2001-02-06 H.J. Lu <hjl@gnu.org>
[deliverable/binutils-gdb.git] / gas / config / tc-ia64.c
1 /* tc-ia64.c -- Assembler for the HP/Intel IA-64 architecture.
2 Copyright (C) 1998, 1999, 2000 Free Software Foundation.
3 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /*
23 TODO:
24
25 - optional operands
26 - directives:
27 .alias
28 .eb
29 .estate
30 .lb
31 .popsection
32 .previous
33 .psr
34 .pushsection
35 - labels are wrong if automatic alignment is introduced
36 (e.g., checkout the second real10 definition in test-data.s)
37 - DV-related stuff:
38 <reg>.safe_across_calls and any other DV-related directives I don't
39 have documentation for.
40 verify mod-sched-brs reads/writes are checked/marked (and other
41 notes)
42
43 */
44
45 #include "as.h"
46 #include "dwarf2dbg.h"
47 #include "subsegs.h"
48
49 #include "opcode/ia64.h"
50
51 #include "elf/ia64.h"
52
53 #define NELEMS(a) ((int) (sizeof (a)/sizeof ((a)[0])))
54 #define MIN(a,b) ((a) < (b) ? (a) : (b))
55
56 #define NUM_SLOTS 4
57 #define PREV_SLOT md.slot[(md.curr_slot + NUM_SLOTS - 1) % NUM_SLOTS]
58 #define CURR_SLOT md.slot[md.curr_slot]
59
60 #define O_pseudo_fixup (O_max + 1)
61
62 enum special_section
63 {
64 SPECIAL_SECTION_BSS = 0,
65 SPECIAL_SECTION_SBSS,
66 SPECIAL_SECTION_SDATA,
67 SPECIAL_SECTION_RODATA,
68 SPECIAL_SECTION_COMMENT,
69 SPECIAL_SECTION_UNWIND,
70 SPECIAL_SECTION_UNWIND_INFO
71 };
72
73 enum reloc_func
74 {
75 FUNC_FPTR_RELATIVE,
76 FUNC_GP_RELATIVE,
77 FUNC_LT_RELATIVE,
78 FUNC_PC_RELATIVE,
79 FUNC_PLT_RELATIVE,
80 FUNC_SEC_RELATIVE,
81 FUNC_SEG_RELATIVE,
82 FUNC_LTV_RELATIVE,
83 FUNC_LT_FPTR_RELATIVE,
84 };
85
86 enum reg_symbol
87 {
88 REG_GR = 0,
89 REG_FR = (REG_GR + 128),
90 REG_AR = (REG_FR + 128),
91 REG_CR = (REG_AR + 128),
92 REG_P = (REG_CR + 128),
93 REG_BR = (REG_P + 64),
94 REG_IP = (REG_BR + 8),
95 REG_CFM,
96 REG_PR,
97 REG_PR_ROT,
98 REG_PSR,
99 REG_PSR_L,
100 REG_PSR_UM,
101 /* The following are pseudo-registers for use by gas only. */
102 IND_CPUID,
103 IND_DBR,
104 IND_DTR,
105 IND_ITR,
106 IND_IBR,
107 IND_MEM,
108 IND_MSR,
109 IND_PKR,
110 IND_PMC,
111 IND_PMD,
112 IND_RR,
113 /* The following pseudo-registers are used for unwind directives only: */
114 REG_PSP,
115 REG_PRIUNAT,
116 REG_NUM
117 };
118
119 enum dynreg_type
120 {
121 DYNREG_GR = 0, /* dynamic general purpose register */
122 DYNREG_FR, /* dynamic floating point register */
123 DYNREG_PR, /* dynamic predicate register */
124 DYNREG_NUM_TYPES
125 };
126
127 /* On the ia64, we can't know the address of a text label until the
128 instructions are packed into a bundle. To handle this, we keep
129 track of the list of labels that appear in front of each
130 instruction. */
131 struct label_fix
132 {
133 struct label_fix *next;
134 struct symbol *sym;
135 };
136
137 extern int target_big_endian;
138
139 /* Characters which always start a comment. */
140 const char comment_chars[] = "";
141
142 /* Characters which start a comment at the beginning of a line. */
143 const char line_comment_chars[] = "#";
144
145 /* Characters which may be used to separate multiple commands on a
146 single line. */
147 const char line_separator_chars[] = ";";
148
149 /* Characters which are used to indicate an exponent in a floating
150 point number. */
151 const char EXP_CHARS[] = "eE";
152
153 /* Characters which mean that a number is a floating point constant,
154 as in 0d1.0. */
155 const char FLT_CHARS[] = "rRsSfFdDxXpP";
156
157 /* ia64-specific option processing: */
158
159 const char *md_shortopts = "m:N:x::";
160
161 struct option md_longopts[] =
162 {
163 #define OPTION_MCONSTANT_GP (OPTION_MD_BASE + 1)
164 {"mconstant-gp", no_argument, NULL, OPTION_MCONSTANT_GP},
165 #define OPTION_MAUTO_PIC (OPTION_MD_BASE + 2)
166 {"mauto-pic", no_argument, NULL, OPTION_MAUTO_PIC}
167 };
168
169 size_t md_longopts_size = sizeof (md_longopts);
170
171 static struct
172 {
173 struct hash_control *pseudo_hash; /* pseudo opcode hash table */
174 struct hash_control *reg_hash; /* register name hash table */
175 struct hash_control *dynreg_hash; /* dynamic register hash table */
176 struct hash_control *const_hash; /* constant hash table */
177 struct hash_control *entry_hash; /* code entry hint hash table */
178
179 symbolS *regsym[REG_NUM];
180
181 /* If X_op is != O_absent, the registername for the instruction's
182 qualifying predicate. If NULL, p0 is assumed for instructions
183 that are predicatable. */
184 expressionS qp;
185
186 unsigned int
187 manual_bundling : 1,
188 debug_dv: 1,
189 detect_dv: 1,
190 explicit_mode : 1, /* which mode we're in */
191 default_explicit_mode : 1, /* which mode is the default */
192 mode_explicitly_set : 1, /* was the current mode explicitly set? */
193 auto_align : 1;
194
195 /* Each bundle consists of up to three instructions. We keep
196 track of four most recent instructions so we can correctly set
197 the end_of_insn_group for the last instruction in a bundle. */
198 int curr_slot;
199 int num_slots_in_use;
200 struct slot
201 {
202 unsigned int
203 end_of_insn_group : 1,
204 manual_bundling_on : 1,
205 manual_bundling_off : 1;
206 signed char user_template; /* user-selected template, if any */
207 unsigned char qp_regno; /* qualifying predicate */
208 /* This duplicates a good fraction of "struct fix" but we
209 can't use a "struct fix" instead since we can't call
210 fix_new_exp() until we know the address of the instruction. */
211 int num_fixups;
212 struct insn_fix
213 {
214 bfd_reloc_code_real_type code;
215 enum ia64_opnd opnd; /* type of operand in need of fix */
216 unsigned int is_pcrel : 1; /* is operand pc-relative? */
217 expressionS expr; /* the value to be inserted */
218 }
219 fixup[2]; /* at most two fixups per insn */
220 struct ia64_opcode *idesc;
221 struct label_fix *label_fixups;
222 struct label_fix *tag_fixups;
223 struct unw_rec_list *unwind_record; /* Unwind directive. */
224 expressionS opnd[6];
225 char *src_file;
226 unsigned int src_line;
227 struct dwarf2_line_info debug_line;
228 }
229 slot[NUM_SLOTS];
230
231 segT last_text_seg;
232
233 struct dynreg
234 {
235 struct dynreg *next; /* next dynamic register */
236 const char *name;
237 unsigned short base; /* the base register number */
238 unsigned short num_regs; /* # of registers in this set */
239 }
240 *dynreg[DYNREG_NUM_TYPES], in, loc, out, rot;
241
242 flagword flags; /* ELF-header flags */
243
244 struct mem_offset {
245 unsigned hint:1; /* is this hint currently valid? */
246 bfd_vma offset; /* mem.offset offset */
247 bfd_vma base; /* mem.offset base */
248 } mem_offset;
249
250 int path; /* number of alt. entry points seen */
251 const char **entry_labels; /* labels of all alternate paths in
252 the current DV-checking block. */
253 int maxpaths; /* size currently allocated for
254 entry_labels */
255 /* Support for hardware errata workarounds. */
256
257 /* Record data about the last three insn groups. */
258 struct group
259 {
260 /* B-step workaround.
261 For each predicate register, this is set if the corresponding insn
262 group conditionally sets this register with one of the affected
263 instructions. */
264 int p_reg_set[64];
265 /* B-step workaround.
266 For each general register, this is set if the corresponding insn
267 a) is conditional one one of the predicate registers for which
268 P_REG_SET is 1 in the corresponding entry of the previous group,
269 b) sets this general register with one of the affected
270 instructions. */
271 int g_reg_set_conditionally[128];
272 } last_groups[3];
273 int group_idx;
274 }
275 md;
276
277 /* application registers: */
278
279 #define AR_K0 0
280 #define AR_K7 7
281 #define AR_RSC 16
282 #define AR_BSP 17
283 #define AR_BSPSTORE 18
284 #define AR_RNAT 19
285 #define AR_UNAT 36
286 #define AR_FPSR 40
287 #define AR_ITC 44
288 #define AR_PFS 64
289 #define AR_LC 65
290
291 static const struct
292 {
293 const char *name;
294 int regnum;
295 }
296 ar[] =
297 {
298 {"ar.k0", 0}, {"ar.k1", 1}, {"ar.k2", 2}, {"ar.k3", 3},
299 {"ar.k4", 4}, {"ar.k5", 5}, {"ar.k6", 6}, {"ar.k7", 7},
300 {"ar.rsc", 16}, {"ar.bsp", 17},
301 {"ar.bspstore", 18}, {"ar.rnat", 19},
302 {"ar.fcr", 21}, {"ar.eflag", 24},
303 {"ar.csd", 25}, {"ar.ssd", 26},
304 {"ar.cflg", 27}, {"ar.fsr", 28},
305 {"ar.fir", 29}, {"ar.fdr", 30},
306 {"ar.ccv", 32}, {"ar.unat", 36},
307 {"ar.fpsr", 40}, {"ar.itc", 44},
308 {"ar.pfs", 64}, {"ar.lc", 65},
309 {"ar.ec", 66},
310 };
311
312 #define CR_IPSR 16
313 #define CR_ISR 17
314 #define CR_IIP 19
315 #define CR_IFA 20
316 #define CR_ITIR 21
317 #define CR_IIPA 22
318 #define CR_IFS 23
319 #define CR_IIM 24
320 #define CR_IHA 25
321 #define CR_IVR 65
322 #define CR_TPR 66
323 #define CR_EOI 67
324 #define CR_IRR0 68
325 #define CR_IRR3 71
326 #define CR_LRR0 80
327 #define CR_LRR1 81
328
329 /* control registers: */
330 static const struct
331 {
332 const char *name;
333 int regnum;
334 }
335 cr[] =
336 {
337 {"cr.dcr", 0},
338 {"cr.itm", 1},
339 {"cr.iva", 2},
340 {"cr.pta", 8},
341 {"cr.gpta", 9},
342 {"cr.ipsr", 16},
343 {"cr.isr", 17},
344 {"cr.iip", 19},
345 {"cr.ifa", 20},
346 {"cr.itir", 21},
347 {"cr.iipa", 22},
348 {"cr.ifs", 23},
349 {"cr.iim", 24},
350 {"cr.iha", 25},
351 {"cr.lid", 64},
352 {"cr.ivr", 65},
353 {"cr.tpr", 66},
354 {"cr.eoi", 67},
355 {"cr.irr0", 68},
356 {"cr.irr1", 69},
357 {"cr.irr2", 70},
358 {"cr.irr3", 71},
359 {"cr.itv", 72},
360 {"cr.pmv", 73},
361 {"cr.cmcv", 74},
362 {"cr.lrr0", 80},
363 {"cr.lrr1", 81}
364 };
365
366 #define PSR_MFL 4
367 #define PSR_IC 13
368 #define PSR_DFL 18
369 #define PSR_CPL 32
370
371 static const struct const_desc
372 {
373 const char *name;
374 valueT value;
375 }
376 const_bits[] =
377 {
378 /* PSR constant masks: */
379
380 /* 0: reserved */
381 {"psr.be", ((valueT) 1) << 1},
382 {"psr.up", ((valueT) 1) << 2},
383 {"psr.ac", ((valueT) 1) << 3},
384 {"psr.mfl", ((valueT) 1) << 4},
385 {"psr.mfh", ((valueT) 1) << 5},
386 /* 6-12: reserved */
387 {"psr.ic", ((valueT) 1) << 13},
388 {"psr.i", ((valueT) 1) << 14},
389 {"psr.pk", ((valueT) 1) << 15},
390 /* 16: reserved */
391 {"psr.dt", ((valueT) 1) << 17},
392 {"psr.dfl", ((valueT) 1) << 18},
393 {"psr.dfh", ((valueT) 1) << 19},
394 {"psr.sp", ((valueT) 1) << 20},
395 {"psr.pp", ((valueT) 1) << 21},
396 {"psr.di", ((valueT) 1) << 22},
397 {"psr.si", ((valueT) 1) << 23},
398 {"psr.db", ((valueT) 1) << 24},
399 {"psr.lp", ((valueT) 1) << 25},
400 {"psr.tb", ((valueT) 1) << 26},
401 {"psr.rt", ((valueT) 1) << 27},
402 /* 28-31: reserved */
403 /* 32-33: cpl (current privilege level) */
404 {"psr.is", ((valueT) 1) << 34},
405 {"psr.mc", ((valueT) 1) << 35},
406 {"psr.it", ((valueT) 1) << 36},
407 {"psr.id", ((valueT) 1) << 37},
408 {"psr.da", ((valueT) 1) << 38},
409 {"psr.dd", ((valueT) 1) << 39},
410 {"psr.ss", ((valueT) 1) << 40},
411 /* 41-42: ri (restart instruction) */
412 {"psr.ed", ((valueT) 1) << 43},
413 {"psr.bn", ((valueT) 1) << 44},
414 };
415
416 /* indirect register-sets/memory: */
417
418 static const struct
419 {
420 const char *name;
421 int regnum;
422 }
423 indirect_reg[] =
424 {
425 { "CPUID", IND_CPUID },
426 { "cpuid", IND_CPUID },
427 { "dbr", IND_DBR },
428 { "dtr", IND_DTR },
429 { "itr", IND_ITR },
430 { "ibr", IND_IBR },
431 { "msr", IND_MSR },
432 { "pkr", IND_PKR },
433 { "pmc", IND_PMC },
434 { "pmd", IND_PMD },
435 { "rr", IND_RR },
436 };
437
438 /* Pseudo functions used to indicate relocation types (these functions
439 start with an at sign (@). */
440 static struct
441 {
442 const char *name;
443 enum pseudo_type
444 {
445 PSEUDO_FUNC_NONE,
446 PSEUDO_FUNC_RELOC,
447 PSEUDO_FUNC_CONST,
448 PSEUDO_FUNC_REG,
449 PSEUDO_FUNC_FLOAT
450 }
451 type;
452 union
453 {
454 unsigned long ival;
455 symbolS *sym;
456 }
457 u;
458 }
459 pseudo_func[] =
460 {
461 /* reloc pseudo functions (these must come first!): */
462 { "fptr", PSEUDO_FUNC_RELOC, { 0 } },
463 { "gprel", PSEUDO_FUNC_RELOC, { 0 } },
464 { "ltoff", PSEUDO_FUNC_RELOC, { 0 } },
465 { "pcrel", PSEUDO_FUNC_RELOC, { 0 } },
466 { "pltoff", PSEUDO_FUNC_RELOC, { 0 } },
467 { "secrel", PSEUDO_FUNC_RELOC, { 0 } },
468 { "segrel", PSEUDO_FUNC_RELOC, { 0 } },
469 { "ltv", PSEUDO_FUNC_RELOC, { 0 } },
470 { "", 0, { 0 } }, /* placeholder for FUNC_LT_FPTR_RELATIVE */
471
472 /* mbtype4 constants: */
473 { "alt", PSEUDO_FUNC_CONST, { 0xa } },
474 { "brcst", PSEUDO_FUNC_CONST, { 0x0 } },
475 { "mix", PSEUDO_FUNC_CONST, { 0x8 } },
476 { "rev", PSEUDO_FUNC_CONST, { 0xb } },
477 { "shuf", PSEUDO_FUNC_CONST, { 0x9 } },
478
479 /* fclass constants: */
480 { "nat", PSEUDO_FUNC_CONST, { 0x100 } },
481 { "qnan", PSEUDO_FUNC_CONST, { 0x080 } },
482 { "snan", PSEUDO_FUNC_CONST, { 0x040 } },
483 { "pos", PSEUDO_FUNC_CONST, { 0x001 } },
484 { "neg", PSEUDO_FUNC_CONST, { 0x002 } },
485 { "zero", PSEUDO_FUNC_CONST, { 0x004 } },
486 { "unorm", PSEUDO_FUNC_CONST, { 0x008 } },
487 { "norm", PSEUDO_FUNC_CONST, { 0x010 } },
488 { "inf", PSEUDO_FUNC_CONST, { 0x020 } },
489
490 { "natval", PSEUDO_FUNC_CONST, { 0x100 } }, /* old usage */
491
492 /* unwind-related constants: */
493 { "svr4", PSEUDO_FUNC_CONST, { 0 } },
494 { "hpux", PSEUDO_FUNC_CONST, { 1 } },
495 { "nt", PSEUDO_FUNC_CONST, { 2 } },
496
497 /* unwind-related registers: */
498 { "priunat",PSEUDO_FUNC_REG, { REG_PRIUNAT } }
499 };
500
501 /* 41-bit nop opcodes (one per unit): */
502 static const bfd_vma nop[IA64_NUM_UNITS] =
503 {
504 0x0000000000LL, /* NIL => break 0 */
505 0x0008000000LL, /* I-unit nop */
506 0x0008000000LL, /* M-unit nop */
507 0x4000000000LL, /* B-unit nop */
508 0x0008000000LL, /* F-unit nop */
509 0x0008000000LL, /* L-"unit" nop */
510 0x0008000000LL, /* X-unit nop */
511 };
512
513 /* Can't be `const' as it's passed to input routines (which have the
514 habit of setting temporary sentinels. */
515 static char special_section_name[][20] =
516 {
517 {".bss"}, {".sbss"}, {".sdata"}, {".rodata"}, {".comment"},
518 {".IA_64.unwind"}, {".IA_64.unwind_info"}
519 };
520
521 /* The best template for a particular sequence of up to three
522 instructions: */
523 #define N IA64_NUM_TYPES
524 static unsigned char best_template[N][N][N];
525 #undef N
526
527 /* Resource dependencies currently in effect */
528 static struct rsrc {
529 int depind; /* dependency index */
530 const struct ia64_dependency *dependency; /* actual dependency */
531 unsigned specific:1, /* is this a specific bit/regno? */
532 link_to_qp_branch:1; /* will a branch on the same QP clear it?*/
533 int index; /* specific regno/bit within dependency */
534 int note; /* optional qualifying note (0 if none) */
535 #define STATE_NONE 0
536 #define STATE_STOP 1
537 #define STATE_SRLZ 2
538 int insn_srlz; /* current insn serialization state */
539 int data_srlz; /* current data serialization state */
540 int qp_regno; /* qualifying predicate for this usage */
541 char *file; /* what file marked this dependency */
542 unsigned int line; /* what line marked this dependency */
543 struct mem_offset mem_offset; /* optional memory offset hint */
544 enum { CMP_NONE, CMP_OR, CMP_AND } cmp_type; /* OR or AND compare? */
545 int path; /* corresponding code entry index */
546 } *regdeps = NULL;
547 static int regdepslen = 0;
548 static int regdepstotlen = 0;
549 static const char *dv_mode[] = { "RAW", "WAW", "WAR" };
550 static const char *dv_sem[] = { "none", "implied", "impliedf",
551 "data", "instr", "specific", "stop", "other" };
552 static const char *dv_cmp_type[] = { "none", "OR", "AND" };
553
554 /* Current state of PR mutexation */
555 static struct qpmutex {
556 valueT prmask;
557 int path;
558 } *qp_mutexes = NULL; /* QP mutex bitmasks */
559 static int qp_mutexeslen = 0;
560 static int qp_mutexestotlen = 0;
561 static valueT qp_safe_across_calls = 0;
562
563 /* Current state of PR implications */
564 static struct qp_imply {
565 unsigned p1:6;
566 unsigned p2:6;
567 unsigned p2_branched:1;
568 int path;
569 } *qp_implies = NULL;
570 static int qp_implieslen = 0;
571 static int qp_impliestotlen = 0;
572
573 /* Keep track of static GR values so that indirect register usage can
574 sometimes be tracked. */
575 static struct gr {
576 unsigned known:1;
577 int path;
578 valueT value;
579 } gr_values[128] = {{ 1, 0, 0 }};
580
581 /* These are the routines required to output the various types of
582 unwind records. */
583
584 /* A slot_number is a frag address plus the slot index (0-2). We use the
585 frag address here so that if there is a section switch in the middle of
586 a function, then instructions emitted to a different section are not
587 counted. Since there may be more than one frag for a function, this
588 means we also need to keep track of which frag this address belongs to
589 so we can compute inter-frag distances. This also nicely solves the
590 problem with nops emitted for align directives, which can't easily be
591 counted, but can easily be derived from frag sizes. */
592
593 typedef struct unw_rec_list {
594 unwind_record r;
595 unsigned long slot_number;
596 fragS *slot_frag;
597 struct unw_rec_list *next;
598 } unw_rec_list;
599
600 #define SLOT_NUM_NOT_SET (unsigned)-1
601
602 static struct
603 {
604 unsigned long next_slot_number;
605 fragS *next_slot_frag;
606
607 /* Maintain a list of unwind entries for the current function. */
608 unw_rec_list *list;
609 unw_rec_list *tail;
610
611 /* Any unwind entires that should be attached to the current slot
612 that an insn is being constructed for. */
613 unw_rec_list *current_entry;
614
615 /* These are used to create the unwind table entry for this function. */
616 symbolS *proc_start;
617 symbolS *proc_end;
618 symbolS *info; /* pointer to unwind info */
619 symbolS *personality_routine;
620
621 /* TRUE if processing unwind directives in a prologue region. */
622 int prologue;
623 int prologue_mask;
624 } unwind;
625
626 typedef void (*vbyte_func) PARAMS ((int, char *, char *));
627
628 /* Forward delarations: */
629 static int ar_is_in_integer_unit PARAMS ((int regnum));
630 static void set_section PARAMS ((char *name));
631 static unsigned int set_regstack PARAMS ((unsigned int, unsigned int,
632 unsigned int, unsigned int));
633 static void dot_radix PARAMS ((int));
634 static void dot_special_section PARAMS ((int));
635 static void dot_proc PARAMS ((int));
636 static void dot_fframe PARAMS ((int));
637 static void dot_vframe PARAMS ((int));
638 static void dot_vframesp PARAMS ((int));
639 static void dot_vframepsp PARAMS ((int));
640 static void dot_save PARAMS ((int));
641 static void dot_restore PARAMS ((int));
642 static void dot_restorereg PARAMS ((int));
643 static void dot_restorereg_p PARAMS ((int));
644 static void dot_handlerdata PARAMS ((int));
645 static void dot_unwentry PARAMS ((int));
646 static void dot_altrp PARAMS ((int));
647 static void dot_savemem PARAMS ((int));
648 static void dot_saveg PARAMS ((int));
649 static void dot_savef PARAMS ((int));
650 static void dot_saveb PARAMS ((int));
651 static void dot_savegf PARAMS ((int));
652 static void dot_spill PARAMS ((int));
653 static void dot_spillreg PARAMS ((int));
654 static void dot_spillmem PARAMS ((int));
655 static void dot_spillreg_p PARAMS ((int));
656 static void dot_spillmem_p PARAMS ((int));
657 static void dot_label_state PARAMS ((int));
658 static void dot_copy_state PARAMS ((int));
659 static void dot_unwabi PARAMS ((int));
660 static void dot_personality PARAMS ((int));
661 static void dot_body PARAMS ((int));
662 static void dot_prologue PARAMS ((int));
663 static void dot_endp PARAMS ((int));
664 static void dot_template PARAMS ((int));
665 static void dot_regstk PARAMS ((int));
666 static void dot_rot PARAMS ((int));
667 static void dot_byteorder PARAMS ((int));
668 static void dot_psr PARAMS ((int));
669 static void dot_alias PARAMS ((int));
670 static void dot_ln PARAMS ((int));
671 static char *parse_section_name PARAMS ((void));
672 static void dot_xdata PARAMS ((int));
673 static void stmt_float_cons PARAMS ((int));
674 static void stmt_cons_ua PARAMS ((int));
675 static void dot_xfloat_cons PARAMS ((int));
676 static void dot_xstringer PARAMS ((int));
677 static void dot_xdata_ua PARAMS ((int));
678 static void dot_xfloat_cons_ua PARAMS ((int));
679 static void print_prmask PARAMS ((valueT mask));
680 static void dot_pred_rel PARAMS ((int));
681 static void dot_reg_val PARAMS ((int));
682 static void dot_dv_mode PARAMS ((int));
683 static void dot_entry PARAMS ((int));
684 static void dot_mem_offset PARAMS ((int));
685 static void add_unwind_entry PARAMS((unw_rec_list *ptr));
686 static symbolS *declare_register PARAMS ((const char *name, int regnum));
687 static void declare_register_set PARAMS ((const char *, int, int));
688 static unsigned int operand_width PARAMS ((enum ia64_opnd));
689 static int operand_match PARAMS ((const struct ia64_opcode *idesc,
690 int index, expressionS *e));
691 static int parse_operand PARAMS ((expressionS *e));
692 static struct ia64_opcode * parse_operands PARAMS ((struct ia64_opcode *));
693 static void build_insn PARAMS ((struct slot *, bfd_vma *));
694 static void emit_one_bundle PARAMS ((void));
695 static void fix_insn PARAMS ((fixS *, const struct ia64_operand *, valueT));
696 static bfd_reloc_code_real_type ia64_gen_real_reloc_type PARAMS ((struct symbol *sym,
697 bfd_reloc_code_real_type r_type));
698 static void insn_group_break PARAMS ((int, int, int));
699 static void mark_resource PARAMS ((struct ia64_opcode *, const struct ia64_dependency *,
700 struct rsrc *, int depind, int path));
701 static void add_qp_mutex PARAMS((valueT mask));
702 static void add_qp_imply PARAMS((int p1, int p2));
703 static void clear_qp_branch_flag PARAMS((valueT mask));
704 static void clear_qp_mutex PARAMS((valueT mask));
705 static void clear_qp_implies PARAMS((valueT p1_mask, valueT p2_mask));
706 static void clear_register_values PARAMS ((void));
707 static void print_dependency PARAMS ((const char *action, int depind));
708 static void instruction_serialization PARAMS ((void));
709 static void data_serialization PARAMS ((void));
710 static void remove_marked_resource PARAMS ((struct rsrc *));
711 static int is_conditional_branch PARAMS ((struct ia64_opcode *));
712 static int is_taken_branch PARAMS ((struct ia64_opcode *));
713 static int is_interruption_or_rfi PARAMS ((struct ia64_opcode *));
714 static int depends_on PARAMS ((int, struct ia64_opcode *));
715 static int specify_resource PARAMS ((const struct ia64_dependency *,
716 struct ia64_opcode *, int, struct rsrc [], int, int));
717 static int check_dv PARAMS((struct ia64_opcode *idesc));
718 static void check_dependencies PARAMS((struct ia64_opcode *));
719 static void mark_resources PARAMS((struct ia64_opcode *));
720 static void update_dependencies PARAMS((struct ia64_opcode *));
721 static void note_register_values PARAMS((struct ia64_opcode *));
722 static int qp_mutex PARAMS ((int, int, int));
723 static int resources_match PARAMS ((struct rsrc *, struct ia64_opcode *, int, int, int));
724 static void output_vbyte_mem PARAMS ((int, char *, char *));
725 static void count_output PARAMS ((int, char *, char *));
726 static void output_R1_format PARAMS ((vbyte_func, unw_record_type, int));
727 static void output_R2_format PARAMS ((vbyte_func, int, int, unsigned long));
728 static void output_R3_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
729 static void output_P1_format PARAMS ((vbyte_func, int));
730 static void output_P2_format PARAMS ((vbyte_func, int, int));
731 static void output_P3_format PARAMS ((vbyte_func, unw_record_type, int));
732 static void output_P4_format PARAMS ((vbyte_func, unsigned char *, unsigned long));
733 static void output_P5_format PARAMS ((vbyte_func, int, unsigned long));
734 static void output_P6_format PARAMS ((vbyte_func, unw_record_type, int));
735 static void output_P7_format PARAMS ((vbyte_func, unw_record_type, unsigned long, unsigned long));
736 static void output_P8_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
737 static void output_P9_format PARAMS ((vbyte_func, int, int));
738 static void output_P10_format PARAMS ((vbyte_func, int, int));
739 static void output_B1_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
740 static void output_B2_format PARAMS ((vbyte_func, unsigned long, unsigned long));
741 static void output_B3_format PARAMS ((vbyte_func, unsigned long, unsigned long));
742 static void output_B4_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
743 static char format_ab_reg PARAMS ((int, int));
744 static void output_X1_format PARAMS ((vbyte_func, unw_record_type, int, int, unsigned long,
745 unsigned long));
746 static void output_X2_format PARAMS ((vbyte_func, int, int, int, int, int, unsigned long));
747 static void output_X3_format PARAMS ((vbyte_func, unw_record_type, int, int, int, unsigned long,
748 unsigned long));
749 static void output_X4_format PARAMS ((vbyte_func, int, int, int, int, int, int, unsigned long));
750 static void free_list_records PARAMS ((unw_rec_list *));
751 static unw_rec_list *output_prologue PARAMS ((void));
752 static unw_rec_list *output_prologue_gr PARAMS ((unsigned int, unsigned int));
753 static unw_rec_list *output_body PARAMS ((void));
754 static unw_rec_list *output_mem_stack_f PARAMS ((unsigned int));
755 static unw_rec_list *output_mem_stack_v PARAMS ((void));
756 static unw_rec_list *output_psp_gr PARAMS ((unsigned int));
757 static unw_rec_list *output_psp_sprel PARAMS ((unsigned int));
758 static unw_rec_list *output_rp_when PARAMS ((void));
759 static unw_rec_list *output_rp_gr PARAMS ((unsigned int));
760 static unw_rec_list *output_rp_br PARAMS ((unsigned int));
761 static unw_rec_list *output_rp_psprel PARAMS ((unsigned int));
762 static unw_rec_list *output_rp_sprel PARAMS ((unsigned int));
763 static unw_rec_list *output_pfs_when PARAMS ((void));
764 static unw_rec_list *output_pfs_gr PARAMS ((unsigned int));
765 static unw_rec_list *output_pfs_psprel PARAMS ((unsigned int));
766 static unw_rec_list *output_pfs_sprel PARAMS ((unsigned int));
767 static unw_rec_list *output_preds_when PARAMS ((void));
768 static unw_rec_list *output_preds_gr PARAMS ((unsigned int));
769 static unw_rec_list *output_preds_psprel PARAMS ((unsigned int));
770 static unw_rec_list *output_preds_sprel PARAMS ((unsigned int));
771 static unw_rec_list *output_fr_mem PARAMS ((unsigned int));
772 static unw_rec_list *output_frgr_mem PARAMS ((unsigned int, unsigned int));
773 static unw_rec_list *output_gr_gr PARAMS ((unsigned int, unsigned int));
774 static unw_rec_list *output_gr_mem PARAMS ((unsigned int));
775 static unw_rec_list *output_br_mem PARAMS ((unsigned int));
776 static unw_rec_list *output_br_gr PARAMS ((unsigned int, unsigned int));
777 static unw_rec_list *output_spill_base PARAMS ((unsigned int));
778 static unw_rec_list *output_unat_when PARAMS ((void));
779 static unw_rec_list *output_unat_gr PARAMS ((unsigned int));
780 static unw_rec_list *output_unat_psprel PARAMS ((unsigned int));
781 static unw_rec_list *output_unat_sprel PARAMS ((unsigned int));
782 static unw_rec_list *output_lc_when PARAMS ((void));
783 static unw_rec_list *output_lc_gr PARAMS ((unsigned int));
784 static unw_rec_list *output_lc_psprel PARAMS ((unsigned int));
785 static unw_rec_list *output_lc_sprel PARAMS ((unsigned int));
786 static unw_rec_list *output_fpsr_when PARAMS ((void));
787 static unw_rec_list *output_fpsr_gr PARAMS ((unsigned int));
788 static unw_rec_list *output_fpsr_psprel PARAMS ((unsigned int));
789 static unw_rec_list *output_fpsr_sprel PARAMS ((unsigned int));
790 static unw_rec_list *output_priunat_when_gr PARAMS ((void));
791 static unw_rec_list *output_priunat_when_mem PARAMS ((void));
792 static unw_rec_list *output_priunat_gr PARAMS ((unsigned int));
793 static unw_rec_list *output_priunat_psprel PARAMS ((unsigned int));
794 static unw_rec_list *output_priunat_sprel PARAMS ((unsigned int));
795 static unw_rec_list *output_bsp_when PARAMS ((void));
796 static unw_rec_list *output_bsp_gr PARAMS ((unsigned int));
797 static unw_rec_list *output_bsp_psprel PARAMS ((unsigned int));
798 static unw_rec_list *output_bsp_sprel PARAMS ((unsigned int));
799 static unw_rec_list *output_bspstore_when PARAMS ((void));
800 static unw_rec_list *output_bspstore_gr PARAMS ((unsigned int));
801 static unw_rec_list *output_bspstore_psprel PARAMS ((unsigned int));
802 static unw_rec_list *output_bspstore_sprel PARAMS ((unsigned int));
803 static unw_rec_list *output_rnat_when PARAMS ((void));
804 static unw_rec_list *output_rnat_gr PARAMS ((unsigned int));
805 static unw_rec_list *output_rnat_psprel PARAMS ((unsigned int));
806 static unw_rec_list *output_rnat_sprel PARAMS ((unsigned int));
807 static unw_rec_list *output_unwabi PARAMS ((unsigned long, unsigned long));
808 static unw_rec_list *output_epilogue PARAMS ((unsigned long));
809 static unw_rec_list *output_label_state PARAMS ((unsigned long));
810 static unw_rec_list *output_copy_state PARAMS ((unsigned long));
811 static unw_rec_list *output_spill_psprel PARAMS ((unsigned int, unsigned int, unsigned int));
812 static unw_rec_list *output_spill_sprel PARAMS ((unsigned int, unsigned int, unsigned int));
813 static unw_rec_list *output_spill_psprel_p PARAMS ((unsigned int, unsigned int, unsigned int,
814 unsigned int));
815 static unw_rec_list *output_spill_sprel_p PARAMS ((unsigned int, unsigned int, unsigned int,
816 unsigned int));
817 static unw_rec_list *output_spill_reg PARAMS ((unsigned int, unsigned int, unsigned int,
818 unsigned int));
819 static unw_rec_list *output_spill_reg_p PARAMS ((unsigned int, unsigned int, unsigned int,
820 unsigned int, unsigned int));
821 static void process_one_record PARAMS ((unw_rec_list *, vbyte_func));
822 static void process_unw_records PARAMS ((unw_rec_list *, vbyte_func));
823 static int calc_record_size PARAMS ((unw_rec_list *));
824 static void set_imask PARAMS ((unw_rec_list *, unsigned long, unsigned long, unsigned int));
825 static int count_bits PARAMS ((unsigned long));
826 static unsigned long slot_index PARAMS ((unsigned long, fragS *,
827 unsigned long, fragS *));
828 static void fixup_unw_records PARAMS ((unw_rec_list *));
829 static int output_unw_records PARAMS ((unw_rec_list *, void **));
830 static int convert_expr_to_ab_reg PARAMS ((expressionS *, unsigned int *, unsigned int *));
831 static int convert_expr_to_xy_reg PARAMS ((expressionS *, unsigned int *, unsigned int *));
832 static int generate_unwind_image PARAMS ((void));
833
834 /* Determine if application register REGNUM resides in the integer
835 unit (as opposed to the memory unit). */
836 static int
837 ar_is_in_integer_unit (reg)
838 int reg;
839 {
840 reg -= REG_AR;
841
842 return (reg == 64 /* pfs */
843 || reg == 65 /* lc */
844 || reg == 66 /* ec */
845 /* ??? ias accepts and puts these in the integer unit. */
846 || (reg >= 112 && reg <= 127));
847 }
848
849 /* Switch to section NAME and create section if necessary. It's
850 rather ugly that we have to manipulate input_line_pointer but I
851 don't see any other way to accomplish the same thing without
852 changing obj-elf.c (which may be the Right Thing, in the end). */
853 static void
854 set_section (name)
855 char *name;
856 {
857 char *saved_input_line_pointer;
858
859 saved_input_line_pointer = input_line_pointer;
860 input_line_pointer = name;
861 obj_elf_section (0);
862 input_line_pointer = saved_input_line_pointer;
863 }
864
865 /* Map SHF_IA_64_SHORT to SEC_SMALL_DATA. */
866
867 flagword
868 ia64_elf_section_flags (flags, attr, type)
869 flagword flags;
870 int attr, type ATTRIBUTE_UNUSED;
871 {
872 if (attr & SHF_IA_64_SHORT)
873 flags |= SEC_SMALL_DATA;
874 return flags;
875 }
876
877 static unsigned int
878 set_regstack (ins, locs, outs, rots)
879 unsigned int ins, locs, outs, rots;
880 {
881 /* Size of frame. */
882 unsigned int sof;
883
884 sof = ins + locs + outs;
885 if (sof > 96)
886 {
887 as_bad ("Size of frame exceeds maximum of 96 registers");
888 return 0;
889 }
890 if (rots > sof)
891 {
892 as_warn ("Size of rotating registers exceeds frame size");
893 return 0;
894 }
895 md.in.base = REG_GR + 32;
896 md.loc.base = md.in.base + ins;
897 md.out.base = md.loc.base + locs;
898
899 md.in.num_regs = ins;
900 md.loc.num_regs = locs;
901 md.out.num_regs = outs;
902 md.rot.num_regs = rots;
903 return sof;
904 }
905
906 void
907 ia64_flush_insns ()
908 {
909 struct label_fix *lfix;
910 segT saved_seg;
911 subsegT saved_subseg;
912 unw_rec_list *ptr;
913
914 if (!md.last_text_seg)
915 return;
916
917 saved_seg = now_seg;
918 saved_subseg = now_subseg;
919
920 subseg_set (md.last_text_seg, 0);
921
922 while (md.num_slots_in_use > 0)
923 emit_one_bundle (); /* force out queued instructions */
924
925 /* In case there are labels following the last instruction, resolve
926 those now: */
927 for (lfix = CURR_SLOT.label_fixups; lfix; lfix = lfix->next)
928 {
929 S_SET_VALUE (lfix->sym, frag_now_fix ());
930 symbol_set_frag (lfix->sym, frag_now);
931 }
932 CURR_SLOT.label_fixups = 0;
933 for (lfix = CURR_SLOT.tag_fixups; lfix; lfix = lfix->next)
934 {
935 S_SET_VALUE (lfix->sym, frag_now_fix ());
936 symbol_set_frag (lfix->sym, frag_now);
937 }
938 CURR_SLOT.tag_fixups = 0;
939
940 /* In case there are unwind directives following the last instruction,
941 resolve those now. We only handle body and prologue directives here.
942 Give an error for others. */
943 for (ptr = unwind.current_entry; ptr; ptr = ptr->next)
944 {
945 if (ptr->r.type == prologue || ptr->r.type == prologue_gr
946 || ptr->r.type == body)
947 {
948 ptr->slot_number = (unsigned long) frag_more (0);
949 ptr->slot_frag = frag_now;
950 }
951 else
952 as_bad (_("Unwind directive not followed by an instruction."));
953 }
954 unwind.current_entry = NULL;
955
956 subseg_set (saved_seg, saved_subseg);
957
958 if (md.qp.X_op == O_register)
959 as_bad ("qualifying predicate not followed by instruction");
960 }
961
962 void
963 ia64_do_align (nbytes)
964 int nbytes;
965 {
966 char *saved_input_line_pointer = input_line_pointer;
967
968 input_line_pointer = "";
969 s_align_bytes (nbytes);
970 input_line_pointer = saved_input_line_pointer;
971 }
972
973 void
974 ia64_cons_align (nbytes)
975 int nbytes;
976 {
977 if (md.auto_align)
978 {
979 char *saved_input_line_pointer = input_line_pointer;
980 input_line_pointer = "";
981 s_align_bytes (nbytes);
982 input_line_pointer = saved_input_line_pointer;
983 }
984 }
985
986 /* Output COUNT bytes to a memory location. */
987 static unsigned char *vbyte_mem_ptr = NULL;
988
989 void
990 output_vbyte_mem (count, ptr, comment)
991 int count;
992 char *ptr;
993 char *comment ATTRIBUTE_UNUSED;
994 {
995 int x;
996 if (vbyte_mem_ptr == NULL)
997 abort ();
998
999 if (count == 0)
1000 return;
1001 for (x = 0; x < count; x++)
1002 *(vbyte_mem_ptr++) = ptr[x];
1003 }
1004
1005 /* Count the number of bytes required for records. */
1006 static int vbyte_count = 0;
1007 void
1008 count_output (count, ptr, comment)
1009 int count;
1010 char *ptr ATTRIBUTE_UNUSED;
1011 char *comment ATTRIBUTE_UNUSED;
1012 {
1013 vbyte_count += count;
1014 }
1015
1016 static void
1017 output_R1_format (f, rtype, rlen)
1018 vbyte_func f;
1019 unw_record_type rtype;
1020 int rlen;
1021 {
1022 int r = 0;
1023 char byte;
1024 if (rlen > 0x1f)
1025 {
1026 output_R3_format (f, rtype, rlen);
1027 return;
1028 }
1029
1030 if (rtype == body)
1031 r = 1;
1032 else if (rtype != prologue)
1033 as_bad ("record type is not valid");
1034
1035 byte = UNW_R1 | (r << 5) | (rlen & 0x1f);
1036 (*f) (1, &byte, NULL);
1037 }
1038
1039 static void
1040 output_R2_format (f, mask, grsave, rlen)
1041 vbyte_func f;
1042 int mask, grsave;
1043 unsigned long rlen;
1044 {
1045 char bytes[20];
1046 int count = 2;
1047 mask = (mask & 0x0f);
1048 grsave = (grsave & 0x7f);
1049
1050 bytes[0] = (UNW_R2 | (mask >> 1));
1051 bytes[1] = (((mask & 0x01) << 7) | grsave);
1052 count += output_leb128 (bytes + 2, rlen, 0);
1053 (*f) (count, bytes, NULL);
1054 }
1055
1056 static void
1057 output_R3_format (f, rtype, rlen)
1058 vbyte_func f;
1059 unw_record_type rtype;
1060 unsigned long rlen;
1061 {
1062 int r = 0, count;
1063 char bytes[20];
1064 if (rlen <= 0x1f)
1065 {
1066 output_R1_format (f, rtype, rlen);
1067 return;
1068 }
1069
1070 if (rtype == body)
1071 r = 1;
1072 else if (rtype != prologue)
1073 as_bad ("record type is not valid");
1074 bytes[0] = (UNW_R3 | r);
1075 count = output_leb128 (bytes + 1, rlen, 0);
1076 (*f) (count + 1, bytes, NULL);
1077 }
1078
1079 static void
1080 output_P1_format (f, brmask)
1081 vbyte_func f;
1082 int brmask;
1083 {
1084 char byte;
1085 byte = UNW_P1 | (brmask & 0x1f);
1086 (*f) (1, &byte, NULL);
1087 }
1088
1089 static void
1090 output_P2_format (f, brmask, gr)
1091 vbyte_func f;
1092 int brmask;
1093 int gr;
1094 {
1095 char bytes[2];
1096 brmask = (brmask & 0x1f);
1097 bytes[0] = UNW_P2 | (brmask >> 1);
1098 bytes[1] = (((brmask & 1) << 7) | gr);
1099 (*f) (2, bytes, NULL);
1100 }
1101
1102 static void
1103 output_P3_format (f, rtype, reg)
1104 vbyte_func f;
1105 unw_record_type rtype;
1106 int reg;
1107 {
1108 char bytes[2];
1109 int r = 0;
1110 reg = (reg & 0x7f);
1111 switch (rtype)
1112 {
1113 case psp_gr:
1114 r = 0;
1115 break;
1116 case rp_gr:
1117 r = 1;
1118 break;
1119 case pfs_gr:
1120 r = 2;
1121 break;
1122 case preds_gr:
1123 r = 3;
1124 break;
1125 case unat_gr:
1126 r = 4;
1127 break;
1128 case lc_gr:
1129 r = 5;
1130 break;
1131 case rp_br:
1132 r = 6;
1133 break;
1134 case rnat_gr:
1135 r = 7;
1136 break;
1137 case bsp_gr:
1138 r = 8;
1139 break;
1140 case bspstore_gr:
1141 r = 9;
1142 break;
1143 case fpsr_gr:
1144 r = 10;
1145 break;
1146 case priunat_gr:
1147 r = 11;
1148 break;
1149 default:
1150 as_bad ("Invalid record type for P3 format.");
1151 }
1152 bytes[0] = (UNW_P3 | (r >> 1));
1153 bytes[1] = (((r & 1) << 7) | reg);
1154 (*f) (2, bytes, NULL);
1155 }
1156
1157 static void
1158 output_P4_format (f, imask, imask_size)
1159 vbyte_func f;
1160 unsigned char *imask;
1161 unsigned long imask_size;
1162 {
1163 imask[0] = UNW_P4;
1164 (*f) (imask_size, imask, NULL);
1165 }
1166
1167 static void
1168 output_P5_format (f, grmask, frmask)
1169 vbyte_func f;
1170 int grmask;
1171 unsigned long frmask;
1172 {
1173 char bytes[4];
1174 grmask = (grmask & 0x0f);
1175
1176 bytes[0] = UNW_P5;
1177 bytes[1] = ((grmask << 4) | ((frmask & 0x000f0000) >> 16));
1178 bytes[2] = ((frmask & 0x0000ff00) >> 8);
1179 bytes[3] = (frmask & 0x000000ff);
1180 (*f) (4, bytes, NULL);
1181 }
1182
1183 static void
1184 output_P6_format (f, rtype, rmask)
1185 vbyte_func f;
1186 unw_record_type rtype;
1187 int rmask;
1188 {
1189 char byte;
1190 int r = 0;
1191
1192 if (rtype == gr_mem)
1193 r = 1;
1194 else if (rtype != fr_mem)
1195 as_bad ("Invalid record type for format P6");
1196 byte = (UNW_P6 | (r << 4) | (rmask & 0x0f));
1197 (*f) (1, &byte, NULL);
1198 }
1199
1200 static void
1201 output_P7_format (f, rtype, w1, w2)
1202 vbyte_func f;
1203 unw_record_type rtype;
1204 unsigned long w1;
1205 unsigned long w2;
1206 {
1207 char bytes[20];
1208 int count = 1;
1209 int r = 0;
1210 count += output_leb128 (bytes + 1, w1, 0);
1211 switch (rtype)
1212 {
1213 case mem_stack_f:
1214 r = 0;
1215 count += output_leb128 (bytes + count, w2 >> 4, 0);
1216 break;
1217 case mem_stack_v:
1218 r = 1;
1219 break;
1220 case spill_base:
1221 r = 2;
1222 break;
1223 case psp_sprel:
1224 r = 3;
1225 break;
1226 case rp_when:
1227 r = 4;
1228 break;
1229 case rp_psprel:
1230 r = 5;
1231 break;
1232 case pfs_when:
1233 r = 6;
1234 break;
1235 case pfs_psprel:
1236 r = 7;
1237 break;
1238 case preds_when:
1239 r = 8;
1240 break;
1241 case preds_psprel:
1242 r = 9;
1243 break;
1244 case lc_when:
1245 r = 10;
1246 break;
1247 case lc_psprel:
1248 r = 11;
1249 break;
1250 case unat_when:
1251 r = 12;
1252 break;
1253 case unat_psprel:
1254 r = 13;
1255 break;
1256 case fpsr_when:
1257 r = 14;
1258 break;
1259 case fpsr_psprel:
1260 r = 15;
1261 break;
1262 default:
1263 break;
1264 }
1265 bytes[0] = (UNW_P7 | r);
1266 (*f) (count, bytes, NULL);
1267 }
1268
1269 static void
1270 output_P8_format (f, rtype, t)
1271 vbyte_func f;
1272 unw_record_type rtype;
1273 unsigned long t;
1274 {
1275 char bytes[20];
1276 int r = 0;
1277 int count = 2;
1278 bytes[0] = UNW_P8;
1279 switch (rtype)
1280 {
1281 case rp_sprel:
1282 r = 1;
1283 break;
1284 case pfs_sprel:
1285 r = 2;
1286 break;
1287 case preds_sprel:
1288 r = 3;
1289 break;
1290 case lc_sprel:
1291 r = 4;
1292 break;
1293 case unat_sprel:
1294 r = 5;
1295 break;
1296 case fpsr_sprel:
1297 r = 6;
1298 break;
1299 case bsp_when:
1300 r = 7;
1301 break;
1302 case bsp_psprel:
1303 r = 8;
1304 break;
1305 case bsp_sprel:
1306 r = 9;
1307 break;
1308 case bspstore_when:
1309 r = 10;
1310 break;
1311 case bspstore_psprel:
1312 r = 11;
1313 break;
1314 case bspstore_sprel:
1315 r = 12;
1316 break;
1317 case rnat_when:
1318 r = 13;
1319 break;
1320 case rnat_psprel:
1321 r = 14;
1322 break;
1323 case rnat_sprel:
1324 r = 15;
1325 break;
1326 case priunat_when_gr:
1327 r = 16;
1328 break;
1329 case priunat_psprel:
1330 r = 17;
1331 break;
1332 case priunat_sprel:
1333 r = 18;
1334 break;
1335 case priunat_when_mem:
1336 r = 19;
1337 break;
1338 default:
1339 break;
1340 }
1341 bytes[1] = r;
1342 count += output_leb128 (bytes + 2, t, 0);
1343 (*f) (count, bytes, NULL);
1344 }
1345
1346 static void
1347 output_P9_format (f, grmask, gr)
1348 vbyte_func f;
1349 int grmask;
1350 int gr;
1351 {
1352 char bytes[3];
1353 bytes[0] = UNW_P9;
1354 bytes[1] = (grmask & 0x0f);
1355 bytes[2] = (gr & 0x7f);
1356 (*f) (3, bytes, NULL);
1357 }
1358
1359 static void
1360 output_P10_format (f, abi, context)
1361 vbyte_func f;
1362 int abi;
1363 int context;
1364 {
1365 char bytes[3];
1366 bytes[0] = UNW_P10;
1367 bytes[1] = (abi & 0xff);
1368 bytes[2] = (context & 0xff);
1369 (*f) (3, bytes, NULL);
1370 }
1371
1372 static void
1373 output_B1_format (f, rtype, label)
1374 vbyte_func f;
1375 unw_record_type rtype;
1376 unsigned long label;
1377 {
1378 char byte;
1379 int r = 0;
1380 if (label > 0x1f)
1381 {
1382 output_B4_format (f, rtype, label);
1383 return;
1384 }
1385 if (rtype == copy_state)
1386 r = 1;
1387 else if (rtype != label_state)
1388 as_bad ("Invalid record type for format B1");
1389
1390 byte = (UNW_B1 | (r << 5) | (label & 0x1f));
1391 (*f) (1, &byte, NULL);
1392 }
1393
1394 static void
1395 output_B2_format (f, ecount, t)
1396 vbyte_func f;
1397 unsigned long ecount;
1398 unsigned long t;
1399 {
1400 char bytes[20];
1401 int count = 1;
1402 if (ecount > 0x1f)
1403 {
1404 output_B3_format (f, ecount, t);
1405 return;
1406 }
1407 bytes[0] = (UNW_B2 | (ecount & 0x1f));
1408 count += output_leb128 (bytes + 1, t, 0);
1409 (*f) (count, bytes, NULL);
1410 }
1411
1412 static void
1413 output_B3_format (f, ecount, t)
1414 vbyte_func f;
1415 unsigned long ecount;
1416 unsigned long t;
1417 {
1418 char bytes[20];
1419 int count = 1;
1420 if (ecount <= 0x1f)
1421 {
1422 output_B2_format (f, ecount, t);
1423 return;
1424 }
1425 bytes[0] = UNW_B3;
1426 count += output_leb128 (bytes + 1, t, 0);
1427 count += output_leb128 (bytes + count, ecount, 0);
1428 (*f) (count, bytes, NULL);
1429 }
1430
1431 static void
1432 output_B4_format (f, rtype, label)
1433 vbyte_func f;
1434 unw_record_type rtype;
1435 unsigned long label;
1436 {
1437 char bytes[20];
1438 int r = 0;
1439 int count = 1;
1440 if (label <= 0x1f)
1441 {
1442 output_B1_format (f, rtype, label);
1443 return;
1444 }
1445
1446 if (rtype == copy_state)
1447 r = 1;
1448 else if (rtype != label_state)
1449 as_bad ("Invalid record type for format B1");
1450
1451 bytes[0] = (UNW_B4 | (r << 3));
1452 count += output_leb128 (bytes + 1, label, 0);
1453 (*f) (count, bytes, NULL);
1454 }
1455
1456 static char
1457 format_ab_reg (ab, reg)
1458 int ab;
1459 int reg;
1460 {
1461 int ret;
1462 ab = (ab & 3);
1463 reg = (reg & 0x1f);
1464 ret = (ab << 5) | reg;
1465 return ret;
1466 }
1467
1468 static void
1469 output_X1_format (f, rtype, ab, reg, t, w1)
1470 vbyte_func f;
1471 unw_record_type rtype;
1472 int ab, reg;
1473 unsigned long t;
1474 unsigned long w1;
1475 {
1476 char bytes[20];
1477 int r = 0;
1478 int count = 2;
1479 bytes[0] = UNW_X1;
1480
1481 if (rtype == spill_sprel)
1482 r = 1;
1483 else if (rtype != spill_psprel)
1484 as_bad ("Invalid record type for format X1");
1485 bytes[1] = ((r << 7) | format_ab_reg (ab, reg));
1486 count += output_leb128 (bytes + 2, t, 0);
1487 count += output_leb128 (bytes + count, w1, 0);
1488 (*f) (count, bytes, NULL);
1489 }
1490
1491 static void
1492 output_X2_format (f, ab, reg, x, y, treg, t)
1493 vbyte_func f;
1494 int ab, reg;
1495 int x, y, treg;
1496 unsigned long t;
1497 {
1498 char bytes[20];
1499 int count = 3;
1500 bytes[0] = UNW_X2;
1501 bytes[1] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1502 bytes[2] = (((y & 1) << 7) | (treg & 0x7f));
1503 count += output_leb128 (bytes + 3, t, 0);
1504 (*f) (count, bytes, NULL);
1505 }
1506
1507 static void
1508 output_X3_format (f, rtype, qp, ab, reg, t, w1)
1509 vbyte_func f;
1510 unw_record_type rtype;
1511 int qp;
1512 int ab, reg;
1513 unsigned long t;
1514 unsigned long w1;
1515 {
1516 char bytes[20];
1517 int r = 0;
1518 int count = 3;
1519 bytes[0] = UNW_X3;
1520
1521 if (rtype == spill_sprel_p)
1522 r = 1;
1523 else if (rtype != spill_psprel_p)
1524 as_bad ("Invalid record type for format X3");
1525 bytes[1] = ((r << 7) | (qp & 0x3f));
1526 bytes[2] = format_ab_reg (ab, reg);
1527 count += output_leb128 (bytes + 3, t, 0);
1528 count += output_leb128 (bytes + count, w1, 0);
1529 (*f) (count, bytes, NULL);
1530 }
1531
1532 static void
1533 output_X4_format (f, qp, ab, reg, x, y, treg, t)
1534 vbyte_func f;
1535 int qp;
1536 int ab, reg;
1537 int x, y, treg;
1538 unsigned long t;
1539 {
1540 char bytes[20];
1541 int count = 4;
1542 bytes[0] = UNW_X4;
1543 bytes[1] = (qp & 0x3f);
1544 bytes[2] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1545 bytes[3] = (((y & 1) << 7) | (treg & 0x7f));
1546 count += output_leb128 (bytes + 4, t, 0);
1547 (*f) (count, bytes, NULL);
1548 }
1549
1550 /* This function allocates a record list structure, and initializes fields. */
1551
1552 static unw_rec_list *
1553 alloc_record (unw_record_type t)
1554 {
1555 unw_rec_list *ptr;
1556 ptr = xmalloc (sizeof (*ptr));
1557 ptr->next = NULL;
1558 ptr->slot_number = SLOT_NUM_NOT_SET;
1559 ptr->r.type = t;
1560 return ptr;
1561 }
1562
1563 /* This function frees an entire list of record structures. */
1564
1565 void
1566 free_list_records (unw_rec_list *first)
1567 {
1568 unw_rec_list *ptr;
1569 for (ptr = first; ptr != NULL;)
1570 {
1571 unw_rec_list *tmp = ptr;
1572
1573 if ((tmp->r.type == prologue || tmp->r.type == prologue_gr)
1574 && tmp->r.record.r.mask.i)
1575 free (tmp->r.record.r.mask.i);
1576
1577 ptr = ptr->next;
1578 free (tmp);
1579 }
1580 }
1581
1582 static unw_rec_list *
1583 output_prologue ()
1584 {
1585 unw_rec_list *ptr = alloc_record (prologue);
1586 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1587 return ptr;
1588 }
1589
1590 static unw_rec_list *
1591 output_prologue_gr (saved_mask, reg)
1592 unsigned int saved_mask;
1593 unsigned int reg;
1594 {
1595 unw_rec_list *ptr = alloc_record (prologue_gr);
1596 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1597 ptr->r.record.r.grmask = saved_mask;
1598 ptr->r.record.r.grsave = reg;
1599 return ptr;
1600 }
1601
1602 static unw_rec_list *
1603 output_body ()
1604 {
1605 unw_rec_list *ptr = alloc_record (body);
1606 return ptr;
1607 }
1608
1609 static unw_rec_list *
1610 output_mem_stack_f (size)
1611 unsigned int size;
1612 {
1613 unw_rec_list *ptr = alloc_record (mem_stack_f);
1614 ptr->r.record.p.size = size;
1615 return ptr;
1616 }
1617
1618 static unw_rec_list *
1619 output_mem_stack_v ()
1620 {
1621 unw_rec_list *ptr = alloc_record (mem_stack_v);
1622 return ptr;
1623 }
1624
1625 static unw_rec_list *
1626 output_psp_gr (gr)
1627 unsigned int gr;
1628 {
1629 unw_rec_list *ptr = alloc_record (psp_gr);
1630 ptr->r.record.p.gr = gr;
1631 return ptr;
1632 }
1633
1634 static unw_rec_list *
1635 output_psp_sprel (offset)
1636 unsigned int offset;
1637 {
1638 unw_rec_list *ptr = alloc_record (psp_sprel);
1639 ptr->r.record.p.spoff = offset / 4;
1640 return ptr;
1641 }
1642
1643 static unw_rec_list *
1644 output_rp_when ()
1645 {
1646 unw_rec_list *ptr = alloc_record (rp_when);
1647 return ptr;
1648 }
1649
1650 static unw_rec_list *
1651 output_rp_gr (gr)
1652 unsigned int gr;
1653 {
1654 unw_rec_list *ptr = alloc_record (rp_gr);
1655 ptr->r.record.p.gr = gr;
1656 return ptr;
1657 }
1658
1659 static unw_rec_list *
1660 output_rp_br (br)
1661 unsigned int br;
1662 {
1663 unw_rec_list *ptr = alloc_record (rp_br);
1664 ptr->r.record.p.br = br;
1665 return ptr;
1666 }
1667
1668 static unw_rec_list *
1669 output_rp_psprel (offset)
1670 unsigned int offset;
1671 {
1672 unw_rec_list *ptr = alloc_record (rp_psprel);
1673 ptr->r.record.p.pspoff = offset / 4;
1674 return ptr;
1675 }
1676
1677 static unw_rec_list *
1678 output_rp_sprel (offset)
1679 unsigned int offset;
1680 {
1681 unw_rec_list *ptr = alloc_record (rp_sprel);
1682 ptr->r.record.p.spoff = offset / 4;
1683 return ptr;
1684 }
1685
1686 static unw_rec_list *
1687 output_pfs_when ()
1688 {
1689 unw_rec_list *ptr = alloc_record (pfs_when);
1690 return ptr;
1691 }
1692
1693 static unw_rec_list *
1694 output_pfs_gr (gr)
1695 unsigned int gr;
1696 {
1697 unw_rec_list *ptr = alloc_record (pfs_gr);
1698 ptr->r.record.p.gr = gr;
1699 return ptr;
1700 }
1701
1702 static unw_rec_list *
1703 output_pfs_psprel (offset)
1704 unsigned int offset;
1705 {
1706 unw_rec_list *ptr = alloc_record (pfs_psprel);
1707 ptr->r.record.p.pspoff = offset / 4;
1708 return ptr;
1709 }
1710
1711 static unw_rec_list *
1712 output_pfs_sprel (offset)
1713 unsigned int offset;
1714 {
1715 unw_rec_list *ptr = alloc_record (pfs_sprel);
1716 ptr->r.record.p.spoff = offset / 4;
1717 return ptr;
1718 }
1719
1720 static unw_rec_list *
1721 output_preds_when ()
1722 {
1723 unw_rec_list *ptr = alloc_record (preds_when);
1724 return ptr;
1725 }
1726
1727 static unw_rec_list *
1728 output_preds_gr (gr)
1729 unsigned int gr;
1730 {
1731 unw_rec_list *ptr = alloc_record (preds_gr);
1732 ptr->r.record.p.gr = gr;
1733 return ptr;
1734 }
1735
1736 static unw_rec_list *
1737 output_preds_psprel (offset)
1738 unsigned int offset;
1739 {
1740 unw_rec_list *ptr = alloc_record (preds_psprel);
1741 ptr->r.record.p.pspoff = offset / 4;
1742 return ptr;
1743 }
1744
1745 static unw_rec_list *
1746 output_preds_sprel (offset)
1747 unsigned int offset;
1748 {
1749 unw_rec_list *ptr = alloc_record (preds_sprel);
1750 ptr->r.record.p.spoff = offset / 4;
1751 return ptr;
1752 }
1753
1754 static unw_rec_list *
1755 output_fr_mem (mask)
1756 unsigned int mask;
1757 {
1758 unw_rec_list *ptr = alloc_record (fr_mem);
1759 ptr->r.record.p.rmask = mask;
1760 return ptr;
1761 }
1762
1763 static unw_rec_list *
1764 output_frgr_mem (gr_mask, fr_mask)
1765 unsigned int gr_mask;
1766 unsigned int fr_mask;
1767 {
1768 unw_rec_list *ptr = alloc_record (frgr_mem);
1769 ptr->r.record.p.grmask = gr_mask;
1770 ptr->r.record.p.frmask = fr_mask;
1771 return ptr;
1772 }
1773
1774 static unw_rec_list *
1775 output_gr_gr (mask, reg)
1776 unsigned int mask;
1777 unsigned int reg;
1778 {
1779 unw_rec_list *ptr = alloc_record (gr_gr);
1780 ptr->r.record.p.grmask = mask;
1781 ptr->r.record.p.gr = reg;
1782 return ptr;
1783 }
1784
1785 static unw_rec_list *
1786 output_gr_mem (mask)
1787 unsigned int mask;
1788 {
1789 unw_rec_list *ptr = alloc_record (gr_mem);
1790 ptr->r.record.p.rmask = mask;
1791 return ptr;
1792 }
1793
1794 static unw_rec_list *
1795 output_br_mem (unsigned int mask)
1796 {
1797 unw_rec_list *ptr = alloc_record (br_mem);
1798 ptr->r.record.p.brmask = mask;
1799 return ptr;
1800 }
1801
1802 static unw_rec_list *
1803 output_br_gr (save_mask, reg)
1804 unsigned int save_mask;
1805 unsigned int reg;
1806 {
1807 unw_rec_list *ptr = alloc_record (br_gr);
1808 ptr->r.record.p.brmask = save_mask;
1809 ptr->r.record.p.gr = reg;
1810 return ptr;
1811 }
1812
1813 static unw_rec_list *
1814 output_spill_base (offset)
1815 unsigned int offset;
1816 {
1817 unw_rec_list *ptr = alloc_record (spill_base);
1818 ptr->r.record.p.pspoff = offset / 4;
1819 return ptr;
1820 }
1821
1822 static unw_rec_list *
1823 output_unat_when ()
1824 {
1825 unw_rec_list *ptr = alloc_record (unat_when);
1826 return ptr;
1827 }
1828
1829 static unw_rec_list *
1830 output_unat_gr (gr)
1831 unsigned int gr;
1832 {
1833 unw_rec_list *ptr = alloc_record (unat_gr);
1834 ptr->r.record.p.gr = gr;
1835 return ptr;
1836 }
1837
1838 static unw_rec_list *
1839 output_unat_psprel (offset)
1840 unsigned int offset;
1841 {
1842 unw_rec_list *ptr = alloc_record (unat_psprel);
1843 ptr->r.record.p.pspoff = offset / 4;
1844 return ptr;
1845 }
1846
1847 static unw_rec_list *
1848 output_unat_sprel (offset)
1849 unsigned int offset;
1850 {
1851 unw_rec_list *ptr = alloc_record (unat_sprel);
1852 ptr->r.record.p.spoff = offset / 4;
1853 return ptr;
1854 }
1855
1856 static unw_rec_list *
1857 output_lc_when ()
1858 {
1859 unw_rec_list *ptr = alloc_record (lc_when);
1860 return ptr;
1861 }
1862
1863 static unw_rec_list *
1864 output_lc_gr (gr)
1865 unsigned int gr;
1866 {
1867 unw_rec_list *ptr = alloc_record (lc_gr);
1868 ptr->r.record.p.gr = gr;
1869 return ptr;
1870 }
1871
1872 static unw_rec_list *
1873 output_lc_psprel (offset)
1874 unsigned int offset;
1875 {
1876 unw_rec_list *ptr = alloc_record (lc_psprel);
1877 ptr->r.record.p.pspoff = offset / 4;
1878 return ptr;
1879 }
1880
1881 static unw_rec_list *
1882 output_lc_sprel (offset)
1883 unsigned int offset;
1884 {
1885 unw_rec_list *ptr = alloc_record (lc_sprel);
1886 ptr->r.record.p.spoff = offset / 4;
1887 return ptr;
1888 }
1889
1890 static unw_rec_list *
1891 output_fpsr_when ()
1892 {
1893 unw_rec_list *ptr = alloc_record (fpsr_when);
1894 return ptr;
1895 }
1896
1897 static unw_rec_list *
1898 output_fpsr_gr (gr)
1899 unsigned int gr;
1900 {
1901 unw_rec_list *ptr = alloc_record (fpsr_gr);
1902 ptr->r.record.p.gr = gr;
1903 return ptr;
1904 }
1905
1906 static unw_rec_list *
1907 output_fpsr_psprel (offset)
1908 unsigned int offset;
1909 {
1910 unw_rec_list *ptr = alloc_record (fpsr_psprel);
1911 ptr->r.record.p.pspoff = offset / 4;
1912 return ptr;
1913 }
1914
1915 static unw_rec_list *
1916 output_fpsr_sprel (offset)
1917 unsigned int offset;
1918 {
1919 unw_rec_list *ptr = alloc_record (fpsr_sprel);
1920 ptr->r.record.p.spoff = offset / 4;
1921 return ptr;
1922 }
1923
1924 static unw_rec_list *
1925 output_priunat_when_gr ()
1926 {
1927 unw_rec_list *ptr = alloc_record (priunat_when_gr);
1928 return ptr;
1929 }
1930
1931 static unw_rec_list *
1932 output_priunat_when_mem ()
1933 {
1934 unw_rec_list *ptr = alloc_record (priunat_when_mem);
1935 return ptr;
1936 }
1937
1938 static unw_rec_list *
1939 output_priunat_gr (gr)
1940 unsigned int gr;
1941 {
1942 unw_rec_list *ptr = alloc_record (priunat_gr);
1943 ptr->r.record.p.gr = gr;
1944 return ptr;
1945 }
1946
1947 static unw_rec_list *
1948 output_priunat_psprel (offset)
1949 unsigned int offset;
1950 {
1951 unw_rec_list *ptr = alloc_record (priunat_psprel);
1952 ptr->r.record.p.pspoff = offset / 4;
1953 return ptr;
1954 }
1955
1956 static unw_rec_list *
1957 output_priunat_sprel (offset)
1958 unsigned int offset;
1959 {
1960 unw_rec_list *ptr = alloc_record (priunat_sprel);
1961 ptr->r.record.p.spoff = offset / 4;
1962 return ptr;
1963 }
1964
1965 static unw_rec_list *
1966 output_bsp_when ()
1967 {
1968 unw_rec_list *ptr = alloc_record (bsp_when);
1969 return ptr;
1970 }
1971
1972 static unw_rec_list *
1973 output_bsp_gr (gr)
1974 unsigned int gr;
1975 {
1976 unw_rec_list *ptr = alloc_record (bsp_gr);
1977 ptr->r.record.p.gr = gr;
1978 return ptr;
1979 }
1980
1981 static unw_rec_list *
1982 output_bsp_psprel (offset)
1983 unsigned int offset;
1984 {
1985 unw_rec_list *ptr = alloc_record (bsp_psprel);
1986 ptr->r.record.p.pspoff = offset / 4;
1987 return ptr;
1988 }
1989
1990 static unw_rec_list *
1991 output_bsp_sprel (offset)
1992 unsigned int offset;
1993 {
1994 unw_rec_list *ptr = alloc_record (bsp_sprel);
1995 ptr->r.record.p.spoff = offset / 4;
1996 return ptr;
1997 }
1998
1999 static unw_rec_list *
2000 output_bspstore_when ()
2001 {
2002 unw_rec_list *ptr = alloc_record (bspstore_when);
2003 return ptr;
2004 }
2005
2006 static unw_rec_list *
2007 output_bspstore_gr (gr)
2008 unsigned int gr;
2009 {
2010 unw_rec_list *ptr = alloc_record (bspstore_gr);
2011 ptr->r.record.p.gr = gr;
2012 return ptr;
2013 }
2014
2015 static unw_rec_list *
2016 output_bspstore_psprel (offset)
2017 unsigned int offset;
2018 {
2019 unw_rec_list *ptr = alloc_record (bspstore_psprel);
2020 ptr->r.record.p.pspoff = offset / 4;
2021 return ptr;
2022 }
2023
2024 static unw_rec_list *
2025 output_bspstore_sprel (offset)
2026 unsigned int offset;
2027 {
2028 unw_rec_list *ptr = alloc_record (bspstore_sprel);
2029 ptr->r.record.p.spoff = offset / 4;
2030 return ptr;
2031 }
2032
2033 static unw_rec_list *
2034 output_rnat_when ()
2035 {
2036 unw_rec_list *ptr = alloc_record (rnat_when);
2037 return ptr;
2038 }
2039
2040 static unw_rec_list *
2041 output_rnat_gr (gr)
2042 unsigned int gr;
2043 {
2044 unw_rec_list *ptr = alloc_record (rnat_gr);
2045 ptr->r.record.p.gr = gr;
2046 return ptr;
2047 }
2048
2049 static unw_rec_list *
2050 output_rnat_psprel (offset)
2051 unsigned int offset;
2052 {
2053 unw_rec_list *ptr = alloc_record (rnat_psprel);
2054 ptr->r.record.p.pspoff = offset / 4;
2055 return ptr;
2056 }
2057
2058 static unw_rec_list *
2059 output_rnat_sprel (offset)
2060 unsigned int offset;
2061 {
2062 unw_rec_list *ptr = alloc_record (rnat_sprel);
2063 ptr->r.record.p.spoff = offset / 4;
2064 return ptr;
2065 }
2066
2067 static unw_rec_list *
2068 output_unwabi (abi, context)
2069 unsigned long abi;
2070 unsigned long context;
2071 {
2072 unw_rec_list *ptr = alloc_record (unwabi);
2073 ptr->r.record.p.abi = abi;
2074 ptr->r.record.p.context = context;
2075 return ptr;
2076 }
2077
2078 static unw_rec_list *
2079 output_epilogue (unsigned long ecount)
2080 {
2081 unw_rec_list *ptr = alloc_record (epilogue);
2082 ptr->r.record.b.ecount = ecount;
2083 return ptr;
2084 }
2085
2086 static unw_rec_list *
2087 output_label_state (unsigned long label)
2088 {
2089 unw_rec_list *ptr = alloc_record (label_state);
2090 ptr->r.record.b.label = label;
2091 return ptr;
2092 }
2093
2094 static unw_rec_list *
2095 output_copy_state (unsigned long label)
2096 {
2097 unw_rec_list *ptr = alloc_record (copy_state);
2098 ptr->r.record.b.label = label;
2099 return ptr;
2100 }
2101
2102 static unw_rec_list *
2103 output_spill_psprel (ab, reg, offset)
2104 unsigned int ab;
2105 unsigned int reg;
2106 unsigned int offset;
2107 {
2108 unw_rec_list *ptr = alloc_record (spill_psprel);
2109 ptr->r.record.x.ab = ab;
2110 ptr->r.record.x.reg = reg;
2111 ptr->r.record.x.pspoff = offset / 4;
2112 return ptr;
2113 }
2114
2115 static unw_rec_list *
2116 output_spill_sprel (ab, reg, offset)
2117 unsigned int ab;
2118 unsigned int reg;
2119 unsigned int offset;
2120 {
2121 unw_rec_list *ptr = alloc_record (spill_sprel);
2122 ptr->r.record.x.ab = ab;
2123 ptr->r.record.x.reg = reg;
2124 ptr->r.record.x.spoff = offset / 4;
2125 return ptr;
2126 }
2127
2128 static unw_rec_list *
2129 output_spill_psprel_p (ab, reg, offset, predicate)
2130 unsigned int ab;
2131 unsigned int reg;
2132 unsigned int offset;
2133 unsigned int predicate;
2134 {
2135 unw_rec_list *ptr = alloc_record (spill_psprel_p);
2136 ptr->r.record.x.ab = ab;
2137 ptr->r.record.x.reg = reg;
2138 ptr->r.record.x.pspoff = offset / 4;
2139 ptr->r.record.x.qp = predicate;
2140 return ptr;
2141 }
2142
2143 static unw_rec_list *
2144 output_spill_sprel_p (ab, reg, offset, predicate)
2145 unsigned int ab;
2146 unsigned int reg;
2147 unsigned int offset;
2148 unsigned int predicate;
2149 {
2150 unw_rec_list *ptr = alloc_record (spill_sprel_p);
2151 ptr->r.record.x.ab = ab;
2152 ptr->r.record.x.reg = reg;
2153 ptr->r.record.x.spoff = offset / 4;
2154 ptr->r.record.x.qp = predicate;
2155 return ptr;
2156 }
2157
2158 static unw_rec_list *
2159 output_spill_reg (ab, reg, targ_reg, xy)
2160 unsigned int ab;
2161 unsigned int reg;
2162 unsigned int targ_reg;
2163 unsigned int xy;
2164 {
2165 unw_rec_list *ptr = alloc_record (spill_reg);
2166 ptr->r.record.x.ab = ab;
2167 ptr->r.record.x.reg = reg;
2168 ptr->r.record.x.treg = targ_reg;
2169 ptr->r.record.x.xy = xy;
2170 return ptr;
2171 }
2172
2173 static unw_rec_list *
2174 output_spill_reg_p (ab, reg, targ_reg, xy, predicate)
2175 unsigned int ab;
2176 unsigned int reg;
2177 unsigned int targ_reg;
2178 unsigned int xy;
2179 unsigned int predicate;
2180 {
2181 unw_rec_list *ptr = alloc_record (spill_reg_p);
2182 ptr->r.record.x.ab = ab;
2183 ptr->r.record.x.reg = reg;
2184 ptr->r.record.x.treg = targ_reg;
2185 ptr->r.record.x.xy = xy;
2186 ptr->r.record.x.qp = predicate;
2187 return ptr;
2188 }
2189
2190 /* Given a unw_rec_list process the correct format with the
2191 specified function. */
2192
2193 static void
2194 process_one_record (ptr, f)
2195 unw_rec_list *ptr;
2196 vbyte_func f;
2197 {
2198 unsigned long fr_mask, gr_mask;
2199
2200 switch (ptr->r.type)
2201 {
2202 case gr_mem:
2203 case fr_mem:
2204 case br_mem:
2205 case frgr_mem:
2206 /* These are taken care of by prologue/prologue_gr. */
2207 break;
2208
2209 case prologue_gr:
2210 case prologue:
2211 if (ptr->r.type == prologue_gr)
2212 output_R2_format (f, ptr->r.record.r.grmask,
2213 ptr->r.record.r.grsave, ptr->r.record.r.rlen);
2214 else
2215 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2216
2217 /* Output descriptor(s) for union of register spills (if any). */
2218 gr_mask = ptr->r.record.r.mask.gr_mem;
2219 fr_mask = ptr->r.record.r.mask.fr_mem;
2220 if (fr_mask)
2221 {
2222 if ((fr_mask & ~0xfUL) == 0)
2223 output_P6_format (f, fr_mem, fr_mask);
2224 else
2225 {
2226 output_P5_format (f, gr_mask, fr_mask);
2227 gr_mask = 0;
2228 }
2229 }
2230 if (gr_mask)
2231 output_P6_format (f, gr_mem, gr_mask);
2232 if (ptr->r.record.r.mask.br_mem)
2233 output_P1_format (f, ptr->r.record.r.mask.br_mem);
2234
2235 /* output imask descriptor if necessary: */
2236 if (ptr->r.record.r.mask.i)
2237 output_P4_format (f, ptr->r.record.r.mask.i,
2238 ptr->r.record.r.imask_size);
2239 break;
2240
2241 case body:
2242 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2243 break;
2244 case mem_stack_f:
2245 case mem_stack_v:
2246 output_P7_format (f, ptr->r.type, ptr->r.record.p.t,
2247 ptr->r.record.p.size);
2248 break;
2249 case psp_gr:
2250 case rp_gr:
2251 case pfs_gr:
2252 case preds_gr:
2253 case unat_gr:
2254 case lc_gr:
2255 case fpsr_gr:
2256 case priunat_gr:
2257 case bsp_gr:
2258 case bspstore_gr:
2259 case rnat_gr:
2260 output_P3_format (f, ptr->r.type, ptr->r.record.p.gr);
2261 break;
2262 case rp_br:
2263 output_P3_format (f, rp_br, ptr->r.record.p.br);
2264 break;
2265 case psp_sprel:
2266 output_P7_format (f, psp_sprel, ptr->r.record.p.spoff, 0);
2267 break;
2268 case rp_when:
2269 case pfs_when:
2270 case preds_when:
2271 case unat_when:
2272 case lc_when:
2273 case fpsr_when:
2274 output_P7_format (f, ptr->r.type, ptr->r.record.p.t, 0);
2275 break;
2276 case rp_psprel:
2277 case pfs_psprel:
2278 case preds_psprel:
2279 case unat_psprel:
2280 case lc_psprel:
2281 case fpsr_psprel:
2282 case spill_base:
2283 output_P7_format (f, ptr->r.type, ptr->r.record.p.pspoff, 0);
2284 break;
2285 case rp_sprel:
2286 case pfs_sprel:
2287 case preds_sprel:
2288 case unat_sprel:
2289 case lc_sprel:
2290 case fpsr_sprel:
2291 case priunat_sprel:
2292 case bsp_sprel:
2293 case bspstore_sprel:
2294 case rnat_sprel:
2295 output_P8_format (f, ptr->r.type, ptr->r.record.p.spoff);
2296 break;
2297 case gr_gr:
2298 output_P9_format (f, ptr->r.record.p.grmask, ptr->r.record.p.gr);
2299 break;
2300 case br_gr:
2301 output_P2_format (f, ptr->r.record.p.brmask, ptr->r.record.p.gr);
2302 break;
2303 case spill_mask:
2304 as_bad ("spill_mask record unimplemented.");
2305 break;
2306 case priunat_when_gr:
2307 case priunat_when_mem:
2308 case bsp_when:
2309 case bspstore_when:
2310 case rnat_when:
2311 output_P8_format (f, ptr->r.type, ptr->r.record.p.t);
2312 break;
2313 case priunat_psprel:
2314 case bsp_psprel:
2315 case bspstore_psprel:
2316 case rnat_psprel:
2317 output_P8_format (f, ptr->r.type, ptr->r.record.p.pspoff);
2318 break;
2319 case unwabi:
2320 output_P10_format (f, ptr->r.record.p.abi, ptr->r.record.p.context);
2321 break;
2322 case epilogue:
2323 output_B3_format (f, ptr->r.record.b.ecount, ptr->r.record.b.t);
2324 break;
2325 case label_state:
2326 case copy_state:
2327 output_B4_format (f, ptr->r.type, ptr->r.record.b.label);
2328 break;
2329 case spill_psprel:
2330 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2331 ptr->r.record.x.reg, ptr->r.record.x.t,
2332 ptr->r.record.x.pspoff);
2333 break;
2334 case spill_sprel:
2335 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2336 ptr->r.record.x.reg, ptr->r.record.x.t,
2337 ptr->r.record.x.spoff);
2338 break;
2339 case spill_reg:
2340 output_X2_format (f, ptr->r.record.x.ab, ptr->r.record.x.reg,
2341 ptr->r.record.x.xy >> 1, ptr->r.record.x.xy,
2342 ptr->r.record.x.treg, ptr->r.record.x.t);
2343 break;
2344 case spill_psprel_p:
2345 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2346 ptr->r.record.x.ab, ptr->r.record.x.reg,
2347 ptr->r.record.x.t, ptr->r.record.x.pspoff);
2348 break;
2349 case spill_sprel_p:
2350 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2351 ptr->r.record.x.ab, ptr->r.record.x.reg,
2352 ptr->r.record.x.t, ptr->r.record.x.spoff);
2353 break;
2354 case spill_reg_p:
2355 output_X4_format (f, ptr->r.record.x.qp, ptr->r.record.x.ab,
2356 ptr->r.record.x.reg, ptr->r.record.x.xy >> 1,
2357 ptr->r.record.x.xy, ptr->r.record.x.treg,
2358 ptr->r.record.x.t);
2359 break;
2360 default:
2361 as_bad ("record_type_not_valid");
2362 break;
2363 }
2364 }
2365
2366 /* Given a unw_rec_list list, process all the records with
2367 the specified function. */
2368 static void
2369 process_unw_records (list, f)
2370 unw_rec_list *list;
2371 vbyte_func f;
2372 {
2373 unw_rec_list *ptr;
2374 for (ptr = list; ptr; ptr = ptr->next)
2375 process_one_record (ptr, f);
2376 }
2377
2378 /* Determine the size of a record list in bytes. */
2379 static int
2380 calc_record_size (list)
2381 unw_rec_list *list;
2382 {
2383 vbyte_count = 0;
2384 process_unw_records (list, count_output);
2385 return vbyte_count;
2386 }
2387
2388 /* Update IMASK bitmask to reflect the fact that one or more registers
2389 of type TYPE are saved starting at instruction with index T. If N
2390 bits are set in REGMASK, it is assumed that instructions T through
2391 T+N-1 save these registers.
2392
2393 TYPE values:
2394 0: no save
2395 1: instruction saves next fp reg
2396 2: instruction saves next general reg
2397 3: instruction saves next branch reg */
2398 static void
2399 set_imask (region, regmask, t, type)
2400 unw_rec_list *region;
2401 unsigned long regmask;
2402 unsigned long t;
2403 unsigned int type;
2404 {
2405 unsigned char *imask;
2406 unsigned long imask_size;
2407 unsigned int i;
2408 int pos;
2409
2410 imask = region->r.record.r.mask.i;
2411 imask_size = region->r.record.r.imask_size;
2412 if (!imask)
2413 {
2414 imask_size = (region->r.record.r.rlen * 2 + 7) / 8 + 1;
2415 imask = xmalloc (imask_size);
2416 memset (imask, 0, imask_size);
2417
2418 region->r.record.r.imask_size = imask_size;
2419 region->r.record.r.mask.i = imask;
2420 }
2421
2422 i = (t / 4) + 1;
2423 pos = 2 * (3 - t % 4);
2424 while (regmask)
2425 {
2426 if (i >= imask_size)
2427 {
2428 as_bad ("Ignoring attempt to spill beyond end of region");
2429 return;
2430 }
2431
2432 imask[i] |= (type & 0x3) << pos;
2433
2434 regmask &= (regmask - 1);
2435 pos -= 2;
2436 if (pos < 0)
2437 {
2438 pos = 0;
2439 ++i;
2440 }
2441 }
2442 }
2443
2444 static int
2445 count_bits (unsigned long mask)
2446 {
2447 int n = 0;
2448
2449 while (mask)
2450 {
2451 mask &= mask - 1;
2452 ++n;
2453 }
2454 return n;
2455 }
2456
2457 /* Return the number of instruction slots from FIRST_ADDR to SLOT_ADDR.
2458 SLOT_FRAG is the frag containing SLOT_ADDR, and FIRST_FRAG is the frag
2459 containing FIRST_ADDR. */
2460
2461 unsigned long
2462 slot_index (slot_addr, slot_frag, first_addr, first_frag)
2463 unsigned long slot_addr;
2464 fragS *slot_frag;
2465 unsigned long first_addr;
2466 fragS *first_frag;
2467 {
2468 unsigned long index = 0;
2469
2470 /* First time we are called, the initial address and frag are invalid. */
2471 if (first_addr == 0)
2472 return 0;
2473
2474 /* If the two addresses are in different frags, then we need to add in
2475 the remaining size of this frag, and then the entire size of intermediate
2476 frags. */
2477 while (slot_frag != first_frag)
2478 {
2479 unsigned long start_addr = (unsigned long) &first_frag->fr_literal;
2480
2481 /* Add in the full size of the frag converted to instruction slots. */
2482 index += 3 * (first_frag->fr_fix >> 4);
2483 /* Subtract away the initial part before first_addr. */
2484 index -= (3 * ((first_addr >> 4) - (start_addr >> 4))
2485 + ((first_addr & 0x3) - (start_addr & 0x3)));
2486
2487 /* Move to the beginning of the next frag. */
2488 first_frag = first_frag->fr_next;
2489 first_addr = (unsigned long) &first_frag->fr_literal;
2490 }
2491
2492 /* Add in the used part of the last frag. */
2493 index += (3 * ((slot_addr >> 4) - (first_addr >> 4))
2494 + ((slot_addr & 0x3) - (first_addr & 0x3)));
2495 return index;
2496 }
2497
2498 /* Given a complete record list, process any records which have
2499 unresolved fields, (ie length counts for a prologue). After
2500 this has been run, all neccessary information should be available
2501 within each record to generate an image. */
2502
2503 static void
2504 fixup_unw_records (list)
2505 unw_rec_list *list;
2506 {
2507 unw_rec_list *ptr, *region = 0;
2508 unsigned long first_addr = 0, rlen = 0, t;
2509 fragS *first_frag = 0;
2510
2511 for (ptr = list; ptr; ptr = ptr->next)
2512 {
2513 if (ptr->slot_number == SLOT_NUM_NOT_SET)
2514 as_bad (" Insn slot not set in unwind record.");
2515 t = slot_index (ptr->slot_number, ptr->slot_frag,
2516 first_addr, first_frag);
2517 switch (ptr->r.type)
2518 {
2519 case prologue:
2520 case prologue_gr:
2521 case body:
2522 {
2523 unw_rec_list *last;
2524 int size, dir_len = 0;
2525 unsigned long last_addr;
2526 fragS *last_frag;
2527
2528 first_addr = ptr->slot_number;
2529 first_frag = ptr->slot_frag;
2530 ptr->slot_number = 0;
2531 /* Find either the next body/prologue start, or the end of
2532 the list, and determine the size of the region. */
2533 last_addr = unwind.next_slot_number;
2534 last_frag = unwind.next_slot_frag;
2535 for (last = ptr->next; last != NULL; last = last->next)
2536 if (last->r.type == prologue || last->r.type == prologue_gr
2537 || last->r.type == body)
2538 {
2539 last_addr = last->slot_number;
2540 last_frag = last->slot_frag;
2541 break;
2542 }
2543 else if (!last->next)
2544 {
2545 /* In the absence of an explicit .body directive,
2546 the prologue ends after the last instruction
2547 covered by an unwind directive. */
2548 if (ptr->r.type != body)
2549 {
2550 last_addr = last->slot_number;
2551 last_frag = last->slot_frag;
2552 switch (last->r.type)
2553 {
2554 case frgr_mem:
2555 dir_len = (count_bits (last->r.record.p.frmask)
2556 + count_bits (last->r.record.p.grmask));
2557 break;
2558 case fr_mem:
2559 case gr_mem:
2560 dir_len += count_bits (last->r.record.p.rmask);
2561 break;
2562 case br_mem:
2563 case br_gr:
2564 dir_len += count_bits (last->r.record.p.brmask);
2565 break;
2566 case gr_gr:
2567 dir_len += count_bits (last->r.record.p.grmask);
2568 break;
2569 default:
2570 dir_len = 1;
2571 break;
2572 }
2573 }
2574 break;
2575 }
2576 size = (slot_index (last_addr, last_frag, first_addr, first_frag)
2577 + dir_len);
2578 rlen = ptr->r.record.r.rlen = size;
2579 region = ptr;
2580 break;
2581 }
2582 case epilogue:
2583 ptr->r.record.b.t = rlen - 1 - t;
2584 break;
2585
2586 case mem_stack_f:
2587 case mem_stack_v:
2588 case rp_when:
2589 case pfs_when:
2590 case preds_when:
2591 case unat_when:
2592 case lc_when:
2593 case fpsr_when:
2594 case priunat_when_gr:
2595 case priunat_when_mem:
2596 case bsp_when:
2597 case bspstore_when:
2598 case rnat_when:
2599 ptr->r.record.p.t = t;
2600 break;
2601
2602 case spill_reg:
2603 case spill_sprel:
2604 case spill_psprel:
2605 case spill_reg_p:
2606 case spill_sprel_p:
2607 case spill_psprel_p:
2608 ptr->r.record.x.t = t;
2609 break;
2610
2611 case frgr_mem:
2612 if (!region)
2613 {
2614 as_bad ("frgr_mem record before region record!\n");
2615 return;
2616 }
2617 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
2618 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
2619 set_imask (region, ptr->r.record.p.frmask, t, 1);
2620 set_imask (region, ptr->r.record.p.grmask, t, 2);
2621 break;
2622 case fr_mem:
2623 if (!region)
2624 {
2625 as_bad ("fr_mem record before region record!\n");
2626 return;
2627 }
2628 region->r.record.r.mask.fr_mem |= ptr->r.record.p.rmask;
2629 set_imask (region, ptr->r.record.p.rmask, t, 1);
2630 break;
2631 case gr_mem:
2632 if (!region)
2633 {
2634 as_bad ("gr_mem record before region record!\n");
2635 return;
2636 }
2637 region->r.record.r.mask.gr_mem |= ptr->r.record.p.rmask;
2638 set_imask (region, ptr->r.record.p.rmask, t, 2);
2639 break;
2640 case br_mem:
2641 if (!region)
2642 {
2643 as_bad ("br_mem record before region record!\n");
2644 return;
2645 }
2646 region->r.record.r.mask.br_mem |= ptr->r.record.p.brmask;
2647 set_imask (region, ptr->r.record.p.brmask, t, 3);
2648 break;
2649
2650 case gr_gr:
2651 if (!region)
2652 {
2653 as_bad ("gr_gr record before region record!\n");
2654 return;
2655 }
2656 set_imask (region, ptr->r.record.p.grmask, t, 2);
2657 break;
2658 case br_gr:
2659 if (!region)
2660 {
2661 as_bad ("br_gr record before region record!\n");
2662 return;
2663 }
2664 set_imask (region, ptr->r.record.p.brmask, t, 3);
2665 break;
2666
2667 default:
2668 break;
2669 }
2670 }
2671 }
2672
2673 /* Generate an unwind image from a record list. Returns the number of
2674 bytes in the resulting image. The memory image itselof is returned
2675 in the 'ptr' parameter. */
2676 static int
2677 output_unw_records (list, ptr)
2678 unw_rec_list *list;
2679 void **ptr;
2680 {
2681 int size, x, extra = 0;
2682 unsigned char *mem;
2683
2684 fixup_unw_records (list);
2685 size = calc_record_size (list);
2686
2687 /* pad to 8 byte boundry. */
2688 x = size % 8;
2689 if (x != 0)
2690 extra = 8 - x;
2691 /* Add 8 for the header + 8 more bytes for the personality offset. */
2692 mem = xmalloc (size + extra + 16);
2693
2694 vbyte_mem_ptr = mem + 8;
2695 /* Clear the padding area and personality. */
2696 memset (mem + 8 + size, 0 , extra + 8);
2697 /* Initialize the header area. */
2698 md_number_to_chars (mem, (((bfd_vma) 1 << 48) /* version */
2699 | (unwind.personality_routine
2700 ? ((bfd_vma) 3 << 32) /* U & E handler flags */
2701 : 0)
2702 | ((size + extra) / 8)), /* length (dwords) */
2703 8);
2704
2705 process_unw_records (list, output_vbyte_mem);
2706
2707 *ptr = mem;
2708 return size + extra + 16;
2709 }
2710
2711 static int
2712 convert_expr_to_ab_reg (e, ab, regp)
2713 expressionS *e;
2714 unsigned int *ab;
2715 unsigned int *regp;
2716 {
2717 unsigned int reg;
2718
2719 if (e->X_op != O_register)
2720 return 0;
2721
2722 reg = e->X_add_number;
2723 if (reg >= (REG_GR + 4) && reg <= (REG_GR + 7))
2724 {
2725 *ab = 0;
2726 *regp = reg - REG_GR;
2727 }
2728 else if ((reg >= (REG_FR + 2) && reg <= (REG_FR + 5))
2729 || (reg >= (REG_FR + 16) && reg <= (REG_FR + 31)))
2730 {
2731 *ab = 1;
2732 *regp = reg - REG_FR;
2733 }
2734 else if (reg >= (REG_BR + 1) && reg <= (REG_BR + 5))
2735 {
2736 *ab = 2;
2737 *regp = reg - REG_BR;
2738 }
2739 else
2740 {
2741 *ab = 3;
2742 switch (reg)
2743 {
2744 case REG_PR: *regp = 0; break;
2745 case REG_PSP: *regp = 1; break;
2746 case REG_PRIUNAT: *regp = 2; break;
2747 case REG_BR + 0: *regp = 3; break;
2748 case REG_AR + AR_BSP: *regp = 4; break;
2749 case REG_AR + AR_BSPSTORE: *regp = 5; break;
2750 case REG_AR + AR_RNAT: *regp = 6; break;
2751 case REG_AR + AR_UNAT: *regp = 7; break;
2752 case REG_AR + AR_FPSR: *regp = 8; break;
2753 case REG_AR + AR_PFS: *regp = 9; break;
2754 case REG_AR + AR_LC: *regp = 10; break;
2755
2756 default:
2757 return 0;
2758 }
2759 }
2760 return 1;
2761 }
2762
2763 static int
2764 convert_expr_to_xy_reg (e, xy, regp)
2765 expressionS *e;
2766 unsigned int *xy;
2767 unsigned int *regp;
2768 {
2769 unsigned int reg;
2770
2771 if (e->X_op != O_register)
2772 return 0;
2773
2774 reg = e->X_add_number;
2775
2776 if (/* reg >= REG_GR && */ reg <= (REG_GR + 127))
2777 {
2778 *xy = 0;
2779 *regp = reg - REG_GR;
2780 }
2781 else if (reg >= REG_FR && reg <= (REG_FR + 127))
2782 {
2783 *xy = 1;
2784 *regp = reg - REG_FR;
2785 }
2786 else if (reg >= REG_BR && reg <= (REG_BR + 7))
2787 {
2788 *xy = 2;
2789 *regp = reg - REG_BR;
2790 }
2791 else
2792 return -1;
2793 return 1;
2794 }
2795
2796 static void
2797 dot_radix (dummy)
2798 int dummy ATTRIBUTE_UNUSED;
2799 {
2800 int radix;
2801
2802 SKIP_WHITESPACE ();
2803 radix = *input_line_pointer++;
2804
2805 if (radix != 'C' && !is_end_of_line[(unsigned char) radix])
2806 {
2807 as_bad ("Radix `%c' unsupported", *input_line_pointer);
2808 ignore_rest_of_line ();
2809 return;
2810 }
2811 }
2812
2813 /* .sbss, .bss etc. are macros that expand into ".section SECNAME". */
2814 static void
2815 dot_special_section (which)
2816 int which;
2817 {
2818 set_section ((char *) special_section_name[which]);
2819 }
2820
2821 static void
2822 add_unwind_entry (ptr)
2823 unw_rec_list *ptr;
2824 {
2825 if (unwind.tail)
2826 unwind.tail->next = ptr;
2827 else
2828 unwind.list = ptr;
2829 unwind.tail = ptr;
2830
2831 /* The current entry can in fact be a chain of unwind entries. */
2832 if (unwind.current_entry == NULL)
2833 unwind.current_entry = ptr;
2834 }
2835
2836 static void
2837 dot_fframe (dummy)
2838 int dummy ATTRIBUTE_UNUSED;
2839 {
2840 expressionS e;
2841
2842 parse_operand (&e);
2843
2844 if (e.X_op != O_constant)
2845 as_bad ("Operand to .fframe must be a constant");
2846 else
2847 add_unwind_entry (output_mem_stack_f (e.X_add_number));
2848 }
2849
2850 static void
2851 dot_vframe (dummy)
2852 int dummy ATTRIBUTE_UNUSED;
2853 {
2854 expressionS e;
2855 unsigned reg;
2856
2857 parse_operand (&e);
2858 reg = e.X_add_number - REG_GR;
2859 if (e.X_op == O_register && reg < 128)
2860 {
2861 add_unwind_entry (output_mem_stack_v ());
2862 if (! (unwind.prologue_mask & 2))
2863 add_unwind_entry (output_psp_gr (reg));
2864 }
2865 else
2866 as_bad ("First operand to .vframe must be a general register");
2867 }
2868
2869 static void
2870 dot_vframesp (dummy)
2871 int dummy ATTRIBUTE_UNUSED;
2872 {
2873 expressionS e;
2874
2875 parse_operand (&e);
2876 if (e.X_op == O_constant)
2877 {
2878 add_unwind_entry (output_mem_stack_v ());
2879 add_unwind_entry (output_psp_sprel (e.X_add_number));
2880 }
2881 else
2882 as_bad ("First operand to .vframesp must be a general register");
2883 }
2884
2885 static void
2886 dot_vframepsp (dummy)
2887 int dummy ATTRIBUTE_UNUSED;
2888 {
2889 expressionS e;
2890
2891 parse_operand (&e);
2892 if (e.X_op == O_constant)
2893 {
2894 add_unwind_entry (output_mem_stack_v ());
2895 add_unwind_entry (output_psp_sprel (e.X_add_number));
2896 }
2897 else
2898 as_bad ("First operand to .vframepsp must be a general register");
2899 }
2900
2901 static void
2902 dot_save (dummy)
2903 int dummy ATTRIBUTE_UNUSED;
2904 {
2905 expressionS e1, e2;
2906 int sep;
2907 int reg1, reg2;
2908
2909 sep = parse_operand (&e1);
2910 if (sep != ',')
2911 as_bad ("No second operand to .save");
2912 sep = parse_operand (&e2);
2913
2914 reg1 = e1.X_add_number;
2915 reg2 = e2.X_add_number - REG_GR;
2916
2917 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
2918 if (e1.X_op == O_register)
2919 {
2920 if (e2.X_op == O_register && reg2 >= 0 && reg2 < 128)
2921 {
2922 switch (reg1)
2923 {
2924 case REG_AR + AR_BSP:
2925 add_unwind_entry (output_bsp_when ());
2926 add_unwind_entry (output_bsp_gr (reg2));
2927 break;
2928 case REG_AR + AR_BSPSTORE:
2929 add_unwind_entry (output_bspstore_when ());
2930 add_unwind_entry (output_bspstore_gr (reg2));
2931 break;
2932 case REG_AR + AR_RNAT:
2933 add_unwind_entry (output_rnat_when ());
2934 add_unwind_entry (output_rnat_gr (reg2));
2935 break;
2936 case REG_AR + AR_UNAT:
2937 add_unwind_entry (output_unat_when ());
2938 add_unwind_entry (output_unat_gr (reg2));
2939 break;
2940 case REG_AR + AR_FPSR:
2941 add_unwind_entry (output_fpsr_when ());
2942 add_unwind_entry (output_fpsr_gr (reg2));
2943 break;
2944 case REG_AR + AR_PFS:
2945 add_unwind_entry (output_pfs_when ());
2946 if (! (unwind.prologue_mask & 4))
2947 add_unwind_entry (output_pfs_gr (reg2));
2948 break;
2949 case REG_AR + AR_LC:
2950 add_unwind_entry (output_lc_when ());
2951 add_unwind_entry (output_lc_gr (reg2));
2952 break;
2953 case REG_BR:
2954 add_unwind_entry (output_rp_when ());
2955 if (! (unwind.prologue_mask & 8))
2956 add_unwind_entry (output_rp_gr (reg2));
2957 break;
2958 case REG_PR:
2959 add_unwind_entry (output_preds_when ());
2960 if (! (unwind.prologue_mask & 1))
2961 add_unwind_entry (output_preds_gr (reg2));
2962 break;
2963 case REG_PRIUNAT:
2964 add_unwind_entry (output_priunat_when_gr ());
2965 add_unwind_entry (output_priunat_gr (reg2));
2966 break;
2967 default:
2968 as_bad ("First operand not a valid register");
2969 }
2970 }
2971 else
2972 as_bad (" Second operand not a valid register");
2973 }
2974 else
2975 as_bad ("First operand not a register");
2976 }
2977
2978 static void
2979 dot_restore (dummy)
2980 int dummy ATTRIBUTE_UNUSED;
2981 {
2982 expressionS e1, e2;
2983 unsigned long ecount = 0;
2984 int sep;
2985
2986 sep = parse_operand (&e1);
2987 if (e1.X_op != O_register || e1.X_add_number != REG_GR + 12)
2988 {
2989 as_bad ("First operand to .restore must be stack pointer (sp)");
2990 return;
2991 }
2992
2993 if (sep == ',')
2994 {
2995 parse_operand (&e2);
2996 if (e1.X_op != O_constant)
2997 {
2998 as_bad ("Second operand to .restore must be constant");
2999 return;
3000 }
3001 ecount = e1.X_op;
3002 }
3003 add_unwind_entry (output_epilogue (ecount));
3004 }
3005
3006 static void
3007 dot_restorereg (dummy)
3008 int dummy ATTRIBUTE_UNUSED;
3009 {
3010 unsigned int ab, reg;
3011 expressionS e;
3012
3013 parse_operand (&e);
3014
3015 if (!convert_expr_to_ab_reg (&e, &ab, &reg))
3016 {
3017 as_bad ("First operand to .restorereg must be a preserved register");
3018 return;
3019 }
3020 add_unwind_entry (output_spill_reg (ab, reg, 0, 0));
3021 }
3022
3023 static void
3024 dot_restorereg_p (dummy)
3025 int dummy ATTRIBUTE_UNUSED;
3026 {
3027 unsigned int qp, ab, reg;
3028 expressionS e1, e2;
3029 int sep;
3030
3031 sep = parse_operand (&e1);
3032 if (sep != ',')
3033 {
3034 as_bad ("No second operand to .restorereg.p");
3035 return;
3036 }
3037
3038 parse_operand (&e2);
3039
3040 qp = e1.X_add_number - REG_P;
3041 if (e1.X_op != O_register || qp > 63)
3042 {
3043 as_bad ("First operand to .restorereg.p must be a predicate");
3044 return;
3045 }
3046
3047 if (!convert_expr_to_ab_reg (&e2, &ab, &reg))
3048 {
3049 as_bad ("Second operand to .restorereg.p must be a preserved register");
3050 return;
3051 }
3052 add_unwind_entry (output_spill_reg_p (ab, reg, 0, 0, qp));
3053 }
3054
3055 static int
3056 generate_unwind_image ()
3057 {
3058 int size;
3059 unsigned char *unw_rec;
3060
3061 /* Force out pending instructions, to make sure all unwind records have
3062 a valid slot_number field. */
3063 ia64_flush_insns ();
3064
3065 /* Generate the unwind record. */
3066 size = output_unw_records (unwind.list, (void **) &unw_rec);
3067 if (size % 8 != 0)
3068 as_bad ("Unwind record is not a multiple of 8 bytes.");
3069
3070 /* If there are unwind records, switch sections, and output the info. */
3071 if (size != 0)
3072 {
3073 unsigned char *where;
3074 expressionS exp;
3075 set_section ((char *) special_section_name[SPECIAL_SECTION_UNWIND_INFO]);
3076
3077 /* Make sure the section has 8 byte alignment. */
3078 record_alignment (now_seg, 3);
3079
3080 /* Set expression which points to start of unwind descriptor area. */
3081 unwind.info = expr_build_dot ();
3082
3083 where = (unsigned char *) frag_more (size);
3084
3085 /* Issue a label for this address, and keep track of it to put it
3086 in the unwind section. */
3087
3088 /* Copy the information from the unwind record into this section. The
3089 data is already in the correct byte order. */
3090 memcpy (where, unw_rec, size);
3091 /* Add the personality address to the image. */
3092 if (unwind.personality_routine != 0)
3093 {
3094 exp.X_op = O_symbol;
3095 exp.X_add_symbol = unwind.personality_routine;
3096 exp.X_add_number = 0;
3097 fix_new_exp (frag_now, frag_now_fix () - 8, 8,
3098 &exp, 0, BFD_RELOC_IA64_LTOFF_FPTR64LSB);
3099 unwind.personality_routine = 0;
3100 }
3101 obj_elf_previous (0);
3102 }
3103
3104 free_list_records (unwind.list);
3105 unwind.list = unwind.tail = unwind.current_entry = NULL;
3106
3107 return size;
3108 }
3109
3110 static void
3111 dot_handlerdata (dummy)
3112 int dummy ATTRIBUTE_UNUSED;
3113 {
3114 generate_unwind_image ();
3115 demand_empty_rest_of_line ();
3116 }
3117
3118 static void
3119 dot_unwentry (dummy)
3120 int dummy ATTRIBUTE_UNUSED;
3121 {
3122 demand_empty_rest_of_line ();
3123 }
3124
3125 static void
3126 dot_altrp (dummy)
3127 int dummy ATTRIBUTE_UNUSED;
3128 {
3129 expressionS e;
3130 unsigned reg;
3131
3132 parse_operand (&e);
3133 reg = e.X_add_number - REG_BR;
3134 if (e.X_op == O_register && reg < 8)
3135 add_unwind_entry (output_rp_br (reg));
3136 else
3137 as_bad ("First operand not a valid branch register");
3138 }
3139
3140 static void
3141 dot_savemem (psprel)
3142 int psprel;
3143 {
3144 expressionS e1, e2;
3145 int sep;
3146 int reg1, val;
3147
3148 sep = parse_operand (&e1);
3149 if (sep != ',')
3150 as_bad ("No second operand to .save%ssp", psprel ? "p" : "");
3151 sep = parse_operand (&e2);
3152
3153 reg1 = e1.X_add_number;
3154 val = e2.X_add_number;
3155
3156 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3157 if (e1.X_op == O_register)
3158 {
3159 if (e2.X_op == O_constant)
3160 {
3161 switch (reg1)
3162 {
3163 case REG_AR + AR_BSP:
3164 add_unwind_entry (output_bsp_when ());
3165 add_unwind_entry ((psprel
3166 ? output_bsp_psprel
3167 : output_bsp_sprel) (val));
3168 break;
3169 case REG_AR + AR_BSPSTORE:
3170 add_unwind_entry (output_bspstore_when ());
3171 add_unwind_entry ((psprel
3172 ? output_bspstore_psprel
3173 : output_bspstore_sprel) (val));
3174 break;
3175 case REG_AR + AR_RNAT:
3176 add_unwind_entry (output_rnat_when ());
3177 add_unwind_entry ((psprel
3178 ? output_rnat_psprel
3179 : output_rnat_sprel) (val));
3180 break;
3181 case REG_AR + AR_UNAT:
3182 add_unwind_entry (output_unat_when ());
3183 add_unwind_entry ((psprel
3184 ? output_unat_psprel
3185 : output_unat_sprel) (val));
3186 break;
3187 case REG_AR + AR_FPSR:
3188 add_unwind_entry (output_fpsr_when ());
3189 add_unwind_entry ((psprel
3190 ? output_fpsr_psprel
3191 : output_fpsr_sprel) (val));
3192 break;
3193 case REG_AR + AR_PFS:
3194 add_unwind_entry (output_pfs_when ());
3195 add_unwind_entry ((psprel
3196 ? output_pfs_psprel
3197 : output_pfs_sprel) (val));
3198 break;
3199 case REG_AR + AR_LC:
3200 add_unwind_entry (output_lc_when ());
3201 add_unwind_entry ((psprel
3202 ? output_lc_psprel
3203 : output_lc_sprel) (val));
3204 break;
3205 case REG_BR:
3206 add_unwind_entry (output_rp_when ());
3207 add_unwind_entry ((psprel
3208 ? output_rp_psprel
3209 : output_rp_sprel) (val));
3210 break;
3211 case REG_PR:
3212 add_unwind_entry (output_preds_when ());
3213 add_unwind_entry ((psprel
3214 ? output_preds_psprel
3215 : output_preds_sprel) (val));
3216 break;
3217 case REG_PRIUNAT:
3218 add_unwind_entry (output_priunat_when_mem ());
3219 add_unwind_entry ((psprel
3220 ? output_priunat_psprel
3221 : output_priunat_sprel) (val));
3222 break;
3223 default:
3224 as_bad ("First operand not a valid register");
3225 }
3226 }
3227 else
3228 as_bad (" Second operand not a valid constant");
3229 }
3230 else
3231 as_bad ("First operand not a register");
3232 }
3233
3234 static void
3235 dot_saveg (dummy)
3236 int dummy ATTRIBUTE_UNUSED;
3237 {
3238 expressionS e1, e2;
3239 int sep;
3240 sep = parse_operand (&e1);
3241 if (sep == ',')
3242 parse_operand (&e2);
3243
3244 if (e1.X_op != O_constant)
3245 as_bad ("First operand to .save.g must be a constant.");
3246 else
3247 {
3248 int grmask = e1.X_add_number;
3249 if (sep != ',')
3250 add_unwind_entry (output_gr_mem (grmask));
3251 else
3252 {
3253 int reg = e2.X_add_number - REG_GR;
3254 if (e2.X_op == O_register && reg >= 0 && reg < 128)
3255 add_unwind_entry (output_gr_gr (grmask, reg));
3256 else
3257 as_bad ("Second operand is an invalid register.");
3258 }
3259 }
3260 }
3261
3262 static void
3263 dot_savef (dummy)
3264 int dummy ATTRIBUTE_UNUSED;
3265 {
3266 expressionS e1;
3267 int sep;
3268 sep = parse_operand (&e1);
3269
3270 if (e1.X_op != O_constant)
3271 as_bad ("Operand to .save.f must be a constant.");
3272 else
3273 add_unwind_entry (output_fr_mem (e1.X_add_number));
3274 }
3275
3276 static void
3277 dot_saveb (dummy)
3278 int dummy ATTRIBUTE_UNUSED;
3279 {
3280 expressionS e1, e2;
3281 unsigned int reg;
3282 unsigned char sep;
3283 int brmask;
3284
3285 sep = parse_operand (&e1);
3286 if (e1.X_op != O_constant)
3287 {
3288 as_bad ("First operand to .save.b must be a constant.");
3289 return;
3290 }
3291 brmask = e1.X_add_number;
3292
3293 if (sep == ',')
3294 {
3295 sep = parse_operand (&e2);
3296 reg = e2.X_add_number - REG_GR;
3297 if (e2.X_op != O_register || reg > 127)
3298 {
3299 as_bad ("Second operand to .save.b must be a general register.");
3300 return;
3301 }
3302 add_unwind_entry (output_br_gr (brmask, e2.X_add_number));
3303 }
3304 else
3305 add_unwind_entry (output_br_mem (brmask));
3306
3307 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
3308 ignore_rest_of_line ();
3309 }
3310
3311 static void
3312 dot_savegf (dummy)
3313 int dummy ATTRIBUTE_UNUSED;
3314 {
3315 expressionS e1, e2;
3316 int sep;
3317 sep = parse_operand (&e1);
3318 if (sep == ',')
3319 parse_operand (&e2);
3320
3321 if (e1.X_op != O_constant || sep != ',' || e2.X_op != O_constant)
3322 as_bad ("Both operands of .save.gf must be constants.");
3323 else
3324 {
3325 int grmask = e1.X_add_number;
3326 int frmask = e2.X_add_number;
3327 add_unwind_entry (output_frgr_mem (grmask, frmask));
3328 }
3329 }
3330
3331 static void
3332 dot_spill (dummy)
3333 int dummy ATTRIBUTE_UNUSED;
3334 {
3335 expressionS e;
3336 unsigned char sep;
3337
3338 sep = parse_operand (&e);
3339 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
3340 ignore_rest_of_line ();
3341
3342 if (e.X_op != O_constant)
3343 as_bad ("Operand to .spill must be a constant");
3344 else
3345 add_unwind_entry (output_spill_base (e.X_add_number));
3346 }
3347
3348 static void
3349 dot_spillreg (dummy)
3350 int dummy ATTRIBUTE_UNUSED;
3351 {
3352 int sep, ab, xy, reg, treg;
3353 expressionS e1, e2;
3354
3355 sep = parse_operand (&e1);
3356 if (sep != ',')
3357 {
3358 as_bad ("No second operand to .spillreg");
3359 return;
3360 }
3361
3362 parse_operand (&e2);
3363
3364 if (!convert_expr_to_ab_reg (&e1, &ab, &reg))
3365 {
3366 as_bad ("First operand to .spillreg must be a preserved register");
3367 return;
3368 }
3369
3370 if (!convert_expr_to_xy_reg (&e2, &xy, &treg))
3371 {
3372 as_bad ("Second operand to .spillreg must be a register");
3373 return;
3374 }
3375
3376 add_unwind_entry (output_spill_reg (ab, reg, treg, xy));
3377 }
3378
3379 static void
3380 dot_spillmem (psprel)
3381 int psprel;
3382 {
3383 expressionS e1, e2;
3384 int sep, ab, reg;
3385
3386 sep = parse_operand (&e1);
3387 if (sep != ',')
3388 {
3389 as_bad ("Second operand missing");
3390 return;
3391 }
3392
3393 parse_operand (&e2);
3394
3395 if (!convert_expr_to_ab_reg (&e1, &ab, &reg))
3396 {
3397 as_bad ("First operand to .spill%s must be a preserved register",
3398 psprel ? "psp" : "sp");
3399 return;
3400 }
3401
3402 if (e2.X_op != O_constant)
3403 {
3404 as_bad ("Second operand to .spill%s must be a constant",
3405 psprel ? "psp" : "sp");
3406 return;
3407 }
3408
3409 if (psprel)
3410 add_unwind_entry (output_spill_psprel (ab, reg, e2.X_add_number));
3411 else
3412 add_unwind_entry (output_spill_sprel (ab, reg, e2.X_add_number));
3413 }
3414
3415 static void
3416 dot_spillreg_p (dummy)
3417 int dummy ATTRIBUTE_UNUSED;
3418 {
3419 int sep, ab, xy, reg, treg;
3420 expressionS e1, e2, e3;
3421 unsigned int qp;
3422
3423 sep = parse_operand (&e1);
3424 if (sep != ',')
3425 {
3426 as_bad ("No second and third operand to .spillreg.p");
3427 return;
3428 }
3429
3430 sep = parse_operand (&e2);
3431 if (sep != ',')
3432 {
3433 as_bad ("No third operand to .spillreg.p");
3434 return;
3435 }
3436
3437 parse_operand (&e3);
3438
3439 qp = e1.X_add_number - REG_P;
3440
3441 if (e1.X_op != O_register || qp > 63)
3442 {
3443 as_bad ("First operand to .spillreg.p must be a predicate");
3444 return;
3445 }
3446
3447 if (!convert_expr_to_ab_reg (&e2, &ab, &reg))
3448 {
3449 as_bad ("Second operand to .spillreg.p must be a preserved register");
3450 return;
3451 }
3452
3453 if (!convert_expr_to_xy_reg (&e3, &xy, &treg))
3454 {
3455 as_bad ("Third operand to .spillreg.p must be a register");
3456 return;
3457 }
3458
3459 add_unwind_entry (output_spill_reg_p (ab, reg, treg, xy, qp));
3460 }
3461
3462 static void
3463 dot_spillmem_p (psprel)
3464 int psprel;
3465 {
3466 expressionS e1, e2, e3;
3467 int sep, ab, reg;
3468 unsigned int qp;
3469
3470 sep = parse_operand (&e1);
3471 if (sep != ',')
3472 {
3473 as_bad ("Second operand missing");
3474 return;
3475 }
3476
3477 parse_operand (&e2);
3478 if (sep != ',')
3479 {
3480 as_bad ("Second operand missing");
3481 return;
3482 }
3483
3484 parse_operand (&e3);
3485
3486 qp = e1.X_add_number - REG_P;
3487 if (e1.X_op != O_register || qp > 63)
3488 {
3489 as_bad ("First operand to .spill%s_p must be a predicate",
3490 psprel ? "psp" : "sp");
3491 return;
3492 }
3493
3494 if (!convert_expr_to_ab_reg (&e2, &ab, &reg))
3495 {
3496 as_bad ("Second operand to .spill%s_p must be a preserved register",
3497 psprel ? "psp" : "sp");
3498 return;
3499 }
3500
3501 if (e3.X_op != O_constant)
3502 {
3503 as_bad ("Third operand to .spill%s_p must be a constant",
3504 psprel ? "psp" : "sp");
3505 return;
3506 }
3507
3508 if (psprel)
3509 add_unwind_entry (output_spill_psprel_p (qp, ab, reg, e3.X_add_number));
3510 else
3511 add_unwind_entry (output_spill_sprel_p (qp, ab, reg, e3.X_add_number));
3512 }
3513
3514 static void
3515 dot_label_state (dummy)
3516 int dummy ATTRIBUTE_UNUSED;
3517 {
3518 expressionS e;
3519
3520 parse_operand (&e);
3521 if (e.X_op != O_constant)
3522 {
3523 as_bad ("Operand to .label_state must be a constant");
3524 return;
3525 }
3526 add_unwind_entry (output_label_state (e.X_add_number));
3527 }
3528
3529 static void
3530 dot_copy_state (dummy)
3531 int dummy ATTRIBUTE_UNUSED;
3532 {
3533 expressionS e;
3534
3535 parse_operand (&e);
3536 if (e.X_op != O_constant)
3537 {
3538 as_bad ("Operand to .copy_state must be a constant");
3539 return;
3540 }
3541 add_unwind_entry (output_copy_state (e.X_add_number));
3542 }
3543
3544 static void
3545 dot_unwabi (dummy)
3546 int dummy ATTRIBUTE_UNUSED;
3547 {
3548 expressionS e1, e2;
3549 unsigned char sep;
3550
3551 sep = parse_operand (&e1);
3552 if (sep != ',')
3553 {
3554 as_bad ("Second operand to .unwabi missing");
3555 return;
3556 }
3557 sep = parse_operand (&e2);
3558 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
3559 ignore_rest_of_line ();
3560
3561 if (e1.X_op != O_constant)
3562 {
3563 as_bad ("First operand to .unwabi must be a constant");
3564 return;
3565 }
3566
3567 if (e2.X_op != O_constant)
3568 {
3569 as_bad ("Second operand to .unwabi must be a constant");
3570 return;
3571 }
3572
3573 add_unwind_entry (output_unwabi (e1.X_add_number, e2.X_add_number));
3574 }
3575
3576 static void
3577 dot_personality (dummy)
3578 int dummy ATTRIBUTE_UNUSED;
3579 {
3580 char *name, *p, c;
3581 SKIP_WHITESPACE ();
3582 name = input_line_pointer;
3583 c = get_symbol_end ();
3584 p = input_line_pointer;
3585 unwind.personality_routine = symbol_find_or_make (name);
3586 *p = c;
3587 SKIP_WHITESPACE ();
3588 demand_empty_rest_of_line ();
3589 }
3590
3591 static void
3592 dot_proc (dummy)
3593 int dummy ATTRIBUTE_UNUSED;
3594 {
3595 char *name, *p, c;
3596 symbolS *sym;
3597
3598 unwind.proc_start = expr_build_dot ();
3599 /* Parse names of main and alternate entry points and mark them as
3600 function symbols: */
3601 while (1)
3602 {
3603 SKIP_WHITESPACE ();
3604 name = input_line_pointer;
3605 c = get_symbol_end ();
3606 p = input_line_pointer;
3607 sym = symbol_find_or_make (name);
3608 if (unwind.proc_start == 0)
3609 {
3610 unwind.proc_start = sym;
3611 }
3612 symbol_get_bfdsym (sym)->flags |= BSF_FUNCTION;
3613 *p = c;
3614 SKIP_WHITESPACE ();
3615 if (*input_line_pointer != ',')
3616 break;
3617 ++input_line_pointer;
3618 }
3619 demand_empty_rest_of_line ();
3620 ia64_do_align (16);
3621
3622 unwind.list = unwind.tail = unwind.current_entry = NULL;
3623 unwind.personality_routine = 0;
3624 }
3625
3626 static void
3627 dot_body (dummy)
3628 int dummy ATTRIBUTE_UNUSED;
3629 {
3630 unwind.prologue = 0;
3631 unwind.prologue_mask = 0;
3632
3633 add_unwind_entry (output_body ());
3634 demand_empty_rest_of_line ();
3635 }
3636
3637 static void
3638 dot_prologue (dummy)
3639 int dummy ATTRIBUTE_UNUSED;
3640 {
3641 unsigned char sep;
3642 int mask = 0, grsave = 0;
3643
3644 if (!is_it_end_of_statement ())
3645 {
3646 expressionS e1, e2;
3647 sep = parse_operand (&e1);
3648 if (sep != ',')
3649 as_bad ("No second operand to .prologue");
3650 sep = parse_operand (&e2);
3651 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
3652 ignore_rest_of_line ();
3653
3654 if (e1.X_op == O_constant)
3655 {
3656 mask = e1.X_add_number;
3657
3658 if (e2.X_op == O_constant)
3659 grsave = e2.X_add_number;
3660 else if (e2.X_op == O_register
3661 && (grsave = e2.X_add_number - REG_GR) < 128)
3662 ;
3663 else
3664 as_bad ("Second operand not a constant or general register");
3665
3666 add_unwind_entry (output_prologue_gr (mask, grsave));
3667 }
3668 else
3669 as_bad ("First operand not a constant");
3670 }
3671 else
3672 add_unwind_entry (output_prologue ());
3673
3674 unwind.prologue = 1;
3675 unwind.prologue_mask = mask;
3676 }
3677
3678 static void
3679 dot_endp (dummy)
3680 int dummy ATTRIBUTE_UNUSED;
3681 {
3682 expressionS e;
3683 unsigned char *ptr;
3684 int bytes_per_address;
3685 long where;
3686 segT saved_seg;
3687 subsegT saved_subseg;
3688
3689 saved_seg = now_seg;
3690 saved_subseg = now_subseg;
3691
3692 expression (&e);
3693 demand_empty_rest_of_line ();
3694
3695 insn_group_break (1, 0, 0);
3696
3697 /* If there was a .handlerdata, we haven't generated an image yet. */
3698 if (unwind.info == 0)
3699 {
3700 generate_unwind_image ();
3701 }
3702
3703 subseg_set (md.last_text_seg, 0);
3704 unwind.proc_end = expr_build_dot ();
3705
3706 set_section ((char *) special_section_name[SPECIAL_SECTION_UNWIND]);
3707
3708 /* Make sure the section has 8 byte alignment. */
3709 record_alignment (now_seg, 3);
3710
3711 ptr = frag_more (24);
3712 where = frag_now_fix () - 24;
3713 bytes_per_address = bfd_arch_bits_per_address (stdoutput) / 8;
3714
3715 /* Issue the values of a) Proc Begin, b) Proc End, c) Unwind Record. */
3716 e.X_op = O_pseudo_fixup;
3717 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
3718 e.X_add_number = 0;
3719 e.X_add_symbol = unwind.proc_start;
3720 ia64_cons_fix_new (frag_now, where, bytes_per_address, &e);
3721
3722 e.X_op = O_pseudo_fixup;
3723 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
3724 e.X_add_number = 0;
3725 e.X_add_symbol = unwind.proc_end;
3726 ia64_cons_fix_new (frag_now, where + bytes_per_address, bytes_per_address, &e);
3727
3728 if (unwind.info != 0)
3729 {
3730 e.X_op = O_pseudo_fixup;
3731 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
3732 e.X_add_number = 0;
3733 e.X_add_symbol = unwind.info;
3734 ia64_cons_fix_new (frag_now, where + (bytes_per_address * 2), bytes_per_address, &e);
3735 }
3736 else
3737 md_number_to_chars (ptr + (bytes_per_address * 2), 0, bytes_per_address);
3738
3739 subseg_set (saved_seg, saved_subseg);
3740 unwind.proc_start = unwind.proc_end = unwind.info = 0;
3741 }
3742
3743 static void
3744 dot_template (template)
3745 int template;
3746 {
3747 CURR_SLOT.user_template = template;
3748 }
3749
3750 static void
3751 dot_regstk (dummy)
3752 int dummy ATTRIBUTE_UNUSED;
3753 {
3754 int ins, locs, outs, rots;
3755
3756 if (is_it_end_of_statement ())
3757 ins = locs = outs = rots = 0;
3758 else
3759 {
3760 ins = get_absolute_expression ();
3761 if (*input_line_pointer++ != ',')
3762 goto err;
3763 locs = get_absolute_expression ();
3764 if (*input_line_pointer++ != ',')
3765 goto err;
3766 outs = get_absolute_expression ();
3767 if (*input_line_pointer++ != ',')
3768 goto err;
3769 rots = get_absolute_expression ();
3770 }
3771 set_regstack (ins, locs, outs, rots);
3772 return;
3773
3774 err:
3775 as_bad ("Comma expected");
3776 ignore_rest_of_line ();
3777 }
3778
3779 static void
3780 dot_rot (type)
3781 int type;
3782 {
3783 unsigned num_regs, num_alloced = 0;
3784 struct dynreg **drpp, *dr;
3785 int ch, base_reg = 0;
3786 char *name, *start;
3787 size_t len;
3788
3789 switch (type)
3790 {
3791 case DYNREG_GR: base_reg = REG_GR + 32; break;
3792 case DYNREG_FR: base_reg = REG_FR + 32; break;
3793 case DYNREG_PR: base_reg = REG_P + 16; break;
3794 default: break;
3795 }
3796
3797 /* First, remove existing names from hash table. */
3798 for (dr = md.dynreg[type]; dr && dr->num_regs; dr = dr->next)
3799 {
3800 hash_delete (md.dynreg_hash, dr->name);
3801 dr->num_regs = 0;
3802 }
3803
3804 drpp = &md.dynreg[type];
3805 while (1)
3806 {
3807 start = input_line_pointer;
3808 ch = get_symbol_end ();
3809 *input_line_pointer = ch;
3810 len = (input_line_pointer - start);
3811
3812 SKIP_WHITESPACE ();
3813 if (*input_line_pointer != '[')
3814 {
3815 as_bad ("Expected '['");
3816 goto err;
3817 }
3818 ++input_line_pointer; /* skip '[' */
3819
3820 num_regs = get_absolute_expression ();
3821
3822 if (*input_line_pointer++ != ']')
3823 {
3824 as_bad ("Expected ']'");
3825 goto err;
3826 }
3827 SKIP_WHITESPACE ();
3828
3829 num_alloced += num_regs;
3830 switch (type)
3831 {
3832 case DYNREG_GR:
3833 if (num_alloced > md.rot.num_regs)
3834 {
3835 as_bad ("Used more than the declared %d rotating registers",
3836 md.rot.num_regs);
3837 goto err;
3838 }
3839 break;
3840 case DYNREG_FR:
3841 if (num_alloced > 96)
3842 {
3843 as_bad ("Used more than the available 96 rotating registers");
3844 goto err;
3845 }
3846 break;
3847 case DYNREG_PR:
3848 if (num_alloced > 48)
3849 {
3850 as_bad ("Used more than the available 48 rotating registers");
3851 goto err;
3852 }
3853 break;
3854
3855 default:
3856 break;
3857 }
3858
3859 name = obstack_alloc (&notes, len + 1);
3860 memcpy (name, start, len);
3861 name[len] = '\0';
3862
3863 if (!*drpp)
3864 {
3865 *drpp = obstack_alloc (&notes, sizeof (*dr));
3866 memset (*drpp, 0, sizeof (*dr));
3867 }
3868
3869 dr = *drpp;
3870 dr->name = name;
3871 dr->num_regs = num_regs;
3872 dr->base = base_reg;
3873 drpp = &dr->next;
3874 base_reg += num_regs;
3875
3876 if (hash_insert (md.dynreg_hash, name, dr))
3877 {
3878 as_bad ("Attempt to redefine register set `%s'", name);
3879 goto err;
3880 }
3881
3882 if (*input_line_pointer != ',')
3883 break;
3884 ++input_line_pointer; /* skip comma */
3885 SKIP_WHITESPACE ();
3886 }
3887 demand_empty_rest_of_line ();
3888 return;
3889
3890 err:
3891 ignore_rest_of_line ();
3892 }
3893
3894 static void
3895 dot_byteorder (byteorder)
3896 int byteorder;
3897 {
3898 target_big_endian = byteorder;
3899 }
3900
3901 static void
3902 dot_psr (dummy)
3903 int dummy ATTRIBUTE_UNUSED;
3904 {
3905 char *option;
3906 int ch;
3907
3908 while (1)
3909 {
3910 option = input_line_pointer;
3911 ch = get_symbol_end ();
3912 if (strcmp (option, "lsb") == 0)
3913 md.flags &= ~EF_IA_64_BE;
3914 else if (strcmp (option, "msb") == 0)
3915 md.flags |= EF_IA_64_BE;
3916 else if (strcmp (option, "abi32") == 0)
3917 md.flags &= ~EF_IA_64_ABI64;
3918 else if (strcmp (option, "abi64") == 0)
3919 md.flags |= EF_IA_64_ABI64;
3920 else
3921 as_bad ("Unknown psr option `%s'", option);
3922 *input_line_pointer = ch;
3923
3924 SKIP_WHITESPACE ();
3925 if (*input_line_pointer != ',')
3926 break;
3927
3928 ++input_line_pointer;
3929 SKIP_WHITESPACE ();
3930 }
3931 demand_empty_rest_of_line ();
3932 }
3933
3934 static void
3935 dot_alias (dummy)
3936 int dummy ATTRIBUTE_UNUSED;
3937 {
3938 as_bad (".alias not implemented yet");
3939 }
3940
3941 static void
3942 dot_ln (dummy)
3943 int dummy ATTRIBUTE_UNUSED;
3944 {
3945 new_logical_line (0, get_absolute_expression ());
3946 demand_empty_rest_of_line ();
3947 }
3948
3949 static char *
3950 parse_section_name ()
3951 {
3952 char *name;
3953 int len;
3954
3955 SKIP_WHITESPACE ();
3956 if (*input_line_pointer != '"')
3957 {
3958 as_bad ("Missing section name");
3959 ignore_rest_of_line ();
3960 return 0;
3961 }
3962 name = demand_copy_C_string (&len);
3963 if (!name)
3964 {
3965 ignore_rest_of_line ();
3966 return 0;
3967 }
3968 SKIP_WHITESPACE ();
3969 if (*input_line_pointer != ',')
3970 {
3971 as_bad ("Comma expected after section name");
3972 ignore_rest_of_line ();
3973 return 0;
3974 }
3975 ++input_line_pointer; /* skip comma */
3976 return name;
3977 }
3978
3979 static void
3980 dot_xdata (size)
3981 int size;
3982 {
3983 char *name = parse_section_name ();
3984 if (!name)
3985 return;
3986
3987 set_section (name);
3988 cons (size);
3989 obj_elf_previous (0);
3990 }
3991
3992 /* Why doesn't float_cons() call md_cons_align() the way cons() does? */
3993
3994 static void
3995 stmt_float_cons (kind)
3996 int kind;
3997 {
3998 size_t size;
3999
4000 switch (kind)
4001 {
4002 case 'd': size = 8; break;
4003 case 'x': size = 10; break;
4004
4005 case 'f':
4006 default:
4007 size = 4;
4008 break;
4009 }
4010 ia64_do_align (size);
4011 float_cons (kind);
4012 }
4013
4014 static void
4015 stmt_cons_ua (size)
4016 int size;
4017 {
4018 int saved_auto_align = md.auto_align;
4019
4020 md.auto_align = 0;
4021 cons (size);
4022 md.auto_align = saved_auto_align;
4023 }
4024
4025 static void
4026 dot_xfloat_cons (kind)
4027 int kind;
4028 {
4029 char *name = parse_section_name ();
4030 if (!name)
4031 return;
4032
4033 set_section (name);
4034 stmt_float_cons (kind);
4035 obj_elf_previous (0);
4036 }
4037
4038 static void
4039 dot_xstringer (zero)
4040 int zero;
4041 {
4042 char *name = parse_section_name ();
4043 if (!name)
4044 return;
4045
4046 set_section (name);
4047 stringer (zero);
4048 obj_elf_previous (0);
4049 }
4050
4051 static void
4052 dot_xdata_ua (size)
4053 int size;
4054 {
4055 int saved_auto_align = md.auto_align;
4056 char *name = parse_section_name ();
4057 if (!name)
4058 return;
4059
4060 set_section (name);
4061 md.auto_align = 0;
4062 cons (size);
4063 md.auto_align = saved_auto_align;
4064 obj_elf_previous (0);
4065 }
4066
4067 static void
4068 dot_xfloat_cons_ua (kind)
4069 int kind;
4070 {
4071 int saved_auto_align = md.auto_align;
4072 char *name = parse_section_name ();
4073 if (!name)
4074 return;
4075
4076 set_section (name);
4077 md.auto_align = 0;
4078 stmt_float_cons (kind);
4079 md.auto_align = saved_auto_align;
4080 obj_elf_previous (0);
4081 }
4082
4083 /* .reg.val <regname>,value */
4084
4085 static void
4086 dot_reg_val (dummy)
4087 int dummy ATTRIBUTE_UNUSED;
4088 {
4089 expressionS reg;
4090
4091 expression (&reg);
4092 if (reg.X_op != O_register)
4093 {
4094 as_bad (_("Register name expected"));
4095 ignore_rest_of_line ();
4096 }
4097 else if (*input_line_pointer++ != ',')
4098 {
4099 as_bad (_("Comma expected"));
4100 ignore_rest_of_line ();
4101 }
4102 else
4103 {
4104 valueT value = get_absolute_expression ();
4105 int regno = reg.X_add_number;
4106 if (regno < REG_GR || regno > REG_GR + 128)
4107 as_warn (_("Register value annotation ignored"));
4108 else
4109 {
4110 gr_values[regno - REG_GR].known = 1;
4111 gr_values[regno - REG_GR].value = value;
4112 gr_values[regno - REG_GR].path = md.path;
4113 }
4114 }
4115 demand_empty_rest_of_line ();
4116 }
4117
4118 /* select dv checking mode
4119 .auto
4120 .explicit
4121 .default
4122
4123 A stop is inserted when changing modes
4124 */
4125
4126 static void
4127 dot_dv_mode (type)
4128 int type;
4129 {
4130 if (md.manual_bundling)
4131 as_warn (_("Directive invalid within a bundle"));
4132
4133 if (type == 'E' || type == 'A')
4134 md.mode_explicitly_set = 0;
4135 else
4136 md.mode_explicitly_set = 1;
4137
4138 md.detect_dv = 1;
4139 switch (type)
4140 {
4141 case 'A':
4142 case 'a':
4143 if (md.explicit_mode)
4144 insn_group_break (1, 0, 0);
4145 md.explicit_mode = 0;
4146 break;
4147 case 'E':
4148 case 'e':
4149 if (!md.explicit_mode)
4150 insn_group_break (1, 0, 0);
4151 md.explicit_mode = 1;
4152 break;
4153 default:
4154 case 'd':
4155 if (md.explicit_mode != md.default_explicit_mode)
4156 insn_group_break (1, 0, 0);
4157 md.explicit_mode = md.default_explicit_mode;
4158 md.mode_explicitly_set = 0;
4159 break;
4160 }
4161 }
4162
4163 static void
4164 print_prmask (mask)
4165 valueT mask;
4166 {
4167 int regno;
4168 char *comma = "";
4169 for (regno = 0; regno < 64; regno++)
4170 {
4171 if (mask & ((valueT) 1 << regno))
4172 {
4173 fprintf (stderr, "%s p%d", comma, regno);
4174 comma = ",";
4175 }
4176 }
4177 }
4178
4179 /*
4180 .pred.rel.clear [p1 [,p2 [,...]]] (also .pred.rel "clear")
4181 .pred.rel.imply p1, p2 (also .pred.rel "imply")
4182 .pred.rel.mutex p1, p2 [,...] (also .pred.rel "mutex")
4183 .pred.safe_across_calls p1 [, p2 [,...]]
4184 */
4185
4186 static void
4187 dot_pred_rel (type)
4188 int type;
4189 {
4190 valueT mask = 0;
4191 int count = 0;
4192 int p1 = -1, p2 = -1;
4193
4194 if (type == 0)
4195 {
4196 if (*input_line_pointer != '"')
4197 {
4198 as_bad (_("Missing predicate relation type"));
4199 ignore_rest_of_line ();
4200 return;
4201 }
4202 else
4203 {
4204 int len;
4205 char *form = demand_copy_C_string (&len);
4206 if (strcmp (form, "mutex") == 0)
4207 type = 'm';
4208 else if (strcmp (form, "clear") == 0)
4209 type = 'c';
4210 else if (strcmp (form, "imply") == 0)
4211 type = 'i';
4212 else
4213 {
4214 as_bad (_("Unrecognized predicate relation type"));
4215 ignore_rest_of_line ();
4216 return;
4217 }
4218 }
4219 if (*input_line_pointer == ',')
4220 ++input_line_pointer;
4221 SKIP_WHITESPACE ();
4222 }
4223
4224 SKIP_WHITESPACE ();
4225 while (1)
4226 {
4227 valueT bit = 1;
4228 int regno;
4229
4230 if (toupper (*input_line_pointer) != 'P'
4231 || (regno = atoi (++input_line_pointer)) < 0
4232 || regno > 63)
4233 {
4234 as_bad (_("Predicate register expected"));
4235 ignore_rest_of_line ();
4236 return;
4237 }
4238 while (isdigit (*input_line_pointer))
4239 ++input_line_pointer;
4240 if (p1 == -1)
4241 p1 = regno;
4242 else if (p2 == -1)
4243 p2 = regno;
4244 bit <<= regno;
4245 if (mask & bit)
4246 as_warn (_("Duplicate predicate register ignored"));
4247 mask |= bit;
4248 count++;
4249 /* See if it's a range. */
4250 if (*input_line_pointer == '-')
4251 {
4252 valueT stop = 1;
4253 ++input_line_pointer;
4254
4255 if (toupper (*input_line_pointer) != 'P'
4256 || (regno = atoi (++input_line_pointer)) < 0
4257 || regno > 63)
4258 {
4259 as_bad (_("Predicate register expected"));
4260 ignore_rest_of_line ();
4261 return;
4262 }
4263 while (isdigit (*input_line_pointer))
4264 ++input_line_pointer;
4265 stop <<= regno;
4266 if (bit >= stop)
4267 {
4268 as_bad (_("Bad register range"));
4269 ignore_rest_of_line ();
4270 return;
4271 }
4272 while (bit < stop)
4273 {
4274 bit <<= 1;
4275 mask |= bit;
4276 count++;
4277 }
4278 SKIP_WHITESPACE ();
4279 }
4280 if (*input_line_pointer != ',')
4281 break;
4282 ++input_line_pointer;
4283 SKIP_WHITESPACE ();
4284 }
4285
4286 switch (type)
4287 {
4288 case 'c':
4289 if (count == 0)
4290 mask = ~(valueT) 0;
4291 clear_qp_mutex (mask);
4292 clear_qp_implies (mask, (valueT) 0);
4293 break;
4294 case 'i':
4295 if (count != 2 || p1 == -1 || p2 == -1)
4296 as_bad (_("Predicate source and target required"));
4297 else if (p1 == 0 || p2 == 0)
4298 as_bad (_("Use of p0 is not valid in this context"));
4299 else
4300 add_qp_imply (p1, p2);
4301 break;
4302 case 'm':
4303 if (count < 2)
4304 {
4305 as_bad (_("At least two PR arguments expected"));
4306 break;
4307 }
4308 else if (mask & 1)
4309 {
4310 as_bad (_("Use of p0 is not valid in this context"));
4311 break;
4312 }
4313 add_qp_mutex (mask);
4314 break;
4315 case 's':
4316 /* note that we don't override any existing relations */
4317 if (count == 0)
4318 {
4319 as_bad (_("At least one PR argument expected"));
4320 break;
4321 }
4322 if (md.debug_dv)
4323 {
4324 fprintf (stderr, "Safe across calls: ");
4325 print_prmask (mask);
4326 fprintf (stderr, "\n");
4327 }
4328 qp_safe_across_calls = mask;
4329 break;
4330 }
4331 demand_empty_rest_of_line ();
4332 }
4333
4334 /* .entry label [, label [, ...]]
4335 Hint to DV code that the given labels are to be considered entry points.
4336 Otherwise, only global labels are considered entry points. */
4337
4338 static void
4339 dot_entry (dummy)
4340 int dummy ATTRIBUTE_UNUSED;
4341 {
4342 const char *err;
4343 char *name;
4344 int c;
4345 symbolS *symbolP;
4346
4347 do
4348 {
4349 name = input_line_pointer;
4350 c = get_symbol_end ();
4351 symbolP = symbol_find_or_make (name);
4352
4353 err = hash_insert (md.entry_hash, S_GET_NAME (symbolP), (PTR) symbolP);
4354 if (err)
4355 as_fatal (_("Inserting \"%s\" into entry hint table failed: %s"),
4356 name, err);
4357
4358 *input_line_pointer = c;
4359 SKIP_WHITESPACE ();
4360 c = *input_line_pointer;
4361 if (c == ',')
4362 {
4363 input_line_pointer++;
4364 SKIP_WHITESPACE ();
4365 if (*input_line_pointer == '\n')
4366 c = '\n';
4367 }
4368 }
4369 while (c == ',');
4370
4371 demand_empty_rest_of_line ();
4372 }
4373
4374 /* .mem.offset offset, base
4375 "base" is used to distinguish between offsets from a different base. */
4376
4377 static void
4378 dot_mem_offset (dummy)
4379 int dummy ATTRIBUTE_UNUSED;
4380 {
4381 md.mem_offset.hint = 1;
4382 md.mem_offset.offset = get_absolute_expression ();
4383 if (*input_line_pointer != ',')
4384 {
4385 as_bad (_("Comma expected"));
4386 ignore_rest_of_line ();
4387 return;
4388 }
4389 ++input_line_pointer;
4390 md.mem_offset.base = get_absolute_expression ();
4391 demand_empty_rest_of_line ();
4392 }
4393
4394 /* ia64-specific pseudo-ops: */
4395 const pseudo_typeS md_pseudo_table[] =
4396 {
4397 { "radix", dot_radix, 0 },
4398 { "lcomm", s_lcomm_bytes, 1 },
4399 { "bss", dot_special_section, SPECIAL_SECTION_BSS },
4400 { "sbss", dot_special_section, SPECIAL_SECTION_SBSS },
4401 { "sdata", dot_special_section, SPECIAL_SECTION_SDATA },
4402 { "rodata", dot_special_section, SPECIAL_SECTION_RODATA },
4403 { "comment", dot_special_section, SPECIAL_SECTION_COMMENT },
4404 { "ia_64.unwind", dot_special_section, SPECIAL_SECTION_UNWIND },
4405 { "ia_64.unwind_info", dot_special_section, SPECIAL_SECTION_UNWIND_INFO },
4406 { "proc", dot_proc, 0 },
4407 { "body", dot_body, 0 },
4408 { "prologue", dot_prologue, 0 },
4409 { "endp", dot_endp, 0 },
4410 { "file", dwarf2_directive_file, 0 },
4411 { "loc", dwarf2_directive_loc, 0 },
4412
4413 { "fframe", dot_fframe, 0 },
4414 { "vframe", dot_vframe, 0 },
4415 { "vframesp", dot_vframesp, 0 },
4416 { "vframepsp", dot_vframepsp, 0 },
4417 { "save", dot_save, 0 },
4418 { "restore", dot_restore, 0 },
4419 { "restorereg", dot_restorereg, 0 },
4420 { "restorereg.p", dot_restorereg_p, 0 },
4421 { "handlerdata", dot_handlerdata, 0 },
4422 { "unwentry", dot_unwentry, 0 },
4423 { "altrp", dot_altrp, 0 },
4424 { "savesp", dot_savemem, 0 },
4425 { "savepsp", dot_savemem, 1 },
4426 { "save.g", dot_saveg, 0 },
4427 { "save.f", dot_savef, 0 },
4428 { "save.b", dot_saveb, 0 },
4429 { "save.gf", dot_savegf, 0 },
4430 { "spill", dot_spill, 0 },
4431 { "spillreg", dot_spillreg, 0 },
4432 { "spillsp", dot_spillmem, 0 },
4433 { "spillpsp", dot_spillmem, 1 },
4434 { "spillreg.p", dot_spillreg_p, 0 },
4435 { "spillsp.p", dot_spillmem_p, 0 },
4436 { "spillpsp.p", dot_spillmem_p, 1 },
4437 { "label_state", dot_label_state, 0 },
4438 { "copy_state", dot_copy_state, 0 },
4439 { "unwabi", dot_unwabi, 0 },
4440 { "personality", dot_personality, 0 },
4441 #if 0
4442 { "estate", dot_estate, 0 },
4443 #endif
4444 { "mii", dot_template, 0x0 },
4445 { "mli", dot_template, 0x2 }, /* old format, for compatibility */
4446 { "mlx", dot_template, 0x2 },
4447 { "mmi", dot_template, 0x4 },
4448 { "mfi", dot_template, 0x6 },
4449 { "mmf", dot_template, 0x7 },
4450 { "mib", dot_template, 0x8 },
4451 { "mbb", dot_template, 0x9 },
4452 { "bbb", dot_template, 0xb },
4453 { "mmb", dot_template, 0xc },
4454 { "mfb", dot_template, 0xe },
4455 #if 0
4456 { "lb", dot_scope, 0 },
4457 { "le", dot_scope, 1 },
4458 #endif
4459 { "align", s_align_bytes, 0 },
4460 { "regstk", dot_regstk, 0 },
4461 { "rotr", dot_rot, DYNREG_GR },
4462 { "rotf", dot_rot, DYNREG_FR },
4463 { "rotp", dot_rot, DYNREG_PR },
4464 { "lsb", dot_byteorder, 0 },
4465 { "msb", dot_byteorder, 1 },
4466 { "psr", dot_psr, 0 },
4467 { "alias", dot_alias, 0 },
4468 { "ln", dot_ln, 0 }, /* source line info (for debugging) */
4469
4470 { "xdata1", dot_xdata, 1 },
4471 { "xdata2", dot_xdata, 2 },
4472 { "xdata4", dot_xdata, 4 },
4473 { "xdata8", dot_xdata, 8 },
4474 { "xreal4", dot_xfloat_cons, 'f' },
4475 { "xreal8", dot_xfloat_cons, 'd' },
4476 { "xreal10", dot_xfloat_cons, 'x' },
4477 { "xstring", dot_xstringer, 0 },
4478 { "xstringz", dot_xstringer, 1 },
4479
4480 /* unaligned versions: */
4481 { "xdata2.ua", dot_xdata_ua, 2 },
4482 { "xdata4.ua", dot_xdata_ua, 4 },
4483 { "xdata8.ua", dot_xdata_ua, 8 },
4484 { "xreal4.ua", dot_xfloat_cons_ua, 'f' },
4485 { "xreal8.ua", dot_xfloat_cons_ua, 'd' },
4486 { "xreal10.ua", dot_xfloat_cons_ua, 'x' },
4487
4488 /* annotations/DV checking support */
4489 { "entry", dot_entry, 0 },
4490 { "mem.offset", dot_mem_offset, 0 },
4491 { "pred.rel", dot_pred_rel, 0 },
4492 { "pred.rel.clear", dot_pred_rel, 'c' },
4493 { "pred.rel.imply", dot_pred_rel, 'i' },
4494 { "pred.rel.mutex", dot_pred_rel, 'm' },
4495 { "pred.safe_across_calls", dot_pred_rel, 's' },
4496 { "reg.val", dot_reg_val, 0 },
4497 { "auto", dot_dv_mode, 'a' },
4498 { "explicit", dot_dv_mode, 'e' },
4499 { "default", dot_dv_mode, 'd' },
4500
4501 { NULL, 0, 0 }
4502 };
4503
4504 static const struct pseudo_opcode
4505 {
4506 const char *name;
4507 void (*handler) (int);
4508 int arg;
4509 }
4510 pseudo_opcode[] =
4511 {
4512 /* these are more like pseudo-ops, but don't start with a dot */
4513 { "data1", cons, 1 },
4514 { "data2", cons, 2 },
4515 { "data4", cons, 4 },
4516 { "data8", cons, 8 },
4517 { "real4", stmt_float_cons, 'f' },
4518 { "real8", stmt_float_cons, 'd' },
4519 { "real10", stmt_float_cons, 'x' },
4520 { "string", stringer, 0 },
4521 { "stringz", stringer, 1 },
4522
4523 /* unaligned versions: */
4524 { "data2.ua", stmt_cons_ua, 2 },
4525 { "data4.ua", stmt_cons_ua, 4 },
4526 { "data8.ua", stmt_cons_ua, 8 },
4527 { "real4.ua", float_cons, 'f' },
4528 { "real8.ua", float_cons, 'd' },
4529 { "real10.ua", float_cons, 'x' },
4530 };
4531
4532 /* Declare a register by creating a symbol for it and entering it in
4533 the symbol table. */
4534
4535 static symbolS *
4536 declare_register (name, regnum)
4537 const char *name;
4538 int regnum;
4539 {
4540 const char *err;
4541 symbolS *sym;
4542
4543 sym = symbol_new (name, reg_section, regnum, &zero_address_frag);
4544
4545 err = hash_insert (md.reg_hash, S_GET_NAME (sym), (PTR) sym);
4546 if (err)
4547 as_fatal ("Inserting \"%s\" into register table failed: %s",
4548 name, err);
4549
4550 return sym;
4551 }
4552
4553 static void
4554 declare_register_set (prefix, num_regs, base_regnum)
4555 const char *prefix;
4556 int num_regs;
4557 int base_regnum;
4558 {
4559 char name[8];
4560 int i;
4561
4562 for (i = 0; i < num_regs; ++i)
4563 {
4564 sprintf (name, "%s%u", prefix, i);
4565 declare_register (name, base_regnum + i);
4566 }
4567 }
4568
4569 static unsigned int
4570 operand_width (opnd)
4571 enum ia64_opnd opnd;
4572 {
4573 const struct ia64_operand *odesc = &elf64_ia64_operands[opnd];
4574 unsigned int bits = 0;
4575 int i;
4576
4577 bits = 0;
4578 for (i = 0; i < NELEMS (odesc->field) && odesc->field[i].bits; ++i)
4579 bits += odesc->field[i].bits;
4580
4581 return bits;
4582 }
4583
4584 static int
4585 operand_match (idesc, index, e)
4586 const struct ia64_opcode *idesc;
4587 int index;
4588 expressionS *e;
4589 {
4590 enum ia64_opnd opnd = idesc->operands[index];
4591 int bits, relocatable = 0;
4592 struct insn_fix *fix;
4593 bfd_signed_vma val;
4594
4595 switch (opnd)
4596 {
4597 /* constants: */
4598
4599 case IA64_OPND_AR_CCV:
4600 if (e->X_op == O_register && e->X_add_number == REG_AR + 32)
4601 return 1;
4602 break;
4603
4604 case IA64_OPND_AR_PFS:
4605 if (e->X_op == O_register && e->X_add_number == REG_AR + 64)
4606 return 1;
4607 break;
4608
4609 case IA64_OPND_GR0:
4610 if (e->X_op == O_register && e->X_add_number == REG_GR + 0)
4611 return 1;
4612 break;
4613
4614 case IA64_OPND_IP:
4615 if (e->X_op == O_register && e->X_add_number == REG_IP)
4616 return 1;
4617 break;
4618
4619 case IA64_OPND_PR:
4620 if (e->X_op == O_register && e->X_add_number == REG_PR)
4621 return 1;
4622 break;
4623
4624 case IA64_OPND_PR_ROT:
4625 if (e->X_op == O_register && e->X_add_number == REG_PR_ROT)
4626 return 1;
4627 break;
4628
4629 case IA64_OPND_PSR:
4630 if (e->X_op == O_register && e->X_add_number == REG_PSR)
4631 return 1;
4632 break;
4633
4634 case IA64_OPND_PSR_L:
4635 if (e->X_op == O_register && e->X_add_number == REG_PSR_L)
4636 return 1;
4637 break;
4638
4639 case IA64_OPND_PSR_UM:
4640 if (e->X_op == O_register && e->X_add_number == REG_PSR_UM)
4641 return 1;
4642 break;
4643
4644 case IA64_OPND_C1:
4645 if (e->X_op == O_constant && e->X_add_number == 1)
4646 return 1;
4647 break;
4648
4649 case IA64_OPND_C8:
4650 if (e->X_op == O_constant && e->X_add_number == 8)
4651 return 1;
4652 break;
4653
4654 case IA64_OPND_C16:
4655 if (e->X_op == O_constant && e->X_add_number == 16)
4656 return 1;
4657 break;
4658
4659 /* register operands: */
4660
4661 case IA64_OPND_AR3:
4662 if (e->X_op == O_register && e->X_add_number >= REG_AR
4663 && e->X_add_number < REG_AR + 128)
4664 return 1;
4665 break;
4666
4667 case IA64_OPND_B1:
4668 case IA64_OPND_B2:
4669 if (e->X_op == O_register && e->X_add_number >= REG_BR
4670 && e->X_add_number < REG_BR + 8)
4671 return 1;
4672 break;
4673
4674 case IA64_OPND_CR3:
4675 if (e->X_op == O_register && e->X_add_number >= REG_CR
4676 && e->X_add_number < REG_CR + 128)
4677 return 1;
4678 break;
4679
4680 case IA64_OPND_F1:
4681 case IA64_OPND_F2:
4682 case IA64_OPND_F3:
4683 case IA64_OPND_F4:
4684 if (e->X_op == O_register && e->X_add_number >= REG_FR
4685 && e->X_add_number < REG_FR + 128)
4686 return 1;
4687 break;
4688
4689 case IA64_OPND_P1:
4690 case IA64_OPND_P2:
4691 if (e->X_op == O_register && e->X_add_number >= REG_P
4692 && e->X_add_number < REG_P + 64)
4693 return 1;
4694 break;
4695
4696 case IA64_OPND_R1:
4697 case IA64_OPND_R2:
4698 case IA64_OPND_R3:
4699 if (e->X_op == O_register && e->X_add_number >= REG_GR
4700 && e->X_add_number < REG_GR + 128)
4701 return 1;
4702 break;
4703
4704 case IA64_OPND_R3_2:
4705 if (e->X_op == O_register && e->X_add_number >= REG_GR
4706 && e->X_add_number < REG_GR + 4)
4707 return 1;
4708 break;
4709
4710 /* indirect operands: */
4711 case IA64_OPND_CPUID_R3:
4712 case IA64_OPND_DBR_R3:
4713 case IA64_OPND_DTR_R3:
4714 case IA64_OPND_ITR_R3:
4715 case IA64_OPND_IBR_R3:
4716 case IA64_OPND_MSR_R3:
4717 case IA64_OPND_PKR_R3:
4718 case IA64_OPND_PMC_R3:
4719 case IA64_OPND_PMD_R3:
4720 case IA64_OPND_RR_R3:
4721 if (e->X_op == O_index && e->X_op_symbol
4722 && (S_GET_VALUE (e->X_op_symbol) - IND_CPUID
4723 == opnd - IA64_OPND_CPUID_R3))
4724 return 1;
4725 break;
4726
4727 case IA64_OPND_MR3:
4728 if (e->X_op == O_index && !e->X_op_symbol)
4729 return 1;
4730 break;
4731
4732 /* immediate operands: */
4733 case IA64_OPND_CNT2a:
4734 case IA64_OPND_LEN4:
4735 case IA64_OPND_LEN6:
4736 bits = operand_width (idesc->operands[index]);
4737 if (e->X_op == O_constant
4738 && (bfd_vma) (e->X_add_number - 1) < ((bfd_vma) 1 << bits))
4739 return 1;
4740 break;
4741
4742 case IA64_OPND_CNT2b:
4743 if (e->X_op == O_constant
4744 && (bfd_vma) (e->X_add_number - 1) < 3)
4745 return 1;
4746 break;
4747
4748 case IA64_OPND_CNT2c:
4749 val = e->X_add_number;
4750 if (e->X_op == O_constant
4751 && (val == 0 || val == 7 || val == 15 || val == 16))
4752 return 1;
4753 break;
4754
4755 case IA64_OPND_SOR:
4756 /* SOR must be an integer multiple of 8 */
4757 if (e->X_add_number & 0x7)
4758 break;
4759 case IA64_OPND_SOF:
4760 case IA64_OPND_SOL:
4761 if (e->X_op == O_constant &&
4762 (bfd_vma) e->X_add_number <= 96)
4763 return 1;
4764 break;
4765
4766 case IA64_OPND_IMMU62:
4767 if (e->X_op == O_constant)
4768 {
4769 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << 62))
4770 return 1;
4771 }
4772 else
4773 {
4774 /* FIXME -- need 62-bit relocation type */
4775 as_bad (_("62-bit relocation not yet implemented"));
4776 }
4777 break;
4778
4779 case IA64_OPND_IMMU64:
4780 if (e->X_op == O_symbol || e->X_op == O_pseudo_fixup
4781 || e->X_op == O_subtract)
4782 {
4783 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
4784 fix->code = BFD_RELOC_IA64_IMM64;
4785 if (e->X_op != O_subtract)
4786 {
4787 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
4788 if (e->X_op == O_pseudo_fixup)
4789 e->X_op = O_symbol;
4790 }
4791
4792 fix->opnd = idesc->operands[index];
4793 fix->expr = *e;
4794 fix->is_pcrel = 0;
4795 ++CURR_SLOT.num_fixups;
4796 return 1;
4797 }
4798 else if (e->X_op == O_constant)
4799 return 1;
4800 break;
4801
4802 case IA64_OPND_CCNT5:
4803 case IA64_OPND_CNT5:
4804 case IA64_OPND_CNT6:
4805 case IA64_OPND_CPOS6a:
4806 case IA64_OPND_CPOS6b:
4807 case IA64_OPND_CPOS6c:
4808 case IA64_OPND_IMMU2:
4809 case IA64_OPND_IMMU7a:
4810 case IA64_OPND_IMMU7b:
4811 case IA64_OPND_IMMU21:
4812 case IA64_OPND_IMMU24:
4813 case IA64_OPND_MBTYPE4:
4814 case IA64_OPND_MHTYPE8:
4815 case IA64_OPND_POS6:
4816 bits = operand_width (idesc->operands[index]);
4817 if (e->X_op == O_constant
4818 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
4819 return 1;
4820 break;
4821
4822 case IA64_OPND_IMMU9:
4823 bits = operand_width (idesc->operands[index]);
4824 if (e->X_op == O_constant
4825 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
4826 {
4827 int lobits = e->X_add_number & 0x3;
4828 if (((bfd_vma) e->X_add_number & 0x3C) != 0 && lobits == 0)
4829 e->X_add_number |= (bfd_vma) 0x3;
4830 return 1;
4831 }
4832 break;
4833
4834 case IA64_OPND_IMM44:
4835 /* least 16 bits must be zero */
4836 if ((e->X_add_number & 0xffff) != 0)
4837 as_warn (_("lower 16 bits of mask ignored"));
4838
4839 if (e->X_op == O_constant
4840 && ((e->X_add_number >= 0
4841 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 44))
4842 || (e->X_add_number < 0
4843 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 44))))
4844 {
4845 /* sign-extend */
4846 if (e->X_add_number >= 0
4847 && (e->X_add_number & ((bfd_vma) 1 << 43)) != 0)
4848 {
4849 e->X_add_number |= ~(((bfd_vma) 1 << 44) - 1);
4850 }
4851 return 1;
4852 }
4853 break;
4854
4855 case IA64_OPND_IMM17:
4856 /* bit 0 is a don't care (pr0 is hardwired to 1) */
4857 if (e->X_op == O_constant
4858 && ((e->X_add_number >= 0
4859 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 17))
4860 || (e->X_add_number < 0
4861 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 17))))
4862 {
4863 /* sign-extend */
4864 if (e->X_add_number >= 0
4865 && (e->X_add_number & ((bfd_vma) 1 << 16)) != 0)
4866 {
4867 e->X_add_number |= ~(((bfd_vma) 1 << 17) - 1);
4868 }
4869 return 1;
4870 }
4871 break;
4872
4873 case IA64_OPND_IMM14:
4874 case IA64_OPND_IMM22:
4875 relocatable = 1;
4876 case IA64_OPND_IMM1:
4877 case IA64_OPND_IMM8:
4878 case IA64_OPND_IMM8U4:
4879 case IA64_OPND_IMM8M1:
4880 case IA64_OPND_IMM8M1U4:
4881 case IA64_OPND_IMM8M1U8:
4882 case IA64_OPND_IMM9a:
4883 case IA64_OPND_IMM9b:
4884 bits = operand_width (idesc->operands[index]);
4885 if (relocatable && (e->X_op == O_symbol
4886 || e->X_op == O_subtract
4887 || e->X_op == O_pseudo_fixup))
4888 {
4889 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
4890
4891 if (idesc->operands[index] == IA64_OPND_IMM14)
4892 fix->code = BFD_RELOC_IA64_IMM14;
4893 else
4894 fix->code = BFD_RELOC_IA64_IMM22;
4895
4896 if (e->X_op != O_subtract)
4897 {
4898 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
4899 if (e->X_op == O_pseudo_fixup)
4900 e->X_op = O_symbol;
4901 }
4902
4903 fix->opnd = idesc->operands[index];
4904 fix->expr = *e;
4905 fix->is_pcrel = 0;
4906 ++CURR_SLOT.num_fixups;
4907 return 1;
4908 }
4909 else if (e->X_op != O_constant
4910 && ! (e->X_op == O_big && opnd == IA64_OPND_IMM8M1U8))
4911 return 0;
4912
4913 if (opnd == IA64_OPND_IMM8M1U4)
4914 {
4915 /* Zero is not valid for unsigned compares that take an adjusted
4916 constant immediate range. */
4917 if (e->X_add_number == 0)
4918 return 0;
4919
4920 /* Sign-extend 32-bit unsigned numbers, so that the following range
4921 checks will work. */
4922 val = e->X_add_number;
4923 if (((val & (~(bfd_vma) 0 << 32)) == 0)
4924 && ((val & ((bfd_vma) 1 << 31)) != 0))
4925 val = ((val << 32) >> 32);
4926
4927 /* Check for 0x100000000. This is valid because
4928 0x100000000-1 is the same as ((uint32_t) -1). */
4929 if (val == ((bfd_signed_vma) 1 << 32))
4930 return 1;
4931
4932 val = val - 1;
4933 }
4934 else if (opnd == IA64_OPND_IMM8M1U8)
4935 {
4936 /* Zero is not valid for unsigned compares that take an adjusted
4937 constant immediate range. */
4938 if (e->X_add_number == 0)
4939 return 0;
4940
4941 /* Check for 0x10000000000000000. */
4942 if (e->X_op == O_big)
4943 {
4944 if (generic_bignum[0] == 0
4945 && generic_bignum[1] == 0
4946 && generic_bignum[2] == 0
4947 && generic_bignum[3] == 0
4948 && generic_bignum[4] == 1)
4949 return 1;
4950 else
4951 return 0;
4952 }
4953 else
4954 val = e->X_add_number - 1;
4955 }
4956 else if (opnd == IA64_OPND_IMM8M1)
4957 val = e->X_add_number - 1;
4958 else if (opnd == IA64_OPND_IMM8U4)
4959 {
4960 /* Sign-extend 32-bit unsigned numbers, so that the following range
4961 checks will work. */
4962 val = e->X_add_number;
4963 if (((val & (~(bfd_vma) 0 << 32)) == 0)
4964 && ((val & ((bfd_vma) 1 << 31)) != 0))
4965 val = ((val << 32) >> 32);
4966 }
4967 else
4968 val = e->X_add_number;
4969
4970 if ((val >= 0 && (bfd_vma) val < ((bfd_vma) 1 << (bits - 1)))
4971 || (val < 0 && (bfd_vma) -val <= ((bfd_vma) 1 << (bits - 1))))
4972 return 1;
4973 break;
4974
4975 case IA64_OPND_INC3:
4976 /* +/- 1, 4, 8, 16 */
4977 val = e->X_add_number;
4978 if (val < 0)
4979 val = -val;
4980 if (e->X_op == O_constant
4981 && (val == 1 || val == 4 || val == 8 || val == 16))
4982 return 1;
4983 break;
4984
4985 case IA64_OPND_TGT25:
4986 case IA64_OPND_TGT25b:
4987 case IA64_OPND_TGT25c:
4988 case IA64_OPND_TGT64:
4989 if (e->X_op == O_symbol)
4990 {
4991 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
4992 if (opnd == IA64_OPND_TGT25)
4993 fix->code = BFD_RELOC_IA64_PCREL21F;
4994 else if (opnd == IA64_OPND_TGT25b)
4995 fix->code = BFD_RELOC_IA64_PCREL21M;
4996 else if (opnd == IA64_OPND_TGT25c)
4997 fix->code = BFD_RELOC_IA64_PCREL21B;
4998 else if (opnd == IA64_OPND_TGT64)
4999 fix->code = BFD_RELOC_IA64_PCREL60B;
5000 else
5001 abort ();
5002
5003 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5004 fix->opnd = idesc->operands[index];
5005 fix->expr = *e;
5006 fix->is_pcrel = 1;
5007 ++CURR_SLOT.num_fixups;
5008 return 1;
5009 }
5010 case IA64_OPND_TAG13:
5011 case IA64_OPND_TAG13b:
5012 switch (e->X_op)
5013 {
5014 case O_constant:
5015 return 1;
5016
5017 case O_symbol:
5018 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5019 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, 0);
5020 fix->opnd = idesc->operands[index];
5021 fix->expr = *e;
5022 fix->is_pcrel = 1;
5023 ++CURR_SLOT.num_fixups;
5024 return 1;
5025
5026 default:
5027 break;
5028 }
5029 break;
5030
5031 default:
5032 break;
5033 }
5034 return 0;
5035 }
5036
5037 static int
5038 parse_operand (e)
5039 expressionS *e;
5040 {
5041 int sep = '\0';
5042
5043 memset (e, 0, sizeof (*e));
5044 e->X_op = O_absent;
5045 SKIP_WHITESPACE ();
5046 if (*input_line_pointer != '}')
5047 expression (e);
5048 sep = *input_line_pointer++;
5049
5050 if (sep == '}')
5051 {
5052 if (!md.manual_bundling)
5053 as_warn ("Found '}' when manual bundling is off");
5054 else
5055 CURR_SLOT.manual_bundling_off = 1;
5056 md.manual_bundling = 0;
5057 sep = '\0';
5058 }
5059 return sep;
5060 }
5061
5062 /* Returns the next entry in the opcode table that matches the one in
5063 IDESC, and frees the entry in IDESC. If no matching entry is
5064 found, NULL is returned instead. */
5065
5066 static struct ia64_opcode *
5067 get_next_opcode (struct ia64_opcode *idesc)
5068 {
5069 struct ia64_opcode *next = ia64_find_next_opcode (idesc);
5070 ia64_free_opcode (idesc);
5071 return next;
5072 }
5073
5074 /* Parse the operands for the opcode and find the opcode variant that
5075 matches the specified operands, or NULL if no match is possible. */
5076
5077 static struct ia64_opcode *
5078 parse_operands (idesc)
5079 struct ia64_opcode *idesc;
5080 {
5081 int i = 0, highest_unmatched_operand, num_operands = 0, num_outputs = 0;
5082 int sep = 0;
5083 enum ia64_opnd expected_operand = IA64_OPND_NIL;
5084 char mnemonic[129];
5085 char *first_arg = 0, *end, *saved_input_pointer;
5086 unsigned int sof;
5087
5088 assert (strlen (idesc->name) <= 128);
5089
5090 strcpy (mnemonic, idesc->name);
5091 if (idesc->operands[2] == IA64_OPND_SOF)
5092 {
5093 /* To make the common idiom "alloc loc?=ar.pfs,0,1,0,0" work, we
5094 can't parse the first operand until we have parsed the
5095 remaining operands of the "alloc" instruction. */
5096 SKIP_WHITESPACE ();
5097 first_arg = input_line_pointer;
5098 end = strchr (input_line_pointer, '=');
5099 if (!end)
5100 {
5101 as_bad ("Expected separator `='");
5102 return 0;
5103 }
5104 input_line_pointer = end + 1;
5105 ++i;
5106 ++num_outputs;
5107 }
5108
5109 for (; i < NELEMS (CURR_SLOT.opnd); ++i)
5110 {
5111 sep = parse_operand (CURR_SLOT.opnd + i);
5112 if (CURR_SLOT.opnd[i].X_op == O_absent)
5113 break;
5114
5115 ++num_operands;
5116
5117 if (sep != '=' && sep != ',')
5118 break;
5119
5120 if (sep == '=')
5121 {
5122 if (num_outputs > 0)
5123 as_bad ("Duplicate equal sign (=) in instruction");
5124 else
5125 num_outputs = i + 1;
5126 }
5127 }
5128 if (sep != '\0')
5129 {
5130 as_bad ("Illegal operand separator `%c'", sep);
5131 return 0;
5132 }
5133
5134 if (idesc->operands[2] == IA64_OPND_SOF)
5135 {
5136 /* map alloc r1=ar.pfs,i,l,o,r to alloc r1=ar.pfs,(i+l+o),(i+l),r */
5137 know (strcmp (idesc->name, "alloc") == 0);
5138 if (num_operands == 5 /* first_arg not included in this count! */
5139 && CURR_SLOT.opnd[2].X_op == O_constant
5140 && CURR_SLOT.opnd[3].X_op == O_constant
5141 && CURR_SLOT.opnd[4].X_op == O_constant
5142 && CURR_SLOT.opnd[5].X_op == O_constant)
5143 {
5144 sof = set_regstack (CURR_SLOT.opnd[2].X_add_number,
5145 CURR_SLOT.opnd[3].X_add_number,
5146 CURR_SLOT.opnd[4].X_add_number,
5147 CURR_SLOT.opnd[5].X_add_number);
5148
5149 /* now we can parse the first arg: */
5150 saved_input_pointer = input_line_pointer;
5151 input_line_pointer = first_arg;
5152 sep = parse_operand (CURR_SLOT.opnd + 0);
5153 if (sep != '=')
5154 --num_outputs; /* force error */
5155 input_line_pointer = saved_input_pointer;
5156
5157 CURR_SLOT.opnd[2].X_add_number = sof;
5158 CURR_SLOT.opnd[3].X_add_number
5159 = sof - CURR_SLOT.opnd[4].X_add_number;
5160 CURR_SLOT.opnd[4] = CURR_SLOT.opnd[5];
5161 }
5162 }
5163
5164 highest_unmatched_operand = 0;
5165 expected_operand = idesc->operands[0];
5166 for (; idesc; idesc = get_next_opcode (idesc))
5167 {
5168 if (num_outputs != idesc->num_outputs)
5169 continue; /* mismatch in # of outputs */
5170
5171 CURR_SLOT.num_fixups = 0;
5172 for (i = 0; i < num_operands && idesc->operands[i]; ++i)
5173 if (!operand_match (idesc, i, CURR_SLOT.opnd + i))
5174 break;
5175
5176 if (i != num_operands)
5177 {
5178 if (i > highest_unmatched_operand)
5179 {
5180 highest_unmatched_operand = i;
5181 expected_operand = idesc->operands[i];
5182 }
5183 continue;
5184 }
5185
5186 if (num_operands < NELEMS (idesc->operands)
5187 && idesc->operands[num_operands])
5188 continue; /* mismatch in number of arguments */
5189
5190 break;
5191 }
5192 if (!idesc)
5193 {
5194 if (expected_operand)
5195 as_bad ("Operand %u of `%s' should be %s",
5196 highest_unmatched_operand + 1, mnemonic,
5197 elf64_ia64_operands[expected_operand].desc);
5198 else
5199 as_bad ("Operand mismatch");
5200 return 0;
5201 }
5202 return idesc;
5203 }
5204
5205 /* Keep track of state necessary to determine whether a NOP is necessary
5206 to avoid an erratum in A and B step Itanium chips, and return 1 if we
5207 detect a case where additional NOPs may be necessary. */
5208 static int
5209 errata_nop_necessary_p (slot, insn_unit)
5210 struct slot *slot;
5211 enum ia64_unit insn_unit;
5212 {
5213 int i;
5214 struct group *this_group = md.last_groups + md.group_idx;
5215 struct group *prev_group = md.last_groups + (md.group_idx + 2) % 3;
5216 struct ia64_opcode *idesc = slot->idesc;
5217
5218 /* Test whether this could be the first insn in a problematic sequence. */
5219 if (insn_unit == IA64_UNIT_F)
5220 {
5221 for (i = 0; i < idesc->num_outputs; i++)
5222 if (idesc->operands[i] == IA64_OPND_P1
5223 || idesc->operands[i] == IA64_OPND_P2)
5224 {
5225 int regno = slot->opnd[i].X_add_number - REG_P;
5226 /* Ignore invalid operands; they generate errors elsewhere. */
5227 if (regno >= 64)
5228 return 0;
5229 this_group->p_reg_set[regno] = 1;
5230 }
5231 }
5232
5233 /* Test whether this could be the second insn in a problematic sequence. */
5234 if (insn_unit == IA64_UNIT_M && slot->qp_regno > 0
5235 && prev_group->p_reg_set[slot->qp_regno])
5236 {
5237 for (i = 0; i < idesc->num_outputs; i++)
5238 if (idesc->operands[i] == IA64_OPND_R1
5239 || idesc->operands[i] == IA64_OPND_R2
5240 || idesc->operands[i] == IA64_OPND_R3)
5241 {
5242 int regno = slot->opnd[i].X_add_number - REG_GR;
5243 /* Ignore invalid operands; they generate errors elsewhere. */
5244 if (regno >= 128)
5245 return 0;
5246 if (strncmp (idesc->name, "add", 3) != 0
5247 && strncmp (idesc->name, "sub", 3) != 0
5248 && strncmp (idesc->name, "shladd", 6) != 0
5249 && (idesc->flags & IA64_OPCODE_POSTINC) == 0)
5250 this_group->g_reg_set_conditionally[regno] = 1;
5251 }
5252 }
5253
5254 /* Test whether this could be the third insn in a problematic sequence. */
5255 for (i = 0; i < NELEMS (idesc->operands) && idesc->operands[i]; i++)
5256 {
5257 if (/* For fc, ptc, ptr, tak, thash, tpa, ttag, probe, ptr, ptc. */
5258 idesc->operands[i] == IA64_OPND_R3
5259 /* For mov indirect. */
5260 || idesc->operands[i] == IA64_OPND_RR_R3
5261 || idesc->operands[i] == IA64_OPND_DBR_R3
5262 || idesc->operands[i] == IA64_OPND_IBR_R3
5263 || idesc->operands[i] == IA64_OPND_PKR_R3
5264 || idesc->operands[i] == IA64_OPND_PMC_R3
5265 || idesc->operands[i] == IA64_OPND_PMD_R3
5266 || idesc->operands[i] == IA64_OPND_MSR_R3
5267 || idesc->operands[i] == IA64_OPND_CPUID_R3
5268 /* For itr. */
5269 || idesc->operands[i] == IA64_OPND_ITR_R3
5270 || idesc->operands[i] == IA64_OPND_DTR_R3
5271 /* Normal memory addresses (load, store, xchg, cmpxchg, etc.). */
5272 || idesc->operands[i] == IA64_OPND_MR3)
5273 {
5274 int regno = slot->opnd[i].X_add_number - REG_GR;
5275 /* Ignore invalid operands; they generate errors elsewhere. */
5276 if (regno >= 128)
5277 return 0;
5278 if (idesc->operands[i] == IA64_OPND_R3)
5279 {
5280 if (strcmp (idesc->name, "fc") != 0
5281 && strcmp (idesc->name, "tak") != 0
5282 && strcmp (idesc->name, "thash") != 0
5283 && strcmp (idesc->name, "tpa") != 0
5284 && strcmp (idesc->name, "ttag") != 0
5285 && strncmp (idesc->name, "ptr", 3) != 0
5286 && strncmp (idesc->name, "ptc", 3) != 0
5287 && strncmp (idesc->name, "probe", 5) != 0)
5288 return 0;
5289 }
5290 if (prev_group->g_reg_set_conditionally[regno])
5291 return 1;
5292 }
5293 }
5294 return 0;
5295 }
5296
5297 static void
5298 build_insn (slot, insnp)
5299 struct slot *slot;
5300 bfd_vma *insnp;
5301 {
5302 const struct ia64_operand *odesc, *o2desc;
5303 struct ia64_opcode *idesc = slot->idesc;
5304 bfd_signed_vma insn, val;
5305 const char *err;
5306 int i;
5307
5308 insn = idesc->opcode | slot->qp_regno;
5309
5310 for (i = 0; i < NELEMS (idesc->operands) && idesc->operands[i]; ++i)
5311 {
5312 if (slot->opnd[i].X_op == O_register
5313 || slot->opnd[i].X_op == O_constant
5314 || slot->opnd[i].X_op == O_index)
5315 val = slot->opnd[i].X_add_number;
5316 else if (slot->opnd[i].X_op == O_big)
5317 {
5318 /* This must be the value 0x10000000000000000. */
5319 assert (idesc->operands[i] == IA64_OPND_IMM8M1U8);
5320 val = 0;
5321 }
5322 else
5323 val = 0;
5324
5325 switch (idesc->operands[i])
5326 {
5327 case IA64_OPND_IMMU64:
5328 *insnp++ = (val >> 22) & 0x1ffffffffffLL;
5329 insn |= (((val & 0x7f) << 13) | (((val >> 7) & 0x1ff) << 27)
5330 | (((val >> 16) & 0x1f) << 22) | (((val >> 21) & 0x1) << 21)
5331 | (((val >> 63) & 0x1) << 36));
5332 continue;
5333
5334 case IA64_OPND_IMMU62:
5335 val &= 0x3fffffffffffffffULL;
5336 if (val != slot->opnd[i].X_add_number)
5337 as_warn (_("Value truncated to 62 bits"));
5338 *insnp++ = (val >> 21) & 0x1ffffffffffLL;
5339 insn |= (((val & 0xfffff) << 6) | (((val >> 20) & 0x1) << 36));
5340 continue;
5341
5342 case IA64_OPND_TGT64:
5343 val >>= 4;
5344 *insnp++ = ((val >> 20) & 0x7fffffffffLL) << 2;
5345 insn |= ((((val >> 59) & 0x1) << 36)
5346 | (((val >> 0) & 0xfffff) << 13));
5347 continue;
5348
5349 case IA64_OPND_AR3:
5350 val -= REG_AR;
5351 break;
5352
5353 case IA64_OPND_B1:
5354 case IA64_OPND_B2:
5355 val -= REG_BR;
5356 break;
5357
5358 case IA64_OPND_CR3:
5359 val -= REG_CR;
5360 break;
5361
5362 case IA64_OPND_F1:
5363 case IA64_OPND_F2:
5364 case IA64_OPND_F3:
5365 case IA64_OPND_F4:
5366 val -= REG_FR;
5367 break;
5368
5369 case IA64_OPND_P1:
5370 case IA64_OPND_P2:
5371 val -= REG_P;
5372 break;
5373
5374 case IA64_OPND_R1:
5375 case IA64_OPND_R2:
5376 case IA64_OPND_R3:
5377 case IA64_OPND_R3_2:
5378 case IA64_OPND_CPUID_R3:
5379 case IA64_OPND_DBR_R3:
5380 case IA64_OPND_DTR_R3:
5381 case IA64_OPND_ITR_R3:
5382 case IA64_OPND_IBR_R3:
5383 case IA64_OPND_MR3:
5384 case IA64_OPND_MSR_R3:
5385 case IA64_OPND_PKR_R3:
5386 case IA64_OPND_PMC_R3:
5387 case IA64_OPND_PMD_R3:
5388 case IA64_OPND_RR_R3:
5389 val -= REG_GR;
5390 break;
5391
5392 default:
5393 break;
5394 }
5395
5396 odesc = elf64_ia64_operands + idesc->operands[i];
5397 err = (*odesc->insert) (odesc, val, &insn);
5398 if (err)
5399 as_bad_where (slot->src_file, slot->src_line,
5400 "Bad operand value: %s", err);
5401 if (idesc->flags & IA64_OPCODE_PSEUDO)
5402 {
5403 if ((idesc->flags & IA64_OPCODE_F2_EQ_F3)
5404 && odesc == elf64_ia64_operands + IA64_OPND_F3)
5405 {
5406 o2desc = elf64_ia64_operands + IA64_OPND_F2;
5407 (*o2desc->insert) (o2desc, val, &insn);
5408 }
5409 if ((idesc->flags & IA64_OPCODE_LEN_EQ_64MCNT)
5410 && (odesc == elf64_ia64_operands + IA64_OPND_CPOS6a
5411 || odesc == elf64_ia64_operands + IA64_OPND_POS6))
5412 {
5413 o2desc = elf64_ia64_operands + IA64_OPND_LEN6;
5414 (*o2desc->insert) (o2desc, 64 - val, &insn);
5415 }
5416 }
5417 }
5418 *insnp = insn;
5419 }
5420
5421 static void
5422 emit_one_bundle ()
5423 {
5424 unsigned int manual_bundling_on = 0, manual_bundling_off = 0;
5425 unsigned int manual_bundling = 0;
5426 enum ia64_unit required_unit, insn_unit = 0;
5427 enum ia64_insn_type type[3], insn_type;
5428 unsigned int template, orig_template;
5429 bfd_vma insn[3] = { -1, -1, -1 };
5430 struct ia64_opcode *idesc;
5431 int end_of_insn_group = 0, user_template = -1;
5432 int n, i, j, first, curr;
5433 unw_rec_list *ptr;
5434 bfd_vma t0 = 0, t1 = 0;
5435 struct label_fix *lfix;
5436 struct insn_fix *ifix;
5437 char mnemonic[16];
5438 fixS *fix;
5439 char *f;
5440
5441 first = (md.curr_slot + NUM_SLOTS - md.num_slots_in_use) % NUM_SLOTS;
5442 know (first >= 0 & first < NUM_SLOTS);
5443 n = MIN (3, md.num_slots_in_use);
5444
5445 /* Determine template: user user_template if specified, best match
5446 otherwise: */
5447
5448 if (md.slot[first].user_template >= 0)
5449 user_template = template = md.slot[first].user_template;
5450 else
5451 {
5452 /* Auto select appropriate template. */
5453 memset (type, 0, sizeof (type));
5454 curr = first;
5455 for (i = 0; i < n; ++i)
5456 {
5457 if (md.slot[curr].label_fixups && i != 0)
5458 break;
5459 type[i] = md.slot[curr].idesc->type;
5460 curr = (curr + 1) % NUM_SLOTS;
5461 }
5462 template = best_template[type[0]][type[1]][type[2]];
5463 }
5464
5465 /* initialize instructions with appropriate nops: */
5466 for (i = 0; i < 3; ++i)
5467 insn[i] = nop[ia64_templ_desc[template].exec_unit[i]];
5468
5469 f = frag_more (16);
5470
5471 /* now fill in slots with as many insns as possible: */
5472 curr = first;
5473 idesc = md.slot[curr].idesc;
5474 end_of_insn_group = 0;
5475 for (i = 0; i < 3 && md.num_slots_in_use > 0; ++i)
5476 {
5477 /* Set the slot number for prologue/body records now as those
5478 refer to the current point, not the point after the
5479 instruction has been issued: */
5480 /* Don't try to delete prologue/body records here, as that will cause
5481 them to also be deleted from the master list of unwind records. */
5482 for (ptr = md.slot[curr].unwind_record; ptr; ptr = ptr->next)
5483 if (ptr->r.type == prologue || ptr->r.type == prologue_gr
5484 || ptr->r.type == body)
5485 {
5486 ptr->slot_number = (unsigned long) f + i;
5487 ptr->slot_frag = frag_now;
5488 }
5489
5490 if (idesc->flags & IA64_OPCODE_SLOT2)
5491 {
5492 if (manual_bundling && i != 2)
5493 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
5494 "`%s' must be last in bundle", idesc->name);
5495 else
5496 i = 2;
5497 }
5498 if (idesc->flags & IA64_OPCODE_LAST)
5499 {
5500 int required_slot;
5501 unsigned int required_template;
5502
5503 /* If we need a stop bit after an M slot, our only choice is
5504 template 5 (M;;MI). If we need a stop bit after a B
5505 slot, our only choice is to place it at the end of the
5506 bundle, because the only available templates are MIB,
5507 MBB, BBB, MMB, and MFB. We don't handle anything other
5508 than M and B slots because these are the only kind of
5509 instructions that can have the IA64_OPCODE_LAST bit set. */
5510 required_template = template;
5511 switch (idesc->type)
5512 {
5513 case IA64_TYPE_M:
5514 required_slot = 0;
5515 required_template = 5;
5516 break;
5517
5518 case IA64_TYPE_B:
5519 required_slot = 2;
5520 break;
5521
5522 default:
5523 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
5524 "Internal error: don't know how to force %s to end"
5525 "of instruction group", idesc->name);
5526 required_slot = i;
5527 break;
5528 }
5529 if (manual_bundling && i != required_slot)
5530 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
5531 "`%s' must be last in instruction group",
5532 idesc->name);
5533 if (required_slot < i)
5534 /* Can't fit this instruction. */
5535 break;
5536
5537 i = required_slot;
5538 if (required_template != template)
5539 {
5540 /* If we switch the template, we need to reset the NOPs
5541 after slot i. The slot-types of the instructions ahead
5542 of i never change, so we don't need to worry about
5543 changing NOPs in front of this slot. */
5544 for (j = i; j < 3; ++j)
5545 insn[j] = nop[ia64_templ_desc[required_template].exec_unit[j]];
5546 }
5547 template = required_template;
5548 }
5549 if (curr != first && md.slot[curr].label_fixups)
5550 {
5551 if (manual_bundling_on)
5552 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
5553 "Label must be first in a bundle");
5554 /* This insn must go into the first slot of a bundle. */
5555 break;
5556 }
5557
5558 manual_bundling_on = md.slot[curr].manual_bundling_on;
5559 manual_bundling_off = md.slot[curr].manual_bundling_off;
5560
5561 if (manual_bundling_on)
5562 {
5563 if (curr == first)
5564 manual_bundling = 1;
5565 else
5566 break; /* need to start a new bundle */
5567 }
5568
5569 if (end_of_insn_group && md.num_slots_in_use >= 1)
5570 {
5571 /* We need an instruction group boundary in the middle of a
5572 bundle. See if we can switch to an other template with
5573 an appropriate boundary. */
5574
5575 orig_template = template;
5576 if (i == 1 && (user_template == 4
5577 || (user_template < 0
5578 && (ia64_templ_desc[template].exec_unit[0]
5579 == IA64_UNIT_M))))
5580 {
5581 template = 5;
5582 end_of_insn_group = 0;
5583 }
5584 else if (i == 2 && (user_template == 0
5585 || (user_template < 0
5586 && (ia64_templ_desc[template].exec_unit[1]
5587 == IA64_UNIT_I)))
5588 /* This test makes sure we don't switch the template if
5589 the next instruction is one that needs to be first in
5590 an instruction group. Since all those instructions are
5591 in the M group, there is no way such an instruction can
5592 fit in this bundle even if we switch the template. The
5593 reason we have to check for this is that otherwise we
5594 may end up generating "MI;;I M.." which has the deadly
5595 effect that the second M instruction is no longer the
5596 first in the bundle! --davidm 99/12/16 */
5597 && (idesc->flags & IA64_OPCODE_FIRST) == 0)
5598 {
5599 template = 1;
5600 end_of_insn_group = 0;
5601 }
5602 else if (curr != first)
5603 /* can't fit this insn */
5604 break;
5605
5606 if (template != orig_template)
5607 /* if we switch the template, we need to reset the NOPs
5608 after slot i. The slot-types of the instructions ahead
5609 of i never change, so we don't need to worry about
5610 changing NOPs in front of this slot. */
5611 for (j = i; j < 3; ++j)
5612 insn[j] = nop[ia64_templ_desc[template].exec_unit[j]];
5613 }
5614 required_unit = ia64_templ_desc[template].exec_unit[i];
5615
5616 /* resolve dynamic opcodes such as "break" and "nop": */
5617 if (idesc->type == IA64_TYPE_DYN)
5618 {
5619 if ((strcmp (idesc->name, "nop") == 0)
5620 || (strcmp (idesc->name, "break") == 0))
5621 insn_unit = required_unit;
5622 else if (strcmp (idesc->name, "chk.s") == 0)
5623 {
5624 insn_unit = IA64_UNIT_M;
5625 if (required_unit == IA64_UNIT_I)
5626 insn_unit = IA64_UNIT_I;
5627 }
5628 else
5629 as_fatal ("emit_one_bundle: unexpected dynamic op");
5630
5631 sprintf (mnemonic, "%s.%c", idesc->name, "?imbf??"[insn_unit]);
5632 ia64_free_opcode (idesc);
5633 md.slot[curr].idesc = idesc = ia64_find_opcode (mnemonic);
5634 #if 0
5635 know (!idesc->next); /* no resolved dynamic ops have collisions */
5636 #endif
5637 }
5638 else
5639 {
5640 insn_type = idesc->type;
5641 insn_unit = IA64_UNIT_NIL;
5642 switch (insn_type)
5643 {
5644 case IA64_TYPE_A:
5645 if (required_unit == IA64_UNIT_I || required_unit == IA64_UNIT_M)
5646 insn_unit = required_unit;
5647 break;
5648 case IA64_TYPE_X: insn_unit = IA64_UNIT_L; break;
5649 case IA64_TYPE_I: insn_unit = IA64_UNIT_I; break;
5650 case IA64_TYPE_M: insn_unit = IA64_UNIT_M; break;
5651 case IA64_TYPE_B: insn_unit = IA64_UNIT_B; break;
5652 case IA64_TYPE_F: insn_unit = IA64_UNIT_F; break;
5653 default: break;
5654 }
5655 }
5656
5657 if (insn_unit != required_unit)
5658 {
5659 if (required_unit == IA64_UNIT_L
5660 && insn_unit == IA64_UNIT_I
5661 && !(idesc->flags & IA64_OPCODE_X_IN_MLX))
5662 {
5663 /* we got ourselves an MLX template but the current
5664 instruction isn't an X-unit, or an I-unit instruction
5665 that can go into the X slot of an MLX template. Duh. */
5666 if (md.num_slots_in_use >= NUM_SLOTS)
5667 {
5668 as_bad_where (md.slot[curr].src_file,
5669 md.slot[curr].src_line,
5670 "`%s' can't go in X slot of "
5671 "MLX template", idesc->name);
5672 /* drop this insn so we don't livelock: */
5673 --md.num_slots_in_use;
5674 }
5675 break;
5676 }
5677 continue; /* try next slot */
5678 }
5679
5680 {
5681 bfd_vma addr;
5682
5683 addr = frag_now->fr_address + frag_now_fix () - 16 + i;
5684 dwarf2_gen_line_info (addr, &md.slot[curr].debug_line);
5685 }
5686
5687 if (errata_nop_necessary_p (md.slot + curr, insn_unit))
5688 as_warn (_("Additional NOP may be necessary to workaround Itanium processor A/B step errata"));
5689
5690 build_insn (md.slot + curr, insn + i);
5691
5692 /* Set slot counts for non prologue/body unwind records. */
5693 for (ptr = md.slot[curr].unwind_record; ptr; ptr = ptr->next)
5694 if (ptr->r.type != prologue && ptr->r.type != prologue_gr
5695 && ptr->r.type != body)
5696 {
5697 ptr->slot_number = (unsigned long) f + i;
5698 ptr->slot_frag = frag_now;
5699 }
5700 md.slot[curr].unwind_record = NULL;
5701
5702 if (required_unit == IA64_UNIT_L)
5703 {
5704 know (i == 1);
5705 /* skip one slot for long/X-unit instructions */
5706 ++i;
5707 }
5708 --md.num_slots_in_use;
5709
5710 /* now is a good time to fix up the labels for this insn: */
5711 for (lfix = md.slot[curr].label_fixups; lfix; lfix = lfix->next)
5712 {
5713 S_SET_VALUE (lfix->sym, frag_now_fix () - 16);
5714 symbol_set_frag (lfix->sym, frag_now);
5715 }
5716 /* and fix up the tags also. */
5717 for (lfix = md.slot[curr].tag_fixups; lfix; lfix = lfix->next)
5718 {
5719 S_SET_VALUE (lfix->sym, frag_now_fix () - 16 + i);
5720 symbol_set_frag (lfix->sym, frag_now);
5721 }
5722
5723 for (j = 0; j < md.slot[curr].num_fixups; ++j)
5724 {
5725 ifix = md.slot[curr].fixup + j;
5726 fix = fix_new_exp (frag_now, frag_now_fix () - 16 + i, 8,
5727 &ifix->expr, ifix->is_pcrel, ifix->code);
5728 fix->tc_fix_data.opnd = ifix->opnd;
5729 fix->fx_plt = (fix->fx_r_type == BFD_RELOC_IA64_PLTOFF22);
5730 fix->fx_file = md.slot[curr].src_file;
5731 fix->fx_line = md.slot[curr].src_line;
5732 }
5733
5734 end_of_insn_group = md.slot[curr].end_of_insn_group;
5735
5736 if (end_of_insn_group)
5737 {
5738 md.group_idx = (md.group_idx + 1) % 3;
5739 memset (md.last_groups + md.group_idx, 0, sizeof md.last_groups[0]);
5740 }
5741
5742 /* clear slot: */
5743 ia64_free_opcode (md.slot[curr].idesc);
5744 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
5745 md.slot[curr].user_template = -1;
5746
5747 if (manual_bundling_off)
5748 {
5749 manual_bundling = 0;
5750 break;
5751 }
5752 curr = (curr + 1) % NUM_SLOTS;
5753 idesc = md.slot[curr].idesc;
5754 }
5755 if (manual_bundling)
5756 {
5757 if (md.num_slots_in_use > 0)
5758 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
5759 "`%s' does not fit into %s template",
5760 idesc->name, ia64_templ_desc[template].name);
5761 else
5762 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
5763 "Missing '}' at end of file");
5764 }
5765 know (md.num_slots_in_use < NUM_SLOTS);
5766
5767 t0 = end_of_insn_group | (template << 1) | (insn[0] << 5) | (insn[1] << 46);
5768 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
5769
5770 number_to_chars_littleendian (f + 0, t0, 8);
5771 number_to_chars_littleendian (f + 8, t1, 8);
5772
5773 unwind.next_slot_number = (unsigned long) f + 16;
5774 unwind.next_slot_frag = frag_now;
5775 }
5776
5777 int
5778 md_parse_option (c, arg)
5779 int c;
5780 char *arg;
5781 {
5782 switch (c)
5783 {
5784 /* Switches from the Intel assembler. */
5785 case 'm':
5786 if (strcmp (arg, "ilp64") == 0
5787 || strcmp (arg, "lp64") == 0
5788 || strcmp (arg, "p64") == 0)
5789 {
5790 md.flags |= EF_IA_64_ABI64;
5791 }
5792 else if (strcmp (arg, "ilp32") == 0)
5793 {
5794 md.flags &= ~EF_IA_64_ABI64;
5795 }
5796 else if (strcmp (arg, "le") == 0)
5797 {
5798 md.flags &= ~EF_IA_64_BE;
5799 }
5800 else if (strcmp (arg, "be") == 0)
5801 {
5802 md.flags |= EF_IA_64_BE;
5803 }
5804 else
5805 return 0;
5806 break;
5807
5808 case 'N':
5809 if (strcmp (arg, "so") == 0)
5810 {
5811 /* Suppress signon message. */
5812 }
5813 else if (strcmp (arg, "pi") == 0)
5814 {
5815 /* Reject privileged instructions. FIXME */
5816 }
5817 else if (strcmp (arg, "us") == 0)
5818 {
5819 /* Allow union of signed and unsigned range. FIXME */
5820 }
5821 else if (strcmp (arg, "close_fcalls") == 0)
5822 {
5823 /* Do not resolve global function calls. */
5824 }
5825 else
5826 return 0;
5827 break;
5828
5829 case 'C':
5830 /* temp[="prefix"] Insert temporary labels into the object file
5831 symbol table prefixed by "prefix".
5832 Default prefix is ":temp:".
5833 */
5834 break;
5835
5836 case 'a':
5837 /* indirect=<tgt> Assume unannotated indirect branches behavior
5838 according to <tgt> --
5839 exit: branch out from the current context (default)
5840 labels: all labels in context may be branch targets
5841 */
5842 if (strncmp (arg, "indirect=", 9) != 0)
5843 return 0;
5844 break;
5845
5846 case 'x':
5847 /* -X conflicts with an ignored option, use -x instead */
5848 md.detect_dv = 1;
5849 if (!arg || strcmp (arg, "explicit") == 0)
5850 {
5851 /* set default mode to explicit */
5852 md.default_explicit_mode = 1;
5853 break;
5854 }
5855 else if (strcmp (arg, "auto") == 0)
5856 {
5857 md.default_explicit_mode = 0;
5858 }
5859 else if (strcmp (arg, "debug") == 0)
5860 {
5861 md.debug_dv = 1;
5862 }
5863 else if (strcmp (arg, "debugx") == 0)
5864 {
5865 md.default_explicit_mode = 1;
5866 md.debug_dv = 1;
5867 }
5868 else
5869 {
5870 as_bad (_("Unrecognized option '-x%s'"), arg);
5871 }
5872 break;
5873
5874 case 'S':
5875 /* nops Print nops statistics. */
5876 break;
5877
5878 /* GNU specific switches for gcc. */
5879 case OPTION_MCONSTANT_GP:
5880 md.flags |= EF_IA_64_CONS_GP;
5881 break;
5882
5883 case OPTION_MAUTO_PIC:
5884 md.flags |= EF_IA_64_NOFUNCDESC_CONS_GP;
5885 break;
5886
5887 default:
5888 return 0;
5889 }
5890
5891 return 1;
5892 }
5893
5894 void
5895 md_show_usage (stream)
5896 FILE *stream;
5897 {
5898 fputs (_("\
5899 IA-64 options:\n\
5900 -milp32|-milp64|-mlp64|-mp64 select data model (default -mlp64)\n\
5901 -mle | -mbe select little- or big-endian byte order (default -mle)\n\
5902 -x | -xexplicit turn on dependency violation checking (default)\n\
5903 -xauto automagically remove dependency violations\n\
5904 -xdebug debug dependency violation checker\n"),
5905 stream);
5906 }
5907
5908 /* Return true if TYPE fits in TEMPL at SLOT. */
5909
5910 static int
5911 match (int templ, int type, int slot)
5912 {
5913 enum ia64_unit unit;
5914 int result;
5915
5916 unit = ia64_templ_desc[templ].exec_unit[slot];
5917 switch (type)
5918 {
5919 case IA64_TYPE_DYN: result = 1; break; /* for nop and break */
5920 case IA64_TYPE_A:
5921 result = (unit == IA64_UNIT_I || unit == IA64_UNIT_M);
5922 break;
5923 case IA64_TYPE_X: result = (unit == IA64_UNIT_L); break;
5924 case IA64_TYPE_I: result = (unit == IA64_UNIT_I); break;
5925 case IA64_TYPE_M: result = (unit == IA64_UNIT_M); break;
5926 case IA64_TYPE_B: result = (unit == IA64_UNIT_B); break;
5927 case IA64_TYPE_F: result = (unit == IA64_UNIT_F); break;
5928 default: result = 0; break;
5929 }
5930 return result;
5931 }
5932
5933 /* Add a bit of extra goodness if a nop of type F or B would fit
5934 in TEMPL at SLOT. */
5935
5936 static inline int
5937 extra_goodness (int templ, int slot)
5938 {
5939 if (slot == 1 && match (templ, IA64_TYPE_F, slot))
5940 return 2;
5941 if (slot == 2 && match (templ, IA64_TYPE_B, slot))
5942 return 1;
5943 return 0;
5944 }
5945
5946 /* This function is called once, at assembler startup time. It sets
5947 up all the tables, etc. that the MD part of the assembler will need
5948 that can be determined before arguments are parsed. */
5949 void
5950 md_begin ()
5951 {
5952 int i, j, k, t, total, ar_base, cr_base, goodness, best, regnum, ok;
5953 const char *err;
5954 char name[8];
5955
5956 md.auto_align = 1;
5957 md.explicit_mode = md.default_explicit_mode;
5958
5959 bfd_set_section_alignment (stdoutput, text_section, 4);
5960
5961 target_big_endian = TARGET_BYTES_BIG_ENDIAN;
5962 pseudo_func[FUNC_FPTR_RELATIVE].u.sym =
5963 symbol_new (".<fptr>", undefined_section, FUNC_FPTR_RELATIVE,
5964 &zero_address_frag);
5965
5966 pseudo_func[FUNC_GP_RELATIVE].u.sym =
5967 symbol_new (".<gprel>", undefined_section, FUNC_GP_RELATIVE,
5968 &zero_address_frag);
5969
5970 pseudo_func[FUNC_LT_RELATIVE].u.sym =
5971 symbol_new (".<ltoff>", undefined_section, FUNC_LT_RELATIVE,
5972 &zero_address_frag);
5973
5974 pseudo_func[FUNC_PC_RELATIVE].u.sym =
5975 symbol_new (".<pcrel>", undefined_section, FUNC_PC_RELATIVE,
5976 &zero_address_frag);
5977
5978 pseudo_func[FUNC_PLT_RELATIVE].u.sym =
5979 symbol_new (".<pltoff>", undefined_section, FUNC_PLT_RELATIVE,
5980 &zero_address_frag);
5981
5982 pseudo_func[FUNC_SEC_RELATIVE].u.sym =
5983 symbol_new (".<secrel>", undefined_section, FUNC_SEC_RELATIVE,
5984 &zero_address_frag);
5985
5986 pseudo_func[FUNC_SEG_RELATIVE].u.sym =
5987 symbol_new (".<segrel>", undefined_section, FUNC_SEG_RELATIVE,
5988 &zero_address_frag);
5989
5990 pseudo_func[FUNC_LTV_RELATIVE].u.sym =
5991 symbol_new (".<ltv>", undefined_section, FUNC_LTV_RELATIVE,
5992 &zero_address_frag);
5993
5994 pseudo_func[FUNC_LT_FPTR_RELATIVE].u.sym =
5995 symbol_new (".<ltoff.fptr>", undefined_section, FUNC_LT_FPTR_RELATIVE,
5996 &zero_address_frag);
5997
5998 /* Compute the table of best templates. We compute goodness as a
5999 base 4 value, in which each match counts for 3, each F counts
6000 for 2, each B counts for 1. This should maximize the number of
6001 F and B nops in the chosen bundles, which is good because these
6002 pipelines are least likely to be overcommitted. */
6003 for (i = 0; i < IA64_NUM_TYPES; ++i)
6004 for (j = 0; j < IA64_NUM_TYPES; ++j)
6005 for (k = 0; k < IA64_NUM_TYPES; ++k)
6006 {
6007 best = 0;
6008 for (t = 0; t < NELEMS (ia64_templ_desc); ++t)
6009 {
6010 goodness = 0;
6011 if (match (t, i, 0))
6012 {
6013 if (match (t, j, 1))
6014 {
6015 if (match (t, k, 2))
6016 goodness = 3 + 3 + 3;
6017 else
6018 goodness = 3 + 3 + extra_goodness (t, 2);
6019 }
6020 else if (match (t, j, 2))
6021 goodness = 3 + 3 + extra_goodness (t, 1);
6022 else
6023 {
6024 goodness = 3;
6025 goodness += extra_goodness (t, 1);
6026 goodness += extra_goodness (t, 2);
6027 }
6028 }
6029 else if (match (t, i, 1))
6030 {
6031 if (match (t, j, 2))
6032 goodness = 3 + 3;
6033 else
6034 goodness = 3 + extra_goodness (t, 2);
6035 }
6036 else if (match (t, i, 2))
6037 goodness = 3 + extra_goodness (t, 1);
6038
6039 if (goodness > best)
6040 {
6041 best = goodness;
6042 best_template[i][j][k] = t;
6043 }
6044 }
6045 }
6046
6047 for (i = 0; i < NUM_SLOTS; ++i)
6048 md.slot[i].user_template = -1;
6049
6050 md.pseudo_hash = hash_new ();
6051 for (i = 0; i < NELEMS (pseudo_opcode); ++i)
6052 {
6053 err = hash_insert (md.pseudo_hash, pseudo_opcode[i].name,
6054 (void *) (pseudo_opcode + i));
6055 if (err)
6056 as_fatal ("ia64.md_begin: can't hash `%s': %s",
6057 pseudo_opcode[i].name, err);
6058 }
6059
6060 md.reg_hash = hash_new ();
6061 md.dynreg_hash = hash_new ();
6062 md.const_hash = hash_new ();
6063 md.entry_hash = hash_new ();
6064
6065 /* general registers: */
6066
6067 total = 128;
6068 for (i = 0; i < total; ++i)
6069 {
6070 sprintf (name, "r%d", i - REG_GR);
6071 md.regsym[i] = declare_register (name, i);
6072 }
6073
6074 /* floating point registers: */
6075 total += 128;
6076 for (; i < total; ++i)
6077 {
6078 sprintf (name, "f%d", i - REG_FR);
6079 md.regsym[i] = declare_register (name, i);
6080 }
6081
6082 /* application registers: */
6083 total += 128;
6084 ar_base = i;
6085 for (; i < total; ++i)
6086 {
6087 sprintf (name, "ar%d", i - REG_AR);
6088 md.regsym[i] = declare_register (name, i);
6089 }
6090
6091 /* control registers: */
6092 total += 128;
6093 cr_base = i;
6094 for (; i < total; ++i)
6095 {
6096 sprintf (name, "cr%d", i - REG_CR);
6097 md.regsym[i] = declare_register (name, i);
6098 }
6099
6100 /* predicate registers: */
6101 total += 64;
6102 for (; i < total; ++i)
6103 {
6104 sprintf (name, "p%d", i - REG_P);
6105 md.regsym[i] = declare_register (name, i);
6106 }
6107
6108 /* branch registers: */
6109 total += 8;
6110 for (; i < total; ++i)
6111 {
6112 sprintf (name, "b%d", i - REG_BR);
6113 md.regsym[i] = declare_register (name, i);
6114 }
6115
6116 md.regsym[REG_IP] = declare_register ("ip", REG_IP);
6117 md.regsym[REG_CFM] = declare_register ("cfm", REG_CFM);
6118 md.regsym[REG_PR] = declare_register ("pr", REG_PR);
6119 md.regsym[REG_PR_ROT] = declare_register ("pr.rot", REG_PR_ROT);
6120 md.regsym[REG_PSR] = declare_register ("psr", REG_PSR);
6121 md.regsym[REG_PSR_L] = declare_register ("psr.l", REG_PSR_L);
6122 md.regsym[REG_PSR_UM] = declare_register ("psr.um", REG_PSR_UM);
6123
6124 for (i = 0; i < NELEMS (indirect_reg); ++i)
6125 {
6126 regnum = indirect_reg[i].regnum;
6127 md.regsym[regnum] = declare_register (indirect_reg[i].name, regnum);
6128 }
6129
6130 /* define synonyms for application registers: */
6131 for (i = REG_AR; i < REG_AR + NELEMS (ar); ++i)
6132 md.regsym[i] = declare_register (ar[i - REG_AR].name,
6133 REG_AR + ar[i - REG_AR].regnum);
6134
6135 /* define synonyms for control registers: */
6136 for (i = REG_CR; i < REG_CR + NELEMS (cr); ++i)
6137 md.regsym[i] = declare_register (cr[i - REG_CR].name,
6138 REG_CR + cr[i - REG_CR].regnum);
6139
6140 declare_register ("gp", REG_GR + 1);
6141 declare_register ("sp", REG_GR + 12);
6142 declare_register ("rp", REG_BR + 0);
6143
6144 /* pseudo-registers used to specify unwind info: */
6145 declare_register ("psp", REG_PSP);
6146
6147 declare_register_set ("ret", 4, REG_GR + 8);
6148 declare_register_set ("farg", 8, REG_FR + 8);
6149 declare_register_set ("fret", 8, REG_FR + 8);
6150
6151 for (i = 0; i < NELEMS (const_bits); ++i)
6152 {
6153 err = hash_insert (md.const_hash, const_bits[i].name,
6154 (PTR) (const_bits + i));
6155 if (err)
6156 as_fatal ("Inserting \"%s\" into constant hash table failed: %s",
6157 name, err);
6158 }
6159
6160 /* Set the architecture and machine depending on defaults and command line
6161 options. */
6162 if (md.flags & EF_IA_64_ABI64)
6163 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf64);
6164 else
6165 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf32);
6166
6167 if (! ok)
6168 as_warn (_("Could not set architecture and machine"));
6169
6170 md.mem_offset.hint = 0;
6171 md.path = 0;
6172 md.maxpaths = 0;
6173 md.entry_labels = NULL;
6174 }
6175
6176 /* Set the elf type to 64 bit ABI by default. Cannot do this in md_begin
6177 because that is called after md_parse_option which is where we do the
6178 dynamic changing of md.flags based on -mlp64 or -milp32. Also, set the
6179 default endianness. */
6180
6181 void
6182 ia64_init (argc, argv)
6183 int argc ATTRIBUTE_UNUSED;
6184 char **argv ATTRIBUTE_UNUSED;
6185 {
6186 md.flags = EF_IA_64_ABI64;
6187 if (TARGET_BYTES_BIG_ENDIAN)
6188 md.flags |= EF_IA_64_BE;
6189 }
6190
6191 /* Return a string for the target object file format. */
6192
6193 const char *
6194 ia64_target_format ()
6195 {
6196 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
6197 {
6198 if (md.flags & EF_IA_64_BE)
6199 {
6200 if (md.flags & EF_IA_64_ABI64)
6201 return "elf64-ia64-big";
6202 else
6203 return "elf32-ia64-big";
6204 }
6205 else
6206 {
6207 if (md.flags & EF_IA_64_ABI64)
6208 return "elf64-ia64-little";
6209 else
6210 return "elf32-ia64-little";
6211 }
6212 }
6213 else
6214 return "unknown-format";
6215 }
6216
6217 void
6218 ia64_end_of_source ()
6219 {
6220 /* terminate insn group upon reaching end of file: */
6221 insn_group_break (1, 0, 0);
6222
6223 /* emits slots we haven't written yet: */
6224 ia64_flush_insns ();
6225
6226 bfd_set_private_flags (stdoutput, md.flags);
6227
6228 md.mem_offset.hint = 0;
6229 }
6230
6231 void
6232 ia64_start_line ()
6233 {
6234 if (md.qp.X_op == O_register)
6235 as_bad ("qualifying predicate not followed by instruction");
6236 md.qp.X_op = O_absent;
6237
6238 if (ignore_input ())
6239 return;
6240
6241 if (input_line_pointer[0] == ';' && input_line_pointer[-1] == ';')
6242 {
6243 if (md.detect_dv && !md.explicit_mode)
6244 as_warn (_("Explicit stops are ignored in auto mode"));
6245 else
6246 insn_group_break (1, 0, 0);
6247 }
6248 }
6249
6250 /* This is a hook for ia64_frob_label, so that it can distinguish tags from
6251 labels. */
6252 static int defining_tag = 0;
6253
6254 int
6255 ia64_unrecognized_line (ch)
6256 int ch;
6257 {
6258 switch (ch)
6259 {
6260 case '(':
6261 expression (&md.qp);
6262 if (*input_line_pointer++ != ')')
6263 {
6264 as_bad ("Expected ')'");
6265 return 0;
6266 }
6267 if (md.qp.X_op != O_register)
6268 {
6269 as_bad ("Qualifying predicate expected");
6270 return 0;
6271 }
6272 if (md.qp.X_add_number < REG_P || md.qp.X_add_number >= REG_P + 64)
6273 {
6274 as_bad ("Predicate register expected");
6275 return 0;
6276 }
6277 return 1;
6278
6279 case '{':
6280 if (md.manual_bundling)
6281 as_warn ("Found '{' when manual bundling is already turned on");
6282 else
6283 CURR_SLOT.manual_bundling_on = 1;
6284 md.manual_bundling = 1;
6285
6286 /* Bundling is only acceptable in explicit mode
6287 or when in default automatic mode. */
6288 if (md.detect_dv && !md.explicit_mode)
6289 {
6290 if (!md.mode_explicitly_set
6291 && !md.default_explicit_mode)
6292 dot_dv_mode ('E');
6293 else
6294 as_warn (_("Found '{' after explicit switch to automatic mode"));
6295 }
6296 return 1;
6297
6298 case '}':
6299 if (!md.manual_bundling)
6300 as_warn ("Found '}' when manual bundling is off");
6301 else
6302 PREV_SLOT.manual_bundling_off = 1;
6303 md.manual_bundling = 0;
6304
6305 /* switch back to automatic mode, if applicable */
6306 if (md.detect_dv
6307 && md.explicit_mode
6308 && !md.mode_explicitly_set
6309 && !md.default_explicit_mode)
6310 dot_dv_mode ('A');
6311
6312 /* Allow '{' to follow on the same line. We also allow ";;", but that
6313 happens automatically because ';' is an end of line marker. */
6314 SKIP_WHITESPACE ();
6315 if (input_line_pointer[0] == '{')
6316 {
6317 input_line_pointer++;
6318 return ia64_unrecognized_line ('{');
6319 }
6320
6321 demand_empty_rest_of_line ();
6322 return 1;
6323
6324 case '[':
6325 {
6326 char *s;
6327 char c;
6328 symbolS *tag;
6329
6330 if (md.qp.X_op == O_register)
6331 {
6332 as_bad ("Tag must come before qualifying predicate.");
6333 return 0;
6334 }
6335 s = input_line_pointer;
6336 c = get_symbol_end ();
6337 if (c != ':')
6338 {
6339 /* Put ':' back for error messages' sake. */
6340 *input_line_pointer++ = ':';
6341 as_bad ("Expected ':'");
6342 return 0;
6343 }
6344 defining_tag = 1;
6345 tag = colon (s);
6346 defining_tag = 0;
6347 /* Put ':' back for error messages' sake. */
6348 *input_line_pointer++ = ':';
6349 if (*input_line_pointer++ != ']')
6350 {
6351 as_bad ("Expected ']'");
6352 return 0;
6353 }
6354 if (! tag)
6355 {
6356 as_bad ("Tag name expected");
6357 return 0;
6358 }
6359 return 1;
6360 }
6361
6362 default:
6363 break;
6364 }
6365
6366 /* Not a valid line. */
6367 return 0;
6368 }
6369
6370 void
6371 ia64_frob_label (sym)
6372 struct symbol *sym;
6373 {
6374 struct label_fix *fix;
6375
6376 /* Tags need special handling since they are not bundle breaks like
6377 labels. */
6378 if (defining_tag)
6379 {
6380 fix = obstack_alloc (&notes, sizeof (*fix));
6381 fix->sym = sym;
6382 fix->next = CURR_SLOT.tag_fixups;
6383 CURR_SLOT.tag_fixups = fix;
6384
6385 return;
6386 }
6387
6388 if (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
6389 {
6390 md.last_text_seg = now_seg;
6391 fix = obstack_alloc (&notes, sizeof (*fix));
6392 fix->sym = sym;
6393 fix->next = CURR_SLOT.label_fixups;
6394 CURR_SLOT.label_fixups = fix;
6395
6396 /* Keep track of how many code entry points we've seen. */
6397 if (md.path == md.maxpaths)
6398 {
6399 md.maxpaths += 20;
6400 md.entry_labels = (const char **)
6401 xrealloc ((void *) md.entry_labels,
6402 md.maxpaths * sizeof (char *));
6403 }
6404 md.entry_labels[md.path++] = S_GET_NAME (sym);
6405 }
6406 }
6407
6408 void
6409 ia64_flush_pending_output ()
6410 {
6411 if (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
6412 {
6413 /* ??? This causes many unnecessary stop bits to be emitted.
6414 Unfortunately, it isn't clear if it is safe to remove this. */
6415 insn_group_break (1, 0, 0);
6416 ia64_flush_insns ();
6417 }
6418 }
6419
6420 /* Do ia64-specific expression optimization. All that's done here is
6421 to transform index expressions that are either due to the indexing
6422 of rotating registers or due to the indexing of indirect register
6423 sets. */
6424 int
6425 ia64_optimize_expr (l, op, r)
6426 expressionS *l;
6427 operatorT op;
6428 expressionS *r;
6429 {
6430 unsigned num_regs;
6431
6432 if (op == O_index)
6433 {
6434 if (l->X_op == O_register && r->X_op == O_constant)
6435 {
6436 num_regs = (l->X_add_number >> 16);
6437 if ((unsigned) r->X_add_number >= num_regs)
6438 {
6439 if (!num_regs)
6440 as_bad ("No current frame");
6441 else
6442 as_bad ("Index out of range 0..%u", num_regs - 1);
6443 r->X_add_number = 0;
6444 }
6445 l->X_add_number = (l->X_add_number & 0xffff) + r->X_add_number;
6446 return 1;
6447 }
6448 else if (l->X_op == O_register && r->X_op == O_register)
6449 {
6450 if (l->X_add_number < IND_CPUID || l->X_add_number > IND_RR
6451 || l->X_add_number == IND_MEM)
6452 {
6453 as_bad ("Indirect register set name expected");
6454 l->X_add_number = IND_CPUID;
6455 }
6456 l->X_op = O_index;
6457 l->X_op_symbol = md.regsym[l->X_add_number];
6458 l->X_add_number = r->X_add_number;
6459 return 1;
6460 }
6461 }
6462 return 0;
6463 }
6464
6465 int
6466 ia64_parse_name (name, e)
6467 char *name;
6468 expressionS *e;
6469 {
6470 struct const_desc *cdesc;
6471 struct dynreg *dr = 0;
6472 unsigned int regnum;
6473 struct symbol *sym;
6474 char *end;
6475
6476 /* first see if NAME is a known register name: */
6477 sym = hash_find (md.reg_hash, name);
6478 if (sym)
6479 {
6480 e->X_op = O_register;
6481 e->X_add_number = S_GET_VALUE (sym);
6482 return 1;
6483 }
6484
6485 cdesc = hash_find (md.const_hash, name);
6486 if (cdesc)
6487 {
6488 e->X_op = O_constant;
6489 e->X_add_number = cdesc->value;
6490 return 1;
6491 }
6492
6493 /* check for inN, locN, or outN: */
6494 switch (name[0])
6495 {
6496 case 'i':
6497 if (name[1] == 'n' && isdigit (name[2]))
6498 {
6499 dr = &md.in;
6500 name += 2;
6501 }
6502 break;
6503
6504 case 'l':
6505 if (name[1] == 'o' && name[2] == 'c' && isdigit (name[3]))
6506 {
6507 dr = &md.loc;
6508 name += 3;
6509 }
6510 break;
6511
6512 case 'o':
6513 if (name[1] == 'u' && name[2] == 't' && isdigit (name[3]))
6514 {
6515 dr = &md.out;
6516 name += 3;
6517 }
6518 break;
6519
6520 default:
6521 break;
6522 }
6523
6524 if (dr)
6525 {
6526 /* The name is inN, locN, or outN; parse the register number. */
6527 regnum = strtoul (name, &end, 10);
6528 if (end > name && *end == '\0')
6529 {
6530 if ((unsigned) regnum >= dr->num_regs)
6531 {
6532 if (!dr->num_regs)
6533 as_bad ("No current frame");
6534 else
6535 as_bad ("Register number out of range 0..%u",
6536 dr->num_regs - 1);
6537 regnum = 0;
6538 }
6539 e->X_op = O_register;
6540 e->X_add_number = dr->base + regnum;
6541 return 1;
6542 }
6543 }
6544
6545 if ((dr = hash_find (md.dynreg_hash, name)))
6546 {
6547 /* We've got ourselves the name of a rotating register set.
6548 Store the base register number in the low 16 bits of
6549 X_add_number and the size of the register set in the top 16
6550 bits. */
6551 e->X_op = O_register;
6552 e->X_add_number = dr->base | (dr->num_regs << 16);
6553 return 1;
6554 }
6555 return 0;
6556 }
6557
6558 /* Remove the '#' suffix that indicates a symbol as opposed to a register. */
6559
6560 char *
6561 ia64_canonicalize_symbol_name (name)
6562 char *name;
6563 {
6564 size_t len = strlen (name);
6565 if (len > 1 && name[len - 1] == '#')
6566 name[len - 1] = '\0';
6567 return name;
6568 }
6569
6570 static int
6571 is_conditional_branch (idesc)
6572 struct ia64_opcode *idesc;
6573 {
6574 return (strncmp (idesc->name, "br", 2) == 0
6575 && (strcmp (idesc->name, "br") == 0
6576 || strncmp (idesc->name, "br.cond", 7) == 0
6577 || strncmp (idesc->name, "br.call", 7) == 0
6578 || strncmp (idesc->name, "br.ret", 6) == 0
6579 || strcmp (idesc->name, "brl") == 0
6580 || strncmp (idesc->name, "brl.cond", 7) == 0
6581 || strncmp (idesc->name, "brl.call", 7) == 0
6582 || strncmp (idesc->name, "brl.ret", 6) == 0));
6583 }
6584
6585 /* Return whether the given opcode is a taken branch. If there's any doubt,
6586 returns zero. */
6587
6588 static int
6589 is_taken_branch (idesc)
6590 struct ia64_opcode *idesc;
6591 {
6592 return ((is_conditional_branch (idesc) && CURR_SLOT.qp_regno == 0)
6593 || strncmp (idesc->name, "br.ia", 5) == 0);
6594 }
6595
6596 /* Return whether the given opcode is an interruption or rfi. If there's any
6597 doubt, returns zero. */
6598
6599 static int
6600 is_interruption_or_rfi (idesc)
6601 struct ia64_opcode *idesc;
6602 {
6603 if (strcmp (idesc->name, "rfi") == 0)
6604 return 1;
6605 return 0;
6606 }
6607
6608 /* Returns the index of the given dependency in the opcode's list of chks, or
6609 -1 if there is no dependency. */
6610
6611 static int
6612 depends_on (depind, idesc)
6613 int depind;
6614 struct ia64_opcode *idesc;
6615 {
6616 int i;
6617 const struct ia64_opcode_dependency *dep = idesc->dependencies;
6618 for (i = 0; i < dep->nchks; i++)
6619 {
6620 if (depind == DEP (dep->chks[i]))
6621 return i;
6622 }
6623 return -1;
6624 }
6625
6626 /* Determine a set of specific resources used for a particular resource
6627 class. Returns the number of specific resources identified For those
6628 cases which are not determinable statically, the resource returned is
6629 marked nonspecific.
6630
6631 Meanings of value in 'NOTE':
6632 1) only read/write when the register number is explicitly encoded in the
6633 insn.
6634 2) only read CFM when accessing a rotating GR, FR, or PR. mov pr only
6635 accesses CFM when qualifying predicate is in the rotating region.
6636 3) general register value is used to specify an indirect register; not
6637 determinable statically.
6638 4) only read the given resource when bits 7:0 of the indirect index
6639 register value does not match the register number of the resource; not
6640 determinable statically.
6641 5) all rules are implementation specific.
6642 6) only when both the index specified by the reader and the index specified
6643 by the writer have the same value in bits 63:61; not determinable
6644 statically.
6645 7) only access the specified resource when the corresponding mask bit is
6646 set
6647 8) PSR.dfh is only read when these insns reference FR32-127. PSR.dfl is
6648 only read when these insns reference FR2-31
6649 9) PSR.mfl is only written when these insns write FR2-31. PSR.mfh is only
6650 written when these insns write FR32-127
6651 10) The PSR.bn bit is only accessed when one of GR16-31 is specified in the
6652 instruction
6653 11) The target predicates are written independently of PR[qp], but source
6654 registers are only read if PR[qp] is true. Since the state of PR[qp]
6655 cannot statically be determined, all source registers are marked used.
6656 12) This insn only reads the specified predicate register when that
6657 register is the PR[qp].
6658 13) This reference to ld-c only applies to teh GR whose value is loaded
6659 with data returned from memory, not the post-incremented address register.
6660 14) The RSE resource includes the implementation-specific RSE internal
6661 state resources. At least one (and possibly more) of these resources are
6662 read by each instruction listed in IC:rse-readers. At least one (and
6663 possibly more) of these resources are written by each insn listed in
6664 IC:rse-writers.
6665 15+16) Represents reserved instructions, which the assembler does not
6666 generate.
6667
6668 Memory resources (i.e. locations in memory) are *not* marked or tracked by
6669 this code; there are no dependency violations based on memory access.
6670 */
6671
6672 #define MAX_SPECS 256
6673 #define DV_CHK 1
6674 #define DV_REG 0
6675
6676 static int
6677 specify_resource (dep, idesc, type, specs, note, path)
6678 const struct ia64_dependency *dep;
6679 struct ia64_opcode *idesc;
6680 int type; /* is this a DV chk or a DV reg? */
6681 struct rsrc specs[MAX_SPECS]; /* returned specific resources */
6682 int note; /* resource note for this insn's usage */
6683 int path; /* which execution path to examine */
6684 {
6685 int count = 0;
6686 int i;
6687 int rsrc_write = 0;
6688 struct rsrc tmpl;
6689
6690 if (dep->mode == IA64_DV_WAW
6691 || (dep->mode == IA64_DV_RAW && type == DV_REG)
6692 || (dep->mode == IA64_DV_WAR && type == DV_CHK))
6693 rsrc_write = 1;
6694
6695 /* template for any resources we identify */
6696 tmpl.dependency = dep;
6697 tmpl.note = note;
6698 tmpl.insn_srlz = tmpl.data_srlz = 0;
6699 tmpl.qp_regno = CURR_SLOT.qp_regno;
6700 tmpl.link_to_qp_branch = 1;
6701 tmpl.mem_offset.hint = 0;
6702 tmpl.specific = 1;
6703 tmpl.index = 0;
6704 tmpl.cmp_type = CMP_NONE;
6705
6706 #define UNHANDLED \
6707 as_warn (_("Unhandled dependency %s for %s (%s), note %d"), \
6708 dep->name, idesc->name, (rsrc_write?"write":"read"), note)
6709 #define KNOWN(REG) (gr_values[REG].known && gr_values[REG].path >= path)
6710
6711 /* we don't need to track these */
6712 if (dep->semantics == IA64_DVS_NONE)
6713 return 0;
6714
6715 switch (dep->specifier)
6716 {
6717 case IA64_RS_AR_K:
6718 if (note == 1)
6719 {
6720 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
6721 {
6722 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
6723 if (regno >= 0 && regno <= 7)
6724 {
6725 specs[count] = tmpl;
6726 specs[count++].index = regno;
6727 }
6728 }
6729 }
6730 else if (note == 0)
6731 {
6732 for (i = 0; i < 8; i++)
6733 {
6734 specs[count] = tmpl;
6735 specs[count++].index = i;
6736 }
6737 }
6738 else
6739 {
6740 UNHANDLED;
6741 }
6742 break;
6743
6744 case IA64_RS_AR_UNAT:
6745 /* This is a mov =AR or mov AR= instruction. */
6746 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
6747 {
6748 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
6749 if (regno == AR_UNAT)
6750 {
6751 specs[count++] = tmpl;
6752 }
6753 }
6754 else
6755 {
6756 /* This is a spill/fill, or other instruction that modifies the
6757 unat register. */
6758
6759 /* Unless we can determine the specific bits used, mark the whole
6760 thing; bits 8:3 of the memory address indicate the bit used in
6761 UNAT. The .mem.offset hint may be used to eliminate a small
6762 subset of conflicts. */
6763 specs[count] = tmpl;
6764 if (md.mem_offset.hint)
6765 {
6766 if (md.debug_dv)
6767 fprintf (stderr, " Using hint for spill/fill\n");
6768 /* The index isn't actually used, just set it to something
6769 approximating the bit index. */
6770 specs[count].index = (md.mem_offset.offset >> 3) & 0x3F;
6771 specs[count].mem_offset.hint = 1;
6772 specs[count].mem_offset.offset = md.mem_offset.offset;
6773 specs[count++].mem_offset.base = md.mem_offset.base;
6774 }
6775 else
6776 {
6777 specs[count++].specific = 0;
6778 }
6779 }
6780 break;
6781
6782 case IA64_RS_AR:
6783 if (note == 1)
6784 {
6785 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
6786 {
6787 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
6788 if ((regno >= 8 && regno <= 15)
6789 || (regno >= 20 && regno <= 23)
6790 || (regno >= 31 && regno <= 39)
6791 || (regno >= 41 && regno <= 47)
6792 || (regno >= 67 && regno <= 111))
6793 {
6794 specs[count] = tmpl;
6795 specs[count++].index = regno;
6796 }
6797 }
6798 }
6799 else
6800 {
6801 UNHANDLED;
6802 }
6803 break;
6804
6805 case IA64_RS_ARb:
6806 if (note == 1)
6807 {
6808 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
6809 {
6810 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
6811 if ((regno >= 48 && regno <= 63)
6812 || (regno >= 112 && regno <= 127))
6813 {
6814 specs[count] = tmpl;
6815 specs[count++].index = regno;
6816 }
6817 }
6818 }
6819 else if (note == 0)
6820 {
6821 for (i = 48; i < 64; i++)
6822 {
6823 specs[count] = tmpl;
6824 specs[count++].index = i;
6825 }
6826 for (i = 112; i < 128; i++)
6827 {
6828 specs[count] = tmpl;
6829 specs[count++].index = i;
6830 }
6831 }
6832 else
6833 {
6834 UNHANDLED;
6835 }
6836 break;
6837
6838 case IA64_RS_BR:
6839 if (note != 1)
6840 {
6841 UNHANDLED;
6842 }
6843 else
6844 {
6845 if (rsrc_write)
6846 {
6847 for (i = 0; i < idesc->num_outputs; i++)
6848 if (idesc->operands[i] == IA64_OPND_B1
6849 || idesc->operands[i] == IA64_OPND_B2)
6850 {
6851 specs[count] = tmpl;
6852 specs[count++].index =
6853 CURR_SLOT.opnd[i].X_add_number - REG_BR;
6854 }
6855 }
6856 else
6857 {
6858 for (i = idesc->num_outputs;i < NELEMS (idesc->operands); i++)
6859 if (idesc->operands[i] == IA64_OPND_B1
6860 || idesc->operands[i] == IA64_OPND_B2)
6861 {
6862 specs[count] = tmpl;
6863 specs[count++].index =
6864 CURR_SLOT.opnd[i].X_add_number - REG_BR;
6865 }
6866 }
6867 }
6868 break;
6869
6870 case IA64_RS_CPUID: /* four or more registers */
6871 if (note == 3)
6872 {
6873 if (idesc->operands[!rsrc_write] == IA64_OPND_CPUID_R3)
6874 {
6875 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
6876 if (regno >= 0 && regno < NELEMS (gr_values)
6877 && KNOWN (regno))
6878 {
6879 specs[count] = tmpl;
6880 specs[count++].index = gr_values[regno].value & 0xFF;
6881 }
6882 else
6883 {
6884 specs[count] = tmpl;
6885 specs[count++].specific = 0;
6886 }
6887 }
6888 }
6889 else
6890 {
6891 UNHANDLED;
6892 }
6893 break;
6894
6895 case IA64_RS_DBR: /* four or more registers */
6896 if (note == 3)
6897 {
6898 if (idesc->operands[!rsrc_write] == IA64_OPND_DBR_R3)
6899 {
6900 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
6901 if (regno >= 0 && regno < NELEMS (gr_values)
6902 && KNOWN (regno))
6903 {
6904 specs[count] = tmpl;
6905 specs[count++].index = gr_values[regno].value & 0xFF;
6906 }
6907 else
6908 {
6909 specs[count] = tmpl;
6910 specs[count++].specific = 0;
6911 }
6912 }
6913 }
6914 else if (note == 0 && !rsrc_write)
6915 {
6916 specs[count] = tmpl;
6917 specs[count++].specific = 0;
6918 }
6919 else
6920 {
6921 UNHANDLED;
6922 }
6923 break;
6924
6925 case IA64_RS_IBR: /* four or more registers */
6926 if (note == 3)
6927 {
6928 if (idesc->operands[!rsrc_write] == IA64_OPND_IBR_R3)
6929 {
6930 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
6931 if (regno >= 0 && regno < NELEMS (gr_values)
6932 && KNOWN (regno))
6933 {
6934 specs[count] = tmpl;
6935 specs[count++].index = gr_values[regno].value & 0xFF;
6936 }
6937 else
6938 {
6939 specs[count] = tmpl;
6940 specs[count++].specific = 0;
6941 }
6942 }
6943 }
6944 else
6945 {
6946 UNHANDLED;
6947 }
6948 break;
6949
6950 case IA64_RS_MSR:
6951 if (note == 5)
6952 {
6953 /* These are implementation specific. Force all references to
6954 conflict with all other references. */
6955 specs[count] = tmpl;
6956 specs[count++].specific = 0;
6957 }
6958 else
6959 {
6960 UNHANDLED;
6961 }
6962 break;
6963
6964 case IA64_RS_PKR: /* 16 or more registers */
6965 if (note == 3 || note == 4)
6966 {
6967 if (idesc->operands[!rsrc_write] == IA64_OPND_PKR_R3)
6968 {
6969 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
6970 if (regno >= 0 && regno < NELEMS (gr_values)
6971 && KNOWN (regno))
6972 {
6973 if (note == 3)
6974 {
6975 specs[count] = tmpl;
6976 specs[count++].index = gr_values[regno].value & 0xFF;
6977 }
6978 else
6979 for (i = 0; i < NELEMS (gr_values); i++)
6980 {
6981 /* Uses all registers *except* the one in R3. */
6982 if ((unsigned)i != (gr_values[regno].value & 0xFF))
6983 {
6984 specs[count] = tmpl;
6985 specs[count++].index = i;
6986 }
6987 }
6988 }
6989 else
6990 {
6991 specs[count] = tmpl;
6992 specs[count++].specific = 0;
6993 }
6994 }
6995 }
6996 else if (note == 0)
6997 {
6998 /* probe et al. */
6999 specs[count] = tmpl;
7000 specs[count++].specific = 0;
7001 }
7002 break;
7003
7004 case IA64_RS_PMC: /* four or more registers */
7005 if (note == 3)
7006 {
7007 if (idesc->operands[!rsrc_write] == IA64_OPND_PMC_R3
7008 || (!rsrc_write && idesc->operands[1] == IA64_OPND_PMD_R3))
7009
7010 {
7011 int index = ((idesc->operands[1] == IA64_OPND_R3 && !rsrc_write)
7012 ? 1 : !rsrc_write);
7013 int regno = CURR_SLOT.opnd[index].X_add_number - REG_GR;
7014 if (regno >= 0 && regno < NELEMS (gr_values)
7015 && KNOWN (regno))
7016 {
7017 specs[count] = tmpl;
7018 specs[count++].index = gr_values[regno].value & 0xFF;
7019 }
7020 else
7021 {
7022 specs[count] = tmpl;
7023 specs[count++].specific = 0;
7024 }
7025 }
7026 }
7027 else
7028 {
7029 UNHANDLED;
7030 }
7031 break;
7032
7033 case IA64_RS_PMD: /* four or more registers */
7034 if (note == 3)
7035 {
7036 if (idesc->operands[!rsrc_write] == IA64_OPND_PMD_R3)
7037 {
7038 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
7039 if (regno >= 0 && regno < NELEMS (gr_values)
7040 && KNOWN (regno))
7041 {
7042 specs[count] = tmpl;
7043 specs[count++].index = gr_values[regno].value & 0xFF;
7044 }
7045 else
7046 {
7047 specs[count] = tmpl;
7048 specs[count++].specific = 0;
7049 }
7050 }
7051 }
7052 else
7053 {
7054 UNHANDLED;
7055 }
7056 break;
7057
7058 case IA64_RS_RR: /* eight registers */
7059 if (note == 6)
7060 {
7061 if (idesc->operands[!rsrc_write] == IA64_OPND_RR_R3)
7062 {
7063 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
7064 if (regno >= 0 && regno < NELEMS (gr_values)
7065 && KNOWN (regno))
7066 {
7067 specs[count] = tmpl;
7068 specs[count++].index = (gr_values[regno].value >> 61) & 0x7;
7069 }
7070 else
7071 {
7072 specs[count] = tmpl;
7073 specs[count++].specific = 0;
7074 }
7075 }
7076 }
7077 else if (note == 0 && !rsrc_write)
7078 {
7079 specs[count] = tmpl;
7080 specs[count++].specific = 0;
7081 }
7082 else
7083 {
7084 UNHANDLED;
7085 }
7086 break;
7087
7088 case IA64_RS_CR_IRR:
7089 if (note == 0)
7090 {
7091 /* handle mov-from-CR-IVR; it's a read that writes CR[IRR] */
7092 int regno = CURR_SLOT.opnd[1].X_add_number - REG_CR;
7093 if (rsrc_write
7094 && idesc->operands[1] == IA64_OPND_CR3
7095 && regno == CR_IVR)
7096 {
7097 for (i = 0; i < 4; i++)
7098 {
7099 specs[count] = tmpl;
7100 specs[count++].index = CR_IRR0 + i;
7101 }
7102 }
7103 }
7104 else if (note == 1)
7105 {
7106 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
7107 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
7108 && regno >= CR_IRR0
7109 && regno <= CR_IRR3)
7110 {
7111 specs[count] = tmpl;
7112 specs[count++].index = regno;
7113 }
7114 }
7115 else
7116 {
7117 UNHANDLED;
7118 }
7119 break;
7120
7121 case IA64_RS_CR_LRR:
7122 if (note != 1)
7123 {
7124 UNHANDLED;
7125 }
7126 else
7127 {
7128 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
7129 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
7130 && (regno == CR_LRR0 || regno == CR_LRR1))
7131 {
7132 specs[count] = tmpl;
7133 specs[count++].index = regno;
7134 }
7135 }
7136 break;
7137
7138 case IA64_RS_CR:
7139 if (note == 1)
7140 {
7141 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
7142 {
7143 specs[count] = tmpl;
7144 specs[count++].index =
7145 CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
7146 }
7147 }
7148 else
7149 {
7150 UNHANDLED;
7151 }
7152 break;
7153
7154 case IA64_RS_FR:
7155 case IA64_RS_FRb:
7156 if (note != 1)
7157 {
7158 UNHANDLED;
7159 }
7160 else if (rsrc_write)
7161 {
7162 if (dep->specifier == IA64_RS_FRb
7163 && idesc->operands[0] == IA64_OPND_F1)
7164 {
7165 specs[count] = tmpl;
7166 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_FR;
7167 }
7168 }
7169 else
7170 {
7171 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
7172 {
7173 if (idesc->operands[i] == IA64_OPND_F2
7174 || idesc->operands[i] == IA64_OPND_F3
7175 || idesc->operands[i] == IA64_OPND_F4)
7176 {
7177 specs[count] = tmpl;
7178 specs[count++].index =
7179 CURR_SLOT.opnd[i].X_add_number - REG_FR;
7180 }
7181 }
7182 }
7183 break;
7184
7185 case IA64_RS_GR:
7186 if (note == 13)
7187 {
7188 /* This reference applies only to the GR whose value is loaded with
7189 data returned from memory. */
7190 specs[count] = tmpl;
7191 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_GR;
7192 }
7193 else if (note == 1)
7194 {
7195 if (rsrc_write)
7196 {
7197 for (i = 0; i < idesc->num_outputs; i++)
7198 if (idesc->operands[i] == IA64_OPND_R1
7199 || idesc->operands[i] == IA64_OPND_R2
7200 || idesc->operands[i] == IA64_OPND_R3)
7201 {
7202 specs[count] = tmpl;
7203 specs[count++].index =
7204 CURR_SLOT.opnd[i].X_add_number - REG_GR;
7205 }
7206 if (idesc->flags & IA64_OPCODE_POSTINC)
7207 for (i = 0; i < NELEMS (idesc->operands); i++)
7208 if (idesc->operands[i] == IA64_OPND_MR3)
7209 {
7210 specs[count] = tmpl;
7211 specs[count++].index =
7212 CURR_SLOT.opnd[i].X_add_number - REG_GR;
7213 }
7214 }
7215 else
7216 {
7217 /* Look for anything that reads a GR. */
7218 for (i = 0; i < NELEMS (idesc->operands); i++)
7219 {
7220 if (idesc->operands[i] == IA64_OPND_MR3
7221 || idesc->operands[i] == IA64_OPND_CPUID_R3
7222 || idesc->operands[i] == IA64_OPND_DBR_R3
7223 || idesc->operands[i] == IA64_OPND_IBR_R3
7224 || idesc->operands[i] == IA64_OPND_MSR_R3
7225 || idesc->operands[i] == IA64_OPND_PKR_R3
7226 || idesc->operands[i] == IA64_OPND_PMC_R3
7227 || idesc->operands[i] == IA64_OPND_PMD_R3
7228 || idesc->operands[i] == IA64_OPND_RR_R3
7229 || ((i >= idesc->num_outputs)
7230 && (idesc->operands[i] == IA64_OPND_R1
7231 || idesc->operands[i] == IA64_OPND_R2
7232 || idesc->operands[i] == IA64_OPND_R3
7233 /* addl source register. */
7234 || idesc->operands[i] == IA64_OPND_R3_2)))
7235 {
7236 specs[count] = tmpl;
7237 specs[count++].index =
7238 CURR_SLOT.opnd[i].X_add_number - REG_GR;
7239 }
7240 }
7241 }
7242 }
7243 else
7244 {
7245 UNHANDLED;
7246 }
7247 break;
7248
7249 /* This is the same as IA64_RS_PRr, except that the register range is
7250 from 1 - 15, and there are no rotating register reads/writes here. */
7251 case IA64_RS_PR:
7252 if (note == 0)
7253 {
7254 for (i = 1; i < 16; i++)
7255 {
7256 specs[count] = tmpl;
7257 specs[count++].index = i;
7258 }
7259 }
7260 else if (note == 7)
7261 {
7262 valueT mask = 0;
7263 /* Mark only those registers indicated by the mask. */
7264 if (rsrc_write)
7265 {
7266 mask = CURR_SLOT.opnd[2].X_add_number;
7267 for (i = 1; i < 16; i++)
7268 if (mask & ((valueT) 1 << i))
7269 {
7270 specs[count] = tmpl;
7271 specs[count++].index = i;
7272 }
7273 }
7274 else
7275 {
7276 UNHANDLED;
7277 }
7278 }
7279 else if (note == 11) /* note 11 implies note 1 as well */
7280 {
7281 if (rsrc_write)
7282 {
7283 for (i = 0; i < idesc->num_outputs; i++)
7284 {
7285 if (idesc->operands[i] == IA64_OPND_P1
7286 || idesc->operands[i] == IA64_OPND_P2)
7287 {
7288 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
7289 if (regno >= 1 && regno < 16)
7290 {
7291 specs[count] = tmpl;
7292 specs[count++].index = regno;
7293 }
7294 }
7295 }
7296 }
7297 else
7298 {
7299 UNHANDLED;
7300 }
7301 }
7302 else if (note == 12)
7303 {
7304 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
7305 {
7306 specs[count] = tmpl;
7307 specs[count++].index = CURR_SLOT.qp_regno;
7308 }
7309 }
7310 else if (note == 1)
7311 {
7312 if (rsrc_write)
7313 {
7314 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
7315 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
7316 int or_andcm = strstr(idesc->name, "or.andcm") != NULL;
7317 int and_orcm = strstr(idesc->name, "and.orcm") != NULL;
7318
7319 if ((idesc->operands[0] == IA64_OPND_P1
7320 || idesc->operands[0] == IA64_OPND_P2)
7321 && p1 >= 1 && p1 < 16)
7322 {
7323 specs[count] = tmpl;
7324 specs[count].cmp_type =
7325 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
7326 specs[count++].index = p1;
7327 }
7328 if ((idesc->operands[1] == IA64_OPND_P1
7329 || idesc->operands[1] == IA64_OPND_P2)
7330 && p2 >= 1 && p2 < 16)
7331 {
7332 specs[count] = tmpl;
7333 specs[count].cmp_type =
7334 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
7335 specs[count++].index = p2;
7336 }
7337 }
7338 else
7339 {
7340 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
7341 {
7342 specs[count] = tmpl;
7343 specs[count++].index = CURR_SLOT.qp_regno;
7344 }
7345 if (idesc->operands[1] == IA64_OPND_PR)
7346 {
7347 for (i = 1; i < 16; i++)
7348 {
7349 specs[count] = tmpl;
7350 specs[count++].index = i;
7351 }
7352 }
7353 }
7354 }
7355 else
7356 {
7357 UNHANDLED;
7358 }
7359 break;
7360
7361 /* This is the general case for PRs. IA64_RS_PR and IA64_RS_PR63 are
7362 simplified cases of this. */
7363 case IA64_RS_PRr:
7364 if (note == 0)
7365 {
7366 for (i = 16; i < 63; i++)
7367 {
7368 specs[count] = tmpl;
7369 specs[count++].index = i;
7370 }
7371 }
7372 else if (note == 7)
7373 {
7374 valueT mask = 0;
7375 /* Mark only those registers indicated by the mask. */
7376 if (rsrc_write
7377 && idesc->operands[0] == IA64_OPND_PR)
7378 {
7379 mask = CURR_SLOT.opnd[2].X_add_number;
7380 if (mask & ((valueT) 1<<16))
7381 for (i = 16; i < 63; i++)
7382 {
7383 specs[count] = tmpl;
7384 specs[count++].index = i;
7385 }
7386 }
7387 else if (rsrc_write
7388 && idesc->operands[0] == IA64_OPND_PR_ROT)
7389 {
7390 for (i = 16; i < 63; i++)
7391 {
7392 specs[count] = tmpl;
7393 specs[count++].index = i;
7394 }
7395 }
7396 else
7397 {
7398 UNHANDLED;
7399 }
7400 }
7401 else if (note == 11) /* note 11 implies note 1 as well */
7402 {
7403 if (rsrc_write)
7404 {
7405 for (i = 0; i < idesc->num_outputs; i++)
7406 {
7407 if (idesc->operands[i] == IA64_OPND_P1
7408 || idesc->operands[i] == IA64_OPND_P2)
7409 {
7410 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
7411 if (regno >= 16 && regno < 63)
7412 {
7413 specs[count] = tmpl;
7414 specs[count++].index = regno;
7415 }
7416 }
7417 }
7418 }
7419 else
7420 {
7421 UNHANDLED;
7422 }
7423 }
7424 else if (note == 12)
7425 {
7426 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
7427 {
7428 specs[count] = tmpl;
7429 specs[count++].index = CURR_SLOT.qp_regno;
7430 }
7431 }
7432 else if (note == 1)
7433 {
7434 if (rsrc_write)
7435 {
7436 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
7437 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
7438 int or_andcm = strstr(idesc->name, "or.andcm") != NULL;
7439 int and_orcm = strstr(idesc->name, "and.orcm") != NULL;
7440
7441 if ((idesc->operands[0] == IA64_OPND_P1
7442 || idesc->operands[0] == IA64_OPND_P2)
7443 && p1 >= 16 && p1 < 63)
7444 {
7445 specs[count] = tmpl;
7446 specs[count].cmp_type =
7447 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
7448 specs[count++].index = p1;
7449 }
7450 if ((idesc->operands[1] == IA64_OPND_P1
7451 || idesc->operands[1] == IA64_OPND_P2)
7452 && p2 >= 16 && p2 < 63)
7453 {
7454 specs[count] = tmpl;
7455 specs[count].cmp_type =
7456 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
7457 specs[count++].index = p2;
7458 }
7459 }
7460 else
7461 {
7462 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
7463 {
7464 specs[count] = tmpl;
7465 specs[count++].index = CURR_SLOT.qp_regno;
7466 }
7467 if (idesc->operands[1] == IA64_OPND_PR)
7468 {
7469 for (i = 16; i < 63; i++)
7470 {
7471 specs[count] = tmpl;
7472 specs[count++].index = i;
7473 }
7474 }
7475 }
7476 }
7477 else
7478 {
7479 UNHANDLED;
7480 }
7481 break;
7482
7483 case IA64_RS_PSR:
7484 /* Verify that the instruction is using the PSR bit indicated in
7485 dep->regindex. */
7486 if (note == 0)
7487 {
7488 if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_UM)
7489 {
7490 if (dep->regindex < 6)
7491 {
7492 specs[count++] = tmpl;
7493 }
7494 }
7495 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR)
7496 {
7497 if (dep->regindex < 32
7498 || dep->regindex == 35
7499 || dep->regindex == 36
7500 || (!rsrc_write && dep->regindex == PSR_CPL))
7501 {
7502 specs[count++] = tmpl;
7503 }
7504 }
7505 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_L)
7506 {
7507 if (dep->regindex < 32
7508 || dep->regindex == 35
7509 || dep->regindex == 36
7510 || (rsrc_write && dep->regindex == PSR_CPL))
7511 {
7512 specs[count++] = tmpl;
7513 }
7514 }
7515 else
7516 {
7517 /* Several PSR bits have very specific dependencies. */
7518 switch (dep->regindex)
7519 {
7520 default:
7521 specs[count++] = tmpl;
7522 break;
7523 case PSR_IC:
7524 if (rsrc_write)
7525 {
7526 specs[count++] = tmpl;
7527 }
7528 else
7529 {
7530 /* Only certain CR accesses use PSR.ic */
7531 if (idesc->operands[0] == IA64_OPND_CR3
7532 || idesc->operands[1] == IA64_OPND_CR3)
7533 {
7534 int index =
7535 ((idesc->operands[0] == IA64_OPND_CR3)
7536 ? 0 : 1);
7537 int regno =
7538 CURR_SLOT.opnd[index].X_add_number - REG_CR;
7539
7540 switch (regno)
7541 {
7542 default:
7543 break;
7544 case CR_ITIR:
7545 case CR_IFS:
7546 case CR_IIM:
7547 case CR_IIP:
7548 case CR_IPSR:
7549 case CR_ISR:
7550 case CR_IFA:
7551 case CR_IHA:
7552 case CR_IIPA:
7553 specs[count++] = tmpl;
7554 break;
7555 }
7556 }
7557 }
7558 break;
7559 case PSR_CPL:
7560 if (rsrc_write)
7561 {
7562 specs[count++] = tmpl;
7563 }
7564 else
7565 {
7566 /* Only some AR accesses use cpl */
7567 if (idesc->operands[0] == IA64_OPND_AR3
7568 || idesc->operands[1] == IA64_OPND_AR3)
7569 {
7570 int index =
7571 ((idesc->operands[0] == IA64_OPND_AR3)
7572 ? 0 : 1);
7573 int regno =
7574 CURR_SLOT.opnd[index].X_add_number - REG_AR;
7575
7576 if (regno == AR_ITC
7577 || (index == 0
7578 && (regno == AR_ITC
7579 || regno == AR_RSC
7580 || (regno >= AR_K0
7581 && regno <= AR_K7))))
7582 {
7583 specs[count++] = tmpl;
7584 }
7585 }
7586 else
7587 {
7588 specs[count++] = tmpl;
7589 }
7590 break;
7591 }
7592 }
7593 }
7594 }
7595 else if (note == 7)
7596 {
7597 valueT mask = 0;
7598 if (idesc->operands[0] == IA64_OPND_IMMU24)
7599 {
7600 mask = CURR_SLOT.opnd[0].X_add_number;
7601 }
7602 else
7603 {
7604 UNHANDLED;
7605 }
7606 if (mask & ((valueT) 1 << dep->regindex))
7607 {
7608 specs[count++] = tmpl;
7609 }
7610 }
7611 else if (note == 8)
7612 {
7613 int min = dep->regindex == PSR_DFL ? 2 : 32;
7614 int max = dep->regindex == PSR_DFL ? 31 : 127;
7615 /* dfh is read on FR32-127; dfl is read on FR2-31 */
7616 for (i = 0; i < NELEMS (idesc->operands); i++)
7617 {
7618 if (idesc->operands[i] == IA64_OPND_F1
7619 || idesc->operands[i] == IA64_OPND_F2
7620 || idesc->operands[i] == IA64_OPND_F3
7621 || idesc->operands[i] == IA64_OPND_F4)
7622 {
7623 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
7624 if (reg >= min && reg <= max)
7625 {
7626 specs[count++] = tmpl;
7627 }
7628 }
7629 }
7630 }
7631 else if (note == 9)
7632 {
7633 int min = dep->regindex == PSR_MFL ? 2 : 32;
7634 int max = dep->regindex == PSR_MFL ? 31 : 127;
7635 /* mfh is read on writes to FR32-127; mfl is read on writes to
7636 FR2-31 */
7637 for (i = 0; i < idesc->num_outputs; i++)
7638 {
7639 if (idesc->operands[i] == IA64_OPND_F1)
7640 {
7641 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
7642 if (reg >= min && reg <= max)
7643 {
7644 specs[count++] = tmpl;
7645 }
7646 }
7647 }
7648 }
7649 else if (note == 10)
7650 {
7651 for (i = 0; i < NELEMS (idesc->operands); i++)
7652 {
7653 if (idesc->operands[i] == IA64_OPND_R1
7654 || idesc->operands[i] == IA64_OPND_R2
7655 || idesc->operands[i] == IA64_OPND_R3)
7656 {
7657 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
7658 if (regno >= 16 && regno <= 31)
7659 {
7660 specs[count++] = tmpl;
7661 }
7662 }
7663 }
7664 }
7665 else
7666 {
7667 UNHANDLED;
7668 }
7669 break;
7670
7671 case IA64_RS_AR_FPSR:
7672 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
7673 {
7674 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
7675 if (regno == AR_FPSR)
7676 {
7677 specs[count++] = tmpl;
7678 }
7679 }
7680 else
7681 {
7682 specs[count++] = tmpl;
7683 }
7684 break;
7685
7686 case IA64_RS_ARX:
7687 /* Handle all AR[REG] resources */
7688 if (note == 0 || note == 1)
7689 {
7690 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
7691 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3
7692 && regno == dep->regindex)
7693 {
7694 specs[count++] = tmpl;
7695 }
7696 /* other AR[REG] resources may be affected by AR accesses */
7697 else if (idesc->operands[0] == IA64_OPND_AR3)
7698 {
7699 /* AR[] writes */
7700 regno = CURR_SLOT.opnd[0].X_add_number - REG_AR;
7701 switch (dep->regindex)
7702 {
7703 default:
7704 break;
7705 case AR_BSP:
7706 case AR_RNAT:
7707 if (regno == AR_BSPSTORE)
7708 {
7709 specs[count++] = tmpl;
7710 }
7711 case AR_RSC:
7712 if (!rsrc_write &&
7713 (regno == AR_BSPSTORE
7714 || regno == AR_RNAT))
7715 {
7716 specs[count++] = tmpl;
7717 }
7718 break;
7719 }
7720 }
7721 else if (idesc->operands[1] == IA64_OPND_AR3)
7722 {
7723 /* AR[] reads */
7724 regno = CURR_SLOT.opnd[1].X_add_number - REG_AR;
7725 switch (dep->regindex)
7726 {
7727 default:
7728 break;
7729 case AR_RSC:
7730 if (regno == AR_BSPSTORE || regno == AR_RNAT)
7731 {
7732 specs[count++] = tmpl;
7733 }
7734 break;
7735 }
7736 }
7737 else
7738 {
7739 specs[count++] = tmpl;
7740 }
7741 }
7742 else
7743 {
7744 UNHANDLED;
7745 }
7746 break;
7747
7748 case IA64_RS_CRX:
7749 /* Handle all CR[REG] resources */
7750 if (note == 0 || note == 1)
7751 {
7752 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
7753 {
7754 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
7755 if (regno == dep->regindex)
7756 {
7757 specs[count++] = tmpl;
7758 }
7759 else if (!rsrc_write)
7760 {
7761 /* Reads from CR[IVR] affect other resources. */
7762 if (regno == CR_IVR)
7763 {
7764 if ((dep->regindex >= CR_IRR0
7765 && dep->regindex <= CR_IRR3)
7766 || dep->regindex == CR_TPR)
7767 {
7768 specs[count++] = tmpl;
7769 }
7770 }
7771 }
7772 }
7773 else
7774 {
7775 specs[count++] = tmpl;
7776 }
7777 }
7778 else
7779 {
7780 UNHANDLED;
7781 }
7782 break;
7783
7784 case IA64_RS_INSERVICE:
7785 /* look for write of EOI (67) or read of IVR (65) */
7786 if ((idesc->operands[0] == IA64_OPND_CR3
7787 && CURR_SLOT.opnd[0].X_add_number - REG_CR == CR_EOI)
7788 || (idesc->operands[1] == IA64_OPND_CR3
7789 && CURR_SLOT.opnd[1].X_add_number - REG_CR == CR_IVR))
7790 {
7791 specs[count++] = tmpl;
7792 }
7793 break;
7794
7795 case IA64_RS_GR0:
7796 if (note == 1)
7797 {
7798 specs[count++] = tmpl;
7799 }
7800 else
7801 {
7802 UNHANDLED;
7803 }
7804 break;
7805
7806 case IA64_RS_CFM:
7807 if (note != 2)
7808 {
7809 specs[count++] = tmpl;
7810 }
7811 else
7812 {
7813 /* Check if any of the registers accessed are in the rotating region.
7814 mov to/from pr accesses CFM only when qp_regno is in the rotating
7815 region */
7816 for (i = 0; i < NELEMS (idesc->operands); i++)
7817 {
7818 if (idesc->operands[i] == IA64_OPND_R1
7819 || idesc->operands[i] == IA64_OPND_R2
7820 || idesc->operands[i] == IA64_OPND_R3)
7821 {
7822 int num = CURR_SLOT.opnd[i].X_add_number - REG_GR;
7823 /* Assumes that md.rot.num_regs is always valid */
7824 if (md.rot.num_regs > 0
7825 && num > 31
7826 && num < 31 + md.rot.num_regs)
7827 {
7828 specs[count] = tmpl;
7829 specs[count++].specific = 0;
7830 }
7831 }
7832 else if (idesc->operands[i] == IA64_OPND_F1
7833 || idesc->operands[i] == IA64_OPND_F2
7834 || idesc->operands[i] == IA64_OPND_F3
7835 || idesc->operands[i] == IA64_OPND_F4)
7836 {
7837 int num = CURR_SLOT.opnd[i].X_add_number - REG_FR;
7838 if (num > 31)
7839 {
7840 specs[count] = tmpl;
7841 specs[count++].specific = 0;
7842 }
7843 }
7844 else if (idesc->operands[i] == IA64_OPND_P1
7845 || idesc->operands[i] == IA64_OPND_P2)
7846 {
7847 int num = CURR_SLOT.opnd[i].X_add_number - REG_P;
7848 if (num > 15)
7849 {
7850 specs[count] = tmpl;
7851 specs[count++].specific = 0;
7852 }
7853 }
7854 }
7855 if (CURR_SLOT.qp_regno > 15)
7856 {
7857 specs[count] = tmpl;
7858 specs[count++].specific = 0;
7859 }
7860 }
7861 break;
7862
7863 /* This is the same as IA64_RS_PRr, except simplified to account for
7864 the fact that there is only one register. */
7865 case IA64_RS_PR63:
7866 if (note == 0)
7867 {
7868 specs[count++] = tmpl;
7869 }
7870 else if (note == 7)
7871 {
7872 valueT mask = 0;
7873 if (idesc->operands[2] == IA64_OPND_IMM17)
7874 mask = CURR_SLOT.opnd[2].X_add_number;
7875 if (mask & ((valueT) 1 << 63))
7876 specs[count++] = tmpl;
7877 }
7878 else if (note == 11)
7879 {
7880 if ((idesc->operands[0] == IA64_OPND_P1
7881 && CURR_SLOT.opnd[0].X_add_number - REG_P == 63)
7882 || (idesc->operands[1] == IA64_OPND_P2
7883 && CURR_SLOT.opnd[1].X_add_number - REG_P == 63))
7884 {
7885 specs[count++] = tmpl;
7886 }
7887 }
7888 else if (note == 12)
7889 {
7890 if (CURR_SLOT.qp_regno == 63)
7891 {
7892 specs[count++] = tmpl;
7893 }
7894 }
7895 else if (note == 1)
7896 {
7897 if (rsrc_write)
7898 {
7899 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
7900 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
7901 int or_andcm = strstr(idesc->name, "or.andcm") != NULL;
7902 int and_orcm = strstr(idesc->name, "and.orcm") != NULL;
7903
7904 if (p1 == 63
7905 && (idesc->operands[0] == IA64_OPND_P1
7906 || idesc->operands[0] == IA64_OPND_P2))
7907 {
7908 specs[count] = tmpl;
7909 specs[count++].cmp_type =
7910 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
7911 }
7912 if (p2 == 63
7913 && (idesc->operands[1] == IA64_OPND_P1
7914 || idesc->operands[1] == IA64_OPND_P2))
7915 {
7916 specs[count] = tmpl;
7917 specs[count++].cmp_type =
7918 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
7919 }
7920 }
7921 else
7922 {
7923 if (CURR_SLOT.qp_regno == 63)
7924 {
7925 specs[count++] = tmpl;
7926 }
7927 }
7928 }
7929 else
7930 {
7931 UNHANDLED;
7932 }
7933 break;
7934
7935 case IA64_RS_RSE:
7936 /* FIXME we can identify some individual RSE written resources, but RSE
7937 read resources have not yet been completely identified, so for now
7938 treat RSE as a single resource */
7939 if (strncmp (idesc->name, "mov", 3) == 0)
7940 {
7941 if (rsrc_write)
7942 {
7943 if (idesc->operands[0] == IA64_OPND_AR3
7944 && CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE)
7945 {
7946 specs[count] = tmpl;
7947 specs[count++].index = 0; /* IA64_RSE_BSPLOAD/RNATBITINDEX */
7948 }
7949 }
7950 else
7951 {
7952 if (idesc->operands[0] == IA64_OPND_AR3)
7953 {
7954 if (CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE
7955 || CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_RNAT)
7956 {
7957 specs[count++] = tmpl;
7958 }
7959 }
7960 else if (idesc->operands[1] == IA64_OPND_AR3)
7961 {
7962 if (CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSP
7963 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSPSTORE
7964 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_RNAT)
7965 {
7966 specs[count++] = tmpl;
7967 }
7968 }
7969 }
7970 }
7971 else
7972 {
7973 specs[count++] = tmpl;
7974 }
7975 break;
7976
7977 case IA64_RS_ANY:
7978 /* FIXME -- do any of these need to be non-specific? */
7979 specs[count++] = tmpl;
7980 break;
7981
7982 default:
7983 as_bad (_("Unrecognized dependency specifier %d\n"), dep->specifier);
7984 break;
7985 }
7986
7987 return count;
7988 }
7989
7990 /* Clear branch flags on marked resources. This breaks the link between the
7991 QP of the marking instruction and a subsequent branch on the same QP. */
7992
7993 static void
7994 clear_qp_branch_flag (mask)
7995 valueT mask;
7996 {
7997 int i;
7998 for (i = 0; i < regdepslen; i++)
7999 {
8000 valueT bit = ((valueT) 1 << regdeps[i].qp_regno);
8001 if ((bit & mask) != 0)
8002 {
8003 regdeps[i].link_to_qp_branch = 0;
8004 }
8005 }
8006 }
8007
8008 /* Remove any mutexes which contain any of the PRs indicated in the mask.
8009
8010 Any changes to a PR clears the mutex relations which include that PR. */
8011
8012 static void
8013 clear_qp_mutex (mask)
8014 valueT mask;
8015 {
8016 int i;
8017
8018 i = 0;
8019 while (i < qp_mutexeslen)
8020 {
8021 if ((qp_mutexes[i].prmask & mask) != 0)
8022 {
8023 if (md.debug_dv)
8024 {
8025 fprintf (stderr, " Clearing mutex relation");
8026 print_prmask (qp_mutexes[i].prmask);
8027 fprintf (stderr, "\n");
8028 }
8029 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
8030 }
8031 else
8032 ++i;
8033 }
8034 }
8035
8036 /* Clear implies relations which contain PRs in the given masks.
8037 P1_MASK indicates the source of the implies relation, while P2_MASK
8038 indicates the implied PR. */
8039
8040 static void
8041 clear_qp_implies (p1_mask, p2_mask)
8042 valueT p1_mask;
8043 valueT p2_mask;
8044 {
8045 int i;
8046
8047 i = 0;
8048 while (i < qp_implieslen)
8049 {
8050 if ((((valueT) 1 << qp_implies[i].p1) & p1_mask) != 0
8051 || (((valueT) 1 << qp_implies[i].p2) & p2_mask) != 0)
8052 {
8053 if (md.debug_dv)
8054 fprintf (stderr, "Clearing implied relation PR%d->PR%d\n",
8055 qp_implies[i].p1, qp_implies[i].p2);
8056 qp_implies[i] = qp_implies[--qp_implieslen];
8057 }
8058 else
8059 ++i;
8060 }
8061 }
8062
8063 /* Add the PRs specified to the list of implied relations. */
8064
8065 static void
8066 add_qp_imply (p1, p2)
8067 int p1, p2;
8068 {
8069 valueT mask;
8070 valueT bit;
8071 int i;
8072
8073 /* p0 is not meaningful here. */
8074 if (p1 == 0 || p2 == 0)
8075 abort ();
8076
8077 if (p1 == p2)
8078 return;
8079
8080 /* If it exists already, ignore it. */
8081 for (i = 0; i < qp_implieslen; i++)
8082 {
8083 if (qp_implies[i].p1 == p1
8084 && qp_implies[i].p2 == p2
8085 && qp_implies[i].path == md.path
8086 && !qp_implies[i].p2_branched)
8087 return;
8088 }
8089
8090 if (qp_implieslen == qp_impliestotlen)
8091 {
8092 qp_impliestotlen += 20;
8093 qp_implies = (struct qp_imply *)
8094 xrealloc ((void *) qp_implies,
8095 qp_impliestotlen * sizeof (struct qp_imply));
8096 }
8097 if (md.debug_dv)
8098 fprintf (stderr, " Registering PR%d implies PR%d\n", p1, p2);
8099 qp_implies[qp_implieslen].p1 = p1;
8100 qp_implies[qp_implieslen].p2 = p2;
8101 qp_implies[qp_implieslen].path = md.path;
8102 qp_implies[qp_implieslen++].p2_branched = 0;
8103
8104 /* Add in the implied transitive relations; for everything that p2 implies,
8105 make p1 imply that, too; for everything that implies p1, make it imply p2
8106 as well. */
8107 for (i = 0; i < qp_implieslen; i++)
8108 {
8109 if (qp_implies[i].p1 == p2)
8110 add_qp_imply (p1, qp_implies[i].p2);
8111 if (qp_implies[i].p2 == p1)
8112 add_qp_imply (qp_implies[i].p1, p2);
8113 }
8114 /* Add in mutex relations implied by this implies relation; for each mutex
8115 relation containing p2, duplicate it and replace p2 with p1. */
8116 bit = (valueT) 1 << p1;
8117 mask = (valueT) 1 << p2;
8118 for (i = 0; i < qp_mutexeslen; i++)
8119 {
8120 if (qp_mutexes[i].prmask & mask)
8121 add_qp_mutex ((qp_mutexes[i].prmask & ~mask) | bit);
8122 }
8123 }
8124
8125 /* Add the PRs specified in the mask to the mutex list; this means that only
8126 one of the PRs can be true at any time. PR0 should never be included in
8127 the mask. */
8128
8129 static void
8130 add_qp_mutex (mask)
8131 valueT mask;
8132 {
8133 if (mask & 0x1)
8134 abort ();
8135
8136 if (qp_mutexeslen == qp_mutexestotlen)
8137 {
8138 qp_mutexestotlen += 20;
8139 qp_mutexes = (struct qpmutex *)
8140 xrealloc ((void *) qp_mutexes,
8141 qp_mutexestotlen * sizeof (struct qpmutex));
8142 }
8143 if (md.debug_dv)
8144 {
8145 fprintf (stderr, " Registering mutex on");
8146 print_prmask (mask);
8147 fprintf (stderr, "\n");
8148 }
8149 qp_mutexes[qp_mutexeslen].path = md.path;
8150 qp_mutexes[qp_mutexeslen++].prmask = mask;
8151 }
8152
8153 static void
8154 clear_register_values ()
8155 {
8156 int i;
8157 if (md.debug_dv)
8158 fprintf (stderr, " Clearing register values\n");
8159 for (i = 1; i < NELEMS (gr_values); i++)
8160 gr_values[i].known = 0;
8161 }
8162
8163 /* Keep track of register values/changes which affect DV tracking.
8164
8165 optimization note: should add a flag to classes of insns where otherwise we
8166 have to examine a group of strings to identify them. */
8167
8168 static void
8169 note_register_values (idesc)
8170 struct ia64_opcode *idesc;
8171 {
8172 valueT qp_changemask = 0;
8173 int i;
8174
8175 /* Invalidate values for registers being written to. */
8176 for (i = 0; i < idesc->num_outputs; i++)
8177 {
8178 if (idesc->operands[i] == IA64_OPND_R1
8179 || idesc->operands[i] == IA64_OPND_R2
8180 || idesc->operands[i] == IA64_OPND_R3)
8181 {
8182 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
8183 if (regno > 0 && regno < NELEMS (gr_values))
8184 gr_values[regno].known = 0;
8185 }
8186 else if (idesc->operands[i] == IA64_OPND_R3_2)
8187 {
8188 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
8189 if (regno > 0 && regno < 4)
8190 gr_values[regno].known = 0;
8191 }
8192 else if (idesc->operands[i] == IA64_OPND_P1
8193 || idesc->operands[i] == IA64_OPND_P2)
8194 {
8195 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8196 qp_changemask |= (valueT) 1 << regno;
8197 }
8198 else if (idesc->operands[i] == IA64_OPND_PR)
8199 {
8200 if (idesc->operands[2] & (valueT) 0x10000)
8201 qp_changemask = ~(valueT) 0x1FFFF | idesc->operands[2];
8202 else
8203 qp_changemask = idesc->operands[2];
8204 break;
8205 }
8206 else if (idesc->operands[i] == IA64_OPND_PR_ROT)
8207 {
8208 if (idesc->operands[1] & ((valueT) 1 << 43))
8209 qp_changemask = ~(valueT) 0xFFFFFFFFFFF | idesc->operands[1];
8210 else
8211 qp_changemask = idesc->operands[1];
8212 qp_changemask &= ~(valueT) 0xFFFF;
8213 break;
8214 }
8215 }
8216
8217 /* Always clear qp branch flags on any PR change. */
8218 /* FIXME there may be exceptions for certain compares. */
8219 clear_qp_branch_flag (qp_changemask);
8220
8221 /* Invalidate rotating registers on insns which affect RRBs in CFM. */
8222 if (idesc->flags & IA64_OPCODE_MOD_RRBS)
8223 {
8224 qp_changemask |= ~(valueT) 0xFFFF;
8225 if (strcmp (idesc->name, "clrrrb.pr") != 0)
8226 {
8227 for (i = 32; i < 32 + md.rot.num_regs; i++)
8228 gr_values[i].known = 0;
8229 }
8230 clear_qp_mutex (qp_changemask);
8231 clear_qp_implies (qp_changemask, qp_changemask);
8232 }
8233 /* After a call, all register values are undefined, except those marked
8234 as "safe". */
8235 else if (strncmp (idesc->name, "br.call", 6) == 0
8236 || strncmp (idesc->name, "brl.call", 7) == 0)
8237 {
8238 /* FIXME keep GR values which are marked as "safe_across_calls" */
8239 clear_register_values ();
8240 clear_qp_mutex (~qp_safe_across_calls);
8241 clear_qp_implies (~qp_safe_across_calls, ~qp_safe_across_calls);
8242 clear_qp_branch_flag (~qp_safe_across_calls);
8243 }
8244 else if (is_interruption_or_rfi (idesc)
8245 || is_taken_branch (idesc))
8246 {
8247 clear_register_values ();
8248 clear_qp_mutex (~(valueT) 0);
8249 clear_qp_implies (~(valueT) 0, ~(valueT) 0);
8250 }
8251 /* Look for mutex and implies relations. */
8252 else if ((idesc->operands[0] == IA64_OPND_P1
8253 || idesc->operands[0] == IA64_OPND_P2)
8254 && (idesc->operands[1] == IA64_OPND_P1
8255 || idesc->operands[1] == IA64_OPND_P2))
8256 {
8257 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8258 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8259 valueT p1mask = (valueT) 1 << p1;
8260 valueT p2mask = (valueT) 1 << p2;
8261
8262 /* If one of the PRs is PR0, we can't really do anything. */
8263 if (p1 == 0 || p2 == 0)
8264 {
8265 if (md.debug_dv)
8266 fprintf (stderr, " Ignoring PRs due to inclusion of p0\n");
8267 }
8268 /* In general, clear mutexes and implies which include P1 or P2,
8269 with the following exceptions. */
8270 else if (strstr (idesc->name, ".or.andcm") != NULL)
8271 {
8272 add_qp_mutex (p1mask | p2mask);
8273 clear_qp_implies (p2mask, p1mask);
8274 }
8275 else if (strstr (idesc->name, ".and.orcm") != NULL)
8276 {
8277 add_qp_mutex (p1mask | p2mask);
8278 clear_qp_implies (p1mask, p2mask);
8279 }
8280 else if (strstr (idesc->name, ".and") != NULL)
8281 {
8282 clear_qp_implies (0, p1mask | p2mask);
8283 }
8284 else if (strstr (idesc->name, ".or") != NULL)
8285 {
8286 clear_qp_mutex (p1mask | p2mask);
8287 clear_qp_implies (p1mask | p2mask, 0);
8288 }
8289 else
8290 {
8291 clear_qp_implies (p1mask | p2mask, p1mask | p2mask);
8292 if (strstr (idesc->name, ".unc") != NULL)
8293 {
8294 add_qp_mutex (p1mask | p2mask);
8295 if (CURR_SLOT.qp_regno != 0)
8296 {
8297 add_qp_imply (CURR_SLOT.opnd[0].X_add_number - REG_P,
8298 CURR_SLOT.qp_regno);
8299 add_qp_imply (CURR_SLOT.opnd[1].X_add_number - REG_P,
8300 CURR_SLOT.qp_regno);
8301 }
8302 }
8303 else if (CURR_SLOT.qp_regno == 0)
8304 {
8305 add_qp_mutex (p1mask | p2mask);
8306 }
8307 else
8308 {
8309 clear_qp_mutex (p1mask | p2mask);
8310 }
8311 }
8312 }
8313 /* Look for mov imm insns into GRs. */
8314 else if (idesc->operands[0] == IA64_OPND_R1
8315 && (idesc->operands[1] == IA64_OPND_IMM22
8316 || idesc->operands[1] == IA64_OPND_IMMU64)
8317 && (strcmp (idesc->name, "mov") == 0
8318 || strcmp (idesc->name, "movl") == 0))
8319 {
8320 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
8321 if (regno > 0 && regno < NELEMS (gr_values))
8322 {
8323 gr_values[regno].known = 1;
8324 gr_values[regno].value = CURR_SLOT.opnd[1].X_add_number;
8325 gr_values[regno].path = md.path;
8326 if (md.debug_dv)
8327 {
8328 fprintf (stderr, " Know gr%d = ", regno);
8329 fprintf_vma (stderr, gr_values[regno].value);
8330 fputs ("\n", stderr);
8331 }
8332 }
8333 }
8334 else
8335 {
8336 clear_qp_mutex (qp_changemask);
8337 clear_qp_implies (qp_changemask, qp_changemask);
8338 }
8339 }
8340
8341 /* Return whether the given predicate registers are currently mutex. */
8342
8343 static int
8344 qp_mutex (p1, p2, path)
8345 int p1;
8346 int p2;
8347 int path;
8348 {
8349 int i;
8350 valueT mask;
8351
8352 if (p1 != p2)
8353 {
8354 mask = ((valueT) 1 << p1) | (valueT) 1 << p2;
8355 for (i = 0; i < qp_mutexeslen; i++)
8356 {
8357 if (qp_mutexes[i].path >= path
8358 && (qp_mutexes[i].prmask & mask) == mask)
8359 return 1;
8360 }
8361 }
8362 return 0;
8363 }
8364
8365 /* Return whether the given resource is in the given insn's list of chks
8366 Return 1 if the conflict is absolutely determined, 2 if it's a potential
8367 conflict. */
8368
8369 static int
8370 resources_match (rs, idesc, note, qp_regno, path)
8371 struct rsrc *rs;
8372 struct ia64_opcode *idesc;
8373 int note;
8374 int qp_regno;
8375 int path;
8376 {
8377 struct rsrc specs[MAX_SPECS];
8378 int count;
8379
8380 /* If the marked resource's qp_regno and the given qp_regno are mutex,
8381 we don't need to check. One exception is note 11, which indicates that
8382 target predicates are written regardless of PR[qp]. */
8383 if (qp_mutex (rs->qp_regno, qp_regno, path)
8384 && note != 11)
8385 return 0;
8386
8387 count = specify_resource (rs->dependency, idesc, DV_CHK, specs, note, path);
8388 while (count-- > 0)
8389 {
8390 /* UNAT checking is a bit more specific than other resources */
8391 if (rs->dependency->specifier == IA64_RS_AR_UNAT
8392 && specs[count].mem_offset.hint
8393 && rs->mem_offset.hint)
8394 {
8395 if (rs->mem_offset.base == specs[count].mem_offset.base)
8396 {
8397 if (((rs->mem_offset.offset >> 3) & 0x3F) ==
8398 ((specs[count].mem_offset.offset >> 3) & 0x3F))
8399 return 1;
8400 else
8401 continue;
8402 }
8403 }
8404
8405 /* Skip apparent PR write conflicts where both writes are an AND or both
8406 writes are an OR. */
8407 if (rs->dependency->specifier == IA64_RS_PR
8408 || rs->dependency->specifier == IA64_RS_PRr
8409 || rs->dependency->specifier == IA64_RS_PR63)
8410 {
8411 if (specs[count].cmp_type != CMP_NONE
8412 && specs[count].cmp_type == rs->cmp_type)
8413 {
8414 if (md.debug_dv)
8415 fprintf (stderr, " %s on parallel compare allowed (PR%d)\n",
8416 dv_mode[rs->dependency->mode],
8417 rs->dependency->specifier != IA64_RS_PR63 ?
8418 specs[count].index : 63);
8419 continue;
8420 }
8421 if (md.debug_dv)
8422 fprintf (stderr,
8423 " %s on parallel compare conflict %s vs %s on PR%d\n",
8424 dv_mode[rs->dependency->mode],
8425 dv_cmp_type[rs->cmp_type],
8426 dv_cmp_type[specs[count].cmp_type],
8427 rs->dependency->specifier != IA64_RS_PR63 ?
8428 specs[count].index : 63);
8429
8430 }
8431
8432 /* If either resource is not specific, conservatively assume a conflict
8433 */
8434 if (!specs[count].specific || !rs->specific)
8435 return 2;
8436 else if (specs[count].index == rs->index)
8437 return 1;
8438 }
8439 #if 0
8440 if (md.debug_dv)
8441 fprintf (stderr, " No %s conflicts\n", rs->dependency->name);
8442 #endif
8443
8444 return 0;
8445 }
8446
8447 /* Indicate an instruction group break; if INSERT_STOP is non-zero, then
8448 insert a stop to create the break. Update all resource dependencies
8449 appropriately. If QP_REGNO is non-zero, only apply the break to resources
8450 which use the same QP_REGNO and have the link_to_qp_branch flag set.
8451 If SAVE_CURRENT is non-zero, don't affect resources marked by the current
8452 instruction. */
8453
8454 static void
8455 insn_group_break (insert_stop, qp_regno, save_current)
8456 int insert_stop;
8457 int qp_regno;
8458 int save_current;
8459 {
8460 int i;
8461
8462 if (insert_stop && md.num_slots_in_use > 0)
8463 PREV_SLOT.end_of_insn_group = 1;
8464
8465 if (md.debug_dv)
8466 {
8467 fprintf (stderr, " Insn group break%s",
8468 (insert_stop ? " (w/stop)" : ""));
8469 if (qp_regno != 0)
8470 fprintf (stderr, " effective for QP=%d", qp_regno);
8471 fprintf (stderr, "\n");
8472 }
8473
8474 i = 0;
8475 while (i < regdepslen)
8476 {
8477 const struct ia64_dependency *dep = regdeps[i].dependency;
8478
8479 if (qp_regno != 0
8480 && regdeps[i].qp_regno != qp_regno)
8481 {
8482 ++i;
8483 continue;
8484 }
8485
8486 if (save_current
8487 && CURR_SLOT.src_file == regdeps[i].file
8488 && CURR_SLOT.src_line == regdeps[i].line)
8489 {
8490 ++i;
8491 continue;
8492 }
8493
8494 /* clear dependencies which are automatically cleared by a stop, or
8495 those that have reached the appropriate state of insn serialization */
8496 if (dep->semantics == IA64_DVS_IMPLIED
8497 || dep->semantics == IA64_DVS_IMPLIEDF
8498 || regdeps[i].insn_srlz == STATE_SRLZ)
8499 {
8500 print_dependency ("Removing", i);
8501 regdeps[i] = regdeps[--regdepslen];
8502 }
8503 else
8504 {
8505 if (dep->semantics == IA64_DVS_DATA
8506 || dep->semantics == IA64_DVS_INSTR
8507 || dep->semantics == IA64_DVS_SPECIFIC)
8508 {
8509 if (regdeps[i].insn_srlz == STATE_NONE)
8510 regdeps[i].insn_srlz = STATE_STOP;
8511 if (regdeps[i].data_srlz == STATE_NONE)
8512 regdeps[i].data_srlz = STATE_STOP;
8513 }
8514 ++i;
8515 }
8516 }
8517 }
8518
8519 /* Add the given resource usage spec to the list of active dependencies. */
8520
8521 static void
8522 mark_resource (idesc, dep, spec, depind, path)
8523 struct ia64_opcode *idesc ATTRIBUTE_UNUSED;
8524 const struct ia64_dependency *dep ATTRIBUTE_UNUSED;
8525 struct rsrc *spec;
8526 int depind;
8527 int path;
8528 {
8529 if (regdepslen == regdepstotlen)
8530 {
8531 regdepstotlen += 20;
8532 regdeps = (struct rsrc *)
8533 xrealloc ((void *) regdeps,
8534 regdepstotlen * sizeof (struct rsrc));
8535 }
8536
8537 regdeps[regdepslen] = *spec;
8538 regdeps[regdepslen].depind = depind;
8539 regdeps[regdepslen].path = path;
8540 regdeps[regdepslen].file = CURR_SLOT.src_file;
8541 regdeps[regdepslen].line = CURR_SLOT.src_line;
8542
8543 print_dependency ("Adding", regdepslen);
8544
8545 ++regdepslen;
8546 }
8547
8548 static void
8549 print_dependency (action, depind)
8550 const char *action;
8551 int depind;
8552 {
8553 if (md.debug_dv)
8554 {
8555 fprintf (stderr, " %s %s '%s'",
8556 action, dv_mode[(regdeps[depind].dependency)->mode],
8557 (regdeps[depind].dependency)->name);
8558 if (regdeps[depind].specific && regdeps[depind].index != 0)
8559 fprintf (stderr, " (%d)", regdeps[depind].index);
8560 if (regdeps[depind].mem_offset.hint)
8561 {
8562 fputs (" ", stderr);
8563 fprintf_vma (stderr, regdeps[depind].mem_offset.base);
8564 fputs ("+", stderr);
8565 fprintf_vma (stderr, regdeps[depind].mem_offset.offset);
8566 }
8567 fprintf (stderr, "\n");
8568 }
8569 }
8570
8571 static void
8572 instruction_serialization ()
8573 {
8574 int i;
8575 if (md.debug_dv)
8576 fprintf (stderr, " Instruction serialization\n");
8577 for (i = 0; i < regdepslen; i++)
8578 if (regdeps[i].insn_srlz == STATE_STOP)
8579 regdeps[i].insn_srlz = STATE_SRLZ;
8580 }
8581
8582 static void
8583 data_serialization ()
8584 {
8585 int i = 0;
8586 if (md.debug_dv)
8587 fprintf (stderr, " Data serialization\n");
8588 while (i < regdepslen)
8589 {
8590 if (regdeps[i].data_srlz == STATE_STOP
8591 /* Note: as of 991210, all "other" dependencies are cleared by a
8592 data serialization. This might change with new tables */
8593 || (regdeps[i].dependency)->semantics == IA64_DVS_OTHER)
8594 {
8595 print_dependency ("Removing", i);
8596 regdeps[i] = regdeps[--regdepslen];
8597 }
8598 else
8599 ++i;
8600 }
8601 }
8602
8603 /* Insert stops and serializations as needed to avoid DVs. */
8604
8605 static void
8606 remove_marked_resource (rs)
8607 struct rsrc *rs;
8608 {
8609 switch (rs->dependency->semantics)
8610 {
8611 case IA64_DVS_SPECIFIC:
8612 if (md.debug_dv)
8613 fprintf (stderr, "Implementation-specific, assume worst case...\n");
8614 /* ...fall through... */
8615 case IA64_DVS_INSTR:
8616 if (md.debug_dv)
8617 fprintf (stderr, "Inserting instr serialization\n");
8618 if (rs->insn_srlz < STATE_STOP)
8619 insn_group_break (1, 0, 0);
8620 if (rs->insn_srlz < STATE_SRLZ)
8621 {
8622 int oldqp = CURR_SLOT.qp_regno;
8623 struct ia64_opcode *oldidesc = CURR_SLOT.idesc;
8624 /* Manually jam a srlz.i insn into the stream */
8625 CURR_SLOT.qp_regno = 0;
8626 CURR_SLOT.idesc = ia64_find_opcode ("srlz.i");
8627 instruction_serialization ();
8628 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
8629 if (++md.num_slots_in_use >= NUM_SLOTS)
8630 emit_one_bundle ();
8631 CURR_SLOT.qp_regno = oldqp;
8632 CURR_SLOT.idesc = oldidesc;
8633 }
8634 insn_group_break (1, 0, 0);
8635 break;
8636 case IA64_DVS_OTHER: /* as of rev2 (991220) of the DV tables, all
8637 "other" types of DV are eliminated
8638 by a data serialization */
8639 case IA64_DVS_DATA:
8640 if (md.debug_dv)
8641 fprintf (stderr, "Inserting data serialization\n");
8642 if (rs->data_srlz < STATE_STOP)
8643 insn_group_break (1, 0, 0);
8644 {
8645 int oldqp = CURR_SLOT.qp_regno;
8646 struct ia64_opcode *oldidesc = CURR_SLOT.idesc;
8647 /* Manually jam a srlz.d insn into the stream */
8648 CURR_SLOT.qp_regno = 0;
8649 CURR_SLOT.idesc = ia64_find_opcode ("srlz.d");
8650 data_serialization ();
8651 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
8652 if (++md.num_slots_in_use >= NUM_SLOTS)
8653 emit_one_bundle ();
8654 CURR_SLOT.qp_regno = oldqp;
8655 CURR_SLOT.idesc = oldidesc;
8656 }
8657 break;
8658 case IA64_DVS_IMPLIED:
8659 case IA64_DVS_IMPLIEDF:
8660 if (md.debug_dv)
8661 fprintf (stderr, "Inserting stop\n");
8662 insn_group_break (1, 0, 0);
8663 break;
8664 default:
8665 break;
8666 }
8667 }
8668
8669 /* Check the resources used by the given opcode against the current dependency
8670 list.
8671
8672 The check is run once for each execution path encountered. In this case,
8673 a unique execution path is the sequence of instructions following a code
8674 entry point, e.g. the following has three execution paths, one starting
8675 at L0, one at L1, and one at L2.
8676
8677 L0: nop
8678 L1: add
8679 L2: add
8680 br.ret
8681 */
8682
8683 static void
8684 check_dependencies (idesc)
8685 struct ia64_opcode *idesc;
8686 {
8687 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
8688 int path;
8689 int i;
8690
8691 /* Note that the number of marked resources may change within the
8692 loop if in auto mode. */
8693 i = 0;
8694 while (i < regdepslen)
8695 {
8696 struct rsrc *rs = &regdeps[i];
8697 const struct ia64_dependency *dep = rs->dependency;
8698 int chkind;
8699 int note;
8700 int start_over = 0;
8701
8702 if (dep->semantics == IA64_DVS_NONE
8703 || (chkind = depends_on (rs->depind, idesc)) == -1)
8704 {
8705 ++i;
8706 continue;
8707 }
8708
8709 note = NOTE (opdeps->chks[chkind]);
8710
8711 /* Check this resource against each execution path seen thus far. */
8712 for (path = 0; path <= md.path; path++)
8713 {
8714 int matchtype;
8715
8716 /* If the dependency wasn't on the path being checked, ignore it. */
8717 if (rs->path < path)
8718 continue;
8719
8720 /* If the QP for this insn implies a QP which has branched, don't
8721 bother checking. Ed. NOTE: I don't think this check is terribly
8722 useful; what's the point of generating code which will only be
8723 reached if its QP is zero?
8724 This code was specifically inserted to handle the following code,
8725 based on notes from Intel's DV checking code, where p1 implies p2.
8726
8727 mov r4 = 2
8728 (p2) br.cond L
8729 (p1) mov r4 = 7
8730 */
8731 if (CURR_SLOT.qp_regno != 0)
8732 {
8733 int skip = 0;
8734 int implies;
8735 for (implies = 0; implies < qp_implieslen; implies++)
8736 {
8737 if (qp_implies[implies].path >= path
8738 && qp_implies[implies].p1 == CURR_SLOT.qp_regno
8739 && qp_implies[implies].p2_branched)
8740 {
8741 skip = 1;
8742 break;
8743 }
8744 }
8745 if (skip)
8746 continue;
8747 }
8748
8749 if ((matchtype = resources_match (rs, idesc, note,
8750 CURR_SLOT.qp_regno, path)) != 0)
8751 {
8752 char msg[1024];
8753 char pathmsg[256] = "";
8754 char indexmsg[256] = "";
8755 int certain = (matchtype == 1 && CURR_SLOT.qp_regno == 0);
8756
8757 if (path != 0)
8758 sprintf (pathmsg, " when entry is at label '%s'",
8759 md.entry_labels[path - 1]);
8760 if (rs->specific && rs->index != 0)
8761 sprintf (indexmsg, ", specific resource number is %d",
8762 rs->index);
8763 sprintf (msg, "Use of '%s' %s %s dependency '%s' (%s)%s%s",
8764 idesc->name,
8765 (certain ? "violates" : "may violate"),
8766 dv_mode[dep->mode], dep->name,
8767 dv_sem[dep->semantics],
8768 pathmsg, indexmsg);
8769
8770 if (md.explicit_mode)
8771 {
8772 as_warn ("%s", msg);
8773 if (path < md.path)
8774 as_warn (_("Only the first path encountering the conflict "
8775 "is reported"));
8776 as_warn_where (rs->file, rs->line,
8777 _("This is the location of the "
8778 "conflicting usage"));
8779 /* Don't bother checking other paths, to avoid duplicating
8780 the same warning */
8781 break;
8782 }
8783 else
8784 {
8785 if (md.debug_dv)
8786 fprintf (stderr, "%s @ %s:%d\n", msg, rs->file, rs->line);
8787
8788 remove_marked_resource (rs);
8789
8790 /* since the set of dependencies has changed, start over */
8791 /* FIXME -- since we're removing dvs as we go, we
8792 probably don't really need to start over... */
8793 start_over = 1;
8794 break;
8795 }
8796 }
8797 }
8798 if (start_over)
8799 i = 0;
8800 else
8801 ++i;
8802 }
8803 }
8804
8805 /* Register new dependencies based on the given opcode. */
8806
8807 static void
8808 mark_resources (idesc)
8809 struct ia64_opcode *idesc;
8810 {
8811 int i;
8812 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
8813 int add_only_qp_reads = 0;
8814
8815 /* A conditional branch only uses its resources if it is taken; if it is
8816 taken, we stop following that path. The other branch types effectively
8817 *always* write their resources. If it's not taken, register only QP
8818 reads. */
8819 if (is_conditional_branch (idesc) || is_interruption_or_rfi (idesc))
8820 {
8821 add_only_qp_reads = 1;
8822 }
8823
8824 if (md.debug_dv)
8825 fprintf (stderr, "Registering '%s' resource usage\n", idesc->name);
8826
8827 for (i = 0; i < opdeps->nregs; i++)
8828 {
8829 const struct ia64_dependency *dep;
8830 struct rsrc specs[MAX_SPECS];
8831 int note;
8832 int path;
8833 int count;
8834
8835 dep = ia64_find_dependency (opdeps->regs[i]);
8836 note = NOTE (opdeps->regs[i]);
8837
8838 if (add_only_qp_reads
8839 && !(dep->mode == IA64_DV_WAR
8840 && (dep->specifier == IA64_RS_PR
8841 || dep->specifier == IA64_RS_PRr
8842 || dep->specifier == IA64_RS_PR63)))
8843 continue;
8844
8845 count = specify_resource (dep, idesc, DV_REG, specs, note, md.path);
8846
8847 #if 0
8848 if (md.debug_dv && !count)
8849 fprintf (stderr, " No %s %s usage found (path %d)\n",
8850 dv_mode[dep->mode], dep->name, md.path);
8851 #endif
8852
8853 while (count-- > 0)
8854 {
8855 mark_resource (idesc, dep, &specs[count],
8856 DEP (opdeps->regs[i]), md.path);
8857 }
8858
8859 /* The execution path may affect register values, which may in turn
8860 affect which indirect-access resources are accessed. */
8861 switch (dep->specifier)
8862 {
8863 default:
8864 break;
8865 case IA64_RS_CPUID:
8866 case IA64_RS_DBR:
8867 case IA64_RS_IBR:
8868 case IA64_RS_MSR:
8869 case IA64_RS_PKR:
8870 case IA64_RS_PMC:
8871 case IA64_RS_PMD:
8872 case IA64_RS_RR:
8873 for (path = 0; path < md.path; path++)
8874 {
8875 count = specify_resource (dep, idesc, DV_REG, specs, note, path);
8876 while (count-- > 0)
8877 mark_resource (idesc, dep, &specs[count],
8878 DEP (opdeps->regs[i]), path);
8879 }
8880 break;
8881 }
8882 }
8883 }
8884
8885 /* Remove dependencies when they no longer apply. */
8886
8887 static void
8888 update_dependencies (idesc)
8889 struct ia64_opcode *idesc;
8890 {
8891 int i;
8892
8893 if (strcmp (idesc->name, "srlz.i") == 0)
8894 {
8895 instruction_serialization ();
8896 }
8897 else if (strcmp (idesc->name, "srlz.d") == 0)
8898 {
8899 data_serialization ();
8900 }
8901 else if (is_interruption_or_rfi (idesc)
8902 || is_taken_branch (idesc))
8903 {
8904 /* Although technically the taken branch doesn't clear dependencies
8905 which require a srlz.[id], we don't follow the branch; the next
8906 instruction is assumed to start with a clean slate. */
8907 regdepslen = 0;
8908 md.path = 0;
8909 }
8910 else if (is_conditional_branch (idesc)
8911 && CURR_SLOT.qp_regno != 0)
8912 {
8913 int is_call = strstr (idesc->name, ".call") != NULL;
8914
8915 for (i = 0; i < qp_implieslen; i++)
8916 {
8917 /* If the conditional branch's predicate is implied by the predicate
8918 in an existing dependency, remove that dependency. */
8919 if (qp_implies[i].p2 == CURR_SLOT.qp_regno)
8920 {
8921 int depind = 0;
8922 /* Note that this implied predicate takes a branch so that if
8923 a later insn generates a DV but its predicate implies this
8924 one, we can avoid the false DV warning. */
8925 qp_implies[i].p2_branched = 1;
8926 while (depind < regdepslen)
8927 {
8928 if (regdeps[depind].qp_regno == qp_implies[i].p1)
8929 {
8930 print_dependency ("Removing", depind);
8931 regdeps[depind] = regdeps[--regdepslen];
8932 }
8933 else
8934 ++depind;
8935 }
8936 }
8937 }
8938 /* Any marked resources which have this same predicate should be
8939 cleared, provided that the QP hasn't been modified between the
8940 marking instruction and the branch. */
8941 if (is_call)
8942 {
8943 insn_group_break (0, CURR_SLOT.qp_regno, 1);
8944 }
8945 else
8946 {
8947 i = 0;
8948 while (i < regdepslen)
8949 {
8950 if (regdeps[i].qp_regno == CURR_SLOT.qp_regno
8951 && regdeps[i].link_to_qp_branch
8952 && (regdeps[i].file != CURR_SLOT.src_file
8953 || regdeps[i].line != CURR_SLOT.src_line))
8954 {
8955 /* Treat like a taken branch */
8956 print_dependency ("Removing", i);
8957 regdeps[i] = regdeps[--regdepslen];
8958 }
8959 else
8960 ++i;
8961 }
8962 }
8963 }
8964 }
8965
8966 /* Examine the current instruction for dependency violations. */
8967
8968 static int
8969 check_dv (idesc)
8970 struct ia64_opcode *idesc;
8971 {
8972 if (md.debug_dv)
8973 {
8974 fprintf (stderr, "Checking %s for violations (line %d, %d/%d)\n",
8975 idesc->name, CURR_SLOT.src_line,
8976 idesc->dependencies->nchks,
8977 idesc->dependencies->nregs);
8978 }
8979
8980 /* Look through the list of currently marked resources; if the current
8981 instruction has the dependency in its chks list which uses that resource,
8982 check against the specific resources used. */
8983 check_dependencies (idesc);
8984
8985 /* Look up the instruction's regdeps (RAW writes, WAW writes, and WAR reads),
8986 then add them to the list of marked resources. */
8987 mark_resources (idesc);
8988
8989 /* There are several types of dependency semantics, and each has its own
8990 requirements for being cleared
8991
8992 Instruction serialization (insns separated by interruption, rfi, or
8993 writer + srlz.i + reader, all in separate groups) clears DVS_INSTR.
8994
8995 Data serialization (instruction serialization, or writer + srlz.d +
8996 reader, where writer and srlz.d are in separate groups) clears
8997 DVS_DATA. (This also clears DVS_OTHER, but that is not guaranteed to
8998 always be the case).
8999
9000 Instruction group break (groups separated by stop, taken branch,
9001 interruption or rfi) clears DVS_IMPLIED and DVS_IMPLIEDF.
9002 */
9003 update_dependencies (idesc);
9004
9005 /* Sometimes, knowing a register value allows us to avoid giving a false DV
9006 warning. Keep track of as many as possible that are useful. */
9007 note_register_values (idesc);
9008
9009 /* We don't need or want this anymore. */
9010 md.mem_offset.hint = 0;
9011
9012 return 0;
9013 }
9014
9015 /* Translate one line of assembly. Pseudo ops and labels do not show
9016 here. */
9017 void
9018 md_assemble (str)
9019 char *str;
9020 {
9021 char *saved_input_line_pointer, *mnemonic;
9022 const struct pseudo_opcode *pdesc;
9023 struct ia64_opcode *idesc;
9024 unsigned char qp_regno;
9025 unsigned int flags;
9026 int ch;
9027
9028 saved_input_line_pointer = input_line_pointer;
9029 input_line_pointer = str;
9030
9031 /* extract the opcode (mnemonic): */
9032
9033 mnemonic = input_line_pointer;
9034 ch = get_symbol_end ();
9035 pdesc = (struct pseudo_opcode *) hash_find (md.pseudo_hash, mnemonic);
9036 if (pdesc)
9037 {
9038 *input_line_pointer = ch;
9039 (*pdesc->handler) (pdesc->arg);
9040 goto done;
9041 }
9042
9043 /* Find the instruction descriptor matching the arguments. */
9044
9045 idesc = ia64_find_opcode (mnemonic);
9046 *input_line_pointer = ch;
9047 if (!idesc)
9048 {
9049 as_bad ("Unknown opcode `%s'", mnemonic);
9050 goto done;
9051 }
9052
9053 idesc = parse_operands (idesc);
9054 if (!idesc)
9055 goto done;
9056
9057 /* Handle the dynamic ops we can handle now: */
9058 if (idesc->type == IA64_TYPE_DYN)
9059 {
9060 if (strcmp (idesc->name, "add") == 0)
9061 {
9062 if (CURR_SLOT.opnd[2].X_op == O_register
9063 && CURR_SLOT.opnd[2].X_add_number < 4)
9064 mnemonic = "addl";
9065 else
9066 mnemonic = "adds";
9067 ia64_free_opcode (idesc);
9068 idesc = ia64_find_opcode (mnemonic);
9069 #if 0
9070 know (!idesc->next);
9071 #endif
9072 }
9073 else if (strcmp (idesc->name, "mov") == 0)
9074 {
9075 enum ia64_opnd opnd1, opnd2;
9076 int rop;
9077
9078 opnd1 = idesc->operands[0];
9079 opnd2 = idesc->operands[1];
9080 if (opnd1 == IA64_OPND_AR3)
9081 rop = 0;
9082 else if (opnd2 == IA64_OPND_AR3)
9083 rop = 1;
9084 else
9085 abort ();
9086 if (CURR_SLOT.opnd[rop].X_op == O_register
9087 && ar_is_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
9088 mnemonic = "mov.i";
9089 else
9090 mnemonic = "mov.m";
9091 ia64_free_opcode (idesc);
9092 idesc = ia64_find_opcode (mnemonic);
9093 while (idesc != NULL
9094 && (idesc->operands[0] != opnd1
9095 || idesc->operands[1] != opnd2))
9096 idesc = get_next_opcode (idesc);
9097 }
9098 }
9099
9100 qp_regno = 0;
9101 if (md.qp.X_op == O_register)
9102 {
9103 qp_regno = md.qp.X_add_number - REG_P;
9104 md.qp.X_op = O_absent;
9105 }
9106
9107 flags = idesc->flags;
9108
9109 if ((flags & IA64_OPCODE_FIRST) != 0)
9110 insn_group_break (1, 0, 0);
9111
9112 if ((flags & IA64_OPCODE_NO_PRED) != 0 && qp_regno != 0)
9113 {
9114 as_bad ("`%s' cannot be predicated", idesc->name);
9115 goto done;
9116 }
9117
9118 /* Build the instruction. */
9119 CURR_SLOT.qp_regno = qp_regno;
9120 CURR_SLOT.idesc = idesc;
9121 as_where (&CURR_SLOT.src_file, &CURR_SLOT.src_line);
9122 dwarf2_where (&CURR_SLOT.debug_line);
9123
9124 /* Add unwind entry, if there is one. */
9125 if (unwind.current_entry)
9126 {
9127 CURR_SLOT.unwind_record = unwind.current_entry;
9128 unwind.current_entry = NULL;
9129 }
9130
9131 /* Check for dependency violations. */
9132 if (md.detect_dv)
9133 check_dv (idesc);
9134
9135 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
9136 if (++md.num_slots_in_use >= NUM_SLOTS)
9137 emit_one_bundle ();
9138
9139 if ((flags & IA64_OPCODE_LAST) != 0)
9140 insn_group_break (1, 0, 0);
9141
9142 md.last_text_seg = now_seg;
9143
9144 done:
9145 input_line_pointer = saved_input_line_pointer;
9146 }
9147
9148 /* Called when symbol NAME cannot be found in the symbol table.
9149 Should be used for dynamic valued symbols only. */
9150
9151 symbolS *
9152 md_undefined_symbol (name)
9153 char *name ATTRIBUTE_UNUSED;
9154 {
9155 return 0;
9156 }
9157
9158 /* Called for any expression that can not be recognized. When the
9159 function is called, `input_line_pointer' will point to the start of
9160 the expression. */
9161
9162 void
9163 md_operand (e)
9164 expressionS *e;
9165 {
9166 enum pseudo_type pseudo_type;
9167 const char *name;
9168 size_t len;
9169 int ch, i;
9170
9171 switch (*input_line_pointer)
9172 {
9173 case '@':
9174 /* Find what relocation pseudo-function we're dealing with. */
9175 pseudo_type = 0;
9176 ch = *++input_line_pointer;
9177 for (i = 0; i < NELEMS (pseudo_func); ++i)
9178 if (pseudo_func[i].name && pseudo_func[i].name[0] == ch)
9179 {
9180 len = strlen (pseudo_func[i].name);
9181 if (strncmp (pseudo_func[i].name + 1,
9182 input_line_pointer + 1, len - 1) == 0
9183 && !is_part_of_name (input_line_pointer[len]))
9184 {
9185 input_line_pointer += len;
9186 pseudo_type = pseudo_func[i].type;
9187 break;
9188 }
9189 }
9190 switch (pseudo_type)
9191 {
9192 case PSEUDO_FUNC_RELOC:
9193 SKIP_WHITESPACE ();
9194 if (*input_line_pointer != '(')
9195 {
9196 as_bad ("Expected '('");
9197 goto err;
9198 }
9199 /* Skip '('. */
9200 ++input_line_pointer;
9201 expression (e);
9202 if (*input_line_pointer++ != ')')
9203 {
9204 as_bad ("Missing ')'");
9205 goto err;
9206 }
9207 if (e->X_op != O_symbol)
9208 {
9209 if (e->X_op != O_pseudo_fixup)
9210 {
9211 as_bad ("Not a symbolic expression");
9212 goto err;
9213 }
9214 if (S_GET_VALUE (e->X_op_symbol) == FUNC_FPTR_RELATIVE
9215 && i == FUNC_LT_RELATIVE)
9216 i = FUNC_LT_FPTR_RELATIVE;
9217 else
9218 {
9219 as_bad ("Illegal combination of relocation functions");
9220 goto err;
9221 }
9222 }
9223 /* Make sure gas doesn't get rid of local symbols that are used
9224 in relocs. */
9225 e->X_op = O_pseudo_fixup;
9226 e->X_op_symbol = pseudo_func[i].u.sym;
9227 break;
9228
9229 case PSEUDO_FUNC_CONST:
9230 e->X_op = O_constant;
9231 e->X_add_number = pseudo_func[i].u.ival;
9232 break;
9233
9234 case PSEUDO_FUNC_REG:
9235 e->X_op = O_register;
9236 e->X_add_number = pseudo_func[i].u.ival;
9237 break;
9238
9239 default:
9240 name = input_line_pointer - 1;
9241 get_symbol_end ();
9242 as_bad ("Unknown pseudo function `%s'", name);
9243 goto err;
9244 }
9245 break;
9246
9247 case '[':
9248 ++input_line_pointer;
9249 expression (e);
9250 if (*input_line_pointer != ']')
9251 {
9252 as_bad ("Closing bracket misssing");
9253 goto err;
9254 }
9255 else
9256 {
9257 if (e->X_op != O_register)
9258 as_bad ("Register expected as index");
9259
9260 ++input_line_pointer;
9261 e->X_op = O_index;
9262 }
9263 break;
9264
9265 default:
9266 break;
9267 }
9268 return;
9269
9270 err:
9271 ignore_rest_of_line ();
9272 }
9273
9274 /* Return 1 if it's OK to adjust a reloc by replacing the symbol with
9275 a section symbol plus some offset. For relocs involving @fptr(),
9276 directives we don't want such adjustments since we need to have the
9277 original symbol's name in the reloc. */
9278 int
9279 ia64_fix_adjustable (fix)
9280 fixS *fix;
9281 {
9282 /* Prevent all adjustments to global symbols */
9283 if (S_IS_EXTERN (fix->fx_addsy) || S_IS_WEAK (fix->fx_addsy))
9284 return 0;
9285
9286 switch (fix->fx_r_type)
9287 {
9288 case BFD_RELOC_IA64_FPTR64I:
9289 case BFD_RELOC_IA64_FPTR32MSB:
9290 case BFD_RELOC_IA64_FPTR32LSB:
9291 case BFD_RELOC_IA64_FPTR64MSB:
9292 case BFD_RELOC_IA64_FPTR64LSB:
9293 case BFD_RELOC_IA64_LTOFF_FPTR22:
9294 case BFD_RELOC_IA64_LTOFF_FPTR64I:
9295 return 0;
9296 default:
9297 break;
9298 }
9299
9300 return 1;
9301 }
9302
9303 int
9304 ia64_force_relocation (fix)
9305 fixS *fix;
9306 {
9307 switch (fix->fx_r_type)
9308 {
9309 case BFD_RELOC_IA64_FPTR64I:
9310 case BFD_RELOC_IA64_FPTR32MSB:
9311 case BFD_RELOC_IA64_FPTR32LSB:
9312 case BFD_RELOC_IA64_FPTR64MSB:
9313 case BFD_RELOC_IA64_FPTR64LSB:
9314
9315 case BFD_RELOC_IA64_LTOFF22:
9316 case BFD_RELOC_IA64_LTOFF64I:
9317 case BFD_RELOC_IA64_LTOFF_FPTR22:
9318 case BFD_RELOC_IA64_LTOFF_FPTR64I:
9319 case BFD_RELOC_IA64_PLTOFF22:
9320 case BFD_RELOC_IA64_PLTOFF64I:
9321 case BFD_RELOC_IA64_PLTOFF64MSB:
9322 case BFD_RELOC_IA64_PLTOFF64LSB:
9323 return 1;
9324
9325 default:
9326 return 0;
9327 }
9328 return 0;
9329 }
9330
9331 /* Decide from what point a pc-relative relocation is relative to,
9332 relative to the pc-relative fixup. Er, relatively speaking. */
9333 long
9334 ia64_pcrel_from_section (fix, sec)
9335 fixS *fix;
9336 segT sec;
9337 {
9338 unsigned long off = fix->fx_frag->fr_address + fix->fx_where;
9339
9340 if (bfd_get_section_flags (stdoutput, sec) & SEC_CODE)
9341 off &= ~0xfUL;
9342
9343 return off;
9344 }
9345
9346 /* This is called whenever some data item (not an instruction) needs a
9347 fixup. We pick the right reloc code depending on the byteorder
9348 currently in effect. */
9349 void
9350 ia64_cons_fix_new (f, where, nbytes, exp)
9351 fragS *f;
9352 int where;
9353 int nbytes;
9354 expressionS *exp;
9355 {
9356 bfd_reloc_code_real_type code;
9357 fixS *fix;
9358
9359 switch (nbytes)
9360 {
9361 /* There are no reloc for 8 and 16 bit quantities, but we allow
9362 them here since they will work fine as long as the expression
9363 is fully defined at the end of the pass over the source file. */
9364 case 1: code = BFD_RELOC_8; break;
9365 case 2: code = BFD_RELOC_16; break;
9366 case 4:
9367 if (target_big_endian)
9368 code = BFD_RELOC_IA64_DIR32MSB;
9369 else
9370 code = BFD_RELOC_IA64_DIR32LSB;
9371 break;
9372
9373 case 8:
9374 if (target_big_endian)
9375 code = BFD_RELOC_IA64_DIR64MSB;
9376 else
9377 code = BFD_RELOC_IA64_DIR64LSB;
9378 break;
9379
9380 default:
9381 as_bad ("Unsupported fixup size %d", nbytes);
9382 ignore_rest_of_line ();
9383 return;
9384 }
9385 if (exp->X_op == O_pseudo_fixup)
9386 {
9387 /* ??? */
9388 exp->X_op = O_symbol;
9389 code = ia64_gen_real_reloc_type (exp->X_op_symbol, code);
9390 }
9391 fix = fix_new_exp (f, where, nbytes, exp, 0, code);
9392 /* We need to store the byte order in effect in case we're going
9393 to fix an 8 or 16 bit relocation (for which there no real
9394 relocs available). See md_apply_fix(). */
9395 fix->tc_fix_data.bigendian = target_big_endian;
9396 }
9397
9398 /* Return the actual relocation we wish to associate with the pseudo
9399 reloc described by SYM and R_TYPE. SYM should be one of the
9400 symbols in the pseudo_func array, or NULL. */
9401
9402 static bfd_reloc_code_real_type
9403 ia64_gen_real_reloc_type (sym, r_type)
9404 struct symbol *sym;
9405 bfd_reloc_code_real_type r_type;
9406 {
9407 bfd_reloc_code_real_type new = 0;
9408
9409 if (sym == NULL)
9410 {
9411 return r_type;
9412 }
9413
9414 switch (S_GET_VALUE (sym))
9415 {
9416 case FUNC_FPTR_RELATIVE:
9417 switch (r_type)
9418 {
9419 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_FPTR64I; break;
9420 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_FPTR32MSB; break;
9421 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_FPTR32LSB; break;
9422 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_FPTR64MSB; break;
9423 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_FPTR64LSB; break;
9424 default: break;
9425 }
9426 break;
9427
9428 case FUNC_GP_RELATIVE:
9429 switch (r_type)
9430 {
9431 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_GPREL22; break;
9432 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_GPREL64I; break;
9433 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_GPREL32MSB; break;
9434 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_GPREL32LSB; break;
9435 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_GPREL64MSB; break;
9436 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_GPREL64LSB; break;
9437 default: break;
9438 }
9439 break;
9440
9441 case FUNC_LT_RELATIVE:
9442 switch (r_type)
9443 {
9444 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22; break;
9445 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_LTOFF64I; break;
9446 default: break;
9447 }
9448 break;
9449
9450 case FUNC_PC_RELATIVE:
9451 switch (r_type)
9452 {
9453 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PCREL22; break;
9454 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PCREL64I; break;
9455 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_PCREL32MSB; break;
9456 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_PCREL32LSB; break;
9457 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PCREL64MSB; break;
9458 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PCREL64LSB; break;
9459 default: break;
9460 }
9461 break;
9462
9463 case FUNC_PLT_RELATIVE:
9464 switch (r_type)
9465 {
9466 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PLTOFF22; break;
9467 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PLTOFF64I; break;
9468 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PLTOFF64MSB;break;
9469 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PLTOFF64LSB;break;
9470 default: break;
9471 }
9472 break;
9473
9474 case FUNC_SEC_RELATIVE:
9475 switch (r_type)
9476 {
9477 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SECREL32MSB;break;
9478 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SECREL32LSB;break;
9479 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SECREL64MSB;break;
9480 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SECREL64LSB;break;
9481 default: break;
9482 }
9483 break;
9484
9485 case FUNC_SEG_RELATIVE:
9486 switch (r_type)
9487 {
9488 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SEGREL32MSB;break;
9489 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SEGREL32LSB;break;
9490 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SEGREL64MSB;break;
9491 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SEGREL64LSB;break;
9492 default: break;
9493 }
9494 break;
9495
9496 case FUNC_LTV_RELATIVE:
9497 switch (r_type)
9498 {
9499 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_LTV32MSB; break;
9500 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_LTV32LSB; break;
9501 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_LTV64MSB; break;
9502 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_LTV64LSB; break;
9503 default: break;
9504 }
9505 break;
9506
9507 case FUNC_LT_FPTR_RELATIVE:
9508 switch (r_type)
9509 {
9510 case BFD_RELOC_IA64_IMM22:
9511 new = BFD_RELOC_IA64_LTOFF_FPTR22; break;
9512 case BFD_RELOC_IA64_IMM64:
9513 new = BFD_RELOC_IA64_LTOFF_FPTR64I; break;
9514 default:
9515 break;
9516 }
9517 break;
9518 default:
9519 abort ();
9520 }
9521 /* Hmmmm. Should this ever occur? */
9522 if (new)
9523 return new;
9524 else
9525 return r_type;
9526 }
9527
9528 /* Here is where generate the appropriate reloc for pseudo relocation
9529 functions. */
9530 void
9531 ia64_validate_fix (fix)
9532 fixS *fix;
9533 {
9534 switch (fix->fx_r_type)
9535 {
9536 case BFD_RELOC_IA64_FPTR64I:
9537 case BFD_RELOC_IA64_FPTR32MSB:
9538 case BFD_RELOC_IA64_FPTR64LSB:
9539 case BFD_RELOC_IA64_LTOFF_FPTR22:
9540 case BFD_RELOC_IA64_LTOFF_FPTR64I:
9541 if (fix->fx_offset != 0)
9542 as_bad_where (fix->fx_file, fix->fx_line,
9543 "No addend allowed in @fptr() relocation");
9544 break;
9545 default:
9546 break;
9547 }
9548
9549 return;
9550 }
9551
9552 static void
9553 fix_insn (fix, odesc, value)
9554 fixS *fix;
9555 const struct ia64_operand *odesc;
9556 valueT value;
9557 {
9558 bfd_vma insn[3], t0, t1, control_bits;
9559 const char *err;
9560 char *fixpos;
9561 long slot;
9562
9563 slot = fix->fx_where & 0x3;
9564 fixpos = fix->fx_frag->fr_literal + (fix->fx_where - slot);
9565
9566 /* Bundles are always in little-endian byte order */
9567 t0 = bfd_getl64 (fixpos);
9568 t1 = bfd_getl64 (fixpos + 8);
9569 control_bits = t0 & 0x1f;
9570 insn[0] = (t0 >> 5) & 0x1ffffffffffLL;
9571 insn[1] = ((t0 >> 46) & 0x3ffff) | ((t1 & 0x7fffff) << 18);
9572 insn[2] = (t1 >> 23) & 0x1ffffffffffLL;
9573
9574 err = NULL;
9575 if (odesc - elf64_ia64_operands == IA64_OPND_IMMU64)
9576 {
9577 insn[1] = (value >> 22) & 0x1ffffffffffLL;
9578 insn[2] |= (((value & 0x7f) << 13)
9579 | (((value >> 7) & 0x1ff) << 27)
9580 | (((value >> 16) & 0x1f) << 22)
9581 | (((value >> 21) & 0x1) << 21)
9582 | (((value >> 63) & 0x1) << 36));
9583 }
9584 else if (odesc - elf64_ia64_operands == IA64_OPND_IMMU62)
9585 {
9586 if (value & ~0x3fffffffffffffffULL)
9587 err = "integer operand out of range";
9588 insn[1] = (value >> 21) & 0x1ffffffffffLL;
9589 insn[2] |= (((value & 0xfffff) << 6) | (((value >> 20) & 0x1) << 36));
9590 }
9591 else if (odesc - elf64_ia64_operands == IA64_OPND_TGT64)
9592 {
9593 value >>= 4;
9594 insn[1] = ((value >> 20) & 0x7fffffffffLL) << 2;
9595 insn[2] |= ((((value >> 59) & 0x1) << 36)
9596 | (((value >> 0) & 0xfffff) << 13));
9597 }
9598 else
9599 err = (*odesc->insert) (odesc, value, insn + slot);
9600
9601 if (err)
9602 as_bad_where (fix->fx_file, fix->fx_line, err);
9603
9604 t0 = control_bits | (insn[0] << 5) | (insn[1] << 46);
9605 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
9606 number_to_chars_littleendian (fixpos + 0, t0, 8);
9607 number_to_chars_littleendian (fixpos + 8, t1, 8);
9608 }
9609
9610 /* Attempt to simplify or even eliminate a fixup. The return value is
9611 ignored; perhaps it was once meaningful, but now it is historical.
9612 To indicate that a fixup has been eliminated, set FIXP->FX_DONE.
9613
9614 If fixp->fx_addsy is non-NULL, we'll have to generate a reloc entry
9615 (if possible). */
9616 int
9617 md_apply_fix3 (fix, valuep, seg)
9618 fixS *fix;
9619 valueT *valuep;
9620 segT seg ATTRIBUTE_UNUSED;
9621 {
9622 char *fixpos;
9623 valueT value = *valuep;
9624 int adjust = 0;
9625
9626 fixpos = fix->fx_frag->fr_literal + fix->fx_where;
9627
9628 if (fix->fx_pcrel)
9629 {
9630 switch (fix->fx_r_type)
9631 {
9632 case BFD_RELOC_IA64_DIR32MSB:
9633 fix->fx_r_type = BFD_RELOC_IA64_PCREL32MSB;
9634 adjust = 1;
9635 break;
9636
9637 case BFD_RELOC_IA64_DIR32LSB:
9638 fix->fx_r_type = BFD_RELOC_IA64_PCREL32LSB;
9639 adjust = 1;
9640 break;
9641
9642 case BFD_RELOC_IA64_DIR64MSB:
9643 fix->fx_r_type = BFD_RELOC_IA64_PCREL64MSB;
9644 adjust = 1;
9645 break;
9646
9647 case BFD_RELOC_IA64_DIR64LSB:
9648 fix->fx_r_type = BFD_RELOC_IA64_PCREL64LSB;
9649 adjust = 1;
9650 break;
9651
9652 default:
9653 break;
9654 }
9655 }
9656 if (fix->fx_addsy)
9657 {
9658 switch (fix->fx_r_type)
9659 {
9660 case 0:
9661 as_bad_where (fix->fx_file, fix->fx_line,
9662 "%s must have a constant value",
9663 elf64_ia64_operands[fix->tc_fix_data.opnd].desc);
9664 break;
9665
9666 default:
9667 break;
9668 }
9669
9670 /* ??? This is a hack copied from tc-i386.c to make PCREL relocs
9671 work. There should be a better way to handle this. */
9672 if (adjust)
9673 fix->fx_offset += fix->fx_where + fix->fx_frag->fr_address;
9674 }
9675 else if (fix->tc_fix_data.opnd == IA64_OPND_NIL)
9676 {
9677 if (fix->tc_fix_data.bigendian)
9678 number_to_chars_bigendian (fixpos, value, fix->fx_size);
9679 else
9680 number_to_chars_littleendian (fixpos, value, fix->fx_size);
9681 fix->fx_done = 1;
9682 return 1;
9683 }
9684 else
9685 {
9686 fix_insn (fix, elf64_ia64_operands + fix->tc_fix_data.opnd, value);
9687 fix->fx_done = 1;
9688 return 1;
9689 }
9690 return 1;
9691 }
9692
9693 /* Generate the BFD reloc to be stuck in the object file from the
9694 fixup used internally in the assembler. */
9695
9696 arelent *
9697 tc_gen_reloc (sec, fixp)
9698 asection *sec ATTRIBUTE_UNUSED;
9699 fixS *fixp;
9700 {
9701 arelent *reloc;
9702
9703 reloc = xmalloc (sizeof (*reloc));
9704 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
9705 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
9706 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
9707 reloc->addend = fixp->fx_offset;
9708 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
9709
9710 if (!reloc->howto)
9711 {
9712 as_bad_where (fixp->fx_file, fixp->fx_line,
9713 "Cannot represent %s relocation in object file",
9714 bfd_get_reloc_code_name (fixp->fx_r_type));
9715 }
9716 return reloc;
9717 }
9718
9719 /* Turn a string in input_line_pointer into a floating point constant
9720 of type TYPE, and store the appropriate bytes in *LIT. The number
9721 of LITTLENUMS emitted is stored in *SIZE. An error message is
9722 returned, or NULL on OK. */
9723
9724 #define MAX_LITTLENUMS 5
9725
9726 char *
9727 md_atof (type, lit, size)
9728 int type;
9729 char *lit;
9730 int *size;
9731 {
9732 LITTLENUM_TYPE words[MAX_LITTLENUMS];
9733 LITTLENUM_TYPE *word;
9734 char *t;
9735 int prec;
9736
9737 switch (type)
9738 {
9739 /* IEEE floats */
9740 case 'f':
9741 case 'F':
9742 case 's':
9743 case 'S':
9744 prec = 2;
9745 break;
9746
9747 case 'd':
9748 case 'D':
9749 case 'r':
9750 case 'R':
9751 prec = 4;
9752 break;
9753
9754 case 'x':
9755 case 'X':
9756 case 'p':
9757 case 'P':
9758 prec = 5;
9759 break;
9760
9761 default:
9762 *size = 0;
9763 return "Bad call to MD_ATOF()";
9764 }
9765 t = atof_ieee (input_line_pointer, type, words);
9766 if (t)
9767 input_line_pointer = t;
9768 *size = prec * sizeof (LITTLENUM_TYPE);
9769
9770 for (word = words + prec - 1; prec--;)
9771 {
9772 md_number_to_chars (lit, (long) (*word--), sizeof (LITTLENUM_TYPE));
9773 lit += sizeof (LITTLENUM_TYPE);
9774 }
9775 return 0;
9776 }
9777
9778 /* Round up a section's size to the appropriate boundary. */
9779 valueT
9780 md_section_align (seg, size)
9781 segT seg;
9782 valueT size;
9783 {
9784 int align = bfd_get_section_alignment (stdoutput, seg);
9785 valueT mask = ((valueT) 1 << align) - 1;
9786
9787 return (size + mask) & ~mask;
9788 }
9789
9790 /* Handle ia64 specific semantics of the align directive. */
9791
9792 void
9793 ia64_md_do_align (n, fill, len, max)
9794 int n;
9795 const char *fill;
9796 int len ATTRIBUTE_UNUSED;
9797 int max;
9798 {
9799 if (subseg_text_p (now_seg))
9800 ia64_flush_insns ();
9801 }
9802
9803 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
9804 of an rs_align_code fragment. */
9805
9806 void
9807 ia64_handle_align (fragp)
9808 fragS *fragp;
9809 {
9810 /* Use mfi bundle of nops with no stop bits. */
9811 static const unsigned char be_nop[]
9812 = { 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x02, 0x00,
9813 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x0c};
9814 static const unsigned char le_nop[]
9815 = { 0x0c, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
9816 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00};
9817
9818 int bytes;
9819 char *p;
9820
9821 if (fragp->fr_type != rs_align_code)
9822 return;
9823
9824 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
9825 p = fragp->fr_literal + fragp->fr_fix;
9826
9827 /* Make sure we are on a 16-byte boundary, in case someone has been
9828 putting data into a text section. */
9829 if (bytes & 15)
9830 {
9831 int fix = bytes & 15;
9832 memset (p, 0, fix);
9833 p += fix;
9834 bytes -= fix;
9835 fragp->fr_fix += fix;
9836 }
9837
9838 memcpy (p, (target_big_endian ? be_nop : le_nop), 16);
9839 fragp->fr_var = 16;
9840 }
This page took 0.222288 seconds and 5 git commands to generate.