gas/
[deliverable/binutils-gdb.git] / gas / config / tc-ia64.c
1 /* tc-ia64.c -- Assembler for the HP/Intel IA-64 architecture.
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to
20 the Free Software Foundation, 51 Franklin Street - Fifth Floor,
21 Boston, MA 02110-1301, USA. */
22
23 /*
24 TODO:
25
26 - optional operands
27 - directives:
28 .eb
29 .estate
30 .lb
31 .popsection
32 .previous
33 .psr
34 .pushsection
35 - labels are wrong if automatic alignment is introduced
36 (e.g., checkout the second real10 definition in test-data.s)
37 - DV-related stuff:
38 <reg>.safe_across_calls and any other DV-related directives I don't
39 have documentation for.
40 verify mod-sched-brs reads/writes are checked/marked (and other
41 notes)
42
43 */
44
45 #include "as.h"
46 #include "safe-ctype.h"
47 #include "dwarf2dbg.h"
48 #include "subsegs.h"
49
50 #include "opcode/ia64.h"
51
52 #include "elf/ia64.h"
53
54 #ifdef HAVE_LIMITS_H
55 #include <limits.h>
56 #endif
57
58 #define NELEMS(a) ((int) (sizeof (a)/sizeof ((a)[0])))
59
60 /* Some systems define MIN in, e.g., param.h. */
61 #undef MIN
62 #define MIN(a,b) ((a) < (b) ? (a) : (b))
63
64 #define NUM_SLOTS 4
65 #define PREV_SLOT md.slot[(md.curr_slot + NUM_SLOTS - 1) % NUM_SLOTS]
66 #define CURR_SLOT md.slot[md.curr_slot]
67
68 #define O_pseudo_fixup (O_max + 1)
69
70 enum special_section
71 {
72 /* IA-64 ABI section pseudo-ops. */
73 SPECIAL_SECTION_BSS = 0,
74 SPECIAL_SECTION_SBSS,
75 SPECIAL_SECTION_SDATA,
76 SPECIAL_SECTION_RODATA,
77 SPECIAL_SECTION_COMMENT,
78 SPECIAL_SECTION_UNWIND,
79 SPECIAL_SECTION_UNWIND_INFO,
80 /* HPUX specific section pseudo-ops. */
81 SPECIAL_SECTION_INIT_ARRAY,
82 SPECIAL_SECTION_FINI_ARRAY,
83 };
84
85 enum reloc_func
86 {
87 FUNC_DTP_MODULE,
88 FUNC_DTP_RELATIVE,
89 FUNC_FPTR_RELATIVE,
90 FUNC_GP_RELATIVE,
91 FUNC_LT_RELATIVE,
92 FUNC_LT_RELATIVE_X,
93 FUNC_PC_RELATIVE,
94 FUNC_PLT_RELATIVE,
95 FUNC_SEC_RELATIVE,
96 FUNC_SEG_RELATIVE,
97 FUNC_TP_RELATIVE,
98 FUNC_LTV_RELATIVE,
99 FUNC_LT_FPTR_RELATIVE,
100 FUNC_LT_DTP_MODULE,
101 FUNC_LT_DTP_RELATIVE,
102 FUNC_LT_TP_RELATIVE,
103 FUNC_IPLT_RELOC,
104 };
105
106 enum reg_symbol
107 {
108 REG_GR = 0,
109 REG_FR = (REG_GR + 128),
110 REG_AR = (REG_FR + 128),
111 REG_CR = (REG_AR + 128),
112 REG_P = (REG_CR + 128),
113 REG_BR = (REG_P + 64),
114 REG_IP = (REG_BR + 8),
115 REG_CFM,
116 REG_PR,
117 REG_PR_ROT,
118 REG_PSR,
119 REG_PSR_L,
120 REG_PSR_UM,
121 /* The following are pseudo-registers for use by gas only. */
122 IND_CPUID,
123 IND_DBR,
124 IND_DTR,
125 IND_ITR,
126 IND_IBR,
127 IND_MEM,
128 IND_MSR,
129 IND_PKR,
130 IND_PMC,
131 IND_PMD,
132 IND_RR,
133 /* The following pseudo-registers are used for unwind directives only: */
134 REG_PSP,
135 REG_PRIUNAT,
136 REG_NUM
137 };
138
139 enum dynreg_type
140 {
141 DYNREG_GR = 0, /* dynamic general purpose register */
142 DYNREG_FR, /* dynamic floating point register */
143 DYNREG_PR, /* dynamic predicate register */
144 DYNREG_NUM_TYPES
145 };
146
147 enum operand_match_result
148 {
149 OPERAND_MATCH,
150 OPERAND_OUT_OF_RANGE,
151 OPERAND_MISMATCH
152 };
153
154 /* On the ia64, we can't know the address of a text label until the
155 instructions are packed into a bundle. To handle this, we keep
156 track of the list of labels that appear in front of each
157 instruction. */
158 struct label_fix
159 {
160 struct label_fix *next;
161 struct symbol *sym;
162 };
163
164 /* This is the endianness of the current section. */
165 extern int target_big_endian;
166
167 /* This is the default endianness. */
168 static int default_big_endian = TARGET_BYTES_BIG_ENDIAN;
169
170 void (*ia64_number_to_chars) PARAMS ((char *, valueT, int));
171
172 static void ia64_float_to_chars_bigendian
173 PARAMS ((char *, LITTLENUM_TYPE *, int));
174 static void ia64_float_to_chars_littleendian
175 PARAMS ((char *, LITTLENUM_TYPE *, int));
176 static void (*ia64_float_to_chars)
177 PARAMS ((char *, LITTLENUM_TYPE *, int));
178
179 static struct hash_control *alias_hash;
180 static struct hash_control *alias_name_hash;
181 static struct hash_control *secalias_hash;
182 static struct hash_control *secalias_name_hash;
183
184 /* List of chars besides those in app.c:symbol_chars that can start an
185 operand. Used to prevent the scrubber eating vital white-space. */
186 const char ia64_symbol_chars[] = "@?";
187
188 /* Characters which always start a comment. */
189 const char comment_chars[] = "";
190
191 /* Characters which start a comment at the beginning of a line. */
192 const char line_comment_chars[] = "#";
193
194 /* Characters which may be used to separate multiple commands on a
195 single line. */
196 const char line_separator_chars[] = ";";
197
198 /* Characters which are used to indicate an exponent in a floating
199 point number. */
200 const char EXP_CHARS[] = "eE";
201
202 /* Characters which mean that a number is a floating point constant,
203 as in 0d1.0. */
204 const char FLT_CHARS[] = "rRsSfFdDxXpP";
205
206 /* ia64-specific option processing: */
207
208 const char *md_shortopts = "m:N:x::";
209
210 struct option md_longopts[] =
211 {
212 #define OPTION_MCONSTANT_GP (OPTION_MD_BASE + 1)
213 {"mconstant-gp", no_argument, NULL, OPTION_MCONSTANT_GP},
214 #define OPTION_MAUTO_PIC (OPTION_MD_BASE + 2)
215 {"mauto-pic", no_argument, NULL, OPTION_MAUTO_PIC}
216 };
217
218 size_t md_longopts_size = sizeof (md_longopts);
219
220 static struct
221 {
222 struct hash_control *pseudo_hash; /* pseudo opcode hash table */
223 struct hash_control *reg_hash; /* register name hash table */
224 struct hash_control *dynreg_hash; /* dynamic register hash table */
225 struct hash_control *const_hash; /* constant hash table */
226 struct hash_control *entry_hash; /* code entry hint hash table */
227
228 symbolS *regsym[REG_NUM];
229
230 /* If X_op is != O_absent, the registername for the instruction's
231 qualifying predicate. If NULL, p0 is assumed for instructions
232 that are predicatable. */
233 expressionS qp;
234
235 /* Optimize for which CPU. */
236 enum
237 {
238 itanium1,
239 itanium2
240 } tune;
241
242 /* What to do when hint.b is used. */
243 enum
244 {
245 hint_b_error,
246 hint_b_warning,
247 hint_b_ok
248 } hint_b;
249
250 unsigned int
251 manual_bundling : 1,
252 debug_dv: 1,
253 detect_dv: 1,
254 explicit_mode : 1, /* which mode we're in */
255 default_explicit_mode : 1, /* which mode is the default */
256 mode_explicitly_set : 1, /* was the current mode explicitly set? */
257 auto_align : 1,
258 keep_pending_output : 1;
259
260 /* What to do when something is wrong with unwind directives. */
261 enum
262 {
263 unwind_check_warning,
264 unwind_check_error
265 } unwind_check;
266
267 /* Each bundle consists of up to three instructions. We keep
268 track of four most recent instructions so we can correctly set
269 the end_of_insn_group for the last instruction in a bundle. */
270 int curr_slot;
271 int num_slots_in_use;
272 struct slot
273 {
274 unsigned int
275 end_of_insn_group : 1,
276 manual_bundling_on : 1,
277 manual_bundling_off : 1,
278 loc_directive_seen : 1;
279 signed char user_template; /* user-selected template, if any */
280 unsigned char qp_regno; /* qualifying predicate */
281 /* This duplicates a good fraction of "struct fix" but we
282 can't use a "struct fix" instead since we can't call
283 fix_new_exp() until we know the address of the instruction. */
284 int num_fixups;
285 struct insn_fix
286 {
287 bfd_reloc_code_real_type code;
288 enum ia64_opnd opnd; /* type of operand in need of fix */
289 unsigned int is_pcrel : 1; /* is operand pc-relative? */
290 expressionS expr; /* the value to be inserted */
291 }
292 fixup[2]; /* at most two fixups per insn */
293 struct ia64_opcode *idesc;
294 struct label_fix *label_fixups;
295 struct label_fix *tag_fixups;
296 struct unw_rec_list *unwind_record; /* Unwind directive. */
297 expressionS opnd[6];
298 char *src_file;
299 unsigned int src_line;
300 struct dwarf2_line_info debug_line;
301 }
302 slot[NUM_SLOTS];
303
304 segT last_text_seg;
305
306 struct dynreg
307 {
308 struct dynreg *next; /* next dynamic register */
309 const char *name;
310 unsigned short base; /* the base register number */
311 unsigned short num_regs; /* # of registers in this set */
312 }
313 *dynreg[DYNREG_NUM_TYPES], in, loc, out, rot;
314
315 flagword flags; /* ELF-header flags */
316
317 struct mem_offset {
318 unsigned hint:1; /* is this hint currently valid? */
319 bfd_vma offset; /* mem.offset offset */
320 bfd_vma base; /* mem.offset base */
321 } mem_offset;
322
323 int path; /* number of alt. entry points seen */
324 const char **entry_labels; /* labels of all alternate paths in
325 the current DV-checking block. */
326 int maxpaths; /* size currently allocated for
327 entry_labels */
328
329 int pointer_size; /* size in bytes of a pointer */
330 int pointer_size_shift; /* shift size of a pointer for alignment */
331 }
332 md;
333
334 /* These are not const, because they are modified to MMI for non-itanium1
335 targets below. */
336 /* MFI bundle of nops. */
337 static unsigned char le_nop[16] =
338 {
339 0x0c, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
340 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
341 };
342 /* MFI bundle of nops with stop-bit. */
343 static unsigned char le_nop_stop[16] =
344 {
345 0x0d, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
346 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
347 };
348
349 /* application registers: */
350
351 #define AR_K0 0
352 #define AR_K7 7
353 #define AR_RSC 16
354 #define AR_BSP 17
355 #define AR_BSPSTORE 18
356 #define AR_RNAT 19
357 #define AR_UNAT 36
358 #define AR_FPSR 40
359 #define AR_ITC 44
360 #define AR_PFS 64
361 #define AR_LC 65
362
363 static const struct
364 {
365 const char *name;
366 int regnum;
367 }
368 ar[] =
369 {
370 {"ar.k0", 0}, {"ar.k1", 1}, {"ar.k2", 2}, {"ar.k3", 3},
371 {"ar.k4", 4}, {"ar.k5", 5}, {"ar.k6", 6}, {"ar.k7", 7},
372 {"ar.rsc", 16}, {"ar.bsp", 17},
373 {"ar.bspstore", 18}, {"ar.rnat", 19},
374 {"ar.fcr", 21}, {"ar.eflag", 24},
375 {"ar.csd", 25}, {"ar.ssd", 26},
376 {"ar.cflg", 27}, {"ar.fsr", 28},
377 {"ar.fir", 29}, {"ar.fdr", 30},
378 {"ar.ccv", 32}, {"ar.unat", 36},
379 {"ar.fpsr", 40}, {"ar.itc", 44},
380 {"ar.pfs", 64}, {"ar.lc", 65},
381 {"ar.ec", 66},
382 };
383
384 #define CR_IPSR 16
385 #define CR_ISR 17
386 #define CR_IIP 19
387 #define CR_IFA 20
388 #define CR_ITIR 21
389 #define CR_IIPA 22
390 #define CR_IFS 23
391 #define CR_IIM 24
392 #define CR_IHA 25
393 #define CR_IVR 65
394 #define CR_TPR 66
395 #define CR_EOI 67
396 #define CR_IRR0 68
397 #define CR_IRR3 71
398 #define CR_LRR0 80
399 #define CR_LRR1 81
400
401 /* control registers: */
402 static const struct
403 {
404 const char *name;
405 int regnum;
406 }
407 cr[] =
408 {
409 {"cr.dcr", 0},
410 {"cr.itm", 1},
411 {"cr.iva", 2},
412 {"cr.pta", 8},
413 {"cr.gpta", 9},
414 {"cr.ipsr", 16},
415 {"cr.isr", 17},
416 {"cr.iip", 19},
417 {"cr.ifa", 20},
418 {"cr.itir", 21},
419 {"cr.iipa", 22},
420 {"cr.ifs", 23},
421 {"cr.iim", 24},
422 {"cr.iha", 25},
423 {"cr.lid", 64},
424 {"cr.ivr", 65},
425 {"cr.tpr", 66},
426 {"cr.eoi", 67},
427 {"cr.irr0", 68},
428 {"cr.irr1", 69},
429 {"cr.irr2", 70},
430 {"cr.irr3", 71},
431 {"cr.itv", 72},
432 {"cr.pmv", 73},
433 {"cr.cmcv", 74},
434 {"cr.lrr0", 80},
435 {"cr.lrr1", 81}
436 };
437
438 #define PSR_MFL 4
439 #define PSR_IC 13
440 #define PSR_DFL 18
441 #define PSR_CPL 32
442
443 static const struct const_desc
444 {
445 const char *name;
446 valueT value;
447 }
448 const_bits[] =
449 {
450 /* PSR constant masks: */
451
452 /* 0: reserved */
453 {"psr.be", ((valueT) 1) << 1},
454 {"psr.up", ((valueT) 1) << 2},
455 {"psr.ac", ((valueT) 1) << 3},
456 {"psr.mfl", ((valueT) 1) << 4},
457 {"psr.mfh", ((valueT) 1) << 5},
458 /* 6-12: reserved */
459 {"psr.ic", ((valueT) 1) << 13},
460 {"psr.i", ((valueT) 1) << 14},
461 {"psr.pk", ((valueT) 1) << 15},
462 /* 16: reserved */
463 {"psr.dt", ((valueT) 1) << 17},
464 {"psr.dfl", ((valueT) 1) << 18},
465 {"psr.dfh", ((valueT) 1) << 19},
466 {"psr.sp", ((valueT) 1) << 20},
467 {"psr.pp", ((valueT) 1) << 21},
468 {"psr.di", ((valueT) 1) << 22},
469 {"psr.si", ((valueT) 1) << 23},
470 {"psr.db", ((valueT) 1) << 24},
471 {"psr.lp", ((valueT) 1) << 25},
472 {"psr.tb", ((valueT) 1) << 26},
473 {"psr.rt", ((valueT) 1) << 27},
474 /* 28-31: reserved */
475 /* 32-33: cpl (current privilege level) */
476 {"psr.is", ((valueT) 1) << 34},
477 {"psr.mc", ((valueT) 1) << 35},
478 {"psr.it", ((valueT) 1) << 36},
479 {"psr.id", ((valueT) 1) << 37},
480 {"psr.da", ((valueT) 1) << 38},
481 {"psr.dd", ((valueT) 1) << 39},
482 {"psr.ss", ((valueT) 1) << 40},
483 /* 41-42: ri (restart instruction) */
484 {"psr.ed", ((valueT) 1) << 43},
485 {"psr.bn", ((valueT) 1) << 44},
486 };
487
488 /* indirect register-sets/memory: */
489
490 static const struct
491 {
492 const char *name;
493 int regnum;
494 }
495 indirect_reg[] =
496 {
497 { "CPUID", IND_CPUID },
498 { "cpuid", IND_CPUID },
499 { "dbr", IND_DBR },
500 { "dtr", IND_DTR },
501 { "itr", IND_ITR },
502 { "ibr", IND_IBR },
503 { "msr", IND_MSR },
504 { "pkr", IND_PKR },
505 { "pmc", IND_PMC },
506 { "pmd", IND_PMD },
507 { "rr", IND_RR },
508 };
509
510 /* Pseudo functions used to indicate relocation types (these functions
511 start with an at sign (@). */
512 static struct
513 {
514 const char *name;
515 enum pseudo_type
516 {
517 PSEUDO_FUNC_NONE,
518 PSEUDO_FUNC_RELOC,
519 PSEUDO_FUNC_CONST,
520 PSEUDO_FUNC_REG,
521 PSEUDO_FUNC_FLOAT
522 }
523 type;
524 union
525 {
526 unsigned long ival;
527 symbolS *sym;
528 }
529 u;
530 }
531 pseudo_func[] =
532 {
533 /* reloc pseudo functions (these must come first!): */
534 { "dtpmod", PSEUDO_FUNC_RELOC, { 0 } },
535 { "dtprel", PSEUDO_FUNC_RELOC, { 0 } },
536 { "fptr", PSEUDO_FUNC_RELOC, { 0 } },
537 { "gprel", PSEUDO_FUNC_RELOC, { 0 } },
538 { "ltoff", PSEUDO_FUNC_RELOC, { 0 } },
539 { "ltoffx", PSEUDO_FUNC_RELOC, { 0 } },
540 { "pcrel", PSEUDO_FUNC_RELOC, { 0 } },
541 { "pltoff", PSEUDO_FUNC_RELOC, { 0 } },
542 { "secrel", PSEUDO_FUNC_RELOC, { 0 } },
543 { "segrel", PSEUDO_FUNC_RELOC, { 0 } },
544 { "tprel", PSEUDO_FUNC_RELOC, { 0 } },
545 { "ltv", PSEUDO_FUNC_RELOC, { 0 } },
546 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_FPTR_RELATIVE */
547 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_MODULE */
548 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_RELATIVE */
549 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_TP_RELATIVE */
550 { "iplt", PSEUDO_FUNC_RELOC, { 0 } },
551
552 /* mbtype4 constants: */
553 { "alt", PSEUDO_FUNC_CONST, { 0xa } },
554 { "brcst", PSEUDO_FUNC_CONST, { 0x0 } },
555 { "mix", PSEUDO_FUNC_CONST, { 0x8 } },
556 { "rev", PSEUDO_FUNC_CONST, { 0xb } },
557 { "shuf", PSEUDO_FUNC_CONST, { 0x9 } },
558
559 /* fclass constants: */
560 { "nat", PSEUDO_FUNC_CONST, { 0x100 } },
561 { "qnan", PSEUDO_FUNC_CONST, { 0x080 } },
562 { "snan", PSEUDO_FUNC_CONST, { 0x040 } },
563 { "pos", PSEUDO_FUNC_CONST, { 0x001 } },
564 { "neg", PSEUDO_FUNC_CONST, { 0x002 } },
565 { "zero", PSEUDO_FUNC_CONST, { 0x004 } },
566 { "unorm", PSEUDO_FUNC_CONST, { 0x008 } },
567 { "norm", PSEUDO_FUNC_CONST, { 0x010 } },
568 { "inf", PSEUDO_FUNC_CONST, { 0x020 } },
569
570 { "natval", PSEUDO_FUNC_CONST, { 0x100 } }, /* old usage */
571
572 /* hint constants: */
573 { "pause", PSEUDO_FUNC_CONST, { 0x0 } },
574
575 /* unwind-related constants: */
576 { "svr4", PSEUDO_FUNC_CONST, { ELFOSABI_NONE } },
577 { "hpux", PSEUDO_FUNC_CONST, { ELFOSABI_HPUX } },
578 { "nt", PSEUDO_FUNC_CONST, { 2 } }, /* conflicts w/ELFOSABI_NETBSD */
579 { "linux", PSEUDO_FUNC_CONST, { ELFOSABI_LINUX } },
580 { "freebsd", PSEUDO_FUNC_CONST, { ELFOSABI_FREEBSD } },
581 { "openvms", PSEUDO_FUNC_CONST, { ELFOSABI_OPENVMS } },
582 { "nsk", PSEUDO_FUNC_CONST, { ELFOSABI_NSK } },
583
584 /* unwind-related registers: */
585 { "priunat",PSEUDO_FUNC_REG, { REG_PRIUNAT } }
586 };
587
588 /* 41-bit nop opcodes (one per unit): */
589 static const bfd_vma nop[IA64_NUM_UNITS] =
590 {
591 0x0000000000LL, /* NIL => break 0 */
592 0x0008000000LL, /* I-unit nop */
593 0x0008000000LL, /* M-unit nop */
594 0x4000000000LL, /* B-unit nop */
595 0x0008000000LL, /* F-unit nop */
596 0x0008000000LL, /* L-"unit" nop */
597 0x0008000000LL, /* X-unit nop */
598 };
599
600 /* Can't be `const' as it's passed to input routines (which have the
601 habit of setting temporary sentinels. */
602 static char special_section_name[][20] =
603 {
604 {".bss"}, {".sbss"}, {".sdata"}, {".rodata"}, {".comment"},
605 {".IA_64.unwind"}, {".IA_64.unwind_info"},
606 {".init_array"}, {".fini_array"}
607 };
608
609 /* The best template for a particular sequence of up to three
610 instructions: */
611 #define N IA64_NUM_TYPES
612 static unsigned char best_template[N][N][N];
613 #undef N
614
615 /* Resource dependencies currently in effect */
616 static struct rsrc {
617 int depind; /* dependency index */
618 const struct ia64_dependency *dependency; /* actual dependency */
619 unsigned specific:1, /* is this a specific bit/regno? */
620 link_to_qp_branch:1; /* will a branch on the same QP clear it?*/
621 int index; /* specific regno/bit within dependency */
622 int note; /* optional qualifying note (0 if none) */
623 #define STATE_NONE 0
624 #define STATE_STOP 1
625 #define STATE_SRLZ 2
626 int insn_srlz; /* current insn serialization state */
627 int data_srlz; /* current data serialization state */
628 int qp_regno; /* qualifying predicate for this usage */
629 char *file; /* what file marked this dependency */
630 unsigned int line; /* what line marked this dependency */
631 struct mem_offset mem_offset; /* optional memory offset hint */
632 enum { CMP_NONE, CMP_OR, CMP_AND } cmp_type; /* OR or AND compare? */
633 int path; /* corresponding code entry index */
634 } *regdeps = NULL;
635 static int regdepslen = 0;
636 static int regdepstotlen = 0;
637 static const char *dv_mode[] = { "RAW", "WAW", "WAR" };
638 static const char *dv_sem[] = { "none", "implied", "impliedf",
639 "data", "instr", "specific", "stop", "other" };
640 static const char *dv_cmp_type[] = { "none", "OR", "AND" };
641
642 /* Current state of PR mutexation */
643 static struct qpmutex {
644 valueT prmask;
645 int path;
646 } *qp_mutexes = NULL; /* QP mutex bitmasks */
647 static int qp_mutexeslen = 0;
648 static int qp_mutexestotlen = 0;
649 static valueT qp_safe_across_calls = 0;
650
651 /* Current state of PR implications */
652 static struct qp_imply {
653 unsigned p1:6;
654 unsigned p2:6;
655 unsigned p2_branched:1;
656 int path;
657 } *qp_implies = NULL;
658 static int qp_implieslen = 0;
659 static int qp_impliestotlen = 0;
660
661 /* Keep track of static GR values so that indirect register usage can
662 sometimes be tracked. */
663 static struct gr {
664 unsigned known:1;
665 int path;
666 valueT value;
667 } gr_values[128] = {
668 {
669 1,
670 #ifdef INT_MAX
671 INT_MAX,
672 #else
673 (((1 << (8 * sizeof(gr_values->path) - 2)) - 1) << 1) + 1,
674 #endif
675 0
676 }
677 };
678
679 /* Remember the alignment frag. */
680 static fragS *align_frag;
681
682 /* These are the routines required to output the various types of
683 unwind records. */
684
685 /* A slot_number is a frag address plus the slot index (0-2). We use the
686 frag address here so that if there is a section switch in the middle of
687 a function, then instructions emitted to a different section are not
688 counted. Since there may be more than one frag for a function, this
689 means we also need to keep track of which frag this address belongs to
690 so we can compute inter-frag distances. This also nicely solves the
691 problem with nops emitted for align directives, which can't easily be
692 counted, but can easily be derived from frag sizes. */
693
694 typedef struct unw_rec_list {
695 unwind_record r;
696 unsigned long slot_number;
697 fragS *slot_frag;
698 struct unw_rec_list *next;
699 } unw_rec_list;
700
701 #define SLOT_NUM_NOT_SET (unsigned)-1
702
703 /* Linked list of saved prologue counts. A very poor
704 implementation of a map from label numbers to prologue counts. */
705 typedef struct label_prologue_count
706 {
707 struct label_prologue_count *next;
708 unsigned long label_number;
709 unsigned int prologue_count;
710 } label_prologue_count;
711
712 static struct
713 {
714 /* Maintain a list of unwind entries for the current function. */
715 unw_rec_list *list;
716 unw_rec_list *tail;
717
718 /* Any unwind entires that should be attached to the current slot
719 that an insn is being constructed for. */
720 unw_rec_list *current_entry;
721
722 /* These are used to create the unwind table entry for this function. */
723 symbolS *proc_start;
724 symbolS *info; /* pointer to unwind info */
725 symbolS *personality_routine;
726 segT saved_text_seg;
727 subsegT saved_text_subseg;
728 unsigned int force_unwind_entry : 1; /* force generation of unwind entry? */
729
730 /* TRUE if processing unwind directives in a prologue region. */
731 unsigned int prologue : 1;
732 unsigned int prologue_mask : 4;
733 unsigned int body : 1;
734 unsigned int insn : 1;
735 unsigned int prologue_count; /* number of .prologues seen so far */
736 /* Prologue counts at previous .label_state directives. */
737 struct label_prologue_count * saved_prologue_counts;
738 } unwind;
739
740 /* The input value is a negated offset from psp, and specifies an address
741 psp - offset. The encoded value is psp + 16 - (4 * offset). Thus we
742 must add 16 and divide by 4 to get the encoded value. */
743
744 #define ENCODED_PSP_OFFSET(OFFSET) (((OFFSET) + 16) / 4)
745
746 typedef void (*vbyte_func) PARAMS ((int, char *, char *));
747
748 /* Forward declarations: */
749 static void set_section PARAMS ((char *name));
750 static unsigned int set_regstack PARAMS ((unsigned int, unsigned int,
751 unsigned int, unsigned int));
752 static void dot_align (int);
753 static void dot_radix PARAMS ((int));
754 static void dot_special_section PARAMS ((int));
755 static void dot_proc PARAMS ((int));
756 static void dot_fframe PARAMS ((int));
757 static void dot_vframe PARAMS ((int));
758 static void dot_vframesp PARAMS ((int));
759 static void dot_vframepsp PARAMS ((int));
760 static void dot_save PARAMS ((int));
761 static void dot_restore PARAMS ((int));
762 static void dot_restorereg PARAMS ((int));
763 static void dot_restorereg_p PARAMS ((int));
764 static void dot_handlerdata PARAMS ((int));
765 static void dot_unwentry PARAMS ((int));
766 static void dot_altrp PARAMS ((int));
767 static void dot_savemem PARAMS ((int));
768 static void dot_saveg PARAMS ((int));
769 static void dot_savef PARAMS ((int));
770 static void dot_saveb PARAMS ((int));
771 static void dot_savegf PARAMS ((int));
772 static void dot_spill PARAMS ((int));
773 static void dot_spillreg PARAMS ((int));
774 static void dot_spillmem PARAMS ((int));
775 static void dot_spillreg_p PARAMS ((int));
776 static void dot_spillmem_p PARAMS ((int));
777 static void dot_label_state PARAMS ((int));
778 static void dot_copy_state PARAMS ((int));
779 static void dot_unwabi PARAMS ((int));
780 static void dot_personality PARAMS ((int));
781 static void dot_body PARAMS ((int));
782 static void dot_prologue PARAMS ((int));
783 static void dot_endp PARAMS ((int));
784 static void dot_template PARAMS ((int));
785 static void dot_regstk PARAMS ((int));
786 static void dot_rot PARAMS ((int));
787 static void dot_byteorder PARAMS ((int));
788 static void dot_psr PARAMS ((int));
789 static void dot_alias PARAMS ((int));
790 static void dot_ln PARAMS ((int));
791 static void cross_section PARAMS ((int ref, void (*cons) PARAMS((int)), int ua));
792 static void dot_xdata PARAMS ((int));
793 static void stmt_float_cons PARAMS ((int));
794 static void stmt_cons_ua PARAMS ((int));
795 static void dot_xfloat_cons PARAMS ((int));
796 static void dot_xstringer PARAMS ((int));
797 static void dot_xdata_ua PARAMS ((int));
798 static void dot_xfloat_cons_ua PARAMS ((int));
799 static void print_prmask PARAMS ((valueT mask));
800 static void dot_pred_rel PARAMS ((int));
801 static void dot_reg_val PARAMS ((int));
802 static void dot_serialize PARAMS ((int));
803 static void dot_dv_mode PARAMS ((int));
804 static void dot_entry PARAMS ((int));
805 static void dot_mem_offset PARAMS ((int));
806 static void add_unwind_entry PARAMS((unw_rec_list *ptr));
807 static symbolS *declare_register PARAMS ((const char *name, int regnum));
808 static void declare_register_set PARAMS ((const char *, int, int));
809 static unsigned int operand_width PARAMS ((enum ia64_opnd));
810 static enum operand_match_result operand_match PARAMS ((const struct ia64_opcode *idesc,
811 int index,
812 expressionS *e));
813 static int parse_operand PARAMS ((expressionS *e));
814 static struct ia64_opcode * parse_operands PARAMS ((struct ia64_opcode *));
815 static void build_insn PARAMS ((struct slot *, bfd_vma *));
816 static void emit_one_bundle PARAMS ((void));
817 static void fix_insn PARAMS ((fixS *, const struct ia64_operand *, valueT));
818 static bfd_reloc_code_real_type ia64_gen_real_reloc_type PARAMS ((struct symbol *sym,
819 bfd_reloc_code_real_type r_type));
820 static void insn_group_break PARAMS ((int, int, int));
821 static void mark_resource PARAMS ((struct ia64_opcode *, const struct ia64_dependency *,
822 struct rsrc *, int depind, int path));
823 static void add_qp_mutex PARAMS((valueT mask));
824 static void add_qp_imply PARAMS((int p1, int p2));
825 static void clear_qp_branch_flag PARAMS((valueT mask));
826 static void clear_qp_mutex PARAMS((valueT mask));
827 static void clear_qp_implies PARAMS((valueT p1_mask, valueT p2_mask));
828 static int has_suffix_p PARAMS((const char *, const char *));
829 static void clear_register_values PARAMS ((void));
830 static void print_dependency PARAMS ((const char *action, int depind));
831 static void instruction_serialization PARAMS ((void));
832 static void data_serialization PARAMS ((void));
833 static void remove_marked_resource PARAMS ((struct rsrc *));
834 static int is_conditional_branch PARAMS ((struct ia64_opcode *));
835 static int is_taken_branch PARAMS ((struct ia64_opcode *));
836 static int is_interruption_or_rfi PARAMS ((struct ia64_opcode *));
837 static int depends_on PARAMS ((int, struct ia64_opcode *));
838 static int specify_resource PARAMS ((const struct ia64_dependency *,
839 struct ia64_opcode *, int, struct rsrc [], int, int));
840 static int check_dv PARAMS((struct ia64_opcode *idesc));
841 static void check_dependencies PARAMS((struct ia64_opcode *));
842 static void mark_resources PARAMS((struct ia64_opcode *));
843 static void update_dependencies PARAMS((struct ia64_opcode *));
844 static void note_register_values PARAMS((struct ia64_opcode *));
845 static int qp_mutex PARAMS ((int, int, int));
846 static int resources_match PARAMS ((struct rsrc *, struct ia64_opcode *, int, int, int));
847 static void output_vbyte_mem PARAMS ((int, char *, char *));
848 static void count_output PARAMS ((int, char *, char *));
849 static void output_R1_format PARAMS ((vbyte_func, unw_record_type, int));
850 static void output_R2_format PARAMS ((vbyte_func, int, int, unsigned long));
851 static void output_R3_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
852 static void output_P1_format PARAMS ((vbyte_func, int));
853 static void output_P2_format PARAMS ((vbyte_func, int, int));
854 static void output_P3_format PARAMS ((vbyte_func, unw_record_type, int));
855 static void output_P4_format PARAMS ((vbyte_func, unsigned char *, unsigned long));
856 static void output_P5_format PARAMS ((vbyte_func, int, unsigned long));
857 static void output_P6_format PARAMS ((vbyte_func, unw_record_type, int));
858 static void output_P7_format PARAMS ((vbyte_func, unw_record_type, unsigned long, unsigned long));
859 static void output_P8_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
860 static void output_P9_format PARAMS ((vbyte_func, int, int));
861 static void output_P10_format PARAMS ((vbyte_func, int, int));
862 static void output_B1_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
863 static void output_B2_format PARAMS ((vbyte_func, unsigned long, unsigned long));
864 static void output_B3_format PARAMS ((vbyte_func, unsigned long, unsigned long));
865 static void output_B4_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
866 static char format_ab_reg PARAMS ((int, int));
867 static void output_X1_format PARAMS ((vbyte_func, unw_record_type, int, int, unsigned long,
868 unsigned long));
869 static void output_X2_format PARAMS ((vbyte_func, int, int, int, int, int, unsigned long));
870 static void output_X3_format PARAMS ((vbyte_func, unw_record_type, int, int, int, unsigned long,
871 unsigned long));
872 static void output_X4_format PARAMS ((vbyte_func, int, int, int, int, int, int, unsigned long));
873 static unw_rec_list *output_endp PARAMS ((void));
874 static unw_rec_list *output_prologue PARAMS ((void));
875 static unw_rec_list *output_prologue_gr PARAMS ((unsigned int, unsigned int));
876 static unw_rec_list *output_body PARAMS ((void));
877 static unw_rec_list *output_mem_stack_f PARAMS ((unsigned int));
878 static unw_rec_list *output_mem_stack_v PARAMS ((void));
879 static unw_rec_list *output_psp_gr PARAMS ((unsigned int));
880 static unw_rec_list *output_psp_sprel PARAMS ((unsigned int));
881 static unw_rec_list *output_rp_when PARAMS ((void));
882 static unw_rec_list *output_rp_gr PARAMS ((unsigned int));
883 static unw_rec_list *output_rp_br PARAMS ((unsigned int));
884 static unw_rec_list *output_rp_psprel PARAMS ((unsigned int));
885 static unw_rec_list *output_rp_sprel PARAMS ((unsigned int));
886 static unw_rec_list *output_pfs_when PARAMS ((void));
887 static unw_rec_list *output_pfs_gr PARAMS ((unsigned int));
888 static unw_rec_list *output_pfs_psprel PARAMS ((unsigned int));
889 static unw_rec_list *output_pfs_sprel PARAMS ((unsigned int));
890 static unw_rec_list *output_preds_when PARAMS ((void));
891 static unw_rec_list *output_preds_gr PARAMS ((unsigned int));
892 static unw_rec_list *output_preds_psprel PARAMS ((unsigned int));
893 static unw_rec_list *output_preds_sprel PARAMS ((unsigned int));
894 static unw_rec_list *output_fr_mem PARAMS ((unsigned int));
895 static unw_rec_list *output_frgr_mem PARAMS ((unsigned int, unsigned int));
896 static unw_rec_list *output_gr_gr PARAMS ((unsigned int, unsigned int));
897 static unw_rec_list *output_gr_mem PARAMS ((unsigned int));
898 static unw_rec_list *output_br_mem PARAMS ((unsigned int));
899 static unw_rec_list *output_br_gr PARAMS ((unsigned int, unsigned int));
900 static unw_rec_list *output_spill_base PARAMS ((unsigned int));
901 static unw_rec_list *output_unat_when PARAMS ((void));
902 static unw_rec_list *output_unat_gr PARAMS ((unsigned int));
903 static unw_rec_list *output_unat_psprel PARAMS ((unsigned int));
904 static unw_rec_list *output_unat_sprel PARAMS ((unsigned int));
905 static unw_rec_list *output_lc_when PARAMS ((void));
906 static unw_rec_list *output_lc_gr PARAMS ((unsigned int));
907 static unw_rec_list *output_lc_psprel PARAMS ((unsigned int));
908 static unw_rec_list *output_lc_sprel PARAMS ((unsigned int));
909 static unw_rec_list *output_fpsr_when PARAMS ((void));
910 static unw_rec_list *output_fpsr_gr PARAMS ((unsigned int));
911 static unw_rec_list *output_fpsr_psprel PARAMS ((unsigned int));
912 static unw_rec_list *output_fpsr_sprel PARAMS ((unsigned int));
913 static unw_rec_list *output_priunat_when_gr PARAMS ((void));
914 static unw_rec_list *output_priunat_when_mem PARAMS ((void));
915 static unw_rec_list *output_priunat_gr PARAMS ((unsigned int));
916 static unw_rec_list *output_priunat_psprel PARAMS ((unsigned int));
917 static unw_rec_list *output_priunat_sprel PARAMS ((unsigned int));
918 static unw_rec_list *output_bsp_when PARAMS ((void));
919 static unw_rec_list *output_bsp_gr PARAMS ((unsigned int));
920 static unw_rec_list *output_bsp_psprel PARAMS ((unsigned int));
921 static unw_rec_list *output_bsp_sprel PARAMS ((unsigned int));
922 static unw_rec_list *output_bspstore_when PARAMS ((void));
923 static unw_rec_list *output_bspstore_gr PARAMS ((unsigned int));
924 static unw_rec_list *output_bspstore_psprel PARAMS ((unsigned int));
925 static unw_rec_list *output_bspstore_sprel PARAMS ((unsigned int));
926 static unw_rec_list *output_rnat_when PARAMS ((void));
927 static unw_rec_list *output_rnat_gr PARAMS ((unsigned int));
928 static unw_rec_list *output_rnat_psprel PARAMS ((unsigned int));
929 static unw_rec_list *output_rnat_sprel PARAMS ((unsigned int));
930 static unw_rec_list *output_unwabi PARAMS ((unsigned long, unsigned long));
931 static unw_rec_list *output_epilogue PARAMS ((unsigned long));
932 static unw_rec_list *output_label_state PARAMS ((unsigned long));
933 static unw_rec_list *output_copy_state PARAMS ((unsigned long));
934 static unw_rec_list *output_spill_psprel PARAMS ((unsigned int, unsigned int, unsigned int));
935 static unw_rec_list *output_spill_sprel PARAMS ((unsigned int, unsigned int, unsigned int));
936 static unw_rec_list *output_spill_psprel_p PARAMS ((unsigned int, unsigned int, unsigned int,
937 unsigned int));
938 static unw_rec_list *output_spill_sprel_p PARAMS ((unsigned int, unsigned int, unsigned int,
939 unsigned int));
940 static unw_rec_list *output_spill_reg PARAMS ((unsigned int, unsigned int, unsigned int,
941 unsigned int));
942 static unw_rec_list *output_spill_reg_p PARAMS ((unsigned int, unsigned int, unsigned int,
943 unsigned int, unsigned int));
944 static void process_one_record PARAMS ((unw_rec_list *, vbyte_func));
945 static void process_unw_records PARAMS ((unw_rec_list *, vbyte_func));
946 static int calc_record_size PARAMS ((unw_rec_list *));
947 static void set_imask PARAMS ((unw_rec_list *, unsigned long, unsigned long, unsigned int));
948 static unsigned long slot_index PARAMS ((unsigned long, fragS *,
949 unsigned long, fragS *,
950 int));
951 static unw_rec_list *optimize_unw_records PARAMS ((unw_rec_list *));
952 static void fixup_unw_records PARAMS ((unw_rec_list *, int));
953 static int convert_expr_to_ab_reg PARAMS ((expressionS *, unsigned int *, unsigned int *));
954 static int convert_expr_to_xy_reg PARAMS ((expressionS *, unsigned int *, unsigned int *));
955 static unsigned int get_saved_prologue_count PARAMS ((unsigned long));
956 static void save_prologue_count PARAMS ((unsigned long, unsigned int));
957 static void free_saved_prologue_counts PARAMS ((void));
958
959 /* Determine if application register REGNUM resides only in the integer
960 unit (as opposed to the memory unit). */
961 static int
962 ar_is_only_in_integer_unit (int reg)
963 {
964 reg -= REG_AR;
965 return reg >= 64 && reg <= 111;
966 }
967
968 /* Determine if application register REGNUM resides only in the memory
969 unit (as opposed to the integer unit). */
970 static int
971 ar_is_only_in_memory_unit (int reg)
972 {
973 reg -= REG_AR;
974 return reg >= 0 && reg <= 47;
975 }
976
977 /* Switch to section NAME and create section if necessary. It's
978 rather ugly that we have to manipulate input_line_pointer but I
979 don't see any other way to accomplish the same thing without
980 changing obj-elf.c (which may be the Right Thing, in the end). */
981 static void
982 set_section (name)
983 char *name;
984 {
985 char *saved_input_line_pointer;
986
987 saved_input_line_pointer = input_line_pointer;
988 input_line_pointer = name;
989 obj_elf_section (0);
990 input_line_pointer = saved_input_line_pointer;
991 }
992
993 /* Map 's' to SHF_IA_64_SHORT. */
994
995 int
996 ia64_elf_section_letter (letter, ptr_msg)
997 int letter;
998 char **ptr_msg;
999 {
1000 if (letter == 's')
1001 return SHF_IA_64_SHORT;
1002 else if (letter == 'o')
1003 return SHF_LINK_ORDER;
1004
1005 *ptr_msg = _("Bad .section directive: want a,o,s,w,x,M,S,G,T in string");
1006 return -1;
1007 }
1008
1009 /* Map SHF_IA_64_SHORT to SEC_SMALL_DATA. */
1010
1011 flagword
1012 ia64_elf_section_flags (flags, attr, type)
1013 flagword flags;
1014 int attr, type ATTRIBUTE_UNUSED;
1015 {
1016 if (attr & SHF_IA_64_SHORT)
1017 flags |= SEC_SMALL_DATA;
1018 return flags;
1019 }
1020
1021 int
1022 ia64_elf_section_type (str, len)
1023 const char *str;
1024 size_t len;
1025 {
1026 #define STREQ(s) ((len == sizeof (s) - 1) && (strncmp (str, s, sizeof (s) - 1) == 0))
1027
1028 if (STREQ (ELF_STRING_ia64_unwind_info))
1029 return SHT_PROGBITS;
1030
1031 if (STREQ (ELF_STRING_ia64_unwind_info_once))
1032 return SHT_PROGBITS;
1033
1034 if (STREQ (ELF_STRING_ia64_unwind))
1035 return SHT_IA_64_UNWIND;
1036
1037 if (STREQ (ELF_STRING_ia64_unwind_once))
1038 return SHT_IA_64_UNWIND;
1039
1040 if (STREQ ("unwind"))
1041 return SHT_IA_64_UNWIND;
1042
1043 return -1;
1044 #undef STREQ
1045 }
1046
1047 static unsigned int
1048 set_regstack (ins, locs, outs, rots)
1049 unsigned int ins, locs, outs, rots;
1050 {
1051 /* Size of frame. */
1052 unsigned int sof;
1053
1054 sof = ins + locs + outs;
1055 if (sof > 96)
1056 {
1057 as_bad ("Size of frame exceeds maximum of 96 registers");
1058 return 0;
1059 }
1060 if (rots > sof)
1061 {
1062 as_warn ("Size of rotating registers exceeds frame size");
1063 return 0;
1064 }
1065 md.in.base = REG_GR + 32;
1066 md.loc.base = md.in.base + ins;
1067 md.out.base = md.loc.base + locs;
1068
1069 md.in.num_regs = ins;
1070 md.loc.num_regs = locs;
1071 md.out.num_regs = outs;
1072 md.rot.num_regs = rots;
1073 return sof;
1074 }
1075
1076 void
1077 ia64_flush_insns ()
1078 {
1079 struct label_fix *lfix;
1080 segT saved_seg;
1081 subsegT saved_subseg;
1082 unw_rec_list *ptr;
1083
1084 if (!md.last_text_seg)
1085 return;
1086
1087 saved_seg = now_seg;
1088 saved_subseg = now_subseg;
1089
1090 subseg_set (md.last_text_seg, 0);
1091
1092 while (md.num_slots_in_use > 0)
1093 emit_one_bundle (); /* force out queued instructions */
1094
1095 /* In case there are labels following the last instruction, resolve
1096 those now: */
1097 for (lfix = CURR_SLOT.label_fixups; lfix; lfix = lfix->next)
1098 {
1099 S_SET_VALUE (lfix->sym, frag_now_fix ());
1100 symbol_set_frag (lfix->sym, frag_now);
1101 }
1102 CURR_SLOT.label_fixups = 0;
1103 for (lfix = CURR_SLOT.tag_fixups; lfix; lfix = lfix->next)
1104 {
1105 S_SET_VALUE (lfix->sym, frag_now_fix ());
1106 symbol_set_frag (lfix->sym, frag_now);
1107 }
1108 CURR_SLOT.tag_fixups = 0;
1109
1110 /* In case there are unwind directives following the last instruction,
1111 resolve those now. We only handle prologue, body, and endp directives
1112 here. Give an error for others. */
1113 for (ptr = unwind.current_entry; ptr; ptr = ptr->next)
1114 {
1115 switch (ptr->r.type)
1116 {
1117 case prologue:
1118 case prologue_gr:
1119 case body:
1120 case endp:
1121 ptr->slot_number = (unsigned long) frag_more (0);
1122 ptr->slot_frag = frag_now;
1123 break;
1124
1125 /* Allow any record which doesn't have a "t" field (i.e.,
1126 doesn't relate to a particular instruction). */
1127 case unwabi:
1128 case br_gr:
1129 case copy_state:
1130 case fr_mem:
1131 case frgr_mem:
1132 case gr_gr:
1133 case gr_mem:
1134 case label_state:
1135 case rp_br:
1136 case spill_base:
1137 case spill_mask:
1138 /* nothing */
1139 break;
1140
1141 default:
1142 as_bad (_("Unwind directive not followed by an instruction."));
1143 break;
1144 }
1145 }
1146 unwind.current_entry = NULL;
1147
1148 subseg_set (saved_seg, saved_subseg);
1149
1150 if (md.qp.X_op == O_register)
1151 as_bad ("qualifying predicate not followed by instruction");
1152 }
1153
1154 static void
1155 ia64_do_align (int nbytes)
1156 {
1157 char *saved_input_line_pointer = input_line_pointer;
1158
1159 input_line_pointer = "";
1160 s_align_bytes (nbytes);
1161 input_line_pointer = saved_input_line_pointer;
1162 }
1163
1164 void
1165 ia64_cons_align (nbytes)
1166 int nbytes;
1167 {
1168 if (md.auto_align)
1169 {
1170 char *saved_input_line_pointer = input_line_pointer;
1171 input_line_pointer = "";
1172 s_align_bytes (nbytes);
1173 input_line_pointer = saved_input_line_pointer;
1174 }
1175 }
1176
1177 /* Output COUNT bytes to a memory location. */
1178 static char *vbyte_mem_ptr = NULL;
1179
1180 void
1181 output_vbyte_mem (count, ptr, comment)
1182 int count;
1183 char *ptr;
1184 char *comment ATTRIBUTE_UNUSED;
1185 {
1186 int x;
1187 if (vbyte_mem_ptr == NULL)
1188 abort ();
1189
1190 if (count == 0)
1191 return;
1192 for (x = 0; x < count; x++)
1193 *(vbyte_mem_ptr++) = ptr[x];
1194 }
1195
1196 /* Count the number of bytes required for records. */
1197 static int vbyte_count = 0;
1198 void
1199 count_output (count, ptr, comment)
1200 int count;
1201 char *ptr ATTRIBUTE_UNUSED;
1202 char *comment ATTRIBUTE_UNUSED;
1203 {
1204 vbyte_count += count;
1205 }
1206
1207 static void
1208 output_R1_format (f, rtype, rlen)
1209 vbyte_func f;
1210 unw_record_type rtype;
1211 int rlen;
1212 {
1213 int r = 0;
1214 char byte;
1215 if (rlen > 0x1f)
1216 {
1217 output_R3_format (f, rtype, rlen);
1218 return;
1219 }
1220
1221 if (rtype == body)
1222 r = 1;
1223 else if (rtype != prologue)
1224 as_bad ("record type is not valid");
1225
1226 byte = UNW_R1 | (r << 5) | (rlen & 0x1f);
1227 (*f) (1, &byte, NULL);
1228 }
1229
1230 static void
1231 output_R2_format (f, mask, grsave, rlen)
1232 vbyte_func f;
1233 int mask, grsave;
1234 unsigned long rlen;
1235 {
1236 char bytes[20];
1237 int count = 2;
1238 mask = (mask & 0x0f);
1239 grsave = (grsave & 0x7f);
1240
1241 bytes[0] = (UNW_R2 | (mask >> 1));
1242 bytes[1] = (((mask & 0x01) << 7) | grsave);
1243 count += output_leb128 (bytes + 2, rlen, 0);
1244 (*f) (count, bytes, NULL);
1245 }
1246
1247 static void
1248 output_R3_format (f, rtype, rlen)
1249 vbyte_func f;
1250 unw_record_type rtype;
1251 unsigned long rlen;
1252 {
1253 int r = 0, count;
1254 char bytes[20];
1255 if (rlen <= 0x1f)
1256 {
1257 output_R1_format (f, rtype, rlen);
1258 return;
1259 }
1260
1261 if (rtype == body)
1262 r = 1;
1263 else if (rtype != prologue)
1264 as_bad ("record type is not valid");
1265 bytes[0] = (UNW_R3 | r);
1266 count = output_leb128 (bytes + 1, rlen, 0);
1267 (*f) (count + 1, bytes, NULL);
1268 }
1269
1270 static void
1271 output_P1_format (f, brmask)
1272 vbyte_func f;
1273 int brmask;
1274 {
1275 char byte;
1276 byte = UNW_P1 | (brmask & 0x1f);
1277 (*f) (1, &byte, NULL);
1278 }
1279
1280 static void
1281 output_P2_format (f, brmask, gr)
1282 vbyte_func f;
1283 int brmask;
1284 int gr;
1285 {
1286 char bytes[2];
1287 brmask = (brmask & 0x1f);
1288 bytes[0] = UNW_P2 | (brmask >> 1);
1289 bytes[1] = (((brmask & 1) << 7) | gr);
1290 (*f) (2, bytes, NULL);
1291 }
1292
1293 static void
1294 output_P3_format (f, rtype, reg)
1295 vbyte_func f;
1296 unw_record_type rtype;
1297 int reg;
1298 {
1299 char bytes[2];
1300 int r = 0;
1301 reg = (reg & 0x7f);
1302 switch (rtype)
1303 {
1304 case psp_gr:
1305 r = 0;
1306 break;
1307 case rp_gr:
1308 r = 1;
1309 break;
1310 case pfs_gr:
1311 r = 2;
1312 break;
1313 case preds_gr:
1314 r = 3;
1315 break;
1316 case unat_gr:
1317 r = 4;
1318 break;
1319 case lc_gr:
1320 r = 5;
1321 break;
1322 case rp_br:
1323 r = 6;
1324 break;
1325 case rnat_gr:
1326 r = 7;
1327 break;
1328 case bsp_gr:
1329 r = 8;
1330 break;
1331 case bspstore_gr:
1332 r = 9;
1333 break;
1334 case fpsr_gr:
1335 r = 10;
1336 break;
1337 case priunat_gr:
1338 r = 11;
1339 break;
1340 default:
1341 as_bad ("Invalid record type for P3 format.");
1342 }
1343 bytes[0] = (UNW_P3 | (r >> 1));
1344 bytes[1] = (((r & 1) << 7) | reg);
1345 (*f) (2, bytes, NULL);
1346 }
1347
1348 static void
1349 output_P4_format (f, imask, imask_size)
1350 vbyte_func f;
1351 unsigned char *imask;
1352 unsigned long imask_size;
1353 {
1354 imask[0] = UNW_P4;
1355 (*f) (imask_size, (char *) imask, NULL);
1356 }
1357
1358 static void
1359 output_P5_format (f, grmask, frmask)
1360 vbyte_func f;
1361 int grmask;
1362 unsigned long frmask;
1363 {
1364 char bytes[4];
1365 grmask = (grmask & 0x0f);
1366
1367 bytes[0] = UNW_P5;
1368 bytes[1] = ((grmask << 4) | ((frmask & 0x000f0000) >> 16));
1369 bytes[2] = ((frmask & 0x0000ff00) >> 8);
1370 bytes[3] = (frmask & 0x000000ff);
1371 (*f) (4, bytes, NULL);
1372 }
1373
1374 static void
1375 output_P6_format (f, rtype, rmask)
1376 vbyte_func f;
1377 unw_record_type rtype;
1378 int rmask;
1379 {
1380 char byte;
1381 int r = 0;
1382
1383 if (rtype == gr_mem)
1384 r = 1;
1385 else if (rtype != fr_mem)
1386 as_bad ("Invalid record type for format P6");
1387 byte = (UNW_P6 | (r << 4) | (rmask & 0x0f));
1388 (*f) (1, &byte, NULL);
1389 }
1390
1391 static void
1392 output_P7_format (f, rtype, w1, w2)
1393 vbyte_func f;
1394 unw_record_type rtype;
1395 unsigned long w1;
1396 unsigned long w2;
1397 {
1398 char bytes[20];
1399 int count = 1;
1400 int r = 0;
1401 count += output_leb128 (bytes + 1, w1, 0);
1402 switch (rtype)
1403 {
1404 case mem_stack_f:
1405 r = 0;
1406 count += output_leb128 (bytes + count, w2 >> 4, 0);
1407 break;
1408 case mem_stack_v:
1409 r = 1;
1410 break;
1411 case spill_base:
1412 r = 2;
1413 break;
1414 case psp_sprel:
1415 r = 3;
1416 break;
1417 case rp_when:
1418 r = 4;
1419 break;
1420 case rp_psprel:
1421 r = 5;
1422 break;
1423 case pfs_when:
1424 r = 6;
1425 break;
1426 case pfs_psprel:
1427 r = 7;
1428 break;
1429 case preds_when:
1430 r = 8;
1431 break;
1432 case preds_psprel:
1433 r = 9;
1434 break;
1435 case lc_when:
1436 r = 10;
1437 break;
1438 case lc_psprel:
1439 r = 11;
1440 break;
1441 case unat_when:
1442 r = 12;
1443 break;
1444 case unat_psprel:
1445 r = 13;
1446 break;
1447 case fpsr_when:
1448 r = 14;
1449 break;
1450 case fpsr_psprel:
1451 r = 15;
1452 break;
1453 default:
1454 break;
1455 }
1456 bytes[0] = (UNW_P7 | r);
1457 (*f) (count, bytes, NULL);
1458 }
1459
1460 static void
1461 output_P8_format (f, rtype, t)
1462 vbyte_func f;
1463 unw_record_type rtype;
1464 unsigned long t;
1465 {
1466 char bytes[20];
1467 int r = 0;
1468 int count = 2;
1469 bytes[0] = UNW_P8;
1470 switch (rtype)
1471 {
1472 case rp_sprel:
1473 r = 1;
1474 break;
1475 case pfs_sprel:
1476 r = 2;
1477 break;
1478 case preds_sprel:
1479 r = 3;
1480 break;
1481 case lc_sprel:
1482 r = 4;
1483 break;
1484 case unat_sprel:
1485 r = 5;
1486 break;
1487 case fpsr_sprel:
1488 r = 6;
1489 break;
1490 case bsp_when:
1491 r = 7;
1492 break;
1493 case bsp_psprel:
1494 r = 8;
1495 break;
1496 case bsp_sprel:
1497 r = 9;
1498 break;
1499 case bspstore_when:
1500 r = 10;
1501 break;
1502 case bspstore_psprel:
1503 r = 11;
1504 break;
1505 case bspstore_sprel:
1506 r = 12;
1507 break;
1508 case rnat_when:
1509 r = 13;
1510 break;
1511 case rnat_psprel:
1512 r = 14;
1513 break;
1514 case rnat_sprel:
1515 r = 15;
1516 break;
1517 case priunat_when_gr:
1518 r = 16;
1519 break;
1520 case priunat_psprel:
1521 r = 17;
1522 break;
1523 case priunat_sprel:
1524 r = 18;
1525 break;
1526 case priunat_when_mem:
1527 r = 19;
1528 break;
1529 default:
1530 break;
1531 }
1532 bytes[1] = r;
1533 count += output_leb128 (bytes + 2, t, 0);
1534 (*f) (count, bytes, NULL);
1535 }
1536
1537 static void
1538 output_P9_format (f, grmask, gr)
1539 vbyte_func f;
1540 int grmask;
1541 int gr;
1542 {
1543 char bytes[3];
1544 bytes[0] = UNW_P9;
1545 bytes[1] = (grmask & 0x0f);
1546 bytes[2] = (gr & 0x7f);
1547 (*f) (3, bytes, NULL);
1548 }
1549
1550 static void
1551 output_P10_format (f, abi, context)
1552 vbyte_func f;
1553 int abi;
1554 int context;
1555 {
1556 char bytes[3];
1557 bytes[0] = UNW_P10;
1558 bytes[1] = (abi & 0xff);
1559 bytes[2] = (context & 0xff);
1560 (*f) (3, bytes, NULL);
1561 }
1562
1563 static void
1564 output_B1_format (f, rtype, label)
1565 vbyte_func f;
1566 unw_record_type rtype;
1567 unsigned long label;
1568 {
1569 char byte;
1570 int r = 0;
1571 if (label > 0x1f)
1572 {
1573 output_B4_format (f, rtype, label);
1574 return;
1575 }
1576 if (rtype == copy_state)
1577 r = 1;
1578 else if (rtype != label_state)
1579 as_bad ("Invalid record type for format B1");
1580
1581 byte = (UNW_B1 | (r << 5) | (label & 0x1f));
1582 (*f) (1, &byte, NULL);
1583 }
1584
1585 static void
1586 output_B2_format (f, ecount, t)
1587 vbyte_func f;
1588 unsigned long ecount;
1589 unsigned long t;
1590 {
1591 char bytes[20];
1592 int count = 1;
1593 if (ecount > 0x1f)
1594 {
1595 output_B3_format (f, ecount, t);
1596 return;
1597 }
1598 bytes[0] = (UNW_B2 | (ecount & 0x1f));
1599 count += output_leb128 (bytes + 1, t, 0);
1600 (*f) (count, bytes, NULL);
1601 }
1602
1603 static void
1604 output_B3_format (f, ecount, t)
1605 vbyte_func f;
1606 unsigned long ecount;
1607 unsigned long t;
1608 {
1609 char bytes[20];
1610 int count = 1;
1611 if (ecount <= 0x1f)
1612 {
1613 output_B2_format (f, ecount, t);
1614 return;
1615 }
1616 bytes[0] = UNW_B3;
1617 count += output_leb128 (bytes + 1, t, 0);
1618 count += output_leb128 (bytes + count, ecount, 0);
1619 (*f) (count, bytes, NULL);
1620 }
1621
1622 static void
1623 output_B4_format (f, rtype, label)
1624 vbyte_func f;
1625 unw_record_type rtype;
1626 unsigned long label;
1627 {
1628 char bytes[20];
1629 int r = 0;
1630 int count = 1;
1631 if (label <= 0x1f)
1632 {
1633 output_B1_format (f, rtype, label);
1634 return;
1635 }
1636
1637 if (rtype == copy_state)
1638 r = 1;
1639 else if (rtype != label_state)
1640 as_bad ("Invalid record type for format B1");
1641
1642 bytes[0] = (UNW_B4 | (r << 3));
1643 count += output_leb128 (bytes + 1, label, 0);
1644 (*f) (count, bytes, NULL);
1645 }
1646
1647 static char
1648 format_ab_reg (ab, reg)
1649 int ab;
1650 int reg;
1651 {
1652 int ret;
1653 ab = (ab & 3);
1654 reg = (reg & 0x1f);
1655 ret = (ab << 5) | reg;
1656 return ret;
1657 }
1658
1659 static void
1660 output_X1_format (f, rtype, ab, reg, t, w1)
1661 vbyte_func f;
1662 unw_record_type rtype;
1663 int ab, reg;
1664 unsigned long t;
1665 unsigned long w1;
1666 {
1667 char bytes[20];
1668 int r = 0;
1669 int count = 2;
1670 bytes[0] = UNW_X1;
1671
1672 if (rtype == spill_sprel)
1673 r = 1;
1674 else if (rtype != spill_psprel)
1675 as_bad ("Invalid record type for format X1");
1676 bytes[1] = ((r << 7) | format_ab_reg (ab, reg));
1677 count += output_leb128 (bytes + 2, t, 0);
1678 count += output_leb128 (bytes + count, w1, 0);
1679 (*f) (count, bytes, NULL);
1680 }
1681
1682 static void
1683 output_X2_format (f, ab, reg, x, y, treg, t)
1684 vbyte_func f;
1685 int ab, reg;
1686 int x, y, treg;
1687 unsigned long t;
1688 {
1689 char bytes[20];
1690 int count = 3;
1691 bytes[0] = UNW_X2;
1692 bytes[1] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1693 bytes[2] = (((y & 1) << 7) | (treg & 0x7f));
1694 count += output_leb128 (bytes + 3, t, 0);
1695 (*f) (count, bytes, NULL);
1696 }
1697
1698 static void
1699 output_X3_format (f, rtype, qp, ab, reg, t, w1)
1700 vbyte_func f;
1701 unw_record_type rtype;
1702 int qp;
1703 int ab, reg;
1704 unsigned long t;
1705 unsigned long w1;
1706 {
1707 char bytes[20];
1708 int r = 0;
1709 int count = 3;
1710 bytes[0] = UNW_X3;
1711
1712 if (rtype == spill_sprel_p)
1713 r = 1;
1714 else if (rtype != spill_psprel_p)
1715 as_bad ("Invalid record type for format X3");
1716 bytes[1] = ((r << 7) | (qp & 0x3f));
1717 bytes[2] = format_ab_reg (ab, reg);
1718 count += output_leb128 (bytes + 3, t, 0);
1719 count += output_leb128 (bytes + count, w1, 0);
1720 (*f) (count, bytes, NULL);
1721 }
1722
1723 static void
1724 output_X4_format (f, qp, ab, reg, x, y, treg, t)
1725 vbyte_func f;
1726 int qp;
1727 int ab, reg;
1728 int x, y, treg;
1729 unsigned long t;
1730 {
1731 char bytes[20];
1732 int count = 4;
1733 bytes[0] = UNW_X4;
1734 bytes[1] = (qp & 0x3f);
1735 bytes[2] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1736 bytes[3] = (((y & 1) << 7) | (treg & 0x7f));
1737 count += output_leb128 (bytes + 4, t, 0);
1738 (*f) (count, bytes, NULL);
1739 }
1740
1741 /* This function allocates a record list structure, and initializes fields. */
1742
1743 static unw_rec_list *
1744 alloc_record (unw_record_type t)
1745 {
1746 unw_rec_list *ptr;
1747 ptr = xmalloc (sizeof (*ptr));
1748 ptr->next = NULL;
1749 ptr->slot_number = SLOT_NUM_NOT_SET;
1750 ptr->r.type = t;
1751 return ptr;
1752 }
1753
1754 /* Dummy unwind record used for calculating the length of the last prologue or
1755 body region. */
1756
1757 static unw_rec_list *
1758 output_endp ()
1759 {
1760 unw_rec_list *ptr = alloc_record (endp);
1761 return ptr;
1762 }
1763
1764 static unw_rec_list *
1765 output_prologue ()
1766 {
1767 unw_rec_list *ptr = alloc_record (prologue);
1768 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1769 return ptr;
1770 }
1771
1772 static unw_rec_list *
1773 output_prologue_gr (saved_mask, reg)
1774 unsigned int saved_mask;
1775 unsigned int reg;
1776 {
1777 unw_rec_list *ptr = alloc_record (prologue_gr);
1778 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1779 ptr->r.record.r.grmask = saved_mask;
1780 ptr->r.record.r.grsave = reg;
1781 return ptr;
1782 }
1783
1784 static unw_rec_list *
1785 output_body ()
1786 {
1787 unw_rec_list *ptr = alloc_record (body);
1788 return ptr;
1789 }
1790
1791 static unw_rec_list *
1792 output_mem_stack_f (size)
1793 unsigned int size;
1794 {
1795 unw_rec_list *ptr = alloc_record (mem_stack_f);
1796 ptr->r.record.p.size = size;
1797 return ptr;
1798 }
1799
1800 static unw_rec_list *
1801 output_mem_stack_v ()
1802 {
1803 unw_rec_list *ptr = alloc_record (mem_stack_v);
1804 return ptr;
1805 }
1806
1807 static unw_rec_list *
1808 output_psp_gr (gr)
1809 unsigned int gr;
1810 {
1811 unw_rec_list *ptr = alloc_record (psp_gr);
1812 ptr->r.record.p.gr = gr;
1813 return ptr;
1814 }
1815
1816 static unw_rec_list *
1817 output_psp_sprel (offset)
1818 unsigned int offset;
1819 {
1820 unw_rec_list *ptr = alloc_record (psp_sprel);
1821 ptr->r.record.p.spoff = offset / 4;
1822 return ptr;
1823 }
1824
1825 static unw_rec_list *
1826 output_rp_when ()
1827 {
1828 unw_rec_list *ptr = alloc_record (rp_when);
1829 return ptr;
1830 }
1831
1832 static unw_rec_list *
1833 output_rp_gr (gr)
1834 unsigned int gr;
1835 {
1836 unw_rec_list *ptr = alloc_record (rp_gr);
1837 ptr->r.record.p.gr = gr;
1838 return ptr;
1839 }
1840
1841 static unw_rec_list *
1842 output_rp_br (br)
1843 unsigned int br;
1844 {
1845 unw_rec_list *ptr = alloc_record (rp_br);
1846 ptr->r.record.p.br = br;
1847 return ptr;
1848 }
1849
1850 static unw_rec_list *
1851 output_rp_psprel (offset)
1852 unsigned int offset;
1853 {
1854 unw_rec_list *ptr = alloc_record (rp_psprel);
1855 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
1856 return ptr;
1857 }
1858
1859 static unw_rec_list *
1860 output_rp_sprel (offset)
1861 unsigned int offset;
1862 {
1863 unw_rec_list *ptr = alloc_record (rp_sprel);
1864 ptr->r.record.p.spoff = offset / 4;
1865 return ptr;
1866 }
1867
1868 static unw_rec_list *
1869 output_pfs_when ()
1870 {
1871 unw_rec_list *ptr = alloc_record (pfs_when);
1872 return ptr;
1873 }
1874
1875 static unw_rec_list *
1876 output_pfs_gr (gr)
1877 unsigned int gr;
1878 {
1879 unw_rec_list *ptr = alloc_record (pfs_gr);
1880 ptr->r.record.p.gr = gr;
1881 return ptr;
1882 }
1883
1884 static unw_rec_list *
1885 output_pfs_psprel (offset)
1886 unsigned int offset;
1887 {
1888 unw_rec_list *ptr = alloc_record (pfs_psprel);
1889 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
1890 return ptr;
1891 }
1892
1893 static unw_rec_list *
1894 output_pfs_sprel (offset)
1895 unsigned int offset;
1896 {
1897 unw_rec_list *ptr = alloc_record (pfs_sprel);
1898 ptr->r.record.p.spoff = offset / 4;
1899 return ptr;
1900 }
1901
1902 static unw_rec_list *
1903 output_preds_when ()
1904 {
1905 unw_rec_list *ptr = alloc_record (preds_when);
1906 return ptr;
1907 }
1908
1909 static unw_rec_list *
1910 output_preds_gr (gr)
1911 unsigned int gr;
1912 {
1913 unw_rec_list *ptr = alloc_record (preds_gr);
1914 ptr->r.record.p.gr = gr;
1915 return ptr;
1916 }
1917
1918 static unw_rec_list *
1919 output_preds_psprel (offset)
1920 unsigned int offset;
1921 {
1922 unw_rec_list *ptr = alloc_record (preds_psprel);
1923 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
1924 return ptr;
1925 }
1926
1927 static unw_rec_list *
1928 output_preds_sprel (offset)
1929 unsigned int offset;
1930 {
1931 unw_rec_list *ptr = alloc_record (preds_sprel);
1932 ptr->r.record.p.spoff = offset / 4;
1933 return ptr;
1934 }
1935
1936 static unw_rec_list *
1937 output_fr_mem (mask)
1938 unsigned int mask;
1939 {
1940 unw_rec_list *ptr = alloc_record (fr_mem);
1941 ptr->r.record.p.rmask = mask;
1942 return ptr;
1943 }
1944
1945 static unw_rec_list *
1946 output_frgr_mem (gr_mask, fr_mask)
1947 unsigned int gr_mask;
1948 unsigned int fr_mask;
1949 {
1950 unw_rec_list *ptr = alloc_record (frgr_mem);
1951 ptr->r.record.p.grmask = gr_mask;
1952 ptr->r.record.p.frmask = fr_mask;
1953 return ptr;
1954 }
1955
1956 static unw_rec_list *
1957 output_gr_gr (mask, reg)
1958 unsigned int mask;
1959 unsigned int reg;
1960 {
1961 unw_rec_list *ptr = alloc_record (gr_gr);
1962 ptr->r.record.p.grmask = mask;
1963 ptr->r.record.p.gr = reg;
1964 return ptr;
1965 }
1966
1967 static unw_rec_list *
1968 output_gr_mem (mask)
1969 unsigned int mask;
1970 {
1971 unw_rec_list *ptr = alloc_record (gr_mem);
1972 ptr->r.record.p.rmask = mask;
1973 return ptr;
1974 }
1975
1976 static unw_rec_list *
1977 output_br_mem (unsigned int mask)
1978 {
1979 unw_rec_list *ptr = alloc_record (br_mem);
1980 ptr->r.record.p.brmask = mask;
1981 return ptr;
1982 }
1983
1984 static unw_rec_list *
1985 output_br_gr (save_mask, reg)
1986 unsigned int save_mask;
1987 unsigned int reg;
1988 {
1989 unw_rec_list *ptr = alloc_record (br_gr);
1990 ptr->r.record.p.brmask = save_mask;
1991 ptr->r.record.p.gr = reg;
1992 return ptr;
1993 }
1994
1995 static unw_rec_list *
1996 output_spill_base (offset)
1997 unsigned int offset;
1998 {
1999 unw_rec_list *ptr = alloc_record (spill_base);
2000 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2001 return ptr;
2002 }
2003
2004 static unw_rec_list *
2005 output_unat_when ()
2006 {
2007 unw_rec_list *ptr = alloc_record (unat_when);
2008 return ptr;
2009 }
2010
2011 static unw_rec_list *
2012 output_unat_gr (gr)
2013 unsigned int gr;
2014 {
2015 unw_rec_list *ptr = alloc_record (unat_gr);
2016 ptr->r.record.p.gr = gr;
2017 return ptr;
2018 }
2019
2020 static unw_rec_list *
2021 output_unat_psprel (offset)
2022 unsigned int offset;
2023 {
2024 unw_rec_list *ptr = alloc_record (unat_psprel);
2025 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2026 return ptr;
2027 }
2028
2029 static unw_rec_list *
2030 output_unat_sprel (offset)
2031 unsigned int offset;
2032 {
2033 unw_rec_list *ptr = alloc_record (unat_sprel);
2034 ptr->r.record.p.spoff = offset / 4;
2035 return ptr;
2036 }
2037
2038 static unw_rec_list *
2039 output_lc_when ()
2040 {
2041 unw_rec_list *ptr = alloc_record (lc_when);
2042 return ptr;
2043 }
2044
2045 static unw_rec_list *
2046 output_lc_gr (gr)
2047 unsigned int gr;
2048 {
2049 unw_rec_list *ptr = alloc_record (lc_gr);
2050 ptr->r.record.p.gr = gr;
2051 return ptr;
2052 }
2053
2054 static unw_rec_list *
2055 output_lc_psprel (offset)
2056 unsigned int offset;
2057 {
2058 unw_rec_list *ptr = alloc_record (lc_psprel);
2059 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2060 return ptr;
2061 }
2062
2063 static unw_rec_list *
2064 output_lc_sprel (offset)
2065 unsigned int offset;
2066 {
2067 unw_rec_list *ptr = alloc_record (lc_sprel);
2068 ptr->r.record.p.spoff = offset / 4;
2069 return ptr;
2070 }
2071
2072 static unw_rec_list *
2073 output_fpsr_when ()
2074 {
2075 unw_rec_list *ptr = alloc_record (fpsr_when);
2076 return ptr;
2077 }
2078
2079 static unw_rec_list *
2080 output_fpsr_gr (gr)
2081 unsigned int gr;
2082 {
2083 unw_rec_list *ptr = alloc_record (fpsr_gr);
2084 ptr->r.record.p.gr = gr;
2085 return ptr;
2086 }
2087
2088 static unw_rec_list *
2089 output_fpsr_psprel (offset)
2090 unsigned int offset;
2091 {
2092 unw_rec_list *ptr = alloc_record (fpsr_psprel);
2093 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2094 return ptr;
2095 }
2096
2097 static unw_rec_list *
2098 output_fpsr_sprel (offset)
2099 unsigned int offset;
2100 {
2101 unw_rec_list *ptr = alloc_record (fpsr_sprel);
2102 ptr->r.record.p.spoff = offset / 4;
2103 return ptr;
2104 }
2105
2106 static unw_rec_list *
2107 output_priunat_when_gr ()
2108 {
2109 unw_rec_list *ptr = alloc_record (priunat_when_gr);
2110 return ptr;
2111 }
2112
2113 static unw_rec_list *
2114 output_priunat_when_mem ()
2115 {
2116 unw_rec_list *ptr = alloc_record (priunat_when_mem);
2117 return ptr;
2118 }
2119
2120 static unw_rec_list *
2121 output_priunat_gr (gr)
2122 unsigned int gr;
2123 {
2124 unw_rec_list *ptr = alloc_record (priunat_gr);
2125 ptr->r.record.p.gr = gr;
2126 return ptr;
2127 }
2128
2129 static unw_rec_list *
2130 output_priunat_psprel (offset)
2131 unsigned int offset;
2132 {
2133 unw_rec_list *ptr = alloc_record (priunat_psprel);
2134 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2135 return ptr;
2136 }
2137
2138 static unw_rec_list *
2139 output_priunat_sprel (offset)
2140 unsigned int offset;
2141 {
2142 unw_rec_list *ptr = alloc_record (priunat_sprel);
2143 ptr->r.record.p.spoff = offset / 4;
2144 return ptr;
2145 }
2146
2147 static unw_rec_list *
2148 output_bsp_when ()
2149 {
2150 unw_rec_list *ptr = alloc_record (bsp_when);
2151 return ptr;
2152 }
2153
2154 static unw_rec_list *
2155 output_bsp_gr (gr)
2156 unsigned int gr;
2157 {
2158 unw_rec_list *ptr = alloc_record (bsp_gr);
2159 ptr->r.record.p.gr = gr;
2160 return ptr;
2161 }
2162
2163 static unw_rec_list *
2164 output_bsp_psprel (offset)
2165 unsigned int offset;
2166 {
2167 unw_rec_list *ptr = alloc_record (bsp_psprel);
2168 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2169 return ptr;
2170 }
2171
2172 static unw_rec_list *
2173 output_bsp_sprel (offset)
2174 unsigned int offset;
2175 {
2176 unw_rec_list *ptr = alloc_record (bsp_sprel);
2177 ptr->r.record.p.spoff = offset / 4;
2178 return ptr;
2179 }
2180
2181 static unw_rec_list *
2182 output_bspstore_when ()
2183 {
2184 unw_rec_list *ptr = alloc_record (bspstore_when);
2185 return ptr;
2186 }
2187
2188 static unw_rec_list *
2189 output_bspstore_gr (gr)
2190 unsigned int gr;
2191 {
2192 unw_rec_list *ptr = alloc_record (bspstore_gr);
2193 ptr->r.record.p.gr = gr;
2194 return ptr;
2195 }
2196
2197 static unw_rec_list *
2198 output_bspstore_psprel (offset)
2199 unsigned int offset;
2200 {
2201 unw_rec_list *ptr = alloc_record (bspstore_psprel);
2202 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2203 return ptr;
2204 }
2205
2206 static unw_rec_list *
2207 output_bspstore_sprel (offset)
2208 unsigned int offset;
2209 {
2210 unw_rec_list *ptr = alloc_record (bspstore_sprel);
2211 ptr->r.record.p.spoff = offset / 4;
2212 return ptr;
2213 }
2214
2215 static unw_rec_list *
2216 output_rnat_when ()
2217 {
2218 unw_rec_list *ptr = alloc_record (rnat_when);
2219 return ptr;
2220 }
2221
2222 static unw_rec_list *
2223 output_rnat_gr (gr)
2224 unsigned int gr;
2225 {
2226 unw_rec_list *ptr = alloc_record (rnat_gr);
2227 ptr->r.record.p.gr = gr;
2228 return ptr;
2229 }
2230
2231 static unw_rec_list *
2232 output_rnat_psprel (offset)
2233 unsigned int offset;
2234 {
2235 unw_rec_list *ptr = alloc_record (rnat_psprel);
2236 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2237 return ptr;
2238 }
2239
2240 static unw_rec_list *
2241 output_rnat_sprel (offset)
2242 unsigned int offset;
2243 {
2244 unw_rec_list *ptr = alloc_record (rnat_sprel);
2245 ptr->r.record.p.spoff = offset / 4;
2246 return ptr;
2247 }
2248
2249 static unw_rec_list *
2250 output_unwabi (abi, context)
2251 unsigned long abi;
2252 unsigned long context;
2253 {
2254 unw_rec_list *ptr = alloc_record (unwabi);
2255 ptr->r.record.p.abi = abi;
2256 ptr->r.record.p.context = context;
2257 return ptr;
2258 }
2259
2260 static unw_rec_list *
2261 output_epilogue (unsigned long ecount)
2262 {
2263 unw_rec_list *ptr = alloc_record (epilogue);
2264 ptr->r.record.b.ecount = ecount;
2265 return ptr;
2266 }
2267
2268 static unw_rec_list *
2269 output_label_state (unsigned long label)
2270 {
2271 unw_rec_list *ptr = alloc_record (label_state);
2272 ptr->r.record.b.label = label;
2273 return ptr;
2274 }
2275
2276 static unw_rec_list *
2277 output_copy_state (unsigned long label)
2278 {
2279 unw_rec_list *ptr = alloc_record (copy_state);
2280 ptr->r.record.b.label = label;
2281 return ptr;
2282 }
2283
2284 static unw_rec_list *
2285 output_spill_psprel (ab, reg, offset)
2286 unsigned int ab;
2287 unsigned int reg;
2288 unsigned int offset;
2289 {
2290 unw_rec_list *ptr = alloc_record (spill_psprel);
2291 ptr->r.record.x.ab = ab;
2292 ptr->r.record.x.reg = reg;
2293 ptr->r.record.x.pspoff = ENCODED_PSP_OFFSET (offset);
2294 return ptr;
2295 }
2296
2297 static unw_rec_list *
2298 output_spill_sprel (ab, reg, offset)
2299 unsigned int ab;
2300 unsigned int reg;
2301 unsigned int offset;
2302 {
2303 unw_rec_list *ptr = alloc_record (spill_sprel);
2304 ptr->r.record.x.ab = ab;
2305 ptr->r.record.x.reg = reg;
2306 ptr->r.record.x.spoff = offset / 4;
2307 return ptr;
2308 }
2309
2310 static unw_rec_list *
2311 output_spill_psprel_p (ab, reg, offset, predicate)
2312 unsigned int ab;
2313 unsigned int reg;
2314 unsigned int offset;
2315 unsigned int predicate;
2316 {
2317 unw_rec_list *ptr = alloc_record (spill_psprel_p);
2318 ptr->r.record.x.ab = ab;
2319 ptr->r.record.x.reg = reg;
2320 ptr->r.record.x.pspoff = ENCODED_PSP_OFFSET (offset);
2321 ptr->r.record.x.qp = predicate;
2322 return ptr;
2323 }
2324
2325 static unw_rec_list *
2326 output_spill_sprel_p (ab, reg, offset, predicate)
2327 unsigned int ab;
2328 unsigned int reg;
2329 unsigned int offset;
2330 unsigned int predicate;
2331 {
2332 unw_rec_list *ptr = alloc_record (spill_sprel_p);
2333 ptr->r.record.x.ab = ab;
2334 ptr->r.record.x.reg = reg;
2335 ptr->r.record.x.spoff = offset / 4;
2336 ptr->r.record.x.qp = predicate;
2337 return ptr;
2338 }
2339
2340 static unw_rec_list *
2341 output_spill_reg (ab, reg, targ_reg, xy)
2342 unsigned int ab;
2343 unsigned int reg;
2344 unsigned int targ_reg;
2345 unsigned int xy;
2346 {
2347 unw_rec_list *ptr = alloc_record (spill_reg);
2348 ptr->r.record.x.ab = ab;
2349 ptr->r.record.x.reg = reg;
2350 ptr->r.record.x.treg = targ_reg;
2351 ptr->r.record.x.xy = xy;
2352 return ptr;
2353 }
2354
2355 static unw_rec_list *
2356 output_spill_reg_p (ab, reg, targ_reg, xy, predicate)
2357 unsigned int ab;
2358 unsigned int reg;
2359 unsigned int targ_reg;
2360 unsigned int xy;
2361 unsigned int predicate;
2362 {
2363 unw_rec_list *ptr = alloc_record (spill_reg_p);
2364 ptr->r.record.x.ab = ab;
2365 ptr->r.record.x.reg = reg;
2366 ptr->r.record.x.treg = targ_reg;
2367 ptr->r.record.x.xy = xy;
2368 ptr->r.record.x.qp = predicate;
2369 return ptr;
2370 }
2371
2372 /* Given a unw_rec_list process the correct format with the
2373 specified function. */
2374
2375 static void
2376 process_one_record (ptr, f)
2377 unw_rec_list *ptr;
2378 vbyte_func f;
2379 {
2380 unsigned long fr_mask, gr_mask;
2381
2382 switch (ptr->r.type)
2383 {
2384 /* This is a dummy record that takes up no space in the output. */
2385 case endp:
2386 break;
2387
2388 case gr_mem:
2389 case fr_mem:
2390 case br_mem:
2391 case frgr_mem:
2392 /* These are taken care of by prologue/prologue_gr. */
2393 break;
2394
2395 case prologue_gr:
2396 case prologue:
2397 if (ptr->r.type == prologue_gr)
2398 output_R2_format (f, ptr->r.record.r.grmask,
2399 ptr->r.record.r.grsave, ptr->r.record.r.rlen);
2400 else
2401 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2402
2403 /* Output descriptor(s) for union of register spills (if any). */
2404 gr_mask = ptr->r.record.r.mask.gr_mem;
2405 fr_mask = ptr->r.record.r.mask.fr_mem;
2406 if (fr_mask)
2407 {
2408 if ((fr_mask & ~0xfUL) == 0)
2409 output_P6_format (f, fr_mem, fr_mask);
2410 else
2411 {
2412 output_P5_format (f, gr_mask, fr_mask);
2413 gr_mask = 0;
2414 }
2415 }
2416 if (gr_mask)
2417 output_P6_format (f, gr_mem, gr_mask);
2418 if (ptr->r.record.r.mask.br_mem)
2419 output_P1_format (f, ptr->r.record.r.mask.br_mem);
2420
2421 /* output imask descriptor if necessary: */
2422 if (ptr->r.record.r.mask.i)
2423 output_P4_format (f, ptr->r.record.r.mask.i,
2424 ptr->r.record.r.imask_size);
2425 break;
2426
2427 case body:
2428 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2429 break;
2430 case mem_stack_f:
2431 case mem_stack_v:
2432 output_P7_format (f, ptr->r.type, ptr->r.record.p.t,
2433 ptr->r.record.p.size);
2434 break;
2435 case psp_gr:
2436 case rp_gr:
2437 case pfs_gr:
2438 case preds_gr:
2439 case unat_gr:
2440 case lc_gr:
2441 case fpsr_gr:
2442 case priunat_gr:
2443 case bsp_gr:
2444 case bspstore_gr:
2445 case rnat_gr:
2446 output_P3_format (f, ptr->r.type, ptr->r.record.p.gr);
2447 break;
2448 case rp_br:
2449 output_P3_format (f, rp_br, ptr->r.record.p.br);
2450 break;
2451 case psp_sprel:
2452 output_P7_format (f, psp_sprel, ptr->r.record.p.spoff, 0);
2453 break;
2454 case rp_when:
2455 case pfs_when:
2456 case preds_when:
2457 case unat_when:
2458 case lc_when:
2459 case fpsr_when:
2460 output_P7_format (f, ptr->r.type, ptr->r.record.p.t, 0);
2461 break;
2462 case rp_psprel:
2463 case pfs_psprel:
2464 case preds_psprel:
2465 case unat_psprel:
2466 case lc_psprel:
2467 case fpsr_psprel:
2468 case spill_base:
2469 output_P7_format (f, ptr->r.type, ptr->r.record.p.pspoff, 0);
2470 break;
2471 case rp_sprel:
2472 case pfs_sprel:
2473 case preds_sprel:
2474 case unat_sprel:
2475 case lc_sprel:
2476 case fpsr_sprel:
2477 case priunat_sprel:
2478 case bsp_sprel:
2479 case bspstore_sprel:
2480 case rnat_sprel:
2481 output_P8_format (f, ptr->r.type, ptr->r.record.p.spoff);
2482 break;
2483 case gr_gr:
2484 output_P9_format (f, ptr->r.record.p.grmask, ptr->r.record.p.gr);
2485 break;
2486 case br_gr:
2487 output_P2_format (f, ptr->r.record.p.brmask, ptr->r.record.p.gr);
2488 break;
2489 case spill_mask:
2490 as_bad ("spill_mask record unimplemented.");
2491 break;
2492 case priunat_when_gr:
2493 case priunat_when_mem:
2494 case bsp_when:
2495 case bspstore_when:
2496 case rnat_when:
2497 output_P8_format (f, ptr->r.type, ptr->r.record.p.t);
2498 break;
2499 case priunat_psprel:
2500 case bsp_psprel:
2501 case bspstore_psprel:
2502 case rnat_psprel:
2503 output_P8_format (f, ptr->r.type, ptr->r.record.p.pspoff);
2504 break;
2505 case unwabi:
2506 output_P10_format (f, ptr->r.record.p.abi, ptr->r.record.p.context);
2507 break;
2508 case epilogue:
2509 output_B3_format (f, ptr->r.record.b.ecount, ptr->r.record.b.t);
2510 break;
2511 case label_state:
2512 case copy_state:
2513 output_B4_format (f, ptr->r.type, ptr->r.record.b.label);
2514 break;
2515 case spill_psprel:
2516 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2517 ptr->r.record.x.reg, ptr->r.record.x.t,
2518 ptr->r.record.x.pspoff);
2519 break;
2520 case spill_sprel:
2521 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2522 ptr->r.record.x.reg, ptr->r.record.x.t,
2523 ptr->r.record.x.spoff);
2524 break;
2525 case spill_reg:
2526 output_X2_format (f, ptr->r.record.x.ab, ptr->r.record.x.reg,
2527 ptr->r.record.x.xy >> 1, ptr->r.record.x.xy,
2528 ptr->r.record.x.treg, ptr->r.record.x.t);
2529 break;
2530 case spill_psprel_p:
2531 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2532 ptr->r.record.x.ab, ptr->r.record.x.reg,
2533 ptr->r.record.x.t, ptr->r.record.x.pspoff);
2534 break;
2535 case spill_sprel_p:
2536 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2537 ptr->r.record.x.ab, ptr->r.record.x.reg,
2538 ptr->r.record.x.t, ptr->r.record.x.spoff);
2539 break;
2540 case spill_reg_p:
2541 output_X4_format (f, ptr->r.record.x.qp, ptr->r.record.x.ab,
2542 ptr->r.record.x.reg, ptr->r.record.x.xy >> 1,
2543 ptr->r.record.x.xy, ptr->r.record.x.treg,
2544 ptr->r.record.x.t);
2545 break;
2546 default:
2547 as_bad ("record_type_not_valid");
2548 break;
2549 }
2550 }
2551
2552 /* Given a unw_rec_list list, process all the records with
2553 the specified function. */
2554 static void
2555 process_unw_records (list, f)
2556 unw_rec_list *list;
2557 vbyte_func f;
2558 {
2559 unw_rec_list *ptr;
2560 for (ptr = list; ptr; ptr = ptr->next)
2561 process_one_record (ptr, f);
2562 }
2563
2564 /* Determine the size of a record list in bytes. */
2565 static int
2566 calc_record_size (list)
2567 unw_rec_list *list;
2568 {
2569 vbyte_count = 0;
2570 process_unw_records (list, count_output);
2571 return vbyte_count;
2572 }
2573
2574 /* Update IMASK bitmask to reflect the fact that one or more registers
2575 of type TYPE are saved starting at instruction with index T. If N
2576 bits are set in REGMASK, it is assumed that instructions T through
2577 T+N-1 save these registers.
2578
2579 TYPE values:
2580 0: no save
2581 1: instruction saves next fp reg
2582 2: instruction saves next general reg
2583 3: instruction saves next branch reg */
2584 static void
2585 set_imask (region, regmask, t, type)
2586 unw_rec_list *region;
2587 unsigned long regmask;
2588 unsigned long t;
2589 unsigned int type;
2590 {
2591 unsigned char *imask;
2592 unsigned long imask_size;
2593 unsigned int i;
2594 int pos;
2595
2596 imask = region->r.record.r.mask.i;
2597 imask_size = region->r.record.r.imask_size;
2598 if (!imask)
2599 {
2600 imask_size = (region->r.record.r.rlen * 2 + 7) / 8 + 1;
2601 imask = xmalloc (imask_size);
2602 memset (imask, 0, imask_size);
2603
2604 region->r.record.r.imask_size = imask_size;
2605 region->r.record.r.mask.i = imask;
2606 }
2607
2608 i = (t / 4) + 1;
2609 pos = 2 * (3 - t % 4);
2610 while (regmask)
2611 {
2612 if (i >= imask_size)
2613 {
2614 as_bad ("Ignoring attempt to spill beyond end of region");
2615 return;
2616 }
2617
2618 imask[i] |= (type & 0x3) << pos;
2619
2620 regmask &= (regmask - 1);
2621 pos -= 2;
2622 if (pos < 0)
2623 {
2624 pos = 0;
2625 ++i;
2626 }
2627 }
2628 }
2629
2630 /* Return the number of instruction slots from FIRST_ADDR to SLOT_ADDR.
2631 SLOT_FRAG is the frag containing SLOT_ADDR, and FIRST_FRAG is the frag
2632 containing FIRST_ADDR. If BEFORE_RELAX, then we use worst-case estimates
2633 for frag sizes. */
2634
2635 unsigned long
2636 slot_index (slot_addr, slot_frag, first_addr, first_frag, before_relax)
2637 unsigned long slot_addr;
2638 fragS *slot_frag;
2639 unsigned long first_addr;
2640 fragS *first_frag;
2641 int before_relax;
2642 {
2643 unsigned long index = 0;
2644
2645 /* First time we are called, the initial address and frag are invalid. */
2646 if (first_addr == 0)
2647 return 0;
2648
2649 /* If the two addresses are in different frags, then we need to add in
2650 the remaining size of this frag, and then the entire size of intermediate
2651 frags. */
2652 while (slot_frag != first_frag)
2653 {
2654 unsigned long start_addr = (unsigned long) &first_frag->fr_literal;
2655
2656 if (! before_relax)
2657 {
2658 /* We can get the final addresses only during and after
2659 relaxation. */
2660 if (first_frag->fr_next && first_frag->fr_next->fr_address)
2661 index += 3 * ((first_frag->fr_next->fr_address
2662 - first_frag->fr_address
2663 - first_frag->fr_fix) >> 4);
2664 }
2665 else
2666 /* We don't know what the final addresses will be. We try our
2667 best to estimate. */
2668 switch (first_frag->fr_type)
2669 {
2670 default:
2671 break;
2672
2673 case rs_space:
2674 as_fatal ("only constant space allocation is supported");
2675 break;
2676
2677 case rs_align:
2678 case rs_align_code:
2679 case rs_align_test:
2680 /* Take alignment into account. Assume the worst case
2681 before relaxation. */
2682 index += 3 * ((1 << first_frag->fr_offset) >> 4);
2683 break;
2684
2685 case rs_org:
2686 if (first_frag->fr_symbol)
2687 {
2688 as_fatal ("only constant offsets are supported");
2689 break;
2690 }
2691 case rs_fill:
2692 index += 3 * (first_frag->fr_offset >> 4);
2693 break;
2694 }
2695
2696 /* Add in the full size of the frag converted to instruction slots. */
2697 index += 3 * (first_frag->fr_fix >> 4);
2698 /* Subtract away the initial part before first_addr. */
2699 index -= (3 * ((first_addr >> 4) - (start_addr >> 4))
2700 + ((first_addr & 0x3) - (start_addr & 0x3)));
2701
2702 /* Move to the beginning of the next frag. */
2703 first_frag = first_frag->fr_next;
2704 first_addr = (unsigned long) &first_frag->fr_literal;
2705 }
2706
2707 /* Add in the used part of the last frag. */
2708 index += (3 * ((slot_addr >> 4) - (first_addr >> 4))
2709 + ((slot_addr & 0x3) - (first_addr & 0x3)));
2710 return index;
2711 }
2712
2713 /* Optimize unwind record directives. */
2714
2715 static unw_rec_list *
2716 optimize_unw_records (list)
2717 unw_rec_list *list;
2718 {
2719 if (!list)
2720 return NULL;
2721
2722 /* If the only unwind record is ".prologue" or ".prologue" followed
2723 by ".body", then we can optimize the unwind directives away. */
2724 if (list->r.type == prologue
2725 && (list->next->r.type == endp
2726 || (list->next->r.type == body && list->next->next->r.type == endp)))
2727 return NULL;
2728
2729 return list;
2730 }
2731
2732 /* Given a complete record list, process any records which have
2733 unresolved fields, (ie length counts for a prologue). After
2734 this has been run, all necessary information should be available
2735 within each record to generate an image. */
2736
2737 static void
2738 fixup_unw_records (list, before_relax)
2739 unw_rec_list *list;
2740 int before_relax;
2741 {
2742 unw_rec_list *ptr, *region = 0;
2743 unsigned long first_addr = 0, rlen = 0, t;
2744 fragS *first_frag = 0;
2745
2746 for (ptr = list; ptr; ptr = ptr->next)
2747 {
2748 if (ptr->slot_number == SLOT_NUM_NOT_SET)
2749 as_bad (" Insn slot not set in unwind record.");
2750 t = slot_index (ptr->slot_number, ptr->slot_frag,
2751 first_addr, first_frag, before_relax);
2752 switch (ptr->r.type)
2753 {
2754 case prologue:
2755 case prologue_gr:
2756 case body:
2757 {
2758 unw_rec_list *last;
2759 int size;
2760 unsigned long last_addr = 0;
2761 fragS *last_frag = NULL;
2762
2763 first_addr = ptr->slot_number;
2764 first_frag = ptr->slot_frag;
2765 /* Find either the next body/prologue start, or the end of
2766 the function, and determine the size of the region. */
2767 for (last = ptr->next; last != NULL; last = last->next)
2768 if (last->r.type == prologue || last->r.type == prologue_gr
2769 || last->r.type == body || last->r.type == endp)
2770 {
2771 last_addr = last->slot_number;
2772 last_frag = last->slot_frag;
2773 break;
2774 }
2775 size = slot_index (last_addr, last_frag, first_addr, first_frag,
2776 before_relax);
2777 rlen = ptr->r.record.r.rlen = size;
2778 if (ptr->r.type == body)
2779 /* End of region. */
2780 region = 0;
2781 else
2782 region = ptr;
2783 break;
2784 }
2785 case epilogue:
2786 if (t < rlen)
2787 ptr->r.record.b.t = rlen - 1 - t;
2788 else
2789 /* This happens when a memory-stack-less procedure uses a
2790 ".restore sp" directive at the end of a region to pop
2791 the frame state. */
2792 ptr->r.record.b.t = 0;
2793 break;
2794
2795 case mem_stack_f:
2796 case mem_stack_v:
2797 case rp_when:
2798 case pfs_when:
2799 case preds_when:
2800 case unat_when:
2801 case lc_when:
2802 case fpsr_when:
2803 case priunat_when_gr:
2804 case priunat_when_mem:
2805 case bsp_when:
2806 case bspstore_when:
2807 case rnat_when:
2808 ptr->r.record.p.t = t;
2809 break;
2810
2811 case spill_reg:
2812 case spill_sprel:
2813 case spill_psprel:
2814 case spill_reg_p:
2815 case spill_sprel_p:
2816 case spill_psprel_p:
2817 ptr->r.record.x.t = t;
2818 break;
2819
2820 case frgr_mem:
2821 if (!region)
2822 {
2823 as_bad ("frgr_mem record before region record!");
2824 return;
2825 }
2826 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
2827 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
2828 set_imask (region, ptr->r.record.p.frmask, t, 1);
2829 set_imask (region, ptr->r.record.p.grmask, t, 2);
2830 break;
2831 case fr_mem:
2832 if (!region)
2833 {
2834 as_bad ("fr_mem record before region record!");
2835 return;
2836 }
2837 region->r.record.r.mask.fr_mem |= ptr->r.record.p.rmask;
2838 set_imask (region, ptr->r.record.p.rmask, t, 1);
2839 break;
2840 case gr_mem:
2841 if (!region)
2842 {
2843 as_bad ("gr_mem record before region record!");
2844 return;
2845 }
2846 region->r.record.r.mask.gr_mem |= ptr->r.record.p.rmask;
2847 set_imask (region, ptr->r.record.p.rmask, t, 2);
2848 break;
2849 case br_mem:
2850 if (!region)
2851 {
2852 as_bad ("br_mem record before region record!");
2853 return;
2854 }
2855 region->r.record.r.mask.br_mem |= ptr->r.record.p.brmask;
2856 set_imask (region, ptr->r.record.p.brmask, t, 3);
2857 break;
2858
2859 case gr_gr:
2860 if (!region)
2861 {
2862 as_bad ("gr_gr record before region record!");
2863 return;
2864 }
2865 set_imask (region, ptr->r.record.p.grmask, t, 2);
2866 break;
2867 case br_gr:
2868 if (!region)
2869 {
2870 as_bad ("br_gr record before region record!");
2871 return;
2872 }
2873 set_imask (region, ptr->r.record.p.brmask, t, 3);
2874 break;
2875
2876 default:
2877 break;
2878 }
2879 }
2880 }
2881
2882 /* Estimate the size of a frag before relaxing. We only have one type of frag
2883 to handle here, which is the unwind info frag. */
2884
2885 int
2886 ia64_estimate_size_before_relax (fragS *frag,
2887 asection *segtype ATTRIBUTE_UNUSED)
2888 {
2889 unw_rec_list *list;
2890 int len, size, pad;
2891
2892 /* ??? This code is identical to the first part of ia64_convert_frag. */
2893 list = (unw_rec_list *) frag->fr_opcode;
2894 fixup_unw_records (list, 0);
2895
2896 len = calc_record_size (list);
2897 /* pad to pointer-size boundary. */
2898 pad = len % md.pointer_size;
2899 if (pad != 0)
2900 len += md.pointer_size - pad;
2901 /* Add 8 for the header. */
2902 size = len + 8;
2903 /* Add a pointer for the personality offset. */
2904 if (frag->fr_offset)
2905 size += md.pointer_size;
2906
2907 /* fr_var carries the max_chars that we created the fragment with.
2908 We must, of course, have allocated enough memory earlier. */
2909 assert (frag->fr_var >= size);
2910
2911 return frag->fr_fix + size;
2912 }
2913
2914 /* This function converts a rs_machine_dependent variant frag into a
2915 normal fill frag with the unwind image from the the record list. */
2916 void
2917 ia64_convert_frag (fragS *frag)
2918 {
2919 unw_rec_list *list;
2920 int len, size, pad;
2921 valueT flag_value;
2922
2923 /* ??? This code is identical to ia64_estimate_size_before_relax. */
2924 list = (unw_rec_list *) frag->fr_opcode;
2925 fixup_unw_records (list, 0);
2926
2927 len = calc_record_size (list);
2928 /* pad to pointer-size boundary. */
2929 pad = len % md.pointer_size;
2930 if (pad != 0)
2931 len += md.pointer_size - pad;
2932 /* Add 8 for the header. */
2933 size = len + 8;
2934 /* Add a pointer for the personality offset. */
2935 if (frag->fr_offset)
2936 size += md.pointer_size;
2937
2938 /* fr_var carries the max_chars that we created the fragment with.
2939 We must, of course, have allocated enough memory earlier. */
2940 assert (frag->fr_var >= size);
2941
2942 /* Initialize the header area. fr_offset is initialized with
2943 unwind.personality_routine. */
2944 if (frag->fr_offset)
2945 {
2946 if (md.flags & EF_IA_64_ABI64)
2947 flag_value = (bfd_vma) 3 << 32;
2948 else
2949 /* 32-bit unwind info block. */
2950 flag_value = (bfd_vma) 0x1003 << 32;
2951 }
2952 else
2953 flag_value = 0;
2954
2955 md_number_to_chars (frag->fr_literal,
2956 (((bfd_vma) 1 << 48) /* Version. */
2957 | flag_value /* U & E handler flags. */
2958 | (len / md.pointer_size)), /* Length. */
2959 8);
2960
2961 /* Skip the header. */
2962 vbyte_mem_ptr = frag->fr_literal + 8;
2963 process_unw_records (list, output_vbyte_mem);
2964
2965 /* Fill the padding bytes with zeros. */
2966 if (pad != 0)
2967 md_number_to_chars (frag->fr_literal + len + 8 - md.pointer_size + pad, 0,
2968 md.pointer_size - pad);
2969
2970 frag->fr_fix += size;
2971 frag->fr_type = rs_fill;
2972 frag->fr_var = 0;
2973 frag->fr_offset = 0;
2974 }
2975
2976 static int
2977 convert_expr_to_ab_reg (e, ab, regp)
2978 expressionS *e;
2979 unsigned int *ab;
2980 unsigned int *regp;
2981 {
2982 unsigned int reg;
2983
2984 if (e->X_op != O_register)
2985 return 0;
2986
2987 reg = e->X_add_number;
2988 if (reg >= (REG_GR + 4) && reg <= (REG_GR + 7))
2989 {
2990 *ab = 0;
2991 *regp = reg - REG_GR;
2992 }
2993 else if ((reg >= (REG_FR + 2) && reg <= (REG_FR + 5))
2994 || (reg >= (REG_FR + 16) && reg <= (REG_FR + 31)))
2995 {
2996 *ab = 1;
2997 *regp = reg - REG_FR;
2998 }
2999 else if (reg >= (REG_BR + 1) && reg <= (REG_BR + 5))
3000 {
3001 *ab = 2;
3002 *regp = reg - REG_BR;
3003 }
3004 else
3005 {
3006 *ab = 3;
3007 switch (reg)
3008 {
3009 case REG_PR: *regp = 0; break;
3010 case REG_PSP: *regp = 1; break;
3011 case REG_PRIUNAT: *regp = 2; break;
3012 case REG_BR + 0: *regp = 3; break;
3013 case REG_AR + AR_BSP: *regp = 4; break;
3014 case REG_AR + AR_BSPSTORE: *regp = 5; break;
3015 case REG_AR + AR_RNAT: *regp = 6; break;
3016 case REG_AR + AR_UNAT: *regp = 7; break;
3017 case REG_AR + AR_FPSR: *regp = 8; break;
3018 case REG_AR + AR_PFS: *regp = 9; break;
3019 case REG_AR + AR_LC: *regp = 10; break;
3020
3021 default:
3022 return 0;
3023 }
3024 }
3025 return 1;
3026 }
3027
3028 static int
3029 convert_expr_to_xy_reg (e, xy, regp)
3030 expressionS *e;
3031 unsigned int *xy;
3032 unsigned int *regp;
3033 {
3034 unsigned int reg;
3035
3036 if (e->X_op != O_register)
3037 return 0;
3038
3039 reg = e->X_add_number;
3040
3041 if (/* reg >= REG_GR && */ reg <= (REG_GR + 127))
3042 {
3043 *xy = 0;
3044 *regp = reg - REG_GR;
3045 }
3046 else if (reg >= REG_FR && reg <= (REG_FR + 127))
3047 {
3048 *xy = 1;
3049 *regp = reg - REG_FR;
3050 }
3051 else if (reg >= REG_BR && reg <= (REG_BR + 7))
3052 {
3053 *xy = 2;
3054 *regp = reg - REG_BR;
3055 }
3056 else
3057 return -1;
3058 return 1;
3059 }
3060
3061 static void
3062 dot_align (int arg)
3063 {
3064 /* The current frag is an alignment frag. */
3065 align_frag = frag_now;
3066 s_align_bytes (arg);
3067 }
3068
3069 static void
3070 dot_radix (dummy)
3071 int dummy ATTRIBUTE_UNUSED;
3072 {
3073 char *radix;
3074 int ch;
3075
3076 SKIP_WHITESPACE ();
3077
3078 if (is_it_end_of_statement ())
3079 return;
3080 radix = input_line_pointer;
3081 ch = get_symbol_end ();
3082 ia64_canonicalize_symbol_name (radix);
3083 if (strcasecmp (radix, "C"))
3084 as_bad ("Radix `%s' unsupported or invalid", radix);
3085 *input_line_pointer = ch;
3086 demand_empty_rest_of_line ();
3087 }
3088
3089 /* Helper function for .loc directives. If the assembler is not generating
3090 line number info, then we need to remember which instructions have a .loc
3091 directive, and only call dwarf2_gen_line_info for those instructions. */
3092
3093 static void
3094 dot_loc (int x)
3095 {
3096 CURR_SLOT.loc_directive_seen = 1;
3097 dwarf2_directive_loc (x);
3098 }
3099
3100 /* .sbss, .bss etc. are macros that expand into ".section SECNAME". */
3101 static void
3102 dot_special_section (which)
3103 int which;
3104 {
3105 set_section ((char *) special_section_name[which]);
3106 }
3107
3108 /* Return -1 for warning and 0 for error. */
3109
3110 static int
3111 unwind_diagnostic (const char * region, const char *directive)
3112 {
3113 if (md.unwind_check == unwind_check_warning)
3114 {
3115 as_warn (".%s outside of %s", directive, region);
3116 return -1;
3117 }
3118 else
3119 {
3120 as_bad (".%s outside of %s", directive, region);
3121 ignore_rest_of_line ();
3122 return 0;
3123 }
3124 }
3125
3126 /* Return 1 if a directive is in a procedure, -1 if a directive isn't in
3127 a procedure but the unwind directive check is set to warning, 0 if
3128 a directive isn't in a procedure and the unwind directive check is set
3129 to error. */
3130
3131 static int
3132 in_procedure (const char *directive)
3133 {
3134 if (unwind.proc_start
3135 && (!unwind.saved_text_seg || strcmp (directive, "endp") == 0))
3136 return 1;
3137 return unwind_diagnostic ("procedure", directive);
3138 }
3139
3140 /* Return 1 if a directive is in a prologue, -1 if a directive isn't in
3141 a prologue but the unwind directive check is set to warning, 0 if
3142 a directive isn't in a prologue and the unwind directive check is set
3143 to error. */
3144
3145 static int
3146 in_prologue (const char *directive)
3147 {
3148 int in = in_procedure (directive);
3149 if (in)
3150 {
3151 /* We are in a procedure. Check if we are in a prologue. */
3152 if (unwind.prologue)
3153 return 1;
3154 /* We only want to issue one message. */
3155 if (in == 1)
3156 return unwind_diagnostic ("prologue", directive);
3157 else
3158 return -1;
3159 }
3160 return 0;
3161 }
3162
3163 /* Return 1 if a directive is in a body, -1 if a directive isn't in
3164 a body but the unwind directive check is set to warning, 0 if
3165 a directive isn't in a body and the unwind directive check is set
3166 to error. */
3167
3168 static int
3169 in_body (const char *directive)
3170 {
3171 int in = in_procedure (directive);
3172 if (in)
3173 {
3174 /* We are in a procedure. Check if we are in a body. */
3175 if (unwind.body)
3176 return 1;
3177 /* We only want to issue one message. */
3178 if (in == 1)
3179 return unwind_diagnostic ("body region", directive);
3180 else
3181 return -1;
3182 }
3183 return 0;
3184 }
3185
3186 static void
3187 add_unwind_entry (ptr)
3188 unw_rec_list *ptr;
3189 {
3190 if (unwind.tail)
3191 unwind.tail->next = ptr;
3192 else
3193 unwind.list = ptr;
3194 unwind.tail = ptr;
3195
3196 /* The current entry can in fact be a chain of unwind entries. */
3197 if (unwind.current_entry == NULL)
3198 unwind.current_entry = ptr;
3199 }
3200
3201 static void
3202 dot_fframe (dummy)
3203 int dummy ATTRIBUTE_UNUSED;
3204 {
3205 expressionS e;
3206
3207 if (!in_prologue ("fframe"))
3208 return;
3209
3210 parse_operand (&e);
3211
3212 if (e.X_op != O_constant)
3213 as_bad ("Operand to .fframe must be a constant");
3214 else
3215 add_unwind_entry (output_mem_stack_f (e.X_add_number));
3216 }
3217
3218 static void
3219 dot_vframe (dummy)
3220 int dummy ATTRIBUTE_UNUSED;
3221 {
3222 expressionS e;
3223 unsigned reg;
3224
3225 if (!in_prologue ("vframe"))
3226 return;
3227
3228 parse_operand (&e);
3229 reg = e.X_add_number - REG_GR;
3230 if (e.X_op == O_register && reg < 128)
3231 {
3232 add_unwind_entry (output_mem_stack_v ());
3233 if (! (unwind.prologue_mask & 2))
3234 add_unwind_entry (output_psp_gr (reg));
3235 }
3236 else
3237 as_bad ("First operand to .vframe must be a general register");
3238 }
3239
3240 static void
3241 dot_vframesp (dummy)
3242 int dummy ATTRIBUTE_UNUSED;
3243 {
3244 expressionS e;
3245
3246 if (!in_prologue ("vframesp"))
3247 return;
3248
3249 parse_operand (&e);
3250 if (e.X_op == O_constant)
3251 {
3252 add_unwind_entry (output_mem_stack_v ());
3253 add_unwind_entry (output_psp_sprel (e.X_add_number));
3254 }
3255 else
3256 as_bad ("Operand to .vframesp must be a constant (sp-relative offset)");
3257 }
3258
3259 static void
3260 dot_vframepsp (dummy)
3261 int dummy ATTRIBUTE_UNUSED;
3262 {
3263 expressionS e;
3264
3265 if (!in_prologue ("vframepsp"))
3266 return;
3267
3268 parse_operand (&e);
3269 if (e.X_op == O_constant)
3270 {
3271 add_unwind_entry (output_mem_stack_v ());
3272 add_unwind_entry (output_psp_sprel (e.X_add_number));
3273 }
3274 else
3275 as_bad ("Operand to .vframepsp must be a constant (psp-relative offset)");
3276 }
3277
3278 static void
3279 dot_save (dummy)
3280 int dummy ATTRIBUTE_UNUSED;
3281 {
3282 expressionS e1, e2;
3283 int sep;
3284 int reg1, reg2;
3285
3286 if (!in_prologue ("save"))
3287 return;
3288
3289 sep = parse_operand (&e1);
3290 if (sep != ',')
3291 as_bad ("No second operand to .save");
3292 sep = parse_operand (&e2);
3293
3294 reg1 = e1.X_add_number;
3295 reg2 = e2.X_add_number - REG_GR;
3296
3297 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3298 if (e1.X_op == O_register)
3299 {
3300 if (e2.X_op == O_register && reg2 >= 0 && reg2 < 128)
3301 {
3302 switch (reg1)
3303 {
3304 case REG_AR + AR_BSP:
3305 add_unwind_entry (output_bsp_when ());
3306 add_unwind_entry (output_bsp_gr (reg2));
3307 break;
3308 case REG_AR + AR_BSPSTORE:
3309 add_unwind_entry (output_bspstore_when ());
3310 add_unwind_entry (output_bspstore_gr (reg2));
3311 break;
3312 case REG_AR + AR_RNAT:
3313 add_unwind_entry (output_rnat_when ());
3314 add_unwind_entry (output_rnat_gr (reg2));
3315 break;
3316 case REG_AR + AR_UNAT:
3317 add_unwind_entry (output_unat_when ());
3318 add_unwind_entry (output_unat_gr (reg2));
3319 break;
3320 case REG_AR + AR_FPSR:
3321 add_unwind_entry (output_fpsr_when ());
3322 add_unwind_entry (output_fpsr_gr (reg2));
3323 break;
3324 case REG_AR + AR_PFS:
3325 add_unwind_entry (output_pfs_when ());
3326 if (! (unwind.prologue_mask & 4))
3327 add_unwind_entry (output_pfs_gr (reg2));
3328 break;
3329 case REG_AR + AR_LC:
3330 add_unwind_entry (output_lc_when ());
3331 add_unwind_entry (output_lc_gr (reg2));
3332 break;
3333 case REG_BR:
3334 add_unwind_entry (output_rp_when ());
3335 if (! (unwind.prologue_mask & 8))
3336 add_unwind_entry (output_rp_gr (reg2));
3337 break;
3338 case REG_PR:
3339 add_unwind_entry (output_preds_when ());
3340 if (! (unwind.prologue_mask & 1))
3341 add_unwind_entry (output_preds_gr (reg2));
3342 break;
3343 case REG_PRIUNAT:
3344 add_unwind_entry (output_priunat_when_gr ());
3345 add_unwind_entry (output_priunat_gr (reg2));
3346 break;
3347 default:
3348 as_bad ("First operand not a valid register");
3349 }
3350 }
3351 else
3352 as_bad (" Second operand not a valid register");
3353 }
3354 else
3355 as_bad ("First operand not a register");
3356 }
3357
3358 static void
3359 dot_restore (dummy)
3360 int dummy ATTRIBUTE_UNUSED;
3361 {
3362 expressionS e1, e2;
3363 unsigned long ecount; /* # of _additional_ regions to pop */
3364 int sep;
3365
3366 if (!in_body ("restore"))
3367 return;
3368
3369 sep = parse_operand (&e1);
3370 if (e1.X_op != O_register || e1.X_add_number != REG_GR + 12)
3371 {
3372 as_bad ("First operand to .restore must be stack pointer (sp)");
3373 return;
3374 }
3375
3376 if (sep == ',')
3377 {
3378 parse_operand (&e2);
3379 if (e2.X_op != O_constant || e2.X_add_number < 0)
3380 {
3381 as_bad ("Second operand to .restore must be a constant >= 0");
3382 return;
3383 }
3384 ecount = e2.X_add_number;
3385 }
3386 else
3387 ecount = unwind.prologue_count - 1;
3388
3389 if (ecount >= unwind.prologue_count)
3390 {
3391 as_bad ("Epilogue count of %lu exceeds number of nested prologues (%u)",
3392 ecount + 1, unwind.prologue_count);
3393 return;
3394 }
3395
3396 add_unwind_entry (output_epilogue (ecount));
3397
3398 if (ecount < unwind.prologue_count)
3399 unwind.prologue_count -= ecount + 1;
3400 else
3401 unwind.prologue_count = 0;
3402 }
3403
3404 static void
3405 dot_restorereg (dummy)
3406 int dummy ATTRIBUTE_UNUSED;
3407 {
3408 unsigned int ab, reg;
3409 expressionS e;
3410
3411 if (!in_procedure ("restorereg"))
3412 return;
3413
3414 parse_operand (&e);
3415
3416 if (!convert_expr_to_ab_reg (&e, &ab, &reg))
3417 {
3418 as_bad ("First operand to .restorereg must be a preserved register");
3419 return;
3420 }
3421 add_unwind_entry (output_spill_reg (ab, reg, 0, 0));
3422 }
3423
3424 static void
3425 dot_restorereg_p (dummy)
3426 int dummy ATTRIBUTE_UNUSED;
3427 {
3428 unsigned int qp, ab, reg;
3429 expressionS e1, e2;
3430 int sep;
3431
3432 if (!in_procedure ("restorereg.p"))
3433 return;
3434
3435 sep = parse_operand (&e1);
3436 if (sep != ',')
3437 {
3438 as_bad ("No second operand to .restorereg.p");
3439 return;
3440 }
3441
3442 parse_operand (&e2);
3443
3444 qp = e1.X_add_number - REG_P;
3445 if (e1.X_op != O_register || qp > 63)
3446 {
3447 as_bad ("First operand to .restorereg.p must be a predicate");
3448 return;
3449 }
3450
3451 if (!convert_expr_to_ab_reg (&e2, &ab, &reg))
3452 {
3453 as_bad ("Second operand to .restorereg.p must be a preserved register");
3454 return;
3455 }
3456 add_unwind_entry (output_spill_reg_p (ab, reg, 0, 0, qp));
3457 }
3458
3459 static char *special_linkonce_name[] =
3460 {
3461 ".gnu.linkonce.ia64unw.", ".gnu.linkonce.ia64unwi."
3462 };
3463
3464 static void
3465 start_unwind_section (const segT text_seg, int sec_index)
3466 {
3467 /*
3468 Use a slightly ugly scheme to derive the unwind section names from
3469 the text section name:
3470
3471 text sect. unwind table sect.
3472 name: name: comments:
3473 ---------- ----------------- --------------------------------
3474 .text .IA_64.unwind
3475 .text.foo .IA_64.unwind.text.foo
3476 .foo .IA_64.unwind.foo
3477 .gnu.linkonce.t.foo
3478 .gnu.linkonce.ia64unw.foo
3479 _info .IA_64.unwind_info gas issues error message (ditto)
3480 _infoFOO .IA_64.unwind_infoFOO gas issues error message (ditto)
3481
3482 This mapping is done so that:
3483
3484 (a) An object file with unwind info only in .text will use
3485 unwind section names .IA_64.unwind and .IA_64.unwind_info.
3486 This follows the letter of the ABI and also ensures backwards
3487 compatibility with older toolchains.
3488
3489 (b) An object file with unwind info in multiple text sections
3490 will use separate unwind sections for each text section.
3491 This allows us to properly set the "sh_info" and "sh_link"
3492 fields in SHT_IA_64_UNWIND as required by the ABI and also
3493 lets GNU ld support programs with multiple segments
3494 containing unwind info (as might be the case for certain
3495 embedded applications).
3496
3497 (c) An error is issued if there would be a name clash.
3498 */
3499
3500 const char *text_name, *sec_text_name;
3501 char *sec_name;
3502 const char *prefix = special_section_name [sec_index];
3503 const char *suffix;
3504 size_t prefix_len, suffix_len, sec_name_len;
3505
3506 sec_text_name = segment_name (text_seg);
3507 text_name = sec_text_name;
3508 if (strncmp (text_name, "_info", 5) == 0)
3509 {
3510 as_bad ("Illegal section name `%s' (causes unwind section name clash)",
3511 text_name);
3512 ignore_rest_of_line ();
3513 return;
3514 }
3515 if (strcmp (text_name, ".text") == 0)
3516 text_name = "";
3517
3518 /* Build the unwind section name by appending the (possibly stripped)
3519 text section name to the unwind prefix. */
3520 suffix = text_name;
3521 if (strncmp (text_name, ".gnu.linkonce.t.",
3522 sizeof (".gnu.linkonce.t.") - 1) == 0)
3523 {
3524 prefix = special_linkonce_name [sec_index - SPECIAL_SECTION_UNWIND];
3525 suffix += sizeof (".gnu.linkonce.t.") - 1;
3526 }
3527
3528 prefix_len = strlen (prefix);
3529 suffix_len = strlen (suffix);
3530 sec_name_len = prefix_len + suffix_len;
3531 sec_name = alloca (sec_name_len + 1);
3532 memcpy (sec_name, prefix, prefix_len);
3533 memcpy (sec_name + prefix_len, suffix, suffix_len);
3534 sec_name [sec_name_len] = '\0';
3535
3536 /* Handle COMDAT group. */
3537 if ((text_seg->flags & SEC_LINK_ONCE) != 0
3538 && (elf_section_flags (text_seg) & SHF_GROUP) != 0)
3539 {
3540 char *section;
3541 size_t len, group_name_len;
3542 const char *group_name = elf_group_name (text_seg);
3543
3544 if (group_name == NULL)
3545 {
3546 as_bad ("Group section `%s' has no group signature",
3547 sec_text_name);
3548 ignore_rest_of_line ();
3549 return;
3550 }
3551 /* We have to construct a fake section directive. */
3552 group_name_len = strlen (group_name);
3553 len = (sec_name_len
3554 + 16 /* ,"aG",@progbits, */
3555 + group_name_len /* ,group_name */
3556 + 7); /* ,comdat */
3557
3558 section = alloca (len + 1);
3559 memcpy (section, sec_name, sec_name_len);
3560 memcpy (section + sec_name_len, ",\"aG\",@progbits,", 16);
3561 memcpy (section + sec_name_len + 16, group_name, group_name_len);
3562 memcpy (section + len - 7, ",comdat", 7);
3563 section [len] = '\0';
3564 set_section (section);
3565 }
3566 else
3567 {
3568 set_section (sec_name);
3569 bfd_set_section_flags (stdoutput, now_seg,
3570 SEC_LOAD | SEC_ALLOC | SEC_READONLY);
3571 }
3572
3573 elf_linked_to_section (now_seg) = text_seg;
3574 }
3575
3576 static void
3577 generate_unwind_image (const segT text_seg)
3578 {
3579 int size, pad;
3580 unw_rec_list *list;
3581
3582 /* Mark the end of the unwind info, so that we can compute the size of the
3583 last unwind region. */
3584 add_unwind_entry (output_endp ());
3585
3586 /* Force out pending instructions, to make sure all unwind records have
3587 a valid slot_number field. */
3588 ia64_flush_insns ();
3589
3590 /* Generate the unwind record. */
3591 list = optimize_unw_records (unwind.list);
3592 fixup_unw_records (list, 1);
3593 size = calc_record_size (list);
3594
3595 if (size > 0 || unwind.force_unwind_entry)
3596 {
3597 unwind.force_unwind_entry = 0;
3598 /* pad to pointer-size boundary. */
3599 pad = size % md.pointer_size;
3600 if (pad != 0)
3601 size += md.pointer_size - pad;
3602 /* Add 8 for the header. */
3603 size += 8;
3604 /* Add a pointer for the personality offset. */
3605 if (unwind.personality_routine)
3606 size += md.pointer_size;
3607 }
3608
3609 /* If there are unwind records, switch sections, and output the info. */
3610 if (size != 0)
3611 {
3612 expressionS exp;
3613 bfd_reloc_code_real_type reloc;
3614
3615 start_unwind_section (text_seg, SPECIAL_SECTION_UNWIND_INFO);
3616
3617 /* Make sure the section has 4 byte alignment for ILP32 and
3618 8 byte alignment for LP64. */
3619 frag_align (md.pointer_size_shift, 0, 0);
3620 record_alignment (now_seg, md.pointer_size_shift);
3621
3622 /* Set expression which points to start of unwind descriptor area. */
3623 unwind.info = expr_build_dot ();
3624
3625 frag_var (rs_machine_dependent, size, size, 0, 0,
3626 (offsetT) (long) unwind.personality_routine,
3627 (char *) list);
3628
3629 /* Add the personality address to the image. */
3630 if (unwind.personality_routine != 0)
3631 {
3632 exp.X_op = O_symbol;
3633 exp.X_add_symbol = unwind.personality_routine;
3634 exp.X_add_number = 0;
3635
3636 if (md.flags & EF_IA_64_BE)
3637 {
3638 if (md.flags & EF_IA_64_ABI64)
3639 reloc = BFD_RELOC_IA64_LTOFF_FPTR64MSB;
3640 else
3641 reloc = BFD_RELOC_IA64_LTOFF_FPTR32MSB;
3642 }
3643 else
3644 {
3645 if (md.flags & EF_IA_64_ABI64)
3646 reloc = BFD_RELOC_IA64_LTOFF_FPTR64LSB;
3647 else
3648 reloc = BFD_RELOC_IA64_LTOFF_FPTR32LSB;
3649 }
3650
3651 fix_new_exp (frag_now, frag_now_fix () - md.pointer_size,
3652 md.pointer_size, &exp, 0, reloc);
3653 unwind.personality_routine = 0;
3654 }
3655 }
3656
3657 free_saved_prologue_counts ();
3658 unwind.list = unwind.tail = unwind.current_entry = NULL;
3659 }
3660
3661 static void
3662 dot_handlerdata (dummy)
3663 int dummy ATTRIBUTE_UNUSED;
3664 {
3665 if (!in_procedure ("handlerdata"))
3666 return;
3667 unwind.force_unwind_entry = 1;
3668
3669 /* Remember which segment we're in so we can switch back after .endp */
3670 unwind.saved_text_seg = now_seg;
3671 unwind.saved_text_subseg = now_subseg;
3672
3673 /* Generate unwind info into unwind-info section and then leave that
3674 section as the currently active one so dataXX directives go into
3675 the language specific data area of the unwind info block. */
3676 generate_unwind_image (now_seg);
3677 demand_empty_rest_of_line ();
3678 }
3679
3680 static void
3681 dot_unwentry (dummy)
3682 int dummy ATTRIBUTE_UNUSED;
3683 {
3684 if (!in_procedure ("unwentry"))
3685 return;
3686 unwind.force_unwind_entry = 1;
3687 demand_empty_rest_of_line ();
3688 }
3689
3690 static void
3691 dot_altrp (dummy)
3692 int dummy ATTRIBUTE_UNUSED;
3693 {
3694 expressionS e;
3695 unsigned reg;
3696
3697 if (!in_prologue ("altrp"))
3698 return;
3699
3700 parse_operand (&e);
3701 reg = e.X_add_number - REG_BR;
3702 if (e.X_op == O_register && reg < 8)
3703 add_unwind_entry (output_rp_br (reg));
3704 else
3705 as_bad ("First operand not a valid branch register");
3706 }
3707
3708 static void
3709 dot_savemem (psprel)
3710 int psprel;
3711 {
3712 expressionS e1, e2;
3713 int sep;
3714 int reg1, val;
3715
3716 if (!in_prologue (psprel ? "savepsp" : "savesp"))
3717 return;
3718
3719 sep = parse_operand (&e1);
3720 if (sep != ',')
3721 as_bad ("No second operand to .save%ssp", psprel ? "p" : "");
3722 sep = parse_operand (&e2);
3723
3724 reg1 = e1.X_add_number;
3725 val = e2.X_add_number;
3726
3727 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3728 if (e1.X_op == O_register)
3729 {
3730 if (e2.X_op == O_constant)
3731 {
3732 switch (reg1)
3733 {
3734 case REG_AR + AR_BSP:
3735 add_unwind_entry (output_bsp_when ());
3736 add_unwind_entry ((psprel
3737 ? output_bsp_psprel
3738 : output_bsp_sprel) (val));
3739 break;
3740 case REG_AR + AR_BSPSTORE:
3741 add_unwind_entry (output_bspstore_when ());
3742 add_unwind_entry ((psprel
3743 ? output_bspstore_psprel
3744 : output_bspstore_sprel) (val));
3745 break;
3746 case REG_AR + AR_RNAT:
3747 add_unwind_entry (output_rnat_when ());
3748 add_unwind_entry ((psprel
3749 ? output_rnat_psprel
3750 : output_rnat_sprel) (val));
3751 break;
3752 case REG_AR + AR_UNAT:
3753 add_unwind_entry (output_unat_when ());
3754 add_unwind_entry ((psprel
3755 ? output_unat_psprel
3756 : output_unat_sprel) (val));
3757 break;
3758 case REG_AR + AR_FPSR:
3759 add_unwind_entry (output_fpsr_when ());
3760 add_unwind_entry ((psprel
3761 ? output_fpsr_psprel
3762 : output_fpsr_sprel) (val));
3763 break;
3764 case REG_AR + AR_PFS:
3765 add_unwind_entry (output_pfs_when ());
3766 add_unwind_entry ((psprel
3767 ? output_pfs_psprel
3768 : output_pfs_sprel) (val));
3769 break;
3770 case REG_AR + AR_LC:
3771 add_unwind_entry (output_lc_when ());
3772 add_unwind_entry ((psprel
3773 ? output_lc_psprel
3774 : output_lc_sprel) (val));
3775 break;
3776 case REG_BR:
3777 add_unwind_entry (output_rp_when ());
3778 add_unwind_entry ((psprel
3779 ? output_rp_psprel
3780 : output_rp_sprel) (val));
3781 break;
3782 case REG_PR:
3783 add_unwind_entry (output_preds_when ());
3784 add_unwind_entry ((psprel
3785 ? output_preds_psprel
3786 : output_preds_sprel) (val));
3787 break;
3788 case REG_PRIUNAT:
3789 add_unwind_entry (output_priunat_when_mem ());
3790 add_unwind_entry ((psprel
3791 ? output_priunat_psprel
3792 : output_priunat_sprel) (val));
3793 break;
3794 default:
3795 as_bad ("First operand not a valid register");
3796 }
3797 }
3798 else
3799 as_bad (" Second operand not a valid constant");
3800 }
3801 else
3802 as_bad ("First operand not a register");
3803 }
3804
3805 static void
3806 dot_saveg (dummy)
3807 int dummy ATTRIBUTE_UNUSED;
3808 {
3809 expressionS e1, e2;
3810 int sep;
3811
3812 if (!in_prologue ("save.g"))
3813 return;
3814
3815 sep = parse_operand (&e1);
3816 if (sep == ',')
3817 parse_operand (&e2);
3818
3819 if (e1.X_op != O_constant)
3820 as_bad ("First operand to .save.g must be a constant.");
3821 else
3822 {
3823 int grmask = e1.X_add_number;
3824 if (sep != ',')
3825 add_unwind_entry (output_gr_mem (grmask));
3826 else
3827 {
3828 int reg = e2.X_add_number - REG_GR;
3829 if (e2.X_op == O_register && reg >= 0 && reg < 128)
3830 add_unwind_entry (output_gr_gr (grmask, reg));
3831 else
3832 as_bad ("Second operand is an invalid register.");
3833 }
3834 }
3835 }
3836
3837 static void
3838 dot_savef (dummy)
3839 int dummy ATTRIBUTE_UNUSED;
3840 {
3841 expressionS e1;
3842 int sep;
3843
3844 if (!in_prologue ("save.f"))
3845 return;
3846
3847 sep = parse_operand (&e1);
3848
3849 if (e1.X_op != O_constant)
3850 as_bad ("Operand to .save.f must be a constant.");
3851 else
3852 add_unwind_entry (output_fr_mem (e1.X_add_number));
3853 }
3854
3855 static void
3856 dot_saveb (dummy)
3857 int dummy ATTRIBUTE_UNUSED;
3858 {
3859 expressionS e1, e2;
3860 unsigned int reg;
3861 unsigned char sep;
3862 int brmask;
3863
3864 if (!in_prologue ("save.b"))
3865 return;
3866
3867 sep = parse_operand (&e1);
3868 if (e1.X_op != O_constant)
3869 {
3870 as_bad ("First operand to .save.b must be a constant.");
3871 return;
3872 }
3873 brmask = e1.X_add_number;
3874
3875 if (sep == ',')
3876 {
3877 sep = parse_operand (&e2);
3878 reg = e2.X_add_number - REG_GR;
3879 if (e2.X_op != O_register || reg > 127)
3880 {
3881 as_bad ("Second operand to .save.b must be a general register.");
3882 return;
3883 }
3884 add_unwind_entry (output_br_gr (brmask, e2.X_add_number));
3885 }
3886 else
3887 add_unwind_entry (output_br_mem (brmask));
3888
3889 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
3890 demand_empty_rest_of_line ();
3891 }
3892
3893 static void
3894 dot_savegf (dummy)
3895 int dummy ATTRIBUTE_UNUSED;
3896 {
3897 expressionS e1, e2;
3898 int sep;
3899
3900 if (!in_prologue ("save.gf"))
3901 return;
3902
3903 sep = parse_operand (&e1);
3904 if (sep == ',')
3905 parse_operand (&e2);
3906
3907 if (e1.X_op != O_constant || sep != ',' || e2.X_op != O_constant)
3908 as_bad ("Both operands of .save.gf must be constants.");
3909 else
3910 {
3911 int grmask = e1.X_add_number;
3912 int frmask = e2.X_add_number;
3913 add_unwind_entry (output_frgr_mem (grmask, frmask));
3914 }
3915 }
3916
3917 static void
3918 dot_spill (dummy)
3919 int dummy ATTRIBUTE_UNUSED;
3920 {
3921 expressionS e;
3922 unsigned char sep;
3923
3924 if (!in_prologue ("spill"))
3925 return;
3926
3927 sep = parse_operand (&e);
3928 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
3929 demand_empty_rest_of_line ();
3930
3931 if (e.X_op != O_constant)
3932 as_bad ("Operand to .spill must be a constant");
3933 else
3934 add_unwind_entry (output_spill_base (e.X_add_number));
3935 }
3936
3937 static void
3938 dot_spillreg (dummy)
3939 int dummy ATTRIBUTE_UNUSED;
3940 {
3941 int sep;
3942 unsigned int ab, xy, reg, treg;
3943 expressionS e1, e2;
3944
3945 if (!in_procedure ("spillreg"))
3946 return;
3947
3948 sep = parse_operand (&e1);
3949 if (sep != ',')
3950 {
3951 as_bad ("No second operand to .spillreg");
3952 return;
3953 }
3954
3955 parse_operand (&e2);
3956
3957 if (!convert_expr_to_ab_reg (&e1, &ab, &reg))
3958 {
3959 as_bad ("First operand to .spillreg must be a preserved register");
3960 return;
3961 }
3962
3963 if (!convert_expr_to_xy_reg (&e2, &xy, &treg))
3964 {
3965 as_bad ("Second operand to .spillreg must be a register");
3966 return;
3967 }
3968
3969 add_unwind_entry (output_spill_reg (ab, reg, treg, xy));
3970 }
3971
3972 static void
3973 dot_spillmem (psprel)
3974 int psprel;
3975 {
3976 expressionS e1, e2;
3977 int sep;
3978 unsigned int ab, reg;
3979
3980 if (!in_procedure ("spillmem"))
3981 return;
3982
3983 sep = parse_operand (&e1);
3984 if (sep != ',')
3985 {
3986 as_bad ("Second operand missing");
3987 return;
3988 }
3989
3990 parse_operand (&e2);
3991
3992 if (!convert_expr_to_ab_reg (&e1, &ab, &reg))
3993 {
3994 as_bad ("First operand to .spill%s must be a preserved register",
3995 psprel ? "psp" : "sp");
3996 return;
3997 }
3998
3999 if (e2.X_op != O_constant)
4000 {
4001 as_bad ("Second operand to .spill%s must be a constant",
4002 psprel ? "psp" : "sp");
4003 return;
4004 }
4005
4006 if (psprel)
4007 add_unwind_entry (output_spill_psprel (ab, reg, e2.X_add_number));
4008 else
4009 add_unwind_entry (output_spill_sprel (ab, reg, e2.X_add_number));
4010 }
4011
4012 static void
4013 dot_spillreg_p (dummy)
4014 int dummy ATTRIBUTE_UNUSED;
4015 {
4016 int sep;
4017 unsigned int ab, xy, reg, treg;
4018 expressionS e1, e2, e3;
4019 unsigned int qp;
4020
4021 if (!in_procedure ("spillreg.p"))
4022 return;
4023
4024 sep = parse_operand (&e1);
4025 if (sep != ',')
4026 {
4027 as_bad ("No second and third operand to .spillreg.p");
4028 return;
4029 }
4030
4031 sep = parse_operand (&e2);
4032 if (sep != ',')
4033 {
4034 as_bad ("No third operand to .spillreg.p");
4035 return;
4036 }
4037
4038 parse_operand (&e3);
4039
4040 qp = e1.X_add_number - REG_P;
4041
4042 if (e1.X_op != O_register || qp > 63)
4043 {
4044 as_bad ("First operand to .spillreg.p must be a predicate");
4045 return;
4046 }
4047
4048 if (!convert_expr_to_ab_reg (&e2, &ab, &reg))
4049 {
4050 as_bad ("Second operand to .spillreg.p must be a preserved register");
4051 return;
4052 }
4053
4054 if (!convert_expr_to_xy_reg (&e3, &xy, &treg))
4055 {
4056 as_bad ("Third operand to .spillreg.p must be a register");
4057 return;
4058 }
4059
4060 add_unwind_entry (output_spill_reg_p (ab, reg, treg, xy, qp));
4061 }
4062
4063 static void
4064 dot_spillmem_p (psprel)
4065 int psprel;
4066 {
4067 expressionS e1, e2, e3;
4068 int sep;
4069 unsigned int ab, reg;
4070 unsigned int qp;
4071
4072 if (!in_procedure ("spillmem.p"))
4073 return;
4074
4075 sep = parse_operand (&e1);
4076 if (sep != ',')
4077 {
4078 as_bad ("Second operand missing");
4079 return;
4080 }
4081
4082 parse_operand (&e2);
4083 if (sep != ',')
4084 {
4085 as_bad ("Second operand missing");
4086 return;
4087 }
4088
4089 parse_operand (&e3);
4090
4091 qp = e1.X_add_number - REG_P;
4092 if (e1.X_op != O_register || qp > 63)
4093 {
4094 as_bad ("First operand to .spill%s_p must be a predicate",
4095 psprel ? "psp" : "sp");
4096 return;
4097 }
4098
4099 if (!convert_expr_to_ab_reg (&e2, &ab, &reg))
4100 {
4101 as_bad ("Second operand to .spill%s_p must be a preserved register",
4102 psprel ? "psp" : "sp");
4103 return;
4104 }
4105
4106 if (e3.X_op != O_constant)
4107 {
4108 as_bad ("Third operand to .spill%s_p must be a constant",
4109 psprel ? "psp" : "sp");
4110 return;
4111 }
4112
4113 if (psprel)
4114 add_unwind_entry (output_spill_psprel_p (ab, reg, e3.X_add_number, qp));
4115 else
4116 add_unwind_entry (output_spill_sprel_p (ab, reg, e3.X_add_number, qp));
4117 }
4118
4119 static unsigned int
4120 get_saved_prologue_count (lbl)
4121 unsigned long lbl;
4122 {
4123 label_prologue_count *lpc = unwind.saved_prologue_counts;
4124
4125 while (lpc != NULL && lpc->label_number != lbl)
4126 lpc = lpc->next;
4127
4128 if (lpc != NULL)
4129 return lpc->prologue_count;
4130
4131 as_bad ("Missing .label_state %ld", lbl);
4132 return 1;
4133 }
4134
4135 static void
4136 save_prologue_count (lbl, count)
4137 unsigned long lbl;
4138 unsigned int count;
4139 {
4140 label_prologue_count *lpc = unwind.saved_prologue_counts;
4141
4142 while (lpc != NULL && lpc->label_number != lbl)
4143 lpc = lpc->next;
4144
4145 if (lpc != NULL)
4146 lpc->prologue_count = count;
4147 else
4148 {
4149 label_prologue_count *new_lpc = xmalloc (sizeof (* new_lpc));
4150
4151 new_lpc->next = unwind.saved_prologue_counts;
4152 new_lpc->label_number = lbl;
4153 new_lpc->prologue_count = count;
4154 unwind.saved_prologue_counts = new_lpc;
4155 }
4156 }
4157
4158 static void
4159 free_saved_prologue_counts ()
4160 {
4161 label_prologue_count *lpc = unwind.saved_prologue_counts;
4162 label_prologue_count *next;
4163
4164 while (lpc != NULL)
4165 {
4166 next = lpc->next;
4167 free (lpc);
4168 lpc = next;
4169 }
4170
4171 unwind.saved_prologue_counts = NULL;
4172 }
4173
4174 static void
4175 dot_label_state (dummy)
4176 int dummy ATTRIBUTE_UNUSED;
4177 {
4178 expressionS e;
4179
4180 if (!in_body ("label_state"))
4181 return;
4182
4183 parse_operand (&e);
4184 if (e.X_op != O_constant)
4185 {
4186 as_bad ("Operand to .label_state must be a constant");
4187 return;
4188 }
4189 add_unwind_entry (output_label_state (e.X_add_number));
4190 save_prologue_count (e.X_add_number, unwind.prologue_count);
4191 }
4192
4193 static void
4194 dot_copy_state (dummy)
4195 int dummy ATTRIBUTE_UNUSED;
4196 {
4197 expressionS e;
4198
4199 if (!in_body ("copy_state"))
4200 return;
4201
4202 parse_operand (&e);
4203 if (e.X_op != O_constant)
4204 {
4205 as_bad ("Operand to .copy_state must be a constant");
4206 return;
4207 }
4208 add_unwind_entry (output_copy_state (e.X_add_number));
4209 unwind.prologue_count = get_saved_prologue_count (e.X_add_number);
4210 }
4211
4212 static void
4213 dot_unwabi (dummy)
4214 int dummy ATTRIBUTE_UNUSED;
4215 {
4216 expressionS e1, e2;
4217 unsigned char sep;
4218
4219 if (!in_procedure ("unwabi"))
4220 return;
4221
4222 sep = parse_operand (&e1);
4223 if (sep != ',')
4224 {
4225 as_bad ("Second operand to .unwabi missing");
4226 return;
4227 }
4228 sep = parse_operand (&e2);
4229 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
4230 demand_empty_rest_of_line ();
4231
4232 if (e1.X_op != O_constant)
4233 {
4234 as_bad ("First operand to .unwabi must be a constant");
4235 return;
4236 }
4237
4238 if (e2.X_op != O_constant)
4239 {
4240 as_bad ("Second operand to .unwabi must be a constant");
4241 return;
4242 }
4243
4244 add_unwind_entry (output_unwabi (e1.X_add_number, e2.X_add_number));
4245 }
4246
4247 static void
4248 dot_personality (dummy)
4249 int dummy ATTRIBUTE_UNUSED;
4250 {
4251 char *name, *p, c;
4252 if (!in_procedure ("personality"))
4253 return;
4254 SKIP_WHITESPACE ();
4255 name = input_line_pointer;
4256 c = get_symbol_end ();
4257 p = input_line_pointer;
4258 unwind.personality_routine = symbol_find_or_make (name);
4259 unwind.force_unwind_entry = 1;
4260 *p = c;
4261 SKIP_WHITESPACE ();
4262 demand_empty_rest_of_line ();
4263 }
4264
4265 static void
4266 dot_proc (dummy)
4267 int dummy ATTRIBUTE_UNUSED;
4268 {
4269 char *name, *p, c;
4270 symbolS *sym;
4271
4272 unwind.proc_start = 0;
4273 /* Parse names of main and alternate entry points and mark them as
4274 function symbols: */
4275 while (1)
4276 {
4277 SKIP_WHITESPACE ();
4278 name = input_line_pointer;
4279 c = get_symbol_end ();
4280 p = input_line_pointer;
4281 if (!*name)
4282 as_bad ("Empty argument of .proc");
4283 else
4284 {
4285 sym = symbol_find_or_make (name);
4286 if (S_IS_DEFINED (sym))
4287 as_bad ("`%s' was already defined", name);
4288 else if (unwind.proc_start == 0)
4289 {
4290 unwind.proc_start = sym;
4291 }
4292 symbol_get_bfdsym (sym)->flags |= BSF_FUNCTION;
4293 }
4294 *p = c;
4295 SKIP_WHITESPACE ();
4296 if (*input_line_pointer != ',')
4297 break;
4298 ++input_line_pointer;
4299 }
4300 if (unwind.proc_start == 0)
4301 unwind.proc_start = expr_build_dot ();
4302 demand_empty_rest_of_line ();
4303 ia64_do_align (16);
4304
4305 unwind.prologue = 0;
4306 unwind.prologue_count = 0;
4307 unwind.body = 0;
4308 unwind.insn = 0;
4309 unwind.list = unwind.tail = unwind.current_entry = NULL;
4310 unwind.personality_routine = 0;
4311 }
4312
4313 static void
4314 dot_body (dummy)
4315 int dummy ATTRIBUTE_UNUSED;
4316 {
4317 if (!in_procedure ("body"))
4318 return;
4319 if (!unwind.prologue && !unwind.body && unwind.insn)
4320 as_warn ("Initial .body should precede any instructions");
4321
4322 unwind.prologue = 0;
4323 unwind.prologue_mask = 0;
4324 unwind.body = 1;
4325
4326 add_unwind_entry (output_body ());
4327 demand_empty_rest_of_line ();
4328 }
4329
4330 static void
4331 dot_prologue (dummy)
4332 int dummy ATTRIBUTE_UNUSED;
4333 {
4334 unsigned char sep;
4335 int mask = 0, grsave = 0;
4336
4337 if (!in_procedure ("prologue"))
4338 return;
4339 if (unwind.prologue)
4340 {
4341 as_bad (".prologue within prologue");
4342 ignore_rest_of_line ();
4343 return;
4344 }
4345 if (!unwind.body && unwind.insn)
4346 as_warn ("Initial .prologue should precede any instructions");
4347
4348 if (!is_it_end_of_statement ())
4349 {
4350 expressionS e1, e2;
4351 sep = parse_operand (&e1);
4352 if (sep != ',')
4353 as_bad ("No second operand to .prologue");
4354 sep = parse_operand (&e2);
4355 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
4356 demand_empty_rest_of_line ();
4357
4358 if (e1.X_op == O_constant)
4359 {
4360 mask = e1.X_add_number;
4361
4362 if (e2.X_op == O_constant)
4363 grsave = e2.X_add_number;
4364 else if (e2.X_op == O_register
4365 && (grsave = e2.X_add_number - REG_GR) < 128)
4366 ;
4367 else
4368 as_bad ("Second operand not a constant or general register");
4369
4370 add_unwind_entry (output_prologue_gr (mask, grsave));
4371 }
4372 else
4373 as_bad ("First operand not a constant");
4374 }
4375 else
4376 add_unwind_entry (output_prologue ());
4377
4378 unwind.prologue = 1;
4379 unwind.prologue_mask = mask;
4380 unwind.body = 0;
4381 ++unwind.prologue_count;
4382 }
4383
4384 static void
4385 dot_endp (dummy)
4386 int dummy ATTRIBUTE_UNUSED;
4387 {
4388 expressionS e;
4389 int bytes_per_address;
4390 long where;
4391 segT saved_seg;
4392 subsegT saved_subseg;
4393 char *name, *default_name, *p, c;
4394 symbolS *sym;
4395 int unwind_check = md.unwind_check;
4396
4397 md.unwind_check = unwind_check_error;
4398 if (!in_procedure ("endp"))
4399 return;
4400 md.unwind_check = unwind_check;
4401
4402 if (unwind.saved_text_seg)
4403 {
4404 saved_seg = unwind.saved_text_seg;
4405 saved_subseg = unwind.saved_text_subseg;
4406 unwind.saved_text_seg = NULL;
4407 }
4408 else
4409 {
4410 saved_seg = now_seg;
4411 saved_subseg = now_subseg;
4412 }
4413
4414 insn_group_break (1, 0, 0);
4415
4416 /* If there wasn't a .handlerdata, we haven't generated an image yet. */
4417 if (!unwind.info)
4418 generate_unwind_image (saved_seg);
4419
4420 if (unwind.info || unwind.force_unwind_entry)
4421 {
4422 symbolS *proc_end;
4423
4424 subseg_set (md.last_text_seg, 0);
4425 proc_end = expr_build_dot ();
4426
4427 start_unwind_section (saved_seg, SPECIAL_SECTION_UNWIND);
4428
4429 /* Make sure that section has 4 byte alignment for ILP32 and
4430 8 byte alignment for LP64. */
4431 record_alignment (now_seg, md.pointer_size_shift);
4432
4433 /* Need space for 3 pointers for procedure start, procedure end,
4434 and unwind info. */
4435 memset (frag_more (3 * md.pointer_size), 0, 3 * md.pointer_size);
4436 where = frag_now_fix () - (3 * md.pointer_size);
4437 bytes_per_address = bfd_arch_bits_per_address (stdoutput) / 8;
4438
4439 /* Issue the values of a) Proc Begin, b) Proc End, c) Unwind Record. */
4440 e.X_op = O_pseudo_fixup;
4441 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4442 e.X_add_number = 0;
4443 if (!S_IS_LOCAL (unwind.proc_start)
4444 && S_IS_DEFINED (unwind.proc_start))
4445 e.X_add_symbol = symbol_temp_new (S_GET_SEGMENT (unwind.proc_start),
4446 S_GET_VALUE (unwind.proc_start),
4447 symbol_get_frag (unwind.proc_start));
4448 else
4449 e.X_add_symbol = unwind.proc_start;
4450 ia64_cons_fix_new (frag_now, where, bytes_per_address, &e);
4451
4452 e.X_op = O_pseudo_fixup;
4453 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4454 e.X_add_number = 0;
4455 e.X_add_symbol = proc_end;
4456 ia64_cons_fix_new (frag_now, where + bytes_per_address,
4457 bytes_per_address, &e);
4458
4459 if (unwind.info)
4460 {
4461 e.X_op = O_pseudo_fixup;
4462 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4463 e.X_add_number = 0;
4464 e.X_add_symbol = unwind.info;
4465 ia64_cons_fix_new (frag_now, where + (bytes_per_address * 2),
4466 bytes_per_address, &e);
4467 }
4468 }
4469 subseg_set (saved_seg, saved_subseg);
4470
4471 if (unwind.proc_start)
4472 default_name = (char *) S_GET_NAME (unwind.proc_start);
4473 else
4474 default_name = NULL;
4475
4476 /* Parse names of main and alternate entry points and set symbol sizes. */
4477 while (1)
4478 {
4479 SKIP_WHITESPACE ();
4480 name = input_line_pointer;
4481 c = get_symbol_end ();
4482 p = input_line_pointer;
4483 if (!*name)
4484 {
4485 if (md.unwind_check == unwind_check_warning)
4486 {
4487 if (default_name)
4488 {
4489 as_warn ("Empty argument of .endp. Use the default name `%s'",
4490 default_name);
4491 name = default_name;
4492 }
4493 else
4494 as_warn ("Empty argument of .endp");
4495 }
4496 else
4497 as_bad ("Empty argument of .endp");
4498 }
4499 if (*name)
4500 {
4501 sym = symbol_find (name);
4502 if (!sym
4503 && md.unwind_check == unwind_check_warning
4504 && default_name
4505 && default_name != name)
4506 {
4507 /* We have a bad name. Try the default one if needed. */
4508 as_warn ("`%s' was not defined within procedure. Use the default name `%s'",
4509 name, default_name);
4510 name = default_name;
4511 sym = symbol_find (name);
4512 }
4513 if (!sym || !S_IS_DEFINED (sym))
4514 as_bad ("`%s' was not defined within procedure", name);
4515 else if (unwind.proc_start
4516 && (symbol_get_bfdsym (sym)->flags & BSF_FUNCTION)
4517 && S_GET_SIZE (sym) == 0 && symbol_get_obj (sym)->size == NULL)
4518 {
4519 fragS *fr = symbol_get_frag (unwind.proc_start);
4520 fragS *frag = symbol_get_frag (sym);
4521
4522 /* Check whether the function label is at or beyond last
4523 .proc directive. */
4524 while (fr && fr != frag)
4525 fr = fr->fr_next;
4526 if (fr)
4527 {
4528 if (frag == frag_now && SEG_NORMAL (now_seg))
4529 S_SET_SIZE (sym, frag_now_fix () - S_GET_VALUE (sym));
4530 else
4531 {
4532 symbol_get_obj (sym)->size =
4533 (expressionS *) xmalloc (sizeof (expressionS));
4534 symbol_get_obj (sym)->size->X_op = O_subtract;
4535 symbol_get_obj (sym)->size->X_add_symbol
4536 = symbol_new (FAKE_LABEL_NAME, now_seg,
4537 frag_now_fix (), frag_now);
4538 symbol_get_obj (sym)->size->X_op_symbol = sym;
4539 symbol_get_obj (sym)->size->X_add_number = 0;
4540 }
4541 }
4542 }
4543 }
4544 *p = c;
4545 SKIP_WHITESPACE ();
4546 if (*input_line_pointer != ',')
4547 break;
4548 ++input_line_pointer;
4549 }
4550 demand_empty_rest_of_line ();
4551 unwind.proc_start = unwind.info = 0;
4552 }
4553
4554 static void
4555 dot_template (template)
4556 int template;
4557 {
4558 CURR_SLOT.user_template = template;
4559 }
4560
4561 static void
4562 dot_regstk (dummy)
4563 int dummy ATTRIBUTE_UNUSED;
4564 {
4565 int ins, locs, outs, rots;
4566
4567 if (is_it_end_of_statement ())
4568 ins = locs = outs = rots = 0;
4569 else
4570 {
4571 ins = get_absolute_expression ();
4572 if (*input_line_pointer++ != ',')
4573 goto err;
4574 locs = get_absolute_expression ();
4575 if (*input_line_pointer++ != ',')
4576 goto err;
4577 outs = get_absolute_expression ();
4578 if (*input_line_pointer++ != ',')
4579 goto err;
4580 rots = get_absolute_expression ();
4581 }
4582 set_regstack (ins, locs, outs, rots);
4583 return;
4584
4585 err:
4586 as_bad ("Comma expected");
4587 ignore_rest_of_line ();
4588 }
4589
4590 static void
4591 dot_rot (type)
4592 int type;
4593 {
4594 unsigned num_regs, num_alloced = 0;
4595 struct dynreg **drpp, *dr;
4596 int ch, base_reg = 0;
4597 char *name, *start;
4598 size_t len;
4599
4600 switch (type)
4601 {
4602 case DYNREG_GR: base_reg = REG_GR + 32; break;
4603 case DYNREG_FR: base_reg = REG_FR + 32; break;
4604 case DYNREG_PR: base_reg = REG_P + 16; break;
4605 default: break;
4606 }
4607
4608 /* First, remove existing names from hash table. */
4609 for (dr = md.dynreg[type]; dr && dr->num_regs; dr = dr->next)
4610 {
4611 hash_delete (md.dynreg_hash, dr->name);
4612 /* FIXME: Free dr->name. */
4613 dr->num_regs = 0;
4614 }
4615
4616 drpp = &md.dynreg[type];
4617 while (1)
4618 {
4619 start = input_line_pointer;
4620 ch = get_symbol_end ();
4621 len = strlen (ia64_canonicalize_symbol_name (start));
4622 *input_line_pointer = ch;
4623
4624 SKIP_WHITESPACE ();
4625 if (*input_line_pointer != '[')
4626 {
4627 as_bad ("Expected '['");
4628 goto err;
4629 }
4630 ++input_line_pointer; /* skip '[' */
4631
4632 num_regs = get_absolute_expression ();
4633
4634 if (*input_line_pointer++ != ']')
4635 {
4636 as_bad ("Expected ']'");
4637 goto err;
4638 }
4639 SKIP_WHITESPACE ();
4640
4641 num_alloced += num_regs;
4642 switch (type)
4643 {
4644 case DYNREG_GR:
4645 if (num_alloced > md.rot.num_regs)
4646 {
4647 as_bad ("Used more than the declared %d rotating registers",
4648 md.rot.num_regs);
4649 goto err;
4650 }
4651 break;
4652 case DYNREG_FR:
4653 if (num_alloced > 96)
4654 {
4655 as_bad ("Used more than the available 96 rotating registers");
4656 goto err;
4657 }
4658 break;
4659 case DYNREG_PR:
4660 if (num_alloced > 48)
4661 {
4662 as_bad ("Used more than the available 48 rotating registers");
4663 goto err;
4664 }
4665 break;
4666
4667 default:
4668 break;
4669 }
4670
4671 if (!*drpp)
4672 {
4673 *drpp = obstack_alloc (&notes, sizeof (*dr));
4674 memset (*drpp, 0, sizeof (*dr));
4675 }
4676
4677 name = obstack_alloc (&notes, len + 1);
4678 memcpy (name, start, len);
4679 name[len] = '\0';
4680
4681 dr = *drpp;
4682 dr->name = name;
4683 dr->num_regs = num_regs;
4684 dr->base = base_reg;
4685 drpp = &dr->next;
4686 base_reg += num_regs;
4687
4688 if (hash_insert (md.dynreg_hash, name, dr))
4689 {
4690 as_bad ("Attempt to redefine register set `%s'", name);
4691 obstack_free (&notes, name);
4692 goto err;
4693 }
4694
4695 if (*input_line_pointer != ',')
4696 break;
4697 ++input_line_pointer; /* skip comma */
4698 SKIP_WHITESPACE ();
4699 }
4700 demand_empty_rest_of_line ();
4701 return;
4702
4703 err:
4704 ignore_rest_of_line ();
4705 }
4706
4707 static void
4708 dot_byteorder (byteorder)
4709 int byteorder;
4710 {
4711 segment_info_type *seginfo = seg_info (now_seg);
4712
4713 if (byteorder == -1)
4714 {
4715 if (seginfo->tc_segment_info_data.endian == 0)
4716 seginfo->tc_segment_info_data.endian = default_big_endian ? 1 : 2;
4717 byteorder = seginfo->tc_segment_info_data.endian == 1;
4718 }
4719 else
4720 seginfo->tc_segment_info_data.endian = byteorder ? 1 : 2;
4721
4722 if (target_big_endian != byteorder)
4723 {
4724 target_big_endian = byteorder;
4725 if (target_big_endian)
4726 {
4727 ia64_number_to_chars = number_to_chars_bigendian;
4728 ia64_float_to_chars = ia64_float_to_chars_bigendian;
4729 }
4730 else
4731 {
4732 ia64_number_to_chars = number_to_chars_littleendian;
4733 ia64_float_to_chars = ia64_float_to_chars_littleendian;
4734 }
4735 }
4736 }
4737
4738 static void
4739 dot_psr (dummy)
4740 int dummy ATTRIBUTE_UNUSED;
4741 {
4742 char *option;
4743 int ch;
4744
4745 while (1)
4746 {
4747 option = input_line_pointer;
4748 ch = get_symbol_end ();
4749 if (strcmp (option, "lsb") == 0)
4750 md.flags &= ~EF_IA_64_BE;
4751 else if (strcmp (option, "msb") == 0)
4752 md.flags |= EF_IA_64_BE;
4753 else if (strcmp (option, "abi32") == 0)
4754 md.flags &= ~EF_IA_64_ABI64;
4755 else if (strcmp (option, "abi64") == 0)
4756 md.flags |= EF_IA_64_ABI64;
4757 else
4758 as_bad ("Unknown psr option `%s'", option);
4759 *input_line_pointer = ch;
4760
4761 SKIP_WHITESPACE ();
4762 if (*input_line_pointer != ',')
4763 break;
4764
4765 ++input_line_pointer;
4766 SKIP_WHITESPACE ();
4767 }
4768 demand_empty_rest_of_line ();
4769 }
4770
4771 static void
4772 dot_ln (dummy)
4773 int dummy ATTRIBUTE_UNUSED;
4774 {
4775 new_logical_line (0, get_absolute_expression ());
4776 demand_empty_rest_of_line ();
4777 }
4778
4779 static void
4780 cross_section (ref, cons, ua)
4781 int ref;
4782 void (*cons) PARAMS((int));
4783 int ua;
4784 {
4785 char *start, *end;
4786 int saved_auto_align;
4787 unsigned int section_count;
4788
4789 SKIP_WHITESPACE ();
4790 start = input_line_pointer;
4791 if (*start == '"')
4792 {
4793 int len;
4794 char *name;
4795
4796 name = demand_copy_C_string (&len);
4797 obstack_free(&notes, name);
4798 if (!name)
4799 {
4800 ignore_rest_of_line ();
4801 return;
4802 }
4803 }
4804 else
4805 {
4806 char c = get_symbol_end ();
4807
4808 if (input_line_pointer == start)
4809 {
4810 as_bad ("Missing section name");
4811 ignore_rest_of_line ();
4812 return;
4813 }
4814 *input_line_pointer = c;
4815 }
4816 end = input_line_pointer;
4817 SKIP_WHITESPACE ();
4818 if (*input_line_pointer != ',')
4819 {
4820 as_bad ("Comma expected after section name");
4821 ignore_rest_of_line ();
4822 return;
4823 }
4824 *end = '\0';
4825 end = input_line_pointer + 1; /* skip comma */
4826 input_line_pointer = start;
4827 md.keep_pending_output = 1;
4828 section_count = bfd_count_sections(stdoutput);
4829 obj_elf_section (0);
4830 if (section_count != bfd_count_sections(stdoutput))
4831 as_warn ("Creating sections with .xdataN/.xrealN/.xstringZ is deprecated.");
4832 input_line_pointer = end;
4833 saved_auto_align = md.auto_align;
4834 if (ua)
4835 md.auto_align = 0;
4836 (*cons) (ref);
4837 if (ua)
4838 md.auto_align = saved_auto_align;
4839 obj_elf_previous (0);
4840 md.keep_pending_output = 0;
4841 }
4842
4843 static void
4844 dot_xdata (size)
4845 int size;
4846 {
4847 cross_section (size, cons, 0);
4848 }
4849
4850 /* Why doesn't float_cons() call md_cons_align() the way cons() does? */
4851
4852 static void
4853 stmt_float_cons (kind)
4854 int kind;
4855 {
4856 size_t alignment;
4857
4858 switch (kind)
4859 {
4860 case 'd':
4861 alignment = 8;
4862 break;
4863
4864 case 'x':
4865 case 'X':
4866 alignment = 16;
4867 break;
4868
4869 case 'f':
4870 default:
4871 alignment = 4;
4872 break;
4873 }
4874 ia64_do_align (alignment);
4875 float_cons (kind);
4876 }
4877
4878 static void
4879 stmt_cons_ua (size)
4880 int size;
4881 {
4882 int saved_auto_align = md.auto_align;
4883
4884 md.auto_align = 0;
4885 cons (size);
4886 md.auto_align = saved_auto_align;
4887 }
4888
4889 static void
4890 dot_xfloat_cons (kind)
4891 int kind;
4892 {
4893 cross_section (kind, stmt_float_cons, 0);
4894 }
4895
4896 static void
4897 dot_xstringer (zero)
4898 int zero;
4899 {
4900 cross_section (zero, stringer, 0);
4901 }
4902
4903 static void
4904 dot_xdata_ua (size)
4905 int size;
4906 {
4907 cross_section (size, cons, 1);
4908 }
4909
4910 static void
4911 dot_xfloat_cons_ua (kind)
4912 int kind;
4913 {
4914 cross_section (kind, float_cons, 1);
4915 }
4916
4917 /* .reg.val <regname>,value */
4918
4919 static void
4920 dot_reg_val (dummy)
4921 int dummy ATTRIBUTE_UNUSED;
4922 {
4923 expressionS reg;
4924
4925 expression (&reg);
4926 if (reg.X_op != O_register)
4927 {
4928 as_bad (_("Register name expected"));
4929 ignore_rest_of_line ();
4930 }
4931 else if (*input_line_pointer++ != ',')
4932 {
4933 as_bad (_("Comma expected"));
4934 ignore_rest_of_line ();
4935 }
4936 else
4937 {
4938 valueT value = get_absolute_expression ();
4939 int regno = reg.X_add_number;
4940 if (regno <= REG_GR || regno > REG_GR + 127)
4941 as_warn (_("Register value annotation ignored"));
4942 else
4943 {
4944 gr_values[regno - REG_GR].known = 1;
4945 gr_values[regno - REG_GR].value = value;
4946 gr_values[regno - REG_GR].path = md.path;
4947 }
4948 }
4949 demand_empty_rest_of_line ();
4950 }
4951
4952 /*
4953 .serialize.data
4954 .serialize.instruction
4955 */
4956 static void
4957 dot_serialize (type)
4958 int type;
4959 {
4960 insn_group_break (0, 0, 0);
4961 if (type)
4962 instruction_serialization ();
4963 else
4964 data_serialization ();
4965 insn_group_break (0, 0, 0);
4966 demand_empty_rest_of_line ();
4967 }
4968
4969 /* select dv checking mode
4970 .auto
4971 .explicit
4972 .default
4973
4974 A stop is inserted when changing modes
4975 */
4976
4977 static void
4978 dot_dv_mode (type)
4979 int type;
4980 {
4981 if (md.manual_bundling)
4982 as_warn (_("Directive invalid within a bundle"));
4983
4984 if (type == 'E' || type == 'A')
4985 md.mode_explicitly_set = 0;
4986 else
4987 md.mode_explicitly_set = 1;
4988
4989 md.detect_dv = 1;
4990 switch (type)
4991 {
4992 case 'A':
4993 case 'a':
4994 if (md.explicit_mode)
4995 insn_group_break (1, 0, 0);
4996 md.explicit_mode = 0;
4997 break;
4998 case 'E':
4999 case 'e':
5000 if (!md.explicit_mode)
5001 insn_group_break (1, 0, 0);
5002 md.explicit_mode = 1;
5003 break;
5004 default:
5005 case 'd':
5006 if (md.explicit_mode != md.default_explicit_mode)
5007 insn_group_break (1, 0, 0);
5008 md.explicit_mode = md.default_explicit_mode;
5009 md.mode_explicitly_set = 0;
5010 break;
5011 }
5012 }
5013
5014 static void
5015 print_prmask (mask)
5016 valueT mask;
5017 {
5018 int regno;
5019 char *comma = "";
5020 for (regno = 0; regno < 64; regno++)
5021 {
5022 if (mask & ((valueT) 1 << regno))
5023 {
5024 fprintf (stderr, "%s p%d", comma, regno);
5025 comma = ",";
5026 }
5027 }
5028 }
5029
5030 /*
5031 .pred.rel.clear [p1 [,p2 [,...]]] (also .pred.rel "clear" or @clear)
5032 .pred.rel.imply p1, p2 (also .pred.rel "imply" or @imply)
5033 .pred.rel.mutex p1, p2 [,...] (also .pred.rel "mutex" or @mutex)
5034 .pred.safe_across_calls p1 [, p2 [,...]]
5035 */
5036
5037 static void
5038 dot_pred_rel (type)
5039 int type;
5040 {
5041 valueT mask = 0;
5042 int count = 0;
5043 int p1 = -1, p2 = -1;
5044
5045 if (type == 0)
5046 {
5047 if (*input_line_pointer == '"')
5048 {
5049 int len;
5050 char *form = demand_copy_C_string (&len);
5051
5052 if (strcmp (form, "mutex") == 0)
5053 type = 'm';
5054 else if (strcmp (form, "clear") == 0)
5055 type = 'c';
5056 else if (strcmp (form, "imply") == 0)
5057 type = 'i';
5058 obstack_free (&notes, form);
5059 }
5060 else if (*input_line_pointer == '@')
5061 {
5062 char *form = ++input_line_pointer;
5063 char c = get_symbol_end();
5064
5065 if (strcmp (form, "mutex") == 0)
5066 type = 'm';
5067 else if (strcmp (form, "clear") == 0)
5068 type = 'c';
5069 else if (strcmp (form, "imply") == 0)
5070 type = 'i';
5071 *input_line_pointer = c;
5072 }
5073 else
5074 {
5075 as_bad (_("Missing predicate relation type"));
5076 ignore_rest_of_line ();
5077 return;
5078 }
5079 if (type == 0)
5080 {
5081 as_bad (_("Unrecognized predicate relation type"));
5082 ignore_rest_of_line ();
5083 return;
5084 }
5085 if (*input_line_pointer == ',')
5086 ++input_line_pointer;
5087 SKIP_WHITESPACE ();
5088 }
5089
5090 SKIP_WHITESPACE ();
5091 while (1)
5092 {
5093 valueT bits = 1;
5094 int regno;
5095 expressionS pr, *pr1, *pr2;
5096
5097 expression (&pr);
5098 if (pr.X_op == O_register
5099 && pr.X_add_number >= REG_P
5100 && pr.X_add_number <= REG_P + 63)
5101 {
5102 regno = pr.X_add_number - REG_P;
5103 bits <<= regno;
5104 count++;
5105 if (p1 == -1)
5106 p1 = regno;
5107 else if (p2 == -1)
5108 p2 = regno;
5109 }
5110 else if (type != 'i'
5111 && pr.X_op == O_subtract
5112 && (pr1 = symbol_get_value_expression (pr.X_add_symbol))
5113 && pr1->X_op == O_register
5114 && pr1->X_add_number >= REG_P
5115 && pr1->X_add_number <= REG_P + 63
5116 && (pr2 = symbol_get_value_expression (pr.X_op_symbol))
5117 && pr2->X_op == O_register
5118 && pr2->X_add_number >= REG_P
5119 && pr2->X_add_number <= REG_P + 63)
5120 {
5121 /* It's a range. */
5122 int stop;
5123
5124 regno = pr1->X_add_number - REG_P;
5125 stop = pr2->X_add_number - REG_P;
5126 if (regno >= stop)
5127 {
5128 as_bad (_("Bad register range"));
5129 ignore_rest_of_line ();
5130 return;
5131 }
5132 bits = ((bits << stop) << 1) - (bits << regno);
5133 count += stop - regno + 1;
5134 }
5135 else
5136 {
5137 as_bad (_("Predicate register expected"));
5138 ignore_rest_of_line ();
5139 return;
5140 }
5141 if (mask & bits)
5142 as_warn (_("Duplicate predicate register ignored"));
5143 mask |= bits;
5144 if (*input_line_pointer != ',')
5145 break;
5146 ++input_line_pointer;
5147 SKIP_WHITESPACE ();
5148 }
5149
5150 switch (type)
5151 {
5152 case 'c':
5153 if (count == 0)
5154 mask = ~(valueT) 0;
5155 clear_qp_mutex (mask);
5156 clear_qp_implies (mask, (valueT) 0);
5157 break;
5158 case 'i':
5159 if (count != 2 || p1 == -1 || p2 == -1)
5160 as_bad (_("Predicate source and target required"));
5161 else if (p1 == 0 || p2 == 0)
5162 as_bad (_("Use of p0 is not valid in this context"));
5163 else
5164 add_qp_imply (p1, p2);
5165 break;
5166 case 'm':
5167 if (count < 2)
5168 {
5169 as_bad (_("At least two PR arguments expected"));
5170 break;
5171 }
5172 else if (mask & 1)
5173 {
5174 as_bad (_("Use of p0 is not valid in this context"));
5175 break;
5176 }
5177 add_qp_mutex (mask);
5178 break;
5179 case 's':
5180 /* note that we don't override any existing relations */
5181 if (count == 0)
5182 {
5183 as_bad (_("At least one PR argument expected"));
5184 break;
5185 }
5186 if (md.debug_dv)
5187 {
5188 fprintf (stderr, "Safe across calls: ");
5189 print_prmask (mask);
5190 fprintf (stderr, "\n");
5191 }
5192 qp_safe_across_calls = mask;
5193 break;
5194 }
5195 demand_empty_rest_of_line ();
5196 }
5197
5198 /* .entry label [, label [, ...]]
5199 Hint to DV code that the given labels are to be considered entry points.
5200 Otherwise, only global labels are considered entry points. */
5201
5202 static void
5203 dot_entry (dummy)
5204 int dummy ATTRIBUTE_UNUSED;
5205 {
5206 const char *err;
5207 char *name;
5208 int c;
5209 symbolS *symbolP;
5210
5211 do
5212 {
5213 name = input_line_pointer;
5214 c = get_symbol_end ();
5215 symbolP = symbol_find_or_make (name);
5216
5217 err = hash_insert (md.entry_hash, S_GET_NAME (symbolP), (PTR) symbolP);
5218 if (err)
5219 as_fatal (_("Inserting \"%s\" into entry hint table failed: %s"),
5220 name, err);
5221
5222 *input_line_pointer = c;
5223 SKIP_WHITESPACE ();
5224 c = *input_line_pointer;
5225 if (c == ',')
5226 {
5227 input_line_pointer++;
5228 SKIP_WHITESPACE ();
5229 if (*input_line_pointer == '\n')
5230 c = '\n';
5231 }
5232 }
5233 while (c == ',');
5234
5235 demand_empty_rest_of_line ();
5236 }
5237
5238 /* .mem.offset offset, base
5239 "base" is used to distinguish between offsets from a different base. */
5240
5241 static void
5242 dot_mem_offset (dummy)
5243 int dummy ATTRIBUTE_UNUSED;
5244 {
5245 md.mem_offset.hint = 1;
5246 md.mem_offset.offset = get_absolute_expression ();
5247 if (*input_line_pointer != ',')
5248 {
5249 as_bad (_("Comma expected"));
5250 ignore_rest_of_line ();
5251 return;
5252 }
5253 ++input_line_pointer;
5254 md.mem_offset.base = get_absolute_expression ();
5255 demand_empty_rest_of_line ();
5256 }
5257
5258 /* ia64-specific pseudo-ops: */
5259 const pseudo_typeS md_pseudo_table[] =
5260 {
5261 { "radix", dot_radix, 0 },
5262 { "lcomm", s_lcomm_bytes, 1 },
5263 { "loc", dot_loc, 0 },
5264 { "bss", dot_special_section, SPECIAL_SECTION_BSS },
5265 { "sbss", dot_special_section, SPECIAL_SECTION_SBSS },
5266 { "sdata", dot_special_section, SPECIAL_SECTION_SDATA },
5267 { "rodata", dot_special_section, SPECIAL_SECTION_RODATA },
5268 { "comment", dot_special_section, SPECIAL_SECTION_COMMENT },
5269 { "ia_64.unwind", dot_special_section, SPECIAL_SECTION_UNWIND },
5270 { "ia_64.unwind_info", dot_special_section, SPECIAL_SECTION_UNWIND_INFO },
5271 { "init_array", dot_special_section, SPECIAL_SECTION_INIT_ARRAY },
5272 { "fini_array", dot_special_section, SPECIAL_SECTION_FINI_ARRAY },
5273 { "proc", dot_proc, 0 },
5274 { "body", dot_body, 0 },
5275 { "prologue", dot_prologue, 0 },
5276 { "endp", dot_endp, 0 },
5277
5278 { "fframe", dot_fframe, 0 },
5279 { "vframe", dot_vframe, 0 },
5280 { "vframesp", dot_vframesp, 0 },
5281 { "vframepsp", dot_vframepsp, 0 },
5282 { "save", dot_save, 0 },
5283 { "restore", dot_restore, 0 },
5284 { "restorereg", dot_restorereg, 0 },
5285 { "restorereg.p", dot_restorereg_p, 0 },
5286 { "handlerdata", dot_handlerdata, 0 },
5287 { "unwentry", dot_unwentry, 0 },
5288 { "altrp", dot_altrp, 0 },
5289 { "savesp", dot_savemem, 0 },
5290 { "savepsp", dot_savemem, 1 },
5291 { "save.g", dot_saveg, 0 },
5292 { "save.f", dot_savef, 0 },
5293 { "save.b", dot_saveb, 0 },
5294 { "save.gf", dot_savegf, 0 },
5295 { "spill", dot_spill, 0 },
5296 { "spillreg", dot_spillreg, 0 },
5297 { "spillsp", dot_spillmem, 0 },
5298 { "spillpsp", dot_spillmem, 1 },
5299 { "spillreg.p", dot_spillreg_p, 0 },
5300 { "spillsp.p", dot_spillmem_p, 0 },
5301 { "spillpsp.p", dot_spillmem_p, 1 },
5302 { "label_state", dot_label_state, 0 },
5303 { "copy_state", dot_copy_state, 0 },
5304 { "unwabi", dot_unwabi, 0 },
5305 { "personality", dot_personality, 0 },
5306 { "mii", dot_template, 0x0 },
5307 { "mli", dot_template, 0x2 }, /* old format, for compatibility */
5308 { "mlx", dot_template, 0x2 },
5309 { "mmi", dot_template, 0x4 },
5310 { "mfi", dot_template, 0x6 },
5311 { "mmf", dot_template, 0x7 },
5312 { "mib", dot_template, 0x8 },
5313 { "mbb", dot_template, 0x9 },
5314 { "bbb", dot_template, 0xb },
5315 { "mmb", dot_template, 0xc },
5316 { "mfb", dot_template, 0xe },
5317 { "align", dot_align, 0 },
5318 { "regstk", dot_regstk, 0 },
5319 { "rotr", dot_rot, DYNREG_GR },
5320 { "rotf", dot_rot, DYNREG_FR },
5321 { "rotp", dot_rot, DYNREG_PR },
5322 { "lsb", dot_byteorder, 0 },
5323 { "msb", dot_byteorder, 1 },
5324 { "psr", dot_psr, 0 },
5325 { "alias", dot_alias, 0 },
5326 { "secalias", dot_alias, 1 },
5327 { "ln", dot_ln, 0 }, /* source line info (for debugging) */
5328
5329 { "xdata1", dot_xdata, 1 },
5330 { "xdata2", dot_xdata, 2 },
5331 { "xdata4", dot_xdata, 4 },
5332 { "xdata8", dot_xdata, 8 },
5333 { "xdata16", dot_xdata, 16 },
5334 { "xreal4", dot_xfloat_cons, 'f' },
5335 { "xreal8", dot_xfloat_cons, 'd' },
5336 { "xreal10", dot_xfloat_cons, 'x' },
5337 { "xreal16", dot_xfloat_cons, 'X' },
5338 { "xstring", dot_xstringer, 0 },
5339 { "xstringz", dot_xstringer, 1 },
5340
5341 /* unaligned versions: */
5342 { "xdata2.ua", dot_xdata_ua, 2 },
5343 { "xdata4.ua", dot_xdata_ua, 4 },
5344 { "xdata8.ua", dot_xdata_ua, 8 },
5345 { "xdata16.ua", dot_xdata_ua, 16 },
5346 { "xreal4.ua", dot_xfloat_cons_ua, 'f' },
5347 { "xreal8.ua", dot_xfloat_cons_ua, 'd' },
5348 { "xreal10.ua", dot_xfloat_cons_ua, 'x' },
5349 { "xreal16.ua", dot_xfloat_cons_ua, 'X' },
5350
5351 /* annotations/DV checking support */
5352 { "entry", dot_entry, 0 },
5353 { "mem.offset", dot_mem_offset, 0 },
5354 { "pred.rel", dot_pred_rel, 0 },
5355 { "pred.rel.clear", dot_pred_rel, 'c' },
5356 { "pred.rel.imply", dot_pred_rel, 'i' },
5357 { "pred.rel.mutex", dot_pred_rel, 'm' },
5358 { "pred.safe_across_calls", dot_pred_rel, 's' },
5359 { "reg.val", dot_reg_val, 0 },
5360 { "serialize.data", dot_serialize, 0 },
5361 { "serialize.instruction", dot_serialize, 1 },
5362 { "auto", dot_dv_mode, 'a' },
5363 { "explicit", dot_dv_mode, 'e' },
5364 { "default", dot_dv_mode, 'd' },
5365
5366 /* ??? These are needed to make gas/testsuite/gas/elf/ehopt.s work.
5367 IA-64 aligns data allocation pseudo-ops by default, so we have to
5368 tell it that these ones are supposed to be unaligned. Long term,
5369 should rewrite so that only IA-64 specific data allocation pseudo-ops
5370 are aligned by default. */
5371 {"2byte", stmt_cons_ua, 2},
5372 {"4byte", stmt_cons_ua, 4},
5373 {"8byte", stmt_cons_ua, 8},
5374
5375 { NULL, 0, 0 }
5376 };
5377
5378 static const struct pseudo_opcode
5379 {
5380 const char *name;
5381 void (*handler) (int);
5382 int arg;
5383 }
5384 pseudo_opcode[] =
5385 {
5386 /* these are more like pseudo-ops, but don't start with a dot */
5387 { "data1", cons, 1 },
5388 { "data2", cons, 2 },
5389 { "data4", cons, 4 },
5390 { "data8", cons, 8 },
5391 { "data16", cons, 16 },
5392 { "real4", stmt_float_cons, 'f' },
5393 { "real8", stmt_float_cons, 'd' },
5394 { "real10", stmt_float_cons, 'x' },
5395 { "real16", stmt_float_cons, 'X' },
5396 { "string", stringer, 0 },
5397 { "stringz", stringer, 1 },
5398
5399 /* unaligned versions: */
5400 { "data2.ua", stmt_cons_ua, 2 },
5401 { "data4.ua", stmt_cons_ua, 4 },
5402 { "data8.ua", stmt_cons_ua, 8 },
5403 { "data16.ua", stmt_cons_ua, 16 },
5404 { "real4.ua", float_cons, 'f' },
5405 { "real8.ua", float_cons, 'd' },
5406 { "real10.ua", float_cons, 'x' },
5407 { "real16.ua", float_cons, 'X' },
5408 };
5409
5410 /* Declare a register by creating a symbol for it and entering it in
5411 the symbol table. */
5412
5413 static symbolS *
5414 declare_register (name, regnum)
5415 const char *name;
5416 int regnum;
5417 {
5418 const char *err;
5419 symbolS *sym;
5420
5421 sym = symbol_new (name, reg_section, regnum, &zero_address_frag);
5422
5423 err = hash_insert (md.reg_hash, S_GET_NAME (sym), (PTR) sym);
5424 if (err)
5425 as_fatal ("Inserting \"%s\" into register table failed: %s",
5426 name, err);
5427
5428 return sym;
5429 }
5430
5431 static void
5432 declare_register_set (prefix, num_regs, base_regnum)
5433 const char *prefix;
5434 int num_regs;
5435 int base_regnum;
5436 {
5437 char name[8];
5438 int i;
5439
5440 for (i = 0; i < num_regs; ++i)
5441 {
5442 sprintf (name, "%s%u", prefix, i);
5443 declare_register (name, base_regnum + i);
5444 }
5445 }
5446
5447 static unsigned int
5448 operand_width (opnd)
5449 enum ia64_opnd opnd;
5450 {
5451 const struct ia64_operand *odesc = &elf64_ia64_operands[opnd];
5452 unsigned int bits = 0;
5453 int i;
5454
5455 bits = 0;
5456 for (i = 0; i < NELEMS (odesc->field) && odesc->field[i].bits; ++i)
5457 bits += odesc->field[i].bits;
5458
5459 return bits;
5460 }
5461
5462 static enum operand_match_result
5463 operand_match (idesc, index, e)
5464 const struct ia64_opcode *idesc;
5465 int index;
5466 expressionS *e;
5467 {
5468 enum ia64_opnd opnd = idesc->operands[index];
5469 int bits, relocatable = 0;
5470 struct insn_fix *fix;
5471 bfd_signed_vma val;
5472
5473 switch (opnd)
5474 {
5475 /* constants: */
5476
5477 case IA64_OPND_AR_CCV:
5478 if (e->X_op == O_register && e->X_add_number == REG_AR + 32)
5479 return OPERAND_MATCH;
5480 break;
5481
5482 case IA64_OPND_AR_CSD:
5483 if (e->X_op == O_register && e->X_add_number == REG_AR + 25)
5484 return OPERAND_MATCH;
5485 break;
5486
5487 case IA64_OPND_AR_PFS:
5488 if (e->X_op == O_register && e->X_add_number == REG_AR + 64)
5489 return OPERAND_MATCH;
5490 break;
5491
5492 case IA64_OPND_GR0:
5493 if (e->X_op == O_register && e->X_add_number == REG_GR + 0)
5494 return OPERAND_MATCH;
5495 break;
5496
5497 case IA64_OPND_IP:
5498 if (e->X_op == O_register && e->X_add_number == REG_IP)
5499 return OPERAND_MATCH;
5500 break;
5501
5502 case IA64_OPND_PR:
5503 if (e->X_op == O_register && e->X_add_number == REG_PR)
5504 return OPERAND_MATCH;
5505 break;
5506
5507 case IA64_OPND_PR_ROT:
5508 if (e->X_op == O_register && e->X_add_number == REG_PR_ROT)
5509 return OPERAND_MATCH;
5510 break;
5511
5512 case IA64_OPND_PSR:
5513 if (e->X_op == O_register && e->X_add_number == REG_PSR)
5514 return OPERAND_MATCH;
5515 break;
5516
5517 case IA64_OPND_PSR_L:
5518 if (e->X_op == O_register && e->X_add_number == REG_PSR_L)
5519 return OPERAND_MATCH;
5520 break;
5521
5522 case IA64_OPND_PSR_UM:
5523 if (e->X_op == O_register && e->X_add_number == REG_PSR_UM)
5524 return OPERAND_MATCH;
5525 break;
5526
5527 case IA64_OPND_C1:
5528 if (e->X_op == O_constant)
5529 {
5530 if (e->X_add_number == 1)
5531 return OPERAND_MATCH;
5532 else
5533 return OPERAND_OUT_OF_RANGE;
5534 }
5535 break;
5536
5537 case IA64_OPND_C8:
5538 if (e->X_op == O_constant)
5539 {
5540 if (e->X_add_number == 8)
5541 return OPERAND_MATCH;
5542 else
5543 return OPERAND_OUT_OF_RANGE;
5544 }
5545 break;
5546
5547 case IA64_OPND_C16:
5548 if (e->X_op == O_constant)
5549 {
5550 if (e->X_add_number == 16)
5551 return OPERAND_MATCH;
5552 else
5553 return OPERAND_OUT_OF_RANGE;
5554 }
5555 break;
5556
5557 /* register operands: */
5558
5559 case IA64_OPND_AR3:
5560 if (e->X_op == O_register && e->X_add_number >= REG_AR
5561 && e->X_add_number < REG_AR + 128)
5562 return OPERAND_MATCH;
5563 break;
5564
5565 case IA64_OPND_B1:
5566 case IA64_OPND_B2:
5567 if (e->X_op == O_register && e->X_add_number >= REG_BR
5568 && e->X_add_number < REG_BR + 8)
5569 return OPERAND_MATCH;
5570 break;
5571
5572 case IA64_OPND_CR3:
5573 if (e->X_op == O_register && e->X_add_number >= REG_CR
5574 && e->X_add_number < REG_CR + 128)
5575 return OPERAND_MATCH;
5576 break;
5577
5578 case IA64_OPND_F1:
5579 case IA64_OPND_F2:
5580 case IA64_OPND_F3:
5581 case IA64_OPND_F4:
5582 if (e->X_op == O_register && e->X_add_number >= REG_FR
5583 && e->X_add_number < REG_FR + 128)
5584 return OPERAND_MATCH;
5585 break;
5586
5587 case IA64_OPND_P1:
5588 case IA64_OPND_P2:
5589 if (e->X_op == O_register && e->X_add_number >= REG_P
5590 && e->X_add_number < REG_P + 64)
5591 return OPERAND_MATCH;
5592 break;
5593
5594 case IA64_OPND_R1:
5595 case IA64_OPND_R2:
5596 case IA64_OPND_R3:
5597 if (e->X_op == O_register && e->X_add_number >= REG_GR
5598 && e->X_add_number < REG_GR + 128)
5599 return OPERAND_MATCH;
5600 break;
5601
5602 case IA64_OPND_R3_2:
5603 if (e->X_op == O_register && e->X_add_number >= REG_GR)
5604 {
5605 if (e->X_add_number < REG_GR + 4)
5606 return OPERAND_MATCH;
5607 else if (e->X_add_number < REG_GR + 128)
5608 return OPERAND_OUT_OF_RANGE;
5609 }
5610 break;
5611
5612 /* indirect operands: */
5613 case IA64_OPND_CPUID_R3:
5614 case IA64_OPND_DBR_R3:
5615 case IA64_OPND_DTR_R3:
5616 case IA64_OPND_ITR_R3:
5617 case IA64_OPND_IBR_R3:
5618 case IA64_OPND_MSR_R3:
5619 case IA64_OPND_PKR_R3:
5620 case IA64_OPND_PMC_R3:
5621 case IA64_OPND_PMD_R3:
5622 case IA64_OPND_RR_R3:
5623 if (e->X_op == O_index && e->X_op_symbol
5624 && (S_GET_VALUE (e->X_op_symbol) - IND_CPUID
5625 == opnd - IA64_OPND_CPUID_R3))
5626 return OPERAND_MATCH;
5627 break;
5628
5629 case IA64_OPND_MR3:
5630 if (e->X_op == O_index && !e->X_op_symbol)
5631 return OPERAND_MATCH;
5632 break;
5633
5634 /* immediate operands: */
5635 case IA64_OPND_CNT2a:
5636 case IA64_OPND_LEN4:
5637 case IA64_OPND_LEN6:
5638 bits = operand_width (idesc->operands[index]);
5639 if (e->X_op == O_constant)
5640 {
5641 if ((bfd_vma) (e->X_add_number - 1) < ((bfd_vma) 1 << bits))
5642 return OPERAND_MATCH;
5643 else
5644 return OPERAND_OUT_OF_RANGE;
5645 }
5646 break;
5647
5648 case IA64_OPND_CNT2b:
5649 if (e->X_op == O_constant)
5650 {
5651 if ((bfd_vma) (e->X_add_number - 1) < 3)
5652 return OPERAND_MATCH;
5653 else
5654 return OPERAND_OUT_OF_RANGE;
5655 }
5656 break;
5657
5658 case IA64_OPND_CNT2c:
5659 val = e->X_add_number;
5660 if (e->X_op == O_constant)
5661 {
5662 if ((val == 0 || val == 7 || val == 15 || val == 16))
5663 return OPERAND_MATCH;
5664 else
5665 return OPERAND_OUT_OF_RANGE;
5666 }
5667 break;
5668
5669 case IA64_OPND_SOR:
5670 /* SOR must be an integer multiple of 8 */
5671 if (e->X_op == O_constant && e->X_add_number & 0x7)
5672 return OPERAND_OUT_OF_RANGE;
5673 case IA64_OPND_SOF:
5674 case IA64_OPND_SOL:
5675 if (e->X_op == O_constant)
5676 {
5677 if ((bfd_vma) e->X_add_number <= 96)
5678 return OPERAND_MATCH;
5679 else
5680 return OPERAND_OUT_OF_RANGE;
5681 }
5682 break;
5683
5684 case IA64_OPND_IMMU62:
5685 if (e->X_op == O_constant)
5686 {
5687 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << 62))
5688 return OPERAND_MATCH;
5689 else
5690 return OPERAND_OUT_OF_RANGE;
5691 }
5692 else
5693 {
5694 /* FIXME -- need 62-bit relocation type */
5695 as_bad (_("62-bit relocation not yet implemented"));
5696 }
5697 break;
5698
5699 case IA64_OPND_IMMU64:
5700 if (e->X_op == O_symbol || e->X_op == O_pseudo_fixup
5701 || e->X_op == O_subtract)
5702 {
5703 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5704 fix->code = BFD_RELOC_IA64_IMM64;
5705 if (e->X_op != O_subtract)
5706 {
5707 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5708 if (e->X_op == O_pseudo_fixup)
5709 e->X_op = O_symbol;
5710 }
5711
5712 fix->opnd = idesc->operands[index];
5713 fix->expr = *e;
5714 fix->is_pcrel = 0;
5715 ++CURR_SLOT.num_fixups;
5716 return OPERAND_MATCH;
5717 }
5718 else if (e->X_op == O_constant)
5719 return OPERAND_MATCH;
5720 break;
5721
5722 case IA64_OPND_CCNT5:
5723 case IA64_OPND_CNT5:
5724 case IA64_OPND_CNT6:
5725 case IA64_OPND_CPOS6a:
5726 case IA64_OPND_CPOS6b:
5727 case IA64_OPND_CPOS6c:
5728 case IA64_OPND_IMMU2:
5729 case IA64_OPND_IMMU7a:
5730 case IA64_OPND_IMMU7b:
5731 case IA64_OPND_IMMU21:
5732 case IA64_OPND_IMMU24:
5733 case IA64_OPND_MBTYPE4:
5734 case IA64_OPND_MHTYPE8:
5735 case IA64_OPND_POS6:
5736 bits = operand_width (idesc->operands[index]);
5737 if (e->X_op == O_constant)
5738 {
5739 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5740 return OPERAND_MATCH;
5741 else
5742 return OPERAND_OUT_OF_RANGE;
5743 }
5744 break;
5745
5746 case IA64_OPND_IMMU9:
5747 bits = operand_width (idesc->operands[index]);
5748 if (e->X_op == O_constant)
5749 {
5750 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5751 {
5752 int lobits = e->X_add_number & 0x3;
5753 if (((bfd_vma) e->X_add_number & 0x3C) != 0 && lobits == 0)
5754 e->X_add_number |= (bfd_vma) 0x3;
5755 return OPERAND_MATCH;
5756 }
5757 else
5758 return OPERAND_OUT_OF_RANGE;
5759 }
5760 break;
5761
5762 case IA64_OPND_IMM44:
5763 /* least 16 bits must be zero */
5764 if ((e->X_add_number & 0xffff) != 0)
5765 /* XXX technically, this is wrong: we should not be issuing warning
5766 messages until we're sure this instruction pattern is going to
5767 be used! */
5768 as_warn (_("lower 16 bits of mask ignored"));
5769
5770 if (e->X_op == O_constant)
5771 {
5772 if (((e->X_add_number >= 0
5773 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 44))
5774 || (e->X_add_number < 0
5775 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 44))))
5776 {
5777 /* sign-extend */
5778 if (e->X_add_number >= 0
5779 && (e->X_add_number & ((bfd_vma) 1 << 43)) != 0)
5780 {
5781 e->X_add_number |= ~(((bfd_vma) 1 << 44) - 1);
5782 }
5783 return OPERAND_MATCH;
5784 }
5785 else
5786 return OPERAND_OUT_OF_RANGE;
5787 }
5788 break;
5789
5790 case IA64_OPND_IMM17:
5791 /* bit 0 is a don't care (pr0 is hardwired to 1) */
5792 if (e->X_op == O_constant)
5793 {
5794 if (((e->X_add_number >= 0
5795 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 17))
5796 || (e->X_add_number < 0
5797 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 17))))
5798 {
5799 /* sign-extend */
5800 if (e->X_add_number >= 0
5801 && (e->X_add_number & ((bfd_vma) 1 << 16)) != 0)
5802 {
5803 e->X_add_number |= ~(((bfd_vma) 1 << 17) - 1);
5804 }
5805 return OPERAND_MATCH;
5806 }
5807 else
5808 return OPERAND_OUT_OF_RANGE;
5809 }
5810 break;
5811
5812 case IA64_OPND_IMM14:
5813 case IA64_OPND_IMM22:
5814 relocatable = 1;
5815 case IA64_OPND_IMM1:
5816 case IA64_OPND_IMM8:
5817 case IA64_OPND_IMM8U4:
5818 case IA64_OPND_IMM8M1:
5819 case IA64_OPND_IMM8M1U4:
5820 case IA64_OPND_IMM8M1U8:
5821 case IA64_OPND_IMM9a:
5822 case IA64_OPND_IMM9b:
5823 bits = operand_width (idesc->operands[index]);
5824 if (relocatable && (e->X_op == O_symbol
5825 || e->X_op == O_subtract
5826 || e->X_op == O_pseudo_fixup))
5827 {
5828 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5829
5830 if (idesc->operands[index] == IA64_OPND_IMM14)
5831 fix->code = BFD_RELOC_IA64_IMM14;
5832 else
5833 fix->code = BFD_RELOC_IA64_IMM22;
5834
5835 if (e->X_op != O_subtract)
5836 {
5837 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5838 if (e->X_op == O_pseudo_fixup)
5839 e->X_op = O_symbol;
5840 }
5841
5842 fix->opnd = idesc->operands[index];
5843 fix->expr = *e;
5844 fix->is_pcrel = 0;
5845 ++CURR_SLOT.num_fixups;
5846 return OPERAND_MATCH;
5847 }
5848 else if (e->X_op != O_constant
5849 && ! (e->X_op == O_big && opnd == IA64_OPND_IMM8M1U8))
5850 return OPERAND_MISMATCH;
5851
5852 if (opnd == IA64_OPND_IMM8M1U4)
5853 {
5854 /* Zero is not valid for unsigned compares that take an adjusted
5855 constant immediate range. */
5856 if (e->X_add_number == 0)
5857 return OPERAND_OUT_OF_RANGE;
5858
5859 /* Sign-extend 32-bit unsigned numbers, so that the following range
5860 checks will work. */
5861 val = e->X_add_number;
5862 if (((val & (~(bfd_vma) 0 << 32)) == 0)
5863 && ((val & ((bfd_vma) 1 << 31)) != 0))
5864 val = ((val << 32) >> 32);
5865
5866 /* Check for 0x100000000. This is valid because
5867 0x100000000-1 is the same as ((uint32_t) -1). */
5868 if (val == ((bfd_signed_vma) 1 << 32))
5869 return OPERAND_MATCH;
5870
5871 val = val - 1;
5872 }
5873 else if (opnd == IA64_OPND_IMM8M1U8)
5874 {
5875 /* Zero is not valid for unsigned compares that take an adjusted
5876 constant immediate range. */
5877 if (e->X_add_number == 0)
5878 return OPERAND_OUT_OF_RANGE;
5879
5880 /* Check for 0x10000000000000000. */
5881 if (e->X_op == O_big)
5882 {
5883 if (generic_bignum[0] == 0
5884 && generic_bignum[1] == 0
5885 && generic_bignum[2] == 0
5886 && generic_bignum[3] == 0
5887 && generic_bignum[4] == 1)
5888 return OPERAND_MATCH;
5889 else
5890 return OPERAND_OUT_OF_RANGE;
5891 }
5892 else
5893 val = e->X_add_number - 1;
5894 }
5895 else if (opnd == IA64_OPND_IMM8M1)
5896 val = e->X_add_number - 1;
5897 else if (opnd == IA64_OPND_IMM8U4)
5898 {
5899 /* Sign-extend 32-bit unsigned numbers, so that the following range
5900 checks will work. */
5901 val = e->X_add_number;
5902 if (((val & (~(bfd_vma) 0 << 32)) == 0)
5903 && ((val & ((bfd_vma) 1 << 31)) != 0))
5904 val = ((val << 32) >> 32);
5905 }
5906 else
5907 val = e->X_add_number;
5908
5909 if ((val >= 0 && (bfd_vma) val < ((bfd_vma) 1 << (bits - 1)))
5910 || (val < 0 && (bfd_vma) -val <= ((bfd_vma) 1 << (bits - 1))))
5911 return OPERAND_MATCH;
5912 else
5913 return OPERAND_OUT_OF_RANGE;
5914
5915 case IA64_OPND_INC3:
5916 /* +/- 1, 4, 8, 16 */
5917 val = e->X_add_number;
5918 if (val < 0)
5919 val = -val;
5920 if (e->X_op == O_constant)
5921 {
5922 if ((val == 1 || val == 4 || val == 8 || val == 16))
5923 return OPERAND_MATCH;
5924 else
5925 return OPERAND_OUT_OF_RANGE;
5926 }
5927 break;
5928
5929 case IA64_OPND_TGT25:
5930 case IA64_OPND_TGT25b:
5931 case IA64_OPND_TGT25c:
5932 case IA64_OPND_TGT64:
5933 if (e->X_op == O_symbol)
5934 {
5935 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5936 if (opnd == IA64_OPND_TGT25)
5937 fix->code = BFD_RELOC_IA64_PCREL21F;
5938 else if (opnd == IA64_OPND_TGT25b)
5939 fix->code = BFD_RELOC_IA64_PCREL21M;
5940 else if (opnd == IA64_OPND_TGT25c)
5941 fix->code = BFD_RELOC_IA64_PCREL21B;
5942 else if (opnd == IA64_OPND_TGT64)
5943 fix->code = BFD_RELOC_IA64_PCREL60B;
5944 else
5945 abort ();
5946
5947 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5948 fix->opnd = idesc->operands[index];
5949 fix->expr = *e;
5950 fix->is_pcrel = 1;
5951 ++CURR_SLOT.num_fixups;
5952 return OPERAND_MATCH;
5953 }
5954 case IA64_OPND_TAG13:
5955 case IA64_OPND_TAG13b:
5956 switch (e->X_op)
5957 {
5958 case O_constant:
5959 return OPERAND_MATCH;
5960
5961 case O_symbol:
5962 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5963 /* There are no external relocs for TAG13/TAG13b fields, so we
5964 create a dummy reloc. This will not live past md_apply_fix3. */
5965 fix->code = BFD_RELOC_UNUSED;
5966 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5967 fix->opnd = idesc->operands[index];
5968 fix->expr = *e;
5969 fix->is_pcrel = 1;
5970 ++CURR_SLOT.num_fixups;
5971 return OPERAND_MATCH;
5972
5973 default:
5974 break;
5975 }
5976 break;
5977
5978 case IA64_OPND_LDXMOV:
5979 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5980 fix->code = BFD_RELOC_IA64_LDXMOV;
5981 fix->opnd = idesc->operands[index];
5982 fix->expr = *e;
5983 fix->is_pcrel = 0;
5984 ++CURR_SLOT.num_fixups;
5985 return OPERAND_MATCH;
5986
5987 default:
5988 break;
5989 }
5990 return OPERAND_MISMATCH;
5991 }
5992
5993 static int
5994 parse_operand (e)
5995 expressionS *e;
5996 {
5997 int sep = '\0';
5998
5999 memset (e, 0, sizeof (*e));
6000 e->X_op = O_absent;
6001 SKIP_WHITESPACE ();
6002 if (*input_line_pointer != '}')
6003 expression (e);
6004 sep = *input_line_pointer++;
6005
6006 if (sep == '}')
6007 {
6008 if (!md.manual_bundling)
6009 as_warn ("Found '}' when manual bundling is off");
6010 else
6011 CURR_SLOT.manual_bundling_off = 1;
6012 md.manual_bundling = 0;
6013 sep = '\0';
6014 }
6015 return sep;
6016 }
6017
6018 /* Returns the next entry in the opcode table that matches the one in
6019 IDESC, and frees the entry in IDESC. If no matching entry is
6020 found, NULL is returned instead. */
6021
6022 static struct ia64_opcode *
6023 get_next_opcode (struct ia64_opcode *idesc)
6024 {
6025 struct ia64_opcode *next = ia64_find_next_opcode (idesc);
6026 ia64_free_opcode (idesc);
6027 return next;
6028 }
6029
6030 /* Parse the operands for the opcode and find the opcode variant that
6031 matches the specified operands, or NULL if no match is possible. */
6032
6033 static struct ia64_opcode *
6034 parse_operands (idesc)
6035 struct ia64_opcode *idesc;
6036 {
6037 int i = 0, highest_unmatched_operand, num_operands = 0, num_outputs = 0;
6038 int error_pos, out_of_range_pos, curr_out_of_range_pos, sep = 0;
6039 int reg1, reg2;
6040 char reg_class;
6041 enum ia64_opnd expected_operand = IA64_OPND_NIL;
6042 enum operand_match_result result;
6043 char mnemonic[129];
6044 char *first_arg = 0, *end, *saved_input_pointer;
6045 unsigned int sof;
6046
6047 assert (strlen (idesc->name) <= 128);
6048
6049 strcpy (mnemonic, idesc->name);
6050 if (idesc->operands[2] == IA64_OPND_SOF
6051 || idesc->operands[1] == IA64_OPND_SOF)
6052 {
6053 /* To make the common idiom "alloc loc?=ar.pfs,0,1,0,0" work, we
6054 can't parse the first operand until we have parsed the
6055 remaining operands of the "alloc" instruction. */
6056 SKIP_WHITESPACE ();
6057 first_arg = input_line_pointer;
6058 end = strchr (input_line_pointer, '=');
6059 if (!end)
6060 {
6061 as_bad ("Expected separator `='");
6062 return 0;
6063 }
6064 input_line_pointer = end + 1;
6065 ++i;
6066 ++num_outputs;
6067 }
6068
6069 for (; ; ++i)
6070 {
6071 if (i < NELEMS (CURR_SLOT.opnd))
6072 {
6073 sep = parse_operand (CURR_SLOT.opnd + i);
6074 if (CURR_SLOT.opnd[i].X_op == O_absent)
6075 break;
6076 }
6077 else
6078 {
6079 expressionS dummy;
6080
6081 sep = parse_operand (&dummy);
6082 if (dummy.X_op == O_absent)
6083 break;
6084 }
6085
6086 ++num_operands;
6087
6088 if (sep != '=' && sep != ',')
6089 break;
6090
6091 if (sep == '=')
6092 {
6093 if (num_outputs > 0)
6094 as_bad ("Duplicate equal sign (=) in instruction");
6095 else
6096 num_outputs = i + 1;
6097 }
6098 }
6099 if (sep != '\0')
6100 {
6101 as_bad ("Illegal operand separator `%c'", sep);
6102 return 0;
6103 }
6104
6105 if (idesc->operands[2] == IA64_OPND_SOF
6106 || idesc->operands[1] == IA64_OPND_SOF)
6107 {
6108 /* map alloc r1=ar.pfs,i,l,o,r to alloc r1=ar.pfs,(i+l+o),(i+l),r */
6109 know (strcmp (idesc->name, "alloc") == 0);
6110 i = (CURR_SLOT.opnd[1].X_op == O_register
6111 && CURR_SLOT.opnd[1].X_add_number == REG_AR + AR_PFS) ? 2 : 1;
6112 if (num_operands == i + 3 /* first_arg not included in this count! */
6113 && CURR_SLOT.opnd[i].X_op == O_constant
6114 && CURR_SLOT.opnd[i + 1].X_op == O_constant
6115 && CURR_SLOT.opnd[i + 2].X_op == O_constant
6116 && CURR_SLOT.opnd[i + 3].X_op == O_constant)
6117 {
6118 sof = set_regstack (CURR_SLOT.opnd[i].X_add_number,
6119 CURR_SLOT.opnd[i + 1].X_add_number,
6120 CURR_SLOT.opnd[i + 2].X_add_number,
6121 CURR_SLOT.opnd[i + 3].X_add_number);
6122
6123 /* now we can parse the first arg: */
6124 saved_input_pointer = input_line_pointer;
6125 input_line_pointer = first_arg;
6126 sep = parse_operand (CURR_SLOT.opnd + 0);
6127 if (sep != '=')
6128 --num_outputs; /* force error */
6129 input_line_pointer = saved_input_pointer;
6130
6131 CURR_SLOT.opnd[i].X_add_number = sof;
6132 CURR_SLOT.opnd[i + 1].X_add_number
6133 = sof - CURR_SLOT.opnd[i + 2].X_add_number;
6134 CURR_SLOT.opnd[i + 2] = CURR_SLOT.opnd[i + 3];
6135 }
6136 }
6137
6138 highest_unmatched_operand = -4;
6139 curr_out_of_range_pos = -1;
6140 error_pos = 0;
6141 for (; idesc; idesc = get_next_opcode (idesc))
6142 {
6143 if (num_outputs != idesc->num_outputs)
6144 continue; /* mismatch in # of outputs */
6145 if (highest_unmatched_operand < 0)
6146 highest_unmatched_operand |= 1;
6147 if (num_operands > NELEMS (idesc->operands)
6148 || (num_operands < NELEMS (idesc->operands)
6149 && idesc->operands[num_operands])
6150 || (num_operands > 0 && !idesc->operands[num_operands - 1]))
6151 continue; /* mismatch in number of arguments */
6152 if (highest_unmatched_operand < 0)
6153 highest_unmatched_operand |= 2;
6154
6155 CURR_SLOT.num_fixups = 0;
6156
6157 /* Try to match all operands. If we see an out-of-range operand,
6158 then continue trying to match the rest of the operands, since if
6159 the rest match, then this idesc will give the best error message. */
6160
6161 out_of_range_pos = -1;
6162 for (i = 0; i < num_operands && idesc->operands[i]; ++i)
6163 {
6164 result = operand_match (idesc, i, CURR_SLOT.opnd + i);
6165 if (result != OPERAND_MATCH)
6166 {
6167 if (result != OPERAND_OUT_OF_RANGE)
6168 break;
6169 if (out_of_range_pos < 0)
6170 /* remember position of the first out-of-range operand: */
6171 out_of_range_pos = i;
6172 }
6173 }
6174
6175 /* If we did not match all operands, or if at least one operand was
6176 out-of-range, then this idesc does not match. Keep track of which
6177 idesc matched the most operands before failing. If we have two
6178 idescs that failed at the same position, and one had an out-of-range
6179 operand, then prefer the out-of-range operand. Thus if we have
6180 "add r0=0x1000000,r1" we get an error saying the constant is out
6181 of range instead of an error saying that the constant should have been
6182 a register. */
6183
6184 if (i != num_operands || out_of_range_pos >= 0)
6185 {
6186 if (i > highest_unmatched_operand
6187 || (i == highest_unmatched_operand
6188 && out_of_range_pos > curr_out_of_range_pos))
6189 {
6190 highest_unmatched_operand = i;
6191 if (out_of_range_pos >= 0)
6192 {
6193 expected_operand = idesc->operands[out_of_range_pos];
6194 error_pos = out_of_range_pos;
6195 }
6196 else
6197 {
6198 expected_operand = idesc->operands[i];
6199 error_pos = i;
6200 }
6201 curr_out_of_range_pos = out_of_range_pos;
6202 }
6203 continue;
6204 }
6205
6206 break;
6207 }
6208 if (!idesc)
6209 {
6210 if (expected_operand)
6211 as_bad ("Operand %u of `%s' should be %s",
6212 error_pos + 1, mnemonic,
6213 elf64_ia64_operands[expected_operand].desc);
6214 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 1))
6215 as_bad ("Wrong number of output operands");
6216 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 2))
6217 as_bad ("Wrong number of input operands");
6218 else
6219 as_bad ("Operand mismatch");
6220 return 0;
6221 }
6222
6223 /* Check that the instruction doesn't use
6224 - r0, f0, or f1 as output operands
6225 - the same predicate twice as output operands
6226 - r0 as address of a base update load or store
6227 - the same GR as output and address of a base update load
6228 - two even- or two odd-numbered FRs as output operands of a floating
6229 point parallel load.
6230 At most two (conflicting) output (or output-like) operands can exist,
6231 (floating point parallel loads have three outputs, but the base register,
6232 if updated, cannot conflict with the actual outputs). */
6233 reg2 = reg1 = -1;
6234 for (i = 0; i < num_operands; ++i)
6235 {
6236 int regno = 0;
6237
6238 reg_class = 0;
6239 switch (idesc->operands[i])
6240 {
6241 case IA64_OPND_R1:
6242 case IA64_OPND_R2:
6243 case IA64_OPND_R3:
6244 if (i < num_outputs)
6245 {
6246 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6247 reg_class = 'r';
6248 else if (reg1 < 0)
6249 reg1 = CURR_SLOT.opnd[i].X_add_number;
6250 else if (reg2 < 0)
6251 reg2 = CURR_SLOT.opnd[i].X_add_number;
6252 }
6253 break;
6254 case IA64_OPND_P1:
6255 case IA64_OPND_P2:
6256 if (i < num_outputs)
6257 {
6258 if (reg1 < 0)
6259 reg1 = CURR_SLOT.opnd[i].X_add_number;
6260 else if (reg2 < 0)
6261 reg2 = CURR_SLOT.opnd[i].X_add_number;
6262 }
6263 break;
6264 case IA64_OPND_F1:
6265 case IA64_OPND_F2:
6266 case IA64_OPND_F3:
6267 case IA64_OPND_F4:
6268 if (i < num_outputs)
6269 {
6270 if (CURR_SLOT.opnd[i].X_add_number >= REG_FR
6271 && CURR_SLOT.opnd[i].X_add_number <= REG_FR + 1)
6272 {
6273 reg_class = 'f';
6274 regno = CURR_SLOT.opnd[i].X_add_number - REG_FR;
6275 }
6276 else if (reg1 < 0)
6277 reg1 = CURR_SLOT.opnd[i].X_add_number;
6278 else if (reg2 < 0)
6279 reg2 = CURR_SLOT.opnd[i].X_add_number;
6280 }
6281 break;
6282 case IA64_OPND_MR3:
6283 if (idesc->flags & IA64_OPCODE_POSTINC)
6284 {
6285 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6286 reg_class = 'm';
6287 else if (reg1 < 0)
6288 reg1 = CURR_SLOT.opnd[i].X_add_number;
6289 else if (reg2 < 0)
6290 reg2 = CURR_SLOT.opnd[i].X_add_number;
6291 }
6292 break;
6293 default:
6294 break;
6295 }
6296 switch (reg_class)
6297 {
6298 case 0:
6299 break;
6300 default:
6301 as_warn ("Invalid use of `%c%d' as output operand", reg_class, regno);
6302 break;
6303 case 'm':
6304 as_warn ("Invalid use of `r%d' as base update address operand", regno);
6305 break;
6306 }
6307 }
6308 if (reg1 == reg2)
6309 {
6310 if (reg1 >= REG_GR && reg1 <= REG_GR + 127)
6311 {
6312 reg1 -= REG_GR;
6313 reg_class = 'r';
6314 }
6315 else if (reg1 >= REG_P && reg1 <= REG_P + 63)
6316 {
6317 reg1 -= REG_P;
6318 reg_class = 'p';
6319 }
6320 else if (reg1 >= REG_FR && reg1 <= REG_FR + 127)
6321 {
6322 reg1 -= REG_FR;
6323 reg_class = 'f';
6324 }
6325 else
6326 reg_class = 0;
6327 if (reg_class)
6328 as_warn ("Invalid duplicate use of `%c%d'", reg_class, reg1);
6329 }
6330 else if (((reg1 >= REG_FR && reg1 <= REG_FR + 31
6331 && reg2 >= REG_FR && reg2 <= REG_FR + 31)
6332 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6333 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127))
6334 && ! ((reg1 ^ reg2) & 1))
6335 as_warn ("Invalid simultaneous use of `f%d' and `f%d'",
6336 reg1 - REG_FR, reg2 - REG_FR);
6337 else if ((reg1 >= REG_FR && reg1 <= REG_FR + 31
6338 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127)
6339 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6340 && reg2 >= REG_FR && reg2 <= REG_FR + 31))
6341 as_warn ("Dangerous simultaneous use of `f%d' and `f%d'",
6342 reg1 - REG_FR, reg2 - REG_FR);
6343 return idesc;
6344 }
6345
6346 static void
6347 build_insn (slot, insnp)
6348 struct slot *slot;
6349 bfd_vma *insnp;
6350 {
6351 const struct ia64_operand *odesc, *o2desc;
6352 struct ia64_opcode *idesc = slot->idesc;
6353 bfd_vma insn;
6354 bfd_signed_vma val;
6355 const char *err;
6356 int i;
6357
6358 insn = idesc->opcode | slot->qp_regno;
6359
6360 for (i = 0; i < NELEMS (idesc->operands) && idesc->operands[i]; ++i)
6361 {
6362 if (slot->opnd[i].X_op == O_register
6363 || slot->opnd[i].X_op == O_constant
6364 || slot->opnd[i].X_op == O_index)
6365 val = slot->opnd[i].X_add_number;
6366 else if (slot->opnd[i].X_op == O_big)
6367 {
6368 /* This must be the value 0x10000000000000000. */
6369 assert (idesc->operands[i] == IA64_OPND_IMM8M1U8);
6370 val = 0;
6371 }
6372 else
6373 val = 0;
6374
6375 switch (idesc->operands[i])
6376 {
6377 case IA64_OPND_IMMU64:
6378 *insnp++ = (val >> 22) & 0x1ffffffffffLL;
6379 insn |= (((val & 0x7f) << 13) | (((val >> 7) & 0x1ff) << 27)
6380 | (((val >> 16) & 0x1f) << 22) | (((val >> 21) & 0x1) << 21)
6381 | (((val >> 63) & 0x1) << 36));
6382 continue;
6383
6384 case IA64_OPND_IMMU62:
6385 val &= 0x3fffffffffffffffULL;
6386 if (val != slot->opnd[i].X_add_number)
6387 as_warn (_("Value truncated to 62 bits"));
6388 *insnp++ = (val >> 21) & 0x1ffffffffffLL;
6389 insn |= (((val & 0xfffff) << 6) | (((val >> 20) & 0x1) << 36));
6390 continue;
6391
6392 case IA64_OPND_TGT64:
6393 val >>= 4;
6394 *insnp++ = ((val >> 20) & 0x7fffffffffLL) << 2;
6395 insn |= ((((val >> 59) & 0x1) << 36)
6396 | (((val >> 0) & 0xfffff) << 13));
6397 continue;
6398
6399 case IA64_OPND_AR3:
6400 val -= REG_AR;
6401 break;
6402
6403 case IA64_OPND_B1:
6404 case IA64_OPND_B2:
6405 val -= REG_BR;
6406 break;
6407
6408 case IA64_OPND_CR3:
6409 val -= REG_CR;
6410 break;
6411
6412 case IA64_OPND_F1:
6413 case IA64_OPND_F2:
6414 case IA64_OPND_F3:
6415 case IA64_OPND_F4:
6416 val -= REG_FR;
6417 break;
6418
6419 case IA64_OPND_P1:
6420 case IA64_OPND_P2:
6421 val -= REG_P;
6422 break;
6423
6424 case IA64_OPND_R1:
6425 case IA64_OPND_R2:
6426 case IA64_OPND_R3:
6427 case IA64_OPND_R3_2:
6428 case IA64_OPND_CPUID_R3:
6429 case IA64_OPND_DBR_R3:
6430 case IA64_OPND_DTR_R3:
6431 case IA64_OPND_ITR_R3:
6432 case IA64_OPND_IBR_R3:
6433 case IA64_OPND_MR3:
6434 case IA64_OPND_MSR_R3:
6435 case IA64_OPND_PKR_R3:
6436 case IA64_OPND_PMC_R3:
6437 case IA64_OPND_PMD_R3:
6438 case IA64_OPND_RR_R3:
6439 val -= REG_GR;
6440 break;
6441
6442 default:
6443 break;
6444 }
6445
6446 odesc = elf64_ia64_operands + idesc->operands[i];
6447 err = (*odesc->insert) (odesc, val, &insn);
6448 if (err)
6449 as_bad_where (slot->src_file, slot->src_line,
6450 "Bad operand value: %s", err);
6451 if (idesc->flags & IA64_OPCODE_PSEUDO)
6452 {
6453 if ((idesc->flags & IA64_OPCODE_F2_EQ_F3)
6454 && odesc == elf64_ia64_operands + IA64_OPND_F3)
6455 {
6456 o2desc = elf64_ia64_operands + IA64_OPND_F2;
6457 (*o2desc->insert) (o2desc, val, &insn);
6458 }
6459 if ((idesc->flags & IA64_OPCODE_LEN_EQ_64MCNT)
6460 && (odesc == elf64_ia64_operands + IA64_OPND_CPOS6a
6461 || odesc == elf64_ia64_operands + IA64_OPND_POS6))
6462 {
6463 o2desc = elf64_ia64_operands + IA64_OPND_LEN6;
6464 (*o2desc->insert) (o2desc, 64 - val, &insn);
6465 }
6466 }
6467 }
6468 *insnp = insn;
6469 }
6470
6471 static void
6472 emit_one_bundle ()
6473 {
6474 int manual_bundling_off = 0, manual_bundling = 0;
6475 enum ia64_unit required_unit, insn_unit = 0;
6476 enum ia64_insn_type type[3], insn_type;
6477 unsigned int template, orig_template;
6478 bfd_vma insn[3] = { -1, -1, -1 };
6479 struct ia64_opcode *idesc;
6480 int end_of_insn_group = 0, user_template = -1;
6481 int n, i, j, first, curr, last_slot;
6482 bfd_vma t0 = 0, t1 = 0;
6483 struct label_fix *lfix;
6484 struct insn_fix *ifix;
6485 char mnemonic[16];
6486 fixS *fix;
6487 char *f;
6488 int addr_mod;
6489
6490 first = (md.curr_slot + NUM_SLOTS - md.num_slots_in_use) % NUM_SLOTS;
6491 know (first >= 0 & first < NUM_SLOTS);
6492 n = MIN (3, md.num_slots_in_use);
6493
6494 /* Determine template: user user_template if specified, best match
6495 otherwise: */
6496
6497 if (md.slot[first].user_template >= 0)
6498 user_template = template = md.slot[first].user_template;
6499 else
6500 {
6501 /* Auto select appropriate template. */
6502 memset (type, 0, sizeof (type));
6503 curr = first;
6504 for (i = 0; i < n; ++i)
6505 {
6506 if (md.slot[curr].label_fixups && i != 0)
6507 break;
6508 type[i] = md.slot[curr].idesc->type;
6509 curr = (curr + 1) % NUM_SLOTS;
6510 }
6511 template = best_template[type[0]][type[1]][type[2]];
6512 }
6513
6514 /* initialize instructions with appropriate nops: */
6515 for (i = 0; i < 3; ++i)
6516 insn[i] = nop[ia64_templ_desc[template].exec_unit[i]];
6517
6518 f = frag_more (16);
6519
6520 /* Check to see if this bundle is at an offset that is a multiple of 16-bytes
6521 from the start of the frag. */
6522 addr_mod = frag_now_fix () & 15;
6523 if (frag_now->has_code && frag_now->insn_addr != addr_mod)
6524 as_bad (_("instruction address is not a multiple of 16"));
6525 frag_now->insn_addr = addr_mod;
6526 frag_now->has_code = 1;
6527
6528 /* now fill in slots with as many insns as possible: */
6529 curr = first;
6530 idesc = md.slot[curr].idesc;
6531 end_of_insn_group = 0;
6532 last_slot = -1;
6533 for (i = 0; i < 3 && md.num_slots_in_use > 0; ++i)
6534 {
6535 /* If we have unwind records, we may need to update some now. */
6536 unw_rec_list *ptr = md.slot[curr].unwind_record;
6537 unw_rec_list *end_ptr = NULL;
6538
6539 if (ptr)
6540 {
6541 /* Find the last prologue/body record in the list for the current
6542 insn, and set the slot number for all records up to that point.
6543 This needs to be done now, because prologue/body records refer to
6544 the current point, not the point after the instruction has been
6545 issued. This matters because there may have been nops emitted
6546 meanwhile. Any non-prologue non-body record followed by a
6547 prologue/body record must also refer to the current point. */
6548 unw_rec_list *last_ptr;
6549
6550 for (j = 1; end_ptr == NULL && j < md.num_slots_in_use; ++j)
6551 end_ptr = md.slot[(curr + j) % NUM_SLOTS].unwind_record;
6552 for (last_ptr = NULL; ptr != end_ptr; ptr = ptr->next)
6553 if (ptr->r.type == prologue || ptr->r.type == prologue_gr
6554 || ptr->r.type == body)
6555 last_ptr = ptr;
6556 if (last_ptr)
6557 {
6558 /* Make last_ptr point one after the last prologue/body
6559 record. */
6560 last_ptr = last_ptr->next;
6561 for (ptr = md.slot[curr].unwind_record; ptr != last_ptr;
6562 ptr = ptr->next)
6563 {
6564 ptr->slot_number = (unsigned long) f + i;
6565 ptr->slot_frag = frag_now;
6566 }
6567 /* Remove the initialized records, so that we won't accidentally
6568 update them again if we insert a nop and continue. */
6569 md.slot[curr].unwind_record = last_ptr;
6570 }
6571 }
6572
6573 manual_bundling_off = md.slot[curr].manual_bundling_off;
6574 if (md.slot[curr].manual_bundling_on)
6575 {
6576 if (curr == first)
6577 manual_bundling = 1;
6578 else
6579 break; /* Need to start a new bundle. */
6580 }
6581
6582 /* If this instruction specifies a template, then it must be the first
6583 instruction of a bundle. */
6584 if (curr != first && md.slot[curr].user_template >= 0)
6585 break;
6586
6587 if (idesc->flags & IA64_OPCODE_SLOT2)
6588 {
6589 if (manual_bundling && !manual_bundling_off)
6590 {
6591 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6592 "`%s' must be last in bundle", idesc->name);
6593 if (i < 2)
6594 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6595 }
6596 i = 2;
6597 }
6598 if (idesc->flags & IA64_OPCODE_LAST)
6599 {
6600 int required_slot;
6601 unsigned int required_template;
6602
6603 /* If we need a stop bit after an M slot, our only choice is
6604 template 5 (M;;MI). If we need a stop bit after a B
6605 slot, our only choice is to place it at the end of the
6606 bundle, because the only available templates are MIB,
6607 MBB, BBB, MMB, and MFB. We don't handle anything other
6608 than M and B slots because these are the only kind of
6609 instructions that can have the IA64_OPCODE_LAST bit set. */
6610 required_template = template;
6611 switch (idesc->type)
6612 {
6613 case IA64_TYPE_M:
6614 required_slot = 0;
6615 required_template = 5;
6616 break;
6617
6618 case IA64_TYPE_B:
6619 required_slot = 2;
6620 break;
6621
6622 default:
6623 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6624 "Internal error: don't know how to force %s to end"
6625 "of instruction group", idesc->name);
6626 required_slot = i;
6627 break;
6628 }
6629 if (manual_bundling
6630 && (i > required_slot
6631 || (required_slot == 2 && !manual_bundling_off)
6632 || (user_template >= 0
6633 /* Changing from MMI to M;MI is OK. */
6634 && (template ^ required_template) > 1)))
6635 {
6636 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6637 "`%s' must be last in instruction group",
6638 idesc->name);
6639 if (i < 2 && required_slot == 2 && !manual_bundling_off)
6640 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6641 }
6642 if (required_slot < i)
6643 /* Can't fit this instruction. */
6644 break;
6645
6646 i = required_slot;
6647 if (required_template != template)
6648 {
6649 /* If we switch the template, we need to reset the NOPs
6650 after slot i. The slot-types of the instructions ahead
6651 of i never change, so we don't need to worry about
6652 changing NOPs in front of this slot. */
6653 for (j = i; j < 3; ++j)
6654 insn[j] = nop[ia64_templ_desc[required_template].exec_unit[j]];
6655 }
6656 template = required_template;
6657 }
6658 if (curr != first && md.slot[curr].label_fixups)
6659 {
6660 if (manual_bundling)
6661 {
6662 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6663 "Label must be first in a bundle");
6664 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6665 }
6666 /* This insn must go into the first slot of a bundle. */
6667 break;
6668 }
6669
6670 if (end_of_insn_group && md.num_slots_in_use >= 1)
6671 {
6672 /* We need an instruction group boundary in the middle of a
6673 bundle. See if we can switch to an other template with
6674 an appropriate boundary. */
6675
6676 orig_template = template;
6677 if (i == 1 && (user_template == 4
6678 || (user_template < 0
6679 && (ia64_templ_desc[template].exec_unit[0]
6680 == IA64_UNIT_M))))
6681 {
6682 template = 5;
6683 end_of_insn_group = 0;
6684 }
6685 else if (i == 2 && (user_template == 0
6686 || (user_template < 0
6687 && (ia64_templ_desc[template].exec_unit[1]
6688 == IA64_UNIT_I)))
6689 /* This test makes sure we don't switch the template if
6690 the next instruction is one that needs to be first in
6691 an instruction group. Since all those instructions are
6692 in the M group, there is no way such an instruction can
6693 fit in this bundle even if we switch the template. The
6694 reason we have to check for this is that otherwise we
6695 may end up generating "MI;;I M.." which has the deadly
6696 effect that the second M instruction is no longer the
6697 first in the group! --davidm 99/12/16 */
6698 && (idesc->flags & IA64_OPCODE_FIRST) == 0)
6699 {
6700 template = 1;
6701 end_of_insn_group = 0;
6702 }
6703 else if (i == 1
6704 && user_template == 0
6705 && !(idesc->flags & IA64_OPCODE_FIRST))
6706 /* Use the next slot. */
6707 continue;
6708 else if (curr != first)
6709 /* can't fit this insn */
6710 break;
6711
6712 if (template != orig_template)
6713 /* if we switch the template, we need to reset the NOPs
6714 after slot i. The slot-types of the instructions ahead
6715 of i never change, so we don't need to worry about
6716 changing NOPs in front of this slot. */
6717 for (j = i; j < 3; ++j)
6718 insn[j] = nop[ia64_templ_desc[template].exec_unit[j]];
6719 }
6720 required_unit = ia64_templ_desc[template].exec_unit[i];
6721
6722 /* resolve dynamic opcodes such as "break", "hint", and "nop": */
6723 if (idesc->type == IA64_TYPE_DYN)
6724 {
6725 enum ia64_opnd opnd1, opnd2;
6726
6727 if ((strcmp (idesc->name, "nop") == 0)
6728 || (strcmp (idesc->name, "break") == 0))
6729 insn_unit = required_unit;
6730 else if (strcmp (idesc->name, "hint") == 0)
6731 {
6732 insn_unit = required_unit;
6733 if (required_unit == IA64_UNIT_B)
6734 {
6735 switch (md.hint_b)
6736 {
6737 case hint_b_ok:
6738 break;
6739 case hint_b_warning:
6740 as_warn ("hint in B unit may be treated as nop");
6741 break;
6742 case hint_b_error:
6743 /* When manual bundling is off and there is no
6744 user template, we choose a different unit so
6745 that hint won't go into the current slot. We
6746 will fill the current bundle with nops and
6747 try to put hint into the next bundle. */
6748 if (!manual_bundling && user_template < 0)
6749 insn_unit = IA64_UNIT_I;
6750 else
6751 as_bad ("hint in B unit can't be used");
6752 break;
6753 }
6754 }
6755 }
6756 else if (strcmp (idesc->name, "chk.s") == 0
6757 || strcmp (idesc->name, "mov") == 0)
6758 {
6759 insn_unit = IA64_UNIT_M;
6760 if (required_unit == IA64_UNIT_I
6761 || (required_unit == IA64_UNIT_F && template == 6))
6762 insn_unit = IA64_UNIT_I;
6763 }
6764 else
6765 as_fatal ("emit_one_bundle: unexpected dynamic op");
6766
6767 sprintf (mnemonic, "%s.%c", idesc->name, "?imbfxx"[insn_unit]);
6768 opnd1 = idesc->operands[0];
6769 opnd2 = idesc->operands[1];
6770 ia64_free_opcode (idesc);
6771 idesc = ia64_find_opcode (mnemonic);
6772 /* moves to/from ARs have collisions */
6773 if (opnd1 == IA64_OPND_AR3 || opnd2 == IA64_OPND_AR3)
6774 {
6775 while (idesc != NULL
6776 && (idesc->operands[0] != opnd1
6777 || idesc->operands[1] != opnd2))
6778 idesc = get_next_opcode (idesc);
6779 }
6780 md.slot[curr].idesc = idesc;
6781 }
6782 else
6783 {
6784 insn_type = idesc->type;
6785 insn_unit = IA64_UNIT_NIL;
6786 switch (insn_type)
6787 {
6788 case IA64_TYPE_A:
6789 if (required_unit == IA64_UNIT_I || required_unit == IA64_UNIT_M)
6790 insn_unit = required_unit;
6791 break;
6792 case IA64_TYPE_X: insn_unit = IA64_UNIT_L; break;
6793 case IA64_TYPE_I: insn_unit = IA64_UNIT_I; break;
6794 case IA64_TYPE_M: insn_unit = IA64_UNIT_M; break;
6795 case IA64_TYPE_B: insn_unit = IA64_UNIT_B; break;
6796 case IA64_TYPE_F: insn_unit = IA64_UNIT_F; break;
6797 default: break;
6798 }
6799 }
6800
6801 if (insn_unit != required_unit)
6802 continue; /* Try next slot. */
6803
6804 if (debug_type == DEBUG_DWARF2 || md.slot[curr].loc_directive_seen)
6805 {
6806 bfd_vma addr = frag_now->fr_address + frag_now_fix () - 16 + i;
6807
6808 md.slot[curr].loc_directive_seen = 0;
6809 dwarf2_gen_line_info (addr, &md.slot[curr].debug_line);
6810 }
6811
6812 build_insn (md.slot + curr, insn + i);
6813
6814 ptr = md.slot[curr].unwind_record;
6815 if (ptr)
6816 {
6817 /* Set slot numbers for all remaining unwind records belonging to the
6818 current insn. There can not be any prologue/body unwind records
6819 here. */
6820 for (; ptr != end_ptr; ptr = ptr->next)
6821 {
6822 ptr->slot_number = (unsigned long) f + i;
6823 ptr->slot_frag = frag_now;
6824 }
6825 md.slot[curr].unwind_record = NULL;
6826 }
6827
6828 if (required_unit == IA64_UNIT_L)
6829 {
6830 know (i == 1);
6831 /* skip one slot for long/X-unit instructions */
6832 ++i;
6833 }
6834 --md.num_slots_in_use;
6835 last_slot = i;
6836
6837 /* now is a good time to fix up the labels for this insn: */
6838 for (lfix = md.slot[curr].label_fixups; lfix; lfix = lfix->next)
6839 {
6840 S_SET_VALUE (lfix->sym, frag_now_fix () - 16);
6841 symbol_set_frag (lfix->sym, frag_now);
6842 }
6843 /* and fix up the tags also. */
6844 for (lfix = md.slot[curr].tag_fixups; lfix; lfix = lfix->next)
6845 {
6846 S_SET_VALUE (lfix->sym, frag_now_fix () - 16 + i);
6847 symbol_set_frag (lfix->sym, frag_now);
6848 }
6849
6850 for (j = 0; j < md.slot[curr].num_fixups; ++j)
6851 {
6852 ifix = md.slot[curr].fixup + j;
6853 fix = fix_new_exp (frag_now, frag_now_fix () - 16 + i, 8,
6854 &ifix->expr, ifix->is_pcrel, ifix->code);
6855 fix->tc_fix_data.opnd = ifix->opnd;
6856 fix->fx_plt = (fix->fx_r_type == BFD_RELOC_IA64_PLTOFF22);
6857 fix->fx_file = md.slot[curr].src_file;
6858 fix->fx_line = md.slot[curr].src_line;
6859 }
6860
6861 end_of_insn_group = md.slot[curr].end_of_insn_group;
6862
6863 /* clear slot: */
6864 ia64_free_opcode (md.slot[curr].idesc);
6865 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
6866 md.slot[curr].user_template = -1;
6867
6868 if (manual_bundling_off)
6869 {
6870 manual_bundling = 0;
6871 break;
6872 }
6873 curr = (curr + 1) % NUM_SLOTS;
6874 idesc = md.slot[curr].idesc;
6875 }
6876 if (manual_bundling > 0)
6877 {
6878 if (md.num_slots_in_use > 0)
6879 {
6880 if (last_slot >= 2)
6881 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6882 "`%s' does not fit into bundle", idesc->name);
6883 else if (last_slot < 0)
6884 {
6885 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6886 "`%s' does not fit into %s template",
6887 idesc->name, ia64_templ_desc[template].name);
6888 /* Drop first insn so we don't livelock. */
6889 --md.num_slots_in_use;
6890 know (curr == first);
6891 ia64_free_opcode (md.slot[curr].idesc);
6892 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
6893 md.slot[curr].user_template = -1;
6894 }
6895 else
6896 {
6897 const char *where;
6898
6899 if (template == 2)
6900 where = "X slot";
6901 else if (last_slot == 0)
6902 where = "slots 2 or 3";
6903 else
6904 where = "slot 3";
6905 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6906 "`%s' can't go in %s of %s template",
6907 idesc->name, where, ia64_templ_desc[template].name);
6908 }
6909 }
6910 else
6911 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6912 "Missing '}' at end of file");
6913 }
6914 know (md.num_slots_in_use < NUM_SLOTS);
6915
6916 t0 = end_of_insn_group | (template << 1) | (insn[0] << 5) | (insn[1] << 46);
6917 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
6918
6919 number_to_chars_littleendian (f + 0, t0, 8);
6920 number_to_chars_littleendian (f + 8, t1, 8);
6921 }
6922
6923 int
6924 md_parse_option (c, arg)
6925 int c;
6926 char *arg;
6927 {
6928
6929 switch (c)
6930 {
6931 /* Switches from the Intel assembler. */
6932 case 'm':
6933 if (strcmp (arg, "ilp64") == 0
6934 || strcmp (arg, "lp64") == 0
6935 || strcmp (arg, "p64") == 0)
6936 {
6937 md.flags |= EF_IA_64_ABI64;
6938 }
6939 else if (strcmp (arg, "ilp32") == 0)
6940 {
6941 md.flags &= ~EF_IA_64_ABI64;
6942 }
6943 else if (strcmp (arg, "le") == 0)
6944 {
6945 md.flags &= ~EF_IA_64_BE;
6946 default_big_endian = 0;
6947 }
6948 else if (strcmp (arg, "be") == 0)
6949 {
6950 md.flags |= EF_IA_64_BE;
6951 default_big_endian = 1;
6952 }
6953 else if (strncmp (arg, "unwind-check=", 13) == 0)
6954 {
6955 arg += 13;
6956 if (strcmp (arg, "warning") == 0)
6957 md.unwind_check = unwind_check_warning;
6958 else if (strcmp (arg, "error") == 0)
6959 md.unwind_check = unwind_check_error;
6960 else
6961 return 0;
6962 }
6963 else if (strncmp (arg, "hint.b=", 7) == 0)
6964 {
6965 arg += 7;
6966 if (strcmp (arg, "ok") == 0)
6967 md.hint_b = hint_b_ok;
6968 else if (strcmp (arg, "warning") == 0)
6969 md.hint_b = hint_b_warning;
6970 else if (strcmp (arg, "error") == 0)
6971 md.hint_b = hint_b_error;
6972 else
6973 return 0;
6974 }
6975 else if (strncmp (arg, "tune=", 5) == 0)
6976 {
6977 arg += 5;
6978 if (strcmp (arg, "itanium1") == 0)
6979 md.tune = itanium1;
6980 else if (strcmp (arg, "itanium2") == 0)
6981 md.tune = itanium2;
6982 else
6983 return 0;
6984 }
6985 else
6986 return 0;
6987 break;
6988
6989 case 'N':
6990 if (strcmp (arg, "so") == 0)
6991 {
6992 /* Suppress signon message. */
6993 }
6994 else if (strcmp (arg, "pi") == 0)
6995 {
6996 /* Reject privileged instructions. FIXME */
6997 }
6998 else if (strcmp (arg, "us") == 0)
6999 {
7000 /* Allow union of signed and unsigned range. FIXME */
7001 }
7002 else if (strcmp (arg, "close_fcalls") == 0)
7003 {
7004 /* Do not resolve global function calls. */
7005 }
7006 else
7007 return 0;
7008 break;
7009
7010 case 'C':
7011 /* temp[="prefix"] Insert temporary labels into the object file
7012 symbol table prefixed by "prefix".
7013 Default prefix is ":temp:".
7014 */
7015 break;
7016
7017 case 'a':
7018 /* indirect=<tgt> Assume unannotated indirect branches behavior
7019 according to <tgt> --
7020 exit: branch out from the current context (default)
7021 labels: all labels in context may be branch targets
7022 */
7023 if (strncmp (arg, "indirect=", 9) != 0)
7024 return 0;
7025 break;
7026
7027 case 'x':
7028 /* -X conflicts with an ignored option, use -x instead */
7029 md.detect_dv = 1;
7030 if (!arg || strcmp (arg, "explicit") == 0)
7031 {
7032 /* set default mode to explicit */
7033 md.default_explicit_mode = 1;
7034 break;
7035 }
7036 else if (strcmp (arg, "auto") == 0)
7037 {
7038 md.default_explicit_mode = 0;
7039 }
7040 else if (strcmp (arg, "none") == 0)
7041 {
7042 md.detect_dv = 0;
7043 }
7044 else if (strcmp (arg, "debug") == 0)
7045 {
7046 md.debug_dv = 1;
7047 }
7048 else if (strcmp (arg, "debugx") == 0)
7049 {
7050 md.default_explicit_mode = 1;
7051 md.debug_dv = 1;
7052 }
7053 else if (strcmp (arg, "debugn") == 0)
7054 {
7055 md.debug_dv = 1;
7056 md.detect_dv = 0;
7057 }
7058 else
7059 {
7060 as_bad (_("Unrecognized option '-x%s'"), arg);
7061 }
7062 break;
7063
7064 case 'S':
7065 /* nops Print nops statistics. */
7066 break;
7067
7068 /* GNU specific switches for gcc. */
7069 case OPTION_MCONSTANT_GP:
7070 md.flags |= EF_IA_64_CONS_GP;
7071 break;
7072
7073 case OPTION_MAUTO_PIC:
7074 md.flags |= EF_IA_64_NOFUNCDESC_CONS_GP;
7075 break;
7076
7077 default:
7078 return 0;
7079 }
7080
7081 return 1;
7082 }
7083
7084 void
7085 md_show_usage (stream)
7086 FILE *stream;
7087 {
7088 fputs (_("\
7089 IA-64 options:\n\
7090 --mconstant-gp mark output file as using the constant-GP model\n\
7091 (sets ELF header flag EF_IA_64_CONS_GP)\n\
7092 --mauto-pic mark output file as using the constant-GP model\n\
7093 without function descriptors (sets ELF header flag\n\
7094 EF_IA_64_NOFUNCDESC_CONS_GP)\n\
7095 -milp32|-milp64|-mlp64|-mp64 select data model (default -mlp64)\n\
7096 -mle | -mbe select little- or big-endian byte order (default -mle)\n\
7097 -mtune=[itanium1|itanium2]\n\
7098 tune for a specific CPU (default -mtune=itanium2)\n\
7099 -munwind-check=[warning|error]\n\
7100 unwind directive check (default -munwind-check=warning)\n\
7101 -mhint.b=[ok|warning|error]\n\
7102 hint.b check (default -mhint.b=error)\n\
7103 -x | -xexplicit turn on dependency violation checking\n\
7104 -xauto automagically remove dependency violations (default)\n\
7105 -xnone turn off dependency violation checking\n\
7106 -xdebug debug dependency violation checker\n\
7107 -xdebugn debug dependency violation checker but turn off\n\
7108 dependency violation checking\n\
7109 -xdebugx debug dependency violation checker and turn on\n\
7110 dependency violation checking\n"),
7111 stream);
7112 }
7113
7114 void
7115 ia64_after_parse_args ()
7116 {
7117 if (debug_type == DEBUG_STABS)
7118 as_fatal (_("--gstabs is not supported for ia64"));
7119 }
7120
7121 /* Return true if TYPE fits in TEMPL at SLOT. */
7122
7123 static int
7124 match (int templ, int type, int slot)
7125 {
7126 enum ia64_unit unit;
7127 int result;
7128
7129 unit = ia64_templ_desc[templ].exec_unit[slot];
7130 switch (type)
7131 {
7132 case IA64_TYPE_DYN: result = 1; break; /* for nop and break */
7133 case IA64_TYPE_A:
7134 result = (unit == IA64_UNIT_I || unit == IA64_UNIT_M);
7135 break;
7136 case IA64_TYPE_X: result = (unit == IA64_UNIT_L); break;
7137 case IA64_TYPE_I: result = (unit == IA64_UNIT_I); break;
7138 case IA64_TYPE_M: result = (unit == IA64_UNIT_M); break;
7139 case IA64_TYPE_B: result = (unit == IA64_UNIT_B); break;
7140 case IA64_TYPE_F: result = (unit == IA64_UNIT_F); break;
7141 default: result = 0; break;
7142 }
7143 return result;
7144 }
7145
7146 /* For Itanium 1, add a bit of extra goodness if a nop of type F or B would fit
7147 in TEMPL at SLOT. For Itanium 2, add a bit of extra goodness if a nop of
7148 type M or I would fit in TEMPL at SLOT. */
7149
7150 static inline int
7151 extra_goodness (int templ, int slot)
7152 {
7153 switch (md.tune)
7154 {
7155 case itanium1:
7156 if (slot == 1 && match (templ, IA64_TYPE_F, slot))
7157 return 2;
7158 else if (slot == 2 && match (templ, IA64_TYPE_B, slot))
7159 return 1;
7160 else
7161 return 0;
7162 break;
7163 case itanium2:
7164 if (match (templ, IA64_TYPE_M, slot)
7165 || match (templ, IA64_TYPE_I, slot))
7166 /* Favor M- and I-unit NOPs. We definitely want to avoid
7167 F-unit and B-unit may cause split-issue or less-than-optimal
7168 branch-prediction. */
7169 return 2;
7170 else
7171 return 0;
7172 break;
7173 default:
7174 abort ();
7175 return 0;
7176 }
7177 }
7178
7179 /* This function is called once, at assembler startup time. It sets
7180 up all the tables, etc. that the MD part of the assembler will need
7181 that can be determined before arguments are parsed. */
7182 void
7183 md_begin ()
7184 {
7185 int i, j, k, t, total, ar_base, cr_base, goodness, best, regnum, ok;
7186 const char *err;
7187 char name[8];
7188
7189 md.auto_align = 1;
7190 md.explicit_mode = md.default_explicit_mode;
7191
7192 bfd_set_section_alignment (stdoutput, text_section, 4);
7193
7194 /* Make sure function pointers get initialized. */
7195 target_big_endian = -1;
7196 dot_byteorder (default_big_endian);
7197
7198 alias_hash = hash_new ();
7199 alias_name_hash = hash_new ();
7200 secalias_hash = hash_new ();
7201 secalias_name_hash = hash_new ();
7202
7203 pseudo_func[FUNC_DTP_MODULE].u.sym =
7204 symbol_new (".<dtpmod>", undefined_section, FUNC_DTP_MODULE,
7205 &zero_address_frag);
7206
7207 pseudo_func[FUNC_DTP_RELATIVE].u.sym =
7208 symbol_new (".<dtprel>", undefined_section, FUNC_DTP_RELATIVE,
7209 &zero_address_frag);
7210
7211 pseudo_func[FUNC_FPTR_RELATIVE].u.sym =
7212 symbol_new (".<fptr>", undefined_section, FUNC_FPTR_RELATIVE,
7213 &zero_address_frag);
7214
7215 pseudo_func[FUNC_GP_RELATIVE].u.sym =
7216 symbol_new (".<gprel>", undefined_section, FUNC_GP_RELATIVE,
7217 &zero_address_frag);
7218
7219 pseudo_func[FUNC_LT_RELATIVE].u.sym =
7220 symbol_new (".<ltoff>", undefined_section, FUNC_LT_RELATIVE,
7221 &zero_address_frag);
7222
7223 pseudo_func[FUNC_LT_RELATIVE_X].u.sym =
7224 symbol_new (".<ltoffx>", undefined_section, FUNC_LT_RELATIVE_X,
7225 &zero_address_frag);
7226
7227 pseudo_func[FUNC_PC_RELATIVE].u.sym =
7228 symbol_new (".<pcrel>", undefined_section, FUNC_PC_RELATIVE,
7229 &zero_address_frag);
7230
7231 pseudo_func[FUNC_PLT_RELATIVE].u.sym =
7232 symbol_new (".<pltoff>", undefined_section, FUNC_PLT_RELATIVE,
7233 &zero_address_frag);
7234
7235 pseudo_func[FUNC_SEC_RELATIVE].u.sym =
7236 symbol_new (".<secrel>", undefined_section, FUNC_SEC_RELATIVE,
7237 &zero_address_frag);
7238
7239 pseudo_func[FUNC_SEG_RELATIVE].u.sym =
7240 symbol_new (".<segrel>", undefined_section, FUNC_SEG_RELATIVE,
7241 &zero_address_frag);
7242
7243 pseudo_func[FUNC_TP_RELATIVE].u.sym =
7244 symbol_new (".<tprel>", undefined_section, FUNC_TP_RELATIVE,
7245 &zero_address_frag);
7246
7247 pseudo_func[FUNC_LTV_RELATIVE].u.sym =
7248 symbol_new (".<ltv>", undefined_section, FUNC_LTV_RELATIVE,
7249 &zero_address_frag);
7250
7251 pseudo_func[FUNC_LT_FPTR_RELATIVE].u.sym =
7252 symbol_new (".<ltoff.fptr>", undefined_section, FUNC_LT_FPTR_RELATIVE,
7253 &zero_address_frag);
7254
7255 pseudo_func[FUNC_LT_DTP_MODULE].u.sym =
7256 symbol_new (".<ltoff.dtpmod>", undefined_section, FUNC_LT_DTP_MODULE,
7257 &zero_address_frag);
7258
7259 pseudo_func[FUNC_LT_DTP_RELATIVE].u.sym =
7260 symbol_new (".<ltoff.dptrel>", undefined_section, FUNC_LT_DTP_RELATIVE,
7261 &zero_address_frag);
7262
7263 pseudo_func[FUNC_LT_TP_RELATIVE].u.sym =
7264 symbol_new (".<ltoff.tprel>", undefined_section, FUNC_LT_TP_RELATIVE,
7265 &zero_address_frag);
7266
7267 pseudo_func[FUNC_IPLT_RELOC].u.sym =
7268 symbol_new (".<iplt>", undefined_section, FUNC_IPLT_RELOC,
7269 &zero_address_frag);
7270
7271 if (md.tune != itanium1)
7272 {
7273 /* Convert MFI NOPs bundles into MMI NOPs bundles. */
7274 le_nop[0] = 0x8;
7275 le_nop_stop[0] = 0x9;
7276 }
7277
7278 /* Compute the table of best templates. We compute goodness as a
7279 base 4 value, in which each match counts for 3. Match-failures
7280 result in NOPs and we use extra_goodness() to pick the execution
7281 units that are best suited for issuing the NOP. */
7282 for (i = 0; i < IA64_NUM_TYPES; ++i)
7283 for (j = 0; j < IA64_NUM_TYPES; ++j)
7284 for (k = 0; k < IA64_NUM_TYPES; ++k)
7285 {
7286 best = 0;
7287 for (t = 0; t < NELEMS (ia64_templ_desc); ++t)
7288 {
7289 goodness = 0;
7290 if (match (t, i, 0))
7291 {
7292 if (match (t, j, 1))
7293 {
7294 if ((t == 2 && j == IA64_TYPE_X) || match (t, k, 2))
7295 goodness = 3 + 3 + 3;
7296 else
7297 goodness = 3 + 3 + extra_goodness (t, 2);
7298 }
7299 else if (match (t, j, 2))
7300 goodness = 3 + 3 + extra_goodness (t, 1);
7301 else
7302 {
7303 goodness = 3;
7304 goodness += extra_goodness (t, 1);
7305 goodness += extra_goodness (t, 2);
7306 }
7307 }
7308 else if (match (t, i, 1))
7309 {
7310 if ((t == 2 && i == IA64_TYPE_X) || match (t, j, 2))
7311 goodness = 3 + 3;
7312 else
7313 goodness = 3 + extra_goodness (t, 2);
7314 }
7315 else if (match (t, i, 2))
7316 goodness = 3 + extra_goodness (t, 1);
7317
7318 if (goodness > best)
7319 {
7320 best = goodness;
7321 best_template[i][j][k] = t;
7322 }
7323 }
7324 }
7325
7326 #ifdef DEBUG_TEMPLATES
7327 /* For debugging changes to the best_template calculations. We don't care
7328 about combinations with invalid instructions, so start the loops at 1. */
7329 for (i = 0; i < IA64_NUM_TYPES; ++i)
7330 for (j = 0; j < IA64_NUM_TYPES; ++j)
7331 for (k = 0; k < IA64_NUM_TYPES; ++k)
7332 {
7333 char type_letter[IA64_NUM_TYPES] = { 'n', 'a', 'i', 'm', 'b', 'f',
7334 'x', 'd' };
7335 fprintf (stderr, "%c%c%c %s\n", type_letter[i], type_letter[j],
7336 type_letter[k],
7337 ia64_templ_desc[best_template[i][j][k]].name);
7338 }
7339 #endif
7340
7341 for (i = 0; i < NUM_SLOTS; ++i)
7342 md.slot[i].user_template = -1;
7343
7344 md.pseudo_hash = hash_new ();
7345 for (i = 0; i < NELEMS (pseudo_opcode); ++i)
7346 {
7347 err = hash_insert (md.pseudo_hash, pseudo_opcode[i].name,
7348 (void *) (pseudo_opcode + i));
7349 if (err)
7350 as_fatal ("ia64.md_begin: can't hash `%s': %s",
7351 pseudo_opcode[i].name, err);
7352 }
7353
7354 md.reg_hash = hash_new ();
7355 md.dynreg_hash = hash_new ();
7356 md.const_hash = hash_new ();
7357 md.entry_hash = hash_new ();
7358
7359 /* general registers: */
7360
7361 total = 128;
7362 for (i = 0; i < total; ++i)
7363 {
7364 sprintf (name, "r%d", i - REG_GR);
7365 md.regsym[i] = declare_register (name, i);
7366 }
7367
7368 /* floating point registers: */
7369 total += 128;
7370 for (; i < total; ++i)
7371 {
7372 sprintf (name, "f%d", i - REG_FR);
7373 md.regsym[i] = declare_register (name, i);
7374 }
7375
7376 /* application registers: */
7377 total += 128;
7378 ar_base = i;
7379 for (; i < total; ++i)
7380 {
7381 sprintf (name, "ar%d", i - REG_AR);
7382 md.regsym[i] = declare_register (name, i);
7383 }
7384
7385 /* control registers: */
7386 total += 128;
7387 cr_base = i;
7388 for (; i < total; ++i)
7389 {
7390 sprintf (name, "cr%d", i - REG_CR);
7391 md.regsym[i] = declare_register (name, i);
7392 }
7393
7394 /* predicate registers: */
7395 total += 64;
7396 for (; i < total; ++i)
7397 {
7398 sprintf (name, "p%d", i - REG_P);
7399 md.regsym[i] = declare_register (name, i);
7400 }
7401
7402 /* branch registers: */
7403 total += 8;
7404 for (; i < total; ++i)
7405 {
7406 sprintf (name, "b%d", i - REG_BR);
7407 md.regsym[i] = declare_register (name, i);
7408 }
7409
7410 md.regsym[REG_IP] = declare_register ("ip", REG_IP);
7411 md.regsym[REG_CFM] = declare_register ("cfm", REG_CFM);
7412 md.regsym[REG_PR] = declare_register ("pr", REG_PR);
7413 md.regsym[REG_PR_ROT] = declare_register ("pr.rot", REG_PR_ROT);
7414 md.regsym[REG_PSR] = declare_register ("psr", REG_PSR);
7415 md.regsym[REG_PSR_L] = declare_register ("psr.l", REG_PSR_L);
7416 md.regsym[REG_PSR_UM] = declare_register ("psr.um", REG_PSR_UM);
7417
7418 for (i = 0; i < NELEMS (indirect_reg); ++i)
7419 {
7420 regnum = indirect_reg[i].regnum;
7421 md.regsym[regnum] = declare_register (indirect_reg[i].name, regnum);
7422 }
7423
7424 /* define synonyms for application registers: */
7425 for (i = REG_AR; i < REG_AR + NELEMS (ar); ++i)
7426 md.regsym[i] = declare_register (ar[i - REG_AR].name,
7427 REG_AR + ar[i - REG_AR].regnum);
7428
7429 /* define synonyms for control registers: */
7430 for (i = REG_CR; i < REG_CR + NELEMS (cr); ++i)
7431 md.regsym[i] = declare_register (cr[i - REG_CR].name,
7432 REG_CR + cr[i - REG_CR].regnum);
7433
7434 declare_register ("gp", REG_GR + 1);
7435 declare_register ("sp", REG_GR + 12);
7436 declare_register ("rp", REG_BR + 0);
7437
7438 /* pseudo-registers used to specify unwind info: */
7439 declare_register ("psp", REG_PSP);
7440
7441 declare_register_set ("ret", 4, REG_GR + 8);
7442 declare_register_set ("farg", 8, REG_FR + 8);
7443 declare_register_set ("fret", 8, REG_FR + 8);
7444
7445 for (i = 0; i < NELEMS (const_bits); ++i)
7446 {
7447 err = hash_insert (md.const_hash, const_bits[i].name,
7448 (PTR) (const_bits + i));
7449 if (err)
7450 as_fatal ("Inserting \"%s\" into constant hash table failed: %s",
7451 name, err);
7452 }
7453
7454 /* Set the architecture and machine depending on defaults and command line
7455 options. */
7456 if (md.flags & EF_IA_64_ABI64)
7457 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf64);
7458 else
7459 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf32);
7460
7461 if (! ok)
7462 as_warn (_("Could not set architecture and machine"));
7463
7464 /* Set the pointer size and pointer shift size depending on md.flags */
7465
7466 if (md.flags & EF_IA_64_ABI64)
7467 {
7468 md.pointer_size = 8; /* pointers are 8 bytes */
7469 md.pointer_size_shift = 3; /* alignment is 8 bytes = 2^2 */
7470 }
7471 else
7472 {
7473 md.pointer_size = 4; /* pointers are 4 bytes */
7474 md.pointer_size_shift = 2; /* alignment is 4 bytes = 2^2 */
7475 }
7476
7477 md.mem_offset.hint = 0;
7478 md.path = 0;
7479 md.maxpaths = 0;
7480 md.entry_labels = NULL;
7481 }
7482
7483 /* Set the default options in md. Cannot do this in md_begin because
7484 that is called after md_parse_option which is where we set the
7485 options in md based on command line options. */
7486
7487 void
7488 ia64_init (argc, argv)
7489 int argc ATTRIBUTE_UNUSED;
7490 char **argv ATTRIBUTE_UNUSED;
7491 {
7492 md.flags = MD_FLAGS_DEFAULT;
7493 md.detect_dv = 1;
7494 /* FIXME: We should change it to unwind_check_error someday. */
7495 md.unwind_check = unwind_check_warning;
7496 md.hint_b = hint_b_error;
7497 md.tune = itanium2;
7498 }
7499
7500 /* Return a string for the target object file format. */
7501
7502 const char *
7503 ia64_target_format ()
7504 {
7505 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
7506 {
7507 if (md.flags & EF_IA_64_BE)
7508 {
7509 if (md.flags & EF_IA_64_ABI64)
7510 #if defined(TE_AIX50)
7511 return "elf64-ia64-aix-big";
7512 #elif defined(TE_HPUX)
7513 return "elf64-ia64-hpux-big";
7514 #else
7515 return "elf64-ia64-big";
7516 #endif
7517 else
7518 #if defined(TE_AIX50)
7519 return "elf32-ia64-aix-big";
7520 #elif defined(TE_HPUX)
7521 return "elf32-ia64-hpux-big";
7522 #else
7523 return "elf32-ia64-big";
7524 #endif
7525 }
7526 else
7527 {
7528 if (md.flags & EF_IA_64_ABI64)
7529 #ifdef TE_AIX50
7530 return "elf64-ia64-aix-little";
7531 #else
7532 return "elf64-ia64-little";
7533 #endif
7534 else
7535 #ifdef TE_AIX50
7536 return "elf32-ia64-aix-little";
7537 #else
7538 return "elf32-ia64-little";
7539 #endif
7540 }
7541 }
7542 else
7543 return "unknown-format";
7544 }
7545
7546 void
7547 ia64_end_of_source ()
7548 {
7549 /* terminate insn group upon reaching end of file: */
7550 insn_group_break (1, 0, 0);
7551
7552 /* emits slots we haven't written yet: */
7553 ia64_flush_insns ();
7554
7555 bfd_set_private_flags (stdoutput, md.flags);
7556
7557 md.mem_offset.hint = 0;
7558 }
7559
7560 void
7561 ia64_start_line ()
7562 {
7563 if (md.qp.X_op == O_register)
7564 as_bad ("qualifying predicate not followed by instruction");
7565 md.qp.X_op = O_absent;
7566
7567 if (ignore_input ())
7568 return;
7569
7570 if (input_line_pointer[0] == ';' && input_line_pointer[-1] == ';')
7571 {
7572 if (md.detect_dv && !md.explicit_mode)
7573 {
7574 static int warned;
7575
7576 if (!warned)
7577 {
7578 warned = 1;
7579 as_warn (_("Explicit stops are ignored in auto mode"));
7580 }
7581 }
7582 else
7583 insn_group_break (1, 0, 0);
7584 }
7585 }
7586
7587 /* This is a hook for ia64_frob_label, so that it can distinguish tags from
7588 labels. */
7589 static int defining_tag = 0;
7590
7591 int
7592 ia64_unrecognized_line (ch)
7593 int ch;
7594 {
7595 switch (ch)
7596 {
7597 case '(':
7598 expression (&md.qp);
7599 if (*input_line_pointer++ != ')')
7600 {
7601 as_bad ("Expected ')'");
7602 return 0;
7603 }
7604 if (md.qp.X_op != O_register)
7605 {
7606 as_bad ("Qualifying predicate expected");
7607 return 0;
7608 }
7609 if (md.qp.X_add_number < REG_P || md.qp.X_add_number >= REG_P + 64)
7610 {
7611 as_bad ("Predicate register expected");
7612 return 0;
7613 }
7614 return 1;
7615
7616 case '{':
7617 if (md.manual_bundling)
7618 as_warn ("Found '{' when manual bundling is already turned on");
7619 else
7620 CURR_SLOT.manual_bundling_on = 1;
7621 md.manual_bundling = 1;
7622
7623 /* Bundling is only acceptable in explicit mode
7624 or when in default automatic mode. */
7625 if (md.detect_dv && !md.explicit_mode)
7626 {
7627 if (!md.mode_explicitly_set
7628 && !md.default_explicit_mode)
7629 dot_dv_mode ('E');
7630 else
7631 as_warn (_("Found '{' after explicit switch to automatic mode"));
7632 }
7633 return 1;
7634
7635 case '}':
7636 if (!md.manual_bundling)
7637 as_warn ("Found '}' when manual bundling is off");
7638 else
7639 PREV_SLOT.manual_bundling_off = 1;
7640 md.manual_bundling = 0;
7641
7642 /* switch back to automatic mode, if applicable */
7643 if (md.detect_dv
7644 && md.explicit_mode
7645 && !md.mode_explicitly_set
7646 && !md.default_explicit_mode)
7647 dot_dv_mode ('A');
7648
7649 /* Allow '{' to follow on the same line. We also allow ";;", but that
7650 happens automatically because ';' is an end of line marker. */
7651 SKIP_WHITESPACE ();
7652 if (input_line_pointer[0] == '{')
7653 {
7654 input_line_pointer++;
7655 return ia64_unrecognized_line ('{');
7656 }
7657
7658 demand_empty_rest_of_line ();
7659 return 1;
7660
7661 case '[':
7662 {
7663 char *s;
7664 char c;
7665 symbolS *tag;
7666 int temp;
7667
7668 if (md.qp.X_op == O_register)
7669 {
7670 as_bad ("Tag must come before qualifying predicate.");
7671 return 0;
7672 }
7673
7674 /* This implements just enough of read_a_source_file in read.c to
7675 recognize labels. */
7676 if (is_name_beginner (*input_line_pointer))
7677 {
7678 s = input_line_pointer;
7679 c = get_symbol_end ();
7680 }
7681 else if (LOCAL_LABELS_FB
7682 && ISDIGIT (*input_line_pointer))
7683 {
7684 temp = 0;
7685 while (ISDIGIT (*input_line_pointer))
7686 temp = (temp * 10) + *input_line_pointer++ - '0';
7687 fb_label_instance_inc (temp);
7688 s = fb_label_name (temp, 0);
7689 c = *input_line_pointer;
7690 }
7691 else
7692 {
7693 s = NULL;
7694 c = '\0';
7695 }
7696 if (c != ':')
7697 {
7698 /* Put ':' back for error messages' sake. */
7699 *input_line_pointer++ = ':';
7700 as_bad ("Expected ':'");
7701 return 0;
7702 }
7703
7704 defining_tag = 1;
7705 tag = colon (s);
7706 defining_tag = 0;
7707 /* Put ':' back for error messages' sake. */
7708 *input_line_pointer++ = ':';
7709 if (*input_line_pointer++ != ']')
7710 {
7711 as_bad ("Expected ']'");
7712 return 0;
7713 }
7714 if (! tag)
7715 {
7716 as_bad ("Tag name expected");
7717 return 0;
7718 }
7719 return 1;
7720 }
7721
7722 default:
7723 break;
7724 }
7725
7726 /* Not a valid line. */
7727 return 0;
7728 }
7729
7730 void
7731 ia64_frob_label (sym)
7732 struct symbol *sym;
7733 {
7734 struct label_fix *fix;
7735
7736 /* Tags need special handling since they are not bundle breaks like
7737 labels. */
7738 if (defining_tag)
7739 {
7740 fix = obstack_alloc (&notes, sizeof (*fix));
7741 fix->sym = sym;
7742 fix->next = CURR_SLOT.tag_fixups;
7743 CURR_SLOT.tag_fixups = fix;
7744
7745 return;
7746 }
7747
7748 if (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7749 {
7750 md.last_text_seg = now_seg;
7751 fix = obstack_alloc (&notes, sizeof (*fix));
7752 fix->sym = sym;
7753 fix->next = CURR_SLOT.label_fixups;
7754 CURR_SLOT.label_fixups = fix;
7755
7756 /* Keep track of how many code entry points we've seen. */
7757 if (md.path == md.maxpaths)
7758 {
7759 md.maxpaths += 20;
7760 md.entry_labels = (const char **)
7761 xrealloc ((void *) md.entry_labels,
7762 md.maxpaths * sizeof (char *));
7763 }
7764 md.entry_labels[md.path++] = S_GET_NAME (sym);
7765 }
7766 }
7767
7768 #ifdef TE_HPUX
7769 /* The HP-UX linker will give unresolved symbol errors for symbols
7770 that are declared but unused. This routine removes declared,
7771 unused symbols from an object. */
7772 int
7773 ia64_frob_symbol (sym)
7774 struct symbol *sym;
7775 {
7776 if ((S_GET_SEGMENT (sym) == &bfd_und_section && ! symbol_used_p (sym) &&
7777 ELF_ST_VISIBILITY (S_GET_OTHER (sym)) == STV_DEFAULT)
7778 || (S_GET_SEGMENT (sym) == &bfd_abs_section
7779 && ! S_IS_EXTERNAL (sym)))
7780 return 1;
7781 return 0;
7782 }
7783 #endif
7784
7785 void
7786 ia64_flush_pending_output ()
7787 {
7788 if (!md.keep_pending_output
7789 && bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7790 {
7791 /* ??? This causes many unnecessary stop bits to be emitted.
7792 Unfortunately, it isn't clear if it is safe to remove this. */
7793 insn_group_break (1, 0, 0);
7794 ia64_flush_insns ();
7795 }
7796 }
7797
7798 /* Do ia64-specific expression optimization. All that's done here is
7799 to transform index expressions that are either due to the indexing
7800 of rotating registers or due to the indexing of indirect register
7801 sets. */
7802 int
7803 ia64_optimize_expr (l, op, r)
7804 expressionS *l;
7805 operatorT op;
7806 expressionS *r;
7807 {
7808 unsigned num_regs;
7809
7810 if (op == O_index)
7811 {
7812 if (l->X_op == O_register && r->X_op == O_constant)
7813 {
7814 num_regs = (l->X_add_number >> 16);
7815 if ((unsigned) r->X_add_number >= num_regs)
7816 {
7817 if (!num_regs)
7818 as_bad ("No current frame");
7819 else
7820 as_bad ("Index out of range 0..%u", num_regs - 1);
7821 r->X_add_number = 0;
7822 }
7823 l->X_add_number = (l->X_add_number & 0xffff) + r->X_add_number;
7824 return 1;
7825 }
7826 else if (l->X_op == O_register && r->X_op == O_register)
7827 {
7828 if (l->X_add_number < IND_CPUID || l->X_add_number > IND_RR
7829 || l->X_add_number == IND_MEM)
7830 {
7831 as_bad ("Indirect register set name expected");
7832 l->X_add_number = IND_CPUID;
7833 }
7834 l->X_op = O_index;
7835 l->X_op_symbol = md.regsym[l->X_add_number];
7836 l->X_add_number = r->X_add_number;
7837 return 1;
7838 }
7839 }
7840 return 0;
7841 }
7842
7843 int
7844 ia64_parse_name (name, e, nextcharP)
7845 char *name;
7846 expressionS *e;
7847 char *nextcharP;
7848 {
7849 struct const_desc *cdesc;
7850 struct dynreg *dr = 0;
7851 unsigned int idx;
7852 struct symbol *sym;
7853 char *end;
7854
7855 if (*name == '@')
7856 {
7857 enum pseudo_type pseudo_type = PSEUDO_FUNC_NONE;
7858
7859 /* Find what relocation pseudo-function we're dealing with. */
7860 for (idx = 0; idx < NELEMS (pseudo_func); ++idx)
7861 if (pseudo_func[idx].name
7862 && pseudo_func[idx].name[0] == name[1]
7863 && strcmp (pseudo_func[idx].name + 1, name + 2) == 0)
7864 {
7865 pseudo_type = pseudo_func[idx].type;
7866 break;
7867 }
7868 switch (pseudo_type)
7869 {
7870 case PSEUDO_FUNC_RELOC:
7871 end = input_line_pointer;
7872 if (*nextcharP != '(')
7873 {
7874 as_bad ("Expected '('");
7875 break;
7876 }
7877 /* Skip '('. */
7878 ++input_line_pointer;
7879 expression (e);
7880 if (*input_line_pointer != ')')
7881 {
7882 as_bad ("Missing ')'");
7883 goto done;
7884 }
7885 /* Skip ')'. */
7886 ++input_line_pointer;
7887 if (e->X_op != O_symbol)
7888 {
7889 if (e->X_op != O_pseudo_fixup)
7890 {
7891 as_bad ("Not a symbolic expression");
7892 goto done;
7893 }
7894 if (idx != FUNC_LT_RELATIVE)
7895 {
7896 as_bad ("Illegal combination of relocation functions");
7897 goto done;
7898 }
7899 switch (S_GET_VALUE (e->X_op_symbol))
7900 {
7901 case FUNC_FPTR_RELATIVE:
7902 idx = FUNC_LT_FPTR_RELATIVE; break;
7903 case FUNC_DTP_MODULE:
7904 idx = FUNC_LT_DTP_MODULE; break;
7905 case FUNC_DTP_RELATIVE:
7906 idx = FUNC_LT_DTP_RELATIVE; break;
7907 case FUNC_TP_RELATIVE:
7908 idx = FUNC_LT_TP_RELATIVE; break;
7909 default:
7910 as_bad ("Illegal combination of relocation functions");
7911 goto done;
7912 }
7913 }
7914 /* Make sure gas doesn't get rid of local symbols that are used
7915 in relocs. */
7916 e->X_op = O_pseudo_fixup;
7917 e->X_op_symbol = pseudo_func[idx].u.sym;
7918 done:
7919 *nextcharP = *input_line_pointer;
7920 break;
7921
7922 case PSEUDO_FUNC_CONST:
7923 e->X_op = O_constant;
7924 e->X_add_number = pseudo_func[idx].u.ival;
7925 break;
7926
7927 case PSEUDO_FUNC_REG:
7928 e->X_op = O_register;
7929 e->X_add_number = pseudo_func[idx].u.ival;
7930 break;
7931
7932 default:
7933 return 0;
7934 }
7935 return 1;
7936 }
7937
7938 /* first see if NAME is a known register name: */
7939 sym = hash_find (md.reg_hash, name);
7940 if (sym)
7941 {
7942 e->X_op = O_register;
7943 e->X_add_number = S_GET_VALUE (sym);
7944 return 1;
7945 }
7946
7947 cdesc = hash_find (md.const_hash, name);
7948 if (cdesc)
7949 {
7950 e->X_op = O_constant;
7951 e->X_add_number = cdesc->value;
7952 return 1;
7953 }
7954
7955 /* check for inN, locN, or outN: */
7956 idx = 0;
7957 switch (name[0])
7958 {
7959 case 'i':
7960 if (name[1] == 'n' && ISDIGIT (name[2]))
7961 {
7962 dr = &md.in;
7963 idx = 2;
7964 }
7965 break;
7966
7967 case 'l':
7968 if (name[1] == 'o' && name[2] == 'c' && ISDIGIT (name[3]))
7969 {
7970 dr = &md.loc;
7971 idx = 3;
7972 }
7973 break;
7974
7975 case 'o':
7976 if (name[1] == 'u' && name[2] == 't' && ISDIGIT (name[3]))
7977 {
7978 dr = &md.out;
7979 idx = 3;
7980 }
7981 break;
7982
7983 default:
7984 break;
7985 }
7986
7987 /* Ignore register numbers with leading zeroes, except zero itself. */
7988 if (dr && (name[idx] != '0' || name[idx + 1] == '\0'))
7989 {
7990 unsigned long regnum;
7991
7992 /* The name is inN, locN, or outN; parse the register number. */
7993 regnum = strtoul (name + idx, &end, 10);
7994 if (end > name + idx && *end == '\0' && regnum < 96)
7995 {
7996 if (regnum >= dr->num_regs)
7997 {
7998 if (!dr->num_regs)
7999 as_bad ("No current frame");
8000 else
8001 as_bad ("Register number out of range 0..%u",
8002 dr->num_regs - 1);
8003 regnum = 0;
8004 }
8005 e->X_op = O_register;
8006 e->X_add_number = dr->base + regnum;
8007 return 1;
8008 }
8009 }
8010
8011 end = alloca (strlen (name) + 1);
8012 strcpy (end, name);
8013 name = ia64_canonicalize_symbol_name (end);
8014 if ((dr = hash_find (md.dynreg_hash, name)))
8015 {
8016 /* We've got ourselves the name of a rotating register set.
8017 Store the base register number in the low 16 bits of
8018 X_add_number and the size of the register set in the top 16
8019 bits. */
8020 e->X_op = O_register;
8021 e->X_add_number = dr->base | (dr->num_regs << 16);
8022 return 1;
8023 }
8024 return 0;
8025 }
8026
8027 /* Remove the '#' suffix that indicates a symbol as opposed to a register. */
8028
8029 char *
8030 ia64_canonicalize_symbol_name (name)
8031 char *name;
8032 {
8033 size_t len = strlen (name), full = len;
8034
8035 while (len > 0 && name[len - 1] == '#')
8036 --len;
8037 if (len <= 0)
8038 {
8039 if (full > 0)
8040 as_bad ("Standalone `#' is illegal");
8041 }
8042 else if (len < full - 1)
8043 as_warn ("Redundant `#' suffix operators");
8044 name[len] = '\0';
8045 return name;
8046 }
8047
8048 /* Return true if idesc is a conditional branch instruction. This excludes
8049 the modulo scheduled branches, and br.ia. Mod-sched branches are excluded
8050 because they always read/write resources regardless of the value of the
8051 qualifying predicate. br.ia must always use p0, and hence is always
8052 taken. Thus this function returns true for branches which can fall
8053 through, and which use no resources if they do fall through. */
8054
8055 static int
8056 is_conditional_branch (idesc)
8057 struct ia64_opcode *idesc;
8058 {
8059 /* br is a conditional branch. Everything that starts with br. except
8060 br.ia, br.c{loop,top,exit}, and br.w{top,exit} is a conditional branch.
8061 Everything that starts with brl is a conditional branch. */
8062 return (idesc->name[0] == 'b' && idesc->name[1] == 'r'
8063 && (idesc->name[2] == '\0'
8064 || (idesc->name[2] == '.' && idesc->name[3] != 'i'
8065 && idesc->name[3] != 'c' && idesc->name[3] != 'w')
8066 || idesc->name[2] == 'l'
8067 /* br.cond, br.call, br.clr */
8068 || (idesc->name[2] == '.' && idesc->name[3] == 'c'
8069 && (idesc->name[4] == 'a' || idesc->name[4] == 'o'
8070 || (idesc->name[4] == 'l' && idesc->name[5] == 'r')))));
8071 }
8072
8073 /* Return whether the given opcode is a taken branch. If there's any doubt,
8074 returns zero. */
8075
8076 static int
8077 is_taken_branch (idesc)
8078 struct ia64_opcode *idesc;
8079 {
8080 return ((is_conditional_branch (idesc) && CURR_SLOT.qp_regno == 0)
8081 || strncmp (idesc->name, "br.ia", 5) == 0);
8082 }
8083
8084 /* Return whether the given opcode is an interruption or rfi. If there's any
8085 doubt, returns zero. */
8086
8087 static int
8088 is_interruption_or_rfi (idesc)
8089 struct ia64_opcode *idesc;
8090 {
8091 if (strcmp (idesc->name, "rfi") == 0)
8092 return 1;
8093 return 0;
8094 }
8095
8096 /* Returns the index of the given dependency in the opcode's list of chks, or
8097 -1 if there is no dependency. */
8098
8099 static int
8100 depends_on (depind, idesc)
8101 int depind;
8102 struct ia64_opcode *idesc;
8103 {
8104 int i;
8105 const struct ia64_opcode_dependency *dep = idesc->dependencies;
8106 for (i = 0; i < dep->nchks; i++)
8107 {
8108 if (depind == DEP (dep->chks[i]))
8109 return i;
8110 }
8111 return -1;
8112 }
8113
8114 /* Determine a set of specific resources used for a particular resource
8115 class. Returns the number of specific resources identified For those
8116 cases which are not determinable statically, the resource returned is
8117 marked nonspecific.
8118
8119 Meanings of value in 'NOTE':
8120 1) only read/write when the register number is explicitly encoded in the
8121 insn.
8122 2) only read CFM when accessing a rotating GR, FR, or PR. mov pr only
8123 accesses CFM when qualifying predicate is in the rotating region.
8124 3) general register value is used to specify an indirect register; not
8125 determinable statically.
8126 4) only read the given resource when bits 7:0 of the indirect index
8127 register value does not match the register number of the resource; not
8128 determinable statically.
8129 5) all rules are implementation specific.
8130 6) only when both the index specified by the reader and the index specified
8131 by the writer have the same value in bits 63:61; not determinable
8132 statically.
8133 7) only access the specified resource when the corresponding mask bit is
8134 set
8135 8) PSR.dfh is only read when these insns reference FR32-127. PSR.dfl is
8136 only read when these insns reference FR2-31
8137 9) PSR.mfl is only written when these insns write FR2-31. PSR.mfh is only
8138 written when these insns write FR32-127
8139 10) The PSR.bn bit is only accessed when one of GR16-31 is specified in the
8140 instruction
8141 11) The target predicates are written independently of PR[qp], but source
8142 registers are only read if PR[qp] is true. Since the state of PR[qp]
8143 cannot statically be determined, all source registers are marked used.
8144 12) This insn only reads the specified predicate register when that
8145 register is the PR[qp].
8146 13) This reference to ld-c only applies to teh GR whose value is loaded
8147 with data returned from memory, not the post-incremented address register.
8148 14) The RSE resource includes the implementation-specific RSE internal
8149 state resources. At least one (and possibly more) of these resources are
8150 read by each instruction listed in IC:rse-readers. At least one (and
8151 possibly more) of these resources are written by each insn listed in
8152 IC:rse-writers.
8153 15+16) Represents reserved instructions, which the assembler does not
8154 generate.
8155
8156 Memory resources (i.e. locations in memory) are *not* marked or tracked by
8157 this code; there are no dependency violations based on memory access.
8158 */
8159
8160 #define MAX_SPECS 256
8161 #define DV_CHK 1
8162 #define DV_REG 0
8163
8164 static int
8165 specify_resource (dep, idesc, type, specs, note, path)
8166 const struct ia64_dependency *dep;
8167 struct ia64_opcode *idesc;
8168 int type; /* is this a DV chk or a DV reg? */
8169 struct rsrc specs[MAX_SPECS]; /* returned specific resources */
8170 int note; /* resource note for this insn's usage */
8171 int path; /* which execution path to examine */
8172 {
8173 int count = 0;
8174 int i;
8175 int rsrc_write = 0;
8176 struct rsrc tmpl;
8177
8178 if (dep->mode == IA64_DV_WAW
8179 || (dep->mode == IA64_DV_RAW && type == DV_REG)
8180 || (dep->mode == IA64_DV_WAR && type == DV_CHK))
8181 rsrc_write = 1;
8182
8183 /* template for any resources we identify */
8184 tmpl.dependency = dep;
8185 tmpl.note = note;
8186 tmpl.insn_srlz = tmpl.data_srlz = 0;
8187 tmpl.qp_regno = CURR_SLOT.qp_regno;
8188 tmpl.link_to_qp_branch = 1;
8189 tmpl.mem_offset.hint = 0;
8190 tmpl.mem_offset.offset = 0;
8191 tmpl.mem_offset.base = 0;
8192 tmpl.specific = 1;
8193 tmpl.index = -1;
8194 tmpl.cmp_type = CMP_NONE;
8195 tmpl.depind = 0;
8196 tmpl.file = NULL;
8197 tmpl.line = 0;
8198 tmpl.path = 0;
8199
8200 #define UNHANDLED \
8201 as_warn (_("Unhandled dependency %s for %s (%s), note %d"), \
8202 dep->name, idesc->name, (rsrc_write?"write":"read"), note)
8203 #define KNOWN(REG) (gr_values[REG].known && gr_values[REG].path >= path)
8204
8205 /* we don't need to track these */
8206 if (dep->semantics == IA64_DVS_NONE)
8207 return 0;
8208
8209 switch (dep->specifier)
8210 {
8211 case IA64_RS_AR_K:
8212 if (note == 1)
8213 {
8214 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8215 {
8216 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8217 if (regno >= 0 && regno <= 7)
8218 {
8219 specs[count] = tmpl;
8220 specs[count++].index = regno;
8221 }
8222 }
8223 }
8224 else if (note == 0)
8225 {
8226 for (i = 0; i < 8; i++)
8227 {
8228 specs[count] = tmpl;
8229 specs[count++].index = i;
8230 }
8231 }
8232 else
8233 {
8234 UNHANDLED;
8235 }
8236 break;
8237
8238 case IA64_RS_AR_UNAT:
8239 /* This is a mov =AR or mov AR= instruction. */
8240 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8241 {
8242 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8243 if (regno == AR_UNAT)
8244 {
8245 specs[count++] = tmpl;
8246 }
8247 }
8248 else
8249 {
8250 /* This is a spill/fill, or other instruction that modifies the
8251 unat register. */
8252
8253 /* Unless we can determine the specific bits used, mark the whole
8254 thing; bits 8:3 of the memory address indicate the bit used in
8255 UNAT. The .mem.offset hint may be used to eliminate a small
8256 subset of conflicts. */
8257 specs[count] = tmpl;
8258 if (md.mem_offset.hint)
8259 {
8260 if (md.debug_dv)
8261 fprintf (stderr, " Using hint for spill/fill\n");
8262 /* The index isn't actually used, just set it to something
8263 approximating the bit index. */
8264 specs[count].index = (md.mem_offset.offset >> 3) & 0x3F;
8265 specs[count].mem_offset.hint = 1;
8266 specs[count].mem_offset.offset = md.mem_offset.offset;
8267 specs[count++].mem_offset.base = md.mem_offset.base;
8268 }
8269 else
8270 {
8271 specs[count++].specific = 0;
8272 }
8273 }
8274 break;
8275
8276 case IA64_RS_AR:
8277 if (note == 1)
8278 {
8279 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8280 {
8281 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8282 if ((regno >= 8 && regno <= 15)
8283 || (regno >= 20 && regno <= 23)
8284 || (regno >= 31 && regno <= 39)
8285 || (regno >= 41 && regno <= 47)
8286 || (regno >= 67 && regno <= 111))
8287 {
8288 specs[count] = tmpl;
8289 specs[count++].index = regno;
8290 }
8291 }
8292 }
8293 else
8294 {
8295 UNHANDLED;
8296 }
8297 break;
8298
8299 case IA64_RS_ARb:
8300 if (note == 1)
8301 {
8302 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8303 {
8304 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8305 if ((regno >= 48 && regno <= 63)
8306 || (regno >= 112 && regno <= 127))
8307 {
8308 specs[count] = tmpl;
8309 specs[count++].index = regno;
8310 }
8311 }
8312 }
8313 else if (note == 0)
8314 {
8315 for (i = 48; i < 64; i++)
8316 {
8317 specs[count] = tmpl;
8318 specs[count++].index = i;
8319 }
8320 for (i = 112; i < 128; i++)
8321 {
8322 specs[count] = tmpl;
8323 specs[count++].index = i;
8324 }
8325 }
8326 else
8327 {
8328 UNHANDLED;
8329 }
8330 break;
8331
8332 case IA64_RS_BR:
8333 if (note != 1)
8334 {
8335 UNHANDLED;
8336 }
8337 else
8338 {
8339 if (rsrc_write)
8340 {
8341 for (i = 0; i < idesc->num_outputs; i++)
8342 if (idesc->operands[i] == IA64_OPND_B1
8343 || idesc->operands[i] == IA64_OPND_B2)
8344 {
8345 specs[count] = tmpl;
8346 specs[count++].index =
8347 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8348 }
8349 }
8350 else
8351 {
8352 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8353 if (idesc->operands[i] == IA64_OPND_B1
8354 || idesc->operands[i] == IA64_OPND_B2)
8355 {
8356 specs[count] = tmpl;
8357 specs[count++].index =
8358 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8359 }
8360 }
8361 }
8362 break;
8363
8364 case IA64_RS_CPUID: /* four or more registers */
8365 if (note == 3)
8366 {
8367 if (idesc->operands[!rsrc_write] == IA64_OPND_CPUID_R3)
8368 {
8369 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8370 if (regno >= 0 && regno < NELEMS (gr_values)
8371 && KNOWN (regno))
8372 {
8373 specs[count] = tmpl;
8374 specs[count++].index = gr_values[regno].value & 0xFF;
8375 }
8376 else
8377 {
8378 specs[count] = tmpl;
8379 specs[count++].specific = 0;
8380 }
8381 }
8382 }
8383 else
8384 {
8385 UNHANDLED;
8386 }
8387 break;
8388
8389 case IA64_RS_DBR: /* four or more registers */
8390 if (note == 3)
8391 {
8392 if (idesc->operands[!rsrc_write] == IA64_OPND_DBR_R3)
8393 {
8394 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8395 if (regno >= 0 && regno < NELEMS (gr_values)
8396 && KNOWN (regno))
8397 {
8398 specs[count] = tmpl;
8399 specs[count++].index = gr_values[regno].value & 0xFF;
8400 }
8401 else
8402 {
8403 specs[count] = tmpl;
8404 specs[count++].specific = 0;
8405 }
8406 }
8407 }
8408 else if (note == 0 && !rsrc_write)
8409 {
8410 specs[count] = tmpl;
8411 specs[count++].specific = 0;
8412 }
8413 else
8414 {
8415 UNHANDLED;
8416 }
8417 break;
8418
8419 case IA64_RS_IBR: /* four or more registers */
8420 if (note == 3)
8421 {
8422 if (idesc->operands[!rsrc_write] == IA64_OPND_IBR_R3)
8423 {
8424 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8425 if (regno >= 0 && regno < NELEMS (gr_values)
8426 && KNOWN (regno))
8427 {
8428 specs[count] = tmpl;
8429 specs[count++].index = gr_values[regno].value & 0xFF;
8430 }
8431 else
8432 {
8433 specs[count] = tmpl;
8434 specs[count++].specific = 0;
8435 }
8436 }
8437 }
8438 else
8439 {
8440 UNHANDLED;
8441 }
8442 break;
8443
8444 case IA64_RS_MSR:
8445 if (note == 5)
8446 {
8447 /* These are implementation specific. Force all references to
8448 conflict with all other references. */
8449 specs[count] = tmpl;
8450 specs[count++].specific = 0;
8451 }
8452 else
8453 {
8454 UNHANDLED;
8455 }
8456 break;
8457
8458 case IA64_RS_PKR: /* 16 or more registers */
8459 if (note == 3 || note == 4)
8460 {
8461 if (idesc->operands[!rsrc_write] == IA64_OPND_PKR_R3)
8462 {
8463 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8464 if (regno >= 0 && regno < NELEMS (gr_values)
8465 && KNOWN (regno))
8466 {
8467 if (note == 3)
8468 {
8469 specs[count] = tmpl;
8470 specs[count++].index = gr_values[regno].value & 0xFF;
8471 }
8472 else
8473 for (i = 0; i < NELEMS (gr_values); i++)
8474 {
8475 /* Uses all registers *except* the one in R3. */
8476 if ((unsigned)i != (gr_values[regno].value & 0xFF))
8477 {
8478 specs[count] = tmpl;
8479 specs[count++].index = i;
8480 }
8481 }
8482 }
8483 else
8484 {
8485 specs[count] = tmpl;
8486 specs[count++].specific = 0;
8487 }
8488 }
8489 }
8490 else if (note == 0)
8491 {
8492 /* probe et al. */
8493 specs[count] = tmpl;
8494 specs[count++].specific = 0;
8495 }
8496 break;
8497
8498 case IA64_RS_PMC: /* four or more registers */
8499 if (note == 3)
8500 {
8501 if (idesc->operands[!rsrc_write] == IA64_OPND_PMC_R3
8502 || (!rsrc_write && idesc->operands[1] == IA64_OPND_PMD_R3))
8503
8504 {
8505 int index = ((idesc->operands[1] == IA64_OPND_R3 && !rsrc_write)
8506 ? 1 : !rsrc_write);
8507 int regno = CURR_SLOT.opnd[index].X_add_number - REG_GR;
8508 if (regno >= 0 && regno < NELEMS (gr_values)
8509 && KNOWN (regno))
8510 {
8511 specs[count] = tmpl;
8512 specs[count++].index = gr_values[regno].value & 0xFF;
8513 }
8514 else
8515 {
8516 specs[count] = tmpl;
8517 specs[count++].specific = 0;
8518 }
8519 }
8520 }
8521 else
8522 {
8523 UNHANDLED;
8524 }
8525 break;
8526
8527 case IA64_RS_PMD: /* four or more registers */
8528 if (note == 3)
8529 {
8530 if (idesc->operands[!rsrc_write] == IA64_OPND_PMD_R3)
8531 {
8532 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8533 if (regno >= 0 && regno < NELEMS (gr_values)
8534 && KNOWN (regno))
8535 {
8536 specs[count] = tmpl;
8537 specs[count++].index = gr_values[regno].value & 0xFF;
8538 }
8539 else
8540 {
8541 specs[count] = tmpl;
8542 specs[count++].specific = 0;
8543 }
8544 }
8545 }
8546 else
8547 {
8548 UNHANDLED;
8549 }
8550 break;
8551
8552 case IA64_RS_RR: /* eight registers */
8553 if (note == 6)
8554 {
8555 if (idesc->operands[!rsrc_write] == IA64_OPND_RR_R3)
8556 {
8557 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8558 if (regno >= 0 && regno < NELEMS (gr_values)
8559 && KNOWN (regno))
8560 {
8561 specs[count] = tmpl;
8562 specs[count++].index = (gr_values[regno].value >> 61) & 0x7;
8563 }
8564 else
8565 {
8566 specs[count] = tmpl;
8567 specs[count++].specific = 0;
8568 }
8569 }
8570 }
8571 else if (note == 0 && !rsrc_write)
8572 {
8573 specs[count] = tmpl;
8574 specs[count++].specific = 0;
8575 }
8576 else
8577 {
8578 UNHANDLED;
8579 }
8580 break;
8581
8582 case IA64_RS_CR_IRR:
8583 if (note == 0)
8584 {
8585 /* handle mov-from-CR-IVR; it's a read that writes CR[IRR] */
8586 int regno = CURR_SLOT.opnd[1].X_add_number - REG_CR;
8587 if (rsrc_write
8588 && idesc->operands[1] == IA64_OPND_CR3
8589 && regno == CR_IVR)
8590 {
8591 for (i = 0; i < 4; i++)
8592 {
8593 specs[count] = tmpl;
8594 specs[count++].index = CR_IRR0 + i;
8595 }
8596 }
8597 }
8598 else if (note == 1)
8599 {
8600 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8601 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8602 && regno >= CR_IRR0
8603 && regno <= CR_IRR3)
8604 {
8605 specs[count] = tmpl;
8606 specs[count++].index = regno;
8607 }
8608 }
8609 else
8610 {
8611 UNHANDLED;
8612 }
8613 break;
8614
8615 case IA64_RS_CR_LRR:
8616 if (note != 1)
8617 {
8618 UNHANDLED;
8619 }
8620 else
8621 {
8622 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8623 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8624 && (regno == CR_LRR0 || regno == CR_LRR1))
8625 {
8626 specs[count] = tmpl;
8627 specs[count++].index = regno;
8628 }
8629 }
8630 break;
8631
8632 case IA64_RS_CR:
8633 if (note == 1)
8634 {
8635 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
8636 {
8637 specs[count] = tmpl;
8638 specs[count++].index =
8639 CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8640 }
8641 }
8642 else
8643 {
8644 UNHANDLED;
8645 }
8646 break;
8647
8648 case IA64_RS_FR:
8649 case IA64_RS_FRb:
8650 if (note != 1)
8651 {
8652 UNHANDLED;
8653 }
8654 else if (rsrc_write)
8655 {
8656 if (dep->specifier == IA64_RS_FRb
8657 && idesc->operands[0] == IA64_OPND_F1)
8658 {
8659 specs[count] = tmpl;
8660 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_FR;
8661 }
8662 }
8663 else
8664 {
8665 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8666 {
8667 if (idesc->operands[i] == IA64_OPND_F2
8668 || idesc->operands[i] == IA64_OPND_F3
8669 || idesc->operands[i] == IA64_OPND_F4)
8670 {
8671 specs[count] = tmpl;
8672 specs[count++].index =
8673 CURR_SLOT.opnd[i].X_add_number - REG_FR;
8674 }
8675 }
8676 }
8677 break;
8678
8679 case IA64_RS_GR:
8680 if (note == 13)
8681 {
8682 /* This reference applies only to the GR whose value is loaded with
8683 data returned from memory. */
8684 specs[count] = tmpl;
8685 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_GR;
8686 }
8687 else if (note == 1)
8688 {
8689 if (rsrc_write)
8690 {
8691 for (i = 0; i < idesc->num_outputs; i++)
8692 if (idesc->operands[i] == IA64_OPND_R1
8693 || idesc->operands[i] == IA64_OPND_R2
8694 || idesc->operands[i] == IA64_OPND_R3)
8695 {
8696 specs[count] = tmpl;
8697 specs[count++].index =
8698 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8699 }
8700 if (idesc->flags & IA64_OPCODE_POSTINC)
8701 for (i = 0; i < NELEMS (idesc->operands); i++)
8702 if (idesc->operands[i] == IA64_OPND_MR3)
8703 {
8704 specs[count] = tmpl;
8705 specs[count++].index =
8706 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8707 }
8708 }
8709 else
8710 {
8711 /* Look for anything that reads a GR. */
8712 for (i = 0; i < NELEMS (idesc->operands); i++)
8713 {
8714 if (idesc->operands[i] == IA64_OPND_MR3
8715 || idesc->operands[i] == IA64_OPND_CPUID_R3
8716 || idesc->operands[i] == IA64_OPND_DBR_R3
8717 || idesc->operands[i] == IA64_OPND_IBR_R3
8718 || idesc->operands[i] == IA64_OPND_MSR_R3
8719 || idesc->operands[i] == IA64_OPND_PKR_R3
8720 || idesc->operands[i] == IA64_OPND_PMC_R3
8721 || idesc->operands[i] == IA64_OPND_PMD_R3
8722 || idesc->operands[i] == IA64_OPND_RR_R3
8723 || ((i >= idesc->num_outputs)
8724 && (idesc->operands[i] == IA64_OPND_R1
8725 || idesc->operands[i] == IA64_OPND_R2
8726 || idesc->operands[i] == IA64_OPND_R3
8727 /* addl source register. */
8728 || idesc->operands[i] == IA64_OPND_R3_2)))
8729 {
8730 specs[count] = tmpl;
8731 specs[count++].index =
8732 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8733 }
8734 }
8735 }
8736 }
8737 else
8738 {
8739 UNHANDLED;
8740 }
8741 break;
8742
8743 /* This is the same as IA64_RS_PRr, except that the register range is
8744 from 1 - 15, and there are no rotating register reads/writes here. */
8745 case IA64_RS_PR:
8746 if (note == 0)
8747 {
8748 for (i = 1; i < 16; i++)
8749 {
8750 specs[count] = tmpl;
8751 specs[count++].index = i;
8752 }
8753 }
8754 else if (note == 7)
8755 {
8756 valueT mask = 0;
8757 /* Mark only those registers indicated by the mask. */
8758 if (rsrc_write)
8759 {
8760 mask = CURR_SLOT.opnd[2].X_add_number;
8761 for (i = 1; i < 16; i++)
8762 if (mask & ((valueT) 1 << i))
8763 {
8764 specs[count] = tmpl;
8765 specs[count++].index = i;
8766 }
8767 }
8768 else
8769 {
8770 UNHANDLED;
8771 }
8772 }
8773 else if (note == 11) /* note 11 implies note 1 as well */
8774 {
8775 if (rsrc_write)
8776 {
8777 for (i = 0; i < idesc->num_outputs; i++)
8778 {
8779 if (idesc->operands[i] == IA64_OPND_P1
8780 || idesc->operands[i] == IA64_OPND_P2)
8781 {
8782 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8783 if (regno >= 1 && regno < 16)
8784 {
8785 specs[count] = tmpl;
8786 specs[count++].index = regno;
8787 }
8788 }
8789 }
8790 }
8791 else
8792 {
8793 UNHANDLED;
8794 }
8795 }
8796 else if (note == 12)
8797 {
8798 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8799 {
8800 specs[count] = tmpl;
8801 specs[count++].index = CURR_SLOT.qp_regno;
8802 }
8803 }
8804 else if (note == 1)
8805 {
8806 if (rsrc_write)
8807 {
8808 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8809 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8810 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8811 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
8812
8813 if ((idesc->operands[0] == IA64_OPND_P1
8814 || idesc->operands[0] == IA64_OPND_P2)
8815 && p1 >= 1 && p1 < 16)
8816 {
8817 specs[count] = tmpl;
8818 specs[count].cmp_type =
8819 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
8820 specs[count++].index = p1;
8821 }
8822 if ((idesc->operands[1] == IA64_OPND_P1
8823 || idesc->operands[1] == IA64_OPND_P2)
8824 && p2 >= 1 && p2 < 16)
8825 {
8826 specs[count] = tmpl;
8827 specs[count].cmp_type =
8828 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
8829 specs[count++].index = p2;
8830 }
8831 }
8832 else
8833 {
8834 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8835 {
8836 specs[count] = tmpl;
8837 specs[count++].index = CURR_SLOT.qp_regno;
8838 }
8839 if (idesc->operands[1] == IA64_OPND_PR)
8840 {
8841 for (i = 1; i < 16; i++)
8842 {
8843 specs[count] = tmpl;
8844 specs[count++].index = i;
8845 }
8846 }
8847 }
8848 }
8849 else
8850 {
8851 UNHANDLED;
8852 }
8853 break;
8854
8855 /* This is the general case for PRs. IA64_RS_PR and IA64_RS_PR63 are
8856 simplified cases of this. */
8857 case IA64_RS_PRr:
8858 if (note == 0)
8859 {
8860 for (i = 16; i < 63; i++)
8861 {
8862 specs[count] = tmpl;
8863 specs[count++].index = i;
8864 }
8865 }
8866 else if (note == 7)
8867 {
8868 valueT mask = 0;
8869 /* Mark only those registers indicated by the mask. */
8870 if (rsrc_write
8871 && idesc->operands[0] == IA64_OPND_PR)
8872 {
8873 mask = CURR_SLOT.opnd[2].X_add_number;
8874 if (mask & ((valueT) 1 << 16))
8875 for (i = 16; i < 63; i++)
8876 {
8877 specs[count] = tmpl;
8878 specs[count++].index = i;
8879 }
8880 }
8881 else if (rsrc_write
8882 && idesc->operands[0] == IA64_OPND_PR_ROT)
8883 {
8884 for (i = 16; i < 63; i++)
8885 {
8886 specs[count] = tmpl;
8887 specs[count++].index = i;
8888 }
8889 }
8890 else
8891 {
8892 UNHANDLED;
8893 }
8894 }
8895 else if (note == 11) /* note 11 implies note 1 as well */
8896 {
8897 if (rsrc_write)
8898 {
8899 for (i = 0; i < idesc->num_outputs; i++)
8900 {
8901 if (idesc->operands[i] == IA64_OPND_P1
8902 || idesc->operands[i] == IA64_OPND_P2)
8903 {
8904 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8905 if (regno >= 16 && regno < 63)
8906 {
8907 specs[count] = tmpl;
8908 specs[count++].index = regno;
8909 }
8910 }
8911 }
8912 }
8913 else
8914 {
8915 UNHANDLED;
8916 }
8917 }
8918 else if (note == 12)
8919 {
8920 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
8921 {
8922 specs[count] = tmpl;
8923 specs[count++].index = CURR_SLOT.qp_regno;
8924 }
8925 }
8926 else if (note == 1)
8927 {
8928 if (rsrc_write)
8929 {
8930 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8931 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8932 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8933 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
8934
8935 if ((idesc->operands[0] == IA64_OPND_P1
8936 || idesc->operands[0] == IA64_OPND_P2)
8937 && p1 >= 16 && p1 < 63)
8938 {
8939 specs[count] = tmpl;
8940 specs[count].cmp_type =
8941 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
8942 specs[count++].index = p1;
8943 }
8944 if ((idesc->operands[1] == IA64_OPND_P1
8945 || idesc->operands[1] == IA64_OPND_P2)
8946 && p2 >= 16 && p2 < 63)
8947 {
8948 specs[count] = tmpl;
8949 specs[count].cmp_type =
8950 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
8951 specs[count++].index = p2;
8952 }
8953 }
8954 else
8955 {
8956 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
8957 {
8958 specs[count] = tmpl;
8959 specs[count++].index = CURR_SLOT.qp_regno;
8960 }
8961 if (idesc->operands[1] == IA64_OPND_PR)
8962 {
8963 for (i = 16; i < 63; i++)
8964 {
8965 specs[count] = tmpl;
8966 specs[count++].index = i;
8967 }
8968 }
8969 }
8970 }
8971 else
8972 {
8973 UNHANDLED;
8974 }
8975 break;
8976
8977 case IA64_RS_PSR:
8978 /* Verify that the instruction is using the PSR bit indicated in
8979 dep->regindex. */
8980 if (note == 0)
8981 {
8982 if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_UM)
8983 {
8984 if (dep->regindex < 6)
8985 {
8986 specs[count++] = tmpl;
8987 }
8988 }
8989 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR)
8990 {
8991 if (dep->regindex < 32
8992 || dep->regindex == 35
8993 || dep->regindex == 36
8994 || (!rsrc_write && dep->regindex == PSR_CPL))
8995 {
8996 specs[count++] = tmpl;
8997 }
8998 }
8999 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_L)
9000 {
9001 if (dep->regindex < 32
9002 || dep->regindex == 35
9003 || dep->regindex == 36
9004 || (rsrc_write && dep->regindex == PSR_CPL))
9005 {
9006 specs[count++] = tmpl;
9007 }
9008 }
9009 else
9010 {
9011 /* Several PSR bits have very specific dependencies. */
9012 switch (dep->regindex)
9013 {
9014 default:
9015 specs[count++] = tmpl;
9016 break;
9017 case PSR_IC:
9018 if (rsrc_write)
9019 {
9020 specs[count++] = tmpl;
9021 }
9022 else
9023 {
9024 /* Only certain CR accesses use PSR.ic */
9025 if (idesc->operands[0] == IA64_OPND_CR3
9026 || idesc->operands[1] == IA64_OPND_CR3)
9027 {
9028 int index =
9029 ((idesc->operands[0] == IA64_OPND_CR3)
9030 ? 0 : 1);
9031 int regno =
9032 CURR_SLOT.opnd[index].X_add_number - REG_CR;
9033
9034 switch (regno)
9035 {
9036 default:
9037 break;
9038 case CR_ITIR:
9039 case CR_IFS:
9040 case CR_IIM:
9041 case CR_IIP:
9042 case CR_IPSR:
9043 case CR_ISR:
9044 case CR_IFA:
9045 case CR_IHA:
9046 case CR_IIPA:
9047 specs[count++] = tmpl;
9048 break;
9049 }
9050 }
9051 }
9052 break;
9053 case PSR_CPL:
9054 if (rsrc_write)
9055 {
9056 specs[count++] = tmpl;
9057 }
9058 else
9059 {
9060 /* Only some AR accesses use cpl */
9061 if (idesc->operands[0] == IA64_OPND_AR3
9062 || idesc->operands[1] == IA64_OPND_AR3)
9063 {
9064 int index =
9065 ((idesc->operands[0] == IA64_OPND_AR3)
9066 ? 0 : 1);
9067 int regno =
9068 CURR_SLOT.opnd[index].X_add_number - REG_AR;
9069
9070 if (regno == AR_ITC
9071 || (index == 0
9072 && (regno == AR_ITC
9073 || regno == AR_RSC
9074 || (regno >= AR_K0
9075 && regno <= AR_K7))))
9076 {
9077 specs[count++] = tmpl;
9078 }
9079 }
9080 else
9081 {
9082 specs[count++] = tmpl;
9083 }
9084 break;
9085 }
9086 }
9087 }
9088 }
9089 else if (note == 7)
9090 {
9091 valueT mask = 0;
9092 if (idesc->operands[0] == IA64_OPND_IMMU24)
9093 {
9094 mask = CURR_SLOT.opnd[0].X_add_number;
9095 }
9096 else
9097 {
9098 UNHANDLED;
9099 }
9100 if (mask & ((valueT) 1 << dep->regindex))
9101 {
9102 specs[count++] = tmpl;
9103 }
9104 }
9105 else if (note == 8)
9106 {
9107 int min = dep->regindex == PSR_DFL ? 2 : 32;
9108 int max = dep->regindex == PSR_DFL ? 31 : 127;
9109 /* dfh is read on FR32-127; dfl is read on FR2-31 */
9110 for (i = 0; i < NELEMS (idesc->operands); i++)
9111 {
9112 if (idesc->operands[i] == IA64_OPND_F1
9113 || idesc->operands[i] == IA64_OPND_F2
9114 || idesc->operands[i] == IA64_OPND_F3
9115 || idesc->operands[i] == IA64_OPND_F4)
9116 {
9117 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9118 if (reg >= min && reg <= max)
9119 {
9120 specs[count++] = tmpl;
9121 }
9122 }
9123 }
9124 }
9125 else if (note == 9)
9126 {
9127 int min = dep->regindex == PSR_MFL ? 2 : 32;
9128 int max = dep->regindex == PSR_MFL ? 31 : 127;
9129 /* mfh is read on writes to FR32-127; mfl is read on writes to
9130 FR2-31 */
9131 for (i = 0; i < idesc->num_outputs; i++)
9132 {
9133 if (idesc->operands[i] == IA64_OPND_F1)
9134 {
9135 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9136 if (reg >= min && reg <= max)
9137 {
9138 specs[count++] = tmpl;
9139 }
9140 }
9141 }
9142 }
9143 else if (note == 10)
9144 {
9145 for (i = 0; i < NELEMS (idesc->operands); i++)
9146 {
9147 if (idesc->operands[i] == IA64_OPND_R1
9148 || idesc->operands[i] == IA64_OPND_R2
9149 || idesc->operands[i] == IA64_OPND_R3)
9150 {
9151 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9152 if (regno >= 16 && regno <= 31)
9153 {
9154 specs[count++] = tmpl;
9155 }
9156 }
9157 }
9158 }
9159 else
9160 {
9161 UNHANDLED;
9162 }
9163 break;
9164
9165 case IA64_RS_AR_FPSR:
9166 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
9167 {
9168 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9169 if (regno == AR_FPSR)
9170 {
9171 specs[count++] = tmpl;
9172 }
9173 }
9174 else
9175 {
9176 specs[count++] = tmpl;
9177 }
9178 break;
9179
9180 case IA64_RS_ARX:
9181 /* Handle all AR[REG] resources */
9182 if (note == 0 || note == 1)
9183 {
9184 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9185 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3
9186 && regno == dep->regindex)
9187 {
9188 specs[count++] = tmpl;
9189 }
9190 /* other AR[REG] resources may be affected by AR accesses */
9191 else if (idesc->operands[0] == IA64_OPND_AR3)
9192 {
9193 /* AR[] writes */
9194 regno = CURR_SLOT.opnd[0].X_add_number - REG_AR;
9195 switch (dep->regindex)
9196 {
9197 default:
9198 break;
9199 case AR_BSP:
9200 case AR_RNAT:
9201 if (regno == AR_BSPSTORE)
9202 {
9203 specs[count++] = tmpl;
9204 }
9205 case AR_RSC:
9206 if (!rsrc_write &&
9207 (regno == AR_BSPSTORE
9208 || regno == AR_RNAT))
9209 {
9210 specs[count++] = tmpl;
9211 }
9212 break;
9213 }
9214 }
9215 else if (idesc->operands[1] == IA64_OPND_AR3)
9216 {
9217 /* AR[] reads */
9218 regno = CURR_SLOT.opnd[1].X_add_number - REG_AR;
9219 switch (dep->regindex)
9220 {
9221 default:
9222 break;
9223 case AR_RSC:
9224 if (regno == AR_BSPSTORE || regno == AR_RNAT)
9225 {
9226 specs[count++] = tmpl;
9227 }
9228 break;
9229 }
9230 }
9231 else
9232 {
9233 specs[count++] = tmpl;
9234 }
9235 }
9236 else
9237 {
9238 UNHANDLED;
9239 }
9240 break;
9241
9242 case IA64_RS_CRX:
9243 /* Handle all CR[REG] resources */
9244 if (note == 0 || note == 1)
9245 {
9246 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
9247 {
9248 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
9249 if (regno == dep->regindex)
9250 {
9251 specs[count++] = tmpl;
9252 }
9253 else if (!rsrc_write)
9254 {
9255 /* Reads from CR[IVR] affect other resources. */
9256 if (regno == CR_IVR)
9257 {
9258 if ((dep->regindex >= CR_IRR0
9259 && dep->regindex <= CR_IRR3)
9260 || dep->regindex == CR_TPR)
9261 {
9262 specs[count++] = tmpl;
9263 }
9264 }
9265 }
9266 }
9267 else
9268 {
9269 specs[count++] = tmpl;
9270 }
9271 }
9272 else
9273 {
9274 UNHANDLED;
9275 }
9276 break;
9277
9278 case IA64_RS_INSERVICE:
9279 /* look for write of EOI (67) or read of IVR (65) */
9280 if ((idesc->operands[0] == IA64_OPND_CR3
9281 && CURR_SLOT.opnd[0].X_add_number - REG_CR == CR_EOI)
9282 || (idesc->operands[1] == IA64_OPND_CR3
9283 && CURR_SLOT.opnd[1].X_add_number - REG_CR == CR_IVR))
9284 {
9285 specs[count++] = tmpl;
9286 }
9287 break;
9288
9289 case IA64_RS_GR0:
9290 if (note == 1)
9291 {
9292 specs[count++] = tmpl;
9293 }
9294 else
9295 {
9296 UNHANDLED;
9297 }
9298 break;
9299
9300 case IA64_RS_CFM:
9301 if (note != 2)
9302 {
9303 specs[count++] = tmpl;
9304 }
9305 else
9306 {
9307 /* Check if any of the registers accessed are in the rotating region.
9308 mov to/from pr accesses CFM only when qp_regno is in the rotating
9309 region */
9310 for (i = 0; i < NELEMS (idesc->operands); i++)
9311 {
9312 if (idesc->operands[i] == IA64_OPND_R1
9313 || idesc->operands[i] == IA64_OPND_R2
9314 || idesc->operands[i] == IA64_OPND_R3)
9315 {
9316 int num = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9317 /* Assumes that md.rot.num_regs is always valid */
9318 if (md.rot.num_regs > 0
9319 && num > 31
9320 && num < 31 + md.rot.num_regs)
9321 {
9322 specs[count] = tmpl;
9323 specs[count++].specific = 0;
9324 }
9325 }
9326 else if (idesc->operands[i] == IA64_OPND_F1
9327 || idesc->operands[i] == IA64_OPND_F2
9328 || idesc->operands[i] == IA64_OPND_F3
9329 || idesc->operands[i] == IA64_OPND_F4)
9330 {
9331 int num = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9332 if (num > 31)
9333 {
9334 specs[count] = tmpl;
9335 specs[count++].specific = 0;
9336 }
9337 }
9338 else if (idesc->operands[i] == IA64_OPND_P1
9339 || idesc->operands[i] == IA64_OPND_P2)
9340 {
9341 int num = CURR_SLOT.opnd[i].X_add_number - REG_P;
9342 if (num > 15)
9343 {
9344 specs[count] = tmpl;
9345 specs[count++].specific = 0;
9346 }
9347 }
9348 }
9349 if (CURR_SLOT.qp_regno > 15)
9350 {
9351 specs[count] = tmpl;
9352 specs[count++].specific = 0;
9353 }
9354 }
9355 break;
9356
9357 /* This is the same as IA64_RS_PRr, except simplified to account for
9358 the fact that there is only one register. */
9359 case IA64_RS_PR63:
9360 if (note == 0)
9361 {
9362 specs[count++] = tmpl;
9363 }
9364 else if (note == 7)
9365 {
9366 valueT mask = 0;
9367 if (idesc->operands[2] == IA64_OPND_IMM17)
9368 mask = CURR_SLOT.opnd[2].X_add_number;
9369 if (mask & ((valueT) 1 << 63))
9370 specs[count++] = tmpl;
9371 }
9372 else if (note == 11)
9373 {
9374 if ((idesc->operands[0] == IA64_OPND_P1
9375 && CURR_SLOT.opnd[0].X_add_number - REG_P == 63)
9376 || (idesc->operands[1] == IA64_OPND_P2
9377 && CURR_SLOT.opnd[1].X_add_number - REG_P == 63))
9378 {
9379 specs[count++] = tmpl;
9380 }
9381 }
9382 else if (note == 12)
9383 {
9384 if (CURR_SLOT.qp_regno == 63)
9385 {
9386 specs[count++] = tmpl;
9387 }
9388 }
9389 else if (note == 1)
9390 {
9391 if (rsrc_write)
9392 {
9393 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9394 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9395 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9396 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9397
9398 if (p1 == 63
9399 && (idesc->operands[0] == IA64_OPND_P1
9400 || idesc->operands[0] == IA64_OPND_P2))
9401 {
9402 specs[count] = tmpl;
9403 specs[count++].cmp_type =
9404 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9405 }
9406 if (p2 == 63
9407 && (idesc->operands[1] == IA64_OPND_P1
9408 || idesc->operands[1] == IA64_OPND_P2))
9409 {
9410 specs[count] = tmpl;
9411 specs[count++].cmp_type =
9412 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9413 }
9414 }
9415 else
9416 {
9417 if (CURR_SLOT.qp_regno == 63)
9418 {
9419 specs[count++] = tmpl;
9420 }
9421 }
9422 }
9423 else
9424 {
9425 UNHANDLED;
9426 }
9427 break;
9428
9429 case IA64_RS_RSE:
9430 /* FIXME we can identify some individual RSE written resources, but RSE
9431 read resources have not yet been completely identified, so for now
9432 treat RSE as a single resource */
9433 if (strncmp (idesc->name, "mov", 3) == 0)
9434 {
9435 if (rsrc_write)
9436 {
9437 if (idesc->operands[0] == IA64_OPND_AR3
9438 && CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE)
9439 {
9440 specs[count++] = tmpl;
9441 }
9442 }
9443 else
9444 {
9445 if (idesc->operands[0] == IA64_OPND_AR3)
9446 {
9447 if (CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE
9448 || CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_RNAT)
9449 {
9450 specs[count++] = tmpl;
9451 }
9452 }
9453 else if (idesc->operands[1] == IA64_OPND_AR3)
9454 {
9455 if (CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSP
9456 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSPSTORE
9457 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_RNAT)
9458 {
9459 specs[count++] = tmpl;
9460 }
9461 }
9462 }
9463 }
9464 else
9465 {
9466 specs[count++] = tmpl;
9467 }
9468 break;
9469
9470 case IA64_RS_ANY:
9471 /* FIXME -- do any of these need to be non-specific? */
9472 specs[count++] = tmpl;
9473 break;
9474
9475 default:
9476 as_bad (_("Unrecognized dependency specifier %d\n"), dep->specifier);
9477 break;
9478 }
9479
9480 return count;
9481 }
9482
9483 /* Clear branch flags on marked resources. This breaks the link between the
9484 QP of the marking instruction and a subsequent branch on the same QP. */
9485
9486 static void
9487 clear_qp_branch_flag (mask)
9488 valueT mask;
9489 {
9490 int i;
9491 for (i = 0; i < regdepslen; i++)
9492 {
9493 valueT bit = ((valueT) 1 << regdeps[i].qp_regno);
9494 if ((bit & mask) != 0)
9495 {
9496 regdeps[i].link_to_qp_branch = 0;
9497 }
9498 }
9499 }
9500
9501 /* MASK contains 2 and only 2 PRs which are mutually exclusive. Remove
9502 any mutexes which contain one of the PRs and create new ones when
9503 needed. */
9504
9505 static int
9506 update_qp_mutex (valueT mask)
9507 {
9508 int i;
9509 int add = 0;
9510
9511 i = 0;
9512 while (i < qp_mutexeslen)
9513 {
9514 if ((qp_mutexes[i].prmask & mask) != 0)
9515 {
9516 /* If it destroys and creates the same mutex, do nothing. */
9517 if (qp_mutexes[i].prmask == mask
9518 && qp_mutexes[i].path == md.path)
9519 {
9520 i++;
9521 add = -1;
9522 }
9523 else
9524 {
9525 int keep = 0;
9526
9527 if (md.debug_dv)
9528 {
9529 fprintf (stderr, " Clearing mutex relation");
9530 print_prmask (qp_mutexes[i].prmask);
9531 fprintf (stderr, "\n");
9532 }
9533
9534 /* Deal with the old mutex with more than 3+ PRs only if
9535 the new mutex on the same execution path with it.
9536
9537 FIXME: The 3+ mutex support is incomplete.
9538 dot_pred_rel () may be a better place to fix it. */
9539 if (qp_mutexes[i].path == md.path)
9540 {
9541 /* If it is a proper subset of the mutex, create a
9542 new mutex. */
9543 if (add == 0
9544 && (qp_mutexes[i].prmask & mask) == mask)
9545 add = 1;
9546
9547 qp_mutexes[i].prmask &= ~mask;
9548 if (qp_mutexes[i].prmask & (qp_mutexes[i].prmask - 1))
9549 {
9550 /* Modify the mutex if there are more than one
9551 PR left. */
9552 keep = 1;
9553 i++;
9554 }
9555 }
9556
9557 if (keep == 0)
9558 /* Remove the mutex. */
9559 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9560 }
9561 }
9562 else
9563 ++i;
9564 }
9565
9566 if (add == 1)
9567 add_qp_mutex (mask);
9568
9569 return add;
9570 }
9571
9572 /* Remove any mutexes which contain any of the PRs indicated in the mask.
9573
9574 Any changes to a PR clears the mutex relations which include that PR. */
9575
9576 static void
9577 clear_qp_mutex (mask)
9578 valueT mask;
9579 {
9580 int i;
9581
9582 i = 0;
9583 while (i < qp_mutexeslen)
9584 {
9585 if ((qp_mutexes[i].prmask & mask) != 0)
9586 {
9587 if (md.debug_dv)
9588 {
9589 fprintf (stderr, " Clearing mutex relation");
9590 print_prmask (qp_mutexes[i].prmask);
9591 fprintf (stderr, "\n");
9592 }
9593 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9594 }
9595 else
9596 ++i;
9597 }
9598 }
9599
9600 /* Clear implies relations which contain PRs in the given masks.
9601 P1_MASK indicates the source of the implies relation, while P2_MASK
9602 indicates the implied PR. */
9603
9604 static void
9605 clear_qp_implies (p1_mask, p2_mask)
9606 valueT p1_mask;
9607 valueT p2_mask;
9608 {
9609 int i;
9610
9611 i = 0;
9612 while (i < qp_implieslen)
9613 {
9614 if ((((valueT) 1 << qp_implies[i].p1) & p1_mask) != 0
9615 || (((valueT) 1 << qp_implies[i].p2) & p2_mask) != 0)
9616 {
9617 if (md.debug_dv)
9618 fprintf (stderr, "Clearing implied relation PR%d->PR%d\n",
9619 qp_implies[i].p1, qp_implies[i].p2);
9620 qp_implies[i] = qp_implies[--qp_implieslen];
9621 }
9622 else
9623 ++i;
9624 }
9625 }
9626
9627 /* Add the PRs specified to the list of implied relations. */
9628
9629 static void
9630 add_qp_imply (p1, p2)
9631 int p1, p2;
9632 {
9633 valueT mask;
9634 valueT bit;
9635 int i;
9636
9637 /* p0 is not meaningful here. */
9638 if (p1 == 0 || p2 == 0)
9639 abort ();
9640
9641 if (p1 == p2)
9642 return;
9643
9644 /* If it exists already, ignore it. */
9645 for (i = 0; i < qp_implieslen; i++)
9646 {
9647 if (qp_implies[i].p1 == p1
9648 && qp_implies[i].p2 == p2
9649 && qp_implies[i].path == md.path
9650 && !qp_implies[i].p2_branched)
9651 return;
9652 }
9653
9654 if (qp_implieslen == qp_impliestotlen)
9655 {
9656 qp_impliestotlen += 20;
9657 qp_implies = (struct qp_imply *)
9658 xrealloc ((void *) qp_implies,
9659 qp_impliestotlen * sizeof (struct qp_imply));
9660 }
9661 if (md.debug_dv)
9662 fprintf (stderr, " Registering PR%d implies PR%d\n", p1, p2);
9663 qp_implies[qp_implieslen].p1 = p1;
9664 qp_implies[qp_implieslen].p2 = p2;
9665 qp_implies[qp_implieslen].path = md.path;
9666 qp_implies[qp_implieslen++].p2_branched = 0;
9667
9668 /* Add in the implied transitive relations; for everything that p2 implies,
9669 make p1 imply that, too; for everything that implies p1, make it imply p2
9670 as well. */
9671 for (i = 0; i < qp_implieslen; i++)
9672 {
9673 if (qp_implies[i].p1 == p2)
9674 add_qp_imply (p1, qp_implies[i].p2);
9675 if (qp_implies[i].p2 == p1)
9676 add_qp_imply (qp_implies[i].p1, p2);
9677 }
9678 /* Add in mutex relations implied by this implies relation; for each mutex
9679 relation containing p2, duplicate it and replace p2 with p1. */
9680 bit = (valueT) 1 << p1;
9681 mask = (valueT) 1 << p2;
9682 for (i = 0; i < qp_mutexeslen; i++)
9683 {
9684 if (qp_mutexes[i].prmask & mask)
9685 add_qp_mutex ((qp_mutexes[i].prmask & ~mask) | bit);
9686 }
9687 }
9688
9689 /* Add the PRs specified in the mask to the mutex list; this means that only
9690 one of the PRs can be true at any time. PR0 should never be included in
9691 the mask. */
9692
9693 static void
9694 add_qp_mutex (mask)
9695 valueT mask;
9696 {
9697 if (mask & 0x1)
9698 abort ();
9699
9700 if (qp_mutexeslen == qp_mutexestotlen)
9701 {
9702 qp_mutexestotlen += 20;
9703 qp_mutexes = (struct qpmutex *)
9704 xrealloc ((void *) qp_mutexes,
9705 qp_mutexestotlen * sizeof (struct qpmutex));
9706 }
9707 if (md.debug_dv)
9708 {
9709 fprintf (stderr, " Registering mutex on");
9710 print_prmask (mask);
9711 fprintf (stderr, "\n");
9712 }
9713 qp_mutexes[qp_mutexeslen].path = md.path;
9714 qp_mutexes[qp_mutexeslen++].prmask = mask;
9715 }
9716
9717 static int
9718 has_suffix_p (name, suffix)
9719 const char *name;
9720 const char *suffix;
9721 {
9722 size_t namelen = strlen (name);
9723 size_t sufflen = strlen (suffix);
9724
9725 if (namelen <= sufflen)
9726 return 0;
9727 return strcmp (name + namelen - sufflen, suffix) == 0;
9728 }
9729
9730 static void
9731 clear_register_values ()
9732 {
9733 int i;
9734 if (md.debug_dv)
9735 fprintf (stderr, " Clearing register values\n");
9736 for (i = 1; i < NELEMS (gr_values); i++)
9737 gr_values[i].known = 0;
9738 }
9739
9740 /* Keep track of register values/changes which affect DV tracking.
9741
9742 optimization note: should add a flag to classes of insns where otherwise we
9743 have to examine a group of strings to identify them. */
9744
9745 static void
9746 note_register_values (idesc)
9747 struct ia64_opcode *idesc;
9748 {
9749 valueT qp_changemask = 0;
9750 int i;
9751
9752 /* Invalidate values for registers being written to. */
9753 for (i = 0; i < idesc->num_outputs; i++)
9754 {
9755 if (idesc->operands[i] == IA64_OPND_R1
9756 || idesc->operands[i] == IA64_OPND_R2
9757 || idesc->operands[i] == IA64_OPND_R3)
9758 {
9759 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9760 if (regno > 0 && regno < NELEMS (gr_values))
9761 gr_values[regno].known = 0;
9762 }
9763 else if (idesc->operands[i] == IA64_OPND_R3_2)
9764 {
9765 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9766 if (regno > 0 && regno < 4)
9767 gr_values[regno].known = 0;
9768 }
9769 else if (idesc->operands[i] == IA64_OPND_P1
9770 || idesc->operands[i] == IA64_OPND_P2)
9771 {
9772 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9773 qp_changemask |= (valueT) 1 << regno;
9774 }
9775 else if (idesc->operands[i] == IA64_OPND_PR)
9776 {
9777 if (idesc->operands[2] & (valueT) 0x10000)
9778 qp_changemask = ~(valueT) 0x1FFFF | idesc->operands[2];
9779 else
9780 qp_changemask = idesc->operands[2];
9781 break;
9782 }
9783 else if (idesc->operands[i] == IA64_OPND_PR_ROT)
9784 {
9785 if (idesc->operands[1] & ((valueT) 1 << 43))
9786 qp_changemask = -((valueT) 1 << 44) | idesc->operands[1];
9787 else
9788 qp_changemask = idesc->operands[1];
9789 qp_changemask &= ~(valueT) 0xFFFF;
9790 break;
9791 }
9792 }
9793
9794 /* Always clear qp branch flags on any PR change. */
9795 /* FIXME there may be exceptions for certain compares. */
9796 clear_qp_branch_flag (qp_changemask);
9797
9798 /* Invalidate rotating registers on insns which affect RRBs in CFM. */
9799 if (idesc->flags & IA64_OPCODE_MOD_RRBS)
9800 {
9801 qp_changemask |= ~(valueT) 0xFFFF;
9802 if (strcmp (idesc->name, "clrrrb.pr") != 0)
9803 {
9804 for (i = 32; i < 32 + md.rot.num_regs; i++)
9805 gr_values[i].known = 0;
9806 }
9807 clear_qp_mutex (qp_changemask);
9808 clear_qp_implies (qp_changemask, qp_changemask);
9809 }
9810 /* After a call, all register values are undefined, except those marked
9811 as "safe". */
9812 else if (strncmp (idesc->name, "br.call", 6) == 0
9813 || strncmp (idesc->name, "brl.call", 7) == 0)
9814 {
9815 /* FIXME keep GR values which are marked as "safe_across_calls" */
9816 clear_register_values ();
9817 clear_qp_mutex (~qp_safe_across_calls);
9818 clear_qp_implies (~qp_safe_across_calls, ~qp_safe_across_calls);
9819 clear_qp_branch_flag (~qp_safe_across_calls);
9820 }
9821 else if (is_interruption_or_rfi (idesc)
9822 || is_taken_branch (idesc))
9823 {
9824 clear_register_values ();
9825 clear_qp_mutex (~(valueT) 0);
9826 clear_qp_implies (~(valueT) 0, ~(valueT) 0);
9827 }
9828 /* Look for mutex and implies relations. */
9829 else if ((idesc->operands[0] == IA64_OPND_P1
9830 || idesc->operands[0] == IA64_OPND_P2)
9831 && (idesc->operands[1] == IA64_OPND_P1
9832 || idesc->operands[1] == IA64_OPND_P2))
9833 {
9834 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9835 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9836 valueT p1mask = (p1 != 0) ? (valueT) 1 << p1 : 0;
9837 valueT p2mask = (p2 != 0) ? (valueT) 1 << p2 : 0;
9838
9839 /* If both PRs are PR0, we can't really do anything. */
9840 if (p1 == 0 && p2 == 0)
9841 {
9842 if (md.debug_dv)
9843 fprintf (stderr, " Ignoring PRs due to inclusion of p0\n");
9844 }
9845 /* In general, clear mutexes and implies which include P1 or P2,
9846 with the following exceptions. */
9847 else if (has_suffix_p (idesc->name, ".or.andcm")
9848 || has_suffix_p (idesc->name, ".and.orcm"))
9849 {
9850 clear_qp_implies (p2mask, p1mask);
9851 }
9852 else if (has_suffix_p (idesc->name, ".andcm")
9853 || has_suffix_p (idesc->name, ".and"))
9854 {
9855 clear_qp_implies (0, p1mask | p2mask);
9856 }
9857 else if (has_suffix_p (idesc->name, ".orcm")
9858 || has_suffix_p (idesc->name, ".or"))
9859 {
9860 clear_qp_mutex (p1mask | p2mask);
9861 clear_qp_implies (p1mask | p2mask, 0);
9862 }
9863 else
9864 {
9865 int added = 0;
9866
9867 clear_qp_implies (p1mask | p2mask, p1mask | p2mask);
9868
9869 /* If one of the PRs is PR0, we call clear_qp_mutex. */
9870 if (p1 == 0 || p2 == 0)
9871 clear_qp_mutex (p1mask | p2mask);
9872 else
9873 added = update_qp_mutex (p1mask | p2mask);
9874
9875 if (CURR_SLOT.qp_regno == 0
9876 || has_suffix_p (idesc->name, ".unc"))
9877 {
9878 if (added == 0 && p1 && p2)
9879 add_qp_mutex (p1mask | p2mask);
9880 if (CURR_SLOT.qp_regno != 0)
9881 {
9882 if (p1)
9883 add_qp_imply (p1, CURR_SLOT.qp_regno);
9884 if (p2)
9885 add_qp_imply (p2, CURR_SLOT.qp_regno);
9886 }
9887 }
9888 }
9889 }
9890 /* Look for mov imm insns into GRs. */
9891 else if (idesc->operands[0] == IA64_OPND_R1
9892 && (idesc->operands[1] == IA64_OPND_IMM22
9893 || idesc->operands[1] == IA64_OPND_IMMU64)
9894 && CURR_SLOT.opnd[1].X_op == O_constant
9895 && (strcmp (idesc->name, "mov") == 0
9896 || strcmp (idesc->name, "movl") == 0))
9897 {
9898 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
9899 if (regno > 0 && regno < NELEMS (gr_values))
9900 {
9901 gr_values[regno].known = 1;
9902 gr_values[regno].value = CURR_SLOT.opnd[1].X_add_number;
9903 gr_values[regno].path = md.path;
9904 if (md.debug_dv)
9905 {
9906 fprintf (stderr, " Know gr%d = ", regno);
9907 fprintf_vma (stderr, gr_values[regno].value);
9908 fputs ("\n", stderr);
9909 }
9910 }
9911 }
9912 /* Look for dep.z imm insns. */
9913 else if (idesc->operands[0] == IA64_OPND_R1
9914 && idesc->operands[1] == IA64_OPND_IMM8
9915 && strcmp (idesc->name, "dep.z") == 0)
9916 {
9917 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
9918 if (regno > 0 && regno < NELEMS (gr_values))
9919 {
9920 valueT value = CURR_SLOT.opnd[1].X_add_number;
9921
9922 if (CURR_SLOT.opnd[3].X_add_number < 64)
9923 value &= ((valueT)1 << CURR_SLOT.opnd[3].X_add_number) - 1;
9924 value <<= CURR_SLOT.opnd[2].X_add_number;
9925 gr_values[regno].known = 1;
9926 gr_values[regno].value = value;
9927 gr_values[regno].path = md.path;
9928 if (md.debug_dv)
9929 {
9930 fprintf (stderr, " Know gr%d = ", regno);
9931 fprintf_vma (stderr, gr_values[regno].value);
9932 fputs ("\n", stderr);
9933 }
9934 }
9935 }
9936 else
9937 {
9938 clear_qp_mutex (qp_changemask);
9939 clear_qp_implies (qp_changemask, qp_changemask);
9940 }
9941 }
9942
9943 /* Return whether the given predicate registers are currently mutex. */
9944
9945 static int
9946 qp_mutex (p1, p2, path)
9947 int p1;
9948 int p2;
9949 int path;
9950 {
9951 int i;
9952 valueT mask;
9953
9954 if (p1 != p2)
9955 {
9956 mask = ((valueT) 1 << p1) | (valueT) 1 << p2;
9957 for (i = 0; i < qp_mutexeslen; i++)
9958 {
9959 if (qp_mutexes[i].path >= path
9960 && (qp_mutexes[i].prmask & mask) == mask)
9961 return 1;
9962 }
9963 }
9964 return 0;
9965 }
9966
9967 /* Return whether the given resource is in the given insn's list of chks
9968 Return 1 if the conflict is absolutely determined, 2 if it's a potential
9969 conflict. */
9970
9971 static int
9972 resources_match (rs, idesc, note, qp_regno, path)
9973 struct rsrc *rs;
9974 struct ia64_opcode *idesc;
9975 int note;
9976 int qp_regno;
9977 int path;
9978 {
9979 struct rsrc specs[MAX_SPECS];
9980 int count;
9981
9982 /* If the marked resource's qp_regno and the given qp_regno are mutex,
9983 we don't need to check. One exception is note 11, which indicates that
9984 target predicates are written regardless of PR[qp]. */
9985 if (qp_mutex (rs->qp_regno, qp_regno, path)
9986 && note != 11)
9987 return 0;
9988
9989 count = specify_resource (rs->dependency, idesc, DV_CHK, specs, note, path);
9990 while (count-- > 0)
9991 {
9992 /* UNAT checking is a bit more specific than other resources */
9993 if (rs->dependency->specifier == IA64_RS_AR_UNAT
9994 && specs[count].mem_offset.hint
9995 && rs->mem_offset.hint)
9996 {
9997 if (rs->mem_offset.base == specs[count].mem_offset.base)
9998 {
9999 if (((rs->mem_offset.offset >> 3) & 0x3F) ==
10000 ((specs[count].mem_offset.offset >> 3) & 0x3F))
10001 return 1;
10002 else
10003 continue;
10004 }
10005 }
10006
10007 /* Skip apparent PR write conflicts where both writes are an AND or both
10008 writes are an OR. */
10009 if (rs->dependency->specifier == IA64_RS_PR
10010 || rs->dependency->specifier == IA64_RS_PRr
10011 || rs->dependency->specifier == IA64_RS_PR63)
10012 {
10013 if (specs[count].cmp_type != CMP_NONE
10014 && specs[count].cmp_type == rs->cmp_type)
10015 {
10016 if (md.debug_dv)
10017 fprintf (stderr, " %s on parallel compare allowed (PR%d)\n",
10018 dv_mode[rs->dependency->mode],
10019 rs->dependency->specifier != IA64_RS_PR63 ?
10020 specs[count].index : 63);
10021 continue;
10022 }
10023 if (md.debug_dv)
10024 fprintf (stderr,
10025 " %s on parallel compare conflict %s vs %s on PR%d\n",
10026 dv_mode[rs->dependency->mode],
10027 dv_cmp_type[rs->cmp_type],
10028 dv_cmp_type[specs[count].cmp_type],
10029 rs->dependency->specifier != IA64_RS_PR63 ?
10030 specs[count].index : 63);
10031
10032 }
10033
10034 /* If either resource is not specific, conservatively assume a conflict
10035 */
10036 if (!specs[count].specific || !rs->specific)
10037 return 2;
10038 else if (specs[count].index == rs->index)
10039 return 1;
10040 }
10041
10042 return 0;
10043 }
10044
10045 /* Indicate an instruction group break; if INSERT_STOP is non-zero, then
10046 insert a stop to create the break. Update all resource dependencies
10047 appropriately. If QP_REGNO is non-zero, only apply the break to resources
10048 which use the same QP_REGNO and have the link_to_qp_branch flag set.
10049 If SAVE_CURRENT is non-zero, don't affect resources marked by the current
10050 instruction. */
10051
10052 static void
10053 insn_group_break (insert_stop, qp_regno, save_current)
10054 int insert_stop;
10055 int qp_regno;
10056 int save_current;
10057 {
10058 int i;
10059
10060 if (insert_stop && md.num_slots_in_use > 0)
10061 PREV_SLOT.end_of_insn_group = 1;
10062
10063 if (md.debug_dv)
10064 {
10065 fprintf (stderr, " Insn group break%s",
10066 (insert_stop ? " (w/stop)" : ""));
10067 if (qp_regno != 0)
10068 fprintf (stderr, " effective for QP=%d", qp_regno);
10069 fprintf (stderr, "\n");
10070 }
10071
10072 i = 0;
10073 while (i < regdepslen)
10074 {
10075 const struct ia64_dependency *dep = regdeps[i].dependency;
10076
10077 if (qp_regno != 0
10078 && regdeps[i].qp_regno != qp_regno)
10079 {
10080 ++i;
10081 continue;
10082 }
10083
10084 if (save_current
10085 && CURR_SLOT.src_file == regdeps[i].file
10086 && CURR_SLOT.src_line == regdeps[i].line)
10087 {
10088 ++i;
10089 continue;
10090 }
10091
10092 /* clear dependencies which are automatically cleared by a stop, or
10093 those that have reached the appropriate state of insn serialization */
10094 if (dep->semantics == IA64_DVS_IMPLIED
10095 || dep->semantics == IA64_DVS_IMPLIEDF
10096 || regdeps[i].insn_srlz == STATE_SRLZ)
10097 {
10098 print_dependency ("Removing", i);
10099 regdeps[i] = regdeps[--regdepslen];
10100 }
10101 else
10102 {
10103 if (dep->semantics == IA64_DVS_DATA
10104 || dep->semantics == IA64_DVS_INSTR
10105 || dep->semantics == IA64_DVS_SPECIFIC)
10106 {
10107 if (regdeps[i].insn_srlz == STATE_NONE)
10108 regdeps[i].insn_srlz = STATE_STOP;
10109 if (regdeps[i].data_srlz == STATE_NONE)
10110 regdeps[i].data_srlz = STATE_STOP;
10111 }
10112 ++i;
10113 }
10114 }
10115 }
10116
10117 /* Add the given resource usage spec to the list of active dependencies. */
10118
10119 static void
10120 mark_resource (idesc, dep, spec, depind, path)
10121 struct ia64_opcode *idesc ATTRIBUTE_UNUSED;
10122 const struct ia64_dependency *dep ATTRIBUTE_UNUSED;
10123 struct rsrc *spec;
10124 int depind;
10125 int path;
10126 {
10127 if (regdepslen == regdepstotlen)
10128 {
10129 regdepstotlen += 20;
10130 regdeps = (struct rsrc *)
10131 xrealloc ((void *) regdeps,
10132 regdepstotlen * sizeof (struct rsrc));
10133 }
10134
10135 regdeps[regdepslen] = *spec;
10136 regdeps[regdepslen].depind = depind;
10137 regdeps[regdepslen].path = path;
10138 regdeps[regdepslen].file = CURR_SLOT.src_file;
10139 regdeps[regdepslen].line = CURR_SLOT.src_line;
10140
10141 print_dependency ("Adding", regdepslen);
10142
10143 ++regdepslen;
10144 }
10145
10146 static void
10147 print_dependency (action, depind)
10148 const char *action;
10149 int depind;
10150 {
10151 if (md.debug_dv)
10152 {
10153 fprintf (stderr, " %s %s '%s'",
10154 action, dv_mode[(regdeps[depind].dependency)->mode],
10155 (regdeps[depind].dependency)->name);
10156 if (regdeps[depind].specific && regdeps[depind].index >= 0)
10157 fprintf (stderr, " (%d)", regdeps[depind].index);
10158 if (regdeps[depind].mem_offset.hint)
10159 {
10160 fputs (" ", stderr);
10161 fprintf_vma (stderr, regdeps[depind].mem_offset.base);
10162 fputs ("+", stderr);
10163 fprintf_vma (stderr, regdeps[depind].mem_offset.offset);
10164 }
10165 fprintf (stderr, "\n");
10166 }
10167 }
10168
10169 static void
10170 instruction_serialization ()
10171 {
10172 int i;
10173 if (md.debug_dv)
10174 fprintf (stderr, " Instruction serialization\n");
10175 for (i = 0; i < regdepslen; i++)
10176 if (regdeps[i].insn_srlz == STATE_STOP)
10177 regdeps[i].insn_srlz = STATE_SRLZ;
10178 }
10179
10180 static void
10181 data_serialization ()
10182 {
10183 int i = 0;
10184 if (md.debug_dv)
10185 fprintf (stderr, " Data serialization\n");
10186 while (i < regdepslen)
10187 {
10188 if (regdeps[i].data_srlz == STATE_STOP
10189 /* Note: as of 991210, all "other" dependencies are cleared by a
10190 data serialization. This might change with new tables */
10191 || (regdeps[i].dependency)->semantics == IA64_DVS_OTHER)
10192 {
10193 print_dependency ("Removing", i);
10194 regdeps[i] = regdeps[--regdepslen];
10195 }
10196 else
10197 ++i;
10198 }
10199 }
10200
10201 /* Insert stops and serializations as needed to avoid DVs. */
10202
10203 static void
10204 remove_marked_resource (rs)
10205 struct rsrc *rs;
10206 {
10207 switch (rs->dependency->semantics)
10208 {
10209 case IA64_DVS_SPECIFIC:
10210 if (md.debug_dv)
10211 fprintf (stderr, "Implementation-specific, assume worst case...\n");
10212 /* ...fall through... */
10213 case IA64_DVS_INSTR:
10214 if (md.debug_dv)
10215 fprintf (stderr, "Inserting instr serialization\n");
10216 if (rs->insn_srlz < STATE_STOP)
10217 insn_group_break (1, 0, 0);
10218 if (rs->insn_srlz < STATE_SRLZ)
10219 {
10220 struct slot oldslot = CURR_SLOT;
10221 /* Manually jam a srlz.i insn into the stream */
10222 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10223 CURR_SLOT.user_template = -1;
10224 CURR_SLOT.idesc = ia64_find_opcode ("srlz.i");
10225 instruction_serialization ();
10226 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10227 if (++md.num_slots_in_use >= NUM_SLOTS)
10228 emit_one_bundle ();
10229 CURR_SLOT = oldslot;
10230 }
10231 insn_group_break (1, 0, 0);
10232 break;
10233 case IA64_DVS_OTHER: /* as of rev2 (991220) of the DV tables, all
10234 "other" types of DV are eliminated
10235 by a data serialization */
10236 case IA64_DVS_DATA:
10237 if (md.debug_dv)
10238 fprintf (stderr, "Inserting data serialization\n");
10239 if (rs->data_srlz < STATE_STOP)
10240 insn_group_break (1, 0, 0);
10241 {
10242 struct slot oldslot = CURR_SLOT;
10243 /* Manually jam a srlz.d insn into the stream */
10244 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10245 CURR_SLOT.user_template = -1;
10246 CURR_SLOT.idesc = ia64_find_opcode ("srlz.d");
10247 data_serialization ();
10248 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10249 if (++md.num_slots_in_use >= NUM_SLOTS)
10250 emit_one_bundle ();
10251 CURR_SLOT = oldslot;
10252 }
10253 break;
10254 case IA64_DVS_IMPLIED:
10255 case IA64_DVS_IMPLIEDF:
10256 if (md.debug_dv)
10257 fprintf (stderr, "Inserting stop\n");
10258 insn_group_break (1, 0, 0);
10259 break;
10260 default:
10261 break;
10262 }
10263 }
10264
10265 /* Check the resources used by the given opcode against the current dependency
10266 list.
10267
10268 The check is run once for each execution path encountered. In this case,
10269 a unique execution path is the sequence of instructions following a code
10270 entry point, e.g. the following has three execution paths, one starting
10271 at L0, one at L1, and one at L2.
10272
10273 L0: nop
10274 L1: add
10275 L2: add
10276 br.ret
10277 */
10278
10279 static void
10280 check_dependencies (idesc)
10281 struct ia64_opcode *idesc;
10282 {
10283 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10284 int path;
10285 int i;
10286
10287 /* Note that the number of marked resources may change within the
10288 loop if in auto mode. */
10289 i = 0;
10290 while (i < regdepslen)
10291 {
10292 struct rsrc *rs = &regdeps[i];
10293 const struct ia64_dependency *dep = rs->dependency;
10294 int chkind;
10295 int note;
10296 int start_over = 0;
10297
10298 if (dep->semantics == IA64_DVS_NONE
10299 || (chkind = depends_on (rs->depind, idesc)) == -1)
10300 {
10301 ++i;
10302 continue;
10303 }
10304
10305 note = NOTE (opdeps->chks[chkind]);
10306
10307 /* Check this resource against each execution path seen thus far. */
10308 for (path = 0; path <= md.path; path++)
10309 {
10310 int matchtype;
10311
10312 /* If the dependency wasn't on the path being checked, ignore it. */
10313 if (rs->path < path)
10314 continue;
10315
10316 /* If the QP for this insn implies a QP which has branched, don't
10317 bother checking. Ed. NOTE: I don't think this check is terribly
10318 useful; what's the point of generating code which will only be
10319 reached if its QP is zero?
10320 This code was specifically inserted to handle the following code,
10321 based on notes from Intel's DV checking code, where p1 implies p2.
10322
10323 mov r4 = 2
10324 (p2) br.cond L
10325 (p1) mov r4 = 7
10326 */
10327 if (CURR_SLOT.qp_regno != 0)
10328 {
10329 int skip = 0;
10330 int implies;
10331 for (implies = 0; implies < qp_implieslen; implies++)
10332 {
10333 if (qp_implies[implies].path >= path
10334 && qp_implies[implies].p1 == CURR_SLOT.qp_regno
10335 && qp_implies[implies].p2_branched)
10336 {
10337 skip = 1;
10338 break;
10339 }
10340 }
10341 if (skip)
10342 continue;
10343 }
10344
10345 if ((matchtype = resources_match (rs, idesc, note,
10346 CURR_SLOT.qp_regno, path)) != 0)
10347 {
10348 char msg[1024];
10349 char pathmsg[256] = "";
10350 char indexmsg[256] = "";
10351 int certain = (matchtype == 1 && CURR_SLOT.qp_regno == 0);
10352
10353 if (path != 0)
10354 sprintf (pathmsg, " when entry is at label '%s'",
10355 md.entry_labels[path - 1]);
10356 if (matchtype == 1 && rs->index >= 0)
10357 sprintf (indexmsg, ", specific resource number is %d",
10358 rs->index);
10359 sprintf (msg, "Use of '%s' %s %s dependency '%s' (%s)%s%s",
10360 idesc->name,
10361 (certain ? "violates" : "may violate"),
10362 dv_mode[dep->mode], dep->name,
10363 dv_sem[dep->semantics],
10364 pathmsg, indexmsg);
10365
10366 if (md.explicit_mode)
10367 {
10368 as_warn ("%s", msg);
10369 if (path < md.path)
10370 as_warn (_("Only the first path encountering the conflict "
10371 "is reported"));
10372 as_warn_where (rs->file, rs->line,
10373 _("This is the location of the "
10374 "conflicting usage"));
10375 /* Don't bother checking other paths, to avoid duplicating
10376 the same warning */
10377 break;
10378 }
10379 else
10380 {
10381 if (md.debug_dv)
10382 fprintf (stderr, "%s @ %s:%d\n", msg, rs->file, rs->line);
10383
10384 remove_marked_resource (rs);
10385
10386 /* since the set of dependencies has changed, start over */
10387 /* FIXME -- since we're removing dvs as we go, we
10388 probably don't really need to start over... */
10389 start_over = 1;
10390 break;
10391 }
10392 }
10393 }
10394 if (start_over)
10395 i = 0;
10396 else
10397 ++i;
10398 }
10399 }
10400
10401 /* Register new dependencies based on the given opcode. */
10402
10403 static void
10404 mark_resources (idesc)
10405 struct ia64_opcode *idesc;
10406 {
10407 int i;
10408 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10409 int add_only_qp_reads = 0;
10410
10411 /* A conditional branch only uses its resources if it is taken; if it is
10412 taken, we stop following that path. The other branch types effectively
10413 *always* write their resources. If it's not taken, register only QP
10414 reads. */
10415 if (is_conditional_branch (idesc) || is_interruption_or_rfi (idesc))
10416 {
10417 add_only_qp_reads = 1;
10418 }
10419
10420 if (md.debug_dv)
10421 fprintf (stderr, "Registering '%s' resource usage\n", idesc->name);
10422
10423 for (i = 0; i < opdeps->nregs; i++)
10424 {
10425 const struct ia64_dependency *dep;
10426 struct rsrc specs[MAX_SPECS];
10427 int note;
10428 int path;
10429 int count;
10430
10431 dep = ia64_find_dependency (opdeps->regs[i]);
10432 note = NOTE (opdeps->regs[i]);
10433
10434 if (add_only_qp_reads
10435 && !(dep->mode == IA64_DV_WAR
10436 && (dep->specifier == IA64_RS_PR
10437 || dep->specifier == IA64_RS_PRr
10438 || dep->specifier == IA64_RS_PR63)))
10439 continue;
10440
10441 count = specify_resource (dep, idesc, DV_REG, specs, note, md.path);
10442
10443 while (count-- > 0)
10444 {
10445 mark_resource (idesc, dep, &specs[count],
10446 DEP (opdeps->regs[i]), md.path);
10447 }
10448
10449 /* The execution path may affect register values, which may in turn
10450 affect which indirect-access resources are accessed. */
10451 switch (dep->specifier)
10452 {
10453 default:
10454 break;
10455 case IA64_RS_CPUID:
10456 case IA64_RS_DBR:
10457 case IA64_RS_IBR:
10458 case IA64_RS_MSR:
10459 case IA64_RS_PKR:
10460 case IA64_RS_PMC:
10461 case IA64_RS_PMD:
10462 case IA64_RS_RR:
10463 for (path = 0; path < md.path; path++)
10464 {
10465 count = specify_resource (dep, idesc, DV_REG, specs, note, path);
10466 while (count-- > 0)
10467 mark_resource (idesc, dep, &specs[count],
10468 DEP (opdeps->regs[i]), path);
10469 }
10470 break;
10471 }
10472 }
10473 }
10474
10475 /* Remove dependencies when they no longer apply. */
10476
10477 static void
10478 update_dependencies (idesc)
10479 struct ia64_opcode *idesc;
10480 {
10481 int i;
10482
10483 if (strcmp (idesc->name, "srlz.i") == 0)
10484 {
10485 instruction_serialization ();
10486 }
10487 else if (strcmp (idesc->name, "srlz.d") == 0)
10488 {
10489 data_serialization ();
10490 }
10491 else if (is_interruption_or_rfi (idesc)
10492 || is_taken_branch (idesc))
10493 {
10494 /* Although technically the taken branch doesn't clear dependencies
10495 which require a srlz.[id], we don't follow the branch; the next
10496 instruction is assumed to start with a clean slate. */
10497 regdepslen = 0;
10498 md.path = 0;
10499 }
10500 else if (is_conditional_branch (idesc)
10501 && CURR_SLOT.qp_regno != 0)
10502 {
10503 int is_call = strstr (idesc->name, ".call") != NULL;
10504
10505 for (i = 0; i < qp_implieslen; i++)
10506 {
10507 /* If the conditional branch's predicate is implied by the predicate
10508 in an existing dependency, remove that dependency. */
10509 if (qp_implies[i].p2 == CURR_SLOT.qp_regno)
10510 {
10511 int depind = 0;
10512 /* Note that this implied predicate takes a branch so that if
10513 a later insn generates a DV but its predicate implies this
10514 one, we can avoid the false DV warning. */
10515 qp_implies[i].p2_branched = 1;
10516 while (depind < regdepslen)
10517 {
10518 if (regdeps[depind].qp_regno == qp_implies[i].p1)
10519 {
10520 print_dependency ("Removing", depind);
10521 regdeps[depind] = regdeps[--regdepslen];
10522 }
10523 else
10524 ++depind;
10525 }
10526 }
10527 }
10528 /* Any marked resources which have this same predicate should be
10529 cleared, provided that the QP hasn't been modified between the
10530 marking instruction and the branch. */
10531 if (is_call)
10532 {
10533 insn_group_break (0, CURR_SLOT.qp_regno, 1);
10534 }
10535 else
10536 {
10537 i = 0;
10538 while (i < regdepslen)
10539 {
10540 if (regdeps[i].qp_regno == CURR_SLOT.qp_regno
10541 && regdeps[i].link_to_qp_branch
10542 && (regdeps[i].file != CURR_SLOT.src_file
10543 || regdeps[i].line != CURR_SLOT.src_line))
10544 {
10545 /* Treat like a taken branch */
10546 print_dependency ("Removing", i);
10547 regdeps[i] = regdeps[--regdepslen];
10548 }
10549 else
10550 ++i;
10551 }
10552 }
10553 }
10554 }
10555
10556 /* Examine the current instruction for dependency violations. */
10557
10558 static int
10559 check_dv (idesc)
10560 struct ia64_opcode *idesc;
10561 {
10562 if (md.debug_dv)
10563 {
10564 fprintf (stderr, "Checking %s for violations (line %d, %d/%d)\n",
10565 idesc->name, CURR_SLOT.src_line,
10566 idesc->dependencies->nchks,
10567 idesc->dependencies->nregs);
10568 }
10569
10570 /* Look through the list of currently marked resources; if the current
10571 instruction has the dependency in its chks list which uses that resource,
10572 check against the specific resources used. */
10573 check_dependencies (idesc);
10574
10575 /* Look up the instruction's regdeps (RAW writes, WAW writes, and WAR reads),
10576 then add them to the list of marked resources. */
10577 mark_resources (idesc);
10578
10579 /* There are several types of dependency semantics, and each has its own
10580 requirements for being cleared
10581
10582 Instruction serialization (insns separated by interruption, rfi, or
10583 writer + srlz.i + reader, all in separate groups) clears DVS_INSTR.
10584
10585 Data serialization (instruction serialization, or writer + srlz.d +
10586 reader, where writer and srlz.d are in separate groups) clears
10587 DVS_DATA. (This also clears DVS_OTHER, but that is not guaranteed to
10588 always be the case).
10589
10590 Instruction group break (groups separated by stop, taken branch,
10591 interruption or rfi) clears DVS_IMPLIED and DVS_IMPLIEDF.
10592 */
10593 update_dependencies (idesc);
10594
10595 /* Sometimes, knowing a register value allows us to avoid giving a false DV
10596 warning. Keep track of as many as possible that are useful. */
10597 note_register_values (idesc);
10598
10599 /* We don't need or want this anymore. */
10600 md.mem_offset.hint = 0;
10601
10602 return 0;
10603 }
10604
10605 /* Translate one line of assembly. Pseudo ops and labels do not show
10606 here. */
10607 void
10608 md_assemble (str)
10609 char *str;
10610 {
10611 char *saved_input_line_pointer, *mnemonic;
10612 const struct pseudo_opcode *pdesc;
10613 struct ia64_opcode *idesc;
10614 unsigned char qp_regno;
10615 unsigned int flags;
10616 int ch;
10617
10618 saved_input_line_pointer = input_line_pointer;
10619 input_line_pointer = str;
10620
10621 /* extract the opcode (mnemonic): */
10622
10623 mnemonic = input_line_pointer;
10624 ch = get_symbol_end ();
10625 pdesc = (struct pseudo_opcode *) hash_find (md.pseudo_hash, mnemonic);
10626 if (pdesc)
10627 {
10628 *input_line_pointer = ch;
10629 (*pdesc->handler) (pdesc->arg);
10630 goto done;
10631 }
10632
10633 /* Find the instruction descriptor matching the arguments. */
10634
10635 idesc = ia64_find_opcode (mnemonic);
10636 *input_line_pointer = ch;
10637 if (!idesc)
10638 {
10639 as_bad ("Unknown opcode `%s'", mnemonic);
10640 goto done;
10641 }
10642
10643 idesc = parse_operands (idesc);
10644 if (!idesc)
10645 goto done;
10646
10647 /* Handle the dynamic ops we can handle now: */
10648 if (idesc->type == IA64_TYPE_DYN)
10649 {
10650 if (strcmp (idesc->name, "add") == 0)
10651 {
10652 if (CURR_SLOT.opnd[2].X_op == O_register
10653 && CURR_SLOT.opnd[2].X_add_number < 4)
10654 mnemonic = "addl";
10655 else
10656 mnemonic = "adds";
10657 ia64_free_opcode (idesc);
10658 idesc = ia64_find_opcode (mnemonic);
10659 }
10660 else if (strcmp (idesc->name, "mov") == 0)
10661 {
10662 enum ia64_opnd opnd1, opnd2;
10663 int rop;
10664
10665 opnd1 = idesc->operands[0];
10666 opnd2 = idesc->operands[1];
10667 if (opnd1 == IA64_OPND_AR3)
10668 rop = 0;
10669 else if (opnd2 == IA64_OPND_AR3)
10670 rop = 1;
10671 else
10672 abort ();
10673 if (CURR_SLOT.opnd[rop].X_op == O_register)
10674 {
10675 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10676 mnemonic = "mov.i";
10677 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10678 mnemonic = "mov.m";
10679 else
10680 rop = -1;
10681 }
10682 else
10683 abort ();
10684 if (rop >= 0)
10685 {
10686 ia64_free_opcode (idesc);
10687 idesc = ia64_find_opcode (mnemonic);
10688 while (idesc != NULL
10689 && (idesc->operands[0] != opnd1
10690 || idesc->operands[1] != opnd2))
10691 idesc = get_next_opcode (idesc);
10692 }
10693 }
10694 }
10695 else if (strcmp (idesc->name, "mov.i") == 0
10696 || strcmp (idesc->name, "mov.m") == 0)
10697 {
10698 enum ia64_opnd opnd1, opnd2;
10699 int rop;
10700
10701 opnd1 = idesc->operands[0];
10702 opnd2 = idesc->operands[1];
10703 if (opnd1 == IA64_OPND_AR3)
10704 rop = 0;
10705 else if (opnd2 == IA64_OPND_AR3)
10706 rop = 1;
10707 else
10708 abort ();
10709 if (CURR_SLOT.opnd[rop].X_op == O_register)
10710 {
10711 char unit = 'a';
10712 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10713 unit = 'i';
10714 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10715 unit = 'm';
10716 if (unit != 'a' && unit != idesc->name [4])
10717 as_bad ("AR %d can only be accessed by %c-unit",
10718 (int) (CURR_SLOT.opnd[rop].X_add_number - REG_AR),
10719 TOUPPER (unit));
10720 }
10721 }
10722 else if (strcmp (idesc->name, "hint.b") == 0)
10723 {
10724 switch (md.hint_b)
10725 {
10726 case hint_b_ok:
10727 break;
10728 case hint_b_warning:
10729 as_warn ("hint.b may be treated as nop");
10730 break;
10731 case hint_b_error:
10732 as_bad ("hint.b shouldn't be used");
10733 break;
10734 }
10735 }
10736
10737 qp_regno = 0;
10738 if (md.qp.X_op == O_register)
10739 {
10740 qp_regno = md.qp.X_add_number - REG_P;
10741 md.qp.X_op = O_absent;
10742 }
10743
10744 flags = idesc->flags;
10745
10746 if ((flags & IA64_OPCODE_FIRST) != 0)
10747 {
10748 /* The alignment frag has to end with a stop bit only if the
10749 next instruction after the alignment directive has to be
10750 the first instruction in an instruction group. */
10751 if (align_frag)
10752 {
10753 while (align_frag->fr_type != rs_align_code)
10754 {
10755 align_frag = align_frag->fr_next;
10756 if (!align_frag)
10757 break;
10758 }
10759 /* align_frag can be NULL if there are directives in
10760 between. */
10761 if (align_frag && align_frag->fr_next == frag_now)
10762 align_frag->tc_frag_data = 1;
10763 }
10764
10765 insn_group_break (1, 0, 0);
10766 }
10767 align_frag = NULL;
10768
10769 if ((flags & IA64_OPCODE_NO_PRED) != 0 && qp_regno != 0)
10770 {
10771 as_bad ("`%s' cannot be predicated", idesc->name);
10772 goto done;
10773 }
10774
10775 /* Build the instruction. */
10776 CURR_SLOT.qp_regno = qp_regno;
10777 CURR_SLOT.idesc = idesc;
10778 as_where (&CURR_SLOT.src_file, &CURR_SLOT.src_line);
10779 dwarf2_where (&CURR_SLOT.debug_line);
10780
10781 /* Add unwind entry, if there is one. */
10782 if (unwind.current_entry)
10783 {
10784 CURR_SLOT.unwind_record = unwind.current_entry;
10785 unwind.current_entry = NULL;
10786 }
10787 if (unwind.proc_start && S_IS_DEFINED (unwind.proc_start))
10788 unwind.insn = 1;
10789
10790 /* Check for dependency violations. */
10791 if (md.detect_dv)
10792 check_dv (idesc);
10793
10794 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10795 if (++md.num_slots_in_use >= NUM_SLOTS)
10796 emit_one_bundle ();
10797
10798 if ((flags & IA64_OPCODE_LAST) != 0)
10799 insn_group_break (1, 0, 0);
10800
10801 md.last_text_seg = now_seg;
10802
10803 done:
10804 input_line_pointer = saved_input_line_pointer;
10805 }
10806
10807 /* Called when symbol NAME cannot be found in the symbol table.
10808 Should be used for dynamic valued symbols only. */
10809
10810 symbolS *
10811 md_undefined_symbol (name)
10812 char *name ATTRIBUTE_UNUSED;
10813 {
10814 return 0;
10815 }
10816
10817 /* Called for any expression that can not be recognized. When the
10818 function is called, `input_line_pointer' will point to the start of
10819 the expression. */
10820
10821 void
10822 md_operand (e)
10823 expressionS *e;
10824 {
10825 switch (*input_line_pointer)
10826 {
10827 case '[':
10828 ++input_line_pointer;
10829 expression (e);
10830 if (*input_line_pointer != ']')
10831 {
10832 as_bad ("Closing bracket missing");
10833 goto err;
10834 }
10835 else
10836 {
10837 if (e->X_op != O_register)
10838 as_bad ("Register expected as index");
10839
10840 ++input_line_pointer;
10841 e->X_op = O_index;
10842 }
10843 break;
10844
10845 default:
10846 break;
10847 }
10848 return;
10849
10850 err:
10851 ignore_rest_of_line ();
10852 }
10853
10854 /* Return 1 if it's OK to adjust a reloc by replacing the symbol with
10855 a section symbol plus some offset. For relocs involving @fptr(),
10856 directives we don't want such adjustments since we need to have the
10857 original symbol's name in the reloc. */
10858 int
10859 ia64_fix_adjustable (fix)
10860 fixS *fix;
10861 {
10862 /* Prevent all adjustments to global symbols */
10863 if (S_IS_EXTERNAL (fix->fx_addsy) || S_IS_WEAK (fix->fx_addsy))
10864 return 0;
10865
10866 switch (fix->fx_r_type)
10867 {
10868 case BFD_RELOC_IA64_FPTR64I:
10869 case BFD_RELOC_IA64_FPTR32MSB:
10870 case BFD_RELOC_IA64_FPTR32LSB:
10871 case BFD_RELOC_IA64_FPTR64MSB:
10872 case BFD_RELOC_IA64_FPTR64LSB:
10873 case BFD_RELOC_IA64_LTOFF_FPTR22:
10874 case BFD_RELOC_IA64_LTOFF_FPTR64I:
10875 return 0;
10876 default:
10877 break;
10878 }
10879
10880 return 1;
10881 }
10882
10883 int
10884 ia64_force_relocation (fix)
10885 fixS *fix;
10886 {
10887 switch (fix->fx_r_type)
10888 {
10889 case BFD_RELOC_IA64_FPTR64I:
10890 case BFD_RELOC_IA64_FPTR32MSB:
10891 case BFD_RELOC_IA64_FPTR32LSB:
10892 case BFD_RELOC_IA64_FPTR64MSB:
10893 case BFD_RELOC_IA64_FPTR64LSB:
10894
10895 case BFD_RELOC_IA64_LTOFF22:
10896 case BFD_RELOC_IA64_LTOFF64I:
10897 case BFD_RELOC_IA64_LTOFF_FPTR22:
10898 case BFD_RELOC_IA64_LTOFF_FPTR64I:
10899 case BFD_RELOC_IA64_PLTOFF22:
10900 case BFD_RELOC_IA64_PLTOFF64I:
10901 case BFD_RELOC_IA64_PLTOFF64MSB:
10902 case BFD_RELOC_IA64_PLTOFF64LSB:
10903
10904 case BFD_RELOC_IA64_LTOFF22X:
10905 case BFD_RELOC_IA64_LDXMOV:
10906 return 1;
10907
10908 default:
10909 break;
10910 }
10911
10912 return generic_force_reloc (fix);
10913 }
10914
10915 /* Decide from what point a pc-relative relocation is relative to,
10916 relative to the pc-relative fixup. Er, relatively speaking. */
10917 long
10918 ia64_pcrel_from_section (fix, sec)
10919 fixS *fix;
10920 segT sec;
10921 {
10922 unsigned long off = fix->fx_frag->fr_address + fix->fx_where;
10923
10924 if (bfd_get_section_flags (stdoutput, sec) & SEC_CODE)
10925 off &= ~0xfUL;
10926
10927 return off;
10928 }
10929
10930
10931 /* Used to emit section-relative relocs for the dwarf2 debug data. */
10932 void
10933 ia64_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10934 {
10935 expressionS expr;
10936
10937 expr.X_op = O_pseudo_fixup;
10938 expr.X_op_symbol = pseudo_func[FUNC_SEC_RELATIVE].u.sym;
10939 expr.X_add_number = 0;
10940 expr.X_add_symbol = symbol;
10941 emit_expr (&expr, size);
10942 }
10943
10944 /* This is called whenever some data item (not an instruction) needs a
10945 fixup. We pick the right reloc code depending on the byteorder
10946 currently in effect. */
10947 void
10948 ia64_cons_fix_new (f, where, nbytes, exp)
10949 fragS *f;
10950 int where;
10951 int nbytes;
10952 expressionS *exp;
10953 {
10954 bfd_reloc_code_real_type code;
10955 fixS *fix;
10956
10957 switch (nbytes)
10958 {
10959 /* There are no reloc for 8 and 16 bit quantities, but we allow
10960 them here since they will work fine as long as the expression
10961 is fully defined at the end of the pass over the source file. */
10962 case 1: code = BFD_RELOC_8; break;
10963 case 2: code = BFD_RELOC_16; break;
10964 case 4:
10965 if (target_big_endian)
10966 code = BFD_RELOC_IA64_DIR32MSB;
10967 else
10968 code = BFD_RELOC_IA64_DIR32LSB;
10969 break;
10970
10971 case 8:
10972 /* In 32-bit mode, data8 could mean function descriptors too. */
10973 if (exp->X_op == O_pseudo_fixup
10974 && exp->X_op_symbol
10975 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC
10976 && !(md.flags & EF_IA_64_ABI64))
10977 {
10978 if (target_big_endian)
10979 code = BFD_RELOC_IA64_IPLTMSB;
10980 else
10981 code = BFD_RELOC_IA64_IPLTLSB;
10982 exp->X_op = O_symbol;
10983 break;
10984 }
10985 else
10986 {
10987 if (target_big_endian)
10988 code = BFD_RELOC_IA64_DIR64MSB;
10989 else
10990 code = BFD_RELOC_IA64_DIR64LSB;
10991 break;
10992 }
10993
10994 case 16:
10995 if (exp->X_op == O_pseudo_fixup
10996 && exp->X_op_symbol
10997 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC)
10998 {
10999 if (target_big_endian)
11000 code = BFD_RELOC_IA64_IPLTMSB;
11001 else
11002 code = BFD_RELOC_IA64_IPLTLSB;
11003 exp->X_op = O_symbol;
11004 break;
11005 }
11006 /* FALLTHRU */
11007
11008 default:
11009 as_bad ("Unsupported fixup size %d", nbytes);
11010 ignore_rest_of_line ();
11011 return;
11012 }
11013
11014 if (exp->X_op == O_pseudo_fixup)
11015 {
11016 exp->X_op = O_symbol;
11017 code = ia64_gen_real_reloc_type (exp->X_op_symbol, code);
11018 /* ??? If code unchanged, unsupported. */
11019 }
11020
11021 fix = fix_new_exp (f, where, nbytes, exp, 0, code);
11022 /* We need to store the byte order in effect in case we're going
11023 to fix an 8 or 16 bit relocation (for which there no real
11024 relocs available). See md_apply_fix3(). */
11025 fix->tc_fix_data.bigendian = target_big_endian;
11026 }
11027
11028 /* Return the actual relocation we wish to associate with the pseudo
11029 reloc described by SYM and R_TYPE. SYM should be one of the
11030 symbols in the pseudo_func array, or NULL. */
11031
11032 static bfd_reloc_code_real_type
11033 ia64_gen_real_reloc_type (sym, r_type)
11034 struct symbol *sym;
11035 bfd_reloc_code_real_type r_type;
11036 {
11037 bfd_reloc_code_real_type new = 0;
11038 const char *type = NULL, *suffix = "";
11039
11040 if (sym == NULL)
11041 {
11042 return r_type;
11043 }
11044
11045 switch (S_GET_VALUE (sym))
11046 {
11047 case FUNC_FPTR_RELATIVE:
11048 switch (r_type)
11049 {
11050 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_FPTR64I; break;
11051 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_FPTR32MSB; break;
11052 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_FPTR32LSB; break;
11053 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_FPTR64MSB; break;
11054 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_FPTR64LSB; break;
11055 default: type = "FPTR"; break;
11056 }
11057 break;
11058
11059 case FUNC_GP_RELATIVE:
11060 switch (r_type)
11061 {
11062 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_GPREL22; break;
11063 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_GPREL64I; break;
11064 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_GPREL32MSB; break;
11065 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_GPREL32LSB; break;
11066 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_GPREL64MSB; break;
11067 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_GPREL64LSB; break;
11068 default: type = "GPREL"; break;
11069 }
11070 break;
11071
11072 case FUNC_LT_RELATIVE:
11073 switch (r_type)
11074 {
11075 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22; break;
11076 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_LTOFF64I; break;
11077 default: type = "LTOFF"; break;
11078 }
11079 break;
11080
11081 case FUNC_LT_RELATIVE_X:
11082 switch (r_type)
11083 {
11084 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22X; break;
11085 default: type = "LTOFF"; suffix = "X"; break;
11086 }
11087 break;
11088
11089 case FUNC_PC_RELATIVE:
11090 switch (r_type)
11091 {
11092 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PCREL22; break;
11093 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PCREL64I; break;
11094 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_PCREL32MSB; break;
11095 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_PCREL32LSB; break;
11096 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PCREL64MSB; break;
11097 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PCREL64LSB; break;
11098 default: type = "PCREL"; break;
11099 }
11100 break;
11101
11102 case FUNC_PLT_RELATIVE:
11103 switch (r_type)
11104 {
11105 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PLTOFF22; break;
11106 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PLTOFF64I; break;
11107 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PLTOFF64MSB;break;
11108 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PLTOFF64LSB;break;
11109 default: type = "PLTOFF"; break;
11110 }
11111 break;
11112
11113 case FUNC_SEC_RELATIVE:
11114 switch (r_type)
11115 {
11116 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SECREL32MSB;break;
11117 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SECREL32LSB;break;
11118 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SECREL64MSB;break;
11119 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SECREL64LSB;break;
11120 default: type = "SECREL"; break;
11121 }
11122 break;
11123
11124 case FUNC_SEG_RELATIVE:
11125 switch (r_type)
11126 {
11127 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SEGREL32MSB;break;
11128 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SEGREL32LSB;break;
11129 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SEGREL64MSB;break;
11130 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SEGREL64LSB;break;
11131 default: type = "SEGREL"; break;
11132 }
11133 break;
11134
11135 case FUNC_LTV_RELATIVE:
11136 switch (r_type)
11137 {
11138 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_LTV32MSB; break;
11139 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_LTV32LSB; break;
11140 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_LTV64MSB; break;
11141 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_LTV64LSB; break;
11142 default: type = "LTV"; break;
11143 }
11144 break;
11145
11146 case FUNC_LT_FPTR_RELATIVE:
11147 switch (r_type)
11148 {
11149 case BFD_RELOC_IA64_IMM22:
11150 new = BFD_RELOC_IA64_LTOFF_FPTR22; break;
11151 case BFD_RELOC_IA64_IMM64:
11152 new = BFD_RELOC_IA64_LTOFF_FPTR64I; break;
11153 case BFD_RELOC_IA64_DIR32MSB:
11154 new = BFD_RELOC_IA64_LTOFF_FPTR32MSB; break;
11155 case BFD_RELOC_IA64_DIR32LSB:
11156 new = BFD_RELOC_IA64_LTOFF_FPTR32LSB; break;
11157 case BFD_RELOC_IA64_DIR64MSB:
11158 new = BFD_RELOC_IA64_LTOFF_FPTR64MSB; break;
11159 case BFD_RELOC_IA64_DIR64LSB:
11160 new = BFD_RELOC_IA64_LTOFF_FPTR64LSB; break;
11161 default:
11162 type = "LTOFF_FPTR"; break;
11163 }
11164 break;
11165
11166 case FUNC_TP_RELATIVE:
11167 switch (r_type)
11168 {
11169 case BFD_RELOC_IA64_IMM14: new = BFD_RELOC_IA64_TPREL14; break;
11170 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_TPREL22; break;
11171 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_TPREL64I; break;
11172 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_TPREL64MSB; break;
11173 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_TPREL64LSB; break;
11174 default: type = "TPREL"; break;
11175 }
11176 break;
11177
11178 case FUNC_LT_TP_RELATIVE:
11179 switch (r_type)
11180 {
11181 case BFD_RELOC_IA64_IMM22:
11182 new = BFD_RELOC_IA64_LTOFF_TPREL22; break;
11183 default:
11184 type = "LTOFF_TPREL"; break;
11185 }
11186 break;
11187
11188 case FUNC_DTP_MODULE:
11189 switch (r_type)
11190 {
11191 case BFD_RELOC_IA64_DIR64MSB:
11192 new = BFD_RELOC_IA64_DTPMOD64MSB; break;
11193 case BFD_RELOC_IA64_DIR64LSB:
11194 new = BFD_RELOC_IA64_DTPMOD64LSB; break;
11195 default:
11196 type = "DTPMOD"; break;
11197 }
11198 break;
11199
11200 case FUNC_LT_DTP_MODULE:
11201 switch (r_type)
11202 {
11203 case BFD_RELOC_IA64_IMM22:
11204 new = BFD_RELOC_IA64_LTOFF_DTPMOD22; break;
11205 default:
11206 type = "LTOFF_DTPMOD"; break;
11207 }
11208 break;
11209
11210 case FUNC_DTP_RELATIVE:
11211 switch (r_type)
11212 {
11213 case BFD_RELOC_IA64_DIR32MSB:
11214 new = BFD_RELOC_IA64_DTPREL32MSB; break;
11215 case BFD_RELOC_IA64_DIR32LSB:
11216 new = BFD_RELOC_IA64_DTPREL32LSB; break;
11217 case BFD_RELOC_IA64_DIR64MSB:
11218 new = BFD_RELOC_IA64_DTPREL64MSB; break;
11219 case BFD_RELOC_IA64_DIR64LSB:
11220 new = BFD_RELOC_IA64_DTPREL64LSB; break;
11221 case BFD_RELOC_IA64_IMM14:
11222 new = BFD_RELOC_IA64_DTPREL14; break;
11223 case BFD_RELOC_IA64_IMM22:
11224 new = BFD_RELOC_IA64_DTPREL22; break;
11225 case BFD_RELOC_IA64_IMM64:
11226 new = BFD_RELOC_IA64_DTPREL64I; break;
11227 default:
11228 type = "DTPREL"; break;
11229 }
11230 break;
11231
11232 case FUNC_LT_DTP_RELATIVE:
11233 switch (r_type)
11234 {
11235 case BFD_RELOC_IA64_IMM22:
11236 new = BFD_RELOC_IA64_LTOFF_DTPREL22; break;
11237 default:
11238 type = "LTOFF_DTPREL"; break;
11239 }
11240 break;
11241
11242 case FUNC_IPLT_RELOC:
11243 switch (r_type)
11244 {
11245 case BFD_RELOC_IA64_IPLTMSB: return r_type;
11246 case BFD_RELOC_IA64_IPLTLSB: return r_type;
11247 default: type = "IPLT"; break;
11248 }
11249 break;
11250
11251 default:
11252 abort ();
11253 }
11254
11255 if (new)
11256 return new;
11257 else
11258 {
11259 int width;
11260
11261 if (!type)
11262 abort ();
11263 switch (r_type)
11264 {
11265 case BFD_RELOC_IA64_DIR32MSB: width = 32; suffix = "MSB"; break;
11266 case BFD_RELOC_IA64_DIR32LSB: width = 32; suffix = "LSB"; break;
11267 case BFD_RELOC_IA64_DIR64MSB: width = 64; suffix = "MSB"; break;
11268 case BFD_RELOC_IA64_DIR64LSB: width = 64; suffix = "LSB"; break;
11269 case BFD_RELOC_UNUSED: width = 13; break;
11270 case BFD_RELOC_IA64_IMM14: width = 14; break;
11271 case BFD_RELOC_IA64_IMM22: width = 22; break;
11272 case BFD_RELOC_IA64_IMM64: width = 64; suffix = "I"; break;
11273 default: abort ();
11274 }
11275
11276 /* This should be an error, but since previously there wasn't any
11277 diagnostic here, dont't make it fail because of this for now. */
11278 as_warn ("Cannot express %s%d%s relocation", type, width, suffix);
11279 return r_type;
11280 }
11281 }
11282
11283 /* Here is where generate the appropriate reloc for pseudo relocation
11284 functions. */
11285 void
11286 ia64_validate_fix (fix)
11287 fixS *fix;
11288 {
11289 switch (fix->fx_r_type)
11290 {
11291 case BFD_RELOC_IA64_FPTR64I:
11292 case BFD_RELOC_IA64_FPTR32MSB:
11293 case BFD_RELOC_IA64_FPTR64LSB:
11294 case BFD_RELOC_IA64_LTOFF_FPTR22:
11295 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11296 if (fix->fx_offset != 0)
11297 as_bad_where (fix->fx_file, fix->fx_line,
11298 "No addend allowed in @fptr() relocation");
11299 break;
11300 default:
11301 break;
11302 }
11303 }
11304
11305 static void
11306 fix_insn (fix, odesc, value)
11307 fixS *fix;
11308 const struct ia64_operand *odesc;
11309 valueT value;
11310 {
11311 bfd_vma insn[3], t0, t1, control_bits;
11312 const char *err;
11313 char *fixpos;
11314 long slot;
11315
11316 slot = fix->fx_where & 0x3;
11317 fixpos = fix->fx_frag->fr_literal + (fix->fx_where - slot);
11318
11319 /* Bundles are always in little-endian byte order */
11320 t0 = bfd_getl64 (fixpos);
11321 t1 = bfd_getl64 (fixpos + 8);
11322 control_bits = t0 & 0x1f;
11323 insn[0] = (t0 >> 5) & 0x1ffffffffffLL;
11324 insn[1] = ((t0 >> 46) & 0x3ffff) | ((t1 & 0x7fffff) << 18);
11325 insn[2] = (t1 >> 23) & 0x1ffffffffffLL;
11326
11327 err = NULL;
11328 if (odesc - elf64_ia64_operands == IA64_OPND_IMMU64)
11329 {
11330 insn[1] = (value >> 22) & 0x1ffffffffffLL;
11331 insn[2] |= (((value & 0x7f) << 13)
11332 | (((value >> 7) & 0x1ff) << 27)
11333 | (((value >> 16) & 0x1f) << 22)
11334 | (((value >> 21) & 0x1) << 21)
11335 | (((value >> 63) & 0x1) << 36));
11336 }
11337 else if (odesc - elf64_ia64_operands == IA64_OPND_IMMU62)
11338 {
11339 if (value & ~0x3fffffffffffffffULL)
11340 err = "integer operand out of range";
11341 insn[1] = (value >> 21) & 0x1ffffffffffLL;
11342 insn[2] |= (((value & 0xfffff) << 6) | (((value >> 20) & 0x1) << 36));
11343 }
11344 else if (odesc - elf64_ia64_operands == IA64_OPND_TGT64)
11345 {
11346 value >>= 4;
11347 insn[1] = ((value >> 20) & 0x7fffffffffLL) << 2;
11348 insn[2] |= ((((value >> 59) & 0x1) << 36)
11349 | (((value >> 0) & 0xfffff) << 13));
11350 }
11351 else
11352 err = (*odesc->insert) (odesc, value, insn + slot);
11353
11354 if (err)
11355 as_bad_where (fix->fx_file, fix->fx_line, err);
11356
11357 t0 = control_bits | (insn[0] << 5) | (insn[1] << 46);
11358 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
11359 number_to_chars_littleendian (fixpos + 0, t0, 8);
11360 number_to_chars_littleendian (fixpos + 8, t1, 8);
11361 }
11362
11363 /* Attempt to simplify or even eliminate a fixup. The return value is
11364 ignored; perhaps it was once meaningful, but now it is historical.
11365 To indicate that a fixup has been eliminated, set FIXP->FX_DONE.
11366
11367 If fixp->fx_addsy is non-NULL, we'll have to generate a reloc entry
11368 (if possible). */
11369
11370 void
11371 md_apply_fix3 (fix, valP, seg)
11372 fixS *fix;
11373 valueT *valP;
11374 segT seg ATTRIBUTE_UNUSED;
11375 {
11376 char *fixpos;
11377 valueT value = *valP;
11378
11379 fixpos = fix->fx_frag->fr_literal + fix->fx_where;
11380
11381 if (fix->fx_pcrel)
11382 {
11383 switch (fix->fx_r_type)
11384 {
11385 case BFD_RELOC_IA64_PCREL21B: break;
11386 case BFD_RELOC_IA64_PCREL21BI: break;
11387 case BFD_RELOC_IA64_PCREL21F: break;
11388 case BFD_RELOC_IA64_PCREL21M: break;
11389 case BFD_RELOC_IA64_PCREL60B: break;
11390 case BFD_RELOC_IA64_PCREL22: break;
11391 case BFD_RELOC_IA64_PCREL64I: break;
11392 case BFD_RELOC_IA64_PCREL32MSB: break;
11393 case BFD_RELOC_IA64_PCREL32LSB: break;
11394 case BFD_RELOC_IA64_PCREL64MSB: break;
11395 case BFD_RELOC_IA64_PCREL64LSB: break;
11396 default:
11397 fix->fx_r_type = ia64_gen_real_reloc_type (pseudo_func[FUNC_PC_RELATIVE].u.sym,
11398 fix->fx_r_type);
11399 break;
11400 }
11401 }
11402 if (fix->fx_addsy)
11403 {
11404 switch (fix->fx_r_type)
11405 {
11406 case BFD_RELOC_UNUSED:
11407 /* This must be a TAG13 or TAG13b operand. There are no external
11408 relocs defined for them, so we must give an error. */
11409 as_bad_where (fix->fx_file, fix->fx_line,
11410 "%s must have a constant value",
11411 elf64_ia64_operands[fix->tc_fix_data.opnd].desc);
11412 fix->fx_done = 1;
11413 return;
11414
11415 case BFD_RELOC_IA64_TPREL14:
11416 case BFD_RELOC_IA64_TPREL22:
11417 case BFD_RELOC_IA64_TPREL64I:
11418 case BFD_RELOC_IA64_LTOFF_TPREL22:
11419 case BFD_RELOC_IA64_LTOFF_DTPMOD22:
11420 case BFD_RELOC_IA64_DTPREL14:
11421 case BFD_RELOC_IA64_DTPREL22:
11422 case BFD_RELOC_IA64_DTPREL64I:
11423 case BFD_RELOC_IA64_LTOFF_DTPREL22:
11424 S_SET_THREAD_LOCAL (fix->fx_addsy);
11425 break;
11426
11427 default:
11428 break;
11429 }
11430 }
11431 else if (fix->tc_fix_data.opnd == IA64_OPND_NIL)
11432 {
11433 if (fix->tc_fix_data.bigendian)
11434 number_to_chars_bigendian (fixpos, value, fix->fx_size);
11435 else
11436 number_to_chars_littleendian (fixpos, value, fix->fx_size);
11437 fix->fx_done = 1;
11438 }
11439 else
11440 {
11441 fix_insn (fix, elf64_ia64_operands + fix->tc_fix_data.opnd, value);
11442 fix->fx_done = 1;
11443 }
11444 }
11445
11446 /* Generate the BFD reloc to be stuck in the object file from the
11447 fixup used internally in the assembler. */
11448
11449 arelent *
11450 tc_gen_reloc (sec, fixp)
11451 asection *sec ATTRIBUTE_UNUSED;
11452 fixS *fixp;
11453 {
11454 arelent *reloc;
11455
11456 reloc = xmalloc (sizeof (*reloc));
11457 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
11458 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11459 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
11460 reloc->addend = fixp->fx_offset;
11461 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
11462
11463 if (!reloc->howto)
11464 {
11465 as_bad_where (fixp->fx_file, fixp->fx_line,
11466 "Cannot represent %s relocation in object file",
11467 bfd_get_reloc_code_name (fixp->fx_r_type));
11468 }
11469 return reloc;
11470 }
11471
11472 /* Turn a string in input_line_pointer into a floating point constant
11473 of type TYPE, and store the appropriate bytes in *LIT. The number
11474 of LITTLENUMS emitted is stored in *SIZE. An error message is
11475 returned, or NULL on OK. */
11476
11477 #define MAX_LITTLENUMS 5
11478
11479 char *
11480 md_atof (type, lit, size)
11481 int type;
11482 char *lit;
11483 int *size;
11484 {
11485 LITTLENUM_TYPE words[MAX_LITTLENUMS];
11486 char *t;
11487 int prec;
11488
11489 switch (type)
11490 {
11491 /* IEEE floats */
11492 case 'f':
11493 case 'F':
11494 case 's':
11495 case 'S':
11496 prec = 2;
11497 break;
11498
11499 case 'd':
11500 case 'D':
11501 case 'r':
11502 case 'R':
11503 prec = 4;
11504 break;
11505
11506 case 'x':
11507 case 'X':
11508 case 'p':
11509 case 'P':
11510 prec = 5;
11511 break;
11512
11513 default:
11514 *size = 0;
11515 return "Bad call to MD_ATOF()";
11516 }
11517 t = atof_ieee (input_line_pointer, type, words);
11518 if (t)
11519 input_line_pointer = t;
11520
11521 (*ia64_float_to_chars) (lit, words, prec);
11522
11523 if (type == 'X')
11524 {
11525 /* It is 10 byte floating point with 6 byte padding. */
11526 memset (&lit [10], 0, 6);
11527 *size = 8 * sizeof (LITTLENUM_TYPE);
11528 }
11529 else
11530 *size = prec * sizeof (LITTLENUM_TYPE);
11531
11532 return 0;
11533 }
11534
11535 /* Handle ia64 specific semantics of the align directive. */
11536
11537 void
11538 ia64_md_do_align (n, fill, len, max)
11539 int n ATTRIBUTE_UNUSED;
11540 const char *fill ATTRIBUTE_UNUSED;
11541 int len ATTRIBUTE_UNUSED;
11542 int max ATTRIBUTE_UNUSED;
11543 {
11544 if (subseg_text_p (now_seg))
11545 ia64_flush_insns ();
11546 }
11547
11548 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
11549 of an rs_align_code fragment. */
11550
11551 void
11552 ia64_handle_align (fragp)
11553 fragS *fragp;
11554 {
11555 int bytes;
11556 char *p;
11557 const unsigned char *nop;
11558
11559 if (fragp->fr_type != rs_align_code)
11560 return;
11561
11562 /* Check if this frag has to end with a stop bit. */
11563 nop = fragp->tc_frag_data ? le_nop_stop : le_nop;
11564
11565 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
11566 p = fragp->fr_literal + fragp->fr_fix;
11567
11568 /* If no paddings are needed, we check if we need a stop bit. */
11569 if (!bytes && fragp->tc_frag_data)
11570 {
11571 if (fragp->fr_fix < 16)
11572 #if 1
11573 /* FIXME: It won't work with
11574 .align 16
11575 alloc r32=ar.pfs,1,2,4,0
11576 */
11577 ;
11578 #else
11579 as_bad_where (fragp->fr_file, fragp->fr_line,
11580 _("Can't add stop bit to mark end of instruction group"));
11581 #endif
11582 else
11583 /* Bundles are always in little-endian byte order. Make sure
11584 the previous bundle has the stop bit. */
11585 *(p - 16) |= 1;
11586 }
11587
11588 /* Make sure we are on a 16-byte boundary, in case someone has been
11589 putting data into a text section. */
11590 if (bytes & 15)
11591 {
11592 int fix = bytes & 15;
11593 memset (p, 0, fix);
11594 p += fix;
11595 bytes -= fix;
11596 fragp->fr_fix += fix;
11597 }
11598
11599 /* Instruction bundles are always little-endian. */
11600 memcpy (p, nop, 16);
11601 fragp->fr_var = 16;
11602 }
11603
11604 static void
11605 ia64_float_to_chars_bigendian (char *lit, LITTLENUM_TYPE *words,
11606 int prec)
11607 {
11608 while (prec--)
11609 {
11610 number_to_chars_bigendian (lit, (long) (*words++),
11611 sizeof (LITTLENUM_TYPE));
11612 lit += sizeof (LITTLENUM_TYPE);
11613 }
11614 }
11615
11616 static void
11617 ia64_float_to_chars_littleendian (char *lit, LITTLENUM_TYPE *words,
11618 int prec)
11619 {
11620 while (prec--)
11621 {
11622 number_to_chars_littleendian (lit, (long) (words[prec]),
11623 sizeof (LITTLENUM_TYPE));
11624 lit += sizeof (LITTLENUM_TYPE);
11625 }
11626 }
11627
11628 void
11629 ia64_elf_section_change_hook (void)
11630 {
11631 if (elf_section_type (now_seg) == SHT_IA_64_UNWIND
11632 && elf_linked_to_section (now_seg) == NULL)
11633 elf_linked_to_section (now_seg) = text_section;
11634 dot_byteorder (-1);
11635 }
11636
11637 /* Check if a label should be made global. */
11638 void
11639 ia64_check_label (symbolS *label)
11640 {
11641 if (*input_line_pointer == ':')
11642 {
11643 S_SET_EXTERNAL (label);
11644 input_line_pointer++;
11645 }
11646 }
11647
11648 /* Used to remember where .alias and .secalias directives are seen. We
11649 will rename symbol and section names when we are about to output
11650 the relocatable file. */
11651 struct alias
11652 {
11653 char *file; /* The file where the directive is seen. */
11654 unsigned int line; /* The line number the directive is at. */
11655 const char *name; /* The orignale name of the symbol. */
11656 };
11657
11658 /* Called for .alias and .secalias directives. If SECTION is 1, it is
11659 .secalias. Otherwise, it is .alias. */
11660 static void
11661 dot_alias (int section)
11662 {
11663 char *name, *alias;
11664 char delim;
11665 char *end_name;
11666 int len;
11667 const char *error_string;
11668 struct alias *h;
11669 const char *a;
11670 struct hash_control *ahash, *nhash;
11671 const char *kind;
11672
11673 name = input_line_pointer;
11674 delim = get_symbol_end ();
11675 end_name = input_line_pointer;
11676 *end_name = delim;
11677
11678 if (name == end_name)
11679 {
11680 as_bad (_("expected symbol name"));
11681 discard_rest_of_line ();
11682 return;
11683 }
11684
11685 SKIP_WHITESPACE ();
11686
11687 if (*input_line_pointer != ',')
11688 {
11689 *end_name = 0;
11690 as_bad (_("expected comma after \"%s\""), name);
11691 *end_name = delim;
11692 ignore_rest_of_line ();
11693 return;
11694 }
11695
11696 input_line_pointer++;
11697 *end_name = 0;
11698 ia64_canonicalize_symbol_name (name);
11699
11700 /* We call demand_copy_C_string to check if alias string is valid.
11701 There should be a closing `"' and no `\0' in the string. */
11702 alias = demand_copy_C_string (&len);
11703 if (alias == NULL)
11704 {
11705 ignore_rest_of_line ();
11706 return;
11707 }
11708
11709 /* Make a copy of name string. */
11710 len = strlen (name) + 1;
11711 obstack_grow (&notes, name, len);
11712 name = obstack_finish (&notes);
11713
11714 if (section)
11715 {
11716 kind = "section";
11717 ahash = secalias_hash;
11718 nhash = secalias_name_hash;
11719 }
11720 else
11721 {
11722 kind = "symbol";
11723 ahash = alias_hash;
11724 nhash = alias_name_hash;
11725 }
11726
11727 /* Check if alias has been used before. */
11728 h = (struct alias *) hash_find (ahash, alias);
11729 if (h)
11730 {
11731 if (strcmp (h->name, name))
11732 as_bad (_("`%s' is already the alias of %s `%s'"),
11733 alias, kind, h->name);
11734 goto out;
11735 }
11736
11737 /* Check if name already has an alias. */
11738 a = (const char *) hash_find (nhash, name);
11739 if (a)
11740 {
11741 if (strcmp (a, alias))
11742 as_bad (_("%s `%s' already has an alias `%s'"), kind, name, a);
11743 goto out;
11744 }
11745
11746 h = (struct alias *) xmalloc (sizeof (struct alias));
11747 as_where (&h->file, &h->line);
11748 h->name = name;
11749
11750 error_string = hash_jam (ahash, alias, (PTR) h);
11751 if (error_string)
11752 {
11753 as_fatal (_("inserting \"%s\" into %s alias hash table failed: %s"),
11754 alias, kind, error_string);
11755 goto out;
11756 }
11757
11758 error_string = hash_jam (nhash, name, (PTR) alias);
11759 if (error_string)
11760 {
11761 as_fatal (_("inserting \"%s\" into %s name hash table failed: %s"),
11762 alias, kind, error_string);
11763 out:
11764 obstack_free (&notes, name);
11765 obstack_free (&notes, alias);
11766 }
11767
11768 demand_empty_rest_of_line ();
11769 }
11770
11771 /* It renames the original symbol name to its alias. */
11772 static void
11773 do_alias (const char *alias, PTR value)
11774 {
11775 struct alias *h = (struct alias *) value;
11776 symbolS *sym = symbol_find (h->name);
11777
11778 if (sym == NULL)
11779 as_warn_where (h->file, h->line,
11780 _("symbol `%s' aliased to `%s' is not used"),
11781 h->name, alias);
11782 else
11783 S_SET_NAME (sym, (char *) alias);
11784 }
11785
11786 /* Called from write_object_file. */
11787 void
11788 ia64_adjust_symtab (void)
11789 {
11790 hash_traverse (alias_hash, do_alias);
11791 }
11792
11793 /* It renames the original section name to its alias. */
11794 static void
11795 do_secalias (const char *alias, PTR value)
11796 {
11797 struct alias *h = (struct alias *) value;
11798 segT sec = bfd_get_section_by_name (stdoutput, h->name);
11799
11800 if (sec == NULL)
11801 as_warn_where (h->file, h->line,
11802 _("section `%s' aliased to `%s' is not used"),
11803 h->name, alias);
11804 else
11805 sec->name = alias;
11806 }
11807
11808 /* Called from write_object_file. */
11809 void
11810 ia64_frob_file (void)
11811 {
11812 hash_traverse (secalias_hash, do_secalias);
11813 }
This page took 0.386571 seconds and 5 git commands to generate.