Fix PR 1889, infinite loop compiling code with bad user template.
[deliverable/binutils-gdb.git] / gas / config / tc-ia64.c
1 /* tc-ia64.c -- Assembler for the HP/Intel IA-64 architecture.
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street - Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 /*
24 TODO:
25
26 - optional operands
27 - directives:
28 .eb
29 .estate
30 .lb
31 .popsection
32 .previous
33 .psr
34 .pushsection
35 - labels are wrong if automatic alignment is introduced
36 (e.g., checkout the second real10 definition in test-data.s)
37 - DV-related stuff:
38 <reg>.safe_across_calls and any other DV-related directives I don't
39 have documentation for.
40 verify mod-sched-brs reads/writes are checked/marked (and other
41 notes)
42
43 */
44
45 #include "as.h"
46 #include "safe-ctype.h"
47 #include "dwarf2dbg.h"
48 #include "subsegs.h"
49
50 #include "opcode/ia64.h"
51
52 #include "elf/ia64.h"
53
54 #ifdef HAVE_LIMITS_H
55 #include <limits.h>
56 #endif
57
58 #define NELEMS(a) ((int) (sizeof (a)/sizeof ((a)[0])))
59
60 /* Some systems define MIN in, e.g., param.h. */
61 #undef MIN
62 #define MIN(a,b) ((a) < (b) ? (a) : (b))
63
64 #define NUM_SLOTS 4
65 #define PREV_SLOT md.slot[(md.curr_slot + NUM_SLOTS - 1) % NUM_SLOTS]
66 #define CURR_SLOT md.slot[md.curr_slot]
67
68 #define O_pseudo_fixup (O_max + 1)
69
70 enum special_section
71 {
72 /* IA-64 ABI section pseudo-ops. */
73 SPECIAL_SECTION_BSS = 0,
74 SPECIAL_SECTION_SBSS,
75 SPECIAL_SECTION_SDATA,
76 SPECIAL_SECTION_RODATA,
77 SPECIAL_SECTION_COMMENT,
78 SPECIAL_SECTION_UNWIND,
79 SPECIAL_SECTION_UNWIND_INFO,
80 /* HPUX specific section pseudo-ops. */
81 SPECIAL_SECTION_INIT_ARRAY,
82 SPECIAL_SECTION_FINI_ARRAY,
83 };
84
85 enum reloc_func
86 {
87 FUNC_DTP_MODULE,
88 FUNC_DTP_RELATIVE,
89 FUNC_FPTR_RELATIVE,
90 FUNC_GP_RELATIVE,
91 FUNC_LT_RELATIVE,
92 FUNC_LT_RELATIVE_X,
93 FUNC_PC_RELATIVE,
94 FUNC_PLT_RELATIVE,
95 FUNC_SEC_RELATIVE,
96 FUNC_SEG_RELATIVE,
97 FUNC_TP_RELATIVE,
98 FUNC_LTV_RELATIVE,
99 FUNC_LT_FPTR_RELATIVE,
100 FUNC_LT_DTP_MODULE,
101 FUNC_LT_DTP_RELATIVE,
102 FUNC_LT_TP_RELATIVE,
103 FUNC_IPLT_RELOC,
104 };
105
106 enum reg_symbol
107 {
108 REG_GR = 0,
109 REG_FR = (REG_GR + 128),
110 REG_AR = (REG_FR + 128),
111 REG_CR = (REG_AR + 128),
112 REG_P = (REG_CR + 128),
113 REG_BR = (REG_P + 64),
114 REG_IP = (REG_BR + 8),
115 REG_CFM,
116 REG_PR,
117 REG_PR_ROT,
118 REG_PSR,
119 REG_PSR_L,
120 REG_PSR_UM,
121 /* The following are pseudo-registers for use by gas only. */
122 IND_CPUID,
123 IND_DBR,
124 IND_DTR,
125 IND_ITR,
126 IND_IBR,
127 IND_MSR,
128 IND_PKR,
129 IND_PMC,
130 IND_PMD,
131 IND_RR,
132 /* The following pseudo-registers are used for unwind directives only: */
133 REG_PSP,
134 REG_PRIUNAT,
135 REG_NUM
136 };
137
138 enum dynreg_type
139 {
140 DYNREG_GR = 0, /* dynamic general purpose register */
141 DYNREG_FR, /* dynamic floating point register */
142 DYNREG_PR, /* dynamic predicate register */
143 DYNREG_NUM_TYPES
144 };
145
146 enum operand_match_result
147 {
148 OPERAND_MATCH,
149 OPERAND_OUT_OF_RANGE,
150 OPERAND_MISMATCH
151 };
152
153 /* On the ia64, we can't know the address of a text label until the
154 instructions are packed into a bundle. To handle this, we keep
155 track of the list of labels that appear in front of each
156 instruction. */
157 struct label_fix
158 {
159 struct label_fix *next;
160 struct symbol *sym;
161 bfd_boolean dw2_mark_labels;
162 };
163
164 /* This is the endianness of the current section. */
165 extern int target_big_endian;
166
167 /* This is the default endianness. */
168 static int default_big_endian = TARGET_BYTES_BIG_ENDIAN;
169
170 void (*ia64_number_to_chars) PARAMS ((char *, valueT, int));
171
172 static void ia64_float_to_chars_bigendian
173 PARAMS ((char *, LITTLENUM_TYPE *, int));
174 static void ia64_float_to_chars_littleendian
175 PARAMS ((char *, LITTLENUM_TYPE *, int));
176 static void (*ia64_float_to_chars)
177 PARAMS ((char *, LITTLENUM_TYPE *, int));
178
179 static struct hash_control *alias_hash;
180 static struct hash_control *alias_name_hash;
181 static struct hash_control *secalias_hash;
182 static struct hash_control *secalias_name_hash;
183
184 /* List of chars besides those in app.c:symbol_chars that can start an
185 operand. Used to prevent the scrubber eating vital white-space. */
186 const char ia64_symbol_chars[] = "@?";
187
188 /* Characters which always start a comment. */
189 const char comment_chars[] = "";
190
191 /* Characters which start a comment at the beginning of a line. */
192 const char line_comment_chars[] = "#";
193
194 /* Characters which may be used to separate multiple commands on a
195 single line. */
196 const char line_separator_chars[] = ";{}";
197
198 /* Characters which are used to indicate an exponent in a floating
199 point number. */
200 const char EXP_CHARS[] = "eE";
201
202 /* Characters which mean that a number is a floating point constant,
203 as in 0d1.0. */
204 const char FLT_CHARS[] = "rRsSfFdDxXpP";
205
206 /* ia64-specific option processing: */
207
208 const char *md_shortopts = "m:N:x::";
209
210 struct option md_longopts[] =
211 {
212 #define OPTION_MCONSTANT_GP (OPTION_MD_BASE + 1)
213 {"mconstant-gp", no_argument, NULL, OPTION_MCONSTANT_GP},
214 #define OPTION_MAUTO_PIC (OPTION_MD_BASE + 2)
215 {"mauto-pic", no_argument, NULL, OPTION_MAUTO_PIC}
216 };
217
218 size_t md_longopts_size = sizeof (md_longopts);
219
220 static struct
221 {
222 struct hash_control *pseudo_hash; /* pseudo opcode hash table */
223 struct hash_control *reg_hash; /* register name hash table */
224 struct hash_control *dynreg_hash; /* dynamic register hash table */
225 struct hash_control *const_hash; /* constant hash table */
226 struct hash_control *entry_hash; /* code entry hint hash table */
227
228 /* If X_op is != O_absent, the registername for the instruction's
229 qualifying predicate. If NULL, p0 is assumed for instructions
230 that are predicatable. */
231 expressionS qp;
232
233 /* Optimize for which CPU. */
234 enum
235 {
236 itanium1,
237 itanium2
238 } tune;
239
240 /* What to do when hint.b is used. */
241 enum
242 {
243 hint_b_error,
244 hint_b_warning,
245 hint_b_ok
246 } hint_b;
247
248 unsigned int
249 manual_bundling : 1,
250 debug_dv: 1,
251 detect_dv: 1,
252 explicit_mode : 1, /* which mode we're in */
253 default_explicit_mode : 1, /* which mode is the default */
254 mode_explicitly_set : 1, /* was the current mode explicitly set? */
255 auto_align : 1,
256 keep_pending_output : 1;
257
258 /* What to do when something is wrong with unwind directives. */
259 enum
260 {
261 unwind_check_warning,
262 unwind_check_error
263 } unwind_check;
264
265 /* Each bundle consists of up to three instructions. We keep
266 track of four most recent instructions so we can correctly set
267 the end_of_insn_group for the last instruction in a bundle. */
268 int curr_slot;
269 int num_slots_in_use;
270 struct slot
271 {
272 unsigned int
273 end_of_insn_group : 1,
274 manual_bundling_on : 1,
275 manual_bundling_off : 1,
276 loc_directive_seen : 1;
277 signed char user_template; /* user-selected template, if any */
278 unsigned char qp_regno; /* qualifying predicate */
279 /* This duplicates a good fraction of "struct fix" but we
280 can't use a "struct fix" instead since we can't call
281 fix_new_exp() until we know the address of the instruction. */
282 int num_fixups;
283 struct insn_fix
284 {
285 bfd_reloc_code_real_type code;
286 enum ia64_opnd opnd; /* type of operand in need of fix */
287 unsigned int is_pcrel : 1; /* is operand pc-relative? */
288 expressionS expr; /* the value to be inserted */
289 }
290 fixup[2]; /* at most two fixups per insn */
291 struct ia64_opcode *idesc;
292 struct label_fix *label_fixups;
293 struct label_fix *tag_fixups;
294 struct unw_rec_list *unwind_record; /* Unwind directive. */
295 expressionS opnd[6];
296 char *src_file;
297 unsigned int src_line;
298 struct dwarf2_line_info debug_line;
299 }
300 slot[NUM_SLOTS];
301
302 segT last_text_seg;
303
304 struct dynreg
305 {
306 struct dynreg *next; /* next dynamic register */
307 const char *name;
308 unsigned short base; /* the base register number */
309 unsigned short num_regs; /* # of registers in this set */
310 }
311 *dynreg[DYNREG_NUM_TYPES], in, loc, out, rot;
312
313 flagword flags; /* ELF-header flags */
314
315 struct mem_offset {
316 unsigned hint:1; /* is this hint currently valid? */
317 bfd_vma offset; /* mem.offset offset */
318 bfd_vma base; /* mem.offset base */
319 } mem_offset;
320
321 int path; /* number of alt. entry points seen */
322 const char **entry_labels; /* labels of all alternate paths in
323 the current DV-checking block. */
324 int maxpaths; /* size currently allocated for
325 entry_labels */
326
327 int pointer_size; /* size in bytes of a pointer */
328 int pointer_size_shift; /* shift size of a pointer for alignment */
329
330 symbolS *indregsym[IND_RR - IND_CPUID + 1];
331 }
332 md;
333
334 /* These are not const, because they are modified to MMI for non-itanium1
335 targets below. */
336 /* MFI bundle of nops. */
337 static unsigned char le_nop[16] =
338 {
339 0x0c, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
340 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
341 };
342 /* MFI bundle of nops with stop-bit. */
343 static unsigned char le_nop_stop[16] =
344 {
345 0x0d, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
346 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
347 };
348
349 /* application registers: */
350
351 #define AR_K0 0
352 #define AR_K7 7
353 #define AR_RSC 16
354 #define AR_BSP 17
355 #define AR_BSPSTORE 18
356 #define AR_RNAT 19
357 #define AR_FCR 21
358 #define AR_EFLAG 24
359 #define AR_CSD 25
360 #define AR_SSD 26
361 #define AR_CFLG 27
362 #define AR_FSR 28
363 #define AR_FIR 29
364 #define AR_FDR 30
365 #define AR_CCV 32
366 #define AR_UNAT 36
367 #define AR_FPSR 40
368 #define AR_ITC 44
369 #define AR_PFS 64
370 #define AR_LC 65
371 #define AR_EC 66
372
373 static const struct
374 {
375 const char *name;
376 unsigned int regnum;
377 }
378 ar[] =
379 {
380 {"ar.k0", AR_K0}, {"ar.k1", AR_K0 + 1},
381 {"ar.k2", AR_K0 + 2}, {"ar.k3", AR_K0 + 3},
382 {"ar.k4", AR_K0 + 4}, {"ar.k5", AR_K0 + 5},
383 {"ar.k6", AR_K0 + 6}, {"ar.k7", AR_K7},
384 {"ar.rsc", AR_RSC}, {"ar.bsp", AR_BSP},
385 {"ar.bspstore", AR_BSPSTORE}, {"ar.rnat", AR_RNAT},
386 {"ar.fcr", AR_FCR}, {"ar.eflag", AR_EFLAG},
387 {"ar.csd", AR_CSD}, {"ar.ssd", AR_SSD},
388 {"ar.cflg", AR_CFLG}, {"ar.fsr", AR_FSR},
389 {"ar.fir", AR_FIR}, {"ar.fdr", AR_FDR},
390 {"ar.ccv", AR_CCV}, {"ar.unat", AR_UNAT},
391 {"ar.fpsr", AR_FPSR}, {"ar.itc", AR_ITC},
392 {"ar.pfs", AR_PFS}, {"ar.lc", AR_LC},
393 {"ar.ec", AR_EC},
394 };
395
396 /* control registers: */
397
398 #define CR_DCR 0
399 #define CR_ITM 1
400 #define CR_IVA 2
401 #define CR_PTA 8
402 #define CR_GPTA 9
403 #define CR_IPSR 16
404 #define CR_ISR 17
405 #define CR_IIP 19
406 #define CR_IFA 20
407 #define CR_ITIR 21
408 #define CR_IIPA 22
409 #define CR_IFS 23
410 #define CR_IIM 24
411 #define CR_IHA 25
412 #define CR_LID 64
413 #define CR_IVR 65
414 #define CR_TPR 66
415 #define CR_EOI 67
416 #define CR_IRR0 68
417 #define CR_IRR3 71
418 #define CR_ITV 72
419 #define CR_PMV 73
420 #define CR_CMCV 74
421 #define CR_LRR0 80
422 #define CR_LRR1 81
423
424 static const struct
425 {
426 const char *name;
427 unsigned int regnum;
428 }
429 cr[] =
430 {
431 {"cr.dcr", CR_DCR},
432 {"cr.itm", CR_ITM},
433 {"cr.iva", CR_IVA},
434 {"cr.pta", CR_PTA},
435 {"cr.gpta", CR_GPTA},
436 {"cr.ipsr", CR_IPSR},
437 {"cr.isr", CR_ISR},
438 {"cr.iip", CR_IIP},
439 {"cr.ifa", CR_IFA},
440 {"cr.itir", CR_ITIR},
441 {"cr.iipa", CR_IIPA},
442 {"cr.ifs", CR_IFS},
443 {"cr.iim", CR_IIM},
444 {"cr.iha", CR_IHA},
445 {"cr.lid", CR_LID},
446 {"cr.ivr", CR_IVR},
447 {"cr.tpr", CR_TPR},
448 {"cr.eoi", CR_EOI},
449 {"cr.irr0", CR_IRR0},
450 {"cr.irr1", CR_IRR0 + 1},
451 {"cr.irr2", CR_IRR0 + 2},
452 {"cr.irr3", CR_IRR3},
453 {"cr.itv", CR_ITV},
454 {"cr.pmv", CR_PMV},
455 {"cr.cmcv", CR_CMCV},
456 {"cr.lrr0", CR_LRR0},
457 {"cr.lrr1", CR_LRR1}
458 };
459
460 #define PSR_MFL 4
461 #define PSR_IC 13
462 #define PSR_DFL 18
463 #define PSR_CPL 32
464
465 static const struct const_desc
466 {
467 const char *name;
468 valueT value;
469 }
470 const_bits[] =
471 {
472 /* PSR constant masks: */
473
474 /* 0: reserved */
475 {"psr.be", ((valueT) 1) << 1},
476 {"psr.up", ((valueT) 1) << 2},
477 {"psr.ac", ((valueT) 1) << 3},
478 {"psr.mfl", ((valueT) 1) << 4},
479 {"psr.mfh", ((valueT) 1) << 5},
480 /* 6-12: reserved */
481 {"psr.ic", ((valueT) 1) << 13},
482 {"psr.i", ((valueT) 1) << 14},
483 {"psr.pk", ((valueT) 1) << 15},
484 /* 16: reserved */
485 {"psr.dt", ((valueT) 1) << 17},
486 {"psr.dfl", ((valueT) 1) << 18},
487 {"psr.dfh", ((valueT) 1) << 19},
488 {"psr.sp", ((valueT) 1) << 20},
489 {"psr.pp", ((valueT) 1) << 21},
490 {"psr.di", ((valueT) 1) << 22},
491 {"psr.si", ((valueT) 1) << 23},
492 {"psr.db", ((valueT) 1) << 24},
493 {"psr.lp", ((valueT) 1) << 25},
494 {"psr.tb", ((valueT) 1) << 26},
495 {"psr.rt", ((valueT) 1) << 27},
496 /* 28-31: reserved */
497 /* 32-33: cpl (current privilege level) */
498 {"psr.is", ((valueT) 1) << 34},
499 {"psr.mc", ((valueT) 1) << 35},
500 {"psr.it", ((valueT) 1) << 36},
501 {"psr.id", ((valueT) 1) << 37},
502 {"psr.da", ((valueT) 1) << 38},
503 {"psr.dd", ((valueT) 1) << 39},
504 {"psr.ss", ((valueT) 1) << 40},
505 /* 41-42: ri (restart instruction) */
506 {"psr.ed", ((valueT) 1) << 43},
507 {"psr.bn", ((valueT) 1) << 44},
508 };
509
510 /* indirect register-sets/memory: */
511
512 static const struct
513 {
514 const char *name;
515 unsigned int regnum;
516 }
517 indirect_reg[] =
518 {
519 { "CPUID", IND_CPUID },
520 { "cpuid", IND_CPUID },
521 { "dbr", IND_DBR },
522 { "dtr", IND_DTR },
523 { "itr", IND_ITR },
524 { "ibr", IND_IBR },
525 { "msr", IND_MSR },
526 { "pkr", IND_PKR },
527 { "pmc", IND_PMC },
528 { "pmd", IND_PMD },
529 { "rr", IND_RR },
530 };
531
532 /* Pseudo functions used to indicate relocation types (these functions
533 start with an at sign (@). */
534 static struct
535 {
536 const char *name;
537 enum pseudo_type
538 {
539 PSEUDO_FUNC_NONE,
540 PSEUDO_FUNC_RELOC,
541 PSEUDO_FUNC_CONST,
542 PSEUDO_FUNC_REG,
543 PSEUDO_FUNC_FLOAT
544 }
545 type;
546 union
547 {
548 unsigned long ival;
549 symbolS *sym;
550 }
551 u;
552 }
553 pseudo_func[] =
554 {
555 /* reloc pseudo functions (these must come first!): */
556 { "dtpmod", PSEUDO_FUNC_RELOC, { 0 } },
557 { "dtprel", PSEUDO_FUNC_RELOC, { 0 } },
558 { "fptr", PSEUDO_FUNC_RELOC, { 0 } },
559 { "gprel", PSEUDO_FUNC_RELOC, { 0 } },
560 { "ltoff", PSEUDO_FUNC_RELOC, { 0 } },
561 { "ltoffx", PSEUDO_FUNC_RELOC, { 0 } },
562 { "pcrel", PSEUDO_FUNC_RELOC, { 0 } },
563 { "pltoff", PSEUDO_FUNC_RELOC, { 0 } },
564 { "secrel", PSEUDO_FUNC_RELOC, { 0 } },
565 { "segrel", PSEUDO_FUNC_RELOC, { 0 } },
566 { "tprel", PSEUDO_FUNC_RELOC, { 0 } },
567 { "ltv", PSEUDO_FUNC_RELOC, { 0 } },
568 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_FPTR_RELATIVE */
569 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_MODULE */
570 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_RELATIVE */
571 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_TP_RELATIVE */
572 { "iplt", PSEUDO_FUNC_RELOC, { 0 } },
573
574 /* mbtype4 constants: */
575 { "alt", PSEUDO_FUNC_CONST, { 0xa } },
576 { "brcst", PSEUDO_FUNC_CONST, { 0x0 } },
577 { "mix", PSEUDO_FUNC_CONST, { 0x8 } },
578 { "rev", PSEUDO_FUNC_CONST, { 0xb } },
579 { "shuf", PSEUDO_FUNC_CONST, { 0x9 } },
580
581 /* fclass constants: */
582 { "nat", PSEUDO_FUNC_CONST, { 0x100 } },
583 { "qnan", PSEUDO_FUNC_CONST, { 0x080 } },
584 { "snan", PSEUDO_FUNC_CONST, { 0x040 } },
585 { "pos", PSEUDO_FUNC_CONST, { 0x001 } },
586 { "neg", PSEUDO_FUNC_CONST, { 0x002 } },
587 { "zero", PSEUDO_FUNC_CONST, { 0x004 } },
588 { "unorm", PSEUDO_FUNC_CONST, { 0x008 } },
589 { "norm", PSEUDO_FUNC_CONST, { 0x010 } },
590 { "inf", PSEUDO_FUNC_CONST, { 0x020 } },
591
592 { "natval", PSEUDO_FUNC_CONST, { 0x100 } }, /* old usage */
593
594 /* hint constants: */
595 { "pause", PSEUDO_FUNC_CONST, { 0x0 } },
596
597 /* unwind-related constants: */
598 { "svr4", PSEUDO_FUNC_CONST, { ELFOSABI_NONE } },
599 { "hpux", PSEUDO_FUNC_CONST, { ELFOSABI_HPUX } },
600 { "nt", PSEUDO_FUNC_CONST, { 2 } }, /* conflicts w/ELFOSABI_NETBSD */
601 { "linux", PSEUDO_FUNC_CONST, { ELFOSABI_LINUX } },
602 { "freebsd", PSEUDO_FUNC_CONST, { ELFOSABI_FREEBSD } },
603 { "openvms", PSEUDO_FUNC_CONST, { ELFOSABI_OPENVMS } },
604 { "nsk", PSEUDO_FUNC_CONST, { ELFOSABI_NSK } },
605
606 /* unwind-related registers: */
607 { "priunat",PSEUDO_FUNC_REG, { REG_PRIUNAT } }
608 };
609
610 /* 41-bit nop opcodes (one per unit): */
611 static const bfd_vma nop[IA64_NUM_UNITS] =
612 {
613 0x0000000000LL, /* NIL => break 0 */
614 0x0008000000LL, /* I-unit nop */
615 0x0008000000LL, /* M-unit nop */
616 0x4000000000LL, /* B-unit nop */
617 0x0008000000LL, /* F-unit nop */
618 0x0000000000LL, /* L-"unit" nop immediate */
619 0x0008000000LL, /* X-unit nop */
620 };
621
622 /* Can't be `const' as it's passed to input routines (which have the
623 habit of setting temporary sentinels. */
624 static char special_section_name[][20] =
625 {
626 {".bss"}, {".sbss"}, {".sdata"}, {".rodata"}, {".comment"},
627 {".IA_64.unwind"}, {".IA_64.unwind_info"},
628 {".init_array"}, {".fini_array"}
629 };
630
631 /* The best template for a particular sequence of up to three
632 instructions: */
633 #define N IA64_NUM_TYPES
634 static unsigned char best_template[N][N][N];
635 #undef N
636
637 /* Resource dependencies currently in effect */
638 static struct rsrc {
639 int depind; /* dependency index */
640 const struct ia64_dependency *dependency; /* actual dependency */
641 unsigned specific:1, /* is this a specific bit/regno? */
642 link_to_qp_branch:1; /* will a branch on the same QP clear it?*/
643 int index; /* specific regno/bit within dependency */
644 int note; /* optional qualifying note (0 if none) */
645 #define STATE_NONE 0
646 #define STATE_STOP 1
647 #define STATE_SRLZ 2
648 int insn_srlz; /* current insn serialization state */
649 int data_srlz; /* current data serialization state */
650 int qp_regno; /* qualifying predicate for this usage */
651 char *file; /* what file marked this dependency */
652 unsigned int line; /* what line marked this dependency */
653 struct mem_offset mem_offset; /* optional memory offset hint */
654 enum { CMP_NONE, CMP_OR, CMP_AND } cmp_type; /* OR or AND compare? */
655 int path; /* corresponding code entry index */
656 } *regdeps = NULL;
657 static int regdepslen = 0;
658 static int regdepstotlen = 0;
659 static const char *dv_mode[] = { "RAW", "WAW", "WAR" };
660 static const char *dv_sem[] = { "none", "implied", "impliedf",
661 "data", "instr", "specific", "stop", "other" };
662 static const char *dv_cmp_type[] = { "none", "OR", "AND" };
663
664 /* Current state of PR mutexation */
665 static struct qpmutex {
666 valueT prmask;
667 int path;
668 } *qp_mutexes = NULL; /* QP mutex bitmasks */
669 static int qp_mutexeslen = 0;
670 static int qp_mutexestotlen = 0;
671 static valueT qp_safe_across_calls = 0;
672
673 /* Current state of PR implications */
674 static struct qp_imply {
675 unsigned p1:6;
676 unsigned p2:6;
677 unsigned p2_branched:1;
678 int path;
679 } *qp_implies = NULL;
680 static int qp_implieslen = 0;
681 static int qp_impliestotlen = 0;
682
683 /* Keep track of static GR values so that indirect register usage can
684 sometimes be tracked. */
685 static struct gr {
686 unsigned known:1;
687 int path;
688 valueT value;
689 } gr_values[128] = {
690 {
691 1,
692 #ifdef INT_MAX
693 INT_MAX,
694 #else
695 (((1 << (8 * sizeof(gr_values->path) - 2)) - 1) << 1) + 1,
696 #endif
697 0
698 }
699 };
700
701 /* Remember the alignment frag. */
702 static fragS *align_frag;
703
704 /* These are the routines required to output the various types of
705 unwind records. */
706
707 /* A slot_number is a frag address plus the slot index (0-2). We use the
708 frag address here so that if there is a section switch in the middle of
709 a function, then instructions emitted to a different section are not
710 counted. Since there may be more than one frag for a function, this
711 means we also need to keep track of which frag this address belongs to
712 so we can compute inter-frag distances. This also nicely solves the
713 problem with nops emitted for align directives, which can't easily be
714 counted, but can easily be derived from frag sizes. */
715
716 typedef struct unw_rec_list {
717 unwind_record r;
718 unsigned long slot_number;
719 fragS *slot_frag;
720 struct unw_rec_list *next;
721 } unw_rec_list;
722
723 #define SLOT_NUM_NOT_SET (unsigned)-1
724
725 /* Linked list of saved prologue counts. A very poor
726 implementation of a map from label numbers to prologue counts. */
727 typedef struct label_prologue_count
728 {
729 struct label_prologue_count *next;
730 unsigned long label_number;
731 unsigned int prologue_count;
732 } label_prologue_count;
733
734 typedef struct proc_pending
735 {
736 symbolS *sym;
737 struct proc_pending *next;
738 } proc_pending;
739
740 static struct
741 {
742 /* Maintain a list of unwind entries for the current function. */
743 unw_rec_list *list;
744 unw_rec_list *tail;
745
746 /* Any unwind entires that should be attached to the current slot
747 that an insn is being constructed for. */
748 unw_rec_list *current_entry;
749
750 /* These are used to create the unwind table entry for this function. */
751 proc_pending proc_pending;
752 symbolS *info; /* pointer to unwind info */
753 symbolS *personality_routine;
754 segT saved_text_seg;
755 subsegT saved_text_subseg;
756 unsigned int force_unwind_entry : 1; /* force generation of unwind entry? */
757
758 /* TRUE if processing unwind directives in a prologue region. */
759 unsigned int prologue : 1;
760 unsigned int prologue_mask : 4;
761 unsigned int prologue_gr : 7;
762 unsigned int body : 1;
763 unsigned int insn : 1;
764 unsigned int prologue_count; /* number of .prologues seen so far */
765 /* Prologue counts at previous .label_state directives. */
766 struct label_prologue_count * saved_prologue_counts;
767
768 /* List of split up .save-s. */
769 unw_p_record *pending_saves;
770 } unwind;
771
772 /* The input value is a negated offset from psp, and specifies an address
773 psp - offset. The encoded value is psp + 16 - (4 * offset). Thus we
774 must add 16 and divide by 4 to get the encoded value. */
775
776 #define ENCODED_PSP_OFFSET(OFFSET) (((OFFSET) + 16) / 4)
777
778 typedef void (*vbyte_func) PARAMS ((int, char *, char *));
779
780 /* Forward declarations: */
781 static void set_section PARAMS ((char *name));
782 static unsigned int set_regstack PARAMS ((unsigned int, unsigned int,
783 unsigned int, unsigned int));
784 static void dot_align (int);
785 static void dot_radix PARAMS ((int));
786 static void dot_special_section PARAMS ((int));
787 static void dot_proc PARAMS ((int));
788 static void dot_fframe PARAMS ((int));
789 static void dot_vframe PARAMS ((int));
790 static void dot_vframesp PARAMS ((int));
791 static void dot_save PARAMS ((int));
792 static void dot_restore PARAMS ((int));
793 static void dot_restorereg PARAMS ((int));
794 static void dot_handlerdata PARAMS ((int));
795 static void dot_unwentry PARAMS ((int));
796 static void dot_altrp PARAMS ((int));
797 static void dot_savemem PARAMS ((int));
798 static void dot_saveg PARAMS ((int));
799 static void dot_savef PARAMS ((int));
800 static void dot_saveb PARAMS ((int));
801 static void dot_savegf PARAMS ((int));
802 static void dot_spill PARAMS ((int));
803 static void dot_spillreg PARAMS ((int));
804 static void dot_spillmem PARAMS ((int));
805 static void dot_label_state PARAMS ((int));
806 static void dot_copy_state PARAMS ((int));
807 static void dot_unwabi PARAMS ((int));
808 static void dot_personality PARAMS ((int));
809 static void dot_body PARAMS ((int));
810 static void dot_prologue PARAMS ((int));
811 static void dot_endp PARAMS ((int));
812 static void dot_template PARAMS ((int));
813 static void dot_regstk PARAMS ((int));
814 static void dot_rot PARAMS ((int));
815 static void dot_byteorder PARAMS ((int));
816 static void dot_psr PARAMS ((int));
817 static void dot_alias PARAMS ((int));
818 static void dot_ln PARAMS ((int));
819 static void cross_section PARAMS ((int ref, void (*cons) PARAMS((int)), int ua));
820 static void dot_xdata PARAMS ((int));
821 static void stmt_float_cons PARAMS ((int));
822 static void stmt_cons_ua PARAMS ((int));
823 static void dot_xfloat_cons PARAMS ((int));
824 static void dot_xstringer PARAMS ((int));
825 static void dot_xdata_ua PARAMS ((int));
826 static void dot_xfloat_cons_ua PARAMS ((int));
827 static void print_prmask PARAMS ((valueT mask));
828 static void dot_pred_rel PARAMS ((int));
829 static void dot_reg_val PARAMS ((int));
830 static void dot_serialize PARAMS ((int));
831 static void dot_dv_mode PARAMS ((int));
832 static void dot_entry PARAMS ((int));
833 static void dot_mem_offset PARAMS ((int));
834 static void add_unwind_entry PARAMS((unw_rec_list *, int));
835 static symbolS *declare_register PARAMS ((const char *name, unsigned int regnum));
836 static void declare_register_set PARAMS ((const char *, unsigned int, unsigned int));
837 static unsigned int operand_width PARAMS ((enum ia64_opnd));
838 static enum operand_match_result operand_match PARAMS ((const struct ia64_opcode *idesc,
839 int index,
840 expressionS *e));
841 static int parse_operand PARAMS ((expressionS *, int));
842 static struct ia64_opcode * parse_operands PARAMS ((struct ia64_opcode *));
843 static void build_insn PARAMS ((struct slot *, bfd_vma *));
844 static void emit_one_bundle PARAMS ((void));
845 static void fix_insn PARAMS ((fixS *, const struct ia64_operand *, valueT));
846 static bfd_reloc_code_real_type ia64_gen_real_reloc_type PARAMS ((struct symbol *sym,
847 bfd_reloc_code_real_type r_type));
848 static void insn_group_break PARAMS ((int, int, int));
849 static void mark_resource PARAMS ((struct ia64_opcode *, const struct ia64_dependency *,
850 struct rsrc *, int depind, int path));
851 static void add_qp_mutex PARAMS((valueT mask));
852 static void add_qp_imply PARAMS((int p1, int p2));
853 static void clear_qp_branch_flag PARAMS((valueT mask));
854 static void clear_qp_mutex PARAMS((valueT mask));
855 static void clear_qp_implies PARAMS((valueT p1_mask, valueT p2_mask));
856 static int has_suffix_p PARAMS((const char *, const char *));
857 static void clear_register_values PARAMS ((void));
858 static void print_dependency PARAMS ((const char *action, int depind));
859 static void instruction_serialization PARAMS ((void));
860 static void data_serialization PARAMS ((void));
861 static void remove_marked_resource PARAMS ((struct rsrc *));
862 static int is_conditional_branch PARAMS ((struct ia64_opcode *));
863 static int is_taken_branch PARAMS ((struct ia64_opcode *));
864 static int is_interruption_or_rfi PARAMS ((struct ia64_opcode *));
865 static int depends_on PARAMS ((int, struct ia64_opcode *));
866 static int specify_resource PARAMS ((const struct ia64_dependency *,
867 struct ia64_opcode *, int, struct rsrc [], int, int));
868 static int check_dv PARAMS((struct ia64_opcode *idesc));
869 static void check_dependencies PARAMS((struct ia64_opcode *));
870 static void mark_resources PARAMS((struct ia64_opcode *));
871 static void update_dependencies PARAMS((struct ia64_opcode *));
872 static void note_register_values PARAMS((struct ia64_opcode *));
873 static int qp_mutex PARAMS ((int, int, int));
874 static int resources_match PARAMS ((struct rsrc *, struct ia64_opcode *, int, int, int));
875 static void output_vbyte_mem PARAMS ((int, char *, char *));
876 static void count_output PARAMS ((int, char *, char *));
877 static void output_R1_format PARAMS ((vbyte_func, unw_record_type, int));
878 static void output_R2_format PARAMS ((vbyte_func, int, int, unsigned long));
879 static void output_R3_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
880 static void output_P1_format PARAMS ((vbyte_func, int));
881 static void output_P2_format PARAMS ((vbyte_func, int, int));
882 static void output_P3_format PARAMS ((vbyte_func, unw_record_type, int));
883 static void output_P4_format PARAMS ((vbyte_func, unsigned char *, unsigned long));
884 static void output_P5_format PARAMS ((vbyte_func, int, unsigned long));
885 static void output_P6_format PARAMS ((vbyte_func, unw_record_type, int));
886 static void output_P7_format PARAMS ((vbyte_func, unw_record_type, unsigned long, unsigned long));
887 static void output_P8_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
888 static void output_P9_format PARAMS ((vbyte_func, int, int));
889 static void output_P10_format PARAMS ((vbyte_func, int, int));
890 static void output_B1_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
891 static void output_B2_format PARAMS ((vbyte_func, unsigned long, unsigned long));
892 static void output_B3_format PARAMS ((vbyte_func, unsigned long, unsigned long));
893 static void output_B4_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
894 static char format_ab_reg PARAMS ((int, int));
895 static void output_X1_format PARAMS ((vbyte_func, unw_record_type, int, int, unsigned long,
896 unsigned long));
897 static void output_X2_format PARAMS ((vbyte_func, int, int, int, int, int, unsigned long));
898 static void output_X3_format PARAMS ((vbyte_func, unw_record_type, int, int, int, unsigned long,
899 unsigned long));
900 static void output_X4_format PARAMS ((vbyte_func, int, int, int, int, int, int, unsigned long));
901 static unw_rec_list *output_endp PARAMS ((void));
902 static unw_rec_list *output_prologue PARAMS ((void));
903 static unw_rec_list *output_prologue_gr PARAMS ((unsigned int, unsigned int));
904 static unw_rec_list *output_body PARAMS ((void));
905 static unw_rec_list *output_mem_stack_f PARAMS ((unsigned int));
906 static unw_rec_list *output_mem_stack_v PARAMS ((void));
907 static unw_rec_list *output_psp_gr PARAMS ((unsigned int));
908 static unw_rec_list *output_psp_sprel PARAMS ((unsigned int));
909 static unw_rec_list *output_rp_when PARAMS ((void));
910 static unw_rec_list *output_rp_gr PARAMS ((unsigned int));
911 static unw_rec_list *output_rp_br PARAMS ((unsigned int));
912 static unw_rec_list *output_rp_psprel PARAMS ((unsigned int));
913 static unw_rec_list *output_rp_sprel PARAMS ((unsigned int));
914 static unw_rec_list *output_pfs_when PARAMS ((void));
915 static unw_rec_list *output_pfs_gr PARAMS ((unsigned int));
916 static unw_rec_list *output_pfs_psprel PARAMS ((unsigned int));
917 static unw_rec_list *output_pfs_sprel PARAMS ((unsigned int));
918 static unw_rec_list *output_preds_when PARAMS ((void));
919 static unw_rec_list *output_preds_gr PARAMS ((unsigned int));
920 static unw_rec_list *output_preds_psprel PARAMS ((unsigned int));
921 static unw_rec_list *output_preds_sprel PARAMS ((unsigned int));
922 static unw_rec_list *output_fr_mem PARAMS ((unsigned int));
923 static unw_rec_list *output_frgr_mem PARAMS ((unsigned int, unsigned int));
924 static unw_rec_list *output_gr_gr PARAMS ((unsigned int, unsigned int));
925 static unw_rec_list *output_gr_mem PARAMS ((unsigned int));
926 static unw_rec_list *output_br_mem PARAMS ((unsigned int));
927 static unw_rec_list *output_br_gr PARAMS ((unsigned int, unsigned int));
928 static unw_rec_list *output_spill_base PARAMS ((unsigned int));
929 static unw_rec_list *output_unat_when PARAMS ((void));
930 static unw_rec_list *output_unat_gr PARAMS ((unsigned int));
931 static unw_rec_list *output_unat_psprel PARAMS ((unsigned int));
932 static unw_rec_list *output_unat_sprel PARAMS ((unsigned int));
933 static unw_rec_list *output_lc_when PARAMS ((void));
934 static unw_rec_list *output_lc_gr PARAMS ((unsigned int));
935 static unw_rec_list *output_lc_psprel PARAMS ((unsigned int));
936 static unw_rec_list *output_lc_sprel PARAMS ((unsigned int));
937 static unw_rec_list *output_fpsr_when PARAMS ((void));
938 static unw_rec_list *output_fpsr_gr PARAMS ((unsigned int));
939 static unw_rec_list *output_fpsr_psprel PARAMS ((unsigned int));
940 static unw_rec_list *output_fpsr_sprel PARAMS ((unsigned int));
941 static unw_rec_list *output_priunat_when_gr PARAMS ((void));
942 static unw_rec_list *output_priunat_when_mem PARAMS ((void));
943 static unw_rec_list *output_priunat_gr PARAMS ((unsigned int));
944 static unw_rec_list *output_priunat_psprel PARAMS ((unsigned int));
945 static unw_rec_list *output_priunat_sprel PARAMS ((unsigned int));
946 static unw_rec_list *output_bsp_when PARAMS ((void));
947 static unw_rec_list *output_bsp_gr PARAMS ((unsigned int));
948 static unw_rec_list *output_bsp_psprel PARAMS ((unsigned int));
949 static unw_rec_list *output_bsp_sprel PARAMS ((unsigned int));
950 static unw_rec_list *output_bspstore_when PARAMS ((void));
951 static unw_rec_list *output_bspstore_gr PARAMS ((unsigned int));
952 static unw_rec_list *output_bspstore_psprel PARAMS ((unsigned int));
953 static unw_rec_list *output_bspstore_sprel PARAMS ((unsigned int));
954 static unw_rec_list *output_rnat_when PARAMS ((void));
955 static unw_rec_list *output_rnat_gr PARAMS ((unsigned int));
956 static unw_rec_list *output_rnat_psprel PARAMS ((unsigned int));
957 static unw_rec_list *output_rnat_sprel PARAMS ((unsigned int));
958 static unw_rec_list *output_unwabi PARAMS ((unsigned long, unsigned long));
959 static unw_rec_list *output_epilogue PARAMS ((unsigned long));
960 static unw_rec_list *output_label_state PARAMS ((unsigned long));
961 static unw_rec_list *output_copy_state PARAMS ((unsigned long));
962 static unw_rec_list *output_spill_psprel PARAMS ((unsigned int, unsigned int, unsigned int,
963 unsigned int));
964 static unw_rec_list *output_spill_sprel PARAMS ((unsigned int, unsigned int, unsigned int,
965 unsigned int));
966 static unw_rec_list *output_spill_reg PARAMS ((unsigned int, unsigned int, unsigned int,
967 unsigned int, unsigned int));
968 static void process_one_record PARAMS ((unw_rec_list *, vbyte_func));
969 static void process_unw_records PARAMS ((unw_rec_list *, vbyte_func));
970 static int calc_record_size PARAMS ((unw_rec_list *));
971 static void set_imask PARAMS ((unw_rec_list *, unsigned long, unsigned long, unsigned int));
972 static unsigned long slot_index PARAMS ((unsigned long, fragS *,
973 unsigned long, fragS *,
974 int));
975 static unw_rec_list *optimize_unw_records PARAMS ((unw_rec_list *));
976 static void fixup_unw_records PARAMS ((unw_rec_list *, int));
977 static int parse_predicate_and_operand PARAMS ((expressionS *, unsigned *, const char *));
978 static void convert_expr_to_ab_reg PARAMS ((const expressionS *, unsigned int *, unsigned int *, const char *, int));
979 static void convert_expr_to_xy_reg PARAMS ((const expressionS *, unsigned int *, unsigned int *, const char *, int));
980 static unsigned int get_saved_prologue_count PARAMS ((unsigned long));
981 static void save_prologue_count PARAMS ((unsigned long, unsigned int));
982 static void free_saved_prologue_counts PARAMS ((void));
983
984 /* Determine if application register REGNUM resides only in the integer
985 unit (as opposed to the memory unit). */
986 static int
987 ar_is_only_in_integer_unit (int reg)
988 {
989 reg -= REG_AR;
990 return reg >= 64 && reg <= 111;
991 }
992
993 /* Determine if application register REGNUM resides only in the memory
994 unit (as opposed to the integer unit). */
995 static int
996 ar_is_only_in_memory_unit (int reg)
997 {
998 reg -= REG_AR;
999 return reg >= 0 && reg <= 47;
1000 }
1001
1002 /* Switch to section NAME and create section if necessary. It's
1003 rather ugly that we have to manipulate input_line_pointer but I
1004 don't see any other way to accomplish the same thing without
1005 changing obj-elf.c (which may be the Right Thing, in the end). */
1006 static void
1007 set_section (name)
1008 char *name;
1009 {
1010 char *saved_input_line_pointer;
1011
1012 saved_input_line_pointer = input_line_pointer;
1013 input_line_pointer = name;
1014 obj_elf_section (0);
1015 input_line_pointer = saved_input_line_pointer;
1016 }
1017
1018 /* Map 's' to SHF_IA_64_SHORT. */
1019
1020 int
1021 ia64_elf_section_letter (letter, ptr_msg)
1022 int letter;
1023 char **ptr_msg;
1024 {
1025 if (letter == 's')
1026 return SHF_IA_64_SHORT;
1027 else if (letter == 'o')
1028 return SHF_LINK_ORDER;
1029
1030 *ptr_msg = _("Bad .section directive: want a,o,s,w,x,M,S,G,T in string");
1031 return -1;
1032 }
1033
1034 /* Map SHF_IA_64_SHORT to SEC_SMALL_DATA. */
1035
1036 flagword
1037 ia64_elf_section_flags (flags, attr, type)
1038 flagword flags;
1039 int attr, type ATTRIBUTE_UNUSED;
1040 {
1041 if (attr & SHF_IA_64_SHORT)
1042 flags |= SEC_SMALL_DATA;
1043 return flags;
1044 }
1045
1046 int
1047 ia64_elf_section_type (str, len)
1048 const char *str;
1049 size_t len;
1050 {
1051 #define STREQ(s) ((len == sizeof (s) - 1) && (strncmp (str, s, sizeof (s) - 1) == 0))
1052
1053 if (STREQ (ELF_STRING_ia64_unwind_info))
1054 return SHT_PROGBITS;
1055
1056 if (STREQ (ELF_STRING_ia64_unwind_info_once))
1057 return SHT_PROGBITS;
1058
1059 if (STREQ (ELF_STRING_ia64_unwind))
1060 return SHT_IA_64_UNWIND;
1061
1062 if (STREQ (ELF_STRING_ia64_unwind_once))
1063 return SHT_IA_64_UNWIND;
1064
1065 if (STREQ ("unwind"))
1066 return SHT_IA_64_UNWIND;
1067
1068 return -1;
1069 #undef STREQ
1070 }
1071
1072 static unsigned int
1073 set_regstack (ins, locs, outs, rots)
1074 unsigned int ins, locs, outs, rots;
1075 {
1076 /* Size of frame. */
1077 unsigned int sof;
1078
1079 sof = ins + locs + outs;
1080 if (sof > 96)
1081 {
1082 as_bad ("Size of frame exceeds maximum of 96 registers");
1083 return 0;
1084 }
1085 if (rots > sof)
1086 {
1087 as_warn ("Size of rotating registers exceeds frame size");
1088 return 0;
1089 }
1090 md.in.base = REG_GR + 32;
1091 md.loc.base = md.in.base + ins;
1092 md.out.base = md.loc.base + locs;
1093
1094 md.in.num_regs = ins;
1095 md.loc.num_regs = locs;
1096 md.out.num_regs = outs;
1097 md.rot.num_regs = rots;
1098 return sof;
1099 }
1100
1101 void
1102 ia64_flush_insns ()
1103 {
1104 struct label_fix *lfix;
1105 segT saved_seg;
1106 subsegT saved_subseg;
1107 unw_rec_list *ptr;
1108 bfd_boolean mark;
1109
1110 if (!md.last_text_seg)
1111 return;
1112
1113 saved_seg = now_seg;
1114 saved_subseg = now_subseg;
1115
1116 subseg_set (md.last_text_seg, 0);
1117
1118 while (md.num_slots_in_use > 0)
1119 emit_one_bundle (); /* force out queued instructions */
1120
1121 /* In case there are labels following the last instruction, resolve
1122 those now. */
1123 mark = FALSE;
1124 for (lfix = CURR_SLOT.label_fixups; lfix; lfix = lfix->next)
1125 {
1126 symbol_set_value_now (lfix->sym);
1127 mark |= lfix->dw2_mark_labels;
1128 }
1129 if (mark)
1130 {
1131 dwarf2_where (&CURR_SLOT.debug_line);
1132 CURR_SLOT.debug_line.flags |= DWARF2_FLAG_BASIC_BLOCK;
1133 dwarf2_gen_line_info (frag_now_fix (), &CURR_SLOT.debug_line);
1134 }
1135 CURR_SLOT.label_fixups = 0;
1136
1137 for (lfix = CURR_SLOT.tag_fixups; lfix; lfix = lfix->next)
1138 symbol_set_value_now (lfix->sym);
1139 CURR_SLOT.tag_fixups = 0;
1140
1141 /* In case there are unwind directives following the last instruction,
1142 resolve those now. We only handle prologue, body, and endp directives
1143 here. Give an error for others. */
1144 for (ptr = unwind.current_entry; ptr; ptr = ptr->next)
1145 {
1146 switch (ptr->r.type)
1147 {
1148 case prologue:
1149 case prologue_gr:
1150 case body:
1151 case endp:
1152 ptr->slot_number = (unsigned long) frag_more (0);
1153 ptr->slot_frag = frag_now;
1154 break;
1155
1156 /* Allow any record which doesn't have a "t" field (i.e.,
1157 doesn't relate to a particular instruction). */
1158 case unwabi:
1159 case br_gr:
1160 case copy_state:
1161 case fr_mem:
1162 case frgr_mem:
1163 case gr_gr:
1164 case gr_mem:
1165 case label_state:
1166 case rp_br:
1167 case spill_base:
1168 case spill_mask:
1169 /* nothing */
1170 break;
1171
1172 default:
1173 as_bad (_("Unwind directive not followed by an instruction."));
1174 break;
1175 }
1176 }
1177 unwind.current_entry = NULL;
1178
1179 subseg_set (saved_seg, saved_subseg);
1180
1181 if (md.qp.X_op == O_register)
1182 as_bad ("qualifying predicate not followed by instruction");
1183 }
1184
1185 static void
1186 ia64_do_align (int nbytes)
1187 {
1188 char *saved_input_line_pointer = input_line_pointer;
1189
1190 input_line_pointer = "";
1191 s_align_bytes (nbytes);
1192 input_line_pointer = saved_input_line_pointer;
1193 }
1194
1195 void
1196 ia64_cons_align (nbytes)
1197 int nbytes;
1198 {
1199 if (md.auto_align)
1200 {
1201 char *saved_input_line_pointer = input_line_pointer;
1202 input_line_pointer = "";
1203 s_align_bytes (nbytes);
1204 input_line_pointer = saved_input_line_pointer;
1205 }
1206 }
1207
1208 /* Output COUNT bytes to a memory location. */
1209 static char *vbyte_mem_ptr = NULL;
1210
1211 void
1212 output_vbyte_mem (count, ptr, comment)
1213 int count;
1214 char *ptr;
1215 char *comment ATTRIBUTE_UNUSED;
1216 {
1217 int x;
1218 if (vbyte_mem_ptr == NULL)
1219 abort ();
1220
1221 if (count == 0)
1222 return;
1223 for (x = 0; x < count; x++)
1224 *(vbyte_mem_ptr++) = ptr[x];
1225 }
1226
1227 /* Count the number of bytes required for records. */
1228 static int vbyte_count = 0;
1229 void
1230 count_output (count, ptr, comment)
1231 int count;
1232 char *ptr ATTRIBUTE_UNUSED;
1233 char *comment ATTRIBUTE_UNUSED;
1234 {
1235 vbyte_count += count;
1236 }
1237
1238 static void
1239 output_R1_format (f, rtype, rlen)
1240 vbyte_func f;
1241 unw_record_type rtype;
1242 int rlen;
1243 {
1244 int r = 0;
1245 char byte;
1246 if (rlen > 0x1f)
1247 {
1248 output_R3_format (f, rtype, rlen);
1249 return;
1250 }
1251
1252 if (rtype == body)
1253 r = 1;
1254 else if (rtype != prologue)
1255 as_bad ("record type is not valid");
1256
1257 byte = UNW_R1 | (r << 5) | (rlen & 0x1f);
1258 (*f) (1, &byte, NULL);
1259 }
1260
1261 static void
1262 output_R2_format (f, mask, grsave, rlen)
1263 vbyte_func f;
1264 int mask, grsave;
1265 unsigned long rlen;
1266 {
1267 char bytes[20];
1268 int count = 2;
1269 mask = (mask & 0x0f);
1270 grsave = (grsave & 0x7f);
1271
1272 bytes[0] = (UNW_R2 | (mask >> 1));
1273 bytes[1] = (((mask & 0x01) << 7) | grsave);
1274 count += output_leb128 (bytes + 2, rlen, 0);
1275 (*f) (count, bytes, NULL);
1276 }
1277
1278 static void
1279 output_R3_format (f, rtype, rlen)
1280 vbyte_func f;
1281 unw_record_type rtype;
1282 unsigned long rlen;
1283 {
1284 int r = 0, count;
1285 char bytes[20];
1286 if (rlen <= 0x1f)
1287 {
1288 output_R1_format (f, rtype, rlen);
1289 return;
1290 }
1291
1292 if (rtype == body)
1293 r = 1;
1294 else if (rtype != prologue)
1295 as_bad ("record type is not valid");
1296 bytes[0] = (UNW_R3 | r);
1297 count = output_leb128 (bytes + 1, rlen, 0);
1298 (*f) (count + 1, bytes, NULL);
1299 }
1300
1301 static void
1302 output_P1_format (f, brmask)
1303 vbyte_func f;
1304 int brmask;
1305 {
1306 char byte;
1307 byte = UNW_P1 | (brmask & 0x1f);
1308 (*f) (1, &byte, NULL);
1309 }
1310
1311 static void
1312 output_P2_format (f, brmask, gr)
1313 vbyte_func f;
1314 int brmask;
1315 int gr;
1316 {
1317 char bytes[2];
1318 brmask = (brmask & 0x1f);
1319 bytes[0] = UNW_P2 | (brmask >> 1);
1320 bytes[1] = (((brmask & 1) << 7) | gr);
1321 (*f) (2, bytes, NULL);
1322 }
1323
1324 static void
1325 output_P3_format (f, rtype, reg)
1326 vbyte_func f;
1327 unw_record_type rtype;
1328 int reg;
1329 {
1330 char bytes[2];
1331 int r = 0;
1332 reg = (reg & 0x7f);
1333 switch (rtype)
1334 {
1335 case psp_gr:
1336 r = 0;
1337 break;
1338 case rp_gr:
1339 r = 1;
1340 break;
1341 case pfs_gr:
1342 r = 2;
1343 break;
1344 case preds_gr:
1345 r = 3;
1346 break;
1347 case unat_gr:
1348 r = 4;
1349 break;
1350 case lc_gr:
1351 r = 5;
1352 break;
1353 case rp_br:
1354 r = 6;
1355 break;
1356 case rnat_gr:
1357 r = 7;
1358 break;
1359 case bsp_gr:
1360 r = 8;
1361 break;
1362 case bspstore_gr:
1363 r = 9;
1364 break;
1365 case fpsr_gr:
1366 r = 10;
1367 break;
1368 case priunat_gr:
1369 r = 11;
1370 break;
1371 default:
1372 as_bad ("Invalid record type for P3 format.");
1373 }
1374 bytes[0] = (UNW_P3 | (r >> 1));
1375 bytes[1] = (((r & 1) << 7) | reg);
1376 (*f) (2, bytes, NULL);
1377 }
1378
1379 static void
1380 output_P4_format (f, imask, imask_size)
1381 vbyte_func f;
1382 unsigned char *imask;
1383 unsigned long imask_size;
1384 {
1385 imask[0] = UNW_P4;
1386 (*f) (imask_size, (char *) imask, NULL);
1387 }
1388
1389 static void
1390 output_P5_format (f, grmask, frmask)
1391 vbyte_func f;
1392 int grmask;
1393 unsigned long frmask;
1394 {
1395 char bytes[4];
1396 grmask = (grmask & 0x0f);
1397
1398 bytes[0] = UNW_P5;
1399 bytes[1] = ((grmask << 4) | ((frmask & 0x000f0000) >> 16));
1400 bytes[2] = ((frmask & 0x0000ff00) >> 8);
1401 bytes[3] = (frmask & 0x000000ff);
1402 (*f) (4, bytes, NULL);
1403 }
1404
1405 static void
1406 output_P6_format (f, rtype, rmask)
1407 vbyte_func f;
1408 unw_record_type rtype;
1409 int rmask;
1410 {
1411 char byte;
1412 int r = 0;
1413
1414 if (rtype == gr_mem)
1415 r = 1;
1416 else if (rtype != fr_mem)
1417 as_bad ("Invalid record type for format P6");
1418 byte = (UNW_P6 | (r << 4) | (rmask & 0x0f));
1419 (*f) (1, &byte, NULL);
1420 }
1421
1422 static void
1423 output_P7_format (f, rtype, w1, w2)
1424 vbyte_func f;
1425 unw_record_type rtype;
1426 unsigned long w1;
1427 unsigned long w2;
1428 {
1429 char bytes[20];
1430 int count = 1;
1431 int r = 0;
1432 count += output_leb128 (bytes + 1, w1, 0);
1433 switch (rtype)
1434 {
1435 case mem_stack_f:
1436 r = 0;
1437 count += output_leb128 (bytes + count, w2 >> 4, 0);
1438 break;
1439 case mem_stack_v:
1440 r = 1;
1441 break;
1442 case spill_base:
1443 r = 2;
1444 break;
1445 case psp_sprel:
1446 r = 3;
1447 break;
1448 case rp_when:
1449 r = 4;
1450 break;
1451 case rp_psprel:
1452 r = 5;
1453 break;
1454 case pfs_when:
1455 r = 6;
1456 break;
1457 case pfs_psprel:
1458 r = 7;
1459 break;
1460 case preds_when:
1461 r = 8;
1462 break;
1463 case preds_psprel:
1464 r = 9;
1465 break;
1466 case lc_when:
1467 r = 10;
1468 break;
1469 case lc_psprel:
1470 r = 11;
1471 break;
1472 case unat_when:
1473 r = 12;
1474 break;
1475 case unat_psprel:
1476 r = 13;
1477 break;
1478 case fpsr_when:
1479 r = 14;
1480 break;
1481 case fpsr_psprel:
1482 r = 15;
1483 break;
1484 default:
1485 break;
1486 }
1487 bytes[0] = (UNW_P7 | r);
1488 (*f) (count, bytes, NULL);
1489 }
1490
1491 static void
1492 output_P8_format (f, rtype, t)
1493 vbyte_func f;
1494 unw_record_type rtype;
1495 unsigned long t;
1496 {
1497 char bytes[20];
1498 int r = 0;
1499 int count = 2;
1500 bytes[0] = UNW_P8;
1501 switch (rtype)
1502 {
1503 case rp_sprel:
1504 r = 1;
1505 break;
1506 case pfs_sprel:
1507 r = 2;
1508 break;
1509 case preds_sprel:
1510 r = 3;
1511 break;
1512 case lc_sprel:
1513 r = 4;
1514 break;
1515 case unat_sprel:
1516 r = 5;
1517 break;
1518 case fpsr_sprel:
1519 r = 6;
1520 break;
1521 case bsp_when:
1522 r = 7;
1523 break;
1524 case bsp_psprel:
1525 r = 8;
1526 break;
1527 case bsp_sprel:
1528 r = 9;
1529 break;
1530 case bspstore_when:
1531 r = 10;
1532 break;
1533 case bspstore_psprel:
1534 r = 11;
1535 break;
1536 case bspstore_sprel:
1537 r = 12;
1538 break;
1539 case rnat_when:
1540 r = 13;
1541 break;
1542 case rnat_psprel:
1543 r = 14;
1544 break;
1545 case rnat_sprel:
1546 r = 15;
1547 break;
1548 case priunat_when_gr:
1549 r = 16;
1550 break;
1551 case priunat_psprel:
1552 r = 17;
1553 break;
1554 case priunat_sprel:
1555 r = 18;
1556 break;
1557 case priunat_when_mem:
1558 r = 19;
1559 break;
1560 default:
1561 break;
1562 }
1563 bytes[1] = r;
1564 count += output_leb128 (bytes + 2, t, 0);
1565 (*f) (count, bytes, NULL);
1566 }
1567
1568 static void
1569 output_P9_format (f, grmask, gr)
1570 vbyte_func f;
1571 int grmask;
1572 int gr;
1573 {
1574 char bytes[3];
1575 bytes[0] = UNW_P9;
1576 bytes[1] = (grmask & 0x0f);
1577 bytes[2] = (gr & 0x7f);
1578 (*f) (3, bytes, NULL);
1579 }
1580
1581 static void
1582 output_P10_format (f, abi, context)
1583 vbyte_func f;
1584 int abi;
1585 int context;
1586 {
1587 char bytes[3];
1588 bytes[0] = UNW_P10;
1589 bytes[1] = (abi & 0xff);
1590 bytes[2] = (context & 0xff);
1591 (*f) (3, bytes, NULL);
1592 }
1593
1594 static void
1595 output_B1_format (f, rtype, label)
1596 vbyte_func f;
1597 unw_record_type rtype;
1598 unsigned long label;
1599 {
1600 char byte;
1601 int r = 0;
1602 if (label > 0x1f)
1603 {
1604 output_B4_format (f, rtype, label);
1605 return;
1606 }
1607 if (rtype == copy_state)
1608 r = 1;
1609 else if (rtype != label_state)
1610 as_bad ("Invalid record type for format B1");
1611
1612 byte = (UNW_B1 | (r << 5) | (label & 0x1f));
1613 (*f) (1, &byte, NULL);
1614 }
1615
1616 static void
1617 output_B2_format (f, ecount, t)
1618 vbyte_func f;
1619 unsigned long ecount;
1620 unsigned long t;
1621 {
1622 char bytes[20];
1623 int count = 1;
1624 if (ecount > 0x1f)
1625 {
1626 output_B3_format (f, ecount, t);
1627 return;
1628 }
1629 bytes[0] = (UNW_B2 | (ecount & 0x1f));
1630 count += output_leb128 (bytes + 1, t, 0);
1631 (*f) (count, bytes, NULL);
1632 }
1633
1634 static void
1635 output_B3_format (f, ecount, t)
1636 vbyte_func f;
1637 unsigned long ecount;
1638 unsigned long t;
1639 {
1640 char bytes[20];
1641 int count = 1;
1642 if (ecount <= 0x1f)
1643 {
1644 output_B2_format (f, ecount, t);
1645 return;
1646 }
1647 bytes[0] = UNW_B3;
1648 count += output_leb128 (bytes + 1, t, 0);
1649 count += output_leb128 (bytes + count, ecount, 0);
1650 (*f) (count, bytes, NULL);
1651 }
1652
1653 static void
1654 output_B4_format (f, rtype, label)
1655 vbyte_func f;
1656 unw_record_type rtype;
1657 unsigned long label;
1658 {
1659 char bytes[20];
1660 int r = 0;
1661 int count = 1;
1662 if (label <= 0x1f)
1663 {
1664 output_B1_format (f, rtype, label);
1665 return;
1666 }
1667
1668 if (rtype == copy_state)
1669 r = 1;
1670 else if (rtype != label_state)
1671 as_bad ("Invalid record type for format B1");
1672
1673 bytes[0] = (UNW_B4 | (r << 3));
1674 count += output_leb128 (bytes + 1, label, 0);
1675 (*f) (count, bytes, NULL);
1676 }
1677
1678 static char
1679 format_ab_reg (ab, reg)
1680 int ab;
1681 int reg;
1682 {
1683 int ret;
1684 ab = (ab & 3);
1685 reg = (reg & 0x1f);
1686 ret = (ab << 5) | reg;
1687 return ret;
1688 }
1689
1690 static void
1691 output_X1_format (f, rtype, ab, reg, t, w1)
1692 vbyte_func f;
1693 unw_record_type rtype;
1694 int ab, reg;
1695 unsigned long t;
1696 unsigned long w1;
1697 {
1698 char bytes[20];
1699 int r = 0;
1700 int count = 2;
1701 bytes[0] = UNW_X1;
1702
1703 if (rtype == spill_sprel)
1704 r = 1;
1705 else if (rtype != spill_psprel)
1706 as_bad ("Invalid record type for format X1");
1707 bytes[1] = ((r << 7) | format_ab_reg (ab, reg));
1708 count += output_leb128 (bytes + 2, t, 0);
1709 count += output_leb128 (bytes + count, w1, 0);
1710 (*f) (count, bytes, NULL);
1711 }
1712
1713 static void
1714 output_X2_format (f, ab, reg, x, y, treg, t)
1715 vbyte_func f;
1716 int ab, reg;
1717 int x, y, treg;
1718 unsigned long t;
1719 {
1720 char bytes[20];
1721 int count = 3;
1722 bytes[0] = UNW_X2;
1723 bytes[1] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1724 bytes[2] = (((y & 1) << 7) | (treg & 0x7f));
1725 count += output_leb128 (bytes + 3, t, 0);
1726 (*f) (count, bytes, NULL);
1727 }
1728
1729 static void
1730 output_X3_format (f, rtype, qp, ab, reg, t, w1)
1731 vbyte_func f;
1732 unw_record_type rtype;
1733 int qp;
1734 int ab, reg;
1735 unsigned long t;
1736 unsigned long w1;
1737 {
1738 char bytes[20];
1739 int r = 0;
1740 int count = 3;
1741 bytes[0] = UNW_X3;
1742
1743 if (rtype == spill_sprel_p)
1744 r = 1;
1745 else if (rtype != spill_psprel_p)
1746 as_bad ("Invalid record type for format X3");
1747 bytes[1] = ((r << 7) | (qp & 0x3f));
1748 bytes[2] = format_ab_reg (ab, reg);
1749 count += output_leb128 (bytes + 3, t, 0);
1750 count += output_leb128 (bytes + count, w1, 0);
1751 (*f) (count, bytes, NULL);
1752 }
1753
1754 static void
1755 output_X4_format (f, qp, ab, reg, x, y, treg, t)
1756 vbyte_func f;
1757 int qp;
1758 int ab, reg;
1759 int x, y, treg;
1760 unsigned long t;
1761 {
1762 char bytes[20];
1763 int count = 4;
1764 bytes[0] = UNW_X4;
1765 bytes[1] = (qp & 0x3f);
1766 bytes[2] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1767 bytes[3] = (((y & 1) << 7) | (treg & 0x7f));
1768 count += output_leb128 (bytes + 4, t, 0);
1769 (*f) (count, bytes, NULL);
1770 }
1771
1772 /* This function checks whether there are any outstanding .save-s and
1773 discards them if so. */
1774
1775 static void
1776 check_pending_save (void)
1777 {
1778 if (unwind.pending_saves)
1779 {
1780 unw_rec_list *cur, *prev;
1781
1782 as_warn ("Previous .save incomplete");
1783 for (cur = unwind.list, prev = NULL; cur; )
1784 if (&cur->r.record.p == unwind.pending_saves)
1785 {
1786 if (prev)
1787 prev->next = cur->next;
1788 else
1789 unwind.list = cur->next;
1790 if (cur == unwind.tail)
1791 unwind.tail = prev;
1792 if (cur == unwind.current_entry)
1793 unwind.current_entry = cur->next;
1794 /* Don't free the first discarded record, it's being used as
1795 terminator for (currently) br_gr and gr_gr processing, and
1796 also prevents leaving a dangling pointer to it in its
1797 predecessor. */
1798 cur->r.record.p.grmask = 0;
1799 cur->r.record.p.brmask = 0;
1800 cur->r.record.p.frmask = 0;
1801 prev = cur->r.record.p.next;
1802 cur->r.record.p.next = NULL;
1803 cur = prev;
1804 break;
1805 }
1806 else
1807 {
1808 prev = cur;
1809 cur = cur->next;
1810 }
1811 while (cur)
1812 {
1813 prev = cur;
1814 cur = cur->r.record.p.next;
1815 free (prev);
1816 }
1817 unwind.pending_saves = NULL;
1818 }
1819 }
1820
1821 /* This function allocates a record list structure, and initializes fields. */
1822
1823 static unw_rec_list *
1824 alloc_record (unw_record_type t)
1825 {
1826 unw_rec_list *ptr;
1827 ptr = xmalloc (sizeof (*ptr));
1828 memset (ptr, 0, sizeof (*ptr));
1829 ptr->slot_number = SLOT_NUM_NOT_SET;
1830 ptr->r.type = t;
1831 return ptr;
1832 }
1833
1834 /* Dummy unwind record used for calculating the length of the last prologue or
1835 body region. */
1836
1837 static unw_rec_list *
1838 output_endp ()
1839 {
1840 unw_rec_list *ptr = alloc_record (endp);
1841 return ptr;
1842 }
1843
1844 static unw_rec_list *
1845 output_prologue ()
1846 {
1847 unw_rec_list *ptr = alloc_record (prologue);
1848 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1849 return ptr;
1850 }
1851
1852 static unw_rec_list *
1853 output_prologue_gr (saved_mask, reg)
1854 unsigned int saved_mask;
1855 unsigned int reg;
1856 {
1857 unw_rec_list *ptr = alloc_record (prologue_gr);
1858 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1859 ptr->r.record.r.grmask = saved_mask;
1860 ptr->r.record.r.grsave = reg;
1861 return ptr;
1862 }
1863
1864 static unw_rec_list *
1865 output_body ()
1866 {
1867 unw_rec_list *ptr = alloc_record (body);
1868 return ptr;
1869 }
1870
1871 static unw_rec_list *
1872 output_mem_stack_f (size)
1873 unsigned int size;
1874 {
1875 unw_rec_list *ptr = alloc_record (mem_stack_f);
1876 ptr->r.record.p.size = size;
1877 return ptr;
1878 }
1879
1880 static unw_rec_list *
1881 output_mem_stack_v ()
1882 {
1883 unw_rec_list *ptr = alloc_record (mem_stack_v);
1884 return ptr;
1885 }
1886
1887 static unw_rec_list *
1888 output_psp_gr (gr)
1889 unsigned int gr;
1890 {
1891 unw_rec_list *ptr = alloc_record (psp_gr);
1892 ptr->r.record.p.r.gr = gr;
1893 return ptr;
1894 }
1895
1896 static unw_rec_list *
1897 output_psp_sprel (offset)
1898 unsigned int offset;
1899 {
1900 unw_rec_list *ptr = alloc_record (psp_sprel);
1901 ptr->r.record.p.off.sp = offset / 4;
1902 return ptr;
1903 }
1904
1905 static unw_rec_list *
1906 output_rp_when ()
1907 {
1908 unw_rec_list *ptr = alloc_record (rp_when);
1909 return ptr;
1910 }
1911
1912 static unw_rec_list *
1913 output_rp_gr (gr)
1914 unsigned int gr;
1915 {
1916 unw_rec_list *ptr = alloc_record (rp_gr);
1917 ptr->r.record.p.r.gr = gr;
1918 return ptr;
1919 }
1920
1921 static unw_rec_list *
1922 output_rp_br (br)
1923 unsigned int br;
1924 {
1925 unw_rec_list *ptr = alloc_record (rp_br);
1926 ptr->r.record.p.r.br = br;
1927 return ptr;
1928 }
1929
1930 static unw_rec_list *
1931 output_rp_psprel (offset)
1932 unsigned int offset;
1933 {
1934 unw_rec_list *ptr = alloc_record (rp_psprel);
1935 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1936 return ptr;
1937 }
1938
1939 static unw_rec_list *
1940 output_rp_sprel (offset)
1941 unsigned int offset;
1942 {
1943 unw_rec_list *ptr = alloc_record (rp_sprel);
1944 ptr->r.record.p.off.sp = offset / 4;
1945 return ptr;
1946 }
1947
1948 static unw_rec_list *
1949 output_pfs_when ()
1950 {
1951 unw_rec_list *ptr = alloc_record (pfs_when);
1952 return ptr;
1953 }
1954
1955 static unw_rec_list *
1956 output_pfs_gr (gr)
1957 unsigned int gr;
1958 {
1959 unw_rec_list *ptr = alloc_record (pfs_gr);
1960 ptr->r.record.p.r.gr = gr;
1961 return ptr;
1962 }
1963
1964 static unw_rec_list *
1965 output_pfs_psprel (offset)
1966 unsigned int offset;
1967 {
1968 unw_rec_list *ptr = alloc_record (pfs_psprel);
1969 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1970 return ptr;
1971 }
1972
1973 static unw_rec_list *
1974 output_pfs_sprel (offset)
1975 unsigned int offset;
1976 {
1977 unw_rec_list *ptr = alloc_record (pfs_sprel);
1978 ptr->r.record.p.off.sp = offset / 4;
1979 return ptr;
1980 }
1981
1982 static unw_rec_list *
1983 output_preds_when ()
1984 {
1985 unw_rec_list *ptr = alloc_record (preds_when);
1986 return ptr;
1987 }
1988
1989 static unw_rec_list *
1990 output_preds_gr (gr)
1991 unsigned int gr;
1992 {
1993 unw_rec_list *ptr = alloc_record (preds_gr);
1994 ptr->r.record.p.r.gr = gr;
1995 return ptr;
1996 }
1997
1998 static unw_rec_list *
1999 output_preds_psprel (offset)
2000 unsigned int offset;
2001 {
2002 unw_rec_list *ptr = alloc_record (preds_psprel);
2003 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2004 return ptr;
2005 }
2006
2007 static unw_rec_list *
2008 output_preds_sprel (offset)
2009 unsigned int offset;
2010 {
2011 unw_rec_list *ptr = alloc_record (preds_sprel);
2012 ptr->r.record.p.off.sp = offset / 4;
2013 return ptr;
2014 }
2015
2016 static unw_rec_list *
2017 output_fr_mem (mask)
2018 unsigned int mask;
2019 {
2020 unw_rec_list *ptr = alloc_record (fr_mem);
2021 unw_rec_list *cur = ptr;
2022
2023 ptr->r.record.p.frmask = mask;
2024 unwind.pending_saves = &ptr->r.record.p;
2025 for (;;)
2026 {
2027 unw_rec_list *prev = cur;
2028
2029 /* Clear least significant set bit. */
2030 mask &= ~(mask & (~mask + 1));
2031 if (!mask)
2032 return ptr;
2033 cur = alloc_record (fr_mem);
2034 cur->r.record.p.frmask = mask;
2035 /* Retain only least significant bit. */
2036 prev->r.record.p.frmask ^= mask;
2037 prev->r.record.p.next = cur;
2038 }
2039 }
2040
2041 static unw_rec_list *
2042 output_frgr_mem (gr_mask, fr_mask)
2043 unsigned int gr_mask;
2044 unsigned int fr_mask;
2045 {
2046 unw_rec_list *ptr = alloc_record (frgr_mem);
2047 unw_rec_list *cur = ptr;
2048
2049 unwind.pending_saves = &cur->r.record.p;
2050 cur->r.record.p.frmask = fr_mask;
2051 while (fr_mask)
2052 {
2053 unw_rec_list *prev = cur;
2054
2055 /* Clear least significant set bit. */
2056 fr_mask &= ~(fr_mask & (~fr_mask + 1));
2057 if (!gr_mask && !fr_mask)
2058 return ptr;
2059 cur = alloc_record (frgr_mem);
2060 cur->r.record.p.frmask = fr_mask;
2061 /* Retain only least significant bit. */
2062 prev->r.record.p.frmask ^= fr_mask;
2063 prev->r.record.p.next = cur;
2064 }
2065 cur->r.record.p.grmask = gr_mask;
2066 for (;;)
2067 {
2068 unw_rec_list *prev = cur;
2069
2070 /* Clear least significant set bit. */
2071 gr_mask &= ~(gr_mask & (~gr_mask + 1));
2072 if (!gr_mask)
2073 return ptr;
2074 cur = alloc_record (frgr_mem);
2075 cur->r.record.p.grmask = gr_mask;
2076 /* Retain only least significant bit. */
2077 prev->r.record.p.grmask ^= gr_mask;
2078 prev->r.record.p.next = cur;
2079 }
2080 }
2081
2082 static unw_rec_list *
2083 output_gr_gr (mask, reg)
2084 unsigned int mask;
2085 unsigned int reg;
2086 {
2087 unw_rec_list *ptr = alloc_record (gr_gr);
2088 unw_rec_list *cur = ptr;
2089
2090 ptr->r.record.p.grmask = mask;
2091 ptr->r.record.p.r.gr = reg;
2092 unwind.pending_saves = &ptr->r.record.p;
2093 for (;;)
2094 {
2095 unw_rec_list *prev = cur;
2096
2097 /* Clear least significant set bit. */
2098 mask &= ~(mask & (~mask + 1));
2099 if (!mask)
2100 return ptr;
2101 cur = alloc_record (gr_gr);
2102 cur->r.record.p.grmask = mask;
2103 /* Indicate this record shouldn't be output. */
2104 cur->r.record.p.r.gr = REG_NUM;
2105 /* Retain only least significant bit. */
2106 prev->r.record.p.grmask ^= mask;
2107 prev->r.record.p.next = cur;
2108 }
2109 }
2110
2111 static unw_rec_list *
2112 output_gr_mem (mask)
2113 unsigned int mask;
2114 {
2115 unw_rec_list *ptr = alloc_record (gr_mem);
2116 unw_rec_list *cur = ptr;
2117
2118 ptr->r.record.p.grmask = mask;
2119 unwind.pending_saves = &ptr->r.record.p;
2120 for (;;)
2121 {
2122 unw_rec_list *prev = cur;
2123
2124 /* Clear least significant set bit. */
2125 mask &= ~(mask & (~mask + 1));
2126 if (!mask)
2127 return ptr;
2128 cur = alloc_record (gr_mem);
2129 cur->r.record.p.grmask = mask;
2130 /* Retain only least significant bit. */
2131 prev->r.record.p.grmask ^= mask;
2132 prev->r.record.p.next = cur;
2133 }
2134 }
2135
2136 static unw_rec_list *
2137 output_br_mem (unsigned int mask)
2138 {
2139 unw_rec_list *ptr = alloc_record (br_mem);
2140 unw_rec_list *cur = ptr;
2141
2142 ptr->r.record.p.brmask = mask;
2143 unwind.pending_saves = &ptr->r.record.p;
2144 for (;;)
2145 {
2146 unw_rec_list *prev = cur;
2147
2148 /* Clear least significant set bit. */
2149 mask &= ~(mask & (~mask + 1));
2150 if (!mask)
2151 return ptr;
2152 cur = alloc_record (br_mem);
2153 cur->r.record.p.brmask = mask;
2154 /* Retain only least significant bit. */
2155 prev->r.record.p.brmask ^= mask;
2156 prev->r.record.p.next = cur;
2157 }
2158 }
2159
2160 static unw_rec_list *
2161 output_br_gr (mask, reg)
2162 unsigned int mask;
2163 unsigned int reg;
2164 {
2165 unw_rec_list *ptr = alloc_record (br_gr);
2166 unw_rec_list *cur = ptr;
2167
2168 ptr->r.record.p.brmask = mask;
2169 ptr->r.record.p.r.gr = reg;
2170 unwind.pending_saves = &ptr->r.record.p;
2171 for (;;)
2172 {
2173 unw_rec_list *prev = cur;
2174
2175 /* Clear least significant set bit. */
2176 mask &= ~(mask & (~mask + 1));
2177 if (!mask)
2178 return ptr;
2179 cur = alloc_record (br_gr);
2180 cur->r.record.p.brmask = mask;
2181 /* Indicate this record shouldn't be output. */
2182 cur->r.record.p.r.gr = REG_NUM;
2183 /* Retain only least significant bit. */
2184 prev->r.record.p.brmask ^= mask;
2185 prev->r.record.p.next = cur;
2186 }
2187 }
2188
2189 static unw_rec_list *
2190 output_spill_base (offset)
2191 unsigned int offset;
2192 {
2193 unw_rec_list *ptr = alloc_record (spill_base);
2194 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2195 return ptr;
2196 }
2197
2198 static unw_rec_list *
2199 output_unat_when ()
2200 {
2201 unw_rec_list *ptr = alloc_record (unat_when);
2202 return ptr;
2203 }
2204
2205 static unw_rec_list *
2206 output_unat_gr (gr)
2207 unsigned int gr;
2208 {
2209 unw_rec_list *ptr = alloc_record (unat_gr);
2210 ptr->r.record.p.r.gr = gr;
2211 return ptr;
2212 }
2213
2214 static unw_rec_list *
2215 output_unat_psprel (offset)
2216 unsigned int offset;
2217 {
2218 unw_rec_list *ptr = alloc_record (unat_psprel);
2219 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2220 return ptr;
2221 }
2222
2223 static unw_rec_list *
2224 output_unat_sprel (offset)
2225 unsigned int offset;
2226 {
2227 unw_rec_list *ptr = alloc_record (unat_sprel);
2228 ptr->r.record.p.off.sp = offset / 4;
2229 return ptr;
2230 }
2231
2232 static unw_rec_list *
2233 output_lc_when ()
2234 {
2235 unw_rec_list *ptr = alloc_record (lc_when);
2236 return ptr;
2237 }
2238
2239 static unw_rec_list *
2240 output_lc_gr (gr)
2241 unsigned int gr;
2242 {
2243 unw_rec_list *ptr = alloc_record (lc_gr);
2244 ptr->r.record.p.r.gr = gr;
2245 return ptr;
2246 }
2247
2248 static unw_rec_list *
2249 output_lc_psprel (offset)
2250 unsigned int offset;
2251 {
2252 unw_rec_list *ptr = alloc_record (lc_psprel);
2253 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2254 return ptr;
2255 }
2256
2257 static unw_rec_list *
2258 output_lc_sprel (offset)
2259 unsigned int offset;
2260 {
2261 unw_rec_list *ptr = alloc_record (lc_sprel);
2262 ptr->r.record.p.off.sp = offset / 4;
2263 return ptr;
2264 }
2265
2266 static unw_rec_list *
2267 output_fpsr_when ()
2268 {
2269 unw_rec_list *ptr = alloc_record (fpsr_when);
2270 return ptr;
2271 }
2272
2273 static unw_rec_list *
2274 output_fpsr_gr (gr)
2275 unsigned int gr;
2276 {
2277 unw_rec_list *ptr = alloc_record (fpsr_gr);
2278 ptr->r.record.p.r.gr = gr;
2279 return ptr;
2280 }
2281
2282 static unw_rec_list *
2283 output_fpsr_psprel (offset)
2284 unsigned int offset;
2285 {
2286 unw_rec_list *ptr = alloc_record (fpsr_psprel);
2287 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2288 return ptr;
2289 }
2290
2291 static unw_rec_list *
2292 output_fpsr_sprel (offset)
2293 unsigned int offset;
2294 {
2295 unw_rec_list *ptr = alloc_record (fpsr_sprel);
2296 ptr->r.record.p.off.sp = offset / 4;
2297 return ptr;
2298 }
2299
2300 static unw_rec_list *
2301 output_priunat_when_gr ()
2302 {
2303 unw_rec_list *ptr = alloc_record (priunat_when_gr);
2304 return ptr;
2305 }
2306
2307 static unw_rec_list *
2308 output_priunat_when_mem ()
2309 {
2310 unw_rec_list *ptr = alloc_record (priunat_when_mem);
2311 return ptr;
2312 }
2313
2314 static unw_rec_list *
2315 output_priunat_gr (gr)
2316 unsigned int gr;
2317 {
2318 unw_rec_list *ptr = alloc_record (priunat_gr);
2319 ptr->r.record.p.r.gr = gr;
2320 return ptr;
2321 }
2322
2323 static unw_rec_list *
2324 output_priunat_psprel (offset)
2325 unsigned int offset;
2326 {
2327 unw_rec_list *ptr = alloc_record (priunat_psprel);
2328 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2329 return ptr;
2330 }
2331
2332 static unw_rec_list *
2333 output_priunat_sprel (offset)
2334 unsigned int offset;
2335 {
2336 unw_rec_list *ptr = alloc_record (priunat_sprel);
2337 ptr->r.record.p.off.sp = offset / 4;
2338 return ptr;
2339 }
2340
2341 static unw_rec_list *
2342 output_bsp_when ()
2343 {
2344 unw_rec_list *ptr = alloc_record (bsp_when);
2345 return ptr;
2346 }
2347
2348 static unw_rec_list *
2349 output_bsp_gr (gr)
2350 unsigned int gr;
2351 {
2352 unw_rec_list *ptr = alloc_record (bsp_gr);
2353 ptr->r.record.p.r.gr = gr;
2354 return ptr;
2355 }
2356
2357 static unw_rec_list *
2358 output_bsp_psprel (offset)
2359 unsigned int offset;
2360 {
2361 unw_rec_list *ptr = alloc_record (bsp_psprel);
2362 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2363 return ptr;
2364 }
2365
2366 static unw_rec_list *
2367 output_bsp_sprel (offset)
2368 unsigned int offset;
2369 {
2370 unw_rec_list *ptr = alloc_record (bsp_sprel);
2371 ptr->r.record.p.off.sp = offset / 4;
2372 return ptr;
2373 }
2374
2375 static unw_rec_list *
2376 output_bspstore_when ()
2377 {
2378 unw_rec_list *ptr = alloc_record (bspstore_when);
2379 return ptr;
2380 }
2381
2382 static unw_rec_list *
2383 output_bspstore_gr (gr)
2384 unsigned int gr;
2385 {
2386 unw_rec_list *ptr = alloc_record (bspstore_gr);
2387 ptr->r.record.p.r.gr = gr;
2388 return ptr;
2389 }
2390
2391 static unw_rec_list *
2392 output_bspstore_psprel (offset)
2393 unsigned int offset;
2394 {
2395 unw_rec_list *ptr = alloc_record (bspstore_psprel);
2396 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2397 return ptr;
2398 }
2399
2400 static unw_rec_list *
2401 output_bspstore_sprel (offset)
2402 unsigned int offset;
2403 {
2404 unw_rec_list *ptr = alloc_record (bspstore_sprel);
2405 ptr->r.record.p.off.sp = offset / 4;
2406 return ptr;
2407 }
2408
2409 static unw_rec_list *
2410 output_rnat_when ()
2411 {
2412 unw_rec_list *ptr = alloc_record (rnat_when);
2413 return ptr;
2414 }
2415
2416 static unw_rec_list *
2417 output_rnat_gr (gr)
2418 unsigned int gr;
2419 {
2420 unw_rec_list *ptr = alloc_record (rnat_gr);
2421 ptr->r.record.p.r.gr = gr;
2422 return ptr;
2423 }
2424
2425 static unw_rec_list *
2426 output_rnat_psprel (offset)
2427 unsigned int offset;
2428 {
2429 unw_rec_list *ptr = alloc_record (rnat_psprel);
2430 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2431 return ptr;
2432 }
2433
2434 static unw_rec_list *
2435 output_rnat_sprel (offset)
2436 unsigned int offset;
2437 {
2438 unw_rec_list *ptr = alloc_record (rnat_sprel);
2439 ptr->r.record.p.off.sp = offset / 4;
2440 return ptr;
2441 }
2442
2443 static unw_rec_list *
2444 output_unwabi (abi, context)
2445 unsigned long abi;
2446 unsigned long context;
2447 {
2448 unw_rec_list *ptr = alloc_record (unwabi);
2449 ptr->r.record.p.abi = abi;
2450 ptr->r.record.p.context = context;
2451 return ptr;
2452 }
2453
2454 static unw_rec_list *
2455 output_epilogue (unsigned long ecount)
2456 {
2457 unw_rec_list *ptr = alloc_record (epilogue);
2458 ptr->r.record.b.ecount = ecount;
2459 return ptr;
2460 }
2461
2462 static unw_rec_list *
2463 output_label_state (unsigned long label)
2464 {
2465 unw_rec_list *ptr = alloc_record (label_state);
2466 ptr->r.record.b.label = label;
2467 return ptr;
2468 }
2469
2470 static unw_rec_list *
2471 output_copy_state (unsigned long label)
2472 {
2473 unw_rec_list *ptr = alloc_record (copy_state);
2474 ptr->r.record.b.label = label;
2475 return ptr;
2476 }
2477
2478 static unw_rec_list *
2479 output_spill_psprel (ab, reg, offset, predicate)
2480 unsigned int ab;
2481 unsigned int reg;
2482 unsigned int offset;
2483 unsigned int predicate;
2484 {
2485 unw_rec_list *ptr = alloc_record (predicate ? spill_psprel_p : spill_psprel);
2486 ptr->r.record.x.ab = ab;
2487 ptr->r.record.x.reg = reg;
2488 ptr->r.record.x.where.pspoff = ENCODED_PSP_OFFSET (offset);
2489 ptr->r.record.x.qp = predicate;
2490 return ptr;
2491 }
2492
2493 static unw_rec_list *
2494 output_spill_sprel (ab, reg, offset, predicate)
2495 unsigned int ab;
2496 unsigned int reg;
2497 unsigned int offset;
2498 unsigned int predicate;
2499 {
2500 unw_rec_list *ptr = alloc_record (predicate ? spill_sprel_p : spill_sprel);
2501 ptr->r.record.x.ab = ab;
2502 ptr->r.record.x.reg = reg;
2503 ptr->r.record.x.where.spoff = offset / 4;
2504 ptr->r.record.x.qp = predicate;
2505 return ptr;
2506 }
2507
2508 static unw_rec_list *
2509 output_spill_reg (ab, reg, targ_reg, xy, predicate)
2510 unsigned int ab;
2511 unsigned int reg;
2512 unsigned int targ_reg;
2513 unsigned int xy;
2514 unsigned int predicate;
2515 {
2516 unw_rec_list *ptr = alloc_record (predicate ? spill_reg_p : spill_reg);
2517 ptr->r.record.x.ab = ab;
2518 ptr->r.record.x.reg = reg;
2519 ptr->r.record.x.where.reg = targ_reg;
2520 ptr->r.record.x.xy = xy;
2521 ptr->r.record.x.qp = predicate;
2522 return ptr;
2523 }
2524
2525 /* Given a unw_rec_list process the correct format with the
2526 specified function. */
2527
2528 static void
2529 process_one_record (ptr, f)
2530 unw_rec_list *ptr;
2531 vbyte_func f;
2532 {
2533 unsigned int fr_mask, gr_mask;
2534
2535 switch (ptr->r.type)
2536 {
2537 /* This is a dummy record that takes up no space in the output. */
2538 case endp:
2539 break;
2540
2541 case gr_mem:
2542 case fr_mem:
2543 case br_mem:
2544 case frgr_mem:
2545 /* These are taken care of by prologue/prologue_gr. */
2546 break;
2547
2548 case prologue_gr:
2549 case prologue:
2550 if (ptr->r.type == prologue_gr)
2551 output_R2_format (f, ptr->r.record.r.grmask,
2552 ptr->r.record.r.grsave, ptr->r.record.r.rlen);
2553 else
2554 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2555
2556 /* Output descriptor(s) for union of register spills (if any). */
2557 gr_mask = ptr->r.record.r.mask.gr_mem;
2558 fr_mask = ptr->r.record.r.mask.fr_mem;
2559 if (fr_mask)
2560 {
2561 if ((fr_mask & ~0xfUL) == 0)
2562 output_P6_format (f, fr_mem, fr_mask);
2563 else
2564 {
2565 output_P5_format (f, gr_mask, fr_mask);
2566 gr_mask = 0;
2567 }
2568 }
2569 if (gr_mask)
2570 output_P6_format (f, gr_mem, gr_mask);
2571 if (ptr->r.record.r.mask.br_mem)
2572 output_P1_format (f, ptr->r.record.r.mask.br_mem);
2573
2574 /* output imask descriptor if necessary: */
2575 if (ptr->r.record.r.mask.i)
2576 output_P4_format (f, ptr->r.record.r.mask.i,
2577 ptr->r.record.r.imask_size);
2578 break;
2579
2580 case body:
2581 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2582 break;
2583 case mem_stack_f:
2584 case mem_stack_v:
2585 output_P7_format (f, ptr->r.type, ptr->r.record.p.t,
2586 ptr->r.record.p.size);
2587 break;
2588 case psp_gr:
2589 case rp_gr:
2590 case pfs_gr:
2591 case preds_gr:
2592 case unat_gr:
2593 case lc_gr:
2594 case fpsr_gr:
2595 case priunat_gr:
2596 case bsp_gr:
2597 case bspstore_gr:
2598 case rnat_gr:
2599 output_P3_format (f, ptr->r.type, ptr->r.record.p.r.gr);
2600 break;
2601 case rp_br:
2602 output_P3_format (f, rp_br, ptr->r.record.p.r.br);
2603 break;
2604 case psp_sprel:
2605 output_P7_format (f, psp_sprel, ptr->r.record.p.off.sp, 0);
2606 break;
2607 case rp_when:
2608 case pfs_when:
2609 case preds_when:
2610 case unat_when:
2611 case lc_when:
2612 case fpsr_when:
2613 output_P7_format (f, ptr->r.type, ptr->r.record.p.t, 0);
2614 break;
2615 case rp_psprel:
2616 case pfs_psprel:
2617 case preds_psprel:
2618 case unat_psprel:
2619 case lc_psprel:
2620 case fpsr_psprel:
2621 case spill_base:
2622 output_P7_format (f, ptr->r.type, ptr->r.record.p.off.psp, 0);
2623 break;
2624 case rp_sprel:
2625 case pfs_sprel:
2626 case preds_sprel:
2627 case unat_sprel:
2628 case lc_sprel:
2629 case fpsr_sprel:
2630 case priunat_sprel:
2631 case bsp_sprel:
2632 case bspstore_sprel:
2633 case rnat_sprel:
2634 output_P8_format (f, ptr->r.type, ptr->r.record.p.off.sp);
2635 break;
2636 case gr_gr:
2637 if (ptr->r.record.p.r.gr < REG_NUM)
2638 {
2639 const unw_rec_list *cur = ptr;
2640
2641 gr_mask = cur->r.record.p.grmask;
2642 while ((cur = cur->r.record.p.next) != NULL)
2643 gr_mask |= cur->r.record.p.grmask;
2644 output_P9_format (f, gr_mask, ptr->r.record.p.r.gr);
2645 }
2646 break;
2647 case br_gr:
2648 if (ptr->r.record.p.r.gr < REG_NUM)
2649 {
2650 const unw_rec_list *cur = ptr;
2651
2652 gr_mask = cur->r.record.p.brmask;
2653 while ((cur = cur->r.record.p.next) != NULL)
2654 gr_mask |= cur->r.record.p.brmask;
2655 output_P2_format (f, gr_mask, ptr->r.record.p.r.gr);
2656 }
2657 break;
2658 case spill_mask:
2659 as_bad ("spill_mask record unimplemented.");
2660 break;
2661 case priunat_when_gr:
2662 case priunat_when_mem:
2663 case bsp_when:
2664 case bspstore_when:
2665 case rnat_when:
2666 output_P8_format (f, ptr->r.type, ptr->r.record.p.t);
2667 break;
2668 case priunat_psprel:
2669 case bsp_psprel:
2670 case bspstore_psprel:
2671 case rnat_psprel:
2672 output_P8_format (f, ptr->r.type, ptr->r.record.p.off.psp);
2673 break;
2674 case unwabi:
2675 output_P10_format (f, ptr->r.record.p.abi, ptr->r.record.p.context);
2676 break;
2677 case epilogue:
2678 output_B3_format (f, ptr->r.record.b.ecount, ptr->r.record.b.t);
2679 break;
2680 case label_state:
2681 case copy_state:
2682 output_B4_format (f, ptr->r.type, ptr->r.record.b.label);
2683 break;
2684 case spill_psprel:
2685 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2686 ptr->r.record.x.reg, ptr->r.record.x.t,
2687 ptr->r.record.x.where.pspoff);
2688 break;
2689 case spill_sprel:
2690 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2691 ptr->r.record.x.reg, ptr->r.record.x.t,
2692 ptr->r.record.x.where.spoff);
2693 break;
2694 case spill_reg:
2695 output_X2_format (f, ptr->r.record.x.ab, ptr->r.record.x.reg,
2696 ptr->r.record.x.xy >> 1, ptr->r.record.x.xy,
2697 ptr->r.record.x.where.reg, ptr->r.record.x.t);
2698 break;
2699 case spill_psprel_p:
2700 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2701 ptr->r.record.x.ab, ptr->r.record.x.reg,
2702 ptr->r.record.x.t, ptr->r.record.x.where.pspoff);
2703 break;
2704 case spill_sprel_p:
2705 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2706 ptr->r.record.x.ab, ptr->r.record.x.reg,
2707 ptr->r.record.x.t, ptr->r.record.x.where.spoff);
2708 break;
2709 case spill_reg_p:
2710 output_X4_format (f, ptr->r.record.x.qp, ptr->r.record.x.ab,
2711 ptr->r.record.x.reg, ptr->r.record.x.xy >> 1,
2712 ptr->r.record.x.xy, ptr->r.record.x.where.reg,
2713 ptr->r.record.x.t);
2714 break;
2715 default:
2716 as_bad ("record_type_not_valid");
2717 break;
2718 }
2719 }
2720
2721 /* Given a unw_rec_list list, process all the records with
2722 the specified function. */
2723 static void
2724 process_unw_records (list, f)
2725 unw_rec_list *list;
2726 vbyte_func f;
2727 {
2728 unw_rec_list *ptr;
2729 for (ptr = list; ptr; ptr = ptr->next)
2730 process_one_record (ptr, f);
2731 }
2732
2733 /* Determine the size of a record list in bytes. */
2734 static int
2735 calc_record_size (list)
2736 unw_rec_list *list;
2737 {
2738 vbyte_count = 0;
2739 process_unw_records (list, count_output);
2740 return vbyte_count;
2741 }
2742
2743 /* Return the number of bits set in the input value.
2744 Perhaps this has a better place... */
2745 #if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)
2746 # define popcount __builtin_popcount
2747 #else
2748 static int
2749 popcount (unsigned x)
2750 {
2751 static const unsigned char popcnt[16] =
2752 {
2753 0, 1, 1, 2,
2754 1, 2, 2, 3,
2755 1, 2, 2, 3,
2756 2, 3, 3, 4
2757 };
2758
2759 if (x < NELEMS (popcnt))
2760 return popcnt[x];
2761 return popcnt[x % NELEMS (popcnt)] + popcount (x / NELEMS (popcnt));
2762 }
2763 #endif
2764
2765 /* Update IMASK bitmask to reflect the fact that one or more registers
2766 of type TYPE are saved starting at instruction with index T. If N
2767 bits are set in REGMASK, it is assumed that instructions T through
2768 T+N-1 save these registers.
2769
2770 TYPE values:
2771 0: no save
2772 1: instruction saves next fp reg
2773 2: instruction saves next general reg
2774 3: instruction saves next branch reg */
2775 static void
2776 set_imask (region, regmask, t, type)
2777 unw_rec_list *region;
2778 unsigned long regmask;
2779 unsigned long t;
2780 unsigned int type;
2781 {
2782 unsigned char *imask;
2783 unsigned long imask_size;
2784 unsigned int i;
2785 int pos;
2786
2787 imask = region->r.record.r.mask.i;
2788 imask_size = region->r.record.r.imask_size;
2789 if (!imask)
2790 {
2791 imask_size = (region->r.record.r.rlen * 2 + 7) / 8 + 1;
2792 imask = xmalloc (imask_size);
2793 memset (imask, 0, imask_size);
2794
2795 region->r.record.r.imask_size = imask_size;
2796 region->r.record.r.mask.i = imask;
2797 }
2798
2799 i = (t / 4) + 1;
2800 pos = 2 * (3 - t % 4);
2801 while (regmask)
2802 {
2803 if (i >= imask_size)
2804 {
2805 as_bad ("Ignoring attempt to spill beyond end of region");
2806 return;
2807 }
2808
2809 imask[i] |= (type & 0x3) << pos;
2810
2811 regmask &= (regmask - 1);
2812 pos -= 2;
2813 if (pos < 0)
2814 {
2815 pos = 0;
2816 ++i;
2817 }
2818 }
2819 }
2820
2821 /* Return the number of instruction slots from FIRST_ADDR to SLOT_ADDR.
2822 SLOT_FRAG is the frag containing SLOT_ADDR, and FIRST_FRAG is the frag
2823 containing FIRST_ADDR. If BEFORE_RELAX, then we use worst-case estimates
2824 for frag sizes. */
2825
2826 unsigned long
2827 slot_index (slot_addr, slot_frag, first_addr, first_frag, before_relax)
2828 unsigned long slot_addr;
2829 fragS *slot_frag;
2830 unsigned long first_addr;
2831 fragS *first_frag;
2832 int before_relax;
2833 {
2834 unsigned long index = 0;
2835
2836 /* First time we are called, the initial address and frag are invalid. */
2837 if (first_addr == 0)
2838 return 0;
2839
2840 /* If the two addresses are in different frags, then we need to add in
2841 the remaining size of this frag, and then the entire size of intermediate
2842 frags. */
2843 while (slot_frag != first_frag)
2844 {
2845 unsigned long start_addr = (unsigned long) &first_frag->fr_literal;
2846
2847 if (! before_relax)
2848 {
2849 /* We can get the final addresses only during and after
2850 relaxation. */
2851 if (first_frag->fr_next && first_frag->fr_next->fr_address)
2852 index += 3 * ((first_frag->fr_next->fr_address
2853 - first_frag->fr_address
2854 - first_frag->fr_fix) >> 4);
2855 }
2856 else
2857 /* We don't know what the final addresses will be. We try our
2858 best to estimate. */
2859 switch (first_frag->fr_type)
2860 {
2861 default:
2862 break;
2863
2864 case rs_space:
2865 as_fatal ("only constant space allocation is supported");
2866 break;
2867
2868 case rs_align:
2869 case rs_align_code:
2870 case rs_align_test:
2871 /* Take alignment into account. Assume the worst case
2872 before relaxation. */
2873 index += 3 * ((1 << first_frag->fr_offset) >> 4);
2874 break;
2875
2876 case rs_org:
2877 if (first_frag->fr_symbol)
2878 {
2879 as_fatal ("only constant offsets are supported");
2880 break;
2881 }
2882 case rs_fill:
2883 index += 3 * (first_frag->fr_offset >> 4);
2884 break;
2885 }
2886
2887 /* Add in the full size of the frag converted to instruction slots. */
2888 index += 3 * (first_frag->fr_fix >> 4);
2889 /* Subtract away the initial part before first_addr. */
2890 index -= (3 * ((first_addr >> 4) - (start_addr >> 4))
2891 + ((first_addr & 0x3) - (start_addr & 0x3)));
2892
2893 /* Move to the beginning of the next frag. */
2894 first_frag = first_frag->fr_next;
2895 first_addr = (unsigned long) &first_frag->fr_literal;
2896
2897 /* This can happen if there is section switching in the middle of a
2898 function, causing the frag chain for the function to be broken. */
2899 if (first_frag == NULL)
2900 {
2901 /* We get six warnings for one problem, because of the loop in
2902 fixup_unw_records, and because fixup_unw_records is called 3
2903 times: once before creating the variant frag, once to estimate
2904 its size, and once to relax it. This is unreasonable, so we use
2905 a static var to make sure we only emit the warning once. */
2906 static int warned = 0;
2907
2908 if (!warned)
2909 {
2910 as_warn ("Corrupted unwind info due to unsupported section switching");
2911 warned = 1;
2912 }
2913
2914 return index;
2915 }
2916 }
2917
2918 /* Add in the used part of the last frag. */
2919 index += (3 * ((slot_addr >> 4) - (first_addr >> 4))
2920 + ((slot_addr & 0x3) - (first_addr & 0x3)));
2921 return index;
2922 }
2923
2924 /* Optimize unwind record directives. */
2925
2926 static unw_rec_list *
2927 optimize_unw_records (list)
2928 unw_rec_list *list;
2929 {
2930 if (!list)
2931 return NULL;
2932
2933 /* If the only unwind record is ".prologue" or ".prologue" followed
2934 by ".body", then we can optimize the unwind directives away. */
2935 if (list->r.type == prologue
2936 && (list->next->r.type == endp
2937 || (list->next->r.type == body && list->next->next->r.type == endp)))
2938 return NULL;
2939
2940 return list;
2941 }
2942
2943 /* Given a complete record list, process any records which have
2944 unresolved fields, (ie length counts for a prologue). After
2945 this has been run, all necessary information should be available
2946 within each record to generate an image. */
2947
2948 static void
2949 fixup_unw_records (list, before_relax)
2950 unw_rec_list *list;
2951 int before_relax;
2952 {
2953 unw_rec_list *ptr, *region = 0;
2954 unsigned long first_addr = 0, rlen = 0, t;
2955 fragS *first_frag = 0;
2956
2957 for (ptr = list; ptr; ptr = ptr->next)
2958 {
2959 if (ptr->slot_number == SLOT_NUM_NOT_SET)
2960 as_bad (" Insn slot not set in unwind record.");
2961 t = slot_index (ptr->slot_number, ptr->slot_frag,
2962 first_addr, first_frag, before_relax);
2963 switch (ptr->r.type)
2964 {
2965 case prologue:
2966 case prologue_gr:
2967 case body:
2968 {
2969 unw_rec_list *last;
2970 int size;
2971 unsigned long last_addr = 0;
2972 fragS *last_frag = NULL;
2973
2974 first_addr = ptr->slot_number;
2975 first_frag = ptr->slot_frag;
2976 /* Find either the next body/prologue start, or the end of
2977 the function, and determine the size of the region. */
2978 for (last = ptr->next; last != NULL; last = last->next)
2979 if (last->r.type == prologue || last->r.type == prologue_gr
2980 || last->r.type == body || last->r.type == endp)
2981 {
2982 last_addr = last->slot_number;
2983 last_frag = last->slot_frag;
2984 break;
2985 }
2986 size = slot_index (last_addr, last_frag, first_addr, first_frag,
2987 before_relax);
2988 rlen = ptr->r.record.r.rlen = size;
2989 if (ptr->r.type == body)
2990 /* End of region. */
2991 region = 0;
2992 else
2993 region = ptr;
2994 break;
2995 }
2996 case epilogue:
2997 if (t < rlen)
2998 ptr->r.record.b.t = rlen - 1 - t;
2999 else
3000 /* This happens when a memory-stack-less procedure uses a
3001 ".restore sp" directive at the end of a region to pop
3002 the frame state. */
3003 ptr->r.record.b.t = 0;
3004 break;
3005
3006 case mem_stack_f:
3007 case mem_stack_v:
3008 case rp_when:
3009 case pfs_when:
3010 case preds_when:
3011 case unat_when:
3012 case lc_when:
3013 case fpsr_when:
3014 case priunat_when_gr:
3015 case priunat_when_mem:
3016 case bsp_when:
3017 case bspstore_when:
3018 case rnat_when:
3019 ptr->r.record.p.t = t;
3020 break;
3021
3022 case spill_reg:
3023 case spill_sprel:
3024 case spill_psprel:
3025 case spill_reg_p:
3026 case spill_sprel_p:
3027 case spill_psprel_p:
3028 ptr->r.record.x.t = t;
3029 break;
3030
3031 case frgr_mem:
3032 if (!region)
3033 {
3034 as_bad ("frgr_mem record before region record!");
3035 return;
3036 }
3037 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
3038 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
3039 set_imask (region, ptr->r.record.p.frmask, t, 1);
3040 set_imask (region, ptr->r.record.p.grmask, t, 2);
3041 break;
3042 case fr_mem:
3043 if (!region)
3044 {
3045 as_bad ("fr_mem record before region record!");
3046 return;
3047 }
3048 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
3049 set_imask (region, ptr->r.record.p.frmask, t, 1);
3050 break;
3051 case gr_mem:
3052 if (!region)
3053 {
3054 as_bad ("gr_mem record before region record!");
3055 return;
3056 }
3057 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
3058 set_imask (region, ptr->r.record.p.grmask, t, 2);
3059 break;
3060 case br_mem:
3061 if (!region)
3062 {
3063 as_bad ("br_mem record before region record!");
3064 return;
3065 }
3066 region->r.record.r.mask.br_mem |= ptr->r.record.p.brmask;
3067 set_imask (region, ptr->r.record.p.brmask, t, 3);
3068 break;
3069
3070 case gr_gr:
3071 if (!region)
3072 {
3073 as_bad ("gr_gr record before region record!");
3074 return;
3075 }
3076 set_imask (region, ptr->r.record.p.grmask, t, 2);
3077 break;
3078 case br_gr:
3079 if (!region)
3080 {
3081 as_bad ("br_gr record before region record!");
3082 return;
3083 }
3084 set_imask (region, ptr->r.record.p.brmask, t, 3);
3085 break;
3086
3087 default:
3088 break;
3089 }
3090 }
3091 }
3092
3093 /* Estimate the size of a frag before relaxing. We only have one type of frag
3094 to handle here, which is the unwind info frag. */
3095
3096 int
3097 ia64_estimate_size_before_relax (fragS *frag,
3098 asection *segtype ATTRIBUTE_UNUSED)
3099 {
3100 unw_rec_list *list;
3101 int len, size, pad;
3102
3103 /* ??? This code is identical to the first part of ia64_convert_frag. */
3104 list = (unw_rec_list *) frag->fr_opcode;
3105 fixup_unw_records (list, 0);
3106
3107 len = calc_record_size (list);
3108 /* pad to pointer-size boundary. */
3109 pad = len % md.pointer_size;
3110 if (pad != 0)
3111 len += md.pointer_size - pad;
3112 /* Add 8 for the header. */
3113 size = len + 8;
3114 /* Add a pointer for the personality offset. */
3115 if (frag->fr_offset)
3116 size += md.pointer_size;
3117
3118 /* fr_var carries the max_chars that we created the fragment with.
3119 We must, of course, have allocated enough memory earlier. */
3120 assert (frag->fr_var >= size);
3121
3122 return frag->fr_fix + size;
3123 }
3124
3125 /* This function converts a rs_machine_dependent variant frag into a
3126 normal fill frag with the unwind image from the the record list. */
3127 void
3128 ia64_convert_frag (fragS *frag)
3129 {
3130 unw_rec_list *list;
3131 int len, size, pad;
3132 valueT flag_value;
3133
3134 /* ??? This code is identical to ia64_estimate_size_before_relax. */
3135 list = (unw_rec_list *) frag->fr_opcode;
3136 fixup_unw_records (list, 0);
3137
3138 len = calc_record_size (list);
3139 /* pad to pointer-size boundary. */
3140 pad = len % md.pointer_size;
3141 if (pad != 0)
3142 len += md.pointer_size - pad;
3143 /* Add 8 for the header. */
3144 size = len + 8;
3145 /* Add a pointer for the personality offset. */
3146 if (frag->fr_offset)
3147 size += md.pointer_size;
3148
3149 /* fr_var carries the max_chars that we created the fragment with.
3150 We must, of course, have allocated enough memory earlier. */
3151 assert (frag->fr_var >= size);
3152
3153 /* Initialize the header area. fr_offset is initialized with
3154 unwind.personality_routine. */
3155 if (frag->fr_offset)
3156 {
3157 if (md.flags & EF_IA_64_ABI64)
3158 flag_value = (bfd_vma) 3 << 32;
3159 else
3160 /* 32-bit unwind info block. */
3161 flag_value = (bfd_vma) 0x1003 << 32;
3162 }
3163 else
3164 flag_value = 0;
3165
3166 md_number_to_chars (frag->fr_literal,
3167 (((bfd_vma) 1 << 48) /* Version. */
3168 | flag_value /* U & E handler flags. */
3169 | (len / md.pointer_size)), /* Length. */
3170 8);
3171
3172 /* Skip the header. */
3173 vbyte_mem_ptr = frag->fr_literal + 8;
3174 process_unw_records (list, output_vbyte_mem);
3175
3176 /* Fill the padding bytes with zeros. */
3177 if (pad != 0)
3178 md_number_to_chars (frag->fr_literal + len + 8 - md.pointer_size + pad, 0,
3179 md.pointer_size - pad);
3180
3181 frag->fr_fix += size;
3182 frag->fr_type = rs_fill;
3183 frag->fr_var = 0;
3184 frag->fr_offset = 0;
3185 }
3186
3187 static int
3188 parse_predicate_and_operand (e, qp, po)
3189 expressionS * e;
3190 unsigned * qp;
3191 const char * po;
3192 {
3193 int sep = parse_operand (e, ',');
3194
3195 *qp = e->X_add_number - REG_P;
3196 if (e->X_op != O_register || *qp > 63)
3197 {
3198 as_bad ("First operand to .%s must be a predicate", po);
3199 *qp = 0;
3200 }
3201 else if (*qp == 0)
3202 as_warn ("Pointless use of p0 as first operand to .%s", po);
3203 if (sep == ',')
3204 sep = parse_operand (e, ',');
3205 else
3206 e->X_op = O_absent;
3207 return sep;
3208 }
3209
3210 static void
3211 convert_expr_to_ab_reg (e, ab, regp, po, n)
3212 const expressionS *e;
3213 unsigned int *ab;
3214 unsigned int *regp;
3215 const char * po;
3216 int n;
3217 {
3218 unsigned int reg = e->X_add_number;
3219
3220 *ab = *regp = 0; /* Anything valid is good here. */
3221
3222 if (e->X_op != O_register)
3223 reg = REG_GR; /* Anything invalid is good here. */
3224
3225 if (reg >= (REG_GR + 4) && reg <= (REG_GR + 7))
3226 {
3227 *ab = 0;
3228 *regp = reg - REG_GR;
3229 }
3230 else if ((reg >= (REG_FR + 2) && reg <= (REG_FR + 5))
3231 || (reg >= (REG_FR + 16) && reg <= (REG_FR + 31)))
3232 {
3233 *ab = 1;
3234 *regp = reg - REG_FR;
3235 }
3236 else if (reg >= (REG_BR + 1) && reg <= (REG_BR + 5))
3237 {
3238 *ab = 2;
3239 *regp = reg - REG_BR;
3240 }
3241 else
3242 {
3243 *ab = 3;
3244 switch (reg)
3245 {
3246 case REG_PR: *regp = 0; break;
3247 case REG_PSP: *regp = 1; break;
3248 case REG_PRIUNAT: *regp = 2; break;
3249 case REG_BR + 0: *regp = 3; break;
3250 case REG_AR + AR_BSP: *regp = 4; break;
3251 case REG_AR + AR_BSPSTORE: *regp = 5; break;
3252 case REG_AR + AR_RNAT: *regp = 6; break;
3253 case REG_AR + AR_UNAT: *regp = 7; break;
3254 case REG_AR + AR_FPSR: *regp = 8; break;
3255 case REG_AR + AR_PFS: *regp = 9; break;
3256 case REG_AR + AR_LC: *regp = 10; break;
3257
3258 default:
3259 as_bad ("Operand %d to .%s must be a preserved register", n, po);
3260 break;
3261 }
3262 }
3263 }
3264
3265 static void
3266 convert_expr_to_xy_reg (e, xy, regp, po, n)
3267 const expressionS *e;
3268 unsigned int *xy;
3269 unsigned int *regp;
3270 const char * po;
3271 int n;
3272 {
3273 unsigned int reg = e->X_add_number;
3274
3275 *xy = *regp = 0; /* Anything valid is good here. */
3276
3277 if (e->X_op != O_register)
3278 reg = REG_GR; /* Anything invalid is good here. */
3279
3280 if (reg >= (REG_GR + 1) && reg <= (REG_GR + 127))
3281 {
3282 *xy = 0;
3283 *regp = reg - REG_GR;
3284 }
3285 else if (reg >= (REG_FR + 2) && reg <= (REG_FR + 127))
3286 {
3287 *xy = 1;
3288 *regp = reg - REG_FR;
3289 }
3290 else if (reg >= REG_BR && reg <= (REG_BR + 7))
3291 {
3292 *xy = 2;
3293 *regp = reg - REG_BR;
3294 }
3295 else
3296 as_bad ("Operand %d to .%s must be a writable register", n, po);
3297 }
3298
3299 static void
3300 dot_align (int arg)
3301 {
3302 /* The current frag is an alignment frag. */
3303 align_frag = frag_now;
3304 s_align_bytes (arg);
3305 }
3306
3307 static void
3308 dot_radix (dummy)
3309 int dummy ATTRIBUTE_UNUSED;
3310 {
3311 char *radix;
3312 int ch;
3313
3314 SKIP_WHITESPACE ();
3315
3316 if (is_it_end_of_statement ())
3317 return;
3318 radix = input_line_pointer;
3319 ch = get_symbol_end ();
3320 ia64_canonicalize_symbol_name (radix);
3321 if (strcasecmp (radix, "C"))
3322 as_bad ("Radix `%s' unsupported or invalid", radix);
3323 *input_line_pointer = ch;
3324 demand_empty_rest_of_line ();
3325 }
3326
3327 /* Helper function for .loc directives. If the assembler is not generating
3328 line number info, then we need to remember which instructions have a .loc
3329 directive, and only call dwarf2_gen_line_info for those instructions. */
3330
3331 static void
3332 dot_loc (int x)
3333 {
3334 CURR_SLOT.loc_directive_seen = 1;
3335 dwarf2_directive_loc (x);
3336 }
3337
3338 /* .sbss, .bss etc. are macros that expand into ".section SECNAME". */
3339 static void
3340 dot_special_section (which)
3341 int which;
3342 {
3343 set_section ((char *) special_section_name[which]);
3344 }
3345
3346 /* Return -1 for warning and 0 for error. */
3347
3348 static int
3349 unwind_diagnostic (const char * region, const char *directive)
3350 {
3351 if (md.unwind_check == unwind_check_warning)
3352 {
3353 as_warn (".%s outside of %s", directive, region);
3354 return -1;
3355 }
3356 else
3357 {
3358 as_bad (".%s outside of %s", directive, region);
3359 ignore_rest_of_line ();
3360 return 0;
3361 }
3362 }
3363
3364 /* Return 1 if a directive is in a procedure, -1 if a directive isn't in
3365 a procedure but the unwind directive check is set to warning, 0 if
3366 a directive isn't in a procedure and the unwind directive check is set
3367 to error. */
3368
3369 static int
3370 in_procedure (const char *directive)
3371 {
3372 if (unwind.proc_pending.sym
3373 && (!unwind.saved_text_seg || strcmp (directive, "endp") == 0))
3374 return 1;
3375 return unwind_diagnostic ("procedure", directive);
3376 }
3377
3378 /* Return 1 if a directive is in a prologue, -1 if a directive isn't in
3379 a prologue but the unwind directive check is set to warning, 0 if
3380 a directive isn't in a prologue and the unwind directive check is set
3381 to error. */
3382
3383 static int
3384 in_prologue (const char *directive)
3385 {
3386 int in = in_procedure (directive);
3387
3388 if (in > 0 && !unwind.prologue)
3389 in = unwind_diagnostic ("prologue", directive);
3390 check_pending_save ();
3391 return in;
3392 }
3393
3394 /* Return 1 if a directive is in a body, -1 if a directive isn't in
3395 a body but the unwind directive check is set to warning, 0 if
3396 a directive isn't in a body and the unwind directive check is set
3397 to error. */
3398
3399 static int
3400 in_body (const char *directive)
3401 {
3402 int in = in_procedure (directive);
3403
3404 if (in > 0 && !unwind.body)
3405 in = unwind_diagnostic ("body region", directive);
3406 return in;
3407 }
3408
3409 static void
3410 add_unwind_entry (ptr, sep)
3411 unw_rec_list *ptr;
3412 int sep;
3413 {
3414 if (ptr)
3415 {
3416 if (unwind.tail)
3417 unwind.tail->next = ptr;
3418 else
3419 unwind.list = ptr;
3420 unwind.tail = ptr;
3421
3422 /* The current entry can in fact be a chain of unwind entries. */
3423 if (unwind.current_entry == NULL)
3424 unwind.current_entry = ptr;
3425 }
3426
3427 /* The current entry can in fact be a chain of unwind entries. */
3428 if (unwind.current_entry == NULL)
3429 unwind.current_entry = ptr;
3430
3431 if (sep == ',')
3432 {
3433 /* Parse a tag permitted for the current directive. */
3434 int ch;
3435
3436 SKIP_WHITESPACE ();
3437 ch = get_symbol_end ();
3438 /* FIXME: For now, just issue a warning that this isn't implemented. */
3439 {
3440 static int warned;
3441
3442 if (!warned)
3443 {
3444 warned = 1;
3445 as_warn ("Tags on unwind pseudo-ops aren't supported, yet");
3446 }
3447 }
3448 *input_line_pointer = ch;
3449 }
3450 if (sep != NOT_A_CHAR)
3451 demand_empty_rest_of_line ();
3452 }
3453
3454 static void
3455 dot_fframe (dummy)
3456 int dummy ATTRIBUTE_UNUSED;
3457 {
3458 expressionS e;
3459 int sep;
3460
3461 if (!in_prologue ("fframe"))
3462 return;
3463
3464 sep = parse_operand (&e, ',');
3465
3466 if (e.X_op != O_constant)
3467 {
3468 as_bad ("First operand to .fframe must be a constant");
3469 e.X_add_number = 0;
3470 }
3471 add_unwind_entry (output_mem_stack_f (e.X_add_number), sep);
3472 }
3473
3474 static void
3475 dot_vframe (dummy)
3476 int dummy ATTRIBUTE_UNUSED;
3477 {
3478 expressionS e;
3479 unsigned reg;
3480 int sep;
3481
3482 if (!in_prologue ("vframe"))
3483 return;
3484
3485 sep = parse_operand (&e, ',');
3486 reg = e.X_add_number - REG_GR;
3487 if (e.X_op != O_register || reg > 127)
3488 {
3489 as_bad ("First operand to .vframe must be a general register");
3490 reg = 0;
3491 }
3492 add_unwind_entry (output_mem_stack_v (), sep);
3493 if (! (unwind.prologue_mask & 2))
3494 add_unwind_entry (output_psp_gr (reg), NOT_A_CHAR);
3495 else if (reg != unwind.prologue_gr
3496 + (unsigned) popcount (unwind.prologue_mask & (-2 << 1)))
3497 as_warn ("Operand of .vframe contradicts .prologue");
3498 }
3499
3500 static void
3501 dot_vframesp (psp)
3502 int psp;
3503 {
3504 expressionS e;
3505 int sep;
3506
3507 if (psp)
3508 as_warn (".vframepsp is meaningless, assuming .vframesp was meant");
3509
3510 if (!in_prologue ("vframesp"))
3511 return;
3512
3513 sep = parse_operand (&e, ',');
3514 if (e.X_op != O_constant)
3515 {
3516 as_bad ("Operand to .vframesp must be a constant (sp-relative offset)");
3517 e.X_add_number = 0;
3518 }
3519 add_unwind_entry (output_mem_stack_v (), sep);
3520 add_unwind_entry (output_psp_sprel (e.X_add_number), NOT_A_CHAR);
3521 }
3522
3523 static void
3524 dot_save (dummy)
3525 int dummy ATTRIBUTE_UNUSED;
3526 {
3527 expressionS e1, e2;
3528 unsigned reg1, reg2;
3529 int sep;
3530
3531 if (!in_prologue ("save"))
3532 return;
3533
3534 sep = parse_operand (&e1, ',');
3535 if (sep == ',')
3536 sep = parse_operand (&e2, ',');
3537 else
3538 e2.X_op = O_absent;
3539
3540 reg1 = e1.X_add_number;
3541 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3542 if (e1.X_op != O_register)
3543 {
3544 as_bad ("First operand to .save not a register");
3545 reg1 = REG_PR; /* Anything valid is good here. */
3546 }
3547 reg2 = e2.X_add_number - REG_GR;
3548 if (e2.X_op != O_register || reg2 > 127)
3549 {
3550 as_bad ("Second operand to .save not a valid register");
3551 reg2 = 0;
3552 }
3553 switch (reg1)
3554 {
3555 case REG_AR + AR_BSP:
3556 add_unwind_entry (output_bsp_when (), sep);
3557 add_unwind_entry (output_bsp_gr (reg2), NOT_A_CHAR);
3558 break;
3559 case REG_AR + AR_BSPSTORE:
3560 add_unwind_entry (output_bspstore_when (), sep);
3561 add_unwind_entry (output_bspstore_gr (reg2), NOT_A_CHAR);
3562 break;
3563 case REG_AR + AR_RNAT:
3564 add_unwind_entry (output_rnat_when (), sep);
3565 add_unwind_entry (output_rnat_gr (reg2), NOT_A_CHAR);
3566 break;
3567 case REG_AR + AR_UNAT:
3568 add_unwind_entry (output_unat_when (), sep);
3569 add_unwind_entry (output_unat_gr (reg2), NOT_A_CHAR);
3570 break;
3571 case REG_AR + AR_FPSR:
3572 add_unwind_entry (output_fpsr_when (), sep);
3573 add_unwind_entry (output_fpsr_gr (reg2), NOT_A_CHAR);
3574 break;
3575 case REG_AR + AR_PFS:
3576 add_unwind_entry (output_pfs_when (), sep);
3577 if (! (unwind.prologue_mask & 4))
3578 add_unwind_entry (output_pfs_gr (reg2), NOT_A_CHAR);
3579 else if (reg2 != unwind.prologue_gr
3580 + (unsigned) popcount (unwind.prologue_mask & (-4 << 1)))
3581 as_warn ("Second operand of .save contradicts .prologue");
3582 break;
3583 case REG_AR + AR_LC:
3584 add_unwind_entry (output_lc_when (), sep);
3585 add_unwind_entry (output_lc_gr (reg2), NOT_A_CHAR);
3586 break;
3587 case REG_BR:
3588 add_unwind_entry (output_rp_when (), sep);
3589 if (! (unwind.prologue_mask & 8))
3590 add_unwind_entry (output_rp_gr (reg2), NOT_A_CHAR);
3591 else if (reg2 != unwind.prologue_gr)
3592 as_warn ("Second operand of .save contradicts .prologue");
3593 break;
3594 case REG_PR:
3595 add_unwind_entry (output_preds_when (), sep);
3596 if (! (unwind.prologue_mask & 1))
3597 add_unwind_entry (output_preds_gr (reg2), NOT_A_CHAR);
3598 else if (reg2 != unwind.prologue_gr
3599 + (unsigned) popcount (unwind.prologue_mask & (-1 << 1)))
3600 as_warn ("Second operand of .save contradicts .prologue");
3601 break;
3602 case REG_PRIUNAT:
3603 add_unwind_entry (output_priunat_when_gr (), sep);
3604 add_unwind_entry (output_priunat_gr (reg2), NOT_A_CHAR);
3605 break;
3606 default:
3607 as_bad ("First operand to .save not a valid register");
3608 add_unwind_entry (NULL, sep);
3609 break;
3610 }
3611 }
3612
3613 static void
3614 dot_restore (dummy)
3615 int dummy ATTRIBUTE_UNUSED;
3616 {
3617 expressionS e1;
3618 unsigned long ecount; /* # of _additional_ regions to pop */
3619 int sep;
3620
3621 if (!in_body ("restore"))
3622 return;
3623
3624 sep = parse_operand (&e1, ',');
3625 if (e1.X_op != O_register || e1.X_add_number != REG_GR + 12)
3626 as_bad ("First operand to .restore must be stack pointer (sp)");
3627
3628 if (sep == ',')
3629 {
3630 expressionS e2;
3631
3632 sep = parse_operand (&e2, ',');
3633 if (e2.X_op != O_constant || e2.X_add_number < 0)
3634 {
3635 as_bad ("Second operand to .restore must be a constant >= 0");
3636 e2.X_add_number = 0;
3637 }
3638 ecount = e2.X_add_number;
3639 }
3640 else
3641 ecount = unwind.prologue_count - 1;
3642
3643 if (ecount >= unwind.prologue_count)
3644 {
3645 as_bad ("Epilogue count of %lu exceeds number of nested prologues (%u)",
3646 ecount + 1, unwind.prologue_count);
3647 ecount = 0;
3648 }
3649
3650 add_unwind_entry (output_epilogue (ecount), sep);
3651
3652 if (ecount < unwind.prologue_count)
3653 unwind.prologue_count -= ecount + 1;
3654 else
3655 unwind.prologue_count = 0;
3656 }
3657
3658 static void
3659 dot_restorereg (pred)
3660 int pred;
3661 {
3662 unsigned int qp, ab, reg;
3663 expressionS e;
3664 int sep;
3665 const char * const po = pred ? "restorereg.p" : "restorereg";
3666
3667 if (!in_procedure (po))
3668 return;
3669
3670 if (pred)
3671 sep = parse_predicate_and_operand (&e, &qp, po);
3672 else
3673 {
3674 sep = parse_operand (&e, ',');
3675 qp = 0;
3676 }
3677 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
3678
3679 add_unwind_entry (output_spill_reg (ab, reg, 0, 0, qp), sep);
3680 }
3681
3682 static char *special_linkonce_name[] =
3683 {
3684 ".gnu.linkonce.ia64unw.", ".gnu.linkonce.ia64unwi."
3685 };
3686
3687 static void
3688 start_unwind_section (const segT text_seg, int sec_index)
3689 {
3690 /*
3691 Use a slightly ugly scheme to derive the unwind section names from
3692 the text section name:
3693
3694 text sect. unwind table sect.
3695 name: name: comments:
3696 ---------- ----------------- --------------------------------
3697 .text .IA_64.unwind
3698 .text.foo .IA_64.unwind.text.foo
3699 .foo .IA_64.unwind.foo
3700 .gnu.linkonce.t.foo
3701 .gnu.linkonce.ia64unw.foo
3702 _info .IA_64.unwind_info gas issues error message (ditto)
3703 _infoFOO .IA_64.unwind_infoFOO gas issues error message (ditto)
3704
3705 This mapping is done so that:
3706
3707 (a) An object file with unwind info only in .text will use
3708 unwind section names .IA_64.unwind and .IA_64.unwind_info.
3709 This follows the letter of the ABI and also ensures backwards
3710 compatibility with older toolchains.
3711
3712 (b) An object file with unwind info in multiple text sections
3713 will use separate unwind sections for each text section.
3714 This allows us to properly set the "sh_info" and "sh_link"
3715 fields in SHT_IA_64_UNWIND as required by the ABI and also
3716 lets GNU ld support programs with multiple segments
3717 containing unwind info (as might be the case for certain
3718 embedded applications).
3719
3720 (c) An error is issued if there would be a name clash.
3721 */
3722
3723 const char *text_name, *sec_text_name;
3724 char *sec_name;
3725 const char *prefix = special_section_name [sec_index];
3726 const char *suffix;
3727 size_t prefix_len, suffix_len, sec_name_len;
3728
3729 sec_text_name = segment_name (text_seg);
3730 text_name = sec_text_name;
3731 if (strncmp (text_name, "_info", 5) == 0)
3732 {
3733 as_bad ("Illegal section name `%s' (causes unwind section name clash)",
3734 text_name);
3735 ignore_rest_of_line ();
3736 return;
3737 }
3738 if (strcmp (text_name, ".text") == 0)
3739 text_name = "";
3740
3741 /* Build the unwind section name by appending the (possibly stripped)
3742 text section name to the unwind prefix. */
3743 suffix = text_name;
3744 if (strncmp (text_name, ".gnu.linkonce.t.",
3745 sizeof (".gnu.linkonce.t.") - 1) == 0)
3746 {
3747 prefix = special_linkonce_name [sec_index - SPECIAL_SECTION_UNWIND];
3748 suffix += sizeof (".gnu.linkonce.t.") - 1;
3749 }
3750
3751 prefix_len = strlen (prefix);
3752 suffix_len = strlen (suffix);
3753 sec_name_len = prefix_len + suffix_len;
3754 sec_name = alloca (sec_name_len + 1);
3755 memcpy (sec_name, prefix, prefix_len);
3756 memcpy (sec_name + prefix_len, suffix, suffix_len);
3757 sec_name [sec_name_len] = '\0';
3758
3759 /* Handle COMDAT group. */
3760 if ((text_seg->flags & SEC_LINK_ONCE) != 0
3761 && (elf_section_flags (text_seg) & SHF_GROUP) != 0)
3762 {
3763 char *section;
3764 size_t len, group_name_len;
3765 const char *group_name = elf_group_name (text_seg);
3766
3767 if (group_name == NULL)
3768 {
3769 as_bad ("Group section `%s' has no group signature",
3770 sec_text_name);
3771 ignore_rest_of_line ();
3772 return;
3773 }
3774 /* We have to construct a fake section directive. */
3775 group_name_len = strlen (group_name);
3776 len = (sec_name_len
3777 + 16 /* ,"aG",@progbits, */
3778 + group_name_len /* ,group_name */
3779 + 7); /* ,comdat */
3780
3781 section = alloca (len + 1);
3782 memcpy (section, sec_name, sec_name_len);
3783 memcpy (section + sec_name_len, ",\"aG\",@progbits,", 16);
3784 memcpy (section + sec_name_len + 16, group_name, group_name_len);
3785 memcpy (section + len - 7, ",comdat", 7);
3786 section [len] = '\0';
3787 set_section (section);
3788 }
3789 else
3790 {
3791 set_section (sec_name);
3792 bfd_set_section_flags (stdoutput, now_seg,
3793 SEC_LOAD | SEC_ALLOC | SEC_READONLY);
3794 }
3795
3796 elf_linked_to_section (now_seg) = text_seg;
3797 }
3798
3799 static void
3800 generate_unwind_image (const segT text_seg)
3801 {
3802 int size, pad;
3803 unw_rec_list *list;
3804
3805 /* Mark the end of the unwind info, so that we can compute the size of the
3806 last unwind region. */
3807 add_unwind_entry (output_endp (), NOT_A_CHAR);
3808
3809 /* Force out pending instructions, to make sure all unwind records have
3810 a valid slot_number field. */
3811 ia64_flush_insns ();
3812
3813 /* Generate the unwind record. */
3814 list = optimize_unw_records (unwind.list);
3815 fixup_unw_records (list, 1);
3816 size = calc_record_size (list);
3817
3818 if (size > 0 || unwind.force_unwind_entry)
3819 {
3820 unwind.force_unwind_entry = 0;
3821 /* pad to pointer-size boundary. */
3822 pad = size % md.pointer_size;
3823 if (pad != 0)
3824 size += md.pointer_size - pad;
3825 /* Add 8 for the header. */
3826 size += 8;
3827 /* Add a pointer for the personality offset. */
3828 if (unwind.personality_routine)
3829 size += md.pointer_size;
3830 }
3831
3832 /* If there are unwind records, switch sections, and output the info. */
3833 if (size != 0)
3834 {
3835 expressionS exp;
3836 bfd_reloc_code_real_type reloc;
3837
3838 start_unwind_section (text_seg, SPECIAL_SECTION_UNWIND_INFO);
3839
3840 /* Make sure the section has 4 byte alignment for ILP32 and
3841 8 byte alignment for LP64. */
3842 frag_align (md.pointer_size_shift, 0, 0);
3843 record_alignment (now_seg, md.pointer_size_shift);
3844
3845 /* Set expression which points to start of unwind descriptor area. */
3846 unwind.info = expr_build_dot ();
3847
3848 frag_var (rs_machine_dependent, size, size, 0, 0,
3849 (offsetT) (long) unwind.personality_routine,
3850 (char *) list);
3851
3852 /* Add the personality address to the image. */
3853 if (unwind.personality_routine != 0)
3854 {
3855 exp.X_op = O_symbol;
3856 exp.X_add_symbol = unwind.personality_routine;
3857 exp.X_add_number = 0;
3858
3859 if (md.flags & EF_IA_64_BE)
3860 {
3861 if (md.flags & EF_IA_64_ABI64)
3862 reloc = BFD_RELOC_IA64_LTOFF_FPTR64MSB;
3863 else
3864 reloc = BFD_RELOC_IA64_LTOFF_FPTR32MSB;
3865 }
3866 else
3867 {
3868 if (md.flags & EF_IA_64_ABI64)
3869 reloc = BFD_RELOC_IA64_LTOFF_FPTR64LSB;
3870 else
3871 reloc = BFD_RELOC_IA64_LTOFF_FPTR32LSB;
3872 }
3873
3874 fix_new_exp (frag_now, frag_now_fix () - md.pointer_size,
3875 md.pointer_size, &exp, 0, reloc);
3876 unwind.personality_routine = 0;
3877 }
3878 }
3879
3880 free_saved_prologue_counts ();
3881 unwind.list = unwind.tail = unwind.current_entry = NULL;
3882 }
3883
3884 static void
3885 dot_handlerdata (dummy)
3886 int dummy ATTRIBUTE_UNUSED;
3887 {
3888 if (!in_procedure ("handlerdata"))
3889 return;
3890 unwind.force_unwind_entry = 1;
3891
3892 /* Remember which segment we're in so we can switch back after .endp */
3893 unwind.saved_text_seg = now_seg;
3894 unwind.saved_text_subseg = now_subseg;
3895
3896 /* Generate unwind info into unwind-info section and then leave that
3897 section as the currently active one so dataXX directives go into
3898 the language specific data area of the unwind info block. */
3899 generate_unwind_image (now_seg);
3900 demand_empty_rest_of_line ();
3901 }
3902
3903 static void
3904 dot_unwentry (dummy)
3905 int dummy ATTRIBUTE_UNUSED;
3906 {
3907 if (!in_procedure ("unwentry"))
3908 return;
3909 unwind.force_unwind_entry = 1;
3910 demand_empty_rest_of_line ();
3911 }
3912
3913 static void
3914 dot_altrp (dummy)
3915 int dummy ATTRIBUTE_UNUSED;
3916 {
3917 expressionS e;
3918 unsigned reg;
3919
3920 if (!in_prologue ("altrp"))
3921 return;
3922
3923 parse_operand (&e, 0);
3924 reg = e.X_add_number - REG_BR;
3925 if (e.X_op != O_register || reg > 7)
3926 {
3927 as_bad ("First operand to .altrp not a valid branch register");
3928 reg = 0;
3929 }
3930 add_unwind_entry (output_rp_br (reg), 0);
3931 }
3932
3933 static void
3934 dot_savemem (psprel)
3935 int psprel;
3936 {
3937 expressionS e1, e2;
3938 int sep;
3939 int reg1, val;
3940 const char * const po = psprel ? "savepsp" : "savesp";
3941
3942 if (!in_prologue (po))
3943 return;
3944
3945 sep = parse_operand (&e1, ',');
3946 if (sep == ',')
3947 sep = parse_operand (&e2, ',');
3948 else
3949 e2.X_op = O_absent;
3950
3951 reg1 = e1.X_add_number;
3952 val = e2.X_add_number;
3953
3954 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3955 if (e1.X_op != O_register)
3956 {
3957 as_bad ("First operand to .%s not a register", po);
3958 reg1 = REG_PR; /* Anything valid is good here. */
3959 }
3960 if (e2.X_op != O_constant)
3961 {
3962 as_bad ("Second operand to .%s not a constant", po);
3963 val = 0;
3964 }
3965
3966 switch (reg1)
3967 {
3968 case REG_AR + AR_BSP:
3969 add_unwind_entry (output_bsp_when (), sep);
3970 add_unwind_entry ((psprel
3971 ? output_bsp_psprel
3972 : output_bsp_sprel) (val), NOT_A_CHAR);
3973 break;
3974 case REG_AR + AR_BSPSTORE:
3975 add_unwind_entry (output_bspstore_when (), sep);
3976 add_unwind_entry ((psprel
3977 ? output_bspstore_psprel
3978 : output_bspstore_sprel) (val), NOT_A_CHAR);
3979 break;
3980 case REG_AR + AR_RNAT:
3981 add_unwind_entry (output_rnat_when (), sep);
3982 add_unwind_entry ((psprel
3983 ? output_rnat_psprel
3984 : output_rnat_sprel) (val), NOT_A_CHAR);
3985 break;
3986 case REG_AR + AR_UNAT:
3987 add_unwind_entry (output_unat_when (), sep);
3988 add_unwind_entry ((psprel
3989 ? output_unat_psprel
3990 : output_unat_sprel) (val), NOT_A_CHAR);
3991 break;
3992 case REG_AR + AR_FPSR:
3993 add_unwind_entry (output_fpsr_when (), sep);
3994 add_unwind_entry ((psprel
3995 ? output_fpsr_psprel
3996 : output_fpsr_sprel) (val), NOT_A_CHAR);
3997 break;
3998 case REG_AR + AR_PFS:
3999 add_unwind_entry (output_pfs_when (), sep);
4000 add_unwind_entry ((psprel
4001 ? output_pfs_psprel
4002 : output_pfs_sprel) (val), NOT_A_CHAR);
4003 break;
4004 case REG_AR + AR_LC:
4005 add_unwind_entry (output_lc_when (), sep);
4006 add_unwind_entry ((psprel
4007 ? output_lc_psprel
4008 : output_lc_sprel) (val), NOT_A_CHAR);
4009 break;
4010 case REG_BR:
4011 add_unwind_entry (output_rp_when (), sep);
4012 add_unwind_entry ((psprel
4013 ? output_rp_psprel
4014 : output_rp_sprel) (val), NOT_A_CHAR);
4015 break;
4016 case REG_PR:
4017 add_unwind_entry (output_preds_when (), sep);
4018 add_unwind_entry ((psprel
4019 ? output_preds_psprel
4020 : output_preds_sprel) (val), NOT_A_CHAR);
4021 break;
4022 case REG_PRIUNAT:
4023 add_unwind_entry (output_priunat_when_mem (), sep);
4024 add_unwind_entry ((psprel
4025 ? output_priunat_psprel
4026 : output_priunat_sprel) (val), NOT_A_CHAR);
4027 break;
4028 default:
4029 as_bad ("First operand to .%s not a valid register", po);
4030 add_unwind_entry (NULL, sep);
4031 break;
4032 }
4033 }
4034
4035 static void
4036 dot_saveg (dummy)
4037 int dummy ATTRIBUTE_UNUSED;
4038 {
4039 expressionS e;
4040 unsigned grmask;
4041 int sep;
4042
4043 if (!in_prologue ("save.g"))
4044 return;
4045
4046 sep = parse_operand (&e, ',');
4047
4048 grmask = e.X_add_number;
4049 if (e.X_op != O_constant
4050 || e.X_add_number <= 0
4051 || e.X_add_number > 0xf)
4052 {
4053 as_bad ("First operand to .save.g must be a positive 4-bit constant");
4054 grmask = 0;
4055 }
4056
4057 if (sep == ',')
4058 {
4059 unsigned reg;
4060 int n = popcount (grmask);
4061
4062 parse_operand (&e, 0);
4063 reg = e.X_add_number - REG_GR;
4064 if (e.X_op != O_register || reg > 127)
4065 {
4066 as_bad ("Second operand to .save.g must be a general register");
4067 reg = 0;
4068 }
4069 else if (reg > 128U - n)
4070 {
4071 as_bad ("Second operand to .save.g must be the first of %d general registers", n);
4072 reg = 0;
4073 }
4074 add_unwind_entry (output_gr_gr (grmask, reg), 0);
4075 }
4076 else
4077 add_unwind_entry (output_gr_mem (grmask), 0);
4078 }
4079
4080 static void
4081 dot_savef (dummy)
4082 int dummy ATTRIBUTE_UNUSED;
4083 {
4084 expressionS e;
4085
4086 if (!in_prologue ("save.f"))
4087 return;
4088
4089 parse_operand (&e, 0);
4090
4091 if (e.X_op != O_constant
4092 || e.X_add_number <= 0
4093 || e.X_add_number > 0xfffff)
4094 {
4095 as_bad ("Operand to .save.f must be a positive 20-bit constant");
4096 e.X_add_number = 0;
4097 }
4098 add_unwind_entry (output_fr_mem (e.X_add_number), 0);
4099 }
4100
4101 static void
4102 dot_saveb (dummy)
4103 int dummy ATTRIBUTE_UNUSED;
4104 {
4105 expressionS e;
4106 unsigned brmask;
4107 int sep;
4108
4109 if (!in_prologue ("save.b"))
4110 return;
4111
4112 sep = parse_operand (&e, ',');
4113
4114 brmask = e.X_add_number;
4115 if (e.X_op != O_constant
4116 || e.X_add_number <= 0
4117 || e.X_add_number > 0x1f)
4118 {
4119 as_bad ("First operand to .save.b must be a positive 5-bit constant");
4120 brmask = 0;
4121 }
4122
4123 if (sep == ',')
4124 {
4125 unsigned reg;
4126 int n = popcount (brmask);
4127
4128 parse_operand (&e, 0);
4129 reg = e.X_add_number - REG_GR;
4130 if (e.X_op != O_register || reg > 127)
4131 {
4132 as_bad ("Second operand to .save.b must be a general register");
4133 reg = 0;
4134 }
4135 else if (reg > 128U - n)
4136 {
4137 as_bad ("Second operand to .save.b must be the first of %d general registers", n);
4138 reg = 0;
4139 }
4140 add_unwind_entry (output_br_gr (brmask, reg), 0);
4141 }
4142 else
4143 add_unwind_entry (output_br_mem (brmask), 0);
4144 }
4145
4146 static void
4147 dot_savegf (dummy)
4148 int dummy ATTRIBUTE_UNUSED;
4149 {
4150 expressionS e1, e2;
4151
4152 if (!in_prologue ("save.gf"))
4153 return;
4154
4155 if (parse_operand (&e1, ',') == ',')
4156 parse_operand (&e2, 0);
4157 else
4158 e2.X_op = O_absent;
4159
4160 if (e1.X_op != O_constant
4161 || e1.X_add_number < 0
4162 || e1.X_add_number > 0xf)
4163 {
4164 as_bad ("First operand to .save.gf must be a non-negative 4-bit constant");
4165 e1.X_op = O_absent;
4166 e1.X_add_number = 0;
4167 }
4168 if (e2.X_op != O_constant
4169 || e2.X_add_number < 0
4170 || e2.X_add_number > 0xfffff)
4171 {
4172 as_bad ("Second operand to .save.gf must be a non-negative 20-bit constant");
4173 e2.X_op = O_absent;
4174 e2.X_add_number = 0;
4175 }
4176 if (e1.X_op == O_constant
4177 && e2.X_op == O_constant
4178 && e1.X_add_number == 0
4179 && e2.X_add_number == 0)
4180 as_bad ("Operands to .save.gf may not be both zero");
4181
4182 add_unwind_entry (output_frgr_mem (e1.X_add_number, e2.X_add_number), 0);
4183 }
4184
4185 static void
4186 dot_spill (dummy)
4187 int dummy ATTRIBUTE_UNUSED;
4188 {
4189 expressionS e;
4190
4191 if (!in_prologue ("spill"))
4192 return;
4193
4194 parse_operand (&e, 0);
4195
4196 if (e.X_op != O_constant)
4197 {
4198 as_bad ("Operand to .spill must be a constant");
4199 e.X_add_number = 0;
4200 }
4201 add_unwind_entry (output_spill_base (e.X_add_number), 0);
4202 }
4203
4204 static void
4205 dot_spillreg (pred)
4206 int pred;
4207 {
4208 int sep;
4209 unsigned int qp, ab, xy, reg, treg;
4210 expressionS e;
4211 const char * const po = pred ? "spillreg.p" : "spillreg";
4212
4213 if (!in_procedure (po))
4214 return;
4215
4216 if (pred)
4217 sep = parse_predicate_and_operand (&e, &qp, po);
4218 else
4219 {
4220 sep = parse_operand (&e, ',');
4221 qp = 0;
4222 }
4223 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
4224
4225 if (sep == ',')
4226 sep = parse_operand (&e, ',');
4227 else
4228 e.X_op = O_absent;
4229 convert_expr_to_xy_reg (&e, &xy, &treg, po, 2 + pred);
4230
4231 add_unwind_entry (output_spill_reg (ab, reg, treg, xy, qp), sep);
4232 }
4233
4234 static void
4235 dot_spillmem (psprel)
4236 int psprel;
4237 {
4238 expressionS e;
4239 int pred = (psprel < 0), sep;
4240 unsigned int qp, ab, reg;
4241 const char * po;
4242
4243 if (pred)
4244 {
4245 psprel = ~psprel;
4246 po = psprel ? "spillpsp.p" : "spillsp.p";
4247 }
4248 else
4249 po = psprel ? "spillpsp" : "spillsp";
4250
4251 if (!in_procedure (po))
4252 return;
4253
4254 if (pred)
4255 sep = parse_predicate_and_operand (&e, &qp, po);
4256 else
4257 {
4258 sep = parse_operand (&e, ',');
4259 qp = 0;
4260 }
4261 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
4262
4263 if (sep == ',')
4264 sep = parse_operand (&e, ',');
4265 else
4266 e.X_op = O_absent;
4267 if (e.X_op != O_constant)
4268 {
4269 as_bad ("Operand %d to .%s must be a constant", 2 + pred, po);
4270 e.X_add_number = 0;
4271 }
4272
4273 if (psprel)
4274 add_unwind_entry (output_spill_psprel (ab, reg, e.X_add_number, qp), sep);
4275 else
4276 add_unwind_entry (output_spill_sprel (ab, reg, e.X_add_number, qp), sep);
4277 }
4278
4279 static unsigned int
4280 get_saved_prologue_count (lbl)
4281 unsigned long lbl;
4282 {
4283 label_prologue_count *lpc = unwind.saved_prologue_counts;
4284
4285 while (lpc != NULL && lpc->label_number != lbl)
4286 lpc = lpc->next;
4287
4288 if (lpc != NULL)
4289 return lpc->prologue_count;
4290
4291 as_bad ("Missing .label_state %ld", lbl);
4292 return 1;
4293 }
4294
4295 static void
4296 save_prologue_count (lbl, count)
4297 unsigned long lbl;
4298 unsigned int count;
4299 {
4300 label_prologue_count *lpc = unwind.saved_prologue_counts;
4301
4302 while (lpc != NULL && lpc->label_number != lbl)
4303 lpc = lpc->next;
4304
4305 if (lpc != NULL)
4306 lpc->prologue_count = count;
4307 else
4308 {
4309 label_prologue_count *new_lpc = xmalloc (sizeof (* new_lpc));
4310
4311 new_lpc->next = unwind.saved_prologue_counts;
4312 new_lpc->label_number = lbl;
4313 new_lpc->prologue_count = count;
4314 unwind.saved_prologue_counts = new_lpc;
4315 }
4316 }
4317
4318 static void
4319 free_saved_prologue_counts ()
4320 {
4321 label_prologue_count *lpc = unwind.saved_prologue_counts;
4322 label_prologue_count *next;
4323
4324 while (lpc != NULL)
4325 {
4326 next = lpc->next;
4327 free (lpc);
4328 lpc = next;
4329 }
4330
4331 unwind.saved_prologue_counts = NULL;
4332 }
4333
4334 static void
4335 dot_label_state (dummy)
4336 int dummy ATTRIBUTE_UNUSED;
4337 {
4338 expressionS e;
4339
4340 if (!in_body ("label_state"))
4341 return;
4342
4343 parse_operand (&e, 0);
4344 if (e.X_op == O_constant)
4345 save_prologue_count (e.X_add_number, unwind.prologue_count);
4346 else
4347 {
4348 as_bad ("Operand to .label_state must be a constant");
4349 e.X_add_number = 0;
4350 }
4351 add_unwind_entry (output_label_state (e.X_add_number), 0);
4352 }
4353
4354 static void
4355 dot_copy_state (dummy)
4356 int dummy ATTRIBUTE_UNUSED;
4357 {
4358 expressionS e;
4359
4360 if (!in_body ("copy_state"))
4361 return;
4362
4363 parse_operand (&e, 0);
4364 if (e.X_op == O_constant)
4365 unwind.prologue_count = get_saved_prologue_count (e.X_add_number);
4366 else
4367 {
4368 as_bad ("Operand to .copy_state must be a constant");
4369 e.X_add_number = 0;
4370 }
4371 add_unwind_entry (output_copy_state (e.X_add_number), 0);
4372 }
4373
4374 static void
4375 dot_unwabi (dummy)
4376 int dummy ATTRIBUTE_UNUSED;
4377 {
4378 expressionS e1, e2;
4379 unsigned char sep;
4380
4381 if (!in_prologue ("unwabi"))
4382 return;
4383
4384 sep = parse_operand (&e1, ',');
4385 if (sep == ',')
4386 parse_operand (&e2, 0);
4387 else
4388 e2.X_op = O_absent;
4389
4390 if (e1.X_op != O_constant)
4391 {
4392 as_bad ("First operand to .unwabi must be a constant");
4393 e1.X_add_number = 0;
4394 }
4395
4396 if (e2.X_op != O_constant)
4397 {
4398 as_bad ("Second operand to .unwabi must be a constant");
4399 e2.X_add_number = 0;
4400 }
4401
4402 add_unwind_entry (output_unwabi (e1.X_add_number, e2.X_add_number), 0);
4403 }
4404
4405 static void
4406 dot_personality (dummy)
4407 int dummy ATTRIBUTE_UNUSED;
4408 {
4409 char *name, *p, c;
4410 if (!in_procedure ("personality"))
4411 return;
4412 SKIP_WHITESPACE ();
4413 name = input_line_pointer;
4414 c = get_symbol_end ();
4415 p = input_line_pointer;
4416 unwind.personality_routine = symbol_find_or_make (name);
4417 unwind.force_unwind_entry = 1;
4418 *p = c;
4419 SKIP_WHITESPACE ();
4420 demand_empty_rest_of_line ();
4421 }
4422
4423 static void
4424 dot_proc (dummy)
4425 int dummy ATTRIBUTE_UNUSED;
4426 {
4427 char *name, *p, c;
4428 symbolS *sym;
4429 proc_pending *pending, *last_pending;
4430
4431 if (unwind.proc_pending.sym)
4432 {
4433 (md.unwind_check == unwind_check_warning
4434 ? as_warn
4435 : as_bad) ("Missing .endp after previous .proc");
4436 while (unwind.proc_pending.next)
4437 {
4438 pending = unwind.proc_pending.next;
4439 unwind.proc_pending.next = pending->next;
4440 free (pending);
4441 }
4442 }
4443 last_pending = NULL;
4444
4445 /* Parse names of main and alternate entry points and mark them as
4446 function symbols: */
4447 while (1)
4448 {
4449 SKIP_WHITESPACE ();
4450 name = input_line_pointer;
4451 c = get_symbol_end ();
4452 p = input_line_pointer;
4453 if (!*name)
4454 as_bad ("Empty argument of .proc");
4455 else
4456 {
4457 sym = symbol_find_or_make (name);
4458 if (S_IS_DEFINED (sym))
4459 as_bad ("`%s' was already defined", name);
4460 else if (!last_pending)
4461 {
4462 unwind.proc_pending.sym = sym;
4463 last_pending = &unwind.proc_pending;
4464 }
4465 else
4466 {
4467 pending = xmalloc (sizeof (*pending));
4468 pending->sym = sym;
4469 last_pending = last_pending->next = pending;
4470 }
4471 symbol_get_bfdsym (sym)->flags |= BSF_FUNCTION;
4472 }
4473 *p = c;
4474 SKIP_WHITESPACE ();
4475 if (*input_line_pointer != ',')
4476 break;
4477 ++input_line_pointer;
4478 }
4479 if (!last_pending)
4480 {
4481 unwind.proc_pending.sym = expr_build_dot ();
4482 last_pending = &unwind.proc_pending;
4483 }
4484 last_pending->next = NULL;
4485 demand_empty_rest_of_line ();
4486 ia64_do_align (16);
4487
4488 unwind.prologue = 0;
4489 unwind.prologue_count = 0;
4490 unwind.body = 0;
4491 unwind.insn = 0;
4492 unwind.list = unwind.tail = unwind.current_entry = NULL;
4493 unwind.personality_routine = 0;
4494 }
4495
4496 static void
4497 dot_body (dummy)
4498 int dummy ATTRIBUTE_UNUSED;
4499 {
4500 if (!in_procedure ("body"))
4501 return;
4502 if (!unwind.prologue && !unwind.body && unwind.insn)
4503 as_warn ("Initial .body should precede any instructions");
4504 check_pending_save ();
4505
4506 unwind.prologue = 0;
4507 unwind.prologue_mask = 0;
4508 unwind.body = 1;
4509
4510 add_unwind_entry (output_body (), 0);
4511 }
4512
4513 static void
4514 dot_prologue (dummy)
4515 int dummy ATTRIBUTE_UNUSED;
4516 {
4517 unsigned mask = 0, grsave = 0;
4518
4519 if (!in_procedure ("prologue"))
4520 return;
4521 if (unwind.prologue)
4522 {
4523 as_bad (".prologue within prologue");
4524 ignore_rest_of_line ();
4525 return;
4526 }
4527 if (!unwind.body && unwind.insn)
4528 as_warn ("Initial .prologue should precede any instructions");
4529
4530 if (!is_it_end_of_statement ())
4531 {
4532 expressionS e;
4533 int n, sep = parse_operand (&e, ',');
4534
4535 if (e.X_op != O_constant
4536 || e.X_add_number < 0
4537 || e.X_add_number > 0xf)
4538 as_bad ("First operand to .prologue must be a positive 4-bit constant");
4539 else if (e.X_add_number == 0)
4540 as_warn ("Pointless use of zero first operand to .prologue");
4541 else
4542 mask = e.X_add_number;
4543 n = popcount (mask);
4544
4545 if (sep == ',')
4546 parse_operand (&e, 0);
4547 else
4548 e.X_op = O_absent;
4549 if (e.X_op == O_constant
4550 && e.X_add_number >= 0
4551 && e.X_add_number < 128)
4552 {
4553 if (md.unwind_check == unwind_check_error)
4554 as_warn ("Using a constant as second operand to .prologue is deprecated");
4555 grsave = e.X_add_number;
4556 }
4557 else if (e.X_op != O_register
4558 || (grsave = e.X_add_number - REG_GR) > 127)
4559 {
4560 as_bad ("Second operand to .prologue must be a general register");
4561 grsave = 0;
4562 }
4563 else if (grsave > 128U - n)
4564 {
4565 as_bad ("Second operand to .prologue must be the first of %d general registers", n);
4566 grsave = 0;
4567 }
4568
4569 }
4570
4571 if (mask)
4572 add_unwind_entry (output_prologue_gr (mask, grsave), 0);
4573 else
4574 add_unwind_entry (output_prologue (), 0);
4575
4576 unwind.prologue = 1;
4577 unwind.prologue_mask = mask;
4578 unwind.prologue_gr = grsave;
4579 unwind.body = 0;
4580 ++unwind.prologue_count;
4581 }
4582
4583 static void
4584 dot_endp (dummy)
4585 int dummy ATTRIBUTE_UNUSED;
4586 {
4587 expressionS e;
4588 int bytes_per_address;
4589 long where;
4590 segT saved_seg;
4591 subsegT saved_subseg;
4592 proc_pending *pending;
4593 int unwind_check = md.unwind_check;
4594
4595 md.unwind_check = unwind_check_error;
4596 if (!in_procedure ("endp"))
4597 return;
4598 md.unwind_check = unwind_check;
4599
4600 if (unwind.saved_text_seg)
4601 {
4602 saved_seg = unwind.saved_text_seg;
4603 saved_subseg = unwind.saved_text_subseg;
4604 unwind.saved_text_seg = NULL;
4605 }
4606 else
4607 {
4608 saved_seg = now_seg;
4609 saved_subseg = now_subseg;
4610 }
4611
4612 insn_group_break (1, 0, 0);
4613
4614 /* If there wasn't a .handlerdata, we haven't generated an image yet. */
4615 if (!unwind.info)
4616 generate_unwind_image (saved_seg);
4617
4618 if (unwind.info || unwind.force_unwind_entry)
4619 {
4620 symbolS *proc_end;
4621
4622 subseg_set (md.last_text_seg, 0);
4623 proc_end = expr_build_dot ();
4624
4625 start_unwind_section (saved_seg, SPECIAL_SECTION_UNWIND);
4626
4627 /* Make sure that section has 4 byte alignment for ILP32 and
4628 8 byte alignment for LP64. */
4629 record_alignment (now_seg, md.pointer_size_shift);
4630
4631 /* Need space for 3 pointers for procedure start, procedure end,
4632 and unwind info. */
4633 memset (frag_more (3 * md.pointer_size), 0, 3 * md.pointer_size);
4634 where = frag_now_fix () - (3 * md.pointer_size);
4635 bytes_per_address = bfd_arch_bits_per_address (stdoutput) / 8;
4636
4637 /* Issue the values of a) Proc Begin, b) Proc End, c) Unwind Record. */
4638 e.X_op = O_pseudo_fixup;
4639 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4640 e.X_add_number = 0;
4641 if (!S_IS_LOCAL (unwind.proc_pending.sym)
4642 && S_IS_DEFINED (unwind.proc_pending.sym))
4643 e.X_add_symbol = symbol_temp_new (S_GET_SEGMENT (unwind.proc_pending.sym),
4644 S_GET_VALUE (unwind.proc_pending.sym),
4645 symbol_get_frag (unwind.proc_pending.sym));
4646 else
4647 e.X_add_symbol = unwind.proc_pending.sym;
4648 ia64_cons_fix_new (frag_now, where, bytes_per_address, &e);
4649
4650 e.X_op = O_pseudo_fixup;
4651 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4652 e.X_add_number = 0;
4653 e.X_add_symbol = proc_end;
4654 ia64_cons_fix_new (frag_now, where + bytes_per_address,
4655 bytes_per_address, &e);
4656
4657 if (unwind.info)
4658 {
4659 e.X_op = O_pseudo_fixup;
4660 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4661 e.X_add_number = 0;
4662 e.X_add_symbol = unwind.info;
4663 ia64_cons_fix_new (frag_now, where + (bytes_per_address * 2),
4664 bytes_per_address, &e);
4665 }
4666 }
4667 subseg_set (saved_seg, saved_subseg);
4668
4669 /* Set symbol sizes. */
4670 pending = &unwind.proc_pending;
4671 if (S_GET_NAME (pending->sym))
4672 {
4673 do
4674 {
4675 symbolS *sym = pending->sym;
4676
4677 if (!S_IS_DEFINED (sym))
4678 as_bad ("`%s' was not defined within procedure", S_GET_NAME (sym));
4679 else if (S_GET_SIZE (sym) == 0
4680 && symbol_get_obj (sym)->size == NULL)
4681 {
4682 fragS *frag = symbol_get_frag (sym);
4683
4684 if (frag)
4685 {
4686 if (frag == frag_now && SEG_NORMAL (now_seg))
4687 S_SET_SIZE (sym, frag_now_fix () - S_GET_VALUE (sym));
4688 else
4689 {
4690 symbol_get_obj (sym)->size =
4691 (expressionS *) xmalloc (sizeof (expressionS));
4692 symbol_get_obj (sym)->size->X_op = O_subtract;
4693 symbol_get_obj (sym)->size->X_add_symbol
4694 = symbol_new (FAKE_LABEL_NAME, now_seg,
4695 frag_now_fix (), frag_now);
4696 symbol_get_obj (sym)->size->X_op_symbol = sym;
4697 symbol_get_obj (sym)->size->X_add_number = 0;
4698 }
4699 }
4700 }
4701 } while ((pending = pending->next) != NULL);
4702 }
4703
4704 /* Parse names of main and alternate entry points. */
4705 while (1)
4706 {
4707 char *name, *p, c;
4708
4709 SKIP_WHITESPACE ();
4710 name = input_line_pointer;
4711 c = get_symbol_end ();
4712 p = input_line_pointer;
4713 if (!*name)
4714 (md.unwind_check == unwind_check_warning
4715 ? as_warn
4716 : as_bad) ("Empty argument of .endp");
4717 else
4718 {
4719 symbolS *sym = symbol_find (name);
4720
4721 for (pending = &unwind.proc_pending; pending; pending = pending->next)
4722 {
4723 if (sym == pending->sym)
4724 {
4725 pending->sym = NULL;
4726 break;
4727 }
4728 }
4729 if (!sym || !pending)
4730 as_warn ("`%s' was not specified with previous .proc", name);
4731 }
4732 *p = c;
4733 SKIP_WHITESPACE ();
4734 if (*input_line_pointer != ',')
4735 break;
4736 ++input_line_pointer;
4737 }
4738 demand_empty_rest_of_line ();
4739
4740 /* Deliberately only checking for the main entry point here; the
4741 language spec even says all arguments to .endp are ignored. */
4742 if (unwind.proc_pending.sym
4743 && S_GET_NAME (unwind.proc_pending.sym)
4744 && strcmp (S_GET_NAME (unwind.proc_pending.sym), FAKE_LABEL_NAME))
4745 as_warn ("`%s' should be an operand to this .endp",
4746 S_GET_NAME (unwind.proc_pending.sym));
4747 while (unwind.proc_pending.next)
4748 {
4749 pending = unwind.proc_pending.next;
4750 unwind.proc_pending.next = pending->next;
4751 free (pending);
4752 }
4753 unwind.proc_pending.sym = unwind.info = NULL;
4754 }
4755
4756 static void
4757 dot_template (template)
4758 int template;
4759 {
4760 CURR_SLOT.user_template = template;
4761 }
4762
4763 static void
4764 dot_regstk (dummy)
4765 int dummy ATTRIBUTE_UNUSED;
4766 {
4767 int ins, locs, outs, rots;
4768
4769 if (is_it_end_of_statement ())
4770 ins = locs = outs = rots = 0;
4771 else
4772 {
4773 ins = get_absolute_expression ();
4774 if (*input_line_pointer++ != ',')
4775 goto err;
4776 locs = get_absolute_expression ();
4777 if (*input_line_pointer++ != ',')
4778 goto err;
4779 outs = get_absolute_expression ();
4780 if (*input_line_pointer++ != ',')
4781 goto err;
4782 rots = get_absolute_expression ();
4783 }
4784 set_regstack (ins, locs, outs, rots);
4785 return;
4786
4787 err:
4788 as_bad ("Comma expected");
4789 ignore_rest_of_line ();
4790 }
4791
4792 static void
4793 dot_rot (type)
4794 int type;
4795 {
4796 offsetT num_regs;
4797 valueT num_alloced = 0;
4798 struct dynreg **drpp, *dr;
4799 int ch, base_reg = 0;
4800 char *name, *start;
4801 size_t len;
4802
4803 switch (type)
4804 {
4805 case DYNREG_GR: base_reg = REG_GR + 32; break;
4806 case DYNREG_FR: base_reg = REG_FR + 32; break;
4807 case DYNREG_PR: base_reg = REG_P + 16; break;
4808 default: break;
4809 }
4810
4811 /* First, remove existing names from hash table. */
4812 for (dr = md.dynreg[type]; dr && dr->num_regs; dr = dr->next)
4813 {
4814 hash_delete (md.dynreg_hash, dr->name);
4815 /* FIXME: Free dr->name. */
4816 dr->num_regs = 0;
4817 }
4818
4819 drpp = &md.dynreg[type];
4820 while (1)
4821 {
4822 start = input_line_pointer;
4823 ch = get_symbol_end ();
4824 len = strlen (ia64_canonicalize_symbol_name (start));
4825 *input_line_pointer = ch;
4826
4827 SKIP_WHITESPACE ();
4828 if (*input_line_pointer != '[')
4829 {
4830 as_bad ("Expected '['");
4831 goto err;
4832 }
4833 ++input_line_pointer; /* skip '[' */
4834
4835 num_regs = get_absolute_expression ();
4836
4837 if (*input_line_pointer++ != ']')
4838 {
4839 as_bad ("Expected ']'");
4840 goto err;
4841 }
4842 if (num_regs <= 0)
4843 {
4844 as_bad ("Number of elements must be positive");
4845 goto err;
4846 }
4847 SKIP_WHITESPACE ();
4848
4849 num_alloced += num_regs;
4850 switch (type)
4851 {
4852 case DYNREG_GR:
4853 if (num_alloced > md.rot.num_regs)
4854 {
4855 as_bad ("Used more than the declared %d rotating registers",
4856 md.rot.num_regs);
4857 goto err;
4858 }
4859 break;
4860 case DYNREG_FR:
4861 if (num_alloced > 96)
4862 {
4863 as_bad ("Used more than the available 96 rotating registers");
4864 goto err;
4865 }
4866 break;
4867 case DYNREG_PR:
4868 if (num_alloced > 48)
4869 {
4870 as_bad ("Used more than the available 48 rotating registers");
4871 goto err;
4872 }
4873 break;
4874
4875 default:
4876 break;
4877 }
4878
4879 if (!*drpp)
4880 {
4881 *drpp = obstack_alloc (&notes, sizeof (*dr));
4882 memset (*drpp, 0, sizeof (*dr));
4883 }
4884
4885 name = obstack_alloc (&notes, len + 1);
4886 memcpy (name, start, len);
4887 name[len] = '\0';
4888
4889 dr = *drpp;
4890 dr->name = name;
4891 dr->num_regs = num_regs;
4892 dr->base = base_reg;
4893 drpp = &dr->next;
4894 base_reg += num_regs;
4895
4896 if (hash_insert (md.dynreg_hash, name, dr))
4897 {
4898 as_bad ("Attempt to redefine register set `%s'", name);
4899 obstack_free (&notes, name);
4900 goto err;
4901 }
4902
4903 if (*input_line_pointer != ',')
4904 break;
4905 ++input_line_pointer; /* skip comma */
4906 SKIP_WHITESPACE ();
4907 }
4908 demand_empty_rest_of_line ();
4909 return;
4910
4911 err:
4912 ignore_rest_of_line ();
4913 }
4914
4915 static void
4916 dot_byteorder (byteorder)
4917 int byteorder;
4918 {
4919 segment_info_type *seginfo = seg_info (now_seg);
4920
4921 if (byteorder == -1)
4922 {
4923 if (seginfo->tc_segment_info_data.endian == 0)
4924 seginfo->tc_segment_info_data.endian = default_big_endian ? 1 : 2;
4925 byteorder = seginfo->tc_segment_info_data.endian == 1;
4926 }
4927 else
4928 seginfo->tc_segment_info_data.endian = byteorder ? 1 : 2;
4929
4930 if (target_big_endian != byteorder)
4931 {
4932 target_big_endian = byteorder;
4933 if (target_big_endian)
4934 {
4935 ia64_number_to_chars = number_to_chars_bigendian;
4936 ia64_float_to_chars = ia64_float_to_chars_bigendian;
4937 }
4938 else
4939 {
4940 ia64_number_to_chars = number_to_chars_littleendian;
4941 ia64_float_to_chars = ia64_float_to_chars_littleendian;
4942 }
4943 }
4944 }
4945
4946 static void
4947 dot_psr (dummy)
4948 int dummy ATTRIBUTE_UNUSED;
4949 {
4950 char *option;
4951 int ch;
4952
4953 while (1)
4954 {
4955 option = input_line_pointer;
4956 ch = get_symbol_end ();
4957 if (strcmp (option, "lsb") == 0)
4958 md.flags &= ~EF_IA_64_BE;
4959 else if (strcmp (option, "msb") == 0)
4960 md.flags |= EF_IA_64_BE;
4961 else if (strcmp (option, "abi32") == 0)
4962 md.flags &= ~EF_IA_64_ABI64;
4963 else if (strcmp (option, "abi64") == 0)
4964 md.flags |= EF_IA_64_ABI64;
4965 else
4966 as_bad ("Unknown psr option `%s'", option);
4967 *input_line_pointer = ch;
4968
4969 SKIP_WHITESPACE ();
4970 if (*input_line_pointer != ',')
4971 break;
4972
4973 ++input_line_pointer;
4974 SKIP_WHITESPACE ();
4975 }
4976 demand_empty_rest_of_line ();
4977 }
4978
4979 static void
4980 dot_ln (dummy)
4981 int dummy ATTRIBUTE_UNUSED;
4982 {
4983 new_logical_line (0, get_absolute_expression ());
4984 demand_empty_rest_of_line ();
4985 }
4986
4987 static void
4988 cross_section (ref, cons, ua)
4989 int ref;
4990 void (*cons) PARAMS((int));
4991 int ua;
4992 {
4993 char *start, *end;
4994 int saved_auto_align;
4995 unsigned int section_count;
4996
4997 SKIP_WHITESPACE ();
4998 start = input_line_pointer;
4999 if (*start == '"')
5000 {
5001 int len;
5002 char *name;
5003
5004 name = demand_copy_C_string (&len);
5005 obstack_free(&notes, name);
5006 if (!name)
5007 {
5008 ignore_rest_of_line ();
5009 return;
5010 }
5011 }
5012 else
5013 {
5014 char c = get_symbol_end ();
5015
5016 if (input_line_pointer == start)
5017 {
5018 as_bad ("Missing section name");
5019 ignore_rest_of_line ();
5020 return;
5021 }
5022 *input_line_pointer = c;
5023 }
5024 end = input_line_pointer;
5025 SKIP_WHITESPACE ();
5026 if (*input_line_pointer != ',')
5027 {
5028 as_bad ("Comma expected after section name");
5029 ignore_rest_of_line ();
5030 return;
5031 }
5032 *end = '\0';
5033 end = input_line_pointer + 1; /* skip comma */
5034 input_line_pointer = start;
5035 md.keep_pending_output = 1;
5036 section_count = bfd_count_sections(stdoutput);
5037 obj_elf_section (0);
5038 if (section_count != bfd_count_sections(stdoutput))
5039 as_warn ("Creating sections with .xdataN/.xrealN/.xstringZ is deprecated.");
5040 input_line_pointer = end;
5041 saved_auto_align = md.auto_align;
5042 if (ua)
5043 md.auto_align = 0;
5044 (*cons) (ref);
5045 if (ua)
5046 md.auto_align = saved_auto_align;
5047 obj_elf_previous (0);
5048 md.keep_pending_output = 0;
5049 }
5050
5051 static void
5052 dot_xdata (size)
5053 int size;
5054 {
5055 cross_section (size, cons, 0);
5056 }
5057
5058 /* Why doesn't float_cons() call md_cons_align() the way cons() does? */
5059
5060 static void
5061 stmt_float_cons (kind)
5062 int kind;
5063 {
5064 size_t alignment;
5065
5066 switch (kind)
5067 {
5068 case 'd':
5069 alignment = 8;
5070 break;
5071
5072 case 'x':
5073 case 'X':
5074 alignment = 16;
5075 break;
5076
5077 case 'f':
5078 default:
5079 alignment = 4;
5080 break;
5081 }
5082 ia64_do_align (alignment);
5083 float_cons (kind);
5084 }
5085
5086 static void
5087 stmt_cons_ua (size)
5088 int size;
5089 {
5090 int saved_auto_align = md.auto_align;
5091
5092 md.auto_align = 0;
5093 cons (size);
5094 md.auto_align = saved_auto_align;
5095 }
5096
5097 static void
5098 dot_xfloat_cons (kind)
5099 int kind;
5100 {
5101 cross_section (kind, stmt_float_cons, 0);
5102 }
5103
5104 static void
5105 dot_xstringer (zero)
5106 int zero;
5107 {
5108 cross_section (zero, stringer, 0);
5109 }
5110
5111 static void
5112 dot_xdata_ua (size)
5113 int size;
5114 {
5115 cross_section (size, cons, 1);
5116 }
5117
5118 static void
5119 dot_xfloat_cons_ua (kind)
5120 int kind;
5121 {
5122 cross_section (kind, float_cons, 1);
5123 }
5124
5125 /* .reg.val <regname>,value */
5126
5127 static void
5128 dot_reg_val (dummy)
5129 int dummy ATTRIBUTE_UNUSED;
5130 {
5131 expressionS reg;
5132
5133 expression_and_evaluate (&reg);
5134 if (reg.X_op != O_register)
5135 {
5136 as_bad (_("Register name expected"));
5137 ignore_rest_of_line ();
5138 }
5139 else if (*input_line_pointer++ != ',')
5140 {
5141 as_bad (_("Comma expected"));
5142 ignore_rest_of_line ();
5143 }
5144 else
5145 {
5146 valueT value = get_absolute_expression ();
5147 int regno = reg.X_add_number;
5148 if (regno <= REG_GR || regno > REG_GR + 127)
5149 as_warn (_("Register value annotation ignored"));
5150 else
5151 {
5152 gr_values[regno - REG_GR].known = 1;
5153 gr_values[regno - REG_GR].value = value;
5154 gr_values[regno - REG_GR].path = md.path;
5155 }
5156 }
5157 demand_empty_rest_of_line ();
5158 }
5159
5160 /*
5161 .serialize.data
5162 .serialize.instruction
5163 */
5164 static void
5165 dot_serialize (type)
5166 int type;
5167 {
5168 insn_group_break (0, 0, 0);
5169 if (type)
5170 instruction_serialization ();
5171 else
5172 data_serialization ();
5173 insn_group_break (0, 0, 0);
5174 demand_empty_rest_of_line ();
5175 }
5176
5177 /* select dv checking mode
5178 .auto
5179 .explicit
5180 .default
5181
5182 A stop is inserted when changing modes
5183 */
5184
5185 static void
5186 dot_dv_mode (type)
5187 int type;
5188 {
5189 if (md.manual_bundling)
5190 as_warn (_("Directive invalid within a bundle"));
5191
5192 if (type == 'E' || type == 'A')
5193 md.mode_explicitly_set = 0;
5194 else
5195 md.mode_explicitly_set = 1;
5196
5197 md.detect_dv = 1;
5198 switch (type)
5199 {
5200 case 'A':
5201 case 'a':
5202 if (md.explicit_mode)
5203 insn_group_break (1, 0, 0);
5204 md.explicit_mode = 0;
5205 break;
5206 case 'E':
5207 case 'e':
5208 if (!md.explicit_mode)
5209 insn_group_break (1, 0, 0);
5210 md.explicit_mode = 1;
5211 break;
5212 default:
5213 case 'd':
5214 if (md.explicit_mode != md.default_explicit_mode)
5215 insn_group_break (1, 0, 0);
5216 md.explicit_mode = md.default_explicit_mode;
5217 md.mode_explicitly_set = 0;
5218 break;
5219 }
5220 }
5221
5222 static void
5223 print_prmask (mask)
5224 valueT mask;
5225 {
5226 int regno;
5227 char *comma = "";
5228 for (regno = 0; regno < 64; regno++)
5229 {
5230 if (mask & ((valueT) 1 << regno))
5231 {
5232 fprintf (stderr, "%s p%d", comma, regno);
5233 comma = ",";
5234 }
5235 }
5236 }
5237
5238 /*
5239 .pred.rel.clear [p1 [,p2 [,...]]] (also .pred.rel "clear" or @clear)
5240 .pred.rel.imply p1, p2 (also .pred.rel "imply" or @imply)
5241 .pred.rel.mutex p1, p2 [,...] (also .pred.rel "mutex" or @mutex)
5242 .pred.safe_across_calls p1 [, p2 [,...]]
5243 */
5244
5245 static void
5246 dot_pred_rel (type)
5247 int type;
5248 {
5249 valueT mask = 0;
5250 int count = 0;
5251 int p1 = -1, p2 = -1;
5252
5253 if (type == 0)
5254 {
5255 if (*input_line_pointer == '"')
5256 {
5257 int len;
5258 char *form = demand_copy_C_string (&len);
5259
5260 if (strcmp (form, "mutex") == 0)
5261 type = 'm';
5262 else if (strcmp (form, "clear") == 0)
5263 type = 'c';
5264 else if (strcmp (form, "imply") == 0)
5265 type = 'i';
5266 obstack_free (&notes, form);
5267 }
5268 else if (*input_line_pointer == '@')
5269 {
5270 char *form = ++input_line_pointer;
5271 char c = get_symbol_end();
5272
5273 if (strcmp (form, "mutex") == 0)
5274 type = 'm';
5275 else if (strcmp (form, "clear") == 0)
5276 type = 'c';
5277 else if (strcmp (form, "imply") == 0)
5278 type = 'i';
5279 *input_line_pointer = c;
5280 }
5281 else
5282 {
5283 as_bad (_("Missing predicate relation type"));
5284 ignore_rest_of_line ();
5285 return;
5286 }
5287 if (type == 0)
5288 {
5289 as_bad (_("Unrecognized predicate relation type"));
5290 ignore_rest_of_line ();
5291 return;
5292 }
5293 if (*input_line_pointer == ',')
5294 ++input_line_pointer;
5295 SKIP_WHITESPACE ();
5296 }
5297
5298 SKIP_WHITESPACE ();
5299 while (1)
5300 {
5301 valueT bits = 1;
5302 int regno;
5303 expressionS pr, *pr1, *pr2;
5304
5305 expression_and_evaluate (&pr);
5306 if (pr.X_op == O_register
5307 && pr.X_add_number >= REG_P
5308 && pr.X_add_number <= REG_P + 63)
5309 {
5310 regno = pr.X_add_number - REG_P;
5311 bits <<= regno;
5312 count++;
5313 if (p1 == -1)
5314 p1 = regno;
5315 else if (p2 == -1)
5316 p2 = regno;
5317 }
5318 else if (type != 'i'
5319 && pr.X_op == O_subtract
5320 && (pr1 = symbol_get_value_expression (pr.X_add_symbol))
5321 && pr1->X_op == O_register
5322 && pr1->X_add_number >= REG_P
5323 && pr1->X_add_number <= REG_P + 63
5324 && (pr2 = symbol_get_value_expression (pr.X_op_symbol))
5325 && pr2->X_op == O_register
5326 && pr2->X_add_number >= REG_P
5327 && pr2->X_add_number <= REG_P + 63)
5328 {
5329 /* It's a range. */
5330 int stop;
5331
5332 regno = pr1->X_add_number - REG_P;
5333 stop = pr2->X_add_number - REG_P;
5334 if (regno >= stop)
5335 {
5336 as_bad (_("Bad register range"));
5337 ignore_rest_of_line ();
5338 return;
5339 }
5340 bits = ((bits << stop) << 1) - (bits << regno);
5341 count += stop - regno + 1;
5342 }
5343 else
5344 {
5345 as_bad (_("Predicate register expected"));
5346 ignore_rest_of_line ();
5347 return;
5348 }
5349 if (mask & bits)
5350 as_warn (_("Duplicate predicate register ignored"));
5351 mask |= bits;
5352 if (*input_line_pointer != ',')
5353 break;
5354 ++input_line_pointer;
5355 SKIP_WHITESPACE ();
5356 }
5357
5358 switch (type)
5359 {
5360 case 'c':
5361 if (count == 0)
5362 mask = ~(valueT) 0;
5363 clear_qp_mutex (mask);
5364 clear_qp_implies (mask, (valueT) 0);
5365 break;
5366 case 'i':
5367 if (count != 2 || p1 == -1 || p2 == -1)
5368 as_bad (_("Predicate source and target required"));
5369 else if (p1 == 0 || p2 == 0)
5370 as_bad (_("Use of p0 is not valid in this context"));
5371 else
5372 add_qp_imply (p1, p2);
5373 break;
5374 case 'm':
5375 if (count < 2)
5376 {
5377 as_bad (_("At least two PR arguments expected"));
5378 break;
5379 }
5380 else if (mask & 1)
5381 {
5382 as_bad (_("Use of p0 is not valid in this context"));
5383 break;
5384 }
5385 add_qp_mutex (mask);
5386 break;
5387 case 's':
5388 /* note that we don't override any existing relations */
5389 if (count == 0)
5390 {
5391 as_bad (_("At least one PR argument expected"));
5392 break;
5393 }
5394 if (md.debug_dv)
5395 {
5396 fprintf (stderr, "Safe across calls: ");
5397 print_prmask (mask);
5398 fprintf (stderr, "\n");
5399 }
5400 qp_safe_across_calls = mask;
5401 break;
5402 }
5403 demand_empty_rest_of_line ();
5404 }
5405
5406 /* .entry label [, label [, ...]]
5407 Hint to DV code that the given labels are to be considered entry points.
5408 Otherwise, only global labels are considered entry points. */
5409
5410 static void
5411 dot_entry (dummy)
5412 int dummy ATTRIBUTE_UNUSED;
5413 {
5414 const char *err;
5415 char *name;
5416 int c;
5417 symbolS *symbolP;
5418
5419 do
5420 {
5421 name = input_line_pointer;
5422 c = get_symbol_end ();
5423 symbolP = symbol_find_or_make (name);
5424
5425 err = hash_insert (md.entry_hash, S_GET_NAME (symbolP), (PTR) symbolP);
5426 if (err)
5427 as_fatal (_("Inserting \"%s\" into entry hint table failed: %s"),
5428 name, err);
5429
5430 *input_line_pointer = c;
5431 SKIP_WHITESPACE ();
5432 c = *input_line_pointer;
5433 if (c == ',')
5434 {
5435 input_line_pointer++;
5436 SKIP_WHITESPACE ();
5437 if (*input_line_pointer == '\n')
5438 c = '\n';
5439 }
5440 }
5441 while (c == ',');
5442
5443 demand_empty_rest_of_line ();
5444 }
5445
5446 /* .mem.offset offset, base
5447 "base" is used to distinguish between offsets from a different base. */
5448
5449 static void
5450 dot_mem_offset (dummy)
5451 int dummy ATTRIBUTE_UNUSED;
5452 {
5453 md.mem_offset.hint = 1;
5454 md.mem_offset.offset = get_absolute_expression ();
5455 if (*input_line_pointer != ',')
5456 {
5457 as_bad (_("Comma expected"));
5458 ignore_rest_of_line ();
5459 return;
5460 }
5461 ++input_line_pointer;
5462 md.mem_offset.base = get_absolute_expression ();
5463 demand_empty_rest_of_line ();
5464 }
5465
5466 /* ia64-specific pseudo-ops: */
5467 const pseudo_typeS md_pseudo_table[] =
5468 {
5469 { "radix", dot_radix, 0 },
5470 { "lcomm", s_lcomm_bytes, 1 },
5471 { "loc", dot_loc, 0 },
5472 { "bss", dot_special_section, SPECIAL_SECTION_BSS },
5473 { "sbss", dot_special_section, SPECIAL_SECTION_SBSS },
5474 { "sdata", dot_special_section, SPECIAL_SECTION_SDATA },
5475 { "rodata", dot_special_section, SPECIAL_SECTION_RODATA },
5476 { "comment", dot_special_section, SPECIAL_SECTION_COMMENT },
5477 { "ia_64.unwind", dot_special_section, SPECIAL_SECTION_UNWIND },
5478 { "ia_64.unwind_info", dot_special_section, SPECIAL_SECTION_UNWIND_INFO },
5479 { "init_array", dot_special_section, SPECIAL_SECTION_INIT_ARRAY },
5480 { "fini_array", dot_special_section, SPECIAL_SECTION_FINI_ARRAY },
5481 { "proc", dot_proc, 0 },
5482 { "body", dot_body, 0 },
5483 { "prologue", dot_prologue, 0 },
5484 { "endp", dot_endp, 0 },
5485
5486 { "fframe", dot_fframe, 0 },
5487 { "vframe", dot_vframe, 0 },
5488 { "vframesp", dot_vframesp, 0 },
5489 { "vframepsp", dot_vframesp, 1 },
5490 { "save", dot_save, 0 },
5491 { "restore", dot_restore, 0 },
5492 { "restorereg", dot_restorereg, 0 },
5493 { "restorereg.p", dot_restorereg, 1 },
5494 { "handlerdata", dot_handlerdata, 0 },
5495 { "unwentry", dot_unwentry, 0 },
5496 { "altrp", dot_altrp, 0 },
5497 { "savesp", dot_savemem, 0 },
5498 { "savepsp", dot_savemem, 1 },
5499 { "save.g", dot_saveg, 0 },
5500 { "save.f", dot_savef, 0 },
5501 { "save.b", dot_saveb, 0 },
5502 { "save.gf", dot_savegf, 0 },
5503 { "spill", dot_spill, 0 },
5504 { "spillreg", dot_spillreg, 0 },
5505 { "spillsp", dot_spillmem, 0 },
5506 { "spillpsp", dot_spillmem, 1 },
5507 { "spillreg.p", dot_spillreg, 1 },
5508 { "spillsp.p", dot_spillmem, ~0 },
5509 { "spillpsp.p", dot_spillmem, ~1 },
5510 { "label_state", dot_label_state, 0 },
5511 { "copy_state", dot_copy_state, 0 },
5512 { "unwabi", dot_unwabi, 0 },
5513 { "personality", dot_personality, 0 },
5514 { "mii", dot_template, 0x0 },
5515 { "mli", dot_template, 0x2 }, /* old format, for compatibility */
5516 { "mlx", dot_template, 0x2 },
5517 { "mmi", dot_template, 0x4 },
5518 { "mfi", dot_template, 0x6 },
5519 { "mmf", dot_template, 0x7 },
5520 { "mib", dot_template, 0x8 },
5521 { "mbb", dot_template, 0x9 },
5522 { "bbb", dot_template, 0xb },
5523 { "mmb", dot_template, 0xc },
5524 { "mfb", dot_template, 0xe },
5525 { "align", dot_align, 0 },
5526 { "regstk", dot_regstk, 0 },
5527 { "rotr", dot_rot, DYNREG_GR },
5528 { "rotf", dot_rot, DYNREG_FR },
5529 { "rotp", dot_rot, DYNREG_PR },
5530 { "lsb", dot_byteorder, 0 },
5531 { "msb", dot_byteorder, 1 },
5532 { "psr", dot_psr, 0 },
5533 { "alias", dot_alias, 0 },
5534 { "secalias", dot_alias, 1 },
5535 { "ln", dot_ln, 0 }, /* source line info (for debugging) */
5536
5537 { "xdata1", dot_xdata, 1 },
5538 { "xdata2", dot_xdata, 2 },
5539 { "xdata4", dot_xdata, 4 },
5540 { "xdata8", dot_xdata, 8 },
5541 { "xdata16", dot_xdata, 16 },
5542 { "xreal4", dot_xfloat_cons, 'f' },
5543 { "xreal8", dot_xfloat_cons, 'd' },
5544 { "xreal10", dot_xfloat_cons, 'x' },
5545 { "xreal16", dot_xfloat_cons, 'X' },
5546 { "xstring", dot_xstringer, 0 },
5547 { "xstringz", dot_xstringer, 1 },
5548
5549 /* unaligned versions: */
5550 { "xdata2.ua", dot_xdata_ua, 2 },
5551 { "xdata4.ua", dot_xdata_ua, 4 },
5552 { "xdata8.ua", dot_xdata_ua, 8 },
5553 { "xdata16.ua", dot_xdata_ua, 16 },
5554 { "xreal4.ua", dot_xfloat_cons_ua, 'f' },
5555 { "xreal8.ua", dot_xfloat_cons_ua, 'd' },
5556 { "xreal10.ua", dot_xfloat_cons_ua, 'x' },
5557 { "xreal16.ua", dot_xfloat_cons_ua, 'X' },
5558
5559 /* annotations/DV checking support */
5560 { "entry", dot_entry, 0 },
5561 { "mem.offset", dot_mem_offset, 0 },
5562 { "pred.rel", dot_pred_rel, 0 },
5563 { "pred.rel.clear", dot_pred_rel, 'c' },
5564 { "pred.rel.imply", dot_pred_rel, 'i' },
5565 { "pred.rel.mutex", dot_pred_rel, 'm' },
5566 { "pred.safe_across_calls", dot_pred_rel, 's' },
5567 { "reg.val", dot_reg_val, 0 },
5568 { "serialize.data", dot_serialize, 0 },
5569 { "serialize.instruction", dot_serialize, 1 },
5570 { "auto", dot_dv_mode, 'a' },
5571 { "explicit", dot_dv_mode, 'e' },
5572 { "default", dot_dv_mode, 'd' },
5573
5574 /* ??? These are needed to make gas/testsuite/gas/elf/ehopt.s work.
5575 IA-64 aligns data allocation pseudo-ops by default, so we have to
5576 tell it that these ones are supposed to be unaligned. Long term,
5577 should rewrite so that only IA-64 specific data allocation pseudo-ops
5578 are aligned by default. */
5579 {"2byte", stmt_cons_ua, 2},
5580 {"4byte", stmt_cons_ua, 4},
5581 {"8byte", stmt_cons_ua, 8},
5582
5583 { NULL, 0, 0 }
5584 };
5585
5586 static const struct pseudo_opcode
5587 {
5588 const char *name;
5589 void (*handler) (int);
5590 int arg;
5591 }
5592 pseudo_opcode[] =
5593 {
5594 /* these are more like pseudo-ops, but don't start with a dot */
5595 { "data1", cons, 1 },
5596 { "data2", cons, 2 },
5597 { "data4", cons, 4 },
5598 { "data8", cons, 8 },
5599 { "data16", cons, 16 },
5600 { "real4", stmt_float_cons, 'f' },
5601 { "real8", stmt_float_cons, 'd' },
5602 { "real10", stmt_float_cons, 'x' },
5603 { "real16", stmt_float_cons, 'X' },
5604 { "string", stringer, 0 },
5605 { "stringz", stringer, 1 },
5606
5607 /* unaligned versions: */
5608 { "data2.ua", stmt_cons_ua, 2 },
5609 { "data4.ua", stmt_cons_ua, 4 },
5610 { "data8.ua", stmt_cons_ua, 8 },
5611 { "data16.ua", stmt_cons_ua, 16 },
5612 { "real4.ua", float_cons, 'f' },
5613 { "real8.ua", float_cons, 'd' },
5614 { "real10.ua", float_cons, 'x' },
5615 { "real16.ua", float_cons, 'X' },
5616 };
5617
5618 /* Declare a register by creating a symbol for it and entering it in
5619 the symbol table. */
5620
5621 static symbolS *
5622 declare_register (name, regnum)
5623 const char *name;
5624 unsigned int regnum;
5625 {
5626 const char *err;
5627 symbolS *sym;
5628
5629 sym = symbol_create (name, reg_section, regnum, &zero_address_frag);
5630
5631 err = hash_insert (md.reg_hash, S_GET_NAME (sym), (PTR) sym);
5632 if (err)
5633 as_fatal ("Inserting \"%s\" into register table failed: %s",
5634 name, err);
5635
5636 return sym;
5637 }
5638
5639 static void
5640 declare_register_set (prefix, num_regs, base_regnum)
5641 const char *prefix;
5642 unsigned int num_regs;
5643 unsigned int base_regnum;
5644 {
5645 char name[8];
5646 unsigned int i;
5647
5648 for (i = 0; i < num_regs; ++i)
5649 {
5650 sprintf (name, "%s%u", prefix, i);
5651 declare_register (name, base_regnum + i);
5652 }
5653 }
5654
5655 static unsigned int
5656 operand_width (opnd)
5657 enum ia64_opnd opnd;
5658 {
5659 const struct ia64_operand *odesc = &elf64_ia64_operands[opnd];
5660 unsigned int bits = 0;
5661 int i;
5662
5663 bits = 0;
5664 for (i = 0; i < NELEMS (odesc->field) && odesc->field[i].bits; ++i)
5665 bits += odesc->field[i].bits;
5666
5667 return bits;
5668 }
5669
5670 static enum operand_match_result
5671 operand_match (idesc, index, e)
5672 const struct ia64_opcode *idesc;
5673 int index;
5674 expressionS *e;
5675 {
5676 enum ia64_opnd opnd = idesc->operands[index];
5677 int bits, relocatable = 0;
5678 struct insn_fix *fix;
5679 bfd_signed_vma val;
5680
5681 switch (opnd)
5682 {
5683 /* constants: */
5684
5685 case IA64_OPND_AR_CCV:
5686 if (e->X_op == O_register && e->X_add_number == REG_AR + 32)
5687 return OPERAND_MATCH;
5688 break;
5689
5690 case IA64_OPND_AR_CSD:
5691 if (e->X_op == O_register && e->X_add_number == REG_AR + 25)
5692 return OPERAND_MATCH;
5693 break;
5694
5695 case IA64_OPND_AR_PFS:
5696 if (e->X_op == O_register && e->X_add_number == REG_AR + 64)
5697 return OPERAND_MATCH;
5698 break;
5699
5700 case IA64_OPND_GR0:
5701 if (e->X_op == O_register && e->X_add_number == REG_GR + 0)
5702 return OPERAND_MATCH;
5703 break;
5704
5705 case IA64_OPND_IP:
5706 if (e->X_op == O_register && e->X_add_number == REG_IP)
5707 return OPERAND_MATCH;
5708 break;
5709
5710 case IA64_OPND_PR:
5711 if (e->X_op == O_register && e->X_add_number == REG_PR)
5712 return OPERAND_MATCH;
5713 break;
5714
5715 case IA64_OPND_PR_ROT:
5716 if (e->X_op == O_register && e->X_add_number == REG_PR_ROT)
5717 return OPERAND_MATCH;
5718 break;
5719
5720 case IA64_OPND_PSR:
5721 if (e->X_op == O_register && e->X_add_number == REG_PSR)
5722 return OPERAND_MATCH;
5723 break;
5724
5725 case IA64_OPND_PSR_L:
5726 if (e->X_op == O_register && e->X_add_number == REG_PSR_L)
5727 return OPERAND_MATCH;
5728 break;
5729
5730 case IA64_OPND_PSR_UM:
5731 if (e->X_op == O_register && e->X_add_number == REG_PSR_UM)
5732 return OPERAND_MATCH;
5733 break;
5734
5735 case IA64_OPND_C1:
5736 if (e->X_op == O_constant)
5737 {
5738 if (e->X_add_number == 1)
5739 return OPERAND_MATCH;
5740 else
5741 return OPERAND_OUT_OF_RANGE;
5742 }
5743 break;
5744
5745 case IA64_OPND_C8:
5746 if (e->X_op == O_constant)
5747 {
5748 if (e->X_add_number == 8)
5749 return OPERAND_MATCH;
5750 else
5751 return OPERAND_OUT_OF_RANGE;
5752 }
5753 break;
5754
5755 case IA64_OPND_C16:
5756 if (e->X_op == O_constant)
5757 {
5758 if (e->X_add_number == 16)
5759 return OPERAND_MATCH;
5760 else
5761 return OPERAND_OUT_OF_RANGE;
5762 }
5763 break;
5764
5765 /* register operands: */
5766
5767 case IA64_OPND_AR3:
5768 if (e->X_op == O_register && e->X_add_number >= REG_AR
5769 && e->X_add_number < REG_AR + 128)
5770 return OPERAND_MATCH;
5771 break;
5772
5773 case IA64_OPND_B1:
5774 case IA64_OPND_B2:
5775 if (e->X_op == O_register && e->X_add_number >= REG_BR
5776 && e->X_add_number < REG_BR + 8)
5777 return OPERAND_MATCH;
5778 break;
5779
5780 case IA64_OPND_CR3:
5781 if (e->X_op == O_register && e->X_add_number >= REG_CR
5782 && e->X_add_number < REG_CR + 128)
5783 return OPERAND_MATCH;
5784 break;
5785
5786 case IA64_OPND_F1:
5787 case IA64_OPND_F2:
5788 case IA64_OPND_F3:
5789 case IA64_OPND_F4:
5790 if (e->X_op == O_register && e->X_add_number >= REG_FR
5791 && e->X_add_number < REG_FR + 128)
5792 return OPERAND_MATCH;
5793 break;
5794
5795 case IA64_OPND_P1:
5796 case IA64_OPND_P2:
5797 if (e->X_op == O_register && e->X_add_number >= REG_P
5798 && e->X_add_number < REG_P + 64)
5799 return OPERAND_MATCH;
5800 break;
5801
5802 case IA64_OPND_R1:
5803 case IA64_OPND_R2:
5804 case IA64_OPND_R3:
5805 if (e->X_op == O_register && e->X_add_number >= REG_GR
5806 && e->X_add_number < REG_GR + 128)
5807 return OPERAND_MATCH;
5808 break;
5809
5810 case IA64_OPND_R3_2:
5811 if (e->X_op == O_register && e->X_add_number >= REG_GR)
5812 {
5813 if (e->X_add_number < REG_GR + 4)
5814 return OPERAND_MATCH;
5815 else if (e->X_add_number < REG_GR + 128)
5816 return OPERAND_OUT_OF_RANGE;
5817 }
5818 break;
5819
5820 /* indirect operands: */
5821 case IA64_OPND_CPUID_R3:
5822 case IA64_OPND_DBR_R3:
5823 case IA64_OPND_DTR_R3:
5824 case IA64_OPND_ITR_R3:
5825 case IA64_OPND_IBR_R3:
5826 case IA64_OPND_MSR_R3:
5827 case IA64_OPND_PKR_R3:
5828 case IA64_OPND_PMC_R3:
5829 case IA64_OPND_PMD_R3:
5830 case IA64_OPND_RR_R3:
5831 if (e->X_op == O_index && e->X_op_symbol
5832 && (S_GET_VALUE (e->X_op_symbol) - IND_CPUID
5833 == opnd - IA64_OPND_CPUID_R3))
5834 return OPERAND_MATCH;
5835 break;
5836
5837 case IA64_OPND_MR3:
5838 if (e->X_op == O_index && !e->X_op_symbol)
5839 return OPERAND_MATCH;
5840 break;
5841
5842 /* immediate operands: */
5843 case IA64_OPND_CNT2a:
5844 case IA64_OPND_LEN4:
5845 case IA64_OPND_LEN6:
5846 bits = operand_width (idesc->operands[index]);
5847 if (e->X_op == O_constant)
5848 {
5849 if ((bfd_vma) (e->X_add_number - 1) < ((bfd_vma) 1 << bits))
5850 return OPERAND_MATCH;
5851 else
5852 return OPERAND_OUT_OF_RANGE;
5853 }
5854 break;
5855
5856 case IA64_OPND_CNT2b:
5857 if (e->X_op == O_constant)
5858 {
5859 if ((bfd_vma) (e->X_add_number - 1) < 3)
5860 return OPERAND_MATCH;
5861 else
5862 return OPERAND_OUT_OF_RANGE;
5863 }
5864 break;
5865
5866 case IA64_OPND_CNT2c:
5867 val = e->X_add_number;
5868 if (e->X_op == O_constant)
5869 {
5870 if ((val == 0 || val == 7 || val == 15 || val == 16))
5871 return OPERAND_MATCH;
5872 else
5873 return OPERAND_OUT_OF_RANGE;
5874 }
5875 break;
5876
5877 case IA64_OPND_SOR:
5878 /* SOR must be an integer multiple of 8 */
5879 if (e->X_op == O_constant && e->X_add_number & 0x7)
5880 return OPERAND_OUT_OF_RANGE;
5881 case IA64_OPND_SOF:
5882 case IA64_OPND_SOL:
5883 if (e->X_op == O_constant)
5884 {
5885 if ((bfd_vma) e->X_add_number <= 96)
5886 return OPERAND_MATCH;
5887 else
5888 return OPERAND_OUT_OF_RANGE;
5889 }
5890 break;
5891
5892 case IA64_OPND_IMMU62:
5893 if (e->X_op == O_constant)
5894 {
5895 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << 62))
5896 return OPERAND_MATCH;
5897 else
5898 return OPERAND_OUT_OF_RANGE;
5899 }
5900 else
5901 {
5902 /* FIXME -- need 62-bit relocation type */
5903 as_bad (_("62-bit relocation not yet implemented"));
5904 }
5905 break;
5906
5907 case IA64_OPND_IMMU64:
5908 if (e->X_op == O_symbol || e->X_op == O_pseudo_fixup
5909 || e->X_op == O_subtract)
5910 {
5911 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5912 fix->code = BFD_RELOC_IA64_IMM64;
5913 if (e->X_op != O_subtract)
5914 {
5915 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5916 if (e->X_op == O_pseudo_fixup)
5917 e->X_op = O_symbol;
5918 }
5919
5920 fix->opnd = idesc->operands[index];
5921 fix->expr = *e;
5922 fix->is_pcrel = 0;
5923 ++CURR_SLOT.num_fixups;
5924 return OPERAND_MATCH;
5925 }
5926 else if (e->X_op == O_constant)
5927 return OPERAND_MATCH;
5928 break;
5929
5930 case IA64_OPND_CCNT5:
5931 case IA64_OPND_CNT5:
5932 case IA64_OPND_CNT6:
5933 case IA64_OPND_CPOS6a:
5934 case IA64_OPND_CPOS6b:
5935 case IA64_OPND_CPOS6c:
5936 case IA64_OPND_IMMU2:
5937 case IA64_OPND_IMMU7a:
5938 case IA64_OPND_IMMU7b:
5939 case IA64_OPND_IMMU21:
5940 case IA64_OPND_IMMU24:
5941 case IA64_OPND_MBTYPE4:
5942 case IA64_OPND_MHTYPE8:
5943 case IA64_OPND_POS6:
5944 bits = operand_width (idesc->operands[index]);
5945 if (e->X_op == O_constant)
5946 {
5947 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5948 return OPERAND_MATCH;
5949 else
5950 return OPERAND_OUT_OF_RANGE;
5951 }
5952 break;
5953
5954 case IA64_OPND_IMMU9:
5955 bits = operand_width (idesc->operands[index]);
5956 if (e->X_op == O_constant)
5957 {
5958 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5959 {
5960 int lobits = e->X_add_number & 0x3;
5961 if (((bfd_vma) e->X_add_number & 0x3C) != 0 && lobits == 0)
5962 e->X_add_number |= (bfd_vma) 0x3;
5963 return OPERAND_MATCH;
5964 }
5965 else
5966 return OPERAND_OUT_OF_RANGE;
5967 }
5968 break;
5969
5970 case IA64_OPND_IMM44:
5971 /* least 16 bits must be zero */
5972 if ((e->X_add_number & 0xffff) != 0)
5973 /* XXX technically, this is wrong: we should not be issuing warning
5974 messages until we're sure this instruction pattern is going to
5975 be used! */
5976 as_warn (_("lower 16 bits of mask ignored"));
5977
5978 if (e->X_op == O_constant)
5979 {
5980 if (((e->X_add_number >= 0
5981 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 44))
5982 || (e->X_add_number < 0
5983 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 44))))
5984 {
5985 /* sign-extend */
5986 if (e->X_add_number >= 0
5987 && (e->X_add_number & ((bfd_vma) 1 << 43)) != 0)
5988 {
5989 e->X_add_number |= ~(((bfd_vma) 1 << 44) - 1);
5990 }
5991 return OPERAND_MATCH;
5992 }
5993 else
5994 return OPERAND_OUT_OF_RANGE;
5995 }
5996 break;
5997
5998 case IA64_OPND_IMM17:
5999 /* bit 0 is a don't care (pr0 is hardwired to 1) */
6000 if (e->X_op == O_constant)
6001 {
6002 if (((e->X_add_number >= 0
6003 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 17))
6004 || (e->X_add_number < 0
6005 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 17))))
6006 {
6007 /* sign-extend */
6008 if (e->X_add_number >= 0
6009 && (e->X_add_number & ((bfd_vma) 1 << 16)) != 0)
6010 {
6011 e->X_add_number |= ~(((bfd_vma) 1 << 17) - 1);
6012 }
6013 return OPERAND_MATCH;
6014 }
6015 else
6016 return OPERAND_OUT_OF_RANGE;
6017 }
6018 break;
6019
6020 case IA64_OPND_IMM14:
6021 case IA64_OPND_IMM22:
6022 relocatable = 1;
6023 case IA64_OPND_IMM1:
6024 case IA64_OPND_IMM8:
6025 case IA64_OPND_IMM8U4:
6026 case IA64_OPND_IMM8M1:
6027 case IA64_OPND_IMM8M1U4:
6028 case IA64_OPND_IMM8M1U8:
6029 case IA64_OPND_IMM9a:
6030 case IA64_OPND_IMM9b:
6031 bits = operand_width (idesc->operands[index]);
6032 if (relocatable && (e->X_op == O_symbol
6033 || e->X_op == O_subtract
6034 || e->X_op == O_pseudo_fixup))
6035 {
6036 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6037
6038 if (idesc->operands[index] == IA64_OPND_IMM14)
6039 fix->code = BFD_RELOC_IA64_IMM14;
6040 else
6041 fix->code = BFD_RELOC_IA64_IMM22;
6042
6043 if (e->X_op != O_subtract)
6044 {
6045 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
6046 if (e->X_op == O_pseudo_fixup)
6047 e->X_op = O_symbol;
6048 }
6049
6050 fix->opnd = idesc->operands[index];
6051 fix->expr = *e;
6052 fix->is_pcrel = 0;
6053 ++CURR_SLOT.num_fixups;
6054 return OPERAND_MATCH;
6055 }
6056 else if (e->X_op != O_constant
6057 && ! (e->X_op == O_big && opnd == IA64_OPND_IMM8M1U8))
6058 return OPERAND_MISMATCH;
6059
6060 if (opnd == IA64_OPND_IMM8M1U4)
6061 {
6062 /* Zero is not valid for unsigned compares that take an adjusted
6063 constant immediate range. */
6064 if (e->X_add_number == 0)
6065 return OPERAND_OUT_OF_RANGE;
6066
6067 /* Sign-extend 32-bit unsigned numbers, so that the following range
6068 checks will work. */
6069 val = e->X_add_number;
6070 if (((val & (~(bfd_vma) 0 << 32)) == 0)
6071 && ((val & ((bfd_vma) 1 << 31)) != 0))
6072 val = ((val << 32) >> 32);
6073
6074 /* Check for 0x100000000. This is valid because
6075 0x100000000-1 is the same as ((uint32_t) -1). */
6076 if (val == ((bfd_signed_vma) 1 << 32))
6077 return OPERAND_MATCH;
6078
6079 val = val - 1;
6080 }
6081 else if (opnd == IA64_OPND_IMM8M1U8)
6082 {
6083 /* Zero is not valid for unsigned compares that take an adjusted
6084 constant immediate range. */
6085 if (e->X_add_number == 0)
6086 return OPERAND_OUT_OF_RANGE;
6087
6088 /* Check for 0x10000000000000000. */
6089 if (e->X_op == O_big)
6090 {
6091 if (generic_bignum[0] == 0
6092 && generic_bignum[1] == 0
6093 && generic_bignum[2] == 0
6094 && generic_bignum[3] == 0
6095 && generic_bignum[4] == 1)
6096 return OPERAND_MATCH;
6097 else
6098 return OPERAND_OUT_OF_RANGE;
6099 }
6100 else
6101 val = e->X_add_number - 1;
6102 }
6103 else if (opnd == IA64_OPND_IMM8M1)
6104 val = e->X_add_number - 1;
6105 else if (opnd == IA64_OPND_IMM8U4)
6106 {
6107 /* Sign-extend 32-bit unsigned numbers, so that the following range
6108 checks will work. */
6109 val = e->X_add_number;
6110 if (((val & (~(bfd_vma) 0 << 32)) == 0)
6111 && ((val & ((bfd_vma) 1 << 31)) != 0))
6112 val = ((val << 32) >> 32);
6113 }
6114 else
6115 val = e->X_add_number;
6116
6117 if ((val >= 0 && (bfd_vma) val < ((bfd_vma) 1 << (bits - 1)))
6118 || (val < 0 && (bfd_vma) -val <= ((bfd_vma) 1 << (bits - 1))))
6119 return OPERAND_MATCH;
6120 else
6121 return OPERAND_OUT_OF_RANGE;
6122
6123 case IA64_OPND_INC3:
6124 /* +/- 1, 4, 8, 16 */
6125 val = e->X_add_number;
6126 if (val < 0)
6127 val = -val;
6128 if (e->X_op == O_constant)
6129 {
6130 if ((val == 1 || val == 4 || val == 8 || val == 16))
6131 return OPERAND_MATCH;
6132 else
6133 return OPERAND_OUT_OF_RANGE;
6134 }
6135 break;
6136
6137 case IA64_OPND_TGT25:
6138 case IA64_OPND_TGT25b:
6139 case IA64_OPND_TGT25c:
6140 case IA64_OPND_TGT64:
6141 if (e->X_op == O_symbol)
6142 {
6143 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6144 if (opnd == IA64_OPND_TGT25)
6145 fix->code = BFD_RELOC_IA64_PCREL21F;
6146 else if (opnd == IA64_OPND_TGT25b)
6147 fix->code = BFD_RELOC_IA64_PCREL21M;
6148 else if (opnd == IA64_OPND_TGT25c)
6149 fix->code = BFD_RELOC_IA64_PCREL21B;
6150 else if (opnd == IA64_OPND_TGT64)
6151 fix->code = BFD_RELOC_IA64_PCREL60B;
6152 else
6153 abort ();
6154
6155 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
6156 fix->opnd = idesc->operands[index];
6157 fix->expr = *e;
6158 fix->is_pcrel = 1;
6159 ++CURR_SLOT.num_fixups;
6160 return OPERAND_MATCH;
6161 }
6162 case IA64_OPND_TAG13:
6163 case IA64_OPND_TAG13b:
6164 switch (e->X_op)
6165 {
6166 case O_constant:
6167 return OPERAND_MATCH;
6168
6169 case O_symbol:
6170 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6171 /* There are no external relocs for TAG13/TAG13b fields, so we
6172 create a dummy reloc. This will not live past md_apply_fix. */
6173 fix->code = BFD_RELOC_UNUSED;
6174 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
6175 fix->opnd = idesc->operands[index];
6176 fix->expr = *e;
6177 fix->is_pcrel = 1;
6178 ++CURR_SLOT.num_fixups;
6179 return OPERAND_MATCH;
6180
6181 default:
6182 break;
6183 }
6184 break;
6185
6186 case IA64_OPND_LDXMOV:
6187 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
6188 fix->code = BFD_RELOC_IA64_LDXMOV;
6189 fix->opnd = idesc->operands[index];
6190 fix->expr = *e;
6191 fix->is_pcrel = 0;
6192 ++CURR_SLOT.num_fixups;
6193 return OPERAND_MATCH;
6194
6195 default:
6196 break;
6197 }
6198 return OPERAND_MISMATCH;
6199 }
6200
6201 static int
6202 parse_operand (e, more)
6203 expressionS *e;
6204 int more;
6205 {
6206 int sep = '\0';
6207
6208 memset (e, 0, sizeof (*e));
6209 e->X_op = O_absent;
6210 SKIP_WHITESPACE ();
6211 expression_and_evaluate (e);
6212 sep = *input_line_pointer;
6213 if (more && (sep == ',' || sep == more))
6214 ++input_line_pointer;
6215 return sep;
6216 }
6217
6218 /* Returns the next entry in the opcode table that matches the one in
6219 IDESC, and frees the entry in IDESC. If no matching entry is
6220 found, NULL is returned instead. */
6221
6222 static struct ia64_opcode *
6223 get_next_opcode (struct ia64_opcode *idesc)
6224 {
6225 struct ia64_opcode *next = ia64_find_next_opcode (idesc);
6226 ia64_free_opcode (idesc);
6227 return next;
6228 }
6229
6230 /* Parse the operands for the opcode and find the opcode variant that
6231 matches the specified operands, or NULL if no match is possible. */
6232
6233 static struct ia64_opcode *
6234 parse_operands (idesc)
6235 struct ia64_opcode *idesc;
6236 {
6237 int i = 0, highest_unmatched_operand, num_operands = 0, num_outputs = 0;
6238 int error_pos, out_of_range_pos, curr_out_of_range_pos, sep = 0;
6239 int reg1, reg2;
6240 char reg_class;
6241 enum ia64_opnd expected_operand = IA64_OPND_NIL;
6242 enum operand_match_result result;
6243 char mnemonic[129];
6244 char *first_arg = 0, *end, *saved_input_pointer;
6245 unsigned int sof;
6246
6247 assert (strlen (idesc->name) <= 128);
6248
6249 strcpy (mnemonic, idesc->name);
6250 if (idesc->operands[2] == IA64_OPND_SOF
6251 || idesc->operands[1] == IA64_OPND_SOF)
6252 {
6253 /* To make the common idiom "alloc loc?=ar.pfs,0,1,0,0" work, we
6254 can't parse the first operand until we have parsed the
6255 remaining operands of the "alloc" instruction. */
6256 SKIP_WHITESPACE ();
6257 first_arg = input_line_pointer;
6258 end = strchr (input_line_pointer, '=');
6259 if (!end)
6260 {
6261 as_bad ("Expected separator `='");
6262 return 0;
6263 }
6264 input_line_pointer = end + 1;
6265 ++i;
6266 ++num_outputs;
6267 }
6268
6269 for (; ; ++i)
6270 {
6271 if (i < NELEMS (CURR_SLOT.opnd))
6272 {
6273 sep = parse_operand (CURR_SLOT.opnd + i, '=');
6274 if (CURR_SLOT.opnd[i].X_op == O_absent)
6275 break;
6276 }
6277 else
6278 {
6279 expressionS dummy;
6280
6281 sep = parse_operand (&dummy, '=');
6282 if (dummy.X_op == O_absent)
6283 break;
6284 }
6285
6286 ++num_operands;
6287
6288 if (sep != '=' && sep != ',')
6289 break;
6290
6291 if (sep == '=')
6292 {
6293 if (num_outputs > 0)
6294 as_bad ("Duplicate equal sign (=) in instruction");
6295 else
6296 num_outputs = i + 1;
6297 }
6298 }
6299 if (sep != '\0')
6300 {
6301 as_bad ("Illegal operand separator `%c'", sep);
6302 return 0;
6303 }
6304
6305 if (idesc->operands[2] == IA64_OPND_SOF
6306 || idesc->operands[1] == IA64_OPND_SOF)
6307 {
6308 /* Map alloc r1=ar.pfs,i,l,o,r to alloc r1=ar.pfs,(i+l+o),(i+l),r.
6309 Note, however, that due to that mapping operand numbers in error
6310 messages for any of the constant operands will not be correct. */
6311 know (strcmp (idesc->name, "alloc") == 0);
6312 /* The first operand hasn't been parsed/initialized, yet (but
6313 num_operands intentionally doesn't account for that). */
6314 i = num_operands > 4 ? 2 : 1;
6315 #define FORCE_CONST(n) (CURR_SLOT.opnd[n].X_op == O_constant \
6316 ? CURR_SLOT.opnd[n].X_add_number \
6317 : 0)
6318 sof = set_regstack (FORCE_CONST(i),
6319 FORCE_CONST(i + 1),
6320 FORCE_CONST(i + 2),
6321 FORCE_CONST(i + 3));
6322 #undef FORCE_CONST
6323
6324 /* now we can parse the first arg: */
6325 saved_input_pointer = input_line_pointer;
6326 input_line_pointer = first_arg;
6327 sep = parse_operand (CURR_SLOT.opnd + 0, '=');
6328 if (sep != '=')
6329 --num_outputs; /* force error */
6330 input_line_pointer = saved_input_pointer;
6331
6332 CURR_SLOT.opnd[i].X_add_number = sof;
6333 if (CURR_SLOT.opnd[i + 1].X_op == O_constant
6334 && CURR_SLOT.opnd[i + 2].X_op == O_constant)
6335 CURR_SLOT.opnd[i + 1].X_add_number
6336 = sof - CURR_SLOT.opnd[i + 2].X_add_number;
6337 else
6338 CURR_SLOT.opnd[i + 1].X_op = O_illegal;
6339 CURR_SLOT.opnd[i + 2] = CURR_SLOT.opnd[i + 3];
6340 }
6341
6342 highest_unmatched_operand = -4;
6343 curr_out_of_range_pos = -1;
6344 error_pos = 0;
6345 for (; idesc; idesc = get_next_opcode (idesc))
6346 {
6347 if (num_outputs != idesc->num_outputs)
6348 continue; /* mismatch in # of outputs */
6349 if (highest_unmatched_operand < 0)
6350 highest_unmatched_operand |= 1;
6351 if (num_operands > NELEMS (idesc->operands)
6352 || (num_operands < NELEMS (idesc->operands)
6353 && idesc->operands[num_operands])
6354 || (num_operands > 0 && !idesc->operands[num_operands - 1]))
6355 continue; /* mismatch in number of arguments */
6356 if (highest_unmatched_operand < 0)
6357 highest_unmatched_operand |= 2;
6358
6359 CURR_SLOT.num_fixups = 0;
6360
6361 /* Try to match all operands. If we see an out-of-range operand,
6362 then continue trying to match the rest of the operands, since if
6363 the rest match, then this idesc will give the best error message. */
6364
6365 out_of_range_pos = -1;
6366 for (i = 0; i < num_operands && idesc->operands[i]; ++i)
6367 {
6368 result = operand_match (idesc, i, CURR_SLOT.opnd + i);
6369 if (result != OPERAND_MATCH)
6370 {
6371 if (result != OPERAND_OUT_OF_RANGE)
6372 break;
6373 if (out_of_range_pos < 0)
6374 /* remember position of the first out-of-range operand: */
6375 out_of_range_pos = i;
6376 }
6377 }
6378
6379 /* If we did not match all operands, or if at least one operand was
6380 out-of-range, then this idesc does not match. Keep track of which
6381 idesc matched the most operands before failing. If we have two
6382 idescs that failed at the same position, and one had an out-of-range
6383 operand, then prefer the out-of-range operand. Thus if we have
6384 "add r0=0x1000000,r1" we get an error saying the constant is out
6385 of range instead of an error saying that the constant should have been
6386 a register. */
6387
6388 if (i != num_operands || out_of_range_pos >= 0)
6389 {
6390 if (i > highest_unmatched_operand
6391 || (i == highest_unmatched_operand
6392 && out_of_range_pos > curr_out_of_range_pos))
6393 {
6394 highest_unmatched_operand = i;
6395 if (out_of_range_pos >= 0)
6396 {
6397 expected_operand = idesc->operands[out_of_range_pos];
6398 error_pos = out_of_range_pos;
6399 }
6400 else
6401 {
6402 expected_operand = idesc->operands[i];
6403 error_pos = i;
6404 }
6405 curr_out_of_range_pos = out_of_range_pos;
6406 }
6407 continue;
6408 }
6409
6410 break;
6411 }
6412 if (!idesc)
6413 {
6414 if (expected_operand)
6415 as_bad ("Operand %u of `%s' should be %s",
6416 error_pos + 1, mnemonic,
6417 elf64_ia64_operands[expected_operand].desc);
6418 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 1))
6419 as_bad ("Wrong number of output operands");
6420 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 2))
6421 as_bad ("Wrong number of input operands");
6422 else
6423 as_bad ("Operand mismatch");
6424 return 0;
6425 }
6426
6427 /* Check that the instruction doesn't use
6428 - r0, f0, or f1 as output operands
6429 - the same predicate twice as output operands
6430 - r0 as address of a base update load or store
6431 - the same GR as output and address of a base update load
6432 - two even- or two odd-numbered FRs as output operands of a floating
6433 point parallel load.
6434 At most two (conflicting) output (or output-like) operands can exist,
6435 (floating point parallel loads have three outputs, but the base register,
6436 if updated, cannot conflict with the actual outputs). */
6437 reg2 = reg1 = -1;
6438 for (i = 0; i < num_operands; ++i)
6439 {
6440 int regno = 0;
6441
6442 reg_class = 0;
6443 switch (idesc->operands[i])
6444 {
6445 case IA64_OPND_R1:
6446 case IA64_OPND_R2:
6447 case IA64_OPND_R3:
6448 if (i < num_outputs)
6449 {
6450 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6451 reg_class = 'r';
6452 else if (reg1 < 0)
6453 reg1 = CURR_SLOT.opnd[i].X_add_number;
6454 else if (reg2 < 0)
6455 reg2 = CURR_SLOT.opnd[i].X_add_number;
6456 }
6457 break;
6458 case IA64_OPND_P1:
6459 case IA64_OPND_P2:
6460 if (i < num_outputs)
6461 {
6462 if (reg1 < 0)
6463 reg1 = CURR_SLOT.opnd[i].X_add_number;
6464 else if (reg2 < 0)
6465 reg2 = CURR_SLOT.opnd[i].X_add_number;
6466 }
6467 break;
6468 case IA64_OPND_F1:
6469 case IA64_OPND_F2:
6470 case IA64_OPND_F3:
6471 case IA64_OPND_F4:
6472 if (i < num_outputs)
6473 {
6474 if (CURR_SLOT.opnd[i].X_add_number >= REG_FR
6475 && CURR_SLOT.opnd[i].X_add_number <= REG_FR + 1)
6476 {
6477 reg_class = 'f';
6478 regno = CURR_SLOT.opnd[i].X_add_number - REG_FR;
6479 }
6480 else if (reg1 < 0)
6481 reg1 = CURR_SLOT.opnd[i].X_add_number;
6482 else if (reg2 < 0)
6483 reg2 = CURR_SLOT.opnd[i].X_add_number;
6484 }
6485 break;
6486 case IA64_OPND_MR3:
6487 if (idesc->flags & IA64_OPCODE_POSTINC)
6488 {
6489 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6490 reg_class = 'm';
6491 else if (reg1 < 0)
6492 reg1 = CURR_SLOT.opnd[i].X_add_number;
6493 else if (reg2 < 0)
6494 reg2 = CURR_SLOT.opnd[i].X_add_number;
6495 }
6496 break;
6497 default:
6498 break;
6499 }
6500 switch (reg_class)
6501 {
6502 case 0:
6503 break;
6504 default:
6505 as_warn ("Invalid use of `%c%d' as output operand", reg_class, regno);
6506 break;
6507 case 'm':
6508 as_warn ("Invalid use of `r%d' as base update address operand", regno);
6509 break;
6510 }
6511 }
6512 if (reg1 == reg2)
6513 {
6514 if (reg1 >= REG_GR && reg1 <= REG_GR + 127)
6515 {
6516 reg1 -= REG_GR;
6517 reg_class = 'r';
6518 }
6519 else if (reg1 >= REG_P && reg1 <= REG_P + 63)
6520 {
6521 reg1 -= REG_P;
6522 reg_class = 'p';
6523 }
6524 else if (reg1 >= REG_FR && reg1 <= REG_FR + 127)
6525 {
6526 reg1 -= REG_FR;
6527 reg_class = 'f';
6528 }
6529 else
6530 reg_class = 0;
6531 if (reg_class)
6532 as_warn ("Invalid duplicate use of `%c%d'", reg_class, reg1);
6533 }
6534 else if (((reg1 >= REG_FR && reg1 <= REG_FR + 31
6535 && reg2 >= REG_FR && reg2 <= REG_FR + 31)
6536 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6537 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127))
6538 && ! ((reg1 ^ reg2) & 1))
6539 as_warn ("Invalid simultaneous use of `f%d' and `f%d'",
6540 reg1 - REG_FR, reg2 - REG_FR);
6541 else if ((reg1 >= REG_FR && reg1 <= REG_FR + 31
6542 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127)
6543 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6544 && reg2 >= REG_FR && reg2 <= REG_FR + 31))
6545 as_warn ("Dangerous simultaneous use of `f%d' and `f%d'",
6546 reg1 - REG_FR, reg2 - REG_FR);
6547 return idesc;
6548 }
6549
6550 static void
6551 build_insn (slot, insnp)
6552 struct slot *slot;
6553 bfd_vma *insnp;
6554 {
6555 const struct ia64_operand *odesc, *o2desc;
6556 struct ia64_opcode *idesc = slot->idesc;
6557 bfd_vma insn;
6558 bfd_signed_vma val;
6559 const char *err;
6560 int i;
6561
6562 insn = idesc->opcode | slot->qp_regno;
6563
6564 for (i = 0; i < NELEMS (idesc->operands) && idesc->operands[i]; ++i)
6565 {
6566 if (slot->opnd[i].X_op == O_register
6567 || slot->opnd[i].X_op == O_constant
6568 || slot->opnd[i].X_op == O_index)
6569 val = slot->opnd[i].X_add_number;
6570 else if (slot->opnd[i].X_op == O_big)
6571 {
6572 /* This must be the value 0x10000000000000000. */
6573 assert (idesc->operands[i] == IA64_OPND_IMM8M1U8);
6574 val = 0;
6575 }
6576 else
6577 val = 0;
6578
6579 switch (idesc->operands[i])
6580 {
6581 case IA64_OPND_IMMU64:
6582 *insnp++ = (val >> 22) & 0x1ffffffffffLL;
6583 insn |= (((val & 0x7f) << 13) | (((val >> 7) & 0x1ff) << 27)
6584 | (((val >> 16) & 0x1f) << 22) | (((val >> 21) & 0x1) << 21)
6585 | (((val >> 63) & 0x1) << 36));
6586 continue;
6587
6588 case IA64_OPND_IMMU62:
6589 val &= 0x3fffffffffffffffULL;
6590 if (val != slot->opnd[i].X_add_number)
6591 as_warn (_("Value truncated to 62 bits"));
6592 *insnp++ = (val >> 21) & 0x1ffffffffffLL;
6593 insn |= (((val & 0xfffff) << 6) | (((val >> 20) & 0x1) << 36));
6594 continue;
6595
6596 case IA64_OPND_TGT64:
6597 val >>= 4;
6598 *insnp++ = ((val >> 20) & 0x7fffffffffLL) << 2;
6599 insn |= ((((val >> 59) & 0x1) << 36)
6600 | (((val >> 0) & 0xfffff) << 13));
6601 continue;
6602
6603 case IA64_OPND_AR3:
6604 val -= REG_AR;
6605 break;
6606
6607 case IA64_OPND_B1:
6608 case IA64_OPND_B2:
6609 val -= REG_BR;
6610 break;
6611
6612 case IA64_OPND_CR3:
6613 val -= REG_CR;
6614 break;
6615
6616 case IA64_OPND_F1:
6617 case IA64_OPND_F2:
6618 case IA64_OPND_F3:
6619 case IA64_OPND_F4:
6620 val -= REG_FR;
6621 break;
6622
6623 case IA64_OPND_P1:
6624 case IA64_OPND_P2:
6625 val -= REG_P;
6626 break;
6627
6628 case IA64_OPND_R1:
6629 case IA64_OPND_R2:
6630 case IA64_OPND_R3:
6631 case IA64_OPND_R3_2:
6632 case IA64_OPND_CPUID_R3:
6633 case IA64_OPND_DBR_R3:
6634 case IA64_OPND_DTR_R3:
6635 case IA64_OPND_ITR_R3:
6636 case IA64_OPND_IBR_R3:
6637 case IA64_OPND_MR3:
6638 case IA64_OPND_MSR_R3:
6639 case IA64_OPND_PKR_R3:
6640 case IA64_OPND_PMC_R3:
6641 case IA64_OPND_PMD_R3:
6642 case IA64_OPND_RR_R3:
6643 val -= REG_GR;
6644 break;
6645
6646 default:
6647 break;
6648 }
6649
6650 odesc = elf64_ia64_operands + idesc->operands[i];
6651 err = (*odesc->insert) (odesc, val, &insn);
6652 if (err)
6653 as_bad_where (slot->src_file, slot->src_line,
6654 "Bad operand value: %s", err);
6655 if (idesc->flags & IA64_OPCODE_PSEUDO)
6656 {
6657 if ((idesc->flags & IA64_OPCODE_F2_EQ_F3)
6658 && odesc == elf64_ia64_operands + IA64_OPND_F3)
6659 {
6660 o2desc = elf64_ia64_operands + IA64_OPND_F2;
6661 (*o2desc->insert) (o2desc, val, &insn);
6662 }
6663 if ((idesc->flags & IA64_OPCODE_LEN_EQ_64MCNT)
6664 && (odesc == elf64_ia64_operands + IA64_OPND_CPOS6a
6665 || odesc == elf64_ia64_operands + IA64_OPND_POS6))
6666 {
6667 o2desc = elf64_ia64_operands + IA64_OPND_LEN6;
6668 (*o2desc->insert) (o2desc, 64 - val, &insn);
6669 }
6670 }
6671 }
6672 *insnp = insn;
6673 }
6674
6675 static void
6676 emit_one_bundle ()
6677 {
6678 int manual_bundling_off = 0, manual_bundling = 0;
6679 enum ia64_unit required_unit, insn_unit = 0;
6680 enum ia64_insn_type type[3], insn_type;
6681 unsigned int template, orig_template;
6682 bfd_vma insn[3] = { -1, -1, -1 };
6683 struct ia64_opcode *idesc;
6684 int end_of_insn_group = 0, user_template = -1;
6685 int n, i, j, first, curr, last_slot;
6686 bfd_vma t0 = 0, t1 = 0;
6687 struct label_fix *lfix;
6688 bfd_boolean mark_label;
6689 struct insn_fix *ifix;
6690 char mnemonic[16];
6691 fixS *fix;
6692 char *f;
6693 int addr_mod;
6694
6695 first = (md.curr_slot + NUM_SLOTS - md.num_slots_in_use) % NUM_SLOTS;
6696 know (first >= 0 & first < NUM_SLOTS);
6697 n = MIN (3, md.num_slots_in_use);
6698
6699 /* Determine template: user user_template if specified, best match
6700 otherwise: */
6701
6702 if (md.slot[first].user_template >= 0)
6703 user_template = template = md.slot[first].user_template;
6704 else
6705 {
6706 /* Auto select appropriate template. */
6707 memset (type, 0, sizeof (type));
6708 curr = first;
6709 for (i = 0; i < n; ++i)
6710 {
6711 if (md.slot[curr].label_fixups && i != 0)
6712 break;
6713 type[i] = md.slot[curr].idesc->type;
6714 curr = (curr + 1) % NUM_SLOTS;
6715 }
6716 template = best_template[type[0]][type[1]][type[2]];
6717 }
6718
6719 /* initialize instructions with appropriate nops: */
6720 for (i = 0; i < 3; ++i)
6721 insn[i] = nop[ia64_templ_desc[template].exec_unit[i]];
6722
6723 f = frag_more (16);
6724
6725 /* Check to see if this bundle is at an offset that is a multiple of 16-bytes
6726 from the start of the frag. */
6727 addr_mod = frag_now_fix () & 15;
6728 if (frag_now->has_code && frag_now->insn_addr != addr_mod)
6729 as_bad (_("instruction address is not a multiple of 16"));
6730 frag_now->insn_addr = addr_mod;
6731 frag_now->has_code = 1;
6732
6733 /* now fill in slots with as many insns as possible: */
6734 curr = first;
6735 idesc = md.slot[curr].idesc;
6736 end_of_insn_group = 0;
6737 last_slot = -1;
6738 for (i = 0; i < 3 && md.num_slots_in_use > 0; ++i)
6739 {
6740 /* If we have unwind records, we may need to update some now. */
6741 unw_rec_list *ptr = md.slot[curr].unwind_record;
6742 unw_rec_list *end_ptr = NULL;
6743
6744 if (ptr)
6745 {
6746 /* Find the last prologue/body record in the list for the current
6747 insn, and set the slot number for all records up to that point.
6748 This needs to be done now, because prologue/body records refer to
6749 the current point, not the point after the instruction has been
6750 issued. This matters because there may have been nops emitted
6751 meanwhile. Any non-prologue non-body record followed by a
6752 prologue/body record must also refer to the current point. */
6753 unw_rec_list *last_ptr;
6754
6755 for (j = 1; end_ptr == NULL && j < md.num_slots_in_use; ++j)
6756 end_ptr = md.slot[(curr + j) % NUM_SLOTS].unwind_record;
6757 for (last_ptr = NULL; ptr != end_ptr; ptr = ptr->next)
6758 if (ptr->r.type == prologue || ptr->r.type == prologue_gr
6759 || ptr->r.type == body)
6760 last_ptr = ptr;
6761 if (last_ptr)
6762 {
6763 /* Make last_ptr point one after the last prologue/body
6764 record. */
6765 last_ptr = last_ptr->next;
6766 for (ptr = md.slot[curr].unwind_record; ptr != last_ptr;
6767 ptr = ptr->next)
6768 {
6769 ptr->slot_number = (unsigned long) f + i;
6770 ptr->slot_frag = frag_now;
6771 }
6772 /* Remove the initialized records, so that we won't accidentally
6773 update them again if we insert a nop and continue. */
6774 md.slot[curr].unwind_record = last_ptr;
6775 }
6776 }
6777
6778 manual_bundling_off = md.slot[curr].manual_bundling_off;
6779 if (md.slot[curr].manual_bundling_on)
6780 {
6781 if (curr == first)
6782 manual_bundling = 1;
6783 else
6784 break; /* Need to start a new bundle. */
6785 }
6786
6787 /* If this instruction specifies a template, then it must be the first
6788 instruction of a bundle. */
6789 if (curr != first && md.slot[curr].user_template >= 0)
6790 break;
6791
6792 if (idesc->flags & IA64_OPCODE_SLOT2)
6793 {
6794 if (manual_bundling && !manual_bundling_off)
6795 {
6796 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6797 "`%s' must be last in bundle", idesc->name);
6798 if (i < 2)
6799 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6800 }
6801 i = 2;
6802 }
6803 if (idesc->flags & IA64_OPCODE_LAST)
6804 {
6805 int required_slot;
6806 unsigned int required_template;
6807
6808 /* If we need a stop bit after an M slot, our only choice is
6809 template 5 (M;;MI). If we need a stop bit after a B
6810 slot, our only choice is to place it at the end of the
6811 bundle, because the only available templates are MIB,
6812 MBB, BBB, MMB, and MFB. We don't handle anything other
6813 than M and B slots because these are the only kind of
6814 instructions that can have the IA64_OPCODE_LAST bit set. */
6815 required_template = template;
6816 switch (idesc->type)
6817 {
6818 case IA64_TYPE_M:
6819 required_slot = 0;
6820 required_template = 5;
6821 break;
6822
6823 case IA64_TYPE_B:
6824 required_slot = 2;
6825 break;
6826
6827 default:
6828 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6829 "Internal error: don't know how to force %s to end"
6830 "of instruction group", idesc->name);
6831 required_slot = i;
6832 break;
6833 }
6834 if (manual_bundling
6835 && (i > required_slot
6836 || (required_slot == 2 && !manual_bundling_off)
6837 || (user_template >= 0
6838 /* Changing from MMI to M;MI is OK. */
6839 && (template ^ required_template) > 1)))
6840 {
6841 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6842 "`%s' must be last in instruction group",
6843 idesc->name);
6844 if (i < 2 && required_slot == 2 && !manual_bundling_off)
6845 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6846 }
6847 if (required_slot < i)
6848 /* Can't fit this instruction. */
6849 break;
6850
6851 i = required_slot;
6852 if (required_template != template)
6853 {
6854 /* If we switch the template, we need to reset the NOPs
6855 after slot i. The slot-types of the instructions ahead
6856 of i never change, so we don't need to worry about
6857 changing NOPs in front of this slot. */
6858 for (j = i; j < 3; ++j)
6859 insn[j] = nop[ia64_templ_desc[required_template].exec_unit[j]];
6860 }
6861 template = required_template;
6862 }
6863 if (curr != first && md.slot[curr].label_fixups)
6864 {
6865 if (manual_bundling)
6866 {
6867 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6868 "Label must be first in a bundle");
6869 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6870 }
6871 /* This insn must go into the first slot of a bundle. */
6872 break;
6873 }
6874
6875 if (end_of_insn_group && md.num_slots_in_use >= 1)
6876 {
6877 /* We need an instruction group boundary in the middle of a
6878 bundle. See if we can switch to an other template with
6879 an appropriate boundary. */
6880
6881 orig_template = template;
6882 if (i == 1 && (user_template == 4
6883 || (user_template < 0
6884 && (ia64_templ_desc[template].exec_unit[0]
6885 == IA64_UNIT_M))))
6886 {
6887 template = 5;
6888 end_of_insn_group = 0;
6889 }
6890 else if (i == 2 && (user_template == 0
6891 || (user_template < 0
6892 && (ia64_templ_desc[template].exec_unit[1]
6893 == IA64_UNIT_I)))
6894 /* This test makes sure we don't switch the template if
6895 the next instruction is one that needs to be first in
6896 an instruction group. Since all those instructions are
6897 in the M group, there is no way such an instruction can
6898 fit in this bundle even if we switch the template. The
6899 reason we have to check for this is that otherwise we
6900 may end up generating "MI;;I M.." which has the deadly
6901 effect that the second M instruction is no longer the
6902 first in the group! --davidm 99/12/16 */
6903 && (idesc->flags & IA64_OPCODE_FIRST) == 0)
6904 {
6905 template = 1;
6906 end_of_insn_group = 0;
6907 }
6908 else if (i == 1
6909 && user_template == 0
6910 && !(idesc->flags & IA64_OPCODE_FIRST))
6911 /* Use the next slot. */
6912 continue;
6913 else if (curr != first)
6914 /* can't fit this insn */
6915 break;
6916
6917 if (template != orig_template)
6918 /* if we switch the template, we need to reset the NOPs
6919 after slot i. The slot-types of the instructions ahead
6920 of i never change, so we don't need to worry about
6921 changing NOPs in front of this slot. */
6922 for (j = i; j < 3; ++j)
6923 insn[j] = nop[ia64_templ_desc[template].exec_unit[j]];
6924 }
6925 required_unit = ia64_templ_desc[template].exec_unit[i];
6926
6927 /* resolve dynamic opcodes such as "break", "hint", and "nop": */
6928 if (idesc->type == IA64_TYPE_DYN)
6929 {
6930 enum ia64_opnd opnd1, opnd2;
6931
6932 if ((strcmp (idesc->name, "nop") == 0)
6933 || (strcmp (idesc->name, "break") == 0))
6934 insn_unit = required_unit;
6935 else if (strcmp (idesc->name, "hint") == 0)
6936 {
6937 insn_unit = required_unit;
6938 if (required_unit == IA64_UNIT_B)
6939 {
6940 switch (md.hint_b)
6941 {
6942 case hint_b_ok:
6943 break;
6944 case hint_b_warning:
6945 as_warn ("hint in B unit may be treated as nop");
6946 break;
6947 case hint_b_error:
6948 /* When manual bundling is off and there is no
6949 user template, we choose a different unit so
6950 that hint won't go into the current slot. We
6951 will fill the current bundle with nops and
6952 try to put hint into the next bundle. */
6953 if (!manual_bundling && user_template < 0)
6954 insn_unit = IA64_UNIT_I;
6955 else
6956 as_bad ("hint in B unit can't be used");
6957 break;
6958 }
6959 }
6960 }
6961 else if (strcmp (idesc->name, "chk.s") == 0
6962 || strcmp (idesc->name, "mov") == 0)
6963 {
6964 insn_unit = IA64_UNIT_M;
6965 if (required_unit == IA64_UNIT_I
6966 || (required_unit == IA64_UNIT_F && template == 6))
6967 insn_unit = IA64_UNIT_I;
6968 }
6969 else
6970 as_fatal ("emit_one_bundle: unexpected dynamic op");
6971
6972 sprintf (mnemonic, "%s.%c", idesc->name, "?imbfxx"[insn_unit]);
6973 opnd1 = idesc->operands[0];
6974 opnd2 = idesc->operands[1];
6975 ia64_free_opcode (idesc);
6976 idesc = ia64_find_opcode (mnemonic);
6977 /* moves to/from ARs have collisions */
6978 if (opnd1 == IA64_OPND_AR3 || opnd2 == IA64_OPND_AR3)
6979 {
6980 while (idesc != NULL
6981 && (idesc->operands[0] != opnd1
6982 || idesc->operands[1] != opnd2))
6983 idesc = get_next_opcode (idesc);
6984 }
6985 md.slot[curr].idesc = idesc;
6986 }
6987 else
6988 {
6989 insn_type = idesc->type;
6990 insn_unit = IA64_UNIT_NIL;
6991 switch (insn_type)
6992 {
6993 case IA64_TYPE_A:
6994 if (required_unit == IA64_UNIT_I || required_unit == IA64_UNIT_M)
6995 insn_unit = required_unit;
6996 break;
6997 case IA64_TYPE_X: insn_unit = IA64_UNIT_L; break;
6998 case IA64_TYPE_I: insn_unit = IA64_UNIT_I; break;
6999 case IA64_TYPE_M: insn_unit = IA64_UNIT_M; break;
7000 case IA64_TYPE_B: insn_unit = IA64_UNIT_B; break;
7001 case IA64_TYPE_F: insn_unit = IA64_UNIT_F; break;
7002 default: break;
7003 }
7004 }
7005
7006 if (insn_unit != required_unit)
7007 continue; /* Try next slot. */
7008
7009 /* Now is a good time to fix up the labels for this insn. */
7010 mark_label = FALSE;
7011 for (lfix = md.slot[curr].label_fixups; lfix; lfix = lfix->next)
7012 {
7013 S_SET_VALUE (lfix->sym, frag_now_fix () - 16);
7014 symbol_set_frag (lfix->sym, frag_now);
7015 mark_label |= lfix->dw2_mark_labels;
7016 }
7017 for (lfix = md.slot[curr].tag_fixups; lfix; lfix = lfix->next)
7018 {
7019 S_SET_VALUE (lfix->sym, frag_now_fix () - 16 + i);
7020 symbol_set_frag (lfix->sym, frag_now);
7021 }
7022
7023 if (debug_type == DEBUG_DWARF2
7024 || md.slot[curr].loc_directive_seen
7025 || mark_label)
7026 {
7027 bfd_vma addr = frag_now->fr_address + frag_now_fix () - 16 + i;
7028
7029 md.slot[curr].loc_directive_seen = 0;
7030 if (mark_label)
7031 md.slot[curr].debug_line.flags |= DWARF2_FLAG_BASIC_BLOCK;
7032
7033 dwarf2_gen_line_info (addr, &md.slot[curr].debug_line);
7034 }
7035
7036 build_insn (md.slot + curr, insn + i);
7037
7038 ptr = md.slot[curr].unwind_record;
7039 if (ptr)
7040 {
7041 /* Set slot numbers for all remaining unwind records belonging to the
7042 current insn. There can not be any prologue/body unwind records
7043 here. */
7044 for (; ptr != end_ptr; ptr = ptr->next)
7045 {
7046 ptr->slot_number = (unsigned long) f + i;
7047 ptr->slot_frag = frag_now;
7048 }
7049 md.slot[curr].unwind_record = NULL;
7050 }
7051
7052 if (required_unit == IA64_UNIT_L)
7053 {
7054 know (i == 1);
7055 /* skip one slot for long/X-unit instructions */
7056 ++i;
7057 }
7058 --md.num_slots_in_use;
7059 last_slot = i;
7060
7061 for (j = 0; j < md.slot[curr].num_fixups; ++j)
7062 {
7063 ifix = md.slot[curr].fixup + j;
7064 fix = fix_new_exp (frag_now, frag_now_fix () - 16 + i, 8,
7065 &ifix->expr, ifix->is_pcrel, ifix->code);
7066 fix->tc_fix_data.opnd = ifix->opnd;
7067 fix->fx_plt = (fix->fx_r_type == BFD_RELOC_IA64_PLTOFF22);
7068 fix->fx_file = md.slot[curr].src_file;
7069 fix->fx_line = md.slot[curr].src_line;
7070 }
7071
7072 end_of_insn_group = md.slot[curr].end_of_insn_group;
7073
7074 /* clear slot: */
7075 ia64_free_opcode (md.slot[curr].idesc);
7076 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
7077 md.slot[curr].user_template = -1;
7078
7079 if (manual_bundling_off)
7080 {
7081 manual_bundling = 0;
7082 break;
7083 }
7084 curr = (curr + 1) % NUM_SLOTS;
7085 idesc = md.slot[curr].idesc;
7086 }
7087
7088 /* A user template was specified, but the first following instruction did
7089 not fit. This can happen with or without manual bundling. */
7090 if (md.num_slots_in_use > 0 && last_slot < 0)
7091 {
7092 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7093 "`%s' does not fit into %s template",
7094 idesc->name, ia64_templ_desc[template].name);
7095 /* Drop first insn so we don't livelock. */
7096 --md.num_slots_in_use;
7097 know (curr == first);
7098 ia64_free_opcode (md.slot[curr].idesc);
7099 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
7100 md.slot[curr].user_template = -1;
7101 }
7102 else if (manual_bundling > 0)
7103 {
7104 if (md.num_slots_in_use > 0)
7105 {
7106 if (last_slot >= 2)
7107 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7108 "`%s' does not fit into bundle", idesc->name);
7109 else
7110 {
7111 const char *where;
7112
7113 if (template == 2)
7114 where = "X slot";
7115 else if (last_slot == 0)
7116 where = "slots 2 or 3";
7117 else
7118 where = "slot 3";
7119 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7120 "`%s' can't go in %s of %s template",
7121 idesc->name, where, ia64_templ_desc[template].name);
7122 }
7123 }
7124 else
7125 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
7126 "Missing '}' at end of file");
7127 }
7128
7129 know (md.num_slots_in_use < NUM_SLOTS);
7130
7131 t0 = end_of_insn_group | (template << 1) | (insn[0] << 5) | (insn[1] << 46);
7132 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
7133
7134 number_to_chars_littleendian (f + 0, t0, 8);
7135 number_to_chars_littleendian (f + 8, t1, 8);
7136 }
7137
7138 int
7139 md_parse_option (c, arg)
7140 int c;
7141 char *arg;
7142 {
7143
7144 switch (c)
7145 {
7146 /* Switches from the Intel assembler. */
7147 case 'm':
7148 if (strcmp (arg, "ilp64") == 0
7149 || strcmp (arg, "lp64") == 0
7150 || strcmp (arg, "p64") == 0)
7151 {
7152 md.flags |= EF_IA_64_ABI64;
7153 }
7154 else if (strcmp (arg, "ilp32") == 0)
7155 {
7156 md.flags &= ~EF_IA_64_ABI64;
7157 }
7158 else if (strcmp (arg, "le") == 0)
7159 {
7160 md.flags &= ~EF_IA_64_BE;
7161 default_big_endian = 0;
7162 }
7163 else if (strcmp (arg, "be") == 0)
7164 {
7165 md.flags |= EF_IA_64_BE;
7166 default_big_endian = 1;
7167 }
7168 else if (strncmp (arg, "unwind-check=", 13) == 0)
7169 {
7170 arg += 13;
7171 if (strcmp (arg, "warning") == 0)
7172 md.unwind_check = unwind_check_warning;
7173 else if (strcmp (arg, "error") == 0)
7174 md.unwind_check = unwind_check_error;
7175 else
7176 return 0;
7177 }
7178 else if (strncmp (arg, "hint.b=", 7) == 0)
7179 {
7180 arg += 7;
7181 if (strcmp (arg, "ok") == 0)
7182 md.hint_b = hint_b_ok;
7183 else if (strcmp (arg, "warning") == 0)
7184 md.hint_b = hint_b_warning;
7185 else if (strcmp (arg, "error") == 0)
7186 md.hint_b = hint_b_error;
7187 else
7188 return 0;
7189 }
7190 else if (strncmp (arg, "tune=", 5) == 0)
7191 {
7192 arg += 5;
7193 if (strcmp (arg, "itanium1") == 0)
7194 md.tune = itanium1;
7195 else if (strcmp (arg, "itanium2") == 0)
7196 md.tune = itanium2;
7197 else
7198 return 0;
7199 }
7200 else
7201 return 0;
7202 break;
7203
7204 case 'N':
7205 if (strcmp (arg, "so") == 0)
7206 {
7207 /* Suppress signon message. */
7208 }
7209 else if (strcmp (arg, "pi") == 0)
7210 {
7211 /* Reject privileged instructions. FIXME */
7212 }
7213 else if (strcmp (arg, "us") == 0)
7214 {
7215 /* Allow union of signed and unsigned range. FIXME */
7216 }
7217 else if (strcmp (arg, "close_fcalls") == 0)
7218 {
7219 /* Do not resolve global function calls. */
7220 }
7221 else
7222 return 0;
7223 break;
7224
7225 case 'C':
7226 /* temp[="prefix"] Insert temporary labels into the object file
7227 symbol table prefixed by "prefix".
7228 Default prefix is ":temp:".
7229 */
7230 break;
7231
7232 case 'a':
7233 /* indirect=<tgt> Assume unannotated indirect branches behavior
7234 according to <tgt> --
7235 exit: branch out from the current context (default)
7236 labels: all labels in context may be branch targets
7237 */
7238 if (strncmp (arg, "indirect=", 9) != 0)
7239 return 0;
7240 break;
7241
7242 case 'x':
7243 /* -X conflicts with an ignored option, use -x instead */
7244 md.detect_dv = 1;
7245 if (!arg || strcmp (arg, "explicit") == 0)
7246 {
7247 /* set default mode to explicit */
7248 md.default_explicit_mode = 1;
7249 break;
7250 }
7251 else if (strcmp (arg, "auto") == 0)
7252 {
7253 md.default_explicit_mode = 0;
7254 }
7255 else if (strcmp (arg, "none") == 0)
7256 {
7257 md.detect_dv = 0;
7258 }
7259 else if (strcmp (arg, "debug") == 0)
7260 {
7261 md.debug_dv = 1;
7262 }
7263 else if (strcmp (arg, "debugx") == 0)
7264 {
7265 md.default_explicit_mode = 1;
7266 md.debug_dv = 1;
7267 }
7268 else if (strcmp (arg, "debugn") == 0)
7269 {
7270 md.debug_dv = 1;
7271 md.detect_dv = 0;
7272 }
7273 else
7274 {
7275 as_bad (_("Unrecognized option '-x%s'"), arg);
7276 }
7277 break;
7278
7279 case 'S':
7280 /* nops Print nops statistics. */
7281 break;
7282
7283 /* GNU specific switches for gcc. */
7284 case OPTION_MCONSTANT_GP:
7285 md.flags |= EF_IA_64_CONS_GP;
7286 break;
7287
7288 case OPTION_MAUTO_PIC:
7289 md.flags |= EF_IA_64_NOFUNCDESC_CONS_GP;
7290 break;
7291
7292 default:
7293 return 0;
7294 }
7295
7296 return 1;
7297 }
7298
7299 void
7300 md_show_usage (stream)
7301 FILE *stream;
7302 {
7303 fputs (_("\
7304 IA-64 options:\n\
7305 --mconstant-gp mark output file as using the constant-GP model\n\
7306 (sets ELF header flag EF_IA_64_CONS_GP)\n\
7307 --mauto-pic mark output file as using the constant-GP model\n\
7308 without function descriptors (sets ELF header flag\n\
7309 EF_IA_64_NOFUNCDESC_CONS_GP)\n\
7310 -milp32|-milp64|-mlp64|-mp64 select data model (default -mlp64)\n\
7311 -mle | -mbe select little- or big-endian byte order (default -mle)\n\
7312 -mtune=[itanium1|itanium2]\n\
7313 tune for a specific CPU (default -mtune=itanium2)\n\
7314 -munwind-check=[warning|error]\n\
7315 unwind directive check (default -munwind-check=warning)\n\
7316 -mhint.b=[ok|warning|error]\n\
7317 hint.b check (default -mhint.b=error)\n\
7318 -x | -xexplicit turn on dependency violation checking\n\
7319 -xauto automagically remove dependency violations (default)\n\
7320 -xnone turn off dependency violation checking\n\
7321 -xdebug debug dependency violation checker\n\
7322 -xdebugn debug dependency violation checker but turn off\n\
7323 dependency violation checking\n\
7324 -xdebugx debug dependency violation checker and turn on\n\
7325 dependency violation checking\n"),
7326 stream);
7327 }
7328
7329 void
7330 ia64_after_parse_args ()
7331 {
7332 if (debug_type == DEBUG_STABS)
7333 as_fatal (_("--gstabs is not supported for ia64"));
7334 }
7335
7336 /* Return true if TYPE fits in TEMPL at SLOT. */
7337
7338 static int
7339 match (int templ, int type, int slot)
7340 {
7341 enum ia64_unit unit;
7342 int result;
7343
7344 unit = ia64_templ_desc[templ].exec_unit[slot];
7345 switch (type)
7346 {
7347 case IA64_TYPE_DYN: result = 1; break; /* for nop and break */
7348 case IA64_TYPE_A:
7349 result = (unit == IA64_UNIT_I || unit == IA64_UNIT_M);
7350 break;
7351 case IA64_TYPE_X: result = (unit == IA64_UNIT_L); break;
7352 case IA64_TYPE_I: result = (unit == IA64_UNIT_I); break;
7353 case IA64_TYPE_M: result = (unit == IA64_UNIT_M); break;
7354 case IA64_TYPE_B: result = (unit == IA64_UNIT_B); break;
7355 case IA64_TYPE_F: result = (unit == IA64_UNIT_F); break;
7356 default: result = 0; break;
7357 }
7358 return result;
7359 }
7360
7361 /* For Itanium 1, add a bit of extra goodness if a nop of type F or B would fit
7362 in TEMPL at SLOT. For Itanium 2, add a bit of extra goodness if a nop of
7363 type M or I would fit in TEMPL at SLOT. */
7364
7365 static inline int
7366 extra_goodness (int templ, int slot)
7367 {
7368 switch (md.tune)
7369 {
7370 case itanium1:
7371 if (slot == 1 && match (templ, IA64_TYPE_F, slot))
7372 return 2;
7373 else if (slot == 2 && match (templ, IA64_TYPE_B, slot))
7374 return 1;
7375 else
7376 return 0;
7377 break;
7378 case itanium2:
7379 if (match (templ, IA64_TYPE_M, slot)
7380 || match (templ, IA64_TYPE_I, slot))
7381 /* Favor M- and I-unit NOPs. We definitely want to avoid
7382 F-unit and B-unit may cause split-issue or less-than-optimal
7383 branch-prediction. */
7384 return 2;
7385 else
7386 return 0;
7387 break;
7388 default:
7389 abort ();
7390 return 0;
7391 }
7392 }
7393
7394 /* This function is called once, at assembler startup time. It sets
7395 up all the tables, etc. that the MD part of the assembler will need
7396 that can be determined before arguments are parsed. */
7397 void
7398 md_begin ()
7399 {
7400 int i, j, k, t, goodness, best, ok;
7401 const char *err;
7402 char name[8];
7403
7404 md.auto_align = 1;
7405 md.explicit_mode = md.default_explicit_mode;
7406
7407 bfd_set_section_alignment (stdoutput, text_section, 4);
7408
7409 /* Make sure function pointers get initialized. */
7410 target_big_endian = -1;
7411 dot_byteorder (default_big_endian);
7412
7413 alias_hash = hash_new ();
7414 alias_name_hash = hash_new ();
7415 secalias_hash = hash_new ();
7416 secalias_name_hash = hash_new ();
7417
7418 pseudo_func[FUNC_DTP_MODULE].u.sym =
7419 symbol_new (".<dtpmod>", undefined_section, FUNC_DTP_MODULE,
7420 &zero_address_frag);
7421
7422 pseudo_func[FUNC_DTP_RELATIVE].u.sym =
7423 symbol_new (".<dtprel>", undefined_section, FUNC_DTP_RELATIVE,
7424 &zero_address_frag);
7425
7426 pseudo_func[FUNC_FPTR_RELATIVE].u.sym =
7427 symbol_new (".<fptr>", undefined_section, FUNC_FPTR_RELATIVE,
7428 &zero_address_frag);
7429
7430 pseudo_func[FUNC_GP_RELATIVE].u.sym =
7431 symbol_new (".<gprel>", undefined_section, FUNC_GP_RELATIVE,
7432 &zero_address_frag);
7433
7434 pseudo_func[FUNC_LT_RELATIVE].u.sym =
7435 symbol_new (".<ltoff>", undefined_section, FUNC_LT_RELATIVE,
7436 &zero_address_frag);
7437
7438 pseudo_func[FUNC_LT_RELATIVE_X].u.sym =
7439 symbol_new (".<ltoffx>", undefined_section, FUNC_LT_RELATIVE_X,
7440 &zero_address_frag);
7441
7442 pseudo_func[FUNC_PC_RELATIVE].u.sym =
7443 symbol_new (".<pcrel>", undefined_section, FUNC_PC_RELATIVE,
7444 &zero_address_frag);
7445
7446 pseudo_func[FUNC_PLT_RELATIVE].u.sym =
7447 symbol_new (".<pltoff>", undefined_section, FUNC_PLT_RELATIVE,
7448 &zero_address_frag);
7449
7450 pseudo_func[FUNC_SEC_RELATIVE].u.sym =
7451 symbol_new (".<secrel>", undefined_section, FUNC_SEC_RELATIVE,
7452 &zero_address_frag);
7453
7454 pseudo_func[FUNC_SEG_RELATIVE].u.sym =
7455 symbol_new (".<segrel>", undefined_section, FUNC_SEG_RELATIVE,
7456 &zero_address_frag);
7457
7458 pseudo_func[FUNC_TP_RELATIVE].u.sym =
7459 symbol_new (".<tprel>", undefined_section, FUNC_TP_RELATIVE,
7460 &zero_address_frag);
7461
7462 pseudo_func[FUNC_LTV_RELATIVE].u.sym =
7463 symbol_new (".<ltv>", undefined_section, FUNC_LTV_RELATIVE,
7464 &zero_address_frag);
7465
7466 pseudo_func[FUNC_LT_FPTR_RELATIVE].u.sym =
7467 symbol_new (".<ltoff.fptr>", undefined_section, FUNC_LT_FPTR_RELATIVE,
7468 &zero_address_frag);
7469
7470 pseudo_func[FUNC_LT_DTP_MODULE].u.sym =
7471 symbol_new (".<ltoff.dtpmod>", undefined_section, FUNC_LT_DTP_MODULE,
7472 &zero_address_frag);
7473
7474 pseudo_func[FUNC_LT_DTP_RELATIVE].u.sym =
7475 symbol_new (".<ltoff.dptrel>", undefined_section, FUNC_LT_DTP_RELATIVE,
7476 &zero_address_frag);
7477
7478 pseudo_func[FUNC_LT_TP_RELATIVE].u.sym =
7479 symbol_new (".<ltoff.tprel>", undefined_section, FUNC_LT_TP_RELATIVE,
7480 &zero_address_frag);
7481
7482 pseudo_func[FUNC_IPLT_RELOC].u.sym =
7483 symbol_new (".<iplt>", undefined_section, FUNC_IPLT_RELOC,
7484 &zero_address_frag);
7485
7486 if (md.tune != itanium1)
7487 {
7488 /* Convert MFI NOPs bundles into MMI NOPs bundles. */
7489 le_nop[0] = 0x8;
7490 le_nop_stop[0] = 0x9;
7491 }
7492
7493 /* Compute the table of best templates. We compute goodness as a
7494 base 4 value, in which each match counts for 3. Match-failures
7495 result in NOPs and we use extra_goodness() to pick the execution
7496 units that are best suited for issuing the NOP. */
7497 for (i = 0; i < IA64_NUM_TYPES; ++i)
7498 for (j = 0; j < IA64_NUM_TYPES; ++j)
7499 for (k = 0; k < IA64_NUM_TYPES; ++k)
7500 {
7501 best = 0;
7502 for (t = 0; t < NELEMS (ia64_templ_desc); ++t)
7503 {
7504 goodness = 0;
7505 if (match (t, i, 0))
7506 {
7507 if (match (t, j, 1))
7508 {
7509 if ((t == 2 && j == IA64_TYPE_X) || match (t, k, 2))
7510 goodness = 3 + 3 + 3;
7511 else
7512 goodness = 3 + 3 + extra_goodness (t, 2);
7513 }
7514 else if (match (t, j, 2))
7515 goodness = 3 + 3 + extra_goodness (t, 1);
7516 else
7517 {
7518 goodness = 3;
7519 goodness += extra_goodness (t, 1);
7520 goodness += extra_goodness (t, 2);
7521 }
7522 }
7523 else if (match (t, i, 1))
7524 {
7525 if ((t == 2 && i == IA64_TYPE_X) || match (t, j, 2))
7526 goodness = 3 + 3;
7527 else
7528 goodness = 3 + extra_goodness (t, 2);
7529 }
7530 else if (match (t, i, 2))
7531 goodness = 3 + extra_goodness (t, 1);
7532
7533 if (goodness > best)
7534 {
7535 best = goodness;
7536 best_template[i][j][k] = t;
7537 }
7538 }
7539 }
7540
7541 #ifdef DEBUG_TEMPLATES
7542 /* For debugging changes to the best_template calculations. We don't care
7543 about combinations with invalid instructions, so start the loops at 1. */
7544 for (i = 0; i < IA64_NUM_TYPES; ++i)
7545 for (j = 0; j < IA64_NUM_TYPES; ++j)
7546 for (k = 0; k < IA64_NUM_TYPES; ++k)
7547 {
7548 char type_letter[IA64_NUM_TYPES] = { 'n', 'a', 'i', 'm', 'b', 'f',
7549 'x', 'd' };
7550 fprintf (stderr, "%c%c%c %s\n", type_letter[i], type_letter[j],
7551 type_letter[k],
7552 ia64_templ_desc[best_template[i][j][k]].name);
7553 }
7554 #endif
7555
7556 for (i = 0; i < NUM_SLOTS; ++i)
7557 md.slot[i].user_template = -1;
7558
7559 md.pseudo_hash = hash_new ();
7560 for (i = 0; i < NELEMS (pseudo_opcode); ++i)
7561 {
7562 err = hash_insert (md.pseudo_hash, pseudo_opcode[i].name,
7563 (void *) (pseudo_opcode + i));
7564 if (err)
7565 as_fatal ("ia64.md_begin: can't hash `%s': %s",
7566 pseudo_opcode[i].name, err);
7567 }
7568
7569 md.reg_hash = hash_new ();
7570 md.dynreg_hash = hash_new ();
7571 md.const_hash = hash_new ();
7572 md.entry_hash = hash_new ();
7573
7574 /* general registers: */
7575 declare_register_set ("r", 128, REG_GR);
7576 declare_register ("gp", REG_GR + 1);
7577 declare_register ("sp", REG_GR + 12);
7578 declare_register ("tp", REG_GR + 13);
7579 declare_register_set ("ret", 4, REG_GR + 8);
7580
7581 /* floating point registers: */
7582 declare_register_set ("f", 128, REG_FR);
7583 declare_register_set ("farg", 8, REG_FR + 8);
7584 declare_register_set ("fret", 8, REG_FR + 8);
7585
7586 /* branch registers: */
7587 declare_register_set ("b", 8, REG_BR);
7588 declare_register ("rp", REG_BR + 0);
7589
7590 /* predicate registers: */
7591 declare_register_set ("p", 64, REG_P);
7592 declare_register ("pr", REG_PR);
7593 declare_register ("pr.rot", REG_PR_ROT);
7594
7595 /* application registers: */
7596 declare_register_set ("ar", 128, REG_AR);
7597 for (i = 0; i < NELEMS (ar); ++i)
7598 declare_register (ar[i].name, REG_AR + ar[i].regnum);
7599
7600 /* control registers: */
7601 declare_register_set ("cr", 128, REG_CR);
7602 for (i = 0; i < NELEMS (cr); ++i)
7603 declare_register (cr[i].name, REG_CR + cr[i].regnum);
7604
7605 declare_register ("ip", REG_IP);
7606 declare_register ("cfm", REG_CFM);
7607 declare_register ("psr", REG_PSR);
7608 declare_register ("psr.l", REG_PSR_L);
7609 declare_register ("psr.um", REG_PSR_UM);
7610
7611 for (i = 0; i < NELEMS (indirect_reg); ++i)
7612 {
7613 unsigned int regnum = indirect_reg[i].regnum;
7614
7615 md.indregsym[regnum - IND_CPUID] = declare_register (indirect_reg[i].name, regnum);
7616 }
7617
7618 /* pseudo-registers used to specify unwind info: */
7619 declare_register ("psp", REG_PSP);
7620
7621 for (i = 0; i < NELEMS (const_bits); ++i)
7622 {
7623 err = hash_insert (md.const_hash, const_bits[i].name,
7624 (PTR) (const_bits + i));
7625 if (err)
7626 as_fatal ("Inserting \"%s\" into constant hash table failed: %s",
7627 name, err);
7628 }
7629
7630 /* Set the architecture and machine depending on defaults and command line
7631 options. */
7632 if (md.flags & EF_IA_64_ABI64)
7633 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf64);
7634 else
7635 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf32);
7636
7637 if (! ok)
7638 as_warn (_("Could not set architecture and machine"));
7639
7640 /* Set the pointer size and pointer shift size depending on md.flags */
7641
7642 if (md.flags & EF_IA_64_ABI64)
7643 {
7644 md.pointer_size = 8; /* pointers are 8 bytes */
7645 md.pointer_size_shift = 3; /* alignment is 8 bytes = 2^2 */
7646 }
7647 else
7648 {
7649 md.pointer_size = 4; /* pointers are 4 bytes */
7650 md.pointer_size_shift = 2; /* alignment is 4 bytes = 2^2 */
7651 }
7652
7653 md.mem_offset.hint = 0;
7654 md.path = 0;
7655 md.maxpaths = 0;
7656 md.entry_labels = NULL;
7657 }
7658
7659 /* Set the default options in md. Cannot do this in md_begin because
7660 that is called after md_parse_option which is where we set the
7661 options in md based on command line options. */
7662
7663 void
7664 ia64_init (argc, argv)
7665 int argc ATTRIBUTE_UNUSED;
7666 char **argv ATTRIBUTE_UNUSED;
7667 {
7668 md.flags = MD_FLAGS_DEFAULT;
7669 md.detect_dv = 1;
7670 /* FIXME: We should change it to unwind_check_error someday. */
7671 md.unwind_check = unwind_check_warning;
7672 md.hint_b = hint_b_error;
7673 md.tune = itanium2;
7674 }
7675
7676 /* Return a string for the target object file format. */
7677
7678 const char *
7679 ia64_target_format ()
7680 {
7681 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
7682 {
7683 if (md.flags & EF_IA_64_BE)
7684 {
7685 if (md.flags & EF_IA_64_ABI64)
7686 #if defined(TE_AIX50)
7687 return "elf64-ia64-aix-big";
7688 #elif defined(TE_HPUX)
7689 return "elf64-ia64-hpux-big";
7690 #else
7691 return "elf64-ia64-big";
7692 #endif
7693 else
7694 #if defined(TE_AIX50)
7695 return "elf32-ia64-aix-big";
7696 #elif defined(TE_HPUX)
7697 return "elf32-ia64-hpux-big";
7698 #else
7699 return "elf32-ia64-big";
7700 #endif
7701 }
7702 else
7703 {
7704 if (md.flags & EF_IA_64_ABI64)
7705 #ifdef TE_AIX50
7706 return "elf64-ia64-aix-little";
7707 #else
7708 return "elf64-ia64-little";
7709 #endif
7710 else
7711 #ifdef TE_AIX50
7712 return "elf32-ia64-aix-little";
7713 #else
7714 return "elf32-ia64-little";
7715 #endif
7716 }
7717 }
7718 else
7719 return "unknown-format";
7720 }
7721
7722 void
7723 ia64_end_of_source ()
7724 {
7725 /* terminate insn group upon reaching end of file: */
7726 insn_group_break (1, 0, 0);
7727
7728 /* emits slots we haven't written yet: */
7729 ia64_flush_insns ();
7730
7731 bfd_set_private_flags (stdoutput, md.flags);
7732
7733 md.mem_offset.hint = 0;
7734 }
7735
7736 void
7737 ia64_start_line ()
7738 {
7739 static int first;
7740
7741 if (!first) {
7742 /* Make sure we don't reference input_line_pointer[-1] when that's
7743 not valid. */
7744 first = 1;
7745 return;
7746 }
7747
7748 if (md.qp.X_op == O_register)
7749 as_bad ("qualifying predicate not followed by instruction");
7750 md.qp.X_op = O_absent;
7751
7752 if (ignore_input ())
7753 return;
7754
7755 if (input_line_pointer[0] == ';' && input_line_pointer[-1] == ';')
7756 {
7757 if (md.detect_dv && !md.explicit_mode)
7758 {
7759 static int warned;
7760
7761 if (!warned)
7762 {
7763 warned = 1;
7764 as_warn (_("Explicit stops are ignored in auto mode"));
7765 }
7766 }
7767 else
7768 insn_group_break (1, 0, 0);
7769 }
7770 else if (input_line_pointer[-1] == '{')
7771 {
7772 if (md.manual_bundling)
7773 as_warn ("Found '{' when manual bundling is already turned on");
7774 else
7775 CURR_SLOT.manual_bundling_on = 1;
7776 md.manual_bundling = 1;
7777
7778 /* Bundling is only acceptable in explicit mode
7779 or when in default automatic mode. */
7780 if (md.detect_dv && !md.explicit_mode)
7781 {
7782 if (!md.mode_explicitly_set
7783 && !md.default_explicit_mode)
7784 dot_dv_mode ('E');
7785 else
7786 as_warn (_("Found '{' after explicit switch to automatic mode"));
7787 }
7788 }
7789 else if (input_line_pointer[-1] == '}')
7790 {
7791 if (!md.manual_bundling)
7792 as_warn ("Found '}' when manual bundling is off");
7793 else
7794 PREV_SLOT.manual_bundling_off = 1;
7795 md.manual_bundling = 0;
7796
7797 /* switch back to automatic mode, if applicable */
7798 if (md.detect_dv
7799 && md.explicit_mode
7800 && !md.mode_explicitly_set
7801 && !md.default_explicit_mode)
7802 dot_dv_mode ('A');
7803 }
7804 }
7805
7806 /* This is a hook for ia64_frob_label, so that it can distinguish tags from
7807 labels. */
7808 static int defining_tag = 0;
7809
7810 int
7811 ia64_unrecognized_line (ch)
7812 int ch;
7813 {
7814 switch (ch)
7815 {
7816 case '(':
7817 expression_and_evaluate (&md.qp);
7818 if (*input_line_pointer++ != ')')
7819 {
7820 as_bad ("Expected ')'");
7821 return 0;
7822 }
7823 if (md.qp.X_op != O_register)
7824 {
7825 as_bad ("Qualifying predicate expected");
7826 return 0;
7827 }
7828 if (md.qp.X_add_number < REG_P || md.qp.X_add_number >= REG_P + 64)
7829 {
7830 as_bad ("Predicate register expected");
7831 return 0;
7832 }
7833 return 1;
7834
7835 case '[':
7836 {
7837 char *s;
7838 char c;
7839 symbolS *tag;
7840 int temp;
7841
7842 if (md.qp.X_op == O_register)
7843 {
7844 as_bad ("Tag must come before qualifying predicate.");
7845 return 0;
7846 }
7847
7848 /* This implements just enough of read_a_source_file in read.c to
7849 recognize labels. */
7850 if (is_name_beginner (*input_line_pointer))
7851 {
7852 s = input_line_pointer;
7853 c = get_symbol_end ();
7854 }
7855 else if (LOCAL_LABELS_FB
7856 && ISDIGIT (*input_line_pointer))
7857 {
7858 temp = 0;
7859 while (ISDIGIT (*input_line_pointer))
7860 temp = (temp * 10) + *input_line_pointer++ - '0';
7861 fb_label_instance_inc (temp);
7862 s = fb_label_name (temp, 0);
7863 c = *input_line_pointer;
7864 }
7865 else
7866 {
7867 s = NULL;
7868 c = '\0';
7869 }
7870 if (c != ':')
7871 {
7872 /* Put ':' back for error messages' sake. */
7873 *input_line_pointer++ = ':';
7874 as_bad ("Expected ':'");
7875 return 0;
7876 }
7877
7878 defining_tag = 1;
7879 tag = colon (s);
7880 defining_tag = 0;
7881 /* Put ':' back for error messages' sake. */
7882 *input_line_pointer++ = ':';
7883 if (*input_line_pointer++ != ']')
7884 {
7885 as_bad ("Expected ']'");
7886 return 0;
7887 }
7888 if (! tag)
7889 {
7890 as_bad ("Tag name expected");
7891 return 0;
7892 }
7893 return 1;
7894 }
7895
7896 default:
7897 break;
7898 }
7899
7900 /* Not a valid line. */
7901 return 0;
7902 }
7903
7904 void
7905 ia64_frob_label (sym)
7906 struct symbol *sym;
7907 {
7908 struct label_fix *fix;
7909
7910 /* Tags need special handling since they are not bundle breaks like
7911 labels. */
7912 if (defining_tag)
7913 {
7914 fix = obstack_alloc (&notes, sizeof (*fix));
7915 fix->sym = sym;
7916 fix->next = CURR_SLOT.tag_fixups;
7917 fix->dw2_mark_labels = FALSE;
7918 CURR_SLOT.tag_fixups = fix;
7919
7920 return;
7921 }
7922
7923 if (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7924 {
7925 md.last_text_seg = now_seg;
7926 fix = obstack_alloc (&notes, sizeof (*fix));
7927 fix->sym = sym;
7928 fix->next = CURR_SLOT.label_fixups;
7929 fix->dw2_mark_labels = dwarf2_loc_mark_labels;
7930 CURR_SLOT.label_fixups = fix;
7931
7932 /* Keep track of how many code entry points we've seen. */
7933 if (md.path == md.maxpaths)
7934 {
7935 md.maxpaths += 20;
7936 md.entry_labels = (const char **)
7937 xrealloc ((void *) md.entry_labels,
7938 md.maxpaths * sizeof (char *));
7939 }
7940 md.entry_labels[md.path++] = S_GET_NAME (sym);
7941 }
7942 }
7943
7944 #ifdef TE_HPUX
7945 /* The HP-UX linker will give unresolved symbol errors for symbols
7946 that are declared but unused. This routine removes declared,
7947 unused symbols from an object. */
7948 int
7949 ia64_frob_symbol (sym)
7950 struct symbol *sym;
7951 {
7952 if ((S_GET_SEGMENT (sym) == &bfd_und_section && ! symbol_used_p (sym) &&
7953 ELF_ST_VISIBILITY (S_GET_OTHER (sym)) == STV_DEFAULT)
7954 || (S_GET_SEGMENT (sym) == &bfd_abs_section
7955 && ! S_IS_EXTERNAL (sym)))
7956 return 1;
7957 return 0;
7958 }
7959 #endif
7960
7961 void
7962 ia64_flush_pending_output ()
7963 {
7964 if (!md.keep_pending_output
7965 && bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7966 {
7967 /* ??? This causes many unnecessary stop bits to be emitted.
7968 Unfortunately, it isn't clear if it is safe to remove this. */
7969 insn_group_break (1, 0, 0);
7970 ia64_flush_insns ();
7971 }
7972 }
7973
7974 /* Do ia64-specific expression optimization. All that's done here is
7975 to transform index expressions that are either due to the indexing
7976 of rotating registers or due to the indexing of indirect register
7977 sets. */
7978 int
7979 ia64_optimize_expr (l, op, r)
7980 expressionS *l;
7981 operatorT op;
7982 expressionS *r;
7983 {
7984 if (op != O_index)
7985 return 0;
7986 resolve_expression (l);
7987 if (l->X_op == O_register)
7988 {
7989 unsigned num_regs = l->X_add_number >> 16;
7990
7991 resolve_expression (r);
7992 if (num_regs)
7993 {
7994 /* Left side is a .rotX-allocated register. */
7995 if (r->X_op != O_constant)
7996 {
7997 as_bad ("Rotating register index must be a non-negative constant");
7998 r->X_add_number = 0;
7999 }
8000 else if ((valueT) r->X_add_number >= num_regs)
8001 {
8002 as_bad ("Index out of range 0..%u", num_regs - 1);
8003 r->X_add_number = 0;
8004 }
8005 l->X_add_number = (l->X_add_number & 0xffff) + r->X_add_number;
8006 return 1;
8007 }
8008 else if (l->X_add_number >= IND_CPUID && l->X_add_number <= IND_RR)
8009 {
8010 if (r->X_op != O_register
8011 || r->X_add_number < REG_GR
8012 || r->X_add_number > REG_GR + 127)
8013 {
8014 as_bad ("Indirect register index must be a general register");
8015 r->X_add_number = REG_GR;
8016 }
8017 l->X_op = O_index;
8018 l->X_op_symbol = md.indregsym[l->X_add_number - IND_CPUID];
8019 l->X_add_number = r->X_add_number;
8020 return 1;
8021 }
8022 }
8023 as_bad ("Index can only be applied to rotating or indirect registers");
8024 /* Fall back to some register use of which has as little as possible
8025 side effects, to minimize subsequent error messages. */
8026 l->X_op = O_register;
8027 l->X_add_number = REG_GR + 3;
8028 return 1;
8029 }
8030
8031 int
8032 ia64_parse_name (name, e, nextcharP)
8033 char *name;
8034 expressionS *e;
8035 char *nextcharP;
8036 {
8037 struct const_desc *cdesc;
8038 struct dynreg *dr = 0;
8039 unsigned int idx;
8040 struct symbol *sym;
8041 char *end;
8042
8043 if (*name == '@')
8044 {
8045 enum pseudo_type pseudo_type = PSEUDO_FUNC_NONE;
8046
8047 /* Find what relocation pseudo-function we're dealing with. */
8048 for (idx = 0; idx < NELEMS (pseudo_func); ++idx)
8049 if (pseudo_func[idx].name
8050 && pseudo_func[idx].name[0] == name[1]
8051 && strcmp (pseudo_func[idx].name + 1, name + 2) == 0)
8052 {
8053 pseudo_type = pseudo_func[idx].type;
8054 break;
8055 }
8056 switch (pseudo_type)
8057 {
8058 case PSEUDO_FUNC_RELOC:
8059 end = input_line_pointer;
8060 if (*nextcharP != '(')
8061 {
8062 as_bad ("Expected '('");
8063 break;
8064 }
8065 /* Skip '('. */
8066 ++input_line_pointer;
8067 expression (e);
8068 if (*input_line_pointer != ')')
8069 {
8070 as_bad ("Missing ')'");
8071 goto done;
8072 }
8073 /* Skip ')'. */
8074 ++input_line_pointer;
8075 if (e->X_op != O_symbol)
8076 {
8077 if (e->X_op != O_pseudo_fixup)
8078 {
8079 as_bad ("Not a symbolic expression");
8080 goto done;
8081 }
8082 if (idx != FUNC_LT_RELATIVE)
8083 {
8084 as_bad ("Illegal combination of relocation functions");
8085 goto done;
8086 }
8087 switch (S_GET_VALUE (e->X_op_symbol))
8088 {
8089 case FUNC_FPTR_RELATIVE:
8090 idx = FUNC_LT_FPTR_RELATIVE; break;
8091 case FUNC_DTP_MODULE:
8092 idx = FUNC_LT_DTP_MODULE; break;
8093 case FUNC_DTP_RELATIVE:
8094 idx = FUNC_LT_DTP_RELATIVE; break;
8095 case FUNC_TP_RELATIVE:
8096 idx = FUNC_LT_TP_RELATIVE; break;
8097 default:
8098 as_bad ("Illegal combination of relocation functions");
8099 goto done;
8100 }
8101 }
8102 /* Make sure gas doesn't get rid of local symbols that are used
8103 in relocs. */
8104 e->X_op = O_pseudo_fixup;
8105 e->X_op_symbol = pseudo_func[idx].u.sym;
8106 done:
8107 *nextcharP = *input_line_pointer;
8108 break;
8109
8110 case PSEUDO_FUNC_CONST:
8111 e->X_op = O_constant;
8112 e->X_add_number = pseudo_func[idx].u.ival;
8113 break;
8114
8115 case PSEUDO_FUNC_REG:
8116 e->X_op = O_register;
8117 e->X_add_number = pseudo_func[idx].u.ival;
8118 break;
8119
8120 default:
8121 return 0;
8122 }
8123 return 1;
8124 }
8125
8126 /* first see if NAME is a known register name: */
8127 sym = hash_find (md.reg_hash, name);
8128 if (sym)
8129 {
8130 e->X_op = O_register;
8131 e->X_add_number = S_GET_VALUE (sym);
8132 return 1;
8133 }
8134
8135 cdesc = hash_find (md.const_hash, name);
8136 if (cdesc)
8137 {
8138 e->X_op = O_constant;
8139 e->X_add_number = cdesc->value;
8140 return 1;
8141 }
8142
8143 /* check for inN, locN, or outN: */
8144 idx = 0;
8145 switch (name[0])
8146 {
8147 case 'i':
8148 if (name[1] == 'n' && ISDIGIT (name[2]))
8149 {
8150 dr = &md.in;
8151 idx = 2;
8152 }
8153 break;
8154
8155 case 'l':
8156 if (name[1] == 'o' && name[2] == 'c' && ISDIGIT (name[3]))
8157 {
8158 dr = &md.loc;
8159 idx = 3;
8160 }
8161 break;
8162
8163 case 'o':
8164 if (name[1] == 'u' && name[2] == 't' && ISDIGIT (name[3]))
8165 {
8166 dr = &md.out;
8167 idx = 3;
8168 }
8169 break;
8170
8171 default:
8172 break;
8173 }
8174
8175 /* Ignore register numbers with leading zeroes, except zero itself. */
8176 if (dr && (name[idx] != '0' || name[idx + 1] == '\0'))
8177 {
8178 unsigned long regnum;
8179
8180 /* The name is inN, locN, or outN; parse the register number. */
8181 regnum = strtoul (name + idx, &end, 10);
8182 if (end > name + idx && *end == '\0' && regnum < 96)
8183 {
8184 if (regnum >= dr->num_regs)
8185 {
8186 if (!dr->num_regs)
8187 as_bad ("No current frame");
8188 else
8189 as_bad ("Register number out of range 0..%u",
8190 dr->num_regs - 1);
8191 regnum = 0;
8192 }
8193 e->X_op = O_register;
8194 e->X_add_number = dr->base + regnum;
8195 return 1;
8196 }
8197 }
8198
8199 end = alloca (strlen (name) + 1);
8200 strcpy (end, name);
8201 name = ia64_canonicalize_symbol_name (end);
8202 if ((dr = hash_find (md.dynreg_hash, name)))
8203 {
8204 /* We've got ourselves the name of a rotating register set.
8205 Store the base register number in the low 16 bits of
8206 X_add_number and the size of the register set in the top 16
8207 bits. */
8208 e->X_op = O_register;
8209 e->X_add_number = dr->base | (dr->num_regs << 16);
8210 return 1;
8211 }
8212 return 0;
8213 }
8214
8215 /* Remove the '#' suffix that indicates a symbol as opposed to a register. */
8216
8217 char *
8218 ia64_canonicalize_symbol_name (name)
8219 char *name;
8220 {
8221 size_t len = strlen (name), full = len;
8222
8223 while (len > 0 && name[len - 1] == '#')
8224 --len;
8225 if (len <= 0)
8226 {
8227 if (full > 0)
8228 as_bad ("Standalone `#' is illegal");
8229 }
8230 else if (len < full - 1)
8231 as_warn ("Redundant `#' suffix operators");
8232 name[len] = '\0';
8233 return name;
8234 }
8235
8236 /* Return true if idesc is a conditional branch instruction. This excludes
8237 the modulo scheduled branches, and br.ia. Mod-sched branches are excluded
8238 because they always read/write resources regardless of the value of the
8239 qualifying predicate. br.ia must always use p0, and hence is always
8240 taken. Thus this function returns true for branches which can fall
8241 through, and which use no resources if they do fall through. */
8242
8243 static int
8244 is_conditional_branch (idesc)
8245 struct ia64_opcode *idesc;
8246 {
8247 /* br is a conditional branch. Everything that starts with br. except
8248 br.ia, br.c{loop,top,exit}, and br.w{top,exit} is a conditional branch.
8249 Everything that starts with brl is a conditional branch. */
8250 return (idesc->name[0] == 'b' && idesc->name[1] == 'r'
8251 && (idesc->name[2] == '\0'
8252 || (idesc->name[2] == '.' && idesc->name[3] != 'i'
8253 && idesc->name[3] != 'c' && idesc->name[3] != 'w')
8254 || idesc->name[2] == 'l'
8255 /* br.cond, br.call, br.clr */
8256 || (idesc->name[2] == '.' && idesc->name[3] == 'c'
8257 && (idesc->name[4] == 'a' || idesc->name[4] == 'o'
8258 || (idesc->name[4] == 'l' && idesc->name[5] == 'r')))));
8259 }
8260
8261 /* Return whether the given opcode is a taken branch. If there's any doubt,
8262 returns zero. */
8263
8264 static int
8265 is_taken_branch (idesc)
8266 struct ia64_opcode *idesc;
8267 {
8268 return ((is_conditional_branch (idesc) && CURR_SLOT.qp_regno == 0)
8269 || strncmp (idesc->name, "br.ia", 5) == 0);
8270 }
8271
8272 /* Return whether the given opcode is an interruption or rfi. If there's any
8273 doubt, returns zero. */
8274
8275 static int
8276 is_interruption_or_rfi (idesc)
8277 struct ia64_opcode *idesc;
8278 {
8279 if (strcmp (idesc->name, "rfi") == 0)
8280 return 1;
8281 return 0;
8282 }
8283
8284 /* Returns the index of the given dependency in the opcode's list of chks, or
8285 -1 if there is no dependency. */
8286
8287 static int
8288 depends_on (depind, idesc)
8289 int depind;
8290 struct ia64_opcode *idesc;
8291 {
8292 int i;
8293 const struct ia64_opcode_dependency *dep = idesc->dependencies;
8294 for (i = 0; i < dep->nchks; i++)
8295 {
8296 if (depind == DEP (dep->chks[i]))
8297 return i;
8298 }
8299 return -1;
8300 }
8301
8302 /* Determine a set of specific resources used for a particular resource
8303 class. Returns the number of specific resources identified For those
8304 cases which are not determinable statically, the resource returned is
8305 marked nonspecific.
8306
8307 Meanings of value in 'NOTE':
8308 1) only read/write when the register number is explicitly encoded in the
8309 insn.
8310 2) only read CFM when accessing a rotating GR, FR, or PR. mov pr only
8311 accesses CFM when qualifying predicate is in the rotating region.
8312 3) general register value is used to specify an indirect register; not
8313 determinable statically.
8314 4) only read the given resource when bits 7:0 of the indirect index
8315 register value does not match the register number of the resource; not
8316 determinable statically.
8317 5) all rules are implementation specific.
8318 6) only when both the index specified by the reader and the index specified
8319 by the writer have the same value in bits 63:61; not determinable
8320 statically.
8321 7) only access the specified resource when the corresponding mask bit is
8322 set
8323 8) PSR.dfh is only read when these insns reference FR32-127. PSR.dfl is
8324 only read when these insns reference FR2-31
8325 9) PSR.mfl is only written when these insns write FR2-31. PSR.mfh is only
8326 written when these insns write FR32-127
8327 10) The PSR.bn bit is only accessed when one of GR16-31 is specified in the
8328 instruction
8329 11) The target predicates are written independently of PR[qp], but source
8330 registers are only read if PR[qp] is true. Since the state of PR[qp]
8331 cannot statically be determined, all source registers are marked used.
8332 12) This insn only reads the specified predicate register when that
8333 register is the PR[qp].
8334 13) This reference to ld-c only applies to teh GR whose value is loaded
8335 with data returned from memory, not the post-incremented address register.
8336 14) The RSE resource includes the implementation-specific RSE internal
8337 state resources. At least one (and possibly more) of these resources are
8338 read by each instruction listed in IC:rse-readers. At least one (and
8339 possibly more) of these resources are written by each insn listed in
8340 IC:rse-writers.
8341 15+16) Represents reserved instructions, which the assembler does not
8342 generate.
8343
8344 Memory resources (i.e. locations in memory) are *not* marked or tracked by
8345 this code; there are no dependency violations based on memory access.
8346 */
8347
8348 #define MAX_SPECS 256
8349 #define DV_CHK 1
8350 #define DV_REG 0
8351
8352 static int
8353 specify_resource (dep, idesc, type, specs, note, path)
8354 const struct ia64_dependency *dep;
8355 struct ia64_opcode *idesc;
8356 int type; /* is this a DV chk or a DV reg? */
8357 struct rsrc specs[MAX_SPECS]; /* returned specific resources */
8358 int note; /* resource note for this insn's usage */
8359 int path; /* which execution path to examine */
8360 {
8361 int count = 0;
8362 int i;
8363 int rsrc_write = 0;
8364 struct rsrc tmpl;
8365
8366 if (dep->mode == IA64_DV_WAW
8367 || (dep->mode == IA64_DV_RAW && type == DV_REG)
8368 || (dep->mode == IA64_DV_WAR && type == DV_CHK))
8369 rsrc_write = 1;
8370
8371 /* template for any resources we identify */
8372 tmpl.dependency = dep;
8373 tmpl.note = note;
8374 tmpl.insn_srlz = tmpl.data_srlz = 0;
8375 tmpl.qp_regno = CURR_SLOT.qp_regno;
8376 tmpl.link_to_qp_branch = 1;
8377 tmpl.mem_offset.hint = 0;
8378 tmpl.mem_offset.offset = 0;
8379 tmpl.mem_offset.base = 0;
8380 tmpl.specific = 1;
8381 tmpl.index = -1;
8382 tmpl.cmp_type = CMP_NONE;
8383 tmpl.depind = 0;
8384 tmpl.file = NULL;
8385 tmpl.line = 0;
8386 tmpl.path = 0;
8387
8388 #define UNHANDLED \
8389 as_warn (_("Unhandled dependency %s for %s (%s), note %d"), \
8390 dep->name, idesc->name, (rsrc_write?"write":"read"), note)
8391 #define KNOWN(REG) (gr_values[REG].known && gr_values[REG].path >= path)
8392
8393 /* we don't need to track these */
8394 if (dep->semantics == IA64_DVS_NONE)
8395 return 0;
8396
8397 switch (dep->specifier)
8398 {
8399 case IA64_RS_AR_K:
8400 if (note == 1)
8401 {
8402 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8403 {
8404 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8405 if (regno >= 0 && regno <= 7)
8406 {
8407 specs[count] = tmpl;
8408 specs[count++].index = regno;
8409 }
8410 }
8411 }
8412 else if (note == 0)
8413 {
8414 for (i = 0; i < 8; i++)
8415 {
8416 specs[count] = tmpl;
8417 specs[count++].index = i;
8418 }
8419 }
8420 else
8421 {
8422 UNHANDLED;
8423 }
8424 break;
8425
8426 case IA64_RS_AR_UNAT:
8427 /* This is a mov =AR or mov AR= instruction. */
8428 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8429 {
8430 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8431 if (regno == AR_UNAT)
8432 {
8433 specs[count++] = tmpl;
8434 }
8435 }
8436 else
8437 {
8438 /* This is a spill/fill, or other instruction that modifies the
8439 unat register. */
8440
8441 /* Unless we can determine the specific bits used, mark the whole
8442 thing; bits 8:3 of the memory address indicate the bit used in
8443 UNAT. The .mem.offset hint may be used to eliminate a small
8444 subset of conflicts. */
8445 specs[count] = tmpl;
8446 if (md.mem_offset.hint)
8447 {
8448 if (md.debug_dv)
8449 fprintf (stderr, " Using hint for spill/fill\n");
8450 /* The index isn't actually used, just set it to something
8451 approximating the bit index. */
8452 specs[count].index = (md.mem_offset.offset >> 3) & 0x3F;
8453 specs[count].mem_offset.hint = 1;
8454 specs[count].mem_offset.offset = md.mem_offset.offset;
8455 specs[count++].mem_offset.base = md.mem_offset.base;
8456 }
8457 else
8458 {
8459 specs[count++].specific = 0;
8460 }
8461 }
8462 break;
8463
8464 case IA64_RS_AR:
8465 if (note == 1)
8466 {
8467 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8468 {
8469 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8470 if ((regno >= 8 && regno <= 15)
8471 || (regno >= 20 && regno <= 23)
8472 || (regno >= 31 && regno <= 39)
8473 || (regno >= 41 && regno <= 47)
8474 || (regno >= 67 && regno <= 111))
8475 {
8476 specs[count] = tmpl;
8477 specs[count++].index = regno;
8478 }
8479 }
8480 }
8481 else
8482 {
8483 UNHANDLED;
8484 }
8485 break;
8486
8487 case IA64_RS_ARb:
8488 if (note == 1)
8489 {
8490 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8491 {
8492 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8493 if ((regno >= 48 && regno <= 63)
8494 || (regno >= 112 && regno <= 127))
8495 {
8496 specs[count] = tmpl;
8497 specs[count++].index = regno;
8498 }
8499 }
8500 }
8501 else if (note == 0)
8502 {
8503 for (i = 48; i < 64; i++)
8504 {
8505 specs[count] = tmpl;
8506 specs[count++].index = i;
8507 }
8508 for (i = 112; i < 128; i++)
8509 {
8510 specs[count] = tmpl;
8511 specs[count++].index = i;
8512 }
8513 }
8514 else
8515 {
8516 UNHANDLED;
8517 }
8518 break;
8519
8520 case IA64_RS_BR:
8521 if (note != 1)
8522 {
8523 UNHANDLED;
8524 }
8525 else
8526 {
8527 if (rsrc_write)
8528 {
8529 for (i = 0; i < idesc->num_outputs; i++)
8530 if (idesc->operands[i] == IA64_OPND_B1
8531 || idesc->operands[i] == IA64_OPND_B2)
8532 {
8533 specs[count] = tmpl;
8534 specs[count++].index =
8535 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8536 }
8537 }
8538 else
8539 {
8540 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8541 if (idesc->operands[i] == IA64_OPND_B1
8542 || idesc->operands[i] == IA64_OPND_B2)
8543 {
8544 specs[count] = tmpl;
8545 specs[count++].index =
8546 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8547 }
8548 }
8549 }
8550 break;
8551
8552 case IA64_RS_CPUID: /* four or more registers */
8553 if (note == 3)
8554 {
8555 if (idesc->operands[!rsrc_write] == IA64_OPND_CPUID_R3)
8556 {
8557 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8558 if (regno >= 0 && regno < NELEMS (gr_values)
8559 && KNOWN (regno))
8560 {
8561 specs[count] = tmpl;
8562 specs[count++].index = gr_values[regno].value & 0xFF;
8563 }
8564 else
8565 {
8566 specs[count] = tmpl;
8567 specs[count++].specific = 0;
8568 }
8569 }
8570 }
8571 else
8572 {
8573 UNHANDLED;
8574 }
8575 break;
8576
8577 case IA64_RS_DBR: /* four or more registers */
8578 if (note == 3)
8579 {
8580 if (idesc->operands[!rsrc_write] == IA64_OPND_DBR_R3)
8581 {
8582 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8583 if (regno >= 0 && regno < NELEMS (gr_values)
8584 && KNOWN (regno))
8585 {
8586 specs[count] = tmpl;
8587 specs[count++].index = gr_values[regno].value & 0xFF;
8588 }
8589 else
8590 {
8591 specs[count] = tmpl;
8592 specs[count++].specific = 0;
8593 }
8594 }
8595 }
8596 else if (note == 0 && !rsrc_write)
8597 {
8598 specs[count] = tmpl;
8599 specs[count++].specific = 0;
8600 }
8601 else
8602 {
8603 UNHANDLED;
8604 }
8605 break;
8606
8607 case IA64_RS_IBR: /* four or more registers */
8608 if (note == 3)
8609 {
8610 if (idesc->operands[!rsrc_write] == IA64_OPND_IBR_R3)
8611 {
8612 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8613 if (regno >= 0 && regno < NELEMS (gr_values)
8614 && KNOWN (regno))
8615 {
8616 specs[count] = tmpl;
8617 specs[count++].index = gr_values[regno].value & 0xFF;
8618 }
8619 else
8620 {
8621 specs[count] = tmpl;
8622 specs[count++].specific = 0;
8623 }
8624 }
8625 }
8626 else
8627 {
8628 UNHANDLED;
8629 }
8630 break;
8631
8632 case IA64_RS_MSR:
8633 if (note == 5)
8634 {
8635 /* These are implementation specific. Force all references to
8636 conflict with all other references. */
8637 specs[count] = tmpl;
8638 specs[count++].specific = 0;
8639 }
8640 else
8641 {
8642 UNHANDLED;
8643 }
8644 break;
8645
8646 case IA64_RS_PKR: /* 16 or more registers */
8647 if (note == 3 || note == 4)
8648 {
8649 if (idesc->operands[!rsrc_write] == IA64_OPND_PKR_R3)
8650 {
8651 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8652 if (regno >= 0 && regno < NELEMS (gr_values)
8653 && KNOWN (regno))
8654 {
8655 if (note == 3)
8656 {
8657 specs[count] = tmpl;
8658 specs[count++].index = gr_values[regno].value & 0xFF;
8659 }
8660 else
8661 for (i = 0; i < NELEMS (gr_values); i++)
8662 {
8663 /* Uses all registers *except* the one in R3. */
8664 if ((unsigned)i != (gr_values[regno].value & 0xFF))
8665 {
8666 specs[count] = tmpl;
8667 specs[count++].index = i;
8668 }
8669 }
8670 }
8671 else
8672 {
8673 specs[count] = tmpl;
8674 specs[count++].specific = 0;
8675 }
8676 }
8677 }
8678 else if (note == 0)
8679 {
8680 /* probe et al. */
8681 specs[count] = tmpl;
8682 specs[count++].specific = 0;
8683 }
8684 break;
8685
8686 case IA64_RS_PMC: /* four or more registers */
8687 if (note == 3)
8688 {
8689 if (idesc->operands[!rsrc_write] == IA64_OPND_PMC_R3
8690 || (!rsrc_write && idesc->operands[1] == IA64_OPND_PMD_R3))
8691
8692 {
8693 int index = ((idesc->operands[1] == IA64_OPND_R3 && !rsrc_write)
8694 ? 1 : !rsrc_write);
8695 int regno = CURR_SLOT.opnd[index].X_add_number - REG_GR;
8696 if (regno >= 0 && regno < NELEMS (gr_values)
8697 && KNOWN (regno))
8698 {
8699 specs[count] = tmpl;
8700 specs[count++].index = gr_values[regno].value & 0xFF;
8701 }
8702 else
8703 {
8704 specs[count] = tmpl;
8705 specs[count++].specific = 0;
8706 }
8707 }
8708 }
8709 else
8710 {
8711 UNHANDLED;
8712 }
8713 break;
8714
8715 case IA64_RS_PMD: /* four or more registers */
8716 if (note == 3)
8717 {
8718 if (idesc->operands[!rsrc_write] == IA64_OPND_PMD_R3)
8719 {
8720 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8721 if (regno >= 0 && regno < NELEMS (gr_values)
8722 && KNOWN (regno))
8723 {
8724 specs[count] = tmpl;
8725 specs[count++].index = gr_values[regno].value & 0xFF;
8726 }
8727 else
8728 {
8729 specs[count] = tmpl;
8730 specs[count++].specific = 0;
8731 }
8732 }
8733 }
8734 else
8735 {
8736 UNHANDLED;
8737 }
8738 break;
8739
8740 case IA64_RS_RR: /* eight registers */
8741 if (note == 6)
8742 {
8743 if (idesc->operands[!rsrc_write] == IA64_OPND_RR_R3)
8744 {
8745 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8746 if (regno >= 0 && regno < NELEMS (gr_values)
8747 && KNOWN (regno))
8748 {
8749 specs[count] = tmpl;
8750 specs[count++].index = (gr_values[regno].value >> 61) & 0x7;
8751 }
8752 else
8753 {
8754 specs[count] = tmpl;
8755 specs[count++].specific = 0;
8756 }
8757 }
8758 }
8759 else if (note == 0 && !rsrc_write)
8760 {
8761 specs[count] = tmpl;
8762 specs[count++].specific = 0;
8763 }
8764 else
8765 {
8766 UNHANDLED;
8767 }
8768 break;
8769
8770 case IA64_RS_CR_IRR:
8771 if (note == 0)
8772 {
8773 /* handle mov-from-CR-IVR; it's a read that writes CR[IRR] */
8774 int regno = CURR_SLOT.opnd[1].X_add_number - REG_CR;
8775 if (rsrc_write
8776 && idesc->operands[1] == IA64_OPND_CR3
8777 && regno == CR_IVR)
8778 {
8779 for (i = 0; i < 4; i++)
8780 {
8781 specs[count] = tmpl;
8782 specs[count++].index = CR_IRR0 + i;
8783 }
8784 }
8785 }
8786 else if (note == 1)
8787 {
8788 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8789 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8790 && regno >= CR_IRR0
8791 && regno <= CR_IRR3)
8792 {
8793 specs[count] = tmpl;
8794 specs[count++].index = regno;
8795 }
8796 }
8797 else
8798 {
8799 UNHANDLED;
8800 }
8801 break;
8802
8803 case IA64_RS_CR_LRR:
8804 if (note != 1)
8805 {
8806 UNHANDLED;
8807 }
8808 else
8809 {
8810 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8811 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8812 && (regno == CR_LRR0 || regno == CR_LRR1))
8813 {
8814 specs[count] = tmpl;
8815 specs[count++].index = regno;
8816 }
8817 }
8818 break;
8819
8820 case IA64_RS_CR:
8821 if (note == 1)
8822 {
8823 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
8824 {
8825 specs[count] = tmpl;
8826 specs[count++].index =
8827 CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8828 }
8829 }
8830 else
8831 {
8832 UNHANDLED;
8833 }
8834 break;
8835
8836 case IA64_RS_FR:
8837 case IA64_RS_FRb:
8838 if (note != 1)
8839 {
8840 UNHANDLED;
8841 }
8842 else if (rsrc_write)
8843 {
8844 if (dep->specifier == IA64_RS_FRb
8845 && idesc->operands[0] == IA64_OPND_F1)
8846 {
8847 specs[count] = tmpl;
8848 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_FR;
8849 }
8850 }
8851 else
8852 {
8853 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8854 {
8855 if (idesc->operands[i] == IA64_OPND_F2
8856 || idesc->operands[i] == IA64_OPND_F3
8857 || idesc->operands[i] == IA64_OPND_F4)
8858 {
8859 specs[count] = tmpl;
8860 specs[count++].index =
8861 CURR_SLOT.opnd[i].X_add_number - REG_FR;
8862 }
8863 }
8864 }
8865 break;
8866
8867 case IA64_RS_GR:
8868 if (note == 13)
8869 {
8870 /* This reference applies only to the GR whose value is loaded with
8871 data returned from memory. */
8872 specs[count] = tmpl;
8873 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_GR;
8874 }
8875 else if (note == 1)
8876 {
8877 if (rsrc_write)
8878 {
8879 for (i = 0; i < idesc->num_outputs; i++)
8880 if (idesc->operands[i] == IA64_OPND_R1
8881 || idesc->operands[i] == IA64_OPND_R2
8882 || idesc->operands[i] == IA64_OPND_R3)
8883 {
8884 specs[count] = tmpl;
8885 specs[count++].index =
8886 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8887 }
8888 if (idesc->flags & IA64_OPCODE_POSTINC)
8889 for (i = 0; i < NELEMS (idesc->operands); i++)
8890 if (idesc->operands[i] == IA64_OPND_MR3)
8891 {
8892 specs[count] = tmpl;
8893 specs[count++].index =
8894 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8895 }
8896 }
8897 else
8898 {
8899 /* Look for anything that reads a GR. */
8900 for (i = 0; i < NELEMS (idesc->operands); i++)
8901 {
8902 if (idesc->operands[i] == IA64_OPND_MR3
8903 || idesc->operands[i] == IA64_OPND_CPUID_R3
8904 || idesc->operands[i] == IA64_OPND_DBR_R3
8905 || idesc->operands[i] == IA64_OPND_IBR_R3
8906 || idesc->operands[i] == IA64_OPND_MSR_R3
8907 || idesc->operands[i] == IA64_OPND_PKR_R3
8908 || idesc->operands[i] == IA64_OPND_PMC_R3
8909 || idesc->operands[i] == IA64_OPND_PMD_R3
8910 || idesc->operands[i] == IA64_OPND_RR_R3
8911 || ((i >= idesc->num_outputs)
8912 && (idesc->operands[i] == IA64_OPND_R1
8913 || idesc->operands[i] == IA64_OPND_R2
8914 || idesc->operands[i] == IA64_OPND_R3
8915 /* addl source register. */
8916 || idesc->operands[i] == IA64_OPND_R3_2)))
8917 {
8918 specs[count] = tmpl;
8919 specs[count++].index =
8920 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8921 }
8922 }
8923 }
8924 }
8925 else
8926 {
8927 UNHANDLED;
8928 }
8929 break;
8930
8931 /* This is the same as IA64_RS_PRr, except that the register range is
8932 from 1 - 15, and there are no rotating register reads/writes here. */
8933 case IA64_RS_PR:
8934 if (note == 0)
8935 {
8936 for (i = 1; i < 16; i++)
8937 {
8938 specs[count] = tmpl;
8939 specs[count++].index = i;
8940 }
8941 }
8942 else if (note == 7)
8943 {
8944 valueT mask = 0;
8945 /* Mark only those registers indicated by the mask. */
8946 if (rsrc_write)
8947 {
8948 mask = CURR_SLOT.opnd[2].X_add_number;
8949 for (i = 1; i < 16; i++)
8950 if (mask & ((valueT) 1 << i))
8951 {
8952 specs[count] = tmpl;
8953 specs[count++].index = i;
8954 }
8955 }
8956 else
8957 {
8958 UNHANDLED;
8959 }
8960 }
8961 else if (note == 11) /* note 11 implies note 1 as well */
8962 {
8963 if (rsrc_write)
8964 {
8965 for (i = 0; i < idesc->num_outputs; i++)
8966 {
8967 if (idesc->operands[i] == IA64_OPND_P1
8968 || idesc->operands[i] == IA64_OPND_P2)
8969 {
8970 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8971 if (regno >= 1 && regno < 16)
8972 {
8973 specs[count] = tmpl;
8974 specs[count++].index = regno;
8975 }
8976 }
8977 }
8978 }
8979 else
8980 {
8981 UNHANDLED;
8982 }
8983 }
8984 else if (note == 12)
8985 {
8986 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8987 {
8988 specs[count] = tmpl;
8989 specs[count++].index = CURR_SLOT.qp_regno;
8990 }
8991 }
8992 else if (note == 1)
8993 {
8994 if (rsrc_write)
8995 {
8996 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8997 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8998 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8999 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9000
9001 if ((idesc->operands[0] == IA64_OPND_P1
9002 || idesc->operands[0] == IA64_OPND_P2)
9003 && p1 >= 1 && p1 < 16)
9004 {
9005 specs[count] = tmpl;
9006 specs[count].cmp_type =
9007 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9008 specs[count++].index = p1;
9009 }
9010 if ((idesc->operands[1] == IA64_OPND_P1
9011 || idesc->operands[1] == IA64_OPND_P2)
9012 && p2 >= 1 && p2 < 16)
9013 {
9014 specs[count] = tmpl;
9015 specs[count].cmp_type =
9016 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9017 specs[count++].index = p2;
9018 }
9019 }
9020 else
9021 {
9022 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
9023 {
9024 specs[count] = tmpl;
9025 specs[count++].index = CURR_SLOT.qp_regno;
9026 }
9027 if (idesc->operands[1] == IA64_OPND_PR)
9028 {
9029 for (i = 1; i < 16; i++)
9030 {
9031 specs[count] = tmpl;
9032 specs[count++].index = i;
9033 }
9034 }
9035 }
9036 }
9037 else
9038 {
9039 UNHANDLED;
9040 }
9041 break;
9042
9043 /* This is the general case for PRs. IA64_RS_PR and IA64_RS_PR63 are
9044 simplified cases of this. */
9045 case IA64_RS_PRr:
9046 if (note == 0)
9047 {
9048 for (i = 16; i < 63; i++)
9049 {
9050 specs[count] = tmpl;
9051 specs[count++].index = i;
9052 }
9053 }
9054 else if (note == 7)
9055 {
9056 valueT mask = 0;
9057 /* Mark only those registers indicated by the mask. */
9058 if (rsrc_write
9059 && idesc->operands[0] == IA64_OPND_PR)
9060 {
9061 mask = CURR_SLOT.opnd[2].X_add_number;
9062 if (mask & ((valueT) 1 << 16))
9063 for (i = 16; i < 63; i++)
9064 {
9065 specs[count] = tmpl;
9066 specs[count++].index = i;
9067 }
9068 }
9069 else if (rsrc_write
9070 && idesc->operands[0] == IA64_OPND_PR_ROT)
9071 {
9072 for (i = 16; i < 63; i++)
9073 {
9074 specs[count] = tmpl;
9075 specs[count++].index = i;
9076 }
9077 }
9078 else
9079 {
9080 UNHANDLED;
9081 }
9082 }
9083 else if (note == 11) /* note 11 implies note 1 as well */
9084 {
9085 if (rsrc_write)
9086 {
9087 for (i = 0; i < idesc->num_outputs; i++)
9088 {
9089 if (idesc->operands[i] == IA64_OPND_P1
9090 || idesc->operands[i] == IA64_OPND_P2)
9091 {
9092 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9093 if (regno >= 16 && regno < 63)
9094 {
9095 specs[count] = tmpl;
9096 specs[count++].index = regno;
9097 }
9098 }
9099 }
9100 }
9101 else
9102 {
9103 UNHANDLED;
9104 }
9105 }
9106 else if (note == 12)
9107 {
9108 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
9109 {
9110 specs[count] = tmpl;
9111 specs[count++].index = CURR_SLOT.qp_regno;
9112 }
9113 }
9114 else if (note == 1)
9115 {
9116 if (rsrc_write)
9117 {
9118 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9119 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9120 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9121 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9122
9123 if ((idesc->operands[0] == IA64_OPND_P1
9124 || idesc->operands[0] == IA64_OPND_P2)
9125 && p1 >= 16 && p1 < 63)
9126 {
9127 specs[count] = tmpl;
9128 specs[count].cmp_type =
9129 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9130 specs[count++].index = p1;
9131 }
9132 if ((idesc->operands[1] == IA64_OPND_P1
9133 || idesc->operands[1] == IA64_OPND_P2)
9134 && p2 >= 16 && p2 < 63)
9135 {
9136 specs[count] = tmpl;
9137 specs[count].cmp_type =
9138 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9139 specs[count++].index = p2;
9140 }
9141 }
9142 else
9143 {
9144 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
9145 {
9146 specs[count] = tmpl;
9147 specs[count++].index = CURR_SLOT.qp_regno;
9148 }
9149 if (idesc->operands[1] == IA64_OPND_PR)
9150 {
9151 for (i = 16; i < 63; i++)
9152 {
9153 specs[count] = tmpl;
9154 specs[count++].index = i;
9155 }
9156 }
9157 }
9158 }
9159 else
9160 {
9161 UNHANDLED;
9162 }
9163 break;
9164
9165 case IA64_RS_PSR:
9166 /* Verify that the instruction is using the PSR bit indicated in
9167 dep->regindex. */
9168 if (note == 0)
9169 {
9170 if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_UM)
9171 {
9172 if (dep->regindex < 6)
9173 {
9174 specs[count++] = tmpl;
9175 }
9176 }
9177 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR)
9178 {
9179 if (dep->regindex < 32
9180 || dep->regindex == 35
9181 || dep->regindex == 36
9182 || (!rsrc_write && dep->regindex == PSR_CPL))
9183 {
9184 specs[count++] = tmpl;
9185 }
9186 }
9187 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_L)
9188 {
9189 if (dep->regindex < 32
9190 || dep->regindex == 35
9191 || dep->regindex == 36
9192 || (rsrc_write && dep->regindex == PSR_CPL))
9193 {
9194 specs[count++] = tmpl;
9195 }
9196 }
9197 else
9198 {
9199 /* Several PSR bits have very specific dependencies. */
9200 switch (dep->regindex)
9201 {
9202 default:
9203 specs[count++] = tmpl;
9204 break;
9205 case PSR_IC:
9206 if (rsrc_write)
9207 {
9208 specs[count++] = tmpl;
9209 }
9210 else
9211 {
9212 /* Only certain CR accesses use PSR.ic */
9213 if (idesc->operands[0] == IA64_OPND_CR3
9214 || idesc->operands[1] == IA64_OPND_CR3)
9215 {
9216 int index =
9217 ((idesc->operands[0] == IA64_OPND_CR3)
9218 ? 0 : 1);
9219 int regno =
9220 CURR_SLOT.opnd[index].X_add_number - REG_CR;
9221
9222 switch (regno)
9223 {
9224 default:
9225 break;
9226 case CR_ITIR:
9227 case CR_IFS:
9228 case CR_IIM:
9229 case CR_IIP:
9230 case CR_IPSR:
9231 case CR_ISR:
9232 case CR_IFA:
9233 case CR_IHA:
9234 case CR_IIPA:
9235 specs[count++] = tmpl;
9236 break;
9237 }
9238 }
9239 }
9240 break;
9241 case PSR_CPL:
9242 if (rsrc_write)
9243 {
9244 specs[count++] = tmpl;
9245 }
9246 else
9247 {
9248 /* Only some AR accesses use cpl */
9249 if (idesc->operands[0] == IA64_OPND_AR3
9250 || idesc->operands[1] == IA64_OPND_AR3)
9251 {
9252 int index =
9253 ((idesc->operands[0] == IA64_OPND_AR3)
9254 ? 0 : 1);
9255 int regno =
9256 CURR_SLOT.opnd[index].X_add_number - REG_AR;
9257
9258 if (regno == AR_ITC
9259 || (index == 0
9260 && (regno == AR_ITC
9261 || regno == AR_RSC
9262 || (regno >= AR_K0
9263 && regno <= AR_K7))))
9264 {
9265 specs[count++] = tmpl;
9266 }
9267 }
9268 else
9269 {
9270 specs[count++] = tmpl;
9271 }
9272 break;
9273 }
9274 }
9275 }
9276 }
9277 else if (note == 7)
9278 {
9279 valueT mask = 0;
9280 if (idesc->operands[0] == IA64_OPND_IMMU24)
9281 {
9282 mask = CURR_SLOT.opnd[0].X_add_number;
9283 }
9284 else
9285 {
9286 UNHANDLED;
9287 }
9288 if (mask & ((valueT) 1 << dep->regindex))
9289 {
9290 specs[count++] = tmpl;
9291 }
9292 }
9293 else if (note == 8)
9294 {
9295 int min = dep->regindex == PSR_DFL ? 2 : 32;
9296 int max = dep->regindex == PSR_DFL ? 31 : 127;
9297 /* dfh is read on FR32-127; dfl is read on FR2-31 */
9298 for (i = 0; i < NELEMS (idesc->operands); i++)
9299 {
9300 if (idesc->operands[i] == IA64_OPND_F1
9301 || idesc->operands[i] == IA64_OPND_F2
9302 || idesc->operands[i] == IA64_OPND_F3
9303 || idesc->operands[i] == IA64_OPND_F4)
9304 {
9305 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9306 if (reg >= min && reg <= max)
9307 {
9308 specs[count++] = tmpl;
9309 }
9310 }
9311 }
9312 }
9313 else if (note == 9)
9314 {
9315 int min = dep->regindex == PSR_MFL ? 2 : 32;
9316 int max = dep->regindex == PSR_MFL ? 31 : 127;
9317 /* mfh is read on writes to FR32-127; mfl is read on writes to
9318 FR2-31 */
9319 for (i = 0; i < idesc->num_outputs; i++)
9320 {
9321 if (idesc->operands[i] == IA64_OPND_F1)
9322 {
9323 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9324 if (reg >= min && reg <= max)
9325 {
9326 specs[count++] = tmpl;
9327 }
9328 }
9329 }
9330 }
9331 else if (note == 10)
9332 {
9333 for (i = 0; i < NELEMS (idesc->operands); i++)
9334 {
9335 if (idesc->operands[i] == IA64_OPND_R1
9336 || idesc->operands[i] == IA64_OPND_R2
9337 || idesc->operands[i] == IA64_OPND_R3)
9338 {
9339 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9340 if (regno >= 16 && regno <= 31)
9341 {
9342 specs[count++] = tmpl;
9343 }
9344 }
9345 }
9346 }
9347 else
9348 {
9349 UNHANDLED;
9350 }
9351 break;
9352
9353 case IA64_RS_AR_FPSR:
9354 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
9355 {
9356 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9357 if (regno == AR_FPSR)
9358 {
9359 specs[count++] = tmpl;
9360 }
9361 }
9362 else
9363 {
9364 specs[count++] = tmpl;
9365 }
9366 break;
9367
9368 case IA64_RS_ARX:
9369 /* Handle all AR[REG] resources */
9370 if (note == 0 || note == 1)
9371 {
9372 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9373 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3
9374 && regno == dep->regindex)
9375 {
9376 specs[count++] = tmpl;
9377 }
9378 /* other AR[REG] resources may be affected by AR accesses */
9379 else if (idesc->operands[0] == IA64_OPND_AR3)
9380 {
9381 /* AR[] writes */
9382 regno = CURR_SLOT.opnd[0].X_add_number - REG_AR;
9383 switch (dep->regindex)
9384 {
9385 default:
9386 break;
9387 case AR_BSP:
9388 case AR_RNAT:
9389 if (regno == AR_BSPSTORE)
9390 {
9391 specs[count++] = tmpl;
9392 }
9393 case AR_RSC:
9394 if (!rsrc_write &&
9395 (regno == AR_BSPSTORE
9396 || regno == AR_RNAT))
9397 {
9398 specs[count++] = tmpl;
9399 }
9400 break;
9401 }
9402 }
9403 else if (idesc->operands[1] == IA64_OPND_AR3)
9404 {
9405 /* AR[] reads */
9406 regno = CURR_SLOT.opnd[1].X_add_number - REG_AR;
9407 switch (dep->regindex)
9408 {
9409 default:
9410 break;
9411 case AR_RSC:
9412 if (regno == AR_BSPSTORE || regno == AR_RNAT)
9413 {
9414 specs[count++] = tmpl;
9415 }
9416 break;
9417 }
9418 }
9419 else
9420 {
9421 specs[count++] = tmpl;
9422 }
9423 }
9424 else
9425 {
9426 UNHANDLED;
9427 }
9428 break;
9429
9430 case IA64_RS_CRX:
9431 /* Handle all CR[REG] resources */
9432 if (note == 0 || note == 1)
9433 {
9434 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
9435 {
9436 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
9437 if (regno == dep->regindex)
9438 {
9439 specs[count++] = tmpl;
9440 }
9441 else if (!rsrc_write)
9442 {
9443 /* Reads from CR[IVR] affect other resources. */
9444 if (regno == CR_IVR)
9445 {
9446 if ((dep->regindex >= CR_IRR0
9447 && dep->regindex <= CR_IRR3)
9448 || dep->regindex == CR_TPR)
9449 {
9450 specs[count++] = tmpl;
9451 }
9452 }
9453 }
9454 }
9455 else
9456 {
9457 specs[count++] = tmpl;
9458 }
9459 }
9460 else
9461 {
9462 UNHANDLED;
9463 }
9464 break;
9465
9466 case IA64_RS_INSERVICE:
9467 /* look for write of EOI (67) or read of IVR (65) */
9468 if ((idesc->operands[0] == IA64_OPND_CR3
9469 && CURR_SLOT.opnd[0].X_add_number - REG_CR == CR_EOI)
9470 || (idesc->operands[1] == IA64_OPND_CR3
9471 && CURR_SLOT.opnd[1].X_add_number - REG_CR == CR_IVR))
9472 {
9473 specs[count++] = tmpl;
9474 }
9475 break;
9476
9477 case IA64_RS_GR0:
9478 if (note == 1)
9479 {
9480 specs[count++] = tmpl;
9481 }
9482 else
9483 {
9484 UNHANDLED;
9485 }
9486 break;
9487
9488 case IA64_RS_CFM:
9489 if (note != 2)
9490 {
9491 specs[count++] = tmpl;
9492 }
9493 else
9494 {
9495 /* Check if any of the registers accessed are in the rotating region.
9496 mov to/from pr accesses CFM only when qp_regno is in the rotating
9497 region */
9498 for (i = 0; i < NELEMS (idesc->operands); i++)
9499 {
9500 if (idesc->operands[i] == IA64_OPND_R1
9501 || idesc->operands[i] == IA64_OPND_R2
9502 || idesc->operands[i] == IA64_OPND_R3)
9503 {
9504 int num = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9505 /* Assumes that md.rot.num_regs is always valid */
9506 if (md.rot.num_regs > 0
9507 && num > 31
9508 && num < 31 + md.rot.num_regs)
9509 {
9510 specs[count] = tmpl;
9511 specs[count++].specific = 0;
9512 }
9513 }
9514 else if (idesc->operands[i] == IA64_OPND_F1
9515 || idesc->operands[i] == IA64_OPND_F2
9516 || idesc->operands[i] == IA64_OPND_F3
9517 || idesc->operands[i] == IA64_OPND_F4)
9518 {
9519 int num = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9520 if (num > 31)
9521 {
9522 specs[count] = tmpl;
9523 specs[count++].specific = 0;
9524 }
9525 }
9526 else if (idesc->operands[i] == IA64_OPND_P1
9527 || idesc->operands[i] == IA64_OPND_P2)
9528 {
9529 int num = CURR_SLOT.opnd[i].X_add_number - REG_P;
9530 if (num > 15)
9531 {
9532 specs[count] = tmpl;
9533 specs[count++].specific = 0;
9534 }
9535 }
9536 }
9537 if (CURR_SLOT.qp_regno > 15)
9538 {
9539 specs[count] = tmpl;
9540 specs[count++].specific = 0;
9541 }
9542 }
9543 break;
9544
9545 /* This is the same as IA64_RS_PRr, except simplified to account for
9546 the fact that there is only one register. */
9547 case IA64_RS_PR63:
9548 if (note == 0)
9549 {
9550 specs[count++] = tmpl;
9551 }
9552 else if (note == 7)
9553 {
9554 valueT mask = 0;
9555 if (idesc->operands[2] == IA64_OPND_IMM17)
9556 mask = CURR_SLOT.opnd[2].X_add_number;
9557 if (mask & ((valueT) 1 << 63))
9558 specs[count++] = tmpl;
9559 }
9560 else if (note == 11)
9561 {
9562 if ((idesc->operands[0] == IA64_OPND_P1
9563 && CURR_SLOT.opnd[0].X_add_number - REG_P == 63)
9564 || (idesc->operands[1] == IA64_OPND_P2
9565 && CURR_SLOT.opnd[1].X_add_number - REG_P == 63))
9566 {
9567 specs[count++] = tmpl;
9568 }
9569 }
9570 else if (note == 12)
9571 {
9572 if (CURR_SLOT.qp_regno == 63)
9573 {
9574 specs[count++] = tmpl;
9575 }
9576 }
9577 else if (note == 1)
9578 {
9579 if (rsrc_write)
9580 {
9581 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9582 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9583 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9584 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9585
9586 if (p1 == 63
9587 && (idesc->operands[0] == IA64_OPND_P1
9588 || idesc->operands[0] == IA64_OPND_P2))
9589 {
9590 specs[count] = tmpl;
9591 specs[count++].cmp_type =
9592 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9593 }
9594 if (p2 == 63
9595 && (idesc->operands[1] == IA64_OPND_P1
9596 || idesc->operands[1] == IA64_OPND_P2))
9597 {
9598 specs[count] = tmpl;
9599 specs[count++].cmp_type =
9600 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9601 }
9602 }
9603 else
9604 {
9605 if (CURR_SLOT.qp_regno == 63)
9606 {
9607 specs[count++] = tmpl;
9608 }
9609 }
9610 }
9611 else
9612 {
9613 UNHANDLED;
9614 }
9615 break;
9616
9617 case IA64_RS_RSE:
9618 /* FIXME we can identify some individual RSE written resources, but RSE
9619 read resources have not yet been completely identified, so for now
9620 treat RSE as a single resource */
9621 if (strncmp (idesc->name, "mov", 3) == 0)
9622 {
9623 if (rsrc_write)
9624 {
9625 if (idesc->operands[0] == IA64_OPND_AR3
9626 && CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE)
9627 {
9628 specs[count++] = tmpl;
9629 }
9630 }
9631 else
9632 {
9633 if (idesc->operands[0] == IA64_OPND_AR3)
9634 {
9635 if (CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE
9636 || CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_RNAT)
9637 {
9638 specs[count++] = tmpl;
9639 }
9640 }
9641 else if (idesc->operands[1] == IA64_OPND_AR3)
9642 {
9643 if (CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSP
9644 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSPSTORE
9645 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_RNAT)
9646 {
9647 specs[count++] = tmpl;
9648 }
9649 }
9650 }
9651 }
9652 else
9653 {
9654 specs[count++] = tmpl;
9655 }
9656 break;
9657
9658 case IA64_RS_ANY:
9659 /* FIXME -- do any of these need to be non-specific? */
9660 specs[count++] = tmpl;
9661 break;
9662
9663 default:
9664 as_bad (_("Unrecognized dependency specifier %d\n"), dep->specifier);
9665 break;
9666 }
9667
9668 return count;
9669 }
9670
9671 /* Clear branch flags on marked resources. This breaks the link between the
9672 QP of the marking instruction and a subsequent branch on the same QP. */
9673
9674 static void
9675 clear_qp_branch_flag (mask)
9676 valueT mask;
9677 {
9678 int i;
9679 for (i = 0; i < regdepslen; i++)
9680 {
9681 valueT bit = ((valueT) 1 << regdeps[i].qp_regno);
9682 if ((bit & mask) != 0)
9683 {
9684 regdeps[i].link_to_qp_branch = 0;
9685 }
9686 }
9687 }
9688
9689 /* MASK contains 2 and only 2 PRs which are mutually exclusive. Remove
9690 any mutexes which contain one of the PRs and create new ones when
9691 needed. */
9692
9693 static int
9694 update_qp_mutex (valueT mask)
9695 {
9696 int i;
9697 int add = 0;
9698
9699 i = 0;
9700 while (i < qp_mutexeslen)
9701 {
9702 if ((qp_mutexes[i].prmask & mask) != 0)
9703 {
9704 /* If it destroys and creates the same mutex, do nothing. */
9705 if (qp_mutexes[i].prmask == mask
9706 && qp_mutexes[i].path == md.path)
9707 {
9708 i++;
9709 add = -1;
9710 }
9711 else
9712 {
9713 int keep = 0;
9714
9715 if (md.debug_dv)
9716 {
9717 fprintf (stderr, " Clearing mutex relation");
9718 print_prmask (qp_mutexes[i].prmask);
9719 fprintf (stderr, "\n");
9720 }
9721
9722 /* Deal with the old mutex with more than 3+ PRs only if
9723 the new mutex on the same execution path with it.
9724
9725 FIXME: The 3+ mutex support is incomplete.
9726 dot_pred_rel () may be a better place to fix it. */
9727 if (qp_mutexes[i].path == md.path)
9728 {
9729 /* If it is a proper subset of the mutex, create a
9730 new mutex. */
9731 if (add == 0
9732 && (qp_mutexes[i].prmask & mask) == mask)
9733 add = 1;
9734
9735 qp_mutexes[i].prmask &= ~mask;
9736 if (qp_mutexes[i].prmask & (qp_mutexes[i].prmask - 1))
9737 {
9738 /* Modify the mutex if there are more than one
9739 PR left. */
9740 keep = 1;
9741 i++;
9742 }
9743 }
9744
9745 if (keep == 0)
9746 /* Remove the mutex. */
9747 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9748 }
9749 }
9750 else
9751 ++i;
9752 }
9753
9754 if (add == 1)
9755 add_qp_mutex (mask);
9756
9757 return add;
9758 }
9759
9760 /* Remove any mutexes which contain any of the PRs indicated in the mask.
9761
9762 Any changes to a PR clears the mutex relations which include that PR. */
9763
9764 static void
9765 clear_qp_mutex (mask)
9766 valueT mask;
9767 {
9768 int i;
9769
9770 i = 0;
9771 while (i < qp_mutexeslen)
9772 {
9773 if ((qp_mutexes[i].prmask & mask) != 0)
9774 {
9775 if (md.debug_dv)
9776 {
9777 fprintf (stderr, " Clearing mutex relation");
9778 print_prmask (qp_mutexes[i].prmask);
9779 fprintf (stderr, "\n");
9780 }
9781 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9782 }
9783 else
9784 ++i;
9785 }
9786 }
9787
9788 /* Clear implies relations which contain PRs in the given masks.
9789 P1_MASK indicates the source of the implies relation, while P2_MASK
9790 indicates the implied PR. */
9791
9792 static void
9793 clear_qp_implies (p1_mask, p2_mask)
9794 valueT p1_mask;
9795 valueT p2_mask;
9796 {
9797 int i;
9798
9799 i = 0;
9800 while (i < qp_implieslen)
9801 {
9802 if ((((valueT) 1 << qp_implies[i].p1) & p1_mask) != 0
9803 || (((valueT) 1 << qp_implies[i].p2) & p2_mask) != 0)
9804 {
9805 if (md.debug_dv)
9806 fprintf (stderr, "Clearing implied relation PR%d->PR%d\n",
9807 qp_implies[i].p1, qp_implies[i].p2);
9808 qp_implies[i] = qp_implies[--qp_implieslen];
9809 }
9810 else
9811 ++i;
9812 }
9813 }
9814
9815 /* Add the PRs specified to the list of implied relations. */
9816
9817 static void
9818 add_qp_imply (p1, p2)
9819 int p1, p2;
9820 {
9821 valueT mask;
9822 valueT bit;
9823 int i;
9824
9825 /* p0 is not meaningful here. */
9826 if (p1 == 0 || p2 == 0)
9827 abort ();
9828
9829 if (p1 == p2)
9830 return;
9831
9832 /* If it exists already, ignore it. */
9833 for (i = 0; i < qp_implieslen; i++)
9834 {
9835 if (qp_implies[i].p1 == p1
9836 && qp_implies[i].p2 == p2
9837 && qp_implies[i].path == md.path
9838 && !qp_implies[i].p2_branched)
9839 return;
9840 }
9841
9842 if (qp_implieslen == qp_impliestotlen)
9843 {
9844 qp_impliestotlen += 20;
9845 qp_implies = (struct qp_imply *)
9846 xrealloc ((void *) qp_implies,
9847 qp_impliestotlen * sizeof (struct qp_imply));
9848 }
9849 if (md.debug_dv)
9850 fprintf (stderr, " Registering PR%d implies PR%d\n", p1, p2);
9851 qp_implies[qp_implieslen].p1 = p1;
9852 qp_implies[qp_implieslen].p2 = p2;
9853 qp_implies[qp_implieslen].path = md.path;
9854 qp_implies[qp_implieslen++].p2_branched = 0;
9855
9856 /* Add in the implied transitive relations; for everything that p2 implies,
9857 make p1 imply that, too; for everything that implies p1, make it imply p2
9858 as well. */
9859 for (i = 0; i < qp_implieslen; i++)
9860 {
9861 if (qp_implies[i].p1 == p2)
9862 add_qp_imply (p1, qp_implies[i].p2);
9863 if (qp_implies[i].p2 == p1)
9864 add_qp_imply (qp_implies[i].p1, p2);
9865 }
9866 /* Add in mutex relations implied by this implies relation; for each mutex
9867 relation containing p2, duplicate it and replace p2 with p1. */
9868 bit = (valueT) 1 << p1;
9869 mask = (valueT) 1 << p2;
9870 for (i = 0; i < qp_mutexeslen; i++)
9871 {
9872 if (qp_mutexes[i].prmask & mask)
9873 add_qp_mutex ((qp_mutexes[i].prmask & ~mask) | bit);
9874 }
9875 }
9876
9877 /* Add the PRs specified in the mask to the mutex list; this means that only
9878 one of the PRs can be true at any time. PR0 should never be included in
9879 the mask. */
9880
9881 static void
9882 add_qp_mutex (mask)
9883 valueT mask;
9884 {
9885 if (mask & 0x1)
9886 abort ();
9887
9888 if (qp_mutexeslen == qp_mutexestotlen)
9889 {
9890 qp_mutexestotlen += 20;
9891 qp_mutexes = (struct qpmutex *)
9892 xrealloc ((void *) qp_mutexes,
9893 qp_mutexestotlen * sizeof (struct qpmutex));
9894 }
9895 if (md.debug_dv)
9896 {
9897 fprintf (stderr, " Registering mutex on");
9898 print_prmask (mask);
9899 fprintf (stderr, "\n");
9900 }
9901 qp_mutexes[qp_mutexeslen].path = md.path;
9902 qp_mutexes[qp_mutexeslen++].prmask = mask;
9903 }
9904
9905 static int
9906 has_suffix_p (name, suffix)
9907 const char *name;
9908 const char *suffix;
9909 {
9910 size_t namelen = strlen (name);
9911 size_t sufflen = strlen (suffix);
9912
9913 if (namelen <= sufflen)
9914 return 0;
9915 return strcmp (name + namelen - sufflen, suffix) == 0;
9916 }
9917
9918 static void
9919 clear_register_values ()
9920 {
9921 int i;
9922 if (md.debug_dv)
9923 fprintf (stderr, " Clearing register values\n");
9924 for (i = 1; i < NELEMS (gr_values); i++)
9925 gr_values[i].known = 0;
9926 }
9927
9928 /* Keep track of register values/changes which affect DV tracking.
9929
9930 optimization note: should add a flag to classes of insns where otherwise we
9931 have to examine a group of strings to identify them. */
9932
9933 static void
9934 note_register_values (idesc)
9935 struct ia64_opcode *idesc;
9936 {
9937 valueT qp_changemask = 0;
9938 int i;
9939
9940 /* Invalidate values for registers being written to. */
9941 for (i = 0; i < idesc->num_outputs; i++)
9942 {
9943 if (idesc->operands[i] == IA64_OPND_R1
9944 || idesc->operands[i] == IA64_OPND_R2
9945 || idesc->operands[i] == IA64_OPND_R3)
9946 {
9947 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9948 if (regno > 0 && regno < NELEMS (gr_values))
9949 gr_values[regno].known = 0;
9950 }
9951 else if (idesc->operands[i] == IA64_OPND_R3_2)
9952 {
9953 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9954 if (regno > 0 && regno < 4)
9955 gr_values[regno].known = 0;
9956 }
9957 else if (idesc->operands[i] == IA64_OPND_P1
9958 || idesc->operands[i] == IA64_OPND_P2)
9959 {
9960 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9961 qp_changemask |= (valueT) 1 << regno;
9962 }
9963 else if (idesc->operands[i] == IA64_OPND_PR)
9964 {
9965 if (idesc->operands[2] & (valueT) 0x10000)
9966 qp_changemask = ~(valueT) 0x1FFFF | idesc->operands[2];
9967 else
9968 qp_changemask = idesc->operands[2];
9969 break;
9970 }
9971 else if (idesc->operands[i] == IA64_OPND_PR_ROT)
9972 {
9973 if (idesc->operands[1] & ((valueT) 1 << 43))
9974 qp_changemask = -((valueT) 1 << 44) | idesc->operands[1];
9975 else
9976 qp_changemask = idesc->operands[1];
9977 qp_changemask &= ~(valueT) 0xFFFF;
9978 break;
9979 }
9980 }
9981
9982 /* Always clear qp branch flags on any PR change. */
9983 /* FIXME there may be exceptions for certain compares. */
9984 clear_qp_branch_flag (qp_changemask);
9985
9986 /* Invalidate rotating registers on insns which affect RRBs in CFM. */
9987 if (idesc->flags & IA64_OPCODE_MOD_RRBS)
9988 {
9989 qp_changemask |= ~(valueT) 0xFFFF;
9990 if (strcmp (idesc->name, "clrrrb.pr") != 0)
9991 {
9992 for (i = 32; i < 32 + md.rot.num_regs; i++)
9993 gr_values[i].known = 0;
9994 }
9995 clear_qp_mutex (qp_changemask);
9996 clear_qp_implies (qp_changemask, qp_changemask);
9997 }
9998 /* After a call, all register values are undefined, except those marked
9999 as "safe". */
10000 else if (strncmp (idesc->name, "br.call", 6) == 0
10001 || strncmp (idesc->name, "brl.call", 7) == 0)
10002 {
10003 /* FIXME keep GR values which are marked as "safe_across_calls" */
10004 clear_register_values ();
10005 clear_qp_mutex (~qp_safe_across_calls);
10006 clear_qp_implies (~qp_safe_across_calls, ~qp_safe_across_calls);
10007 clear_qp_branch_flag (~qp_safe_across_calls);
10008 }
10009 else if (is_interruption_or_rfi (idesc)
10010 || is_taken_branch (idesc))
10011 {
10012 clear_register_values ();
10013 clear_qp_mutex (~(valueT) 0);
10014 clear_qp_implies (~(valueT) 0, ~(valueT) 0);
10015 }
10016 /* Look for mutex and implies relations. */
10017 else if ((idesc->operands[0] == IA64_OPND_P1
10018 || idesc->operands[0] == IA64_OPND_P2)
10019 && (idesc->operands[1] == IA64_OPND_P1
10020 || idesc->operands[1] == IA64_OPND_P2))
10021 {
10022 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
10023 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
10024 valueT p1mask = (p1 != 0) ? (valueT) 1 << p1 : 0;
10025 valueT p2mask = (p2 != 0) ? (valueT) 1 << p2 : 0;
10026
10027 /* If both PRs are PR0, we can't really do anything. */
10028 if (p1 == 0 && p2 == 0)
10029 {
10030 if (md.debug_dv)
10031 fprintf (stderr, " Ignoring PRs due to inclusion of p0\n");
10032 }
10033 /* In general, clear mutexes and implies which include P1 or P2,
10034 with the following exceptions. */
10035 else if (has_suffix_p (idesc->name, ".or.andcm")
10036 || has_suffix_p (idesc->name, ".and.orcm"))
10037 {
10038 clear_qp_implies (p2mask, p1mask);
10039 }
10040 else if (has_suffix_p (idesc->name, ".andcm")
10041 || has_suffix_p (idesc->name, ".and"))
10042 {
10043 clear_qp_implies (0, p1mask | p2mask);
10044 }
10045 else if (has_suffix_p (idesc->name, ".orcm")
10046 || has_suffix_p (idesc->name, ".or"))
10047 {
10048 clear_qp_mutex (p1mask | p2mask);
10049 clear_qp_implies (p1mask | p2mask, 0);
10050 }
10051 else
10052 {
10053 int added = 0;
10054
10055 clear_qp_implies (p1mask | p2mask, p1mask | p2mask);
10056
10057 /* If one of the PRs is PR0, we call clear_qp_mutex. */
10058 if (p1 == 0 || p2 == 0)
10059 clear_qp_mutex (p1mask | p2mask);
10060 else
10061 added = update_qp_mutex (p1mask | p2mask);
10062
10063 if (CURR_SLOT.qp_regno == 0
10064 || has_suffix_p (idesc->name, ".unc"))
10065 {
10066 if (added == 0 && p1 && p2)
10067 add_qp_mutex (p1mask | p2mask);
10068 if (CURR_SLOT.qp_regno != 0)
10069 {
10070 if (p1)
10071 add_qp_imply (p1, CURR_SLOT.qp_regno);
10072 if (p2)
10073 add_qp_imply (p2, CURR_SLOT.qp_regno);
10074 }
10075 }
10076 }
10077 }
10078 /* Look for mov imm insns into GRs. */
10079 else if (idesc->operands[0] == IA64_OPND_R1
10080 && (idesc->operands[1] == IA64_OPND_IMM22
10081 || idesc->operands[1] == IA64_OPND_IMMU64)
10082 && CURR_SLOT.opnd[1].X_op == O_constant
10083 && (strcmp (idesc->name, "mov") == 0
10084 || strcmp (idesc->name, "movl") == 0))
10085 {
10086 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
10087 if (regno > 0 && regno < NELEMS (gr_values))
10088 {
10089 gr_values[regno].known = 1;
10090 gr_values[regno].value = CURR_SLOT.opnd[1].X_add_number;
10091 gr_values[regno].path = md.path;
10092 if (md.debug_dv)
10093 {
10094 fprintf (stderr, " Know gr%d = ", regno);
10095 fprintf_vma (stderr, gr_values[regno].value);
10096 fputs ("\n", stderr);
10097 }
10098 }
10099 }
10100 /* Look for dep.z imm insns. */
10101 else if (idesc->operands[0] == IA64_OPND_R1
10102 && idesc->operands[1] == IA64_OPND_IMM8
10103 && strcmp (idesc->name, "dep.z") == 0)
10104 {
10105 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
10106 if (regno > 0 && regno < NELEMS (gr_values))
10107 {
10108 valueT value = CURR_SLOT.opnd[1].X_add_number;
10109
10110 if (CURR_SLOT.opnd[3].X_add_number < 64)
10111 value &= ((valueT)1 << CURR_SLOT.opnd[3].X_add_number) - 1;
10112 value <<= CURR_SLOT.opnd[2].X_add_number;
10113 gr_values[regno].known = 1;
10114 gr_values[regno].value = value;
10115 gr_values[regno].path = md.path;
10116 if (md.debug_dv)
10117 {
10118 fprintf (stderr, " Know gr%d = ", regno);
10119 fprintf_vma (stderr, gr_values[regno].value);
10120 fputs ("\n", stderr);
10121 }
10122 }
10123 }
10124 else
10125 {
10126 clear_qp_mutex (qp_changemask);
10127 clear_qp_implies (qp_changemask, qp_changemask);
10128 }
10129 }
10130
10131 /* Return whether the given predicate registers are currently mutex. */
10132
10133 static int
10134 qp_mutex (p1, p2, path)
10135 int p1;
10136 int p2;
10137 int path;
10138 {
10139 int i;
10140 valueT mask;
10141
10142 if (p1 != p2)
10143 {
10144 mask = ((valueT) 1 << p1) | (valueT) 1 << p2;
10145 for (i = 0; i < qp_mutexeslen; i++)
10146 {
10147 if (qp_mutexes[i].path >= path
10148 && (qp_mutexes[i].prmask & mask) == mask)
10149 return 1;
10150 }
10151 }
10152 return 0;
10153 }
10154
10155 /* Return whether the given resource is in the given insn's list of chks
10156 Return 1 if the conflict is absolutely determined, 2 if it's a potential
10157 conflict. */
10158
10159 static int
10160 resources_match (rs, idesc, note, qp_regno, path)
10161 struct rsrc *rs;
10162 struct ia64_opcode *idesc;
10163 int note;
10164 int qp_regno;
10165 int path;
10166 {
10167 struct rsrc specs[MAX_SPECS];
10168 int count;
10169
10170 /* If the marked resource's qp_regno and the given qp_regno are mutex,
10171 we don't need to check. One exception is note 11, which indicates that
10172 target predicates are written regardless of PR[qp]. */
10173 if (qp_mutex (rs->qp_regno, qp_regno, path)
10174 && note != 11)
10175 return 0;
10176
10177 count = specify_resource (rs->dependency, idesc, DV_CHK, specs, note, path);
10178 while (count-- > 0)
10179 {
10180 /* UNAT checking is a bit more specific than other resources */
10181 if (rs->dependency->specifier == IA64_RS_AR_UNAT
10182 && specs[count].mem_offset.hint
10183 && rs->mem_offset.hint)
10184 {
10185 if (rs->mem_offset.base == specs[count].mem_offset.base)
10186 {
10187 if (((rs->mem_offset.offset >> 3) & 0x3F) ==
10188 ((specs[count].mem_offset.offset >> 3) & 0x3F))
10189 return 1;
10190 else
10191 continue;
10192 }
10193 }
10194
10195 /* Skip apparent PR write conflicts where both writes are an AND or both
10196 writes are an OR. */
10197 if (rs->dependency->specifier == IA64_RS_PR
10198 || rs->dependency->specifier == IA64_RS_PRr
10199 || rs->dependency->specifier == IA64_RS_PR63)
10200 {
10201 if (specs[count].cmp_type != CMP_NONE
10202 && specs[count].cmp_type == rs->cmp_type)
10203 {
10204 if (md.debug_dv)
10205 fprintf (stderr, " %s on parallel compare allowed (PR%d)\n",
10206 dv_mode[rs->dependency->mode],
10207 rs->dependency->specifier != IA64_RS_PR63 ?
10208 specs[count].index : 63);
10209 continue;
10210 }
10211 if (md.debug_dv)
10212 fprintf (stderr,
10213 " %s on parallel compare conflict %s vs %s on PR%d\n",
10214 dv_mode[rs->dependency->mode],
10215 dv_cmp_type[rs->cmp_type],
10216 dv_cmp_type[specs[count].cmp_type],
10217 rs->dependency->specifier != IA64_RS_PR63 ?
10218 specs[count].index : 63);
10219
10220 }
10221
10222 /* If either resource is not specific, conservatively assume a conflict
10223 */
10224 if (!specs[count].specific || !rs->specific)
10225 return 2;
10226 else if (specs[count].index == rs->index)
10227 return 1;
10228 }
10229
10230 return 0;
10231 }
10232
10233 /* Indicate an instruction group break; if INSERT_STOP is non-zero, then
10234 insert a stop to create the break. Update all resource dependencies
10235 appropriately. If QP_REGNO is non-zero, only apply the break to resources
10236 which use the same QP_REGNO and have the link_to_qp_branch flag set.
10237 If SAVE_CURRENT is non-zero, don't affect resources marked by the current
10238 instruction. */
10239
10240 static void
10241 insn_group_break (insert_stop, qp_regno, save_current)
10242 int insert_stop;
10243 int qp_regno;
10244 int save_current;
10245 {
10246 int i;
10247
10248 if (insert_stop && md.num_slots_in_use > 0)
10249 PREV_SLOT.end_of_insn_group = 1;
10250
10251 if (md.debug_dv)
10252 {
10253 fprintf (stderr, " Insn group break%s",
10254 (insert_stop ? " (w/stop)" : ""));
10255 if (qp_regno != 0)
10256 fprintf (stderr, " effective for QP=%d", qp_regno);
10257 fprintf (stderr, "\n");
10258 }
10259
10260 i = 0;
10261 while (i < regdepslen)
10262 {
10263 const struct ia64_dependency *dep = regdeps[i].dependency;
10264
10265 if (qp_regno != 0
10266 && regdeps[i].qp_regno != qp_regno)
10267 {
10268 ++i;
10269 continue;
10270 }
10271
10272 if (save_current
10273 && CURR_SLOT.src_file == regdeps[i].file
10274 && CURR_SLOT.src_line == regdeps[i].line)
10275 {
10276 ++i;
10277 continue;
10278 }
10279
10280 /* clear dependencies which are automatically cleared by a stop, or
10281 those that have reached the appropriate state of insn serialization */
10282 if (dep->semantics == IA64_DVS_IMPLIED
10283 || dep->semantics == IA64_DVS_IMPLIEDF
10284 || regdeps[i].insn_srlz == STATE_SRLZ)
10285 {
10286 print_dependency ("Removing", i);
10287 regdeps[i] = regdeps[--regdepslen];
10288 }
10289 else
10290 {
10291 if (dep->semantics == IA64_DVS_DATA
10292 || dep->semantics == IA64_DVS_INSTR
10293 || dep->semantics == IA64_DVS_SPECIFIC)
10294 {
10295 if (regdeps[i].insn_srlz == STATE_NONE)
10296 regdeps[i].insn_srlz = STATE_STOP;
10297 if (regdeps[i].data_srlz == STATE_NONE)
10298 regdeps[i].data_srlz = STATE_STOP;
10299 }
10300 ++i;
10301 }
10302 }
10303 }
10304
10305 /* Add the given resource usage spec to the list of active dependencies. */
10306
10307 static void
10308 mark_resource (idesc, dep, spec, depind, path)
10309 struct ia64_opcode *idesc ATTRIBUTE_UNUSED;
10310 const struct ia64_dependency *dep ATTRIBUTE_UNUSED;
10311 struct rsrc *spec;
10312 int depind;
10313 int path;
10314 {
10315 if (regdepslen == regdepstotlen)
10316 {
10317 regdepstotlen += 20;
10318 regdeps = (struct rsrc *)
10319 xrealloc ((void *) regdeps,
10320 regdepstotlen * sizeof (struct rsrc));
10321 }
10322
10323 regdeps[regdepslen] = *spec;
10324 regdeps[regdepslen].depind = depind;
10325 regdeps[regdepslen].path = path;
10326 regdeps[regdepslen].file = CURR_SLOT.src_file;
10327 regdeps[regdepslen].line = CURR_SLOT.src_line;
10328
10329 print_dependency ("Adding", regdepslen);
10330
10331 ++regdepslen;
10332 }
10333
10334 static void
10335 print_dependency (action, depind)
10336 const char *action;
10337 int depind;
10338 {
10339 if (md.debug_dv)
10340 {
10341 fprintf (stderr, " %s %s '%s'",
10342 action, dv_mode[(regdeps[depind].dependency)->mode],
10343 (regdeps[depind].dependency)->name);
10344 if (regdeps[depind].specific && regdeps[depind].index >= 0)
10345 fprintf (stderr, " (%d)", regdeps[depind].index);
10346 if (regdeps[depind].mem_offset.hint)
10347 {
10348 fputs (" ", stderr);
10349 fprintf_vma (stderr, regdeps[depind].mem_offset.base);
10350 fputs ("+", stderr);
10351 fprintf_vma (stderr, regdeps[depind].mem_offset.offset);
10352 }
10353 fprintf (stderr, "\n");
10354 }
10355 }
10356
10357 static void
10358 instruction_serialization ()
10359 {
10360 int i;
10361 if (md.debug_dv)
10362 fprintf (stderr, " Instruction serialization\n");
10363 for (i = 0; i < regdepslen; i++)
10364 if (regdeps[i].insn_srlz == STATE_STOP)
10365 regdeps[i].insn_srlz = STATE_SRLZ;
10366 }
10367
10368 static void
10369 data_serialization ()
10370 {
10371 int i = 0;
10372 if (md.debug_dv)
10373 fprintf (stderr, " Data serialization\n");
10374 while (i < regdepslen)
10375 {
10376 if (regdeps[i].data_srlz == STATE_STOP
10377 /* Note: as of 991210, all "other" dependencies are cleared by a
10378 data serialization. This might change with new tables */
10379 || (regdeps[i].dependency)->semantics == IA64_DVS_OTHER)
10380 {
10381 print_dependency ("Removing", i);
10382 regdeps[i] = regdeps[--regdepslen];
10383 }
10384 else
10385 ++i;
10386 }
10387 }
10388
10389 /* Insert stops and serializations as needed to avoid DVs. */
10390
10391 static void
10392 remove_marked_resource (rs)
10393 struct rsrc *rs;
10394 {
10395 switch (rs->dependency->semantics)
10396 {
10397 case IA64_DVS_SPECIFIC:
10398 if (md.debug_dv)
10399 fprintf (stderr, "Implementation-specific, assume worst case...\n");
10400 /* ...fall through... */
10401 case IA64_DVS_INSTR:
10402 if (md.debug_dv)
10403 fprintf (stderr, "Inserting instr serialization\n");
10404 if (rs->insn_srlz < STATE_STOP)
10405 insn_group_break (1, 0, 0);
10406 if (rs->insn_srlz < STATE_SRLZ)
10407 {
10408 struct slot oldslot = CURR_SLOT;
10409 /* Manually jam a srlz.i insn into the stream */
10410 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10411 CURR_SLOT.user_template = -1;
10412 CURR_SLOT.idesc = ia64_find_opcode ("srlz.i");
10413 instruction_serialization ();
10414 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10415 if (++md.num_slots_in_use >= NUM_SLOTS)
10416 emit_one_bundle ();
10417 CURR_SLOT = oldslot;
10418 }
10419 insn_group_break (1, 0, 0);
10420 break;
10421 case IA64_DVS_OTHER: /* as of rev2 (991220) of the DV tables, all
10422 "other" types of DV are eliminated
10423 by a data serialization */
10424 case IA64_DVS_DATA:
10425 if (md.debug_dv)
10426 fprintf (stderr, "Inserting data serialization\n");
10427 if (rs->data_srlz < STATE_STOP)
10428 insn_group_break (1, 0, 0);
10429 {
10430 struct slot oldslot = CURR_SLOT;
10431 /* Manually jam a srlz.d insn into the stream */
10432 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10433 CURR_SLOT.user_template = -1;
10434 CURR_SLOT.idesc = ia64_find_opcode ("srlz.d");
10435 data_serialization ();
10436 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10437 if (++md.num_slots_in_use >= NUM_SLOTS)
10438 emit_one_bundle ();
10439 CURR_SLOT = oldslot;
10440 }
10441 break;
10442 case IA64_DVS_IMPLIED:
10443 case IA64_DVS_IMPLIEDF:
10444 if (md.debug_dv)
10445 fprintf (stderr, "Inserting stop\n");
10446 insn_group_break (1, 0, 0);
10447 break;
10448 default:
10449 break;
10450 }
10451 }
10452
10453 /* Check the resources used by the given opcode against the current dependency
10454 list.
10455
10456 The check is run once for each execution path encountered. In this case,
10457 a unique execution path is the sequence of instructions following a code
10458 entry point, e.g. the following has three execution paths, one starting
10459 at L0, one at L1, and one at L2.
10460
10461 L0: nop
10462 L1: add
10463 L2: add
10464 br.ret
10465 */
10466
10467 static void
10468 check_dependencies (idesc)
10469 struct ia64_opcode *idesc;
10470 {
10471 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10472 int path;
10473 int i;
10474
10475 /* Note that the number of marked resources may change within the
10476 loop if in auto mode. */
10477 i = 0;
10478 while (i < regdepslen)
10479 {
10480 struct rsrc *rs = &regdeps[i];
10481 const struct ia64_dependency *dep = rs->dependency;
10482 int chkind;
10483 int note;
10484 int start_over = 0;
10485
10486 if (dep->semantics == IA64_DVS_NONE
10487 || (chkind = depends_on (rs->depind, idesc)) == -1)
10488 {
10489 ++i;
10490 continue;
10491 }
10492
10493 note = NOTE (opdeps->chks[chkind]);
10494
10495 /* Check this resource against each execution path seen thus far. */
10496 for (path = 0; path <= md.path; path++)
10497 {
10498 int matchtype;
10499
10500 /* If the dependency wasn't on the path being checked, ignore it. */
10501 if (rs->path < path)
10502 continue;
10503
10504 /* If the QP for this insn implies a QP which has branched, don't
10505 bother checking. Ed. NOTE: I don't think this check is terribly
10506 useful; what's the point of generating code which will only be
10507 reached if its QP is zero?
10508 This code was specifically inserted to handle the following code,
10509 based on notes from Intel's DV checking code, where p1 implies p2.
10510
10511 mov r4 = 2
10512 (p2) br.cond L
10513 (p1) mov r4 = 7
10514 */
10515 if (CURR_SLOT.qp_regno != 0)
10516 {
10517 int skip = 0;
10518 int implies;
10519 for (implies = 0; implies < qp_implieslen; implies++)
10520 {
10521 if (qp_implies[implies].path >= path
10522 && qp_implies[implies].p1 == CURR_SLOT.qp_regno
10523 && qp_implies[implies].p2_branched)
10524 {
10525 skip = 1;
10526 break;
10527 }
10528 }
10529 if (skip)
10530 continue;
10531 }
10532
10533 if ((matchtype = resources_match (rs, idesc, note,
10534 CURR_SLOT.qp_regno, path)) != 0)
10535 {
10536 char msg[1024];
10537 char pathmsg[256] = "";
10538 char indexmsg[256] = "";
10539 int certain = (matchtype == 1 && CURR_SLOT.qp_regno == 0);
10540
10541 if (path != 0)
10542 sprintf (pathmsg, " when entry is at label '%s'",
10543 md.entry_labels[path - 1]);
10544 if (matchtype == 1 && rs->index >= 0)
10545 sprintf (indexmsg, ", specific resource number is %d",
10546 rs->index);
10547 sprintf (msg, "Use of '%s' %s %s dependency '%s' (%s)%s%s",
10548 idesc->name,
10549 (certain ? "violates" : "may violate"),
10550 dv_mode[dep->mode], dep->name,
10551 dv_sem[dep->semantics],
10552 pathmsg, indexmsg);
10553
10554 if (md.explicit_mode)
10555 {
10556 as_warn ("%s", msg);
10557 if (path < md.path)
10558 as_warn (_("Only the first path encountering the conflict "
10559 "is reported"));
10560 as_warn_where (rs->file, rs->line,
10561 _("This is the location of the "
10562 "conflicting usage"));
10563 /* Don't bother checking other paths, to avoid duplicating
10564 the same warning */
10565 break;
10566 }
10567 else
10568 {
10569 if (md.debug_dv)
10570 fprintf (stderr, "%s @ %s:%d\n", msg, rs->file, rs->line);
10571
10572 remove_marked_resource (rs);
10573
10574 /* since the set of dependencies has changed, start over */
10575 /* FIXME -- since we're removing dvs as we go, we
10576 probably don't really need to start over... */
10577 start_over = 1;
10578 break;
10579 }
10580 }
10581 }
10582 if (start_over)
10583 i = 0;
10584 else
10585 ++i;
10586 }
10587 }
10588
10589 /* Register new dependencies based on the given opcode. */
10590
10591 static void
10592 mark_resources (idesc)
10593 struct ia64_opcode *idesc;
10594 {
10595 int i;
10596 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10597 int add_only_qp_reads = 0;
10598
10599 /* A conditional branch only uses its resources if it is taken; if it is
10600 taken, we stop following that path. The other branch types effectively
10601 *always* write their resources. If it's not taken, register only QP
10602 reads. */
10603 if (is_conditional_branch (idesc) || is_interruption_or_rfi (idesc))
10604 {
10605 add_only_qp_reads = 1;
10606 }
10607
10608 if (md.debug_dv)
10609 fprintf (stderr, "Registering '%s' resource usage\n", idesc->name);
10610
10611 for (i = 0; i < opdeps->nregs; i++)
10612 {
10613 const struct ia64_dependency *dep;
10614 struct rsrc specs[MAX_SPECS];
10615 int note;
10616 int path;
10617 int count;
10618
10619 dep = ia64_find_dependency (opdeps->regs[i]);
10620 note = NOTE (opdeps->regs[i]);
10621
10622 if (add_only_qp_reads
10623 && !(dep->mode == IA64_DV_WAR
10624 && (dep->specifier == IA64_RS_PR
10625 || dep->specifier == IA64_RS_PRr
10626 || dep->specifier == IA64_RS_PR63)))
10627 continue;
10628
10629 count = specify_resource (dep, idesc, DV_REG, specs, note, md.path);
10630
10631 while (count-- > 0)
10632 {
10633 mark_resource (idesc, dep, &specs[count],
10634 DEP (opdeps->regs[i]), md.path);
10635 }
10636
10637 /* The execution path may affect register values, which may in turn
10638 affect which indirect-access resources are accessed. */
10639 switch (dep->specifier)
10640 {
10641 default:
10642 break;
10643 case IA64_RS_CPUID:
10644 case IA64_RS_DBR:
10645 case IA64_RS_IBR:
10646 case IA64_RS_MSR:
10647 case IA64_RS_PKR:
10648 case IA64_RS_PMC:
10649 case IA64_RS_PMD:
10650 case IA64_RS_RR:
10651 for (path = 0; path < md.path; path++)
10652 {
10653 count = specify_resource (dep, idesc, DV_REG, specs, note, path);
10654 while (count-- > 0)
10655 mark_resource (idesc, dep, &specs[count],
10656 DEP (opdeps->regs[i]), path);
10657 }
10658 break;
10659 }
10660 }
10661 }
10662
10663 /* Remove dependencies when they no longer apply. */
10664
10665 static void
10666 update_dependencies (idesc)
10667 struct ia64_opcode *idesc;
10668 {
10669 int i;
10670
10671 if (strcmp (idesc->name, "srlz.i") == 0)
10672 {
10673 instruction_serialization ();
10674 }
10675 else if (strcmp (idesc->name, "srlz.d") == 0)
10676 {
10677 data_serialization ();
10678 }
10679 else if (is_interruption_or_rfi (idesc)
10680 || is_taken_branch (idesc))
10681 {
10682 /* Although technically the taken branch doesn't clear dependencies
10683 which require a srlz.[id], we don't follow the branch; the next
10684 instruction is assumed to start with a clean slate. */
10685 regdepslen = 0;
10686 md.path = 0;
10687 }
10688 else if (is_conditional_branch (idesc)
10689 && CURR_SLOT.qp_regno != 0)
10690 {
10691 int is_call = strstr (idesc->name, ".call") != NULL;
10692
10693 for (i = 0; i < qp_implieslen; i++)
10694 {
10695 /* If the conditional branch's predicate is implied by the predicate
10696 in an existing dependency, remove that dependency. */
10697 if (qp_implies[i].p2 == CURR_SLOT.qp_regno)
10698 {
10699 int depind = 0;
10700 /* Note that this implied predicate takes a branch so that if
10701 a later insn generates a DV but its predicate implies this
10702 one, we can avoid the false DV warning. */
10703 qp_implies[i].p2_branched = 1;
10704 while (depind < regdepslen)
10705 {
10706 if (regdeps[depind].qp_regno == qp_implies[i].p1)
10707 {
10708 print_dependency ("Removing", depind);
10709 regdeps[depind] = regdeps[--regdepslen];
10710 }
10711 else
10712 ++depind;
10713 }
10714 }
10715 }
10716 /* Any marked resources which have this same predicate should be
10717 cleared, provided that the QP hasn't been modified between the
10718 marking instruction and the branch. */
10719 if (is_call)
10720 {
10721 insn_group_break (0, CURR_SLOT.qp_regno, 1);
10722 }
10723 else
10724 {
10725 i = 0;
10726 while (i < regdepslen)
10727 {
10728 if (regdeps[i].qp_regno == CURR_SLOT.qp_regno
10729 && regdeps[i].link_to_qp_branch
10730 && (regdeps[i].file != CURR_SLOT.src_file
10731 || regdeps[i].line != CURR_SLOT.src_line))
10732 {
10733 /* Treat like a taken branch */
10734 print_dependency ("Removing", i);
10735 regdeps[i] = regdeps[--regdepslen];
10736 }
10737 else
10738 ++i;
10739 }
10740 }
10741 }
10742 }
10743
10744 /* Examine the current instruction for dependency violations. */
10745
10746 static int
10747 check_dv (idesc)
10748 struct ia64_opcode *idesc;
10749 {
10750 if (md.debug_dv)
10751 {
10752 fprintf (stderr, "Checking %s for violations (line %d, %d/%d)\n",
10753 idesc->name, CURR_SLOT.src_line,
10754 idesc->dependencies->nchks,
10755 idesc->dependencies->nregs);
10756 }
10757
10758 /* Look through the list of currently marked resources; if the current
10759 instruction has the dependency in its chks list which uses that resource,
10760 check against the specific resources used. */
10761 check_dependencies (idesc);
10762
10763 /* Look up the instruction's regdeps (RAW writes, WAW writes, and WAR reads),
10764 then add them to the list of marked resources. */
10765 mark_resources (idesc);
10766
10767 /* There are several types of dependency semantics, and each has its own
10768 requirements for being cleared
10769
10770 Instruction serialization (insns separated by interruption, rfi, or
10771 writer + srlz.i + reader, all in separate groups) clears DVS_INSTR.
10772
10773 Data serialization (instruction serialization, or writer + srlz.d +
10774 reader, where writer and srlz.d are in separate groups) clears
10775 DVS_DATA. (This also clears DVS_OTHER, but that is not guaranteed to
10776 always be the case).
10777
10778 Instruction group break (groups separated by stop, taken branch,
10779 interruption or rfi) clears DVS_IMPLIED and DVS_IMPLIEDF.
10780 */
10781 update_dependencies (idesc);
10782
10783 /* Sometimes, knowing a register value allows us to avoid giving a false DV
10784 warning. Keep track of as many as possible that are useful. */
10785 note_register_values (idesc);
10786
10787 /* We don't need or want this anymore. */
10788 md.mem_offset.hint = 0;
10789
10790 return 0;
10791 }
10792
10793 /* Translate one line of assembly. Pseudo ops and labels do not show
10794 here. */
10795 void
10796 md_assemble (str)
10797 char *str;
10798 {
10799 char *saved_input_line_pointer, *mnemonic;
10800 const struct pseudo_opcode *pdesc;
10801 struct ia64_opcode *idesc;
10802 unsigned char qp_regno;
10803 unsigned int flags;
10804 int ch;
10805
10806 saved_input_line_pointer = input_line_pointer;
10807 input_line_pointer = str;
10808
10809 /* extract the opcode (mnemonic): */
10810
10811 mnemonic = input_line_pointer;
10812 ch = get_symbol_end ();
10813 pdesc = (struct pseudo_opcode *) hash_find (md.pseudo_hash, mnemonic);
10814 if (pdesc)
10815 {
10816 *input_line_pointer = ch;
10817 (*pdesc->handler) (pdesc->arg);
10818 goto done;
10819 }
10820
10821 /* Find the instruction descriptor matching the arguments. */
10822
10823 idesc = ia64_find_opcode (mnemonic);
10824 *input_line_pointer = ch;
10825 if (!idesc)
10826 {
10827 as_bad ("Unknown opcode `%s'", mnemonic);
10828 goto done;
10829 }
10830
10831 idesc = parse_operands (idesc);
10832 if (!idesc)
10833 goto done;
10834
10835 /* Handle the dynamic ops we can handle now: */
10836 if (idesc->type == IA64_TYPE_DYN)
10837 {
10838 if (strcmp (idesc->name, "add") == 0)
10839 {
10840 if (CURR_SLOT.opnd[2].X_op == O_register
10841 && CURR_SLOT.opnd[2].X_add_number < 4)
10842 mnemonic = "addl";
10843 else
10844 mnemonic = "adds";
10845 ia64_free_opcode (idesc);
10846 idesc = ia64_find_opcode (mnemonic);
10847 }
10848 else if (strcmp (idesc->name, "mov") == 0)
10849 {
10850 enum ia64_opnd opnd1, opnd2;
10851 int rop;
10852
10853 opnd1 = idesc->operands[0];
10854 opnd2 = idesc->operands[1];
10855 if (opnd1 == IA64_OPND_AR3)
10856 rop = 0;
10857 else if (opnd2 == IA64_OPND_AR3)
10858 rop = 1;
10859 else
10860 abort ();
10861 if (CURR_SLOT.opnd[rop].X_op == O_register)
10862 {
10863 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10864 mnemonic = "mov.i";
10865 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10866 mnemonic = "mov.m";
10867 else
10868 rop = -1;
10869 }
10870 else
10871 abort ();
10872 if (rop >= 0)
10873 {
10874 ia64_free_opcode (idesc);
10875 idesc = ia64_find_opcode (mnemonic);
10876 while (idesc != NULL
10877 && (idesc->operands[0] != opnd1
10878 || idesc->operands[1] != opnd2))
10879 idesc = get_next_opcode (idesc);
10880 }
10881 }
10882 }
10883 else if (strcmp (idesc->name, "mov.i") == 0
10884 || strcmp (idesc->name, "mov.m") == 0)
10885 {
10886 enum ia64_opnd opnd1, opnd2;
10887 int rop;
10888
10889 opnd1 = idesc->operands[0];
10890 opnd2 = idesc->operands[1];
10891 if (opnd1 == IA64_OPND_AR3)
10892 rop = 0;
10893 else if (opnd2 == IA64_OPND_AR3)
10894 rop = 1;
10895 else
10896 abort ();
10897 if (CURR_SLOT.opnd[rop].X_op == O_register)
10898 {
10899 char unit = 'a';
10900 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10901 unit = 'i';
10902 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10903 unit = 'm';
10904 if (unit != 'a' && unit != idesc->name [4])
10905 as_bad ("AR %d can only be accessed by %c-unit",
10906 (int) (CURR_SLOT.opnd[rop].X_add_number - REG_AR),
10907 TOUPPER (unit));
10908 }
10909 }
10910 else if (strcmp (idesc->name, "hint.b") == 0)
10911 {
10912 switch (md.hint_b)
10913 {
10914 case hint_b_ok:
10915 break;
10916 case hint_b_warning:
10917 as_warn ("hint.b may be treated as nop");
10918 break;
10919 case hint_b_error:
10920 as_bad ("hint.b shouldn't be used");
10921 break;
10922 }
10923 }
10924
10925 qp_regno = 0;
10926 if (md.qp.X_op == O_register)
10927 {
10928 qp_regno = md.qp.X_add_number - REG_P;
10929 md.qp.X_op = O_absent;
10930 }
10931
10932 flags = idesc->flags;
10933
10934 if ((flags & IA64_OPCODE_FIRST) != 0)
10935 {
10936 /* The alignment frag has to end with a stop bit only if the
10937 next instruction after the alignment directive has to be
10938 the first instruction in an instruction group. */
10939 if (align_frag)
10940 {
10941 while (align_frag->fr_type != rs_align_code)
10942 {
10943 align_frag = align_frag->fr_next;
10944 if (!align_frag)
10945 break;
10946 }
10947 /* align_frag can be NULL if there are directives in
10948 between. */
10949 if (align_frag && align_frag->fr_next == frag_now)
10950 align_frag->tc_frag_data = 1;
10951 }
10952
10953 insn_group_break (1, 0, 0);
10954 }
10955 align_frag = NULL;
10956
10957 if ((flags & IA64_OPCODE_NO_PRED) != 0 && qp_regno != 0)
10958 {
10959 as_bad ("`%s' cannot be predicated", idesc->name);
10960 goto done;
10961 }
10962
10963 /* Build the instruction. */
10964 CURR_SLOT.qp_regno = qp_regno;
10965 CURR_SLOT.idesc = idesc;
10966 as_where (&CURR_SLOT.src_file, &CURR_SLOT.src_line);
10967 dwarf2_where (&CURR_SLOT.debug_line);
10968
10969 /* Add unwind entries, if there are any. */
10970 if (unwind.current_entry)
10971 {
10972 CURR_SLOT.unwind_record = unwind.current_entry;
10973 unwind.current_entry = NULL;
10974 }
10975 if (unwind.pending_saves)
10976 {
10977 if (unwind.pending_saves->next)
10978 {
10979 /* Attach the next pending save to the next slot so that its
10980 slot number will get set correctly. */
10981 add_unwind_entry (unwind.pending_saves->next, NOT_A_CHAR);
10982 unwind.pending_saves = &unwind.pending_saves->next->r.record.p;
10983 }
10984 else
10985 unwind.pending_saves = NULL;
10986 }
10987 if (unwind.proc_pending.sym && S_IS_DEFINED (unwind.proc_pending.sym))
10988 unwind.insn = 1;
10989
10990 /* Check for dependency violations. */
10991 if (md.detect_dv)
10992 check_dv (idesc);
10993
10994 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10995 if (++md.num_slots_in_use >= NUM_SLOTS)
10996 emit_one_bundle ();
10997
10998 if ((flags & IA64_OPCODE_LAST) != 0)
10999 insn_group_break (1, 0, 0);
11000
11001 md.last_text_seg = now_seg;
11002
11003 done:
11004 input_line_pointer = saved_input_line_pointer;
11005 }
11006
11007 /* Called when symbol NAME cannot be found in the symbol table.
11008 Should be used for dynamic valued symbols only. */
11009
11010 symbolS *
11011 md_undefined_symbol (name)
11012 char *name ATTRIBUTE_UNUSED;
11013 {
11014 return 0;
11015 }
11016
11017 /* Called for any expression that can not be recognized. When the
11018 function is called, `input_line_pointer' will point to the start of
11019 the expression. */
11020
11021 void
11022 md_operand (e)
11023 expressionS *e;
11024 {
11025 switch (*input_line_pointer)
11026 {
11027 case '[':
11028 ++input_line_pointer;
11029 expression_and_evaluate (e);
11030 if (*input_line_pointer != ']')
11031 {
11032 as_bad ("Closing bracket missing");
11033 goto err;
11034 }
11035 else
11036 {
11037 if (e->X_op != O_register
11038 || e->X_add_number < REG_GR
11039 || e->X_add_number > REG_GR + 127)
11040 {
11041 as_bad ("Index must be a general register");
11042 e->X_add_number = REG_GR;
11043 }
11044
11045 ++input_line_pointer;
11046 e->X_op = O_index;
11047 }
11048 break;
11049
11050 default:
11051 break;
11052 }
11053 return;
11054
11055 err:
11056 ignore_rest_of_line ();
11057 }
11058
11059 /* Return 1 if it's OK to adjust a reloc by replacing the symbol with
11060 a section symbol plus some offset. For relocs involving @fptr(),
11061 directives we don't want such adjustments since we need to have the
11062 original symbol's name in the reloc. */
11063 int
11064 ia64_fix_adjustable (fix)
11065 fixS *fix;
11066 {
11067 /* Prevent all adjustments to global symbols */
11068 if (S_IS_EXTERNAL (fix->fx_addsy) || S_IS_WEAK (fix->fx_addsy))
11069 return 0;
11070
11071 switch (fix->fx_r_type)
11072 {
11073 case BFD_RELOC_IA64_FPTR64I:
11074 case BFD_RELOC_IA64_FPTR32MSB:
11075 case BFD_RELOC_IA64_FPTR32LSB:
11076 case BFD_RELOC_IA64_FPTR64MSB:
11077 case BFD_RELOC_IA64_FPTR64LSB:
11078 case BFD_RELOC_IA64_LTOFF_FPTR22:
11079 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11080 return 0;
11081 default:
11082 break;
11083 }
11084
11085 return 1;
11086 }
11087
11088 int
11089 ia64_force_relocation (fix)
11090 fixS *fix;
11091 {
11092 switch (fix->fx_r_type)
11093 {
11094 case BFD_RELOC_IA64_FPTR64I:
11095 case BFD_RELOC_IA64_FPTR32MSB:
11096 case BFD_RELOC_IA64_FPTR32LSB:
11097 case BFD_RELOC_IA64_FPTR64MSB:
11098 case BFD_RELOC_IA64_FPTR64LSB:
11099
11100 case BFD_RELOC_IA64_LTOFF22:
11101 case BFD_RELOC_IA64_LTOFF64I:
11102 case BFD_RELOC_IA64_LTOFF_FPTR22:
11103 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11104 case BFD_RELOC_IA64_PLTOFF22:
11105 case BFD_RELOC_IA64_PLTOFF64I:
11106 case BFD_RELOC_IA64_PLTOFF64MSB:
11107 case BFD_RELOC_IA64_PLTOFF64LSB:
11108
11109 case BFD_RELOC_IA64_LTOFF22X:
11110 case BFD_RELOC_IA64_LDXMOV:
11111 return 1;
11112
11113 default:
11114 break;
11115 }
11116
11117 return generic_force_reloc (fix);
11118 }
11119
11120 /* Decide from what point a pc-relative relocation is relative to,
11121 relative to the pc-relative fixup. Er, relatively speaking. */
11122 long
11123 ia64_pcrel_from_section (fix, sec)
11124 fixS *fix;
11125 segT sec;
11126 {
11127 unsigned long off = fix->fx_frag->fr_address + fix->fx_where;
11128
11129 if (bfd_get_section_flags (stdoutput, sec) & SEC_CODE)
11130 off &= ~0xfUL;
11131
11132 return off;
11133 }
11134
11135
11136 /* Used to emit section-relative relocs for the dwarf2 debug data. */
11137 void
11138 ia64_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11139 {
11140 expressionS expr;
11141
11142 expr.X_op = O_pseudo_fixup;
11143 expr.X_op_symbol = pseudo_func[FUNC_SEC_RELATIVE].u.sym;
11144 expr.X_add_number = 0;
11145 expr.X_add_symbol = symbol;
11146 emit_expr (&expr, size);
11147 }
11148
11149 /* This is called whenever some data item (not an instruction) needs a
11150 fixup. We pick the right reloc code depending on the byteorder
11151 currently in effect. */
11152 void
11153 ia64_cons_fix_new (f, where, nbytes, exp)
11154 fragS *f;
11155 int where;
11156 int nbytes;
11157 expressionS *exp;
11158 {
11159 bfd_reloc_code_real_type code;
11160 fixS *fix;
11161
11162 switch (nbytes)
11163 {
11164 /* There are no reloc for 8 and 16 bit quantities, but we allow
11165 them here since they will work fine as long as the expression
11166 is fully defined at the end of the pass over the source file. */
11167 case 1: code = BFD_RELOC_8; break;
11168 case 2: code = BFD_RELOC_16; break;
11169 case 4:
11170 if (target_big_endian)
11171 code = BFD_RELOC_IA64_DIR32MSB;
11172 else
11173 code = BFD_RELOC_IA64_DIR32LSB;
11174 break;
11175
11176 case 8:
11177 /* In 32-bit mode, data8 could mean function descriptors too. */
11178 if (exp->X_op == O_pseudo_fixup
11179 && exp->X_op_symbol
11180 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC
11181 && !(md.flags & EF_IA_64_ABI64))
11182 {
11183 if (target_big_endian)
11184 code = BFD_RELOC_IA64_IPLTMSB;
11185 else
11186 code = BFD_RELOC_IA64_IPLTLSB;
11187 exp->X_op = O_symbol;
11188 break;
11189 }
11190 else
11191 {
11192 if (target_big_endian)
11193 code = BFD_RELOC_IA64_DIR64MSB;
11194 else
11195 code = BFD_RELOC_IA64_DIR64LSB;
11196 break;
11197 }
11198
11199 case 16:
11200 if (exp->X_op == O_pseudo_fixup
11201 && exp->X_op_symbol
11202 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC)
11203 {
11204 if (target_big_endian)
11205 code = BFD_RELOC_IA64_IPLTMSB;
11206 else
11207 code = BFD_RELOC_IA64_IPLTLSB;
11208 exp->X_op = O_symbol;
11209 break;
11210 }
11211 /* FALLTHRU */
11212
11213 default:
11214 as_bad ("Unsupported fixup size %d", nbytes);
11215 ignore_rest_of_line ();
11216 return;
11217 }
11218
11219 if (exp->X_op == O_pseudo_fixup)
11220 {
11221 exp->X_op = O_symbol;
11222 code = ia64_gen_real_reloc_type (exp->X_op_symbol, code);
11223 /* ??? If code unchanged, unsupported. */
11224 }
11225
11226 fix = fix_new_exp (f, where, nbytes, exp, 0, code);
11227 /* We need to store the byte order in effect in case we're going
11228 to fix an 8 or 16 bit relocation (for which there no real
11229 relocs available). See md_apply_fix(). */
11230 fix->tc_fix_data.bigendian = target_big_endian;
11231 }
11232
11233 /* Return the actual relocation we wish to associate with the pseudo
11234 reloc described by SYM and R_TYPE. SYM should be one of the
11235 symbols in the pseudo_func array, or NULL. */
11236
11237 static bfd_reloc_code_real_type
11238 ia64_gen_real_reloc_type (sym, r_type)
11239 struct symbol *sym;
11240 bfd_reloc_code_real_type r_type;
11241 {
11242 bfd_reloc_code_real_type new = 0;
11243 const char *type = NULL, *suffix = "";
11244
11245 if (sym == NULL)
11246 {
11247 return r_type;
11248 }
11249
11250 switch (S_GET_VALUE (sym))
11251 {
11252 case FUNC_FPTR_RELATIVE:
11253 switch (r_type)
11254 {
11255 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_FPTR64I; break;
11256 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_FPTR32MSB; break;
11257 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_FPTR32LSB; break;
11258 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_FPTR64MSB; break;
11259 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_FPTR64LSB; break;
11260 default: type = "FPTR"; break;
11261 }
11262 break;
11263
11264 case FUNC_GP_RELATIVE:
11265 switch (r_type)
11266 {
11267 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_GPREL22; break;
11268 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_GPREL64I; break;
11269 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_GPREL32MSB; break;
11270 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_GPREL32LSB; break;
11271 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_GPREL64MSB; break;
11272 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_GPREL64LSB; break;
11273 default: type = "GPREL"; break;
11274 }
11275 break;
11276
11277 case FUNC_LT_RELATIVE:
11278 switch (r_type)
11279 {
11280 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22; break;
11281 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_LTOFF64I; break;
11282 default: type = "LTOFF"; break;
11283 }
11284 break;
11285
11286 case FUNC_LT_RELATIVE_X:
11287 switch (r_type)
11288 {
11289 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22X; break;
11290 default: type = "LTOFF"; suffix = "X"; break;
11291 }
11292 break;
11293
11294 case FUNC_PC_RELATIVE:
11295 switch (r_type)
11296 {
11297 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PCREL22; break;
11298 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PCREL64I; break;
11299 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_PCREL32MSB; break;
11300 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_PCREL32LSB; break;
11301 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PCREL64MSB; break;
11302 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PCREL64LSB; break;
11303 default: type = "PCREL"; break;
11304 }
11305 break;
11306
11307 case FUNC_PLT_RELATIVE:
11308 switch (r_type)
11309 {
11310 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PLTOFF22; break;
11311 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PLTOFF64I; break;
11312 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PLTOFF64MSB;break;
11313 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PLTOFF64LSB;break;
11314 default: type = "PLTOFF"; break;
11315 }
11316 break;
11317
11318 case FUNC_SEC_RELATIVE:
11319 switch (r_type)
11320 {
11321 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SECREL32MSB;break;
11322 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SECREL32LSB;break;
11323 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SECREL64MSB;break;
11324 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SECREL64LSB;break;
11325 default: type = "SECREL"; break;
11326 }
11327 break;
11328
11329 case FUNC_SEG_RELATIVE:
11330 switch (r_type)
11331 {
11332 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SEGREL32MSB;break;
11333 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SEGREL32LSB;break;
11334 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SEGREL64MSB;break;
11335 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SEGREL64LSB;break;
11336 default: type = "SEGREL"; break;
11337 }
11338 break;
11339
11340 case FUNC_LTV_RELATIVE:
11341 switch (r_type)
11342 {
11343 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_LTV32MSB; break;
11344 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_LTV32LSB; break;
11345 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_LTV64MSB; break;
11346 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_LTV64LSB; break;
11347 default: type = "LTV"; break;
11348 }
11349 break;
11350
11351 case FUNC_LT_FPTR_RELATIVE:
11352 switch (r_type)
11353 {
11354 case BFD_RELOC_IA64_IMM22:
11355 new = BFD_RELOC_IA64_LTOFF_FPTR22; break;
11356 case BFD_RELOC_IA64_IMM64:
11357 new = BFD_RELOC_IA64_LTOFF_FPTR64I; break;
11358 case BFD_RELOC_IA64_DIR32MSB:
11359 new = BFD_RELOC_IA64_LTOFF_FPTR32MSB; break;
11360 case BFD_RELOC_IA64_DIR32LSB:
11361 new = BFD_RELOC_IA64_LTOFF_FPTR32LSB; break;
11362 case BFD_RELOC_IA64_DIR64MSB:
11363 new = BFD_RELOC_IA64_LTOFF_FPTR64MSB; break;
11364 case BFD_RELOC_IA64_DIR64LSB:
11365 new = BFD_RELOC_IA64_LTOFF_FPTR64LSB; break;
11366 default:
11367 type = "LTOFF_FPTR"; break;
11368 }
11369 break;
11370
11371 case FUNC_TP_RELATIVE:
11372 switch (r_type)
11373 {
11374 case BFD_RELOC_IA64_IMM14: new = BFD_RELOC_IA64_TPREL14; break;
11375 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_TPREL22; break;
11376 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_TPREL64I; break;
11377 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_TPREL64MSB; break;
11378 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_TPREL64LSB; break;
11379 default: type = "TPREL"; break;
11380 }
11381 break;
11382
11383 case FUNC_LT_TP_RELATIVE:
11384 switch (r_type)
11385 {
11386 case BFD_RELOC_IA64_IMM22:
11387 new = BFD_RELOC_IA64_LTOFF_TPREL22; break;
11388 default:
11389 type = "LTOFF_TPREL"; break;
11390 }
11391 break;
11392
11393 case FUNC_DTP_MODULE:
11394 switch (r_type)
11395 {
11396 case BFD_RELOC_IA64_DIR64MSB:
11397 new = BFD_RELOC_IA64_DTPMOD64MSB; break;
11398 case BFD_RELOC_IA64_DIR64LSB:
11399 new = BFD_RELOC_IA64_DTPMOD64LSB; break;
11400 default:
11401 type = "DTPMOD"; break;
11402 }
11403 break;
11404
11405 case FUNC_LT_DTP_MODULE:
11406 switch (r_type)
11407 {
11408 case BFD_RELOC_IA64_IMM22:
11409 new = BFD_RELOC_IA64_LTOFF_DTPMOD22; break;
11410 default:
11411 type = "LTOFF_DTPMOD"; break;
11412 }
11413 break;
11414
11415 case FUNC_DTP_RELATIVE:
11416 switch (r_type)
11417 {
11418 case BFD_RELOC_IA64_DIR32MSB:
11419 new = BFD_RELOC_IA64_DTPREL32MSB; break;
11420 case BFD_RELOC_IA64_DIR32LSB:
11421 new = BFD_RELOC_IA64_DTPREL32LSB; break;
11422 case BFD_RELOC_IA64_DIR64MSB:
11423 new = BFD_RELOC_IA64_DTPREL64MSB; break;
11424 case BFD_RELOC_IA64_DIR64LSB:
11425 new = BFD_RELOC_IA64_DTPREL64LSB; break;
11426 case BFD_RELOC_IA64_IMM14:
11427 new = BFD_RELOC_IA64_DTPREL14; break;
11428 case BFD_RELOC_IA64_IMM22:
11429 new = BFD_RELOC_IA64_DTPREL22; break;
11430 case BFD_RELOC_IA64_IMM64:
11431 new = BFD_RELOC_IA64_DTPREL64I; break;
11432 default:
11433 type = "DTPREL"; break;
11434 }
11435 break;
11436
11437 case FUNC_LT_DTP_RELATIVE:
11438 switch (r_type)
11439 {
11440 case BFD_RELOC_IA64_IMM22:
11441 new = BFD_RELOC_IA64_LTOFF_DTPREL22; break;
11442 default:
11443 type = "LTOFF_DTPREL"; break;
11444 }
11445 break;
11446
11447 case FUNC_IPLT_RELOC:
11448 switch (r_type)
11449 {
11450 case BFD_RELOC_IA64_IPLTMSB: return r_type;
11451 case BFD_RELOC_IA64_IPLTLSB: return r_type;
11452 default: type = "IPLT"; break;
11453 }
11454 break;
11455
11456 default:
11457 abort ();
11458 }
11459
11460 if (new)
11461 return new;
11462 else
11463 {
11464 int width;
11465
11466 if (!type)
11467 abort ();
11468 switch (r_type)
11469 {
11470 case BFD_RELOC_IA64_DIR32MSB: width = 32; suffix = "MSB"; break;
11471 case BFD_RELOC_IA64_DIR32LSB: width = 32; suffix = "LSB"; break;
11472 case BFD_RELOC_IA64_DIR64MSB: width = 64; suffix = "MSB"; break;
11473 case BFD_RELOC_IA64_DIR64LSB: width = 64; suffix = "LSB"; break;
11474 case BFD_RELOC_UNUSED: width = 13; break;
11475 case BFD_RELOC_IA64_IMM14: width = 14; break;
11476 case BFD_RELOC_IA64_IMM22: width = 22; break;
11477 case BFD_RELOC_IA64_IMM64: width = 64; suffix = "I"; break;
11478 default: abort ();
11479 }
11480
11481 /* This should be an error, but since previously there wasn't any
11482 diagnostic here, dont't make it fail because of this for now. */
11483 as_warn ("Cannot express %s%d%s relocation", type, width, suffix);
11484 return r_type;
11485 }
11486 }
11487
11488 /* Here is where generate the appropriate reloc for pseudo relocation
11489 functions. */
11490 void
11491 ia64_validate_fix (fix)
11492 fixS *fix;
11493 {
11494 switch (fix->fx_r_type)
11495 {
11496 case BFD_RELOC_IA64_FPTR64I:
11497 case BFD_RELOC_IA64_FPTR32MSB:
11498 case BFD_RELOC_IA64_FPTR64LSB:
11499 case BFD_RELOC_IA64_LTOFF_FPTR22:
11500 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11501 if (fix->fx_offset != 0)
11502 as_bad_where (fix->fx_file, fix->fx_line,
11503 "No addend allowed in @fptr() relocation");
11504 break;
11505 default:
11506 break;
11507 }
11508 }
11509
11510 static void
11511 fix_insn (fix, odesc, value)
11512 fixS *fix;
11513 const struct ia64_operand *odesc;
11514 valueT value;
11515 {
11516 bfd_vma insn[3], t0, t1, control_bits;
11517 const char *err;
11518 char *fixpos;
11519 long slot;
11520
11521 slot = fix->fx_where & 0x3;
11522 fixpos = fix->fx_frag->fr_literal + (fix->fx_where - slot);
11523
11524 /* Bundles are always in little-endian byte order */
11525 t0 = bfd_getl64 (fixpos);
11526 t1 = bfd_getl64 (fixpos + 8);
11527 control_bits = t0 & 0x1f;
11528 insn[0] = (t0 >> 5) & 0x1ffffffffffLL;
11529 insn[1] = ((t0 >> 46) & 0x3ffff) | ((t1 & 0x7fffff) << 18);
11530 insn[2] = (t1 >> 23) & 0x1ffffffffffLL;
11531
11532 err = NULL;
11533 if (odesc - elf64_ia64_operands == IA64_OPND_IMMU64)
11534 {
11535 insn[1] = (value >> 22) & 0x1ffffffffffLL;
11536 insn[2] |= (((value & 0x7f) << 13)
11537 | (((value >> 7) & 0x1ff) << 27)
11538 | (((value >> 16) & 0x1f) << 22)
11539 | (((value >> 21) & 0x1) << 21)
11540 | (((value >> 63) & 0x1) << 36));
11541 }
11542 else if (odesc - elf64_ia64_operands == IA64_OPND_IMMU62)
11543 {
11544 if (value & ~0x3fffffffffffffffULL)
11545 err = "integer operand out of range";
11546 insn[1] = (value >> 21) & 0x1ffffffffffLL;
11547 insn[2] |= (((value & 0xfffff) << 6) | (((value >> 20) & 0x1) << 36));
11548 }
11549 else if (odesc - elf64_ia64_operands == IA64_OPND_TGT64)
11550 {
11551 value >>= 4;
11552 insn[1] = ((value >> 20) & 0x7fffffffffLL) << 2;
11553 insn[2] |= ((((value >> 59) & 0x1) << 36)
11554 | (((value >> 0) & 0xfffff) << 13));
11555 }
11556 else
11557 err = (*odesc->insert) (odesc, value, insn + slot);
11558
11559 if (err)
11560 as_bad_where (fix->fx_file, fix->fx_line, err);
11561
11562 t0 = control_bits | (insn[0] << 5) | (insn[1] << 46);
11563 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
11564 number_to_chars_littleendian (fixpos + 0, t0, 8);
11565 number_to_chars_littleendian (fixpos + 8, t1, 8);
11566 }
11567
11568 /* Attempt to simplify or even eliminate a fixup. The return value is
11569 ignored; perhaps it was once meaningful, but now it is historical.
11570 To indicate that a fixup has been eliminated, set FIXP->FX_DONE.
11571
11572 If fixp->fx_addsy is non-NULL, we'll have to generate a reloc entry
11573 (if possible). */
11574
11575 void
11576 md_apply_fix (fix, valP, seg)
11577 fixS *fix;
11578 valueT *valP;
11579 segT seg ATTRIBUTE_UNUSED;
11580 {
11581 char *fixpos;
11582 valueT value = *valP;
11583
11584 fixpos = fix->fx_frag->fr_literal + fix->fx_where;
11585
11586 if (fix->fx_pcrel)
11587 {
11588 switch (fix->fx_r_type)
11589 {
11590 case BFD_RELOC_IA64_PCREL21B: break;
11591 case BFD_RELOC_IA64_PCREL21BI: break;
11592 case BFD_RELOC_IA64_PCREL21F: break;
11593 case BFD_RELOC_IA64_PCREL21M: break;
11594 case BFD_RELOC_IA64_PCREL60B: break;
11595 case BFD_RELOC_IA64_PCREL22: break;
11596 case BFD_RELOC_IA64_PCREL64I: break;
11597 case BFD_RELOC_IA64_PCREL32MSB: break;
11598 case BFD_RELOC_IA64_PCREL32LSB: break;
11599 case BFD_RELOC_IA64_PCREL64MSB: break;
11600 case BFD_RELOC_IA64_PCREL64LSB: break;
11601 default:
11602 fix->fx_r_type = ia64_gen_real_reloc_type (pseudo_func[FUNC_PC_RELATIVE].u.sym,
11603 fix->fx_r_type);
11604 break;
11605 }
11606 }
11607 if (fix->fx_addsy)
11608 {
11609 switch (fix->fx_r_type)
11610 {
11611 case BFD_RELOC_UNUSED:
11612 /* This must be a TAG13 or TAG13b operand. There are no external
11613 relocs defined for them, so we must give an error. */
11614 as_bad_where (fix->fx_file, fix->fx_line,
11615 "%s must have a constant value",
11616 elf64_ia64_operands[fix->tc_fix_data.opnd].desc);
11617 fix->fx_done = 1;
11618 return;
11619
11620 case BFD_RELOC_IA64_TPREL14:
11621 case BFD_RELOC_IA64_TPREL22:
11622 case BFD_RELOC_IA64_TPREL64I:
11623 case BFD_RELOC_IA64_LTOFF_TPREL22:
11624 case BFD_RELOC_IA64_LTOFF_DTPMOD22:
11625 case BFD_RELOC_IA64_DTPREL14:
11626 case BFD_RELOC_IA64_DTPREL22:
11627 case BFD_RELOC_IA64_DTPREL64I:
11628 case BFD_RELOC_IA64_LTOFF_DTPREL22:
11629 S_SET_THREAD_LOCAL (fix->fx_addsy);
11630 break;
11631
11632 default:
11633 break;
11634 }
11635 }
11636 else if (fix->tc_fix_data.opnd == IA64_OPND_NIL)
11637 {
11638 if (fix->tc_fix_data.bigendian)
11639 number_to_chars_bigendian (fixpos, value, fix->fx_size);
11640 else
11641 number_to_chars_littleendian (fixpos, value, fix->fx_size);
11642 fix->fx_done = 1;
11643 }
11644 else
11645 {
11646 fix_insn (fix, elf64_ia64_operands + fix->tc_fix_data.opnd, value);
11647 fix->fx_done = 1;
11648 }
11649 }
11650
11651 /* Generate the BFD reloc to be stuck in the object file from the
11652 fixup used internally in the assembler. */
11653
11654 arelent *
11655 tc_gen_reloc (sec, fixp)
11656 asection *sec ATTRIBUTE_UNUSED;
11657 fixS *fixp;
11658 {
11659 arelent *reloc;
11660
11661 reloc = xmalloc (sizeof (*reloc));
11662 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
11663 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11664 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
11665 reloc->addend = fixp->fx_offset;
11666 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
11667
11668 if (!reloc->howto)
11669 {
11670 as_bad_where (fixp->fx_file, fixp->fx_line,
11671 "Cannot represent %s relocation in object file",
11672 bfd_get_reloc_code_name (fixp->fx_r_type));
11673 }
11674 return reloc;
11675 }
11676
11677 /* Turn a string in input_line_pointer into a floating point constant
11678 of type TYPE, and store the appropriate bytes in *LIT. The number
11679 of LITTLENUMS emitted is stored in *SIZE. An error message is
11680 returned, or NULL on OK. */
11681
11682 #define MAX_LITTLENUMS 5
11683
11684 char *
11685 md_atof (type, lit, size)
11686 int type;
11687 char *lit;
11688 int *size;
11689 {
11690 LITTLENUM_TYPE words[MAX_LITTLENUMS];
11691 char *t;
11692 int prec;
11693
11694 switch (type)
11695 {
11696 /* IEEE floats */
11697 case 'f':
11698 case 'F':
11699 case 's':
11700 case 'S':
11701 prec = 2;
11702 break;
11703
11704 case 'd':
11705 case 'D':
11706 case 'r':
11707 case 'R':
11708 prec = 4;
11709 break;
11710
11711 case 'x':
11712 case 'X':
11713 case 'p':
11714 case 'P':
11715 prec = 5;
11716 break;
11717
11718 default:
11719 *size = 0;
11720 return "Bad call to MD_ATOF()";
11721 }
11722 t = atof_ieee (input_line_pointer, type, words);
11723 if (t)
11724 input_line_pointer = t;
11725
11726 (*ia64_float_to_chars) (lit, words, prec);
11727
11728 if (type == 'X')
11729 {
11730 /* It is 10 byte floating point with 6 byte padding. */
11731 memset (&lit [10], 0, 6);
11732 *size = 8 * sizeof (LITTLENUM_TYPE);
11733 }
11734 else
11735 *size = prec * sizeof (LITTLENUM_TYPE);
11736
11737 return 0;
11738 }
11739
11740 /* Handle ia64 specific semantics of the align directive. */
11741
11742 void
11743 ia64_md_do_align (n, fill, len, max)
11744 int n ATTRIBUTE_UNUSED;
11745 const char *fill ATTRIBUTE_UNUSED;
11746 int len ATTRIBUTE_UNUSED;
11747 int max ATTRIBUTE_UNUSED;
11748 {
11749 if (subseg_text_p (now_seg))
11750 ia64_flush_insns ();
11751 }
11752
11753 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
11754 of an rs_align_code fragment. */
11755
11756 void
11757 ia64_handle_align (fragp)
11758 fragS *fragp;
11759 {
11760 int bytes;
11761 char *p;
11762 const unsigned char *nop;
11763
11764 if (fragp->fr_type != rs_align_code)
11765 return;
11766
11767 /* Check if this frag has to end with a stop bit. */
11768 nop = fragp->tc_frag_data ? le_nop_stop : le_nop;
11769
11770 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
11771 p = fragp->fr_literal + fragp->fr_fix;
11772
11773 /* If no paddings are needed, we check if we need a stop bit. */
11774 if (!bytes && fragp->tc_frag_data)
11775 {
11776 if (fragp->fr_fix < 16)
11777 #if 1
11778 /* FIXME: It won't work with
11779 .align 16
11780 alloc r32=ar.pfs,1,2,4,0
11781 */
11782 ;
11783 #else
11784 as_bad_where (fragp->fr_file, fragp->fr_line,
11785 _("Can't add stop bit to mark end of instruction group"));
11786 #endif
11787 else
11788 /* Bundles are always in little-endian byte order. Make sure
11789 the previous bundle has the stop bit. */
11790 *(p - 16) |= 1;
11791 }
11792
11793 /* Make sure we are on a 16-byte boundary, in case someone has been
11794 putting data into a text section. */
11795 if (bytes & 15)
11796 {
11797 int fix = bytes & 15;
11798 memset (p, 0, fix);
11799 p += fix;
11800 bytes -= fix;
11801 fragp->fr_fix += fix;
11802 }
11803
11804 /* Instruction bundles are always little-endian. */
11805 memcpy (p, nop, 16);
11806 fragp->fr_var = 16;
11807 }
11808
11809 static void
11810 ia64_float_to_chars_bigendian (char *lit, LITTLENUM_TYPE *words,
11811 int prec)
11812 {
11813 while (prec--)
11814 {
11815 number_to_chars_bigendian (lit, (long) (*words++),
11816 sizeof (LITTLENUM_TYPE));
11817 lit += sizeof (LITTLENUM_TYPE);
11818 }
11819 }
11820
11821 static void
11822 ia64_float_to_chars_littleendian (char *lit, LITTLENUM_TYPE *words,
11823 int prec)
11824 {
11825 while (prec--)
11826 {
11827 number_to_chars_littleendian (lit, (long) (words[prec]),
11828 sizeof (LITTLENUM_TYPE));
11829 lit += sizeof (LITTLENUM_TYPE);
11830 }
11831 }
11832
11833 void
11834 ia64_elf_section_change_hook (void)
11835 {
11836 if (elf_section_type (now_seg) == SHT_IA_64_UNWIND
11837 && elf_linked_to_section (now_seg) == NULL)
11838 elf_linked_to_section (now_seg) = text_section;
11839 dot_byteorder (-1);
11840 }
11841
11842 /* Check if a label should be made global. */
11843 void
11844 ia64_check_label (symbolS *label)
11845 {
11846 if (*input_line_pointer == ':')
11847 {
11848 S_SET_EXTERNAL (label);
11849 input_line_pointer++;
11850 }
11851 }
11852
11853 /* Used to remember where .alias and .secalias directives are seen. We
11854 will rename symbol and section names when we are about to output
11855 the relocatable file. */
11856 struct alias
11857 {
11858 char *file; /* The file where the directive is seen. */
11859 unsigned int line; /* The line number the directive is at. */
11860 const char *name; /* The orignale name of the symbol. */
11861 };
11862
11863 /* Called for .alias and .secalias directives. If SECTION is 1, it is
11864 .secalias. Otherwise, it is .alias. */
11865 static void
11866 dot_alias (int section)
11867 {
11868 char *name, *alias;
11869 char delim;
11870 char *end_name;
11871 int len;
11872 const char *error_string;
11873 struct alias *h;
11874 const char *a;
11875 struct hash_control *ahash, *nhash;
11876 const char *kind;
11877
11878 name = input_line_pointer;
11879 delim = get_symbol_end ();
11880 end_name = input_line_pointer;
11881 *end_name = delim;
11882
11883 if (name == end_name)
11884 {
11885 as_bad (_("expected symbol name"));
11886 ignore_rest_of_line ();
11887 return;
11888 }
11889
11890 SKIP_WHITESPACE ();
11891
11892 if (*input_line_pointer != ',')
11893 {
11894 *end_name = 0;
11895 as_bad (_("expected comma after \"%s\""), name);
11896 *end_name = delim;
11897 ignore_rest_of_line ();
11898 return;
11899 }
11900
11901 input_line_pointer++;
11902 *end_name = 0;
11903 ia64_canonicalize_symbol_name (name);
11904
11905 /* We call demand_copy_C_string to check if alias string is valid.
11906 There should be a closing `"' and no `\0' in the string. */
11907 alias = demand_copy_C_string (&len);
11908 if (alias == NULL)
11909 {
11910 ignore_rest_of_line ();
11911 return;
11912 }
11913
11914 /* Make a copy of name string. */
11915 len = strlen (name) + 1;
11916 obstack_grow (&notes, name, len);
11917 name = obstack_finish (&notes);
11918
11919 if (section)
11920 {
11921 kind = "section";
11922 ahash = secalias_hash;
11923 nhash = secalias_name_hash;
11924 }
11925 else
11926 {
11927 kind = "symbol";
11928 ahash = alias_hash;
11929 nhash = alias_name_hash;
11930 }
11931
11932 /* Check if alias has been used before. */
11933 h = (struct alias *) hash_find (ahash, alias);
11934 if (h)
11935 {
11936 if (strcmp (h->name, name))
11937 as_bad (_("`%s' is already the alias of %s `%s'"),
11938 alias, kind, h->name);
11939 goto out;
11940 }
11941
11942 /* Check if name already has an alias. */
11943 a = (const char *) hash_find (nhash, name);
11944 if (a)
11945 {
11946 if (strcmp (a, alias))
11947 as_bad (_("%s `%s' already has an alias `%s'"), kind, name, a);
11948 goto out;
11949 }
11950
11951 h = (struct alias *) xmalloc (sizeof (struct alias));
11952 as_where (&h->file, &h->line);
11953 h->name = name;
11954
11955 error_string = hash_jam (ahash, alias, (PTR) h);
11956 if (error_string)
11957 {
11958 as_fatal (_("inserting \"%s\" into %s alias hash table failed: %s"),
11959 alias, kind, error_string);
11960 goto out;
11961 }
11962
11963 error_string = hash_jam (nhash, name, (PTR) alias);
11964 if (error_string)
11965 {
11966 as_fatal (_("inserting \"%s\" into %s name hash table failed: %s"),
11967 alias, kind, error_string);
11968 out:
11969 obstack_free (&notes, name);
11970 obstack_free (&notes, alias);
11971 }
11972
11973 demand_empty_rest_of_line ();
11974 }
11975
11976 /* It renames the original symbol name to its alias. */
11977 static void
11978 do_alias (const char *alias, PTR value)
11979 {
11980 struct alias *h = (struct alias *) value;
11981 symbolS *sym = symbol_find (h->name);
11982
11983 if (sym == NULL)
11984 as_warn_where (h->file, h->line,
11985 _("symbol `%s' aliased to `%s' is not used"),
11986 h->name, alias);
11987 else
11988 S_SET_NAME (sym, (char *) alias);
11989 }
11990
11991 /* Called from write_object_file. */
11992 void
11993 ia64_adjust_symtab (void)
11994 {
11995 hash_traverse (alias_hash, do_alias);
11996 }
11997
11998 /* It renames the original section name to its alias. */
11999 static void
12000 do_secalias (const char *alias, PTR value)
12001 {
12002 struct alias *h = (struct alias *) value;
12003 segT sec = bfd_get_section_by_name (stdoutput, h->name);
12004
12005 if (sec == NULL)
12006 as_warn_where (h->file, h->line,
12007 _("section `%s' aliased to `%s' is not used"),
12008 h->name, alias);
12009 else
12010 sec->name = alias;
12011 }
12012
12013 /* Called from write_object_file. */
12014 void
12015 ia64_frob_file (void)
12016 {
12017 hash_traverse (secalias_hash, do_secalias);
12018 }
This page took 0.278799 seconds and 5 git commands to generate.