Remove use of alloca.
[deliverable/binutils-gdb.git] / gas / config / tc-ia64.c
1 /* tc-ia64.c -- Assembler for the HP/Intel IA-64 architecture.
2 Copyright (C) 1998-2016 Free Software Foundation, Inc.
3 Contributed by David Mosberger-Tang <davidm@hpl.hp.com>
4
5 This file is part of GAS, the GNU Assembler.
6
7 GAS is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GAS is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GAS; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street - Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 /*
23 TODO:
24
25 - optional operands
26 - directives:
27 .eb
28 .estate
29 .lb
30 .popsection
31 .previous
32 .psr
33 .pushsection
34 - labels are wrong if automatic alignment is introduced
35 (e.g., checkout the second real10 definition in test-data.s)
36 - DV-related stuff:
37 <reg>.safe_across_calls and any other DV-related directives I don't
38 have documentation for.
39 verify mod-sched-brs reads/writes are checked/marked (and other
40 notes)
41
42 */
43
44 #include "as.h"
45 #include "safe-ctype.h"
46 #include "dwarf2dbg.h"
47 #include "subsegs.h"
48
49 #include "opcode/ia64.h"
50
51 #include "elf/ia64.h"
52 #include "bfdver.h"
53 #include <time.h>
54
55 #ifdef HAVE_LIMITS_H
56 #include <limits.h>
57 #endif
58
59 #define NELEMS(a) ((int) (sizeof (a)/sizeof ((a)[0])))
60
61 /* Some systems define MIN in, e.g., param.h. */
62 #undef MIN
63 #define MIN(a,b) ((a) < (b) ? (a) : (b))
64
65 #define NUM_SLOTS 4
66 #define PREV_SLOT md.slot[(md.curr_slot + NUM_SLOTS - 1) % NUM_SLOTS]
67 #define CURR_SLOT md.slot[md.curr_slot]
68
69 #define O_pseudo_fixup (O_max + 1)
70
71 enum special_section
72 {
73 /* IA-64 ABI section pseudo-ops. */
74 SPECIAL_SECTION_BSS = 0,
75 SPECIAL_SECTION_SBSS,
76 SPECIAL_SECTION_SDATA,
77 SPECIAL_SECTION_RODATA,
78 SPECIAL_SECTION_COMMENT,
79 SPECIAL_SECTION_UNWIND,
80 SPECIAL_SECTION_UNWIND_INFO,
81 /* HPUX specific section pseudo-ops. */
82 SPECIAL_SECTION_INIT_ARRAY,
83 SPECIAL_SECTION_FINI_ARRAY,
84 };
85
86 enum reloc_func
87 {
88 FUNC_DTP_MODULE,
89 FUNC_DTP_RELATIVE,
90 FUNC_FPTR_RELATIVE,
91 FUNC_GP_RELATIVE,
92 FUNC_LT_RELATIVE,
93 FUNC_LT_RELATIVE_X,
94 FUNC_PC_RELATIVE,
95 FUNC_PLT_RELATIVE,
96 FUNC_SEC_RELATIVE,
97 FUNC_SEG_RELATIVE,
98 FUNC_TP_RELATIVE,
99 FUNC_LTV_RELATIVE,
100 FUNC_LT_FPTR_RELATIVE,
101 FUNC_LT_DTP_MODULE,
102 FUNC_LT_DTP_RELATIVE,
103 FUNC_LT_TP_RELATIVE,
104 FUNC_IPLT_RELOC,
105 #ifdef TE_VMS
106 FUNC_SLOTCOUNT_RELOC,
107 #endif
108 };
109
110 enum reg_symbol
111 {
112 REG_GR = 0,
113 REG_FR = (REG_GR + 128),
114 REG_AR = (REG_FR + 128),
115 REG_CR = (REG_AR + 128),
116 REG_DAHR = (REG_CR + 128),
117 REG_P = (REG_DAHR + 8),
118 REG_BR = (REG_P + 64),
119 REG_IP = (REG_BR + 8),
120 REG_CFM,
121 REG_PR,
122 REG_PR_ROT,
123 REG_PSR,
124 REG_PSR_L,
125 REG_PSR_UM,
126 /* The following are pseudo-registers for use by gas only. */
127 IND_CPUID,
128 IND_DBR,
129 IND_DTR,
130 IND_ITR,
131 IND_IBR,
132 IND_MSR,
133 IND_PKR,
134 IND_PMC,
135 IND_PMD,
136 IND_DAHR,
137 IND_RR,
138 /* The following pseudo-registers are used for unwind directives only: */
139 REG_PSP,
140 REG_PRIUNAT,
141 REG_NUM
142 };
143
144 enum dynreg_type
145 {
146 DYNREG_GR = 0, /* dynamic general purpose register */
147 DYNREG_FR, /* dynamic floating point register */
148 DYNREG_PR, /* dynamic predicate register */
149 DYNREG_NUM_TYPES
150 };
151
152 enum operand_match_result
153 {
154 OPERAND_MATCH,
155 OPERAND_OUT_OF_RANGE,
156 OPERAND_MISMATCH
157 };
158
159 /* On the ia64, we can't know the address of a text label until the
160 instructions are packed into a bundle. To handle this, we keep
161 track of the list of labels that appear in front of each
162 instruction. */
163 struct label_fix
164 {
165 struct label_fix *next;
166 struct symbol *sym;
167 bfd_boolean dw2_mark_labels;
168 };
169
170 #ifdef TE_VMS
171 /* An internally used relocation. */
172 #define DUMMY_RELOC_IA64_SLOTCOUNT (BFD_RELOC_UNUSED + 1)
173 #endif
174
175 /* This is the endianness of the current section. */
176 extern int target_big_endian;
177
178 /* This is the default endianness. */
179 static int default_big_endian = TARGET_BYTES_BIG_ENDIAN;
180
181 void (*ia64_number_to_chars) (char *, valueT, int);
182
183 static void ia64_float_to_chars_bigendian (char *, LITTLENUM_TYPE *, int);
184 static void ia64_float_to_chars_littleendian (char *, LITTLENUM_TYPE *, int);
185
186 static void (*ia64_float_to_chars) (char *, LITTLENUM_TYPE *, int);
187
188 static struct hash_control *alias_hash;
189 static struct hash_control *alias_name_hash;
190 static struct hash_control *secalias_hash;
191 static struct hash_control *secalias_name_hash;
192
193 /* List of chars besides those in app.c:symbol_chars that can start an
194 operand. Used to prevent the scrubber eating vital white-space. */
195 const char ia64_symbol_chars[] = "@?";
196
197 /* Characters which always start a comment. */
198 const char comment_chars[] = "";
199
200 /* Characters which start a comment at the beginning of a line. */
201 const char line_comment_chars[] = "#";
202
203 /* Characters which may be used to separate multiple commands on a
204 single line. */
205 const char line_separator_chars[] = ";{}";
206
207 /* Characters which are used to indicate an exponent in a floating
208 point number. */
209 const char EXP_CHARS[] = "eE";
210
211 /* Characters which mean that a number is a floating point constant,
212 as in 0d1.0. */
213 const char FLT_CHARS[] = "rRsSfFdDxXpP";
214
215 /* ia64-specific option processing: */
216
217 const char *md_shortopts = "m:N:x::";
218
219 struct option md_longopts[] =
220 {
221 #define OPTION_MCONSTANT_GP (OPTION_MD_BASE + 1)
222 {"mconstant-gp", no_argument, NULL, OPTION_MCONSTANT_GP},
223 #define OPTION_MAUTO_PIC (OPTION_MD_BASE + 2)
224 {"mauto-pic", no_argument, NULL, OPTION_MAUTO_PIC}
225 };
226
227 size_t md_longopts_size = sizeof (md_longopts);
228
229 static struct
230 {
231 struct hash_control *pseudo_hash; /* pseudo opcode hash table */
232 struct hash_control *reg_hash; /* register name hash table */
233 struct hash_control *dynreg_hash; /* dynamic register hash table */
234 struct hash_control *const_hash; /* constant hash table */
235 struct hash_control *entry_hash; /* code entry hint hash table */
236
237 /* If X_op is != O_absent, the registername for the instruction's
238 qualifying predicate. If NULL, p0 is assumed for instructions
239 that are predictable. */
240 expressionS qp;
241
242 /* Optimize for which CPU. */
243 enum
244 {
245 itanium1,
246 itanium2
247 } tune;
248
249 /* What to do when hint.b is used. */
250 enum
251 {
252 hint_b_error,
253 hint_b_warning,
254 hint_b_ok
255 } hint_b;
256
257 unsigned int
258 manual_bundling : 1,
259 debug_dv: 1,
260 detect_dv: 1,
261 explicit_mode : 1, /* which mode we're in */
262 default_explicit_mode : 1, /* which mode is the default */
263 mode_explicitly_set : 1, /* was the current mode explicitly set? */
264 auto_align : 1,
265 keep_pending_output : 1;
266
267 /* What to do when something is wrong with unwind directives. */
268 enum
269 {
270 unwind_check_warning,
271 unwind_check_error
272 } unwind_check;
273
274 /* Each bundle consists of up to three instructions. We keep
275 track of four most recent instructions so we can correctly set
276 the end_of_insn_group for the last instruction in a bundle. */
277 int curr_slot;
278 int num_slots_in_use;
279 struct slot
280 {
281 unsigned int
282 end_of_insn_group : 1,
283 manual_bundling_on : 1,
284 manual_bundling_off : 1,
285 loc_directive_seen : 1;
286 signed char user_template; /* user-selected template, if any */
287 unsigned char qp_regno; /* qualifying predicate */
288 /* This duplicates a good fraction of "struct fix" but we
289 can't use a "struct fix" instead since we can't call
290 fix_new_exp() until we know the address of the instruction. */
291 int num_fixups;
292 struct insn_fix
293 {
294 bfd_reloc_code_real_type code;
295 enum ia64_opnd opnd; /* type of operand in need of fix */
296 unsigned int is_pcrel : 1; /* is operand pc-relative? */
297 expressionS expr; /* the value to be inserted */
298 }
299 fixup[2]; /* at most two fixups per insn */
300 struct ia64_opcode *idesc;
301 struct label_fix *label_fixups;
302 struct label_fix *tag_fixups;
303 struct unw_rec_list *unwind_record; /* Unwind directive. */
304 expressionS opnd[6];
305 const char *src_file;
306 unsigned int src_line;
307 struct dwarf2_line_info debug_line;
308 }
309 slot[NUM_SLOTS];
310
311 segT last_text_seg;
312
313 struct dynreg
314 {
315 struct dynreg *next; /* next dynamic register */
316 const char *name;
317 unsigned short base; /* the base register number */
318 unsigned short num_regs; /* # of registers in this set */
319 }
320 *dynreg[DYNREG_NUM_TYPES], in, loc, out, rot;
321
322 flagword flags; /* ELF-header flags */
323
324 struct mem_offset {
325 unsigned hint:1; /* is this hint currently valid? */
326 bfd_vma offset; /* mem.offset offset */
327 bfd_vma base; /* mem.offset base */
328 } mem_offset;
329
330 int path; /* number of alt. entry points seen */
331 const char **entry_labels; /* labels of all alternate paths in
332 the current DV-checking block. */
333 int maxpaths; /* size currently allocated for
334 entry_labels */
335
336 int pointer_size; /* size in bytes of a pointer */
337 int pointer_size_shift; /* shift size of a pointer for alignment */
338
339 symbolS *indregsym[IND_RR - IND_CPUID + 1];
340 }
341 md;
342
343 /* These are not const, because they are modified to MMI for non-itanium1
344 targets below. */
345 /* MFI bundle of nops. */
346 static unsigned char le_nop[16] =
347 {
348 0x0c, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
349 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
350 };
351 /* MFI bundle of nops with stop-bit. */
352 static unsigned char le_nop_stop[16] =
353 {
354 0x0d, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
355 0x00, 0x02, 0x00, 0x00, 0x00, 0x00, 0x04, 0x00
356 };
357
358 /* application registers: */
359
360 #define AR_K0 0
361 #define AR_K7 7
362 #define AR_RSC 16
363 #define AR_BSP 17
364 #define AR_BSPSTORE 18
365 #define AR_RNAT 19
366 #define AR_FCR 21
367 #define AR_EFLAG 24
368 #define AR_CSD 25
369 #define AR_SSD 26
370 #define AR_CFLG 27
371 #define AR_FSR 28
372 #define AR_FIR 29
373 #define AR_FDR 30
374 #define AR_CCV 32
375 #define AR_UNAT 36
376 #define AR_FPSR 40
377 #define AR_ITC 44
378 #define AR_RUC 45
379 #define AR_PFS 64
380 #define AR_LC 65
381 #define AR_EC 66
382
383 static const struct
384 {
385 const char *name;
386 unsigned int regnum;
387 }
388 ar[] =
389 {
390 {"ar.k0", AR_K0}, {"ar.k1", AR_K0 + 1},
391 {"ar.k2", AR_K0 + 2}, {"ar.k3", AR_K0 + 3},
392 {"ar.k4", AR_K0 + 4}, {"ar.k5", AR_K0 + 5},
393 {"ar.k6", AR_K0 + 6}, {"ar.k7", AR_K7},
394 {"ar.rsc", AR_RSC}, {"ar.bsp", AR_BSP},
395 {"ar.bspstore", AR_BSPSTORE}, {"ar.rnat", AR_RNAT},
396 {"ar.fcr", AR_FCR}, {"ar.eflag", AR_EFLAG},
397 {"ar.csd", AR_CSD}, {"ar.ssd", AR_SSD},
398 {"ar.cflg", AR_CFLG}, {"ar.fsr", AR_FSR},
399 {"ar.fir", AR_FIR}, {"ar.fdr", AR_FDR},
400 {"ar.ccv", AR_CCV}, {"ar.unat", AR_UNAT},
401 {"ar.fpsr", AR_FPSR}, {"ar.itc", AR_ITC},
402 {"ar.ruc", AR_RUC}, {"ar.pfs", AR_PFS},
403 {"ar.lc", AR_LC}, {"ar.ec", AR_EC},
404 };
405
406 /* control registers: */
407
408 #define CR_DCR 0
409 #define CR_ITM 1
410 #define CR_IVA 2
411 #define CR_PTA 8
412 #define CR_GPTA 9
413 #define CR_IPSR 16
414 #define CR_ISR 17
415 #define CR_IIP 19
416 #define CR_IFA 20
417 #define CR_ITIR 21
418 #define CR_IIPA 22
419 #define CR_IFS 23
420 #define CR_IIM 24
421 #define CR_IHA 25
422 #define CR_IIB0 26
423 #define CR_IIB1 27
424 #define CR_LID 64
425 #define CR_IVR 65
426 #define CR_TPR 66
427 #define CR_EOI 67
428 #define CR_IRR0 68
429 #define CR_IRR3 71
430 #define CR_ITV 72
431 #define CR_PMV 73
432 #define CR_CMCV 74
433 #define CR_LRR0 80
434 #define CR_LRR1 81
435
436 static const struct
437 {
438 const char *name;
439 unsigned int regnum;
440 }
441 cr[] =
442 {
443 {"cr.dcr", CR_DCR},
444 {"cr.itm", CR_ITM},
445 {"cr.iva", CR_IVA},
446 {"cr.pta", CR_PTA},
447 {"cr.gpta", CR_GPTA},
448 {"cr.ipsr", CR_IPSR},
449 {"cr.isr", CR_ISR},
450 {"cr.iip", CR_IIP},
451 {"cr.ifa", CR_IFA},
452 {"cr.itir", CR_ITIR},
453 {"cr.iipa", CR_IIPA},
454 {"cr.ifs", CR_IFS},
455 {"cr.iim", CR_IIM},
456 {"cr.iha", CR_IHA},
457 {"cr.iib0", CR_IIB0},
458 {"cr.iib1", CR_IIB1},
459 {"cr.lid", CR_LID},
460 {"cr.ivr", CR_IVR},
461 {"cr.tpr", CR_TPR},
462 {"cr.eoi", CR_EOI},
463 {"cr.irr0", CR_IRR0},
464 {"cr.irr1", CR_IRR0 + 1},
465 {"cr.irr2", CR_IRR0 + 2},
466 {"cr.irr3", CR_IRR3},
467 {"cr.itv", CR_ITV},
468 {"cr.pmv", CR_PMV},
469 {"cr.cmcv", CR_CMCV},
470 {"cr.lrr0", CR_LRR0},
471 {"cr.lrr1", CR_LRR1}
472 };
473
474 #define PSR_MFL 4
475 #define PSR_IC 13
476 #define PSR_DFL 18
477 #define PSR_CPL 32
478
479 static const struct const_desc
480 {
481 const char *name;
482 valueT value;
483 }
484 const_bits[] =
485 {
486 /* PSR constant masks: */
487
488 /* 0: reserved */
489 {"psr.be", ((valueT) 1) << 1},
490 {"psr.up", ((valueT) 1) << 2},
491 {"psr.ac", ((valueT) 1) << 3},
492 {"psr.mfl", ((valueT) 1) << 4},
493 {"psr.mfh", ((valueT) 1) << 5},
494 /* 6-12: reserved */
495 {"psr.ic", ((valueT) 1) << 13},
496 {"psr.i", ((valueT) 1) << 14},
497 {"psr.pk", ((valueT) 1) << 15},
498 /* 16: reserved */
499 {"psr.dt", ((valueT) 1) << 17},
500 {"psr.dfl", ((valueT) 1) << 18},
501 {"psr.dfh", ((valueT) 1) << 19},
502 {"psr.sp", ((valueT) 1) << 20},
503 {"psr.pp", ((valueT) 1) << 21},
504 {"psr.di", ((valueT) 1) << 22},
505 {"psr.si", ((valueT) 1) << 23},
506 {"psr.db", ((valueT) 1) << 24},
507 {"psr.lp", ((valueT) 1) << 25},
508 {"psr.tb", ((valueT) 1) << 26},
509 {"psr.rt", ((valueT) 1) << 27},
510 /* 28-31: reserved */
511 /* 32-33: cpl (current privilege level) */
512 {"psr.is", ((valueT) 1) << 34},
513 {"psr.mc", ((valueT) 1) << 35},
514 {"psr.it", ((valueT) 1) << 36},
515 {"psr.id", ((valueT) 1) << 37},
516 {"psr.da", ((valueT) 1) << 38},
517 {"psr.dd", ((valueT) 1) << 39},
518 {"psr.ss", ((valueT) 1) << 40},
519 /* 41-42: ri (restart instruction) */
520 {"psr.ed", ((valueT) 1) << 43},
521 {"psr.bn", ((valueT) 1) << 44},
522 };
523
524 /* indirect register-sets/memory: */
525
526 static const struct
527 {
528 const char *name;
529 unsigned int regnum;
530 }
531 indirect_reg[] =
532 {
533 { "CPUID", IND_CPUID },
534 { "cpuid", IND_CPUID },
535 { "dbr", IND_DBR },
536 { "dtr", IND_DTR },
537 { "itr", IND_ITR },
538 { "ibr", IND_IBR },
539 { "msr", IND_MSR },
540 { "pkr", IND_PKR },
541 { "pmc", IND_PMC },
542 { "pmd", IND_PMD },
543 { "dahr", IND_DAHR },
544 { "rr", IND_RR },
545 };
546
547 /* Pseudo functions used to indicate relocation types (these functions
548 start with an at sign (@). */
549 static struct
550 {
551 const char *name;
552 enum pseudo_type
553 {
554 PSEUDO_FUNC_NONE,
555 PSEUDO_FUNC_RELOC,
556 PSEUDO_FUNC_CONST,
557 PSEUDO_FUNC_REG,
558 PSEUDO_FUNC_FLOAT
559 }
560 type;
561 union
562 {
563 unsigned long ival;
564 symbolS *sym;
565 }
566 u;
567 }
568 pseudo_func[] =
569 {
570 /* reloc pseudo functions (these must come first!): */
571 { "dtpmod", PSEUDO_FUNC_RELOC, { 0 } },
572 { "dtprel", PSEUDO_FUNC_RELOC, { 0 } },
573 { "fptr", PSEUDO_FUNC_RELOC, { 0 } },
574 { "gprel", PSEUDO_FUNC_RELOC, { 0 } },
575 { "ltoff", PSEUDO_FUNC_RELOC, { 0 } },
576 { "ltoffx", PSEUDO_FUNC_RELOC, { 0 } },
577 { "pcrel", PSEUDO_FUNC_RELOC, { 0 } },
578 { "pltoff", PSEUDO_FUNC_RELOC, { 0 } },
579 { "secrel", PSEUDO_FUNC_RELOC, { 0 } },
580 { "segrel", PSEUDO_FUNC_RELOC, { 0 } },
581 { "tprel", PSEUDO_FUNC_RELOC, { 0 } },
582 { "ltv", PSEUDO_FUNC_RELOC, { 0 } },
583 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_FPTR_RELATIVE */
584 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_MODULE */
585 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_DTP_RELATIVE */
586 { NULL, 0, { 0 } }, /* placeholder for FUNC_LT_TP_RELATIVE */
587 { "iplt", PSEUDO_FUNC_RELOC, { 0 } },
588 #ifdef TE_VMS
589 { "slotcount", PSEUDO_FUNC_RELOC, { 0 } },
590 #endif
591
592 /* mbtype4 constants: */
593 { "alt", PSEUDO_FUNC_CONST, { 0xa } },
594 { "brcst", PSEUDO_FUNC_CONST, { 0x0 } },
595 { "mix", PSEUDO_FUNC_CONST, { 0x8 } },
596 { "rev", PSEUDO_FUNC_CONST, { 0xb } },
597 { "shuf", PSEUDO_FUNC_CONST, { 0x9 } },
598
599 /* fclass constants: */
600 { "nat", PSEUDO_FUNC_CONST, { 0x100 } },
601 { "qnan", PSEUDO_FUNC_CONST, { 0x080 } },
602 { "snan", PSEUDO_FUNC_CONST, { 0x040 } },
603 { "pos", PSEUDO_FUNC_CONST, { 0x001 } },
604 { "neg", PSEUDO_FUNC_CONST, { 0x002 } },
605 { "zero", PSEUDO_FUNC_CONST, { 0x004 } },
606 { "unorm", PSEUDO_FUNC_CONST, { 0x008 } },
607 { "norm", PSEUDO_FUNC_CONST, { 0x010 } },
608 { "inf", PSEUDO_FUNC_CONST, { 0x020 } },
609
610 { "natval", PSEUDO_FUNC_CONST, { 0x100 } }, /* old usage */
611
612 /* hint constants: */
613 { "pause", PSEUDO_FUNC_CONST, { 0x0 } },
614 { "priority", PSEUDO_FUNC_CONST, { 0x1 } },
615
616 /* tf constants: */
617 { "clz", PSEUDO_FUNC_CONST, { 32 } },
618 { "mpy", PSEUDO_FUNC_CONST, { 33 } },
619 { "datahints", PSEUDO_FUNC_CONST, { 34 } },
620
621 /* unwind-related constants: */
622 { "svr4", PSEUDO_FUNC_CONST, { ELFOSABI_NONE } },
623 { "hpux", PSEUDO_FUNC_CONST, { ELFOSABI_HPUX } },
624 { "nt", PSEUDO_FUNC_CONST, { 2 } }, /* conflicts w/ELFOSABI_NETBSD */
625 { "linux", PSEUDO_FUNC_CONST, { ELFOSABI_GNU } },
626 { "freebsd", PSEUDO_FUNC_CONST, { ELFOSABI_FREEBSD } },
627 { "openvms", PSEUDO_FUNC_CONST, { ELFOSABI_OPENVMS } },
628 { "nsk", PSEUDO_FUNC_CONST, { ELFOSABI_NSK } },
629
630 /* unwind-related registers: */
631 { "priunat",PSEUDO_FUNC_REG, { REG_PRIUNAT } }
632 };
633
634 /* 41-bit nop opcodes (one per unit): */
635 static const bfd_vma nop[IA64_NUM_UNITS] =
636 {
637 0x0000000000LL, /* NIL => break 0 */
638 0x0008000000LL, /* I-unit nop */
639 0x0008000000LL, /* M-unit nop */
640 0x4000000000LL, /* B-unit nop */
641 0x0008000000LL, /* F-unit nop */
642 0x0000000000LL, /* L-"unit" nop immediate */
643 0x0008000000LL, /* X-unit nop */
644 };
645
646 /* Can't be `const' as it's passed to input routines (which have the
647 habit of setting temporary sentinels. */
648 static char special_section_name[][20] =
649 {
650 {".bss"}, {".sbss"}, {".sdata"}, {".rodata"}, {".comment"},
651 {".IA_64.unwind"}, {".IA_64.unwind_info"},
652 {".init_array"}, {".fini_array"}
653 };
654
655 /* The best template for a particular sequence of up to three
656 instructions: */
657 #define N IA64_NUM_TYPES
658 static unsigned char best_template[N][N][N];
659 #undef N
660
661 /* Resource dependencies currently in effect */
662 static struct rsrc {
663 int depind; /* dependency index */
664 const struct ia64_dependency *dependency; /* actual dependency */
665 unsigned specific:1, /* is this a specific bit/regno? */
666 link_to_qp_branch:1; /* will a branch on the same QP clear it?*/
667 int index; /* specific regno/bit within dependency */
668 int note; /* optional qualifying note (0 if none) */
669 #define STATE_NONE 0
670 #define STATE_STOP 1
671 #define STATE_SRLZ 2
672 int insn_srlz; /* current insn serialization state */
673 int data_srlz; /* current data serialization state */
674 int qp_regno; /* qualifying predicate for this usage */
675 const char *file; /* what file marked this dependency */
676 unsigned int line; /* what line marked this dependency */
677 struct mem_offset mem_offset; /* optional memory offset hint */
678 enum { CMP_NONE, CMP_OR, CMP_AND } cmp_type; /* OR or AND compare? */
679 int path; /* corresponding code entry index */
680 } *regdeps = NULL;
681 static int regdepslen = 0;
682 static int regdepstotlen = 0;
683 static const char *dv_mode[] = { "RAW", "WAW", "WAR" };
684 static const char *dv_sem[] = { "none", "implied", "impliedf",
685 "data", "instr", "specific", "stop", "other" };
686 static const char *dv_cmp_type[] = { "none", "OR", "AND" };
687
688 /* Current state of PR mutexation */
689 static struct qpmutex {
690 valueT prmask;
691 int path;
692 } *qp_mutexes = NULL; /* QP mutex bitmasks */
693 static int qp_mutexeslen = 0;
694 static int qp_mutexestotlen = 0;
695 static valueT qp_safe_across_calls = 0;
696
697 /* Current state of PR implications */
698 static struct qp_imply {
699 unsigned p1:6;
700 unsigned p2:6;
701 unsigned p2_branched:1;
702 int path;
703 } *qp_implies = NULL;
704 static int qp_implieslen = 0;
705 static int qp_impliestotlen = 0;
706
707 /* Keep track of static GR values so that indirect register usage can
708 sometimes be tracked. */
709 static struct gr {
710 unsigned known:1;
711 int path;
712 valueT value;
713 } gr_values[128] = {
714 {
715 1,
716 #ifdef INT_MAX
717 INT_MAX,
718 #else
719 (((1 << (8 * sizeof(gr_values->path) - 2)) - 1) << 1) + 1,
720 #endif
721 0
722 }
723 };
724
725 /* Remember the alignment frag. */
726 static fragS *align_frag;
727
728 /* These are the routines required to output the various types of
729 unwind records. */
730
731 /* A slot_number is a frag address plus the slot index (0-2). We use the
732 frag address here so that if there is a section switch in the middle of
733 a function, then instructions emitted to a different section are not
734 counted. Since there may be more than one frag for a function, this
735 means we also need to keep track of which frag this address belongs to
736 so we can compute inter-frag distances. This also nicely solves the
737 problem with nops emitted for align directives, which can't easily be
738 counted, but can easily be derived from frag sizes. */
739
740 typedef struct unw_rec_list {
741 unwind_record r;
742 unsigned long slot_number;
743 fragS *slot_frag;
744 struct unw_rec_list *next;
745 } unw_rec_list;
746
747 #define SLOT_NUM_NOT_SET (unsigned)-1
748
749 /* Linked list of saved prologue counts. A very poor
750 implementation of a map from label numbers to prologue counts. */
751 typedef struct label_prologue_count
752 {
753 struct label_prologue_count *next;
754 unsigned long label_number;
755 unsigned int prologue_count;
756 } label_prologue_count;
757
758 typedef struct proc_pending
759 {
760 symbolS *sym;
761 struct proc_pending *next;
762 } proc_pending;
763
764 static struct
765 {
766 /* Maintain a list of unwind entries for the current function. */
767 unw_rec_list *list;
768 unw_rec_list *tail;
769
770 /* Any unwind entries that should be attached to the current slot
771 that an insn is being constructed for. */
772 unw_rec_list *current_entry;
773
774 /* These are used to create the unwind table entry for this function. */
775 proc_pending proc_pending;
776 symbolS *info; /* pointer to unwind info */
777 symbolS *personality_routine;
778 segT saved_text_seg;
779 subsegT saved_text_subseg;
780 unsigned int force_unwind_entry : 1; /* force generation of unwind entry? */
781
782 /* TRUE if processing unwind directives in a prologue region. */
783 unsigned int prologue : 1;
784 unsigned int prologue_mask : 4;
785 unsigned int prologue_gr : 7;
786 unsigned int body : 1;
787 unsigned int insn : 1;
788 unsigned int prologue_count; /* number of .prologues seen so far */
789 /* Prologue counts at previous .label_state directives. */
790 struct label_prologue_count * saved_prologue_counts;
791
792 /* List of split up .save-s. */
793 unw_p_record *pending_saves;
794 } unwind;
795
796 /* The input value is a negated offset from psp, and specifies an address
797 psp - offset. The encoded value is psp + 16 - (4 * offset). Thus we
798 must add 16 and divide by 4 to get the encoded value. */
799
800 #define ENCODED_PSP_OFFSET(OFFSET) (((OFFSET) + 16) / 4)
801
802 typedef void (*vbyte_func) (int, char *, char *);
803
804 /* Forward declarations: */
805 static void dot_alias (int);
806 static int parse_operand_and_eval (expressionS *, int);
807 static void emit_one_bundle (void);
808 static bfd_reloc_code_real_type ia64_gen_real_reloc_type (struct symbol *,
809 bfd_reloc_code_real_type);
810 static void insn_group_break (int, int, int);
811 static void add_qp_mutex (valueT);
812 static void add_qp_imply (int, int);
813 static void clear_qp_mutex (valueT);
814 static void clear_qp_implies (valueT, valueT);
815 static void print_dependency (const char *, int);
816 static void instruction_serialization (void);
817 static void data_serialization (void);
818 static void output_R3_format (vbyte_func, unw_record_type, unsigned long);
819 static void output_B3_format (vbyte_func, unsigned long, unsigned long);
820 static void output_B4_format (vbyte_func, unw_record_type, unsigned long);
821 static void free_saved_prologue_counts (void);
822
823 /* Determine if application register REGNUM resides only in the integer
824 unit (as opposed to the memory unit). */
825 static int
826 ar_is_only_in_integer_unit (int reg)
827 {
828 reg -= REG_AR;
829 return reg >= 64 && reg <= 111;
830 }
831
832 /* Determine if application register REGNUM resides only in the memory
833 unit (as opposed to the integer unit). */
834 static int
835 ar_is_only_in_memory_unit (int reg)
836 {
837 reg -= REG_AR;
838 return reg >= 0 && reg <= 47;
839 }
840
841 /* Switch to section NAME and create section if necessary. It's
842 rather ugly that we have to manipulate input_line_pointer but I
843 don't see any other way to accomplish the same thing without
844 changing obj-elf.c (which may be the Right Thing, in the end). */
845 static void
846 set_section (char *name)
847 {
848 char *saved_input_line_pointer;
849
850 saved_input_line_pointer = input_line_pointer;
851 input_line_pointer = name;
852 obj_elf_section (0);
853 input_line_pointer = saved_input_line_pointer;
854 }
855
856 /* Map 's' to SHF_IA_64_SHORT. */
857
858 bfd_vma
859 ia64_elf_section_letter (int letter, char **ptr_msg)
860 {
861 if (letter == 's')
862 return SHF_IA_64_SHORT;
863 else if (letter == 'o')
864 return SHF_LINK_ORDER;
865 #ifdef TE_VMS
866 else if (letter == 'O')
867 return SHF_IA_64_VMS_OVERLAID;
868 else if (letter == 'g')
869 return SHF_IA_64_VMS_GLOBAL;
870 #endif
871
872 *ptr_msg = _("bad .section directive: want a,o,s,w,x,M,S,G,T in string");
873 return -1;
874 }
875
876 /* Map SHF_IA_64_SHORT to SEC_SMALL_DATA. */
877
878 flagword
879 ia64_elf_section_flags (flagword flags,
880 bfd_vma attr,
881 int type ATTRIBUTE_UNUSED)
882 {
883 if (attr & SHF_IA_64_SHORT)
884 flags |= SEC_SMALL_DATA;
885 return flags;
886 }
887
888 int
889 ia64_elf_section_type (const char *str, size_t len)
890 {
891 #define STREQ(s) ((len == sizeof (s) - 1) && (strncmp (str, s, sizeof (s) - 1) == 0))
892
893 if (STREQ (ELF_STRING_ia64_unwind_info))
894 return SHT_PROGBITS;
895
896 if (STREQ (ELF_STRING_ia64_unwind_info_once))
897 return SHT_PROGBITS;
898
899 if (STREQ (ELF_STRING_ia64_unwind))
900 return SHT_IA_64_UNWIND;
901
902 if (STREQ (ELF_STRING_ia64_unwind_once))
903 return SHT_IA_64_UNWIND;
904
905 if (STREQ ("unwind"))
906 return SHT_IA_64_UNWIND;
907
908 return -1;
909 #undef STREQ
910 }
911
912 static unsigned int
913 set_regstack (unsigned int ins,
914 unsigned int locs,
915 unsigned int outs,
916 unsigned int rots)
917 {
918 /* Size of frame. */
919 unsigned int sof;
920
921 sof = ins + locs + outs;
922 if (sof > 96)
923 {
924 as_bad (_("Size of frame exceeds maximum of 96 registers"));
925 return 0;
926 }
927 if (rots > sof)
928 {
929 as_warn (_("Size of rotating registers exceeds frame size"));
930 return 0;
931 }
932 md.in.base = REG_GR + 32;
933 md.loc.base = md.in.base + ins;
934 md.out.base = md.loc.base + locs;
935
936 md.in.num_regs = ins;
937 md.loc.num_regs = locs;
938 md.out.num_regs = outs;
939 md.rot.num_regs = rots;
940 return sof;
941 }
942
943 void
944 ia64_flush_insns (void)
945 {
946 struct label_fix *lfix;
947 segT saved_seg;
948 subsegT saved_subseg;
949 unw_rec_list *ptr;
950 bfd_boolean mark;
951
952 if (!md.last_text_seg)
953 return;
954
955 saved_seg = now_seg;
956 saved_subseg = now_subseg;
957
958 subseg_set (md.last_text_seg, 0);
959
960 while (md.num_slots_in_use > 0)
961 emit_one_bundle (); /* force out queued instructions */
962
963 /* In case there are labels following the last instruction, resolve
964 those now. */
965 mark = FALSE;
966 for (lfix = CURR_SLOT.label_fixups; lfix; lfix = lfix->next)
967 {
968 symbol_set_value_now (lfix->sym);
969 mark |= lfix->dw2_mark_labels;
970 }
971 if (mark)
972 {
973 dwarf2_where (&CURR_SLOT.debug_line);
974 CURR_SLOT.debug_line.flags |= DWARF2_FLAG_BASIC_BLOCK;
975 dwarf2_gen_line_info (frag_now_fix (), &CURR_SLOT.debug_line);
976 dwarf2_consume_line_info ();
977 }
978 CURR_SLOT.label_fixups = 0;
979
980 for (lfix = CURR_SLOT.tag_fixups; lfix; lfix = lfix->next)
981 symbol_set_value_now (lfix->sym);
982 CURR_SLOT.tag_fixups = 0;
983
984 /* In case there are unwind directives following the last instruction,
985 resolve those now. We only handle prologue, body, and endp directives
986 here. Give an error for others. */
987 for (ptr = unwind.current_entry; ptr; ptr = ptr->next)
988 {
989 switch (ptr->r.type)
990 {
991 case prologue:
992 case prologue_gr:
993 case body:
994 case endp:
995 ptr->slot_number = (unsigned long) frag_more (0);
996 ptr->slot_frag = frag_now;
997 break;
998
999 /* Allow any record which doesn't have a "t" field (i.e.,
1000 doesn't relate to a particular instruction). */
1001 case unwabi:
1002 case br_gr:
1003 case copy_state:
1004 case fr_mem:
1005 case frgr_mem:
1006 case gr_gr:
1007 case gr_mem:
1008 case label_state:
1009 case rp_br:
1010 case spill_base:
1011 case spill_mask:
1012 /* nothing */
1013 break;
1014
1015 default:
1016 as_bad (_("Unwind directive not followed by an instruction."));
1017 break;
1018 }
1019 }
1020 unwind.current_entry = NULL;
1021
1022 subseg_set (saved_seg, saved_subseg);
1023
1024 if (md.qp.X_op == O_register)
1025 as_bad (_("qualifying predicate not followed by instruction"));
1026 }
1027
1028 static void
1029 ia64_do_align (int nbytes)
1030 {
1031 char *saved_input_line_pointer = input_line_pointer;
1032
1033 input_line_pointer = "";
1034 s_align_bytes (nbytes);
1035 input_line_pointer = saved_input_line_pointer;
1036 }
1037
1038 void
1039 ia64_cons_align (int nbytes)
1040 {
1041 if (md.auto_align)
1042 {
1043 char *saved_input_line_pointer = input_line_pointer;
1044 input_line_pointer = "";
1045 s_align_bytes (nbytes);
1046 input_line_pointer = saved_input_line_pointer;
1047 }
1048 }
1049
1050 #ifdef TE_VMS
1051
1052 /* .vms_common section, symbol, size, alignment */
1053
1054 static void
1055 obj_elf_vms_common (int ignore ATTRIBUTE_UNUSED)
1056 {
1057 char *sec_name;
1058 char *sym_name;
1059 char c;
1060 offsetT size;
1061 offsetT cur_size;
1062 offsetT temp;
1063 symbolS *symbolP;
1064 segT current_seg = now_seg;
1065 subsegT current_subseg = now_subseg;
1066 offsetT log_align;
1067
1068 /* Section name. */
1069 sec_name = obj_elf_section_name ();
1070 if (sec_name == NULL)
1071 return;
1072
1073 /* Symbol name. */
1074 SKIP_WHITESPACE ();
1075 if (*input_line_pointer == ',')
1076 {
1077 input_line_pointer++;
1078 SKIP_WHITESPACE ();
1079 }
1080 else
1081 {
1082 as_bad (_("expected ',' after section name"));
1083 ignore_rest_of_line ();
1084 return;
1085 }
1086
1087 c = get_symbol_name (&sym_name);
1088
1089 if (input_line_pointer == sym_name)
1090 {
1091 (void) restore_line_pointer (c);
1092 as_bad (_("expected symbol name"));
1093 ignore_rest_of_line ();
1094 return;
1095 }
1096
1097 symbolP = symbol_find_or_make (sym_name);
1098 (void) restore_line_pointer (c);
1099
1100 if ((S_IS_DEFINED (symbolP) || symbol_equated_p (symbolP))
1101 && !S_IS_COMMON (symbolP))
1102 {
1103 as_bad (_("Ignoring attempt to re-define symbol"));
1104 ignore_rest_of_line ();
1105 return;
1106 }
1107
1108 /* Symbol size. */
1109 SKIP_WHITESPACE ();
1110 if (*input_line_pointer == ',')
1111 {
1112 input_line_pointer++;
1113 SKIP_WHITESPACE ();
1114 }
1115 else
1116 {
1117 as_bad (_("expected ',' after symbol name"));
1118 ignore_rest_of_line ();
1119 return;
1120 }
1121
1122 temp = get_absolute_expression ();
1123 size = temp;
1124 size &= ((offsetT) 2 << (stdoutput->arch_info->bits_per_address - 1)) - 1;
1125 if (temp != size)
1126 {
1127 as_warn (_("size (%ld) out of range, ignored"), (long) temp);
1128 ignore_rest_of_line ();
1129 return;
1130 }
1131
1132 /* Alignment. */
1133 SKIP_WHITESPACE ();
1134 if (*input_line_pointer == ',')
1135 {
1136 input_line_pointer++;
1137 SKIP_WHITESPACE ();
1138 }
1139 else
1140 {
1141 as_bad (_("expected ',' after symbol size"));
1142 ignore_rest_of_line ();
1143 return;
1144 }
1145
1146 log_align = get_absolute_expression ();
1147
1148 demand_empty_rest_of_line ();
1149
1150 obj_elf_change_section
1151 (sec_name, SHT_NOBITS,
1152 SHF_ALLOC | SHF_WRITE | SHF_IA_64_VMS_OVERLAID | SHF_IA_64_VMS_GLOBAL,
1153 0, NULL, 1, 0);
1154
1155 S_SET_VALUE (symbolP, 0);
1156 S_SET_SIZE (symbolP, size);
1157 S_SET_EXTERNAL (symbolP);
1158 S_SET_SEGMENT (symbolP, now_seg);
1159
1160 symbol_get_bfdsym (symbolP)->flags |= BSF_OBJECT;
1161
1162 record_alignment (now_seg, log_align);
1163
1164 cur_size = bfd_section_size (stdoutput, now_seg);
1165 if ((int) size > cur_size)
1166 {
1167 char *pfrag
1168 = frag_var (rs_fill, 1, 1, (relax_substateT)0, NULL,
1169 (valueT)size - (valueT)cur_size, NULL);
1170 *pfrag = 0;
1171 bfd_section_size (stdoutput, now_seg) = size;
1172 }
1173
1174 /* Switch back to current segment. */
1175 subseg_set (current_seg, current_subseg);
1176
1177 #ifdef md_elf_section_change_hook
1178 md_elf_section_change_hook ();
1179 #endif
1180 }
1181
1182 #endif /* TE_VMS */
1183
1184 /* Output COUNT bytes to a memory location. */
1185 static char *vbyte_mem_ptr = NULL;
1186
1187 static void
1188 output_vbyte_mem (int count, char *ptr, char *comment ATTRIBUTE_UNUSED)
1189 {
1190 int x;
1191 if (vbyte_mem_ptr == NULL)
1192 abort ();
1193
1194 if (count == 0)
1195 return;
1196 for (x = 0; x < count; x++)
1197 *(vbyte_mem_ptr++) = ptr[x];
1198 }
1199
1200 /* Count the number of bytes required for records. */
1201 static int vbyte_count = 0;
1202 static void
1203 count_output (int count,
1204 char *ptr ATTRIBUTE_UNUSED,
1205 char *comment ATTRIBUTE_UNUSED)
1206 {
1207 vbyte_count += count;
1208 }
1209
1210 static void
1211 output_R1_format (vbyte_func f, unw_record_type rtype, int rlen)
1212 {
1213 int r = 0;
1214 char byte;
1215 if (rlen > 0x1f)
1216 {
1217 output_R3_format (f, rtype, rlen);
1218 return;
1219 }
1220
1221 if (rtype == body)
1222 r = 1;
1223 else if (rtype != prologue)
1224 as_bad (_("record type is not valid"));
1225
1226 byte = UNW_R1 | (r << 5) | (rlen & 0x1f);
1227 (*f) (1, &byte, NULL);
1228 }
1229
1230 static void
1231 output_R2_format (vbyte_func f, int mask, int grsave, unsigned long rlen)
1232 {
1233 char bytes[20];
1234 int count = 2;
1235 mask = (mask & 0x0f);
1236 grsave = (grsave & 0x7f);
1237
1238 bytes[0] = (UNW_R2 | (mask >> 1));
1239 bytes[1] = (((mask & 0x01) << 7) | grsave);
1240 count += output_leb128 (bytes + 2, rlen, 0);
1241 (*f) (count, bytes, NULL);
1242 }
1243
1244 static void
1245 output_R3_format (vbyte_func f, unw_record_type rtype, unsigned long rlen)
1246 {
1247 int r = 0, count;
1248 char bytes[20];
1249 if (rlen <= 0x1f)
1250 {
1251 output_R1_format (f, rtype, rlen);
1252 return;
1253 }
1254
1255 if (rtype == body)
1256 r = 1;
1257 else if (rtype != prologue)
1258 as_bad (_("record type is not valid"));
1259 bytes[0] = (UNW_R3 | r);
1260 count = output_leb128 (bytes + 1, rlen, 0);
1261 (*f) (count + 1, bytes, NULL);
1262 }
1263
1264 static void
1265 output_P1_format (vbyte_func f, int brmask)
1266 {
1267 char byte;
1268 byte = UNW_P1 | (brmask & 0x1f);
1269 (*f) (1, &byte, NULL);
1270 }
1271
1272 static void
1273 output_P2_format (vbyte_func f, int brmask, int gr)
1274 {
1275 char bytes[2];
1276 brmask = (brmask & 0x1f);
1277 bytes[0] = UNW_P2 | (brmask >> 1);
1278 bytes[1] = (((brmask & 1) << 7) | gr);
1279 (*f) (2, bytes, NULL);
1280 }
1281
1282 static void
1283 output_P3_format (vbyte_func f, unw_record_type rtype, int reg)
1284 {
1285 char bytes[2];
1286 int r = 0;
1287 reg = (reg & 0x7f);
1288 switch (rtype)
1289 {
1290 case psp_gr:
1291 r = 0;
1292 break;
1293 case rp_gr:
1294 r = 1;
1295 break;
1296 case pfs_gr:
1297 r = 2;
1298 break;
1299 case preds_gr:
1300 r = 3;
1301 break;
1302 case unat_gr:
1303 r = 4;
1304 break;
1305 case lc_gr:
1306 r = 5;
1307 break;
1308 case rp_br:
1309 r = 6;
1310 break;
1311 case rnat_gr:
1312 r = 7;
1313 break;
1314 case bsp_gr:
1315 r = 8;
1316 break;
1317 case bspstore_gr:
1318 r = 9;
1319 break;
1320 case fpsr_gr:
1321 r = 10;
1322 break;
1323 case priunat_gr:
1324 r = 11;
1325 break;
1326 default:
1327 as_bad (_("Invalid record type for P3 format."));
1328 }
1329 bytes[0] = (UNW_P3 | (r >> 1));
1330 bytes[1] = (((r & 1) << 7) | reg);
1331 (*f) (2, bytes, NULL);
1332 }
1333
1334 static void
1335 output_P4_format (vbyte_func f, unsigned char *imask, unsigned long imask_size)
1336 {
1337 imask[0] = UNW_P4;
1338 (*f) (imask_size, (char *) imask, NULL);
1339 }
1340
1341 static void
1342 output_P5_format (vbyte_func f, int grmask, unsigned long frmask)
1343 {
1344 char bytes[4];
1345 grmask = (grmask & 0x0f);
1346
1347 bytes[0] = UNW_P5;
1348 bytes[1] = ((grmask << 4) | ((frmask & 0x000f0000) >> 16));
1349 bytes[2] = ((frmask & 0x0000ff00) >> 8);
1350 bytes[3] = (frmask & 0x000000ff);
1351 (*f) (4, bytes, NULL);
1352 }
1353
1354 static void
1355 output_P6_format (vbyte_func f, unw_record_type rtype, int rmask)
1356 {
1357 char byte;
1358 int r = 0;
1359
1360 if (rtype == gr_mem)
1361 r = 1;
1362 else if (rtype != fr_mem)
1363 as_bad (_("Invalid record type for format P6"));
1364 byte = (UNW_P6 | (r << 4) | (rmask & 0x0f));
1365 (*f) (1, &byte, NULL);
1366 }
1367
1368 static void
1369 output_P7_format (vbyte_func f,
1370 unw_record_type rtype,
1371 unsigned long w1,
1372 unsigned long w2)
1373 {
1374 char bytes[20];
1375 int count = 1;
1376 int r = 0;
1377 count += output_leb128 (bytes + 1, w1, 0);
1378 switch (rtype)
1379 {
1380 case mem_stack_f:
1381 r = 0;
1382 count += output_leb128 (bytes + count, w2 >> 4, 0);
1383 break;
1384 case mem_stack_v:
1385 r = 1;
1386 break;
1387 case spill_base:
1388 r = 2;
1389 break;
1390 case psp_sprel:
1391 r = 3;
1392 break;
1393 case rp_when:
1394 r = 4;
1395 break;
1396 case rp_psprel:
1397 r = 5;
1398 break;
1399 case pfs_when:
1400 r = 6;
1401 break;
1402 case pfs_psprel:
1403 r = 7;
1404 break;
1405 case preds_when:
1406 r = 8;
1407 break;
1408 case preds_psprel:
1409 r = 9;
1410 break;
1411 case lc_when:
1412 r = 10;
1413 break;
1414 case lc_psprel:
1415 r = 11;
1416 break;
1417 case unat_when:
1418 r = 12;
1419 break;
1420 case unat_psprel:
1421 r = 13;
1422 break;
1423 case fpsr_when:
1424 r = 14;
1425 break;
1426 case fpsr_psprel:
1427 r = 15;
1428 break;
1429 default:
1430 break;
1431 }
1432 bytes[0] = (UNW_P7 | r);
1433 (*f) (count, bytes, NULL);
1434 }
1435
1436 static void
1437 output_P8_format (vbyte_func f, unw_record_type rtype, unsigned long t)
1438 {
1439 char bytes[20];
1440 int r = 0;
1441 int count = 2;
1442 bytes[0] = UNW_P8;
1443 switch (rtype)
1444 {
1445 case rp_sprel:
1446 r = 1;
1447 break;
1448 case pfs_sprel:
1449 r = 2;
1450 break;
1451 case preds_sprel:
1452 r = 3;
1453 break;
1454 case lc_sprel:
1455 r = 4;
1456 break;
1457 case unat_sprel:
1458 r = 5;
1459 break;
1460 case fpsr_sprel:
1461 r = 6;
1462 break;
1463 case bsp_when:
1464 r = 7;
1465 break;
1466 case bsp_psprel:
1467 r = 8;
1468 break;
1469 case bsp_sprel:
1470 r = 9;
1471 break;
1472 case bspstore_when:
1473 r = 10;
1474 break;
1475 case bspstore_psprel:
1476 r = 11;
1477 break;
1478 case bspstore_sprel:
1479 r = 12;
1480 break;
1481 case rnat_when:
1482 r = 13;
1483 break;
1484 case rnat_psprel:
1485 r = 14;
1486 break;
1487 case rnat_sprel:
1488 r = 15;
1489 break;
1490 case priunat_when_gr:
1491 r = 16;
1492 break;
1493 case priunat_psprel:
1494 r = 17;
1495 break;
1496 case priunat_sprel:
1497 r = 18;
1498 break;
1499 case priunat_when_mem:
1500 r = 19;
1501 break;
1502 default:
1503 break;
1504 }
1505 bytes[1] = r;
1506 count += output_leb128 (bytes + 2, t, 0);
1507 (*f) (count, bytes, NULL);
1508 }
1509
1510 static void
1511 output_P9_format (vbyte_func f, int grmask, int gr)
1512 {
1513 char bytes[3];
1514 bytes[0] = UNW_P9;
1515 bytes[1] = (grmask & 0x0f);
1516 bytes[2] = (gr & 0x7f);
1517 (*f) (3, bytes, NULL);
1518 }
1519
1520 static void
1521 output_P10_format (vbyte_func f, int abi, int context)
1522 {
1523 char bytes[3];
1524 bytes[0] = UNW_P10;
1525 bytes[1] = (abi & 0xff);
1526 bytes[2] = (context & 0xff);
1527 (*f) (3, bytes, NULL);
1528 }
1529
1530 static void
1531 output_B1_format (vbyte_func f, unw_record_type rtype, unsigned long label)
1532 {
1533 char byte;
1534 int r = 0;
1535 if (label > 0x1f)
1536 {
1537 output_B4_format (f, rtype, label);
1538 return;
1539 }
1540 if (rtype == copy_state)
1541 r = 1;
1542 else if (rtype != label_state)
1543 as_bad (_("Invalid record type for format B1"));
1544
1545 byte = (UNW_B1 | (r << 5) | (label & 0x1f));
1546 (*f) (1, &byte, NULL);
1547 }
1548
1549 static void
1550 output_B2_format (vbyte_func f, unsigned long ecount, unsigned long t)
1551 {
1552 char bytes[20];
1553 int count = 1;
1554 if (ecount > 0x1f)
1555 {
1556 output_B3_format (f, ecount, t);
1557 return;
1558 }
1559 bytes[0] = (UNW_B2 | (ecount & 0x1f));
1560 count += output_leb128 (bytes + 1, t, 0);
1561 (*f) (count, bytes, NULL);
1562 }
1563
1564 static void
1565 output_B3_format (vbyte_func f, unsigned long ecount, unsigned long t)
1566 {
1567 char bytes[20];
1568 int count = 1;
1569 if (ecount <= 0x1f)
1570 {
1571 output_B2_format (f, ecount, t);
1572 return;
1573 }
1574 bytes[0] = UNW_B3;
1575 count += output_leb128 (bytes + 1, t, 0);
1576 count += output_leb128 (bytes + count, ecount, 0);
1577 (*f) (count, bytes, NULL);
1578 }
1579
1580 static void
1581 output_B4_format (vbyte_func f, unw_record_type rtype, unsigned long label)
1582 {
1583 char bytes[20];
1584 int r = 0;
1585 int count = 1;
1586 if (label <= 0x1f)
1587 {
1588 output_B1_format (f, rtype, label);
1589 return;
1590 }
1591
1592 if (rtype == copy_state)
1593 r = 1;
1594 else if (rtype != label_state)
1595 as_bad (_("Invalid record type for format B1"));
1596
1597 bytes[0] = (UNW_B4 | (r << 3));
1598 count += output_leb128 (bytes + 1, label, 0);
1599 (*f) (count, bytes, NULL);
1600 }
1601
1602 static char
1603 format_ab_reg (int ab, int reg)
1604 {
1605 int ret;
1606 ab = (ab & 3);
1607 reg = (reg & 0x1f);
1608 ret = (ab << 5) | reg;
1609 return ret;
1610 }
1611
1612 static void
1613 output_X1_format (vbyte_func f,
1614 unw_record_type rtype,
1615 int ab,
1616 int reg,
1617 unsigned long t,
1618 unsigned long w1)
1619 {
1620 char bytes[20];
1621 int r = 0;
1622 int count = 2;
1623 bytes[0] = UNW_X1;
1624
1625 if (rtype == spill_sprel)
1626 r = 1;
1627 else if (rtype != spill_psprel)
1628 as_bad (_("Invalid record type for format X1"));
1629 bytes[1] = ((r << 7) | format_ab_reg (ab, reg));
1630 count += output_leb128 (bytes + 2, t, 0);
1631 count += output_leb128 (bytes + count, w1, 0);
1632 (*f) (count, bytes, NULL);
1633 }
1634
1635 static void
1636 output_X2_format (vbyte_func f,
1637 int ab,
1638 int reg,
1639 int x,
1640 int y,
1641 int treg,
1642 unsigned long t)
1643 {
1644 char bytes[20];
1645 int count = 3;
1646 bytes[0] = UNW_X2;
1647 bytes[1] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1648 bytes[2] = (((y & 1) << 7) | (treg & 0x7f));
1649 count += output_leb128 (bytes + 3, t, 0);
1650 (*f) (count, bytes, NULL);
1651 }
1652
1653 static void
1654 output_X3_format (vbyte_func f,
1655 unw_record_type rtype,
1656 int qp,
1657 int ab,
1658 int reg,
1659 unsigned long t,
1660 unsigned long w1)
1661 {
1662 char bytes[20];
1663 int r = 0;
1664 int count = 3;
1665 bytes[0] = UNW_X3;
1666
1667 if (rtype == spill_sprel_p)
1668 r = 1;
1669 else if (rtype != spill_psprel_p)
1670 as_bad (_("Invalid record type for format X3"));
1671 bytes[1] = ((r << 7) | (qp & 0x3f));
1672 bytes[2] = format_ab_reg (ab, reg);
1673 count += output_leb128 (bytes + 3, t, 0);
1674 count += output_leb128 (bytes + count, w1, 0);
1675 (*f) (count, bytes, NULL);
1676 }
1677
1678 static void
1679 output_X4_format (vbyte_func f,
1680 int qp,
1681 int ab,
1682 int reg,
1683 int x,
1684 int y,
1685 int treg,
1686 unsigned long t)
1687 {
1688 char bytes[20];
1689 int count = 4;
1690 bytes[0] = UNW_X4;
1691 bytes[1] = (qp & 0x3f);
1692 bytes[2] = (((x & 1) << 7) | format_ab_reg (ab, reg));
1693 bytes[3] = (((y & 1) << 7) | (treg & 0x7f));
1694 count += output_leb128 (bytes + 4, t, 0);
1695 (*f) (count, bytes, NULL);
1696 }
1697
1698 /* This function checks whether there are any outstanding .save-s and
1699 discards them if so. */
1700
1701 static void
1702 check_pending_save (void)
1703 {
1704 if (unwind.pending_saves)
1705 {
1706 unw_rec_list *cur, *prev;
1707
1708 as_warn (_("Previous .save incomplete"));
1709 for (cur = unwind.list, prev = NULL; cur; )
1710 if (&cur->r.record.p == unwind.pending_saves)
1711 {
1712 if (prev)
1713 prev->next = cur->next;
1714 else
1715 unwind.list = cur->next;
1716 if (cur == unwind.tail)
1717 unwind.tail = prev;
1718 if (cur == unwind.current_entry)
1719 unwind.current_entry = cur->next;
1720 /* Don't free the first discarded record, it's being used as
1721 terminator for (currently) br_gr and gr_gr processing, and
1722 also prevents leaving a dangling pointer to it in its
1723 predecessor. */
1724 cur->r.record.p.grmask = 0;
1725 cur->r.record.p.brmask = 0;
1726 cur->r.record.p.frmask = 0;
1727 prev = cur->r.record.p.next;
1728 cur->r.record.p.next = NULL;
1729 cur = prev;
1730 break;
1731 }
1732 else
1733 {
1734 prev = cur;
1735 cur = cur->next;
1736 }
1737 while (cur)
1738 {
1739 prev = cur;
1740 cur = cur->r.record.p.next;
1741 free (prev);
1742 }
1743 unwind.pending_saves = NULL;
1744 }
1745 }
1746
1747 /* This function allocates a record list structure, and initializes fields. */
1748
1749 static unw_rec_list *
1750 alloc_record (unw_record_type t)
1751 {
1752 unw_rec_list *ptr;
1753 ptr = xmalloc (sizeof (*ptr));
1754 memset (ptr, 0, sizeof (*ptr));
1755 ptr->slot_number = SLOT_NUM_NOT_SET;
1756 ptr->r.type = t;
1757 return ptr;
1758 }
1759
1760 /* Dummy unwind record used for calculating the length of the last prologue or
1761 body region. */
1762
1763 static unw_rec_list *
1764 output_endp (void)
1765 {
1766 unw_rec_list *ptr = alloc_record (endp);
1767 return ptr;
1768 }
1769
1770 static unw_rec_list *
1771 output_prologue (void)
1772 {
1773 unw_rec_list *ptr = alloc_record (prologue);
1774 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1775 return ptr;
1776 }
1777
1778 static unw_rec_list *
1779 output_prologue_gr (unsigned int saved_mask, unsigned int reg)
1780 {
1781 unw_rec_list *ptr = alloc_record (prologue_gr);
1782 memset (&ptr->r.record.r.mask, 0, sizeof (ptr->r.record.r.mask));
1783 ptr->r.record.r.grmask = saved_mask;
1784 ptr->r.record.r.grsave = reg;
1785 return ptr;
1786 }
1787
1788 static unw_rec_list *
1789 output_body (void)
1790 {
1791 unw_rec_list *ptr = alloc_record (body);
1792 return ptr;
1793 }
1794
1795 static unw_rec_list *
1796 output_mem_stack_f (unsigned int size)
1797 {
1798 unw_rec_list *ptr = alloc_record (mem_stack_f);
1799 ptr->r.record.p.size = size;
1800 return ptr;
1801 }
1802
1803 static unw_rec_list *
1804 output_mem_stack_v (void)
1805 {
1806 unw_rec_list *ptr = alloc_record (mem_stack_v);
1807 return ptr;
1808 }
1809
1810 static unw_rec_list *
1811 output_psp_gr (unsigned int gr)
1812 {
1813 unw_rec_list *ptr = alloc_record (psp_gr);
1814 ptr->r.record.p.r.gr = gr;
1815 return ptr;
1816 }
1817
1818 static unw_rec_list *
1819 output_psp_sprel (unsigned int offset)
1820 {
1821 unw_rec_list *ptr = alloc_record (psp_sprel);
1822 ptr->r.record.p.off.sp = offset / 4;
1823 return ptr;
1824 }
1825
1826 static unw_rec_list *
1827 output_rp_when (void)
1828 {
1829 unw_rec_list *ptr = alloc_record (rp_when);
1830 return ptr;
1831 }
1832
1833 static unw_rec_list *
1834 output_rp_gr (unsigned int gr)
1835 {
1836 unw_rec_list *ptr = alloc_record (rp_gr);
1837 ptr->r.record.p.r.gr = gr;
1838 return ptr;
1839 }
1840
1841 static unw_rec_list *
1842 output_rp_br (unsigned int br)
1843 {
1844 unw_rec_list *ptr = alloc_record (rp_br);
1845 ptr->r.record.p.r.br = br;
1846 return ptr;
1847 }
1848
1849 static unw_rec_list *
1850 output_rp_psprel (unsigned int offset)
1851 {
1852 unw_rec_list *ptr = alloc_record (rp_psprel);
1853 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1854 return ptr;
1855 }
1856
1857 static unw_rec_list *
1858 output_rp_sprel (unsigned int offset)
1859 {
1860 unw_rec_list *ptr = alloc_record (rp_sprel);
1861 ptr->r.record.p.off.sp = offset / 4;
1862 return ptr;
1863 }
1864
1865 static unw_rec_list *
1866 output_pfs_when (void)
1867 {
1868 unw_rec_list *ptr = alloc_record (pfs_when);
1869 return ptr;
1870 }
1871
1872 static unw_rec_list *
1873 output_pfs_gr (unsigned int gr)
1874 {
1875 unw_rec_list *ptr = alloc_record (pfs_gr);
1876 ptr->r.record.p.r.gr = gr;
1877 return ptr;
1878 }
1879
1880 static unw_rec_list *
1881 output_pfs_psprel (unsigned int offset)
1882 {
1883 unw_rec_list *ptr = alloc_record (pfs_psprel);
1884 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1885 return ptr;
1886 }
1887
1888 static unw_rec_list *
1889 output_pfs_sprel (unsigned int offset)
1890 {
1891 unw_rec_list *ptr = alloc_record (pfs_sprel);
1892 ptr->r.record.p.off.sp = offset / 4;
1893 return ptr;
1894 }
1895
1896 static unw_rec_list *
1897 output_preds_when (void)
1898 {
1899 unw_rec_list *ptr = alloc_record (preds_when);
1900 return ptr;
1901 }
1902
1903 static unw_rec_list *
1904 output_preds_gr (unsigned int gr)
1905 {
1906 unw_rec_list *ptr = alloc_record (preds_gr);
1907 ptr->r.record.p.r.gr = gr;
1908 return ptr;
1909 }
1910
1911 static unw_rec_list *
1912 output_preds_psprel (unsigned int offset)
1913 {
1914 unw_rec_list *ptr = alloc_record (preds_psprel);
1915 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
1916 return ptr;
1917 }
1918
1919 static unw_rec_list *
1920 output_preds_sprel (unsigned int offset)
1921 {
1922 unw_rec_list *ptr = alloc_record (preds_sprel);
1923 ptr->r.record.p.off.sp = offset / 4;
1924 return ptr;
1925 }
1926
1927 static unw_rec_list *
1928 output_fr_mem (unsigned int mask)
1929 {
1930 unw_rec_list *ptr = alloc_record (fr_mem);
1931 unw_rec_list *cur = ptr;
1932
1933 ptr->r.record.p.frmask = mask;
1934 unwind.pending_saves = &ptr->r.record.p;
1935 for (;;)
1936 {
1937 unw_rec_list *prev = cur;
1938
1939 /* Clear least significant set bit. */
1940 mask &= ~(mask & (~mask + 1));
1941 if (!mask)
1942 return ptr;
1943 cur = alloc_record (fr_mem);
1944 cur->r.record.p.frmask = mask;
1945 /* Retain only least significant bit. */
1946 prev->r.record.p.frmask ^= mask;
1947 prev->r.record.p.next = cur;
1948 }
1949 }
1950
1951 static unw_rec_list *
1952 output_frgr_mem (unsigned int gr_mask, unsigned int fr_mask)
1953 {
1954 unw_rec_list *ptr = alloc_record (frgr_mem);
1955 unw_rec_list *cur = ptr;
1956
1957 unwind.pending_saves = &cur->r.record.p;
1958 cur->r.record.p.frmask = fr_mask;
1959 while (fr_mask)
1960 {
1961 unw_rec_list *prev = cur;
1962
1963 /* Clear least significant set bit. */
1964 fr_mask &= ~(fr_mask & (~fr_mask + 1));
1965 if (!gr_mask && !fr_mask)
1966 return ptr;
1967 cur = alloc_record (frgr_mem);
1968 cur->r.record.p.frmask = fr_mask;
1969 /* Retain only least significant bit. */
1970 prev->r.record.p.frmask ^= fr_mask;
1971 prev->r.record.p.next = cur;
1972 }
1973 cur->r.record.p.grmask = gr_mask;
1974 for (;;)
1975 {
1976 unw_rec_list *prev = cur;
1977
1978 /* Clear least significant set bit. */
1979 gr_mask &= ~(gr_mask & (~gr_mask + 1));
1980 if (!gr_mask)
1981 return ptr;
1982 cur = alloc_record (frgr_mem);
1983 cur->r.record.p.grmask = gr_mask;
1984 /* Retain only least significant bit. */
1985 prev->r.record.p.grmask ^= gr_mask;
1986 prev->r.record.p.next = cur;
1987 }
1988 }
1989
1990 static unw_rec_list *
1991 output_gr_gr (unsigned int mask, unsigned int reg)
1992 {
1993 unw_rec_list *ptr = alloc_record (gr_gr);
1994 unw_rec_list *cur = ptr;
1995
1996 ptr->r.record.p.grmask = mask;
1997 ptr->r.record.p.r.gr = reg;
1998 unwind.pending_saves = &ptr->r.record.p;
1999 for (;;)
2000 {
2001 unw_rec_list *prev = cur;
2002
2003 /* Clear least significant set bit. */
2004 mask &= ~(mask & (~mask + 1));
2005 if (!mask)
2006 return ptr;
2007 cur = alloc_record (gr_gr);
2008 cur->r.record.p.grmask = mask;
2009 /* Indicate this record shouldn't be output. */
2010 cur->r.record.p.r.gr = REG_NUM;
2011 /* Retain only least significant bit. */
2012 prev->r.record.p.grmask ^= mask;
2013 prev->r.record.p.next = cur;
2014 }
2015 }
2016
2017 static unw_rec_list *
2018 output_gr_mem (unsigned int mask)
2019 {
2020 unw_rec_list *ptr = alloc_record (gr_mem);
2021 unw_rec_list *cur = ptr;
2022
2023 ptr->r.record.p.grmask = mask;
2024 unwind.pending_saves = &ptr->r.record.p;
2025 for (;;)
2026 {
2027 unw_rec_list *prev = cur;
2028
2029 /* Clear least significant set bit. */
2030 mask &= ~(mask & (~mask + 1));
2031 if (!mask)
2032 return ptr;
2033 cur = alloc_record (gr_mem);
2034 cur->r.record.p.grmask = mask;
2035 /* Retain only least significant bit. */
2036 prev->r.record.p.grmask ^= mask;
2037 prev->r.record.p.next = cur;
2038 }
2039 }
2040
2041 static unw_rec_list *
2042 output_br_mem (unsigned int mask)
2043 {
2044 unw_rec_list *ptr = alloc_record (br_mem);
2045 unw_rec_list *cur = ptr;
2046
2047 ptr->r.record.p.brmask = mask;
2048 unwind.pending_saves = &ptr->r.record.p;
2049 for (;;)
2050 {
2051 unw_rec_list *prev = cur;
2052
2053 /* Clear least significant set bit. */
2054 mask &= ~(mask & (~mask + 1));
2055 if (!mask)
2056 return ptr;
2057 cur = alloc_record (br_mem);
2058 cur->r.record.p.brmask = mask;
2059 /* Retain only least significant bit. */
2060 prev->r.record.p.brmask ^= mask;
2061 prev->r.record.p.next = cur;
2062 }
2063 }
2064
2065 static unw_rec_list *
2066 output_br_gr (unsigned int mask, unsigned int reg)
2067 {
2068 unw_rec_list *ptr = alloc_record (br_gr);
2069 unw_rec_list *cur = ptr;
2070
2071 ptr->r.record.p.brmask = mask;
2072 ptr->r.record.p.r.gr = reg;
2073 unwind.pending_saves = &ptr->r.record.p;
2074 for (;;)
2075 {
2076 unw_rec_list *prev = cur;
2077
2078 /* Clear least significant set bit. */
2079 mask &= ~(mask & (~mask + 1));
2080 if (!mask)
2081 return ptr;
2082 cur = alloc_record (br_gr);
2083 cur->r.record.p.brmask = mask;
2084 /* Indicate this record shouldn't be output. */
2085 cur->r.record.p.r.gr = REG_NUM;
2086 /* Retain only least significant bit. */
2087 prev->r.record.p.brmask ^= mask;
2088 prev->r.record.p.next = cur;
2089 }
2090 }
2091
2092 static unw_rec_list *
2093 output_spill_base (unsigned int offset)
2094 {
2095 unw_rec_list *ptr = alloc_record (spill_base);
2096 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2097 return ptr;
2098 }
2099
2100 static unw_rec_list *
2101 output_unat_when (void)
2102 {
2103 unw_rec_list *ptr = alloc_record (unat_when);
2104 return ptr;
2105 }
2106
2107 static unw_rec_list *
2108 output_unat_gr (unsigned int gr)
2109 {
2110 unw_rec_list *ptr = alloc_record (unat_gr);
2111 ptr->r.record.p.r.gr = gr;
2112 return ptr;
2113 }
2114
2115 static unw_rec_list *
2116 output_unat_psprel (unsigned int offset)
2117 {
2118 unw_rec_list *ptr = alloc_record (unat_psprel);
2119 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2120 return ptr;
2121 }
2122
2123 static unw_rec_list *
2124 output_unat_sprel (unsigned int offset)
2125 {
2126 unw_rec_list *ptr = alloc_record (unat_sprel);
2127 ptr->r.record.p.off.sp = offset / 4;
2128 return ptr;
2129 }
2130
2131 static unw_rec_list *
2132 output_lc_when (void)
2133 {
2134 unw_rec_list *ptr = alloc_record (lc_when);
2135 return ptr;
2136 }
2137
2138 static unw_rec_list *
2139 output_lc_gr (unsigned int gr)
2140 {
2141 unw_rec_list *ptr = alloc_record (lc_gr);
2142 ptr->r.record.p.r.gr = gr;
2143 return ptr;
2144 }
2145
2146 static unw_rec_list *
2147 output_lc_psprel (unsigned int offset)
2148 {
2149 unw_rec_list *ptr = alloc_record (lc_psprel);
2150 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2151 return ptr;
2152 }
2153
2154 static unw_rec_list *
2155 output_lc_sprel (unsigned int offset)
2156 {
2157 unw_rec_list *ptr = alloc_record (lc_sprel);
2158 ptr->r.record.p.off.sp = offset / 4;
2159 return ptr;
2160 }
2161
2162 static unw_rec_list *
2163 output_fpsr_when (void)
2164 {
2165 unw_rec_list *ptr = alloc_record (fpsr_when);
2166 return ptr;
2167 }
2168
2169 static unw_rec_list *
2170 output_fpsr_gr (unsigned int gr)
2171 {
2172 unw_rec_list *ptr = alloc_record (fpsr_gr);
2173 ptr->r.record.p.r.gr = gr;
2174 return ptr;
2175 }
2176
2177 static unw_rec_list *
2178 output_fpsr_psprel (unsigned int offset)
2179 {
2180 unw_rec_list *ptr = alloc_record (fpsr_psprel);
2181 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2182 return ptr;
2183 }
2184
2185 static unw_rec_list *
2186 output_fpsr_sprel (unsigned int offset)
2187 {
2188 unw_rec_list *ptr = alloc_record (fpsr_sprel);
2189 ptr->r.record.p.off.sp = offset / 4;
2190 return ptr;
2191 }
2192
2193 static unw_rec_list *
2194 output_priunat_when_gr (void)
2195 {
2196 unw_rec_list *ptr = alloc_record (priunat_when_gr);
2197 return ptr;
2198 }
2199
2200 static unw_rec_list *
2201 output_priunat_when_mem (void)
2202 {
2203 unw_rec_list *ptr = alloc_record (priunat_when_mem);
2204 return ptr;
2205 }
2206
2207 static unw_rec_list *
2208 output_priunat_gr (unsigned int gr)
2209 {
2210 unw_rec_list *ptr = alloc_record (priunat_gr);
2211 ptr->r.record.p.r.gr = gr;
2212 return ptr;
2213 }
2214
2215 static unw_rec_list *
2216 output_priunat_psprel (unsigned int offset)
2217 {
2218 unw_rec_list *ptr = alloc_record (priunat_psprel);
2219 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2220 return ptr;
2221 }
2222
2223 static unw_rec_list *
2224 output_priunat_sprel (unsigned int offset)
2225 {
2226 unw_rec_list *ptr = alloc_record (priunat_sprel);
2227 ptr->r.record.p.off.sp = offset / 4;
2228 return ptr;
2229 }
2230
2231 static unw_rec_list *
2232 output_bsp_when (void)
2233 {
2234 unw_rec_list *ptr = alloc_record (bsp_when);
2235 return ptr;
2236 }
2237
2238 static unw_rec_list *
2239 output_bsp_gr (unsigned int gr)
2240 {
2241 unw_rec_list *ptr = alloc_record (bsp_gr);
2242 ptr->r.record.p.r.gr = gr;
2243 return ptr;
2244 }
2245
2246 static unw_rec_list *
2247 output_bsp_psprel (unsigned int offset)
2248 {
2249 unw_rec_list *ptr = alloc_record (bsp_psprel);
2250 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2251 return ptr;
2252 }
2253
2254 static unw_rec_list *
2255 output_bsp_sprel (unsigned int offset)
2256 {
2257 unw_rec_list *ptr = alloc_record (bsp_sprel);
2258 ptr->r.record.p.off.sp = offset / 4;
2259 return ptr;
2260 }
2261
2262 static unw_rec_list *
2263 output_bspstore_when (void)
2264 {
2265 unw_rec_list *ptr = alloc_record (bspstore_when);
2266 return ptr;
2267 }
2268
2269 static unw_rec_list *
2270 output_bspstore_gr (unsigned int gr)
2271 {
2272 unw_rec_list *ptr = alloc_record (bspstore_gr);
2273 ptr->r.record.p.r.gr = gr;
2274 return ptr;
2275 }
2276
2277 static unw_rec_list *
2278 output_bspstore_psprel (unsigned int offset)
2279 {
2280 unw_rec_list *ptr = alloc_record (bspstore_psprel);
2281 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2282 return ptr;
2283 }
2284
2285 static unw_rec_list *
2286 output_bspstore_sprel (unsigned int offset)
2287 {
2288 unw_rec_list *ptr = alloc_record (bspstore_sprel);
2289 ptr->r.record.p.off.sp = offset / 4;
2290 return ptr;
2291 }
2292
2293 static unw_rec_list *
2294 output_rnat_when (void)
2295 {
2296 unw_rec_list *ptr = alloc_record (rnat_when);
2297 return ptr;
2298 }
2299
2300 static unw_rec_list *
2301 output_rnat_gr (unsigned int gr)
2302 {
2303 unw_rec_list *ptr = alloc_record (rnat_gr);
2304 ptr->r.record.p.r.gr = gr;
2305 return ptr;
2306 }
2307
2308 static unw_rec_list *
2309 output_rnat_psprel (unsigned int offset)
2310 {
2311 unw_rec_list *ptr = alloc_record (rnat_psprel);
2312 ptr->r.record.p.off.psp = ENCODED_PSP_OFFSET (offset);
2313 return ptr;
2314 }
2315
2316 static unw_rec_list *
2317 output_rnat_sprel (unsigned int offset)
2318 {
2319 unw_rec_list *ptr = alloc_record (rnat_sprel);
2320 ptr->r.record.p.off.sp = offset / 4;
2321 return ptr;
2322 }
2323
2324 static unw_rec_list *
2325 output_unwabi (unsigned long abi, unsigned long context)
2326 {
2327 unw_rec_list *ptr = alloc_record (unwabi);
2328 ptr->r.record.p.abi = abi;
2329 ptr->r.record.p.context = context;
2330 return ptr;
2331 }
2332
2333 static unw_rec_list *
2334 output_epilogue (unsigned long ecount)
2335 {
2336 unw_rec_list *ptr = alloc_record (epilogue);
2337 ptr->r.record.b.ecount = ecount;
2338 return ptr;
2339 }
2340
2341 static unw_rec_list *
2342 output_label_state (unsigned long label)
2343 {
2344 unw_rec_list *ptr = alloc_record (label_state);
2345 ptr->r.record.b.label = label;
2346 return ptr;
2347 }
2348
2349 static unw_rec_list *
2350 output_copy_state (unsigned long label)
2351 {
2352 unw_rec_list *ptr = alloc_record (copy_state);
2353 ptr->r.record.b.label = label;
2354 return ptr;
2355 }
2356
2357 static unw_rec_list *
2358 output_spill_psprel (unsigned int ab,
2359 unsigned int reg,
2360 unsigned int offset,
2361 unsigned int predicate)
2362 {
2363 unw_rec_list *ptr = alloc_record (predicate ? spill_psprel_p : spill_psprel);
2364 ptr->r.record.x.ab = ab;
2365 ptr->r.record.x.reg = reg;
2366 ptr->r.record.x.where.pspoff = ENCODED_PSP_OFFSET (offset);
2367 ptr->r.record.x.qp = predicate;
2368 return ptr;
2369 }
2370
2371 static unw_rec_list *
2372 output_spill_sprel (unsigned int ab,
2373 unsigned int reg,
2374 unsigned int offset,
2375 unsigned int predicate)
2376 {
2377 unw_rec_list *ptr = alloc_record (predicate ? spill_sprel_p : spill_sprel);
2378 ptr->r.record.x.ab = ab;
2379 ptr->r.record.x.reg = reg;
2380 ptr->r.record.x.where.spoff = offset / 4;
2381 ptr->r.record.x.qp = predicate;
2382 return ptr;
2383 }
2384
2385 static unw_rec_list *
2386 output_spill_reg (unsigned int ab,
2387 unsigned int reg,
2388 unsigned int targ_reg,
2389 unsigned int xy,
2390 unsigned int predicate)
2391 {
2392 unw_rec_list *ptr = alloc_record (predicate ? spill_reg_p : spill_reg);
2393 ptr->r.record.x.ab = ab;
2394 ptr->r.record.x.reg = reg;
2395 ptr->r.record.x.where.reg = targ_reg;
2396 ptr->r.record.x.xy = xy;
2397 ptr->r.record.x.qp = predicate;
2398 return ptr;
2399 }
2400
2401 /* Given a unw_rec_list process the correct format with the
2402 specified function. */
2403
2404 static void
2405 process_one_record (unw_rec_list *ptr, vbyte_func f)
2406 {
2407 unsigned int fr_mask, gr_mask;
2408
2409 switch (ptr->r.type)
2410 {
2411 /* This is a dummy record that takes up no space in the output. */
2412 case endp:
2413 break;
2414
2415 case gr_mem:
2416 case fr_mem:
2417 case br_mem:
2418 case frgr_mem:
2419 /* These are taken care of by prologue/prologue_gr. */
2420 break;
2421
2422 case prologue_gr:
2423 case prologue:
2424 if (ptr->r.type == prologue_gr)
2425 output_R2_format (f, ptr->r.record.r.grmask,
2426 ptr->r.record.r.grsave, ptr->r.record.r.rlen);
2427 else
2428 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2429
2430 /* Output descriptor(s) for union of register spills (if any). */
2431 gr_mask = ptr->r.record.r.mask.gr_mem;
2432 fr_mask = ptr->r.record.r.mask.fr_mem;
2433 if (fr_mask)
2434 {
2435 if ((fr_mask & ~0xfUL) == 0)
2436 output_P6_format (f, fr_mem, fr_mask);
2437 else
2438 {
2439 output_P5_format (f, gr_mask, fr_mask);
2440 gr_mask = 0;
2441 }
2442 }
2443 if (gr_mask)
2444 output_P6_format (f, gr_mem, gr_mask);
2445 if (ptr->r.record.r.mask.br_mem)
2446 output_P1_format (f, ptr->r.record.r.mask.br_mem);
2447
2448 /* output imask descriptor if necessary: */
2449 if (ptr->r.record.r.mask.i)
2450 output_P4_format (f, ptr->r.record.r.mask.i,
2451 ptr->r.record.r.imask_size);
2452 break;
2453
2454 case body:
2455 output_R1_format (f, ptr->r.type, ptr->r.record.r.rlen);
2456 break;
2457 case mem_stack_f:
2458 case mem_stack_v:
2459 output_P7_format (f, ptr->r.type, ptr->r.record.p.t,
2460 ptr->r.record.p.size);
2461 break;
2462 case psp_gr:
2463 case rp_gr:
2464 case pfs_gr:
2465 case preds_gr:
2466 case unat_gr:
2467 case lc_gr:
2468 case fpsr_gr:
2469 case priunat_gr:
2470 case bsp_gr:
2471 case bspstore_gr:
2472 case rnat_gr:
2473 output_P3_format (f, ptr->r.type, ptr->r.record.p.r.gr);
2474 break;
2475 case rp_br:
2476 output_P3_format (f, rp_br, ptr->r.record.p.r.br);
2477 break;
2478 case psp_sprel:
2479 output_P7_format (f, psp_sprel, ptr->r.record.p.off.sp, 0);
2480 break;
2481 case rp_when:
2482 case pfs_when:
2483 case preds_when:
2484 case unat_when:
2485 case lc_when:
2486 case fpsr_when:
2487 output_P7_format (f, ptr->r.type, ptr->r.record.p.t, 0);
2488 break;
2489 case rp_psprel:
2490 case pfs_psprel:
2491 case preds_psprel:
2492 case unat_psprel:
2493 case lc_psprel:
2494 case fpsr_psprel:
2495 case spill_base:
2496 output_P7_format (f, ptr->r.type, ptr->r.record.p.off.psp, 0);
2497 break;
2498 case rp_sprel:
2499 case pfs_sprel:
2500 case preds_sprel:
2501 case unat_sprel:
2502 case lc_sprel:
2503 case fpsr_sprel:
2504 case priunat_sprel:
2505 case bsp_sprel:
2506 case bspstore_sprel:
2507 case rnat_sprel:
2508 output_P8_format (f, ptr->r.type, ptr->r.record.p.off.sp);
2509 break;
2510 case gr_gr:
2511 if (ptr->r.record.p.r.gr < REG_NUM)
2512 {
2513 const unw_rec_list *cur = ptr;
2514
2515 gr_mask = cur->r.record.p.grmask;
2516 while ((cur = cur->r.record.p.next) != NULL)
2517 gr_mask |= cur->r.record.p.grmask;
2518 output_P9_format (f, gr_mask, ptr->r.record.p.r.gr);
2519 }
2520 break;
2521 case br_gr:
2522 if (ptr->r.record.p.r.gr < REG_NUM)
2523 {
2524 const unw_rec_list *cur = ptr;
2525
2526 gr_mask = cur->r.record.p.brmask;
2527 while ((cur = cur->r.record.p.next) != NULL)
2528 gr_mask |= cur->r.record.p.brmask;
2529 output_P2_format (f, gr_mask, ptr->r.record.p.r.gr);
2530 }
2531 break;
2532 case spill_mask:
2533 as_bad (_("spill_mask record unimplemented."));
2534 break;
2535 case priunat_when_gr:
2536 case priunat_when_mem:
2537 case bsp_when:
2538 case bspstore_when:
2539 case rnat_when:
2540 output_P8_format (f, ptr->r.type, ptr->r.record.p.t);
2541 break;
2542 case priunat_psprel:
2543 case bsp_psprel:
2544 case bspstore_psprel:
2545 case rnat_psprel:
2546 output_P8_format (f, ptr->r.type, ptr->r.record.p.off.psp);
2547 break;
2548 case unwabi:
2549 output_P10_format (f, ptr->r.record.p.abi, ptr->r.record.p.context);
2550 break;
2551 case epilogue:
2552 output_B3_format (f, ptr->r.record.b.ecount, ptr->r.record.b.t);
2553 break;
2554 case label_state:
2555 case copy_state:
2556 output_B4_format (f, ptr->r.type, ptr->r.record.b.label);
2557 break;
2558 case spill_psprel:
2559 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2560 ptr->r.record.x.reg, ptr->r.record.x.t,
2561 ptr->r.record.x.where.pspoff);
2562 break;
2563 case spill_sprel:
2564 output_X1_format (f, ptr->r.type, ptr->r.record.x.ab,
2565 ptr->r.record.x.reg, ptr->r.record.x.t,
2566 ptr->r.record.x.where.spoff);
2567 break;
2568 case spill_reg:
2569 output_X2_format (f, ptr->r.record.x.ab, ptr->r.record.x.reg,
2570 ptr->r.record.x.xy >> 1, ptr->r.record.x.xy,
2571 ptr->r.record.x.where.reg, ptr->r.record.x.t);
2572 break;
2573 case spill_psprel_p:
2574 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2575 ptr->r.record.x.ab, ptr->r.record.x.reg,
2576 ptr->r.record.x.t, ptr->r.record.x.where.pspoff);
2577 break;
2578 case spill_sprel_p:
2579 output_X3_format (f, ptr->r.type, ptr->r.record.x.qp,
2580 ptr->r.record.x.ab, ptr->r.record.x.reg,
2581 ptr->r.record.x.t, ptr->r.record.x.where.spoff);
2582 break;
2583 case spill_reg_p:
2584 output_X4_format (f, ptr->r.record.x.qp, ptr->r.record.x.ab,
2585 ptr->r.record.x.reg, ptr->r.record.x.xy >> 1,
2586 ptr->r.record.x.xy, ptr->r.record.x.where.reg,
2587 ptr->r.record.x.t);
2588 break;
2589 default:
2590 as_bad (_("record_type_not_valid"));
2591 break;
2592 }
2593 }
2594
2595 /* Given a unw_rec_list list, process all the records with
2596 the specified function. */
2597 static void
2598 process_unw_records (unw_rec_list *list, vbyte_func f)
2599 {
2600 unw_rec_list *ptr;
2601 for (ptr = list; ptr; ptr = ptr->next)
2602 process_one_record (ptr, f);
2603 }
2604
2605 /* Determine the size of a record list in bytes. */
2606 static int
2607 calc_record_size (unw_rec_list *list)
2608 {
2609 vbyte_count = 0;
2610 process_unw_records (list, count_output);
2611 return vbyte_count;
2612 }
2613
2614 /* Return the number of bits set in the input value.
2615 Perhaps this has a better place... */
2616 #if __GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 4)
2617 # define popcount __builtin_popcount
2618 #else
2619 static int
2620 popcount (unsigned x)
2621 {
2622 static const unsigned char popcnt[16] =
2623 {
2624 0, 1, 1, 2,
2625 1, 2, 2, 3,
2626 1, 2, 2, 3,
2627 2, 3, 3, 4
2628 };
2629
2630 if (x < NELEMS (popcnt))
2631 return popcnt[x];
2632 return popcnt[x % NELEMS (popcnt)] + popcount (x / NELEMS (popcnt));
2633 }
2634 #endif
2635
2636 /* Update IMASK bitmask to reflect the fact that one or more registers
2637 of type TYPE are saved starting at instruction with index T. If N
2638 bits are set in REGMASK, it is assumed that instructions T through
2639 T+N-1 save these registers.
2640
2641 TYPE values:
2642 0: no save
2643 1: instruction saves next fp reg
2644 2: instruction saves next general reg
2645 3: instruction saves next branch reg */
2646 static void
2647 set_imask (unw_rec_list *region,
2648 unsigned long regmask,
2649 unsigned long t,
2650 unsigned int type)
2651 {
2652 unsigned char *imask;
2653 unsigned long imask_size;
2654 unsigned int i;
2655 int pos;
2656
2657 imask = region->r.record.r.mask.i;
2658 imask_size = region->r.record.r.imask_size;
2659 if (!imask)
2660 {
2661 imask_size = (region->r.record.r.rlen * 2 + 7) / 8 + 1;
2662 imask = xmalloc (imask_size);
2663 memset (imask, 0, imask_size);
2664
2665 region->r.record.r.imask_size = imask_size;
2666 region->r.record.r.mask.i = imask;
2667 }
2668
2669 i = (t / 4) + 1;
2670 pos = 2 * (3 - t % 4);
2671 while (regmask)
2672 {
2673 if (i >= imask_size)
2674 {
2675 as_bad (_("Ignoring attempt to spill beyond end of region"));
2676 return;
2677 }
2678
2679 imask[i] |= (type & 0x3) << pos;
2680
2681 regmask &= (regmask - 1);
2682 pos -= 2;
2683 if (pos < 0)
2684 {
2685 pos = 0;
2686 ++i;
2687 }
2688 }
2689 }
2690
2691 /* Return the number of instruction slots from FIRST_ADDR to SLOT_ADDR.
2692 SLOT_FRAG is the frag containing SLOT_ADDR, and FIRST_FRAG is the frag
2693 containing FIRST_ADDR. If BEFORE_RELAX, then we use worst-case estimates
2694 for frag sizes. */
2695
2696 static unsigned long
2697 slot_index (unsigned long slot_addr,
2698 fragS *slot_frag,
2699 unsigned long first_addr,
2700 fragS *first_frag,
2701 int before_relax)
2702 {
2703 unsigned long s_index = 0;
2704
2705 /* First time we are called, the initial address and frag are invalid. */
2706 if (first_addr == 0)
2707 return 0;
2708
2709 /* If the two addresses are in different frags, then we need to add in
2710 the remaining size of this frag, and then the entire size of intermediate
2711 frags. */
2712 while (slot_frag != first_frag)
2713 {
2714 unsigned long start_addr = (unsigned long) &first_frag->fr_literal;
2715
2716 if (! before_relax)
2717 {
2718 /* We can get the final addresses only during and after
2719 relaxation. */
2720 if (first_frag->fr_next && first_frag->fr_next->fr_address)
2721 s_index += 3 * ((first_frag->fr_next->fr_address
2722 - first_frag->fr_address
2723 - first_frag->fr_fix) >> 4);
2724 }
2725 else
2726 /* We don't know what the final addresses will be. We try our
2727 best to estimate. */
2728 switch (first_frag->fr_type)
2729 {
2730 default:
2731 break;
2732
2733 case rs_space:
2734 as_fatal (_("Only constant space allocation is supported"));
2735 break;
2736
2737 case rs_align:
2738 case rs_align_code:
2739 case rs_align_test:
2740 /* Take alignment into account. Assume the worst case
2741 before relaxation. */
2742 s_index += 3 * ((1 << first_frag->fr_offset) >> 4);
2743 break;
2744
2745 case rs_org:
2746 if (first_frag->fr_symbol)
2747 {
2748 as_fatal (_("Only constant offsets are supported"));
2749 break;
2750 }
2751 case rs_fill:
2752 s_index += 3 * (first_frag->fr_offset >> 4);
2753 break;
2754 }
2755
2756 /* Add in the full size of the frag converted to instruction slots. */
2757 s_index += 3 * (first_frag->fr_fix >> 4);
2758 /* Subtract away the initial part before first_addr. */
2759 s_index -= (3 * ((first_addr >> 4) - (start_addr >> 4))
2760 + ((first_addr & 0x3) - (start_addr & 0x3)));
2761
2762 /* Move to the beginning of the next frag. */
2763 first_frag = first_frag->fr_next;
2764 first_addr = (unsigned long) &first_frag->fr_literal;
2765
2766 /* This can happen if there is section switching in the middle of a
2767 function, causing the frag chain for the function to be broken.
2768 It is too difficult to recover safely from this problem, so we just
2769 exit with an error. */
2770 if (first_frag == NULL)
2771 as_fatal (_("Section switching in code is not supported."));
2772 }
2773
2774 /* Add in the used part of the last frag. */
2775 s_index += (3 * ((slot_addr >> 4) - (first_addr >> 4))
2776 + ((slot_addr & 0x3) - (first_addr & 0x3)));
2777 return s_index;
2778 }
2779
2780 /* Optimize unwind record directives. */
2781
2782 static unw_rec_list *
2783 optimize_unw_records (unw_rec_list *list)
2784 {
2785 if (!list)
2786 return NULL;
2787
2788 /* If the only unwind record is ".prologue" or ".prologue" followed
2789 by ".body", then we can optimize the unwind directives away. */
2790 if (list->r.type == prologue
2791 && (list->next->r.type == endp
2792 || (list->next->r.type == body && list->next->next->r.type == endp)))
2793 return NULL;
2794
2795 return list;
2796 }
2797
2798 /* Given a complete record list, process any records which have
2799 unresolved fields, (ie length counts for a prologue). After
2800 this has been run, all necessary information should be available
2801 within each record to generate an image. */
2802
2803 static void
2804 fixup_unw_records (unw_rec_list *list, int before_relax)
2805 {
2806 unw_rec_list *ptr, *region = 0;
2807 unsigned long first_addr = 0, rlen = 0, t;
2808 fragS *first_frag = 0;
2809
2810 for (ptr = list; ptr; ptr = ptr->next)
2811 {
2812 if (ptr->slot_number == SLOT_NUM_NOT_SET)
2813 as_bad (_(" Insn slot not set in unwind record."));
2814 t = slot_index (ptr->slot_number, ptr->slot_frag,
2815 first_addr, first_frag, before_relax);
2816 switch (ptr->r.type)
2817 {
2818 case prologue:
2819 case prologue_gr:
2820 case body:
2821 {
2822 unw_rec_list *last;
2823 int size;
2824 unsigned long last_addr = 0;
2825 fragS *last_frag = NULL;
2826
2827 first_addr = ptr->slot_number;
2828 first_frag = ptr->slot_frag;
2829 /* Find either the next body/prologue start, or the end of
2830 the function, and determine the size of the region. */
2831 for (last = ptr->next; last != NULL; last = last->next)
2832 if (last->r.type == prologue || last->r.type == prologue_gr
2833 || last->r.type == body || last->r.type == endp)
2834 {
2835 last_addr = last->slot_number;
2836 last_frag = last->slot_frag;
2837 break;
2838 }
2839 size = slot_index (last_addr, last_frag, first_addr, first_frag,
2840 before_relax);
2841 rlen = ptr->r.record.r.rlen = size;
2842 if (ptr->r.type == body)
2843 /* End of region. */
2844 region = 0;
2845 else
2846 region = ptr;
2847 break;
2848 }
2849 case epilogue:
2850 if (t < rlen)
2851 ptr->r.record.b.t = rlen - 1 - t;
2852 else
2853 /* This happens when a memory-stack-less procedure uses a
2854 ".restore sp" directive at the end of a region to pop
2855 the frame state. */
2856 ptr->r.record.b.t = 0;
2857 break;
2858
2859 case mem_stack_f:
2860 case mem_stack_v:
2861 case rp_when:
2862 case pfs_when:
2863 case preds_when:
2864 case unat_when:
2865 case lc_when:
2866 case fpsr_when:
2867 case priunat_when_gr:
2868 case priunat_when_mem:
2869 case bsp_when:
2870 case bspstore_when:
2871 case rnat_when:
2872 ptr->r.record.p.t = t;
2873 break;
2874
2875 case spill_reg:
2876 case spill_sprel:
2877 case spill_psprel:
2878 case spill_reg_p:
2879 case spill_sprel_p:
2880 case spill_psprel_p:
2881 ptr->r.record.x.t = t;
2882 break;
2883
2884 case frgr_mem:
2885 if (!region)
2886 {
2887 as_bad (_("frgr_mem record before region record!"));
2888 return;
2889 }
2890 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
2891 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
2892 set_imask (region, ptr->r.record.p.frmask, t, 1);
2893 set_imask (region, ptr->r.record.p.grmask, t, 2);
2894 break;
2895 case fr_mem:
2896 if (!region)
2897 {
2898 as_bad (_("fr_mem record before region record!"));
2899 return;
2900 }
2901 region->r.record.r.mask.fr_mem |= ptr->r.record.p.frmask;
2902 set_imask (region, ptr->r.record.p.frmask, t, 1);
2903 break;
2904 case gr_mem:
2905 if (!region)
2906 {
2907 as_bad (_("gr_mem record before region record!"));
2908 return;
2909 }
2910 region->r.record.r.mask.gr_mem |= ptr->r.record.p.grmask;
2911 set_imask (region, ptr->r.record.p.grmask, t, 2);
2912 break;
2913 case br_mem:
2914 if (!region)
2915 {
2916 as_bad (_("br_mem record before region record!"));
2917 return;
2918 }
2919 region->r.record.r.mask.br_mem |= ptr->r.record.p.brmask;
2920 set_imask (region, ptr->r.record.p.brmask, t, 3);
2921 break;
2922
2923 case gr_gr:
2924 if (!region)
2925 {
2926 as_bad (_("gr_gr record before region record!"));
2927 return;
2928 }
2929 set_imask (region, ptr->r.record.p.grmask, t, 2);
2930 break;
2931 case br_gr:
2932 if (!region)
2933 {
2934 as_bad (_("br_gr record before region record!"));
2935 return;
2936 }
2937 set_imask (region, ptr->r.record.p.brmask, t, 3);
2938 break;
2939
2940 default:
2941 break;
2942 }
2943 }
2944 }
2945
2946 /* Estimate the size of a frag before relaxing. We only have one type of frag
2947 to handle here, which is the unwind info frag. */
2948
2949 int
2950 ia64_estimate_size_before_relax (fragS *frag,
2951 asection *segtype ATTRIBUTE_UNUSED)
2952 {
2953 unw_rec_list *list;
2954 int len, size, pad;
2955
2956 /* ??? This code is identical to the first part of ia64_convert_frag. */
2957 list = (unw_rec_list *) frag->fr_opcode;
2958 fixup_unw_records (list, 0);
2959
2960 len = calc_record_size (list);
2961 /* pad to pointer-size boundary. */
2962 pad = len % md.pointer_size;
2963 if (pad != 0)
2964 len += md.pointer_size - pad;
2965 /* Add 8 for the header. */
2966 size = len + 8;
2967 /* Add a pointer for the personality offset. */
2968 if (frag->fr_offset)
2969 size += md.pointer_size;
2970
2971 /* fr_var carries the max_chars that we created the fragment with.
2972 We must, of course, have allocated enough memory earlier. */
2973 gas_assert (frag->fr_var >= size);
2974
2975 return frag->fr_fix + size;
2976 }
2977
2978 /* This function converts a rs_machine_dependent variant frag into a
2979 normal fill frag with the unwind image from the record list. */
2980 void
2981 ia64_convert_frag (fragS *frag)
2982 {
2983 unw_rec_list *list;
2984 int len, size, pad;
2985 valueT flag_value;
2986
2987 /* ??? This code is identical to ia64_estimate_size_before_relax. */
2988 list = (unw_rec_list *) frag->fr_opcode;
2989 fixup_unw_records (list, 0);
2990
2991 len = calc_record_size (list);
2992 /* pad to pointer-size boundary. */
2993 pad = len % md.pointer_size;
2994 if (pad != 0)
2995 len += md.pointer_size - pad;
2996 /* Add 8 for the header. */
2997 size = len + 8;
2998 /* Add a pointer for the personality offset. */
2999 if (frag->fr_offset)
3000 size += md.pointer_size;
3001
3002 /* fr_var carries the max_chars that we created the fragment with.
3003 We must, of course, have allocated enough memory earlier. */
3004 gas_assert (frag->fr_var >= size);
3005
3006 /* Initialize the header area. fr_offset is initialized with
3007 unwind.personality_routine. */
3008 if (frag->fr_offset)
3009 {
3010 if (md.flags & EF_IA_64_ABI64)
3011 flag_value = (bfd_vma) 3 << 32;
3012 else
3013 /* 32-bit unwind info block. */
3014 flag_value = (bfd_vma) 0x1003 << 32;
3015 }
3016 else
3017 flag_value = 0;
3018
3019 md_number_to_chars (frag->fr_literal,
3020 (((bfd_vma) 1 << 48) /* Version. */
3021 | flag_value /* U & E handler flags. */
3022 | (len / md.pointer_size)), /* Length. */
3023 8);
3024
3025 /* Skip the header. */
3026 vbyte_mem_ptr = frag->fr_literal + 8;
3027 process_unw_records (list, output_vbyte_mem);
3028
3029 /* Fill the padding bytes with zeros. */
3030 if (pad != 0)
3031 md_number_to_chars (frag->fr_literal + len + 8 - md.pointer_size + pad, 0,
3032 md.pointer_size - pad);
3033 /* Fill the unwind personality with zeros. */
3034 if (frag->fr_offset)
3035 md_number_to_chars (frag->fr_literal + size - md.pointer_size, 0,
3036 md.pointer_size);
3037
3038 frag->fr_fix += size;
3039 frag->fr_type = rs_fill;
3040 frag->fr_var = 0;
3041 frag->fr_offset = 0;
3042 }
3043
3044 static int
3045 parse_predicate_and_operand (expressionS *e, unsigned *qp, const char *po)
3046 {
3047 int sep = parse_operand_and_eval (e, ',');
3048
3049 *qp = e->X_add_number - REG_P;
3050 if (e->X_op != O_register || *qp > 63)
3051 {
3052 as_bad (_("First operand to .%s must be a predicate"), po);
3053 *qp = 0;
3054 }
3055 else if (*qp == 0)
3056 as_warn (_("Pointless use of p0 as first operand to .%s"), po);
3057 if (sep == ',')
3058 sep = parse_operand_and_eval (e, ',');
3059 else
3060 e->X_op = O_absent;
3061 return sep;
3062 }
3063
3064 static void
3065 convert_expr_to_ab_reg (const expressionS *e,
3066 unsigned int *ab,
3067 unsigned int *regp,
3068 const char *po,
3069 int n)
3070 {
3071 unsigned int reg = e->X_add_number;
3072
3073 *ab = *regp = 0; /* Anything valid is good here. */
3074
3075 if (e->X_op != O_register)
3076 reg = REG_GR; /* Anything invalid is good here. */
3077
3078 if (reg >= (REG_GR + 4) && reg <= (REG_GR + 7))
3079 {
3080 *ab = 0;
3081 *regp = reg - REG_GR;
3082 }
3083 else if ((reg >= (REG_FR + 2) && reg <= (REG_FR + 5))
3084 || (reg >= (REG_FR + 16) && reg <= (REG_FR + 31)))
3085 {
3086 *ab = 1;
3087 *regp = reg - REG_FR;
3088 }
3089 else if (reg >= (REG_BR + 1) && reg <= (REG_BR + 5))
3090 {
3091 *ab = 2;
3092 *regp = reg - REG_BR;
3093 }
3094 else
3095 {
3096 *ab = 3;
3097 switch (reg)
3098 {
3099 case REG_PR: *regp = 0; break;
3100 case REG_PSP: *regp = 1; break;
3101 case REG_PRIUNAT: *regp = 2; break;
3102 case REG_BR + 0: *regp = 3; break;
3103 case REG_AR + AR_BSP: *regp = 4; break;
3104 case REG_AR + AR_BSPSTORE: *regp = 5; break;
3105 case REG_AR + AR_RNAT: *regp = 6; break;
3106 case REG_AR + AR_UNAT: *regp = 7; break;
3107 case REG_AR + AR_FPSR: *regp = 8; break;
3108 case REG_AR + AR_PFS: *regp = 9; break;
3109 case REG_AR + AR_LC: *regp = 10; break;
3110
3111 default:
3112 as_bad (_("Operand %d to .%s must be a preserved register"), n, po);
3113 break;
3114 }
3115 }
3116 }
3117
3118 static void
3119 convert_expr_to_xy_reg (const expressionS *e,
3120 unsigned int *xy,
3121 unsigned int *regp,
3122 const char *po,
3123 int n)
3124 {
3125 unsigned int reg = e->X_add_number;
3126
3127 *xy = *regp = 0; /* Anything valid is good here. */
3128
3129 if (e->X_op != O_register)
3130 reg = REG_GR; /* Anything invalid is good here. */
3131
3132 if (reg >= (REG_GR + 1) && reg <= (REG_GR + 127))
3133 {
3134 *xy = 0;
3135 *regp = reg - REG_GR;
3136 }
3137 else if (reg >= (REG_FR + 2) && reg <= (REG_FR + 127))
3138 {
3139 *xy = 1;
3140 *regp = reg - REG_FR;
3141 }
3142 else if (reg >= REG_BR && reg <= (REG_BR + 7))
3143 {
3144 *xy = 2;
3145 *regp = reg - REG_BR;
3146 }
3147 else
3148 as_bad (_("Operand %d to .%s must be a writable register"), n, po);
3149 }
3150
3151 static void
3152 dot_align (int arg)
3153 {
3154 /* The current frag is an alignment frag. */
3155 align_frag = frag_now;
3156 s_align_bytes (arg);
3157 }
3158
3159 static void
3160 dot_radix (int dummy ATTRIBUTE_UNUSED)
3161 {
3162 char *radix;
3163 int ch;
3164
3165 SKIP_WHITESPACE ();
3166
3167 if (is_it_end_of_statement ())
3168 return;
3169 ch = get_symbol_name (&radix);
3170 ia64_canonicalize_symbol_name (radix);
3171 if (strcasecmp (radix, "C"))
3172 as_bad (_("Radix `%s' unsupported or invalid"), radix);
3173 (void) restore_line_pointer (ch);
3174 demand_empty_rest_of_line ();
3175 }
3176
3177 /* Helper function for .loc directives. If the assembler is not generating
3178 line number info, then we need to remember which instructions have a .loc
3179 directive, and only call dwarf2_gen_line_info for those instructions. */
3180
3181 static void
3182 dot_loc (int x)
3183 {
3184 CURR_SLOT.loc_directive_seen = 1;
3185 dwarf2_directive_loc (x);
3186 }
3187
3188 /* .sbss, .bss etc. are macros that expand into ".section SECNAME". */
3189 static void
3190 dot_special_section (int which)
3191 {
3192 set_section ((char *) special_section_name[which]);
3193 }
3194
3195 /* Return -1 for warning and 0 for error. */
3196
3197 static int
3198 unwind_diagnostic (const char * region, const char *directive)
3199 {
3200 if (md.unwind_check == unwind_check_warning)
3201 {
3202 as_warn (_(".%s outside of %s"), directive, region);
3203 return -1;
3204 }
3205 else
3206 {
3207 as_bad (_(".%s outside of %s"), directive, region);
3208 ignore_rest_of_line ();
3209 return 0;
3210 }
3211 }
3212
3213 /* Return 1 if a directive is in a procedure, -1 if a directive isn't in
3214 a procedure but the unwind directive check is set to warning, 0 if
3215 a directive isn't in a procedure and the unwind directive check is set
3216 to error. */
3217
3218 static int
3219 in_procedure (const char *directive)
3220 {
3221 if (unwind.proc_pending.sym
3222 && (!unwind.saved_text_seg || strcmp (directive, "endp") == 0))
3223 return 1;
3224 return unwind_diagnostic ("procedure", directive);
3225 }
3226
3227 /* Return 1 if a directive is in a prologue, -1 if a directive isn't in
3228 a prologue but the unwind directive check is set to warning, 0 if
3229 a directive isn't in a prologue and the unwind directive check is set
3230 to error. */
3231
3232 static int
3233 in_prologue (const char *directive)
3234 {
3235 int in = in_procedure (directive);
3236
3237 if (in > 0 && !unwind.prologue)
3238 in = unwind_diagnostic ("prologue", directive);
3239 check_pending_save ();
3240 return in;
3241 }
3242
3243 /* Return 1 if a directive is in a body, -1 if a directive isn't in
3244 a body but the unwind directive check is set to warning, 0 if
3245 a directive isn't in a body and the unwind directive check is set
3246 to error. */
3247
3248 static int
3249 in_body (const char *directive)
3250 {
3251 int in = in_procedure (directive);
3252
3253 if (in > 0 && !unwind.body)
3254 in = unwind_diagnostic ("body region", directive);
3255 return in;
3256 }
3257
3258 static void
3259 add_unwind_entry (unw_rec_list *ptr, int sep)
3260 {
3261 if (ptr)
3262 {
3263 if (unwind.tail)
3264 unwind.tail->next = ptr;
3265 else
3266 unwind.list = ptr;
3267 unwind.tail = ptr;
3268
3269 /* The current entry can in fact be a chain of unwind entries. */
3270 if (unwind.current_entry == NULL)
3271 unwind.current_entry = ptr;
3272 }
3273
3274 /* The current entry can in fact be a chain of unwind entries. */
3275 if (unwind.current_entry == NULL)
3276 unwind.current_entry = ptr;
3277
3278 if (sep == ',')
3279 {
3280 char *name;
3281 /* Parse a tag permitted for the current directive. */
3282 int ch;
3283
3284 SKIP_WHITESPACE ();
3285 ch = get_symbol_name (&name);
3286 /* FIXME: For now, just issue a warning that this isn't implemented. */
3287 {
3288 static int warned;
3289
3290 if (!warned)
3291 {
3292 warned = 1;
3293 as_warn (_("Tags on unwind pseudo-ops aren't supported, yet"));
3294 }
3295 }
3296 (void) restore_line_pointer (ch);
3297 }
3298 if (sep != NOT_A_CHAR)
3299 demand_empty_rest_of_line ();
3300 }
3301
3302 static void
3303 dot_fframe (int dummy ATTRIBUTE_UNUSED)
3304 {
3305 expressionS e;
3306 int sep;
3307
3308 if (!in_prologue ("fframe"))
3309 return;
3310
3311 sep = parse_operand_and_eval (&e, ',');
3312
3313 if (e.X_op != O_constant)
3314 {
3315 as_bad (_("First operand to .fframe must be a constant"));
3316 e.X_add_number = 0;
3317 }
3318 add_unwind_entry (output_mem_stack_f (e.X_add_number), sep);
3319 }
3320
3321 static void
3322 dot_vframe (int dummy ATTRIBUTE_UNUSED)
3323 {
3324 expressionS e;
3325 unsigned reg;
3326 int sep;
3327
3328 if (!in_prologue ("vframe"))
3329 return;
3330
3331 sep = parse_operand_and_eval (&e, ',');
3332 reg = e.X_add_number - REG_GR;
3333 if (e.X_op != O_register || reg > 127)
3334 {
3335 as_bad (_("First operand to .vframe must be a general register"));
3336 reg = 0;
3337 }
3338 add_unwind_entry (output_mem_stack_v (), sep);
3339 if (! (unwind.prologue_mask & 2))
3340 add_unwind_entry (output_psp_gr (reg), NOT_A_CHAR);
3341 else if (reg != unwind.prologue_gr
3342 + (unsigned) popcount (unwind.prologue_mask & -(2 << 1)))
3343 as_warn (_("Operand of .vframe contradicts .prologue"));
3344 }
3345
3346 static void
3347 dot_vframesp (int psp)
3348 {
3349 expressionS e;
3350 int sep;
3351
3352 if (psp)
3353 as_warn (_(".vframepsp is meaningless, assuming .vframesp was meant"));
3354
3355 if (!in_prologue ("vframesp"))
3356 return;
3357
3358 sep = parse_operand_and_eval (&e, ',');
3359 if (e.X_op != O_constant)
3360 {
3361 as_bad (_("Operand to .vframesp must be a constant (sp-relative offset)"));
3362 e.X_add_number = 0;
3363 }
3364 add_unwind_entry (output_mem_stack_v (), sep);
3365 add_unwind_entry (output_psp_sprel (e.X_add_number), NOT_A_CHAR);
3366 }
3367
3368 static void
3369 dot_save (int dummy ATTRIBUTE_UNUSED)
3370 {
3371 expressionS e1, e2;
3372 unsigned reg1, reg2;
3373 int sep;
3374
3375 if (!in_prologue ("save"))
3376 return;
3377
3378 sep = parse_operand_and_eval (&e1, ',');
3379 if (sep == ',')
3380 sep = parse_operand_and_eval (&e2, ',');
3381 else
3382 e2.X_op = O_absent;
3383
3384 reg1 = e1.X_add_number;
3385 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3386 if (e1.X_op != O_register)
3387 {
3388 as_bad (_("First operand to .save not a register"));
3389 reg1 = REG_PR; /* Anything valid is good here. */
3390 }
3391 reg2 = e2.X_add_number - REG_GR;
3392 if (e2.X_op != O_register || reg2 > 127)
3393 {
3394 as_bad (_("Second operand to .save not a valid register"));
3395 reg2 = 0;
3396 }
3397 switch (reg1)
3398 {
3399 case REG_AR + AR_BSP:
3400 add_unwind_entry (output_bsp_when (), sep);
3401 add_unwind_entry (output_bsp_gr (reg2), NOT_A_CHAR);
3402 break;
3403 case REG_AR + AR_BSPSTORE:
3404 add_unwind_entry (output_bspstore_when (), sep);
3405 add_unwind_entry (output_bspstore_gr (reg2), NOT_A_CHAR);
3406 break;
3407 case REG_AR + AR_RNAT:
3408 add_unwind_entry (output_rnat_when (), sep);
3409 add_unwind_entry (output_rnat_gr (reg2), NOT_A_CHAR);
3410 break;
3411 case REG_AR + AR_UNAT:
3412 add_unwind_entry (output_unat_when (), sep);
3413 add_unwind_entry (output_unat_gr (reg2), NOT_A_CHAR);
3414 break;
3415 case REG_AR + AR_FPSR:
3416 add_unwind_entry (output_fpsr_when (), sep);
3417 add_unwind_entry (output_fpsr_gr (reg2), NOT_A_CHAR);
3418 break;
3419 case REG_AR + AR_PFS:
3420 add_unwind_entry (output_pfs_when (), sep);
3421 if (! (unwind.prologue_mask & 4))
3422 add_unwind_entry (output_pfs_gr (reg2), NOT_A_CHAR);
3423 else if (reg2 != unwind.prologue_gr
3424 + (unsigned) popcount (unwind.prologue_mask & -(4 << 1)))
3425 as_warn (_("Second operand of .save contradicts .prologue"));
3426 break;
3427 case REG_AR + AR_LC:
3428 add_unwind_entry (output_lc_when (), sep);
3429 add_unwind_entry (output_lc_gr (reg2), NOT_A_CHAR);
3430 break;
3431 case REG_BR:
3432 add_unwind_entry (output_rp_when (), sep);
3433 if (! (unwind.prologue_mask & 8))
3434 add_unwind_entry (output_rp_gr (reg2), NOT_A_CHAR);
3435 else if (reg2 != unwind.prologue_gr)
3436 as_warn (_("Second operand of .save contradicts .prologue"));
3437 break;
3438 case REG_PR:
3439 add_unwind_entry (output_preds_when (), sep);
3440 if (! (unwind.prologue_mask & 1))
3441 add_unwind_entry (output_preds_gr (reg2), NOT_A_CHAR);
3442 else if (reg2 != unwind.prologue_gr
3443 + (unsigned) popcount (unwind.prologue_mask & -(1 << 1)))
3444 as_warn (_("Second operand of .save contradicts .prologue"));
3445 break;
3446 case REG_PRIUNAT:
3447 add_unwind_entry (output_priunat_when_gr (), sep);
3448 add_unwind_entry (output_priunat_gr (reg2), NOT_A_CHAR);
3449 break;
3450 default:
3451 as_bad (_("First operand to .save not a valid register"));
3452 add_unwind_entry (NULL, sep);
3453 break;
3454 }
3455 }
3456
3457 static void
3458 dot_restore (int dummy ATTRIBUTE_UNUSED)
3459 {
3460 expressionS e1;
3461 unsigned long ecount; /* # of _additional_ regions to pop */
3462 int sep;
3463
3464 if (!in_body ("restore"))
3465 return;
3466
3467 sep = parse_operand_and_eval (&e1, ',');
3468 if (e1.X_op != O_register || e1.X_add_number != REG_GR + 12)
3469 as_bad (_("First operand to .restore must be stack pointer (sp)"));
3470
3471 if (sep == ',')
3472 {
3473 expressionS e2;
3474
3475 sep = parse_operand_and_eval (&e2, ',');
3476 if (e2.X_op != O_constant || e2.X_add_number < 0)
3477 {
3478 as_bad (_("Second operand to .restore must be a constant >= 0"));
3479 e2.X_add_number = 0;
3480 }
3481 ecount = e2.X_add_number;
3482 }
3483 else
3484 ecount = unwind.prologue_count - 1;
3485
3486 if (ecount >= unwind.prologue_count)
3487 {
3488 as_bad (_("Epilogue count of %lu exceeds number of nested prologues (%u)"),
3489 ecount + 1, unwind.prologue_count);
3490 ecount = 0;
3491 }
3492
3493 add_unwind_entry (output_epilogue (ecount), sep);
3494
3495 if (ecount < unwind.prologue_count)
3496 unwind.prologue_count -= ecount + 1;
3497 else
3498 unwind.prologue_count = 0;
3499 }
3500
3501 static void
3502 dot_restorereg (int pred)
3503 {
3504 unsigned int qp, ab, reg;
3505 expressionS e;
3506 int sep;
3507 const char * const po = pred ? "restorereg.p" : "restorereg";
3508
3509 if (!in_procedure (po))
3510 return;
3511
3512 if (pred)
3513 sep = parse_predicate_and_operand (&e, &qp, po);
3514 else
3515 {
3516 sep = parse_operand_and_eval (&e, ',');
3517 qp = 0;
3518 }
3519 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
3520
3521 add_unwind_entry (output_spill_reg (ab, reg, 0, 0, qp), sep);
3522 }
3523
3524 static const char *special_linkonce_name[] =
3525 {
3526 ".gnu.linkonce.ia64unw.", ".gnu.linkonce.ia64unwi."
3527 };
3528
3529 static void
3530 start_unwind_section (const segT text_seg, int sec_index)
3531 {
3532 /*
3533 Use a slightly ugly scheme to derive the unwind section names from
3534 the text section name:
3535
3536 text sect. unwind table sect.
3537 name: name: comments:
3538 ---------- ----------------- --------------------------------
3539 .text .IA_64.unwind
3540 .text.foo .IA_64.unwind.text.foo
3541 .foo .IA_64.unwind.foo
3542 .gnu.linkonce.t.foo
3543 .gnu.linkonce.ia64unw.foo
3544 _info .IA_64.unwind_info gas issues error message (ditto)
3545 _infoFOO .IA_64.unwind_infoFOO gas issues error message (ditto)
3546
3547 This mapping is done so that:
3548
3549 (a) An object file with unwind info only in .text will use
3550 unwind section names .IA_64.unwind and .IA_64.unwind_info.
3551 This follows the letter of the ABI and also ensures backwards
3552 compatibility with older toolchains.
3553
3554 (b) An object file with unwind info in multiple text sections
3555 will use separate unwind sections for each text section.
3556 This allows us to properly set the "sh_info" and "sh_link"
3557 fields in SHT_IA_64_UNWIND as required by the ABI and also
3558 lets GNU ld support programs with multiple segments
3559 containing unwind info (as might be the case for certain
3560 embedded applications).
3561
3562 (c) An error is issued if there would be a name clash.
3563 */
3564
3565 const char *text_name, *sec_text_name;
3566 char *sec_name;
3567 const char *prefix = special_section_name [sec_index];
3568 const char *suffix;
3569
3570 sec_text_name = segment_name (text_seg);
3571 text_name = sec_text_name;
3572 if (strncmp (text_name, "_info", 5) == 0)
3573 {
3574 as_bad (_("Illegal section name `%s' (causes unwind section name clash)"),
3575 text_name);
3576 ignore_rest_of_line ();
3577 return;
3578 }
3579 if (strcmp (text_name, ".text") == 0)
3580 text_name = "";
3581
3582 /* Build the unwind section name by appending the (possibly stripped)
3583 text section name to the unwind prefix. */
3584 suffix = text_name;
3585 if (strncmp (text_name, ".gnu.linkonce.t.",
3586 sizeof (".gnu.linkonce.t.") - 1) == 0)
3587 {
3588 prefix = special_linkonce_name [sec_index - SPECIAL_SECTION_UNWIND];
3589 suffix += sizeof (".gnu.linkonce.t.") - 1;
3590 }
3591
3592 sec_name = concat (prefix, suffix, NULL);
3593
3594 /* Handle COMDAT group. */
3595 if ((text_seg->flags & SEC_LINK_ONCE) != 0
3596 && (elf_section_flags (text_seg) & SHF_GROUP) != 0)
3597 {
3598 char *section;
3599 const char *group_name = elf_group_name (text_seg);
3600
3601 if (group_name == NULL)
3602 {
3603 as_bad (_("Group section `%s' has no group signature"),
3604 sec_text_name);
3605 ignore_rest_of_line ();
3606 free (sec_name);
3607 return;
3608 }
3609
3610 /* We have to construct a fake section directive. */
3611 section = concat (sec_name, ",\"aG\",@progbits,", group_name, ",comdat", NULL);
3612 set_section (section);
3613 free (section);
3614 }
3615 else
3616 {
3617 set_section (sec_name);
3618 bfd_set_section_flags (stdoutput, now_seg,
3619 SEC_LOAD | SEC_ALLOC | SEC_READONLY);
3620 }
3621
3622 elf_linked_to_section (now_seg) = text_seg;
3623 free (sec_name);
3624 }
3625
3626 static void
3627 generate_unwind_image (const segT text_seg)
3628 {
3629 int size, pad;
3630 unw_rec_list *list;
3631
3632 /* Mark the end of the unwind info, so that we can compute the size of the
3633 last unwind region. */
3634 add_unwind_entry (output_endp (), NOT_A_CHAR);
3635
3636 /* Force out pending instructions, to make sure all unwind records have
3637 a valid slot_number field. */
3638 ia64_flush_insns ();
3639
3640 /* Generate the unwind record. */
3641 list = optimize_unw_records (unwind.list);
3642 fixup_unw_records (list, 1);
3643 size = calc_record_size (list);
3644
3645 if (size > 0 || unwind.force_unwind_entry)
3646 {
3647 unwind.force_unwind_entry = 0;
3648 /* pad to pointer-size boundary. */
3649 pad = size % md.pointer_size;
3650 if (pad != 0)
3651 size += md.pointer_size - pad;
3652 /* Add 8 for the header. */
3653 size += 8;
3654 /* Add a pointer for the personality offset. */
3655 if (unwind.personality_routine)
3656 size += md.pointer_size;
3657 }
3658
3659 /* If there are unwind records, switch sections, and output the info. */
3660 if (size != 0)
3661 {
3662 expressionS exp;
3663 bfd_reloc_code_real_type reloc;
3664
3665 start_unwind_section (text_seg, SPECIAL_SECTION_UNWIND_INFO);
3666
3667 /* Make sure the section has 4 byte alignment for ILP32 and
3668 8 byte alignment for LP64. */
3669 frag_align (md.pointer_size_shift, 0, 0);
3670 record_alignment (now_seg, md.pointer_size_shift);
3671
3672 /* Set expression which points to start of unwind descriptor area. */
3673 unwind.info = expr_build_dot ();
3674
3675 frag_var (rs_machine_dependent, size, size, 0, 0,
3676 (offsetT) (long) unwind.personality_routine,
3677 (char *) list);
3678
3679 /* Add the personality address to the image. */
3680 if (unwind.personality_routine != 0)
3681 {
3682 exp.X_op = O_symbol;
3683 exp.X_add_symbol = unwind.personality_routine;
3684 exp.X_add_number = 0;
3685
3686 if (md.flags & EF_IA_64_BE)
3687 {
3688 if (md.flags & EF_IA_64_ABI64)
3689 reloc = BFD_RELOC_IA64_LTOFF_FPTR64MSB;
3690 else
3691 reloc = BFD_RELOC_IA64_LTOFF_FPTR32MSB;
3692 }
3693 else
3694 {
3695 if (md.flags & EF_IA_64_ABI64)
3696 reloc = BFD_RELOC_IA64_LTOFF_FPTR64LSB;
3697 else
3698 reloc = BFD_RELOC_IA64_LTOFF_FPTR32LSB;
3699 }
3700
3701 fix_new_exp (frag_now, frag_now_fix () - md.pointer_size,
3702 md.pointer_size, &exp, 0, reloc);
3703 unwind.personality_routine = 0;
3704 }
3705 }
3706
3707 free_saved_prologue_counts ();
3708 unwind.list = unwind.tail = unwind.current_entry = NULL;
3709 }
3710
3711 static void
3712 dot_handlerdata (int dummy ATTRIBUTE_UNUSED)
3713 {
3714 if (!in_procedure ("handlerdata"))
3715 return;
3716 unwind.force_unwind_entry = 1;
3717
3718 /* Remember which segment we're in so we can switch back after .endp */
3719 unwind.saved_text_seg = now_seg;
3720 unwind.saved_text_subseg = now_subseg;
3721
3722 /* Generate unwind info into unwind-info section and then leave that
3723 section as the currently active one so dataXX directives go into
3724 the language specific data area of the unwind info block. */
3725 generate_unwind_image (now_seg);
3726 demand_empty_rest_of_line ();
3727 }
3728
3729 static void
3730 dot_unwentry (int dummy ATTRIBUTE_UNUSED)
3731 {
3732 if (!in_procedure ("unwentry"))
3733 return;
3734 unwind.force_unwind_entry = 1;
3735 demand_empty_rest_of_line ();
3736 }
3737
3738 static void
3739 dot_altrp (int dummy ATTRIBUTE_UNUSED)
3740 {
3741 expressionS e;
3742 unsigned reg;
3743
3744 if (!in_prologue ("altrp"))
3745 return;
3746
3747 parse_operand_and_eval (&e, 0);
3748 reg = e.X_add_number - REG_BR;
3749 if (e.X_op != O_register || reg > 7)
3750 {
3751 as_bad (_("First operand to .altrp not a valid branch register"));
3752 reg = 0;
3753 }
3754 add_unwind_entry (output_rp_br (reg), 0);
3755 }
3756
3757 static void
3758 dot_savemem (int psprel)
3759 {
3760 expressionS e1, e2;
3761 int sep;
3762 int reg1, val;
3763 const char * const po = psprel ? "savepsp" : "savesp";
3764
3765 if (!in_prologue (po))
3766 return;
3767
3768 sep = parse_operand_and_eval (&e1, ',');
3769 if (sep == ',')
3770 sep = parse_operand_and_eval (&e2, ',');
3771 else
3772 e2.X_op = O_absent;
3773
3774 reg1 = e1.X_add_number;
3775 val = e2.X_add_number;
3776
3777 /* Make sure its a valid ar.xxx reg, OR its br0, aka 'rp'. */
3778 if (e1.X_op != O_register)
3779 {
3780 as_bad (_("First operand to .%s not a register"), po);
3781 reg1 = REG_PR; /* Anything valid is good here. */
3782 }
3783 if (e2.X_op != O_constant)
3784 {
3785 as_bad (_("Second operand to .%s not a constant"), po);
3786 val = 0;
3787 }
3788
3789 switch (reg1)
3790 {
3791 case REG_AR + AR_BSP:
3792 add_unwind_entry (output_bsp_when (), sep);
3793 add_unwind_entry ((psprel
3794 ? output_bsp_psprel
3795 : output_bsp_sprel) (val), NOT_A_CHAR);
3796 break;
3797 case REG_AR + AR_BSPSTORE:
3798 add_unwind_entry (output_bspstore_when (), sep);
3799 add_unwind_entry ((psprel
3800 ? output_bspstore_psprel
3801 : output_bspstore_sprel) (val), NOT_A_CHAR);
3802 break;
3803 case REG_AR + AR_RNAT:
3804 add_unwind_entry (output_rnat_when (), sep);
3805 add_unwind_entry ((psprel
3806 ? output_rnat_psprel
3807 : output_rnat_sprel) (val), NOT_A_CHAR);
3808 break;
3809 case REG_AR + AR_UNAT:
3810 add_unwind_entry (output_unat_when (), sep);
3811 add_unwind_entry ((psprel
3812 ? output_unat_psprel
3813 : output_unat_sprel) (val), NOT_A_CHAR);
3814 break;
3815 case REG_AR + AR_FPSR:
3816 add_unwind_entry (output_fpsr_when (), sep);
3817 add_unwind_entry ((psprel
3818 ? output_fpsr_psprel
3819 : output_fpsr_sprel) (val), NOT_A_CHAR);
3820 break;
3821 case REG_AR + AR_PFS:
3822 add_unwind_entry (output_pfs_when (), sep);
3823 add_unwind_entry ((psprel
3824 ? output_pfs_psprel
3825 : output_pfs_sprel) (val), NOT_A_CHAR);
3826 break;
3827 case REG_AR + AR_LC:
3828 add_unwind_entry (output_lc_when (), sep);
3829 add_unwind_entry ((psprel
3830 ? output_lc_psprel
3831 : output_lc_sprel) (val), NOT_A_CHAR);
3832 break;
3833 case REG_BR:
3834 add_unwind_entry (output_rp_when (), sep);
3835 add_unwind_entry ((psprel
3836 ? output_rp_psprel
3837 : output_rp_sprel) (val), NOT_A_CHAR);
3838 break;
3839 case REG_PR:
3840 add_unwind_entry (output_preds_when (), sep);
3841 add_unwind_entry ((psprel
3842 ? output_preds_psprel
3843 : output_preds_sprel) (val), NOT_A_CHAR);
3844 break;
3845 case REG_PRIUNAT:
3846 add_unwind_entry (output_priunat_when_mem (), sep);
3847 add_unwind_entry ((psprel
3848 ? output_priunat_psprel
3849 : output_priunat_sprel) (val), NOT_A_CHAR);
3850 break;
3851 default:
3852 as_bad (_("First operand to .%s not a valid register"), po);
3853 add_unwind_entry (NULL, sep);
3854 break;
3855 }
3856 }
3857
3858 static void
3859 dot_saveg (int dummy ATTRIBUTE_UNUSED)
3860 {
3861 expressionS e;
3862 unsigned grmask;
3863 int sep;
3864
3865 if (!in_prologue ("save.g"))
3866 return;
3867
3868 sep = parse_operand_and_eval (&e, ',');
3869
3870 grmask = e.X_add_number;
3871 if (e.X_op != O_constant
3872 || e.X_add_number <= 0
3873 || e.X_add_number > 0xf)
3874 {
3875 as_bad (_("First operand to .save.g must be a positive 4-bit constant"));
3876 grmask = 0;
3877 }
3878
3879 if (sep == ',')
3880 {
3881 unsigned reg;
3882 int n = popcount (grmask);
3883
3884 parse_operand_and_eval (&e, 0);
3885 reg = e.X_add_number - REG_GR;
3886 if (e.X_op != O_register || reg > 127)
3887 {
3888 as_bad (_("Second operand to .save.g must be a general register"));
3889 reg = 0;
3890 }
3891 else if (reg > 128U - n)
3892 {
3893 as_bad (_("Second operand to .save.g must be the first of %d general registers"), n);
3894 reg = 0;
3895 }
3896 add_unwind_entry (output_gr_gr (grmask, reg), 0);
3897 }
3898 else
3899 add_unwind_entry (output_gr_mem (grmask), 0);
3900 }
3901
3902 static void
3903 dot_savef (int dummy ATTRIBUTE_UNUSED)
3904 {
3905 expressionS e;
3906
3907 if (!in_prologue ("save.f"))
3908 return;
3909
3910 parse_operand_and_eval (&e, 0);
3911
3912 if (e.X_op != O_constant
3913 || e.X_add_number <= 0
3914 || e.X_add_number > 0xfffff)
3915 {
3916 as_bad (_("Operand to .save.f must be a positive 20-bit constant"));
3917 e.X_add_number = 0;
3918 }
3919 add_unwind_entry (output_fr_mem (e.X_add_number), 0);
3920 }
3921
3922 static void
3923 dot_saveb (int dummy ATTRIBUTE_UNUSED)
3924 {
3925 expressionS e;
3926 unsigned brmask;
3927 int sep;
3928
3929 if (!in_prologue ("save.b"))
3930 return;
3931
3932 sep = parse_operand_and_eval (&e, ',');
3933
3934 brmask = e.X_add_number;
3935 if (e.X_op != O_constant
3936 || e.X_add_number <= 0
3937 || e.X_add_number > 0x1f)
3938 {
3939 as_bad (_("First operand to .save.b must be a positive 5-bit constant"));
3940 brmask = 0;
3941 }
3942
3943 if (sep == ',')
3944 {
3945 unsigned reg;
3946 int n = popcount (brmask);
3947
3948 parse_operand_and_eval (&e, 0);
3949 reg = e.X_add_number - REG_GR;
3950 if (e.X_op != O_register || reg > 127)
3951 {
3952 as_bad (_("Second operand to .save.b must be a general register"));
3953 reg = 0;
3954 }
3955 else if (reg > 128U - n)
3956 {
3957 as_bad (_("Second operand to .save.b must be the first of %d general registers"), n);
3958 reg = 0;
3959 }
3960 add_unwind_entry (output_br_gr (brmask, reg), 0);
3961 }
3962 else
3963 add_unwind_entry (output_br_mem (brmask), 0);
3964 }
3965
3966 static void
3967 dot_savegf (int dummy ATTRIBUTE_UNUSED)
3968 {
3969 expressionS e1, e2;
3970
3971 if (!in_prologue ("save.gf"))
3972 return;
3973
3974 if (parse_operand_and_eval (&e1, ',') == ',')
3975 parse_operand_and_eval (&e2, 0);
3976 else
3977 e2.X_op = O_absent;
3978
3979 if (e1.X_op != O_constant
3980 || e1.X_add_number < 0
3981 || e1.X_add_number > 0xf)
3982 {
3983 as_bad (_("First operand to .save.gf must be a non-negative 4-bit constant"));
3984 e1.X_op = O_absent;
3985 e1.X_add_number = 0;
3986 }
3987 if (e2.X_op != O_constant
3988 || e2.X_add_number < 0
3989 || e2.X_add_number > 0xfffff)
3990 {
3991 as_bad (_("Second operand to .save.gf must be a non-negative 20-bit constant"));
3992 e2.X_op = O_absent;
3993 e2.X_add_number = 0;
3994 }
3995 if (e1.X_op == O_constant
3996 && e2.X_op == O_constant
3997 && e1.X_add_number == 0
3998 && e2.X_add_number == 0)
3999 as_bad (_("Operands to .save.gf may not be both zero"));
4000
4001 add_unwind_entry (output_frgr_mem (e1.X_add_number, e2.X_add_number), 0);
4002 }
4003
4004 static void
4005 dot_spill (int dummy ATTRIBUTE_UNUSED)
4006 {
4007 expressionS e;
4008
4009 if (!in_prologue ("spill"))
4010 return;
4011
4012 parse_operand_and_eval (&e, 0);
4013
4014 if (e.X_op != O_constant)
4015 {
4016 as_bad (_("Operand to .spill must be a constant"));
4017 e.X_add_number = 0;
4018 }
4019 add_unwind_entry (output_spill_base (e.X_add_number), 0);
4020 }
4021
4022 static void
4023 dot_spillreg (int pred)
4024 {
4025 int sep;
4026 unsigned int qp, ab, xy, reg, treg;
4027 expressionS e;
4028 const char * const po = pred ? "spillreg.p" : "spillreg";
4029
4030 if (!in_procedure (po))
4031 return;
4032
4033 if (pred)
4034 sep = parse_predicate_and_operand (&e, &qp, po);
4035 else
4036 {
4037 sep = parse_operand_and_eval (&e, ',');
4038 qp = 0;
4039 }
4040 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
4041
4042 if (sep == ',')
4043 sep = parse_operand_and_eval (&e, ',');
4044 else
4045 e.X_op = O_absent;
4046 convert_expr_to_xy_reg (&e, &xy, &treg, po, 2 + pred);
4047
4048 add_unwind_entry (output_spill_reg (ab, reg, treg, xy, qp), sep);
4049 }
4050
4051 static void
4052 dot_spillmem (int psprel)
4053 {
4054 expressionS e;
4055 int pred = (psprel < 0), sep;
4056 unsigned int qp, ab, reg;
4057 const char * po;
4058
4059 if (pred)
4060 {
4061 psprel = ~psprel;
4062 po = psprel ? "spillpsp.p" : "spillsp.p";
4063 }
4064 else
4065 po = psprel ? "spillpsp" : "spillsp";
4066
4067 if (!in_procedure (po))
4068 return;
4069
4070 if (pred)
4071 sep = parse_predicate_and_operand (&e, &qp, po);
4072 else
4073 {
4074 sep = parse_operand_and_eval (&e, ',');
4075 qp = 0;
4076 }
4077 convert_expr_to_ab_reg (&e, &ab, &reg, po, 1 + pred);
4078
4079 if (sep == ',')
4080 sep = parse_operand_and_eval (&e, ',');
4081 else
4082 e.X_op = O_absent;
4083 if (e.X_op != O_constant)
4084 {
4085 as_bad (_("Operand %d to .%s must be a constant"), 2 + pred, po);
4086 e.X_add_number = 0;
4087 }
4088
4089 if (psprel)
4090 add_unwind_entry (output_spill_psprel (ab, reg, e.X_add_number, qp), sep);
4091 else
4092 add_unwind_entry (output_spill_sprel (ab, reg, e.X_add_number, qp), sep);
4093 }
4094
4095 static unsigned int
4096 get_saved_prologue_count (unsigned long lbl)
4097 {
4098 label_prologue_count *lpc = unwind.saved_prologue_counts;
4099
4100 while (lpc != NULL && lpc->label_number != lbl)
4101 lpc = lpc->next;
4102
4103 if (lpc != NULL)
4104 return lpc->prologue_count;
4105
4106 as_bad (_("Missing .label_state %ld"), lbl);
4107 return 1;
4108 }
4109
4110 static void
4111 save_prologue_count (unsigned long lbl, unsigned int count)
4112 {
4113 label_prologue_count *lpc = unwind.saved_prologue_counts;
4114
4115 while (lpc != NULL && lpc->label_number != lbl)
4116 lpc = lpc->next;
4117
4118 if (lpc != NULL)
4119 lpc->prologue_count = count;
4120 else
4121 {
4122 label_prologue_count *new_lpc = xmalloc (sizeof (* new_lpc));
4123
4124 new_lpc->next = unwind.saved_prologue_counts;
4125 new_lpc->label_number = lbl;
4126 new_lpc->prologue_count = count;
4127 unwind.saved_prologue_counts = new_lpc;
4128 }
4129 }
4130
4131 static void
4132 free_saved_prologue_counts ()
4133 {
4134 label_prologue_count *lpc = unwind.saved_prologue_counts;
4135 label_prologue_count *next;
4136
4137 while (lpc != NULL)
4138 {
4139 next = lpc->next;
4140 free (lpc);
4141 lpc = next;
4142 }
4143
4144 unwind.saved_prologue_counts = NULL;
4145 }
4146
4147 static void
4148 dot_label_state (int dummy ATTRIBUTE_UNUSED)
4149 {
4150 expressionS e;
4151
4152 if (!in_body ("label_state"))
4153 return;
4154
4155 parse_operand_and_eval (&e, 0);
4156 if (e.X_op == O_constant)
4157 save_prologue_count (e.X_add_number, unwind.prologue_count);
4158 else
4159 {
4160 as_bad (_("Operand to .label_state must be a constant"));
4161 e.X_add_number = 0;
4162 }
4163 add_unwind_entry (output_label_state (e.X_add_number), 0);
4164 }
4165
4166 static void
4167 dot_copy_state (int dummy ATTRIBUTE_UNUSED)
4168 {
4169 expressionS e;
4170
4171 if (!in_body ("copy_state"))
4172 return;
4173
4174 parse_operand_and_eval (&e, 0);
4175 if (e.X_op == O_constant)
4176 unwind.prologue_count = get_saved_prologue_count (e.X_add_number);
4177 else
4178 {
4179 as_bad (_("Operand to .copy_state must be a constant"));
4180 e.X_add_number = 0;
4181 }
4182 add_unwind_entry (output_copy_state (e.X_add_number), 0);
4183 }
4184
4185 static void
4186 dot_unwabi (int dummy ATTRIBUTE_UNUSED)
4187 {
4188 expressionS e1, e2;
4189 unsigned char sep;
4190
4191 if (!in_prologue ("unwabi"))
4192 return;
4193
4194 sep = parse_operand_and_eval (&e1, ',');
4195 if (sep == ',')
4196 parse_operand_and_eval (&e2, 0);
4197 else
4198 e2.X_op = O_absent;
4199
4200 if (e1.X_op != O_constant)
4201 {
4202 as_bad (_("First operand to .unwabi must be a constant"));
4203 e1.X_add_number = 0;
4204 }
4205
4206 if (e2.X_op != O_constant)
4207 {
4208 as_bad (_("Second operand to .unwabi must be a constant"));
4209 e2.X_add_number = 0;
4210 }
4211
4212 add_unwind_entry (output_unwabi (e1.X_add_number, e2.X_add_number), 0);
4213 }
4214
4215 static void
4216 dot_personality (int dummy ATTRIBUTE_UNUSED)
4217 {
4218 char *name, *p, c;
4219
4220 if (!in_procedure ("personality"))
4221 return;
4222 SKIP_WHITESPACE ();
4223 c = get_symbol_name (&name);
4224 p = input_line_pointer;
4225 unwind.personality_routine = symbol_find_or_make (name);
4226 unwind.force_unwind_entry = 1;
4227 *p = c;
4228 SKIP_WHITESPACE_AFTER_NAME ();
4229 demand_empty_rest_of_line ();
4230 }
4231
4232 static void
4233 dot_proc (int dummy ATTRIBUTE_UNUSED)
4234 {
4235 char *name, *p, c;
4236 symbolS *sym;
4237 proc_pending *pending, *last_pending;
4238
4239 if (unwind.proc_pending.sym)
4240 {
4241 (md.unwind_check == unwind_check_warning
4242 ? as_warn
4243 : as_bad) (_("Missing .endp after previous .proc"));
4244 while (unwind.proc_pending.next)
4245 {
4246 pending = unwind.proc_pending.next;
4247 unwind.proc_pending.next = pending->next;
4248 free (pending);
4249 }
4250 }
4251 last_pending = NULL;
4252
4253 /* Parse names of main and alternate entry points and mark them as
4254 function symbols: */
4255 while (1)
4256 {
4257 SKIP_WHITESPACE ();
4258 c = get_symbol_name (&name);
4259 p = input_line_pointer;
4260 if (!*name)
4261 as_bad (_("Empty argument of .proc"));
4262 else
4263 {
4264 sym = symbol_find_or_make (name);
4265 if (S_IS_DEFINED (sym))
4266 as_bad (_("`%s' was already defined"), name);
4267 else if (!last_pending)
4268 {
4269 unwind.proc_pending.sym = sym;
4270 last_pending = &unwind.proc_pending;
4271 }
4272 else
4273 {
4274 pending = xmalloc (sizeof (*pending));
4275 pending->sym = sym;
4276 last_pending = last_pending->next = pending;
4277 }
4278 symbol_get_bfdsym (sym)->flags |= BSF_FUNCTION;
4279 }
4280 *p = c;
4281 SKIP_WHITESPACE_AFTER_NAME ();
4282 if (*input_line_pointer != ',')
4283 break;
4284 ++input_line_pointer;
4285 }
4286 if (!last_pending)
4287 {
4288 unwind.proc_pending.sym = expr_build_dot ();
4289 last_pending = &unwind.proc_pending;
4290 }
4291 last_pending->next = NULL;
4292 demand_empty_rest_of_line ();
4293 ia64_do_align (16);
4294
4295 unwind.prologue = 0;
4296 unwind.prologue_count = 0;
4297 unwind.body = 0;
4298 unwind.insn = 0;
4299 unwind.list = unwind.tail = unwind.current_entry = NULL;
4300 unwind.personality_routine = 0;
4301 }
4302
4303 static void
4304 dot_body (int dummy ATTRIBUTE_UNUSED)
4305 {
4306 if (!in_procedure ("body"))
4307 return;
4308 if (!unwind.prologue && !unwind.body && unwind.insn)
4309 as_warn (_("Initial .body should precede any instructions"));
4310 check_pending_save ();
4311
4312 unwind.prologue = 0;
4313 unwind.prologue_mask = 0;
4314 unwind.body = 1;
4315
4316 add_unwind_entry (output_body (), 0);
4317 }
4318
4319 static void
4320 dot_prologue (int dummy ATTRIBUTE_UNUSED)
4321 {
4322 unsigned mask = 0, grsave = 0;
4323
4324 if (!in_procedure ("prologue"))
4325 return;
4326 if (unwind.prologue)
4327 {
4328 as_bad (_(".prologue within prologue"));
4329 ignore_rest_of_line ();
4330 return;
4331 }
4332 if (!unwind.body && unwind.insn)
4333 as_warn (_("Initial .prologue should precede any instructions"));
4334
4335 if (!is_it_end_of_statement ())
4336 {
4337 expressionS e;
4338 int n, sep = parse_operand_and_eval (&e, ',');
4339
4340 if (e.X_op != O_constant
4341 || e.X_add_number < 0
4342 || e.X_add_number > 0xf)
4343 as_bad (_("First operand to .prologue must be a positive 4-bit constant"));
4344 else if (e.X_add_number == 0)
4345 as_warn (_("Pointless use of zero first operand to .prologue"));
4346 else
4347 mask = e.X_add_number;
4348
4349 n = popcount (mask);
4350
4351 if (sep == ',')
4352 parse_operand_and_eval (&e, 0);
4353 else
4354 e.X_op = O_absent;
4355
4356 if (e.X_op == O_constant
4357 && e.X_add_number >= 0
4358 && e.X_add_number < 128)
4359 {
4360 if (md.unwind_check == unwind_check_error)
4361 as_warn (_("Using a constant as second operand to .prologue is deprecated"));
4362 grsave = e.X_add_number;
4363 }
4364 else if (e.X_op != O_register
4365 || (grsave = e.X_add_number - REG_GR) > 127)
4366 {
4367 as_bad (_("Second operand to .prologue must be a general register"));
4368 grsave = 0;
4369 }
4370 else if (grsave > 128U - n)
4371 {
4372 as_bad (_("Second operand to .prologue must be the first of %d general registers"), n);
4373 grsave = 0;
4374 }
4375 }
4376
4377 if (mask)
4378 add_unwind_entry (output_prologue_gr (mask, grsave), 0);
4379 else
4380 add_unwind_entry (output_prologue (), 0);
4381
4382 unwind.prologue = 1;
4383 unwind.prologue_mask = mask;
4384 unwind.prologue_gr = grsave;
4385 unwind.body = 0;
4386 ++unwind.prologue_count;
4387 }
4388
4389 static void
4390 dot_endp (int dummy ATTRIBUTE_UNUSED)
4391 {
4392 expressionS e;
4393 int bytes_per_address;
4394 long where;
4395 segT saved_seg;
4396 subsegT saved_subseg;
4397 proc_pending *pending;
4398 int unwind_check = md.unwind_check;
4399
4400 md.unwind_check = unwind_check_error;
4401 if (!in_procedure ("endp"))
4402 return;
4403 md.unwind_check = unwind_check;
4404
4405 if (unwind.saved_text_seg)
4406 {
4407 saved_seg = unwind.saved_text_seg;
4408 saved_subseg = unwind.saved_text_subseg;
4409 unwind.saved_text_seg = NULL;
4410 }
4411 else
4412 {
4413 saved_seg = now_seg;
4414 saved_subseg = now_subseg;
4415 }
4416
4417 insn_group_break (1, 0, 0);
4418
4419 /* If there wasn't a .handlerdata, we haven't generated an image yet. */
4420 if (!unwind.info)
4421 generate_unwind_image (saved_seg);
4422
4423 if (unwind.info || unwind.force_unwind_entry)
4424 {
4425 symbolS *proc_end;
4426
4427 subseg_set (md.last_text_seg, 0);
4428 proc_end = expr_build_dot ();
4429
4430 start_unwind_section (saved_seg, SPECIAL_SECTION_UNWIND);
4431
4432 /* Make sure that section has 4 byte alignment for ILP32 and
4433 8 byte alignment for LP64. */
4434 record_alignment (now_seg, md.pointer_size_shift);
4435
4436 /* Need space for 3 pointers for procedure start, procedure end,
4437 and unwind info. */
4438 memset (frag_more (3 * md.pointer_size), 0, 3 * md.pointer_size);
4439 where = frag_now_fix () - (3 * md.pointer_size);
4440 bytes_per_address = bfd_arch_bits_per_address (stdoutput) / 8;
4441
4442 /* Issue the values of a) Proc Begin, b) Proc End, c) Unwind Record. */
4443 e.X_op = O_pseudo_fixup;
4444 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4445 e.X_add_number = 0;
4446 if (!S_IS_LOCAL (unwind.proc_pending.sym)
4447 && S_IS_DEFINED (unwind.proc_pending.sym))
4448 e.X_add_symbol = symbol_temp_new (S_GET_SEGMENT (unwind.proc_pending.sym),
4449 S_GET_VALUE (unwind.proc_pending.sym),
4450 symbol_get_frag (unwind.proc_pending.sym));
4451 else
4452 e.X_add_symbol = unwind.proc_pending.sym;
4453 ia64_cons_fix_new (frag_now, where, bytes_per_address, &e,
4454 BFD_RELOC_NONE);
4455
4456 e.X_op = O_pseudo_fixup;
4457 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4458 e.X_add_number = 0;
4459 e.X_add_symbol = proc_end;
4460 ia64_cons_fix_new (frag_now, where + bytes_per_address,
4461 bytes_per_address, &e, BFD_RELOC_NONE);
4462
4463 if (unwind.info)
4464 {
4465 e.X_op = O_pseudo_fixup;
4466 e.X_op_symbol = pseudo_func[FUNC_SEG_RELATIVE].u.sym;
4467 e.X_add_number = 0;
4468 e.X_add_symbol = unwind.info;
4469 ia64_cons_fix_new (frag_now, where + (bytes_per_address * 2),
4470 bytes_per_address, &e, BFD_RELOC_NONE);
4471 }
4472 }
4473 subseg_set (saved_seg, saved_subseg);
4474
4475 /* Set symbol sizes. */
4476 pending = &unwind.proc_pending;
4477 if (S_GET_NAME (pending->sym))
4478 {
4479 do
4480 {
4481 symbolS *sym = pending->sym;
4482
4483 if (!S_IS_DEFINED (sym))
4484 as_bad (_("`%s' was not defined within procedure"), S_GET_NAME (sym));
4485 else if (S_GET_SIZE (sym) == 0
4486 && symbol_get_obj (sym)->size == NULL)
4487 {
4488 fragS *frag = symbol_get_frag (sym);
4489
4490 if (frag)
4491 {
4492 if (frag == frag_now && SEG_NORMAL (now_seg))
4493 S_SET_SIZE (sym, frag_now_fix () - S_GET_VALUE (sym));
4494 else
4495 {
4496 symbol_get_obj (sym)->size =
4497 (expressionS *) xmalloc (sizeof (expressionS));
4498 symbol_get_obj (sym)->size->X_op = O_subtract;
4499 symbol_get_obj (sym)->size->X_add_symbol
4500 = symbol_new (FAKE_LABEL_NAME, now_seg,
4501 frag_now_fix (), frag_now);
4502 symbol_get_obj (sym)->size->X_op_symbol = sym;
4503 symbol_get_obj (sym)->size->X_add_number = 0;
4504 }
4505 }
4506 }
4507 } while ((pending = pending->next) != NULL);
4508 }
4509
4510 /* Parse names of main and alternate entry points. */
4511 while (1)
4512 {
4513 char *name, *p, c;
4514
4515 SKIP_WHITESPACE ();
4516 c = get_symbol_name (&name);
4517 p = input_line_pointer;
4518 if (!*name)
4519 (md.unwind_check == unwind_check_warning
4520 ? as_warn
4521 : as_bad) (_("Empty argument of .endp"));
4522 else
4523 {
4524 symbolS *sym = symbol_find (name);
4525
4526 for (pending = &unwind.proc_pending; pending; pending = pending->next)
4527 {
4528 if (sym == pending->sym)
4529 {
4530 pending->sym = NULL;
4531 break;
4532 }
4533 }
4534 if (!sym || !pending)
4535 as_warn (_("`%s' was not specified with previous .proc"), name);
4536 }
4537 *p = c;
4538 SKIP_WHITESPACE_AFTER_NAME ();
4539 if (*input_line_pointer != ',')
4540 break;
4541 ++input_line_pointer;
4542 }
4543 demand_empty_rest_of_line ();
4544
4545 /* Deliberately only checking for the main entry point here; the
4546 language spec even says all arguments to .endp are ignored. */
4547 if (unwind.proc_pending.sym
4548 && S_GET_NAME (unwind.proc_pending.sym)
4549 && strcmp (S_GET_NAME (unwind.proc_pending.sym), FAKE_LABEL_NAME))
4550 as_warn (_("`%s' should be an operand to this .endp"),
4551 S_GET_NAME (unwind.proc_pending.sym));
4552 while (unwind.proc_pending.next)
4553 {
4554 pending = unwind.proc_pending.next;
4555 unwind.proc_pending.next = pending->next;
4556 free (pending);
4557 }
4558 unwind.proc_pending.sym = unwind.info = NULL;
4559 }
4560
4561 static void
4562 dot_template (int template_val)
4563 {
4564 CURR_SLOT.user_template = template_val;
4565 }
4566
4567 static void
4568 dot_regstk (int dummy ATTRIBUTE_UNUSED)
4569 {
4570 int ins, locs, outs, rots;
4571
4572 if (is_it_end_of_statement ())
4573 ins = locs = outs = rots = 0;
4574 else
4575 {
4576 ins = get_absolute_expression ();
4577 if (*input_line_pointer++ != ',')
4578 goto err;
4579 locs = get_absolute_expression ();
4580 if (*input_line_pointer++ != ',')
4581 goto err;
4582 outs = get_absolute_expression ();
4583 if (*input_line_pointer++ != ',')
4584 goto err;
4585 rots = get_absolute_expression ();
4586 }
4587 set_regstack (ins, locs, outs, rots);
4588 return;
4589
4590 err:
4591 as_bad (_("Comma expected"));
4592 ignore_rest_of_line ();
4593 }
4594
4595 static void
4596 dot_rot (int type)
4597 {
4598 offsetT num_regs;
4599 valueT num_alloced = 0;
4600 struct dynreg **drpp, *dr;
4601 int ch, base_reg = 0;
4602 char *name, *start;
4603 size_t len;
4604
4605 switch (type)
4606 {
4607 case DYNREG_GR: base_reg = REG_GR + 32; break;
4608 case DYNREG_FR: base_reg = REG_FR + 32; break;
4609 case DYNREG_PR: base_reg = REG_P + 16; break;
4610 default: break;
4611 }
4612
4613 /* First, remove existing names from hash table. */
4614 for (dr = md.dynreg[type]; dr && dr->num_regs; dr = dr->next)
4615 {
4616 hash_delete (md.dynreg_hash, dr->name, FALSE);
4617 /* FIXME: Free dr->name. */
4618 dr->num_regs = 0;
4619 }
4620
4621 drpp = &md.dynreg[type];
4622 while (1)
4623 {
4624 ch = get_symbol_name (&start);
4625 len = strlen (ia64_canonicalize_symbol_name (start));
4626 *input_line_pointer = ch;
4627
4628 SKIP_WHITESPACE_AFTER_NAME ();
4629 if (*input_line_pointer != '[')
4630 {
4631 as_bad (_("Expected '['"));
4632 goto err;
4633 }
4634 ++input_line_pointer; /* skip '[' */
4635
4636 num_regs = get_absolute_expression ();
4637
4638 if (*input_line_pointer++ != ']')
4639 {
4640 as_bad (_("Expected ']'"));
4641 goto err;
4642 }
4643 if (num_regs <= 0)
4644 {
4645 as_bad (_("Number of elements must be positive"));
4646 goto err;
4647 }
4648 SKIP_WHITESPACE ();
4649
4650 num_alloced += num_regs;
4651 switch (type)
4652 {
4653 case DYNREG_GR:
4654 if (num_alloced > md.rot.num_regs)
4655 {
4656 as_bad (_("Used more than the declared %d rotating registers"),
4657 md.rot.num_regs);
4658 goto err;
4659 }
4660 break;
4661 case DYNREG_FR:
4662 if (num_alloced > 96)
4663 {
4664 as_bad (_("Used more than the available 96 rotating registers"));
4665 goto err;
4666 }
4667 break;
4668 case DYNREG_PR:
4669 if (num_alloced > 48)
4670 {
4671 as_bad (_("Used more than the available 48 rotating registers"));
4672 goto err;
4673 }
4674 break;
4675
4676 default:
4677 break;
4678 }
4679
4680 if (!*drpp)
4681 {
4682 *drpp = obstack_alloc (&notes, sizeof (*dr));
4683 memset (*drpp, 0, sizeof (*dr));
4684 }
4685
4686 name = obstack_alloc (&notes, len + 1);
4687 memcpy (name, start, len);
4688 name[len] = '\0';
4689
4690 dr = *drpp;
4691 dr->name = name;
4692 dr->num_regs = num_regs;
4693 dr->base = base_reg;
4694 drpp = &dr->next;
4695 base_reg += num_regs;
4696
4697 if (hash_insert (md.dynreg_hash, name, dr))
4698 {
4699 as_bad (_("Attempt to redefine register set `%s'"), name);
4700 obstack_free (&notes, name);
4701 goto err;
4702 }
4703
4704 if (*input_line_pointer != ',')
4705 break;
4706 ++input_line_pointer; /* skip comma */
4707 SKIP_WHITESPACE ();
4708 }
4709 demand_empty_rest_of_line ();
4710 return;
4711
4712 err:
4713 ignore_rest_of_line ();
4714 }
4715
4716 static void
4717 dot_byteorder (int byteorder)
4718 {
4719 segment_info_type *seginfo = seg_info (now_seg);
4720
4721 if (byteorder == -1)
4722 {
4723 if (seginfo->tc_segment_info_data.endian == 0)
4724 seginfo->tc_segment_info_data.endian = default_big_endian ? 1 : 2;
4725 byteorder = seginfo->tc_segment_info_data.endian == 1;
4726 }
4727 else
4728 seginfo->tc_segment_info_data.endian = byteorder ? 1 : 2;
4729
4730 if (target_big_endian != byteorder)
4731 {
4732 target_big_endian = byteorder;
4733 if (target_big_endian)
4734 {
4735 ia64_number_to_chars = number_to_chars_bigendian;
4736 ia64_float_to_chars = ia64_float_to_chars_bigendian;
4737 }
4738 else
4739 {
4740 ia64_number_to_chars = number_to_chars_littleendian;
4741 ia64_float_to_chars = ia64_float_to_chars_littleendian;
4742 }
4743 }
4744 }
4745
4746 static void
4747 dot_psr (int dummy ATTRIBUTE_UNUSED)
4748 {
4749 char *option;
4750 int ch;
4751
4752 while (1)
4753 {
4754 ch = get_symbol_name (&option);
4755 if (strcmp (option, "lsb") == 0)
4756 md.flags &= ~EF_IA_64_BE;
4757 else if (strcmp (option, "msb") == 0)
4758 md.flags |= EF_IA_64_BE;
4759 else if (strcmp (option, "abi32") == 0)
4760 md.flags &= ~EF_IA_64_ABI64;
4761 else if (strcmp (option, "abi64") == 0)
4762 md.flags |= EF_IA_64_ABI64;
4763 else
4764 as_bad (_("Unknown psr option `%s'"), option);
4765 *input_line_pointer = ch;
4766
4767 SKIP_WHITESPACE_AFTER_NAME ();
4768 if (*input_line_pointer != ',')
4769 break;
4770
4771 ++input_line_pointer;
4772 SKIP_WHITESPACE ();
4773 }
4774 demand_empty_rest_of_line ();
4775 }
4776
4777 static void
4778 dot_ln (int dummy ATTRIBUTE_UNUSED)
4779 {
4780 new_logical_line (0, get_absolute_expression ());
4781 demand_empty_rest_of_line ();
4782 }
4783
4784 static void
4785 cross_section (int ref, void (*builder) (int), int ua)
4786 {
4787 char *start, *end;
4788 int saved_auto_align;
4789 unsigned int section_count;
4790 char *name;
4791 char c;
4792
4793 SKIP_WHITESPACE ();
4794 start = input_line_pointer;
4795 c = get_symbol_name (&name);
4796 if (input_line_pointer == start)
4797 {
4798 as_bad (_("Missing section name"));
4799 ignore_rest_of_line ();
4800 return;
4801 }
4802 * input_line_pointer = c;
4803 SKIP_WHITESPACE_AFTER_NAME ();
4804 end = input_line_pointer;
4805 if (*input_line_pointer != ',')
4806 {
4807 as_bad (_("Comma expected after section name"));
4808 ignore_rest_of_line ();
4809 return;
4810 }
4811 *end = '\0';
4812 end = input_line_pointer + 1; /* skip comma */
4813 input_line_pointer = start;
4814 md.keep_pending_output = 1;
4815 section_count = bfd_count_sections (stdoutput);
4816 obj_elf_section (0);
4817 if (section_count != bfd_count_sections (stdoutput))
4818 as_warn (_("Creating sections with .xdataN/.xrealN/.xstringZ is deprecated."));
4819 input_line_pointer = end;
4820 saved_auto_align = md.auto_align;
4821 if (ua)
4822 md.auto_align = 0;
4823 (*builder) (ref);
4824 if (ua)
4825 md.auto_align = saved_auto_align;
4826 obj_elf_previous (0);
4827 md.keep_pending_output = 0;
4828 }
4829
4830 static void
4831 dot_xdata (int size)
4832 {
4833 cross_section (size, cons, 0);
4834 }
4835
4836 /* Why doesn't float_cons() call md_cons_align() the way cons() does? */
4837
4838 static void
4839 stmt_float_cons (int kind)
4840 {
4841 size_t alignment;
4842
4843 switch (kind)
4844 {
4845 case 'd':
4846 alignment = 8;
4847 break;
4848
4849 case 'x':
4850 case 'X':
4851 alignment = 16;
4852 break;
4853
4854 case 'f':
4855 default:
4856 alignment = 4;
4857 break;
4858 }
4859 ia64_do_align (alignment);
4860 float_cons (kind);
4861 }
4862
4863 static void
4864 stmt_cons_ua (int size)
4865 {
4866 int saved_auto_align = md.auto_align;
4867
4868 md.auto_align = 0;
4869 cons (size);
4870 md.auto_align = saved_auto_align;
4871 }
4872
4873 static void
4874 dot_xfloat_cons (int kind)
4875 {
4876 cross_section (kind, stmt_float_cons, 0);
4877 }
4878
4879 static void
4880 dot_xstringer (int zero)
4881 {
4882 cross_section (zero, stringer, 0);
4883 }
4884
4885 static void
4886 dot_xdata_ua (int size)
4887 {
4888 cross_section (size, cons, 1);
4889 }
4890
4891 static void
4892 dot_xfloat_cons_ua (int kind)
4893 {
4894 cross_section (kind, float_cons, 1);
4895 }
4896
4897 /* .reg.val <regname>,value */
4898
4899 static void
4900 dot_reg_val (int dummy ATTRIBUTE_UNUSED)
4901 {
4902 expressionS reg;
4903
4904 expression_and_evaluate (&reg);
4905 if (reg.X_op != O_register)
4906 {
4907 as_bad (_("Register name expected"));
4908 ignore_rest_of_line ();
4909 }
4910 else if (*input_line_pointer++ != ',')
4911 {
4912 as_bad (_("Comma expected"));
4913 ignore_rest_of_line ();
4914 }
4915 else
4916 {
4917 valueT value = get_absolute_expression ();
4918 int regno = reg.X_add_number;
4919 if (regno <= REG_GR || regno > REG_GR + 127)
4920 as_warn (_("Register value annotation ignored"));
4921 else
4922 {
4923 gr_values[regno - REG_GR].known = 1;
4924 gr_values[regno - REG_GR].value = value;
4925 gr_values[regno - REG_GR].path = md.path;
4926 }
4927 }
4928 demand_empty_rest_of_line ();
4929 }
4930
4931 /*
4932 .serialize.data
4933 .serialize.instruction
4934 */
4935 static void
4936 dot_serialize (int type)
4937 {
4938 insn_group_break (0, 0, 0);
4939 if (type)
4940 instruction_serialization ();
4941 else
4942 data_serialization ();
4943 insn_group_break (0, 0, 0);
4944 demand_empty_rest_of_line ();
4945 }
4946
4947 /* select dv checking mode
4948 .auto
4949 .explicit
4950 .default
4951
4952 A stop is inserted when changing modes
4953 */
4954
4955 static void
4956 dot_dv_mode (int type)
4957 {
4958 if (md.manual_bundling)
4959 as_warn (_("Directive invalid within a bundle"));
4960
4961 if (type == 'E' || type == 'A')
4962 md.mode_explicitly_set = 0;
4963 else
4964 md.mode_explicitly_set = 1;
4965
4966 md.detect_dv = 1;
4967 switch (type)
4968 {
4969 case 'A':
4970 case 'a':
4971 if (md.explicit_mode)
4972 insn_group_break (1, 0, 0);
4973 md.explicit_mode = 0;
4974 break;
4975 case 'E':
4976 case 'e':
4977 if (!md.explicit_mode)
4978 insn_group_break (1, 0, 0);
4979 md.explicit_mode = 1;
4980 break;
4981 default:
4982 case 'd':
4983 if (md.explicit_mode != md.default_explicit_mode)
4984 insn_group_break (1, 0, 0);
4985 md.explicit_mode = md.default_explicit_mode;
4986 md.mode_explicitly_set = 0;
4987 break;
4988 }
4989 }
4990
4991 static void
4992 print_prmask (valueT mask)
4993 {
4994 int regno;
4995 const char *comma = "";
4996 for (regno = 0; regno < 64; regno++)
4997 {
4998 if (mask & ((valueT) 1 << regno))
4999 {
5000 fprintf (stderr, "%s p%d", comma, regno);
5001 comma = ",";
5002 }
5003 }
5004 }
5005
5006 /*
5007 .pred.rel.clear [p1 [,p2 [,...]]] (also .pred.rel "clear" or @clear)
5008 .pred.rel.imply p1, p2 (also .pred.rel "imply" or @imply)
5009 .pred.rel.mutex p1, p2 [,...] (also .pred.rel "mutex" or @mutex)
5010 .pred.safe_across_calls p1 [, p2 [,...]]
5011 */
5012
5013 static void
5014 dot_pred_rel (int type)
5015 {
5016 valueT mask = 0;
5017 int count = 0;
5018 int p1 = -1, p2 = -1;
5019
5020 if (type == 0)
5021 {
5022 if (*input_line_pointer == '"')
5023 {
5024 int len;
5025 char *form = demand_copy_C_string (&len);
5026
5027 if (strcmp (form, "mutex") == 0)
5028 type = 'm';
5029 else if (strcmp (form, "clear") == 0)
5030 type = 'c';
5031 else if (strcmp (form, "imply") == 0)
5032 type = 'i';
5033 obstack_free (&notes, form);
5034 }
5035 else if (*input_line_pointer == '@')
5036 {
5037 char *form;
5038 char c;
5039
5040 ++input_line_pointer;
5041 c = get_symbol_name (&form);
5042
5043 if (strcmp (form, "mutex") == 0)
5044 type = 'm';
5045 else if (strcmp (form, "clear") == 0)
5046 type = 'c';
5047 else if (strcmp (form, "imply") == 0)
5048 type = 'i';
5049 (void) restore_line_pointer (c);
5050 }
5051 else
5052 {
5053 as_bad (_("Missing predicate relation type"));
5054 ignore_rest_of_line ();
5055 return;
5056 }
5057 if (type == 0)
5058 {
5059 as_bad (_("Unrecognized predicate relation type"));
5060 ignore_rest_of_line ();
5061 return;
5062 }
5063 if (*input_line_pointer == ',')
5064 ++input_line_pointer;
5065 SKIP_WHITESPACE ();
5066 }
5067
5068 while (1)
5069 {
5070 valueT bits = 1;
5071 int sep, regno;
5072 expressionS pr, *pr1, *pr2;
5073
5074 sep = parse_operand_and_eval (&pr, ',');
5075 if (pr.X_op == O_register
5076 && pr.X_add_number >= REG_P
5077 && pr.X_add_number <= REG_P + 63)
5078 {
5079 regno = pr.X_add_number - REG_P;
5080 bits <<= regno;
5081 count++;
5082 if (p1 == -1)
5083 p1 = regno;
5084 else if (p2 == -1)
5085 p2 = regno;
5086 }
5087 else if (type != 'i'
5088 && pr.X_op == O_subtract
5089 && (pr1 = symbol_get_value_expression (pr.X_add_symbol))
5090 && pr1->X_op == O_register
5091 && pr1->X_add_number >= REG_P
5092 && pr1->X_add_number <= REG_P + 63
5093 && (pr2 = symbol_get_value_expression (pr.X_op_symbol))
5094 && pr2->X_op == O_register
5095 && pr2->X_add_number >= REG_P
5096 && pr2->X_add_number <= REG_P + 63)
5097 {
5098 /* It's a range. */
5099 int stop;
5100
5101 regno = pr1->X_add_number - REG_P;
5102 stop = pr2->X_add_number - REG_P;
5103 if (regno >= stop)
5104 {
5105 as_bad (_("Bad register range"));
5106 ignore_rest_of_line ();
5107 return;
5108 }
5109 bits = ((bits << stop) << 1) - (bits << regno);
5110 count += stop - regno + 1;
5111 }
5112 else
5113 {
5114 as_bad (_("Predicate register expected"));
5115 ignore_rest_of_line ();
5116 return;
5117 }
5118 if (mask & bits)
5119 as_warn (_("Duplicate predicate register ignored"));
5120 mask |= bits;
5121 if (sep != ',')
5122 break;
5123 }
5124
5125 switch (type)
5126 {
5127 case 'c':
5128 if (count == 0)
5129 mask = ~(valueT) 0;
5130 clear_qp_mutex (mask);
5131 clear_qp_implies (mask, (valueT) 0);
5132 break;
5133 case 'i':
5134 if (count != 2 || p1 == -1 || p2 == -1)
5135 as_bad (_("Predicate source and target required"));
5136 else if (p1 == 0 || p2 == 0)
5137 as_bad (_("Use of p0 is not valid in this context"));
5138 else
5139 add_qp_imply (p1, p2);
5140 break;
5141 case 'm':
5142 if (count < 2)
5143 {
5144 as_bad (_("At least two PR arguments expected"));
5145 break;
5146 }
5147 else if (mask & 1)
5148 {
5149 as_bad (_("Use of p0 is not valid in this context"));
5150 break;
5151 }
5152 add_qp_mutex (mask);
5153 break;
5154 case 's':
5155 /* note that we don't override any existing relations */
5156 if (count == 0)
5157 {
5158 as_bad (_("At least one PR argument expected"));
5159 break;
5160 }
5161 if (md.debug_dv)
5162 {
5163 fprintf (stderr, "Safe across calls: ");
5164 print_prmask (mask);
5165 fprintf (stderr, "\n");
5166 }
5167 qp_safe_across_calls = mask;
5168 break;
5169 }
5170 demand_empty_rest_of_line ();
5171 }
5172
5173 /* .entry label [, label [, ...]]
5174 Hint to DV code that the given labels are to be considered entry points.
5175 Otherwise, only global labels are considered entry points. */
5176
5177 static void
5178 dot_entry (int dummy ATTRIBUTE_UNUSED)
5179 {
5180 const char *err;
5181 char *name;
5182 int c;
5183 symbolS *symbolP;
5184
5185 do
5186 {
5187 c = get_symbol_name (&name);
5188 symbolP = symbol_find_or_make (name);
5189
5190 err = hash_insert (md.entry_hash, S_GET_NAME (symbolP), (void *) symbolP);
5191 if (err)
5192 as_fatal (_("Inserting \"%s\" into entry hint table failed: %s"),
5193 name, err);
5194
5195 *input_line_pointer = c;
5196 SKIP_WHITESPACE_AFTER_NAME ();
5197 c = *input_line_pointer;
5198 if (c == ',')
5199 {
5200 input_line_pointer++;
5201 SKIP_WHITESPACE ();
5202 if (*input_line_pointer == '\n')
5203 c = '\n';
5204 }
5205 }
5206 while (c == ',');
5207
5208 demand_empty_rest_of_line ();
5209 }
5210
5211 /* .mem.offset offset, base
5212 "base" is used to distinguish between offsets from a different base. */
5213
5214 static void
5215 dot_mem_offset (int dummy ATTRIBUTE_UNUSED)
5216 {
5217 md.mem_offset.hint = 1;
5218 md.mem_offset.offset = get_absolute_expression ();
5219 if (*input_line_pointer != ',')
5220 {
5221 as_bad (_("Comma expected"));
5222 ignore_rest_of_line ();
5223 return;
5224 }
5225 ++input_line_pointer;
5226 md.mem_offset.base = get_absolute_expression ();
5227 demand_empty_rest_of_line ();
5228 }
5229
5230 /* ia64-specific pseudo-ops: */
5231 const pseudo_typeS md_pseudo_table[] =
5232 {
5233 { "radix", dot_radix, 0 },
5234 { "lcomm", s_lcomm_bytes, 1 },
5235 { "loc", dot_loc, 0 },
5236 { "bss", dot_special_section, SPECIAL_SECTION_BSS },
5237 { "sbss", dot_special_section, SPECIAL_SECTION_SBSS },
5238 { "sdata", dot_special_section, SPECIAL_SECTION_SDATA },
5239 { "rodata", dot_special_section, SPECIAL_SECTION_RODATA },
5240 { "comment", dot_special_section, SPECIAL_SECTION_COMMENT },
5241 { "ia_64.unwind", dot_special_section, SPECIAL_SECTION_UNWIND },
5242 { "ia_64.unwind_info", dot_special_section, SPECIAL_SECTION_UNWIND_INFO },
5243 { "init_array", dot_special_section, SPECIAL_SECTION_INIT_ARRAY },
5244 { "fini_array", dot_special_section, SPECIAL_SECTION_FINI_ARRAY },
5245 { "proc", dot_proc, 0 },
5246 { "body", dot_body, 0 },
5247 { "prologue", dot_prologue, 0 },
5248 { "endp", dot_endp, 0 },
5249
5250 { "fframe", dot_fframe, 0 },
5251 { "vframe", dot_vframe, 0 },
5252 { "vframesp", dot_vframesp, 0 },
5253 { "vframepsp", dot_vframesp, 1 },
5254 { "save", dot_save, 0 },
5255 { "restore", dot_restore, 0 },
5256 { "restorereg", dot_restorereg, 0 },
5257 { "restorereg.p", dot_restorereg, 1 },
5258 { "handlerdata", dot_handlerdata, 0 },
5259 { "unwentry", dot_unwentry, 0 },
5260 { "altrp", dot_altrp, 0 },
5261 { "savesp", dot_savemem, 0 },
5262 { "savepsp", dot_savemem, 1 },
5263 { "save.g", dot_saveg, 0 },
5264 { "save.f", dot_savef, 0 },
5265 { "save.b", dot_saveb, 0 },
5266 { "save.gf", dot_savegf, 0 },
5267 { "spill", dot_spill, 0 },
5268 { "spillreg", dot_spillreg, 0 },
5269 { "spillsp", dot_spillmem, 0 },
5270 { "spillpsp", dot_spillmem, 1 },
5271 { "spillreg.p", dot_spillreg, 1 },
5272 { "spillsp.p", dot_spillmem, ~0 },
5273 { "spillpsp.p", dot_spillmem, ~1 },
5274 { "label_state", dot_label_state, 0 },
5275 { "copy_state", dot_copy_state, 0 },
5276 { "unwabi", dot_unwabi, 0 },
5277 { "personality", dot_personality, 0 },
5278 { "mii", dot_template, 0x0 },
5279 { "mli", dot_template, 0x2 }, /* old format, for compatibility */
5280 { "mlx", dot_template, 0x2 },
5281 { "mmi", dot_template, 0x4 },
5282 { "mfi", dot_template, 0x6 },
5283 { "mmf", dot_template, 0x7 },
5284 { "mib", dot_template, 0x8 },
5285 { "mbb", dot_template, 0x9 },
5286 { "bbb", dot_template, 0xb },
5287 { "mmb", dot_template, 0xc },
5288 { "mfb", dot_template, 0xe },
5289 { "align", dot_align, 0 },
5290 { "regstk", dot_regstk, 0 },
5291 { "rotr", dot_rot, DYNREG_GR },
5292 { "rotf", dot_rot, DYNREG_FR },
5293 { "rotp", dot_rot, DYNREG_PR },
5294 { "lsb", dot_byteorder, 0 },
5295 { "msb", dot_byteorder, 1 },
5296 { "psr", dot_psr, 0 },
5297 { "alias", dot_alias, 0 },
5298 { "secalias", dot_alias, 1 },
5299 { "ln", dot_ln, 0 }, /* source line info (for debugging) */
5300
5301 { "xdata1", dot_xdata, 1 },
5302 { "xdata2", dot_xdata, 2 },
5303 { "xdata4", dot_xdata, 4 },
5304 { "xdata8", dot_xdata, 8 },
5305 { "xdata16", dot_xdata, 16 },
5306 { "xreal4", dot_xfloat_cons, 'f' },
5307 { "xreal8", dot_xfloat_cons, 'd' },
5308 { "xreal10", dot_xfloat_cons, 'x' },
5309 { "xreal16", dot_xfloat_cons, 'X' },
5310 { "xstring", dot_xstringer, 8 + 0 },
5311 { "xstringz", dot_xstringer, 8 + 1 },
5312
5313 /* unaligned versions: */
5314 { "xdata2.ua", dot_xdata_ua, 2 },
5315 { "xdata4.ua", dot_xdata_ua, 4 },
5316 { "xdata8.ua", dot_xdata_ua, 8 },
5317 { "xdata16.ua", dot_xdata_ua, 16 },
5318 { "xreal4.ua", dot_xfloat_cons_ua, 'f' },
5319 { "xreal8.ua", dot_xfloat_cons_ua, 'd' },
5320 { "xreal10.ua", dot_xfloat_cons_ua, 'x' },
5321 { "xreal16.ua", dot_xfloat_cons_ua, 'X' },
5322
5323 /* annotations/DV checking support */
5324 { "entry", dot_entry, 0 },
5325 { "mem.offset", dot_mem_offset, 0 },
5326 { "pred.rel", dot_pred_rel, 0 },
5327 { "pred.rel.clear", dot_pred_rel, 'c' },
5328 { "pred.rel.imply", dot_pred_rel, 'i' },
5329 { "pred.rel.mutex", dot_pred_rel, 'm' },
5330 { "pred.safe_across_calls", dot_pred_rel, 's' },
5331 { "reg.val", dot_reg_val, 0 },
5332 { "serialize.data", dot_serialize, 0 },
5333 { "serialize.instruction", dot_serialize, 1 },
5334 { "auto", dot_dv_mode, 'a' },
5335 { "explicit", dot_dv_mode, 'e' },
5336 { "default", dot_dv_mode, 'd' },
5337
5338 /* ??? These are needed to make gas/testsuite/gas/elf/ehopt.s work.
5339 IA-64 aligns data allocation pseudo-ops by default, so we have to
5340 tell it that these ones are supposed to be unaligned. Long term,
5341 should rewrite so that only IA-64 specific data allocation pseudo-ops
5342 are aligned by default. */
5343 {"2byte", stmt_cons_ua, 2},
5344 {"4byte", stmt_cons_ua, 4},
5345 {"8byte", stmt_cons_ua, 8},
5346
5347 #ifdef TE_VMS
5348 {"vms_common", obj_elf_vms_common, 0},
5349 #endif
5350
5351 { NULL, 0, 0 }
5352 };
5353
5354 static const struct pseudo_opcode
5355 {
5356 const char *name;
5357 void (*handler) (int);
5358 int arg;
5359 }
5360 pseudo_opcode[] =
5361 {
5362 /* these are more like pseudo-ops, but don't start with a dot */
5363 { "data1", cons, 1 },
5364 { "data2", cons, 2 },
5365 { "data4", cons, 4 },
5366 { "data8", cons, 8 },
5367 { "data16", cons, 16 },
5368 { "real4", stmt_float_cons, 'f' },
5369 { "real8", stmt_float_cons, 'd' },
5370 { "real10", stmt_float_cons, 'x' },
5371 { "real16", stmt_float_cons, 'X' },
5372 { "string", stringer, 8 + 0 },
5373 { "stringz", stringer, 8 + 1 },
5374
5375 /* unaligned versions: */
5376 { "data2.ua", stmt_cons_ua, 2 },
5377 { "data4.ua", stmt_cons_ua, 4 },
5378 { "data8.ua", stmt_cons_ua, 8 },
5379 { "data16.ua", stmt_cons_ua, 16 },
5380 { "real4.ua", float_cons, 'f' },
5381 { "real8.ua", float_cons, 'd' },
5382 { "real10.ua", float_cons, 'x' },
5383 { "real16.ua", float_cons, 'X' },
5384 };
5385
5386 /* Declare a register by creating a symbol for it and entering it in
5387 the symbol table. */
5388
5389 static symbolS *
5390 declare_register (const char *name, unsigned int regnum)
5391 {
5392 const char *err;
5393 symbolS *sym;
5394
5395 sym = symbol_create (name, reg_section, regnum, &zero_address_frag);
5396
5397 err = hash_insert (md.reg_hash, S_GET_NAME (sym), (void *) sym);
5398 if (err)
5399 as_fatal ("Inserting \"%s\" into register table failed: %s",
5400 name, err);
5401
5402 return sym;
5403 }
5404
5405 static void
5406 declare_register_set (const char *prefix,
5407 unsigned int num_regs,
5408 unsigned int base_regnum)
5409 {
5410 char name[8];
5411 unsigned int i;
5412
5413 for (i = 0; i < num_regs; ++i)
5414 {
5415 snprintf (name, sizeof (name), "%s%u", prefix, i);
5416 declare_register (name, base_regnum + i);
5417 }
5418 }
5419
5420 static unsigned int
5421 operand_width (enum ia64_opnd opnd)
5422 {
5423 const struct ia64_operand *odesc = &elf64_ia64_operands[opnd];
5424 unsigned int bits = 0;
5425 int i;
5426
5427 bits = 0;
5428 for (i = 0; i < NELEMS (odesc->field) && odesc->field[i].bits; ++i)
5429 bits += odesc->field[i].bits;
5430
5431 return bits;
5432 }
5433
5434 static enum operand_match_result
5435 operand_match (const struct ia64_opcode *idesc, int res_index, expressionS *e)
5436 {
5437 enum ia64_opnd opnd = idesc->operands[res_index];
5438 int bits, relocatable = 0;
5439 struct insn_fix *fix;
5440 bfd_signed_vma val;
5441
5442 switch (opnd)
5443 {
5444 /* constants: */
5445
5446 case IA64_OPND_AR_CCV:
5447 if (e->X_op == O_register && e->X_add_number == REG_AR + 32)
5448 return OPERAND_MATCH;
5449 break;
5450
5451 case IA64_OPND_AR_CSD:
5452 if (e->X_op == O_register && e->X_add_number == REG_AR + 25)
5453 return OPERAND_MATCH;
5454 break;
5455
5456 case IA64_OPND_AR_PFS:
5457 if (e->X_op == O_register && e->X_add_number == REG_AR + 64)
5458 return OPERAND_MATCH;
5459 break;
5460
5461 case IA64_OPND_GR0:
5462 if (e->X_op == O_register && e->X_add_number == REG_GR + 0)
5463 return OPERAND_MATCH;
5464 break;
5465
5466 case IA64_OPND_IP:
5467 if (e->X_op == O_register && e->X_add_number == REG_IP)
5468 return OPERAND_MATCH;
5469 break;
5470
5471 case IA64_OPND_PR:
5472 if (e->X_op == O_register && e->X_add_number == REG_PR)
5473 return OPERAND_MATCH;
5474 break;
5475
5476 case IA64_OPND_PR_ROT:
5477 if (e->X_op == O_register && e->X_add_number == REG_PR_ROT)
5478 return OPERAND_MATCH;
5479 break;
5480
5481 case IA64_OPND_PSR:
5482 if (e->X_op == O_register && e->X_add_number == REG_PSR)
5483 return OPERAND_MATCH;
5484 break;
5485
5486 case IA64_OPND_PSR_L:
5487 if (e->X_op == O_register && e->X_add_number == REG_PSR_L)
5488 return OPERAND_MATCH;
5489 break;
5490
5491 case IA64_OPND_PSR_UM:
5492 if (e->X_op == O_register && e->X_add_number == REG_PSR_UM)
5493 return OPERAND_MATCH;
5494 break;
5495
5496 case IA64_OPND_C1:
5497 if (e->X_op == O_constant)
5498 {
5499 if (e->X_add_number == 1)
5500 return OPERAND_MATCH;
5501 else
5502 return OPERAND_OUT_OF_RANGE;
5503 }
5504 break;
5505
5506 case IA64_OPND_C8:
5507 if (e->X_op == O_constant)
5508 {
5509 if (e->X_add_number == 8)
5510 return OPERAND_MATCH;
5511 else
5512 return OPERAND_OUT_OF_RANGE;
5513 }
5514 break;
5515
5516 case IA64_OPND_C16:
5517 if (e->X_op == O_constant)
5518 {
5519 if (e->X_add_number == 16)
5520 return OPERAND_MATCH;
5521 else
5522 return OPERAND_OUT_OF_RANGE;
5523 }
5524 break;
5525
5526 /* register operands: */
5527
5528 case IA64_OPND_AR3:
5529 if (e->X_op == O_register && e->X_add_number >= REG_AR
5530 && e->X_add_number < REG_AR + 128)
5531 return OPERAND_MATCH;
5532 break;
5533
5534 case IA64_OPND_B1:
5535 case IA64_OPND_B2:
5536 if (e->X_op == O_register && e->X_add_number >= REG_BR
5537 && e->X_add_number < REG_BR + 8)
5538 return OPERAND_MATCH;
5539 break;
5540
5541 case IA64_OPND_CR3:
5542 if (e->X_op == O_register && e->X_add_number >= REG_CR
5543 && e->X_add_number < REG_CR + 128)
5544 return OPERAND_MATCH;
5545 break;
5546
5547 case IA64_OPND_DAHR3:
5548 if (e->X_op == O_register && e->X_add_number >= REG_DAHR
5549 && e->X_add_number < REG_DAHR + 8)
5550 return OPERAND_MATCH;
5551 break;
5552
5553 case IA64_OPND_F1:
5554 case IA64_OPND_F2:
5555 case IA64_OPND_F3:
5556 case IA64_OPND_F4:
5557 if (e->X_op == O_register && e->X_add_number >= REG_FR
5558 && e->X_add_number < REG_FR + 128)
5559 return OPERAND_MATCH;
5560 break;
5561
5562 case IA64_OPND_P1:
5563 case IA64_OPND_P2:
5564 if (e->X_op == O_register && e->X_add_number >= REG_P
5565 && e->X_add_number < REG_P + 64)
5566 return OPERAND_MATCH;
5567 break;
5568
5569 case IA64_OPND_R1:
5570 case IA64_OPND_R2:
5571 case IA64_OPND_R3:
5572 if (e->X_op == O_register && e->X_add_number >= REG_GR
5573 && e->X_add_number < REG_GR + 128)
5574 return OPERAND_MATCH;
5575 break;
5576
5577 case IA64_OPND_R3_2:
5578 if (e->X_op == O_register && e->X_add_number >= REG_GR)
5579 {
5580 if (e->X_add_number < REG_GR + 4)
5581 return OPERAND_MATCH;
5582 else if (e->X_add_number < REG_GR + 128)
5583 return OPERAND_OUT_OF_RANGE;
5584 }
5585 break;
5586
5587 /* indirect operands: */
5588 case IA64_OPND_CPUID_R3:
5589 case IA64_OPND_DBR_R3:
5590 case IA64_OPND_DTR_R3:
5591 case IA64_OPND_ITR_R3:
5592 case IA64_OPND_IBR_R3:
5593 case IA64_OPND_MSR_R3:
5594 case IA64_OPND_PKR_R3:
5595 case IA64_OPND_PMC_R3:
5596 case IA64_OPND_PMD_R3:
5597 case IA64_OPND_DAHR_R3:
5598 case IA64_OPND_RR_R3:
5599 if (e->X_op == O_index && e->X_op_symbol
5600 && (S_GET_VALUE (e->X_op_symbol) - IND_CPUID
5601 == opnd - IA64_OPND_CPUID_R3))
5602 return OPERAND_MATCH;
5603 break;
5604
5605 case IA64_OPND_MR3:
5606 if (e->X_op == O_index && !e->X_op_symbol)
5607 return OPERAND_MATCH;
5608 break;
5609
5610 /* immediate operands: */
5611 case IA64_OPND_CNT2a:
5612 case IA64_OPND_LEN4:
5613 case IA64_OPND_LEN6:
5614 bits = operand_width (idesc->operands[res_index]);
5615 if (e->X_op == O_constant)
5616 {
5617 if ((bfd_vma) (e->X_add_number - 1) < ((bfd_vma) 1 << bits))
5618 return OPERAND_MATCH;
5619 else
5620 return OPERAND_OUT_OF_RANGE;
5621 }
5622 break;
5623
5624 case IA64_OPND_CNT2b:
5625 if (e->X_op == O_constant)
5626 {
5627 if ((bfd_vma) (e->X_add_number - 1) < 3)
5628 return OPERAND_MATCH;
5629 else
5630 return OPERAND_OUT_OF_RANGE;
5631 }
5632 break;
5633
5634 case IA64_OPND_CNT2c:
5635 val = e->X_add_number;
5636 if (e->X_op == O_constant)
5637 {
5638 if ((val == 0 || val == 7 || val == 15 || val == 16))
5639 return OPERAND_MATCH;
5640 else
5641 return OPERAND_OUT_OF_RANGE;
5642 }
5643 break;
5644
5645 case IA64_OPND_SOR:
5646 /* SOR must be an integer multiple of 8 */
5647 if (e->X_op == O_constant && e->X_add_number & 0x7)
5648 return OPERAND_OUT_OF_RANGE;
5649 case IA64_OPND_SOF:
5650 case IA64_OPND_SOL:
5651 if (e->X_op == O_constant)
5652 {
5653 if ((bfd_vma) e->X_add_number <= 96)
5654 return OPERAND_MATCH;
5655 else
5656 return OPERAND_OUT_OF_RANGE;
5657 }
5658 break;
5659
5660 case IA64_OPND_IMMU62:
5661 if (e->X_op == O_constant)
5662 {
5663 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << 62))
5664 return OPERAND_MATCH;
5665 else
5666 return OPERAND_OUT_OF_RANGE;
5667 }
5668 else
5669 {
5670 /* FIXME -- need 62-bit relocation type */
5671 as_bad (_("62-bit relocation not yet implemented"));
5672 }
5673 break;
5674
5675 case IA64_OPND_IMMU64:
5676 if (e->X_op == O_symbol || e->X_op == O_pseudo_fixup
5677 || e->X_op == O_subtract)
5678 {
5679 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5680 fix->code = BFD_RELOC_IA64_IMM64;
5681 if (e->X_op != O_subtract)
5682 {
5683 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5684 if (e->X_op == O_pseudo_fixup)
5685 e->X_op = O_symbol;
5686 }
5687
5688 fix->opnd = idesc->operands[res_index];
5689 fix->expr = *e;
5690 fix->is_pcrel = 0;
5691 ++CURR_SLOT.num_fixups;
5692 return OPERAND_MATCH;
5693 }
5694 else if (e->X_op == O_constant)
5695 return OPERAND_MATCH;
5696 break;
5697
5698 case IA64_OPND_IMMU5b:
5699 if (e->X_op == O_constant)
5700 {
5701 val = e->X_add_number;
5702 if (val >= 32 && val <= 63)
5703 return OPERAND_MATCH;
5704 else
5705 return OPERAND_OUT_OF_RANGE;
5706 }
5707 break;
5708
5709 case IA64_OPND_CCNT5:
5710 case IA64_OPND_CNT5:
5711 case IA64_OPND_CNT6:
5712 case IA64_OPND_CPOS6a:
5713 case IA64_OPND_CPOS6b:
5714 case IA64_OPND_CPOS6c:
5715 case IA64_OPND_IMMU2:
5716 case IA64_OPND_IMMU7a:
5717 case IA64_OPND_IMMU7b:
5718 case IA64_OPND_IMMU16:
5719 case IA64_OPND_IMMU19:
5720 case IA64_OPND_IMMU21:
5721 case IA64_OPND_IMMU24:
5722 case IA64_OPND_MBTYPE4:
5723 case IA64_OPND_MHTYPE8:
5724 case IA64_OPND_POS6:
5725 bits = operand_width (idesc->operands[res_index]);
5726 if (e->X_op == O_constant)
5727 {
5728 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5729 return OPERAND_MATCH;
5730 else
5731 return OPERAND_OUT_OF_RANGE;
5732 }
5733 break;
5734
5735 case IA64_OPND_IMMU9:
5736 bits = operand_width (idesc->operands[res_index]);
5737 if (e->X_op == O_constant)
5738 {
5739 if ((bfd_vma) e->X_add_number < ((bfd_vma) 1 << bits))
5740 {
5741 int lobits = e->X_add_number & 0x3;
5742 if (((bfd_vma) e->X_add_number & 0x3C) != 0 && lobits == 0)
5743 e->X_add_number |= (bfd_vma) 0x3;
5744 return OPERAND_MATCH;
5745 }
5746 else
5747 return OPERAND_OUT_OF_RANGE;
5748 }
5749 break;
5750
5751 case IA64_OPND_IMM44:
5752 /* least 16 bits must be zero */
5753 if ((e->X_add_number & 0xffff) != 0)
5754 /* XXX technically, this is wrong: we should not be issuing warning
5755 messages until we're sure this instruction pattern is going to
5756 be used! */
5757 as_warn (_("lower 16 bits of mask ignored"));
5758
5759 if (e->X_op == O_constant)
5760 {
5761 if (((e->X_add_number >= 0
5762 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 44))
5763 || (e->X_add_number < 0
5764 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 44))))
5765 {
5766 /* sign-extend */
5767 if (e->X_add_number >= 0
5768 && (e->X_add_number & ((bfd_vma) 1 << 43)) != 0)
5769 {
5770 e->X_add_number |= ~(((bfd_vma) 1 << 44) - 1);
5771 }
5772 return OPERAND_MATCH;
5773 }
5774 else
5775 return OPERAND_OUT_OF_RANGE;
5776 }
5777 break;
5778
5779 case IA64_OPND_IMM17:
5780 /* bit 0 is a don't care (pr0 is hardwired to 1) */
5781 if (e->X_op == O_constant)
5782 {
5783 if (((e->X_add_number >= 0
5784 && (bfd_vma) e->X_add_number < ((bfd_vma) 1 << 17))
5785 || (e->X_add_number < 0
5786 && (bfd_vma) -e->X_add_number <= ((bfd_vma) 1 << 17))))
5787 {
5788 /* sign-extend */
5789 if (e->X_add_number >= 0
5790 && (e->X_add_number & ((bfd_vma) 1 << 16)) != 0)
5791 {
5792 e->X_add_number |= ~(((bfd_vma) 1 << 17) - 1);
5793 }
5794 return OPERAND_MATCH;
5795 }
5796 else
5797 return OPERAND_OUT_OF_RANGE;
5798 }
5799 break;
5800
5801 case IA64_OPND_IMM14:
5802 case IA64_OPND_IMM22:
5803 relocatable = 1;
5804 case IA64_OPND_IMM1:
5805 case IA64_OPND_IMM8:
5806 case IA64_OPND_IMM8U4:
5807 case IA64_OPND_IMM8M1:
5808 case IA64_OPND_IMM8M1U4:
5809 case IA64_OPND_IMM8M1U8:
5810 case IA64_OPND_IMM9a:
5811 case IA64_OPND_IMM9b:
5812 bits = operand_width (idesc->operands[res_index]);
5813 if (relocatable && (e->X_op == O_symbol
5814 || e->X_op == O_subtract
5815 || e->X_op == O_pseudo_fixup))
5816 {
5817 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5818
5819 if (idesc->operands[res_index] == IA64_OPND_IMM14)
5820 fix->code = BFD_RELOC_IA64_IMM14;
5821 else
5822 fix->code = BFD_RELOC_IA64_IMM22;
5823
5824 if (e->X_op != O_subtract)
5825 {
5826 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5827 if (e->X_op == O_pseudo_fixup)
5828 e->X_op = O_symbol;
5829 }
5830
5831 fix->opnd = idesc->operands[res_index];
5832 fix->expr = *e;
5833 fix->is_pcrel = 0;
5834 ++CURR_SLOT.num_fixups;
5835 return OPERAND_MATCH;
5836 }
5837 else if (e->X_op != O_constant
5838 && ! (e->X_op == O_big && opnd == IA64_OPND_IMM8M1U8))
5839 return OPERAND_MISMATCH;
5840
5841 if (opnd == IA64_OPND_IMM8M1U4)
5842 {
5843 /* Zero is not valid for unsigned compares that take an adjusted
5844 constant immediate range. */
5845 if (e->X_add_number == 0)
5846 return OPERAND_OUT_OF_RANGE;
5847
5848 /* Sign-extend 32-bit unsigned numbers, so that the following range
5849 checks will work. */
5850 val = e->X_add_number;
5851 if (((val & (~(bfd_vma) 0 << 32)) == 0)
5852 && ((val & ((bfd_vma) 1 << 31)) != 0))
5853 val = ((val << 32) >> 32);
5854
5855 /* Check for 0x100000000. This is valid because
5856 0x100000000-1 is the same as ((uint32_t) -1). */
5857 if (val == ((bfd_signed_vma) 1 << 32))
5858 return OPERAND_MATCH;
5859
5860 val = val - 1;
5861 }
5862 else if (opnd == IA64_OPND_IMM8M1U8)
5863 {
5864 /* Zero is not valid for unsigned compares that take an adjusted
5865 constant immediate range. */
5866 if (e->X_add_number == 0)
5867 return OPERAND_OUT_OF_RANGE;
5868
5869 /* Check for 0x10000000000000000. */
5870 if (e->X_op == O_big)
5871 {
5872 if (generic_bignum[0] == 0
5873 && generic_bignum[1] == 0
5874 && generic_bignum[2] == 0
5875 && generic_bignum[3] == 0
5876 && generic_bignum[4] == 1)
5877 return OPERAND_MATCH;
5878 else
5879 return OPERAND_OUT_OF_RANGE;
5880 }
5881 else
5882 val = e->X_add_number - 1;
5883 }
5884 else if (opnd == IA64_OPND_IMM8M1)
5885 val = e->X_add_number - 1;
5886 else if (opnd == IA64_OPND_IMM8U4)
5887 {
5888 /* Sign-extend 32-bit unsigned numbers, so that the following range
5889 checks will work. */
5890 val = e->X_add_number;
5891 if (((val & (~(bfd_vma) 0 << 32)) == 0)
5892 && ((val & ((bfd_vma) 1 << 31)) != 0))
5893 val = ((val << 32) >> 32);
5894 }
5895 else
5896 val = e->X_add_number;
5897
5898 if ((val >= 0 && (bfd_vma) val < ((bfd_vma) 1 << (bits - 1)))
5899 || (val < 0 && (bfd_vma) -val <= ((bfd_vma) 1 << (bits - 1))))
5900 return OPERAND_MATCH;
5901 else
5902 return OPERAND_OUT_OF_RANGE;
5903
5904 case IA64_OPND_INC3:
5905 /* +/- 1, 4, 8, 16 */
5906 val = e->X_add_number;
5907 if (val < 0)
5908 val = -val;
5909 if (e->X_op == O_constant)
5910 {
5911 if ((val == 1 || val == 4 || val == 8 || val == 16))
5912 return OPERAND_MATCH;
5913 else
5914 return OPERAND_OUT_OF_RANGE;
5915 }
5916 break;
5917
5918 case IA64_OPND_TGT25:
5919 case IA64_OPND_TGT25b:
5920 case IA64_OPND_TGT25c:
5921 case IA64_OPND_TGT64:
5922 if (e->X_op == O_symbol)
5923 {
5924 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5925 if (opnd == IA64_OPND_TGT25)
5926 fix->code = BFD_RELOC_IA64_PCREL21F;
5927 else if (opnd == IA64_OPND_TGT25b)
5928 fix->code = BFD_RELOC_IA64_PCREL21M;
5929 else if (opnd == IA64_OPND_TGT25c)
5930 fix->code = BFD_RELOC_IA64_PCREL21B;
5931 else if (opnd == IA64_OPND_TGT64)
5932 fix->code = BFD_RELOC_IA64_PCREL60B;
5933 else
5934 abort ();
5935
5936 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5937 fix->opnd = idesc->operands[res_index];
5938 fix->expr = *e;
5939 fix->is_pcrel = 1;
5940 ++CURR_SLOT.num_fixups;
5941 return OPERAND_MATCH;
5942 }
5943 case IA64_OPND_TAG13:
5944 case IA64_OPND_TAG13b:
5945 switch (e->X_op)
5946 {
5947 case O_constant:
5948 return OPERAND_MATCH;
5949
5950 case O_symbol:
5951 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5952 /* There are no external relocs for TAG13/TAG13b fields, so we
5953 create a dummy reloc. This will not live past md_apply_fix. */
5954 fix->code = BFD_RELOC_UNUSED;
5955 fix->code = ia64_gen_real_reloc_type (e->X_op_symbol, fix->code);
5956 fix->opnd = idesc->operands[res_index];
5957 fix->expr = *e;
5958 fix->is_pcrel = 1;
5959 ++CURR_SLOT.num_fixups;
5960 return OPERAND_MATCH;
5961
5962 default:
5963 break;
5964 }
5965 break;
5966
5967 case IA64_OPND_LDXMOV:
5968 fix = CURR_SLOT.fixup + CURR_SLOT.num_fixups;
5969 fix->code = BFD_RELOC_IA64_LDXMOV;
5970 fix->opnd = idesc->operands[res_index];
5971 fix->expr = *e;
5972 fix->is_pcrel = 0;
5973 ++CURR_SLOT.num_fixups;
5974 return OPERAND_MATCH;
5975
5976 case IA64_OPND_STRD5b:
5977 if (e->X_op == O_constant)
5978 {
5979 /* 5-bit signed scaled by 64 */
5980 if ((e->X_add_number <= ( 0xf << 6 ))
5981 && (e->X_add_number >= -( 0x10 << 6 )))
5982 {
5983
5984 /* Must be a multiple of 64 */
5985 if ((e->X_add_number & 0x3f) != 0)
5986 as_warn (_("stride must be a multiple of 64; lower 6 bits ignored"));
5987
5988 e->X_add_number &= ~ 0x3f;
5989 return OPERAND_MATCH;
5990 }
5991 else
5992 return OPERAND_OUT_OF_RANGE;
5993 }
5994 break;
5995 case IA64_OPND_CNT6a:
5996 if (e->X_op == O_constant)
5997 {
5998 /* 6-bit unsigned biased by 1 -- count 0 is meaningless */
5999 if ((e->X_add_number <= 64)
6000 && (e->X_add_number > 0) )
6001 {
6002 return OPERAND_MATCH;
6003 }
6004 else
6005 return OPERAND_OUT_OF_RANGE;
6006 }
6007 break;
6008
6009 default:
6010 break;
6011 }
6012 return OPERAND_MISMATCH;
6013 }
6014
6015 static int
6016 parse_operand (expressionS *e, int more)
6017 {
6018 int sep = '\0';
6019
6020 memset (e, 0, sizeof (*e));
6021 e->X_op = O_absent;
6022 SKIP_WHITESPACE ();
6023 expression (e);
6024 sep = *input_line_pointer;
6025 if (more && (sep == ',' || sep == more))
6026 ++input_line_pointer;
6027 return sep;
6028 }
6029
6030 static int
6031 parse_operand_and_eval (expressionS *e, int more)
6032 {
6033 int sep = parse_operand (e, more);
6034 resolve_expression (e);
6035 return sep;
6036 }
6037
6038 static int
6039 parse_operand_maybe_eval (expressionS *e, int more, enum ia64_opnd op)
6040 {
6041 int sep = parse_operand (e, more);
6042 switch (op)
6043 {
6044 case IA64_OPND_IMM14:
6045 case IA64_OPND_IMM22:
6046 case IA64_OPND_IMMU64:
6047 case IA64_OPND_TGT25:
6048 case IA64_OPND_TGT25b:
6049 case IA64_OPND_TGT25c:
6050 case IA64_OPND_TGT64:
6051 case IA64_OPND_TAG13:
6052 case IA64_OPND_TAG13b:
6053 case IA64_OPND_LDXMOV:
6054 break;
6055 default:
6056 resolve_expression (e);
6057 break;
6058 }
6059 return sep;
6060 }
6061
6062 /* Returns the next entry in the opcode table that matches the one in
6063 IDESC, and frees the entry in IDESC. If no matching entry is
6064 found, NULL is returned instead. */
6065
6066 static struct ia64_opcode *
6067 get_next_opcode (struct ia64_opcode *idesc)
6068 {
6069 struct ia64_opcode *next = ia64_find_next_opcode (idesc);
6070 ia64_free_opcode (idesc);
6071 return next;
6072 }
6073
6074 /* Parse the operands for the opcode and find the opcode variant that
6075 matches the specified operands, or NULL if no match is possible. */
6076
6077 static struct ia64_opcode *
6078 parse_operands (struct ia64_opcode *idesc)
6079 {
6080 int i = 0, highest_unmatched_operand, num_operands = 0, num_outputs = 0;
6081 int error_pos, out_of_range_pos, curr_out_of_range_pos, sep = 0;
6082 int reg1, reg2;
6083 char reg_class;
6084 enum ia64_opnd expected_operand = IA64_OPND_NIL;
6085 enum operand_match_result result;
6086 char mnemonic[129];
6087 char *first_arg = 0, *end, *saved_input_pointer;
6088 unsigned int sof;
6089
6090 gas_assert (strlen (idesc->name) <= 128);
6091
6092 strcpy (mnemonic, idesc->name);
6093 if (idesc->operands[2] == IA64_OPND_SOF
6094 || idesc->operands[1] == IA64_OPND_SOF)
6095 {
6096 /* To make the common idiom "alloc loc?=ar.pfs,0,1,0,0" work, we
6097 can't parse the first operand until we have parsed the
6098 remaining operands of the "alloc" instruction. */
6099 SKIP_WHITESPACE ();
6100 first_arg = input_line_pointer;
6101 end = strchr (input_line_pointer, '=');
6102 if (!end)
6103 {
6104 as_bad (_("Expected separator `='"));
6105 return 0;
6106 }
6107 input_line_pointer = end + 1;
6108 ++i;
6109 ++num_outputs;
6110 }
6111
6112 for (; ; ++i)
6113 {
6114 if (i < NELEMS (CURR_SLOT.opnd))
6115 {
6116 sep = parse_operand_maybe_eval (CURR_SLOT.opnd + i, '=',
6117 idesc->operands[i]);
6118 if (CURR_SLOT.opnd[i].X_op == O_absent)
6119 break;
6120 }
6121 else
6122 {
6123 expressionS dummy;
6124
6125 sep = parse_operand (&dummy, '=');
6126 if (dummy.X_op == O_absent)
6127 break;
6128 }
6129
6130 ++num_operands;
6131
6132 if (sep != '=' && sep != ',')
6133 break;
6134
6135 if (sep == '=')
6136 {
6137 if (num_outputs > 0)
6138 as_bad (_("Duplicate equal sign (=) in instruction"));
6139 else
6140 num_outputs = i + 1;
6141 }
6142 }
6143 if (sep != '\0')
6144 {
6145 as_bad (_("Illegal operand separator `%c'"), sep);
6146 return 0;
6147 }
6148
6149 if (idesc->operands[2] == IA64_OPND_SOF
6150 || idesc->operands[1] == IA64_OPND_SOF)
6151 {
6152 /* Map alloc r1=ar.pfs,i,l,o,r to alloc r1=ar.pfs,(i+l+o),(i+l),r.
6153 Note, however, that due to that mapping operand numbers in error
6154 messages for any of the constant operands will not be correct. */
6155 know (strcmp (idesc->name, "alloc") == 0);
6156 /* The first operand hasn't been parsed/initialized, yet (but
6157 num_operands intentionally doesn't account for that). */
6158 i = num_operands > 4 ? 2 : 1;
6159 #define FORCE_CONST(n) (CURR_SLOT.opnd[n].X_op == O_constant \
6160 ? CURR_SLOT.opnd[n].X_add_number \
6161 : 0)
6162 sof = set_regstack (FORCE_CONST(i),
6163 FORCE_CONST(i + 1),
6164 FORCE_CONST(i + 2),
6165 FORCE_CONST(i + 3));
6166 #undef FORCE_CONST
6167
6168 /* now we can parse the first arg: */
6169 saved_input_pointer = input_line_pointer;
6170 input_line_pointer = first_arg;
6171 sep = parse_operand_maybe_eval (CURR_SLOT.opnd + 0, '=',
6172 idesc->operands[0]);
6173 if (sep != '=')
6174 --num_outputs; /* force error */
6175 input_line_pointer = saved_input_pointer;
6176
6177 CURR_SLOT.opnd[i].X_add_number = sof;
6178 if (CURR_SLOT.opnd[i + 1].X_op == O_constant
6179 && CURR_SLOT.opnd[i + 2].X_op == O_constant)
6180 CURR_SLOT.opnd[i + 1].X_add_number
6181 = sof - CURR_SLOT.opnd[i + 2].X_add_number;
6182 else
6183 CURR_SLOT.opnd[i + 1].X_op = O_illegal;
6184 CURR_SLOT.opnd[i + 2] = CURR_SLOT.opnd[i + 3];
6185 }
6186
6187 highest_unmatched_operand = -4;
6188 curr_out_of_range_pos = -1;
6189 error_pos = 0;
6190 for (; idesc; idesc = get_next_opcode (idesc))
6191 {
6192 if (num_outputs != idesc->num_outputs)
6193 continue; /* mismatch in # of outputs */
6194 if (highest_unmatched_operand < 0)
6195 highest_unmatched_operand |= 1;
6196 if (num_operands > NELEMS (idesc->operands)
6197 || (num_operands < NELEMS (idesc->operands)
6198 && idesc->operands[num_operands])
6199 || (num_operands > 0 && !idesc->operands[num_operands - 1]))
6200 continue; /* mismatch in number of arguments */
6201 if (highest_unmatched_operand < 0)
6202 highest_unmatched_operand |= 2;
6203
6204 CURR_SLOT.num_fixups = 0;
6205
6206 /* Try to match all operands. If we see an out-of-range operand,
6207 then continue trying to match the rest of the operands, since if
6208 the rest match, then this idesc will give the best error message. */
6209
6210 out_of_range_pos = -1;
6211 for (i = 0; i < num_operands && idesc->operands[i]; ++i)
6212 {
6213 result = operand_match (idesc, i, CURR_SLOT.opnd + i);
6214 if (result != OPERAND_MATCH)
6215 {
6216 if (result != OPERAND_OUT_OF_RANGE)
6217 break;
6218 if (out_of_range_pos < 0)
6219 /* remember position of the first out-of-range operand: */
6220 out_of_range_pos = i;
6221 }
6222 }
6223
6224 /* If we did not match all operands, or if at least one operand was
6225 out-of-range, then this idesc does not match. Keep track of which
6226 idesc matched the most operands before failing. If we have two
6227 idescs that failed at the same position, and one had an out-of-range
6228 operand, then prefer the out-of-range operand. Thus if we have
6229 "add r0=0x1000000,r1" we get an error saying the constant is out
6230 of range instead of an error saying that the constant should have been
6231 a register. */
6232
6233 if (i != num_operands || out_of_range_pos >= 0)
6234 {
6235 if (i > highest_unmatched_operand
6236 || (i == highest_unmatched_operand
6237 && out_of_range_pos > curr_out_of_range_pos))
6238 {
6239 highest_unmatched_operand = i;
6240 if (out_of_range_pos >= 0)
6241 {
6242 expected_operand = idesc->operands[out_of_range_pos];
6243 error_pos = out_of_range_pos;
6244 }
6245 else
6246 {
6247 expected_operand = idesc->operands[i];
6248 error_pos = i;
6249 }
6250 curr_out_of_range_pos = out_of_range_pos;
6251 }
6252 continue;
6253 }
6254
6255 break;
6256 }
6257 if (!idesc)
6258 {
6259 if (expected_operand)
6260 as_bad (_("Operand %u of `%s' should be %s"),
6261 error_pos + 1, mnemonic,
6262 elf64_ia64_operands[expected_operand].desc);
6263 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 1))
6264 as_bad (_("Wrong number of output operands"));
6265 else if (highest_unmatched_operand < 0 && !(highest_unmatched_operand & 2))
6266 as_bad (_("Wrong number of input operands"));
6267 else
6268 as_bad (_("Operand mismatch"));
6269 return 0;
6270 }
6271
6272 /* Check that the instruction doesn't use
6273 - r0, f0, or f1 as output operands
6274 - the same predicate twice as output operands
6275 - r0 as address of a base update load or store
6276 - the same GR as output and address of a base update load
6277 - two even- or two odd-numbered FRs as output operands of a floating
6278 point parallel load.
6279 At most two (conflicting) output (or output-like) operands can exist,
6280 (floating point parallel loads have three outputs, but the base register,
6281 if updated, cannot conflict with the actual outputs). */
6282 reg2 = reg1 = -1;
6283 for (i = 0; i < num_operands; ++i)
6284 {
6285 int regno = 0;
6286
6287 reg_class = 0;
6288 switch (idesc->operands[i])
6289 {
6290 case IA64_OPND_R1:
6291 case IA64_OPND_R2:
6292 case IA64_OPND_R3:
6293 if (i < num_outputs)
6294 {
6295 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6296 reg_class = 'r';
6297 else if (reg1 < 0)
6298 reg1 = CURR_SLOT.opnd[i].X_add_number;
6299 else if (reg2 < 0)
6300 reg2 = CURR_SLOT.opnd[i].X_add_number;
6301 }
6302 break;
6303 case IA64_OPND_P1:
6304 case IA64_OPND_P2:
6305 if (i < num_outputs)
6306 {
6307 if (reg1 < 0)
6308 reg1 = CURR_SLOT.opnd[i].X_add_number;
6309 else if (reg2 < 0)
6310 reg2 = CURR_SLOT.opnd[i].X_add_number;
6311 }
6312 break;
6313 case IA64_OPND_F1:
6314 case IA64_OPND_F2:
6315 case IA64_OPND_F3:
6316 case IA64_OPND_F4:
6317 if (i < num_outputs)
6318 {
6319 if (CURR_SLOT.opnd[i].X_add_number >= REG_FR
6320 && CURR_SLOT.opnd[i].X_add_number <= REG_FR + 1)
6321 {
6322 reg_class = 'f';
6323 regno = CURR_SLOT.opnd[i].X_add_number - REG_FR;
6324 }
6325 else if (reg1 < 0)
6326 reg1 = CURR_SLOT.opnd[i].X_add_number;
6327 else if (reg2 < 0)
6328 reg2 = CURR_SLOT.opnd[i].X_add_number;
6329 }
6330 break;
6331 case IA64_OPND_MR3:
6332 if (idesc->flags & IA64_OPCODE_POSTINC)
6333 {
6334 if (CURR_SLOT.opnd[i].X_add_number == REG_GR)
6335 reg_class = 'm';
6336 else if (reg1 < 0)
6337 reg1 = CURR_SLOT.opnd[i].X_add_number;
6338 else if (reg2 < 0)
6339 reg2 = CURR_SLOT.opnd[i].X_add_number;
6340 }
6341 break;
6342 default:
6343 break;
6344 }
6345 switch (reg_class)
6346 {
6347 case 0:
6348 break;
6349 default:
6350 as_warn (_("Invalid use of `%c%d' as output operand"), reg_class, regno);
6351 break;
6352 case 'm':
6353 as_warn (_("Invalid use of `r%d' as base update address operand"), regno);
6354 break;
6355 }
6356 }
6357 if (reg1 == reg2)
6358 {
6359 if (reg1 >= REG_GR && reg1 <= REG_GR + 127)
6360 {
6361 reg1 -= REG_GR;
6362 reg_class = 'r';
6363 }
6364 else if (reg1 >= REG_P && reg1 <= REG_P + 63)
6365 {
6366 reg1 -= REG_P;
6367 reg_class = 'p';
6368 }
6369 else if (reg1 >= REG_FR && reg1 <= REG_FR + 127)
6370 {
6371 reg1 -= REG_FR;
6372 reg_class = 'f';
6373 }
6374 else
6375 reg_class = 0;
6376 if (reg_class)
6377 as_warn (_("Invalid duplicate use of `%c%d'"), reg_class, reg1);
6378 }
6379 else if (((reg1 >= REG_FR && reg1 <= REG_FR + 31
6380 && reg2 >= REG_FR && reg2 <= REG_FR + 31)
6381 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6382 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127))
6383 && ! ((reg1 ^ reg2) & 1))
6384 as_warn (_("Invalid simultaneous use of `f%d' and `f%d'"),
6385 reg1 - REG_FR, reg2 - REG_FR);
6386 else if ((reg1 >= REG_FR && reg1 <= REG_FR + 31
6387 && reg2 >= REG_FR + 32 && reg2 <= REG_FR + 127)
6388 || (reg1 >= REG_FR + 32 && reg1 <= REG_FR + 127
6389 && reg2 >= REG_FR && reg2 <= REG_FR + 31))
6390 as_warn (_("Dangerous simultaneous use of `f%d' and `f%d'"),
6391 reg1 - REG_FR, reg2 - REG_FR);
6392 return idesc;
6393 }
6394
6395 static void
6396 build_insn (struct slot *slot, bfd_vma *insnp)
6397 {
6398 const struct ia64_operand *odesc, *o2desc;
6399 struct ia64_opcode *idesc = slot->idesc;
6400 bfd_vma insn;
6401 bfd_signed_vma val;
6402 const char *err;
6403 int i;
6404
6405 insn = idesc->opcode | slot->qp_regno;
6406
6407 for (i = 0; i < NELEMS (idesc->operands) && idesc->operands[i]; ++i)
6408 {
6409 if (slot->opnd[i].X_op == O_register
6410 || slot->opnd[i].X_op == O_constant
6411 || slot->opnd[i].X_op == O_index)
6412 val = slot->opnd[i].X_add_number;
6413 else if (slot->opnd[i].X_op == O_big)
6414 {
6415 /* This must be the value 0x10000000000000000. */
6416 gas_assert (idesc->operands[i] == IA64_OPND_IMM8M1U8);
6417 val = 0;
6418 }
6419 else
6420 val = 0;
6421
6422 switch (idesc->operands[i])
6423 {
6424 case IA64_OPND_IMMU64:
6425 *insnp++ = (val >> 22) & 0x1ffffffffffLL;
6426 insn |= (((val & 0x7f) << 13) | (((val >> 7) & 0x1ff) << 27)
6427 | (((val >> 16) & 0x1f) << 22) | (((val >> 21) & 0x1) << 21)
6428 | (((val >> 63) & 0x1) << 36));
6429 continue;
6430
6431 case IA64_OPND_IMMU62:
6432 val &= 0x3fffffffffffffffULL;
6433 if (val != slot->opnd[i].X_add_number)
6434 as_warn (_("Value truncated to 62 bits"));
6435 *insnp++ = (val >> 21) & 0x1ffffffffffLL;
6436 insn |= (((val & 0xfffff) << 6) | (((val >> 20) & 0x1) << 36));
6437 continue;
6438
6439 case IA64_OPND_TGT64:
6440 val >>= 4;
6441 *insnp++ = ((val >> 20) & 0x7fffffffffLL) << 2;
6442 insn |= ((((val >> 59) & 0x1) << 36)
6443 | (((val >> 0) & 0xfffff) << 13));
6444 continue;
6445
6446 case IA64_OPND_AR3:
6447 val -= REG_AR;
6448 break;
6449
6450 case IA64_OPND_B1:
6451 case IA64_OPND_B2:
6452 val -= REG_BR;
6453 break;
6454
6455 case IA64_OPND_CR3:
6456 val -= REG_CR;
6457 break;
6458
6459 case IA64_OPND_DAHR3:
6460 val -= REG_DAHR;
6461 break;
6462
6463 case IA64_OPND_F1:
6464 case IA64_OPND_F2:
6465 case IA64_OPND_F3:
6466 case IA64_OPND_F4:
6467 val -= REG_FR;
6468 break;
6469
6470 case IA64_OPND_P1:
6471 case IA64_OPND_P2:
6472 val -= REG_P;
6473 break;
6474
6475 case IA64_OPND_R1:
6476 case IA64_OPND_R2:
6477 case IA64_OPND_R3:
6478 case IA64_OPND_R3_2:
6479 case IA64_OPND_CPUID_R3:
6480 case IA64_OPND_DBR_R3:
6481 case IA64_OPND_DTR_R3:
6482 case IA64_OPND_ITR_R3:
6483 case IA64_OPND_IBR_R3:
6484 case IA64_OPND_MR3:
6485 case IA64_OPND_MSR_R3:
6486 case IA64_OPND_PKR_R3:
6487 case IA64_OPND_PMC_R3:
6488 case IA64_OPND_PMD_R3:
6489 case IA64_OPND_DAHR_R3:
6490 case IA64_OPND_RR_R3:
6491 val -= REG_GR;
6492 break;
6493
6494 default:
6495 break;
6496 }
6497
6498 odesc = elf64_ia64_operands + idesc->operands[i];
6499 err = (*odesc->insert) (odesc, val, &insn);
6500 if (err)
6501 as_bad_where (slot->src_file, slot->src_line,
6502 _("Bad operand value: %s"), err);
6503 if (idesc->flags & IA64_OPCODE_PSEUDO)
6504 {
6505 if ((idesc->flags & IA64_OPCODE_F2_EQ_F3)
6506 && odesc == elf64_ia64_operands + IA64_OPND_F3)
6507 {
6508 o2desc = elf64_ia64_operands + IA64_OPND_F2;
6509 (*o2desc->insert) (o2desc, val, &insn);
6510 }
6511 if ((idesc->flags & IA64_OPCODE_LEN_EQ_64MCNT)
6512 && (odesc == elf64_ia64_operands + IA64_OPND_CPOS6a
6513 || odesc == elf64_ia64_operands + IA64_OPND_POS6))
6514 {
6515 o2desc = elf64_ia64_operands + IA64_OPND_LEN6;
6516 (*o2desc->insert) (o2desc, 64 - val, &insn);
6517 }
6518 }
6519 }
6520 *insnp = insn;
6521 }
6522
6523 static void
6524 emit_one_bundle (void)
6525 {
6526 int manual_bundling_off = 0, manual_bundling = 0;
6527 enum ia64_unit required_unit, insn_unit = 0;
6528 enum ia64_insn_type type[3], insn_type;
6529 unsigned int template_val, orig_template;
6530 bfd_vma insn[3] = { -1, -1, -1 };
6531 struct ia64_opcode *idesc;
6532 int end_of_insn_group = 0, user_template = -1;
6533 int n, i, j, first, curr, last_slot;
6534 bfd_vma t0 = 0, t1 = 0;
6535 struct label_fix *lfix;
6536 bfd_boolean mark_label;
6537 struct insn_fix *ifix;
6538 char mnemonic[16];
6539 fixS *fix;
6540 char *f;
6541 int addr_mod;
6542
6543 first = (md.curr_slot + NUM_SLOTS - md.num_slots_in_use) % NUM_SLOTS;
6544 know (first >= 0 && first < NUM_SLOTS);
6545 n = MIN (3, md.num_slots_in_use);
6546
6547 /* Determine template: user user_template if specified, best match
6548 otherwise: */
6549
6550 if (md.slot[first].user_template >= 0)
6551 user_template = template_val = md.slot[first].user_template;
6552 else
6553 {
6554 /* Auto select appropriate template. */
6555 memset (type, 0, sizeof (type));
6556 curr = first;
6557 for (i = 0; i < n; ++i)
6558 {
6559 if (md.slot[curr].label_fixups && i != 0)
6560 break;
6561 type[i] = md.slot[curr].idesc->type;
6562 curr = (curr + 1) % NUM_SLOTS;
6563 }
6564 template_val = best_template[type[0]][type[1]][type[2]];
6565 }
6566
6567 /* initialize instructions with appropriate nops: */
6568 for (i = 0; i < 3; ++i)
6569 insn[i] = nop[ia64_templ_desc[template_val].exec_unit[i]];
6570
6571 f = frag_more (16);
6572
6573 /* Check to see if this bundle is at an offset that is a multiple of 16-bytes
6574 from the start of the frag. */
6575 addr_mod = frag_now_fix () & 15;
6576 if (frag_now->has_code && frag_now->insn_addr != addr_mod)
6577 as_bad (_("instruction address is not a multiple of 16"));
6578 frag_now->insn_addr = addr_mod;
6579 frag_now->has_code = 1;
6580
6581 /* now fill in slots with as many insns as possible: */
6582 curr = first;
6583 idesc = md.slot[curr].idesc;
6584 end_of_insn_group = 0;
6585 last_slot = -1;
6586 for (i = 0; i < 3 && md.num_slots_in_use > 0; ++i)
6587 {
6588 /* If we have unwind records, we may need to update some now. */
6589 unw_rec_list *ptr = md.slot[curr].unwind_record;
6590 unw_rec_list *end_ptr = NULL;
6591
6592 if (ptr)
6593 {
6594 /* Find the last prologue/body record in the list for the current
6595 insn, and set the slot number for all records up to that point.
6596 This needs to be done now, because prologue/body records refer to
6597 the current point, not the point after the instruction has been
6598 issued. This matters because there may have been nops emitted
6599 meanwhile. Any non-prologue non-body record followed by a
6600 prologue/body record must also refer to the current point. */
6601 unw_rec_list *last_ptr;
6602
6603 for (j = 1; end_ptr == NULL && j < md.num_slots_in_use; ++j)
6604 end_ptr = md.slot[(curr + j) % NUM_SLOTS].unwind_record;
6605 for (last_ptr = NULL; ptr != end_ptr; ptr = ptr->next)
6606 if (ptr->r.type == prologue || ptr->r.type == prologue_gr
6607 || ptr->r.type == body)
6608 last_ptr = ptr;
6609 if (last_ptr)
6610 {
6611 /* Make last_ptr point one after the last prologue/body
6612 record. */
6613 last_ptr = last_ptr->next;
6614 for (ptr = md.slot[curr].unwind_record; ptr != last_ptr;
6615 ptr = ptr->next)
6616 {
6617 ptr->slot_number = (unsigned long) f + i;
6618 ptr->slot_frag = frag_now;
6619 }
6620 /* Remove the initialized records, so that we won't accidentally
6621 update them again if we insert a nop and continue. */
6622 md.slot[curr].unwind_record = last_ptr;
6623 }
6624 }
6625
6626 manual_bundling_off = md.slot[curr].manual_bundling_off;
6627 if (md.slot[curr].manual_bundling_on)
6628 {
6629 if (curr == first)
6630 manual_bundling = 1;
6631 else
6632 break; /* Need to start a new bundle. */
6633 }
6634
6635 /* If this instruction specifies a template, then it must be the first
6636 instruction of a bundle. */
6637 if (curr != first && md.slot[curr].user_template >= 0)
6638 break;
6639
6640 if (idesc->flags & IA64_OPCODE_SLOT2)
6641 {
6642 if (manual_bundling && !manual_bundling_off)
6643 {
6644 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6645 _("`%s' must be last in bundle"), idesc->name);
6646 if (i < 2)
6647 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6648 }
6649 i = 2;
6650 }
6651 if (idesc->flags & IA64_OPCODE_LAST)
6652 {
6653 int required_slot;
6654 unsigned int required_template;
6655
6656 /* If we need a stop bit after an M slot, our only choice is
6657 template 5 (M;;MI). If we need a stop bit after a B
6658 slot, our only choice is to place it at the end of the
6659 bundle, because the only available templates are MIB,
6660 MBB, BBB, MMB, and MFB. We don't handle anything other
6661 than M and B slots because these are the only kind of
6662 instructions that can have the IA64_OPCODE_LAST bit set. */
6663 required_template = template_val;
6664 switch (idesc->type)
6665 {
6666 case IA64_TYPE_M:
6667 required_slot = 0;
6668 required_template = 5;
6669 break;
6670
6671 case IA64_TYPE_B:
6672 required_slot = 2;
6673 break;
6674
6675 default:
6676 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6677 _("Internal error: don't know how to force %s to end of instruction group"),
6678 idesc->name);
6679 required_slot = i;
6680 break;
6681 }
6682 if (manual_bundling
6683 && (i > required_slot
6684 || (required_slot == 2 && !manual_bundling_off)
6685 || (user_template >= 0
6686 /* Changing from MMI to M;MI is OK. */
6687 && (template_val ^ required_template) > 1)))
6688 {
6689 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6690 _("`%s' must be last in instruction group"),
6691 idesc->name);
6692 if (i < 2 && required_slot == 2 && !manual_bundling_off)
6693 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6694 }
6695 if (required_slot < i)
6696 /* Can't fit this instruction. */
6697 break;
6698
6699 i = required_slot;
6700 if (required_template != template_val)
6701 {
6702 /* If we switch the template, we need to reset the NOPs
6703 after slot i. The slot-types of the instructions ahead
6704 of i never change, so we don't need to worry about
6705 changing NOPs in front of this slot. */
6706 for (j = i; j < 3; ++j)
6707 insn[j] = nop[ia64_templ_desc[required_template].exec_unit[j]];
6708
6709 /* We just picked a template that includes the stop bit in the
6710 middle, so we don't need another one emitted later. */
6711 md.slot[curr].end_of_insn_group = 0;
6712 }
6713 template_val = required_template;
6714 }
6715 if (curr != first && md.slot[curr].label_fixups)
6716 {
6717 if (manual_bundling)
6718 {
6719 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6720 _("Label must be first in a bundle"));
6721 manual_bundling = -1; /* Suppress meaningless post-loop errors. */
6722 }
6723 /* This insn must go into the first slot of a bundle. */
6724 break;
6725 }
6726
6727 if (end_of_insn_group && md.num_slots_in_use >= 1)
6728 {
6729 /* We need an instruction group boundary in the middle of a
6730 bundle. See if we can switch to an other template with
6731 an appropriate boundary. */
6732
6733 orig_template = template_val;
6734 if (i == 1 && (user_template == 4
6735 || (user_template < 0
6736 && (ia64_templ_desc[template_val].exec_unit[0]
6737 == IA64_UNIT_M))))
6738 {
6739 template_val = 5;
6740 end_of_insn_group = 0;
6741 }
6742 else if (i == 2 && (user_template == 0
6743 || (user_template < 0
6744 && (ia64_templ_desc[template_val].exec_unit[1]
6745 == IA64_UNIT_I)))
6746 /* This test makes sure we don't switch the template if
6747 the next instruction is one that needs to be first in
6748 an instruction group. Since all those instructions are
6749 in the M group, there is no way such an instruction can
6750 fit in this bundle even if we switch the template. The
6751 reason we have to check for this is that otherwise we
6752 may end up generating "MI;;I M.." which has the deadly
6753 effect that the second M instruction is no longer the
6754 first in the group! --davidm 99/12/16 */
6755 && (idesc->flags & IA64_OPCODE_FIRST) == 0)
6756 {
6757 template_val = 1;
6758 end_of_insn_group = 0;
6759 }
6760 else if (i == 1
6761 && user_template == 0
6762 && !(idesc->flags & IA64_OPCODE_FIRST))
6763 /* Use the next slot. */
6764 continue;
6765 else if (curr != first)
6766 /* can't fit this insn */
6767 break;
6768
6769 if (template_val != orig_template)
6770 /* if we switch the template, we need to reset the NOPs
6771 after slot i. The slot-types of the instructions ahead
6772 of i never change, so we don't need to worry about
6773 changing NOPs in front of this slot. */
6774 for (j = i; j < 3; ++j)
6775 insn[j] = nop[ia64_templ_desc[template_val].exec_unit[j]];
6776 }
6777 required_unit = ia64_templ_desc[template_val].exec_unit[i];
6778
6779 /* resolve dynamic opcodes such as "break", "hint", and "nop": */
6780 if (idesc->type == IA64_TYPE_DYN)
6781 {
6782 enum ia64_opnd opnd1, opnd2;
6783
6784 if ((strcmp (idesc->name, "nop") == 0)
6785 || (strcmp (idesc->name, "break") == 0))
6786 insn_unit = required_unit;
6787 else if (strcmp (idesc->name, "hint") == 0)
6788 {
6789 insn_unit = required_unit;
6790 if (required_unit == IA64_UNIT_B)
6791 {
6792 switch (md.hint_b)
6793 {
6794 case hint_b_ok:
6795 break;
6796 case hint_b_warning:
6797 as_warn (_("hint in B unit may be treated as nop"));
6798 break;
6799 case hint_b_error:
6800 /* When manual bundling is off and there is no
6801 user template, we choose a different unit so
6802 that hint won't go into the current slot. We
6803 will fill the current bundle with nops and
6804 try to put hint into the next bundle. */
6805 if (!manual_bundling && user_template < 0)
6806 insn_unit = IA64_UNIT_I;
6807 else
6808 as_bad (_("hint in B unit can't be used"));
6809 break;
6810 }
6811 }
6812 }
6813 else if (strcmp (idesc->name, "chk.s") == 0
6814 || strcmp (idesc->name, "mov") == 0)
6815 {
6816 insn_unit = IA64_UNIT_M;
6817 if (required_unit == IA64_UNIT_I
6818 || (required_unit == IA64_UNIT_F && template_val == 6))
6819 insn_unit = IA64_UNIT_I;
6820 }
6821 else
6822 as_fatal (_("emit_one_bundle: unexpected dynamic op"));
6823
6824 snprintf (mnemonic, sizeof (mnemonic), "%s.%c",
6825 idesc->name, "?imbfxx"[insn_unit]);
6826 opnd1 = idesc->operands[0];
6827 opnd2 = idesc->operands[1];
6828 ia64_free_opcode (idesc);
6829 idesc = ia64_find_opcode (mnemonic);
6830 /* moves to/from ARs have collisions */
6831 if (opnd1 == IA64_OPND_AR3 || opnd2 == IA64_OPND_AR3)
6832 {
6833 while (idesc != NULL
6834 && (idesc->operands[0] != opnd1
6835 || idesc->operands[1] != opnd2))
6836 idesc = get_next_opcode (idesc);
6837 }
6838 md.slot[curr].idesc = idesc;
6839 }
6840 else
6841 {
6842 insn_type = idesc->type;
6843 insn_unit = IA64_UNIT_NIL;
6844 switch (insn_type)
6845 {
6846 case IA64_TYPE_A:
6847 if (required_unit == IA64_UNIT_I || required_unit == IA64_UNIT_M)
6848 insn_unit = required_unit;
6849 break;
6850 case IA64_TYPE_X: insn_unit = IA64_UNIT_L; break;
6851 case IA64_TYPE_I: insn_unit = IA64_UNIT_I; break;
6852 case IA64_TYPE_M: insn_unit = IA64_UNIT_M; break;
6853 case IA64_TYPE_B: insn_unit = IA64_UNIT_B; break;
6854 case IA64_TYPE_F: insn_unit = IA64_UNIT_F; break;
6855 default: break;
6856 }
6857 }
6858
6859 if (insn_unit != required_unit)
6860 continue; /* Try next slot. */
6861
6862 /* Now is a good time to fix up the labels for this insn. */
6863 mark_label = FALSE;
6864 for (lfix = md.slot[curr].label_fixups; lfix; lfix = lfix->next)
6865 {
6866 S_SET_VALUE (lfix->sym, frag_now_fix () - 16);
6867 symbol_set_frag (lfix->sym, frag_now);
6868 mark_label |= lfix->dw2_mark_labels;
6869 }
6870 for (lfix = md.slot[curr].tag_fixups; lfix; lfix = lfix->next)
6871 {
6872 S_SET_VALUE (lfix->sym, frag_now_fix () - 16 + i);
6873 symbol_set_frag (lfix->sym, frag_now);
6874 }
6875
6876 if (debug_type == DEBUG_DWARF2
6877 || md.slot[curr].loc_directive_seen
6878 || mark_label)
6879 {
6880 bfd_vma addr = frag_now->fr_address + frag_now_fix () - 16 + i;
6881
6882 md.slot[curr].loc_directive_seen = 0;
6883 if (mark_label)
6884 md.slot[curr].debug_line.flags |= DWARF2_FLAG_BASIC_BLOCK;
6885
6886 dwarf2_gen_line_info (addr, &md.slot[curr].debug_line);
6887 }
6888
6889 build_insn (md.slot + curr, insn + i);
6890
6891 ptr = md.slot[curr].unwind_record;
6892 if (ptr)
6893 {
6894 /* Set slot numbers for all remaining unwind records belonging to the
6895 current insn. There can not be any prologue/body unwind records
6896 here. */
6897 for (; ptr != end_ptr; ptr = ptr->next)
6898 {
6899 ptr->slot_number = (unsigned long) f + i;
6900 ptr->slot_frag = frag_now;
6901 }
6902 md.slot[curr].unwind_record = NULL;
6903 }
6904
6905 for (j = 0; j < md.slot[curr].num_fixups; ++j)
6906 {
6907 ifix = md.slot[curr].fixup + j;
6908 fix = fix_new_exp (frag_now, frag_now_fix () - 16 + i, 8,
6909 &ifix->expr, ifix->is_pcrel, ifix->code);
6910 fix->tc_fix_data.opnd = ifix->opnd;
6911 fix->fx_file = md.slot[curr].src_file;
6912 fix->fx_line = md.slot[curr].src_line;
6913 }
6914
6915 end_of_insn_group = md.slot[curr].end_of_insn_group;
6916
6917 /* This adjustment to "i" must occur after the fix, otherwise the fix
6918 is assigned to the wrong slot, and the VMS linker complains. */
6919 if (required_unit == IA64_UNIT_L)
6920 {
6921 know (i == 1);
6922 /* skip one slot for long/X-unit instructions */
6923 ++i;
6924 }
6925 --md.num_slots_in_use;
6926 last_slot = i;
6927
6928 /* clear slot: */
6929 ia64_free_opcode (md.slot[curr].idesc);
6930 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
6931 md.slot[curr].user_template = -1;
6932
6933 if (manual_bundling_off)
6934 {
6935 manual_bundling = 0;
6936 break;
6937 }
6938 curr = (curr + 1) % NUM_SLOTS;
6939 idesc = md.slot[curr].idesc;
6940 }
6941
6942 /* A user template was specified, but the first following instruction did
6943 not fit. This can happen with or without manual bundling. */
6944 if (md.num_slots_in_use > 0 && last_slot < 0)
6945 {
6946 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6947 _("`%s' does not fit into %s template"),
6948 idesc->name, ia64_templ_desc[template_val].name);
6949 /* Drop first insn so we don't livelock. */
6950 --md.num_slots_in_use;
6951 know (curr == first);
6952 ia64_free_opcode (md.slot[curr].idesc);
6953 memset (md.slot + curr, 0, sizeof (md.slot[curr]));
6954 md.slot[curr].user_template = -1;
6955 }
6956 else if (manual_bundling > 0)
6957 {
6958 if (md.num_slots_in_use > 0)
6959 {
6960 if (last_slot >= 2)
6961 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6962 _("`%s' does not fit into bundle"), idesc->name);
6963 else
6964 {
6965 const char *where;
6966
6967 if (template_val == 2)
6968 where = "X slot";
6969 else if (last_slot == 0)
6970 where = "slots 2 or 3";
6971 else
6972 where = "slot 3";
6973 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6974 _("`%s' can't go in %s of %s template"),
6975 idesc->name, where, ia64_templ_desc[template_val].name);
6976 }
6977 }
6978 else
6979 as_bad_where (md.slot[curr].src_file, md.slot[curr].src_line,
6980 _("Missing '}' at end of file"));
6981 }
6982
6983 know (md.num_slots_in_use < NUM_SLOTS);
6984
6985 t0 = end_of_insn_group | (template_val << 1) | (insn[0] << 5) | (insn[1] << 46);
6986 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
6987
6988 number_to_chars_littleendian (f + 0, t0, 8);
6989 number_to_chars_littleendian (f + 8, t1, 8);
6990 }
6991
6992 int
6993 md_parse_option (int c, char *arg)
6994 {
6995
6996 switch (c)
6997 {
6998 /* Switches from the Intel assembler. */
6999 case 'm':
7000 if (strcmp (arg, "ilp64") == 0
7001 || strcmp (arg, "lp64") == 0
7002 || strcmp (arg, "p64") == 0)
7003 {
7004 md.flags |= EF_IA_64_ABI64;
7005 }
7006 else if (strcmp (arg, "ilp32") == 0)
7007 {
7008 md.flags &= ~EF_IA_64_ABI64;
7009 }
7010 else if (strcmp (arg, "le") == 0)
7011 {
7012 md.flags &= ~EF_IA_64_BE;
7013 default_big_endian = 0;
7014 }
7015 else if (strcmp (arg, "be") == 0)
7016 {
7017 md.flags |= EF_IA_64_BE;
7018 default_big_endian = 1;
7019 }
7020 else if (strncmp (arg, "unwind-check=", 13) == 0)
7021 {
7022 arg += 13;
7023 if (strcmp (arg, "warning") == 0)
7024 md.unwind_check = unwind_check_warning;
7025 else if (strcmp (arg, "error") == 0)
7026 md.unwind_check = unwind_check_error;
7027 else
7028 return 0;
7029 }
7030 else if (strncmp (arg, "hint.b=", 7) == 0)
7031 {
7032 arg += 7;
7033 if (strcmp (arg, "ok") == 0)
7034 md.hint_b = hint_b_ok;
7035 else if (strcmp (arg, "warning") == 0)
7036 md.hint_b = hint_b_warning;
7037 else if (strcmp (arg, "error") == 0)
7038 md.hint_b = hint_b_error;
7039 else
7040 return 0;
7041 }
7042 else if (strncmp (arg, "tune=", 5) == 0)
7043 {
7044 arg += 5;
7045 if (strcmp (arg, "itanium1") == 0)
7046 md.tune = itanium1;
7047 else if (strcmp (arg, "itanium2") == 0)
7048 md.tune = itanium2;
7049 else
7050 return 0;
7051 }
7052 else
7053 return 0;
7054 break;
7055
7056 case 'N':
7057 if (strcmp (arg, "so") == 0)
7058 {
7059 /* Suppress signon message. */
7060 }
7061 else if (strcmp (arg, "pi") == 0)
7062 {
7063 /* Reject privileged instructions. FIXME */
7064 }
7065 else if (strcmp (arg, "us") == 0)
7066 {
7067 /* Allow union of signed and unsigned range. FIXME */
7068 }
7069 else if (strcmp (arg, "close_fcalls") == 0)
7070 {
7071 /* Do not resolve global function calls. */
7072 }
7073 else
7074 return 0;
7075 break;
7076
7077 case 'C':
7078 /* temp[="prefix"] Insert temporary labels into the object file
7079 symbol table prefixed by "prefix".
7080 Default prefix is ":temp:".
7081 */
7082 break;
7083
7084 case 'a':
7085 /* indirect=<tgt> Assume unannotated indirect branches behavior
7086 according to <tgt> --
7087 exit: branch out from the current context (default)
7088 labels: all labels in context may be branch targets
7089 */
7090 if (strncmp (arg, "indirect=", 9) != 0)
7091 return 0;
7092 break;
7093
7094 case 'x':
7095 /* -X conflicts with an ignored option, use -x instead */
7096 md.detect_dv = 1;
7097 if (!arg || strcmp (arg, "explicit") == 0)
7098 {
7099 /* set default mode to explicit */
7100 md.default_explicit_mode = 1;
7101 break;
7102 }
7103 else if (strcmp (arg, "auto") == 0)
7104 {
7105 md.default_explicit_mode = 0;
7106 }
7107 else if (strcmp (arg, "none") == 0)
7108 {
7109 md.detect_dv = 0;
7110 }
7111 else if (strcmp (arg, "debug") == 0)
7112 {
7113 md.debug_dv = 1;
7114 }
7115 else if (strcmp (arg, "debugx") == 0)
7116 {
7117 md.default_explicit_mode = 1;
7118 md.debug_dv = 1;
7119 }
7120 else if (strcmp (arg, "debugn") == 0)
7121 {
7122 md.debug_dv = 1;
7123 md.detect_dv = 0;
7124 }
7125 else
7126 {
7127 as_bad (_("Unrecognized option '-x%s'"), arg);
7128 }
7129 break;
7130
7131 case 'S':
7132 /* nops Print nops statistics. */
7133 break;
7134
7135 /* GNU specific switches for gcc. */
7136 case OPTION_MCONSTANT_GP:
7137 md.flags |= EF_IA_64_CONS_GP;
7138 break;
7139
7140 case OPTION_MAUTO_PIC:
7141 md.flags |= EF_IA_64_NOFUNCDESC_CONS_GP;
7142 break;
7143
7144 default:
7145 return 0;
7146 }
7147
7148 return 1;
7149 }
7150
7151 void
7152 md_show_usage (FILE *stream)
7153 {
7154 fputs (_("\
7155 IA-64 options:\n\
7156 --mconstant-gp mark output file as using the constant-GP model\n\
7157 (sets ELF header flag EF_IA_64_CONS_GP)\n\
7158 --mauto-pic mark output file as using the constant-GP model\n\
7159 without function descriptors (sets ELF header flag\n\
7160 EF_IA_64_NOFUNCDESC_CONS_GP)\n\
7161 -milp32|-milp64|-mlp64|-mp64 select data model (default -mlp64)\n\
7162 -mle | -mbe select little- or big-endian byte order (default -mle)\n\
7163 -mtune=[itanium1|itanium2]\n\
7164 tune for a specific CPU (default -mtune=itanium2)\n\
7165 -munwind-check=[warning|error]\n\
7166 unwind directive check (default -munwind-check=warning)\n\
7167 -mhint.b=[ok|warning|error]\n\
7168 hint.b check (default -mhint.b=error)\n\
7169 -x | -xexplicit turn on dependency violation checking\n"), stream);
7170 /* Note for translators: "automagically" can be translated as "automatically" here. */
7171 fputs (_("\
7172 -xauto automagically remove dependency violations (default)\n\
7173 -xnone turn off dependency violation checking\n\
7174 -xdebug debug dependency violation checker\n\
7175 -xdebugn debug dependency violation checker but turn off\n\
7176 dependency violation checking\n\
7177 -xdebugx debug dependency violation checker and turn on\n\
7178 dependency violation checking\n"),
7179 stream);
7180 }
7181
7182 void
7183 ia64_after_parse_args (void)
7184 {
7185 if (debug_type == DEBUG_STABS)
7186 as_fatal (_("--gstabs is not supported for ia64"));
7187 }
7188
7189 /* Return true if TYPE fits in TEMPL at SLOT. */
7190
7191 static int
7192 match (int templ, int type, int slot)
7193 {
7194 enum ia64_unit unit;
7195 int result;
7196
7197 unit = ia64_templ_desc[templ].exec_unit[slot];
7198 switch (type)
7199 {
7200 case IA64_TYPE_DYN: result = 1; break; /* for nop and break */
7201 case IA64_TYPE_A:
7202 result = (unit == IA64_UNIT_I || unit == IA64_UNIT_M);
7203 break;
7204 case IA64_TYPE_X: result = (unit == IA64_UNIT_L); break;
7205 case IA64_TYPE_I: result = (unit == IA64_UNIT_I); break;
7206 case IA64_TYPE_M: result = (unit == IA64_UNIT_M); break;
7207 case IA64_TYPE_B: result = (unit == IA64_UNIT_B); break;
7208 case IA64_TYPE_F: result = (unit == IA64_UNIT_F); break;
7209 default: result = 0; break;
7210 }
7211 return result;
7212 }
7213
7214 /* For Itanium 1, add a bit of extra goodness if a nop of type F or B would fit
7215 in TEMPL at SLOT. For Itanium 2, add a bit of extra goodness if a nop of
7216 type M or I would fit in TEMPL at SLOT. */
7217
7218 static inline int
7219 extra_goodness (int templ, int slot)
7220 {
7221 switch (md.tune)
7222 {
7223 case itanium1:
7224 if (slot == 1 && match (templ, IA64_TYPE_F, slot))
7225 return 2;
7226 else if (slot == 2 && match (templ, IA64_TYPE_B, slot))
7227 return 1;
7228 else
7229 return 0;
7230 break;
7231 case itanium2:
7232 if (match (templ, IA64_TYPE_M, slot)
7233 || match (templ, IA64_TYPE_I, slot))
7234 /* Favor M- and I-unit NOPs. We definitely want to avoid
7235 F-unit and B-unit may cause split-issue or less-than-optimal
7236 branch-prediction. */
7237 return 2;
7238 else
7239 return 0;
7240 break;
7241 default:
7242 abort ();
7243 return 0;
7244 }
7245 }
7246
7247 /* This function is called once, at assembler startup time. It sets
7248 up all the tables, etc. that the MD part of the assembler will need
7249 that can be determined before arguments are parsed. */
7250 void
7251 md_begin (void)
7252 {
7253 int i, j, k, t, goodness, best, ok;
7254 const char *err;
7255 char name[8];
7256
7257 md.auto_align = 1;
7258 md.explicit_mode = md.default_explicit_mode;
7259
7260 bfd_set_section_alignment (stdoutput, text_section, 4);
7261
7262 /* Make sure function pointers get initialized. */
7263 target_big_endian = -1;
7264 dot_byteorder (default_big_endian);
7265
7266 alias_hash = hash_new ();
7267 alias_name_hash = hash_new ();
7268 secalias_hash = hash_new ();
7269 secalias_name_hash = hash_new ();
7270
7271 pseudo_func[FUNC_DTP_MODULE].u.sym =
7272 symbol_new (".<dtpmod>", undefined_section, FUNC_DTP_MODULE,
7273 &zero_address_frag);
7274
7275 pseudo_func[FUNC_DTP_RELATIVE].u.sym =
7276 symbol_new (".<dtprel>", undefined_section, FUNC_DTP_RELATIVE,
7277 &zero_address_frag);
7278
7279 pseudo_func[FUNC_FPTR_RELATIVE].u.sym =
7280 symbol_new (".<fptr>", undefined_section, FUNC_FPTR_RELATIVE,
7281 &zero_address_frag);
7282
7283 pseudo_func[FUNC_GP_RELATIVE].u.sym =
7284 symbol_new (".<gprel>", undefined_section, FUNC_GP_RELATIVE,
7285 &zero_address_frag);
7286
7287 pseudo_func[FUNC_LT_RELATIVE].u.sym =
7288 symbol_new (".<ltoff>", undefined_section, FUNC_LT_RELATIVE,
7289 &zero_address_frag);
7290
7291 pseudo_func[FUNC_LT_RELATIVE_X].u.sym =
7292 symbol_new (".<ltoffx>", undefined_section, FUNC_LT_RELATIVE_X,
7293 &zero_address_frag);
7294
7295 pseudo_func[FUNC_PC_RELATIVE].u.sym =
7296 symbol_new (".<pcrel>", undefined_section, FUNC_PC_RELATIVE,
7297 &zero_address_frag);
7298
7299 pseudo_func[FUNC_PLT_RELATIVE].u.sym =
7300 symbol_new (".<pltoff>", undefined_section, FUNC_PLT_RELATIVE,
7301 &zero_address_frag);
7302
7303 pseudo_func[FUNC_SEC_RELATIVE].u.sym =
7304 symbol_new (".<secrel>", undefined_section, FUNC_SEC_RELATIVE,
7305 &zero_address_frag);
7306
7307 pseudo_func[FUNC_SEG_RELATIVE].u.sym =
7308 symbol_new (".<segrel>", undefined_section, FUNC_SEG_RELATIVE,
7309 &zero_address_frag);
7310
7311 pseudo_func[FUNC_TP_RELATIVE].u.sym =
7312 symbol_new (".<tprel>", undefined_section, FUNC_TP_RELATIVE,
7313 &zero_address_frag);
7314
7315 pseudo_func[FUNC_LTV_RELATIVE].u.sym =
7316 symbol_new (".<ltv>", undefined_section, FUNC_LTV_RELATIVE,
7317 &zero_address_frag);
7318
7319 pseudo_func[FUNC_LT_FPTR_RELATIVE].u.sym =
7320 symbol_new (".<ltoff.fptr>", undefined_section, FUNC_LT_FPTR_RELATIVE,
7321 &zero_address_frag);
7322
7323 pseudo_func[FUNC_LT_DTP_MODULE].u.sym =
7324 symbol_new (".<ltoff.dtpmod>", undefined_section, FUNC_LT_DTP_MODULE,
7325 &zero_address_frag);
7326
7327 pseudo_func[FUNC_LT_DTP_RELATIVE].u.sym =
7328 symbol_new (".<ltoff.dptrel>", undefined_section, FUNC_LT_DTP_RELATIVE,
7329 &zero_address_frag);
7330
7331 pseudo_func[FUNC_LT_TP_RELATIVE].u.sym =
7332 symbol_new (".<ltoff.tprel>", undefined_section, FUNC_LT_TP_RELATIVE,
7333 &zero_address_frag);
7334
7335 pseudo_func[FUNC_IPLT_RELOC].u.sym =
7336 symbol_new (".<iplt>", undefined_section, FUNC_IPLT_RELOC,
7337 &zero_address_frag);
7338
7339 #ifdef TE_VMS
7340 pseudo_func[FUNC_SLOTCOUNT_RELOC].u.sym =
7341 symbol_new (".<slotcount>", undefined_section, FUNC_SLOTCOUNT_RELOC,
7342 &zero_address_frag);
7343 #endif
7344
7345 if (md.tune != itanium1)
7346 {
7347 /* Convert MFI NOPs bundles into MMI NOPs bundles. */
7348 le_nop[0] = 0x8;
7349 le_nop_stop[0] = 0x9;
7350 }
7351
7352 /* Compute the table of best templates. We compute goodness as a
7353 base 4 value, in which each match counts for 3. Match-failures
7354 result in NOPs and we use extra_goodness() to pick the execution
7355 units that are best suited for issuing the NOP. */
7356 for (i = 0; i < IA64_NUM_TYPES; ++i)
7357 for (j = 0; j < IA64_NUM_TYPES; ++j)
7358 for (k = 0; k < IA64_NUM_TYPES; ++k)
7359 {
7360 best = 0;
7361 for (t = 0; t < NELEMS (ia64_templ_desc); ++t)
7362 {
7363 goodness = 0;
7364 if (match (t, i, 0))
7365 {
7366 if (match (t, j, 1))
7367 {
7368 if ((t == 2 && j == IA64_TYPE_X) || match (t, k, 2))
7369 goodness = 3 + 3 + 3;
7370 else
7371 goodness = 3 + 3 + extra_goodness (t, 2);
7372 }
7373 else if (match (t, j, 2))
7374 goodness = 3 + 3 + extra_goodness (t, 1);
7375 else
7376 {
7377 goodness = 3;
7378 goodness += extra_goodness (t, 1);
7379 goodness += extra_goodness (t, 2);
7380 }
7381 }
7382 else if (match (t, i, 1))
7383 {
7384 if ((t == 2 && i == IA64_TYPE_X) || match (t, j, 2))
7385 goodness = 3 + 3;
7386 else
7387 goodness = 3 + extra_goodness (t, 2);
7388 }
7389 else if (match (t, i, 2))
7390 goodness = 3 + extra_goodness (t, 1);
7391
7392 if (goodness > best)
7393 {
7394 best = goodness;
7395 best_template[i][j][k] = t;
7396 }
7397 }
7398 }
7399
7400 #ifdef DEBUG_TEMPLATES
7401 /* For debugging changes to the best_template calculations. We don't care
7402 about combinations with invalid instructions, so start the loops at 1. */
7403 for (i = 0; i < IA64_NUM_TYPES; ++i)
7404 for (j = 0; j < IA64_NUM_TYPES; ++j)
7405 for (k = 0; k < IA64_NUM_TYPES; ++k)
7406 {
7407 char type_letter[IA64_NUM_TYPES] = { 'n', 'a', 'i', 'm', 'b', 'f',
7408 'x', 'd' };
7409 fprintf (stderr, "%c%c%c %s\n", type_letter[i], type_letter[j],
7410 type_letter[k],
7411 ia64_templ_desc[best_template[i][j][k]].name);
7412 }
7413 #endif
7414
7415 for (i = 0; i < NUM_SLOTS; ++i)
7416 md.slot[i].user_template = -1;
7417
7418 md.pseudo_hash = hash_new ();
7419 for (i = 0; i < NELEMS (pseudo_opcode); ++i)
7420 {
7421 err = hash_insert (md.pseudo_hash, pseudo_opcode[i].name,
7422 (void *) (pseudo_opcode + i));
7423 if (err)
7424 as_fatal (_("ia64.md_begin: can't hash `%s': %s"),
7425 pseudo_opcode[i].name, err);
7426 }
7427
7428 md.reg_hash = hash_new ();
7429 md.dynreg_hash = hash_new ();
7430 md.const_hash = hash_new ();
7431 md.entry_hash = hash_new ();
7432
7433 /* general registers: */
7434 declare_register_set ("r", 128, REG_GR);
7435 declare_register ("gp", REG_GR + 1);
7436 declare_register ("sp", REG_GR + 12);
7437 declare_register ("tp", REG_GR + 13);
7438 declare_register_set ("ret", 4, REG_GR + 8);
7439
7440 /* floating point registers: */
7441 declare_register_set ("f", 128, REG_FR);
7442 declare_register_set ("farg", 8, REG_FR + 8);
7443 declare_register_set ("fret", 8, REG_FR + 8);
7444
7445 /* branch registers: */
7446 declare_register_set ("b", 8, REG_BR);
7447 declare_register ("rp", REG_BR + 0);
7448
7449 /* predicate registers: */
7450 declare_register_set ("p", 64, REG_P);
7451 declare_register ("pr", REG_PR);
7452 declare_register ("pr.rot", REG_PR_ROT);
7453
7454 /* application registers: */
7455 declare_register_set ("ar", 128, REG_AR);
7456 for (i = 0; i < NELEMS (ar); ++i)
7457 declare_register (ar[i].name, REG_AR + ar[i].regnum);
7458
7459 /* control registers: */
7460 declare_register_set ("cr", 128, REG_CR);
7461 for (i = 0; i < NELEMS (cr); ++i)
7462 declare_register (cr[i].name, REG_CR + cr[i].regnum);
7463
7464 /* dahr registers: */
7465 declare_register_set ("dahr", 8, REG_DAHR);
7466
7467 declare_register ("ip", REG_IP);
7468 declare_register ("cfm", REG_CFM);
7469 declare_register ("psr", REG_PSR);
7470 declare_register ("psr.l", REG_PSR_L);
7471 declare_register ("psr.um", REG_PSR_UM);
7472
7473 for (i = 0; i < NELEMS (indirect_reg); ++i)
7474 {
7475 unsigned int regnum = indirect_reg[i].regnum;
7476
7477 md.indregsym[regnum - IND_CPUID] = declare_register (indirect_reg[i].name, regnum);
7478 }
7479
7480 /* pseudo-registers used to specify unwind info: */
7481 declare_register ("psp", REG_PSP);
7482
7483 for (i = 0; i < NELEMS (const_bits); ++i)
7484 {
7485 err = hash_insert (md.const_hash, const_bits[i].name,
7486 (void *) (const_bits + i));
7487 if (err)
7488 as_fatal (_("Inserting \"%s\" into constant hash table failed: %s"),
7489 name, err);
7490 }
7491
7492 /* Set the architecture and machine depending on defaults and command line
7493 options. */
7494 if (md.flags & EF_IA_64_ABI64)
7495 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf64);
7496 else
7497 ok = bfd_set_arch_mach (stdoutput, bfd_arch_ia64, bfd_mach_ia64_elf32);
7498
7499 if (! ok)
7500 as_warn (_("Could not set architecture and machine"));
7501
7502 /* Set the pointer size and pointer shift size depending on md.flags */
7503
7504 if (md.flags & EF_IA_64_ABI64)
7505 {
7506 md.pointer_size = 8; /* pointers are 8 bytes */
7507 md.pointer_size_shift = 3; /* alignment is 8 bytes = 2^2 */
7508 }
7509 else
7510 {
7511 md.pointer_size = 4; /* pointers are 4 bytes */
7512 md.pointer_size_shift = 2; /* alignment is 4 bytes = 2^2 */
7513 }
7514
7515 md.mem_offset.hint = 0;
7516 md.path = 0;
7517 md.maxpaths = 0;
7518 md.entry_labels = NULL;
7519 }
7520
7521 /* Set the default options in md. Cannot do this in md_begin because
7522 that is called after md_parse_option which is where we set the
7523 options in md based on command line options. */
7524
7525 void
7526 ia64_init (int argc ATTRIBUTE_UNUSED, char **argv ATTRIBUTE_UNUSED)
7527 {
7528 md.flags = MD_FLAGS_DEFAULT;
7529 #ifndef TE_VMS
7530 /* Don't turn on dependency checking for VMS, doesn't work. */
7531 md.detect_dv = 1;
7532 #endif
7533 /* FIXME: We should change it to unwind_check_error someday. */
7534 md.unwind_check = unwind_check_warning;
7535 md.hint_b = hint_b_error;
7536 md.tune = itanium2;
7537 }
7538
7539 /* Return a string for the target object file format. */
7540
7541 const char *
7542 ia64_target_format (void)
7543 {
7544 if (OUTPUT_FLAVOR == bfd_target_elf_flavour)
7545 {
7546 if (md.flags & EF_IA_64_BE)
7547 {
7548 if (md.flags & EF_IA_64_ABI64)
7549 #if defined(TE_AIX50)
7550 return "elf64-ia64-aix-big";
7551 #elif defined(TE_HPUX)
7552 return "elf64-ia64-hpux-big";
7553 #else
7554 return "elf64-ia64-big";
7555 #endif
7556 else
7557 #if defined(TE_AIX50)
7558 return "elf32-ia64-aix-big";
7559 #elif defined(TE_HPUX)
7560 return "elf32-ia64-hpux-big";
7561 #else
7562 return "elf32-ia64-big";
7563 #endif
7564 }
7565 else
7566 {
7567 if (md.flags & EF_IA_64_ABI64)
7568 #if defined (TE_AIX50)
7569 return "elf64-ia64-aix-little";
7570 #elif defined (TE_VMS)
7571 {
7572 md.flags |= EF_IA_64_ARCHVER_1;
7573 return "elf64-ia64-vms";
7574 }
7575 #else
7576 return "elf64-ia64-little";
7577 #endif
7578 else
7579 #ifdef TE_AIX50
7580 return "elf32-ia64-aix-little";
7581 #else
7582 return "elf32-ia64-little";
7583 #endif
7584 }
7585 }
7586 else
7587 return "unknown-format";
7588 }
7589
7590 void
7591 ia64_end_of_source (void)
7592 {
7593 /* terminate insn group upon reaching end of file: */
7594 insn_group_break (1, 0, 0);
7595
7596 /* emits slots we haven't written yet: */
7597 ia64_flush_insns ();
7598
7599 bfd_set_private_flags (stdoutput, md.flags);
7600
7601 md.mem_offset.hint = 0;
7602 }
7603
7604 void
7605 ia64_start_line (void)
7606 {
7607 static int first;
7608
7609 if (!first) {
7610 /* Make sure we don't reference input_line_pointer[-1] when that's
7611 not valid. */
7612 first = 1;
7613 return;
7614 }
7615
7616 if (md.qp.X_op == O_register)
7617 as_bad (_("qualifying predicate not followed by instruction"));
7618 md.qp.X_op = O_absent;
7619
7620 if (ignore_input ())
7621 return;
7622
7623 if (input_line_pointer[0] == ';' && input_line_pointer[-1] == ';')
7624 {
7625 if (md.detect_dv && !md.explicit_mode)
7626 {
7627 static int warned;
7628
7629 if (!warned)
7630 {
7631 warned = 1;
7632 as_warn (_("Explicit stops are ignored in auto mode"));
7633 }
7634 }
7635 else
7636 insn_group_break (1, 0, 0);
7637 }
7638 else if (input_line_pointer[-1] == '{')
7639 {
7640 if (md.manual_bundling)
7641 as_warn (_("Found '{' when manual bundling is already turned on"));
7642 else
7643 CURR_SLOT.manual_bundling_on = 1;
7644 md.manual_bundling = 1;
7645
7646 /* Bundling is only acceptable in explicit mode
7647 or when in default automatic mode. */
7648 if (md.detect_dv && !md.explicit_mode)
7649 {
7650 if (!md.mode_explicitly_set
7651 && !md.default_explicit_mode)
7652 dot_dv_mode ('E');
7653 else
7654 as_warn (_("Found '{' after explicit switch to automatic mode"));
7655 }
7656 }
7657 else if (input_line_pointer[-1] == '}')
7658 {
7659 if (!md.manual_bundling)
7660 as_warn (_("Found '}' when manual bundling is off"));
7661 else
7662 PREV_SLOT.manual_bundling_off = 1;
7663 md.manual_bundling = 0;
7664
7665 /* switch back to automatic mode, if applicable */
7666 if (md.detect_dv
7667 && md.explicit_mode
7668 && !md.mode_explicitly_set
7669 && !md.default_explicit_mode)
7670 dot_dv_mode ('A');
7671 }
7672 }
7673
7674 /* This is a hook for ia64_frob_label, so that it can distinguish tags from
7675 labels. */
7676 static int defining_tag = 0;
7677
7678 int
7679 ia64_unrecognized_line (int ch)
7680 {
7681 switch (ch)
7682 {
7683 case '(':
7684 expression_and_evaluate (&md.qp);
7685 if (*input_line_pointer++ != ')')
7686 {
7687 as_bad (_("Expected ')'"));
7688 return 0;
7689 }
7690 if (md.qp.X_op != O_register)
7691 {
7692 as_bad (_("Qualifying predicate expected"));
7693 return 0;
7694 }
7695 if (md.qp.X_add_number < REG_P || md.qp.X_add_number >= REG_P + 64)
7696 {
7697 as_bad (_("Predicate register expected"));
7698 return 0;
7699 }
7700 return 1;
7701
7702 case '[':
7703 {
7704 char *s;
7705 char c;
7706 symbolS *tag;
7707 int temp;
7708
7709 if (md.qp.X_op == O_register)
7710 {
7711 as_bad (_("Tag must come before qualifying predicate."));
7712 return 0;
7713 }
7714
7715 /* This implements just enough of read_a_source_file in read.c to
7716 recognize labels. */
7717 if (is_name_beginner (*input_line_pointer))
7718 {
7719 c = get_symbol_name (&s);
7720 }
7721 else if (LOCAL_LABELS_FB
7722 && ISDIGIT (*input_line_pointer))
7723 {
7724 temp = 0;
7725 while (ISDIGIT (*input_line_pointer))
7726 temp = (temp * 10) + *input_line_pointer++ - '0';
7727 fb_label_instance_inc (temp);
7728 s = fb_label_name (temp, 0);
7729 c = *input_line_pointer;
7730 }
7731 else
7732 {
7733 s = NULL;
7734 c = '\0';
7735 }
7736 if (c != ':')
7737 {
7738 /* Put ':' back for error messages' sake. */
7739 *input_line_pointer++ = ':';
7740 as_bad (_("Expected ':'"));
7741 return 0;
7742 }
7743
7744 defining_tag = 1;
7745 tag = colon (s);
7746 defining_tag = 0;
7747 /* Put ':' back for error messages' sake. */
7748 *input_line_pointer++ = ':';
7749 if (*input_line_pointer++ != ']')
7750 {
7751 as_bad (_("Expected ']'"));
7752 return 0;
7753 }
7754 if (! tag)
7755 {
7756 as_bad (_("Tag name expected"));
7757 return 0;
7758 }
7759 return 1;
7760 }
7761
7762 default:
7763 break;
7764 }
7765
7766 /* Not a valid line. */
7767 return 0;
7768 }
7769
7770 void
7771 ia64_frob_label (struct symbol *sym)
7772 {
7773 struct label_fix *fix;
7774
7775 /* Tags need special handling since they are not bundle breaks like
7776 labels. */
7777 if (defining_tag)
7778 {
7779 fix = obstack_alloc (&notes, sizeof (*fix));
7780 fix->sym = sym;
7781 fix->next = CURR_SLOT.tag_fixups;
7782 fix->dw2_mark_labels = FALSE;
7783 CURR_SLOT.tag_fixups = fix;
7784
7785 return;
7786 }
7787
7788 if (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7789 {
7790 md.last_text_seg = now_seg;
7791 fix = obstack_alloc (&notes, sizeof (*fix));
7792 fix->sym = sym;
7793 fix->next = CURR_SLOT.label_fixups;
7794 fix->dw2_mark_labels = dwarf2_loc_mark_labels;
7795 CURR_SLOT.label_fixups = fix;
7796
7797 /* Keep track of how many code entry points we've seen. */
7798 if (md.path == md.maxpaths)
7799 {
7800 md.maxpaths += 20;
7801 md.entry_labels = (const char **)
7802 xrealloc ((void *) md.entry_labels,
7803 md.maxpaths * sizeof (char *));
7804 }
7805 md.entry_labels[md.path++] = S_GET_NAME (sym);
7806 }
7807 }
7808
7809 #ifdef TE_HPUX
7810 /* The HP-UX linker will give unresolved symbol errors for symbols
7811 that are declared but unused. This routine removes declared,
7812 unused symbols from an object. */
7813 int
7814 ia64_frob_symbol (struct symbol *sym)
7815 {
7816 if ((S_GET_SEGMENT (sym) == bfd_und_section_ptr && ! symbol_used_p (sym) &&
7817 ELF_ST_VISIBILITY (S_GET_OTHER (sym)) == STV_DEFAULT)
7818 || (S_GET_SEGMENT (sym) == bfd_abs_section_ptr
7819 && ! S_IS_EXTERNAL (sym)))
7820 return 1;
7821 return 0;
7822 }
7823 #endif
7824
7825 void
7826 ia64_flush_pending_output (void)
7827 {
7828 if (!md.keep_pending_output
7829 && bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE)
7830 {
7831 /* ??? This causes many unnecessary stop bits to be emitted.
7832 Unfortunately, it isn't clear if it is safe to remove this. */
7833 insn_group_break (1, 0, 0);
7834 ia64_flush_insns ();
7835 }
7836 }
7837
7838 /* Do ia64-specific expression optimization. All that's done here is
7839 to transform index expressions that are either due to the indexing
7840 of rotating registers or due to the indexing of indirect register
7841 sets. */
7842 int
7843 ia64_optimize_expr (expressionS *l, operatorT op, expressionS *r)
7844 {
7845 if (op != O_index)
7846 return 0;
7847 resolve_expression (l);
7848 if (l->X_op == O_register)
7849 {
7850 unsigned num_regs = l->X_add_number >> 16;
7851
7852 resolve_expression (r);
7853 if (num_regs)
7854 {
7855 /* Left side is a .rotX-allocated register. */
7856 if (r->X_op != O_constant)
7857 {
7858 as_bad (_("Rotating register index must be a non-negative constant"));
7859 r->X_add_number = 0;
7860 }
7861 else if ((valueT) r->X_add_number >= num_regs)
7862 {
7863 as_bad (_("Index out of range 0..%u"), num_regs - 1);
7864 r->X_add_number = 0;
7865 }
7866 l->X_add_number = (l->X_add_number & 0xffff) + r->X_add_number;
7867 return 1;
7868 }
7869 else if (l->X_add_number >= IND_CPUID && l->X_add_number <= IND_RR)
7870 {
7871 if (r->X_op != O_register
7872 || r->X_add_number < REG_GR
7873 || r->X_add_number > REG_GR + 127)
7874 {
7875 as_bad (_("Indirect register index must be a general register"));
7876 r->X_add_number = REG_GR;
7877 }
7878 l->X_op = O_index;
7879 l->X_op_symbol = md.indregsym[l->X_add_number - IND_CPUID];
7880 l->X_add_number = r->X_add_number;
7881 return 1;
7882 }
7883 }
7884 as_bad (_("Index can only be applied to rotating or indirect registers"));
7885 /* Fall back to some register use of which has as little as possible
7886 side effects, to minimize subsequent error messages. */
7887 l->X_op = O_register;
7888 l->X_add_number = REG_GR + 3;
7889 return 1;
7890 }
7891
7892 int
7893 ia64_parse_name (char *name, expressionS *e, char *nextcharP)
7894 {
7895 struct const_desc *cdesc;
7896 struct dynreg *dr = 0;
7897 unsigned int idx;
7898 struct symbol *sym;
7899 char *end;
7900
7901 if (*name == '@')
7902 {
7903 enum pseudo_type pseudo_type = PSEUDO_FUNC_NONE;
7904
7905 /* Find what relocation pseudo-function we're dealing with. */
7906 for (idx = 0; idx < NELEMS (pseudo_func); ++idx)
7907 if (pseudo_func[idx].name
7908 && pseudo_func[idx].name[0] == name[1]
7909 && strcmp (pseudo_func[idx].name + 1, name + 2) == 0)
7910 {
7911 pseudo_type = pseudo_func[idx].type;
7912 break;
7913 }
7914 switch (pseudo_type)
7915 {
7916 case PSEUDO_FUNC_RELOC:
7917 end = input_line_pointer;
7918 if (*nextcharP != '(')
7919 {
7920 as_bad (_("Expected '('"));
7921 break;
7922 }
7923 /* Skip '('. */
7924 ++input_line_pointer;
7925 expression (e);
7926 if (*input_line_pointer != ')')
7927 {
7928 as_bad (_("Missing ')'"));
7929 goto done;
7930 }
7931 /* Skip ')'. */
7932 ++input_line_pointer;
7933 #ifdef TE_VMS
7934 if (idx == FUNC_SLOTCOUNT_RELOC)
7935 {
7936 /* @slotcount can accept any expression. Canonicalize. */
7937 e->X_add_symbol = make_expr_symbol (e);
7938 e->X_op = O_symbol;
7939 e->X_add_number = 0;
7940 }
7941 #endif
7942 if (e->X_op != O_symbol)
7943 {
7944 if (e->X_op != O_pseudo_fixup)
7945 {
7946 as_bad (_("Not a symbolic expression"));
7947 goto done;
7948 }
7949 if (idx != FUNC_LT_RELATIVE)
7950 {
7951 as_bad (_("Illegal combination of relocation functions"));
7952 goto done;
7953 }
7954 switch (S_GET_VALUE (e->X_op_symbol))
7955 {
7956 case FUNC_FPTR_RELATIVE:
7957 idx = FUNC_LT_FPTR_RELATIVE; break;
7958 case FUNC_DTP_MODULE:
7959 idx = FUNC_LT_DTP_MODULE; break;
7960 case FUNC_DTP_RELATIVE:
7961 idx = FUNC_LT_DTP_RELATIVE; break;
7962 case FUNC_TP_RELATIVE:
7963 idx = FUNC_LT_TP_RELATIVE; break;
7964 default:
7965 as_bad (_("Illegal combination of relocation functions"));
7966 goto done;
7967 }
7968 }
7969 /* Make sure gas doesn't get rid of local symbols that are used
7970 in relocs. */
7971 e->X_op = O_pseudo_fixup;
7972 e->X_op_symbol = pseudo_func[idx].u.sym;
7973 done:
7974 *nextcharP = *input_line_pointer;
7975 break;
7976
7977 case PSEUDO_FUNC_CONST:
7978 e->X_op = O_constant;
7979 e->X_add_number = pseudo_func[idx].u.ival;
7980 break;
7981
7982 case PSEUDO_FUNC_REG:
7983 e->X_op = O_register;
7984 e->X_add_number = pseudo_func[idx].u.ival;
7985 break;
7986
7987 default:
7988 return 0;
7989 }
7990 return 1;
7991 }
7992
7993 /* first see if NAME is a known register name: */
7994 sym = hash_find (md.reg_hash, name);
7995 if (sym)
7996 {
7997 e->X_op = O_register;
7998 e->X_add_number = S_GET_VALUE (sym);
7999 return 1;
8000 }
8001
8002 cdesc = hash_find (md.const_hash, name);
8003 if (cdesc)
8004 {
8005 e->X_op = O_constant;
8006 e->X_add_number = cdesc->value;
8007 return 1;
8008 }
8009
8010 /* check for inN, locN, or outN: */
8011 idx = 0;
8012 switch (name[0])
8013 {
8014 case 'i':
8015 if (name[1] == 'n' && ISDIGIT (name[2]))
8016 {
8017 dr = &md.in;
8018 idx = 2;
8019 }
8020 break;
8021
8022 case 'l':
8023 if (name[1] == 'o' && name[2] == 'c' && ISDIGIT (name[3]))
8024 {
8025 dr = &md.loc;
8026 idx = 3;
8027 }
8028 break;
8029
8030 case 'o':
8031 if (name[1] == 'u' && name[2] == 't' && ISDIGIT (name[3]))
8032 {
8033 dr = &md.out;
8034 idx = 3;
8035 }
8036 break;
8037
8038 default:
8039 break;
8040 }
8041
8042 /* Ignore register numbers with leading zeroes, except zero itself. */
8043 if (dr && (name[idx] != '0' || name[idx + 1] == '\0'))
8044 {
8045 unsigned long regnum;
8046
8047 /* The name is inN, locN, or outN; parse the register number. */
8048 regnum = strtoul (name + idx, &end, 10);
8049 if (end > name + idx && *end == '\0' && regnum < 96)
8050 {
8051 if (regnum >= dr->num_regs)
8052 {
8053 if (!dr->num_regs)
8054 as_bad (_("No current frame"));
8055 else
8056 as_bad (_("Register number out of range 0..%u"),
8057 dr->num_regs - 1);
8058 regnum = 0;
8059 }
8060 e->X_op = O_register;
8061 e->X_add_number = dr->base + regnum;
8062 return 1;
8063 }
8064 }
8065
8066 end = xstrdup (name);
8067 name = ia64_canonicalize_symbol_name (end);
8068 if ((dr = hash_find (md.dynreg_hash, name)))
8069 {
8070 /* We've got ourselves the name of a rotating register set.
8071 Store the base register number in the low 16 bits of
8072 X_add_number and the size of the register set in the top 16
8073 bits. */
8074 e->X_op = O_register;
8075 e->X_add_number = dr->base | (dr->num_regs << 16);
8076 free (end);
8077 return 1;
8078 }
8079 free (end);
8080 return 0;
8081 }
8082
8083 /* Remove the '#' suffix that indicates a symbol as opposed to a register. */
8084
8085 char *
8086 ia64_canonicalize_symbol_name (char *name)
8087 {
8088 size_t len = strlen (name), full = len;
8089
8090 while (len > 0 && name[len - 1] == '#')
8091 --len;
8092 if (len <= 0)
8093 {
8094 if (full > 0)
8095 as_bad (_("Standalone `#' is illegal"));
8096 }
8097 else if (len < full - 1)
8098 as_warn (_("Redundant `#' suffix operators"));
8099 name[len] = '\0';
8100 return name;
8101 }
8102
8103 /* Return true if idesc is a conditional branch instruction. This excludes
8104 the modulo scheduled branches, and br.ia. Mod-sched branches are excluded
8105 because they always read/write resources regardless of the value of the
8106 qualifying predicate. br.ia must always use p0, and hence is always
8107 taken. Thus this function returns true for branches which can fall
8108 through, and which use no resources if they do fall through. */
8109
8110 static int
8111 is_conditional_branch (struct ia64_opcode *idesc)
8112 {
8113 /* br is a conditional branch. Everything that starts with br. except
8114 br.ia, br.c{loop,top,exit}, and br.w{top,exit} is a conditional branch.
8115 Everything that starts with brl is a conditional branch. */
8116 return (idesc->name[0] == 'b' && idesc->name[1] == 'r'
8117 && (idesc->name[2] == '\0'
8118 || (idesc->name[2] == '.' && idesc->name[3] != 'i'
8119 && idesc->name[3] != 'c' && idesc->name[3] != 'w')
8120 || idesc->name[2] == 'l'
8121 /* br.cond, br.call, br.clr */
8122 || (idesc->name[2] == '.' && idesc->name[3] == 'c'
8123 && (idesc->name[4] == 'a' || idesc->name[4] == 'o'
8124 || (idesc->name[4] == 'l' && idesc->name[5] == 'r')))));
8125 }
8126
8127 /* Return whether the given opcode is a taken branch. If there's any doubt,
8128 returns zero. */
8129
8130 static int
8131 is_taken_branch (struct ia64_opcode *idesc)
8132 {
8133 return ((is_conditional_branch (idesc) && CURR_SLOT.qp_regno == 0)
8134 || strncmp (idesc->name, "br.ia", 5) == 0);
8135 }
8136
8137 /* Return whether the given opcode is an interruption or rfi. If there's any
8138 doubt, returns zero. */
8139
8140 static int
8141 is_interruption_or_rfi (struct ia64_opcode *idesc)
8142 {
8143 if (strcmp (idesc->name, "rfi") == 0)
8144 return 1;
8145 return 0;
8146 }
8147
8148 /* Returns the index of the given dependency in the opcode's list of chks, or
8149 -1 if there is no dependency. */
8150
8151 static int
8152 depends_on (int depind, struct ia64_opcode *idesc)
8153 {
8154 int i;
8155 const struct ia64_opcode_dependency *dep = idesc->dependencies;
8156 for (i = 0; i < dep->nchks; i++)
8157 {
8158 if (depind == DEP (dep->chks[i]))
8159 return i;
8160 }
8161 return -1;
8162 }
8163
8164 /* Determine a set of specific resources used for a particular resource
8165 class. Returns the number of specific resources identified For those
8166 cases which are not determinable statically, the resource returned is
8167 marked nonspecific.
8168
8169 Meanings of value in 'NOTE':
8170 1) only read/write when the register number is explicitly encoded in the
8171 insn.
8172 2) only read CFM when accessing a rotating GR, FR, or PR. mov pr only
8173 accesses CFM when qualifying predicate is in the rotating region.
8174 3) general register value is used to specify an indirect register; not
8175 determinable statically.
8176 4) only read the given resource when bits 7:0 of the indirect index
8177 register value does not match the register number of the resource; not
8178 determinable statically.
8179 5) all rules are implementation specific.
8180 6) only when both the index specified by the reader and the index specified
8181 by the writer have the same value in bits 63:61; not determinable
8182 statically.
8183 7) only access the specified resource when the corresponding mask bit is
8184 set
8185 8) PSR.dfh is only read when these insns reference FR32-127. PSR.dfl is
8186 only read when these insns reference FR2-31
8187 9) PSR.mfl is only written when these insns write FR2-31. PSR.mfh is only
8188 written when these insns write FR32-127
8189 10) The PSR.bn bit is only accessed when one of GR16-31 is specified in the
8190 instruction
8191 11) The target predicates are written independently of PR[qp], but source
8192 registers are only read if PR[qp] is true. Since the state of PR[qp]
8193 cannot statically be determined, all source registers are marked used.
8194 12) This insn only reads the specified predicate register when that
8195 register is the PR[qp].
8196 13) This reference to ld-c only applies to the GR whose value is loaded
8197 with data returned from memory, not the post-incremented address register.
8198 14) The RSE resource includes the implementation-specific RSE internal
8199 state resources. At least one (and possibly more) of these resources are
8200 read by each instruction listed in IC:rse-readers. At least one (and
8201 possibly more) of these resources are written by each insn listed in
8202 IC:rse-writers.
8203 15+16) Represents reserved instructions, which the assembler does not
8204 generate.
8205 17) CR[TPR] has a RAW dependency only between mov-to-CR-TPR and
8206 mov-to-PSR-l or ssm instructions that set PSR.i, PSR.pp or PSR.up.
8207
8208 Memory resources (i.e. locations in memory) are *not* marked or tracked by
8209 this code; there are no dependency violations based on memory access.
8210 */
8211
8212 #define MAX_SPECS 256
8213 #define DV_CHK 1
8214 #define DV_REG 0
8215
8216 static int
8217 specify_resource (const struct ia64_dependency *dep,
8218 struct ia64_opcode *idesc,
8219 /* is this a DV chk or a DV reg? */
8220 int type,
8221 /* returned specific resources */
8222 struct rsrc specs[MAX_SPECS],
8223 /* resource note for this insn's usage */
8224 int note,
8225 /* which execution path to examine */
8226 int path)
8227 {
8228 int count = 0;
8229 int i;
8230 int rsrc_write = 0;
8231 struct rsrc tmpl;
8232
8233 if (dep->mode == IA64_DV_WAW
8234 || (dep->mode == IA64_DV_RAW && type == DV_REG)
8235 || (dep->mode == IA64_DV_WAR && type == DV_CHK))
8236 rsrc_write = 1;
8237
8238 /* template for any resources we identify */
8239 tmpl.dependency = dep;
8240 tmpl.note = note;
8241 tmpl.insn_srlz = tmpl.data_srlz = 0;
8242 tmpl.qp_regno = CURR_SLOT.qp_regno;
8243 tmpl.link_to_qp_branch = 1;
8244 tmpl.mem_offset.hint = 0;
8245 tmpl.mem_offset.offset = 0;
8246 tmpl.mem_offset.base = 0;
8247 tmpl.specific = 1;
8248 tmpl.index = -1;
8249 tmpl.cmp_type = CMP_NONE;
8250 tmpl.depind = 0;
8251 tmpl.file = NULL;
8252 tmpl.line = 0;
8253 tmpl.path = 0;
8254
8255 #define UNHANDLED \
8256 as_warn (_("Unhandled dependency %s for %s (%s), note %d"), \
8257 dep->name, idesc->name, (rsrc_write?"write":"read"), note)
8258 #define KNOWN(REG) (gr_values[REG].known && gr_values[REG].path >= path)
8259
8260 /* we don't need to track these */
8261 if (dep->semantics == IA64_DVS_NONE)
8262 return 0;
8263
8264 switch (dep->specifier)
8265 {
8266 case IA64_RS_AR_K:
8267 if (note == 1)
8268 {
8269 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8270 {
8271 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8272 if (regno >= 0 && regno <= 7)
8273 {
8274 specs[count] = tmpl;
8275 specs[count++].index = regno;
8276 }
8277 }
8278 }
8279 else if (note == 0)
8280 {
8281 for (i = 0; i < 8; i++)
8282 {
8283 specs[count] = tmpl;
8284 specs[count++].index = i;
8285 }
8286 }
8287 else
8288 {
8289 UNHANDLED;
8290 }
8291 break;
8292
8293 case IA64_RS_AR_UNAT:
8294 /* This is a mov =AR or mov AR= instruction. */
8295 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8296 {
8297 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8298 if (regno == AR_UNAT)
8299 {
8300 specs[count++] = tmpl;
8301 }
8302 }
8303 else
8304 {
8305 /* This is a spill/fill, or other instruction that modifies the
8306 unat register. */
8307
8308 /* Unless we can determine the specific bits used, mark the whole
8309 thing; bits 8:3 of the memory address indicate the bit used in
8310 UNAT. The .mem.offset hint may be used to eliminate a small
8311 subset of conflicts. */
8312 specs[count] = tmpl;
8313 if (md.mem_offset.hint)
8314 {
8315 if (md.debug_dv)
8316 fprintf (stderr, " Using hint for spill/fill\n");
8317 /* The index isn't actually used, just set it to something
8318 approximating the bit index. */
8319 specs[count].index = (md.mem_offset.offset >> 3) & 0x3F;
8320 specs[count].mem_offset.hint = 1;
8321 specs[count].mem_offset.offset = md.mem_offset.offset;
8322 specs[count++].mem_offset.base = md.mem_offset.base;
8323 }
8324 else
8325 {
8326 specs[count++].specific = 0;
8327 }
8328 }
8329 break;
8330
8331 case IA64_RS_AR:
8332 if (note == 1)
8333 {
8334 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8335 {
8336 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8337 if ((regno >= 8 && regno <= 15)
8338 || (regno >= 20 && regno <= 23)
8339 || (regno >= 31 && regno <= 39)
8340 || (regno >= 41 && regno <= 47)
8341 || (regno >= 67 && regno <= 111))
8342 {
8343 specs[count] = tmpl;
8344 specs[count++].index = regno;
8345 }
8346 }
8347 }
8348 else
8349 {
8350 UNHANDLED;
8351 }
8352 break;
8353
8354 case IA64_RS_ARb:
8355 if (note == 1)
8356 {
8357 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
8358 {
8359 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
8360 if ((regno >= 48 && regno <= 63)
8361 || (regno >= 112 && regno <= 127))
8362 {
8363 specs[count] = tmpl;
8364 specs[count++].index = regno;
8365 }
8366 }
8367 }
8368 else if (note == 0)
8369 {
8370 for (i = 48; i < 64; i++)
8371 {
8372 specs[count] = tmpl;
8373 specs[count++].index = i;
8374 }
8375 for (i = 112; i < 128; i++)
8376 {
8377 specs[count] = tmpl;
8378 specs[count++].index = i;
8379 }
8380 }
8381 else
8382 {
8383 UNHANDLED;
8384 }
8385 break;
8386
8387 case IA64_RS_BR:
8388 if (note != 1)
8389 {
8390 UNHANDLED;
8391 }
8392 else
8393 {
8394 if (rsrc_write)
8395 {
8396 for (i = 0; i < idesc->num_outputs; i++)
8397 if (idesc->operands[i] == IA64_OPND_B1
8398 || idesc->operands[i] == IA64_OPND_B2)
8399 {
8400 specs[count] = tmpl;
8401 specs[count++].index =
8402 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8403 }
8404 }
8405 else
8406 {
8407 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8408 if (idesc->operands[i] == IA64_OPND_B1
8409 || idesc->operands[i] == IA64_OPND_B2)
8410 {
8411 specs[count] = tmpl;
8412 specs[count++].index =
8413 CURR_SLOT.opnd[i].X_add_number - REG_BR;
8414 }
8415 }
8416 }
8417 break;
8418
8419 case IA64_RS_CPUID: /* four or more registers */
8420 if (note == 3)
8421 {
8422 if (idesc->operands[!rsrc_write] == IA64_OPND_CPUID_R3)
8423 {
8424 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8425 if (regno >= 0 && regno < NELEMS (gr_values)
8426 && KNOWN (regno))
8427 {
8428 specs[count] = tmpl;
8429 specs[count++].index = gr_values[regno].value & 0xFF;
8430 }
8431 else
8432 {
8433 specs[count] = tmpl;
8434 specs[count++].specific = 0;
8435 }
8436 }
8437 }
8438 else
8439 {
8440 UNHANDLED;
8441 }
8442 break;
8443
8444 case IA64_RS_DBR: /* four or more registers */
8445 if (note == 3)
8446 {
8447 if (idesc->operands[!rsrc_write] == IA64_OPND_DBR_R3)
8448 {
8449 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8450 if (regno >= 0 && regno < NELEMS (gr_values)
8451 && KNOWN (regno))
8452 {
8453 specs[count] = tmpl;
8454 specs[count++].index = gr_values[regno].value & 0xFF;
8455 }
8456 else
8457 {
8458 specs[count] = tmpl;
8459 specs[count++].specific = 0;
8460 }
8461 }
8462 }
8463 else if (note == 0 && !rsrc_write)
8464 {
8465 specs[count] = tmpl;
8466 specs[count++].specific = 0;
8467 }
8468 else
8469 {
8470 UNHANDLED;
8471 }
8472 break;
8473
8474 case IA64_RS_IBR: /* four or more registers */
8475 if (note == 3)
8476 {
8477 if (idesc->operands[!rsrc_write] == IA64_OPND_IBR_R3)
8478 {
8479 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8480 if (regno >= 0 && regno < NELEMS (gr_values)
8481 && KNOWN (regno))
8482 {
8483 specs[count] = tmpl;
8484 specs[count++].index = gr_values[regno].value & 0xFF;
8485 }
8486 else
8487 {
8488 specs[count] = tmpl;
8489 specs[count++].specific = 0;
8490 }
8491 }
8492 }
8493 else
8494 {
8495 UNHANDLED;
8496 }
8497 break;
8498
8499 case IA64_RS_MSR:
8500 if (note == 5)
8501 {
8502 /* These are implementation specific. Force all references to
8503 conflict with all other references. */
8504 specs[count] = tmpl;
8505 specs[count++].specific = 0;
8506 }
8507 else
8508 {
8509 UNHANDLED;
8510 }
8511 break;
8512
8513 case IA64_RS_PKR: /* 16 or more registers */
8514 if (note == 3 || note == 4)
8515 {
8516 if (idesc->operands[!rsrc_write] == IA64_OPND_PKR_R3)
8517 {
8518 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8519 if (regno >= 0 && regno < NELEMS (gr_values)
8520 && KNOWN (regno))
8521 {
8522 if (note == 3)
8523 {
8524 specs[count] = tmpl;
8525 specs[count++].index = gr_values[regno].value & 0xFF;
8526 }
8527 else
8528 for (i = 0; i < NELEMS (gr_values); i++)
8529 {
8530 /* Uses all registers *except* the one in R3. */
8531 if ((unsigned)i != (gr_values[regno].value & 0xFF))
8532 {
8533 specs[count] = tmpl;
8534 specs[count++].index = i;
8535 }
8536 }
8537 }
8538 else
8539 {
8540 specs[count] = tmpl;
8541 specs[count++].specific = 0;
8542 }
8543 }
8544 }
8545 else if (note == 0)
8546 {
8547 /* probe et al. */
8548 specs[count] = tmpl;
8549 specs[count++].specific = 0;
8550 }
8551 break;
8552
8553 case IA64_RS_PMC: /* four or more registers */
8554 if (note == 3)
8555 {
8556 if (idesc->operands[!rsrc_write] == IA64_OPND_PMC_R3
8557 || (!rsrc_write && idesc->operands[1] == IA64_OPND_PMD_R3))
8558
8559 {
8560 int reg_index = ((idesc->operands[1] == IA64_OPND_R3 && !rsrc_write)
8561 ? 1 : !rsrc_write);
8562 int regno = CURR_SLOT.opnd[reg_index].X_add_number - REG_GR;
8563 if (regno >= 0 && regno < NELEMS (gr_values)
8564 && KNOWN (regno))
8565 {
8566 specs[count] = tmpl;
8567 specs[count++].index = gr_values[regno].value & 0xFF;
8568 }
8569 else
8570 {
8571 specs[count] = tmpl;
8572 specs[count++].specific = 0;
8573 }
8574 }
8575 }
8576 else
8577 {
8578 UNHANDLED;
8579 }
8580 break;
8581
8582 case IA64_RS_PMD: /* four or more registers */
8583 if (note == 3)
8584 {
8585 if (idesc->operands[!rsrc_write] == IA64_OPND_PMD_R3)
8586 {
8587 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8588 if (regno >= 0 && regno < NELEMS (gr_values)
8589 && KNOWN (regno))
8590 {
8591 specs[count] = tmpl;
8592 specs[count++].index = gr_values[regno].value & 0xFF;
8593 }
8594 else
8595 {
8596 specs[count] = tmpl;
8597 specs[count++].specific = 0;
8598 }
8599 }
8600 }
8601 else
8602 {
8603 UNHANDLED;
8604 }
8605 break;
8606
8607 case IA64_RS_RR: /* eight registers */
8608 if (note == 6)
8609 {
8610 if (idesc->operands[!rsrc_write] == IA64_OPND_RR_R3)
8611 {
8612 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_GR;
8613 if (regno >= 0 && regno < NELEMS (gr_values)
8614 && KNOWN (regno))
8615 {
8616 specs[count] = tmpl;
8617 specs[count++].index = (gr_values[regno].value >> 61) & 0x7;
8618 }
8619 else
8620 {
8621 specs[count] = tmpl;
8622 specs[count++].specific = 0;
8623 }
8624 }
8625 }
8626 else if (note == 0 && !rsrc_write)
8627 {
8628 specs[count] = tmpl;
8629 specs[count++].specific = 0;
8630 }
8631 else
8632 {
8633 UNHANDLED;
8634 }
8635 break;
8636
8637 case IA64_RS_CR_IRR:
8638 if (note == 0)
8639 {
8640 /* handle mov-from-CR-IVR; it's a read that writes CR[IRR] */
8641 int regno = CURR_SLOT.opnd[1].X_add_number - REG_CR;
8642 if (rsrc_write
8643 && idesc->operands[1] == IA64_OPND_CR3
8644 && regno == CR_IVR)
8645 {
8646 for (i = 0; i < 4; i++)
8647 {
8648 specs[count] = tmpl;
8649 specs[count++].index = CR_IRR0 + i;
8650 }
8651 }
8652 }
8653 else if (note == 1)
8654 {
8655 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8656 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8657 && regno >= CR_IRR0
8658 && regno <= CR_IRR3)
8659 {
8660 specs[count] = tmpl;
8661 specs[count++].index = regno;
8662 }
8663 }
8664 else
8665 {
8666 UNHANDLED;
8667 }
8668 break;
8669
8670 case IA64_RS_CR_IIB:
8671 if (note != 0)
8672 {
8673 UNHANDLED;
8674 }
8675 else
8676 {
8677 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8678 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8679 && (regno == CR_IIB0 || regno == CR_IIB1))
8680 {
8681 specs[count] = tmpl;
8682 specs[count++].index = regno;
8683 }
8684 }
8685 break;
8686
8687 case IA64_RS_CR_LRR:
8688 if (note != 1)
8689 {
8690 UNHANDLED;
8691 }
8692 else
8693 {
8694 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8695 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3
8696 && (regno == CR_LRR0 || regno == CR_LRR1))
8697 {
8698 specs[count] = tmpl;
8699 specs[count++].index = regno;
8700 }
8701 }
8702 break;
8703
8704 case IA64_RS_CR:
8705 if (note == 1)
8706 {
8707 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
8708 {
8709 specs[count] = tmpl;
8710 specs[count++].index =
8711 CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
8712 }
8713 }
8714 else
8715 {
8716 UNHANDLED;
8717 }
8718 break;
8719
8720 case IA64_RS_DAHR:
8721 if (note == 0)
8722 {
8723 if (idesc->operands[!rsrc_write] == IA64_OPND_DAHR3)
8724 {
8725 specs[count] = tmpl;
8726 specs[count++].index =
8727 CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_DAHR;
8728 }
8729 }
8730 else
8731 {
8732 UNHANDLED;
8733 }
8734 break;
8735
8736 case IA64_RS_FR:
8737 case IA64_RS_FRb:
8738 if (note != 1)
8739 {
8740 UNHANDLED;
8741 }
8742 else if (rsrc_write)
8743 {
8744 if (dep->specifier == IA64_RS_FRb
8745 && idesc->operands[0] == IA64_OPND_F1)
8746 {
8747 specs[count] = tmpl;
8748 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_FR;
8749 }
8750 }
8751 else
8752 {
8753 for (i = idesc->num_outputs; i < NELEMS (idesc->operands); i++)
8754 {
8755 if (idesc->operands[i] == IA64_OPND_F2
8756 || idesc->operands[i] == IA64_OPND_F3
8757 || idesc->operands[i] == IA64_OPND_F4)
8758 {
8759 specs[count] = tmpl;
8760 specs[count++].index =
8761 CURR_SLOT.opnd[i].X_add_number - REG_FR;
8762 }
8763 }
8764 }
8765 break;
8766
8767 case IA64_RS_GR:
8768 if (note == 13)
8769 {
8770 /* This reference applies only to the GR whose value is loaded with
8771 data returned from memory. */
8772 specs[count] = tmpl;
8773 specs[count++].index = CURR_SLOT.opnd[0].X_add_number - REG_GR;
8774 }
8775 else if (note == 1)
8776 {
8777 if (rsrc_write)
8778 {
8779 for (i = 0; i < idesc->num_outputs; i++)
8780 if (idesc->operands[i] == IA64_OPND_R1
8781 || idesc->operands[i] == IA64_OPND_R2
8782 || idesc->operands[i] == IA64_OPND_R3)
8783 {
8784 specs[count] = tmpl;
8785 specs[count++].index =
8786 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8787 }
8788 if (idesc->flags & IA64_OPCODE_POSTINC)
8789 for (i = 0; i < NELEMS (idesc->operands); i++)
8790 if (idesc->operands[i] == IA64_OPND_MR3)
8791 {
8792 specs[count] = tmpl;
8793 specs[count++].index =
8794 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8795 }
8796 }
8797 else
8798 {
8799 /* Look for anything that reads a GR. */
8800 for (i = 0; i < NELEMS (idesc->operands); i++)
8801 {
8802 if (idesc->operands[i] == IA64_OPND_MR3
8803 || idesc->operands[i] == IA64_OPND_CPUID_R3
8804 || idesc->operands[i] == IA64_OPND_DBR_R3
8805 || idesc->operands[i] == IA64_OPND_IBR_R3
8806 || idesc->operands[i] == IA64_OPND_MSR_R3
8807 || idesc->operands[i] == IA64_OPND_PKR_R3
8808 || idesc->operands[i] == IA64_OPND_PMC_R3
8809 || idesc->operands[i] == IA64_OPND_PMD_R3
8810 || idesc->operands[i] == IA64_OPND_DAHR_R3
8811 || idesc->operands[i] == IA64_OPND_RR_R3
8812 || ((i >= idesc->num_outputs)
8813 && (idesc->operands[i] == IA64_OPND_R1
8814 || idesc->operands[i] == IA64_OPND_R2
8815 || idesc->operands[i] == IA64_OPND_R3
8816 /* addl source register. */
8817 || idesc->operands[i] == IA64_OPND_R3_2)))
8818 {
8819 specs[count] = tmpl;
8820 specs[count++].index =
8821 CURR_SLOT.opnd[i].X_add_number - REG_GR;
8822 }
8823 }
8824 }
8825 }
8826 else
8827 {
8828 UNHANDLED;
8829 }
8830 break;
8831
8832 /* This is the same as IA64_RS_PRr, except that the register range is
8833 from 1 - 15, and there are no rotating register reads/writes here. */
8834 case IA64_RS_PR:
8835 if (note == 0)
8836 {
8837 for (i = 1; i < 16; i++)
8838 {
8839 specs[count] = tmpl;
8840 specs[count++].index = i;
8841 }
8842 }
8843 else if (note == 7)
8844 {
8845 valueT mask = 0;
8846 /* Mark only those registers indicated by the mask. */
8847 if (rsrc_write)
8848 {
8849 mask = CURR_SLOT.opnd[2].X_add_number;
8850 for (i = 1; i < 16; i++)
8851 if (mask & ((valueT) 1 << i))
8852 {
8853 specs[count] = tmpl;
8854 specs[count++].index = i;
8855 }
8856 }
8857 else
8858 {
8859 UNHANDLED;
8860 }
8861 }
8862 else if (note == 11) /* note 11 implies note 1 as well */
8863 {
8864 if (rsrc_write)
8865 {
8866 for (i = 0; i < idesc->num_outputs; i++)
8867 {
8868 if (idesc->operands[i] == IA64_OPND_P1
8869 || idesc->operands[i] == IA64_OPND_P2)
8870 {
8871 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8872 if (regno >= 1 && regno < 16)
8873 {
8874 specs[count] = tmpl;
8875 specs[count++].index = regno;
8876 }
8877 }
8878 }
8879 }
8880 else
8881 {
8882 UNHANDLED;
8883 }
8884 }
8885 else if (note == 12)
8886 {
8887 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8888 {
8889 specs[count] = tmpl;
8890 specs[count++].index = CURR_SLOT.qp_regno;
8891 }
8892 }
8893 else if (note == 1)
8894 {
8895 if (rsrc_write)
8896 {
8897 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
8898 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
8899 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
8900 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
8901
8902 if ((idesc->operands[0] == IA64_OPND_P1
8903 || idesc->operands[0] == IA64_OPND_P2)
8904 && p1 >= 1 && p1 < 16)
8905 {
8906 specs[count] = tmpl;
8907 specs[count].cmp_type =
8908 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
8909 specs[count++].index = p1;
8910 }
8911 if ((idesc->operands[1] == IA64_OPND_P1
8912 || idesc->operands[1] == IA64_OPND_P2)
8913 && p2 >= 1 && p2 < 16)
8914 {
8915 specs[count] = tmpl;
8916 specs[count].cmp_type =
8917 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
8918 specs[count++].index = p2;
8919 }
8920 }
8921 else
8922 {
8923 if (CURR_SLOT.qp_regno >= 1 && CURR_SLOT.qp_regno < 16)
8924 {
8925 specs[count] = tmpl;
8926 specs[count++].index = CURR_SLOT.qp_regno;
8927 }
8928 if (idesc->operands[1] == IA64_OPND_PR)
8929 {
8930 for (i = 1; i < 16; i++)
8931 {
8932 specs[count] = tmpl;
8933 specs[count++].index = i;
8934 }
8935 }
8936 }
8937 }
8938 else
8939 {
8940 UNHANDLED;
8941 }
8942 break;
8943
8944 /* This is the general case for PRs. IA64_RS_PR and IA64_RS_PR63 are
8945 simplified cases of this. */
8946 case IA64_RS_PRr:
8947 if (note == 0)
8948 {
8949 for (i = 16; i < 63; i++)
8950 {
8951 specs[count] = tmpl;
8952 specs[count++].index = i;
8953 }
8954 }
8955 else if (note == 7)
8956 {
8957 valueT mask = 0;
8958 /* Mark only those registers indicated by the mask. */
8959 if (rsrc_write
8960 && idesc->operands[0] == IA64_OPND_PR)
8961 {
8962 mask = CURR_SLOT.opnd[2].X_add_number;
8963 if (mask & ((valueT) 1 << 16))
8964 for (i = 16; i < 63; i++)
8965 {
8966 specs[count] = tmpl;
8967 specs[count++].index = i;
8968 }
8969 }
8970 else if (rsrc_write
8971 && idesc->operands[0] == IA64_OPND_PR_ROT)
8972 {
8973 for (i = 16; i < 63; i++)
8974 {
8975 specs[count] = tmpl;
8976 specs[count++].index = i;
8977 }
8978 }
8979 else
8980 {
8981 UNHANDLED;
8982 }
8983 }
8984 else if (note == 11) /* note 11 implies note 1 as well */
8985 {
8986 if (rsrc_write)
8987 {
8988 for (i = 0; i < idesc->num_outputs; i++)
8989 {
8990 if (idesc->operands[i] == IA64_OPND_P1
8991 || idesc->operands[i] == IA64_OPND_P2)
8992 {
8993 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
8994 if (regno >= 16 && regno < 63)
8995 {
8996 specs[count] = tmpl;
8997 specs[count++].index = regno;
8998 }
8999 }
9000 }
9001 }
9002 else
9003 {
9004 UNHANDLED;
9005 }
9006 }
9007 else if (note == 12)
9008 {
9009 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
9010 {
9011 specs[count] = tmpl;
9012 specs[count++].index = CURR_SLOT.qp_regno;
9013 }
9014 }
9015 else if (note == 1)
9016 {
9017 if (rsrc_write)
9018 {
9019 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9020 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9021 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9022 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9023
9024 if ((idesc->operands[0] == IA64_OPND_P1
9025 || idesc->operands[0] == IA64_OPND_P2)
9026 && p1 >= 16 && p1 < 63)
9027 {
9028 specs[count] = tmpl;
9029 specs[count].cmp_type =
9030 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9031 specs[count++].index = p1;
9032 }
9033 if ((idesc->operands[1] == IA64_OPND_P1
9034 || idesc->operands[1] == IA64_OPND_P2)
9035 && p2 >= 16 && p2 < 63)
9036 {
9037 specs[count] = tmpl;
9038 specs[count].cmp_type =
9039 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9040 specs[count++].index = p2;
9041 }
9042 }
9043 else
9044 {
9045 if (CURR_SLOT.qp_regno >= 16 && CURR_SLOT.qp_regno < 63)
9046 {
9047 specs[count] = tmpl;
9048 specs[count++].index = CURR_SLOT.qp_regno;
9049 }
9050 if (idesc->operands[1] == IA64_OPND_PR)
9051 {
9052 for (i = 16; i < 63; i++)
9053 {
9054 specs[count] = tmpl;
9055 specs[count++].index = i;
9056 }
9057 }
9058 }
9059 }
9060 else
9061 {
9062 UNHANDLED;
9063 }
9064 break;
9065
9066 case IA64_RS_PSR:
9067 /* Verify that the instruction is using the PSR bit indicated in
9068 dep->regindex. */
9069 if (note == 0)
9070 {
9071 if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_UM)
9072 {
9073 if (dep->regindex < 6)
9074 {
9075 specs[count++] = tmpl;
9076 }
9077 }
9078 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR)
9079 {
9080 if (dep->regindex < 32
9081 || dep->regindex == 35
9082 || dep->regindex == 36
9083 || (!rsrc_write && dep->regindex == PSR_CPL))
9084 {
9085 specs[count++] = tmpl;
9086 }
9087 }
9088 else if (idesc->operands[!rsrc_write] == IA64_OPND_PSR_L)
9089 {
9090 if (dep->regindex < 32
9091 || dep->regindex == 35
9092 || dep->regindex == 36
9093 || (rsrc_write && dep->regindex == PSR_CPL))
9094 {
9095 specs[count++] = tmpl;
9096 }
9097 }
9098 else
9099 {
9100 /* Several PSR bits have very specific dependencies. */
9101 switch (dep->regindex)
9102 {
9103 default:
9104 specs[count++] = tmpl;
9105 break;
9106 case PSR_IC:
9107 if (rsrc_write)
9108 {
9109 specs[count++] = tmpl;
9110 }
9111 else
9112 {
9113 /* Only certain CR accesses use PSR.ic */
9114 if (idesc->operands[0] == IA64_OPND_CR3
9115 || idesc->operands[1] == IA64_OPND_CR3)
9116 {
9117 int reg_index =
9118 ((idesc->operands[0] == IA64_OPND_CR3)
9119 ? 0 : 1);
9120 int regno =
9121 CURR_SLOT.opnd[reg_index].X_add_number - REG_CR;
9122
9123 switch (regno)
9124 {
9125 default:
9126 break;
9127 case CR_ITIR:
9128 case CR_IFS:
9129 case CR_IIM:
9130 case CR_IIP:
9131 case CR_IPSR:
9132 case CR_ISR:
9133 case CR_IFA:
9134 case CR_IHA:
9135 case CR_IIB0:
9136 case CR_IIB1:
9137 case CR_IIPA:
9138 specs[count++] = tmpl;
9139 break;
9140 }
9141 }
9142 }
9143 break;
9144 case PSR_CPL:
9145 if (rsrc_write)
9146 {
9147 specs[count++] = tmpl;
9148 }
9149 else
9150 {
9151 /* Only some AR accesses use cpl */
9152 if (idesc->operands[0] == IA64_OPND_AR3
9153 || idesc->operands[1] == IA64_OPND_AR3)
9154 {
9155 int reg_index =
9156 ((idesc->operands[0] == IA64_OPND_AR3)
9157 ? 0 : 1);
9158 int regno =
9159 CURR_SLOT.opnd[reg_index].X_add_number - REG_AR;
9160
9161 if (regno == AR_ITC
9162 || regno == AR_RUC
9163 || (reg_index == 0
9164 && (regno == AR_RSC
9165 || (regno >= AR_K0
9166 && regno <= AR_K7))))
9167 {
9168 specs[count++] = tmpl;
9169 }
9170 }
9171 else
9172 {
9173 specs[count++] = tmpl;
9174 }
9175 break;
9176 }
9177 }
9178 }
9179 }
9180 else if (note == 7)
9181 {
9182 valueT mask = 0;
9183 if (idesc->operands[0] == IA64_OPND_IMMU24)
9184 {
9185 mask = CURR_SLOT.opnd[0].X_add_number;
9186 }
9187 else
9188 {
9189 UNHANDLED;
9190 }
9191 if (mask & ((valueT) 1 << dep->regindex))
9192 {
9193 specs[count++] = tmpl;
9194 }
9195 }
9196 else if (note == 8)
9197 {
9198 int min = dep->regindex == PSR_DFL ? 2 : 32;
9199 int max = dep->regindex == PSR_DFL ? 31 : 127;
9200 /* dfh is read on FR32-127; dfl is read on FR2-31 */
9201 for (i = 0; i < NELEMS (idesc->operands); i++)
9202 {
9203 if (idesc->operands[i] == IA64_OPND_F1
9204 || idesc->operands[i] == IA64_OPND_F2
9205 || idesc->operands[i] == IA64_OPND_F3
9206 || idesc->operands[i] == IA64_OPND_F4)
9207 {
9208 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9209 if (reg >= min && reg <= max)
9210 {
9211 specs[count++] = tmpl;
9212 }
9213 }
9214 }
9215 }
9216 else if (note == 9)
9217 {
9218 int min = dep->regindex == PSR_MFL ? 2 : 32;
9219 int max = dep->regindex == PSR_MFL ? 31 : 127;
9220 /* mfh is read on writes to FR32-127; mfl is read on writes to
9221 FR2-31 */
9222 for (i = 0; i < idesc->num_outputs; i++)
9223 {
9224 if (idesc->operands[i] == IA64_OPND_F1)
9225 {
9226 int reg = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9227 if (reg >= min && reg <= max)
9228 {
9229 specs[count++] = tmpl;
9230 }
9231 }
9232 }
9233 }
9234 else if (note == 10)
9235 {
9236 for (i = 0; i < NELEMS (idesc->operands); i++)
9237 {
9238 if (idesc->operands[i] == IA64_OPND_R1
9239 || idesc->operands[i] == IA64_OPND_R2
9240 || idesc->operands[i] == IA64_OPND_R3)
9241 {
9242 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9243 if (regno >= 16 && regno <= 31)
9244 {
9245 specs[count++] = tmpl;
9246 }
9247 }
9248 }
9249 }
9250 else
9251 {
9252 UNHANDLED;
9253 }
9254 break;
9255
9256 case IA64_RS_AR_FPSR:
9257 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3)
9258 {
9259 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9260 if (regno == AR_FPSR)
9261 {
9262 specs[count++] = tmpl;
9263 }
9264 }
9265 else
9266 {
9267 specs[count++] = tmpl;
9268 }
9269 break;
9270
9271 case IA64_RS_ARX:
9272 /* Handle all AR[REG] resources */
9273 if (note == 0 || note == 1)
9274 {
9275 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_AR;
9276 if (idesc->operands[!rsrc_write] == IA64_OPND_AR3
9277 && regno == dep->regindex)
9278 {
9279 specs[count++] = tmpl;
9280 }
9281 /* other AR[REG] resources may be affected by AR accesses */
9282 else if (idesc->operands[0] == IA64_OPND_AR3)
9283 {
9284 /* AR[] writes */
9285 regno = CURR_SLOT.opnd[0].X_add_number - REG_AR;
9286 switch (dep->regindex)
9287 {
9288 default:
9289 break;
9290 case AR_BSP:
9291 case AR_RNAT:
9292 if (regno == AR_BSPSTORE)
9293 {
9294 specs[count++] = tmpl;
9295 }
9296 case AR_RSC:
9297 if (!rsrc_write &&
9298 (regno == AR_BSPSTORE
9299 || regno == AR_RNAT))
9300 {
9301 specs[count++] = tmpl;
9302 }
9303 break;
9304 }
9305 }
9306 else if (idesc->operands[1] == IA64_OPND_AR3)
9307 {
9308 /* AR[] reads */
9309 regno = CURR_SLOT.opnd[1].X_add_number - REG_AR;
9310 switch (dep->regindex)
9311 {
9312 default:
9313 break;
9314 case AR_RSC:
9315 if (regno == AR_BSPSTORE || regno == AR_RNAT)
9316 {
9317 specs[count++] = tmpl;
9318 }
9319 break;
9320 }
9321 }
9322 else
9323 {
9324 specs[count++] = tmpl;
9325 }
9326 }
9327 else
9328 {
9329 UNHANDLED;
9330 }
9331 break;
9332
9333 case IA64_RS_CRX:
9334 /* Handle all CR[REG] resources.
9335 ??? FIXME: The rule 17 isn't really handled correctly. */
9336 if (note == 0 || note == 1 || note == 17)
9337 {
9338 if (idesc->operands[!rsrc_write] == IA64_OPND_CR3)
9339 {
9340 int regno = CURR_SLOT.opnd[!rsrc_write].X_add_number - REG_CR;
9341 if (regno == dep->regindex)
9342 {
9343 specs[count++] = tmpl;
9344 }
9345 else if (!rsrc_write)
9346 {
9347 /* Reads from CR[IVR] affect other resources. */
9348 if (regno == CR_IVR)
9349 {
9350 if ((dep->regindex >= CR_IRR0
9351 && dep->regindex <= CR_IRR3)
9352 || dep->regindex == CR_TPR)
9353 {
9354 specs[count++] = tmpl;
9355 }
9356 }
9357 }
9358 }
9359 else
9360 {
9361 specs[count++] = tmpl;
9362 }
9363 }
9364 else
9365 {
9366 UNHANDLED;
9367 }
9368 break;
9369
9370 case IA64_RS_INSERVICE:
9371 /* look for write of EOI (67) or read of IVR (65) */
9372 if ((idesc->operands[0] == IA64_OPND_CR3
9373 && CURR_SLOT.opnd[0].X_add_number - REG_CR == CR_EOI)
9374 || (idesc->operands[1] == IA64_OPND_CR3
9375 && CURR_SLOT.opnd[1].X_add_number - REG_CR == CR_IVR))
9376 {
9377 specs[count++] = tmpl;
9378 }
9379 break;
9380
9381 case IA64_RS_GR0:
9382 if (note == 1)
9383 {
9384 specs[count++] = tmpl;
9385 }
9386 else
9387 {
9388 UNHANDLED;
9389 }
9390 break;
9391
9392 case IA64_RS_CFM:
9393 if (note != 2)
9394 {
9395 specs[count++] = tmpl;
9396 }
9397 else
9398 {
9399 /* Check if any of the registers accessed are in the rotating region.
9400 mov to/from pr accesses CFM only when qp_regno is in the rotating
9401 region */
9402 for (i = 0; i < NELEMS (idesc->operands); i++)
9403 {
9404 if (idesc->operands[i] == IA64_OPND_R1
9405 || idesc->operands[i] == IA64_OPND_R2
9406 || idesc->operands[i] == IA64_OPND_R3)
9407 {
9408 int num = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9409 /* Assumes that md.rot.num_regs is always valid */
9410 if (md.rot.num_regs > 0
9411 && num > 31
9412 && num < 31 + md.rot.num_regs)
9413 {
9414 specs[count] = tmpl;
9415 specs[count++].specific = 0;
9416 }
9417 }
9418 else if (idesc->operands[i] == IA64_OPND_F1
9419 || idesc->operands[i] == IA64_OPND_F2
9420 || idesc->operands[i] == IA64_OPND_F3
9421 || idesc->operands[i] == IA64_OPND_F4)
9422 {
9423 int num = CURR_SLOT.opnd[i].X_add_number - REG_FR;
9424 if (num > 31)
9425 {
9426 specs[count] = tmpl;
9427 specs[count++].specific = 0;
9428 }
9429 }
9430 else if (idesc->operands[i] == IA64_OPND_P1
9431 || idesc->operands[i] == IA64_OPND_P2)
9432 {
9433 int num = CURR_SLOT.opnd[i].X_add_number - REG_P;
9434 if (num > 15)
9435 {
9436 specs[count] = tmpl;
9437 specs[count++].specific = 0;
9438 }
9439 }
9440 }
9441 if (CURR_SLOT.qp_regno > 15)
9442 {
9443 specs[count] = tmpl;
9444 specs[count++].specific = 0;
9445 }
9446 }
9447 break;
9448
9449 /* This is the same as IA64_RS_PRr, except simplified to account for
9450 the fact that there is only one register. */
9451 case IA64_RS_PR63:
9452 if (note == 0)
9453 {
9454 specs[count++] = tmpl;
9455 }
9456 else if (note == 7)
9457 {
9458 valueT mask = 0;
9459 if (idesc->operands[2] == IA64_OPND_IMM17)
9460 mask = CURR_SLOT.opnd[2].X_add_number;
9461 if (mask & ((valueT) 1 << 63))
9462 specs[count++] = tmpl;
9463 }
9464 else if (note == 11)
9465 {
9466 if ((idesc->operands[0] == IA64_OPND_P1
9467 && CURR_SLOT.opnd[0].X_add_number - REG_P == 63)
9468 || (idesc->operands[1] == IA64_OPND_P2
9469 && CURR_SLOT.opnd[1].X_add_number - REG_P == 63))
9470 {
9471 specs[count++] = tmpl;
9472 }
9473 }
9474 else if (note == 12)
9475 {
9476 if (CURR_SLOT.qp_regno == 63)
9477 {
9478 specs[count++] = tmpl;
9479 }
9480 }
9481 else if (note == 1)
9482 {
9483 if (rsrc_write)
9484 {
9485 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9486 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9487 int or_andcm = strstr (idesc->name, "or.andcm") != NULL;
9488 int and_orcm = strstr (idesc->name, "and.orcm") != NULL;
9489
9490 if (p1 == 63
9491 && (idesc->operands[0] == IA64_OPND_P1
9492 || idesc->operands[0] == IA64_OPND_P2))
9493 {
9494 specs[count] = tmpl;
9495 specs[count++].cmp_type =
9496 (or_andcm ? CMP_OR : (and_orcm ? CMP_AND : CMP_NONE));
9497 }
9498 if (p2 == 63
9499 && (idesc->operands[1] == IA64_OPND_P1
9500 || idesc->operands[1] == IA64_OPND_P2))
9501 {
9502 specs[count] = tmpl;
9503 specs[count++].cmp_type =
9504 (or_andcm ? CMP_AND : (and_orcm ? CMP_OR : CMP_NONE));
9505 }
9506 }
9507 else
9508 {
9509 if (CURR_SLOT.qp_regno == 63)
9510 {
9511 specs[count++] = tmpl;
9512 }
9513 }
9514 }
9515 else
9516 {
9517 UNHANDLED;
9518 }
9519 break;
9520
9521 case IA64_RS_RSE:
9522 /* FIXME we can identify some individual RSE written resources, but RSE
9523 read resources have not yet been completely identified, so for now
9524 treat RSE as a single resource */
9525 if (strncmp (idesc->name, "mov", 3) == 0)
9526 {
9527 if (rsrc_write)
9528 {
9529 if (idesc->operands[0] == IA64_OPND_AR3
9530 && CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE)
9531 {
9532 specs[count++] = tmpl;
9533 }
9534 }
9535 else
9536 {
9537 if (idesc->operands[0] == IA64_OPND_AR3)
9538 {
9539 if (CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_BSPSTORE
9540 || CURR_SLOT.opnd[0].X_add_number - REG_AR == AR_RNAT)
9541 {
9542 specs[count++] = tmpl;
9543 }
9544 }
9545 else if (idesc->operands[1] == IA64_OPND_AR3)
9546 {
9547 if (CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSP
9548 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_BSPSTORE
9549 || CURR_SLOT.opnd[1].X_add_number - REG_AR == AR_RNAT)
9550 {
9551 specs[count++] = tmpl;
9552 }
9553 }
9554 }
9555 }
9556 else
9557 {
9558 specs[count++] = tmpl;
9559 }
9560 break;
9561
9562 case IA64_RS_ANY:
9563 /* FIXME -- do any of these need to be non-specific? */
9564 specs[count++] = tmpl;
9565 break;
9566
9567 default:
9568 as_bad (_("Unrecognized dependency specifier %d\n"), dep->specifier);
9569 break;
9570 }
9571
9572 return count;
9573 }
9574
9575 /* Clear branch flags on marked resources. This breaks the link between the
9576 QP of the marking instruction and a subsequent branch on the same QP. */
9577
9578 static void
9579 clear_qp_branch_flag (valueT mask)
9580 {
9581 int i;
9582 for (i = 0; i < regdepslen; i++)
9583 {
9584 valueT bit = ((valueT) 1 << regdeps[i].qp_regno);
9585 if ((bit & mask) != 0)
9586 {
9587 regdeps[i].link_to_qp_branch = 0;
9588 }
9589 }
9590 }
9591
9592 /* MASK contains 2 and only 2 PRs which are mutually exclusive. Remove
9593 any mutexes which contain one of the PRs and create new ones when
9594 needed. */
9595
9596 static int
9597 update_qp_mutex (valueT mask)
9598 {
9599 int i;
9600 int add = 0;
9601
9602 i = 0;
9603 while (i < qp_mutexeslen)
9604 {
9605 if ((qp_mutexes[i].prmask & mask) != 0)
9606 {
9607 /* If it destroys and creates the same mutex, do nothing. */
9608 if (qp_mutexes[i].prmask == mask
9609 && qp_mutexes[i].path == md.path)
9610 {
9611 i++;
9612 add = -1;
9613 }
9614 else
9615 {
9616 int keep = 0;
9617
9618 if (md.debug_dv)
9619 {
9620 fprintf (stderr, " Clearing mutex relation");
9621 print_prmask (qp_mutexes[i].prmask);
9622 fprintf (stderr, "\n");
9623 }
9624
9625 /* Deal with the old mutex with more than 3+ PRs only if
9626 the new mutex on the same execution path with it.
9627
9628 FIXME: The 3+ mutex support is incomplete.
9629 dot_pred_rel () may be a better place to fix it. */
9630 if (qp_mutexes[i].path == md.path)
9631 {
9632 /* If it is a proper subset of the mutex, create a
9633 new mutex. */
9634 if (add == 0
9635 && (qp_mutexes[i].prmask & mask) == mask)
9636 add = 1;
9637
9638 qp_mutexes[i].prmask &= ~mask;
9639 if (qp_mutexes[i].prmask & (qp_mutexes[i].prmask - 1))
9640 {
9641 /* Modify the mutex if there are more than one
9642 PR left. */
9643 keep = 1;
9644 i++;
9645 }
9646 }
9647
9648 if (keep == 0)
9649 /* Remove the mutex. */
9650 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9651 }
9652 }
9653 else
9654 ++i;
9655 }
9656
9657 if (add == 1)
9658 add_qp_mutex (mask);
9659
9660 return add;
9661 }
9662
9663 /* Remove any mutexes which contain any of the PRs indicated in the mask.
9664
9665 Any changes to a PR clears the mutex relations which include that PR. */
9666
9667 static void
9668 clear_qp_mutex (valueT mask)
9669 {
9670 int i;
9671
9672 i = 0;
9673 while (i < qp_mutexeslen)
9674 {
9675 if ((qp_mutexes[i].prmask & mask) != 0)
9676 {
9677 if (md.debug_dv)
9678 {
9679 fprintf (stderr, " Clearing mutex relation");
9680 print_prmask (qp_mutexes[i].prmask);
9681 fprintf (stderr, "\n");
9682 }
9683 qp_mutexes[i] = qp_mutexes[--qp_mutexeslen];
9684 }
9685 else
9686 ++i;
9687 }
9688 }
9689
9690 /* Clear implies relations which contain PRs in the given masks.
9691 P1_MASK indicates the source of the implies relation, while P2_MASK
9692 indicates the implied PR. */
9693
9694 static void
9695 clear_qp_implies (valueT p1_mask, valueT p2_mask)
9696 {
9697 int i;
9698
9699 i = 0;
9700 while (i < qp_implieslen)
9701 {
9702 if ((((valueT) 1 << qp_implies[i].p1) & p1_mask) != 0
9703 || (((valueT) 1 << qp_implies[i].p2) & p2_mask) != 0)
9704 {
9705 if (md.debug_dv)
9706 fprintf (stderr, "Clearing implied relation PR%d->PR%d\n",
9707 qp_implies[i].p1, qp_implies[i].p2);
9708 qp_implies[i] = qp_implies[--qp_implieslen];
9709 }
9710 else
9711 ++i;
9712 }
9713 }
9714
9715 /* Add the PRs specified to the list of implied relations. */
9716
9717 static void
9718 add_qp_imply (int p1, int p2)
9719 {
9720 valueT mask;
9721 valueT bit;
9722 int i;
9723
9724 /* p0 is not meaningful here. */
9725 if (p1 == 0 || p2 == 0)
9726 abort ();
9727
9728 if (p1 == p2)
9729 return;
9730
9731 /* If it exists already, ignore it. */
9732 for (i = 0; i < qp_implieslen; i++)
9733 {
9734 if (qp_implies[i].p1 == p1
9735 && qp_implies[i].p2 == p2
9736 && qp_implies[i].path == md.path
9737 && !qp_implies[i].p2_branched)
9738 return;
9739 }
9740
9741 if (qp_implieslen == qp_impliestotlen)
9742 {
9743 qp_impliestotlen += 20;
9744 qp_implies = (struct qp_imply *)
9745 xrealloc ((void *) qp_implies,
9746 qp_impliestotlen * sizeof (struct qp_imply));
9747 }
9748 if (md.debug_dv)
9749 fprintf (stderr, " Registering PR%d implies PR%d\n", p1, p2);
9750 qp_implies[qp_implieslen].p1 = p1;
9751 qp_implies[qp_implieslen].p2 = p2;
9752 qp_implies[qp_implieslen].path = md.path;
9753 qp_implies[qp_implieslen++].p2_branched = 0;
9754
9755 /* Add in the implied transitive relations; for everything that p2 implies,
9756 make p1 imply that, too; for everything that implies p1, make it imply p2
9757 as well. */
9758 for (i = 0; i < qp_implieslen; i++)
9759 {
9760 if (qp_implies[i].p1 == p2)
9761 add_qp_imply (p1, qp_implies[i].p2);
9762 if (qp_implies[i].p2 == p1)
9763 add_qp_imply (qp_implies[i].p1, p2);
9764 }
9765 /* Add in mutex relations implied by this implies relation; for each mutex
9766 relation containing p2, duplicate it and replace p2 with p1. */
9767 bit = (valueT) 1 << p1;
9768 mask = (valueT) 1 << p2;
9769 for (i = 0; i < qp_mutexeslen; i++)
9770 {
9771 if (qp_mutexes[i].prmask & mask)
9772 add_qp_mutex ((qp_mutexes[i].prmask & ~mask) | bit);
9773 }
9774 }
9775
9776 /* Add the PRs specified in the mask to the mutex list; this means that only
9777 one of the PRs can be true at any time. PR0 should never be included in
9778 the mask. */
9779
9780 static void
9781 add_qp_mutex (valueT mask)
9782 {
9783 if (mask & 0x1)
9784 abort ();
9785
9786 if (qp_mutexeslen == qp_mutexestotlen)
9787 {
9788 qp_mutexestotlen += 20;
9789 qp_mutexes = (struct qpmutex *)
9790 xrealloc ((void *) qp_mutexes,
9791 qp_mutexestotlen * sizeof (struct qpmutex));
9792 }
9793 if (md.debug_dv)
9794 {
9795 fprintf (stderr, " Registering mutex on");
9796 print_prmask (mask);
9797 fprintf (stderr, "\n");
9798 }
9799 qp_mutexes[qp_mutexeslen].path = md.path;
9800 qp_mutexes[qp_mutexeslen++].prmask = mask;
9801 }
9802
9803 static int
9804 has_suffix_p (const char *name, const char *suffix)
9805 {
9806 size_t namelen = strlen (name);
9807 size_t sufflen = strlen (suffix);
9808
9809 if (namelen <= sufflen)
9810 return 0;
9811 return strcmp (name + namelen - sufflen, suffix) == 0;
9812 }
9813
9814 static void
9815 clear_register_values (void)
9816 {
9817 int i;
9818 if (md.debug_dv)
9819 fprintf (stderr, " Clearing register values\n");
9820 for (i = 1; i < NELEMS (gr_values); i++)
9821 gr_values[i].known = 0;
9822 }
9823
9824 /* Keep track of register values/changes which affect DV tracking.
9825
9826 optimization note: should add a flag to classes of insns where otherwise we
9827 have to examine a group of strings to identify them. */
9828
9829 static void
9830 note_register_values (struct ia64_opcode *idesc)
9831 {
9832 valueT qp_changemask = 0;
9833 int i;
9834
9835 /* Invalidate values for registers being written to. */
9836 for (i = 0; i < idesc->num_outputs; i++)
9837 {
9838 if (idesc->operands[i] == IA64_OPND_R1
9839 || idesc->operands[i] == IA64_OPND_R2
9840 || idesc->operands[i] == IA64_OPND_R3)
9841 {
9842 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9843 if (regno > 0 && regno < NELEMS (gr_values))
9844 gr_values[regno].known = 0;
9845 }
9846 else if (idesc->operands[i] == IA64_OPND_R3_2)
9847 {
9848 int regno = CURR_SLOT.opnd[i].X_add_number - REG_GR;
9849 if (regno > 0 && regno < 4)
9850 gr_values[regno].known = 0;
9851 }
9852 else if (idesc->operands[i] == IA64_OPND_P1
9853 || idesc->operands[i] == IA64_OPND_P2)
9854 {
9855 int regno = CURR_SLOT.opnd[i].X_add_number - REG_P;
9856 qp_changemask |= (valueT) 1 << regno;
9857 }
9858 else if (idesc->operands[i] == IA64_OPND_PR)
9859 {
9860 if (idesc->operands[2] & (valueT) 0x10000)
9861 qp_changemask = ~(valueT) 0x1FFFF | idesc->operands[2];
9862 else
9863 qp_changemask = idesc->operands[2];
9864 break;
9865 }
9866 else if (idesc->operands[i] == IA64_OPND_PR_ROT)
9867 {
9868 if (idesc->operands[1] & ((valueT) 1 << 43))
9869 qp_changemask = -((valueT) 1 << 44) | idesc->operands[1];
9870 else
9871 qp_changemask = idesc->operands[1];
9872 qp_changemask &= ~(valueT) 0xFFFF;
9873 break;
9874 }
9875 }
9876
9877 /* Always clear qp branch flags on any PR change. */
9878 /* FIXME there may be exceptions for certain compares. */
9879 clear_qp_branch_flag (qp_changemask);
9880
9881 /* Invalidate rotating registers on insns which affect RRBs in CFM. */
9882 if (idesc->flags & IA64_OPCODE_MOD_RRBS)
9883 {
9884 qp_changemask |= ~(valueT) 0xFFFF;
9885 if (strcmp (idesc->name, "clrrrb.pr") != 0)
9886 {
9887 for (i = 32; i < 32 + md.rot.num_regs; i++)
9888 gr_values[i].known = 0;
9889 }
9890 clear_qp_mutex (qp_changemask);
9891 clear_qp_implies (qp_changemask, qp_changemask);
9892 }
9893 /* After a call, all register values are undefined, except those marked
9894 as "safe". */
9895 else if (strncmp (idesc->name, "br.call", 6) == 0
9896 || strncmp (idesc->name, "brl.call", 7) == 0)
9897 {
9898 /* FIXME keep GR values which are marked as "safe_across_calls" */
9899 clear_register_values ();
9900 clear_qp_mutex (~qp_safe_across_calls);
9901 clear_qp_implies (~qp_safe_across_calls, ~qp_safe_across_calls);
9902 clear_qp_branch_flag (~qp_safe_across_calls);
9903 }
9904 else if (is_interruption_or_rfi (idesc)
9905 || is_taken_branch (idesc))
9906 {
9907 clear_register_values ();
9908 clear_qp_mutex (~(valueT) 0);
9909 clear_qp_implies (~(valueT) 0, ~(valueT) 0);
9910 }
9911 /* Look for mutex and implies relations. */
9912 else if ((idesc->operands[0] == IA64_OPND_P1
9913 || idesc->operands[0] == IA64_OPND_P2)
9914 && (idesc->operands[1] == IA64_OPND_P1
9915 || idesc->operands[1] == IA64_OPND_P2))
9916 {
9917 int p1 = CURR_SLOT.opnd[0].X_add_number - REG_P;
9918 int p2 = CURR_SLOT.opnd[1].X_add_number - REG_P;
9919 valueT p1mask = (p1 != 0) ? (valueT) 1 << p1 : 0;
9920 valueT p2mask = (p2 != 0) ? (valueT) 1 << p2 : 0;
9921
9922 /* If both PRs are PR0, we can't really do anything. */
9923 if (p1 == 0 && p2 == 0)
9924 {
9925 if (md.debug_dv)
9926 fprintf (stderr, " Ignoring PRs due to inclusion of p0\n");
9927 }
9928 /* In general, clear mutexes and implies which include P1 or P2,
9929 with the following exceptions. */
9930 else if (has_suffix_p (idesc->name, ".or.andcm")
9931 || has_suffix_p (idesc->name, ".and.orcm"))
9932 {
9933 clear_qp_implies (p2mask, p1mask);
9934 }
9935 else if (has_suffix_p (idesc->name, ".andcm")
9936 || has_suffix_p (idesc->name, ".and"))
9937 {
9938 clear_qp_implies (0, p1mask | p2mask);
9939 }
9940 else if (has_suffix_p (idesc->name, ".orcm")
9941 || has_suffix_p (idesc->name, ".or"))
9942 {
9943 clear_qp_mutex (p1mask | p2mask);
9944 clear_qp_implies (p1mask | p2mask, 0);
9945 }
9946 else
9947 {
9948 int added = 0;
9949
9950 clear_qp_implies (p1mask | p2mask, p1mask | p2mask);
9951
9952 /* If one of the PRs is PR0, we call clear_qp_mutex. */
9953 if (p1 == 0 || p2 == 0)
9954 clear_qp_mutex (p1mask | p2mask);
9955 else
9956 added = update_qp_mutex (p1mask | p2mask);
9957
9958 if (CURR_SLOT.qp_regno == 0
9959 || has_suffix_p (idesc->name, ".unc"))
9960 {
9961 if (added == 0 && p1 && p2)
9962 add_qp_mutex (p1mask | p2mask);
9963 if (CURR_SLOT.qp_regno != 0)
9964 {
9965 if (p1)
9966 add_qp_imply (p1, CURR_SLOT.qp_regno);
9967 if (p2)
9968 add_qp_imply (p2, CURR_SLOT.qp_regno);
9969 }
9970 }
9971 }
9972 }
9973 /* Look for mov imm insns into GRs. */
9974 else if (idesc->operands[0] == IA64_OPND_R1
9975 && (idesc->operands[1] == IA64_OPND_IMM22
9976 || idesc->operands[1] == IA64_OPND_IMMU64)
9977 && CURR_SLOT.opnd[1].X_op == O_constant
9978 && (strcmp (idesc->name, "mov") == 0
9979 || strcmp (idesc->name, "movl") == 0))
9980 {
9981 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
9982 if (regno > 0 && regno < NELEMS (gr_values))
9983 {
9984 gr_values[regno].known = 1;
9985 gr_values[regno].value = CURR_SLOT.opnd[1].X_add_number;
9986 gr_values[regno].path = md.path;
9987 if (md.debug_dv)
9988 {
9989 fprintf (stderr, " Know gr%d = ", regno);
9990 fprintf_vma (stderr, gr_values[regno].value);
9991 fputs ("\n", stderr);
9992 }
9993 }
9994 }
9995 /* Look for dep.z imm insns. */
9996 else if (idesc->operands[0] == IA64_OPND_R1
9997 && idesc->operands[1] == IA64_OPND_IMM8
9998 && strcmp (idesc->name, "dep.z") == 0)
9999 {
10000 int regno = CURR_SLOT.opnd[0].X_add_number - REG_GR;
10001 if (regno > 0 && regno < NELEMS (gr_values))
10002 {
10003 valueT value = CURR_SLOT.opnd[1].X_add_number;
10004
10005 if (CURR_SLOT.opnd[3].X_add_number < 64)
10006 value &= ((valueT)1 << CURR_SLOT.opnd[3].X_add_number) - 1;
10007 value <<= CURR_SLOT.opnd[2].X_add_number;
10008 gr_values[regno].known = 1;
10009 gr_values[regno].value = value;
10010 gr_values[regno].path = md.path;
10011 if (md.debug_dv)
10012 {
10013 fprintf (stderr, " Know gr%d = ", regno);
10014 fprintf_vma (stderr, gr_values[regno].value);
10015 fputs ("\n", stderr);
10016 }
10017 }
10018 }
10019 else
10020 {
10021 clear_qp_mutex (qp_changemask);
10022 clear_qp_implies (qp_changemask, qp_changemask);
10023 }
10024 }
10025
10026 /* Return whether the given predicate registers are currently mutex. */
10027
10028 static int
10029 qp_mutex (int p1, int p2, int path)
10030 {
10031 int i;
10032 valueT mask;
10033
10034 if (p1 != p2)
10035 {
10036 mask = ((valueT) 1 << p1) | (valueT) 1 << p2;
10037 for (i = 0; i < qp_mutexeslen; i++)
10038 {
10039 if (qp_mutexes[i].path >= path
10040 && (qp_mutexes[i].prmask & mask) == mask)
10041 return 1;
10042 }
10043 }
10044 return 0;
10045 }
10046
10047 /* Return whether the given resource is in the given insn's list of chks
10048 Return 1 if the conflict is absolutely determined, 2 if it's a potential
10049 conflict. */
10050
10051 static int
10052 resources_match (struct rsrc *rs,
10053 struct ia64_opcode *idesc,
10054 int note,
10055 int qp_regno,
10056 int path)
10057 {
10058 struct rsrc specs[MAX_SPECS];
10059 int count;
10060
10061 /* If the marked resource's qp_regno and the given qp_regno are mutex,
10062 we don't need to check. One exception is note 11, which indicates that
10063 target predicates are written regardless of PR[qp]. */
10064 if (qp_mutex (rs->qp_regno, qp_regno, path)
10065 && note != 11)
10066 return 0;
10067
10068 count = specify_resource (rs->dependency, idesc, DV_CHK, specs, note, path);
10069 while (count-- > 0)
10070 {
10071 /* UNAT checking is a bit more specific than other resources */
10072 if (rs->dependency->specifier == IA64_RS_AR_UNAT
10073 && specs[count].mem_offset.hint
10074 && rs->mem_offset.hint)
10075 {
10076 if (rs->mem_offset.base == specs[count].mem_offset.base)
10077 {
10078 if (((rs->mem_offset.offset >> 3) & 0x3F) ==
10079 ((specs[count].mem_offset.offset >> 3) & 0x3F))
10080 return 1;
10081 else
10082 continue;
10083 }
10084 }
10085
10086 /* Skip apparent PR write conflicts where both writes are an AND or both
10087 writes are an OR. */
10088 if (rs->dependency->specifier == IA64_RS_PR
10089 || rs->dependency->specifier == IA64_RS_PRr
10090 || rs->dependency->specifier == IA64_RS_PR63)
10091 {
10092 if (specs[count].cmp_type != CMP_NONE
10093 && specs[count].cmp_type == rs->cmp_type)
10094 {
10095 if (md.debug_dv)
10096 fprintf (stderr, " %s on parallel compare allowed (PR%d)\n",
10097 dv_mode[rs->dependency->mode],
10098 rs->dependency->specifier != IA64_RS_PR63 ?
10099 specs[count].index : 63);
10100 continue;
10101 }
10102 if (md.debug_dv)
10103 fprintf (stderr,
10104 " %s on parallel compare conflict %s vs %s on PR%d\n",
10105 dv_mode[rs->dependency->mode],
10106 dv_cmp_type[rs->cmp_type],
10107 dv_cmp_type[specs[count].cmp_type],
10108 rs->dependency->specifier != IA64_RS_PR63 ?
10109 specs[count].index : 63);
10110
10111 }
10112
10113 /* If either resource is not specific, conservatively assume a conflict
10114 */
10115 if (!specs[count].specific || !rs->specific)
10116 return 2;
10117 else if (specs[count].index == rs->index)
10118 return 1;
10119 }
10120
10121 return 0;
10122 }
10123
10124 /* Indicate an instruction group break; if INSERT_STOP is non-zero, then
10125 insert a stop to create the break. Update all resource dependencies
10126 appropriately. If QP_REGNO is non-zero, only apply the break to resources
10127 which use the same QP_REGNO and have the link_to_qp_branch flag set.
10128 If SAVE_CURRENT is non-zero, don't affect resources marked by the current
10129 instruction. */
10130
10131 static void
10132 insn_group_break (int insert_stop, int qp_regno, int save_current)
10133 {
10134 int i;
10135
10136 if (insert_stop && md.num_slots_in_use > 0)
10137 PREV_SLOT.end_of_insn_group = 1;
10138
10139 if (md.debug_dv)
10140 {
10141 fprintf (stderr, " Insn group break%s",
10142 (insert_stop ? " (w/stop)" : ""));
10143 if (qp_regno != 0)
10144 fprintf (stderr, " effective for QP=%d", qp_regno);
10145 fprintf (stderr, "\n");
10146 }
10147
10148 i = 0;
10149 while (i < regdepslen)
10150 {
10151 const struct ia64_dependency *dep = regdeps[i].dependency;
10152
10153 if (qp_regno != 0
10154 && regdeps[i].qp_regno != qp_regno)
10155 {
10156 ++i;
10157 continue;
10158 }
10159
10160 if (save_current
10161 && CURR_SLOT.src_file == regdeps[i].file
10162 && CURR_SLOT.src_line == regdeps[i].line)
10163 {
10164 ++i;
10165 continue;
10166 }
10167
10168 /* clear dependencies which are automatically cleared by a stop, or
10169 those that have reached the appropriate state of insn serialization */
10170 if (dep->semantics == IA64_DVS_IMPLIED
10171 || dep->semantics == IA64_DVS_IMPLIEDF
10172 || regdeps[i].insn_srlz == STATE_SRLZ)
10173 {
10174 print_dependency ("Removing", i);
10175 regdeps[i] = regdeps[--regdepslen];
10176 }
10177 else
10178 {
10179 if (dep->semantics == IA64_DVS_DATA
10180 || dep->semantics == IA64_DVS_INSTR
10181 || dep->semantics == IA64_DVS_SPECIFIC)
10182 {
10183 if (regdeps[i].insn_srlz == STATE_NONE)
10184 regdeps[i].insn_srlz = STATE_STOP;
10185 if (regdeps[i].data_srlz == STATE_NONE)
10186 regdeps[i].data_srlz = STATE_STOP;
10187 }
10188 ++i;
10189 }
10190 }
10191 }
10192
10193 /* Add the given resource usage spec to the list of active dependencies. */
10194
10195 static void
10196 mark_resource (struct ia64_opcode *idesc ATTRIBUTE_UNUSED,
10197 const struct ia64_dependency *dep ATTRIBUTE_UNUSED,
10198 struct rsrc *spec,
10199 int depind,
10200 int path)
10201 {
10202 if (regdepslen == regdepstotlen)
10203 {
10204 regdepstotlen += 20;
10205 regdeps = (struct rsrc *)
10206 xrealloc ((void *) regdeps,
10207 regdepstotlen * sizeof (struct rsrc));
10208 }
10209
10210 regdeps[regdepslen] = *spec;
10211 regdeps[regdepslen].depind = depind;
10212 regdeps[regdepslen].path = path;
10213 regdeps[regdepslen].file = CURR_SLOT.src_file;
10214 regdeps[regdepslen].line = CURR_SLOT.src_line;
10215
10216 print_dependency ("Adding", regdepslen);
10217
10218 ++regdepslen;
10219 }
10220
10221 static void
10222 print_dependency (const char *action, int depind)
10223 {
10224 if (md.debug_dv)
10225 {
10226 fprintf (stderr, " %s %s '%s'",
10227 action, dv_mode[(regdeps[depind].dependency)->mode],
10228 (regdeps[depind].dependency)->name);
10229 if (regdeps[depind].specific && regdeps[depind].index >= 0)
10230 fprintf (stderr, " (%d)", regdeps[depind].index);
10231 if (regdeps[depind].mem_offset.hint)
10232 {
10233 fputs (" ", stderr);
10234 fprintf_vma (stderr, regdeps[depind].mem_offset.base);
10235 fputs ("+", stderr);
10236 fprintf_vma (stderr, regdeps[depind].mem_offset.offset);
10237 }
10238 fprintf (stderr, "\n");
10239 }
10240 }
10241
10242 static void
10243 instruction_serialization (void)
10244 {
10245 int i;
10246 if (md.debug_dv)
10247 fprintf (stderr, " Instruction serialization\n");
10248 for (i = 0; i < regdepslen; i++)
10249 if (regdeps[i].insn_srlz == STATE_STOP)
10250 regdeps[i].insn_srlz = STATE_SRLZ;
10251 }
10252
10253 static void
10254 data_serialization (void)
10255 {
10256 int i = 0;
10257 if (md.debug_dv)
10258 fprintf (stderr, " Data serialization\n");
10259 while (i < regdepslen)
10260 {
10261 if (regdeps[i].data_srlz == STATE_STOP
10262 /* Note: as of 991210, all "other" dependencies are cleared by a
10263 data serialization. This might change with new tables */
10264 || (regdeps[i].dependency)->semantics == IA64_DVS_OTHER)
10265 {
10266 print_dependency ("Removing", i);
10267 regdeps[i] = regdeps[--regdepslen];
10268 }
10269 else
10270 ++i;
10271 }
10272 }
10273
10274 /* Insert stops and serializations as needed to avoid DVs. */
10275
10276 static void
10277 remove_marked_resource (struct rsrc *rs)
10278 {
10279 switch (rs->dependency->semantics)
10280 {
10281 case IA64_DVS_SPECIFIC:
10282 if (md.debug_dv)
10283 fprintf (stderr, "Implementation-specific, assume worst case...\n");
10284 /* ...fall through... */
10285 case IA64_DVS_INSTR:
10286 if (md.debug_dv)
10287 fprintf (stderr, "Inserting instr serialization\n");
10288 if (rs->insn_srlz < STATE_STOP)
10289 insn_group_break (1, 0, 0);
10290 if (rs->insn_srlz < STATE_SRLZ)
10291 {
10292 struct slot oldslot = CURR_SLOT;
10293 /* Manually jam a srlz.i insn into the stream */
10294 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10295 CURR_SLOT.user_template = -1;
10296 CURR_SLOT.idesc = ia64_find_opcode ("srlz.i");
10297 instruction_serialization ();
10298 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10299 if (++md.num_slots_in_use >= NUM_SLOTS)
10300 emit_one_bundle ();
10301 CURR_SLOT = oldslot;
10302 }
10303 insn_group_break (1, 0, 0);
10304 break;
10305 case IA64_DVS_OTHER: /* as of rev2 (991220) of the DV tables, all
10306 "other" types of DV are eliminated
10307 by a data serialization */
10308 case IA64_DVS_DATA:
10309 if (md.debug_dv)
10310 fprintf (stderr, "Inserting data serialization\n");
10311 if (rs->data_srlz < STATE_STOP)
10312 insn_group_break (1, 0, 0);
10313 {
10314 struct slot oldslot = CURR_SLOT;
10315 /* Manually jam a srlz.d insn into the stream */
10316 memset (&CURR_SLOT, 0, sizeof (CURR_SLOT));
10317 CURR_SLOT.user_template = -1;
10318 CURR_SLOT.idesc = ia64_find_opcode ("srlz.d");
10319 data_serialization ();
10320 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10321 if (++md.num_slots_in_use >= NUM_SLOTS)
10322 emit_one_bundle ();
10323 CURR_SLOT = oldslot;
10324 }
10325 break;
10326 case IA64_DVS_IMPLIED:
10327 case IA64_DVS_IMPLIEDF:
10328 if (md.debug_dv)
10329 fprintf (stderr, "Inserting stop\n");
10330 insn_group_break (1, 0, 0);
10331 break;
10332 default:
10333 break;
10334 }
10335 }
10336
10337 /* Check the resources used by the given opcode against the current dependency
10338 list.
10339
10340 The check is run once for each execution path encountered. In this case,
10341 a unique execution path is the sequence of instructions following a code
10342 entry point, e.g. the following has three execution paths, one starting
10343 at L0, one at L1, and one at L2.
10344
10345 L0: nop
10346 L1: add
10347 L2: add
10348 br.ret
10349 */
10350
10351 static void
10352 check_dependencies (struct ia64_opcode *idesc)
10353 {
10354 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10355 int path;
10356 int i;
10357
10358 /* Note that the number of marked resources may change within the
10359 loop if in auto mode. */
10360 i = 0;
10361 while (i < regdepslen)
10362 {
10363 struct rsrc *rs = &regdeps[i];
10364 const struct ia64_dependency *dep = rs->dependency;
10365 int chkind;
10366 int note;
10367 int start_over = 0;
10368
10369 if (dep->semantics == IA64_DVS_NONE
10370 || (chkind = depends_on (rs->depind, idesc)) == -1)
10371 {
10372 ++i;
10373 continue;
10374 }
10375
10376 note = NOTE (opdeps->chks[chkind]);
10377
10378 /* Check this resource against each execution path seen thus far. */
10379 for (path = 0; path <= md.path; path++)
10380 {
10381 int matchtype;
10382
10383 /* If the dependency wasn't on the path being checked, ignore it. */
10384 if (rs->path < path)
10385 continue;
10386
10387 /* If the QP for this insn implies a QP which has branched, don't
10388 bother checking. Ed. NOTE: I don't think this check is terribly
10389 useful; what's the point of generating code which will only be
10390 reached if its QP is zero?
10391 This code was specifically inserted to handle the following code,
10392 based on notes from Intel's DV checking code, where p1 implies p2.
10393
10394 mov r4 = 2
10395 (p2) br.cond L
10396 (p1) mov r4 = 7
10397 */
10398 if (CURR_SLOT.qp_regno != 0)
10399 {
10400 int skip = 0;
10401 int implies;
10402 for (implies = 0; implies < qp_implieslen; implies++)
10403 {
10404 if (qp_implies[implies].path >= path
10405 && qp_implies[implies].p1 == CURR_SLOT.qp_regno
10406 && qp_implies[implies].p2_branched)
10407 {
10408 skip = 1;
10409 break;
10410 }
10411 }
10412 if (skip)
10413 continue;
10414 }
10415
10416 if ((matchtype = resources_match (rs, idesc, note,
10417 CURR_SLOT.qp_regno, path)) != 0)
10418 {
10419 char msg[1024];
10420 char pathmsg[256] = "";
10421 char indexmsg[256] = "";
10422 int certain = (matchtype == 1 && CURR_SLOT.qp_regno == 0);
10423
10424 if (path != 0)
10425 snprintf (pathmsg, sizeof (pathmsg),
10426 " when entry is at label '%s'",
10427 md.entry_labels[path - 1]);
10428 if (matchtype == 1 && rs->index >= 0)
10429 snprintf (indexmsg, sizeof (indexmsg),
10430 ", specific resource number is %d",
10431 rs->index);
10432 snprintf (msg, sizeof (msg),
10433 "Use of '%s' %s %s dependency '%s' (%s)%s%s",
10434 idesc->name,
10435 (certain ? "violates" : "may violate"),
10436 dv_mode[dep->mode], dep->name,
10437 dv_sem[dep->semantics],
10438 pathmsg, indexmsg);
10439
10440 if (md.explicit_mode)
10441 {
10442 as_warn ("%s", msg);
10443 if (path < md.path)
10444 as_warn (_("Only the first path encountering the conflict is reported"));
10445 as_warn_where (rs->file, rs->line,
10446 _("This is the location of the conflicting usage"));
10447 /* Don't bother checking other paths, to avoid duplicating
10448 the same warning */
10449 break;
10450 }
10451 else
10452 {
10453 if (md.debug_dv)
10454 fprintf (stderr, "%s @ %s:%d\n", msg, rs->file, rs->line);
10455
10456 remove_marked_resource (rs);
10457
10458 /* since the set of dependencies has changed, start over */
10459 /* FIXME -- since we're removing dvs as we go, we
10460 probably don't really need to start over... */
10461 start_over = 1;
10462 break;
10463 }
10464 }
10465 }
10466 if (start_over)
10467 i = 0;
10468 else
10469 ++i;
10470 }
10471 }
10472
10473 /* Register new dependencies based on the given opcode. */
10474
10475 static void
10476 mark_resources (struct ia64_opcode *idesc)
10477 {
10478 int i;
10479 const struct ia64_opcode_dependency *opdeps = idesc->dependencies;
10480 int add_only_qp_reads = 0;
10481
10482 /* A conditional branch only uses its resources if it is taken; if it is
10483 taken, we stop following that path. The other branch types effectively
10484 *always* write their resources. If it's not taken, register only QP
10485 reads. */
10486 if (is_conditional_branch (idesc) || is_interruption_or_rfi (idesc))
10487 {
10488 add_only_qp_reads = 1;
10489 }
10490
10491 if (md.debug_dv)
10492 fprintf (stderr, "Registering '%s' resource usage\n", idesc->name);
10493
10494 for (i = 0; i < opdeps->nregs; i++)
10495 {
10496 const struct ia64_dependency *dep;
10497 struct rsrc specs[MAX_SPECS];
10498 int note;
10499 int path;
10500 int count;
10501
10502 dep = ia64_find_dependency (opdeps->regs[i]);
10503 note = NOTE (opdeps->regs[i]);
10504
10505 if (add_only_qp_reads
10506 && !(dep->mode == IA64_DV_WAR
10507 && (dep->specifier == IA64_RS_PR
10508 || dep->specifier == IA64_RS_PRr
10509 || dep->specifier == IA64_RS_PR63)))
10510 continue;
10511
10512 count = specify_resource (dep, idesc, DV_REG, specs, note, md.path);
10513
10514 while (count-- > 0)
10515 {
10516 mark_resource (idesc, dep, &specs[count],
10517 DEP (opdeps->regs[i]), md.path);
10518 }
10519
10520 /* The execution path may affect register values, which may in turn
10521 affect which indirect-access resources are accessed. */
10522 switch (dep->specifier)
10523 {
10524 default:
10525 break;
10526 case IA64_RS_CPUID:
10527 case IA64_RS_DBR:
10528 case IA64_RS_IBR:
10529 case IA64_RS_MSR:
10530 case IA64_RS_PKR:
10531 case IA64_RS_PMC:
10532 case IA64_RS_PMD:
10533 case IA64_RS_RR:
10534 for (path = 0; path < md.path; path++)
10535 {
10536 count = specify_resource (dep, idesc, DV_REG, specs, note, path);
10537 while (count-- > 0)
10538 mark_resource (idesc, dep, &specs[count],
10539 DEP (opdeps->regs[i]), path);
10540 }
10541 break;
10542 }
10543 }
10544 }
10545
10546 /* Remove dependencies when they no longer apply. */
10547
10548 static void
10549 update_dependencies (struct ia64_opcode *idesc)
10550 {
10551 int i;
10552
10553 if (strcmp (idesc->name, "srlz.i") == 0)
10554 {
10555 instruction_serialization ();
10556 }
10557 else if (strcmp (idesc->name, "srlz.d") == 0)
10558 {
10559 data_serialization ();
10560 }
10561 else if (is_interruption_or_rfi (idesc)
10562 || is_taken_branch (idesc))
10563 {
10564 /* Although technically the taken branch doesn't clear dependencies
10565 which require a srlz.[id], we don't follow the branch; the next
10566 instruction is assumed to start with a clean slate. */
10567 regdepslen = 0;
10568 md.path = 0;
10569 }
10570 else if (is_conditional_branch (idesc)
10571 && CURR_SLOT.qp_regno != 0)
10572 {
10573 int is_call = strstr (idesc->name, ".call") != NULL;
10574
10575 for (i = 0; i < qp_implieslen; i++)
10576 {
10577 /* If the conditional branch's predicate is implied by the predicate
10578 in an existing dependency, remove that dependency. */
10579 if (qp_implies[i].p2 == CURR_SLOT.qp_regno)
10580 {
10581 int depind = 0;
10582 /* Note that this implied predicate takes a branch so that if
10583 a later insn generates a DV but its predicate implies this
10584 one, we can avoid the false DV warning. */
10585 qp_implies[i].p2_branched = 1;
10586 while (depind < regdepslen)
10587 {
10588 if (regdeps[depind].qp_regno == qp_implies[i].p1)
10589 {
10590 print_dependency ("Removing", depind);
10591 regdeps[depind] = regdeps[--regdepslen];
10592 }
10593 else
10594 ++depind;
10595 }
10596 }
10597 }
10598 /* Any marked resources which have this same predicate should be
10599 cleared, provided that the QP hasn't been modified between the
10600 marking instruction and the branch. */
10601 if (is_call)
10602 {
10603 insn_group_break (0, CURR_SLOT.qp_regno, 1);
10604 }
10605 else
10606 {
10607 i = 0;
10608 while (i < regdepslen)
10609 {
10610 if (regdeps[i].qp_regno == CURR_SLOT.qp_regno
10611 && regdeps[i].link_to_qp_branch
10612 && (regdeps[i].file != CURR_SLOT.src_file
10613 || regdeps[i].line != CURR_SLOT.src_line))
10614 {
10615 /* Treat like a taken branch */
10616 print_dependency ("Removing", i);
10617 regdeps[i] = regdeps[--regdepslen];
10618 }
10619 else
10620 ++i;
10621 }
10622 }
10623 }
10624 }
10625
10626 /* Examine the current instruction for dependency violations. */
10627
10628 static int
10629 check_dv (struct ia64_opcode *idesc)
10630 {
10631 if (md.debug_dv)
10632 {
10633 fprintf (stderr, "Checking %s for violations (line %d, %d/%d)\n",
10634 idesc->name, CURR_SLOT.src_line,
10635 idesc->dependencies->nchks,
10636 idesc->dependencies->nregs);
10637 }
10638
10639 /* Look through the list of currently marked resources; if the current
10640 instruction has the dependency in its chks list which uses that resource,
10641 check against the specific resources used. */
10642 check_dependencies (idesc);
10643
10644 /* Look up the instruction's regdeps (RAW writes, WAW writes, and WAR reads),
10645 then add them to the list of marked resources. */
10646 mark_resources (idesc);
10647
10648 /* There are several types of dependency semantics, and each has its own
10649 requirements for being cleared
10650
10651 Instruction serialization (insns separated by interruption, rfi, or
10652 writer + srlz.i + reader, all in separate groups) clears DVS_INSTR.
10653
10654 Data serialization (instruction serialization, or writer + srlz.d +
10655 reader, where writer and srlz.d are in separate groups) clears
10656 DVS_DATA. (This also clears DVS_OTHER, but that is not guaranteed to
10657 always be the case).
10658
10659 Instruction group break (groups separated by stop, taken branch,
10660 interruption or rfi) clears DVS_IMPLIED and DVS_IMPLIEDF.
10661 */
10662 update_dependencies (idesc);
10663
10664 /* Sometimes, knowing a register value allows us to avoid giving a false DV
10665 warning. Keep track of as many as possible that are useful. */
10666 note_register_values (idesc);
10667
10668 /* We don't need or want this anymore. */
10669 md.mem_offset.hint = 0;
10670
10671 return 0;
10672 }
10673
10674 /* Translate one line of assembly. Pseudo ops and labels do not show
10675 here. */
10676 void
10677 md_assemble (char *str)
10678 {
10679 char *saved_input_line_pointer, *mnemonic;
10680 const struct pseudo_opcode *pdesc;
10681 struct ia64_opcode *idesc;
10682 unsigned char qp_regno;
10683 unsigned int flags;
10684 int ch;
10685
10686 saved_input_line_pointer = input_line_pointer;
10687 input_line_pointer = str;
10688
10689 /* extract the opcode (mnemonic): */
10690
10691 ch = get_symbol_name (&mnemonic);
10692 pdesc = (struct pseudo_opcode *) hash_find (md.pseudo_hash, mnemonic);
10693 if (pdesc)
10694 {
10695 (void) restore_line_pointer (ch);
10696 (*pdesc->handler) (pdesc->arg);
10697 goto done;
10698 }
10699
10700 /* Find the instruction descriptor matching the arguments. */
10701
10702 idesc = ia64_find_opcode (mnemonic);
10703 (void) restore_line_pointer (ch);
10704 if (!idesc)
10705 {
10706 as_bad (_("Unknown opcode `%s'"), mnemonic);
10707 goto done;
10708 }
10709
10710 idesc = parse_operands (idesc);
10711 if (!idesc)
10712 goto done;
10713
10714 /* Handle the dynamic ops we can handle now: */
10715 if (idesc->type == IA64_TYPE_DYN)
10716 {
10717 if (strcmp (idesc->name, "add") == 0)
10718 {
10719 if (CURR_SLOT.opnd[2].X_op == O_register
10720 && CURR_SLOT.opnd[2].X_add_number < 4)
10721 mnemonic = "addl";
10722 else
10723 mnemonic = "adds";
10724 ia64_free_opcode (idesc);
10725 idesc = ia64_find_opcode (mnemonic);
10726 }
10727 else if (strcmp (idesc->name, "mov") == 0)
10728 {
10729 enum ia64_opnd opnd1, opnd2;
10730 int rop;
10731
10732 opnd1 = idesc->operands[0];
10733 opnd2 = idesc->operands[1];
10734 if (opnd1 == IA64_OPND_AR3)
10735 rop = 0;
10736 else if (opnd2 == IA64_OPND_AR3)
10737 rop = 1;
10738 else
10739 abort ();
10740 if (CURR_SLOT.opnd[rop].X_op == O_register)
10741 {
10742 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10743 mnemonic = "mov.i";
10744 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10745 mnemonic = "mov.m";
10746 else
10747 rop = -1;
10748 }
10749 else
10750 abort ();
10751 if (rop >= 0)
10752 {
10753 ia64_free_opcode (idesc);
10754 idesc = ia64_find_opcode (mnemonic);
10755 while (idesc != NULL
10756 && (idesc->operands[0] != opnd1
10757 || idesc->operands[1] != opnd2))
10758 idesc = get_next_opcode (idesc);
10759 }
10760 }
10761 }
10762 else if (strcmp (idesc->name, "mov.i") == 0
10763 || strcmp (idesc->name, "mov.m") == 0)
10764 {
10765 enum ia64_opnd opnd1, opnd2;
10766 int rop;
10767
10768 opnd1 = idesc->operands[0];
10769 opnd2 = idesc->operands[1];
10770 if (opnd1 == IA64_OPND_AR3)
10771 rop = 0;
10772 else if (opnd2 == IA64_OPND_AR3)
10773 rop = 1;
10774 else
10775 abort ();
10776 if (CURR_SLOT.opnd[rop].X_op == O_register)
10777 {
10778 char unit = 'a';
10779 if (ar_is_only_in_integer_unit (CURR_SLOT.opnd[rop].X_add_number))
10780 unit = 'i';
10781 else if (ar_is_only_in_memory_unit (CURR_SLOT.opnd[rop].X_add_number))
10782 unit = 'm';
10783 if (unit != 'a' && unit != idesc->name [4])
10784 as_bad (_("AR %d can only be accessed by %c-unit"),
10785 (int) (CURR_SLOT.opnd[rop].X_add_number - REG_AR),
10786 TOUPPER (unit));
10787 }
10788 }
10789 else if (strcmp (idesc->name, "hint.b") == 0)
10790 {
10791 switch (md.hint_b)
10792 {
10793 case hint_b_ok:
10794 break;
10795 case hint_b_warning:
10796 as_warn (_("hint.b may be treated as nop"));
10797 break;
10798 case hint_b_error:
10799 as_bad (_("hint.b shouldn't be used"));
10800 break;
10801 }
10802 }
10803
10804 qp_regno = 0;
10805 if (md.qp.X_op == O_register)
10806 {
10807 qp_regno = md.qp.X_add_number - REG_P;
10808 md.qp.X_op = O_absent;
10809 }
10810
10811 flags = idesc->flags;
10812
10813 if ((flags & IA64_OPCODE_FIRST) != 0)
10814 {
10815 /* The alignment frag has to end with a stop bit only if the
10816 next instruction after the alignment directive has to be
10817 the first instruction in an instruction group. */
10818 if (align_frag)
10819 {
10820 while (align_frag->fr_type != rs_align_code)
10821 {
10822 align_frag = align_frag->fr_next;
10823 if (!align_frag)
10824 break;
10825 }
10826 /* align_frag can be NULL if there are directives in
10827 between. */
10828 if (align_frag && align_frag->fr_next == frag_now)
10829 align_frag->tc_frag_data = 1;
10830 }
10831
10832 insn_group_break (1, 0, 0);
10833 }
10834 align_frag = NULL;
10835
10836 if ((flags & IA64_OPCODE_NO_PRED) != 0 && qp_regno != 0)
10837 {
10838 as_bad (_("`%s' cannot be predicated"), idesc->name);
10839 goto done;
10840 }
10841
10842 /* Build the instruction. */
10843 CURR_SLOT.qp_regno = qp_regno;
10844 CURR_SLOT.idesc = idesc;
10845 CURR_SLOT.src_file = as_where (&CURR_SLOT.src_line);
10846 dwarf2_where (&CURR_SLOT.debug_line);
10847 dwarf2_consume_line_info ();
10848
10849 /* Add unwind entries, if there are any. */
10850 if (unwind.current_entry)
10851 {
10852 CURR_SLOT.unwind_record = unwind.current_entry;
10853 unwind.current_entry = NULL;
10854 }
10855 if (unwind.pending_saves)
10856 {
10857 if (unwind.pending_saves->next)
10858 {
10859 /* Attach the next pending save to the next slot so that its
10860 slot number will get set correctly. */
10861 add_unwind_entry (unwind.pending_saves->next, NOT_A_CHAR);
10862 unwind.pending_saves = &unwind.pending_saves->next->r.record.p;
10863 }
10864 else
10865 unwind.pending_saves = NULL;
10866 }
10867 if (unwind.proc_pending.sym && S_IS_DEFINED (unwind.proc_pending.sym))
10868 unwind.insn = 1;
10869
10870 /* Check for dependency violations. */
10871 if (md.detect_dv)
10872 check_dv (idesc);
10873
10874 md.curr_slot = (md.curr_slot + 1) % NUM_SLOTS;
10875 if (++md.num_slots_in_use >= NUM_SLOTS)
10876 emit_one_bundle ();
10877
10878 if ((flags & IA64_OPCODE_LAST) != 0)
10879 insn_group_break (1, 0, 0);
10880
10881 md.last_text_seg = now_seg;
10882
10883 done:
10884 input_line_pointer = saved_input_line_pointer;
10885 }
10886
10887 /* Called when symbol NAME cannot be found in the symbol table.
10888 Should be used for dynamic valued symbols only. */
10889
10890 symbolS *
10891 md_undefined_symbol (char *name ATTRIBUTE_UNUSED)
10892 {
10893 return 0;
10894 }
10895
10896 /* Called for any expression that can not be recognized. When the
10897 function is called, `input_line_pointer' will point to the start of
10898 the expression. */
10899
10900 void
10901 md_operand (expressionS *e)
10902 {
10903 switch (*input_line_pointer)
10904 {
10905 case '[':
10906 ++input_line_pointer;
10907 expression_and_evaluate (e);
10908 if (*input_line_pointer != ']')
10909 {
10910 as_bad (_("Closing bracket missing"));
10911 goto err;
10912 }
10913 else
10914 {
10915 if (e->X_op != O_register
10916 || e->X_add_number < REG_GR
10917 || e->X_add_number > REG_GR + 127)
10918 {
10919 as_bad (_("Index must be a general register"));
10920 e->X_add_number = REG_GR;
10921 }
10922
10923 ++input_line_pointer;
10924 e->X_op = O_index;
10925 }
10926 break;
10927
10928 default:
10929 break;
10930 }
10931 return;
10932
10933 err:
10934 ignore_rest_of_line ();
10935 }
10936
10937 /* Return 1 if it's OK to adjust a reloc by replacing the symbol with
10938 a section symbol plus some offset. For relocs involving @fptr(),
10939 directives we don't want such adjustments since we need to have the
10940 original symbol's name in the reloc. */
10941 int
10942 ia64_fix_adjustable (fixS *fix)
10943 {
10944 /* Prevent all adjustments to global symbols */
10945 if (S_IS_EXTERNAL (fix->fx_addsy) || S_IS_WEAK (fix->fx_addsy))
10946 return 0;
10947
10948 switch (fix->fx_r_type)
10949 {
10950 case BFD_RELOC_IA64_FPTR64I:
10951 case BFD_RELOC_IA64_FPTR32MSB:
10952 case BFD_RELOC_IA64_FPTR32LSB:
10953 case BFD_RELOC_IA64_FPTR64MSB:
10954 case BFD_RELOC_IA64_FPTR64LSB:
10955 case BFD_RELOC_IA64_LTOFF_FPTR22:
10956 case BFD_RELOC_IA64_LTOFF_FPTR64I:
10957 return 0;
10958 default:
10959 break;
10960 }
10961
10962 return 1;
10963 }
10964
10965 int
10966 ia64_force_relocation (fixS *fix)
10967 {
10968 switch (fix->fx_r_type)
10969 {
10970 case BFD_RELOC_IA64_FPTR64I:
10971 case BFD_RELOC_IA64_FPTR32MSB:
10972 case BFD_RELOC_IA64_FPTR32LSB:
10973 case BFD_RELOC_IA64_FPTR64MSB:
10974 case BFD_RELOC_IA64_FPTR64LSB:
10975
10976 case BFD_RELOC_IA64_LTOFF22:
10977 case BFD_RELOC_IA64_LTOFF64I:
10978 case BFD_RELOC_IA64_LTOFF_FPTR22:
10979 case BFD_RELOC_IA64_LTOFF_FPTR64I:
10980 case BFD_RELOC_IA64_PLTOFF22:
10981 case BFD_RELOC_IA64_PLTOFF64I:
10982 case BFD_RELOC_IA64_PLTOFF64MSB:
10983 case BFD_RELOC_IA64_PLTOFF64LSB:
10984
10985 case BFD_RELOC_IA64_LTOFF22X:
10986 case BFD_RELOC_IA64_LDXMOV:
10987 return 1;
10988
10989 default:
10990 break;
10991 }
10992
10993 return generic_force_reloc (fix);
10994 }
10995
10996 /* Decide from what point a pc-relative relocation is relative to,
10997 relative to the pc-relative fixup. Er, relatively speaking. */
10998 long
10999 ia64_pcrel_from_section (fixS *fix, segT sec)
11000 {
11001 unsigned long off = fix->fx_frag->fr_address + fix->fx_where;
11002
11003 if (bfd_get_section_flags (stdoutput, sec) & SEC_CODE)
11004 off &= ~0xfUL;
11005
11006 return off;
11007 }
11008
11009
11010 /* Used to emit section-relative relocs for the dwarf2 debug data. */
11011 void
11012 ia64_dwarf2_emit_offset (symbolS *symbol, unsigned int size)
11013 {
11014 expressionS exp;
11015
11016 exp.X_op = O_pseudo_fixup;
11017 exp.X_op_symbol = pseudo_func[FUNC_SEC_RELATIVE].u.sym;
11018 exp.X_add_number = 0;
11019 exp.X_add_symbol = symbol;
11020 emit_expr (&exp, size);
11021 }
11022
11023 /* This is called whenever some data item (not an instruction) needs a
11024 fixup. We pick the right reloc code depending on the byteorder
11025 currently in effect. */
11026 void
11027 ia64_cons_fix_new (fragS *f, int where, int nbytes, expressionS *exp,
11028 bfd_reloc_code_real_type code)
11029 {
11030 fixS *fix;
11031
11032 switch (nbytes)
11033 {
11034 /* There are no reloc for 8 and 16 bit quantities, but we allow
11035 them here since they will work fine as long as the expression
11036 is fully defined at the end of the pass over the source file. */
11037 case 1: code = BFD_RELOC_8; break;
11038 case 2: code = BFD_RELOC_16; break;
11039 case 4:
11040 if (target_big_endian)
11041 code = BFD_RELOC_IA64_DIR32MSB;
11042 else
11043 code = BFD_RELOC_IA64_DIR32LSB;
11044 break;
11045
11046 case 8:
11047 /* In 32-bit mode, data8 could mean function descriptors too. */
11048 if (exp->X_op == O_pseudo_fixup
11049 && exp->X_op_symbol
11050 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC
11051 && !(md.flags & EF_IA_64_ABI64))
11052 {
11053 if (target_big_endian)
11054 code = BFD_RELOC_IA64_IPLTMSB;
11055 else
11056 code = BFD_RELOC_IA64_IPLTLSB;
11057 exp->X_op = O_symbol;
11058 break;
11059 }
11060 else
11061 {
11062 if (target_big_endian)
11063 code = BFD_RELOC_IA64_DIR64MSB;
11064 else
11065 code = BFD_RELOC_IA64_DIR64LSB;
11066 break;
11067 }
11068
11069 case 16:
11070 if (exp->X_op == O_pseudo_fixup
11071 && exp->X_op_symbol
11072 && S_GET_VALUE (exp->X_op_symbol) == FUNC_IPLT_RELOC)
11073 {
11074 if (target_big_endian)
11075 code = BFD_RELOC_IA64_IPLTMSB;
11076 else
11077 code = BFD_RELOC_IA64_IPLTLSB;
11078 exp->X_op = O_symbol;
11079 break;
11080 }
11081 /* FALLTHRU */
11082
11083 default:
11084 as_bad (_("Unsupported fixup size %d"), nbytes);
11085 ignore_rest_of_line ();
11086 return;
11087 }
11088
11089 if (exp->X_op == O_pseudo_fixup)
11090 {
11091 exp->X_op = O_symbol;
11092 code = ia64_gen_real_reloc_type (exp->X_op_symbol, code);
11093 /* ??? If code unchanged, unsupported. */
11094 }
11095
11096 fix = fix_new_exp (f, where, nbytes, exp, 0, code);
11097 /* We need to store the byte order in effect in case we're going
11098 to fix an 8 or 16 bit relocation (for which there no real
11099 relocs available). See md_apply_fix(). */
11100 fix->tc_fix_data.bigendian = target_big_endian;
11101 }
11102
11103 /* Return the actual relocation we wish to associate with the pseudo
11104 reloc described by SYM and R_TYPE. SYM should be one of the
11105 symbols in the pseudo_func array, or NULL. */
11106
11107 static bfd_reloc_code_real_type
11108 ia64_gen_real_reloc_type (struct symbol *sym, bfd_reloc_code_real_type r_type)
11109 {
11110 bfd_reloc_code_real_type newr = 0;
11111 const char *type = NULL, *suffix = "";
11112
11113 if (sym == NULL)
11114 {
11115 return r_type;
11116 }
11117
11118 switch (S_GET_VALUE (sym))
11119 {
11120 case FUNC_FPTR_RELATIVE:
11121 switch (r_type)
11122 {
11123 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_FPTR64I; break;
11124 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_FPTR32MSB; break;
11125 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_FPTR32LSB; break;
11126 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_FPTR64MSB; break;
11127 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_FPTR64LSB; break;
11128 default: type = "FPTR"; break;
11129 }
11130 break;
11131
11132 case FUNC_GP_RELATIVE:
11133 switch (r_type)
11134 {
11135 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_GPREL22; break;
11136 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_GPREL64I; break;
11137 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_GPREL32MSB; break;
11138 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_GPREL32LSB; break;
11139 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_GPREL64MSB; break;
11140 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_GPREL64LSB; break;
11141 default: type = "GPREL"; break;
11142 }
11143 break;
11144
11145 case FUNC_LT_RELATIVE:
11146 switch (r_type)
11147 {
11148 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_LTOFF22; break;
11149 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_LTOFF64I; break;
11150 default: type = "LTOFF"; break;
11151 }
11152 break;
11153
11154 case FUNC_LT_RELATIVE_X:
11155 switch (r_type)
11156 {
11157 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_LTOFF22X; break;
11158 default: type = "LTOFF"; suffix = "X"; break;
11159 }
11160 break;
11161
11162 case FUNC_PC_RELATIVE:
11163 switch (r_type)
11164 {
11165 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_PCREL22; break;
11166 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_PCREL64I; break;
11167 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_PCREL32MSB; break;
11168 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_PCREL32LSB; break;
11169 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_PCREL64MSB; break;
11170 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_PCREL64LSB; break;
11171 default: type = "PCREL"; break;
11172 }
11173 break;
11174
11175 case FUNC_PLT_RELATIVE:
11176 switch (r_type)
11177 {
11178 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_PLTOFF22; break;
11179 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_PLTOFF64I; break;
11180 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_PLTOFF64MSB;break;
11181 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_PLTOFF64LSB;break;
11182 default: type = "PLTOFF"; break;
11183 }
11184 break;
11185
11186 case FUNC_SEC_RELATIVE:
11187 switch (r_type)
11188 {
11189 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_SECREL32MSB;break;
11190 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_SECREL32LSB;break;
11191 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_SECREL64MSB;break;
11192 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_SECREL64LSB;break;
11193 default: type = "SECREL"; break;
11194 }
11195 break;
11196
11197 case FUNC_SEG_RELATIVE:
11198 switch (r_type)
11199 {
11200 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_SEGREL32MSB;break;
11201 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_SEGREL32LSB;break;
11202 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_SEGREL64MSB;break;
11203 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_SEGREL64LSB;break;
11204 default: type = "SEGREL"; break;
11205 }
11206 break;
11207
11208 case FUNC_LTV_RELATIVE:
11209 switch (r_type)
11210 {
11211 case BFD_RELOC_IA64_DIR32MSB: newr = BFD_RELOC_IA64_LTV32MSB; break;
11212 case BFD_RELOC_IA64_DIR32LSB: newr = BFD_RELOC_IA64_LTV32LSB; break;
11213 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_LTV64MSB; break;
11214 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_LTV64LSB; break;
11215 default: type = "LTV"; break;
11216 }
11217 break;
11218
11219 case FUNC_LT_FPTR_RELATIVE:
11220 switch (r_type)
11221 {
11222 case BFD_RELOC_IA64_IMM22:
11223 newr = BFD_RELOC_IA64_LTOFF_FPTR22; break;
11224 case BFD_RELOC_IA64_IMM64:
11225 newr = BFD_RELOC_IA64_LTOFF_FPTR64I; break;
11226 case BFD_RELOC_IA64_DIR32MSB:
11227 newr = BFD_RELOC_IA64_LTOFF_FPTR32MSB; break;
11228 case BFD_RELOC_IA64_DIR32LSB:
11229 newr = BFD_RELOC_IA64_LTOFF_FPTR32LSB; break;
11230 case BFD_RELOC_IA64_DIR64MSB:
11231 newr = BFD_RELOC_IA64_LTOFF_FPTR64MSB; break;
11232 case BFD_RELOC_IA64_DIR64LSB:
11233 newr = BFD_RELOC_IA64_LTOFF_FPTR64LSB; break;
11234 default:
11235 type = "LTOFF_FPTR"; break;
11236 }
11237 break;
11238
11239 case FUNC_TP_RELATIVE:
11240 switch (r_type)
11241 {
11242 case BFD_RELOC_IA64_IMM14: newr = BFD_RELOC_IA64_TPREL14; break;
11243 case BFD_RELOC_IA64_IMM22: newr = BFD_RELOC_IA64_TPREL22; break;
11244 case BFD_RELOC_IA64_IMM64: newr = BFD_RELOC_IA64_TPREL64I; break;
11245 case BFD_RELOC_IA64_DIR64MSB: newr = BFD_RELOC_IA64_TPREL64MSB; break;
11246 case BFD_RELOC_IA64_DIR64LSB: newr = BFD_RELOC_IA64_TPREL64LSB; break;
11247 default: type = "TPREL"; break;
11248 }
11249 break;
11250
11251 case FUNC_LT_TP_RELATIVE:
11252 switch (r_type)
11253 {
11254 case BFD_RELOC_IA64_IMM22:
11255 newr = BFD_RELOC_IA64_LTOFF_TPREL22; break;
11256 default:
11257 type = "LTOFF_TPREL"; break;
11258 }
11259 break;
11260
11261 case FUNC_DTP_MODULE:
11262 switch (r_type)
11263 {
11264 case BFD_RELOC_IA64_DIR64MSB:
11265 newr = BFD_RELOC_IA64_DTPMOD64MSB; break;
11266 case BFD_RELOC_IA64_DIR64LSB:
11267 newr = BFD_RELOC_IA64_DTPMOD64LSB; break;
11268 default:
11269 type = "DTPMOD"; break;
11270 }
11271 break;
11272
11273 case FUNC_LT_DTP_MODULE:
11274 switch (r_type)
11275 {
11276 case BFD_RELOC_IA64_IMM22:
11277 newr = BFD_RELOC_IA64_LTOFF_DTPMOD22; break;
11278 default:
11279 type = "LTOFF_DTPMOD"; break;
11280 }
11281 break;
11282
11283 case FUNC_DTP_RELATIVE:
11284 switch (r_type)
11285 {
11286 case BFD_RELOC_IA64_DIR32MSB:
11287 newr = BFD_RELOC_IA64_DTPREL32MSB; break;
11288 case BFD_RELOC_IA64_DIR32LSB:
11289 newr = BFD_RELOC_IA64_DTPREL32LSB; break;
11290 case BFD_RELOC_IA64_DIR64MSB:
11291 newr = BFD_RELOC_IA64_DTPREL64MSB; break;
11292 case BFD_RELOC_IA64_DIR64LSB:
11293 newr = BFD_RELOC_IA64_DTPREL64LSB; break;
11294 case BFD_RELOC_IA64_IMM14:
11295 newr = BFD_RELOC_IA64_DTPREL14; break;
11296 case BFD_RELOC_IA64_IMM22:
11297 newr = BFD_RELOC_IA64_DTPREL22; break;
11298 case BFD_RELOC_IA64_IMM64:
11299 newr = BFD_RELOC_IA64_DTPREL64I; break;
11300 default:
11301 type = "DTPREL"; break;
11302 }
11303 break;
11304
11305 case FUNC_LT_DTP_RELATIVE:
11306 switch (r_type)
11307 {
11308 case BFD_RELOC_IA64_IMM22:
11309 newr = BFD_RELOC_IA64_LTOFF_DTPREL22; break;
11310 default:
11311 type = "LTOFF_DTPREL"; break;
11312 }
11313 break;
11314
11315 case FUNC_IPLT_RELOC:
11316 switch (r_type)
11317 {
11318 case BFD_RELOC_IA64_IPLTMSB: return r_type;
11319 case BFD_RELOC_IA64_IPLTLSB: return r_type;
11320 default: type = "IPLT"; break;
11321 }
11322 break;
11323
11324 #ifdef TE_VMS
11325 case FUNC_SLOTCOUNT_RELOC:
11326 return DUMMY_RELOC_IA64_SLOTCOUNT;
11327 #endif
11328
11329 default:
11330 abort ();
11331 }
11332
11333 if (newr)
11334 return newr;
11335 else
11336 {
11337 int width;
11338
11339 if (!type)
11340 abort ();
11341 switch (r_type)
11342 {
11343 case BFD_RELOC_IA64_DIR32MSB: width = 32; suffix = "MSB"; break;
11344 case BFD_RELOC_IA64_DIR32LSB: width = 32; suffix = "LSB"; break;
11345 case BFD_RELOC_IA64_DIR64MSB: width = 64; suffix = "MSB"; break;
11346 case BFD_RELOC_IA64_DIR64LSB: width = 64; suffix = "LSB"; break;
11347 case BFD_RELOC_UNUSED: width = 13; break;
11348 case BFD_RELOC_IA64_IMM14: width = 14; break;
11349 case BFD_RELOC_IA64_IMM22: width = 22; break;
11350 case BFD_RELOC_IA64_IMM64: width = 64; suffix = "I"; break;
11351 default: abort ();
11352 }
11353
11354 /* This should be an error, but since previously there wasn't any
11355 diagnostic here, don't make it fail because of this for now. */
11356 as_warn (_("Cannot express %s%d%s relocation"), type, width, suffix);
11357 return r_type;
11358 }
11359 }
11360
11361 /* Here is where generate the appropriate reloc for pseudo relocation
11362 functions. */
11363 void
11364 ia64_validate_fix (fixS *fix)
11365 {
11366 switch (fix->fx_r_type)
11367 {
11368 case BFD_RELOC_IA64_FPTR64I:
11369 case BFD_RELOC_IA64_FPTR32MSB:
11370 case BFD_RELOC_IA64_FPTR64LSB:
11371 case BFD_RELOC_IA64_LTOFF_FPTR22:
11372 case BFD_RELOC_IA64_LTOFF_FPTR64I:
11373 if (fix->fx_offset != 0)
11374 as_bad_where (fix->fx_file, fix->fx_line,
11375 _("No addend allowed in @fptr() relocation"));
11376 break;
11377 default:
11378 break;
11379 }
11380 }
11381
11382 static void
11383 fix_insn (fixS *fix, const struct ia64_operand *odesc, valueT value)
11384 {
11385 bfd_vma insn[3], t0, t1, control_bits;
11386 const char *err;
11387 char *fixpos;
11388 long slot;
11389
11390 slot = fix->fx_where & 0x3;
11391 fixpos = fix->fx_frag->fr_literal + (fix->fx_where - slot);
11392
11393 /* Bundles are always in little-endian byte order */
11394 t0 = bfd_getl64 (fixpos);
11395 t1 = bfd_getl64 (fixpos + 8);
11396 control_bits = t0 & 0x1f;
11397 insn[0] = (t0 >> 5) & 0x1ffffffffffLL;
11398 insn[1] = ((t0 >> 46) & 0x3ffff) | ((t1 & 0x7fffff) << 18);
11399 insn[2] = (t1 >> 23) & 0x1ffffffffffLL;
11400
11401 err = NULL;
11402 if (odesc - elf64_ia64_operands == IA64_OPND_IMMU64)
11403 {
11404 insn[1] = (value >> 22) & 0x1ffffffffffLL;
11405 insn[2] |= (((value & 0x7f) << 13)
11406 | (((value >> 7) & 0x1ff) << 27)
11407 | (((value >> 16) & 0x1f) << 22)
11408 | (((value >> 21) & 0x1) << 21)
11409 | (((value >> 63) & 0x1) << 36));
11410 }
11411 else if (odesc - elf64_ia64_operands == IA64_OPND_IMMU62)
11412 {
11413 if (value & ~0x3fffffffffffffffULL)
11414 err = _("integer operand out of range");
11415 insn[1] = (value >> 21) & 0x1ffffffffffLL;
11416 insn[2] |= (((value & 0xfffff) << 6) | (((value >> 20) & 0x1) << 36));
11417 }
11418 else if (odesc - elf64_ia64_operands == IA64_OPND_TGT64)
11419 {
11420 value >>= 4;
11421 insn[1] = ((value >> 20) & 0x7fffffffffLL) << 2;
11422 insn[2] |= ((((value >> 59) & 0x1) << 36)
11423 | (((value >> 0) & 0xfffff) << 13));
11424 }
11425 else
11426 err = (*odesc->insert) (odesc, value, insn + slot);
11427
11428 if (err)
11429 as_bad_where (fix->fx_file, fix->fx_line, "%s", err);
11430
11431 t0 = control_bits | (insn[0] << 5) | (insn[1] << 46);
11432 t1 = ((insn[1] >> 18) & 0x7fffff) | (insn[2] << 23);
11433 number_to_chars_littleendian (fixpos + 0, t0, 8);
11434 number_to_chars_littleendian (fixpos + 8, t1, 8);
11435 }
11436
11437 /* Attempt to simplify or even eliminate a fixup. The return value is
11438 ignored; perhaps it was once meaningful, but now it is historical.
11439 To indicate that a fixup has been eliminated, set FIXP->FX_DONE.
11440
11441 If fixp->fx_addsy is non-NULL, we'll have to generate a reloc entry
11442 (if possible). */
11443
11444 void
11445 md_apply_fix (fixS *fix, valueT *valP, segT seg ATTRIBUTE_UNUSED)
11446 {
11447 char *fixpos;
11448 valueT value = *valP;
11449
11450 fixpos = fix->fx_frag->fr_literal + fix->fx_where;
11451
11452 if (fix->fx_pcrel)
11453 {
11454 switch (fix->fx_r_type)
11455 {
11456 case BFD_RELOC_IA64_PCREL21B: break;
11457 case BFD_RELOC_IA64_PCREL21BI: break;
11458 case BFD_RELOC_IA64_PCREL21F: break;
11459 case BFD_RELOC_IA64_PCREL21M: break;
11460 case BFD_RELOC_IA64_PCREL60B: break;
11461 case BFD_RELOC_IA64_PCREL22: break;
11462 case BFD_RELOC_IA64_PCREL64I: break;
11463 case BFD_RELOC_IA64_PCREL32MSB: break;
11464 case BFD_RELOC_IA64_PCREL32LSB: break;
11465 case BFD_RELOC_IA64_PCREL64MSB: break;
11466 case BFD_RELOC_IA64_PCREL64LSB: break;
11467 default:
11468 fix->fx_r_type = ia64_gen_real_reloc_type (pseudo_func[FUNC_PC_RELATIVE].u.sym,
11469 fix->fx_r_type);
11470 break;
11471 }
11472 }
11473 if (fix->fx_addsy)
11474 {
11475 switch ((unsigned) fix->fx_r_type)
11476 {
11477 case BFD_RELOC_UNUSED:
11478 /* This must be a TAG13 or TAG13b operand. There are no external
11479 relocs defined for them, so we must give an error. */
11480 as_bad_where (fix->fx_file, fix->fx_line,
11481 _("%s must have a constant value"),
11482 elf64_ia64_operands[fix->tc_fix_data.opnd].desc);
11483 fix->fx_done = 1;
11484 return;
11485
11486 case BFD_RELOC_IA64_TPREL14:
11487 case BFD_RELOC_IA64_TPREL22:
11488 case BFD_RELOC_IA64_TPREL64I:
11489 case BFD_RELOC_IA64_LTOFF_TPREL22:
11490 case BFD_RELOC_IA64_LTOFF_DTPMOD22:
11491 case BFD_RELOC_IA64_DTPREL14:
11492 case BFD_RELOC_IA64_DTPREL22:
11493 case BFD_RELOC_IA64_DTPREL64I:
11494 case BFD_RELOC_IA64_LTOFF_DTPREL22:
11495 S_SET_THREAD_LOCAL (fix->fx_addsy);
11496 break;
11497
11498 #ifdef TE_VMS
11499 case DUMMY_RELOC_IA64_SLOTCOUNT:
11500 as_bad_where (fix->fx_file, fix->fx_line,
11501 _("cannot resolve @slotcount parameter"));
11502 fix->fx_done = 1;
11503 return;
11504 #endif
11505
11506 default:
11507 break;
11508 }
11509 }
11510 else if (fix->tc_fix_data.opnd == IA64_OPND_NIL)
11511 {
11512 #ifdef TE_VMS
11513 if (fix->fx_r_type == DUMMY_RELOC_IA64_SLOTCOUNT)
11514 {
11515 /* For @slotcount, convert an addresses difference to a slots
11516 difference. */
11517 valueT v;
11518
11519 v = (value >> 4) * 3;
11520 switch (value & 0x0f)
11521 {
11522 case 0:
11523 case 1:
11524 case 2:
11525 v += value & 0x0f;
11526 break;
11527 case 0x0f:
11528 v += 2;
11529 break;
11530 case 0x0e:
11531 v += 1;
11532 break;
11533 default:
11534 as_bad (_("invalid @slotcount value"));
11535 }
11536 value = v;
11537 }
11538 #endif
11539
11540 if (fix->tc_fix_data.bigendian)
11541 number_to_chars_bigendian (fixpos, value, fix->fx_size);
11542 else
11543 number_to_chars_littleendian (fixpos, value, fix->fx_size);
11544 fix->fx_done = 1;
11545 }
11546 else
11547 {
11548 fix_insn (fix, elf64_ia64_operands + fix->tc_fix_data.opnd, value);
11549 fix->fx_done = 1;
11550 }
11551 }
11552
11553 /* Generate the BFD reloc to be stuck in the object file from the
11554 fixup used internally in the assembler. */
11555
11556 arelent *
11557 tc_gen_reloc (asection *sec ATTRIBUTE_UNUSED, fixS *fixp)
11558 {
11559 arelent *reloc;
11560
11561 reloc = xmalloc (sizeof (*reloc));
11562 reloc->sym_ptr_ptr = (asymbol **) xmalloc (sizeof (asymbol *));
11563 *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy);
11564 reloc->address = fixp->fx_frag->fr_address + fixp->fx_where;
11565 reloc->addend = fixp->fx_offset;
11566 reloc->howto = bfd_reloc_type_lookup (stdoutput, fixp->fx_r_type);
11567
11568 if (!reloc->howto)
11569 {
11570 as_bad_where (fixp->fx_file, fixp->fx_line,
11571 _("Cannot represent %s relocation in object file"),
11572 bfd_get_reloc_code_name (fixp->fx_r_type));
11573 free (reloc);
11574 return NULL;
11575 }
11576 return reloc;
11577 }
11578
11579 /* Turn a string in input_line_pointer into a floating point constant
11580 of type TYPE, and store the appropriate bytes in *LIT. The number
11581 of LITTLENUMS emitted is stored in *SIZE. An error message is
11582 returned, or NULL on OK. */
11583
11584 #define MAX_LITTLENUMS 5
11585
11586 char *
11587 md_atof (int type, char *lit, int *size)
11588 {
11589 LITTLENUM_TYPE words[MAX_LITTLENUMS];
11590 char *t;
11591 int prec;
11592
11593 switch (type)
11594 {
11595 /* IEEE floats */
11596 case 'f':
11597 case 'F':
11598 case 's':
11599 case 'S':
11600 prec = 2;
11601 break;
11602
11603 case 'd':
11604 case 'D':
11605 case 'r':
11606 case 'R':
11607 prec = 4;
11608 break;
11609
11610 case 'x':
11611 case 'X':
11612 case 'p':
11613 case 'P':
11614 prec = 5;
11615 break;
11616
11617 default:
11618 *size = 0;
11619 return _("Unrecognized or unsupported floating point constant");
11620 }
11621 t = atof_ieee (input_line_pointer, type, words);
11622 if (t)
11623 input_line_pointer = t;
11624
11625 (*ia64_float_to_chars) (lit, words, prec);
11626
11627 if (type == 'X')
11628 {
11629 /* It is 10 byte floating point with 6 byte padding. */
11630 memset (&lit [10], 0, 6);
11631 *size = 8 * sizeof (LITTLENUM_TYPE);
11632 }
11633 else
11634 *size = prec * sizeof (LITTLENUM_TYPE);
11635
11636 return NULL;
11637 }
11638
11639 /* Handle ia64 specific semantics of the align directive. */
11640
11641 void
11642 ia64_md_do_align (int n ATTRIBUTE_UNUSED,
11643 const char *fill ATTRIBUTE_UNUSED,
11644 int len ATTRIBUTE_UNUSED,
11645 int max ATTRIBUTE_UNUSED)
11646 {
11647 if (subseg_text_p (now_seg))
11648 ia64_flush_insns ();
11649 }
11650
11651 /* This is called from HANDLE_ALIGN in write.c. Fill in the contents
11652 of an rs_align_code fragment. */
11653
11654 void
11655 ia64_handle_align (fragS *fragp)
11656 {
11657 int bytes;
11658 char *p;
11659 const unsigned char *nop_type;
11660
11661 if (fragp->fr_type != rs_align_code)
11662 return;
11663
11664 /* Check if this frag has to end with a stop bit. */
11665 nop_type = fragp->tc_frag_data ? le_nop_stop : le_nop;
11666
11667 bytes = fragp->fr_next->fr_address - fragp->fr_address - fragp->fr_fix;
11668 p = fragp->fr_literal + fragp->fr_fix;
11669
11670 /* If no paddings are needed, we check if we need a stop bit. */
11671 if (!bytes && fragp->tc_frag_data)
11672 {
11673 if (fragp->fr_fix < 16)
11674 #if 1
11675 /* FIXME: It won't work with
11676 .align 16
11677 alloc r32=ar.pfs,1,2,4,0
11678 */
11679 ;
11680 #else
11681 as_bad_where (fragp->fr_file, fragp->fr_line,
11682 _("Can't add stop bit to mark end of instruction group"));
11683 #endif
11684 else
11685 /* Bundles are always in little-endian byte order. Make sure
11686 the previous bundle has the stop bit. */
11687 *(p - 16) |= 1;
11688 }
11689
11690 /* Make sure we are on a 16-byte boundary, in case someone has been
11691 putting data into a text section. */
11692 if (bytes & 15)
11693 {
11694 int fix = bytes & 15;
11695 memset (p, 0, fix);
11696 p += fix;
11697 bytes -= fix;
11698 fragp->fr_fix += fix;
11699 }
11700
11701 /* Instruction bundles are always little-endian. */
11702 memcpy (p, nop_type, 16);
11703 fragp->fr_var = 16;
11704 }
11705
11706 static void
11707 ia64_float_to_chars_bigendian (char *lit, LITTLENUM_TYPE *words,
11708 int prec)
11709 {
11710 while (prec--)
11711 {
11712 number_to_chars_bigendian (lit, (long) (*words++),
11713 sizeof (LITTLENUM_TYPE));
11714 lit += sizeof (LITTLENUM_TYPE);
11715 }
11716 }
11717
11718 static void
11719 ia64_float_to_chars_littleendian (char *lit, LITTLENUM_TYPE *words,
11720 int prec)
11721 {
11722 while (prec--)
11723 {
11724 number_to_chars_littleendian (lit, (long) (words[prec]),
11725 sizeof (LITTLENUM_TYPE));
11726 lit += sizeof (LITTLENUM_TYPE);
11727 }
11728 }
11729
11730 void
11731 ia64_elf_section_change_hook (void)
11732 {
11733 if (elf_section_type (now_seg) == SHT_IA_64_UNWIND
11734 && elf_linked_to_section (now_seg) == NULL)
11735 elf_linked_to_section (now_seg) = text_section;
11736 dot_byteorder (-1);
11737 }
11738
11739 /* Check if a label should be made global. */
11740 void
11741 ia64_check_label (symbolS *label)
11742 {
11743 if (*input_line_pointer == ':')
11744 {
11745 S_SET_EXTERNAL (label);
11746 input_line_pointer++;
11747 }
11748 }
11749
11750 /* Used to remember where .alias and .secalias directives are seen. We
11751 will rename symbol and section names when we are about to output
11752 the relocatable file. */
11753 struct alias
11754 {
11755 const char *file; /* The file where the directive is seen. */
11756 unsigned int line; /* The line number the directive is at. */
11757 const char *name; /* The original name of the symbol. */
11758 };
11759
11760 /* Called for .alias and .secalias directives. If SECTION is 1, it is
11761 .secalias. Otherwise, it is .alias. */
11762 static void
11763 dot_alias (int section)
11764 {
11765 char *name, *alias;
11766 char delim;
11767 char *end_name;
11768 int len;
11769 const char *error_string;
11770 struct alias *h;
11771 const char *a;
11772 struct hash_control *ahash, *nhash;
11773 const char *kind;
11774
11775 delim = get_symbol_name (&name);
11776 end_name = input_line_pointer;
11777 *end_name = delim;
11778
11779 if (name == end_name)
11780 {
11781 as_bad (_("expected symbol name"));
11782 ignore_rest_of_line ();
11783 return;
11784 }
11785
11786 SKIP_WHITESPACE_AFTER_NAME ();
11787
11788 if (*input_line_pointer != ',')
11789 {
11790 *end_name = 0;
11791 as_bad (_("expected comma after \"%s\""), name);
11792 *end_name = delim;
11793 ignore_rest_of_line ();
11794 return;
11795 }
11796
11797 input_line_pointer++;
11798 *end_name = 0;
11799 ia64_canonicalize_symbol_name (name);
11800
11801 /* We call demand_copy_C_string to check if alias string is valid.
11802 There should be a closing `"' and no `\0' in the string. */
11803 alias = demand_copy_C_string (&len);
11804 if (alias == NULL)
11805 {
11806 ignore_rest_of_line ();
11807 return;
11808 }
11809
11810 /* Make a copy of name string. */
11811 len = strlen (name) + 1;
11812 obstack_grow (&notes, name, len);
11813 name = obstack_finish (&notes);
11814
11815 if (section)
11816 {
11817 kind = "section";
11818 ahash = secalias_hash;
11819 nhash = secalias_name_hash;
11820 }
11821 else
11822 {
11823 kind = "symbol";
11824 ahash = alias_hash;
11825 nhash = alias_name_hash;
11826 }
11827
11828 /* Check if alias has been used before. */
11829 h = (struct alias *) hash_find (ahash, alias);
11830 if (h)
11831 {
11832 if (strcmp (h->name, name))
11833 as_bad (_("`%s' is already the alias of %s `%s'"),
11834 alias, kind, h->name);
11835 goto out;
11836 }
11837
11838 /* Check if name already has an alias. */
11839 a = (const char *) hash_find (nhash, name);
11840 if (a)
11841 {
11842 if (strcmp (a, alias))
11843 as_bad (_("%s `%s' already has an alias `%s'"), kind, name, a);
11844 goto out;
11845 }
11846
11847 h = (struct alias *) xmalloc (sizeof (struct alias));
11848 h->file = as_where (&h->line);
11849 h->name = name;
11850
11851 error_string = hash_jam (ahash, alias, (void *) h);
11852 if (error_string)
11853 {
11854 as_fatal (_("inserting \"%s\" into %s alias hash table failed: %s"),
11855 alias, kind, error_string);
11856 goto out;
11857 }
11858
11859 error_string = hash_jam (nhash, name, (void *) alias);
11860 if (error_string)
11861 {
11862 as_fatal (_("inserting \"%s\" into %s name hash table failed: %s"),
11863 alias, kind, error_string);
11864 out:
11865 obstack_free (&notes, name);
11866 obstack_free (&notes, alias);
11867 }
11868
11869 demand_empty_rest_of_line ();
11870 }
11871
11872 /* It renames the original symbol name to its alias. */
11873 static void
11874 do_alias (const char *alias, void *value)
11875 {
11876 struct alias *h = (struct alias *) value;
11877 symbolS *sym = symbol_find (h->name);
11878
11879 if (sym == NULL)
11880 {
11881 #ifdef TE_VMS
11882 /* Uses .alias extensively to alias CRTL functions to same with
11883 decc$ prefix. Sometimes function gets optimized away and a
11884 warning results, which should be suppressed. */
11885 if (strncmp (alias, "decc$", 5) != 0)
11886 #endif
11887 as_warn_where (h->file, h->line,
11888 _("symbol `%s' aliased to `%s' is not used"),
11889 h->name, alias);
11890 }
11891 else
11892 S_SET_NAME (sym, (char *) alias);
11893 }
11894
11895 /* Called from write_object_file. */
11896 void
11897 ia64_adjust_symtab (void)
11898 {
11899 hash_traverse (alias_hash, do_alias);
11900 }
11901
11902 /* It renames the original section name to its alias. */
11903 static void
11904 do_secalias (const char *alias, void *value)
11905 {
11906 struct alias *h = (struct alias *) value;
11907 segT sec = bfd_get_section_by_name (stdoutput, h->name);
11908
11909 if (sec == NULL)
11910 as_warn_where (h->file, h->line,
11911 _("section `%s' aliased to `%s' is not used"),
11912 h->name, alias);
11913 else
11914 sec->name = alias;
11915 }
11916
11917 /* Called from write_object_file. */
11918 void
11919 ia64_frob_file (void)
11920 {
11921 hash_traverse (secalias_hash, do_secalias);
11922 }
11923
11924 #ifdef TE_VMS
11925 #define NT_VMS_MHD 1
11926 #define NT_VMS_LNM 2
11927
11928 /* Integrity VMS 8.x identifies it's ELF modules with a standard ELF
11929 .note section. */
11930
11931 /* Manufacture a VMS-like time string. */
11932 static void
11933 get_vms_time (char *Now)
11934 {
11935 char *pnt;
11936 time_t timeb;
11937
11938 time (&timeb);
11939 pnt = ctime (&timeb);
11940 pnt[3] = 0;
11941 pnt[7] = 0;
11942 pnt[10] = 0;
11943 pnt[16] = 0;
11944 pnt[24] = 0;
11945 sprintf (Now, "%2s-%3s-%s %s", pnt + 8, pnt + 4, pnt + 20, pnt + 11);
11946 }
11947
11948 void
11949 ia64_vms_note (void)
11950 {
11951 char *p;
11952 asection *seg = now_seg;
11953 subsegT subseg = now_subseg;
11954 asection *secp = NULL;
11955 char *bname;
11956 char buf [256];
11957 symbolS *sym;
11958
11959 /* Create the .note section. */
11960
11961 secp = subseg_new (".note", 0);
11962 bfd_set_section_flags (stdoutput,
11963 secp,
11964 SEC_HAS_CONTENTS | SEC_READONLY);
11965
11966 /* Module header note (MHD). */
11967 bname = xstrdup (lbasename (out_file_name));
11968 if ((p = strrchr (bname, '.')))
11969 *p = '\0';
11970
11971 /* VMS note header is 24 bytes long. */
11972 p = frag_more (8 + 8 + 8);
11973 number_to_chars_littleendian (p + 0, 8, 8);
11974 number_to_chars_littleendian (p + 8, 40 + strlen (bname), 8);
11975 number_to_chars_littleendian (p + 16, NT_VMS_MHD, 8);
11976
11977 p = frag_more (8);
11978 strcpy (p, "IPF/VMS");
11979
11980 p = frag_more (17 + 17 + strlen (bname) + 1 + 5);
11981 get_vms_time (p);
11982 strcpy (p + 17, "24-FEB-2005 15:00");
11983 p += 17 + 17;
11984 strcpy (p, bname);
11985 p += strlen (bname) + 1;
11986 free (bname);
11987 strcpy (p, "V1.0");
11988
11989 frag_align (3, 0, 0);
11990
11991 /* Language processor name note. */
11992 sprintf (buf, "GNU assembler version %s (%s) using BFD version %s",
11993 VERSION, TARGET_ALIAS, BFD_VERSION_STRING);
11994
11995 p = frag_more (8 + 8 + 8);
11996 number_to_chars_littleendian (p + 0, 8, 8);
11997 number_to_chars_littleendian (p + 8, strlen (buf) + 1, 8);
11998 number_to_chars_littleendian (p + 16, NT_VMS_LNM, 8);
11999
12000 p = frag_more (8);
12001 strcpy (p, "IPF/VMS");
12002
12003 p = frag_more (strlen (buf) + 1);
12004 strcpy (p, buf);
12005
12006 frag_align (3, 0, 0);
12007
12008 secp = subseg_new (".vms_display_name_info", 0);
12009 bfd_set_section_flags (stdoutput,
12010 secp,
12011 SEC_HAS_CONTENTS | SEC_READONLY);
12012
12013 /* This symbol should be passed on the command line and be variable
12014 according to language. */
12015 sym = symbol_new ("__gnat_vms_display_name@gnat_demangler_rtl",
12016 absolute_section, 0, &zero_address_frag);
12017 symbol_table_insert (sym);
12018 symbol_get_bfdsym (sym)->flags |= BSF_DEBUGGING | BSF_DYNAMIC;
12019
12020 p = frag_more (4);
12021 /* Format 3 of VMS demangler Spec. */
12022 number_to_chars_littleendian (p, 3, 4);
12023
12024 p = frag_more (4);
12025 /* Place holder for symbol table index of above symbol. */
12026 number_to_chars_littleendian (p, -1, 4);
12027
12028 frag_align (3, 0, 0);
12029
12030 /* We probably can't restore the current segment, for there likely
12031 isn't one yet... */
12032 if (seg && subseg)
12033 subseg_set (seg, subseg);
12034 }
12035
12036 #endif /* TE_VMS */
This page took 0.265228 seconds and 5 git commands to generate.