* dlltool.c: Warning fixes.
[deliverable/binutils-gdb.git] / gas / config / tc-ia64.c
1 /* tc-ia64.c -- Assembler for the HP/Intel IA-64 architecture.
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
5
6 This file is part of GAS, the GNU Assembler.
7
8 GAS is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 GAS is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GAS; see the file COPYING. If not, write to
20 the Free Software Foundation, 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /*
24 TODO:
25
26 - optional operands
27 - directives:
28 .eb
29 .estate
30 .lb
31 .popsection
32 .previous
33 .psr
34 .pushsection
35 - labels are wrong if automatic alignment is introduced
36 (e.g., checkout the second real10 definition in test-data.s)
37 - DV-related stuff:
38 <reg>.safe_across_calls and any other DV-related directives I don't
39 have documentation for.
40 verify mod-sched-brs reads/writes are checked/marked (and other
41 notes)
42
43 */
44
45 #include "as.h"
46 #include "safe-ctype.h"
47 #include "dwarf2dbg.h"
48 #include "subsegs.h"
49
50 #include "opcode/ia64.h"
51
52 #include "elf/ia64.h"
53
54 #ifdef HAVE_LIMITS_H
55 #include <limits.h>
56 #endif
57
58 #define NELEMS(a) ((int) (sizeof (a)/sizeof ((a)[0])))
59 #define MIN(a,b) ((a) < (b) ? (a) : (b))
60
61 #define NUM_SLOTS 4
62 #define PREV_SLOT md.slot[(md.curr_slot + NUM_SLOTS - 1) % NUM_SLOTS]
63 #define CURR_SLOT md.slot[md.curr_slot]
64
65 #define O_pseudo_fixup (O_max + 1)
66
67 enum special_section
68 {
69 /* IA-64 ABI section pseudo-ops. */
70 SPECIAL_SECTION_BSS = 0,
71 SPECIAL_SECTION_SBSS,
72 SPECIAL_SECTION_SDATA,
73 SPECIAL_SECTION_RODATA,
74 SPECIAL_SECTION_COMMENT,
75 SPECIAL_SECTION_UNWIND,
76 SPECIAL_SECTION_UNWIND_INFO,
77 /* HPUX specific section pseudo-ops. */
78 SPECIAL_SECTION_INIT_ARRAY,
79 SPECIAL_SECTION_FINI_ARRAY,
80 };
81
82 enum reloc_func
83 {
84 FUNC_DTP_MODULE,
85 FUNC_DTP_RELATIVE,
86 FUNC_FPTR_RELATIVE,
87 FUNC_GP_RELATIVE,
88 FUNC_LT_RELATIVE,
89 FUNC_LT_RELATIVE_X,
90 FUNC_PC_RELATIVE,
91 FUNC_PLT_RELATIVE,
92 FUNC_SEC_RELATIVE,
93 FUNC_SEG_RELATIVE,
94 FUNC_TP_RELATIVE,
95 FUNC_LTV_RELATIVE,
96 FUNC_LT_FPTR_RELATIVE,
97 FUNC_LT_DTP_MODULE,
98 FUNC_LT_DTP_RELATIVE,
99 FUNC_LT_TP_RELATIVE,
100 FUNC_IPLT_RELOC,
101 };
102
103 enum reg_symbol
104 {
105 REG_GR = 0,
106 REG_FR = (REG_GR + 128),
107 REG_AR = (REG_FR + 128),
108 REG_CR = (REG_AR + 128),
109 REG_P = (REG_CR + 128),
110 REG_BR = (REG_P + 64),
111 REG_IP = (REG_BR + 8),
112 REG_CFM,
113 REG_PR,
114 REG_PR_ROT,
115 REG_PSR,
116 REG_PSR_L,
117 REG_PSR_UM,
118 /* The following are pseudo-registers for use by gas only. */
119 IND_CPUID,
120 IND_DBR,
121 IND_DTR,
122 IND_ITR,
123 IND_IBR,
124 IND_MEM,
125 IND_MSR,
126 IND_PKR,
127 IND_PMC,
128 IND_PMD,
129 IND_RR,
130 /* The following pseudo-registers are used for unwind directives only: */
131 REG_PSP,
132 REG_PRIUNAT,
133 REG_NUM
134 };
135
136 enum dynreg_type
137 {
138 DYNREG_GR = 0, /* dynamic general purpose register */
139 DYNREG_FR, /* dynamic floating point register */
140 DYNREG_PR, /* dynamic predicate register */
141 DYNREG_NUM_TYPES
142 };
143
144 enum operand_match_result
145 {
146 OPERAND_MATCH,
147 OPERAND_OUT_OF_RANGE,
148 OPERAND_MISMATCH
149 };
150
151 /* On the ia64, we can't know the address of a text label until the
152 instructions are packed into a bundle. To handle this, we keep
153 track of the list of labels that appear in front of each
154 instruction. */
155 struct label_fix
156 {
157 struct label_fix *next;
158 struct symbol *sym;
159 };
160
161 /* This is the endianness of the current section. */
162 extern int target_big_endian;
163
164 /* This is the default endianness. */
165 static int default_big_endian = TARGET_BYTES_BIG_ENDIAN;
166
167 void (*ia64_number_to_chars) PARAMS ((char *, valueT, int));
168
169 static void ia64_float_to_chars_bigendian
170 PARAMS ((char *, LITTLENUM_TYPE *, int));
171 static void ia64_float_to_chars_littleendian
172 PARAMS ((char *, LITTLENUM_TYPE *, int));
173 static void (*ia64_float_to_chars)
174 PARAMS ((char *, LITTLENUM_TYPE *, int));
175
176 static struct hash_control *alias_hash;
177 static struct hash_control *alias_name_hash;
178 static struct hash_control *secalias_hash;
179 static struct hash_control *secalias_name_hash;
180
181 /* List of chars besides those in app.c:symbol_chars that can start an
182 operand. Used to prevent the scrubber eating vital white-space. */
183 const char ia64_symbol_chars[] = "@?";
184
185 /* Characters which always start a comment. */
186 const char comment_chars[] = "";
187
188 /* Characters which start a comment at the beginning of a line. */
189 const char line_comment_chars[] = "#";
190
191 /* Characters which may be used to separate multiple commands on a
192 single line. */
193 const char line_separator_chars[] = ";";
194
195 /* Characters which are used to indicate an exponent in a floating
196 point number. */
197 const char EXP_CHARS[] = "eE";
198
199 /* Characters which mean that a number is a floating point constant,
200 as in 0d1.0. */
201 const char FLT_CHARS[] = "rRsSfFdDxXpP";
202
203 /* ia64-specific option processing: */
204
205 const char *md_shortopts = "m:N:x::";
206
207 struct option md_longopts[] =
208 {
209 #define OPTION_MCONSTANT_GP (OPTION_MD_BASE + 1)
210 {"mconstant-gp", no_argument, NULL, OPTION_MCONSTANT_GP},
211 #define OPTION_MAUTO_PIC (OPTION_MD_BASE + 2)
212 {"mauto-pic", no_argument, NULL, OPTION_MAUTO_PIC}
213 };
214
215 size_t md_longopts_size = sizeof (md_longopts);
216
217 static struct
218 {
219 struct hash_control *pseudo_hash; /* pseudo opcode hash table */
220 struct hash_control *reg_hash; /* register name hash table */
221 struct hash_control *dynreg_hash; /* dynamic register hash table */
222 struct hash_control *const_hash; /* constant hash table */
223 struct hash_control *entry_hash; /* code entry hint hash table */
224
225 symbolS *regsym[REG_NUM];
226
227 /* If X_op is != O_absent, the registername for the instruction's
228 qualifying predicate. If NULL, p0 is assumed for instructions
229 that are predicatable. */
230 expressionS qp;
231
232 /* What to do when hint.b is used. */
233 enum
234 {
235 hint_b_error,
236 hint_b_warning,
237 hint_b_ok
238 } hint_b;
239
240 unsigned int
241 manual_bundling : 1,
242 debug_dv: 1,
243 detect_dv: 1,
244 explicit_mode : 1, /* which mode we're in */
245 default_explicit_mode : 1, /* which mode is the default */
246 mode_explicitly_set : 1, /* was the current mode explicitly set? */
247 auto_align : 1,
248 keep_pending_output : 1;
249
250 /* What to do when something is wrong with unwind directives. */
251 enum
252 {
253 unwind_check_warning,
254 unwind_check_error
255 } unwind_check;
256
257 /* Each bundle consists of up to three instructions. We keep
258 track of four most recent instructions so we can correctly set
259 the end_of_insn_group for the last instruction in a bundle. */
260 int curr_slot;
261 int num_slots_in_use;
262 struct slot
263 {
264 unsigned int
265 end_of_insn_group : 1,
266 manual_bundling_on : 1,
267 manual_bundling_off : 1,
268 loc_directive_seen : 1;
269 signed char user_template; /* user-selected template, if any */
270 unsigned char qp_regno; /* qualifying predicate */
271 /* This duplicates a good fraction of "struct fix" but we
272 can't use a "struct fix" instead since we can't call
273 fix_new_exp() until we know the address of the instruction. */
274 int num_fixups;
275 struct insn_fix
276 {
277 bfd_reloc_code_real_type code;
278 enum ia64_opnd opnd; /* type of operand in need of fix */
279 unsigned int is_pcrel : 1; /* is operand pc-relative? */
280 expressionS expr; /* the value to be inserted */
281 }
282 fixup[2]; /* at most two fixups per insn */
283 struct ia64_opcode *idesc;
284 struct label_fix *label_fixups;
285 struct label_fix *tag_fixups;
286 struct unw_rec_list *unwind_record; /* Unwind directive. */
287 expressionS opnd[6];
288 char *src_file;
289 unsigned int src_line;
290 struct dwarf2_line_info debug_line;
291 }
292 slot[NUM_SLOTS];
293
294 segT last_text_seg;
295
296 struct dynreg
297 {
298 struct dynreg *next; /* next dynamic register */
299 const char *name;
300 unsigned short base; /* the base register number */
301 unsigned short num_regs; /* # of registers in this set */
302 }
303 *dynreg[DYNREG_NUM_TYPES], in, loc, out, rot;
304
305 flagword flags; /* ELF-header flags */
306
307 struct mem_offset {
308 unsigned hint:1; /* is this hint currently valid? */
309 bfd_vma offset; /* mem.offset offset */
310 bfd_vma base; /* mem.offset base */
311 } mem_offset;
312
313 int path; /* number of alt. entry points seen */
314 const char **entry_labels; /* labels of all alternate paths in
315 the current DV-checking block. */
316 int maxpaths; /* size currently allocated for
317 entry_labels */
318
319 int pointer_size; /* size in bytes of a pointer */
320 int pointer_size_shift; /* shift size of a pointer for alignment */
321 }
322 md;
323
324 /* application registers: */
325
326 #define AR_K0 0
327 #define AR_K7 7
328 #define AR_RSC 16
329 #define AR_BSP 17
330 #define AR_BSPSTORE 18
331 #define AR_RNAT 19
332 #define AR_UNAT 36
333 #define AR_FPSR 40
334 #define AR_ITC 44
335 #define AR_PFS 64
336 #define AR_LC 65
337
338 static const struct
339 {
340 const char *name;
341 int regnum;
342 }
343 ar[] =
344 {
345 {"ar.k0", 0}, {"ar.k1", 1}, {"ar.k2", 2}, {"ar.k3", 3},
346 {"ar.k4", 4}, {"ar.k5", 5}, {"ar.k6", 6}, {"ar.k7", 7},
347 {"ar.rsc", 16}, {"ar.bsp", 17},
348 {"ar.bspstore", 18}, {"ar.rnat", 19},
349 {"ar.fcr", 21}, {"ar.eflag", 24},
350 {"ar.csd", 25}, {"ar.ssd", 26},
351 {"ar.cflg", 27}, {"ar.fsr", 28},
352 {"ar.fir", 29}, {"ar.fdr", 30},
353 {"ar.ccv", 32}, {"ar.unat", 36},
354 {"ar.fpsr", 40}, {"ar.itc", 44},
355 {"ar.pfs", 64}, {"ar.lc", 65},
356 {"ar.ec", 66},
357 };
358
359 #define CR_IPSR 16
360 #define CR_ISR 17
361 #define CR_IIP 19
362 #define CR_IFA 20
363 #define CR_ITIR 21
364 #define CR_IIPA 22
365 #define CR_IFS 23
366 #define CR_IIM 24
367 #define CR_IHA 25
368 #define CR_IVR 65
369 #define CR_TPR 66
370 #define CR_EOI 67
371 #define CR_IRR0 68
372 #define CR_IRR3 71
373 #define CR_LRR0 80
374 #define CR_LRR1 81
375
376 /* control registers: */
377 static const struct
378 {
379 const char *name;
380 int regnum;
381 }
382 cr[] =
383 {
384 {"cr.dcr", 0},
385 {"cr.itm", 1},
386 {"cr.iva", 2},
387 {"cr.pta", 8},
388 {"cr.gpta", 9},
389 {"cr.ipsr", 16},
390 {"cr.isr", 17},
391 {"cr.iip", 19},
392 {"cr.ifa", 20},
393 {"cr.itir", 21},
394 {"cr.iipa", 22},
395 {"cr.ifs", 23},
396 {"cr.iim", 24},
397 {"cr.iha", 25},
398 {"cr.lid", 64},
399 {"cr.ivr", 65},
400 {"cr.tpr", 66},
401 {"cr.eoi", 67},
402 {"cr.irr0", 68},
403 {"cr.irr1", 69},
404 {"cr.irr2", 70},
405 {"cr.irr3", 71},
406 {"cr.itv", 72},
407 {"cr.pmv", 73},
408 {"cr.cmcv", 74},
409 {"cr.lrr0", 80},
410 {"cr.lrr1", 81}
411 };
412
413 #define PSR_MFL 4
414 #define PSR_IC 13
415 #define PSR_DFL 18
416 #define PSR_CPL 32
417
418 static const struct const_desc
419 {
420 const char *name;
421 valueT value;
422 }
423 const_bits[] =
424 {
425 /* PSR constant masks: */
426
427 /* 0: reserved */
428 {"psr.be", ((valueT) 1) << 1},
429 {"psr.up", ((valueT) 1) << 2},
430 {"psr.ac", ((valueT) 1) << 3},
431 {"psr.mfl", ((valueT) 1) << 4},
432 {"psr.mfh", ((valueT) 1) << 5},
433 /* 6-12: reserved */
434 {"psr.ic", ((valueT) 1) << 13},
435 {"psr.i", ((valueT) 1) << 14},
436 {"psr.pk", ((valueT) 1) << 15},
437 /* 16: reserved */
438 {"psr.dt", ((valueT) 1) << 17},
439 {"psr.dfl", ((valueT) 1) << 18},
440 {"psr.dfh", ((valueT) 1) << 19},
441 {"psr.sp", ((valueT) 1) << 20},
442 {"psr.pp", ((valueT) 1) << 21},
443 {"psr.di", ((valueT) 1) << 22},
444 {"psr.si", ((valueT) 1) << 23},
445 {"psr.db", ((valueT) 1) << 24},
446 {"psr.lp", ((valueT) 1) << 25},
447 {"psr.tb", ((valueT) 1) << 26},
448 {"psr.rt", ((valueT) 1) << 27},
449 /* 28-31: reserved */
450 /* 32-33: cpl (current privilege level) */
451 {"psr.is", ((valueT) 1) << 34},
452 {"psr.mc", ((valueT) 1) << 35},
453 {"psr.it", ((valueT) 1) << 36},
454 {"psr.id", ((valueT) 1) << 37},
455 {"psr.da", ((valueT) 1) << 38},
456 {"psr.dd", ((valueT) 1) << 39},
457 {"psr.ss", ((valueT) 1) << 40},
458 /* 41-42: ri (restart instruction) */
459 {"psr.ed", ((valueT) 1) << 43},
460 {"psr.bn", ((valueT) 1) << 44},
461 };
462
463 /* indirect register-sets/memory: */
464
465 static const struct
466 {
467 const char *name;
468 int regnum;
469 }
470 indirect_reg[] =
471 {
472 { "CPUID", IND_CPUID },
473 { "cpuid", IND_CPUID },
474 { "dbr", IND_DBR },
475 { "dtr", IND_DTR },
476 { "itr", IND_ITR },
477 { "ibr", IND_IBR },
478 { "msr", IND_MSR },
479 { "pkr", IND_PKR },
480 { "pmc", IND_PMC },
481 { "pmd", IND_PMD },
482 { "rr", IND_RR },
483 };
484
485 /* Pseudo functions used to indicate relocation types (these functions
486 start with an at sign (@). */
487 static struct
488 {
489 const char *name;
490 enum pseudo_type
491 {
492 PSEUDO_FUNC_NONE,
493 PSEUDO_FUNC_RELOC,
494 PSEUDO_FUNC_CONST,
495 PSEUDO_FUNC_REG,
496 PSEUDO_FUNC_FLOAT
497 }
498 type;
499 union
500 {
501 unsigned long ival;
502 symbolS *sym;
503 }
504 u;
505 }
506 pseudo_func[] =
507 {
508 /* reloc pseudo functions (these must come first!): */
509 { "dtpmod", PSEUDO_FUNC_RELOC, { 0 } },
510 { "dtprel", PSEUDO_FUNC_RELOC, { 0 } },
511 { "fptr", PSEUDO_FUNC_RELOC, { 0 } },
512 { "gprel", PSEUDO_FUNC_RELOC, { 0 } },
513 { "ltoff", PSEUDO_FUNC_RELOC, { 0 } },
514 { "ltoffx", PSEUDO_FUNC_RELOC, { 0 } },
515 { "pcrel", PSEUDO_FUNC_RELOC, { 0 } },
516 { "pltoff", PSEUDO_FUNC_RELOC, { 0 } },
517 { "secrel", PSEUDO_FUNC_RELOC, { 0 } },
518 { "segrel", PSEUDO_FUNC_RELOC, { 0 } },
519 { "tprel", PSEUDO_FUNC_RELOC, { 0 } },
520 { "ltv", PSEUDO_FUNC_RELOC, { 0 } },
521 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_FPTR_RELATIVE */
522 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_MODULE */
523 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_RELATIVE */
524 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_TP_RELATIVE */
525 { "iplt", PSEUDO_FUNC_RELOC, { 0 } },
526
527 /* mbtype4 constants: */
528 { "alt", PSEUDO_FUNC_CONST, { 0xa } },
529 { "brcst", PSEUDO_FUNC_CONST, { 0x0 } },
530 { "mix", PSEUDO_FUNC_CONST, { 0x8 } },
531 { "rev", PSEUDO_FUNC_CONST, { 0xb } },
532 { "shuf", PSEUDO_FUNC_CONST, { 0x9 } },
533
534 /* fclass constants: */
535 { "nat", PSEUDO_FUNC_CONST, { 0x100 } },
536 { "qnan", PSEUDO_FUNC_CONST, { 0x080 } },
537 { "snan", PSEUDO_FUNC_CONST, { 0x040 } },
538 { "pos", PSEUDO_FUNC_CONST, { 0x001 } },
539 { "neg", PSEUDO_FUNC_CONST, { 0x002 } },
540 { "zero", PSEUDO_FUNC_CONST, { 0x004 } },
541 { "unorm", PSEUDO_FUNC_CONST, { 0x008 } },
542 { "norm", PSEUDO_FUNC_CONST, { 0x010 } },
543 { "inf", PSEUDO_FUNC_CONST, { 0x020 } },
544
545 { "natval", PSEUDO_FUNC_CONST, { 0x100 } }, /* old usage */
546
547 /* hint constants: */
548 { "pause", PSEUDO_FUNC_CONST, { 0x0 } },
549
550 /* unwind-related constants: */
551 { "svr4", PSEUDO_FUNC_CONST, { ELFOSABI_NONE } },
552 { "hpux", PSEUDO_FUNC_CONST, { ELFOSABI_HPUX } },
553 { "nt", PSEUDO_FUNC_CONST, { 2 } }, /* conflicts w/ELFOSABI_NETBSD */
554 { "linux", PSEUDO_FUNC_CONST, { ELFOSABI_LINUX } },
555 { "freebsd", PSEUDO_FUNC_CONST, { ELFOSABI_FREEBSD } },
556 { "openvms", PSEUDO_FUNC_CONST, { ELFOSABI_OPENVMS } },
557 { "nsk", PSEUDO_FUNC_CONST, { ELFOSABI_NSK } },
558
559 /* unwind-related registers: */
560 { "priunat",PSEUDO_FUNC_REG, { REG_PRIUNAT } }
561 };
562
563 /* 41-bit nop opcodes (one per unit): */
564 static const bfd_vma nop[IA64_NUM_UNITS] =
565 {
566 0x0000000000LL, /* NIL => break 0 */
567 0x0008000000LL, /* I-unit nop */
568 0x0008000000LL, /* M-unit nop */
569 0x4000000000LL, /* B-unit nop */
570 0x0008000000LL, /* F-unit nop */
571 0x0008000000LL, /* L-"unit" nop */
572 0x0008000000LL, /* X-unit nop */
573 };
574
575 /* Can't be `const' as it's passed to input routines (which have the
576 habit of setting temporary sentinels. */
577 static char special_section_name[][20] =
578 {
579 {".bss"}, {".sbss"}, {".sdata"}, {".rodata"}, {".comment"},
580 {".IA_64.unwind"}, {".IA_64.unwind_info"},
581 {".init_array"}, {".fini_array"}
582 };
583
584 /* The best template for a particular sequence of up to three
585 instructions: */
586 #define N IA64_NUM_TYPES
587 static unsigned char best_template[N][N][N];
588 #undef N
589
590 /* Resource dependencies currently in effect */
591 static struct rsrc {
592 int depind; /* dependency index */
593 const struct ia64_dependency *dependency; /* actual dependency */
594 unsigned specific:1, /* is this a specific bit/regno? */
595 link_to_qp_branch:1; /* will a branch on the same QP clear it?*/
596 int index; /* specific regno/bit within dependency */
597 int note; /* optional qualifying note (0 if none) */
598 #define STATE_NONE 0
599 #define STATE_STOP 1
600 #define STATE_SRLZ 2
601 int insn_srlz; /* current insn serialization state */
602 int data_srlz; /* current data serialization state */
603 int qp_regno; /* qualifying predicate for this usage */
604 char *file; /* what file marked this dependency */
605 unsigned int line; /* what line marked this dependency */
606 struct mem_offset mem_offset; /* optional memory offset hint */
607 enum { CMP_NONE, CMP_OR, CMP_AND } cmp_type; /* OR or AND compare? */
608 int path; /* corresponding code entry index */
609 } *regdeps = NULL;
610 static int regdepslen = 0;
611 static int regdepstotlen = 0;
612 static const char *dv_mode[] = { "RAW", "WAW", "WAR" };
613 static const char *dv_sem[] = { "none", "implied", "impliedf",
614 "data", "instr", "specific", "stop", "other" };
615 static const char *dv_cmp_type[] = { "none", "OR", "AND" };
616
617 /* Current state of PR mutexation */
618 static struct qpmutex {
619 valueT prmask;
620 int path;
621 } *qp_mutexes = NULL; /* QP mutex bitmasks */
622 static int qp_mutexeslen = 0;
623 static int qp_mutexestotlen = 0;
624 static valueT qp_safe_across_calls = 0;
625
626 /* Current state of PR implications */
627 static struct qp_imply {
628 unsigned p1:6;
629 unsigned p2:6;
630 unsigned p2_branched:1;
631 int path;
632 } *qp_implies = NULL;
633 static int qp_implieslen = 0;
634 static int qp_impliestotlen = 0;
635
636 /* Keep track of static GR values so that indirect register usage can
637 sometimes be tracked. */
638 static struct gr {
639 unsigned known:1;
640 int path;
641 valueT value;
642 } gr_values[128] = {
643 {
644 1,
645 #ifdef INT_MAX
646 INT_MAX,
647 #else
648 (((1 << (8 * sizeof(gr_values->path) - 2)) - 1) << 1) + 1,
649 #endif
650 0
651 }
652 };
653
654 /* Remember the alignment frag. */
655 static fragS *align_frag;
656
657 /* These are the routines required to output the various types of
658 unwind records. */
659
660 /* A slot_number is a frag address plus the slot index (0-2). We use the
661 frag address here so that if there is a section switch in the middle of
662 a function, then instructions emitted to a different section are not
663 counted. Since there may be more than one frag for a function, this
664 means we also need to keep track of which frag this address belongs to
665 so we can compute inter-frag distances. This also nicely solves the
666 problem with nops emitted for align directives, which can't easily be
667 counted, but can easily be derived from frag sizes. */
668
669 typedef struct unw_rec_list {
670 unwind_record r;
671 unsigned long slot_number;
672 fragS *slot_frag;
673 unsigned long next_slot_number;
674 fragS *next_slot_frag;
675 struct unw_rec_list *next;
676 } unw_rec_list;
677
678 #define SLOT_NUM_NOT_SET (unsigned)-1
679
680 /* Linked list of saved prologue counts. A very poor
681 implementation of a map from label numbers to prologue counts. */
682 typedef struct label_prologue_count
683 {
684 struct label_prologue_count *next;
685 unsigned long label_number;
686 unsigned int prologue_count;
687 } label_prologue_count;
688
689 static struct
690 {
691 /* Maintain a list of unwind entries for the current function. */
692 unw_rec_list *list;
693 unw_rec_list *tail;
694
695 /* Any unwind entires that should be attached to the current slot
696 that an insn is being constructed for. */
697 unw_rec_list *current_entry;
698
699 /* These are used to create the unwind table entry for this function. */
700 symbolS *proc_start;
701 symbolS *info; /* pointer to unwind info */
702 symbolS *personality_routine;
703 segT saved_text_seg;
704 subsegT saved_text_subseg;
705 unsigned int force_unwind_entry : 1; /* force generation of unwind entry? */
706
707 /* TRUE if processing unwind directives in a prologue region. */
708 unsigned int prologue : 1;
709 unsigned int prologue_mask : 4;
710 unsigned int body : 1;
711 unsigned int insn : 1;
712 unsigned int prologue_count; /* number of .prologues seen so far */
713 /* Prologue counts at previous .label_state directives. */
714 struct label_prologue_count * saved_prologue_counts;
715 } unwind;
716
717 /* The input value is a negated offset from psp, and specifies an address
718 psp - offset. The encoded value is psp + 16 - (4 * offset). Thus we
719 must add 16 and divide by 4 to get the encoded value. */
720
721 #define ENCODED_PSP_OFFSET(OFFSET) (((OFFSET) + 16) / 4)
722
723 typedef void (*vbyte_func) PARAMS ((int, char *, char *));
724
725 /* Forward declarations: */
726 static void set_section PARAMS ((char *name));
727 static unsigned int set_regstack PARAMS ((unsigned int, unsigned int,
728 unsigned int, unsigned int));
729 static void dot_align (int);
730 static void dot_radix PARAMS ((int));
731 static void dot_special_section PARAMS ((int));
732 static void dot_proc PARAMS ((int));
733 static void dot_fframe PARAMS ((int));
734 static void dot_vframe PARAMS ((int));
735 static void dot_vframesp PARAMS ((int));
736 static void dot_vframepsp PARAMS ((int));
737 static void dot_save PARAMS ((int));
738 static void dot_restore PARAMS ((int));
739 static void dot_restorereg PARAMS ((int));
740 static void dot_restorereg_p PARAMS ((int));
741 static void dot_handlerdata PARAMS ((int));
742 static void dot_unwentry PARAMS ((int));
743 static void dot_altrp PARAMS ((int));
744 static void dot_savemem PARAMS ((int));
745 static void dot_saveg PARAMS ((int));
746 static void dot_savef PARAMS ((int));
747 static void dot_saveb PARAMS ((int));
748 static void dot_savegf PARAMS ((int));
749 static void dot_spill PARAMS ((int));
750 static void dot_spillreg PARAMS ((int));
751 static void dot_spillmem PARAMS ((int));
752 static void dot_spillreg_p PARAMS ((int));
753 static void dot_spillmem_p PARAMS ((int));
754 static void dot_label_state PARAMS ((int));
755 static void dot_copy_state PARAMS ((int));
756 static void dot_unwabi PARAMS ((int));
757 static void dot_personality PARAMS ((int));
758 static void dot_body PARAMS ((int));
759 static void dot_prologue PARAMS ((int));
760 static void dot_endp PARAMS ((int));
761 static void dot_template PARAMS ((int));
762 static void dot_regstk PARAMS ((int));
763 static void dot_rot PARAMS ((int));
764 static void dot_byteorder PARAMS ((int));
765 static void dot_psr PARAMS ((int));
766 static void dot_alias PARAMS ((int));
767 static void dot_ln PARAMS ((int));
768 static char *parse_section_name PARAMS ((void));
769 static void dot_xdata PARAMS ((int));
770 static void stmt_float_cons PARAMS ((int));
771 static void stmt_cons_ua PARAMS ((int));
772 static void dot_xfloat_cons PARAMS ((int));
773 static void dot_xstringer PARAMS ((int));
774 static void dot_xdata_ua PARAMS ((int));
775 static void dot_xfloat_cons_ua PARAMS ((int));
776 static void print_prmask PARAMS ((valueT mask));
777 static void dot_pred_rel PARAMS ((int));
778 static void dot_reg_val PARAMS ((int));
779 static void dot_serialize PARAMS ((int));
780 static void dot_dv_mode PARAMS ((int));
781 static void dot_entry PARAMS ((int));
782 static void dot_mem_offset PARAMS ((int));
783 static void add_unwind_entry PARAMS((unw_rec_list *ptr));
784 static symbolS *declare_register PARAMS ((const char *name, int regnum));
785 static void declare_register_set PARAMS ((const char *, int, int));
786 static unsigned int operand_width PARAMS ((enum ia64_opnd));
787 static enum operand_match_result operand_match PARAMS ((const struct ia64_opcode *idesc,
788 int index,
789 expressionS *e));
790 static int parse_operand PARAMS ((expressionS *e));
791 static struct ia64_opcode * parse_operands PARAMS ((struct ia64_opcode *));
792 static void build_insn PARAMS ((struct slot *, bfd_vma *));
793 static void emit_one_bundle PARAMS ((void));
794 static void fix_insn PARAMS ((fixS *, const struct ia64_operand *, valueT));
795 static bfd_reloc_code_real_type ia64_gen_real_reloc_type PARAMS ((struct symbol *sym,
796 bfd_reloc_code_real_type r_type));
797 static void insn_group_break PARAMS ((int, int, int));
798 static void mark_resource PARAMS ((struct ia64_opcode *, const struct ia64_dependency *,
799 struct rsrc *, int depind, int path));
800 static void add_qp_mutex PARAMS((valueT mask));
801 static void add_qp_imply PARAMS((int p1, int p2));
802 static void clear_qp_branch_flag PARAMS((valueT mask));
803 static void clear_qp_mutex PARAMS((valueT mask));
804 static void clear_qp_implies PARAMS((valueT p1_mask, valueT p2_mask));
805 static int has_suffix_p PARAMS((const char *, const char *));
806 static void clear_register_values PARAMS ((void));
807 static void print_dependency PARAMS ((const char *action, int depind));
808 static void instruction_serialization PARAMS ((void));
809 static void data_serialization PARAMS ((void));
810 static void remove_marked_resource PARAMS ((struct rsrc *));
811 static int is_conditional_branch PARAMS ((struct ia64_opcode *));
812 static int is_taken_branch PARAMS ((struct ia64_opcode *));
813 static int is_interruption_or_rfi PARAMS ((struct ia64_opcode *));
814 static int depends_on PARAMS ((int, struct ia64_opcode *));
815 static int specify_resource PARAMS ((const struct ia64_dependency *,
816 struct ia64_opcode *, int, struct rsrc [], int, int));
817 static int check_dv PARAMS((struct ia64_opcode *idesc));
818 static void check_dependencies PARAMS((struct ia64_opcode *));
819 static void mark_resources PARAMS((struct ia64_opcode *));
820 static void update_dependencies PARAMS((struct ia64_opcode *));
821 static void note_register_values PARAMS((struct ia64_opcode *));
822 static int qp_mutex PARAMS ((int, int, int));
823 static int resources_match PARAMS ((struct rsrc *, struct ia64_opcode *, int, int, int));
824 static void output_vbyte_mem PARAMS ((int, char *, char *));
825 static void count_output PARAMS ((int, char *, char *));
826 static void output_R1_format PARAMS ((vbyte_func, unw_record_type, int));
827 static void output_R2_format PARAMS ((vbyte_func, int, int, unsigned long));
828 static void output_R3_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
829 static void output_P1_format PARAMS ((vbyte_func, int));
830 static void output_P2_format PARAMS ((vbyte_func, int, int));
831 static void output_P3_format PARAMS ((vbyte_func, unw_record_type, int));
832 static void output_P4_format PARAMS ((vbyte_func, unsigned char *, unsigned long));
833 static void output_P5_format PARAMS ((vbyte_func, int, unsigned long));
834 static void output_P6_format PARAMS ((vbyte_func, unw_record_type, int));
835 static void output_P7_format PARAMS ((vbyte_func, unw_record_type, unsigned long, unsigned long));
836 static void output_P8_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
837 static void output_P9_format PARAMS ((vbyte_func, int, int));
838 static void output_P10_format PARAMS ((vbyte_func, int, int));
839 static void output_B1_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
840 static void output_B2_format PARAMS ((vbyte_func, unsigned long, unsigned long));
841 static void output_B3_format PARAMS ((vbyte_func, unsigned long, unsigned long));
842 static void output_B4_format PARAMS ((vbyte_func, unw_record_type, unsigned long));
843 static char format_ab_reg PARAMS ((int, int));
844 static void output_X1_format PARAMS ((vbyte_func, unw_record_type, int, int, unsigned long,
845 unsigned long));
846 static void output_X2_format PARAMS ((vbyte_func, int, int, int, int, int, unsigned long));
847 static void output_X3_format PARAMS ((vbyte_func, unw_record_type, int, int, int, unsigned long,
848 unsigned long));
849 static void output_X4_format PARAMS ((vbyte_func, int, int, int, int, int, int, unsigned long));
850 static unw_rec_list *output_endp PARAMS ((void));
851 static unw_rec_list *output_prologue PARAMS ((void));
852 static unw_rec_list *output_prologue_gr PARAMS ((unsigned int, unsigned int));
853 static unw_rec_list *output_body PARAMS ((void));
854 static unw_rec_list *output_mem_stack_f PARAMS ((unsigned int));
855 static unw_rec_list *output_mem_stack_v PARAMS ((void));
856 static unw_rec_list *output_psp_gr PARAMS ((unsigned int));
857 static unw_rec_list *output_psp_sprel PARAMS ((unsigned int));
858 static unw_rec_list *output_rp_when PARAMS ((void));
859 static unw_rec_list *output_rp_gr PARAMS ((unsigned int));
860 static unw_rec_list *output_rp_br PARAMS ((unsigned int));
861 static unw_rec_list *output_rp_psprel PARAMS ((unsigned int));
862 static unw_rec_list *output_rp_sprel PARAMS ((unsigned int));
863 static unw_rec_list *output_pfs_when PARAMS ((void));
864 static unw_rec_list *output_pfs_gr PARAMS ((unsigned int));
865 static unw_rec_list *output_pfs_psprel PARAMS ((unsigned int));
866 static unw_rec_list *output_pfs_sprel PARAMS ((unsigned int));
867 static unw_rec_list *output_preds_when PARAMS ((void));
868 static unw_rec_list *output_preds_gr PARAMS ((unsigned int));
869 static unw_rec_list *output_preds_psprel PARAMS ((unsigned int));
870 static unw_rec_list *output_preds_sprel PARAMS ((unsigned int));
871 static unw_rec_list *output_fr_mem PARAMS ((unsigned int));
872 static unw_rec_list *output_frgr_mem PARAMS ((unsigned int, unsigned int));
873 static unw_rec_list *output_gr_gr PARAMS ((unsigned int, unsigned int));
874 static unw_rec_list *output_gr_mem PARAMS ((unsigned int));
875 static unw_rec_list *output_br_mem PARAMS ((unsigned int));
876 static unw_rec_list *output_br_gr PARAMS ((unsigned int, unsigned int));
877 static unw_rec_list *output_spill_base PARAMS ((unsigned int));
878 static unw_rec_list *output_unat_when PARAMS ((void));
879 static unw_rec_list *output_unat_gr PARAMS ((unsigned int));
880 static unw_rec_list *output_unat_psprel PARAMS ((unsigned int));
881 static unw_rec_list *output_unat_sprel PARAMS ((unsigned int));
882 static unw_rec_list *output_lc_when PARAMS ((void));
883 static unw_rec_list *output_lc_gr PARAMS ((unsigned int));
884 static unw_rec_list *output_lc_psprel PARAMS ((unsigned int));
885 static unw_rec_list *output_lc_sprel PARAMS ((unsigned int));
886 static unw_rec_list *output_fpsr_when PARAMS ((void));
887 static unw_rec_list *output_fpsr_gr PARAMS ((unsigned int));
888 static unw_rec_list *output_fpsr_psprel PARAMS ((unsigned int));
889 static unw_rec_list *output_fpsr_sprel PARAMS ((unsigned int));
890 static unw_rec_list *output_priunat_when_gr PARAMS ((void));
891 static unw_rec_list *output_priunat_when_mem PARAMS ((void));
892 static unw_rec_list *output_priunat_gr PARAMS ((unsigned int));
893 static unw_rec_list *output_priunat_psprel PARAMS ((unsigned int));
894 static unw_rec_list *output_priunat_sprel PARAMS ((unsigned int));
895 static unw_rec_list *output_bsp_when PARAMS ((void));
896 static unw_rec_list *output_bsp_gr PARAMS ((unsigned int));
897 static unw_rec_list *output_bsp_psprel PARAMS ((unsigned int));
898 static unw_rec_list *output_bsp_sprel PARAMS ((unsigned int));
899 static unw_rec_list *output_bspstore_when PARAMS ((void));
900 static unw_rec_list *output_bspstore_gr PARAMS ((unsigned int));
901 static unw_rec_list *output_bspstore_psprel PARAMS ((unsigned int));
902 static unw_rec_list *output_bspstore_sprel PARAMS ((unsigned int));
903 static unw_rec_list *output_rnat_when PARAMS ((void));
904 static unw_rec_list *output_rnat_gr PARAMS ((unsigned int));
905 static unw_rec_list *output_rnat_psprel PARAMS ((unsigned int));
906 static unw_rec_list *output_rnat_sprel PARAMS ((unsigned int));
907 static unw_rec_list *output_unwabi PARAMS ((unsigned long, unsigned long));
908 static unw_rec_list *output_epilogue PARAMS ((unsigned long));
909 static unw_rec_list *output_label_state PARAMS ((unsigned long));
910 static unw_rec_list *output_copy_state PARAMS ((unsigned long));
911 static unw_rec_list *output_spill_psprel PARAMS ((unsigned int, unsigned int, unsigned int));
912 static unw_rec_list *output_spill_sprel PARAMS ((unsigned int, unsigned int, unsigned int));
913 static unw_rec_list *output_spill_psprel_p PARAMS ((unsigned int, unsigned int, unsigned int,
914 unsigned int));
915 static unw_rec_list *output_spill_sprel_p PARAMS ((unsigned int, unsigned int, unsigned int,
916 unsigned int));
917 static unw_rec_list *output_spill_reg PARAMS ((unsigned int, unsigned int, unsigned int,
918 unsigned int));
919 static unw_rec_list *output_spill_reg_p PARAMS ((unsigned int, unsigned int, unsigned int,
920 unsigned int, unsigned int));
921 static void process_one_record PARAMS ((unw_rec_list *, vbyte_func));
922 static void process_unw_records PARAMS ((unw_rec_list *, vbyte_func));
923 static int calc_record_size PARAMS ((unw_rec_list *));
924 static void set_imask PARAMS ((unw_rec_list *, unsigned long, unsigned long, unsigned int));
925 static unsigned long slot_index PARAMS ((unsigned long, fragS *,
926 unsigned long, fragS *,
927 int));
928 static unw_rec_list *optimize_unw_records PARAMS ((unw_rec_list *));
929 static void fixup_unw_records PARAMS ((unw_rec_list *, int));
930 static int convert_expr_to_ab_reg PARAMS ((expressionS *, unsigned int *, unsigned int *));
931 static int convert_expr_to_xy_reg PARAMS ((expressionS *, unsigned int *, unsigned int *));
932 static unsigned int get_saved_prologue_count PARAMS ((unsigned long));
933 static void save_prologue_count PARAMS ((unsigned long, unsigned int));
934 static void free_saved_prologue_counts PARAMS ((void));
935
936 /* Determine if application register REGNUM resides only in the integer
937 unit (as opposed to the memory unit). */
938 static int
939 ar_is_only_in_integer_unit (int reg)
940 {
941 reg -= REG_AR;
942 return reg >= 64 && reg <= 111;
943 }
944
945 /* Determine if application register REGNUM resides only in the memory
946 unit (as opposed to the integer unit). */
947 static int
948 ar_is_only_in_memory_unit (int reg)
949 {
950 reg -= REG_AR;
951 return reg >= 0 && reg <= 47;
952 }
953
954 /* Switch to section NAME and create section if necessary. It's
955 rather ugly that we have to manipulate input_line_pointer but I
956 don't see any other way to accomplish the same thing without
957 changing obj-elf.c (which may be the Right Thing, in the end). */
958 static void
959 set_section (name)
960 char *name;
961 {
962 char *saved_input_line_pointer;
963
964 saved_input_line_pointer = input_line_pointer;
965 input_line_pointer = name;
966 obj_elf_section (0);
967 input_line_pointer = saved_input_line_pointer;
968 }
969
970 /* Map 's' to SHF_IA_64_SHORT. */
971
972 int
973 ia64_elf_section_letter (letter, ptr_msg)
974 int letter;
975 char **ptr_msg;
976 {
977 if (letter == 's')
978 return SHF_IA_64_SHORT;
979 else if (letter == 'o')
980 return SHF_LINK_ORDER;
981
982 *ptr_msg = _("Bad .section directive: want a,o,s,w,x,M,S,G,T in string");
983 return -1;
984 }
985
986 /* Map SHF_IA_64_SHORT to SEC_SMALL_DATA. */
987
988 flagword
989 ia64_elf_section_flags (flags, attr, type)
990 flagword flags;
991 int attr, type ATTRIBUTE_UNUSED;
992 {
993 if (attr & SHF_IA_64_SHORT)
994 flags |= SEC_SMALL_DATA;
995 return flags;
996 }
997
998 int
999 ia64_elf_section_type (str, len)
1000 const char *str;
1001 size_t len;
1002 {
1003 #define STREQ(s) ((len == sizeof (s) - 1) && (strncmp (str, s, sizeof (s) - 1) == 0))
1004
1005 if (STREQ (ELF_STRING_ia64_unwind_info))
1006 return SHT_PROGBITS;
1007
1008 if (STREQ (ELF_STRING_ia64_unwind_info_once))
1009 return SHT_PROGBITS;
1010
1011 if (STREQ (ELF_STRING_ia64_unwind))
1012 return SHT_IA_64_UNWIND;
1013
1014 if (STREQ (ELF_STRING_ia64_unwind_once))
1015 return SHT_IA_64_UNWIND;
1016
1017 if (STREQ ("unwind"))
1018 return SHT_IA_64_UNWIND;
1019
1020 return -1;
1021 #undef STREQ
1022 }
1023
1024 static unsigned int
1025 set_regstack (ins, locs, outs, rots)
1026 unsigned int ins, locs, outs, rots;
1027 {
1028 /* Size of frame. */
1029 unsigned int sof;
1030
1031 sof = ins + locs + outs;
1032 if (sof > 96)
1033 {
1034 as_bad ("Size of frame exceeds maximum of 96 registers");
1035 return 0;
1036 }
1037 if (rots > sof)
1038 {
1039 as_warn ("Size of rotating registers exceeds frame size");
1040 return 0;
1041 }
1042 md.in.base = REG_GR + 32;
1043 md.loc.base = md.in.base + ins;
1044 md.out.base = md.loc.base + locs;
1045
1046 md.in.num_regs = ins;
1047 md.loc.num_regs = locs;
1048 md.out.num_regs = outs;
1049 md.rot.num_regs = rots;
1050 return sof;
1051 }
1052
1053 void
1054 ia64_flush_insns ()
1055 {
1056 struct label_fix *lfix;
1057 segT saved_seg;
1058 subsegT saved_subseg;
1059 unw_rec_list *ptr;
1060
1061 if (!md.last_text_seg)
1062 return;
1063
1064 saved_seg = now_seg;
1065 saved_subseg = now_subseg;
1066
1067 subseg_set (md.last_text_seg, 0);
1068
1069 while (md.num_slots_in_use > 0)
1070 emit_one_bundle (); /* force out queued instructions */
1071
1072 /* In case there are labels following the last instruction, resolve
1073 those now: */
1074 for (lfix = CURR_SLOT.label_fixups; lfix; lfix = lfix->next)
1075 {
1076 S_SET_VALUE (lfix->sym, frag_now_fix ());
1077 symbol_set_frag (lfix->sym, frag_now);
1078 }
1079 CURR_SLOT.label_fixups = 0;
1080 for (lfix = CURR_SLOT.tag_fixups; lfix; lfix = lfix->next)
1081 {
1082 S_SET_VALUE (lfix->sym, frag_now_fix ());
1083 symbol_set_frag (lfix->sym, frag_now);
1084 }
1085 CURR_SLOT.tag_fixups = 0;
1086
1087 /* In case there are unwind directives following the last instruction,
1088 resolve those now. We only handle prologue, body, and endp directives
1089 here. Give an error for others. */
1090 for (ptr = unwind.current_entry; ptr; ptr = ptr->next)
1091 {
1092 switch (ptr->r.type)
1093 {
1094 case prologue:
1095 case prologue_gr:
1096 case body:
1097 case endp:
1098 ptr->slot_number = (unsigned long) frag_more (0);
1099 ptr->slot_frag = frag_now;
1100 break;
1101
1102 /* Allow any record which doesn't have a "t" field (i.e.,
1103 doesn't relate to a particular instruction). */
1104 case unwabi:
1105 case br_gr:
1106 case copy_state:
1107 case fr_mem:
1108 case frgr_mem:
1109 case gr_gr:
1110 case gr_mem:
1111 case label_state:
1112 case rp_br:
1113 case spill_base:
1114 case spill_mask:
1115 /* nothing */
1116 break;
1117
1118 default:
1119 as_bad (_("Unwind directive not followed by an instruction."));
1120 break;
1121 }
1122 }
1123 unwind.current_entry = NULL;
1124
1125 subseg_set (saved_seg, saved_subseg);
1126
1127 if (md.qp.X_op == O_register)
1128 as_bad ("qualifying predicate not followed by instruction");
1129 }
1130
1131 static void
1132 ia64_do_align (int nbytes)
1133 {
1134 char *saved_input_line_pointer = input_line_pointer;
1135
1136 input_line_pointer = "";
1137 s_align_bytes (nbytes);
1138 input_line_pointer = saved_input_line_pointer;
1139 }
1140
1141 void
1142 ia64_cons_align (nbytes)
1143 int nbytes;
1144 {
1145 if (md.auto_align)
1146 {
1147 char *saved_input_line_pointer = input_line_pointer;
1148 input_line_pointer = "";
1149 s_align_bytes (nbytes);
1150 input_line_pointer = saved_input_line_pointer;
1151 }
1152 }
1153
1154 /* Output COUNT bytes to a memory location. */
1155 static unsigned char *vbyte_mem_ptr = NULL;
1156
1157 void
1158 output_vbyte_mem (count, ptr, comment)
1159 int count;
1160 char *ptr;
1161 char *comment ATTRIBUTE_UNUSED;
1162 {
1163 int x;
1164 if (vbyte_mem_ptr == NULL)
1165 abort ();
1166
1167 if (count == 0)
1168 return;
1169 for (x = 0; x < count; x++)
1170 *(vbyte_mem_ptr++) = ptr[x];
1171 }
1172
1173 /* Count the number of bytes required for records. */
1174 static int vbyte_count = 0;
1175 void
1176 count_output (count, ptr, comment)
1177 int count;
1178 char *ptr ATTRIBUTE_UNUSED;
1179 char *comment ATTRIBUTE_UNUSED;
1180 {
1181 vbyte_count += count;
1182 }
1183
1184 static void
1185 output_R1_format (f, rtype, rlen)
1186 vbyte_func f;
1187 unw_record_type rtype;
1188 int rlen;
1189 {
1190 int r = 0;
1191 char byte;
1192 if (rlen > 0x1f)
1193 {
1194 output_R3_format (f, rtype, rlen);
1195 return;
1196 }
1197
1198 if (rtype == body)
1199 r = 1;
1200 else if (rtype != prologue)
1201 as_bad ("record type is not valid");
1202
1203 byte = UNW_R1 | (r << 5) | (rlen & 0x1f);
1204 (*f) (1, &byte, NULL);
1205 }
1206
1207 static void
1208 output_R2_format (f, mask, grsave, rlen)
1209 vbyte_func f;
1210 int mask, grsave;
1211 unsigned long rlen;
1212 {
1213 char bytes[20];
1214 int count = 2;
1215 mask = (mask & 0x0f);
1216 grsave = (grsave & 0x7f);
1217
1218 bytes[0] = (UNW_R2 | (mask >> 1));
1219 bytes[1] = (((mask & 0x01) << 7) | grsave);
1220 count += output_leb128 (bytes + 2, rlen, 0);
1221 (*f) (count, bytes, NULL);
1222 }
1223
1224 static void
1225 output_R3_format (f, rtype, rlen)
1226 vbyte_func f;
1227 unw_record_type rtype;
1228 unsigned long rlen;
1229 {
1230 int r = 0, count;
1231 char bytes[20];
1232 if (rlen <= 0x1f)
1233 {
1234 output_R1_format (f, rtype, rlen);
1235 return;
1236 }
1237
1238 if (rtype == body)
1239 r = 1;
1240 else if (rtype != prologue)
1241 as_bad ("record type is not valid");
1242 bytes[0] = (UNW_R3 | r);
1243 count = output_leb128 (bytes + 1, rlen, 0);
1244 (*f) (count + 1, bytes, NULL);
1245 }
1246
1247 static void
1248 output_P1_format (f, brmask)
1249 vbyte_func f;
1250 int brmask;
1251 {
1252 char byte;
1253 byte = UNW_P1 | (brmask & 0x1f);
1254 (*f) (1, &byte, NULL);
1255 }
1256
1257 static void
1258 output_P2_format (f, brmask, gr)
1259 vbyte_func f;
1260 int brmask;
1261 int gr;
1262 {
1263 char bytes[2];
1264 brmask = (brmask & 0x1f);
1265 bytes[0] = UNW_P2 | (brmask >> 1);
1266 bytes[1] = (((brmask & 1) << 7) | gr);
1267 (*f) (2, bytes, NULL);
1268 }
1269
1270 static void
1271 output_P3_format (f, rtype, reg)
1272 vbyte_func f;
1273 unw_record_type rtype;
1274 int reg;
1275 {
1276 char bytes[2];
1277 int r = 0;
1278 reg = (reg & 0x7f);
1279 switch (rtype)
1280 {
1281 case psp_gr:
1282 r = 0;
1283 break;
1284 case rp_gr:
1285 r = 1;
1286 break;
1287 case pfs_gr:
1288 r = 2;
1289 break;
1290 case preds_gr:
1291 r = 3;
1292 break;
1293 case unat_gr:
1294 r = 4;
1295 break;
1296 case lc_gr:
1297 r = 5;
1298 break;
1299 case rp_br:
1300 r = 6;
1301 break;
1302 case rnat_gr:
1303 r = 7;
1304 break;
1305 case bsp_gr:
1306 r = 8;
1307 break;
1308 case bspstore_gr:
1309 r = 9;
1310 break;
1311 case fpsr_gr:
1312 r = 10;
1313 break;
1314 case priunat_gr:
1315 r = 11;
1316 break;
1317 default:
1318 as_bad ("Invalid record type for P3 format.");
1319 }
1320 bytes[0] = (UNW_P3 | (r >> 1));
1321 bytes[1] = (((r & 1) << 7) | reg);
1322 (*f) (2, bytes, NULL);
1323 }
1324
1325 static void
1326 output_P4_format (f, imask, imask_size)
1327 vbyte_func f;
1328 unsigned char *imask;
1329 unsigned long imask_size;
1330 {
1331 imask[0] = UNW_P4;
1332 (*f) (imask_size, imask, NULL);
1333 }
1334
1335 static void
1336 output_P5_format (f, grmask, frmask)
1337 vbyte_func f;
1338 int grmask;
1339 unsigned long frmask;
1340 {
1341 char bytes[4];
1342 grmask = (grmask & 0x0f);
1343
1344 bytes[0] = UNW_P5;
1345 bytes[1] = ((grmask << 4) | ((frmask & 0x000f0000) >> 16));
1346 bytes[2] = ((frmask & 0x0000ff00) >> 8);
1347 bytes[3] = (frmask & 0x000000ff);
1348 (*f) (4, bytes, NULL);
1349 }
1350
1351 static void
1352 output_P6_format (f, rtype, rmask)
1353 vbyte_func f;
1354 unw_record_type rtype;
1355 int rmask;
1356 {
1357 char byte;
1358 int r = 0;
1359
1360 if (rtype == gr_mem)
1361 r = 1;
1362 else if (rtype != fr_mem)
1363 as_bad ("Invalid record type for format P6");
1364 byte = (UNW_P6 | (r << 4) | (rmask & 0x0f));
1365 (*f) (1, &byte, NULL);
1366 }
1367
1368 static void
1369 output_P7_format (f, rtype, w1, w2)
1370 vbyte_func f;
1371 unw_record_type rtype;
1372 unsigned long w1;
1373 unsigned long w2;
1374 {
1375 char bytes[20];
1376 int count = 1;
1377 int r = 0;
1378 count += output_leb128 (bytes + 1, w1, 0);
1379 switch (rtype)
1380 {
1381 case mem_stack_f:
1382 r = 0;
1383 count += output_leb128 (bytes + count, w2 >> 4, 0);
1384 break;
1385 case mem_stack_v:
1386 r = 1;
1387 break;
1388 case spill_base:
1389 r = 2;
1390 break;
1391 case psp_sprel:
1392 r = 3;
1393 break;
1394 case rp_when:
1395 r = 4;
1396 break;
1397 case rp_psprel:
1398 r = 5;
1399 break;
1400 case pfs_when:
1401 r = 6;
1402 break;
1403 case pfs_psprel:
1404 r = 7;
1405 break;
1406 case preds_when:
1407 r = 8;
1408 break;
1409 case preds_psprel:
1410 r = 9;
1411 break;
1412 case lc_when:
1413 r = 10;
1414 break;
1415 case lc_psprel:
1416 r = 11;
1417 break;
1418 case unat_when:
1419 r = 12;
1420 break;
1421 case unat_psprel:
1422 r = 13;
1423 break;
1424 case fpsr_when:
1425 r = 14;
1426 break;
1427 case fpsr_psprel:
1428 r = 15;
1429 break;
1430 default:
1431 break;
1432 }
1433 bytes[0] = (UNW_P7 | r);
1434 (*f) (count, bytes, NULL);
1435 }
1436
1437 static void
1438 output_P8_format (f, rtype, t)
1439 vbyte_func f;
1440 unw_record_type rtype;
1441 unsigned long t;
1442 {
1443 char bytes[20];
1444 int r = 0;
1445 int count = 2;
1446 bytes[0] = UNW_P8;
1447 switch (rtype)
1448 {
1449 case rp_sprel:
1450 r = 1;
1451 break;
1452 case pfs_sprel:
1453 r = 2;
1454 break;
1455 case preds_sprel:
1456 r = 3;
1457 break;
1458 case lc_sprel:
1459 r = 4;
1460 break;
1461 case unat_sprel:
1462 r = 5;
1463 break;
1464 case fpsr_sprel:
1465 r = 6;
1466 break;
1467 case bsp_when:
1468 r = 7;
1469 break;
1470 case bsp_psprel:
1471 r = 8;
1472 break;
1473 case bsp_sprel:
1474 r = 9;
1475 break;
1476 case bspstore_when:
1477 r = 10;
1478 break;
1479 case bspstore_psprel:
1480 r = 11;
1481 break;
1482 case bspstore_sprel:
1483 r = 12;
1484 break;
1485 case rnat_when:
1486 r = 13;
1487 break;
1488 case rnat_psprel:
1489 r = 14;
1490 break;
1491 case rnat_sprel:
1492 r = 15;
1493 break;
1494 case priunat_when_gr:
1495 r = 16;
1496 break;
1497 case priunat_psprel:
1498 r = 17;
1499 break;
1500 case priunat_sprel:
1501 r = 18;
1502 break;
1503 case priunat_when_mem:
1504 r = 19;
1505 break;
1506 default:
1507 break;
1508 }
1509 bytes[1] = r;
1510 count += output_leb128 (bytes + 2, t, 0);
1511 (*f) (count, bytes, NULL);
1512 }
1513
1514 static void
1515 output_P9_format (f, grmask, gr)
1516 vbyte_func f;
1517 int grmask;
1518 int gr;
1519 {
1520 char bytes[3];
1521 bytes[0] = UNW_P9;
1522 bytes[1] = (grmask & 0x0f);
1523 bytes[2] = (gr & 0x7f);
1524 (*f) (3, bytes, NULL);
1525 }
1526
1527 static void
1528 output_P10_format (f, abi, context)
1529 vbyte_func f;
1530 int abi;
1531 int context;
1532 {
1533 char bytes[3];
1534 bytes[0] = UNW_P10;
1535 bytes[1] = (abi & 0xff);
1536 bytes[2] = (context & 0xff);
1537 (*f) (3, bytes, NULL);
1538 }
1539
1540 static void
1541 output_B1_format (f, rtype, label)
1542 vbyte_func f;
1543 unw_record_type rtype;
1544 unsigned long label;
1545 {
1546 char byte;
1547 int r = 0;
1548 if (label > 0x1f)
1549 {
1550 output_B4_format (f, rtype, label);
1551 return;
1552 }
1553 if (rtype == copy_state)
1554 r = 1;
1555 else if (rtype != label_state)
1556 as_bad ("Invalid record type for format B1");
1557
1558 byte = (UNW_B1 | (r << 5) | (label & 0x1f));
1559 (*f) (1, &byte, NULL);
1560 }
1561
1562 static void
1563 output_B2_format (f, ecount, t)
1564 vbyte_func f;
1565 unsigned long ecount;
1566 unsigned long t;
1567 {
1568 char bytes[20];
1569 int count = 1;
1570 if (ecount > 0x1f)
1571 {
1572 output_B3_format (f, ecount, t);
1573 return;
1574 }
1575 bytes[0] = (UNW_B2 | (ecount & 0x1f));
1576 count += output_leb128 (bytes + 1, t, 0);
1577 (*f) (count, bytes, NULL);
1578 }
1579
1580 static void
1581 output_B3_format (f, ecount, t)
1582 vbyte_func f;
1583 unsigned long ecount;
1584 unsigned long t;
1585 {
1586 char bytes[20];
1587 int count = 1;
1588 if (ecount <= 0x1f)
1589 {
1590 output_B2_format (f, ecount, t);
1591 return;
1592 }
1593 bytes[0] = UNW_B3;
1594 count += output_leb128 (bytes + 1, t, 0);
1595 count += output_leb128 (bytes + count, ecount, 0);
1596 (*f) (count, bytes, NULL);
1597 }
1598
1599 static void
1600 output_B4_format (f, rtype, label)
1601 vbyte_func f;
1602 unw_record_type rtype;
1603 unsigned long label;
1604 {
1605 char bytes[20];
1606 int r = 0;
1607 int count = 1;
1608 if (label <= 0x1f)
1609 {
1610 output_B1_format (f, rtype, label);
1611 return;
1612 }
1613
1614 if (rtype == copy_state)
1615 r = 1;
1616 else if (rtype != label_state)
1617 as_bad ("Invalid record type for format B1");
1618
1619 bytes[0] = (UNW_B4 | (r << 3));
1620 count += output_leb128 (bytes + 1, label, 0);
1621 (*f) (count, bytes, NULL);
1622 }
1623
1624 static char
1625 format_ab_reg (ab, reg)
1626 int ab;
1627 int reg;
1628 {
1629 int ret;
1630 ab = (ab & 3);
1631 reg = (reg & 0x1f);
1632 ret = (ab << 5) | reg;
1633 return ret;
1634 }
1635
1636 static void
1637 output_X1_format (f, rtype, ab, reg, t, w1)
1638 vbyte_func f;
1639 unw_record_type rtype;
1640 int ab, reg;
1641 unsigned long t;
1642 unsigned long w1;
1643 {
1644 char bytes[20];
1645 int r = 0;
1646 int count = 2;
1647 bytes[0] = UNW_X1;
1648
1649 if (rtype == spill_sprel)
1650 r = 1;
1651 else if (rtype != spill_psprel)
1652 as_bad ("Invalid record type for format X1");
1653 bytes[1] = ((r << 7) | format_ab_reg (ab, reg));
1654 count += output_leb128 (bytes + 2, t, 0);
1655 count += output_leb128 (bytes + count, w1, 0);
1656 (*f) (count, bytes, NULL);
1657 }
1658
1659 static void
1660 output_X2_format (f, ab, reg, x, y, treg, t)
1661 vbyte_func f;
1662 int ab, reg;
1663 int x, y, treg;
1664 unsigned long t;
1665 {
1666 char bytes[20];
1667 int count = 3;
1668 bytes[0] = UNW_X2;
1669 bytes[1] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1670 bytes[2] = (((y & 1) << 7) | (treg & 0x7f));
1671 count += output_leb128 (bytes + 3, t, 0);
1672 (*f) (count, bytes, NULL);
1673 }
1674
1675 static void
1676 output_X3_format (f, rtype, qp, ab, reg, t, w1)
1677 vbyte_func f;
1678 unw_record_type rtype;
1679 int qp;
1680 int ab, reg;
1681 unsigned long t;
1682 unsigned long w1;
1683 {
1684 char bytes[20];
1685 int r = 0;
1686 int count = 3;
1687 bytes[0] = UNW_X3;
1688
1689 if (rtype == spill_sprel_p)
1690 r = 1;
1691 else if (rtype != spill_psprel_p)
1692 as_bad ("Invalid record type for format X3");
1693 bytes[1] = ((r << 7) | (qp & 0x3f));
1694 bytes[2] = format_ab_reg (ab, reg);
1695 count += output_leb128 (bytes + 3, t, 0);
1696 count += output_leb128 (bytes + count, w1, 0);
1697 (*f) (count, bytes, NULL);
1698 }
1699
1700 static void
1701 output_X4_format (f, qp, ab, reg, x, y, treg, t)
1702 vbyte_func f;
1703 int qp;
1704 int ab, reg;
1705 int x, y, treg;
1706 unsigned long t;
1707 {
1708 char bytes[20];
1709 int count = 4;
1710 bytes[0] = UNW_X4;
1711 bytes[1] = (qp & 0x3f);
1712 bytes[2] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1713 bytes[3] = (((y & 1) << 7) | (treg & 0x7f));
1714 count += output_leb128 (bytes + 4, t, 0);
1715 (*f) (count, bytes, NULL);
1716 }
1717
1718 /* This function allocates a record list structure, and initializes fields. */
1719
1720 static unw_rec_list *
1721 alloc_record (unw_record_type t)
1722 {
1723 unw_rec_list *ptr;
1724 ptr = xmalloc (sizeof (*ptr));
1725 ptr->next = NULL;
1726 ptr->slot_number = SLOT_NUM_NOT_SET;
1727 ptr->r.type = t;
1728 ptr->next_slot_number = 0;
1729 ptr->next_slot_frag = 0;
1730 return ptr;
1731 }
1732
1733 /* Dummy unwind record used for calculating the length of the last prologue or
1734 body region. */
1735
1736 static unw_rec_list *
1737 output_endp ()
1738 {
1739 unw_rec_list *ptr = alloc_record (endp);
1740 return ptr;
1741 }
1742
1743 static unw_rec_list *
1744 output_prologue ()
1745 {
1746 unw_rec_list *ptr = alloc_record (prologue);
1747 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1748 return ptr;
1749 }
1750
1751 static unw_rec_list *
1752 output_prologue_gr (saved_mask, reg)
1753 unsigned int saved_mask;
1754 unsigned int reg;
1755 {
1756 unw_rec_list *ptr = alloc_record (prologue_gr);
1757 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1758 ptr->r.record.r.grmask = saved_mask;
1759 ptr->r.record.r.grsave = reg;
1760 return ptr;
1761 }
1762
1763 static unw_rec_list *
1764 output_body ()
1765 {
1766 unw_rec_list *ptr = alloc_record (body);
1767 return ptr;
1768 }
1769
1770 static unw_rec_list *
1771 output_mem_stack_f (size)
1772 unsigned int size;
1773 {
1774 unw_rec_list *ptr = alloc_record (mem_stack_f);
1775 ptr->r.record.p.size = size;
1776 return ptr;
1777 }
1778
1779 static unw_rec_list *
1780 output_mem_stack_v ()
1781 {
1782 unw_rec_list *ptr = alloc_record (mem_stack_v);
1783 return ptr;
1784 }
1785
1786 static unw_rec_list *
1787 output_psp_gr (gr)
1788 unsigned int gr;
1789 {
1790 unw_rec_list *ptr = alloc_record (psp_gr);
1791 ptr->r.record.p.gr = gr;
1792 return ptr;
1793 }
1794
1795 static unw_rec_list *
1796 output_psp_sprel (offset)
1797 unsigned int offset;
1798 {
1799 unw_rec_list *ptr = alloc_record (psp_sprel);
1800 ptr->r.record.p.spoff = offset / 4;
1801 return ptr;
1802 }
1803
1804 static unw_rec_list *
1805 output_rp_when ()
1806 {
1807 unw_rec_list *ptr = alloc_record (rp_when);
1808 return ptr;
1809 }
1810
1811 static unw_rec_list *
1812 output_rp_gr (gr)
1813 unsigned int gr;
1814 {
1815 unw_rec_list *ptr = alloc_record (rp_gr);
1816 ptr->r.record.p.gr = gr;
1817 return ptr;
1818 }
1819
1820 static unw_rec_list *
1821 output_rp_br (br)
1822 unsigned int br;
1823 {
1824 unw_rec_list *ptr = alloc_record (rp_br);
1825 ptr->r.record.p.br = br;
1826 return ptr;
1827 }
1828
1829 static unw_rec_list *
1830 output_rp_psprel (offset)
1831 unsigned int offset;
1832 {
1833 unw_rec_list *ptr = alloc_record (rp_psprel);
1834 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
1835 return ptr;
1836 }
1837
1838 static unw_rec_list *
1839 output_rp_sprel (offset)
1840 unsigned int offset;
1841 {
1842 unw_rec_list *ptr = alloc_record (rp_sprel);
1843 ptr->r.record.p.spoff = offset / 4;
1844 return ptr;
1845 }
1846
1847 static unw_rec_list *
1848 output_pfs_when ()
1849 {
1850 unw_rec_list *ptr = alloc_record (pfs_when);
1851 return ptr;
1852 }
1853
1854 static unw_rec_list *
1855 output_pfs_gr (gr)
1856 unsigned int gr;
1857 {
1858 unw_rec_list *ptr = alloc_record (pfs_gr);
1859 ptr->r.record.p.gr = gr;
1860 return ptr;
1861 }
1862
1863 static unw_rec_list *
1864 output_pfs_psprel (offset)
1865 unsigned int offset;
1866 {
1867 unw_rec_list *ptr = alloc_record (pfs_psprel);
1868 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
1869 return ptr;
1870 }
1871
1872 static unw_rec_list *
1873 output_pfs_sprel (offset)
1874 unsigned int offset;
1875 {
1876 unw_rec_list *ptr = alloc_record (pfs_sprel);
1877 ptr->r.record.p.spoff = offset / 4;
1878 return ptr;
1879 }
1880
1881 static unw_rec_list *
1882 output_preds_when ()
1883 {
1884 unw_rec_list *ptr = alloc_record (preds_when);
1885 return ptr;
1886 }
1887
1888 static unw_rec_list *
1889 output_preds_gr (gr)
1890 unsigned int gr;
1891 {
1892 unw_rec_list *ptr = alloc_record (preds_gr);
1893 ptr->r.record.p.gr = gr;
1894 return ptr;
1895 }
1896
1897 static unw_rec_list *
1898 output_preds_psprel (offset)
1899 unsigned int offset;
1900 {
1901 unw_rec_list *ptr = alloc_record (preds_psprel);
1902 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
1903 return ptr;
1904 }
1905
1906 static unw_rec_list *
1907 output_preds_sprel (offset)
1908 unsigned int offset;
1909 {
1910 unw_rec_list *ptr = alloc_record (preds_sprel);
1911 ptr->r.record.p.spoff = offset / 4;
1912 return ptr;
1913 }
1914
1915 static unw_rec_list *
1916 output_fr_mem (mask)
1917 unsigned int mask;
1918 {
1919 unw_rec_list *ptr = alloc_record (fr_mem);
1920 ptr->r.record.p.rmask = mask;
1921 return ptr;
1922 }
1923
1924 static unw_rec_list *
1925 output_frgr_mem (gr_mask, fr_mask)
1926 unsigned int gr_mask;
1927 unsigned int fr_mask;
1928 {
1929 unw_rec_list *ptr = alloc_record (frgr_mem);
1930 ptr->r.record.p.grmask = gr_mask;
1931 ptr->r.record.p.frmask = fr_mask;
1932 return ptr;
1933 }
1934
1935 static unw_rec_list *
1936 output_gr_gr (mask, reg)
1937 unsigned int mask;
1938 unsigned int reg;
1939 {
1940 unw_rec_list *ptr = alloc_record (gr_gr);
1941 ptr->r.record.p.grmask = mask;
1942 ptr->r.record.p.gr = reg;
1943 return ptr;
1944 }
1945
1946 static unw_rec_list *
1947 output_gr_mem (mask)
1948 unsigned int mask;
1949 {
1950 unw_rec_list *ptr = alloc_record (gr_mem);
1951 ptr->r.record.p.rmask = mask;
1952 return ptr;
1953 }
1954
1955 static unw_rec_list *
1956 output_br_mem (unsigned int mask)
1957 {
1958 unw_rec_list *ptr = alloc_record (br_mem);
1959 ptr->r.record.p.brmask = mask;
1960 return ptr;
1961 }
1962
1963 static unw_rec_list *
1964 output_br_gr (save_mask, reg)
1965 unsigned int save_mask;
1966 unsigned int reg;
1967 {
1968 unw_rec_list *ptr = alloc_record (br_gr);
1969 ptr->r.record.p.brmask = save_mask;
1970 ptr->r.record.p.gr = reg;
1971 return ptr;
1972 }
1973
1974 static unw_rec_list *
1975 output_spill_base (offset)
1976 unsigned int offset;
1977 {
1978 unw_rec_list *ptr = alloc_record (spill_base);
1979 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
1980 return ptr;
1981 }
1982
1983 static unw_rec_list *
1984 output_unat_when ()
1985 {
1986 unw_rec_list *ptr = alloc_record (unat_when);
1987 return ptr;
1988 }
1989
1990 static unw_rec_list *
1991 output_unat_gr (gr)
1992 unsigned int gr;
1993 {
1994 unw_rec_list *ptr = alloc_record (unat_gr);
1995 ptr->r.record.p.gr = gr;
1996 return ptr;
1997 }
1998
1999 static unw_rec_list *
2000 output_unat_psprel (offset)
2001 unsigned int offset;
2002 {
2003 unw_rec_list *ptr = alloc_record (unat_psprel);
2004 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2005 return ptr;
2006 }
2007
2008 static unw_rec_list *
2009 output_unat_sprel (offset)
2010 unsigned int offset;
2011 {
2012 unw_rec_list *ptr = alloc_record (unat_sprel);
2013 ptr->r.record.p.spoff = offset / 4;
2014 return ptr;
2015 }
2016
2017 static unw_rec_list *
2018 output_lc_when ()
2019 {
2020 unw_rec_list *ptr = alloc_record (lc_when);
2021 return ptr;
2022 }
2023
2024 static unw_rec_list *
2025 output_lc_gr (gr)
2026 unsigned int gr;
2027 {
2028 unw_rec_list *ptr = alloc_record (lc_gr);
2029 ptr->r.record.p.gr = gr;
2030 return ptr;
2031 }
2032
2033 static unw_rec_list *
2034 output_lc_psprel (offset)
2035 unsigned int offset;
2036 {
2037 unw_rec_list *ptr = alloc_record (lc_psprel);
2038 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2039 return ptr;
2040 }
2041
2042 static unw_rec_list *
2043 output_lc_sprel (offset)
2044 unsigned int offset;
2045 {
2046 unw_rec_list *ptr = alloc_record (lc_sprel);
2047 ptr->r.record.p.spoff = offset / 4;
2048 return ptr;
2049 }
2050
2051 static unw_rec_list *
2052 output_fpsr_when ()
2053 {
2054 unw_rec_list *ptr = alloc_record (fpsr_when);
2055 return ptr;
2056 }
2057
2058 static unw_rec_list *
2059 output_fpsr_gr (gr)
2060 unsigned int gr;
2061 {
2062 unw_rec_list *ptr = alloc_record (fpsr_gr);
2063 ptr->r.record.p.gr = gr;
2064 return ptr;
2065 }
2066
2067 static unw_rec_list *
2068 output_fpsr_psprel (offset)
2069 unsigned int offset;
2070 {
2071 unw_rec_list *ptr = alloc_record (fpsr_psprel);
2072 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2073 return ptr;
2074 }
2075
2076 static unw_rec_list *
2077 output_fpsr_sprel (offset)
2078 unsigned int offset;
2079 {
2080 unw_rec_list *ptr = alloc_record (fpsr_sprel);
2081 ptr->r.record.p.spoff = offset / 4;
2082 return ptr;
2083 }
2084
2085 static unw_rec_list *
2086 output_priunat_when_gr ()
2087 {
2088 unw_rec_list *ptr = alloc_record (priunat_when_gr);
2089 return ptr;
2090 }
2091
2092 static unw_rec_list *
2093 output_priunat_when_mem ()
2094 {
2095 unw_rec_list *ptr = alloc_record (priunat_when_mem);
2096 return ptr;
2097 }
2098
2099 static unw_rec_list *
2100 output_priunat_gr (gr)
2101 unsigned int gr;
2102 {
2103 unw_rec_list *ptr = alloc_record (priunat_gr);
2104 ptr->r.record.p.gr = gr;
2105 return ptr;
2106 }
2107
2108 static unw_rec_list *
2109 output_priunat_psprel (offset)
2110 unsigned int offset;
2111 {
2112 unw_rec_list *ptr = alloc_record (priunat_psprel);
2113 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2114 return ptr;
2115 }
2116
2117 static unw_rec_list *
2118 output_priunat_sprel (offset)
2119 unsigned int offset;
2120 {
2121 unw_rec_list *ptr = alloc_record (priunat_sprel);
2122 ptr->r.record.p.spoff = offset / 4;
2123 return ptr;
2124 }
2125
2126 static unw_rec_list *
2127 output_bsp_when ()
2128 {
2129 unw_rec_list *ptr = alloc_record (bsp_when);
2130 return ptr;
2131 }
2132
2133 static unw_rec_list *
2134 output_bsp_gr (gr)
2135 unsigned int gr;
2136 {
2137 unw_rec_list *ptr = alloc_record (bsp_gr);
2138 ptr->r.record.p.gr = gr;
2139 return ptr;
2140 }
2141
2142 static unw_rec_list *
2143 output_bsp_psprel (offset)
2144 unsigned int offset;
2145 {
2146 unw_rec_list *ptr = alloc_record (bsp_psprel);
2147 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2148 return ptr;
2149 }
2150
2151 static unw_rec_list *
2152 output_bsp_sprel (offset)
2153 unsigned int offset;
2154 {
2155 unw_rec_list *ptr = alloc_record (bsp_sprel);
2156 ptr->r.record.p.spoff = offset / 4;
2157 return ptr;
2158 }
2159
2160 static unw_rec_list *
2161 output_bspstore_when ()
2162 {
2163 unw_rec_list *ptr = alloc_record (bspstore_when);
2164 return ptr;
2165 }
2166
2167 static unw_rec_list *
2168 output_bspstore_gr (gr)
2169 unsigned int gr;
2170 {
2171 unw_rec_list *ptr = alloc_record (bspstore_gr);
2172 ptr->r.record.p.gr = gr;
2173 return ptr;
2174 }
2175
2176 static unw_rec_list *
2177 output_bspstore_psprel (offset)
2178 unsigned int offset;
2179 {
2180 unw_rec_list *ptr = alloc_record (bspstore_psprel);
2181 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2182 return ptr;
2183 }
2184
2185 static unw_rec_list *
2186 output_bspstore_sprel (offset)
2187 unsigned int offset;
2188 {
2189 unw_rec_list *ptr = alloc_record (bspstore_sprel);
2190 ptr->r.record.p.spoff = offset / 4;
2191 return ptr;
2192 }
2193
2194 static unw_rec_list *
2195 output_rnat_when ()
2196 {
2197 unw_rec_list *ptr = alloc_record (rnat_when);
2198 return ptr;
2199 }
2200
2201 static unw_rec_list *
2202 output_rnat_gr (gr)
2203 unsigned int gr;
2204 {
2205 unw_rec_list *ptr = alloc_record (rnat_gr);
2206 ptr->r.record.p.gr = gr;
2207 return ptr;
2208 }
2209
2210 static unw_rec_list *
2211 output_rnat_psprel (offset)
2212 unsigned int offset;
2213 {
2214 unw_rec_list *ptr = alloc_record (rnat_psprel);
2215 ptr->r.record.p.pspoff = ENCODED_PSP_OFFSET (offset);
2216 return ptr;
2217 }
2218
2219 static unw_rec_list *
2220 output_rnat_sprel (offset)
2221 unsigned int offset;
2222 {
2223 unw_rec_list *ptr = alloc_record (rnat_sprel);
2224 ptr->r.record.p.spoff = offset / 4;
2225 return ptr;
2226 }
2227
2228 static unw_rec_list *
2229 output_unwabi (abi, context)
2230 unsigned long abi;
2231 unsigned long context;
2232 {
2233 unw_rec_list *ptr = alloc_record (unwabi);
2234 ptr->r.record.p.abi = abi;
2235 ptr->r.record.p.context = context;
2236 return ptr;
2237 }
2238
2239 static unw_rec_list *
2240 output_epilogue (unsigned long ecount)
2241 {
2242 unw_rec_list *ptr = alloc_record (epilogue);
2243 ptr->r.record.b.ecount = ecount;
2244 return ptr;
2245 }
2246
2247 static unw_rec_list *
2248 output_label_state (unsigned long label)
2249 {
2250 unw_rec_list *ptr = alloc_record (label_state);
2251 ptr->r.record.b.label = label;
2252 return ptr;
2253 }
2254
2255 static unw_rec_list *
2256 output_copy_state (unsigned long label)
2257 {
2258 unw_rec_list *ptr = alloc_record (copy_state);
2259 ptr->r.record.b.label = label;
2260 return ptr;
2261 }
2262
2263 static unw_rec_list *
2264 output_spill_psprel (ab, reg, offset)
2265 unsigned int ab;
2266 unsigned int reg;
2267 unsigned int offset;
2268 {
2269 unw_rec_list *ptr = alloc_record (spill_psprel);
2270 ptr->r.record.x.ab = ab;
2271 ptr->r.record.x.reg = reg;
2272 ptr->r.record.x.pspoff = ENCODED_PSP_OFFSET (offset);
2273 return ptr;
2274 }
2275
2276 static unw_rec_list *
2277 output_spill_sprel (ab, reg, offset)
2278 unsigned int ab;
2279 unsigned int reg;
2280 unsigned int offset;
2281 {
2282 unw_rec_list *ptr = alloc_record (spill_sprel);
2283 ptr->r.record.x.ab = ab;
2284 ptr->r.record.x.reg = reg;
2285 ptr->r.record.x.spoff = offset / 4;
2286 return ptr;
2287 }
2288
2289 static unw_rec_list *
2290 output_spill_psprel_p (ab, reg, offset, predicate)
2291 unsigned int ab;
2292 unsigned int reg;
2293 unsigned int offset;
2294 unsigned int predicate;
2295 {
2296 unw_rec_list *ptr = alloc_record (spill_psprel_p);
2297 ptr->r.record.x.ab = ab;
2298 ptr->r.record.x.reg = reg;
2299 ptr->r.record.x.pspoff = ENCODED_PSP_OFFSET (offset);
2300 ptr->r.record.x.qp = predicate;
2301 return ptr;
2302 }
2303
2304 static unw_rec_list *
2305 output_spill_sprel_p (ab, reg, offset, predicate)
2306 unsigned int ab;
2307 unsigned int reg;
2308 unsigned int offset;
2309 unsigned int predicate;
2310 {
2311 unw_rec_list *ptr = alloc_record (spill_sprel_p);
2312 ptr->r.record.x.ab = ab;
2313 ptr->r.record.x.reg = reg;
2314 ptr->r.record.x.spoff = offset / 4;
2315 ptr->r.record.x.qp = predicate;
2316 return ptr;
2317 }
2318
2319 static unw_rec_list *
2320 output_spill_reg (ab, reg, targ_reg, xy)
2321 unsigned int ab;
2322 unsigned int reg;
2323 unsigned int targ_reg;
2324 unsigned int xy;
2325 {
2326 unw_rec_list *ptr = alloc_record (spill_reg);
2327 ptr->r.record.x.ab = ab;
2328 ptr->r.record.x.reg = reg;
2329 ptr->r.record.x.treg = targ_reg;
2330 ptr->r.record.x.xy = xy;
2331 return ptr;
2332 }
2333
2334 static unw_rec_list *
2335 output_spill_reg_p (ab, reg, targ_reg, xy, predicate)
2336 unsigned int ab;
2337 unsigned int reg;
2338 unsigned int targ_reg;
2339 unsigned int xy;
2340 unsigned int predicate;
2341 {
2342 unw_rec_list *ptr = alloc_record (spill_reg_p);
2343 ptr->r.record.x.ab = ab;
2344 ptr->r.record.x.reg = reg;
2345 ptr->r.record.x.treg = targ_reg;
2346 ptr->r.record.x.xy = xy;
2347 ptr->r.record.x.qp = predicate;
2348 return ptr;
2349 }
2350
2351 /* Given a unw_rec_list process the correct format with the
2352 specified function. */
2353
2354 static void
2355 process_one_record (ptr, f)
2356 unw_rec_list *ptr;
2357 vbyte_func f;
2358 {
2359 unsigned long fr_mask, gr_mask;
2360
2361 switch (ptr->r.type)
2362 {
2363 /* This is a dummy record that takes up no space in the output. */
2364 case endp:
2365 break;
2366
2367 case gr_mem:
2368 case fr_mem:
2369 case br_mem:
2370 case frgr_mem:
2371 /* These are taken care of by prologue/prologue_gr. */
2372 break;
2373
2374 case prologue_gr:
2375 case prologue:
2376 if (ptr->r.type == prologue_gr)
2377 output_R2_format (f, ptr->r.record.r.grmask,
2378 ptr->r.record.r.grsave, ptr->r.record.r.rlen);
2379 else
2380 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2381
2382 /* Output descriptor(s) for union of register spills (if any). */
2383 gr_mask = ptr->r.record.r.mask.gr_mem;
2384 fr_mask = ptr->r.record.r.mask.fr_mem;
2385 if (fr_mask)
2386 {
2387 if ((fr_mask & ~0xfUL) == 0)
2388 output_P6_format (f, fr_mem, fr_mask);
2389 else
2390 {
2391 output_P5_format (f, gr_mask, fr_mask);
2392 gr_mask = 0;
2393 }
2394 }
2395 if (gr_mask)
2396 output_P6_format (f, gr_mem, gr_mask);
2397 if (ptr->r.record.r.mask.br_mem)
2398 output_P1_format (f, ptr->r.record.r.mask.br_mem);
2399
2400 /* output imask descriptor if necessary: */
2401 if (ptr->r.record.r.mask.i)
2402 output_P4_format (f, ptr->r.record.r.mask.i,
2403 ptr->r.record.r.imask_size);
2404 break;
2405
2406 case body:
2407 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2408 break;
2409 case mem_stack_f:
2410 case mem_stack_v:
2411 output_P7_format (f, ptr->r.type, ptr->r.record.p.t,
2412 ptr->r.record.p.size);
2413 break;
2414 case psp_gr:
2415 case rp_gr:
2416 case pfs_gr:
2417 case preds_gr:
2418 case unat_gr:
2419 case lc_gr:
2420 case fpsr_gr:
2421 case priunat_gr:
2422 case bsp_gr:
2423 case bspstore_gr:
2424 case rnat_gr:
2425 output_P3_format (f, ptr->r.type, ptr->r.record.p.gr);
2426 break;
2427 case rp_br:
2428 output_P3_format (f, rp_br, ptr->r.record.p.br);
2429 break;
2430 case psp_sprel:
2431 output_P7_format (f, psp_sprel, ptr->r.record.p.spoff, 0);
2432 break;
2433 case rp_when:
2434 case pfs_when:
2435 case preds_when:
2436 case unat_when:
2437 case lc_when:
2438 case fpsr_when:
2439 output_P7_format (f, ptr->r.type, ptr->r.record.p.t, 0);
2440 break;
2441 case rp_psprel:
2442 case pfs_psprel:
2443 case preds_psprel:
2444 case unat_psprel:
2445 case lc_psprel:
2446 case fpsr_psprel:
2447 case spill_base:
2448 output_P7_format (f, ptr->r.type, ptr->r.record.p.pspoff, 0);
2449 break;
2450 case rp_sprel:
2451 case pfs_sprel:
2452 case preds_sprel:
2453 case unat_sprel:
2454 case lc_sprel:
2455 case fpsr_sprel:
2456 case priunat_sprel:
2457 case bsp_sprel:
2458 case bspstore_sprel:
2459 case rnat_sprel:
2460 output_P8_format (f, ptr->r.type, ptr->r.record.p.spoff);
2461 break;
2462 case gr_gr:
2463 output_P9_format (f, ptr->r.record.p.grmask, ptr->r.record.p.gr);
2464 break;
2465 case br_gr:
2466 output_P2_format (f, ptr->r.record.p.brmask, ptr->r.record.p.gr);
2467 break;
2468 case spill_mask:
2469 as_bad ("spill_mask record unimplemented.");
2470 break;
2471 case priunat_when_gr:
2472 case priunat_when_mem:
2473 case bsp_when:
2474 case bspstore_when:
2475 case rnat_when:
2476 output_P8_format (f, ptr->r.type, ptr->r.record.p.t);
2477 break;
2478 case priunat_psprel:
2479 case bsp_psprel:
2480 case bspstore_psprel:
2481 case rnat_psprel:
2482 output_P8_format (f, ptr->r.type, ptr->r.record.p.pspoff);
2483 break;
2484 case unwabi:
2485 output_P10_format (f, ptr->r.record.p.abi, ptr->r.record.p.context);
2486 break;
2487 case epilogue:
2488 output_B3_format (f, ptr->r.record.b.ecount, ptr->r.record.b.t);
2489 break;
2490 case label_state:
2491 case copy_state:
2492 output_B4_format (f, ptr->r.type, ptr->r.record.b.label);
2493 break;
2494 case spill_psprel:
2495 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2496 ptr->r.record.x.reg, ptr->r.record.x.t,
2497 ptr->r.record.x.pspoff);
2498 break;
2499 case spill_sprel:
2500 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2501 ptr->r.record.x.reg, ptr->r.record.x.t,
2502 ptr->r.record.x.spoff);
2503 break;
2504 case spill_reg:
2505 output_X2_format (f, ptr->r.record.x.ab, ptr->r.record.x.reg,
2506 ptr->r.record.x.xy >> 1, ptr->r.record.x.xy,
2507 ptr->r.record.x.treg, ptr->r.record.x.t);
2508 break;
2509 case spill_psprel_p:
2510 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2511 ptr->r.record.x.ab, ptr->r.record.x.reg,
2512 ptr->r.record.x.t, ptr->r.record.x.pspoff);
2513 break;
2514 case spill_sprel_p:
2515 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2516 ptr->r.record.x.ab, ptr->r.record.x.reg,
2517 ptr->r.record.x.t, ptr->r.record.x.spoff);
2518 break;
2519 case spill_reg_p:
2520 output_X4_format (f, ptr->r.record.x.qp, ptr->r.record.x.ab,
2521 ptr->r.record.x.reg, ptr->r.record.x.xy >> 1,
2522 ptr->r.record.x.xy, ptr->r.record.x.treg,
2523 ptr->r.record.x.t);
2524 break;
2525 default:
2526 as_bad ("record_type_not_valid");
2527 break;
2528 }
2529 }
2530
2531 /* Given a unw_rec_list list, process all the records with
2532 the specified function. */
2533 static void
2534 process_unw_records (list, f)
2535 unw_rec_list *list;
2536 vbyte_func f;
2537 {
2538 unw_rec_list *ptr;
2539 for (ptr = list; ptr; ptr = ptr->next)
2540 process_one_record (ptr, f);
2541 }
2542
2543 /* Determine the size of a record list in bytes. */
2544 static int
2545 calc_record_size (list)
2546 unw_rec_list *list;
2547 {
2548 vbyte_count = 0;
2549 process_unw_records (list, count_output);
2550 return vbyte_count;
2551 }
2552
2553 /* Update IMASK bitmask to reflect the fact that one or more registers
2554 of type TYPE are saved starting at instruction with index T. If N
2555 bits are set in REGMASK, it is assumed that instructions T through
2556 T+N-1 save these registers.
2557
2558 TYPE values:
2559 0: no save
2560 1: instruction saves next fp reg
2561 2: instruction saves next general reg
2562 3: instruction saves next branch reg */
2563 static void
2564 set_imask (region, regmask, t, type)
2565 unw_rec_list *region;
2566 unsigned long regmask;
2567 unsigned long t;
2568 unsigned int type;
2569 {
2570 unsigned char *imask;
2571 unsigned long imask_size;
2572 unsigned int i;
2573 int pos;
2574
2575 imask = region->r.record.r.mask.i;
2576 imask_size = region->r.record.r.imask_size;
2577 if (!imask)
2578 {
2579 imask_size = (region->r.record.r.rlen * 2 + 7) / 8 + 1;
2580 imask = xmalloc (imask_size);
2581 memset (imask, 0, imask_size);
2582
2583 region->r.record.r.imask_size = imask_size;
2584 region->r.record.r.mask.i = imask;
2585 }
2586
2587 i = (t / 4) + 1;
2588 pos = 2 * (3 - t % 4);
2589 while (regmask)
2590 {
2591 if (i >= imask_size)
2592 {
2593 as_bad ("Ignoring attempt to spill beyond end of region");
2594 return;
2595 }
2596
2597 imask[i] |= (type & 0x3) << pos;
2598
2599 regmask &= (regmask - 1);
2600 pos -= 2;
2601 if (pos < 0)
2602 {
2603 pos = 0;
2604 ++i;
2605 }
2606 }
2607 }
2608
2609 /* Return the number of instruction slots from FIRST_ADDR to SLOT_ADDR.
2610 SLOT_FRAG is the frag containing SLOT_ADDR, and FIRST_FRAG is the frag
2611 containing FIRST_ADDR. If BEFORE_RELAX, then we use worst-case estimates
2612 for frag sizes. */
2613
2614 unsigned long
2615 slot_index (slot_addr, slot_frag, first_addr, first_frag, before_relax)
2616 unsigned long slot_addr;
2617 fragS *slot_frag;
2618 unsigned long first_addr;
2619 fragS *first_frag;
2620 int before_relax;
2621 {
2622 unsigned long index = 0;
2623
2624 /* First time we are called, the initial address and frag are invalid. */
2625 if (first_addr == 0)
2626 return 0;
2627
2628 /* If the two addresses are in different frags, then we need to add in
2629 the remaining size of this frag, and then the entire size of intermediate
2630 frags. */
2631 while (slot_frag != first_frag)
2632 {
2633 unsigned long start_addr = (unsigned long) &first_frag->fr_literal;
2634
2635 if (! before_relax)
2636 {
2637 /* We can get the final addresses only during and after
2638 relaxation. */
2639 if (first_frag->fr_next && first_frag->fr_next->fr_address)
2640 index += 3 * ((first_frag->fr_next->fr_address
2641 - first_frag->fr_address
2642 - first_frag->fr_fix) >> 4);
2643 }
2644 else
2645 /* We don't know what the final addresses will be. We try our
2646 best to estimate. */
2647 switch (first_frag->fr_type)
2648 {
2649 default:
2650 break;
2651
2652 case rs_space:
2653 as_fatal ("only constant space allocation is supported");
2654 break;
2655
2656 case rs_align:
2657 case rs_align_code:
2658 case rs_align_test:
2659 /* Take alignment into account. Assume the worst case
2660 before relaxation. */
2661 index += 3 * ((1 << first_frag->fr_offset) >> 4);
2662 break;
2663
2664 case rs_org:
2665 if (first_frag->fr_symbol)
2666 {
2667 as_fatal ("only constant offsets are supported");
2668 break;
2669 }
2670 case rs_fill:
2671 index += 3 * (first_frag->fr_offset >> 4);
2672 break;
2673 }
2674
2675 /* Add in the full size of the frag converted to instruction slots. */
2676 index += 3 * (first_frag->fr_fix >> 4);
2677 /* Subtract away the initial part before first_addr. */
2678 index -= (3 * ((first_addr >> 4) - (start_addr >> 4))
2679 + ((first_addr & 0x3) - (start_addr & 0x3)));
2680
2681 /* Move to the beginning of the next frag. */
2682 first_frag = first_frag->fr_next;
2683 first_addr = (unsigned long) &first_frag->fr_literal;
2684 }
2685
2686 /* Add in the used part of the last frag. */
2687 index += (3 * ((slot_addr >> 4) - (first_addr >> 4))
2688 + ((slot_addr & 0x3) - (first_addr & 0x3)));
2689 return index;
2690 }
2691
2692 /* Optimize unwind record directives. */
2693
2694 static unw_rec_list *
2695 optimize_unw_records (list)
2696 unw_rec_list *list;
2697 {
2698 if (!list)
2699 return NULL;
2700
2701 /* If the only unwind record is ".prologue" or ".prologue" followed
2702 by ".body", then we can optimize the unwind directives away. */
2703 if (list->r.type == prologue
2704 && (list->next->r.type == endp
2705 || (list->next->r.type == body && list->next->next->r.type == endp)))
2706 return NULL;
2707
2708 return list;
2709 }
2710
2711 /* Given a complete record list, process any records which have
2712 unresolved fields, (ie length counts for a prologue). After
2713 this has been run, all necessary information should be available
2714 within each record to generate an image. */
2715
2716 static void
2717 fixup_unw_records (list, before_relax)
2718 unw_rec_list *list;
2719 int before_relax;
2720 {
2721 unw_rec_list *ptr, *region = 0;
2722 unsigned long first_addr = 0, rlen = 0, t;
2723 fragS *first_frag = 0;
2724
2725 for (ptr = list; ptr; ptr = ptr->next)
2726 {
2727 if (ptr->slot_number == SLOT_NUM_NOT_SET)
2728 as_bad (" Insn slot not set in unwind record.");
2729 t = slot_index (ptr->slot_number, ptr->slot_frag,
2730 first_addr, first_frag, before_relax);
2731 switch (ptr->r.type)
2732 {
2733 case prologue:
2734 case prologue_gr:
2735 case body:
2736 {
2737 unw_rec_list *last;
2738 int size;
2739 unsigned long last_addr = 0;
2740 fragS *last_frag = NULL;
2741
2742 first_addr = ptr->slot_number;
2743 first_frag = ptr->slot_frag;
2744 /* Find either the next body/prologue start, or the end of
2745 the function, and determine the size of the region. */
2746 for (last = ptr->next; last != NULL; last = last->next)
2747 if (last->r.type == prologue || last->r.type == prologue_gr
2748 || last->r.type == body || last->r.type == endp)
2749 {
2750 last_addr = last->slot_number;
2751 last_frag = last->slot_frag;
2752 break;
2753 }
2754 size = slot_index (last_addr, last_frag, first_addr, first_frag,
2755 before_relax);
2756 rlen = ptr->r.record.r.rlen = size;
2757 if (ptr->r.type == body)
2758 /* End of region. */
2759 region = 0;
2760 else
2761 region = ptr;
2762 break;
2763 }
2764 case epilogue:
2765 if (t < rlen)
2766 ptr->r.record.b.t = rlen - 1 - t;
2767 else
2768 /* This happens when a memory-stack-less procedure uses a
2769 ".restore sp" directive at the end of a region to pop
2770 the frame state. */
2771 ptr->r.record.b.t = 0;
2772 break;
2773
2774 case mem_stack_f:
2775 case mem_stack_v:
2776 case rp_when:
2777 case pfs_when:
2778 case preds_when:
2779 case unat_when:
2780 case lc_when:
2781 case fpsr_when:
2782 case priunat_when_gr:
2783 case priunat_when_mem:
2784 case bsp_when:
2785 case bspstore_when:
2786 case rnat_when:
2787 ptr->r.record.p.t = t;
2788 break;
2789
2790 case spill_reg:
2791 case spill_sprel:
2792 case spill_psprel:
2793 case spill_reg_p:
2794 case spill_sprel_p:
2795 case spill_psprel_p:
2796 ptr->r.record.x.t = t;
2797 break;
2798
2799 case frgr_mem:
2800 if (!region)
2801 {
2802 as_bad ("frgr_mem record before region record!");
2803 return;
2804 }
2805 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
2806 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
2807 set_imask (region, ptr->r.record.p.frmask, t, 1);
2808 set_imask (region, ptr->r.record.p.grmask, t, 2);
2809 break;
2810 case fr_mem:
2811 if (!region)
2812 {
2813 as_bad ("fr_mem record before region record!");
2814 return;
2815 }
2816 region->r.record.r.mask.fr_mem |= ptr->r.record.p.rmask;
2817 set_imask (region, ptr->r.record.p.rmask, t, 1);
2818 break;
2819 case gr_mem:
2820 if (!region)
2821 {
2822 as_bad ("gr_mem record before region record!");
2823 return;
2824 }
2825 region->r.record.r.mask.gr_mem |= ptr->r.record.p.rmask;
2826 set_imask (region, ptr->r.record.p.rmask, t, 2);
2827 break;
2828 case br_mem:
2829 if (!region)
2830 {
2831 as_bad ("br_mem record before region record!");
2832 return;
2833 }
2834 region->r.record.r.mask.br_mem |= ptr->r.record.p.brmask;
2835 set_imask (region, ptr->r.record.p.brmask, t, 3);
2836 break;
2837
2838 case gr_gr:
2839 if (!region)
2840 {
2841 as_bad ("gr_gr record before region record!");
2842 return;
2843 }
2844 set_imask (region, ptr->r.record.p.grmask, t, 2);
2845 break;
2846 case br_gr:
2847 if (!region)
2848 {
2849 as_bad ("br_gr record before region record!");
2850 return;
2851 }
2852 set_imask (region, ptr->r.record.p.brmask, t, 3);
2853 break;
2854
2855 default:
2856 break;
2857 }
2858 }
2859 }
2860
2861 /* Estimate the size of a frag before relaxing. We only have one type of frag
2862 to handle here, which is the unwind info frag. */
2863
2864 int
2865 ia64_estimate_size_before_relax (fragS *frag,
2866 asection *segtype ATTRIBUTE_UNUSED)
2867 {
2868 unw_rec_list *list;
2869 int len, size, pad;
2870
2871 /* ??? This code is identical to the first part of ia64_convert_frag. */
2872 list = (unw_rec_list *) frag->fr_opcode;
2873 fixup_unw_records (list, 0);
2874
2875 len = calc_record_size (list);
2876 /* pad to pointer-size boundary. */
2877 pad = len % md.pointer_size;
2878 if (pad != 0)
2879 len += md.pointer_size - pad;
2880 /* Add 8 for the header. */
2881 size = len + 8;
2882 /* Add a pointer for the personality offset. */
2883 if (frag->fr_offset)
2884 size += md.pointer_size;
2885
2886 /* fr_var carries the max_chars that we created the fragment with.
2887 We must, of course, have allocated enough memory earlier. */
2888 assert (frag->fr_var >= size);
2889
2890 return frag->fr_fix + size;
2891 }
2892
2893 /* This function converts a rs_machine_dependent variant frag into a
2894 normal fill frag with the unwind image from the the record list. */
2895 void
2896 ia64_convert_frag (fragS *frag)
2897 {
2898 unw_rec_list *list;
2899 int len, size, pad;
2900 valueT flag_value;
2901
2902 /* ??? This code is identical to ia64_estimate_size_before_relax. */
2903 list = (unw_rec_list *) frag->fr_opcode;
2904 fixup_unw_records (list, 0);
2905
2906 len = calc_record_size (list);
2907 /* pad to pointer-size boundary. */
2908 pad = len % md.pointer_size;
2909 if (pad != 0)
2910 len += md.pointer_size - pad;
2911 /* Add 8 for the header. */
2912 size = len + 8;
2913 /* Add a pointer for the personality offset. */
2914 if (frag->fr_offset)
2915 size += md.pointer_size;
2916
2917 /* fr_var carries the max_chars that we created the fragment with.
2918 We must, of course, have allocated enough memory earlier. */
2919 assert (frag->fr_var >= size);
2920
2921 /* Initialize the header area. fr_offset is initialized with
2922 unwind.personality_routine. */
2923 if (frag->fr_offset)
2924 {
2925 if (md.flags & EF_IA_64_ABI64)
2926 flag_value = (bfd_vma) 3 << 32;
2927 else
2928 /* 32-bit unwind info block. */
2929 flag_value = (bfd_vma) 0x1003 << 32;
2930 }
2931 else
2932 flag_value = 0;
2933
2934 md_number_to_chars (frag->fr_literal,
2935 (((bfd_vma) 1 << 48) /* Version. */
2936 | flag_value /* U & E handler flags. */
2937 | (len / md.pointer_size)), /* Length. */
2938 8);
2939
2940 /* Skip the header. */
2941 vbyte_mem_ptr = frag->fr_literal + 8;
2942 process_unw_records (list, output_vbyte_mem);
2943
2944 /* Fill the padding bytes with zeros. */
2945 if (pad != 0)
2946 md_number_to_chars (frag->fr_literal + len + 8 - md.pointer_size + pad, 0,
2947 md.pointer_size - pad);
2948
2949 frag->fr_fix += size;
2950 frag->fr_type = rs_fill;
2951 frag->fr_var = 0;
2952 frag->fr_offset = 0;
2953 }
2954
2955 static int
2956 convert_expr_to_ab_reg (e, ab, regp)
2957 expressionS *e;
2958 unsigned int *ab;
2959 unsigned int *regp;
2960 {
2961 unsigned int reg;
2962
2963 if (e->X_op != O_register)
2964 return 0;
2965
2966 reg = e->X_add_number;
2967 if (reg >= (REG_GR + 4) && reg <= (REG_GR + 7))
2968 {
2969 *ab = 0;
2970 *regp = reg - REG_GR;
2971 }
2972 else if ((reg >= (REG_FR + 2) && reg <= (REG_FR + 5))
2973 || (reg >= (REG_FR + 16) && reg <= (REG_FR + 31)))
2974 {
2975 *ab = 1;
2976 *regp = reg - REG_FR;
2977 }
2978 else if (reg >= (REG_BR + 1) && reg <= (REG_BR + 5))
2979 {
2980 *ab = 2;
2981 *regp = reg - REG_BR;
2982 }
2983 else
2984 {
2985 *ab = 3;
2986 switch (reg)
2987 {
2988 case REG_PR: *regp = 0; break;
2989 case REG_PSP: *regp = 1; break;
2990 case REG_PRIUNAT: *regp = 2; break;
2991 case REG_BR + 0: *regp = 3; break;
2992 case REG_AR + AR_BSP: *regp = 4; break;
2993 case REG_AR + AR_BSPSTORE: *regp = 5; break;
2994 case REG_AR + AR_RNAT: *regp = 6; break;
2995 case REG_AR + AR_UNAT: *regp = 7; break;
2996 case REG_AR + AR_FPSR: *regp = 8; break;
2997 case REG_AR + AR_PFS: *regp = 9; break;
2998 case REG_AR + AR_LC: *regp = 10; break;
2999
3000 default:
3001 return 0;
3002 }
3003 }
3004 return 1;
3005 }
3006
3007 static int
3008 convert_expr_to_xy_reg (e, xy, regp)
3009 expressionS *e;
3010 unsigned int *xy;
3011 unsigned int *regp;
3012 {
3013 unsigned int reg;
3014
3015 if (e->X_op != O_register)
3016 return 0;
3017
3018 reg = e->X_add_number;
3019
3020 if (/* reg >= REG_GR && */ reg <= (REG_GR + 127))
3021 {
3022 *xy = 0;
3023 *regp = reg - REG_GR;
3024 }
3025 else if (reg >= REG_FR && reg <= (REG_FR + 127))
3026 {
3027 *xy = 1;
3028 *regp = reg - REG_FR;
3029 }
3030 else if (reg >= REG_BR && reg <= (REG_BR + 7))
3031 {
3032 *xy = 2;
3033 *regp = reg - REG_BR;
3034 }
3035 else
3036 return -1;
3037 return 1;
3038 }
3039
3040 static void
3041 dot_align (int arg)
3042 {
3043 /* The current frag is an alignment frag. */
3044 align_frag = frag_now;
3045 s_align_bytes (arg);
3046 }
3047
3048 static void
3049 dot_radix (dummy)
3050 int dummy ATTRIBUTE_UNUSED;
3051 {
3052 int radix;
3053
3054 SKIP_WHITESPACE ();
3055 radix = *input_line_pointer++;
3056
3057 if (radix != 'C' && !is_end_of_line[(unsigned char) radix])
3058 {
3059 as_bad ("Radix `%c' unsupported", *input_line_pointer);
3060 ignore_rest_of_line ();
3061 return;
3062 }
3063 }
3064
3065 /* Helper function for .loc directives. If the assembler is not generating
3066 line number info, then we need to remember which instructions have a .loc
3067 directive, and only call dwarf2_gen_line_info for those instructions. */
3068
3069 static void
3070 dot_loc (int x)
3071 {
3072 CURR_SLOT.loc_directive_seen = 1;
3073 dwarf2_directive_loc (x);
3074 }
3075
3076 /* .sbss, .bss etc. are macros that expand into ".section SECNAME". */
3077 static void
3078 dot_special_section (which)
3079 int which;
3080 {
3081 set_section ((char *) special_section_name[which]);
3082 }
3083
3084 /* Return -1 for warning and 0 for error. */
3085
3086 static int
3087 unwind_diagnostic (const char * region, const char *directive)
3088 {
3089 if (md.unwind_check == unwind_check_warning)
3090 {
3091 as_warn (".%s outside of %s", directive, region);
3092 return -1;
3093 }
3094 else
3095 {
3096 as_bad (".%s outside of %s", directive, region);
3097 ignore_rest_of_line ();
3098 return 0;
3099 }
3100 }
3101
3102 /* Return 1 if a directive is in a procedure, -1 if a directive isn't in
3103 a procedure but the unwind directive check is set to warning, 0 if
3104 a directive isn't in a procedure and the unwind directive check is set
3105 to error. */
3106
3107 static int
3108 in_procedure (const char *directive)
3109 {
3110 if (unwind.proc_start
3111 && (!unwind.saved_text_seg || strcmp (directive, "endp") == 0))
3112 return 1;
3113 return unwind_diagnostic ("procedure", directive);
3114 }
3115
3116 /* Return 1 if a directive is in a prologue, -1 if a directive isn't in
3117 a prologue but the unwind directive check is set to warning, 0 if
3118 a directive isn't in a prologue and the unwind directive check is set
3119 to error. */
3120
3121 static int
3122 in_prologue (const char *directive)
3123 {
3124 int in = in_procedure (directive);
3125 if (in)
3126 {
3127 /* We are in a procedure. Check if we are in a prologue. */
3128 if (unwind.prologue)
3129 return 1;
3130 /* We only want to issue one message. */
3131 if (in == 1)
3132 return unwind_diagnostic ("prologue", directive);
3133 else
3134 return -1;
3135 }
3136 return 0;
3137 }
3138
3139 /* Return 1 if a directive is in a body, -1 if a directive isn't in
3140 a body but the unwind directive check is set to warning, 0 if
3141 a directive isn't in a body and the unwind directive check is set
3142 to error. */
3143
3144 static int
3145 in_body (const char *directive)
3146 {
3147 int in = in_procedure (directive);
3148 if (in)
3149 {
3150 /* We are in a procedure. Check if we are in a body. */
3151 if (unwind.body)
3152 return 1;
3153 /* We only want to issue one message. */
3154 if (in == 1)
3155 return unwind_diagnostic ("body region", directive);
3156 else
3157 return -1;
3158 }
3159 return 0;
3160 }
3161
3162 static void
3163 add_unwind_entry (ptr)
3164 unw_rec_list *ptr;
3165 {
3166 if (unwind.tail)
3167 unwind.tail->next = ptr;
3168 else
3169 unwind.list = ptr;
3170 unwind.tail = ptr;
3171
3172 /* The current entry can in fact be a chain of unwind entries. */
3173 if (unwind.current_entry == NULL)
3174 unwind.current_entry = ptr;
3175 }
3176
3177 static void
3178 dot_fframe (dummy)
3179 int dummy ATTRIBUTE_UNUSED;
3180 {
3181 expressionS e;
3182
3183 if (!in_prologue ("fframe"))
3184 return;
3185
3186 parse_operand (&e);
3187
3188 if (e.X_op != O_constant)
3189 as_bad ("Operand to .fframe must be a constant");
3190 else
3191 add_unwind_entry (output_mem_stack_f (e.X_add_number));
3192 }
3193
3194 static void
3195 dot_vframe (dummy)
3196 int dummy ATTRIBUTE_UNUSED;
3197 {
3198 expressionS e;
3199 unsigned reg;
3200
3201 if (!in_prologue ("vframe"))
3202 return;
3203
3204 parse_operand (&e);
3205 reg = e.X_add_number - REG_GR;
3206 if (e.X_op == O_register && reg < 128)
3207 {
3208 add_unwind_entry (output_mem_stack_v ());
3209 if (! (unwind.prologue_mask & 2))
3210 add_unwind_entry (output_psp_gr (reg));
3211 }
3212 else
3213 as_bad ("First operand to .vframe must be a general register");
3214 }
3215
3216 static void
3217 dot_vframesp (dummy)
3218 int dummy ATTRIBUTE_UNUSED;
3219 {
3220 expressionS e;
3221
3222 if (!in_prologue ("vframesp"))
3223 return;
3224
3225 parse_operand (&e);
3226 if (e.X_op == O_constant)
3227 {
3228 add_unwind_entry (output_mem_stack_v ());
3229 add_unwind_entry (output_psp_sprel (e.X_add_number));
3230 }
3231 else
3232 as_bad ("Operand to .vframesp must be a constant (sp-relative offset)");
3233 }
3234
3235 static void
3236 dot_vframepsp (dummy)
3237 int dummy ATTRIBUTE_UNUSED;
3238 {
3239 expressionS e;
3240
3241 if (!in_prologue ("vframepsp"))
3242 return;
3243
3244 parse_operand (&e);
3245 if (e.X_op == O_constant)
3246 {
3247 add_unwind_entry (output_mem_stack_v ());
3248 add_unwind_entry (output_psp_sprel (e.X_add_number));
3249 }
3250 else
3251 as_bad ("Operand to .vframepsp must be a constant (psp-relative offset)");
3252 }
3253
3254 static void
3255 dot_save (dummy)
3256 int dummy ATTRIBUTE_UNUSED;
3257 {
3258 expressionS e1, e2;
3259 int sep;
3260 int reg1, reg2;
3261
3262 if (!in_prologue ("save"))
3263 return;
3264
3265 sep = parse_operand (&e1);
3266 if (sep != ',')
3267 as_bad ("No second operand to .save");
3268 sep = parse_operand (&e2);
3269
3270 reg1 = e1.X_add_number;
3271 reg2 = e2.X_add_number - REG_GR;
3272
3273 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3274 if (e1.X_op == O_register)
3275 {
3276 if (e2.X_op == O_register && reg2 >= 0 && reg2 < 128)
3277 {
3278 switch (reg1)
3279 {
3280 case REG_AR + AR_BSP:
3281 add_unwind_entry (output_bsp_when ());
3282 add_unwind_entry (output_bsp_gr (reg2));
3283 break;
3284 case REG_AR + AR_BSPSTORE:
3285 add_unwind_entry (output_bspstore_when ());
3286 add_unwind_entry (output_bspstore_gr (reg2));
3287 break;
3288 case REG_AR + AR_RNAT:
3289 add_unwind_entry (output_rnat_when ());
3290 add_unwind_entry (output_rnat_gr (reg2));
3291 break;
3292 case REG_AR + AR_UNAT:
3293 add_unwind_entry (output_unat_when ());
3294 add_unwind_entry (output_unat_gr (reg2));
3295 break;
3296 case REG_AR + AR_FPSR:
3297 add_unwind_entry (output_fpsr_when ());
3298 add_unwind_entry (output_fpsr_gr (reg2));
3299 break;
3300 case REG_AR + AR_PFS:
3301 add_unwind_entry (output_pfs_when ());
3302 if (! (unwind.prologue_mask & 4))
3303 add_unwind_entry (output_pfs_gr (reg2));
3304 break;
3305 case REG_AR + AR_LC:
3306 add_unwind_entry (output_lc_when ());
3307 add_unwind_entry (output_lc_gr (reg2));
3308 break;
3309 case REG_BR:
3310 add_unwind_entry (output_rp_when ());
3311 if (! (unwind.prologue_mask & 8))
3312 add_unwind_entry (output_rp_gr (reg2));
3313 break;
3314 case REG_PR:
3315 add_unwind_entry (output_preds_when ());
3316 if (! (unwind.prologue_mask & 1))
3317 add_unwind_entry (output_preds_gr (reg2));
3318 break;
3319 case REG_PRIUNAT:
3320 add_unwind_entry (output_priunat_when_gr ());
3321 add_unwind_entry (output_priunat_gr (reg2));
3322 break;
3323 default:
3324 as_bad ("First operand not a valid register");
3325 }
3326 }
3327 else
3328 as_bad (" Second operand not a valid register");
3329 }
3330 else
3331 as_bad ("First operand not a register");
3332 }
3333
3334 static void
3335 dot_restore (dummy)
3336 int dummy ATTRIBUTE_UNUSED;
3337 {
3338 expressionS e1, e2;
3339 unsigned long ecount; /* # of _additional_ regions to pop */
3340 int sep;
3341
3342 if (!in_body ("restore"))
3343 return;
3344
3345 sep = parse_operand (&e1);
3346 if (e1.X_op != O_register || e1.X_add_number != REG_GR + 12)
3347 {
3348 as_bad ("First operand to .restore must be stack pointer (sp)");
3349 return;
3350 }
3351
3352 if (sep == ',')
3353 {
3354 parse_operand (&e2);
3355 if (e2.X_op != O_constant || e2.X_add_number < 0)
3356 {
3357 as_bad ("Second operand to .restore must be a constant >= 0");
3358 return;
3359 }
3360 ecount = e2.X_add_number;
3361 }
3362 else
3363 ecount = unwind.prologue_count - 1;
3364
3365 if (ecount >= unwind.prologue_count)
3366 {
3367 as_bad ("Epilogue count of %lu exceeds number of nested prologues (%u)",
3368 ecount + 1, unwind.prologue_count);
3369 return;
3370 }
3371
3372 add_unwind_entry (output_epilogue (ecount));
3373
3374 if (ecount < unwind.prologue_count)
3375 unwind.prologue_count -= ecount + 1;
3376 else
3377 unwind.prologue_count = 0;
3378 }
3379
3380 static void
3381 dot_restorereg (dummy)
3382 int dummy ATTRIBUTE_UNUSED;
3383 {
3384 unsigned int ab, reg;
3385 expressionS e;
3386
3387 if (!in_procedure ("restorereg"))
3388 return;
3389
3390 parse_operand (&e);
3391
3392 if (!convert_expr_to_ab_reg (&e, &ab, &reg))
3393 {
3394 as_bad ("First operand to .restorereg must be a preserved register");
3395 return;
3396 }
3397 add_unwind_entry (output_spill_reg (ab, reg, 0, 0));
3398 }
3399
3400 static void
3401 dot_restorereg_p (dummy)
3402 int dummy ATTRIBUTE_UNUSED;
3403 {
3404 unsigned int qp, ab, reg;
3405 expressionS e1, e2;
3406 int sep;
3407
3408 if (!in_procedure ("restorereg.p"))
3409 return;
3410
3411 sep = parse_operand (&e1);
3412 if (sep != ',')
3413 {
3414 as_bad ("No second operand to .restorereg.p");
3415 return;
3416 }
3417
3418 parse_operand (&e2);
3419
3420 qp = e1.X_add_number - REG_P;
3421 if (e1.X_op != O_register || qp > 63)
3422 {
3423 as_bad ("First operand to .restorereg.p must be a predicate");
3424 return;
3425 }
3426
3427 if (!convert_expr_to_ab_reg (&e2, &ab, &reg))
3428 {
3429 as_bad ("Second operand to .restorereg.p must be a preserved register");
3430 return;
3431 }
3432 add_unwind_entry (output_spill_reg_p (ab, reg, 0, 0, qp));
3433 }
3434
3435 static char *special_linkonce_name[] =
3436 {
3437 ".gnu.linkonce.ia64unw.", ".gnu.linkonce.ia64unwi."
3438 };
3439
3440 static void
3441 start_unwind_section (const segT text_seg, int sec_index, int linkonce_empty)
3442 {
3443 /*
3444 Use a slightly ugly scheme to derive the unwind section names from
3445 the text section name:
3446
3447 text sect. unwind table sect.
3448 name: name: comments:
3449 ---------- ----------------- --------------------------------
3450 .text .IA_64.unwind
3451 .text.foo .IA_64.unwind.text.foo
3452 .foo .IA_64.unwind.foo
3453 .gnu.linkonce.t.foo
3454 .gnu.linkonce.ia64unw.foo
3455 _info .IA_64.unwind_info gas issues error message (ditto)
3456 _infoFOO .IA_64.unwind_infoFOO gas issues error message (ditto)
3457
3458 This mapping is done so that:
3459
3460 (a) An object file with unwind info only in .text will use
3461 unwind section names .IA_64.unwind and .IA_64.unwind_info.
3462 This follows the letter of the ABI and also ensures backwards
3463 compatibility with older toolchains.
3464
3465 (b) An object file with unwind info in multiple text sections
3466 will use separate unwind sections for each text section.
3467 This allows us to properly set the "sh_info" and "sh_link"
3468 fields in SHT_IA_64_UNWIND as required by the ABI and also
3469 lets GNU ld support programs with multiple segments
3470 containing unwind info (as might be the case for certain
3471 embedded applications).
3472
3473 (c) An error is issued if there would be a name clash.
3474 */
3475
3476 const char *text_name, *sec_text_name;
3477 char *sec_name;
3478 const char *prefix = special_section_name [sec_index];
3479 const char *suffix;
3480 size_t prefix_len, suffix_len, sec_name_len;
3481
3482 sec_text_name = segment_name (text_seg);
3483 text_name = sec_text_name;
3484 if (strncmp (text_name, "_info", 5) == 0)
3485 {
3486 as_bad ("Illegal section name `%s' (causes unwind section name clash)",
3487 text_name);
3488 ignore_rest_of_line ();
3489 return;
3490 }
3491 if (strcmp (text_name, ".text") == 0)
3492 text_name = "";
3493
3494 /* Build the unwind section name by appending the (possibly stripped)
3495 text section name to the unwind prefix. */
3496 suffix = text_name;
3497 if (strncmp (text_name, ".gnu.linkonce.t.",
3498 sizeof (".gnu.linkonce.t.") - 1) == 0)
3499 {
3500 prefix = special_linkonce_name [sec_index - SPECIAL_SECTION_UNWIND];
3501 suffix += sizeof (".gnu.linkonce.t.") - 1;
3502 }
3503 else if (linkonce_empty)
3504 return;
3505
3506 prefix_len = strlen (prefix);
3507 suffix_len = strlen (suffix);
3508 sec_name_len = prefix_len + suffix_len;
3509 sec_name = alloca (sec_name_len + 1);
3510 memcpy (sec_name, prefix, prefix_len);
3511 memcpy (sec_name + prefix_len, suffix, suffix_len);
3512 sec_name [sec_name_len] = '\0';
3513
3514 /* Handle COMDAT group. */
3515 if (suffix == text_name && (text_seg->flags & SEC_LINK_ONCE) != 0)
3516 {
3517 char *section;
3518 size_t len, group_name_len;
3519 const char *group_name = elf_group_name (text_seg);
3520
3521 if (group_name == NULL)
3522 {
3523 as_bad ("Group section `%s' has no group signature",
3524 sec_text_name);
3525 ignore_rest_of_line ();
3526 return;
3527 }
3528 /* We have to construct a fake section directive. */
3529 group_name_len = strlen (group_name);
3530 len = (sec_name_len
3531 + 16 /* ,"aG",@progbits, */
3532 + group_name_len /* ,group_name */
3533 + 7); /* ,comdat */
3534
3535 section = alloca (len + 1);
3536 memcpy (section, sec_name, sec_name_len);
3537 memcpy (section + sec_name_len, ",\"aG\",@progbits,", 16);
3538 memcpy (section + sec_name_len + 16, group_name, group_name_len);
3539 memcpy (section + len - 7, ",comdat", 7);
3540 section [len] = '\0';
3541 set_section (section);
3542 }
3543 else
3544 {
3545 set_section (sec_name);
3546 bfd_set_section_flags (stdoutput, now_seg,
3547 SEC_LOAD | SEC_ALLOC | SEC_READONLY);
3548 }
3549
3550 elf_linked_to_section (now_seg) = text_seg;
3551 }
3552
3553 static void
3554 generate_unwind_image (const segT text_seg)
3555 {
3556 int size, pad;
3557 unw_rec_list *list;
3558
3559 /* Mark the end of the unwind info, so that we can compute the size of the
3560 last unwind region. */
3561 add_unwind_entry (output_endp ());
3562
3563 /* Force out pending instructions, to make sure all unwind records have
3564 a valid slot_number field. */
3565 ia64_flush_insns ();
3566
3567 /* Generate the unwind record. */
3568 list = optimize_unw_records (unwind.list);
3569 fixup_unw_records (list, 1);
3570 size = calc_record_size (list);
3571
3572 if (size > 0 || unwind.force_unwind_entry)
3573 {
3574 unwind.force_unwind_entry = 0;
3575 /* pad to pointer-size boundary. */
3576 pad = size % md.pointer_size;
3577 if (pad != 0)
3578 size += md.pointer_size - pad;
3579 /* Add 8 for the header. */
3580 size += 8;
3581 /* Add a pointer for the personality offset. */
3582 if (unwind.personality_routine)
3583 size += md.pointer_size;
3584 }
3585
3586 /* If there are unwind records, switch sections, and output the info. */
3587 if (size != 0)
3588 {
3589 expressionS exp;
3590 bfd_reloc_code_real_type reloc;
3591
3592 start_unwind_section (text_seg, SPECIAL_SECTION_UNWIND_INFO, 0);
3593
3594 /* Make sure the section has 4 byte alignment for ILP32 and
3595 8 byte alignment for LP64. */
3596 frag_align (md.pointer_size_shift, 0, 0);
3597 record_alignment (now_seg, md.pointer_size_shift);
3598
3599 /* Set expression which points to start of unwind descriptor area. */
3600 unwind.info = expr_build_dot ();
3601
3602 frag_var (rs_machine_dependent, size, size, 0, 0,
3603 (offsetT) (long) unwind.personality_routine,
3604 (char *) list);
3605
3606 /* Add the personality address to the image. */
3607 if (unwind.personality_routine != 0)
3608 {
3609 exp.X_op = O_symbol;
3610 exp.X_add_symbol = unwind.personality_routine;
3611 exp.X_add_number = 0;
3612
3613 if (md.flags & EF_IA_64_BE)
3614 {
3615 if (md.flags & EF_IA_64_ABI64)
3616 reloc = BFD_RELOC_IA64_LTOFF_FPTR64MSB;
3617 else
3618 reloc = BFD_RELOC_IA64_LTOFF_FPTR32MSB;
3619 }
3620 else
3621 {
3622 if (md.flags & EF_IA_64_ABI64)
3623 reloc = BFD_RELOC_IA64_LTOFF_FPTR64LSB;
3624 else
3625 reloc = BFD_RELOC_IA64_LTOFF_FPTR32LSB;
3626 }
3627
3628 fix_new_exp (frag_now, frag_now_fix () - md.pointer_size,
3629 md.pointer_size, &exp, 0, reloc);
3630 unwind.personality_routine = 0;
3631 }
3632 }
3633 else
3634 start_unwind_section (text_seg, SPECIAL_SECTION_UNWIND_INFO, 1);
3635
3636 free_saved_prologue_counts ();
3637 unwind.list = unwind.tail = unwind.current_entry = NULL;
3638 }
3639
3640 static void
3641 dot_handlerdata (dummy)
3642 int dummy ATTRIBUTE_UNUSED;
3643 {
3644 if (!in_procedure ("handlerdata"))
3645 return;
3646 unwind.force_unwind_entry = 1;
3647
3648 /* Remember which segment we're in so we can switch back after .endp */
3649 unwind.saved_text_seg = now_seg;
3650 unwind.saved_text_subseg = now_subseg;
3651
3652 /* Generate unwind info into unwind-info section and then leave that
3653 section as the currently active one so dataXX directives go into
3654 the language specific data area of the unwind info block. */
3655 generate_unwind_image (now_seg);
3656 demand_empty_rest_of_line ();
3657 }
3658
3659 static void
3660 dot_unwentry (dummy)
3661 int dummy ATTRIBUTE_UNUSED;
3662 {
3663 if (!in_procedure ("unwentry"))
3664 return;
3665 unwind.force_unwind_entry = 1;
3666 demand_empty_rest_of_line ();
3667 }
3668
3669 static void
3670 dot_altrp (dummy)
3671 int dummy ATTRIBUTE_UNUSED;
3672 {
3673 expressionS e;
3674 unsigned reg;
3675
3676 if (!in_prologue ("altrp"))
3677 return;
3678
3679 parse_operand (&e);
3680 reg = e.X_add_number - REG_BR;
3681 if (e.X_op == O_register && reg < 8)
3682 add_unwind_entry (output_rp_br (reg));
3683 else
3684 as_bad ("First operand not a valid branch register");
3685 }
3686
3687 static void
3688 dot_savemem (psprel)
3689 int psprel;
3690 {
3691 expressionS e1, e2;
3692 int sep;
3693 int reg1, val;
3694
3695 if (!in_prologue (psprel ? "savepsp" : "savesp"))
3696 return;
3697
3698 sep = parse_operand (&e1);
3699 if (sep != ',')
3700 as_bad ("No second operand to .save%ssp", psprel ? "p" : "");
3701 sep = parse_operand (&e2);
3702
3703 reg1 = e1.X_add_number;
3704 val = e2.X_add_number;
3705
3706 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3707 if (e1.X_op == O_register)
3708 {
3709 if (e2.X_op == O_constant)
3710 {
3711 switch (reg1)
3712 {
3713 case REG_AR + AR_BSP:
3714 add_unwind_entry (output_bsp_when ());
3715 add_unwind_entry ((psprel
3716 ? output_bsp_psprel
3717 : output_bsp_sprel) (val));
3718 break;
3719 case REG_AR + AR_BSPSTORE:
3720 add_unwind_entry (output_bspstore_when ());
3721 add_unwind_entry ((psprel
3722 ? output_bspstore_psprel
3723 : output_bspstore_sprel) (val));
3724 break;
3725 case REG_AR + AR_RNAT:
3726 add_unwind_entry (output_rnat_when ());
3727 add_unwind_entry ((psprel
3728 ? output_rnat_psprel
3729 : output_rnat_sprel) (val));
3730 break;
3731 case REG_AR + AR_UNAT:
3732 add_unwind_entry (output_unat_when ());
3733 add_unwind_entry ((psprel
3734 ? output_unat_psprel
3735 : output_unat_sprel) (val));
3736 break;
3737 case REG_AR + AR_FPSR:
3738 add_unwind_entry (output_fpsr_when ());
3739 add_unwind_entry ((psprel
3740 ? output_fpsr_psprel
3741 : output_fpsr_sprel) (val));
3742 break;
3743 case REG_AR + AR_PFS:
3744 add_unwind_entry (output_pfs_when ());
3745 add_unwind_entry ((psprel
3746 ? output_pfs_psprel
3747 : output_pfs_sprel) (val));
3748 break;
3749 case REG_AR + AR_LC:
3750 add_unwind_entry (output_lc_when ());
3751 add_unwind_entry ((psprel
3752 ? output_lc_psprel
3753 : output_lc_sprel) (val));
3754 break;
3755 case REG_BR:
3756 add_unwind_entry (output_rp_when ());
3757 add_unwind_entry ((psprel
3758 ? output_rp_psprel
3759 : output_rp_sprel) (val));
3760 break;
3761 case REG_PR:
3762 add_unwind_entry (output_preds_when ());
3763 add_unwind_entry ((psprel
3764 ? output_preds_psprel
3765 : output_preds_sprel) (val));
3766 break;
3767 case REG_PRIUNAT:
3768 add_unwind_entry (output_priunat_when_mem ());
3769 add_unwind_entry ((psprel
3770 ? output_priunat_psprel
3771 : output_priunat_sprel) (val));
3772 break;
3773 default:
3774 as_bad ("First operand not a valid register");
3775 }
3776 }
3777 else
3778 as_bad (" Second operand not a valid constant");
3779 }
3780 else
3781 as_bad ("First operand not a register");
3782 }
3783
3784 static void
3785 dot_saveg (dummy)
3786 int dummy ATTRIBUTE_UNUSED;
3787 {
3788 expressionS e1, e2;
3789 int sep;
3790
3791 if (!in_prologue ("save.g"))
3792 return;
3793
3794 sep = parse_operand (&e1);
3795 if (sep == ',')
3796 parse_operand (&e2);
3797
3798 if (e1.X_op != O_constant)
3799 as_bad ("First operand to .save.g must be a constant.");
3800 else
3801 {
3802 int grmask = e1.X_add_number;
3803 if (sep != ',')
3804 add_unwind_entry (output_gr_mem (grmask));
3805 else
3806 {
3807 int reg = e2.X_add_number - REG_GR;
3808 if (e2.X_op == O_register && reg >= 0 && reg < 128)
3809 add_unwind_entry (output_gr_gr (grmask, reg));
3810 else
3811 as_bad ("Second operand is an invalid register.");
3812 }
3813 }
3814 }
3815
3816 static void
3817 dot_savef (dummy)
3818 int dummy ATTRIBUTE_UNUSED;
3819 {
3820 expressionS e1;
3821 int sep;
3822
3823 if (!in_prologue ("save.f"))
3824 return;
3825
3826 sep = parse_operand (&e1);
3827
3828 if (e1.X_op != O_constant)
3829 as_bad ("Operand to .save.f must be a constant.");
3830 else
3831 add_unwind_entry (output_fr_mem (e1.X_add_number));
3832 }
3833
3834 static void
3835 dot_saveb (dummy)
3836 int dummy ATTRIBUTE_UNUSED;
3837 {
3838 expressionS e1, e2;
3839 unsigned int reg;
3840 unsigned char sep;
3841 int brmask;
3842
3843 if (!in_prologue ("save.b"))
3844 return;
3845
3846 sep = parse_operand (&e1);
3847 if (e1.X_op != O_constant)
3848 {
3849 as_bad ("First operand to .save.b must be a constant.");
3850 return;
3851 }
3852 brmask = e1.X_add_number;
3853
3854 if (sep == ',')
3855 {
3856 sep = parse_operand (&e2);
3857 reg = e2.X_add_number - REG_GR;
3858 if (e2.X_op != O_register || reg > 127)
3859 {
3860 as_bad ("Second operand to .save.b must be a general register.");
3861 return;
3862 }
3863 add_unwind_entry (output_br_gr (brmask, e2.X_add_number));
3864 }
3865 else
3866 add_unwind_entry (output_br_mem (brmask));
3867
3868 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
3869 demand_empty_rest_of_line ();
3870 }
3871
3872 static void
3873 dot_savegf (dummy)
3874 int dummy ATTRIBUTE_UNUSED;
3875 {
3876 expressionS e1, e2;
3877 int sep;
3878
3879 if (!in_prologue ("save.gf"))
3880 return;
3881
3882 sep = parse_operand (&e1);
3883 if (sep == ',')
3884 parse_operand (&e2);
3885
3886 if (e1.X_op != O_constant || sep != ',' || e2.X_op != O_constant)
3887 as_bad ("Both operands of .save.gf must be constants.");
3888 else
3889 {
3890 int grmask = e1.X_add_number;
3891 int frmask = e2.X_add_number;
3892 add_unwind_entry (output_frgr_mem (grmask, frmask));
3893 }
3894 }
3895
3896 static void
3897 dot_spill (dummy)
3898 int dummy ATTRIBUTE_UNUSED;
3899 {
3900 expressionS e;
3901 unsigned char sep;
3902
3903 if (!in_prologue ("spill"))
3904 return;
3905
3906 sep = parse_operand (&e);
3907 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
3908 demand_empty_rest_of_line ();
3909
3910 if (e.X_op != O_constant)
3911 as_bad ("Operand to .spill must be a constant");
3912 else
3913 add_unwind_entry (output_spill_base (e.X_add_number));
3914 }
3915
3916 static void
3917 dot_spillreg (dummy)
3918 int dummy ATTRIBUTE_UNUSED;
3919 {
3920 int sep, ab, xy, reg, treg;
3921 expressionS e1, e2;
3922
3923 if (!in_procedure ("spillreg"))
3924 return;
3925
3926 sep = parse_operand (&e1);
3927 if (sep != ',')
3928 {
3929 as_bad ("No second operand to .spillreg");
3930 return;
3931 }
3932
3933 parse_operand (&e2);
3934
3935 if (!convert_expr_to_ab_reg (&e1, &ab, &reg))
3936 {
3937 as_bad ("First operand to .spillreg must be a preserved register");
3938 return;
3939 }
3940
3941 if (!convert_expr_to_xy_reg (&e2, &xy, &treg))
3942 {
3943 as_bad ("Second operand to .spillreg must be a register");
3944 return;
3945 }
3946
3947 add_unwind_entry (output_spill_reg (ab, reg, treg, xy));
3948 }
3949
3950 static void
3951 dot_spillmem (psprel)
3952 int psprel;
3953 {
3954 expressionS e1, e2;
3955 int sep, ab, reg;
3956
3957 if (!in_procedure ("spillmem"))
3958 return;
3959
3960 sep = parse_operand (&e1);
3961 if (sep != ',')
3962 {
3963 as_bad ("Second operand missing");
3964 return;
3965 }
3966
3967 parse_operand (&e2);
3968
3969 if (!convert_expr_to_ab_reg (&e1, &ab, &reg))
3970 {
3971 as_bad ("First operand to .spill%s must be a preserved register",
3972 psprel ? "psp" : "sp");
3973 return;
3974 }
3975
3976 if (e2.X_op != O_constant)
3977 {
3978 as_bad ("Second operand to .spill%s must be a constant",
3979 psprel ? "psp" : "sp");
3980 return;
3981 }
3982
3983 if (psprel)
3984 add_unwind_entry (output_spill_psprel (ab, reg, e2.X_add_number));
3985 else
3986 add_unwind_entry (output_spill_sprel (ab, reg, e2.X_add_number));
3987 }
3988
3989 static void
3990 dot_spillreg_p (dummy)
3991 int dummy ATTRIBUTE_UNUSED;
3992 {
3993 int sep, ab, xy, reg, treg;
3994 expressionS e1, e2, e3;
3995 unsigned int qp;
3996
3997 if (!in_procedure ("spillreg.p"))
3998 return;
3999
4000 sep = parse_operand (&e1);
4001 if (sep != ',')
4002 {
4003 as_bad ("No second and third operand to .spillreg.p");
4004 return;
4005 }
4006
4007 sep = parse_operand (&e2);
4008 if (sep != ',')
4009 {
4010 as_bad ("No third operand to .spillreg.p");
4011 return;
4012 }
4013
4014 parse_operand (&e3);
4015
4016 qp = e1.X_add_number - REG_P;
4017
4018 if (e1.X_op != O_register || qp > 63)
4019 {
4020 as_bad ("First operand to .spillreg.p must be a predicate");
4021 return;
4022 }
4023
4024 if (!convert_expr_to_ab_reg (&e2, &ab, &reg))
4025 {
4026 as_bad ("Second operand to .spillreg.p must be a preserved register");
4027 return;
4028 }
4029
4030 if (!convert_expr_to_xy_reg (&e3, &xy, &treg))
4031 {
4032 as_bad ("Third operand to .spillreg.p must be a register");
4033 return;
4034 }
4035
4036 add_unwind_entry (output_spill_reg_p (ab, reg, treg, xy, qp));
4037 }
4038
4039 static void
4040 dot_spillmem_p (psprel)
4041 int psprel;
4042 {
4043 expressionS e1, e2, e3;
4044 int sep, ab, reg;
4045 unsigned int qp;
4046
4047 if (!in_procedure ("spillmem.p"))
4048 return;
4049
4050 sep = parse_operand (&e1);
4051 if (sep != ',')
4052 {
4053 as_bad ("Second operand missing");
4054 return;
4055 }
4056
4057 parse_operand (&e2);
4058 if (sep != ',')
4059 {
4060 as_bad ("Second operand missing");
4061 return;
4062 }
4063
4064 parse_operand (&e3);
4065
4066 qp = e1.X_add_number - REG_P;
4067 if (e1.X_op != O_register || qp > 63)
4068 {
4069 as_bad ("First operand to .spill%s_p must be a predicate",
4070 psprel ? "psp" : "sp");
4071 return;
4072 }
4073
4074 if (!convert_expr_to_ab_reg (&e2, &ab, &reg))
4075 {
4076 as_bad ("Second operand to .spill%s_p must be a preserved register",
4077 psprel ? "psp" : "sp");
4078 return;
4079 }
4080
4081 if (e3.X_op != O_constant)
4082 {
4083 as_bad ("Third operand to .spill%s_p must be a constant",
4084 psprel ? "psp" : "sp");
4085 return;
4086 }
4087
4088 if (psprel)
4089 add_unwind_entry (output_spill_psprel_p (ab, reg, e3.X_add_number, qp));
4090 else
4091 add_unwind_entry (output_spill_sprel_p (ab, reg, e3.X_add_number, qp));
4092 }
4093
4094 static unsigned int
4095 get_saved_prologue_count (lbl)
4096 unsigned long lbl;
4097 {
4098 label_prologue_count *lpc = unwind.saved_prologue_counts;
4099
4100 while (lpc != NULL && lpc->label_number != lbl)
4101 lpc = lpc->next;
4102
4103 if (lpc != NULL)
4104 return lpc->prologue_count;
4105
4106 as_bad ("Missing .label_state %ld", lbl);
4107 return 1;
4108 }
4109
4110 static void
4111 save_prologue_count (lbl, count)
4112 unsigned long lbl;
4113 unsigned int count;
4114 {
4115 label_prologue_count *lpc = unwind.saved_prologue_counts;
4116
4117 while (lpc != NULL && lpc->label_number != lbl)
4118 lpc = lpc->next;
4119
4120 if (lpc != NULL)
4121 lpc->prologue_count = count;
4122 else
4123 {
4124 label_prologue_count *new_lpc = xmalloc (sizeof (* new_lpc));
4125
4126 new_lpc->next = unwind.saved_prologue_counts;
4127 new_lpc->label_number = lbl;
4128 new_lpc->prologue_count = count;
4129 unwind.saved_prologue_counts = new_lpc;
4130 }
4131 }
4132
4133 static void
4134 free_saved_prologue_counts ()
4135 {
4136 label_prologue_count *lpc = unwind.saved_prologue_counts;
4137 label_prologue_count *next;
4138
4139 while (lpc != NULL)
4140 {
4141 next = lpc->next;
4142 free (lpc);
4143 lpc = next;
4144 }
4145
4146 unwind.saved_prologue_counts = NULL;
4147 }
4148
4149 static void
4150 dot_label_state (dummy)
4151 int dummy ATTRIBUTE_UNUSED;
4152 {
4153 expressionS e;
4154
4155 if (!in_body ("label_state"))
4156 return;
4157
4158 parse_operand (&e);
4159 if (e.X_op != O_constant)
4160 {
4161 as_bad ("Operand to .label_state must be a constant");
4162 return;
4163 }
4164 add_unwind_entry (output_label_state (e.X_add_number));
4165 save_prologue_count (e.X_add_number, unwind.prologue_count);
4166 }
4167
4168 static void
4169 dot_copy_state (dummy)
4170 int dummy ATTRIBUTE_UNUSED;
4171 {
4172 expressionS e;
4173
4174 if (!in_body ("copy_state"))
4175 return;
4176
4177 parse_operand (&e);
4178 if (e.X_op != O_constant)
4179 {
4180 as_bad ("Operand to .copy_state must be a constant");
4181 return;
4182 }
4183 add_unwind_entry (output_copy_state (e.X_add_number));
4184 unwind.prologue_count = get_saved_prologue_count (e.X_add_number);
4185 }
4186
4187 static void
4188 dot_unwabi (dummy)
4189 int dummy ATTRIBUTE_UNUSED;
4190 {
4191 expressionS e1, e2;
4192 unsigned char sep;
4193
4194 if (!in_procedure ("unwabi"))
4195 return;
4196
4197 sep = parse_operand (&e1);
4198 if (sep != ',')
4199 {
4200 as_bad ("Second operand to .unwabi missing");
4201 return;
4202 }
4203 sep = parse_operand (&e2);
4204 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
4205 demand_empty_rest_of_line ();
4206
4207 if (e1.X_op != O_constant)
4208 {
4209 as_bad ("First operand to .unwabi must be a constant");
4210 return;
4211 }
4212
4213 if (e2.X_op != O_constant)
4214 {
4215 as_bad ("Second operand to .unwabi must be a constant");
4216 return;
4217 }
4218
4219 add_unwind_entry (output_unwabi (e1.X_add_number, e2.X_add_number));
4220 }
4221
4222 static void
4223 dot_personality (dummy)
4224 int dummy ATTRIBUTE_UNUSED;
4225 {
4226 char *name, *p, c;
4227 if (!in_procedure ("personality"))
4228 return;
4229 SKIP_WHITESPACE ();
4230 name = input_line_pointer;
4231 c = get_symbol_end ();
4232 p = input_line_pointer;
4233 unwind.personality_routine = symbol_find_or_make (name);
4234 unwind.force_unwind_entry = 1;
4235 *p = c;
4236 SKIP_WHITESPACE ();
4237 demand_empty_rest_of_line ();
4238 }
4239
4240 static void
4241 dot_proc (dummy)
4242 int dummy ATTRIBUTE_UNUSED;
4243 {
4244 char *name, *p, c;
4245 symbolS *sym;
4246
4247 unwind.proc_start = 0;
4248 /* Parse names of main and alternate entry points and mark them as
4249 function symbols: */
4250 while (1)
4251 {
4252 SKIP_WHITESPACE ();
4253 name = input_line_pointer;
4254 c = get_symbol_end ();
4255 p = input_line_pointer;
4256 if (!*name)
4257 as_bad ("Empty argument of .proc");
4258 else
4259 {
4260 sym = symbol_find_or_make (name);
4261 if (S_IS_DEFINED (sym))
4262 as_bad ("`%s' was already defined", name);
4263 else if (unwind.proc_start == 0)
4264 {
4265 unwind.proc_start = sym;
4266 }
4267 symbol_get_bfdsym (sym)->flags |= BSF_FUNCTION;
4268 }
4269 *p = c;
4270 SKIP_WHITESPACE ();
4271 if (*input_line_pointer != ',')
4272 break;
4273 ++input_line_pointer;
4274 }
4275 if (unwind.proc_start == 0)
4276 unwind.proc_start = expr_build_dot ();
4277 demand_empty_rest_of_line ();
4278 ia64_do_align (16);
4279
4280 unwind.prologue = 0;
4281 unwind.prologue_count = 0;
4282 unwind.body = 0;
4283 unwind.insn = 0;
4284 unwind.list = unwind.tail = unwind.current_entry = NULL;
4285 unwind.personality_routine = 0;
4286 }
4287
4288 static void
4289 dot_body (dummy)
4290 int dummy ATTRIBUTE_UNUSED;
4291 {
4292 if (!in_procedure ("body"))
4293 return;
4294 if (!unwind.prologue && !unwind.body && unwind.insn)
4295 as_warn ("Initial .body should precede any instructions");
4296
4297 unwind.prologue = 0;
4298 unwind.prologue_mask = 0;
4299 unwind.body = 1;
4300
4301 add_unwind_entry (output_body ());
4302 demand_empty_rest_of_line ();
4303 }
4304
4305 static void
4306 dot_prologue (dummy)
4307 int dummy ATTRIBUTE_UNUSED;
4308 {
4309 unsigned char sep;
4310 int mask = 0, grsave = 0;
4311
4312 if (!in_procedure ("prologue"))
4313 return;
4314 if (unwind.prologue)
4315 {
4316 as_bad (".prologue within prologue");
4317 ignore_rest_of_line ();
4318 return;
4319 }
4320 if (!unwind.body && unwind.insn)
4321 as_warn ("Initial .prologue should precede any instructions");
4322
4323 if (!is_it_end_of_statement ())
4324 {
4325 expressionS e1, e2;
4326 sep = parse_operand (&e1);
4327 if (sep != ',')
4328 as_bad ("No second operand to .prologue");
4329 sep = parse_operand (&e2);
4330 if (!is_end_of_line[sep] && !is_it_end_of_statement ())
4331 demand_empty_rest_of_line ();
4332
4333 if (e1.X_op == O_constant)
4334 {
4335 mask = e1.X_add_number;
4336
4337 if (e2.X_op == O_constant)
4338 grsave = e2.X_add_number;
4339 else if (e2.X_op == O_register
4340 && (grsave = e2.X_add_number - REG_GR) < 128)
4341 ;
4342 else
4343 as_bad ("Second operand not a constant or general register");
4344
4345 add_unwind_entry (output_prologue_gr (mask, grsave));
4346 }
4347 else
4348 as_bad ("First operand not a constant");
4349 }
4350 else
4351 add_unwind_entry (output_prologue ());
4352
4353 unwind.prologue = 1;
4354 unwind.prologue_mask = mask;
4355 unwind.body = 0;
4356 ++unwind.prologue_count;
4357 }
4358
4359 static void
4360 dot_endp (dummy)
4361 int dummy ATTRIBUTE_UNUSED;
4362 {
4363 expressionS e;
4364 unsigned char *ptr;
4365 int bytes_per_address;
4366 long where;
4367 segT saved_seg;
4368 subsegT saved_subseg;
4369 char *name, *default_name, *p, c;
4370 symbolS *sym;
4371 int unwind_check = md.unwind_check;
4372
4373 md.unwind_check = unwind_check_error;
4374 if (!in_procedure ("endp"))
4375 return;
4376 md.unwind_check = unwind_check;
4377
4378 if (unwind.saved_text_seg)
4379 {
4380 saved_seg = unwind.saved_text_seg;
4381 saved_subseg = unwind.saved_text_subseg;
4382 unwind.saved_text_seg = NULL;
4383 }
4384 else
4385 {
4386 saved_seg = now_seg;
4387 saved_subseg = now_subseg;
4388 }
4389
4390 insn_group_break (1, 0, 0);
4391
4392 /* If there wasn't a .handlerdata, we haven't generated an image yet. */
4393 if (!unwind.info)
4394 generate_unwind_image (saved_seg);
4395
4396 if (unwind.info || unwind.force_unwind_entry)
4397 {
4398 symbolS *proc_end;
4399
4400 subseg_set (md.last_text_seg, 0);
4401 proc_end = expr_build_dot ();
4402
4403 start_unwind_section (saved_seg, SPECIAL_SECTION_UNWIND, 0);
4404
4405 /* Make sure that section has 4 byte alignment for ILP32 and
4406 8 byte alignment for LP64. */
4407 record_alignment (now_seg, md.pointer_size_shift);
4408
4409 /* Need space for 3 pointers for procedure start, procedure end,
4410 and unwind info. */
4411 ptr = frag_more (3 * md.pointer_size);
4412 where = frag_now_fix () - (3 * md.pointer_size);
4413 bytes_per_address = bfd_arch_bits_per_address (stdoutput) / 8;
4414
4415 /* Issue the values of a) Proc Begin, b) Proc End, c) Unwind Record. */
4416 e.X_op = O_pseudo_fixup;
4417 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4418 e.X_add_number = 0;
4419 e.X_add_symbol = unwind.proc_start;
4420 ia64_cons_fix_new (frag_now, where, bytes_per_address, &e);
4421
4422 e.X_op = O_pseudo_fixup;
4423 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4424 e.X_add_number = 0;
4425 e.X_add_symbol = proc_end;
4426 ia64_cons_fix_new (frag_now, where + bytes_per_address,
4427 bytes_per_address, &e);
4428
4429 if (unwind.info)
4430 {
4431 e.X_op = O_pseudo_fixup;
4432 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4433 e.X_add_number = 0;
4434 e.X_add_symbol = unwind.info;
4435 ia64_cons_fix_new (frag_now, where + (bytes_per_address * 2),
4436 bytes_per_address, &e);
4437 }
4438 else
4439 md_number_to_chars (ptr + (bytes_per_address * 2), 0,
4440 bytes_per_address);
4441
4442 }
4443 else
4444 start_unwind_section (saved_seg, SPECIAL_SECTION_UNWIND, 1);
4445
4446 subseg_set (saved_seg, saved_subseg);
4447
4448 if (unwind.proc_start)
4449 default_name = (char *) S_GET_NAME (unwind.proc_start);
4450 else
4451 default_name = NULL;
4452
4453 /* Parse names of main and alternate entry points and set symbol sizes. */
4454 while (1)
4455 {
4456 SKIP_WHITESPACE ();
4457 name = input_line_pointer;
4458 c = get_symbol_end ();
4459 p = input_line_pointer;
4460 if (!*name)
4461 {
4462 if (md.unwind_check == unwind_check_warning)
4463 {
4464 if (default_name)
4465 {
4466 as_warn ("Empty argument of .endp. Use the default name `%s'",
4467 default_name);
4468 name = default_name;
4469 }
4470 else
4471 as_warn ("Empty argument of .endp");
4472 }
4473 else
4474 as_bad ("Empty argument of .endp");
4475 }
4476 if (*name)
4477 {
4478 sym = symbol_find (name);
4479 if (!sym
4480 && md.unwind_check == unwind_check_warning
4481 && default_name
4482 && default_name != name)
4483 {
4484 /* We have a bad name. Try the default one if needed. */
4485 as_warn ("`%s' was not defined within procedure. Use the default name `%s'",
4486 name, default_name);
4487 name = default_name;
4488 sym = symbol_find (name);
4489 }
4490 if (!sym || !S_IS_DEFINED (sym))
4491 as_bad ("`%s' was not defined within procedure", name);
4492 else if (unwind.proc_start
4493 && (symbol_get_bfdsym (sym)->flags & BSF_FUNCTION)
4494 && S_GET_SIZE (sym) == 0 && symbol_get_obj (sym)->size == NULL)
4495 {
4496 fragS *fr = symbol_get_frag (unwind.proc_start);
4497 fragS *frag = symbol_get_frag (sym);
4498
4499 /* Check whether the function label is at or beyond last
4500 .proc directive. */
4501 while (fr && fr != frag)
4502 fr = fr->fr_next;
4503 if (fr)
4504 {
4505 if (frag == frag_now && SEG_NORMAL (now_seg))
4506 S_SET_SIZE (sym, frag_now_fix () - S_GET_VALUE (sym));
4507 else
4508 {
4509 symbol_get_obj (sym)->size =
4510 (expressionS *) xmalloc (sizeof (expressionS));
4511 symbol_get_obj (sym)->size->X_op = O_subtract;
4512 symbol_get_obj (sym)->size->X_add_symbol
4513 = symbol_new (FAKE_LABEL_NAME, now_seg,
4514 frag_now_fix (), frag_now);
4515 symbol_get_obj (sym)->size->X_op_symbol = sym;
4516 symbol_get_obj (sym)->size->X_add_number = 0;
4517 }
4518 }
4519 }
4520 }
4521 *p = c;
4522 SKIP_WHITESPACE ();
4523 if (*input_line_pointer != ',')
4524 break;
4525 ++input_line_pointer;
4526 }
4527 demand_empty_rest_of_line ();
4528 unwind.proc_start = unwind.info = 0;
4529 }
4530
4531 static void
4532 dot_template (template)
4533 int template;
4534 {
4535 CURR_SLOT.user_template = template;
4536 }
4537
4538 static void
4539 dot_regstk (dummy)
4540 int dummy ATTRIBUTE_UNUSED;
4541 {
4542 int ins, locs, outs, rots;
4543
4544 if (is_it_end_of_statement ())
4545 ins = locs = outs = rots = 0;
4546 else
4547 {
4548 ins = get_absolute_expression ();
4549 if (*input_line_pointer++ != ',')
4550 goto err;
4551 locs = get_absolute_expression ();
4552 if (*input_line_pointer++ != ',')
4553 goto err;
4554 outs = get_absolute_expression ();
4555 if (*input_line_pointer++ != ',')
4556 goto err;
4557 rots = get_absolute_expression ();
4558 }
4559 set_regstack (ins, locs, outs, rots);
4560 return;
4561
4562 err:
4563 as_bad ("Comma expected");
4564 ignore_rest_of_line ();
4565 }
4566
4567 static void
4568 dot_rot (type)
4569 int type;
4570 {
4571 unsigned num_regs, num_alloced = 0;
4572 struct dynreg **drpp, *dr;
4573 int ch, base_reg = 0;
4574 char *name, *start;
4575 size_t len;
4576
4577 switch (type)
4578 {
4579 case DYNREG_GR: base_reg = REG_GR + 32; break;
4580 case DYNREG_FR: base_reg = REG_FR + 32; break;
4581 case DYNREG_PR: base_reg = REG_P + 16; break;
4582 default: break;
4583 }
4584
4585 /* First, remove existing names from hash table. */
4586 for (dr = md.dynreg[type]; dr && dr->num_regs; dr = dr->next)
4587 {
4588 hash_delete (md.dynreg_hash, dr->name);
4589 /* FIXME: Free dr->name. */
4590 dr->num_regs = 0;
4591 }
4592
4593 drpp = &md.dynreg[type];
4594 while (1)
4595 {
4596 start = input_line_pointer;
4597 ch = get_symbol_end ();
4598 len = strlen (ia64_canonicalize_symbol_name (start));
4599 *input_line_pointer = ch;
4600
4601 SKIP_WHITESPACE ();
4602 if (*input_line_pointer != '[')
4603 {
4604 as_bad ("Expected '['");
4605 goto err;
4606 }
4607 ++input_line_pointer; /* skip '[' */
4608
4609 num_regs = get_absolute_expression ();
4610
4611 if (*input_line_pointer++ != ']')
4612 {
4613 as_bad ("Expected ']'");
4614 goto err;
4615 }
4616 SKIP_WHITESPACE ();
4617
4618 num_alloced += num_regs;
4619 switch (type)
4620 {
4621 case DYNREG_GR:
4622 if (num_alloced > md.rot.num_regs)
4623 {
4624 as_bad ("Used more than the declared %d rotating registers",
4625 md.rot.num_regs);
4626 goto err;
4627 }
4628 break;
4629 case DYNREG_FR:
4630 if (num_alloced > 96)
4631 {
4632 as_bad ("Used more than the available 96 rotating registers");
4633 goto err;
4634 }
4635 break;
4636 case DYNREG_PR:
4637 if (num_alloced > 48)
4638 {
4639 as_bad ("Used more than the available 48 rotating registers");
4640 goto err;
4641 }
4642 break;
4643
4644 default:
4645 break;
4646 }
4647
4648 if (!*drpp)
4649 {
4650 *drpp = obstack_alloc (&notes, sizeof (*dr));
4651 memset (*drpp, 0, sizeof (*dr));
4652 }
4653
4654 name = obstack_alloc (&notes, len + 1);
4655 memcpy (name, start, len);
4656 name[len] = '\0';
4657
4658 dr = *drpp;
4659 dr->name = name;
4660 dr->num_regs = num_regs;
4661 dr->base = base_reg;
4662 drpp = &dr->next;
4663 base_reg += num_regs;
4664
4665 if (hash_insert (md.dynreg_hash, name, dr))
4666 {
4667 as_bad ("Attempt to redefine register set `%s'", name);
4668 obstack_free (&notes, name);
4669 goto err;
4670 }
4671
4672 if (*input_line_pointer != ',')
4673 break;
4674 ++input_line_pointer; /* skip comma */
4675 SKIP_WHITESPACE ();
4676 }
4677 demand_empty_rest_of_line ();
4678 return;
4679
4680 err:
4681 ignore_rest_of_line ();
4682 }
4683
4684 static void
4685 dot_byteorder (byteorder)
4686 int byteorder;
4687 {
4688 segment_info_type *seginfo = seg_info (now_seg);
4689
4690 if (byteorder == -1)
4691 {
4692 if (seginfo->tc_segment_info_data.endian == 0)
4693 seginfo->tc_segment_info_data.endian = default_big_endian ? 1 : 2;
4694 byteorder = seginfo->tc_segment_info_data.endian == 1;
4695 }
4696 else
4697 seginfo->tc_segment_info_data.endian = byteorder ? 1 : 2;
4698
4699 if (target_big_endian != byteorder)
4700 {
4701 target_big_endian = byteorder;
4702 if (target_big_endian)
4703 {
4704 ia64_number_to_chars = number_to_chars_bigendian;
4705 ia64_float_to_chars = ia64_float_to_chars_bigendian;
4706 }
4707 else
4708 {
4709 ia64_number_to_chars = number_to_chars_littleendian;
4710 ia64_float_to_chars = ia64_float_to_chars_littleendian;
4711 }
4712 }
4713 }
4714
4715 static void
4716 dot_psr (dummy)
4717 int dummy ATTRIBUTE_UNUSED;
4718 {
4719 char *option;
4720 int ch;
4721
4722 while (1)
4723 {
4724 option = input_line_pointer;
4725 ch = get_symbol_end ();
4726 if (strcmp (option, "lsb") == 0)
4727 md.flags &= ~EF_IA_64_BE;
4728 else if (strcmp (option, "msb") == 0)
4729 md.flags |= EF_IA_64_BE;
4730 else if (strcmp (option, "abi32") == 0)
4731 md.flags &= ~EF_IA_64_ABI64;
4732 else if (strcmp (option, "abi64") == 0)
4733 md.flags |= EF_IA_64_ABI64;
4734 else
4735 as_bad ("Unknown psr option `%s'", option);
4736 *input_line_pointer = ch;
4737
4738 SKIP_WHITESPACE ();
4739 if (*input_line_pointer != ',')
4740 break;
4741
4742 ++input_line_pointer;
4743 SKIP_WHITESPACE ();
4744 }
4745 demand_empty_rest_of_line ();
4746 }
4747
4748 static void
4749 dot_ln (dummy)
4750 int dummy ATTRIBUTE_UNUSED;
4751 {
4752 new_logical_line (0, get_absolute_expression ());
4753 demand_empty_rest_of_line ();
4754 }
4755
4756 static char *
4757 parse_section_name ()
4758 {
4759 char *name;
4760 int len;
4761
4762 SKIP_WHITESPACE ();
4763 if (*input_line_pointer == '"')
4764 name = demand_copy_C_string (&len);
4765 else
4766 {
4767 char *start = input_line_pointer;
4768 char c = get_symbol_end ();
4769
4770 if (input_line_pointer == start)
4771 {
4772 as_bad ("Missing section name");
4773 ignore_rest_of_line ();
4774 return 0;
4775 }
4776 name = obstack_copy (&notes, start, input_line_pointer - start + 1);
4777 *input_line_pointer = c;
4778 }
4779 if (!name)
4780 {
4781 ignore_rest_of_line ();
4782 return 0;
4783 }
4784 SKIP_WHITESPACE ();
4785 if (*input_line_pointer != ',')
4786 {
4787 as_bad ("Comma expected after section name");
4788 ignore_rest_of_line ();
4789 return 0;
4790 }
4791 ++input_line_pointer; /* skip comma */
4792 return name;
4793 }
4794
4795 static void
4796 dot_xdata (size)
4797 int size;
4798 {
4799 char *name = parse_section_name ();
4800 if (!name)
4801 return;
4802
4803 md.keep_pending_output = 1;
4804 set_section (name);
4805 cons (size);
4806 obj_elf_previous (0);
4807 md.keep_pending_output = 0;
4808 }
4809
4810 /* Why doesn't float_cons() call md_cons_align() the way cons() does? */
4811
4812 static void
4813 stmt_float_cons (kind)
4814 int kind;
4815 {
4816 size_t alignment;
4817
4818 switch (kind)
4819 {
4820 case 'd':
4821 alignment = 8;
4822 break;
4823
4824 case 'x':
4825 case 'X':
4826 alignment = 16;
4827 break;
4828
4829 case 'f':
4830 default:
4831 alignment = 4;
4832 break;
4833 }
4834 ia64_do_align (alignment);
4835 float_cons (kind);
4836 }
4837
4838 static void
4839 stmt_cons_ua (size)
4840 int size;
4841 {
4842 int saved_auto_align = md.auto_align;
4843
4844 md.auto_align = 0;
4845 cons (size);
4846 md.auto_align = saved_auto_align;
4847 }
4848
4849 static void
4850 dot_xfloat_cons (kind)
4851 int kind;
4852 {
4853 char *name = parse_section_name ();
4854 if (!name)
4855 return;
4856
4857 md.keep_pending_output = 1;
4858 set_section (name);
4859 stmt_float_cons (kind);
4860 obj_elf_previous (0);
4861 md.keep_pending_output = 0;
4862 }
4863
4864 static void
4865 dot_xstringer (zero)
4866 int zero;
4867 {
4868 char *name = parse_section_name ();
4869 if (!name)
4870 return;
4871
4872 md.keep_pending_output = 1;
4873 set_section (name);
4874 stringer (zero);
4875 obj_elf_previous (0);
4876 md.keep_pending_output = 0;
4877 }
4878
4879 static void
4880 dot_xdata_ua (size)
4881 int size;
4882 {
4883 int saved_auto_align = md.auto_align;
4884 char *name = parse_section_name ();
4885 if (!name)
4886 return;
4887
4888 md.keep_pending_output = 1;
4889 set_section (name);
4890 md.auto_align = 0;
4891 cons (size);
4892 md.auto_align = saved_auto_align;
4893 obj_elf_previous (0);
4894 md.keep_pending_output = 0;
4895 }
4896
4897 static void
4898 dot_xfloat_cons_ua (kind)
4899 int kind;
4900 {
4901 int saved_auto_align = md.auto_align;
4902 char *name = parse_section_name ();
4903 if (!name)
4904 return;
4905
4906 md.keep_pending_output = 1;
4907 set_section (name);
4908 md.auto_align = 0;
4909 stmt_float_cons (kind);
4910 md.auto_align = saved_auto_align;
4911 obj_elf_previous (0);
4912 md.keep_pending_output = 0;
4913 }
4914
4915 /* .reg.val <regname>,value */
4916
4917 static void
4918 dot_reg_val (dummy)
4919 int dummy ATTRIBUTE_UNUSED;
4920 {
4921 expressionS reg;
4922
4923 expression (&reg);
4924 if (reg.X_op != O_register)
4925 {
4926 as_bad (_("Register name expected"));
4927 ignore_rest_of_line ();
4928 }
4929 else if (*input_line_pointer++ != ',')
4930 {
4931 as_bad (_("Comma expected"));
4932 ignore_rest_of_line ();
4933 }
4934 else
4935 {
4936 valueT value = get_absolute_expression ();
4937 int regno = reg.X_add_number;
4938 if (regno <= REG_GR || regno > REG_GR + 127)
4939 as_warn (_("Register value annotation ignored"));
4940 else
4941 {
4942 gr_values[regno - REG_GR].known = 1;
4943 gr_values[regno - REG_GR].value = value;
4944 gr_values[regno - REG_GR].path = md.path;
4945 }
4946 }
4947 demand_empty_rest_of_line ();
4948 }
4949
4950 /*
4951 .serialize.data
4952 .serialize.instruction
4953 */
4954 static void
4955 dot_serialize (type)
4956 int type;
4957 {
4958 insn_group_break (0, 0, 0);
4959 if (type)
4960 instruction_serialization ();
4961 else
4962 data_serialization ();
4963 insn_group_break (0, 0, 0);
4964 demand_empty_rest_of_line ();
4965 }
4966
4967 /* select dv checking mode
4968 .auto
4969 .explicit
4970 .default
4971
4972 A stop is inserted when changing modes
4973 */
4974
4975 static void
4976 dot_dv_mode (type)
4977 int type;
4978 {
4979 if (md.manual_bundling)
4980 as_warn (_("Directive invalid within a bundle"));
4981
4982 if (type == 'E' || type == 'A')
4983 md.mode_explicitly_set = 0;
4984 else
4985 md.mode_explicitly_set = 1;
4986
4987 md.detect_dv = 1;
4988 switch (type)
4989 {
4990 case 'A':
4991 case 'a':
4992 if (md.explicit_mode)
4993 insn_group_break (1, 0, 0);
4994 md.explicit_mode = 0;
4995 break;
4996 case 'E':
4997 case 'e':
4998 if (!md.explicit_mode)
4999 insn_group_break (1, 0, 0);
5000 md.explicit_mode = 1;
5001 break;
5002 default:
5003 case 'd':
5004 if (md.explicit_mode != md.default_explicit_mode)
5005 insn_group_break (1, 0, 0);
5006 md.explicit_mode = md.default_explicit_mode;
5007 md.mode_explicitly_set = 0;
5008 break;
5009 }
5010 }
5011
5012 static void
5013 print_prmask (mask)
5014 valueT mask;
5015 {
5016 int regno;
5017 char *comma = "";
5018 for (regno = 0; regno < 64; regno++)
5019 {
5020 if (mask & ((valueT) 1 << regno))
5021 {
5022 fprintf (stderr, "%s p%d", comma, regno);
5023 comma = ",";
5024 }
5025 }
5026 }
5027
5028 /*
5029 .pred.rel.clear [p1 [,p2 [,...]]] (also .pred.rel "clear" or @clear)
5030 .pred.rel.imply p1, p2 (also .pred.rel "imply" or @imply)
5031 .pred.rel.mutex p1, p2 [,...] (also .pred.rel "mutex" or @mutex)
5032 .pred.safe_across_calls p1 [, p2 [,...]]
5033 */
5034
5035 static void
5036 dot_pred_rel (type)
5037 int type;
5038 {
5039 valueT mask = 0;
5040 int count = 0;
5041 int p1 = -1, p2 = -1;
5042
5043 if (type == 0)
5044 {
5045 if (*input_line_pointer == '"')
5046 {
5047 int len;
5048 char *form = demand_copy_C_string (&len);
5049
5050 if (strcmp (form, "mutex") == 0)
5051 type = 'm';
5052 else if (strcmp (form, "clear") == 0)
5053 type = 'c';
5054 else if (strcmp (form, "imply") == 0)
5055 type = 'i';
5056 obstack_free (&notes, form);
5057 }
5058 else if (*input_line_pointer == '@')
5059 {
5060 char *form = ++input_line_pointer;
5061 char c = get_symbol_end();
5062
5063 if (strcmp (form, "mutex") == 0)
5064 type = 'm';
5065 else if (strcmp (form, "clear") == 0)
5066 type = 'c';
5067 else if (strcmp (form, "imply") == 0)
5068 type = 'i';
5069 *input_line_pointer = c;
5070 }
5071 else
5072 {
5073 as_bad (_("Missing predicate relation type"));
5074 ignore_rest_of_line ();
5075 return;
5076 }
5077 if (type == 0)
5078 {
5079 as_bad (_("Unrecognized predicate relation type"));
5080 ignore_rest_of_line ();
5081 return;
5082 }
5083 if (*input_line_pointer == ',')
5084 ++input_line_pointer;
5085 SKIP_WHITESPACE ();
5086 }
5087
5088 SKIP_WHITESPACE ();
5089 while (1)
5090 {
5091 valueT bits = 1;
5092 int regno;
5093 expressionS pr, *pr1, *pr2;
5094
5095 expression (&pr);
5096 if (pr.X_op == O_register
5097 && pr.X_add_number >= REG_P
5098 && pr.X_add_number <= REG_P + 63)
5099 {
5100 regno = pr.X_add_number - REG_P;
5101 bits <<= regno;
5102 count++;
5103 if (p1 == -1)
5104 p1 = regno;
5105 else if (p2 == -1)
5106 p2 = regno;
5107 }
5108 else if (type != 'i'
5109 && pr.X_op == O_subtract
5110 && (pr1 = symbol_get_value_expression (pr.X_add_symbol))
5111 && pr1->X_op == O_register
5112 && pr1->X_add_number >= REG_P
5113 && pr1->X_add_number <= REG_P + 63
5114 && (pr2 = symbol_get_value_expression (pr.X_op_symbol))
5115 && pr2->X_op == O_register
5116 && pr2->X_add_number >= REG_P
5117 && pr2->X_add_number <= REG_P + 63)
5118 {
5119 /* It's a range. */
5120 int stop;
5121
5122 regno = pr1->X_add_number - REG_P;
5123 stop = pr2->X_add_number - REG_P;
5124 if (regno >= stop)
5125 {
5126 as_bad (_("Bad register range"));
5127 ignore_rest_of_line ();
5128 return;
5129 }
5130 bits = ((bits << stop) << 1) - (bits << regno);
5131 count += stop - regno + 1;
5132 }
5133 else
5134 {
5135 as_bad (_("Predicate register expected"));
5136 ignore_rest_of_line ();
5137 return;
5138 }
5139 if (mask & bits)
5140 as_warn (_("Duplicate predicate register ignored"));
5141 mask |= bits;
5142 if (*input_line_pointer != ',')
5143 break;
5144 ++input_line_pointer;
5145 SKIP_WHITESPACE ();
5146 }
5147
5148 switch (type)
5149 {
5150 case 'c':
5151 if (count == 0)
5152 mask = ~(valueT) 0;
5153 clear_qp_mutex (mask);
5154 clear_qp_implies (mask, (valueT) 0);
5155 break;
5156 case 'i':
5157 if (count != 2 || p1 == -1 || p2 == -1)
5158 as_bad (_("Predicate source and target required"));
5159 else if (p1 == 0 || p2 == 0)
5160 as_bad (_("Use of p0 is not valid in this context"));
5161 else
5162 add_qp_imply (p1, p2);
5163 break;
5164 case 'm':
5165 if (count < 2)
5166 {
5167 as_bad (_("At least two PR arguments expected"));
5168 break;
5169 }
5170 else if (mask & 1)
5171 {
5172 as_bad (_("Use of p0 is not valid in this context"));
5173 break;
5174 }
5175 add_qp_mutex (mask);
5176 break;
5177 case 's':
5178 /* note that we don't override any existing relations */
5179 if (count == 0)
5180 {
5181 as_bad (_("At least one PR argument expected"));
5182 break;
5183 }
5184 if (md.debug_dv)
5185 {
5186 fprintf (stderr, "Safe across calls: ");
5187 print_prmask (mask);
5188 fprintf (stderr, "\n");
5189 }
5190 qp_safe_across_calls = mask;
5191 break;
5192 }
5193 demand_empty_rest_of_line ();
5194 }
5195
5196 /* .entry label [, label [, ...]]
5197 Hint to DV code that the given labels are to be considered entry points.
5198 Otherwise, only global labels are considered entry points. */
5199
5200 static void
5201 dot_entry (dummy)
5202 int dummy ATTRIBUTE_UNUSED;
5203 {
5204 const char *err;
5205 char *name;
5206 int c;
5207 symbolS *symbolP;
5208
5209 do
5210 {
5211 name = input_line_pointer;
5212 c = get_symbol_end ();
5213 symbolP = symbol_find_or_make (name);
5214
5215 err = hash_insert (md.entry_hash, S_GET_NAME (symbolP), (PTR) symbolP);
5216 if (err)
5217 as_fatal (_("Inserting \"%s\" into entry hint table failed: %s"),
5218 name, err);
5219
5220 *input_line_pointer = c;
5221 SKIP_WHITESPACE ();
5222 c = *input_line_pointer;
5223 if (c == ',')
5224 {
5225 input_line_pointer++;
5226 SKIP_WHITESPACE ();
5227 if (*input_line_pointer == '\n')
5228 c = '\n';
5229 }
5230 }
5231 while (c == ',');
5232
5233 demand_empty_rest_of_line ();
5234 }
5235
5236 /* .mem.offset offset, base
5237 "base" is used to distinguish between offsets from a different base. */
5238
5239 static void
5240 dot_mem_offset (dummy)
5241 int dummy ATTRIBUTE_UNUSED;
5242 {
5243 md.mem_offset.hint = 1;
5244 md.mem_offset.offset = get_absolute_expression ();
5245 if (*input_line_pointer != ',')
5246 {
5247 as_bad (_("Comma expected"));
5248 ignore_rest_of_line ();
5249 return;
5250 }
5251 ++input_line_pointer;
5252 md.mem_offset.base = get_absolute_expression ();
5253 demand_empty_rest_of_line ();
5254 }
5255
5256 /* ia64-specific pseudo-ops: */
5257 const pseudo_typeS md_pseudo_table[] =
5258 {
5259 { "radix", dot_radix, 0 },
5260 { "lcomm", s_lcomm_bytes, 1 },
5261 { "loc", dot_loc, 0 },
5262 { "bss", dot_special_section, SPECIAL_SECTION_BSS },
5263 { "sbss", dot_special_section, SPECIAL_SECTION_SBSS },
5264 { "sdata", dot_special_section, SPECIAL_SECTION_SDATA },
5265 { "rodata", dot_special_section, SPECIAL_SECTION_RODATA },
5266 { "comment", dot_special_section, SPECIAL_SECTION_COMMENT },
5267 { "ia_64.unwind", dot_special_section, SPECIAL_SECTION_UNWIND },
5268 { "ia_64.unwind_info", dot_special_section, SPECIAL_SECTION_UNWIND_INFO },
5269 { "init_array", dot_special_section, SPECIAL_SECTION_INIT_ARRAY },
5270 { "fini_array", dot_special_section, SPECIAL_SECTION_FINI_ARRAY },
5271 { "proc", dot_proc, 0 },
5272 { "body", dot_body, 0 },
5273 { "prologue", dot_prologue, 0 },
5274 { "endp", dot_endp, 0 },
5275
5276 { "fframe", dot_fframe, 0 },
5277 { "vframe", dot_vframe, 0 },
5278 { "vframesp", dot_vframesp, 0 },
5279 { "vframepsp", dot_vframepsp, 0 },
5280 { "save", dot_save, 0 },
5281 { "restore", dot_restore, 0 },
5282 { "restorereg", dot_restorereg, 0 },
5283 { "restorereg.p", dot_restorereg_p, 0 },
5284 { "handlerdata", dot_handlerdata, 0 },
5285 { "unwentry", dot_unwentry, 0 },
5286 { "altrp", dot_altrp, 0 },
5287 { "savesp", dot_savemem, 0 },
5288 { "savepsp", dot_savemem, 1 },
5289 { "save.g", dot_saveg, 0 },
5290 { "save.f", dot_savef, 0 },
5291 { "save.b", dot_saveb, 0 },
5292 { "save.gf", dot_savegf, 0 },
5293 { "spill", dot_spill, 0 },
5294 { "spillreg", dot_spillreg, 0 },
5295 { "spillsp", dot_spillmem, 0 },
5296 { "spillpsp", dot_spillmem, 1 },
5297 { "spillreg.p", dot_spillreg_p, 0 },
5298 { "spillsp.p", dot_spillmem_p, 0 },
5299 { "spillpsp.p", dot_spillmem_p, 1 },
5300 { "label_state", dot_label_state, 0 },
5301 { "copy_state", dot_copy_state, 0 },
5302 { "unwabi", dot_unwabi, 0 },
5303 { "personality", dot_personality, 0 },
5304 { "mii", dot_template, 0x0 },
5305 { "mli", dot_template, 0x2 }, /* old format, for compatibility */
5306 { "mlx", dot_template, 0x2 },
5307 { "mmi", dot_template, 0x4 },
5308 { "mfi", dot_template, 0x6 },
5309 { "mmf", dot_template, 0x7 },
5310 { "mib", dot_template, 0x8 },
5311 { "mbb", dot_template, 0x9 },
5312 { "bbb", dot_template, 0xb },
5313 { "mmb", dot_template, 0xc },
5314 { "mfb", dot_template, 0xe },
5315 { "align", dot_align, 0 },
5316 { "regstk", dot_regstk, 0 },
5317 { "rotr", dot_rot, DYNREG_GR },
5318 { "rotf", dot_rot, DYNREG_FR },
5319 { "rotp", dot_rot, DYNREG_PR },
5320 { "lsb", dot_byteorder, 0 },
5321 { "msb", dot_byteorder, 1 },
5322 { "psr", dot_psr, 0 },
5323 { "alias", dot_alias, 0 },
5324 { "secalias", dot_alias, 1 },
5325 { "ln", dot_ln, 0 }, /* source line info (for debugging) */
5326
5327 { "xdata1", dot_xdata, 1 },
5328 { "xdata2", dot_xdata, 2 },
5329 { "xdata4", dot_xdata, 4 },
5330 { "xdata8", dot_xdata, 8 },
5331 { "xdata16", dot_xdata, 16 },
5332 { "xreal4", dot_xfloat_cons, 'f' },
5333 { "xreal8", dot_xfloat_cons, 'd' },
5334 { "xreal10", dot_xfloat_cons, 'x' },
5335 { "xreal16", dot_xfloat_cons, 'X' },
5336 { "xstring", dot_xstringer, 0 },
5337 { "xstringz", dot_xstringer, 1 },
5338
5339 /* unaligned versions: */
5340 { "xdata2.ua", dot_xdata_ua, 2 },
5341 { "xdata4.ua", dot_xdata_ua, 4 },
5342 { "xdata8.ua", dot_xdata_ua, 8 },
5343 { "xdata16.ua", dot_xdata_ua, 16 },
5344 { "xreal4.ua", dot_xfloat_cons_ua, 'f' },
5345 { "xreal8.ua", dot_xfloat_cons_ua, 'd' },
5346 { "xreal10.ua", dot_xfloat_cons_ua, 'x' },
5347 { "xreal16.ua", dot_xfloat_cons_ua, 'X' },
5348
5349 /* annotations/DV checking support */
5350 { "entry", dot_entry, 0 },
5351 { "mem.offset", dot_mem_offset, 0 },
5352 { "pred.rel", dot_pred_rel, 0 },
5353 { "pred.rel.clear", dot_pred_rel, 'c' },
5354 { "pred.rel.imply", dot_pred_rel, 'i' },
5355 { "pred.rel.mutex", dot_pred_rel, 'm' },
5356 { "pred.safe_across_calls", dot_pred_rel, 's' },
5357 { "reg.val", dot_reg_val, 0 },
5358 { "serialize.data", dot_serialize, 0 },
5359 { "serialize.instruction", dot_serialize, 1 },
5360 { "auto", dot_dv_mode, 'a' },
5361 { "explicit", dot_dv_mode, 'e' },
5362 { "default", dot_dv_mode, 'd' },
5363
5364 /* ??? These are needed to make gas/testsuite/gas/elf/ehopt.s work.
5365 IA-64 aligns data allocation pseudo-ops by default, so we have to
5366 tell it that these ones are supposed to be unaligned. Long term,
5367 should rewrite so that only IA-64 specific data allocation pseudo-ops
5368 are aligned by default. */
5369 {"2byte", stmt_cons_ua, 2},
5370 {"4byte", stmt_cons_ua, 4},
5371 {"8byte", stmt_cons_ua, 8},
5372
5373 { NULL, 0, 0 }
5374 };
5375
5376 static const struct pseudo_opcode
5377 {
5378 const char *name;
5379 void (*handler) (int);
5380 int arg;
5381 }
5382 pseudo_opcode[] =
5383 {
5384 /* these are more like pseudo-ops, but don't start with a dot */
5385 { "data1", cons, 1 },
5386 { "data2", cons, 2 },
5387 { "data4", cons, 4 },
5388 { "data8", cons, 8 },
5389 { "data16", cons, 16 },
5390 { "real4", stmt_float_cons, 'f' },
5391 { "real8", stmt_float_cons, 'd' },
5392 { "real10", stmt_float_cons, 'x' },
5393 { "real16", stmt_float_cons, 'X' },
5394 { "string", stringer, 0 },
5395 { "stringz", stringer, 1 },
5396
5397 /* unaligned versions: */
5398 { "data2.ua", stmt_cons_ua, 2 },
5399 { "data4.ua", stmt_cons_ua, 4 },
5400 { "data8.ua", stmt_cons_ua, 8 },
5401 { "data16.ua", stmt_cons_ua, 16 },
5402 { "real4.ua", float_cons, 'f' },
5403 { "real8.ua", float_cons, 'd' },
5404 { "real10.ua", float_cons, 'x' },
5405 { "real16.ua", float_cons, 'X' },
5406 };
5407
5408 /* Declare a register by creating a symbol for it and entering it in
5409 the symbol table. */
5410
5411 static symbolS *
5412 declare_register (name, regnum)
5413 const char *name;
5414 int regnum;
5415 {
5416 const char *err;
5417 symbolS *sym;
5418
5419 sym = symbol_new (name, reg_section, regnum, &zero_address_frag);
5420
5421 err = hash_insert (md.reg_hash, S_GET_NAME (sym), (PTR) sym);
5422 if (err)
5423 as_fatal ("Inserting \"%s\" into register table failed: %s",
5424 name, err);
5425
5426 return sym;
5427 }
5428
5429 static void
5430 declare_register_set (prefix, num_regs, base_regnum)
5431 const char *prefix;
5432 int num_regs;
5433 int base_regnum;
5434 {
5435 char name[8];
5436 int i;
5437
5438 for (i = 0; i < num_regs; ++i)
5439 {
5440 sprintf (name, "%s%u", prefix, i);
5441 declare_register (name, base_regnum + i);
5442 }
5443 }
5444
5445 static unsigned int
5446 operand_width (opnd)
5447 enum ia64_opnd opnd;
5448 {
5449 const struct ia64_operand *odesc = &elf64_ia64_operands[opnd];
5450 unsigned int bits = 0;
5451 int i;
5452
5453 bits = 0;
5454 for (i = 0; i < NELEMS (odesc->field) && odesc->field[i].bits; ++i)
5455 bits += odesc->field[i].bits;
5456
5457 return bits;
5458 }
5459
5460 static enum operand_match_result
5461 operand_match (idesc, index, e)
5462 const struct ia64_opcode *idesc;
5463 int index;
5464 expressionS *e;
5465 {
5466 enum ia64_opnd opnd = idesc->operands[index];
5467 int bits, relocatable = 0;
5468 struct insn_fix *fix;
5469 bfd_signed_vma val;
5470
5471 switch (opnd)
5472 {
5473 /* constants: */
5474
5475 case IA64_OPND_AR_CCV:
5476 if (e->X_op == O_register && e->X_add_number == REG_AR + 32)
5477 return OPERAND_MATCH;
5478 break;
5479
5480 case IA64_OPND_AR_CSD:
5481 if (e->X_op == O_register && e->X_add_number == REG_AR + 25)
5482 return OPERAND_MATCH;
5483 break;
5484
5485 case IA64_OPND_AR_PFS:
5486 if (e->X_op == O_register && e->X_add_number == REG_AR + 64)
5487 return OPERAND_MATCH;
5488 break;
5489
5490 case IA64_OPND_GR0:
5491 if (e->X_op == O_register && e->X_add_number == REG_GR + 0)
5492 return OPERAND_MATCH;
5493 break;
5494
5495 case IA64_OPND_IP:
5496 if (e->X_op == O_register && e->X_add_number == REG_IP)
5497 return OPERAND_MATCH;
5498 break;
5499
5500 case IA64_OPND_PR:
5501 if (e->X_op == O_register && e->X_add_number == REG_PR)
5502 return OPERAND_MATCH;
5503 break;
5504
5505 case IA64_OPND_PR_ROT:
5506 if (e->X_op == O_register && e->X_add_number == REG_PR_ROT)
5507 return OPERAND_MATCH;
5508 break;
5509
5510 case IA64_OPND_PSR:
5511 if (e->X_op == O_register && e->X_add_number == REG_PSR)
5512 return OPERAND_MATCH;
5513 break;
5514
5515 case IA64_OPND_PSR_L:
5516 if (e->X_op == O_register && e->X_add_number == REG_PSR_L)
5517 return OPERAND_MATCH;
5518 break;
5519
5520 case IA64_OPND_PSR_UM:
5521 if (e->X_op == O_register && e->X_add_number == REG_PSR_UM)
5522 return OPERAND_MATCH;
5523 break;
5524
5525 case IA64_OPND_C1:
5526 if (e->X_op == O_constant)
5527 {
5528 if (e->X_add_number == 1)
5529 return OPERAND_MATCH;
5530 else
5531 return OPERAND_OUT_OF_RANGE;
5532 }
5533 break;
5534
5535 case IA64_OPND_C8:
5536 if (e->X_op == O_constant)
5537 {
5538 if (e->X_add_number == 8)
5539 return OPERAND_MATCH;
5540 else
5541 return OPERAND_OUT_OF_RANGE;
5542 }
5543 break;
5544
5545 case IA64_OPND_C16:
5546 if (e->X_op == O_constant)
5547 {
5548 if (e->X_add_number == 16)
5549 return OPERAND_MATCH;
5550 else
5551 return OPERAND_OUT_OF_RANGE;
5552 }
5553 break;
5554
5555 /* register operands: */
5556
5557 case IA64_OPND_AR3:
5558 if (e->X_op == O_register && e->X_add_number >= REG_AR
5559 && e->X_add_number < REG_AR + 128)
5560 return OPERAND_MATCH;
5561 break;
5562
5563 case IA64_OPND_B1:
5564 case IA64_OPND_B2:
5565 if (e->X_op == O_register && e->X_add_number >= REG_BR
5566 && e->X_add_number < REG_BR + 8)
5567 return OPERAND_MATCH;
5568 break;
5569
5570 case IA64_OPND_CR3:
5571 if (e->X_op == O_register && e->X_add_number >= REG_CR
5572 && e->X_add_number < REG_CR + 128)
5573 return OPERAND_MATCH;
5574 break;
5575
5576 case IA64_OPND_F1:
5577 case IA64_OPND_F2:
5578 case IA64_OPND_F3:
5579 case IA64_OPND_F4:
5580 if (e->X_op == O_register && e->X_add_number >= REG_FR
5581 && e->X_add_number < REG_FR + 128)
5582 return OPERAND_MATCH;
5583 break;
5584
5585 case IA64_OPND_P1:
5586 case IA64_OPND_P2:
5587 if (e->X_op == O_register && e->X_add_number >= REG_P
5588 && e->X_add_number < REG_P + 64)
5589 return OPERAND_MATCH;
5590 break;
5591
5592 case IA64_OPND_R1:
5593 case IA64_OPND_R2:
5594 case IA64_OPND_R3:
5595 if (e->X_op == O_register && e->X_add_number >= REG_GR
5596 && e->X_add_number < REG_GR + 128)
5597 return OPERAND_MATCH;
5598 break;
5599
5600 case IA64_OPND_R3_2:
5601 if (e->X_op == O_register && e->X_add_number >= REG_GR)
5602 {
5603 if (e->X_add_number < REG_GR + 4)
5604 return OPERAND_MATCH;
5605 else if (e->X_add_number < REG_GR + 128)
5606 return OPERAND_OUT_OF_RANGE;
5607 }
5608 break;
5609
5610 /* indirect operands: */
5611 case IA64_OPND_CPUID_R3:
5612 case IA64_OPND_DBR_R3:
5613 case IA64_OPND_DTR_R3:
5614 case IA64_OPND_ITR_R3:
5615 case IA64_OPND_IBR_R3:
5616 case IA64_OPND_MSR_R3:
5617 case IA64_OPND_PKR_R3:
5618 case IA64_OPND_PMC_R3:
5619 case IA64_OPND_PMD_R3:
5620 case IA64_OPND_RR_R3:
5621 if (e->X_op == O_index && e->X_op_symbol
5622 && (S_GET_VALUE (e->X_op_symbol) - IND_CPUID
5623 == opnd - IA64_OPND_CPUID_R3))
5624 return OPERAND_MATCH;
5625 break;
5626
5627 case IA64_OPND_MR3:
5628 if (e->X_op == O_index && !e->X_op_symbol)
5629 return OPERAND_MATCH;
5630 break;
5631
5632 /* immediate operands: */
5633 case IA64_OPND_CNT2a:
5634 case IA64_OPND_LEN4:
5635 case IA64_OPND_LEN6:
5636 bits = operand_width (idesc->operands[index]);
5637 if (e->X_op == O_constant)
5638 {
5639 if ((bfd_vma) (e->X_add_number - 1) < ((bfd_vma) 1 << bits))
5640 return OPERAND_MATCH;
5641 else
5642 return OPERAND_OUT_OF_RANGE;
5643 }
5644 break;
5645
5646 case IA64_OPND_CNT2b:
5647 if (e->X_op == O_constant)
5648 {
5649 if ((bfd_vma) (e->X_add_number - 1) < 3)
5650 return OPERAND_MATCH;
5651 else
5652 return OPERAND_OUT_OF_RANGE;
5653 }
5654 break;
5655
5656 case IA64_OPND_CNT2c:
5657 val = e->X_add_number;
5658 if (e->X_op == O_constant)
5659 {
5660 if ((val == 0 || val == 7 || val == 15 || val == 16))
5661 return OPERAND_MATCH;
5662 else
5663 return OPERAND_OUT_OF_RANGE;
5664 }
5665 break;
5666
5667 case IA64_OPND_SOR:
5668 /* SOR must be an integer multiple of 8 */
5669 if (e->X_op == O_constant && e->X_add_number & 0x7)
5670 return OPERAND_OUT_OF_RANGE;
5671 case IA64_OPND_SOF:
5672 case IA64_OPND_SOL:
5673 if (e->X_op == O_constant)
5674 {
5675 if ((bfd_vma) e->X_add_number <= 96)
5676 return OPERAND_MATCH;
5677 else
5678 return OPERAND_OUT_OF_RANGE;
5679 }
5680 break;
5681
5682 case IA64_OPND_IMMU62:
5683 if (e->X_op == O_constant)
5684 {
5685 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << 62))
5686 return OPERAND_MATCH;
5687 else
5688 return OPERAND_OUT_OF_RANGE;
5689 }
5690 else
5691 {
5692 /* FIXME -- need 62-bit relocation type */
5693 as_bad (_("62-bit relocation not yet implemented"));
5694 }
5695 break;
5696
5697 case IA64_OPND_IMMU64:
5698 if (e->X_op == O_symbol || e->X_op == O_pseudo_fixup
5699 || e->X_op == O_subtract)
5700 {
5701 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5702 fix->code = BFD_RELOC_IA64_IMM64;
5703 if (e->X_op != O_subtract)
5704 {
5705 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5706 if (e->X_op == O_pseudo_fixup)
5707 e->X_op = O_symbol;
5708 }
5709
5710 fix->opnd = idesc->operands[index];
5711 fix->expr = *e;
5712 fix->is_pcrel = 0;
5713 ++CURR_SLOT.num_fixups;
5714 return OPERAND_MATCH;
5715 }
5716 else if (e->X_op == O_constant)
5717 return OPERAND_MATCH;
5718 break;
5719
5720 case IA64_OPND_CCNT5:
5721 case IA64_OPND_CNT5:
5722 case IA64_OPND_CNT6:
5723 case IA64_OPND_CPOS6a:
5724 case IA64_OPND_CPOS6b:
5725 case IA64_OPND_CPOS6c:
5726 case IA64_OPND_IMMU2:
5727 case IA64_OPND_IMMU7a:
5728 case IA64_OPND_IMMU7b:
5729 case IA64_OPND_IMMU21:
5730 case IA64_OPND_IMMU24:
5731 case IA64_OPND_MBTYPE4:
5732 case IA64_OPND_MHTYPE8:
5733 case IA64_OPND_POS6:
5734 bits = operand_width (idesc->operands[index]);
5735 if (e->X_op == O_constant)
5736 {
5737 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5738 return OPERAND_MATCH;
5739 else
5740 return OPERAND_OUT_OF_RANGE;
5741 }
5742 break;
5743
5744 case IA64_OPND_IMMU9:
5745 bits = operand_width (idesc->operands[index]);
5746 if (e->X_op == O_constant)
5747 {
5748 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5749 {
5750 int lobits = e->X_add_number & 0x3;
5751 if (((bfd_vma) e->X_add_number & 0x3C) != 0 && lobits == 0)
5752 e->X_add_number |= (bfd_vma) 0x3;
5753 return OPERAND_MATCH;
5754 }
5755 else
5756 return OPERAND_OUT_OF_RANGE;
5757 }
5758 break;
5759
5760 case IA64_OPND_IMM44:
5761 /* least 16 bits must be zero */
5762 if ((e->X_add_number & 0xffff) != 0)
5763 /* XXX technically, this is wrong: we should not be issuing warning
5764 messages until we're sure this instruction pattern is going to
5765 be used! */
5766 as_warn (_("lower 16 bits of mask ignored"));
5767
5768 if (e->X_op == O_constant)
5769 {
5770 if (((e->X_add_number >= 0
5771 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 44))
5772 || (e->X_add_number < 0
5773 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 44))))
5774 {
5775 /* sign-extend */
5776 if (e->X_add_number >= 0
5777 && (e->X_add_number & ((bfd_vma) 1 << 43)) != 0)
5778 {
5779 e->X_add_number |= ~(((bfd_vma) 1 << 44) - 1);
5780 }
5781 return OPERAND_MATCH;
5782 }
5783 else
5784 return OPERAND_OUT_OF_RANGE;
5785 }
5786 break;
5787
5788 case IA64_OPND_IMM17:
5789 /* bit 0 is a don't care (pr0 is hardwired to 1) */
5790 if (e->X_op == O_constant)
5791 {
5792 if (((e->X_add_number >= 0
5793 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 17))
5794 || (e->X_add_number < 0
5795 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 17))))
5796 {
5797 /* sign-extend */
5798 if (e->X_add_number >= 0
5799 && (e->X_add_number & ((bfd_vma) 1 << 16)) != 0)
5800 {
5801 e->X_add_number |= ~(((bfd_vma) 1 << 17) - 1);
5802 }
5803 return OPERAND_MATCH;
5804 }
5805 else
5806 return OPERAND_OUT_OF_RANGE;
5807 }
5808 break;
5809
5810 case IA64_OPND_IMM14:
5811 case IA64_OPND_IMM22:
5812 relocatable = 1;
5813 case IA64_OPND_IMM1:
5814 case IA64_OPND_IMM8:
5815 case IA64_OPND_IMM8U4:
5816 case IA64_OPND_IMM8M1:
5817 case IA64_OPND_IMM8M1U4:
5818 case IA64_OPND_IMM8M1U8:
5819 case IA64_OPND_IMM9a:
5820 case IA64_OPND_IMM9b:
5821 bits = operand_width (idesc->operands[index]);
5822 if (relocatable && (e->X_op == O_symbol
5823 || e->X_op == O_subtract
5824 || e->X_op == O_pseudo_fixup))
5825 {
5826 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5827
5828 if (idesc->operands[index] == IA64_OPND_IMM14)
5829 fix->code = BFD_RELOC_IA64_IMM14;
5830 else
5831 fix->code = BFD_RELOC_IA64_IMM22;
5832
5833 if (e->X_op != O_subtract)
5834 {
5835 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5836 if (e->X_op == O_pseudo_fixup)
5837 e->X_op = O_symbol;
5838 }
5839
5840 fix->opnd = idesc->operands[index];
5841 fix->expr = *e;
5842 fix->is_pcrel = 0;
5843 ++CURR_SLOT.num_fixups;
5844 return OPERAND_MATCH;
5845 }
5846 else if (e->X_op != O_constant
5847 && ! (e->X_op == O_big && opnd == IA64_OPND_IMM8M1U8))
5848 return OPERAND_MISMATCH;
5849
5850 if (opnd == IA64_OPND_IMM8M1U4)
5851 {
5852 /* Zero is not valid for unsigned compares that take an adjusted
5853 constant immediate range. */
5854 if (e->X_add_number == 0)
5855 return OPERAND_OUT_OF_RANGE;
5856
5857 /* Sign-extend 32-bit unsigned numbers, so that the following range
5858 checks will work. */
5859 val = e->X_add_number;
5860 if (((val & (~(bfd_vma) 0 << 32)) == 0)
5861 && ((val & ((bfd_vma) 1 << 31)) != 0))
5862 val = ((val << 32) >> 32);
5863
5864 /* Check for 0x100000000. This is valid because
5865 0x100000000-1 is the same as ((uint32_t) -1). */
5866 if (val == ((bfd_signed_vma) 1 << 32))
5867 return OPERAND_MATCH;
5868
5869 val = val - 1;
5870 }
5871 else if (opnd == IA64_OPND_IMM8M1U8)
5872 {
5873 /* Zero is not valid for unsigned compares that take an adjusted
5874 constant immediate range. */
5875 if (e->X_add_number == 0)
5876 return OPERAND_OUT_OF_RANGE;
5877
5878 /* Check for 0x10000000000000000. */
5879 if (e->X_op == O_big)
5880 {
5881 if (generic_bignum[0] == 0
5882 && generic_bignum[1] == 0
5883 && generic_bignum[2] == 0
5884 && generic_bignum[3] == 0
5885 && generic_bignum[4] == 1)
5886 return OPERAND_MATCH;
5887 else
5888 return OPERAND_OUT_OF_RANGE;
5889 }
5890 else
5891 val = e->X_add_number - 1;
5892 }
5893 else if (opnd == IA64_OPND_IMM8M1)
5894 val = e->X_add_number - 1;
5895 else if (opnd == IA64_OPND_IMM8U4)
5896 {
5897 /* Sign-extend 32-bit unsigned numbers, so that the following range
5898 checks will work. */
5899 val = e->X_add_number;
5900 if (((val & (~(bfd_vma) 0 << 32)) == 0)
5901 && ((val & ((bfd_vma) 1 << 31)) != 0))
5902 val = ((val << 32) >> 32);
5903 }
5904 else
5905 val = e->X_add_number;
5906
5907 if ((val >= 0 && (bfd_vma) val < ((bfd_vma) 1 << (bits - 1)))
5908 || (val < 0 && (bfd_vma) -val <= ((bfd_vma) 1 << (bits - 1))))
5909 return OPERAND_MATCH;
5910 else
5911 return OPERAND_OUT_OF_RANGE;
5912
5913 case IA64_OPND_INC3:
5914 /* +/- 1, 4, 8, 16 */
5915 val = e->X_add_number;
5916 if (val < 0)
5917 val = -val;
5918 if (e->X_op == O_constant)
5919 {
5920 if ((val == 1 || val == 4 || val == 8 || val == 16))
5921 return OPERAND_MATCH;
5922 else
5923 return OPERAND_OUT_OF_RANGE;
5924 }
5925 break;
5926
5927 case IA64_OPND_TGT25:
5928 case IA64_OPND_TGT25b:
5929 case IA64_OPND_TGT25c:
5930 case IA64_OPND_TGT64:
5931 if (e->X_op == O_symbol)
5932 {
5933 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5934 if (opnd == IA64_OPND_TGT25)
5935 fix->code = BFD_RELOC_IA64_PCREL21F;
5936 else if (opnd == IA64_OPND_TGT25b)
5937 fix->code = BFD_RELOC_IA64_PCREL21M;
5938 else if (opnd == IA64_OPND_TGT25c)
5939 fix->code = BFD_RELOC_IA64_PCREL21B;
5940 else if (opnd == IA64_OPND_TGT64)
5941 fix->code = BFD_RELOC_IA64_PCREL60B;
5942 else
5943 abort ();
5944
5945 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5946 fix->opnd = idesc->operands[index];
5947 fix->expr = *e;
5948 fix->is_pcrel = 1;
5949 ++CURR_SLOT.num_fixups;
5950 return OPERAND_MATCH;
5951 }
5952 case IA64_OPND_TAG13:
5953 case IA64_OPND_TAG13b:
5954 switch (e->X_op)
5955 {
5956 case O_constant:
5957 return OPERAND_MATCH;
5958
5959 case O_symbol:
5960 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5961 /* There are no external relocs for TAG13/TAG13b fields, so we
5962 create a dummy reloc. This will not live past md_apply_fix3. */
5963 fix->code = BFD_RELOC_UNUSED;
5964 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5965 fix->opnd = idesc->operands[index];
5966 fix->expr = *e;
5967 fix->is_pcrel = 1;
5968 ++CURR_SLOT.num_fixups;
5969 return OPERAND_MATCH;
5970
5971 default:
5972 break;
5973 }
5974 break;
5975
5976 case IA64_OPND_LDXMOV:
5977 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5978 fix->code = BFD_RELOC_IA64_LDXMOV;
5979 fix->opnd = idesc->operands[index];
5980 fix->expr = *e;
5981 fix->is_pcrel = 0;
5982 ++CURR_SLOT.num_fixups;
5983 return OPERAND_MATCH;
5984
5985 default:
5986 break;
5987 }
5988 return OPERAND_MISMATCH;
5989 }
5990
5991 static int
5992 parse_operand (e)
5993 expressionS *e;
5994 {
5995 int sep = '\0';
5996
5997 memset (e, 0, sizeof (*e));
5998 e->X_op = O_absent;
5999 SKIP_WHITESPACE ();
6000 if (*input_line_pointer != '}')
6001 expression (e);
6002 sep = *input_line_pointer++;
6003
6004 if (sep == '}')
6005 {
6006 if (!md.manual_bundling)
6007 as_warn ("Found '}' when manual bundling is off");
6008 else
6009 CURR_SLOT.manual_bundling_off = 1;
6010 md.manual_bundling = 0;
6011 sep = '\0';
6012 }
6013 return sep;
6014 }
6015
6016 /* Returns the next entry in the opcode table that matches the one in
6017 IDESC, and frees the entry in IDESC. If no matching entry is
6018 found, NULL is returned instead. */
6019
6020 static struct ia64_opcode *
6021 get_next_opcode (struct ia64_opcode *idesc)
6022 {
6023 struct ia64_opcode *next = ia64_find_next_opcode (idesc);
6024 ia64_free_opcode (idesc);
6025 return next;
6026 }
6027
6028 /* Parse the operands for the opcode and find the opcode variant that
6029 matches the specified operands, or NULL if no match is possible. */
6030
6031 static struct ia64_opcode *
6032 parse_operands (idesc)
6033 struct ia64_opcode *idesc;
6034 {
6035 int i = 0, highest_unmatched_operand, num_operands = 0, num_outputs = 0;
6036 int error_pos, out_of_range_pos, curr_out_of_range_pos, sep = 0;
6037 int reg1, reg2;
6038 char reg_class;
6039 enum ia64_opnd expected_operand = IA64_OPND_NIL;
6040 enum operand_match_result result;
6041 char mnemonic[129];
6042 char *first_arg = 0, *end, *saved_input_pointer;
6043 unsigned int sof;
6044
6045 assert (strlen (idesc->name) <= 128);
6046
6047 strcpy (mnemonic, idesc->name);
6048 if (idesc->operands[2] == IA64_OPND_SOF
6049 || idesc->operands[1] == IA64_OPND_SOF)
6050 {
6051 /* To make the common idiom "alloc loc?=ar.pfs,0,1,0,0" work, we
6052 can't parse the first operand until we have parsed the
6053 remaining operands of the "alloc" instruction. */
6054 SKIP_WHITESPACE ();
6055 first_arg = input_line_pointer;
6056 end = strchr (input_line_pointer, '=');
6057 if (!end)
6058 {
6059 as_bad ("Expected separator `='");
6060 return 0;
6061 }
6062 input_line_pointer = end + 1;
6063 ++i;
6064 ++num_outputs;
6065 }
6066
6067 for (; ; ++i)
6068 {
6069 if (i < NELEMS (CURR_SLOT.opnd))
6070 {
6071 sep = parse_operand (CURR_SLOT.opnd + i);
6072 if (CURR_SLOT.opnd[i].X_op == O_absent)
6073 break;
6074 }
6075 else
6076 {
6077 expressionS dummy;
6078
6079 sep = parse_operand (&dummy);
6080 if (dummy.X_op == O_absent)
6081 break;
6082 }
6083
6084 ++num_operands;
6085
6086 if (sep != '=' && sep != ',')
6087 break;
6088
6089 if (sep == '=')
6090 {
6091 if (num_outputs > 0)
6092 as_bad ("Duplicate equal sign (=) in instruction");
6093 else
6094 num_outputs = i + 1;
6095 }
6096 }
6097 if (sep != '\0')
6098 {
6099 as_bad ("Illegal operand separator `%c'", sep);
6100 return 0;
6101 }
6102
6103 if (idesc->operands[2] == IA64_OPND_SOF
6104 || idesc->operands[1] == IA64_OPND_SOF)
6105 {
6106 /* map alloc r1=ar.pfs,i,l,o,r to alloc r1=ar.pfs,(i+l+o),(i+l),r */
6107 know (strcmp (idesc->name, "alloc") == 0);
6108 i = (CURR_SLOT.opnd[1].X_op == O_register
6109 && CURR_SLOT.opnd[1].X_add_number == REG_AR + AR_PFS) ? 2 : 1;
6110 if (num_operands == i + 3 /* first_arg not included in this count! */
6111 && CURR_SLOT.opnd[i].X_op == O_constant
6112 && CURR_SLOT.opnd[i + 1].X_op == O_constant
6113 && CURR_SLOT.opnd[i + 2].X_op == O_constant
6114 && CURR_SLOT.opnd[i + 3].X_op == O_constant)
6115 {
6116 sof = set_regstack (CURR_SLOT.opnd[i].X_add_number,
6117 CURR_SLOT.opnd[i + 1].X_add_number,
6118 CURR_SLOT.opnd[i + 2].X_add_number,
6119 CURR_SLOT.opnd[i + 3].X_add_number);
6120
6121 /* now we can parse the first arg: */
6122 saved_input_pointer = input_line_pointer;
6123 input_line_pointer = first_arg;
6124 sep = parse_operand (CURR_SLOT.opnd + 0);
6125 if (sep != '=')
6126 --num_outputs; /* force error */
6127 input_line_pointer = saved_input_pointer;
6128
6129 CURR_SLOT.opnd[i].X_add_number = sof;
6130 CURR_SLOT.opnd[i + 1].X_add_number
6131 = sof - CURR_SLOT.opnd[i + 2].X_add_number;
6132 CURR_SLOT.opnd[i + 2] = CURR_SLOT.opnd[i + 3];
6133 }
6134 }
6135
6136 highest_unmatched_operand = -4;
6137 curr_out_of_range_pos = -1;
6138 error_pos = 0;
6139 for (; idesc; idesc = get_next_opcode (idesc))
6140 {
6141 if (num_outputs != idesc->num_outputs)
6142 continue; /* mismatch in # of outputs */
6143 if (highest_unmatched_operand < 0)
6144 highest_unmatched_operand |= 1;
6145 if (num_operands > NELEMS (idesc->operands)
6146 || (num_operands < NELEMS (idesc->operands)
6147 && idesc->operands[num_operands])
6148 || (num_operands > 0 && !idesc->operands[num_operands - 1]))
6149 continue; /* mismatch in number of arguments */
6150 if (highest_unmatched_operand < 0)
6151 highest_unmatched_operand |= 2;
6152
6153 CURR_SLOT.num_fixups = 0;
6154
6155 /* Try to match all operands. If we see an out-of-range operand,
6156 then continue trying to match the rest of the operands, since if
6157 the rest match, then this idesc will give the best error message. */
6158
6159 out_of_range_pos = -1;
6160 for (i = 0; i < num_operands && idesc->operands[i]; ++i)
6161 {
6162 result = operand_match (idesc, i, CURR_SLOT.opnd + i);
6163 if (result != OPERAND_MATCH)
6164 {
6165 if (result != OPERAND_OUT_OF_RANGE)
6166 break;
6167 if (out_of_range_pos < 0)
6168 /* remember position of the first out-of-range operand: */
6169 out_of_range_pos = i;
6170 }
6171 }
6172
6173 /* If we did not match all operands, or if at least one operand was
6174 out-of-range, then this idesc does not match. Keep track of which
6175 idesc matched the most operands before failing. If we have two
6176 idescs that failed at the same position, and one had an out-of-range
6177 operand, then prefer the out-of-range operand. Thus if we have
6178 "add r0=0x1000000,r1" we get an error saying the constant is out
6179 of range instead of an error saying that the constant should have been
6180 a register. */
6181
6182 if (i != num_operands || out_of_range_pos >= 0)
6183 {
6184 if (i > highest_unmatched_operand
6185 || (i == highest_unmatched_operand
6186 && out_of_range_pos > curr_out_of_range_pos))
6187 {
6188 highest_unmatched_operand = i;
6189 if (out_of_range_pos >= 0)
6190 {
6191 expected_operand = idesc->operands[out_of_range_pos];
6192 error_pos = out_of_range_pos;
6193 }
6194 else
6195 {
6196 expected_operand = idesc->operands[i];
6197 error_pos = i;
6198 }
6199 curr_out_of_range_pos = out_of_range_pos;
6200 }
6201 continue;
6202 }
6203
6204 break;
6205 }
6206 if (!idesc)
6207 {
6208 if (expected_operand)
6209 as_bad ("Operand %u of `%s' should be %s",
6210 error_pos + 1, mnemonic,
6211 elf64_ia64_operands[expected_operand].desc);
6212 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 1))
6213 as_bad ("Wrong number of output operands");
6214 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 2))
6215 as_bad ("Wrong number of input operands");
6216 else
6217 as_bad ("Operand mismatch");
6218 return 0;
6219 }
6220
6221 /* Check that the instruction doesn't use
6222 - r0, f0, or f1 as output operands
6223 - the same predicate twice as output operands
6224 - r0 as address of a base update load or store
6225 - the same GR as output and address of a base update load
6226 - two even- or two odd-numbered FRs as output operands of a floating
6227 point parallel load.
6228 At most two (conflicting) output (or output-like) operands can exist,
6229 (floating point parallel loads have three outputs, but the base register,
6230 if updated, cannot conflict with the actual outputs). */
6231 reg2 = reg1 = -1;
6232 for (i = 0; i < num_operands; ++i)
6233 {
6234 int regno = 0;
6235
6236 reg_class = 0;
6237 switch (idesc->operands[i])
6238 {
6239 case IA64_OPND_R1:
6240 case IA64_OPND_R2:
6241 case IA64_OPND_R3:
6242 if (i < num_outputs)
6243 {
6244 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6245 reg_class = 'r';
6246 else if (reg1 < 0)
6247 reg1 = CURR_SLOT.opnd[i].X_add_number;
6248 else if (reg2 < 0)
6249 reg2 = CURR_SLOT.opnd[i].X_add_number;
6250 }
6251 break;
6252 case IA64_OPND_P1:
6253 case IA64_OPND_P2:
6254 if (i < num_outputs)
6255 {
6256 if (reg1 < 0)
6257 reg1 = CURR_SLOT.opnd[i].X_add_number;
6258 else if (reg2 < 0)
6259 reg2 = CURR_SLOT.opnd[i].X_add_number;
6260 }
6261 break;
6262 case IA64_OPND_F1:
6263 case IA64_OPND_F2:
6264 case IA64_OPND_F3:
6265 case IA64_OPND_F4:
6266 if (i < num_outputs)
6267 {
6268 if (CURR_SLOT.opnd[i].X_add_number >= REG_FR
6269 && CURR_SLOT.opnd[i].X_add_number <= REG_FR + 1)
6270 {
6271 reg_class = 'f';
6272 regno = CURR_SLOT.opnd[i].X_add_number - REG_FR;
6273 }
6274 else if (reg1 < 0)
6275 reg1 = CURR_SLOT.opnd[i].X_add_number;
6276 else if (reg2 < 0)
6277 reg2 = CURR_SLOT.opnd[i].X_add_number;
6278 }
6279 break;
6280 case IA64_OPND_MR3:
6281 if (idesc->flags & IA64_OPCODE_POSTINC)
6282 {
6283 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6284 reg_class = 'm';
6285 else if (reg1 < 0)
6286 reg1 = CURR_SLOT.opnd[i].X_add_number;
6287 else if (reg2 < 0)
6288 reg2 = CURR_SLOT.opnd[i].X_add_number;
6289 }
6290 break;
6291 default:
6292 break;
6293 }
6294 switch (reg_class)
6295 {
6296 case 0:
6297 break;
6298 default:
6299 as_warn ("Invalid use of `%c%d' as output operand", reg_class, regno);
6300 break;
6301 case 'm':
6302 as_warn ("Invalid use of `r%d' as base update address operand", regno);
6303 break;
6304 }
6305 }
6306 if (reg1 == reg2)
6307 {
6308 if (reg1 >= REG_GR && reg1 <= REG_GR + 127)
6309 {
6310 reg1 -= REG_GR;
6311 reg_class = 'r';
6312 }
6313 else if (reg1 >= REG_P && reg1 <= REG_P + 63)
6314 {
6315 reg1 -= REG_P;
6316 reg_class = 'p';
6317 }
6318 else if (reg1 >= REG_FR && reg1 <= REG_FR + 127)
6319 {
6320 reg1 -= REG_FR;
6321 reg_class = 'f';
6322 }
6323 else
6324 reg_class = 0;
6325 if (reg_class)
6326 as_warn ("Invalid duplicate use of `%c%d'", reg_class, reg1);
6327 }
6328 else if (((reg1 >= REG_FR && reg1 <= REG_FR + 31
6329 && reg2 >= REG_FR && reg2 <= REG_FR + 31)
6330 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6331 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127))
6332 && ! ((reg1 ^ reg2) & 1))
6333 as_warn ("Invalid simultaneous use of `f%d' and `f%d'",
6334 reg1 - REG_FR, reg2 - REG_FR);
6335 else if ((reg1 >= REG_FR && reg1 <= REG_FR + 31
6336 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127)
6337 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6338 && reg2 >= REG_FR && reg2 <= REG_FR + 31))
6339 as_warn ("Dangerous simultaneous use of `f%d' and `f%d'",
6340 reg1 - REG_FR, reg2 - REG_FR);
6341 return idesc;
6342 }
6343
6344 static void
6345 build_insn (slot, insnp)
6346 struct slot *slot;
6347 bfd_vma *insnp;
6348 {
6349 const struct ia64_operand *odesc, *o2desc;
6350 struct ia64_opcode *idesc = slot->idesc;
6351 bfd_signed_vma insn, val;
6352 const char *err;
6353 int i;
6354
6355 insn = idesc->opcode | slot->qp_regno;
6356
6357 for (i = 0; i < NELEMS (idesc->operands) && idesc->operands[i]; ++i)
6358 {
6359 if (slot->opnd[i].X_op == O_register
6360 || slot->opnd[i].X_op == O_constant
6361 || slot->opnd[i].X_op == O_index)
6362 val = slot->opnd[i].X_add_number;
6363 else if (slot->opnd[i].X_op == O_big)
6364 {
6365 /* This must be the value 0x10000000000000000. */
6366 assert (idesc->operands[i] == IA64_OPND_IMM8M1U8);
6367 val = 0;
6368 }
6369 else
6370 val = 0;
6371
6372 switch (idesc->operands[i])
6373 {
6374 case IA64_OPND_IMMU64:
6375 *insnp++ = (val >> 22) & 0x1ffffffffffLL;
6376 insn |= (((val & 0x7f) << 13) | (((val >> 7) & 0x1ff) << 27)
6377 | (((val >> 16) & 0x1f) << 22) | (((val >> 21) & 0x1) << 21)
6378 | (((val >> 63) & 0x1) << 36));
6379 continue;
6380
6381 case IA64_OPND_IMMU62:
6382 val &= 0x3fffffffffffffffULL;
6383 if (val != slot->opnd[i].X_add_number)
6384 as_warn (_("Value truncated to 62 bits"));
6385 *insnp++ = (val >> 21) & 0x1ffffffffffLL;
6386 insn |= (((val & 0xfffff) << 6) | (((val >> 20) & 0x1) << 36));
6387 continue;
6388
6389 case IA64_OPND_TGT64:
6390 val >>= 4;
6391 *insnp++ = ((val >> 20) & 0x7fffffffffLL) << 2;
6392 insn |= ((((val >> 59) & 0x1) << 36)
6393 | (((val >> 0) & 0xfffff) << 13));
6394 continue;
6395
6396 case IA64_OPND_AR3:
6397 val -= REG_AR;
6398 break;
6399
6400 case IA64_OPND_B1:
6401 case IA64_OPND_B2:
6402 val -= REG_BR;
6403 break;
6404
6405 case IA64_OPND_CR3:
6406 val -= REG_CR;
6407 break;
6408
6409 case IA64_OPND_F1:
6410 case IA64_OPND_F2:
6411 case IA64_OPND_F3:
6412 case IA64_OPND_F4:
6413 val -= REG_FR;
6414 break;
6415
6416 case IA64_OPND_P1:
6417 case IA64_OPND_P2:
6418 val -= REG_P;
6419 break;
6420
6421 case IA64_OPND_R1:
6422 case IA64_OPND_R2:
6423 case IA64_OPND_R3:
6424 case IA64_OPND_R3_2:
6425 case IA64_OPND_CPUID_R3:
6426 case IA64_OPND_DBR_R3:
6427 case IA64_OPND_DTR_R3:
6428 case IA64_OPND_ITR_R3:
6429 case IA64_OPND_IBR_R3:
6430 case IA64_OPND_MR3:
6431 case IA64_OPND_MSR_R3:
6432 case IA64_OPND_PKR_R3:
6433 case IA64_OPND_PMC_R3:
6434 case IA64_OPND_PMD_R3:
6435 case IA64_OPND_RR_R3:
6436 val -= REG_GR;
6437 break;
6438
6439 default:
6440 break;
6441 }
6442
6443 odesc = elf64_ia64_operands + idesc->operands[i];
6444 err = (*odesc->insert) (odesc, val, &insn);
6445 if (err)
6446 as_bad_where (slot->src_file, slot->src_line,
6447 "Bad operand value: %s", err);
6448 if (idesc->flags & IA64_OPCODE_PSEUDO)
6449 {
6450 if ((idesc->flags & IA64_OPCODE_F2_EQ_F3)
6451 && odesc == elf64_ia64_operands + IA64_OPND_F3)
6452 {
6453 o2desc = elf64_ia64_operands + IA64_OPND_F2;
6454 (*o2desc->insert) (o2desc, val, &insn);
6455 }
6456 if ((idesc->flags & IA64_OPCODE_LEN_EQ_64MCNT)
6457 && (odesc == elf64_ia64_operands + IA64_OPND_CPOS6a
6458 || odesc == elf64_ia64_operands + IA64_OPND_POS6))
6459 {
6460 o2desc = elf64_ia64_operands + IA64_OPND_LEN6;
6461 (*o2desc->insert) (o2desc, 64 - val, &insn);
6462 }
6463 }
6464 }
6465 *insnp = insn;
6466 }
6467
6468 static void
6469 emit_one_bundle ()
6470 {
6471 int manual_bundling_off = 0, manual_bundling = 0;
6472 enum ia64_unit required_unit, insn_unit = 0;
6473 enum ia64_insn_type type[3], insn_type;
6474 unsigned int template, orig_template;
6475 bfd_vma insn[3] = { -1, -1, -1 };
6476 struct ia64_opcode *idesc;
6477 int end_of_insn_group = 0, user_template = -1;
6478 int n, i, j, first, curr;
6479 unw_rec_list *ptr, *last_ptr, *end_ptr;
6480 bfd_vma t0 = 0, t1 = 0;
6481 struct label_fix *lfix;
6482 struct insn_fix *ifix;
6483 char mnemonic[16];
6484 fixS *fix;
6485 char *f;
6486 int addr_mod;
6487
6488 first = (md.curr_slot + NUM_SLOTS - md.num_slots_in_use) % NUM_SLOTS;
6489 know (first >= 0 & first < NUM_SLOTS);
6490 n = MIN (3, md.num_slots_in_use);
6491
6492 /* Determine template: user user_template if specified, best match
6493 otherwise: */
6494
6495 if (md.slot[first].user_template >= 0)
6496 user_template = template = md.slot[first].user_template;
6497 else
6498 {
6499 /* Auto select appropriate template. */
6500 memset (type, 0, sizeof (type));
6501 curr = first;
6502 for (i = 0; i < n; ++i)
6503 {
6504 if (md.slot[curr].label_fixups && i != 0)
6505 break;
6506 type[i] = md.slot[curr].idesc->type;
6507 curr = (curr + 1) % NUM_SLOTS;
6508 }
6509 template = best_template[type[0]][type[1]][type[2]];
6510 }
6511
6512 /* initialize instructions with appropriate nops: */
6513 for (i = 0; i < 3; ++i)
6514 insn[i] = nop[ia64_templ_desc[template].exec_unit[i]];
6515
6516 f = frag_more (16);
6517
6518 /* Check to see if this bundle is at an offset that is a multiple of 16-bytes
6519 from the start of the frag. */
6520 addr_mod = frag_now_fix () & 15;
6521 if (frag_now->has_code && frag_now->insn_addr != addr_mod)
6522 as_bad (_("instruction address is not a multiple of 16"));
6523 frag_now->insn_addr = addr_mod;
6524 frag_now->has_code = 1;
6525
6526 /* now fill in slots with as many insns as possible: */
6527 curr = first;
6528 idesc = md.slot[curr].idesc;
6529 end_of_insn_group = 0;
6530 for (i = 0; i < 3 && md.num_slots_in_use > 0; ++i)
6531 {
6532 /* If we have unwind records, we may need to update some now. */
6533 ptr = md.slot[curr].unwind_record;
6534 if (ptr)
6535 {
6536 /* Find the last prologue/body record in the list for the current
6537 insn, and set the slot number for all records up to that point.
6538 This needs to be done now, because prologue/body records refer to
6539 the current point, not the point after the instruction has been
6540 issued. This matters because there may have been nops emitted
6541 meanwhile. Any non-prologue non-body record followed by a
6542 prologue/body record must also refer to the current point. */
6543 last_ptr = NULL;
6544 end_ptr = md.slot[(curr + 1) % NUM_SLOTS].unwind_record;
6545 for (; ptr != end_ptr; ptr = ptr->next)
6546 if (ptr->r.type == prologue || ptr->r.type == prologue_gr
6547 || ptr->r.type == body)
6548 last_ptr = ptr;
6549 if (last_ptr)
6550 {
6551 /* Make last_ptr point one after the last prologue/body
6552 record. */
6553 last_ptr = last_ptr->next;
6554 for (ptr = md.slot[curr].unwind_record; ptr != last_ptr;
6555 ptr = ptr->next)
6556 {
6557 ptr->slot_number = (unsigned long) f + i;
6558 ptr->slot_frag = frag_now;
6559 }
6560 /* Remove the initialized records, so that we won't accidentally
6561 update them again if we insert a nop and continue. */
6562 md.slot[curr].unwind_record = last_ptr;
6563 }
6564 }
6565
6566 manual_bundling_off = md.slot[curr].manual_bundling_off;
6567 if (md.slot[curr].manual_bundling_on)
6568 {
6569 if (curr == first)
6570 manual_bundling = 1;
6571 else
6572 break; /* Need to start a new bundle. */
6573 }
6574
6575 /* If this instruction specifies a template, then it must be the first
6576 instruction of a bundle. */
6577 if (curr != first && md.slot[curr].user_template >= 0)
6578 break;
6579
6580 if (idesc->flags & IA64_OPCODE_SLOT2)
6581 {
6582 if (manual_bundling && !manual_bundling_off)
6583 {
6584 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6585 "`%s' must be last in bundle", idesc->name);
6586 if (i < 2)
6587 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6588 }
6589 i = 2;
6590 }
6591 if (idesc->flags & IA64_OPCODE_LAST)
6592 {
6593 int required_slot;
6594 unsigned int required_template;
6595
6596 /* If we need a stop bit after an M slot, our only choice is
6597 template 5 (M;;MI). If we need a stop bit after a B
6598 slot, our only choice is to place it at the end of the
6599 bundle, because the only available templates are MIB,
6600 MBB, BBB, MMB, and MFB. We don't handle anything other
6601 than M and B slots because these are the only kind of
6602 instructions that can have the IA64_OPCODE_LAST bit set. */
6603 required_template = template;
6604 switch (idesc->type)
6605 {
6606 case IA64_TYPE_M:
6607 required_slot = 0;
6608 required_template = 5;
6609 break;
6610
6611 case IA64_TYPE_B:
6612 required_slot = 2;
6613 break;
6614
6615 default:
6616 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6617 "Internal error: don't know how to force %s to end"
6618 "of instruction group", idesc->name);
6619 required_slot = i;
6620 break;
6621 }
6622 if (manual_bundling
6623 && (i > required_slot
6624 || (required_slot == 2 && !manual_bundling_off)
6625 || (user_template >= 0
6626 /* Changing from MMI to M;MI is OK. */
6627 && (template ^ required_template) > 1)))
6628 {
6629 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6630 "`%s' must be last in instruction group",
6631 idesc->name);
6632 if (i < 2 && required_slot == 2 && !manual_bundling_off)
6633 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6634 }
6635 if (required_slot < i)
6636 /* Can't fit this instruction. */
6637 break;
6638
6639 i = required_slot;
6640 if (required_template != template)
6641 {
6642 /* If we switch the template, we need to reset the NOPs
6643 after slot i. The slot-types of the instructions ahead
6644 of i never change, so we don't need to worry about
6645 changing NOPs in front of this slot. */
6646 for (j = i; j < 3; ++j)
6647 insn[j] = nop[ia64_templ_desc[required_template].exec_unit[j]];
6648 }
6649 template = required_template;
6650 }
6651 if (curr != first && md.slot[curr].label_fixups)
6652 {
6653 if (manual_bundling)
6654 {
6655 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6656 "Label must be first in a bundle");
6657 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6658 }
6659 /* This insn must go into the first slot of a bundle. */
6660 break;
6661 }
6662
6663 if (end_of_insn_group && md.num_slots_in_use >= 1)
6664 {
6665 /* We need an instruction group boundary in the middle of a
6666 bundle. See if we can switch to an other template with
6667 an appropriate boundary. */
6668
6669 orig_template = template;
6670 if (i == 1 && (user_template == 4
6671 || (user_template < 0
6672 && (ia64_templ_desc[template].exec_unit[0]
6673 == IA64_UNIT_M))))
6674 {
6675 template = 5;
6676 end_of_insn_group = 0;
6677 }
6678 else if (i == 2 && (user_template == 0
6679 || (user_template < 0
6680 && (ia64_templ_desc[template].exec_unit[1]
6681 == IA64_UNIT_I)))
6682 /* This test makes sure we don't switch the template if
6683 the next instruction is one that needs to be first in
6684 an instruction group. Since all those instructions are
6685 in the M group, there is no way such an instruction can
6686 fit in this bundle even if we switch the template. The
6687 reason we have to check for this is that otherwise we
6688 may end up generating "MI;;I M.." which has the deadly
6689 effect that the second M instruction is no longer the
6690 first in the group! --davidm 99/12/16 */
6691 && (idesc->flags & IA64_OPCODE_FIRST) == 0)
6692 {
6693 template = 1;
6694 end_of_insn_group = 0;
6695 }
6696 else if (i == 1
6697 && user_template == 0
6698 && !(idesc->flags & IA64_OPCODE_FIRST))
6699 /* Use the next slot. */
6700 continue;
6701 else if (curr != first)
6702 /* can't fit this insn */
6703 break;
6704
6705 if (template != orig_template)
6706 /* if we switch the template, we need to reset the NOPs
6707 after slot i. The slot-types of the instructions ahead
6708 of i never change, so we don't need to worry about
6709 changing NOPs in front of this slot. */
6710 for (j = i; j < 3; ++j)
6711 insn[j] = nop[ia64_templ_desc[template].exec_unit[j]];
6712 }
6713 required_unit = ia64_templ_desc[template].exec_unit[i];
6714
6715 /* resolve dynamic opcodes such as "break", "hint", and "nop": */
6716 if (idesc->type == IA64_TYPE_DYN)
6717 {
6718 enum ia64_opnd opnd1, opnd2;
6719
6720 if ((strcmp (idesc->name, "nop") == 0)
6721 || (strcmp (idesc->name, "break") == 0))
6722 insn_unit = required_unit;
6723 else if (strcmp (idesc->name, "hint") == 0)
6724 {
6725 insn_unit = required_unit;
6726 if (required_unit == IA64_UNIT_B)
6727 {
6728 switch (md.hint_b)
6729 {
6730 case hint_b_ok:
6731 break;
6732 case hint_b_warning:
6733 as_warn ("hint in B unit may be treated as nop");
6734 break;
6735 case hint_b_error:
6736 /* When manual bundling is off and there is no
6737 user template, we choose a different unit so
6738 that hint won't go into the current slot. We
6739 will fill the current bundle with nops and
6740 try to put hint into the next bundle. */
6741 if (!manual_bundling && user_template < 0)
6742 insn_unit = IA64_UNIT_I;
6743 else
6744 as_bad ("hint in B unit can't be used");
6745 break;
6746 }
6747 }
6748 }
6749 else if (strcmp (idesc->name, "chk.s") == 0
6750 || strcmp (idesc->name, "mov") == 0)
6751 {
6752 insn_unit = IA64_UNIT_M;
6753 if (required_unit == IA64_UNIT_I
6754 || (required_unit == IA64_UNIT_F && template == 6))
6755 insn_unit = IA64_UNIT_I;
6756 }
6757 else
6758 as_fatal ("emit_one_bundle: unexpected dynamic op");
6759
6760 sprintf (mnemonic, "%s.%c", idesc->name, "?imbfxx"[insn_unit]);
6761 opnd1 = idesc->operands[0];
6762 opnd2 = idesc->operands[1];
6763 ia64_free_opcode (idesc);
6764 idesc = ia64_find_opcode (mnemonic);
6765 /* moves to/from ARs have collisions */
6766 if (opnd1 == IA64_OPND_AR3 || opnd2 == IA64_OPND_AR3)
6767 {
6768 while (idesc != NULL
6769 && (idesc->operands[0] != opnd1
6770 || idesc->operands[1] != opnd2))
6771 idesc = get_next_opcode (idesc);
6772 }
6773 md.slot[curr].idesc = idesc;
6774 }
6775 else
6776 {
6777 insn_type = idesc->type;
6778 insn_unit = IA64_UNIT_NIL;
6779 switch (insn_type)
6780 {
6781 case IA64_TYPE_A:
6782 if (required_unit == IA64_UNIT_I || required_unit == IA64_UNIT_M)
6783 insn_unit = required_unit;
6784 break;
6785 case IA64_TYPE_X: insn_unit = IA64_UNIT_L; break;
6786 case IA64_TYPE_I: insn_unit = IA64_UNIT_I; break;
6787 case IA64_TYPE_M: insn_unit = IA64_UNIT_M; break;
6788 case IA64_TYPE_B: insn_unit = IA64_UNIT_B; break;
6789 case IA64_TYPE_F: insn_unit = IA64_UNIT_F; break;
6790 default: break;
6791 }
6792 }
6793
6794 if (insn_unit != required_unit)
6795 {
6796 if (required_unit == IA64_UNIT_L
6797 && insn_unit == IA64_UNIT_I
6798 && !(idesc->flags & IA64_OPCODE_X_IN_MLX))
6799 {
6800 /* we got ourselves an MLX template but the current
6801 instruction isn't an X-unit, or an I-unit instruction
6802 that can go into the X slot of an MLX template. Duh. */
6803 if (md.num_slots_in_use >= NUM_SLOTS)
6804 {
6805 as_bad_where (md.slot[curr].src_file,
6806 md.slot[curr].src_line,
6807 "`%s' can't go in X slot of "
6808 "MLX template", idesc->name);
6809 /* drop this insn so we don't livelock: */
6810 --md.num_slots_in_use;
6811 }
6812 break;
6813 }
6814 continue; /* try next slot */
6815 }
6816
6817 if (debug_type == DEBUG_DWARF2 || md.slot[curr].loc_directive_seen)
6818 {
6819 bfd_vma addr = frag_now->fr_address + frag_now_fix () - 16 + i;
6820
6821 md.slot[curr].loc_directive_seen = 0;
6822 dwarf2_gen_line_info (addr, &md.slot[curr].debug_line);
6823 }
6824
6825 build_insn (md.slot + curr, insn + i);
6826
6827 ptr = md.slot[curr].unwind_record;
6828 if (ptr)
6829 {
6830 /* Set slot numbers for all remaining unwind records belonging to the
6831 current insn. There can not be any prologue/body unwind records
6832 here. */
6833 end_ptr = md.slot[(curr + 1) % NUM_SLOTS].unwind_record;
6834 for (; ptr != end_ptr; ptr = ptr->next)
6835 {
6836 ptr->slot_number = (unsigned long) f + i;
6837 ptr->slot_frag = frag_now;
6838 }
6839 md.slot[curr].unwind_record = NULL;
6840 }
6841
6842 if (required_unit == IA64_UNIT_L)
6843 {
6844 know (i == 1);
6845 /* skip one slot for long/X-unit instructions */
6846 ++i;
6847 }
6848 --md.num_slots_in_use;
6849
6850 /* now is a good time to fix up the labels for this insn: */
6851 for (lfix = md.slot[curr].label_fixups; lfix; lfix = lfix->next)
6852 {
6853 S_SET_VALUE (lfix->sym, frag_now_fix () - 16);
6854 symbol_set_frag (lfix->sym, frag_now);
6855 }
6856 /* and fix up the tags also. */
6857 for (lfix = md.slot[curr].tag_fixups; lfix; lfix = lfix->next)
6858 {
6859 S_SET_VALUE (lfix->sym, frag_now_fix () - 16 + i);
6860 symbol_set_frag (lfix->sym, frag_now);
6861 }
6862
6863 for (j = 0; j < md.slot[curr].num_fixups; ++j)
6864 {
6865 ifix = md.slot[curr].fixup + j;
6866 fix = fix_new_exp (frag_now, frag_now_fix () - 16 + i, 8,
6867 &ifix->expr, ifix->is_pcrel, ifix->code);
6868 fix->tc_fix_data.opnd = ifix->opnd;
6869 fix->fx_plt = (fix->fx_r_type == BFD_RELOC_IA64_PLTOFF22);
6870 fix->fx_file = md.slot[curr].src_file;
6871 fix->fx_line = md.slot[curr].src_line;
6872 }
6873
6874 end_of_insn_group = md.slot[curr].end_of_insn_group;
6875
6876 /* clear slot: */
6877 ia64_free_opcode (md.slot[curr].idesc);
6878 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
6879 md.slot[curr].user_template = -1;
6880
6881 if (manual_bundling_off)
6882 {
6883 manual_bundling = 0;
6884 break;
6885 }
6886 curr = (curr + 1) % NUM_SLOTS;
6887 idesc = md.slot[curr].idesc;
6888 }
6889 if (manual_bundling > 0)
6890 {
6891 if (md.num_slots_in_use > 0)
6892 {
6893 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6894 "`%s' does not fit into %s template",
6895 idesc->name, ia64_templ_desc[template].name);
6896 --md.num_slots_in_use;
6897 }
6898 else
6899 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6900 "Missing '}' at end of file");
6901 }
6902 know (md.num_slots_in_use < NUM_SLOTS);
6903
6904 t0 = end_of_insn_group | (template << 1) | (insn[0] << 5) | (insn[1] << 46);
6905 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
6906
6907 number_to_chars_littleendian (f + 0, t0, 8);
6908 number_to_chars_littleendian (f + 8, t1, 8);
6909
6910 if (unwind.list)
6911 {
6912 unwind.list->next_slot_number = (unsigned long) f + 16;
6913 unwind.list->next_slot_frag = frag_now;
6914 }
6915 }
6916
6917 int
6918 md_parse_option (c, arg)
6919 int c;
6920 char *arg;
6921 {
6922
6923 switch (c)
6924 {
6925 /* Switches from the Intel assembler. */
6926 case 'm':
6927 if (strcmp (arg, "ilp64") == 0
6928 || strcmp (arg, "lp64") == 0
6929 || strcmp (arg, "p64") == 0)
6930 {
6931 md.flags |= EF_IA_64_ABI64;
6932 }
6933 else if (strcmp (arg, "ilp32") == 0)
6934 {
6935 md.flags &= ~EF_IA_64_ABI64;
6936 }
6937 else if (strcmp (arg, "le") == 0)
6938 {
6939 md.flags &= ~EF_IA_64_BE;
6940 default_big_endian = 0;
6941 }
6942 else if (strcmp (arg, "be") == 0)
6943 {
6944 md.flags |= EF_IA_64_BE;
6945 default_big_endian = 1;
6946 }
6947 else if (strncmp (arg, "unwind-check=", 13) == 0)
6948 {
6949 arg += 13;
6950 if (strcmp (arg, "warning") == 0)
6951 md.unwind_check = unwind_check_warning;
6952 else if (strcmp (arg, "error") == 0)
6953 md.unwind_check = unwind_check_error;
6954 else
6955 return 0;
6956 }
6957 else if (strncmp (arg, "hint.b=", 7) == 0)
6958 {
6959 arg += 7;
6960 if (strcmp (arg, "ok") == 0)
6961 md.hint_b = hint_b_ok;
6962 else if (strcmp (arg, "warning") == 0)
6963 md.hint_b = hint_b_warning;
6964 else if (strcmp (arg, "error") == 0)
6965 md.hint_b = hint_b_error;
6966 else
6967 return 0;
6968 }
6969 else
6970 return 0;
6971 break;
6972
6973 case 'N':
6974 if (strcmp (arg, "so") == 0)
6975 {
6976 /* Suppress signon message. */
6977 }
6978 else if (strcmp (arg, "pi") == 0)
6979 {
6980 /* Reject privileged instructions. FIXME */
6981 }
6982 else if (strcmp (arg, "us") == 0)
6983 {
6984 /* Allow union of signed and unsigned range. FIXME */
6985 }
6986 else if (strcmp (arg, "close_fcalls") == 0)
6987 {
6988 /* Do not resolve global function calls. */
6989 }
6990 else
6991 return 0;
6992 break;
6993
6994 case 'C':
6995 /* temp[="prefix"] Insert temporary labels into the object file
6996 symbol table prefixed by "prefix".
6997 Default prefix is ":temp:".
6998 */
6999 break;
7000
7001 case 'a':
7002 /* indirect=<tgt> Assume unannotated indirect branches behavior
7003 according to <tgt> --
7004 exit: branch out from the current context (default)
7005 labels: all labels in context may be branch targets
7006 */
7007 if (strncmp (arg, "indirect=", 9) != 0)
7008 return 0;
7009 break;
7010
7011 case 'x':
7012 /* -X conflicts with an ignored option, use -x instead */
7013 md.detect_dv = 1;
7014 if (!arg || strcmp (arg, "explicit") == 0)
7015 {
7016 /* set default mode to explicit */
7017 md.default_explicit_mode = 1;
7018 break;
7019 }
7020 else if (strcmp (arg, "auto") == 0)
7021 {
7022 md.default_explicit_mode = 0;
7023 }
7024 else if (strcmp (arg, "none") == 0)
7025 {
7026 md.detect_dv = 0;
7027 }
7028 else if (strcmp (arg, "debug") == 0)
7029 {
7030 md.debug_dv = 1;
7031 }
7032 else if (strcmp (arg, "debugx") == 0)
7033 {
7034 md.default_explicit_mode = 1;
7035 md.debug_dv = 1;
7036 }
7037 else if (strcmp (arg, "debugn") == 0)
7038 {
7039 md.debug_dv = 1;
7040 md.detect_dv = 0;
7041 }
7042 else
7043 {
7044 as_bad (_("Unrecognized option '-x%s'"), arg);
7045 }
7046 break;
7047
7048 case 'S':
7049 /* nops Print nops statistics. */
7050 break;
7051
7052 /* GNU specific switches for gcc. */
7053 case OPTION_MCONSTANT_GP:
7054 md.flags |= EF_IA_64_CONS_GP;
7055 break;
7056
7057 case OPTION_MAUTO_PIC:
7058 md.flags |= EF_IA_64_NOFUNCDESC_CONS_GP;
7059 break;
7060
7061 default:
7062 return 0;
7063 }
7064
7065 return 1;
7066 }
7067
7068 void
7069 md_show_usage (stream)
7070 FILE *stream;
7071 {
7072 fputs (_("\
7073 IA-64 options:\n\
7074 --mconstant-gp mark output file as using the constant-GP model\n\
7075 (sets ELF header flag EF_IA_64_CONS_GP)\n\
7076 --mauto-pic mark output file as using the constant-GP model\n\
7077 without function descriptors (sets ELF header flag\n\
7078 EF_IA_64_NOFUNCDESC_CONS_GP)\n\
7079 -milp32|-milp64|-mlp64|-mp64 select data model (default -mlp64)\n\
7080 -mle | -mbe select little- or big-endian byte order (default -mle)\n\
7081 -munwind-check=[warning|error]\n\
7082 unwind directive check (default -munwind-check=warning)\n\
7083 -mhint.b=[ok|warning|error]\n\
7084 hint.b check (default -mhint.b=error)\n\
7085 -x | -xexplicit turn on dependency violation checking\n\
7086 -xauto automagically remove dependency violations (default)\n\
7087 -xnone turn off dependency violation checking\n\
7088 -xdebug debug dependency violation checker\n\
7089 -xdebugn debug dependency violation checker but turn off\n\
7090 dependency violation checking\n\
7091 -xdebugx debug dependency violation checker and turn on\n\
7092 dependency violation checking\n"),
7093 stream);
7094 }
7095
7096 void
7097 ia64_after_parse_args ()
7098 {
7099 if (debug_type == DEBUG_STABS)
7100 as_fatal (_("--gstabs is not supported for ia64"));
7101 }
7102
7103 /* Return true if TYPE fits in TEMPL at SLOT. */
7104
7105 static int
7106 match (int templ, int type, int slot)
7107 {
7108 enum ia64_unit unit;
7109 int result;
7110
7111 unit = ia64_templ_desc[templ].exec_unit[slot];
7112 switch (type)
7113 {
7114 case IA64_TYPE_DYN: result = 1; break; /* for nop and break */
7115 case IA64_TYPE_A:
7116 result = (unit == IA64_UNIT_I || unit == IA64_UNIT_M);
7117 break;
7118 case IA64_TYPE_X: result = (unit == IA64_UNIT_L); break;
7119 case IA64_TYPE_I: result = (unit == IA64_UNIT_I); break;
7120 case IA64_TYPE_M: result = (unit == IA64_UNIT_M); break;
7121 case IA64_TYPE_B: result = (unit == IA64_UNIT_B); break;
7122 case IA64_TYPE_F: result = (unit == IA64_UNIT_F); break;
7123 default: result = 0; break;
7124 }
7125 return result;
7126 }
7127
7128 /* Add a bit of extra goodness if a nop of type F or B would fit
7129 in TEMPL at SLOT. */
7130
7131 static inline int
7132 extra_goodness (int templ, int slot)
7133 {
7134 if (slot == 1 && match (templ, IA64_TYPE_F, slot))
7135 return 2;
7136 if (slot == 2 && match (templ, IA64_TYPE_B, slot))
7137 return 1;
7138 return 0;
7139 }
7140
7141 /* This function is called once, at assembler startup time. It sets
7142 up all the tables, etc. that the MD part of the assembler will need
7143 that can be determined before arguments are parsed. */
7144 void
7145 md_begin ()
7146 {
7147 int i, j, k, t, total, ar_base, cr_base, goodness, best, regnum, ok;
7148 const char *err;
7149 char name[8];
7150
7151 md.auto_align = 1;
7152 md.explicit_mode = md.default_explicit_mode;
7153
7154 bfd_set_section_alignment (stdoutput, text_section, 4);
7155
7156 /* Make sure function pointers get initialized. */
7157 target_big_endian = -1;
7158 dot_byteorder (default_big_endian);
7159
7160 alias_hash = hash_new ();
7161 alias_name_hash = hash_new ();
7162 secalias_hash = hash_new ();
7163 secalias_name_hash = hash_new ();
7164
7165 pseudo_func[FUNC_DTP_MODULE].u.sym =
7166 symbol_new (".<dtpmod>", undefined_section, FUNC_DTP_MODULE,
7167 &zero_address_frag);
7168
7169 pseudo_func[FUNC_DTP_RELATIVE].u.sym =
7170 symbol_new (".<dtprel>", undefined_section, FUNC_DTP_RELATIVE,
7171 &zero_address_frag);
7172
7173 pseudo_func[FUNC_FPTR_RELATIVE].u.sym =
7174 symbol_new (".<fptr>", undefined_section, FUNC_FPTR_RELATIVE,
7175 &zero_address_frag);
7176
7177 pseudo_func[FUNC_GP_RELATIVE].u.sym =
7178 symbol_new (".<gprel>", undefined_section, FUNC_GP_RELATIVE,
7179 &zero_address_frag);
7180
7181 pseudo_func[FUNC_LT_RELATIVE].u.sym =
7182 symbol_new (".<ltoff>", undefined_section, FUNC_LT_RELATIVE,
7183 &zero_address_frag);
7184
7185 pseudo_func[FUNC_LT_RELATIVE_X].u.sym =
7186 symbol_new (".<ltoffx>", undefined_section, FUNC_LT_RELATIVE_X,
7187 &zero_address_frag);
7188
7189 pseudo_func[FUNC_PC_RELATIVE].u.sym =
7190 symbol_new (".<pcrel>", undefined_section, FUNC_PC_RELATIVE,
7191 &zero_address_frag);
7192
7193 pseudo_func[FUNC_PLT_RELATIVE].u.sym =
7194 symbol_new (".<pltoff>", undefined_section, FUNC_PLT_RELATIVE,
7195 &zero_address_frag);
7196
7197 pseudo_func[FUNC_SEC_RELATIVE].u.sym =
7198 symbol_new (".<secrel>", undefined_section, FUNC_SEC_RELATIVE,
7199 &zero_address_frag);
7200
7201 pseudo_func[FUNC_SEG_RELATIVE].u.sym =
7202 symbol_new (".<segrel>", undefined_section, FUNC_SEG_RELATIVE,
7203 &zero_address_frag);
7204
7205 pseudo_func[FUNC_TP_RELATIVE].u.sym =
7206 symbol_new (".<tprel>", undefined_section, FUNC_TP_RELATIVE,
7207 &zero_address_frag);
7208
7209 pseudo_func[FUNC_LTV_RELATIVE].u.sym =
7210 symbol_new (".<ltv>", undefined_section, FUNC_LTV_RELATIVE,
7211 &zero_address_frag);
7212
7213 pseudo_func[FUNC_LT_FPTR_RELATIVE].u.sym =
7214 symbol_new (".<ltoff.fptr>", undefined_section, FUNC_LT_FPTR_RELATIVE,
7215 &zero_address_frag);
7216
7217 pseudo_func[FUNC_LT_DTP_MODULE].u.sym =
7218 symbol_new (".<ltoff.dtpmod>", undefined_section, FUNC_LT_DTP_MODULE,
7219 &zero_address_frag);
7220
7221 pseudo_func[FUNC_LT_DTP_RELATIVE].u.sym =
7222 symbol_new (".<ltoff.dptrel>", undefined_section, FUNC_LT_DTP_RELATIVE,
7223 &zero_address_frag);
7224
7225 pseudo_func[FUNC_LT_TP_RELATIVE].u.sym =
7226 symbol_new (".<ltoff.tprel>", undefined_section, FUNC_LT_TP_RELATIVE,
7227 &zero_address_frag);
7228
7229 pseudo_func[FUNC_IPLT_RELOC].u.sym =
7230 symbol_new (".<iplt>", undefined_section, FUNC_IPLT_RELOC,
7231 &zero_address_frag);
7232
7233 /* Compute the table of best templates. We compute goodness as a
7234 base 4 value, in which each match counts for 3, each F counts
7235 for 2, each B counts for 1. This should maximize the number of
7236 F and B nops in the chosen bundles, which is good because these
7237 pipelines are least likely to be overcommitted. */
7238 for (i = 0; i < IA64_NUM_TYPES; ++i)
7239 for (j = 0; j < IA64_NUM_TYPES; ++j)
7240 for (k = 0; k < IA64_NUM_TYPES; ++k)
7241 {
7242 best = 0;
7243 for (t = 0; t < NELEMS (ia64_templ_desc); ++t)
7244 {
7245 goodness = 0;
7246 if (match (t, i, 0))
7247 {
7248 if (match (t, j, 1))
7249 {
7250 if (match (t, k, 2))
7251 goodness = 3 + 3 + 3;
7252 else
7253 goodness = 3 + 3 + extra_goodness (t, 2);
7254 }
7255 else if (match (t, j, 2))
7256 goodness = 3 + 3 + extra_goodness (t, 1);
7257 else
7258 {
7259 goodness = 3;
7260 goodness += extra_goodness (t, 1);
7261 goodness += extra_goodness (t, 2);
7262 }
7263 }
7264 else if (match (t, i, 1))
7265 {
7266 if (match (t, j, 2))
7267 goodness = 3 + 3;
7268 else
7269 goodness = 3 + extra_goodness (t, 2);
7270 }
7271 else if (match (t, i, 2))
7272 goodness = 3 + extra_goodness (t, 1);
7273
7274 if (goodness > best)
7275 {
7276 best = goodness;
7277 best_template[i][j][k] = t;
7278 }
7279 }
7280 }
7281
7282 for (i = 0; i < NUM_SLOTS; ++i)
7283 md.slot[i].user_template = -1;
7284
7285 md.pseudo_hash = hash_new ();
7286 for (i = 0; i < NELEMS (pseudo_opcode); ++i)
7287 {
7288 err = hash_insert (md.pseudo_hash, pseudo_opcode[i].name,
7289 (void *) (pseudo_opcode + i));
7290 if (err)
7291 as_fatal ("ia64.md_begin: can't hash `%s': %s",
7292 pseudo_opcode[i].name, err);
7293 }
7294
7295 md.reg_hash = hash_new ();
7296 md.dynreg_hash = hash_new ();
7297 md.const_hash = hash_new ();
7298 md.entry_hash = hash_new ();
7299
7300 /* general registers: */
7301
7302 total = 128;
7303 for (i = 0; i < total; ++i)
7304 {
7305 sprintf (name, "r%d", i - REG_GR);
7306 md.regsym[i] = declare_register (name, i);
7307 }
7308
7309 /* floating point registers: */
7310 total += 128;
7311 for (; i < total; ++i)
7312 {
7313 sprintf (name, "f%d", i - REG_FR);
7314 md.regsym[i] = declare_register (name, i);
7315 }
7316
7317 /* application registers: */
7318 total += 128;
7319 ar_base = i;
7320 for (; i < total; ++i)
7321 {
7322 sprintf (name, "ar%d", i - REG_AR);
7323 md.regsym[i] = declare_register (name, i);
7324 }
7325
7326 /* control registers: */
7327 total += 128;
7328 cr_base = i;
7329 for (; i < total; ++i)
7330 {
7331 sprintf (name, "cr%d", i - REG_CR);
7332 md.regsym[i] = declare_register (name, i);
7333 }
7334
7335 /* predicate registers: */
7336 total += 64;
7337 for (; i < total; ++i)
7338 {
7339 sprintf (name, "p%d", i - REG_P);
7340 md.regsym[i] = declare_register (name, i);
7341 }
7342
7343 /* branch registers: */
7344 total += 8;
7345 for (; i < total; ++i)
7346 {
7347 sprintf (name, "b%d", i - REG_BR);
7348 md.regsym[i] = declare_register (name, i);
7349 }
7350
7351 md.regsym[REG_IP] = declare_register ("ip", REG_IP);
7352 md.regsym[REG_CFM] = declare_register ("cfm", REG_CFM);
7353 md.regsym[REG_PR] = declare_register ("pr", REG_PR);
7354 md.regsym[REG_PR_ROT] = declare_register ("pr.rot", REG_PR_ROT);
7355 md.regsym[REG_PSR] = declare_register ("psr", REG_PSR);
7356 md.regsym[REG_PSR_L] = declare_register ("psr.l", REG_PSR_L);
7357 md.regsym[REG_PSR_UM] = declare_register ("psr.um", REG_PSR_UM);
7358
7359 for (i = 0; i < NELEMS (indirect_reg); ++i)
7360 {
7361 regnum = indirect_reg[i].regnum;
7362 md.regsym[regnum] = declare_register (indirect_reg[i].name, regnum);
7363 }
7364
7365 /* define synonyms for application registers: */
7366 for (i = REG_AR; i < REG_AR + NELEMS (ar); ++i)
7367 md.regsym[i] = declare_register (ar[i - REG_AR].name,
7368 REG_AR + ar[i - REG_AR].regnum);
7369
7370 /* define synonyms for control registers: */
7371 for (i = REG_CR; i < REG_CR + NELEMS (cr); ++i)
7372 md.regsym[i] = declare_register (cr[i - REG_CR].name,
7373 REG_CR + cr[i - REG_CR].regnum);
7374
7375 declare_register ("gp", REG_GR + 1);
7376 declare_register ("sp", REG_GR + 12);
7377 declare_register ("rp", REG_BR + 0);
7378
7379 /* pseudo-registers used to specify unwind info: */
7380 declare_register ("psp", REG_PSP);
7381
7382 declare_register_set ("ret", 4, REG_GR + 8);
7383 declare_register_set ("farg", 8, REG_FR + 8);
7384 declare_register_set ("fret", 8, REG_FR + 8);
7385
7386 for (i = 0; i < NELEMS (const_bits); ++i)
7387 {
7388 err = hash_insert (md.const_hash, const_bits[i].name,
7389 (PTR) (const_bits + i));
7390 if (err)
7391 as_fatal ("Inserting \"%s\" into constant hash table failed: %s",
7392 name, err);
7393 }
7394
7395 /* Set the architecture and machine depending on defaults and command line
7396 options. */
7397 if (md.flags & EF_IA_64_ABI64)
7398 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf64);
7399 else
7400 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf32);
7401
7402 if (! ok)
7403 as_warn (_("Could not set architecture and machine"));
7404
7405 /* Set the pointer size and pointer shift size depending on md.flags */
7406
7407 if (md.flags & EF_IA_64_ABI64)
7408 {
7409 md.pointer_size = 8; /* pointers are 8 bytes */
7410 md.pointer_size_shift = 3; /* alignment is 8 bytes = 2^2 */
7411 }
7412 else
7413 {
7414 md.pointer_size = 4; /* pointers are 4 bytes */
7415 md.pointer_size_shift = 2; /* alignment is 4 bytes = 2^2 */
7416 }
7417
7418 md.mem_offset.hint = 0;
7419 md.path = 0;
7420 md.maxpaths = 0;
7421 md.entry_labels = NULL;
7422 }
7423
7424 /* Set the default options in md. Cannot do this in md_begin because
7425 that is called after md_parse_option which is where we set the
7426 options in md based on command line options. */
7427
7428 void
7429 ia64_init (argc, argv)
7430 int argc ATTRIBUTE_UNUSED;
7431 char **argv ATTRIBUTE_UNUSED;
7432 {
7433 md.flags = MD_FLAGS_DEFAULT;
7434 md.detect_dv = 1;
7435 /* FIXME: We should change it to unwind_check_error someday. */
7436 md.unwind_check = unwind_check_warning;
7437 md.hint_b = hint_b_error;
7438 }
7439
7440 /* Return a string for the target object file format. */
7441
7442 const char *
7443 ia64_target_format ()
7444 {
7445 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
7446 {
7447 if (md.flags & EF_IA_64_BE)
7448 {
7449 if (md.flags & EF_IA_64_ABI64)
7450 #if defined(TE_AIX50)
7451 return "elf64-ia64-aix-big";
7452 #elif defined(TE_HPUX)
7453 return "elf64-ia64-hpux-big";
7454 #else
7455 return "elf64-ia64-big";
7456 #endif
7457 else
7458 #if defined(TE_AIX50)
7459 return "elf32-ia64-aix-big";
7460 #elif defined(TE_HPUX)
7461 return "elf32-ia64-hpux-big";
7462 #else
7463 return "elf32-ia64-big";
7464 #endif
7465 }
7466 else
7467 {
7468 if (md.flags & EF_IA_64_ABI64)
7469 #ifdef TE_AIX50
7470 return "elf64-ia64-aix-little";
7471 #else
7472 return "elf64-ia64-little";
7473 #endif
7474 else
7475 #ifdef TE_AIX50
7476 return "elf32-ia64-aix-little";
7477 #else
7478 return "elf32-ia64-little";
7479 #endif
7480 }
7481 }
7482 else
7483 return "unknown-format";
7484 }
7485
7486 void
7487 ia64_end_of_source ()
7488 {
7489 /* terminate insn group upon reaching end of file: */
7490 insn_group_break (1, 0, 0);
7491
7492 /* emits slots we haven't written yet: */
7493 ia64_flush_insns ();
7494
7495 bfd_set_private_flags (stdoutput, md.flags);
7496
7497 md.mem_offset.hint = 0;
7498 }
7499
7500 void
7501 ia64_start_line ()
7502 {
7503 if (md.qp.X_op == O_register)
7504 as_bad ("qualifying predicate not followed by instruction");
7505 md.qp.X_op = O_absent;
7506
7507 if (ignore_input ())
7508 return;
7509
7510 if (input_line_pointer[0] == ';' && input_line_pointer[-1] == ';')
7511 {
7512 if (md.detect_dv && !md.explicit_mode)
7513 {
7514 static int warned;
7515
7516 if (!warned)
7517 {
7518 warned = 1;
7519 as_warn (_("Explicit stops are ignored in auto mode"));
7520 }
7521 }
7522 else
7523 insn_group_break (1, 0, 0);
7524 }
7525 }
7526
7527 /* This is a hook for ia64_frob_label, so that it can distinguish tags from
7528 labels. */
7529 static int defining_tag = 0;
7530
7531 int
7532 ia64_unrecognized_line (ch)
7533 int ch;
7534 {
7535 switch (ch)
7536 {
7537 case '(':
7538 expression (&md.qp);
7539 if (*input_line_pointer++ != ')')
7540 {
7541 as_bad ("Expected ')'");
7542 return 0;
7543 }
7544 if (md.qp.X_op != O_register)
7545 {
7546 as_bad ("Qualifying predicate expected");
7547 return 0;
7548 }
7549 if (md.qp.X_add_number < REG_P || md.qp.X_add_number >= REG_P + 64)
7550 {
7551 as_bad ("Predicate register expected");
7552 return 0;
7553 }
7554 return 1;
7555
7556 case '{':
7557 if (md.manual_bundling)
7558 as_warn ("Found '{' when manual bundling is already turned on");
7559 else
7560 CURR_SLOT.manual_bundling_on = 1;
7561 md.manual_bundling = 1;
7562
7563 /* Bundling is only acceptable in explicit mode
7564 or when in default automatic mode. */
7565 if (md.detect_dv && !md.explicit_mode)
7566 {
7567 if (!md.mode_explicitly_set
7568 && !md.default_explicit_mode)
7569 dot_dv_mode ('E');
7570 else
7571 as_warn (_("Found '{' after explicit switch to automatic mode"));
7572 }
7573 return 1;
7574
7575 case '}':
7576 if (!md.manual_bundling)
7577 as_warn ("Found '}' when manual bundling is off");
7578 else
7579 PREV_SLOT.manual_bundling_off = 1;
7580 md.manual_bundling = 0;
7581
7582 /* switch back to automatic mode, if applicable */
7583 if (md.detect_dv
7584 && md.explicit_mode
7585 && !md.mode_explicitly_set
7586 && !md.default_explicit_mode)
7587 dot_dv_mode ('A');
7588
7589 /* Allow '{' to follow on the same line. We also allow ";;", but that
7590 happens automatically because ';' is an end of line marker. */
7591 SKIP_WHITESPACE ();
7592 if (input_line_pointer[0] == '{')
7593 {
7594 input_line_pointer++;
7595 return ia64_unrecognized_line ('{');
7596 }
7597
7598 demand_empty_rest_of_line ();
7599 return 1;
7600
7601 case '[':
7602 {
7603 char *s;
7604 char c;
7605 symbolS *tag;
7606 int temp;
7607
7608 if (md.qp.X_op == O_register)
7609 {
7610 as_bad ("Tag must come before qualifying predicate.");
7611 return 0;
7612 }
7613
7614 /* This implements just enough of read_a_source_file in read.c to
7615 recognize labels. */
7616 if (is_name_beginner (*input_line_pointer))
7617 {
7618 s = input_line_pointer;
7619 c = get_symbol_end ();
7620 }
7621 else if (LOCAL_LABELS_FB
7622 && ISDIGIT (*input_line_pointer))
7623 {
7624 temp = 0;
7625 while (ISDIGIT (*input_line_pointer))
7626 temp = (temp * 10) + *input_line_pointer++ - '0';
7627 fb_label_instance_inc (temp);
7628 s = fb_label_name (temp, 0);
7629 c = *input_line_pointer;
7630 }
7631 else
7632 {
7633 s = NULL;
7634 c = '\0';
7635 }
7636 if (c != ':')
7637 {
7638 /* Put ':' back for error messages' sake. */
7639 *input_line_pointer++ = ':';
7640 as_bad ("Expected ':'");
7641 return 0;
7642 }
7643
7644 defining_tag = 1;
7645 tag = colon (s);
7646 defining_tag = 0;
7647 /* Put ':' back for error messages' sake. */
7648 *input_line_pointer++ = ':';
7649 if (*input_line_pointer++ != ']')
7650 {
7651 as_bad ("Expected ']'");
7652 return 0;
7653 }
7654 if (! tag)
7655 {
7656 as_bad ("Tag name expected");
7657 return 0;
7658 }
7659 return 1;
7660 }
7661
7662 default:
7663 break;
7664 }
7665
7666 /* Not a valid line. */
7667 return 0;
7668 }
7669
7670 void
7671 ia64_frob_label (sym)
7672 struct symbol *sym;
7673 {
7674 struct label_fix *fix;
7675
7676 /* Tags need special handling since they are not bundle breaks like
7677 labels. */
7678 if (defining_tag)
7679 {
7680 fix = obstack_alloc (&notes, sizeof (*fix));
7681 fix->sym = sym;
7682 fix->next = CURR_SLOT.tag_fixups;
7683 CURR_SLOT.tag_fixups = fix;
7684
7685 return;
7686 }
7687
7688 if (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7689 {
7690 md.last_text_seg = now_seg;
7691 fix = obstack_alloc (&notes, sizeof (*fix));
7692 fix->sym = sym;
7693 fix->next = CURR_SLOT.label_fixups;
7694 CURR_SLOT.label_fixups = fix;
7695
7696 /* Keep track of how many code entry points we've seen. */
7697 if (md.path == md.maxpaths)
7698 {
7699 md.maxpaths += 20;
7700 md.entry_labels = (const char **)
7701 xrealloc ((void *) md.entry_labels,
7702 md.maxpaths * sizeof (char *));
7703 }
7704 md.entry_labels[md.path++] = S_GET_NAME (sym);
7705 }
7706 }
7707
7708 #ifdef TE_HPUX
7709 /* The HP-UX linker will give unresolved symbol errors for symbols
7710 that are declared but unused. This routine removes declared,
7711 unused symbols from an object. */
7712 int
7713 ia64_frob_symbol (sym)
7714 struct symbol *sym;
7715 {
7716 if ((S_GET_SEGMENT (sym) == &bfd_und_section && ! symbol_used_p (sym) &&
7717 ELF_ST_VISIBILITY (S_GET_OTHER (sym)) == STV_DEFAULT)
7718 || (S_GET_SEGMENT (sym) == &bfd_abs_section
7719 && ! S_IS_EXTERNAL (sym)))
7720 return 1;
7721 return 0;
7722 }
7723 #endif
7724
7725 void
7726 ia64_flush_pending_output ()
7727 {
7728 if (!md.keep_pending_output
7729 && bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7730 {
7731 /* ??? This causes many unnecessary stop bits to be emitted.
7732 Unfortunately, it isn't clear if it is safe to remove this. */
7733 insn_group_break (1, 0, 0);
7734 ia64_flush_insns ();
7735 }
7736 }
7737
7738 /* Do ia64-specific expression optimization. All that's done here is
7739 to transform index expressions that are either due to the indexing
7740 of rotating registers or due to the indexing of indirect register
7741 sets. */
7742 int
7743 ia64_optimize_expr (l, op, r)
7744 expressionS *l;
7745 operatorT op;
7746 expressionS *r;
7747 {
7748 unsigned num_regs;
7749
7750 if (op == O_index)
7751 {
7752 if (l->X_op == O_register && r->X_op == O_constant)
7753 {
7754 num_regs = (l->X_add_number >> 16);
7755 if ((unsigned) r->X_add_number >= num_regs)
7756 {
7757 if (!num_regs)
7758 as_bad ("No current frame");
7759 else
7760 as_bad ("Index out of range 0..%u", num_regs - 1);
7761 r->X_add_number = 0;
7762 }
7763 l->X_add_number = (l->X_add_number & 0xffff) + r->X_add_number;
7764 return 1;
7765 }
7766 else if (l->X_op == O_register && r->X_op == O_register)
7767 {
7768 if (l->X_add_number < IND_CPUID || l->X_add_number > IND_RR
7769 || l->X_add_number == IND_MEM)
7770 {
7771 as_bad ("Indirect register set name expected");
7772 l->X_add_number = IND_CPUID;
7773 }
7774 l->X_op = O_index;
7775 l->X_op_symbol = md.regsym[l->X_add_number];
7776 l->X_add_number = r->X_add_number;
7777 return 1;
7778 }
7779 }
7780 return 0;
7781 }
7782
7783 int
7784 ia64_parse_name (name, e, nextcharP)
7785 char *name;
7786 expressionS *e;
7787 char *nextcharP;
7788 {
7789 struct const_desc *cdesc;
7790 struct dynreg *dr = 0;
7791 unsigned int idx;
7792 struct symbol *sym;
7793 char *end;
7794
7795 if (*name == '@')
7796 {
7797 enum pseudo_type pseudo_type = PSEUDO_FUNC_NONE;
7798
7799 /* Find what relocation pseudo-function we're dealing with. */
7800 for (idx = 0; idx < NELEMS (pseudo_func); ++idx)
7801 if (pseudo_func[idx].name
7802 && pseudo_func[idx].name[0] == name[1]
7803 && strcmp (pseudo_func[idx].name + 1, name + 2) == 0)
7804 {
7805 pseudo_type = pseudo_func[idx].type;
7806 break;
7807 }
7808 switch (pseudo_type)
7809 {
7810 case PSEUDO_FUNC_RELOC:
7811 end = input_line_pointer;
7812 if (*nextcharP != '(')
7813 {
7814 as_bad ("Expected '('");
7815 break;
7816 }
7817 /* Skip '('. */
7818 ++input_line_pointer;
7819 expression (e);
7820 if (*input_line_pointer != ')')
7821 {
7822 as_bad ("Missing ')'");
7823 goto done;
7824 }
7825 /* Skip ')'. */
7826 ++input_line_pointer;
7827 if (e->X_op != O_symbol)
7828 {
7829 if (e->X_op != O_pseudo_fixup)
7830 {
7831 as_bad ("Not a symbolic expression");
7832 goto done;
7833 }
7834 if (idx != FUNC_LT_RELATIVE)
7835 {
7836 as_bad ("Illegal combination of relocation functions");
7837 goto done;
7838 }
7839 switch (S_GET_VALUE (e->X_op_symbol))
7840 {
7841 case FUNC_FPTR_RELATIVE:
7842 idx = FUNC_LT_FPTR_RELATIVE; break;
7843 case FUNC_DTP_MODULE:
7844 idx = FUNC_LT_DTP_MODULE; break;
7845 case FUNC_DTP_RELATIVE:
7846 idx = FUNC_LT_DTP_RELATIVE; break;
7847 case FUNC_TP_RELATIVE:
7848 idx = FUNC_LT_TP_RELATIVE; break;
7849 default:
7850 as_bad ("Illegal combination of relocation functions");
7851 goto done;
7852 }
7853 }
7854 /* Make sure gas doesn't get rid of local symbols that are used
7855 in relocs. */
7856 e->X_op = O_pseudo_fixup;
7857 e->X_op_symbol = pseudo_func[idx].u.sym;
7858 done:
7859 *nextcharP = *input_line_pointer;
7860 break;
7861
7862 case PSEUDO_FUNC_CONST:
7863 e->X_op = O_constant;
7864 e->X_add_number = pseudo_func[idx].u.ival;
7865 break;
7866
7867 case PSEUDO_FUNC_REG:
7868 e->X_op = O_register;
7869 e->X_add_number = pseudo_func[idx].u.ival;
7870 break;
7871
7872 default:
7873 return 0;
7874 }
7875 return 1;
7876 }
7877
7878 /* first see if NAME is a known register name: */
7879 sym = hash_find (md.reg_hash, name);
7880 if (sym)
7881 {
7882 e->X_op = O_register;
7883 e->X_add_number = S_GET_VALUE (sym);
7884 return 1;
7885 }
7886
7887 cdesc = hash_find (md.const_hash, name);
7888 if (cdesc)
7889 {
7890 e->X_op = O_constant;
7891 e->X_add_number = cdesc->value;
7892 return 1;
7893 }
7894
7895 /* check for inN, locN, or outN: */
7896 idx = 0;
7897 switch (name[0])
7898 {
7899 case 'i':
7900 if (name[1] == 'n' && ISDIGIT (name[2]))
7901 {
7902 dr = &md.in;
7903 idx = 2;
7904 }
7905 break;
7906
7907 case 'l':
7908 if (name[1] == 'o' && name[2] == 'c' && ISDIGIT (name[3]))
7909 {
7910 dr = &md.loc;
7911 idx = 3;
7912 }
7913 break;
7914
7915 case 'o':
7916 if (name[1] == 'u' && name[2] == 't' && ISDIGIT (name[3]))
7917 {
7918 dr = &md.out;
7919 idx = 3;
7920 }
7921 break;
7922
7923 default:
7924 break;
7925 }
7926
7927 /* Ignore register numbers with leading zeroes, except zero itself. */
7928 if (dr && (name[idx] != '0' || name[idx + 1] == '\0'))
7929 {
7930 unsigned long regnum;
7931
7932 /* The name is inN, locN, or outN; parse the register number. */
7933 regnum = strtoul (name + idx, &end, 10);
7934 if (end > name + idx && *end == '\0' && regnum < 96)
7935 {
7936 if (regnum >= dr->num_regs)
7937 {
7938 if (!dr->num_regs)
7939 as_bad ("No current frame");
7940 else
7941 as_bad ("Register number out of range 0..%u",
7942 dr->num_regs - 1);
7943 regnum = 0;
7944 }
7945 e->X_op = O_register;
7946 e->X_add_number = dr->base + regnum;
7947 return 1;
7948 }
7949 }
7950
7951 end = alloca (strlen (name) + 1);
7952 strcpy (end, name);
7953 name = ia64_canonicalize_symbol_name (end);
7954 if ((dr = hash_find (md.dynreg_hash, name)))
7955 {
7956 /* We've got ourselves the name of a rotating register set.
7957 Store the base register number in the low 16 bits of
7958 X_add_number and the size of the register set in the top 16
7959 bits. */
7960 e->X_op = O_register;
7961 e->X_add_number = dr->base | (dr->num_regs << 16);
7962 return 1;
7963 }
7964 return 0;
7965 }
7966
7967 /* Remove the '#' suffix that indicates a symbol as opposed to a register. */
7968
7969 char *
7970 ia64_canonicalize_symbol_name (name)
7971 char *name;
7972 {
7973 size_t len = strlen (name), full = len;
7974
7975 while (len > 0 && name[len - 1] == '#')
7976 --len;
7977 if (len <= 0)
7978 {
7979 if (full > 0)
7980 as_bad ("Standalone `#' is illegal");
7981 else
7982 as_bad ("Zero-length symbol is illegal");
7983 }
7984 else if (len < full - 1)
7985 as_warn ("Redundant `#' suffix operators");
7986 name[len] = '\0';
7987 return name;
7988 }
7989
7990 /* Return true if idesc is a conditional branch instruction. This excludes
7991 the modulo scheduled branches, and br.ia. Mod-sched branches are excluded
7992 because they always read/write resources regardless of the value of the
7993 qualifying predicate. br.ia must always use p0, and hence is always
7994 taken. Thus this function returns true for branches which can fall
7995 through, and which use no resources if they do fall through. */
7996
7997 static int
7998 is_conditional_branch (idesc)
7999 struct ia64_opcode *idesc;
8000 {
8001 /* br is a conditional branch. Everything that starts with br. except
8002 br.ia, br.c{loop,top,exit}, and br.w{top,exit} is a conditional branch.
8003 Everything that starts with brl is a conditional branch. */
8004 return (idesc->name[0] == 'b' && idesc->name[1] == 'r'
8005 && (idesc->name[2] == '\0'
8006 || (idesc->name[2] == '.' && idesc->name[3] != 'i'
8007 && idesc->name[3] != 'c' && idesc->name[3] != 'w')
8008 || idesc->name[2] == 'l'
8009 /* br.cond, br.call, br.clr */
8010 || (idesc->name[2] == '.' && idesc->name[3] == 'c'
8011 && (idesc->name[4] == 'a' || idesc->name[4] == 'o'
8012 || (idesc->name[4] == 'l' && idesc->name[5] == 'r')))));
8013 }
8014
8015 /* Return whether the given opcode is a taken branch. If there's any doubt,
8016 returns zero. */
8017
8018 static int
8019 is_taken_branch (idesc)
8020 struct ia64_opcode *idesc;
8021 {
8022 return ((is_conditional_branch (idesc) && CURR_SLOT.qp_regno == 0)
8023 || strncmp (idesc->name, "br.ia", 5) == 0);
8024 }
8025
8026 /* Return whether the given opcode is an interruption or rfi. If there's any
8027 doubt, returns zero. */
8028
8029 static int
8030 is_interruption_or_rfi (idesc)
8031 struct ia64_opcode *idesc;
8032 {
8033 if (strcmp (idesc->name, "rfi") == 0)
8034 return 1;
8035 return 0;
8036 }
8037
8038 /* Returns the index of the given dependency in the opcode's list of chks, or
8039 -1 if there is no dependency. */
8040
8041 static int
8042 depends_on (depind, idesc)
8043 int depind;
8044 struct ia64_opcode *idesc;
8045 {
8046 int i;
8047 const struct ia64_opcode_dependency *dep = idesc->dependencies;
8048 for (i = 0; i < dep->nchks; i++)
8049 {
8050 if (depind == DEP (dep->chks[i]))
8051 return i;
8052 }
8053 return -1;
8054 }
8055
8056 /* Determine a set of specific resources used for a particular resource
8057 class. Returns the number of specific resources identified For those
8058 cases which are not determinable statically, the resource returned is
8059 marked nonspecific.
8060
8061 Meanings of value in 'NOTE':
8062 1) only read/write when the register number is explicitly encoded in the
8063 insn.
8064 2) only read CFM when accessing a rotating GR, FR, or PR. mov pr only
8065 accesses CFM when qualifying predicate is in the rotating region.
8066 3) general register value is used to specify an indirect register; not
8067 determinable statically.
8068 4) only read the given resource when bits 7:0 of the indirect index
8069 register value does not match the register number of the resource; not
8070 determinable statically.
8071 5) all rules are implementation specific.
8072 6) only when both the index specified by the reader and the index specified
8073 by the writer have the same value in bits 63:61; not determinable
8074 statically.
8075 7) only access the specified resource when the corresponding mask bit is
8076 set
8077 8) PSR.dfh is only read when these insns reference FR32-127. PSR.dfl is
8078 only read when these insns reference FR2-31
8079 9) PSR.mfl is only written when these insns write FR2-31. PSR.mfh is only
8080 written when these insns write FR32-127
8081 10) The PSR.bn bit is only accessed when one of GR16-31 is specified in the
8082 instruction
8083 11) The target predicates are written independently of PR[qp], but source
8084 registers are only read if PR[qp] is true. Since the state of PR[qp]
8085 cannot statically be determined, all source registers are marked used.
8086 12) This insn only reads the specified predicate register when that
8087 register is the PR[qp].
8088 13) This reference to ld-c only applies to teh GR whose value is loaded
8089 with data returned from memory, not the post-incremented address register.
8090 14) The RSE resource includes the implementation-specific RSE internal
8091 state resources. At least one (and possibly more) of these resources are
8092 read by each instruction listed in IC:rse-readers. At least one (and
8093 possibly more) of these resources are written by each insn listed in
8094 IC:rse-writers.
8095 15+16) Represents reserved instructions, which the assembler does not
8096 generate.
8097
8098 Memory resources (i.e. locations in memory) are *not* marked or tracked by
8099 this code; there are no dependency violations based on memory access.
8100 */
8101
8102 #define MAX_SPECS 256
8103 #define DV_CHK 1
8104 #define DV_REG 0
8105
8106 static int
8107 specify_resource (dep, idesc, type, specs, note, path)
8108 const struct ia64_dependency *dep;
8109 struct ia64_opcode *idesc;
8110 int type; /* is this a DV chk or a DV reg? */
8111 struct rsrc specs[MAX_SPECS]; /* returned specific resources */
8112 int note; /* resource note for this insn's usage */
8113 int path; /* which execution path to examine */
8114 {
8115 int count = 0;
8116 int i;
8117 int rsrc_write = 0;
8118 struct rsrc tmpl;
8119
8120 if (dep->mode == IA64_DV_WAW
8121 || (dep->mode == IA64_DV_RAW && type == DV_REG)
8122 || (dep->mode == IA64_DV_WAR && type == DV_CHK))
8123 rsrc_write = 1;
8124
8125 /* template for any resources we identify */
8126 tmpl.dependency = dep;
8127 tmpl.note = note;
8128 tmpl.insn_srlz = tmpl.data_srlz = 0;
8129 tmpl.qp_regno = CURR_SLOT.qp_regno;
8130 tmpl.link_to_qp_branch = 1;
8131 tmpl.mem_offset.hint = 0;
8132 tmpl.specific = 1;
8133 tmpl.index = -1;
8134 tmpl.cmp_type = CMP_NONE;
8135
8136 #define UNHANDLED \
8137 as_warn (_("Unhandled dependency %s for %s (%s), note %d"), \
8138 dep->name, idesc->name, (rsrc_write?"write":"read"), note)
8139 #define KNOWN(REG) (gr_values[REG].known && gr_values[REG].path >= path)
8140
8141 /* we don't need to track these */
8142 if (dep->semantics == IA64_DVS_NONE)
8143 return 0;
8144
8145 switch (dep->specifier)
8146 {
8147 case IA64_RS_AR_K:
8148 if (note == 1)
8149 {
8150 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8151 {
8152 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8153 if (regno >= 0 && regno <= 7)
8154 {
8155 specs[count] = tmpl;
8156 specs[count++].index = regno;
8157 }
8158 }
8159 }
8160 else if (note == 0)
8161 {
8162 for (i = 0; i < 8; i++)
8163 {
8164 specs[count] = tmpl;
8165 specs[count++].index = i;
8166 }
8167 }
8168 else
8169 {
8170 UNHANDLED;
8171 }
8172 break;
8173
8174 case IA64_RS_AR_UNAT:
8175 /* This is a mov =AR or mov AR= instruction. */
8176 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8177 {
8178 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8179 if (regno == AR_UNAT)
8180 {
8181 specs[count++] = tmpl;
8182 }
8183 }
8184 else
8185 {
8186 /* This is a spill/fill, or other instruction that modifies the
8187 unat register. */
8188
8189 /* Unless we can determine the specific bits used, mark the whole
8190 thing; bits 8:3 of the memory address indicate the bit used in
8191 UNAT. The .mem.offset hint may be used to eliminate a small
8192 subset of conflicts. */
8193 specs[count] = tmpl;
8194 if (md.mem_offset.hint)
8195 {
8196 if (md.debug_dv)
8197 fprintf (stderr, " Using hint for spill/fill\n");
8198 /* The index isn't actually used, just set it to something
8199 approximating the bit index. */
8200 specs[count].index = (md.mem_offset.offset >> 3) & 0x3F;
8201 specs[count].mem_offset.hint = 1;
8202 specs[count].mem_offset.offset = md.mem_offset.offset;
8203 specs[count++].mem_offset.base = md.mem_offset.base;
8204 }
8205 else
8206 {
8207 specs[count++].specific = 0;
8208 }
8209 }
8210 break;
8211
8212 case IA64_RS_AR:
8213 if (note == 1)
8214 {
8215 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8216 {
8217 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8218 if ((regno >= 8 && regno <= 15)
8219 || (regno >= 20 && regno <= 23)
8220 || (regno >= 31 && regno <= 39)
8221 || (regno >= 41 && regno <= 47)
8222 || (regno >= 67 && regno <= 111))
8223 {
8224 specs[count] = tmpl;
8225 specs[count++].index = regno;
8226 }
8227 }
8228 }
8229 else
8230 {
8231 UNHANDLED;
8232 }
8233 break;
8234
8235 case IA64_RS_ARb:
8236 if (note == 1)
8237 {
8238 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8239 {
8240 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8241 if ((regno >= 48 && regno <= 63)
8242 || (regno >= 112 && regno <= 127))
8243 {
8244 specs[count] = tmpl;
8245 specs[count++].index = regno;
8246 }
8247 }
8248 }
8249 else if (note == 0)
8250 {
8251 for (i = 48; i < 64; i++)
8252 {
8253 specs[count] = tmpl;
8254 specs[count++].index = i;
8255 }
8256 for (i = 112; i < 128; i++)
8257 {
8258 specs[count] = tmpl;
8259 specs[count++].index = i;
8260 }
8261 }
8262 else
8263 {
8264 UNHANDLED;
8265 }
8266 break;
8267
8268 case IA64_RS_BR:
8269 if (note != 1)
8270 {
8271 UNHANDLED;
8272 }
8273 else
8274 {
8275 if (rsrc_write)
8276 {
8277 for (i = 0; i < idesc->num_outputs; i++)
8278 if (idesc->operands[i] == IA64_OPND_B1
8279 || idesc->operands[i] == IA64_OPND_B2)
8280 {
8281 specs[count] = tmpl;
8282 specs[count++].index =
8283 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8284 }
8285 }
8286 else
8287 {
8288 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8289 if (idesc->operands[i] == IA64_OPND_B1
8290 || idesc->operands[i] == IA64_OPND_B2)
8291 {
8292 specs[count] = tmpl;
8293 specs[count++].index =
8294 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8295 }
8296 }
8297 }
8298 break;
8299
8300 case IA64_RS_CPUID: /* four or more registers */
8301 if (note == 3)
8302 {
8303 if (idesc->operands[!rsrc_write] == IA64_OPND_CPUID_R3)
8304 {
8305 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8306 if (regno >= 0 && regno < NELEMS (gr_values)
8307 && KNOWN (regno))
8308 {
8309 specs[count] = tmpl;
8310 specs[count++].index = gr_values[regno].value & 0xFF;
8311 }
8312 else
8313 {
8314 specs[count] = tmpl;
8315 specs[count++].specific = 0;
8316 }
8317 }
8318 }
8319 else
8320 {
8321 UNHANDLED;
8322 }
8323 break;
8324
8325 case IA64_RS_DBR: /* four or more registers */
8326 if (note == 3)
8327 {
8328 if (idesc->operands[!rsrc_write] == IA64_OPND_DBR_R3)
8329 {
8330 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8331 if (regno >= 0 && regno < NELEMS (gr_values)
8332 && KNOWN (regno))
8333 {
8334 specs[count] = tmpl;
8335 specs[count++].index = gr_values[regno].value & 0xFF;
8336 }
8337 else
8338 {
8339 specs[count] = tmpl;
8340 specs[count++].specific = 0;
8341 }
8342 }
8343 }
8344 else if (note == 0 && !rsrc_write)
8345 {
8346 specs[count] = tmpl;
8347 specs[count++].specific = 0;
8348 }
8349 else
8350 {
8351 UNHANDLED;
8352 }
8353 break;
8354
8355 case IA64_RS_IBR: /* four or more registers */
8356 if (note == 3)
8357 {
8358 if (idesc->operands[!rsrc_write] == IA64_OPND_IBR_R3)
8359 {
8360 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8361 if (regno >= 0 && regno < NELEMS (gr_values)
8362 && KNOWN (regno))
8363 {
8364 specs[count] = tmpl;
8365 specs[count++].index = gr_values[regno].value & 0xFF;
8366 }
8367 else
8368 {
8369 specs[count] = tmpl;
8370 specs[count++].specific = 0;
8371 }
8372 }
8373 }
8374 else
8375 {
8376 UNHANDLED;
8377 }
8378 break;
8379
8380 case IA64_RS_MSR:
8381 if (note == 5)
8382 {
8383 /* These are implementation specific. Force all references to
8384 conflict with all other references. */
8385 specs[count] = tmpl;
8386 specs[count++].specific = 0;
8387 }
8388 else
8389 {
8390 UNHANDLED;
8391 }
8392 break;
8393
8394 case IA64_RS_PKR: /* 16 or more registers */
8395 if (note == 3 || note == 4)
8396 {
8397 if (idesc->operands[!rsrc_write] == IA64_OPND_PKR_R3)
8398 {
8399 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8400 if (regno >= 0 && regno < NELEMS (gr_values)
8401 && KNOWN (regno))
8402 {
8403 if (note == 3)
8404 {
8405 specs[count] = tmpl;
8406 specs[count++].index = gr_values[regno].value & 0xFF;
8407 }
8408 else
8409 for (i = 0; i < NELEMS (gr_values); i++)
8410 {
8411 /* Uses all registers *except* the one in R3. */
8412 if ((unsigned)i != (gr_values[regno].value & 0xFF))
8413 {
8414 specs[count] = tmpl;
8415 specs[count++].index = i;
8416 }
8417 }
8418 }
8419 else
8420 {
8421 specs[count] = tmpl;
8422 specs[count++].specific = 0;
8423 }
8424 }
8425 }
8426 else if (note == 0)
8427 {
8428 /* probe et al. */
8429 specs[count] = tmpl;
8430 specs[count++].specific = 0;
8431 }
8432 break;
8433
8434 case IA64_RS_PMC: /* four or more registers */
8435 if (note == 3)
8436 {
8437 if (idesc->operands[!rsrc_write] == IA64_OPND_PMC_R3
8438 || (!rsrc_write && idesc->operands[1] == IA64_OPND_PMD_R3))
8439
8440 {
8441 int index = ((idesc->operands[1] == IA64_OPND_R3 && !rsrc_write)
8442 ? 1 : !rsrc_write);
8443 int regno = CURR_SLOT.opnd[index].X_add_number - REG_GR;
8444 if (regno >= 0 && regno < NELEMS (gr_values)
8445 && KNOWN (regno))
8446 {
8447 specs[count] = tmpl;
8448 specs[count++].index = gr_values[regno].value & 0xFF;
8449 }
8450 else
8451 {
8452 specs[count] = tmpl;
8453 specs[count++].specific = 0;
8454 }
8455 }
8456 }
8457 else
8458 {
8459 UNHANDLED;
8460 }
8461 break;
8462
8463 case IA64_RS_PMD: /* four or more registers */
8464 if (note == 3)
8465 {
8466 if (idesc->operands[!rsrc_write] == IA64_OPND_PMD_R3)
8467 {
8468 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8469 if (regno >= 0 && regno < NELEMS (gr_values)
8470 && KNOWN (regno))
8471 {
8472 specs[count] = tmpl;
8473 specs[count++].index = gr_values[regno].value & 0xFF;
8474 }
8475 else
8476 {
8477 specs[count] = tmpl;
8478 specs[count++].specific = 0;
8479 }
8480 }
8481 }
8482 else
8483 {
8484 UNHANDLED;
8485 }
8486 break;
8487
8488 case IA64_RS_RR: /* eight registers */
8489 if (note == 6)
8490 {
8491 if (idesc->operands[!rsrc_write] == IA64_OPND_RR_R3)
8492 {
8493 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8494 if (regno >= 0 && regno < NELEMS (gr_values)
8495 && KNOWN (regno))
8496 {
8497 specs[count] = tmpl;
8498 specs[count++].index = (gr_values[regno].value >> 61) & 0x7;
8499 }
8500 else
8501 {
8502 specs[count] = tmpl;
8503 specs[count++].specific = 0;
8504 }
8505 }
8506 }
8507 else if (note == 0 && !rsrc_write)
8508 {
8509 specs[count] = tmpl;
8510 specs[count++].specific = 0;
8511 }
8512 else
8513 {
8514 UNHANDLED;
8515 }
8516 break;
8517
8518 case IA64_RS_CR_IRR:
8519 if (note == 0)
8520 {
8521 /* handle mov-from-CR-IVR; it's a read that writes CR[IRR] */
8522 int regno = CURR_SLOT.opnd[1].X_add_number - REG_CR;
8523 if (rsrc_write
8524 && idesc->operands[1] == IA64_OPND_CR3
8525 && regno == CR_IVR)
8526 {
8527 for (i = 0; i < 4; i++)
8528 {
8529 specs[count] = tmpl;
8530 specs[count++].index = CR_IRR0 + i;
8531 }
8532 }
8533 }
8534 else if (note == 1)
8535 {
8536 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8537 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8538 && regno >= CR_IRR0
8539 && regno <= CR_IRR3)
8540 {
8541 specs[count] = tmpl;
8542 specs[count++].index = regno;
8543 }
8544 }
8545 else
8546 {
8547 UNHANDLED;
8548 }
8549 break;
8550
8551 case IA64_RS_CR_LRR:
8552 if (note != 1)
8553 {
8554 UNHANDLED;
8555 }
8556 else
8557 {
8558 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8559 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8560 && (regno == CR_LRR0 || regno == CR_LRR1))
8561 {
8562 specs[count] = tmpl;
8563 specs[count++].index = regno;
8564 }
8565 }
8566 break;
8567
8568 case IA64_RS_CR:
8569 if (note == 1)
8570 {
8571 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
8572 {
8573 specs[count] = tmpl;
8574 specs[count++].index =
8575 CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8576 }
8577 }
8578 else
8579 {
8580 UNHANDLED;
8581 }
8582 break;
8583
8584 case IA64_RS_FR:
8585 case IA64_RS_FRb:
8586 if (note != 1)
8587 {
8588 UNHANDLED;
8589 }
8590 else if (rsrc_write)
8591 {
8592 if (dep->specifier == IA64_RS_FRb
8593 && idesc->operands[0] == IA64_OPND_F1)
8594 {
8595 specs[count] = tmpl;
8596 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_FR;
8597 }
8598 }
8599 else
8600 {
8601 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8602 {
8603 if (idesc->operands[i] == IA64_OPND_F2
8604 || idesc->operands[i] == IA64_OPND_F3
8605 || idesc->operands[i] == IA64_OPND_F4)
8606 {
8607 specs[count] = tmpl;
8608 specs[count++].index =
8609 CURR_SLOT.opnd[i].X_add_number - REG_FR;
8610 }
8611 }
8612 }
8613 break;
8614
8615 case IA64_RS_GR:
8616 if (note == 13)
8617 {
8618 /* This reference applies only to the GR whose value is loaded with
8619 data returned from memory. */
8620 specs[count] = tmpl;
8621 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_GR;
8622 }
8623 else if (note == 1)
8624 {
8625 if (rsrc_write)
8626 {
8627 for (i = 0; i < idesc->num_outputs; i++)
8628 if (idesc->operands[i] == IA64_OPND_R1
8629 || idesc->operands[i] == IA64_OPND_R2
8630 || idesc->operands[i] == IA64_OPND_R3)
8631 {
8632 specs[count] = tmpl;
8633 specs[count++].index =
8634 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8635 }
8636 if (idesc->flags & IA64_OPCODE_POSTINC)
8637 for (i = 0; i < NELEMS (idesc->operands); i++)
8638 if (idesc->operands[i] == IA64_OPND_MR3)
8639 {
8640 specs[count] = tmpl;
8641 specs[count++].index =
8642 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8643 }
8644 }
8645 else
8646 {
8647 /* Look for anything that reads a GR. */
8648 for (i = 0; i < NELEMS (idesc->operands); i++)
8649 {
8650 if (idesc->operands[i] == IA64_OPND_MR3
8651 || idesc->operands[i] == IA64_OPND_CPUID_R3
8652 || idesc->operands[i] == IA64_OPND_DBR_R3
8653 || idesc->operands[i] == IA64_OPND_IBR_R3
8654 || idesc->operands[i] == IA64_OPND_MSR_R3
8655 || idesc->operands[i] == IA64_OPND_PKR_R3
8656 || idesc->operands[i] == IA64_OPND_PMC_R3
8657 || idesc->operands[i] == IA64_OPND_PMD_R3
8658 || idesc->operands[i] == IA64_OPND_RR_R3
8659 || ((i >= idesc->num_outputs)
8660 && (idesc->operands[i] == IA64_OPND_R1
8661 || idesc->operands[i] == IA64_OPND_R2
8662 || idesc->operands[i] == IA64_OPND_R3
8663 /* addl source register. */
8664 || idesc->operands[i] == IA64_OPND_R3_2)))
8665 {
8666 specs[count] = tmpl;
8667 specs[count++].index =
8668 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8669 }
8670 }
8671 }
8672 }
8673 else
8674 {
8675 UNHANDLED;
8676 }
8677 break;
8678
8679 /* This is the same as IA64_RS_PRr, except that the register range is
8680 from 1 - 15, and there are no rotating register reads/writes here. */
8681 case IA64_RS_PR:
8682 if (note == 0)
8683 {
8684 for (i = 1; i < 16; i++)
8685 {
8686 specs[count] = tmpl;
8687 specs[count++].index = i;
8688 }
8689 }
8690 else if (note == 7)
8691 {
8692 valueT mask = 0;
8693 /* Mark only those registers indicated by the mask. */
8694 if (rsrc_write)
8695 {
8696 mask = CURR_SLOT.opnd[2].X_add_number;
8697 for (i = 1; i < 16; i++)
8698 if (mask & ((valueT) 1 << i))
8699 {
8700 specs[count] = tmpl;
8701 specs[count++].index = i;
8702 }
8703 }
8704 else
8705 {
8706 UNHANDLED;
8707 }
8708 }
8709 else if (note == 11) /* note 11 implies note 1 as well */
8710 {
8711 if (rsrc_write)
8712 {
8713 for (i = 0; i < idesc->num_outputs; i++)
8714 {
8715 if (idesc->operands[i] == IA64_OPND_P1
8716 || idesc->operands[i] == IA64_OPND_P2)
8717 {
8718 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8719 if (regno >= 1 && regno < 16)
8720 {
8721 specs[count] = tmpl;
8722 specs[count++].index = regno;
8723 }
8724 }
8725 }
8726 }
8727 else
8728 {
8729 UNHANDLED;
8730 }
8731 }
8732 else if (note == 12)
8733 {
8734 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8735 {
8736 specs[count] = tmpl;
8737 specs[count++].index = CURR_SLOT.qp_regno;
8738 }
8739 }
8740 else if (note == 1)
8741 {
8742 if (rsrc_write)
8743 {
8744 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8745 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8746 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8747 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
8748
8749 if ((idesc->operands[0] == IA64_OPND_P1
8750 || idesc->operands[0] == IA64_OPND_P2)
8751 && p1 >= 1 && p1 < 16)
8752 {
8753 specs[count] = tmpl;
8754 specs[count].cmp_type =
8755 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
8756 specs[count++].index = p1;
8757 }
8758 if ((idesc->operands[1] == IA64_OPND_P1
8759 || idesc->operands[1] == IA64_OPND_P2)
8760 && p2 >= 1 && p2 < 16)
8761 {
8762 specs[count] = tmpl;
8763 specs[count].cmp_type =
8764 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
8765 specs[count++].index = p2;
8766 }
8767 }
8768 else
8769 {
8770 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8771 {
8772 specs[count] = tmpl;
8773 specs[count++].index = CURR_SLOT.qp_regno;
8774 }
8775 if (idesc->operands[1] == IA64_OPND_PR)
8776 {
8777 for (i = 1; i < 16; i++)
8778 {
8779 specs[count] = tmpl;
8780 specs[count++].index = i;
8781 }
8782 }
8783 }
8784 }
8785 else
8786 {
8787 UNHANDLED;
8788 }
8789 break;
8790
8791 /* This is the general case for PRs. IA64_RS_PR and IA64_RS_PR63 are
8792 simplified cases of this. */
8793 case IA64_RS_PRr:
8794 if (note == 0)
8795 {
8796 for (i = 16; i < 63; i++)
8797 {
8798 specs[count] = tmpl;
8799 specs[count++].index = i;
8800 }
8801 }
8802 else if (note == 7)
8803 {
8804 valueT mask = 0;
8805 /* Mark only those registers indicated by the mask. */
8806 if (rsrc_write
8807 && idesc->operands[0] == IA64_OPND_PR)
8808 {
8809 mask = CURR_SLOT.opnd[2].X_add_number;
8810 if (mask & ((valueT) 1 << 16))
8811 for (i = 16; i < 63; i++)
8812 {
8813 specs[count] = tmpl;
8814 specs[count++].index = i;
8815 }
8816 }
8817 else if (rsrc_write
8818 && idesc->operands[0] == IA64_OPND_PR_ROT)
8819 {
8820 for (i = 16; i < 63; i++)
8821 {
8822 specs[count] = tmpl;
8823 specs[count++].index = i;
8824 }
8825 }
8826 else
8827 {
8828 UNHANDLED;
8829 }
8830 }
8831 else if (note == 11) /* note 11 implies note 1 as well */
8832 {
8833 if (rsrc_write)
8834 {
8835 for (i = 0; i < idesc->num_outputs; i++)
8836 {
8837 if (idesc->operands[i] == IA64_OPND_P1
8838 || idesc->operands[i] == IA64_OPND_P2)
8839 {
8840 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8841 if (regno >= 16 && regno < 63)
8842 {
8843 specs[count] = tmpl;
8844 specs[count++].index = regno;
8845 }
8846 }
8847 }
8848 }
8849 else
8850 {
8851 UNHANDLED;
8852 }
8853 }
8854 else if (note == 12)
8855 {
8856 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
8857 {
8858 specs[count] = tmpl;
8859 specs[count++].index = CURR_SLOT.qp_regno;
8860 }
8861 }
8862 else if (note == 1)
8863 {
8864 if (rsrc_write)
8865 {
8866 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8867 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8868 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8869 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
8870
8871 if ((idesc->operands[0] == IA64_OPND_P1
8872 || idesc->operands[0] == IA64_OPND_P2)
8873 && p1 >= 16 && p1 < 63)
8874 {
8875 specs[count] = tmpl;
8876 specs[count].cmp_type =
8877 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
8878 specs[count++].index = p1;
8879 }
8880 if ((idesc->operands[1] == IA64_OPND_P1
8881 || idesc->operands[1] == IA64_OPND_P2)
8882 && p2 >= 16 && p2 < 63)
8883 {
8884 specs[count] = tmpl;
8885 specs[count].cmp_type =
8886 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
8887 specs[count++].index = p2;
8888 }
8889 }
8890 else
8891 {
8892 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
8893 {
8894 specs[count] = tmpl;
8895 specs[count++].index = CURR_SLOT.qp_regno;
8896 }
8897 if (idesc->operands[1] == IA64_OPND_PR)
8898 {
8899 for (i = 16; i < 63; i++)
8900 {
8901 specs[count] = tmpl;
8902 specs[count++].index = i;
8903 }
8904 }
8905 }
8906 }
8907 else
8908 {
8909 UNHANDLED;
8910 }
8911 break;
8912
8913 case IA64_RS_PSR:
8914 /* Verify that the instruction is using the PSR bit indicated in
8915 dep->regindex. */
8916 if (note == 0)
8917 {
8918 if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_UM)
8919 {
8920 if (dep->regindex < 6)
8921 {
8922 specs[count++] = tmpl;
8923 }
8924 }
8925 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR)
8926 {
8927 if (dep->regindex < 32
8928 || dep->regindex == 35
8929 || dep->regindex == 36
8930 || (!rsrc_write && dep->regindex == PSR_CPL))
8931 {
8932 specs[count++] = tmpl;
8933 }
8934 }
8935 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_L)
8936 {
8937 if (dep->regindex < 32
8938 || dep->regindex == 35
8939 || dep->regindex == 36
8940 || (rsrc_write && dep->regindex == PSR_CPL))
8941 {
8942 specs[count++] = tmpl;
8943 }
8944 }
8945 else
8946 {
8947 /* Several PSR bits have very specific dependencies. */
8948 switch (dep->regindex)
8949 {
8950 default:
8951 specs[count++] = tmpl;
8952 break;
8953 case PSR_IC:
8954 if (rsrc_write)
8955 {
8956 specs[count++] = tmpl;
8957 }
8958 else
8959 {
8960 /* Only certain CR accesses use PSR.ic */
8961 if (idesc->operands[0] == IA64_OPND_CR3
8962 || idesc->operands[1] == IA64_OPND_CR3)
8963 {
8964 int index =
8965 ((idesc->operands[0] == IA64_OPND_CR3)
8966 ? 0 : 1);
8967 int regno =
8968 CURR_SLOT.opnd[index].X_add_number - REG_CR;
8969
8970 switch (regno)
8971 {
8972 default:
8973 break;
8974 case CR_ITIR:
8975 case CR_IFS:
8976 case CR_IIM:
8977 case CR_IIP:
8978 case CR_IPSR:
8979 case CR_ISR:
8980 case CR_IFA:
8981 case CR_IHA:
8982 case CR_IIPA:
8983 specs[count++] = tmpl;
8984 break;
8985 }
8986 }
8987 }
8988 break;
8989 case PSR_CPL:
8990 if (rsrc_write)
8991 {
8992 specs[count++] = tmpl;
8993 }
8994 else
8995 {
8996 /* Only some AR accesses use cpl */
8997 if (idesc->operands[0] == IA64_OPND_AR3
8998 || idesc->operands[1] == IA64_OPND_AR3)
8999 {
9000 int index =
9001 ((idesc->operands[0] == IA64_OPND_AR3)
9002 ? 0 : 1);
9003 int regno =
9004 CURR_SLOT.opnd[index].X_add_number - REG_AR;
9005
9006 if (regno == AR_ITC
9007 || (index == 0
9008 && (regno == AR_ITC
9009 || regno == AR_RSC
9010 || (regno >= AR_K0
9011 && regno <= AR_K7))))
9012 {
9013 specs[count++] = tmpl;
9014 }
9015 }
9016 else
9017 {
9018 specs[count++] = tmpl;
9019 }
9020 break;
9021 }
9022 }
9023 }
9024 }
9025 else if (note == 7)
9026 {
9027 valueT mask = 0;
9028 if (idesc->operands[0] == IA64_OPND_IMMU24)
9029 {
9030 mask = CURR_SLOT.opnd[0].X_add_number;
9031 }
9032 else
9033 {
9034 UNHANDLED;
9035 }
9036 if (mask & ((valueT) 1 << dep->regindex))
9037 {
9038 specs[count++] = tmpl;
9039 }
9040 }
9041 else if (note == 8)
9042 {
9043 int min = dep->regindex == PSR_DFL ? 2 : 32;
9044 int max = dep->regindex == PSR_DFL ? 31 : 127;
9045 /* dfh is read on FR32-127; dfl is read on FR2-31 */
9046 for (i = 0; i < NELEMS (idesc->operands); i++)
9047 {
9048 if (idesc->operands[i] == IA64_OPND_F1
9049 || idesc->operands[i] == IA64_OPND_F2
9050 || idesc->operands[i] == IA64_OPND_F3
9051 || idesc->operands[i] == IA64_OPND_F4)
9052 {
9053 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9054 if (reg >= min && reg <= max)
9055 {
9056 specs[count++] = tmpl;
9057 }
9058 }
9059 }
9060 }
9061 else if (note == 9)
9062 {
9063 int min = dep->regindex == PSR_MFL ? 2 : 32;
9064 int max = dep->regindex == PSR_MFL ? 31 : 127;
9065 /* mfh is read on writes to FR32-127; mfl is read on writes to
9066 FR2-31 */
9067 for (i = 0; i < idesc->num_outputs; i++)
9068 {
9069 if (idesc->operands[i] == IA64_OPND_F1)
9070 {
9071 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9072 if (reg >= min && reg <= max)
9073 {
9074 specs[count++] = tmpl;
9075 }
9076 }
9077 }
9078 }
9079 else if (note == 10)
9080 {
9081 for (i = 0; i < NELEMS (idesc->operands); i++)
9082 {
9083 if (idesc->operands[i] == IA64_OPND_R1
9084 || idesc->operands[i] == IA64_OPND_R2
9085 || idesc->operands[i] == IA64_OPND_R3)
9086 {
9087 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9088 if (regno >= 16 && regno <= 31)
9089 {
9090 specs[count++] = tmpl;
9091 }
9092 }
9093 }
9094 }
9095 else
9096 {
9097 UNHANDLED;
9098 }
9099 break;
9100
9101 case IA64_RS_AR_FPSR:
9102 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
9103 {
9104 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9105 if (regno == AR_FPSR)
9106 {
9107 specs[count++] = tmpl;
9108 }
9109 }
9110 else
9111 {
9112 specs[count++] = tmpl;
9113 }
9114 break;
9115
9116 case IA64_RS_ARX:
9117 /* Handle all AR[REG] resources */
9118 if (note == 0 || note == 1)
9119 {
9120 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9121 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3
9122 && regno == dep->regindex)
9123 {
9124 specs[count++] = tmpl;
9125 }
9126 /* other AR[REG] resources may be affected by AR accesses */
9127 else if (idesc->operands[0] == IA64_OPND_AR3)
9128 {
9129 /* AR[] writes */
9130 regno = CURR_SLOT.opnd[0].X_add_number - REG_AR;
9131 switch (dep->regindex)
9132 {
9133 default:
9134 break;
9135 case AR_BSP:
9136 case AR_RNAT:
9137 if (regno == AR_BSPSTORE)
9138 {
9139 specs[count++] = tmpl;
9140 }
9141 case AR_RSC:
9142 if (!rsrc_write &&
9143 (regno == AR_BSPSTORE
9144 || regno == AR_RNAT))
9145 {
9146 specs[count++] = tmpl;
9147 }
9148 break;
9149 }
9150 }
9151 else if (idesc->operands[1] == IA64_OPND_AR3)
9152 {
9153 /* AR[] reads */
9154 regno = CURR_SLOT.opnd[1].X_add_number - REG_AR;
9155 switch (dep->regindex)
9156 {
9157 default:
9158 break;
9159 case AR_RSC:
9160 if (regno == AR_BSPSTORE || regno == AR_RNAT)
9161 {
9162 specs[count++] = tmpl;
9163 }
9164 break;
9165 }
9166 }
9167 else
9168 {
9169 specs[count++] = tmpl;
9170 }
9171 }
9172 else
9173 {
9174 UNHANDLED;
9175 }
9176 break;
9177
9178 case IA64_RS_CRX:
9179 /* Handle all CR[REG] resources */
9180 if (note == 0 || note == 1)
9181 {
9182 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
9183 {
9184 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
9185 if (regno == dep->regindex)
9186 {
9187 specs[count++] = tmpl;
9188 }
9189 else if (!rsrc_write)
9190 {
9191 /* Reads from CR[IVR] affect other resources. */
9192 if (regno == CR_IVR)
9193 {
9194 if ((dep->regindex >= CR_IRR0
9195 && dep->regindex <= CR_IRR3)
9196 || dep->regindex == CR_TPR)
9197 {
9198 specs[count++] = tmpl;
9199 }
9200 }
9201 }
9202 }
9203 else
9204 {
9205 specs[count++] = tmpl;
9206 }
9207 }
9208 else
9209 {
9210 UNHANDLED;
9211 }
9212 break;
9213
9214 case IA64_RS_INSERVICE:
9215 /* look for write of EOI (67) or read of IVR (65) */
9216 if ((idesc->operands[0] == IA64_OPND_CR3
9217 && CURR_SLOT.opnd[0].X_add_number - REG_CR == CR_EOI)
9218 || (idesc->operands[1] == IA64_OPND_CR3
9219 && CURR_SLOT.opnd[1].X_add_number - REG_CR == CR_IVR))
9220 {
9221 specs[count++] = tmpl;
9222 }
9223 break;
9224
9225 case IA64_RS_GR0:
9226 if (note == 1)
9227 {
9228 specs[count++] = tmpl;
9229 }
9230 else
9231 {
9232 UNHANDLED;
9233 }
9234 break;
9235
9236 case IA64_RS_CFM:
9237 if (note != 2)
9238 {
9239 specs[count++] = tmpl;
9240 }
9241 else
9242 {
9243 /* Check if any of the registers accessed are in the rotating region.
9244 mov to/from pr accesses CFM only when qp_regno is in the rotating
9245 region */
9246 for (i = 0; i < NELEMS (idesc->operands); i++)
9247 {
9248 if (idesc->operands[i] == IA64_OPND_R1
9249 || idesc->operands[i] == IA64_OPND_R2
9250 || idesc->operands[i] == IA64_OPND_R3)
9251 {
9252 int num = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9253 /* Assumes that md.rot.num_regs is always valid */
9254 if (md.rot.num_regs > 0
9255 && num > 31
9256 && num < 31 + md.rot.num_regs)
9257 {
9258 specs[count] = tmpl;
9259 specs[count++].specific = 0;
9260 }
9261 }
9262 else if (idesc->operands[i] == IA64_OPND_F1
9263 || idesc->operands[i] == IA64_OPND_F2
9264 || idesc->operands[i] == IA64_OPND_F3
9265 || idesc->operands[i] == IA64_OPND_F4)
9266 {
9267 int num = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9268 if (num > 31)
9269 {
9270 specs[count] = tmpl;
9271 specs[count++].specific = 0;
9272 }
9273 }
9274 else if (idesc->operands[i] == IA64_OPND_P1
9275 || idesc->operands[i] == IA64_OPND_P2)
9276 {
9277 int num = CURR_SLOT.opnd[i].X_add_number - REG_P;
9278 if (num > 15)
9279 {
9280 specs[count] = tmpl;
9281 specs[count++].specific = 0;
9282 }
9283 }
9284 }
9285 if (CURR_SLOT.qp_regno > 15)
9286 {
9287 specs[count] = tmpl;
9288 specs[count++].specific = 0;
9289 }
9290 }
9291 break;
9292
9293 /* This is the same as IA64_RS_PRr, except simplified to account for
9294 the fact that there is only one register. */
9295 case IA64_RS_PR63:
9296 if (note == 0)
9297 {
9298 specs[count++] = tmpl;
9299 }
9300 else if (note == 7)
9301 {
9302 valueT mask = 0;
9303 if (idesc->operands[2] == IA64_OPND_IMM17)
9304 mask = CURR_SLOT.opnd[2].X_add_number;
9305 if (mask & ((valueT) 1 << 63))
9306 specs[count++] = tmpl;
9307 }
9308 else if (note == 11)
9309 {
9310 if ((idesc->operands[0] == IA64_OPND_P1
9311 && CURR_SLOT.opnd[0].X_add_number - REG_P == 63)
9312 || (idesc->operands[1] == IA64_OPND_P2
9313 && CURR_SLOT.opnd[1].X_add_number - REG_P == 63))
9314 {
9315 specs[count++] = tmpl;
9316 }
9317 }
9318 else if (note == 12)
9319 {
9320 if (CURR_SLOT.qp_regno == 63)
9321 {
9322 specs[count++] = tmpl;
9323 }
9324 }
9325 else if (note == 1)
9326 {
9327 if (rsrc_write)
9328 {
9329 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9330 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9331 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9332 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9333
9334 if (p1 == 63
9335 && (idesc->operands[0] == IA64_OPND_P1
9336 || idesc->operands[0] == IA64_OPND_P2))
9337 {
9338 specs[count] = tmpl;
9339 specs[count++].cmp_type =
9340 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9341 }
9342 if (p2 == 63
9343 && (idesc->operands[1] == IA64_OPND_P1
9344 || idesc->operands[1] == IA64_OPND_P2))
9345 {
9346 specs[count] = tmpl;
9347 specs[count++].cmp_type =
9348 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9349 }
9350 }
9351 else
9352 {
9353 if (CURR_SLOT.qp_regno == 63)
9354 {
9355 specs[count++] = tmpl;
9356 }
9357 }
9358 }
9359 else
9360 {
9361 UNHANDLED;
9362 }
9363 break;
9364
9365 case IA64_RS_RSE:
9366 /* FIXME we can identify some individual RSE written resources, but RSE
9367 read resources have not yet been completely identified, so for now
9368 treat RSE as a single resource */
9369 if (strncmp (idesc->name, "mov", 3) == 0)
9370 {
9371 if (rsrc_write)
9372 {
9373 if (idesc->operands[0] == IA64_OPND_AR3
9374 && CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE)
9375 {
9376 specs[count++] = tmpl;
9377 }
9378 }
9379 else
9380 {
9381 if (idesc->operands[0] == IA64_OPND_AR3)
9382 {
9383 if (CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE
9384 || CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_RNAT)
9385 {
9386 specs[count++] = tmpl;
9387 }
9388 }
9389 else if (idesc->operands[1] == IA64_OPND_AR3)
9390 {
9391 if (CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSP
9392 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSPSTORE
9393 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_RNAT)
9394 {
9395 specs[count++] = tmpl;
9396 }
9397 }
9398 }
9399 }
9400 else
9401 {
9402 specs[count++] = tmpl;
9403 }
9404 break;
9405
9406 case IA64_RS_ANY:
9407 /* FIXME -- do any of these need to be non-specific? */
9408 specs[count++] = tmpl;
9409 break;
9410
9411 default:
9412 as_bad (_("Unrecognized dependency specifier %d\n"), dep->specifier);
9413 break;
9414 }
9415
9416 return count;
9417 }
9418
9419 /* Clear branch flags on marked resources. This breaks the link between the
9420 QP of the marking instruction and a subsequent branch on the same QP. */
9421
9422 static void
9423 clear_qp_branch_flag (mask)
9424 valueT mask;
9425 {
9426 int i;
9427 for (i = 0; i < regdepslen; i++)
9428 {
9429 valueT bit = ((valueT) 1 << regdeps[i].qp_regno);
9430 if ((bit & mask) != 0)
9431 {
9432 regdeps[i].link_to_qp_branch = 0;
9433 }
9434 }
9435 }
9436
9437 /* MASK contains 2 and only 2 PRs which are mutually exclusive. Remove
9438 any mutexes which contain one of the PRs and create new ones when
9439 needed. */
9440
9441 static int
9442 update_qp_mutex (valueT mask)
9443 {
9444 int i;
9445 int add = 0;
9446
9447 i = 0;
9448 while (i < qp_mutexeslen)
9449 {
9450 if ((qp_mutexes[i].prmask & mask) != 0)
9451 {
9452 /* If it destroys and creates the same mutex, do nothing. */
9453 if (qp_mutexes[i].prmask == mask
9454 && qp_mutexes[i].path == md.path)
9455 {
9456 i++;
9457 add = -1;
9458 }
9459 else
9460 {
9461 int keep = 0;
9462
9463 if (md.debug_dv)
9464 {
9465 fprintf (stderr, " Clearing mutex relation");
9466 print_prmask (qp_mutexes[i].prmask);
9467 fprintf (stderr, "\n");
9468 }
9469
9470 /* Deal with the old mutex with more than 3+ PRs only if
9471 the new mutex on the same execution path with it.
9472
9473 FIXME: The 3+ mutex support is incomplete.
9474 dot_pred_rel () may be a better place to fix it. */
9475 if (qp_mutexes[i].path == md.path)
9476 {
9477 /* If it is a proper subset of the mutex, create a
9478 new mutex. */
9479 if (add == 0
9480 && (qp_mutexes[i].prmask & mask) == mask)
9481 add = 1;
9482
9483 qp_mutexes[i].prmask &= ~mask;
9484 if (qp_mutexes[i].prmask & (qp_mutexes[i].prmask - 1))
9485 {
9486 /* Modify the mutex if there are more than one
9487 PR left. */
9488 keep = 1;
9489 i++;
9490 }
9491 }
9492
9493 if (keep == 0)
9494 /* Remove the mutex. */
9495 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9496 }
9497 }
9498 else
9499 ++i;
9500 }
9501
9502 if (add == 1)
9503 add_qp_mutex (mask);
9504
9505 return add;
9506 }
9507
9508 /* Remove any mutexes which contain any of the PRs indicated in the mask.
9509
9510 Any changes to a PR clears the mutex relations which include that PR. */
9511
9512 static void
9513 clear_qp_mutex (mask)
9514 valueT mask;
9515 {
9516 int i;
9517
9518 i = 0;
9519 while (i < qp_mutexeslen)
9520 {
9521 if ((qp_mutexes[i].prmask & mask) != 0)
9522 {
9523 if (md.debug_dv)
9524 {
9525 fprintf (stderr, " Clearing mutex relation");
9526 print_prmask (qp_mutexes[i].prmask);
9527 fprintf (stderr, "\n");
9528 }
9529 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9530 }
9531 else
9532 ++i;
9533 }
9534 }
9535
9536 /* Clear implies relations which contain PRs in the given masks.
9537 P1_MASK indicates the source of the implies relation, while P2_MASK
9538 indicates the implied PR. */
9539
9540 static void
9541 clear_qp_implies (p1_mask, p2_mask)
9542 valueT p1_mask;
9543 valueT p2_mask;
9544 {
9545 int i;
9546
9547 i = 0;
9548 while (i < qp_implieslen)
9549 {
9550 if ((((valueT) 1 << qp_implies[i].p1) & p1_mask) != 0
9551 || (((valueT) 1 << qp_implies[i].p2) & p2_mask) != 0)
9552 {
9553 if (md.debug_dv)
9554 fprintf (stderr, "Clearing implied relation PR%d->PR%d\n",
9555 qp_implies[i].p1, qp_implies[i].p2);
9556 qp_implies[i] = qp_implies[--qp_implieslen];
9557 }
9558 else
9559 ++i;
9560 }
9561 }
9562
9563 /* Add the PRs specified to the list of implied relations. */
9564
9565 static void
9566 add_qp_imply (p1, p2)
9567 int p1, p2;
9568 {
9569 valueT mask;
9570 valueT bit;
9571 int i;
9572
9573 /* p0 is not meaningful here. */
9574 if (p1 == 0 || p2 == 0)
9575 abort ();
9576
9577 if (p1 == p2)
9578 return;
9579
9580 /* If it exists already, ignore it. */
9581 for (i = 0; i < qp_implieslen; i++)
9582 {
9583 if (qp_implies[i].p1 == p1
9584 && qp_implies[i].p2 == p2
9585 && qp_implies[i].path == md.path
9586 && !qp_implies[i].p2_branched)
9587 return;
9588 }
9589
9590 if (qp_implieslen == qp_impliestotlen)
9591 {
9592 qp_impliestotlen += 20;
9593 qp_implies = (struct qp_imply *)
9594 xrealloc ((void *) qp_implies,
9595 qp_impliestotlen * sizeof (struct qp_imply));
9596 }
9597 if (md.debug_dv)
9598 fprintf (stderr, " Registering PR%d implies PR%d\n", p1, p2);
9599 qp_implies[qp_implieslen].p1 = p1;
9600 qp_implies[qp_implieslen].p2 = p2;
9601 qp_implies[qp_implieslen].path = md.path;
9602 qp_implies[qp_implieslen++].p2_branched = 0;
9603
9604 /* Add in the implied transitive relations; for everything that p2 implies,
9605 make p1 imply that, too; for everything that implies p1, make it imply p2
9606 as well. */
9607 for (i = 0; i < qp_implieslen; i++)
9608 {
9609 if (qp_implies[i].p1 == p2)
9610 add_qp_imply (p1, qp_implies[i].p2);
9611 if (qp_implies[i].p2 == p1)
9612 add_qp_imply (qp_implies[i].p1, p2);
9613 }
9614 /* Add in mutex relations implied by this implies relation; for each mutex
9615 relation containing p2, duplicate it and replace p2 with p1. */
9616 bit = (valueT) 1 << p1;
9617 mask = (valueT) 1 << p2;
9618 for (i = 0; i < qp_mutexeslen; i++)
9619 {
9620 if (qp_mutexes[i].prmask & mask)
9621 add_qp_mutex ((qp_mutexes[i].prmask & ~mask) | bit);
9622 }
9623 }
9624
9625 /* Add the PRs specified in the mask to the mutex list; this means that only
9626 one of the PRs can be true at any time. PR0 should never be included in
9627 the mask. */
9628
9629 static void
9630 add_qp_mutex (mask)
9631 valueT mask;
9632 {
9633 if (mask & 0x1)
9634 abort ();
9635
9636 if (qp_mutexeslen == qp_mutexestotlen)
9637 {
9638 qp_mutexestotlen += 20;
9639 qp_mutexes = (struct qpmutex *)
9640 xrealloc ((void *) qp_mutexes,
9641 qp_mutexestotlen * sizeof (struct qpmutex));
9642 }
9643 if (md.debug_dv)
9644 {
9645 fprintf (stderr, " Registering mutex on");
9646 print_prmask (mask);
9647 fprintf (stderr, "\n");
9648 }
9649 qp_mutexes[qp_mutexeslen].path = md.path;
9650 qp_mutexes[qp_mutexeslen++].prmask = mask;
9651 }
9652
9653 static int
9654 has_suffix_p (name, suffix)
9655 const char *name;
9656 const char *suffix;
9657 {
9658 size_t namelen = strlen (name);
9659 size_t sufflen = strlen (suffix);
9660
9661 if (namelen <= sufflen)
9662 return 0;
9663 return strcmp (name + namelen - sufflen, suffix) == 0;
9664 }
9665
9666 static void
9667 clear_register_values ()
9668 {
9669 int i;
9670 if (md.debug_dv)
9671 fprintf (stderr, " Clearing register values\n");
9672 for (i = 1; i < NELEMS (gr_values); i++)
9673 gr_values[i].known = 0;
9674 }
9675
9676 /* Keep track of register values/changes which affect DV tracking.
9677
9678 optimization note: should add a flag to classes of insns where otherwise we
9679 have to examine a group of strings to identify them. */
9680
9681 static void
9682 note_register_values (idesc)
9683 struct ia64_opcode *idesc;
9684 {
9685 valueT qp_changemask = 0;
9686 int i;
9687
9688 /* Invalidate values for registers being written to. */
9689 for (i = 0; i < idesc->num_outputs; i++)
9690 {
9691 if (idesc->operands[i] == IA64_OPND_R1
9692 || idesc->operands[i] == IA64_OPND_R2
9693 || idesc->operands[i] == IA64_OPND_R3)
9694 {
9695 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9696 if (regno > 0 && regno < NELEMS (gr_values))
9697 gr_values[regno].known = 0;
9698 }
9699 else if (idesc->operands[i] == IA64_OPND_R3_2)
9700 {
9701 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9702 if (regno > 0 && regno < 4)
9703 gr_values[regno].known = 0;
9704 }
9705 else if (idesc->operands[i] == IA64_OPND_P1
9706 || idesc->operands[i] == IA64_OPND_P2)
9707 {
9708 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9709 qp_changemask |= (valueT) 1 << regno;
9710 }
9711 else if (idesc->operands[i] == IA64_OPND_PR)
9712 {
9713 if (idesc->operands[2] & (valueT) 0x10000)
9714 qp_changemask = ~(valueT) 0x1FFFF | idesc->operands[2];
9715 else
9716 qp_changemask = idesc->operands[2];
9717 break;
9718 }
9719 else if (idesc->operands[i] == IA64_OPND_PR_ROT)
9720 {
9721 if (idesc->operands[1] & ((valueT) 1 << 43))
9722 qp_changemask = -((valueT) 1 << 44) | idesc->operands[1];
9723 else
9724 qp_changemask = idesc->operands[1];
9725 qp_changemask &= ~(valueT) 0xFFFF;
9726 break;
9727 }
9728 }
9729
9730 /* Always clear qp branch flags on any PR change. */
9731 /* FIXME there may be exceptions for certain compares. */
9732 clear_qp_branch_flag (qp_changemask);
9733
9734 /* Invalidate rotating registers on insns which affect RRBs in CFM. */
9735 if (idesc->flags & IA64_OPCODE_MOD_RRBS)
9736 {
9737 qp_changemask |= ~(valueT) 0xFFFF;
9738 if (strcmp (idesc->name, "clrrrb.pr") != 0)
9739 {
9740 for (i = 32; i < 32 + md.rot.num_regs; i++)
9741 gr_values[i].known = 0;
9742 }
9743 clear_qp_mutex (qp_changemask);
9744 clear_qp_implies (qp_changemask, qp_changemask);
9745 }
9746 /* After a call, all register values are undefined, except those marked
9747 as "safe". */
9748 else if (strncmp (idesc->name, "br.call", 6) == 0
9749 || strncmp (idesc->name, "brl.call", 7) == 0)
9750 {
9751 /* FIXME keep GR values which are marked as "safe_across_calls" */
9752 clear_register_values ();
9753 clear_qp_mutex (~qp_safe_across_calls);
9754 clear_qp_implies (~qp_safe_across_calls, ~qp_safe_across_calls);
9755 clear_qp_branch_flag (~qp_safe_across_calls);
9756 }
9757 else if (is_interruption_or_rfi (idesc)
9758 || is_taken_branch (idesc))
9759 {
9760 clear_register_values ();
9761 clear_qp_mutex (~(valueT) 0);
9762 clear_qp_implies (~(valueT) 0, ~(valueT) 0);
9763 }
9764 /* Look for mutex and implies relations. */
9765 else if ((idesc->operands[0] == IA64_OPND_P1
9766 || idesc->operands[0] == IA64_OPND_P2)
9767 && (idesc->operands[1] == IA64_OPND_P1
9768 || idesc->operands[1] == IA64_OPND_P2))
9769 {
9770 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9771 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9772 valueT p1mask = (p1 != 0) ? (valueT) 1 << p1 : 0;
9773 valueT p2mask = (p2 != 0) ? (valueT) 1 << p2 : 0;
9774
9775 /* If both PRs are PR0, we can't really do anything. */
9776 if (p1 == 0 && p2 == 0)
9777 {
9778 if (md.debug_dv)
9779 fprintf (stderr, " Ignoring PRs due to inclusion of p0\n");
9780 }
9781 /* In general, clear mutexes and implies which include P1 or P2,
9782 with the following exceptions. */
9783 else if (has_suffix_p (idesc->name, ".or.andcm")
9784 || has_suffix_p (idesc->name, ".and.orcm"))
9785 {
9786 clear_qp_implies (p2mask, p1mask);
9787 }
9788 else if (has_suffix_p (idesc->name, ".andcm")
9789 || has_suffix_p (idesc->name, ".and"))
9790 {
9791 clear_qp_implies (0, p1mask | p2mask);
9792 }
9793 else if (has_suffix_p (idesc->name, ".orcm")
9794 || has_suffix_p (idesc->name, ".or"))
9795 {
9796 clear_qp_mutex (p1mask | p2mask);
9797 clear_qp_implies (p1mask | p2mask, 0);
9798 }
9799 else
9800 {
9801 int added = 0;
9802
9803 clear_qp_implies (p1mask | p2mask, p1mask | p2mask);
9804
9805 /* If one of the PRs is PR0, we call clear_qp_mutex. */
9806 if (p1 == 0 || p2 == 0)
9807 clear_qp_mutex (p1mask | p2mask);
9808 else
9809 added = update_qp_mutex (p1mask | p2mask);
9810
9811 if (CURR_SLOT.qp_regno == 0
9812 || has_suffix_p (idesc->name, ".unc"))
9813 {
9814 if (added == 0 && p1 && p2)
9815 add_qp_mutex (p1mask | p2mask);
9816 if (CURR_SLOT.qp_regno != 0)
9817 {
9818 if (p1)
9819 add_qp_imply (p1, CURR_SLOT.qp_regno);
9820 if (p2)
9821 add_qp_imply (p2, CURR_SLOT.qp_regno);
9822 }
9823 }
9824 }
9825 }
9826 /* Look for mov imm insns into GRs. */
9827 else if (idesc->operands[0] == IA64_OPND_R1
9828 && (idesc->operands[1] == IA64_OPND_IMM22
9829 || idesc->operands[1] == IA64_OPND_IMMU64)
9830 && CURR_SLOT.opnd[1].X_op == O_constant
9831 && (strcmp (idesc->name, "mov") == 0
9832 || strcmp (idesc->name, "movl") == 0))
9833 {
9834 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
9835 if (regno > 0 && regno < NELEMS (gr_values))
9836 {
9837 gr_values[regno].known = 1;
9838 gr_values[regno].value = CURR_SLOT.opnd[1].X_add_number;
9839 gr_values[regno].path = md.path;
9840 if (md.debug_dv)
9841 {
9842 fprintf (stderr, " Know gr%d = ", regno);
9843 fprintf_vma (stderr, gr_values[regno].value);
9844 fputs ("\n", stderr);
9845 }
9846 }
9847 }
9848 /* Look for dep.z imm insns. */
9849 else if (idesc->operands[0] == IA64_OPND_R1
9850 && idesc->operands[1] == IA64_OPND_IMM8
9851 && strcmp (idesc->name, "dep.z") == 0)
9852 {
9853 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
9854 if (regno > 0 && regno < NELEMS (gr_values))
9855 {
9856 valueT value = CURR_SLOT.opnd[1].X_add_number;
9857
9858 if (CURR_SLOT.opnd[3].X_add_number < 64)
9859 value &= ((valueT)1 << CURR_SLOT.opnd[3].X_add_number) - 1;
9860 value <<= CURR_SLOT.opnd[2].X_add_number;
9861 gr_values[regno].known = 1;
9862 gr_values[regno].value = value;
9863 gr_values[regno].path = md.path;
9864 if (md.debug_dv)
9865 {
9866 fprintf (stderr, " Know gr%d = ", regno);
9867 fprintf_vma (stderr, gr_values[regno].value);
9868 fputs ("\n", stderr);
9869 }
9870 }
9871 }
9872 else
9873 {
9874 clear_qp_mutex (qp_changemask);
9875 clear_qp_implies (qp_changemask, qp_changemask);
9876 }
9877 }
9878
9879 /* Return whether the given predicate registers are currently mutex. */
9880
9881 static int
9882 qp_mutex (p1, p2, path)
9883 int p1;
9884 int p2;
9885 int path;
9886 {
9887 int i;
9888 valueT mask;
9889
9890 if (p1 != p2)
9891 {
9892 mask = ((valueT) 1 << p1) | (valueT) 1 << p2;
9893 for (i = 0; i < qp_mutexeslen; i++)
9894 {
9895 if (qp_mutexes[i].path >= path
9896 && (qp_mutexes[i].prmask & mask) == mask)
9897 return 1;
9898 }
9899 }
9900 return 0;
9901 }
9902
9903 /* Return whether the given resource is in the given insn's list of chks
9904 Return 1 if the conflict is absolutely determined, 2 if it's a potential
9905 conflict. */
9906
9907 static int
9908 resources_match (rs, idesc, note, qp_regno, path)
9909 struct rsrc *rs;
9910 struct ia64_opcode *idesc;
9911 int note;
9912 int qp_regno;
9913 int path;
9914 {
9915 struct rsrc specs[MAX_SPECS];
9916 int count;
9917
9918 /* If the marked resource's qp_regno and the given qp_regno are mutex,
9919 we don't need to check. One exception is note 11, which indicates that
9920 target predicates are written regardless of PR[qp]. */
9921 if (qp_mutex (rs->qp_regno, qp_regno, path)
9922 && note != 11)
9923 return 0;
9924
9925 count = specify_resource (rs->dependency, idesc, DV_CHK, specs, note, path);
9926 while (count-- > 0)
9927 {
9928 /* UNAT checking is a bit more specific than other resources */
9929 if (rs->dependency->specifier == IA64_RS_AR_UNAT
9930 && specs[count].mem_offset.hint
9931 && rs->mem_offset.hint)
9932 {
9933 if (rs->mem_offset.base == specs[count].mem_offset.base)
9934 {
9935 if (((rs->mem_offset.offset >> 3) & 0x3F) ==
9936 ((specs[count].mem_offset.offset >> 3) & 0x3F))
9937 return 1;
9938 else
9939 continue;
9940 }
9941 }
9942
9943 /* Skip apparent PR write conflicts where both writes are an AND or both
9944 writes are an OR. */
9945 if (rs->dependency->specifier == IA64_RS_PR
9946 || rs->dependency->specifier == IA64_RS_PRr
9947 || rs->dependency->specifier == IA64_RS_PR63)
9948 {
9949 if (specs[count].cmp_type != CMP_NONE
9950 && specs[count].cmp_type == rs->cmp_type)
9951 {
9952 if (md.debug_dv)
9953 fprintf (stderr, " %s on parallel compare allowed (PR%d)\n",
9954 dv_mode[rs->dependency->mode],
9955 rs->dependency->specifier != IA64_RS_PR63 ?
9956 specs[count].index : 63);
9957 continue;
9958 }
9959 if (md.debug_dv)
9960 fprintf (stderr,
9961 " %s on parallel compare conflict %s vs %s on PR%d\n",
9962 dv_mode[rs->dependency->mode],
9963 dv_cmp_type[rs->cmp_type],
9964 dv_cmp_type[specs[count].cmp_type],
9965 rs->dependency->specifier != IA64_RS_PR63 ?
9966 specs[count].index : 63);
9967
9968 }
9969
9970 /* If either resource is not specific, conservatively assume a conflict
9971 */
9972 if (!specs[count].specific || !rs->specific)
9973 return 2;
9974 else if (specs[count].index == rs->index)
9975 return 1;
9976 }
9977
9978 return 0;
9979 }
9980
9981 /* Indicate an instruction group break; if INSERT_STOP is non-zero, then
9982 insert a stop to create the break. Update all resource dependencies
9983 appropriately. If QP_REGNO is non-zero, only apply the break to resources
9984 which use the same QP_REGNO and have the link_to_qp_branch flag set.
9985 If SAVE_CURRENT is non-zero, don't affect resources marked by the current
9986 instruction. */
9987
9988 static void
9989 insn_group_break (insert_stop, qp_regno, save_current)
9990 int insert_stop;
9991 int qp_regno;
9992 int save_current;
9993 {
9994 int i;
9995
9996 if (insert_stop && md.num_slots_in_use > 0)
9997 PREV_SLOT.end_of_insn_group = 1;
9998
9999 if (md.debug_dv)
10000 {
10001 fprintf (stderr, " Insn group break%s",
10002 (insert_stop ? " (w/stop)" : ""));
10003 if (qp_regno != 0)
10004 fprintf (stderr, " effective for QP=%d", qp_regno);
10005 fprintf (stderr, "\n");
10006 }
10007
10008 i = 0;
10009 while (i < regdepslen)
10010 {
10011 const struct ia64_dependency *dep = regdeps[i].dependency;
10012
10013 if (qp_regno != 0
10014 && regdeps[i].qp_regno != qp_regno)
10015 {
10016 ++i;
10017 continue;
10018 }
10019
10020 if (save_current
10021 && CURR_SLOT.src_file == regdeps[i].file
10022 && CURR_SLOT.src_line == regdeps[i].line)
10023 {
10024 ++i;
10025 continue;
10026 }
10027
10028 /* clear dependencies which are automatically cleared by a stop, or
10029 those that have reached the appropriate state of insn serialization */
10030 if (dep->semantics == IA64_DVS_IMPLIED
10031 || dep->semantics == IA64_DVS_IMPLIEDF
10032 || regdeps[i].insn_srlz == STATE_SRLZ)
10033 {
10034 print_dependency ("Removing", i);
10035 regdeps[i] = regdeps[--regdepslen];
10036 }
10037 else
10038 {
10039 if (dep->semantics == IA64_DVS_DATA
10040 || dep->semantics == IA64_DVS_INSTR
10041 || dep->semantics == IA64_DVS_SPECIFIC)
10042 {
10043 if (regdeps[i].insn_srlz == STATE_NONE)
10044 regdeps[i].insn_srlz = STATE_STOP;
10045 if (regdeps[i].data_srlz == STATE_NONE)
10046 regdeps[i].data_srlz = STATE_STOP;
10047 }
10048 ++i;
10049 }
10050 }
10051 }
10052
10053 /* Add the given resource usage spec to the list of active dependencies. */
10054
10055 static void
10056 mark_resource (idesc, dep, spec, depind, path)
10057 struct ia64_opcode *idesc ATTRIBUTE_UNUSED;
10058 const struct ia64_dependency *dep ATTRIBUTE_UNUSED;
10059 struct rsrc *spec;
10060 int depind;
10061 int path;
10062 {
10063 if (regdepslen == regdepstotlen)
10064 {
10065 regdepstotlen += 20;
10066 regdeps = (struct rsrc *)
10067 xrealloc ((void *) regdeps,
10068 regdepstotlen * sizeof (struct rsrc));
10069 }
10070
10071 regdeps[regdepslen] = *spec;
10072 regdeps[regdepslen].depind = depind;
10073 regdeps[regdepslen].path = path;
10074 regdeps[regdepslen].file = CURR_SLOT.src_file;
10075 regdeps[regdepslen].line = CURR_SLOT.src_line;
10076
10077 print_dependency ("Adding", regdepslen);
10078
10079 ++regdepslen;
10080 }
10081
10082 static void
10083 print_dependency (action, depind)
10084 const char *action;
10085 int depind;
10086 {
10087 if (md.debug_dv)
10088 {
10089 fprintf (stderr, " %s %s '%s'",
10090 action, dv_mode[(regdeps[depind].dependency)->mode],
10091 (regdeps[depind].dependency)->name);
10092 if (regdeps[depind].specific && regdeps[depind].index >= 0)
10093 fprintf (stderr, " (%d)", regdeps[depind].index);
10094 if (regdeps[depind].mem_offset.hint)
10095 {
10096 fputs (" ", stderr);
10097 fprintf_vma (stderr, regdeps[depind].mem_offset.base);
10098 fputs ("+", stderr);
10099 fprintf_vma (stderr, regdeps[depind].mem_offset.offset);
10100 }
10101 fprintf (stderr, "\n");
10102 }
10103 }
10104
10105 static void
10106 instruction_serialization ()
10107 {
10108 int i;
10109 if (md.debug_dv)
10110 fprintf (stderr, " Instruction serialization\n");
10111 for (i = 0; i < regdepslen; i++)
10112 if (regdeps[i].insn_srlz == STATE_STOP)
10113 regdeps[i].insn_srlz = STATE_SRLZ;
10114 }
10115
10116 static void
10117 data_serialization ()
10118 {
10119 int i = 0;
10120 if (md.debug_dv)
10121 fprintf (stderr, " Data serialization\n");
10122 while (i < regdepslen)
10123 {
10124 if (regdeps[i].data_srlz == STATE_STOP
10125 /* Note: as of 991210, all "other" dependencies are cleared by a
10126 data serialization. This might change with new tables */
10127 || (regdeps[i].dependency)->semantics == IA64_DVS_OTHER)
10128 {
10129 print_dependency ("Removing", i);
10130 regdeps[i] = regdeps[--regdepslen];
10131 }
10132 else
10133 ++i;
10134 }
10135 }
10136
10137 /* Insert stops and serializations as needed to avoid DVs. */
10138
10139 static void
10140 remove_marked_resource (rs)
10141 struct rsrc *rs;
10142 {
10143 switch (rs->dependency->semantics)
10144 {
10145 case IA64_DVS_SPECIFIC:
10146 if (md.debug_dv)
10147 fprintf (stderr, "Implementation-specific, assume worst case...\n");
10148 /* ...fall through... */
10149 case IA64_DVS_INSTR:
10150 if (md.debug_dv)
10151 fprintf (stderr, "Inserting instr serialization\n");
10152 if (rs->insn_srlz < STATE_STOP)
10153 insn_group_break (1, 0, 0);
10154 if (rs->insn_srlz < STATE_SRLZ)
10155 {
10156 struct slot oldslot = CURR_SLOT;
10157 /* Manually jam a srlz.i insn into the stream */
10158 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10159 CURR_SLOT.user_template = -1;
10160 CURR_SLOT.idesc = ia64_find_opcode ("srlz.i");
10161 instruction_serialization ();
10162 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10163 if (++md.num_slots_in_use >= NUM_SLOTS)
10164 emit_one_bundle ();
10165 CURR_SLOT = oldslot;
10166 }
10167 insn_group_break (1, 0, 0);
10168 break;
10169 case IA64_DVS_OTHER: /* as of rev2 (991220) of the DV tables, all
10170 "other" types of DV are eliminated
10171 by a data serialization */
10172 case IA64_DVS_DATA:
10173 if (md.debug_dv)
10174 fprintf (stderr, "Inserting data serialization\n");
10175 if (rs->data_srlz < STATE_STOP)
10176 insn_group_break (1, 0, 0);
10177 {
10178 struct slot oldslot = CURR_SLOT;
10179 /* Manually jam a srlz.d insn into the stream */
10180 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10181 CURR_SLOT.user_template = -1;
10182 CURR_SLOT.idesc = ia64_find_opcode ("srlz.d");
10183 data_serialization ();
10184 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10185 if (++md.num_slots_in_use >= NUM_SLOTS)
10186 emit_one_bundle ();
10187 CURR_SLOT = oldslot;
10188 }
10189 break;
10190 case IA64_DVS_IMPLIED:
10191 case IA64_DVS_IMPLIEDF:
10192 if (md.debug_dv)
10193 fprintf (stderr, "Inserting stop\n");
10194 insn_group_break (1, 0, 0);
10195 break;
10196 default:
10197 break;
10198 }
10199 }
10200
10201 /* Check the resources used by the given opcode against the current dependency
10202 list.
10203
10204 The check is run once for each execution path encountered. In this case,
10205 a unique execution path is the sequence of instructions following a code
10206 entry point, e.g. the following has three execution paths, one starting
10207 at L0, one at L1, and one at L2.
10208
10209 L0: nop
10210 L1: add
10211 L2: add
10212 br.ret
10213 */
10214
10215 static void
10216 check_dependencies (idesc)
10217 struct ia64_opcode *idesc;
10218 {
10219 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10220 int path;
10221 int i;
10222
10223 /* Note that the number of marked resources may change within the
10224 loop if in auto mode. */
10225 i = 0;
10226 while (i < regdepslen)
10227 {
10228 struct rsrc *rs = &regdeps[i];
10229 const struct ia64_dependency *dep = rs->dependency;
10230 int chkind;
10231 int note;
10232 int start_over = 0;
10233
10234 if (dep->semantics == IA64_DVS_NONE
10235 || (chkind = depends_on (rs->depind, idesc)) == -1)
10236 {
10237 ++i;
10238 continue;
10239 }
10240
10241 note = NOTE (opdeps->chks[chkind]);
10242
10243 /* Check this resource against each execution path seen thus far. */
10244 for (path = 0; path <= md.path; path++)
10245 {
10246 int matchtype;
10247
10248 /* If the dependency wasn't on the path being checked, ignore it. */
10249 if (rs->path < path)
10250 continue;
10251
10252 /* If the QP for this insn implies a QP which has branched, don't
10253 bother checking. Ed. NOTE: I don't think this check is terribly
10254 useful; what's the point of generating code which will only be
10255 reached if its QP is zero?
10256 This code was specifically inserted to handle the following code,
10257 based on notes from Intel's DV checking code, where p1 implies p2.
10258
10259 mov r4 = 2
10260 (p2) br.cond L
10261 (p1) mov r4 = 7
10262 */
10263 if (CURR_SLOT.qp_regno != 0)
10264 {
10265 int skip = 0;
10266 int implies;
10267 for (implies = 0; implies < qp_implieslen; implies++)
10268 {
10269 if (qp_implies[implies].path >= path
10270 && qp_implies[implies].p1 == CURR_SLOT.qp_regno
10271 && qp_implies[implies].p2_branched)
10272 {
10273 skip = 1;
10274 break;
10275 }
10276 }
10277 if (skip)
10278 continue;
10279 }
10280
10281 if ((matchtype = resources_match (rs, idesc, note,
10282 CURR_SLOT.qp_regno, path)) != 0)
10283 {
10284 char msg[1024];
10285 char pathmsg[256] = "";
10286 char indexmsg[256] = "";
10287 int certain = (matchtype == 1 && CURR_SLOT.qp_regno == 0);
10288
10289 if (path != 0)
10290 sprintf (pathmsg, " when entry is at label '%s'",
10291 md.entry_labels[path - 1]);
10292 if (matchtype == 1 && rs->index >= 0)
10293 sprintf (indexmsg, ", specific resource number is %d",
10294 rs->index);
10295 sprintf (msg, "Use of '%s' %s %s dependency '%s' (%s)%s%s",
10296 idesc->name,
10297 (certain ? "violates" : "may violate"),
10298 dv_mode[dep->mode], dep->name,
10299 dv_sem[dep->semantics],
10300 pathmsg, indexmsg);
10301
10302 if (md.explicit_mode)
10303 {
10304 as_warn ("%s", msg);
10305 if (path < md.path)
10306 as_warn (_("Only the first path encountering the conflict "
10307 "is reported"));
10308 as_warn_where (rs->file, rs->line,
10309 _("This is the location of the "
10310 "conflicting usage"));
10311 /* Don't bother checking other paths, to avoid duplicating
10312 the same warning */
10313 break;
10314 }
10315 else
10316 {
10317 if (md.debug_dv)
10318 fprintf (stderr, "%s @ %s:%d\n", msg, rs->file, rs->line);
10319
10320 remove_marked_resource (rs);
10321
10322 /* since the set of dependencies has changed, start over */
10323 /* FIXME -- since we're removing dvs as we go, we
10324 probably don't really need to start over... */
10325 start_over = 1;
10326 break;
10327 }
10328 }
10329 }
10330 if (start_over)
10331 i = 0;
10332 else
10333 ++i;
10334 }
10335 }
10336
10337 /* Register new dependencies based on the given opcode. */
10338
10339 static void
10340 mark_resources (idesc)
10341 struct ia64_opcode *idesc;
10342 {
10343 int i;
10344 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10345 int add_only_qp_reads = 0;
10346
10347 /* A conditional branch only uses its resources if it is taken; if it is
10348 taken, we stop following that path. The other branch types effectively
10349 *always* write their resources. If it's not taken, register only QP
10350 reads. */
10351 if (is_conditional_branch (idesc) || is_interruption_or_rfi (idesc))
10352 {
10353 add_only_qp_reads = 1;
10354 }
10355
10356 if (md.debug_dv)
10357 fprintf (stderr, "Registering '%s' resource usage\n", idesc->name);
10358
10359 for (i = 0; i < opdeps->nregs; i++)
10360 {
10361 const struct ia64_dependency *dep;
10362 struct rsrc specs[MAX_SPECS];
10363 int note;
10364 int path;
10365 int count;
10366
10367 dep = ia64_find_dependency (opdeps->regs[i]);
10368 note = NOTE (opdeps->regs[i]);
10369
10370 if (add_only_qp_reads
10371 && !(dep->mode == IA64_DV_WAR
10372 && (dep->specifier == IA64_RS_PR
10373 || dep->specifier == IA64_RS_PRr
10374 || dep->specifier == IA64_RS_PR63)))
10375 continue;
10376
10377 count = specify_resource (dep, idesc, DV_REG, specs, note, md.path);
10378
10379 while (count-- > 0)
10380 {
10381 mark_resource (idesc, dep, &specs[count],
10382 DEP (opdeps->regs[i]), md.path);
10383 }
10384
10385 /* The execution path may affect register values, which may in turn
10386 affect which indirect-access resources are accessed. */
10387 switch (dep->specifier)
10388 {
10389 default:
10390 break;
10391 case IA64_RS_CPUID:
10392 case IA64_RS_DBR:
10393 case IA64_RS_IBR:
10394 case IA64_RS_MSR:
10395 case IA64_RS_PKR:
10396 case IA64_RS_PMC:
10397 case IA64_RS_PMD:
10398 case IA64_RS_RR:
10399 for (path = 0; path < md.path; path++)
10400 {
10401 count = specify_resource (dep, idesc, DV_REG, specs, note, path);
10402 while (count-- > 0)
10403 mark_resource (idesc, dep, &specs[count],
10404 DEP (opdeps->regs[i]), path);
10405 }
10406 break;
10407 }
10408 }
10409 }
10410
10411 /* Remove dependencies when they no longer apply. */
10412
10413 static void
10414 update_dependencies (idesc)
10415 struct ia64_opcode *idesc;
10416 {
10417 int i;
10418
10419 if (strcmp (idesc->name, "srlz.i") == 0)
10420 {
10421 instruction_serialization ();
10422 }
10423 else if (strcmp (idesc->name, "srlz.d") == 0)
10424 {
10425 data_serialization ();
10426 }
10427 else if (is_interruption_or_rfi (idesc)
10428 || is_taken_branch (idesc))
10429 {
10430 /* Although technically the taken branch doesn't clear dependencies
10431 which require a srlz.[id], we don't follow the branch; the next
10432 instruction is assumed to start with a clean slate. */
10433 regdepslen = 0;
10434 md.path = 0;
10435 }
10436 else if (is_conditional_branch (idesc)
10437 && CURR_SLOT.qp_regno != 0)
10438 {
10439 int is_call = strstr (idesc->name, ".call") != NULL;
10440
10441 for (i = 0; i < qp_implieslen; i++)
10442 {
10443 /* If the conditional branch's predicate is implied by the predicate
10444 in an existing dependency, remove that dependency. */
10445 if (qp_implies[i].p2 == CURR_SLOT.qp_regno)
10446 {
10447 int depind = 0;
10448 /* Note that this implied predicate takes a branch so that if
10449 a later insn generates a DV but its predicate implies this
10450 one, we can avoid the false DV warning. */
10451 qp_implies[i].p2_branched = 1;
10452 while (depind < regdepslen)
10453 {
10454 if (regdeps[depind].qp_regno == qp_implies[i].p1)
10455 {
10456 print_dependency ("Removing", depind);
10457 regdeps[depind] = regdeps[--regdepslen];
10458 }
10459 else
10460 ++depind;
10461 }
10462 }
10463 }
10464 /* Any marked resources which have this same predicate should be
10465 cleared, provided that the QP hasn't been modified between the
10466 marking instruction and the branch. */
10467 if (is_call)
10468 {
10469 insn_group_break (0, CURR_SLOT.qp_regno, 1);
10470 }
10471 else
10472 {
10473 i = 0;
10474 while (i < regdepslen)
10475 {
10476 if (regdeps[i].qp_regno == CURR_SLOT.qp_regno
10477 && regdeps[i].link_to_qp_branch
10478 && (regdeps[i].file != CURR_SLOT.src_file
10479 || regdeps[i].line != CURR_SLOT.src_line))
10480 {
10481 /* Treat like a taken branch */
10482 print_dependency ("Removing", i);
10483 regdeps[i] = regdeps[--regdepslen];
10484 }
10485 else
10486 ++i;
10487 }
10488 }
10489 }
10490 }
10491
10492 /* Examine the current instruction for dependency violations. */
10493
10494 static int
10495 check_dv (idesc)
10496 struct ia64_opcode *idesc;
10497 {
10498 if (md.debug_dv)
10499 {
10500 fprintf (stderr, "Checking %s for violations (line %d, %d/%d)\n",
10501 idesc->name, CURR_SLOT.src_line,
10502 idesc->dependencies->nchks,
10503 idesc->dependencies->nregs);
10504 }
10505
10506 /* Look through the list of currently marked resources; if the current
10507 instruction has the dependency in its chks list which uses that resource,
10508 check against the specific resources used. */
10509 check_dependencies (idesc);
10510
10511 /* Look up the instruction's regdeps (RAW writes, WAW writes, and WAR reads),
10512 then add them to the list of marked resources. */
10513 mark_resources (idesc);
10514
10515 /* There are several types of dependency semantics, and each has its own
10516 requirements for being cleared
10517
10518 Instruction serialization (insns separated by interruption, rfi, or
10519 writer + srlz.i + reader, all in separate groups) clears DVS_INSTR.
10520
10521 Data serialization (instruction serialization, or writer + srlz.d +
10522 reader, where writer and srlz.d are in separate groups) clears
10523 DVS_DATA. (This also clears DVS_OTHER, but that is not guaranteed to
10524 always be the case).
10525
10526 Instruction group break (groups separated by stop, taken branch,
10527 interruption or rfi) clears DVS_IMPLIED and DVS_IMPLIEDF.
10528 */
10529 update_dependencies (idesc);
10530
10531 /* Sometimes, knowing a register value allows us to avoid giving a false DV
10532 warning. Keep track of as many as possible that are useful. */
10533 note_register_values (idesc);
10534
10535 /* We don't need or want this anymore. */
10536 md.mem_offset.hint = 0;
10537
10538 return 0;
10539 }
10540
10541 /* Translate one line of assembly. Pseudo ops and labels do not show
10542 here. */
10543 void
10544 md_assemble (str)
10545 char *str;
10546 {
10547 char *saved_input_line_pointer, *mnemonic;
10548 const struct pseudo_opcode *pdesc;
10549 struct ia64_opcode *idesc;
10550 unsigned char qp_regno;
10551 unsigned int flags;
10552 int ch;
10553
10554 saved_input_line_pointer = input_line_pointer;
10555 input_line_pointer = str;
10556
10557 /* extract the opcode (mnemonic): */
10558
10559 mnemonic = input_line_pointer;
10560 ch = get_symbol_end ();
10561 pdesc = (struct pseudo_opcode *) hash_find (md.pseudo_hash, mnemonic);
10562 if (pdesc)
10563 {
10564 *input_line_pointer = ch;
10565 (*pdesc->handler) (pdesc->arg);
10566 goto done;
10567 }
10568
10569 /* Find the instruction descriptor matching the arguments. */
10570
10571 idesc = ia64_find_opcode (mnemonic);
10572 *input_line_pointer = ch;
10573 if (!idesc)
10574 {
10575 as_bad ("Unknown opcode `%s'", mnemonic);
10576 goto done;
10577 }
10578
10579 idesc = parse_operands (idesc);
10580 if (!idesc)
10581 goto done;
10582
10583 /* Handle the dynamic ops we can handle now: */
10584 if (idesc->type == IA64_TYPE_DYN)
10585 {
10586 if (strcmp (idesc->name, "add") == 0)
10587 {
10588 if (CURR_SLOT.opnd[2].X_op == O_register
10589 && CURR_SLOT.opnd[2].X_add_number < 4)
10590 mnemonic = "addl";
10591 else
10592 mnemonic = "adds";
10593 ia64_free_opcode (idesc);
10594 idesc = ia64_find_opcode (mnemonic);
10595 }
10596 else if (strcmp (idesc->name, "mov") == 0)
10597 {
10598 enum ia64_opnd opnd1, opnd2;
10599 int rop;
10600
10601 opnd1 = idesc->operands[0];
10602 opnd2 = idesc->operands[1];
10603 if (opnd1 == IA64_OPND_AR3)
10604 rop = 0;
10605 else if (opnd2 == IA64_OPND_AR3)
10606 rop = 1;
10607 else
10608 abort ();
10609 if (CURR_SLOT.opnd[rop].X_op == O_register)
10610 {
10611 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10612 mnemonic = "mov.i";
10613 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10614 mnemonic = "mov.m";
10615 else
10616 rop = -1;
10617 }
10618 else
10619 abort ();
10620 if (rop >= 0)
10621 {
10622 ia64_free_opcode (idesc);
10623 idesc = ia64_find_opcode (mnemonic);
10624 while (idesc != NULL
10625 && (idesc->operands[0] != opnd1
10626 || idesc->operands[1] != opnd2))
10627 idesc = get_next_opcode (idesc);
10628 }
10629 }
10630 }
10631 else if (strcmp (idesc->name, "mov.i") == 0
10632 || strcmp (idesc->name, "mov.m") == 0)
10633 {
10634 enum ia64_opnd opnd1, opnd2;
10635 int rop;
10636
10637 opnd1 = idesc->operands[0];
10638 opnd2 = idesc->operands[1];
10639 if (opnd1 == IA64_OPND_AR3)
10640 rop = 0;
10641 else if (opnd2 == IA64_OPND_AR3)
10642 rop = 1;
10643 else
10644 abort ();
10645 if (CURR_SLOT.opnd[rop].X_op == O_register)
10646 {
10647 char unit = 'a';
10648 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10649 unit = 'i';
10650 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10651 unit = 'm';
10652 if (unit != 'a' && unit != idesc->name [4])
10653 as_bad ("AR %d cannot be accessed by %c-unit",
10654 (int) (CURR_SLOT.opnd[rop].X_add_number - REG_AR),
10655 TOUPPER (unit));
10656 }
10657 }
10658 else if (strcmp (idesc->name, "hint.b") == 0)
10659 {
10660 switch (md.hint_b)
10661 {
10662 case hint_b_ok:
10663 break;
10664 case hint_b_warning:
10665 as_warn ("hint.b may be treated as nop");
10666 break;
10667 case hint_b_error:
10668 as_bad ("hint.b shouldn't be used");
10669 break;
10670 }
10671 }
10672
10673 qp_regno = 0;
10674 if (md.qp.X_op == O_register)
10675 {
10676 qp_regno = md.qp.X_add_number - REG_P;
10677 md.qp.X_op = O_absent;
10678 }
10679
10680 flags = idesc->flags;
10681
10682 if ((flags & IA64_OPCODE_FIRST) != 0)
10683 {
10684 /* The alignment frag has to end with a stop bit only if the
10685 next instruction after the alignment directive has to be
10686 the first instruction in an instruction group. */
10687 if (align_frag)
10688 {
10689 while (align_frag->fr_type != rs_align_code)
10690 {
10691 align_frag = align_frag->fr_next;
10692 if (!align_frag)
10693 break;
10694 }
10695 /* align_frag can be NULL if there are directives in
10696 between. */
10697 if (align_frag && align_frag->fr_next == frag_now)
10698 align_frag->tc_frag_data = 1;
10699 }
10700
10701 insn_group_break (1, 0, 0);
10702 }
10703 align_frag = NULL;
10704
10705 if ((flags & IA64_OPCODE_NO_PRED) != 0 && qp_regno != 0)
10706 {
10707 as_bad ("`%s' cannot be predicated", idesc->name);
10708 goto done;
10709 }
10710
10711 /* Build the instruction. */
10712 CURR_SLOT.qp_regno = qp_regno;
10713 CURR_SLOT.idesc = idesc;
10714 as_where (&CURR_SLOT.src_file, &CURR_SLOT.src_line);
10715 dwarf2_where (&CURR_SLOT.debug_line);
10716
10717 /* Add unwind entry, if there is one. */
10718 if (unwind.current_entry)
10719 {
10720 CURR_SLOT.unwind_record = unwind.current_entry;
10721 unwind.current_entry = NULL;
10722 }
10723 if (unwind.proc_start && S_IS_DEFINED (unwind.proc_start))
10724 unwind.insn = 1;
10725
10726 /* Check for dependency violations. */
10727 if (md.detect_dv)
10728 check_dv (idesc);
10729
10730 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10731 if (++md.num_slots_in_use >= NUM_SLOTS)
10732 emit_one_bundle ();
10733
10734 if ((flags & IA64_OPCODE_LAST) != 0)
10735 insn_group_break (1, 0, 0);
10736
10737 md.last_text_seg = now_seg;
10738
10739 done:
10740 input_line_pointer = saved_input_line_pointer;
10741 }
10742
10743 /* Called when symbol NAME cannot be found in the symbol table.
10744 Should be used for dynamic valued symbols only. */
10745
10746 symbolS *
10747 md_undefined_symbol (name)
10748 char *name ATTRIBUTE_UNUSED;
10749 {
10750 return 0;
10751 }
10752
10753 /* Called for any expression that can not be recognized. When the
10754 function is called, `input_line_pointer' will point to the start of
10755 the expression. */
10756
10757 void
10758 md_operand (e)
10759 expressionS *e;
10760 {
10761 switch (*input_line_pointer)
10762 {
10763 case '[':
10764 ++input_line_pointer;
10765 expression (e);
10766 if (*input_line_pointer != ']')
10767 {
10768 as_bad ("Closing bracket missing");
10769 goto err;
10770 }
10771 else
10772 {
10773 if (e->X_op != O_register)
10774 as_bad ("Register expected as index");
10775
10776 ++input_line_pointer;
10777 e->X_op = O_index;
10778 }
10779 break;
10780
10781 default:
10782 break;
10783 }
10784 return;
10785
10786 err:
10787 ignore_rest_of_line ();
10788 }
10789
10790 /* Return 1 if it's OK to adjust a reloc by replacing the symbol with
10791 a section symbol plus some offset. For relocs involving @fptr(),
10792 directives we don't want such adjustments since we need to have the
10793 original symbol's name in the reloc. */
10794 int
10795 ia64_fix_adjustable (fix)
10796 fixS *fix;
10797 {
10798 /* Prevent all adjustments to global symbols */
10799 if (S_IS_EXTERN (fix->fx_addsy) || S_IS_WEAK (fix->fx_addsy))
10800 return 0;
10801
10802 switch (fix->fx_r_type)
10803 {
10804 case BFD_RELOC_IA64_FPTR64I:
10805 case BFD_RELOC_IA64_FPTR32MSB:
10806 case BFD_RELOC_IA64_FPTR32LSB:
10807 case BFD_RELOC_IA64_FPTR64MSB:
10808 case BFD_RELOC_IA64_FPTR64LSB:
10809 case BFD_RELOC_IA64_LTOFF_FPTR22:
10810 case BFD_RELOC_IA64_LTOFF_FPTR64I:
10811 return 0;
10812 default:
10813 break;
10814 }
10815
10816 return 1;
10817 }
10818
10819 int
10820 ia64_force_relocation (fix)
10821 fixS *fix;
10822 {
10823 switch (fix->fx_r_type)
10824 {
10825 case BFD_RELOC_IA64_FPTR64I:
10826 case BFD_RELOC_IA64_FPTR32MSB:
10827 case BFD_RELOC_IA64_FPTR32LSB:
10828 case BFD_RELOC_IA64_FPTR64MSB:
10829 case BFD_RELOC_IA64_FPTR64LSB:
10830
10831 case BFD_RELOC_IA64_LTOFF22:
10832 case BFD_RELOC_IA64_LTOFF64I:
10833 case BFD_RELOC_IA64_LTOFF_FPTR22:
10834 case BFD_RELOC_IA64_LTOFF_FPTR64I:
10835 case BFD_RELOC_IA64_PLTOFF22:
10836 case BFD_RELOC_IA64_PLTOFF64I:
10837 case BFD_RELOC_IA64_PLTOFF64MSB:
10838 case BFD_RELOC_IA64_PLTOFF64LSB:
10839
10840 case BFD_RELOC_IA64_LTOFF22X:
10841 case BFD_RELOC_IA64_LDXMOV:
10842 return 1;
10843
10844 default:
10845 break;
10846 }
10847
10848 return generic_force_reloc (fix);
10849 }
10850
10851 /* Decide from what point a pc-relative relocation is relative to,
10852 relative to the pc-relative fixup. Er, relatively speaking. */
10853 long
10854 ia64_pcrel_from_section (fix, sec)
10855 fixS *fix;
10856 segT sec;
10857 {
10858 unsigned long off = fix->fx_frag->fr_address + fix->fx_where;
10859
10860 if (bfd_get_section_flags (stdoutput, sec) & SEC_CODE)
10861 off &= ~0xfUL;
10862
10863 return off;
10864 }
10865
10866
10867 /* Used to emit section-relative relocs for the dwarf2 debug data. */
10868 void
10869 ia64_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
10870 {
10871 expressionS expr;
10872
10873 expr.X_op = O_pseudo_fixup;
10874 expr.X_op_symbol = pseudo_func[FUNC_SEC_RELATIVE].u.sym;
10875 expr.X_add_number = 0;
10876 expr.X_add_symbol = symbol;
10877 emit_expr (&expr, size);
10878 }
10879
10880 /* This is called whenever some data item (not an instruction) needs a
10881 fixup. We pick the right reloc code depending on the byteorder
10882 currently in effect. */
10883 void
10884 ia64_cons_fix_new (f, where, nbytes, exp)
10885 fragS *f;
10886 int where;
10887 int nbytes;
10888 expressionS *exp;
10889 {
10890 bfd_reloc_code_real_type code;
10891 fixS *fix;
10892
10893 switch (nbytes)
10894 {
10895 /* There are no reloc for 8 and 16 bit quantities, but we allow
10896 them here since they will work fine as long as the expression
10897 is fully defined at the end of the pass over the source file. */
10898 case 1: code = BFD_RELOC_8; break;
10899 case 2: code = BFD_RELOC_16; break;
10900 case 4:
10901 if (target_big_endian)
10902 code = BFD_RELOC_IA64_DIR32MSB;
10903 else
10904 code = BFD_RELOC_IA64_DIR32LSB;
10905 break;
10906
10907 case 8:
10908 /* In 32-bit mode, data8 could mean function descriptors too. */
10909 if (exp->X_op == O_pseudo_fixup
10910 && exp->X_op_symbol
10911 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC
10912 && !(md.flags & EF_IA_64_ABI64))
10913 {
10914 if (target_big_endian)
10915 code = BFD_RELOC_IA64_IPLTMSB;
10916 else
10917 code = BFD_RELOC_IA64_IPLTLSB;
10918 exp->X_op = O_symbol;
10919 break;
10920 }
10921 else
10922 {
10923 if (target_big_endian)
10924 code = BFD_RELOC_IA64_DIR64MSB;
10925 else
10926 code = BFD_RELOC_IA64_DIR64LSB;
10927 break;
10928 }
10929
10930 case 16:
10931 if (exp->X_op == O_pseudo_fixup
10932 && exp->X_op_symbol
10933 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC)
10934 {
10935 if (target_big_endian)
10936 code = BFD_RELOC_IA64_IPLTMSB;
10937 else
10938 code = BFD_RELOC_IA64_IPLTLSB;
10939 exp->X_op = O_symbol;
10940 break;
10941 }
10942 /* FALLTHRU */
10943
10944 default:
10945 as_bad ("Unsupported fixup size %d", nbytes);
10946 ignore_rest_of_line ();
10947 return;
10948 }
10949
10950 if (exp->X_op == O_pseudo_fixup)
10951 {
10952 exp->X_op = O_symbol;
10953 code = ia64_gen_real_reloc_type (exp->X_op_symbol, code);
10954 /* ??? If code unchanged, unsupported. */
10955 }
10956
10957 fix = fix_new_exp (f, where, nbytes, exp, 0, code);
10958 /* We need to store the byte order in effect in case we're going
10959 to fix an 8 or 16 bit relocation (for which there no real
10960 relocs available). See md_apply_fix3(). */
10961 fix->tc_fix_data.bigendian = target_big_endian;
10962 }
10963
10964 /* Return the actual relocation we wish to associate with the pseudo
10965 reloc described by SYM and R_TYPE. SYM should be one of the
10966 symbols in the pseudo_func array, or NULL. */
10967
10968 static bfd_reloc_code_real_type
10969 ia64_gen_real_reloc_type (sym, r_type)
10970 struct symbol *sym;
10971 bfd_reloc_code_real_type r_type;
10972 {
10973 bfd_reloc_code_real_type new = 0;
10974 const char *type = NULL, *suffix = "";
10975
10976 if (sym == NULL)
10977 {
10978 return r_type;
10979 }
10980
10981 switch (S_GET_VALUE (sym))
10982 {
10983 case FUNC_FPTR_RELATIVE:
10984 switch (r_type)
10985 {
10986 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_FPTR64I; break;
10987 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_FPTR32MSB; break;
10988 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_FPTR32LSB; break;
10989 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_FPTR64MSB; break;
10990 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_FPTR64LSB; break;
10991 default: type = "FPTR"; break;
10992 }
10993 break;
10994
10995 case FUNC_GP_RELATIVE:
10996 switch (r_type)
10997 {
10998 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_GPREL22; break;
10999 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_GPREL64I; break;
11000 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_GPREL32MSB; break;
11001 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_GPREL32LSB; break;
11002 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_GPREL64MSB; break;
11003 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_GPREL64LSB; break;
11004 default: type = "GPREL"; break;
11005 }
11006 break;
11007
11008 case FUNC_LT_RELATIVE:
11009 switch (r_type)
11010 {
11011 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22; break;
11012 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_LTOFF64I; break;
11013 default: type = "LTOFF"; break;
11014 }
11015 break;
11016
11017 case FUNC_LT_RELATIVE_X:
11018 switch (r_type)
11019 {
11020 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_LTOFF22X; break;
11021 default: type = "LTOFF"; suffix = "X"; break;
11022 }
11023 break;
11024
11025 case FUNC_PC_RELATIVE:
11026 switch (r_type)
11027 {
11028 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PCREL22; break;
11029 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PCREL64I; break;
11030 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_PCREL32MSB; break;
11031 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_PCREL32LSB; break;
11032 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PCREL64MSB; break;
11033 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PCREL64LSB; break;
11034 default: type = "PCREL"; break;
11035 }
11036 break;
11037
11038 case FUNC_PLT_RELATIVE:
11039 switch (r_type)
11040 {
11041 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_PLTOFF22; break;
11042 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_PLTOFF64I; break;
11043 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_PLTOFF64MSB;break;
11044 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_PLTOFF64LSB;break;
11045 default: type = "PLTOFF"; break;
11046 }
11047 break;
11048
11049 case FUNC_SEC_RELATIVE:
11050 switch (r_type)
11051 {
11052 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SECREL32MSB;break;
11053 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SECREL32LSB;break;
11054 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SECREL64MSB;break;
11055 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SECREL64LSB;break;
11056 default: type = "SECREL"; break;
11057 }
11058 break;
11059
11060 case FUNC_SEG_RELATIVE:
11061 switch (r_type)
11062 {
11063 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_SEGREL32MSB;break;
11064 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_SEGREL32LSB;break;
11065 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_SEGREL64MSB;break;
11066 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_SEGREL64LSB;break;
11067 default: type = "SEGREL"; break;
11068 }
11069 break;
11070
11071 case FUNC_LTV_RELATIVE:
11072 switch (r_type)
11073 {
11074 case BFD_RELOC_IA64_DIR32MSB: new = BFD_RELOC_IA64_LTV32MSB; break;
11075 case BFD_RELOC_IA64_DIR32LSB: new = BFD_RELOC_IA64_LTV32LSB; break;
11076 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_LTV64MSB; break;
11077 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_LTV64LSB; break;
11078 default: type = "LTV"; break;
11079 }
11080 break;
11081
11082 case FUNC_LT_FPTR_RELATIVE:
11083 switch (r_type)
11084 {
11085 case BFD_RELOC_IA64_IMM22:
11086 new = BFD_RELOC_IA64_LTOFF_FPTR22; break;
11087 case BFD_RELOC_IA64_IMM64:
11088 new = BFD_RELOC_IA64_LTOFF_FPTR64I; break;
11089 case BFD_RELOC_IA64_DIR32MSB:
11090 new = BFD_RELOC_IA64_LTOFF_FPTR32MSB; break;
11091 case BFD_RELOC_IA64_DIR32LSB:
11092 new = BFD_RELOC_IA64_LTOFF_FPTR32LSB; break;
11093 case BFD_RELOC_IA64_DIR64MSB:
11094 new = BFD_RELOC_IA64_LTOFF_FPTR64MSB; break;
11095 case BFD_RELOC_IA64_DIR64LSB:
11096 new = BFD_RELOC_IA64_LTOFF_FPTR64LSB; break;
11097 default:
11098 type = "LTOFF_FPTR"; break;
11099 }
11100 break;
11101
11102 case FUNC_TP_RELATIVE:
11103 switch (r_type)
11104 {
11105 case BFD_RELOC_IA64_IMM14: new = BFD_RELOC_IA64_TPREL14; break;
11106 case BFD_RELOC_IA64_IMM22: new = BFD_RELOC_IA64_TPREL22; break;
11107 case BFD_RELOC_IA64_IMM64: new = BFD_RELOC_IA64_TPREL64I; break;
11108 case BFD_RELOC_IA64_DIR64MSB: new = BFD_RELOC_IA64_TPREL64MSB; break;
11109 case BFD_RELOC_IA64_DIR64LSB: new = BFD_RELOC_IA64_TPREL64LSB; break;
11110 default: type = "TPREL"; break;
11111 }
11112 break;
11113
11114 case FUNC_LT_TP_RELATIVE:
11115 switch (r_type)
11116 {
11117 case BFD_RELOC_IA64_IMM22:
11118 new = BFD_RELOC_IA64_LTOFF_TPREL22; break;
11119 default:
11120 type = "LTOFF_TPREL"; break;
11121 }
11122 break;
11123
11124 case FUNC_DTP_MODULE:
11125 switch (r_type)
11126 {
11127 case BFD_RELOC_IA64_DIR64MSB:
11128 new = BFD_RELOC_IA64_DTPMOD64MSB; break;
11129 case BFD_RELOC_IA64_DIR64LSB:
11130 new = BFD_RELOC_IA64_DTPMOD64LSB; break;
11131 default:
11132 type = "DTPMOD"; break;
11133 }
11134 break;
11135
11136 case FUNC_LT_DTP_MODULE:
11137 switch (r_type)
11138 {
11139 case BFD_RELOC_IA64_IMM22:
11140 new = BFD_RELOC_IA64_LTOFF_DTPMOD22; break;
11141 default:
11142 type = "LTOFF_DTPMOD"; break;
11143 }
11144 break;
11145
11146 case FUNC_DTP_RELATIVE:
11147 switch (r_type)
11148 {
11149 case BFD_RELOC_IA64_DIR32MSB:
11150 new = BFD_RELOC_IA64_DTPREL32MSB; break;
11151 case BFD_RELOC_IA64_DIR32LSB:
11152 new = BFD_RELOC_IA64_DTPREL32LSB; break;
11153 case BFD_RELOC_IA64_DIR64MSB:
11154 new = BFD_RELOC_IA64_DTPREL64MSB; break;
11155 case BFD_RELOC_IA64_DIR64LSB:
11156 new = BFD_RELOC_IA64_DTPREL64LSB; break;
11157 case BFD_RELOC_IA64_IMM14:
11158 new = BFD_RELOC_IA64_DTPREL14; break;
11159 case BFD_RELOC_IA64_IMM22:
11160 new = BFD_RELOC_IA64_DTPREL22; break;
11161 case BFD_RELOC_IA64_IMM64:
11162 new = BFD_RELOC_IA64_DTPREL64I; break;
11163 default:
11164 type = "DTPREL"; break;
11165 }
11166 break;
11167
11168 case FUNC_LT_DTP_RELATIVE:
11169 switch (r_type)
11170 {
11171 case BFD_RELOC_IA64_IMM22:
11172 new = BFD_RELOC_IA64_LTOFF_DTPREL22; break;
11173 default:
11174 type = "LTOFF_DTPREL"; break;
11175 }
11176 break;
11177
11178 case FUNC_IPLT_RELOC:
11179 switch (r_type)
11180 {
11181 case BFD_RELOC_IA64_IPLTMSB: return r_type;
11182 case BFD_RELOC_IA64_IPLTLSB: return r_type;
11183 default: type = "IPLT"; break;
11184 }
11185 break;
11186
11187 default:
11188 abort ();
11189 }
11190
11191 if (new)
11192 return new;
11193 else
11194 {
11195 int width;
11196
11197 if (!type)
11198 abort ();
11199 switch (r_type)
11200 {
11201 case BFD_RELOC_IA64_DIR32MSB: width = 32; suffix = "MSB"; break;
11202 case BFD_RELOC_IA64_DIR32LSB: width = 32; suffix = "LSB"; break;
11203 case BFD_RELOC_IA64_DIR64MSB: width = 64; suffix = "MSB"; break;
11204 case BFD_RELOC_IA64_DIR64LSB: width = 64; suffix = "LSB"; break;
11205 case BFD_RELOC_IA64_IMM14: width = 14; break;
11206 case BFD_RELOC_IA64_IMM22: width = 22; break;
11207 case BFD_RELOC_IA64_IMM64: width = 64; suffix = "I"; break;
11208 default: abort ();
11209 }
11210
11211 /* This should be an error, but since previously there wasn't any
11212 diagnostic here, dont't make it fail because of this for now. */
11213 as_warn ("Cannot express %s%d%s relocation", type, width, suffix);
11214 return r_type;
11215 }
11216 }
11217
11218 /* Here is where generate the appropriate reloc for pseudo relocation
11219 functions. */
11220 void
11221 ia64_validate_fix (fix)
11222 fixS *fix;
11223 {
11224 switch (fix->fx_r_type)
11225 {
11226 case BFD_RELOC_IA64_FPTR64I:
11227 case BFD_RELOC_IA64_FPTR32MSB:
11228 case BFD_RELOC_IA64_FPTR64LSB:
11229 case BFD_RELOC_IA64_LTOFF_FPTR22:
11230 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11231 if (fix->fx_offset != 0)
11232 as_bad_where (fix->fx_file, fix->fx_line,
11233 "No addend allowed in @fptr() relocation");
11234 break;
11235 default:
11236 break;
11237 }
11238 }
11239
11240 static void
11241 fix_insn (fix, odesc, value)
11242 fixS *fix;
11243 const struct ia64_operand *odesc;
11244 valueT value;
11245 {
11246 bfd_vma insn[3], t0, t1, control_bits;
11247 const char *err;
11248 char *fixpos;
11249 long slot;
11250
11251 slot = fix->fx_where & 0x3;
11252 fixpos = fix->fx_frag->fr_literal + (fix->fx_where - slot);
11253
11254 /* Bundles are always in little-endian byte order */
11255 t0 = bfd_getl64 (fixpos);
11256 t1 = bfd_getl64 (fixpos + 8);
11257 control_bits = t0 & 0x1f;
11258 insn[0] = (t0 >> 5) & 0x1ffffffffffLL;
11259 insn[1] = ((t0 >> 46) & 0x3ffff) | ((t1 & 0x7fffff) << 18);
11260 insn[2] = (t1 >> 23) & 0x1ffffffffffLL;
11261
11262 err = NULL;
11263 if (odesc - elf64_ia64_operands == IA64_OPND_IMMU64)
11264 {
11265 insn[1] = (value >> 22) & 0x1ffffffffffLL;
11266 insn[2] |= (((value & 0x7f) << 13)
11267 | (((value >> 7) & 0x1ff) << 27)
11268 | (((value >> 16) & 0x1f) << 22)
11269 | (((value >> 21) & 0x1) << 21)
11270 | (((value >> 63) & 0x1) << 36));
11271 }
11272 else if (odesc - elf64_ia64_operands == IA64_OPND_IMMU62)
11273 {
11274 if (value & ~0x3fffffffffffffffULL)
11275 err = "integer operand out of range";
11276 insn[1] = (value >> 21) & 0x1ffffffffffLL;
11277 insn[2] |= (((value & 0xfffff) << 6) | (((value >> 20) & 0x1) << 36));
11278 }
11279 else if (odesc - elf64_ia64_operands == IA64_OPND_TGT64)
11280 {
11281 value >>= 4;
11282 insn[1] = ((value >> 20) & 0x7fffffffffLL) << 2;
11283 insn[2] |= ((((value >> 59) & 0x1) << 36)
11284 | (((value >> 0) & 0xfffff) << 13));
11285 }
11286 else
11287 err = (*odesc->insert) (odesc, value, insn + slot);
11288
11289 if (err)
11290 as_bad_where (fix->fx_file, fix->fx_line, err);
11291
11292 t0 = control_bits | (insn[0] << 5) | (insn[1] << 46);
11293 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
11294 number_to_chars_littleendian (fixpos + 0, t0, 8);
11295 number_to_chars_littleendian (fixpos + 8, t1, 8);
11296 }
11297
11298 /* Attempt to simplify or even eliminate a fixup. The return value is
11299 ignored; perhaps it was once meaningful, but now it is historical.
11300 To indicate that a fixup has been eliminated, set FIXP->FX_DONE.
11301
11302 If fixp->fx_addsy is non-NULL, we'll have to generate a reloc entry
11303 (if possible). */
11304
11305 void
11306 md_apply_fix3 (fix, valP, seg)
11307 fixS *fix;
11308 valueT *valP;
11309 segT seg ATTRIBUTE_UNUSED;
11310 {
11311 char *fixpos;
11312 valueT value = *valP;
11313
11314 fixpos = fix->fx_frag->fr_literal + fix->fx_where;
11315
11316 if (fix->fx_pcrel)
11317 {
11318 switch (fix->fx_r_type)
11319 {
11320 case BFD_RELOC_IA64_PCREL21B: break;
11321 case BFD_RELOC_IA64_PCREL21BI: break;
11322 case BFD_RELOC_IA64_PCREL21F: break;
11323 case BFD_RELOC_IA64_PCREL21M: break;
11324 case BFD_RELOC_IA64_PCREL60B: break;
11325 case BFD_RELOC_IA64_PCREL22: break;
11326 case BFD_RELOC_IA64_PCREL64I: break;
11327 case BFD_RELOC_IA64_PCREL32MSB: break;
11328 case BFD_RELOC_IA64_PCREL32LSB: break;
11329 case BFD_RELOC_IA64_PCREL64MSB: break;
11330 case BFD_RELOC_IA64_PCREL64LSB: break;
11331 default:
11332 fix->fx_r_type = ia64_gen_real_reloc_type (pseudo_func[FUNC_PC_RELATIVE].u.sym,
11333 fix->fx_r_type);
11334 break;
11335 }
11336 }
11337 if (fix->fx_addsy)
11338 {
11339 switch (fix->fx_r_type)
11340 {
11341 case BFD_RELOC_UNUSED:
11342 /* This must be a TAG13 or TAG13b operand. There are no external
11343 relocs defined for them, so we must give an error. */
11344 as_bad_where (fix->fx_file, fix->fx_line,
11345 "%s must have a constant value",
11346 elf64_ia64_operands[fix->tc_fix_data.opnd].desc);
11347 fix->fx_done = 1;
11348 return;
11349
11350 case BFD_RELOC_IA64_TPREL14:
11351 case BFD_RELOC_IA64_TPREL22:
11352 case BFD_RELOC_IA64_TPREL64I:
11353 case BFD_RELOC_IA64_LTOFF_TPREL22:
11354 case BFD_RELOC_IA64_LTOFF_DTPMOD22:
11355 case BFD_RELOC_IA64_DTPREL14:
11356 case BFD_RELOC_IA64_DTPREL22:
11357 case BFD_RELOC_IA64_DTPREL64I:
11358 case BFD_RELOC_IA64_LTOFF_DTPREL22:
11359 S_SET_THREAD_LOCAL (fix->fx_addsy);
11360 break;
11361
11362 default:
11363 break;
11364 }
11365 }
11366 else if (fix->tc_fix_data.opnd == IA64_OPND_NIL)
11367 {
11368 if (fix->tc_fix_data.bigendian)
11369 number_to_chars_bigendian (fixpos, value, fix->fx_size);
11370 else
11371 number_to_chars_littleendian (fixpos, value, fix->fx_size);
11372 fix->fx_done = 1;
11373 }
11374 else
11375 {
11376 fix_insn (fix, elf64_ia64_operands + fix->tc_fix_data.opnd, value);
11377 fix->fx_done = 1;
11378 }
11379 }
11380
11381 /* Generate the BFD reloc to be stuck in the object file from the
11382 fixup used internally in the assembler. */
11383
11384 arelent *
11385 tc_gen_reloc (sec, fixp)
11386 asection *sec ATTRIBUTE_UNUSED;
11387 fixS *fixp;
11388 {
11389 arelent *reloc;
11390
11391 reloc = xmalloc (sizeof (*reloc));
11392 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
11393 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11394 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
11395 reloc->addend = fixp->fx_offset;
11396 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
11397
11398 if (!reloc->howto)
11399 {
11400 as_bad_where (fixp->fx_file, fixp->fx_line,
11401 "Cannot represent %s relocation in object file",
11402 bfd_get_reloc_code_name (fixp->fx_r_type));
11403 }
11404 return reloc;
11405 }
11406
11407 /* Turn a string in input_line_pointer into a floating point constant
11408 of type TYPE, and store the appropriate bytes in *LIT. The number
11409 of LITTLENUMS emitted is stored in *SIZE. An error message is
11410 returned, or NULL on OK. */
11411
11412 #define MAX_LITTLENUMS 5
11413
11414 char *
11415 md_atof (type, lit, size)
11416 int type;
11417 char *lit;
11418 int *size;
11419 {
11420 LITTLENUM_TYPE words[MAX_LITTLENUMS];
11421 char *t;
11422 int prec;
11423
11424 switch (type)
11425 {
11426 /* IEEE floats */
11427 case 'f':
11428 case 'F':
11429 case 's':
11430 case 'S':
11431 prec = 2;
11432 break;
11433
11434 case 'd':
11435 case 'D':
11436 case 'r':
11437 case 'R':
11438 prec = 4;
11439 break;
11440
11441 case 'x':
11442 case 'X':
11443 case 'p':
11444 case 'P':
11445 prec = 5;
11446 break;
11447
11448 default:
11449 *size = 0;
11450 return "Bad call to MD_ATOF()";
11451 }
11452 t = atof_ieee (input_line_pointer, type, words);
11453 if (t)
11454 input_line_pointer = t;
11455
11456 (*ia64_float_to_chars) (lit, words, prec);
11457
11458 if (type == 'X')
11459 {
11460 /* It is 10 byte floating point with 6 byte padding. */
11461 memset (&lit [10], 0, 6);
11462 *size = 8 * sizeof (LITTLENUM_TYPE);
11463 }
11464 else
11465 *size = prec * sizeof (LITTLENUM_TYPE);
11466
11467 return 0;
11468 }
11469
11470 /* Handle ia64 specific semantics of the align directive. */
11471
11472 void
11473 ia64_md_do_align (n, fill, len, max)
11474 int n ATTRIBUTE_UNUSED;
11475 const char *fill ATTRIBUTE_UNUSED;
11476 int len ATTRIBUTE_UNUSED;
11477 int max ATTRIBUTE_UNUSED;
11478 {
11479 if (subseg_text_p (now_seg))
11480 ia64_flush_insns ();
11481 }
11482
11483 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
11484 of an rs_align_code fragment. */
11485
11486 void
11487 ia64_handle_align (fragp)
11488 fragS *fragp;
11489 {
11490 /* Use mfi bundle of nops with no stop bits. */
11491 static const unsigned char le_nop[]
11492 = { 0x0c, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
11493 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00};
11494 static const unsigned char le_nop_stop[]
11495 = { 0x0d, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
11496 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00};
11497
11498 int bytes;
11499 char *p;
11500 const unsigned char *nop;
11501
11502 if (fragp->fr_type != rs_align_code)
11503 return;
11504
11505 /* Check if this frag has to end with a stop bit. */
11506 nop = fragp->tc_frag_data ? le_nop_stop : le_nop;
11507
11508 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
11509 p = fragp->fr_literal + fragp->fr_fix;
11510
11511 /* If no paddings are needed, we check if we need a stop bit. */
11512 if (!bytes && fragp->tc_frag_data)
11513 {
11514 if (fragp->fr_fix < 16)
11515 #if 1
11516 /* FIXME: It won't work with
11517 .align 16
11518 alloc r32=ar.pfs,1,2,4,0
11519 */
11520 ;
11521 #else
11522 as_bad_where (fragp->fr_file, fragp->fr_line,
11523 _("Can't add stop bit to mark end of instruction group"));
11524 #endif
11525 else
11526 /* Bundles are always in little-endian byte order. Make sure
11527 the previous bundle has the stop bit. */
11528 *(p - 16) |= 1;
11529 }
11530
11531 /* Make sure we are on a 16-byte boundary, in case someone has been
11532 putting data into a text section. */
11533 if (bytes & 15)
11534 {
11535 int fix = bytes & 15;
11536 memset (p, 0, fix);
11537 p += fix;
11538 bytes -= fix;
11539 fragp->fr_fix += fix;
11540 }
11541
11542 /* Instruction bundles are always little-endian. */
11543 memcpy (p, nop, 16);
11544 fragp->fr_var = 16;
11545 }
11546
11547 static void
11548 ia64_float_to_chars_bigendian (char *lit, LITTLENUM_TYPE *words,
11549 int prec)
11550 {
11551 while (prec--)
11552 {
11553 number_to_chars_bigendian (lit, (long) (*words++),
11554 sizeof (LITTLENUM_TYPE));
11555 lit += sizeof (LITTLENUM_TYPE);
11556 }
11557 }
11558
11559 static void
11560 ia64_float_to_chars_littleendian (char *lit, LITTLENUM_TYPE *words,
11561 int prec)
11562 {
11563 while (prec--)
11564 {
11565 number_to_chars_littleendian (lit, (long) (words[prec]),
11566 sizeof (LITTLENUM_TYPE));
11567 lit += sizeof (LITTLENUM_TYPE);
11568 }
11569 }
11570
11571 void
11572 ia64_elf_section_change_hook (void)
11573 {
11574 if (elf_section_type (now_seg) == SHT_IA_64_UNWIND
11575 && elf_linked_to_section (now_seg) == NULL)
11576 elf_linked_to_section (now_seg) = text_section;
11577 dot_byteorder (-1);
11578 }
11579
11580 /* Check if a label should be made global. */
11581 void
11582 ia64_check_label (symbolS *label)
11583 {
11584 if (*input_line_pointer == ':')
11585 {
11586 S_SET_EXTERNAL (label);
11587 input_line_pointer++;
11588 }
11589 }
11590
11591 /* Used to remember where .alias and .secalias directives are seen. We
11592 will rename symbol and section names when we are about to output
11593 the relocatable file. */
11594 struct alias
11595 {
11596 char *file; /* The file where the directive is seen. */
11597 unsigned int line; /* The line number the directive is at. */
11598 const char *name; /* The orignale name of the symbol. */
11599 };
11600
11601 /* Called for .alias and .secalias directives. If SECTION is 1, it is
11602 .secalias. Otherwise, it is .alias. */
11603 static void
11604 dot_alias (int section)
11605 {
11606 char *name, *alias;
11607 char delim;
11608 char *end_name;
11609 int len;
11610 const char *error_string;
11611 struct alias *h;
11612 const char *a;
11613 struct hash_control *ahash, *nhash;
11614 const char *kind;
11615
11616 name = input_line_pointer;
11617 delim = get_symbol_end ();
11618 end_name = input_line_pointer;
11619 *end_name = delim;
11620
11621 if (name == end_name)
11622 {
11623 as_bad (_("expected symbol name"));
11624 discard_rest_of_line ();
11625 return;
11626 }
11627
11628 SKIP_WHITESPACE ();
11629
11630 if (*input_line_pointer != ',')
11631 {
11632 *end_name = 0;
11633 as_bad (_("expected comma after \"%s\""), name);
11634 *end_name = delim;
11635 ignore_rest_of_line ();
11636 return;
11637 }
11638
11639 input_line_pointer++;
11640 *end_name = 0;
11641 ia64_canonicalize_symbol_name (name);
11642
11643 /* We call demand_copy_C_string to check if alias string is valid.
11644 There should be a closing `"' and no `\0' in the string. */
11645 alias = demand_copy_C_string (&len);
11646 if (alias == NULL)
11647 {
11648 ignore_rest_of_line ();
11649 return;
11650 }
11651
11652 /* Make a copy of name string. */
11653 len = strlen (name) + 1;
11654 obstack_grow (&notes, name, len);
11655 name = obstack_finish (&notes);
11656
11657 if (section)
11658 {
11659 kind = "section";
11660 ahash = secalias_hash;
11661 nhash = secalias_name_hash;
11662 }
11663 else
11664 {
11665 kind = "symbol";
11666 ahash = alias_hash;
11667 nhash = alias_name_hash;
11668 }
11669
11670 /* Check if alias has been used before. */
11671 h = (struct alias *) hash_find (ahash, alias);
11672 if (h)
11673 {
11674 if (strcmp (h->name, name))
11675 as_bad (_("`%s' is already the alias of %s `%s'"),
11676 alias, kind, h->name);
11677 goto out;
11678 }
11679
11680 /* Check if name already has an alias. */
11681 a = (const char *) hash_find (nhash, name);
11682 if (a)
11683 {
11684 if (strcmp (a, alias))
11685 as_bad (_("%s `%s' already has an alias `%s'"), kind, name, a);
11686 goto out;
11687 }
11688
11689 h = (struct alias *) xmalloc (sizeof (struct alias));
11690 as_where (&h->file, &h->line);
11691 h->name = name;
11692
11693 error_string = hash_jam (ahash, alias, (PTR) h);
11694 if (error_string)
11695 {
11696 as_fatal (_("inserting \"%s\" into %s alias hash table failed: %s"),
11697 alias, kind, error_string);
11698 goto out;
11699 }
11700
11701 error_string = hash_jam (nhash, name, (PTR) alias);
11702 if (error_string)
11703 {
11704 as_fatal (_("inserting \"%s\" into %s name hash table failed: %s"),
11705 alias, kind, error_string);
11706 out:
11707 obstack_free (&notes, name);
11708 obstack_free (&notes, alias);
11709 }
11710
11711 demand_empty_rest_of_line ();
11712 }
11713
11714 /* It renames the original symbol name to its alias. */
11715 static void
11716 do_alias (const char *alias, PTR value)
11717 {
11718 struct alias *h = (struct alias *) value;
11719 symbolS *sym = symbol_find (h->name);
11720
11721 if (sym == NULL)
11722 as_warn_where (h->file, h->line,
11723 _("symbol `%s' aliased to `%s' is not used"),
11724 h->name, alias);
11725 else
11726 S_SET_NAME (sym, (char *) alias);
11727 }
11728
11729 /* Called from write_object_file. */
11730 void
11731 ia64_adjust_symtab (void)
11732 {
11733 hash_traverse (alias_hash, do_alias);
11734 }
11735
11736 /* It renames the original section name to its alias. */
11737 static void
11738 do_secalias (const char *alias, PTR value)
11739 {
11740 struct alias *h = (struct alias *) value;
11741 segT sec = bfd_get_section_by_name (stdoutput, h->name);
11742
11743 if (sec == NULL)
11744 as_warn_where (h->file, h->line,
11745 _("section `%s' aliased to `%s' is not used"),
11746 h->name, alias);
11747 else
11748 sec->name = alias;
11749 }
11750
11751 /* Called from write_object_file. */
11752 void
11753 ia64_frob_file (void)
11754 {
11755 hash_traverse (secalias_hash, do_secalias);
11756 }
This page took 0.486102 seconds and 5 git commands to generate.