145 else
9146 {
9147 UNHANDLED;
9148 }
9149 break;
9150
9151 case IA64_RS_PSR:
9152 /* Verify that the instruction is using the PSR bit indicated in
9153 dep->regindex. */
9154 if (note == 0)
9155 {
9156 if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_UM)
9157 {
9158 if (dep->regindex < 6)
9159 {
9160 specs[count++] = tmpl;
9161 }
9162 }
9163 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR)
9164 {
9165 if (dep->regindex < 32
9166 || dep->regindex == 35
9167 || dep->regindex == 36
9168 || (!rsrc_write && dep->regindex == PSR_CPL))
9169 {
9170 specs[count++] = tmpl;
9171 }
9172 }
9173 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_L)
9174 {
9175 if (dep->regindex < 32
9176 || dep->regindex == 35
9177 || dep->regindex == 36
9178 || (rsrc_write && dep->regindex == PSR_CPL))
9179 {
9180 specs[count++] = tmpl;
9181 }
9182 }
9183 else
9184 {
9185 /* Several PSR bits have very specific dependencies. */
9186 switch (dep->regindex)
9187 {
9188 default:
9189 specs[count++] = tmpl;
9190 break;
9191 case PSR_IC:
9192 if (rsrc_write)
9193 {
9194 specs[count++] = tmpl;
9195 }
9196 else
9197 {
9198 /* Only certain CR accesses use PSR.ic */
9199 if (idesc->operands[0] == IA64_OPND_CR3
9200 || idesc->operands[1] == IA64_OPND_CR3)
9201 {
9202 int index =
9203 ((idesc->operands[0] == IA64_OPND_CR3)
9204 ? 0 : 1);
9205 int regno =
9206 CURR_SLOT.opnd[index].X_add_number - REG_CR;
9207
9208 switch (regno)
9209 {
9210 default:
9211 break;
9212 case CR_ITIR:
9213 case CR_IFS:
9214 case CR_IIM:
9215 case CR_IIP:
9216 case CR_IPSR:
9217 case CR_ISR:
9218 case CR_IFA:
9219 case CR_IHA:
9220 case CR_IIPA:
9221 specs[count++] = tmpl;
9222 break;
9223 }
9224 }
9225 }
9226 break;
9227 case PSR_CPL:
9228 if (rsrc_write)
9229 {
9230 specs[count++] = tmpl;
9231 }
9232 else
9233 {
9234 /* Only some AR accesses use cpl */
9235 if (idesc->operands[0] == IA64_OPND_AR3
9236 || idesc->operands[1] == IA64_OPND_AR3)
9237 {
9238 int index =
9239 ((idesc->operands[0] == IA64_OPND_AR3)
9240 ? 0 : 1);
9241 int regno =
9242 CURR_SLOT.opnd[index].X_add_number - REG_AR;
9243
9244 if (regno == AR_ITC
9245 || (index == 0
9246 && (regno == AR_ITC
9247 || regno == AR_RSC
9248 || (regno >= AR_K0
9249 && regno <= AR_K7))))
9250 {
9251 specs[count++] = tmpl;
9252 }
9253 }
9254 else
9255 {
9256 specs[count++] = tmpl;
9257 }
9258 break;
9259 }
9260 }
9261 }
9262 }
9263 else if (note == 7)
9264 {
9265 valueT mask = 0;
9266 if (idesc->operands[0] == IA64_OPND_IMMU24)
9267 {
9268 mask = CURR_SLOT.opnd[0].X_add_number;
9269 }
9270 else
9271 {
9272 UNHANDLED;
9273 }
9274 if (mask & ((valueT) 1 << dep->regindex))
9275 {
9276 specs[count++] = tmpl;
9277 }
9278 }
9279 else if (note == 8)
9280 {
9281 int min = dep->regindex == PSR_DFL ? 2 : 32;
9282 int max = dep->regindex == PSR_DFL ? 31 : 127;
9283 /* dfh is read on FR32-127; dfl is read on FR2-31 */
9284 for (i = 0; i < NELEMS (idesc->operands); i++)
9285 {
9286 if (idesc->operands[i] == IA64_OPND_F1
9287 || idesc->operands[i] == IA64_OPND_F2
9288 || idesc->operands[i] == IA64_OPND_F3
9289 || idesc->operands[i] == IA64_OPND_F4)
9290 {
9291 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9292 if (reg >= min && reg <= max)
9293 {
9294 specs[count++] = tmpl;
9295 }
9296 }
9297 }
9298 }
9299 else if (note == 9)
9300 {
9301 int min = dep->regindex == PSR_MFL ? 2 : 32;
9302 int max = dep->regindex == PSR_MFL ? 31 : 127;
9303 /* mfh is read on writes to FR32-127; mfl is read on writes to
9304 FR2-31 */
9305 for (i = 0; i < idesc->num_outputs; i++)
9306 {
9307 if (idesc->operands[i] == IA64_OPND_F1)
9308 {
9309 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9310 if (reg >= min && reg <= max)
9311 {
9312 specs[count++] = tmpl;
9313 }
9314 }
9315 }
9316 }
9317 else if (note == 10)
9318 {
9319 for (i = 0; i < NELEMS (idesc->operands); i++)
9320 {
9321 if (idesc->operands[i] == IA64_OPND_R1
9322 || idesc->operands[i] == IA64_OPND_R2
9323 || idesc->operands[i] == IA64_OPND_R3)
9324 {
9325 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9326 if (regno >= 16 && regno <= 31)
9327 {
9328 specs[count++] = tmpl;
9329 }
9330 }
9331 }
9332 }
9333 else
9334 {
9335 UNHANDLED;
9336 }
9337 break;
9338
9339 case IA64_RS_AR_FPSR:
9340 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
9341 {
9342 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9343 if (regno == AR_FPSR)
9344 {
9345 specs[count++] = tmpl;
9346 }
9347 }
9348 else
9349 {
9350 specs[count++] = tmpl;
9351 }
9352 break;
9353
9354 case IA64_RS_ARX:
9355 /* Handle all AR[REG] resources */
9356 if (note == 0 || note == 1)
9357 {
9358 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9359 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3
9360 && regno == dep->regindex)
9361 {
9362 specs[count++] = tmpl;
9363 }
9364 /* other AR[REG] resources may be affected by AR accesses */
9365 else if (idesc->operands[0] == IA64_OPND_AR3)
9366 {
9367 /* AR[] writes */
9368 regno = CURR_SLOT.opnd[0].X_add_number - REG_AR;
9369 switch (dep->regindex)
9370 {
9371 default:
9372 break;
9373 case AR_BSP:
9374 case AR_RNAT:
9375 if (regno == AR_BSPSTORE)
9376 {
9377 specs[count++] = tmpl;
9378 }
9379 case AR_RSC:
9380 if (!rsrc_write &&
9381 (regno == AR_BSPSTORE
9382 || regno == AR_RNAT))
9383 {
9384 specs[count++] = tmpl;
9385 }
9386 break;
9387 }
9388 }
9389 else if (idesc->operands[1] == IA64_OPND_AR3)
9390 {
9391 /* AR[] reads */
9392 regno = CURR_SLOT.opnd[1].X_add_number - REG_AR;
9393 switch (dep->regindex)
9394 {
9395 default:
9396 break;
9397 case AR_RSC:
9398 if (regno == AR_BSPSTORE || regno == AR_RNAT)
9399 {
9400 specs[count++] = tmpl;
9401 }
9402 break;
9403 }
9404 }
9405 else
9406 {
9407 specs[count++] = tmpl;
9408 }
9409 }
9410 else
9411 {
9412 UNHANDLED;
9413 }
9414 break;
9415
9416 case IA64_RS_CRX:
9417 /* Handle all CR[REG] resources */
9418 if (note == 0 || note == 1)
9419 {
9420 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
9421 {
9422 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
9423 if (regno == dep->regindex)
9424 {
9425 specs[count++] = tmpl;
9426 }
9427 else if (!rsrc_write)
9428 {
9429 /* Reads from CR[IVR] affect other resources. */
9430 if (regno == CR_IVR)
9431 {
9432 if ((dep->regindex >= CR_IRR0
9433 && dep->regindex <= CR_IRR3)
9434 || dep->regindex == CR_TPR)
9435 {
9436 specs[count++] = tmpl;
9437 }
9438 }
9439 }
9440 }
9441 else
9442 {
9443 specs[count++] = tmpl;
9444 }
9445 }
9446 else
9447 {
9448 UNHANDLED;
9449 }
9450 break;
9451
9452 case IA64_RS_INSERVICE:
9453 /* look for write of EOI (67) or read of IVR (65) */
9454 if ((idesc->operands[0] == IA64_OPND_CR3
9455 && CURR_SLOT.opnd[0].X_add_number - REG_CR == CR_EOI)
9456 || (idesc->operands[1] == IA64_OPND_CR3
9457 && CURR_SLOT.opnd[1].X_add_number - REG_CR == CR_IVR))
9458 {
9459 specs[count++] = tmpl;
9460 }
9461 break;
9462
9463 case IA64_RS_GR0:
9464 if (note == 1)
9465 {
9466 specs[count++] = tmpl;
9467 }
9468 else
9469 {
9470 UNHANDLED;
9471 }
9472 break;
9473
9474 case IA64_RS_CFM:
9475 if (note != 2)
9476 {
9477 specs[count++] = tmpl;
9478 }
9479 else
9480 {
9481 /* Check if any of the registers accessed are in the rotating region.
9482 mov to/from pr accesses CFM only when qp_regno is in the rotating
9483 region */
9484 for (i = 0; i < NELEMS (idesc->operands); i++)
9485 {
9486 if (idesc->operands[i] == IA64_OPND_R1
9487 || idesc->operands[i] == IA64_OPND_R2
9488 || idesc->operands[i] == IA64_OPND_R3)
9489 {
9490 int num = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9491 /* Assumes that md.rot.num_regs is always valid */
9492 if (md.rot.num_regs > 0
9493 && num > 31
9494 && num < 31 + md.rot.num_regs)
9495 {
9496 specs[count] = tmpl;
9497 specs[count++].specific = 0;
9498 }
9499 }
9500 else if (idesc->operands[i] == IA64_OPND_F1
9501 || idesc->operands[i] == IA64_OPND_F2
9502 || idesc->operands[i] == IA64_OPND_F3
9503 || idesc->operands[i] == IA64_OPND_F4)
9504 {
9505 int num = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9506 if (num > 31)
9507 {
9508 specs[count] = tmpl;
9509 specs[count++].specific = 0;
9510 }
9511 }
9512 else if (idesc->operands[i] == IA64_OPND_P1
9513 || idesc->operands[i] == IA64_OPND_P2)
9514 {
9515 int num = CURR_SLOT.opnd[i].X_add_number - REG_P;
9516 if (num > 15)
9517 {
9518 specs[count] = tmpl;
9519 specs[count++].specific = 0;
9520 }
9521 }
9522 }
9523 if (CURR_SLOT.qp_regno > 15)
9524 {
9525 specs[count] = tmpl;
9526 specs[count++].specific = 0;
9527 }
9528 }
9529 break;
9530
9531 /* This is the same as IA64_RS_PRr, except simplified to account for
9532 the fact that there is only one register. */
9533 case IA64_RS_PR63:
9534 if (note == 0)
9535 {
9536 specs[count++] = tmpl;
9537 }
9538 else if (note == 7)
9539 {
9540 valueT mask = 0;
9541 if (idesc->operands[2] == IA64_OPND_IMM17)
9542 mask = CURR_SLOT.opnd[2].X_add_number;
9543 if (mask & ((valueT) 1 << 63))
9544 specs[count++] = tmpl;
9545 }
9546 else if (note == 11)
9547 {
9548 if ((idesc->operands[0] == IA64_OPND_P1
9549 && CURR_SLOT.opnd[0].X_add_number - REG_P == 63)
9550 || (idesc->operands[1] == IA64_OPND_P2
9551 && CURR_SLOT.opnd[1].X_add_number - REG_P == 63))
9552 {
9553 specs[count++] = tmpl;
9554 }
9555 }
9556 else if (note == 12)
9557 {
9558 if (CURR_SLOT.qp_regno == 63)
9559 {
9560 specs[count++] = tmpl;
9561 }
9562 }
9563 else if (note == 1)
9564 {
9565 if (rsrc_write)
9566 {
9567 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9568 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9569 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9570 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9571
9572 if (p1 == 63
9573 && (idesc->operands[0] == IA64_OPND_P1
9574 || idesc->operands[0] == IA64_OPND_P2))
9575 {
9576 specs[count] = tmpl;
9577 specs[count++].cmp_type =
9578 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9579 }
9580 if (p2 == 63
9581 && (idesc->operands[1] == IA64_OPND_P1
9582 || idesc->operands[1] == IA64_OPND_P2))
9583 {
9584 specs[count] = tmpl;
9585 specs[count++].cmp_type =
9586 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9587 }
9588 }
9589 else
9590 {
9591 if (CURR_SLOT.qp_regno == 63)
9592 {
9593 specs[count++] = tmpl;
9594 }
9595 }
9596 }
9597 else
9598 {
9599 UNHANDLED;
9600 }
9601 break;
9602
9603 case IA64_RS_RSE:
9604 /* FIXME we can identify some individual RSE written resources, but RSE
9605 read resources have not yet been completely identified, so for now
9606 treat RSE as a single resource */
9607 if (strncmp (idesc->name, "mov", 3) == 0)
9608 {
9609 if (rsrc_write)
9610 {
9611 if (idesc->operands[0] == IA64_OPND_AR3
9612 && CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE)
9613 {
9614 specs[count++] = tmpl;
9615 }
9616 }
9617 else
9618 {
9619 if (idesc->operands[0] == IA64_OPND_AR3)
9620 {
9621 if (CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE
9622 || CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_RNAT)
9623 {
9624 specs[count++] = tmpl;
9625 }
9626 }
9627 else if (idesc->operands[1] == IA64_OPND_AR3)
9628 {
9629 if (CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSP
9630 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSPSTORE
9631 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_RNAT)
9632 {
9633 specs[count++] = tmpl;
9634 }
9635 }
9636 }
9637 }
9638 else
9639 {
9640 specs[count++] = tmpl;
9641 }
9642 break;
9643
9644 case IA64_RS_ANY:
9645 /* FIXME -- do any of these need to be non-specific? */
9646 specs[count++] = tmpl;
9647 break;
9648
9649 default:
9650 as_bad (_("Unrecognized dependency specifier %d\n"), dep->specifier);
9651 break;
9652 }
9653
9654 return count;
9655 }
9656
9657 /* Clear branch flags on marked resources. This breaks the link between the
9658 QP of the marking instruction and a subsequent branch on the same QP. */
9659
9660 static void
9661 clear_qp_branch_flag (mask)
9662 valueT mask;
9663 {
9664 int i;
9665 for (i = 0; i < regdepslen; i++)
9666 {
9667 valueT bit = ((valueT) 1 << regdeps[i].qp_regno);
9668 if ((bit & mask) != 0)
9669 {
9670 regdeps[i].link_to_qp_branch = 0;
9671 }
9672 }
9673 }
9674
9675 /* MASK contains 2 and only 2 PRs which are mutually exclusive. Remove
9676 any mutexes which contain one of the PRs and create new ones when
9677 needed. */
9678
9679 static int
9680 update_qp_mutex (valueT mask)
9681 {
9682 int i;
9683 int add = 0;
9684
9685 i = 0;
9686 while (i < qp_mutexeslen)
9687 {
9688 if ((qp_mutexes[i].prmask & mask) != 0)
9689 {
9690 /* If it destroys and creates the same mutex, do nothing. */
9691 if (qp_mutexes[i].prmask == mask
9692 && qp_mutexes[i].path == md.path)
9693 {
9694 i++;
9695 add = -1;
9696 }
9697 else
9698 {
9699 int keep = 0;
9700
9701 if (md.debug_dv)
9702 {
9703 fprintf (stderr, " Clearing mutex relation");
9704 print_prmask (qp_mutexes[i].prmask);
9705 fprintf (stderr, "\n");
9706 }
9707
9708 /* Deal with the old mutex with more than 3+ PRs only if
9709 the new mutex on the same execution path with it.
9710
9711 FIXME: The 3+ mutex support is incomplete.
9712 dot_pred_rel () may be a better place to fix it. */
9713 if (qp_mutexes[i].path == md.path)
9714 {
9715 /* If it is a proper subset of the mutex, create a
9716 new mutex. */
9717 if (add == 0
9718 && (qp_mutexes[i].prmask & mask) == mask)
9719 add = 1;
9720
9721 qp_mutexes[i].prmask &= ~mask;
9722 if (qp_mutexes[i].prmask & (qp_mutexes[i].prmask - 1))
9723 {
9724 /* Modify the mutex if there are more than one
9725 PR left. */
9726 keep = 1;
9727 i++;
9728 }
9729 }
9730
9731 if (keep == 0)
9732 /* Remove the mutex. */
9733 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9734 }
9735 }
9736 else
9737 ++i;
9738 }
9739
9740 if (add == 1)
9741 add_qp_mutex (mask);
9742
9743 return add;
9744 }
9745
9746 /* Remove any mutexes which contain any of the PRs indicated in the mask.
9747
9748 Any changes to a PR clears the mutex relations which include that PR. */
9749
9750 static void
9751 clear_qp_mutex (mask)
9752 valueT mask;
9753 {
9754 int i;
9755
9756 i = 0;
9757 while (i < qp_mutexeslen)
9758 {
9759 if ((qp_mutexes[i].prmask & mask) != 0)
9760 {
9761 if (md.debug_dv)
9762 {
9763 fprintf (stderr, " Clearing mutex relation");
9764 print_prmask (qp_mutexes[i].prmask);
9765 fprintf (stderr, "\n");
9766 }
9767 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9768 }
9769 else
9770 ++i;
9771 }
9772 }
9773
9774 /* Clear implies relations which contain PRs in the given masks.
9775 P1_MASK indicates the source of the implies relation, while P2_MASK
9776 indicates the implied PR. */
9777
9778 static void
9779 clear_qp_implies (p1_mask, p2_mask)
9780 valueT p1_mask;
9781 valueT p2_mask;
9782 {
9783 int i;
9784
9785 i = 0;
9786 while (i < qp_implieslen)
9787 {
9788 if ((((valueT) 1 << qp_implies[i].p1) & p1_mask) != 0
9789 || (((valueT) 1 << qp_implies[i].p2) & p2_mask) != 0)
9790 {
9791 if (md.debug_dv)
9792 fprintf (stderr, "Clearing implied relation PR%d->PR%d\n",
9793 qp_implies[i].p1, qp_implies[i].p2);
9794 qp_implies[i] = qp_implies[--qp_implieslen];
9795 }
9796 else
9797 ++i;
9798 }
9799 }
9800
9801 /* Add the PRs specified to the list of implied relations. */
9802
9803 static void
9804 add_qp_imply (p1, p2)
9805 int p1, p2;
9806 {
9807 valueT mask;
9808 valueT bit;
9809 int i;
9810
9811 /* p0 is not meaningful here. */
9812 if (p1 == 0 || p2 == 0)
9813 abort ();
9814
9815 if (p1 == p2)
9816 return;
9817
9818 /* If it exists already, ignore it. */
9819 for (i = 0; i < qp_implieslen; i++)
9820 {
9821 if (qp_implies[i].p1 == p1
9822 && qp_implies[i].p2 == p2
9823 && qp_implies[i].path == md.path
9824 && !qp_implies[i].p2_branched)
9825 return;
9826 }
9827
9828 if (qp_implieslen == qp_impliestotlen)
9829 {
9830 qp_impliestotlen += 20;
9831 qp_implies = (struct qp_imply *)
9832 xrealloc ((void *) qp_implies,
9833 qp_impliestotlen * sizeof (struct qp_imply));
9834 }
9835 if (md.debug_dv)
9836 fprintf (stderr, " Registering PR%d implies PR%d\n", p1, p2);
9837 qp_implies[qp_implieslen].p1 = p1;
9838 qp_implies[qp_implieslen].p2 = p2;
9839 qp_implies[qp_implieslen].path = md.path;
9840 qp_implies[qp_implieslen++].p2_branched = 0;
9841
9842 /* Add in the implied transitive relations; for everything that p2 implies,
9843 make p1 imply that, too; for everything that implies p1, make it imply p2
9844 as well. */
9845 for (i = 0; i < qp_implieslen; i++)
9846 {
9847 if (qp_implies[i].p1 == p2)
9848 add_qp_imply (p1, qp_implies[i].p2);
9849 if (qp_implies[i].p2 == p1)
9850 add_qp_imply (qp_implies[i].p1, p2);
9851 }
9852 /* Add in mutex relations implied by this implies relation; for each mutex
9853 relation containing p2, duplicate it and replace p2 with p1. */
9854 bit = (valueT) 1 << p1;
9855 mask = (valueT) 1 << p2;
9856 for (i = 0; i < qp_mutexeslen; i++)
9857 {
9858 if (qp_mutexes[i].prmask & mask)
9859 add_qp_mutex ((qp_mutexes[i].prmask & ~mask) | bit);
9860 }
9861 }
9862
9863 /* Add the PRs specified in the mask to the mutex list; this means that only
9864 one of the PRs can be true at any time. PR0 should never be included in
9865 the mask. */
9866
9867 static void
9868 add_qp_mutex (mask)
9869 valueT mask;
9870 {
9871 if (mask & 0x1)
9872 abort ();
9873
9874 if (qp_mutexeslen == qp_mutexestotlen)
9875 {
9876 qp_mutexestotlen += 20;
9877 qp_mutexes = (struct qpmutex *)
9878 xrealloc ((void *) qp_mutexes,
9879 qp_mutexestotlen * sizeof (struct qpmutex));
9880 }
9881 if (md.debug_dv)
9882 {
9883 fprintf (stderr, " Registering mutex on");
9884 print_prmask (mask);
9885 fprintf (stderr, "\n");
9886 }
9887 qp_mutexes[qp_mutexeslen].path = md.path;
9888 qp_mutexes[qp_mutexeslen++].prmask = mask;
9889 }
9890
9891 static int
9892 has_suffix_p (name, suffix)
9893 const char *name;
9894 const char *suffix;
9895 {
9896 size_t namelen = strlen (name);
9897 size_t sufflen = strlen (suffix);
9898
9899 if (namelen <= sufflen)
9900 return 0;
9901 return strcmp (name + namelen - sufflen, suffix) == 0;
9902 }
9903
9904 static void
9905 clear_register_values ()
9906 {
9907 int i;
9908 if (md.debug_dv)
9909 fprintf (stderr, " Clearing register values\n");
9910 for (i = 1; i < NELEMS (gr_values); i++)
9911 gr_values[i].known = 0;
9912 }
9913
9914 /* Keep track of register values/changes which affect DV tracking.
9915
9916 optimization note: should add a flag to classes of insns where otherwise we
9917 have to examine a group of strings to identify them. */
9918
9919 static void
9920 note_register_values (idesc)
9921 struct ia64_opcode *idesc;
9922 {
9923 valueT qp_changemask = 0;
9924 int i;
9925
9926 /* Invalidate values for registers being written to. */
9927 for (i = 0; i < idesc->num_outputs; i++)
9928 {
9929 if (idesc->operands[i] == IA64_OPND_R1
9930 || idesc->operands[i] == IA64_OPND_R2
9931 || idesc->operands[i] == IA64_OPND_R3)
9932 {
9933 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9934 if (regno > 0 && regno < NELEMS (gr_values))
9935 gr_values[regno].known = 0;
9936 }
9937 else if (idesc->operands[i] == IA64_OPND_R3_2)
9938 {
9939 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9940 if (regno > 0 && regno < 4)
9941 gr_values[regno].known = 0;
9942 }
9943 else if (idesc->operands[i] == IA64_OPND_P1
9944 || idesc->operands[i] == IA64_OPND_P2)
9945 {
9946 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9947 qp_changemask |= (valueT) 1 << regno;
9948 }
9949 else if (idesc->operands[i] == IA64_OPND_PR)
9950 {
9951 if (idesc->operands[2] & (valueT) 0x10000)
9952 qp_changemask = ~(valueT) 0x1FFFF | idesc->operands[2];
9953 else
9954 qp_changemask = idesc->operands[2];
9955 break;
9956 }
9957 else if (idesc->operands[i] == IA64_OPND_PR_ROT)
9958 {
9959 if (idesc->operands[1] & ((valueT) 1 << 43))
9960 qp_changemask = -((valueT) 1 << 44) | idesc->operands[1];
9961 else
9962 qp_changemask = idesc->operands[1];
9963 qp_changemask &= ~(valueT) 0xFFFF;
9964 break;
9965 }
9966 }
9967
9968 /* Always clear qp branch flags on any PR change. */
9969 /* FIXME there may be exceptions for certain compares. */
9970 clear_qp_branch_flag (qp_changemask);
9971
9972 /* Invalidate rotating registers on insns which affect RRBs in CFM. */
9973 if (idesc->flags & IA64_OPCODE_MOD_RRBS)
9974 {
9975 qp_changemask |= ~(valueT) 0xFFFF;
9976 if (strcmp (idesc->name, "clrrrb.pr") != 0)
9977 {
9978 for (i = 32; i < 32 + md.rot.num_regs; i++)
9979 gr_values[i].known = 0;
9980 }
9981 clear_qp_mutex (qp_changemask);
9982 clear_qp_implies (qp_changemask, qp_changemask);
9983 }
9984 /* After a call, all register values are undefined, except those marked
9985 as "safe". */
9986 else if (strncmp (idesc->name, "br.call", 6) == 0
9987 || strncmp (idesc->name, "brl.call", 7) == 0)
9988 {
9989 /* FIXME keep GR values which are marked as "safe_across_calls" */
9990 clear_register_values ();
9991 clear_qp_mutex (~qp_safe_across_calls);
9992 clear_qp_implies (~qp_safe_across_calls, ~qp_safe_across_calls);
9993 clear_qp_branch_flag (~qp_safe_across_calls);
9994 }
9995 else if (is_interruption_or_rfi (idesc)
9996 || is_taken_branch (idesc))
9997 {
9998 clear_register_values ();
9999 clear_qp_mutex (~(valueT) 0);
10000 clear_qp_implies (~(valueT) 0, ~(valueT) 0);
10001 }
10002 /* Look for mutex and implies relations. */
10003 else if ((idesc->operands[0] == IA64_OPND_P1
10004 || idesc->operands[0] == IA64_OPND_P2)
10005 && (idesc->operands[1] == IA64_OPND_P1
10006 || idesc->operands[1] == IA64_OPND_P2))
10007 {
10008 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
10009 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
10010 valueT p1mask = (p1 != 0) ? (valueT) 1 << p1 : 0;
10011 valueT p2mask = (p2 != 0) ? (valueT) 1 << p2 : 0;
10012
10013 /* If both PRs are PR0, we can't really do anything. */
10014 if (p1 == 0 && p2 == 0)
10015 {
10016 if (md.debug_dv)
10017 fprintf (stderr, " Ignoring PRs due to inclusion of p0\n");
10018 }
10019 /* In general, clear mutexes and implies which include P1 or P2,
10020 with the following exceptions. */
10021 else if (has_suffix_p (idesc->name, ".or.andcm")
10022 || has_suffix_p (idesc->name, ".and.orcm"))
10023 {
10024 clear_qp_implies (p2mask, p1mask);
10025 }
10026 else if (has_suffix_p (idesc->name, ".andcm")
10027 || has_suffix_p (idesc->name, ".and"))
10028 {
10029 clear_qp_implies (0, p1mask | p2mask);
10030 }
10031 else if (has_suffix_p (idesc->name, ".orcm")
10032 || has_suffix_p (idesc->name, ".or"))
10033 {
10034 clear_qp_mutex (p1mask | p2mask);
10035 clear_qp_implies (p1mask | p2mask, 0);
10036 }
10037 else
10038 {
10039 int added = 0;
10040
10041 clear_qp_implies (p1mask | p2mask, p1mask | p2mask);
10042
10043 /* If one of the PRs is PR0, we call clear_qp_mutex. */
10044 if (p1 == 0 || p2 == 0)
10045 clear_qp_mutex (p1mask | p2mask);
10046 else
10047 added = update_qp_mutex (p1mask | p2mask);
10048
10049 if (CURR_SLOT.qp_regno == 0
10050 || has_suffix_p (idesc->name, ".unc"))
10051 {
10052 if (added == 0 && p1 && p2)
10053 add_qp_mutex (p1mask | p2mask);
10054 if (CURR_SLOT.qp_regno != 0)
10055 {
10056 if (p1)
10057 add_qp_imply (p1, CURR_SLOT.qp_regno);
10058 if (p2)
10059 add_qp_imply (p2, CURR_SLOT.qp_regno);
10060 }
10061 }
10062 }
10063 }
10064 /* Look for mov imm insns into GRs. */
10065 else if (idesc->operands[0] == IA64_OPND_R1
10066 && (idesc->operands[1] == IA64_OPND_IMM22
10067 || idesc->operands[1] == IA64_OPND_IMMU64)
10068 && CURR_SLOT.opnd[1].X_op == O_constant
10069 && (strcmp (idesc->name, "mov") == 0
10070 || strcmp (idesc->name, "movl") == 0))
10071 {
10072 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
10073 if (regno > 0 && regno < NELEMS (gr_values))
10074 {
10075 gr_values[regno].known = 1;
10076 gr_values[regno].value = CURR_SLOT.opnd[1].X_add_number;
10077 gr_values[regno].path = md.path;
10078 if (md.debug_dv)
10079 {
10080 fprintf (stderr, " Know gr%d = ", regno);
10081 fprintf_vma (stderr, gr_values[regno].value);
10082 fputs ("\n", stderr);
10083 }
10084 }
10085 }
10086 /* Look for dep.z imm insns. */
10087 else if (idesc->operands[0] == IA64_OPND_R1
10088 && idesc->operands[1] == IA64_OPND_IMM8
10089 && strcmp (idesc->name, "dep.z") == 0)
10090 {
10091 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
10092 if (regno > 0 && regno < NELEMS (gr_values))
10093 {
10094 valueT value = CURR_SLOT.opnd[1].X_add_number;
10095
10096 if (CURR_SLOT.opnd[3].X_add_number < 64)
10097 value &= ((valueT)1 << CURR_SLOT.opnd[3].X_add_number) - 1;
10098 value <<= CURR_SLOT.opnd[2].X_add_number;
10099 gr_values[regno].known = 1;
10100 gr_values[regno].value = value;
10101 gr_values[regno].path = md.path;
10102 if (md.debug_dv)
10103 {
10104 fprintf (stderr, " Know gr%d = ", regno);
10105 fprintf_vma (stderr, gr_values[regno].value);
10106 fputs ("\n", stderr);
10107 }
10108 }
10109 }
10110 else
10111 {
10112 clear_qp_mutex (qp_changemask);
10113 clear_qp_implies (qp_changemask, qp_changemask);
10114 }
10115 }
10116
10117 /* Return whether the given predicate registers are currently mutex. */
10118
10119 static int
10120 qp_mutex (p1, p2, path)
10121 int p1;
10122 int p2;
10123 int path;
10124 {
10125 int i;
10126 valueT mask;
10127
10128 if (p1 != p2)
10129 {
10130 mask = ((valueT) 1 << p1) | (valueT) 1 << p2;
10131 for (i = 0; i < qp_mutexeslen; i++)
10132 {
10133 if (qp_mutexes[i].path >= path
10134 && (qp_mutexes[i].prmask & mask) == mask)
10135 return 1;
10136 }
10137 }
10138 return 0;
10139 }
10140
10141 /* Return whether the given resource is in the given insn's list of chks
10142 Return 1 if the conflict is absolutely determined, 2 if it's a potential
10143 conflict. */
10144
10145 static int
10146 resources_match (rs, idesc, note, qp_regno, path)
10147 struct rsrc *rs;
10148 struct ia64_opcode *idesc;
10149 int note;
10150 int qp_regno;
10151 int path;
10152 {
10153 struct rsrc specs[MAX_SPECS];
10154 int count;
10155
10156 /* If the marked resource's qp_regno and the given qp_regno are mutex,
10157 we don't need to check. One exception is note 11, which indicates that
10158 target predicates are written regardless of PR[qp]. */
10159 if (qp_mutex (rs->qp_regno, qp_regno, path)
10160 && note != 11)
10161 return 0;
10162
10163 count = specify_resource (rs->dependency, idesc, DV_CHK, specs, note, path);
10164 while (count-- > 0)
10165 {
10166 /* UNAT checking is a bit more specific than other resources */
10167 if (rs->dependency->specifier == IA64_RS_AR_UNAT
10168 && specs[count].mem_offset.hint
10169 && rs->mem_offset.hint)
10170 {
10171 if (rs->mem_offset.base == specs[count].mem_offset.base)
10172 {
10173 if (((rs->mem_offset.offset >> 3) & 0x3F) ==
10174 ((specs[count].mem_offset.offset >> 3) & 0x3F))
10175 return 1;
10176 else
10177 continue;
10178 }
10179 }
10180
10181 /* Skip apparent PR write conflicts where both writes are an AND or both
10182 writes are an OR. */
10183 if (rs->dependency->specifier == IA64_RS_PR
10184 || rs->dependency->specifier == IA64_RS_PRr
10185 || rs->dependency->specifier == IA64_RS_PR63)
10186 {
10187 if (specs[count].cmp_type != CMP_NONE
10188 && specs[count].cmp_type == rs->cmp_type)
10189 {
10190 if (md.debug_dv)
10191 fprintf (stderr, " %s on parallel compare allowed (PR%d)\n",
10192 dv_mode[rs->dependency->mode],
10193 rs->dependency->specifier != IA64_RS_PR63 ?
10194 specs[count].index : 63);
10195 continue;
10196 }
10197 if (md.debug_dv)
10198 fprintf (stderr,
10199 " %s on parallel compare conflict %s vs %s on PR%d\n",
10200 dv_mode[rs->dependency->mode],
10201 dv_cmp_type[rs->cmp_type],
10202 dv_cmp_type[specs[count].cmp_type],
10203 rs->dependency->specifier != IA64_RS_PR63 ?
10204 specs[count].index : 63);
10205
10206 }
10207
10208 /* If either resource is not specific, conservatively assume a conflict
10209 */
10210 if (!specs[count].specific || !rs->specific)
10211 return 2;
10212 else if (specs[count].index == rs->index)
10213 return 1;
10214 }
10215
10216 return 0;
10217 }
10218
10219 /* Indicate an instruction group break; if INSERT_STOP is non-zero, then
10220 insert a stop to create the break. Update all resource dependencies
10221 appropriately. If QP_REGNO is non-zero, only apply the break to resources
10222 which use the same QP_REGNO and have the link_to_qp_branch flag set.
10223 If SAVE_CURRENT is non-zero, don't affect resources marked by the current
10224 instruction. */
10225
10226 static void
10227 insn_group_break (insert_stop, qp_regno, save_current)
10228 int insert_stop;
10229 int qp_regno;
10230 int save_current;
10231 {
10232 int i;
10233
10234 if (insert_stop && md.num_slots_in_use > 0)
10235 PREV_SLOT.end_of_insn_group = 1;
10236
10237 if (md.debug_dv)
10238 {
10239 fprintf (stderr, " Insn group break%s",
10240 (insert_stop ? " (w/stop)" : ""));
10241 if (qp_regno != 0)
10242 fprintf (stderr, " effective for QP=%d", qp_regno);
10243 fprintf (stderr, "\n");
10244 }
10245
10246 i = 0;
10247 while (i < regdepslen)
10248 {
10249 const struct ia64_dependency *dep = regdeps[i].dependency;
10250
10251 if (qp_regno != 0
10252 && regdeps[i].qp_regno != qp_regno)
10253 {
10254 ++i;
10255 continue;
10256 }
10257
10258 if (save_current
10259 && CURR_SLOT.src_file == regdeps[i].file
10260 && CURR_SLOT.src_line == regdeps[i].line)
10261 {
10262 ++i;
10263 continue;
10264 }
10265
10266 /* clear dependencies which are automatically cleared by a stop, or
10267 those that have reached the appropriate state of insn serialization */
10268 if (dep->semantics == IA64_DVS_IMPLIED
10269 || dep->semantics == IA64_DVS_IMPLIEDF
10270 || regdeps[i].insn_srlz == STATE_SRLZ)
10271 {
10272 print_dependency ("Removing", i);
10273 regdeps[i] = regdeps[--regdepslen];
10274 }
10275 else
10276 {
10277 if (dep->semantics == IA64_DVS_DATA
10278 || dep->semantics == IA64_DVS_INSTR
10279 || dep->semantics == IA64_DVS_SPECIFIC)
10280 {
10281 if (regdeps[i].insn_srlz == STATE_NONE)
10282 regdeps[i].insn_srlz = STATE_STOP;
10283 if (regdeps[i].data_srlz == STATE_NONE)
10284 regdeps[i].data_srlz = STATE_STOP;
10285 }
10286 ++i;
10287 }
10288 }
10289 }
10290
10291 /* Add the given resource usage spec to the list of active dependencies. */
10292
10293 static void
10294 mark_resource (idesc, dep, spec, depind, path)
10295 struct ia64_opcode *idesc ATTRIBUTE_UNUSED;
10296 const struct ia64_dependency *dep ATTRIBUTE_UNUSED;
10297 struct rsrc *spec;
10298 int depind;
10299 int path;
10300 {
10301 if (regdepslen == regdepstotlen)
10302 {
10303 regdepstotlen += 20;
10304 regdeps = (struct rsrc *)
10305 xrealloc ((void *) regdeps,
10306 regdepstotlen * sizeof (struct rsrc));
10307 }
10308
10309 regdeps[regdepslen] = *spec;
10310 regdeps[regdepslen].depind = depind;
10311 regdeps[regdepslen].path = path;
10312 regdeps[regdepslen].file = CURR_SLOT.src_file;
10313 regdeps[regdepslen].line = CURR_SLOT.src_line;
10314
10315 print_dependency ("Adding", regdepslen);
10316
10317 ++regdepslen;
10318 }
10319
10320 static void
10321 print_dependency (action, depind)
10322 const char *action;
10323 int depind;
10324 {
10325 if (md.debug_dv)
10326 {
10327 fprintf (stderr, " %s %s '%s'",
10328 action, dv_mode[(regdeps[depind].dependency)->mode],
10329 (regdeps[depind].dependency)->name);
10330 if (regdeps[depind].specific && regdeps[depind].index >= 0)
10331 fprintf (stderr, " (%d)", regdeps[depind].index);
10332 if (regdeps[depind].mem_offset.hint)
10333 {
10334 fputs (" ", stderr);
10335 fprintf_vma (stderr, regdeps[depind].mem_offset.base);
10336 fputs ("+", stderr);
10337 fprintf_vma (stderr, regdeps[depind].mem_offset.offset);
10338 }
10339 fprintf (stderr, "\n");
10340 }
10341 }
10342
10343 static void
10344 instruction_serialization ()
10345 {
10346 int i;
10347 if (md.debug_dv)
10348 fprintf (stderr, " Instruction serialization\n");
10349 for (i = 0; i < regdepslen; i++)
10350 if (regdeps[i].insn_srlz == STATE_STOP)
10351 regdeps[i].insn_srlz = STATE_SRLZ;
10352 }
10353
10354 static void
10355 data_serialization ()
10356 {
10357 int i = 0;
10358 if (md.debug_dv)
10359 fprintf (stderr, " Data serialization\n");
10360 while (i < regdepslen)
10361 {
10362 if (regdeps[i].data_srlz == STATE_STOP
10363 /* Note: as of 991210, all "other" dependencies are cleared by a
10364 data serialization. This might change with new tables */
10365 || (regdeps[i].dependency)->semantics == IA64_DVS_OTHER)
10366 {
10367 print_dependency ("Removing", i);
10368 regdeps[i] = regdeps[--regdepslen];
10369 }
10370 else
10371 ++i;
10372 }
10373 }
10374
10375 /* Insert stops and serializations as needed to avoid DVs. */
10376
10377 static void
10378 remove_marked_resource (rs)
10379 struct rsrc *rs;
10380 {
10381 switch (rs->dependency->semantics)
10382 {
10383 case IA64_DVS_SPECIFIC:
10384 if (md.debug_dv)
10385 fprintf (stderr, "Implementation-specific, assume worst case...\n");
10386 /* ...fall through... */
10387 case IA64_DVS_INSTR:
10388 if (md.debug_dv)
10389 fprintf (stderr, "Inserting instr serialization\n");
10390 if (rs->insn_srlz < STATE_STOP)
10391 insn_group_break (1, 0, 0);
10392 if (rs->insn_srlz < STATE_SRLZ)
10393 {
10394 struct slot oldslot = CURR_SLOT;
10395 /* Manually jam a srlz.i insn into the stream */
10396 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10397 CURR_SLOT.user_template = -1;
10398 CURR_SLOT.idesc = ia64_find_opcode ("srlz.i");
10399 instruction_serialization ();
10400 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10401 if (++md.num_slots_in_use >= NUM_SLOTS)
10402 emit_one_bundle ();
10403 CURR_SLOT = oldslot;
10404 }
10405 insn_group_break (1, 0, 0);
10406 break;
10407 case IA64_DVS_OTHER: /* as of rev2 (991220) of the DV tables, all
10408 "other" types of DV are eliminated
10409 by a data serialization */
10410 case IA64_DVS_DATA:
10411 if (md.debug_dv)
10412 fprintf (stderr, "Inserting data serialization\n");
10413 if (rs->data_srlz < STATE_STOP)
10414 insn_group_break (1, 0, 0);
10415 {
10416 struct slot oldslot = CURR_SLOT;
10417 /* Manually jam a srlz.d insn into the stream */
10418 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10419 CURR_SLOT.user_template = -1;
10420 CURR_SLOT.idesc = ia64_find_opcode ("srlz.d");
10421 data_serialization ();
10422 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10423 if (++md.num_slots_in_use >= NUM_SLOTS)
10424 emit_one_bundle ();
10425 CURR_SLOT = oldslot;
10426 }
10427 break;
10428 case IA64_DVS_IMPLIED:
10429 case IA64_DVS_IMPLIEDF:
10430 if (md.debug_dv)
10431 fprintf (stderr, "Inserting stop\n");
10432 insn_group_break (1, 0, 0);
10433 break;
10434 default:
10435 break;
10436 }
10437 }
10438
10439 /* Check the resources used by the given opcode against the current dependency
10440 list.
10441
10442 The check is run once for each execution path encountered. In this case,
10443 a unique execution path is the sequence of instructions following a code
10444 entry point, e.g. the following has three execution paths, one starting
10445 at L0, one at L1, and one at L2.
10446
10447 L0: nop
10448 L1: add
10449 L2: add
10450 br.ret
10451 */
10452
10453 static void
10454 check_dependencies (idesc)
10455 struct ia64_opcode *idesc;
10456 {
10457 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10458 int path;
10459 int i;
10460
10461 /* Note that the number of marked resources may change within the
10462 loop if in auto mode. */
10463 i = 0;
10464 while (i < regdepslen)
10465 {
10466 struct rsrc *rs = &regdeps[i];
10467 const struct ia64_dependency *dep = rs->dependency;
10468 int chkind;
10469 int note;
10470 int start_over = 0;
10471
10472 if (dep->semantics == IA64_DVS_NONE
10473 || (chkind = depends_on (rs->depind, idesc)) == -1)
10474 {
10475 ++i;
10476 continue;
10477 }
10478
10479 note = NOTE (opdeps->chks[chkind]);
10480
10481 /* Check this resource against each execution path seen thus far. */
10482 for (path = 0; path <= md.path; path++)
10483 {
10484 int matchtype;
10485
10486 /* If the dependency wasn't on the path being checked, ignore it. */
10487 if (rs->path < path)
10488 continue;
10489
10490 /* If the QP for this insn implies a QP which has branched, don't
10491 bother checking. Ed. NOTE: I don't think this check is terribly
10492 useful; what's the point of generating code which will only be
10493 reached if its QP is zero?
10494 This code was specifically inserted to handle the following code,
10495 based on notes from Intel's DV checking code, where p1 implies p2.
10496
10497 mov r4 = 2
10498 (p2) br.cond L
10499 (p1) mov r4 = 7
10500 */
10501 if (CURR_SLOT.qp_regno != 0)
10502 {
10503 int skip = 0;
10504 int implies;
10505 for (implies = 0; implies < qp_implieslen; implies++)
10506 {
10507 if (qp_implies[implies].path >= path
10508 && qp_implies[implies].p1 == CURR_SLOT.qp_regno
10509 && qp_implies[implies].p2_branched)
10510 {
10511 skip = 1;
10512 break;
10513 }
10514 }
10515 if (skip)
10516 continue;
10517 }
10518
10519 if ((matchtype = resources_match (rs, idesc, note,
10520 CURR_SLOT.qp_regno, path)) != 0)
10521 {
10522 char msg[1024];
10523 char pathmsg[256] = "";
10524 char indexmsg[256] = "";
10525 int certain = (matchtype == 1 && CURR_SLOT.qp_regno == 0);
10526
10527 if (path != 0)
10528 sprintf (pathmsg, " when entry is at label '%s'",
10529 md.entry_labels[path - 1]);
10530 if (matchtype == 1 && rs->index >= 0)
10531 sprintf (indexmsg, ", specific resource number is %d",
10532 rs->index);
10533 sprintf (msg, "Use of '%s' %s %s dependency '%s' (%s)%s%s",
10534 idesc->name,
10535 (certain ? "violates" : "may violate"),
10536 dv_mode[dep->mode], dep->name,
10537 dv_sem[dep->semantics],
10538 pathmsg, indexmsg);
10539
10540 if (md.explicit_mode)
10541 {
10542 as_warn ("%s", msg);
10543 if (path < md.path)
10544 as_warn (_("Only the first path encountering the conflict "
10545 "is reported"));
10546 as_warn_where (rs->file, rs->line,
10547 _("This is the location of the "
10548 "conflicting usage"));
10549 /* Don't bother checking other paths, to avoid duplicating
10550 the same warning */
10551 break;
10552 }
10553 else
10554 {
10555 if (md.debug_dv)
10556 fprintf (stderr, "%s @ %s:%d\n", msg, rs->file, rs->line);
10557
10558 remove_marked_resource (rs);
10559
10560 /* since the set of dependencies has changed, start over */
10561 /* FIXME -- since we're removing dvs as we go, we
10562 probably don't really need to start over... */
10563 start_over = 1;
10564 break;
10565 }
10566 }
10567 }
10568 if (start_over)
10569 i = 0;
10570 else
10571 ++i;
10572 }
10573 }
10574
10575 /* Register new dependencies based on the given opcode. */
10576
10577 static void
10578 mark_resources (idesc)
10579 struct ia64_opcode *idesc;
10580 {
10581 int i;
10582 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10583 int add_only_qp_reads = 0;
10584
10585 /* A conditional branch only uses its resources if it is taken; if it is
10586 taken, we stop following that path. The other branch types effectively
10587 *always* write their resources. If it's not taken, register only QP
10588 reads. */
10589 if (is_conditional_branch (idesc) || is_interruption_or_rfi (idesc))
10590 {
10591 add_only_qp_reads = 1;
10592 }
10593
10594 if (md.debug_dv)
10595 fprintf (stderr, "Registering '%s' resource usage\n", idesc->name);
10596
10597 for (i = 0; i < opdeps->nregs; i++)
10598 {
10599 const struct ia64_dependency *dep;
10600 struct rsrc specs[MAX_SPECS];
10601 int note;
10602 int path;
10603 int count;
10604
10605 dep = ia64_find_dependency (opdeps->regs[i]);
10606 note = NOTE (opdeps->regs[i]);
10607
10608 if (add_only_qp_reads
10609 && !(dep->mode == IA64_DV_WAR
10610 && (dep->specifier == IA64_RS_PR
10611 || dep->specifier == IA64_RS_PRr
10612 || dep->specifier == IA64_RS_PR63)))
10613 continue;
10614
10615 count = specify_resource (dep, idesc, DV_REG, specs, note, md.path);
10616
10617 while (count-- > 0)
10618 {
10619 mark_resource (idesc, dep, &specs[count],
10620 DEP (opdeps->regs[i]), md.path);
10621 }
10622
10623 /* The execution path may affect register values, which may in turn
10624 affect which indirect-access resources are accessed. */
10625 switch (dep->specifier)
10626 {
10627 default:
10628 break;
10629 case IA64_RS_CPUID:
10630 case IA64_RS_DBR:
10631 case IA64_RS_IBR:
10632 case IA64_RS_MSR:
10633 case IA64_RS_PKR:
10634 case IA64_RS_PMC:
10635 case IA64_RS_PMD:
10636 case IA64_RS_RR:
10637 for (path = 0; path < md.path; path++)
10638 {
10639 count = specify_resource (dep, idesc, DV_REG, specs, note, path);
10640 while (count-- > 0)
10641 mark_resource (idesc, dep, &specs[count],
10642 DEP (opdeps->regs[i]), path);
10643 }
10644 break;
10645 }
10646 }
10647 }
10648
10649 /* Remove dependencies when they no longer apply. */
10650
10651 static void
10652 update_dependencies (idesc)
10653 struct ia64_opcode *idesc;
10654 {
10655 int i;
10656
10657 if (strcmp (idesc->name, "srlz.i") == 0)
10658 {
10659 instruction_serialization ();
10660 }
10661 else if (strcmp (idesc->name, "srlz.d") == 0)
10662 {
10663 data_serialization ();
10664 }
10665 else if (is_interruption_or_rfi (idesc)
10666 || is_taken_branch (idesc))
10667 {
10668 /* Although technically the taken branch doesn't clear dependencies
10669 which require a srlz.[id], we don't follow the branch; the next
10670 instruction is assumed to start with a clean slate. */
10671 regdepslen = 0;
10672 md.path = 0;
10673 }
10674 else if (is_conditional_branch (idesc)
10675 && CURR_SLOT.qp_regno != 0)
10676 {
10677 int is_call = strstr (idesc->name, ".call") != NULL;
10678
10679 for (i = 0; i < qp_implieslen; i++)
10680 {
10681 /* If the conditional branch's predicate is implied by the predicate
10682 in an existing dependency, remove that dependency. */
10683 if (qp_implies[i].p2 == CURR_SLOT.qp_regno)
10684 {
10685 int depind = 0;
10686 /* Note that this implied predicate takes a branch so that if
10687 a later insn generates a DV but its predicate implies this
10688 one, we can avoid the false DV warning. */
10689 qp_implies[i].p2_branched = 1;
10690 while (depind < regdepslen)
10691 {
10692 if (regdeps[depind].qp_regno == qp_implies[i].p1)
10693 {
10694 print_dependency ("Removing", depind);
10695 regdeps[depind] = regdeps[--regdepslen];
10696 }
10697 else
10698 ++depind;
10699 }
10700 }
10701 }
10702 /* Any marked resources which have this same predicate should be
10703 cleared, provided that the QP hasn't been modified between the
10704 marking instruction and the branch. */
10705 if (is_call)
10706 {
10707 insn_group_break (0, CURR_SLOT.qp_regno, 1);
10708 }
10709 else
10710 {
10711 i = 0;
10712 while (i < regdepslen)
10713 {
10714 if (regdeps[i].qp_regno == CURR_SLOT.qp_regno
10715 && regdeps[i].link_to_qp_branch
10716 && (regdeps[i].file != CURR_SLOT.src_file
10717 || regdeps[i].line != CURR_SLOT.src_line))
10718 {
10719 /* Treat like a taken branch */
10720 print_dependency ("Removing", i);
10721 regdeps[i] = regdeps[--regdepslen];
10722 }
10723 else
10724 ++i;
10725 }
10726 }
10727 }
10728 }
10729
10730 /* Examine the current instruction for dependency violations. */
10731
10732 static int
10733 check_dv (idesc)
10734 struct ia64_opcode *idesc;
10735 {
10736 if (md.debug_dv)
10737 {
10738 fprintf (stderr, "Checking %s for violations (line %d, %d/%d)\n",
10739 idesc->name, CURR_SLOT.src_line,
10740 idesc->dependencies->nchks,
10741 idesc->dependencies->nregs);
10742 }
10743
10744 /* Look through the list of currently marked resources; if the current
10745 instruction has the dependency in its chks list which uses that resource,
10746 check against the specific resources used. */
10747 check_dependencies (idesc);
10748
10749 /* Look up the instruction's regdeps (RAW writes, WAW writes, and WAR reads),
10750 then add them to the list of marked resources. */
10751 mark_resources (idesc);
10752
10753 /* There are several types of dependency semantics, and each has its own
10754 requirements for being cleared
10755
10756 Instruction serialization (insns separated by interruption, rfi, or
10757 writer + srlz.i + reader, all in separate groups) clears DVS_INSTR.
10758
10759 Data serialization (instruction serialization, or writer + srlz.d +
10760 reader, where writer and srlz.d are in separate groups) clears
10761 DVS_DATA. (This also clears DVS_OTHER, but that is not guaranteed to
10762 always be the case).
10763
10764 Instruction group break (groups separated by stop, taken branch,
10765 interruption or rfi) clears DVS_IMPLIED and DVS_IMPLIEDF.
10766 */
10767 update_dependencies (idesc);
10768
10769 /* Sometimes, knowing a register value allows us to avoid giving a false DV
10770 warning. Keep track of as many as possible that are useful. */
10771 note_register_values (idesc);
10772
10773 /* We don't need or want this anymore. */
10774 md.mem_offset.hint = 0;
10775
10776 return 0;
10777 }
10778
10779 /* Translate one line of assembly. Pseudo ops and labels do not show
10780 here. */
10781 void
10782 md_assemble (str)
10783 char *str;
10784 {
10785 char *saved_input_line_pointer, *mnemonic;
10786 const struct pseudo_opcode *pdesc;
10787 struct ia64_opcode *idesc;
10788 unsigned char qp_regno;
10789 unsigned int flags;
10790 int ch;
10791
10792 saved_input_line_pointer = input_line_pointer;
10793 input_line_pointer = str;
10794
10795 /* extract the opcode (mnemonic): */
10796
10797 mnemonic = input_line_pointer;
10798 ch = get_symbol_end ();
10799 pdesc = (struct pseudo_opcode *) hash_find (md.pseudo_hash, mnemonic);
10800 if (pdesc)
10801 {
10802 *input_line_pointer = ch;
10803 (*pdesc->handler) (pdesc->arg);
10804 goto done;
10805 }
10806
10807 /* Find the instruction descriptor matching the arguments. */
10808
10809 idesc = ia64_find_opcode (mnemonic);
10810 *input_line_pointer = ch;
10811 if (!idesc)
10812 {
10813 as_bad ("Unknown opcode `%s'", mnemonic);
10814 goto done;
10815 }
10816
10817 idesc = parse_operands (idesc);
10818 if (!idesc)
10819 goto done;
10820
10821 /* Handle the dynamic ops we can handle now: */
10822 if (idesc->type == IA64_TYPE_DYN)
10823 {
10824 if (strcmp (idesc->name, "add") == 0)
10825 {
10826 if (CURR_SLOT.opnd[2].X_op == O_register
10827 && CURR_SLOT.opnd[2].X_add_number < 4)
10828 mnemonic = "addl";
10829 else
10830 mnemonic = "adds";
10831 ia64_free_opcode (idesc);
10832 idesc = ia64_find_opcode (mnemonic);
10833 }
10834 else if (strcmp (idesc->name, "mov") == 0)
10835 {
10836 enum ia64_opnd opnd1, opnd2;
10837 int rop;
10838
10839 opnd1 = idesc->operands[0];
10840 opnd2 = idesc->operands[1];
10841 if (opnd1 == IA64_OPND_AR3)
10842 rop = 0;
10843 else if (opnd2 == IA64_OPND_AR3)
10844 rop = 1;
10845 else
10846 abort ();
10847 if (CURR_SLOT.opnd[rop].X_op == O_register)
10848 {
10849 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10850 mnemonic = "mov.i";
10851 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10852 mnemonic = "mov.m";
10853 else
10854 rop = -1;
10855 }
10856 else
10857 abort ();
10858 if (rop >= 0)
10859 {
10860 ia64_free_opcode (idesc);
10861 idesc = ia64_find_opcode (mnemonic);
10862 while (idesc != NULL
10863 && (idesc->operands[0] != opnd1
10864 || idesc->operands[1] != opnd2))
10865 idesc = get_next_opcode (idesc);
10866 }
10867 }
10868 }
10869 else if (strcmp (idesc->name, "mov.i") == 0
10870 || strcmp (idesc->name, "mov.m") == 0)
10871 {
10872 enum ia64_opnd opnd1, opnd2;
10873 int rop;
10874
10875 opnd1 = idesc->operands[0];
10876 opnd2 = idesc->operands[1];
10877 if (opnd1 == IA64_OPND_AR3)
10878 rop = 0;
10879 else if (opnd2 == IA64_OPND_AR3)
10880 rop = 1;
10881 else
10882 abort ();
10883 if (CURR_SLOT.opnd[rop].X_op == O_register)
10884 {
10885 char unit = 'a';
10886 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10887 unit = 'i';
10888 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10889 unit = 'm';
10890 if (unit != 'a' && unit != idesc->name [4])
10891 as_bad ("AR %d can only be accessed by %c-unit",
10892 (int) (CURR_SLOT.opnd[rop].X_add_number - REG_AR),
10893 TOUPPER (unit));
10894 }
10895 }
10896 else if (strcmp (idesc->name, "hint.b") == 0)
10897 {
10898 switch (md.hint_b)
10899 {
10900 case hint_b_ok:
10901 break;
10902 case hint_b_warning:
10903 as_warn ("hint.b may be treated as nop");
10904 break;
10905 case hint_b_error:
10906 as_bad ("hint.b shouldn't be used");
10907 break;
10908 }
10909 }
10910
10911 qp_regno = 0;
10912 if (md.qp.X_op == O_register)
10913 {
10914 qp_regno = md.qp.X_add_number - REG_P;
10915 md.qp.X_op = O_absent;
10916 }
10917
10918 flags = idesc->flags;
10919
10920 if ((flags & IA64_OPCODE_FIRST) != 0)
10921 {
10922 /* The alignment frag has to end with a stop bit only if the
10923 next instruction after the alignment directive has to be
10924 the first instruction in an instruction group. */
10925 if (align_frag)
10926 {
10927 while (align_frag->fr_type != rs_align_code)
10928 {
10929 align_frag = align_frag->fr_next;
10930 if (!align_frag)
10931 break;
10932 }
10933 /* align_frag can be NULL if there are directives in
10934 between. */
10935 if (align_frag && align_frag->fr_next == frag_now)
10936 align_frag->tc_frag_data = 1;
10937 }
10938
10939 insn_group_break (1, 0, 0);
10940 }
10941 align_frag = NULL;
10942
10943 if ((flags & IA64_OPCODE_NO_PRED) != 0 && qp_regno != 0)
10944 {
10945 as_bad ("`%s' cannot be predicated", idesc->name);
10946 goto done;
10947 }
10948
10949 /* Build the instruction. */
10950 CURR_SLOT.qp_regno = qp_regno;
10951 CURR_SLOT.idesc = idesc;
10952 as_where (&CURR_SLOT.src_file, &CURR_SLOT.src_line);
10953 dwarf2_where (&CURR_SLOT.debug_line);
10954
10955 /* Add unwind entries, if there are any. */
10956 if (unwind.current_entry)
10957 {
10958 CURR_SLOT.unwind_record = unwind.current_entry;
10959 unwind.current_entry = NULL;
10960 }
10961 if (unwind.pending_saves)
10962 {
10963 if (unwind.pending_saves->next)
10964 {
10965 /* Attach the next pending save to the next slot so that its
10966 slot number will get set correctly. */
10967 add_unwind_entry (unwind.pending_saves->next, NOT_A_CHAR);
10968 unwind.pending_saves = &unwind.pending_saves->next->r.record.p;
10969 }
10970 else
10971 unwind.pending_saves = NULL;
10972 }
10973 if (unwind.proc_pending.sym && S_IS_DEFINED (unwind.proc_pending.sym))
10974 unwind.insn = 1;
10975
10976 /* Check for dependency violations. */
10977 if (md.detect_dv)
10978 check_dv (idesc);
10979
10980 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10981 if (++md.num_slots_in_use >= NUM_SLOTS)
10982 emit_one_bundle ();
10983
10984 if ((flags & IA64_OPCODE_LAST) != 0)
10985 insn_group_break (1, 0, 0);
10986
10987 md.last_text_seg = now_seg;
10988
10989 done:
10990 input_line_pointer = saved_input_line_pointer;
10991 }
10992
10993 /* Called when symbol NAME cannot be found in the symbol table.
10994 Should be used for dynamic valued symbols only. */
10995
10996 symbolS *
10997 md_undefined_symbol (name)
10998 char *name ATTRIBUTE_UNUSED;
10999 {
11000 return 0;
11001 }
11002
11003 /* Called for any expression that can not be recognized. When the
11004 function is called, `input_line_pointer' will point to the start of
11005 the expression. */
11006
11007 void
11008 md_operand (e)
11009 expressionS *e;
11010 {
11011 switch (*input_line_pointer)
11012 {
11013 case '[':
11014 ++input_line_pointer;
11015 expression_and_evaluate (e);
11016 if (*input_line_pointer != ']')
11017 {
11018 as_bad ("Closing bracket missing");
11019 goto err;
11020 }
11021 else
11022 {
11023 if (e->X_op != O_register)
11024 as_bad ("Register expected as index");
11025
11026 ++input_line_pointer;
11027 e->X_op = O_index;
11028 }
11029 break;
11030
11031 default:
11032 break;
11033 }
11034 return;
11035
11036 err:
11037 ignore_rest_of_line ();
11038 }
11039
11040 /* Return 1 if it's OK to adjust a reloc by replacing the symbol with
11041 a section symbol plus some offset. For relocs involving @fptr(),
11042 directives we don't want such adjustments since we need to have the
11043 original symbol's name in the reloc. */
11044 int
11045 ia64_fix_adjustable (fix)
11046 fixS *fix;
11047 {
11048 /* Prevent all adjustments to global symbols */
11049 if (S_IS_EXTERNAL (fix->fx_addsy) || S_IS_WEAK (fix->fx_addsy))
11050 return 0;
11051
11052 switch (fix->fx_r_type)
11053 {
11054 case BFD_RELOC_IA64_FPTR64I:
11055 case BFD_RELOC_IA64_FPTR32MSB:
11056 case BFD_RELOC_IA64_FPTR32LSB:
11057 case BFD_RELOC_IA64_FPTR64MSB:
11058 case BFD_RELOC_IA64_FPTR64LSB:
11059 case BFD_RELOC_IA64_LTOFF_FPTR22:
11060 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11061 return 0;
11062 default:
11063 break;
11064 }
11065
11066 return 1;
11067 }
11068
11069 int
11070 ia64_force_relocation (fix)
11071 fixS *fix;
11072 {
11073 switch (fix->fx_r_type)
11074 {
11075 case BFD_RELOC_IA64_FPTR64I:
11076 case BFD_RELOC_IA64_FPTR32MSB:
11077 case BFD_RELOC_IA64_FPTR32LSB:
11078 case BFD_RELOC_IA64_FPTR64MSB:
11079 case BFD_RELOC_IA64_FPTR64LSB:
11080
11081 case BFD_RELOC_IA64_LTOFF22:
11082 case BFD_RELOC_IA64_LTOFF64I:
11083 case BFD_RELOC_IA64_LTOFF_FPTR22:
11084 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11085 case BFD_RELOC_IA64_PLTOFF22:
11086 case BFD_RELOC_IA64_PLTOFF64I:
11087 case BFD_RELOC_IA64_PLTOFF64MSB:
11088 case BFD_RELOC_IA64_PLTOFF64LSB:
11089
11090 case BFD_RELOC_IA64_LTOFF22X:
11091 case BFD_RELOC_IA64_LDXMOV:
11092 return 1;
11093
11094 default:
11095 break;
11096 }
11097
11098 return generic_force_reloc (fix);
11099 }
11100
11101 /* Decide from what point a pc-relative relocation is relative to,
11102 relative to the pc-relative fixup. Er, relatively speaking. */
11103 long
11104 ia64_pcrel_from_section (fix, sec)
11105 fixS *fix;
11106 segT sec;
11107 {
11108 unsigned long off = fix->fx_frag->fr_address + fix->fx_where;
11109
11110 if (bfd_get_section_flags (stdoutput, sec) & SEC_CODE)
11111 off &= ~0xfUL;
11112
11113 return off;
11114 }
11115
11116
11117 /* Used to emit section-relative relocs for the dwarf2 debug data. */
11118 void
11119 ia64_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11120 {
11121 expressionS expr;
11122
11123 expr.X_op = O_pseudo_fixup;
11124 expr.X_op_symbol = pseudo_func[FUNC_SEC_RELATIVE].u.sym;
11125 expr.X_add_number = 0;
11126 expr.X_add_symbol = symbol;
11127 emit_expr (&expr, size);
11128 }
11129
11130 /* This is called whenever some data item (not an instruction) needs a
11131 fixup. We pick the right reloc code depending on the byteorder
11132 currently in effect. */
11133 void
11134 ia64_cons_fix_new (f, where, nbytes, exp)
11135 fragS *f;
11136 int where;
11137 int nbytes;
11138 expressionS *exp;
11139 {
11140 bfd_reloc_code_real_type code;
11141 fixS *fix;
11142
11143 switch (nbytes)
11144 {
11145 /* There are no reloc for 8 and 16 bit quantities, but we allow
11146 them here since they will work fine as long as the expression
11147 is fully defined at the end of the pass over the source file. */
11148 case 1: code = BFD_RELOC_8; break;
11149 case 2: code = BFD_RELOC_16; break;
11150 case 4:
11151 if (target_big_endian)
11152 code = BFD_RELOC_IA64_DIR32MSB;
11153 else
11154 code = BFD_RELOC_IA64_DIR32LSB;
11155 break;
11156
11157 case 8:
11158 /* In 32-bit mode, data8 could mean function descriptors too. */
11159 if (exp->X_op == O_pseudo_fixup
11160 && exp->X_op_symbol
11161 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC
11162 && !(md.flags & EF_IA_64_ABI64))
11163 {
11164 if (target_big_endian)
11165 code = BFD_RELOC_IA64_IPLTMSB;
11166 else
11167 code = BFD_RELOC_IA64_IPLTLSB;
11168 exp->X_op = O_symbol;
11169 break;
11170 }
11171 else
11172 {
11173 if (target_big_endian)
11174 code = BFD_RELOC_IA64_DIR64MSB;
11175 else
11176 code = BFD_RELOC_IA64_DIR64LSB;
11177 break;
11178 }
11179
11180 case 16:
11181 if (exp->X_op == O_pseudo_fixup
11182 && exp->X_op_symbol
11183 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC)
11184 {
11185 if (target_big_endian)
11186 code = BFD_RELOC_IA64_IPLTMSB;
11187 else
11188 code = BFD_RELOC_IA64_IPLTLSB;
11189 exp->X_op = O_symbol;
11190 break;
11191 }
11192 /* FALLTHRU */
11193
11194 default:
11195 as_bad ("Unsupported fixup size %d", nbytes);
11196 ignore_rest_of_line ();
11197 return;
11198 }
11199
11200 if (exp->X_op == O_pseudo_fixup)
11201 {
11202 exp->X_op = O_symbol;
11203 code = ia64_gen_real_reloc_type (exp->X_op_symbol, code);
11204 /* ??? If code unchanged, unsupported. */
11205 }
11206
11207 fix = fix_new_exp (f, where, nbytes, exp, 0, code);
11208 /* We need to store the byte order in effect in case we're going
11209 to fix an 8 or 16 bit relocation (for which there no real
11210 relocs available). See md_apply_fix(). */
11211 fix->tc_fix_data.bigendian = target_big_endian;
11212 }
11213
11214 /* Return the actual relocation we wish to associate with the pseudo
11215 reloc described by SYM and R_TYPE. SYM should be one of the
11216 symbols in the pseudo_func array, or NULL. */
11217
11218 static bfd_reloc_code_real_type
11219 ia64_gen_real_reloc_type (sym, r_type)
11220 struct symbol *sym;
11221 bfd_reloc_code_real_type r_type;
11222 {
11223 bfd_reloc_code_real_type new = 0;
11224 const char *type = NULL, *suffix = "";
11225
11226 if (sym == NULL)
11227 {
11228 return r_type;
11229 }
11230
11231 switch (S_GET_VALUE (sym))
11232 {
11233 case FUNC_FPTR_RELATIVE:
11234 switch (r_type)
11235 {
11236 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_FPTR64I; break;
11237 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_FPTR32MSB; break;
11238 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_FPTR32LSB; break;
11239 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_FPTR64MSB; break;
11240 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_FPTR64LSB; break;
11241 default: type = "FPTR"; break;
11242 }
11243 break;
11244
11245 case FUNC_GP_RELATIVE:
11246 switch (r_type)
11247 {
11248 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_GPREL22; break;
11249 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_GPREL64I; break;
11250 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_GPREL32MSB; break;
11251 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_GPREL32LSB; break;
11252 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_GPREL64MSB; break;
11253 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_GPREL64LSB; break;
11254 default: type = "GPREL"; break;
11255 }
11256 break;
11257
11258 case FUNC_LT_RELATIVE:
11259 switch (r_type)
11260 {
11261 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22; break;
11262 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_LTOFF64I; break;
11263 default: type = "LTOFF"; break;
11264 }
11265 break;
11266
11267 case FUNC_LT_RELATIVE_X:
11268 switch (r_type)
11269 {
11270 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22X; break;
11271 default: type = "LTOFF"; suffix = "X"; break;
11272 }
11273 break;
11274
11275 case FUNC_PC_RELATIVE:
11276 switch (r_type)
11277 {
11278 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PCREL22; break;
11279 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PCREL64I; break;
11280 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_PCREL32MSB; break;
11281 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_PCREL32LSB; break;
11282 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PCREL64MSB; break;
11283 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PCREL64LSB; break;
11284 default: type = "PCREL"; break;
11285 }
11286 break;
11287
11288 case FUNC_PLT_RELATIVE:
11289 switch (r_type)
11290 {
11291 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PLTOFF22; break;
11292 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PLTOFF64I; break;
11293 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PLTOFF64MSB;break;
11294 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PLTOFF64LSB;break;
11295 default: type = "PLTOFF"; break;
11296 }
11297 break;
11298
11299 case FUNC_SEC_RELATIVE:
11300 switch (r_type)
11301 {
11302 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SECREL32MSB;break;
11303 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SECREL32LSB;break;
11304 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SECREL64MSB;break;
11305 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SECREL64LSB;break;
11306 default: type = "SECREL"; break;
11307 }
11308 break;
11309
11310 case FUNC_SEG_RELATIVE:
11311 switch (r_type)
11312 {
11313 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SEGREL32MSB;break;
11314 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SEGREL32LSB;break;
11315 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SEGREL64MSB;break;
11316 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SEGREL64LSB;break;
11317 default: type = "SEGREL"; break;
11318 }
11319 break;
11320
11321 case FUNC_LTV_RELATIVE:
11322 switch (r_type)
11323 {
11324 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_LTV32MSB; break;
11325 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_LTV32LSB; break;
11326 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_LTV64MSB; break;
11327 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_LTV64LSB; break;
11328 default: type = "LTV"; break;
11329 }
11330 break;
11331
11332 case FUNC_LT_FPTR_RELATIVE:
11333 switch (r_type)
11334 {
11335 case BFD_RELOC_IA64_IMM22:
11336 new = BFD_RELOC_IA64_LTOFF_FPTR22; break;
11337 case BFD_RELOC_IA64_IMM64:
11338 new = BFD_RELOC_IA64_LTOFF_FPTR64I; break;
11339 case BFD_RELOC_IA64_DIR32MSB:
11340 new = BFD_RELOC_IA64_LTOFF_FPTR32MSB; break;
11341 case BFD_RELOC_IA64_DIR32LSB:
11342 new = BFD_RELOC_IA64_LTOFF_FPTR32LSB; break;
11343 case BFD_RELOC_IA64_DIR64MSB:
11344 new = BFD_RELOC_IA64_LTOFF_FPTR64MSB; break;
11345 case BFD_RELOC_IA64_DIR64LSB:
11346 new = BFD_RELOC_IA64_LTOFF_FPTR64LSB; break;
11347 default:
11348 type = "LTOFF_FPTR"; break;
11349 }
11350 break;
11351
11352 case FUNC_TP_RELATIVE:
11353 switch (r_type)
11354 {
11355 case BFD_RELOC_IA64_IMM14: new = BFD_RELOC_IA64_TPREL14; break;
11356 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_TPREL22; break;
11357 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_TPREL64I; break;
11358 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_TPREL64MSB; break;
11359 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_TPREL64LSB; break;
11360 default: type = "TPREL"; break;
11361 }
11362 break;
11363
11364 case FUNC_LT_TP_RELATIVE:
11365 switch (r_type)
11366 {
11367 case BFD_RELOC_IA64_IMM22:
11368 new = BFD_RELOC_IA64_LTOFF_TPREL22; break;
11369 default:
11370 type = "LTOFF_TPREL"; break;
11371 }
11372 break;
11373
11374 case FUNC_DTP_MODULE:
11375 switch (r_type)
11376 {
11377 case BFD_RELOC_IA64_DIR64MSB:
11378 new = BFD_RELOC_IA64_DTPMOD64MSB; break;
11379 case BFD_RELOC_IA64_DIR64LSB:
11380 new = BFD_RELOC_IA64_DTPMOD64LSB; break;
11381 default:
11382 type = "DTPMOD"; break;
11383 }
11384 break;
11385
11386 case FUNC_LT_DTP_MODULE:
11387 switch (r_type)
11388 {
11389 case BFD_RELOC_IA64_IMM22:
11390 new = BFD_RELOC_IA64_LTOFF_DTPMOD22; break;
11391 default:
11392 type = "LTOFF_DTPMOD"; break;
11393 }
11394 break;
11395
11396 case FUNC_DTP_RELATIVE:
11397 switch (r_type)
11398 {
11399 case BFD_RELOC_IA64_DIR32MSB:
11400 new = BFD_RELOC_IA64_DTPREL32MSB; break;
11401 case BFD_RELOC_IA64_DIR32LSB:
11402 new = BFD_RELOC_IA64_DTPREL32LSB; break;
11403 case BFD_RELOC_IA64_DIR64MSB:
11404 new = BFD_RELOC_IA64_DTPREL64MSB; break;
11405 case BFD_RELOC_IA64_DIR64LSB:
11406 new = BFD_RELOC_IA64_DTPREL64LSB; break;
11407 case BFD_RELOC_IA64_IMM14:
11408 new = BFD_RELOC_IA64_DTPREL14; break;
11409 case BFD_RELOC_IA64_IMM22:
11410 new = BFD_RELOC_IA64_DTPREL22; break;
11411 case BFD_RELOC_IA64_IMM64:
11412 new = BFD_RELOC_IA64_DTPREL64I; break;
11413 default:
11414 type = "DTPREL"; break;
11415 }
11416 break;
11417
11418 case FUNC_LT_DTP_RELATIVE:
11419 switch (r_type)
11420 {
11421 case BFD_RELOC_IA64_IMM22:
11422 new = BFD_RELOC_IA64_LTOFF_DTPREL22; break;
11423 default:
11424 type = "LTOFF_DTPREL"; break;
11425 }
11426 break;
11427
11428 case FUNC_IPLT_RELOC:
11429 switch (r_type)
11430 {
11431 case BFD_RELOC_IA64_IPLTMSB: return r_type;
11432 case BFD_RELOC_IA64_IPLTLSB: return r_type;
11433 default: type = "IPLT"; break;
11434 }
11435 break;
11436
11437 default:
11438 abort ();
11439 }
11440
11441 if (new)
11442 return new;
11443 else
11444 {
11445 int width;
11446
11447 if (!type)
11448 abort ();
11449 switch (r_type)
11450 {
11451 case BFD_RELOC_IA64_DIR32MSB: width = 32; suffix = "MSB"; break;
11452 case BFD_RELOC_IA64_DIR32LSB: width = 32; suffix = "LSB"; break;
11453 case BFD_RELOC_IA64_DIR64MSB: width = 64; suffix = "MSB"; break;
11454 case BFD_RELOC_IA64_DIR64LSB: width = 64; suffix = "LSB"; break;
11455 case BFD_RELOC_UNUSED: width = 13; break;
11456 case BFD_RELOC_IA64_IMM14: width = 14; break;
11457 case BFD_RELOC_IA64_IMM22: width = 22; break;
11458 case BFD_RELOC_IA64_IMM64: width = 64; suffix = "I"; break;
11459 default: abort ();
11460 }
11461
11462 /* This should be an error, but since previously there wasn't any
11463 diagnostic here, dont't make it fail because of this for now. */
11464 as_warn ("Cannot express %s%d%s relocation", type, width, suffix);
11465 return r_type;
11466 }
11467 }
11468
11469 /* Here is where generate the appropriate reloc for pseudo relocation
11470 functions. */
11471 void
11472 ia64_validate_fix (fix)
11473 fixS *fix;
11474 {
11475 switch (fix->fx_r_type)
11476 {
11477 case BFD_RELOC_IA64_FPTR64I:
11478 case BFD_RELOC_IA64_FPTR32MSB:
11479 case BFD_RELOC_IA64_FPTR64LSB:
11480 case BFD_RELOC_IA64_LTOFF_FPTR22:
11481 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11482 if (fix->fx_offset != 0)
11483 as_bad_where (fix->fx_file, fix->fx_line,
11484 "No addend allowed in @fptr() relocation");
11485 break;
11486 default:
11487 break;
11488 }
11489 }
11490
11491 static void
11492 fix_insn (fix, odesc, value)
11493 fixS *fix;
11494 const struct ia64_operand *odesc;
11495 valueT value;
11496 {
11497 bfd_vma insn[3], t0, t1, control_bits;
11498 const char *err;
11499 char *fixpos;
11500 long slot;
11501
11502 slot = fix->fx_where & 0x3;
11503 fixpos = fix->fx_frag->fr_literal + (fix->fx_where - slot);
11504
11505 /* Bundles are always in little-endian byte order */
11506 t0 = bfd_getl64 (fixpos);
11507 t1 = bfd_getl64 (fixpos + 8);
11508 control_bits = t0 & 0x1f;
11509 insn[0] = (t0 >> 5) & 0x1ffffffffffLL;
11510 insn[1] = ((t0 >> 46) & 0x3ffff) | ((t1 & 0x7fffff) << 18);
11511 insn[2] = (t1 >> 23) & 0x1ffffffffffLL;
11512
11513 err = NULL;
11514 if (odesc - elf64_ia64_operands == IA64_OPND_IMMU64)
11515 {
11516 insn[1] = (value >> 22) & 0x1ffffffffffLL;
11517 insn[2] |= (((value & 0x7f) << 13)
11518 | (((value >> 7) & 0x1ff) << 27)
11519 | (((value >> 16) & 0x1f) << 22)
11520 | (((value >> 21) & 0x1) << 21)
11521 | (((value >> 63) & 0x1) << 36));
11522 }
11523 else if (odesc - elf64_ia64_operands == IA64_OPND_IMMU62)
11524 {
11525 if (value & ~0x3fffffffffffffffULL)
11526 err = "integer operand out of range";
11527 insn[1] = (value >> 21) & 0x1ffffffffffLL;
11528 insn[2] |= (((value & 0xfffff) << 6) | (((value >> 20) & 0x1) << 36));
11529 }
11530 else if (odesc - elf64_ia64_operands == IA64_OPND_TGT64)
11531 {
11532 value >>= 4;
11533 insn[1] = ((value >> 20) & 0x7fffffffffLL) << 2;
11534 insn[2] |= ((((value >> 59) & 0x1) << 36)
11535 | (((value >> 0) & 0xfffff) << 13));
11536 }
11537 else
11538 err = (*odesc->insert) (odesc, value, insn + slot);
11539
11540 if (err)
11541 as_bad_where (fix->fx_file, fix->fx_line, err);
11542
11543 t0 = control_bits | (insn[0] << 5) | (insn[1] << 46);
11544 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
11545 number_to_chars_littleendian (fixpos + 0, t0, 8);
11546 number_to_chars_littleendian (fixpos + 8, t1, 8);
11547 }
11548
11549 /* Attempt to simplify or even eliminate a fixup. The return value is
11550 ignored; perhaps it was once meaningful, but now it is historical.
11551 To indicate that a fixup has been eliminated, set FIXP->FX_DONE.
11552
11553 If fixp->fx_addsy is non-NULL, we'll have to generate a reloc entry
11554 (if possible). */
11555
11556 void
11557 md_apply_fix (fix, valP, seg)
11558 fixS *fix;
11559 valueT *valP;
11560 segT seg ATTRIBUTE_UNUSED;
11561 {
11562 char *fixpos;
11563 valueT value = *valP;
11564
11565 fixpos = fix->fx_frag->fr_literal + fix->fx_where;
11566
11567 if (fix->fx_pcrel)
11568 {
11569 switch (fix->fx_r_type)
11570 {
11571 case BFD_RELOC_IA64_PCREL21B: break;
11572 case BFD_RELOC_IA64_PCREL21BI: break;
11573 case BFD_RELOC_IA64_PCREL21F: break;
11574 case BFD_RELOC_IA64_PCREL21M: break;
11575 case BFD_RELOC_IA64_PCREL60B: break;
11576 case BFD_RELOC_IA64_PCREL22: break;
11577 case BFD_RELOC_IA64_PCREL64I: break;
11578 case BFD_RELOC_IA64_PCREL32MSB: break;
11579 case BFD_RELOC_IA64_PCREL32LSB: break;
11580 case BFD_RELOC_IA64_PCREL64MSB: break;
11581 case BFD_RELOC_IA64_PCREL64LSB: break;
11582 default:
11583 fix->fx_r_type = ia64_gen_real_reloc_type (pseudo_func[FUNC_PC_RELATIVE].u.sym,
11584 fix->fx_r_type);
11585 break;
11586 }
11587 }
11588 if (fix->fx_addsy)
11589 {
11590 switch (fix->fx_r_type)
11591 {
11592 case BFD_RELOC_UNUSED:
11593 /* This must be a TAG13 or TAG13b operand. There are no external
11594 relocs defined for them, so we must give an error. */
11595 as_bad_where (fix->fx_file, fix->fx_line,
11596 "%s must have a constant value",
11597 elf64_ia64_operands[fix->tc_fix_data.opnd].desc);
11598 fix->fx_done = 1;
11599 return;
11600
11601 case BFD_RELOC_IA64_TPREL14:
11602 case BFD_RELOC_IA64_TPREL22:
11603 case BFD_RELOC_IA64_TPREL64I:
11604 case BFD_RELOC_IA64_LTOFF_TPREL22:
11605 case BFD_RELOC_IA64_LTOFF_DTPMOD22:
11606 case BFD_RELOC_IA64_DTPREL14:
11607 case BFD_RELOC_IA64_DTPREL22:
11608 case BFD_RELOC_IA64_DTPREL64I:
11609 case BFD_RELOC_IA64_LTOFF_DTPREL22:
11610 S_SET_THREAD_LOCAL (fix->fx_addsy);
11611 break;
11612
11613 default:
11614 break;
11615 }
11616 }
11617 else if (fix->tc_fix_data.opnd == IA64_OPND_NIL)
11618 {
11619 if (fix->tc_fix_data.bigendian)
11620 number_to_chars_bigendian (fixpos, value, fix->fx_size);
11621 else
11622 number_to_chars_littleendian (fixpos, value, fix->fx_size);
11623 fix->fx_done = 1;
11624 }
11625 else
11626 {
11627 fix_insn (fix, elf64_ia64_operands + fix->tc_fix_data.opnd, value);
11628 fix->fx_done = 1;
11629 }
11630 }
11631
11632 /* Generate the BFD reloc to be stuck in the object file from the
11633 fixup used internally in the assembler. */
11634
11635 arelent *
11636 tc_gen_reloc (sec, fixp)
11637 asection *sec ATTRIBUTE_UNUSED;
11638 fixS *fixp;
11639 {
11640 arelent *reloc;
11641
11642 reloc = xmalloc (sizeof (*reloc));
11643 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
11644 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11645 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
11646 reloc->addend = fixp->fx_offset;
11647 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
11648
11649 if (!reloc->howto)
11650 {
11651 as_bad_where (fixp->fx_file, fixp->fx_line,
11652 "Cannot represent %s relocation in object file",
11653 bfd_get_reloc_code_name (fixp->fx_r_type));
11654 }
11655 return reloc;
11656 }
11657
11658 /* Turn a string in input_line_pointer into a floating point constant
11659 of type TYPE, and store the appropriate bytes in *LIT. The number
11660 of LITTLENUMS emitted is stored in *SIZE. An error message is
11661 returned, or NULL on OK. */
11662
11663 #define MAX_LITTLENUMS 5
11664
11665 char *
11666 md_atof (type, lit, size)
11667 int type;
11668 char *lit;
11669 int *size;
11670 {
11671 LITTLENUM_TYPE words[MAX_LITTLENUMS];
11672 char *t;
11673 int prec;
11674
11675 switch (type)
11676 {
11677 /* IEEE floats */
11678 case 'f':
11679 case 'F':
11680 case 's':
11681 case 'S':
11682 prec = 2;
11683 break;
11684
11685 case 'd':
11686 case 'D':
11687 case 'r':
11688 case 'R':
11689 prec = 4;
11690 break;
11691
11692 case 'x':
11693 case 'X':
11694 case 'p':
11695 case 'P':
11696 prec = 5;
11697 break;
11698
11699 default:
11700 *size = 0;
11701 return "Bad call to MD_ATOF()";
11702 }
11703 t = atof_ieee (input_line_pointer, type, words);
11704 if (t)
11705 input_line_pointer = t;
11706
11707 (*ia64_float_to_chars) (lit, words, prec);
11708
11709 if (type == 'X')
11710 {
11711 /* It is 10 byte floating point with 6 byte padding. */
11712 memset (&lit [10], 0, 6);
11713 *size = 8 * sizeof (LITTLENUM_TYPE);
11714 }
11715 else
11716 *size = prec * sizeof (LITTLENUM_TYPE);
11717
11718 return 0;
11719 }
11720
11721 /* Handle ia64 specific semantics of the align directive. */
11722
11723 void
11724 ia64_md_do_align (n, fill, len, max)
11725 int n ATTRIBUTE_UNUSED;
11726 const char *fill ATTRIBUTE_UNUSED;
11727 int len ATTRIBUTE_UNUSED;
11728 int max ATTRIBUTE_UNUSED;
11729 {
11730 if (subseg_text_p (now_seg))
11731 ia64_flush_insns ();
11732 }
11733
11734 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
11735 of an rs_align_code fragment. */
11736
11737 void
11738 ia64_handle_align (fragp)
11739 fragS *fragp;
11740 {
11741 int bytes;
11742 char *p;
11743 const unsigned char *nop;
11744
11745 if (fragp->fr_type != rs_align_code)
11746 return;
11747
11748 /* Check if this frag has to end with a stop bit. */
11749 nop = fragp->tc_frag_data ? le_nop_stop : le_nop;
11750
11751 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
11752 p = fragp->fr_literal + fragp->fr_fix;
11753
11754 /* If no paddings are needed, we check if we need a stop bit. */
11755 if (!bytes && fragp->tc_frag_data)
11756 {
11757 if (fragp->fr_fix < 16)
11758 #if 1
11759 /* FIXME: It won't work with
11760 .align 16
11761 alloc r32=ar.pfs,1,2,4,0
11762 */
11763 ;
11764 #else
11765 as_bad_where (fragp->fr_file, fragp->fr_line,
11766 _("Can't add stop bit to mark end of instruction group"));
11767 #endif
11768 else
11769 /* Bundles are always in little-endian byte order. Make sure
11770 the previous bundle has the stop bit. */
11771 *(p - 16) |= 1;
11772 }
11773
11774 /* Make sure we are on a 16-byte boundary, in case someone has been
11775 putting data into a text section. */
11776 if (bytes & 15)
11777 {
11778 int fix = bytes & 15;
11779 memset (p, 0, fix);
11780 p += fix;
11781 bytes -= fix;
11782 fragp->fr_fix += fix;
11783 }
11784
11785 /* Instruction bundles are always little-endian. */
11786 memcpy (p, nop, 16);
11787 fragp->fr_var = 16;
11788 }
11789
11790 static void
11791 ia64_float_to_chars_bigendian (char *lit, LITTLENUM_TYPE *words,
11792 int prec)
11793 {
11794 while (prec--)
11795 {
11796 number_to_chars_bigendian (lit, (long) (*words++),
11797 sizeof (LITTLENUM_TYPE));
11798 lit += sizeof (LITTLENUM_TYPE);
11799 }
11800 }
11801
11802 static void
11803 ia64_float_to_chars_littleendian (char *lit, LITTLENUM_TYPE *words,
11804 int prec)
11805 {
11806 while (prec--)
11807 {
11808 number_to_chars_littleendian (lit, (long) (words[prec]),
11809 sizeof (LITTLENUM_TYPE));
11810 lit += sizeof (LITTLENUM_TYPE);
11811 }
11812 }
11813
11814 void
11815 ia64_elf_section_change_hook (void)
11816 {
11817 if (elf_section_type (now_seg) == SHT_IA_64_UNWIND
11818 && elf_linked_to_section (now_seg) == NULL)
11819 elf_linked_to_section (now_seg) = text_section;
11820 dot_byteorder (-1);
11821 }
11822
11823 /* Check if a label should be made global. */
11824 void
11825 ia64_check_label (symbolS *label)
11826 {
11827 if (*input_line_pointer == ':')
11828 {
11829 S_SET_EXTERNAL (label);
11830 input_line_pointer++;
11831 }
11832 }
11833
11834 /* Used to remember where .alias and .secalias directives are seen. We
11835 will rename symbol and section names when we are about to output
11836 the relocatable file. */
11837 struct alias
11838 {
11839 char *file; /* The file where the directive is seen. */
11840 unsigned int line; /* The line number the directive is at. */
11841 const char *name; /* The orignale name of the symbol. */
11842 };
11843
11844 /* Called for .alias and .secalias directives. If SECTION is 1, it is
11845 .secalias. Otherwise, it is .alias. */
11846 static void
11847 dot_alias (int section)
11848 {
11849 char *name, *alias;
11850 char delim;
11851 char *end_name;
11852 int len;
11853 const char *error_string;
11854 struct alias *h;
11855 const char *a;
11856 struct hash_control *ahash, *nhash;
11857 const char *kind;
11858
11859 name = input_line_pointer;
11860 delim = get_symbol_end ();
11861 end_name = input_line_pointer;
11862 *end_name = delim;
11863
11864 if (name == end_name)
11865 {
11866 as_bad (_("expected symbol name"));
11867 ignore_rest_of_line ();
11868 return;
11869 }
11870
11871 SKIP_WHITESPACE ();
11872
11873 if (*input_line_pointer != ',')
11874 {
11875 *end_name = 0;
11876 as_bad (_("expected comma after \"%s\""), name);
11877 *end_name = delim;
11878 ignore_rest_of_line ();
11879 return;
11880 }
11881
11882 input_line_pointer++;
11883 *end_name = 0;
11884 ia64_canonicalize_symbol_name (name);
11885
11886 /* We call demand_copy_C_string to check if alias string is valid.
11887 There should be a closing `"' and no `\0' in the string. */
11888 alias = demand_copy_C_string (&len);
11889 if (alias == NULL)
11890 {
11891 ignore_rest_of_line ();
11892 return;
11893 }
11894
11895 /* Make a copy of name string. */
11896 len = strlen (name) + 1;
11897 obstack_grow (&notes, name, len);
11898 name = obstack_finish (&notes);
11899
11900 if (section)
11901 {
11902 kind = "section";
11903 ahash = secalias_hash;
11904 nhash = secalias_name_hash;
11905 }
11906 else
11907 {
11908 kind = "symbol";
11909 ahash = alias_hash;
11910 nhash = alias_name_hash;
11911 }
11912
11913 /* Check if alias has been used before. */
11914 h = (struct alias *) hash_find (ahash, alias);
11915 if (h)
11916 {
11917 if (strcmp (h->name, name))
11918 as_bad (_("`%s' is already the alias of %s `%s'"),
11919 alias, kind, h->name);
11920 goto out;
11921 }
11922
11923 /* Check if name already has an alias. */
11924 a = (const char *) hash_find (nhash, name);
11925 if (a)
11926 {
11927 if (strcmp (a, alias))
11928 as_bad (_("%s `%s' already has an alias `%s'"), kind, name, a);
11929 goto out;
11930 }
11931
11932 h = (struct alias *) xmalloc (sizeof (struct alias));
11933 as_where (&h->file, &h->line);
11934 h->name = name;
11935
11936 error_string = hash_jam (ahash, alias, (PTR) h);
11937 if (error_string)
11938 {
11939 as_fatal (_("inserting \"%s\" into %s alias hash table failed: %s"),
11940 alias, kind, error_string);
11941 goto out;
11942 }
11943
11944 error_string = hash_jam (nhash, name, (PTR) alias);
11945 if (error_string)
11946 {
11947 as_fatal (_("inserting \"%s\" into %s name hash table failed: %s"),
11948 alias, kind, error_string);
11949 out:
11950 obstack_free (&notes, name);
11951 obstack_free (&notes, alias);
11952 }
11953
11954 demand_empty_rest_of_line ();
11955 }
11956
11957 /* It renames the original symbol name to its alias. */
11958 static void
11959 do_alias (const char *alias, PTR value)
11960 {
11961 struct alias *h = (struct alias *) value;
11962 symbolS *sym = symbol_find (h->name);
11963
11964 if (sym == NULL)
11965 as_warn_where (h->file, h->line,
11966 _("symbol `%s' aliased to `%s' is not used"),
11967 h->name, alias);
11968 else
11969 S_SET_NAME (sym, (char *) alias);
11970 }
11971
11972 /* Called from write_object_file. */
11973 void
11974 ia64_adjust_symtab (void)
11975 {
11976 hash_traverse (alias_hash, do_alias);
11977 }
11978
11979 /* It renames the original section name to its alias. */
11980 static void
11981 do_secalias (const char *alias, PTR value)
11982 {
11983 struct alias *h = (struct alias *) value;
11984 segT sec = bfd_get_section_by_name (stdoutput, h->name);
11985
11986 if (sec == NULL)
11987 as_warn_where (h->file, h->line,
11988 _("section `%s' aliased to `%s' is not used"),
11989 h->name, alias);
11990 else
11991 sec->name = alias;
11992 }
11993
11994 /* Called from write_object_file. */
11995 void
11996 ia64_frob_file (void)
11997 {
11998 hash_traverse (secalias_hash, do_secalias);
11999 }
This page took 0.355175 seconds and 5 git commands to generate.